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Foreword

If you’re holding this book, you may be asking yourself: Why “yet another” Linux 
device driver book? Aren’t there already a bunch of them?

The answer is: This book is a quantum leap ahead of the others.
First, it is up-to-date, covering recent 2.6 kernels. Second, and more important, 

this book is thorough. Most device driver books just cover the topics described in stan-
dard Unix internals books or operating system books, such as serial lines, disk drives, 
and fi lesystems, and, if you’re lucky, the networking stack.

This book goes much further; it doesn’t shy away from the hard stuff that you have 
to deal with on modern PC and embedded hardware, such as PCMCIA, USB, I2C,
video, audio, fl ash memory, wireless communications, and so on. You name it, if the 
Linux kernel talks to it, then this book tells you about it.

No stone is left unturned; no dark corner is left unilluminated.
Furthermore, the author has earned his stripes: It’s a thrill ride just to read his 

description of putting Linux on a wristwatch in the late 1990s!
I’m pleased and excited to have this book as part of the Prentice Hall Open Source 

Software Development Series. It is a shining example of the exciting things happening 
in the Open Source world. I hope that you will fi nd here what you need for your work 
on the kernel, and that you will enjoy the process, too!

Arnold Robbins
Series Editor
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xxiii

Preface

It was the late 1990s, and at IBM we were putting the Linux kernel on a wristwatch. 
The target device was tiny, but the task was turning out to be tough. The Memory 
Technology Devices subsystem didn’t exist in the kernel, which meant that before a 
fi lesystem could start life on the watch’s fl ash memory, we had to develop the necessary 
storage driver from scratch. Interfacing the watch’s touch screen with user applica-
tions was complicated because the kernel’s input event driver interface hadn’t been 
conceived yet. Getting X Windows to run on the watch’s LCD wasn’t easy because it 
didn’t work well with frame buffer drivers. Of what use is a waterproof Linux wrist-
watch if you can’t stream stock quotes from your bathtub? Bluetooth integration with 
Linux was several years away, and months were spent porting a proprietary Bluetooth 
stack to Internet-enable the watch. Power management support was good enough only 
to squeeze a few hours of juice from the watch’s battery; hence we had work cut out 
on that front, too. Linux-Infrared was still unstable, so we had to coax the stack before 
we could use an Infrared keyboard for data entry. And we had to compile the compiler 
and cross-compile a compact application-set because there were no accepted distribu-
tions in the consumer electronics space.

Fast forward to the present: The baby penguin has grown into a healthy teenager. 
What took thousands of lines of code and a year in development back then can be 
accomplished in a few days with the current kernels. But to become a versatile kernel 
engineer who can magically weave solutions, you need to understand the myriad fea-
tures and facilities that Linux offers today.



About the Book

Among the various subsystems residing in the kernel source tree, the drivers/ direc-
tory constitutes the single largest chunk and is several times bigger than the others. 
With new and diverse technologies arriving in popular form factors, the development 
of new device drivers in the kernel is accelerating steadily. The latest kernels support 
more than 70 device driver families. 

This book is about writing Linux device drivers. It covers the design and develop-
ment of major device classes supported by the kernel, including those I missed during 
my Linux-on-Watch days. The discussion of each driver family starts by looking at 
the corresponding technology, moves on to develop a practical example, and ends 
by looking at relevant kernel source fi les. Before foraying into the world of device 
drivers, however, this book introduces you to the kernel and discusses the important 
features of 2.6 Linux, emphasizing those portions that are of special interest to device 
driver writers.

Audience

This book is intended for the intermediate-level programmer eager to tweak the kernel 
to enable new devices. You should have a working knowledge of operating system con-
cepts. For example, you should know what a system call is and why concurrency issues 
have to be factored in while writing kernel code. The book assumes that you have 
downloaded Linux on your system, poked through the kernel sources, and at least 
skimmed through some related documentation. And you should be pretty good in C. 

Summary of Chapters

The fi rst 4 chapters prepare you to digest the rest of the book. The next 16 chapters dis-
cuss drivers for different device families. A chapter that describes device driver debugging 
techniques comes next. The penultimate chapter provides perspective on maintenance 
and delivery. We shut down by walking through a checklist that summarizes how to set 
forth on your way to Linux-enablement when you get hold of a new device.

Chapter 1, “Introduction,” starts our tryst with Linux. It hurries you through 
downloading the kernel sources, making trivial code changes, and building a bootable 
kernel image.

