

Essential Linux Device Drivers

Prentice Hall
Open Source Software Development Series

Arnold Robbins, Series Editor

“Real world code from real world applications”
Open Source technology has revolutionized the computing world. Many large-scale projects are in
production use worldwide, such as Apache, MySQL, and Postgres, with programmers writing applications
in a variety of languages including Perl, Python, and PHP. These technologies are in use on many different
systems, ranging from proprietary systems, to Linux systems, to traditional UNIX systems, to mainframes.

The Prentice Hall Open Source Software Development Series is designed to bring you the best of these
Open Source technologies. Not only will you learn how to use them for your projects, but you will learn
from them. By seeing real code from real applications, you will learn the best practices of Open Source
developers the world over.

Titles currently in the series include:

Linux® Debugging and Performance Tuning
Steve Best
0131492470, Paper, ©2006

C++ GUI Programming with Qt 4
Jasmin Blanchette, Mark Summerfi eld
0132354160, Hard, ©2008

The Defi nitive Guide to the Xen Hypervisor
David Chisnall
013234971X, Hard, ©2008

Understanding AJAX
Joshua Eichorn
0132216353, Paper, ©2007

The Linux Programmer’s Toolbox
John Fusco
0132198576, Paper, ©2007

Embedded Linux Primer
Christopher Hallinan
0131679848, Paper, ©2007

The Apache Modules Book
Nick Kew
0132409674, Paper, © 2007

SELinux by Example
Frank Mayer, David Caplan, Karl MacMillan
0131963694, Paper, ©2007

UNIX to Linux® Porting
Alfredo Mendoza, Chakarat Skawratananond,
Artis Walker
0131871099, Paper, ©2006

Rapid Web Applications with TurboGears
Mark Ramm, Kevin Dangoor, Gigi Sayfan
0132433885, Paper, © 2007

Linux Programming by Example
Arnold Robbins
0131429647, Paper, ©2004

The Linux® Kernel Primer
Claudia Salzberg, Gordon Fischer,
Steven Smolski
0131181637, Paper, ©2006

Rapid GUI Programming with Python and Qt
Mark Summerfi eld
0132354187, Hard, © 2008

Essential Linux Device Drivers
Sreekrishnan Venkateswaran
0132396556, Hard, ©2008

New to the series: Digital Short Cuts
Short Cuts are short, concise, PDF documents designed specifi cally for busy technical professionals like
you. Each Short Cut is tightly focused on a specifi c technology or technical problem. Written by industry
experts and best selling authors, Short Cuts are published with you in mind — getting you the technical
information that you need — now.

Understanding AJAX:
Consuming the Sent Data with XML and JSON
Joshua Eichorn
0132337932, Adobe Acrobat PDF, © 2007

Debugging Embedded Linux
Christopher Hallinan
0131580132, Adobe Acrobat PDF, © 2007

Using BusyBox
Christopher Hallinan
0132335921, Adobe Acrobat PDF, © 2007

Essential Linux Device Drivers

Sreekrishnan Venkateswaran

Prentice Hall
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/ph

Library of Congress Cataloging-in-Publication Data:

Venkateswaran, Sreekrishnan, 1972-
 Essential Linux device drivers / Sreekrishnan Venkateswaran.-- 1st ed.
 p. cm.
 ISBN 0-13-239655-6 (hardback : alk. paper) 1. Linux device drivers (Computer programs)
I. Title.
 QA76.76.D49V35 2008
 005.4'32--dc22
 2008000249

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

The code in this book may be redistributed only subject to the terms and conditions set forth in the GNU General Public License
version 2 (GPLv2) (presently available at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt).

ISBN-13: 978-0-132-39655-4
ISBN-10: 0-132-39655-6
Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville, IN.
Fourth printing April 2009

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the book is available through
Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find code samples,
download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

 • Go to http://www.informit.com/onlineedition
 • Complete the brief registration form
 • Enter the coupon code BHRY-PKNP-QJBZ-6GP5-UBY8

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail
customer-service@safaribooksonline.com.

Editor-in-Chief
Mark Taub

Executive Editor
Debra Williams Cauley

Managing Editor
Gina Kanouse

Project Editor
Anne Goebel

Copy Editor
Keith Cline

Indexer
Erika Millen

Proofreader
San Dee Phillips

Technical Editors
Vamsi Krishna
Jim Lieb

Publishing Coordinator
Heather Fox

Interior Designer
Laura Robbins

Cover Designer
Alan Clements

Compositor
Molly Sharp

www.informit.com/ph
http://www.informit.com/onlineedition
http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt

This book is dedicated to the ten million visually challenged citizens

of India. All author proceeds will go to their cause.

This page intentionally left blank

vii

Contents

Foreword ...xxi

Preface ...xxiii

Acknowledgments ... xxix

About the Author ... xxx

Chapter 1 Introduction ...1

Evolution .. 2

The GNU Copyleft ... 3

Kernel.org ... 4

Mailing Lists and Forums .. 4

Linux Distributions ... 5

Looking at the Sources .. 6

Building the Kernel ... 10

Loadable Modules ... 12

Before Starting .. 14

Chapter 2 A Peek Inside the Kernel ..17

Booting Up ... 18

Kernel Mode and User Mode .. 30

Process Context and Interrupt Context ... 30

Kernel Timers .. 31

HZ and Jiffies ... 31

Long Delays .. 33

viii Contents

Short Delays ... 36

Pentium Time Stamp Counter .. 36

Real Time Clock ... 37

Concurrency in the Kernel .. 39

Spinlocks and Mutexes .. 39

Atomic Operators ... 45

Reader-Writer Locks ... 46

Debugging .. 48

Process Filesystem .. 49

Allocating Memory ... 49

Looking at the Sources .. 52

Chapter 3 Kernel Facilities ...55

Kernel Threads .. 56

Creating a Kernel Thread .. 56

Process States and Wait Queues ... 61

User Mode Helpers ... 63

Helper Interfaces ... 65

Linked Lists .. 65

Hash Lists ... 72

Work Queues .. 72

Notifier Chains ... 74

Completion Interface .. 78

Kthread Helpers .. 81

Error-Handling Aids ... 83

Looking at the Sources .. 85

Chapter 4 Laying the Groundwork ...89

Introducing Devices and Drivers ... 90

Interrupt Handling ... 92

Interrupt Context ... 92

Assigning IRQs ... 94

Contents ix

Device Example: Roller Wheel .. 94

Softirqs and Tasklets .. 99

The Linux Device Model .. 103

Udev ... 103

Sysfs, Kobjects, and Device Classes ... 106

Hotplug and Coldplug .. 110

Microcode Download ... 111

Module Autoload .. 112

Memory Barriers ... 114

Power Management ... 114

Looking at the Sources .. 115

Chapter 5 Character Drivers ...119

Char Driver Basics ... 120

Device Example: System CMOS ... 121

Driver Initialization .. 122

Open and Release ... 127

Exchanging Data ... 129

Seek .. 136

Control ... 137

Sensing Data Availability ... 139

Poll ... 139

Fasync ... 142

Talking to the Parallel Port .. 145

Device Example: Parallel Port LED Board ... 146

RTC Subsystem ... 156

Pseudo Char Drivers ... 157

Misc Drivers .. 160

Device Example: Watchdog Timer .. 160

Character Caveats .. 166

Looking at the Sources .. 167

x Contents

Chapter 6 Serial Drivers ...171

Layered Architecture ... 173

UART Drivers ... 176

Device Example: Cell Phone ... 178

RS-485 ... 191

TTY Drivers .. 192

Line Disciplines ... 194

Device Example: Touch Controller ... 195

Looking at the Sources .. 205

Chapter 7 Input Drivers ...207

Input Event Drivers ... 210

The Evdev Interface .. 210

Input Device Drivers ... 216

Serio ... 217

Keyboards ... 217

Mice ... 220

Touch Controllers ... 227

Accelerometers .. 228

Output Events .. 228

Debugging .. 230

Looking at the Sources .. 231

Chapter 8 The Inter-Integrated Circuit Protocol ..233

What’s I2C/SMBus? ... 234

I2C Core .. 235

Bus Transactions .. 237

Device Example: EEPROM .. 238

Initializing .. 238

Probing the Device ... 241

Checking Adapter Capabilities .. 244

Contents xi

Accessing the Device ... 244

More Methods .. 246

Device Example: Real Time Clock .. 247

I2C-dev ... 251

Hardware Monitoring Using LM-Sensors .. 251

The Serial Peripheral Interface Bus .. 251

The 1-Wire Bus ... 254

Debugging .. 254

Looking at the Sources .. 255

Chapter 9 PCMCIA and Compact Flash ..257

What’s PCMCIA/CF? ... 258

Linux-PCMCIA Subsystem ... 260

Host Controller Drivers .. 262

PCMCIA Core .. 263

Driver Services .. 263

Client Drivers ... 264

Data Structures ... 264

Device Example: PCMCIA Card .. 267

Tying the Pieces Together .. 271

PCMCIA Storage .. 272

Serial PCMCIA ... 272

Debugging .. 273

Looking at the Sources .. 275

Chapter 10 Peripheral Component Interconnect ..277

The PCI Family .. 278

Addressing and Identification .. 281

Accessing PCI Regions .. 285

Configuration Space ... 285

I/O and Memory .. 286

Direct Memory Access ... 288

xii Contents

Device Example: Ethernet-Modem Card ... 292

Initializing and Probing .. 293

Data Transfer .. 301

Debugging .. 308

Looking at the Sources .. 308

Chapter 11 Universal Serial Bus ...311

USB Architecture .. 312

Bus Speeds .. 314

Host Controllers ... 315

Transfer Types ... 315

Addressing .. 316

Linux-USB Subsystem ... 317

Driver Data Structures .. 317

 The usb_device Structure ... 318

USB Request Blocks ... 319

Pipes ... 321

Descriptor Structures .. 322

Enumeration ... 324

Device Example: Telemetry Card ... 324

Initializing and Probing .. 325

Accessing Registers .. 332

Data Transfer .. 335

Class Drivers ... 338

Mass Storage ... 339

USB-Serial .. 345

Human Interface Devices .. 348

Bluetooth .. 348

Gadget Drivers .. 348

Debugging .. 349

Looking at the Sources .. 351

Contents xiii

Chapter 12 Video Drivers ...355

Display Architecture .. 356

Linux-Video Subsystem ... 359

Display Parameters .. 361

The Frame Buffer API ... 362

Frame Buffer Drivers ... 365

Device Example: Navigation System ... 365

Console Drivers ... 380

Device Example: Cell Phone Revisited .. 382

Boot Logo ... 387

Debugging .. 387

Looking at the Sources .. 388

Chapter 13 Audio Drivers ...391

Audio Architecture .. 392

Linux-Sound Subsystem .. 394

Device Example: MP3 Player .. 396

Driver Methods and Structures ... 399

ALSA Programming .. 409

Debugging .. 412

Looking at the Sources .. 412

Chapter 14 Block Drivers ...415

Storage Technologies ... 416

Linux Block I/O Layer .. 421

I/O Schedulers .. 422

Block Driver Data Structures and Methods ... 423

Device Example: Simple Storage Controller .. 426

Initialization ... 427

Block Device Operations .. 430

Disk Access ... 432

xiv Contents

Advanced Topics .. 434

Debugging .. 436

Looking at the Sources .. 437

Chapter 15 Network Interface Cards ..439

Driver Data Structures .. 440

Socket Buffers ... 441

The Net Device Interface .. 443

Activation ... 444

Data Transfer .. 444

Watchdog ... 445

Statistics .. 445

Configuration ... 446

Bus Specific ... 448

Talking with Protocol Layers ... 448

Receive Path .. 448

Transmit Path ... 449

Flow Control .. 449

Buffer Management and Concurrency Control ... 450

Device Example: Ethernet NIC ... 451

ISA Network Drivers ... 457

Asynchronous Transfer Mode .. 458

Network Throughput .. 459

Driver Performance ... 459

Protocol Performance .. 461

Looking at the Sources .. 461

Chapter 16 Linux Without Wires ...465

Bluetooth .. 467

BlueZ .. 469

Device Example: CF Card ... 471

Contents xv

Device Example: USB Adapter .. 471

RFCOMM ... 473

Networking ... 475

Human Interface Devices .. 477

Audio .. 477

Debugging .. 478

Looking at the Sources .. 478

Infrared ... 478

Linux-IrDA ... 480

Device Example: Super I/O Chip .. 482

Device Example: IR Dongle .. 483

IrComm .. 486

Networking ... 486

IrDA Sockets .. 487

Linux Infrared Remote Control .. 488

Looking at the Sources .. 489

WiFi .. 489

Configuration ... 490

Device Drivers .. 494

Looking at the Sources .. 496

Cellular Networking .. 496

GPRS ... 496

CDMA ... 498

Current Trends .. 500

Chapter 17 Memory Technology Devices ...503

What’s Flash Memory? .. 504

Linux-MTD Subsystem ... 505

Map Drivers .. 506

Device Example: Handheld ... 506

NOR Chip Drivers ... 511

xvi Contents

NAND Chip Drivers .. 513

User Modules .. 516

Block Device Emulation ... 516

Char Device Emulation .. 517

JFFS2 .. 517

YAFFS2 .. 518

MTD-Utils ... 518

Configuring MTD .. 519

eXecute In Place .. 520

The Firmware Hub ... 520

Debugging .. 524

Looking at the Sources .. 524

Chapter 18 Embedding Linux ..527

Challenges ... 528

Component Selection .. 530

Tool Chains ... 531

Embedded Bootloaders ... 531

Memory Layout .. 535

Kernel Porting ... 537

Embedded Drivers .. 538

Flash Memory ... 538

UART ... 539

Buttons and Wheels .. 539

PCMCIA/CF .. 540

SD/MMC ... 540

USB .. 540

RTC ... 541

Audio .. 541

Touch Screen .. 541

Contents xvii

Video .. 541

CPLD/FPGA .. 542

Connectivity ... 542

Domain-Specific Electronics ... 542

More Drivers .. 543

The Root Filesystem .. 544

NFS-Mounted Root .. 544

Compact Middleware ... 546

Test Infrastructure ... 548

Debugging .. 548

Board Rework ... 549

Debuggers ... 550

Chapter 19 Drivers in User Space ...551

Process Scheduling and Response Times .. 553

The Original Scheduler ... 553

The O(1) Scheduler .. 553

The CFS Scheduler ... 555

Response Times .. 555

Accessing I/O Regions ... 558

Accessing Memory Regions ... 562

User Mode SCSI ... 565

User Mode USB .. 567

User Mode I2C .. 571

UIO .. 573

Looking at the Sources .. 574

Chapter 20 More Devices and Drivers ..577

ECC Reporting ... 578

Device Example: ECC-Aware Memory Controller .. 579

Frequency Scaling .. 583

xviii Contents

Embedded Controllers .. 584

ACPI ... 585

ISA and MCA ... 587

FireWire .. 588

Intelligent Input/Output ... 589

Amateur Radio .. 590

Voice over IP ... 590

High-Speed Interconnects ... 591

InfiniBand .. 592

RapidIO ... 592

Fibre Channel ... 592

iSCSI .. 593

Chapter 21 Debugging Device Drivers ...595

Kernel Debuggers .. 596

Entering a Debugger ... 597

Kernel Debugger (kdb) ... 598

Kernel GNU Debugger (kgdb) ... 600

GNU Debugger (gdb) .. 604

JTAG Debuggers .. 605

Downloads .. 609

Kernel Probes .. 609

Kprobes .. 609

Jprobes .. 614

Return Probes ... 617

Limitations ... 619

Looking at the Sources .. 620

Kexec and Kdump ... 620

Kexec .. 620

Kexec with Kdump ... 621

Contents xix

Kdump ... 622

Looking at the Sources .. 629

Profiling .. 629

Kernel Profiling with OProfile .. 629

Application Profiling with Gprof .. 633

Tracing .. 634

Linux Trace Toolkit ... 634

Linux Test Project .. 638

User Mode Linux .. 638

Diagnostic Tools .. 638

Kernel Hacking Config Options .. 639

Test Equipment ... 640

Chapter 22 Maintenance and Delivery ...641

Coding Style ... 642

Change Markers .. 642

Version Control ... 643

Consistent Checksums .. 643

Build Scripts .. 645

Portable Code ... 647

Chapter 23 Shutting Down ...649

Checklist ... 650

What Next? ... 651

Appendix A Linux Assembly ...653

Debugging .. 659

Appendix B Linux and the BIOS ..661

Real Mode Calls .. 662

Protected Mode Calls .. 665

BIOS and Legacy Drivers .. 666

xx Contents

Appendix C Seq Files ..669

The Seq File Advantage ... 670

Updating the NVRAM Driver .. 677

Looking at the Sources .. 679

Index .. 681

xxi

Foreword

If you’re holding this book, you may be asking yourself: Why “yet another” Linux
device driver book? Aren’t there already a bunch of them?

The answer is: This book is a quantum leap ahead of the others.
First, it is up-to-date, covering recent 2.6 kernels. Second, and more important,

this book is thorough. Most device driver books just cover the topics described in stan-
dard Unix internals books or operating system books, such as serial lines, disk drives,
and fi lesystems, and, if you’re lucky, the networking stack.

This book goes much further; it doesn’t shy away from the hard stuff that you have
to deal with on modern PC and embedded hardware, such as PCMCIA, USB, I2C,
video, audio, fl ash memory, wireless communications, and so on. You name it, if the
Linux kernel talks to it, then this book tells you about it.

No stone is left unturned; no dark corner is left unilluminated.
Furthermore, the author has earned his stripes: It’s a thrill ride just to read his

description of putting Linux on a wristwatch in the late 1990s!
I’m pleased and excited to have this book as part of the Prentice Hall Open Source

Software Development Series. It is a shining example of the exciting things happening
in the Open Source world. I hope that you will fi nd here what you need for your work
on the kernel, and that you will enjoy the process, too!

Arnold Robbins
Series Editor

This page intentionally left blank

xxiii

Preface

It was the late 1990s, and at IBM we were putting the Linux kernel on a wristwatch.
The target device was tiny, but the task was turning out to be tough. The Memory
Technology Devices subsystem didn’t exist in the kernel, which meant that before a
fi lesystem could start life on the watch’s fl ash memory, we had to develop the necessary
storage driver from scratch. Interfacing the watch’s touch screen with user applica-
tions was complicated because the kernel’s input event driver interface hadn’t been
conceived yet. Getting X Windows to run on the watch’s LCD wasn’t easy because it
didn’t work well with frame buffer drivers. Of what use is a waterproof Linux wrist-
watch if you can’t stream stock quotes from your bathtub? Bluetooth integration with
Linux was several years away, and months were spent porting a proprietary Bluetooth
stack to Internet-enable the watch. Power management support was good enough only
to squeeze a few hours of juice from the watch’s battery; hence we had work cut out
on that front, too. Linux-Infrared was still unstable, so we had to coax the stack before
we could use an Infrared keyboard for data entry. And we had to compile the compiler
and cross-compile a compact application-set because there were no accepted distribu-
tions in the consumer electronics space.

Fast forward to the present: The baby penguin has grown into a healthy teenager.
What took thousands of lines of code and a year in development back then can be
accomplished in a few days with the current kernels. But to become a versatile kernel
engineer who can magically weave solutions, you need to understand the myriad fea-
tures and facilities that Linux offers today.

About the Book

Among the various subsystems residing in the kernel source tree, the drivers/ direc-
tory constitutes the single largest chunk and is several times bigger than the others.
With new and diverse technologies arriving in popular form factors, the development
of new device drivers in the kernel is accelerating steadily. The latest kernels support
more than 70 device driver families.

This book is about writing Linux device drivers. It covers the design and develop-
ment of major device classes supported by the kernel, including those I missed during
my Linux-on-Watch days. The discussion of each driver family starts by looking at
the corresponding technology, moves on to develop a practical example, and ends
by looking at relevant kernel source fi les. Before foraying into the world of device
drivers, however, this book introduces you to the kernel and discusses the important
features of 2.6 Linux, emphasizing those portions that are of special interest to device
driver writers.

Audience

This book is intended for the intermediate-level programmer eager to tweak the kernel
to enable new devices. You should have a working knowledge of operating system con-
cepts. For example, you should know what a system call is and why concurrency issues
have to be factored in while writing kernel code. The book assumes that you have
downloaded Linux on your system, poked through the kernel sources, and at least
skimmed through some related documentation. And you should be pretty good in C.

Summary of Chapters

The fi rst 4 chapters prepare you to digest the rest of the book. The next 16 chapters dis-
cuss drivers for different device families. A chapter that describes device driver debugging
techniques comes next. The penultimate chapter provides perspective on maintenance
and delivery. We shut down by walking through a checklist that summarizes how to set
forth on your way to Linux-enablement when you get hold of a new device.

Chapter 1, “Introduction,” starts our tryst with Linux. It hurries you through
downloading the kernel sources, making trivial code changes, and building a bootable
kernel image.

Chapter 2, “A Peek Inside the Kernel,” takes a brisk look into the innards of the
Linux kernel and teaches you some must-know kernel concepts. It fi rst takes you

xxiv Preface

through the boot process and then describes kernel services particularly relevant to
driver development, such as kernel timers, concurrency management, and memory
allocation.

Chapter 3, “Kernel Facilities,” examines several kernel services that are useful com-
ponents in the toolbox of driver developers. The chapter starts by looking at kernel
threads, which is a way to implement background tasks inside the kernel. It then
moves on to helper interfaces such as linked lists, work queues, completion functions,
and notifi er chains. These helper facilities simplify your code, weed out redundancies
from the kernel, and help long-term maintenance.

Chapter 4, “Laying the Groundwork,” builds the foundation for mastering the
art of writing Linux device drivers. It introduces devices and drivers by giving you a
bird’s-eye view of the architecture of a typical PC-compatible system and an embed-
ded device. It then looks at basic driver concepts such as interrupt handling and the
kernel’s device model.

Chapter 5, “Character Drivers,” looks at the architecture of character device driv-
ers. Several concepts introduced in this chapter, such as polling, asynchronous notifi -
cation, and I/O control, are relevant to subsequent chapters, too, because many device
classes discussed in the rest of the book are “super” character devices.

Chapter 6, “Serial Drivers,” explains the kernel layer that handles serial devices.
Chapter 7, “Input Drivers,” discusses the kernel’s input subsystem that is respon-

sible for servicing devices such as keyboards, mice, and touch-screen controllers.
Chapter 8, “The Inter-Integrated Circuit Protocol,” dissects drivers for devices

such as EEPROMs that are connected to a system’s I2C bus or SMBus. This chapter
also looks at other serial interfaces such as SPI bus and 1-wire bus.

Chapter 9, “PCMCIA and Compact Flash,” delves into the PCMCIA subsystem.
It teaches you to write drivers for devices having a PCMCIA or Compact Flash form
factor.

Chapter 10, “Peripheral Component Interconnect,” looks at kernel support for
PCI and its derivatives.

Chapter 11, “Universal Serial Bus,” explores USB architecture and explains how you
can use the services of the Linux-USB subsystem to write drivers for USB devices.

Chapter 12, “Video Drivers,” examines the Linux-Video subsystem. It fi nds out
the advantages offered by the frame buffer abstraction and teaches you to write frame
buffer drivers.

Chapter 13, “Audio Drivers,” describes the Linux-Audio framework and explains
how to implement audio drivers.

 Preface xxv

Chapter 14, “Block Drivers,” focuses on drivers for storage devices such as hard
disks. In this chapter, you also learn about the different I/O schedulers supported by
the Linux-Block subsystem.

Chapter 15, “Network Interface Cards,” is devoted to network device drivers. You
learn about kernel networking data structures and how to interface network drivers
with protocol layers.

Chapter 16, “Linux Without Wires,” looks at driving different wireless technolo-
gies such as Bluetooth, Infrared, WiFi, and cellular communication.

Chapter 17, “Memory Technology Devices,” discusses fl ash memory enablement
on embedded devices. The chapter ends by examining drivers for the Firmware Hub
found on PC systems.

Chapter 18, “Embedding Linux,” steps into the world of embedded Linux. It takes
you through the main fi rmware components of an embedded solution such as boot-
loader, kernel, and device drivers. Given the soaring popularity of Linux in the embed-
ded space, it’s more likely that you will use the device driver skills that you acquire
from this book to enable embedded systems.

Chapter 19, “Drivers in User Space,” looks at driving different types of devices
from user space. Some device drivers, especially ones that are heavy on policy and
light on performance requirements, are better off residing in user land. This chapter
also explains how the Linux process scheduler affects the response times of user mode
drivers.

Chapter 20, “More Devices and Drivers,” takes a tour of a potpourri of driver fami-
lies not covered thus far, such as Error Detection And Correction (EDAC), FireWire,
and ACPI.

Chapter 21, “Debugging Device Drivers,” teaches about different types of debug-
gers that you can use to debug kernel code. In this chapter, you also learn to use trace
tools, kernel probes, crash-dump, and profi lers. When you develop a driver, be armed
with the driver debugging skills that you learn in this chapter.

Chapter 22, “Maintenance and Delivery,” provides perspective on the software
development life cycle.

Chapter 23, “Shutting Down,” takes you through a checklist of work items when
you embark on Linux-enabling a new device. The book ends by pondering What next?

Device drivers sometimes need to implement code snippets in assembly, so Appen-
dix A, “Linux Assembly,” takes a look at the different facets of assembly programming
on Linux. Some device drivers on x86-based systems depend directly or indirectly on
the BIOS, so Appendix B, “Linux and the BIOS,” teaches you how Linux interacts

xxvi Preface

with the BIOS. Appendix C, “Seq Files,” describes seq fi les, a kernel helper interface
introduced in the 2.6 kernel that device drivers can use to monitor and trend data
points.

The book is generally organized according to device and bus complexity, coupled
with practical reasons of dependencies between chapters. So, we start off with basic
device classes such as character, serial, and input. Next, we look at simple serial buses
such as I2C and SMBus. External I/O buses such as PCMCIA, PCI, and USB follow.
Video, audio, block, and network devices usually interface with the processor via these
I/O buses, so we look at them soon after. The next portions of the book are oriented
toward embedded Linux and cover technologies such as wireless networking and fl ash
memory. User-space drivers are discussed toward the end of the book.

Kernel Version

This book is generally up to date as of the 2.6.23/2.6.24 kernel versions. Most code list-
ings in this book have been tested on a 2.6.23 kernel. If you are using a later version, look
at Linux websites such as lwn.net to learn about the kernel changes since 2.6.23/24.

Book Website

I’ve set up a website at elinuxdd.com to provide updates, errata, and other information
related to this book.

Conventions Used

Source code, function names, and shell commands are written like this. The shell
prompt used is bash>. Filename are written in italics, like this. Italics are also used to
introduce new terms.

Some chapters modify original kernel source fi les while implementing code exam-
ples. To clearly point out the changes, newly inserted code lines are prefi xed with +,
and any deleted code lines with -.

Sometimes, for simplicity, the book uses generic references. So, if the text points
you to the arch/your-arch/ directory, it should be translated, for example, to arch/x86/
if you are compiling the kernel for the x86 architecture. Similarly, any mention of
the include/asm-your-arch/ directory should be read as include/asm-arm/ if you are,
for instance, building the kernel for the ARM architecture. The * symbol and X are

 Preface xxvii

occasionally used as wildcard characters in fi lenames. So, if a chapter asks you to look
at include/linux/time*.h, look at the header fi les, time.h, timer.h, times.h, and timex.h
residing in the include/linux/ directory. If a section talks about /dev/input/eventX or
/sys/devices/platform/i8042/serioX/, X is the interface number that the kernel assigns to
your device in the context of your system confi guration.

The → symbol is sometimes inserted between command or kernel output to attach
explanations.

Simple regular expressions are occasionally used to compactly list function prototypes.
For example, the section “Direct Memory Access” in Chapter 10, “Peripheral Component
Interconnect,” refers to pci_[map|unmap|dma_sync]_single() instead of explicitly
citing pci_map_single(), pci_umap_single(), and pci_dma_sync_single().

Several chapters refer you to user-space confi guration fi les. For example, the sec-
tion that describes the boot process opens /etc/rc.sysinit, and the chapter that discusses
Bluetooth refers to /etc/bluetooth/pin. The exact names and locations of such fi les might,
however, vary according to the Linux distribution you use.

xxviii Preface

xxix

Acknowledgments

First, I raise my hat to my editors at Prentice Hall: Debra Williams Cauley, Anne
 Goebel, and Keith Cline. Without their supporting work, this book would not have
materialized. I thank Mark Taub for his interest in this project and for initiating it.

Several sources have contributed to my learning in the past decade: the many team-
mates with whom I worked on Linux projects, the mighty kernel sources, mailing lists,
and the Internet. All these have played a part in helping me write this book.

Martin Streicher of Linux Magazine changed me from a full-time coder to a spare-
time writer when he offered me the magazine’s “Gearheads” kernel column. I grate-
fully acknowledge the many lessons in technical writing that I’ve learned from him.

I owe a special debt of gratitude to my technical reviewers. Vamsi Krishna patiently
read through each chapter of the manuscript. His numerous suggestions have made
this a better book. Jim Lieb provided valuable feedback on several chapters. Arnold
Robbins reviewed the fi rst few chapters and provided insightful comments.

Finally, I thank my parents and my wife for their love and support. And thanks to
my baby daughter for constantly reminding me to spend cycles on the book by her
wobbly walk that bears an uncanny resemblance to that of a penguin.

About the Author

Sreekrishnan Venkateswaran has a master’s degree in computer science from the
Indian Institute of Technology, Kanpur, India. During the past 12 years that he has
been working for IBM, he has ported Linux to devices ranging from wristwatches,
PDAs, and music players to VoIP phones, pacemaker programmers, and remote patient
monitoring systems. Sreekrishnan was a contributing editor and kernel columnist to
the Linux Magazine for more than 2 years. Currently, he manages the embedded solu-
tions group at IBM India.

xxx

1

1

Introduction

In This Chapter

■ Evolution 2

■ The GNU Copyleft 3

■ Kernel.org 4

■ Mailing Lists and Forums 4

■ Linux Distributions 5

■ Looking at the Sources 6

■ Building the Kernel 10

■ Loadable Modules 12

■ Before Starting 14

2

L inux lures. It has the enticing aroma of an internationalist project where
people of all nationalities, creed, and gender collaborate. Free availability of

source code and a well-understood UNIX-like application programming envi-
ronment have contributed to its runaway success. High-quality support from
experts available instantly over the Internet at no charge has also played a major
role in stitching together a huge Linux community.

Developers get incredibly excited about working on technologies where they
have access to all the sources because that lets them create innovative solutions.
You can, for example, hack the sources and customize Linux to boot in a few
seconds on your device, a feat that is hard to achieve with a proprietary operat-
ing system.

Evolution

Linux started as the hobby of a Finnish college student named Linus Torvalds in
1991, but quickly metamorphed into an advanced operating system popular all over
the planet. From its fi rst release for the Intel 386 processor, the kernel has gradually
grown in complexity to support numerous architectures, multiprocessor hardware,
and high-performance clusters. The full list of supported CPUs is long, but some
of the major supported architectures are x86, IA64, ARM, PowerPC, Alpha, s390,
MIPS, and SPARC. Linux has been ported to hundreds of hardware platforms built
around these processors. The kernel is continuously getting better, and the evolu-
tion is progressing at a frantic pace.

Although it started life as a desktop-operating system, Linux has penetrated
the embedded and enterprise worlds and is touching our daily lives. When you
push the buttons on your handheld, fl ip your remote to the weather channel, or
visit the hospital for a physical checkup, it’s increasingly likely that some Linux
code is being set into motion to come to your service. Linux’s free availability is
helping its evolution as much as its technical superiority. Whether it’s an initia-
tive to develop sub-$100 computers to enable the world’s poor or pricing pressure
in the consumer electronics space, Linux is today’s operating system of choice,

because proprietary operating systems sometimes cost more than the desired price of
the computers themselves.

The GNU Copyleft

The GNU project (GNU is a recursive acronym for GNU’s Not UNIX) predates Linux
and was launched to develop a free UNIX-like operating system. A complete GNU
operating system is powered by the Linux kernel but also contains components such
as libraries, compilers, and utilities. A Linux-based computer is hence more accurately
a GNU/Linux system. All components of a GNU/Linux system are built using free
software.

There are different fl avors of free software. One such fl avor is called public domain
software. Software released under the public domain is not copyrighted, and no restric-
tions are imposed on its usage. You can use it for free, make changes to it, and even
restrict the distribution of your modifi ed sources. As you can see, the “no restrictions”
clause introduces the power to impose restrictions downstream.

The Free Software Foundation, the primary sponsor of the GNU project, cre-
ated the GNU Public License (GPL), also called a copyleft, to prevent the possibility of
middlemen transforming free software into proprietary software. Those who modify
copylefted software are required to also copyleft their derived work. The Linux kernel
and most components of a GNU system such as the GNU Compiler Collection (GCC)
are released under the GPL. So, if you make modifi cations to the kernel, you have to
return your changes back to the community. Essentially, you have to pass on the rights
vested on you by the copyleft.

 The Linux kernel is licensed under GPL version 2. There is an ongoing debate in the kernel
community about whether the kernel should move to GPLv3, the latest version of the GPL.
The current tide seems to be against relicensing the kernel to adopt GPLv3.

Linux applications that invoke system calls to access kernel services are not con-
sidered derived work, however, and won’t be restricted by the GPL. Similarly, libraries
are covered by a less-stringent license called the GNU Lesser General Public License
(LGPL). Proprietary software is permitted to dynamically link with libraries released
under the LGPL.

The GNU Copyleft 3

4 Chapter 1 Introduction

Kernel.org

The primary repository of Linux kernel sources is www.kernel.org. The website con-
tains all released kernel versions. A number of websites around the world mirror the
contents of kernel.org.

In addition to released kernels, kernel.org also hosts a set of patches maintained by
front-line developers that serve as a test bed for future stable releases. A patch is a text
fi le containing source code differences between a development tree and the original
snapshot from which the developer started work. A popular patch-set available at ker-
nel.org is the -mm patch periodically released by Andrew Morton, the lead maintainer
of the Linux kernel. You will fi nd experimental features in the -mm patch that have
not yet made it to the mainline source tree. Another patch-set periodically released on
kernel.org is the –rt (real time) patch maintained by Ingo Molnar. Several –rt fea-
tures have been merged into the mainline kernel.

Mailing Lists and Forums

The Linux Kernel Mailing List (LKML) is the forum where developers debate on design
issues and decide on future features. You can fi nd a real-time feed of the mailing list at
www.lkml.org. The kernel now contains several million lines of code contributed by
thousands of developers all over the world. LKML acts as the thread that ties all these
developers together.

LKML is not for general Linux questions. The basic rule is to post only questions
pertaining to kernel development that have not been previously answered in the mail-
ing list or in popularly available documentation. If the C compiler crashed while com-
piling your Linux application, you should post that question elsewhere.

Discussions in some LKML threads are more interesting than a New York Times
bestseller. Spend a few hours browsing LKML archives to get an insight into the phi-
losophy behind the Linux kernel.

Most subprojects in the kernel have their own specifi c mailing lists. So, subscribe to
the linux-mtd mailing list if you are developing a Linux fl ash memory driver or initiate a
thread in the linux-usb-devel mailing list if you think you have found a bug in the USB
mass storage driver. We refer to relevant mailing lists at the end of several chapters.

In various forums, kernel experts from around the globe gather under one roof.
The Linux Symposium held annually at Ottawa, Canada, is one such conference. Oth-
ers include the Linux Kongress that takes place in Germany and linux.conf.au organized

www.kernel.org
www.lkml.org

in Australia. There are also numerous commercial Linux forums where industry lead-
ers meet and share their insights. An example is the LinuxWorld Conference and Expo
held yearly in North America.

For the latest news from the developer community, check out http://lwn.net/. If
you want to glean the highlights of the latest kernel release without many cryptic refer-
ences to kernel internals, this might be a good place to look. You can fi nd another web
community that discusses current kernel topics at http://kerneltrap.org/.

With every major kernel release, you will see sweeping improvements, be it kernel
preemption, lock-free readers, new services to offl oad work from interrupt handlers, or
support for new architectures. Stay in constant touch with the mailing lists, websites,
and forums, to keep yourself in the thick of things.

Linux Distributions

Because a GNU/Linux system consists of numerous utilities, programs, libraries, and
tools, in addition to the kernel, it’s a daunting task to acquire and correctly install all
the pieces. Linux distributions come to the rescue by classifying the components and
bundling them into packages in an orderly fashion. A typical distribution contains
thousands of ready-made packages. You need not worry about downloading the right
program versions or fi xing dependency issues.

Because packaging is a way to make a lot of money within the ambit of the GNU
license, there are several Linux distributions in the market today. Distributions such
as Red Hat/Fedora, Debian, SuSE, Slackware, Gentoo, Ubuntu, and Mandriva are
primarily meant for the desktop user. MontaVista, TimeSys, and Wind River distribu-
tions are geared toward embedded development. Embedded Linux distributions also
include a dynamically confi gurable compact application-set to tailor the system’s foot-
print to suit resource constraints.

In addition to packaging, distributions offer value-adds for kernel development.
Many projects start development based on kernels supplied by a distribution rather
than a kernel released offi cially at kernel.org. Reasons for this include the following:

 • Linux distributions that comply with standards relevant to your device’s industry
domain are often better starting points for development. Special Interest Groups
(SIGs) have taken shape to promote Linux in various domains. The Consumer
Electronics Linux Forum (CELF), hosted at www.celinuxforum.org, focuses on
using Linux on consumer electronics devices. The CELF specification defines

Linux Distributions 5

www.celinuxforum.org
http://lwn.net/
http://kerneltrap.org/

6 Chapter 1 Introduction

the support level of features such as scalable footprint, fast boot, execute in
place, and power management, desirable on consumer electronics devices. The
efforts of the Open Source Development Lab (OSDL), hosted at www.osdl.org,
centers on characteristics distinct to carrier-grade devices. OSDL’s Carrier Grade
Linux (CGL) specification codifies value additions such as reliability, high avail-
ability, runtime patching, and enhanced error recovery, important in the tele-
com space.

 • The mainline kernel might not include full support for the embedded control-
ler of your choice even if the controller is built around a kernel-supported CPU
core. A Linux distribution might offer device drivers for all the peripheral mod-
ules inside the controller, however.

 • Debugging tools that you plan to use during kernel development may not be
part of the mainline kernel. For example, the kernel has no built-in debugger
support. If you want to use a kernel debugger during development, you have to
separately download and apply the corresponding patches. You have to endure
more hassles if tested patches are not readily available for your kernel version.
Distributions prepackage many useful debugging features, so you can start using
them right away.

 • Some distributions provide legal indemnification so that your company won’t
be liable for lawsuits arising out of kernel bugs.

 • Distributions tend to do a lot of testing on the kernels they release.1

 • You can purchase service and support packages from distribution vendors for
kernels that they supply.

Looking at the Sources

Before we start wetting our toes in the kernel, let’s download the sources, learn to
apply a patch, and look at the layout of the code tree.

First, go to www.kernel.org and get the latest stable tree. The sources are archived
as tar fi les compressed in both gzip (.gz) and bzip2 (.bz2) formats. Obtain the source
fi les by uncompressing and untarring the zipped tar ball. In the following commands,
replace X.Y.Z with the latest kernel version, such as 2.6.24:

1 Because this necessitates freezing the kernel to a version that is not the latest, distribution-supplied kernels often contain back-
ports of some features released in later offi cial kernels.

www.osdl.org
www.kernel.org

bash> cd /usr/src

bash> wget www.kernel.org/pub/linux/kernel/vX.Y/linux-X.Y.Z.tar.bz2

...

bash> tar xvfj linux-X.Y.Z.tar.bz2

Now that you have the unpacked source tree in /usr/src/linux-X.Y.Z/ on your sys-
tem, let’s enable some experimental test features into the tree by getting a correspond-
ing -mm (Andrew Morton) patch:

bash> cd /usr/src

bash> wget www.kernel.org/pub/linux/kernel/people/akpm/patches/X.Y/X.Y.Z/X.Y.Z-
mm2/X.Y.Z-mm2.bz2

Apply the patch:

bash> cd /usr/src/linux-X.Y.Z/

bash> bzip2 -dc ../X.Y.Z-mm2.bz2 | patch -p1

The -dc option asks bzip2 to uncompress the specifi ed fi les to standard output. This
is piped to the patch utility, which applies changes to each modifi ed fi le in the code tree.

If you need to apply multiple patches, do so in the right sequence. To generate a
kernel enabled with the X.Y.Z-aa-bb patch, fi rst download the full X.Y.Z kernel
sources, apply the X.Y.Z-aa patch, and then apply the X.Y.Z-aa-bb patch.

Patch Submission

To generate a kernel patch out of your changes, use the diff command:

bash> diff –Nur /path/to/original/kernel /path/to/your/kernel > changes.patch

Note that the original kernel precedes the changed version in the diff-ing order. As per
2.6 kernel patch submission conventions, you also need to add a line at the end of the patch that
says this:

Signed-off-by: Name <Email>

With this, you certify that you wrote the code yourself and that you have the right to con-
tribute it.

You are now all set to post your patch to the relevant mailing list, such as LKML.

Look at Documentation/SubmittingPatches for a guide on creating patches for submission and
at Documentation/applying-patches.txt for a tutorial on applying patches.

Looking at the Sources 7

8 Chapter 1 Introduction

Now that your patched /usr/src/linux-X.Y.Z/ tree is ready for use, let’s take a moment
to observe how the source layout is organized. Go to the root of the source tree and list
its contents. The directories branching out from the root of the code tree are as follows :

 1. arch. This directory contains architecture-specific files. You will see separate
subdirectories under arch/ for processors such as ARM, Motorola 68K, s390,
MIPS, Alpha, SPARC, and IA64.

 2. block. This primarily contains the implementation of I/O scheduling algorithms
for block storage devices.

 3. crypto. This directory implements cipher operations and the cryptographic
API, used, for example, by some WiFi device drivers for implementing encryp-
tion algorithms.

 4. Documentation. This directory has brief descriptions of various kernel subsys-
tems. This can be your first stop to dig for answers to kernel-related queries.

 5. drivers. Device drivers for numerous device classes and peripheral control-
lers reside in this directory. The device classes include character, serial, Inter-
 Integrated Circuit (I2C), Personal Computer Memory Card International Association
(PCMCIA), Peripheral Component Interconnect (PCI), Universal Serial Bus
(USB), video, audio, block, Integrated Drive Electronics (IDE), Small Computer
System Interface (SCSI), CD-ROM, network adapters, Asynchronous Transfer
Mode (ATM), Bluetooth, and Memory Technology Devices (MTD). Each of these
classes live in a separate subdirectory under drivers/. You will, for instance, find
PCMCIA driver sources inside the drivers/pcmcia/ directory and MTD drivers
inside the drivers/mtd/ directory. The subdirectories present under drivers/ con-
stitute the primary subjects for this book.

 6. fs. This directory contains the implementation of filesystems such as EXT3,
EXT4, reiserfs, FAT, VFAT, sysfs, procfs, isofs, JFFS2, XFS, NTFS, and NFS.

 7. include. Kernel header files live here. Subdirectories prefixed with asm contain
headers specific to the particular architecture. So the directory include/asm-x86/
contains header files pertaining to the x86 architecture, whereas include/asm-
arm/ holds headers for the ARM architecture.

 8. init. This directory contains high-level initialization and startup code.

 9. ipc. This contains support for Inter-Process Communication (IPC) mechanisms
such as message queues, semaphores, and shared memory.

 10. kernel. The architecture-independent portions of the base kernel can be found
here.

 11. lib. Library routines such as generic kernel object (kobject) handlers and Cyclic
Redundancy Code (CRC) computation functions stay here.

 12. mm. The memory management implementation lives here.

 13. net. Networking protocols reside under this directory. Protocols implemented
include Internet Protocol version 4 (IPv4), IPv6, Internetwork Protocol eXchange
(IPX), Bluetooth, ATM, Infrared, Link Access Procedure Balanced (LAPB), and
Logical Link Control (LLC).

 14. scripts. Scripts used during kernel build reside here.

 15. security. This directory contains the framework for security.

 16. sound. The Linux audio subsystem is based in this directory.

 17. usr. This currently contains the initramfs implementation.

Unifi ed x86 Architecture Tree

Starting with the 2.6.24 kernel release, the i386 and the x86_64 (the 64-bit cousin of the 32-bit
i386) architecture-specifi c trees have been unifi ed into a common arch/x86/ directory. If you are
using a pre-2.6.24 kernel, replace references to arch/x86/ in this book with arch/i386/. Similarly,
change any occurrence of include/asm-x86/ to include/asm-i386/. Some fi lenames within these
directories have also changed.

Wading through these large directories in search of symbols and other code ele-
ments can be a tough task. The tools in Table 1.1 are worthy aids as you navigate the
kernel source tree.

TABLE 1.1 Tools That Aid Source Tree Navigation

 Tool Description

 lxr The Linux cross-referencer, lxr, downloadable from http://lxr.sourceforge.net/, lets you
traverse the kernel tree using a web browser by providing hyperlinks to connect kernel
symbols with their definitions and uses.

 cscope cscope, hosted at http://cscope.sourceforge.net/, builds a symbolic database from all files
in a source tree, so you can quickly locate declarations, definitions, regular expressions,
and more. Cscope might not be as versatile as lxr, but it gives you the flexibility of using
the search features of your favorite text editor rather than a browser. From the root of your
kernel tree, issue the cscope -qkRv command to build the cross-reference database. The
-q option generates more indexing information, so searches become noticeably faster at
the expense of extra initial startup time. The –k option requests cscope to tune its behavior
to suit kernel sources, -R asks for recursive subdirectory traversal, and –v appeals for
verbose messages. You can obtain the detailed invocation syntax from the man page.

Continues

Looking at the Sources 9

http://lxr.sourceforge.net/
http://cscope.sourceforge.net/

10 Chapter 1 Introduction

TABLE 1.1 Continued

 Tool Description

 ctags/etags The ctags utility, downloadable from http://ctags.sourceforge.net/, generates cross-
 reference tags for many languages, so you can locate symbol and function definitions in a
source tree from within an editor such as vi. Do make tags from the root of your kernel
tree to ctag all source files. The etags utility generates similar indexing information under-
stood by the emacs editor. Issue make TAGS to etag your kernel source files.

 Utilities Tools such as grep, find, sdiff, strace, od, dd, make, tar, file, and objdump.

 GCC options You may ask GCC to generate preprocessed source code using the -E option. Preprocessed
code contains header file expansions and reduces the need to hop-skip through nested
include files to expand multiple levels of macros. Here is a usage example to pre process
drivers/char/mydrv.c and produce expanded output in mydrv.i:

bash> gcc -E drivers/char/mydrv.c -D__KERNEL__ -Iinclude
-Iinclude/asm-x86/mach-default > mydrv.i

The include paths specified using the -I option depend on the header files included by
your code.

 GCC generates assembly listings if you use the -S option. To generate an assembly listing
in mydrv.s for drivers/char/mydrv.c, do this:

bash> gcc -S drivers/char/mydrv.c -D__KERNEL__ -Iinclude
-Ianother/include/path

Building the Kernel

Now that you have an idea of the source tree layout, let’s make a trivial code change,
compile, and get it running. Go to the top-level init/ directory and venture to make a
small code change to the initialization fi le main.c. Add a print statement to the begin-
ning of the function, start_kernel(), declaring your love for polar bears:

asmlinkage void __init start_kernel(void)

{

 char *command_line;

 extern struct kernel_param __start___param[],

 __stop___param[];

+ printk("Penguins are cute, but so are polar bears\n");

 /* ... */

 rest_init();

}

http://ctags.sourceforge.net/

You’re now ready to kick off the build process. Go to the root of the source tree and
start with a clean slate:

bash> cd /usr/src/linux-X.Y.Z/

bash> make clean

Confi gure the kernel. This is when you pick and choose the pieces that form part of
the operating system. You may specify whether each desired component is to be stati-
cally or dynamically linked to the kernel:

bash> make menuconfig

menuconfig is a text interface to the kernel confi guration menu. Use make xconfig

to get a graphical interface. The confi guration information that you choose is saved in
a fi le named .confi g in the root of your source tree. If you don’t want to weave the con-
fi guration from scratch, use the fi le arch/your-arch/defconfi g (or arch/your-arch/confi gs/
your-machine_defconfi g if there are several supported platforms for your architecture) as the
starting point. So, if you are compiling the kernel for the 32-bit x86 architecture, do this:

bash> cp arch/x86/configs/i386_defconfig .config

Compile the kernel and generate a compressed boot image:

bash> make bzImage

The kernel image is produced in arch/x86/boot/bzImage. Update your boot partition:

bash> cp arch/x86/boot/bzImage /boot/vmlinuz

You might need to alert your bootloader about the arrival of the new boot image. If
you are using the GRUB bootloader, it fi gures this out automatically; but if you are
using LILO, raise a fl ag:

bash> /sbin/lilo

Added linux *

Finally, restart the machine and boot in to your new kernel:

bash> reboot

The fi rst message in the boot sequence launches your campaign for polar bears.

Building the Kernel 11

12 Chapter 1 Introduction

Loadable Modules

Because Linux runs on a variety of architectures and supports zillions of I/O devices,
it’s not feasible to permanently compile support for all possible devices into the base
kernel. Distributions generally package a minimal kernel image and supply the rest of
the functionalities in the form of kernel modules. During runtime, the necessary mod-
ules are dynamically loaded on demand.

To generate modules, go to the root of your kernel source tree and build:

bash> cd /usr/src/linux-X.Y.Z/

bash> make modules

To install the produced modules, do this:

bash> make modules_install

This creates a kernel source directory structure under /lib/modules/X.Y.Z/kernel/ and
populates it with loadable module objects. This also invokes the depmod utility that
generates module dependencies in the fi le /lib/modules/X.Y.Z/modules.dep.

The following utilities are available to manipulate modules: insmod, rmmod, lsmod,
modprobe, modinfo, and depmod. The fi rst two are utilities to insert and remove mod-
ules, whereas lsmod lists the modules that are currently loaded. modprobe is a cleverer
version of insmod that also inserts dependent modules after examining the contents of
/lib/modules/X.Y.Z/modules.dep. For example, assume that you need to mount a Virtual
File Allocation Table (VFAT) partition present on a USB pen drive. Use modprobe to
load the VFAT fi lesystem driver:2

bash> modprobe vfat

bash> lsmod

Module Size Used by

vfat 14208 0

fat 49052 1 vfat

nls_base 9728 2 vfat, fat

2 This example assumes that the module is not autoloaded by the kernel. If you enable Automatic Kernel Module Loading
(CONFIG_KMOD) during confi guration, the kernel automatically runs modprobe with the appropriate arguments when it
detects missing subsystems. You’ll learn about module autoloading in Chapter 4, “Laying the Groundwork.”

As you see in the lsmod output, modprobe inserts three modules rather than one.
modprobe fi rst fi gures out that it has to insert /lib/modules/X.Y.Z/kernel/fs/vfat/vfat.ko.
But when it peeks into the dependency fi le /lib/modules/X.Y.Z/modules.dep, it fi nds the
following line and realizes that it has to load two other dependent modules fi rst:

/lib/modules/X.Y.Z/kernel/fs/vfat/vfat.ko:

/lib/modules/X.Y.Z/kernel/fs/fat/fat.ko

/lib/modules/X.Y.Z/kernel/fs/nls/nls_base.ko

It then proceeds to load fat.ko and nls_base.ko before attempting to insert vfat.ko,
thus automatically loading all the modules you need to mount your VFAT partition.

Use the modinfo utility to extract verbose information about the modules you just
loaded:

bash> modinfo vfat

filename: /lib/modules/X.Y.Z/kernel/fs/vfat/vfat.ko

license: GPL

description: VFAT filesystem support

...

depends: fat, nls_base

To compile a kernel driver as a module, toggle the corresponding menu choice
button to <M> while confi guring the kernel. Most of the device driver examples in this
book are implemented as kernel modules. To build a module mymodule.ko from its
source fi le mymodule.c, create a one-line Makefi le and execute it as follows:

bash> cd /path/to/module-source/

bash> echo "obj-m += mymodule.o" > Makefile

bash> make –C /path/to/kernel-sources/ M=`pwd` modules

make: Entering directory '/path/to/kernel-sources'

 Building modules, stage 2.

 MODPOST

 CC /path/to/module-sources/mymodule.mod.o

 LD [M] /path/to/module-sources/mymodule.ko

make: Leaving directory '/path/to/kernel-sources'

bash> insmod ./mymodule.ko

Loadable Modules 13

14 Chapter 1 Introduction

Kernel modules render the kernel footprint smaller and the develop-build-test cycle
shorter. You only need to recompile the particular module and reinsert it to effect a
change. We look at module debugging techniques in Chapter 21, “Debugging Device
Drivers.”

There are also some downsides if you choose to design your driver as a kernel mod-
ule. Unlike built-in drivers, modules cannot reserve resources during boot time, when
success is more or less guaranteed.

Before Starting

Linux has trekked many a terrain and is now state of the art, so you can use it as a
vehicle to understand operating system concepts, processor architectures, and even
industry domains. When you learn a technique used by a device driver subsystem,
look one level deeper and probe the underlying reasons behind that design choice.

Wherever not explicitly stated, the text assumes the 32-bit x86 architecture. The
book is, however, mindful of the fact that you are more likely to write device drivers
for embedded devices than for conventional PC-compatible systems. The chapter on
serial drivers, for example, examines two devices: a touch controller on a PC deriva-
tive and a UART on a cell phone. Or the chapter on I2C device drivers looks at an
EEPROM on a PC system and a Real Time Clock on an embedded device. The book
also teaches you about the core infrastructure that the kernel provides for most driver
classes, which hides architecture dependencies from device drivers.

Device driver debugging techniques are discussed near the end of the book in
Chapter 21, so you might fi nd it worthwhile to forward to that chapter as you develop
drivers while reading the book.

This book is based on the 2.6 kernel, which has substantial changes across the board
from 2.4, touching all major subsystems. Hopefully, you have installed a 2.6-based
Linux on your system by now and started experimenting with the kernel sources. Each
chapter takes the liberty of profusely pointing you to relevant kernel source fi les for
two main reasons:

 1. Because each driver subsystem in the kernel is tens of thousands of lines long,
it’s only possible to take a relatively simplistic view in a book. Looking at real
drivers in the sources along with the example code in this book will give you the
bigger picture.

 2. Before developing a driver, it’s a good idea to zero in on an existing driver in
the drivers/ directory that is similar to your requirement and make that your
starting point.

So, to derive maximum benefi t from this book, familiarize yourself with the kernel
by frequently browsing the source tree and staring hard at the code. And in tandem
with your code explorations, follow the goings-on in the kernel mailing list.

Before Starting 15

This page intentionally left blank

17

2

A Peek Inside the Kernel

In This Chapter

■ Booting Up 18

■ Kernel Mode and User Mode 30

■ Process Context and Interrupt Context 30

■ Kernel Timers 31

■ Concurrency in the Kernel 39

■ Process Filesystem 49

■ Allocating Memory 49

■ Looking at the Sources 52

18

Before we start our journey into the mystical world of Linux device driv-
ers, let’s familiarize ourselves with some basic kernel concepts by looking

at several kernel regions through the lens of a driver developer. We learn about
kernel timers, synchronization mechanisms, and memory allocation. But let’s
start our expedition by getting a view from the top; let’s skim through boot
messages emitted by the kernel and hit the breaks whenever something looks
interesting.

Booting Up

Figure 2.1 shows the Linux boot sequence on an x86-based computer. Linux boot
on x86-based hardware is set into motion when the BIOS loads the Master Boot
Record (MBR) from the boot device. Code resident in the MBR looks at the parti-
tion table and reads a Linux bootloader such as GRUB, LILO, or SYSLINUX from
the active partition. The fi nal stage of the bootloader loads the compressed kernel
image and passes control to it. The kernel uncompresses itself and turns on the
ignition.

x86-based processors have two modes of operation, real mode and protected
mode. In real mode, you can access only the fi rst 1MB of memory, that too with-
out any protection. Protected mode is sophisticated and lets you tap into many
advanced features of the processor such as paging. The CPU has to pass through real
mode en route to protected mode.

The fi rst-level kernel initializations are done in real mode assembly. Subsequent
startup is performed in protected mode by the function start_kernel() defi ned in
init/main.c, the source fi le you modifi ed in the previous chapter. start_kernel()
begins by initializing the CPU subsystem. Memory and process management are
put in place soon after. Peripheral buses and I/O devices are started next. As the
last step in the boot sequence, the init program, the parent of all Linux processes, is
invoked. Init executes user-space scripts that start necessary kernel services. It fi nally
spawns terminals on consoles and displays the login prompt.

BIOS

Power On

Bootloader (GRUB/LILO/…)

Real Mode Kernel

Protected Mode Kernel

The init Process

User Processes and Daemons

arch/x86/boot/pm.c

x86 Real Mode

x86 Protected Mode

FIGURE 2.1 Linux boot sequence on x86-based hardware.

Each following section header is a message from Figure 2.2 generated during boot
progression on an x86-based laptop. The semantics and the messages may change if
you are booting the kernel on other architectures. If some explanations in this section
sound rather cryptic, don’t worry; the intent here is only to give you a picture from
100 feet above and to let you savor a fi rst taste of the kernel’s fl avor. Many concepts
mentioned here in passing are covered in depth later on.

BIOS-Provided Physical RAM Map

The kernel assembles the system memory map from the BIOS, and this is one of the
fi rst boot messages you will see:

BIOS-provided physical RAM map:

BIOS-e820: 0000000000000000 - 000000000009f000 (usable)

...

BIOS-e820: 00000000ff800000 - 0000000100000000 (reserved)

Booting Up 19

20 Chapter 2 A Peek Inside the Kernel

FIGURE 2.2 Kernel boot messages.

 Real mode initialization code uses the BIOS int 0x15 service with function
number 0xe820 (hence the string BIOS-e820 in the preceding message) to obtain the
system memory map. The memory map indicates reserved and usable memory ranges,
which is subsequently used by the kernel to create its free memory pool. We discuss

more on the BIOS-supplied memory map in the section “Real Mode Calls” in Appen-
dix B, “Linux and the BIOS.”

758MB LOWMEM Available

The normally addressable kernel memory region (< 896MB) is called low memory.
The kernel memory allocator, kmalloc(), returns memory from this region. Memory
beyond 896MB (called high memory) can be accessed only using special mappings.

During boot, the kernel calculates and displays the total pages present in these
memory zones. We take a deeper look at memory zones later in this chapter.

Kernel Command Line: ro root=/dev/hda1

Linux bootloaders usually pass a command line to the kernel. Arguments in the com-
mand line are similar to the argv[] list passed to the main() function in C pro-
grams, except that they are passed to the kernel instead. You may add command-line
arguments to the bootloader confi guration fi le or supply them from the bootloader
prompt at runtime.1 If you are using the GRUB bootloader, the confi guration fi le is
either /boot/grub/grub.conf or /boot/grub/menu.lst depending on your distribution. If
you are a LILO user, the confi guration fi le is /etc/lilo.conf. An example grub.conf fi le
(with comments added) is listed here. You can fi gure out the genesis of the preceding
boot message if you look at the line following title kernel 2.6.23:

default 0 #Boot the 2.6.23 kernel by default

timeout 5 #5 second to alter boot order or parameters

title kernel 2.6.23 #Boot Option 1

 #The boot image resides in the first partition of the first disk

 #under the /boot/ directory and is named vmlinuz-2.6.23. 'ro'

 #indicates that the root partition should be mounted read-only.

 kernel (hd0,0)/boot/vmlinuz-2.6.23 ro root=/dev/hda1

 #Look under section "Freeing initrd memory:387k freed"

 initrd (hd0,0)/boot/initrd

#...

1 Bootloaders on embedded devices are usually “slim” and do not support confi guration fi les or equivalent mechanisms. Because of
this, many non-x86 architectures support a kernel confi guration option called CONFIG_CMDLINE that you can use to supply
the kernel command line at build time.

Booting Up 21

22 Chapter 2 A Peek Inside the Kernel

Command-line arguments affect the code path traversed during boot. As a simple
example, assume that the command-line argument of interest is called bootmode. If
this parameter is set to 1, you would like to print some debug messages during boot
and switch to a runlevel of 3 at the end of the boot. (Wait until the boot messages are
printed out by the init process to learn the semantics of runlevels.) If bootmode is
instead set to 0, you would prefer the boot to be relatively laconic, and the runlevel set
to 2. Because you are already familiar with init/main.c, let’s add the following modifi -
cation to it:

static unsigned int bootmode = 1;

static int __init

is_bootmode_setup(char *str)

{

 get_option(&str, &bootmode);

 return 1;

}

/* Handle parameter "bootmode=" */

__setup("bootmode=", is_bootmode_setup);

if (bootmode) {

 /* Print verbose output */

 /* ... */

}

/* ... */

/* If bootmode is 1, choose an init runlevel of 3, else

 switch to a run level of 2 */

if (bootmode) {

 argv_init[++args] = "3";

} else {

 argv_init[++args] = "2";

}

/* ... */

Rebuild the kernel as you did earlier and try out the change. We discuss more
about kernel command-line arguments in the section “Memory Layout” in Chap-
ter 18, “Embedding Linux.”

Calibrating Delay...1197.46 BogoMIPS (lpj=2394935)

During boot, the kernel calculates the number of times the processor can execute an
internal delay loop in one jiffy, which is the time interval between two consecutive
ticks of the system timer. As you would expect, the calculation has to be calibrated to
the processing speed of your CPU. The result of this calibration is stored in a kernel
variable called loops_per_jiffy. One place where the kernel makes use of loops_
per_jiffy is when a device driver desires to delay execution for small durations in the
order of microseconds.

To understand the delay-loop calibration code, let’s take a peek inside calibrate_
delay(), defi ned in init/calibrate.c. This function cleverly derives fl oating-point
precision using the integer kernel. The following snippet (with some comments
added) shows the initial portion of the function that carves out a coarse value for
loops_per_jiffy:

loops_per_jiffy = (1 << 12); /* Initial approximation = 4096 */

printk(KERN_DEBUG "Calibrating delay loop... ");

while ((loops_per_jiffy <<= 1) != 0) {

ticks = jiffies; /* As you will find out in the section, "Kernel

 Timers," the jiffies variable contains the

 number of timer ticks since the kernel

 started, and is incremented in the timer

 interrupt handler */

 while (ticks == jiffies); /* Wait until the start

 of the next jiffy */

 ticks = jiffies;

 /* Delay */

 __delay(loops_per_jiffy);

 /* Did the wait outlast the current jiffy? Continue if

 it didn't */

 ticks = jiffies - ticks;

 if (ticks) break;

}

loops_per_jiffy >>= 1; /* This fixes the most significant bit and is

 the lower-bound of loops_per_jiffy */

Booting Up 23

24 Chapter 2 A Peek Inside the Kernel

The preceding code begins by assuming that loops_per_jiffy is greater than
4096, which translates to a processor speed of roughly one million instructions per
second (MIPS). It then waits for a fresh jiffy to start and executes the delay loop,
__delay(loops_per_jiffy). If the delay loop outlasts the jiffy, the previous value
of loops_per_jiffy (obtained by bitwise right-shifting it by one) fi xes its most signif-
icant bit (MSB). Otherwise, the function continues by checking whether it will obtain
the MSB by bitwise left-shifting loops_per_jiffy. After the kernel thus fi gures out
the MSB of loops_per_jiffy, it works on the lower-order bits and fi ne-tunes its
precision as follows:

loopbit = loops_per_jiffy;

/* Gradually work on the lower-order bits */

while (lps_precision-- && (loopbit >>= 1)) {

 loops_per_jiffy |= loopbit;

 ticks = jiffies;

 while (ticks == jiffies); /* Wait until the start

 of the next jiffy */

ticks = jiffies;

 /* Delay */

 __delay(loops_per_jiffy);

 if (jiffies != ticks) /* longer than 1 tick */

 loops_per_jiffy &= ~loopbit;

}

The preceding snippet fi gures out the exact combination of the lower bits of
loops_per_jiffy when the delay loop crosses a jiffy boundary. This calibrated value
is used to derive an unscientifi c measure of the processor speed, known as BogoMIPS.
You can use the BogoMIPS rating as a relative measurement of how fast a CPU can
run. On a 1.6GHz Pentium M-based laptop, the delay-loop calibration yielded a value
of 2394935 for loops_per_jiffy as announced by the preceding boot message. The
BogoMIPS value is obtained as follows:

BogoMIPS = loops_per_jiffy * Number of jiffi es in 1 second * Number of
instructions consumed by the internal delay loop in units of 1 million

 = (2394935 * HZ * 2) / (1 million)

 = (2394935 * 250 * 2) / (1000000)

 = 1197.46 (as displayed in the preceding boot message)

We further discuss jiffies, HZ, and loops_per_jiffy in the section “Kernel
Timers” later in this chapter.

Checking HLT Instruction

Because the Linux kernel is supported on a variety of hardware platforms, the boot
code checks for architecture-dependent bugs. Verifying the sanity of the halt (HLT)
instruction is one such check.

The HLT instruction supported by x86 processors puts the CPU into a low-power
sleep mode that continues until the next hardware interrupt occurs. The kernel uses
the HLT instruction when it wants to put the CPU in the idle state (see function
cpu_idle() defi ned in arch/x86/kernel/process_32.c).

For problematic CPUs, the no-hlt kernel command-line argument can be used to
disable the HLT instruction. If no-hlt is turned on, the kernel busy-waits while it’s
idle, rather than keep the CPU cool by putting it in the HLT state.

The preceding boot message is generated when the startup code in init/main.c calls
check_bugs() defi ned in include/asm-your-arch/bugs.h.

NET: Registered Protocol Family 2

The Linux socket layer is a uniform interface through which user applications access
various networking protocols. Each protocol registers itself with the socket layer using
a unique family number (defi ned in include/linux/socket.h) assigned to it. Family 2 in
the preceding message stands for AF_INET (Internet Protocol).

Another registered protocol family often found in boot messages is AF_NETLINK
(Family 16). Netlink sockets offer a method to communicate between user processes and
the kernel. Functionalities accomplished via netlink sockets include accessing the routing
table and the Address Resolution Protocol (ARP) table (see include/linux/netlink.h for the
full usage list). Netlink sockets are more suitable than system calls to accomplish such
tasks because they are asynchronous, simpler to implement, and dynamically linkable.

Another protocol family commonly enabled in the kernel is AF_UNIX or UNIX-
domain sockets . Programs such as X Windows use them for interprocess communica-
tion on the same system.

Freeing Initrd Memory: 387k Freed

Initrd is a memory-resident virtual disk image loaded by the bootloader. It’s mounted
as the initial root fi lesystem after the kernel boots, to hold additional dynamically

Booting Up 25

26 Chapter 2 A Peek Inside the Kernel

loadable modules required to mount the disk partition that holds the actual root fi le-
system. Because the kernel runs on different hardware platforms that use diverse stor-
age controllers, it’s not feasible for distributions to enable device drivers for all possible
disk drives in the base kernel image. Drivers specifi c to your system’s storage device are
packed inside initrd and loaded after the kernel boots, but before the root fi lesystem is
mounted. To create an initrd image, use the mkinitrd command.

The 2.6 kernel includes a feature called initramfs that bring several benefi ts over ini-
trd. Whereas the latter emulates a disk (hence called initramdisk or initrd) and suffers
the overheads associated with the Linux block I/O subsystem such as caching, the for-
mer essentially gets the cache itself mounted like a fi lesystem (hence called initramfs).

Initramfs, like the page cache over which it’s built, grows and shrinks dynamically
unlike initrd, and hence reduces memory wastage. Also, unlike initrd, which requires
you to include the associated fi lesystem driver (e.g., EXT2 drivers if you have an EXT2
fi lesystem on your initrd), initramfs needs no fi lesystem support. The initramfs code is
tiny because it’s just a small layer on top of the page cache.

You can pack your initial root fi lesystem into a compressed cpio archive2 and pass it
to the kernel command line using the initrd= argument or build it as part of the ker-
nel image using the INITRAMFS_SOURCE menu option during kernel confi guration.
With the latter, you may either provide the fi lename of a cpio archive or the path name
to a directory tree containing your initramfs layout. During boot, the kernel extracts
the fi les into an initramfs root fi lesystem (also called rootfs) and executes a top-level
/init program if it fi nds one. This method of obtaining an initial rootfs is especially
useful for embedded platforms, where all system resources are at a premium. To create
an initramfs image, use mkinitramfs. Look at Documentation/fi lesystems/ramfs-rootfs-
initramfs.txt for more documentation.

In this case, we are using initramfs by supplying a compressed cpio archive of the
initial root fi lesystem to the kernel using the initrd= command-line argument. After
unpacking the contents of the archive into rootfs, the kernel frees the memory where
the archive resides (387K in this case) and announces the above boot message. The
freed pages are then doled out to other parts of the kernel that request memory.

As we will discuss in Chapter 18, initrd and initramfs are sometimes used to hold
the actual root fi lesystem on embedded devices during development.

2 cpio is a UNIX fi le archival format. You can download it from www.gnu.org/software/cpio.

www.gnu.org/software/cpio

IO Scheduler Anticipatory Registered (Default)

The main goal of an I/O scheduler is to increase system throughput by minimizing
disk seek times, which is the latency to move the disk head from its existing position
to the disk sector of interest. The 2.6 kernel provides four different I/O schedulers:
Deadline , Anticipatory, Complete Fair Queuing, and Noop. As the preceding kernel
message indicates, the kernel sets Anticipatory as the default I/O scheduler. We look at
I/O scheduling in Chapter 14, “Block Drivers.”

Setting Up Standard PCI Resources

The next phase of the boot process probes and initializes I/O buses and peripheral con-
trollers. The kernel probes PCI hardware by walking the PCI bus, and then initializes
other I/O subsystems. Take a look at the boot messages in Figure 2.3 to see announce-
ments regarding the initialization of the SCSI subsystem, the USB controller, the video
chip (part of the 855 North Bridge chipset in the messages below), the serial port (8250
UART in this case), PS/2 keyboard and mouse, fl oppy drives, ramdisk, the loopback
device, the IDE controller (part of the ICH4 South Bridge chipset in this example), the
touchpad, the Ethernet controller (e1000 in this case), and the PCMCIA controller.
The identity of the corresponding I/O device is labeled against →.

This book discusses many of these driver subsystems in separate chapters. Note that
some of these messages might manifest only later on in the boot process if the drivers
are dynamically linked to the kernel as loadable modules.

EXT3-fs: Mounted Filesystem

The EXT3 fi lesystem has become the de facto fi lesystem on Linux. It adds a journaling
layer on top of the veteran EXT2 fi lesystem to facilitate quick recovery after a crash.
The aim is to regain a consistent fi lesystem state without having to go through a time-
consuming fi lesystem check (fsck) operation. EXT2 remains the work engine, while
the EXT3 layer additionally logs fi le transactions on a memory area called journal
before committing the actual changes to disk. EXT3 is backward-compatible with
EXT2, so you can add an EXT3 coating to your existing EXT2 fi lesystem or peel off
the EXT3 to get back your original EXT2 fi lesystem.

Booting Up 27

28 Chapter 2 A Peek Inside the Kernel

SCSI subsystem initialized SCSI
usbcore: registered new driver hub USB
agpgart: Detected an Intel 855 Chipset. Video
[drm] Initialized drm 1.0.0 20040925
PS/2 Controller [PNP0303:KBD,PNP0f13:MOU]
at 0x60,0x64 irq 1,12 serio: i8042 KBD port Keyboard
serial8250: ttyS0 at I/O 0x3f8 (irq = 4)
is a NS16550A Serial Port
Floppy drive(s): fd0 is 1.44M Floppy
RAMDISK driver initialized: 16 RAM disks
of 4096K size 1024 blocksize Ramdisk
loop: loaded (max 8 devices) Loop back
ICH4: IDE controller at PCI slot
0000:00:1f.1 Hard Disk
...
input: SynPS/2 Synaptics TouchPad as
/class/input/input1 Touchpad
e1000: eth0: e1000_probe: Intel® PRO/1000
Network Connection Ethernet
Yenta: CardBus bridge found at
0000:02:00.0 [1014:0560] PCMCIA/CardBus
...

FIGURE 2.3 Initializing buses and peripheral controllers during boot.

 EXT4

The latest version in the EXT fi lesystem series is EXT4, which has been included in the main-
line kernel starting with the 2.6.19 release, with a tag of “experimental” and a name of ext4dev.
EXT4 is largely backward-compatible with EXT3. The home page of the EXT4 project is at www.
bullopensource.org/ext4.

EXT3 starts a kernel helper thread (we will have an in-depth discussion on kernel
threads in the next chapter) called kjournald to assist in journaling. When EXT3 is
operational, the kernel mounts the root fi lesystem and gets ready for business:

EXT3-fs: mounted filesystem with ordered data mode

kjournald starting. Commit interval 5 seconds

VFS: Mounted root (ext3 filesystem).

INIT: Version 2.85 Booting

Init, the parent of all Linux processes, is the fi rst program to run after the kernel fi n-
ishes its boot sequence. In the last few lines of init/main.c, the kernel searches different
locations in its attempt to locate init:

www.bullopensource.org/ext4
www.bullopensource.org/ext4

if (ramdisk_execute_command) { /* Look for /init in initramfs */

 run_init_process(ramdisk_execute_command);

}

if (execute_command) { /* You may override init and ask the kernel

 to execute a custom program using the

 "init=" kernel command-line argument. If

 you do that, execute_command points to the

 specified program */

 run_init_process(execute_command);

}

/* Else search for init or sh in the usual places .. */

run_init_process("/sbin/init");

run_init_process("/etc/init");

run_init_process("/bin/init");

run_init_process("/bin/sh");

panic("No init found. Try passing init= option to kernel.");

Init receives directions from /etc/inittab. It fi rst executes system initialization scripts
present in /etc/rc.sysinit. One of the important responsibilities of this script is to acti-
vate the swap partition, which triggers a boot message such as this:

Adding 1552384k swap on /dev/hda6

Let’s take a closer look at what this means. Linux user processes own a virtual
address space of 3GB (see the section “Allocating Memory”). Out of this, the pages
constituting the “working set” are kept in RAM. However, when there are too many
programs demanding memory resources, the kernel frees up some used RAM pages by
storing them in a disk partition called swap space. According to a rule of thumb, the
size of the swap partition should be twice the amount of RAM. In this case, the swap
space lives in the disk partition /dev/hda6 and has a size of 1552384K bytes.

Init then goes on to run scripts present in the /etc/rc.d/rcX.d/ directory, where X is
the runlevel specifi ed in inittab. A runlevel is an execution state corresponding to the
desired boot mode. For example, multiuser text mode corresponds to a runlevel of 3,
while X Windows associates with a runlevel of 5. So, if you see the message, INIT:
Entering runlevel 3, init has started executing scripts in the /etc/rc.d/rc3.d/ direc-
tory. These scripts start the dynamic device-naming subsystem udev (which we discuss

Booting Up 29

30 Chapter 2 A Peek Inside the Kernel

in Chapter 4, “Laying the Groundwork”) and load kernel modules responsible for
driving networking, audio, storage, and so on:

Starting udev: [OK]

Initializing hardware... network audio storage [Done]

...

Init fi nally spawns terminals on virtual consoles. You can now log in.

Kernel Mode and User Mode

Some operating systems, such as MS-DOS, always execute in a single CPU mode, but
UNIX-like operating systems use dual modes to effectively implement time-sharing.
On a Linux machine, the CPU is either in a trusted kernel mode or in a restricted user
mode. All user processes execute in user mode, whereas the kernel itself executes in
kernel mode.

Kernel mode code has unrestricted access to the entire processor instruction set and
to the full memory and I/O space. If a user mode process needs these privileges, it has
to channel requests through device drivers or other kernel mode code via system calls.
User mode code is allowed to page fault, however, whereas kernel mode code isn’t.

In 2.4 and earlier kernels, only user mode processes could be context switched out
and replaced by other processes. Kernel mode code could monopolize the processor
until either

 • It voluntarily relinquished the CPU.

or

 • An interrupt or an exception occurred.

With the introduction of kernel preemption in the 2.6 release, most kernel mode
code can also be context switched.

Process Context and Interrupt Context

The kernel accomplishes useful work using a combination of process contexts and
interrupt contexts. Kernel code that services system calls issued by user applications
runs on behalf of the corresponding application processes and is said to execute in pro-
cess context. Interrupt handlers, on the other hand, run asynchronously in interrupt
context. Processes contexts are not tied to any interrupt context and vice versa.

Kernel code running in process context is preemptible. An interrupt context, how-
ever, always runs to completion and is not preemptible. Because of this, there are
restrictions on what can be done from interrupt context. Code executing from inter-
rupt context cannot do the following:

 • Go to sleep or relinquish the processor

 • Acquire a mutex

 • Perform time-consuming tasks

 • Access user-space virtual memory

Look at section “Interrupt Handing” in Chapter 4 for a full discussion of the inter-
rupt context.

Kernel Timers

The working of many parts of the kernel is critically dependent on the passage of
time. The Linux kernel makes use of different timers supported by the hardware to
provide time-dependent services such as busy-waiting and sleep-waiting. The proces-
sor wastes cycles while it busy-waits but relinquishes the CPU when it sleep-waits.
Naturally, the former is done only when the latter is not feasible. The kernel also
facilitates scheduling of functions that desire to run after a specifi ed time duration
has elapsed.

Let’s fi rst discuss the semantics of some important kernel timer variables such as
jiffies, HZ, and xtime. Next, let’s measure execution times on a Pentium-based sys-
tem using the Pentium Time Stamp Counter (TSC). Let’s also see how Linux uses the
Real Time Clock (RTC).

HZ and Jiffies

System timers interrupt the processor (or “pop”) at programmable frequencies. This
frequency, or the number of timer ticks per second, is contained in the kernel variable
HZ. Choosing a value for HZ is a trade-off. A large HZ results in fi ner timer granularity,
and hence better scheduling resolution. However, bigger values of HZ also result in
larger overhead and higher power consumption, because more cycles are burnt in the
timer interrupt context.

Kernel Timers 31

32 Chapter 2 A Peek Inside the Kernel

The value of HZ is architecture-dependent. On x86 systems, HZ used to be set to 100 in
2.4 kernels by default. With 2.6, this value changed to 1000, but with 2.6.13, it was low-
ered to 250. On ARM-based platforms, 2.6 kernels set HZ to 100. With current kernels,
you can choose a value for HZ at build time through the confi guration menu. The default
setting for this option depends on your distribution.

The 2.6.21 kernel introduced support for a tickless kernel (CONFIG_NO_HZ), which
dynamically triggers timer interrupts depending on system load. The tickless system imple-
mentation is outside the scope of this chapter.

jiffies holds the number of times the system timer has popped since the system
booted. The kernel increments the jiffies variable, HZ times every second. Thus,
on a kernel with a HZ value of 100, a jiffy is a 10-millisecond duration, whereas on a
kernel with HZ set to 1000, a jiffy is only 1-millisecond long.

To better understand HZ and jiffies, consider the following code snippet from
the IDE driver (drivers/ide/ide.c) that polls disk drives for busy status:

unsigned long timeout = jiffies + (3*HZ);

while (hwgroup->busy) {

 /* ... */

 if (time_after(jiffies, timeout)) {

 return -EBUSY;

 }

 /* ... */

}

return SUCCESS;

The preceding code returns SUCCESS if the busy condition gets cleared in less than
3 seconds, and -EBUSY otherwise. 3*HZ is the number of jiffies present in 3 sec-
onds. The calculated timeout, (jiffies + 3*HZ), is thus the new value of jiffies
after the 3-second timeout elapses. The time_after() macro compares the current
value of jiffies with the requested timeout, taking care to account for wraparound
due to overfl ows. Related functions available for doing similar comparisons are time_
before(), time_before_eq(), and time_after_eq().

jiffies is defi ned as volatile, which asks the compiler not to optimize access to
the variable. This ensures that jiffies, which is updated by the timer interrupt han-
dler during each tick, is reread during each pass through the loop.

For the reverse conversion from jiffies to seconds, take a look at this snippet
from the USB host controller driver, drivers/usb/host/ehci-sched.c:

if (stream->rescheduled) {

 ehci_info(ehci, "ep%ds-iso rescheduled " "%lu times in %lu

 seconds\n", stream->bEndpointAddress, is_in? "in":

 "out", stream->rescheduled,

((jiffies – stream->start)/HZ));

}

The preceding debug statement calculates the amount of time in seconds within
which this USB endpoint stream (we discuss USB in Chapter 11, “Universal Serial
Bus”) was rescheduled stream->rescheduled times. (jiffies-stream->start) is
the number of jiffies that elapsed since the rescheduling started. The division by HZ
converts that value into seconds.

The 32-bit jiffies variable overfl ows in approximately 50 days, assuming a HZ
value of 1000. Because system uptimes can be many times that duration, the kernel
provides a variable called jiffies_64 to hold 64-bit (u64) jiffies. The linker posi-
tions jiffies_64 such that its bottom 32 bits collocate with jiffies. On 32-bit
machines, the compiler needs two instructions to assign one u64 variable to another,
so reading jiffies_64 is not atomic. To get around this problem, the kernel provides
a function, get_jiffies_64(). Look at cpufreq_stats_update() defi ned in driv-
ers/cpufreq/cpufreq_stats.c for a usage example.

Long Delays

In kernel terms, delays in the order of jiffies are considered long durations. A pos-
sible, but nonoptimal, way to accomplish long delays is by busy-looping. A function
that busy-waits has a dog-in-the-manger attitude. It neither uses the processor for
doing useful work nor lets others use it. The following code hogs the processor for
1 second:

unsigned long timeout = jiffies + HZ;

while (time_before(jiffies, timeout)) continue;

Kernel Timers 33

34 Chapter 2 A Peek Inside the Kernel

A better approach is to sleep-wait, instead of busy-wait. Your code yields the
processor to others, while waiting for the time delay to elapse. This is done using
schedule_timeout():

unsigned long timeout = jiffies + HZ;

schedule_timeout(timeout); /* Allow other parts of the

 kernel to run */

The delay guarantee is only on the lower bound of the timeout. Whether from
kernel space or from user space, it’s diffi cult to get more precise control over timeouts
than the granularity of HZ because process time slices are updated by the kernel sched-
uler only during timer ticks. Also, even if your process is scheduled to run after the
specifi ed timeout, the scheduler can decide to pick another process from the run queue
based on priorities.3

Two other functions that facilitate sleep-waiting are wait_event_timeout() and
msleep(). Both of them are implemented with the help of schedule_timeout().
wait_event_timeout() is used when your code desires to resume execution if a
specifi ed condition becomes true or if a timeout occurs. msleep() sleeps for the speci-
fi ed number of milliseconds.

Such long-delay techniques are suitable for use only from process context. Sleep-
waiting cannot be done from interrupt context because interrupt handlers are not
allowed to schedule() or sleep. (See “Interrupt Handling” in Chapter 4 for a list
of do’s and don’ts for code executing in interrupt context.) Busy-waiting for a short
duration is possible from interrupt context, but long busy-waiting in that con-
text is considered a mortal sin. Equally taboo is long busy-waiting with interrupts
disabled.

The kernel also provides timer APIs to execute a function at a point of time
in the future. You can dynamically defi ne a timer using init_timer() or stati-
cally create one with DEFINE_TIMER(). After this is done, populate a timer_list

3 These scheduler properties have changed with the advent of the CFS scheduler in the 2.6.23 kernel. Linux process schedulers are
discussed in Chapter 19, “Drivers in User Space.”

with the address and parameters of your handler function, and register it using
add_timer():

#include <linux/timer.h>

struct timer_list my_timer;

init_timer(&my_timer); /* Also see setup_timer() */

my_timer.expire = jiffies + n*HZ; /* n is the timeout in number

 of seconds */

my_timer.function = timer_func; /* Function to execute

 after n seconds */

my_timer.data = func_parameter; /* Parameter to be passed

 to timer_func */

add_timer(&my_timer); /* Start the timer */

Note that this is a one-shot timer. If you want to run timer_func() periodically,
you also need to add the preceding code inside timer_func() to schedule itself after
the next timeout:

static void timer_func(unsigned long func_parameter)

{

 /* Do work to be done periodically */

 /* ... */

 init_timer(&my_timer);

 my_timer.expire = jiffies + n*HZ;

 my_timer.data = func_parameter;

 my_timer.function = timer_func;

 add_timer(&my_timer);

}

You may use mod_timer() to change the expiration of my_timer, del_timer()
to cancel my_timer, and timer_pending() to see whether my_timer is pending at
the moment. If you look at kernel/timer.c, you will fi nd that schedule_timeout()
internally uses these same APIs.

User-space functions such as clock_settime() and clock_gettime() are used to
access kernel timer services from user space. A user application may use setitimer()

Kernel Timers 35

36 Chapter 2 A Peek Inside the Kernel

and getitimer() to control the delivery of an alarm signal when a specifi ed timeout
expires.

Short Delays

In kernel terms, sub-jiffy delays qualify as short durations. Such delays are commonly
requested from both process and interrupt contexts. Because it is not possible to use
jiffy-based methods to implement sub-jiffy delays, the methods discussed in the previ-
ous section to sleep-wait cannot be used for small timeouts. The only solution is to
busy-wait.

Kernel APIs that implement short delays are mdelay(), udelay(), and ndelay(),
which support millisecond, microsecond, and nanosecond delays, respectively. The
actual implementations of these functions are architecture-specifi c and may not be
available on all platforms.

Busy-waiting for short durations is accomplished by measuring the time the proces-
sor takes to execute an instruction and looping for the necessary number of iterations.
As discussed earlier in this chapter, the kernel performs this measurement during boot
and stores the value in a variable called loops_per_jiffy. The short-delay APIs use
loops_per_jiffy to decide the number of times they need to busy-loop. To achieve
a 1-microsecond delay during a handshake process, the USB host controller driver
drivers/usb/host/ehci-hcd.c, calls udelay(), which internally uses loops_per_jiffy:

do {

 result = ehci_readl(ehci, ptr);

 /* ... */

 if (result == done) return 0;

udelay(1); /* Internally uses loops_per_jiffy */

 usec--;

} while (usec > 0);

Pentium Time Stamp Counter

The Time Stamp Counter (TSC) is a 64-bit register present in Pentium-compatible
processors that counts the number of clock cycles consumed by the processor since
startup. Because the TSC gets incremented at the rate of the processor cycle speed,
it provides a high-resolution timer. The TSC is commonly used for profi ling and

 instrumenting code. It is accessed using the rdtsc instruction to measure execution
time of intervening code with microsecond precision. TSC ticks can be converted to
seconds by dividing by the CPU clock speed, which can be read from the kernel vari-
able, cpu_khz.

In the following snippet, low_tsc_ticks contains the lower 32 bits of the TSC,
while high_tsc_ticks contains the higher 32 bits. The lower 32 bits overfl ow in a
few seconds depending on your processor speed but is suffi cient for many code instru-
mentation purposes as shown here:

unsigned long low_tsc_ticks0, high_tsc_ticks0;

unsigned long low_tsc_ticks1, high_tsc_ticks1;

unsigned long exec_time;

rdtsc(low_tsc_ticks0, high_tsc_ticks0); /* Timestamp

 before */

printk("Hello World\n"); /* Code to be

 profiled */

rdtsc(low_tsc_ticks1, high_tsc_ticks1); /* Timestamp after */

exec_time = low_tsc_ticks1 - low_tsc_ticks0;

exec_time measured 871 (or half a microsecond) on a 1.8GHz Pentium box.

Support for high-resolution timers (CONFIG_HIGH_RES_TIMERS) has been merged with
the 2.6.21 kernel. It makes use of hardware-specifi c high-speed timers to provide high-
 precision capabilities to APIs such as nanosleep(). On Pentium-class machines, the kernel
leverages the TSC to offer this capability.

Real Time Clock

The RTC tracks absolute time in nonvolatile memory. On x86 PCs, RTC registers con-
stitute the top few locations of a small chunk of battery-powered4 complementary metal
oxide semiconductor (CMOS) memory. Look at Figure 5.1 in Chapter 5, “Character
Drivers,” for the location of the CMOS in the legacy PC architecture. On embedded

4 RTC batteries last for many years and usually outlive the life span of computers, so you should never have to replace them.

Kernel Timers 37

38 Chapter 2 A Peek Inside the Kernel

systems, the RTC might be internal to the processor, or externally connected via the
I2C or SPI buses discussed in Chapter 8, “The Inter-Integrated Circuit Protocol.”

You may use the RTC to do the following:

 • Read and set the absolute clock, and generate interrupts during clock updates.

 • Generate periodic interrupts with frequencies ranging from 2HZ to 8192HZ.

 • Set alarms

Many applications need the concept of absolute time or wall time. Because jif-
fies is relative to the time when the system booted, it does not contain wall time. The
kernel maintains wall time in a variable called xtime. During boot, xtime is initial-
ized to the current wall time by reading the RTC. When the system halts, the wall time
is written back to the RTC. You can use do_gettimeofday() to read wall time with
the highest resolution supported by the hardware:

#include <linux/time.h>

static struct timeval curr_time;

do_gettimeofday(&curr_time);

my_timestamp = cpu_to_le32(curr_time.tv_sec); /* Record timestamp */

There are also a bunch of functions available to user-space code to access wall time.
They include the following:

 • time(), which returns the calendar time, or the number of seconds since Epoch
(00:00:00 on January 1, 1970)

 • localtime(), which returns the calendar time in broken-down format

 • mktime(), which does the reverse of localtime()

 • gettimeofday(), which returns the calendar time with microsecond precision
if your platform supports it

Another way to use the RTC from user space is via the character device, /dev/rtc.
Only one process is allowed to access this device at a time.

We discuss more about RTC drivers in Chapter 5 and Chapter 8. In Chapter 19,
we develop an example user application that uses /dev/rtc to perform periodic work
with microsecond precision.

Concurrency in the Kernel

With the arrival of multicore laptops, Symmetric Multi Processing (SMP) is no longer
confi ned to the realm of hi-tech users. SMP and kernel preemption are scenarios that
generate multiple threads of execution. These threads can simultaneously operate on
shared kernel data structures. Because of this, accesses to such data structures have to
be serialized.

Let’s discuss the basics of protecting shared kernel resources from concurrent access.
We start with a simple example and gradually introduce complexities such as inter-
rupts, kernel preemption, and SMP.

Spinlocks and Mutexes

A code area that accesses shared resources is called a critical section. Spinlocks and
mutexes (short for mutual exclusion) are the two basic mechanisms used to protect
critical sections in the kernel. Let’s look at each in turn.

A spinlock ensures that only a single thread enters a critical section at a time. Any
other thread that desires to enter the critical section has to remain spinning at the door
until the fi rst thread exits. Note that we use the term thread to refer to a thread of
execution, rather than a kernel thread.

The basic usage of spinlocks is as follows:

#include <linux/spinlock.h>

spinlock_t mylock = SPIN_LOCK_UNLOCKED; /* Initialize */

/* Acquire the spinlock. This is inexpensive if there

 * is no one inside the critical section. In the face of

 * contention, spinlock() has to busy-wait.

 */

spin_lock(&mylock);

/* ... Critical Section code ... */

spin_unlock(&mylock); /* Release the lock */

In contrast to spinlocks that put threads into a spin if they attempt to enter a
busy critical section, mutexes put contending threads to sleep until it’s their turn to

Concurrency in the Kernel 39

40 Chapter 2 A Peek Inside the Kernel

occupy the critical section. Because it’s a bad thing to consume processor cycles to
spin, mutexes are more suitable than spinlocks to protect critical sections when the
estimated wait time is long. In mutex terms, anything more than two context switches
is considered long, because a mutex has to switch out the contending thread to sleep,
and switch it back in when it’s time to wake it up.

In many cases, therefore, it’s easy to decide whether to use a spinlock or a mutex:

 • If the critical section needs to sleep, you have no choice but to use a mutex.
It’s illegal to schedule, preempt, or sleep on a wait queue after acquiring a
spinlock.

 • Because mutexes put the calling thread to sleep in the face of contention, you
have no choice but to use spinlocks inside interrupt handlers. (You will learn
more about the constraints of the interrupt context in Chapter 4.)

Basic mutex usage is as follows:

#include <linux/mutex.h>

/* Statically declare a mutex. To dynamically

 create a mutex, use mutex_init() */

static DEFINE_MUTEX(mymutex);

/* Acquire the mutex. This is inexpensive if there

 * is no one inside the critical section. In the face of

 * contention, mutex_lock() puts the calling thread to sleep.

 */

mutex_lock(&mymutex);

/* ... Critical Section code ... */

mutex_unlock(&mymutex); /* Release the mutex */

To illustrate the use of concurrency protection, let’s start with a critical section that
is present only in process context and gradually introduce complexities in the follow-
ing order:

 1. Critical section present only in process context on a Uniprocessor (UP) box
running a nonpreemptible kernel.

 2. Critical section present in process and interrupt contexts on a UP machine run-
ning a nonpreemptible kernel.

 3. Critical section present in process and interrupt contexts on a UP machine run-
ning a preemptible kernel.

 4. Critical section present in process and interrupt contexts on an SMP machine
running a preemptible kernel.

The Old Semaphore Interface

The mutex interface, which replaces the older semaphore interface, originated in the –rt tree
and was merged into the mainline with the 2.6.16 kernel release. The semaphore interface is still
around, however. Basic usage of the semaphore interface is as follows:

#include <asm/semaphore.h> /* Architecture dependent
 header */

/* Statically declare a semaphore. To dynamically
 create a semaphore, use init_MUTEX() */
static DECLARE_MUTEX(mysem);

down(&mysem); /* Acquire the semaphore */

/* ... Critical Section code ... */

up(&mysem); /* Release the semaphore */

Semaphores can be confi gured to allow a predetermined number of threads into the critical
section simultaneously. However, semaphores that permit more than a single holder at a time are
rarely used.

Case 1: Process Context, UP Machine, No Preemption

This is the simplest case and needs no locking, so we won’t discuss this further.

Case 2: Process and Interrupt Contexts, UP Machine, No Preemption

In this case, you need to disable only interrupts to protect the critical region. To see
why, assume that A and B are process context threads, and C is an interrupt context
thread, all vying to enter the same critical section, as shown in Figure 2.4.

Concurrency in the Kernel 41

42 Chapter 2 A Peek Inside the Kernel

Process Context
Thread A

Process Context
Thread B

Interrupt Context
Thread C

Thread A Thread B

Critical Section

Disable Interrupts

Restore Interrupt State

FIGURE 2.4 Process and interrupt context threads inside a critical section.

Because Thread C is executing in interrupt context and always runs to completion
before yielding to Thread A or Thread B, it need not worry about protection. Thread A,
for its part, need not be concerned about Thread B (and vice versa) because the kernel
is not preemptible. Thus, Thread A and Thread B need to guard against only the pos-
sibility of Thread C stomping through the critical section while they are inside the same
section. They achieve this by disabling interrupts prior to entering the critical section:

Point A:

 local_irq_disable(); /* Disable Interrupts in local CPU */

 /* ... Critical Section ... */

 local_irq_enable(); /* Enable Interrupts in local CPU */

However, if interrupts were already disabled when execution reached Point A,
local_irq_enable() creates the unpleasant side effect of reenabling interrupts,
rather than restoring interrupt state. This can be fi xed as follows:

unsigned long flags;

Point A:

 local_irq_save(flags); /* Disable Interrupts */

 /* ... Critical Section ... */

 local_irq_restore(flags); /* Restore state to what

 it was at Point A */

This works correctly irrespective of the interrupt state at Point A.

Case 3: Process and Interrupt Contexts, UP Machine, Preemption

If preemption is enabled, mere disabling of interrupts won’t protect your critical region
from being trampled over. There is the possibility of multiple threads simultaneously
entering the critical section in process context. Referring back to Figure 2.4 in this
scenario, Thread A and Thread B now need to protect themselves from each other in
addition to guarding against Thread C. The solution apparently, is to disable kernel
preemption before the start of the critical section and reenable it at the end, in addi-
tion to disabling/reenabling interrupts. For this, Thread A and Thread B use the irq
variant of spinlocks:

unsigned long flags;

Point A:

 /* Save interrupt state.

 * Disable interrupts - this implicitly disables preemption */

 spin_lock_irqsave(&mylock, flags);

 /* ... Critical Section ... */

 /* Restore interrupt state to what it was at Point A */

 spin_unlock_irqrestore(&mylock, flags);

Preemption state need not be explicitly restored to what it was at Point A because the
kernel internally does that for you via a variable called the preemption counter. The coun-
ter gets incremented whenever preemption is disabled (using preempt_disable())
and gets decremented whenever preemption is enabled (using preempt_enable()).
Preemption kicks in only if the counter value is zero.

Case 4: Process and Interrupt Contexts, SMP Machine, Preemption

Let’s now assume that the critical section executes on an SMP machine. Your kernel
has been confi gured with CONFIG_SMP and CONFIG_PREEMPT turned on.

In the scenarios discussed this far, spinlock primitives have done little more than
enable/disable preemption and interrupts. The actual locking functionality has
been compiled away. In the presence of SMP, the locking logic gets compiled in,

Concurrency in the Kernel 43

44 Chapter 2 A Peek Inside the Kernel

and the spinlock primitives are rendered SMP-safe. The SMP-enabled semantics is
as follows:

unsigned long flags;

Point A:

 /*

 - Save interrupt state on the local CPU

 - Disable interrupts on the local CPU. This implicitly disables

 preemption.

 - Lock the section to regulate access by other CPUs

 */

 spin_lock_irqsave(&mylock, flags);

 /* ... Critical Section ... */

 /*

 - Restore interrupt state and preemption to what it

 was at Point A for the local CPU

 - Release the lock

 */

 spin_unlock_irqrestore(&mylock, flags);

On SMP systems, only interrupts on the local CPU are disabled when a spinlock is
acquired. So, a process context thread (say Thread A in Figure 2.4) might be running
on one CPU, while an interrupt handler (say Thread C in Figure 2.4) is executing on
another CPU. An interrupt handler on a nonlocal processor thus needs to spin-wait
until the process context code on the local processor exits the critical section. The
interrupt context code calls spin_lock()/spin_unlock() to do this:

spin_lock(&mylock);

/* ... Critical Section ... */

spin_unlock(&mylock);

Similar to the irq variants, spinlocks also have bottom half (BH) fl avors. spin_
lock_bh() disables bottom halves when the lock is acquired, whereas spin_unlock_
bh() reenables bottom halves when the lock is released. We discuss bottom halves in
Chapter 4.

The –rt tree

The real time (-rt) tree, also called the CONFIG_PREEMPT_RT patch-set, implements low-latency
modifi cations to the kernel. The patch-set, downloadable from www.kernel.org/pub/linux/
kernel/projects/rt, allows most of the kernel to be preempted, partly by replacing many spinlocks
with mutexes. It also incorporates high-resolution timers. Several -rt features have been inte-
grated into the mainline kernel. You will fi nd detailed documentation at the project’s wiki hosted
at http://rt.wiki.kernel.org/.

The kernel has specialized locking primitives in its repertoire that help improve
performance under specifi c conditions. Using a mutual-exclusion scheme tailored to
your needs makes your code more powerful. Let’s take a look at some of the specialized
exclusion mechanisms.

Atomic Operators

Atomic operators are used to perform lightweight one-shot operations such as bump-
ing counters, conditional increments, and setting bit positions. Atomic operations are
guaranteed to be serialized and do not need locks for protection against concurrent
access. The implementation of atomic operators is architecture-dependent.

To check whether there are any remaining data references before freeing a kernel
network buffer (called an skbuff), the skb_release_data() routine defi ned in net/
core/skbuff.c does the following:

if (!skb->cloned ||

 /* Atomically decrement and check if the returned value is zero */

 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 :

 1,&skb_shinfo(skb)->dataref)) {

 /* ... */

 kfree(skb->head);

}

While skb_release_data() is thus executing, another thread using skbuff_
clone() (defi ned in the same fi le) might be simultaneously incrementing the data
reference counter:

 /* ... */

 /* Atomically bump up the data reference count */

 atomic_inc(&(skb_shinfo(skb)->dataref));

 /* ... */

Concurrency in the Kernel 45

www.kernel.org/pub/linux/kernel/projects/rt
www.kernel.org/pub/linux/kernel/projects/rt
http://rt.wiki.kernel.org/

46 Chapter 2 A Peek Inside the Kernel

The use of atomic operators protects the data reference counter from being tram-
pled by these two threads. It also eliminates the hassle of using locks to protect a single
integer variable from concurrent access.

The kernel also supports operators such as set_bit(), clear_bit(), and test_

and_set_bit() to atomically engage in bit manipulations. Look at include/asm-your-
arch/atomic.h for the atomic operators supported on your architecture.

Reader-Writer Locks

Another specialized concurrency regulation mechanism is a reader-writer variant of
spinlocks. If the usage of a critical section is such that separate threads either read
from or write to a shared data structure, but don’t do both, these locks are a natural
fi t. Multiple reader threads are allowed inside a critical region simultaneously. Reader
spinlocks are defi ned as follows:

rwlock_t myrwlock = RW_LOCK_UNLOCKED;

read_lock(&myrwlock); /* Acquire reader lock */

/* ... Critical Region ... */

read_unlock(&myrwlock); /* Release lock */

However, if a writer thread enters a critical section, other reader or writer threads
are not allowed inside. To use writer spinlocks, you would write this:

rwlock_t myrwlock = RW_LOCK_UNLOCKED;

write_lock(&myrwlock); /* Acquire writer lock */

/* ... Critical Region ... */

write_unlock(&myrwlock); /* Release lock */

Look at the IPX routing code present in net/ipx/ipx_route.c for a real-life example
of a reader-writer spinlock. A reader-writer lock called ipx_routes_lock protects the
IPX routing table from simultaneous access. Threads that need to look up the routing
table to forward packets request reader locks. Threads that need to add or delete entries
from the routing table acquire writer locks. This improves performance because there
are usually far more instances of routing table lookups than routing table updates.

Like regular spinlocks, reader-writer locks also have corresponding irq variants—
read_lock_irqsave(), read_lock_irqrestore(), write_lock_irqsave(), and

write_lock_irqrestore(). The semantics of these functions are similar to those of
regular spinlocks.

Sequence locks or seqlocks, introduced in the 2.6 kernel, are reader-writer locks
where writers are favored over readers. This is useful if write operations on a variable
far outnumber read accesses. An example is the jiffies_64 variable discussed earlier
in this chapter. Writer threads do not wait for readers who may be inside a critical
section. Because of this, reader threads may discover that their entry inside a critical
section has failed and may need to retry:

u64 get_jiffies_64(void) /* Defined in kernel/time.c */

{

 unsigned long seq;

 u64 ret;

 do {

 seq = read_seqbegin(&xtime_lock);

 ret = jiffies_64;

 } while (read_seqretry(&xtime_lock, seq));

 return ret;

}

Writers protect critical regions using write_seqlock() and write_sequnlock().
The 2.6 kernel introduced another mechanism called Read-Copy Update (RCU),

which yields improved performance when readers far outnumber writers. The basic
idea is that reader threads can execute without locking. Writer threads are more com-
plex. They perform update operations on a copy of the data structure and replace the
pointer that readers see. The original copy is maintained until the next context switch
on all CPUs to ensure completion of all ongoing read operations. Be aware that using
RCU is more involved than using the primitives discussed thus far and should be used
only if you are sure that it’s the right tool for the job. RCU data structures and inter-
face functions are defi ned in include/linux/rcupdate.h. There is ample documentation
in Documentation/RCU/*.

For an RCU usage example, look at fs/dcache.c. On Linux, each fi le is associated with
directory entry information (stored in a structure called dentry), metadata information
(stored in an inode), and actual data (stored in data blocks). Each time you operate on
a fi le, the components in the fi le path are parsed, and the corresponding dentries are
obtained. The dentries are kept cached in a data structure called the dcache, to speed

Concurrency in the Kernel 47

48 Chapter 2 A Peek Inside the Kernel

up future operations. At any time, the number of dcache lookups is much more than
dcache updates, so references to the dcache are protected using RCU primitives.

Debugging

Concurrency-related problems are generally hard to debug because they are usually
diffi cult to reproduce. It’s a good idea to enable SMP (CONFIG_SMP) and preemption
(CONFIG_PREEMPT) while compiling and testing your code, even if your production
kernel is going to run on a UP machine with preemption disabled. There is a ker-
nel confi guration option under Kernel hacking called Spinlock and rw-lock debugging
(CONFIG_DEBUG_SPINLOCK) that can help you catch some common spinlock errors.
Also available are tools such as lockmeter (http://oss.sgi.com/projects/lockmeter/) that
collect lock-related statistics.

A common concurrency problem occurs when you forget to lock an access to a
shared resource. This results in different threads “racing” through that access in an
unregulated manner. The problem, called a race condition, might manifest in the form
of occasional strange code behavior.

Another potential problem arises when you miss releasing held locks in certain code
paths, resulting in deadlocks. To understand this, consider the following example:

spin_lock(&mylock); /* Acquire lock */

/* ... Critical Section ... */

if (error) { /* This error condition occurs rarely */

 return -EIO; /* Forgot to release the lock! */

}

spin_unlock(&mylock); /* Release lock */

After the occurrence of the error condition, any thread trying to acquire mylock
gets deadlocked, and the kernel might freeze.

If the problem fi rst manifests months or years after you write the code, it’ll be all
the more tough to go back and debug it. (There is a related debugging example in
the section “Kdump” in Chapter 21, “Debugging Device Drivers.”) To avoid such
unpleasant encounters, concurrency logic should be designed when you architect your
software.

http://oss.sgi.com/projects/lockmeter/

Process Filesystem

The process fi lesystem (procfs) is a virtual fi lesystem that creates windows into the
innards of the kernel. The data you see when you browse procfs is generated by the
kernel on-the-fl y. Files in procfs are used to confi gure kernel parameters, look at kernel
structures, glean statistics from device drivers, and get general system information.

Procfs is a pseudo fi lesystem. This means that fi les resident in procfs are not asso-
ciated with physical storage devices such as hard disks. Instead, data in those fi les
is dynamically created on demand by the corresponding entry points in the ker-
nel. Because of this, fi le sizes in procfs get shown as zero. Procfs is usually mounted
under the /proc directory during kernel boot; you can see this by invoking the mount
command.

To get a fi rst feel of the capabilities of procfs, examine the contents of /proc/cpuinfo,
/proc/meminfo, /proc/interrupts, /proc/tty/driver/serial, /proc/bus/usb/devices, and /proc/stat.
Certain kernel parameters can be changed at runtime by writing to fi les under /proc/sys/.
For example, you can change kernel printk log levels by echoing a new set of values
to /proc/sys/kernel/printk. Many utilities (such as ps) and system performance monitor-
ing tools (such as sysstat) internally derive information from fi les residing under /proc.

Seq fi les, introduced in the 2.6 kernel, simplify large procfs operations. They are
described in Appendix C, “Seq Files.”

Allocating Memory

Some device drivers have to be aware of the existence of memory zones. In addition,
many drivers need the services of memory allocation functions. In this section, let’s
briefl y discuss both.

The kernel organizes physical memory into pages. The page size depends on the
architecture. On x86-based machines, it’s 4096 bytes. Each page in physical memory
has a struct page (defi ned in include/linux/mm_types.h) associated with it:

struct page {

 unsigned long flags; /* Page status */

 atomic_t _count; /* Reference count */

 /* ... */

 void * virtual; /* Explained later on */

};

Allocating Memory 49

50 Chapter 2 A Peek Inside the Kernel

On 32-bit x86 systems, the default kernel confi guration splits the available 4GB
address space into a 3GB virtual memory space for user processes and a 1GB space for
the kernel, as shown in Figure 2.5. This imposes a 1GB limit on the amount of physi-
cal memory that the kernel can handle. In reality, the limit is 896MB because 128MB
of the address space is occupied by kernel data structures. You may increase this limit
by changing the 3GB/1GB split during kernel confi guration, but you will incur the
displeasure of memory-intensive applications if you reduce the virtual address space of
user processes.

ZONE_HIGH

ZONE_NORMAL

ZONE_DMA

Physical Address Space

4GB

896MB

16MB

0

KERNEL SPACE

USER SPACE

Virtual Address Space

4GB

3GB

0

FIGURE 2.5 Default address space split on a 32-bit PC system.

Kernel addresses that map the low 896MB differ from physical addresses by a con-
stant offset and are called logical addresses. With “high memory” support, the kernel can
access memory beyond 896MB by generating virtual addresses for those regions using
special mappings. All logical addresses are kernel virtual addresses, but not vice versa.

This leads us to the following kernel memory zones:

 1. ZONE_DMA (<16MB), the zone used for Direct Memory Access (DMA). Because
legacy ISA devices have 24 address lines and can access only the first 16MB, the
kernel tries to dedicate this area for such devices.

 2. ZONE_NORMAL (16MB to 896MB), the normally addressable region, also called
low memory. The “virtual” field in struct page for low memory pages con-
tains the corresponding logical addresses.

 3. ZONE_HIGH (>896MB), the space that the kernel can access only after map-
ping resident pages to regions in ZONE_NORMAL (using kmap() and kunmap()).

The corresponding kernel addresses are virtual and not logical. The “virtual”
field in struct page for high memory pages points to NULL if the page is not
kmapped.

kmalloc() is a memory-allocation function that returns contiguous memory from
ZONE_NORMAL. The prototype is as follows:

void *kmalloc(int count, int flags);

Where count is the number of bytes to allocate, and flags is a mode specifi er. All
supported fl ags are listed in include/linux./gfp.h (gfp stands for get free pages), but these
are the commonly used ones:

 1. GFP_KERNEL: Used by process context code to allocate memory. If this flag
is specified, kmalloc() is allowed to go to sleep and wait for pages to get
freed up.

 2. GFP_ATOMIC: Used by interrupt context code to get hold of memory. In this
mode, kmalloc() is not allowed to sleep-wait for free pages, so the probability
of successful allocation with GFP_ATOMIC is lower than with GFP_KERNEL.

Because memory returned by kmalloc() retains the contents from its previous
incarnation, there could be a security risk if it’s exposed to user space. To get zeroed
kmalloced memory, use kzalloc().

If you need to allocate large memory buffers, and you don’t require the memory to
be physically contiguous, use vmalloc() rather than kmalloc():

void *vmalloc(unsigned long count);

Here count is the requested allocation size. The function returns kernel virtual
addresses.

vmalloc() enjoys bigger allocation size limits than kmalloc() but is slower and
can’t be called from interrupt context. Moreover, you cannot use the physically discon-
tiguous memory returned by vmalloc() to perform Direct Memory Access (DMA).
High-performance network drivers commonly use vmalloc() to allocate large descrip-
tor rings when the device is opened.

The kernel offers more sophisticated memory allocation techniques. These include
look aside buffers, slabs, and mempools, which are beyond the scope of this chapter.

Allocating Memory 51

52 Chapter 2 A Peek Inside the Kernel

Looking at the Sources

Kernel boot starts with the execution of real mode assembly code living in the arch/
x86/boot/ directory. Look at arch/x86/kernel/setup_32.c to see how the protected mode
kernel obtains information gleaned by the real mode kernel.

The fi rst boot message is printed by code residing in init/main.c. Dig inside init/
calibrate.c to learn more about BogoMIPS calibration and include/asm-your-arch/bugs.h
for an insight into architecture-dependent checks.

Timer services in the kernel consist of architecture-dependent portions that live in
arch/your-arch/kernel/ and generic portions implemented in kernel/timer.c. For related
defi nitions, look at the header fi les, include/linux/time*.h.

jiffies is defi ned in linux/jiffi es.h. The value for HZ is processor-dependent and
can be found in include/asm-your-arch/param.h.

Memory management sources reside in the top-level mm/ directory.
Table 2.1 contains a summary of the main data structures used in this chapter

and the location of their defi nitions in the source tree. Table 2.2 lists the main kernel
programming interfaces that you used in this chapter along with the location of their
defi nitions.

TABLE 2.1 Summary of Data Structures

 Data Structure Location Description

 HZ include/asm-your-arch/param.h Number of times the system timer ticks in
1 second

 loops_per_jiffy init/main.c Number of times the processor executes an
internal delay-loop in 1 jiffy

 timer_list include/linux/timer.h Used to hold the address of a routine that you
want to execute at some point in the future

 timeval include/linux/time.h Timestamp

spinlock_t include/linux/spinlock_types.h A busy-locking mechanism to ensure that only
a single thread enters a critical section

semaphore include/asm-your-arch/semaphore.h A sleep-locking mechanism that allows a
predetermined number of users to enter a
critical section

mutex include/linux/mutex.h The new interface that replaces semaphore

rwlock_t include/linux/spinlock_types.h Reader-writer spinlock

 page include/linux/mm_types.h Kernel’s representation of a physical memory
page

TABLE 2.2 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

time_after()
time_after_eq()
time_before()
time_before_eq()

include/linux/jiffies.h Compares the current value of
jiffies with a specified future
value

schedule_timeout() kernel/timer.c Schedules a process to run after a
specified timeout has elapsed

wait_event_timeout() include/linux/wait.h Resumes execution if a specified
condition becomes true or if a
timeout occurs

DEFINE_TIMER() include/linux/timer.h Statically defines a timer

init_timer() kernel/timer.c Dynamically defines a timer

add_timer() include/linux/timer.h Schedules the timer for execution
after the timeout has elapsed

mod_timer() kernel/timer.c Changes timer expiration

timer_pending() include/linux/timer.h Checks if a timer is pending at the
moment

udelay() include/asm-your-arch/delay.h
arch/your-arch/lib/delay.c

Busy-waits for the specified number
of microseconds

rdtsc() include/asm-x86/msr.h Gets the value of the TSC on
Pentium-compatible processors

do_gettimeofday() kernel/time.c Obtains wall time

local_irq_disable() include/asm-your-arch/system.h Disables interrupts on the local CPU

local_irq_enable() include/asm-your-arch/system.h Enables interrupts on the local CPU

local_irq_save() include/asm-your-arch/system.h Saves interrupt state and disables
interrupts

local_irq_restore() include/asm-your-arch/system.h Restores interrupt state to what it was
when the matching local_irq_
save() was called

spin_lock() include/linux/spinlock.h
kernel/spinlock.c

Acquires a spinlock.

spin_unlock() include/linux/spinlock.h Releases a spinlock

spin_lock_irqsave() include/linux/spinlock.h
kernel/spinlock.c

Saves interrupt state, disables inter-
rupts and preemption on local CPU,
and locks their critical section to
regulate access by other CPUs

spin_unlock_irqrestore() include/linux/spinlock.h
kernel/spinlock.c

Restores interrupt state and preemp-
tion and releases the lock

DEFINE_MUTEX() include/linux/mutex.h Statically declares a mutex

Continues

Looking at the Sources 53

54 Chapter 2 A Peek Inside the Kernel

Kernel Interface Location Description

mutex_init() include/linux/mutex.h Dynamically declares a mutex

mutex_lock() kernel/mutex.c Acquires a mutex

mutex_unlock() kernel/mutex.c Releases a mutex

DECLARE_MUTEX() include/asm-your-arch/semaphore.h Statically declares a semaphore

init_MUTEX() include/asm-your-arch/semaphore.h Dynamically declares a semaphore

up() arch/your-arch/kernel/semaphore.c Acquires a semaphore

down() arch/your-arch/kernel/semaphore.c Releases a semaphore

atomic_inc()
atomic_inc_and_test()
atomic_dec()
atomic_dec_and_test()
clear_bit()
set_bit()
test_bit()
test_and_set_bit()

include/asm-your-arch/atomic.h Atomic operators to perform light-
weight operations

read_lock()
read_unlock()
read_lock_irqsave()
read_lock_irqrestore()
write_lock()
write_unlock()
write_lock_irqsave()
write_lock_irqrestore()

include/linux/spinlock.h
kernel/spinlock.c

Reader-writer variant of spinlocks

down_read()
up_read()
down_write()
up_write()

kernel/rwsem.c Reader-writer variant of semaphores

read_seqbegin()
read_seqretry()
write_seqlock()
write_sequnlock()

include/linux/seqlock.h Seqlock operations

kmalloc() include/linux/slab.h
mm/slab.c

Allocates physically contiguous
memory from ZONE_NORMAL

kzalloc() include/linux/slab.h
mm/util.c

Obtains zeroed kmalloced memory

kfree() mm/slab.c Releases kmalloced memory

vmalloc() mm/vmalloc.c Allocates virtually contiguous
memory that is not guaranteed to be
physically contiguous.

TABLE 2.2 Continued

55

3

Kernel Facilities

In This Chapter

■ Kernel Threads 56

■ Helper Interfaces 65

■ Looking at the Sources 85

56

In this chapter, let’s look at some kernel facilities that are useful components in
a driver developer’s toolbox. We start this chapter by looking at a kernel facil-

ity that is similar to user processes; kernel threads are programming abstractions
oriented toward concurrent processing.

The kernel offers several helper interfaces that simplify your code, eliminate
redundancies, increase code readability, and help in long-term maintenance. We
will look at linked lists, hash lists, work queues, notifier chains, completion
functions, and error-handling aids. These helpers are bug free and optimized, so
your driver also inherits those benefits for free.

Kernel Threads

A kernel thread is a way to implement background tasks inside the kernel. The task
can be busy handling asynchronous events or sleep-waiting for an event to occur.
Kernel threads are similar to user processes, except that they live in kernel space
and have access to kernel functions and data structures. Like user processes, ker-
nel threads have the illusion of monopolizing the processor because of preemptive
scheduling. Many device drivers utilize the services of kernel threads to implement
assistant or helper tasks. For example, the khubd kernel thread, which is part of the
Linux USB driver core (covered in Chapter 11, “Universal Serial Bus”) monitors
USB hubs and confi gures USB devices when they are hot-plugged into the system.

Creating a Kernel Thread

Let’s learn about kernel threads with the help of an example. While developing the
example thread, you will also learn about kernel concepts such as process states, wait
queues, and user mode helpers. When you are comfortable with kernel threads, you
can use them as a test vehicle for carrying out various experiments within the kernel.

Assume that you would like the kernel to asynchronously invoke a user mode
program to send you an email or pager alert, whenever it senses that the health of
certain key kernel data structures is deteriorating. (For instance, free space in net-
work receive buffers has dipped below a low watermark.)

This is a candidate for being implemented as a kernel thread for the following
reasons:

 • It’s a background task because it has to wait for asynchronous events.

 • It needs access to kernel data structures because the actual detection of events is
done by other parts of the kernel.

 • It has to invoke a user mode helper program, which is a time-consuming
operation.

Built-In Kernel Threads

To see the kernel threads (also called kernel processes) running on your system, run the ps com-
mand. Names of kernel threads are surrounded by square brackets:

bash> ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 22:36 ? 00:00:00 init [3]

root 2 0 0 22:36 ? 00:00:00 [kthreadd]

root 3 2 0 22:36 ? 00:00:00 [ksoftirqd/0]

root 4 2 0 22:36 ? 00:00:00 [events/0]

root 38 2 0 22:36 ? 00:00:00 [pdflush]

root 39 2 0 22:36 ? 00:00:00 [pdflush]

root 29 2 0 22:36 ? 00:00:00 [khubd]

root 695 2 0 22:36 ? 00:00:00 [kjournald]

...

root 3914 2 0 22:37 ? 00:00:00 [nfsd]

root 3915 2 0 22:37 ? 00:00:00 [nfsd]

...

root 4015 3364 0 22:55 tty3 00:00:00 -bash

root 4066 4015 0 22:59 tty3 00:00:00 ps -ef

The [ksoftirqd/0] kernel thread is an aid to implement softirqs. Softirqs are raised by interrupt
handlers to request “bottom half ” processing of portions of the handler whose execution can be
deferred. We take a detailed look at bottom halves and softirqs in Chapter 4, “Laying the Ground-
work,” but the basic idea here is to allow as little code as possible to be present inside interrupt
handlers. Having small interrupt handlers reduces interrupt-off times in the system, resulting
in lower latencies. Ksoftirqd’s job is to ensure that a high load of softirqs neither starves the soft-
irqs nor overwhelms the system. On Symmetric Multi Processing (SMP) machines where multiple
thread instances can run on different processors in parallel, one instance of ksoftirqd is created per
CPU to improve throughput (ksoftirqd/n, where n is the CPU number).

Kernel Threads 57

58 Chapter 3 Kernel Facilities

The events/n threads (where n is the CPU number) help implement work queues, which are
another way of deferring work in the kernel. Parts of the kernel that desire deferred execution of
work can either create their own work queue or make use of the default events/n worker thread.
Work queues are also dissected in Chapter 4.

The task of the pdfl ush kernel thread is to fl ush out dirty pages from the page cache. The page
cache buffers accesses to the disk. To improve performance, actual writes to the disk are delayed
until the pdfl ush daemon writes out dirtied data to disk. This is done if the available free memory
dips below a threshold, or if the page has remained dirty for a suffi ciently long time. In 2.4 ker-
nels, these two tasks were respectively performed by separate kernel threads, bdfl ush and kupdated.
You might have noticed two instances of pdfl ush in the ps output. A new instance is created if the
kernel senses that existing instances have their hands full, servicing disk queues. This improves
throughput, especially if your system has multiple disks and many of them are busy.

As you saw in the preceding chapter, kjournald is the generic kernel journaling thread, which
is used by fi lesystems such as EXT3.

The Linux Network File System (NFS) server is implemented using a set of kernel threads
named nfsd.

Our example kernel thread relinquishes the processor until it gets woken up by parts
of the kernel responsible for monitoring the data structures of interest. When awake,
it invokes a user mode helper program and passes appropriate identity codes in its
environment.

To create a kernel thread, use kernel_thread():

 ret = kernel_thread(mykthread, NULL,

 CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

The fl ags specify the resources to be shared between the parent and child threads.
CLONE_FILES specifi es that open fi les are to be shared, and CLONE_SIGHAND requests
that signal handlers be shared.

Listing 3.1 shows the example implementation. Because kernel threads usually act
as helpers to device drivers, they are created when the driver is initialized. In this case,
however, the example thread can be created from any suitable place, for instance, init/
main.c.

The thread starts by invoking daemonize(), which performs initial housekeeping
and changes the parent of the calling thread to a kernel thread called kthreadd. Each
Linux thread has a single parent. If a parent process dies without waiting for its child

to exit, the child becomes a zombie process and wastes resources. Reparenting the child
to kthreadd, avoids this and ensures proper cleanup when the thread exits.1

Because daemonize() blocks all signals by default, use allow_signal() to enable
delivery if your thread desires to handle a particular signal. There are no signal handlers
inside the kernel, so use signal_pending() to check for signals and take appropriate
action. For debugging purposes, the code in Listing 3.1 requests delivery of SIGKILL
and dies if it’s received.

kernel_thread() is depreciated in favor of the higher-level kthread API, which is
built over the former. We will look at kthreads later on.

LISTING 3.1 Implementing a Kernel Thread

static DECLARE_WAIT_QUEUE_HEAD(myevent_waitqueue);

rwlock_t myevent_lock;

extern unsigned int myevent_id; /* Holds the identity of the

 troubled data structure.

 Populated later on */

static int mykthread(void *unused)

{

 unsigned int event_id = 0;

 DECLARE_WAITQUEUE(wait, current);

 /* Become a kernel thread without attached user resources */

 daemonize("mykthread");

 /* Request delivery of SIGKILL */

 allow_signal(SIGKILL);

 /* The thread sleeps on this wait queue until it's

 woken up by parts of the kernel in charge of sensing

 the health of data structures of interest */

 add_wait_queue(&myevent_waitqueue, &wait);

 for (;;) {

 /* Relinquish the processor until the event occurs */

 set_current_state(TASK_INTERRUPTIBLE);

 schedule(); /* Allow other parts of the kernel to run */

 /* Die if I receive SIGKILL */

 if (signal_pending(current)) break;

1 In 2.6.21 and earlier kernels, daemonize() reparents the calling thread to the init task by calling reparent_to_init().

Kernel Threads 59

60 Chapter 3 Kernel Facilities

 /* Control gets here when the thread is woken up */

 read_lock(&myevent_lock); /* Critical section starts */

 if (myevent_id) { /* Guard against spurious wakeups */

 event_id = myevent_id;

 read_unlock(&myevent_lock); /* Critical section ends */

 /* Invoke the registered user mode helper and

 pass the identity code in its environment */

 run_umode_handler(event_id); /* Expanded later on */

 } else {

 read_unlock(&myevent_lock);

 }

 }

 set_current_state(TASK_RUNNING);

 remove_wait_queue(&myevent_waitqueue, &wait);

 return 0;

}

If you compile and run this as part of the kernel, you can see the newly created thread,
mykthread, in the ps output:

bash> ps -ef

 UID PID PPID C STIME TTY TIME CMD

 root 1 0 0 21:56 ? 00:00:00 init [3]

 root 2 1 0 22:36 ? 00:00:00 [ksoftirqd/0]

 ...

root 111 1 0 21:56 ? 00:00:00 [mykthread]

 ...

Before we delve further into the thread implementation, let’s write a code snippet that
monitors the health of a data structure of interest and awakens mykthread if a problem
condition is detected:

/* Executed by parts of the kernel that own the

 data structures whose health you want to monitor */

/* ... */

if (my_key_datastructure looks troubled) {

 write_lock(&myevent_lock); /* Serialize */

 /* Fill in the identity of the data structure */

 myevent_id = datastructure_id;

 write_unlock(&myevent_lock);

 /* Wake up mykthread */

 wake_up_interruptible(&myevent_waitqueue);

}

/* ... */

Listing 3.1 executes in process context, whereas the preceding snippet runs from either
process or interrupt context. Process and interrupt contexts communicate via kernel
data structures. Our example uses myevent_id and myevent_waitqueue for this
communication. myevent_id contains the identity of the data structure in trouble.
Access to myevent_id is serialized using locks.

Note that kernel threads are preemptible only if CONFIG_PREEMPT is turned on at
compile time. If CONFIG_PREEMPT is off, or if you are still running a 2.4 kernel with-
out the preemption patch, your thread will freeze the system if it does not go to sleep.
If you comment out schedule() in Listing 3.1 and disable CONFIG_PREEMPT in your
kernel confi guration, your system will lock up.

You will learn how to obtain soft real-time responses from kernel threads when we
discuss scheduling policies in Chapter 19, “Drivers in User Space.”

Process States and Wait Queues

Here’s the code region from Listing 3.1 that puts mykthread to sleep while waiting for
events:

add_wait_queue(&myevent_waitqueue, &wait);

for (;;) {

 /* ... */

 set_current_state(TASK_INTERRUPTIBLE);

 schedule(); /* Relinquish the processor */

 /* Point A */

 /* ... */

}

set_current_state(TASK_RUNNING);

remove_wait_queue(&myevent_waitqueue, &wait);

Kernel Threads 61

62 Chapter 3 Kernel Facilities

The operation of the preceding snippet is based on two concepts: wait queues and
process states.

Wait queues hold threads that need to wait for an event or a system resource.
Threads in a wait queue go to sleep until they are woken up by another thread or an
interrupt handler that is responsible for detecting the event. Queuing and dequeuing
are respectively done using add_wait_queue() and remove_wait_queue(), and
waking up queued tasks is accomplished via wake_up_interruptible().

A kernel thread (or a normal process) can be in any of the following process states:
running, interruptible, uninterruptible, zombie, stopped, traced, or dead. These states are
defi ned in include/linux/sched.h:

 • A process in the running state (TASK_RUNNING) is in the scheduler run queue
and is a candidate for getting CPU time allotted by the scheduler.

 • A task in the interruptible state (TASK_INTERRUPTIBLE) is waiting for an event
to occur and is not in the scheduler run queue. When the task gets woken up,
or if a signal is delivered to it, it re-enters the run queue.

 • The uninterruptible state (TASK_UNINTERRUPTIBLE) is similar to the inter-
ruptible state except that receipt of a signal will not put the task back into the
run queue.

 • A stopped task (TASK_STOPPED) has stopped execution due to receipt of certain
signals.

 • If an application such as strace is using the ptrace support in the kernel to inter-
cept a task, it’ll be in the traced state (TASK_TRACED).

 • A task in the zombie state (EXIT_ZOMBIE) has terminated, but its parent did
not wait for the task to complete. An exiting task is either in the EXIT_ZOMBIE
state or the dead (EXIT_DEAD) state.

You can use set_current_state() to set the run state of your kernel thread.
Let’s now turn back to the preceding code snippet. mykthread sleeps on a wait

queue (myevent_waitqueue) and changes its state to TASK_INTERRUPTIBLE, signal-
ing its desire to opt out of the scheduler run queue. The call to schedule() asks the
scheduler to choose and run a new task from its run queue. When code responsible for
health monitoring wakes up mykthread using wake_up_interruptible(&myevent_
waitqueue), the thread is put back into the scheduler run queue. The process state
also gets simultaneously changed to TASK_RUNNING, so there is no race condition even

if the wake up occurs between the time the task state is set to TASK_INTERRUPTIBLE
and the time schedule() is called. The thread also gets back into the run queue if a
SIGKILL signal is delivered to it. When the scheduler subsequently picks mykthread
from the run queue, execution resumes from Point A.

User Mode Helpers

To notify user space of detected events, mykthread invokes run_umode_handler()
in Listing 3.1.

/* Called from Listing 3.1 */

static void

run_umode_handler(int event_id)

{

 int i = 0;

 char *argv[2], *envp[4], *buffer = NULL;

 int value;

 argv[i++] = myevent_handler; /* Defined in

kernel/sysctl.c */

 /* Fill in the id corresponding to the data structure

 in trouble */

 if (!(buffer = kmalloc(32, GFP_KERNEL))) return;

 sprintf(buffer, "TROUBLED_DS=%d", event_id);

 /* If no user mode handlers are found, return */

 if (!argv[0]) return; argv[i] = 0;

 /* Prepare the environment for /path/to/helper */

 i = 0;

 envp[i++] = "HOME=/";

 envp[i++] = "PATH=/sbin:/usr/sbin:/bin:/usr/bin";

 envp[i++] = buffer; envp[i] = 0;

 /* Execute the user mode program, /path/to/helper */

 value = call_usermodehelper(argv[0], argv, envp, 0);

 /* Check return values */

 kfree(buffer);

}

Kernel Threads 63

64 Chapter 3 Kernel Facilities

The kernel supports a mechanism for requesting user mode programs to help
perform certain functions. run_umode_handler() uses this facility by invoking
call_usermodehelper().

You have to register the user mode program invoked by run_umode_handler()
via a node in the /proc/sys/ directory. To do so, make sure that CONFIG_SYSCTL (fi les
that are part of the /proc/sys/ directory are collectively known as the sysctl interface) is
enabled in your kernel confi guration and add an entry to the kern_table array in
kernel/sysctl.c:

{

 .ctl_name = KERN_MYEVENT_HANDLER, /* Define in

include/linux/sysctl.h */

 .procname = "myevent_handler",

 .data = &myevent_handler,

 .maxlen = 256,

 .mode = 0644,

 .proc_handler = &proc_dostring,

 .strategy = &sysctl_string,

},

This creates the node /proc/sys/kernel/myevent_handler in the process fi lesystem. To reg-
ister your user mode helper, do the following:

bash> echo /path/to/helper > /proc/sys/kernel/myevent_handler

This results in /path/to/helper getting executed when mykthread invokes run_umode_
handler().

Mykthread passes the identity of the troubled kernel data structure to the user
mode helper through the environment variable TROUBLED_DS. The helper can be a
simple script like the following that sends you an email alert containing the informa-
tion it gleaned from its environment:

bash> cat /path/to/helper

#!/bin/bash

echo Kernel datastructure $TROUBLED_DS is in trouble | mail -s Alert root

call_usermodehelper() has to be executed from process context and runs with
root privileges. It’s implemented using a work queue, which we will soon discuss.

Helper Interfaces

Several useful helper interfaces exist in the kernel to make life easier for device driver
developers. One example is the implementation of the doubly linked list library. Many
drivers need to maintain and manipulate linked lists of data structures. The kernel’s
list interface routines eliminate the need for chasing list pointers and debugging messy
problems related to list maintenance. Let’s learn to use helper interfaces such as lists,
hlists, work queues, completion functions, notifi er blocks, and kthreads.

There are equivalent ways to do what the helper facilities offer. You can, for exam-
ple, implement your own list manipulation routines instead of using the list library, or
use kernel threads to defer work instead of submitting it to work queues. Using stan-
dard kernel helper interfaces, however, simplifi es your code, weeds out redundancies
from the kernel, increases code readability, and helps long-term maintenance.

Because the kernel is vast, you can always fi nd parts that do not yet take advantage of
these helper mechanisms, so updating those code regions might be a good way to start
contributing to kernel development.

Linked Lists

To weave doubly linked lists of data structures, use the functions provided in include/
linux/list.h. Essentially, you embed a struct list_head inside your data structure:

#include <linux/list.h>

struct list_head {

 struct list_head *next, *prev;

};

struct mydatastructure {

 struct list_head mylist; /* Embed */

 /* ... */ /* Actual Fields */

};

mylist is the link that chains different instances of mydatastructure. If you have
multiple list_heads embedded inside mydatastructure, each of them constitutes

Helper Interfaces 65

66 Chapter 3 Kernel Facilities

a link that renders mydatastructure a member of a new list. You can use the list
library to add or delete membership from individual lists.

To get the lay of the land before the detail, let’s summarize the linked list program-
ming interface offered by the list library. This is done in Table 3.1.

TABLE 3.1 Linked List Manipulation Functions

 Function Purpose

INIT_LIST_HEAD() Initializes the list head

list_add() Adds an element after the list head

list_add_tail() Adds an element to the tail of the list

list_del() Deletes an element from the list

list_replace() Replaces an element in the list with another

list_entry() Loops through all nodes in the list

list_for_each_entry()/ Simpler list iteration interfaces
list_for_each_entry_safe()

list_empty() Checks whether there are any elements in the list

list_splice() Joins one list with another

To illustrate list usage, let’s implement an example. The example also serves as a foun-
dation to understand the concept of work queues, which is discussed in the next sec-
tion. Assume that your kernel driver needs to perform a heavy-duty task from an entry
point. An example is a task that forces the calling thread to sleep-wait. Naturally, your
driver doesn’t like to block until the task fi nishes, because that slows down the respon-
siveness of applications relying on it. So, whenever the driver needs to perform this
expensive work, it defers execution by adding the corresponding routine to a linked
list of work functions. The actual work is performed by a kernel thread, which tra-
verses the list and executes the work functions in the background. The driver submits
work functions to the tail of the list, while the kernel thread ploughs its way from the
head of the list, thus ensuring that work queued fi rst gets done fi rst. Of course, the
rest of the driver needs to be designed to suit this scheme of deferred execution. Before
understanding this example, however, be aware that we will use the work queue inter-
face in Listing 3.5 to implement the same task in a simpler manner.

Let’s fi rst introduce the key driver data structures used by our example:

static struct _mydrv_wq {

 struct list_head mydrv_worklist; /* Work List */

 spinlock_t lock; /* Protect the list */

 wait_queue_head_t todo; /* Synchronize submitter

 and worker */

} mydrv_wq;

struct _mydrv_work {

 struct list_head mydrv_workitem; /* The work chain */

 void (*worker_func)(void *); /* Work to perform */

 void *worker_data; /* Argument to worker_func */

 /* ... */ /* Other fields */

} mydrv_work;

mydrv_wq is global to all work submissions. Its members include a pointer to the
head of the work list, and a wait queue to communicate between driver functions
that submit work and the kernel thread that performs the work. The list helper func-
tions do not protect accesses to list members, so you need to use concurrency mecha-
nisms to serialize simultaneous pointer references. This is done using a spinlock that
is also a part of mydrv_wq. The driver initialization routine mydrv_init()in List-
ing 3.2 initializes the spinlock, the list head, and the wait queue, and kick starts the
worker thread.

LISTING 3.2 Initialize Data Structures

static int __init

mydrv_init(void)

{

 /* Initialize the lock to protect against

 concurrent list access */

 spin_lock_init(&mydrv_wq.lock);

 /* Initialize the wait queue for communication

 between the submitter and the worker */

 init_waitqueue_head(&mydrv_wq.todo);

 /* Initialize the list head */

 INIT_LIST_HEAD(&mydrv_wq.mydrv_worklist);

 /* Start the worker thread. See Listing 3.4 */

 kernel_thread(mydrv_worker, NULL,

 CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

 return 0;

}

Helper Interfaces 67

68 Chapter 3 Kernel Facilities

Before examining the worker thread that executes submitted work, let’s look at work
submission itself. Listing 3.3 implements a function that other parts of the kernel can
use to submit work. It uses list_add_tail() to add a work function to the tail of
the list. Look at Figure 3.1 to see the physical structure of the work list.

mydrv_wq

mvdrv worklist

mydrv_work

mydrv_workitem

mydrv_work

Membership in
another list

(Not shown in
structure definition)

FIGURE 3.1 Linked list of work functions.

LISTING 3.3 Submitting Work to Be Executed Later

int

submit_work(void (*func)(void *data), void *data)

{

 struct _mydrv_work *mydrv_work;

 /* Allocate the work structure */

 mydrv_work = kmalloc(sizeof(struct _mydrv_work), GFP_ATOMIC);

 if (!mydrv_work) return -1;

 /* Populate the work structure */

 mydrv_work->worker_func = func; /* Work function */

 mydrv_work->worker_data = data; /* Argument to pass */

 spin_lock(&mydrv_wq.lock); /* Protect the list */

 /* Add your work to the tail of the list */

 list_add_tail(&mydrv_work->mydrv_workitem,

 &mydrv_wq.mydrv_worklist);

 /* Wake up the worker thread */

 wake_up(&mydrv_wq.todo);

 spin_unlock(&mydrv_wq.lock);

 return 0;

}

To submit a work function void job(void *) from a driver entry point, do this:

submit_work(job, NULL);

After submitting the work function, Listing 3.3 wakes up the worker thread. The gen-
eral structure of the worker thread shown in Listing 3.4 is similar to standard kernel
threads discussed in the previous section. The thread uses list_entry() to work its
way through all nodes in the list. list_entry() returns the container data structure
inside which the list node is embedded. Take a closer look at the relevant line in List-
ing 3.4:

mydrv_work = list_entry(mydrv_wq.mydrv_worklist.next,

 struct _mydrv_work, mydrv_workitem);

mydrv_workitem is embedded inside mydrv_work, so list_entry() returns a
pointer to the corresponding mydrv_work structure. The parameters passed to list_
entry() are the address of the embedded list node, the type of the container struc-
ture, and the fi eld name of the embedded list node.

After executing a submitted work function, the worker thread removes the corre-
sponding node from the list using list_del(). Note that mydrv_wq.lock is released
for the time window during which the submitted work function is executed. This is
because work functions can go to sleep resulting in potential deadlocks if newly sched-
uled code tries to acquire the same spinlock.

Helper Interfaces 69

70 Chapter 3 Kernel Facilities

LISTING 3.4 The Worker Thread

static int

mydrv_worker(void *unused)

{

 DECLARE_WAITQUEUE(wait, current);

 void (*worker_func)(void *);

 void *worker_data;

 struct _mydrv_work *mydrv_work;

 set_current_state(TASK_INTERRUPTIBLE);

 /* Spin until asked to die */

 while (!asked_to_die()) {

 add_wait_queue(&mydrv_wq.todo, &wait);

 if (list_empty(&mydrv_wq.mydrv_worklist)) {

 schedule();

 /* Woken up by the submitter */

 } else {

 set_current_state(TASK_RUNNING);

 }

 remove_wait_queue(&mydrv_wq.todo, &wait);

 /* Protect concurrent access to the list */

 spin_lock(&mydrv_wq.lock);

 /* Traverse the list and plough through the work functions

 present in each node */

 while (!list_empty(&mydrv_wq.mydrv_worklist)) {

 /* Get the first entry in the list */

 mydrv_work = list_entry(mydrv_wq.mydrv_worklist.next,

 struct _mydrv_work, mydrv_workitem);

 worker_func = mydrv_work->worker_func;

 worker_data = mydrv_work->worker_data;

 /* This node has been processed. Throw it

 out of the list */

 list_del(mydrv_wq.mydrv_worklist.next);

 kfree(mydrv_work); /* Free the node */

 /* Execute the work function in this node */

 spin_unlock(&mydrv_wq.lock); /* Release lock */

 worker_func(worker_data);

 spin_lock(&mydrv_wq.lock); /* Re-acquire lock */

 }

 spin_unlock(&mydrv_wq.lock);

 set_current_state(TASK_INTERRUPTIBLE);

 }

 set_current_state(TASK_RUNNING);

 return 0;

}

For simplicity, the example code does not perform error handling. For example, if
the call to kernel_thread() in Listing 3.2 fails, you need to free memory allocated
for the corresponding work structure. Also, asked_to_die() in Listing 3.4 is left
unwritten. It essentially breaks out of the loop if it either detects a delivered signal or
receives a communication from the release() entry point that the module is about
to be unloaded from the kernel.

Before ending this section, let’s take a look at another useful list library routine,
list_for_each_entry(). With this macro, iteration becomes simpler and more
readable because you don’t have to use list_entry() inside the loop. Use the list_
for_each_entry_safe() variant if you will delete list elements inside the loop. You
can replace the following snippet in Listing 3.4:

while (!list_empty(&mydrv_wq.mydrv_worklist)) {

 mydrv_work = list_entry(mydrv_wq.mydrv_worklist.next,

 struct _mydrv_work, mydrv_workitem);

 /* ... */

}

with:

struct _mydrv_work *temp;

list_for_each_entry_safe(mydrv_work, temp,

 &mydrv_wq.mydrv_worklist,

 mydrv_workitem) {

 /* ... */

}

You can’t use list_for_each_entry() in this case because you are removing the
entry pointed to by mydrv_work inside the loop in Listing 3.4. list_for_each_
entry_safe() solves this problem using the temporary variable passed as the second
argument (temp) to save the address of the next entry in the list.

Helper Interfaces 71

72 Chapter 3 Kernel Facilities

Hash Lists

The doubly linked list implementation discussed previously is not optimal for cases
where you want to implement linked data structures such as hash tables. This is because
hash tables need only a list head containing a single pointer. To reduce memory over-
head for such applications, the kernel provides hash lists (or hlists), a variation of lists.
Unlike lists, which use the same structure for the list head and list nodes, hlists have
separate defi nitions:

struct hlist_head {

 struct hlist_node *first;

};

struct hlist_node {

 struct hlist_node *next, **pprev;

};

To suit the scheme of a single-pointer hlist head, the nodes maintain the address of the
pointer to the previous node, rather than the pointer itself.

Hash tables are implemented using an array of hlist_heads. Each hlist_head
sources a doubly linked list of hlist_nodes. A hash function is used to locate the
index (or bucket) in the hlist_head array. When that is done, you may use hlist
helper routines (also defi ned in include/linux/list.h) to operate on the list of hlist_
nodes linked to the chosen bucket. Look at the implementation of the directory cache
(dcache) in fs/dcache.c for an example.

Work Queues

Work queues are a way to defer work inside the kernel.2 Deferring work is useful in
innumerable situations. Examples include the following:

 • Triggering restart of a network adapter in response to an error interrupt

 • Filesystem tasks such as syncing disk buffers

 • Sending a command to a disk and following through with the storage protocol
state machine

2 Softirqs and tasklets are two other mechanisms available for deferring work inside the kernel. Table 4.1 of Chapter 4 compares
softirqs, tasklets, and work queues.

The functionality of work queues is similar to the example described in Listings 3.2
to 3.4. However, work queues can help you accomplish the same task in a simpler
manner.

The work queue helper library exposes two interface structures to users: a
workqueue_struct and a work_struct. Follow these steps to use work queues:

 1. Create a work queue (or a workqueue_struct) with one or more associated
kernel threads. To create a kernel thread to service a workqueue_struct, use
create_singlethread_workqueue(). To create one worker thread per CPU
in the system, use the create_workqueue() variant. The kernel also has default
per-CPU worker threads (events/n, where n is the CPU number) that you can
timeshare instead of requesting a separate worker thread. Depending on your
application, you might incur a performance hit if you don’t have a dedicated
worker thread.

 2. Create a work element (or a work_struct). A work_struct is initialized using
INIT_WORK(), which populates it with the address and argument of your work
function.

 3. Submit the work element to the work queue. A work_struct can be submit-
ted to a dedicated queue using queue_work(), or to the default kernel worker
thread using schedule_work().

Let’s rewrite Listings 3.2 to 3.4 to take advantage of the work queue interface. This is
done in Listing 3.5. The entire kernel thread, as well as the spinlock and the wait queue,
vanish inside the work queue interface. Even the call to create_singlethread_work-
queue() goes away if you are using the default kernel worker thread.

LISTING 3.5 Using Work Queues to Defer Work

#include <linux/workqueue.h>

struct workqueue_struct *wq;

/* Driver Initialization */

static int __init

mydrv_init(void)

{

 /* ... */

 wq = create_singlethread_workqueue("mydrv");

 return 0;

}

Helper Interfaces 73

74 Chapter 3 Kernel Facilities

/* Work Submission. The first argument is the work function, and

 the second argument is the argument to the work function */

int

submit_work(void (*func)(void *data), void *data)

{

 struct work_struct *hardwork;

 hardwork = kmalloc(sizeof(struct work_struct), GFP_KERNEL);

 /* Init the work structure */

 INIT_WORK(hardwork, func, data);

 /* Enqueue Work */

 queue_work(wq, hardwork);

 return 0;

}

If you are using work queues, you will get linker errors unless you declare your module
as licensed under GPL. This is because the kernel exports these functions only to GPL’ed
code. If you look at the kernel work queue implementation, you will see this restriction
expressed in statements such as this:

EXPORT_SYMBOL_GPL(queue_work);

To announce that your module is copyleft-ed under GPL, declare the following:

MODULE_LICENSE("GPL");

Notifier Chains

Notifi er chains are used to send status change messages to code regions that request
them. Unlike hard-coded mechanisms, notifi ers offer a versatile technique for getting
alerted when events of interest are generated. Notifi ers were originally added for pass-
ing network events to concerned sections of the kernel but are now used for many
other purposes. The kernel implements predefi ned notifi ers for signifi cant events.
Examples of such notifi cations include the following:

 • Die notification , which is sent when a kernel function triggers a trap or a fault,
caused by an “oops,” page fault, or a breakpoint hit. If you are, for example,

writing a device driver for a medical grade card, you might want to register
yourself with the die notifier so that you can attempt to turn off the medical
electronics if a kernel panic occurs.

 • Net device notification, which is generated when a network interface goes up or
down.

 • CPU frequency notification, which is dispatched when there is a transition in
the processor frequency.

 • Internet address notifi cation, which is sent when a change is detected in the IP
address of a network interface.

An example user of notifi ers is the High-level Data Link Control (HDLC) protocol
driver drivers/net/wan/hdlc.c, which registers itself with the net device notifi er chain to
sense carrier changes.

To attach your code to a notifi er chain, you have to register an event handler with
the associated chain. An event identifi er and a notifi er-specifi c argument are passed as
arguments to the handler routine when the concerned event is generated. To defi ne a
custom notifi er chain, you have to additionally implement the infrastructure to ignite
the chain when the event is detected.

Listing 3.6 contains examples of using predefi ned and user-defi ned notifi ers.
Table 3.2 contains a brief description of the notifi er chains used by Listing 3.6 and the
events they propagate, so look at the listing and the table in tandem.

TABLE 3.2 Notifi er Chains and the Events They Propagate

Notifier Chain Description

Die Notifier Chain
(die_chain)

my_die_event_handler() attaches to the die notifier chain, die_
chain, using register_die_notifier(). To trigger invocation of
my_die_event_handler(), introduce an invalid dereference some-
where in your code, such as the following:

 int *q = 0;
 *q = 1;

When this code snippet is executed, my_die_event_handler() gets
called, and you will see a message like this:

my_die_event_handler: OOPs! at EIP=f00350e7

The die event notifier passes the die_args structure to the registered
event handler. This argument contains a pointer to the regs structure,
which carries a snapshot of processor register contents when the fault
occurred. my_die_event_handler() prints the contents of the instruc-
tion pointer register.