Chapter 2, “A Peek Inside the Kernel,” takes a brisk look into the innards of the 
Linux kernel and teaches you some must-know kernel concepts. It fi rst takes you 

xxiv Preface



through the boot process and then describes kernel services particularly relevant to 
driver development, such as kernel timers, concurrency management, and memory 
allocation.

Chapter 3, “Kernel Facilities,” examines several kernel services that are useful com-
ponents in the toolbox of driver developers. The chapter starts by looking at kernel 
threads, which is a way to implement background tasks inside the kernel. It then 
moves on to helper interfaces such as linked lists, work queues, completion functions, 
and notifi er chains. These helper facilities simplify your code, weed out redundancies 
from the kernel, and help long-term maintenance. 

Chapter 4, “Laying the Groundwork,” builds the foundation for mastering the 
art of writing Linux device drivers. It introduces devices and drivers by giving you a 
bird’s-eye view of the architecture of a typical PC-compatible system and an embed-
ded device. It then looks at basic driver concepts such as interrupt handling and the 
kernel’s device model. 

Chapter 5, “Character Drivers,” looks at the architecture of character device driv-
ers. Several concepts introduced in this chapter, such as polling, asynchronous notifi -
cation, and I/O control, are relevant to subsequent chapters, too, because many device 
classes discussed in the rest of the book are “super” character devices.

Chapter 6, “Serial Drivers,” explains the kernel layer that handles serial devices.
Chapter 7, “Input Drivers,” discusses the kernel’s input subsystem that is respon-

sible for servicing devices such as keyboards, mice, and touch-screen controllers.
Chapter 8, “The Inter-Integrated Circuit Protocol,” dissects drivers for devices 

such as EEPROMs that are connected to a system’s I2C bus or SMBus. This chapter 
also looks at other serial interfaces such as SPI bus and 1-wire bus.

Chapter 9, “PCMCIA and Compact Flash,” delves into the PCMCIA subsystem. 
It teaches you to write drivers for devices having a PCMCIA or Compact Flash form 
factor.

Chapter 10, “Peripheral Component Interconnect,” looks at kernel support for 
PCI and its derivatives.

Chapter 11, “Universal Serial Bus,” explores USB architecture and explains how you 
can use the services of the Linux-USB subsystem to write drivers for USB devices.

Chapter 12, “Video Drivers,” examines the Linux-Video subsystem. It fi nds out 
the advantages offered by the frame buffer abstraction and teaches you to write frame 
buffer drivers.

Chapter 13, “Audio Drivers,” describes the Linux-Audio framework and explains 
how to implement audio drivers.
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Chapter 14, “Block Drivers,” focuses on drivers for storage devices such as hard 
disks. In this chapter, you also learn about the different I/O schedulers supported by 
the Linux-Block subsystem.

Chapter 15, “Network Interface Cards,” is devoted to network device drivers. You 
learn about kernel networking data structures and how to interface network drivers 
with protocol layers.

Chapter 16, “Linux Without Wires,” looks at driving different wireless technolo-
gies such as Bluetooth, Infrared, WiFi, and cellular communication.

Chapter 17, “Memory Technology Devices,” discusses fl ash memory enablement 
on embedded devices. The chapter ends by examining drivers for the Firmware Hub 
found on PC systems.

Chapter 18, “Embedding Linux,” steps into the world of embedded Linux. It takes 
you through the main fi rmware components of an embedded solution such as boot-
loader, kernel, and device drivers. Given the soaring popularity of Linux in the embed-
ded space, it’s more likely that you will use the device driver skills that you acquire 
from this book to enable embedded systems.

Chapter 19, “Drivers in User Space,” looks at driving different types of devices 
from user space. Some device drivers, especially ones that are heavy on policy and 
light on performance requirements, are better off residing in user land. This chapter 
also explains how the Linux process scheduler affects the response times of user mode 
drivers.

Chapter 20, “More Devices and Drivers,” takes a tour of a potpourri of driver fami-
lies not covered thus far, such as Error Detection And Correction (EDAC), FireWire, 
and ACPI.

Chapter 21, “Debugging Device Drivers,” teaches about different types of debug-
gers that you can use to debug kernel code. In this chapter, you also learn to use trace 
tools, kernel probes, crash-dump, and profi lers. When you develop a driver, be armed 
with the driver debugging skills that you learn in this chapter.

Chapter 22, “Maintenance and Delivery,” provides perspective on the software 
development life cycle.

Chapter 23, “Shutting Down,” takes you through a checklist of work items when 
you embark on Linux-enabling a new device. The book ends by pondering What next?

Device drivers sometimes need to implement code snippets in assembly, so Appen-
dix A, “Linux Assembly,” takes a look at the different facets of assembly programming 
on Linux. Some device drivers on x86-based systems depend directly or indirectly on 
the BIOS, so Appendix B, “Linux and the BIOS,” teaches you how Linux interacts 
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with the BIOS. Appendix C, “Seq Files,” describes seq fi les, a kernel helper interface 
introduced in the 2.6 kernel that device drivers can use to monitor and trend data 
points.

The book is generally organized according to device and bus complexity, coupled 
with practical reasons of dependencies between chapters. So, we start off with basic 
device classes such as character, serial, and input. Next, we look at simple serial buses 
such as I2C and SMBus. External I/O buses such as PCMCIA, PCI, and USB follow. 
Video, audio, block, and network devices usually interface with the processor via these 
I/O buses, so we look at them soon after. The next portions of the book are oriented 
toward embedded Linux and cover technologies such as wireless networking and fl ash 
memory. User-space drivers are discussed toward the end of the book.

Kernel Version 

This book is generally up to date as of the 2.6.23/2.6.24 kernel versions. Most code list-
ings in this book have been tested on a 2.6.23 kernel. If you are using a later version, look 
at Linux websites such as lwn.net to learn about the kernel changes since 2.6.23/24.

Book Website

I’ve set up a website at elinuxdd.com to provide updates, errata, and other information 
related to this book.

Conventions Used

Source code, function names, and shell commands are written like this. The shell 
prompt used is bash>. Filename are written in italics, like this. Italics are also used to 
introduce new terms.

Some chapters modify original kernel source fi les while implementing code exam-
ples. To clearly point out the changes, newly inserted code lines are prefi xed with +,
and any deleted code lines with -.

Sometimes, for simplicity, the book uses generic references. So, if the text points 
you to the arch/your-arch/ directory, it should be translated, for example, to arch/x86/ 
if you are compiling the kernel for the x86 architecture. Similarly, any mention of 
the include/asm-your-arch/ directory should be read as include/asm-arm/ if you are, 
for instance, building the kernel for the ARM architecture. The * symbol and X are 
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occasionally used as wildcard characters in fi lenames. So, if a chapter asks you to look 
at include/linux/time*.h, look at the header fi les, time.h, timer.h, times.h, and timex.h
residing in the include/linux/ directory. If a section talks about /dev/input/eventX or 
/sys/devices/platform/i8042/serioX/, X is the interface number that the kernel assigns to 
your device in the context of your system confi guration.

The → symbol is sometimes inserted between command or kernel output to attach 
explanations.

Simple regular expressions are occasionally used to compactly list function prototypes. 
For example, the section “Direct Memory Access” in Chapter 10, “Peripheral Component 
Interconnect,” refers to pci_[map|unmap|dma_sync]_single() instead of explicitly 
citing pci_map_single(), pci_umap_single(), and pci_dma_sync_single().

Several chapters refer you to user-space confi guration fi les. For example, the sec-
tion that describes the boot process opens /etc/rc.sysinit, and the chapter that discusses 
Bluetooth refers to /etc/bluetooth/pin. The exact names and locations of such fi les might, 
however, vary according to the Linux distribution you use.
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2

L inux lures. It has the enticing aroma of an internationalist project where 
people of all nationalities, creed, and gender collaborate. Free availability of 

source code and a well-understood UNIX-like application programming envi-
ronment have contributed to its runaway success. High-quality support from 
experts available instantly over the Internet at no charge has also played a major 
role in stitching together a huge Linux community.

Developers get incredibly excited about working on technologies where they 
have access to all the sources because that lets them create innovative solutions. 
You can, for example, hack the sources and customize Linux to boot in a few 
seconds on your device, a feat that is hard to achieve with a proprietary operat-
ing system. 