Continues

Helper Interfaces 75

76 Chapter 3 Kernel Facilities

Notifier Chain Description

Netdevice Notifier Chain
(netdev_chain)

my_dev_event_handler() attaches to the net device notifier chain,
netdev_chain, using register_netdevice_notifier(). You can
generate this event by changing the state of a network interface such as
Ethernet (ethX) or loopback (lo):

bash> ifconfig eth0 up

This results in the execution of my_dev_event_handler(). The
handler is passed a pointer to struct net_device as argument,
which contains the name of the network interface. my_dev_event_
handler()uses this information to produce the following message:

my_dev_event_handler: Val=1, Interface=eth0

Val=1 corresponds to the NETDEV_UP event as defined in include/linux/
notifier.h.

User-Defined Notifier Chain Listing 3.6 also implements a user-defined notifier chain, my_noti_
chain. Assume that you want an event to be generated whenever a user
reads from a particular file in the process filesystem. Add the following in
the associated procfs read routine:

blocking_notifier_call_chain(&my_noti_chain, 100, NULL);

This results in the invocation of my_event_handler() whenever you
read from the corresponding /proc file and results in the following message:

my_event_handler: Val=100

Val contains the identity of the generated event, which is 100 for this
example. The function argument is left unused.

You have to unregister event handlers from notifi er chains when your module is
released from the kernel. For example, if you up or down a network interface after
unloading the code in Listing 3.6, you will be rankled by an “oops,” unless you per-
form an unregister_netdevice_notifier(&my_dev_notifier) from the mod-
ule’s release() method. This is because the notifi er chain continues to think that the
handler code is valid , even though it has been pulled out of the kernel.

LISTING 3.6 Notifi er Event Handlers

#include <linux/notifier.h>

#include <asm/kdebug.h>

#include <linux/netdevice.h>

#include <linux/inetdevice.h>

/* Die Notifier Definition */

static struct notifier_block my_die_notifier = {

 .notifier_call = my_die_event_handler,

};

TABLE 3.2 Continued

/* Die notification event handler */

int

my_die_event_handler(struct notifier_block *self,

 unsigned long val, void *data)

{

 struct die_args *args = (struct die_args *)data;

 if (val == 1) { /* '1' corresponds to an "oops" */

 printk("my_die_event: OOPs! at EIP=%lx\n", args->regs->eip);

 } /* else ignore */

 return 0;

}

/* Net Device notifier definition */

static struct notifier_block my_dev_notifier = {

 .notifier_call = my_dev_event_handler,

};

/* Net Device notification event handler */

int my_dev_event_handler(struct notifier_block *self,

 unsigned long val, void *data)

{

 printk("my_dev_event: Val=%ld, Interface=%s\n", val,

 ((struct net_device *) data)->name);

 return 0;

}

/* User-defined notifier chain implementation */

static BLOCKING_NOTIFIER_HEAD(my_noti_chain);

static struct notifier_block my_notifier = {

 .notifier_call = my_event_handler,

};

/* User-defined notification event handler */

int my_event_handler(struct notifier_block *self,

 unsigned long val, void *data)

{

 printk("my_event: Val=%ld\n", val);

 return 0;

}

Helper Interfaces 77

78 Chapter 3 Kernel Facilities

/* Driver Initialization */

static int __init

my_init(void)

{

 /* ... */

 /* Register Die Notifier */

 register_die_notifier(&my_die_notifier);

 /* Register Net Device Notifier */

 register_netdevice_notifier(&my_dev_notifier);

 /* Register a user-defined Notifier */

 blocking_notifier_chain_register(&my_noti_chain, &my_notifier);

 /* ... */

}

my_noti_chain in Listing 3.6 is declared as a blocking notifi er using BLOCKING_
NOTIFIER_HEAD() and is registered via blocking_notifier_chain_register().
This means that the notifi er handler is always invoked from process context. So, the
handler function, my_event_handler(), is allowed to go to sleep. If your notifi er
handler can be called from interrupt context, declare the notifi er chain using ATOMIC_
NOTIFIER_HEAD(), and register it via atomic_notifier_chain_register().

The Old Notifi er Interface

Kernel releases earlier than 2.6.17 supported only a general-purpose notifi er chain. The notifi er
registration function notifier_chain_register() was internally protected using a spinlock,
but the routine that walked the notifi er chain dispatching events to notifi er handlers (notifier_
call_chain()) was lockless. The lack of locking was because of the possibility that the handler
functions may go to sleep, unregister themselves while running, or get called from interrupt con-
text. The lockless implementation introduced race conditions, however. The new notifi er API is
built over the original interface and is intended to overcome its limitations.

Completion Interface

Many parts of the kernel initiate certain activities as separate execution threads and
then wait for them to complete. The completion interface is an effi cient and easy way
to implement such code patterns.

Some example usage scenarios include the following:

 • Your driver module is assisted by a kernel thread. If you rmmod the module,
the release() method is invoked before removing the module code from ker-
nel space. The release routine asks the thread to kill itself and blocks until the
thread completes its exit. Listing 3.7 implements this case.

 • You are writing a portion of a block device driver (discussed in Chapter 14,
“Block Drivers”) that queues a read request to a device. This triggers a state
machine change implemented as a separate thread or work queue. The driver
wants to wait until the operation completes before proceeding with another
activity. Look at drivers/block/floppy.c for an example.

 • An application requests an Analog-to-Digital Converter (ADC) driver for a data
sample. The driver initiates a conversion request waits, until an interrupt signals
completion of conversion, and returns the data.

LISTING 3.7 Synchronizing Using Completion Functions

static DECLARE_COMPLETION(my_thread_exit); /* Completion */

static DECLARE_WAIT_QUEUE_HEAD(my_thread_wait); /* Wait Queue */

int pink_slip = 0; /* Exit Flag */

/* Helper thread */

static int

my_thread(void *unused)

{

 DECLARE_WAITQUEUE(wait, current);

 daemonize("my_thread");

 add_wait_queue(&my_thread_wait, &wait);

 while (1) {

 /* Relinquish processor until event occurs */

 set_current_state(TASK_INTERRUPTIBLE);

 schedule();

 /* Control gets here when the thread is woken

 up from the my_thread_wait wait queue */

 /* Quit if let go */

 if (pink_slip) {

 break;

 }

Helper Interfaces 79

80 Chapter 3 Kernel Facilities

 /* Do the real work */

 /* ... */

 }

 /* Bail out of the wait queue */

 __set_current_state(TASK_RUNNING);

 remove_wait_queue(&my_thread_wait, &wait);

 /* Atomically signal completion and exit */

 complete_and_exit(&my_thread_exit, 0);

}

/* Module Initialization */

static int __init

my_init(void)

{

 /* ... */

 /* Kick start the thread */

 kernel_thread(my_thread, NULL,

 CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

 /* ... */

}

/* Module Release */

static void __exit

my_release(void)

{

 /* ... */

 pink_slip = 1; /* my_thread must go */

 wake_up(&my_thread_wait); /* Activate my_thread */

 wait_for_completion(&my_thread_exit); /* Wait until my_thread

 quits */

 /* ... */

}

A completion object can be declared statically using DECLARE_COMPLETION() or cre-
ated dynamically with init_completion(). A thread can signal completion with
the help of complete() or complete_all(). A caller can wait for completion via
wait_for_completion().

In Listing 3.7, my_release() raises an exit request fl ag by setting pink_slip
before waking up my_thread(). It then calls wait_for_completion() to wait until
my_thread() completes its exit. my_thread(), on its part, wakes up to fi nd pink_
slip set, and does the following:

 1. Signals completion to my_release()

 2. Kills itself

my_thread() accomplishes these two steps atomically using complete_and_exit().
Using complete_and_exit() shuts the window between module exit and thread exit
that opens if you separately invoke complete() and exit().

We will use the completion API when we develop an example telemetry driver in
Chapter 11.

Kthread Helpers

Kthread helpers add a coating over the raw thread creation routines and simplify the
task of thread management.

Listing 3.8 rewrites Listing 3.7 using the kthread helper interface. my_init()
now uses kthread_create() rather than kernel_thread(). You can pass the
thread’s name to kthread_create() rather than explicitly call daemonize() within
the thread.

The kthread interface provides you free access to a built-in exit synchronization
mechanism implemented using the completion interface. So, as my_release() does
in Listing 3.8, you may directly call kthread_stop() instead of laboriously setting
pink_slip, waking up my_thread(), and waiting for it to complete using wait_for_
completion(). Similarly, my_thread() can make a neat call to kthread_should_
stop() to check whether it ought to call it a day.

LISTING 3.8 Synchronizing Using Kthread Helpers

 /* '+' and '-' show the differences from Listing 3.7 */

 #include <linux/kthread.h>

 /* Assistant Thread */

 static int

 my_thread(void *unused)

 {

 DECLARE_WAITQUEUE(wait, current);

Helper Interfaces 81

82 Chapter 3 Kernel Facilities

- daemonize("my_thread");

- while (1) {

+ /* Continue work if no other thread has

+ * invoked kthread_stop() */

+ while (!kthread_should_stop()) {

 /* ... */

- /* Quit if let go */

- if (pink_slip) {

- break;

- }

 /* ... */

 }

 /* Bail out of the wait queue */

 __set_current_state(TASK_RUNNING);

 remove_wait_queue(&my_thread_wait, &wait);

- complete_and_exit(&my_thread_exit, 0);

+ return 0;

 }

+ struct task_struct *my_task;

 /* Module Initialization */

 static int __init

 my_init(void)

 {

 /* ... */

- kernel_thread(my_thread, NULL,

- CLONE_FS | CLONE_FILES | CLONE_SIGHAND |

 SIGCHLD);

+ my_task = kthread_create(my_thread, NULL, "%s", "my_thread");

+ if (my_task) wake_up_process(my_task);

 /* ... */

 }

 /* Module Release */

 static void __exit

 my_release(void)

 {

 /* ... */

- pink_slip = 1;

- wake_up(&my_thread_wait);

- wait_for_completion(&my_thread_exit);

+ kthread_stop(my_task);

 /* ... */

 }

Instead of creating the thread using kthread_create() and activating it via wake_
up_process() as done in Listing 3.8, you may use the following single call:

kthread_run(my_thread, NULL, "%s", "my_thread");

Error-Handling Aids

Several kernel functions return pointer values. Whereas callers usually check for failure
by comparing the return value with NULL, they typically need more information to
decipher the exact nature of the error that has occurred. Because kernel addresses have
redundant bits, they can be overloaded to encode error semantics. This is done with
the help of a set of helper routines. Listing 3.9 implements a simple usage example.

LISTING 3.9 Using Error-Handling Aids

#include <linux/err.h>

char *

collect_data(char *userbuffer)

{

 char *buffer;

 /* ... */

 buffer = kmalloc(100, GFP_KERNEL);

 if (!buffer) { /* Out of memory */

 return ERR_PTR(-ENOMEM);

 }

 /* ... */

 if (copy_from_user(buffer, userbuffer, 100)) {

 return ERR_PTR(-EFAULT);

 }

Helper Interfaces 83

84 Chapter 3 Kernel Facilities

 /* ... */

 return(buffer);

}

int

my_function(char *userbuffer)

{

 char *buf;

 /* ... */

 buf = collect_data(userbuffer);

 if (IS_ERR(buf)) {

 printk("Error returned is %d!\n", PTR_ERR(buf));

 }

 /* ... */

}

If kmalloc() fails inside collect_data() in Listing 3.9, you will get the following
message:

Error returned is -12!

However, if collect_data() is successful, it returns a valid pointer to a data buffer.
As another example, let’s add error handling using IS_ERR() and PTR_ERR() to the
thread creation code in Listing 3.8:

 my_task = kthread_create(my_thread, NULL, "%s", "mydrv");

+ if (!IS_ERR(my_task)) {

+ /* Success */

 wake_up_process(my_task);

+ } else {

+ /* Failure */

+ printk("Error value returned=%d\n", PTR_ERR(my_task));

+ }

Looking at the Sources

The ksoftirqd, pdfl ush, and khubd kernel threads live in kernel/softirq.c, mm/pdfl ush.c,
and drivers/usb/core/hub.c, respectively.

The daemonize() function can be found in kernel/exit.c. For the implementation
of user mode helpers, look at kernel/kmod.c.

The list and hlist library routines reside in include/linux/list.h. They are used all over
the kernel, so you will fi nd usage examples in most subdirectories. An example is the
request_queue structure defi ned in include/linux/blkdev.h, which holds a linked list
of disk I/O requests. We look at this data structure in Chapter 14.

Go to www.ussg.iu.edu/hypermail/linux/kernel/0007.3/0805.html and follow the
discussion thread in the mailing list for an interesting debate between Linus Torvalds
and Andi Kleen about the pros and cons of complementing the list library with hlist
helper routines.

The kernel work queue implementation lives in kernel/workqueue.c. To understand
the real-world use of work queues, look at the PRO/Wireless 2200 network driver,
drivers/net/wireless/ipw2200.c.

The kernel notifi er chain implementation lives in kernel/sys.c and include/linux/
notifi er.h. Look at kernel/sched.c and include/linux/completion.h for the guts of the com-
pletion interface. kernel/kthread.c contains the source code for kthread helpers, and
include/linux/err.h includes defi nitions of error handling aids.

Table 3.3 contains a summary of the main data structures used in this chapter and the
location of their defi nitions in the source tree. Table 3.4 lists the main kernel program-
ming interfaces that you used in this chapter along with the location of their defi nitions.

TABLE 3.3 Summary of Data Structures

 Data Structure Location Description

wait_queue_t include/linux/wait.h Used by threads that desire to wait for an event or a
system resource

list_head include/linux/list.h Kernel structure to weave a doubly linked list of data
structures

hlist_head include/linux/list.h Kernel structure to implement hash tables

work_struct include/linux/workqueue.h Implements work queues, which are a way to defer work
inside the kernel

notifier_block include/linux/notifier.h Implements notifier chains, which are used to send
status changes to code regions that request them

completion include/linux/completion.h Used to initiate activities as separate threads and then
wait for them to complete

Looking at the Sources 85

www.ussg.iu.edu/hypermail/linux/kernel/0007.3/0805.html

86 Chapter 3 Kernel Facilities

TABLE 3.4 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

DECLARE_WAITQUEUE() include/linux/wait.h Declares a wait queue.

add_wait_queue() kernel/wait.c Queues a task to a wait queue. The
task goes to sleep until it’s woken up by
another thread or interrupt handler.

remove_wait_queue() kernel/wait.c Dequeues a task from a wait queue.

wake_up_interruptible() include/linux/wait.h
kernel/sched.c

Wakes up a task sleeping inside a wait
queue and puts it back into the scheduler
run queue.

schedule() kernel/sched.c Relinquishes the processor and allows
other parts of the kernel to run.

set_current_state() include/linux/sched.h Sets the run state of a process. The
state can be one of TASK_RUNNING,
TASK_INTERRUPTIBLE, TASK_
UNINTERRUPTIBLE, TASK_STOPPED,
TASK_TRACED, EXIT_ZOMBIE, or
EXIT_DEAD.

kernel_thread() arch/your-arch/kernel/
process.c

Creates a kernel thread.

daemonize() kernel/exit.c Activates a kernel thread without
attaching user resources and changes the
parent of the calling thread to kthreadd.

allow_signal() kernel/exit.c Enables delivery of a specified signal.

signal_pending() include/linux/sched.h Checks whether a signal has been deliv-
ered. There are no signal handlers inside
the kernel, so you have to explicitly check
whether a signal has been delivered.

call_usermodehelper() include/linux/kmod.h
kernel/kmod.c

Executes a user mode program.

Linked list library
functions

include/linux/list.h See Table 3.1.

register_die_notifier() arch/your-arch/kernel/
traps.c

Registers a die notifier.

register_netdevice_
notifier()

net/core/dev.c Registers a netdevice notifier.

register_inetaddr_
notifier()

net/ipv4/devinet.c Registers an inetaddr notifier.

BLOCKING_NOTIFIER_HEAD() include/linux/notifier.h Creates a user-defined blocking notifier.

blocking_notifier_chain_
register()

kernel/sys.c Registers a blocking notifier.

Kernel Interface Location Description

blocking_notifier_call_
chain()

kernel/sys.c Dispatches an event to a blocking notifier
chain.

ATOMIC_NOTIFIER_HEAD() include/linux/notifier.h Creates an atomic notifier.

atomic_notifier_chain_
register()

kernel/sys.c Registers an atomic notifier.

DECLARE_COMPLETION() include/linux/
completion.h

Statically declares a completion object.

init_completion() include/linux/
completion.h

Dynamically declares a completion object.

complete() kernel/sched.c Announces completion.

wait_for_completion() kernel/sched.c Waits until the completion object
completes.

complete_and_exit() kernel/exit.c Atomically signals completion and exit.

kthread_create() kernel/kthread.c Creates a kernel thread.

kthread_stop() kernel/kthread.c Asks a kernel thread to stop.

kthread_should_stop() kernel/kthread.c A kernel thread can poll on this func-
tion to detect whether another thread has
asked it to stop via kthread_stop().

IS_ERR() include/linux/err.h Finds out whether the return value is an
error code.

Looking at the Sources 87

This page intentionally left blank

89

4

Laying the Groundwork

In This Chapter

■ Introducing Devices and Drivers 90

■ Interrupt Handling 92

■ The Linux Device Model 103

■ Memory Barriers 114

■ Power Management 114

■ Looking at the Sources 115

90

We are now within whispering distance of writing a device driver. Before
doing that, however, let’s equip ourselves with some driver concepts.

We start the chapter by getting an idea of the book’s problem statement; we will
look at the typical devices and I/O interfaces present on PC-compatible systems
and embedded computers. Interrupt handling is an integral part of most driv-
ers, so we next cover the art of writing interrupt handlers. We then turn our
attention to the new device model introduced in the 2.6 kernel. The new model
is built around abstractions such as sysfs, kobjects, device classes, and udev, which
distill commonalities from device drivers. The new device model also weeds
policies out of kernel space and pushes them to user space, resulting in a total
revamp of features such as /dev node management, hotplug, coldplug, module
autoload, and fi rmware download.

Introducing Devices and Drivers

User applications cannot directly communicate with hardware because that entails
possessing privileges such as executing special instructions and handling interrupts.
Device drivers assume the burden of interacting with hardware and export interfaces
that applications and the rest of the kernel can use to access devices. Applications
operate on devices via nodes in the /dev directory and glean device information
using nodes in the /sys directory.1

Figure 4.1 shows the hardware block diagram of a typical PC-compatible sys-
tem. As you can see, the system supports diverse devices and interface technologies
such as memory, video, audio, USB, PCI, WiFi, PCMCIA, I2C, IDE, Ethernet,
serial port, keyboard, mouse, fl oppy drive, parallel port, and Infrared. The memory
controller and the graphics controller are part of a North Bridge chipset in the PC
architecture, whereas peripheral buses are sourced out of a South Bridge.

Figure 4.2 illustrates a similar block diagram for a hypothetical embedded device.
This diagram contains several interfaces not typical in the PC world such as fl ash
memory, LCD, touch screen, and cellular modem.

1 As you’ll learn later, networking applications route their requests to the underlying driver using a different mechanism.

Naturally, the capability to access peripheral devices is a crucial part of a system’s
functioning. Device drivers provide the engine to achieve this. The rest of the chapters
in this book will zoom in on a device interface and teach you how to implement the
corresponding device driver.

DRAM

Processor

Hub Interface

RTC/CMOS

EEPROM

CardBus Card PCMCIA Card

DRAM

South Bridge

North Bridge

WiFi
Chipset

Memory
Controller

CardBus
Controller

USB

IDE

PCI

I2C

LPC

Ethernet

External
PCI

Interface

AC’97
Controller

Audio
CODEC

SCSI Host
Adapter

Graphics
Controller

Display
Unit

MIC

Speaker

Super I/O Firmware Hub
(BIOS Flash)

Serial
Port

PS/2
Keyboard

PS/2
Mouse

Parallel
Port

Floppy
Drive Infrared

Hard
Disk

FIGURE 4.1 Hardware block diagram of a PC-compatible system.

Introducing Devices and Drivers 91

92 Chapter 4 Laying the Groundwork

UART/USB/I2C/SPI/CAN

EEPROM

 SDRAM

Flash Memory

 Touch
 Controller

RTC
 Touch Panel USB

 Host Port

USB
Device

Port

SD
Slot

CF
Slot

 Domain-specific electronics/
Bluetooth/Infrared/GSM/GPRS/GPS/
3G/Biometrics/SmartCard/Encryption

Debug
 Serial
 Port

 LCD Panel

Keys,
Buttons,

LEDs

Connectivity

SPI/
USB/
Serial/
ADC

Smart
Battery

Internal Local Bus
CPU Core

LCD
Controller

GPIO
Ports

Embedded SoCADDR/Data/Chipselect NAND UART
Controller

I2C I2S SPI USB OTG SD PCMCIA

CODEC

FIGURE 4.2 Hardware block diagram of an embedded system.

Interrupt Handling

Because of the indeterminate nature of I/O, and speed mismatches between I/O devices
and the processor, devices request the processor’s attention by asserting certain hardware
signals asynchronously. These hardware signals are called interrupts. Each interrupt-
ing device is assigned an associated identifi er called an interrupt request (IRQ) number.
When the processor detects that an interrupt has been generated on an IRQ, it abruptly
stops what it’s doing and invokes an interrupt service routine (ISR) registered for the cor-
responding IRQ. Interrupt handlers (ISRs) execute in interrupt context.

Interrupt Context

ISRs are critical pieces of code that directly converse with the hardware. They are given
the privilege of instant execution in the larger interest of system performance. How-
ever, if ISRs are not quick and lightweight, they contradict their own philosophy. VIPs
are given preferential treatment, but it’s incumbent on them to minimize the resulting
inconvenience to the public. To compensate for rudely interrupting the current thread

of execution, ISRs have to politely execute in a restricted environment called interrupt
context (or atomic context).

Here is a list of do’s and don’ts for code executing in interrupt context:

 1. It’s a jailable offense if your interrupt context code goes to sleep. Interrupt handlers
cannot relinquish the processor by calling sleepy functions such as schedule_
timeout(). Before invoking a kernel API from your interrupt handler, penetrate
the nested invocation train and ensure that it does not internally trigger a block-
ing wait. For example, input_register_device() looks harmless from the
surface, but tosses a call to kmalloc() under the hood specifying GFP_KERNEL
as an argument. As you saw in Chapter 2, “A Peek Inside the Kernel,” if your sys-
tem’s free memory dips below a watermark, kmalloc() sleep-waits for memory
to get freed up by the swapper, if you invoke it in this manner.

 2. For protecting critical sections inside interrupt handlers, you can’t use mutexes
because they may go to sleep. Use spinlocks instead, and use them only if
you must.

 3. Interrupt handlers cannot directly exchange data with user space because they
are not connected to user land via process contexts. This brings us to another
reason why interrupt handlers cannot sleep: The scheduler works at the granu-
larity of processes, so if interrupt handlers sleep and are scheduled out, how can
they be put back into the run queue?

 4. Interrupt handlers are supposed to get out of the way quickly but are expected
to get the job done. To circumvent this Catch-22, interrupt handlers usually
split their work into two. The slim top half of the handler flags an acknowledg-
ment claiming that it has serviced the interrupt but, in reality, offloads all the
hard work to a fat bottom half. Execution of the bottom half is deferred to a later
point in time when all interrupts are enabled. You will learn to develop bottom
halves while discussing softirqs and tasklets later.

 5. You need not design interrupt handlers to be reentrant. When an interrupt han-
dler is running, the corresponding IRQ is disabled until the handler returns. So,
unlike process context code, different instances of the same handler will not run
simultaneously on multiple processors.

 6. Interrupt handlers can be interrupted by handlers associated with IRQs that
have higher priority. You can prevent this nested interruption by specifically
requesting the kernel to treat your interrupt handler as a fast handler. Fast han-
dlers run with all interrupts disabled on the local processor. Before disabling

Interrupt Handling 93

94 Chapter 4 Laying the Groundwork

interrupts or labeling your interrupt handler as fast, be aware that interrupt-off
times are bad for system performance. More the interrupt-off times, more is the
interrupt latency, or the delay before a generated interrupt is serviced. Interrupt
latency is inversely proportional to the real time responsiveness of the system.

A function can check the value returned by in_interrupt()to fi nd out whether it’s
executing in interrupt context.

Unlike asynchronous interrupts generated by external hardware, there are classes
of interrupts that arrive synchronously. Synchronous interrupts are so called because
they don’t occur unexpectedly—the processor itself generates them by executing an
instruction. Both external and synchronous interrupts are handled by the kernel using
identical mechanisms.

Examples of synchronous interrupts include the following:

 • Exceptions, which are used to report grave runtime errors

 • Software interrupts such as the int 0x80 instruction used to implement system
calls on the x86 architecture

Assigning IRQs

Device drivers have to connect their IRQ number to an interrupt handler. For this, they
need to know the IRQ assigned to the device they’re driving. IRQ assignments can be
straightforward or may require complex probing. In the PC architecture, for example,
timer interrupts are assigned IRQ 0, and RTC interrupts answer to IRQ 8. Modern bus
technologies such as PCI are sophisticated enough to respond to queries regarding their
IRQs (assigned by the BIOS when it walks the bus during boot). PCI drivers can poke
into earmarked regions in the device’s confi guration space and fi gure out the IRQ. For
older devices such as Industries Standard Architecture (ISA)-based cards, the driver might
have to leverage hardware-specifi c knowledge to probe and decipher the IRQ.

Take a look at /proc/interrupts for a list of active IRQs on your system.

Device Example: Roller Wheel

Now that you have learned the basics of interrupt handling, let’s implement an inter-
rupt handler for an example roller wheel device. Roller wheels can be found on some
phones and PDAs for easy menu navigation and are capable of three movements:
clockwise rotation, anticlockwise rotation, and key-press. Our imaginary roller wheel
is wired such that any of these movements interrupt the processor on IRQ 7. Three

low order bits of General Purpose I/O (GPIO) Port D of the processor are connected
to the roller device. The waveforms generated on these pins corresponding to different
wheel movements are shown in Figure 4.3. The job of the interrupt handler is to deci-
pher the wheel movements by looking at the Port D GPIO data register.

The driver has to fi rst request the IRQ and associate an interrupt handler with it:

#define ROLLER_IRQ 7

static irqreturn_t roller_interrupt(int irq, void *dev_id);

if (request_irq(ROLLER_IRQ, roller_interrupt, IRQF_DISABLED |

 IRQF_TRIGGER_RISING, "roll", NULL)) {

 printk(KERN_ERR "Roll: Can't register IRQ %d\n", ROLLER_IRQ);

 return -EIO;

}

Clockwise Rotation

PORT D0

Anticlockwise Rotation

Key Press

PORT D1

PORT D1

PORT D0

PORT D2

PORT D2

PORT D2

PORT D0

PORT D1

FIGURE 4.3 Sample wave forms generated by the roller wheel .

Interrupt Handling 95

96 Chapter 4 Laying the Groundwork

Let’s look at the arguments passed to request_irq(). The IRQ number is not que-
ried or probed but hard-coded to ROLLER_IRQ in this simple case as per the hardware
connection. The second argument, roller_interrupt(), is the interrupt handler
routine. Its prototype specifi es a return type of irqreturn_t, which can be IRQ_

HANDLED if the interrupt is handled successfully or IRQ_NONE if it isn’t. The return
value assumes more signifi cance for I/O technologies such as PCI, where multiple
devices can share the same IRQ.

The IRQF_DISABLED fl ag specifi es that this interrupt handler has to be treated
as a fast handler, so the kernel has to disable interrupts while invoking the handler.
IRQF_TRIGGER_RISING announces that the roller wheel generates a rising edge on
the interrupt line when it wants to signal an interrupt. In other words, the roller wheel
is an edge-sensitive device. Some devices are instead level-sensitive and keep the inter-
rupt line asserted until the CPU services it. To fl ag an interrupt as level-sensitive, use
the IRQF_TRIGGER_HIGH fl ag. Other possible values for this argument include IRQF_
SAMPLE_RANDOM (used in the section, “Pseudo Char Drivers” in Chapter 5, “Character
Drivers”) and IRQF_SHARED (used to specify that this IRQ is shared among multiple
devices).

The next argument, "roll", is used to identify this device in data generated by
fi les such as /proc/interrupts. The fi nal parameter, set to NULL in this case, is relevant
only for shared interrupt handlers and is used to identify each device sharing the
IRQ line.

Starting with the 2.6.19 kernel, there have been some changes to the interrupt handler
interface. Interrupt handlers used to take a third argument (struct pt_regs *) that con-
tained a pointer to CPU registers, but this has been removed starting with the 2.6.19 ker-
nel. Also, the IRQF_xxx family of interrupt fl ags replaced the SA_xxx family. For example,
with earlier kernels, you had to use SA_INTERRUPT rather than IRQF_DISABLED to mark an
interrupt handler as fast.

Driver initialization is not a good place for requesting an IRQ because that can hog
that valuable resource even when the device is not in use. So, device drivers usually
request the IRQ when the device is opened by an application. Similarly, the IRQ is
freed when the application closes the device and not while exiting the driver module.
Freeing an IRQ is done as follows:

free_irq(int irq, void *dev_id);

Listing 4.1 shows the implementation of the roller interrupt handler. roller_
 interrupt() takes two arguments: the IRQ and the device identifi er passed as the
fi nal argument to the associated request_irq(). Look at Figure 4.3 side by side with
this listing.

LISTING 4.1 The Roller Interrupt Handler

spinlock_t roller_lock = SPIN_LOCK_UNLOCKED;

static DECLARE_WAIT_QUEUE_HEAD(roller_poll);

static irqreturn_t

roller_interrupt(int irq, void *dev_id)

{

 int i, PA_t, PA_delta_t, movement = 0;

 /* Get the waveforms from bits 0, 1 and 2

 of Port D as shown in Figure 4.3 */

 PA_t = PA_delta_t = PORTD & 0x07;

 /* Wait until the state of the pins change.

 (Add some timeout to the loop) */

 for (i=0; (PA_t==PA_delta_t); i++){

 PA_delta_t = PORTD & 0x07;

 }

 movement = determine_movement(PA_t, PA_delta_t); /* See below */

 spin_lock(&roller_lock);

 /* Store the wheel movement in a buffer for

 later access by the read()/poll() entry points */

 store_movements(movement);

 spin_unlock(&roller_lock);

 /* Wake up the poll entry point that might have

 gone to sleep, waiting for a wheel movement */

 wake_up_interruptible(&roller_poll);

 return IRQ_HANDLED;

}

Interrupt Handling 97

98 Chapter 4 Laying the Groundwork

int

determine_movement(int PA_t, int PA_delta_t)

{

 switch (PA_t){

 case 0:

 switch (PA_delta_t){

 case 1:

 movement = ANTICLOCKWISE;

 break;

 case 2:

 movement = CLOCKWISE;

 break;

 case 4:

 movement = KEYPRESSED;

 break;

 }

 break;

 case 1:

 switch (PA_delta_t){

 case 3:

 movement = ANTICLOCKWISE;

 break;

 case 0:

 movement = CLOCKWISE;

 break;

 }

 break;

 case 2:

 switch (PA_delta_t){

 case 0:

 movement = ANTICLOCKWISE;

 break;

 case 3:

 movement = CLOCKWISE;

 break;

 }

 break;

 case 3:

 switch (PA_delta_t){

 case 2:

 movement = ANTICLOCKWISE;

 break;

 case 1:

 movement = CLOCKWISE;

 break;

 }

 case 4:

 movement = KEYPRESSED;

 break;

 }

}

Driver entry points such as read() and poll() operate in tandem with roller_
interrupt(). For example, when the handler deciphers wheel movement, it wakes
up any waiting poll() threads that may have gone to sleep in response to a select()
system call issued by an application such as X Windows. Revisit Listing 4.1 and imple-
ment the complete roller driver after learning the internals of character drivers in
Chapter 5.

Listing 7.3 in Chapter 7, “Input Drivers,” takes advantage of the kernel’s input
interface to convert this roller wheel into a roller mouse.

Let’s end this section by introducing some functions that enable and disable inter-
rupts on a particular IRQ. enable_irq(ROLLER_IRQ) enables interrupt generation
when the roller wheel moves, while disable_irq(ROLLER_IRQ) does the reverse.
disable_irq_nosync(ROLLER_IRQ) disables roller interrupts but does not wait for
any currently executing instance of roller_interrupt() to return. This nosync
fl avor of disable_irq() is faster but can potentially cause race conditions. Use this
only when you know that there can be no races. An example user of disable_irq_
nosync() is drivers/ide/ide-io.c, which blocks interrupts during initialization, because
some systems have trouble with that.

Softirqs and Tasklets

As discussed previously, interrupt handlers have two confl icting requirements: They
are responsible for the bulk of device data processing, but they have to exit as fast as
possible. To bail out of this situation, interrupt handlers are designed in two parts: a
hurried and harried top half that interacts with the hardware, and a relaxed bottom
half that does most of the processing with all interrupts enabled. Unlike interrupts,
bottom halves are synchronous because the kernel decides when to execute them. The
following mechanisms are available in the kernel to defer work to a bottom half: soft-
irqs, tasklets, and work queues.

Interrupt Handling 99

100 Chapter 4 Laying the Groundwork

Softirqs are the basic bottom half mechanism and have strong locking require-
ments. They are used only by a few performance-sensitive subsystems such as the net-
working layer, SCSI layer, and kernel timers. Tasklets are built on top of softirqs and
are easier to use. It’s recommended to use tasklets unless you have crucial scalability
or speed requirements. A primary difference between a softirq and a tasklet is that
the former is reentrant whereas the latter isn’t. Different instances of a softirq can run
simultaneously on different processors, but that is not the case with tasklets.

To illustrate the usage of softirqs and tasklets, assume that the roller wheel in the
previous example has inherent hardware problems due to the presence of moving parts
(say, the wheel gets stuck occasionally) resulting in the generation of out-of-spec wave-
forms. A stuck wheel can continuously generate spurious interrupts and potentially
freeze the system. To get around this problem, capture the wave stream, run some
analysis on it, and dynamically switch from interrupt mode to a polled mode if the
wheel looks stuck, and vice versa if it’s unstuck. Capture the wave stream from the
interrupt handler and perform the analysis from a bottom half. Listing 4.2 implements
this using softirqs, and Listing 4.3 uses tasklets. Both are simplifi ed variants of List-
ing 4.1. This reduces the handler to two functions: roller_capture() that obtains
a wave snippet from GPIO Port D, and roller_analyze() that runs an algorithmic
analysis on the wave and switches to polled mode if required.

LISTING 4.2 Using Softirqs to Offl oad Work from Interrupt Handlers

void __init

roller_init()

{

 /* ... */

 /* Open the softirq. Add an entry for ROLLER_SOFT_IRQ in

 the enum list in include/linux/interrupt.h */

 open_softirq(ROLLER_SOFT_IRQ, roller_analyze, NULL);

}

/* The bottom half */

void

roller_analyze()

{

 /* Analyze the waveforms and switch to polled mode if required */

}

/* The interrupt handler */

static irqreturn_t

roller_interrupt(int irq, void *dev_id)

{

 /* Capture the wave stream */

 roller_capture();

 /* Mark softirq as pending */

 raise_softirq(ROLLER_SOFT_IRQ);

 return IRQ_HANDLED;

}

To defi ne a softirq, you have to statically add an entry to include/linux/interrupt.h. You
can’t defi ne one dynamically. raise_softirq() announces that the corresponding
softirq is pending execution. The kernel will execute it at the next available oppor-
tunity. This can be during exit from an interrupt handler or via the ksoftirqd kernel
thread.

LISTING 4.3 Using Tasklets to Offl oad Work from Interrupt Handlers

struct roller_device_struct { /* Device-specific structure */

 /* ... */

 struct tasklet_struct tsklt;

 /* ... */

};

void __init roller_init()

{

 struct roller_device_struct *dev_struct;

 /* ... */

 /* Initialize tasklet */

 tasklet_init(&dev_struct->tsklt, roller_analyze, dev);

}

/* The bottom half */

void

roller_analyze()

{

/* Analyze the waveforms and switch to

 polled mode if required */

}

Interrupt Handling 101

102 Chapter 4 Laying the Groundwork

/* The interrupt handler */

static irqreturn_t

roller_interrupt(int irq, void *dev_id)

{

 struct roller_device_struct *dev_struct;

 /* Capture the wave stream */

 roller_capture();

 /* Mark tasklet as pending */

 tasklet_schedule(&dev_struct->tsklt);

 return IRQ_HANDLED;

}

tasklet_init() dynamically initializes a tasklet. The function does not allocate
memory for a tasklet_struct, rather you have to pass the address of an allocated
one. tasklet_schedule() announces that the corresponding tasklet is pending exe-
cution. Like for interrupts, the kernel offers a bunch of functions to control the execu-
tion state of tasklets on systems having multiple processors:

 • tasklet_enable() enables tasklets.

 • tasklet_disable() disables tasklets and waits until any currently executing
tasklet instance has exited.

 • tasklet_disable_nosync() has semantics similar to disable_irq_

nosync(). The function does not wait for active instances of the tasklet to fi n-
ish execution.

You have seen the differences between interrupt handlers and bottom halves, but there
are a few similarities, too. Interrupt handlers and tasklets are both not reentrant. And
neither of them can go to sleep. Also, interrupt handlers, tasklets, and softirqs cannot
be preempted.

Work queues are a third way to defer work from interrupt handlers. They execute
in process context and are allowed to sleep, so they can use drowsy functions such as
mutexes. We discussed work queues in the preceding chapter when we looked at vari-
ous kernel helper facilities. Table 4.1 compares softirqs, tasklets, and work queues.

TABLE 4.1 Comparing Softirqs, Tasklets, and Work Queues

Softirqs Tasklets Work Queues

Execution
context

Deferred work runs in
interrupt context.

Deferred work runs in
interrupt context.

Deferred work runs in
process context.

Reentrancy Can run simultaneously on
different CPUs.

Cannot run simultane-
ously on different CPUs.
Different CPUs can run
different tasklets, however.

Can run simultaneously on
different CPUs.

Sleep
semantics

Cannot go to sleep. Cannot go to sleep. May go to sleep.

Preemption Cannot be
preempted/scheduled.

Cannot be
preempted/scheduled.

May be
preempted/scheduled.

Ease of use Not easy to use. Easy to use. Easy to use.

When to use If deferred work will not
go to sleep and if you have
crucial scalability or speed
requirements.

If deferred work will not go
to sleep.

If deferred work may go
to sleep.

There is an ongoing debate in LKML on the feasibility of getting rid of the tasklet interface.
Tasklets enjoy more priority than process context code, so they present latency problems.
Moreover, as you learned, they are constrained not to sleep and to execute on the same
CPU. It’s being suggested that all existing tasklets be converted to softirqs or work queues
on a case-by-case basis.

The –rt patch-set alluded to in Chapter 2 moves interrupt handling to kernel threads
to achieve wider preemption coverage.

The Linux Device Model

The new Linux device model introduces C++-like abstractions that factor out com-
monalities from device drivers into bus and core layers. Let’s look at the different
components constituting the device model such as udev, sysfs, kobjects, and device classes
and their effects on key kernel subsystems such as /dev node management, hotplug,
fi rmware download, and module autoload. Udev is the best vantage point to view the
benefi ts of the device model, so let’s start from there.

Udev

Years ago when Linux was young, it was not fun to administer device nodes. All the
needed nodes (which could run into thousands) had to be statically created under the

The Linux Device Model 103

104 Chapter 4 Laying the Groundwork

/dev directory. This problem, in fact, dated all the way back to original UNIX systems.
With the advent of the 2.4 kernels came devfs, which introduced dynamic device node
creation. Devfs provided services to generate device nodes in an in-memory fi lesys-
tem, but the onus of naming the nodes still rested with device drivers. Device naming
policy is administrative and does not mix well with the kernel, however. The place for
policy is in header fi les, kernel module parameters, or user space. Udev arrived on the
scene to push device management to user space.

Udev depends on the following to do its work:

 1. Kernel sysfs support, which is an important part of the Linux device model. Sysfs
is an in-memory filesystem mounted under /sys at boot time (look at /etc/fstab
for the specifier). We will look at sysfs in the next section, but for now, take the
corresponding sysfs file accesses for granted.

 2. A set of user-space daemons and utilities such as udevd and udevinfo.

 3. User-specified rules located in the /etc/udev/rules.d/ directory. You may frame
rules to get a consistent view of your devices.

To understand how to use udev, let’s look at an example. Assume that you have a USB
DVD drive and a USB CD-RW drive. Depending on the order in which you hotplug
these devices, one of them is assigned the name /dev/sr0, and the other gets the name
/dev/sr1. During pre-udev days, you had to fi gure out the associated names before you
could use the devices. But with udev, you can consistently view the DVD (as say, /dev/
usbdvd) and the CD-RW (as say, /dev/usbcdrw) irrespective of the order in which they
are plugged in or out.

First, pull product attributes from corresponding fi les in sysfs. Assume that the
 (Targus) DVD drive has been assigned the device node /dev/sr0 and that the (Addonics)
CD-RW drive has been given the name /dev/sr1. Use udevinfo to collect device
information:

bash> udevinfo -a -p /sys/block/sr0

...

looking at the device chain at

‘/sys/devices/pci0000:00/0000:00:1d.7/usb1/1-4':

 BUS=="usb"

 ID=="1-4"

 SYSFS{bConfigurationValue}=="1"

 ...

 SYSFS{idProduct}=="0701"

 SYSFS{idVendor}=="05e3"

 SYSFS{manufacturer}=="Genesyslogic"

 SYSFS{maxchild}=="0"

 SYSFS{product}=="USB Mass Storage Device"

 ...

bash> udevinfo -a -p /sys/block/sr1

 ...

 looking at the device chain at

 ‘/sys/devices/pci0000:00/0000:00:1d.7/usb1/1-3':

 BUS=="usb"

 ID=="1-3"

 SYSFS{bConfigurationValue}=="2"

 ...

 SYSFS{idProduct}=="0302"

 SYSFS{idVendor}=="0dbf"

 SYSFS{manufacturer}=="Addonics"

 SYSFS{maxchild}=="0"

 SYSFS{product}=="USB to IDE Cable"

 ...

Next, let’s use the product information gleaned to identify the devices and add udev
naming rules. Create a fi le called /etc/udev/rules.d/40-cdvd.rules and add the following
rules to it:

BUS=="usb", SYSFS{idProduct}=="0701", SYSFS{idVendor}=="05e3",

KERNEL=="sr[0-9]*", NAME="%k", SYMLINK="usbdvd"

BUS=="usb", SYSFS{idProduct}=="0302", SYSFS{idVendor}=="0dbf",

KERNEL=="sr[0-9]*", NAME="%k", SYMLINK="usbcdrw"

The fi rst rule tells udev that whenever it fi nds a USB device with a product ID of
0x0701, vendor ID of 0x05e3, and a name starting with sr, it should create a node of
the same name under /dev and produce a symbolic link named usbdvd to the created
node. Similarly, the second rule orders creation of a symbolic link named usbcdrw for
the CD-RW drive.

To test for syntax errors in your rules, run udevtest on /sys/block/sr*. To turn on
verbose messages in /var/log/messages, set udev_log to "yes" in /etc/udev/udev.conf. To
repopulate the /dev directory with newly added rules on-the-fl y, restart udev using
udevstart. When this is done, your DVD drive consistently appears to the system as

The Linux Device Model 105

106 Chapter 4 Laying the Groundwork

/dev/usbdvd, and your CD-RW drive always appears as /dev/usbcdrw. You can deter-
ministically mount them from shell scripts using commands such as this:

mount /dev/usbdvd /mnt/dvd

Consistent naming of device nodes (and network interfaces) is not the sole capabil-
ity of udev. It has metamorphed into the Linux hotplug manager, too. Udev is also
in charge of automatically loading modules on demand and downloading microcode
onto devices that need them. But before digging into those capabilities, let’s obtain a
basic understanding of the innards of the device model.

Sysfs, Kobjects, and Device Classes

Sysfs , kobjects, and device classes are the building blocks of the device model but are
publicity shy and prefer to remain behind the scenes. They are mostly in the usage
domain of bus and core implementations, and hide inside APIs that provide services
to device drivers.

Sysfs is the user-space manifestation of the kernel’s structured device model. It’s
similar to procfs in that both are in-memory fi lesystems containing information about
kernel data structures. Whereas procfs is a generic window into kernel internals, sysfs
is specifi c to the device model. Sysfs is, hence, not a replacement for procfs. Informa-
tion such as process descriptors and sysctl parameters belong to procfs and not sysfs. As
will be apparent soon, udev depends on sysfs for most of its extended functions.

Kobjects introduce an encapsulation of common object properties such as usage
reference counts. They are usually embedded within larger structures. The following
are the main fi elds of a kobject, which is defi ned in include/linux/kobject.h:

 1. A kref object that performs reference count management. The kref_init()
interface initializes a kref, kref_get()increments the reference count associ-
ated with the kref, and kref_put() decrements the reference count and frees
the object if there are no remaining references. The URB structure (explained
in Chapter 11, “Universal Serial Bus”), for example, contains a kref to track the
number of references to it.2

 2. A pointer to a kset, which is an object set to which the kobject belongs.

 3. A kobj_type, which is an object type that describes the kobject.

2 The usb_alloc_urb() interface calls kref_init(), usb_submit_urb() invokes kref_get(), and usb_
free_urb() calls kref_put().

Kobjects are intertwined with sysfs. Every kobject instantiated within the kernel has a
sysfs representation.

The concept of device classes is another feature of the device model and is an
interface you’re more likely to use in a driver. The class interface abstracts the idea
that each device falls under a broader class (or category) of devices. A USB mouse,
a PS/2 keyboard, and a joystick all fall under the input class and own entries under
/sys/class/input/.

Figure 4.4 shows the sysfs hierarchy on a laptop that has an external USB mouse
connected to it. The top-level bus, class, and device directories are expanded to show
that sysfs provides a view of the USB mouse based on its device type as well as its
physical connection. The mouse is an input class device but is physically a USB device
answering to two endpoint addresses, a control endpoint ep00, and an interrupt end-
point, ep81. The USB port in question belongs to the USB host controller on bus
2, and the USB host controller itself is bridged to the CPU via the PCI bus. If these
details are not making much sense at this point, don’t worry; rewind to this section
after reading the chapters that teach input drivers (Chapter 7), PCI drivers (Chapter
10, “Peripheral Component Interconnect”), and USB drivers (Chapter 11).

[/sys]
 +[block]
 -[bus]—[usb]—[devices]—[usb2]—[2-2]—[2-2:1.0]-[usbendpoint:usbdev2.2-ep81]
 -[class]-[input]—[mouse2]—[device]—[bus]—[usbendpoint:usbdev2.2-ep81]
 -[usb_device]—[usbdev2.2]—[device]—[bus]
 -[usb_endpoint]—[usbdev2.2-ep00]—[device]
 —[usbdev2.2-ep81]—[device]
 -[devices]—[pci0000:00]—[0000:00:1d:1]—[usb2]—[2-2]—[2-2:1.0]
 +[firmware]
 +[fs]
 +[kernel]
 +[module]
 +[power]

FIGURE 4.4 Sysfs hierarchy of a USB mouse.

Browse through /sys looking for entries that associate with another device (for example,
your network card) to get a better feel of its hierarchical organization. The section
“Addressing and Identifi cation” in Chapter 10 illustrates how sysfs mirrors the physical
connection of a CardBus Ethernet-Modem card on a laptop.

The class programming interface is built on top of kobjects and sysfs, so it’s a
good place to start digging to understand the end-to-end interactions between the
 components of the device model. Let’s turn to the RTC driver for an example. The

The Linux Device Model 107

108 Chapter 4 Laying the Groundwork

RTC driver (drivers/char/rtc.c) is a miscellaneous (or “misc”) driver. We discuss misc
drivers in detail when we look at character device drivers in Chapter 5.

Insert the RTC driver module and look at the nodes created under /sys and /dev:

bash> modprobe rtc

bash> ls -lR /sys/class/misc

drwr-xr-x 2 root root 0 Jan 15 01:23 rtc

/sys/class/misc/rtc:

total 0

-r--r--r-- 1 root root 4096 Jan 15 01:23 dev

--w------- 1 root root 4096 Jan 15 01:23 uevent

bash> ls -l /dev/rtc

crw-r--r-- 1 root root 10, 135 Jan 15 01:23 /dev/rtc

/sys/class/misc/rtc/dev contains the major and minor numbers (discussed in the next
chapter) assigned to this device, /sys/class/misc/rtc/uevent is used for coldplugging (dis-
cussed in the next section), and /dev/rtc is used by applications to access the RTC
driver.

Let’s understand the code fl ow through the device model. Misc drivers utilize the
services of misc_register() during initialization, which looks like this if you peel
off some code:

/* ... */

dev = MKDEV(MISC_MAJOR, misc->minor);

misc->class = class_device_create(misc_class, NULL, dev,

 misc->dev,

 "%s", misc->name);

if (IS_ERR(misc->class)) {

 err = PTR_ERR(misc->class);

 goto out;

}

/* ... */

Figure 4.5 continues to peel off more layers to get to the bottom of the device model-
ing. It illustrates the transitions that ripple through classes, kobjects, sysfs, and udev,
which result in the generation of the /sys and /dev fi les listed previously.

Kernel
Space

User
Space

rtc_init()

sysfs_create_dir()

class_device_create_file()

sysfs_create_file()

class_device_add_attrs()

class_device_create_file()

sysfs_create_file()

kobject_uevent_env()

udevd receives the uevent via
netlink sockets and creates
/dev nodes after consulting its
rules database.

 class_device_register()

kobject_uevent(KOBJ_ADD)

modprobe rtc

kobject_add ()

misc_register (&rtc_dev)

/sys/class/misc/rtc/

/sys/class/misc/rtc/uevent

/sys/class/misc/rtc/dev
/dev/rtc

FIGURE 4.5 Tying the pieces of the device model.

Look at the parallel port LED driver (Listing 5.6 in the section “Talking to the Paral-
lel Port” in Chapter 5) and the virtual mouse input driver (Listing 7.2 in the section
“Device Example: Virtual Mouse” in Chapter 7) for examples on creating device con-
trol fi les inside sysfs.

Another abstraction that is part of the device model is the bus-device-driver pro-
gramming interface. Kernel device support is cleanly structured into buses, devices,
and drivers. This renders the individual driver implementations simpler and more
general. Bus implementations can, for example, search for drivers that can handle a
particular device.

Consider the kernel’s I2C subsystem (explored in Chapter 8, “The Inter-Integrated
Circuit Protocol”). The I2C layer consists of a core infrastructure, device drivers for bus
adapters, and drivers for client devices. The I2C core layer registers each detected I2C

The Linux Device Model 109

110 Chapter 4 Laying the Groundwork

bus adapter using bus_register(). When an I2C client device (say, an Electrically
Erasable Programmable Read-Only Memory [EEPROM] chip) is probed and detected,
its existence is recorded via device_register(). Finally, the I2C EEPROM client
driver registers itself using driver_register(). These registrations are performed
indirectly using service functions offered by the I2C core.

bus_register() adds a corresponding entry to /sys/bus/, while device_register()
adds entries under /sys/devices/. struct bus_type, struct device, and struct
device_driver are the main data structures used respectively by buses, devices, and
drivers. Take a peek inside include/linux/device.h for their defi nitions.

Hotplug and Coldplug

Devices connected to a running system on-the-fl y are said to be hotplugged, whereas
those connected prior to system boot are considered to be coldplugged. Earlier, the ker-
nel used to notify user space about hotplug events by invoking a helper program reg-
istered via the /proc fi lesystem. But when current kernels detect hotplug, they dispatch
uevents to user space via netlink sockets. Netlink sockets are an effi cient mechanism to
communicate between kernel space and user space using socket APIs. At the user-space
end, udevd, the daemon that manages device node creation and removal, receives the
uevents and manages hotplug.

To see how hotplug handling has evolved recently, let’s consider progressive levels of udev running
different versions of the 2.6 kernel:

 1. With a udev-039 package and a 2.6.9 kernel, when the kernel detects a hotplug event, it
invokes the user-space helper registered with /proc/sys/kernel/hotplug. This defaults to /sbin/
hotplug, which receives attributes of the hotplugged device in its environment. /sbin/hotplug
looks inside the hotplug configuration directory (usually /etc/hotplug.d/default/) and runs,
for example, /etc/hotplug.d/default/10-udev.hotplug, after executing other scripts under /etc/
hotplug/.
bash> ls -l /etc/hotplug.d/default/
...
lrwcrwxrwx 1 root root 14 May 11 2005 10-udev.hotplug -> /sbin/udevsend
...

 When /sbin/udevsend thus gets executed, it passes the hotplugged device information to
udevd.

 2. With udev-058 and a 2.6.11 kernel, the story changes somewhat. The udevsend utility
replaces /sbin/hotplug:

bash> cat /proc/sys/kernel/hotplug
/sbin/udevsend

 3. With the latest levels of udev and the kernel, udevd assumes full responsibility of managing
hotplug without depending on udevsend. It now pulls hotplug events directly from the ker-
nel via netlink sockets (see Figure 4.4). /proc/sys/kernel/hotplug contains nothing:

bash> cat /proc/sys/kernel/hotplug

bash>

Udev also handles coldplug. Because udev is part of user space and is started only after
the kernel boots, a special mechanism is needed to emulate hotplug events over cold-
plugged devices. At boot time, the kernel creates a fi le named uevent under sysfs for
all devices and emits coldplug events to those fi les. When udev starts, it reads all the
uevent fi les from /sys and generates hotplug uevents for each coldplugged device.

Microcode Download

You have to feed microcode to some devices before they can get ready for action. The
microcode gets executed by an on-card microcontroller. Device drivers used to store
microcode inside static arrays in header fi les. But this has become untenable because
microcode is usually distributed as proprietary binary images by device vendors, and
that doesn’t mix homogeneously with the GPL-ed kernel. Another reason against mix-
ing fi rmware with kernel sources is that they run on different release time lines. The
solution apparently is to separately maintain microcode in user space and pass it down
to the kernel when required. Sysfs and udev provide an infrastructure to achieve this.

Let’s take the example of the Intel PRO/Wireless 2100 WiFi mini PCI card found
on several laptops. The card is built around a microcontroller that needs to execute
externally supplied microcode for normal operation. Let’s walk through the steps
that the Linux driver follows to download microcode to the card. Assume that you
have obtained the required microcode image (ipw2100-1.3.fw) from http://ipw2100.
sourceforge.net/fi rmware.php and saved it under /lib/fi rmware/ on your system and
that you have inserted the driver module ipw2100.ko:

 1. During initialization, the driver invokes the following:

request_firmware(..,"ipw2100-1.3.fw",..);

 2. This dispatches a hotplug uevent to user space, along with the identity of the
requested microcode image.

 3. Udevd receives the uevent and responds by invoking /sbin/firmware_helper. For
this, it uses a rule similar to the following from a file under /etc/udev/rules.d/:

ACTION=="add", SUBSYSTEM=="firmware", RUN="/sbin/firmware_helper"

The Linux Device Model 111

http://ipw2100.sourceforge.net/firmware.php
http://ipw2100.sourceforge.net/firmware.php

112 Chapter 4 Laying the Groundwork

 4. /sbin/firmware_helper looks inside /lib/firmware/ and locates the requested
microcode image ipw2100-1.3.fw. It dumps the image to /sys/class/0000:02:02.0/
data. (0000:02:02 is the PCI bus:device:function identifier of the WiFi card in
this case.)

 5. The driver receives the microcode and downloads it onto the device. When
done, it calls release_firmware() to free the corresponding data structures.

 6. The driver goes through the rest of the initializations and the WiFi adapter
beacons.

Module Autoload

Automatically loading kernel modules on demand is a convenient feature that Linux
supports. To understand how the kernel emits a “module fault” and how udev handles
it, let’s insert a Xircom CardBus Ethernet adapter into a laptop’s PC Card slot:

 1. During compile time, the identity of supported devices is generated as part of the
driver module object. Take a peek at the driver that supports the Xircom Card-
Bus Ethernet combo card (drivers/net/tulip/xircom_cb.c) and find this snippet:

static struct pci_device_id xircom_pci_table[] = {

 {0x115D, 0x0003, PCI_ANY_ID, PCI_ANY_ID,},

 {0,},

};

/* Mark the device table */

MODULE_DEVICE_TABLE(pci, xircom_pci_table);

 This declares that the driver can support any card having a PCI vendor ID of
0x115D and a PCI device ID of 0x0003 (more on this in Chapter 10). When
you install the driver module, the depmod utility looks inside the module image
and deciphers the IDs present in the device table. It then adds the following
entry to /lib/modules/kernel-version/modules.alias:

alias pci:v0000115Dd00000003sv*sd*bc*sc*i* xircom_cb

 where v stands for VendorID, d for DeviceID, sv for subvendorID, and * for
wildcard match.

 2. When you hotplug the Xircom card into a CardBus slot, the kernel generates a
uevent that announces the identity of the newly inserted device. You may look
at the generated uevent using udevmonitor:

bash> udevmonitor --env

 ...

 MODALIAS=pci:v0000115Dd00000003sv0000115Dsd00001181bc02sc00i00

 ...

 3. Udevd receives the uevent via a netlink socket and invokes modprobe with the
above MODALIAS that the kernel passed up to it:

modprobe pci:v0000115Dd00000003sv0000115Dsd00001181bc02sc00i00

 4. Modprobe finds the matching entry in /lib/modules/kernel-version/modules.alias
created during Step 1, and proceeds to insert xircom_cb:

bash> lsmod

Module Size Used by

xircom_cb 10433 0

...

The card is now ready to surf.
You may want to revisit this section after reading Chapter 10.

Udev on Embedded Devices

One school of thought deprecates the use of udev in favor of statically created device nodes on
embedded devices for the following reasons:

• Udev creates /dev nodes during each reboot, compared to static nodes that are created only
once during software install. If your embedded device uses flash storage, flash pages that hold
/dev nodes suffer an erase-write cycle on each boot in the case of the former, and this reduces
flash life span. (Flash memory is discussed in detail in Chapter 17, “Memory Technology
Devices.”) You do have the option of mounting /dev over a RAM-based filesystem, however.

• Udev contributes to increased boot time.

• Udev features such as dynamic creation of /dev nodes and autoloading of modules create
a degree of indeterminism that some solution designers prefer to avoid on special-purpose
embedded devices, especially ones that do not interact with the outside world via hotpluggable
buses. According to this point of view, static node creation and boot-time insertion of any
modules provide more control over the system and make it easier to test.

The Linux Device Model 113

114 Chapter 4 Laying the Groundwork

Memory Barriers

Many processors and compilers reorder instructions to achieve optimal execution
speeds. The reordering is done such that the new instruction stream is semantically
equivalent to the original one. However, if you are, for example, writing to memory
mapped registers on an I/O device, instruction reordering can generate unexpected
side effects. To prevent the processor from reordering instructions, you can insert a
barrier in your code. The wmb() function inserts a road block that prevents writes
from moving through it, rmb() provides a read barricade that disallows reads from
crossing it, and mb() results in a read-write barrier.

In addition to the CPU-to-hardware interactions referred to previously, memory
barriers are also relevant for CPU-to-CPU interactions on SMP systems. If your CPU’s
data cache is operating in write-back mode (in which data is not copied from cache to
memory until it’s absolutely necessary), you might want to stall the instruction stream
until the cache-to-memory queue is drained. This is relevant, for example, when you
encounter instructions that acquire or release locks. Barriers are used in this scenario to
obtain a consistent perception across CPUs.

We revisit memory barriers when we discuss PCI drivers in Chapter 10 and fl ash map
drivers in Chapter 17. In the meanwhile, stop by Documentation/memory-barriers.txt
for an explanation of different kinds of memory barriers.

Power Management

Power management is critical on devices running on battery, such as laptops and hand-
helds. Linux drivers need to be aware of power states and have to transition across
states in response to events such as standby, sleep, and low battery. Drivers utilize power-
saving features supported by the underlying hardware when they switch to modes that
consume less power. For example, the storage driver spins down the disk, whereas the
video driver blanks the display.

Power-aware code in device drivers is only one piece of the overall power man-
agement framework. Power management also features participation from user-space
daemons, utilities, confi guration fi les, and boot fi rmware. Two popular power man-
agement mechanisms are APM (discussed in the section, “Protected Mode Calls” in
Appendix B, “Linux and the BIOS”) and Advanced Confi guration and Power Inter-
face (ACPI). APM is getting obsolete, and ACPI has emerged as the de facto power

 management strategy on Linux systems. ACPI is further discussed in Chapter 20,
“More Devices and Drivers.”

Looking at the Sources

The core interrupt handling code is generic and is in the kernel/irq/ directory. The
architecture-specifi c portions can be found in arch/your-arch/kernel/irq.c. The function
do_IRQ() defi ned in this fi le is a good place to start your journey into the kernel inter-
rupt handling mechanism.

The kernel softirq and tasklet implementations live in kernel/softirq.c. This fi le also
contains additional functions that offer more fi ne-grained control over softirqs and
tasklets. Look at include/linux/interrupt.h for softirq vector enumerations and proto-
types required to implement your interrupt handler. For a real-life example of writing
interrupt handlers and bottom halves, start from the handler that is part of drivers/net/
lib8390.c and follow the trail into the networking stack.

The kobject implementation and related programming interfaces live in lib/kobject.c
and include/linux/kobject.h. Look at drivers/base/sys.c for the sysfs implementation. You
will fi nd device class APIs in drivers/base/class.c. Dispatching hotplug uevents via netlink
sockets is done by lib/kobject_uevent.c. You may download udev sources and documen-
tation from www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html.

For a fuller understanding of how APM is implemented on x86 Linux, look at
arch/x86/kernel/apm_32.c, include/linux/apm_bios.h, and include/asm-x86/mach-default/
apm.h in the kernel tree. If you are curious to know how APM is implemented on
BIOS-less architectures such as ARM, look at include/linux/apm-emulation.h and its
users. The kernel’s ACPI implementation lives in drivers/acpi/.

Table 4.2 contains a summary of the main data structures used in this chapter
and the location of their defi nitions in the source tree. Table 4.3 lists the main kernel
programming interfaces that you used in this chapter along with the location of their
defi nitions.

TABLE 4.2 Summary of Data Structures

Data Structure Location Description

tasklet_struct include/linux/interrupt.h Manages a tasklet, which is a method to implement
bottom halves

kobject include/linux/kobject.h Encapsulates common properties of a kernel object

Continues

Looking at the Sources 115

www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html

116 Chapter 4 Laying the Groundwork

Data Structure Location Description

kset include/linux/kobject.h An object set to which a kobject belongs

kobj_type include/linux/kobject.h An object type that describes a kobject

class include/linux/device.h Abstracts the idea that a driver falls under a broader
category

bus
device
device_driver

include/linux/device.h Structures that form the pillars under the Linux device
model

TABLE 4.3 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

request_irq() kernel/irq/manage.c Requests an IRQ and associates an
interrupt handler with it

free_irq() kernel/irq/manage.c Frees an IRQ

disable_irq() kernel/irq/manage.c Disables the interrupt associated with a
supplied IRQ

disable_irq_nosync() kernel/irq/manage.c Disables the interrupt associated with
a supplied IRQ without waiting for
any currently executing instances of the
interrupt handler to return

enable_irq() kernel/irq/manage.c Re-enables the interrupt that has been
disabled using disable_irq() or
disable_irq_nosync()

open_softirq() kernel/softirq.c Opens a softirq

raise_softirq() kernel/softirq.c Marks the softirq as pending execution

tasklet_init() kernel/softirq.c Dynamically initializes a tasklet

tasklet_schedule() include/linux/interrupt.h
kernel/softirq.c

Marks a tasklet as pending execution

tasklet_enable() include/linux/interrupt.h Enables a tasklet

tasklet_disable() include/linux/interrupt.h Disables a tasklet

tasklet_disable_nosync() include/linux/interrupt.h Disables a tasklet without waiting for
active instances to finish execution

TABLE 4.2 Continued

Kernel Interface Location Description

class_device_register()
kobject_add()
sysfs_create_dir()
class_device_create()
class_device_destroy()
class_create()
class_destroy()
class_device_create_file()
sysfs_create_file()
class_device_add_attrs()
kobject_uevent()

drivers/base/class.c
lib/kobject.c
lib/kobject_uevent.c
fs/sysfs/dir.c
fs/sysfs/file.c

Family of functions in the Linux device
model that create/destroy a class, device
class, and associated kobjects and sysfs
files

This fi nishes our exploration of device driver concepts. You might want to dip back
into this chapter while developing your driver.

Looking at the Sources 117

This page intentionally left blank

119

5

Character Drivers

In This Chapter

■ Char Driver Basics 120

■ Device Example: System CMOS 121

■ Sensing Data Availability 139

■ Talking to the Parallel Port 145

■ RTC Subsystem 156

■ Pseudo Char Drivers 157

■ Misc Drivers 160

■ Character Caveats 166

■ Looking at the Sources 167

120

You are now all set to make a foray into writing simple, albeit real-world,
device drivers. In this chapter, let’s look at the internals of a character (or

char) device driver, which is kernel code that sequentially accesses data from a
device. Char drivers can capture raw data from several types of devices: printers,
mice, watchdogs, tapes, memory, RTCs, and so on. They are however, not suit-
able for managing data residing on block devices capable of random access such
as hard disks, fl oppies, or compact discs.

Char Driver Basics

Let’s start with a top-down view. To access a char device, a system user invokes
a suitable application program. The application is responsible for talking to the
device, but to do that, it needs to elicit the identity of a suitable driver. The contact
details of the driver are exported to user space via the /dev directory:

bash> ls -l /dev

total 0

crw------- 1 root root 5, 1 Jul 16 10:02 console

...

lrwxrwxrwx 1 root root 3 Oct 6 10:02 cdrom -> hdc

...

brw-rw---- 1 root disk 3, 0 Oct 6 2007 hda

brw-rw---- 1 root disk 3, 1 Oct 6 2007 hda1

...

crw------- 1 root tty 4, 1 Oct 6 10:20 tty1

crw------- 1 root tty 4, 2 Oct 6 10:02 tty2

The fi rst character in each line of the ls output denotes the driver type: c signifi es
a char driver, b stands for a block driver, and l denotes a symbolic link. The num-
bers in the fi fth column are called major numbers, and those in the sixth column
are minor numbers. A major number broadly identifi es the driver, whereas a minor
number pinpoints the exact device serviced by the driver. For example, the IDE
block storage driver /dev/hda owns a major number of 3 and is in charge of handling
the hard disk on your system, but when you further specify a minor number of 1

(/dev/hda1), that narrows it down to the fi rst disk partition. Char and block drivers
occupy different spaces, so you can have same major number assigned to a char as well
as a block driver.

Let’s take a step further and peek inside a char driver. From a code-fl ow perspective,
char drivers have the following:

 • An initialization (or init()) routine that is responsible for initializing the
device and seamlessly tying the driver to the rest of the kernel via registration
functions.

 • A set of entry points (or methods) such as open(), read(), ioctl(), llseek(),
and write(), which directly correspond to I/O system calls invoked by user
applications over the associated /dev node.

 • Interrupt routines, bottom halves, timer handlers, helper kernel threads, and
other support infrastructure. These are largely transparent to user applications.

From a data-fl ow perspective, char drivers own the following key data structures:

 1. A per-device structure. This is the information repository around which the
driver revolves.

 2. struct cdev, a kernel abstraction for character drivers. This structure is usually
embedded inside the per-device structure referred previously.

 3. struct file_operations, which contains the addresses of all driver entry
points.

 4. struct file, which contains information about the associated /dev node.

Device Example: System CMOS

Let’s implement a char driver to access the system CMOS. The BIOS on PC-
compatible hardware (see Figure 5.1) uses the CMOS to store information such as
startup options, boot order, and the system date, which you can confi gure via the
BIOS setup menu. Our example CMOS driver lets you access the two PC CMOS
banks as though they are regular fi les. Applications can operate on /dev/cmos/0 and
/dev/cmos/1, and use I/O system calls to access data from the two banks. Because the
BIOS assigns semantics to the CMOS area at bit-level granularity, the driver is capable
of bit-level access. So, a read() obtains the specifi ed number of bits and advances the
internal fi le pointer by the number of bits read.

Device Example: System CMOS 121

122 Chapter 5 Character Drivers

The CMOS is accessed via two I/O addresses, an index register and a data register,
as shown in Table 5.1. You have to specify the desired CMOS memory offset in the
index register and exchange information via the data register.

TABLE 5.1 Register Layout on the CMOS

Register Name Description

CMOS_BANK0_INDEX_PORT Specify the desired CMOS bank 0 offset in this register.

CMOS_BANK0_DATA_PORT Read/write data from/to the address specified in CMOS_BANK0_INDEX_PORT.

CMOS_BANK1_INDEX_PORT Specify the desired CMOS bank 1 offset in this register.

CMOS_BANK1_DATA_PORT Read/write data from/to the address specified in CMOS_BANK1_INDEX_PORT.

Because each driver method has a system call counterpart that applications use, we will
look at the system calls and the matching driver methods in tandem.

Processor

South Bridge

North Bridge

CMOS

FIGURE 5.1 CMOS on a PC-compatible system.

Driver Initialization

The driver init() method is the bedrock of the registration mechanism. It’s respon-
sible for the following:

 • Requesting allocation of device major numbers.

 • Allocating memory for the per-device structure.

 • Connecting the entry points (open(), read(), and so on) with the char driver’s
cdev abstraction.

 • Associating the device major number with the driver’s cdev.

 • Creating nodes under /dev and /sys. As discussed in Chapter 4, “Laying the
Groundwork,” /dev management has meandered from static device nodes in the
2.2 kernels, to dynamic names in 2.4, and further to a user-space policy daemon
(udevd) in 2.6.

 • Initializing the hardware. This is not relevant for our simple CMOS.

Listing 5.1 implements the CMOS driver’s init() method.

LISTING 5.1 CMOS Driver Initialization

#include <linux/fs.h>

#include <linux/cdev.h>

#define NUM_CMOS_BANKS 2

/* Per-device (per-bank) structure */

struct cmos_dev {

 unsigned short current_pointer; /* Current pointer within the

 bank */

 unsigned int size; /* Size of the bank */

 int bank_number; /* CMOS bank number */

 struct cdev cdev; /* The cdev structure */

 char name[10]; /* Name of I/O region */

 /* ... */ /* Mutexes, spinlocks, wait

 queues, .. */

} *cmos_devp[NUM_CMOS_BANKS];

/* File operations structure. Defined in linux/fs.h */

static struct file_operations cmos_fops = {

 .owner = THIS_MODULE, /* Owner */

 .open = cmos_open, /* Open method */

 .release = cmos_release, /* Release method */

 .read = cmos_read, /* Read method */

 .write = cmos_write, /* Write method */

 .llseek = cmos_llseek, /* Seek method */

 .ioctl = cmos_ioctl, /* Ioctl method */

};

static dev_t cmos_dev_number; /* Allotted device number */

struct class *cmos_class; /* Tie with the device model */

#define CMOS_BANK_SIZE (0xFF*8)

#define DEVICE_NAME "cmos"

Device Example: System CMOS 123

124 Chapter 5 Character Drivers

#define CMOS_BANK0_INDEX_PORT 0x70

#define CMOS_BANK0_DATA_PORT 0x71

#define CMOS_BANK1_INDEX_PORT 0x72

#define CMOS_BANK1_DATA_PORT 0x73

unsigned char addrports[NUM_CMOS_BANKS] = {CMOS_BANK0_INDEX_PORT,

 CMOS_BANK1_INDEX_PORT,};

unsigned char dataports[NUM_CMOS_BANKS] = {CMOS_BANK0_DATA_PORT,

 CMOS_BANK1_DATA_PORT,};

/*

 * Driver Initialization

 */

int __init

cmos_init(void)

{

 int i, ret;

 /* Request dynamic allocation of a device major number */

 if (alloc_chrdev_region(&cmos_dev_number, 0,

 NUM_CMOS_BANKS, DEVICE_NAME) < 0) {

 printk(KERN_DEBUG "Can't register device\n"); return -1;

 }

 /* Populate sysfs entries */

 cmos_class = class_create(THIS_MODULE, DEVICE_NAME);

 for (i=0; i<NUM_CMOS_BANKS; i++) {

 /* Allocate memory for the per-device structure */

 cmos_devp[i] = kmalloc(sizeof(struct cmos_dev), GFP_KERNEL);

 if (!cmos_devp[i]) {

 printk("Bad Kmalloc\n"); return -ENOMEM;

 }

 /* Request I/O region */

 sprintf(cmos_devp[i]->name, "cmos%d", i);

 if (!(request_region(addrports[i], 2, cmos_devp[i]->name)) {

 printk("cmos: I/O port 0x%x is not free.\n", addrports[i]);

 return –EIO;

 }

 /* Fill in the bank number to correlate this device

 with the corresponding CMOS bank */

 cmos_devp[i]->bank_number = i;

 /* Connect the file operations with the cdev */

 cdev_init(&cmos_devp[i]->cdev, &cmos_fops);

 cmos_devp[i]->cdev.owner = THIS_MODULE;

 /* Connect the major/minor number to the cdev */

 ret = cdev_add(&cmos_devp[i]->cdev, (cmos_dev_number + i), 1);

 if (ret) {

 printk("Bad cdev\n");

 return ret;

 }

 /* Send uevents to udev, so it'll create /dev nodes */

 device_create(cmos_class, NULL, MKDEV(MAJOR(cmos_dev_number), i),

 "cmos%d", i);

 }

 printk("CMOS Driver Initialized.\n");

 return 0;

}

/* Driver Exit */

void __exit

cmos_cleanup(void)

{

 int i;

 /* Release the major number */

 unregister_chrdev_region((cmos_dev_number), NUM_CMOS_BANKS);

 /* Release I/O region */

 for (i=0; i<NUM_CMOS_BANKS; i++) {

 device_destroy (cmos_class, MKDEV(MAJOR(cmos_dev_number), i));

 release_region(addrports[i], 2);

 cdev_del(&cmos_devp[i]->cdev);

 kfree(cmos_devp[i]);

 }

Device Example: System CMOS 125

126 Chapter 5 Character Drivers

 /* Destroy cmos_class */

 class_destroy(cmos_class);

 return();

}

module_init(cmos_init);

module_exit(cmos_cleanup);

Most steps performed by cmos_init() are generic, so if you remove references to
CMOS data structures, you may use Listing 5.1 as a template to develop other char
drivers, too.

First, cmos_init() invokes alloc_chrdev_region() to dynamically request an
unused major number. cmos_dev_number contains the allotted device number if the
call is successful. The second and third arguments to alloc_chrdev_region() spec-
ify the start minor number and the number of supported minor devices, respectively.
The last argument is the device name used to identify the CMOS in /proc/devices:

bash> cat /proc/devices | grep cmos

253 cmos

253 is the dynamically allocated major number for the CMOS device. During pre-2.6
days, dynamic device node allocation was not supported, so char drivers made calls to
register_chrdev() to statically request specifi c major numbers.

Before proceeding further down the code path, let’s take a peek at the data struc-
tures used in Listing 5.1. cmos_dev is the per-device data structure referred to earlier.
cmos_fops is the file_operations structure that contains the address of driver
entry points. cmos_fops also has a fi eld called owner that is set to THIS_MODULE, the
address of the driver module in question. Knowing the identity of the structure owner
enables the kernel to offl oad from the driver the burden of some housekeeping func-
tions such as tracking the use-count when processes open or release the device.

As you saw, the kernel uses an abstraction called cdev to internally represent char
devices. Char drivers usually embed their cdev inside their per-device structure. In our
example, cdev sits inside cmos_dev. cmos_init() loops over each supported minor
device (CMOS bank in this case) allocating memory for the associated per-device
structure and, hence, for the cdev structure living inside it. cdev_init() associates
the fi le operations (cmos_fops) with the cdev, and cdev_add() connects the major/
minor numbers allocated by alloc_chrdev_region() to the cdev.

class_create() populates a sysfs entry for this device, and device_

create() results in the generation of two uevents: cmos0 and cmos1. As you learned
in Chapter 4, udevd listens to uevents and generates device nodes after consulting
its rules database. Add the following to the udev rules directory (/etc/udev/rules.d/) to
produce device nodes corresponding to the two CMOS banks (/dev/cmos/0 and /dev/
cmos/1) on receiving the respective uevents (cmos0 and cmos1):

KERNEL=="cmos[0-1]*", NAME="cmos/%n"

Device drivers that need to operate on a range of I/O addresses stake claim to the
addresses via a call to request_region(). This regulatory mechanism ensures that
requests by others for the same region fail until the occupant releases it via a call to
release_region(). request_region() is commonly invoked by I/O bus drivers
such as PCI and ISA to mark ownership of on-card memory in the processor’s address
space (more on this in Chapter 10, “Peripheral Component Interconnect”). cmos_
init() requests access to the I/O region of each CMOS bank by calling request_
region(). The last argument to request_region() is an identifi er used by /proc/
ioports, so you will see this if you peek at that fi le1:

bash> grep cmos /proc/ioports

0070-0071 : cmos0

0072-0073 : cmos1

This completes the registration process, and cmos_init() prints out a message sig-
naling its happiness.

Open and Release

The kernel invokes the driver’s open() method when an application opens the corre-
sponding device node. You can trigger execution of cmos_open() by doing this:

bash> cat /dev/cmos/0

The kernel calls the release() method when an application closes an open device. So
when cat closes the fi le descriptor attached to /dev/cmos/0 after reading the contents of
CMOS bank 0, the kernel invokes cmos_release().

Listing 5.2 shows the implementation of cmos_open() and cmos_release().
Let’s take a closer look at cmos_open(). There are a couple of things worthy of note

Device Example: System CMOS 127

1Before loading the cmos driver, make sure that you’ve unloaded kernel modules such as rtc.ko that might already have staked
claim to the I/O address range in question.

128 Chapter 5 Character Drivers

here. The fi rst is the extraction of cmos_dev. The inode passed as an argument to
cmos_open() contains the address of the cdev structure allocated during initializa-
tion. As shown in Listing 5.1, cdev is embedded inside cmos_dev. To elicit the address
of the container structure cmos_dev, cmos_open() uses the kernel helper function,
container_of().

The other notable operation in cmos_open() is the usage of the private_data
fi eld that is part of struct file, the second argument. You can use this fi eld (file->
private_data) as a placeholder to conveniently correlate information from inside
other driver methods. The CMOS driver uses this fi eld to store the address of cmos_
dev. Look at cmos_release() (and the rest of the methods) to see how private_
data is used to directly obtain a handle on the cmos_dev structure belonging to the
corresponding CMOS bank.

LISTING 5.2 Open and Release

/*

 * Open CMOS bank

 */

int

cmos_open(struct inode *inode, struct file *file)

{

 struct cmos_dev *cmos_devp;

 /* Get the per-device structure that contains this cdev */

 cmos_devp = container_of(inode->i_cdev, struct cmos_dev, cdev);

 /* Easy access to cmos_devp from rest of the entry points */

 file->private_data = cmos_devp;

 /* Initialize some fields */

 cmos_devp->size = CMOS_BANK_SIZE;

 cmos_devp->current_pointer = 0;

 return 0;

}

/*

 * Release CMOS bank

 */

int

cmos_release(struct inode *inode, struct file *file)

{

 struct cmos_dev *cmos_devp = file->private_data;

 /* Reset file pointer */

 cmos_devp->current_pointer = 0;

 return 0;

}

Exchanging Data

read() and write() are the basic char driver methods responsible for exchanging data
between user space and the device. The extended read()/write() family contains
several other methods, too: fsync(), aio_read(), aio_write(), and mmap().

The CMOS driver operates on a simple memory device and does not have to work
through some of the complexities faced by usual char drivers:

 • CMOS data access routines do not need to sleep-wait for device I/O to complete,
whereas read() and write() methods belonging to many char drivers have to
support both blocking and nonblocking modes of operation. Unless a device
file is opened in the nonblocking (O_NONBLOCK) mode, read() and write()
are allowed to put the calling process to sleep until the corresponding operation
completes.

 • CMOS driver operations complete synchronously and do not depend on inter-
rupts. However, data access methods belonging to many drivers depend on
interrupts for data collection and have to communicate with interrupt context
code via data structures such as wait queues.

Listing 5.3 contains the read()and write() methods belonging to the CMOS
driver. You cannot directly access user buffers from kernel space and vice versa, so to
copy CMOS memory contents to user space, cmos_read() uses the services of copy_
to_user(). cmos_write() does the reverse using copy_from_user(). Because
copy_to_user() and copy_from_user()may fall asleep on the job, you cannot
hold spinlocks while calling them.

As you saw earlier, accessing CMOS memory is accomplished by operating on a
pair of I/O addresses. To read different sizes of data from an I/O address, the ker-
nel provides a family of architecture-independent functions: in[b|w|l|sb|sl]().

Device Example: System CMOS 129

130 Chapter 5 Character Drivers

Similarly, a cluster of routines, out[b|w|l|sb|sl](), are available for writing to
I/O regions. port_data_in() and port_data_out() in Listing 5.3 use inb() and
oub() for data transfer.

LISTING 5.3 Read and Write

/*

 * Read from a CMOS Bank at bit-level granularity

 */

ssize_t

cmos_read(struct file *file, char *buf,

 size_t count, loff_t *ppos)

{

 struct cmos_dev *cmos_devp = file->private_data;

 char data[CMOS_BANK_SIZE];

 unsigned char mask;

 int xferred = 0, i = 0, l, zero_out;

 int start_byte = cmos_devp->current_pointer/8;

 int start_bit = cmos_devp->current_pointer%8;

 if (cmos_devp->current_pointer >= cmos_devp->size) {

 return 0; /*EOF*/

 }

 /* Adjust count if it edges past the end of the CMOS bank */

 if (cmos_devp->current_pointer + count > cmos_devp->size) {

 count = cmos_devp->size - cmos_devp->current_pointer;

 }

 /* Get the specified number of bits from the CMOS */

 while (xferred < count) {

 data[i] = port_data_in(start_byte, cmos_devp->bank_number)

 >> start_bit;

 xferred += (8 - start_bit);

 if ((start_bit) && (count + start_bit > 8)) {

 data[i] |= (port_data_in (start_byte + 1,

 cmos_devp->bank_number) << (8 - start_bit));

 xferred += start_bit;

 }

 start_byte++;

 i++;

 }

 if (xferred > count) {

 /* Zero out (xferred-count) bits from the MSB

 of the last data byte */

 zero_out = xferred - count;

 mask = 1 << (8 - zero_out);

 for (l=0; l < zero_out; l++) {

 data[i-1] &= ~mask; mask <<= 1;

 }

 xferred = count;

 }

 if (!xferred) return -EIO;

 /* Copy the read bits to the user buffer */

 if (copy_to_user(buf, (void *)data, ((xferred/8)+1)) != 0) {

 return -EIO;

 }

 /* Increment the file pointer by the number of xferred bits */

 cmos_devp->current_pointer += xferred;

 return xferred; /* Number of bits read */

}

/*

 * Write to a CMOS bank at bit-level granularity. 'count' holds the

 * number of bits to be written.

 */

ssize_t

cmos_write(struct file *file, const char *buf,

 size_t count, loff_t *ppos)

{

 struct cmos_dev *cmos_devp = file->private_data;

 int xferred = 0, i = 0, l, end_l, start_l;

 char *kbuf, tmp_kbuf;

 unsigned char tmp_data = 0, mask;

 int start_byte = cmos_devp->current_pointer/8;

 int start_bit = cmos_devp->current_pointer%8;

 if (cmos_devp->current_pointer >= cmos_devp->size) {

 return 0; /* EOF */

 }

Device Example: System CMOS 131

132 Chapter 5 Character Drivers

 /* Adjust count if it edges past the end of the CMOS bank */

 if (cmos_devp->current_pointer + count > cmos_devp->size) {

 count = cmos_devp->size - cmos_devp->current_pointer;

 }

 kbuf = kmalloc((count/8)+1,GFP_KERNEL);

 if (kbuf==NULL)

 return -ENOMEM;

 /* Get the bits from the user buffer */

 if (copy_from_user(kbuf,buf,(count/8)+1)) {

 kfree(kbuf);

 return -EFAULT;

 }

 /* Write the specified number of bits to the CMOS bank */

 while (xferred < count) {

 tmp_data = port_data_in(start_byte, cmos_devp->bank_number);

 mask = 1 << start_bit;

 end_l = 8;

 if ((count-xferred) < (8 - start_bit)) {

 end_l = (count - xferred) + start_bit;

 }

 for (l = start_bit; l < end_l; l++) {

 tmp_data &= ~mask; mask <<= 1;

 }

 tmp_kbuf = kbuf[i];

 mask = 1 << end_l;

 for (l = end_l; l < 8; l++) {

 tmp_kbuf &= ~mask;

 mask <<= 1;

 }

 port_data_out(start_byte,

 tmp_data |(tmp_kbuf << start_bit),

 cmos_devp->bank_number);

 xferred += (end_l - start_bit);

 if ((xferred < count) && (start_bit) &&

 (count + start_bit > 8)) {

 tmp_data = port_data_in(start_byte+1,

 cmos_devp->bank_number);

 start_l = ((start_bit + count) % 8);

 mask = 1 << start_l;

 for (l=0; l < start_l; l++) {

 mask >>= 1;

 tmp_data &= ~mask;

 }

 port_data_out((start_byte+1),

 tmp_data |(kbuf[i] >> (8 - start_bit)),

 cmos_devp->bank_number);

 xferred += start_l;

 }

 start_byte++;

 i++;

 }

 if (!xferred) return -EIO;

 /* Push the offset pointer forward */

 cmos_devp->current_pointer += xferred;

 return xferred; /* Return the number of written bits */

}

/*

 * Read data from specified CMOS bank

 */

unsigned char

port_data_in(unsigned char offset, int bank)

{

 unsigned char data;

 if (unlikely(bank >= NUM_CMOS_BANKS)) {

 printk("Unknown CMOS Bank\n");

 return 0;

 } else {

 outb(offset, addrports[bank]); /* Read a byte */

 data = inb(dataports[bank]);

 }

 return data;

}

Device Example: System CMOS 133

134 Chapter 5 Character Drivers

/*

 * Write data to specified CMOS bank

 */

void

port_data_out(unsigned char offset, unsigned char data,

 int bank)

{

 if (unlikely(bank >= NUM_CMOS_BANKS)) {

 printk("Unknown CMOS Bank\n");

 return;

 } else {

 outb(offset, addrports[bank]); /* Output a byte */

 outb(data, dataports[bank]);

 }

 return;

}

If a char driver’s write() method returns successfully, it implies that the driver has
assumed responsibility for the data passed down to it by the application. However it
does not guarantee that the data has been successfully written to the device. If an appli-
cation needs this assurance, it can invoke the fsync()system call. The corresponding
fsync() driver method ensures that application data is fl ushed from driver buffers
and written to the device. The CMOS driver does not need an fsync() method
because, in this case, driver-writes are synonymous with device-writes.

If a user application has data sitting on multiple buffers that it needs to send to a
device, it can request multiple driver writes, but that is ineffi cient for the following
reasons:

 1. The overhead of multiple system calls and related context switches.

 2. The driver is the one who knows the device intimately, so it can probably do a
more clever job of efficiently gathering data from different buffers and dispatch-
ing it to the device.

Because of this, vectored versions of read() and write() are supported on Linux
and other UNIX fl avors. The Linux char driver infrastructure used to offer two dedi-
cated methods to perform vector operations: readv() and writev(). Starting with
the 2.6.19 kernel release, these two methods have been folded into the generic Linux

Asynchronous I/O (AIO) layer, however. Linux AIO is a broad topic and is outside the
scope of this discussion, so we just concentrate on the synchronous vector capabilities
offered by AIO.

The prototypes of the vector driver methods are as follows:

 ssize_t aio_read(struct kiocb *iocb, const struct iovec *vector,

 unsigned long count, loff_t offset);

 ssize_t aio_write(struct kiocb *iocb, const struct iovec *vector,

 unsigned long count, loff_t offset);

The fi rst argument to aio_read()/aio_write() describes the AIO operation, and
the second argument is an array of iovecs. The latter is the principal data structure
used by the vector functions and contains the addresses and lengths of buffers that hold
the data. In fact, this mechanism is the user space equivalent of scatter-gather DMA
discussed in Chapter 10. Look at include/linux/uio.h for the defi nition of iovecs and
at drivers/net/tun.c21 for an example implementation of vectored char driver methods.

Another data access method is mmap(), which associates device memory with
user virtual memory. Applications may call the corresponding system call, also called
mmap(), and directly operate on the returned memory region to access device- resident
memory. Not many drivers implement mmap(), so we won’t delve into that here.
Instead, have a look at drivers/char/mem.c for an example mmap() implementation.
The section “Accessing Memory Regions” in Chapter 19, “Drivers in User Space,”
illustrates how applications use mmap(). Our example CMOS driver does not imple-
ment mmap().

You might have noticed that port_data_in() and port_data_out() envelop
the bank number sanity check within a macro called unlikely(). Two macros,
likely() and unlikely(), inform GCC about the probability of success of the
associated conditional evaluation. This information is used by GCC while predict-
ing branches. Because we mark it unlikely that the bank sanity check will fail, GCC
generates intelligent code that gels the else{} clause sequentially with the code fl ow.
Branching is done for the if{} clause. The reverse happens if you use likely()
rather than unlikely().

2 Discussed in the sidebar “TUN/TAP Driver” in Chapter 15, “Network Interface Cards.”

Device Example: System CMOS 135

136 Chapter 5 Character Drivers

Seek

The kernel uses an internal pointer to keep track of the current fi le access position.
Applications use the lseek() system call to request repositioning of this internal fi le
pointer. Using the services of lseek(), you can reset the fi le pointer to any offset
within the fi le. The char driver counterpart of lseek() is the llseek() method.
cmos_llseek() implements this method in the CMOS driver.

As we saw previously, the internal fi le pointer for the CMOS moves bit-wise rather
than byte-wise. If a byte of data is read from the CMOS driver, the fi le pointer has to
be moved by 8, so applications have to seek accordingly. cmos_llseek() also imple-
ments end-of-fi le semantics depending on the size of the CMOS bank.

To understand the semantics of llseek(), let’s start by looking at the commands
supported by the lseek() system call:

 1. SEEK_SET, which sets the file pointer to a supplied fixed offset.

 2. SEEK_CUR, which calculates the offset relative to the current location.

 3. SEEK_END, which calculates the offset relative to the end-of-file. This command
can maneuver the file pointer beyond the end of the file, but does not change
the file size. Reads beyond the end-of-file marker return naught if no data is
explicitly written. This technique is often used to create big files. The CMOS
driver does not support SEEK_END.

Look at cmos_llseek() in Listing 5.4 and co-relate with the preceding defi nitions.

LISTING 5.4 Seek

/*

 * Seek to a bit offset within a CMOS bank

 */

static loff_t

cmos_llseek(struct file *file, loff_t offset,

 int orig)

{

 struct cmos_dev *cmos_devp = file->private_data;

 switch (orig) {

 case 0: /* SEEK_SET */

 if (offset >= cmos_devp->size) {

 return -EINVAL;

 }

 cmos_devp->current_pointer = offset; /* Bit Offset */

 break;

 case 1: /* SEEK_CURR */

 if ((cmos_devp->current_pointer + offset) >=

 cmos_devp->size) {

 return -EINVAL;

 }

 cmos_devp->current_pointer = offset; /* Bit Offset */

 break;

 case 2: /* SEEK_END - Not supported */

 return -EINVAL;

 default:

 return -EINVAL;

 }

 return(cmos_devp->current_pointer);

}

Control

Another common char driver method is called I/O Control (or ioctl). This routine
is used to receive and implement application commands that request device-specifi c
actions. Because CMOS memory is used by the BIOS to store crucial information such
as the boot device order, it’s usually protected via cyclic redundancy check (CRC) algo-
rithms. To detect data corruption, the CMOS driver supports two ioctl commands:

 1. Adjust checksum, which is used to recalculate the CRC after the CMOS contents
have been modified. The calculated checksum is stored at a predetermined off-
set in CMOS bank 1.

 2. Verify checksum, which is used to check whether the CMOS contents are healthy.
This is done by comparing the CRC of the current contents with the value pre-
viously stored.

Applications send these commands down to the driver via the ioctl() system call
when they want to request it to perform checksum operations. Look at cmos_ioctl()
in Listing 5.5 for the implementation of the CMOS driver’s ioctl method. adjust_
cmos_crc(int bank, unsigned short seed) implements the standard CRC algo-
rithm and is not shown in the listing.

Device Example: System CMOS 137

138 Chapter 5 Character Drivers

LISTING 5.5 I/O Control

#define CMOS_ADJUST_CHECKSUM 1

#define CMOS_VERIFY_CHECKSUM 2

#define CMOS_BANK1_CRC_OFFSET 0x1E

/*

 * Ioctls to adjust and verify CRC16s.

 */

static int

cmos_ioctl(struct inode *inode, struct file *file,

 unsigned int cmd, unsigned long arg)

{

 unsigned short crc = 0;

 unsigned char buf;

 switch (cmd) {

 case CMOS_ADJUST_CHECKSUM:

 /* Calculate the CRC of bank0 using a seed of 0 */

 crc = adjust_cmos_crc(0, 0);

 /* Seed bank1 with CRC of bank0 */

 crc = adjust_cmos_crc(1, crc);

 /* Store calculated CRC */

 port_data_out(CMOS_BANK1_CRC_OFFSET,

 (unsigned char)(crc & 0xFF), 1);

 port_data_out((CMOS_BANK1_CRC_OFFSET + 1),

 (unsigned char) (crc >> 8), 1);

 break;

 case CMOS_VERIFY_CHECKSUM:

 /* Calculate the CRC of bank0 using a seed of 0 */

 crc = adjust_cmos_crc(0, 0);

 /* Seed bank1 with CRC of bank0 */

 crc = adjust_cmos_crc(1, crc);

 /* Compare the calculated CRC with the stored CRC */

 buf = port_data_in(CMOS_BANK1_CRC_OFFSET, 1);

 if (buf != (unsigned char) (crc & 0xFF)) return -EINVAL;

 buf = port_data_in((CMOS_BANK1_CRC_OFFSET+1), 1);

 if (buf != (unsigned char)(crc >> 8)) return -EINVAL;

 break;

 default:

 return -EIO;

 }

 return 0;

}

Sensing Data Availability

Many user applications are sophisticated and are not satisfi ed with the vintage open()/
read()/write()/close() calls. They desire synchronous or asynchronous notifi ca-
tions that alert them when new data is available from the device or when the driver
is ready to accept new data. In this section, we examine two char driver methods that
sense data availability: poll() and fasync(). The former is synchronous, whereas
the latter is asynchronous. Because these mechanisms are relatively advanced, let’s fi rst
understand how applications use these features before fi nding out how the underlying
driver implements them. Sensing data availability is not relevant for the simple CMOS
memory device discussed previously, so let’s take a few usage scenarios from a popular
user-space application: the X Windows server.

Poll

Consider the following code snippet from the X Windows source tree (downloadable
from www.xfree86.org) that handles mice events:

xc/programs/Xserver/hw/xfree86/input/mouse/mouse.c:

case PROT_THINKING: /* ThinkingMouse */

 /* This mouse may send a PnP ID string, ignore it. */

 usleep(200000); xf86FlushInput(pInfo->fd);

 /* Send the command to initialize the beast. */

 for (s = "E5E5"; *s; ++s) {

 xf86WriteSerial(pInfo->fd, s, 1);

 if ((xf86WaitForInput(pInfo->fd, 1000000) <= 0))

 break;

 xf86ReadSerial(pInfo->fd, &c, 1);

 if (c != *s) break;

 }

 break;

Sensing Data Availability 139

www.xfree86.org

140 Chapter 5 Character Drivers

Essentially, the code sends an initialization command to the mouse, polls until it
senses input data, and reads the response from the device. If you peel the envelope
off Xf86WaitForInput() used previously, you will fi nd a call to the select()
system call:

xc/programs/Xserver/hw/xfree86/os-support/shared/posix_tty.c:

int

xf86WaitForInput(int fd, int timeout)

{

 fd_set readfds;

 struct timeval to;

 int r;

 FD_ZERO(&readfds);

 if (fd >= 0) {

 FD_SET(fd, &readfds);

 }

 to.tv_sec = timeout / 1000000;

 to.tv_usec = timeout % 1000000;

 if (fd >= 0) {

 SYSCALL (r = select(FD_SETSIZE, &readfds, NULL, NULL, &to));

 } else {

 SYSCALL (r = select(FD_SETSIZE, NULL, NULL, NULL, &to));

 }

 if (xf86Verbose >= 9)

 ErrorF ("select returned %d\n", r);

 return (r);

}

You may supply a bunch of fi le descriptors to select() and ask it to keep an eye on
them until there is a change in the associated data state. You may also request a time-
out to override data availability. If you ask for a timeout of NULL, select() blocks
forever. Refer to the man or info pages of select() for detailed documentation. The
call to select() in the preceding snippet induces the X server to poll for data from a
connected mouse within a timeout.

Linux supports another system call, poll(), which has semantics similar to select().
The 2.6 kernel supports a new non-POSIX system call named epoll() that is a more
scalable superset of poll(). All these system calls rely on the same underlying char driver
method, poll().

Most I/O system calls are POSIX-compliant and are not Linux-specifi c (programs
such as X Windows after all, run on many UNIX fl avors, not just on Linux), but the
internal driver methods are specifi c to the operating system. On Linux, the poll()
driver method is the pillar under the select() system call. In the previous X server
scenario, the mouse driver’s poll() method looks like this:

static DECLARE_WAIT_QUEUE_HEAD(mouse_wait); /* Wait Queue */

static unsigned int

mouse_poll(struct file *file, poll_table *wait)

{

 poll_wait(file, &mouse_wait, wait);

 spin_lock_irq(&mouse_lock);

 /* See if data has arrived from the device or

 if the device is ready to accept more data */

 /* ... */

 spin_unlock_irq(&mouse_lock);

 /* Availability of data is detected from interrupt context */

 if (data_is_available()) return(POLLIN | POLLRDNORM);

 /* Data can be written. Not relevant for mice */

 if (data_can_be_written()) return(POLLOUT | POLLWRNORM);

 return 0;

}

When Xf86WaitForInput() invokes select(), the generic kernel poll implementa-
tion (defi ned in fs/select.c) calls mouse_poll(). mouse_poll() takes two arguments,
the usual fi le pointer (struct file *) and a pointer to a kernel data structure called
the poll_table. The poll_table is a table of wait queues owned by device drivers
that are being polled for data.

Sensing Data Availability 141

142 Chapter 5 Character Drivers

mouse_poll() uses the library function, poll_wait(), to add a wait queue
(mouse_wait) to the kernel poll_table and go to sleep. As you saw in Chapter 3,
“Kernel Facilities,” device drivers usually own several wait queues that block until they
detect a change in a data condition. This condition can be the arrival of new data from
the device, willingness of the driver to pass new data to the application, or the readiness
of the device (or the driver) to accept new data. Such conditions are usually (but not
always) detected by the driver’s interrupt handler. When the mouse driver’s interrupt
handler senses mouse movement, it calls wake_up_interruptible(&mouse_wait)
to wake up the sleeping mouse_poll().

If there is no change in the data condition, the poll()method returns 0.
If the driver is ready to send at least one byte of data to the application, it returns
POLLIN|POLLRDNORM. If the driver is ready to accept at least a byte of data from
the application, it returns POLLOUT|POLLWRNORM.32Thus, if there is no mouse move-
ment, mouse_poll() returns 0, and the calling thread is put to sleep. The kernel
invokes mouse_poll() again when the mouse interrupt handler senses device data
and wakes up the mouse_wait queue. This time around, mouse_poll() returns
POLLIN|POLLRDNORM, so the select() call and hence Xf86WaitForInput() return
positive values. The X server’s mouse handler (xc/programs/Xserver/hw/xfree86/input/
mouse/mouse.c) goes on to read data from the mouse.

User applications that poll a driver are usually more interested in driver characteristics
than device characteristics. For example, depending on the health of its buffers, a driver
might be ready to accept new data from the application before the device itself is.

Fasync

Some applications, for performance reasons, desire asynchronous notifi cations from
the device driver. Assume that an application on a Linux pacemaker programmer
device is busy performing complex computations but wants to be notifi ed as soon as
data arrives from an implanted pacemaker via a telemetry interface. The select()/
poll() mechanism is not of use in this case because it blocks the computations. What

3 The full list of return codes is defi ned in include/asm-generic/poll.h. Some of them are used only by the networking stack.

the application needs is an asynchronous event report. If the telemetry driver can asyn-
chronously dispatch a signal (usually SIGIO) as soon as it detects data from the pace-
maker, the application can catch it using a signal handler and accordingly steer the
code fl ow.

For a real-world example of asynchronous notifi cation, let’s revert to a region of the
X server that requests alerts when data is detected from input devices. Take a look at
this snippet from the X server sources:

xc/programs/Xserver/hw/xfree86/os-support/shared/sigio.c:

int xf86InstallSIGIOHandler(int fd, void (*f)(int, void *),

 void *closure)

{

 struct sigaction sa;

 struct sigaction osa;

 if (fcntl(fd, F_SETOWN, getpid()) == -1) {

 blocked = xf86BlockSIGIO();

 /* O_ASYNC is defined as SIGIO elsewhere by the X server */

 if (fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_ASYNC) == -1) {

 xf86UnblockSIGIO(blocked); return 0;

 }

 sigemptyset(&sa.sa_mask);

 sigaddset(&sa.sa_mask, SIGIO);

 sa.sa_flags = 0;

 sa.sa_handler = xf86SIGIO;

 sigaction(SIGIO, &sa, &osa);

 /* ... */

 return 0;

}

static void

xf86SIGIO(int sig)

{

 /* Identify the device that triggered generation of this

 SIGIO and handle the data arriving from it */

 /* ... */

}

Sensing Data Availability 143

144 Chapter 5 Character Drivers

As you can decipher from the above snippet, the X server does the following:

 • Calls fcntl(F_SETOWN). The fcntl() system call is used to manipulate file
descriptor behavior. F_SETOWN sets the ownership of the descriptor to the call-
ing process. This is required since the kernel needs to know where to send the
asynchronous signal. This step is transparent to the device driver.

 • Invokes fcntl(F_SETFL). F_SETFL requests the driver to deliver SIGIO to
the application whenever there is data to be read, or if the driver is ready to
receive more application data. The invocation of fcntl(F_SETFL) results in
the invocation of the fasync() driver method. It’s this method’s responsibil-
ity to add or remove entries from the list of processes that are to be delivered
SIGIO. To this end, fasync() utilizes the services of a kernel library function
called fasync_helper().

 • Implements the SIGIO signal handler, xf86SIGIO(), as per its code architec-
ture and installs it using the sigaction() system call. When the underlying
input device driver detects a change in data status, it dispatches SIGIO to regis-
tered requesters and this triggers execution of xf86SIGIO().43 Char drivers call
kill_fasync() to send SIGIO to registered processes. To notify a read event,
POLLIN is passed as the argument to kill_fasync(). To notify a write event,
the argument is POLLOUT.

To see how the driver-side of the asynchronous notifi cation chain is implemented, let’s
look at a fi ctitious fasync()method belonging to the driver of an input device:

/* This is invoked by the kernel when the X server opens this

 * input device and issues fcntl(F_SETFL) on the associated file

 * descriptor. fasync_helper() ensures that if the driver issues a

 * kill_fasync(), a SIGIO is dispatched to the owning application.

 */

static int

inputdevice_fasync(int fd, struct file *filp, int on)

{

 return fasync_helper(fd, filp, on, &inputdevice_async_queue);

}

4 If your signal handler services asynchronous events from multiple devices, you will need additional mechanisms, such as a
select() call inside the handler, to fi gure out the identity of the device responsible for the event.

/* Interrupt Handler */

irqreturn_t

inputdevice_interrupt(int irq, void *dev_id)

{

 /* ... */

 /* Dispatch a SIGIO using kill_fasync() when input data is

 detected. Output data is not relevant since this is a read-only

 device */

 wake_up_interruptible(&inputdevice_wait);

 kill_fasync(&inputdevice_async_queue, SIGIO, POLL_IN);

 /* ... */

 return IRQ_HANDLED;

}

To see how SIGIO delivery can be complex, consider the case of a tty driver (discussed
in Chapter 6, “Serial Drivers”). Interested applications get notifi ed under different
scenarios:

 • If the underlying driver is not ready to accept application data, it puts the call-
ing process to sleep. When the driver interrupt handler subsequently decides
that the device can accept more data, it wakes the application and invokes
kill_fasync(POLLOUT).

 • If a newline character is received, the tty layer calls kill_fasync(POLLIN).

 • When the driver wakes up a sleeping reader thread after detecting that suffi cient
data bytes beyond a threshold have arrived from a device, it sends that informa-
tion to stakeholder processes by invoking kill_fasync(POLLIN).

Talking to the Parallel Port

The parallel port is a ubiquitous 25-pin interface popularly found on PC-compatible
systems. The capability of a parallel port (whether it’s unidirectional, bidirectional,
supports DMA, and so on) depends on the underlying chipset. Look at Figure 4.1 in
Chapter 4 to fi nd out how the PC architecture supports parallel ports.

The drivers/parport/ directory contains code (called parport) that implements IEEE
1284 parallel port communication. Several devices that connect to the parallel port such
as printers and scanners use parport’s services. Parport has an architecture- independent
module called parport.ko and an architecture-dependent one (parport_pc.ko for the PC

Talking to the Parallel Port 145

146 Chapter 5 Character Drivers

architecture) that provide programming interfaces to drivers of devices that interface
via the parallel port.

Let’s take the example of the parallel printer driver, drivers/char/ lp.c. These are the
high-level steps needed to print a fi le:

 1. The printer driver creates char device nodes /dev/lp0 to /dev/lpN, one per con-
nected printer.

 2. The Common UNIX Printing System (CUPS) is the framework that provides
print capabilities on Linux. The CUPS configuration file (/etc/printers.conf on
some distributions) maps printers with their char device nodes (/dev/lpX).

 3. CUPS utilities consult this file and stream data to the corresponding device
node. So, if you have a printer connected to the first parallel port on your sys-
tem and you issue the command, lpr myfile, it’s streamed via /dev/lp0 to the
printer’s write() method, lp_write(), defined in drivers/char/lp.c.

 4. lp_write() uses the services of parport to send the data to the printer.

Apple Inc. has acquired ownership of CUPS software. The code continues to be licensed
under GPLv2.

A char driver called ppdev (drivers/char/ppdev.c) exports the /dev/parportX device nodes
that let user applications directly communicate with the parallel port. (We talk more
about ppdev in Chapter 19.)

Device Example: Parallel Port LED Board

To learn how to use the services offered by parport, let’s write a simple driver. Consider
a board that has eight light-emitting diodes (LEDs) interfaced to a standard 25-pin par-
allel port connector. Because the 8-bit parallel port data register on the PC is directly
mapped to pins 2 to 9 of the parallel port connector, those pins are wired to the LEDs
on the board. Writing to the parallel port data register controls the voltage levels of
these pins and turns the LEDs on or off. Listing 5.6 implements a char driver that
communicates with this board over the system parallel port. Embedded comments
explain the parport service routines that Listing 5.6 uses.

LISTING 5.6 Driver for the Parallel LED Board (led.c)

#include <linux/fs.h>

#include <linux/cdev.h>

#include <linux/parport.h>

#include <asm/uaccess.h>

#include <linux/platform_device.h>

#define DEVICE_NAME "led"

static dev_t dev_number; /* Allotted device number */

static struct class *led_class; /* Class to which this device

 belongs */

struct cdev led_cdev; /* Associated cdev */

struct pardevice *pdev; /* Parallel port device */

/* LED open */

int

led_open(struct inode *inode, struct file *file)

{

 return 0;

}

/* Write to the LED */

ssize_t

led_write(struct file *file, const char *buf,

 size_t count, loff_t *ppos)

{

 char kbuf;

 if (copy_from_user(&kbuf, buf, 1)) return -EFAULT;

 /* Claim the port */

 parport_claim_or_block(pdev);

 /* Write to the device */

 parport_write_data(pdev->port, kbuf);

 /* Release the port */

 parport_release(pdev);

 return count;

}

Talking to the Parallel Port 147

148 Chapter 5 Character Drivers

/* Release the device */

int

led_release(struct inode *inode, struct file *file)

{

 return 0;

}

/* File Operations */

static struct file_operations led_fops = {

 .owner = THIS_MODULE,

 .open = led_open,

 .write = led_write,

 .release = led_release,

};

static int

led_preempt(void *handle)

{

 return 1;

}

/* Parport attach method */

static void

led_attach(struct parport *port)

{

 /* Register the parallel LED device with parport */

 pdev = parport_register_device(port, DEVICE_NAME,

 led_preempt, NULL,

 NULL, 0, NULL);

 if (pdev == NULL) printk("Bad register\n");

}

/* Parport detach method */

static void

led_detach(struct parport *port)

{

 /* Do nothing */

}

/* Parport driver operations */

static struct parport_driver led_driver = {

 .name = "led",

 .attach = led_attach,

 .detach = led_detach,

};

/* Driver Initialization */

int __init

led_init(void)

{

 /* Request dynamic allocation of a device major number */

 if (alloc_chrdev_region(&dev_number, 0, 1, DEVICE_NAME)

 < 0) {

 printk(KERN_DEBUG "Can't register device\n");

 return -1;

 }

 /* Create the led class */

 led_class = class_create(THIS_MODULE, DEVICE_NAME);

 if (IS_ERR(led_class)) printk("Bad class create\n");

 /* Connect the file operations with the cdev */

 cdev_init(&led_cdev, &led_fops);

 led_cdev.owner = THIS_MODULE;

 /* Connect the major/minor number to the cdev */

 if (cdev_add(&led_cdev, dev_number, 1)) {

 printk("Bad cdev add\n");

 return 1;

 }

 class_device_create(led_class, NULL, dev_number,

 NULL, DEVICE_NAME);

 /* Register this driver with parport */

 if (parport_register_driver(&led_driver)) {

 printk(KERN_ERR "Bad Parport Register\n");

 return -EIO;

 }

 printk("LED Driver Initialized.\n");

 return 0;

}

/* Driver Exit */

void __exit

led_cleanup(void)

{

Talking to the Parallel Port 149

150 Chapter 5 Character Drivers

 unregister_chrdev_region(dev_number, 1);

 class_device_destroy(led_class,dev_number);

 class_destroy(led_class);

 return;

}

module_init(led_init);

module_exit(led_cleanup);

MODULE_LICENSE("GPL");

led_init() is similar to cmos_init() developed in Listing 5.1, but for a couple
of things:

 1. As you saw in Chapter 4, the new device model distinguishes between drivers and
devices. led_init() registers the LED driver with parport via a call to parport_
register_driver().When the kernel finds the LED board during led_
attach(), it registers the device by invoking parport_register_device().

 2. led_init() creates the device node /dev/led, which you can use to control the
state of individual LEDs.

Compile and insert the driver module into the kernel:

bash> make –C /path/to/kerneltree/ M=$PWD modules

bash> insmod ./led.ko

LED Driver Initialized

To selectively drive some parallel port pins and glow the corresponding LEDs, echo
the appropriate value to /dev/led:

bash> echo 1 > /dev/led

Because ASCII for 1 is 31 (or 00110001), the first, fifth, and sixth LEDs should
turn on.

The preceding command triggers invocation of led_write(). This driver method
fi rst copies user memory (the value 31 in this case) to kernel buffers via copy_from_
user(). It then claims the parallel port, writes data, and releases the port, all using
parport interfaces.

Sysfs is a better place than /dev to control device state, so it’s a good idea to entrust
LED control to sysfs fi les. Listing 5.7 contains the driver implementation that achieves

this. The sysfs manipulation code in the listing can serve as a template to achieve
device control from other drivers, too.

LISTING 5.7 Using Sysfs to Control the Parallel LED Board

#include <linux/fs.h>

#include <linux/cdev.h>

#include <linux/parport.h>

#include <asm/uaccess.h>

#include <linux/pci.h>

static dev_t dev_number; /* Allotted Device Number */

static struct class *led_class; /* Class Device Model */

struct cdev led_cdev; /* Character dev struct */

struct pardevice *pdev; /* Parallel Port device */

struct kobject kobj; /* Sysfs directory object */

/* Sysfs attribute of the leds */

struct led_attr {

 struct attribute attr;

 ssize_t (*show)(char *);

 ssize_t (*store)(const char *, size_t count);

};

#define glow_show_led(number) \

static ssize_t \

glow_led_##number(const char *buffer, size_t count) \

{ \

 unsigned char buf; \

 int value; \

 \

 sscanf(buffer, "%d", &value); \

 \

 parport_claim_or_block(pdev); \

 buf = parport_read_data(pdev->port); \

 if (value) { \

 parport_write_data(pdev->port, buf | (1<<number)); \

 } else { \

 parport_write_data(pdev->port, buf & ~(1<<number)); \

 } \

 parport_release(pdev); \

 return count; \

} \

Talking to the Parallel Port 151

152 Chapter 5 Character Drivers

 \

static ssize_t \

show_led_##number(char *buffer) \

{ \

 unsigned char buf; \

 \

 parport_claim_or_block(pdev); \

 \

 buf = parport_read_data(pdev->port); \

 parport_release(pdev); \

 \

 if (buf & (1 << number)) { \

 return sprintf(buffer, "ON\n"); \

 } else { \

 return sprintf(buffer, "OFF\n"); \

 } \

} \

 \

static struct led_attr led##number = \

__ATTR(led##number, 0644, show_led_##number, glow_led_##number);

glow_show_led(0); glow_show_led(1); glow_show_led(2);

glow_show_led(3); glow_show_led(4); glow_show_led(5);

glow_show_led(6); glow_show_led(7);

#define DEVICE_NAME "led"

static int

led_preempt(void *handle)

{

 return 1;

}

/* Parport attach method */

static void

led_attach(struct parport *port)

{

 pdev = parport_register_device(port, DEVICE_NAME,

 led_preempt, NULL, NULL, 0,

 NULL);

 if (pdev == NULL) printk("Bad register\n");

}

/* Parent sysfs show() method. Calls the show() method

 corresponding to the individual sysfs file */

static ssize_t

l_show(struct kobject *kobj, struct attribute *a, char *buf)

{

 int ret;

 struct led_attr *lattr = container_of(a, struct led_attr,attr);

 ret = lattr->show ? lattr->show(buf) : -EIO;

 return ret;

}

/* Sysfs store() method. Calls the store() method

 corresponding to the individual sysfs file */

static ssize_t

l_store(struct kobject *kobj, struct attribute *a,

 const char *buf, size_t count)

{

 int ret;

 struct led_attr *lattr = container_of(a, struct led_attr, attr);

 ret = lattr->store ? lattr->store(buf, count) : -EIO;

 return ret;

}

/* Sysfs operations structure */

static struct sysfs_ops sysfs_ops = {

 .show = l_show,

 .store = l_store,

};

/* Attributes of the /sys/class/pardevice/led/control/ kobject.

 Each file in this directory corresponds to one LED. Control

 each LED by writing or reading the associated sysfs file */

static struct attribute *led_attrs[] = {

 &led0.attr,

 &led1.attr,

 &led2.attr,

 &led3.attr,

 &led4.attr,

 &led5.attr,

 &led6.attr,

 &led7.attr,

Talking to the Parallel Port 153

154 Chapter 5 Character Drivers

 NULL

};

/* This describes the kobject. The kobject has 8 files, one

 corresponding to each LED. This representation is called the

ktype of the kobject */

static struct kobj_type ktype_led = {

 .sysfs_ops = &sysfs_ops,

 .default_attrs = led_attrs,

};

/* Parport methods. We don't have a detach method */

static struct parport_driver led_driver = {

 .name = "led",

 .attach = led_attach,

};

/* Driver Initialization */

int __init

led_init(void)

{

 struct class_device *c_d;

 if (alloc_chrdev_region (&dev_number, 0, 1, DEVICE_NAME)

 < 0) {

 printk(KERN_DEBUG "Can’t register new device\n");

 return -1;

 }

 /* Create the pardevice class - /sys/class/pardevice */

 led_class = class_create(THIS_MODULE, "pardevice");

 if (IS_ERR(led_class)) printk("Bad class create\n");

 /* Create the led class device - /sys/class/pardevice/led/ */

 c_d = class_device_create(led_class, NULL, dev_number,

 NULL, DEVICE_NAME);

 /* Register this driver with parport */

 if (parport_register_driver(&led_driver)) {

 printk(KERN_ERR "Bad Parport Register\n");

 return -EIO;

 }

 /* Instantiate a kobject to control each LED

 on the board */

 /* Parent is /sys/class/pardevice/led/ */

 kobj.parent = &c_d->kobj;

 /* The sysfs file corresponding to kobj is

/sys/class/pardevice/led/control/ */

 strlcpy(kobj.name, "control", KOBJ_NAME_LEN);

 /* Description of the kobject. Specifies the list of attribute

 files in /sys/class/pardevice/led/control/ */

 kobj.ktype = &ktype_led;

 /* Register the kobject */

 kobject_register(&kobj);

 printk("LED Driver Initialized.\n");

 return 0;

}

/* Driver Exit */

void

led_cleanup(void)

{

 /* Unregister kobject corresponding to

/sys/class/pardevice/led/control */

 kobject_unregister(&kobj);

 /* Destroy class device corresponding to

/sys/class/pardevice/led/ */

 class_device_destroy(led_class, dev_number);

 /* Destroy /sys/class/pardevice */

 class_destroy(led_class);

 return;

}

module_init(led_init);

module_exit(led_cleanup);

MODULE_LICENSE("GPL");

The macro defi nition of glow_show_led() in Listing 5.7 uses a technique popular
in kernel source fi les to compactly defi ne several similar functions. The defi nition pro-
duces read() and write() methods (called show() and store() in sysfs terminol-
ogy) attached to eight /sys fi les, one per LED on the board. Thus, glow_show_led(0)

Talking to the Parallel Port 155

156 Chapter 5 Character Drivers

attaches glow_led_0() and show_led_0() to the /sys fi le corresponding to the fi rst
LED. These functions are respectively responsible for glowing/extinguishing the fi rst
LED and reading its status. ## glues a value to a string, so glow_led_##number translates
to glow_led_0() when the compiler processes the statement, glow_show_led(0).

This sysfs-aware version of the driver uses a kobject to represent a “control” abstrac-
tion, which emulates a software knob to control the LEDs. Each kobject is represented
by a directory name in sysfs, so kobject_register() in Listing 5.7 results in the
creation of the /sys/class/pardevice/led/control/ directory.

A ktype describes a kobject. The “control” kobject is described via the ktype_led
structure, which contains a pointer to the attribute array, led_attrs[]. This array
contains the addresses of the device attributes of each LED. The attributes of each
LED are tied together by the statement:

static struct led_attr led##number =

__ATTR(led##number, 0644, show_led_##number, glow_led_##number);

This results in instantiating the control fi le for each LED, /sys/class/pardevice/led/con-
trol/ledX, where X is the LED number. To change the state of ledX, echo a 1 (or a 0) to
the corresponding control fi le. To glow the fi rst LED on the board, do this:

bash> echo 1 > /sys/class/pardevice/led/control/led0

During module exit, the driver unregisters the kobjects and classes using kobject_
unregister(), class_device_destroy(), and class_destroy().

Listing 7.2 in Chapter 7, “Input Drivers,” uses another route to create fi les
in sysfs.

Writing a char driver is no longer as simple as it used to be in the days of the 2.4
kernel. To develop the simple LED driver above, we used half a dozen abstractions:
cdev, sysfs, kobjects, classes, class device, and parport. The abstractions, however, bring
several advantages to the table such as bug-free building blocks, code reuse, and ele-
gant design.

RTC Subsystem

RTC support in the kernel is architected into two layers: a hardware-independent top-
layer char driver that implements the kernel RTC API, and a hardware-dependent bot-
tom-layer driver that communicates with the underlying bus. The RTC API, specifi ed

in Documentation/rtc.txt, is a set of standard ioctls that conforming applications such
as hwclock leverage by operating on /dev/rtc. The API also specifi es attributes in sysfs
(/sys/class/rtc/) and procfs (/proc/driver/rtc). The RTC API guarantees that user-space
tools are independent of the underlying platform and the RTC chip. The bottom-layer
RTC driver is bus-specifi c. The embedded device discussed in the section “Device
Example: Real Time Clock” in Chapter 8, “The Inter-Integrated Circuit Protocol,”
has an RTC chip connected to the I2C bus, which is driven by an I2C client driver.

The kernel has a dedicated RTC subsystem that provides the top-layer char driver
and a core infrastructure that bottom-layer RTC drivers can use to tie in with the top
layer. The main components of this infrastructure are the rtc_class_ops structure
and the registration functions, rtc_device_[register|unregister](). Bottom-
layer RTC drivers scattered under different bus-specifi c directories are being unifi ed
with this subsystem under drivers/rtc/.

The RTC subsystem allows the possibility that a system can have more than one
RTC. It does this by exporting multiple interfaces, /dev/rtcN and /sys/class/rtc/rtcN,
where N is the number of RTCs on your system. Some embedded systems, for exam-
ple, have two RTCs: one built in to the microcontroller to support sophisticated
operations such as periodic interrupt generation, and another no-frills low-power bat-
tery-backed external RTC for timekeeping. Because RTC-aware applications operate
over /dev/rtc, set up a symbolic link so that one of the created /dev/rtcX nodes can be
accessed as /dev/rtc.

To enable the RTC subsystem, turn on CONFIG_RTC_CLASS during kernel
confi guration.

The Legacy PC RTC Driver

On PC systems, you have the option of bypassing the RTC subsystem by using the legacy RTC
driver, drivers/char/ rtc.c. This driver provides top and bottom layers for the RTC on PC- compatible
systems and exports /dev/rtc and /proc/driver/rtc to user applications. To enable this driver, turn on
CONFIG_RTC during kernel confi guration.

Pseudo Char Drivers

Several commonly used kernel facilities are not connected with any physical hard-
ware, but are elegantly implemented as char devices. The null sink, the perpetual zero

Pseudo Char Drivers 157

158 Chapter 5 Character Drivers

source, and the kernel random number generator are treated as virtual devices and are
accessed using pseudo char device drivers.

The /dev/null char device sinks data that you don’t want to display on your screen.
So if you need to check out source fi les from a Concurrent Versioning System (CVS)
repository without spewing fi lenames all over the screen, do this:

bash> cvs co kernel > /dev/null

This redirects command output to the write entry point belonging to the /dev/null
driver. The driver’s read() and write() methods simply return success ignoring the
contents of the input and output buffers, respectively.

If you want to fi ll an image fi le with zeros, call upon /dev/zero to come to your
service:

bash> dd if=/dev/zero of=file.img bs=1024 count=1024

This sources a stream of zeros from the read() method belonging to the /dev/zero
driver. The driver has no write() method.

The kernel has a built-in random number generator. For the benefi t of kernel users
who desire to use random sequences, the random number generator exports APIs such
as get_random_bytes(). For user mode programs, it exports two char interfaces:
/dev/random and /dev/urandom. The quality of randomness is higher for reads from /dev/
random compared to that from /dev/ urandom. When a user program reads from /dev/
random, it gets strong (or true) random numbers, but reads from /dev/urandom yield
pseudo random numbers. The /dev/ random driver does not use formulae to generate
strong random numbers. Instead, it gathers “environmental noise” (interval between
interrupts, key clicks, and so on) for maintaining a reservoir of disorder (called an
entropy pool) that seeds the random stream. To see the kernel’s input subsystem (dis-
cussed in Chapter 7) contributing to the entropy pool when it detects a keyboard press
or mouse movement, look at input_event() defi ned in drivers/input/input.c:

void

input_event(struct input_dev *dev, unsigned int type,

 unsigned int code, int value)

{

 /* ... */

 add_input_randomness(type, code, value); /* Contribute to entropy

 pool */

 /* ... */

}

To see how the core interrupt handling layer contributes inter-interrupt periods to the
entropy pool, look at handle_IRQ_event() defi ned in kernel/irq/handle.c:

irqreturn_t handle_IRQ_event(unsigned int irq,

 struct irqaction *action)

{

 /* ... */

 if (status & IRQF_SAMPLE_RANDOM)

 add_interrupt_randomness(irq); /* Contribute to entropy pool */

 /* ... */

}

The generation of strongly random numbers depends on the size of the entropy pool:

bash> od –x /dev/random

0000000 7331 9028 7c89 4791 7f64 3deb 86b3 7564

0000020 ebb9 e806 221a b8f9 af12 cb30 9a0e cc28

0000040 68d8 0bbf 68a4 0898 528e 1557 d8b3 57ec

0000060 b01d 8714 b1e1 19b9 0a86 9f60 646c c269

The output stops after a few lines, signaling that the entropy pool is exhausted. To
replenish the entropy pool and restart the random stream, jab the keyboard several
times after switching to an unused terminal or push the mouse around the screen.

A dump of /dev/ urandom, however, produces a continuous pseudo random stream
that never stops.

/dev/mem and /dev/ kmem are classic pseudo char devices that are tools that let you
peek inside system memory. These char nodes export raw interfaces connected to
physical memory and kernel virtual memory, respectively. To manipulate system mem-
ory, you may mmap() these nodes and operate on the returned regions. As an exercise,
change the hostname of your system by accessing /dev/mem.

All the char devices discussed in this section (null, zero, random, urandom, mem,
and kmem) have different minor numbers but the same statically assigned major num-
ber, 1. Look at drivers/char/mem.c and drivers/char/random.c for their implementation.
Two other pseudo drivers belong to the same major number family: /dev/full, which
emulates an always full device; and /dev/port, which peeks at system I/O ports. We use
the latter in Chapter 19.

Pseudo Char Drivers 159

160 Chapter 5 Character Drivers

Misc Drivers

Misc (or miscellaneous) drivers are simple char drivers that share certain common
characteristics. The kernel abstracts these commonalities into an API (implemented
in drivers/char/misc.c), and this simplifi es the way these drivers are initialized. All misc
devices are assigned a major number of 10, but each can choose a single minor num-
ber. So, if a char driver needs to drive multiple devices as in the CMOS example dis-
cussed earlier, it’s probably not a candidate for being a misc driver.

Consider the sequence of initialization steps that a char driver performs:

 • Allocates major/minor numbers via alloc_chrdev_region() and friends

 • Creates /dev and /sys nodes using device_create()

 • Registers itself as a char driver using cdev_init() and cdev_add()

A misc driver accomplishes all this with a single call to misc_register():

static struct miscdevice mydrv_dev = {

 MYDRV_MINOR,

 "mydrv",

 &mydrv_fops

};

misc_register(&mydrv_dev);

In the preceding example, MYDRV_MINOR is the minor number that you want to stati-
cally assign to your misc driver. You may also request a minor number to be dynami-
cally assigned by specifying MISC_DYNAMIC_MINOR rather than MYDRV_MINOR in the
mydrv_dev structure.

Each misc driver automatically appears under /sys/class/misc/ without explicit effort
from the driver writer. Because misc drivers are char drivers, the earlier discussion on
char driver entry points hold for misc drivers, too. Let’s now look at an example misc
driver.

Device Example: Watchdog Timer

A watchdog’s function is to return an unresponsive system to operational state. It does
this by periodically checking the system’s pulse and issuing a reset54 if it can’t detect

5 A watchdog may issue audible beeps rather than a system reset. An example scenario is when a timeout occurs due to a power
supply problem, assuming that the watchdog circuit is backed up using a battery or a super capacitor.

any. Application software is responsible for registering this pulse (or “heartbeat”) by
periodically strobing (or “petting”) the watchdog using the services of a watchdog
device driver. Most embedded controllers support internal watchdog modules. Exter-
nal watchdog chips are also available. An example is the Netwinder W83977AF chip.

Linux watchdog drivers are implemented as misc drivers and live inside drivers/
char/watchdog/. Watchdog drivers, like RTC drivers, export a standard device interface
to user land, so conforming applications are rendered independent of the internals of
watchdog hardware. This API is specifi ed in Documentation/watchdog/watchdog-api.txt
in the kernel source tree. Programs that desire the services of a watchdog operate on
/dev/watchdog, a device node having a misc minor number of 130.

Listing 5.9 implements a device driver for a fi ctitious watchdog module built in
to an embedded controller. The example watchdog contains two main registers as
shown in Table 5.2: a service register (WD_SERVICE_REGISTER) and a control register
(WD_CONTROL_REGISTER). To pet the watchdog, the driver writes a specifi c sequence
(0xABCD in this case) to the service register. To program watchdog timeout, the driver
writes to specifi ed bit positions in the control register.

TABLE 5.2 Register Layout on the Watchdog Module

Register Name Description

WD_SERVICE_REGISTER Write a specific sequence to this register to pet the watchdog.

WD_CONTROL_REGISTER Write the watchdog timeout to this register.

Strobing the watchdog is usually done from user space because the goal of having a
watchdog is to detect and respond to both application and kernel hangs. A critical
application65 such as the graphics engine in Listing 5.10 opens the watchdog driver in
Listing 5.9 and periodically writes to it. If no write occurs within the watchdog tim-
eout due to an application hang or a kernel crash, the watchdog triggers a system reset.
In the case of Listing 5.10, the watchdog will reboot the system if

 • The application hangs inside process_graphics()

 • The kernel, and consequently the application, dies

The watchdog starts ticking when an application opens /dev/watchdog. Closing this
device node stops the watchdog unless you set CONFIG_WATCHDOG_NOWAYOUT during

6 If you need to monitor the health of several applications, you may implement a multiplexer in the watchdog device driver. If any
one of the processes that open the driver becomes unresponsive, the watchdog attempts to self-correct the system.

Misc Drivers 161

162 Chapter 5 Character Drivers

kernel confi guration. Setting this option helps you tide over the possibility that the
watchdog monitoring process (such as Listing 5.10) gets killed by a signal while the
system continues running.

LISTING 5.9 An Example Watchdog Driver

#include <linux/miscdevice.h>

#include <linux/watchdog.h>

#define DEFAULT_WATCHDOG_TIMEOUT 10 /* 10-second timeout */

#define TIMEOUT_SHIFT 5 /* To get to the timeout field

 in WD_CONTROL_REGISTER */

#define WENABLE_SHIFT 3 /* To get to the

 watchdog-enable field in

 WD_CONTROL_REGISTER */

/* Misc structure */

static struct miscdevice my_wdt_dev = {

 .minor = WATCHDOG_MINOR, /* defined as 130 in

 include/linux/miscdevice.h */

 .name = "watchdog", /* /dev/watchdog */

 .fops = &my_wdt_dog /* Watchdog driver entry points */

};

/* Driver methods */

struct file_operations my_wdt_dog = {

.owner = THIS_MODULE,

.open = my_wdt_open,

.release = my_wdt_close,

.write = my_wdt_write,

.ioctl = my_wdt_ioctl

}

/* Module Initialization */

static int __init

my_wdt_init(void)

{

 /* ... */

 misc_register(&my_wdt_dev);

 /* ... */

}

/* Open watchdog */

static void

my_wdt_open(struct inode *inode, struct file *file)

{

 /* Set the timeout and enable the watchdog */

 WD_CONTROL_REGISTER |= DEFAULT_WATCHDOG_TIMEOUT << TIMEOUT_SHIFT;

 WD_CONTROL_REGISTER |= 1 << WENABLE_SHIFT;

}

/* Close watchdog */

static int

my_wdt_close(struct inode *inode, struct file *file)

{

 /* If CONFIG_WATCHDOG_NOWAYOUT is chosen during kernel

 configuration, do not disable the watchdog even if the

 application desires to close it */

#ifndef CONFIG_WATCHDOG_NOWAYOUT

 /* Disable watchdog */

 WD_CONTROL_REGISTER &= ~(1 << WENABLE_SHIFT);

#endif

 return 0;

}

/* Pet the dog */

static ssize_t

my_wdt_write(struct file *file, const char *data,

 size_t len, loff_t *ppose)

{

 /* Pet the dog by writing a specified sequence of bytes to the

 watchdog service register */

 WD_SERVICE_REGISTER = 0xABCD;

}

/* Ioctl method. Look at Documentation/watchdog/watchdog-api.txt

 for the full list of ioctl commands. This is standard across

 watchdog drivers, so conforming applications are rendered

 hardware-independent */

static int

my_wdt_ioctl(struct inode *inode, struct file *file,

 unsigned int cmd, unsigned long arg)

{

 /* ... */

Misc Drivers 163

164 Chapter 5 Character Drivers

 switch (cmd) {

 case WDIOC_KEEPALIVE:

 /* Write to the watchdog. Applications can invoke

 this ioctl instead of writing to the device */

 WD_SERVICE_REGISTER = 0xABCD;

 break;

 case WDIOC_SETTIMEOUT:

 copy_from_user(&timeout, (int *)arg, sizeof(int));

 /* Set the timeout that defines unresponsiveness by

 writing to the watchdog control register */

 WD_CONTROL_REGISTER = timeout << TIMEOUT_BITS;

 break;

 case WDIOC_GETTIMEOUT:

 /* Get the currently set timeout from the watchdog */

 /* ... */

 break;

 default:

 return –ENOTTY;

 }

}

/* Module Exit */

static void __exit

my_wdt_exit(void)

{

 /* ... */

 misc_deregister(&my_wdt_dev);

 /* ... */

}

module_init(my_wdt_init);

module_exit(my_wdt_exit);

LISTING 5.10 A Watchdog User

#include <fcntl.h>

#include <asm/types.h>

#include <linux/watchdog.h>

int

main()

{

 int new_timeout;

 int wfd = open("/dev/watchdog", O_WRONLY);

 /* Set the watchdog timeout to 20 seconds */

 new_timeout = 20;

 ioctl(fd, WDIOC_SETTIMEOUT, &new_timeout);

 while (1) {

 /* Graphics processing */

 process_graphics();

 /* Pet the watchdog */

 ioctl(fd, WDIOC_KEEPALIVE, 0);

 /* Or instead do: write(wfd, "\0", 1); */

 fsync(wfd);

 }

}

External Watchdogs

To ensure that the system attempts to recover even in the face of processor failures, some regula-
tory bodies stipulate the use of an external watchdog chip, even if the main processor has a sophis-
ticated built-in watchdog module such as the one in our example. Because of this requirement,
embedded devices sometimes use an inexpensive no-frill watchdog chip (such as MAX6730 from
Maxim) that is based on simple hard-wired logic rather than a register interface. The watchdog
asserts a reset pin if no voltage pulse is detected on an input pin within a fi xed reset timeout. The
reset pin is connected to the reset logic of the processor, and the input pin is wired to a processor
GPIO port. All that software has to do to prevent reset is to periodically pulse the watchdog’s
input pin within the chip’s reset timeout. If you are writing a driver for such a device, the ioctl()
method is not relevant. The driver’s write() method pulses the watchdog’s input pin whenever
application software writes to the associated device node. To aid manufacturing and fi eld diagnos-
tics, the watchdog may be wired such that it can be disabled by wiggling a processor GPIO pin.

Such chips usually allow a large initial timeout to account for boot time, followed by shorter
reset timeouts.

For platforms that do not support a hardware watchdog module, the kernel imple-
ments a software watchdog, also called a softdog. The softdog driver, drivers/char/watch-
dog/softdog.c, is a pseudo misc driver because it does not operate on real hardware. The

Misc Drivers 165

166 Chapter 5 Character Drivers

softdog driver has to perform two tasks that a watchdog driver doesn’t have to do,
which the latter accomplishes in hardware:

 • Implement a timeout mechanism

 • Initiate a soft reboot if the system isn’t healthy

This is done by delaying the execution of a timer handler whenever an application
writes to the softdog. If no write occurs to the softdog within a timeout, the timer
handler fi res and reboots the system.

A related support in 2.6 kernels is the sensing of soft lockups, which are instances
when scheduling does not occur for 10 or more seconds. A kernel thread watchdog/
N, where N is the CPU number, touches a per-CPU timestamp every second. If the
thread doesn’t touch the timestamp for more than 10 seconds, the system is deemed
to have locked up. Soft lockup detection (implemented in kernel/softlockup.c) will aid
us while debugging a kernel crash in the section “Kdump” in Chapter 21, “Debugging
Device Drivers.”

There are several more misc drivers in the kernel. The Qtronix infrared keyboard
driver, drivers/char/qtronix.c, is another example of a char driver that has a misc form
factor. Do a grep on misc_register() in the drivers/char/ directory to fi nd other
misc device drivers present in the kernel.

Character Caveats

Driver methods, and hence the associated system calls issued by user applications, may
fail or partially succeed. Your application has to factor this in to avoid unpleasant sur-
prises. Let’s look at some common pitfalls:

 • An open() call may fail for several reasons. Some char drivers support only a
single user at a time, so they fail with -EBUSY if an application attempts to open
a device that is already in use. If a printer is out of paper, the driver fails with
-ENOSPC if you issue a device open().

 • A successful read() or write() can return anything between 1 byte and the num-
ber of bytes requested, so your application needs sufficient logic to handle this.

 • A select() call returns success even if a single byte of data is ready to be read
or written.

 • Some char devices such as mice and touch screens are input-only, so their drivers
will not support the write method family (write()/aio_write()/fsync()).

Other devices such as printers are output-only, and their drivers will not sup-
port the read method family (read()/aio_read()). Also, many char driver
methods are optional, so all methods will not be present in all drivers. When a
method is absent, the corresponding system call fails.

Looking at the Sources

Char drivers do not exclusively live in the drivers/char/ directory. Here are some exam-
ples of “super” char drivers that merit special treatment and directories:

 • Serial drivers are char drivers that manage your computer’s serial port. However,
they are much more than simple char drivers and reside separately in the drivers/
serial/ directory. The next chapter discusses serial drivers.

 • Input drivers are responsible for devices such as keyboards, mice, and joysticks.
They live in a separate source directory drivers/input/, and hence get a distinct
chapter, Chapter 7.

 • Frame buffers (/dev/fb/*) offer access to video memory, the way /dev/mem exports
access to system memory. Chapter 12, “Video Drivers,” looks at frame buffer
drivers.

 • Some device classes support a minority of hardware possessing a char interface.
For example, SCSI devices are generally block devices, but a SCSI tape is a char
device.

 • Some subsystems export additional char interfaces that present a raw device
model to user space. The MTD subsystem is generally used for emulating a disk
on top of diverse types of flash memory, but some applications might be better
served if they are provided with a raw view of the underlying flash memory. This
is done by the MTD char driver drivers/mtd/mtdchar.c, which is discussed in
Chapter 17, “Memory Technology Devices.”

 • Certain kernel layers provide hooks for implementing user-space device drivers
by exporting suitable char interfaces. Applications can directly access the innards
of the device via these interfaces. One example is the generic SCSI driver drivers/
scsi/sg.c used to implement user-space device drivers for SCSI scanners and CD
drives. Another example is the I2C device interface, i2c-dev. Such char interfaces
are explained in Chapter 19.

Looking at the Sources 167

168 Chapter 5 Character Drivers

Meanwhile, run a grep -r on register_chrdev in the drivers/ directory to get an
idea of the popularity of char drivers in the kernel.

Table 5.3 contains a summary of the main data structures used in this chapter
and the location of their defi nitions in the source tree. Table 5.4 lists the main kernel
programming interfaces that you used in this chapter along with the location of their
defi nitions.

TABLE 5.3 Summary of Data Structures

 Data Structure Location Description

cdev include/linux/cdev.h Kernel abstraction of a char device

file_operations include/linux/fs.h Char driver methods

dev_t include/linux/types.h Device major/minor numbers

poll_table include/linux/poll.h A table of wait queues owned by drivers that are being
polled for data

pardevice include/linux/parport.h Kernel abstraction of a parallel port device

rtc_class_ops include/linux/rtc.h Communication interface between top layer and
bottom layer RTC drivers

miscdevice include/linux/miscdevice.h Representation of a misc device

TABLE 5.4 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

alloc_chrdev_region() fs/char_dev.c Requests dynamic allocation of a
device major number

unregister_chrdev_region() fs/char_dev.c Reverse of
alloc_chrdev_region()

cdev_init() fs/char_dev.c Connects char driver methods with
the associated cdev

cdev_add() fs/char_dev.c Associates a device number with a
cdev

cdev_del() fs/char_dev.c Removes a cdev

container_of() include/linux/kernel.h From a structure member, gets the
address of its containing structure

copy_from_user() arch/x86/lib/usercopy_32.c
(For i386)

 Copies data from user space to
kernel space

copy_to_user() arch/x86/lib/usercopy_32.c
(For i386)

 Copies data from kernel space to
user space

likely()
unlikely()

include/linux/compiler.h Informs GCC about the possibility
of success of the associated condi-
tional evaluation

Kernel Interface Location Description

request_region() include/linux/ioport.h
kernel/resource.c

Stakes claim to an I/O region

release_region() include/linux/ioport.h
kernel/resource.c

Relinquishes claim to an I/O region

in[b|w|l|sn|sl]()
out[b|w|l|sn|sl]()

include/asm-your-arch/io.h Family of functions to exchange data
with I/O regions

poll_wait() include/linux/poll.h Adds a wait queue to the kernel
poll_table

fasync_helper() fs/fcntl.c Ensures that if a driver issues a
kill_fasync(), a SIGIO is
dispatched to the owning application

kill_fasync() fs/fcntl.c Dispatches a SIGIO to the owning
application

parport_register_device() drivers/parport/share.c Registers a parallel port device with
parport

parport_unregister_device() drivers/parport/share.c Unregisters a parallel port device

parport_register_driver() drivers/parport/share.c Registers a parallel port driver with
parport

parport_unregister_driver() drivers/parport/share.c Unregisters a parallel port driver

parport_claim_or_block() drivers/parport/share.c Claims a parallel port

parport_write_data() include/linux/parport.h Writes data to a parallel port

parport_read_data() include/linux/parport.h Reads data from a parallel port

parport_release() drivers/parport/share.c Releases a parallel port

kobject_register() lib/kobject.c Registers a kobject and creates asso-
ciated files in sysfs

kobject_unregister() lib/kobject.c Reverse of kobject_register()

rtc_device_register()/
rtc_device_unregister()

drivers/rtc/class.c Registers/unregisters a bottom-layer
driver with the RTC subsystem

misc_register() drivers/char/misc.c Registers a misc driver

misc_deregister() drivers/char/misc.c Unregisters a misc driver

Looking at the Sources 169

This page intentionally left blank

171

6

Serial Drivers

In This Chapter

■ Layered Architecture 173

■ UART Drivers 176

■ TTY Drivers 192

■ Line Disciplines 194

■ Looking at the Sources 205

172

T he serial port is a basic communication channel used by a slew of tech-
nologies and applications. A chip known as the Universal Asynchronous

Receiver Transmitter (UART) is commonly used to implement serial communi-
cation. On PC-compatible hardware, the UART is part of the Super I/O chip-
set, as shown in Figure 6.1.

Though RS-232 communication channels are the common type of serial hard-
ware, the kernel’s serial subsystem is architected in a generic manner to serve
diverse users. You will touch the serial subsystem if you

 • Run a terminal session over an RS-232 serial link

 • Connect to the Internet via a dialup, cellular, or software modem

 • Interface with devices such as touch controllers, smart cards, Bluetooth
chips, or Infrared dongles, which use a serial transport

 • Emulate a serial port using a USB-to-serial converter

 • Communicate over an RS-485 link, which is a multidrop variant of RS-232
that has larger range and better noise immunity

In this chapter, let’s find out how the kernel structures the serial subsystem. We
will use the example of a Linux cell phone to learn about low-level UART driv-
ers and the example of a serial touch controller to discover the implementation
details of higher-level line disciplines.

The UART usually found on PCs is National Semiconductor’s 16550, or compat-
ible chips from other vendors, so you will fi nd references to “ 16550-type UART” in
code and documentation. The 8250 chip is the predecessor of the 16550, so the
Linux driver for PC UARTs is named 8250.c.

Processor

North Bridge

South Bridge
Super I/O

UART

Serial Port

RS-232 Line Shifter

LPC Bus

FIGURE 6.1 Connection diagram of the PC serial port.

Layered Architecture

As you just saw, the users of the serial subsystem are many and different. This has
motivated kernel developers to structure a layered serial architecture using the follow-
ing building blocks:

 1. Low-level drivers that worry about the internals of the UART or other underly-
ing serial hardware.

 2. A tty driver layer that interfaces with the low-level driver. A tty driver insulates
higher layers from the intricacies of the hardware.

 3. Line disciplines that “cook” data exchanged with the tty driver. Line disciplines
shape the behavior of the serial layer and help reuse lower layers to support dif-
ferent technologies.

To help custom driver implementations, the serial subsystem also provides core APIs
that factor commonalities out of these layers.

Figure 6.2 shows the connection between the layers. N_TTY, N_IRDA, and N_PPP
are drop-in line disciplines that mold the serial subsystem to respectively support

Layered Architecture 173

174 Chapter 6 Serial Drivers

terminals, Infrared, and dialup networking. Figure 6.3 maps the serial subsystem to
kernel source fi les.

TTY
I/O Core

TTY Driver

Serial Port/Low-Level Hardware

UART/Low-Level Driver

N_TTY

/dev/ttySX

N_IRDA

/dev/ircommX

N_PPP Line Disciplines

ppp0

FIGURE 6.2 Connection between the layers in the serial subsystem.

To illustrate the advantages of a layered serial architecture, let’s use an example. Assume
that you are using a USB-to-serial adapter to obtain serial capabilities on a laptop that
does not have a serial port. One possible scenario is when you are debugging the ker-
nel on a target embedded device from a host laptop using kgdb (kgdb is discussed in
Chapter 21, “Debugging Device Drivers”), as shown in Figure 6.4.

As shown in Figure 6.3, you fi rst need a suitable USB physical layer driver (the
USB counterpart of the UART driver) on your host laptop. This is present in the
kernel USB subsystem, drivers/usb/. Next, you need a tty driver to sit on top of the
USB physical layer. The usbserial driver (drivers/usb/serial/usb-serial.c) is the core layer
that implements a generic tty over USB-serial converters. This driver, in tandem with
device-specifi c tty methods registered by the converter driver (drivers/usb/serial/keyspan.
c if you are using a Keyspan adapter, for example), constitutes the tty layer. Last, but
not the least, you need the N_TTY line discipline for terminal I/O processing.

N_TTY
(n_tty.c)

serial_core.c
usb-serial.c

(Core Module)

8250.c

N_IRDA
(irtty_sir.c)

User Applications (System call interface)

Line Discipline LayerLine Discipline LayerLine Discipline Layer

Physical Layer

Low-level driverLow-Level driver

TTY Layer

16550-type UART

USB-Serial
Converter

Driver

tty_io.c
(Core Module)

Infared USB-Serial Converter

FIGURE 6.3 Serial layers mapped to kernel sources.

USB

Host Laptop

UART

Target
Embedded

Device

FIGURE 6.4 Using a USB-to-serial converter.

Layered Architecture 175

176 Chapter 6 Serial Drivers

The tty driver insulates the line discipline and higher layers from the internals of
USB. In fact, the line discipline still thinks it’s running over a conventional UART.
This is so because the tty driver pulls data from USB Request Blocks or URBs (discussed
in Chapter 11, “Universal Serial Bus”) and encapsulates it in the format expected by
the N_TTY line discipline. The layered architecture thus renders the implementation
simpler—all blocks from the line discipline upward can be reused unchanged.

The preceding example uses a technology-specifi c tty driver and a generic line dis-
cipline. The reverse usage is also common. The Infrared stack, discussed in Chap-
ter 16, “Linux Without Wires,” uses a generic tty driver and a technology-specifi c line
discipline called N_IRDA.

As you might have noticed in Figure 6.2 and Figure 6.3, although UART drivers
are char drivers, they do not directly expose interfaces to kernel system calls like regu-
lar char drivers that we saw in the preceding chapter. Rather, UART drivers (like key-
board drivers discussed in the next chapter) service another kernel layer, the tty layer.
I/O system calls start their journey above top-level line disciplines and fi nally ripple
down to UART drivers through the tty layer.

In the rest of this chapter, let’s take a closer look at the different driver components
of the serial layer. We start at the bottom of the serial stack with low-level UART driv-
ers, move on to middle-level tty drivers, and then proceed to top-level line discipline
drivers.

UART Drivers

UART drivers revolve around three key data structures. All three are defi ned in include/
linux/serial_core.h:

 1. The per-UART driver structure, struct uart_driver:

struct uart_driver {

 struct module *owner; /* Module that owns this

 struct */

 const char *driver_name; /* Name */

 const char *dev_name; /* /dev node name

 such as ttyS */

 /* ... */

 int major; /* Major number */

 int minor; /* Minor number */

 /* ... */

 struct tty_driver *tty_driver; /* tty driver */

};

The comments against each fi eld explain the associated semantics. The owner
fi eld allows the same benefi ts as that discussed in the previous chapter for the
file_operations structure.

 2. struct uart_port. One instance of this structure exists for each port owned
by the UART driver:

 struct uart_port {

 spinlock_t lock; /* port lock */

 unsigned int iobase; /* in/out[bwl]*/

 unsigned char __iomem *membase; /* read/write[bwl]*/

 unsigned int irq; /* irq number */

 unsigned int uartclk; /* base uart clock */

 unsigned char fifosize; /* tx fifo size */

 unsigned char x_char; /* xon/xoff flow

 control */

 /* ... */

 };

 3. struct uart_ops. This is a superset of entry points that each UART driver
has to support and describes the operations that can be done on physical hard-
ware. The methods in this structure are invoked by the tty layer:

 struct uart_ops {

 uint (*tx_empty)(struct uart_port *); /* Is TX FIFO empty? */

 void (*set_mctrl)(struct uart_port *,

 unsigned int mctrl); /* Set modem control params */

 uint (*get_mctrl)(struct uart_port *); /* Get modem control params */

 void (*stop_tx)(struct uart_port *); /* Stop xmission */

 void (*start_tx)(struct uart_port *); /* Start xmission */

 /* ... */

 void (*shutdown)(struct uart_port *); /* Disable the port */

 void (*set_termios)(struct uart_port *,

 struct termios *new,

 struct termios *old); /* Set terminal interface

 params */

UART Drivers 177

178 Chapter 6 Serial Drivers

 /* ... */

 void (*config_port)(struct uart_port *,

 int); /* Configure UART port */

 /* ... */

 };

There are two important steps that a UART driver has to take to tie itself with the
kernel:

 1. Register with the serial core by calling

uart_register_driver(struct uart_driver *);

 2. Invoke uart_add_one_port(struct uart_driver *, struct uart_port
*) to register each individual port that it supports. If your serial hardware is
hotplugged, the ports are registered with the core from the entry point that
probes the presence of the device. Look at the CardBus Modem driver in List-
ing 10.4 in Chapter 10, “Peripheral Component Interconnect,” for an example
where the serial device is plugged hot. Note that some drivers use the wrapper
registration function serial8250_register_port(struct uart_port *),
which internally invokes uart_add_one_port().

These data structures and registration functions constitute the least common denomi-
nator present in all UART drivers. Armed with these structures and routines, let’s
develop a sample UART driver.

Device Example: Cell Phone

Consider a Linux cell phone built around an embedded System-on-Chip (SoC). The
SoC has two built-in UARTs, but as shown in Figure 6.5, both of them are used up,
one for communicating with a cellular modem, and the other for interfacing with a
Bluetooth chipset. Because there are no free UARTs for debug purposes, the phone
uses two USB-to-serial converter chips, one to provide a debug terminal to a PC host,
and the other to obtain a spare port. USB-to-serial converters, as you saw earlier in this
chapter, let you connect serial devices to your PC via USB. We discuss more on USB-
to-serial converters in Chapter 11.

The serial sides of the two USB-to-serial converter chips are connected to the SoC
via a Complex Programmable Logic Device or CPLD (see the section “CPLD/FPGA”

in Chapter 18, “Embedding Linux”). The CPLD creates two virtual UARTs (or USB_
UARTs) by providing a three-register interface to access each USB-to-serial converter, as
shown in Table 6.1: a status register, a read-data register, and a write-data register. To
write a character to a USB_UART, loop on a bit in the status register that clears when
there is space in the chip’s internal transmit fi rst-in fi rst-out (FIFO) memory and then
write the byte to the write-data register. To read a character, wait until a specifi ed bit in
the status register shows presence of data in the receive FIFO and then read from the
read-data register.

At the PC end, use the appropriate Linux usbserial driver (for example, drivers/
usb/serial/ftdi_sio.c if you are using an FT232AM chip on the cell phone) to create
and manage /dev/ttyUSBX device nodes that correspond to the USB-serial ports. You
may run terminal emulators such as minicom over one of these device nodes to obtain
a console or debug terminal from the cell phone. At the cell phone end, we have to
implement a UART driver for the USB_UARTs. This driver creates and manages /dev/
ttyUUX nodes that are responsible for communication at the device side of the link.

Linux Cell Phone

GSM/GPRS

UART1

UART2

UART3

UART4

Serial

USB

USB

Serial

/dev/ttyUU1

/dev/ttyUU0

/dev/ttyUSB0

USB-to-Serial
Converter chip

USB-to-Serial
Converter chip

Bluetooth

Embedded SoC CPLD

FIGURE 6.5 USB_UART ports on a Linux cell phone.

UART Drivers 179

180 Chapter 6 Serial Drivers

TABLE 6.1 Register Layout of the USB_UART

Register Name Description Offset from USB_UART
Memory Base

UU_STATUS_REGISTER Bits to check whether the transmit FIFO is
full or whether the receive FIFO is empty

0x0

UU_READ_DATA_REGISTER Read a character from the USB_UART 0x1

UU_WRITE_DATA_REGISTER Write a character to the USB_UART 0x2

The cell phone shown in Figure 6.5 can act as an intelligent gateway for Bluetooth devices—
to the GSM network and, hence, to the Internet. The phone can, for example, ferry data
from your Bluetooth blood pressure monitor to your health-care provider’s server on the
Internet. Or it can alert a doctor if it detects a problem while communicating with your
Bluetooth-enabled heart-rate monitor. The Bluetooth MP3 player used in Chapter 13,
“Audio Drivers,” and the Bluetooth pill dispenser used in Chapter 16 are also examples of
devices that can use the Linux cell phone to get Internet-enabled.

Listing 6.1 implements the USB_UART driver. It’s implemented as a platform driver. A
platform is a pseudo bus usually used to tie lightweight devices integrated into SoCs,
with the Linux device model. A platform consists of

 1. A platform device. The architecture-specific setup code adds the platform device
using platform_device_register() or its simpler version, platform_
device_register_simple(). You may also register multiple platform devices
at one shot using platform_add_devices(). The platform_device struc-
ture defined in include/linux/platform_device.h represents a platform device:

struct platform_device {

 const char *name; /* Device Name */

 u32 id; /* Use this field to register multiple

 instances of a platform device. In

 this example, the two USB_UARTs

 have different IDs. */

 struct device dev; /* Contains a release() method and

 platform data */

 /* ... */

};

 2. A platform driver. The platform driver registers itself into the platform using
platform_driver_register(). The platform_driver structure, also de-
fined in include/linux/platform_device.h, represents a platform driver:

struct platform_driver {

 int (*probe)(struct platform_device *); /*Probe method*/

 int (*remove)(struct platform_device *);/*Remove method*/

 /* ... */

 /* The name field in the following structure should match

 the name field in the associated platform_device

 structure */

 struct device_driver driver;

};

See Documentation/driver-model/platform.txt for more on platform devices and drivers.
For simplicity, our sample driver registers both the platform device and the platform
driver.

During initialization, the USB_UART driver fi rst registers itself with the serial core
using uart_register_driver(). When this is done, you will fi nd a new line start-
ing with usb_uart in /proc/tty/drivers. Next, the driver registers two platform devices
(one per USB_UART) using platform_device_register_simple(). As mentioned
earlier, platform device registrations are usually done during boot-time board setup.
Following this, the driver registers platform driver entry points (probe(), remove(),
suspend(), and resume()) using platform_driver_register(). The USB_
UART platform driver ties into both the above platform devices and has a match-
ing name (usb_uart). After this step, you will see two new directories appearing in
sysfs, each corresponding to a USB_UART port: /sys/devices/platform/usb_uart.0/ and
/sys/devices/platform/usb_uart.1/.

Because the Linux device layer now detects a platform driver matching the name of
the registered USB_UART platform devices, it invokes the probe() entry point1 (usb_
uart_probe()) belonging to the platform driver, once for each USB_UART. The probe
entry point adds the associated USB_UART port using uart_add_one_port(). This
triggers invocation of the config_port() entry point (part of the uart_ops structure

1 Such platform devices usually cannot be hotplugged. This invocation semantics of the probe() method is different from what
you will learn in later chapters for hotpluggable devices such as PCMCIA, PCI, and USB, but the similar structure of driver
entry points helps the Linux device model to have a uniform and consistent view of all devices.

UART Drivers 181

182 Chapter 6 Serial Drivers

discussed earlier) that claims and maps the USB_UART register space. If both USB_UART
ports are successfully added, the serial core emits the following kernel messages:

ttyUU0 at MMIO 0xe8000000 (irq = 3) is a USB_UART

ttyUU1 at MMIO 0xe9000000 (irq = 4) is a USB_UART

Claiming the IRQ, however, is deferred until an application opens the USB_UART port.
The IRQ is freed when the application closes the USB_UART. Table 6.2 traces the driv-
er’s code path for claiming and freeing memory regions and IRQs.

TABLE 6.2 Claiming and Freeing Memory and IRQ Resources

Module
Insert

usb_uart_
init()

uart_
register_
driver()

usb_
uart_
probe()

uart_
add_one_
port()

usb_uart_
config_
port()

request_
mem_
region()

Module
Unload

usb_uart_
exit()

usb_
unregister_
driver()

usb_
uart_
remove()

uart_
remove_
one_port()

usb_uart_
release_
port()

release_
mem_
region()

Open
/dev/
ttyUUX

usb_uart_
startup()

request_
irq()

Close
/dev/
ttyUUX

usb_uart_
shut-
down()

free_irq()

In the transmit path, the driver collects egress data from the circular buffer asso-
ciated with the UART port. Data is present in port->info->xmit.buf[port-
>info->xmit.tail] as is evident from the UART driver’s start_tx() entry point,
usb_uart_start_tx().

In the receive path, the driver pushes data collected from the USB_UART to the asso-
ciated tty driver using tty_insert_flip_char() and tty_flip_buffer_push().
This is done in the receive interrupt handler, usb_uart_rxint(). Revisit this routine
after reading the next section, “TTY Drivers.”

Listing 6.1 uses comments to explain the purpose of driver entry points and their
operation. It leaves some of the entry points in the uart_ops structure unimple-
mented to cut out extra detail.

LISTING 6.1 USB_UART Driver for the Linux Cell Phone

#include <linux/console.h>

#include <linux/platform_device.h>

#include <linux/tty.h>

#include <linux/tty_flip.h>

#include <linux/serial_core.h>

#include <linux/serial.h>

#include <asm/irq.h>

#include <asm/io.h>

#define USB_UART_MAJOR 200 /* You've to get this assigned */

#define USB_UART_MINOR_START 70 /* Start minor numbering here */

#define USB_UART_PORTS 2 /* The phone has 2 USB_UARTs */

#define PORT_USB_UART 30 /* UART type. Add this to

include/linux/serial_core.h */

/* Each USB_UART has a 3-byte register set consisting of

 UU_STATUS_REGISTER at offset 0, UU_READ_DATA_REGISTER at

 offset 1, and UU_WRITE_DATA_REGISTER at offset 2 as shown

 in Table 6.1 */

#define USB_UART1_BASE 0xe8000000 /* Memory base for USB_UART1 */

#define USB_UART2_BASE 0xe9000000 /* Memory base for USB_UART2 */

#define USB_UART_REGISTER_SPACE 0x3

/* Semantics of bits in the status register */

#define USB_UART_TX_FULL 0x20 /* TX FIFO is full */

#define USB_UART_RX_EMPTY 0x10 /* TX FIFO is empty */

#define USB_UART_STATUS 0x0F /* Parity/frame/overruns? */

#define USB_UART1_IRQ 3 /* USB_UART1 IRQ */

#define USB_UART2_IRQ 4 /* USB_UART2 IRQ */

#define USB_UART_FIFO_SIZE 32 /* FIFO size */

#define USB_UART_CLK_FREQ 16000000

static struct uart_port usb_uart_port[]; /* Defined later on */

/* Write a character to the USB_UART port */

static void

usb_uart_putc(struct uart_port *port, unsigned char c)

{

UART Drivers 183

184 Chapter 6 Serial Drivers

 /* Wait until there is space in the TX FIFO of the USB_UART.

 Sense this by looking at the USB_UART_TX_FULL bit in the

 status register */

 while (__raw_readb(port->membase) & USB_UART_TX_FULL);

 /* Write the character to the data port*/

 __raw_writeb(c, (port->membase+1));

}

/* Read a character from the USB_UART */

static unsigned char

usb_uart_getc(struct uart_port *port)

{

 /* Wait until data is available in the RX_FIFO */

 while (__raw_readb(port->membase) & USB_UART_RX_EMPTY);

 /* Obtain the data */

 return(__raw_readb(port->membase+2));

}

/* Obtain USB_UART status */

static unsigned char

usb_uart_status(struct uart_port *port)

{

 return(__raw_readb(port->membase) & USB_UART_STATUS);

}

/*

 * Claim the memory region attached to USB_UART port. Called

 * when the driver adds a USB_UART port via uart_add_one_port().

 */

static int

usb_uart_request_port(struct uart_port *port)

{

 if (!request_mem_region(port->mapbase, USB_UART_REGISTER_SPACE,

 "usb_uart")) {

 return -EBUSY;

 }

 return 0;

}

/* Release the memory region attached to a USB_UART port.

 * Called when the driver removes a USB_UART port via

 * uart_remove_one_port().

 */

static void

usb_uart_release_port(struct uart_port *port)

{

 release_mem_region(port->mapbase, USB_UART_REGISTER_SPACE);

}

/*

 * Configure USB_UART. Called when the driver adds a USB_UART port.

 */

static void

usb_uart_config_port(struct uart_port *port, int flags)

{

 if (flags & UART_CONFIG_TYPE && usb_uart_request_port(port) == 0)

 {

 port->type = PORT_USB_UART;

 }

}

/* Receive interrupt handler */

static irqreturn_t

usb_uart_rxint(int irq, void *dev_id)

{

 struct uart_port *port = (struct uart_port *) dev_id;

 struct tty_struct *tty = port->info->tty;

 unsigned int status, data;

 /* ... */

 do {

 /* ... */

 /* Read data */

 data = usb_uart_getc(port);

 /* Normal, overrun, parity, frame error? */

 status = usb_uart_status(port);

 /* Dispatch to the tty layer */

 tty_insert_flip_char(tty, data, status);

 /* ... */

 } while (more_chars_to_be_read()); /* More chars */

 /* ... */

 tty_flip_buffer_push(tty);

 return IRQ_HANDLED;

}

UART Drivers 185

186 Chapter 6 Serial Drivers

/* Called when an application opens a USB_UART */

static int

usb_uart_startup(struct uart_port *port)

{

 int retval = 0;

 /* ... */

 /* Request IRQ */

 if ((retval = request_irq(port->irq, usb_uart_rxint, 0,

 "usb_uart", (void *)port))) {

 return retval;

 }

 /* ... */

 return retval;

}

/* Called when an application closes a USB_UART */

static void

usb_uart_shutdown(struct uart_port *port)

{

 /* ... */

 /* Free IRQ */

 free_irq(port->irq, port);

 /* Disable interrupts by writing to appropriate

 registers */

 /* ... */

}

/* Set UART type to USB_UART */

static const char *

usb_uart_type(struct uart_port *port)

{

 return port->type == PORT_USB_UART ? "USB_UART" : NULL;

}

/* Start transmitting bytes */

static void

usb_uart_start_tx(struct uart_port *port)

{

 while (1) {

 /* Get the data from the UART circular buffer and

 write it to the USB_UART's WRITE_DATA register */

 usb_uart_putc(port,

 port->info->xmit.buf[port->info->xmit.tail]);

 /* Adjust the tail of the UART buffer */

 port->info->xmit.tail = (port->info->xmit.tail + 1) &

 (UART_XMIT_SIZE - 1);

 /* Statistics */

 port->icount.tx++;

 /* Finish if no more data available in the UART buffer */

 if (uart_circ_empty(&port->info->xmit)) break;

 }

 /* ... */

}

/* The UART operations structure */

static struct uart_ops usb_uart_ops = {

 .start_tx = usb_uart_start_tx, /* Start transmitting */

 .startup = usb_uart_startup, /* App opens USB_UART */

 .shutdown = usb_uart_shutdown, /* App closes USB_UART */

 .type = usb_uart_type, /* Set UART type */

 .config_port = usb_uart_config_port, /* Configure when driver

 adds a USB_UART port */

 .request_port = usb_uart_request_port,/* Claim resources

 associated with a

 USB_UART port */

 .release_port = usb_uart_release_port,/* Release resources

 associated with a

 USB_UART port */

#if 0 /* Left unimplemented for the USB_UART */

 .tx_empty = usb_uart_tx_empty, /* Transmitter busy? */

 .set_mctrl = usb_uart_set_mctrl, /* Set modem control */

 .get_mctrl = usb_uart_get_mctrl, /* Get modem control

 .stop_tx = usb_uart_stop_tx, /* Stop transmission */

 .stop_rx = usb_uart_stop_rx, /* Stop reception */

 .enable_ms = usb_uart_enable_ms, /* Enable modem status

 signals */

 .set_termios = usb_uart_set_termios, /* Set termios */

#endif

};

static struct uart_driver usb_uart_reg = {

 .owner = THIS_MODULE, /* Owner */

 .driver_name = "usb_uart", /* Driver name */

 .dev_name = "ttyUU", /* Node name */

UART Drivers 187

188 Chapter 6 Serial Drivers

 .major = USB_UART_MAJOR, /* Major number */

 .minor = USB_UART_MINOR_START, /* Minor number start */

 .nr = USB_UART_PORTS, /* Number of UART ports */

 .cons = &usb_uart_console, /* Pointer to the console

 structure. Discussed in Chapter

 12, "Video Drivers" */

};

/* Called when the platform driver is unregistered */

static int

usb_uart_remove(struct platform_device *dev)

{

 platform_set_drvdata(dev, NULL);

 /* Remove the USB_UART port from the serial core */

 uart_remove_one_port(&usb_uart_reg, &usb_uart_port[dev->id]);

 return 0;

}

/* Suspend power management event */

static int

usb_uart_suspend(struct platform_device *dev, pm_message_t state)

{

 uart_suspend_port(&usb_uart_reg, &usb_uart_port[dev->id]);

 return 0;

}

/* Resume after a previous suspend */

static int

usb_uart_resume(struct platform_device *dev)

{

 uart_resume_port(&usb_uart_reg, &usb_uart_port[dev->id]);

 return 0;

}

/* Parameters of each supported USB_UART port */

static struct uart_port usb_uart_port[] = {

 {

 .mapbase = (unsigned int) USB_UART1_BASE,

 .iotype = UPIO_MEM, /* Memory mapped */

 .irq = USB_UART1_IRQ, /* IRQ */

 .uartclk = USB_UART_CLK_FREQ, /* Clock HZ */

 .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */

 .ops = &usb_uart_ops, /* UART operations */

 .flags = UPF_BOOT_AUTOCONF, /* UART port flag */

 .line = 0, /* UART port number */

 },

 {

 .mapbase = (unsigned int)USB_UART2_BASE,

 .iotype = UPIO_MEM, /* Memory mapped */

 .irq = USB_UART2_IRQ, /* IRQ */

 .uartclk = USB_UART_CLK_FREQ, /* CLock HZ */

 .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */

 .ops = &usb_uart_ops, /* UART operations */

 .flags = UPF_BOOT_AUTOCONF, /* UART port flag */

 .line = 1, /* UART port number */

 }

};

/* Platform driver probe */

static int __init

usb_uart_probe(struct platform_device *dev)

{

 /* ... */

 /* Add a USB_UART port. This function also registers this device

 with the tty layer and triggers invocation of the config_port()

 entry point */

 uart_add_one_port(&usb_uart_reg, &usb_uart_port[dev->id]);

 platform_set_drvdata(dev, &usb_uart_port[dev->id]);

 return 0;

}

struct platform_device *usb_uart_plat_device1; /* Platform device

 for USB_UART 1 */

struct platform_device *usb_uart_plat_device2; /* Platform device

 for USB_UART 2 */

static struct platform_driver usb_uart_driver = {

 .probe = usb_uart_probe, /* Probe method */

 .remove = __exit_p(usb_uart_remove), /* Detach method */

 .suspend = usb_uart_suspend, /* Power suspend */

 .resume = usb_uart_resume, /* Resume after a suspend */

 .driver = {

 .name = "usb_uart", /* Driver name */

 },

};

UART Drivers 189

190 Chapter 6 Serial Drivers

/* Driver Initialization */

static int __init

usb_uart_init(void)

{

 int retval;

 /* Register the USB_UART driver with the serial core */

 if ((retval = uart_register_driver(&usb_uart_reg))) {

 return retval;

 }

 /* Register platform device for USB_UART 1. Usually called

 during architecture-specific setup */

 usb_uart_plat_device1 =

 platform_device_register_simple("usb_uart", 0, NULL, 0);

 if (IS_ERR(usb_uart_plat_device1)) {

 uart_unregister_driver(&usb_uart_reg);

 return PTR_ERR(usb_uart_plat_device1);

 }

 /* Register platform device for USB_UART 2. Usually called

 during architecture-specific setup */

 usb_uart_plat_device2 =

 platform_device_register_simple("usb_uart", 1, NULL, 0);

 if (IS_ERR(usb_uart_plat_device2)) {

 uart_unregister_driver(&usb_uart_reg);

 platform_device_unregister(usb_uart_plat_device1);

 return PTR_ERR(usb_uart_plat_device2);

 }

 /* Announce a matching driver for the platform

 devices registered above */

 if ((retval = platform_driver_register(&usb_uart_driver))) {

 uart_unregister_driver(&usb_uart_reg);

 platform_device_unregister(usb_uart_plat_device1);

 platform_device_unregister(usb_uart_plat_device2);

 }

 return 0;

}

/* Driver Exit */

static void __exit

usb_uart_exit(void)

{

 /* The order of unregistration is important. Unregistering the

 UART driver before the platform driver will crash the system */

 /* Unregister the platform driver */

 platform_driver_unregister(&usb_uart_driver);

 /* Unregister the platform devices */

 platform_device_unregister(usb_uart_plat_device1);

 platform_device_unregister(usb_uart_plat_device2);

 /* Unregister the USB_UART driver */

 uart_unregister_driver(&usb_uart_reg);

}

module_init(usb_uart_init);

module_exit(usb_uart_exit);

RS-485

RS-485 is not a standard PC interface like RS-232, but in the embedded space, you
may come across computers that use RS-485 connections to reliably communicate
with control systems. RS-485 uses differential signals that let it exchange data over dis-
tances of up to a few thousand feet, unlike RS-232 that has a range of only a few dozen
feet. On the processor side, the RS-485 interface is a UART operating in half-duplex
mode. So, before sending data from the transmit FIFO to the wire, the UART device
driver needs to additionally enable the RS-485 transmitter and disable the receiver,
possibly by wiggling associated GPIO pins. To obtain data from the wire to the receive
FIFO, the UART driver has to perform the reverse operation.

You have to enable/disable the RS-485 transmitter/receiver at the right places in
the serial layer. If you disable the transmitter too soon, it might not get suffi cient time
to drain the last bytes from the transmit FIFO, and this can result in data truncation.
If you disable the transmitter too late, on the other hand, you prevent data reception
for that much time, which might lead to receive data loss.

RS-485 supports multidrop, so the higher-layer protocol must implement a suit-
able addressing mechanism if you have multiple devices connected to the bus. RS-485
does not support hardware fl ow control lines using Request To Send (RTS) and Clear
To Send (CTS).

UART Drivers 191

192 Chapter 6 Serial Drivers

TTY Drivers

Let’s now take a look at the structures and registration functions that lie at the heart of
tty drivers. Three structures are important for their operation:

 1. struct tty_struct defined in include/linux/tty.h. This structure contains all
state information associated with an open tty. It’s an enormous structure, but
here are some important fields:

 struct tty_struct {

 int magic; /* Magic marker */

 struct tty_driver *driver; /* Pointer to the tty

 driver */

 struct tty_ldisc ldisc; /* Attached Line

 discipline */

 /* ... */

 struct tty_flip_buffer flip; /* Flip Buffer. See

 below. */

 /* ... */

 wait_queue_head_t write_wait; /* See the section

 "Line Disciplines" */

 wait_queue_head_t read_wait; /* See the section

 "Line Disciplines" */

 /* ... */

 };

 2. struct tty_flip_buffer or the flip buffer embedded inside tty_struct.
This is the centerpiece of the data collection and processing mechanism:

 struct tty_flip_buffer {

 /* ... */

 struct semaphore pty_sem; /* Serialize */

 char *char_buf_ptr; /* Pointer to the flip

 buffer */

 /* ... */

 unsigned char char_buf[2*TTY_FLIPBUF_SIZE]; /* The flip

 buffer */

 /* ... */

 };

The low-level serial driver uses one half of the fl ip buffer for gathering data,
while the line discipline uses the other half for processing the data. The buffer

pointers used by the serial driver and the line discipline are then fl ipped, and
the process continues. Have a look at the function flush_to_ldisc() in driv-
ers/char/tty_io.c to see the fl ip in action.

In recent kernels, the tty_flip_buffer structure has been somewhat rede-
signed. It’s now made up of a buffer header (tty_bufhead) and a buffer list
(tty_buffer):

 struct tty_bufhead {

 /* ... */

 struct semaphore pty_sem; /* Serialize */

 struct tty_buffer *head, tail, free; /* See below */

 /* ... */

 };

 struct tty_buffer {

 struct tty_buffer *next;

 char *char_buf_ptr; /* Pointer to the flip buffer */

 /* ... */

 unsigned long data[0]; /* The flip buffer, memory for

 which is dynamically

 allocated */

 };

 3. struct tty_driver defined in include/linux/tty_driver.h. This specifies the
programming interface between tty drivers and higher layers:

struct tty_driver {

 int magic; /* Magic number */

 /* ... */

 int major; /* Major number */

 int minor_start; /* Start of minor number */

 /* ... */

 /* Interface routines between a tty driver and higher

 layers */

 int (*open)(struct tty_struct *tty, struct file *filp);

 void (*close)(struct tty_struct *tty, struct file *filp);

 int (*write)(struct tty_struct *tty,

 const unsigned char *buf, int count);

 void (*put_char)(struct tty_struct *tty,

 unsigned char ch);

 /* ... */

};

TTY Drivers 193

194 Chapter 6 Serial Drivers

Like a UART driver, a tty driver needs to perform two steps to register itself with the
kernel:

 1. Call tty_register_driver(struct tty_driver *tty_d) to register itself
with the tty core.

 2. Call

tty_register_device(struct tty_driver *tty_d,

 unsigned device_index,

 struct device *device)

 to register each individual tty that it supports.

We won’t develop a sample tty driver, but here are some common ones used on
Linux:

 • Serial emulation over Bluetooth, discussed in Chapter 16, is implemented
in the form of a tty driver. This driver (drivers/net/bluetooth/rfcomm/ tty.c) calls
tty_register_driver() during initialization and tty_register_device()
while handling each incoming Bluetooth connection.

 • To work with a system console on a Linux desktop, you need the services of
virtual terminals (VTs) if you are in text mode or pseudo terminals (PTYs) if you
are in graphics mode. VTs and PTYs are implemented as tty drivers and live in
drivers/char/ vt.c and drivers/char/ pty.c, respectively.

 • The tty driver used over conventional UARTs resides in drivers/serial/serial_core.c.

 • The USB-serial tty driver is in drivers/usb/serial/ usb-serial.c.

Line Disciplines

Line disciplines provide an elegant mechanism that lets you use the same serial driver
to run different technologies. The low-level physical driver and the tty driver handle
the transfer of data to and from the hardware, while line disciplines are responsible for
processing the data and transferring it between kernel space and user space.

The serial subsystem supports 17 standard line disciplines. The default line dis-
cipline that gets attached when you open a serial port is N_TTY, which implements
terminal I/O processing. N_TTY is responsible for “cooking” characters received from

the keyboard. Depending on user request, it maps the control character to newline,
converts lowercase to uppercase, expands tabs, and echoes characters to the associated
VT. N_TTY also supports a raw mode used by editors, which leaves all the preceding
processing to user applications. See Figure 7.3 in the next chapter, “Input Drivers,”
to learn how the keyboard subsystem is connected to N_TTY. The example tty drivers
listed at the end of the previous section, “TTY Drivers,” use N_TTY by default.

Line disciplines also implement network interfaces over serial transport protocols.
For example, line disciplines that are part of the Point-to-Point Protocol (N_PPP) and
the Serial Line Internet Protocol (N_SLIP) subsystems, frame packets, allocate and pop-
ulate associated networking data structures, and pass the data on to the corresponding
network protocol stack. Other line disciplines handle Infrared Data (N_IRDA) and the
Bluetooth Host Control Interface (N_HCI).

Device Example: Touch Controller

Let’s take a look at the internals of a line discipline by implementing a simple line dis-
cipline for a serial touch-screen controller. Figure 6.6 shows how the touch controller
is connected on an embedded laptop derivative. The Finite State Machine (FSM) of
the touch controller is a candidate for being implemented as a line discipline because
it can leverage the facilities and interfaces offered by the serial layer.

Processor

North Bridge

South Bridge
Super I/O

UART

Touch Controller

LPC Bus

Touch Panel

FIGURE 6.6 Connection diagram of a touch controller on a PC-derivative.

Line Disciplines 195

196 Chapter 6 Serial Drivers

Open and Close

To create a line discipline, defi ne a struct tty_ldisc and register a prescribed set
of entry points with the kernel. Listing 6.2 contains a code snippet that performs both
these operations for the example touch controller.

LISTING 6.2 Line Discipline Operations

struct tty_ldisc n_touch_ldisc = {

 TTY_LDISC_MAGIC, /* Magic */

 "n_tch", /* Name of the line discipline */

 N_TCH, /* Line discipline ID number */

 n_touch_open, /* Open the line discipline */

 n_touch_close, /* Close the line discipline */

 n_touch_flush_buffer, /* Flush the line discipline's read

 buffer */

 n_touch_chars_in_buffer, /* Get the number of processed characters in

 the line discipline's read buffer */

 n_touch_read, /* Called when data is requested

 from user space */

 n_touch_write, /* Write method */

 n_touch_ioctl, /* I/O Control commands */

 NULL, /* We don't have a set_termios

 routine */

 n_touch_poll, /* Poll */

 n_touch_receive_buf, /* Called by the low-level driver

 to pass data to user space*/

 n_touch_receive_room, /* Returns the room left in the line

 discipline's read buffer */

 n_touch_write_wakeup /* Called when the low-level device

 driver is ready to transmit more

 data */

};

/* ... */

if ((err = tty_register_ldisc(N_TCH, &n_touch_ldisc))) {

 return err;

}

In Listing 6.2, n_tch is the name of the line discipline, and N_TCH is the line disci-
pline identifi er number. You have to specify the value of N_TCH in include/linux/tty.h,
the header fi le that contains all line discipline defi nitions. Line disciplines active on
your system can be found in /proc/tty/ldiscs.

Line disciplines gather data from their half of the tty fl ip buffer, process it, and
copy the resulting data to a local read buffer. For N_TCH, n_touch_receive_room()
returns the memory left in the read buffer, while n_touch_chars_in_buffer()
returns the number of processed characters in the read buffer that are ready to be
delivered to user space. n_touch_write() and n_touch_write_wakeup() do noth-
ing because N_TCH is a read-only device. n_touch_open() takes care of allocating
memory for the main line discipline data structures, as shown in Listing 6.3.

LISTING 6.3 Opening the Line Discipline

/* Private structure used to implement the Finite State Machine

(FSM) for the touch controller. The controller and the processor

communicate using a specific protocol that the FSM implements */

struct n_touch {

 int current_state; /* Finite State Machine */

 spinlock_t touch_lock; /* Spinlock */

 struct tty_struct *tty; /* Associated tty */

 /* Statistics and other housekeeping */

 /* ... */

} *n_tch;

/* Device open() */

static int

n_touch_open(struct tty_struct *tty)

{

 /* Allocate memory for n_tch */

 if (!(n_tch = kmalloc(sizeof(struct n_touch), GFP_KERNEL))) {

 return -ENOMEM;

 }

 memset(n_tch, 0, sizeof(struct n_touch));

 tty->disc_data = n_tch; /* Other entry points now

 have direct access to n_tch */

Line Disciplines 197

198 Chapter 6 Serial Drivers

 /* Allocate the line discipline's local read buffer

 used for copying data out of the tty flip buffer */

 tty->read_buf = kmalloc(BUFFER_SIZE, GFP_KERNEL);

 if (!tty->read_buf) return -ENOMEM;

 /* Clear the read buffer */

 memset(tty->read_buf, 0, BUFFER_SIZE);

 /* Initialize lock */

 spin_lock_init(&ntch->touch_lock);

 /* Initialize other necessary tty fields.

 See drivers/char/n_tty.c for an example */

 /* ... */

 return 0;

}

You might want to set N_TCH as the default line discipline (rather than N_TTY) when -
ever the serial port connected to the touch controller is opened. See the section “Chang-
ing Line Disciplines” to see how to change line disciplines from user space.

Read Path

For interrupt-driven devices, the read data path usually consists of two threads work-
ing in tandem:

 1. A top thread originating from the user process requesting the read

 2. A bottom thread springing from the interrupt service routine that collects data
from the device

Figure 6.7 shows these threads associated with the read data fl ow. The interrupt han-
dler queues the receive_buf() method (n_touch_receive_buf() in our example)
as a task. You can override this behavior by setting the tty->low_latency fl ag.

The touch controller and the processor communicate using a specifi c protocol
described in the controller’s data sheet. The driver implements this communication
protocol using an FSM as indicated earlier. Listing 6.4 encodes this FSM as part of the
receive_buf() entry point, n_touch_receive_buf().

 Flip Buffer
(tty->flip.char_buf)

sk_buff

read()

tty_read()

tty_flip_buffer_push()

 Serial ISR

queue_task

ldisc.receive_room()

ThrottleUnthrottle

read_wait queue Local Read Buffer
(tty->read_buf)

Kernel Space

Line Discipline Layer

User Buffer

Terminal IO Network I/O
(TTY, TCH) (PPP, SLIP, Bluetooth, IrDA)

User Space

ldisc.receive_buf()

Networking Protocols

ldisc.chars_in_buf()

ldisc.read()

FIGURE 6.7 Line discipline read path.

LISTING 6.4 The n_touch_receive_buf() Method

static void

n_touch_receive_buf(struct tty_struct *tty,

 const unsigned char *cp, char *fp, int count)

{

 /* Work on the data in the line discipline's half of

 the flip buffer pointed to by cp */

 /* ... */

 /* Implement the Finite State Machine to interpret commands/data

 arriving from the touch controller and put the processed data

 into the local read buffer */

Line Disciplines 199

200 Chapter 6 Serial Drivers

/* Datasheet-dependent Code Region */

 switch (tty->disc_data->current_state) {

 case RESET:

 /* Issue a reset command to the controller */

 tty->driver->write(tty, 0, mode_stream_command,

 sizeof(mode_stream_command));

 tty->disc_data->current_state = STREAM_DATA;

 /* ... */

 break;

 case STREAM_DATA:

 /* ... */

 break;

 case PARSING:

 /* ... */

 tty->disc_data->current_state = PARSED;

 break;

 case PARSED:

 /* ... */

 }

 if (tty->disc_data->current_state == PARSED) {

 /* If you have a parsed packet, copy the collected coordinate

 and direction information into the local read buffer */

 spin_lock_irqsave(&tty->disc_data->touch_lock, flags);

 for (i=0; i < PACKET_SIZE; i++) {

 tty->disc_data->read_buf[tty->disc_data->read_head] =

 tty->disc_data->current_pkt[i];

 tty->disc_data->read_head =

 (tty->disc_data->read_head + 1) & (BUFFER_SIZE - 1);

 tty->disc_data->read_cnt++;

 }

 spin_lock_irqrestore(&tty->disc_data->touch_lock, flags);

/* ... */ /* See Listing 6.5 */

 }

}

n_touch_receive_buf() processes the data arriving from the serial driver. It
exchanges a series of commands and responses with the touch controller and puts the
received coordinate and direction (press/release) information into the line discipline’s
read buffer. Accesses to the read buffer have to be serialized using a spinlock because
it’s used by both ldisc.receive_buf() and ldisc.read() threads shown in Fig -
ure 6.7 (n_touch_receive_buf() and n_touch_read(), respectively, in our exam-
ple). As you can see in Listing 6.4, n_touch_receive_buf() dispatches commands
to the touch controller by directly calling the write() entry point of the serial driver.

n_touch_receive_buf() needs to do a couple more things:

 1. The top read() thread in Figure 6.7 puts the calling process to sleep if no data
is available. So, n_touch_receive_buf() has to wake up that thread and let it
read the data that was just processed.

 2. If the line discipline is running out of read buffer space, n_touch_receive_
buf() has to request the serial driver to throttle data arriving from the device.
ldisc.read() is responsible for requesting the corresponding unthrottling
when it ferries the data to user space and frees memory in the read buffer. The
serial driver uses software or hardware flow control mechanisms to achieve the
throttling and unthrottling.

Listing 6.5 performs these two operations.

LISTING 6.5 Waking Up the Read Thread and Throttling the Serial Driver

/* n_touch_receive_buf() continued.. */

/* Wake up any threads waiting for data */

if (waitqueue_active(&tty->read_wait) &&

 (tty->read_cnt >= tty->minimum_to_wake))

 wake_up_interruptible(&tty->read_wait);

}

/* If we are running out of buffer space, request the

 serial driver to throttle incoming data */

if (n_touch_receive_room(tty) < TOUCH_THROTTLE_THRESHOLD) {

 tty->driver.throttle(tty);

}

/* ... */

Line Disciplines 201

202 Chapter 6 Serial Drivers

A wait queue (tty->read_wait) is used to synchronize between the ldisc.read()
and ldisc.receive_buf() threads. ldisc.read() adds the calling process to the
wait queue when it does not fi nd data to read, while ldisc.receive_buf() wakes
the ldisc.read() thread when there is data available to be read. So, n_touch_
read()does the following:

 • If there is no data to be read yet, put the calling process to sleep on the read_
wait queue. The process gets woken by n_touch_receive_buf() when data
arrives.

 • If data is available, collect it from the local read buffer (tty->read_buf[tty-
>read_tail]) and dispatch it to user space.

 • If the serial driver has been throttled and if enough space is available in the read
buffer after this read, ask the serial driver to unthrottle.

Networking line disciplines usually allocate an sk_buff (the basic Linux networking
data structure discussed in Chapter 15, “Network Interface Cards”) and use this as the
read buffer. They don’t have a read() method, because the corresponding receive_
buf() copies received data into the allocated sk_buff and directly passes it to the
associated protocol stack.

Write Path

A line discipline’s write() entry point performs any post processing that is required
before passing the data down to the low-level driver.

If the underlying driver is not able to accept all the data that the line discipline
offers, the line discipline puts the requesting thread to sleep. The driver’s interrupt
handler wakes the line discipline when it is ready to receive more data. To do this,
the driver calls the write_wakeup() method registered by the line discipline. The
associated synchronization is done using a wait queue (tty->write_wait), and
the operation is similar to that of the read_wait queue described in the previous
section.

Many networking line disciplines have no write() methods. The protocol imple-
mentation directly transmits the frames down to the serial device driver. However,
these line disciplines usually still have a write_wakeup() entry point to respond to
the serial driver’s request for more transmit data.

N_TCH does not need a write() method either, because the touch controller is
a read-only device. As you saw in Listing 6.4, routines in the receive path directly
talk to the low-level UART driver when they need to send command frames to the
controller.

I/O Control

A user program can send commands to a device via ioctl() calls, as discussed in
Chapter 5, “Character Drivers.” When an application opens a serial device, it can usu-
ally issue three classes of ioctls to it:

 • Commands supported by the serial device driver, such as TIOCMSET that sets
modem information

 • Commands supported by the tty driver, such as TIOCSETD that changes the
attached line discipline

 • Commands supported by the attached line discipline, such as a command to
reset the touch controller in the case of N_TCH

The ioctl() implementation for N_TCH is largely standard. Supported commands
depend on the protocol described in the touch controller’s data sheet.

More Operations

Another line discipline operation is flush_buffer(), which is used to fl ush any data
pending in the read buffer. flush_buffer() is also called when a line discipline is
closed. It wakes up any read threads that are waiting for more data as follows:

if (tty->link->packet){

 wake_up_interruptible(&tty->disc_data->read_wait);

}

Yet another entry point (not supported by N_TCH) is set_termios(). The N_TTY line
discipline supports the set_termios() interface, which is used to set options specifi c
to line discipline data processing. For example, you may use set_termios() to put
the line discipline in raw mode or “cooked” mode. Some options specifi c to the touch
controller (such as changing the baud rate, parity, and number of stop bits) are imple-
mented by the set_termios() method of the underlying device driver.

Line Disciplines 203

204 Chapter 6 Serial Drivers

The remaining entry points such as poll() are fairly standard, and you can return
to Chapter 5 in case you need assistance.

You may compile your line discipline as part of the kernel or dynamically load it as
a module. If you choose to compile it as a module, you must, of course, also provide
functions to be called during module initialization and exit. The former is usually the
same as the init() method. The latter needs to clean up private data structures and
unregister the line discipline. Unregistering the discipline is a one-liner:

tty_unregister_ldisc(N_TCH);

An easier way to drive a serial touch controller is by leveraging the services offered by
the kernel’s input subsystem and the built-in serport line discipline. We look at that
technique in the next chapter.

Changing Line Disciplines

N_TCH gets bound to the low-level serial driver when a user-space program opens the
serial port connected to the touch controller. But sometimes, a user-space application
might want to attach a different line discipline to the device. For instance, you might
want to write a program that dumps raw data received from the touch controller with-
out processing it. Listing 6.6 opens the touch controller and changes the line discipline
to N_TTY to dump the data that is coming in.

LISTING 6.6 Changing a Line Discipline from User Space

fd = open("/dev/ttySX", O_RDONLY | O_NOCTTY);

/* At this point, N_TCH is attached to /dev/ttySX, the serial port used

 by the touch controller. Switch to N_TTY */

ldisc = N_TTY;

ioctl(fd, TIOCSETD, &ldisc);

/* Set termios to raw mode and dump the data coming in */

/* ... */

The TIOCSETD ioctl() closes the current line discipline and opens the newly
requested line discipline.

Looking at the Sources

The serial core resides in drivers/serial/, but tty implementations and low-level drivers
are scattered across the source tree. The driver fi les referred to in Figure 6.3, for exam-
ple, live in four different directories: drivers/serial/, drivers/char/, drivers/usb/serial/, and
drivers/net/irda/. The drivers/serial/ directory, which now also contains UART drivers,
didn’t exist in the 2.4 kernel; UART-specifi c code used to be dispersed between driv-
ers/char/ and arch/your-arch/ directories. The present code partitioning is more logical
because UART drivers are not the only folks that access the serial layer—devices such
as USB-to-serial converters and IrDA dongles also need to talk to the serial core.

Look at drivers/serial/ imx.c for a real-world, low-level UART driver. It handles
UARTs that are part of Freescale’s i.MX series of embedded controllers.

For a list of line disciplines supported on Linux, see include/linux/tty.h. To get a feel
of networking line disciplines, look at the corresponding source fi les for PPP (driv-
ers/net/ppp_async.c), Bluetooth (drivers/bluetooth/hci_ldisc.c), Infrared (drivers/net/irda/
irtty-sir.c), and SLIP (drivers/net/slip.c).

Table 6.3 contains a summary of the main data structures used in this chapter
and the location of their defi nitions in the source tree. Table 6.4 lists the main kernel
programming interfaces that you used in this chapter along with the location of their
defi nitions.

TABLE 6.3 Summary of Data Structures

 Data Structure Location Description

uart_driver include/linux/serial_core.h Representation of a low-level UART
driver.

uart_port include/linux/serial_core.h Representation of a UART port.

uart_ops include/linux/serial_core.h Entry points supported by UART
drivers.

platform_device include/linux/platform_device.h Representation of a platform device.

platform_driver include/linux/platform_device.h Representation of a platform driver.

tty_struct include/linux/tty.h State information about a tty.

tty_bufhead, tty_buffer include/linux/tty.h These two structures implement the flip
buffer associated with a tty.

tty_driver include/linux/tty_driver.h Programming interface between tty
drivers and higher layers.

tty_ldisc include/linux/tty_ldisc.h Entry points supported by a line
discipline.

Looking at the Sources 205

206 Chapter 6 Serial Drivers

TABLE 6.4 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

uart_register_driver() drivers/serial/sderial_core.c Registers a UART driver
with the serial core

uart_add_one_port() drivers/serial/sderial_core.c Registers a UART port
supported by the UART
driver

uart_unregister_driver() drivers/serial/sderial_core.c Removes a UART driver
from the serial core

platform_device register()
platform_device_register_simple()
platform_add_devices()

drivers/base/platform.c Registers a platform device

platform_device_unregister() drivers/base/platform.c Unregisters a platform device

platform_driver_register()/
platform_driver_unregister()

drivers/base/platform.c Registers/unregisters a plat-
form driver

tty_insert_flip_char() include/linux/tty_flip.h Adds a character to the tty
flip buffer

tty_flip_buffer_push() drivers/char/tty_io.c Queues a request to push
the flip buffer to the line
discipline

tty_register_driver() drivers/char/tty_io.c Registers a tty driver with
the serial core

tty_unregister_driver() drivers/char/tty_io.c Removes a tty driver from
the serial core

tty_register_ldisc() drivers/char/tty_io.c Creates a line discipline by
registering prescribed entry
points

tty_unregister_ldisc() drivers/char/tty_io.c Removes a line discipline
from the serial core

Some serial data transfer scenarios are complex. You might need to mix and match
different serial layer blocks, as you saw in Figure 6.3. Some situations may necessitate
a data path passing through multiple line disciplines. For example, setting up a dialup
connection over Bluetooth involves the movement of data through the HCI line disci-
pline as well as the PPP line discipline. If you can, establish such a connection and step
through the code fl ow using a kernel debugger.

207

7

Input Drivers

In This Chapter

■ Input Event Drivers 210

■ Input Device Drivers 216

■ Debugging 230

■ Looking at the Sources 231

208

T he kernel’s input subsystem was created to unify scattered drivers that
handle diverse classes of data-input devices such as keyboards, mice, track-

balls, joysticks, roller wheels, touch screens, accelerometers, and tablets. The
input subsystem brings the following advantages to the table:

 • Uniform handling of functionally similar input devices even when they are
physically different. For example, all mice, such as PS/2, USB or Bluetooth,
are treated alike.

 • An easy event interface for dispatching input reports to user applications.
Your driver does not have to create and manage /dev nodes and related access
methods. Instead, it can simply invoke input APIs to send mouse move-
ments, key presses, or touch events upstream to user land. Applications such
as X Windows work seamlessly over the event interfaces exported by the
input subsystem.

 • Extraction of common portions out of input drivers and a resulting abstrac-
tion that simplifi es the drivers and introduces consistency. For example, the
input subsystem offers a collection of low-level drivers called serio that pro-
vides access to input hardware such as serial ports and keyboard controllers.

Figure 7.1 illustrates the operation of the input subsystem. The subsystem con-
tains two classes of drivers that work in tandem: event drivers and device drivers.
Event drivers are responsible for interfacing with applications, whereas device
drivers are responsible for low-level communication with input devices. The
mouse event generator mousedev, is an example of the former, and the PS/2
mouse driver is an example of the latter. Both event drivers and device drivers
can avail the services of an efficient, bug-free, reusable core, which lies at the
heart of the input subsystem.

Because event drivers are standardized and available for all input classes, you are more
likely to implement a device driver than an event driver. Your device driver can use a suit-
able existing event driver via the input core to interface with user applications. Note that
this chapter uses the term device driver to refer to an input device driver as opposed to an
input event driver.

X Windows Custom ApplicationgpmQt

/dev/input/mice
/dev/input/eventX

/dev/input/js

User Space

Kernel Space

Kernel Space

Hardware

Virtual
Terminal

GPIOSerio USB Hid Bluetooth
Hidp

SPI ISA/LPC

Roller
Wheeler

PS/2
Keyboard,

PS/2 Mouse,
Serial Touch

Controller

USB
Mouse and
Keyboard

Bluetooth
Mouse and
Keyboard

SPI Touch
Controller

Accelerometer

Input
Device Drivers

Input Core

Console

Input Event Drivers
(mousedev, evdev, joydev,

keyboard)

Keyboard input

FIGURE 7.1 The input subsystem.

Input Drivers 209

210 Chapter 7 Input Drivers

Input Event Drivers

The event interfaces exported by the input subsystem have evolved into a standard
that many graphical windowing systems understand. Event drivers offer a hardware-
independent abstraction to talk to input devices, just as the frame buffer interface
(discussed in Chapter 12, “Video Drivers”) presents a generic mechanism to commu-
nicate with display devices. Event drivers, in tandem with frame buffer drivers, insu-
late graphical user interfaces (GUIs) from the vagaries of the underlying hardware.

The Evdev Interface

Evdev is a generic input event driver. Each event packet produced by evdev has the fol-
lowing format, defi ned in include/linux/input.h:

struct input_event {

 struct timeval time; /* Timestamp */

 __u16 type; /* Event Type */

 __u16 code; /* Event Code */

 __s32 value; /* Event Value */

};

To learn how to use evdev, let’s implement an input device driver for a virtual mouse.

Device Example: Virtual Mouse

This is how our virtual mouse works: An application (coord.c) emulates mouse move-
ments and dispatches coordinate information to the virtual mouse driver (vms.c) via
a sysfs node, /sys/devices/platform/vms/coordinates. The virtual mouse driver (vms driver
for short) channels these movements upstream via evdev. Figure 7.2 shows the details.

General-purpose mouse (gpm) is a server that lets you use a mouse in text mode with-
out assistance from an X server. Gpm understands evdev messages, so the vms driver
can directly communicate with it. After you have everything in place, you can see the
cursor dancing over your screen to the tune of the virtual mouse movements streamed
by coord.c.

Listing 7.1 contains coord.c, which continuously generates random X and Y coordi-
nates. Mice, unlike joysticks or touch screens, produce relative coordinates, so that is
what coord.c does. The vms driver is shown in Listing 7.2.

Coordinate
Generator
(coord.c) gpm

Console

User Space

Simulated Mouse

Kernel Space

evdev

Input Core

/sys/…/vms/coordinates /dev/input/eventX

Virtual Mouse
Driver

(vms.c)

FIGURE 7.2 An input driver for a virtual mouse.

LISTING 7.1 Application to Simulate Mouse Movements (coord.c)

#include <fcntl.h>

int

main(int argc, char *argv[])

{

 int sim_fd;

 int x, y;

 char buffer[10];

 /* Open the sysfs coordinate node */

 sim_fd = open("/sys/devices/platform/vms/coordinates", O_RDWR);

 if (sim_fd < 0) {

 perror("Couldn't open vms coordinate file\n");

 exit(-1);

 }

Input Event Drivers 211

212 Chapter 7 Input Drivers

 while (1) {

 /* Generate random relative coordinates */

 x = random()%20;

 y = random()%20;

 if (x%2) x = -x; if (y%2) y = -y;

 /* Convey simulated coordinates to the virtual mouse driver */

 sprintf(buffer, "%d %d %d", x, y, 0);

 write(sim_fd, buffer, strlen(buffer));

 fsync(sim_fd);

 sleep(1);

 }

 close(sim_fd);

}

LISTING 7.2 Input Driver for the Virtual Mouse (vms.c)

#include <linux/fs.h>

#include <asm/uaccess.h>

#include <linux/pci.h>

#include <linux/input.h>

#include <linux/platform_device.h>

struct input_dev *vms_input_dev; /* Representation of an input device */

static struct platform_device *vms_dev; /* Device structure */

/* Sysfs method to input simulated

 coordinates to the virtual

 mouse driver */

static ssize_t

write_vms(struct device *dev,

 struct device_attribute *attr,

 const char *buffer, size_t count)

{

 int x,y;

 sscanf(buffer, "%d%d", &x, &y);

 /* Report relative coordinates via the

 event interface */

 input_report_rel(vms_input_dev, REL_X, x);

 input_report_rel(vms_input_dev, REL_Y, y);

 input_sync(vms_input_dev);

 return count;

}

/* Attach the sysfs write method */

DEVICE_ATTR(coordinates, 0644, NULL, write_vms);

/* Attribute Descriptor */

static struct attribute *vms_attrs[] = {

 &dev_attr_coordinates.attr,

 NULL

};

/* Attribute group */

static struct attribute_group vms_attr_group = {

 .attrs = vms_attrs,

};

/* Driver Initialization */

int __init

vms_init(void)

{

 /* Register a platform device */

 vms_dev = platform_device_register_simple("vms", -1, NULL, 0);

 if (IS_ERR(vms_dev)){

 printk ("vms_init: error\n");

 return PTR_ERR(vms_dev);

 }

 /* Create a sysfs node to read simulated coordinates */

 sysfs_create_group(&vms_dev->dev.kobj, &vms_attr_group);

 /* Allocate an input device data structure */

 vms_input_dev = input_allocate_device();

 if (!vms_input_dev) {

 printk("Bad input_allocate_device()\n"); return -ENOMEM;

 }

 /* Announce that the virtual mouse will generate

 relative coordinates */

 set_bit(EV_REL, vms_input_dev->evbit);

 set_bit(REL_X, vms_input_dev->relbit);

Input Event Drivers 213

214 Chapter 7 Input Drivers

 set_bit(REL_Y, vms_input_dev->relbit);

 /* Register with the input subsystem */

 input_register_device(vms_input_dev);

 printk("Virtual Mouse Driver Initialized.\n");

 return 0;

}

/* Driver Exit */

void

vms_cleanup(void)

{

 /* Unregister from the input subsystem */

 input_unregister_device(vms_input_dev);

 /* Cleanup sysfs node */

 sysfs_remove_group(&vms_dev->dev.kobj, &vms_attr_group);

 /* Unregister driver */

 platform_device_unregister(vms_dev);

 return;

}

module_init(vms_init);

module_exit(vms_cleanup);

Let’s take a closer look at Listing 7.2. During initialization, the vms driver registers
itself as an input device driver. For this, it fi rst allocates an input_dev structure using
the core API, input_allocate_device():

vms_input_dev = input_allocate_device();

It then announces that the virtual mouse generates relative events:

set_bit(EV_REL, vms_input_dev->evbit); /* Event Type is EV_REL */

Next, it declares the event codes that the virtual mouse produces:

set_bit(REL_X, vms_input_dev->relbit); /* Relative 'X' movement */

set_bit(REL_Y, vms_input_dev->relbit); /* Relative 'Y' movement */

If your virtual mouse is also capable of generating button clicks, you need to add this
to vms_init():

set_bit(EV_KEY, vms_input_dev->evbit); /* Event Type is EV_KEY */

set_bit(BTN_0, vms_input_dev->keybit); /* Event Code is BTN_0 */

Finally, the registration:

input_register_device(vms_input_dev);

write_vms() is the sysfs store() method that attaches to /sys/devices/platform/
vms/coordinates. When coord.c writes an X/Y pair to this fi le, write_vms() does the
following:

input_report_rel(vms_input_dev, REL_X, x);

input_report_rel(vms_input_dev, REL_Y, y);

input_sync(vms_input_dev);

The fi rst statement generates a REL_X event or a relative device movement in the X
direction. The second produces a REL_Y event or a relative movement in the Y direc-
tion. input_sync() indicates that this event is complete, so the input subsystem col-
lects these two events into a single evdev packet and sends it out of the door through
/dev/input/eventX, where X is the interface number assigned to the vms driver. An appli-
cation reading this fi le will receive event packets in the input_event format described
earlier. To request gpm to attach to this event interface and accordingly chase the cur-
sor around your screen, do this:

bash> gpm -m /dev/input/eventX -t evdev

The ADS7846 touch controller driver and the accelerometer driver, discussed respec-
tively under the sections “Touch Controllers” and “Accelerometers” later, are also
evdev users.

More Event Interfaces

The vms driver utilizes the generic evdev event interface, but input devices such as
keyboards, mice, and touch controllers have custom event drivers. We will look at
them when we discuss the corresponding device drivers.

Input Event Drivers 215

216 Chapter 7 Input Drivers

To write your own event driver and export it to user space via /dev/input/mydev, you
have to populate a structure called input_handler and register it with the input core
as follows:

static struct input_handler my_event_handler = {

 .event = mydev_event, /* Handle event reports sent by

 input device drivers that use

 this event driver's services */

 .fops = &mydev_fops, /* Methods to manage

/dev/input/mydev */

 .minor = MYDEV_MINOR_BASE, /* Minor number of

/dev/input/mydev */

 .name = "mydev", /* Event driver name */

 .id_table = mydev_ids, /* This event driver can handle

 requests from these IDs */

 .connect = mydev_connect, /* Invoked if there is an

 ID match */

 .disconnect = mydev_disconnect, /* Called when the driver unregisters

 */

};

/* Driver Initialization */

static int __init

mydev_init(void)

{

 /* ... */

 input_register_handler(&my_event_handler);

 /* ... */

 return 0;

}

Look at the implementation of mousedev (drivers/input/mousedev.c) for a complete
example.

Input Device Drivers

Let’s turn our attention to drivers for common input devices such as keyboards, mice,
and touch screens. But fi rst, let’s take a quick look at an off-the-shelf hardware access
facility available to input drivers.

Serio

The serio layer offers library routines to access legacy input hardware such as i8042-
compatible keyboard controllers and the serial port. PS/2 keyboards and mice interface
with the former, whereas serial touch controllers connect to the latter. To communicate
with hardware serviced by serio, for example, to send a command to a PS/2 mouse,
register prescribed callback routines with serio using serio_register_driver().

To add a new driver as part of serio, register open()/close()/start()/stop()/
write() entry points using serio_register_port(). Look at drivers/input/serio/
serport.c for an example.

As you can see in Figure 7.1, serio is only one route to access low-level hardware.
Several input device drivers instead rely on low-level support from bus layers such as
USB or SPI.

Keyboards

Keyboards come in different fl avors—legacy PS/2, USB, Bluetooth, Infrared, and so
on. Each type has a specifi c input device driver, but all use the same keyboard event
driver, thus ensuring a consistent interface to their users. The keyboard event driver,
however, has a distinguishing feature compared to other event drivers: It passes data to
another kernel subsystem (the tty layer), rather than to user space via /dev nodes.

PC Keyboards

The PC keyboard (also called PS/2 keyboard or AT keyboard) interfaces with the pro-
cessor via an i8042-compatible keyboard controller. Desktops usually have a dedicated
keyboard controller, but on laptops, keyboard interfacing is one of the responsibilities
of a general-purpose embedded controller (see the section “Embedded Controllers” in
Chapter 20, “More Devices and Drivers”). When you press a key on a PC keyboard,
this is the road it takes:

 1. The keyboard controller (or the embedded controller) scans and decodes the
keyboard matrix and takes care of nuances such as key debouncing.

 2. The keyboard device driver, with the help of serio, reads raw scancodes from the
keyboard controller for each key press and release. The difference between a press
and a release is in the most significant bit, which is set for the latter. A push on
the “a” key, for example, yields a pair of scancodes, 0x1e and 0x9e. Special keys

Input Device Drivers 217

218 Chapter 7 Input Drivers

are escaped using 0xE0, so a jab on the right-arrow key produces the sequence,
(0xE0 0x4D 0xE0 0xCD). You may use the showkey utility to observe scancodes
emanating from the controller (the symbol attaches explanations):

bash> showkey -s

kb mode was UNICODE

[if you are trying this under X, it might not work since

 the X server is also reading /dev/console]

 press any key (program terminates 10s after last

 keypress)...

 ...

 0x1e 0x9e A push of the "a" key

 3. The keyboard device driver converts received scancodes to keycodes, based on
the input mode. To see the keycode corresponding to the “a” key:

bash> showkey

...

keycode 30 press A push of the "a" key

keycode 30 release Release of the "a" key

To report the keycode upstream, the driver generates an input event, which
passes control to the keyboard event driver.

 4. The keyboard event driver undertakes keycode translation depending on the
loaded key map. (See man pages of loadkeys and the map files present in /lib/
kbd/keymaps.) It checks whether the translated keycode is tied to actions such as
switching the virtual console or rebooting the system. To glow the CAPSLOCK and
NUMLOCK LEDs instead of rebooting the system in response to a Ctrl+Alt+Del
push, add the following to the Ctrl+Alt+Del handler of the keyboard event
driver, drivers/char/keyboard.c:

static void fn_boot_it(struct vc_data *vc,

 struct pt_regs *regs)

{

+ set_vc_kbd_led(kbd, VC_CAPSLOCK);

+ set_vc_kbd_led(kbd, VC_NUMLOCK);

- ctrl_alt_del();

}

 5. For regular keys, the translated keycode is sent to the associated virtual ter-
minal and the N_TTY line discipline. (We discussed virtual terminals and line
disciplines in Chapter 6, “Serial Drivers.”) This is done as follows by drivers/
char/keyboard.c:

/* Add the keycode to flip buffer */

tty_insert_flip_char(tty, keycode, 0);

/* Schedule */

con_schedule_flip(tty);

The N_TTY line discipline processes the input thus received from the keyboard, echoes
it to the virtual console, and lets user-space applications read characters from the /dev/
ttyX node connected to the virtual terminal.

Figure 7.3 shows the data fl ow from the time you push a key on your keyboard until
the time it’s echoed on your virtual console. The left half of the fi gure is hardware-
specifi c, and the right half is generic. As per the design goal of the input subsystem, the
underlying hardware interface is transparent to the keyboard event driver and the tty
layer. The input core and the clearly defi ned event interfaces thus insulate input users
from the intricacies of the hardware.

USB and Bluetooth Keyboards

The USB specifi cations related to human interface devices (HID) stipulate the pro-
tocol that USB keyboards, mice, keypads, and other input peripherals use for com-
munication. On Linux, this is implemented via the usbhid USB client driver , which
is responsible for the USB HID class (0x03). Usbhid registers itself as an input device
driver. It conforms to the input API and reports input events appropriate to the con-
nected HID.

To understand the code path for a USB keyboard, revert to Figure 7.3 and modify
the hardware-specifi c left half. Replace the keyboard controller in the Input Hardware
box with a USB controller, serio with the USB core layer, and the Input Device Driver
box with the usbhid driver.

For a Bluetooth keyboard, replace the keyboard controller in Figure 7.3 with a
Bluetooth chipset, serio with the Bluetooth core layer, and the Input Device Driver
box with the Bluetooth hidp driver.

USB and Bluetooth are discussed in detail in Chapter 11, “Universal Serial Bus,”
and Chapter 16, “Linux Without Wires,” respectively.

Input Device Drivers 219

220 Chapter 7 Input Drivers

Keycode

Keyboard Controller (Desktops)
Embedded Controller (Laptops)

Input Hardware

Input Device Driver
(drivers/input/keyboard/atbkbd.c)

Generic Half

Hardware-Specific Half

Scancode

ISR

Serio

N_TTY
Line Discipline

Keyboard
Translation

Tables

Event Handler

Virtual Terminal

Input User

Input Core
Key Handlers for Sysrq,

Reboot, Scroll, Meta,
Console switch, Caps…

Input Event Driver
(drivers/char/keyboard.c)

FIGURE 7.3 Data fl ow from a PS/2-compatible keyboard.

Mice

Mice, like keyboards, come with different capabilities and have different interfacing
options. Let’s look at the common ones.

PS/2 Mice

Mice generate relative movements in the X and Y axes. They also possess one or more
buttons. Some have scroll wheels, too. The input device driver for PS/2-compatible
legacy mice relies on the serio layer to talk to the underlying controller. The input
event driver for mice, called mousedev, reports mouse events to user applications via
/dev/input/mice.

Device Example: Roller Mouse

To get a feel of a real-world mouse device driver, let’s convert the roller wheel discussed
in Chapter 4, “Laying the Groundwork,” into a variation of the generic PS/2 mouse.
The “roller mouse” generates one-dimensional movement in the Y-axis. Clockwise and
anticlockwise turns of the wheel produce positive and negative relative Y coordinates
respectively (like the scroll wheel in mice), while pressing the roller wheel results in a
left button mouse event. The roller mouse is thus ideal for navigating menus in devices
such as smart phones, handhelds, and music players.

The roller mouse device driver implemented in Listing 7.3 works with windowing
systems such as X Windows. Look at roller_mouse_init() to see how the driver
declares its mouse-like capabilities. Unlike the roller wheel driver in Listing 4.1 of
Chapter 4, the roller mouse driver needs no read() or poll() methods because
events are reported using input APIs. The roller interrupt handler roller_isr()
also changes accordingly. Gone are the housekeepings done in the interrupt han-
dler using a wait queue, a spinlock, and the store_movement() routine to support
read() and poll().

In Listing 7.3, the leading + and - denote the differences from the roller wheel
driver implemented in Listing 4.1 of Chapter 4.

LISTING 7.3 The Roller Mouse Driver

+ #include <linux/input.h>

+ #include <linux/interrupt.h>

+ /* Device structure */

+ struct {

+ /* ... */

+ struct input_dev dev;

+ } roller_mouse;

+ static int __init

+ roller_mouse_init(void)

Input Device Drivers 221

222 Chapter 7 Input Drivers

+ {

+ /* Allocate input device structure */

+ roller_mouse->dev = input_allocate_device();

+

+ /* Can generate a click and a relative movement */

+ roller_mouse->dev->evbit[0] = BIT(EV_KEY) | BIT(EV_REL);

+ /* Can move only in the Y-axis */

+ roller_mouse->dev->relbit[0] = BIT(REL_Y);

+

+ /* My click should be construed as the left button

+ press of a mouse */

+ roller_mouse->dev->keybit[LONG(BTN_MOUSE)] = BIT(BTN_LEFT);

+ roller_mouse->dev->name = "roll";

+

+ /* For entries in /sys/class/input/inputX/id/ */

+ roller_mouse->dev->id.bustype = ROLLER_BUS;

+ roller_mouse->dev->id.vendor = ROLLER_VENDOR;

+ roller_mouse->dev->id.product = ROLLER_PROD;

+ roller_mouse->dev->id.version = ROLLER_VER;

+ /* Register with the input subsystem */

+ input_register_device(roller_mouse->dev);

+ }

/* Global variables */

- spinlock_t roller_lock = SPIN_LOCK_UNLOCKED;

- static DECLARE_WAIT_QUEUE_HEAD(roller_poll);

/* The Roller Interrupt Handler */

static irqreturn_t

roller_interrupt(int irq, void *dev_id)

{

 int i, PA_t, PA_delta_t, movement = 0;

 /* Get the waveforms from bits 0, 1 and 2

 of Port D as shown in Figure 7.1 */

 PA_t = PORTD & 0x07;

 /* Wait until the state of the pins change.

 (Add some timeout to the loop) */

 for (i=0; (PA_t==PA_delta_t); i++){

 PA_delta_t = PORTD & 0x07;

 }

 movement = determine_movement(PA_t, PA_delta_t);

- spin_lock(&roller_lock);

-

- /* Store the wheel movement in a buffer for

- later access by the read()/poll() entry points */

- store_movements(movement);

-

- spin_unlock(&roller_lock);

-

- /* Wake up the poll entry point that might have

- gone to sleep, waiting for a wheel movement */

- wake_up_interruptible(&roller_poll);

-

+ if (movement == CLOCKWISE) {

+ input_report_rel(roller_mouse->dev, REL_Y, 1);

+ } else if (movement == ANTICLOCKWISE) {

+ input_report_rel(roller_mouse->dev, REL_Y, -1);

+ } else if (movement == KEYPRESSED) {

+ input_report_key(roller_mouse->dev, BTN_LEFT, 1);

+ }

+ input_sync(roller_mouse->dev);

 return IRQ_HANDLED;

}

Trackpoints

A trackpoint is a pointing device that comes integrated with the PS/2-type keyboard
on several laptops. This device includes a joystick located among the keys and mouse
buttons positioned under the spacebar. A trackpoint essentially functions as a mouse,
so you can operate it using the PS/2 mouse driver.

Unlike a regular mouse, a trackpoint offers more movement control. You can com-
mand the trackpoint controller to change properties such as sensitivity and inertia.
The kernel has a special driver, drivers/input/mouse/trackpoint.c, to create and manage
associated sysfs nodes. For the full set of track point confi guration options, look under
/sys/devices/platform/i8042/serioX/serioY/.

Input Device Drivers 223

224 Chapter 7 Input Drivers

Touchpads

A touchpad is a mouse-like pointing device commonly found on laptops. Unlike
conventional mice, a touchpad does not have moving parts. It can generate mouse-
compatible relative coordinates but is usually used by operating systems in a more
powerful mode that produces absolute coordinates. The communication protocol used
in absolute mode is similar to the PS/2 mouse protocol, but not compatible with it.

The basic PS/2 mouse driver is capable of supporting devices that conform to dif-
ferent variations of the bare PS/2 mouse protocol. You may add support for a new
mouse protocol to the base driver by supplying a protocol driver via the psmouse
structure. If your laptop uses the Synaptics touchpad in absolute mode, for example,
the base PS/2 mouse driver uses the services of a Synaptics protocol driver to interpret
the streaming data. For an end-to-end understanding of how the Synaptics protocol
works in tandem with the base PS/2 driver, look at the following four code regions
collected in Listing 7.4:

 • The PS/2 mouse driver drivers/input/mouse/psmouse-base.c, instantiates a
psmouse_protocol structure with information regarding supported mouse
protocols (including the Synaptics touchpad protocol).

 • The psmouse structure, defined in drivers/input/mouse/psmouse.h, ties various
PS/2 protocols together.

 • synaptics_init() populates the psmouse structure with the address of asso-
ciated protocol functions.

 • The protocol handler function synaptics_process_byte(), populated in
synaptics_init(), gets called from interrupt context when serio senses mouse
movement. If you unfold synaptics_process_byte(), you will see touchpad
movements being reported to user applications via mousedev.

LISTING 7.4 PS/2 Mouse Protocol Driver for the Synaptics Touchpad

drivers/input/mouse/psmouse-base.c:

/* List of supported PS/2 mouse protocols */

static struct psmouse_protocol psmouse_protocols[] = {

 {

 .type = PSMOUSE_PS2, /* The bare PS/2 handler */

 .name = "PS/2",

 .alias = "bare",

 .maxproto = 1,

 .detect = ps2bare_detect,

 },

 /* ... */

 {

 .type = PSMOUSE_SYNAPTICS, /* Synaptics TouchPad Protocol */

 .name = "SynPS/2",

 .alias = "synaptics",

 .detect = synaptics_detect, /* Is the protocol detected? */

 .init = synaptics_init, /* Initialize Protocol Handler */

 },

 /* ... */

}

drivers/input/mouse/psmouse.h:

/* The structure that ties various mouse protocols together */

struct psmouse {

 struct input_dev *dev; /* The input device */

 /* ... */

 /* Protocol Methods */

 psmouse_ret_t (*protocol_handler)

 (struct psmouse *psmouse, struct pt_regs *regs);

 void (*set_rate)(struct psmouse *psmouse, unsigned int rate);

 void (*set_resolution)

 (struct psmouse *psmouse, unsigned int resolution);

 int (*reconnect)(struct psmouse *psmouse);

 void (*disconnect)(struct psmouse *psmouse);

 /* ... */

};

drivers/input/mouse/synaptics.c:

/* init() method of the Synaptics protocol */

int synaptics_init(struct psmouse *psmouse)

{

 struct synaptics_data *priv;

 psmouse->private = priv = kmalloc(sizeof(struct synaptics_data),

 GFP_KERNEL);

 /* ... */

 /* This is called in interrupt context when mouse

 movement is sensed */

Input Device Drivers 225

226 Chapter 7 Input Drivers

 psmouse->protocol_handler = synaptics_process_byte;

 /* More protocol methods */

 psmouse->set_rate = synaptics_set_rate;

 psmouse->disconnect = synaptics_disconnect;

 psmouse->reconnect = synaptics_reconnect;

 /* ... */

}

drivers/input/mouse/synaptics.c:

/* If you unfold synaptics_process_byte() and look at

 synaptics_process_packet(), you can see the input

 events being reported to user applications via mousedev */

static void synaptics_process_packet(struct psmouse *psmouse)

{

 /* ... */

 if (hw.z > 0) {

 /* Absolute X Coordinate */

 input_report_abs(dev, ABS_X, hw.x);

 /* Absolute Y Coordinate */

 input_report_abs(dev, ABS_Y,

 YMAX_NOMINAL + YMIN_NOMINAL - hw.y);

 }

 /* Absolute Z Coordinate */

 input_report_abs(dev, ABS_PRESSURE, hw.z);

 /* ... */

 /* Left TouchPad button */

 input_report_key(dev, BTN_LEFT, hw.left);

 /* Right TouchPad button */

 input_report_key(dev, BTN_RIGHT, hw.right);

 /* ... */

}

USB and Bluetooth Mice

USB mice are handled by the same input driver (usbhid) that drives USB keyboards.
Similarly, the hidp driver that implements support for Bluetooth keyboards also takes
care of Bluetooth mice.

As you would expect, USB and Bluetooth mice drivers channel device data through
mousedev.

Touch Controllers

In Chapter 6, we implemented a device driver for a serial touch controller in the form
of a line discipline called N_TCH. The input subsystem offers a better and easier way to
implement that driver. Refashion the fi nite state machine in N_TCH as an input device
driver with the following changes:

 1. Serio offers a line discipline called serport for accessing devices connected to the
serial port. Use serport’s services to talk to the touch controller.

 2. Instead of passing coordinate information to the tty layer, generate input reports
via evdev as you did in Listing 7.2 for the virtual mouse.

With this, the touch screen is accessible to user space via /dev/input/eventX. The actual
driver implementation is left as an exercise.

An example of a touch controller that does not interface via the serial port is the
Analog Devices ADS7846 chip, which communicates over a Serial Peripheral Interface
(SPI). The driver for this device uses the services of the SPI core rather than serio. The
section “The Serial Peripheral Interface Bus” in Chapter 8, “The Inter-Integrated Cir-
cuit Protocol,” discusses SPI. Like most touch drivers, the ADS7846 driver uses the
evdev interface to dispatch touch information to user applications.

Some touch controllers interface over USB. An example is the 3M USB touch con-
troller, driven by drivers/input/touchscreen/usbtouchscreen.c.

 Many PDAs have four-wire resistive touch panels superimposed on their LCDs. The X
and Y plates of the panel (two wires for either axes) connect to an analog-to-digital con-
verter (ADC), which provides a digital readout of the analog voltage difference arising
out of touching the screen. An input driver collects the coordinates from the ADC and
dispatches it to user space.

Different instances of the same touch panel may produce slightly different coordinate
ranges (maximum values in the X and Y directions) due to the nuances of manufactur-
ing processes. To insulate applications from this variation, touch screens are calibrated
prior to use. Calibration is usually initiated by the GUI by displaying cross-marks at
screen boundaries and other vantage points, and requesting the user to touch those
points. The generated coordinates are programmed back into the touch controller
using appropriate commands if it supports self-calibration, or used to scale the coordi-
nate stream in software otherwise.

Input Device Drivers 227

228 Chapter 7 Input Drivers

The input subsystem also contains an event driver called tsdev that generates coor-
dinate information according to the Compaq touch-screen protocol. If your system
reports touch events via tsdev, applications that understand this protocol can elicit
touch input from /dev/input/tsX. This driver is, however, scheduled for removal from
the mainline kernel in favor of the user-space tslib library. Documentation/feature-
removal-schedule.txt lists features that are going away from the kernel source tree.

Accelerometers

An accelerometer measures acceleration. Several IBM/Lenovo laptops have an acceler-
ometer that detects sudden movement. The generated information is used to protect
the hard disk from damage using a mechanism called Hard Drive Active Protection
System (HDAPS), analogous to the way a car airbag shields a passenger from injury.
The HDAPS driver is implemented as a platform driver that registers with the input
subsystem. It uses evdev to stream the X and Y components of the detected accelera-
tion. Applications can read acceleration events via /dev/input/eventX to detect condi-
tions, such as shock and vibe, and perform a defensive action, such as parking the hard
drive’s head. The following command spews output if you move the laptop (assume
that event3 is assigned to HDAPS):

bash> od –x /dev/input/event3

0000000 a94d 4599 1f19 0007 0003 0000 ffed ffff

...

The accelerometer also provides information such as temperature, keyboard activity,
and mouse activity, all of which can be gleaned via fi les in /sys/devices/platform/hdaps/.
Because of this, the HDAPS driver is part of the hardware monitoring (hwmon) sub-
system in the kernel sources. We talk about hardware monitoring in the section “Hard-
ware Monitoring with LM-Sensors” in the next chapter.

Output Events

Some input device drivers also handle output events. For example, the keyboard
driver can glow the CAPSLOCK LED, and the PC speaker driver can sound a beep.
Let’s zoom in on the latter. During initialization, the speaker driver declares its out-
put capability by setting appropriate evbits and registering a callback routine to han-
dle the output event:

drivers/input/misc/pcspkr.c:

static int __devinit pcspkr_probe(struct platform_device *dev)

{

 /* ... */

 /* Capability Bits */

 pcspkr_dev->evbit[0] = BIT(EV_SND);

 pcspkr_dev->sndbit[0] = BIT(SND_BELL) | BIT(SND_TONE);

 /* The Callback routine */

 pcspkr_dev->event = pcspkr_event;

 err = input_register_device(pcspkr_dev);

 /* ... */

}

/* The callback routine */

static int pcspkr_event(struct input_dev *dev, unsigned int type,

 unsigned int code, int value)

{

 /* ... */

 /* I/O programming to sound a beep */

 outb_p(inb_p(0x61) | 3, 0x61);

 /* set command for counter 2, 2 byte write */

 outb_p(0xB6, 0x43);

 /* select desired HZ */

 outb_p(count & 0xff, 0x42);

 outb((count >> 8) & 0xff, 0x42);

 /* ... */

}

To sound the beeper, the keyboard event driver generates a sound event (EV_SND) as
follows:

input_event(handle->dev, EV_SND, /* Type */

 SND_TONE, /* Code */

 hz /* Value */);

Input Device Drivers 229

230 Chapter 7 Input Drivers

This triggers execution of the callback routine, pcspkr_event(), and you hear
the beep.

Debugging

You can use the evbug module as a debugging aid if you’re developing an input driver.
It dumps the (type, code, value) tuple (see struct input_event defi ned previously)
corresponding to events generated by the input subsystem. Figure 7.4 contains data
captured by evbug while operating some input devices:

/* Touchpad Movement */
evbug.c Event. Dev: isa0060/serio1/input0: Type: 3, Code: 28, Value: 0
evbug.c Event. Dev: isa0060/serio1/input0: Type: 1, Code: 325, Value: 0
evbug.c Event. Dev: isa0060/serio1/input0: Type: 0, Code: 0, Value: 0

/* Trackpoint Movement */
evbug.c Event. Dev: synaptics-pt/serio0/input0: Type: 2, Code: 0, Value: -1
evbug.c Event. Dev: synaptics-pt/serio0/input0: Type: 2, Code: 1, Value: -2
evbug.c Event. Dev: synaptics-pt/serio0/input0: Type: 0, Code: 0, Value: 0

/* USB Mouse Movement */
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 2, Code: 1, Value: -1
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 0, Code: 0, Value: 0
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 2, Code: 0, Value: 1
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 0, Code: 0, Value: 0

/* PS/2 Keyboard keypress 'a' */
evbug.c Event. Dev: isa0060/serio0/input0: Type: 4, Code: 4, Value: 30
evbug.c Event. Dev: isa0060/serio0/input0: Type: 1, Code: 30, Value: 0
evbug.c Event. Dev: isa0060/serio0/input0: Type: 0, Code: 0, Value: 0

/* USB keyboard keypress 'a' */
evbug.c Event. Dev: usb-0000:00:1d.1-1/input0: Type: 1, Code: 30, Value: 1
evbug.c Event. Dev: usb-0000:00:1d.1-1/input0: Type: 0, Code: 0, Value: 0
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 1, Code: 30, Value: 0
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 0, Code: 0, Value: 0

FIGURE 7.4 Evbug output.

To make sense of the dump in Figure 7.4, remember that touchpads generate absolute
coordinates (EV_ABS) or event type 0x03, trackpoints produce relative coordinates
(EV_REL) or event type 0x02, and keyboards emit key events (EV_KEY) or event type

0x01. Event type 0x0 corresponds to an invocation of input_sync(), which does the
following:

input_event(dev, EV_SYN, SYN_REPORT, 0);

This translates to a (type, code, value) tuple of (0x0, 0x0, 0x0) and completes each
input event.

Looking at the Sources

Most input event drivers are present in the drivers/input/ directory. The keyboard event
driver, however, lives in drivers/char/keyboard.c, because it’s connected to virtual termi-
nals and not to device nodes under /dev/input/.

You can fi nd input device drivers in several places. Drivers for legacy keyboards,
mice, and joysticks, reside in separate subdirectories under drivers/input/. Bluetooth
input drivers live in net/bluetooth/hidp/. You can also fi nd input drivers in regions such
as drivers/hwmon/ and drivers/media/video/. Event types, codes, and values, are defi ned
in include/linux/input.h.

The serio subsystem stays in drivers/input/serio/. Sources for the serport line disci-
pline is in drivers/input/serio/serport.c. Documentation/input/ contains more details on
different input interfaces.

Table 7.1 summarizes the main data structures used in this chapter and their loca-
tion inside the source tree. Table 7.2 lists the main kernel programming interfaces that
you used in this chapter along with the location of their defi nitions.

TABLE 7.1 Summary of Data Structures

 Data Structure Location Description

input_event include/linux/input.h Each event packet produced by evdev has
this format.

input_dev include/linux/input.h Representation of an input device.

input_handler include/linux/serial_core.h Contains the entry points supported by an
event driver.

 psmouse_protocol drivers/input/mouse/psmouse-base.c Information about a supported PS/2 mouse
protocol driver.

psmouse drivers/input/mouse/psmouse.h Methods supported by a PS/2 mouse driver.

Looking at the Sources 231

232 Chapter 7 Input Drivers

TABLE 7.2 Summary of Kernel Programming Interfaces

 Kernel Interface Location Description

 input_register_device() drivers/input/input.c Registers a device with the
input core

 input_unregister_device() drivers/input/input.c Removes a device from the
input core

 input_report_rel() include/linux/input.h Generates a relative movement in
a specified direction

input_report_abs() include/linux/input.h Generates an absolute movement
in a specified direction

input_report_key() include/linux/input.h Generates a key or a button press

input_sync() include/linux/input.h Indicates that the input subsystem
can collect previously gener-
ated events into an evdev packet
and send it to user space via
/dev/input/inputX

input_register_handler() drivers/input/input.c Registers a custom event driver

sysfs_create_group() fs/sysfs/group.c Creates a sysfs node group with
specified attributes

sysfs_remove_group() fs/sysfs/group.c Removes a sysfs group created
using sysfs_create_group()

tty_insert_flip_char() include/linux/tty_flip.h Sends a character to the line
discipline layer

platform_device_register_simple() drivers/base/platform.c Creates a simple platform device

platform_device_unregister() drivers/base/platform.c Unregisters a platform device

233

8

The Inter-Integrated
Circuit Protocol

In This Chapter

■ What’s I2C/SMBus? 234

■ I2C Core 235

■ Bus Transactions 237

■ Device Example: EEPROM 238

■ Device Example: Real Time Clock 247

■ I2C-dev 251

■ Hardware Monitoring Using LM-Sensors 251

■ The Serial Peripheral Interface Bus 251

■ The 1-Wire Bus 254

■ Debugging 254

■ Looking at the Sources 255

234

T he Inter-Integrated Circuit, or I2C (pronounced I squared C) bus and its
subset, the System Management Bus (SMBus), are synchronous serial inter-

faces that are ubiquitous on desktops and embedded devices. Let’s fi nd out how
the kernel supports I2C/SMBus host adapters and client devices by implement-
ing example drivers to access an I2C EEPROM and an I2C RTC. And before
wrapping up this chapter, let’s also peek at two other serial interfaces supported
by the kernel: the Serial Peripheral Interface or SPI (often pronounced spy) bus
and the 1-wire bus.

All these serial interfaces (I2C, SMBus, SPI, and 1-wire) share two common
characteristics:

 • The amount of data exchanged is small.

 • The required data transfer rate is low.

What’s I2C/SMBus?

I2C is a serial bus that is widely used in desktops and laptops to interface the pro-
cessor with devices such as EEPROMs, audio codecs, and specialized chips that
monitor parameters such as temperature and power-supply voltage. In addition,
I2C is widely used in embedded devices to communicate with RTCs, smart battery
circuits, multiplexers, port expanders, optical transceivers, and other similar devices.
Because I2C is supported by a large number of microcontrollers, there are loads of
cheap I2C devices available in the market today.

I2C and SMBus are master-slave protocols where communication takes place
between a host adapter (or host controller) and client devices (or slaves). The host
adapter is usually part of the South Bridge chipset on desktops and part of the
microcontroller on embedded devices. Figure 8.1 shows an example I2C bus on PC-
compatible hardware.

Processor

North Bridge

South Bridge

EEPROM

CODEC Temperature
Sensor Chip

I2C

I2C/SMBus
Host Adapter I2C/SMBus

Client Devices

Control

Data

AC’97

FIGURE 8.1 I2C/SMBus on PC-compatible hardware.

I2C and its subset SMBus are 2-wire interfaces originally developed by Philips and
Intel, respectively. The two wires are clock and bidirectional data, and the correspond-
ing lines are called Serial CLock (SCL) and Serial DAta (SDA). Because the I2C bus
needs only a pair of wires, it consumes less space on the circuit board. However, the
supported bandwidths are also low. I2C allows up to 100Kbps in the standard mode
and 400Kbps in a fast mode. (SMBus supports only up to 100Kbps, however.) The
bus is thus suitable only for slow peripherals. Even though I2C supports bidirectional
exchange, the communication is half duplex because there is only a single data wire.

I2C and SMBus devices own 7-bit addresses. The protocol also supports 10-bit
addresses, but many devices respond only to 7-bit addressing , which yields a maxi-
mum of 127 devices on the bus. Due to the master-slave nature of the protocol, device
addresses are also known as slave addresses.

I2C Core

The I2C core is a code base consisting of routines and data structures available to
host adapter drivers and client drivers. Common code in the core makes the driver
developer’s job easier. The core also provides a level of indirection that renders client
drivers independent of the host adapter, allowing them to work unchanged even if the
client device is used on a board that has a different I2C host adapter. This philosophy
of a core layer and its attendant benefi ts is also relevant for many other device driver
classes in the kernel, such as PCMCIA, PCI, and USB.

I2C Core 235

236 Chapter 8 The Inter-Integrated Circuit Protocol

In addition to the core, the kernel I2C infrastructure consists of the following:

 • Device drivers for I2C host adapters. They fall in the realm of bus drivers and
usually consist of an adapter (or controller) driver and an algorithm driver. The
former uses the latter to talk to the I2C bus.

 • Device drivers for I2C client devices.

 • i2c-dev, which allows the implementation of user mode I2C client drivers.

You are more likely to implement client drivers than adapter or algorithm drivers
because there are a lot more I2C devices than there are I2C host adapters. So, we will
confi ne ourselves to client drivers in this chapter.

Figure 8.2 illustrates the Linux I2C subsystem. It shows I2C kernel modules talking
to a host adapter and a client device on an I2C bus.

User Application
I2C User Mode
Device Driver

User Space

Kernel Space

Kernel Space

Hardware

/sys, /dev i2c-core i2c-dev

I2C Client
Driver

I2C Adapter/Algo
Driver

I2C Device
I2C Bus

I2C Host
Controller

FIGURE 8.2 The Linux I2C subsystem.

Because SMBus is a subset of I2C, using only SMBus commands to talk to your device
yields a driver that works with both SMBus and I2C adapters. Table 8.1 lists the
SMBus-compatible data transfer routines provided by the I2C core.

Bus Transactions

Before implementing an example driver, let’s get a better understanding of the I2C
protocol by peering at the wires through a magnifying glass. Listing 8.1 shows a code
snippet that talks to an I2C EEPROM and the corresponding transactions that occur
on the bus. The transactions were captured by connecting an I2C bus analyzer while
running the code snippet. The code uses user mode I2C functions. (We talk more
about user mode I2C programming in Chapter 19, “Drivers in User Space.”)

LISTING 8.1 Transactions on the I2C Bus

/* ... */

/*

 * Connect to the EEPROM. 0x50 is the device address.

 * smbus_fp is a file pointer into the SMBus device.

 */

ioctl(smbus_fp, 0x50, slave);

/* Write a byte (0xAB) at memory offset 0 on the EEPROM */

i2c_smbus_write_byte_data(smbus_fp, 0, 0xAB);

/*

 * This is the corresponding transaction observed

 * on the bus after the write:

* S 0x50 Wr [A] 0 [A] 0xAB [A] P

*

 * S is the start bit, 0x50 is the 7-bit slave address (0101000b),

 * Wr is the write command (0b), A is the Accept bit (or

 * acknowledgment) received by the host from the slave, 0 is the

 * address offset on the slave device where the byte is to be

 * written, 0xAB is the data to be written, and P is the stop bit.

 * The data enclosed within [] is sent from the slave to the

 * host, while the rest of the bits are sent by the host to the

 * slave.

 */

Bus Transactions 237

238 Chapter 8 The Inter-Integrated Circuit Protocol

/* Read a byte from offset 0 on the EEPROM */

res = i2c_smbus_read_byte_data(smbus_fp, 0);

/*

 * This is the corresponding transaction observed

 * on the bus after the read:

 * S 0x50 Wr [A] 0 [A] S 0x50 Rd [A] [0xAB] NA P

 *

 * The explanation of the bits is the same as before, except that

 * Rd stands for the Read command (1b), 0xAB is the data received

 * from the slave, and NA is the Reverse Accept bit (or the

 * acknowledgment sent by the host to the slave).

 */

Device Example: EEPROM

Our fi rst example client device is an EEPROM sitting on an I2C bus, as shown in
Figure 8.1. Almost all laptops and desktops have such an EEPROM for storing BIOS
confi guration information. The example EEPROM has two memory banks. The driver
exports /dev interfaces corresponding to each bank: /dev/eep/0 and /dev/eep/1. Applica-
tions operate on these nodes to exchange data with the EEPROM.

Each I2C/SMBus client device is assigned a slave address that functions as the device
identifi er. The EEPROM in the example answers to two slave addresses, SLAVE_ADDR1
and SLAVE_ADDR2, one per bank.

The example driver uses I2C commands that are compatible with SMBus, so it
works with both I2C and SMBus EEPROMs.

Initializing

As is the case with all driver classes, I2C client drivers also own an init() entry point.
Initialization entails allocating data structures, registering the driver with the I2C core,
and hooking up with sysfs and the Linux device model. This is done in Listing 8.2.

LISTING 8.2 Initializing the EEPROM Driver

/* Driver entry points */

static struct file_operations eep_fops = {

 .owner = THIS_MODULE,

 .llseek = eep_llseek,

 .read = eep_read,

 .ioctl = eep_ioctl,

 .open = eep_open,

 .release = eep_release,

 .write = eep_write,

};

static dev_t dev_number; /* Allotted Device Number */

static struct class *eep_class; /* Device class */

/* Per-device client data structure for each

 * memory bank supported by the driver

 */

struct eep_bank {

 struct i2c_client *client; /* I2C client for this bank */

 unsigned int addr; /* Slave address of this bank */

 unsigned short current_pointer; /* File pointer */

 int bank_number; /* Actual memory bank number */

 /* ... */ /* Spinlocks, data cache for

 slow devices,.. */

};

#define NUM_BANKS 2 /* Two supported banks */

#define BANK_SIZE 2048 /* Size of each bank */

struct ee_bank *ee_bank_list; /* List of private data

 structures, one per bank */

/*

 * Device Initialization

 */

int __init

eep_init(void)

{

 int err, i;

 /* Allocate the per-device data structure, ee_bank */

 ee_bank_list = kmalloc(sizeof(struct ee_bank)*NUM_BANKS,

 GFP_KERNEL);

 memset(ee_bank_list, 0, sizeof(struct ee_bank)*NUM_BANKS);

Device Example: EEPROM 239

240 Chapter 8 The Inter-Integrated Circuit Protocol

 /* Register and create the /dev interfaces to access the EEPROM

 banks. Refer back to Chapter 5, "Character Drivers" for

 more details */

 if (alloc_chrdev_region(&dev_number, 0,

 NUM_BANKS, "eep") < 0) {

 printk(KERN_DEBUG "Can’t register device\n");

 return -1;

 }

 eep_class = class_create(THIS_MODULE, DEVICE_NAME);

 for (i=0; i < NUM_BANKS;i++) {

 /* Connect the file operations with cdev */

 cdev_init(&ee_bank[i].cdev, &ee_fops);

 /* Connect the major/minor number to the cdev */

 if (cdev_add(&ee_bank[i].cdev, (dev_number + i), 1)) {

 printk("Bad kmalloc\n");

 return 1;

 }

 device_create(eep_class, NULL, MKDEV(MAJOR(dev_number), i),

 "eeprom%d", i);

 }

 /* Inform the I2C core about our existence. See the section

 "Probing the Device" for the definition of eep_driver */

 err = i2c_add_driver(&eep_driver);

 if (err) {

 printk("Registering I2C driver failed, errno is %d\n", err);

 return err;

 }

 printk("EEPROM Driver Initialized.\n");

 return 0;

}

Listing 8.2 initiates creation of the device nodes, but to complete their production,
add the following to an appropriate rule fi le under /etc/udev/rules.d/:

KERNEL=="eeprom[0-1]*", NAME="eep/%n"

This creates /dev/eep/0 and /dev/eep/1 in response to reception of the corresponding
uevents from the kernel. A user mode program that needs to read from the nth memory
bank can then operate on /dev/eep/n.

Listing 8.3 implements the open() method for the EEPROM driver. The kernel
calls eep_open() when an application opens /dev/eep/X. eep_open() stores the per-
device data structure in a private area so that it’s directly accessible from the rest of the
driver methods.

LISTING 8.3 Opening the EEPROM Driver

int

eep_open(struct inode *inode, struct file *file)

{

 /* The EEPROM bank to be opened */

 n = MINOR(file->f_dentry->d_inode->i_rdev);

 file->private_data = (struct ee_bank *)ee_bank_list[n];

 /* Initialize the fields in ee_bank_list[n] such as

 size, slave address, and the current file pointer */

 /* ... */

}

Probing the Device

The I2C client driver, in partnership with the host controller driver and the I2C core,
attaches itself to a slave device as follows:

 1. During initialization, it registers a probe() method, which the I2C core invokes
when an associated host controller is detected. In Listing 8.2, eep_init() reg-
istered eep_probe() by invoking i2c_add_driver():

static struct i2c_driver eep_driver =

{

 .driver = {

 .name = "EEP", /* Name */

 },

 .id = I2C_DRIVERID_EEP, /* ID */

 .attach_adapter = eep_probe, /* Probe Method */

 .detach_client = eep_detach, /* Detach Method */

};

i2c_add_driver(&eep_driver); `

Device Example: EEPROM 241

242 Chapter 8 The Inter-Integrated Circuit Protocol

The driver identifi er, I2C_DRIVERID_EEP, should be unique for the device and
should be defi ned in include/linux/i2c-id.h.

 2. When the core calls the driver’s probe() method signifying the presence of a
host controller, it, in turn, invokes i2c_probe() with arguments specifying the
addresses of the slave devices that the driver is responsible for and an associated
attach() routine.

Listing 8.4 implements eep_probe(), the probe() method of the EEPROM
driver. normal_i2c specifi es the EEPROM bank addresses and is populated
as part of the i2c_client_address_data structure . Additional fi elds in this
structure can be used to request fi ner addressing control. You can ask the I2C
core to ignore a range of addresses using the ignore fi eld. Or you may use the
probe fi eld to specify (adapter, slave address) pairs if you want to bind a slave
address to a particular host adapter. This will be useful, for example, if your pro-
cessor supports two I2C host controllers, and you have an EEPROM on bus 1
and a temperature sensor on bus 2, both answering to the same slave address.

 3. The host controller walks the bus looking for the slave devices specified in
Step 2. To do this, it generates a bus transaction such as S SLAVE_ADDR Wr,
where S is the start bit, SLAVE_ADDR is the associated 7-bit slave address as
specified in the device’s datasheet, and Wr is the write command, as described in
the section “Bus Transactions.” If a working slave device exists on the bus, it’ll
respond by sending an acknowledgment bit ([A]).

 4. If the host controller detects a slave in Step 3, the I2C core invokes the attach()
routine supplied via the third argument to i2c_probe() in Step 2. For the
EEPROM driver, this routine is eep_attach(), which registers a per-device
client data structure, as shown in Listing 8.5. If your device expects an initial
programming sequence (for example, registers on an I2C Digital Visual Inter-
face transmitter chip have to be initialized before the chip can start function-
ing), perform those operations in this routine.

LISTING 8.4 Probing the Presence of EEPROM Banks

#include <linux/i2c.h>

/* The EEPROM has two memory banks having addresses SLAVE_ADDR1

 * and SLAVE_ADDR2, respectively

 */

static unsigned short normal_i2c[] = {

 SLAVE_ADDR1, SLAVE_ADDR2, I2C_CLIENT_END

};

static struct i2c_client_address_data addr_data = {

 .normal_i2c = normal_i2c,

 .probe = ignore,

 .ignore = ignore,

 .forces = ignore,

};

static int

eep_probe(struct i2c_adapter *adapter)

{

 /* The callback function eep_attach(), is shown

 * in Listing 8.5

 */

 return i2c_probe(adapter, &addr_data, eep_attach);

}

LISTING 8.5 Attaching a Client

int

eep_attach(struct i2c_adapter *adapter, int address, int kind)

{

 static struct i2c_client *eep_client;

 eep_client = kmalloc(sizeof(*eep_client), GFP_KERNEL);

 eep_client->driver = &eep_driver; /* Registered in Listing 8.2 */

 eep_client->addr = address; /* Detected Address */

 eep_client->adapter = adapter; /* Host Adapter */

 eep_client->flags = 0;

 strlcpy(eep_client->name, "eep", I2C_NAME_SIZE);

 /* Populate fields in the associated per-device data structure */

 /* ... */

 /* Attach */

 i2c_attach_client(new_client);

}

Device Example: EEPROM 243

244 Chapter 8 The Inter-Integrated Circuit Protocol

Checking Adapter Capabilities

Each host adapter might be limited by a set of constraints. An adapter might not
support all the commands that Table 8.1 contains. For example, it might allow the
SMBus read_word command but not the read_block command. A client driver has
to check whether a command is supported by the adapter before using it.

The I2C core provides two functions to do this:

 1. i2c_check_functionality() checks whether a particular function is supported.

 2. i2c_get_functionality() returns a mask containing all supported functions.

See include/linux/i2c.h for the list of possible functionalities.

Accessing the Device

To read data from the EEPROM, fi rst glean information about its invocation thread
from the private data fi eld associated with the device node. Next, use SMBus- compatible
data access routines provided by the I2C core (Table 8.1 shows the available functions)
to read the data. Finally, send the data to user space and increment the internal fi le
pointer so that the next read()/write() operation starts from where the last one
ended. These steps are performed by Listing 8.6. The listing omits sanity and error
checks for convenience.

TABLE 8.1 SMBus-Compatible Data Access Functions Provided by the I2C Core

 Function Purpose

 i2c_smbus_read_byte() Reads a single byte from the device without specifying a location
offset. Uses the same offset as the previously issued command.

 i2c_smbus_write_byte() Sends a single byte to the device at the same memory offset as the
previously issued command.

 i2c_smbus_write_quick() Sends a single bit to the device (in place of the Rd/Wr bit shown
in Listing 8.1).

 i2c_smbus_read_byte_data() Reads a single byte from the device at a specified offset.

 i2c_smbus_write_byte_data() Sends a single byte to the device at a specified offset.

 i2c_smbus_read_word_data() Reads 2 bytes from the specified offset.

 i2c_smbus_write_word_data() Sends 2 bytes to the specified offset.

 i2c_smbus_read_block_data() Reads a block of data from the specified offset.

 i2c_smbus_write_block_data() Sends a block of data (<= 32 bytes) to the specified offset.

LISTING 8.6 Reading from the EEPROM

ssize_t

eep_read(struct file *file, char *buf,

 size_t count, loff_t *ppos)

{

 int i, transferred, ret, my_buf[BANK_SIZE];

 /* Get the private client data structure for this bank */

 struct ee_bank *my_bank =

 (struct ee_bank *)file->private_data;

 /* Check whether the smbus_read_word() functionality is

 supported */

 if (i2c_check_functionality(my_bank->client,

 I2C_FUNC_SMBUS_READ_WORD_DATA)) {

 /* Read the data */

 while (transferred < count) {

 ret = i2c_smbus_read_word_data(my_bank->client,

 my_bank->current_pointer+i);

 my_buf[i++] = (u8)(ret & 0xFF);

 my_buf[i++] = (u8)(ret >> 8);

 transferred += 2;

 }

 /* Copy data to user space and increment the internal

 file pointer. Sanity checks are omitted for simplicity */

 copy_to_user(buffer, (void *)my_buf, transferred);

 my_bank->current_pointer += transferred;

 }

 return transferred;

}

Writing to the device is done similarly, except that an i2c_smbus_write_XXX()
function is used instead.

Device Example: EEPROM 245

246 Chapter 8 The Inter-Integrated Circuit Protocol

Some EEPROM chips have a Radio Frequency Identifi cation (RFID) transmitter to wire-
lessly transmit stored information. This is used to automate supply-chain processes such
as inventory monitoring and asset tracking. Such EEPROMs usually implement safeguards
via an access protection bank that controls access permissions to the data banks. In such
cases, the driver has to wiggle corresponding bits in the access protection bank before it
can operate on the data banks.

To access the EEPROM banks from user space, develop applications that operate on
/dev/eep/n. To dump the contents of the EEPROM banks, use od:

bash> od –a /dev/eep/0

0000000 S E R # dc4 ff soh R P nul nul nul nul nul nul nul

0000020 @ 1 3 R 1 1 5 3 Z J 1 V 1 L 4 6

0000040 5 1 0 H sp 1 S 2 8 8 8 7 J U 9 9

0000060 H 0 0 6 6 nul nul nul bs 3 8 L 5 0 0 3

0000100 Z J 1 N U B 4 6 8 6 V 7 nul nul nul nul

0000120 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul

*

0000400

As an exercise, take a stab at modifying the EEPROM driver to create /sys interfaces
to the EEPROM banks rather than the /dev interfaces. You may reuse code from List-
ing 5.7, “Using Sysfs to Control the Parallel LED Board,” in Chapter 5 to help you in
this endeavor.

More Methods

To obtain a fully functional driver, you need to add a few remaining entry points.
These are hardly different from those of normal character drivers discussed in Chap-
ter 5, so the code listings are not shown:

 • To support the lseek() system call that assigns a new value to the internal
file pointer, implement the llseek() driver method. The internal file pointer
stores state information about EEPROM access.

 • To verify data integrity, the EEPROM driver can support an ioctl() method
to adjust and verify checksums of stored data.

 • The poll() and fsync() methods are not relevant for the EEPROM.

 • If you choose to compile the driver as a module, you have to supply an exit()
method to unregister the device and clean up client-specifi c data structures.
Unregistering the driver from the I2C core is a one-liner:
i2c_del_driver(&eep_driver);

Device Example: Real Time Clock

Let’s now take the example of an RTC chip connected to an embedded controller over
the I2C bus. The connection diagram is shown in Figure 8.3.

Embedded
Controller

RTC

CLK

SDA/SCL

I2C Bus

Battery
Backup

GND

FIGURE 8.3 An I2C RTC on an embedded system.

Assume that the I2C slave address of the RTC is 0x60 and that its register space is
organized as shown in Table 8.2.

TABLE 8.2 Register Layout on the I2C RTC

 Register Name Description Offset

 RTC_HOUR_REG Hour counter 0x0

 RTC_MINUTE_REG Minute counter 0x1

 RTC_SECOND_REG Second counter 0x2

 RTC_STATUS_REG Flags and interrupt status 0x3

 RTC_CONTROL_REG Enable/disable RTC 0x4

Let’s base our driver for this chip on the EEPROM driver discussed previously. We will
take the I2C client driver architecture, slave registration, and I2C core functions for
granted and implement only the code that communicates with the RTC.

Device Example: Real Time Clock 247

248 Chapter 8 The Inter-Integrated Circuit Protocol

When the I2C core detects a device having the RTC’s slave address (0x60) on the
I2C bus, it invokes myrtc_attach(). The invocation train is similar to that for eep_
attach()in Listing 8.5. Assume that you have to perform the following chip initial-
izations in myrtc_attach():

 1. Clear the RTC status register (RTC_STATUS_REG).

 2. Start the RTC (if it is not already running) by turning on appropriate bits in the
RTC control register (RTC_CONTROL_REG).

To do this, let’s build an i2c_msg and generate I2C transactions on the bus using
i2c_transfer(). This transfer mechanism is exclusive to I2C and is not SMBus-
compatible. To write to the two RTC registers referred to previously, you have to build
two i2c_msg messages. The fi rst message sets the register offset. In our case, it’s 3, the
offset of RTC_STATUS_REG. The second message carries the desired number of bytes
to the specifi ed offset. In this context, it ferries 2 bytes, one each to RTC_STATUS_REG
and RTC_CONTROL_REG.

#include <linux/i2c.h> /* For struct i2c_msg */

int

myrtc_attach(struct i2c_adapter *adapter, int addr, int kind)

{

 u8 buf[2];

 int offset = RTC_STATUS_REG; /* Status register lives here */

 struct i2c_msg rtc_msg[2];

 /* Write 1 byte of offset information to the RTC */

 rtc_msg[0].addr = addr; /* Slave address. In our case,

 this is 0x60 */

 rtc_msg[0].flags = I2C_M_WR; /* Write Command */

 rtc_msg[0].buf = &offset; /* Register offset for

 the next transaction */

 rtc_msg[0].len = 1; /* Offset is 1 byte long */

 /* Write 2 bytes of data (the contents of the status and

 control registers) at the offset programmed by the previous

 i2c_msg */

 rtc_msg[1].addr = addr; /* Slave address */

 rtc_msg[1].flags = I2C_M_WR; /* Write command */

 rtc_msg[1].buf = &buf[0]; /* Data to be written to control

 and status registers */

 rtc_msg[1].len = 2; /* Two register values */

 buf[0] = 0; /* Zero out the status register */

 buf[1] |= ENABLE_RTC; /* Turn on control register bits

 that start the RTC */

 /* Generate bus transactions corresponding to the two messages */

 i2c_transfer(adapter, rtc_msg, 2);

 /* ... */

 printk("My RTC Initialized\n");

}

Now that the RTC is initialized and ticking, you can glean the current time by read-
ing the contents of RTC_HOUR_REG, RTC_MINUTE_REG, and RTC_SECOND_REG. This
is done as follows:

#include <linux/rtc.h> /* For struct rtc_time */

int

myrtc_gettime(struct i2c_client *client, struct rtc_time *r_t)

{

 u8 buf[3]; /* Space to carry hour/minute/second */

 int offset = 0; /* Time-keeping registers start at offset 0 */

 struct i2c_msg rtc_msg[2];

 /* Write 1 byte of offset information to the RTC */

 rtc_msg[0].addr = addr; /* Slave address */

 rtc_msg[0].flags = 0; /* Write Command */

 rtc_msg[0].buf = &offset; /* Register offset for

 the next transaction */

 rtc_msg[0].len = 1; /* Offset is 1 byte long */

 /* Read current time by getting 3 bytes of data from offset 0

 (i.e., from RTC_HOUR_REG, RTC_MINUTE_REG, and RTC_SECOND_REG) */

 rtc_msg[1].addr = addr; /* Slave address */

 rtc_msg[1].flags = I2C_M_RD; /* Read command */

 rtc_msg[1].buf = &buf[0]; /* Data to be read from hour, minute

 and second registers */

 rtc_msg[1].len = 3; /* Three registers to read */

 /* Generate bus transactions corresponding to the above

 two messages */

 i2c_transfer(adapter, rtc_msg, 2);

Device Example: Real Time Clock 249

250 Chapter 8 The Inter-Integrated Circuit Protocol

 /* Read the time */

 r_t->tm_hour = BCD2BIN(buf[0]); /* Hour */

 r_t->tm_min = BCD2BIN(buf[1]); /* Minute */

 r_t->tm_sec = BCD2BIN(buf[2]); /* Second */

 return(0);

}

myrtc_gettime() implements the bus-specifi c bottom layer of the RTC driver. The
top layer of the RTC driver should conform to the kernel RTC API, as discussed in the
section “RTC Subsystem” in Chapter 5. The advantage of this scheme is that applica-
tions can run unchanged irrespective of whether your RTC is internal to the South
Bridge of a PC or externally connected to an embedded controller as in this example.

RTCs usually store time in Binary Coded Decimal (BCD), where each nibble repre-
sents a number between 0 and 9 (rather than between 0 and 15). The kernel provides
a macro called BCD2BIN() to convert from BCD encoding to decimal and BIN2BCD()
to perform the reverse operation. myrtc_gettime() uses the former while reading
time from RTC registers.

Look at drivers/rtc/rtc-ds1307.c for an example RTC driver that handles the Dallas/
Maxim DS13XX series of I2C RTC chips.

Being a 2-wire bus, the I2C bus does not have an interrupt request line that slave
devices can assert, but some I2C host adapters have the capability to interrupt the pro-
cessor to signal completion of data-transfer requests. This interrupt-driven operation
is, however, transparent to I2C client drivers and is hidden inside the service routines
offered by the I2C core. Assuming that the I2C host controller that is part of the embed-
ded SoC in Figure 8.3 has the capability to interrupt the processor, the invocation of
i2c_transfer() in myrtc_attach() might be doing the following under the hood:

 • Build a transaction corresponding to rtc_msg[0] and write it to the bus using
the services of the host controller device driver.

 • Wait until the host controller asserts a transmit complete interrupt signaling
that rtc_msg[0] is now on the wire.

 • Inside the interrupt handler, look at the I2C host controller status register to see
whether an acknowledgment has been received from the RTC slave.

 • Return error if the host controller status and control registers indicate that all’s
not well.

 • Repeat the same for rtc_msg[1].

I2C-dev

Sometimes , when you need to enable support for a large number of slow I2C devices,
it makes sense to drive them wholly from user space. The I2C layer supports a driver
called i2c-dev to achieve this. Fast forward to the section “User Mode I2C” in Chap-
ter 19 for an example that implements a user mode I2C driver using i2c-dev.

Hardware Monitoring Using LM-Sensors

The LM-Sensors project, hosted at www.lm-sensors.org, brings hardware-monitoring
capabilities to Linux. Several computer systems use sensor chips to monitor parameters
such as temperature, power supply voltage, and fan speed. Periodically tracking these
parameters can be critical. A blown CPU fan can manifest in the form of strange and
random software problems. Imagine the consequences if the system is a medical grade
device!

LM-Sensors comes to the rescue with device drivers for many sensor chips, a utility
called sensors to generate a health report, and a script called sensors-detect to scan your
system and help you generate appropriate confi guration fi les.

Most chips that offer hardware monitoring, interface to the CPU via I2C/SMBus.
Device drivers for such devices are normal I2C client drivers but reside in the drivers/
hwmon/ directory, rather than drivers/i2c/chips/. An example is National Semiconduc-
tor’s LM87 chip, which can monitor multiple voltages, temperatures, and fans. Have a
look at drivers/hwmon/lm87.c for its driver implementation. I2C driver IDs from 1000
to 1999 are reserved for sensor chips (look at include/linux/i2c-id.h).

Several sensor chips interface to the CPU via the ISA/LPC bus rather than I2C/
SMBus. Others emit analog output that reaches the CPU through an Analog-to-Digi-
tal Converter (ADC). Drivers for such chips share the drivers/hwmon/ directory with
I2C sensor drivers. An example of a non-I2C sensor driver is drivers/hwmon/hdaps.c, the
driver for the accelerometer present in several IBM/Lenovo laptops that we discussed
in Chapter 7, “Input Drivers.” Another example of a non-I2C sensor is the Winbond
83627HF Super I/O chip, which is driven by drivers/hwmon/w83627hf.c.

The Serial Peripheral Interface Bus

The Serial Peripheral Interface (SPI) bus is a serial master-slave interface similar to I2C
and comes built in on many microcontrollers. It uses four wires (compared to two on

The Serial Peripheral Interface Bus 251

www.lm-sensors.org

252 Chapter 8 The Inter-Integrated Circuit Protocol

I2C): Serial CLocK (SCLK), Chip Select (CS), Master Out Slave In (MOSI), and Master
In Slave Out (MISO). MOSI is used for shifting data into the slave device, and MISO
is used for shifting data out of the slave device. Because the SPI bus has dedicated wires
for transmitting and receiving data, it can operate in full-duplex mode, unlike the I2C
bus. The typical speed of operation of SPI is in the low-megahertz range, unlike the
mid-kilohertz range on I2C, so the former yields higher throughput.

SPI peripherals available in the market today include Radio Frequency (RF) chips,
smart card interfaces, EEPROMs, RTCs, touch sensors, and ADCs.

The kernel provides a core API for exchanging messages over the SPI bus. A typical
SPI client driver does the following:

 1. Registers probe() and remove() methods with the SPI core. Optionally regis-
ters suspend() and resume() methods:

 #include <linux/spi/spi.h>

 static struct spi_driver myspi_driver = {

 .driver = {

 .name = "myspi",

 .bus = &spi_bus_type,

 .owner = THIS_MODULE,

 },

 .probe = myspidevice_probe,

 .remove = __devexit_p(myspidevice_remove),

 };

 spi_register_driver(&myspi_driver);

The SPI core creates an spi_device structure corresponding to this device and
passes this as an argument when it invokes the registered driver methods.

 2. Exchanges messages with the SPI device using access functions such as spi_
sync()and spi_async(). The former waits for the operation to complete,
whereas the latter asynchronously triggers invocation of a registered callback
routine when message transfer completes. These data access routines are invoked
from suitable places such as the SPI interrupt handler, a sysfs method, or a timer
handler. The following code snippet illustrates SPI message submission:

#include <linux/spi/spi.h>

struct spi_device *spi; /* Representation of an

 SPI device */

struct spi_transfer xfer; /* Contains transfer buffer

 details */

struct spi_message sm; /* Sequence of spi_transfer

 segments */

u8 *command_buffer; /* Data to be transferred */

int len; /* Length of data to be

 transferred */

spi_message_init(&sm); /* Initialize spi_message */

xfer.tx_buf = command_buffer; /* Device-specific data */

xfer.len = len; /* Data length */

spi_message_add_tail(&xfer, &sm); /* Add the message */

spi_sync(spi, &sm); /* Blocking transfer request */

For an example SPI device, consider the ADS7846 touch-screen controller that we
briefl y discussed in Chapter 7. This driver does the following:

 1. Registers probe(), remove(), suspend(), and resume() methods with the
SPI core using spi_register_driver().

 2. The probe() method registers the driver with the input subsystem using
input_register_device() and requests an IRQ using request_irq().

 3. The driver gathers touch coordinates from its interrupt handler using spi_
async(). This function triggers invocation of a registered callback routine
when the SPI message transfer completes.

 4. The callback function in turn, reports touch coordinates and clicks via the input
event interface, /dev/input/eventX, using input_report_abs() and input_
report_key(), as discussed in Chapter 7. Applications such as X Windows
and gpm seamlessly work with the event interface and respond to touch input.

A driver that wiggles I/O pins to get them to talk a protocol is called a bit-banging
driver . For an example SPI bit-banging driver, look at drivers/spi/spi_butterfl y.c, which
is a driver to talk to DataFlash chips that are present on Butterfl y boards built by Atmel
around their AVR processor family. For this, connect your host system’s parallel port
to the AVR Butterfl y using a specially made dongle and use the spi_butterfl y driver do
the bit banging. Look at Documentation/spi/butterfl y for a detailed description of this
driver.

Currently there is no support for user-space SPI drivers à la i2c-dev. You only have
the option of writing a kernel driver to talk to your SPI device.

The Serial Peripheral Interface Bus 253

254 Chapter 8 The Inter-Integrated Circuit Protocol

In the embedded world, you may come across solutions where the processor uses a com-
panion chip that integrates various functions. An example is the Freescale MC13783
Power Management and Audio Component (PMAC) used in tandem with the ARM9-
based i.MX27 processor. The PMAC integrates an RTC, a battery charger, a touch-screen
interface, an ADC module, and an audio codec. The processor and the PMAC communi-
cate over SPI. The SPI bus does not contain an interrupt line, so the PMAC has the capa-
bility to externally interrupt the processor using a GPIO pin confi gured for this purpose.

The 1-Wire Bus

The 1-wire protocol developed by Dallas/Maxim uses a 1-wire (or w1) bus that carries
both power and signal; the return ground path is provided using some other means. It
provides a simple way to interface with slow devices by reducing space, cost, and com-
plexity. An example device that works using this protocol is the ibutton (www.ibutton.
com), which is used for sensing temperature, carrying data, or holding unique IDs.

Another w1 chip that interfaces through a single port pin of an embedded control-
ler is the DS2433 4kb 1-wire EEPROM from Dallas/Maxim. The driver for this chip,
drivers/w1/slaves/w1_ds2433.c, exports access to the EEPROM via a sysfs node.

The main data structures associated with a w1 device driver are w1_family and
w1_family_ops, both defi ned in w1_family.h.

Debugging

To collect I2C-specifi c debugging messages, turn on a relevant combination of I2C
Core debugging messages, I2C Algorithm debugging messages, I2C Bus debugging messages,
and I2C Chip debugging messages under Device Drivers → I2C Support in the kernel
confi guration menu. Similarly, for SPI debugging, turn on Debug Support for SPI driv-
ers under Device Drivers → SPI Support.

To understand the fl ow of I2C packets on the bus, connect an I2C bus analyzer to
your board as we did while running Listing 8.1. The lm-sensors package contains a
tool called i2cdump that dumps register contents of devices on the I2C bus.

There is a mailing list dedicated to Linux I2C at http://lists.lm-sensors.org/mailman/
listinfo/i2c.

www.ibutton.com
www.ibutton.com
http://lists.lm-sensors.org/mailman/listinfo/i2c
http://lists.lm-sensors.org/mailman/listinfo/i2c

Looking at the Sources

In the 2.4 kernel source tree, a single directory (drivers/i2c/) contained all the I2C/
SMBus-related sources. The I2C code in 2.6 kernels is organized hierarchically: The
drivers/i2c/busses/ directory contains adapter drivers, the drivers/i2c/algos/ directory has
algorithm drivers, and the drivers/i2c/chips/ directory contains client drivers. You can
fi nd client drivers in other regions of the source tree, too. The drivers/sound/ directory,
for example, includes drivers for audio chipsets that use an I2C control interface. Take
a look inside the Documentation/i2c/ directory for tips and more examples.

Kernel SPI service functions live in drivers/spi/spi.c. The SPI driver for the ADS7846
touch controller is implemented in drivers/input/touchscreen/ads7846.c. The MTD
subsystem discussed in Chapter 17, “Memory Technology Devices,” implements driv-
ers for SPI fl ash chips. An example is drivers/mtd/devices/mtd_datafl ash.c, the driver to
access Atmel DataFlash SPI chips.

The drivers/w1/ directory contains kernel support for the w1 protocol. Drivers for
the host controller side of the w1 interface live in drivers/w1/masters/, and drivers for
w1 slaves reside in drivers/w1/slaves/.

Table 8.3 summarizes the main data structures used in this chapter and their loca-
tion in the kernel tree. Table 8.4 lists the main kernel programming interfaces that you
used in this chapter along with the location of their defi nitions.

TABLE 8.3 Summary of Data Structures

 Data Structure Location Description

 i2c_driver include/linux/i2c.h Representation of an I2C driver

 i2c_client_address_data include/linux/i2c.h Slave addresses that an I2C client driver is
responsible for

i2c_client include/linux/i2c.h Identifies a chip connected to an I2C bus

 i2c_msg include/linux/i2c.h Information pertaining to a transaction
that you want to generate on the I2C bus

spi_driver include/linux/spi/spi.h Representation of an SPI driver

spi_device include/linux/spi/spi.h Representation of an SPI device

spi_transfer include/linux/spi/spi.h Details of an SPI transfer buffer

spi_message include/linux/spi/spi.h Sequence of spi_transfer segments

w1_family drivers/w1/w1_family.h Representation of a w1 slave driver

w1_family_ops drivers/w1/w1_family.h A w1 slave driver’s entry points

Looking at the Sources 255

256 Chapter 8 The Inter-Integrated Circuit Protocol

TABLE 8.4 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

i2c_add_driver() include/linux/i2c.h
drivers/i2c/i2c-core.c

Registers driver entry points with the
I2C core.

i2c_del_driver() drivers/i2c/i2c-core.c Removes a driver from the I2C core.

i2c_probe() drivers/i2c/i2c-core.c Specifies the addresses of slave devices that
the driver is responsible for and an associ-
ated attach() routine to be invoked if
one of the specified addresses is detected by
the I2C core.

i2c_attach_client() drivers/i2c/i2c-core.c Adds a new client to the list of clients
serviced by the associated I2C host adapter.

i2c_detach_client() drivers/i2c/i2c-core.c Detaches an active client. Usually done
when the client driver or the associated host
adapter unregisters.

i2c_check_functionality() include/linux/i2c.h Verifies whether a particular function is
supported by the host adapter.

i2c_get_functionality() include/linux/i2c.h Obtains a mask containing all functions
supported by the host adapter.

i2c_add_adapter() drivers/i2c/i2c-core.c Registers a host adapter.

i2c_del_adapter() drivers/i2c/i2c-core.c Unregisters a host adapter.

SMBus-compatible I2C data
access routines

drivers/i2c/i2c-core.c See Table 8.1.

i2c_transfer() drivers/i2c/i2c-core.c Sends an i2c_msg over the I2C bus. This
function is not SMBus-compatible.

spi_register_driver() drivers/spi/spi.c Registers driver entry points with the
SPI core.

spi_unregister_driver() include/linux/spi/spi.h Unregisters an SPI driver.

spi_message_init() include/linux/spi/spi.h Initializes an SPI message.

spi_message_add_tail() include/linux/spi/spi.h Adds an SPI message to a transfer list.

spi_sync() drivers/spi/spi.c Synchronously transfers data over the SPI
bus. This function blocks until completion.

spi_async() include/linux/spi/spi.h Asynchronously transfers data over the
SPI bus using a completion callback
mechanism.

257

9

PCMCIA and Compact
Flash

In This Chapter

■ What’s PCMCIA/CF? 258

■ Linux-PCMCIA Subsystem 260

■ Host Controller Drivers 262

■ PCMCIA Core 263

■ Driver Services 263

■ Client Drivers 264

■ Tying the Pieces Together 271

■ PCMCIA Storage 272

■ Serial PCMCIA 272

■ Debugging 273

■ Looking at the Sources 275

258

Today’s popular technologies such as wireless and wired Ethernet, General
Packet Radio Service (GPRS), Global Positioning System (GPS), miniature

storage, and modems are ubiquitous in the form factor of PCMCIA (an acronym
for Personal Computer Memory Card International Association) or CF (Compact
Flash) cards. Most laptops and many embedded devices support PCMCIA or
CF interfaces, thus instantly enabling them to take advantage of these technolo-
gies. On embedded systems, PCMCIA/CF slots offer a technology upgrade path
without the need to re-spin the board. A cost-reduced version of an Internet-
enabled device can, for example, use a PCMCIA dialup modem, while a higher-
end fl avor can have WiFi.

The Linux kernel supports PCMCIA devices on a variety of architectures. In
this chapter, let’s explore the support present in the kernel for PCMCIA/CF
host adapters and client devices.

What’s PCMCIA/CF?

PCMCIA is a 16-bit data-transfer interface specifi cation originally used by memory
cards. CF cards are smaller, but compatible with PCMCIA, and are frequently used
in handheld devices such as PDAs and digital cameras. CF cards have only 50 pins
but can be slipped into your laptop’s 68-pin PCMCIA slot using a passive CF-to-
PCMCIA adapter. PCMCIA and CF have been confi ned to the laptop and hand-
held space and have not made inroads into desktops and higher-end machines.

The PCMCIA specifi cation has now grown to include support for higher speeds
in the form of 32-bit CardBus cards. The term PC Card is used while referring to
either PCMCIA or CardBus devices. CardBus is closer to the PCI bus, so the kernel
has moved support for CardBus devices from the PCMCIA layer to the PCI layer.
The latest technology specifi cation from the PCMCIA industry standards group is
the ExpressCard, which is compatible with PCI Express, a new bus technology based
on PCI concepts. We look at CardBus and ExpressCard when we discuss PCI in the
next chapter.

PC cards come in three fl avors in the increasing order of thickness: Type I
(3.3mm), Type II (5mm), and Type III (10.5mm).

Figure 9.1 shows PCMCIA bus connection on a laptop, and Figure 9.2 illustrates
PCMCIA on an embedded device. As you might have noticed, the PCMCIA host
controller bridges the PCMCIA card with the system bus. Laptops and their deriva-
tives generally have a PCMCIA host controller chip connected to the PCI bus, while
several embedded controllers have a PCMCIA host controller built in to their silicon.
The controller maps card memory to host I/O and memory windows and routes inter-
rupts generated by the card to a suitable processor interrupt line.

Processor

North Bridge

South Bridge
PCI Bus

PCI Slot

Socket PCMCIA
Card

PCMCIA/
CardBus
Controller

PCI Slot

FIGURE 9.1 PCMCIA on a laptop.

CPU Core

Embedded Controller

LCD
Controller

PCMCIA
Controller

…

Internal Local Bus

Socket PCMCIA Card

FIGURE 9.2 PCMCIA on an embedded system.

What’s PCMCIA/CF? 259

260 Chapter 9 PCMCIA and Compact Flash

Linux-PCMCIA Subsystem

Linux-PCMCIA support is available on Intel-based laptops as well as on architec-
tures such as ARM, MIPS, and PowerPC. The PCMCIA subsystem consists of device
drivers for PCMCIA host controllers, client drivers for different cards, a daemon that
aids hotplugging, user mode utilities, and a Card Services module that interacts with
all of these.

Figure 9.3 illustrates the interaction between the modules that constitute the Linux-
PCMCIA subsystem.

The Old Linux-PCMCIA Subsystem

The Linux-PCMCIA subsystem has recently undergone an overhaul. To get PCMCIA work-
ing with 2.6.13 and newer kernels, you need the pcmciautils package (http://kernel.org/pub/
linux/utils/kernel/pcmcia/howto.html), which obsoletes the pcmcia-cs package (http://pcmcia-cs.
sourceforge.net) used with earlier kernels. Internal kernel programming interfaces and data struc-
tures have also changed. Earlier kernels relied on a user-space daemon called cardmgr to support
hotplugging, but the new PCMCIA implementation handles hotplug using udev, just as other bus
subsystems do. So with new setups, you don’t need cardmgr and should make sure that it is not
started. There is a migration guide at http://kernel.org/pub/linux/utils/kernel/pcmcia/cardmgr-
to-pcmciautils.html.

Figure 9.3 contains the following components:

 • Host controller device drivers that implement low-level routines for commu-
nicating with the PCMCIA host controller. Your handheld and laptop have
different host controllers and, hence, use different host controller drivers. Each
PCMCIA slot that the host controller supports is called a socket.

 • PCMCIA client drivers (XX_cs in Figure 9.3) that respond to socket events
such as card insertion and ejection. This is the driver that you are most likely
to implement when you attempt to Linux-enable a PCMCIA card. The XX_cs
driver usually works in tandem with a generic driver (XX in Figure 9.3) that is
not PCMCIA-specific. In relation to Figure 9.3, if your device is a PCMCIA
IDE disk, XX is the IDE disk driver, XX_cs is the ide_cs driver, XX-dependent
layers are filesystem layers, and XX-applications are programs that access data
files. XX_cs configures the generic driver (XX) with resources such as IRQs, I/O
base addresses, and memory windows.

http://kernel.org/pub/linux/utils/kernel/pcmcia/howto.html
http://kernel.org/pub/linux/utils/kernel/pcmcia/howto.html
http://pcmcia-cs.sourceforge.net
http://pcmcia-cs.sourceforge.net
http://kernel.org/pub/linux/utils/kernel/pcmcia/cardmgr-to-pcmciautils.html
http://kernel.org/pub/linux/utils/kernel/pcmcia/cardmgr-to-pcmciautils.html

 • The PCMCIA core that provides services to host controller drivers and client
drivers. The core provides an infrastructure that makes driver implementations
simpler and adds a level of indirection that renders client drivers independent of
host controllers. Irrespective of whether you are using your Bluetooth CF card
on an XScale-based handheld or an x86-based laptop, the same client drivers
can be pressed into service.

 • A driver services module (ds) that offers registration interfaces and bus services to
client drivers.

 • The pcmciautils package, which contains tools such as pccardctl that control
the state of PCMCIA sockets and select between different card-confi guration
schemes.

Card
Services

pcmciautils XX-Applications

User Space

Kernel Space

PCMCIA Core

Kernel Space CIS Space

Data

IRQ, I/O Mem

Hardware

sysfs/udev
Interface

XXHost Controller
Driver

XX_cs

XX-Dependent Layers

Driver Services
(ds)

PCMCIA/CardBus
Host Controller Bridge

pccardd

CIS Routines

PCMCIA
 Socket

PCMCIA
 Card XX

FIGURE 9.3 The Linux-PCMCIA subsystem.

Linux-PCMCIA Subsystem 261

262 Chapter 9 PCMCIA and Compact Flash

Figure 9.4 glues kernel modules on top of Figure 9.1 to illustrate how the Linux-
PCMCIA subsystem interacts with hardware on a PC-compatible system.

Processor

North Bridge

South Bridge
PCI Bus

PCI Slot

Socket PCMCIA
Card XX

PCMCIA/
CardBus
Controller

Interrupts that
monitor card status

PCI Slot

Device
Interrupts

Resources

Host Controller
Driver

PCMCIA Core

XX.ko

XX_cs.ko

Higher Layers/Applications

FIGURE 9.4 Relating PCMCIA driver components with PC hardware.

In the following sections, let’s take a closer look at the components constituting the
Linux-PCMCIA subsystem. To better understand the role of these components and
their interaction, we will insert a PCMCIA WiFi card into a laptop and trace the code
fl ow in the section “Tying the Pieces Together.”

Host Controller Drivers

Whereas the generic card driver (XX) is responsible for handling interrupts generated
by the card function (say, receive interrupts when a PCMCIA network card receives
data packets), the host controller driver is responsible for handling bus-specifi c inter-
rupts triggered by events such as card insertion and ejection.

Figure 9.2 shows the block diagram of an embedded device designed around an
embedded controller that has built-in PCMCIA support. Even if you are using a con-
troller supported by the kernel PCMCIA layer, you might need to tweak the host con-
troller driver (for example, to confi gure GPIO lines used for detecting card insertion
events or switching power to the socket) depending on your board’s design. If you are

porting the kernel to a StrongARM-based handheld, for example, tailor drivers/pcmcia/
sa1100_assabet.c to suit your hardware.

This chapter does not cover the implementation of host controller device drivers.

PCMCIA Core

Card Services is the main constituent of the PCMCIA core. It offers a set of services
to client drivers and host controller drivers. It contains a kernel thread called pccardd
that polls for socket-related events. Pccardd notifi es the Driver Services event handler
(discussed in the next section) when the host controller reports events such as card
insertion and card removal.

Another component of the PCMCIA core is a library that manipulates the Card
Information Structure (CIS) that is part of PCMCIA cards. PCMCIA/CF cards have
two memory spaces: Attribute memory and Common memory. Attribute memory con-
tains the CIS and card confi guration registers. Attribute memory of a PCMCIA IDE
disk, for example, contains its CIS and registers that specify the sector count and the
cylinder number. Common memory in this case contains the memory array that holds
disk data. The PCMCIA core offers CIS manipulation routines such as pccard_get_
first_tuple(), pccard_get_next_tuple(), and pccard_parse_tuple()to cli-
ent drivers. Listing 9.2 uses the assistance of some of these functions.

The PCMCIA core passes CIS information to user space via sysfs and udev. Utili-
ties such as pccardctl, part of the pcmciautils package, depend on sysfs and udev for
their operation. This simplifi es the earlier design approach that relied on a custom
infrastructure when these facilities were absent in the kernel.

Driver Services

Driver Services provides an infrastructure that offers the following:

 • A handler that catches event alerts dispatched by the pccardd kernel thread.
The handler scans and validates the card’s CIS space and triggers the load of an
appropriate client driver.

 • A layer that has the task of communicating with the kernel’s bus core. To
this end, Driver Services implements the pcmcia_bus_type and related bus
operations.

Driver Services 263

264 Chapter 9 PCMCIA and Compact Flash

 • Service routines such as pcmcia_register_driver() that client drivers use to
register themselves with the PCMCIA core. The example driver in Listing 9.1
uses some of these routines.

Client Drivers

The client device driver (XX_cs in Figure 9.3) looks at the card’s CIS space and confi g-
ures the card depending on the information it gathers.

Data Structures

Before proceeding to develop an example PCMCIA client driver, let’s meet some
related data structures:

 1. A PCMCIA device is identified by the pcmcia_device_id structure defined in
include/linux/mod_devicetable.h:

 struct pcmcia_device_id {

 /* ... */

 __u16 manf_id; /* Manufacturer ID */

 __u16 card_id; /* Card ID */

 __u8 func_id; /* Function ID */

 /* ... */

 };

manf_id, card_id, and func_id hold the card’s manufacturer ID, card
ID, and function ID, respectively. The PCMCIA core offers a macro called
PCMCIA_DEVICE_MANF_CARD() that creates a pcmcia_device_id structure
from the manufacturer and card IDs supplied to it. Another kernel macro called
MODULE_DEVICE_TABLE() marks the supported pcmcia_device_ids in the
module image so that the module can be loaded on demand when the card is
inserted and the PCMCIA subsystem gleans matching manufacturer/card/func-
tion IDs from the card’s CIS space. We explored this mechanism in the section
“Module Autoload” in Chapter 4, “Laying the Groundwork.” This procedure
is analogous to that used by device drivers for two other popular I/O buses that
support hotplugging: PCI and USB. Table 9.1 gives a heads-up on the similari-
ties between drivers for these three bus technologies. Don’t worry if that is hard
to digest; we will have a detailed discussion on PCI and USB in the following
chapters.

TABLE 9.1 Device IDs and Hotplug Methods for PCMCIA, PCI, and USB

PCMCIA PCI USB

Device ID table
structure

pcmcia_device_id pci_device_id usb_device_id

Macro to create a
device ID

PCMCIA_DEVICE_MANF_CARD() PCI_DEVICE() USB_DEVICE()

Device
representation

struct pcmcia_device struct pci_dev struct usb_device

Driver
representation

struct pcmcia_driver struct pci_driver struct usb_driver

Hotplug methods probe() and remove() probe() and
remove()

probe() and
disconnect()

Hotplug event
detection

pccardd kthread PCI-family-dependent khubd kthread

 2. PCMCIA client drivers need to associate their pcmcia_device_id table with
their probe() and remove() methods. This tie up is achieved by the pcmcia_
driver structure :

struct pcmcia_driver {

 int (*probe)(struct pcmcia_device *dev); /* Probe

 method */

 void (*remove)(struct pcmcia_device *dev); /* Remove

 method */

 /* ... */

 struct pcmcia_device_id *id_table; /* Device ID

 table */

 /* ... */

};

 3. struct pcmcia_device internally represents a PCMCIA device and is defined
as follows in drivers/pcmcia/ds.h:
struct pcmcia_device {

 /* ... */

 io_req_t io; /* I/O attributes*/

 irq_req_t irq; /* IRQ settings */

 config_req_t conf; /* Configuration */

 /* ... */

 struct device dev; /* Connection to device model */

 /* ... */

};

Client Drivers 265

266 Chapter 9 PCMCIA and Compact Flash

 4. CIS manipulation routines use a tuple_t structure defined in include/pcmcia/
cistpl.h to hold a CIS information unit. A CISTPL_LONGLINK_MFC tuple type,
for example, contains information related to a multifunction card. For the full
list of tuples and their descriptions, look at include/pcmcia/cistpl.h and http://
pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-PROG.html.

 typedef struct tuple_t {

 /* ... */

 cisdata_t TupleCode; /* See

include/pcmcia/cistpl.h */

 /* ... */

 cisdata_t DesiredTuple; /* Identity of the desired

 tuple */

 /* ... */

 cisdata_t *TupleData; /* Buffer space */

 };

 5. The CIS contains configuration table entries for each configuration that the
card supports. cistpl_cftable_entry_t, defined in include/pcmcia/cistpl.h,
holds such an entry:

 typedef struct cistpl_cftable_entry_t {

 /* ... */

 cistpl_power_t vcc, vpp1, vpp2; /* Voltage level */

 cistpl_io_t io; /* I/O attributes */

 cistpl_irq_t irq; /* IRQ settings */

 cistpl_mem_t mem; /* Memory window */

 /* ... */

 };

 6. cisparse_t, also defined in include/pcmcia/cistpl.h, holds a tuple parsed by the
PCMCIA core:

 typedef union cisparse_t {

 /* ... */

 cistpl_manfid_t manfid; /* Manf ID */

 /* ... */

 cistpl_cftable_entry_t cftable_entry; /* Configuration

 table entry */

 /* ... */

 } cisparse_t;

http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-PROG.html
http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-PROG.html

Device Example: PCMCIA Card

Let’s develop a skeletal client device driver (because too many details will make it a
loaded discussion) to learn the workings of the PCMCIA subsystem. The implemen-
tation is general, so you may use it as a template irrespective of whether your card
implements networking, storage, or some other technology. Only the XX_cs driver is
implemented; the generic XX driver is assumed to be available off the shelf.

As alluded to earlier, PCMCIA drivers contain probe() and remove() methods
to support hotplugging. Listing 9.1 registers the driver’s probe() method, remove()
method, and pcmcia_device_id table with the PCMCIA core. XX_probe() gets
invoked when the associated PCMCIA card is inserted, and XX_remove() is called
when the card is ejected .

LISTING 9.1 Registering a Client Driver

#include <pcmcia/ds.h> /* Definition of struct pcmcia_device */

static struct pcmcia_driver XX_cs_driver = {

 .owner = THIS_MODULE,

 .drv = {

 .name = "XX_cs", /* Name */

 },

 .probe = XX_probe, /* Probe */

 .remove = XX_remove, /* Release */

 .id_table = XX_ids, /* ID table */

 .suspend = XX_suspend, /* Power management */

 .resume = XX_resume, /* Power management */

};

#define XX_MANFUFACTURER_ID 0xABCD /* Device's manf_id */

#define XX_CARD_ID 0xCDEF /* Device's card_id */

/* Identity of supported cards */

static struct pcmcia_device_id XX_ids[] = {

 PCMCIA_DEVICE_MANF_CARD(XX_MANFUFACTURER_ID, XX_CARD_ID),

 PCMCIA_DEVICE_NULL,

};

MODULE_DEVICE_TABLE(pcmcia, XX_ids); /* For module autoload */

Client Drivers 267

268 Chapter 9 PCMCIA and Compact Flash

/* Initialization */

static int __init

init_XX_cs(void)

{

 return pcmcia_register_driver(&XX_cs_driver);

}

/* Probe Method */

static int

XX_probe(struct pcmcia_device *link)

{

 /* Populate the pcmcia_device structure allotted for this card by

 the core. First fill in general information */

 /* ... */

 /* Fill in attributes related to I/O windows and

 interrupt levels */

 XX_config(link); /* See Listing 9.2 */

}

Listing 9.2 shows the routine that confi gures the generic device driver (XX) with
resource information such as I/O and memory window base addresses. After this step,
data fl ow to and from the PCMCIA card passes through XX and is transparent to
the rest of the layers. Any interrupts generated by the PCMCIA card, such as those
related to data reception or transmit completion for network cards, are handled by the
interrupt handler that is part of XX. Listing 9.2 is loosely based on drivers/net/ wireless/
airo_cs.c, the client driver for the Cisco Aironet 4500 and 4800 series of PCMCIA
WiFi cards. The listing uses the services of the PCMCIA core to do the following:

 • Obtain a suitable configuration table entry tuple from the card’s CIS

 • Parse the tuple

 • Glean card configuration information such as I/O base addresses and power set-
tings from the parsed tuple

 • Request allocation of an interrupt line

It then confi gures the chipset-specifi c driver (XX) with the information thus
obtained.

LISTING 9.2 Confi guring the Generic Device Driver

#include <pcmcia/cistpl.h>

#include <pcmcia/ds.h>

#include <pcmcia/cs.h>

#include <pcmcia/cisreg.h>

/* This makes the XX device available to the system. XX_config()

 is based on airo_config(), defined in

drivers/net/wireless/airo_cs.c */

static int

XX_config(struct pcmcia_device *link)

{

 tuple_t tuple;

 cisparse_t parse;

 u_char buf[64];

 /* Populate a tuple_t structure with the identity of the desired

 tuple. In this case, we're looking for a configuration table

 entry */

 tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;

 tuple.Attributes = 0;

 tuple.TupleData = buf;

 tuple.TupleDataMax = sizeof(buf);

 /* Walk the CIS for a matching tuple and glean card configuration

 information such as I/O window base addresses */

 /* Get first tuple */

 CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));

 while (1){

 cistpl_cftable_entry_t dflt = {0};

 cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);

 /* Read a configuration tuple from the card's CIS space */

 if (pcmcia_get_tuple_data(link, &tuple) != 0 ||

 pcmcia_parse_tuple(link, &tuple, &parse) != 0) {

 goto next_entry;

 }

 /* We have a matching tuple! */

Client Drivers 269

270 Chapter 9 PCMCIA and Compact Flash

 /* Configure power settings in the pcmcia_device based on

 what was found in the parsed tuple entry */

 if (cfg->vpp1.present & (1<<CISTPL_POWER_VNOM))

 link->conf.Vpp = cfg->vpp1.param[CISTPL_POWER_VNOM]/10000;

 /* ... */

 /* Configure I/O window settings in the pcmcia_device based on

 what was found in the parsed tuple entry */

 if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) {

 cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt.io;

 /* ... */

 if (!(io->flags & CISTPL_IO_8BIT)) {

 link->io.Attributes1 = IO_DATA_PATH_WIDTH_16;

 }

 link->io.BasePort1 = io->win[0].base;

 /* ... */

 }

 /* ... */

 break;

 next_entry:

 CS_CHECK(GetNextTuple, pcmcia_get_next_tuple(link, &tuple);

 }

 /* Allocate IRQ */

 if (link->conf.Attributes & CONF_ENABLE_IRQ) {

 CS_CHECK(RequestIRQ, pcmcia_request_irq(link, &link->irq));

 }

 /* ... */

 /* Invoke init_XX_card(), which is part of the generic

 XX driver (so, not shown in this listing), and pass

 the I/O base and IRQ information obtained above */

 init_XX_card(link->irq.AssignedIRQ, link->io.BasePort1,

 1, &handle_to_dev(link));

 /* The chip-specific (form factor independent) driver is ready

 to take responsibility of this card from now on! */

}

Tying the Pieces Together

As you saw in Figure 9.3, the PCMCIA layer consists of various components. The
data-fl ow path between the components can sometimes get complicated. Let’s trace
the code path from the time you insert a PCMCIA card until an application starts
transferring data to the card. Assume that a Cisco Aironet PCMCIA card is inserted
onto a laptop having an 82365-compatible PCMCIA host controller:

 1. The PCMCIA host controller driver (drivers/pcmcia/yenta_socket.c) detects the
insertion event via its interrupt service routine and makes note of it using suit-
able data structures.

 2. The pccardd kernel thread that is part of Card Services (drivers/pcmcia/cs.c) sleeps
on a wait queue until the host controller driver wakes it up when it detects the
card insertion in Step 1.

 3. Card Services dispatches an insertion event to Driver Services (drivers/pcmcia/
ds.c). This triggers execution of the event handler registered by Driver Services
during initialization.

 4. Driver Services validates the card’s CIS space, determines information about
the inserted device such as its manufacturer ID and card ID, and registers
the device with the kernel. The appropriate client device driver (drivers/net/
wireless/airo_cs.c) is then loaded. Revisit our previous discussion on MODULE_
DEVICE_TABLE() to see how this is accomplished.

 5. The client driver (airo_cs.c) loaded in Step 4 initializes and registers itself
using pcmcia_register_driver(), as shown in Listing 9.1. This registra-
tion interface internally sets the bus type of the device to pcmcia_bus_type.
PCMCIA bus operations such as probe() and remove(), defined by Driver
Services (ds.c), are also internally registered.

 6. The kernel invokes the bus probe() operation registered by Driver Services,
which in turn invokes the probe()method owned by the matching client driver
(airo_probe()), registered in Step 5. The client probe() routine populates
settings such as I/O windows and interrupt lines, and configures the generic
chipset-specific driver (drivers/net/wireless/airo.c), as shown in Listing 9.2.

Tying the Pieces Together 271

272 Chapter 9 PCMCIA and Compact Flash

 7. The chipset driver (airo.c) creates a network interface (ethX) and is responsible
for normal operation from this point onward. It’s this driver that handles inter-
rupts generated by the card in response to packet reception and transmit com-
pletion. The form factor of the device (for example, whether it’s a PCMCIA or
a PCI card) is transparent to the chipset driver as well as to the applications that
operate over ethX.

PCMCIA Storage

Today’s PCMCIA/CF storage support densities in the gigabyte realm. The storage
cards come in different fl avors:

 • Miniature IDE disk drives or microdrives. These are tiny versions of mechani-
cal hard drives that use magnetic media. Their data transfer rates are typically
higher than solid state memory devices, but IDE drives have spin-up and seek
latencies before data can be transferred. The IDE Card Services driver ide_cs, in
conjunction with legacy IDE drivers, is used to communicate with such mem-
ory cards.

 • Solid-state memory cards that emulate IDE. Such cards have no moving parts
and are usually based on flash memory, which is transparent to the operating
system because of the IDE emulation. Because these drives are effectively IDE-
based, the same IDE Card Services driver (ide_cs) can be used to talk to them.

 • Memory cards that use fl ash memory, but without IDE emulation. The mem-
ory_cs Card Services driver provides block and character interfaces over such
cards. The block interface is used to put a fi lesystem onto card memory, whereas
the character interface is used to access raw data. You may also use memory_cs
to read the attribute memory space of any PCMCIA card.

Serial PCMCIA

Many networking technologies such as GPRS, Global System for Mobile Communica-
tions (GSM), GPS, and Bluetooth use a serial transport mechanism to communicate
with host systems. In this section, let’s fi nd out how the PCMCIA layer handles cards

that feature such technologies. Note that this section is only to help you understand
the bus interface part of GPRS, GSM, and Bluetooth cards having a PCMCIA/CF
form factor. The technologies themselves are discussed in detail in Chapter 16, “Linux
Without Wires.”