Evolution

Linux    started as the hobby of a Finnish college student named Linus  Torvalds in 
1991, but quickly metamorphed into an advanced operating system popular all over 
the planet. From its fi rst release for the Intel 386 processor, the kernel has gradually 
grown in complexity to support numerous architectures, multiprocessor hardware, 
and high-performance clusters. The full list of supported CPUs is long, but some 
of the major supported architectures are x86, IA64, ARM, PowerPC, Alpha, s390, 
MIPS, and SPARC. Linux has been ported to hundreds of hardware platforms built 
around these processors. The kernel is continuously  getting better, and the evolu-
tion is progressing at a frantic pace.

Although it started life as a desktop-operating system, Linux has penetrated 
the embedded and enterprise worlds and is touching our daily lives. When you 
push the buttons on your handheld, fl ip your remote to the weather channel, or 
visit the hospital for a physical checkup, it’s increasingly likely that some Linux 
code is being set into motion to come to your service. Linux’s free availability is 
helping its evolution as much as its technical superiority. Whether it’s an initia-
tive to develop sub-$100 computers to enable the world’s poor or pricing pressure 
in the consumer electronics space, Linux is today’s operating system of choice, 



because proprietary operating systems sometimes cost more than the desired price of 
the computers themselves.

The GNU Copyleft

The    GNU project (GNU is a recursive acronym for GNU’s Not UNIX) predates Linux 
and was launched to develop a free UNIX-like operating system. A complete GNU 
operating system is powered by the Linux kernel but also contains components such 
as libraries, compilers, and utilities. A Linux-based computer is hence more accurately 
a GNU/Linux system. All components of a GNU/Linux system are built using free 
software.

There are different fl avors of free software. One such fl avor is called  public domain
software. Software released under the public domain is not copyrighted, and no restric-
tions are imposed on its usage. You can use it for free, make changes to it, and even 
restrict the distribution of your modifi ed sources. As you can see, the “no restrictions” 
clause introduces the power to impose restrictions downstream.

The Free Software Foundation, the primary sponsor of the GNU project, cre-
ated the GNU Public License (GPL), also called a copyleft, to prevent the possibility of 
middlemen transforming free software into proprietary software. Those who modify 
copylefted software are required to also copyleft their derived work. The Linux kernel 
and most components of a GNU system such as the GNU Compiler Collection (GCC) 
are released under the GPL. So, if you make modifi cations to the kernel, you have to 
return your changes back to the community. Essentially, you have to pass on the rights 
vested on you by the copyleft.

 The Linux kernel is licensed under GPL version 2. There is an ongoing debate in the kernel 
community about whether the kernel should move to GPLv3, the latest version of the GPL. 
The current tide seems to be against relicensing the kernel to adopt GPLv3.

Linux applications that invoke system calls to access kernel services are not con-
sidered derived work, however, and won’t be restricted by the GPL. Similarly, libraries 
are covered by a less-stringent license called the GNU Lesser General Public License
(LGPL  ). Proprietary software is permitted to dynamically link with libraries released 
under the LGPL.

The GNU Copyleft 3
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Kernel.org

The   primary repository of Linux kernel sources is www.kernel.org. The website con-
tains all released kernel versions. A number of websites around the world mirror the 
contents of kernel.org. 

In addition to released kernels, kernel.org also hosts a set of  patches maintained by 
front-line developers that serve as a test bed for future stable releases. A  patch is a text 
fi le containing source code differences between a development tree and the original 
snapshot from which the developer started work. A popular patch-set available at ker-
nel.org is the -mm patch periodically released by Andrew  Morton, the lead maintainer 
of the Linux kernel. You will fi nd experimental features in the -mm patch that have 
not yet made it to the mainline source tree. Another patch-set periodically released on 
kernel.org is the –rt (real time) patch   maintained by Ingo  Molnar. Several –rt fea-
tures have been merged into the mainline kernel.

Mailing Lists and Forums

The     Linux Kernel Mailing List (LKML) is the forum where developers debate on design 
issues and decide on future features. You can fi nd a real-time feed of the mailing list at 
www.lkml.org. The kernel now contains several million lines of code contributed by 
thousands of developers all over the world. LKML acts as the thread that ties all these 
developers together.

LKML is not for general Linux questions. The basic rule is to post only questions 
pertaining to kernel development that have not been previously answered in the mail-
ing list or in popularly available documentation. If the C compiler crashed while com-
piling your Linux application, you should post that question elsewhere.

Discussions in some LKML threads are more interesting than a New York Times
bestseller. Spend a few hours browsing LKML archives to get an insight into the phi-
losophy behind the Linux kernel. 