The generic serial Card Services driver serial_cs, allows the rest of the operating sys-
tem to see the PCMCIA/CF card as a serial device. The fi rst unused serial device /dev/
ttySX, gets allotted to the card. serial_cs thus emulates a serial port over GPRS, GSM,
and GPS cards. It also allows Bluetooth PCMCIA/CF cards that use a serial transport
to transfer Host Control Interface (HCI) packets to Bluetooth protocol layers.

Figure 9.5 illustrates how kernel modules implementing different networking tech-
nologies interact with serial_cs to communicate with their respective cards.

The Point-to-Point Protocol (PPP) allows networking protocols such as TCP/IP to
run over a serial link. In the context of Figure 9.5, PPP gets TCP/IP applications run-
ning over GPRS and GSM dialup. The PPP daemon pppd, attaches over virtual serial
ports emulated by serial_cs. The PPP kernel modules—ppp_generic, ppp_async, and
slhc—have to be loaded for pppd to work. Invoke pppd as follows:

bash> pppd ttySX call connection-script

where connection-script is a fi le containing command sequences that pppd exchanges
with the service provider to establish a link. The connection script depends on the
particular card that is being used. A GPRS card would need a context string to be
sent as part of the connection script, whereas a GSM card might need an exchange
of passwords. An example connection script is described in the section “GPRS” in
Chapter 16.

Debugging

To effectively debug PCMCIA/CF client drivers, you need to see debug messages emit-
ted by the PCMCIA core. For this, enable CONFIG_PCMCIA_DEBUG (Bus options →
PCCARD support → Enable PCCARD debugging) during kernel confi guration. Verbos-
ity levels of the debug output can be controlled either via the pcmcia_core.pc_debug
kernel command-line argument or using the pc_debug module insertion parameter.

Debugging 273

274 Chapter 9 PCMCIA and Compact Flash

Phone Dialers,
Networking Apps
(WEP Browsing..)

GPRS/GSM Setup GPS ApplicationsBluetooth
Networking

User Space

Kernel Space

Kernel Space

Bluetooth

CIS Space

IRQ, I/O Windows

GPSGPRS/GSM

Hardware

serial_csSerial
Driver

PCMCIA Core

PCMCIA/CardBus
Host Controller Bridge

PCMCIA
 Socket

Serial
PCMCIA

 Card

BlueZ Bluetooth
Stack

HCI Line
Discipline

PPP Stack

PPP Line
Discipline

FIGURE 9.5 Networking with PCMCIA/CF cards that use serial transport.

 Information about PC Card client drivers is available in the process fi lesystem
entry /proc/bus/pccard/drivers. Look at /sys/bus/pcmcia/devices/* for card-specifi c infor-
mation such as manufacturer and card IDs. Take a look inside /proc/bus/pci/ to know
more about your PCMCIA host controller if your system uses a PCI-to-PCMCIA
bridge. /proc/interrupts lists IRQs active on your system, including those used by the
PCMCIA layer.

There is a mailing list dedicated to Linux-PCMCIA at http://lists.infradead.
org/mailman/listinfo/linux-pcmcia.

http://lists.infradead.org/mailman/listinfo/linux-pcmcia
http://lists.infradead.org/mailman/listinfo/linux-pcmcia

Looking at the Sources

In the Linux source tree, the drivers/pcmcia/ directory contains the sources for Card
Services, Driver Services, and host controller drivers. Look at drivers/pcmcia/yenta_
socket.c for the host controller driver that runs on many x86-based laptops. Header
fi les present in include/pcmcia/ contain PCMCIA-related structure defi nitions.

Client drivers live alongside other drivers belonging to the associated device class.
So, you will fi nd drivers for PCMCIA networking cards inside drivers/net/pcmcia/.
The client driver for PCMCIA memory devices that emulate IDE is drivers/ide/legacy/
ide-cs.c. See drivers/serial/serial_cs.c for the client driver used by PCMCIA modems.

Table 9.2 summarizes the main data structures used in this chapter and their loca-
tion in the kernel tree. Table 9.3 lists the main kernel programming interfaces that you
used in this chapter along with the location of their defi nitions.

TABLE 9.2 Summary of Data Structures

 Data Structure Location Description

pcmcia_device_id include/linux/mod_devicetable.h Identity of a PCMCIA card.

 pcmcia_device include/pcmcia/ds.h Representation of a PCMCIA device.

 pcmcia_driver include/pcmcia/ds.h Representation of a PCMCIA client
driver.

 tuple_t include/pcmcia/cistpl.h CIS manipulation routines use a tuple_t
structure to hold information.

 cistpl_cftable_entry_t include/pcmcia/cistpl.h Configuration table entry in the CIS
space.

 cisparse_t include/pcmcia/cistpl.h A parsed CIS tuple.

TABLE 9.3 Summary of Kernel Programming Interfaces

 Kernel Interface Location Description

 pcmcia_register_driver() drivers/pcmcia/ds.c Registers a driver with the PCMCIA
core

 pcmcia_unregister_driver() drivers/pcmcia/ds.c Unregisters a driver from the
PCMCIA core

pcmcia_get_first_tuple() include/pcmcia/cistpl.h Library routines to manipulate
 pcmcia_get_tuple_data() drivers/pcmcia/cistpl.c CIS space

pcmcia_parse_tuple()

pcmcia_request_irq() drivers/pcmcia/pcmcia_resource.c Gets an IRQ assigned for a PCMCIA
card

Looking at the Sources 275

This page intentionally left blank

277

10

Peripheral Component
Interconnect

In This Chapter

■ The PCI Family 278

■ Addressing and Identifi cation 281

■ Accessing PCI Regions 285

■ Direct Memory Access 288

■ Device Example: Ethernet-Modem Card 292

■ Debugging 308

■ Looking at the Sources 308

278

Peripheral Component Interconnect (PCI) is an omnipresent I/O backbone.
Whether you are backing up data on a storage server, capturing video from

your desktop, or surfi ng the web from your laptop, PCI might be serving you
in some avatar or the other. PCI, and form factors adapted or derived from PCI
such as Mini PCI, CardBus, PCI Extended, PCI Express, PCI Express Mini
Card, and Express Card have become de facto peripheral connection technolo-
gies on today’s computers.

The PCI Family

PCI is a high-speed bus used for communication between the CPU and I/O devices.
The PCI specifi cation enables transfer of 32 bits of data in parallel at 33MHz or
66MHz, yielding a peak throughput of 266MBps.

CardBus is a derivative of PCI and has the form factor of a PC Card. Card-
Bus cards are also 32-bits wide and run at 33MHz. Even though CardBus and
PCMCIA cards use the same 68-pin connectors, CardBus devices support 32 data
lines compared to 16 for PCMCIA by multiplexing address and data lines as done
in the PCI bus.

 Mini PCI, also a 33MHz 32-bit bus, is another adaptation of PCI found in
small-footprint computers such as laptops. A PCI card can connect to a Mini PCI
slot using a compatible connector.

An extension to PCI called PCI Extended (or PCI-X) expands the bus width to
64 bits, frequency to 133MHz, and the throughput to about 1GBps. PCI-X 2.0 is
the current version of the standard.

 PCI Express (PCIe or PCI-E) is the present generation of the PCI family. Unlike
the parallel PCI bus, PCIe uses a serial protocol to transfer data. PCIe supports a
maximum of 32 serial links. Each PCIe link (in the commonly used version 1.1 of
the specifi cation) yields a throughput of 250MBps in each transfer direction, thus
producing a maximum PCIe data rate of 8GBps in each direction. PCIe 2.0 is the
current version of the standard and supports higher data rates.

Serial communication is faster and cheaper than parallel data transfer due to the
absence of factors such as signal interference, so the industry trend is to move from
parallel buses to serial technologies. PCIe and its adaptations aim to replace PCI and
its derivatives, and this shift is also part of the methodology change from parallel to
serial communication. Several I/O interfaces discussed in this book, such as RS-232,
USB, FireWire, SATA, Ethernet, Fibre Channel, and Infi niBand, are serial communi-
cation architectures.

The CardBus equivalent in the PCIe family is the Express Card. Express Cards
directly connect to the system bus via a PCIe link or USB 2.0 (discussed in the next
chapter), and circumvent middlemen such as CardBus controllers. Mini PCI’s cousin
in the PCIe family is PCI Express Mini Card.

Recent laptops support Express Card slots instead of (or in addition to) CardBus,
and PCI Express Mini Card slots in place of Mini PCI. The former two have smaller
footprints and higher speeds compared to the latter two.

Table 10.1 summarizes the important relatives of PCI. From the kernel’s perspec-
tive, all these technologies are compatible with one another. A kernel PCI driver will
work with all related technologies mentioned previously; so even though we base
example code in this chapter on a CardBus card, the concepts apply to other PCI
derivatives, too.

Solutions based on the PCI family are available for a vast spectrum of hardware
domains:

 • Networking technologies such as Gigabit Ethernet, WiFi, ATM, Token Ring,
and ISDN.

 • Host adapters for storage technologies, such as SCSI.

 • Host controllers for I/O buses such as USB, FireWire, IDE, I2C, and PCMCIA.
On PC-compatible systems, these host controllers function as bridges between
the PCI controller on the South Bridge and the bus technology they source.
Verify this by running lspci (discussed later).

 • Graphics, video streaming, and data capture.

 • Serial port and parallel port cards.

 • Sound cards.

 • Devices such as Watchdogs, EDAC-capable memory controllers, and game
ports.

The PCI Family 279

280 Chapter 10 Peripheral Component Interconnect

TABLE 10.1 PCI’s Siblings, Children, and Cousins

Bus Name Characteristics Form Factor

PCI 32-bit bus at 33MHz or 66MHz;
yields up to 266MBps.

Internal slot in desktops and servers.

Mini PCI 32-bit bus at 33MHz. Internal slot in laptops.

CardBus 32-bit bus at 33MHz. External PC card slot in laptops.
Compatible with PCI.

PCI Extended (PCI-X) 64-bit bus at 133 MHz, yielding up
to 1GBps.

Internal slot in desktops and servers.
Wider than PCI, but a PCI card can
be plugged into a PCI-X slot.

PCI Express (PCIe) 250MBps per PCIe link in each
transfer direction, yielding a
maximum throughput of 8GBps in
each direction.

Replaces the internal PCI slot in newer
systems. PCIe is a serial protocol
unlike native PCI, which is parallel.

PCI Express Mini
Card

250MBps in each direction if the
interface is based on a PCIe link;
60MBps if the interface is based on
USB 2.0.

Replaces Mini PCI as the internal slot
in newer laptops. Smaller form factor
than Mini PCI.

Express Card 250MBps in each direction if the
interface is based on a PCIe link;
60MBps if the interface is based on
USB 2.0.

Thin external slot in newer laptops
that replaces CardBus. Interfaces with
the system bus via PCIe or USB 2.0.

For the driver developer, the PCI family offers an attractive advantage: a system of
automatic device confi guration. Unlike drivers for the older ISA generation, PCI driv-
ers need not implement complex probing logic. During boot, the BIOS-type boot
fi rmware (or the kernel itself if so confi gured) walks the PCI bus and assigns resources
such as interrupt levels and I/O base addresses. The device driver gleans this assign-
ment by peeking at a memory region called the PCI confi guration space. PCI devices
possess 256 bytes of confi guration memory. The top 64 bytes of the confi guration
space is standardized and holds registers that contain details such as the status, inter-
rupt line, and I/O base addresses. PCIe and PCI-X 2.0 offer an extended confi guration
space of 4KB. We will learn how to operate on the PCI confi guration space later.

Figure 10.1 shows PCI in a PC-compatible system. Components integrated into
the South Bridge such as controller silicon for USB, IDE, I2C, LPC, and Ethernet
reside off the PCI bus. Some of these controllers contain an internal PCI-to-PCI
bridge to source a dedicated PCI bus for the respective I/O technology. The South

Bridge additionally contains an external PCI bus to connect I/O peripherals such as
CardBus controllers and WiFi chipsets. Figure 10.1 also shows PCI address tuples cor-
responding to each connected subsystem. This will get clearer when we learn about
PCI addressing next.

Processor

North Bridge

Hub Interface

Ethernet-Modem Card

South Bridge

WiFi
Chipset

SCSI Host
Adapter

USB

0:1d.X
IDE

0:1f.0

0:1e.0

I2C

0:1f.1

LPC

0:1f.2

Firewire

0:1f.3

Ethernet

1:0.0

External
PCI

Interface

0:1e.0

AC’97
Audio

0:1f.1

2:X.Y

Card Bus
Controller

2:0.0

3:X.Y

3:0.0 & 3:0.1

FIGURE 10.1 PCI inside a PC South Bridge.

Addressing and Identification

PCI devices are addressed using bus, device, and function numbers, and they are identi-
fi ed via vendorIDs, deviceIDs, and class codes. Let’s learn these concepts with the help
of the lspci utility that is part of the PCI Utilities package downloadable from http://
mj.ucw.cz/pciutils.shtml.

Addressing and Identification 281

http://mj.ucw.cz/pciutils.shtml
http://mj.ucw.cz/pciutils.shtml

282 Chapter 10 Peripheral Component Interconnect

Assume that you’re using a Xircom Ethernet-Modem multifunction CardBus card
on a Pentium-class laptop served by a Texas Instruments PCI4510 CardBus controller,
as shown in Figure 10.1. Run lspci:

bash>lspci

00:00.0 Host bridge: Intel Corporation 82852/82855 GM/GME/PM/GMV Processor to I/O
Controller (rev 02)

...

02:00.0 CardBus bridge: Texas Instruments PCI4510 PC card Cardbus Controller (rev 03)

...

03:00.0 Ethernet controller: Xircom Cardbus Ethernet 10/100 (rev 03)

03:00.1 Serial controller: Xircom Cardbus Ethernet + 56k Modem (rev 03)

Consider the tuple (XX:YY.Z) at the beginning of each entry in the preceding output.
XX stands for the PCI bus number. A PCI domain can host up to 256 buses. In the
laptop used previously, the CardBus bridge is connected to PCI bus 2. This bridge
sources another PCI bus numbered 3 that hosts the Xircom card.

YY is the PCI device number. Each bus can connect to a maximum of 32 PCI
devices. Each device can, in turn, implement up to eight functions represented by Z.
The Xircom card can simultaneously perform two functions. Thus, 03:00.0 addresses
the Ethernet function of the card, while 03:00.1 corresponds to its modem commu-
nication function. Issue lspci –t to elicit a tree-like layout of the PCI buses and
devices on your system:

bash> lspci –t

-[0000:00]-+-00.0

 +-00.1

 +-00.3

 +-02.0

 +-02.1

 +-1d.0

 +-1d.1

 +-1d.2

 +-1d.7

 +-1e.0-[0000:02-05]--+-[0000:03]-+-00.0

 | | \-00.1

 | \-[0000:02]-+-00.0

 | +-00.1

 | +-01.0

 | \-02.0

 +-1f.0

As you can see from the preceding output (and in Figure 10.1), to walk the PCI
bus and reach the Xircom modem (03:00.01) or Ethernet controller (03:00.0), you
have to start from your PCI domain (labeled 0000 in the preceding output), traverse
a PCI-to-PCI bridge (00:1e.0), and then cross a PCI-to-CardBus host controller
(02:0.0). The sysfs representation of the PCI subsystem mirrors this layout:

bash> ls /sys/devices/pci0000:00/0000:00:1e.0/0000:02:00.0/0000:03:00.0/

...

net:eth2 Ethernet

...

bash> ls /sys/devices/pci0000:00/0000:00:1e.0/0000:02:00.0/0000:03:00.1/

...

tty:ttyS1 Modem

...

As you saw earlier, PCI devices possess a 256-byte memory region that holds con-
fi guration registers. This space is the key to identify the make and capabilities of PCI
cards. Let’s take a peek inside the confi guration spaces of the CardBus controller and
the Xircom dual-function card previously used. The Xircom card has two confi gura-
tion spaces, one per supported function:

bash> lspci –x

00:00.0 Host bridge: Intel Corporation 82852/82855 GM/GME/PM/GMV Processor to I/O
Controller (rev 02)

00: 86 80 80 35 06 01 90 20 02 00 00 06 00 00 80 00

10: 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

20: 00 00 00 00 00 00 00 00 00 00 00 00 14 10 5c 05

30: 00 00 00 00 40 00 00 00 00 00 00 00 00 00 00 00

...

02:00.0 CardBus bridge: Texas Instruments PCI4510 PC card Cardbus Controller (rev 03)

00: 4c 10 44 ac 07 00 10 02 03 00 07 06 20 a8 82 00

10: 00 00 00 b0 a0 00 00 22 02 03 04 b0 00 00 00 f0

20: 00 f0 ff f1 00 00 00 d2 00 f0 ff d3 00 30 00 00

30: fc 30 00 00 00 34 00 00 fc 34 00 00 0b 01 00 05

...

03:00.0 Ethernet controller: Xircom Cardbus Ethernet 10/100 (rev 03)

00: 5d 11 03 00 07 00 10 02 03 00 00 02 00 40 80 00

10: 01 30 00 00 00 00 00 d2 00 08 00 d2 00 00 00 00

20: 00 00 00 00 00 00 00 00 07 01 00 00 5d 11 81 11

30: 00 00 00 00 dc 00 00 00 00 00 00 00 0b 01 14 28

Addressing and Identification 283

284 Chapter 10 Peripheral Component Interconnect

03:00.1 Serial controller: Xircom Cardbus Ethernet + 56k Modem (rev 03)

00: 5d 11 03 01 03 00 10 02 03 02 00 07 00 00 80 00

10: 81 30 00 00 00 10 00 d2 00 18 00 d2 00 00 00 00

20: 00 00 00 00 00 00 00 00 07 02 00 00 5d 11 81 11

30: 00 00 00 00 dc 00 00 00 00 00 00 00 0b 01 00 00

PCI registers are little-endian, so factor that while interpreting the preceding output.
You may also dump PCI confi guration regions via sysfs. So, to look at the confi gura-
tion space of the Ethernet function of the Xircom card, do this:

bash> od -x /sys/devices/pci0000:00/0000:00:1e.0/0000:02:00.0/0000:03:00.0/config

0000000 115d 0003 0007 0210 0003 0200 4000 0080

0000020 3001 0000 0000 d200 0800 d200 0000 0000

0000040 0000 0000 0000 0000 0107 0000 115d 1181

...

Table 10.2 explains some of the values shown in the preceding dump. The fi rst two
bytes contain the vendor ID, which identifi es the company that manufactured the
card. PCI vendor IDs are maintained and assigned globally. (Point your browser to
www.pcidatabase.com for a database.) As you can decipher from the preceding out-
put, Intel, Texas Instruments, and Xircom (now acquired by Intel) own vendor IDs
of 0x8086, 0x104C, and 0x115D, respectively. The next two bytes are specifi c to the
functionality of the card and constitute its device ID. From the preceding output,
the Ethernet functionality of the Xircom card owns a device ID of 0x0003, while the
modem answers to a device ID of 0x0103. PCI cards additionally possess subvendor
and subdevice IDs (see words at offsets 44 and 46 in the preceding dump) to further
pinpoint their identity.

Ten bytes into the confi guration space lies the code that describes the class of the
device. PCI bridges have a class code starting with 0x06, network devices possess a class
code beginning with 0x02, and communication devices own a class code commencing
with 0x07. Thus, in the preceding example, the CardBus bridge, the Ethernet card,
and the serial modem own class codes of 0x0607, 0x0200, and 0x0700, respectively.
You can fi nd class code defi nitions in include/linux/pci_ids.h.

www.pcidatabase.com

TABLE 10.2 PCI Confi guration Space Semantics

 Configuration Values from the Dump Output
 Space Offset Semantics for the Xircom Card

 0 Vendor ID 0x115D

 2 Device ID 0x0003

 10 Class code 0x0200

 16 to 39 Base address register 0 (BAR 0) to BAR5 0x3001...0000

 44 Subvendor ID 0x115D

 46 Subdevice ID 0x1181

PCI drivers register the vendor IDs, device IDs, and class codes that they support with
the PCI subsystem. Using this database, the PCI subsystem binds an inserted card to
the appropriate device driver after gleaning its identity from its confi guration space.
We will see how this is done when we implement an example driver later.

Accessing PCI Regions

PCI devices contain three addressable regions: confi guration space, I/O ports, and
device memory. Let’s learn how to access these memory regions from a device driver.

Configuration Space

The kernel offers a set of six functions that your driver can use to operate on PCI con-
fi guration space:

pci_read_config_[byte|word|dword](struct pci_dev *pdev,

 int offset, int *value);

and

pci_write_config_[byte|word|dword](struct pci_dev *pdev,

 int offset, int value);

In the argument list, struct pci_dev is the PCI device structure, and offset is the
byte position in the confi guration space that you want to access. For read functions,
value is a pointer to a supplied data buffer, and for write routines, it contains the data
to be written.

Accessing PCI Regions 285

286 Chapter 10 Peripheral Component Interconnect

Let’s consider some examples:

 • To decipher the IRQ number assigned to a card function, use the following:

unsigned char irq;

 pci_read_config_byte(pdev, PCI_INTERRUPT_LINE, &irq);

As per the PCI specification, offset 60 inside the PCI configuration space holds
the IRQ number assigned to the card. All configuration register offsets are
expressively defined in include/linux/pci_regs.h, so use PCI_INTERRUPT_LINE
rather than 60 to specify this offset. Similarly, to read the PCI status register
(two bytes at offset six in the configuration space), do this:

unsigned short status;

pci_read_config_word(pdev, PCI_STATUS, &status);

 • Only the first 64 bytes of the configuration space are standardized. The device
manufacturer defines desired semantics to the rest. The Xircom card used earlier,
assigns four bytes at offset 64 for power management purposes. To disable power
management, the Xircom CardBus driver drivers/net/tulip/xircom_cb.c, does this:

#define PCI_POWERMGMT 0x40

pci_write_config_dword(pdev, PCI_POWERMGMT, 0x0000);

I/O and Memory

PCI cards have up to six I/O or memory regions. I/O regions contain registers, and
memory regions hold data. Video cards, for example, may have I/O spaces that accom-
modate control registers and memory regions that map to frame buffers. Not all cards
have addressable memory regions, however. The semantics of I/O and memory spaces
are hardware-dependent and can be obtained from the device data sheet.

Like for confi guration memory, the kernel offers a set of helpers to operate on I/O
and memory regions of PCI devices:

unsigned long pci_resource_[start|len|end|flags] (struct pci_dev *pdev, int bar);

To operate on an I/O region such as the device control registers of a PCI video card,
the driver needs to do the following:

 1. Get the I/O base address from the appropriate base address register (bar) in the
configuration space:

unsigned long io_base = pci_resource_start(pdev, bar);

This assumes that the device control registers for this card are mapped to the IO
region associated with bar, whose value can range from 0 through 5, as shown
in Table 10.2.

 2. Mark this region as being spoken for, using the kernel’s request_region()
regulatory mechanism discussed in Chapter 5, “Character Drivers”:

request_region(io_base, length, "my_driver");

Here, length is the size of the control register space and my_driver identifi es
the region’s owner. Look for the entry containing my_driver in /proc/ioports to
spot this I/O region.

You may use the wrapper function pci_request_region(), defi ned in
drivers/pci/pci.c, instead of calling request_region().

 3. Add the register’s offset obtained from the data-sheet, to the base address gleaned
in Step 1. Operate on this address using the inb() and outb() family of func-
tions discussed in Chapter 5:

/* Read */

register_data = inl(io_base + REGISTER_OFFSET);

/* Use */

/* ... */

/* Write */

outl(register_data, iobase + REGISTER_OFFSET);

To operate on a memory region such as a frame buffer on the above PCI video card,
follow these steps:

 1. Get the base address, length, and flags associated with the memory region:

unsigned long mmio_base = pci_resource_start(pdev, bar);

unsigned long mmio_length = pci_resource_length(pdev, bar);

unsigned long mmio_flags = pci_resource_flags(pdev, bar);

This assumes that this memory is mapped to the base address register, bar.

 2. Mark ownership of this region using the kernel’s request_mem_region() reg-
ulatory mechanism:

request_mem_region(mmio_base, mmio_length, "my_driver");

You may instead use the wrapper function pci_request_region(), men-
tioned previously.

Accessing PCI Regions 287

288 Chapter 10 Peripheral Component Interconnect

 3. Obtain CPU access to the device memory obtained in Step 1. Certain memory
regions, such as the ones that hold registers, need to guard against side effects,
so they are marked as not being prefetchable (or cacheable) by the CPU. Other
regions, such as the one used in this example, can be cached. Depending on the
access flag, use the appropriate function to obtain kernel virtual addresses cor-
responding to the mapped region:

void __iomem *buffer;

if (flags & IORESOURCE_CACHEABLE) {

 buffer = ioremap(mmio_base, mmio_length);

} else {

 buffer = ioremap_nocache(mmio_base, mmio_length);

}

To be safe, and to avoid performing the preceding checks, use the services of pci_
iomap() defi ned in lib/iomap.c instead:

buffer = pci_iomap(pdev, bar, mmio_length);

Direct Memory Access

Direct Memory Access (DMA) is the capability to transfer data from a peripheral to main
memory without the CPU’s intervention. DMA boosts the performance of peripher-
als manyfold, because it doesn’t burn CPU cycles to move data. PCI networking cards
and IDE disk drives are common examples of peripherals relying on DMA for data
transfer.

DMA is initiated by a DMA master. The PC motherboard has a DMA control-
ler on the South Bridge that can master the I/O bus and initiate DMA to or from a
peripheral. This is usually the case for legacy ISA cards. However, buses such as PCI
can master the bus and initiate DMA transfers. CardBus cards are similar to PCI and
also support DMA mastering. PCMCIA devices, on the other hand, do not support
DMA mastering, but the PCMCIA controller, which is usually wired to a PCI bus,
might have DMA mastering capabilities.

The issue of cache coherency is synonymous with DMA. For optimum performance,
processors cache recently accessed bytes, so data passing between the CPU and main
memory streams through the processor cache. During DMA, however, data travels
directly between the peripheral device and main memory and, hence, bypasses the pro-
cessor cache. This evasion has the potential to introduce inconsistencies because the

processor might work on stale data living in its cache. Some architectures automati-
cally synchronize the cache with main memory using a technique called bus snooping.
Many others rely on software to achieve coherency, however. We will learn how to
perform coherent DMA operations after introducing a few more topics.

DMA can occur synchronously or asynchronously. An example of the former is DMA
from a system frame buffer to an LCD controller. A user application writes pixel data
to a DMA-mapped frame buffer via /dev/fbX, while the LCD controller uses DMA
to collect this data synchronously at timed intervals. We discuss more about this in
Chapter 12, “Video Drivers.” An example of asynchronous DMA is the transmit and
receive of data frames between the CPU and a network card discussed in Chapter 15,
“Network Interface Cards.”

System memory regions that are the source or destination of DMA transfers are
called DMA buffers. If a bus interface has addressing limitations, that’ll affect the
memory range that can hold DMA buffers. So, DMA buffers suitable for a 24-bit bus
such as ISA can live only in the bottom 16MB of system memory called ZONE_DMA
(see the section “Allocating Memory” in Chapter 2, “A Peek Inside the Kernel”). PCI
buses are 32-bits wide by default, so you won’t usually face such limitations on 32-bit
platforms. To inform the kernel about any special needs of DMA-able buffers, use the
following:

dma_set_mask(struct device *dev, u64 mask);

If this function returns success, you may DMA to any address that is mask bits in
length. For example, the e1000 PCI-X Gigabit Ethernet driver (drivers/net/e1000/
e1000_main.c) does the following:

if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {

/* System supports 64-bit DMA */

 pci_using_dac = 1;

} else {

 /* See if 32-bit DMA is supported */

 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {

 /* No, let’s abort */

 E1000_ERR("No usable DMA configuration, aborting\n");

 return err;

 }

 /* 32-bit DMA */

 pci_using_dac = 0;

}

Direct Memory Access 289

290 Chapter 10 Peripheral Component Interconnect

I/O devices view DMA buffers through the lens of the bus controller and any interven-
ing I/O memory management unit (IOMMU). Because of this, I/O devices work with
bus addresses , rather than physical or kernel virtual addresses. So, when you inform a
PCI card about the location of a DMA buffer, you have to let it know the buffer’s bus
address. DMA service routines map the kernel virtual address of DMA buffers to bus
addresses so that both the device and the CPU can access the buffers. Bus addresses are
of type dma_addr_t, defi ned in include/asm-your-arch/types.h.

There are a couple more concepts worth knowing about DMA. One is the idea
of bounce buffers. Bounce buffers reside in DMA-able regions and are used as tempo-
rary memory when DMA is requested to/from non-DMA-able memory regions. An
example is DMA to an address higher than 4GB from a 32-bit PCI peripheral when
there is no intervening IOMMU. Data is fi rst transferred to a bounce buffer and then
copied to the fi nal destination. The second concept is a fl avor of DMA called scatter-
gather. When data to be DMA’ed is spread over discontiguous regions, scatter-gather
capability enables the hardware to gather contents of the scattered buffers at one go.
The reverse occurs when data is DMA’ed from the card to buffers scattered in memory.
Scatter-gather capability boosts performance by eliminating the need to service mul-
tiple DMA requests.

The kernel features a healthy API that masks many of the internal details of con-
fi guring DMA. This API gets simpler if you are writing a driver for a PCI card that
supports bus mastering. (Most PCI cards do.) PCI DMA routines are essentially wrap-
pers around the generic DMA service routines and are defi ned in include/asm-generic/
pci-dma-compat.h. In this chapter, we use only the PCI DMA API.

The kernel provides two classes of DMA service routines to PCI drivers:

 1. Consistent (or coherent) DMA access methods. These routines guarantee data
coherency in the face of DMA activity. If both the PCI device and the CPU are
likely to frequently operate on a DMA buffer, consistency is crucial, so use the
consistent API. The trade-off is a degree of performance penalty. To obtain a
consistent DMA buffer, call this service routine:

void * pci_alloc_consistent(struct pci_dev *pdev,

 size_t size,

 dma_addr_t *dma_handle);

This function allocates a DMA buffer, generates its bus address, and returns
the associated kernel virtual address. The fi rst two arguments respectively hold
the PCI device structure (which is discussed later) and the size of the requested

DMA buffer. The third argument dma_handle, is a pointer to the bus address
that the function call generates. The following snippet allocates and frees a con-
sistent DMA buffer:

/* Allocate */

void *vaddr = pci_alloc_consistent(pdev, size,

 &dma_handle);

/* Use */

/* ... */

/* Free */

pci_free_consistent(pdev, size, vaddr, dma_handle);

 2. Streaming DMA access methods. These routines do not guarantee consistency
and are faster as a result. They are useful when there is not much need for
shared access between the CPU and the I/O device. When a streamed buffer
has been mapped for device access, the driver has to explicitly unmap (or sync)
it before the CPU can reliably operate on it. There are two families of stream-
ing access routines: pci_[map|unmap|dma_sync]_single()and pci_[map|

unmap|dma_sync]_sg().

The fi rst function family maps, unmaps, and synchronizes a single preallocated
DMA buffer. pci_map_single() is prototyped as follows:

dma_addr_t pci_map_single(struct pci_dev *pdev, void *ptr,

 size_t size, int direction);

The fi rst three arguments respectively hold the PCI device structure, the ker-
nel virtual address of a preallocated DMA buffer, and the size of the sup-
plied buffer. The fourth argument, direction, can be one of the following:
PCI_DMA_BIDIRECTION, PCI_DMA_TODEVICE, PCI_DMA_FROMDEVICE, or
PCI_DMA_NONE. The names are self-explanatory, but the fi rst option is expen-
sive, and the last is for debugging. We discuss streamed DMA mapping further
when we develop an example driver later.

The second function family maps, unmaps, and synchronizes a scatter-gather
list of DMA buffers. pci_map_sg()is prototyped as follows:

int pci_map_sg(struct pci_dev *pdev,

 struct scatterlist *sgl,

 int num_entries, int direction);

The scattered list is specifi ed using the second argument struct scatterl-

ist, defi ned in include/asm-your-arch/scatterlist.h. num_entries is the num-

Direct Memory Access 291

292 Chapter 10 Peripheral Component Interconnect

of entries in scatterlist. The fi rst and last arguments are the same as that
described for pci_map_single(). The function returns the number of mapped
entries:

num_mapped = pci_map_sg(pdev, sgl, num_entries,

 PCI_DMA_TODEVICE);

for (i=0; i<num_mapped; i++) {

 /* sg_dma_address(&sgl[i]) returns the bus address

 of this entry */

 /* sg_dma_len(&sgl[i]) returns the length of this region

 */

}

Let’s summarize the characteristics of coherent and streaming DMA to help you
decide their suitability for your usage scenario:

 • Coherent mappings are simple to code but expensive to use. Streaming map-
pings have the reverse characteristic.

 • Coherent mappings are preferred when both the CPU and the I/O device need
to frequently manipulate the DMA buffer. This is usually the case for synchro-
nous DMA. An example is the frame buffer driver mentioned previously, where
each DMA operates on the same buffer. Because the CPU and the video con-
troller are constantly accessing the frame buffer, it makes sense to use coherent
mappings in this situation.

 • Use streaming mappings when the I/O device owns the buffer for long dura-
tions. Streamed DMA is common for asynchronous operation when each DMA
operates on a different buffer. An example is a network driver, where the buffers
that carry transmit packets are mapped and unmapped on-the-fly.

 • DMA descriptors are good candidates for coherent mapping. DMA descriptors
contain metadata about DMA buffers such as their address and length and are
frequently accessed by both the CPU and the device. Mapping descriptors on-
the-fl y is expensive because that entails frequent unmappings and remappings
(or sync operations).

Device Example: Ethernet-Modem Card

Armed with the knowledge acquired so far, let’s venture to write a skeletal device
driver for a fi ctitious Ethernet-Modem dual-function CardBus card and see how it
can be used for networking on a LAN and for establishing a dialup connection to an

Internet service provider. You will essentially need one device driver per supported
function. Assuming you already have a serial driver (we learned to write serial drivers
in Chapter 6, “Serial Drivers”) and an Ethernet driver (we will learn to implement
network drivers in Chapter 15) that support the chipsets used on the card, let’s tinker
with those drivers and get them to work with the CardBus interface. The example
here is generic but is loosely based on the kernel driver for the Xircom card that we
used previously. The Ethernet and modem portions of the Xircom driver live sepa-
rately in drivers/net/tulip/xircom_cb.c and drivers/serial/8250_pci.c, respectively.

Initializing and Probing

PCI drivers use an array of pci_device_id structures defi ned in include/linux/mod_
devicetable.h to describe the identity of the cards they support:

struct pci_device_id {

 __u32 vendor, device; /* Vendor and Device IDs */

 __u32 subvendor, subdevice; /* Subvendor and Subdevice IDs */

 __u32 class, classmask; /* Class and class mask */

 kernel_ulong_t driver_data; /* Private data */

};

The semantics of the fi rst six fi elds in pci_device_id conform to the PCI parlance dis-
cussed previously. The last fi eld driver_data is private to the driver and is commonly
used to co-relate confi guration information if the driver supports multiple cards.

The Ethernet-Modem card has a device ID and a confi guration space corre-
sponding to each of its two functions. Because the two card functions are uncon-
nected, you need separate PCI drivers to handle them. The drivers/net/ directory
is a good place to hold the Ethernet driver, and drivers/serial/ is the right location
to place its serial counterpart. The Ethernet driver in Listing 10.1 supports the
network function and announces a set of associated IDs in its pci_device_id
table. The serial driver in Listing 10.2 is similar, except that it’s responsible for the
modem function. The associated class codes and class masks are left unstated by
both drivers because the vendor ID/device ID combination itself uniquely identi-
fi es their functionality.

The PCI subsystem provides macros such as PCI_DEVICE() and PCI_DEVICE_
CLASS() to ease the creation of the pci_device_id table. PCI_DEVICE(), for example,

 Device Example: Ethernet-Modem Card 293

294 Chapter 10 Peripheral Component Interconnect

creates a pci_device_id element from the specifi ed vendor ID and device ID. So you
may rewrite network_device_pci_table in Listing 10.1 as follows:

struct pci_device_id network_driver_pci_table[] __devinitdata = {

 {PCI_DEVICE(MY_VENDOR_ID, MY_DEVICE_ID_NET)

 .driver_data = (unsigned long)network_driver_private_data},

 {0},

};

The MODULE_DEVICE_TABLE() macro in Listing 10.1 and Listing 10.2 marks the
pci_device_id table in the module image. This information loads the module on
demand when the CardBus card is inserted. We explored this mechanism in the sec-
tion “Module Autoload” in Chapter 4, “Laying the Groundwork,” and used it in the
context of pcmcia_device_id in Chapter 9, “PCMCIA and Compact Flash.”

When the PCI hotplug layer senses the presence of a card with properties matching
the ones announced by the pci_device_id table of a driver, it invokes the probe()
method belonging to that driver. This gives an opportunity to the driver to claim the
card. Obviously, PCI drivers have to associate their pci_device_id table with their
probe() method. This tie up is achieved by the pci_driver structure that drivers
register with the PCI subsystem during initialization. To perform this registration,
drivers call pci_register_driver().

LISTING 10.1 Registering the Network Function

#include <linux/pci.h>

#define MY_VENDOR_ID 0xABCD

#define MY_DEVICE_ID_NET 0xEF01

/* The set of PCI cards that this driver supports. Only a single

 entry in our case. Look at include/linux/mod_devicetable.h for

 the definition of pci_device_id */

struct pci_device_id network_driver_pci_table[] __devinitdata = {

{

 { MY_VENDOR_ID, /* Interface chip manufacturer ID */

 MY_DEVICE_ID_NET, /* Device ID for the network

 function */

 PCI_ANY_ID, /* Subvendor ID wild card */

 PCI_ANY_ID, /* Subdevice ID wild card */

 0, 0, /* class and classmask are

 unspecified */

 network_driver_private_data /* Use this to co-relate

 configuration information if the

 driver supports multiple

 cards. Can be an enumerated type. */

 }, {0},

};

/* struct pci_driver is defined in include/linux/pci.h */

struct pci_driver network_pci_driver = {

 .name = "ntwrk", /* Unique name */

 .probe = net_driver_probe, /* See Listing 10.3 */

 .remove = __devexit_p(net_driver_remove),/* See Listing 10.3 */

 .id_table = network_driver_pci_table, /* See above */

 /* suspend() and resume() methods that implement power

 management are not used by this driver */

};

/* Ethernet driver initialization */

static int __init

network_driver_init(void)

{

 pci_register_driver(&network_pci_driver);

 return 0;

}

/* Ethernet driver exit */

static void __exit

network_driver_exit(void)

{

 pci_unregister_driver(&network_pci_driver);

}

module_init(network_driver_init);

module_exit(network_driver_exit);

MODULE_DEVICE_TABLE(pci, network_driver_pci_table);

 Device Example: Ethernet-Modem Card 295

296 Chapter 10 Peripheral Component Interconnect

LISTING 10.2 Registering the Modem Function

#include <linux/pci.h>

#define MY_VENDOR_ID 0xABCD

#define MY_DEVICE_ID_MDM 0xEF02

/* The set of PCI cards that this driver supports */

struct pci_device_id modem_driver_pci_table[] __devinitdata = {

{

 { MY_VENDOR_ID, /* Interface chip manufacturer ID */

 MY_DEVICE_ID_MDM, /* Device ID for the modem

 function */

 PCI_ANY_ID, /* Subvendor ID wild card */

 PCI_ANY_ID, /* Subdevice ID wild card */

 0, 0, /* class and classmask are

 unspecified */

 modem_driver_private_data /* Use this to co-relate

 configuration information if the driver

 supports multiple cards. Can be an

 enumerated type. */

 }, {0},

};

struct pci_driver modem_pci_driver = {

 .name = "mdm", /* Unique name */

 .probe = modem_driver_probe, /* See Listing 10.4 */

 .remove = __devexit_p(modem_driver_remove),/* See Listing 10.4 */

 .id_table = modem_driver_pci_table, /* See above */

 /* suspend() and resume() methods that implement power

 management are not used by this driver */

};

/* Modem driver initialization */

static int __init

modem_driver_init(void)

{

 pci_register_driver(&modem_pci_driver);

 return 0;

}

/* Modem driver exit */

static void __exit

modem_driver_exit(void)

{

 pci_unregister_driver(&modem_pci_driver);

}

module_init(modem_driver_init);

module_exit(modem_driver_exit);

MODULE_DEVICE_TABLE(pci, modem_driver_pci_table);

Listing 10.3 implements the probe() method for the network function. This

 • Enables the PCI device

 • Discovers resource information such as I/O base addresses and IRQ

 • Allocates and populates a networking data structure associated with this
device

 • Registers itself with the kernel networking layer

Listing 10.4 performs similar work for the modem function. In this case, the driver
registers with the kernel serial layer instead of the networking layer.

Listings 10.3 and 10.4 also implement remove() methods, which are invoked
when the CardBus card is ejected or when the driver module is unloaded. remove() is
the reverse of probe(); it frees resources and unregisters the driver from relevant sub-
systems. The __devexit_p() macro that Listing 10.1 uses to declare the remove()
method discards the supplied function at compile time if you haven’t enabled hotplug
support and if the driver is not a dynamically loadable module.

The PCI subsystem calls probe() with two arguments:

 1. A pointer to pci_dev, the data structure that describes this PCI device. This
structure, defined in include/linux/pci.h, is maintained by the PCI subsystem for
each PCI device on your system.

 2. A pointer to pci_device_id, the entry in the driver’s pci_device_id
table that matches the information found in the configuration space of the
inserted card.

 Device Example: Ethernet-Modem Card 297

298 Chapter 10 Peripheral Component Interconnect

LISTING 10.3 Probing the Network Function

#include <linux/pci.h>

unsigned long ioaddr;

/* Probe method */

static int __devinit

net_driver_probe(struct pci_dev *pdev,

 const struct pci_device_id *id)

{

 /* The net_device structure is defined in include/linux/netdevice.h.

 See Chapter 15, "Network Interface Cards," for the description */

 struct net_device *net_dev;

 /* Ask low-level PCI code to enable I/O and memory regions for

 this device. Look up the IRQ for the device that the PCI

 subsystem allotted when it walked the bus */

 pci_enable_device(pdev);

 /* Use this device in bus mastering mode, since the network

 function of this card is capable of DMA */

 pci_set_master(pdev);

 /* Allocate an Ethernet interface and fill in generic values in

 the net_dev structure. prv_data is the private driver data

 structure that contains buffers, locks, and so on. This is

 left undefined. Wait until Chapter 15 for more on

 alloc_etherdev() */

 net_dev = alloc_etherdev(sizeof(struct prv_data));

 /* Populate net_dev with your network device driver methods */

 net_dev->hard_start_xmit = &mydevice_xmit; /* See Listing 10.6 */

 /* More net_dev initializations */

 /* ... */

 /* Get the I/O address for this PCI region. All card registers

 specified in Table 10.3 are assumed to be in bar 0 */

 ioaddr = pci_resource_start(pdev, 0);

 /* Claim a 128-byte I/O region */

 request_region(ioaddr, 128, "ntwrk");

 /* Fill in resource information obtained from the PCI layer */

 net_dev->base_addr = ioaddr;

 net_dev->irq = pdev->irq;

 /* ... */

 /* Setup DMA. Defined in Listing 10.5 */

 dma_descriptor_setup(pdev);

 /* Register the driver with the network layer. This will allot

 an unused ethX interface */

 register_netdev(net_dev);

 /* ... */

}

/* Remove method */

static void __devexit

net_driver_remove(struct pci_dev *pdev)

{

 /* Free transmit and receive DMA buffers.

 Defined in Listing 10.5 */

 dma_descriptor_release(pdev);

 /* Release memory regions */

 /* ... */

 /* Unregister from the networking layer */

 unregister_netdev(dev);

 free_netdev(dev);

 /* ... */

}

LISTING 10.4 Probing the Modem Function

/* Probe method */

static int __devinit

modem_driver_probe(struct pci_dev *pdev,

 const struct pci_device_id *id)

{

 struct uart_port port; /* See Chapter 6, "Serial Drivers" */

 Device Example: Ethernet-Modem Card 299

300 Chapter 10 Peripheral Component Interconnect

 /* Ask low-level PCI code to enable I/O and memory regions

 for this PCI device */

 pci_enable_device(pdev);

 /* Get the PCI IRQ and I/O address to be used and populate the

 uart_port structure (see Chapter 6) with these resources. Look at

include/linux/pci.h for helper functions */

 /* ... */

 /* Register this information with the serial layer and get an

 unused ttySX port allotted to the card. Look at Chapter 6 for

 more on serial drivers */

 serial8250_register_port(&port);

 /* ... */

}

/* Remove method */

static void __devexit

modem_driver_remove(struct pci_dev *dev)

{

 /* Unregister the port from the serial layer */

 serial8250_unregister_port(&port);

 /* Disable device */

 pci_disable_device(dev);

}

To recap, let’s trace the code path from the time you insert the Ethernet-Modem
CardBus card until you are allotted a network interface (ethX) and a serial port
(/dev/ttySX):

 1. For each supported CardBus function, the corresponding driver initializa-
tion routine registers a pci_device_id table of supported cards and a
probe()routine. This is shown in Listing 10.1 and Listing 10.2.

 2. The PCI hotplug layer detects card insertion and gleans the vendor ID and
device ID of each device function from the card’s PCI configuration space.

 3. Because the IDs match with those registered by the card’s Ethernet and serial
drivers, the corresponding probe() methods are invoked. This results in the

invocation of net_driver_probe()and modem_driver_probe() described
respectively in Listing 10.3 and Listing 10.4.

 4. The probe() methods configure the Ethernet and modem portions of the PCI
driver with resource information. This leads to the allocation of a networking
interface (ethX) and a serial port (ttySX) to the card. From this point on, appli-
cation data flows over these interfaces.

Data Transfer

The network function belonging to the sample CardBus device uses the following strat-
egy for data transfer: The card expects the device driver to supply it with an array of two
receive DMA descriptors and an array of two transmit DMA descriptors. Each DMA
descriptor contains the address of an associated data buffer, its length, and a control
word. You can use the control word to tell the device whether the descriptor contains
valid data. For a transmit descriptor, you may also program it to request an interrupt
after data transmission. The card looks for a valid descriptor and DMA’s data to/from
the associated data buffer. To suit this elementary scheme, the example driver uses only
the coherent DMA interface. The driver coherently allocates a large buffer that holds
the descriptors and their associated data buffers. The receive and transmit buffers are
1536 bytes long to match the maximum transmission unit (MTU) of Ethernet frames.
The descriptors and buffers are pictorially shown in Figure 10.2. The top 24 bytes of
each array in the fi gure hold two 12-byte DMA descriptors, and the rest of the memory
is occupied by two 1536-byte DMA buffers. The 12-byte descriptor layout shown in
the fi gure is assumed to match the format specifi ed in the card’s data sheet.

Table 10.3 shows the register layout of the card’s network function.

TABLE 10.3 Register Layout of the Card’s Network Function

Register Name Description
Offset into
I/O Space

DMA_RX_REGISTER Holds the bus address of the receive DMA descriptor array
(dma_bus_rx)

0x0

DMA_TX_REGISTER Holds the bus address of the transmit DMA descriptor array
(dma_bus_tx)

0x4

CONTROL_REGISTER Control word that commands the card to initiate DMA, stop
DMA, and so on

0x8

 Device Example: Ethernet-Modem Card 301

302 Chapter 10 Peripheral Component Interconnect

Bus Addr of DMA Buffer 1

Length of DMA Buffer 1

Control Word 1

Bus Addr of DMA Buffer 2

Length of DMA Buffer 2

Control Word 2

1536-byte RX DMA buffer 1

1536-byte RX DMA Buffer 2

Receive DMA Descriptors and Buffers
(dma_buffer_rx/dma_bus_rx)

0

4

8

12

24

1560

3096

Transmit DMA Descriptors and Buffers
(dma_buffer_tx/dma_bus_tx)

Bus Addr of DMA Buffer 1

Length of DMA Buffer 1

Control Word 1

Bus Addr of DMA Buffer 2

Length of DMA Buffer 2

Control Word 2

1536-byte TX DMA buffer 1

1536-byte TX DMA Buffer 2

0

4

8

12

24

1560

3096

FIGURE 10.2 DMA descriptors and buffers for the CardBus device.

LISTING 10.5 Setting Up DMA Descriptors and Buffers

/* Device-specific data structure for the Ethernet Function

 allocated during device initialization */

struct device_data {

 struct pci_dev *pdev; /* The PCI Device structure */

 struct net_device *ndev; /* The Net Device structure */

 void *dma_buffer_rx; /* Kernel virtual address of the

 receive descriptor */

 dma_addr_t dma_bus_rx; /* Bus address of the receive

 descriptor */

 void *dma_buffer_tx; /* Kernel virtual address of the

 transmit descriptor */

 dma_addr_t dma_bus_tx; /* Bus address of the transmit

 descriptor */

 /* ... */

 spin_lock_t device_lock; /* Serialize */

} *mydev_data;

/* On-card registers related to DMA */

#define DMA_RX_REGISTER_OFFSET 0x0 /* Offset of the register

 holding the bus address

 of the RX descriptor */

#define DMA_TX_REGISTER_OFFSET 0x4 /* Offset of the register

 holding the bus address

 of the TX descriptor */

#define CONTROL_REGISTER 0x8 /* Offset of the control

 register */

/* Control Register Defines */

#define INITIATE_XMIT 0x1

/* Descriptor control word definitions */

#define FREE_FLAG 0x1 /* Free Descriptor */

#define INTERRUPT_FLAG 0x2 /* Assert interrupt after DMA */

/* Invoked from Listing 10.3 */

static void

dma_descriptor_setup(struct pci_dev *pdev)

{

 /* Allocate receive DMA descriptors and buffers */

 mydev_data->dma_buffer_rx =

 pci_alloc_consistent(pdev, 3096, &mydev_data->dma_bus_rx);

 /* Fill the two receive descriptors as shown in Figure 10.2 */

 /* RX descriptor 1 */

 mydev_data->dma_buffer_rx[0] = cpu_to_le32((unsigned long)

 (mydev_data->dma_bus_rx + 24)); /* Buffer address */

 mydev_data->dma_buffer_rx[1] = 1536; /* Buffer length */

 mydev_data->dma_buffer_rx[2] = FREE_FLAG; /* Descriptor is free */

 /* RX descriptor 2 */

 mydev_data->dma_buffer_rx[3] = cpu_to_le32((unsigned long)

 (mydev_data->dma_bus_rx + 1560)); /* Buffer address */

 mydev_data->dma_buffer_rx[4] = 1536; /* Buffer length */

 mydev_data->dma_buffer_rx[5] = FREE_FLAG; /* Descriptor is free */

 wmb(); /* Write Memory Barrier */

 /* Write the address of the receive descriptor to the appropriate

 register in the card. The I/O base address, ioaddr, was populated

 in Listing 10.3 */

 outl(cpu_to_le32((unsigned long)mydev_data->dma_bus_rx),

 ioaddr + DMA_RX_REGISTER_OFFSET);

 Device Example: Ethernet-Modem Card 303

304 Chapter 10 Peripheral Component Interconnect

 /* Allocate transmit DMA descriptors and buffers */

 mydev_data->dma_buffer_tx =

 pci_alloc_consistent(pdev, 3096, &mydev_data->dma_bus_tx);

 /* Fill the two transmit descriptors as shown in Figure 10.2 */

 /* TX descriptor 1 */

 mydev_data->dma_buffer_tx[0] = cpu_to_le32((unsigned long)

 (mydev_data->dma_bus_tx + 24)); /* Buffer address */

 mydev_data->dma_buffer_tx[1] = 1536; /* Buffer length */

 /* Valid descriptor. Generate an interrupt

 after completing the DMA */

 mydev_data->dma_buffer_tx[2] = (FREE_FLAG | INTERRUPT_FLAG);

 /* TX descriptor 2 */

 mydev_data->dma_buffer_tx[3] = cpu_to_le32((unsigned long)

 (mydev_data->dma_bus_tx + 1560)); /* Buffer address */

 mydev_data->dma_buffer_tx[4] = 1536; /* Buffer length */

 mydev_data->dma_buffer_tx[5] = (FREE_FLAG | INTERRUPT_FLAG);

 wmb(); /* Write Memory Barrier */

 /* Write the address of the transmit descriptor to the appropriate

 register in the card. The I/O base, ioaddr, was populated in

 Listing 10.3 */

 outl(cpu_to_le32((unsigned long)mydev_data->dma_bus_tx),

 ioaddr + DMA_TX_REGISTER_OFFSET);

}

/* Invoked from Listing 10.3 */

static void

dma_descriptor_release(struct pci_dev *pdev)

{

 pci_free_consistent(pdev, 3096, mydev_data->dma_bus_tx);

 pci_free_consistent(pdev, 3096, mydev_data->dma_bus_rx);

}

Listing 10.5 enforces a write barrier by calling wmb() to prevent the CPU from reor-
dering the outl() before populating the DMA descriptor. On an x86 processor,
wmb() reduces to a NOP because Intel CPUs enforce writes in program order. When
writing the DMA descriptor address to the card and when populating the buffer’s bus
address inside the DMA descriptor, the driver converts the native byte order to PCI
little-endian format using cpu_to_le32(). On Intel CPUs, this again has no effect

because both PCI and Intel processors communicate in little-endian. On several other
architectures, for example, an ARM9 CPU running in the big-endian mode, both
wmb() and cpu_to_le32() assume signifi cance.

Now that you have the descriptors and buffers mapped and ready to go, it’s time to
look at how data is exchanged between the system and the CardBus device, as shown
in Listing 10.6. We won’t dwell on the network interfaces and networking data struc-
tures because Chapter 15 is devoted to doing that.

LISTING 10.6 Receiving and Transmitting Data

/* The interrupt handler */

static irqreturn_t

mydevice_interrupt(int irq, void *devid)

{

 struct sk_buff *skb;

 /* ... */

 /* If this is a receive interrupt, collect the packet and pass it

 on to higher layers. Look at the control word in each RX DMA

 descriptor to figure out whether it contains data. Assume for

 convenience that the first RX descriptor was used by the card

 to DMA this received packet */

 packet_size = mydev_data->dma_buffer_rx[1];

 /* In real world drivers, the sk_buff is pre-allocated, stream-

 mapped, and supplied to the card after setting the FREE_FLAG

 during device open(). The received data is directly

 DMA’ed to this sk_buff instead of the memcpy() performed here,

 as you will learn in Chapter 15. The card clears the FREE_FLAG

 before the DMA */

 skb = dev_alloc_skb(packet_size); /* See Figure 15.2 of Chapter 15 */

 skb->dev = mydev_data->ndev; /* Owner network device */

 memcpy(skb, mydev_data->dma_buffer_rx[24], packet_size);

 /* Pass the received data to higher-layer protocols */

 skb_put(skb, packet_size);

 netif_rx(skb);

 /* ... */

 /* Make the descriptor available to the card again */

 mydev_data->dma_buffer_rx[2] |= FREE_FLAG;

}

/* This function is registered in Listing 10.3 and is called from

 the networking layer. More on network device interfaces in

 Chapter 15 */

 Device Example: Ethernet-Modem Card 305

306 Chapter 10 Peripheral Component Interconnect

static int

mydevice_xmit(struct sk_buff *skb, struct net_device *dev)

{

 /* Use a valid TX descriptor. Look at Figure 10.2 */

 /* Locking has been omitted for simplicity */

 if (mydev_data->dma_buffer_tx[2] & FREE_FLAG) {

 /* Use first TX descriptor */

 /* In the real world, DMA occurs directly from the sk_buff as

 you will learn later on! */

 memcpy(mydev_data->dma_buffer_tx[24], skb->data, skb->len);

 mydev_data->dma_buffer_tx[1] = skb->len;

 mydev_data->dma_buffer_tx[2] &= ~FREE_FLAG;

 mydev_data->dma_buffer_tx[2] |= INTERRUPT_FLAG;

 } else if (mydev_data->dma_buffer[5] & FREE_FLAG) {

 /* Use second TX descriptor */

 memcpy(mydev_data->dma_buffer_tx[1560], skb->data, skb->len);

 mydev_data->dma_buffer_tx[4] = skb->len;

 mydev_data->dma_buffer_tx[5] &= ~FREE_FLAG;

 mydev_data->dma_buffer_tx[5] |= INTERRUPT_FLAG;

 } else {

 return –EIO; /* Signal error to the caller */

 }

 wmb(); /* Don’t reorder writes across this barrier */

 /* Ask the card to initiate DMA. ioaddr is defined

 in Listing 10.3 */

 outl(INITIATE_XMIT, ioaddr + CONTROL_REGISTER);

}

When the CardBus device receives an Ethernet packet, it DMAs it to a free RX descrip-
tor and interrupts the CPU. The interrupt handler mydevice_interrupt() collects
the packet from the receive DMA buffer, copies it to a networking data structure
(sk_buff), and passes it on to higher protocol layers.

The transmit routine my_device_xmit() is responsible for initiating DMA in the
reverse direction. It DMAs transmit packets to card memory. For this, my_device_
xmit() chooses a TX DMA descriptor that is unused by the card (or whose FREE_
FLAG is set) and uses the associated transmit buffer for data transfer. FREE_FLAG is
cleared soon after, signaling that the descriptor now belongs to the card. The descriptor

is released in the interrupt handler (FREE_FLAG is set again) when the card asserts an
interrupt after completing the transmit (not shown in Listing 10.6).

This example driver uses a simplifi ed buffer management scheme that is not per-
formance-sensitive. High-speed network drivers implement a more elaborate plan that
employs a combination of coherent and streaming DMA mappings. They maintain
linked lists of transmit and receive descriptors and implement free and in-use pools for
buffer management. Their receive and transmit data structures look like this:

/* Ring of receive buffers */

struct rx_list {

 void *dma_buffer_rx; /* Kernel virtual address of the

 receive descriptor */

 dma_addr_t dma_bus_rx; /* Bus address of the receive

 descriptor */

 unsigned int size; /* Buffer size */

 struct list_head next_desc; /* Pointer to the next element */

 struct sk_buff *skb; /* Network Packet */

 dma_addr_t sk_bus; /* Bus address of network packet */

} *rxlist;

/* Ring of transmit buffers */

struct tx_list {

 void *dma_buffer_tx; /* Kernel virtual address of the

 transmit descriptor */

 dma_addr_t dma_bus_tx; /* Bus address of the transmit

 descriptor */

 unsigned int size; /* Buffer size */

 struct list_head next_desc; /* Pointer to the next element */

 struct sk_buff *skb; /* Network Packet */

 dma_addr_t sk_bus; /* Bus address of network packet */

} *txlist;

The receive and transmit DMA descriptors (rxlist->dma_buffer_rx and txlist->
dma_buffer_tx) are mapped coherently as done in Listing 10.5. The payload buf-
fers (rxlist->skb->data and txlist->skb->data) are, however, mapped using
streaming DMA. The receive buffers are preallocated and stream mapped into
a free pool during device open, while the transmit buffers are mapped on-the-fl y.
This avoids the extra data copy performed by mydevice_interrupt() from the

 Device Example: Ethernet-Modem Card 307

308 Chapter 10 Peripheral Component Interconnect

coherently mapped receive DMA buffer to the network buffer (and the extra copy
done by mydevice_xmit() in the reverse direction).

/* Preallocating/replenishing receive buffers. Also see the section, "Buffer

 Management and Concurrency Control" in Chapter 15 */

/* ... */

struct sk_buff *skb = dev_alloc_skb();

skb_reserve(skb, NET_IP_ALIGN);

/* Map using streaming DMA */

rxlist->sk_bus = pci_map_single(pdev, rxlist->skb->data,

 rxlist->skb->len, PCI_DMA_TODEVICE);

/* Allocate a DMA descriptor and populate it with the address mapped

 above. Add the descriptor to the receive descriptor ring */

/* ... */

Debugging

Enable Bus Options PCI Support PCI Debugging in the kernel confi guration
menu to ask the PCI core to emit debug messages. Explore /proc/bus/pci/devices and
/sys/devices/pciX:Y/ for information about PCI devices on your system such as the Card-
Bus Ethernet-Modem card discussed in this chapter. /proc/interrupts lists IRQs active
on your system, including those used by the PCI layer.

As you saw, lspci gleans information about all PCI buses and devices on your sys-
tem. You may also use it to dump the confi guration space of PCI cards.

A PCI bus analyzer can help debug low-level problems and tune performance.

Looking at the Sources

PCI core and bus access routines live in drivers/pci/. To obtain a list of helper routines
offered by the PCI subsystem, search for EXPORT_SYMBOL inside this directory. For
defi nitions and prototypes related to the PCI layer, look at include/linux/pci*.h.

You can spot several PCI device drivers in subdirectories under drivers/net/,
drivers/scsi/, and drivers/video/. To locate all PCI drivers, recursively grep the drivers/
tree for pci_register_driver().

If you do not fi nd a good starting point to develop a custom PCI network driver,
begin with the skeletal PCI network driver drivers/net/pci-skeleton.c. For a brief tuto-
rial on PCI programming, look at Documentation/pci.txt. For a description of the PCI
DMA API, read Documentation/DMA-mapping.txt.

Table 10.4 summarizes the main data structures used in this chapter. Table 10.5
lists the main kernel programming interfaces that you used in this chapter along with
the location of their defi nitions.

TABLE 10.4 Summary of Data Structures

 Data Structure Location Description

 pci_dev include/linux/pci.h Representation of a PCI device

 pci_driver include/linux/pci.h Representation of a PCI driver

 pci_device_id include/linux/mod_devicetable.h Identity of a PCI card

 dma_addr_t include/asm-your-arch/types.h Bus address of a DMA buffer

 scatterlist include/asm-your-arch/scatterlist.h Scatter-gather list of DMA buffers

 sk_buff include/linux/skbuff.h Main networking data structure (see
Chapter 15 for more explanations)

TABLE 10.5 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

pci_read_config_byte()

pci_read_config_word()

pci_read_config_dword()

pci_write_config_byte()

pci_write_config_word()

pci_write_config_dword()

include/linux/pci.h

drivers/pci/access.c

Routines to operate on the
PCI configuration space.

pci_resource_start()

pci_resource_len()

pci_resource_end()

pci_resource_flags()

include/linux/pci.h These routines operate on
PCI I/O and memory regions
to obtain the base address,
length, end address, and
control flags.

pci_request_region() drivers/pci/pci.c Reserves PCI I/O or memory
regions.

ioremap()

ioremap_nocache()

pci_iomap()

include/asm-your-arch/io.h

arch/your-arch/mm/ioremap.c

lib/iomap.c

Obtains CPU access to device
memory.

pci_set_dma_mask() drivers/pci/pci.c If this function returns
success, you may DMA to
any address within the mask
specified as argument.

pci_alloc_consistent() include/asm-generic/pci-dma-compat.h

include/asm-your-arch/dma-mapping.h

Obtains a cache-coherent
DMA buffer mapping.

Continues

Looking at the Sources 309

310 Chapter 10 Peripheral Component Interconnect

Kernel Interface Location Description

pci_free_consistent() include/asm-generic/pci-dma-compat.h

include/asm-your-arch/dma-mapping.h

Unmaps a cache-coherent
DMA buffer.

pci_map_single() include/asm-generic/pci-dma-compat.h

include/asm-your-arch/dma-mapping.h

Obtains a streaming DMA
buffer mapping.

pci_unmap_single() include/asm-generic/pci-dma-compat.h

include/asm-your-arch/dma-mapping.h

Unmaps a streaming DMA
buffer.

pci_dma_sync_single() include/asm-generic/pci-dma-compat.h

include/asm-your-arch/dma-mapping.h

Synchronizes a streaming
DMA buffer so that the CPU
can reliably operate on it.

pci_map_sg()

pci_unmap_sg()

pci_dma_sync_sg()

include/asm-generic/pci-dma-compat.h

include/asm-your-arch/dma-mapping.h

Maps/unmaps/synchronizes a
scatter-gather list of streaming
DMA buffers.

pci_register_driver() include/linux/pci.h

drivers/pci/pci-driver.c

Registers a driver with the
PCI core.

pci_unregister_driver() drivers/pci/pci-driver.c Unregisters a driver from the
PCI core.

pci_enable_device() drivers/pci/pci.c Asks low-level PCI code to
enable I/O and memory
regions for this device.

pci_disable_device() drivers/pci/pci.c Reverse of
pci_enable_device().

pci_set_master() drivers/pci/pci.c Sets the device in DMA bus-
mastering mode.

TABLE 10.5 Continued

311

11

Universal Serial Bus

In This Chapter

■ USB Architecture 312

■ Linux-USB Subsystem 317

■ Driver Data Structures 317

■ Enumeration 324

■ Device Example: Telemetry Card 324

■ Class Drivers 338

■ Gadget Drivers 348

■ Debugging 349

■ Looking at the Sources 351

312

Universal serial bus (USB) is the de facto external bus in today’s computers.
USB, with its support for hotplugging, generic class drivers, and versatile

data-transfer modes, is the usual route in the consumer electronics space to bring
a diverse spectrum of technologies to computer systems. Its sweeping popularity
and the accompanying economics of volume have played a part in fueling the
adoption and acceptance of computer peripheral technologies around the world.

USB Architecture

USB is a master-slave protocol where a host controller communicates with client devices.
Figure 11.1 shows USB in the PC environment. The USB host controller is part of the
South Bridge chipset and communicates with the processor over the PCI bus.

Figure 11.2 illustrates USB on an embedded device. The SoC in the fi gure has built-
in USB controller silicon that supports four buses and three modes of operation:

 • Bus 1 runs in host mode and is wired to an A-type receptacle via a USB trans-
ceiver (see the sidebar “USB Receptacles and Transceivers”). You can connect
a USB pen drive or a keyboard to this port.

 • Bus 2 also functions in host mode but the associated transceiver is connected
to an internal USB device rather than to a receptacle. Examples of internal
USB devices are biometric scanners, cryptographic engines, printers, Disk-
On-Chips (DOCs), touch controllers, and telemetry cards.

 • Bus 3 runs in device mode and is wired to a B-type receptacle through a
transceiver. The B-type receptacle connects to a host computer via a B-to-A
cable. In this mode, the embedded device functions as, for example, a USB
pen drive, and exports a storage partition to the outside world. Embedded
devices such as MP3 players and cell phones are more likely than PC systems
to be at the device side of USB, so many embedded SoCs support a USB
device controller in addition to a host controller.

 • Bus 4 is driven by an On-The-Go (OTG) controller. You can use this port, for
example, to either connect a pen drive to your system or to turn your system
into a pen drive and connect it to a host. Unlike buses 1 to 3, bus 4 uses an

intelligent transceiver that exchanges control information with the processor over
I2C. The transceiver is wired to a Mini-AB OTG receptacle. If two embedded
devices support OTG, they can directly communicate without the intervention
of a host computer.

Most of this chapter is written from the perspective of a system residing at the host-
side of USB. We briefl y look at the device function in the section “Gadget Drivers.”
Mainstream host controller drivers (HCDs) are already available, so in this chapter we
further confi ne ourselves to drivers for USB devices (also called client drivers).

Processor

North Bridge

South Bridge

USB Host
Controller

USB Host
Transceiver

USB Host
Transceiver

‘A’ Connector

‘A’ Connector

PCI Bus USB Device

USB Device

FIGURE 11.1 USB in the PC environment.

USB Receptacles and Transceivers

USB hosts use four-pin A-type rectangular receptacles, whereas USB devices connect via four-pin
B-type square receptacles. In both cases, the four pins are differential data signals D+ and D-, a
voltage line VBUS, and ground. VBUS is used to supply power from USB hosts to USB devices.
VBUS is thus pulled high on an A connector but receives power on a B connector. USB OTG
controllers connect to fi ve-pin Mini-AB rectangular receptacles having a smaller form factor. Four
of the Mini-AB pins are identical to what we discussed previously; the fi fth is an ID pin used to
detect whether the connected peripheral is a host or a device.

The same transceiver chip (such as TUSB1105 from Texas Instruments) can be used on USB
hosts and devices. You may thus choose to use the same transceiver part on buses 1 through 3
in Figure 11.2. OTG requires a special-purpose transceiver chip (such as ISP1301 from Philips
Semiconductors), however.

USB Architecture 313

314 Chapter 11 Universal Serial Bus

Embedded SoC

USB Controller

CPU Core

Internal Local Bus

LCD
Controller

…

Host Controller
(Bus 1)

Host Controller
(Bus 2)

Device Controller
(Bus 3)

OTG Controller
(Bus 4)

USB
Host

Transceiver
‘A’ Connector

USB Pen DriveD-/D+

USB
Device

Transceiver
‘B’ Connector

D-/D+

USB
OTG

Transceiver ‘Mini-AB’
Connector

D-/D+/ID

USB
Host

Transceiver
Internal USB

D-/D+
Telemetry cards,
Printers, RF cards,
Encryption engines,
Disk-On-Chips,
Internal hubs,
Bluetooth chips

Host PC

Pen Drive or
Host PC

I2C

FIGURE 11.2 USB on an embedded system.

Bus Speeds

USB supports three operational speeds. The original USB 1.0 specifi cation supports
1.5MBps, referred to as low-speed USB. USB 1.1, the next version of the specifi ca-
tion, handles 12MBps, called full-speed USB. The current level of the specifi cation
is USB 2.0, which supports 480MBps, or high-speed USB. USB 2.0 is backward-
 compatible with the earlier versions of the specifi cation. Peripherals such as USB key-
boards and mice are examples of low-speed devices, and USB storage drives are examples
of full-speed and high-speed devices. Today’s PC systems are USB 2.0- compliant and
allow all three target speeds, but some embedded controllers adhere to USB 1.1 and
support only full-speed and low-speed modes of operation.

Host Controllers

USB host controllers conform to one of a few standards:

 • Universal Host Controller Interface (UHCI): The UHCI specification was ini-
tiated by Intel, so your PC is likely to have this controller if it’s Intel-based.

 • Open Host Controller Interface (OHCI): The OHCI specification originated
from companies such as Compaq and Microsoft. An OHCI-compatible con-
troller has more intelligence built in to hardware than UHCI, so an OHCI
HCD is relatively simpler than a UHCI HCD.

 • Enhanced Host Controller Interface (EHCI): This is the host controller that
supports high-speed USB 2.0 devices. EHCI controllers usually have either a
UHCI or OHCI companion controller to handle slower devices.

 • USB OTG controllers: They are getting increasingly popular in embedded
microcontrollers. With OTG support, each communicating end can act as a
dual-role device (DRD). By initiating a dialog using the Host Negotiation Proto-
col (HNP), a DRD can switch itself to host mode or device mode based on the
desired functionality.

In addition to these mainstream USB host controllers, Linux supports a few more
controllers. An example is the HCD for the ISP116x chip.

Host controllers have a built-in hardware component called the root hub. The root
hub is a virtual hub that sources USB ports. The ports, in turn, can connect to external
or internal physical hubs and source more ports, yielding a tree topology.

Transfer Types

Data exchange with a USB device can be one of four types:

 • Control transfers, used to carry configuration and control information

 • Bulk transfers that ferry large quantities of time-insensitive data

 • Interrupt transfers that exchange small quantities of time-sensitive data

 • Isochronous transfers for real-time data at predictable bit rates

A USB storage drive, for example, uses control transfers to issue disk access commands
and bulk transfers to exchange data. A keyboard uses interrupt transfers to carry key
strokes within predictable delays. A device that needs to stream audio data in real
time uses isochronous transfers. The responsibilities of the four transfer types for USB

USB Architecture 315

316 Chapter 11 Universal Serial Bus

 Bluetooth devices are discussed in the section “Device Example: USB Adapter” in
Chapter 16, “Linux Without Wires.”

Addressing

Each addressable unit in a USB device is called an endpoint. The address assigned to an
endpoint is called an endpoint address. Each endpoint address has an associated data trans-
fer type. If an endpoint is responsible for bulk data transfer, for example, it’s called a bulk
endpoint. Endpoint address 0 is used exclusively for device confi guration. A control pipe
is attached to this endpoint for device enumeration (see the section “Enumeration”).

An endpoint can be associated with upstream or downstream data transfer. Data arriv-
ing upstream from a device is called an IN transfer, whereas data fl owing downstream to
a device is an OUT transfer. IN and OUT transfers own separate address spaces. So, you can
have a bulk IN endpoint and a bulk OUT endpoint answering to the same address.

USB resembles I2C on some counts and PCI on others as summarized in Table 11.1.
USB’s device addressing is similar to I2C, while it supports hotplugging like PCI. USB
device addresses, like standard I2C, do not consume a portion of the CPU’s address
space. Rather, they reside in a private space ranging from 1 to 127.

TABLE 11.1 USB’s Similarities with I2C and PCI

 USB’s similarities with I2C:

• USB and I2C are master-slave protocols.

 • Device addresses reside in a private 7-bit space.

 • Device-resident memory is not mapped to the CPU’s memory or I/O space, so it does not consume CPU
resources.

 USB’s similarities with PCI:

 • Devices can be hotplugged.

 • Device driver architecture resembles PCI drivers. Both classes of drivers own probe()/disconnect()1

methods and ID tables identifying the devices they support.

 • Supports high speeds. Slower than PCI, however. See Table 10.1 in Chapter 10, “Peripheral Component
Interconnect,” for the speeds supported by different members of the PCI family.

 • USB host controllers, like PCI controllers, usually have built-in DMA engines that can master the bus.
 • Supports multifunction devices. USB supports interface descriptors per function. Each PCI device func-

tion has its own device ID and configuration space.

1 disconnect() is called remove() in PCI parlance.

Linux-USB Subsystem

 Look at Figure 11.3 to understand the architecture of the Linux-USB sub system. The
constituent pieces of the subsystem are as follows:

 • The USB core. Like the core layers of driver subsystems that you saw in previ-
ous chapters, the USB core is a code base consisting of routines and structures
available to HCDs and client drivers. The core also provides a level of indirec-
tion that renders client drivers independent of host controllers.

 • HCDs that drive different host controllers.

 • A hub driver for the root hub (and physical hubs) and a helper kernel thread
khubd that monitors all ports connected to the hub. Detecting port status
changes and configuring hotplugged devices is time-consuming and is best
accomplished using a helper thread for reasons you learned in Chapter 3,
“Kernel Facilities.” The khubd thread is asleep by default. The hub driver
wakes khubd whenever it detects a status change on a USB port connected
to it.

 • Device drivers for USB client devices.

 • The USB filesystem usbfs that lets you drive USB devices from user
space. We discuss user mode USB drivers in Chapter 19, “Drivers in User
Space.”

For end-to-end operation, the USB subsystem calls on various other kernel layers for
assistance. To support USB mass storage devices, for example, the USB subsystem
works in tandem with SCSI drivers, as shown in Figure 11.3. To drive USB-Bluetooth
keyboards, the stakeholders are fourfold: the USB subsystem, the Bluetooth layer, the
input subsystem, and the tty layer.

Driver Data Structures

When you write a USB client driver, you have to work with several data structures.
Let’s look at the important ones.

Driver Data Structures 317

318 Chapter 11 Universal Serial Bus

USB Host
Controller

User Space

Kernel Space

Kernel Space

Hardware

USB
Device

usbfs

/dev, /sys

usbcore

khubd

USB Client
Driver

USB Host
Controller Driver

USB User Mode
Device Driver

User
Applications

Other Kernel Layers
(SCSI, Serial, Network,

Input, Bluetooth,…)

FIGURE 11.3 The Linux-USB subsystem.

 The usb_device Structure

Each device driver subsystem relies on a special-purpose data structure to internally
represent a device. The usb_device structure is to the USB subsystem, what pci_dev
is to the PCI layer, and what net_device is to the network driver layer. usb_device
is defi ned in include/linux/usb.h as follows:

struct usb_device {

 /* ... */

 enum usb_device_state state; /* Configured, Not Attached, etc */

 enum usb_device_speed speed; /* High/full/low (or error) */

 /* ... */

 struct usb_device *parent; /* Our hub, unless we’re the root */

 /* ... */

 struct usb_device_descriptor descriptor; /* Descriptor */

 struct usb_host_config *config; /* All of the configs */

 struct usb_host_config *actconfig; /* The active config */

 /* ... */

 int maxchild; /* No: of ports if hub */

 struct usb_device *children[USB_MAXCHILDREN]; /* Child devices */

 /* ... */

};

We use this structure when we develop an example driver for a USB telemetry card
later.

USB Request Blocks

USB Request Block (URB) is the centerpiece of the USB data transfer mechanism. A
URB is to the USB stack, what an sk_buff (discussed in Chapter 15, “Network Inter-
face Cards”) is to the networking stack.

Let’s take a peek inside a URB. The following defi nition is from include/linux/usb.h,
omitting fi elds not of particular interest to device drivers:

struct urb

{

 struct kref kref; /* Reference count of the URB */

 /* ... */

 struct usb_device *dev; /* (in) pointer to associated

 device */

 unsigned int pipe; /* (in) pipe information */

 int status; /* (return) non-ISO status */

 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/

 void *transfer_buffer; /* (in) associated data buffer */

 dma_addr_t transfer_dma; /* (in) dma addr for

 transfer_buffer */

 int transfer_buffer_length; /* (in) data buffer length */

 /* ... */

 unsigned char *setup_packet; /* (in) setup packet */

 /* ... */

 int interval; /* (modify) transfer interval

 (INT/ISO) */

Driver Data Structures 319

320 Chapter 11 Universal Serial Bus

 /* ... */

 void *context; /* (in) context for completion */

 usb_complete_t complete; /* (in) completion routine */

 /* ... */

};

There are three steps to using a URB: create, populate, and submit. To create a URB,
use usb_alloc_urb(). This function allocates and zeros-out URB memory, initial-
izes a kobject associated with the URB, and initializes a spinlock to protect the URB.

To populate a URB, use the following helper routines offered by the USB core:

void usb_fill_[control|int|bulk]_urb(

 struct urb *urb, /* URB pointer */

 struct usb_device *usb_dev, /* USB device structure */

 unsigned int pipe, /* Pipe encoding */

 unsigned char *setup_packet, /* For Control URBs only! */

 void *transfer_buffer, /* Buffer for I/O */

 int buffer_length, /* I/O buffer length */

 usb_complete_t completion_fn, /* Callback routine */

 void *context, /* For use by completion_fn */

 int interval); /* For Interrupt URBs only! */

The semantics of the previous routines will get clearer when we develop the exam-
ple driver later on. These helper routines are available to control, interrupt, and bulk
URBs but not to isochronous ones.

To submit a URB for data transfer, use usb_submit_urb(). URB submission is
asynchronous. The usb_fill_[control|int|bulk]_urb() functions listed previ-
ously take the address of a callback function as argument. The callback routine exe-
cutes after the URB submission completes and accomplishes things such as checking
submission status and freeing the data-transfer buffer.

The USB core also offers wrapper interfaces that provide a facade of synchronous
URB submission:

int usb_[control|interrupt|bulk]_msg(struct usb_device *usb_dev,

 unsigned int pipe, ...);

usb_bulk_msg(), for example, builds a bulk URB, submits it, and blocks until the
operation completes. You don’t have to supply a callback function because a generic
completion routine serves that purpose. You don’t need to explicitly create and popu-
late the URB either, because usb_bulk_msg() does that for you at no additional cost.
We will use this interface in our example driver.

usb_free_urb() is used to free a reference to a completed URB, whereas usb_
unlink_urb() cancels a pending URB operation.

As mentioned in the section “Sysfs, Kobjects, and Device Classes” in Chapter 4,
“Laying the Groundwork,” a URB contains a kref object to track references to it. usb_
submit_urb() increments the reference count using kref_get(). usb_free_urb()
decrements the reference count using kref_put() and performs the free operation
only if there are no remaining references.

A URB is associated with an abstraction called a pipe, which we discuss next.

Pipes

A pipe is an integer encoding of a combination of the following:

 • The endpoint address

 • The direction of data transfer (IN or OUT)

 • The type of data transfer (control, interrupt, bulk, or isochronous)

A pipe is the address element of each USB data transfer and is an important fi eld in
the URB structure. To help populate this fi eld, the USB core provides the following
helper macros:

usb_[rcv|snd][ctrl|int|bulk|isoc]pipe(struct usb_device *usb_dev,

 __u8 endpointAddress);

where usb_dev is a pointer to the associated usb_device structure, and
endpointAddress is the assigned endpoint address between 1 and 127. To create a
bulk pipe in the OUT direction, for example, call usb_sndbulkpipe(). For a control
pipe in the IN direction, invoke usb_rcvctrlpipe().

While referring to a URB, it’s often qualifi ed by the transfer type of the associated
pipe. If a URB is attached to a bulk pipe, for example, it’s called a bulk URB.

Driver Data Structures 321

322 Chapter 11 Universal Serial Bus

Descriptor Structures

The USB specifi cation defi nes a series of descriptors to hold information about a
device. The Linux-USB core defi nes data structures corresponding to each descriptor.
Descriptors are of four types:

 • Device descriptors contain general information such as the product ID and ven-
dor ID of the device. usb_device_descriptor is the structure corresponding
to device descriptors.

 • Configuration descriptors are used to describe different configuration modes such
as bus-powered and self-powered operation. usb_config_descriptor is the
data structure associated with configuration descriptors.

 • Interface descriptors allow USB devices to support multiple functions. usb_
interface_descriptor defines interface descriptors.

 • Endpoint descriptors carry information associated with the final endpoints of a
device. usb_endpoint_descriptor is the structure in question.

These descriptor formats are defi ned in Chapter 9 of the USB specifi cation, whereas
the matching structures are defi ned in include/linux/usb/ch9.h. Listing 11.1 shows the
hierarchical topology of the descriptors and prints all endpoint addresses associated
with a USB device. To this end, it traverses the tree consisting of the four types of
descriptors described previously. The following is the output generated by Listing 11.1
for a USB CD drive:

Endpoint Address = 1

Endpoint Address = 82

Endpoint Address = 83

The fi rst address belongs to a bulk IN endpoint, the second address is owned by a bulk
OUT endpoint, and the third addresses an interrupt IN endpoint.

There are more data structures associated with USB client drivers, such as usb_
device_id, usb_driver, and usb_class_driver. We will meet them when we do
hands-on development in the section “Device Example: Telemetry Card.”

LISTING 11.1 Print All USB Endpoint Addresses on a Device

Device Descriptor

Configuration
Descriptor

Interface
Descriptor

Endpoint
Descriptor

/* ... */
/* USB device */
struct usb_device *udevice;
/* ... */
struct usb_device_descriptor u_d_desc = udevice->descriptor;

/* Device's active configuration */
struct usb_host_config *uconfig;
struct usb_config_desriptor u_c_desc;

/* Interfaces in the active configuration */
struct usb_interface *uinterface;

/* Alternate Setting for this interface */
struct usb_host_interface *ualtsetting;
struct usb_interface_descriptor u_i_desc;

/* Endpoints for this altsetting */
struct usb_host_endpoint *uendpoint;
struct usb_endpoint_descriptor u_e_desc;

uconfig = udevice->actconfig;

u_c_desc = uconfig->desc;

for (i = 0; i < u_c_desc.bNumInterfaces;
 i++) {
 uinterface = udevice->actconfig->interface[i];
 for (j = 0; j < uinterface->num_altsetting; j++) {
ualtsetting = &uinterface->altsetting[j];
u_i_desc = ualtsetting->desc;
 for (k = 0; k < u_i_desc.bNumEndpoints; k++) {
 uendpoint = &ualtsetting->endpoint[k];
 u_e_desc = uendpoint->desc;
 printk ("Endpoint Address = %d\n",
 u_e_desc.bEndpointAddress\n");
 }
}
/* ... */

Driver Data Structures 323

324 Chapter 11 Universal Serial Bus

Enumeration

The life of a hotplugged USB device starts with a process called enumeration by which
the host learns about the device’s capabilities and confi gures it. The hub driver is the
component in the Linux-USB subsystem responsible for enumeration. Let’s look at
the sequence of steps that achieve device enumeration when you plug in a USB pen
drive into a host computer:

 1. The root hub reports a change in the port’s current due to the device attach-
ment. The hub driver detects this status change, called a USB_PORT_STAT_C_
CONNECTION in Linux-USB terminology, and awakens khubd.

 2. Khubd deciphers the identity of the USB port subjected to the status change. In
this case, it’s the port where you plugged in the pen drive.

 3. Next, khubd chooses a device address between 1 and 127 and assigns it to the
pen drive’s bulk endpoint using a control URB attached to endpoint 0.

 4. Khubd uses the above control URB attached to endpoint 0 to obtain the device
descriptor from the pen drive. It then requests the device’s configuration descrip-
tors and selects a suitable one. In the case of the pen drive, only a single configu-
ration descriptor is on offer.

 5. Khubd requests the USB core to bind a matching client driver to the inserted
device.

When enumeration is complete and the device is bound to a driver, khubd invokes
the associated client driver’s probe() method. In this case, khubd calls storage_
probe() defi ned in drivers/usb/storage/usb.c. From this point on, the mass storage
driver is responsible for normal device operation.

Device Example: Telemetry Card

Now that you know the basics of Linux-USB, it’s time to look at an example device.
Consider a system equipped with a telemetry card connected to the processor via
internal USB, as shown in bus 2 of Figure 11.2. The card acquires data from a remote
device and ferries it to the processor over USB. An example telemetry card is a medi-
cal-grade board that monitors or programs an implanted device.

Let’s assume that our example telemetry card has the following endpoints having
the semantics described in Table 11.2:

 • A control endpoint attached to an on-card configuration register

 • A bulk IN endpoint that passes remote telemetry information collected by the
card to the processor

 • A bulk OUT endpoint that transfers data in the reverse direction

TABLE 11.2 Register Space in the Telemetry Card

Register Associated Endpoint

Telemetry Configuration Register Control endpoint 0 (register offset 0xA).

Telemetry Data-In Register Bulk IN endpoint. The endpoint address is assigned during device enumeration.

Telemetry Data-Out Register Bulk OUT endpoint. The endpoint address is assigned during device
enumeration.

Let’s build a minimal driver for this card partly based on the USB skeleton driver
drivers/usb/usb-skeleton.c.

Because PCMCIA, PCI, and USB devices have similar characteristics such as hot-
plug support, some driver methods and data structures belonging to these subsystems
resemble each other. This is especially true for the portions responsible for initializing
and probing. As we progress through the telemetry driver and notice parallels with
what we learned for PCI drivers in Chapter 10, we will pause and take note.

Initializing and Probing

Like PCI and PCMCIA drivers, USB drivers have probe()/disconnect()2 methods
to support hotplugging, and a table that contains the identity of devices they support.
A USB device is identifi ed by the usb_device_id structure defi ned in include/linux/
mod_devicetable.h. You may recall from the previous chapter that the pci_device_id
structure , also defi ned in the same header fi le, identifi es PCI devices.

struct usb_device_id {

 /* ... */

 __u16 idVendor; /* Vendor ID */

 __u16 idProduct; /* Device ID */

 /* ... */

 __u8 bDeviceClass; /* Device class */

 __u8 bDeviceSubClass; /* Device subclass */

 __u8 bDeviceProtocol; /* Device protocol */

 /* ... */

};

2 disconnect() is called remove() in PCI and PCMCIA parlance.

Device Example: Telemetry Card 325

326 Chapter 11 Universal Serial Bus

idVendor and idProduct, respectively, hold the manufacturer ID and product ID,
whereas bDeviceClass, bDeviceSubClass, and bDeviceProtocol categorize the
device based on its functionality. This classifi cation, determined by the USB specifi ca-
tion, allows implementation of generic client drivers as discussed in the section “Class
Drivers” later.

Listing 11.2 implements the telemetry driver’s initialization routine, usb_tele_
init(), which calls on usb_register() to register its usb_driver structure with
the USB core. As shown in the listing, usb_driver ties the driver’s probe() method,
disconnect() method, and usb_device_id table together. usb_driver is simi-
lar to pci_driver, except that the disconnect() method in the former is named
remove() in the latter.

LISTING 11.2 Initializing the Driver

#define USB_TELE_VENDOR_ID 0xABCD /* Manufacturer’s Vendor ID */

#define USB_TELE_PRODUCT_ID 0xCDEF /* Device’s Product ID */

/* USB ID Table specifying the devices that this driver supports */

static struct usb_device_id tele_ids[] = {

 { USB_DEVICE(USB_TELE_VENDOR_ID, USB_TELE_PRODUCT_ID) },

 { } /* Terminate */

};

MODULE_DEVICE_TABLE(usb, tele_ids);

/* The usb_driver structure for this driver */

static struct usb_driver tele_driver

{

 .name = "tele", /* Unique name */

 .probe = tele_probe, /* See Listing 11.3 */

 .disconnect = tele_disconnect, /* See Listing 11.3 */

 .id_table = tele_ids, /* See above */

};

/* Module Initialization */

static int __init

usb_tele_init(void)

{

 /* Register with the USB core */

 result = usb_register(&tele_driver);

 /* ... */

 return 0;

}

/* Module Exit */

static void __exit

usb_tele_exit(void)

{

 /* Unregister from the USB core */

 usb_deregister(&tele_driver);

 return;

}

module_init(usb_tele_init);

module_exit(usb_tele_exit);

The USB_DEVICE() macro creates a usb_device_id from the vendor and product
IDs supplied to it. This is analogous to the PCI_DEVICE() macro discussed in the pre-
vious chapter. The MODULE_DEVICE_TABLE() macro marks tele_ids in the module
image so that the module can be loaded on demand if the card is hotplugged. This is
again similar to what we discussed for PCMCIA and PCI devices in the previous two
chapters.

When the USB core detects a device with properties matching the ones declared in
the usb_device_id table belonging to a client driver, it invokes the probe() method
registered by that driver. When the device is unplugged or if the module is unloaded,
the USB core invokes the driver’s disconnect() method.

Listing 11.3 implements the probe() and disconnect() methods of the telem-
etry driver. It starts by defi ning a device-specifi c structure tele_device_t, which
contains the following fi elds:

 • A pointer to the associated usb_device.

 • A pointer to the usb_interface. Revisit Listing 11.1 to see this structure
in use.

 • A control URB (ctrl_urb) to communicate with the telemetry configuration
register, and a ctrl_req to formulate programming requests to this register.
These fields are described in the next section “Accessing Registers.”

 • The card has a bulk IN endpoint through which you can glean the collected
telemetry information. Associated with this endpoint are three fields: bulk_in_
addr, which holds the endpoint address; bulk_in_buf, which stores received
data; and bulk_in_len, which contains the size of the receive data buffer.

Device Example: Telemetry Card 327

328 Chapter 11 Universal Serial Bus

 • The card has a bulk OUT endpoint to facilitate downstream data transfer. tele_
device_t has a fi eld called bulk_out_addr to store the address of this end-
point. There are fewer data structures in the OUT direction because in this simple
case we use a synchronous URB submission interface that hides several imple-
mentation details.

Khubd invokes the card’s probe() method tele_probe(), soon after enumeration.
tele_probe() performs three tasks:

 1. Allocates memory for the device-specific structure tele_device_t .

 2. Initializes the following fields in tele_device_t related to the device’s bulk
endpoints: bulk_in_buf, bulk_in_len, bulk_in_addr, and bulk_out_
addr. For this, it uses the data collected by the hub driver during enumeration.
This data is available in descriptor structures discussed in the section “Descrip-
tor Structures.”

 3. Exports the character device /dev/tele to user space. Applications operate over
/dev/tele to exchange data with the telemetry card. tele_probe() invokes usb_
register_dev() and supplies it the file_operations that form the under-
lying pillars of the /dev/tele interface via the usb_class_driver structure.

The address of the device-specifi c structure allocated in Step 1 has to be saved so that
other methods can access it. To achieve this, the telemetry driver uses a threefold strat-
egy depending on the function arguments available to various driver routines. To save
this structure pointer between the probe() and open() invocation threads, the driver
uses the device’s driver_data fi eld via the pair of functions, usb_set_intfdata()
and usb_get_intfdata(). To save the address of the structure pointer between
the open() thread and other entry points, open() stores it in the /dev/tele’s file->
private_data fi eld. This is because the kernel supplies these char entry points with
/dev/tele’s inode pointer as argument rather than the usb_interface pointer. To
glean the address of the device-specifi c structure from URB callback functions, the
associated submission threads use the URB’s context fi eld as the storage area. Look at
Listings 11.3, 11.4, and 11.5 to see these mechanisms in action.

All USB character devices answer to major number 180. If you enable CONFIG_
USB_DYNAMIC_MINORS during kernel confi guration, the USB core dynamically selects
a minor number from the available pool. This behavior is similar to registering misc
drivers after specifying MISC_DYNAMIC_MINOR in the miscdevice structure (as dis-
cussed in the section “Misc Drivers” in Chapter 5, “Character Drivers”). If you choose

not to enable CONFIG_USB_DYNAMIC_MINORS, the USB subsystem selects an available
minor number starting at the minor base set in the usb_class_driver structure.

LISTING 11.3 Probing and Disconnecting

/* Device-specific structure */

typedef struct {

 struct usb_device *usbdev; /* Device representation */

 struct usb_interface *interface; /* Interface representation*/

 struct urb *ctrl_urb; /* Control URB for

 register access */

 struct usb_ctrlrequest ctrl_req; /* Control request

 as per the spec */

 unsigned char *bulk_in_buf; /* Receive data buffer */

 size_t bulk_in_len; /* Receive buffer size */

 __u8 bulk_in_addr; /* IN endpoint address */

 __u8 bulk_out_addr; /* OUT endpoint address */

 /* ... */ /* Locks, waitqueues,

 statistics.. */

} tele_device_t;

#define TELE_MINOR_BASE 0xAB /* Assigned by the Linux-USB

 subsystem maintainer */

/* Conventional char driver entry points.

 See Chapter 5, "Character Drivers." */

static struct file_operations tele_fops =

{

 .owner = THIS_MODULE, /* Owner */

 .read = tele_read, /* Read method */

 .write = tele_write, /* Write method */

 .ioctl = tele_ioctl, /* Ioctl method */

 .open = tele_open, /* Open method */

 .release = tele_release, /* Close method */

};

static struct usb_class_driver tele_class = {

 .name = "tele",

 .fops = &tele_fops, /* Connect with /dev/tele */

 .minor_base = TELE_MINOR_BASE, /* Minor number start */

};

Device Example: Telemetry Card 329

330 Chapter 11 Universal Serial Bus

/* The probe() method is invoked by khubd after device

 enumeration. The first argument interface, contains information

 gleaned during the enumeration process. id is the entry in the

 driver’s usb_device_id table that matches the values read from

 the telemetry card. tele_probe() is based on skel_probe()

 defined in drivers/usb/usb-skeleton.c */

static int

 tele_probe(struct usb_interface *interface,

 const struct usb_device_id *id)

{

 struct usb_host_interface *iface_desc;

 struct usb_endpoint_descriptor *endpoint;

 tele_device_t *tele_device;

 int retval = -ENOMEM;

 /* Allocate the device-specific structure */

 tele_device = kzalloc(sizeof(tele_device_t), GFP_KERNEL);

 /* Fill the usb_device and usb_interface */

 tele_device->usbdev =

 usb_get_dev(interface_to_usbdev(interface));

 tele_device->interface = interface;

 /* Set up endpoint information from the data gleaned

 during device enumeration */

 iface_desc = interface->cur_altsetting;

 for (int i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {

 endpoint = &iface_desc->endpoint[i].desc;

 if (!tele_device->bulk_in_addr &&

 usb_endpoint_is_bulk_in(endpoint)) {

 /* Bulk IN endpoint */

 tele_device->bulk_in_len =

 le16_to_cpu(endpoint->wMaxPacketSize);

 tele_device->bulk_in_addr = endpoint->bEndpointAddress;

 tele_device->bulk_in_buf =

 kmalloc(tele_device->bulk_in_len, GFP_KERNEL);

 }

 if (!tele_device->bulk_out_addr &&

 usb_endpoint_is_bulk_out(endpoint)) {

 /* Bulk OUT endpoint */

 tele_device->bulk_out_addr = endpoint->bEndpointAddress;

 }

 }

 if (!(tele_device->bulk_in_addr && tele_device->bulk_out_addr)) {

 return retval;

 }

 /* Attach the device-specific structure to this interface.

 We will retrieve it from tele_open() */

 usb_set_intfdata(interface, tele_device);

 /* Register the device */

 retval = usb_register_dev(interface, &tele_class);

 if (retval) {

 usb_set_intfdata(interface, NULL);

 return retval;

 }

 printk("Telemetry device now attached to /dev/tele\n");

 return 0;

}

/* Disconnect method. Called when the device is unplugged or when the module is
 unloaded */

static void

tele_disconnect(struct usb_interface *interface)

{

 tele_device_t *tele_device;

 /* ... */

 /* Reverse of usb_set_intfdata() invoked from tele_probe() */

 tele_device = usb_get_intfdata(interface);

 /* Zero out interface data */

 usb_set_intfdata(interface, NULL);

 /* Release /dev/tele */

 usb_deregister_dev(interface, &tele_class);

 /* NULL the interface. In the real world, protect this

 operation using locks */

 tele_device->interface = NULL;

 /* ... */

}

Device Example: Telemetry Card 331

332 Chapter 11 Universal Serial Bus

Accessing Registers

The open() method initializes the on-card telemetry confi guration register when an
application opens /dev/tele. To set the contents of this register, tele_open() submits
a control URB attached to the default endpoint 0. When you submit a control URB,
you have to supply an associated control request. The structure that sends a control
request to a USB device has to conform to Chapter 9 of the USB specifi cation and is
defi ned as follows in include/linux/usb/ch9.h:

struct usb_ctrlrequest {

 __u8 bRequestType;

 __u8 bRequest;

 __le16 wValue;

 __le16 wIndex;

 __le16 wLength;

} __attribute__ ((packed));

Let’s take a look at the components that make up a usb_ctrlrequest. The bRequest
fi eld identifi es the control request. bRequestType qualifi es the request by encoding
the data transfer direction, the request category, and whether the recipient is a device,
interface, endpoint, or something else. bRequest can either belong to a set of standard
values or be vendor-defi ned. In our example, the bRequest for writing to the telem-
etry confi guration register is a vendor-defi ned one. wValue holds the data to be writ-
ten to the register, wIndex is the desired offset into the register space, and wLength is
the number of bytes to be transferred.

Listing 11.4 implements tele_open(). Its main task is to program the telemetry
confi guration register with appropriate values. Before browsing the listing, revisit the
tele_device_t structure defi ned in Listing 11.3 focusing on two fi elds: ctrl_urb
and ctrl_req. The former is a control URB for communicating with the confi gura-
tion register, whereas the latter is the associated usb_ctrlrequest.

To program the telemetry confi guration register, tele_open() does the following:

 1. Allocates a control URB to prepare for the register write.

 2. Creates a usb_ctrlrequest and populates it with the request identifier, request
type, register offset, and the value to be programmed.

 3. Creates a control pipe attached to endpoint 0 of the telemetry card to carry the
control URB.

 4. Because tele_open() submits the URB asynchronously, it needs to wait for
the associated callback function to finish before returning to its caller. To this
end, tele_open() calls on the kernel’s completion API for assistance using
init_completion(). Step 7 calls the matching wait_for_completion()
that waits until the callback function invokes complete(). We discussed the
completion API in the section “Completion Interface” in Chapter 3.

 5. Initializes fields in the control URB using usb_fill_control_urb(). This
includes the usb_ctrlrequest populated in Step 2.

 6. Submits the URB to the USB core using usb_submit_urb().

 7. Waits until the callback function signals that the register programming is complete.

 8. Returns the status.

LISTING 11.4 Initialize the Telemetry Confi guration Register

/* Offset of the Telemetry configuration register

 within the on-card register space */

#define TELEMETRY_CONFIG_REG_OFFSET 0x0A

/* Value to program in the configuration register */

#define TELEMETRY_CONFIG_REG_VALUE 0xBC

/* The vendor-defined bRequest for programming the

 configuration register */

#define TELEMETRY_REQUEST_WRITE 0x0D

/* The vendor-defined bRequestType */

#define TELEMETRY_REQUEST_WRITE_REGISTER 0x0E

/* Open method */

static int

tele_open(struct inode *inode, struct file *file)

{

 struct completion tele_config_done;

 tele_device_t *tele_device;

 void *tele_ctrl_context;

 char *tmp;

 __le16 tele_config_index = TELEMETRY_CONFIG_REG_OFFSET;

Device Example: Telemetry Card 333

334 Chapter 11 Universal Serial Bus

 unsigned int tele_ctrl_pipe;

 struct usb_interface *interface;

 /* Obtain the pointer to the device-specific structure.

 We saved it using usb_set_intfdata() in tele_probe() */

 interface = usb_find_interface(&tele_driver, iminor(inode));

 tele_device = usb_get_intfdata(interface);

 /* Allocate a URB for the control transfer */

 tele_device->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);

 if (!tele_device->ctrl_urb) {

 return -EIO;

 }

 /* Populate the Control Request */

 tele_device->ctrl_req.bRequestType = TELEMETRY_REQUEST_WRITE;

 tele_device->ctrl_req.bRequest =

 TELEMETRY_REQUEST_WRITE_REGISTER;

 tele_device->ctrl_req.wValue =

 cpu_to_le16(TELEMETRY_CONFIG_REG_VALUE);

 tele_device->ctrl_req.wIndex =

 cpu_to_le16p(&tele_config_index);

 tele_device->ctrl_req.wLength = cpu_to_le16(1);

 tele_device->ctrl_urb->transfer_buffer_length = 1;

 tmp = kmalloc(1, GFP_KERNEL);

 *tmp = TELEMETRY_CONFIG_REG_VALUE;

 /* Create a control pipe attached to endpoint 0 */

 tele_ctrl_pipe = usb_sndctrlpipe(tele_device->usbdev, 0);

 /* Initialize the completion mechanism */

 init_completion(&tele_config_done);

 /* Set URB context. The context is part of the URB that is passed

 to the callback function as an argument. In this case, the

 context is the completion structure, tele_config_done */

 tele_ctrl_context = (void *)&tele_config_done;

 /* Initialize the fields in the control URB */

 usb_fill_control_urb(tele_device->ctrl_urb, tele_device->usbdev,

 tele_ctrl_pipe,

 (char *) &tele_device->ctrl_req,

 tmp, 1, tele_ctrl_callback,

 tele_ctrl_context);

 /* Submit the URB */

 usb_submit_urb(tele_device->ctrl_urb, GFP_ATOMIC);

 /* Wait until the callback returns indicating that the telemetry

 configuration register has been successfully initialized */

 wait_for_completion(&tele_config_done);

 /* Release our reference to the URB */

 usb_free_urb(urb);

 kfree(tmp);

 /* Save the device-specific object to the file’s private_data

 so that you can directly retrieve it from other entry points

 such as tele_read() and tele_write() */

 file->private_data = tele_device;

 /* Return the URB transfer status */

 return(tele_device->ctrl_urb->status);

}

/* Callback function */

static void

tele_ctrl_callback(struct urb *urb)

{

 complete((struct completion *)urb->context);

}

You can render tele_open() simpler using usb_control_msg(), a blocking version
of usb_submit_urb() that internally hides synchronization and callback details for
control URBs. We preferred the asynchronous approach for learning purposes.

Data Transfer

Listing 11.5 implements the read() and write() entry points of the telemetry
driver. These methods perform the real work when an application reads or writes to
/dev/tele. tele_read() performs synchronous URB submission because the calling
process wants to block until telemetry data is available. tele_write(), however, uses
asynchronous submission and returns to the calling thread without waiting for a con-
fi rmation that the data accepted by the driver has been successfully transferred to the
device.

Device Example: Telemetry Card 335

336 Chapter 11 Universal Serial Bus

Because asynchronous transfers go hand in hand with a callback routine, List-
ing 11.5 implements tele_write_callback(). This routine examines urb->
status to decipher the submission status. It also frees the transfer buffer allocated by
tele_write().

LISTING 11.5 Data Exchange with the Telemetry Card

/* Read entry point */

static ssize_t

tele_read(struct file *file, char *buffer,

 size_t count, loff_t *ppos)

{

 int retval, bytes_read;

 tele_device_t *tele_device;

 /* Get the address of tele_device */

 tele_device = (tele_device_t *)file->private_data;

 /* ... */

 /* Synchronous read */

 retval = usb_bulk_msg(tele_device->usbdev, /* usb_device */

 usb_rcvbulkpipe(tele_device->usbdev,

 tele_device->bulk_in_addr), /* Pipe */

 tele_device->bulk_in_buf, /* Read buffer */

 min(tele_device->bulk_in_len, count), /* Bytes to read */

 &bytes_read, /* Bytes read */

 5000); /* Timeout in 5 sec */

 /* Copy telemetry data to user space */

 if (!retval) {

 if (copy_to_user(buffer, tele_device->bulk_in_buf,

 bytes_read)) {

 return -EFAULT;

 } else {

 return bytes_read;

 }

 }

 return retval;

}

/* Write entry point */

static ssize_t

tele_write(struct file *file, const char *buffer,

 size_t write_count, loff_t *ppos)

{

 char *tele_buf = NULL;

 struct urb *urb = NULL;

 tele_device_t *tele_device;

 /* Get the address of tele_device */

 tele_device = (tele_device_t *)file->private_data;

 /* ... */

 /* Allocate a bulk URB */

 urb = usb_alloc_urb(0, GFP_KERNEL);

 if (!urb) {

 return -ENOMEM;

 }

 /* Allocate a DMA-consistent transfer buffer and copy in

 data from user space. On return, tele_buf contains

 the buffer’s CPU address, while urb->transfer_dma

 contains the DMA address */

 tele_buf = usb_buffer_alloc(tele_dev->usbdev, write_count,

 GFP_KERNEL, &urb->transfer_dma);

 if (copy_from_user(tele_buf, buffer, write_count)) {

 usb_buffer_free(tele_device->usbdev, write_count,

 tele_buf, urb->transfer_dma);

 usb_free_urb(urb);

 return -EFAULT

 }

 /* Populate bulk URB fields */

 usb_fill_bulk_urb(urb, tele_device->usbdev,

 usb_sndbulkpipe(tele_device->usbdev,

 tele_device->bulk_out_addr),

 tele_buf, write_count, tele_write_callback,

 tele_device);

 /* urb->transfer_dma is valid, so preferably utilize

 that for data transfer */

 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

 /* Submit URB asynchronously */

 usb_submit_urb(urb, GFP_KERNEL);

Device Example: Telemetry Card 337

338 Chapter 11 Universal Serial Bus

 /* Release URB reference */

 usb_free_urb(urb);

 return(write_count);

}

/* Write callback */

static void

tele_write_callback(struct urb *urb)

{

 tele_device_t *tele_device;

 /* Get the address of tele_device */

 tele_device = (tele_device_t *)urb->context;

 /* urb->status contains the submission status. It’s 0 if

 successful. Resubmit the URB in case of errors other than

 -ENOENT, -ECONNRESET, and -ESHUTDOWN */

 /* ... */

 /* Free the transfer buffer. usb_buffer_free() is the

 release-counterpart of usb_buffer_alloc() called

 from tele_write() */

 usb_buffer_free(urb->dev, urb->transfer_buffer_length,

 urb->transfer_buffer, urb->transfer_dma);

}

Class Drivers

The USB specifi cation introduces the concept of device classes and describes the func-
tionality of each class driver. Examples of standard device classes include mass stor-
age, networking, hubs, serial converters, audio, video, imaging, modems, printers, and
 human interface devices. Class drivers are generic and let you plug and play a wide
array of cards without the need for developing and installing drivers for every single
device. The Linux-USB subsystem includes support for major class drivers.

Each USB device has a class and a subclass code. The mass storage class (0x08), for
example, supports subclasses such as compact disc (0x02), tape (0x03), and solid-state

storage (0x06). As you saw previously, device drivers populate the usb_device_id
structure with the classes and subclasses they support. You can glean a device’s class and
subclass information by looking at the “I:” lines in the /proc/bus/usb/devices output.

Let’s take a look at some important class drivers.

Mass Storage

In USB parlance, mass storage refers to USB hard disks, pen drives, CD-ROMs,
fl oppy drives, and similar storage devices. USB mass storage devices adhere to the
Small Computer System Interface (SCSI) protocol to communicate with host systems.
Block access to USB storage devices is hence routed through the kernel’s SCSI sub-
system. Fig ure 11.4 provides you an overview of the interaction between USB storage
and SCSI subsystems. As shown in the fi gure, the SCSI subsystem is architected into
three layers:

 1. Top-level drivers for devices such as disks (sd.c) and CD-ROMs (sr.c)

 2. A middle-level layer that scans the bus, configures devices, and glues top-level
drivers to low-level drivers

 3. Low-level SCSI adapter drivers

The mass storage driver registers itself as a virtual SCSI adapter. The virtual adapter
communicates upstream via SCSI commands and downstream using URBs. A USB
disk appears to higher layers as a SCSI device attached to this virtual adapter.

To better understand the interactions between the USB and SCSI layers, let’s imple-
ment a modifi cation to the USB mass storage driver. The usbfs node /proc/bus/usb/
devices, contains the properties and connection details of all USB devices attached to
the system. The “T:” line in the /proc/bus/usb/devices output, for example, contains the
bus number, the device’s depth from the root hub, operational speed, and so on. The
“P:” line contains the vendor ID, product ID, and revision number of the device. All
the information available in /proc/bus/usb/devices is managed by the USB subsystem,
but there is one piece missing that is under the jurisdiction of the SCSI subsystem.
The /dev node name associated with the USB storage device (sd[a-z][1-9] for disks
and sr[0-9] for CD-ROMs) is not available in /proc/bus/usb/devices. To overcome this
limitation, let’s add an “N:” line that displays the /dev node name associated with the
device. Listing 11.6 shows the necessary code changes in the form of a source patch to
the 2.6.23.1 kernel tree.

Class Drivers 339

340 Chapter 11 Universal Serial Bus

User Space

Kernel Space

Kernel Space

Hardware

USB Storage
Device

USB Core

USB Mass Storage
Virtual SCSI Adapter

Mass Storage
Driver

Transport Layer

URBs

mount /dev/sda1 /mnt

Disk (sd), CDROM (sr) drivers Upper-level SCSI

Scan, Configure, Glue logic Mid-level SCSI

Low-level SCSI Adapter Driver

SCSI Command
Queue

/dev/sd*, /dev/sr*

FIGURE 11.4 USB mass storage and SCSI.

LISTING 11.6 Adding a Disk’s /dev Name to usbfs

include/scsi/scsi_host.h:

struct Scsi_Host {

 /* ... */

 void *shost_data;

+ char snam[8]; /* /dev node name for this disk */

 /* ... */

};

drivers/usb/storage/usb.h:

struct us_data {

 /* ... */

+ char magic[4];

};

include/linux/usb.h:

struct usb_interface {

 /* ... */

+ void *private_data;

};

drivers/usb/storage/usb.c:

static int storage_probe(struct usb_interface *intf,

 const struct usb_device_id *id)

{

 /* ... */

 memset(us, 0, sizeof(struct us_data));

+ intf->private_data = (void *) us;

+ strncpy(us->magic, "disk", 4);

 mutex_init(&(us->dev_mutex));

 /* ... */

}

drivers/scsi/sd.c:

static int sd_probe(struct device *dev)

{

 /* ... */

 add_disk(gd);

+ memset(sdp->host->snam,0, sizeof(sdp->host->snam));

Class Drivers 341

342 Chapter 11 Universal Serial Bus

+ strncpy(sdp->host->snam, gd->disk_name, 3);

 sdev_printk(KERN_NOTICE, sdp, "Attached scsi %sdisk %s\n",

 sdp->removable ? "removable " : "", gd->disk_name);

 /* ... */

}

drivers/scsi/sr.c:

static int sr_probe(struct device *dev)

{

 /* ... */

 add_disk(disk);

+ memset(sdev->host->snam,0, sizeof(sdev->host->snam));

+ strncpy(sdev->host->snam, cd->cdi.name, 3);

 sdev_printk(KERN_DEBUG, sdev, "Attached scsi CD-ROM %s\n",

 cd->cdi.name);

 /* ... */

}

drivers/usb/core/devices.c:

 /* ... */

 #include <asm/uaccess.h>

+ #include <scsi/scsi_host.h>

+ #include "../storage/usb.h"

static ssize_t usb_device_dump(char __user **buffer, size_t *nbytes,

 loff_t *skip_bytes, loff_t *file_offset,

 struct usb_device *usbdev,

 struct usb_bus *bus, int level,

 int index, int count)

{

 /* ... */

 ssize_t total_written = 0;

+ struct us_data *us_d;

+ struct Scsi_Host *s_h;

 /* ... */

 data_end = pages_start + sprintf(pages_start, format_topo,

 bus->busnum, level,

 parent_devnum,

 index, count, usbdev->devnum,

 speed, usbdev->maxchild);

+ /* Assume this device supports only one interface */

+ us_d = (struct us_data *)

+ (usbdev->actconfig->interface[0]->private_data);

+

+ if ((us_d) && (!strncmp(us_d->magic, "disk", 4))) {

+ s_h = (struct Scsi_Host *) container_of((void *)us_d,

+ struct Scsi_Host,

+ hostdata);

+ data_end += sprintf(data_end, "N: ");

+ data_end += sprintf(data_end, "Device=%.100s",s_h->snam);

+ if (!strncmp(s_h->snam, "sr", 2)) {

+ data_end += sprintf(data_end, " (CDROM)\n");

+ } else if (!strncmp(s_h->snam, "sd", 2)) {

+ data_end += sprintf(data_end, " (Disk)\n");

+ }

+ }

 /* ... */

}

To understand Listing 11.6, let’s fi rst trace the code fl ow, continuing from where we
left off in the section “Enumeration.” In that section, we inserted a USB pen drive and
followed the execution train until the invocation of storage_probe(), the probe()
method of the mass storage driver. Moving further:

 1. storage_probe() registers a virtual SCSI adapter by calling scsi_add_
host(), supplying a private data structure called us_data as argument. scsi_
add_host() returns a Scsi_Host structure for this virtual adapter, with space
at the end for us_data.

 2. It starts a kernel thread called usb-storage to handle all SCSI commands queued
to the virtual adapter.

 3. It schedules a kernel thread called usb-stor-scan that requests the SCSI middle-
level layer to scan the bus for attached devices.

 4. The device scan initiated in Step 3 discovers the presence of the inserted pen
drive and binds the upper-level SCSI disk driver (sd.c) to the device. This results
in the invocation of the SCSI disk driver’s probe method, sd_probe().

 5. The sd driver allocates a /dev/sd* node to the disk. From this point on, applica-
tions use this interface to access the USB disk. The SCSI subsystem queues disk
commands to the virtual adapter, which the usb-storage kernel thread handles
using appropriate URBs.

Class Drivers 343

344 Chapter 11 Universal Serial Bus

Now that you know the basics, let’s dissect Listing 11.6, looking at the data structure
additions fi rst. The listing adds a snam fi eld to the Scsi_Host structure to hold the
associated SCSI /dev name that we are interested in. It also adds a private fi eld to the
usb_interface structure to associate each USB interface with its us_data. Because
us_data is relevant only for storage devices, we need to ensure the validity of the pri-
vate fi eld of a USB interface before accessing it as us_data. For this, Listing 11.6 adds
a magic string, “disk,” to us_data.

The usbfs modifi cation in Listing 11.6 (to drivers/usb/core/devices.c) pulls out the
us_data associated with each interface via the private data fi eld of its usb_interface.
It then latches on to the associated Scsi_Host using the container_of() function ,
because as you saw in Step 1 previously, usb_data is glued to the end of the cor-
responding Scsi_Host. As you further saw in Step 5, Scsi_Host contains the /dev
node names that the sd and sr drivers populate. Usbfs stitches together an “N:” line
using this information.

The following is the /proc/bus/usb/devices output after integrating the changes in
Listing 11.6 and attaching a PNY USB pen drive, an Addonics CD-ROM drive, and a
Seagate hard disk to a laptop via a USB hub. The “N:” lines announce the identity of
the /dev node corresponding to each device:

bash> cat /proc/bus/usb/devices

...

T: Bus=04 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=480 MxCh= 0

N: Device=sda(Disk)

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=154b ProdID=0002 Rev= 1.00

S: Manufacturer=PNY

S: Product=USB 2.0 FD

S: SerialNumber=6E5C07005B4F

C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr= 0mA

I:* If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-

 storage

E: Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms

T: Bus=04 Lev=02 Prnt=02 Port=01 Cnt=02 Dev#= 5 Spd=480 MxCh= 0

N: Device=sr0(CDROM)

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=0bf6 ProdID=a002 Rev= 3.00

S: Manufacturer=Addonics

S: Product=USB to IDE Cable

S: SerialNumber=1301011002A9AFA9

C:* #Ifs= 1 Cfg#= 2 Atr=c0 MxPwr= 98mA

I:* If#= 0 Alt= 0 #EPs= 3 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-

 storage

E: Ad=01(O) Atr=02(Bulk) MxPS= 512 Ivl=125us

E: Ad=82(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

E: Ad=83(I) Atr=03(Int.) MxPS= 2 Ivl=32ms

T: Bus=04 Lev=02 Prnt=02 Port=02 Cnt=03 Dev#= 4 Spd=480 MxCh= 0

N: Device=sdb(Disk)

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=0bc2 ProdID=0501 Rev= 0.01

S: Manufacturer=Seagate

S: Product=USB Mass Storage

S: SerialNumber=000000062459

C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 0mA

I:* If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-

 storage

E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms

E: Ad=88(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

...

As you can see, the SCSI subsystem has allotted sda to the pen drive, sr0 to the
CD-ROM, and sdb to the hard disk. User-space applications operate on these nodes
to communicate with the respective devices. As you saw in Chapter 4, with the arrival
of udev, however, you have the option of creating higher-level abstractions to identify
each device without relying on the identity of the /dev names allocated by the SCSI
subsystem.

USB-Serial

USB-to-serial converters bring serial port capabilities to your computer via USB. You
can use a USB-to-serial converter, for example, to get a serial debug console from an
embedded device on a development laptop that has no serial ports.

In Chapter 6, “Serial Drivers,” you learned the benefi ts of the kernel’s layered serial
architecture. Figure 11.5 illustrates how the USB-Serial layer fi ts into the kernel’s serial
framework.

Class Drivers 345

346 Chapter 11 Universal Serial Bus

User Applications (System Call Interface)

N_TTY
(n_tty.c)

tty_io.c
(Core Module)

8250.c The USB
Core

serial_core.c

usb-serial.c
(Core Module)

USB-Serial
Converter

Driver

USB-Serial Converter16550-type UART

Line Discipline Layer

Low-Level Driver

Physical Layer

TTY Layer

usb_serial_register()

usb_register()

FIGURE 11.5 The USB-Serial layer.

 A USB-serial driver is similar to other USB client drivers except that it avails the
services of a USB-Serial core in addition to the USB core. The USB-Serial core pro-
vides the following:

 • A tty driver that insulates low-level USB-to-serial converter drivers from higher
serial layers such as line disciplines.

 • Generic probe() and disconnect() routines that individual USB-serial driv-
ers can leverage.

 • Device nodes to access USB-serial ports from user space. Applications operate
on USB-serial ports via /dev/ttyUSBX, where X is the serial port number. Termi-
nal emulators such as minicom and protocols such as PPP run unchanged over
these interfaces.

A low-level USB-to-serial converter driver essentially does the following:

 1. Registers a usb_serial_driver structure with the USB-Serial core using
usb_serial_register(). The entry points supplied as part of usb_serial_
driver form the crux of the driver.

 2. Populates a usb_driver structure and registers it with the USB core using
usb_register(). This is similar to what the example telemetry driver does,
except that a serial converter driver can count on the generic probe() and
disconnect() routines provided by the USB-Serial core.

Listing 11.7 contains snippets from the FTDI driver (drivers/usb/serial/ftdi_sio.c)
that accomplish these two registrations for USB-to-serial converters based on FTDI
chipsets.

LISTING 11.7 A Snippet from the FTDI Driver

/* The usb_driver structure */

static struct usb_driver ftdi_driver = {

 .name = "ftdi_sio", /* Name */

 .probe = usb_serial_probe, /* Provided by the

 USB-Serial core */

 .disconnect = usb_serial_disconnect,/* Provided by the

 USB-Serial core */

 .id_table = id_table_combined, /* List of supported

 devices built

 around the FTDI chip */

 .no_dynamic_id = 1, /* Supported ids cannot be

 added dynamically */

};

/* The usb_serial_driver structure */

static struct usb_serial_driver ftdi_sio_device = {

 /* ... */

 .num_ports = 1,

 .probe = ftdi_sio_probe,

 .port_probe = ftdi_sio_port_probe,

 .port_remove = ftdi_sio_port_remove,

 .open = ftdi_open,

 .close = ftdi_close,

 .throttle = ftdi_throttle,

 .unthrottle = ftdi_unthrottle,

 .write = ftdi_write,

Class Drivers 347

348 Chapter 11 Universal Serial Bus

 .write_room = ftdi_write_room,

 .chars_in_buffer = ftdi_chars_in_buffer,

 .read_bulk_callback = ftdi_read_bulk_callback,

 .write_bulk_callback = ftdi_write_bulk_callback,

 /* ... */

};

/* Driver Initialization */

static int __init ftdi_init(void)

{

 /* ... */

 /* Register with the USB-Serial core */

 retval = usb_serial_register(&ftdi_sio_device);

 /* ... */

 /* Register with the USB core */

 retval = usb_register(&ftdi_driver);

 /* ... */

}

Human Interface Devices

Devices such as keyboards and mice are called human interface devices (HIDs). Take a
look at the section “USB and Bluetooth Keyboards” in Chapter 7, “Input Drivers,” for
a discussion on the USB HID class.

Bluetooth

A USB-Bluetooth dongle is a quick way to Bluetooth-enable your computer so that
it can communicate with Bluetooth-equipped devices such as cell phones, mice, or
handhelds. Chapter 16 discusses the USB Bluetooth class.

Gadget Drivers

In a typical usage scenario, an embedded device connects to a PC host over USB.
Embedded computers usually belong to the device side of USB, unlike PC systems
that function as USB hosts. Because Linux runs on both embedded and PC systems,
it needs support to run on either end of USB. The USB Gadget project brings USB
device mode capability to embedded Linux systems. Bus 3 of the embedded Linux

device in Figure 11.2 can, for example, use a gadget driver to let the device function as
a mass storage drive when connected to a host computer.

Before proceeding, let’s briefl y look at some related terminology. The USB control-
ler at the device side is variously called a device controller , peripheral controller, client
controller, or function controller. The terms gadget and gadget driver are commonly used
rather than the heavily overloaded words device and device driver.

USB gadget support is now part of the mainline kernel and contains the
following:

 • Drivers for USB device controllers integrated into SoC families such as Intel
PXA, Texas Instruments OMAP, and Atmel AT91. These drivers additionally
provide a gadget API that gadget drivers can use.

 • Gadget drivers for device classes such as storage, networking, and serial convert-
ers. These drivers answer to their class when they receive enumeration requests
from host-side software. A storage gadget driver, for example, identifies itself as
a class 0x08 (mass storage class) device and exports a storage partition to the
host. You can specify the associated block device node or filename via a mod-
ule-insertion parameter. Because the exported region has to appear to the host
as a mass storage device, the gadget driver implements the SCSI interactions
required by the USB mass storage protocol. Gadget drivers are also available for
Ethernet and serial devices.

 • A skeletal gadget driver drivers/usb/gadget/zero.c, that you may use to test device
controller drivers.

Gadget drivers use the services of the gadget API provided by device controller drivers.
They populate a usb_gadget_driver structure and register it with the kernel using
usb_gadget_register_driver (). Hardware specifi cs are hidden inside the gadget
API implementation offered by individual device controller drivers, so the gadget driv-
ers themselves are hardware independent.

Documentation/DocBook/gadget.tmpl provides an overview of the gadget API. Have
a look at http://linux-usb.org/gadget/ for more on the gadget project.

Debugging

A USB bus analyzer magnifi es the goings-on in the bus and is useful for debugging
low-level problems. If you can’t get hold of an analyzer, you might be able to make do

Debugging 349

http://linux-usb.org/gadget/

350 Chapter 11 Universal Serial Bus

with the kernel’s soft USB tracer usbmon. This tool captures traffi c between USB host
controllers and devices. To collect a trace, read from the debugfs3 fi le /sys/kernel/debug/
usbmon/Xt, where X is the bus number to which your device is connected.

For example, consider a USB disk connected to a PC. From the associated “T:” line
in /proc/bus/usb/devices, you can see that the drive is attached to bus 1:

T: Bus=01 Lev=01 Prnt=01 Port=03 Cnt=01 Dev#= 2 Spd=480 MxCh= 0

Ensure that you have enabled debugfs (CONFIG_DEBUG_FS) and usbmon (CONFIG_
USB_MON) support in your kernel. This is a snapshot of usbmon output while copying
a fi le from the disk:

bash> mount -t debugfs none_debugs /sys/kernel/debug/

bash> cat /sys/kernel/debug/usbmon/1u

...

ee6a5c40 3718782540 S Bi:1:002:1 -115 20480 <

ee6a5cc0 3718782567 S Bi:1:002:1 -115 65536 <

ee6a5d40 3718782595 S Bi:1:002:1 -115 36864 <

ee6a5c40 3718788189 C Bi:1:002:1 0 20480 = 0f846801 118498f\ 15c60500 01680106
5e846801 608498fe 6f280087 68000000

ee6a5cc0 3718800994 C Bi:1:002:1 0 65536 = 118498fe 15c60500\ 01680106 5e846801
608498fe 6f280087 68000000 00884800

ee6a5d40 3718801001 C Bi:1:002:1 0 36864 = 13608498 fe4f4a01\ 00514a01 006f2800
87680000 00008848 00000100 b7f00100

...

Each output line starts with the URB address, followed by an event timestamp. An
S in the next column indicates URB submission, and a C announces a callback. The
following fi eld has the format URBType:Bus#:DeviceAddress:Endpoint#. In the
preceding output, a URBType of Bi stands for a bulk URB in the IN direction. After
this, usbmon dumps the URB status, data length, a data tag (= or < in the preceding
output), and the data words (if the tag is =). The last three lines in the preceding out-
put are callbacks associated with bulk URBs submitted in earlier lines. You can match
the callbacks with the related submissions using the URB addresses. Documentation/
usb/usbmon.txt details usbmon syntax and contains example code to parse the output
into human readable form.

3 An in-memory fi lesystem to export kernel debug data to user space.

If you turn on Device Drivers → USB Support → USB Verbose Debug Messages
during kernel confi guration, the kernel will emit the contents of all dev_dbg() state-
ments present in the USB subsystem.

You can glean device and bus specifi c information from the USB fi lesystem (usbfs)
node /proc/bus/usb/devices. And as we discuss in Chapter 19, “Drivers in User Space,”
usbfs also lets you implement USB device drivers in user space. Even when the fi nal
destination of your USB driver is inside the kernel, starting with a user-space driver
can ease debugging and testing.

The linux-usb-devel mailing list is the forum to discuss questions related to USB
device drivers. Visit https://lists.sourceforge.net/lists/listinfo/linux-usb-devel for sub-
scription and archive retrieval information. Read www.linux-usb.org/usbtest for ideas
on USB testing.

The home page of the Linux-USB project is www.linux-usb.org. You may down-
load the USB 2.0 specifi cation, OTG supplement, and other related standards from
www.usb.org/developers/docs.

Looking at the Sources

The USB core layer lives in drivers/usb/core/. This directory also contains URB manip-
ulation routines and the usbfs implementation. The hub driver and khubd are part of
drivers/usb/core/hub.c. The drivers/usb/host/ directory contains host controller device driv-
ers. USB-related header defi nitions reside in include/linux/usb*.h. The usbmon tracer is
in drivers/usb/mon/. Look inside Documentation/usb/ for Linux-USB documentation.

USB class drivers stay in various subdirectories under drivers/usb/. The mass storage
driver drivers/usb/storage/, in tandem with the SCSI subsystem drivers/scsi/, implements
the USB mass storage protocol. The drivers/input/4 directory tree includes drivers for
USB input devices such as keyboards and mice; drivers/usb/serial/ has drivers for USB-
to-serial converters; drivers/usb/media/ supports USB multimedia devices; drivers/net/
usb/5 has drivers for USB Ethernet dongles; and drivers/usb/misc/ contains drivers for
miscellaneous USB devices such as LEDs, LCDs, and fi ngerprint sensors. Look at
drivers/usb/usb-skeleton.c for a starting point driver template if you can’t zero in on a
closer match.

4 Before the 2.6.22 kernel release, USB input device drivers used to reside in drivers/usb/input/.
5 Before the 2.6.22 kernel release, USB network device drivers used to reside in drivers/usb/net/.

Looking at the Sources 351

www.linux-usb.org/usbtest
www.linux-usb.org
www.usb.org/developers/docs
https://lists.sourceforge.net/lists/listinfo/linux-usb-devel

352 Chapter 11 Universal Serial Bus

The USB gadget subsystem is in drivers/usb/gadget/. This directory contains USB
device controller drivers, and gadget drivers for mass storage (fi le_storage.c), serial con-
verters (serial.c), and Ethernet networking (ether.c).

Table 11.3 contains the main data structures used in this chapter and their location
in the source tree. Table 11.4 lists the main kernel programming interfaces that you
used in this chapter along with the location of their defi nitions.

TABLE 11.3 Summary of Data Structures

Data Structure Location Description

urb include/linux/usb.h Centerpiece of the USB data
transfer mechanism

pipe include/linux/usb.h Address element of a URB

usb_device_descriptor
usb_config_descriptor
usb_interface_descriptor
usb_endpoint_descriptor

include/linux/usb/ch9.h Descriptors that hold information
about a USB device

usb_device include/linux/usb.h Representation of a USB device

usb_device_id include/linux/mod_devicetable.h Identity of a USB device

usb_driver include/linux/usb.h Representation of a USB client
driver

usb_gadget_driver include/linux/usb_gadget.h Representation of a USB gadget
driver

TABLE 11.4 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

usb_register() include/linux/usb.h
drivers/usb/core/driver.c

Registers a usb_driver with the USB core

usb_deregister() drivers/usb/core/driver.c Unregisters a usb_driver from the USB core

usb_set_intfdata() include/linux/usb.h Attaches device-specific data to a
usb_interface

usb_get_intfdata() include/linux/usb.h Detaches device-specific data from a
usb_interface

usb_register_dev() drivers/usb/core/file.c Associates a character interface with a USB
client driver

usb_deregister_dev() drivers/usb/core/file.c Dissociates a character interface from a USB
client driver

Kernel Interface Location Description

usb_alloc_urb() drivers/usb/core/urb.c Allocates a URB

usb_fill_[control|int|bulk]_urb() include/linux/usb.h Populates a URB

usb_[control|interrupt|bulk]_msg() drivers/usb/core/message.c Wrappers for
synchronous URB
submission

usb_submit_urb() drivers/usb/core/urb.c Submits a URB to
the USB core

usb_free_urb() drivers/usb/core/urb.c Frees references to a
completed URB

usb_unlink_urb() drivers/usb/core/urb.c Frees references to a
pending URB

usb_[rcv|snd][ctrl|int|bulk|isoc]pipe() include/linux/usb.h Creates a USB pipe

usb_find_interface() drivers/usb/core/usb.c Gets the usb_
interface associ-
ated with a USB
client driver

usb_buffer_alloc() drivers/usb/core/usb.c Allocates a consis-
tent DMA transfer
buffer

usb_buffer_free() drivers/usb/core/usb.c Frees a buffer that
was allocated using
usb_buffer_
alloc()

usb_serial_register() drivers/usb/serial/usb-serial.c Registers a driver
with the USB-Serial
core

usb_serial_deregister() drivers/usb/serial/usb-serial.c Unregisters a driver
from the USB-
Serial core

usb_gadget_register_driver() Device controller drivers
in drivers/usb/gadget/

Registers a gadget
with a device
controller driver

Looking at the Sources 353

This page intentionally left blank

355

12

Video Drivers

In This Chapter

■ Display Architecture 356

■ Linux-Video Subsystem 359

■ Display Parameters 361

■ The Frame Buffer API 362

■ Frame Buffer Drivers 365

■ Console Drivers 380

■ Debugging 387

■ Looking at the Sources 388

356

V ideo hardware generates visual output for a computer system to display. In
this chapter, let’s fi nd out how the kernel supports video controllers and

discover the advantages offered by the frame buffer abstraction. Let’s also learn to
write console drivers that display messages emitted by the kernel.

Display Architecture

Figure 12.1 shows the display assembly on a PC-compatible system. The graphics
controller that is part of the North Bridge (see the sidebar “The North Bridge”)
connects to different types of display devices using several interface standards (see
the sidebar “Video Interfacing Standards”).

Video Graphics Array (VGA) is the original display standard introduced by
IBM, but it’s more of a resolution specifi cation today. VGA refers to a resolution
of 640×480, whereas newer standards such as Super Video Graphics Array (SVGA)
and eXtended Graphics Array (XGA) support higher resolutions of 800×600 and
1024×768, respectively. Quarter VGA (QVGA) panels having a resolution of
320×240 are common on embedded devices, such as handhelds and smart phones.

Graphics controllers in the x86 world compatible with VGA and its derivatives offer
a character-based text mode and a pixel-based graphics mode. The non-x86 embed-
ded space is non-VGA, however, and has no concept of a dedicated text mode.

Processor

North Bridge

South Bridge

Graphics
Controller

Display
UnitAnalog/LVDS/DVI/HDMI

FIGURE 12.1 Display connection on a PC system.

The North Bridge

In earlier chapters, you learned about peripheral buses such as LPC, I2C, PCMCIA, PCI, and
USB, all of which are sourced from the South Bridge on PC-centric systems. Display architecture,
however, takes us inside the North Bridge. A North Bridge in the Intel-based PC architecture is
either a Graphics and Memory Controller Hub (GMCH) or a Memory Controller Hub (MCH). The
former contains a memory controller, a Front Side Bus (FSB) controller, and a graphics controller.
The latter lacks an integrated graphics controller but provides an Accelerated Graphics Port (AGP)
channel to connect external graphics hardware.

Consider, for example, the Intel 855 GMCH North Bridge chipset. The FSB controller in
the 855 GMCH interfaces with Pentium M processors. The memory controller supports Dual
Data Rate (DDR) SDRAM memory chips. The integrated graphics controller lets you connect
to display devices using analog VGA, LVDS, or DVI (see the sidebar “Video Interfacing Stan-
dards”). The 855 GMCH enables you to simultaneously send output to two displays, so you can,
for example, dispatch similar or separate information to your laptop’s LCD panel and an external
CRT monitor at the same time.

Recent North Bridge chipsets, such as the AMD 690G, include support for HDMI (see the
following sidebar) in addition to VGA and DVI.

Video Interfacing Standards

Several interfacing standards specify the connection between video controllers and display devices.
Display devices and the interfacing technologies they use follow:

• An analog display such as a cathode ray tube (CRT) monitor that has a standard VGA connector.

• A digital flat-panel display such as a laptop Thin Film Transistor (TFT) LCD that takes in low-
voltage differential signaling (LVDS).

• A display monitor that complies with the Digital Visual Interface (DVI) specification. DVI is
a standard developed by the Digital Display Working Group (DDWG) for carrying high-qual-
ity video. DVI monitors take in Transition Minimized Differential Signaling (TMDS). There
are three DVI subclasses: digital-only (DVI-D), analog-only (DVI-A), and digital-and-analog
(DVI-I).

• A display monitor that complies with the High-Defi nition Television (HDTV) specifi cation
using the High-Defi nition Multimedia Interface (HDMI). HDMI is a modern digital audio-
video cable standard that supports high data rates. Unlike video-only standards such as DVI,
HDMI can carry both picture and sound.

Display Architecture 357

358 Chapter 12 Video Drivers

Embedded SoCs usually have an on-chip LCD controller, as shown in Figure 12.2.
The output emanating from the LCD controller are TTL (Transistor-Transistor Logic)
signals that pack 18 bits of fl at-panel video data, six each for the three primary colors,
red, green, and blue. Several handhelds and phones use QVGA-type internal LCD
panels that directly receive the TTL fl at-panel video data sourced by LCD controllers.

CPU Core

Embedded Controller

LCD
Controller

QVGA LCD
Panel

USB
Controller 18-bit Flat Panel data…

Internal Local Bus

FIGURE 12.2 Display connection on an embedded system.

CPU Core

Embedded Controller

LCD
Controller

DVI-D
Transmitter

LVDS
Transmitter

Internal LVDS
TFT Display

External DVI
TFT Monitor

USB
Controller 18-bit Flat Panel data…

Internal Local Bus

GPIO (Enable/Disable)

I2C (Configuration)

TMDS

LVDS

FIGURE 12.3 LVDS and DVI connections on an embedded system.

Figure 12.3 shows an embedded device that supports dual display panels: an internal
LVDS fl at-panel LCD and an external DVI monitor. The internal TFT LCD under-
stands LVDS, so an LVDS transmitter chip is used to convert the fl at-panel signals
to LVDS. An example of an LVDS transmitter chip is DS90C363B from National
Semiconductor. The external DVI monitor talks in TMDS, so a DVI transmitter chip
is used to convert the 18-bit fl at panel data signals to TMDS. An I2C interface is pro-
vided so that the device driver can confi gure the DVI transmitter registers. An example
of a DVI transmitter chip is SiI164 from Silicon Image.

Linux-Video Subsystem

The concept of frame buffers is central to video on Linux, so let’s fi rst fi nd out what
that offers.

Because video adapters can be based on different hardware architectures, the imple-
mentation of higher kernel layers and applications might need to vary across video cards.
This results in nonuniform schemes to handle different video cards. The ensuing non-
portability and extra code necessitate greater investment and maintenance. The frame
buffer concept solves this problem by describing a general abstraction and specifying a
programming interface that allows applications and higher kernel layers to be written in
a platform-independent manner. Figure 12.4 shows you the frame buffer advantage.

The kernel’s frame buffer interface thus allows applications to be independent of
the vagaries of the underlying graphics hardware. Applications run unchanged over
diverse types of video hardware if they and the display drivers conform to the frame
buffer interface. As you will soon fi nd out, the common frame buffer programming
interface also brings hardware independence to kernel layers, such as the frame buffer
console driver.

Today, several applications, such as web browsers and movie players, work directly over
the frame buffer interface. Such applications can do graphics without help from a win-
dowing system.

The X Windows server (Xfbdev) is capable of working over the frame buffer interface,
as shown in Figure 12.5.

Common Framebuffer API

GUIs, Consoles,
Movie players,…

Framebuffer Driver N

Video Card N

Framebuffer Driver I

Video Card I

…
Video cards having
different graphics

controllers

FIGURE 12.4 The frame buffer advantage.

Linux-Video Subsystem 359

360 Chapter 12 Video Drivers

The Linux-Video subsystem shown in Figure 12.5 is a collection of low-level display
drivers, middle-level frame buffer and console layers, a high-level virtual terminal
driver, user mode drivers part of X Windows, and utilities to confi gure display param-
eters. Let’s trace the fi gure top down:

 • The X Windows GUI has two options for operating over video cards. It can use
either a suitable built-in user-space driver for the card or work over the frame
buffer subsystem.

 • Text mode consoles function over the virtual terminal character driver. Virtual
terminals, introduced in the section “TTY Drivers” in Chapter 6, “Serial Driv-
ers,” are full-screen text-based terminals that you get when you logon in text
mode. Like X Windows, text consoles have two operational choices. They can
either work over a card-specifi c console driver, or use the generic frame buffer
console driver (fbcon) if the kernel supports a low-level frame buffer driver for
the card in question.

X Windows

User Mode Driver
for Video Card X

fbset

setterm

FB-aware applications
such as video players

Virtual Terminal
Driver (vt, vc_screen)

Console

lpcons

Frame buffer
console driver

(fbcon)

VGA console
driver

(vgacon)

Common Framebuffer API (/dev/fbX)

VESA Framebuffer
Driver (vesafb)

VBE-
compatible

Video Cards

VGA
Cards

Printer USB_UARTVideo
Card X

Intel Framebuffer
Driver (intelfb)

Intel Graphics
Memory Controllers

User Space

Kernel Space

Hardware

Kernel Space

usb_uart

…

…

…

FIGURE 12.5 Linux-Video subsystem.

Display Parameters

Sometimes, confi guring the properties associated with your display panel might be
the only driver changes that you need to make to enable video on your device, so let’s
start learning about video drivers by looking at common display parameters. We will
assume that the associated driver conforms to the frame buffer interface, and use the
fbset utility to obtain display characteristics:

bash> fbset

mode "1024x768-60"

 # D: 65.003 MHz, H: 48.365 kHz, V: 60.006 Hz

 geometry 1024 768 1024 768 8

 timings 15384 168 16 30 2 136 6

 hsync high

 vsync high

 rgba 8/0,8/0,8/0,0/0

endmode

The D: value in the output stands for the dotclock, which is the speed at which the
video hardware draws pixels on the display. The value of 65.003MHz in the preceding
output means that it’ll take (1/65.003*1000000) or about 15,384 picoseconds for the
video controller to draw a single pixel. This duration is called the pixclock and is shown
as the fi rst numeric parameter in the line starting with timings. The numbers against
“geometry” announce that the visible and virtual resolutions are 1024×768 (SVGA)
and that the bits required to store information pertaining to a pixel is 8.

The H: value specifi es the horizontal scan rate, which is the number of horizontal
display lines scanned by the video hardware in one second. This is the inverse of the
pixclock times the X-resolution. The V: value is the rate at which the entire display is
refreshed. This is the inverse of the pixclock times the visible X-resolution times the
visible Y-resolution, which is around 60Hz in this example. In other words, the LCD
is refreshed 60 times in a second.

Video controllers issue a horizontal sync (HSYNC) pulse at the end of each line and a
vertical sync (VSYNC) pulse after each display frame. The durations of HSYNC (in terms
of pixels) and VSYNC (in terms of pixel lines) are shown as the last two parameters in
the line starting with “timings.” The larger your display, the bigger the likely values
of HSYNC and VSYNC. The four numbers before the HSYNC duration in the timings
line announce the length of the right display margin (or horizontal front porch), left

Display Parameters 361

362 Chapter 12 Video Drivers

margin (or horizontal back porch), lower margin (or vertical front porch), and upper
margin (or vertical back porch), respectively. Documentation/fb/framebuffer.txt and the
man page of fb.modes pictorially show these parameters.

To tie these parameters together, let’s calculate the pixclock value for a given refresh rate,
which is 60.006Hz in our example:

dotclock = (X-resolution + left margin + right margin
 + HSYNC length) * (Y-resolution + upper margin
 + lower margin + VSYNC length) * refresh rate
 = (1024 + 168 + 16 + 136) * (768 + 30 + 2 + 6) * 60.006
 = 65.003 MHz
pixclock = 1/dotclock
 = 15384 picoseconds (which matches with the fbset output
 above)

The Frame Buffer API

Let’s next wet our feet in the frame buffer API. The frame buffer core layer exports
device nodes to user space so that applications can access each supported video device.
/dev/fbX is the node associated with frame buffer device X. The following are the
main data structures that interest users of the frame buffer API. Inside the kernel,
they are defi ned in include/linux/fb.h, whereas in user land, their defi nitions reside in
/usr/include/linux/fb.h:

 1. Variable information pertaining to the video card that you saw in the fbset out-
put in the previous section is held in struct fb_var_screeninfo. This struc-
ture contains fields such as the X-resolution, Y-resolution, bits required to hold
a pixel, pixclock, HSYNC duration, VSYNC duration, and margin lengths. These
values are programmable by the user:

struct fb_var_screeninfo {

 __u32 xres; /* Visible resolution in the X axis */

 __u32 yres; /* Visible resolution in the Y axis */

 /* ... */

 __u32 bits_per_pixel; /* Number of bits required to hold a

 pixel */

 /* ... */

 __u32 pixclock; /* Pixel clock in picoseconds */

 __u32 left_margin; /* Time from sync to picture */

 __u32 right_margin; /* Time from picture to sync */

 /* ... */

 __u32 hsync_len; /* Length of horizontal sync */

 __u32 vsync_len; /* Length of vertical sync */

 /* ... */

};

 2. Fixed information about the video hardware, such as the start address and size
of frame buffer memory, is held in struct fb_fix_screeninfo. These values
cannot be altered by the user:

struct fb_fix_screeninfo {

 char id[16]; /* Identification string */

 unsigned long smem_start; /* Start of frame buffer memory */

 __u32 smem_len; /* Length of frame buffer memory */

 /* ... */

};

 3. The fb_cmap structure specifies the color map, which is used to convey the
user’s definition of colors to the underlying video hardware. You can use this
structure to define the RGB (Red, Green, Blue) ratio that you desire for differ-
ent colors:

struct fb_cmap {

 __u32 start; /* First entry */

 __u32 len; /* Number of entries */

 __u16 *red; /* Red values */

 __u16 *green; /* Green values */

 __u16 *blue; /* Blue values */

 __u16 *transp; /* Transparency. Discussed later on */

};

Listing 12.1 is a simple application that works over the frame buffer API. The program
clears the screen by operating on /dev/fb0, the frame buffer device node correspond-
ing to the display. It fi rst deciphers the visible resolutions and the bits per pixel in a
hardware-independent manner using the frame buffer API, FBIOGET_VSCREENINFO.
This interface command gleans the display’s variable parameters by operating on the
fb_var_screeninfo structure. The program then goes on to mmap() the frame buf-
fer memory and clears each constituent pixel bit.

The Frame Buffer API 363

364 Chapter 12 Video Drivers

LISTING 12.1 Clear the Display in a Hardware-Independent Manner

#include <stdio.h>

#include <fcntl.h>

#include <linux/fb.h>

#include <sys/mman.h>

#include <stdlib.h>

struct fb_var_screeninfo vinfo;

int

main(int argc, char *argv[])

{

 int fbfd, fbsize, i;

 unsigned char *fbbuf;

 /* Open video memory */

 if ((fbfd = open("/dev/fb0", O_RDWR)) < 0) {

 exit(1);

 }

 /* Get variable display parameters */

 if (ioctl(fbfd, FBIOGET_VSCREENINFO, &vinfo)) {

 printf("Bad vscreeninfo ioctl\n");

 exit(2);

 }

 /* Size of frame buffer =

 (X-resolution * Y-resolution * bytes per pixel) */

 fbsize = vinfo.xres*vinfo.yres*(vinfo.bits_per_pixel/8);

 /* Map video memory */

 if ((fbbuf = mmap(0, fbsize, PROT_READ|PROT_WRITE,

 MAP_SHARED, fbfd, 0)) == (void *) -1){

 exit(3);

 }

 /* Clear the screen */

 for (i=0; i<fbsize; i++) {

 *(fbbuf+i) = 0x0;

 }

 munmap(fbbuf, fbsize);

 close(fbfd);

}

We look at another frame buffer application when we learn to access memory regions
from user space in Chapter 19, “Drivers in User Space.”

Frame Buffer Drivers

Now that you have an idea of the frame buffer API and how it provides hardware inde-
pendence, let’s discover the architecture of a low-level frame buffer device driver using
the example of a navigation system.

Device Example: Navigation System

Figure 12.6 shows video operation on an example vehicle navigation system built
around an embedded SoC. A GPS receiver streams coordinates to the SoC via a UART
interface. An application produces graphics from the received location information
and updates a frame buffer in system memory. The frame buffer driver DMAs this pic-
ture data to display buffers that are part of the SoC’s LCD controller. The controller
forwards the pixel data to the QVGA LCD panel for display.

Our goal is to develop the video software for this system. Let’s assume that Linux
supports the SoC used on this navigation device and that all architecture- dependent
services such as DMA are supported by the kernel.

One possible hardware implementation of the device shown in Figure 12.6 is by using a
Freescale i.MX21 SoC. The CPU core in that case is an ARM9 core, and the on-chip video
controller is the Liquid Crystal Display Controller (LCDC). SoCs commonly have a high-
performance internal local bus that connects to controllers such as DRAM and video. In
the case of the iMX.21, this bus is called the Advanced High-Performance Bus (AHB). The
LCDC connects to the AHB.

The navigation system’s video software is broadly architected as a GPS application
operating over a low-level frame buffer driver for the LCD controller. The applica-
tion fetches location coordinates from the GPS receiver by reading /dev/ttySX, where
X is the UART number connected to the receiver. It then translates the geographic fi x
information into a picture and writes the pixel data to the frame buffer associated with
the LCD controller. This is done on the lines of Listing 12.1, except that picture data
is dispatched rather than zeros to clear the screen.

Frame Buffer Drivers 365

366 Chapter 12 Video Drivers

Embedded SoC

CPU
Core

GPS
Receiver

B
uffer

LCD Controller

Internal Local Bus

QVGA
LCD
Panel

UART
DRAM

Frame Buffer

DMA

FIGURE 12.6 Display on a Linux navigation device.

 The rest of this section focuses only on the low-level frame buffer device driver. Like
many other driver subsystems, the full complement of facilities, modes, and options
offered by the frame buffer core layer are complex and can be learned only with cod-
ing experience. The frame buffer driver for the example navigation system is relatively
simplistic and is only a starting point for deeper explorations.

Table 12.1 describes the register model of the LCD controller shown in Figure 12.6.
The frame buffer driver in Listing 12.2 operates over these registers.

TABLE 12.1 Register Layout of the LCD Controller Shown in Figure 12.6

 Register Name Used to Configure

 SIZE_REG LCD panel’s maximum X and Y dimensions

 HSYNC_REG HSYNC duration

 VSYNC_REG VSYNC duration

 CONF_REG Bits per pixel, pixel polarity, clock dividers for generating pixclock, color/monochrome
mode, and so on

 CTRL_REG Enable/disable LCD controller, clocks, and DMA

 DMA_REG Frame buffer’s DMA start address, burst length, and watermark sizes

 STATUS_REG Status values

 CONTRAST_REG Contrast level

Our frame buffer driver (called myfb) is implemented as a platform driver in List-
ing 12.2. As you learned in Chapter 6, a platform is a pseudo bus usually used to
connect lightweight devices integrated into SoCs, with the kernel’s device model.
Architecture-specifi c setup code (in arch/your-arch/your-platform/) adds the platform
using platform_device_add(); but for simplicity, the probe() method of the
myfb driver performs this before registering itself as a platform driver. Refer back to
the section “Device Example: Cell Phone” in Chapter 6 for the general architecture of
a platform driver and associated entry points.

Data Structures

Let’s take a look at the major data structures and methods associated with frame buffer
drivers and then zoom in on myfb. The following two are the main structures:

 1. struct fb_info is the centerpiece data structure of frame buffer drivers. This
structure is defined in include/linux/fb.h as follows:

struct fb_info {

 /* ... */

 struct fb_var_screeninfo var; /* Variable screen information.

 Discussed earlier. */

 struct fb_fix_screeninfo fix; /* Fixed screen information.

 Discussed earlier. */

 /* ... */

 struct fb_cmap cmap; /* Color map.

 Discussed earlier. */

 /* ... */

 struct fb_ops *fbops; /* Driver operations.

 Discussed next. */

 /* ... */

 char __iomem *screen_base; /* Frame buffer's

 virtual address */

 unsigned long screen_size; /* Frame buffer's size */

 /* ... */

 /* From here on everything is device dependent */

 void *par; /* Private area */

};

 Memory for fb_info is allocated by framebuffer_alloc(), a library routine
provided by the frame buffer core. This function also takes the size of a private
area as an argument and appends that to the end of the allocated fb_info. This

Frame Buffer Drivers 367

368 Chapter 12 Video Drivers

private area can be referenced using the par pointer in the fb_info structure.
The semantics of fb_info fields such as fb_var_screeninfo and fb_fix_
screeninfo were discussed in the section “The Frame Buffer API.”

 2. The fb_ops structure contains the addresses of all entry points provided by the
low-level frame buffer driver. The first few methods in fb_ops are necessary for
the functioning of the driver, while the remaining are optional ones that provide
for graphics acceleration. The responsibility of each function is briefly explained
within comments:

struct fb_ops {

 struct module *owner;

 /* Driver open */

 int (*fb_open)(struct fb_info *info, int user);

 /* Driver close */

 int (*fb_release)(struct fb_info *info, int user);

 /* ... */

 /* Sanity check on video parameters */

 int (*fb_check_var)(struct fb_var_screeninfo *var,

 struct fb_info *info);

 /* Configure the video controller registers */

 int (*fb_set_par)(struct fb_info *info);

 /* Create pseudo color palette map */

 int (*fb_setcolreg)(unsigned regno, unsigned red,

 unsigned green, unsigned blue,

 unsigned transp, struct fb_info *info);

 /* Blank/unblank display */

 int (*fb_blank)(int blank, struct fb_info *info);

 /* ... */

 /* Accelerated method to fill a rectangle with pixel lines */

 void (*fb_fillrect)(struct fb_info *info,

 const struct fb_fillrect *rect);

 /* Accelerated method to copy a rectangular area from one

 screen region to another */

 void (*fb_copyarea)(struct fb_info *info,

 const struct fb_copyarea *region);

 /* Accelerated method to draw an image to the display */

 void (*fb_imageblit)(struct fb_info *info,

 const struct fb_image *image);

 /* Accelerated method to rotate the display */

 void (*fb_rotate)(struct fb_info *info, int angle);

 /* Ioctl interface to support device-specific commands */

 int (*fb_ioctl)(struct fb_info *info, unsigned int cmd,

 unsigned long arg);

 /* ... */

};

Let’s now look at the driver methods that Listing 12.2 implements for the myfb
driver.

Checking and Setting Parameters

The fb_check_var() method performs a sanity check of variables such as X-resolu-
tion, Y-resolution, and bits per pixel. So, if you use fbset to set an X-resolution less
than the minimum supported by the LCD controller (64 in our example), this func-
tion will limit it to the minimum allowed by the hardware.

fb_check_var() also sets the appropriate RGB format. Our example uses 16 bits
per pixel, and the controller maps each data word in the frame buffer into the com-
monly used RGB565 code: 5 bits for red, 6 bits for green, and 5 bits for blue. The
offsets into the data word for each of the three colors are also set accordingly.

The fb_set_par() method confi gures the registers of the LCD controller depend-
ing on the values found in fb_info.var. This includes setting

 • Horizontal sync duration, left margin, and right margin in HSYNC_REG

 • Vertical sync duration, upper margin, and lower margin in VSYNC_REG

 • The visible X and Y resolutions in SIZE_REG

 • DMA parameters in DMA_REG

Assume that the GPS application attempts to alter the resolution of the QVGA display
to 50×50. The following is the train of events:

 1. The display is initially at QVGA resolution:

bash> fbset

mode "320x240-76"

 # D: 5.830 MHz, H: 18.219 kHz, V: 75.914 Hz

 geometry 320 240 320 240 16

 timings 171521 0 0 0 0 0 0

 rgba 5/11,6/5,5/0,0/0

endmode

Frame Buffer Drivers 369

370 Chapter 12 Video Drivers

 2. The application does something like this:

struct fb_var_screeninfo vinfo;

fbfd = open("/dev/fb0", O_RDWR);

vinfo.xres = 50;

vinfo.yres = 50;

vinfo.bits_per_pixel = 8;

ioctl(fbfd, FBIOPUT_VSCREENINFO, &vinfo);

 Note that this is equivalent to the command fbset -xres 50 -yres 50

-depth 8.

 3. The FBIOPUT_VSCREENINFO ioctl in the previous step triggers invocation of
myfb_check_var(). This driver method expresses displeasure and rounds up
the requested resolution to the minimum supported by the hardware, which is
64×64 in this case.

 4. myfb_set_par() is invoked by the frame buffer core, which programs the new
display parameters into LCD controller registers.

 5. fbset now outputs new parameters:

bash> fbset

mode "64x64-1423"

 # D: 5.830 MHz, H: 91.097 kHz, V: 1423.386 Hz

 geometry 64 64 320 240 16

 timings 171521 0 0 0 0 0 0

 rgba 5/11,6/5,5/0,0/0

endmode

Color Modes

Common color modes supported by video hardware include pseudo color and true
color. In the former, index numbers are mapped to RGB pixel encodings. By choosing
a subset of available colors and by using the indices corresponding to the colors instead
of the pixel values themselves, you can reduce demands on frame buffer memory. Your
hardware needs to support this scheme of a modifi able color set (or palette), however.

In true color mode (which is what our example LCD controller supports), modifi -
able palettes are not relevant. However, you still have to satisfy the demands of the
frame buffer console driver, which uses only 16 colors. For this, you have to create a
pseudo palette by encoding the corresponding 16 raw RGB values into bits that can
be directly fed to the hardware. This pseudo palette is stored in the pseudo_palette

fi eld of the fb_info structure. In Listing 12.2, myfb_setcolreg() populates it as
follows:

((u32*)(info->pseudo_palette))[color_index] =

 (red << info->var.red.offset) |

 (green << info->var.green.offset) |

 (blue << info->var.blue.offset) |

 (transp << info->var.transp.offset);

Our LCD controller uses 16 bits per pixel and the RGB565 format, so as you saw ear-
lier, the fb_check_var() method ensures that the red, green and blue values reside at
bit offsets 11, 5, and 0, respectively. In addition to the color index and the red, blue, and
green values, fb_setcolreg()takes in an argument transp, to specify desired trans-
parency effects. This mechanism, called alpha blending, combines the specifi ed pixel
value with the background color. The LCD controller in this example does not support
alpha blending, so myfb_check_var() sets the transp offset and length to zero.

The frame buffer abstraction is powerful enough to insulate applications from the char-
acteristics of the display panel—whether it’s RGB or BGR or something else. The red,
blue, and green offsets set by fb_check_var() percolate to user space via the fb_var_
screeninfo structure populated by the FBIOGET_VSCREENINFO ioctl(). Because appli-
cations such as X Windows are frame buffer-compliant, they paint pixels into the frame
buffer according to the color offsets returned by this ioctl().

Bit lengths used by the RGB encoding (5+6+5=16 in this case) is called the color depth,
which is used by the frame buffer console driver to choose the logo fi le to display dur-
ing boot (see the section “Boot Logo”).

Screen Blanking

The fb_blank() method provides support for blanking and unblanking the display.
This is mainly used for power management. To blank the navigation system’s display
after a 10-minute period of inactivity, do this:

bash> setterm -blank 10

This command percolates down the layers to the frame buffer driver and results in the
invocation of myfb_blank(), which programs appropriate bits in CTRL_REG.

Frame Buffer Drivers 371

372 Chapter 12 Video Drivers

Accelerated Methods

If your user interface needs to perform heavy-duty video operations such as blend-
ing, stretching, moving bitmaps, or dynamic gradient generation, you likely require
graphics acceleration to obtain acceptable performance. Let’s briefl y visit the
fb_ops methods that you can leverage if your video hardware supports graphics
acceleration.

The fb_imageblit() method draws an image to the display. This entry point
provides an opportunity to your driver to leverage any special capabilities that your
video controller might possess to hasten this operation. cfb_imageblit() is a generic
library function provided by the frame buffer core to achieve this if you have non-
accelerated hardware. It’s used, for instance, to output a logo to the screen during
boot up. fb_copyarea() copies a rectangular area from one screen region to another.
cfb_copyarea() provides an optimized way of doing this if your graphics control-
ler does not possess any magic to accelerate this operation. The fb_fillrect()
method speedily fi lls a rectangle with pixel lines. cfb_fillrect() offers a generic
nonaccelerated way to achieve this. The LCD controller in our navigation system does
not provide for acceleration, so the example driver populates these methods using the
generic software-optimized routines offered by the frame buffer core.

DirectFB

DirectFB (www.directfb.org) is a library built on top of the frame buffer interface that provides
a simple window manager framework, hooks for hardware graphics acceleration, and virtual
interfaces that allow coexistence of multiple frame buffer applications. DirectFB, along with an
accelerated frame buffer device driver downstream and a DirectFB-aware rendering engine such
as Cairo (www.cairographics.org) upstream, is sometimes used on graphics-intensive embedded
devices instead of more traditional solutions such as X Windows.

DMA from the Frame Buffer

The LCD controller in the navigation system contains a DMA engine that fetches
picture frames from system memory. The controller dispatches the obtained graph-
ics data to the display panel. The rate of DMA sustains the refresh rate of the display.
A non cacheable frame buffer suitable for coherent access is allocated using dma_
alloc_coherent() from myfb_probe(). (We discussed coherent DMA mapping

www.directfb.org
www.cairographics.org

in Chapter 10, “Peripheral Component Interconnect.”) myfb_set_par() writes this
allocated DMA address to the DMA_REG register in the LCD controller.

When the driver enables DMA by calling myfb_enable_controller(), the con-
troller starts ferrying pixel data from the frame buffer to the display using synchro-
nous DMA. So, when the GPS application maps the frame buffer (using mmap()) and
writes location information to it, the pixels gets painted onto the LCD.

Contrast and Backlight

The LCD controller in the navigation system supports contrast control using the CON-
TRAST_REG register. The driver exports this to user space via myfb_ioctl(). The
GPS application controls contrast as follows:

unsigned int my_fd, desired_contrast_level = 100;

/* Open the frame buffer */

my_fd = open("/dev/fb0", O_RDWR);

ioctl(my_fd, MYFB_SET_BRIGHTNESS, &desired_contrast_level);

The LCD panel on the navigation system is illuminated using a backlight. The pro-
cessor controls the backlight inverter through GPIO lines, so you can turn the light
on or off by wiggling the corresponding pins. The kernel abstracts a generic back-
light interface via sysfs nodes. To tie with this interface, your driver has to populate
a backlight_ops structure with methods for obtaining and updating backlight
brightness, and register it with the kernel using backlight_device_register().
Look inside drivers/video/backlight/ for the backlight interface sources and recursively
grep the drivers/ tree for backlight_device_register() to locate video drivers
that use this interface. Listing 12.2 does not implement backlight manipulation
operations.

LISTING 12.2 Frame Buffer Driver for the Navigation System

#include <linux/fb.h>

#include <linux/dma-mapping.h>

#include <linux/platform_device.h>

/* Address map of LCD controller registers */

#define LCD_CONTROLLER_BASE 0x01000D00

#define SIZE_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE))

#define HSYNC_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 4))

Frame Buffer Drivers 373

374 Chapter 12 Video Drivers

#define VSYNC_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 8))

#define CONF_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 12))

#define CTRL_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 16))

#define DMA_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 20))

#define STATUS_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 24))

#define CONTRAST_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 28))

#define LCD_CONTROLLER_SIZE 32

/* Resources for the LCD controller platform device */

static struct resource myfb_resources[] = {

 [0] = {

 .start = LCD_CONTROLLER_BASE,

 .end = LCD_CONTROLLER_SIZE,

 .flags = IORESOURCE_MEM,

 },

};

/* Platform device definition */

static struct platform_device myfb_device = {

 .name = "myfb",

 .id = 0,

 .dev = {

 .coherent_dma_mask = 0xffffffff,

 },

 .num_resources = ARRAY_SIZE(myfb_resources),

 .resource = myfb_resources,

};

/* Set LCD controller parameters */

static int

myfb_set_par(struct fb_info *info)

{

 unsigned long adjusted_fb_start;

 struct fb_var_screeninfo *var = &info->var;

 struct fb_fix_screeninfo *fix = &info->fix;

 /* Top 16 bits of HSYNC_REG hold HSYNC duration, next 8 contain

 the left margin, while the bottom 8 house the right margin */

 HSYNC_REG = (var->hsync_len << 16) |

 (var->left_margin << 8)|

 (var->right_margin);

 /* Top 16 bits of VSYNC_REG hold VSYNC duration, next 8 contain

 the upper margin, while the bottom 8 house the lower margin */

 VSYNC_REG = (var->vsync_len << 16) |

 (var->upper_margin << 8)|

 (var->lower_margin);

 /* Top 16 bits of SIZE_REG hold xres, bottom 16 hold yres */

 SIZE_REG = (var->xres << 16) | (var->yres);

 /* Set bits per pixel, pixel polarity, clock dividers for

 the pixclock, and color/monochrome mode in CONF_REG */

 /* ... */

 /* Fill DMA_REG with the start address of the frame buffer

 coherently allocated from myfb_probe(). Adjust this address

 to account for any offset to the start of screen area */

 adjusted_fb_start = fix->smem_start +

 (var->yoffset * var->xres_virtual + var->xoffset) *

 (var->bits_per_pixel) / 8;

 __raw_writel(adjusted_fb_start, (unsigned long *)DMA_REG);

 /* Set the DMA burst length and watermark sizes in DMA_REG */

 /* ... */

 /* Set fixed information */

 fix->accel = FB_ACCEL_NONE; /* No hardware acceleration */

 fix->visual = FB_VISUAL_TRUECOLOR; /* True color mode */

 fix->line_length = var->xres_virtual * var->bits_per_pixel/8;

 return 0;

}

/* Enable LCD controller */

static void

myfb_enable_controller(struct fb_info *info)

{

 /* Enable LCD controller, start DMA, enable clocks and power

 by writing to CTRL_REG */

 /* ... */

}

Frame Buffer Drivers 375

376 Chapter 12 Video Drivers

/* Disable LCD controller */

static void

myfb_disable_controller(struct fb_info *info)

{

 /* Disable LCD controller, stop DMA, disable clocks and power

 by writing to CTRL_REG */

 /* ... */

}

/* Sanity check and adjustment of variables */

static int

myfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)

{

 /* Round up to the minimum resolution supported by

 the LCD controller */

 if (var->xres < 64) var->xres = 64;

 if (var->yres < 64) var->yres = 64;

 /* ... */

 /* This hardware supports the RGB565 color format.

 See the section "Color Modes" for more details */

 if (var->bits_per_pixel == 16) {

 /* Encoding Red */

 var->red.length = 5;

 var->red.offset = 11;

 /* Encoding Green */

 var->green.length = 6;

 var->green.offset = 5;

 /* Encoding Blue */

 var->blue.length = 5;

 var->blue.offset = 0;

 /* No hardware support for alpha blending */

 var->transp.length = 0;

 var->transp.offset = 0;

 }

 return 0;

}

/* Blank/unblank screen */

static int

myfb_blank(int blank_mode, struct fb_info *info)

{

 switch (blank_mode) {

 case FB_BLANK_POWERDOWN:

 case FB_BLANK_VSYNC_SUSPEND:

 case FB_BLANK_HSYNC_SUSPEND:

 case FB_BLANK_NORMAL:

 myfb_disable_controller(info);

 break;

 case FB_BLANK_UNBLANK:

 myfb_enable_controller(info);

 break;

 }

 return 0;

}

/* Configure pseudo color palette map */

static int

myfb_setcolreg(u_int color_index, u_int red, u_int green,

 u_int blue, u_int transp, struct fb_info *info)

{

 if (info->fix.visual == FB_VISUAL_TRUECOLOR) {

 /* Do any required translations to convert red, blue, green and

 transp, to values that can be directly fed to the hardware */

 /* ... */

 ((u32 *)(info->pseudo_palette))[color_index] =

 (red << info->var.red.offset) |

 (green << info->var.green.offset) |

 (blue << info->var.blue.offset) |

 (transp << info->var.transp.offset);

 }

 return 0;

}

/* Device-specific ioctl definition */

#define MYFB_SET_BRIGHTNESS _IOW('M', 3, int8_t)

/* Device-specific ioctl */

static int

myfb_ioctl(struct fb_info *info, unsigned int cmd,

 unsigned long arg)

{

Frame Buffer Drivers 377

378 Chapter 12 Video Drivers

 u32 blevel ;

 switch (cmd) {

 case MYFB_SET_BRIGHTNESS :

 copy_from_user((void *)&blevel, (void *)arg,

 sizeof(blevel)) ;

 /* Write blevel to CONTRAST_REG */

 /* ... */

 break;

 default:

 return –EINVAL;

 }

 return 0;

}

/* The fb_ops structure */

static struct fb_ops myfb_ops = {

 .owner = THIS_MODULE,

 .fb_check_var = myfb_check_var,/* Sanity check */

 .fb_set_par = myfb_set_par, /* Program controller registers */

 .fb_setcolreg = myfb_setcolreg,/* Set color map */

 .fb_blank = myfb_blank, /* Blank/unblank display */

 .fb_fillrect = cfb_fillrect, /* Generic function to fill

 rectangle */

 .fb_copyarea = cfb_copyarea, /* Generic function to copy area */

 .fb_imageblit = cfb_imageblit, /* Generic function to draw */

 .fb_ioctl = myfb_ioctl, /* Device-specific ioctl */

};

/* Platform driver's probe() routine */

static int __init

myfb_probe(struct platform_device *pdev)

{

 struct fb_info *info;

 struct resource *res;

 info = framebuffer_alloc(0, &pdev->dev);

 /* ... */

 /* Obtain the associated resource defined while registering the

 corresponding platform_device */

 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

 /* Get the kernel's sanction for using the I/O memory chunk

 starting from LCD_CONTROLLER_BASE and having a size of

 LCD_CONTROLLER_SIZE bytes */

 res = request_mem_region(res->start, res->end - res->start + 1,

 pdev->name);

 /* Fill the fb_info structure with fixed (info->fix) and variable

 (info->var) values such as frame buffer length, xres, yres,

 bits_per_pixel, fbops, cmap, etc */

 initialize_fb_info(info, pdev); /* Not expanded */

 info->fbops = &myfb_ops;

 fb_alloc_cmap(&info->cmap, 16, 0);

 /* DMA-map the frame buffer memory coherently. info->screen_base

 holds the CPU address of the mapped buffer,

 info->fix.smem_start carries the associated hardware address */

 info->screen_base = dma_alloc_coherent(0, info->fix.smem_len,

 (dma_addr_t *)&info->fix.smem_start,

 GFP_DMA | GFP_KERNEL);

 /* Set the information in info->var to the appropriate

 LCD controller registers */

 myfb_set_par(info);

 /* Register with the frame buffer core */

 register_framebuffer(info);

 return 0;

}

/* Platform driver's remove() routine */

static int

myfb_remove(struct platform_device *pdev)

{

 struct fb_info *info = platform_get_drvdata(pdev);

 struct resource *res;

 /* Disable screen refresh, turn off DMA,.. */

 myfb_disable_controller(info);

 /* Unregister frame buffer driver */

 unregister_framebuffer(info);

 /* Deallocate color map */

 fb_dealloc_cmap(&info->cmap);

 kfree(info->pseudo_palette);

 /* Reverse of framebuffer_alloc() */

 framebuffer_release(info);

Frame Buffer Drivers 379

380 Chapter 12 Video Drivers

 /* Release memory region */

 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

 release_mem_region(res->start, res->end - res->start + 1);

 platform_set_drvdata(pdev, NULL);

 return 0;

}

/* The platform driver structure */

static struct platform_driver myfb_driver = {

 .probe = myfb_probe,

 .remove = myfb_remove,

 .driver = {

 .name = "myfb",

 },

};

/* Module Initialization */

int __init

myfb_init(void)

{

 platform_device_add(&myfb_device);

 return platform_driver_register(&myfb_driver);

}

/* Module Exit */

void __exit

myfb_exit(void)

{

 platform_driver_unregister(&myfb_driver);

 platform_device_unregister(&myfb_device);

}

module_init(myfb_init);

module_exit(myfb_exit);

Console Drivers

A console is a device that displays printk() messages generated by the kernel. If
you look at Figure 12.5, you can see that console drivers lie in two tiers: a top level

 constituting drivers such as the virtual terminal driver, the printer console driver, and
the example USB_UART console driver (discussed soon), and bottom-level drivers that
are responsible for advanced operations. Consequently, there are two main interface
defi nition structures used by console drivers. Top-level console drivers revolve around
struct console, which defi nes basic operations such as setup() and write(). Bot-
tom-level drivers center on struct consw that specifi es advanced operations such
as setting cursor properties, console switching, blanking, resizing, and setting palette
information. These structures are defi ned in include/linux/console.h as follows:

 1. struct console {
 char name[8];

 void (*write)(struct console *, const char *, unsigned);

 int (*read)(struct console *, char *, unsigned);

 /* ... */

 void (*unblank)(void);

 int (*setup)(struct console *, char *);

 /* ... */

};

 2. struct consw {
 struct module *owner;

 const char *(*con_startup)(void);

 void (*con_init)(struct vc_data *, int);

 void (*con_deinit)(struct vc_data *);

 void (*con_clear)(struct vc_data *, int, int, int, int);

 void (*con_putc)(struct vc_data *, int, int, int);

 void (*con_putcs)(struct vc_data *,

 const unsigned short *, int, int, int);

 void (*con_cursor)(struct vc_data *, int);

 int (*con_scroll)(struct vc_data *, int, int, int, int);

 /* ... */

};

As you might have guessed by looking at Figure 12.5, most console devices need both
levels of drivers working in tandem. The vt driver is the top-level console driver in
many situations. On PC-compatible systems, the VGA console driver (vgacon) is usu-
ally the bottom-level console driver; whereas on embedded devices, the frame buf-
fer console driver (fbcon) is often the bottom-level driver. Because of the indirection
offered by the frame buffer abstraction, fbcon, unlike other bottom-level console driv-
ers, is hardware-independent.

Console Drivers 381

382 Chapter 12 Video Drivers

Let’s briefl y look at the architecture of both levels of console drivers:

 • The top-level driver populates a struct console with prescribed entry points
and registers it with the kernel using register_console(). Unregistering is
accomplished using unregister_console(). This is the driver that interacts
with printk(). The entry points belonging to this driver call on the services of
the associated bottom-level console driver.

 • The bottom-level console driver populates a struct consw with specifi ed
entry points and registers it with the kernel using register_con_driver().
Unregistering is done using unregister_con_driver(). When the system
supports multiple console drivers, the driver might instead invoke take_over_
console() to register itself and take over the existing console. give_up_
console() accomplishes the reverse. For conventional displays, bottom-level
drivers interact with the top-level vt console driver and the vc_screen character
driver that allows access to virtual console memory.

Some simple consoles, such as line printers and the USB_UART discussed next, need
only a top-level console driver.

The fbcon driver in the 2.6 kernel also supports console rotation. Display panels
on PDAs and cell phones are usually mounted in portrait orientation, whereas auto-
motive dashboards and IP phones are examples of systems where the display panel
is likely to be in landscape mode. Sometimes, due to economics or other factors, an
embedded device may require a landscape LCD to be mounted in portrait mode or
vice versa. Console rotation support comes handy in such situations. Because fbcon is
hardware-independent, the console rotation implementation is also generic. To enable
console rotation, enable CONFIG_FRAMEBUFFER_CONSOLE_ROTATION during kernel
confi guration and add fbcon=rotate:X to the kernel command line, where X is 0
for normal orientation, 1 for 90-degree rotation, 2 for 180-degree rotation, and 3 for
270-degree rotation.

Device Example: Cell Phone Revisited

To learn how to write console drivers, let’s revisit the Linux cell phone that we used in
Chapter 6. Our task in this section is to develop a console driver that operates over the
USB_UARTs in the cell phone. For convenience, Figure 12.7 reproduces the cell phone
from Figure 6.5 in Chapter 6. Let’s write a console driver that gets printk() mes-
sages out of the door via a USB_UART. The messages are picked up by a PC host and
displayed to the user via a terminal emulator session.

Listing 12.3 develops the console driver that works over the USB_UARTs. The usb_
uart_port[] structure and a few defi nitions used by the USB_UART driver in Chap-
ter 6 are included in this listing, too, to create a complete driver. Comments associated
with the listing explain the driver’s operation.

Figure 12.5 shows the position of our example USB_UART console driver within the
Linux-Video subsystem. As you can see, the USB_UART is a simple device that needs
only a top-level console driver.

Linux Cell Phone

Cell Phone’s console over USB

GSM/GPRS

UART1

UART2

UART3

UART4

Serial

USB

USB

Serial

/dev/ttyUU1

/dev/ttyUU0

/dev/ttyUSB0

USB-to-Serial
Converter chip

USB-to-Serial
Converter chip

Bluetooth

Embedded SoC CPLD

FIGURE 12.7 Console over USB_UART.

LISTING 12.3 Console over USB_UART

#include <linux/console.h>

#include <linux/serial_core.h>

#include <asm/io.h>

#define USB_UART_PORTS 2 /* The cell phone has 2

 USB_UART ports */

/* Each USB_UART has a 3-byte register set consisting of

 UU_STATUS_REGISTER at offset 0, UU_READ_DATA_REGISTER at

 offset 1, and UU_WRITE_DATA_REGISTER at offset 2, as shown

 in Table One of Chapter 6, "Serial Drivers" */

Console Drivers 383

384 Chapter 12 Video Drivers

#define USB_UART1_BASE 0xe8000000 /* Memory base for USB_UART1 */

#define USB_UART2_BASE 0xe9000000 /* Memory base for USB_UART1 */

#define USB_UART_REGISTER_SPACE 0x3

/* Semantics of bits in the status register */

#define USB_UART_TX_FULL 0x20

#define USB_UART_RX_EMPTY 0x10

#define USB_UART_STATUS 0x0F

#define USB_UART1_IRQ 3

#define USB_UART2_IRQ 4

#define USB_UART_CLK_FREQ 16000000

#define USB_UART_FIFO_SIZE 32

/* Parameters of each supported USB_UART port */

static struct uart_port usb_uart_port[] = {

 {

 .mapbase = (unsigned int)USB_UART1_BASE,

 .iotype = UPIO_MEM, /* Memory mapped */

 .irq = USB_UART1_IRQ, /* IRQ */

 .uartclk = USB_UART_CLK_FREQ, /* Clock HZ */

 .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */

 .flags = UPF_BOOT_AUTOCONF, /* UART port flag */

 .line = 0, /* UART Line number */

 },

 {

 .mapbase = (unsigned int)USB_UART2_BASE,

 .iotype = UPIO_MEM, /* Memory mapped */

 .irq = USB_UART2_IRQ, /* IRQ */

 .uartclk = USB_UART_CLK_FREQ, /* CLock HZ */

 .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */

 .flags = UPF_BOOT_AUTOCONF, /* UART port flag */

 .line = 1, /* UART Line number */

 }

};

/* Write a character to the USB_UART port */

static void

usb_uart_putc(struct uart_port *port, unsigned char c)

{

 /* Wait until there is space in the TX FIFO of the USB_UART.

 Sense this by looking at the USB_UART_TX_FULL

 bit in the status register */

 while (__raw_readb(port->membase) & USB_UART_TX_FULL);

 /* Write the character to the data port*/

 __raw_writeb(c, (port->membase+1));

}

/* Console write */

static void

usb_uart_console_write(struct console *co, const char *s,

 u_int count)

{

 int i;

 /* Write each character */

 for (i = 0; i < count; i++, s++) {

 usb_uart_putc(&usb_uart_port[co->index], *s);

 }

}

/* Get communication parameters */

static void __init

usb_uart_console_get_options(struct uart_port *port,

 int *baud, int *parity, int *bits)

{

 /* Read the current settings (possibly set by a bootloader)

 or return default values for parity, number of data bits,

 and baud rate */

 *parity = 'n';

 *bits = 8;

 *baud = 115200;

}

/* Setup console communication parameters */

static int __init

usb_uart_console_setup(struct console *co, char *options)

{

 struct uart_port *port;

 int baud, bits, parity, flow;

 /* Validate port number and get a handle to the

 appropriate structure */

 if (co->index == -1 || co->index >= USB_UART_PORTS) {

 co->index = 0;

Console Drivers 385

386 Chapter 12 Video Drivers

 }

 port = &usb_uart_port[co->index];

 /* Use functions offered by the serial layer to parse options */

 if (options) {

 uart_parse_options(options, &baud, &parity, &bits, &flow);

 } else {

 usb_uart_console_get_options(port, &baud, &parity, &bits);

 }

 return uart_set_options(port, co, baud, parity, bits, flow);

}

/* Populate the console structure */

static struct console usb_uart_console = {

 .name = "ttyUU", /* Console name */

 .write = usb_uart_console_write, /* How to printk to the

 console */

 .device = uart_console_device, /* Provided by the serial core */

 .setup = usb_uart_console_setup, /* How to setup the console */

 .flags = CON_PRINTBUFFER, /* Default flag */

 .index = -1, /* Init to invalid value */

};

/* Console Initialization */

static int __init

usb_uart_console_init(void)

{

 /* ... */

 /* Register this console */

 register_console(&usb_uart_console);

 return 0;

}

console_initcall(usb_uart_console_init); /* Mark console init */

After this driver has been built as part of the kernel, you can activate it by appending
console=ttyUUX (where X is 0 or 1) to the kernel command line.

Boot Logo

A popular feature offered by the frame buffer subsystem is the boot logo. To display
a logo, enable CONFIG_LOGO during kernel confi guration and select an available logo.
You may also add a custom logo image in the drivers/video/logo/ directory.

CLUT224 is a commonly used boot logo image format that supports 224 colors.
The working of this format is similar to pseudo palettes described in the section “Color
Modes.” A CLUT224 image is a C fi le containing two structures:

 • A CLUT (Color Look Up Table), which is a character array of 224 RGB tuples
(thus having a size of 224*3 bytes). Each 3-byte CLUT element is a combina-
tion of red, green, and blue colors.

 • A data array whose each byte is an index into the CLUT. The indices start at
32 and extend until 255 (thus supporting 224 colors). Index 32 refers to the
fi rst element in the CLUT. The logo manipulation code (in drivers/video/fbmem.
c) creates frame buffer pixel data from the CLUT tuple corresponding to each
index in the data array. Image display is accomplished using the low-level frame
buffer driver’s fb_imageblit() method, as indicated in the section “Acceler-
ated Methods.”

Other supported logo formats are the 16-color vga16 and the black-and-white mono.
Scripts are available in the top-level scripts/ directory to convert standard Portable Pixel
Map (PPM) fi les to the supported logo formats.

If the frame buffer device is also the console, boot messages scroll under the logo.
You may prefer to disable console messages on production-level systems (by adding
console=/dev/null to the kernel command line) and display a customer-supplied
CLUT224 “splash screen” image as the boot logo.

Debugging

The virtual frame buffer driver, enabled by setting CONFIG_FB_VIRTUAL in the con-
fi guration menu, operates over a pseudo graphics adapter. You can use this driver’s
assistance to debug the frame buffer subsystem.

Some frame buffer drivers, such as intelfb, offer an additional confi guration option
that you may enable to generate driver-specifi c debug information.

Debugging 387

388 Chapter 12 Video Drivers

To discuss issues related to frame buffer drivers, subscribe to the linux-fbdev-devel
mailing list, https://lists.sourceforge.net/lists/listinfo/linux-fbdev-devel/.

Debugging console drivers is not an easy job because you can’t call printk() from
inside the driver. If you have a spare console device such as a serial port, you can imple-
ment a UART/tty form factor of your console driver fi rst (as we did in Chapter 6
for the USB_UART device used in this chapter) and debug that driver by operating
on /dev/tty and printing messages to the spare console. You can then repackage the
debugged code regions in the form of a console driver.

Looking at the Sources

The frame buffer core layer and low-level frame buffer drivers reside in the drivers/
video/ directory. Generic frame buffer structures are defi ned in include/linux/fb.h,
whereas chipset-specifi c headers stay inside include/video/. The fbmem driver drivers/
video/fbmem.c, creates the /dev/fbX character devices and is the front end for handling
frame buffer ioctl commands issued by user applications.

The intelfb driver drivers/video/intelfb/*, is the low-level frame buffer driver for sev-
eral Intel graphics controllers such as the one integrated with the 855 GME North
Bridge. The radeonfb driver drivers/video/aty/*, is the frame buffer driver for Radeon
Mobility AGP graphics hardware from ATI technologies. The source fi les drivers/
video/*fb.c, are all frame buffer drivers for graphics controllers, including those inte-
grated into several SoCs. You can use drivers/video/skeletonfb.c as the starting point if
you are writing a custom low-level frame buffer driver. Look at Documentation/fb/* for
more documentation on the frame buffer layer.

The home page of the Linux frame buffer project is www.linux-fbdev.org. This
website contains HOWTOs, links to frame buffer drivers and utilities, and pointers to
related web pages.

Console drivers, both frame buffer-based and otherwise, live inside drivers/video/
console/. To fi nd out how printk() logs kernel messages to an internal buffer and calls
console drivers, look at kernel/printk.c.

Table 12.2 contains the main data structures used in this chapter and their location
in the source tree. Table 12.3 lists the main kernel programming interfaces that you
used in this chapter with the location of their defi nitions.

www.linux-fbdev.org
https://lists.sourceforge.net/lists/listinfo/linux-fbdev-devel/

TABLE 12.2 Summary of Data Structures

Data Structure Location Description

fb_info include/linux/fb.h Central data structure used by low-level frame buffer
drivers

fb_ops include/linux/fb.h Contains addresses of all entry points provided by
low-level frame buffer drivers

fb_var_screeninfo include/linux/fb.h Contains variable information pertaining to video
hardware such as the X-resolution, Y-resolution, and
HYSNC/VSYNC durations

fb_fix_screeninfo include/linux/fb.h Fixed information about video hardware such as the
start address of the frame buffer

fb_cmap include/linux/fb.h The RGB color map for a frame buffer device

console include/linux/console.h Representation of a top-level console driver

consw include/linux/console.h Representation of a bottom-level console driver

TABLE 12.3 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

register_framebuffer() drivers/video/fbmem.c Registers a low-level frame buffer device.

unregister_framebuffer() drivers/video/fbmem.c Releases a low-level frame buffer device.

framebuffer_alloc() drivers/video/fbsysfs.c Allocates memory for an fb_info structure.

framebuffer_release() drivers/video/fbsysfs.c Reverse of framebuffer_alloc().

fb_alloc_cmap() drivers/video/fbcmap.c Allocates color map.

fb_dealloc_cmap() drivers/video/fbcmap.c Frees color map.

dma_alloc_coherent() include/asm-generic/
dma-mapping.h

Allocates and maps a coherent DMA buffer.
See pci_alloc_consistent() in
Chapter 10.

dma_free_coherent() include/asm-generic/
dma-mapping.h

Frees a coherent DMA buffer. See pci_
free_consistent() in Chapter 10.

register_console() kernel/printk.c Registers a top-level console driver.

unregister_console() kernel/printk.c Unregisters a top-level console driver.

register_con_driver()
take_over_console()

drivers/char/vt.c Registers/binds a bottom-level console driver.

unregister_con_driver()
give_up_console()

drivers/char/vt.c Unregisters/unbinds a bottom-level console
driver.

Looking at the Sources 389

This page intentionally left blank

391

13

Audio Drivers

In This Chapter

■ Audio Architecture 392

■ Linux-Sound Subsystem 394

■ Device Example: MP3 Player 396

■ Debugging 412

■ Looking at the Sources 412

392

A udio hardware provides computer systems the capability to generate and
capture sound. Audio is an integral component in both the PC and the

embedded space, for chatting on a laptop, making a call from a cell phone, lis-
tening to an MP3 player, streaming multimedia from a set-top box, or announc-
ing instructions on a medical-grade system. If you run Linux on any of these
devices, you need the services offered by the Linux-Sound subsystem.

In this chapter, let’s find out how the kernel supports audio controllers and
codecs. Let’s learn the architecture of the Linux-Sound subsystem and the pro-
gramming model that it exports.

Audio Architecture

Figure 13.1 shows audio connection on a PC-compatible system. The audio con-
troller on the South Bridge, together with an external codec, interfaces with analog
audio circuitry.

Processor

North Bridge

AC’97
Config
Space

AC’97
Controller

Echo
Canceller

Audio
Amplifier

AC’97
I/O

Space

Audio
CODEC

Hub Interface

CLK

PCI

South Bridge

AC’97 Link

Audio Stream MIC in

MIC

L-out/R-out

Speaker

FIGURE 13.1 Audio in the PC environment.

Embedded
Controller

Echo
Canceller

Audio
Amplifier

Audio
CODEC

CLK

I2C

Control Path

I2S

Audio Path

MIC in

MIC

L-out/R-out

Speaker

FIGURE 13.2 Audio connection on an embedded system.

An audio codec converts digital audio data to analog sound signals for playing through
speakers and performs the reverse operation for recording through a microphone.
Other common audio inputs and outputs that interface with a codec include head-
sets, earphones, handsets, hands-free, line-in, and line-out. A codec also offers mixer
functionality that connects it to a combination of these audio inputs and outputs, and
controls the volume gain of associated audio signals.1

Digital audio data is obtained by sampling analog audio signals at specifi c bit rates
using a technique called pulse code modulation (PCM). CD quality is, for example,
sound sampled at 44.1KHz, using 16 bits to hold each sample. A codec is responsible
for recording audio by sampling at supported PCM bit rates and for playing audio
originally sampled at different PCM bit rates.

A sound card may support one or more codecs. Each codec may, in turn, support
one or more audio substreams in mono or stereo.

The Audio Codec’97 (AC’97) and the Inter-IC Sound (I2S) bus are examples of
industry standard interfaces that connect audio controllers to codecs:

 • The Intel AC’97 specification, downloadable from http://download.intel.com/,
specifies the semantics and locations of audio registers. Configuration registers
are part of the audio controller, while the I/O register space is situated inside the
codec. Requests to operate on I/O registers are forwarded by the audio control-
ler to the codec over the AC’97 link. The register that controls line-in volume,
for example, lives at offset 0x10 within the AC’97 I/O space. The PC system in
Figure 13.1 uses AC’97 to communicate with an external codec.

1 This defi nition of a mixer is from a software perspective. Sound mixing or data mixing refers to the capability of some codecs to
mix multiple sound streams and generate a single stream. This is needed, for example, if you want to superimpose an announce-
ment while a voice communication is in progress on an IP phone. The alsa-lib library, discussed in the latter part of this chapter,
supports a plug-in feature called dmix that performs data mixing in software if your codec does not have the capability to per-
form this operation in hardware.

Audio Architecture 393

http://download.intel.com/

394 Chapter 13 Audio Drivers

 • The I2S specifi cation, downloadable from www.nxp.com/acrobat_download/
various/I2SBUS.pdf, is a codec interface standard developed by Philips. The
embedded device shown in Figure 13.2 uses I2S to send audio data to the codec.
Programming the codec’s I/O registers is done via the I2C bus.

AC’97 has limitations pertaining to the number of supported channels and bit rates.
Recent South Bridge chipsets from Intel feature a new technology called High Defi nition
(HD) Audio that offers higher-quality, surround sound, and multistreaming capabilities.

Linux-Sound Subsystem

Advanced Linux Sound Architecture (ALSA) is the sound subsystem of choice in the 2.6
kernel. Open Sound System (OSS), the sound layer in the 2.4 kernel, is now obsolete
and depreciated. To help the transition from OSS to ALSA, the latter provides OSS
emulation that allows applications conforming to the OSS API to run unchanged over
ALSA. Linux-Sound frameworks such as ALSA and OSS render audio applications
independent of the underlying hardware, just as codec standards such as AC’97 and
I2S do away with the need of writing separate audio drivers for each sound card.

Take a look at Figure 13.3 to understand the architecture of the Linux-Sound sub-
system. The constituent pieces of the subsystem are as follows:

 • The sound core, which is a code base consisting of routines and structures avail-
able to other components of the Linux-Sound layer. Like the core layers belong-
ing to other driver subsystems, the sound core provides a level of indirection
that renders each component in the sound subsystem independent of the oth-
ers. The core also plays an important role in exporting the ALSA API to higher
applications. The following /dev/snd/* device nodes shown in Figure 13.3 are cre-
ated and managed by the ALSA core: /dev/snd/controlC0 is a control node (that
applications use for controlling volume gain and such), /dev/snd/pcmC0D0p is a
playback device (p at the end of the device name stands for playback), and /dev/
snd/pcmC0D0c is a recording device (c at the end of the device name stands for
capture). In these device names, the integer following C is the card number, and
that after D is the device number. An ALSA driver for a card that has a voice codec
for telephony and a stereo codec for music might export /dev/snd/pcmC0D0p to
read audio streams destined for the former and /dev/snd/pcmC0D1p to channel
music bound for the latter.

www.nxp.com/acrobat_download/various/I2SBUS.pdf
www.nxp.com/acrobat_download/various/I2SBUS.pdf

 • Audio controller drivers specific to controller hardware. To drive the audio con-
troller present in the Intel ICH South Bridge chipsets, for example, use the
snd_intel8x0 driver.

 • Audio codec interfaces that assist communication between controllers and
codecs. For AC’97 codecs, use the snd_ac97_codec and ac97_bus modules.

 • An OSS emulation layer that acts as a conduit between OSS-aware applications
and the ALSA-enabled kernel. This layer exports /dev nodes that mirror what the
OSS layer offered in the 2.4 kernels. These nodes, such as /dev/dsp, /dev/adsp, and
/dev/mixer, allow OSS applications to run unchanged over ALSA. The OSS /dev/
dsp node maps to the ALSA nodes /dev/snd/pcmC0D0*, /dev/adsp corresponds to
/dev/snd/pcmC0D1*, and /dev/mixer associates with /dev/snd/controlC0.

 • Procfs and sysfs interface implementations for accessing information via /proc/
asound/ and /sys/class/sound/.

 • The user-space ALSA library alsa-lib, which provides the libasound.so object.
This library eases the job of the ALSA application programmer by offering sev-
eral canned routines to access ALSA drivers.

 • The alsa-utils package that includes utilities such as alsamixer, amixer, alsactl,
and aplay. Use alsamixer or amixer to change volume levels of audio signals such
as line-in, line-out, or microphone, and alsactl to control settings for ALSA
drivers. To play audio over ALSA, use aplay.

To obtain a better understanding of the architecture of the Linux-Sound layer, let’s
look at the ALSA driver modules running on a laptop in tandem with Figure 13.3
(→ is used to attach comments):

bash> lsmod|grep snd

snd_intel8x0 33148 0 → Audio Controller Driver

snd_ac97_codec 92000 1 snd_intel8x0 → Audio Codec Interface

ac97_bus 3104 1 snd_ac97_codec → Audio Codec Bus

snd_pcm_oss 40512 0 → OSS Emulation

snd_mixer_oss 16640 1 snd_pcm_oss → OSS Volume Control

snd_pcm 73316 3 snd_intel8x0,snd_ac97_codec,snd_pcm_oss

→ Core layer

snd_timer 22148 1 snd_pcm → Core layer

snd 50820 6 snd_intel8x0,snd_ac97_codec,snd_pcm_oss,

 snd_mixer_oss,snd_pcm,snd_timer

→ Core layer

soundcore 8960 1 snd → Core layer

snd_page_alloc 10344 2 snd_intel8x0,snd_pcm → Core layer

Linux-Sound Subsystem 395

396 Chapter 13 Audio Drivers

Sound
 Core

Kernel Space

Kernel Space

snd, snd_pcm,
snd_timer,
snd_page_alloc sound_core

 /dev/dsp
 /dev/adsp
 /dev/mixer
 /dev/audio

/dev/snd/pcmC0D0c
/dev/snd/pcmC0D0p
…
/dev/snd/controlC0
/dev/snd/timer

 OSS Emulation Layer
(snd_pcm_oss ,snd_mixer_oss)

Applications
conforming to the
ALSA API (aplay,
arecord, mplayer,…)

alsa-lib

 Audio
Controller
 Driver

 Audio
 Codec
 Interface

/proc/asound/
/sys/class/sound/

User Space

Applications
conforming to the
OSS API (rawplay,
rawrec,…)

Hardware

Audio
Controller

Audio
CODEC

MIC

Speaker

FIGURE 13.3 Linux-Sound (ALSA) subsystem.

Device Example: MP3 Player

Figure 13.4 shows audio operation on an example Linux Bluetooth MP3 player built
around an embedded SoC. You can program the Linux cell phone (that we used in
Chapter 6, “Serial Drivers,” and Chapter 12, “Video Drivers”) to download songs
from the Internet at night when phone rates are presumably cheaper and upload it to
the MP3 player’s Compact Flash (CF) disk via Bluetooth so that you can listen to the
songs next day during offi ce commute.

Our task is to develop the audio software for this device. An application on the
player reads songs from the CF disk and decodes it into system memory. A kernel ALSA
driver gathers the music data from system memory and dispatches it to transmit buffers

that are part of the SoC’s audio controller. This PCM data is forwarded to the codec,
which plays the music through the device’s speaker. As in the case of the navigation
system discussed in the preceding chapter, we will assume that Linux supports this SoC,
and that all architecture-dependent services such as DMA are supported by the kernel.

The audio software for the MP3 player thus consists of two parts:

 1. A user program that decodes MP3 files reads from the CF disk and converts it
into raw PCM. To write a native ALSA decoder application, you can leverage
the helper routines offered by the alsa-lib library. The section “ALSA Program-
ming” looks at how ALSA applications interact with ALSA drivers.

You also have the option of customizing public domain MP3 players such as
madplay (http://sourceforge.net/projects/mad/) to suit this device.

 2. A low-level kernel ALSA audio driver. The following section is devoted to writ-
ing this driver.

One possible hardware implementation of the device shown in Figure 13.4 is by using
a PowerPC 405LP SoC and a Texas Instruments TLV320 audio codec. The CPU core in
that case is the 405 processor and the on-chip audio controller is the Codec Serial Inter-
face (CSI). SoCs commonly have a high-performance internal local bus that connects to
controllers, such as DRAM and video, and a separate on-chip peripheral bus to interface
with low-speed peripherals such as serial ports, I2C, and GPIO. In the case of the 405LP,
the former is called the Processor Local Bus (PLB) and the latter is known as the On-chip
Peripheral Bus (OPB). The PCMCIA/CF controller hangs off the PLB, whereas the audio
controller interface connects to the OPB.

SoC

CPU
Core

Compact
Flash

Memory
Card

MP3 Media

PCMCIA
Controller

B
uffer

Audio Controller Interface

Internal Local Bus

Peripheral Bus

PCM

UART

CF Slot

Audio
Codec

Bluetooth
DRAM

DMA

FIGURE 13.4 Audio on a Linux MP3 player.

Device Example: MP3 Player 397

http://sourceforge.net/projects/mad/

398 Chapter 13 Audio Drivers

 TABLE 13.1 Register Layout of the Audio Hardware in Figure 13.4

 Register Name Description

VOLUME_REGISTER Controls the codec’s global volume.

SAMPLING_RATE_REGISTER Sets the codec’s sampling rate for digital-to-analog conversion.

CLOCK_INPUT_REGISTER Configures the codec’s clock source, divisors, and so on.

CONTROL_REGISTER Enables interrupts, configures interrupt cause (such as completion of a
buffer transfer), resets hardware, enables/disables bus operation, and so on.

STATUS_REGISTER Status of codec audio events.

DMA_ADDRESS_REGISTER The example hardware supports a single DMA buffer descriptor. Real-world
cards may support multiple descriptors and may have additional registers
to hold parameters such as the descriptor that is currently being processed,
the position of the current sample inside the buffer, and so on. DMA is
performed to the buffers in the audio controller, so this register resides in
the controller’s memory space.

DMA_SIZE_REGISTER Holds the size of the DMA transfer to/from the SoC. This register also
resides inside the audio controller.

An audio driver is built out of three main ingredients:

 1. Routines that handle playback

 2. Routines that handle capture

 3. Mixer control functions

Our driver implements playback, but does not support recording because the MP3
player in the example has no microphone. The driver also simplifi es the mixer func-
tion. Rather than offering the full compliment of volume controls, such as speaker,
earphone, and line-out, it allows only a single generic volume control.

The register layout of the MP3 player’s audio hardware shown in Table 13.1 mir-
rors these assumptions and simplifi cations, and does not conform to standards such
as AC’97 alluded to earlier. So, the codec has a SAMPLING_RATE_REGISTER to con-
fi gure the playback (digital-to-analog) sampling rate but no registers to set the capture
(analog-to-digital) rate. The VOLUME_REGISTER confi gures a single global volume.

Listing 13.1 is a skeletal ALSA audio driver for the MP3 player and liberally employs
pseudo code (within comments) to cut out extraneous detail. ALSA is a sophisticated
framework, and conforming audio drivers are usually several thousand lines long. List-
ing 13.1 only gets you started on your audio driver explorations. Continue your learn-
ing by falling back to the mighty Linux-Sound sources inside the top-level sound/
directory.

Driver Methods and Structures

Our example driver is implemented as a platform driver. Let’s take a look at the steps
performed by the platform driver’s probe() method, mycard_audio_probe(). We
will digress a bit under each step to explain related concepts and important data struc-
tures that we encounter, and this will take us to other parts of the driver and help tie
things together.

mycard_audio_probe()does the following:

 1. Creates an instance of a sound card by invoking snd_card_new():

struct snd_card *card = snd_card_new(-1, id[dev->id], THIS_MODULE, 0);

The fi rst argument to snd_card_new() is the card index (that identifi es this
card among multiple sound cards in the system), the second argument is the ID
that’ll be stored in the id fi eld of the returned snd_card structure, the third
argument is the owner module, and the last argument is the size of a private
data fi eld that’ll be made available via the private_data fi eld of the returned
snd_card structure (usually to store chip-specifi c data such as interrupt levels
and I/O addresses).

snd_card represents the created sound card and is defi ned as follows in include/
sound/core.h:

struct snd_card {

 int number; /* Card index */

 char id[16]; /* Card ID */

 /* ... */

 struct module *module; /* Owner module */

 void *private_data; /* Private data */

 /* ... */

 struct list_head controls;

 /* All controls for this card */

 struct device *dev; /* Device assigned to this card*/

 /* ... */

};

The remove() counterpart of the probe method mycard_audio_remove(),
releases the snd_card from the ALSA framework using snd_card_free().

Device Example: MP3 Player 399

400 Chapter 13 Audio Drivers

 2. Creates a PCM playback instance and associates it with the card created in
Step 1, using snd_pcm_new():

int snd_pcm_new(struct snd_card *card, char *id,

 int device,

 int playback_count, int capture_count,

 struct snd_pcm **pcm);

The arguments are, respectively, the sound card instance created in Step 1, an
identifi er string, the device index, the number of supported playback streams,
the number of supported capture streams (0 in our example), and a pointer to
store the allocated PCM instance. The allocated PCM instance is defi ned as fol-
lows in include/sound/pcm.h:

struct snd_pcm {

 struct snd_card *card; /* Associated snd_card */

 /* ... */

 struct snd_pcm_str streams[2]; /* Playback and capture streams of this PCM

 component. Each stream may support

 substreams if your h/w supports it

 */

 /* ... */

 struct device *dev; /* Associated hardware

 device */

};

 The snd_device_new() routine lies at the core of snd_pcm_new() and other
similar component instantiation functions.

 3. Connects playback operations with the PCM instance created in Step 2, by calling
snd_pcm_set_ops(). The snd_pcm_ops structure specifies these operations for
transferring PCM audio to the codec. Listing 13.1 accomplishes this as follows:

/* Operators for the PCM playback stream */

static struct snd_pcm_ops mycard_playback_ops = {

 .open = mycard_pb_open, /* Open */

 .close = mycard_pb_close, /* Close */

 .ioctl = snd_pcm_lib_ioctl, /* Use to handle special commands, else

 specify the generic ioctl handler

 snd_pcm_lib_ioctl()*/

 .hw_params = mycard_hw_params, /* Called when higher layers set hardware

 parameters such as audio format. DMA

 buffer allocation is also done from here */

 .hw_free = mycard_hw_free, /* Free resources allocated in

 mycard_hw_params() */

 .prepare = mycard_pb_prepare, /* Prepare to transfer the audio stream.

 Set audio format such as S16_LE

 (explained soon), enable interrupts,.. */

 .trigger = mycard_pb_trigger, /* Called when the PCM engine starts,

 stops, or pauses. The second argument

 specifies why it was called. This

 function cannot go to sleep */

};

/* Connect the operations with the PCM instance */

snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &mycard_playback_ops);

In Listing 13.1, mycard_pb_prepare() confi gures the sampling rate into the
SAMPLING_RATE_REGISTER, clock source into the CLOCK_INPUT_REGISTER,
and transmit complete interrupt enablement into the CONTROL_REGISTER. The
trigger() method, mycard_pb_trigger(), maps an audio buffer populated
by the ALSA framework on-the-fl y using dma_map_single(). (We discussed
streaming DMA in Chapter 10, “Peripheral Component Interconnect.”) The
mapped DMA buffer address is programmed into the DMA_ADDRESS_REGIS-
TER. This register is part of the audio controller in the SoC, unlike the ear-
lier registers that reside inside the codec. The audio controller forwards the
DMA’ed data to the codec for playback.

Another related object is the snd_pcm_hardware structure, which announces
the PCM component’s hardware capabilities. For our example device, this is
defi ned in Listing 13.1 as follows:

/* Hardware capabilities of the PCM playback stream */

static struct snd_pcm_hardware mycard_playback_stereo = {

 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_PAUSE |

 SNDRV_PCM_INFO_RESUME); /* mmap() is supported. The stream has

 pause/resume capabilities */

 .formats = SNDRV_PCM_FMTBIT_S16_LE,/* Signed 16 bits per channel, little

 endian */

 .rates = SNDRV_PCM_RATE_8000_48000,/* DAC Sampling rate range */

 .rate_min = 8000, /* Minimum sampling rate */

 .rate_max = 48000, /* Maximum sampling rate */

 .channels_min = 2, /* Supports a left and a right channel */

 .channels_max = 2, /* Supports a left and a right channel */

 .buffer_bytes_max = 32768, /* Max buffer size */

};

This object is tied with the associated snd_pcm from the open() operator,
mycard_playback_open(), using the PCM runtime instance. Each open PCM

Device Example: MP3 Player 401

402 Chapter 13 Audio Drivers

stream has a runtime object called snd_pcm_runtime that contains all infor-
mation needed to manage that stream. This is a gigantic structure of software
and hardware confi gurations defi ned in include/sound/pcm.h and contains snd_
pcm_hardware as one of its component fi elds.

 4. Preallocates buffers using snd_pcm_lib_preallocate_pages_for_all().
DMA buffers are subsequently obtained from this preallocated area by mycard_
hw_params() using snd_pcm_lib_malloc_pages() and stored in the PCM
runtime instance alluded to in Step 3. mycard_pb_trigger() DMA-maps
this buffer while starting a PCM operation and unmaps it while stopping the
PCM operation.

 5. Associates a mixer control element with the sound card using snd_ctl_add()
for global volume control:

snd_ctl_add(card, snd_ctl_new1(&mycard_playback_vol, &myctl_private));

snd_ctl_new1() takes an snd_kcontrol_new structure as its fi rst argument
and returns a pointer to an snd_kcontrol structure . Listing 13.1 defi nes this
as follows:

static struct snd_kcontrol_new mycard_playback_vol = {

 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,

 /* Ctrl element is of type MIXER */

 .name = "MP3 volume", /* Name */

 .index = 0, /* Codec No: 0 */

 .info = mycard_pb_vol_info, /* Volume info */

 .get = mycard_pb_vol_get, /* Get volume */

 .put = mycard_pb_vol_put, /* Set volume */

};

The snd_kcontrol structure describes a control element. Our driver uses it as
a knob for general volume control. snd_ctl_add() registers an snd_kcontrol
element with the ALSA framework. The constituent control methods are invoked
when user applications such as alsamixer are executed. In Listing 13.1, the snd_
kcontrol put() method mycard_playback_volume_put(), writes requested
volume settings to the codec’s VOLUME_REGISTER.

 6. And finally, registers the sound card with the ALSA framework:
 snd_card_register(card);

codec_write_reg() (used, but left unimplemented in Listing 13.1) writes values
to codec registers by communicating over the bus that connects the audio control-
ler in the SoC to the external codec. If the underlying bus protocol is I2C or SPI, for

example, codec_write_reg() uses the interface functions discussed in Chapter 8,
“The Inter-Integrated Circuit Protocol.”

If you want to create a /proc interface in your driver for dumping registers during
debug or to export a parameter during normal operation, use the services of snd_
card_proc_new() and friends. Listing 13.1 does not use /proc interface fi les.

If you build and load the driver module in Listing 13.1, you will see two new device
nodes appearing on the MP3 player: /dev/snd/pcmC0D0p and /dev/snd/controlC0. The
former is the interface for audio playback, and the latter is the interface for mixer con-
trol. The MP3 decoder application, with the help of alsa-lib, streams music by operat-
ing over these device nodes.

LISTING 13.1 ALSA Driver for the Linux MP3 Player

include <linux/platform_device.h>

#include <linux/soundcard.h>

#include <sound/driver.h>

#include <sound/core.h>

#include <sound/pcm.h>

#include <sound/initval.h>

#include <sound/control.h>

/* Playback rates supported by the codec */

static unsigned int mycard_rates[] = {

 8000,

 48000,

};

/* Hardware constraints for the playback channel */

static struct snd_pcm_hw_constraint_list mycard_playback_rates = {

 .count = ARRAY_SIZE(mycard_rates),

 .list = mycard_rates,

 .mask = 0,

};

static struct platform_device *mycard_device;

static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;

/* Hardware capabilities of the PCM stream */

static struct snd_pcm_hardware mycard_playback_stereo = {

 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_BLOCK_TRANSFER),

 .formats = SNDRV_PCM_FMTBIT_S16_LE, /* 16 bits per channel, little endian */

 .rates = SNDRV_PCM_RATE_8000_48000, /* DAC Sampling rate range */

 .rate_min = 8000, /* Minimum sampling rate */

 .rate_max = 48000, /* Maximum sampling rate */

Device Example: MP3 Player 403

404 Chapter 13 Audio Drivers

 .channels_min = 2, /* Supports a left and a right channel */

 .channels_max = 2, /* Supports a left and a right channel */

 .buffer_bytes_max = 32768, /* Maximum buffer size */

};

/* Open the device in playback mode */

static int

mycard_pb_open(struct snd_pcm_substream *substream)

{

 struct snd_pcm_runtime *runtime = substream->runtime;

 /* Initialize driver structures */

 /* ... */

 /* Initialize codec registers */

 /* ... */

 /* Associate the hardware capabilities of this PCM component */

 runtime->hw = mycard_playback_stereo;

 /* Inform the ALSA framework about the constraints that

 the codec has. For example, in this case, it supports

 PCM sampling rates of 8000Hz and 48000Hz only */

 snd_pcm_hw_constraint_list(runtime, 0,

 SNDRV_PCM_HW_PARAM_RATE,

 &mycard_playback_rates);

 return 0;

}

/* Close */

static int

mycard_pb_close(struct snd_pcm_substream *substream)

{

 /* Disable the codec, stop DMA, free data structures */

 /* ... */

 return 0;

}

/* Write to codec registers by communicating over

 the bus that connects the SoC to the codec */

void

codec_write_reg(uint codec_register, uint value)

{

 /* ... */

}

/* Prepare to transfer an audio stream to the codec */

static int

mycard_pb_prepare(struct snd_pcm_substream *substream)

{

 /* Enable Transmit DMA complete interrupt by writing to

 CONTROL_REGISTER using codec_write_reg() */

 /* Set the sampling rate by writing to SAMPLING_RATE_REGISTER */

 /* Configure clock source and enable clocking by writing

 to CLOCK_INPUT_REGISTER */

 /* Allocate DMA descriptors for audio transfer */

 return 0;

}

/* Audio trigger/stop/.. */

static int

mycard_pb_trigger(struct snd_pcm_substream *substream, int cmd)

{

 switch (cmd) {

 case SNDRV_PCM_TRIGGER_START:

 /* Map the audio substream’s runtime audio buffer (which is an

 offset into runtime->dma_area) using dma_map_single(),

 populate the resulting address to the audio controller’s

 DMA_ADDRESS_REGISTER, and perform DMA */

 /* ... */

 break;

 case SNDRV_PCM_TRIGGER_STOP:

 /* Shut the stream. Unmap DMA buffer using dma_unmap_single() */

 /* ... */

 break;

 default:

 return -EINVAL;

 break;

 }

 return 0;

}

Device Example: MP3 Player 405

406 Chapter 13 Audio Drivers

/* Allocate DMA buffers using memory preallocated for DMA from the

 probe() method. dma_[map|unmap]_single() operate on this area

 later on */

static int

mycard_hw_params(struct snd_pcm_substream *substream,

 struct snd_pcm_hw_params *hw_params)

{

 /* Use preallocated memory from mycard_audio_probe() to

 satisfy this memory request */

 return snd_pcm_lib_malloc_pages(substream,

 params_buffer_bytes(hw_params));

}

/* Reverse of mycard_hw_params() */

static int

mycard_hw_free(struct snd_pcm_substream *substream)

{

 return snd_pcm_lib_free_pages(substream);

}

/* Volume info */

static int

mycard_pb_vol_info(struct snd_kcontrol *kcontrol,

 struct snd_ctl_elem_info *uinfo)

{

 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;

 /* Integer type */

 uinfo->count = 1; /* Number of values */

 uinfo->value.integer.min = 0; /* Minimum volume gain */

 uinfo->value.integer.max = 10; /* Maximum volume gain */

 uinfo->value.integer.step = 1; /* In steps of 1 */

 return 0;

}

/* Playback volume knob */

static int

mycard_pb_vol_put(struct snd_kcontrol *kcontrol,

 struct snd_ctl_elem_value *uvalue)

{

 int global_volume = uvalue->value.integer.value[0];

 /* Write global_volume to VOLUME_REGISTER

 using codec_write_reg() */

 /* ... */

 /* If the volume changed from the current value, return 1.

 If there is an error, return negative code. Else return 0 */

}

/* Get playback volume */

static int

mycard_pb_vol_get(struct snd_kcontrol *kcontrol,

 struct snd_ctl_elem_value *uvalue)

{

 /* Read global_volume from VOLUME_REGISTER

 and return it via uvalue->integer.value[0] */

 /* ... */

 return 0;

}

/* Entry points for the playback mixer */

static struct snd_kcontrol_new mycard_playback_vol = {

 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,

 /* Control is of type MIXER */

 .name = "MP3 Volume", /* Name */

 .index = 0, /* Codec No: 0 */

 .info = mycard_pb_vol_info, /* Volume info */

 .get = mycard_pb_vol_get, /* Get volume */

 .put = mycard_pb_vol_put, /* Set volume */

};

/* Operators for the PCM playback stream */

static struct snd_pcm_ops mycard_playback_ops = {

 .open = mycard_playback_open, /* Open */

 .close = mycard_playback_close, /* Close */

 .ioctl = snd_pcm_lib_ioctl, /* Generic ioctl handler */

 .hw_params = mycard_hw_params, /* Hardware parameters */

 .hw_free = mycard_hw_free, /* Free h/w params */

 .prepare = mycard_playback_prepare, /* Prepare to transfer audio stream */

 .trigger = mycard_playback_trigger, /* Called when the PCM engine

 starts/stops/pauses */

};

/* Platform driver probe() method */

static int __init

mycard_audio_probe(struct platform_device *dev)

{

 struct snd_card *card;

 struct snd_pcm *pcm;

Device Example: MP3 Player 407

408 Chapter 13 Audio Drivers

 int myctl_private;

 /* Instantiate an snd_card structure */

 card = snd_card_new(-1, id[dev->id], THIS_MODULE, 0);

 /* Create a new PCM instance with 1 playback substream

 and 0 capture streams */

 snd_pcm_new(card, "mycard_pcm", 0, 1, 0, &pcm);

 /* Set up our initial DMA buffers */

 snd_pcm_lib_preallocate_pages_for_all(pcm,

 SNDRV_DMA_TYPE_CONTINUOUS,

 snd_dma_continuous_data

 (GFP_KERNEL), 256*1024,

 256*1024);

 /* Connect playback operations with the PCM instance */

 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,

 &mycard_playback_ops);

 /* Associate a mixer control element with this card */

 snd_ctl_add(card, snd_ctl_new1(&mycard_playback_vol,

 &myctl_private));

 strcpy(card->driver, “mycard");

 /* Register the sound card */

 snd_card_register(card);

 /* Store card for access from other methods */

 platform_set_drvdata(dev, card);

 return 0;

}

/* Platform driver remove() method */

static int

mycard_audio_remove(struct platform_device *dev)

{

 snd_card_free(platform_get_drvdata(dev));

 platform_set_drvdata(dev, NULL);

 return 0;

}

/* Platform driver definition */

static struct platform_driver mycard_audio_driver = {

 .probe = mycard_audio_probe, /* Probe method */

 .remove = mycard_audio_remove, /* Remove method */

 .driver = {

 .name = "mycard_ALSA",

 },

};

/* Driver Initialization */

static int __init

mycard_audio_init(void)

{

 /* Register the platform driver and device */

 platform_driver_register(&mycard_audio_driver);

 mycard_device = platform_device_register_simple("mycard_ALSA",

 -1, NULL, 0);

 return 0;

}

/* Driver Exit */

static void __exit

mycard_audio_exit(void)

{

 platform_device_unregister(mycard_device);

 platform_driver_unregister(&mycard_audio_driver);

}

module_init(mycard_audio_init);

module_exit(mycard_audio_exit);

MODULE_LICENSE("GPL");

ALSA Programming

To understand how the user-space alsa-lib library interacts with kernel space ALSA driv-
ers, let’s write a simple application that sets the volume gain of the MP3 player. We will

Device Example: MP3 Player 409

410 Chapter 13 Audio Drivers

map the alsa-lib services used by the application to the mixer control methods defi ned in
Listing 13.1. Let’s begin by loading the driver and examining the mixer’s capabilities:

bash> amixer contents

...

numid=3,iface=MIXER,name="MP3 Volume"

 ; type=INTEGER,...

...

In the volume-control application, fi rst allocate space for the alsa-lib objects necessary
to perform the volume-control operation:

#include <alsa/asoundlib.h>

snd_ctl_elem_value_t *nav_control;

snd_ctl_elem_id_t *nav_id;

snd_ctl_elem_info_t *nav_info;

snd_ctl_elem_value_alloca(&nav_control);

snd_ctl_elem_id_alloca(&nav_id);

snd_ctl_elem_info_alloca(&nav_info);

Next, set the interface type to SND_CTL_ELEM_IFACE_MIXER as specifi ed in the
mycard_playback_vol structure in Listing 13.1:

snd_ctl_elem_id_set_interface(nav_id, SND_CTL_ELEM_IFACE_MIXER);

Now set the numid for the MP3 volume obtained from the amixer output above:

snd_ctl_elem_id_set_numid(nav_id, 3); /* num_id=3 */

Open the mixer node /dev/snd/controlC0. The third argument to snd_ctl_open()
specifi es the card number in the node name:

snd_ctl_open(&nav_handle, card, 0);

/* Connect data structures */

snd_ctl_elem_info_set_id(nav_info, nav_id);

snd_ctl_elem_info(nav_handle, nav_info);

Elicit the type fi eld in the snd_ctl_elem_info structure defi ned in mycard_pb_
vol_info() in Listing 13.1 as follows:

if (snd_ctl_elem_info_get_type(nav_info) !=

 SND_CTL_ELEM_TYPE_INTEGER) {
 printk("Mismatch in control type\n");

}

Get the supported codec volume range by communicating with the mycard_pb_vol_
info() driver method:

long desired_volume = 5;

long min_volume = snd_ctl_elem_info_get_min(nav_info);

long max_volume = snd_ctl_elem_info_get_max(nav_info);

/* Ensure that the desired_volume is within min_volume and

 max_volume */

/* ... */

As per the defi nition of mycard_pb_vol_info() in Listing 13.1, the minimum
and maximum values returned by the above alsa-lib helper routines are 0 and 10,
respectively.

Finally, set the desired volume and write it to the codec:

snd_ctl_elem_value_set_integer(nav_control, 0, desired_volume);

snd_ctl_elem_write(nav_handle, nav_control);

The call to snd_ctl_elem_write() results in the invocation of mycard_pb_vol_
put(), which writes the desired volume gain to the codec’s VOLUME_REGISTER.

MP3 Decoding Complexity

The MP3 decoder application running on the player, as shown in Figure 13.4, requires a sup-
ply rate of MP3 frames from the CF disk that can sustain the common MP3 sampling rate of
128KBps. This is usually not a problem for most low-MIPs devices, but in case it is, consider
buffering each song in memory before decoding it. (MP3 frames at 128KBps roughly consume
1MB per minute of music.)

MP3 decoding is lightweight and can usually be accomplished on-the-fl y, but MP3 encoding
is heavy-duty and cannot be achieved in real time without hardware assist. Voice codecs such as
G.711 and G.729 used in Voice over IP (VoIP) environments can, however, encode and decode
audio data in real time.

Device Example: MP3 Player 411

412 Chapter 13 Audio Drivers

Debugging

You may turn on options under Device Drivers → Sound → Advanced Linux Sound
Architecture in the kernel confi guration menu to include ALSA debug code (CONFIG_
SND_DEBUG), verbose printk() messages (CONFIG_SND_VERBOSE_PRINTK), and ver-
bose procfs content (CONFIG_SND_VERBOSE_PROCFS).

Procfs information pertaining to ALSA drivers resides in /proc/asound/. Look inside
/sys/class/sound/ for the device model information associated with each sound-class
device.

If you think you have found a bug in an ALSA driver, post it to the alsa-devel mailing
list (http://mailman.alsa-project.org/mailman/listinfo/alsa-devel). The linux-audio-dev
mailing list (http://mailman.alsa-project.org/mailman/listinfo/alsa-devel), also called
the Linux Audio Developers (LAD) list, discusses questions related to the Linux-sound
architecture and audio applications.

Looking at the Sources

The sound core, audio buses, architectures, and the obsolete OSS suite all have their
own separate subdirectories under sound/. For the AC’97 interface implementation,
look inside sound/pci/ac97/. For an example I2S-based audio driver, look at sound/soc/
at91/at91-ssc.c, the audio driver for Atmel’s AT91-series ARM-based embedded SoCs.
Use sound/drivers/dummy.c as a starting point for developing your custom ALSA driver
if you cannot fi nd a closer match.

Documentation/sound/* contains information on ALSA and OSS drivers. Documenta-
tion/sound/alsa/DocBook/ contains a DocBook on writing ALSA drivers. An ALSA con-
fi guration guide is available in Documentation/sound/alsa/ALSA-Confi guration.txt. The
Sound-HOWTO, downloadable from http://tldp.org/HOWTO/Sound-HOWTO/,
answers several frequently asked questions pertaining to Linux support for audio
devices.

Madplay is a software MP3 decoder and player that is both ALSA- and OSS-aware.
You can look at its sources for tips on user-space audio programming.

Two no-frills OSS tools for basic playback and recording are rawplay and rawrec,
whose sources are downloadable from http://rawrec.sourceforge.net/.

You can fi nd the home page of the Linux-ALSA project at www.alsa-project.org.
Here, you will fi nd the latest news on ALSA drivers, details on the ALSA program-
ming API, and information on subscribing to related mailing lists. Sources of alsa-utils

www.alsa-project.org
http://mailman.alsa-project.org/mailman/listinfo/alsa-devel
http://tldp.org/HOWTO/Sound-HOWTO/
http://rawrec.sourceforge.net/
http://mailman.alsa-project.org/mailman/listinfo/alsa-devel

and alsa-lib, downloadable from this page, can aid you while developing ALSA-aware
applications.

Table 13.2 contains the main data structures used in this chapter and their location
in the source tree. Table 13.3 lists the main kernel programming interfaces that you
used in this chapter along with the location of their defi nitions.

TABLE 13.2 Summary of Data Structures

 Data Structure Location Description

 snd_card include/sound/core.h Representation of a sound card

 snd_pcm include/sound/pcm.h An instance of a PCM object

 snd_pcm_ops include/sound/pcm.h Used to connect operations with a PCM object

 snd_pcm_substream include/sound/pcm.h Information about the current audio stream

 snd_pcm_runtime include/sound/pcm.h Runtime details of the audio stream

 snd_kcontrol_new include/sound/control.h Representation of an ALSA control element

TABLE 13.3 Summary of Kernel Programming Interfaces

 Kernel Interface Location Description

 snd_card_new() sound/core/init.c Instantiates an snd_card
structure

 snd_card_free() sound/core/init.c Frees an instantiated
snd_card

 snd_card_register() sound/core/init.c Registers a sound card with
the ALSA framework

snd_pcm_lib_preallocate_pages_for_all() sound/core/pcm_memory.c Preallocates buffers for a
sound card

snd_pcm_lib_malloc_pages() sound/core/pcm_memory.c Allocates DMA buffers for a
sound card

snd_pcm_new() sound/core/pcm.c Creates an instance of a PCM
object

snd_pcm_set_ops() sound/core/pcm_lib.c Connects playback or capture
operations with a PCM object

snd_ctl_add() sound/core/control.c Associates a mixer control
element with a sound card

 snd_ctl_new1() sound/core/control.c Allocates an snd_kcontrol
structure and initializes it with
supplied control operations

snd_card_proc_new() sound/core/info.c Creates a /proc entry and
assigns it to a card instance

Looking at the Sources 413

This page intentionally left blank

415

14

Block Drivers

In This Chapter

■ Storage Technologies 416

■ Linux Block I/O Layer 421

■ I/O Schedulers 422

■ Block Driver Data Structures and Methods 423

■ Device Example: Simple Storage Controller 426

■ Advanced Topics 434

■ Debugging 436

■ Looking at the Sources 437

416

Block devices are storage media capable of random access. Unlike character
devices, block devices can hold fi lesystem data. In this chapter, let’s fi nd

out how Linux supports storage buses and devices.

Storage Technologies

Let’s start by taking a tour of the popular storage technologies found in today’s com-
puter systems. We’ll also associate these technologies with the corresponding device
driver subsystems in the kernel source tree.

Integrated Drive Electronics (IDE) is the common storage interface technology
used in the PC environment. ATA (short for Advanced Technology Attachment) is
the offi cial name for the related specifi cations. The IDE/ATA standard began with
ATA-1; the latest version is ATA-7 and supports bandwidths of up to 133MBps.
Intervening versions of the specifi cation are ATA-2, which introduced logical block
addressing (LBA); ATA-3, which enabled SMART-capable disks (discussed later);
ATA-4, which brought support for Ultra DMA and the associated 33MBps through-
put; ATA-5, which increased maximum transfer speeds to 66MBps; and ATA-6,
which provided for 100MBps data rates.

Storage devices such as CD-ROMs and tapes connect to the standard IDE cable
using a special protocol called the ATA Packet Interface (ATAPI).1 ATAPI was intro-
duced along with ATA-4.

The fl oppy disk controller in PC systems has traditionally been part of the Super
I/O chipset about which we learned in Chapter 6, “Serial Drivers.” These internal
drives, however, have given way to faster external USB fl oppy drives in today’s PC
environment.

Figure 14.1 shows an ATA-7 disk drive connected to an IDE host adapter that’s
part of the South Bridge chipset on a PC system. Also shown connected are an
ATAPI CD-ROM drive and a fl oppy drive.

1 The ATAPI protocol is closer to SCSI than to IDE.

Processor

Super I/O

Hub Interface

ATAPI CDROM

North Bridge

South Bridge

IDE Host
Adapter

Floppy
Drive

LPC

PCI

ATA-7
Hard disk

FIGURE 14.1 Storage media in a PC system.

IDE/ATA is a parallel bus technology (sometimes called Parallel ATA or PATA) and can-
not scale to high speeds, as you learned while discussing PCIe in Chapter 10, “Periph-
eral Component Interconnect.” Serial ATA (SATA) is a modern serial bus evolution of
PATA that supports transfer speeds in the realm of 300MBps and beyond. In addition
to offering higher throughput than PATA, SATA brings capabilities such as hot swap-
ping. SATA technology is steadily replacing PATA. See the sidebar “libATA” to learn
about the new ATA subsystem in the kernel that supports both SATA and PATA.

libATA

libATA is the new ATA subsystem in the Linux kernel. It consists of a set of ATA library routines
and a collection of low-level drivers that use them. libATA supports both SATA and PATA. SATA
drivers in libATA have been around for some time under drivers/scsi/, but PATA drivers and the
new drivers/ata/ directory that now houses all libATA sources were introduced with the 2.6.19
kernel release.

Storage Technologies 417

418 Chapter 14 Block Drivers

If your system is enabled with SATA storage, you need the services of libATA in tandem with
the SCSI subsystem. libATA support for PATA is still experimental, and by default, PATA drivers
continue to use the legacy IDE drivers that live in drivers/ide/.

Assume that your system is SATA-enabled via an Intel ICH7 South Bridge chipset. You need
the following libATA components to access your disk:

 1. The libATA core—To enable this, set CONFIG_ATA during kernel configuration. For a
list of library functions offered by the core, grep for EXPORT_SYMBOL_GPL inside the
drivers/ata/ directory.

 2. Advanced Host Controller Interface (AHCI) support—AHCI specifies the register interface
supported by SATA host adapters and is enabled by choosing CONFIG_AHCI at configura-
tion time.

 3. The host controller adapter driver—For the ICH7, enable CONFIG_ATA_PIIX.

Additionally, you need the mid-level and upper-level SCSI drivers (CONFIG_SCSI and
friends). After you have loaded all these kernel components, your SATA disk partitions appear to
the system as /dev/sd*, just like SCSI or USB mass storage partitions.

The home page of the libATA project is http://linux-ata.org/. A DocBook is available as part
of the kernel source tree in Documentation/DocBook/libata.tmpl. A libATA developer’s guide is
available at www.kernel.org/pub/linux/kernel/people/jgarzik/libata.pdf.

Small Computer System Interface (SCSI) is the storage technology of choice in servers
and high-end workstations. SCSI is somewhat faster than SATA and supports speeds
of the order of 320MBps. SCSI has traditionally been a parallel interface standard,
but, like ATA, has recently shifted to serial operation with the advent of a bus technol-
ogy called Serial Attached SCSI (SAS).

The kernel’s SCSI subsystem is architected into three layers: top-level drivers for
media such as disks, CD-ROMs, and tapes; a middle-level layer that scans the SCSI
bus and confi gures devices; and low-level host adapter drivers. We learned about these
layers in the section “Mass Storage” in Chapter 11, “Universal Serial Bus.” Refer back
to Figure 11.4 in that chapter to see how the different components of the SCSI sub-
system interact with each other.2 USB mass storage drives use fl ash memory internally
but communicate with host systems using the SCSI protocol.

2 SCSI support is discussed in other parts of this book, too. The section “User Mode SCSI” in Chapter 19, “Drivers in User
Space,” discusses the SCSI Generic (sg) interface that lets you directly dispatch commands from user space to SCSI devices. The
section “iSCSI” in Chapter 20, “More Devices and Drivers,” briefl y looks at the iSCSI protocol, which allows the transport of
SCSI packets to a remote block device over a TCP/IP network.

www.kernel.org/pub/linux/kernel/people/jgarzik/libata.pdf
http://linux-ata.org/

Redundant array of inexpensive disks (RAID) is a technology built in to some SCSI
and SATA controllers to achieve redundancy and reliability. Various RAID levels have
been defi ned. RAID-1, for example, specifi es disk mirroring, where data is duplicated
on separate disks. Linux drivers are available for several RAID-capable disk drives.
The kernel also offers a multidisk (md) driver that implements most RAID levels in
software.

Miniature storage is the name of the game in the embedded consumer electronics
space. Transfer speeds in this domain are much lower than that offered by the tech-
nologies discussed thus far. Secure Digital (SD) cards and their smaller form- factor
derivatives (miniSD and microSD) are popular storage media3 in devices such as cam-
eras, cell phones, and music players. Cards complying with version 1.01 of the SD
card specifi cation support transfer speeds of up to 10MBps. SD storage has evolved
from an older, slower, but compatible technology called MultiMediaCard (MMC)
that supports data rates of 2.5MBps. The kernel contains an SD/MMC subsystem in
drivers/mmc/.

The section “PCMCIA Storage” in Chapter 9, “PCMCIA and Compact Flash,”
looked at different PCMCIA/CF fl avors of storage cards and their corresponding ker-
nel drivers. PCMCIA memory cards such as microdrives support true IDE operation,
whereas those that internally use solid-state memory emulate IDE and export an IDE
programming model to the kernel. In both these cases, the kernel’s IDE subsystem can
be used to enable the card.

Table 14.1 summarizes important storage technologies and the location of the asso-
ciated device drivers in the kernel source tree.

TABLE 14.1 Storage Technologies and Associated Device Drivers

Storage Technology Description Source File

IDE/ATA Storage interface technology in the PC envi-
ronment. Supports data rates of 133MBps
for ATA-7.

drivers/ide/ide-disk.c, driver/ide/
ide-io.c, drivers/ide/ide-probe.c
or
drivers/ata/ (Experimental)

ATAPI Storage devices such as CD-ROMs and tapes
connect to the standard IDE cable using the
ATAPI protocol.

drivers/ide/ide-cd.c
or
drivers/ata/ (Experimental)

3 See the sidebar “WiFi over SDIO” in Chapter 16, “Linux Without Wires,” to learn about nonstorage technologies available in
SD form factor.

Continues

Storage Technologies 419

420 Chapter 14 Block Drivers

Storage Technology Description Source File

Floppy (internal) The floppy controller resides in the Super
I/O chip on the LPC bus in PC- compatible
systems. Supports transfer rates of the order
of 150KBps.

drivers/block/floppy.c

SATA Serial evolution of IDE/ATA. Supports
speeds of 300MBps and beyond.

drivers/ata/, drivers/scsi/

SCSI Storage technology popular in the server
environment. Supports transfer rates of
320MBps for Ultra320 SCSI.

drivers/scsi/

USB Mass Storage This refers to USB hard disks, pen drives,
CD-ROMs, and floppy drives. Look at the
section “Mass Storage” in Chapter 11. USB
2.0 devices can communicate at speeds of up
to 60MBps.

drivers/usb/storage/, drivers/scsi/

RAID:

Hardware RAID This is a capability built into high-end
SCSI/SATA disk controllers to achieve
redundancy and reliability.

drivers/scsi/, drivers/ata/

Software RAID On Linux, the multidisk (md) driver imple-
ments several RAID levels in software.

drivers/md/

SD/miniSD/
microSD

Small form-factor storage media popular in
consumer electronic devices such as cameras
and cell phones. Supports transfer rates of up
to 10MBps.

drivers/mmc/

MMC Older removable storage standard that’s
compatible with SD cards. Supports data
rates of 2.5MBps.

drivers/mmc/

PCMCIA/ CF
storage cards

PCMCIA/CF form factor of miniature IDE
drives, or solid-state memory cards that
emulate IDE. See the section “PCMCIA
Storage” in Chapter 9.

drivers/ide/legacy/ide-cs.c
or
drivers/ata/pata_pcmcia.c
(Experimental)

Block device
emulation over
flash memory

Emulates a hard disk over flash memory.
See the section “Block Device Emulation”
in Chapter 17, “Memory Technology
Devices.”

drivers/mtd/mtdblock.c,

drivers/mtd/mtd_blkdevs.c

Virtual block devices on Linux:

RAM disk Implements support to use a RAM region as
a block device.

drivers/block/rd.c

Loopback device Implements support to use a regular file as a
block device.

drivers/block/loop.c

TABLE 14.1 Continued

Linux Block I/O Layer

The block I/O layer was considerably overhauled between the 2.4 and 2.6 kernel
releases. The motivation for the redesign was that the block layer, more than other
kernel subsystems, has the potential to impact overall system performance.

Let’s take a look at Figure 14.2 to learn the workings of the Linux block I/O layer.
The storage media contains fi les residing in a fi lesystem, such as EXT3 or Reiserfs.
User applications invoke I/O system calls to access these fi les. The resulting fi lesys-
tem operations pass through the generic Virtual File System (VFS) layer before enter-
ing the individual fi lesystem driver. The buffer cache speeds up fi lesystem access to
block devices by caching disk blocks. If a block is found in the buffer cache, the time
required to access the disk to read the block is saved. Data destined for each block
device is lined up in a request queue. The fi lesystem driver populates the request queue
belonging to the desired block device, whereas the block driver receives and consumes
requests from the corresponding queue. In between, I/O schedulers manipulate the
request queue so as to minimize disk access latencies and maximize throughput.

Request Queue

Kernel Space

Request Queue

 Buffer Cache (Page Cache)

 CD
Drive

User Space

Kernel Space

 Disk …

Virtual File System (VFS) Layer

Individual Filesystems (EXT3, EXT4, JFFS2, Reiserfs, VFAT, …)

Block Driver

 I/O Schedulers

Block Driver

Storage Media

File I/O File I/O

FIGURE 14.2 Block I/O on Linux.

Linux Block I/O Layer 421

422 Chapter 14 Block Drivers

Let’s next examine the different I/O schedulers available on Linux.

I/O Schedulers

Block devices suffer seek times, the latency to move the disk head from its existing
position to the disk sector of interest. The main goal of an I/O scheduler is to increase
system throughput by minimizing these seek times. To achieve this, I/O schedulers
maintain the request queue in sorted order according to the disk sectors associated
with the constituent requests. New requests are inserted into the queue such that this
order is maintained. If an existing request in the queue is associated with an adjacent
disk sector, the new request is merged with it. Because of these properties, I/O sched-
ulers bear an operational resemblance to elevators—they schedule requests in a single
direction until the last requester in the line is serviced.

The I/O scheduler in 2.4 kernels implemented a straightforward version of this
algorithm and was called the Linus elevator. This turned out to be inadequate under
real-world conditions, however, and was replaced in the 2.6 kernel by a suite of four
schedulers: Deadline, Anticipatory, Complete Fair Queuing, and Noop. The scheduler
used by default is Anticipatory, but this can be changed during kernel confi guration
or by changing the value of /sys/block/[disk]/queue/scheduler. (Replace [disk] with hda
if you are using an IDE disk, for example.) Table 14.2 briefl y describes Linux I/O
schedulers.

TABLE 14.2 Linux I/O Schedulers

I/O Scheduler Description Source File

Linus elevator Straightforward implementation of the standard merge-
and-sort I/O scheduling algorithm.

drivers/block/elevator.c
(in the 2.4 kernel tree)

Deadline In addition to what the Linus elevator does, the Deadline
scheduler associates expiration times with each request in
order to ensure that a burst of requests to the same disk
region do not starve requests to regions that are farther
away. Moreover, read operations are granted more priority
than write operations because user processes usually block
until their read requests complete.

The Deadline scheduler thus ensures that each I/O request
is serviced within a time limit, which is important for some
database loads.

block/deadline-iosched.c
(in the 2.6 kernel tree)

I/O Scheduler Description Source File

Anticipatory Similar to the Deadline scheduler, except that after
servicing read requests, the Anticipatory scheduler waits
for a predetermined amount of time anticipating further
requests.

This scheduling technique is suited for workstation/
interactive loads.

block/as-iosched.c
(in the 2.6 kernel tree)

Complete Fair
Queuing (CFQ)

Similar to the Linus elevator, except that the CFQ sched-
uler maintains one request queue per originating process,
rather than one generic queue. This ensures that each
process (or process group) gets a fair portion of the I/O and
prevents one process from starving others.

block/cfq-iosched.c
(in the 2.6 kernel tree)

Noop The Noop scheduler doesn’t spend time traversing the
request queue searching for optimal insertion points.
Instead, it simply adds new requests to the tail of the
request queue. This scheduler is thus ideal for semicon-
ductor storage media that have no moving parts and,
hence, no seek latencies. An example is a Disk-On-Module
(DOM), which internally uses flash memory.

block/noop-iosched.c
(in the 2.6 kernel tree)

At a conceptual level, I/O scheduling resembles process scheduling. Whereas I/O
scheduling provides an illusion to processes that they own the disk, process scheduling
gives processes the illusion that they own the CPU. Both I/O and process schedulers
on Linux have undergone extensive changes in recent times. Process scheduling is dis-
cussed in Chapter 19.

Block Driver Data Structures and Methods

Let’s now shift focus to the main topic of this chapter, block device drivers. In this sec-
tion, we take a look at the important data structures and driver methods that you are
likely to encounter while implementing a block device driver. We use these structures
and methods in the next section when we implement a block driver for a fi ctitious
storage controller.

The following are the main block driver data structures:

 1. The kernel represents a disk using the gendisk (short for generic disk) struc-
ture defined in include/linux/genhd.h:

struct gendisk {

 int major; /* Device major number */

 int first_minor; /* Starting minor number */

 Block Driver Data Structures and Methods 423

424 Chapter 14 Block Drivers

 int minors; /* Maximum number of minors.

 You have one minor number

 per disk partition */

 char disk_name[32]; /* Disk name */

 /* ... */

 struct block_device_operations *fops;

 /* Block device operations.

 Described soon. */

 struct request_queue *queue; /* The request queue associated

 with this disk. Discussed

 next. */

 /* ... */

};

 2. The I/O request queue associated with each block driver is described using the
request_queue structure defined in include/linux/blkdev.h. This is a big struc-
ture, but its only constituent field that you might use is the request structure,
which is described next.

 3. Each request in a request_queue is represented using a request structure
defined in include/linux/blkdev.h:

struct request {

 /* ... */

 struct request_queue *q; /* The container request queue */

 /* ... */

 sector_t sector; /* Sector from which data access

 is requested */

 /* ... */

 unsigned long nr_sectors; /* Number of sectors left to

 submit */

 /* ... */

 struct bio *bio; /* The associated bio. Discussed

 soon. */

 /* ... */

 char *buffer; /* The buffer for data transfer */

 /* ... */

 struct request *next_rq; /* Next request in the queue */

};

 4. block_device_operations is the block driver counterpart of the file_
operations structure used by character drivers. It contains the following entry
points associated with a block driver:

 • Standard methods such as open(), release(), and ioctl()

 • Specialized methods such as media_changed() and revalidate_disk()
that support removable block devices

 block_device_operations is defined as follows in include/linux/fs.h:

 struct block_device_operations {

 int (*open) (struct inode *, struct file *); /* Open */

 int (*release) (struct inode *, struct file *);/* Close */

 int (*ioctl) (struct inode *, struct file *,

 unsigned, unsigned long); /* I/O Control */

 /* ... */

 int (*media_changed) (struct gendisk *); /* Check if media is

 available or

 ejected */

 int (*revalidate_disk) (struct gendisk *); /* Gear up for newly

 inserted media */

 /* ... */

 };

 5. When we looked at the request structure, we saw that it was associated with a
bio. A bio structure is a low-level description of block I/O operations at page-
level granularity. It’s defined in include/linux/bio.h as follows:

struct bio {

 sector_t bi_sector; /* Sector from which data

 access is requested */

 struct bio *bi_next; /* List of bio nodes */

 /* .. */

 unsigned long bi_rw; /* Bottom bits of bi_rw contain

 the data-transfer direction */

 /* ... */

 struct bio_vec *bi_io_vec; /* Pointer to an array of

 bio_vec structures */

 unsigned short bi_vcnt; /* Size of the bio_vec array */

 unsigned short bi_idx; /* Index of the current bio_vec

 in the array */

 /* ... */

};

 Block data is internally represented as an I/O vector using an array of bio_vec
structures. Each element of the bio_vec array is made up of a (page, page_
offset, length) tuple that describes a segment of the I/O block. Maintaining

 Block Driver Data Structures and Methods 425

426 Chapter 14 Block Drivers

I/O requests as a vector of pages brings several advantages, including a leaner
implementation and efficient scatter/gather.

Before ending this section, let’s briefl y look at block driver entry points. Block drivers
are broadly built using three types of methods:

 • The usual initialization and exit methods.

 • Methods that are part of the block_device_operations described previously.

 • A request method. Block drivers, unlike char devices, do not support read()/
write() methods for data transfer. Instead, they perform disk access using a
special routine called the request method.

The block core layer offers a set of library routines that driver methods can leverage.
The sample driver in the next section calls on the services of several of these library
routines.

Device Example: Simple Storage Controller

Consider the embedded device shown in Figure 14.3. The SoC contains a built-in
storage controller that communicates with a block device. The architecture is similar
to SD/MMC media, but our sample storage controller is described by the elemen-
tary register set listed in Table 14.3. The SECTOR_NUMBER_REGISTER specifi es the
sector from which data access is requested.4 The SECTOR_COUNT_REGISTER contains
the number of sectors to be transferred. Data is moved via the DATA_REGISTER. The
COMMAND_REGISTER programs the action that the storage controller has to take (for
example, whether to read from the media or write to it). The STATUS_REGISTER con-
tains bits that signal whether the controller is busy performing an operation.

Embedded SoC

CPU
Core

Storage
Controller

Media slot/
Connector

CPU Interconnect Bus

Block
Media

FIGURE 14.3 Storage on an embedded device.

4 The storage media in our sample device has a fl at sector-space geometry. IDE controllers, on the other hand, support a cylinder
head sector (CHS) geometry specifi ed by a device head register, a low cylinder register, and a high cylinder register, in addition
to the sector number register.

TABLE 14.3 Register Layout of the Storage Controller

 Register Name Description of Contents

SECTOR_NUMBER_REGISTER The sector on which the next disk operation is to be performed.

SECTOR_COUNT_REGISTER Number of sectors to be read or written.

COMMAND_REGISTER The action to be taken (for example, read or write).

 STATUS_REGISTER Results of operations, interrupt status, and error flags.

DATA_REGISTER In the read path, the storage controller fetches data from the disk to
internal buffers. The driver accesses the internal buffer via this register.
In the write path, data written by the driver to this register is transferred
to the internal buffer, from where the controller copies it to disk.

Let’s call the storage controller myblkdev. This simple device is neither interrupt driven
nor supports DMA. We’ll also assume that the media is not removable. Our task is to
write a block driver for myblkdev. Our driver is minimal, albeit complete. It does not
handle power management and is not particularly performance-sensitive.

Initialization

Listing 14.1 contains the driver initialization method myblkdev_init(), which per-
forms the following steps:

 1. Registers the block device using register_blkdev(). This block library rou-
tine assigns an unused major number to myblkdev and adds an entry for the
device in /proc/devices.

 2. Associates a request method with the block device. It does this by supplying
the address of myblkdev_request() to blk_init_queue(). The call to blk_
init_queue() returns the request_queue for myblkdev. Refer back to Fig-
ure 14.2 to see how the request_queue sits relative to the driver. The second
argument to blk_init_queue(), myblkdev_lock, is a spinlock to protect the
request_queue from concurrent access.

 3. Hardware performs disk transactions in units of sectors, whereas software subsys-
tems, such as filesystems, deal with data in terms of blocks. The common sector
size is 512 bytes; the usual block size is 4096 bytes. You need to inform the block
layer about the sector size supported by your storage hardware and the maxi-
mum number of sectors that your driver can receive per request. myblkdev_
init() accomplishes these by invoking blk_queue_hardsect_size() and
blk_queue_max_sectors(), respectively.

 Device Example: Simple Storage Controller 427

428 Chapter 14 Block Drivers

 4. Allocates a gendisk corresponding to myblkdev using alloc_disk() and
populates it. One important gendisk field that myblkdev_init() supplies
is the address of the driver’s block_device_operations. Another parameter
that myblkdev_init() fills in is the storage capacity of myblkdev in units of
sectors. This is accomplished by calling set_capacity(). Each gendisk also
contains a flag that signals the properties of the underlying storage hardware. If
the drive is removable, for example, the gendisk’s flag field should be marked
GENHD_FL_REMOVABLE.

 5. Associates the gendisk prepared in Step 4 with the request_queue obtained
in Step 2. Also, connects the gendisk with the device’s major/minor numbers
and a name.

 6. Adds the disk to the block I/O layer by invoking add_disk(). When this is
done, the driver has to be ready to receive requests. So, this is usually the last
step of the initialization sequence.

The block device is now available to the system as /dev/myblkdev. If the device sup-
ports multiple disk partitions, they appear as /dev/myblkdevX, where X is the partition
number.

LISTING 14.1 Initializing the Driver

#include <linux/blkdev.h>

#include <linux/genhd.h>

static struct gendisk *myblkdisk; /* Representation of a disk */

static struct request_queue *myblkdev_queue;

 /* Associated request queue */

int myblkdev_major = 0; /* Ask the block subsystem

 to choose a major number */

static DEFINE_SPINLOCK(myblkdev_lock);/* Spinlock that protects

 myblkdev_queue from

 concurrent access */

int myblkdisk_size = 256*1024; /* Disk size in kilobytes. For

 a PC hard disk, one way to

 glean this is via the BIOS */

int myblkdev_sect_size = 512; /* Hardware sector size */

/* Initialization */

static int __init

myblkdev_init(void)

{

 /* Register this block driver with the kernel */

 if ((myblkdev_major = register_blkdev(myblkdev_major,

 "myblkdev")) <= 0) {

 return -EIO;

 }

 /* Allocate a request_queue associated with this device */

 myblkdev_queue = blk_init_queue(myblkdev_request, &myblkdev_lock);

 if (!myblkdev_queue) return -EIO;

 /* Set the hardware sector size and the max number of sectors */

 blk_queue_hardsect_size(myblkdev_queue, myblkdev_sect_size);

 blk_queue_max_sectors(myblkdev_queue, 512);

 /* Allocate an associated gendisk */

 myblkdisk = alloc_disk(1);

 if (!myblkdisk) return -EIO;

 /* Fill in parameters associated with the gendisk */

 myblkdisk->fops = &myblkdev_fops;

 /* Set the capacity of the storage media in terms of number of

 sectors */

 set_capacity(myblkdisk, myblkdisk_size*2);

 myblkdisk->queue = myblkdev_queue;

 myblkdisk->major = myblkdev_major;

 myblkdisk->first_minor = 0;

 sprintf(myblkdisk->disk_name, "myblkdev");

 /* Add the gendisk to the block I/O subsystem */

 add_disk(myblkdisk);

 return 0;

}

/* Exit */

static void __exit

myblkdev_exit(void)

 Device Example: Simple Storage Controller 429

430 Chapter 14 Block Drivers

{

 /* Invalidate partitioning information and perform cleanup */

 del_gendisk(myblkdisk);

 /* Drop references to the gendisk so that it can be freed */

 put_disk(myblkdisk);

 /* Dissociate the driver from the request_queue. Internally calls

 elevator_exit() */

 blk_cleanup_queue(myblkdev_queue);

 /* Unregister the block device */

 unregister_blkdev(myblkdev_major, "myblkdev");

}

module_init(myblkdev_init);

module_exit(myblkdev_exit);

MODULE_LICENSE("GPL");

Block Device Operations

Let’s next take a look at the main methods contained in a block driver’s block_
device_operations.

A block driver’s open() method is called during operations such as mounting a
fi lesystem residing on the media or performing a fi lesystem check (fsck). Many of the
tasks accomplished during open() are hardware-dependent. The CD-ROM driver,
for example, locks the drive door. The SCSI driver checks whether the device has set
a write-protect tab, and, if so, fails if a write-enabled open is requested. If the device
is removable, open() invokes the service routine check_disk_change() to check
whether the media has changed.

If your driver needs to support specifi c commands, implement support for it using
the ioctl() method. A fl oppy driver, for example, supports a command to eject the
media.

The media_changed() method checks whether the storage media has changed,
so this is not relevant for fi xed devices such as myblkdev. The SCSI disk driver’s
media_changed() method, for example, detects whether an inserted USB pen drive
has changed.

The sole block device operation supported by myblkdev is the ioctl() method,
myblkdev_ioctl(). The block layer itself handles generic ioctls and invokes the
driver’s ioctl() method only to handle device-specifi c commands. In Listing 14.2,
myblkdev_ioctl() implements the GET_DEVICE_ID command that elicits a device
ID from the controller. The command is issued via the COMMAND_REGISTER, and the
ID data is obtained from the DATA_REGISTER.

LISTING 14.2 Block Device Operations

#define GET_DEVICE_ID 0xAA00 /* Ioctl command definition */

/* The ioctl operation */

static int

myblkdev_ioctl (struct inode *inode, struct file *file,

 unsigned int cmd, unsigned long arg)

{

 unsigned char status;

 switch (cmd) {

 case GET_DEVICE_ID:

 outb(GET_IDENTITY_CMD, COMMAND_REGISTER);

 /* Wait as long as the controller is busy */

 while ((status = inb(STATUS_REGISTER)) & BUSY_STATUS);

 /* Obtain ID and return it to user space */

 return put_user(inb(DATA_REGISTER), (long __user *)arg);

 default:

 return -EINVAL;

 }

}

/* Block device operations */

static struct block_device_operations myblkdev_fops = {

 .owner = THIS_MODULE, /* Owner of this structure */

 .ioctl = myblkdev_ioctl,

 /* The following operations are not implemented for our example

 storage controller: open(), release(), unlocked_ioctl(),

 compat_ioctl(), direct_access(), getgeo(), revalidate_disk(), and

 media_changed() */

};

 Device Example: Simple Storage Controller 431

432 Chapter 14 Block Drivers

Disk Access

As mentioned previously, block drivers perform disk access operations using a request()
method. The block I/O subsystem invokes a driver’s request() method whenever it
desires to process requests waiting in the driver’s request_queue. The request()
method does not run in the context of the user process requesting the data transfer,
however. The address of the associated request_queue is passed as an argument to
the request() method.

As you saw earlier, the kernel holds a request lock before calling the request()
method. This is to protect the associated request queue from concurrent access. Because
of this, if your request() method has to call any functions that may go to sleep, it has
to drop the lock before doing so and reacquire it before returning.

Listing 14.3 contains our driver’s request method, myblkdev_request(). This
function uses the services of elv_next_request() to obtain the next request from
the request_queue. If the queue contains no more pending requests, elv_next_
request() returns NULL. elv_next_request() is named so because, as you learned
previously, I/O scheduling algorithms are variations of the basic modus operandi
adopted by elevators to service requests. After handling a request, the driver asks the
block layer to end I/O on that request by calling end_request(). You can specify
success or an error code using the second argument to end_request().

Requests collected from the request_queue contain the starting sector from
which data access is requested (req->sector in Listing 14.3), the number of sec-
tors on which I/O needs to be performed (req->nr_sectors), the buffer that con-
tains the data to be transferred (req->buffer), and the direction of data movement
(rq_data_dir(req)). As shown in Listing 14.3, myblkdev_request() performs
the required register programming with the help of these parameters.

LISTING 14.3 The Request Function

#define READ_SECTOR_CMD 1

#define WRITE_SECTOR_CMD 2

#define GET_IDENTITY_CMD 3

#define BUSY_STATUS 0x10

#define SECTOR_NUMBER_REGISTER 0x20000000

#define SECTOR_COUNT_REGISTER 0x20000001

#define COMMAND_REGISTER 0x20000002

#define STATUS_REGISTER 0x20000003

#define DATA_REGISTER 0x20000004

/* Request method */

static void

myblkdev_request(struct request_queue *rq)

{

 struct request *req;

 unsigned char status;

 int i, good = 0;

 /* Loop through the requests waiting in line */

 while ((req = elv_next_request(rq)) != NULL) {

 /* Program the start sector and the number of sectors */

 outb(req->sector, SECTOR_NUMBER_REGISTER);

 outb(req->nr_sectors, SECTOR_COUNT_REGISTER);

 /* We are interested only in filesystem requests. A SCSI command

 is another possible type of request. For the full list, look

 at the enumeration of rq_cmd_type_bits in

include/linux/blkdev.h */

 if (blk_fs_request(req)) {

 switch(rq_data_dir(req)) {

 case READ:

 /* Issue Read Sector Command */

 outb(READ_SECTOR_CMD, COMMAND_REGISTER);

 /* Traverse all requested sectors, byte by byte */

 for (i = 0; i < 512*req->nr_sectors; i++) {

 /* Wait until the disk is ready. Busy duration should be

 in the order of microseconds. Sitting in a tight loop

 for simplicity; more intelligence required in the real

 world */

 while ((status = inb(STATUS_REGISTER)) & BUSY_STATUS);

 /* Read data from disk to the buffer associated with the

 request */

 req->buffer[i] = inb(DATA_REGISTER);

 }

 good = 1;

 break;

 case WRITE:

 Device Example: Simple Storage Controller 433

434 Chapter 14 Block Drivers

 /* Issue Write Sector Command */

 outb(WRITE_SECTOR_CMD, COMMAND_REGISTER);

 /* Traverse all requested sectors, byte by byte */

 for (i = 0; i < 512*req->nr_sectors; i++) {

 /* Wait until the disk is ready. Busy duration should be

 in the order of microseconds. Sitting in a tight loop

 for simplicity; more intelligence required in the real

 world */

 while ((status = inb(STATUS_REGISTER)) & BUSY_STATUS);

 /* Write data to disk from the buffer associated with the

 request */

 outb(req->buffer[i], DATA_REGISTER);

 }

 good = 1;

 break;

 }

 }

 end_request(req, good);

 }

}

Advanced Topics

Unlike our sample storage driver that transfers data byte by byte, performance-sensitive
block drivers rely on DMA for data transfer. Consider, for example, the request()
method of the disk array driver for Compaq SMART2 controllers drivers/block/
cpqarray.c reproduced here from the 2.6.23.1 kernel sources:

static do_ida_request(struct request_queue *q)

{

 struct request *creq;

 struct scatterlist tmp_sg[SG_MAX];

 cmdlist_t *c;

 ctrl_info_t *h = q->queuedata;

 int seg;

 /* ... */

 creq = elv_next_request(q);

 /* ... */

 c->rq = creq;

 seg = blk_rq_map_sg(q, creq, tmp_sg);

 /* ... */

 for (i=0; i<seq; i++)

 {

 c->req.sg[i].size = tmp_sg[i].length;

 c->req.sg[i].addr = (__u32) pci_map_page(h->pci_dev,

 tmp_sg[i].page,

 tmp_sg[i].offset,

 tmp_sg[i].length, dir);

 }

 /* ... */

}

DMA operations work at bio level. As you saw earlier, I/O requests are made up of
bios, each of which contains an array of bio_vecs, which in turn hold information
about the constituent memory pages. Assuming that bio points to the bio structure
associated with an I/O request, bio->bi_sector contains the starting sector from
which data access is requested, bio_cur_sectors(bio) returns the number of sec-
tors on which I/O is to be performed, and bio_data_dir(bio) provides the direc-
tion of data transfer. The addresses of the physical pages associated with the data buffer
are described by the array of bio_vecs pointed to by bio->bi_io_vec. To iterate
over each bio in a request, you can use the rq_for_each_bio()macro. To further
loop through each page segment in a bio, use bio_for_each_segment().

In the preceding code snippet, blk_rq_map_sg() internally invokes rq_for_
each_bio() and bio_for_each_segment()to loop through all pages constituting
the request and builds a scatter/gather list, tmp_sg. Streaming DMA mappings for
each page in the created scatter/gather list is performed by pci_map_page().

Unlike our sample driver that busy-waits for requested operations to fi nish, the
cpqarray driver implements an interrupt handler do_ida_intr(), to receive alerts
from the hardware upon completion of commands.

Some drivers, such as the ramdisk driver (drivers/block/rd.c) and the loopback
driver (drivers/block/loop.c), work over virtual block devices that do not benefi t from
the optimizing sort and merge operations on the request queue. Such drivers entirely
bypass the request queue and directly obtain bios from the block layer using a
make_request() function. So, instead of registering a request queue handler using

Advanced Topics 435

436 Chapter 14 Block Drivers

blk_init_queue(), drivers/block/rd.c supplies a make_request() routine using
blk_queue_make_request() as follows:

static int __init rd_init(void)

{

 /* ... */

 blk_queue_make_request(rd_queue[i], &rd_make_request);

 /* ... */

}

static int rd_make_request(struct request_queue *q, struct bio *bio)

{

 /* ... */

}

Debugging

The hdparm utility elicits various PATA/SATA disk parameters from the underlying
kernel driver. To benchmark disk read speeds on a SATA drive, for example, do this:

bash> hdparm -T -t /dev/sda

/dev/sda:

 Timing cached reads: 2564 MB in 2.00 seconds = 1283.57 MB/sec

 Timing buffered disk reads: 132 MB in 3.03 seconds = 43.61 MB/sec

For the full capabilities of hdparm, read the man pages.
Self-Monitoring, Analysis, and Reporting Technology (SMART) is a system built in

to many modern ATA and SCSI disks to monitor failures and perform self-tests.
A user-space daemon named smartd collects the information gathered by SMART-
capable disks with the help of the underlying device driver. Look at the man pages of
smartd, smartctl, and smartd.conf to learn how to obtain health status from SMART-
enabled disks.

If your distribution doesn’t prepackage hdparm and SMART tools, you may down-
load them from http://sourceforge.net/projects/hdparm/ and http://sourceforge.net/
projects/smartmontools/, respectively.

Files under /proc/ide/ contain information about IDE disk drives on your system.
To obtain the geometry of the fi rst IDE disk, for example, look at the contents of

http://sourceforge.net/projects/hdparm/
http://sourceforge.net/projects/smartmontools/
http://sourceforge.net/projects/smartmontools/

/proc/ide/ide0/hda/geometry. Information pertaining to SCSI devices is available under
/proc/scsi/. You can gather disk partition information from /proc/partitions.

The sysfs directory of interest for IDE devices is /sys/bus/ide/ and for SCSI is /sys/
bus/scsi/. In addition, each block device active on the system owns a subdirectory under
/sys/block/, which contains associated request queue parameters, constituent partition
details, and state information.

Some kernel confi guration options are available that trigger the emission of debug
output from the block subsystem. CONFIG_BLK_DEV_IO_TRACE provides the ability
to trace the block layer. CONFIG_SCSI_CONSTANTS and CONFIG_SCSI_LOGGING turn
on SCSI error reporting and logging, respectively.

The linux-ide mailing list is the forum to discuss questions related to the Linux-
IDE subsystem. Subscribe to the linux-scsi mailing list and browse through its archives
for discussions pertaining to the Linux-SCSI subsystem.

Looking at the Sources

Table 14.1 contains the location of kernel driver sources for various storage technolo-
gies. Take a look at Documentation/ide.txt, Documentation/scsi/*, and Documentation/
cdrom/ for information about associated storage drivers.

The top-level block/ directory contains I/O scheduling algorithms and the block
core layer. Table 14.2 lists the source fi les in this directory that implement various I/O
schedulers. Look at Documentation/block/ for related documentation.

Table 14.4 contains the main data structures used in this chapter and their location
in the source tree. Table 14.5 lists the main kernel programming interfaces that you
used in this chapter, along with the location of their defi nitions.

TABLE 14.4 Summary of Data Structures

 Data Structure Location Description

 gendisk include/linux/genhd.h Representation of a disk.

 request_queue include/linux/blkdev.h The I/O request queue associated with a
gendisk.

 request include/linux/blkdev.h Each request in a request_queue is
 described using this structure.

block_device_operations include/linux/fs.h Block device driver methods.

 bio include/linux/bio.h Low-level description of block I/O
operations.

Looking at the Sources 437

438 Chapter 14 Block Drivers

TABLE 14.5 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

register_blkdev() block/genhd.c Registers a block driver with the kernel

unregister_blkdev() block/genhd.c Unregisters a block driver from the kernel

alloc_disk() block/genhd.c Allocates a gendisk

add_disk() block/genhd.c Adds a populated gendisk to the kernel block
layer

del_gendisk() fs/partitions/check.c Frees a gendisk

blk_init_queue() block/ll_rw_blk.c Allocates a request_queue and registers a
request() function to process the requests in
the queue

blk_cleanup_queue() block/ll_rw_blk.c Reverse of blk_init_queue()

blk_queue_make_request() block/ll_rw_blk.c Registers a make_request() function, which
bypasses the request queue and directly obtains
requests from the block layer

rq_for_each_bio() include/linux/blkdev.h Iterates over each bio in a request

bio_for_each_segment() include/linux/bio.h Loops through each page segment in a bio

blk_rq_map_sg() block/ll_rw_blk.c Iterates through the bio segments constituting a
request and builds a scatter/gather list

blk_queue_max_sectors() block/ll_rw_blk.c Sets the maximum sectors for a request in the
associated request queue

blk_queue_hardsect_size() block/ll_rw_blk.c Sector size supported by the storage hardware.

set_capacity() include/linux/genhd.h Sets the capacity of the storage media in terms of
number of sectors

blk_fs_request() include/linux/blkdev.h Checks whether a request obtained from the
request queue is a filesystem request

elv_next_request() block/elevator.c Obtains the next entry from the request queue

end_request() block/ll_rw_blk.c Ends I/O on a request

439

15

Network Interface
Cards

In This Chapter

■ Driver Data Structures 440

■ Talking with Protocol Layers 448

■ Buffer Management and Concurrency Control 450

■ Device Example: Ethernet NIC 451

■ ISA Network Drivers 457

■ Asynchronous Transfer Mode 458

■ Network Throughput 459

■ Looking at the Sources 461

440

Connectivity imparts intelligence. You rarely come across a computer sys-
tem today that does not support some form of networking. In this chap-

ter, let’s focus on device drivers for network interface cards (NICs) that carry
Internet Protocol (IP) traffi c on a local area network (LAN). Most of the chapter
is bus agnostic, but wherever bus specifi cs are necessary, it assumes PCI. To
give you a fl avor of other network technologies, we also touch on Asynchronous
Transfer Mode (ATM). We end the chapter by pondering on performance and
throughput.

NIC drivers are different from other driver classes in that they do not rely on
/dev or /sys to communicate with user space. Rather, applications interact with
a NIC driver via a network interface (for example, eth0 for the first Ethernet
interface) that abstracts an underlying protocol stack.

Driver Data Structures

When you write a device driver for a NIC, you have to operate on three classes of
data structures:

 1. Structures that form the building blocks of the network protocol stack. The
socket buffer or struct sk_buff defined in include/linux/sk_buff.h is the
key structure used by the kernel’s TCP/IP stack.

 2. Structures that define the interface between the NIC driver and the protocol
stack. struct net_device defined in include/linux/netdevice.h is the core
structure that constitutes this interface.

 3. Structures related to the I/O bus. PCI and its derivatives are common buses
used by today’s NICs.

We take a detailed look at socket buffers and the net_device interface in the next
two sections. We covered PCI data structures in Chapter 10, “Peripheral Compo-
nent Interconnect,” so we won’t revisit them here.

Socket Buffers

sk_buffs provide effi cient buffer handling and fl ow-control mechanisms to Linux
networking layers. Like DMA descriptors that contain metadata on DMA buffers,
sk_buffs hold control information describing attached memory buffers that carry
network packets (see Figure 15.1). sk_buffs are enormous structures having dozens
of elements, but in this chapter we confi ne ourselves to those that interest the network
device driver writer. An sk_buff links itself to its associated packet buffer using fi ve
main fi elds:

 • head, which points to the start of the packet

 • data, which points to the start of packet payload

 • tail, which points to the end of packet payload

 • end, which points to the end of the packet

 • len, the amount of data that the packet contains

Assuming that skb points to an sk_buff, skb->head, skb->data, skb->tail,
and skb->end slide over the associated packet buffer as the packet traverses the
protocol stack in either direction. skb->data, for example, points to the header
of the protocol that is currently processing the packet. When a packet reaches the
IP layer via the receive path, skb->data points to the IP header; when the packet
passes on to TCP, however, skb->data moves to the start of the TCP header. And as
the packet drives through various protocols adding or discarding header data, skb-
>len gets updated, too. sk_buffs also contain pointers other than the four major
ones previously mentioned. skb->nh, for example, remembers the position of the
network protocol header irrespective of the current position of skb->data.

To illustrate how a NIC driver works with sk_buffs, Figure 15.1 shows data
transitions on the receive data path. For convenience of illustration, the fi gure sim-
plistically assumes that the operations shown are executed in sequence. However, for
operational effi ciency in the real world, the fi rst two steps (dev_alloc_skb() and
skb_reserve()) are performed while initially preallocating a ring of receive buffers;
the third step is accomplished by the NIC hardware as it directly DMA’s the received
packet into a preallocated sk_buff; and the fi nal two steps (skb_put() and netif_

rx()) are executed from the receive interrupt handler.
To create an sk_buff to hold a received packet, Figure 15.1 uses dev_alloc_

skb(). This is an interrupt-safe routine that allocates memory for an sk_buff and
associates it with a packet payload buffer. dev_kfree_skb() accomplishes the reverse

Driver Data Structures 441

442 Chapter 15 Network Interface Cards

of dev_alloc_skb(). Figure 15.1 next calls skb_reserve() to add a 2-byte pad-
ding between the start of the packet buffer and the beginning of the payload. This
starts the IP header at a performance-friendly 16-byte boundary because the preceding
Ethernet headers are 14 bytes long. The rest of the code statements in Figure 15.1 fi ll
the payload buffer with the received packet and move skb->data, skb->tail, and
skb->len to refl ect this operation.

There are more sk_buff access routines relevant to some NIC drivers. skb_
clone(), for example, creates a copy of a supplied skb_buff without copying the
contents of the associated packet buffer. Look inside net/core/skbuff.c for the full list of
sk_buff library functions.

struct sk_buff *skb;
/* ... */

skb = dev_alloc_skb(length +
 NET_IP_ALIGN);

skb_reserve(skb, NET_IP_ALIGN);

mempcy(skb->data, dma_buffer,
 length)

skb_put(skb, length);

netif_rx(skb);

length +
 NET_IP_ALIGN

sk_buff

skb

data,
head,
tail

Data Buffer

NET_IP_ALIGN

 length

sk_buff

skb

data,
tail

data

head

data,
tail

head

head

Data Buffer

 (PACKET DATA)
 length

sk_buff

skb

Data Buffer

NET_IP_ALIGN

sk_buff

skb

 (PACKET DATA)
 length

Data Buffer

NET_IP_ALIGN

TCP
IP

Protocol
Stack

skb

NIC Driver

tail

FIGURE 15.1 sk_buff operations.

The Net Device Interface

NIC drivers use a standard interface to interact with the TCP/IP stack. The net_
device structure, which is even more gigantic than the sk_buff structure, defi nes
this communication interface. To prepare ourselves for exploring the innards of the
net_device structure, let’s fi rst follow the steps traced by a NIC driver during initial-
ization. Refer to init_mycard() in Listing 15.1 as we move along:

 • The driver allocates a net_device structure using alloc_netdev(). More
commonly, it uses a suitable wrapper around alloc_netdev(). An Ethernet
NIC driver, for example, calls alloc_etherdev(). A WiFi driver (discussed in
the next chapter) invokes alloc_ieee80211(), and an IrDa driver calls upon
alloc_irdadev(). All these functions take the size of a private data area as
argument and create this area in addition to the net_device itself:

struct net_device *netdev;

struct priv_struct *mycard_priv;

netdev = alloc_etherdev(sizeof(struct

 priv_struct));

mycard_priv = netdev->priv; /* Private area created

 by alloc_etherdev() */

 • Next, the driver populates various fields in the net_device that it allo-
cated and registers the populated net_device with the network layer using
register_netdev(netdev).

 • The driver reads the NIC’s Media Access Control (MAC) address from an accom-
panying EEPROM and configures Wake-On-LAN (WOL) if required. Ethernet
controllers usually have a companion nonvolatile EEPROM to hold information
such as their MAC address and WOL pattern, as shown in Figure 15.2. The
former is a unique 48-bit address that is globally assigned. The latter is a magic
sequence; if found in received data, it rouses the NIC if it’s in suspend mode.

 • If the NIC needs on-card fi rmware to operate, the driver downloads it using
request_firmware(), as discussed in the section “Microcode Download” in
Chapter 4, “Laying the Groundwork.”

Let’s now look at the methods that defi ne the net_device interface. We categorize
them under six heads for simplicity. Wherever relevant, this section points you to
the example NIC driver developed in Listing 15.1 of the section “Device Example:
 Ethernet NIC.”

Driver Data Structures 443

444 Chapter 15 Network Interface Cards

Activation

The net_device interface requires conventional methods such as open(), close(),
and ioctl(). The kernel opens an interface when you activate it using a tool such as
ifconfi g:

bash> ifconfig eth0 up

open() sets up receive and transmit DMA descriptors and other driver data struc-
tures. It also registers the NIC’s interrupt handler by calling request_irq(). The
net_device structure is passed as the devid argument to request_irq() so that
the interrupt handler gets direct access to the associated net_device. (See mycard_
open() and mycard_interrupt() in Listing 15.1 to fi nd out how this is done.)

The kernel calls close() when you pull down an active network interface. This
accomplishes the reverse of open().

Data Transfer

Data transfer methods form the crux of the net_device interface. In the transmit
path, the driver supplies a method called hard_start_xmit, which the protocol layer
invokes to pass packets down for onward transmission:

netdev->hard_start_xmit = &mycard_xmit_frame; /* Transmit Method. See Listing 15.1 */

Until recently, network drivers didn’t provide a net_device method for collecting
received data. Instead, they asynchronously interrupted the protocol layer with packet
payload. This old interface has, however, given way to a New API (NAPI) that is a mix-
ture of an interrupt-driven driver push and a poll-driver protocol pull. A NAPI-aware
driver thus needs to supply a poll() method and an associated weight that controls
polling fairness:

netdev->poll = &mycard_poll; /* Poll Method. See Listing 15.1 */

netdev->weight = 64;

We elaborate on data-transfer methods in the section “Talking with Protocol Layers.”

Watchdog

The net_device interface provides a hook to return an unresponsive NIC to opera-
tional state. If the protocol layer senses no transmissions for a predetermined amount of
time, it assumes that the NIC has hung and invokes a driver-supplied recovery method
to reset the card. The driver sets the watchdog timeout through netdev->watchdog_
timeo and registers the address of the recovery function via netdev->tx_timeout:

netdev->tx_timeout = &mycard_timeout; /* Method to reset the NIC */

netdev->watchdog_timeo = 8*HZ; /* Reset if no activity

 detected for 8 seconds */

Because the recovery method executes in timer-interrupt context, it usually schedules
a task outside of that context to reset the NIC.

Statistics

To enable user land to collect network statistics, the NIC driver populates a net_
device_stats structure and provides a get_stats() method to retrieve it. Essen-
tially the driver does the following:

 1. Updates different types of statistics from relevant entry points:

#include <linux/netdevice.h>

struct net_device_stats mycard_stats;

static irqreturn_t

mycard_interrupt(int irq, void *dev_id)

{

 /* ... */

 if (packet_received_without_errors) {

 mycard_stats.rx_packets++; /* One more received

 packet */

 }

 /* ... */

}

 2. Implements the get_stats() method to retrieve the statistics:

static struct net_device_stats

*mycard_get_stats(struct net_device *netdev)

{

Driver Data Structures 445

446 Chapter 15 Network Interface Cards

 /* House keeping */

 /* ... */

 return(&mycard_stats);

}

 3. Supplies the retrieve method to higher layers:

netdev->get_stats = &mycard_get_stats;

/* ... */

register_netdev(netdev);

To collect statistics from your NIC, trigger invocation of mycard_get_stats() by
executing an appropriate user mode command. For example, to fi nd the number of
packets received through the eth0 interface, do this:

bash> cat /sys/class/net/eth0/statistics/rx_packets

124664

WiFi drivers need to track several parameters not relevant to conventional NICs, so
they implement a statistic collection method called get_wireless_stats() in addi-
tion to get_stats(). The mechanism for registering get_wireless_stats() for
the benefi t of WiFi-aware user-space utilities is discussed in the section “WiFi” in the
next chapter.

Configuration

NIC drivers need to support user-space tools that are responsible for setting and get-
ting device parameters. Ethtool confi gures parameters for Ethernet NICs. To support
ethtool, the underlying NIC driver does the following:

 1. Populates an ethtool_ops structure, defined in include/linux/ethtool.h with
prescribed entry points:

#include <linux/ethtool.h>

/* Ethtool_ops methods */

struct ethtool_ops mycard_ethtool_ops = {

 /* ... */

 .get_eeprom = mycard_get_eeprom, /* Dump EEPROM

 contents */

 /* ... */

};

 2. Implements the methods that are part of ethtool_ops:

static int

mycard_get_eeprom(struct net_device *netdev,

 struct ethtool_eeprom *eeprom,

 uint8_t *bytes)

{

 /* Access the accompanying EEPROM and pull out data */

 /* ... */

}

 3. Exports the address of its ethtool_ops:

netdev->ethtool_ops = &mycard_ethtool_ops;

/* ... */

register_netdev(netdev);

After these are done, ethtool can operate over your Ethernet NIC. To dump EEPROM
contents using ethtool, do this:

bash> ethtool -e eth0

Offset Values

------ ------

0x0000 00 0d 60 79 32 0a 00 0b ff ff 10 20 ff ff ff ff

...

Ethtool comes packaged with some distributions; but if you don’t have it, download
it from http://sourceforge.net/projects/gkernel/. Refer to the man page for its full
capabilities.

There are more confi guration-related methods that a NIC driver provides to higher
layers. An example is the method to change the MTU size of the network interface. To
support this, supply the relevant method to net_device:

netdev->change_mtu = &mycard_change_mtu;

/* ... */

register_netdev(netdev);

The kernel invokes mycard_change_mtu() when you execute a suitable user com-
mand to alter the MTU of your card:

bash> echo 1500 > /sys/class/net/eth0/mtu

Driver Data Structures 447

http://sourceforge.net/projects/gkernel/

448 Chapter 15 Network Interface Cards

Bus Specific

Next come bus-specifi c details such as the start address and size of the NIC’s on-card
memory. For a PCI NIC driver, this confi guration will look like this:

netdev->mem_start = pci_resource_start(pdev, 0);

netdev->mem_end = netdev->mem_start + pci_resource_len(pdev, 0);

We discussed PCI resource functions in Chapter 10.

Talking with Protocol Layers

In the preceding section, you discovered the driver methods demanded by the net_
device interface. Let’s now take a closer look at how network data fl ows over this
interface.

Receive Path

You learned in Chapter 4 that softirqs are bottom half mechanisms used by perfor-
mance-sensitive subsystems. NIC drivers use NET_RX_SOFTIRQ to offl oad the work
of posting received data packets to protocol layers. The driver achieves this by calling
netif_rx() from its receive interrupt handler:

netif_rx(skb); /* struct sk_buff *skb */

 NAPI, alluded to earlier, improves this conventional interrupt-driven receive algo-
rithm to lower demands on CPU utilization. When network load is heavy, the system
might get bogged down by the large number of interrupts that it takes. NAPI’s strategy
is to use a polled mode when network activity is heavy but fall back to interrupt mode
when the traffi c gets light. NAPI-aware drivers switch between interrupt and polled
modes based on network load. This is done as follows:

 1. In interrupt mode, the interrupt handler posts received packets to protocol layers
by scheduling NET_RX_SOFTIRQ. It then disables NIC interrupts and switches
to polled mode by adding the device to a poll list:

if (netif_rx_schedule_prep(netdev)) /* Housekeeping */ {

 /* Disable NIC interrupt */

 disable_nic_interrupt();

 /* Post the packet to the protocol layer and

 add the device to the poll list */

 __netif_rx_schedule(netdev);

}

 2. The driver provides a poll() method via its net_device structure.

 3. In the polled mode, the driver’s poll() method processes packets in the ingress
queue. When the queue becomes empty, the driver re-enables interrupts and
switches back to interrupt mode by calling netif_rx_complete().

Look at mycard_interrupt(), init_mycard(), and mycard_poll() in List-
ing 15.1 to see NAPI in action.

Transmit Path

For data transmission, the interaction between protocol layers and the NIC driver is
straightforward. The protocol stack invokes the driver’s hard_start_xmit() method
with the outgoing sk_buff as argument. The driver gets the packet out of the door by
DMA-ing packet data to the NIC. DMA and the management of related data struc-
tures for PCI NIC drivers were discussed in Chapter 10.

The driver programs the NIC to interrupt the processor after it fi nishes transmit-
ting a predetermined number of packets. Only when a transmit-complete interrupt
occurs signaling completion of a transmit operation can the driver reclaim or free
resources such as DMA descriptors, DMA buffers, and sk_buffs associated with the
transmitted packet.

Flow Control

The driver conveys its readiness or reluctance to accept protocol data by, respectively,
calling netif_start_queue() and netif_stop_queue().

During device open(), the NIC driver calls netif_start_queue() to ask the
protocol layer to start adding transmit packets to the egress queue. During normal
operation, however, the driver might require egress queuing to stop on occasion.
Examples include the time window when the driver is replenishing data structures, or
when it’s closing the device. Throttling the downstream fl ow is accomplished by calling
netif_stop_queue(). To request the networking stack to restart egress queuing, say
when there are suffi cient free buffers, the NIC driver invokes netif_wake_queue().
To check the current fl ow-control state, toss a call to netif_queue_stopped().

Talking with Protocol Layers 449

450 Chapter 15 Network Interface Cards

Buffer Management and Concurrency Control

A high-performance NIC driver is a complex piece of software requiring intricate data
structure management. As discussed in the section “Data Transfer” in Chapter 10, a
NIC driver maintains linked lists (or “rings”) of transmit and receive DMA descrip-
tors, and implements free and in-use pools for buffer management. The driver typi-
cally implements a multipronged strategy to maintain buffer levels: preallocate a ring
of DMA descriptors and associated sk_buffs during device open, replenish free pools
by allocating new memory if available buffers dip below a predetermined watermark,
and reclaim used buffers into the free pool when the NIC generates transmit-complete
and receive interrupts.

Each element in the NIC driver’s receive ring, for example, is populated as
follows:

 /* Allocate an sk_buff and the associated data buffer.

 See Figure 15.1 */

 skb = dev_alloc_skb(MAX_NIC_PACKET_SIZE);

 /* Align the data pointer */

 skb_reserve(skb, NET_IP_ALIGN);

 /* DMA map for NIC access. The following invocation assumes a PCI

 NIC. pdev is a pointer to the associated pci_dev structure */

 pci_map_single(pdev, skb->data, MAX_NIC_PACKET_SIZE,

 PCI_DMA_FROMDEVICE);

 /* Create a descriptor containing this sk_buff and add it

 to the RX ring */

 /* ... */

During reception, the NIC directly DMA’s data to an sk_buff in the preceding preal-
located ring and interrupts the processor. The receive interrupt handler, in turn, passes
the packet to higher protocol layers. Developing ring data structures will make this
discussion as well as the example driver in the next section loaded, so refer to the
sources of the Intel PRO/1000 driver in the drivers/net/e1000/ directory for a complete
illustration.

Concurrent access protection goes hand-in-hand with managing such complex data
structures in the face of multiple execution threads such as transmit, receive, transmit-
complete interrupts, receive interrupts, and NAPI polling. We discussed several con-
currency control techniques in Chapter 2, “A Peek Inside the Kernel.”

Device Example: Ethernet NIC

Now that you have the background, it’s time to write a NIC driver by gluing the pieces
discussed so far. Listing 15.1 implements a skeletal Ethernet NIC driver. It only imple-
ments the main net_device methods. For help in developing the rest of the methods,
refer to the e1000 driver mentioned earlier. Listing 15.1 is generally independent of
the underlying I/O bus but is slightly tilted to PCI. If you are writing a PCI NIC
driver, you have to blend Listing 15.1 with the example PCI driver implemented in
Chapter 10.

LISTING 15.1 An Ethernet NIC Driver

#include <linux/netdevice.h>

#include <linux/etherdevice.h>

#include <linux/skbuff.h>

#include <linux/ethtool.h>

struct net_device_stats mycard_stats; /* Statistics */

/* Fill ethtool_ops methods from a suitable place in the driver */

struct ethtool_ops mycard_ethtool_ops = {

 /* ... */

 .get_eeprom = mycard_get_eeprom, /* Dump EEPROM contents */

 /* ... */

};

/* Initialize/probe the card. For PCI cards, this is invoked

 from (or is itself) the probe() method. In that case, the

 function is declared as:

 static struct net_device *init_mycard(struct pci_dev *pdev, const

 struct pci_device_id *id)

*/

static struct net_device *

init_mycard()

{

 struct net_device *netdev;

 struct priv_struct mycard_priv;

 /* ... */

 netdev = alloc_etherdev(sizeof(struct priv_struct));

Device Example: Ethernet NIC 451

452 Chapter 15 Network Interface Cards

 /* Common methods */

 netdev->open = &mycard_open;

 netdev->stop = &mycard_close;

 netdev->do_ioctl = &mycard_ioctl;

 /* Data transfer */

 netdev->hard_start_xmit = &mycard_xmit_frame; /* Transmit */

 netdev->poll = &mycard_poll; /* Receive - NAPI */

 netdev->weight = 64; /* Fairness */

 /* Watchdog */

 netdev->tx_timeout = &mycard_timeout; /* Recovery function */

 netdev->watchdog_timeo = 8*HZ; /* 8-second timeout */

 /* Statistics and configuration */

 netdev->get_stats = &mycard_get_stats; /* Statistics support */

 netdev->ethtool_ops = &mycard_ethtool_ops; /* Ethtool support */

 netdev->set_mac_address = &mycard_set_mac; /* Change MAC */

 netdev->change_mtu = &mycard_change_mtu; /* Alter MTU */

 strncpy(netdev->name, pci_name(pdev),

 sizeof(netdev->name) - 1); /* Name (for PCI) */

 /* Bus-specific parameters. For a PCI NIC, it looks as follows */

 netdev->mem_start = pci_resource_start(pdev, 0);

 netdev->mem_end = netdev->mem_start + pci_resource_len(pdev, 0);

 /* Register the interface */

 register_netdev(netdev);

 /* ... */

 /* Get MAC address from attached EEPROM */

 /* ... */

 /* Download microcode if needed */

 /* ... */

}

/* The interrupt handler */

static irqreturn_t

mycard_interrupt(int irq, void *dev_id)

{

 struct net_device *netdev = dev_id;

 struct sk_buff *skb;

 unsigned int length;

 /* ... */

 if (receive_interrupt) {

 /* We were interrupted due to packet reception. At this point,

 the NIC has already DMA'ed received data to an sk_buff that

 was pre-allocated and mapped during device open. Obtain the

 address of the sk_buff depending on your data structure

 design and assign it to 'skb'. 'length' is similarly obtained

 from the NIC by reading the descriptor used to DMA data from

 the card. Now, skb->data contains the received data. */

 /* ... */

 /* For PCI cards, perform a pci_unmap_single() on the

 received buffer in order to allow the CPU to access it */

 /* ... */

 /* Allow the data go to the tail of the packet by moving

 skb->tail down by length bytes and increasing

 skb->len correspondingly */

 skb_put(skb, length)

 /* Pass the packet to the TCP/IP stack */

#if !defined (USE_NAPI) /* Do it the old way */

 netif_rx(skb);

#else /* Do it the NAPI way */

 if (netif_rx_schedule_prep(netdev))) {

 /* Disable NIC interrupt. Implementation not shown. */

 disable_nic_interrupt();

 /* Post the packet to the protocol layer and

 add the device to the poll list */

 __netif_rx_schedule(netdev);

 }

#endif

 } else if (tx_complete_interrupt) {

 /* Transmit Complete Interrupt */

 /* ... */

Device Example: Ethernet NIC 453

454 Chapter 15 Network Interface Cards

 /* Unmap and free transmit resources such as

 DMA descriptors and buffers. Free sk_buffs or

 reclaim them into a free pool */

 /* ... */

 }

}

/* Driver open */

static int

mycard_open(struct net_device *netdev)

{

 /* ... */

 /* Request irq */

 request_irq(irq, mycard_interrupt, IRQF_SHARED,

 netdev->name, dev);

 /* Allocate Descriptor rings */

 /* See the section,

 "Buffer Management and Concurrency Control" */

 /* ... */

 /* Provide free descriptor addresses to the card */

 /* ... */

 /* Convey your readiness to accept data from the

 networking stack */

 netif_start_queue(netdev);

 /* ... */

}

/* Driver close */

static int

mycard_close(struct net_device *netdev)

{

 /* ... */

 /* Ask the networking stack to stop sending down data */

 netif_stop_queue(netdev);

 /* ... */

}

/* Called when the device is unplugged or when the module is

 released. For PCI cards, this is invoked from (or is itself)

 the remove() method. In that case, the function is declared as:

 static void __devexit mycard_remove(struct pci_dev *pdev)

*/

static void __devexit

mycard_remove()

{

 struct net_device *netdev;

 /* ... */

 /* For a PCI card, obtain the associated netdev as follows,

 assuming that the probe() method performed a corresponding

 pci_set_drvdata(pdev, netdev) after allocating the netdev */

 netdev = pci_get_drvdata(pdev); /*

 unregister_netdev(netdev); /* Reverse of register_netdev() */

 /* ... */

 free_netdev(netdev); /* Reverse of alloc_netdev() */

 /* ... */

}

/* Suspend method. For PCI devices, this is part of

 the pci_driver structure discussed in Chapter 10 */

static int

mycard_suspend(struct pci_dev *pdev, pm_message_t state)

{

 /* ... */

 netif_device_detach(netdev);

 /* ... */

}

/* Resume method. For PCI devices, this is part of

 the pci_driver structure discussed in Chapter 10 */

static int

mycard_resume(struct pci_dev *pdev)

{

Device Example: Ethernet NIC 455

456 Chapter 15 Network Interface Cards

 /* ... */

 netif_device_attach(netdev);

 /* ... */

}

/* Get statistics */

static struct net_device_stats *

mycard_get_stats(struct net_device *netdev)

{

 /* House keeping */

 /* ... */

 return(&mycard_stats);

}

/* Dump EEPROM contents. This is an ethtool_ops operation */

static int

mycard_get_eeprom(struct net_device *netdev,

 struct ethtool_eeprom *eeprom, uint8_t *bytes)

{

 /* Read data from the accompanying EEPROM */

 /* ... */

}

/* Poll method */

static int

mycard_poll(struct net_device *netdev, int *budget)

{

 /* Post packets to the protocol layer using

 netif_receive_skb() */

 /* ... */

 if (no_more_ingress_packets()){

 /* Remove the device from the polled list */

 netif_rx_complete(netdev);

 /* Fall back to interrupt mode. Implementation not shown */

 enable_nic_interrupt();

 return 0;

 }

}

/* Transmit method */

static int

mycard_xmit_frame(struct sk_buff *skb, struct net_device *netdev)

{

 /* DMA the transmit packet from the associated sk_buff

 to card memory */

 /* ... */

 /* Manage buffers */

 /* ... */

}

Ethernet PHY

Ethernet controllers implement the MAC layer and have to be used in tandem with a Physical
layer (PHY) transceiver. The former corresponds to the datalink layer of the Open Systems Inter-
connect (OSI) model, while the latter implements the physical layer. Several SoCs have built-in
MACs that connect to external PHYs. The Media Independent Interface (MII) is a standard
interface that connects a Fast Ethernet MAC to a PHY. The Ethernet device driver communicates
with the PHY over MII to confi gure parameters such as PHY ID, line speed, duplex mode, and
auto negotiation. Look at include/linux/mii.h for MII register defi nitions.

ISA Network Drivers

Let’s now take a peek at an ISA NIC. The CS8900 is a 10Mbps Ethernet controller
chip from Crystal Semiconductor (now Cirrus Logic). This chip is commonly used to
Ethernet-enable embedded devices, especially for debug purposes. Figure 15.2 shows
a connection diagram surrounding a CS8900. Depending on the processor on your
board and the chip-select used to drive the chip, the CS8900 registers map to different
regions in the CPU’s I/O address space. The device driver for this controller is an ISA-
type driver (look at the section “ISA and MCA” in Chapter 20, “More Devices and
Drivers”) that probes candidate address regions to detect the controller’s presence. The
ISA probe method elicits the controller’s I/O base address by looking for a signature
such as the chip ID.

Look at drivers/net/cs89x0.c for the source code of the CS8900 driver. cs89x0_
probe1() probes I/O address ranges to sense a CS8900. It then reads the current con-
fi guration of the chip. During this step, it accesses the CS8900’s companion EEPROM

ISA Network Drivers 457

458 Chapter 15 Network Interface Cards

and gleans the controller’s MAC address. Like the driver in Listing 15.1, cs89x0.c is
also built using netif_*() and skb_*() interface routines.

Some platforms that use the CS8900 allow DMA. ISA devices, unlike PCI cards,
do not have DMA mastering capabilities, so they need an external DMA controller to
transfer data.

PHY
Transceiver

EEPROM

To CPU
Data lines

RXD/TXD

EEDATA

D0 to D15A0 to A19

CS8900 Ethernet
MAC Controller

Interrupt

Chip Select
CPU

GPIO pins

To CPU
Addr lines

RJ45
Jack

FIGURE 15.2 Connection diagram surrounding a CS8900 Ethernet controller.

Asynchronous Transfer Mode

ATM is a high-speed, connection-oriented, back-bone technology. ATM guarantees
high quality of service (QoS) and low latencies, so it’s used for carrying audio and video
traffi c in addition to data.

Here’s a quick summary of the ATM protocol: ATM communication takes place
in units of 53-byte cells. Each cell begins with a 5-byte header that carries a virtual
path identifi er (VPI) and a virtual circuit identifi er (VCI). ATM connections are either
switched virtual circuits (SVCs) or permanent virtual circuits (PVCs). During SVC estab-
lishment, VPI/VCI pairs are confi gured in intervening ATM switches to route incom-
ing cells to appropriate egress ports. For PVCs, the VPI/VCI pairs are permanently
confi gured in the ATM switches and not set up and torn down for each connection.

There are three ways you can run TCP/IP over ATM, all of which are supported by
Linux-ATM:

 1. Classical IP over ATM (CLIP) as specified in RFC1 1577.

 2. Emulating a LAN over an ATM network. This is called LAN Emulation (LANE).

1 Request For Comments (RFC) are documents that specify networking standards.

 3. Multi Protocol over ATM (MPoA). This is a routing technique that improves
performance.

Linux-ATM is an experimental collection of kernel drivers, user-space utilities, and
daemons. You will fi nd ATM drivers and protocols under drivers/atm/ and net/atm/,
respectively, in the source tree. http://linux-atm.sourceforge.net/ hosts user-space pro-
grams required to use Linux-ATM. Linux also incorporates an ATM socket API con-
sisting of SVC sockets (AF_ATMSVC) and PVC sockets (AF_ATMPVC).

A protocol called Multiprotocol Label Switching (MPLS) is replacing ATM. The
Linux-MPLS project, hosted at http://mpls-linux.sourceforge.net/, is not yet part of
the mainline kernel.

We look at some ATM-related throughput issues in the next section.

Network Throughput

Several tools are available to benchmark network performance. Netperf, available for
free from www.netperf.org, can set up complex TCP/UDP connection scenarios. You
can use scripts to control characteristics such as protocol parameters, number of simul-
taneous sessions, and size of data blocks. Benchmarking is accomplished by comparing
the resulting throughput with the maximum practical bandwidth that the networking
technology yields. For example, a 155Mbps ATM adapter produces a maximum IP
throughput of 135Mbps, taking into account the ATM cell header size, overheads due
to the ATM Adaptation Layer (AAL), and the occasional maintenance cells sent by the
physical Synchronous Optical Networking (SONET) layer.

To obtain optimal throughput, you have to design your NIC driver for high per-
formance. In addition, you need an in-depth understanding of the network protocol
that your driver ferries.

Driver Performance

 Let’s take a look at some driver design issues that can affect the horsepower of your NIC:

 • Minimizing the number of instructions in the main data path is a key criterion
while designing drivers for fast NICs. Consider a 1Gbps Ethernet adapter with
1MB of on-board memory. At line rate, the card memory can hold up to 8 mil-
liseconds of received data. This directly translates to the maximum allowable
instruction path length. Within this path length, incoming packets have to be
reassembled, DMA-ed to memory, processed by the driver, protected from con-
current access, and delivered to higher layer protocols.

Network Throughput 459

www.netperf.org
http://linux-atm.sourceforge.net/
http://mpls-linux.sourceforge.net/

460 Chapter 15 Network Interface Cards

 • During programmed I/O (PIO), data travels all the way from the device to the
CPU, before it gets written to memory. Moreover, the CPU gets interrupted
whenever the device needs to transfer data, and this contributes to latencies and
context switch delays. DMAs do not suffer from these bottlenecks, but can turn
out to be more expensive than PIOs if the data to be transferred is less than a
threshold. This is because small DMAs have high relative overheads for build-
ing descriptors and flushing corresponding processor cache lines for data coher-
ency. A performance-sensitive device driver might use PIO for small packets
and DMA for larger ones, after experimentally determining the threshold.

 • For PCI network cards having DMA mastering capability, you have to deter-
mine the optimal DMA burst size, which is the time for which the card controls
the bus at one stretch. If the card bursts for a long duration, it may hog the bus
and prevent the processor from keeping up with data DMA-ed previously. PCI
drivers program the burst size via a register in the PCI configuration space. Nor-
mally the NIC’s burst size is programmed to be the same as the cache line size of
the processor, which is the number of bytes that the processor reads from system
memory each time there is a cache miss. In practice, however, you might need
to connect a bus analyzer to determine the beneficial burst duration because fac-
tors such as the presence of a split bus (multiple bus types like ISA and PCI) on
your system can influence the optimal value.

 • Many high-speed NICs offer the capability to offload the CPU-intensive com-
putation of TCP checksums from the protocol stack. Some support DMA
scatter-gather that we visited in Chapter 10. The driver needs to leverage these
capabilities to achieve the maximum practical bandwidth that the underlying
network yields.

 • Sometimes, a driver optimization might create unexpected speed bumps if it’s
not sensitive to the implementation details of higher protocols. Consider an
NFS-mounted fi lesystem on a computer equipped with a high-speed NIC.
Assume that the NIC driver takes only occasional transmit complete interrupts
to minimize latencies, but that the NFS server implementation uses freeing of
its transmit buffers as a fl ow-control mechanism. Because the driver frees NFS
transmit buffers only during the sparsely generated transmit complete inter-
rupts, fi le copies over NFS crawl, even as Internet downloads zip along yielding
maximum throughput.

Protocol Performance

Let’s now dig into some protocol-specifi c characteristics that can boost or hurt net-
work throughput:

 • TCP window size can impact throughput. The window size provides a measure
of the amount of data that can be transmitted before receiving an acknowl-
edgment. For fast NICs, a small window size might result in TCP sitting idle,
waiting for acknowledgments of packets already transmitted. Even with a
large window size, a small number of lost TCP packets can affect performance
because lost frames can use up the window at line speeds. In the case of UDP,
the window size is not relevant because it does not support acknowledgments.
However, a small packet loss can spiral into a big rate drop due to the absence of
flow-control mechanisms.

 • As the block size of application data written to TCP sockets increases, the num-
ber of buffers copied from user space to kernel space decreases. This lowers the
demand on processor utilization and is good for performance. If the block size
crosses the MTU corresponding to the network protocol, however, processor
cycles get wasted on fragmentation. The desirable block size is thus the outgoing
interface MTU, or the largest packet that can be sent without fragmentation
through an IP path if Path MTU discovery mechanisms are in operation. While
running IP over ATM, for example, because the ATM adaptation layer has a
64K MTU, there is virtually no upper bound on block size. (RFC 1626 defaults
this to 9180.) If you are running IP over ATM LANE, however, the block size
should mirror the MTU size of the respective LAN technology being emulated.
It should thus be 1500 for standard Ethernet, 8000 for jumbo Gigabit Ethernet,
and 18K for 16Mbps Token Ring.

Looking at the Sources

The drivers/net/ directory contains sources of various NIC drivers. Look inside driv-
ers/net/e1000/ for an example NIC driver. You will fi nd network protocol implemen-
tations in the net/ directory. sk_buff access routines are in net/core/skbuff.c. Library
routines that aid the implementation of your driver’s net_device interface stay in
net/core/dev.c and include/linux/netdevice.h.

Looking at the Sources 461

462 Chapter 15 Network Interface Cards

TUN/TAP Driver

The TUN/TAP device driver drivers/net/tun.c, used for protocol tunneling, is an example of a
combination of a virtual network driver and a pseudo char driver. The pseudo char device (/dev/
net/tun) acts as the underlying hardware for the virtual network interface (tunX), so instead of
transmitting frames to a physical network, the TUN network driver sends it to an application that
is reading from /dev/net/tun. Similarly, instead of receiving data from a physical network, the TUN
driver accepts it from an application writing to /dev/net/tun. Look at Documentation/networking/
tuntap.txt for more explanations and usage scenarios. Since both network and char portions of the
driver do not have to deal with the complexities of hardware interaction, it serves as a very read-
able, albeit simplistic, driver example.

Files under /sys/class/net/ let you operate on NIC driver parameters. Use the nodes
under /proc/sys/net/ to confi gure protocol-specifi c variables. To set the maximum TCP
transmit window size, for example, echo the desired value to /proc/sys/net/core/wmem_
max. The /proc/net/ directory has a collection of system-specifi c network information.
Examine /proc/net/dev for statistics on all NICs on your system and look at /proc/net/arp
for the ARP table.

Table 15.1 contains the main data structures used in this chapter and their location
in the source tree. Table 15.2 lists the main kernel programming interfaces that you
used in this chapter along with the location of their defi nitions.

TABLE 15.1 Summary of Data Structures

 Data Structure Location Description

sk_buff include/linux/skbuff.h sk_buffs provide efficient buffer handling and
flow-control mechanisms to Linux networking
layers.

net_device include/linux/netdevice.h Interface between NIC drivers and the TCP/IP
stack.

net_device_stats include/linux/netdevice.h Statistics pertaining to a network device.

ethtool_ops include/linux/ethtool.h Entry points to tie a NIC driver to the ethtool
utility.

TABLE 15.2 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

alloc_netdev() net/core/dev.c Allocates a net_device

alloc_etherdev()
alloc_ieee80211()
alloc_irdadev()

net/ethernet/eth.c
net/ieee80211/ieee80211_module.c
net/irda/irda_device.c

Wrappers to alloc_netdev()

free_netdev() net/core/dev.c Reverse of alloc_netdev()

register_netdev() net/core/dev.c Registers a net_device

unregister_netdev() net/core/dev.c Unregisters a net_device

dev_alloc_skb() include/linux/skbuff.h Allocates memory for an
sk_buff and associates it with
a packet payload buffer

dev_kfree_skb() include/linux/skbuff.h
net/core/skbuff.c

Reverse of dev_alloc_skb()

skb_reserve() include/linux/skbuff.h Adds a padding between the
start of a packet buffer and the
beginning of payload

skb_clone() net/core/skbuff.c Creates a copy of a supplied
sk_buff without copying the
contents of the associated packet
buffer

skb_put() include/linux/skbuff.h Allows packet data to go to the
tail of the packet

netif_rx() net/core/dev.c Passes a network packet to the
TCP/IP stack

netif_rx_schedule_prep()
__netif_rx_schedule()

include/linux/netdevice.h
net/core/dev.c

Passes a network packet to the
TCP/IP stack (NAPI)

netif_receive_skb() net/core/dev.c Posts packet to the protocol
layer from the poll() method
(NAPI)

netif_rx_complete() include/linux/netdevice.h Removes a device from polled
list (NAPI)

netif_device_detach() net/core/dev.c Detaches the device (commonly
called during power suspend)

netif_device_attach() net/core/dev.c Attaches the device (commonly
called during power resume)

netif_start_queue() include/linux/netdevice.h Conveys readiness to accept data
from the networking stack

netif_stop_queue() include/linux/netdevice.h Asks the networking stack to
stop sending down data

netif_wake_queue() include/linux/netdevice.h Restarts egress queuing

netif_queue_stopped() include/linux/netdevice.h Checks flow-control state

Looking at the Sources 463

This page intentionally left blank

465

16

Linux Without Wires

In This Chapter

■ Bluetooth 467

■ Infrared 478

■ WiFi 489

■ Cellular Networking 496

■ Current Trends 500

466

Several small-footprint devices are powered by the dual combination of a
wireless technology and Linux. Bluetooth, Infrared, WiFi, and cellular net-

working are established wireless technologies that have healthy Linux support.
Bluetooth eliminates cables, injects intelligence into dumb devices, and opens a
fl ood gate of novel applications. Infrared is a low-cost, low-range, medium-rate,
wireless technology that can network laptops, connect handhelds, or dispatch
a document to a printer. WiFi is the wireless equivalent of an Ethernet LAN.
 Cellular networking using GPRS or code division multiple access (CDMA) keeps
you Internet-enabled on the go, as long as your wanderings are confi ned to ser-
vice provider coverage area.

Because these wireless technologies are widely available in popular form factors,
you are likely to end up, sooner rather than later, with a card that does not work
on Linux right away. Before you start working on enabling an unsupported
card, you need to know in detail how the kernel implements support for the
corresponding technology. In this chapter, let’s learn how Linux enables Blue-
tooth, Infrared, WiFi, and cellular networking.

Wireless Trade-Offs

Bluetooth, Infrared, WiFi, and GPRS serve different niches. The trade-offs can be gauged in
terms of speed, range, cost, power consumption, ease of hardware/software co-design, and
PCB real estate usage.

Table 16.1 gives you an idea of these parameters, but you will have to contend with several
variables when you measure the numbers on the ground. The speeds listed are the theoretical
maximums. The power consumptions indicated are relative, but in the real world they also
depend on the vendor’s implementation techniques, the technology subclass, and the operat-
ing mode. Cost economics depend on the chip form factor and whether the chip contains
built-in microcode that implements some of the protocol layers. The board real estate con-
sumed depends not just on the chipset, but also on transceivers, antennae, and whether you
build using off-the-shelf (OTS) modules.

TABLE 16.1 Wireless Trade-Offs

Speed Range Power Cost
Co-Design
Effort

Board
Real
Estate

Bluetooth 720Kbps 10m to 100m ** ** ** **

Infrared
Data

4Mbps
(Fast IR)

Up to 1 meter within a
30-degree cone

* * * *

WiFi 54Mbps 150 meters (indoors) **** *** *** ***

GPRS 170Kbps Service provider coverage *** **** * ***

Note: The last four columns give relative measurement (depending on the number of * symbols) rather than
absolute values.

Some sections in this chapter focus more on “system programming” than device driv-
ers. This is because the corresponding regions of the protocol stack (for example, Blue-
tooth RFCOMM and Infrared networking) are already present in the kernel and you
are more likely to perform associated user mode customizations than develop protocol
content or device drivers.

Bluetooth

Bluetooth is a short-range cable-replacement technology that carries both data and
voice. It supports speeds of up to 723Kbps (asymmetric) and 432Kbps (symmetric).
Class 3 Bluetooth devices have a range of 10 meters, and Class 1 transmitters can com-
municate up to 100 meters.

Bluetooth is designed to do away with wires that constrict and clutter your envi-
ronment. It can, for example, turn your wristwatch into a front-end for a bulky Global
Positioning System (GPS) hidden inside your backpack. Or it can, for instance, let
you navigate a presentation via your handheld. Again, Bluetooth can be the answer
if you want your laptop to be a hub that can Internet-enable your Bluetooth-aware
MP3 player. If your wristwatch, handheld, laptop, or MP3 player is running Linux,
knowledge of the innards of the Linux Bluetooth stack will help you extract maximum
mileage out of your device.

Bluetooth 467

468 Chapter 16 Linux Without Wires

As per the Bluetooth specifi cation, the protocol stack consists of the layers shown
in Figure 16.1. The radio, link controller, and link manager roughly correspond to the
physical, data link, and network layers in the Open Systems Interconnect (OSI) standard
reference model. The Host Control Interface (HCI) is the protocol that carries data to/
from the hardware and, hence, maps to the transport layer. The Bluetooth Logical Link
Control and Adaptation Protocol (L2CAP) falls in the session layer. Serial port emula-
tion using Radio Frequency Communication (RFCOMM), Ethernet emulation using
Bluetooth Network Encapsulation Protocol (BNEP), and the Service Discovery Protocol
(SDP) are part of the feature-rich presentation layer. At the top of the stack reside
various application environments called profi les. The radio, link controller, and link
manager are usually part of Bluetooth hardware, so operating system support starts at
the HCI layer.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Profiles

RFCOMM/BNEP/SDP

L2CAP

Host Control Interface

Link Manager

Link Controller

Radio

OSI Model Bluetooth Stack

Linux BlueZ

Bluetooth Chipset

FIGURE 16.1 The Bluetooth stack.

A common method of interfacing Bluetooth hardware with a microcontroller is by
connecting the chipset’s data lines to the controller’s UART pins. Figure 13.4 of
Chapter 13, “Audio Drivers,” shows a Bluetooth chip on an MP3 player communi-
cating with the processor via a UART. USB is another oft-used vehicle for commu-
nicating with Bluetooth chipsets. Figure 11.2 of Chapter 11, “Universal Serial Bus,”
shows a Bluetooth chip on an embedded device interfacing with the processor over

USB. Irrespective of whether you use UART or USB (we will look at both kinds of
devices later), the packet format used to transport Bluetooth data is HCI.

BlueZ

The BlueZ Bluetooth implementation is part of the mainline kernel and is the offi cial
Linux Bluetooth stack. Figure 16.2 shows how BlueZ maps Bluetooth protocol layers
to kernel modules, kernel threads, user-space daemons, confi guration tools, utilities,
and libraries. The main BlueZ components are explained here:

 1. bluetooth.ko contains the core BlueZ infrastructure. All other BlueZ mod-
ules utilize its services. It’s also responsible for exporting the Bluetooth fam-
ily of sockets (AF_BLUETOOTH) to user space and for populating related sysfs
entries.

 2. For transporting Bluetooth HCI packets over UART, the corresponding BlueZ
HCI implementation is hci_uart.ko. For USB transport, it’s hci_usb.ko.

 3. l2cap.ko implements the L2CAP adaptation layer that is responsible for seg-
mentation and reassembly. It also multiplexes between different higher-layer
protocols.

 4. To run TCP/IP applications over Bluetooth, you have to emulate Ethernet ports
over L2CAP using BNEP. This is accomplished by bnep.ko. To service BNEP
connections, BlueZ spawns a kernel thread called kbnepd.

 5. To run serial port applications such as terminal emulators over Bluetooth, you
need to emulate serial ports over L2CAP. This is accomplished by rfcomm.ko.
RFCOMM also functions as the pillar that supports networking over PPP. To
service incoming RFCOMM connections, rfcomm.ko spawns a kernel thread
called krfcommd. To set up and maintain connections to individual RFCOMM
channels on target devices, use the rfcomm utility.

 6. The HID layer is implemented via hidp.ko. The user mode daemon hidd lets
BlueZ handle input devices such as Bluetooth mice.

 7. Audio is handled via the Synchronous Connection Oriented (SCO) layer imple-
mented by sco.ko.

Let’s now trace the kernel code fl ow for two example Bluetooth devices: a Compact
Flash (CF) card and a USB adapter.

Bluetooth 469

470 Chapter 16 Linux Without Wires

AF BLUETOOTH

Network Layer

Transport Layer

 Service
Discovery

 User Space

Kernel Space

Bluetooth Chipset
 (Link Manager, Link Control, Baseband, Radio)

hc i_ua r t .ko
hc i_usb .ko

(Host Control Interface Layer) hci _ v hci . ko

 (Virtual
Host Control
 Interface)

sco. k o
(SCO
Audio)

bl uetooth. ko

 l 2 cap. k o
 (Logical Link Control and Adaptation Layer)

hi dp. k o

(Human
Interface
Devices)

bnep. k o
k bnepd

 (Network
 Encapsulation
 Layer)

r f com m . k o
k r f com m d

 (Serial
 Emulation
 Layer)

 PPP

 TCP/IP

bnepX pppX

pand d dun

/dev/rfcommX

rfcomm

Mice app

hi dd

Audio app

sdpd

hciX

hci d , hciconfig, hcitool, hciattach, hcidump

telnet, ftp, ssh. … Serial Apps

/usr/lib/libbluetooth.so

Bluetooth
Socket App

(core, sysfs,
sockets)

FIGURE 16.2 Bluetooth protocol layers mapped to BlueZ kernel modules.

Device Example: CF Card

The Sharp Bluetooth Compact Flash card is built using a Silicon Wave chipset and
uses a serial transport to carry HCI packets. There are three different ways by which
HCI packets can be transported serially:

 1. H4 (UART), which is used by the Sharp CF card. H4 is the standard method to
transfer Bluetooth data over UARTs as defined by the Bluetooth specification.
Look at drivers/bluetooth/hci_h4.c for the BlueZ implementation.

 2. H3 (RS232). Devices using H3 are hard to find. BlueZ has no support for H3.

 3. BlueCore Serial Protocol (BCSP), which is a proprietary protocol from Cam-
bridge Silicon Radio (CSR) that supports error checking and retransmission.
BCSP is used on non-USB devices based on CSR BlueCore chips including
PCMCIA and CF cards. The BlueZ BCSP implementation lives in drivers/
bluetooth/hci_bcsp.c.

The read data path for the Sharp Bluetooth card is shown in Figure 16.3. The fi rst
point of contact between the card and the kernel is at the UART driver. As you saw
in Figure 9.5 of Chapter 9, “PCMCIA and Compact Flash,” the serial Card Services
driver drivers/serial/serial_cs.c, allows the rest of the operating system to see the Sharp
card as if it were a serial device. The serial driver passes on the received HCI packets to
BlueZ. BlueZ implements HCI processing in the form of a kernel line discipline. As
you learned in Chapter 6, “Serial Drivers,” line disciplines reside above the serial driver
and shape its behavior. The HCI line discipline invokes associated protocol routines
(H4 in this case) for assistance in data processing. From then on, L2CAP and higher
BlueZ layers take charge.

Device Example: USB Adapter

Let’s now look at a device that uses USB to transport HCI packets. The Belkin Blue-
tooth USB adapter is one such gadget. In this case, the Linux USB layer (drivers/usb/*),
the HCI USB transport driver (drivers/bluetooth/hci_usb.c), and the BlueZ protocol
stack (net/bluetooth/*) are the main players that get the data rolling. Let’s see how these
three kernel layers interact.

Bluetooth 471

472 Chapter 16 Linux Without Wires

Higher Layers
(See Figure 16.2)

12cap_receive_acldata L2CAP

h4_recv
HCI H4
Protocol

hci_uart_tty_receive

queue_task

HCI Line
Discipline

tty_flip_buffer_push PCMCIA Core

Sharp Bluetooth
CF Card

Card Info Structure
(CIS)

Serial ISR

BlueZ
Stack

serial_cs

PCMCIA/CardBus
Host Controller

FIGURE 16.3 Read data path from a Sharp Bluetooth CF card.

 As you learned in Chapter 11, USB devices exchange data using one or more of
four pipes. For Bluetooth USB devices, each pipe is responsible for carrying a particu-
lar type of data:

 1. Control pipes are used to transport HCI commands.

 2. Interrupt pipes are responsible for carrying HCI events.

 3. Bulk pipes transfer asynchronous connectionless (ACL) Bluetooth data.

 4. Isochronous pipes carry SCO audio data.

You also saw in Chapter 11 that when a USB device is plugged into a system, the host
controller driver enumerates it using a control pipe and assigns endpoint addresses
between 1 and 127. The confi guration descriptor read by the USB subsystem during
enumeration contains information about the device, such as its class, subclass, and
protocol. The Bluetooth specifi cation defi nes the (class, subclass, protocol)
codes of Bluetooth USB devices as (0xE, 0x01, 0x01). The HCI USB transport driver
(hci_usb) registers these values with the USB core during initialization. When the Bel-
kin USB adapter is plugged in, the USB core reads the (class, subclass, proto-
col) information from the device confi guration descriptor. Because this information
matches the values registered by hci_usb, this driver gets attached to the Belkin USB
adapter. hci_usb reads Bluetooth data from the four USB pipes described previously
and passes it on to the BlueZ protocol stack. Linux applications now run seamlessly
over this device, as shown in Figure 16.2.

RFCOMM

RFCOMM emulates serial ports over Bluetooth. Applications such as terminal emu-
lators and protocols such as PPP can run unchanged over the virtual serial interfaces
created by RFCOMM.

Device Example: Pill Dispenser

To take an example, assume that you have a Bluetooth-aware pill dispenser. When you
pop a pill out of the dispenser, it sends a message over a Bluetooth RFCOMM chan-
nel. A Linux cell phone, such as the one shown in Figure 6.5 of Chapter 6, reads this
alert using a simple application that establishes an RFCOMM connection to the pill

Bluetooth 473

474 Chapter 16 Linux Without Wires

dispenser. The phone then dispatches this information to the health-care provider’s
server on the Internet via its GPRS interface.

A skeletal application on the Linux cell phone that reads data arriving from the pill
dispenser using the BlueZ socket API is shown in Listing 16.1. The listing assumes
that you are familiar with the basics of socket programming.

LISTING 16.1 Communicating with a Pill Dispenser over RFCOMM

#include <sys/socket.h>

#include <bluetooth/rfcomm.h> /* For struct sockaddr_rc */

void

sense_dispenser()

{

 int pillfd;

 struct sockaddr_rc pill_rfcomm;

 char buffer[1024];

 /* ... */

 /* Create a Bluetooth RFCOMM socket */

 if ((pillfd = socket(PF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM))

 < 0) {

 printf("Bad Bluetooth RFCOMM socket");

 exit(1);

 }

 /* Connect to the pill dispenser */

 pill_rfcomm.rc_family = AF_BLUETOOTH;

 pill_rfcomm.rc_bdaddr = PILL_DISPENSER_BLUETOOTH_ADDR;

 pill_rfcomm.rc_channel = PILL_DISPENSER_RFCOMM_CHANNEL;

 if (connect(pillfd, (struct sockaddr *)&pill_rfcomm,

 sizeof(pill_rfcomm))) {

 printf("Cannot connect to Pill Dispenser\n");

 exit(1);

 }

 printf("Connection established to Pill Dispenser\n");

 /* Poll until data is ready */

 select(pillfd, &fds, NULL, NULL, &timeout);

 /* Data is available on this RFCOMM channel */

 if (FD_ISSET(pillfd, fds)) {

 /* Read pill removal alerts from the dispenser */

 read(pillfd, buffer, sizeof(buffer));

 /* Take suitable action; e.g., send a message to the health

 care provider's server on the Internet via the GPRS

 interface */

 /* ... */

 }

 /* ... */

}

Networking

Trace down the code path from the telnet/ftp/ssh box in Figure 16.2 to see how net-
working is architected over BlueZ Bluetooth. As you can see, there are two different
ways to network over Bluetooth:

 1. By running TCP/IP directly over BNEP. The resulting network is called a per-
sonal area network (PAN).

 2. By running TCP/IP over PPP over RFCOMM. This is called dialup networking
(DUN).

The kernel implementation of Bluetooth networking is unlikely to interest the device
driver writer and is not explored. Table 16.2 shows the steps required to network two
laptops using PAN, however. Networking with DUN resembles this and is not exam-
ined. The laptops are respectively Bluetooth-enabled using the Sharp CF card and the
Belkin USB adapter discussed earlier. You can slip the CF card into the fi rst laptop’s
PCMCIA slot using a passive CF-to-PCMCIA adapter. Look at Figure 16.2 in tandem
with Table 16.2 to understand the mappings to corresponding BlueZ components.
Table 16.2 uses bash-sharp> and bash-belkin> as the respective shell prompts of
the two laptops.

Bluetooth 475

476 Chapter 16 Linux Without Wires

TABLE 16.2 Networking Two Laptops Using Bluetooth PAN

On the laptop
with the Sharp
 Bluetooth CF card

1. Start the HCI and service discovery daemons:

bash-sharp> hcid

bash-sharp> sdpd

Because this device possesses a UART interface, you have to attach the BlueZ
stack to the appropriate serial port. In this case, assume that serial_cs has allotted
/dev/ttyS3 to the card:

bash-sharp> hciattach ttyS3 any

2. Verify that the HCI interface is up:

bash-sharp> hciconfig -a

 hci0: Type: UART

 BD Address: 08:00:1F:10:3B:13 ACL MTU: 60:20 SCO MTU: 31:1

 UP RUNNING PSCAN ISCAN

 ...

Manufacturer: Silicon Wave (11)

3. Verify that basic BlueZ modules are loaded:

bash-sharp> lsmod

 Module Size Used by

 hci_uart 16728 3

 l2cap 26144 2

 bluetooth 47684 6 hci_uart,l2cap

 ...

4. Insert the BlueZ module that implements network encapsulation:

bash-sharp> modprobe bnep

5. Listen for incoming PAN connections: 1

bash-sharp> pand –s

On the laptop with
the Belkin USB
Bluetooth adapter

1. Start daemons, such as hcid and sdpd, and insert necessary kernel modules, such
as bluetooth.ko and l2cap.ko.

2. Because this is a USB device, you don’t need to invoke hciattach, but make sure
that the hci_usb.ko module is inserted.

3. Verify that the HCI interface is up:

bash-belkin> hciconfig -a

 hci0: Type: USB

1 A useful command-line option to pand is --persist, which automatically attempts to reconnect when a connection drops.
Dig into the man pages for more invocation options.

 BD Address: 00:02:72:B0:33:AB ACL MTU: 192:8 SCO MTU: 64:8

 UP RUNNING PSCAN ISCAN

 ...

 Manufacturer: Cambridge Silicon Radio (10)

4. Search and discover devices in the neighborhood:

bash-belkin> hcitool -i hci0 scan --flush

 Scanning....

 08:00:1F:10:3B:13 bash-sharp

5. Establish a PAN with the first laptop. You can get its Bluetooth address
(08:00:1F:10:3B:13) from its hciconfig output:

bash-belkin> pand -c 08:00:1F:10:3B:13

If you now look at the ifconfig output on the two laptops, you will find that a new
interface named bnep0 has made an appearance at both ends. Assign IP addresses to
both interfaces and get ready to telnet and FTP!

Human Interface Devices

Look at sections “USB and Bluetooth Keyboards” and “USB and Bluetooth Mice” in
Chapter 7, “Input Drivers,” for a discussion on Bluetooth human interface devices.

Audio

Let’s take the example of an HBH-30 Sony Ericsson Bluetooth headset to understand
Bluetooth SCO audio. Before the headset can start communicating with a Linux
device, the Bluetooth link layer on the latter has to discover the former. For this, put
the headset in discover mode by pressing the button earmarked for device discovery. In
addition, you have to confi gure BlueZ with the headset’s personal identifi cation number
(PIN) by adding it to /etc/bluetooth/pin. An application on the Linux device that uses
BlueZ SCO APIs can now send audio data to the headset. The audio data should be in
a format that the headset understands. The HBH-30 uses the A-law PCM (pulse code
modulation) format. There are public domain utilities for converting audio into vari-
ous PCM formats.

Bluetooth chipsets commonly have PCM interface pins in addition to the HCI
transport interface. If a device supports, for instance, both Bluetooth and GSM, the
PCM lines from the GSM chipset may be directly wired to the Bluetooth chip’s PCM
audio lines. You might then have to confi gure the Bluetooth chip to receive and send
SCO audio packets over its HCI interface instead of its PCM interface.

Bluetooth 477

478 Chapter 16 Linux Without Wires

Debugging

There are two BlueZ tools useful for debugging:

 1. hcidump taps HCI packets flowing back and forth, and parses them into human-
readable form. Here’s an example dump while a device inquiry is in progress:

bash> hcidump -i hci0

HCIDump - HCI packet analyzer ver 1.11

device: hci0 snap_len: 1028 filter: 0xffffffff

 HCI Command: Inquiry (0x01|0x0001) plen 5

 HCI Event: Command Status (0x0f) plen 4

 HCI Event: Inquiry Result (0x02) plen 15

 ...

 HCI Event: Inquiry Complete (0x01) plen 1 < HCI Command:

 Remote Name Request (0x01|0x0019) plen 10

 ...

 2. The virtual HCI driver (hci_vhci.ko), as shown in Figure 16.2, emulates a Blue-
tooth interface if you do not have actual hardware.

Looking at the Sources

Look inside drivers/bluetooth/ for BlueZ low-level drivers. Explore net/bluetooth/ for
insights into the BlueZ protocol implementation.

Bluetooth applications fall under different profi les based on how they behave. For
example, the cordless telephony profi le specifi es how a Bluetooth device can imple-
ment a cordless phone. We discussed profi les for PAN and serial access, but there
are many more profi les out there such as fax profi le, General Object Exchange Profi le
(GOEP) and SIM Access Profi le (SAP). The bluez-utils package, downloadable from
www.bluez.org, provides support for several Bluetooth profi les.

The offi cial Bluetooth website is www.bluetooth.org. It contains Bluetooth specifi -
cation documents and information about the Bluetooth Special Interest Group (SIG).

Affi x is an alternate Bluetooth stack on Linux. You can download Affi x from http://
affi x.sourceforge.net/.

Infrared

Infrared (IR) rays are optical waves lying between the visible and the microwave regions
of the electromagnetic spectrum. One use of IR is in point-to-point data communica-
tion. Using IR, you can exchange visiting cards between PDAs, network two laptops,

www.bluez.org
www.bluetooth.org
http://affix.sourceforge.net/
http://affix.sourceforge.net/

or dispatch a document to a printer. IR has a range of up to 1 meter within a 30-degree
cone, spreading from –15 to +15 degrees.

There are two popular fl avors of IR communication: Standard IR (SIR), which
supports speeds of up to 115.20 Kbaud; and Fast IR (FIR), which has a bandwidth
of 4Mbps.

Figure 16.4 shows IR connection on a laptop. UART1 in the Super I/O chipset
is IR-enabled, so an IR transceiver is directly connected to it. Laptops having no IR
support in their Super I/O chip may rely on an external IR dongle (see the section
“Device Example: IR Dongle”) similar to the one connected to UART0. Figure 16.5
shows IR connection on an embedded SoC having a built-in IR dongle connected to
a system UART.

Processor

North Bridge

South Bridge
Super I/O

RS232

IR Dongle

IR
Transceiver
(SIR/FIR)

UART1UART0

FIGURE 16.4 IrDA on a laptop.

Embedded SoC

CPU
Core

UART

Infrared
Controller

(SIR
Dongle)

Optical IR
Transceiver

Peripheral Bus

RX

TX

RXIR

TXIR

FIGURE 16.5 IrDA on an embedded device (for example, EP7211).

Infrared 479

480 Chapter 16 Linux Without Wires

Linux supports IR communication on two planes:

 1. Intelligent data-transfer via protocols specified by the Infrared Data Association
(IrDA). This is implemented by the Linux-IrDA project.

 2. Controlling applications via a remote control. This is implemented by the Linux
Infrared Remote Control (LIRC) project.

This section primarily explores Linux-IrDA but takes a quick look at LIRC before
wrapping up.

Linux-IrDA

The Linux-IrDA project (http://irda.sourceforge.net/) brings IrDA capabilities to the
kernel. To get an idea of how Linux-IrDA components relate vis-à-vis the IrDA stack
and possible hardware confi gurations, let’s criss-cross through Figure 16.6:

 1. Device drivers constitute the bottom layer. SIR chipsets that are 16550-
 compatible can reuse the native Linux serial driver after shaping its behavior
using the IrDA line discipline, IrTTY. An alternative to this combo is the IrPort
driver. FIR chipsets have their own special drivers.

 2. Next comes the core protocol stack. This consists of the IR Link Access Pro-
tocol (IrLAP), IR Link Management Protocol (IrLMP), Tiny Transport Protocol
(TinyTP), and the IrDA socket (IrSock) interface. IrLAP provides a reliable
transport as well as the state machine to discover neighboring devices. IrLMP is
a multiplexer over IrLAP. TinyTP provides segmentation, reassembly, and flow
control. IrSock offers a socket interface over IrLMP and TinyTP.

 3. Higher regions of the stack marry IrDA to data-transfer applications. IrLAN
and IrNET enable networking, while IrComm allows serial communication.

 4. You also need the applications that ultimately make or break the technology.
An example is openobex (http://openobex.sourceforge.net/), which implements
the OBject EXchange (OBEX) protocol used to exchange objects such as doc-
uments and visiting cards. To configure Linux-IrDA, you need the irda-utils
package that comes bundled with many distributions. This provides tools such
as irattach, irdadump, and irdaping.

http://irda.sourceforge.net/
http://openobex.sourceforge.net/

 IrDA Drivers
(drivers/net/irda/*)

IrSock

 IrDA Hardware
(See Figure 16.4 and Figure 16.5)

SY N CA S Y N C

User Applications

 IrTTY
(i r tty . k o)

 Serial
 Driver

(8 2 5 0 . ko)

 IrPort
(i rport . k o)

 FIR Driver
(nsc- i rcc.ko)

 IrLAP

 TinyTP

 IrLMP

PPP

TCP/IP

/dev/ircommX

Serial Apps

Socket
Apps

i rda. ko
 IrDA Stack
 (net/irda/*)

Networking Stack

 IrNET
 (i rnet . k o)

 IrLAN
 (i r l an. k o)

 IrComm
 (i rcom m . k o)

Dongle Driver
(ep7211_ir.ko)si r_

_ _
dev . k o /

irda sir wq

irattach, irdadump, irdaping, irsend

 USB
 Dongle
 Driver
 (i rda-
usb. k o)

pppX irlanX

 telnet , ft p, ssh ,… OpenOBEX

FIGURE 16.6 Communicating over Linux-IrDA.

Infrared 481

482 Chapter 16 Linux Without Wires

Device Example: Super I/O Chip

To get a fi rst taste of Linux-IrDA, let’s get two laptops talking to each other over IR.
Each laptop is IR- enabled via National Semiconductor’s NSC PC87382 Super I/O
chip.2 UART1 in Figure 16.4 shows the connection scenario. The PC87382 chip can
work in both SIR and FIR modes. We will look at each in turn.

SIR chips offer a UART interface to the host computer. For communicating in SIR
mode, attach the associated UART port (/dev/ttyS1 in this example) of each laptop to
the IrDA stack:

bash> irattach /dev/ttyS1 -s

Verify that IrDA kernel modules (irda.ko, sir_dev.ko, and irtty_sir.ko) are loaded and
that the irda_sir_wq kernel thread is running. The irda0 interface should also have
made an appearance in the ifconfig output. The -s option to irattach triggers a
search for IR activity in the neighborhood. If you slide the laptops such that their IR
transceivers lie within the range cone, they will be able to spot each other:

bash> cat /proc/net/irda/discovery

nickname: localhost, hint: 0x4400, saddr: 0x55529048, daddr: 0x8fefb350

The other laptop makes a similar announcement, but with the source and destination
addresses (saddr and daddr) reversed. You may set the desired communication speed
using stty on ttyS1. To set the baud rate to 19200, do this:

bash> stty speed 19200 < /dev/ttyS1

The easiest way to cull IR activity from the air is by using the debug tool, irdadump.
Here’s a sample dump obtained during the preceding connection establishment, which
shows the negotiated parameters:

bash> irdadump -i irda0

...

22:05:07.831424 snrm:cmd ca=fe pf=1 6fb7ff33 > 2c0ce8b6 new-ca=40

LAP QoS: Baud Rate=19200bps Max Turn Time=500ms Data Size=2048B Window Size=7 Add
BOFS=0 Min Turn Time=5000us Link Disc=12s (32)

22:05:07.987043 ua:rsp ca=40 pf=1 6fb7ff33 < 2c0ce8b6

LAP QoS: Baud Rate=19200bps Max Turn Time=500ms Data Size=2048B Window Size=7 Add
BOFS=0 Min Turn Time=5000us Link Disc=12s (31)

...

2 Super I/O chipsets typically support several peripherals besides IrDA, such as serial ports, parallel ports, Musical Instrument
Digital Interface (MIDI), and fl oppy controllers.

You can also obtain debug information out of the IrDA stack by controlling the ver-
bosity level in /proc/sys/net/irda/debug.

To set the laptops in FIR mode, dissociate ttyS1 from the native serial driver and
instead attach it to the NSC FIR driver, nsc-ircc.ko:

bash> setserial /dev/ttyS1 uart none

bash> modprobe nsc-ircc dongle_id=0x09

bash> irattach irda0 -s

dongle_id depends on your IR hardware and can be found from your hardware docu-
mentation. As you did for SIR, take a look at /proc/net/irda/discovery to see whether things
are okay thus far. Sometimes, FIR communication hangs at higher speeds. If irdadump
shows a communication freeze, either put on your kernel hacking hat and fi x the code,
or try lowering the negotiated speed by tweaking /proc/sys/net/irda/max_baud_rate.

Note that unlike the Bluetooth physical layer that can establish one-to-many con-
nections, IR can support only a single connection per physical device at a time.

Device Example: IR Dongle

Dongles are IR devices that plug into serial or USB ports. Some microcontrollers (such
as Cirrus Logic’s EP7211 shown in Figure 16.5) that have on-chip IR controllers wired
to their UARTs are also considered dongles.

Dongle drivers are a set of control methods responsible for operations such as
changing the communication speed. They have four entry points: open(), reset(),
change_speed(), and close(). These entry points are defi ned as part of a dongle_
driver structure and are invoked from the context of the IrDA kernel thread, irda_
sir_wq. Dongle driver methods are allowed to block because they are invoked from
process context with no locks held. The IrDA core offers three helper functions to
dongle drivers: sirdev_raw_write() and sirdev_raw_read() to exchange control
data with the associated UART, and sirdev_set_dtr_rts() to wiggle modem con-
trol lines connected to the UART.

Because you’re probably more likely to add kernel support for dongles than modify
other parts of Linux-IrDA, let’s implement an example dongle driver. Assume that
you’re enabling a yet-unsupported simple serial IR dongle that communicates only at
19200 or 57600 baud. Assume also that when the user wants to toggle the baud rate
between these two values, you have to hold the UART’s Request-to-Send (RTS) pin low

Infrared 483

484 Chapter 16 Linux Without Wires

for 50 microseconds and pull it back high for 25 microseconds. Listing 16.2 imple-
ments a dongle driver for this device.

LISTING 16.2 An Example Dongle Driver

#include <linux/delay.h>

#include <net/irda/irda.h>

#include "sir-dev.h" /* Assume that this sample driver lives in

drivers/net/irda/ */

/* Open Method. This is invoked when an irattach is issued on the

 associated UART */

static int

mydongle_open(struct sir_dev *dev)

{

 struct qos_info *qos = &dev->qos;

 /* Power the dongle by setting modem control lines, DTR/RTS. */

 sirdev_set_dtr_rts(dev, TRUE, TRUE);

 /* Speeds that mydongle can accept */

 qos->baud_rate.bits &= IR_19200|IR_57600;

 irda_qos_bits_to_value(qos); /* Set QoS */

 return 0;

}

/* Change baud rate */

static int

mydongle_change_speed(struct sir_dev *dev, unsigned speed)

{

 if ((speed == 19200) || (speed = 57600)){

 /* Toggle the speed by pulsing RTS low

 for 50 us and back high for 25 us */

 sirdev_set_dtr_rts(dev, TRUE, FALSE);

 udelay(50);

 sirdev_set_dtr_rts(dev, TRUE, TRUE);

 udelay(25);

 return 0;

 } else {

 return -EINVAL;

 }

}

/* Reset */

static int

mydongle_reset(struct sir_dev *dev)

{

 /* Reset the dongle as per the spec, for example,

 by pulling DTR low for 50 us */

 sirdev_set_dtr_rts(dev, FALSE, TRUE);

 udelay(50);

 sirdev_set_dtr_rts(dev, TRUE, TRUE);

 dev->speed = 19200; /* Reset speed is 19200 baud */

 return 0;

}

/* Close */

static int

mydongle_close(struct sir_dev *dev)

{

 /* Power off the dongle as per the spec,

 for example, by pulling DTR and RTS low.. */

 sirdev_set_dtr_rts(dev, FALSE, FALSE);

 return 0;

}

/* Dongle Driver Methods */

static struct dongle_driver mydongle = {

 .owner = THIS_MODULE,

 .type = MY_DONGLE, /* Add this to the enumeration

 in include/linux/irda.h */

 .open = mydongle_open, /* Open */

 .reset = mydongle_reset, /* Reset */

 .set_speed = mydongle_change_speed, /* Change Speed */

 .close = mydongle_close, /* Close */

};

/* Initialize */

static int __init

mydongle_init(void)

{

 /* Register the entry points */

 return irda_register_dongle(&mydongle);

}

Infrared 485

486 Chapter 16 Linux Without Wires

/* Release */

static void __exit

mydongle_cleanup(void)

{

 /* Unregister entry points */

 irda_unregister_dongle(&mydongle);

}

module_init(mydongle_init);

module_exit(mydongle_cleanup);

For real-life examples, look at drivers/net/irda/tekram.c and drivers/net/irda/ep7211_ir.c.
Now that you have the physical layer running, let’s venture to look at IrDA

protocols.

IrComm

IrComm emulates serial ports. Applications such as terminal emulators and protocols
such as PPP can run unchanged over the virtual serial interfaces created by IrComm.
IrComm is implemented by two related modules, ircomm.ko and ircomm_tty.ko. The
former provides core protocol support, while the latter creates and manages the emu-
lated serial port nodes /dev/ircommX.

Networking

There are three ways to get TCP/IP applications running over IrDA:

 1. Asynchronous PPP over IrComm

 2. Synchronous PPP over IrNET

 3. Ethernet emulation with IrLAN

Networking over IrComm is equivalent to running asynchronous PPP over a serial
port, so there is nothing out of the ordinary in this scenario.

Asynchronous PPP needs to mark the start and end of frames using techniques
such as byte stuffi ng, but if PPP is running over data links such as Ethernet, it need
not be burdened with the overhead of a framing protocol. This is called synchro-
nous PPP and is used to confi gure networking over IrNET.3 Passage through the PPP

3 For a scholarly discussion on networking over IrNET, read www.hpl.hp.com/personal/Jean_Tourrilhes/Papers/IrNET.
Demand.html.

www.hpl.hp.com/personal/Jean_Tourrilhes/Papers/IrNET.Demand.html
www.hpl.hp.com/personal/Jean_Tourrilhes/Papers/IrNET.Demand.html

layer provides features such as on-demand IP address confi guration, compression,
and authentication.

To start IrNET, insert irnet.ko. This also creates the character device node /dev/irnet,
which is a control channel over which you can attach the PPP daemon:

bash> pppd /dev/irnet 9600 noauth a.b.c.d:a.b.c.e

This yields the pppX network interfaces at either ends with the respective IP addresses
set to a.b.c.d and a.b.c.e. The interfaces can now beam TCP/IP packets.

IrLAN provides raw Ethernet emulation over IrDA. To network your laptops using
IrLAN, do the following at both ends:

 • Insert irlan.ko. This creates the network interface irlanX, where X is the assigned
interface number.

 • Configure the irlanX interfaces. To set the IP address, do this:

bash> ifconfig irlanX a.b.c.d

Or automate it by adding the following line to /etc/sysconfig/network-scripts/
ifcfg-irlan0:4

DEVICE=irlanX IPADDR=a.b.c.d

You can now telnet between the laptops over the irlanX interfaces.

IrDA Sockets

To develop custom applications over IrDA, use the IrSock interface. To create a socket
over TinyTP, do this:

int fd = socket(AF_IRDA, SOCK_STREAM, 0);

For a datagram socket over IrLMP, do this:

int fd = socket(AF_IRDA, SOCK_DGRAM, 0);

Look at the irsockets/ directory in the irda-utils package for code examples.

4 The location of this fi le is distribution-dependent.

Infrared 487

488 Chapter 16 Linux Without Wires

Linux Infrared Remote Control

The goal of the LIRC project is to let you control your Linux computer via a remote.
For example, you can use LIRC to control applications that play MP3 music or DVD
movies via buttons on your remote. LIRC is architected into

 1. A base LIRC module called lirc_dev.

 2. A hardware-specific physical layer driver. IR hardware that interface via serial
ports use lirc_serial. To allow lirc_serial to do its job without interference from
the kernel serial driver, dissociate the latter as you did earlier for FIR:

bash> setserial /dev/ttySX uart none

 You may have to replace lirc_serial with a more suitable low-level LIRC driver
depending on your IR device.

 3. A user mode daemon called lircd that runs over the low-level LIRC driver. Lircd
decodes signals arriving from the remote and is the centerpiece of LIRC. Sup-
port for many remotes are implemented in the form of user-space drivers that are
part of lircd. Lircd exports a UNIX-domain socket interface /dev/lircd to higher
applications. Connecting to lircd via /dev/lircd is the key to writing LIRC-aware
applications.

 4. An LIRC mouse daemon called lircmd that runs on top of lircd. Lircmd con-
verts messages from lircd to mouse events. These events can be read from a
named pipe /dev/lircm and input to programs such as gpm or X Windows.

 5. Tools such as irrecord and irsend. The former records signals received from your
remote and helps you generate IR configuration files for a new remote. The lat-
ter streams IR commands from your Linux machine.

Visit the LIRC home page hosted at www.lirc.org to download all these and to obtain
insights on its design and usage.

IR Char Drivers

If your embedded device requires only simple Infrared receive capabilities, it might be using a
miniaturized IR receiver (such as the TSOP1730 chip from Vishay Semiconductors). An example
application device is an IR locator installed in hospital rooms to read data emitted by IR badges
worn by nurses. In this scenario, the IrDA stack is not relevant because of the absence of IrDA
protocol interactions. It may also be an overkill to port LIRC to the locator if it’s using a lean pro-
prietary protocol to parse received data. An easy solution might be to implement a tiny read-only
char or misc driver that exports raw IR data to a suitable application via /dev or /sys interfaces.

www.lirc.org

Looking at the Sources

Look inside drivers/net/irda/ for low-level IrDA drivers, net/irda/ for the protocol
implementation, and include/net/irda/ for the header fi les. Experiment with /proc/sys/
net/irda/* to tune the IrDA stack and explore /proc/net/irda/* for state information per-
taining to different IrDA layers.

Table 16.3 contains the main data structures used in this section and their location
in the source tree. Table 16.4 lists the main kernel programming interfaces that you
used in this section along with the location of their defi nitions.

TABLE 16.3 Summary of Data Structures

 Data Structure Location Description

 dongle_driver drivers/net/irda/sir-dev.h Dongle driver entry points

 sir_dev drivers/net/irda/sir-dev.h Representation of an SIR device

 qos_info include/net/irda/qos.h Quality-of-Service information

TABLE 16.4 Summary of Kernel Programming Interfaces

 Kernel Interface Location Description

 irda_register_dongle() drivers/net/irda/sir_dongle.c Registers a dongle driver

 irda_unregister_dongle() drivers/net/irda/sir_dongle.c Unregisters a dongle driver

 sirdev_set_dtr_rts() drivers/net/irda/sir_dev.c Wiggles modem control lines on the serial
port attached to the IR device

 sirdev_raw_write() drivers/net/irda/sir_dev.c Writes to the serial port attached to the IR
device

 sirdev_raw_read() drivers/net/irda/sir_dev.c Reads from the serial port attached to the
IR device

WiFi

WiFi, or wireless local-area network (WLAN), is an alternative to wired LAN and is
generally used within a campus. The IEEE 802.11a WLAN standard uses the 5GHz
ISM (Industrial, Scientifi c, Medical) band and supports speeds of up to 54Mbps. The
802.11b and the 802.11g standards use the 2.4GHz band and support speeds of
11Mbps and 54Mbps, respectively.

WLAN resembles wired Ethernet in that both are assigned MAC addresses from
the same address pool and both appear to the operating system as regular network

WiFi 489

490 Chapter 16 Linux Without Wires

interfaces. For example, Address Resolution Protocol (ARP) tables contain WLAN MAC
addresses alongside Ethernet MAC addresses.

WLAN and wired Ethernet differ signifi cantly at the link layer, however:

 • The 802.11 WLAN standard uses collision avoidance (CSMA/CA) rather than
collision detection (CSMA/CD) used by wired Ethernet.

 • WLAN frames, unlike Ethernet frames, are acknowledged.

 • Due to security issues inherent in wireless networking, WLAN uses an encryp-
tion mechanism called Wired Equivalent Privacy (WEP) to provide a level of
security equivalent to wired Ethernet. WEP combines a 40-bit or a 104-bit key
with a random 24-bit initialization vector to encrypt and decrypt data.

WLAN supports two communication modes:

 1. Ad-hoc mode, where a small group of nearby stations directly communicate
without using an access point.

 2. Infrastructure mode, where data exchanges pass via an access point. Access points
periodically broadcast a service set identifier (SSID or ESSID) that identifies one
WLAN network from another.

Let’s fi nd out how Linux supports WLAN.

Configuration

The Wireless Extensions project defi nes a generic Linux API to confi gure WLAN device
drivers in a device-independent manner. It also provides a collection of common tools
to set and access information from WLAN drivers. Individual drivers implement sup-
port for Wireless Extensions to connect themselves with the common interface, and
hence, with the tools.

With Wireless Extensions, there are primarily three ways to talk to WLAN drivers:

 1. Standard operations using the iwconfig utility. To glue your driver to iwconfig,
you need to implement prescribed functions corresponding to commands that
set parameters such as ESSID and WEP keys.

 2. Special-purpose operations using iwpriv. To use iwpriv over your driver, define
private ioctls relevant to your hardware and implement the corresponding han-
dler functions.

 3. WiFi-specifi c statistics through /proc/net/wireless. For this, implement the get_
wireless_stats() method in your driver. This is in addition to the get_stats()

method implemented by NIC drivers for generic statistics collection as described
in the section “Statistics” in Chapter 15, “Network Interface Cards.”

WLAN drivers tie these three pieces of information inside a structure called iw_han-
dler_def, defi ned in include/net/iw_handler.h. The address of this structure is supplied
to the kernel via the device’s net_device structure (discussed in Chapter 15) during
initialization. Listing 16.3 shows a skeletal WLAN driver implementing support for
Wireless Extensions. The comments in the listing explain the associated code.

LISTING 16.3 Supporting Wireless Extensions

#include <net/iw_handler.h>

#include <linux/wireless.h>

/* Populate the iw_handler_def structure with the location and number

 of standard and private handlers, argument details of private

 handlers, and location of get_wireless_stats() */

static struct iw_handler_def mywifi_handler_def = {

 .standard = mywifi_std_handlers,

 .num_standard = sizeof(mywifi_std_handlers) /

 sizeof(iw_handler),

 .private = (iw_handler *) mywifi_pvt_handlers,

 .num_private = sizeof(mywifi_pvt_handlers) /

 sizeof(iw_handler),

 .private_args = (struct iw_priv_args *)mywifi_pvt_args,

 .num_private_args = sizeof(mywifi_pvt_args) /

 sizeof(struct iw_priv_args),

 .get_wireless_stats = mywifi_stats,

};

/* Handlers corresponding to iwconfig */

static iw_handler mywifi_std_handlers[] = {

 NULL, /* SIOCSIWCOMMIT */

 mywifi_get_name, /* SIOCGIWNAME */

 NULL, /* SIOCSIWNWID */

 NULL, /* SIOCGIWNWID */

 mywifi_set_freq, /* SIOCSIWFREQ */

 mywifi_get_freq, /* SIOCGIWFREQ */

 mywifi_set_mode, /* SIOCSIWMODE */

 mywifi_get_mode, /* SIOCGIWMODE */

 /* ... */

};

WiFi 491

492 Chapter 16 Linux Without Wires

#define MYWIFI_MYPARAMETER SIOCIWFIRSTPRIV

/* Handlers corresponding to iwpriv */

static iw_handler mywifi_pvt_handlers[] = {

 mywifi_set_myparameter,

 /* ... */

};

/* Argument description of private handlers */

static const struct iw_priv_args mywifi_pvt_args[] = {

 { MYWIFI_MYPARAMATER,

 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "myparam"},

}

struct iw_statistics mywifi_stats; /* WLAN Statistics */

/* Method to set operational frequency supplied via mywifi_std_handlers. Similarly
implement the rest of the methods */

mywifi_set_freq()

{

 /* Set frequency as specified in the data sheet */

 /* ... */

}

/* Called when you read /proc/net/wireless */

static struct iw_statistics *

mywifi_stats(struct net_device *dev)

{

 /* Fill the fields in mywifi_stats */

 /* ... */

 return(&mywifi_stats);

}

/*Device initialization. For PCI-based cards, this is called from the

 probe() method. Revisit init_mycard() in Listing 15.1 in Chapter 15

 for a full discussion */

static int

init_mywifi_card()

{

 struct net_device *netdev;

 /* Allocate WiFi network device. Internally calls

 alloc_etherdev() */

 netdev = alloc_ieee80211(sizeof(struct mywifi_priv));

 /* ... */

 /* Register Wireless Extensions support */

 netdev->wireless_handlers = &mywifi_handler_def;

 /* ... */

 register_netdev(netdev);

}

With Wireless Extensions support compiled in, you can use iwconfi g to confi gure the
ESSID and the WEP key, peek at supported private commands, and dump network
statistics:

bash> iwconfig eth1 essid blue key 1234-5678-9012-3456-7890-1234-56

bash> iwconfig eth1

eth1 IEEE 802.11b ESSID:"blue" Nickname:"ipw2100"

 Mode:Managed Frequency:2.437 GHz Access Point: 00:40:96:5E:07:2E

 ...

 Encryption key:1234-5678-9012-3456-7890-1234-56

 Security mode:open

 ...

bash> dhcpcd eth1

bash> ifconfig

eth1 Link encap:Ethernet Hwaddr 00:13:E8:02:EE:18

 inet addr:192.168.0.41 Bcasr:192.168.0.255

 Mask:255.255.255.0

 ...

bash> iwpriv eth1

eth1 Available private ioctls:

 myparam (8BE2): set 2 int & get 0

bash> cat /proc/net/wireless

Inter-| sta-| Quality | Discarded packets | Missed | WE

 face | tus |link level noise|nwid crypt frag retry misc| beacon | 19

 eth1: 0004 100. 207. 0. 0 0 0 2 1 0

WiFi 493

494 Chapter 16 Linux Without Wires

Local iwconfi g parameters such as the ESSID and WEP key should match the confi gu-
ration at the access point.

There is another project called cfg80211 having similar goals as Wireless Exten-
sions. This has been merged into the mainline kernel starting with the 2.6.22 kernel
release.

Device Drivers

There are hundreds of WLAN original equipment manufacturers (OEMs) in the market,
and cards come in several form factors such as PCI, Mini PCI, CardBus, PCMCIA,
Compact Flash, USB, and SDIO (see the sidebar “WiFi over SDIO”) . However, the
number of controller chips that lie at the heart of these devices, and hence the num-
ber of Linux device drivers, are relatively less in number. The Intersil Prism chipset,
Lucent Hermes chipset, Atheros chipset, and Intel Pro/Wireless are among the popular
WLAN controllers. The following are example devices built using these controllers:

 • Intersil Prism2 WLAN Compact Flash Card—The Orinoco WLAN driver, part
of the kernel source tree, supports both Prism-based and Hermes-based cards.
Look at orinoco.c and hermes.c in drivers/net/wireless/ for the sources. orinoco_cs
provides PCMCIA/CF Card Services support.

 • The Cisco Aironet CardBus adapter—This card uses an Atheros chipset. The
Madwifi project (http://madwifi.org/) offers a Linux driver that works on hardware
built using Atheros controllers. The Madwifi source base is not part of the kernel
source tree primarily due to licensing issues. One of the modules of the Madwifi
driver called Hardware Access Layer (HAL) is closed source. This is because the
Atheros chip is capable of operating at frequencies that are outside permissible
ISM bands and can work at various power levels. The U.S. Federal Communica-
tions Commission (FCC) mandates that such settings should not be easily change-
able by users. Part of HAL is distributed as binary-only to comply with FCC
regulations. This binary-only portion is independent of the kernel version.

 • Intel Pro/Wireless Mini PCI (and PCIe Mini) cards embedded on many
laptops—The kernel source tree contains drivers for these cards. The drivers
for the 2100 and 2200 BG series cards are drivers/net/wireless/ipw2100.c and
drivers/net/wireless/ipw2200.c, respectively. These devices need on-card firmware
to work. You can download the firmware from http://ipw2100.sourceforge.net/

http://madwifi.org/
http://ipw2100.sourceforge.net/

or http://ipw2200.sourceforge.net/ depending on whether you have a 2100 or a
2200. The section “Microcode Download” in Chapter 4, “Laying the Ground-
work,” described the steps needed to download firmware on to these cards. Intel’s
distribution terms for the firmware are restrictive.

 • WLAN USB devices—The Atmel USB WLAN driver (http://atmelwlandriver.
sourceforge.net/) supports USB WLAN devices built using Atmel chipsets.

The WLAN driver’s task is to let your card appear as a normal network interface.
Driver implementations are generally split into the following parts:

 1. The interface that communicates with the Linux networking stack—We dis-
cussed this in detail in the section “The Net Device Interface” in Chapter 15.
You can use Listing 15.1 in that chapter as a template to implement this portion
of your WLAN driver.

 2. Form factor–specific code—If your card is a PCI card, it has to be architected
to conform to the kernel PCI subsystem as described in Chapter 10, “Peripheral
Component Interconnect.” Similarly, PCMCIA and USB cards have to tie in
with their respective core layers.

 3. Chipset specific part—This is the cornerstone of the WLAN driver and is
based on register specifications in the chip’s data sheet. Many companies do not
release adequate documentation for writing open source device drivers, how-
ever, so this portion of some Linux WLAN drivers is at least partly based on
reverse-engineering.

 4. Support for Wireless Extensions—Listing 16.3, shown earlier, implements an
example.

Hardware-independent portions of the 802.11 stack are reusable across drivers,
so they are implemented as a collection of common library functions in the net/
ieee80211/ directory. ieee80211 is the core protocol module, but if you want to con-
fi gure WEP keys via the iwconfig command, you have to load ieee80211_crypt and
ieee80211_crypt_wep, too. To generate debugging output from the 802.11 stack,
enable CONFIG_IEEE80211_DEBUG while confi guring your kernel. You can use /proc/
net/ieee80211/debug_level as a knob to fi ne-tune the type of debug messages that you
want to see. Starting with the 2.6.22 release, the kernel has an alternate 802.11 stack
(net/mac80211/) donated by a company called Devicescape. WiFi device drivers may
migrate to this new stack in the future.

WiFi 495

http://ipw2200.sourceforge.net/
http://atmelwlandriver.sourceforge.net/
http://atmelwlandriver.sourceforge.net/

496 Chapter 16 Linux Without Wires

WiFi over SDIO

Like PCMCIA cards whose functionality has extended from storage to various other technologies,
SD cards are no longer confi ned to the consumer electronics memory space. The Secure Digital
Input/Output (SDIO) standard brings technologies such as WiFi, Bluetooth, and GPS to the SD
realm. The Linux-SDIO project hosted at http://sourceforge.net/projects/sdio-linux/ offers driv-
ers for several SDIO cards.

Go to www.sdcard.org to browse the SD Card Association’s website. The latest standards
adopted by the association are microSD and miniSD, which are miniature form factor versions
of the SD card.

Looking at the Sources

WiFi device drivers live in drivers/net/wireless/. Look inside net/wireless/ for the imple-
mentations of Wireless Extensions and the new cfg80211 confi guration interface. The
two Linux 802.11 stacks live under net/ieee80211/ and net/mac80211/, respectively.

Cellular Networking

Global System for Mobile Communications (GSM) is a prominent digital cellular stan-
dard. GSM networks are called 2G or second-generation networks. GPRS represents
the evolution from 2G to 2.5G. Unlike 2G networks, 2.5G networks are “always on.”
Compared to GSM’s 9.6Kbps throughput, GPRS supports theoretical speeds of up to
170Kbps. 2.5G GPRS has given way to 3G networks based on technologies such as
CDMA that offer higher speeds.

In this section, let’s look at GPRS and CDMA.

GPRS

Because GPRS chips are cellular modems, they present a UART interface to the sys-
tem and usually don’t require specialized Linux drivers. Here’s how Linux supports
common GPRS hardware:

 1. For a system with built-in GPRS support, say, a board having a Siemens MC-45
module wired to the microcontroller’s UART channel, the conventional Linux
serial driver can drive the link.

www.sdcard.org
http://sourceforge.net/projects/sdio-linux/

 2. For a PCMCIA/CF GPRS device such as an Options GPRS card, serial_cs, the
generic serial Card Services driver allows the rest of the operating system to see
the card as a serial device. The first unused serial device (/dev/ttySX) gets allotted
to the card. Look at Figure 9.5 in Chapter 9, for an illustration.

 3. For USB GPRS modems, a USB-to-serial converter typically converts the USB
port to a virtual serial port. The usbserial driver lets the rest of the system see
the USB modem as a serial device (/dev/ttyUSBX). The section “USB-Serial” in
Chapter 11 discussed USB-to-serial converters.

The above driver descriptions also hold for driving GPS receivers and networking over
GSM.

After the serial link is up, you may establish a network connection via AT com-
mands, a standard language to talk to modems. Cellular devices support an extended
AT command set. The exact command sequence depends on the particular cellular
technology in use. Consider for example, the AT string to connect over GPRS. Before
entering data mode and connecting to an external network via a gateway GPRS support
node (GGSN), a GPRS device must defi ne a context using an AT command. Here’s an
example context string:

'AT+CGDCONT=1,"IP","internet1.voicestream.com","0.0.0.0",0,0'

where 1 stands for a context number, IP is the packet type, internet1.voicestream.
com is an access point name (APN) specifi c to the service provider, and 0.0.0.0 asks
the service provider to choose the IP address. The last two parameters pertain to data
and header compression. A username and password are usually not needed.

As you saw in Chapter 9, PPP is used as the vehicle to carry TCP/IP payload over
GPRS. A common syntax for invoking the PPP daemon, pppd, is this:

bash> pppd ttySX call connection-script

where ttySX is the serial port over which PPP runs, and connection-script is a fi le
in /etc/ppp/peers/5 that contains the AT command sequence to establish the link. After
establishing connection and completing authentication, PPP starts a Network Control
Protocol (NCP) such as Internet Protocol Control Protocol (IPCP). When IPCP success-
fully negotiates IP addresses, PPP starts talking with the TCP/IP stack.

5 The path name might vary depending on the distribution you use.

Cellular Networking 497

498 Chapter 16 Linux Without Wires

Here is an example PPP connection script (/etc/ppp/peer/gprs-seq) for connecting to
a GPRS service provider at 57600 baud. For the semantics of all constituent lines in
the script, refer to the man pages of pppd:

57600

connect "/usr/sbin/chat -s -v "" AT+CGDCONT=1,"IP",

"internet2.voicestream.com","0.0.0.0",0,0 OK AT+CGDATA="PPP",1"

crtscts

noipdefault

modem

usepeerdns

defaultroute

connect-delay 3000

CDMA

For performance reasons, many CDMA PC Cards have an internal USB controller
through which a CDMA modem is connected. When such cards are inserted, the sys-
tem sees one or more new PCI-to-USB bridges on the PCI bus. Let’s take the example
of a Huawei CDMA CardBus card. Look at the additional entries in the lspci output
after inserting this card into the CardBus slot of a laptop:

bash> lspci -v

...

07:00:0 USB Controller: NEC Corporation USB (rev 43) (prog-if 10 [OHCI])

07:00:1 USB Controller: NEC Corporation USB (rev 43) (prog-if 10 [OHCI])

07:00:2 USB Controller: NEC Corporation USB 2.0 (rev 04) (prog-if 20 [EHCI])

These are standard OHCI and EHCI controllers, so the host controller drivers on
Linux seamlessly talk to them. If a CDMA card, however, uses a host controller unsup-
ported by the kernel, you will have the unenviable task of writing a new USB host
controller driver. Let’s take a closer look at the new USB buses in the above lspci output
and see whether we can fi nd any devices connected to them:

bash> cat /proc/bus/usb/devices

T: Bus=07 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=480 MxCh= 2

B: Alloc= 0/800 us (0%), #Int= 0, #Iso= 0

D: Ver= 2.00 Cls=09(hub) Sub=00 Prot=01 MxPS=64 #Cfgs= 1

...

T: Bus=06 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 1

B: Alloc= 0/900 us (0%), #Int= 0, #Iso= 0

D: Ver= 1.10 Cls=09(hub) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

...

T: Bus=05 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 1

B: Alloc= 0/900 us (0%), #Int= 1, #Iso= 0

D: Ver= 1.10 Cls=09(hub) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

...

T: Bus=05 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 3 Spd=12 MxCh= 0

D: Ver= 1.01 Cls=00(>ifc) Sub=00 Prot=00 MxPS=16 #Cfgs= 1

P: Vendor=12d1 ProdID=1001 Rev= 0.00

S: Manufacturer=Huawei Technologies

S: Product=Huawei Mobile

C:* #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=100mA

I: If#= 0 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=pl2303

E: Ad=81(I) Atr=03(Int.) MxPS= 16 Ivl=128ms

E: Ad=8a(I) Atr=02(Bulk) MxPS= 64 Ivl=0ms

E: Ad=0b(O) Atr=02(Bulk) MxPS= 64 Ivl=0ms

I: If#= 1 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=pl2303

E: Ad=83(I) Atr=02(Bulk) MxPS= 64 Ivl=0ms

E: Ad=06(O) Atr=02(Bulk) MxPS= 64 Ivl=0ms

...

The top three entries (bus7, bus6, and bus5) correspond to the three host control-
lers present in the CDMA card. The last entry shows that a full-speed (12Mbps) USB
device is connected to bus 5. This device has a vendorID of 0x12d1 and a productID
of 0x1001. As is evident from the preceding output, the USB core has bound this
device to the pl2303 driver. If you look at the source fi le of the PL2303 Prolifi c USB-
to-serial adapter driver (drivers/usb/serial/pl2303.c), you will fi nd the following mem-
ber in the usb_device_id table:

static struct usb_device_id id_table [] = {

 /* ... */

 {USB_DEVICE(HUAWEI_VENDOR_ID, HUAWEI_PRODUCT_ID)},

 /* ... */

};

A quick peek at pl2303.h living in the same directory confi rms that HUAWEI_VENDOR_
ID and HUAWEI_PRODUCT_ID match the values that you just gleaned from /proc/
bus/usb/devices. The pl2303 driver presents a serial interface, /dev/ttyUSB0, over the

Cellular Networking 499

500 Chapter 16 Linux Without Wires

detected USB-to-serial converter. You can send AT commands to the CDMA modem
over this interface. Attach pppd over this device and connect to the net. You are now a
3G surfer!

Current Trends

At one end of today’s on-the-move connectivity spectrum, there are standards that
allow coupling between cellular networks and WiFi to provide cheaper networking
solutions. At the other end, technologies such as Bluetooth and Infrared are being
integrated into cell phones to bridge consumer electronics devices with the Internet.
Figure 16.7 shows a sample scenario.

In tandem with the coupling of existing standards and technologies, there is a steady
stream of new communication standards arriving in the wireless space.

Zigbee (www.zigbee.org) adopts the new 802.15.4 standard for wireless networking
in the embedded space that is characterized by low range, speed, energy consumption,
and code footprint. It primarily targets home and industrial automation. Of the wire-
less protocols discussed in this chapter, Zigbee is closest to Bluetooth but is considered
complementary rather than competitive with it.

WiMax (Worldwide interoperability for Microwave access), based on the IEEE 802.16
standard, is a metropolitan-area network (MAN) fl avor of WiFi that has a range of sev-
eral kilometers. It supports fi xed connectivity for homes and offi ces, and a mobile
version for networking on the go. WiMax is a cost-effective way to solve the last-mile
connectivity problem (which is analogous to the task of reaching your home from
the nearest metro rail station) and create broadband clouds that span large areas. The
WiMax forum is hosted at www.wimaxforum.org.

MIMO (Multiple In Multiple Out) is a new multiple-antenna technology utilized
by WiFi and WiMax products to enhance their speed, range, and connectivity.

Working groups are developing new standards that fall under the ambit of fourth-
generation or 4G networking. 4G will signal the convergence of several communica-
tion technologies.

Some of the new communication technologies are transparent to the operating
system and work unchanged with existing drivers and protocol stacks. Others such
as Zigbee need new drivers and protocol stacks but do not have accepted open source
implementations yet. Linux mirrors the state of the art, so look out for support for
these new standards in future kernel releases.

www.zigbee.org
www.wimaxforum.org

Bluetooth Pill
Dispenser

Infrared
Temperature Sensor

GPRS
cell phone

GPRS link
Wifi

GPRS gateway (GGSN)

Internet

Health Care
Provider’s Server

Campus Backbone

Wifi
Access Point

Bluetooth
Access Point

GPRS
network

Infrared linkInfrared linkInfrared linkInfrared link Infrared linkBluetooth link

Internet leased lineInternet leased lineInternet leased line

Building ABuilding A Building BBuilding BBuilding A Building B

FIGURE 16.7 Coupling between wireless technologies.

Current Trends 501

This page intentionally left blank

503

17

Memory Technology
Devices

In This Chapter

■ What’s Flash Memory? 504

■ Linux-MTD Subsystem 505

■ Map Drivers 506

■ NOR Chip Drivers 511

■ NAND Chip Drivers 513

■ User Modules 516

■ MTD-Utils 518

■ Confi guring MTD 519

■ eXecute In Place 520

■ The Firmware Hub 520

■ Debugging 524

■ Looking at the Sources 524

504

W hen you push the power switch on your handheld, it’s more than likely
that it boots from fl ash memory. When you click some buttons to save

data on your cell phone, in all probability, your data starts life in fl ash memory.

Today, Linux has penetrated the embedded space and is no longer confined to
desktops and servers. Linux avatars manifest in PDAs, music players, set-top
boxes, and even medical-grade devices. The Memory Technology Devices (MTD)
subsystem of the kernel is responsible for interfacing your system with various
flavors of flash memory found in these devices. In this chapter, let’s use the
example of a Linux handheld to learn about MTD.

What’s Flash Memory?

Flash memory is rewritable storage that does not need power supply to hold informa-
tion. Flash memory banks are usually organized into sectors. Unlike conventional
storage, writes to fl ash addresses have to be preceded by an erase of the corresponding
locations. Moreover, erases of portions of fl ash can be performed only at the granu-
larity of individual sectors. Because of these constraints, fl ash memory is best used
with device drivers and fi lesystems that are tailored to suit them. On Linux, such
specially designed drivers and fi lesystems are provided by the MTD subsystem.

Flash memory chips generally come in two fl avors: NOR and NAND. NOR is
the variety used to store fi rmware images on embedded devices, whereas NAND is
used for large, dense, cheap, but imperfect1 storage as required by solid-state mass
storage media such as USB pen drives and Disk-On-Modules (DOMs). NOR fl ash
chips are connected to the processor via address and data lines like normal RAM,
but NAND fl ash chips are interfaced using I/O and control lines. So, code resident
on NOR fl ash can be executed in place, but that stored on NAND fl ash has to be
copied to RAM before execution.

1 It’s normal to have bad blocks scattered across NAND fl ash regions as you will learn in the section, “NAND Chip
Drivers.”

Linux-MTD Subsystem

The kernel’s MTD subsystem shown in Figure 17.1 provides support for fl ash and
similar nonvolatile solid-state storage. It consists of the following:

 • The MTD core, which is an infrastructure consisting of library routines and data
structures used by the rest of the MTD subsystem

 • Map drivers that decide what the processor ought to do when it receives requests
for accessing the flash

 • NOR Chip drivers that know about commands required to talk to NOR flash chips

 • NAND Chip drivers that implement low-level support for NAND flash controllers

 • User Modules , the layer that interacts with user-space programs

 • Individual device drivers for some special fl ash chips

NORNAND

User Space
File I/0 File I/0 Raw I/0, MTD-Utils

User Modules

Driver Modules

MTD Layer

I/O
Probe

Kernel Space

Kernel Space

Hardware

Virtual File System (VFS) Layer

mtdblock, FTL, NFTL mtdchar JFFS2 YAFFS2

Individual Filesystems

NAND Chip
Drivers

NOR Chip Drivers
(CFI, JEDEC)

Map
Drivers

MTD Core

FIGURE 17.1 The Linux-MTD subsystem.

Linux-MTD Subsystem 505

506 Chapter 17 Memory Technology Devices

Map Drivers

To MTD- enable your device, your fi rst task is to tell MTD how to access the fl ash
device. For this, you have to map your fl ash memory range for CPU access and pro-
vide methods to operate on the fl ash. The next task is to inform MTD about the dif-
ferent storage partitions residing on your fl ash. Unlike hard disks on PC-compatible
systems, fl ash-based storage does not contain a standard partition table on the media.
Because of this, disk-partitioning tools such as fdisk and cfdisk2 cannot be used to parti-
tion fl ash devices. Instead, partitioning information has to be implemented as part of
kernel code.3 These tasks are accomplished with the help of an MTD map driver.

To better understand the function of map drivers, let’s look at an example.

Device Example: Handheld

Consider the Linux handheld shown in Figure 17.2. The fl ash has a size of 32MB and
is mapped to 0xC0000000 in the processor’s address space. It contains three partitions,
one each for the bootloader, the kernel, and the root fi lesystem. The bootloader parti-
tion starts from the top of the fl ash, the kernel partition begins at offset MY_KERNEL_
START, and the root fi lesystem starts at offset MY_FS_START.4 The bootloader and the
kernel reside on read-only partitions to avoid unexpected damage, while the fi lesystem
partition is fl agged read-write.

Let’s fi rst create the fl ash map and then proceed with the driver initialization. The
map driver has to translate the fl ash layout shown in the fi gure to an mtd_partition
structure. Listing 17.1 contains the mtd_partition defi nition corresponding to Fig-
ure 17.2. Note that the mask_flags fi eld holds the permissions to be masked, so
MTD_WRITEABLE implies a read-only partition.

LISTING 17.1 Creating an MTD Partition Map

#define FLASH_START 0x00000000

#define MY_KERNEL_START 0x00080000 /* 512K for bootloader */

#define MY_FS_START 0x00280000 /* 2MB for kernel */

#define FLASH_END 0x02000000 /* 32MB */

2 Fdisk and cfdisk are used to manipulate the partition table residing in the fi rst hard disk sector on PC systems.
3 You may also pass partitioning information to MTD via the kernel command line argument mtdpart=, if you enable
CONFIG_MTD_CMDLINE_PARTS during kernel confi guration. Look at drivers/mtd/cmdlinepart.c for the usage syntax.

4 Some devices have additional partitions for bootloader parameters, extra fi lesystems, and recovery kernels.

static struct mtd_partition pda_partitions[] = {

 {

 .name = "pda_btldr", /* This string is used by

/proc/mtd to identify

 the bootloader partition */

 .size: = (MY_KERNEL_START-FLASH_START),

 .offset = FLASH_START, /* Start from top of flash */

 .mask_flags = MTD_WRITEABLE /* Read-only partition */

 },

 {

 .name = "pda_krnl", /* Kernel partition */

 .size: = (MY_FS_START-MY_KERNEL_START),

 .offset = MTDPART_OFS_APPEND, /* Start immediately after

 the bootloader partition */

 .mask_flags = MTD_WRITEABLE /* Read-only partition */

 },

 {

 .name: = "pda_fs", /* Filesystem partition */

 .size: = MTDPART_SIZ_FULL, /* Use up the rest of the

 flash */

 .offset = MTDPART_OFS_NEXTBLK,/* Align this partition with

 the erase size */

 }

};

Listing 17.1 uses MTDPART_OFS_APPEND to start a partition adjacent to the previous
one. The start addresses of writeable partitions, however, need to be aligned with the
erase/sector size of the fl ash chip. To achieve this, the fi lesystem partition uses MTD_
OFS_NEXTBLK rather than MTD_OFS_APPEND.

Embedded
Controller

DRAM Banks

32-bit
Addr/

Data

Bootloader
(Partition 0)

Two 16-bit interleaved
CFI-compliant NOR flash banks

Kernel
(Partition 1)

Filesystem
(Partition 2)

32-bit
Addr/

Data

FLASH_START

MY_KERNEL_START

MY_FS_START

FLASH END

0xC0000000 to
0xC2000000

FIGURE 17.2 Flash Memory on a sample Linux handheld.

Map Drivers 507

508 Chapter 17 Memory Technology Devices

 Now that you have populated the mtd_partition structure, let’s proceed and
complete a basic map driver for the example handheld. Listing 17.2 registers the map
driver with the MTD core. It’s implemented as a platform driver, assuming that your
architecture-specifi c code registers an associated platform device having the same name.
Rewind to the section “Device Example: Cell Phone” in Chapter 6, “Serial Drivers,”
for a discussion on platform devices and platform drivers. The platform_device is
defi ned by the associated architecture-specifi c code as follows:

struct resource pda_flash_resource = { /* Used by Listing 17.3 */

 .start = 0xC0000000, /* Physical start of the

 flash in Figure 17.2 */

 .end = 0xC0000000+0x02000000-1, /* Physical end of flash */

 .flags = IORESOURCE_MEM, /* Memory resource */

};

struct platform_device pda_platform_device = {

 .name = "pda", /* Platform device name */

 .id = 0, /* Instance number */

 /* ... */

 .resource = &pda_flash_resource, /* See above */

};

platform_device_register(&pda_platform_device);

LISTING 17.2 Registering the Map Driver

static struct platform_driver pda_map_driver = {

 .driver = {

 .name = "pda", /* ID */

 },

 .probe = pda_mtd_probe, /* Probe */

 .remove = NULL, /* Release */

 .suspend = NULL, /* Power management */

 .resume = NULL, /* Power management */

};

/* Driver/module Initialization */

static int __init pda_mtd_init(void)

{

 return platform_driver_register(&pda_map_driver);

}

/* Module Exit */

static int __init pda_mtd_exit(void)

{

 return platform_driver_uregister(&pda_map_driver);

}

Because the kernel fi nds that the name of the platform driver registered in Listing 17.2
matches with that of an already-registered platform device, it invokes the probe method
pda_mtd_probe(), shown in Listing 17.3. This routine

 • Reserves the flash memory address range using request_mem_region(), and
obtains CPU access to that memory using ioremap_nocache(). You learned
how to do this in Chapter 10, “Peripheral Component Interconnect.”

 • Populates a map_info structure (discussed next) with information such as the
start address and size of flash memory. The information in this structure is used
while performing the probing in the next step.

 • Probes the flash via a suitable MTD chip driver (discussed in the next section).
Only the chip driver knows how to query the chip and elicit the command-set
required to access it. The chip layer tries different permutations of bus widths
and interleaves while querying. In Figure 17.2, two 16-bit flash banks are con-
nected in parallel to fill the 32-bit processor bus width, so you have a two-way
interleave.

 • Registers the mtd_partition structure that you populated earlier, with the
MTD core.

Before looking at Listing 17.3, let’s meet the map_info structure. It contains the
address, size, and width of the fl ash memory and routines to access it:

struct map_info {

 char * name; /* Name */

 unsigned long size; /* Flash size */

 int bankwidth; /* In bytes */

 /* ... */

 /* You need to implement custom routines for the following methods

 only if you have special needs. Else populate them with built-

 in methods using simple_map_init() as done in Listing 17.3 */

 map_word (*read)(struct map_info *, unsigned long);

 void (*write)(struct map_info *, const map_word,

 unsigned long);

 /* ... */

};

Map Drivers 509

510 Chapter 17 Memory Technology Devices

While we are in the topic of accessing fl ash chips, let’s briefl y revisit memory barri-
ers that we discussed in Chapter 4, “Laying the Groundwork.” An instruction reor-
dering that appears semantically unchanged to the compiler (or the processor) may
not be so in reality, so the ordering of data operations on fl ash memory is best left
alone. You don’t want to, for example, end up erasing a fl ash sector after writing to it,
instead of doing the reverse. Also, the same fl ash chips, and hence their device drivers,
are used on diverse embedded processors having different instruction reordering algo-
rithms. For these reasons, MTD drivers are notable users of hardware memory barri-
ers. simple_map_write(), a generic routine available to map drivers for use as the
write() method in the map_info structure previously listed, inserts a call to mb()
before returning. This ensures that the processor does not reorder fl ash reads or writes
across the barrier.

LISTING 17.3 Map Driver Probe Method

#include <linux/mtd/mtd.h>

#include <linux/mtd/map.h>

#include <linux/ioport.h>

static int

pda_mtd_probe(struct platform_device *pdev)

{

 struct map_info *pda_map;

 struct mtd_info *pda_mtd;

 struct resource *res = pdev->resource;

 /* Populate pda_map with information obtained

 from the associated platform device */

 pda_map->virt = ioremap_nocache(res->start,

 (res->end – res->start + 1));

 pda_map->name = pdev->dev.bus_id;

 pda_map->phys = res->start;

 pda_map->size = res->end – res->start + 1;

 pda_map->bankwidth = 2; /* Two 16-bit banks sitting

 on a 32-bit bus */

 simple_map_init(&pda_map); /* Fill in default access methods */

 /* Probe via the CFI chip driver */

 pda_mtd = do_map_probe("cfi_probe", &pda_map);

 /* Register the mtd_partition structure */

 add_mtd_partitions(pda_mtd, pda_partitions, 3); /* Three Partitions */

 /* ... */

}

Don’t worry if the CFI probing done in Listing 17.3 seems esoteric. It’s discussed in
the next section when we look at NOR chip drivers.

MTD now knows how your fl ash device is organized and how to access it. When
you boot the kernel with your map driver compiled in, user-space applications can
respectively see your bootloader, kernel, and fi lesystem partitions as /dev/mtd/0, /dev/
mtd/1, and /dev/mtd/2. So, to test drive a new kernel image on the handheld, you can
do this:

bash> dd if=zImage.new of=/dev/mtd/1

Flash Partitioning from Bootloaders

The Redboot bootloader maintains a partition table that holds fl ash layout, so if you are using
Redboot on your embedded device, you can confi gure your fl ash partitions in the bootloader
instead of writing an MTD map driver. To ask MTD to parse fl ash mapping information from
Redboot’s partition table, turn on CONFIG_MTD_REDBOOT_PARTS during kernel confi guration.

NOR Chip Drivers

As you might have noticed, the NOR fl ash chip used by the handheld in Figure
17.2 is labeled CFI-compliant. CFI stands for Common Flash Interface, a specifi cation
designed to do away with the need for developing separate drivers to support chips
from different vendors. Software can query CFI-compliant fl ash chips and automati-
cally detect block sizes, timing parameters, and the command-set to be used for com-
munication. Drivers that implement specifi cations such as CFI and JEDEC are called
chip drivers.

According to the CFI specifi cation, software must write 0x98 to location 0x55
within fl ash memory to initiate a query. Look at Listing 17.4 to see how MTD imple-
ments CFI query.

NOR Chip Drivers 511

512 Chapter 17 Memory Technology Devices

LISTING 17.4 Querying CFI-compliant Flash

 /* Snippet from cfi_probe_chip() (2.6.23.1 kernel) defined in

drivers/mtd/chips/cfi_probe.c, with comments added */

 /* cfi is a pointer to struct cfi_private defined in

include/linux/mtd/cfi.h */

 /* ... */

 /* Ask the device to enter query mode by sending

 0x98 to offset 0x55 */

 cfi_send_gen_cmd(0x98, 0x55, base, map, cfi,

 cfi->device_type, NULL);

 /* If the device did not return the ASCII characters

 ‘Q’, ‘R’ and ‘Y’, the chip is not CFI-compliant */

 if (!qry_present(map, base, cfi)) {

 xip_enable(base, map, cfi);

 return 0;

 }

 /* Elicit chip parameters and the command-set, and populate

 the cfi structure */

 if (!cfi->numchips) {

 return cfi_chip_setup(map, cfi);

 }

 /* ... */

The CFI specifi cation defi nes various command-sets that compliant chips can imple-
ment. Some of the common ones are as follows:

 • Command-set 0001, supported by Intel and Sharp flash chips

 • Command-set 0002, implemented on AMD and Fujitsu flash chips

 • Command-set 0020, used on ST fl ash chips

MTD supports these command-sets as kernel modules. You can enable the one sup-
ported by your fl ash chip via the kernel confi guration menu.

NAND Chip Drivers

NAND technology users such as USB pen drives, DOMs, Compact Flash memory,
and SD/MMC cards emulate standard storage interfaces such as SCSI or IDE over
NAND fl ash, so you don’t need to develop NAND drivers to communicate with
them.5 On-board NAND fl ash chips need special drivers, however, and are the topic
of this section.

As you learned previously in this chapter, NAND fl ash chips, unlike their NOR
counterparts, are not connected to the CPU via data and address lines. They interface
to the CPU through special electronics called a NAND fl ash controller that is part of
many embedded processors. To read data from NAND fl ash, the CPU issues an appro-
priate read command to the NAND controller. The controller transfers data from
the requested fl ash location to an internal RAM memory, also part of the controller.
The data transfer is done in units of the fl ash chip’s page size (for example, 2KB). In
general, the denser the fl ash chip, the larger is its page size. Note that the page size is
different from the fl ash chip’s block size, which is the minimum erasable fl ash memory
unit (for example, 16KB). After the transfer operation completes, the CPU reads the
requested NAND contents from the internal RAM. Writes to NAND fl ash are done
similarly, except that the controller transfers data from the internal RAM to fl ash. The
connection diagram of NAND fl ash memory on an embedded device is shown in
Figure 17.3.

Because of this unconventional mode of addressing, you need special drivers to
work with NAND storage. MTD provides such drivers to manage NAND-resident
data. If you are using a supported chip, you have to only enable the appropriate
low-level MTD NAND driver. If you are writing a NAND fl ash driver, however,
you need to explore two datasheets: that of the NAND fl ash controller and the
NAND fl ash chip.

NAND fl ash chips do not support automatic confi guration using protocols such as
CFI. You have to manually inform MTD about the properties of your NAND chip by
adding an entry to the nand_flash_ids[] table defi ned in drivers/mtd/nand/nand_
ids.c. Each entry in the table consists of an identifi er name, the device ID, page size,
erase block size, chip size, and options such as the bus width.

5 Unless you are writing drivers for the storage media itself. If you are embedding Linux on a device that will export part of its
NAND partition to the outside world as a USB mass storage device, you do have to contend with NAND drivers.

NAND Chip Drivers 513

514 Chapter 17 Memory Technology Devices

Internal
RAM

NAND
Controller NAND

Flash

CPU
Core

Embedded Controller

FIGURE 17.3 NAND fl ash connection.

There is another characteristic that goes hand in hand with NAND memory. NAND
fl ash chips, unlike NOR chips, are not faultless. It’s normal to have some problem bits
and bad blocks scattered across NAND fl ash regions. To handle this, NAND devices
associate a spare area with each fl ash page (for example, 64 bytes of spare area for
each 2KB data page). The spare area contains out-of-band (OOB) information to help
perform bad block management and error correction. The OOB area includes error
correcting codes (ECCs) to implement error correction and detection. ECC algorithms
correct single-bit errors and detect multibit errors. The nand_ecclayout structure
defi ned in include/mtd/mtd-abi.h specifi es the layout of the OOB spare area:

struct nand_ecclayout {

 uint 32_t eccbytes;

 uint32_t eccpos[64];

 uint32_t oobavail;

 struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES];

};

In this structure, eccbytes holds the number of OOB bytes that store ECC data, and
eccpos is an array of offsets into the OOB area that contains the ECC data. oobfree
records the unused bytes in the OOB area available to fl ash fi lesystems for storing fl ags
such as clean markers that signal successful completion of erase operations.

Individual NAND drivers initialize their nand_ecclayout according to the chip’s
properties. Figure 17.4 illustrates the layout of a NAND fl ash chip having a page size
of 2KB. The OOB semantics used by the fi gure is the default for 2KB page-sized chips
as defi ned in the generic NAND driver, drivers/mtd/nand/nand_base.c.

Often, the NAND controller performs error correction and detection in hardware by
operating on the ECC fi elds in the OOB area. If your NAND controller does not support
error management, however, you will need to get MTD to do that for you in software.
The MTD nand_ecc driver (drivers/mtd/nand/nand_ecc.c) implements software ECC.

Figure 17.4 also shows OOB memory bytes that contain bad block markers. These
markers are used to fl ag faulty fl ash blocks and are usually present in the OOB region
belonging to the fi rst page of each block. The position of the marker inside the OOB
area depends on the properties of the chip. Bad block markers are either set at the fac-
tory during manufacture, or by software when it detects wear in a block. MTD imple-
ments bad block management in drivers/mtd/nand/nand_bbt.c.

The mtd_partition structure used in Listing 17.1 for the NOR fl ash in Fig-
ure 17.2 works for NAND memory, too. After you MTD-enable your NAND fl ash,
you can access the constituent partitions using standard device nodes such as /dev/
mtd/X and /dev/mtdblock/X. If you have a mix of NOR and NAND memories on
your hardware, X can be either a NOR or a NAND partition. If you have a total of
more than 32 fl ash partitions, accordingly change the value of MAX_MTD_DEVICES in
include/linux/mtd/mtd.h.

NAND Chip

2KB Page
Main Data Area

Offsets 0 and 1 hold
bad block markers

0 2047

0 2 40 63

64-byte
OOB Area

2111

2KB Page
Main Data Area

4159

64-byte
OOB Area

4223

static struct nand_ecclayout nand_oob_64 = {
 .eccbytes = 24, /* 24 bytes are used to hold ECC information */

 .eccpos = {
 40, 41, 42, 43, 44, 45, 46, 47, /* The 24 OOB offsets
 48, 49, 50, 51, 52, 53, 54, 55, that hold ECC
 56, 57, 58, 59, 60, 61, 62, 63}, information */

 .oobfree = { /* 38 bytes starting at
 {.offset = 2, offset 2 are available
 .length = 38} to JFFS2 */
 }
};

FIGURE 17.4 Layout of a NAND fl ash chip.

NAND Chip Drivers 515

516 Chapter 17 Memory Technology Devices

To effectively make use of NAND storage, you need to use a fi lesystem tuned for
NAND access, such as JFFS2 or YAFFS2, in tandem with the low-level NAND driver.
We discuss these fi lesystems in the next section.

User Modules

After you have added a map driver and chosen the right chip driver, you’re all set to let
higher layers use the fl ash. User-space applications that perform fi le I/O need to view
the fl ash device as if it were a disk, whereas programs that desire to accomplish raw
I/O access the fl ash as if it were a character device. The MTD layer that achieves these
and more is called User Modules, as shown in Figure 17.1. Let’s look at the components
constituting this layer.

Block Device Emulation

The MTD subsystem provides a block driver called mtdblock that emulates a hard disk
over fl ash memory. You can put any fi lesystem, say EXT2, over the emulated fl ash
disk. Mtdblock hides complicated fl ash access procedures (such as preceding a write
with an erase of the corresponding sector) from the fi lesystem. Device nodes created
by mtdblock are named /dev/mtdblock/X, where X is the partition number. To create
an EXT2 fi lesystem on the pda_fs partition of the handheld shown in Figure 17.2, do
the following:

bash> mkfs.ext2 /dev/mtdblock/2 → Create an EXT2 filesystem
 on the second partition

bash> mount /dev/mtdblock/2 /mnt → Mount the partition

As you will soon see, it’s a much better idea to use JFFS2 rather than EXT2 to hold
fi les on fl ash partitions.

The File Translation Layer (FTL) and the NAND File Translation Layer (NFTL)
perform a transformation called wear leveling. Flash memory sectors can withstand
only a fi nite number of erase operations (in the order of 100,000). Wear leveling pro-
longs fl ash life by distributing memory usage across the chip. Both FTL and NFTL
provide device interfaces similar to mtdblock over which you can put normal fi lesys-
tems. The corresponding device nodes are named /dev/nftl/X, where X is the partition
number. Certain algorithms used in these modules are patented, so there could be
restrictions on usage.

Char Device Emulation

The mtdchar driver presents a linear view of the underlying fl ash device, rather than
the block-oriented view required by fi lesystems. Device nodes created by mtdchar are
named /dev/mtd/X, where X is the partition number. You may update the bootloader
partition of the handheld shown in Figure 17.2, by using dd over the corresponding
mtdchar interface:

bash> dd if=bootloader.bin of=/dev/mtd/0

An example use of a raw mtdchar partition is to hold POST error logs generated by the
bootloader on an embedded device. Another use of a char fl ash partition on an embed-
ded system is to store information similar to that present in the CMOS or the EEPROM
on PC-compatible systems. This includes the boot order, power-on password, and Vital
Product Data (VPD) such as the device serial number and model number.

JFFS2

Journaling Flash File System (JFFS) is considered the best-suited fi lesystem for fl ash
memory. Currently, version 2 (JFFS2) is in use, and JFFS3 is under development.
JFFS was originally written for NOR fl ash chips, but support for NAND devices is
merged with the 2.6 kernel.

Normal Linux fi lesystems are designed for desktop computers that are shut down
gracefully. JFFS2 is designed for embedded systems where power failure can occur
abruptly, and where the storage device can tolerate only a fi nite number of erases. Dur-
ing fl ash erase operations, current sector contents are saved in RAM. If there is a power
loss during the slow erase process, entire contents of that sector can get lost. JFFS2
circumvents this problem using a log-structured design. New data is appended to a
log that lives in an erased region. Each JFFS2 node contains metadata to track disjoint
fi le locations. Memory is periodically reclaimed using garbage collection. Because of
this design, fl ash writes do not have to go through a save-erase-write cycle, and this
improves power-down reliability. The log-structure also increases fl ash life span by
spreading out writes.

To create a JFFS2 image of a tree living under /path/to/fi lesystem/ on a fl ash chip
having an erase size of 256KB, use mkfs.jffs2 as follows:

bash> mkfs.jffs2 -e 256KiB –r /path/to/filesystem/ -o jffs2.img

User Modules 517

518 Chapter 17 Memory Technology Devices

JFFS2 includes a garbage collector (GC) that reclaims fl ash regions that are no longer
in use. The garbage collection algorithm depends on the erase size, so supplying an
accurate value makes it more effi cient. To obtain the erase size of your fl ash partitions,
you may seek the help of /proc/mtd. The output for the Linux handheld shown in
Figure 17.2 is as follows:

bash> cat /proc/mtd

dev: size erasesize name

mtd0: 00100000 00040000 "pda_btldr"

mtd1: 00200000 00040000 "pda_krnl"

mtd2: 01400000 00040000 "pda_fs"

JFFS2 supports compression. Enable appropriate options under CONFIG_JFFS2_
COMPRESSION_OPTIONS to choose available compressors, and look at fs/jffs2/compr*.c
for their implementations.

Note that JFFS2 fi lesystem images are usually created on the host machine where
you do cross-development and then transferred to the desired fl ash partition on the
target device via a suitable download mechanism such as serial port, USB, or NFS.
More on this in Chapter 18, “Embedding Linux.”

YAFFS2

The implementation of JFFS2 in the 2.6 kernel includes features to work with the
limitations of NAND fl ash, but Yet Another Flash File System (YAFFS) is a fi lesystem
that is designed to function under constraints specifi c to NAND memory. YAFFS is
not part of the mainline kernel, but some embedded distributions prepatch their ker-
nels with support for YAFFS2, the current version of YAFFS.

You can download YAFFS2 source code and documentation from www.yaffs.net.

MTD-Utils

The MTD-utils package, downloadable from ftp://ftp.infradead.org/pub/mtd-utils/,
contains several useful tools that work on top of MTD-enabled fl ash memory. Exam-
ples of included utilities are fl ash_eraseall, nanddump, nandwrite, and sumtool.

www.yaffs.net

To erase the second fl ash partition (on NOR or NAND devices), use fl ash_eraseall
as follows:

bash> flash_eraseall –j /dev/mtd/2

Because NAND chips may contain bad blocks, use ECC-aware programs such as
nandwrite and nanddump to copy raw data, instead of general-purpose utilities, such
as dd. To store the JFFS2 image that you created previously, on to the second NAND
partition, do this:

bash> nandwrite /dev/mtd/2 jffs2.img

You can reduce JFFS2 mount times by inserting summary information into a JFFS2
image using sumtool and turning on CONFIG_JFFS2_SUMMARY while confi guring your
kernel. To write a summarized JFFS2 image to the previous NAND fl ash, do this:

bash> sumtool –e 256KiB –i jffs2.img –o jffs2.summary.img

bash> nandwrite /dev/mtd/2 jffs2.summary.img

bash> mount –t jffs2 /dev/mtdblock/2 /mnt

Configuring MTD

To MTD- enable your kernel, you have to choose the appropriate confi guration
options. For the fl ash chip shown in Figure 17.2, the required options are as follows:

CONFIG_MTD=y Enable the MTD subsystem

CONFIG_MTD_PARTITIONS=y Support for multiple partitions

CONFIG_MTD_GEN_PROBE=y Common routines for chip probing

CONFIG_MTD_CFI=y Enable CFI chip driver

CONFIG_MTD_PDA_MAP=y Option to enable the map driver

CONFIG_JFFS2_FS=y Enable JFFS2

CONFIG_MTD_PDA_MAP is assumed to be a new option added to enable the map driver
we previously wrote. Each of these features can also be built as a kernel module unless
you have an MTD-resident root fi lesystem. To mount the fi lesystem partition in Fig-
ure 17.2 as the root device during boot, ask your bootloader to append root=/dev/
mtdblock/2 to the command-line string that it passes to the kernel.

You may reduce kernel footprint by eliminating redundant probing. Because our
example handheld has two parallel 16-bit banks sitting on a 32-bit physical bus (thus

Configuring MTD 519

520 Chapter 17 Memory Technology Devices

resulting in a two-way interleave and a 2-byte bank width), you can optimize using
these additional options:

CONFIG_MTD_CFI_ADV_OPTIONS=y

CONFIG_MTD_CFI_GEOMETRY=y

CONFIG_MTD_MAP_BANK_WIDTH_2=y

CONFIG_MTD_CFI_I2=y

CONFIG_MTD_MAP_BANK_WIDTH_2 enables a CFI bus width of 2, and CONFIG_MTD_
CFI_I2 sets an interleave of 2.

eXecute In Place

With eXecute In Place (XIP), you can run the kernel directly from flash. Because
you do away with the extra step of copying the kernel to RAM, your kernel boots
faster. The downside is that your flash memory requirement increases because the
kernel has to be stored uncompressed. Before deciding to go the XIP route, also
be aware that the slower instruction fetch times from flash can impact runtime
performance.

The Firmware Hub

PC-compatible systems use a NOR fl ash chip called the Firmware Hub (FWH) to
hold the BIOS. The FWH is not directly connected to the processor’s address and
data bus. Instead, it’s interfaced via the Low Pin Count (LPC) bus, which is part of
South Bridge chipsets. The connection diagram is shown in Figure 17.5.

The MTD subsystem includes drivers to interface the processor with the FWH.
FWHs are usually not compliant with the CFI specifi cation. Instead, they conform
to the JEDEC (Joint Electron Device Engineering Council) standard. To inform MTD
about a yet unsupported JEDEC chip, add an entry to the jedec_table array in
drivers/mtd/chips/jedec_probe.c with information such as the chip manufacturer ID
and the command-set ID. Here is an example:

static const struct amd_flash_info jedec_table[] = {

 /* ... */

 {

 .mfr_id = MANUFACTURER_ID, /* E.g.: MANUFACTURER_ST */

 .dev_id = DEVICE_ID, /* E.g.: M50FW080 */

 .name = "MYNAME", /* E.g.: "M50FW080" */

 .uaddr = {

 [0] = MTD_UADDR_UNNECESSARY,

 },

 .DevSize = SIZE_1MiB, /* E.g.: 1MB */

 .CmdSet = CMDSET, /* Command-set to communicate with the

 flash chip e.g., P_ID_INTEL_EXT */

 .NumEraseRegions = 1, /* One region */

 .regions = {

 ERASEINFO (0x10000, 16),/* Sixteen 64K sectors */

 }

 },

 /* ... */

};

When you have your chip details imprinted in the jedec_table as shown here, MTD
should recognize your fl ash, provided you have enabled the right kernel confi guration
options. The following confi guration makes the kernel aware of an FWH that inter-
faces to the processor via an Intel ICH2 or ICH4 South Bridge chipset:

CONFIG_MTD=y Enable the MTD subsystem

CONFIG_MTD_GEN_PROBE=y Common routines for chip probing

CONFIG_MTD_JEDECPROBE=y JEDEC chip driver

CONFIG_MTD_CFI_INTELEXT=y The command-set for communicating

 with the chip

CONFIG_MTD_ICHXROM=y The map driver

CONFIG_MTD_JEDECPROBE enables the JEDEC MTD chip driver, and CONFIG_MTD_
ICH2ROM adds the MTD map driver that maps the FWH to the processor’s address
space. In addition, you need to include the appropriate command-set implementation
(for example, CONFIG_MTD_CFI_INTELEXT for Intel Extension commands).

After these modules have been loaded, you can talk to the FWH from user-space
applications via device nodes exported by MTD. You can, for example, reprogram the
BIOS from user space using a simple application, as shown in Listing 17.5. Be warned
that incorrectly operating this program can corrupt the BIOS and render your system
unbootable!

The Firmware Hub 521

522 Chapter 17 Memory Technology Devices

Processor

North Bridge

South BridgeFirmware Hub
(BIOS Flash)

LPC BUS

FIGURE 17.5 The Firmware Hub on a PC-compatible system.

 Listing 17.5 operates on the MTD char device associated with the FWH, which it
assumes to be /dev/mtd/0. The program issues three MTD-specifi c ioctl commands:

 • MEMUNLOCK to unlock the flash sectors prior to programming

 • MEMERASE to erase flash sectors prior to rewriting

 • MEMLOCK to relock the sectors after programming

LISTING 17.5 Updating the BIOS

#include <linux/mtd/mtd.h>

#include <stdio.h>

#include <fcntl.h>

#include <asm/ioctl.h>

#include <signal.h>

#include <sys/stat.h>

#define BLOCK_SIZE 4096

#define NUM_SECTORS 16

#define SECTOR_SIZE 64*1024

int

main(int argc, char *argv[])

{

 int fwh_fd, image_fd;

 int usect=0, lsect=0, ret;

 struct erase_info_user fwh_erase_info;

 char buffer[BLOCK_SIZE];

 struct stat statb;

 /* Ignore SIGINTR(^C) and SIGSTOP (^Z), lest

 you end up with a corrupted flash and an

 unbootable system */

 sigignore(SIGINT);

 sigignore(SIGTSTP);

 /* Open MTD char device */

 fwh_fd = open("/dev/mtd/0", O_RDWR);

 if (fwh_fd < 0) exit(1);

 /* Open BIOS image */

 image_fd = open("bios.img", O_RDONLY);

 if (image_fd < 0) exit(2);

 /* Sanity check */

 fstat(image_fd, &statb);

 if (statb.st_size != SECTOR_SIZE*NUM_SECTORS) {

 printf("BIOS image looks bad, exiting.\n");

 exit(3);

 }

 /* Unlock and erase all sectors */

 while (usect < NUM_SECTORS) {

 printf("Unlocking & Erasing Sector[%d]\r", usect+1);

 fwh_erase_info.start = usect*SECTOR_SIZE;

 fwh_erase_info.length = SECTOR_SIZE;

 ret = ioctl(fwh_fd, MEMUNLOCK, &fwh_erase_info);

 if (ret != 0) goto bios_done;

 ret = ioctl(fwh_fd, MEMERASE, &fwh_erase_info);

 if (ret != 0) goto bios_done;

 usect++;

 }

 /* Read blocks from the BIOS image and dump it to the

 Firmware Hub */

 while ((ret = read(image_fd, buffer, BLOCK_SIZE)) != 0) {

 if (ret < 0) goto bios_done;

 ret = write(fwh_fd, buffer, ret);

 if (ret <= 0) goto bios_done;

 }

The Firmware Hub 523

524 Chapter 17 Memory Technology Devices

 /* Verify by reading blocks from the BIOS flash and comparing

 with the image file */

 /* ... */

 bios_done:

 /* Lock back the unlocked sectors */

 while (lsect < usect) {

 printf("Relocking Sector[%d]\r", lsect+1);

 fwh_erase_info.start = lsect*SECTOR_SIZE;

 fwh_erase_info.length = SECTOR_SIZE;

 ret = ioctl(fwh_fd, MEMLOCK, &fwh_erase_info);

 if (ret != 0) printf("Relock failed on sector %d!\n", lsect);

 lsect++;

 }

 close(image_fd);

 close(fwh_fd);

}

Debugging

To debug fl ash-related problems, enable CONFIG_MTD_DEBUG (Device Drivers →
Memory Technology Devices → Debugging) during kernel confi guration. You can fur-
ther tune the debug verbosity level to between 0 and 3.

The Linux-MTD project page www.linux-mtd.infradead.org has FAQs, various
pieces of documentation, and a paper that provides insights into JFFS2 design. The
linux-mtd mailing list is the place to discuss questions related to MTD device drivers.
Look at http://lists.infradead.org/pipermail/linux-mtd/ for the mailing list archives.

Looking at the Sources

In the kernel tree, the drivers/mtd/ directory contains the sources for the MTD sub-
system. Map, chip, and NAND drivers live in the drivers/mtd/maps/, drivers/mtd/chips/,

www.linux-mtd.infradead.org
http://lists.infradead.org/pipermail/linux-mtd/

and drivers/mtd/nand/ subdirectories, respectively. Most MTD data structures are
defi ned in header fi les present in include/linux/mtd/.

To access an unsupported BIOS fi rmware hub from Linux, implement a driver
using drivers/mtd/maps/ichxrom.c as your starting point.

For examples of operating on NAND OOB data from user space, look at nanddump.c
and nandwrite.c in the MTD-utils package.

Table 17.1contains the main data structures used in this chapter and their location
in the source tree. Table 17.2 lists the main kernel programming interfaces that you
used in this chapter along with the location of their defi nitions.

TABLE 17.1 Summary of Data Structures

 Data Structure Location Description

mtd_partition include/linux/mtd/partitions.h Representation of a flash chip’s partition layout.

 map_info include/linux/mtd/map.h Low-level access routines implemented by the
map driver are passed to the chip driver using
this structure.

 mtd_info include/linux/mtd/mtd.h General device-specific information.

 erase_info, include/linux/mtd/mtd.h, Structures used for flash erase management.
 erase_info_user include/mtd/mtd-abi.h

 cfi_private include/linux/mtd/cfi.h Device-specific information maintained by NOR
chip drivers.

 amd_flash_info drivers/mtd/chips/jedec_probe.c Device-specific information supplied to the
JEDEC chip driver.

 nand_ecclayout include/mtd/mtd-abi.h Layout of the OOB spare area of a NAND chip.

TABLE 17.2 Summary of Kernel Programming Interfaces

 Kernel Interface Location Description

 simple_map_init() drivers/mtd/maps/map_funcs.c Initializes a map_info structure with generic
flash access methods

do_map_probe() drivers/mtd/chips/chipreg.c Probes the NOR flash via a chip driver

add_mtd_partitions() drivers/mtd/mtdpart.c Registers an mtd_partition structure with
the MTD core

Looking at the Sources 525

This page intentionally left blank

527

18

Embedding Linux

In This Chapter

■ Challenges 528

■ Component Selection 530

■ Tool Chains 531

■ Embedded Bootloaders 531

■ Memory Layout 535

■ Kernel Porting 537

■ Embedded Drivers 538

■ The Root Filesystem 544

■ Test Infrastructure 548

■ Debugging 548

528

L inux is making inroads into industry domains such as consumer electron-
ics, telecom, networking, defense, and health care. With its popularity

surging in the embedded space, it’s more likely that you will use your Linux
device driver skills to enable embedded devices rather than legacy systems. In
this chapter, let’s enter the world of embedded Linux wearing the lens of a device
driver developer. Let’s look at the software components of a typical embedded
Linux solution and see how the device classes that you saw in the previous chap-
ters tie in with common embedded hardware.

Challenges

Embedded systems present several signifi cant software challenges:

 • Embedded software has to be cross-compiled and then downloaded to the
target device to be tested and verified.

 • Embedded systems, unlike PC-compatible computers, do not have fast pro-
cessors, fat caches, and wholesome storage.

 • It’s often difficult to get mature development and debug tools for embedded
hardware for free.

 • The Linux community has a lot more experience on the x86 platform, so you
are less likely to get instant online help from experts if you are working on
embedded computers.

 • The hardware evolves in stages. You may have to start software development
on a proof-of-concept prototype or a reference board, and progressively move
on to engineering-level debug hardware and a few passes of production-
 level units.

All these result in a longer development cycle.
From a device-driver perspective, embedded software developers often face inter-

faces not commonly found on conventional computers. Figure 18.1 (which is an
expanded version of Figure 4.2 in Chapter 4, “Laying the Groundwork”) shows a

hypothetical embedded device that could be a handheld, smart phone, point-of-sale
(POS) terminal, kiosk, navigation system, gaming device, telemetry gadget on an
automobile dashboard, IP phone, music player, digital set-top box, or even a pace-
maker programmer. The device is built around an SoC and has some combination of
fl ash memory, SDRAM, LCD, touch screen, USB OTG, serial ports, audio codec,
connectivity, SD/MMC controller, Compact Flash, I2C devices, SPI devices, JTAG,
biometrics, smart card interfaces, keypad, LEDs, switches, and electronics specifi c
to the industry domain. Modifying and debugging drivers for some of these devices
can be tougher than usual: NAND fl ash drivers have to handle problems such as bad
blocks and failed bits, unlike standard IDE storage drivers. Flash-based fi lesystems
such as JFFS2, are more complex to debug than EXT2 or EXT3 fi lesystems. A USB
OTG driver is more involved than a USB OHCI driver. The SPI subsystem in the
kernel is not as mature as, say, the serial layer. Moreover, the industry domain using
the embedded device might impose specifi c requirements such as quick response times
or fast boot.

UART/USB/I2C/SPI/CAN

EEPROM

 SDRAM

NOR

JTAG

NAND

 Touch
 Controller

RTC
 Touch Panel USB

 Host Port

USB
Device

Port

SD
Slot

CF
Slot

 Domain-specific electronics/
Bluetooth/Infrared/GSM/GPRS/GPS/
3G/Biometrics/SmartCard/Encryption

Debug
 Serial
 Port

 LCD Panel

Keys,
Buttons,

LEDs

Connectivity

CPLD/FPGA

SPI/
USB/
Serial/
ADC

Smart
Battery

Internal Local Bus
CPU Core

LCD
Controller

GPIO
Ports

Embedded SoCADDR/Data/Chipselect NAND UART
Controller

I2C I2S SPI USB OTG SD PCMCIA

CODEC

Amplifier

FIGURE 18.1 Block diagram of a hypothetical embedded device.

Challenges 529

530 Chapter 18 Embedding Linux

Component Selection

Evaluating and selecting components is one of the important tasks undertaken during
the concept phase of a project. Look at the sidebar “Choosing a Processor and Periph-
erals” for some important factors that hardware designers and product managers con-
sider while choosing components for building an embedded device. In today’s world,
where time to market is often the critical factor driving device design, the software
engineer also has a considerable say in shaping component selection. Availability of a
Linux distribution can infl uence processor choice, while existence of device drivers or
close starting points can affect the choice of peripheral chipsets.

Although the kernel engineer needs to do due diligence and evaluate several Linux
distributions (or even operating systems), he may nix a technologically superior distri-
bution in favor of a familiar one if he believes that’ll mitigate project risks. Or a pre-
ferred distribution might be the one that offers indemnifi cation from lawsuits arising
out of kernel bugs, if that is a crucial consideration in the relevant industry domain.
The electrical engineer can limit evaluation to processors supported by the chosen dis-
tribution and prefer peripheral chipsets enabled by the distribution in question.

Choosing a Processor and Peripherals

Let’s look at some common questions that electrical engineers and product managers ask when
selecting components for an embedded device. Assume that a hypothetical processor P is on the
shortlist because it satisfi es basic product requirements such as power consumption and packag-
ing. P and accompanying peripheral chipsets are under evaluation:

Performance: Is the processor frequency suffi cient to drive target applications? If the embed-
ded device intends to implement CPU-intensive tasks, does the MIPS budgeting for all software
subsystems balance with the processor’s MIPS rating? If the target device requires high-resolution
imaging, for example, will the MHz impact of graphics manipulation drag down the performance
of other subsystems, such as networking?

Cost: Will I save a buck on the component but end up spending two more on the surround-
ing electronics? For example, will P need an extra regulator? Will I need to throw in an additional
accessory, for example, an RTC chip, because P does not have one built-in? Does P have more
pins than other processors under evaluation leading to a denser board having a larger number of
layers and vias that increase the raw board cost? Does P consume more power and generate more
heat necessitating a bigger power supply and additional passive components? Is there errata in the
data sheet that has the possibility of increasing software development costs?

Functionality: What’s the maximum size of DRAM, SRAM, NOR, and NAND memory that
P can address?

Business Planning: Does P’s vendor offer an upgrade path to a higher horsepower processor
that is a drop-in (pin-compatible) replacement? Is the vendor company stable?

Supplier: Is this a single-source component? If so, is the supplier volatile? What are the lead
times to procure the parts?

End-of-Life: Is P likely to go end-of-life before the expected lifespan of the embedded device?

Credibility: Is P an accepted component? Do peripheral chipsets under evaluation have an
industry segment behind them? Perhaps a landscape LCD under consideration is being used on
automobile dashboards?

Ruggedness: Need the components be MIL (military) or industrial grade?

One has to evaluate different candidates and fi gure out the sweet spot in terms of all these.

Tool Chains

Because the target device is unlikely to be binary-compatible with your host develop-
ment platform, you have to cross-compile embedded software using tool chains. Set-
ting up a full-fl edged tool chain entails building the following:

 1. The GNU C (cross-)Compiler. GCC supports all platforms that Linux runs on,
but you have to configure and build it to generate code for your target architec-
ture. Essentially, you have to compile the compiler and generate the appropriate
cross-compiler.

 2. Glibc , the set of C libraries that you will need when you build applications for
the target device.

 3. Binutils , which includes the cross-assembler, and tools such as objdump.

Getting a development tool chain in place used to be a daunting task several years ago
but is usually straightforward today because Linux distributions offer precompiled
binaries and easy-installation tools for a variety of architectures.

Embedded Bootloaders

Bootloader development is usually the starting point of any embedded software effort.
You have to decide whether to write a bootloader from scratch or tailor an existing
open source bootloader to suit your needs. Each candidate bootloader might be built
based on a different philosophy: small footprint, easy portability, fast boot, or the
capability to support certain specifi c features. After you home-in on a starting point,
you can design and implement device-specifi c modifi cations.

Embedded Bootloaders 531

532 Chapter 18 Embedding Linux

In this section, let’s use the term bootloader to mean the boot suite. This includes
the following:

 • The BIOS, if present

 • Any bootstrap code needed to put the bootloader onto the boot device

 • One or more stages1 of the actual bootloader

 • Any program executing on an external host machine that talks with the boot-
loader for the purpose of downloading fi rmware onto the target device

At the minimum, a bootloader is responsible for processor- and board-specifi c initial-
izations, loading a kernel and an optional initial ramdisk into memory and passing
control to the kernel. In addition, a bootloader might be in charge of providing BIOS
services, performing POST, supporting fi rmware downloads to the target, and passing
memory layout and confi guration information to the kernel. On embedded devices
that use encrypted fi rmware images for security reasons, bootloaders may have the task
of decrypting fi rmware. Some bootloaders support a debug monitor to load and debug
stand-alone code on to the target device. You may also decide to build a failure- recovery
mechanism into your bootloader to recoup from kernel corruption on the fi eld.

In general, bootloader architecture depends on the processor family, the chipsets
present on the hardware platform, the boot device, and the operating system running
on the device. To illustrate the effects of the processor family on the boot suite, con-
sider the following:

 • A bootloader for a device designed around the StrongARM processor has to
know whether it’s booting the system or waking it up from sleep, because the
processor starts execution from the top of its address space (the bootloader) in
both cases. The bootloader has to pass control to the kernel code that restores
the system state if it’s waking up from sleep or load the kernel from the boot
device if the system is starting from reset.

 • An x86 bootloader might need to switch to protected mode to load a kernel big-
ger than the 1MB real-mode limit.

 • Embedded systems not based on x86 platforms cannot avail the services of a leg-
acy BIOS. So, if you want your embedded device to boot, for example, from an
external USB device, you have to build USB capabilities into your bootloader.

1 In embedded bootloader parlance, the fi rst stage of a two-stage bootloader is sometimes called the Initial Program Loader (IPL),
and the second stage is called the Secondary Program Loader (SPL).

 • Even when two platforms are based on similar processor cores, the bootloader
architecture may differ based on the SoC. For example, consider two ARM-
based devices, the Compaq iPAQ H3900 PDA and the Darwin Jukebox. The
former is built around the Intel PXA250 controller chip, which has an XScale
CPU based on an ARMv5 core, and the latter is designed using the Cirrus Logic
EP7312 controller that uses an ARMv3 core. Whereas XScale supports JTAG
(named after the Joint Test Action Group, which developed this hardware-assisted
debugging standard) to load a bootloader onto fl ash, the EP7312 has a boot-
strap mode to accomplish the same task.

The boot suite needs a mechanism to transfer a bootloader image from the host devel-
opment system to the target’s boot device. This is called bootstrapping. Bootstrapping
is straightforward on PC-compatible systems where the BIOS fl ash is programmed
using an external burner if it’s corrupted or updated after booting into an operating
system if it’s healthy. Embedded devices, however, do not have a generic method for
bootstrapping.

To illustrate bootstrapping on an embedded system, take the example of the Cir-
rus Logic EP7211 controller (which is the predecessor of the EP7312 discussed in the
previous section). The EP7211 executes code from a small internal 128-byte memory
when it’s powered on in a bootstrap mode. This 128-byte code downloads a bootstrap
image from a host via the serial port to an on-board 2KB SRAM and transfers control
to it. The boot suite has to be thus architected into three stages, each loaded at a dif-
ferent address:

 • The first stage (the 128-byte image) is part of processor firmware.

 • The second stage lives in the on-chip SRAM, so it can be up to 2KB. This is the
bootstrapper.

 • The bootstrapper downloads the actual bootloader image from an external host
to the top of fl ash memory. The bootloader gets control when the processor
powers on in normal operation mode.

Note that the processor-resident microcode (the fi rst stage) itself cannot function as
the bootstrapper because a bootstrapper needs to have the capability to program fl ash
memory. Because many types of fl ash chips can be used with a processor, the boot-
strapper code needs to be board-specifi c.

Many controller chips do not support a bootstrap mode. Instead, the bootloader
is written to fl ash via a JTAG interface. You can use your JTAG debugger’s command

Embedded Bootloaders 533

534 Chapter 18 Embedding Linux

interface to access the processor’s debug logic and burn the bootloader to the target
device’s fl ash memory. We will have a more detailed discussion on JTAG debugging in
the section “JTAG Debuggers” in Chapter 21, “Debugging Device Drivers.”

There are controllers that support both bootstrap execution mode and JTAG. The
Freescale i.MX21 (and its upgraded version i.MX27) based on an ARM9 core is one
such controller.

After a bootloader is resident on fl ash, it can update itself as well as other fi rmware
components such as the kernel and the root fi lesystem. The bootloader can directly talk
to a host machine and download fi rmware components via interfaces such as UART,
USB, or Ethernet.

Table 18.1 looks at a few example Linux bootloaders for ARM, PowerPC, and x86.

TABLE 18.1 Linux Bootloaders

 Processor
 Platform Linux Bootloaders

 ARM RedBoot (www.cygwin.com/redboot) is a bootloader popular on ARM-based hardware.
Redboot is based on a hardware abstraction offered by the eCos operating system (http://ecos.
sourceware.org/).

 The BootLoader Object or BLOB (http://sourceforge.net/projects/blob/), a bootloader origi-
nally developed for StrongARM-based boards, is commonly custom ported to other ARM-
based platforms, too. BLOB is built as two images, one that performs minimal initializations,
and the second that forms the bulk of the bootloader. The first image relocates the second to
RAM, so the bootloader can easily upgrade itself.

 PowerPC PowerPC chips used on embedded devices include SoCs such as IBM’s 405LP and the
440GP, and Motorola’s MPC7xx and MPC8xx. Bootloaders such as U-Boot (http://
sourceforge.net/projects/u-boot/), SLOF, and PIBS, boot Linux on PowerPC-based hardware.

 x86 Most x86-based systems boot from disk drives. Embedded x86 boards may boot from solid-
state disks rather than mechanical drives. The first stage of a disk-resident bootloader consists
of a sector-sized chunk that is loaded by the BIOS. This is called the Master Boot Record
(MBR) and contains up to 446 bytes of code, four partition table entries consuming 16 bytes
each, and a 2-byte signature (thus making up a 512-byte sector). The MBR is responsible for
loading the second stage of the bootloader. Each intervening stage has its own tasks, but the
final stage lets you choose the kernel image and command-line arguments, loads the kernel
and any initial ramdisk to memory, and transfers control to the kernel.

 As an illustration, let’s look at three bootloaders popularly used to boot Linux on x86-based
hardware:

 • The Linux Loader or LILO (http://freshmeat.net/projects/lilo/) is packaged along with
some Linux distributions. When the first stage of the bootloader is written to the boot
sector, LILO precalculates the disk locations of the second stage and the kernel. If you build
a new kernel image, you have to rewrite the boot sector. The second stage allows the user to
interactively select the kernel image and configure command-line arguments. It then loads
the kernel to memory.

www.cygwin.com/redboot
http://ecos.sourceware.org/
http://ecos.sourceware.org/
http://sourceforge.net/projects/blob/
http://sourceforge.net/projects/u-boot/
http://sourceforge.net/projects/u-boot/
http://freshmeat.net/projects/lilo/

 Processor
 Platform Linux Bootloaders

 • GRUB (www.gnu.org/software/grub) is different from LILO in that the kernel image can
live in any supported filesystem, and the boot sector need not be rewritten if the kernel
image changes. GRUB has an extra stage 1.5 that understands the filesystem holding the
boot images. Currently supported filesystems are EXT2, DOS FAT, BSD FFS, IBM JFS,
SGI XFS, Minix, and Reiserfs. GRUB complies with the Multiboot specification, which
allows any complying operating system to boot via any complying bootloader. You looked
at a sample GRUB configuration file in Chapter 2, “A Peek Inside the Kernel.”

 • SYSLINUX (http://syslinux.zytor.com/) is a no-frills Linux bootloader. It understands the
FAT filesystem, so you can store the kernel image and the second stage bootloader on a
FAT partition.

Giving due thought to the design and architecture of the bootloader suite lays a solid
foundation for embedded software development. The key is to choose the right boot-
loader as your starting point. The benefi ts range from a shorter software development
cycle to a feature-rich and robust device.

Memory Layout

Figure 18.2 shows an example memory layout on an embedded device. The bootloader
sits on top of the NOR fl ash. Following the bootloader lies the param block, a stati-
cally compiled binary image of kernel command-line arguments. The compressed ker-
nel image comes next. The fi lesystem occupies the rest of the available fl ash memory.
In the initial phase, when you start development with a fi rst-shot kernel, the fi lesystem
is usually a compressed ramdisk (initrd or initramfs), because having a fl ash-based fi le-
system entails getting the kernel MTD subsystem confi gured and running.

During power-on, the bootloader in Figure 18.2 uncompresses the kernel and loads
it to DRAM at 0xc0200000. It then loads the ramdisk at 0xc0280000 (unless you
build an initramfs into the base kernel as you learned in Chapter 2). Finally, it obtains
command-line arguments from the param block and transfers control to the kernel.

Because you may have to work with unconventional consoles and memory parti-
tions on embedded devices, you have to pass the right command-line arguments to the
kernel. For the device in Figure 18.2, this is a possible command line:

console=/dev/ttyS0,115200n8 root=/dev/ram initrd=0xC0280000

When you have the kernel MTD drivers recognizing your fl ash partitions, the area
of fl ash that holds the ramdisk can instead contain a JFFS2-based fi lesystem. With

Memory Layout 535

www.gnu.org/software/grub
http://syslinux.zytor.com/

536 Chapter 18 Embedding Linux

this, you don’t have to load the initrd to DRAM. Assuming that you have mapped the
bootloader, param block, kernel, and fi lesystem to separate MTD partitions, the com-
mand line now looks like this:

console=/dev/ttyS0,115200n8 root=/dev/mtdblock3

See the sidebar “ATAGs” for another method of passing parameters from the boot-
loader to the kernel.

ATAGs

On ARM kernels, command-line arguments are deprecated in favor of a tagged list of parameters.
This mechanism, called ATAG, is described in Documentation/arm/Booting. To pass a param-
eter to the kernel, create the corresponding tag in system memory from the bootloader, supply
a kernel function to parse it, and add the latter to the list of tag parsing functions using the
__tagtable() macro. The tag structure and its relatives are defi ned in include/asm-arm/setup.h,
whereas arch/arm/kernel/setup.c contains functions that parse several predefi ned ATAGs.

Embedded Device

Development host connected
to the target over a serial port

Serial port
(/dev/ttyS0)

at 115K baud

NOR FLASH

Bootloader

Param Block

Kernel zImage

Phase 1: Ramdisk

Phase 2: JFFS2

DRAM

Run-time Kernel

Kernel Modules

Filesystem

0xC00000000xC8000000

0xC0200000

0xC0280000

FIGURE 18.2 Example memory layout on an embedded device.

Kernel Porting

Like setting up tool chains, porting the kernel to your target device was a serious
affair a few years ago. One had to evaluate the stability of the current kernel tree for
the architecture of interest, apply available patches that were not yet part of the main-
line, make modifi cations, and hope for good luck. But today, you are likely to fi nd a
close starting point, not just for your SoC, but for a hardware board that is similar
to yours. For example, if you are designing an embedded device around the Freescale
i.MX21 processor, you have the option of starting off with the kernel port (arch/arm/
mach-imx/) for the i.MX21-based reference board built by the processor vendor. If
you thus start development from a suitable distribution-supplied or standard kernel
available for a board that resembles yours, chances are, you won’t have to grapple with
complex kernel bring-up issues.

But even with a close match, you are likely to face issues caused by modifi ed mem-
ory maps, changed chip selects, board-specifi c GPIO assignments, dissimilar clock
sources, disparate fl ash banks, timing requirements of a new LCD panel, or a differ-
ent debug UART port. A change in clocking for example, can ripple through dozens
of registers and impact the operation of several I/O peripherals. You might need an
in-depth reading of the CPU reference manual to resolve it. To fi gure out a modifi ed
interrupt pin routing caused by a different GPIO assignment, you might have to pore
over your board schematics. To program an LCD controller with HSYNC and VSYNC
durations appropriate to your LCD panel, you may need to connect an oscilloscope to
your board and digest the information that it gathers.

Depending on the demands on your device, you may also need to make kernel
changes unrelated to bring up. It could be as simple as exporting some information via
procfs or as complex as modifying the kernel for fast boot.

After you have the base kernel running, you can turn your attention to enabling
device drivers for the different I/O interfaces on your hardware.

uClinux

uClinux is a branch of the Linux kernel intended for lower-end microprocessors that have no
Memory Management Units (MMUs). uClinux ports are available for processors such as H8,
Blackfi n, and Dragonball. Most portions of uClinux are merged with the mainline 2.6 kernel.

The uClinux project is hosted at www.uclinux.org. The website contains patches, documenta-
tion, the code repository, list of supported architectures, and information for subscribing to the
uclinux-dev mailing list.

Kernel Porting 537

www.uclinux.org

538 Chapter 18 Embedding Linux

Embedded Drivers

One of the reasons Linux is so popular in the embedded space is that its formidable
application suite works regardless of the hardware platform, thanks to kernel abstrac-
tion layers that lie beneath them. So, as shown in Figure 18.3, all you need to do to get
a feature-rich embedded system is to implement the low-level device drivers ensconced
between the abstraction layers and the hardware. You need to do one of the following
for each peripheral interface on your device:

 • Qualify an existing driver. Test and verify that it works as it’s supposed to.

 • Find a driver that is a close match and modify it for your hardware.

 • Write a driver from scratch.

Assuming a kernel engineer participates in component selection, you’re likely to have
existing drivers or close enough matches for most peripheral devices. To take advantage
of existing drivers, go through the block diagram and schematics of your hardware,
identify the different chipsets, and cobble together a working kernel confi guration
fi le that enables the right drivers. Based on your footprint or boot time requirements,
modularize possible device drivers or build them into the base kernel.
To learn about device drivers for I/O interfaces commonly found on embedded hard-
ware, let’s take a clockwise tour around the embedded controller shown in Figure 18.1,
starting with the NOR fl ash.

Flash Memory

Embedded devices such as the one in Figure 18.2, boot from fl ash memory and have
fi lesystem data resident on fl ash-based storage. Many devices use a small NOR fl ash
component for the former and a NAND fl ash part for the latter.2 NOR memory, thus,
holds the bootloader and the base kernel, whereas NAND storage contains fi lesystem
partitions and device driver modules.

Flash drivers are supported by the kernel’s MTD subsystem discussed in Chap-
ter 17, “Memory Technology Devices.” If you’re using an MTD-supported chip, you
need to write only an MTD map driver to suitably partition the fl ash to hold the boot-
loader, kernel, and fi lesystem. Listings 17.1, 17.2, and 17.3 in Chapter 17 implement
a map driver for the Linux handheld, as shown in Figure 17.2 of the same chapter.

2 In today’s embedded market where the Bill Of Material (BOM) cost is often all-important, it’s not uncommon for devices to
contain only NAND storage. Such devices boot from NAND fl ash and have their fi lesystems also reside in NAND memory.
NAND boot needs support from both the processor and the bootloader.

Frame Buffer API ALSA Interface Input Event Driver RTC API Socket Interface

X Windows,
DirectFB , .. aplay, .. gpm, .. hwclock , .. telnet, ..

Movie player that
responds to touch

Video Driver Audio Driver Touchscreen Driver Network Driver RTC Driver

Hardware-IndependentHardware-Independent
Application LayerApplication Layer

Hardware-Independent
Application Layer

Kernel AbstractionKernel Abstraction
LayerLayer

Hardware-DependentHardware-Dependent
Kernel Driver LayerKernel Driver Layer

Kernel Abstraction
Layer

Hardware-Dependent
Kernel Driver Layer

Hardware

FIGURE 18.3 Hardware-independent applications and hardware-dependent drivers.

UART

The UART is responsible for serial communication and is an interface you are likely to
fi nd on all microcontrollers. UARTs are considered basic hardware, so the kernel con-
tains UART drivers for all microcontrollers on which it runs. On embedded devices,
UARTs are used to interface the processor with debug serial ports, modems, touch
controllers, GPRS chipsets, Bluetooth chipsets, GPS devices, telemetry electronics,
and so on.

Look at Chapter 6, “Serial Drivers,” for a detailed discussion on the Linux serial
subsystem.

Buttons and Wheels

Your device may have several miscellaneous peripherals such as keypads (micro key-
boards organized in the common QWERTY layout, data-entry devices having over-
loaded keys as found in cell phones, keypads having ABC-type layout, and so on),

Embedded Drivers 539

540 Chapter 18 Embedding Linux

LEDs, roller wheels, and buttons. These I/O devices interface with the CPU via GPIO
lines or a CPLD (see the following “CPLD/FPGA” section). Drivers for such peripher-
als are usually straightforward char or misc drivers. Some of the drivers export device-
access via procfs or sysfs rather than through /dev nodes.

PCMCIA/CF

A PCMCIA or CF slot is a common add-on to embedded devices. The advantage
of, say, WiFi enabling an embedded device using a CF card is that you won’t have to
respin the board if the WiFi controller goes end of life. Also, because diverse technolo-
gies are available in the PCMCIA/CF form factor, you have the freedom to change the
connectivity mode from WiFi to another technology such as Bluetooth later. The dis-
advantage of such a scheme is that even with mechanical retaining, sockets are inher-
ently unreliable. There is the possibility of the card coming loose due to shock and
vibe, and resulting intermittent connections.

PCMCIA and CF device drivers are discussed in Chapter 9, “PCMCIA and Com-
pact Flash.”

SD/MMC

Many embedded processors include controllers that communicate with SD/MMC
media. SD/MMC storage is built using NAND fl ash memory. Like CF cards, SD/MMC
cards add several gigabytes of memory to your device. They also offer an easy memory
upgrade path, because the available density of SD/MMC cards is constantly increasing.

Chapter 14, “Block Drivers,” points you to the SD/MMC subsystem in the kernel.

USB

Legacy computers support the USB host mode, by which you can communicate with
most classes of USB devices. Embedded systems frequently also require support for the
USB device mode, wherein the system itself functions as a USB device and plugs into
other host computers.

As you saw in Chapter 11, “Universal Serial Bus,” many embedded controllers sup-
port USB OTG that lets your device work either as a USB host or as a USB device.
It allows you, for example, to connect a USB pen drive to your embedded device. It
also allows your embedded device to function as a USB pen drive by exporting part of
its local storage for external access. The Linux USB subsystem offers drivers for USB
OTG. For hardware that is not compatible with OTG, the USB Gadget project, now
part of the mainline kernel, brings USB device capability.

RTC

Many embedded SoCs include RTC support to keep track of wall time, but some rely
on an external RTC chip. Unlike x86-based computers where the RTC is part of the
South Bridge chipset, embedded controllers commonly interface with external RTCs
via slow serial buses such as I2C or SPI. You can drive such RTCs by writing client
drivers that use the services of the I2C or SPI core as discussed in Chapter 8, “The
Inter-Integrated Circuit Protocol.” Chapter 2 and Chapter 5, “Character Drivers,”
discussed RTC support on x86-based systems.

Audio

As you saw in Chapter 13, “Audio Drivers,” an audio codec converts digital audio data
to analog sound signals for playback via speakers and performs the reverse operation
for recording through a microphone. The codec’s connection with the CPU depends
on the digital audio interface supported by the embedded controller. The usual way to
communicate with a codec is via buses such as AC’97 or I2S.

Touch Screen

Touch is the primary input mechanism on several embedded devices. Many PDAs
offer soft keyboards for data entry. In Chapter 6, we developed a driver for a serial
touch controller, and in Chapter 7, “Input Drivers,” we looked at a touch controller
that interfaced with the CPU via the SPI bus.

If your driver conforms to the input API, it should be straightforward to tie it with
a graphical user interface. You might, however, need to add custom support to cali-
brate and linearize the touch panel.

Video

Some embedded systems are headless, but many have associated displays. A suitably
oriented (landscape or portrait) LCD panel is connected to the video controller that is
part of the embedded SoC. Many LCD panels come with integrated touch screens.

As you learned in Chapter 12, “Video Drivers,” frame buffers insulate applications
from display hardware, so porting a compliant GUI to your device is easy, as long as
your display driver conforms to the frame buffer interface.

Embedded Drivers 541

542 Chapter 18 Embedding Linux

CPLD/FPGA

Complex Programmable Logic Devices (CPLDs) or their heavy-duty counterparts, Field
Programmable Gate Arrays (FPGAs), can add a thick layer of fast OS-independent logic.
You can program CPLDs (and FPGAs) in a language such as Very high speed integrated
circuit Hardware Description Language (VHDL). Electrical signals between the proces-
sor and peripherals propagate through the CPLD, so by appropriately programming
the CPLD, the OS obtains elegant register interfaces for performing complex I/O.
The VHDL code in the CPLD internally latches these register contents onto the data
bus after performing necessary control logic.

Consider, for example, an external serial LCD controller that has to be driven by
shifting in each pixel bit. The Linux driver for this device will have a tough time tog-
gling the clock and wiggling I/O pins several times for sending each pixel or command
byte to the serial LCD controller. If this LCD controller is routed to the processor via a
CPLD, however, the VHDL code can perform the necessary serial shifting by clocking
each bit in and present a parallel register interface to the OS for command and data.
With these virtual LCD command and data registers, the LCD driver implementation
is rendered simple. Essentially, the CPLD converts the cumbersome serial LCD con-
troller to a convenient, parallel one.

If the CPLD engineer and the Linux driver developer collaborate, they can arrive
at an optimum partitioning between the VHDL code and the Linux driver that’ll save
time and cost.

Connectivity

Connectivity injects intelligence, so there are few embedded devices that have no com-
munication capability. Popular networking technologies found on embedded devices
include WiFi, Bluetooth, cellular modems, Ethernet, and radio communication.

Chapter 15, “Network Interface Cards,” explored device drivers for wired network-
ing, and Chapter 16, “Linux Without Wires,” looked at drivers for wireless communi-
cation technologies.

Domain-Specific Electronics

Your device is likely to contain electronics specifi c to the usage industry domain. It
could be a telemetry interface for a hospital-grade device, a sensor for automotive hard-
ware, biometrics for a security gadget, GPRS for a cellular phone, or GPS for a naviga-
tion system. These peripherals usually communicate with the embedded controller over

standard I/O interfaces such as UART, USB, I2C, SPI, or controller area network (CAN).
For devices interfacing via a UART, you often have little work to do at the device driver
level because the UART driver takes care of the communication. For devices such as a
fi ngerprint sensor that interface via USB, you may have to write a USB client driver.
You might also face proprietary interfaces, such as a switching fabric for a network pro-
cessor, in which case, you may need to write a full-fl edged device driver.

Consider the digital media space. Cable or Direct-to-home (DTH) interface systems
are usually built around set-top box (STB) chipsets. These chips have capabilities such
as personal video recording (recording multiple channels to a hard disk, recording a
channel while viewing another and so forth) and conditional access (allowing the ser-
vice provider to control what the end user sees depending on subscription). To achieve
this, STB chips have a processor core coupled with a powerful graphics engine. The
latter implements MPEG codecs in hardware. Such audio-video codecs can decode
compressed digital media standards such as MPEG2 and MPEG4. (MPEG is an acro-
nym for Moving Picture Experts Group, the body responsible for developing motion
picture standards.) If you are embedding Linux onto an STB, you will need to drive
such audio-video codecs.

More Drivers

If your device serves a life-critical industry domain such as health care, the system
memory might have ECC capabilities. Chapter 20, “More Devices and Drivers,” dis-
cusses ECC reporting.

If your embedded device is battery powered, you may want to use a suitable CPU
frequency governor to dynamically scale processor frequency and save power. Chap-
ter 20 also discusses CPU frequency drivers and power management.

Most embedded processors have a built-in hardware watchdog that recovers the
system from freezes. You looked at watchdog drivers in Chapter 5. Use a suitable driver
from drivers/char/watchdog/ as the starting point to implement a driver for your sys-
tem’s watchdog.

If your embedded device contains circuitry to detect brownout,3 you might need to
add capability to the kernel to sense that condition and take appropriate action.

Several embedded SoCs contain built-in pulse-width modulator (PWM) units.
PWMs let you digitally control analog devices such as buzzers. The voltage level

3 Brownout is the scenario when input voltage drops below tolerable levels. (Blackout, on the other hand, refers to total loss of
power.) Brownout detection is especially relevant if your device is powered by a technology such as Power over Ethernet (PoE)
rather than a conventional wall socket.

Embedded Drivers 543

544 Chapter 18 Embedding Linux

 supplied to the target device is varied by programming the PWM’s duty cycle (the On
time of the PWM’s output waveform relative to its period). LCD brightness is another
example of a feature controllable using PWMs. Depending on the target device and
the usage scenario, you can implement char or misc driver interfaces to PWMs.

The Root Filesystem

Before the advent of Linux distributions, it used to be a project by itself to put together
a compact application-set tailored to suit the size limitations of available storage. One
had to cobble together the sources of a minimal set of utilities, libraries, tools, and
daemons; ensure that their versions liked each other; and cross-compile them. Today’s
distributions supply a ready-made application-set built for supported processors and
offer tools that let you pick and choose components at the granularity of packages. Of
course, you may still want to implement custom utilities and tools to supplement the
distribution-supplied applications.

On embedded devices, fl ash memory (discussed in Chapter 17) is the commonly
used vehicle to hold the application-set and is mounted as the root device at the end of
the boot process. Hard disks are uncommon because they are power-intensive, bulky,
and have moving parts that are not tolerant to shock and vibe. Common places that
hold the root fi lesystem on embedded devices include the following:

 • An initial ramdisk (initramfs or initrd) is usually the starting point before you
get drivers for other potential root devices working and is used for development
purposes.

 • NFS-mounting the root filesystem is a development strategy much more pow-
erful than using a ramdisk. We discuss this in detail in the next section.

 • Storage media such as fl ash chips, SD/MMC cards, CF cards, DOCs, and DOMs.

Note that it may not be a good idea to let all the data stay in the root partition. It’s
common to spread fi les across different storage partitions and tag desired read-write
or read-only protection fl ags, especially if there is the possibility that the device will be
shut down abruptly.

NFS-Mounted Root

NFS-mounting the root fi lesystem can serve as a catalyst to hasten the embedded devel-
opment cycle. In this case, the root fi lesystem physically resides on your development
host and not on the target, so its size is virtually unlimited and not restricted by the

amount of storage locally available on the target. Downloading device driver modules
or applications to the target, as well as uploading logs, is as simple (and fast) as copying
them to /path/to/target/rootfi lesystem/ on your development host. Such ease of testing
and debugging is a good reason why you should insist on having Ethernet on engi-
neering-level hardware, even if production units won’t have Ethernet support. Having
Ethernet on your board also lets your bootloader use the Trivial File Transfer Protocol
(TFTP) to download the kernel image to the target over a network.

Table 18.24 shows the typical steps needed to get TFTP and NFS working with
your embedded device. It assumes that your development host also doubles up as
TFTP, NFS, and DHCP servers, and that the bootloader (BLOB in this example) sup-
ports the Ethernet chipset used on the embedded device.

TABLE 18.2 Saving Development Time with TFTP and NFS

Target Embedded Device Host Development Platform

Kernel Boot
over TFTP

Configure the IP address of the target
and the server (host) from the boot-
loader prompt:

/* Target IP */

blob> ip 4.1.1.2

/* Host IP */

blob> server 4.1.1.1

/* Kernel image */

blob> TftpFile /tftpdir/zImage

/* Pull the Kernel over the
net */

blob> tftp

TFTPing /tftpboot/zImage…………Ok

blob>

Configure the host IP address:

bash> ifconfig eth0 4.1.1.1

Install and configure the TFTP server (the exact
steps depend on your distribution):

bash> cat /etc/xinetd.conf/tftp

service tftp

{

 socket_type = dgram

 protocol = udp

 wait = yes

 user = root

 server = /usr/sbin/in.tftpd

 server_args = /tftpdir

 disable = no

 per_source = 11

 cps = 100 2

 flags = IPv4

}

Make sure that the TFTP server is present in
/usr/sbin/in.tftpd and that xinetd is alive.

Compile the target kernel with NFS enabled
and copy it to /tftpdir/zImage.

4 The fi lenames and directory path names used in Table 18.2 are distribution-dependent.

Continues

The Root Filesystem 545

546 Chapter 18 Embedding Linux

Target Embedded Device Host Development Platform

Root file-
system over
NFS

blob> boot console=/dev/
ttyS0,115200n8 root=/dev/nfs
ip=dhcp

/*Kernel boot messages*/

/* ... */

VFS: Mounted root (nfs
filesystem)

/* ... */

login:

Export /path/to/target/root/ for NFS access:

bash> cat /etc/exports

/path/to/target/root/ *(rw,sync,no_
root_squash,no_all_squash)

Start NFS:

bash> service nfs start

Configure the DHCP server. The kernel on the
embedded device relies on this server to assign
it the 4.1.1.2 IP address during boot and to
supply /path/to/target/root/:

bash> cat /etc/dhcpd.conf

...

subnet 4.1.1.0 netmask
255.255.255.0 {

range 4.1.1.2 4.1.1.10

max-lease-time 43200

option routers 4.1.1.1

option ip-forwarding off

option broadcast-address 4.1.1.255

option subnet-mask 255.255.255.0

group {

 next-server 4.1.1.1

 host target-device {

 /* MAC of the embedded device */

 hardware Ethernet AA:BB:CC:DD:
 EE:FF;

 fixed-address 4.1.1.2;

 option root-path
 "/path/to/target/root/";

 }

}

...

bash> service dhcpd start

bash>

Compact Middleware

Embedded devices that are tight on memory prefer middleware implementations that
have small footprint and low runtime memory requirements. The trade-offs usually

TABLE 18.2 Continued

lie in features, standards compatibility, and speed. Let’s take a look at some popular
compact middleware solutions that may be potential candidates for populating your
root fi lesystem.

BusyBox is a tool commonly used to provide a multi-utility environment on embed-
ded systems having limited memory. It scratches out some features but provides an
optimized replacement for several shell utilities.

uClibc is a compact version of the GNU C library that was originally developed to
work with uClinux. uClibc works on normal Linux systems, too, and is licensed under
LGPL. If your embedded device is short on space, try uClibc rather than glibc.

Embedded systems that need to run an X Windows server commonly rely on TinyX,
a low-footprint X server shipped along with the XFree86 4.0 code. TinyX runs over
frame buffer drivers and can be used on devices, such as the one showed in Figure 12.6
of Chapter 12.

Thttpd is a lightweight HTTP server that makes low demands on CPU and mem-
ory resources.

Even if you are creating a non-Linux solution using a tiny 8-bit MMU-less micro-
controller, you will likely want it to interoperate with Linux. Assume, for example,
that you are writing deeply embedded fi rmware for an Infrared storage keychain. The
keychain can hold a gigabyte of personal data that can be accessed via a web browser
from your Linux laptop over Infrared. If you are running a compact TCP/IP stack,
such as uIP over a minimal IrDA stack such as Pico-IrDA on the Infrared keychain,
you have the task of ensuring their interoperability with the corresponding Linux pro-
tocol stacks.

Table 18.3 lists the home pages of the compact middleware projects referred to in
this section.

TABLE 18.3 Examples of Compact Middleware

 Name Description Download Location

 BusyBox Small footprint shell environment www.busybox.net

 uClibc Small-sized version of glibc www.uclibc.org

 TinyX X server for devices that are tight on memory Part of the X Windows source tree
downloadable from ftp://ftp.xfree86.
org/pub/XFree86/4.0/

 Thttpd Tiny HTTP server www.acme.com/software/thttpd

 uIP Compact TCP/IP stack for microcontrollers www.sics.se/~adam/uip

 Pico-IrDA Minimal IrDA stack for microcontrollers http://blaulogic.com/pico_irda.shtml

The Root Filesystem 547

www.busybox.net
www.uclibc.org
www.acme.com/software/thttpd
www.sics.se/~adam/uip
http://blaulogic.com/pico_irda.shtml

548 Chapter 18 Embedding Linux

Test Infrastructure

Most industry domains that use embedded devices are governed by regulatory bod-
ies. Having an extensible and robust test infrastructure is likely to be as important as
implementing modifi cations to the kernel and device drivers. Broadly, the test frame-
work is responsible for the following:

 1. Demonstrating compliance to obtain regulatory approvals. If your system is a
medical-grade device for the U.S. market, for example, you should orient your
test suite for getting approvals from the Food and Drug Administration (FDA).

 2. Most electronic devices intended for the U.S. market have to comply with emis-
sion standards such as electromagnetic interference (EMI) and electromagnetic
compatibility (EMC) as laid down by the Federal Communications Commission
(FCC). To demonstrate compliance, you may need to run a battery of tests
inside a chamber that models different operating environments. You might also
have to verify that the system runs normally when an electrostatic gun is pointed
at different parts of the board.

 3. Build verification tests. Whenever you build a software deliverable, subject it to
quality assurance (QA) using these tests.

 4. Manufacturing tests. Each time a device is assembled, you have to verify its
functionality using a set of tests. These tests assume significance when manufac-
turing moves into volume production.

To have a common test base for all these, it’s a good idea to implement your test har-
ness over Linux, rather than develop it as a stand-alone suite. Stand-alone code is not
easily scalable or extendable. Adding a simple test to ping the next-hop router is a fi ve-
line script on a Linux-based test system but can entail writing a network driver and a
protocol stack if you are using a stand-alone test monitor.

A test engineer need not be a kernel guru but will need to imbibe implementation
information from the development team and think critically.

Debugging

Before closing this chapter, let’s visit a few topics related to debugging embedded
software.

Board Rework

Navigating board schematics and datasheets is an important debugging skill you need
while bringing up the bootloader or kernel on embedded hardware. Understanding
your board’s placement plot, which is a fi le that shows the position of chips on your
board, is a big help when you are debugging a potential hardware problem using an
oscilloscope, or when you need to perform minor board rework. Reference designators
(such as U10 and U11 in Figure 18.4) associate each chip in the schematic with the
placement plot. Printed circuit boards (PCBs) are usually clothed with silk screens that
print the reference designator near each chip.

Consider this fi ctitious scenario where USB enumeration doesn’t occur on your
board under test. The USB hub driver detects device insertions but is not able to
assign endpoint addresses. A close look at the schematics reveals that the connections
originating from the SPEED and MODE pins of the USB transceiver have been inter-
changed by mistake. An examination of the placement plot identifi es the location of
the transceiver on the PCB. Matching the transceiver’s reference designator on the
placement plot with the silk screen on the PCB pinpoints the places where you have to
solder “yellow wires” to repair the faulty connections.

A multimeter and an oscilloscope are worthy additions to your embedded debug-
ging toolkit. As an illustration, let’s consider an example situation involving the I2C
RTC shown in Figure 8.3 of Chapter 8. Figure 18.4 reproduces it with a multimeter/
scope attached to probe points of interest. Consider this scenario: You have written
an I2C client driver for this RTC chip as described in the section “Device Example:
Real Time Clock” in Chapter 8. However, when you run your driver on the board, it
renders the system unbootable. Neither does the bootloader come up when you reset
the board, nor does your JTAG debugger connect to the target. To understand possible
causes of this seemingly fatal error, let’s take a closer look at the connection diagram.
Because both the RTC and the CPU need an external clock, the board supplies it
using a single 32KHz crystal. This 32KHz clock needs to be buffered, however. The
RTC buffers the clock for its use and makes it available on an output pin for free. This
pin CLK_OUT, feeds the clock to the processor. Connect an oscilloscope (or a multim-
eter that can measure frequency) between CLK_OUT and ground to verify the processor
clock frequency. As you can see in Figure 18.4, the scope reads 1KHz rather than the
expected 32KHz! What could be wrong here?

The RTC control register contains bits that choose the frequency of CLK_OUT.
While probing the chip (on the lines of myrtc_attach() in Chapter 8), the driver

Debugging 549

550 Chapter 18 Embedding Linux

has erroneously initialized these bits to generate 1KHz on CLK_OUT. RTC registers
are nonvolatile because of the battery backup, so the control register holds this bad
value across reboots. The resulting skewed clock is suffi cient to render the system
unbootable. Disconnect the RTC’s backup battery, drain the registers, reconnect the
battery, verify using the scope that the 32KHz clock is restored on CLK_OUT, fi x your
driver code, and start afresh!

Processor RTC

CLK

32KHz

I2C Bus

CLK_OUT

U10

U11

Battery
Backup

GND

Scope/Multimeter

1KHz

FIGURE 18.4 Debugging an I2C RTC on an embedded system.

Debuggers

You can use most of the debugging techniques that you will learn in Chapter 21 while
embedding Linux. Kernel debuggers are available for several processor platforms. JTAG
debuggers, also explored in Chapter 21, are more powerful than kernel debuggers and
are popularly used in the embedded space to debug the bootloader, base kernel, and
device-driver modules.

551

19

Drivers in User Space

In This Chapter

■ Process Scheduling and Response Times 553

■ Accessing I/O Regions 558

■ Accessing Memory Regions 562

■ User Mode SCSI 565

■ User Mode USB 567

■ User Mode I2C 571

■ UIO 573

■ Looking at the Sources 574

552

Most device drivers prefer to lead a privileged life inside the kernel, but
some are at home in the indeterministic world outside. Several kernel

subsystems such as SCSI, USB, and I2C, offer some level of support for user
mode drivers, so you might be able to control those devices without writing a
single line of kernel code.

In spite of the inclement weather in user land, user mode drivers enjoy certain
advantages. They are easy to develop and debug. You won’t have to reboot the
system every time you dereference a dangling pointer. Some user mode driv-
ers will even work across operating systems if the device subsystem enjoys the
services of a standard user-space programming library. Here are some rules of
thumb to help decide whether your driver should reside in user space:

 • Apply the possibility test. What can be done in user space should probably
stay in user space.

 • If you have to talk to a large number of slow devices and if performance
requirements are modest, explore the possibility of implementing the driv-
ers in user space. If you have time-critical performance requirements, stay
inside the kernel.

 • If your code needs the services of kernel APIs, access to kernel variables,
or is intertwined with interrupt handling, it has a strong case for being in
kernel space.

 • If much of what your code does can be construed as policy, user land might
be its logical residence.

 • If the rest of the kernel needs to invoke your code’s services, it’s a candidate
for staying inside the kernel.

 • You can’t easily do fl oating-point arithmetic inside the kernel. Floating-
point unit (FPU) instructions can, however, be used from user space.

That said, you can’t accomplish too much from user space. Many important
device classes, such as storage media and network adapters, cannot be driven
from user land. But even when a kernel driver is the appropriate solution, it’s a

good idea to model and test as much code as you can in user space before moving
it to kernel space. The testing cycle is faster, and it’s easier to traverse all possible
code paths and ensure that they are clean.

In this chapter, the term user-space driver (or user mode driver) is used in a generic
sense that does not strictly conform to the semantics of a driver implied thus far in
the book. An application is considered to be a user mode driver if it’s a candidate
for being implemented inside the kernel, too.

The 2.6 kernel overhauled a subsystem that is of special interest to user-space driv-
ers. The new process scheduler offers huge response-time benefits to user mode
code, so let’s start with that.

Process Scheduling and Response Times

Many user mode drivers need to perform some work in a time-bound manner. In
user space, indeterminism due to scheduling and paging often come in the way of
fast response times, however. To see how you can minimize the impact of the for-
mer hurdle, let’s dip into recent Linux schedulers and understand their underlying
philosophy.

The Original Scheduler

In the 2.4 and earlier days, the scheduler used to recalculate scheduling parameters of
each task before taking its pick. The time consumed by the algorithm thus increased
linearly with the number of contending tasks in the system. In other words, it used
O(n) time, where n is the number of active tasks. On a system running at high loads,
this translated to signifi cant overhead. The 2.4 algorithm also didn’t work very well on
SMP systems.

The O(1) Scheduler

Time consumed by an O(n) algorithm depends linearly on the size of its input, and
an O(n2) solution depends quadratically on the length of its input, but an O(1) tech-
nique is independent of the input and thus scales well. The 2.6 scheduler replaced
the O(n) algorithm with an O(1) method. In addition to being super-scalable, the
scheduler has built-in heuristics to improve user responsiveness by providing preferen-
tial treatment to tasks involved in I/O activity. Processes are of two kinds: I/O bound

 Process Scheduling and Response Times 553

554 Chapter 19 Drivers in User Space

and CPU bound. I/O-bound tasks are often sleep-waiting for device I/O, while CPU-
bound ones are workaholics addicted to the processor. Paradoxically, to achieve fast
response times, lazy tasks get incentives from the O(1) scheduler, while studious ones
draw fl ak. Look at the sidebar “Highlights of the O(1) Scheduler” to fi nd out some of
its important features.

Highlights of the O(1) Scheduler

The following are some of the important features of the O(1) scheduler:

• The algorithm uses two run queues made up of 140 priority lists: an active queue that holds
tasks that have time slices left and an expired queue that contains processes whose time slices
have expired. When a task finishes its time slice, it’s inserted into the expired queue in sorted
order of priority. The active and expired queues are swapped when the former becomes empty.
To decide which process to run next, the scheduler does not navigate through the entire queue.
Instead, it picks that task from the active queue having the highest priority. The overhead of
picking the task thus depends not on the number of active tasks, but on the number of priori-
ties. This makes it a constant-time or an O(1) algorithm.

• The scheduler supports two priority ranges: standard nice values supported on UNIX systems
and internal priorities. The former range from –20 to +19, while the latter extend from 0 to
139. In both cases, lower values correspond to higher priorities. The top 100 (0 to 99) internal
priorities are reserved for real time (RT) tasks, and the bottom 40 (100 to 139) are assigned to
normal tasks. The 40 nice values map to the bottom 40 internal priorities. Internal priorities
of normal tasks can be dynamically varied by the scheduler, whereas nice values are statistically
set by the user. Each internal priority gets an associated run list.

• The scheduler uses a heuristic to figure out whether the nature of a process is I/O-intensive or
CPU-intensive. In simple terms, if a task sleeps often, it’s likely to be I/O-intensive, but if it
uses its time slice fast, it’s CPU-intensive. Whenever the scheduler finds that a task has demon-
strated I/O-bound characteristics, it rewards it by dynamically increasing its internal priority.
CPU-bound characteristics, on the other hand, are punished with negative marks.

• The allotted time slice is directly proportional to the priority. A higher priority task gets a big-
ger time slice.

• A task will not be preempted by the scheduler as long as it has time slice credit. If it yields the
processor before using up its time slice quota, it can roll over the reminder of its slice when it’s
run next. Because I/O-bound processes are the ones that often yield the CPU, this improves
interactive performance.

• The scheduler supports RT scheduling policies. RT tasks preempt normal (SCHED_OTHER)
tasks. Users of RT policies can override the scheduler’s dynamic priority assignments. Unlike
SCHED_OTHER tasks, their priorities are not recalculated by the kernel on-the-fly. RT scheduling

comes in two flavors: SCHED_FIFO and SCHED_RR. They are used for producing “soft” real-time
behavior, rather than stringent “hard” RT guarantees. SCHED_FIFO has no concept of time
slices; SCHED_FIFO tasks run until they sleep-wait for I/O or yield the processor. SCHED_RR is
a round-robin variant of SCHED_FIFO that also assigns time slices to RT tasks. SCHED_RR tasks
with expired slices are appended to the end of the corresponding priority list.

• The scheduler improves SMP performance by using per-CPU run queues and per-CPU
synchronization.

The CFS Scheduler

The Linux scheduler has undergone another rewrite with the 2.6.23 kernel. The Com-
pletely Fair Scheduler (CFS) for the SCHED_OTHER class removes much of the com-
plexities associated with the O(1) scheduler by abandoning priority arrays, time slices,
interactivity heuristics, and the dependency on HZ. CFS’s goal is to implement fairness
for all scheduling entities by providing each task the total CPU power divided by the
number of running tasks. Dissecting CFS is beyond the scope of this chapter. Have a
look at Documentation/sched-design-CFS.txt for a brief tutorial.

Response Times

As a user mode driver developer, you have several options to improve your application’s
response time:

 • Use RT scheduling policies that give you a finer grain of control than usual.
Look at the man pages of sched_setscheduler() and its relatives for insights
into achieving soft RT response times.

 • If you are using non-RT scheduling, tune the nice values of different processes
to achieve the required performance balance.

 • If you are using a 2.6.23 or later kernel enabled with the CFS scheduler, you
may fine-tune /proc/sys/kernel/sched_granularity_ns. If you are using a pre-2.6.23
kernel, modify #defines in kernel/sched.c and include/linux/sched.h to suit your
application. Change these values cautiously to satisfy the needs of your applica-
tion suite. Usage scenarios of the scheduler are complex. Settings that delight
certain load conditions can depress others, so you may have to experiment by
trial and error.

 Process Scheduling and Response Times 555

556 Chapter 19 Drivers in User Space

 • Response times are not solely the domain of the scheduler; they also depend on
the solution architecture. For example, if you mark a busy interrupt handler as
fast, it disables other local interrupts frequently and that can potentially slow
down data acquisition and transmission on other IRQs.

Let’s implement an example and see how a user mode driver can achieve fast response
times by guarding against indeterminism introduced by scheduling and paging. As
you learned in Chapter 2, “A Peek Inside the Kernel,” the RTC is a timer source
that can generate periodic interrupts with high precision. Listing 19.1 implements
an example that uses interrupt reports from /dev/rtc to perform periodic work with
microsecond precision. The Pentium Time Stamp Counter (TSC) is used to measure
response times.

The program in Listing 19.1 fi rst changes its scheduling policy to SCHED_FIFO
using sched_setscheduler(). Next, it invokes mlockall() to lock all mapped
pages in memory to ensure that swapping won’t come in the way of deterministic tim-
ing. Only the super-user is allowed to call sched_setscheduler()and mlockall()

and request RTC interrupts at frequencies greater than 64Hz.

LISTING 19.1 Periodic Work with Microsecond Precision

#include <linux/rtc.h>

#include <sys/ioctl.h>

#include <sys/time.h>

#include <fcntl.h>

#include <pthread.h>

#include <linux/mman.h>

/* Read the lower half of the Pentium Time Stamp Counter

 using the rdtsc instruction */

#define rdtscl(val) __asm__ __volatile__ ("rdtsc" : "=A" (val))

main()

{

 unsigned long ts0, ts1, now, worst; /* Store TSC ticks */

 struct sched_param sched_p; /* Information related to

 scheduling priority */

 int fd, i=0;

 unsigned long data;

 /* Change the scheduling policy to SCHED_FIFO */

 sched_getparam(getpid(), &sched_p);

 sched_p.sched_priority = 50; /* RT Priority */

 sched_setscheduler(getpid(), SCHED_FIFO, &sched_p);

 /* Avoid paging and related indeterminism */

 mlockall(MCL_CURRENT);

 /* Open the RTC */

 fd = open("/dev/rtc", O_RDONLY);

 /* Set the periodic interrupt frequency to 8192Hz

 This should give an interrupt rate of 122uS */

 ioctl(fd, RTC_IRQP_SET, 8192);

 /* Enable periodic interrupts */

 ioctl(fd, RTC_PIE_ON, 0);

 rdtscl(ts0);

 worst = 0;

 while (i++ < 10000) {

 /* Block until the next periodic interrupt */

 read(fd, &data, sizeof(unsigned long));

 /* Use the TSC to precisely measure the time consumed.

 Reading the lower half of the TSC is sufficient */

 rdtscl(ts1);

 now = (ts1-ts0);

 /* Update the worst case latency */

 if (now > worst) worst = now;

 ts0 = ts1;

 /* Do work that is to be done periodically */

 do_work(); /* NOP for the purpose of this measurement */

 }

 printf("Worst latency was %8ld\n", worst);

 /* Disable periodic interrupts */

 ioctl(fd, RTC_PIE_OFF, 0);

 }

 Process Scheduling and Response Times 557

558 Chapter 19 Drivers in User Space

The code in Listing 19.1 loops for 10,000 iterations and prints out the worst-case
latency that occurred during execution. The output was 240899 on a Pentium 1.8GHz
box, which roughly corresponds to 133 microseconds. According to the data sheet
of the RTC chipset, a timer frequency of 8192Hz should result in a periodic inter-
rupt rate of 122 microseconds. That’s close. Rerun the code under varying loads using
SCHED_OTHER instead of SCHED_FIFO and observe the resultant drift.

You may also run kernel threads in the RT mode. For that, do the following when
you start the thread:

static int

my_kernel_thread(void *i)

{

 daemonize();

 current->policy = SCHED_FIFO;

 current->rt_priority = 1;

 /* ... */

}

Accessing I/O Regions

PC-compatible systems have 64K I/O ports, all of which may be driven from user
space. User access to I/O ports on Linux is controlled by two functions: ioperm()
and iopl(). ioperm() controls access permissions to the fi rst 0x3ff ports. iopl()
changes the I/O privilege level of the calling process, thus allowing among other things,
unrestricted access to all ports. Only the super-user can invoke both these functions.

To write data to an I/O port, use outb(), outw(), outl(), or their cousins. To
read data from a port, use inb(), inw(), inl(), or their relatives. Let’s implement a
simple program that reads the seconds ticking inside the RTC chip. I/O regions in the
PC CMOS, of which the RTC is a part, are accessed via an index port (0x70) and a
data port (0x71), as shown in Table 5.1 of Chapter 5, “Character Drivers.” To read a
byte of data from offset off within an I/O address range, write off to the index port
and read the associated data from the data port. Listing 19.2 reads the seconds fi eld of
the RTC; but to use it to obtain data from other I/O regions, change the arguments
passed to dump_port() suitably.

LISTING 19.2 Utility to Dump Bytes from an I/O Region

#include <linux/ioport.h>

void

dump_port(unsigned char addr_port, unsigned char data_port,

 unsigned short offset, unsigned short length)

{

 unsigned char i, *data;

 if (!(data = (unsigned char *)malloc(length))) {

 perror("Bad Malloc\n");

 exit(1);

 }

 /* Write the offset to the index port

 and read data from the data port */

 for(i=offset; i<offset+length; i++) {

 outb(i, addr_port);

 data[i-offset] = inb(data_port);

 }

 /* Dump */

 for(i=0; i<length; i++)

 printf("%02X ", data[i]);

 free(data);

}

int

main(int argc, char *argv[])

{

 /* Get access permissions */

 if(iopl(3) < 0) {

 perror("iopl access error\n");

 exit(1);

 }

 dump_port(0x70, 0x71, 0x0, 1);

}

Accessing I/O Regions 559

560 Chapter 19 Drivers in User Space

You may also accomplish the same task by operating on /dev/port. This will incur a per-
formance penalty because code fl ow has to pass through a kernel driver, but you have
the fl exibility to control access permissions on the device node without using iopl()
or ioperm(). Here’s the /dev/port equivalent of Listing 19.2:

#include <unistd.h>

#include <fcntl.h>

int

main(int argc, char *argv[])

{

 char seconds=0;

 char data = 0;

 int fd = open("/dev/port", O_RDWR);

 lseek(fd, 0x70, SEEK_SET);

 write(fd, &data, 1);

 lseek(fd, 0x71, SEEK_SET);

 read(fd, &seconds, 1);

 printf("%02X ", seconds);

}

In Chapter 5, you learned to talk to your computer’s parallel port via a kernel driver.
Let’s now implement a sample program that interacts with a parallel port device from
user space. The kernel’s parallel port subsystem provides a character driver called ppdev
that exports parallel port access to user land. Ppdev creates device nodes /dev/parportX,
where X is the parallel port number. Applications can open /dev/parportX, exchange
data via read()/write() system calls, and issue a variety of ioctl() commands.
Using kernel interfaces such as ppdev, is preferable to directly operating over I/O ports
using ioperm(), iopl(), or /dev/port. The former technique is safer, works across
architectures, and functions over different device form factors such as USB-to-parallel
converters.

Consider the simple LED board that you used in Chapter 5. It had 8 LEDs inter-
faced to pins 2 to 9 on a standard 25-pin parallel connector. Listing 19.3 implements
a simple user application that glows alternate diodes on this parallel port LED board
using the ppdev interface. It’s the user-space equivalent of the kernel driver developed
in Listing 5.6 of Chapter 5.

LISTING 19.3 Controlling a Parallel Port LED Board from User Space

#include <stdio.h>

#include <linux/ioctl.h>

#include <linux/parport.h>

#include <linux/ppdev.h>

#include <fcntl.h>

int main(int argc, char *argv[])

{

 int led_fd;

 char data = 0xAA; /* Bit pattern to glow alternate LEDs */

 /* Open /dev/parport0. This assumes that the LED connector board

 is connected to the first parallel port on your computer */

 if ((led_fd = open("/dev/parport0", O_RDWR)) < 0) {

 perror("Bad Open\n");

 exit(1);

 }

 /* Claim the port */

 if (ioctl(led_fd, PPCLAIM)) {

 perror("Bad Claim\n");

 exit(2);

 }

 /* Set pins to forward direction and write a

 byte to glow alternate LEDs */

 if (ioctl(led_fd, PPWDATA, &data)) {

 perror("Bad Write\n");

 exit(3);

 }

 /* Release the port */

 if (ioctl(led_fd, PPRELEASE)) {

 perror("Bad Release\n");

 exit(4);

 }

 /* Close /dev/parport0 */

 close(led_fd);

}

Accessing I/O Regions 561

562 Chapter 19 Drivers in User Space

Accessing Memory Regions

Memory mapping (or mmaping) a fi le associates it with an area of user virtual memory.
Because Linux treats devices as fi les, you can also map device memory to RAM and
directly operate on it from user space. Here are some mmap() users on Linux:

 1. Graphical user interfaces such as X Windows (www.xfree86.org) and SVGAlib
(www.svgalib.org), mmap video memory and directly access graphics hardware.

 2. Madplay is an integer-only MP3 player that runs on several architectures. Mem-
ory mapping improves throughput, so madplay mmaps MP3 files for faster
access. This helps maintain the correct bit rates necessary for high-quality music
playback.

 3. MPEG (Moving Picture Experts Group) decoders play movies by directly operat-
ing on mmapped frame buffer memory.

The prototype of the mmap() system call looks like this:

void *mmap(void *start, size_t length, int prot, int flag,

 int fd, off_t offset);

This requests the kernel to associate the device fi le specifi ed by the fi le descriptor fd to
a chunk of user memory beginning at start. (start is only a preference and is usu-
ally set to 0; the actual associated memory is returned by mmap().) The kernel maps
length bytes of memory starting from offset in the specifi ed fi le. prot specifi es
the desired access protection, and flag describes the type of the mapping. The MAP_
SHARED fl ag mirrors your modifi cations to other users of the same memory region,
whereas MAP_PRIVATE keeps your changes to yourself.

All mmapped pages need not be present in physical memory. Areas not being
accessed can be in swap space from where they are paged in on demand. Underlying
device drivers may control the semantics of the mmap() system call by implementing
an mmap() method.

Listing 19.4 is an image display program that performs the following to illustrate
usage of mmap():

 • Mmaps an image file.

 • Mmaps a frame buffer. (We discussed frame buffer drivers in Chapter 12, “Video
Drivers.”)

www.xfree86.org
www.svgalib.org

 • Transfers the former to the latter after performing necessary transformations
depending on the properties of the image fi le (not shown in the listing).

LISTING 19.4 Displaying an Image Using Mmap

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/mman.h> /* For definition of mmap() */

#include <linux/fb.h> /* For frame buffer structures and ioctls */

int

main(int argc, char *argv[])

{

 int imagefd, fbfd; /* File descriptors */

 char *imagebuf, *fbbuf; /* mmap buffers */

 struct fb_var_screeninfo vinfo; /* Variable Screen info */

 struct stat statbuf; /* Image info */

 int fbsize; /* Frame buffer size */

 /* Open image file */

 if ((imagefd = open(argv[1], O_RDONLY)) < 0) {

 perror("Bad image open\n");

 exit(1);

 }

 /* Get the size of the image file */

 if (fstat(imagefd, &statbuf) < 0) {

 perror("Bad fstat\n");

 exit(1);

 }

 /* mmap the image file */

 if ((imagebuf = mmap(0, statbuf.st_size, PROT_READ, MAP_SHARED,

 imagefd, 0)) == (char *) -1){

 perror("Bad image mmap\n");

 exit(1);

 }

Accessing Memory Regions 563

564 Chapter 19 Drivers in User Space

 /* Open video memory */

 if ((fbfd = open("/dev/fb0", O_RDWR)) < 0) {

 perror("Bad frame buffer open\n");

 exit(1);

 }

 /* Get screen attributes such as resolution and depth */

 if (ioctl(fbfd, FBIOGET_VSCREENINFO, &vinfo)) {

 perror("Bad vscreeninfo ioctl\n");

 exit(1);

 }

 /* Size of video memory =

 (X-resolution * Y-resolution * Bytes per pixel) */

 fbsize = (vinfo.xres * vinfo.yres * vinfo.bits_per_pixel)/8;

 /* mmap the video memory */

 if ((fbbuf = mmap(0, fbsize, PROT_WRITE, MAP_SHARED, fbfd, 0))

 == (char *) -1){

 perror("Bad frame buffer mmap\n");

 exit(1);

 }

 /* Transfer imagebuf to fbbuf after applying transformations

 dependent on the format, resolution, depth, data offset,

 and other properties of the image file. Not implemented in

 this listing */

 copy_image_to_fb();

 msync(fbbuf, fbsize, MS_SYNC); /* Flush changes to device */

 /* ... */

 /* Unmap frame buffer memory */

 munmap(fbbuf, fbsize);

 close(fbfd);

 /* Unmap image file */

 munmap(imagebuf, statbuf.st_size);

 close(imagefd);

}

User Mode SCSI

The SCSI Generic (sg) interface lets you directly dispatch SCSI commands from user
space. The sg driver essentially exports a char interface, so applications can use the
open(), close(), read(), write(), ioctl(), poll(), fcntl(), and mmap() sys-
tem calls to talk to the underlying device. Drivers for SCSI devices such as CD burners
and scanners are implemented in user space over sg. Look at the sources of cdrtools
(previously called cdrecord) available from http://freshmeat.net/projects/cdrecord/ for
a real-life sg user.

Let’s learn how to use the sg interface with the help of an example. Listing 19.5
implements a user program that sends a READ_CAPACITY SCSI command to a storage
device such as a SCSI hard disk or a USB mass storage drive to glean its data capacity.
The READ_CAPACITY command consists of 10 bytes, starting with the command code
0x25. For the purpose of this example, let’s set the rest of the bytes to zero. When a
SCSI device receives a READ_CAPACITY command, it responds with an 8-byte reply;
the top 4 bytes contain the address of the last logical block, and the bottom 4 bytes
contain the block length.

sg device nodes are named /dev/sgX, where X is the device number, so Listing 19.5
opens /dev/sg0, which is assumed to be the sg char node corresponding to your SCSI
storage device. It then sets about populating the sg_io_hdr_t structure , which is
the main data structure that sg users have to manage. The read(), write(), and
ioctl()calls expect a pointer to this structure (defi ned in /usr/include/scsi/sg.h) as an
argument. The cmdp fi eld of sg_io_hdr_t is set to the address of the command block
that holds the 10-byte READ_CAPACITY command. The dxferp fi eld supplies the
address of a buffer that will carry the response data arriving from the device. The sbp
fi eld contains the address of a sense buffer that will return the status of the requested
operation. The interface_id has to be set to S, and timeout holds the wait time in
milliseconds before sg gives up on the command.

SG_IO is an oft-used ioctl command supported by sg. Internally, it writes a com-
mand to the device, waits for a response, and reads the received reply into a user-
supplied buffer. In Listing 19.5, SG_IO issues a READ_CAPACITY command and reads
the 8-byte response into rcap_buff[]. The program calculates and prints the disk
capacity by interpreting the data in rcap_buff[].

User Mode SCSI 565

http://freshmeat.net/projects/cdrecord/

566 Chapter 19 Drivers in User Space

LISTING 19.5 Obtaining Disk Capacity via SCSI Generic

#include <stdio.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <scsi/sg.h>

#define RCAP_COMMAND 0x25

#define RCAP_COMMAND_LEN 10

#define RCAP_REPLY_LEN 8

int

main(int argc, char *argv[])

{

 int fd, i;

 /* READ_CAPACITY command block */

 unsigned char RCAP_CmdBlk[RCAP_COMMAND_LEN]=

 {RCAP_COMMAND, 0,0,0,0,0,0,0,0,0};

 sg_io_hdr_t sg_io;

 unsigned char rcap_buff[RCAP_REPLY_LEN];

 unsigned int lastblock, blocksize;

 unsigned long long disk_cap;

 unsigned char sense_buf[32];

 /* Open the sg device */

 if ((fd = open("/dev/sg0", O_RDONLY)) < 0) {

 printf("Bad Open\n");

 exit(1);

 }

 /* Initialize */

 memset(&sg_io, 0, sizeof(sg_io_hdr_t));

 /* Command block address and length */

 sg_io.cmdp = RCAP_CmdBlk;

 sg_io.cmd_len = RCAP_COMMAND_LEN;

 /* Response buffer address and length */

 sg_io.dxferp = rcap_buff;

 sg_io.dxfer_len = RCAP_REPLY_LEN;

 /* Sense buffer address and length */

 sg_io.sbp = sense_buf;

 sg_io.mx_sb_len = sizeof(sense_buf);

 /* Control information */

 sg_io.interface_id = 'S';

 sg_io.dxfer_direction = SG_DXFER_FROM_DEV;

 sg_io.timeout = 10000; /* 10 seconds */

 /* Issue the SG_IO ioctl */

 if (ioctl(fd, SG_IO, &sg_io) < 0) {

 printf("Bad SG_IO\n");

 exit(1);

 }

 /* Obtain results */

 if ((sg_io.info & SG_INFO_OK_MASK) == SG_INFO_OK) {

 /* Address of last disk block */

 lastblock = ((rcap_buff[0]<<24)|(rcap_buff[1]<<16)|

 (rcap_buff[2]<<8)|(rcap_buff[3]));

 /* Block size */

 blocksize = ((rcap_buff[4]<<24)|(rcap_buff[5]<<16)|

 (rcap_buff[6]<<8)|(rcap_buff[7]));

 /* Calculate disk capacity */

 disk_cap = (lastblock+1);

 disk_cap *= blocksize;

 printf("Disk Capacity = %llu Bytes\n", disk_cap);

 }

 close(fd);

}

For the full list of SG_IO commands, take a look at include/scsi/scsi.h and drivers/scsi/
sg.c. Read the Linux SCSI Generic HOWTO for an in-depth explanation of the sg
interface. Download the sg3_utils package from http://sg.torque.net/sg/sg3_utils.html
and browse the sources to fi nd several useful programs that operate over sg.

User Mode USB

The usbfs virtual fi lesystem allows raw access to USB devices from user space. Usbfs
is usually mounted over /proc/bus/usb/. The usbfs tree contains directories correspond-
ing to each USB controller (or bus) on your system. Each of these directories, in turn,
contains nodes corresponding to USB devices present on that bus.

User Mode USB 567

http://sg.torque.net/sg/sg3_utils.html

568 Chapter 19 Drivers in User Space

To better understand usbfs, let’s look at a system with an Intel ICH4 South Bridge
chipset. As you learned in Chapter 11, “Universal Serial Bus,” USB controllers are
part of the South Bridge chipset on PC systems. The ICH4 supports one USB EHCI
(high-speed USB 2.0) controller and three USB UHCI controllers and can connect to
six physical USB ports. The EHCI controller can converse with all six ports, and the
three UHCI controllers can talk to two ports each. Let’s call the EHCI controller bus1
and the three UHCI controllers bus2, bus3, and bus4, respectively. Now assume that
the system has only two physical USB ports and that they are connected to the UHCI
controller corresponding to bus3. (The symbol attaches comments to command
output.)

bash> ls –lR /proc/bus/usb

/proc/bus/usb:

total 0

dr-xr-xr-x 2 root root 0 Dec 2 12:44 001 EHCI. Can talk to

 any physical port

dr-xr-xr-x 2 root root 0 Dec 2 12:44 002 No corresponding

 physical ports

dr-xr-xr-x 2 root root 0 Dec 2 12:44 003 UHCI bus for the 2

 physical USB ports

 on this system

dr-xr-xr-x 2 root root 0 Dec 2 12:44 004 No corresponding

 physical ports

-r--r--r-- 1 root root 0 Dec 2 20:02 devices

/proc/bus/usb/001:

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001 Root Hub (bus1)

/proc/bus/usb/002:

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001 Root Hub (bus2)

/proc/bus/usb/003:

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001 Root Hub (bus3)

/proc/bus/usb/004:

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001 Root Hub (bus4)

Let’s connect a full-speed Nikon digital camera and a high-speed Seagate USB 2.0
hard disk to the two USB ports on the system. First, take a peek at /proc/bus/usb/devices
and fi nd the relevant entries:

bash> ls –lR /proc/bus/usb/devices

...

T: Bus=03 Lev=01 Prnt=01 Port=01 Cnt=01 Dev#= 5 Spd=12 MxCh= 0

D: Ver= 1.10 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=04b0 ProdID=0205 Rev= 1.00

S: Manufacturer=NIKON

S: Product=NIKON DSC E5200

S: SerialNumber=2507597

C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 2mA

I: If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50

 Driver=usb-storage

E: Ad=01(O) Atr=02(Bulk) MxPS= 64 Ivl=0ms

E: Ad=82(I) Atr=02(Bulk) MxPS= 64 Ivl=0ms

...

T: Bus=01 Lev=01 Prnt=01 Port=02 Cnt=01 Dev#= 12 Spd=480 MxCh= 0

D: Ver= 2.00 Cls=00(>ifc) Sub=00 Prot=00 MxPS=64 #Cfgs= 1

P: Vendor=0bc2 ProdID=0501 Rev= 0.01

S: Manufacturer=Seagate

S: Product=USB Mass Storage

S: SerialNumber=000000062459

C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 0mA

I: If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50

 Driver=usb-storage

E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms

E: Ad=88(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

Look at the T: lines in the preceding output, which display the topology. As expected,
the hard disk has arrived on the EHCI bus, bus1, and the camera has appeared on the
UHCI bus, bus3. This is how the usbfs tree looks now:

bash> ls –lR /proc/bus/usb

/proc/bus/usb:

total 0

dr-xr-xr-x 2 root root 0 Dec 2 12:44 001

dr-xr-xr-x 2 root root 0 Dec 2 12:44 002

dr-xr-xr-x 2 root root 0 Dec 2 12:44 003

dr-xr-xr-x 2 root root 0 Dec 2 12:44 004

-r--r--r-- 1 root root 0 Dec 2 19:51 devices

User Mode USB 569

570 Chapter 19 Drivers in User Space

/proc/bus/usb/001: → EHCI: bus1

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001

-rw-r--r-- 1 root root 50 Dec 2 19:51 007 → High-speed disk

/proc/bus/usb/002: → UHCI: bus2

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001

/proc/bus/usb/003: → UHCI: bus3

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001

-rw-r--r-- 1 root root 50 Dec 2 19:16 003 → Full-speed camera

/proc/bus/usb/004: → UHCI: bus4

total 0

-rw-r--r-- 1 root root 43 Dec 2 12:44 001

The usbfs fi les corresponding to plugged-in devices contain the associated USB device
and confi guration descriptors. In the preceding example, read /proc/bus/usb/003/003 to
get descriptor information for the camera and /proc/bus/usb/001/007 for the descrip-
tor associated with the hard disk. Managing usbfs fi les is not straightforward however,
because the device fi lenames get reused after a device is plugged out. The solution is to
use the libusb library, which uses usbfs under the hood. Using libusb instead of directly
operating on usbfs has another benefi t: Your driver is likely to work unchanged on
other operating systems that support this library. If you don’t fi nd libusb bundled
along with your distribution, download its sources from http://libusb.sourceforge.
net/. The full list of USB access functions offered by this library is available under the
doc/ directory of the libusb sources.

Listing 19.6 implements a skeletal user-space driver for the digital camera using an
oft-used libusb programming template. The camera’s vendor ID (0x04b0) and device
ID (0x0205) are obtained from the /proc/bus/usb/devices output shown previously.

LISTING 19.6 A Skeletal User-Space USB Driver Using libusb

#include <usb.h> /* From the libusb package */

#define DIGICAM_VENDOR_ID 0x04b0 /* From /proc/bus/usb/devices */

#define DIGICAM_PRODUCT_ID 0x0205 /* From /proc/bus/usb/devices */

http://libusb.sourceforge.net/
http://libusb.sourceforge.net/

int

main(int argc, char *argv[])

{

 struct usb_dev_handle *mydevice_handle;

 struct usb_bus *usb_bus;

 struct usb_device *mydevice;

 /* Initialize libusb */

 usb_init();

 usb_find_buses();

 usb_find_devices();

 /* Walk the bus */

 for (usb_bus = usb_buses; usb_bus; usb_bus = usb_bus->next) {

 for (mydevice = usb_bus->devices; mydevice;

 mydevice = mydevice->next) {

 if ((mydevice->descriptor.idVendor == DIGICAM_VENDOR_ID) &&

 (mydevice->descriptor.idProduct == DIGICAM_PRODUCT_ID)) {

 /* Open the device */

 mydevice_handle = usb_open(mydevice);

 /* Send commands to the camera. This is the heart of the

 driver. Getting information about the USB control

 messages to which your device responds is often a

 challenge since many vendors do not readily divulge

 hardware details */

 usb_control_msg(mydevice_handle, ...);

 /* ... */

 /* Close the device */

 usb_close(mydevice_handle);

 }

 }

 }

}

User Mode I2C

In Chapter 8, “The Inter-Integrated Circuit Protocol,” you learned to develop kernel
mode drivers for I2C devices; but sometimes, when you need to enable support for

User Mode I2C 571

572 Chapter 19 Drivers in User Space

a large number of slow I2C devices, it makes sense to drive them from user space.
The i2c-dev module enables the development of user mode I2C/SMBus device drivers.
User-space code can access I2C host adapters via device nodes. To operate on the nth

adapter, open /dev/i2c-n. After you have a fi le descriptor tied to a host adapter device
node, you can command it through ioctls to connect to specifi c slave devices attached
to it. You can then use the services of a family of data access routines to exchange data
with the slaves.

Listing 19.7 is a simple user mode driver that performs common operations on
an I2C EEPROM from user space. The EEPROM is the same as the one discussed in
Chapter 8 and has two memory banks and a slave address corresponding to each bank.
The listing uses inline functions from i2c-dev.h to operate on device nodes associ-
ated with the banks. Get this header fi le from the lm-sensors package (also discussed
in Chapter 8) downloadable from www.lm-sensors.org. This fi le contains user-space
equivalents for all kernel space I2C access functions listed in Table 8.1 of Chapter 8.

LISTING 19.7 A User-Space I2C/SMBus Driver

#include <linux/i2c.h>

#include <linux/i2c-dev.h>

/* Bus addresses of the memory banks */

#define SLAVE_ADDR1 0x60

#define SLAVE_ADDR2 0x61

int main(int argc, char *argv[])

{

 /* Open the host adapter */

 if ((smbus_fp = open("/dev/i2c-0", O_RDWR)) < 0) {

 exit(1);

 }

 /* Connect to the first bank */

 if (ioctl(smbus_fp, I2C_SLAVE, SLAVE_ADDR1) < 0) {

 exit(1);

 }

 /* ... */

www.lm-sensors.org

 /* Dump data from the device */

 for (reg=0; reg < length; reg++) {

 /* See i2c-dev.h from the lm-sensors package for the

 implementation of the following inline function */

 res = i2c_smbus_read_byte_data(smbus_fp, (unsigned char) reg);

 if (res < 0) {

 exit(1);

 }

 /* Dump data */

 /* ... */

 }

 /* ... */

 /* Switch to bank 2 */

 if (ioctl(smbus_fp, I2C_SLAVE, SLAVE_ADDR2) < 0) {

 exit(1);

 }

 /* Clear bank 2 */

 for (reg=0; reg < length; reg+=2){

 i2c_smbus_write_word_data(smbus_fp, (unsigned char) reg, 0x0);

 }

 /* ... */

 close(smbus_fp);

}

UIO

Starting with the 2.6.23 release, the kernel includes a subsystem called UIO (Userspace
IO) that eases the implementation of some user-space drivers. UIO’s intent is to allow
the development of a bare-bones kernel driver for tasks such as interrupt handling, and
push most of the device I/O logic to user space. UIO is especially relevant for some
classes of industrial I/O cards.

Look inside drivers/uio/ for the UIO sources. A user guide is available under Docu-
mentation/DocBook/uio-howto.tmpl. Exploring UIO is beyond the scope of this chapter.

UIO 573

574 Chapter 19 Drivers in User Space

Looking at the Sources

The Linux scheduler lives in kernel/sched.c. The SCSI generic implementation is in
drivers/scsi/sg.c, and drivers/usb/core/devio.c is responsible for supporting user-space
USB drivers. The i2c-dev driver that enables support for user mode I2C programming
resides in drivers/i2c/i2c-dev.c.

Table 19.1 contains the main data structures used in this chapter, and Table 19.2
lists the functions that we used to aid user mode driver development.

TABLE 19.1 Summary of Data Structures

Data Structure Location (User Space) Description

sched_param /usr/include/bits/sched.h Information related to scheduling priorities.

fb_var_screeninfo /usr/include/linux/fb.h Used to operate on frame buffers. Contains vari-
able screen information such as resolution and
pixclock. See Chapter 11 for more details.

sg_io_hdr_t /usr/include/scsi/sg.h Information to manage SCSI generic devices.

usb_dev_handle
usb_bus
usb_device

Header files in the libusb
package.

Structures to operate on USB devices from user
space.

TABLE 19.2 Summary of User-Space Functions

User-Space Function Description

sched_getparam() Obtains scheduling parameters associated with a given process

sched_setscheduler() Sets scheduling parameters associated with a given process

mlockall() Locks pages of the calling process in memory and thus avoids page
faults

ioperm() Controls access permissions to the first 0x3FF I/O ports

iopl() Changes the I/O privilege level of the calling process

outb()/outw()/outl() Outputs a byte/word/long to a specified port

inb()/inw()/inl() Inputs a byte/word/long from a specified port

mmap() Associates a file or a device address region with a chunk of user
virtual memory

msync() Flushes changes made to an mmap-ed memory area

munmap() Reverse of mmap()

User-Space Function Description

usb_init()
usb_find_buses()
usb_find_devices()
usb_open()
usb_control_msg()
usb_close()

Functions provided by the libusb library to help you operate over
usbfs

i2c_smbus_read_byte_data()
i2c_smbus_write_word_data()

User-space I2C/SMBus data access routines available as part of the
lm-sensors package

Looking at the Sources 575

This page intentionally left blank

577

20

More Devices and
Drivers

In This Chapter

■ ECC Reporting 578

■ Frequency Scaling 583

■ Embedded Controllers 584

■ ACPI 585

■ ISA and MCA 587

■ FireWire 588

■ Intelligent Input/Output 589

■ Amateur Radio 590

■ Voice over IP 590

■ High-Speed Interconnects 591

578

So far, we have devoted a full chapter to each major device driver class, but
there are several subdirectories under drivers/ that we haven’t yet descended

into. In this chapter let’s venture inside some of them at a brisk pace.

ECC Reporting

Several memory controllers contain special silicon to measure the fi delity of
stored data using error correcting codes (ECCs). The Error Detection And Correc-
tion (EDAC) driver subsystem announces occurrences of memory error events gen-
erated by ECC-aware memory controllers. Typical ECC DRAM chips have the
capability to correct single-bit errors (SBEs) and detect multibit errors (MBEs). In
EDAC parlance, the former errors are correctable errors (CEs), whereas the latter
are uncorrectable errors (UEs).

ECC operations are transparent to the operating system. This means that if your
DRAM controller supports ECC, error correction and detection occurs silently with-
out operating system participation. EDAC’s task is to report such events and allow
users to fashion error handling policies (such as replace a suspect DRAM chip).

The EDAC driver subsystem consists of the following:

 • A core module called edac_mc that provides a set of library routines.

 • Separate drivers for interacting with supported memory controllers. For example,
the driver module that works with the memory controller that is part of the
Intel 82860 North Bridge is called i82860_edac.

EDAC reports errors via fi les in the sysfs directory /sys/devices/system/edac/. It also
generates messages that can be gleaned from the kernel error log.

The layout of DRAM chips is specifi ed in terms of the number of chip-selects
emanating from the memory controller and the data-transfer width (channels)
between the memory controller and the CPU. The number of rows in the DRAM
chip array depends on the former, whereas the number of columns hinge on the
latter. One of the main aims of EDAC is to point the needle of suspicion at prob-
lem DRAM chips, so the EDAC sysfs node structure is designed according to

the physical chip layout: /sys/devices/system/edac/mc/mcX/csrowY/ corresponds to chip-
select row Y in memory controller X. Each such directory contains details such as the
number of detected CEs (ce_count), UEs (ue_count), channel location, and other
attributes.

Device Example: ECC-Aware Memory Controller

Let’s add EDAC support for a yet-unsupported memory controller. Assume that you’re
putting Linux onto a medical grade device that is an embedded x86 derivative. The
North Bridge chipset (which includes the memory controller as discussed in the sidebar
“The North Bridge” in Chapter 12, “Video Drivers”) on your board is the Intel 855GME
that is capable of ECC reporting. All DRAM banks connected to the 855GME on this
system are ECC-enabled chips because this is a life-critical device. EDAC does not yet
support the 855GME, so let’s take a stab at implementing it.

ECC DRAM controllers have two major ECC-related registers: an error status reg-
ister and an error address pointer register, as shown in Table 20.1. When an ECC
error occurs, the former contains the status (whether the error is an SBE or an MBE),
whereas the latter contains the physical address where the error occurred. The EDAC
core periodically checks these registers and reports results to user space via sysfs. From
a confi guration standpoint, all devices inside the 855GME appear to be on PCI
bus 0. The DRAM controller resides on device 0 of this bus. DRAM interface con-
trol registers (including the ECC-specifi c registers) map into the corresponding PCI
confi guration space. To add EDAC support for the 855GME, add hooks to read these
registers, as shown in Listing 20.1. Refer back to Chapter 10, “Peripheral Component
Inter connect,” for explanations on PCI device driver methods and data structures.

TABLE 20.1 ECC-Related Registers on the DRAM Controller

 ECC-Specific Registers Residing
 in the DRAM Controller’s PCI
 Configuration Space Description

 I855_ERRSTS_REGISTER The error status register, which signals occurrence of an ECC error.
Shows whether the error is an SBE or an MBE.

 I855_EAP_REGISTER The error address pointer register, which contains the physical
address where the most recent ECC error occurred.

ECC Reporting 579

580 Chapter 20 More Devices and Drivers

LISTING 20.1 An EDAC Driver for the 855GME

/* Based on drivers/edac/i82860_edac.c */

#define I855_PCI_DEVICE_ID 0x3584 /* PCI Device ID of the memory

 controller in the 855 GME */

#define I855_ERRSTS_REGISTER 0x62 /* Error Status Register's offset

 in the PCI configuration space */

#define I855_EAP_REGISTER 0x98 /* Error Address Pointer Register's

 offset in the PCI configuration space */

struct i855_error_info {

 u16 errsts; /* Error Type */

 u32 eap; /* Error Location */

};

/* Get error information */

static void

i855_get_error_info(struct mem_ctl_info *mci,

 struct i855_error_info *info)

{

 struct pci_dev *pdev;

 pdev = to_pci_dev(mci->dev);

 /* Read error type */

 pci_read_config_word(pdev, I855_ERRSTS_REGISTER, &info->errsts);

 /* Read error location */

 pci_read_config_dword(pdev, I855_EAP_REGISTER, &info->eap);

}

/* Process errors */

static int

i855_process_error_info(struct mem_ctl_info *mci,

 struct i855_error_info *info,

 int handle_errors)

{

 int row;

 info->eap >>= PAGE_SHIFT;

 row = edac_mc_find_csrow_by_page(mci, info->eap); /* Find culprit row */

 /* Handle using services provided by the EDAC core.

 Populate sysfs, generate error messages, and so on */

 if (is_MBE()) { /* is_MBE() looks at I855_ERRSTS_REGISTER and checks

 for an MBE. Implementation not shown */

 edac_mc_handle_ue(mci, info->eap, 0, row, "i855 UE");

 } else if (is_SBE()) { /* is_SBE() looks at I855_ERRSTS_REGISTER and checks

 for an SBE. Implementation not shown */

 edac_mc_handle_ce(mci, info->eap, 0, info->derrsyn, row, 0,

 "i855 CE");

 }

 return 1;

}

/* This method is registered with the EDAC core from i855_probe() */

static void

i855_check(struct mem_ctl_info *mci)

{

 struct i855_error_info info;

 i855_get_error_info(mci, &info);

 i855_process_error_info(mci, &info, 1);

}

/* The PCI driver probe method, part of the pci_driver structure */

static int

i855_probe(struct pci_dev *pdev, int dev_idx)

{

 struct mem_ctl_info *mci;

 /* ... */

 pci_enable_device(pdev);

 /* Allocate control memory for this memory controller.

 The 3 arguments to edac_mc_alloc() correspond to the

 amount of requested private storage, number of chip-select

 rows, and number of channels in your memory layout */

 mci = edac_mc_alloc(0, CSROWS, CHANNELS);

 /* ... */

 mci->edac_check = i855_check; /* Supply the check method to the

 EDAC core */

 /* Do other memory controller initializations */

 /* ... */

ECC Reporting 581

582 Chapter 20 More Devices and Drivers

 /* Register this memory controller with the EDAC core */

 edac_mc_add_mc(mci, 0);

 /* ... */

}

/* Remove method */

static void __devexit

i855_remove(struct pci_dev *pdev)

{

 struct mem_ctl_info *mci = edac_mc_find_mci_by_pdev(pdev);

 if (mci && !edac_mc_del_mc(mci)) {

 edac_mc_free(mci); /* Free memory for this controller. Reverse

 of edac_mc_alloc() */

 }

}

/* PCI Device ID Table */

static const struct pci_device_id i855_pci_tbl[] __devinitdata = {

 {PCI_VEND_DEV(INTEL, I855_PCI_DEVICE_ID),

 PCI_ANY_ID, PCI_ANY_ID, 0, 0,},

 {0,},

};

MODULE_DEVICE_TABLE(pci, i855_pci_tbl);

/* pci_driver structure for this device.

 Re-visit Chapter 10 for a detailed explanation */

static struct pci_driver i855_driver = {

 .name = "855",

 .probe = i855_probe,

 .remove = __devexit_p(i855_remove),

 .id_table = i855_pci_tbl,

};

/* Driver Initialization */

static int __init

i855_init(void)

{

 /* ... */

 pci_rc = pci_register_driver(&i855_driver);

 /* ... */

}

Look at drivers/edac/* for EDAC source fi les and at Documentation/drivers/edac/edac.txt
for detailed semantics of EDAC sysfs nodes.

Frequency Scaling

The CPU frequency (cpufreq) driver subsystem aids power management by scaling
CPU frequencies on-the-fl y. If you use a suitable scaling algorithm (called a governor),
your device’s battery can potentially last longer. Cpufreq supports several architectures
such as x86, ARM, and PowerPC. To obtain cpufreq capabilities, you also need to
enable a suitable processor driver (say, the Intel Enhanced SpeedStep driver if you are
using a SpeedStep-enabled CPU such as Pentium M).

You can control cpufreq’s behavior via fi les in the /sys/devices/system/cpu/cpuX/cpu-
freq/ directory, where X is the CPU number. To set maximum and minimum frequency
scaling limits, write desired values to scaling_max_freq and scaling_min_freq,
respectively. To see a list of supported cpufreq governors, look at the contents of
scaling_available_governors. The kernel supports several governors:

 • The performance governor statically sets the CPU frequency to scaling_max_freq.

 • Powersave sets the CPU frequency to scaling_min_freq.

 • Ondemand adjusts the frequency depending on CPU load.

 • Conservative is a variant of ondemand where the speed change occurs smoothly
in gradual steps.

 • Userspace lets applications dictate the scaling technique. Some distributions set
the governor to userspace and implement the scaling algorithm via a daemon
called cpuspeed, which is spawned during boot.

 • You may also implement your own kernel governor using the cpufreq_
register_governor() interface.

Each supported governor is implemented as a kernel module. To see cpufreq in action,
assign a governor and vary the system load:

bash> cd /sys/devices/system/cpu/cpu0/cpufreq

bash>cat scaling_max_freq → Maximum frequency

1700000

bash> cat scaling_min_freq → Minimum frequency

600000

Frequency Scaling 583

584 Chapter 20 More Devices and Drivers

bash> cat cpuinfo_cur_freq → Current frequency

600000

bash> cat scaling_governor → Scaling algorithm in use

powersave

bash> cat scaling_available_frequencies

1700000 1400000 1200000 1000000 800000 600000

bash> cat scaling_available_governors

conservative ondemand powersave userspace performance

bash> echo conservative > scaling_governor

→ Assign 'conservative' governor

bash> ls -lR / → Switch to another terminal and

 load your system by recursively

 traversing all directories.

If you now monitor the running frequency by looking at /sys/devices/system/cpu/cpu0/
cpufreq/cpuinfo_cur_freq, you will see it dancing to the tune of the CPU load.

The CPU scaling code lives in the drivers/cpufreq/ directory. Look at Documentation/
cpu-freq/* for the detailed semantics of cpufreq sysfs nodes.

Embedded Controllers

Notebook computers and their derivatives usually contain a built-in embedded control-
ler (EC) to take care of various side responsibilities, including the following:

 • Interfacing with the keyboard controller

 • Managing thermal events

 • Handling special buttons and LEDs

 • Controlling system and CPU fan speeds

 • Monitoring battery voltage

Most of these functions are specifi c to the OEM’s hardware implementation. Differ-
ent OEMs use different ECs; IBM/Lenovo laptops, for example, embed a Renesas H8
microcontroller to assist the main processor. The interface to access the EC, however,
is standard irrespective of the make of the controller. The BIOS and the operating sys-
tem operate on I/O port 0x80 to read information from the EC and I/O port 0x81
to write data to the EC. On desktops, these ports provide access to the keyboard con-
troller rather than to a general-purpose EC.

The next section refers to an example driver that detects telemetry strength by
accessing EC memory space.

ACPI

Advanced Confi guration and Power Interface (ACPI) is a power-management specifi ca-
tion that replaces earlier standards such as Advanced Power Management (APM). ACPI
is responsible for transitioning the system between power states. It also has the task
of interfacing with devices and sensors connected to the EC. Such devices are called
ACPI devices , and memory devoted to handle them is called ACPI space.

As you saw elsewhere in this book, low-level code is not the place to implement
policy. This was the main problem with APM, where most of the power-management
policies were part of BIOS fi rmware. ACPI shifts policy one level up, to the operat-
ing system. Using a daemon called acpid, ACPI even allows policy to be pushed one
more level up, to user-space confi guration fi les. By adding rules to an acpid confi gura-
tion fi le, you can decide what to do when a hotkey is pressed or when a thermal trip
occurs.

Even with ACPI, low-level BIOS fi rmware retains the responsibility of interfacing
with hardware and detecting ACPI events such as a power button press or a thermal
sensor report. To perform this, the BIOS utilizes a special x86 execution mode trig-
gered via system management interrupts (SMIs). The SMI execution mode is transparent
to the operating system. To notify the operating system about ACPI events detected in
SMI mode, the BIOS asserts a system control interrupt (SCI). Look at drivers/acpi/osl.c
for the Linux ACPI code that requests the SCI IRQ.

Linux ACPI components include the following:

 1. A core layer that provides ACPI essentials such as the ACPI Machine Language
(AML) interpreter. ACPI-specific BIOS code is written in AML, a language
that runs on a virtual machine implemented by the operating system’s AML
interpreter.

 2. ACPI drivers for interfacing with standard components such as the EC (driv-
ers/acpi/ec.c), buttons (drivers/acpi/button.c), and fan (drivers/acpi/fan.c). OEM-
specific drivers offer support for features not supported by the standard ACPI
drivers. For example, drivers/misc/thinkpad_acpi.c1 is the OEM-specific driver
that implements extras for IBM/Lenovo Thinkpads. On an IBM/Lenovo
Thinkpad, the files under /proc/acpi/ are generated by the standard ACPI drivers,

1 Prior to 2.6.22, this driver used to be drivers/acpi/ibm_acpi.c.

ACPI 585

586 Chapter 20 More Devices and Drivers

whereas those in /proc/acpi/ibm/ are produced by the OEM-specific driver. So, to
get the current temperature, do this:

bash> cat /proc/acpi/thermal_zone/THM0/temperature

temperature: 39 C

But to turn on the nightlight on top of the LCD display, get help from the
OEM-specifi c driver:

bash> echo on > /proc/acpi/ibm/light

 3. A kernel thread kacpid that ACPI uses to queue work for execution.

 4. Individual device drivers that use ACPI’s services to respond to transitions
in the system’s power state. To achieve this, drivers register suspend() and
resume() methods with the kernel’s device model. We alluded to these meth-
ods while discussing the platform_driver structure in Chapter 6, “Serial
Drivers,” the spi_driver structure in Chapter 8, “The Inter-Integrated Cir-
cuit Protocol,” the pcmcia_driver structure in Chapter 9, “PCMCIA and
Compact Flash,” and the pci_driver structure in Chapter 10.

 5. User-space tools such as acpitool, which report the state of various ACPI devices,
show thermal zone information and suspend the system to different sleep
states:

bash> acpitool

Battery #1 : charging, 69.08%, 01:14:02

AC adapter : on-line

Thermal zone 1 : ok, 38 C

 6. The acpid daemon , which is the policy enabler for ACPI events. It listens on
/proc/acpi/events for power-management events reported by the kernel. When
you press the power button or when a thermal trip occurs, the kernel ACPI
driver dispatches an event to user space via /proc/acpi/events. The acpid dae-
mon reads this, passes it through configuration scripts present in /etc/acpi/
events/ and takes specified actions. Assume that you want to execute a specific
program (/bin/lidhandler) when your laptop’s lid button is pressed. For this,
add the following to /etc/acpi/events/acpi_handler.sh:

event=button/lid.*

action=/bin/lidhandler

You may use cpufreq in tandem with ACPI. You can, for example, add this line
inside /bin/lidhandler to drop down the processor frequency when you shut your
laptop’s lid:

echo powersave > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

You can download the ACPI specifi cations from www.acpi.info.
As an exercise, consider that you have a telemetry card2 built in to an embedded

laptop derivative, and that the EC is connected to a sensor that measures telemetry
strength. To access telemetry strength via /proc/acpi/ (or /sys/bus/acpi/), update the corre-
sponding laptop model’s “extras” driver present in drivers/misc/. If your board is a deriv-
ative of an IBM/Lenovo Thinkpad, for example, modify drivers/misc/thinkpad_acpi.c
accordingly. You may use the ec_read() and ec_write() kernel functions to access
the location that stores telemetry strength in the EC’s ACPI space.

ISA and MCA

The Industries Standard Architecture (ISA) started as a bus for interfacing I/O devices
with the PC but evolved into a de facto standard. ISA drivers would have merited a
separate chapter several years earlier; but today, with the advent of the PCI bus, ISA
has all but disappeared.

There are two main bus-specifi c factors that ISA device drivers have to contend
with:

 • ISA does not offer standard interfaces that drivers can use to detect resource
information that is electrically wired or assigned by boot firmware. Imple-
menting complex probing logic, often leveraging device-specific quirks, is an
important part of ISA driver initialization. This is unlike the PCI bus, where
the device driver can cleanly decipher the identity of resources such as interrupt
request lines and I/O base addresses assigned by boot firmware. You learned
how to do this when we discussed the PCI configuration space in Chapter 10.
We also briefly looked at ISA probing in the section “ISA Network Drivers” in
Chapter 15, “Network Interface Cards.”

2 We developed a driver for an example telemetry card in Chapter 11, “Universal Serial Bus.”

ISA and MCA 587

www.acpi.info

588 Chapter 20 More Devices and Drivers

The ISA Plug-and-Play (PnP) specification attempts to bring a degree of auto-
configurability to ISA, however.

 • The ISA bus has a width of 24 bits, so devices can access only the low 16MB of
system memory. To DMA network data from an ISA Ethernet card, for exam-
ple, DMA buffers have to reside in the low 16MB range called ZONE_DMA. The
Extended Industry Standard Architecture (EISA), however, widens the ISA bus to
32 bits. You can plug ISA devices into EISA slots.

Today, the LPC bus is used rather than the ISA bus to connect legacy peripherals
to the CPU on PC-compatible systems. We discussed LPC devices such as Super I/O
chipsets, fi rmware hubs, and thermal sensors in earlier chapters.

The Micro-Channel Architecture (MCA) bus overcomes many of the limitations
of the ISA family. MCA supports bus mastering, autoconfi guration, and 32-bit bus
widths. Though technologically superior to ISA, MCA didn’t become as popular
because of its proprietary nature.

Look at drivers/net/tokenring/skisa.c for a sample ISA driver for a Token Ring card.
The IBM Token Ring driver drivers/net/tokenring/ibmtr.c, supports ISA, PnP, and
MCA form factors of IBM Token Ring hardware. The 3COM Ethernet driver drivers/
net/3c509.c, drives MCA, PnP, and EISA form factors of a 3COM Ethernet card. The
kernel provides core routines for the use of PnP, EISA, and MCA drivers. These imple-
mentations live in drivers/pnp/, drivers/eisa/, and drivers/mca/, respectively.

FireWire

FireWire, or IEEE 1394, is a high-speed serial bus protocol invented by Apple for con-
necting peripheral devices to a system. It provides data rates of up to 800Mbps (IEEE
1394b). Figure 10.1 in Chapter 10 shows the connection of the FireWire controller on
an x86-based laptop.

FireWire is similar to USB 2.0 in that both are external I/O buses that support high
speeds and device hotplugging. FireWire, however, is a peer-to-peer protocol, unlike
the master-slave USB 2.0, so two FireWire-enabled devices can exchange information
without the intervention of a PC. Because of this characteristic, FireWire is popular on
multimedia devices such as camcorders. As you learned in Chapter 11, the On-The-Go
supplement brings peer-to-peer capability to USB 2.0, too.

FireWire on Linux is architected as follows:

 • Device drivers such as ohci1394 that interface with FireWire controllers.

 • Protocol drivers for applications such as storage, video, and networking. The
FireWire Serial Bus Protocol 2 (SBP2) driver is a low-level FireWire protocol
driver that lets you use your FireWire storage media as you would use a SCSI
disk or a USB mass storage device. SBP2 has to be used in tandem with a high-
level SCSI driver such as sd_mod (for disks) or sr_mod (for CD-ROMs). Appli-
cations such as cdrecord work over FireWire CD drives just as they work with
USB CD drives. The dv1394 and video1394 protocol drivers enable you to cap-
ture video via FireWire, and the eth1394 protocol driver lets you run TCP/IP
over FireWire.

 • A FireWire core that provides services to both the above.

 • User-space libraries such as libraw1394 that assist in developing FireWire-aware
applications.

Look at drivers/ieee1394/* for FireWire kernel sources and go to www.linux1394.org
for detailed documentation.

Starting with the 2.6.22 release, the kernel has an alternate, slimmer FireWire stack
living in the drivers/fi rewire/ directory.

Intelligent Input/Output

Intelligent Input/Output (or I2O) is a standard that calls for offl oading I/O activities
from the main processor to an I/O coprocessor residing on an I2O adapter. I2O is
largely defunct today, and the I2O Special Interest Group (I2O SIG) has ceased to exist.
However, many operating systems, including Linux, continue support for I2O.

I2O hardware is available for technologies such as SCSI, RAID, and networking.
I2O partitions the software architecture into an OS-specifi c module (OSM) running
on the main processor and a hardware-specifi c module (HDM) executing on the I2O
adapter. HDMs are OS-agnostic and can be reused across operating systems, so the
OSMs are rendered simpler.

Linux supports I2O in the form of an I2O core, drivers for I2O adapters, and vari-
ous OSMs. Look at the Linux I2O home page at http://i2o.shadowconnect.com and
the sources in drivers/message/i2o/ for more details.

Intelligent Input/Output 589

www.linux1394.org
http://i2o.shadowconnect.com

590 Chapter 20 More Devices and Drivers

Amateur Radio

Amateur (ham) radio is a packet radio technology used for round-the-world commu-
nication by hobbyists. It’s also often used to respond to calamities such as fl oods and
cyclones. To use amateur radio on Linux, you need the following:

 • A low-level modem driver to access your radio. Modem drivers for several ama-
teur radio devices are present in drivers/net/hamradio/.

 • One or more packet protocols such as AX.25, Rose, and Netrom. The AX.25
protocol is an adaptation of the X.25 protocol for amateur radio. Look at the
 Linux Amateur Radio AX.25 HOWTO for an explanation of the protocol, the
net/ax25/ directory for the sources, and http://hams.sourceforge.net for user-
space utilities and libraries that operate over AX.25. Rose (net/rose/) and Netrom
(net/netrom/) are network protocols that use AX.25 as the data link layer. You
can write Linux socket applications that run over AX.25, Rose, and Netrom
using the AF_AX25, AF_ROSE, and AF_NETROM protocol families, respectively.

Voice over IP

Voice over Internet Protocol (VoIP) is a technology that uses the Internet to carry voice
traffi c. VoIP lets you make voice-quality telephone calls at cheap rates. There are sev-
eral PCI-, PC Card-, and USB-based VoIP solutions available for the PC environ-
ment. Device drivers for several of these cards are available on Linux. Not many are
integrated into the mainline kernel, however. The drivers/telephony/ directory contains
drivers for a few VoIP devices and a registration API that future drivers can use.

With the increasing popularity of Linux in the embedded telecom space, there are
several Linux IP telephones in the market today. Figure 20.1 shows a VoIP-enabled
device having a hardware voice codec that implements standards such as G.711 and
G.729 for encoding and decoding voice streams. The device draws power using a tech-
nology called Power over Ethernet (PoE) that transmits power along with the Ethernet
cable. A device driver communicates with the VoIP hardware.

VoIP drivers work in tandem with transport protocols such as Real Time Transport
Protocol (RTP) and call control signaling stacks such as Session Initiation Protocol (SIP)
and H.323. On top of these protocols sit various IP telephony applications.

http://hams.sourceforge.net

Solutions that implement VoIP codecs in software are also popular in the embed-
ded space. They usually reside in user space and interact with the following:

 • Kernel audio drivers using OSS or ALSA APIs

 • Kernel network drivers using the socket API

PHY VoIP CODEC
(G.711, G.729)

Ethernet

PoE Electronics

MAC CPU Core

RJ45
Jack

MIC

Speaker

Handset

Internet

VoIP Stack
(SIP, RTP,…)

VoIP Engine
(Codec interface)

 FIGURE 20.1 A VoIP phone.

SoCs oriented toward the Video-and-Voice over IP (V2IP) market usually contain
hardware support for video codecs such as H.264. If you are putting Linux onto a
V2IP phone, you need to implement drivers to interface with such codecs, too.

High-Speed Interconnects

High-speed interconnecting technologies such as Infi niBand, RapidIO, Hyper-
Transport, and 10 Gigabit Ethernet are not common in the PC or low-end embedded
environments. You are more likely to fi nd them on clusters, blade servers, gaming sys-
tems, switches, or high-speed routers. Networking technologies such as Fibre Channel
and Internet SCSI (iSCSI) can be found in enterprise environments served by storage-
area networks (SANs).

Let’s peek at the driver subsystems for some of these technologies.

High-Speed Interconnects 591

592 Chapter 20 More Devices and Drivers

InfiniBand

Infi niBand is a high-speed serial bus standard originally intended to replace PCI. PCI
Express, however, has become the accepted future of system buses. Today, Infi niBand
technology is commonly used in blade server designs to provide a high-performance
storage and networking fabric. Infi niBand supports Remote DMA (RDMA), which
allows data to be DMA-ed from the memory of one computer system to another.

The Linux Infi niBand subsystem includes core support for Infi niBand, device driv-
ers for host channel adapters, and an implementation of IP over Infi niBand. Look
inside drivers/infi niband/ for the Linux Infi niBand subsystem and at Documentation/
infi niband/* for related documentation.

RapidIO

RapidIO is another high-speed serial bus technology, which is used for connecting
boards via a back plane. It supports speeds of the order of 10Gbps. An example proces-
sor that supports RapidIO is the power-based MPC8540 from Freescale, targeted at
embedded devices such as network routers and switches.

The Linux RapidIO subsystem provides a core set of routines that can be used to
drive devices on the RapidIO bus. There are two ways to communicate over a RapidIO
interconnect:

 1. Short, out-of-band messages using doorbells. Doorbell services provided by the
RapidIO core are rio_request_inb_dbell(), rio_release_inb_dbell(),
rio_request_outb_dbell(), and rio_release_outb_dbell().

 2. High-bandwidth data delivery using mailboxes. Mailbox services provided by the
RapidIO core are rio_request_inb_mbox(), rio_release_inb_mbox(),
rio_request_outb_mbox(), and rio_release_outb_mbox().

Take a look inside drivers/rapidio/ for the sources.

Fibre Channel

Fibre Channel is a modern high-speed serial bus protocol used to talk with storage
systems. Fibre Channel interface cards have fi ber-optic ports to talk to storage devices
on SANs. Fibre Channel is compatible with SCSI, so an associated device driver is
essentially a SCSI driver with extras to handle fi ber channels.

Linux supports a Fibre Channel core and device drivers to handle Fibre Channel
hardware. Look inside drivers/fc4/ for the sources.

iSCSI

iSCSI is another SAN technology. It allows the transport of SCSI packets over TCP/IP
networks. With iSCSI, a remote block device appears to your system as local storage.
The remote system owning the storage is called an iSCSI target, and local systems
using the storage are called iSCSI initiators.

Linux supports iSCSI via a kernel driver drivers/scsi/iscsi_tcp.c , and a user-space dae-
mon called iscsid. The home page of the Linux-iSCSI project is at http://linux-iscsi.
sourceforge.net.

High-Speed Interconnects 593

http://linux-iscsi.sourceforge.net
http://linux-iscsi.sourceforge.net

This page intentionally left blank

595

21

Debugging Device
Drivers

In This Chapter

■ Kernel Debuggers 596

■ Kernel Probes 609

■ Kexec and Kdump 620

■ Profi ling 629

■ Tracing 634

■ Linux Test Project 638

■ User Mode Linux 638

■ Diagnostic Tools 638

■ Kernel Hacking Confi g Options 639

■ Test Equipment 640

596

Now that we have learned how to implement diverse classes of device driv-
ers, let’s take a step back and explore some debugging techniques. Invest-

ing time in logic design and software engineering before code development and
staring hard at the code after development can minimize or even eliminate bugs.
But because that is easier said than done, and because we are all humans, devel-
opers need debugging tools. In this chapter, let’s look at a variety of methods to
debug kernel code.

Reliability, Availability, Serviceability

Many systems, especially mission critical ones, have a need for reliability, availability, and ser-
viceability (RAS). The Linux RAS effort has resulted in the development of several powerful
tools. Exercisers such as the Linux Test Project (LTP) measure the reliability and robustness of
your kernel port. CPU hotplugging and the Linux High Availability (HA) project can be seen
in the context of availability. Kernel debuggers, Kprobes, Kdump, EDAC, and the Linux Trace
Toolkit (LTT) come under the ambit of serviceability. The line dividing these classifi cations
is sometimes thin; you can use any or a combination of these methods to suit your debugging
needs. For example, output from a kernel profi ler such as OProfi le can be used either to search
for potential code bottlenecks (reliability) or to debug a fi eld problem (serviceability).

Kernel Debuggers

The Linux kernel has no built-in debugger support. Whether to include a debug-
ger as part of the stock kernel is an oft-debated point in kernel mailing lists. The
instruction level Kernel Debugger (kdb) and the source-level Kernel GNU Debugger
(kgdb) are the two main Linux kernel debuggers. As of today, whether you use kdb
or kgdb, you need to download relevant patches and apply them to your kernel
sources. Even if you want to stay away from the hassle of patching your kernel
sources with debugger support, you can glean information about kernel panics and
peek at kernel variables via the plain GNU Debugger (gdb). JTAG debuggers use
hardware-assisted debugging and are powerful, but expensive.

Kernel debuggers make kernel internals more transparent. You can single-step
through instructions, disassemble instructions, display and modify kernel variables,
and look at stack traces. In this chapter, let’s learn the basics of kernel debuggers with
the help of some examples.

Entering a Debugger

You can enter a kernel debugger in multiple ways. One way is to pass command-line
arguments that ask the kernel to enter the debugger during boot. Another way is via
software or hardware breakpoints. A breakpoint is an address where you want execu-
tion stopped and control transferred to the debugger. A software breakpoint replaces
the instruction at that address with something else that causes an exception. You may
set software breakpoints either using debugger commands or by inserting them into
your code. For x86-based systems, you can set a software breakpoint in your kernel
source code as follows:

asm(" int $3");

Alternatively, you can invoke the BREAKPOINT macro, which translates to the appro-
priate architecture-dependent instruction.

You may use hardware breakpoints in place of software breakpoints if the instruc-
tion where you need to stop is in fl ash memory, where it cannot be replaced by the
debugger. A hardware breakpoint needs processor support. The corresponding address
has to be added to a debug register. You can only have as many hardware breakpoints
as the number of debug registers supported by the processor.

You may also ask a debugger to set a watchpoint on a variable. The debugger stops
execution whenever an instruction modifi es data at the watchpoint address.

Yet another common method to enter a debugger is by hitting an attention key, but
there are instances when this won’t work. If your code is sitting in a tight loop after
disabling interrupts, the kernel will not get a chance to process the attention key and
enter the debugger. For example, you can’t enter the debugger via an attention key if
your code does something like this:

unsigned long flags;

local_irq_save(flags);

while (1) continue;

local_irq_restore(flags);

Kernel Debuggers 597

598 Chapter 21 Debugging Device Drivers

When control is transferred to the debugger, you can start your analysis using various
debugger commands.

Kernel Debugger (kdb)

Kdb is an instruction-level debugger used for debugging kernel code and device driv-
ers. Before you can use it, you need to patch your kernel sources with kdb support and
recompile the kernel. (Refer to the section “Downloads” for information on down-
loading kdb patches.) The main advantage of kdb is that it’s easy to set up, because
you don’t need an additional machine to do the debugging (unlike kgdb). The main
disadvantage is that you need to correlate your sources with disassembled code (again,
unlike kgdb).

Let’s wet our toes in kdb with the help of an example. Here’s the crime scene: You
have modifi ed a kernel serial driver to work with your x86-based hardware. But the
driver isn’t working, and you would like kdb to help nab the culprit.

Let’s start our search for fi ngerprints by setting a breakpoint at the serial driver
open() entry point. Remember, because kdb is not a source-level debugger, you have
to open your sources and try to match the instructions with your C code. Let’s list the
source snippet in question:

drivers/serial/myserial.c:

static int rs_open(struct tty_struct *tty, struct file *filp)

{

 struct async_struct *info;

 /* ... */

 retval = get_async_struct(line, &info);

 if (retval) return(retval);

 tty->driver_data = info;

 /* Point A */

 /* ... */

}

Press the Pause key and enter kdb. Let’s fi nd out how the disassembled rs_open()
looks. As usual, all debug sessions shown in this chapter attach explanations using
the symbol.

Entering kdb (current=0xc03f6000, pid 0) on processor 0 due to

Keyboard Entry

kdb> id rs_open → Disassemble rs_open

0xc01cce00 rs_open: sub $0x1c, %esp

0xc01cce03 rs_open+0x03: mov $ffffffed, %ecx

...

0xc01cce4b rs_open+0x4b: call 0xc01ccca0, get_async_struct

...

0xc01cce56 rs_open+0x56: mov 0xc(%esp,1), %eax

0xc01cce5a rs_open+0x5a: mov %eax, 0x9a4(%ebx)

...

Point A in the source code is a good place to attach a breakpoint because you can peek
at both the tty structure and the info structure to see what’s going on.

Looking side by side at the source and the disassembly, rs_open+0x5a corresponds
to Point A. Note that correlation is easier if the kernel is compiled without optimiza-
tion fl ags.

Set a breakpoint at rs_open+0x5a (which is address 0xc01cce5a) and continue
execution by exiting the debugger:

kbd> bp rs_open+0x5a → Set breakpoint

kbd> go → Continue execution

Now you need to get the kernel to call rs_open()to hit the breakpoint. To trigger
this, execute an appropriate user-space program. In this case, echo some characters to
the corresponding serial port (/dev/ttySX):

bash> echo “kerala monsoons” > /dev/ttySX

This results in the invocation of rs_open(). The breakpoint gets hit, and kdb assumes
control:

Entering kdb on processor 0 due to Breakpoint @ 0xc01cce5a

kdb>

Let’s now fi nd out the contents of the info structure. If you look at the disassem-
bly, one instruction before the breakpoint (rs_open+0x56), you will see that the

Kernel Debuggers 599

600 Chapter 21 Debugging Device Drivers

EAX register contains the address of the info structure. Let’s look at the register
contents:

kbd> r → Dump register contents

eax = 0xcf1ae680 ebx = 0xce03b000 ecx = 0x00000000

...

So, 0xcf1ae680 is the address of the info structure. Dump its contents using the md
command:

kbd> md 0xcf1ae680 → Memory dump

0xcf1ae680 00005301 0000ABC 00000000 10000400

...

To make sense of this dump, let’s look at the corresponding structure defi nition. info
is defi ned as struct async_struct in include/linux/serialP.h as follows:

struct async_struct {

 int magic; /* Magic Number */

 unsigned long port; /* I/O Port */

 int hub6;

 /* ... */

};

If you match the dump with the defi nition, 0x5301 is the magic number and 0xABC
is the I/O port. Well, isn’t this interesting! 0xABC doesn’t look like a valid port. If
you have done enough serial port debugging, you will know that the I/O port base
addresses and IRQs are confi gured in include/asm-x86/serial.h for x86-based hardware.
Change the port defi nition to the correct value, recompile the kernel, and continue
your testing!

Kernel GNU Debugger (kgdb)

Kgdb is a source-level debugger. It is easier to use than kdb because you don’t have to
spend time correlating assembly code with your sources. However it’s more diffi cult to
set up because an additional machine is needed to front-end the debugging.

You have to use gdb in tandem with kgdb to step through kernel code. gdb runs on
the host machine, while the kgdb-patched kernel (refer to the “Downloads” section for
information on downloading kgdb patches) runs on the target hardware. The host and
the target are connected via a serial null-modem cable, as shown in Figure 21.1.1

Serial Cable

Target machine running a
kernel patched with kgdb

Host running gdb

FIGURE 21.1 Kgdb setup.

You have to inform the kernel about the identity and baud rate of the serial port via
command-line arguments. Depending on the bootloader used, add the following ker-
nel arguments to either syslinux.cfg, lilo.conf, or grub.conf:

kgdbwait kgdb8250=X,115200

kgdbwait asks the kernel to wait until a connection is established with the host-side
gdb, X is the serial port connected to the host, and 115200 is the baud rate used for
communication.

Now confi gure the same baud rate on the host side:

bash> stty speed 115200 < /dev/ttySX

If your host computer is a laptop that does not have a serial port, you may use a USB-
to-serial converter for the debug session. In that case, instead of /dev/ttySX, use the
/dev/ttyUSBX node created by the usbserial driver. Figure 6.4 of Chapter 6, “Serial
Drivers,” illustrates this scenario.

Let’s learn kgdb basics using the example of a buggy kernel module. Modules are eas-
ier to debug because the entire kernel need not be recompiled after making code changes,
but remember to compile your module with the -g option to generate symbolic infor-
mation. Because modules are dynamically loaded, the debugger needs to be informed

1 You can also launch kgdb debug sessions over Ethernet.

Kernel Debuggers 601

602 Chapter 21 Debugging Device Drivers

about the symbolic information that the module contains. Listing 21.1 contains a buggy
trojan_function(). Assume that it’s defi ned in drivers/char/my_module.c.

LISTING 21.1 Buggy Function

char buffer;

int

trojan_function()

{

 int *my_variable = 0xAB, i;

 /* ... */

 Point A:

 i = *my_variable; /* Kernel Panic: my_variable points

 to bad memory */

 return(i);

}

Insert my_module.ko on the target and look inside /sys/module/my_module/sections/ to deci-
pher ELF (Executable and Linking Format) section addresses.2 The .text section in ELF
fi les contains code, .data contains initialized variables, .rodata contains initialized read-
only variables such as strings, and .bss contains variables that are not initialized during
startup. The addresses of these sections are available in the form of the fi les .text, .data,
.rodata, and .bss in /sys/module/my_module/sections/ if you enable CONFIG_KALLSYMS dur-
ing kernel confi guration. To obtain the code section address, for instance, do this:

bash> cat /sys/module/my_module/sections/.text

0xe091a060

2 If you are still using a 2.4 kernel, get the section addresses using the –m option to insmod instead:

bash> insmod my_module.o –m
Using /lib/modules/2.x.y/kernel/drivers/char/my_module.o
Sections: Size Address Align
.this 00000060 e091a000 2**2
.text 00001ec0 e091a060 2**4
...
.rodata 0000004c e091d1fc 2**2
.data 00000048 e091d260 2**5
.bss 000000e4 e091d2c0 2**5
...

More module load information is available from /proc/modules and /proc/kallsyms.
After you have the section addresses, invoke gdb on the host-side machine:

bash> gdb vmlinux → vmlinux is the uncompressed kernel

(gdb) target remote /dev/ttySX → Connect to the target

Because you passed kgdbwait as a kernel command-line argument, gdb gets control
when the kernel boots on the target. Now inform gdb about the preceding section
addresses using the add-symbol-file command:

(gdb) add-symbol-file drivers/char/mymodule.ko 0xe091a060

 -s .rodata 0xe091d1fc -s .data 0xe091d260 -s .bss 0xe091d2c0

add symbol table from file "drivers/char/my_module.ko" at

 .text_addr = 0xe091a060

 .rodata_addr = 0xe091d1fc

 .data_addr = 0xe091d260

 .bss_addr = 0xe091d2c0

(y or n) y

Reading symbols from drivers/char/mymodule.ko ...done.

To debug the kernel panic, let’s set a breakpoint at trojan_function():

(gdb) b trojan_function → Set breakpoint

(gdb) c → Continue execution

When kgdb hits the breakpoint, let’s look at the stack trace, single-step until Point A,
and display the value of my_variable:

(gdb) bt → Back (stack) trace

#0 trojan_function () at my_module.c :124

#1 0xe091a108 in my_parent_function (my_var1=438, my_var2=0xe091d288)

..

(gdb) step

(gdb) step → Continue to single-step up to

 Point A

(gdb) p my_variable

$0 = 0

Kernel Debuggers 603

604 Chapter 21 Debugging Device Drivers

There is an obvious bug here. my_variable points to NULL because trojan_
function() forgot to allocate memory for it. Let’s just allocate the memory using
kgdb, circumvent the kernel crash, and continue testing:

(gdb) p &buffer Print address of buffer

$1 = 0xe091a100 ""

(gdb) set my_variable=0xe091a100 my_variable = &buffer

(gdb) c Continue your testing

Kgdb ports are available for several architectures such as x86, ARM, and PowerPC. When
you use kgdb to debug a target embedded device (instead of the PC shown in Figure 21.1),
the gdb front-end that you run on your host system needs to be compiled to work with
your target platform. For example, to debug a device driver developed for an ARM-based
embedded device from your x86-based host development system, you have to use the
appropriately generated gdb, often named arm-linux-gdb. The exact name depends on
the distribution you use.

GNU Debugger (gdb)

As mentioned earlier, you can use plain gdb to gather some kernel debug informa-
tion. However, you can’t step through kernel code, set breakpoints, or modify kernel
variables. Let’s use gdb to debug the kernel panic caused by the buggy function in List-
ing 21.1, but assume this time that trojan_function() is compiled as part of the
kernel and not as a module, because you can’t easily peek inside modules using gdb.

This is part of the “oops” message generated when trojan_function() is executed:

Unable to handle kernel NULL pointer dereference at

virtual address 000000ab

 ...

 eax: f7571de0 ebx: ffffe000 ecx: f6c78000 edx: f98df870

 ...

 Stack: c019d731 00000000

 ...

 bffffbe8 c0108fab

 Call Trace: [<c019d731>] [<c013b8ac>] [<c0108fab>]

 ...

Copy this cryptic “oops” message to oops.txt and use the ksymoops utility to obtain more
verbose output. You might need to hand-copy the message if the system is hung:

bash> ksymoops oops.txt

Code; c019d710 <trojan_function+0/10>

00000000 <_EIP>:

Code; c019d710 <trojan_function+0/10> <=====

 0: a1 ab 00 00 00 mov 0xab,%eax <=====

Code; c019d715 <trojan_function+5/10>

 5: c3 ret

2.6 kernels emit “oops” output that can be used as is without the need of decoding
using ksymoops if you enable CONFIG_KALLSYMS during kernel confi guration.

Looking at the preceding dump, the “oops” has occurred inside trojan_function().
Let’s use gdb to obtain more information. In the following invocation, vmlinux is the
uncompressed kernel image, and /proc/kcore is the kernel address space:

bash> gdb vmlinux /proc/kcore

(gdb) p xtime → Test the waters by printing a kernel variable

$0 = 1113173755

Repeated access to the same variable will not yield refreshed values due to gdb’s cached
access. You can force a fresh access by rereading the core fi le using gdb’s core-file
command. Let’s now look at the disassembly of trojan_function():

(gdb) x/2i trojan_function → Disassemble trojan_function

0xc019d710 <trojan_function>: mov 0xab, %eax

0xc019d715 <trojan_function+5>: ret

trojan_function() looks laconic when seen in assembly due to compiler opti-
mizations. It’s effectively copying the contents of address 0xab to the EAX register,
which holds the return value from functions on x86-based systems. But 0xab does
not look like a valid kernel address! Fix the bug by allocating valid memory space to
my_variable, recompile, and continue your testing.

JTAG Debuggers

JTAG debuggers use hardware-assist to debug code. You need specialized monitor
hardware3 and a front-end user interface (some JTAG debuggers use gdb as the

3 Some JTAG debuggers work with several processor architectures if you suitably replace the probe that connects the debugger
to the target board.

Kernel Debuggers 605

606 Chapter 21 Debugging Device Drivers

front-end) to step through code. JTAG can also be used for purposes other than debug-
ging, such as burning code onto on-board fl ash memory, as discussed in Chapter 18,
“Embedding Linux.” JTAG connectors are common on development boards but are
usually not part of production units.

JTAG debuggers usually connect to target hardware via serial port, USB, or Ether-
net. With Ethernet, you can remotely access the JTAG debugger, and hence the target
board, even if the board itself does not possess a network interface.

Figure 21.2 shows a JTAG-based remote debugging session in action. The JTAG
debugger used in this scenario supports a gdb front end. The development host and
the JTAG hardware are connected to an Ethernet LAN. The debug serial port on
the target hardware is connected to the serial port on the JTAG box. Figure 21.2
achieves remote debugging on the Linux development host using fi ve terminal ses-
sions. Terminal 1 runs gdb, which connects to the JTAG box over the network using
telnet:

(gdb) target remote 10.1.1.2:1001 10.1.1.2 is the IP address of

 the JTAG hardware. 1001 is the

 JTAG TCP port that listens to

 incoming gdb connections

To debug boot portions of the kernel, for example, set a gdb breakpoint at start_
kernel(). (You can fi nd its address from System.map, which is generated in the root
of your source tree when you build the kernel.)

Terminal 2 attaches a serial console to the target. A telnet client running on Termi -
nal 2 connects to a prespecifi ed TCP port on the JTAG box, which is confi gured (using
Terminal 3) to tunnel data arriving via its serial port:

bash> telnet 10.1.1.2 50 10.1.1.2 is the IP address of

 the JTAG hardware. 50 is the

 JTAG TCP port that tunnels data

 arriving via its serial port

This is equivalent to running an emulator such as minicom after directly connecting
the target’s debug serial port to the host (instead of to the JTAG box, as shown in Fig-
ure 21.2), but that’ll constrain the host to be physically adjacent to the target.

Terminal 3 telnets to the JTAG box and offers debugger-specifi c semantics. You can
use it for example, to do the following:

 • Pull a JTAG definition script over TFTP from the host and execute it dur-
ing JTAG boot. A JTAG definition script usually initializes the processor, clock
registers, chip select registers, and memory banks. After this is done, the JTAG
hardware is ready to download code on to the target and execute it. The JTAG
manufacturer usually provides definition files for all supported platforms, so
you are likely to have a close starting point for your board.

 • Download your bootloader, kernel, or stand-alone code from the host over
TFTP, to flash memory or RAM on the target. File formats such as ELF and
binary are usually supported by JTAG debuggers.

 • Single-step code, set breakpoints, examine registers, and dump memory regions.

 • Reset the target.

JTAG debugging can be fl aky at times, so if you are debugging remotely, it might be
a good idea to power the target via a remote power control switch, as shown in Fig-
ure 21.2. That way, you can hard-reset the target from the host using a web browser, as
shown in Terminal 4. You may also choose to power the JTAG hardware via a remote
power switch. That will let you test run a bootloader directly from fl ash without the
intervention of JTAG and its defi nition fi les.

If the target board possesses a network interface, it can mount its root fi lesystem
over NFS from the development host. (See the section “NFS-Mounted Root” in
Chapter 18 for details on doing this.) Terminal 5 on the host operates locally on the
exported root fi lesystem.4

If your team is scattered geographically, run Terminals 1 through 5 within an envi-
ronment such as Virtual Network Computing (VNC). If VNC is not already part of
your distribution, download it from www.realvnc.com. With such a setup, you can
debug the electrons on your remote board from the comfort of your home! Some
JTAG vendors provide a sophisticated integrated development environment5 that
encompasses all the functionalities previously detailed, so you don’t need to manage
VNC terminal sessions if you’re using one of those.

4 You may have more such terminals depending on your debug scenario. If you are using an oscilloscope that has remote display
capabilities, for example, you may operate it via a web browser on another terminal.

5 While JTAG hardware is independent of the target operating system, the front-end interface is likely to have OS dependencies.

Kernel Debuggers 607

www.realvnc.com

608 Chapter 21 Debugging Device Drivers

Remote Linux Development Host

Terminal 1 (GDB Session)

VNC Session

bash> gdb vmlinux
gdb> target remote
10.1.1.2:1001
gdb>

Terminal 4 (Hard Reset)

Target PowerON

Target PowerOFF

bash> elinks 10.1.1.4

Terminal 5 (Exported Root Filesystem)

bash> cat /etc/exports
/path/to/exported/root/
10.1.1.3(rw,sync,no_root_squash,no_all_squash)
bash> cp testcode /path/to/exported/root

Terminal 2 (Target Console)

bash> telnet 10.1.1.2
50

target:bash>

Terminal 3 (JTAG Control)

bash> telnet 10.1.1.2
jtag>

Remote Power Switch

Target
Hardware

JTAG
Debugger

Ethernet
10.1.1.1

10.1.1.4

10.1.1.3

10.1.1.2

Serial Port

FIGURE 21.2 An example JTAG-based remote debug setup.

During hardware bring up, when you are porting your bootloader or other stand-alone
code to the target, it’s a good idea to fi rst generate an ELF image and debug it from
RAM before running it from fl ash. Remember, however, to eliminate bootloader ini-
tializations that duplicate the ones performed by the JTAG defi nition script.

A key advantage of JTAG debuggers is that you can use a single tool to debug
the different pieces that constitute your fi rmware solution. So, you can use the same

debugger to debug the BIOS, bootloader, base kernel, device driver modules, as well as
user-space applications, at source level.

Downloads

You may download kdb patches for the x86 and IA64 architectures from http://oss.sgi.
com/projects/kdb. Each supported kernel version needs two patches: a common one
and an architecture-dependent one.

The home page for the kgdb project is http://kgdb.sourceforge.net. The website
also has documentation on confi guring and using kgdb.

If your Linux distribution does not already contain gdb, you can obtain it from
www.gnu.org/software/gdb/gdb.html.

Kernel Probes

Kernel probes can intrude into a kernel function and extract debug information or
apply a medicated patch. It’s a useful addition to your debugging repertoire for inves-
tigating inexplicable behavior at a customer site, especially when you don’t have the
luxury of rebooting the system. Linux supports a generic form of kernel probes called
Kprobes and two specialized variants, Jprobes and return probes.

Kprobes

Kprobes can save you the trouble of building and booting a debug kernel by provid-
ing capabilities to dynamically dump kernel data structures or insert code into a run-
ning kernel. You can, for example, add a few printks on-the-fl y inside the scheduler
without recompiling the kernel. You can even patch a bug on a Mars rover without
rebooting it.

To insert a kprobe inside a kernel function, follow these steps:

 1. Turn on CONFIG_KPROBES (Instrumentation Support Kprobes) in the kernel
configuration menu.

 2. Implement a kernel module that registers a kprobe at the instruction of interest.
You need to register a pre-handler that Kprobes will run just before executing
the probed instruction and a post-handler that Kprobes will run after executing
the probed instruction. You may also supply a fault-handler that will run if a
fault is detected while executing the pre- or post-handlers (because you don’t
want to “oops” due to a debugging bug!).

Kernel Probes 609

www.gnu.org/software/gdb/gdb.html
http://oss.sgi.com/projects/kdb
http://oss.sgi.com/projects/kdb
http://kgdb.sourceforge.net

610 Chapter 21 Debugging Device Drivers

When a kprobe is registered, it saves the probed instruction and replaces it with an
instruction that generates a breakpoint (int 0x03 on x86-based systems). When the
breakpoint is hit, the kernel generates a die notifi cation. (We discussed notifi er chains
in Chapter 3, “Kernel Facilities.”) Kprobes inserts itself into the die notifi er chain, so
it gets notifi ed about the breakpoint hit.

When notifi ed, Kprobes executes the registered pre-handler. Next, it steps through
a copy of the probed instruction. It executes a copy instead of swapping the probed
instruction with the breakpoint instruction for reasons of SMP consistency. Finally, it
runs the post-handler. The pre- and post-handler windows are the hooks offered to the
Kprobes user to inject debug code. The handlers can be registered and unregistered
on-the-fl y, so serviceability is not merely static at compile time but programmable dur-
ing runtime.

Let’s learn to use Kprobes with the help of an example. Consider the code snippet
in Listing 21.2, which is a kernel thread that adds npages number of pages to the
free memory pool, whenever a SIGUSR1 signal is delivered to it. Most of the logic has
been scissored out of the listing because it’s not relevant. Assume that you are at a cus-
tomer site to debug a problem reported with this code. You notice bad things when-
ever npages crosses 10, so you want to apply a runtime patch that limits it to 10.

LISTING 21.2 Problem Code (mydrv.c)

int npages=0;

EXPORT_SYMBOL(npages);

static int memwalkd(void *unused)

{

 long curr_pfn = (64*1024*1024 >> PAGE_SHIFT);

 struct page *curr_page;

 /* ... */

 daemonize("memwalkd"); /* kernel thread */

 sigfillset(¤t->blocked);

 allow_signal(SIGUSR1);

 for (;;) {

 /* Dequeue a signal if it's pending */

 if (signal_pending(current)) {

 sig = dequeue_signal(current, ¤t->blocked, &info);

 /* Point A */

 /* Free npages pages when SIGUSR1 is received */

 if (sig == SIGUSR1) {

 /* Point B */

 /* Problem manifests when npages crosses 10 in the following

 loop. Let’s apply run time medication here via Kprobes */

 for (i=0; i < npages; i++, curr_pfn++) {

 /* ... */

 }

 }

 /* ... */

 }

 /* ... */

}

LISTING 21.3 Registering Kprobe Handlers

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/kprobes.h>

#include <linux/kallsyms.h>

#include <linux/sched.h>

extern int npages; /* Defined in Listing 21.2 */

/* Per-probe structure */

static struct kprobe bandaid;

/* Pre Handler: Invoked before running probed instruction */

int bandaid_pre(struct kprobe *p, struct pt_regs *regs)

{

 if (npages > 10) npages = 10;

 return 0;

}

/* Post Handler: Invoked after running probed instruction */

void bandaid_post(struct kprobe *p, struct pt_regs *regs,

 unsigned long flags)

{

 /* Nothing to do */

}

Kernel Probes 611

612 Chapter 21 Debugging Device Drivers

/* Fault Handler: Invoked if the pre/post-handlers

 encounter a fault */

int bandaid_fault(struct kprobe *p, struct pt_regs *regs,

 int trapnr)

{

 return 0;

}

int init_module(void)

{

 int retval;

 /* Fill the kprobe structure */

 bandaid.pre_handler = bandaid_pre;

 bandaid.post_handler = bandaid_post;

 bandaid.fault_handler = bandaid_fault;

 /* Arrive at the target address as explained */

 bandaid.addr = (kprobe_opcode_t*)

 kallsyms_lookup_name("memwalkd") + 0xaa;

 if (!bandaid.addr) {

 printk("Bad Probe Point\n");

 return -1;

 }

 /* Register the kprobe */

 if ((retval = register_kprobe(&bandaid)) < 0) {

 printk("register_kprobe error, return value=%d\n",

 retval);

 return -1;

 }

 return 0;

}

void module_cleanup(void)

{

 unregister_kprobe(&bandaid);

}

MODULE_LICENSE("GPL"); /* You can't link the Kprobes API

 unless your user module is GPL'ed */

Listing 21.3 uses Kprobes to insert a patch at kallsyms_lookup_name("memwalkd")
+ 0xaa, which limits npages to 10. To fi gure out how to arrive at this probe address,
take another look at Listing 21.2. You want the patch to be inserted at Point B. To
calculate the kernel address at Point B, disassemble the contents of mydrv.ko using
objdump:

bash> objdump -D mydrv.ko

mydrv.ko: file format elf32-i386

Disassembly of section .text:

00000000 <memwalkd>:

 0: 55 push %ebp

 1: bd 00 40 00 00 mov $0x4000,%ebp

 6: 57 push %edi

 7: 56 push %esi

 8: 53 push %ebx

 9: bb 00 f0 ff ff mov $0xfffff000,%ebx

 e: 81 ec 90 00 00 00 sub $0x90,%esp

 ...

 ...

 7a: 83 f8 0a cmp $0xa,%eax Point A

 7d: 74 2b je aa <memwalkd+0xaa>

 7f: 83 f8 09 cmp $0x9,%eax

 82: 75 cc jne 50 <memwalkd+0x50>

 ...

 a9: c3 ret

 aa: a1 00 00 00 00 mov 0x0,%eax Point B

 af: 85 c0 test %eax,%eax

 b1: 0f 8e b5 00 00 00 jle 16c <memwalkd+0x16c>

 b7: 81 fd 7b f6 00 00 cmp $0xf67b,%ebp

 ...

 fa: a1 00 00 00 00 mov 0x0,%eax

You have to use an architecture-specifi c objdump if you’re cross-compiling for a differ-
ent processor platform. You will need something like arm-linux-objdump if you’re disas-
sembling a binary cross-compiled for an ARM-based target device. Pass the -S option to
objdump to mix source code with the disassembled output:

bash> arm-linux-objdump –d –S mydrv.ko

Kernel Probes 613

614 Chapter 21 Debugging Device Drivers

If you try and match the C code in Listing 21.2 with its disassembled dump above,
you can associate Point A and Point B with the shown kernel addresses. kallsyms_
lookup_name()6 locates the address of memwalkd(), and 0xaa is the offset where
Point B resides, so apply the kprobe at kallsyms_lookup_name("memwalkd") + 0xaa.

After you register the kprobe, memwalkd() equivalently looks like this:

static int memwalkd(void *unused)

{

 /* ...*/

 for (;;) {

 /* ... */

 /* Point A */

 /* Free npages pages when SIGUSR1 is received */

 if (sig == SIGUSR1) {

 /* Point B */

if (npages > 10) npages = 10; /* The medicated patch! */

 for (i=0; i < npages; i++, curr_pfn++) {

 /* ... */

 }

 }

 /* ... */

 }

 /* ... */

}

Whenever npages is assigned a value greater than 10, the kprobed patch pulls it back
to 10, thus stepping around the problem.

In the next two sections, let’s look at a couple of helper facilities that make it easier
to use Kprobes during function entry and exit.

Jprobes

A jprobe is a specialized kprobe. It eases the work of adding a probe when the point of
investigation is at the entry to a kernel function. The jprobe handler has the same pro-
totype as the probed function. It’s invoked with the same argument list as the probed
function, so you can easily access the function arguments from the jprobe handler. If
you use Kprobes rather than Jprobes, imagine the hassles your probe handler needs to

6 You have to enable CONFIG_KALLSYMS during kernel confi guration to obtain the services of this function.

undergo, wading through the dark alleys of the function stack to extract function argu-
ments! And this code that delves into the stack to elicit argument values has to be heav-
ily function-specifi c, not to mention being architecture-dependent and unportable.

To learn how to use Jprobes, let’s revert to an example. Assume that you’re debugging
a network device driver (that is built as part of the kernel) by looking at the printk()
messages it’s generating. The driver is emitting crucial values in octal (base 8), but to
your horror, the driver writer has introduced a typo in the print format string by cod-
ing %O rather than %o. So, all you can see are messages such as this:

Number of Free Receive buffers = %O.

Jprobes to the rescue. You can fi x this in a few seconds, without recompiling or reboot-
ing the kernel. First, take a look at printk() defi ned in kernel/printk.c:

asmlinkage int printk(const char *fmt, ...)

{

 va_list args;

 int r;

 va_start(args, fmt);

 r = vprintk(fmt, args);

 va_end(args);

 return r;

}

Let’s add a simple jprobe at the entry to printk() and transform every %O into %o.
Listing 21.4 does this job. Note that the jprobe handler needs to have the same pro-
totype as printk(). Both functions are marked with the asmlinkage tag that asks
them to expect arguments from the stack, rather than from CPU registers.

LISTING 21.4 Registering Jprobe Handlers

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/kprobes.h>

#include <linux/kallsyms.h>

/* Jprobe the entrance to printk */

asmlinkage int

jprintk(const char *fmt, ...)

{

Kernel Probes 615

616 Chapter 21 Debugging Device Drivers

 for (; *fmt; ++fmt) {

 if ((*fmt=='%')&&(*(fmt+1) == 'O')) *(char *)(fmt+1) = 'o';

 }

 jprobe_return();

 return 0;

}

/* Per-probe structure */

static struct jprobe jprobe_eg = {

 .entry = (kprobe_opcode_t *) jprintk

};

int

init_module(void)

{

 int retval;

 jprobe_eg.kp.addr = (kprobe_opcode_t*)

 kallsyms_lookup_name("printk");

 if (!jprobe_eg.kp.addr) {

 printk("Bad probe point\n");

 return -1;

 }

 /* Register the Jprobe */

 if ((retval = register_jprobe(&jprobe_eg) < 0)) {

 printk("register_jprobe error, return value=%d\n",

 retval);

 return -1;

 }

 printk("Jprobe registered.\n");

 return 0;

}

void

module_cleanup(void)

{

 unregister_jprobe(&jprobe_eg);

}

MODULE_LICENSE("GPL");

When Listing 21.4 invokes register_jprobes() to register the jprobe, a kprobe is
inserted at the beginning of printk(). When this probe is hit, Kprobes replaces the
saved return address with that of the registered jprobe handler jprintk(). It then
copies a portion of the stack and returns, thus passing control to jprintk() with
printk()’s argument list. When jprintk() calls jprobe_return(), the original
call state is restored, and printk() continues to execute normally.

When you insert this jprobe user module, the network driver no longer emits use-
less messages announcing %O buffers, rather it prints saner information such as this:

Number of Free Receive buffers = 12.

Return Probes

A return probe (or a kretprobe in Kprobes terminology) is another specialized Kprobes
helper. It eases the work of inserting a kprobe when you need to probe a function’s
return point. If you use vanilla Kprobes to investigate return points, you might need to
register them at multiple places because a function can return via multiple code paths.
However, if you use return probes, you need to insert only one kretprobe, rather than
register, say, 20 Kprobes to cover a function’s 20 return paths.

The function tty_open() defi ned in drivers/char/tty_io.c has seven return paths.
The successful path returns 0, and others return error values such as –ENXIO and
-ENODEV. A single kretprobe is suffi cient to alert you about failures, irrespective of the
associated code path. Listing 21.5 implements this kretprobe.

LISTING 21.5 Registering Return Probe Handlers

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/kprobes.h>

#include <linux/kallsyms.h>

/* kretprobe at exit from tty_open() */

static int

kret_tty_open(struct kretprobe_instance *kreti,

 struct pt_regs *regs)

{

 /* The EAX register contains the function return value

 on x86 systems */

Kernel Probes 617

618 Chapter 21 Debugging Device Drivers

 if ((int) regs->eax) {

 /* tty_open() failed. Announce the return code */

 printk("tty_open returned %d\n", (int)regs->eax);

 }

 return 0;

}

/* Per-probe structure */

static struct kretprobe kretprobe_eg = {

 .handler = (kretprobe_handler_t)kret_tty_open

};

int

init_module(void)

{

 int retval;

 kretprobe_eg.kp.addr = (kprobe_opcode_t*)

 kallsyms_lookup_name("tty_open");

 if (!kretprobe_eg.kp.addr) {

 printk("Bad Probe Point\n");

 return -1;

 }

 /* Register the kretprobe */

 if ((retval = register_kretprobe(&kretprobe_eg) < 0)) {

 printk("register_kretprobe error, return value=%d\n",

 retval);

 return -1;

 }

 printk("kretprobe registered.\n");

 return 0;

}

void module_cleanup(void)

{

 unregister_kretprobe(&kretprobe_eg);

}

MODULE_LICENSE("GPL");

When Listing 21.5 invokes register_kretprobes(), a kprobe is internally inserted
at the beginning of tty_open(). When this probe gets hit, this internal kprobe handler
replaces the function return address with that of a special routine (called a trampoline
in Kprobes terminology). Look at arch/your-arch/kernel/kprobes.c for the implementa-
tion of the trampoline.

When tty_open() returns via any of its seven return paths, control returns to
the trampoline instead of the caller function. The trampoline invokes the kretprobe
handler kret_tty_open(), registered by Listing 21.5, which prints the return value
if tty_open() has not returned successfully.

Limitations

Kprobes has its limitations. Some of them are obvious. You won’t, for example, see
desired results if you insert a kprobe inside an inline function. And, of course, you
can’t probe Kprobes code.

Kprobes are more useful for applying probes inside the base kernel. If the subject
code is part of a dynamically loadable module, you might as well rewrite and recompile
your module rather than write and compile a new module to “kprobe” it. However,
you might still want to use Kprobes if bringing down the module is not acceptable.

There are less-obvious limitations, too. Optimizations are done at compile time,
whereas Kprobes are inserted during runtime. So, the effect of inserting instructions
via Kprobes is not equivalent to adding code in the original source fi les. For example,
the buggy code snippet

volatile int *integerp = 0xFF;

int integerd = *integerp;

is reduced by the compiler to

mov 0xff, %eax

So, you can’t easily use Kprobes if you want to sneak in between those two lines of C
code, allocate a word of memory, point integerp to the allocated word, and circum-
vent a kernel crash.

 SystemTap (http://sourceware.org/systemtap/) is a diagnostic tool that eases the use of
Kprobes.

Kernel Probes 619

http://sourceware.org/systemtap/

620 Chapter 21 Debugging Device Drivers

Looking at the Sources

The Kprobes implementation consists of a generic portion defi ned in kernel/kprobes.c
(and include/linux/kprobes.h) and an architecture-dependent part that lives in arch/
your-arch/kernel/kprobes.c (and include/asm-your-arch/kprobes.h).

Peek inside Documentation/kprobes.txt for further information about Kprobes,
Jprobes, and Kretprobes.

Kexec and Kdump

Now that you have learned how to use Kprobes, let’s continue and look at more fac-
ets of Linux RAS. Kexec and kdump are serviceability features introduced in the 2.6
kernel.

Kexec uses the image overlay philosophy of the UNIX exec() system call to spawn
a new kernel over a running kernel without the overhead of boot fi rmware. This can
save several seconds of reboot time because boot fi rmware spends cycles walking buses
and recognizing devices. The less the reboot latency, the less the system downtime;
so, this was one of the main motivations for developing kexec. However, kexec’s most
popular user is kdump. Capturing a dump after a kernel crash is inherently unreli-
able because kernel code that accesses the dump device might be in an unstable state.
Kdump circumvents this problem by collecting the dump after booting into a healthy
kernel via kexec.

Kexec

Before you can kexec a kernel, you need to do some preparations:

 1. Compile and boot into a kernel that has kexec support. For this, turn on CON-
FIG_KEXEC (Processor Type and Features Kexec System Call) in the kernel con-
figuration menu. This kernel is called the first kernel or the running kernel.

 2. Prepare the kernel that is to be kexec-ed. This second kernel can be the same as
the first kernel.

 3. Download the kexec-tools package source tar ball from www.kernel.org/pub/
linux/kernel/people/horms/kexec-tools/kexec-tools-testing.tar.gz. Build and pro-
duce the user-space tool called kexec.

www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools-testing.tar.gz
www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools-testing.tar.gz

The kexec tool built in Step 3 is invoked in two stages. The fi rst stage loads the second
kernel image into the buffers of the running kernel, while the second stage actually
overlays the running kernel:

 1. Load the second (overlay) kernel using the kexec command:

bash> kexec -l /path/to/kernelsources/arch/x86/boot/bzImage --

append="root=/dev/hdaX" --initrd=/boot/myinitrd.img

bzImage is the second kernel, hdaX is the root device, and myinitrd.img is the
initial root fi lesystem. The kernel implementation of this stage is mostly archi-
tecture-independent. At the heart of this stage is the sys_kexec() system call.
The kexec command loads the new kernel image into the running kernel’s buf-
fers using the services of this system call.

 2. Boot into the second kernel:

bash> kexec -e

... → Kernel boot up messages

Kexec abruptly starts the new kernel without gracefully halting the operating
system. To shut down prior to reboot, invoke kexec from the bottom of the halt
script (usually /etc/rc.d/rc0.d/S01halt) and invoke halt instead.

 The implementation of the second stage is architecture-dependent. The crux
of this stage is a reboot_code_buffer that contains assembly code to put the
new kernel in place to boot.

Kexec bypasses the initial kernel code that invokes the services of boot fi rmware and
directly jumps to the protected mode entry point (for x86 processors). An important
challenge to implement kexec is the interaction that happens between the kernel and
the boot fi rmware (BIOS on x86-based systems, Openfi rmware on POWER-based
machines, and so on). On x86 systems, information such as the e820 memory map
passed to the kernel by the BIOS (see Appendix B, “Linux and the BIOS”) needs to be
supplied to the kexec-ed kernel, too.

Kexec with Kdump

The kexec invocation semantics is somewhat special when it’s used in tandem with
kdump. In this case, kexec is required to automatically boot a new kernel when it

Kexec and Kdump 621

622 Chapter 21 Debugging Device Drivers

encounters a kernel panic. If the running kernel crashes, the new kernel (called the
capture kernel) is booted to reliably collect the dump. A typical call syntax is this:

bash> kexec -p /path/to/capture-kernel-sources/vmlinux

 --args-linux --append="root=/dev/hdaX irqpoll"

--initrd=/boot/myinitrd.img

The -p option asks kexec to trigger a reboot when a kernel panic occurs. A vmlinux
ELF kernel image is used as the capture kernel. Because vmlinux is a general ELF
boot image and because kexec is theoretically OS agnostic, you need to specify via the
--args-linux option that the following arguments have to be interpreted in a Linux-
specifi c manner. The capture kernel boots asynchronously during a kernel crash, so
device drivers using shared interrupts may fatally express their unhappiness during
boot. To be nice to such drivers, specify irqpoll in the command line passed to the
capture kernel using --append.

To use kexec with kdump, you need some additional kernel confi guration settings.
The capture kernel requires access to kernel memory of the crashed kernel to generate
a full dump, so the latter cannot just overwrite the former as was done by kexec in the
non-kdump case. The running kernel needs to reserve a memory region to run the
capture kernel. To mark this region

 • Boot the first kernel with the command-line argument crashkernel=64M@16M
(or other suitable size@start values). Also include debug symbols in the ker-
nel image by enabling CONFIG_DEBUG_INFO (Kernel Hacking Compile the
Kernel with Debug Info) in the configuration menu.

 • While confi guring the capture kernel, set CONFIG_PHYSICAL_START to the
same start value assigned above (16M in this case). If you kexec into the cap-
ture kernel and peek inside /proc/meminfo, you will fi nd that size (64M in this
case) is the total amount of physical memory that this kernel can see.

Now that you’re comfortable with kexec and have mastered it from the perspective of a
kdump user, let’s delve into kdump and use it to analyze some real-world kernel crashes.

Kdump

An image of system memory captured after a kernel crash or hang is called a crash
dump. Analyzing a crash dump can give valuable clues for postmortem analysis of ker-
nel problems. However, obtaining a dump after a kernel crash is inherently unreliable

because the storage driver responsible for logging data onto the dump device might be
in an undefi ned state.

Until the advent of kdump, Linux Kernel Crash Dump (LKCD) was the popular
mechanism to obtain and analyze dumps. LKCD uses a temporary dump device (such
as the swap partition) to capture the dump. It then warm reboots back to a healthy
state and copies the dump from the temporary device to a permanent location. A tool
called lcrash is used to analyze the dump. The disadvantages with LKCD include the
following:

 • Even copying the dump to a temporary device might be unreliable on a crashed
kernel.

 • Dump device configuration is nontrivial.

 • The reboot might be slow because swap space can be activated only after the
dump has been safely saved away to a permanent location.

 • LKCD is not part of the mainline kernel, so installing the proper patches for
your kernel version is a hurdle.

Kdump is not burdened with these shortfalls. It eliminates indeterminism by collect-
ing the dump after booting into a healthy kernel via kexec. Also, because memory state
is preserved after a kexec reboot, the memory image can be accurately accessed from
the capture kernel.

Let’s fi rst get the preliminary kdump setup out of the way:

 1. Ask the running kernel to kexec into a capture kernel if it encounters a panic.
The capture kernel should additionally have CONFIG_HIMEM and CONFIG_
CRASH_DUMP turned on. (Both these options sit inside Processor type and Features
in the kernel configuration menu.)

 2. After the capture kernel boots, copy the collected dump information from
/proc/vmcore (obtained by enabling CONFIG_PROC_VMCORE in the kernel
configuration menu) to a file on your hard disk:

bash> cp /proc/vmcore /dump/vmcore.dump

You can also save other information such as the raw memory snapshot of the
crashed kernel, via /dev/oldmem.

 3. Boot back into the first kernel. You are now ready to start dump analysis.

Kexec and Kdump 623

624 Chapter 21 Debugging Device Drivers

Let’s use the collected dump fi le and the crash tool to analyze some example kernel
crashes. Introduce this bug inside the interrupt handler of the RTC driver (drivers/
char/rtc.c):

irqreturn_t rtc_interrupt(int irq, void *dev_id)

{

+ volatile int *integerp = 0xFF;

+ int integerd = *integerp; /* Bad memory reference! */

 spin_lock(&rtc_lock);

 /* ... */

Trigger execution of the handler by enabling interrupts via the hwclock command:

bash> hwclock

... → Kernel panic occurs when execution hits rtc_interrupt()

 causing kexec to boot into the capture kernel.

Save /proc/vmcore to /dump/vmcore.dump, reboot back into the fi rst (crashed) kernel,
and start analysis using the crash tool. In a real-world situation, of course, the dump
might be captured at a customer site, whereas the analysis is done at a support center:

bash> crash /usr/src/linux/vmlinux /dump/vmcore.dump

crash 4.0-2.24

...

 KERNEL: /usr/src/linux/vmlinux

 DUMPFILE: /root/vmcore.dumpfile

 CPUS: 1

 DATE: Mon Nov 26 04:15:49 2007

 UPTIME: 00:17:22

LOAD AVERAGE: 0.82, 1.02, 0.87

 TASKS: 63

 ...

 PANIC: "Oops: 0000 [#1]" (check log for details)

crash>

Examine the stack trace to understand the cause of the crash:

crash> bt

PID: 0 TASK: c03a32e0 CPU: 0 COMMAND: "swapper"

 #0 [c0431eb8] crash_kexec at c013a8e7

 #1 [c0431f04] die at c0103a73

 #2 [c0431f44] do_page_fault at c0343381

 #3 [c0431f84] error_code (via page_fault) at c010312d

 EAX: 00000008 EBX: c59a5360 ECX: c03fbf90 EDX: 00000000

 EBP: 00000000

 DS: 007b ESI: 00000000 ES: 007b EDI: c03fbf90

 CS: 0060 EIP: f8a8c004 ERR: ffffffff EFLAGS: 00010092

 #4 [c0431fb8] rtc_interrupt at f8a8c004

 #5 [c0431fc4] handle_IRQ_event at c013de51

 #6 [c0431fdc] __do_IRQ at c013df0f

The stack trace points the needle of suspicion at rtc_interrupt(). Let’s disassemble
the instructions near rtc_interrupt():

crash> dis 0xf8a8c000 5

0xf8a8c000 <rtc_interrupt>: push %ebx

0xf8a8c001 <rtc_interrupt+1>: sub $0x4,%esp

0xf8a8c004 <rtc_interrupt+4>: mov 0xff,%eax

0xf8a8c009 <rtc_interrupt+9>: mov $0xc03a6640,%eax

0xf8a8c00e <rtc_interrupt+14>: call 0xc0342300 <_spin_lock>

The instruction at address 0xf8a8c004 is attempting to move the contents of the EAX
register to address 0xff, which is clearly the invalid deference that caused the crash.
Fix this and build a new kernel.

If you use the irq command, you can fi gure out the identity of the interrupt that
was in progress during the time of the crash. In this case, the output confi rms that the
RTC interrupt was indeed active:

crash> irq

 IRQ: 8

 STATUS: 1 (IRQ_INPROGRESS)

...

...

handler: f8a8c000 <rtc_interrupt>

 flags: 20000000 (SA_INTERRUPT)

 mask: 0

 name: f8a8c29d "rtc"

crash> quit

bash>

Kexec and Kdump 625

626 Chapter 21 Debugging Device Drivers

Let’s now shift gears and look at a case where the kernel freezes, rather than generate an
“oops.” Consider the following buggy driver init()routine:

static int __init

mydrv_init(void)

{

 spin_lock(&mydrv_wq.lock); /* Usage before initialization! */

 spin_lock_init(&mydrv_wq.lock);

 /* ... */

}

The code is erroneously using a spinlock before initializing it. Effectively, the CPU
spins forever trying to acquire the lock, and the kernel appears to hang. Let’s debug
this problem using kdump. In this case, there will be no auto-trigger because there is
no panic, so force a crash dump by pressing the magic Sysrq key combination, Alt-
Sysrq-c. You may need to enable Sysrq by writing a 1 to /proc/sys/kernel/sysrq:

bash> echo 1 > /proc/sys/kernel/sysrq

bash> insmod mydrv.ko

This induces the kernel to hang inside mydrv_init(). Press the Alt-Sysrq-c key com-
bination to trigger a crash dump:

Alt-Sysrq-c

... → Messages announcing that a crash dump

 has been triggered

Save the dump to disk after kexec boots the capture kernel, boot back to the original
kernel, and run crash on the saved dump:

bash> crash vmlinux vmcore.dump

 ...

 PANIC: "SysRq : Trigger a crashdump"

 PID: 2115

 COMMAND: "insmod"

 TASK: f7c57000 [THREAD_INFO: f6170000]

 CPU: 0

 STATE: TASK_RUNNING (SYSRQ)

crash>

Test the waters by checking the identity of the process that was running at the time of
the crash. In this case, it was apparently insmod (of mydrv.ko):

crash> ps

 ...

 2171 2137 0 f6bb7000 IN 0.5 11728 5352 emacs-x

 2214 1 0 f6b5b000 IN 0.1 2732 1192 login

 2230 2214 0 f6bb0550 IN 0.1 4580 1528 bash

 > 2261 2230 0 c596f550 RU 0.0 1572 376 insmod

The stack trace doesn’t yield much information other than telling you that a Sysrq key
press was responsible for the dump:

crash> bt

PID: 2115 TASK: f7c57000 CPU: 0 COMMAND: "insmod"

 #0 [c0431e68] crash_kexec at c013a8e7

 #1 [c0431eb4] __handle_sysrq at c0254664

 #2 [c0431edc] handle_sysrq at c0254713

Let’s next try peeking at the log messages generated by the crashed kernel. The log com-
mand reads the messages from the kernel printk ring buffer present on the dump fi le:

crash> log

...

BUG: soft lockup detected on CPU#0!

Pid: 2261, comm: insmod

EIP: 0060:[<c010ec1b>] CPU: 0

EIP is at delay_pmtmr+0xb/0x20

EFLAGS: 00000246 Tainted: P (2.6.16.16 #11)

EAX: 5caaa48c EBX: 00000001 ECX: 5caaa459 EDX: 00000012

ESI: 02e169c9 EDI: 00000000 EBP: 00000001 DS: 007b ES: 007b

CR0: 8005003b CR2: 08062017 CR3: 35e89000 CR4: 000006d0

 [<c01fede9>] __delay+0x9/0x10

 [<c0200089>] _raw_spin_lock+0xa9/0x150

 [<f893d00d>] mydrv_init+0xd/0xb2 [wqdrv]

 [<c0136565>] sys_init_module+0x175/0x17a2

 [<c015d834>] do_sync_read+0xc4/0x100

 [<c013ce4d>] audit_syscall_entry+0x13d/0x170

 [<c0105578>] do_syscall_trace+0x208/0x21a

 [<c0102f05>] syscall_call+0x7/0xb

SysRq : Trigger a crashdump

crash>

Kexec and Kdump 627

628 Chapter 21 Debugging Device Drivers

The log offers two useful pieces of debug information. First, it lets you know that a
soft lockup was detected on the crashed kernel. As discussed in the section “Device
Example: Watchdog Timer” in Chapter 5, “Character Drivers,” the kernel detects soft
lockups as follows: A kernel watchdog thread runs once a second and touches a per-
CPU timestamp variable. If the CPU sits in a tight loop, the watchdog thread cannot
update this timestamp. An update check is carried out during timer interrupts using
softlockup_tick() (defi ned in kernel/softlockup.c). If the watchdog timestamp is
more than 10 seconds old, it concludes that a soft lockup has occurred and emits a
kernel message to that effect.

Second, the log frowns upon mydrv_init()+0xd (or 0xf893d00), so let’s look at
the disassembly of the surrounding code region:

crash> dis f893d000 5

dis: WARNING: f893d000: no associated kernel symbol found

0xf893d000: mov $0xf89f1208,%eax

0xf893d005: sub $0x8,%esp

0xf893d008: call 0xc0342300 <_spin_lock>

0xf893d00d: movl $0xffffffff,0xf89f1214

0xf893d017: movl $0xffffffff,0xf89f1210

The return address in the stack is 0xf893d00d, so the kernel is hanging inside the
previous instruction, which is a call to spin_lock(). If you co-relate this with the
earlier source snippet and look at it in the eye, you can see the error sequence, spin_
lock()/spin_lock_init(), staring sorrowfully back at you. Fix the problem by
swapping the sequence.

You may also use crash to peek at data structures of interest, but be aware that
memory regions that were swapped out during the crash are not part of the dump. In
the preceding example, you can examine mydrv_wq as follows:

crash> rd mydrv_wq 100

f892c200: 00000000 00000000 00000000 00000000

...

f892c230: 2e636373 00000068 00000000 00000011 scc.h...........

Gdb is integrated with crash, so you can pass commands from crash to gdb for evalua-
tion. For example, you can use gdb’s p command to print data structures.

Looking at the Sources

Architecture-dependent portions of kexec reside in arch/your-arch/kernel/machine_kexec.c
and arch/your-arch/kernel/relocate_kernel.S. The generic parts live in kernel/kexec.c (and
include/linux/kexec.h). Peek inside arch/your-arch/kernel/crash.c and arch/your-arch/kernel/
crash_dump.c for the kdump implementation. Documentation/kdump/kdump.txt con-
tains installation information.

Profiling

Profi ling points you to those regions of code that burn more CPU cycles. Profi lers
help sense the presence of code bottlenecks and come in different fl avors. The OProfi le
kernel profi ler, included with the 2.6 kernel, uses hardware assist to gather profi le data.
The gprof application profi ler, on the other hand, relies on compiler assist to collect
profi ling information.

Kernel Profiling with OProfile

 OProfi le samples data at regular intervals using hardware performance counters sup-
ported by many processors. The performance counters can be programmed to count
events such as the number of cache misses. On systems where the processor does not
support performance counters, OProfi le obtains limited information by collecting
data during timer events.

OProfi le consists of the following:

 • A kernel layer that collects profiling information.7 To enable OProfile in your
kernel, enable CONFIG_PROFILING, CONFIG_OPROFILE, and CONFIG_APIC
and recompile.

 • The oprofiled daemon.

 • A suite of post-profi ling tools such as opcontrol, opreport, and op_help that help
in detailed analysis of the collected data. These tools are included with several
distributions; if your distribution doesn’t have them, however, you can down-
load precompiled binaries.

7 If you are still using a 2.4 kernel, you have to patch your kernel sources with OProfi le support.

Profiling 629

630 Chapter 21 Debugging Device Drivers

To illustrate the basics of kernel profi ling, let’s simulate a bottleneck in the fi lesystem
layer and use OProfi le to detect it. Our code area of interest is the portion of the fi le-
system layer that reads directories (function vfs_readdir() in fs/readdir.c)

First, use opcontrol to confi gure OProfi le:

bash> opcontrol --setup --vmlinux=/path/to/kernelsources/vmlinux

 --event=GLOBAL_POWER_EVENTS:100000:1:1:1

The event specifi er asks OProfi le to collect samples during GLOBAL_POWER_EVENTS
(time during which the processor is not stopped). The numerals adjacent to the event
specifi er denote the sampling count in clock cycles, unit mask fi lter, kernel-space
counting, and user-space counting, respectively. If you would like to sample x times
every second and your processor is running at a frequency of cpu_speed HZ, your
sample count should approximately be (cpu_speed/x). A larger count generates a
fi ner profi le but also results in more CPU overhead.

The events supported by OProfi le depend on your processor:

bash> opcontrol -l → List available events on a Pentium 4 CPU

GLOBAL_POWER_EVENTS: (counter: 0, 4)

 time during which processor is not stopped (min count: 3000)

BRANCH_RETIRED: (counter: 3, 7)

 retired branches (min count: 3000)

MISPRED_BRANCH_RETIRED: (counter: 3, 7)

 retired mispredicted branches (min count: 3000)

BSQ_CACHE_REFERENCE: (counter: 0, 4)

...

Next, start OProfi le and run a benchmarking tool that stresses those parts of the kernel
you would like to profi le. Look at http://lbs.sourceforge.net/ for a list of benchmark-
ing projects on Linux. For this example, let’s exercise the Virtual File System (VFS)
layer by recursively listing all fi les in the system:

bash> opcontrol --start → Start data collection

bash> ls -lR / → Stress test

bash> opcontrol --dump → Save profiled data

http://lbs.sourceforge.net/

Use opreport to look at the profi ling results. The % column provides a measure of the
function’s load on the system:

bash> opreport -l /path/to/kernelsources/vmlinux

CPU: P4 / Xeon, speed 2992.9 MHz (estimated)

Counted GLOBAL_POWER_EVENTS events (time during which processor

is not stopped) with a unit mask of 0x01 (count cycles when processor is active)

count 100000

samples % symbol name

914506 24.2423 vgacon_scroll → ls output printed to console

406619 10.7789 do_con_write

273023 7.2375 vgacon_cursor

206611 5.4770 __d_lookup

...

1380 0.0366 vfs_readdir → Our routine of interest

...

1 2.7e-05 vma_prio_tree_next

Let’s now simulate a bottleneck in the VFS code by introducing a 1-millisecond delay
in vfs_readdir(). This is done in Listing 21.6.

LISTING 21.6 vfs_readdir() Defi ned in fs/read_dir.c

int vfs_readdir(struct file *file, filldir_t filler, void *buf)

{

 struct inode *inode = file->f_ dentry->d_inode;

 int res = -ENOTDIR;

+ /* Introduce a millisecond bottleneck

+ (HZ is set to 1000 on this system) */

+ unsigned long timeout = jiffies+1;

+ while (time_before(jiffies, timeout));

+ /* End of bottleneck */

 /* ... */

}

Profiling 631

632 Chapter 21 Debugging Device Drivers

Compile the kernel with this change and recollect the profi le. The new data looks
like this:

bash> opreport -l /path/to/kernelsources/vmlinux

CPU: P4 / Xeon, speed 2993.08 MHz (estimated)

Counted GLOBAL_POWER_EVENTS events (time during which processor is not stopped)
with a unit mask of 0x01 (count cycles when processor is active)

count 100000

samples % symbol name

6178015 57.1640 vfs_readdir Our routine of interest

1065197 9.8561 vgacon_scroll ls output printed to console

479801 4.4395 do_con_write

...

As you can see, the bottleneck is clearly refl ected in the profi led data. vfs_readdir()
has now jumped to the top of the list!

You can use OProfi le to obtain a lot more information. You can, for example,
gather the percentage of data cache line misses. Caches are fast memory close to the
processor. Fetches to cache are done in units of the processor cache line (32 bytes for
Pentium 4). If the data you need to access is not already present in the cache (a cache
miss), the processor has to fetch it from main memory, and this burns more CPU
cycles. Subsequent accesses to that memory (and the surrounding bytes touched
into the cache) will be faster until the corresponding cache line gets invalidated. You
can confi gure OProfi le to count the number of cache misses by profi ling your ker-
nel code for the BSQ_CACHE_REFERENCE event (for Pentium 4). You can then tune
your code, possibly by realigning fi elds in data structures, to achieve better cache
utilization:

bash> opcontrol --setup

 --event=BSQ_CACHE_REFERENCE:50000:0x100:1:1

 --vmlinux=/path/to/kernelsources/vmlinux

 Unit mask 0x100 denotes an L2 cache miss

bash> opcontrol --start Start data collection

bash> ls -lR / Stress

bash> opcontrol --dump Save profile

bash> opreport -l /path/to/kernelsources/vmlinux

CPU: P4 / Xeon, speed 2993.68 MHz (estimated)

Counted BSQ_CACHE_REFERENCE events (cache references seen by the bus unit) with a
unit mask of 0x100 (read 2nd level cache miss) count 50000

samples % symbol name

73 29.6748 find_inode_fast

59 23.9837 __d_lookup

27 10.9756 inode_init_once

...

If you run OProfi le on different kernel versions and look at the corresponding
change logs, you might be able to fi gure out reasons for code changes in different
parts of the kernel.

You have only touched the surface of what can be accomplished using OProfi le. For
more information, visit http://oprofi le.sourceforge.net/.

Application Profiling with Gprof

If you need to profi le only an application process in isolation without profi ling the
kernel code that might get executed on its behalf, use gprof rather than OProfi le. Gprof
relies on additional code generated by the compiler to profi le C, Pascal, or Fortran
programs. Let’s use gprof to profi le the following code snippet:

main(int argc, char *argv[])

{

 int i;

 for (i=0; i<10; i++) {

 if (!do_task()) { /* Perform task */

 do_error_handling(); /* Handle errors */

 }

 }

}

Use the -pg option to ask the compiler to include extra code that generates a call graph
profi le when the program runs. The -g option generates symbolic information:

bash> gcc -pg -g -o myprog myprog.c

bash> ./myprog

Profiling 633

http://oprofile.sourceforge.net/

634 Chapter 21 Debugging Device Drivers

This produces gmon.out, which is a call graph of myprog. Run gprof to view the profi le:

bash> gprof -p -b myprog

Flat profile:

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls s/call s/call name

 65.17 2.75 2.75 2 1.38 1.38 do_error_handling

 34.83 4.22 1.47 10 0.15 0.15 do_task

This shows that the error path was hit twice during execution. You can tune the code to
produce fewer traversals of the error path and rerun gprof to generate an updated profi le.

Tracing

Tracing provides insight into behavioral problems that manifest during interactions
between different code modules. A common way to obtain execution traces is by using
printks. While printk is perhaps the most heavily used method for kernel debug-
ging (there are more than 62,000 printk() statements in the 2.6.23 source tree), it is
not sophisticated enough for high-volume tracing. Linux Trace Toolkit (LTT) is a pow-
erful tool that lets you obtain complex system level traces with minimum overhead.

Linux Trace Toolkit

LTT extracts execution traces that are useful for postmortem analysis and is valuable
in situations where it may not be possible to use a debugger. Unlike OProfi le, which
collects data by sampling events at regular intervals, LTT provides exact traces of
events as and when they occur.

LTT consists of four components:

 • A core module that provides trace services to the rest of the kernel. The col-
lected traces are copied to a kernel buffer.

 • Code that makes use of the trace services. These are inserted at points where you
want to capture trace dumps.

 • A trace daemon that pulls trace information from the kernel buffer to a perma-
nent location in the filesystem.

 • Utilities such as tracereader and tracevisualizer that interpret raw trace data and
convert it into human-readable form. If you are developing code for an embed-
ded device having no GUI support, you can transparently run these tools on
another machine.

LTT is not part of the mainline kernel.8 You may download LTT kernel patches, trace
daemon, and user-space trace utilities from www.opersys.com/LTT.

Let’s fi nd out what LTT offers with the help of a simple example. Assume that you
are seeing data corruption when your application is reading from a device. You fi rst
want to fi gure out whether the device is sending bad data or whether a kernel layer is
introducing the corruption. To do that, dump data packets and data structures at the
device driver level. Listing 21.7 initializes the LTT events that you plan to generate.

LISTING 21.7 Creating LTT Events

#include <linux/trace.h>

int data_packet, driver_data; /* Trace events */

/* Driver init */

static int __init mydriver_init(void)

{

 /* ... */

 /* Event to dump packets received from the device */

 data_packet = trace_create_event("data_pkt",

 NULL,

 CUSTOM_EVENT_FORMAT_TYPE_HEX,

 NULL);

 /* Event to dump a driver structure */

 driver_data = trace_create_event("dvr_data",

 NULL,

 CUSTOM_EVENT_FORMAT_TYPE_HEX,

 NULL);

 /* ... */

}

8 LTT was included as a release candidate in the 2.6.11-rc1-mm1 patch, downloadable from www.kernel.org.

Tracing 635

www.opersys.com/LTT
www.kernel.org

636 Chapter 21 Debugging Device Drivers

Next, let’s add trace hooks to dump received packets and data structures when the
driver reads data from the device. This is done in Listing 21.8 in the driver read()
method .

LISTING 21.8 Obtaining Trace Dumps

struct mydriver_data driver_data; /* Private device structure */

/* Driver read() method */

ssize_t

mydriver_read(struct file *file, char *buf,

 size_t count, loff_t *ppos)

{

 char *buffer;

 /* Read numbytes bytes of data from the device into

 buffer */

 /* ... */

 /* Dump data Packet. If you see the problem only

 under certain conditions, say, when the packet length is

 greater than a value, use that as a filter */

 if (condition) {

 /* See Listing 21.7 for the definition of data_packet*/

 trace_raw_event(data_packet, numbytes, buffer);

 }

 /* Dump driver data structures */

 if (some_other_condition) {

 /* See Listing 21.7 for the definition of driver_data */

 trace_raw_event(driver_data, sizeof(driver_data), &driver_data);

 }

 /* ... */

}

Compile and run this code as part of the kernel or as a module. Remember to turn
on trace support in the kernel by setting CONFIG_TRACE while confi guring the kernel.
The next step is to start the trace daemon:

bash> tracedaemon -ts60 /dev/tracer mylog.txt mylog.proc

/dev/tracer is the interface used by the trace daemon to access the trace buffer, -ts60
asks the daemon to run for 60 seconds, mylog.txt is the fi le where you want to store
the generated raw trace, and mylog.proc is where you want to save the system state
obtained from procfs. Later versions of LTT use a mechanism called relayfs rather
than the /dev/tracer device for effi ciently transferring data from the kernel trace buf-
fer to user space.

Run your application that reads data from the device:

bash> ./application Trigger invocation of mydriver_read()

mylog.txt should now contain the requested trace data. The generated raw trace can be
analyzed using the tracevisualizer tool. Choose the Custom Events option and search for
data_pkt and dvr_data events. The output looks like this:

##

Event Time SECS MICROSEC PID Length Description

##

data_pkt 1,110,563,008,742,457 0 27 12 43 AB AC 00 01 0D 56

data_pkt 1,110,563,008,743,151 0 27 01 D4 73 F1 0A CB DD 06

dvr_data 1,110,563,008,743,684 0 25 0D EF 97 1A 3D 4C

...

The last column holds the trace data. The timestamp shows the instant when the
trace was collected. If the data looks corrupt, the device could be sending bad data.
Otherwise, the problem must be in a higher kernel layer and can be further isolated by
obtaining traces from a different point in the data-fl ow path.

The next generation of LTT called LTTng is available for download from http://ltt.
polymtl.ca/. This project also includes a post-trace analyzer called Linux Trace Toolkit
Viewer (LTTV).

If your need is only to perform limited tracing of a user application, you can use the
strace utility rather than LTT. Strace uses the ptrace support in the kernel to intercept
system calls. It prints out a list of system calls made by your application, along with the
corresponding arguments and return values.

Tracing 637

http://ltt.polymtl.ca/
http://ltt.polymtl.ca/

638 Chapter 21 Debugging Device Drivers

Linux Test Project

Linux Test Project (LTP), hosted at http://ltp.sourceforge.net/, is a suite consisting of
around 3,000 tests designed to exercise different parts of the kernel. Most tests run
without user intervention. Others such as networking and storage media tests need
some manual confi guration.

Download the source tar ball from the LTP home page, run make, and invoke the
wrapper script runltp from the root of the source tree to start the tests. To capture the
results in logfi le in the results/ directory, do this:

bash> runltp –p –l logfile

Some errors generated by LTP are “expected.” The LTP website documents the list of
expected errors for various kernel versions. Also in the website is an interesting analysis
of LTP’s code coverage (overall coverage, lines in path, and distinct lines hit) for a few
kernel versions, split across directories in the kernel tree.

User Mode Linux

User Mode Linux (UML), hosted at http://user-mode-linux.sourceforge.net/, lets you
debug the kernel without “oops”ing the machine. To accomplish this, an instance of
the kernel (called the guest kernel) runs as a user mode process over the running kernel
(called the host kernel).

UML has diverse users. It can function as an environment for testing kernel and
application code, a vehicle to experiment with unstable kernels, a secure pseudo com-
puter for hosting services such as web servers, or a tool to learn Linux internals. UML
is more useful for debugging hardware-independent portions of the kernel than for
device driver debugging.

Diagnostic Tools

The sysfsutils package helps you navigate the voluminous amount of data present inside
sysfs. This, and other Linux diagnostic tools such as sysdiag and lsvpd, can be down-
loaded from http://linux-diag.sourceforge.net/.

http://ltp.sourceforge.net/
http://user-mode-linux.sourceforge.net/
http://linux-diag.sourceforge.net/

Kernel Hacking Config Options

Several options exist under Kernel hacking in the kernel confi guration menu that can
emit valuable debug information. If you enable an option, corresponding debug code
gets compiled when you build the kernel.9 Here are a few examples:

 1. Show Timing information on printks (CONFIG_PRINTK_TIME) adds timing instru-
mentation to printk() output, so you can use printks as checkpoints for
measuring execution times and identifying slow code regions.

 2. Using freed memory results in memory poisoning. Debug slab memory alloca-
tions (CONFIG_DEBUG_SLAB) helps you detect such problems.

 3. Spinlock and rw-lock debugging: basic checks (CONFIG_DEBUG_SPINLOCK) finds
lock-related problems such as uninitialized spinlock usage and helps catch code
that is not SMP-safe.

 4. You have already worked with Magic SysRq key (CONFIG_MAGIC_SYSRQ) when
you learned to use kdump. If you turn this on, you will have some avenues left
even if the kernel crashes during debugging. For example, pressing Alt-Sysrq-t
produces a dump of current tasks, whereas Alt-Sysrq-p prints the contents of
processor registers.

 5. Detect Soft Lockups (CONFIG_DETECT_SOFTLOCKUP) utilizes the services of a
watchdog to detect tight loops in kernel code that last for more than 10 sec-
onds. We looked at this when we analyzed a kernel hang using kdump. Note
that hardware lockups cannot be found this way. For that, use the services of a
Non-Maskable Interrupt (NMI)-watchdog if your platform supports it.

 6. If you enable CONFIG_DEBUG_SLAB, CONFIG_DEBUG_HIMEM, or CONFIG_

DEBUG_PAGE_ALLOC while configuring your kernel, additional error-checking
code gets compiled that help debug problems related to memory management.

 7. Check for stack overflows (CONFIG_DEBUG_STACKOVERFLOW) adds code to emit
warnings if the available stack space falls below a threshold. Stack utilization
instrumentation (CONFIG_DEBUG_STACK_USAGE) adds stack space instrumenta-
tion to the magic Sysrq key output. Another related option CONFIG_4KSTACKS,
lets you set the kernel stack size to 4KB rather than 8KB.

9 Some kernel hacking options are architecture-dependent.

Kernel Hacking Config Options 639

640 Chapter 21 Debugging Device Drivers

 8. Verbose BUG() reporting (CONFIG_DEBUG_BUGVERBOSE) produces extra debug
information when any kernel code invokes BUG(), assuming that you have
CONFIG_BUG turned on during kernel configuration.

Some debug options live outside the Kernel hacking submenu, too. For example, we
enabled CONFIG_KALLSYMS in this chapter to debug an “oops” message using gdb and
to kprobe a kernel module. This option lives under General setup Confi gure Stan-
dard Kernel Features (for small systems) in the confi guration menu.

Kernel hacking options result in overhead and increased footprint, so don’t leave
them on in production-level kernels.

Test Equipment

It goes without saying that you need the full complement of relevant test equipment
for device driver debugging. If you are testing a modem interface in a digital-only
laboratory environment for example, you will be well served by a phone simulator.
If a high-speed serial driver is manifesting parity errors, an oscilloscope will aid your
problem analysis. If you are writing an I/O device driver, it will help if you have the
associated bus analyzer. If you are writing a network driver, the corresponding protocol
line sniffer will ease your debugging effort.

641

Maintenance and
Delivery

22

In This Chapter

■ Coding Style 642

■ Change Markers 642

■ Version Control 643

■ Consistent Checksums 643

■ Build Scripts 645

■ Portable Code 647

642

You have reached the end of the device driver tour, but implementing a driver
is only a part of the software development life cycle. Before wrapping up,

let’s discuss a few ideas that contribute to operational effi ciency during software
maintenance and delivery.

Coding Style

The life span of many Linux devices range from 5 to 10 years, so adherence to a
standard coding style helps support the product long after you have moved out of
the project.

A powerful editor coupled with an organized writing style makes it easier to cor-
relate code with thought. There can be no infallible guidelines for good style because
it’s a matter of personal preference, but a uniform manner of coding is invaluable if
there are multiple developers working on a project.

Agree on common coding standards with team members and the customer before
starting a project. The coding style preferred by kernel developers is described in
Documentation/CodingStyle in the source tree.

Change Markers

Using a marker such as CONFIG_MYPROJECT to tag additions and deletions to exist-
ing kernel source fi les helps highlight project-specifi c changes to the source tree.
One can recursively grep for the marker string from the root of the code tree to
learn the location of all kernel changes implemented for the project. The following
example marks code changes to drivers/i2c/busses/i2c-i801.c. The modifi cation intro-
duces a check for a new PCI device ID during setup and eliminates a confi guration
byte access:

/* ... */

switch(dev->device) {

 case PCI_DEVICE_ID_INTEL_82801DB_3:

#if defined (CONFIG_MYPROJECT)

 case PCI_DEVICE_ID_MYID :

#endif

 /* ... */

}

/* ... */

#if !defined (CONFIG_MYPROJECT)

pci_write_config_byte(I801_dev, SMBHSTCFG, temp);

#endif

return 0;

/* ... */

CONFIG_MYPROJECT also functions as a confi guration-time switch to enable or dis-
able project-specifi c changes.

It’s a good idea to have submarkers for various subtasks in your project. So, if you
are modifying the kernel for fast boot as part of your project, wrap those changes
within a submarker such as CONFIG_MYPROJECT_FASTBOOT.

Version Control

You can’t execute a serious project without the services of a robust version control
repository. A version control system helps manage multiple versions of source code
and regulates fi le accesses by team members. Concurrent Versions System or CVS
(www.nongnu.org/cvs) is an open source revision control software that has been
around for a long time and comes bundled with many Linux distributions. Another
versioning system called subversion (http://subversion.tigris.org) was developed as an
intended replacement for CVS. Git (http://git.or.cz) is the version control system
of choice for kernel developers and is used to maintain several open source projects,
including the Linux kernel. Ample documentation on these systems is available on
the Internet.

Consistent Checksums

Because of legal issues latent in distributing the kernel, companies often ship kernel
modifi cations to customers in the form of a source patch generated against an agreed-
upon base. Customers, in turn, integrate the patch into an in-house code repository
and build the software locally.

Comparing the MD5 checksum of your binary images with that of your customer’s
is a guard against patching errors, but the values may not match as-is because the ker-
nel and module images often contain information specifi c to the build environment.

Consistent Checksums 643

www.nongnu.org/cvs
http://git.or.cz
http://subversion.tigris.org

644 Chapter 22 Maintenance and Delivery

To force identical MD5 sums, exclude such data while generating kernel and module
images at either end. Here are some typical scenarios that inject environmental data
into the object image:

 • Some driver methods toss a call to BUG() to announce conditions that are
never supposed to occur. BUG() spits out, among other things, the offending
filename and line number. The pathname of the file depends on the location
of your build sandbox. It gets imprinted in the produced image and contrib-
utes to MD5 variance. For example, look at nfs_unlock_request() in fs/nfs/
pagelist.c:

 void

 nfs_unlock_request(struct nfs_page *req)

 {

 if (!NFS_WBACK_BUSY(req)) {

 printk(KERN_ERR "NFS: Invalid unlock attempted\n");

 BUG();

 }

 /* ... */

 }

BUG() is defined in include/asm-your-arch/bug.h:

 #define BUG() do {\

 __asm__ __volatile__ ("ud2\n"\

 ...

 : : "I" (__LINE__), "I"(__FILE__))

You can compile BUG() away by disabling CONFIG_BUG during kernel configu-
ration. Or you may get rid of the line number and filename information emit-
ted by BUG() by switching off CONFIG_DEBUG_BUGVERBOSE.

 • The wd33c93 driver (drivers/scsi/wd33c93.c) announces the time of compilation
during initialization. You will find this snippet if you go to the end of the initial-
ization routine, wd33c93_init():

void

 wd33c93_init(struct Scsi_Host *instance,

 const wd33c93_regs regs, dma_setup_t setup,

 dma_stop_t stop, int clock_freq)

 {

 /* ... */

 printk(" Version %s - %s, Compiled %s at %s\n",

 WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__);

 }

The build timestamp thus gets embedded inside the image, causing the MD5
checksum to depend on it.

 • The CONFIG_IKCONFIG_PROC configuration option, if enabled, introduces the
configuration timestamp in the kernel image. This information is available as
part of /proc/config.gz at runtime.

 • Utilities living inside the scripts/ directory in the kernel tree also contribute
to MD5 variance by injecting the output of programs such as hostname,
date, whoami and domainname, into kernel header files such as include/linux/
 compile.h.

Hunt down and mask out such direct and indirect references to environmental
information to generate identical checksums at both ends. Of course, you need not
bother about kernel modules that aren’t relevant. Envelope your code modifi cations
within a change marker such as CONFIG_MYPROJECT_SAME_MD5 and create a kernel
confi guration switch to turn consistent MD5 generation on or off. When you fi nish,
run md5sum on the stripped vmlinux image.

Build Scripts

Customers generally ask for periodic software builds during the development cycle.
Each build includes new features or bug fi xes. The deliverables for an embedded PC
derivative, for example, may include fi rmware components such as the base kernel,
loadable device driver modules, fi lesystem utilities, bootloader, BIOS, and on-card
microcode. To automate build generation, it’s a good idea to implement a set of versa-
tile build scripts that obtain a source code snapshot from the version control repository
and generate a packaged deliverable.

Listing 22.1 shows a skeletal build script that assumes use of CVS for version con-
trol. This is a simple script that shows only the kernel build. In the real world, you
might need a sophisticated suite of scripts that package several software components
and manage different installation scenarios.

Build Scripts 645

646 Chapter 22 Maintenance and Delivery

LISTING 22.1 A Simple Build Script

Check that compilation tools are installed

#...

Assume that $user contains the user name, $cvsserver contains

the CVS server name and /path/to/repository is the location

of your project's repository on the CVS server

CVS="cvs –d :pserver:$user@$cvsserver:/path/to/repository"

$CVS login

Check-out the kernel

$CVS checkout kernel

Build the kernel

cd kernel

make mrproper

#Get the .config file for your platform

cp arch/your-arch/configs/your_platform_defconfig .config

make oldconfig

make –j5 bzImage # Accelerate by spawning 5 instances of 'make'

if [$? != 0]

then

 echo "Error building Kernel. Bailing out.."

 exit 1

fi

Copy the kernel image to a target directory

cp arch/x86/boot/bzImage /path/to/target_directory/productname.kernel

Build modules and install them in an appropriate directory

make modules

if [$? != 0]

then

 echo "Error building modules. Bailing.."

 exit 2

fi

export INSTALL_MOD_PATH="$TARGET_DIRECTORY/modules"

make modules_install

Rebuild after forcing generation of identical MD5 sums and

package the resulting checksum information.

#...

Generate a source patch from the base starting point, assuming

that KERNELBASE is the CVS tag for the vanilla kernel

cvs rdiff –u –r KERNELBASE kernel > patch.kernel

Generate a changelog using "cvs log"

#...

Package everything nicely into a tar ball

#...

After you satisfactorily complete build verifi cation tests on the generated deliver-
able, initiate a post-build process to tag the current state of the version control system
with a build identifi er. This essentially attaches a name to the source snapshot cor-
responding to the build and helps trace problems to code versions. You can check
out source versions based on the relevant build identifi er when you later attempt to
re- create reported fi eld problems in your lab.

Portable Code

Portability directly translates to code reusability and easier maintenance. This is sig-
nifi cant in today’s marketplace, where there are an assortment of processors and innu-
merable peripheral chipsets. Things will fast spin out of control if you have to code
separate bus drivers for each processor and different client device drivers for each host
controller. Here are some hints for writing portable drivers:

 • Make portability a design goal while architecting your driver.

 • Using appropriate kernel APIs automatically injects a degree of portability. A
USB driver using the services of the USB core is rendered independent of the
USB host controller. It will work unchanged on different systems, irrespective
on whether they use UHCI, OHCI, or something else.

 • Write SMP-safe code.

 • Write code that is 64-bit clean. Do not, for example, assign a pointer to an inte-
ger, even with valid typecasts.

 • Write drivers such that they can be easily adapted for other similar devices.

Portable Code 647

648 Chapter 22 Maintenance and Delivery

 • Use architecture-independent APIs wherever available. For example, calls to
outb() or inb() will work irrespective of whether the processor uses I/O-mapped
or memory-mapped addressing. If you do need to use architecture-specific code
such as inline assembly, stow it away inside the appropriate arch/your-arch/
directory .

 • Push policy to header files and user space. Use macros and definitions wherever
suitable.

649

23

Shutting Down

In This Chapter

■ Checklist 650

■ What Next? 651

650

Before transitioning to init runlevel 0, let’s summarize how to set forth on
your way to Linux-enablement when you get hold of a new device. Here’s

a quick checklist.

Checklist

 1. Identify the device’s functionality and interface technology. Depending on
what you find, review the chapter describing the associated device driver sub-
system. As you learned, almost every driver subsystem on Linux contains a
core layer that offers driver services, and an abstraction layer that renders
applications independent of the underlying hardware (revisit Figure 18.3 in
Chapter 18, “Embedding Linux”). Your driver needs to fit into this frame-
work and interact with other components in the subsystem. If your device is
a modem, learn how the UART, tty, and line discipline layers operate. If your
chip is an RTC or a watchdog, learn how to conform to the respective kernel
APIs. If what you have is a mouse, find out how to tie it with the input event
layer. If your hardware is a video controller, glean expertise on the frame buf-
fer subsystem. Before embarking on driving an audio codec, investigate the
ALSA framework.

 2. Obtain the device’s data sheet and understand its register programming
model. For an I2C DVI transmitter, for example, get the device’s slave address
and the programming sequence for initialization. For an SPI touch control-
ler, understand how to implement its finite state machine. For a PCI Ether-
net card, find out the configuration space semantics. For a USB device, figure
out the supported endpoints and learn how to communicate with them.

 3. Search for a starting point driver inside the mighty kernel source tree. Research
candidate drivers and hone in on a suitable one. Certain subsystems offer skel-
etal drivers that you can model after, if you don’t find a close match. Examples
are sound/drivers/dummy.c, drivers/usb/usb-skeleton.c, drivers/net/pci-skeleton.c,
and drivers/video/skeletonfb.c.

 4. If you obtain a starting point driver, investigate the exact differences between
the associated device and your hardware by comparing the respective data sheets
and schematics. For illustration, assume that you are putting Linux on a cus-
tom board that is based on a distribution-supported reference hardware. Your
distribution includes the USB controller driver that is tested on the reference
hardware, but does your custom board use different USB transceivers? You have
a frame buffer driver for the LCD controller, but does your board use a different
display panel interface such as LVDS? Perhaps an EEPROM that sat on the I2C
bus on the reference board now sits on a 1-wire bus. Is the Ethernet controller
now connected to a different PHY chip or even to a Layer 2 switch chip? Or
perhaps the RS-232 interface to the UART has given way to RS-485 for better
range and fidelity.

 5. If you don’t have a close starting point or if you decide to write your own driver
from scratch, invest time in designing and architecting the driver and its data
structures.

 6. Now that you have all the information you need, arm yourself with software
tools (such as ctags, cscope, and debuggers) and lab equipment (such as oscil-
loscopes, multimeters, and analyzers) and start writing code.

What Next?

Linux is here to stay, but internal kernel interfaces tend to get fossilized as soon as
someone fi gures out a cleverer way of doing things. No kernel code is etched in stone.
As you learned, even the scheduler, considered sacred, has undergone two rewrites
since the 2.4 days. The number of new lines of code appearing in the kernel tree
runs into the millions each year. As the kernel evolves, new features and abstractions
keep getting added, programming interfaces redesigned, subsystems restructured for
extracting better performance, and reusable regions fi ltered into common cores.

You now have a solid foundation, so you can adapt to these changes. To maintain
your cutting-edge, refresh your kernel tree regularly, browse the kernel mailing list
frequently, and write code whenever you can. Linux is the future, and being a kernel
guru pays. Stay at the front lines!

What Next? 651

This page intentionally left blank

653

A

Linux Assembly

654

Device drivers sometimes need to implement some code snippets in assem-
bly, so let’s take a look at the different facets of assembly programming

on Linux.

Figure A.1 shows the Linux boot sequence on a PC-compatible system and is a
simpler version of Figure 2.1 in Chapter 2, “A Peek Inside the Kernel.” The fi rm-
ware components in the fi gure are implemented using different assembly syntaxes:

 • The BIOS is typically written wholly in assembly. Some of the popular PC BIOSes
are coded using assemblers such as the Microsoft Macro Assembler (MASM).

 • Linux bootloaders such as LILO and GRUB are implemented using a mix of
C and assembly. The SYSLINUX bootloader is entirely written in assembly
using the Netwide Assembler (NASM).

 • Real mode Linux startup code uses the GNU Assembler (GAS).

 • Protected mode BIOS invocations are done in inline assembly, which is a con-
struct supported by GCC to insert assembly in between C statements.

In Figure A.1, the top two components generally follow Intel-based assembly
syntax, whereas the bottom two are coded in AT&T (or GAS) syntax. There are
exceptions; the assembly parts of GRUB use GAS.

BIOS (MASM)

Power On

SYSLINUX Bootloader (NASM)

Real Mode Kernel (GAS)

Protected Mode Kernel (GCC inline assembly)

FIGURE A.1 Firmware components and assembly syntaxes.

To illustrate the differences between these two syntaxes, consider code that outputs
a byte to the parallel port. In Intel format used by the BIOS or the bootloader, you
would write the following:

mov dx, 03BCh ;0x3BC is the I/O address of the parallel port

mov al, 0ABh ;0xAB is the data to be output

out dx, al ;Send data to the parallel port

However, if you want to perform the same task from Linux real mode startup code,
you need to do this:

movw $0x3BC, %dx

movb $0xAB, %al

outb %al, %dx

You can see that unlike in Intel format, in AT&T syntax, the source operand comes
fi rst, and the destination operand comes second. Register names in AT&T format
are preceded by %, and immediate operands are preceded by $. AT&T opcodes have
suffi xes such as b (for byte) and w (for word) to specify the size of memory operands,
whereas Intel syntax accomplishes this by looking at the operands rather than the
opcodes. To move pointer references in Intel syntax, you have to specify operand pre-
fi xes such as byte ptr.

The advantage of learning AT&T syntax is that it’s understood by GAS and inline GCC,
which work not only on Intel-based systems, but also on a variety of processor archi-
tectures.

Next, let’s rewrite the preceding snippet using GCC inline assembly, which is what
you would use from the protected mode kernel:

unsigned short port = 0x3BC;

unsigned char data = 0xAB;

asm("outb %%al, %%dx\n\t"

 :

 : "a" (data), "d" (port)

);

Linux Assembly 655

656 Appendix A Linux Assembly

The general format of the asm construct supported by GCC is as follows:

asm(assembly

 : output operand constraints

 : input operand constraints

 : clobbered operand specifier

);

In the operand sections, a, b, c, d, S, and D stand for EAX, EBX, ECX, EDX, ESI,
and EDI registers, respectively. Input operand constraints copy data from the sup-
plied variables to the specifi ed registers before executing the assembly instructions,
whereas output operand constraints (written as =a, =b, and so on) copy data from
the specifi ed registers to the supplied variables after executing the assembly instruc-
tions. The clobbered operand constraints ask GCC to assume that the listed registers
are not available for use. Look at the GCC Inline Assembly HOWTO (www.ibiblio.
org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html) for more details on the GCC
inline assembly syntax.

The only constraint used in our example is specifi c to input operands. This effec-
tively copies the value of data to the AL register and the value of port to the DX regis-
ter. Register names are preceded by %% in inline assembly, because % is used to refer to
the supplied operands. %i stands for the ith operand; so, if you want to refer to data and
port inside the example inline assembly snippet, you may respectively use %0 and %1.

To obtain a clearer picture of inline assembly translation, let’s look at the assembly
code generated by the compiler corresponding to the preceding inline assembly snip-
pet by supplying the -s command-line argument to GCC. Look at the comment
against each generated code line for explanations:

 movw $956, -2(%ebp) # Value of data in stack set to 0x3BC

 movb $-85, -3(%ebp) # Value of port in stack set to 0xAB

 movb -3(%ebp), %al # movb 0xAB, %al

 movw -2(%ebp), %dx # movw 0x3BC, %dx

#APP # Marker to note start of inline assembly

 outb %al, %dx # Write to parallel port

#NO_APP # Marker to note end of inline assembly

You may use inline assembly from user mode programs, too. Here is an application
written using inline assembly that invokes the syslog() system call to read the last
128 bytes from the kernel printk() ring buffer:

www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

#define READ_COMMAND 3 /* First argument to

 syslog() system call */

#define MSG_LENGTH 128 /* Third argument to syslog() */

int

main(int argc, char *argv[])

{

 int syslog_command = READ_COMMAND;

 int bytes_to_read = MSG_LENGTH;

 int retval;

 char buffer[MSG_LENGTH]; /* Second argument to syslog() */

 asm volatile(

 "movl %1, %%ebx\n" /* READ_COMMAND */

 "movl %2, %%ecx\n" /* buffer */

 "movl %3, %%edx\n" /* bytes_to_read */

 "movl $103, %%eax\n" /* __NR_syslog */

 "int $128\n" /* Generate System Call */

 "movl %%eax, %0" /* retval */

 :"=r" (retval)

 :"m"(syslog_command),"r"(buffer),"m"(bytes_to_read)

 :"%eax","%ebx","%ecx","%edx");

 if (retval > 0) printf("%s\n", buffer);

}

As you learned in Chapter 4, “Laying the Groundwork,” the int $128 (or int
0x80) instruction generates a software interrupt that traps into system calls. Because
system calls result in transition from user mode to kernel mode, the function argu-
ments are not passed in user or kernel stacks, but in CPU registers. The system call
number (include/asm-your-arch/unistd.h has the full list) is stored in the EAX register.
For the syslog() system call, this number is 103. If you look at the man page for
syslog(), you will see that it takes three arguments: a command, the address of a
buffer to hold returned data, and the length of the buffer. These are passed in registers
EBX, ECX and EDX, respectively. The return value is transferred from EAX to retval.
The inline assembly invocation effectively translates to this:

retval = syslog(syslog_command, buffer, bytes_to_read);

Linux Assembly 657

658 Appendix A Linux Assembly

If you compile and run the code, you will see output like this, fetched from the
kernel ring buffer:

0:0:0:0: Attached scsi removable disk sda

<5>sd 0:0:0:0: Attached scsi generic sg0 type 0

<7>usb-storage: device scan complete

...

The kernel system call trap in arch/x86/kernel/entry_32.S saves all register contents
to stack, so the real system calls see their arguments on stack, even though user-space
code passes them in CPU registers. To ensure that system call routines expect argu-
ments on stack, they are all tagged with the GCC attribute, asmlinkage. Note that
asmlinkage has nothing to do with asm (or __asm__) that is used to declare inline
assembly.

Let’s end this section by illustrating an example of inline assembly modifi cation to
a Linux bootloader for a PowerPC-based board. Assume that the fl ash memory on the
board does not support BackGround Operation (BGO). This means that the bootloader
code cannot write to fl ash while executing from fl ash, which is needed, for example,
if the bootloader needs to update a kernel image that is residing in another part of the
fl ash. One solution is to modify the bootloader so that the boot code used to write
and erase the fl ash gets executed entirely from Instruction Cache (I-cache) with the data
segment residing in Data Cache (D-cache). The sample macro written here in GCC
inline assembly does the job of pretouching the necessary bootloader instructions onto
I-cache. You need a working knowledge of PowerPC assembly to understand this code
snippet:

/* instr_length is the number of instructions to touch

 into I-cache. _load_i$_copy and _end_i$_copy are

 program labels */

#define load_into_icache_copy(instr_length) \

asm volatile("lis %%r3, 0x1@h\n \

 ori %%r3, %%r3, 0x1@l\n \

 mticcr %%r3\n \

 isync\n \

 \n \

 lis %%r6, _end_i$_copy@h\n \

 ori %%r6, %%r6, _end_i$_copy@l\n \

 icbt %%r0, %%r6\n \

 lis %%r4, %0@h\n \

 ori %%r4, %%r4, %0@l\n \

 mtctr %%r4\n \

 _load_i$_copy: \

 addis %%r6, %%r6, 32@ha\n \

 addi %%r6, %%r6, 32@l\n \

 icbt %%r0, %%r6\n \

 bdnz _load_i$_copy\n \

 _end_i$_copy: \

 nop\n" \

 : \

 : "i"(instr_length) \

 :"%r6","%r4","%r0","r8","r9");

Debugging

To debug the real mode kernel, you cannot use debuggers such as the Kernel Debug-
ger (kdb) or the Kernel GNU Debugger (kgdb), which we discussed in Chapter 21,
“Debugging Device Drivers.” A quick way to debug kernel assembly snippets is by
using the DOS debug tool after converting your code to Intel-style syntax. But debug
was created in the 16-bit era, so you can’t, for instance, step through code that ini-
tializes the EAX register. You can fi nd 32-bit debug-type freeware tools available for
download on the Internet. JTAG debuggers, also discussed in Chapter 21, are a kind
of panacea because a single tool can be used to debug the BIOS, bootloader, Linux real
mode code, and kernel-BIOS interactions.

Debugging 659

This page intentionally left blank

661

B

Linux and the BIOS

662

P arts of the x86 kernel, such as the video frame buffer driver (vesafb) and
Advanced Power Management (APM), explicitly use BIOS services to

accomplish certain functions. Other sections of the kernel, such as the serial
driver, implicitly depend on the BIOS to initialize I/O base addresses and inter-
rupt levels. Real mode kernel code makes extensive use of BIOS calls during
boot to perform tasks such as assembling the system memory map.1 Because
some device drivers depend directly or indirectly on the BIOS, let’s learn how
to interact with it.

Real Mode Calls

Many parts of the kernel glean information from the BIOS in real mode and use the
collected information during normal operation in protected mode.

The steps needed to accomplish this are as follows:

 1. Real mode kernel code invokes BIOS services and populates returned infor-
mation in the first physical memory page, called the zero page. This is done
by the source files in the arch/x86/boot/ directory. The full layout of the zero
page can be found in Documentation/i386/zero-page.txt.

 2. After the kernel switches to protected mode, but before it clears the zero
page, the obtained data is saved in kernel data structures. This is done in arch/
x86/kernel/setup_32.c.

 3. The protected mode kernel makes suitable use of the saved information dur-
ing normal operation.

As an example, let’s fi nd out how the kernel assembles the system memory
map from the BIOS. Listing B.1 is a snippet from arch/x86/boot/memory.c in the
2.6.23.1 source tree that invokes the BIOS int 0x15 service to obtain the system
memory map.

1 On BIOS-less embedded architectures, similar responsibilities (for example, waking the kernel from suspend on ARM
Linux) rest with the bootloader.

LISTING B.1 Obtaining the System Memory Map (arch/x86/boot/memory.c)

static int detect_memory_e820 (void)

{

 int count = 0;

 u32 next = 0;

 u32 size, id;

 u8 err;

 /* The boot_params structure contains the zero page */

 struct e820entry *desc = boot_params.e820_map;

 do {

 size = sizeof(struct e820entry);

 asm("int $0x15; setc %0"

 : "=d" (err), "+b" (next), "=a" (id), "+c" (size),

 "=m" (*desc)

 : "D" (desc), "d" (SMAP), "a" (0xe820));

 /* ... */

 count++;

 desc++;

 } while (next && count < E820MAX);

 return boot_params.e820_entries = count;

}

In the listing, 0xe820 is the function number specifi ed in the AX register
before invoking int 0x15 to procure the memory map. If you look at the BIOS
call defi nition for int 0x15, function 0xe820 (the full list is available at
http://lrs.fi m.uni-passau.de/support/doc/interrupt-57/INT.HTM), you will see that
the BIOS writes the current element of the memory map in a buffer pointed to by the
DI register. In Listing B.1, DI points to the offset in the zero page where the memory
map is to be stored (boot_params.e820_map). The code then loops until all elements
in the memory map are collected. The number of elements is computed and stored at
offset boot_params.e820_entries in the zero page. When execution successfully

Real Mode Calls 663

664 Appendix B Linux and the BIOS

exits the loop, the memory map is available in the zero page in the form of struct
e820map, defi ned in include/asm-x86/e820.h:

struct e820entry {

 _u64 addr; /* start of memory segment */

 _u64 size; /* size of memory segment */

 _u32 type; /* type of memory segment */

} _attribute_((packed));

struct e820map {

 _u32 nr_map;

 struct e820entry map[E820MAX];

};

The kernel switches to protected mode later in arch/x86/boot/pm.c. When in pro-
tected mode, the kernel saves the collected memory map via copy_e820_map(),
defi ned in arch/x86/kernel/e820_32.c. This is shown in Listing B.2. For simplicity, the
listing scissors out error checks and folds the add_memory_region() routine.

LISTING B.2 Copying the Memory Map (arch/x86/kernel/e820_32.c)

struct e820map e820;

static int __init

copy_e820_map(struct e820entry *biosmap, int nr_map)

{

 int x;

 /* ... */

 do {

 /* Copy memory map information collected from

 the BIOS into local variables */

 unsigned long long start = biosmap->addr;

 unsigned long long size = biosmap->size;

 unsigned long long end = start + size;

 unsigned long type = biosmap->type;

 /* Sanitize start and size */

 /* ... */

 /* Populate the kernel data structure, e820 */

 x = e820.nr_map;

 e820.map[x].addr = start;

 e820.map[x].size = size;

 e820.map[x].type = type;

 e820.nr_map++;

 } while (biosmap++,--nr_map); /*Do for all elements in map*/

 /* ... */

}

Look at arch/x86/mm/init_32.c to see how the e820 structure populated in Listing
B.2 is used later on in the boot process.

The Old i386 Boot Code

Starting with the 2.6.23 kernel, the i386 boot assembly code has been largely rewritten in C.
Prior to 2.6.23, the code in Listing B.1 lived in arch/i386/boot/setup.S rather than in arch/x86/
boot/memory.c. Also, the switch to protected mode now occurs in arch/x86/boot/pm.c rather than
setup.S.

To take another example, the kernel makes use of the BIOS int 0x10 service to
obtain video mode parameters while it’s in real mode (arch/x86/boot/video*.c). The
VESA frame buffer driver (drivers/video/vesafb.c) relies on these parameters to turn on
graphics mode at boot time.

As an exercise, use a similar approach to obtain BIOS Power-On Self Test (POST)
error codes from the real mode kernel (via int 0x15, function 0x2100) and display
them during normal operation via the /proc fi lesystem.

Bootloaders also make use of BIOS services in real mode. If you browse through
the sources of LILO, GRUB, or SYSLINUX, you will see a liberal sprinkling of int
0x13 calls to read the kernel image from the boot device.

Protected Mode Calls

To see how the kernel makes protected mode BIOS calls, let’s look at the APM
implementation.

APM is a BIOS interface specifi cation, which is now almost obsolete (see the sec-
tion “Power Management” in Chapter 4, “Laying the Groundwork”). Power man-
agement policies are defi ned in the BIOS, and a kernel thread called kapmd polls it

Protected Mode Calls 665

666 Appendix B Linux and the BIOS

 every second to fi gure out the course of action. The polling is done using protected
mode BIOS calls. To do this, kapmd needs to know the protected mode entry segment
address and offset. These are obtained from the real mode kernel during boot using the
int 0x15, function 0x5303 BIOS service.

The actual protected mode BIOS call is invoked using inline assembly from
apm_bios_call_simple_asm(), defi ned in include/asm-x86/mach-default/apm.h:

__asm__ __volatile__(APM_DO_ZERO_SEGS

 "pushl %%edi\n\t"

 "pushl %%ebp\n\t"

 "lcall *%%cs:apm_bios_entry\n\t"

 "setc %%bl\n\t"

 "popl %%ebp\n\t"

 "popl %%edi\n\t"

 APM_DO_POP_SEGS

 : "=a" (*eax), "=b" (error), "=c" (cx), "=d" (dx),

 "=S" (si)

 : "a" (func), "b" (ebx_in), "c" (ecx_in)

 : "memory", "cc");

APM_DO_ZERO_SEGS zeros out segment registers. apm_bios_entry contains the
protected mode entry address. The input constraint "a"(func) copies the desired
BIOS function number to the EAX register before invocation. For example, function
number APM_FUNC_GET_EVENT (0x530b) elicits an APM event from the BIOS, and
function number APM_FUNC_IDLE (0x5305) notifi es the BIOS that the processor is
idle. Results are returned by the BIOS in registers EAX, EBX, ECX, and EDX. As per the
previous output operand constraints, these are propagated to the caller in variables
*eax, error, cx, and dx, respectively. In the assembly body, registers are saved onto
the kernel stack before the BIOS call and restored afterward to prevent the BIOS from
trampling on them.

BIOS and Legacy Drivers

The BIOS provides a degree of hardware abstraction to some Linux drivers. Let’s
take the PC serial port driver (discussed in Chapter 6, “Serial Drivers”) as an exam-
ple. The BIOS probes the Super I/O chipset and assigns I/O base addresses and
IRQs to the respective serial (and Infrared) ports. The serial driver needs to be told
about the resources assigned by the BIOS either via hard-coded values in a header

fi le (include/asm-x86/serial.h) or via user-space commands. As an exercise, dig into
the data sheet of your Super I/O chipset and add support in the serial driver to probe
for the resource values set by the BIOS.

To take another example, even if you disable USB support in the kernel, you can
use USB keyboards and mice on PC systems with help from the BIOS. The BIOS
turns on an emulation mode in the South Bridge that routes USB keyboard and mouse
input from the USB controller to the keyboard controller. This tricks the operating
system into thinking that you are using a legacy keyboard or mouse.

The kernel used to rely on the BIOS to walk the PCI bus and confi gure detected
devices. This is now obsolete, but take a look at arch/x86/pci/pcbios.c to see how PCI
BIOS can be accessed from the kernel. Chapter 10, “Peripheral Component Intercon-
nect,” discussed PCI drivers.

BIOS and Legacy Drivers 667

This page intentionally left blank

669

C

Seq Files

670

Monitoring and trending data points offered by procfs might help diag-
nose device driver problems when the cause of a symptom looks fuzzy.

But sometimes, especially when the amount of data is large, the correspond-
ing procfs read() implementations become complex. The seq fi le interface is a
kernel helper mechanism designed to simplify such implementations. Seq fi les
render procfs operations cleaner and easier.

Let’s gradually introduce complexities to a procfs read() routine and see how
the seq file interface transforms the labored routine into a graceful one. We’ll also
update one of the few remaining 2.6 drivers that does not yet leverage seq files.

The Seq File Advantage

Let’s discover the advantages offered by seq fi les with the help of an example. As is
common with many device drivers, assume that you have a linked list of data struc-
tures and that each node in the list contains a string fi eld (called info). The example
code in Listing C.1 uses a procfs fi le named /proc/readme to export these strings to
user space. When a user reads this fi le, the procfs read() method readme_proc(),
gets invoked. This routine traverses the linked list and appends the info fi eld of
each node to the fi lesystem buffer passed down to it.

LISTING C.1 Reading via Procfs

/* Private Data structure */

struct _mydrv_struct {

 /* ... */

 struct list_head list; /* Link to the next node */

 char info[10]; /* Info to pass via the procfs file */

 /* ... */

};

static LIST_HEAD(mydrv_list); /* List Head */

/* Initialization */

static int __init

mydrv_init(void)

{

 int i;

 static struct proc_dir_entry *entry = NULL ;

 struct _mydrv_struct *mydrv_new;

 /* ... */

 /* Create /proc/readme */

 entry = create_proc_entry("readme", S_IWUSR, NULL);

 /* Attach it to readme_proc() */

 if (entry) {

 entry->read_proc = readme_proc;

 }

 /* Handcraft mydrv_list for testing purpose.

 In the real world, device driver logic

 maintains the list and populates the 'info' field */

 for (i=0;i<100;i++) {

 mydrv_new = kmalloc(sizeof(mydrv_struct), GFP_ATOMIC);

 sprintf(mydrv_new->info, "Node No: %d\n", i);

 list_add_tail(&mydrv_new->list, &mydrv_list);

 }

 return 0;

}

/* The procfs read entry point */

static int

readme_proc(char *page, char **start, off_t offset,

 int count, int *eof, void *data)

{

 int i = 0;

 off_t thischunk_len = 0;

 struct _mydrv_struct *p;

 /* Traverse the list and copy info into the supplied buffer */

 list_for_each_entry(p, &mydrv_list, list) {

 thischunk_len += sprintf(page+thischunk_len, p->info);

 }

 eof = 1; / Indicate completion */

 return thischunk_len;

}

The Seq File Advantage 671

672 Appendix C Seq Files

Boot the kernel with these changes and peek inside /proc/readme:

bash> cat /proc/readme

Node No: 0

Node No: 1

...

Node No: 99

When procfs read() methods are invoked, they are supplied one page of memory
that they can use to pass information to user space. As you can see in Listing C.1,
the fi rst argument passed to readme_proc() is a pointer to this page-sized buffer.
The second argument start, is used to aid the implementation of procfs fi les larger
than a page. The use of this parameter will get clear when we look at the example in
Listing C.2. The next two arguments respectively specify the offset from where the
read operation is requested and the number of bytes to be read. The eof argument is
used to tell the caller whether there is more data to be read. If *eof is not set before
returning, the procfs read entry point is called again for more data. In Listing C.1, if
you comment out the line that sets *eof, readme_proc() gets called again with the
offset argument set to 1190 (which is the number of ASCII bytes contained in the
strings, Node No: 0 to Node No: 99). readme_proc() returns the number of bytes
copied to the supplied buffer.

The size of data generated by the procfs read routine in Listing C.1 falls within
the one-page limit. However, if you increase the number of nodes in the linked list
from 100 to 500 in mydrv_init(), the amount of data generated while reading /proc/
readme crosses a page and triggers the following output:

bash> cat /proc/readme

Node No: 0

Node No: 1

...

Node No: 322

proc_file_read: Apparent buffer overflow!

As you can see, an overfl ow occurs after one page (4,096 in this case) worth of
ASCII characters have been produced.

To handle such large procfs fi les, you need to refashion the code in Listing C.1
using the start parameter alluded to earlier. This makes the function somewhat

 complicated and is shown in Listing C.2. The semantics of this modifi ed implementa-
tion is as follows:

 • readme_proc() is called multiple times, each invocation yielding a maximum
of count bytes starting at offset. The count requested during each call is less
than the size of a page.

 • During each invocation, the kernel increments offset by the number of bytes
returned by the previous invocation.

 • readme_proc() signals eof only if the amount of data produced is less than
or equal to the requested count plus the current offset. If eof is not set, the
function is called again with offset advanced by the number of bytes returned
previously.

 • After each invocation, only those bytes starting from *start are collected and
returned to the caller.

Print the values of *start, offset, count, and page, and look at the output gen-
erated during each invocation to better understand the operation sequence.

With this hack, your procfs fi le can supply large amounts of data to user space
without size limitations:

bash> cat /proc/readme

Node No: 0

Node No: 1

...

Node No: 499

LISTING C.2 Large Procfs Reads

static int

readme_proc(char *page, char **start, off_t offset,

 int count, int *eof, void *data)

{

 int i = 0;

 off_t thischunk_start = 0;

 off_t thischunk_len = 0;

 struct _mydrv_struct *p;

The Seq File Advantage 673

674 Appendix C Seq Files

 /* Loop thru the list collecting device info */

 list_for_each_entry(p, &mydrv_list, list) {

 thischunk_len += sprintf(page+thischunk_len, p->info);

 /* Advance thischunk_start only to the extent that the next

 * read will not result in total bytes more than (offset+count)

 */

 if (thischunk_start + thischunk_len < offset) {

 thischunk_start += thischunk_len;

 thischunk_len = 0;

 } else if (thischunk_start + thischunk_len > offset+count) {

 break;

 } else {

 continue;

 }

 }

 /* Actual start */

 *start = page + (offset - thischunk_start);

 /* Calculate number of written bytes */

 thischunk_len -= (offset - thischunk_start);

 if (thischunk_len > count) {

 thischunk_len = count;

 } else {

 *eof = 1;

 }

 return thischunk_len;

}

The seq fi le interface comes to the rescue when you are faced with the prospect of
awkwardly implementing large procfs fi les as in Listing C.2. As the name implies, the
seq fi le interface views the contents of procfs fi les as a sequence of objects. Program-
ming interfaces are provided to iterate through this object sequence. Your code has to
supply the following iterator methods expected by the seq interface:

 1. start(), which is called first by the seq interface. This initializes the position
within the iterator sequence and returns the first iterator object of interest.

 2. next(), which increments the iterator position and returns a pointer to the
next iterator. This function is agnostic to the internal structure of the iterator
and considers it an opaque object.

 3. show(), which interprets the iterator passed to it and generates output strings
to be displayed when a user reads the corresponding procfs file. This method
makes use of helpers such as seq_printf(), seq_putc(), and seq_puts() to
format the output.

 4. stop(), which is called at the end for cleanup.

The seq fi le interface automatically invokes these iterator methods to produce out-
put in response to user operations on related procfs fi les. You no longer need to worry
about page-sized buffers and signaling the end of data.

Let’s rewrite Listing C.2 making use of seq fi les. This is done in Listing C.3 by
viewing the linked list as a sequence of nodes. The basic iterator object is the node, and
each invocation of the next() method returns the next node in the list.

LISTING C.3 Using Seq Files to Simplify Listing C.2

#include <linux/seq_file.h>

/* start() method */

static void *

mydrv_seq_start(struct seq_file *seq, loff_t *pos)

{

 struct _mydrv_struct *p;

 loff_t off = 0;

 /* The iterator at the requested offset */

 list_for_each_entry(p, &mydrv_list, list) {

 if (*pos == off++) return p;

 }

 return NULL;

}

/* next() method */

static void *

mydrv_seq_next(struct seq_file *seq, void *v, loff_t *pos)

{

 /* 'v' is a pointer to the iterator returned by start() or

 by the previous invocation of next() */

 struct list_head *n = ((struct _mydrv_struct *)v)->list.next;

 ++*pos; /* Advance position */

The Seq File Advantage 675

676 Appendix C Seq Files

 /* Return the next iterator, which is the next node in the list */

 return(n != &mydrv_list) ?

 list_entry(n, struct _mydrv_struct, list) : NULL;

}

/* show() method */

static int

mydrv_seq_show(struct seq_file *seq, void *v)

{

 const struct _mydrv_struct *p = v;

 /* Interpret the iterator, 'v' */

 seq_printf(seq, p->info);

 return 0;

}

/* stop() method */

static void

mydrv_seq_stop(struct seq_file *seq, void *v)

{

 /* No cleanup needed in this example */

}

/* Define iterator operations */

static struct seq_operations mydrv_seq_ops = {

 .start = mydrv_seq_start,

 .next = mydrv_seq_next,

 .stop = mydrv_seq_stop,

 .show = mydrv_seq_show,

};

static int

mydrv_seq_open(struct inode *inode, struct file *file)

{

 /* Register the operators */

 return seq_open(file, &mydrv_seq_ops);

}

static struct file_operations mydrv_proc_fops = {

 .owner = THIS_MODULE,

 .open = mydrv_seq_open, /* User supplied */

 .read = seq_read, /* Built-in helper function */

 .llseek = seq_lseek, /* Built-in helper function */

 .release = seq_release, /* Built-in helper funciton */

};

static int __init

mydrv_init(void)

{

 /* ... */

 /* Replace the assignment to entry->read_proc in Listing C.1,

 with a more fundamental assignment to entry->proc_fops. So

 instead of doing "entry->read_proc = readme_proc;", do the

 following: */

entry->proc_fops = &mydrv_proc_fops;

 /* ... */

}

Updating the NVRAM Driver

The seq fi le interface has been around since the latter versions of the 2.4 kernel, but
its use has become widespread only with 2.6. Let’s update the NVRAM driver (drivers/
char/nvram.c), one of the few remaining drivers that hasn’t switched over to use seq
fi les. (As usual, + and - show the differences from the original source fi le.) To do
this, you may use an extra-simple fl avor of seq fi les that uses only the show()iterator
method. Use single_open() to register this method.

Listing C.4 contains the updated NVRAM driver. Because the seq interface won’t
sleep between calls to iterator methods, you may hold locks inside the methods.

LISTING C.4 Update the NVRAM Driver Using Seq Files

+static struct file_operations nvram_proc_fops = {

+ .owner = THIS_MODULE,

+ .open = nvram_seq_open,

+ .read = seq_read,

+ .llseek = seq_lseek,

+ .release = single_release,

+};

Updating the NVRAM Driver 677

678 Appendix C Seq Files

-static struct file_operations nvram_fops = {

- .owner = THIS_MODULE,

- .llseek = nvram_llseek,

- .read = nvram_read,

- .write = nvram_write,

- .ioctl = nvram_ioctl,

- .open = nvram_open,

- .release = nvram_release,

-};

+static int nvram_seq_open(struct inode *inode, struct file *file)

+{

+ return single_open(file, nvram_show, NULL);

+}

+static int nvram_show(struct seq_file *seq, void *v)

+{

+ unsigned char contents[NVRAM_BYTES];

+ int i;

+

+ spin_lock_irq(&rtc_lock);

+ for (i = 0; i < NVRAM_BYTES; ++i)

+ contents[i] = __nvram_read_byte(i);

+ spin_unlock_irq(&rtc_lock);

+

+ mach_proc_infos(seq, contents);

+ return 0;

+}

static int __init

nvram_init(void)

{

+ ent = create_proc_entry("driver/nvram", 0, NULL);

+ if (!ent) {

+ printk(KERN_ERR "nvram: can't create /proc/driver/nvram\n");

+ ret = -ENOMEM;

+ goto outmisc;

+ }

+ ent->proc_fops = &nvram_proc_fops;

- if (!create_proc_read_entry("driver/nvram", 0, NULL,

- nvram_read_proc, NULL)) {

- printk(KERN_ERR "nvram: can't create /proc/driver/nvram\n");

- ret = -ENOMEM;

- goto outmisc;

- }

 /* ... */

}

-#define PRINT_PROC(fmt,args...) \

-/* ... */

-static int

-nvram_read_proc(char *buffer, char **start, off_t offset,

- int size, int *eof, void *data)

-{

- /* ... */

-}

In addition to the modifi cations in Listing C.4, change all references to
PRINT_PROC() in the original driver to seq_printf(). The original driver and the
one in Listing C.4 produce the same output if you read from /proc/driver/nvram.

Looking at the Sources

Look at Documentation/fi lesystems/proc.txt for more information about procfs. The
fs/proc/ directory contains code that implements the procfs core. The seq fi le inter-
face lives in fs/seq_fi le.c. Users of procfs and seq fi les are sprinkled all over the kernel
sources.

Looking at the Sources 679

This page intentionally left blank

Index

681

Symbols
$ (dollar sign), 655
% (percent sign), 655-656
1-wire protocol, 254
4G networking, 500
7-bit addressing, 235
802.11 stack, 495
855GME EDAC driver, 579-583
8250.c driver, 172
16550-type UART, 172

A
AAL (ATM Adaptation Layer), 459
AC’97, 393
ac97_bus module, 395
accelerated methods, 372
accelerometers, 228
accessing

char drivers, 120
EEPROM device, 244-246
I/O regions, 558-561
memory regions from user space, 562-564
PCI regions, 285-288

configuration space, 285-286
I/O and memory regions, 286-288

registers, 332-335
access point names (APNs), 497
Acclerated Graphics Port (AGP), 357
ACPI (Advanced Configuration and Power Interface),

114, 585-587
acpid daemon, 586
AML (ACPI Machine Language Interpreter), 585
devices, 585
drivers, 585
kacpid, 586
spaces, 585
user-space tools, 586

acpid daemon, 586

acpitool command, 586
activation

net_device structure, 444
NICs (network interface cards), 444

active queues, 554
ad-hoc mode (WLAN), 490
ADC (Analog-to-Digital Converter), 79, 251
add_disk() function, 428, 438
add_memory_region() function, 664
add_mtd_partitions() function, 525
add-symbol-file command, 603
add_timer() function, 35, 53
add_wait_queue() function, 61-62, 86
addresses

ARP (Address Resolution Protocol), 25
bus addresses, 290
endpoint addresses, 316
LBA (logical block addressing), 416
logical addresses, 50
MAC (Media Access Control) addresses, 443
PCI, 281-285
slave addresses, 235
USB (universal serial bus), 316
virtual addresses, 50

Address Resolution Protocol (ARP), 25
adjust checksum command (ioctl), 137
adjust_cmos_crc() function, 137
Advanced Configuration and Power Interface. See ACPI
Advanced Host Controller Interface (AHCI), 418
Advanced Linux Sound Architecture. See ALSA
Advanced Power Management (APM), 114, 662.

See also BIOS (basic input/output system)
Advanced Technology Attachment (ATA), 416
AF_INET protocol family, 25
AF_NETLINK protocol family, 25
AF_UNIX protocol family, 25
Affix, 478
AGP (Acclerated Graphics Port), 357
AHCI (Advanced Host Controller Interface), 418

682 Index

AIO (Asynchronous I/O), 134
aio_read() function, 135
aio_write() function, 135
alloc_chrdev_region() function, 126, 160, 168
alloc_disk() function, 428, 438
alloc_etherdev() function, 443, 463
alloc_ieee80211() function, 443, 463
alloc_irdadev() function, 443, 463
alloc_netdev() function, 443, 463
allocating memory, 49-51
allow_signal() function, 59, 86
ALSA (Advanced Linux Sound Architecture), 394-396

ALSA driver for MP3 player, 403-409
ALSA programming, 409-411

alsa-devel mailing list, 412
alsa-lib library, 395-397
alsa-utils package, 395
alsactl command, 395
alsamixer command, 395
amateur radio, 590
amd_flash_info structure, 525
amixer command, 395
AML (ACPI Machine Language Interpreter), 585
Analog-to-Digital Converter (ADC), 79, 251
anticipatory I/O scheduler, 27, 423
aplay command, 395
APM (Advanced Power Management), 114, 662.

See also BIOS (basic input/output system)
apm_bios_call_simple_asm() function, 666
APM_DO_ZERO_SEGS, 666
APM_FUNC_GET_EVENT, 666
APM_FUNC_IDLE, 666
APNs (access point names), 497
applying patches, 7
arch directory, 8

arch/x86/boot/ directory, 662
arch/x86/boot/memory.c fi le, 662
arch/x86/kernel/e820_32.c fi le, 664

ARM bootloaders, 534
ARP (Address Resolution Protocol), 25
asked_to_die() function, 71
asm construct, 656
asmlinkage attribute, 658
assembly

boot sequence, 654
debugging, 659
GNU Assembler (GAS), 654
i386 boot assembly code, 665
inline assembly, 654-659
Microsoft Macro Assembler (MASM), 654
Netwide Assembler (NASM), 654

assigning IRQs (interrupt requests), 94
asynchronous DMA, 289

Asynchronous I/O (AIO), 134
asynchronous interrupts, 94
asynchronous transfer mode (ATM), 458-459
ATA (Advanced Technology Attachment), 416
ATAGs, 536
ATAPI (ATA Packet Interface), 416
ATM (asynchronous transfer mode), 458-459
ATM Adaptation Layer (AAL), 459
atomic_dec() function, 54
atomic_dec_and_test() function, 54
atomic_inc() function, 54
atomic_inc_and_test() function, 54
atomic_notifier_chain_register() function, 78, 87
ATOMIC_NOTIFIER_HEAD() macro, 78, 87
atomic operators, 45-46
Attribute memory (PCMCIA), 263
audio codecs, 393
audio drivers

ALSA (Advanced Linux Sound
Architecture), 394-396
ALSA driver for MP3 player, 403-409
ALSA programming, 409-411

audio architecture, 392-394
audio codecs, 393
Bluetooth, 477
data structures, 413
debugging, 412
embedded drivers, 541
kernel programming interfaces, table of, 413
MP3 player example

ALSA driver code listing, 403-409
ALSA programming, 409-411
codec_write_reg() function, 402
MP3 decoding complexity, 411
mycard_audio_probe() function, 399
mycard_audio_remove() functions, 399
mycard_hw_params() function, 402
mycard_pb_trigger() function, 401
mycard_playback_open() function, 401
overview, 396
register layout of audio hardware, 398
snd_card_free() function, 399
snd_card_new() function, 399
snd_card_proc_new() function, 403
snd_card_register() function, 402
snd_ctl_add() function, 402
snd_ctl_new1() function, 402
snd_device_new() function, 400
snd_kcontrol structure, 402
snd_pcm_hardware structure, 401
snd_pcm_lib_malloc_pages() function, 402
snd_pcm_lib_preallocate_pages_for_all()

function, 402

Index 683

snd_pcm_new() function, 400
snd_pcm_ops structure, 400
snd_pcm_set_ops() function, 400-401
user programs, 397

OSS (Open Sound System), 394
overview, 392
sound directory, 9
sound mixing (fn), 393
sources, 412-413

audio players. See MP3 player example
autoloading modules, 112-113
AX.25 protocol, 590

B
BackGround Operation (BGO), 658
backlight_device_register(), 373
barriers (memory), 114
BCD (Binary Coded Decimal), 250
BCD2BIN() macro, 250
BCSP (BlueCore Serial Protocol), 471
bdflush kernel thread, 58
benchmarking, 459
BGO (BackGround Operation), 658
BH (bottom half) flavors, 44
Binary Coded Decimal (BCD), 250
Binutils, 531
bio_for_each_segment() function, 435, 438
bio structure, 425, 437
bio_vec structure, 425
BIOS (basic input/output system)

BIOS-provided physical RAM map, 19-21
legacy drivers, 666
protected mode calls, 665-666
real mode calls, 662-665
updating, 522-525

bit-banging drivers, 253
blk_cleanup_queue() function, 438
blk_fs_request() function, 438
blk_init_queue() function, 427, 438
blk_queue_hardsect_size() function, 426, 438
blk_queue_make_request() function, 436, 438
blk_queue_max_sectors() function, 427, 438
blk_rq_map_sg() function, 435, 438
BLOBs (BootLoader Objects), 534
block device emulation, 516
block directory, 8
block drivers

block_device_operations structure, 437
block I/O layer, 421-422
data structures, 423-426, 437
debugging, 436-437
DMA data transfer, 434-435

entry points, 426
interrupt handlers, 435
I/O schedulers, 422-423
kernel programming interfaces, table of, 438
myblkdev storage controller

block device operations, 430-431
disk access, 432-434
initialization, 427-430
overview, 426-427
register layout, 427

sources, 437-438
storage technologies

ATAPI (ATA Packet Interface), 416
IDE (Integrated Drive Electronics), 416
libATA, 417-418
MMC (MultiMediaCard), 419
RAID (redundant array of inexpensive disks), 419
SATA (Serial ATA), 417
SCSI (Small Computer System Interface), 418
SD (Secure Digital) cards, 419
summary of, 419-420

block I/O layer, 421-422
blocking_notifier_call_chain() function, 76, 87
blocking_notifier_chain_register() function, 86
BLOCKING_NOTIFIER_HEAD() macro, 78, 86
blocks, 427
BlueCore Serial Protocol (BCSP), 471
Bluetooth, 348, 466-468

audio, 477
Bluetooth Host Control Interface, 195
Bluetooth Network Encapsulation Protocol

(BNEP), 468
Bluetooth Special Interest Group (SIG), 478
BlueZ, 469-470

CF cards, 471
RFCOMM, 473
USB adapters, 471-473

debugging, 478
keyboards, 219-220
mice, 226
networking, 477
profi les, 468
USB, 468

bluetooth.ko, 469
Bluetooth Host Control Interface, 195
Bluetooth Network Encapsulation Protocol

(BNEP), 468
Bluetooth Special Interest Group (SIG), 478
BlueZ, 469-470

CF cards, 471
RFCOMM, 473
USB adapters, 471-473

bluez-utils package, 478

684 Index

BNEP (Bluetooth Network Encapsulation
Protocol), 468

bnep.ko, 469
board rework, 549-550
BogoMIPS, 24
BootLoader Objects (BLOBs), 534
bootloaders

defi nition, 532
embedded bootloaders

BLOB (BootLoader Object), 534
bootstrapping, 533-534
GRUB, 535
LILO (Linux Loader), 534
overview, 531-532
RedBoot, 534
SYSLINUX, 535
table of, 534-535

Redboot bootloader, 511
boot logo (console drivers), 387
boot process, 18-30, 654. See also bootloaders

BIOS-provided physical RAM map, 19-21
delay-loop calibration, 23-25
EXT3 fi lesystem, 26
HLT instruction, 25
I/O scheduler, 27
init process, 28-30
initrd memory, 25-26
kernel command line, 21-22
Linux boot sequence, 19
low memory/high memory, 21
PCI resource confi guration, 27
registered protocol families, 25
start_kernel() function, 18

bootstrapping, 533-534
bottom half (BH) flavors, 44
BREAKPOINT macro, 597
breakpoints, 597
brownouts, 543
buffers

DMA, 289, 302-304
NIC buffer management, 450
socket buffers, 441-442

BUG() function, 644
build scripts, 645-647
building kernels, 10-11
built-in kernel threads, 57-58
bulk endpoints, 316
bulk URBs, 321
bus addresses, 290
bus-device-driver programming interface, 109
bus_register() function, 110

buses
bus addresses, 290
I2C bus transactions, 237-238
LPC (Low Pin Count) bus, 520
SMBus, 234, 244
SPI (Serial Peripheral Interface) bus, 251-254
USB. See USB (universal serial bus)
user space I2C/SMBus driver, 572-573
w1 bus, 254

BusyBox, 547

C
cache

cache misses, counting, 632-633
coherency. See DMA

calibrate_delay() function, 23-25
calibrating touch controllers, 227
call_usermodehelper() function, 64, 86
Cambridge Silicon Radio (CSR), 471
CAN (controller area network), 543
capacity of disks, obtaining via SCSI Generic, 566-567
CardBus, 258, 278-280
Card Information Structure (CIS), 263
cardmgr daemon, 260
Card Services, 260, 263
Carrier Grade Linux (CGL), 6
cathode ray tube (CRT), 357
cdev_add() function, 126, 160, 168
cdev_del() function, 168
cdev_init() function, 160, 168
cdev structure, 121, 168
CDMA (code division multiple access), 466, 498-500
cdrecord, 565
cdrtools, 565
CELF (Consumer Electronics Linux Forum), 5
cell phone devices

claiming/freeing memory, 182
console drivers, 382-386
CPLD (Complex Programmable Logic Device), 179
overview, 178
platform drivers, 180-181
SoC (System-on-Chip), 178
USB_UART driver, 183-191
USB_UART ports, 179
USB_UART register layout, 180

cellular networking, 466
CDMA, 498-500
GPRS, 496-498

CEs (correctable errors), 578
CF (Compact Flash), 469. See also PCMCIA

BlueZ, 471
debugging, 273-274

Index 685

defi nition, 258
embedded drivers, 540
storage, 272

cfb_fillrect(), 372
CFI (Common Flash Interface), 511-512
cfi_private structure, 525
cfi_probe_chip() function, 512
CFQ (Complete Fair Queuing), 27, 423
CFS (Completely Fair Scheduler), 555
CGL (Carrier Grade Linux), 6
change markers, 642-643
changing

line disciplines, 204
MTU size, 447

character drivers. See char drivers
char device emulation, 517
char drivers

accessing, 120
char device emulation, 517
CMOS driver

I/O Control, 137-139
initialization, 122-127
internal file pointer, setting with

cmos_llseek(), 136-137
opening, 127-129
overview, 121-122
reading/writing data, 129-135
register layout, 122
releasing, 127-129

code fl ow, 121
common problems, 166-167
data structures, 121
misc drivers, 160
overview, 120
parallel port communication, 145-146
parallel port LED board, 146-156

controlling with sysfs, 151-156
led.c driver, 147-150

pseudo char drivers, 157-159
RTC subsystem, 156-157
sensing data availability

fasync() function, 142-145
overview, 139
select()/poll() mechanism, 139-142

sources, 167-169
UART drivers, 191
watchdog timer, 160-166

check_bugs() function, 25
checklist for new devices, 650-651
checksums, 643-645
chip drivers. See NOR chip drivers
Chip Select (CS), 252

choosing
peripherals, 530-531
processors, 530-531

Cirrus Logic EP7211 controller, 533
CIS (Card Information Structure), 263
cisparse_t structure, 266, 275
cistpl.h file, 266
cistpl_cftable_entry_t structure, 266, 275
class_create() function, 117, 127
class_destroy() function, 117, 156
class_device_add_attrs() function, 117
class_device_create() function, 117, 160
class_device_create_file() function, 117
class_device_destroy() function, 117, 156
class_device_register() function, 117
class drivers

Bluetooth, 348
HIDs (human interface devices), 348
mass storage, 339-345
overview, 338-339
USB-Serial, 345-348

classes
device classes, 106-110
input class, 107
structure, 116

clean markers, 514
clear_bit() function, 54
Clear To Send (CTS), 191
clients

client controllers, 349
EEPROM device example, 243
PCMCIA client drivers, registering, 267-270

clock_gettime() function, 35
CLOCK_INPUT_REGISTER, 398
clock_settime() function, 35
close() function, 444
CLUT (Color Look Up Table), 387
CLut224, 387
CMOS_BANK0_DATA_PORT register, 122
CMOS_BANK0_INDEX_PORT register, 122
CMOS_BANK1_DATA_PORT register, 122
CMOS_BANK1_INDEX_PORT register, 122
cmos_dev structure, 126-128
CMOS drivers

I/O Control, 137-139
initialization, 122-127
internal fi le pointer, setting with

cmos_llseek(), 136-137
opening, 127-129
overview, 121-122
reading/writing data, 129-135
register layout, 122
releasing, 127-129

686 Index

cmos_fops structure, 126
cmos_init() function, 123-127
cmos_ioctl() function, 137-139
cmos_llseek() function, 136-137
cmos_open() function, 127-129
cmos_read() function, 129-134
cmos_release() function, 127-129
cmos_write() function, 129-134
code division multiple access (CDMA), 466, 498-500
code portability, 647-648
codec_write_reg() function, 402
coding styles, 642
coldplug, 110-111
collect_data() function, 84
color modes, 370-371
command-line utilities. See specific utilities
command-set 0001, 512
command-set 0002, 512
command-set 0020, 512
COMMAND_REGISTER, 427
commands. See specific commands
Common Flash Interface (CFI), 511
Common memory (PCMCIA), 263
Common UNIX Printing System (CUPS), 146
Compact Flash. See CF
compact middleware, 546-547
compilation

GCC compiler, 531
line disciplines, 204

complete() function, 80, 87
complete_all() function, 80
complete_and_exit() function, 81, 87
Complete Fair Queuing (CFQ), 27, 423
Completely Fair Scheduler (CFS), 555
completion interface, 78-81
completion structure, 85
Complex Programmable Logic Devices

(CPLDs), 179, 542
concurrency

atomic operators, 45-46
CVS (Concurrent Versioning System), 158, 643
debugging, 48
NICs (network interface cards), 450
overview, 39
reader-writer locks, 46-48
spinlocks and mutexes, 39-45

Concurrent Versioning System (CVS), 158, 643
CONFIG_4KSTACKS configuration option, 639
CONFIG_DEBUG_BUGVERBOSE

configuration option, 640
CONFIG_DEBUG_HIMEM configuration

option, 639
CONFIG_DEBUG_PAGE_ALLOC configuration

option, 639

CONFIG_DEBUG_SLAB configuration option, 639
CONFIG_DEBUG_SPINLOCK configuration

option, 639
CONFIG_DEBUG_STACK_USAGE

configuration option, 639
CONFIG_DEBUG_STACKOVERFLOW

configuration option, 639
CONFIG_DETECT_SOFTLOCKUP configuration

option, 639
CONFIG_IKCONFIG_PROC configuration

option, 645
CONFIG_MAGIC_SYSRQ configuration option, 639
CONFIG_MYPROJECT_FASTBOOT marker, 643
CONFIG_MYPROJECT marker, 642-643
CONFIG_PCMCIA_DEBUG() macro, 273
config_port() function, 181
CONFIG_PREEMPT_RT patch-set, 44
CONFIG_PREEMPT configuration option, 61
CONFIG_PRINTK_TIME configuration option, 639
CONFIG_RTC_CLASS configuration option, 157
CONFIG_SYSCTL configuration option, 64
configuration

kernel hacking confi guration options, 638
MTD, 519-520
NAND chip drivers, 513
net_device structure, 446-447
NICs, 446-447
PCI resources, 27
Wireless Extensions, 490-494

configuration space (PCI), accessing, 285-286
connectivity of embedded drivers, 542
conservative governor, 583
consistency of checksums, 643-645
consistent DMA access methods, 290-291
console drivers, 380-382

boot logo, 387
cell phones, 382-386

consoles, 380
Consumer Electronics Linux Forum (CELF), 5
container_of() function, 128, 168, 344
contexts, interrupt, 92-94
contrast and backlight, 373-380
CONTROL_REGISTER, 301, 398
controller area network (CAN), 543
controllers

CAN (controller area network), 543
CS8900 controller, 457
DRAM controllers, 579
ECC-aware memory controller, 579-583
EHCI controller, 568
host controllers, 234
NAND fl ash controllers, 513
OTG (On-The-Go) controllers, 312

Index 687

USB device controllers, 349
USB host controllers, 315

coord.c application, 211-212
copy_e820_map() function, 664
copy_from_user() function, 150, 168
copy_to_user() function, 168
copying system memory maps, 664-665
copyleft (GNU), 3
correctable errors (CEs), 578
counters

preemption counters, 43
TSC (Time Stamp Counter), 36-37

CPLDs (Complex Programmable Logic
Devices), 179, 542

cpqarray driver, 435
cpufreq_register_governor() function, 583
CPU frequency (cpufreq) driver subsystem, 583-584
CPU frequency notification, 75
cpuspeed daemon, 583
crash command, 624-628
crash dumps, 622
create_singlethread_workqueue() function, 73
create_workqueue() function, 73
CRT (cathode ray tube), 357
crypto directory, 8
CS (Chip Select), 252
CS8900 controller, 457
cs89x0_probe1() function, 457
cscope command, 9
CSR (Cambridge Silicon Radio), 471
ctags command, 10
CTS (Clear To Send), 191
CUPS (Common UNIX Printing System), 146
CVS (Concurrent Versioning System), 158, 643

D
D-cache (Data Cache), 658
daemonize() function, 58-59, 86
daemons

acpid, 586
cardmgr, 260
cpuspeed, 583
iscsid, 592
oprofi led, 629
pppd, 273
trace, 636

DATA_REGISTER, 427
data availability, sensing

fasync() function, 142-145
overview, 139
select()/poll() mechanism, 139-142

Data Cache (D-cache), 658
data field (sk_buff structure), 441

data flow, Linux-PCMCIA subsystem, 271-272
data mixing (fn), 393
data structures. See specific structures
data transfer

DMA data transfer, 434-435
net_device structure, 444
NICs (network interface cards), 444
PCI

DMA descriptors and buffers, 302-304
receiving and transmitting data, 305-308
register layout of network functions, 301

telemetry card example, 335-338
USB, 315-316

DDWG (Digital Display Working Group), 357
deadline I/O scheduler, 27, 422
dead state (threads), 62
debugfs, 350
debuggers. See kernel debuggers
debugging. See also ECC reporting

audio drivers, 412
block drivers, 436-437
Bluetooth, 478
breakpoints, 597
concurrency, 48
crash dumps, 622
diagnostic tools, 638
embedded Linux

board rework, 549-550
debuggers, 550

I2C, 254
input drivers, 230-231
JTAG debuggers, 659
kdump, 622-628

example, 624-628
kexec with kdump, 621-622
setup, 623
sources, 629

kernel debuggers
downloads, 609
entering, 597-598
gdb (GNU debugger), 604-605
JTAG debuggers, 605-609
kdb (kernel debugger), 598-600
kgdb (kernel GNU debugger), 600-604
overview, 596-597

kernel hacking confi guration options, 638
kexec, 620-621

invoking, 621
preparation, 620
sources, 629
with kdump, 621-622

kprobes
example, 610-614
fault-handlers, 609

688 Index

inserting inside kernel functions, 609-610
jprobes, 614-617
kretprobes, 617-619
limitations, 619
post-handlers, 609
pre-handlers, 609
sources, 620

Linux assembly, 659
LTP (Linux Test Project), 638
MTD (Memory Technology Devices), 524
overview, 387-388, 550, 596
PCI, 308
PCMCIA, 273-274
profi ling

gprof, 633-634
OProfile, 629-633
overview, 629

RAS (reliability, availability, serviceability), 596
test equipment, 640
tracing, 634-637
UDB (universal serial bus), 349-351
UML (User Mode Linux), 638
watchpoints, 597

debug tool, 659
DECLARE_COMPLETION() macro, 87
DECLARE_MUTEX() function, 54
DECLARE_WAITQUEUE() macro, 86
DEFINE_MUTEX() function, 53
DEFINE_TIMER() function, 53
DEFINE_TIMER() macro, 34
del_gendisk() function, 438
del_timer() function, 35
delay-loop calibration, 23-25
delays

long delays, 33-36
short delays, 36

delivery
build scripts, 645-647
change markers, 642-643
checksum consistency, 643-645
code portability, 647-648
coding styles, 642
version control, 643

depmod utility, 112
descriptors (USB), 322-323
detect_memory_e820() function, 663
dev_alloc_skb() function, 441-442, 463
/dev directory

/dev names, adding to usbfs, 341-343
/dev/full driver, 159
/dev/kmem driver, 159
/dev/mem driver, 159
/dev/null char device, 158
/dev/port driver, 159

/dev/random driver, 158
/dev/urandom driver, 158, 159
/dev/zero driver, 158

dev_kfree_skb() function, 441-463
dev_t structure, 168
devfs, 104
device checklist, 650-651
device classes, 106-110
device controllers, 349
device_driver structure, 116
device_register() function, 110
devices. See also specific devices

ACPI (Advanced Confi guration and Power
Interface) devices, 585

interrupt handling. See interrupt handling
Linux device model

device classes, 106-110
hotplug/coldplug, 110-111
kobjects, 106-110
microcode download, 111-112
module autoload, 112-113
overview, 103
sysfs, 106-110
udev, 103-106, 113

memory barriers, 114
power management, 114-115

diagnostic tools, 638
dialup networking (DUN), 475
die_chain structure, 75
die notifications, 74, 610
diff command, 7
Digital Display Working Group (DDWG), 357
Digital Visual Interface (DVI), 357
direct-to-home (DTH) interface, 543
Direct Memory Access. See DMA
directories, 8-9. See also specific directories
disable_irq() function, 99, 116
disable_irq_nosync() function, 99, 116
disabling IRQs (interrupt requests), 99
disconnecting telemetry drivers, 327-331
Disk-On-Modules (DOMs), 504
disk capacity, obtaining via SCSI Generic, 566-567
disk mirroring, 419
display architecture, 356-358
displaying images with mmap(), 563-564
display parameters, 361-362
distributions, 5-6
dma_addr_t structure, 309
DMA_ADDRESS_REGISTER, 398
DMA (Direct Memory Access), 50. See also

Ethernet-Modem card example
buffers, 289
consistent DMA access methods, 290-291
defi nition, 288

Index 689

descriptors and buffers, 302-304
IOMMU (I/O memory management unit), 290
masters, 288
navigation systems, 372-373
scatter-gather, 290
streaming DMA access methods, 291-292
synchronous versus asynchronous, 289

dma_map_single() function, 401
DMA_RX_REGISTER, 301
dma_set_mask() function, 289
DMA_SIZE_REGISTER, 398
DMA_TX_REGISTER, 301
DMA data transfer, 434-435
dmix (fn), 393
do_gettimeofday() function, 38, 53
do_ida_intr() function, 435
do_IRQ() function, 115
do_map_probe() function, 525
documentation

Documentation directory, 8
procfs, 679
seq fi les, 679

dollar sign ($), 655
domain-specific electronics, 542-543
DOMs (Disk-On-Modules), 504
dongles, Infrared, 483-485
doorbells, 592
DOS debug tool, 659
down() function, 54
down_read() function, 54
down_write() function, 54
DRAM controllers, 579
DRDs (dual-role devices), 315
driver_register() function, 110
drivers directory, 8
Driver Services, 263-264
ds (driver services) module, 261
DTH (direct-to-home) interface, 543
dual-role devices (DRDs), 315
dump_port() function, 559
DUN (dialup networking), 475
dv1394 driver, 589
DVI (Digital Visual Interface), 357

E
e820.c file, 664
e820.h file, 664
e1000 PCI-X Gigabit Ethernet driver, 289
ECC (error correcting code) reporting, 514, 578-583

correctable errors (CEs), 578
ECC-aware memory controller, 579-583
ECC-related registers on DRAM controller, 579

edac_mc module, 578
embedded drivers, 543
multibit errors (MBEs), 578
single-bit errors (SBEs), 578
/sys/devices/system/edac/ directory, 578
uncorrectable errors (UEs), 578

ECs (embedded controllers), 584
EDAC (Error Detection and Correction), 514, 578-583

correctable errors (CEs), 578
ECC-aware memory controller, 579-583
ECC-related registers on DRAM controller, 579
edac_mc module, 578
embedded drivers, 543
error-handling aids, 83-84
multibit errors (MBEs), 578
single-bit errors (SBEs), 578
/sys/devices/system/edac/ directory, 578
uncorrectable errors (UEs), 578

edac_mc module, 578
edge-sensitive devices, 96
eep_attach() function, 242-243
eep_probe() function, 242
eep_read() function, 245
EEPROM device example

accessing, 244-246
adapter capabilities, checking, 244
clients, attaching, 243
i2c_del_driver() function, 247
initializing, 238-241
ioctl() function, 246
llseek() method, 246
memory banks, 238
opening, 241
overview, 238
probing, 241-243
RFID (Radio Frequency Identifi cation)

transmitters, 246
EHCI (Enhanced Host Controller Interface), 315, 568
EISA (Extended Industry Standard Architecture), 588
elv_next_request() function, 432, 438
embedded bootloaders

BLOB (BootLoader Object), 534
bootstrapping, 533-534
GRUB, 535
LILO (Linux Loader), 534
overview, 531-532
RedBoot, 534
SYSLINUX, 535
table of, 534-535

embedded controllers (ECs), 584
embedded drivers

audio, 541
brownouts, 543

690 Index

buttons and wheels, 539
connectivity, 542
CPLDs (Complex Programmable Logic Devices), 542
domain-specifi c electronics, 542-543
ECC capabilities, 543
fl ash memory, 538-544
FPGAs (Field Programmable Gate Arrays), 542
overview, 538
PCMCIA/CF, 259, 540
PWM (pulse-width modulator) units, 543-544
RTC, 541
SD/MMC, 540
touch screens, 541
UARTs, 539
udev, 113
USB, 540
video, 541

embedded Linux
challenges, 528-529
component selection, 530-531
debugging

board rework, 549-550
debuggers, 550

embedded bootloaders
BLOB (BootLoader Object), 534
bootstrapping, 533-534
GRUB, 535
LILO (Linux Loader), 534
overview, 531-532
RedBoot, 534
SYSLINUX, 535
table of, 534-535

embedded drivers
audio, 541
brownouts, 543
buttons and wheels, 539
connectivity, 542
CPLDs (Complex Programmable Logic

Devices), 542
domain-specific electronics, 542-543
ECC capabilities, 543
flash memory, 538-544
FPGAs (Field Programmable Gate Arrays), 542
overview, 538
PCMCIA/CF, 540
PWM (pulse-width modulator) units, 543-544
RTC, 541
SD/MMC, 540
touch screens, 541
UARTs, 539
USB, 540
video, 541

hardware block diagram, 92
kernel porting, 537

memory layout, 535-536
overview, 528
root fi lesystem

compact middleware, 546-547
NFS-mounted root, 544-546
overview, 544

test infrastructure, 548
tool chains, 531
USB (universal serial bus), 312-314

emulation
block device emulation, 516
char device emulation, 517

enable_irq() function, 99, 116
enabling IRQs (interrupt requests), 99
end field (sk_buff structure), 441
end_request() function, 438
endpoint addresses, 316
endpoints (USB), 316
Enhanced Host Controller Interface (EHCI), 315, 568
enumeration, 324
EP7211 controller, 533
epoll() function, 141
erase_info_user structure, 525
erase_info structure, 525
error correcting codes (ECCs). See ECC reporting
Error Detection And Correction. See EDAC
/etc/inittab file, 29
/etc/rc.sysinit, 29
etags command, 10
eth1394 driver, 589
Ethernet-Modem card example, 292-293

data transfer
DMA descriptors and buffers, 302-304
receiving and transmitting data, 305-308
register layout of network functions, 301

modem functions
probing, 299-300
registering, 296-297

MODULE_DEVICE_TABLE() macro, 294
network functions

probing, 298-299
registering, 294-295

PCI_DEVICE() macro, 293
pci_device_id structures, 293

Ethernet NIC driver, 451-457
ethtool, 446-447
ethtool_ops structure, 446, 462
evbug module, 230
Evdev interface, 210
events

input event drivers, 228-230
Evdev interface, 210
overview, 210

Index 691

virtual mouse device example, 210-215
writing, 216

LTT events, 635
notifi er event handlers, 76-78

events/n threads, 58
evolution of Linux, 2-3
eXecute In Place (XIP), 520
EXIT_DEAD state, 62
EXIT_ZOMBIE state, 62
expired queues, 554
ExpressCards, 258, 279-280
EXT3 filesystem, 26
EXT4 filesystem, 28
eXtended Graphics Array (XGA), 356
Extended Industry Standard Architecture (EISA), 588
external watchdogs, 165

F
fasync() function, 142-145
fasync_helper() function, 144, 169
fault-handlers (kprobes), 609
fb_blank() method, 371
fb_check_var() method, 369
fb_fillrect(), 372
fb_var_screeninfo structure, 574
FCC (Federal Communications Commission), 494
fcntl() function, 144
Federal Communications Commission (FCC), 494
Fibre Channel, 592-593
Field Programmable Gate Arrays (FPGAs), 542
FIFO (first-in first-out) memory, 179
file_operations structure, 121, 168, 424-425
file structure, 121
filesystems

debugfs, 350
EXT3, 26
EXT4, 28
JFFS (Journaling Flash File System), 517
NFS (Network File System), 58
procfs. See procfs
rootfs

compact middleware, 546-547
NFS-mounted root, 544-546
obtaining, 26
overview, 544

sysfs, 106-110
usbfs virtual fi lesystem, 567-571
VFS (Virtual File System), 421, 630
YAFFS (Yet Another Flash File System), 518

File Translation Layer (FTL), 516
Finite State Machine (FSM), 195
FireWire, 588-589

Firmware Hub (FWH), 520-524
first-in first-out (FIFO) memory, 179
flash_eraseall command, 519
flash memory. See also MTD

CFI-compliant fl ash, querying, 512
defi nition, 504
embedded drivers, 538-544
NAND, 504
NOR, 504
sectors, 504

floppy storage, 420
flow control (NICs), 449
flush_buffer() function, 203
flushing data, 203
forums, 4-5
FPGAs (Field Programmable Gate Arrays), 542
frame buffer API, 362-364
frame buffer drivers, 365-367

accelerated methods, 372
color modes, 370-371
contrast and backlight, 373-380
data structures, 367-368
DMA, 372-373
parameters, 369-370
screen blanking, 371-372

free_irq() function, 96, 116
free_netdev() function, 463
freeing

IRQs (interrupt requests), 96
memory, 182

Freescale MC13783 Power Management and
Audio Component (PMAC), 254

Freescale MPC8540, 592
Free Software Foundation, 2
frequency scaling, 583-584
Front Side Bus (FSB), 357
fs directory, 8
FSM (Finite State Machine), 195
fsync() function, 134
FTDI driver, 347-348
FTL (File Translation Layer), 516
full char device, 159
full-speed USB, 314
function controllers, 349
functions. See specific functions
FWH (Firmware Hub), 520-524

G
gadget drivers, 348-349
garbage collector (GC), 518
GAS (GNU Assembler), 654
GC (garbage collector), 518
GCC compiler, 531
GCC Inline Assembly HOWTO, 656
gdb (GNU debugger), 604-605
gendisk structure, 423-424, 437

692 Index

general-purpose mouse (gpm), 210
General Object Exchange Profile (GOEP), 478
General Packet Radio Service (GPRS), 466, 496-498
General Purpose I/O (GPIO), 95
generating

patches, 7
preprocessed source code, 10

GET_DEVICE_ID command, 431
get_random_bytes() function, 158
get_stats() method, 445
get_wireless_stats() function, 446
getitimer() function, 36
gettimeofday() function, 38
Glibc libraries, 531
Global System for Mobile Communication

(GSM), 477, 496
glow_show_led() function, 155, 156
GMCH (Graphics and Memory Controller Hub), 357
GNU

copyleft, 3
GAS (GNU Assembler), 654
gdb (GNU debugger), 604-605
LGPL (Lesser General Public License), 3
GPL (GNU Public License), 3

GOEP (General Object Exchange Profile), 478
governors, 583
GPIO (General Purpose I/O), 95
GPL (GNU Public License), 3
gpm (general-purpose mouse), 210
gprof, 633-634
GPRS (General Packet Radio Service), 466, 496-498
Graphics and Memory Controller Hub (GMCH), 357
GRUB, 535
GSM (Global System for Mobile

Communication), 477, 496

H
HA (High Availability) project, 596
HAL (Hardware Access Layer), 494
halt (HLT) instruction, 25
ham radio, 590
handle_IRQ_event() function, 159
handling interrupts. See interrupt handling
hard-specific modules (HDMs), 589
hard_start_xmit() function, 449
hard_start_xmit method, 444
Hard Drive Active Protection System (HDAPS), 228
Hardware Access Layer (HAL), 494
hardware block diagrams

embedded system, 92
PC-compatible system, 91

hardware RAID, 420
hash lists, 72

HCI (Host Control Interface), 273, 468
hci_uart.ko, 469
HD (High Definition) Audio, 394
HDAPS (Hard Drive Active Protection System), 228
HDLC (High-level Data Link Control), 75
HDMI (High-Definition Multimedia Interface), 357
HDMs (hard-specific modules), 589
hdparm utility, 436
HDTV (High-Definition Television), 357
head field (sk_buff structure), 441
helper interfaces

completion interface, 78-81
error-handling aids, 83-84
hash lists, 72
kthread helpers, 81-83
linked lists

creating, 65
data structures, initializing, 67
functions, 66
work submission, 68-69
worker thread, 69-71

notifi er chains, 74-78
overview, 65
work queues, 72-74

hidp driver, 226
HIDs (human interface devices), 219, 338, 348, 469
High-Definition Multimedia Interface (HDMI), 357
High-Definition Television (HDTV), 357
High-level Data Link Control (HDLC), 75
high-speed interconnects, 591

Infi niBand, 592
RapidIO

Fibre Channel, 592-593
iSCSI (Internet SCSI), 593

USB, 314
High Availability (HA) project, 596
High Definition (HD) Audio, 394
high memory, 21
history of Linux, 2-3
hlist_head structure, 72, 85
hlist_nodes structure, 72
hlists (hash lists), 72
HLT instruction, 25
HNP (Host Negotiation Protocol), 315
host adapters, 234
Host Control Interface (HCI), 273, 468
Host Negotiation Protocol (HNP), 315
hotplug, 110-111
hubs, root, 315
human interface devices (HIDs), 219, 338, 348, 469
hwclock command, 624
HZ, 31-33, 52

Index 693

I
I-cache (Instruction Cache), 658
I/O Control

CMOS driver, 137-139
touch controller, 203

I/O memory management unit (IOMMU), 290
I/O regions

accessing, 558-561
dumping bytes from, 559

I/O schedulers, 27, 422-423
I2C. See also SMBus

1-wire protocol, 254
bus transactions, 237-238
compared to USB, 316
core, 235-237
debugging, 254
defi nition, 234
EEPROM device example

accessing, 244-246
adapter capabilities, checking, 244
clients, attaching, 243
i2c_del_driver() function, 247
initializing, 238-241
ioctl() function, 246
llseek() method, 246
memory banks, 238
opening, 241
overview, 238
probing, 241-243
RFID (Radio Frequency Identification)

transmitters, 246
i2c-dev, 251
LM-Sensors, 251
overview, 234-235
RTC (Real Time Clock), 247-250
sources, 255-256
SPI (Serial Peripheral Interface) bus, 251-254
summary of data structures, 255
summary of kernel programming interfaces, 256
user mode I2C, 571-573

i2c-dev module, 251, 572
i2c_add_adapter() function, 256
i2c_add_driver() function, 241, 256
i2c_attach_client() function, 256
i2c_check_functionality() function, 244, 256
i2c_client_address_data structure, 242, 255
i2c_client structure, 255
i2c_del_adapter() function, 256
i2c_del_driver() function, 247, 256
i2c_detach_client() function, 256
i2c_driver structure, 255
i2c_get_functionality() function, 244, 256

i2c_msg structure, 255
i2c_probe() function, 256
i2c_smbus_read_block_data() function, 244
i2c_smbus_read_byte() function, 244
i2c_smbus_read_byte_data() function, 244, 575
i2c_smbus_read_word_data() function, 244
i2c_smbus_write_block_data() function, 244
i2c_smbus_write_byte() function, 244
i2c_smbus_write_byte_data() function, 244
i2c_smbus_write_quick() function, 244
i2c_smbus_write_word_data() function, 244, 575
i2c_transfer() function, 248, 256
I2O (Intelligent Input/Output), 589
I2O SIG (I2O Special Interest Group), 588
I2S (Inter-IC Sound) bus, 393-394
i386 boot assembly code, 665
I855_EAP_REGISTER register, 578
I855_ERRSTS_REGISTER register, 579
IDE (Integrated Drive Electronics), 416
IEEE 1394, 588-589
images

displaying with mmap(), 563-564
initramfs, 26

imx.c driver, 205
in[b|w|l|sn|sl]() function, 169
in_interrupt() function, 94
inb() function, 169, 574, 648
include/asm-x86/e820.h file, 664
include/pcmcia/cistpl.h file, 266
include directory, 8
Industries Standard Architecture (ISA), 587-588
InfiniBand, 592
Infrared, 195, 466, 478-480

data structures, 489
dongles, 483-485
IrCOMM, 486
IrDA sockets, 487
kernel programming interfaces, 489
Linux-IrDA, 480-481
LIRC, 488
networking, 486-487
sources, 489
Super I/O chip, 482-483

infrastructure mode (WLAN), 490
init() function

char drivers, 121
CMOS driver, 122-127
EEPROM device example, 238

init_completion() function, 80, 87
init directory, 8
INIT_LIST_HEAD() function, 66
init_MUTEX() function, 54

694 Index

init_timer() function, 34, 53
initialization

CMOS driver, 122-127
EEPROM device example, 238-241
myblkdev storage controller, 427-430
telemetry confi guration register, 333-335
telemetry driver, 326-327

initiators (iSCSI), 592
init process, 28-30
initramfs root filesystem, 26
initrd memory, 25-26
inittab file, 29
inl() function, 169, 574
inline assembly, 654-659
input_allocate_device() function, 214
input_dev structure, 231
input_event() function, 158
input_event structure, 231
input_handler structure, 216, 231
input_register_device() function, 93, 215, 232, 253
input_register_handler() function, 232
input_report_abs() function, 232, 253
input_report_key() function, 232
input_report_rel() function, 232
input_sync() function, 215, 232
input_unregister_device() function, 232
input class, 107
input drivers

debugging, 230-231
input device drivers

accelerometers, 228
Bluetooth keyboards, 219-220
Bluetooth mice, 226
output events, 228-230
PC keyboards, 217-219
PS/2 mouse, 221
roller mouse device example, 221-223
serio, 217
touch controllers, 227-228
touchpads, 224-226
trackpoints, 223
USB keyboards, 219-220
USB mice, 226

input event drivers
Evdev interface, 210
overview, 210
virtual mouse device example, 210-215
writing, 216

input subsystem, 208-209
sources, 231-232
summary of data structures, 231

input subsystem, 208-209
insmod command, 12

Instruction Cache (I-cache), 658
int 0x15 service, 662, 663
Integrated Drive Electronics (IDE), 416
Intelligent Input/Output (I2O), 589
Inter-IC Sound (I2S) bus, 393-394
Inter-Integrated Circuit. See I2C
internal file pointer, setting with

cmos_llseek(), 136-137
Internet address notification, 75
Internet Protocol (IP), 440
Internet SCSI (iSCSI), 591-593
interrupt contexts, 30-31, 92-94
interrupt handling

asynchronous interrupts, 94
block drivers, 435
interrupt contexts, 92-94
IRQs (interrupt requests)

assigning, 94
definition, 92
enabling/disabling, 99
freeing, 96
requesting, 95-96

overview, 92
roller wheel device example, 94-99

edge sensitivity, 96
free_irq() function, 96
request_irq() function, 95-96
roller interrupt handler, 97-99
softirqs, 100-101
tasklets, 101-102
wave forms generated by, 95

softirqs, 99-103
synchronous interrupts, 94
tasklets, 99-103

interruptible state (threads), 62
interrupt requests. See IRQs
interrupts, 92
interrupt service routine (ISR), 92
invoking kexec, 621
inw() function, 169, 574
ioctl() function, 137, 203, 246, 430-431, 444
IOMMU (I/O memory management unit), 290
ioperm() function, 558, 574
iopl() function, 558, 574
ioremap() function, 309
ioremap_nocache() function, 309, 509
iovec structure, 135
IP (Internet Protocol), 440
ipc directory, 8
ipx_routes_lock, 46
IrCOMM, 486
irda-utils package, 480
IrDA socket (IrSock), 480, 487

Index 695

IrLAP (IR Link Access Protocol), 480
IrLMP (IR Link Management Protocol), 480
irq command, 625
IRQ_HANDLED flag, 96
IRQF_DISABLED flag, 96
IRQF_SAMPLE_RANDOM flag, 96
IRQF_SHARED flag, 96
IRQF_TRIGGER_HIGH flag, 96
IRQF_TRIGGER_RISING flag, 96
IRQs (interrupt requests)

assigning, 94
cell phone device example, 182
defi nition, 92
enabling/disabling, 99
freeing, 96
requesting, 95-96
roller wheel device example, 94-95

IrSock (IrDA socket), 480
IS_ERR() function, 84, 87
ISA (Industries Standard Architecture), 587-588
ISA NICs, 457-458
iSCSI (Internet SCSI), 591-593
iscsi_tcp.c driver, 593
iscsid daemon, 592
ISR (interrupt service routine), 92
iterator methods

next(), 674
show(), 675
start(), 674
stop(), 675

J
JFFS (Journaling Flash File System), 517
jiffies, 23, 31-33
Journaling Flash File System (JFFS), 517
jprintk() function, 617
jprobe_return() function, 617
jprobes, 614-617
JTAG (Joint Test Action Group), 533

debuggers, 605-609, 659

K
kacpid thread, 586
kallsyms_lookup_name() function, 614
kapmd thread, 666
kbnepd, 469
kdb (kernel debugger), 598-600
kdump, 622-628

example, 624-628
kexec with kdump, 621-622
setup, 623
sources, 629

kernel.org, 4
kernel_thread() function, 58-59, 86
kernel debuggers

downloads, 609
entering, 597-598
gdb (GNU debugger), 604-605
JTAG debuggers, 605-609
kdb (kernel debugger), 598-600
kgdb (kernel GNU debugger), 600-604
overview, 596-597

kernel directory, 8
kernel hacking configuration options, 638
kernel mode, 30
kernel modules. See modules
kernel probes. See kprobes
kernel processes. See kernel threads
kernel programming interfaces. See specific functions
kernels

boot process, 18-30
BIOS-provided physical RAM map, 19-21
delay-loop calibration, 23-25
EXT3 filesystem, 26
HLT instruction, 25
I/O scheduler, 27
init process, 28-30
initrd memory, 25-26
kernel command line, 21-22
Linux boot sequence, 19
low memory/high memory, 21
PCI resource configuration, 27
registered protocol families, 25
start_kernel() function, 18

building, 10-11
concurrency

atomic operators, 45-46
debugging, 48
overview, 39
reader-writer locks, 46-48
spinlocks and mutexes, 39-45

data structures, table of, 52
debuggers

downloads, 609
entering, 597-598
gdb (GNU debugger), 604-605
JTAG debuggers, 605-609
kdb (kernel debugger), 598-600
kgdb (kernel GNU debugger), 600-604
overview, 596-597

helper interfaces
completion interface, 78-81
error-handling aids, 83-84
hash lists, 72
kthread helpers, 81-83

696 Index

linked lists, 65-71
notifier chains, 74-78
overview, 65
work queues, 72-74

interrupt contexts, 30-31
kernel.org repository, 4
kernel hacking confi guration options, 638
kernel mode, 30
kernel programming interfaces, table of, 53-54
memory allocation, 49-51
modules

edac_mc, 578
loading, 12-14

porting, 537
process contexts, 30-31
sources, 52-54, 85-87
source tree layout, 6-10

directories, 8, 9
navigating, 9-10

threads
bdflush, 58
creating, 56-61
definition, 56
events/n threads, 58
kacpid, 586
kapmd, 666
kjournald, 28
ksoftirqd/0, 57
kthreadd, 58
kthread helpers, 81-83
kupdated, 58
listing active threads, 57
nfsd, 58
pccardd, 263
pdflush, 58
process states, 61-63
user mode helpers, 63-65
wait queues, 61-63

timers
HZ, 31-33
jiffies, 31-33
long delays, 33-36
overview, 31
RTC (Real Time Clock), 37-38
short delays, 36
TSC (Time Stamp Counter), 36-37

uClinux, 537
user mode, 30

kernel threads
bdfl ush, 58
creating, 56-61
defi nition, 56

events/n threads, 58
kacpid, 586
kapmd, 666
kjournald, 28
ksoftirqd/0, 57
kthreadd, 58
kthread helpers, 81-83
kupdated, 58
listing active threads, 57
nfsd, 58
pccardd, 263
pdfl ush, 58
process states, 61-63
user mode helpers, 63-65
wait queues, 61-63

kernel timers
HZ, 31-33
jiffi es, 31-33
long delays, 33-36
overview, 31
RTC (Real Time Clock), 37-38
short delays, 36
TSC (Time Stamp Counter), 36-37

kerneltrap.org, 5
kexec

invoking, 621
preparation, 620
sources, 629
with kdump, 621-622

kexec-tools package, 620
keyboards

Bluetooth keyboards, 219-220
overview, 217
PC keyboards, 217-219
USB keyboards, 219-220

keycodes, 218
keypads, 539
kfree() function, 54
kgdb (kernel GNU debugger), 600-604
kgdbwait command, 601
khubd, 324
kill_fasync() function, 144-145, 169
kjournald thread, 28
kmalloc() function, 21, 51, 54, 84
kmem char device, 159
kobj_type structure, 106, 116
kobject_add() function, 117
kobject_register() function, 156, 169
kobject_uevent() function, 117
kobject_unregister() function, 156, 169
kobjects, 106-110, 115

Index 697

kprobes
example, 610-614

kprobe handlers, registering, 611-612
mydrv.c file, 610-611
patches, inserting, 613-614

fault-handlers, 609
inserting inside kernel functions, 609-610
jprobes, 614-617
kretprobes, 617-619
limitations, 619
post-handlers, 609
pre-handlers, 609
sources, 620

kref_get() function, 106
kref_init() function, 106
kref_put() function, 106
kref object, 106
kret_tty_open() function, 619
kretprobes, 617-619
kset structure, 116
ksoftirqd/0 kernel thread, 57
kthread_create() function, 81, 87
kthread_run() function, 83
kthread_should_stop() function, 81, 87
kthread_stop() function, 87
kthreadd kernel thread, 58
kthread helpers, 81-83
ktype_led structure, 156
kupdated kernel thread, 58
kzalloc() function, 51, 54

L
L2CAP (Logical Link Control and

Adaptation Protocol), 468
l2cap.ko, 469
LAD (Linux Audio Developers) list, 412
LAN Emulation (LANE), 458
LANs (local area networks), 440, 466
laptops, 259
large procfs reads, 672-674
layered architecture (serial drivers), 173-176
LBA (logical block addressing), 416
LCDC (Liquid Crystal Display Controller), 365
LCD controllers, 366
ldisc.read() function, 202
ldisc.receive_buf() function, 202
led.c driver, 147-150
led_init() function, 150
led_write() function, 150
LED board. See parallel port LED board

legacy drivers
BIOS, 666
RTC driver, 157

len field (sk_buff structure), 441
level-sensitive devices, 96
LGPL (GNU Lesser General Public License), 3
libATA, 417-418
lib directory, 9
libraries

alsa-lib, 395-397
Glibc, 531
libraw1394, 589

libraw1394 library, 589
libusb programming template, 570-571
likely() function, 135, 168
LILO (Linux Loader), 534
line disciplines (touch controller device example)

changing, 204
compiling, 204
connection diagram, 195
fl ushing data, 203
I/O Control, 203
open/close operations, 196
opening, 197-206
overview, 194-195
read paths, 198-202
unregistering, 204
write paths, 202-203

linked lists
creating, 65
data structures, initializing, 67
functions, 66
worker thread, 69-71
work submission, 68-69

links (PCIe), 278
linux.conf.au, 4
Linux Amateur Radio AX.25 HOWTO, 590
Linux assembly

boot sequence, 654
debugging, 659
GNU Assembler (GAS), 654
i386 boot assembly code, 665
inline assembly, 654-659
Microsoft Macro Assembler (MASM), 654
Netwide Assembler (NASM), 654

Linux Asynchronous I/O (AIO), 134
linux-audio-dev mailing list, 412
Linux Audio Developers (LAD) list, 412
Linux device model

device classes, 106-110
hotplug/coldplug, 110-111

698 Index

kobjects, 106-110
microcode download, 111-112
module autoload, 112-113
overview, 103
sysfs, 106-110
udev, 103-106, 113

Linux distributions, 5-6
Linux history and development, 2-3
linux-ide mailing list, 437
Linux-IrDA, 480-481
Linux Kernel Crash Dump (LKCD), 623
Linux Kernel Mailing List (LKML), 4
Linux Kongress, 4
Linux Loader (LILO), 534
Linux-MTD JFFS HOWTO, 524
linux-mtd mailing list, 4
Linux-MTD subsystem. See MTD
Linux-PCMCIA subsystem. See PCMCIA (Personal

Computer Memory Card International Association)
linux-scsi mailing list, 437
Linux Symposium, 4
Linux Test Project (LTP), 596, 638
Linux Trace Toolkit. See LTT
Linux Trace Toolkit Viewer (LTTV), 637
linux-usb-devel mailing list, 4, 351
Linux-USB subsystem. See USB
Linux-video subsystem, 359-360
LinuxWorld Conference and Expo, 5
Liquid Crystal Display Controller (LCDC), 365
LIRC (Linux Infrared Remote Control), 488
list_add() function, 66
list_add_tail() function, 66-69
list_del() function, 66, 69
list_empty() function, 66
list_entry() function, 66, 69
list_for_each_entry() function, 66, 71
list_for_each_entry_safe() function, 66, 71
list_head structure, 65, 85
list_replace() function, 66
list_splice() function, 66
lists

hash lists, 72
linked lists

creating, 65
data structures, initializing, 67
functions, 66
worker thread, 69-71
work submission, 68-69

LKCD (Linux Kernel Crash Dump), 623
LKML (Linux Kernel Mailing List), 4
llseek() function, 136, 246
LM-Sensors, 251
loading modules, 12-14
loadkeys, 218

local_irq_disable() function, 53
local_irq_enable() function, 42, 53
local_irq_restore() function, 53
local_irq_save() function, 53
local area networks (LANs), 440, 466
localtime() function, 38
locks, 46-48
lockups, soft, 166
log command, 627
logical addresses, 50
logical block addressing (LBA), 416
Logical Link Control and Adaptation Protocol

(L2CAP), 468
long delays, 33-36
loopback devices, 420
loops_per_jiffy variable, 23-24, 36, 52
low-speed USB, 314
low-voltage differential signaling (LVDS), 357
low memory, 21
Low Pin Count (LPC) bus, 520
lp.c driver, 146
lp_write() function, 146
LPC (Low Pin Count) bus, 520
lseek() function, 136
lsmod command, 12
lspci command, 281-285
lsvpd utility, 638
LTP (Linux Test Project), 596, 638
LTT (Linux Trace Toolkit), 634-637

components, 634-635
events, 635
LTTng, 637
LTTV (Linux Trace Toolkit Viewer), 637
trace dumps, 636-637

LTTng, 637
LTTV (Linux Trace Toolkit Viewer), 637
LVDS (low-voltage differential signaling), 357
lwn.net, 5
lxr command, 9

M
MAC (Media Access Control) addresses, 443
macros. See specific macros
Madplay, 397, 562
mailboxes (RapidIO), 592
mailing lists, 4-5, 274
maintenance

build scripts, 645-647
change markers, 642-643
checksum consistency, 643-645
code portability, 647-648
coding styles, 642
version control, 643

Index 699

major numbers (char drivers), 120
make command, 11
MAN (metropolitan area network), 500
map_info structure, 509, 525
map drivers

defi nition, 504-505
MTD partition maps, creating, 506-507
probe method, 510-511
registering, 508-509

mapping memory, 562
maps, system memory map

copying, 664-665
obtaining, 663

markers, clean, 514
MASM (Microsoft Macro Assembler), 654
mass storage devices (USB), 339-345
Master Boot Record (MBR), 534
Master In Slave Out (MISO), 252
Master Out Slave In (MOSI), 252
masters (DMA), 288
maximum transmission unit (MTU), 301, 447
mb() function, 114
MBEs (multibit errors), 578
MBR (Master Boot Record), 534
MCA (Micro-Channel Architecture), 588
MCH (Memory Controller Hub), 357
md command, 600
mdelay() function, 36
media_changed() method, 430
Media Access Control (MAC) addresses, 443
Media Independent Interface (MII), 457
mem char device, 159
MEMERASE command, 522
MEMLOCK command, 522
memory

accessing from user space, 562-564
allocating, 49-51
cache misses, counting, 632-633
claiming/freeing, 182
CMOS (complementary metal oxide

semiconductor), 37
DMA (Direct Memory Access), 50. See also

Ethernet-Modem card example
buffers, 289
consistent DMA access methods, 290-291
definition, 288
IOMMU (I/O memory management unit), 290
masters, 288
scatter-gather, 290
streaming DMA access methods, 291-292
synchronous versus asynchronous, 289

embedded Linux memory layout, 535-536
FIFO (fi rst-in fi rst-out) memory, 179

fl ash memory
CFI-compliant flash, querying, 512
definition, 504
embedded drivers, 538-544
NAND, 504
NOR, 504
sectors, 504

high memory, 21
initrd memory, 25-26
low memory, 21
mapping, 562
memory barriers, 114
memory zones, 49
MTD (Memory Technology Devices)

flash memory, 504
illustration of Linux-MTD subsystem, 505
map drivers, 505-511
MTD core, 505
NAND drivers, 505
NOR Chip drivers, 505
overview, 504
partition maps, creating, 506-507
User Modules, 505

pages, 49
system memory map

copying, 664-665
obtaining, 663

zero page, 662
ZONE_DMA, 50
ZONE_HIGH, 50
ZONE_NORMAL, 50

memory.c file, 662
memory banks (EEPROM), 238
Memory Controller Hub (MCH), 357
memory_cs Card Services driver, 272
Memory Technology Devices. See MTD
memory zones, 49
MEMUNLOCK command, 522
memwalkd() function, 614
methods. See specific methods
metropolitan area network (MAN), 500
mice

Bluetooth mice, 226
PS/2 mouse, 221
roller mouse device example, 221-223
touchpads, 224-226
trackpoints, 223
USB mice, 226
virtual mouse device example

gpm (general-purpose mouse), 210-211
vms.c input driver, 212-215

Micro-Channel Architecture (MCA), 588
microcode download, 111-112

700 Index

microdrives, 272
Microsoft Macro Assembler (MASM), 654
middleware, 547
MII (Media Independent Interface), 457
million instructions per second (MIPS), 24
MIMO (Multiple In Multiple Out), 500
minicom, 179
Mini PCI, 278-280
minor numbers (char drivers), 120
MIPS (million instructions per second), 24
mirroring disks, 419
misc_deregister() function, 169
misc_register() function, 108, 160, 169
Miscdevice structure, 168
misc (miscellaneous) drivers, 160. See also

watchdog timer
MISO (Master In Slave Out), 252
mixers, 393
mkinitramfs command, 26
mkinitrd command, 26
mktime() function, 38
mlockall() function, 556, 574
-mm patch, 4
mmap() function, 135, 562-564, 574
mmapping, 562
MMC (MultiMediaCard), 419
mm directory, 9
mod_timer() function, 35, 53
modem functions

probing, 299-300
registering, 296-297

modes
kernel mode, 30
protected mode, 18
real mode, 18
user mode, 30

modinfo command, 13
modprobe command, 12-13
MODULE_DEVICE_TABLE() macro, 264, 294, 327
modules

autoloading, 112-113
edac_mc, 578
loading, 12-14

Molnar, Ingo, 4
Morton, Andrew, 4
MOSI (Master In Slave Out), 252
most significant bit (MSB), 24
mouse_poll() function, 141-142
mousedev, 221
Moving Picture Experts Group (MPEG), 543, 562
MP3 player example

ALSA driver code listing, 403-409
ALSA programming, 409-411

codec_write_reg() function, 402
MP3 decoding complexity, 411
mycard_audio_probe() function, 399
mycard_audio_remove() functions, 399
mycard_hw_params() function, 402
mycard_pb_prepare() function, 401
mycard_pb_trigger() function, 401
mycard_playback_open() function, 401
overview, 396
register layout of audio hardware, 398
snd_card_free() function, 399
snd_card_new() function, 399
snd_card_proc_new() function, 403
snd_card_register() function, 402
snd_ctl_add() function, 402
snd_ctl_new1() function, 402
snd_device_new() function, 400
snd_kcontrol structure, 402
snd_pcm_hardware structure, 401
snd_pcm_lib_malloc_pages() function, 402
snd_pcm_lib_preallocate_pages_for_all()

function, 402
snd_pcm_new() function, 400
snd_pcm_ops structure, 400
snd_pcm_set_ops() function, 400-401
user programs, 397

MPC8540 (Freescale), 592
MPEG (Moving Picture Experts Group), 543, 562
MPLS (Multiprotocol Label Switching), 459
MPoA (Multi Protocol over ATM), 459
MSB (most significant bit), 24
msleep() function, 34
msync() function, 574
MTD (Memory Technology Devices)

confi guration, 519-520
data structures, 525
debugging, 524
fl ash memory, 504
FWH (Firmware Hub), 520-524
illustration of Linux-MTD subsystem, 505
kernel programming interfaces, 525
map drivers

definition, 504-505
MTD partition maps, creating, 506-507
overview, 506
probe method, 510-511
registering, 508-509

MTD core, 505
NAND chip drivers

block size, 513
configuring, 513
definition, 505
layout, 515

Index 701

NAND flash controllers, 513
OOB (out-of-band) information, 514-515
page size, 513
spare area, 514

NOR chip drivers
definition, 505
querying CFI-compliant flash, 511-512

partition maps, creating, 506-507
sources, 524-525
User Modules

block device emulation, 516
char device emulation, 517
definition, 505
JFFS (Journaling Flash File System), 517
MTD-utils, 518-519
overview, 516
YAFFS (Yet Another Flash File System), 518

XIP (eXecute In Place), 520
mtd_info structure, 525
mtd_partition structure, 506-507, 525
MTD-utils, 518-519
mtdblock driver, 516
mtdchar driver, 516
MTU (maximum transmission unit), 301, 447
multibit errors (MBEs), 578
MultiMediaCard (MMC), 419
multimeters, 549
Multiple In Multiple Out (MIMO), 500
Multiprotocol Label Switching (MPLS), 459
Multi Protocol over ATM (MPoA), 459
munmap() function, 574
mutex_init() function, 53
mutex_lock() function, 53
mutex_unlock() function, 54
mutexes, 39-45, 52
mutual exclusion (mutexes), 39-45
my_dev_event_handler() function, 76
my_device_xmit() function, 306
my_die_event_handler() function, 75
my_noti_chain structure, 76
my_release() function, 81
myblkdev_init() function, 427-430
myblkdev_ioctl() function, 431
myblkdev_request() function, 432-434
myblkdev storage controller

block device operations, 430-431
disk access, 432-434
initialization, 427-430
overview, 426-427
register layout, 427

mycard_audio_probe() function, 399
mycard_audio_remove() function, 399
mycard_change_mtu() function, 447

mycard_get_eeprom() function, 447
mycard_get_stats() function, 446
mycard_hw_params() function, 402
mycard_pb_prepare() function, 401
mycard_pb_trigger() function, 401
mycard_pb_vol_info() function, 411
mycard_playback_open() function, 401
mydrv.c file, 610-611
mydrv_dev structure, 160
mydrv_init() function, 67
mydrv_worker() function, 70-71
mydrv_workitem structure, 69
mydrv_wq structure, 66-67
myevent_id structure, 61
myevent_waitqueue structure, 61
myrtc_attach() function, 248
myrtc_gettime() function, 250

N
N_TCH line discipline, 197-198, 227
n_touch_chars_in_buffer() function, 197
n_touch_open() function, 197
n_touch_receive_buf() function, 198-202
n_touch_receive_room() function, 197
n_touch_write() function, 197
n_touch_write_wakeup() function, 197
nand_ecclayout structure, 514, 525
nand_flash_ids[] table, 513
NAND chip drivers

block size, 513
confi guring, 513
defi nition, 505
layout, 515
NAND fl ash controllers, 513
OOB (out-of-band) information, 514-515
page size, 513
spare area, 514

NAND File Translation Layer (NFTL), 516
NAND flash controllers, 513
NAND flash memory, 504
NAND storage, 538
nanosleep() function, 37
NAPI (New API), 444, 448-449
NASM (Netwide Assembler), 654
navigation

frame buffer drivers, 365-367
accelerated methods, 372
color modes, 370-371
contrast and backlight, 373-380
data structures, 367-368
DMA, 372-373

702 Index

parameters, 369-370
screen blanking, 371-372

source tree layout, 9-10
NCP (Network Control Protocol), 497
ndelay() function, 36
net_device_stats structure, 445-446, 462
net_device method, 444
net device notification, 75
net_device structure, 462

activation, 444
bus-specifi c methods, 448
confi guration, 446-447
data transfer, 444
overview, 443
statistics, 445-446
watchdog timeout, 445

net directory, 9
netdev_chain structure, 76
netif_device_attach() function, 463
netif_device_detach() function, 463
netif_queue_stopped() function, 449, 463
netif_receive_skb() function, 463
netif_rx() function, 441, 448, 463
netif_rx_complete() function, 449, 463
netif_rx_schedule() function, 463
netif_rx_schedule_prep() function, 463
netif_start_queue() function, 449, 463
netif_stop_queue() function, 449, 463
netif_wake_queue() function, 449, 463
Netlink sockets, 25
netperf, 459
Netrom, 590
Netwide Assembler (NASM), 654
Network Control Protocol (NCP), 497
Network File System (NFS), 58
network interface cards. See NICs
networks

Bluetooth, 475-501, 476, 477
Infrared, 486-487
LANs (local area networks), 440
network functions

probing, 298-299
registering, 294-295

NICs (network interface cards). See NICs
throughput

driver performance, 459-460
overview, 459
protocol performance, 461

New API (NAPI), 444
new device checklist, 650-651
next() function, 674
NFS (Network File System), 58, 544-546
nfs_unlock_request() function, 644

nfsd kernel thread, 58
NFTL (NAND File Translation Layer), 516
nice values, 554
NICs (network interface cards)

activation, 444
ATM (asynchronous transfer mode), 458-459
buffer management, 450
concurrency control, 450
confi guration, 446-447
data structures, 440-462
data transfer, 444
Ethernet NIC driver, 451-457
ISA NICs, 457-458
MTU size, changing, 447
net device interface. See net_device structure
network throughput

driver performance, 459-460
overview, 459
protocol performance, 461

overview, 440
protocol layers

flow control, 449-459
receive path, 448-449
transmit path, 449

socket buffers, 441-442
sources, 461-463
statistics, 445-446
summary of kernel programming interfaces, 463
watchdog timeout, 445

Noop, 27, 423
NOR chip drivers

defi nition, 505
querying CFI-compliant fl ash, 511-512

NOR flash memory, 504
North Bridge, 357
notebooks, 584
notifications

CPU frequency notifi cation, 75
die notifi cation, 74
Internet address notifi cation, 75
net device notifi cation, 75
notifi er chains, 74-78

notifier_block structure, 85
notifier chains, 74-78
null sink, 158
NVRAM drivers, updating with seq files, 677-679

O
O(1) scheduler, 553-555
OBEX (OBject EXchange), 480
objdump command, 613
OBject EXchange (OBEX), 480

Index 703

objects, kobjects, 106-110
obtaining system memory map, 663
OEMs (original equipment manufacturers), 494
off-the-shelf (OTS) modules, 466
OHCI (Open Host Controller Interface), 315
ohci1394 driver, 589
On-The-Go (OTG) controllers, 312
ondemand governor, 583
OOB (out-of-band) information, 514-515
opcontrol, 630
open() method

block drivers, 430
CMOS driver, 127-129
EEPROM driver, 241
net_device structure, 444

open_softirq() function, 116
Open Host Controller Interface (OHCI), 315
opening

CMOS driver, 127-129
EEPROM driver, 241
touch controllers, 197-206

Open Sound System (OSS), 394
Open Source Development Lab (OSDL), 6
Open Systems Interconnect (OSI), 468
operators, atomic, 45-46
opreport, 631
OProfile, 596, 629-633

cache misses, counting, 632-633
opcontrol, 630
opreport, 631

oprofiled daemon, 629
original equipment manufacturers (OEMs), 494
OS-specific modules (OSMs), 589
oscilloscopes, 548
OSDL (Open Source Development Lab), 6
OSI (Open System Connect), 468
OSMs (OS-specific modules), 589
OSS (Open Sound System), 394
OTG (On-The-Go) controllers, 312
out-of-band (OOB) information, 514-515
outb() function, 169, 574, 648
outl() function, 169, 574
outsl() function, 169
outsn() function, 169
output events (input device drivers), 228-230
outw() function, 169, 574

P
packages

alsa-utils, 395
kexec-tools, 620
MTD-utils, 518-519

pcmcia-cs, 260
pcmciautils, 260-261
sysfsutils, 638

pages (memory), 49
PAN (personal area network), 475
Parallel ATA (PATA), 417
parallel port communication, 145-146
parallel port LED boards, 146-156

controlling from user space, 561
controlling with sysfs, 151-156
led.c driver, 147-150

parallel printer drivers, 146
Pardevice structure, 168
parport, 145-146
parport_claim_or_block() function, 169
parport_read_data() function, 169
parport_register_device() function, 150, 169
parport_register_driver() function, 150, 169
parport_release() function, 169
parport_unregister_device() function, 169
parport_unregister_driver() function, 169
parport_write_data() function, 169
partitions

MTD partition maps, creating, 506-507
swap space, 29

PATA (Parallel ATA), 417
patches

applying, 7
CONFIG_PREEMPT_RT patch-set, 44
creating, 7
defi nition, 4
kernel.org repository, 4

patch utility, 7
PC-compatible system hardware block diagram, 91
PCBs (printed circuit boards), 549
pccardctl command, 261
pccardd thread, 263
PC Cards, 258
PC keyboards, 217-219
PCI (Peripheral Component Interconnect)

accessing PCI regions
configuration space, 285-286
I/O and memory regions, 286-288

addressing and identifi cation, 281-285
CardBus, 278, 280
compared to USB, 316
data structures, 309
debugging, 308
defi nition, 278
DMA (Direct Memory Access)

buffers, 289
consistent DMA access methods, 290-291
definition, 288

704 Index

descriptors and buffers, 302-304
IOMMU (I/O memory management unit), 290
masters, 288
scatter-gather, 290
streaming DMA access methods, 291-292
synchronous versus asynchronous, 289

Ethernet-Modem card example, 292-293
data transfer, 301-308
modem functions, probing, 299-300
modem functions, registering, 296-297
MODULE_DEVICE_TABLE() macro, 294
network functions, probing, 298-299
network functions, registering, 294-295
PCI_DEVICE() macro, 293
pci_device_id structures, 293

Express Cards, 279-280
kernel programming interfaces, 309-310
Mini PCI, 278-280
PCI-based solutions, 279
PCI Express, 278-280
PCI Express Mini Card, 280
PCI Extended (PCI-X), 278-280
PCI inside South Bridge system, 280-281
resources, confi guring, 27
serial communication, 279
sources, 308-310

pci_alloc_consistent() function, 290, 309
PCI_DEVICE() macro, 293, 327
pci_device_id structure, 293, 309, 325
pci_dev structure, 285, 309
pci_disable_device() function, 310
pci_dma_sync_sg() function, 310
pci_dma_sync_single() function, 310
pci_driver structure, 309
pci_enable_device() function, 310
PCI Express, 258, 278-280
PCI Express Mini Card, 280
PCI Extended (PCI-X), 278-280
pci_free_consistent() function, 310
pci_iomap() function, 288, 309
pci_map_page() function, 435
pci_map_sg() function, 291, 310
pci_map_single() function, 291-292, 310
pci_read_config_byte() function, 285-286, 309
pci_read_config_dword() function, 285, 309
pci_read_config_word() function, 285-286, 309
pci_register_driver() function, 294-295, 310
pci_request_region() function, 287, 309
pci_resource_end() function, 286, 309
pci_resource_flags() function, 286, 309
pci_resource_len() function, 286, 309
pci_resource_start() function, 286, 309
pci_set_dma_mask() function, 309

pci_set_master() function, 310
pci_unmap_sg() function, 310
pci_unmap_single() function, 310
pci_unregister_driver() function, 310
pci_write_config_byte() function, 285, 309
pci_write_config_dword() function, 285-286, 309
pci_write_config_word() function, 285, 309
PCI-X (PCI Extended), 278-280
PCIe (PCI Express), 278-280
PCM (pulse code modulation), 393
PCMCIA (Personal Computer Memory Card

International Association)
Attribute memory, 263
CardBus devices, 258
Card Services, 263
CIS (Card Information Structure), 263
client drivers, registering, 267-270
Common memory, 263
data-fl ow path between components, 271-272
data structures

cisparse_t, 266
cistpl_cftable_entry_t, 266
pcmcia_device, 265
pcmcia_device_id, 264
pcmcia_driver structure, 265
summary of, 275
tuple_t, 266

debugging, 273-274
defi nition, 258
device IDs and hotplug methods, 265
Driver Services, 263-264
driver services module (ds), 261
embedded drivers, 540
ExpressCards, 258
kernel programming interfaces, 275
Linux-PCMCIA subsystem interaction, 260-262
mailing list, 274
on embedded systems, 259
on laptops, 259
pcmciautils package, 260-261
serial PCMCIA, 272-273
sources, 275
storage, 272
udev, 260

pcmcia-cs package, 260
pcmcia_device_id structure, 264, 275
PCMCIA_DEVICE_MANF_CARD() macro, 264
pcmcia_device structure, 265, 275
pcmcia_driver structure, 265, 275
pcmcia_get_first_tuple() function, 275
pcmcia_get_tuple_data() function, 275
pcmcia_parse_tuple() function, 275
pcmcia_register_driver() function, 271, 275

Index 705

pcmcia_request_irq() function, 275
pcmcia_unregister_driver() function, 275
pcmciautils package, 260-261
pcspkr_event() function, 230
pda_mtd_probe() function, 509-511
pdflush kernel thread, 58
Pentium TSC (Time Stamp Counter), 36-37
percent sign (%), 655-656
performance

network throughput
driver performance, 459-460
overview, 459
protocol performance, 461

performance governor, 583
Peripheral Component Interconnect. See PCI
peripherals

choosing, 530-531
peripheral controllers, 349

permanent virtual circuits (PVCs), 458
personal area network (PAN), 475
personal identification numbers (PINs), 477
PHY (physical layer) transceivers, 457
PIBS bootloader, 534
Pico-IrDA, 547
PINs (personal identification numbers), 477
PIO (programmed I/O), 460
pipes, 321, 352
placement plots, 549
platform_add_devices() function, 180, 206
platform_device_register() function, 180
platform_device_register_simple() function, 180-181,

206, 232
platform_device_unregister() function, 206, 232
platform_device register() function, 206
platform_device structure, 180, 205
platform_driver_register() function, 181, 206
platform_driver_unregister() function, 206
platform_driver structure, 181, 205
platform drivers, 180-181
Plug-and-Play (PnP), 588
PMAC (Power Management and Audio

Component), 254
PnP (Plug-and-Play), 588
PoE (Power over Ethernet), 590
point-of-sale (POS), 529
Point-to-Point Protocol (PPP), 195, 273
pointers, 136-137
poll() method, 141-142, 444, 449
poll_table structure, 141, 168
poll_wait() function, 142, 169
polling in char drivers, 139-142
populating URBs, 320

port_data_in() function, 135
port_data_out() function, 135
portability of code, 647-648
port char device, 159
porting kernels, 537
ports

kgdb ports, 604
parallel port communication, 145-146
parallel port LED board, 146-156

controlling with sysfs, 151-156
led.c driver, 147-150

serial ports, 172
USB_UART ports, 179

POS (point-of-sale), 529
post-handlers (kprobes), 609
power management, 114-115
Power Management and Audio Component

(PMAC), 254
Power over Ethernet (PoE), 590
PowerPC bootloaders, 534
powersave governor, 583
ppdev driver, 146, 560
PPP (Point-to-Point Protocol), 195, 273
pppd daemon, 273
pre-handlers (kprobes), 609
preempt_disable() function, 43
preempt_enable() function, 43
preemption counters, 43
preprocessed source code, generating, 10
printed circuit boards (PCBs), 549
printk() function, 380, 615, 656
probe() function, 241-242, 267, 268, 297
probes. See kprobes
probing

EEPROM driver, 241-243
kprobes. See kprobes
network functions, 298-299
telemetry card example, 327-331

processes
contexts, 30-31
init, 28-30
kernel processes. See kernel threads
states, 61-63
zombie processes, 59

process filesystem. See procfs
processors, choosing, 530-531
process scheduling (user mode drivers)

CFS (Completely Fair Scheduler), 555
O(1) scheduler, 553-555
original scheduler, 553
overview, 553

706 Index

procfs, 49
documentation, 679
reading with

example, 670-671
large procfs reads, 672-674
seq files, 674-677

profiling
Bluetooth, 468
gprof, 633-634
OProfi le

cache misses, counting, 632-633
opcontrol, 630
opreport, 631

overview, 629
programmed I/O (PIO), 460
protected mode, 18, 665-666
PS/2 mouse, 221
ps command, 57-58
pseudo char drivers, 157-159
pseudo terminals (PTYs), 194
psmouse_protocol structure, 224, 231
psmouse structure, 231
PTR_ERR() function, 84
ptrace utility, 637
pty.c driver, 194
PTYs (pseudo terminals), 194
public domain software, 3
pulse code modulation (PCM), 393
pulse-width modulator (PWM) units, 543-544
PVCs (permanent virtual circuits), 458
PWM (pulse-width modulator) units, 543-544

Q
QoS (quality of service), 458
Qtronix infrared keyboard driver, 166
quality of service (QoS), 458
Quarter VGA (QVGA), 356
queries, CFI-compliant flash, 511-512
queues

active queues, 554
expired queues, 554
overview, 61-63
run queues, 554
work queues, 58, 72-74, 103

QVGA (Quarter VGA), 356

R
race conditions, 48
radio

amateur radio, 590
RF (Radio Frequency) chips, 252

RFCOMM (Radio Frequency Communication), 468
RFID (Radio Frequency Identifi cation)

transmitters, 246
RAID (redundant array of inexpensive disks), 419-420
raise_softirq() function, 101, 116
random char device, 158
random number generator, 158
RapidIO

Fibre Channel, 592-593
iSCSI (Internet SCSI), 593

RAS (reliability, availability, serviceability), 596
rc.sysinit file, 29
RCU (Read-Copy Update), 47
RDMA (Remote DMA), 592
rdtsc() function, 53
read() method, 129-135
READ_CAPACITY command, 565-567
Read-Copy Update (RCU), 47
read_lock() function, 54
read_lock_irqrestore() function, 46, 54
read_lock_irqsave() function, 46, 54
read_seqbegin() function, 54
read_seqlock() function, 54
read_seqretry() function, 54
read_sequnlock() function, 54
read_unlock() function, 54
reader-writer locks, 46-48
reading data

CMOS driver, 129-135
with procfs

example, 670-671
large procfs reads, 672-674
seq files, 674-677

readme_proc() function
arguments, 672
example, 670-671
large procfs reads, 673-674
large proc reads, 672
seq fi les, 674-677

read paths, 198-202
readv() function, 134
real mode, 18, 662-665
real time (-rt) patch, 4, 45
Real Time Clock (RTC), 37-38, 247-250
Real Time Transport Protocol (RTP), 590
receive_buf() function, 198
receive path (NICs), 448-449
receptacles (USB), 313
RedBoot, 511, 534
redundant array of inexpensive disks (RAID), 419-420
reference designators, 549
register_blkdev() function, 427, 438
register_chrdev() function, 126

Index 707

register_die_notifier() function, 86
register_inetaddr_notifier() function, 86
register_jprobes() function, 617
register_kretprobes() function, 619
register_netdev() function, 443, 463
register_netdevice_notifier() function, 86
registered protocol families, 25
registering

jprobe handlers, 615-616
kprobe handlers, 611-612
map drivers, 508-509
modem functions, 296-297
network functions, 294-295
PCMCIA client drivers, 267-270
platform drivers, 181
return probe handlers, 617-619
UART drivers, 178
user mode helpers, 64

register layout
audio hardware, 398
char drivers, 122
myblkdev storage controller, 427
USB_UART, 180

release() method, 79, 127-129
release_firmware() function, 112
release_region() function, 127, 169
reliability, availability, serviceability (RAS), 596
Remote DMA (RDMA), 592
remove() function, 267
remove_wait_queue() function, 62, 86
reporting (ECC). See ECC reporting
request() method, 432-434
request_firmware() function, 111, 443
request_irq() function, 95-96, 116, 253, 444
request_mem_region() function, 287, 509
request_queue structure, 424, 437
request_region() function, 127, 169, 287
requests, interrupt. See IRQs (interrupt requests)
request structure, 424, 437
Request To Send (RTS), 191
response times (user mode drivers), 555-558
resume() function, 586
return probes (kretprobes), 617-619
RF (Radio Frequency) chips, 252
RFCOMM (Radio Frequency Communication),

468, 473-501
RFID (Radio Frequency Identification)

transmitters, 246
rjcomm.ko, 469
rmb() function, 114
rmmod command, 12
roller_analyze() function, 100-101
roller_capture() function, 100-101

roller_interrupt() function, 97-99
roller mouse device example, 221-223
roller_mouse_init() function, 221
roller wheel device example, 94-99

edge sensitivity, 96
free_irq() function, 96
overview, 94-95
request_irq() function, 95-96
roller interrupt handler, 97-99
softirqs, 100-101
tasklets, 101-102
wave forms generated by, 95

rootfs
compact middleware, 546-547
NFS-mounted root, 544-546
obtaining, 26
overview, 544

root hubs, 315
Rose, 590
rq_for_each_bio() function, 435, 438
RS-485, 191
rs_open() function, 599
–rt (real time) patch, 4, 45
RTC (Real Time Clock), 37-38, 156-157, 247-250, 541
rtc.c driver, 157
rtc_class_ops structure, 157, 168
rtc_device_register() function, 157, 169
rtc_device_unregister() function, 157, 169
rtc_interrupt() function, 625
RTP (Real Time Transport Protocol), 590
RTS (Request To Send), 191
run_umode_handler() function, 63
runltp script, 638
running state (threads), 62
run queues, 554
rwlock_t structure, 52

S
SAMPLING_RATE_REGISTER, 398
SANs (storage area networks), 591
SAP (SIM Access Profile), 478
SAS (Serial Attached SCSI), 418
SATA (Serial ATA), 417
SBEs (single-bit errors), 578
SBP2 (Serial Bus Protocol 2), 589
scatter-gather, 290
Scatterlist structure, 309
sched_getparam() function, 574
sched_param structure, 574
sched_setscheduler() function, 555-556, 574
schedule() function, 86
schedule_timeout() function, 34, 53, 93

708 Index

schedulers, I/O, 422-423
scheduling processes. See process scheduling
SCIs (system control interrupts), 585
SCLK (Serial CLocK), 235, 252
SCO (Synchronous Connection Oriented), 469
sco.ko, 469
screen blanking, 371-372
scripts

build scripts, 645-647
runltp, 638
scripts directory, 9
sensors-detect, 251

SCSI (Small Computer System Interface), 339, 418
scsi_add_host() function, 343
SCSI Generic (sg), 565-567
SD (Secure Digital) cards, 419
SD/MMC, 540
SDA (Serial Data), 235
SDP (Service Discovery Protocol), 468
SECTOR_COUNT_REGISTER, 427
SECTOR_NUMBER_REGISTER, 427
sectors, 427, 504
Secure Digital (SD) cards, 419
security directory, 9
SEEK_CUR command, 136
SEEK_END command, 136
SEEK_SET command, 136
seek operation (CMOS driver), 136-137
seek times, 422
select() method, 140
Self-Monitoring, Analysis, and Reporting

Technology (SMART), 436
semaphore structure, 41, 52
sensing data availability (char drivers)

fasync() function, 142-145
overview, 139
select()/poll() mechanism, 139-142

sensors-detect script, 251
seq files

advantages, 670-677
documentation, 679
large procfs reads, 674-677
NVRAM drivers, updating, 677-679
overview, 670

seqlocks, 47
sequence locks, 47
serial_cs Card Services driver, 273
serial8250_register_port() function, 178
Serial ATA (SATA), 417
Serial Attached SCSI (SAS), 418
Serial Bus Protocol 2 (SBP2), 589
Serial CLocK (SCLK), 235, 252
serial communication, 279

Serial Data (SDA), 235
serial drivers

cell phone device example
claiming/freeing memory, 182
CPLD (Complex Programmable Logic Device), 179
overview, 178
platform drivers, 180-181
SoC (System-on-Chip), 178
USB_UART driver, 183-191
USB_UART ports, 179
USB_UART register layout, 180

data structures, 205
layered architecture, 173-176
line disciplines (touch controller device example)

changing, 204
compiling, 204
connection diagram, 195
flushing data, 203
I/O Control, 203
open/close operations, 196
opening, 197-206
overview, 194-195
read paths, 198-202
unregistering, 204
write paths, 202-203

overview, 172
sources, 205-206
summary of kernel programming interfaces, 206
TTY drivers, 192-194
UART drivers

registering, 178
uart_driver structure, 176
uart_ops structure, 177-178
uart_port structure, 177

Serial Line Internet Protocol (SLIP), 195
serial PCMCIA, 272-273
Serial Peripheral Interface (SPI), 227, 251-254
serial ports, 172
serio, 217
serio_register_port() function, 217
serport, 227
Service Discovery Protocol (SDP), 468
service set identifiers (SSIDs), 490
Session Initiation Protocol (SIP), 590
set_bit() function, 54
set_capacity() function, 428, 438
set_current_state() function, 62, 86
set_termios() function, 203
set-top box (STB), 543
setitimer() function, 35
sg (SCSI Generic), 565-567
SG_IO command, 565
sg_io_hdr_t structure, 565, 574

Index 709

sg3_utils package, 567
short delays, 36
showkey utility, 218
SIG (Bluetooth Special Interest Group), 478
sigaction() function, 144
signal_pending() function, 59, 86
SIGs (Special Interest Groups), 5
silk screens, 549
SIM Access Profile (SAP), 478
simple_map_init() function, 525
simple_map_write() function, 510
simulating mouse movements, 211-212
single-bit errors (SBEs), 578
single_open() function, 677
SIP (Session Initiation Protocol), 590
sk_buff structure, 309, 441-442, 462
skb_clone() function, 442, 463
skb_put() function, 441, 463
skb_release_data() function, 45
skb_reserve() function, 441-442, 463
skbuff_clone() function, 45
slave addresses, 235
slaves, 234
SLIP (Serial Line Internet Protocol), 195
SLOF bootloader, 534
Small Computer System Interface (SCSI), 339, 418
SMART (Self-Monitoring, Analysis, and Reporting

Technology), 436
SMBus. See also I2C

data access functions, 244
defi nition, 234
overview, 234

SMIs (system management interrupts), 585
SMP (Symmetric Multi Processing), 39, 57
snd_ac97_codec module, 395
snd_card_free() function, 399, 413
snd_card_new() function, 399, 413
snd_card_proc_new() function, 403, 413
snd_card_register() function, 402, 413
snd_card structure, 413
snd_ctl_add() function, 402, 413
snd_ctl_elem_id_set_interface() function, 410
snd_ctl_elem_id_set_numid() function, 410
snd_ctl_elem_info structure, 410
snd_ctl_elem_write() function, 411
snd_ctl_new1() function, 402, 413
snd_ctl_open() function, 410
snd_device_new() function, 400
snd_intel8x0 driver, 395
snd_kcontrol_new structure, 413
snd_kcontrol structure, 402
snd_pcm_hardware structure, 401
snd_pcm_lib_malloc_pages() function, 402, 413

snd_pcm_lib_preallocate_pages_for_all()
function, 402, 413

snd_pcm_new() function, 400, 413
snd_pcm_ops structure, 400, 413
snd_pcm_runtime structure, 413
snd_pcm_set_ops() function, 400-401, 413
snd_pcm_substream structure, 413
snd_pcm structure, 413
SoC (System-on-Chip), 178
sockets, 260

buffers, 441-442
Netlink sockets, 25
UNIX-domain sockets, 25

softdogs, 164-166
softirqs, 99-103

compared to tasklets, 100
defi nition, 100
ksoftirqd/0 kernel thread, 57

softlockup_tick() function, 628
soft lockups, 166
software RAID, 420
sound. See audio
sources

audio drivers, 412-413
block drivers, 437-438
char drivers, 167-169
input drivers, 231
Inter-Integrated Circuit Protocol, 255-256
kdump, 629
kernels, 85-87
kexec, 629
kprobes, 620
MTD, 524, 525
NICs (network interface cards), 461-463
PCI, 308-310
PCMCIA, 275
serial drivers, 205-206
source tree layout, 6-10
USB (universal serial bus), 351-353
user mode drivers, 574-575

source tree layout
directories, 8-9
navigating, 9-10

South Bridge system, 280-281
spaces (ACPI), 585
spare area (NAND chip drivers), 514
Special Interest Groups (SIGs), 5
speeds (USB), 314
SPI (Serial Peripheral Interface), 227, 251-254
spi_asaync() function, 252
spi_async() function, 253, 256
spi_butterfly driver, 253
spi_device structure, 252, 255

710 Index

spi_driver structure, 255
spi_message_add_tail() functions, 256
spi_message_init() functions, 256
spi_message structure, 255
spi_register_driver() function, 253, 256
spi_sync() function, 252, 256
spi_transfer structure, 255
spi_unregister_driver() function, 256
spin_lock() function, 44, 53, 628
spin_lock_bh() function, 44
spin_lock_init() function, 628
spin_lock_irqsave() function, 53
spin_unlock() function, 44, 53
spin_unlock_bh() function, 44
spin_unlock_irqsave() function, 53
spinlock_t structure, 52
spinlocks, 39-45
SSID (service set identifier), 490
ssize_t aio_read() function, 135
ssize_t aio_write() function, 135
start() function, 674
start_kernel() function, 10, 18
start_tx() function, 182
states of kernel threads, 61-63
STATUS_REGISTER, 398, 427
STB (set-top box), 543
stop() function, 675
stopped state (threads), 62
storage area networks (SANs), 591
storage controller. See myblkdev storage controller
storage_probe() function, 343
storage technologies

ATAPI (ATA Packet Interface), 416
IDE (Integrated Drive Electronics), 416
libATA, 417-418
MMC (MultiMediaCard), 419
PCMCIA/CF, 272
RAID (redundant array of inexpensive disks), 419
SATA (Serial ATA), 417
SCSI (Small Computer System Interface), 418
SD (Secure Digital) cards, 419
summary of, 419-420

strace utility, 637
streaming DMA access methods, 291-292
struct e820map, 664
structures. See specific structures
submit_work() function, 68-69
submitting

URBs for data transfer, 320
work to be executed later, 68-69

subversion, 643
Super I/O chips, 482-483
Super Video Graphics Array (SVGA), 356

suspend() function, 586
SVCs (switched virtual circuits), 458
SVGA (Super Video Graphics Array), 356
SVGAlib, 562
swap space, 29
switched virtual circuits (SVCs), 458
Symmetric Multi Processing (SMP), 39, 57
synaptics_init() function, 224
synaptics_process_byte() functions, 224
synchronization

completion functions, 79-80
kthread helpers, 81-83
SCO (Synchronous Connection Oriented), 469
synchronous DMA, 289
synchronous interrupts, 94

/sys/devices/system/edac/ directory, 578
sysdiag utility, 638
sysfs, 106-110, 151-156
sysfs_create_dir() function, 117
sysfs_create_file() function, 117
sysfs_create_group() function, 232
sysfs_remove_group() function, 232
sysfsutils package, 638
SYSLINUX, 535
syslog() function, 656-657
System-on-Chip (SoC), 178
system control interrupts (SCIs), 585
System Management Bus. See SMBus
system management interrupts (SMIs), 585
system memory map

copying, 664-665
obtaining, 663

SystemTap, 619

T
tables, nand_flash_ids[], 513
tail field (sk_buff structure), 441
TASK_INTERRUPTIBLE state, 62
TASK_RUNNING state, 62
TASK_STOPPED state, 62
TASK_TRACED state, 62
TASK_UNINTERRUPTIBLE state, 62
tasklet_disable() function, 102, 116
tasklet_disable_nosync() function, 102, 116
tasklet_enable() function, 102, 116
tasklet_init() function, 102, 116
tasklet_schedule() function, 102, 116
tasklet_struct structure, 115
tasklets, 99-103
tele_device_t structure, 328
tele_disconnect() function, 331
tele_open() function, 332-335

Index 711

tele_probe() function, 328-330
tele_read() function, 335-338
tele_write() function, 335-338
tele_write_callback() function, 336-338
telemetry card example, 324-325

data transfer, 335-338
driver initialization, 326-327
pci_device_id structure, 325
probing and disconnecting, 327-331
register access, 332-335
register space, 325

templates, libusb programming template, 570-571
test_and_set_bit() function, 54
test_bit() function, 54
testing

LTP (Linux Test Project), 638
test equipment, 640
test infrastructure, 548

TFT (Thin Film Transistor), 357
TFTP embedded devices, 545-546
Thin Film Transistor (TFT), 357
threads. See kernel threads
throughput

driver performance, 459-460
overview, 459
protocol performance, 461

Thttpd, 547
time() function, 38
time_after() function, 53
time_after_eq() function, 53
time_before() function, 53
time_before_eq() function, 53
timer_func() functions, 35
timer_list structure, 52
timer_pending() function, 35, 53
timers

HZ, 31-33
jiffi es, 31-33
long delays, 33-36
overview, 31
RTC (Real Time Clock), 37-38
short delays, 36
TSC (Time Stamp Counter), 36-37
watchdog timer, 160-166

Time Stamp Counter (TSC), 36-37, 556
timeval structure, 52
TinyTP (Tiny Transport Protocol), 480
TinyX, 547
tool chains, 531
Torvalds, Linus, 2
touch controller, 227-228

compiling, 204
connection diagram, 195

fl ushing data, 203
I/O Control, 203
open/close operations, 196
opening, 197-206
read paths, 198-202
write paths, 202-203

touchpads, 224-226
touch screens, 541
trace daemon, 636
traced state (threads), 62
tracereader, 635
tracevisualizer, 635-637
tracing

LTT (Linux Trace Toolkit)
components, 634-635
events, 635
LTTng, 637
LTTV (Linux Trace Toolkit
Viewer), 637
trace dumps, 636-637

overview, 634
trackpoints, 223
transactions (I2C), 237-238
transceivers (USB), 313
transfer. See data transfer
Transistor-Transistor Logic (TTL), 358
transmit paths (NICs), 449
trojan_function() function, 602-605
TROUBLED_DS environmental variable, 64
TSC (Time Stamp Counter), 36-37, 556
tsdev driver, 228
TTL (Transistor-Transistor Logic), 358
tty.c driver, 194
tty_buffer structure, 193, 205
tty_bufhead structure, 193, 205
tty_driver structure, 193, 205
TTY drivers, 192-194
tty_flip_buffer_push() function, 182, 206
tty_flip_buffer structure, 192-193
tty_insert_flip_char() function, 182, 206, 232
tty_ldisc structure, 196, 205
tty_open() function, 617
tty_register_device() function, 194
tty_register_driver() function, 194, 206
tty_register_ldisc() function, 206
tty_struct structure, 192, 205
tty_unregister_driver() function, 206
tty_unregister_ldisc() function, 204-206
TUN/TAP device driver, 462
TUN network driver, 462
tuple_t structure, 266, 275

712 Index

U
U-Boot, 534
uart_add_one_port() function, 178, 181, 206
uart_driver structure, 176, 205
UART (Universal Asynchronous Receiver

Transmitter) drivers, 172, 539
cell phone device example

claiming/freeing memory, 182
CPLD (Complex Programmable Logic Device), 179
overview, 178
platform drivers, 180-181
SoC (System-on-Chip), 178
USB_UART driver, 183-191
USB_UART ports, 179
USB_UART register layout, 180

registering, 178
RS-485, 191
uart_driver structure, 176
uart_ops structure, 177-178
uart_port structure, 177

uart_ops structure, 177-178, 205
uart_port structure, 177, 205
uart_register_driver() function, 178, 181, 206
uart_unregister_driver() function, 206
UCEs (uncorrectable errors), 578
uClibc, 547
uClinux, 537
UDB

class drivers, 348
debugging, 349-351

udelay() function, 36, 53
udev, 103-106

on embedded devices, 113
PCMCIA, 260

udevmonitor, 113
udevsend, 110
UHCI (Universal Host Controller Interface), 315
UIO (Userspace IO), 573
uIP, 547
UML (User Mode Linux), 638
uncorrectable errors (UCEs), 578
uninterruptible state (threads), 62
Universal Asynchronous Receiver Transmitter. See

UART drivers
Universal Host Controller Interface (UHCI), 315
universal serial bus. See USB
UNIX-domain sockets, 25
unlikely() function, 135, 168
unregister_blkdev() function, 438
unregister_chrdev_region() function, 168
unregister_netdev() function, 463
unregister_netdevice_notifier() function, 76

up() function, 54
up_read() function, 54
up_write() function, 54
updating

BIOS, 522-525
NVRAM drivers, 677-679

urandom char device, 158-159
URBs (USB Request Blocks), 319-321
urb structure, 319-321, 352
USB (universal serial bus)

addressing, 316
Bluetooth, 468, 471-473
bus speeds, 314
class drivers

HIDs (human interface devices), 348
mass storage, 339-345
overview, 338-339
USB-Serial, 345-348

compared to I2C and PCI, 316
data structures

descriptors, 322-323
pipes, 321
tables of, 352
URBs (USB Request Blocks), 319-321
usb_device structure, 318-319

embedded drivers, 540
on embedded systems, 312-314
endpoints, 316
enumeration, 324
gadget drivers, 348-349
host controllers, 315
illustration of Linux-USB subsystem, 318
kernel programming interfaces, table of, 352-353
Linux-USB subsystem architecture, 317
mice, 226
OTG controllers, 315
overview, 312
receptacles, 313
sources, 351-353
telemetry card example, 324-325

data transfer, 335-338
driver initialization, 326-327
pci_device_id structure, 325
probing and disconnecting, 327-331
register access, 332-335
register space, 325

transceivers, 313
transfer types, 315-316
URBs (USB Request Blocks), 319-321
usbfs virtual fi lesystem, 567-571
USB Gadget project, 540
USB-Serial, 345-348

usb-serial.c driver, 194

Index 713

usb_[control|interrupt|bulk]_msg() function, 353
usb_[rcv|snd][ctrl|int|bulk|isoc]pipe()

function, 321, 353
usb_alloc_urb() function, 320, 353
usb_buffer_alloc() function, 353
usb_buffer_free() function, 353
usb_bulk_msg() function, 321
usb_bus structure, 574
usb_close() function, 575
usb_config_descriptor structure, 322, 352
usb_control_msg() function, 335, 353, 575
usb_ctrlrequest structure, 332
usb_deregister() function, 352
usb_deregister_dev() function, 352
usb_dev_handle structure, 574
USB_DEVICE() macro, 327
usb_device_descriptor structure, 322, 352
usb_device_id structure, 352
usb_device structure, 318-319, 352, 574
usb_driver structure, 352
usb_endpoint_descriptor structure, 322, 352
usb_fill_bulk_urb() function, 320, 353
usb_fill_control_urb() function, 320, 333, 353
usb_fill_int_urb() function, 320, 353
usb_find_buses() function, 575
usb_find_devices() function, 575
usb_find_interface() function, 353
usb_free_urb() function, 321, 353
usb_gadget_driver structure, 348, 352
usb_gadget_register_driver() function, 349, 353
usb_get_intfdata() function, 328, 352
usb_init() function, 575
usb_interface_descriptor structure, 322, 352
usb_open() function, 575
usb_register() function, 347, 352
usb_register_dev() function, 352
usb_serial_deregister() function, 353
usb_serial_driver structure, 347
usb_serial_register() function, 347, 353
usb_set_intfdata() function, 328, 352
usb_submit_urb() function, 320-321, 353
usb_tele_init() function, 326
USB_UART, 383-386
USB_UART driver

code listing, 183-191
register layout, 180

USB_UART ports, 179
usb_uart_probe() function, 181
usb_uart_rxint() function, 182
usb_uart_start_tx() function, 182
usb_unlink_urb() function, 321, 353
usbfs virtual filesystem, 341-343, 567-571
USB Gadget project, 540

usbhid driver, 226
usbhid USB client driver, 219
USB keyboards, 219-220
usbmon command, 350
USB Request Blocks (URBs), 319-321
usbserial drivers, 179
user mode drivers, 30

data structures, 574
I/O regions

accessing, 558-561
dumping bytes from, 559

memory regions, accessing, 562-564
parallel port LED boards, controlling, 561
process scheduling

CFS (Completely Fair Scheduler), 555
O(1) scheduler, 553-555
original scheduler, 553
overview, 553

response times, 555-558
sg (SCSI Generic), 565-567
sources, 574-575
UIO (Userspace IO), 573
usbfs virtual fi lesystem, 567-571
user mode I2C, 571-573
user space library functions, 574-575
when to use, 552-553

user mode helpers, 63-65
User Mode Linux (UML), 638
User Modules

block device emulation, 516
char device emulation, 517
defi nition, 505
JFFS (Journaling Flash File System), 517
MTD-utils, 518-519
overview, 516
YAFFS (Yet Another Flash File System), 518

user space drivers. See user mode drivers
userspace governor, 583
Userspace IO (UIO), 573
user space library functions, 574-575
usr directory, 9
UU_READ_DATA_REGISTER, 180
UU_STATUS_REGISTER, 180
UU_WRITE_DATA_REGISTER, 180

V
V2IP (Video-and-Voice over IP), 591
variables

loops_per_jiffy, 23-24, 36, 52
xtime, 38

VCI (virtual circuit identifier), 458
verify checksum command (ioctl), 137

714 Index

version control, 643
Very high speed integrated circuit Hardware

Description Language (VHDL), 542
vesafb (video frame buffer driver), 662
VFS (Virtual File System), 421, 630
vfs_readdir() function, 631
VGA (Video Graphics Array), 356
VHDL (Very high speed integrated circuit Hardware

Description Language, 542
video

cabling standards, 357
controllers, 361
embedded drivers, 541
VGA (Video Graphics Array), 356
video frame buffer driver. See vesafb

Video-and-Voice over IP (V2IP), 591
video1394 driver, 589
virtual addresses, 50
virtual circuit identifier (VCI), 458
Virtual File System (VFS), 421, 630
virtual mouse device example

gpm (general-purpose mouse), 210
simulating mouse movements, 211-212
vms.c input driver, 212-215

Virtual Network Computing (VNC), 607
virtual path identifier (VPI), 458
virtual terminals (VTs), 194
Vital Product Data (VPD), 517
vmalloc() function, 51, 54
vmlinux kernel image, 622
vms.c application, 212-215
vms_init() function, 215
VNC (Virtual Network Computing), 607
VoIP (Voice over Internet Protocol), 590-591
VOLUME_REGISTER, 398
VPD (Vital Product Data), 517
VPI (virtual path identifier), 458
vt.c driver, 194
VTs (virtual terminals), 194

W
w1 bus, 254
w1_family_ops structure, 254-255
w1_family structure, 254-255
wait_event_timeout() function, 34, 53
wait_for_completion() function, 80, 87
wait_queue_t structure, 85
wait queues. See queues
wake_up_interruptible() function, 62, 86, 142
wall time, 38
watchdog timeout, 445
watchdog timer, 160-166

watchpoints, 597
wd33c93_init() function, 644
wear leveling, 516
WiFi, 466, 489-490, 494-496
WiMax, 500
wireless

trade-offs for, 466-467
WiFi, 466, 489-490, 494-496
Wireless Extensions, 490-494

wmb() function, 114, 304
work, submitting to be executed later, 68-69
work_struct structure, 73, 85
worker thread, 69-71
workqueue_struct structure, 73
work queues, 58, 72-74, 103
write() method, 129-135
write_lock() function, 54
write_lock_irqrestore() function, 47, 54
write_lock_irqsave() function, 46, 54
write_seqlock() function, 46
write_sequnlock() function, 46
write_unlock() function, 54
write_vms() function, 215
write_wakeup() function, 202
writev() function, 134
writing

CMOS driver, 129-135
input event drivers, 216

X
x86 bootloaders, 534-535
xf86SIGIO() function, 144
Xf86WaitForInput() function, 140
XGA (eXtended Graphics Array), 356
XIP (eXecute In Place), 520
xtime variable, 38
X Windows, 562

Y-Z
YAFFS (Yet Another Flash File System), 518

zero-page.txt file, 662
zero char device, 158
zero page, 662
Zigbee, 500
zombie processes, 59
zombie state (threads), 62
ZONE_DMA, 50
ZONE_HIGH, 50
ZONE_NORMAL, 50

	Cover
	Title
	Copyright
	Contents
	Foreword
	Preface
	About the Book
	Audience
	Summary of Chapters
	Kernel Version
	Book Website
	Conventions Used

	Acknowledgments
	About the Author
	1: Introduction
	Evolution
	The GNU Copyleft
	Kernel.org
	Mailing Lists and Forums
	Linux Distributions
	Looking at the Sources
	Building the Kernel
	Loadable Modules
	Before Starting

	2: A Peek Inside the Kernel
	Booting Up
	Kernel Mode and User Mode
	Process Context and Interrupt Context
	Kernel Timers
	HZ and Jiffies
	Long Delays
	Short Delays
	Pentium Time Stamp Counter
	Real Time Clock

	Concurrency in the Kernel
	Spinlocks and Mutexes
	Atomic Operators
	Reader-Writer Locks
	Debugging

	Process Filesystem
	Allocating Memory
	Looking at the Sources

	3: Kernel Facilities
	Kernel Threads
	Creating a Kernel Thread
	Process States and Wait Queues
	User Mode Helpers

	Helper Interfaces
	Linked Lists
	Hash Lists
	Work Queues
	Notifier Chains
	Completion Interface
	Kthread Helpers
	Error-Handling Aids

	Looking at the Sources

	4: Laying the Groundwork
	Introducing Devices and Drivers
	Interrupt Handling
	Interrupt Context
	Assigning IRQs
	Device Example: Roller Wheel
	Softirqs and Tasklets

	The Linux Device Model
	Udev
	Sysfs, Kobjects, and Device Classes
	Hotplug and Coldplug
	Microcode Download
	Module Autoload

	Memory Barriers
	Power Management
	Looking at the Sources

	5: Character Drivers
	Char Driver Basics
	Device Example: System CMOS
	Driver Initialization
	Open and Release
	Exchanging Data
	Seek
	Control

	Sensing Data Availability
	Poll
	Fasync

	Talking to the Parallel Port
	Device Example: Parallel Port LED Board

	RTC Subsystem
	Pseudo Char Drivers
	Misc Drivers
	Device Example: Watchdog Timer

	Character Caveats
	Looking at the Sources

	6: Serial Drivers
	Layered Architecture
	UART Drivers
	Device Example: Cell Phone
	RS-485

	TTY Drivers
	Line Disciplines
	Device Example: Touch Controller

	Looking at the Sources

	7: Input Drivers
	Input Event Drivers
	The Evdev Interface

	Input Device Drivers
	Serio
	Keyboards
	Touch Controllers
	Accelerometers
	Output Events

	Debugging
	Looking at the Sources

	8: The Inter-Integrated Circuit Protocol
	What’s I2C/SMBus?
	I2C Core
	Bus Transactions
	Device Example: EEPROM
	Initializing
	Probing the Device
	Checking Adapter Capabilities
	Accessing the Device
	More Methods

	Device Example: Real Time Clock
	I2C-dev
	Hardware Monitoring Using LM-Sensors
	The Serial Peripheral Interface Bus
	The 1-Wire Bus
	Debugging
	Looking at the Sources

	9: PCMCIA and Compact Flash
	What’s PCMCIA/CF?
	Linux-PCMCIA Subsystem
	Host Controller Drivers
	PCMCIA Core
	Driver Services
	Client Drivers
	Data Structures
	Device Example: PCMCIA Card

	Tying the Pieces Together
	PCMCIA Storage
	Serial PCMCIA
	Debugging
	Looking at the Sources

	10: Peripheral Component Interconnect
	The PCI Family
	Addressing and Identification
	Accessing PCI Regions
	Configuration Space
	I/O and Memory

	Direct Memory Access
	Device Example: Ethernet-Modem Card
	Initializing and Probing
	Data Transfer

	Debugging
	Looking at the Sources

	11: Universal Serial Bus
	USB Architecture
	Bus Speeds
	Host Controllers
	Transfer Types
	Addressing

	Linux-USB Subsystem
	Driver Data Structures
	The usb_device Structure
	USB Request Blocks
	Pipes
	Descriptor Structures

	Enumeration
	Device Example: Telemetry Card
	Initializing and Probing
	Accessing Registers
	Data Transfer

	Class Drivers
	Mass Storage
	USB-Serial
	Human Interface Devices
	Bluetooth

	Gadget Drivers
	Debugging
	Looking at the Sources

	12: Video Drivers
	Display Architecture
	Linux-Video Subsystem
	Display Parameters
	The Frame Buffer API
	Frame Buffer Drivers
	Device Example: Navigation System

	Console Drivers
	Device Example: Cell Phone Revisited
	Boot Logo

	Debugging
	Looking at the Sources

	13: Audio Drivers
	Audio Architecture
	Linux-Sound Subsystem
	Device Example: MP3 Player
	Driver Methods and Structures
	ALSA Programming

	Debugging
	Looking at the Sources

	14: Block Drivers
	Storage Technologies
	Linux Block I/O Layer
	I/O Schedulers
	Block Driver Data Structures and Methods
	Device Example: Simple Storage Controller
	Initialization
	Block Device Operations
	Disk Access

	Advanced Topics
	Debugging
	Looking at the Sources

	15: Network Interface Cards
	Driver Data Structures
	Socket Buffers
	The Net Device Interface
	Activation
	Data Transfer
	Watchdog
	Statistics
	Configuration
	Bus Specific

	Talking with Protocol Layers
	Receive Path
	Transmit Path
	Flow Control

	Buffer Management and Concurrency Control
	Device Example: Ethernet NIC
	ISA Network Drivers
	Asynchronous Transfer Mode
	Network Throughput
	Driver Performance
	Protocol Performance

	Looking at the Sources

	16: Linux Without Wires
	Bluetooth
	BlueZ
	Device Example: CF Card
	Device Example: USB Adapter
	RFCOMM
	Networking
	Human Interface Devices
	Audio
	Debugging
	Looking at the Sources

	Infrared
	Linux-IrDA
	Device Example: Super I/O Chip
	Device Example: IR Dongle
	IrComm
	Networking
	IrDA Sockets
	Linux Infrared Remote Control
	Looking at the Sources

	WiFi
	Configuration
	Device Drivers
	Looking at the Sources

	Cellular Networking
	GPRS
	CDMA

	Current Trends

	17: Memory Technology Devices
	What’s Flash Memory?
	Linux-MTD Subsystem
	Map Drivers
	Device Example: Handheld

	NOR Chip Drivers
	NAND Chip Drivers
	User Modules
	Block Device Emulation
	Char Device Emulation
	JFFS2
	YAFFS2

	MTD-Utils
	Configuring MTD
	eXecute In Place
	The Firmware Hub
	Debugging
	Looking at the Sources

	18: Embedding Linux
	Challenges
	Component Selection
	Tool Chains
	Embedded Bootloaders
	Memory Layout
	Kernel Porting
	Embedded Drivers
	Flash Memory
	UART
	Buttons and Wheels
	PCMCIA/CF
	SD/MMC
	USB
	RTC
	Audio
	Touch Screen
	Video
	CPLD/FPGA
	Connectivity
	Domain-Specific Electronics
	More Drivers

	The Root Filesystem
	NFS-Mounted Root
	Compact Middleware

	Test Infrastructure
	Debugging
	Board Rework
	Debuggers

	19: Drivers in User Space
	Process Scheduling and Response Times
	The Original Scheduler
	The O(1) Scheduler
	The CFS Scheduler
	Response Times

	Accessing I/O Regions
	Accessing Memory Regions
	User Mode SCSI
	User Mode USB
	User Mode I2C
	UIO
	Looking at the Sources

	20: More Devices and Drivers
	ECC Reporting
	Device Example: ECC-Aware Memory Controller

	Frequency Scaling
	Embedded Controllers
	ACPI
	ISA and MCA
	FireWire
	Intelligent Input/Output
	Amateur Radio
	Voice over IP
	High-Speed Interconnects
	InfiniBand
	RapidIO
	Fibre Channel
	iSCSI

	21: Debugging Device Drivers
	Kernel Debuggers
	Entering a Debugger
	Kernel Debugger (kdb)
	Kernel GNU Debugger (kgdb)
	GNU Debugger (gdb)
	JTAG Debuggers
	Downloads

	Kernel Probes
	Kprobes
	Jprobes
	Return Probes
	Limitations
	Looking at the Sources

	Kexec and Kdump
	Kexec
	Kexec with Kdump
	Kdump
	Looking at the Sources

	Profiling
	Kernel Profiling with OProfile
	Application Profiling with Gprof

	Tracing
	Linux Trace Toolkit

	Linux Test Project
	User Mode Linux
	Diagnostic Tools
	Kernel Hacking Config Options
	Test Equipment

	22: Maintenance and Delivery
	Coding Style
	Change Markers
	Version Control
	Consistent Checksums
	Build Scripts
	Portable Code

	23: Shutting Down
	Checklist
	What Next?

	A: Linux Assembly
	Debugging

	B: Linux and the BIOS
	Real Mode Calls
	Protected Mode Calls
	BIOS and Legacy Drivers

	C: Seq Files
	The Seq File Advantage
	Updating the NVRAM Driver
	Looking at the Sources

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