Most subprojects in the kernel have their own specifi c mailing lists. So, subscribe to 
the  linux-mtd mailing list if you are developing a Linux fl ash memory driver or initiate a 
thread in the  linux-usb-devel mailing list if you think you have found a bug in the USB 
mass storage driver. We refer to relevant mailing lists at the end of several chapters.

In various forums, kernel experts from around the globe gather under one roof. 
The Linux Symposium held annually at Ottawa, Canada, is one such conference. Oth-
ers include the Linux Kongress that takes place in Germany and  linux.conf.au organized 

www.kernel.org
www.lkml.org


in Australia. There are also numerous commercial Linux forums where industry lead-
ers meet and share their insights. An example is the  LinuxWorld Conference and Expo
held yearly in North America.

For the latest news from the developer community, check out  http://lwn.net/. If 
you want to glean the highlights of the latest kernel release without many cryptic refer-
ences to kernel internals, this might be a good place to look. You can fi nd another web 
community that discusses current  kernel topics at http://kerneltrap.org/.

With every major kernel release, you will see sweeping improvements, be it kernel 
preemption, lock-free readers, new services to offl oad work from interrupt handlers, or 
support for new architectures. Stay in constant touch with the mailing lists, websites, 
and forums, to keep yourself in the thick of things.

Linux Distributions

Because   a GNU/Linux system consists of numerous utilities, programs, libraries, and 
tools, in addition to the kernel, it’s a daunting task to acquire and correctly install all 
the pieces. Linux distributions come to the rescue by classifying the components and 
bundling them into packages in an orderly fashion. A typical distribution contains 
thousands of ready-made packages. You need not worry about downloading the right 
program versions or fi xing dependency issues.

Because packaging is a way to make a lot of money within the ambit of the GNU 
license, there are several Linux distributions in the market today. Distributions such 
as Red Hat/Fedora, Debian, SuSE, Slackware, Gentoo, Ubuntu, and Mandriva are 
primarily meant for the desktop user. MontaVista, TimeSys, and Wind River distribu-
tions are geared toward embedded development. Embedded Linux distributions also 
include a dynamically confi gurable compact application-set to tailor the system’s foot-
print to suit resource constraints.

In addition to packaging, distributions offer value-adds for kernel development. 
Many projects start development based on kernels supplied by a distribution rather 
than a kernel released offi cially at kernel.org. Reasons for this include the following:

 • Linux distributions that comply with standards relevant to your device’s industry 
domain are often better starting points for development. Special Interest Groups
(SIGs)   have taken shape to promote Linux in various domains. The Consumer
Electronics Linux Forum (CELF  ), hosted at www.celinuxforum.org, focuses on 
using Linux on consumer electronics devices. The CELF specification defines 
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the support level of features such as scalable footprint, fast boot, execute in 
place, and power management, desirable on consumer electronics devices. The 
efforts of the   Open Source Development Lab (OSDL), hosted at www.osdl.org, 
centers on characteristics distinct to carrier-grade devices. OSDL’s Carrier Grade 
Linux (CGL)   specification codifies value additions such as reliability, high avail-
ability, runtime patching, and enhanced error recovery, important in the tele-
com space.

 • The mainline kernel might not include full support for the embedded control-
ler of your choice even if the controller is built around a kernel-supported CPU 
core. A Linux distribution might offer device drivers for all the peripheral mod-
ules inside the controller, however.

 • Debugging tools that you plan to use during kernel development may not be 
part of the mainline kernel. For example, the kernel has no built-in debugger 
support. If you want to use a kernel debugger during development, you have to 
separately download and apply the corresponding patches. You have to endure 
more hassles if tested patches are not readily available for your kernel version. 
Distributions prepackage many useful debugging features, so you can start using 
them right away.

 • Some distributions provide legal indemnification so that your company won’t 
be liable for lawsuits arising out of kernel bugs.

 • Distributions tend to do a lot of testing on the kernels they release.1

 • You can purchase service and support packages from distribution vendors for 
kernels that they supply. 

Looking at the Sources

Before   we start wetting our toes in the kernel, let’s download the sources, learn to 
apply a patch, and look at the layout of the code tree. 

First, go to www.kernel.org and get the latest stable tree. The sources are archived 
as tar fi les compressed in both gzip (.gz) and bzip2 (.bz2) formats. Obtain the source 
fi les by uncompressing and untarring the zipped tar ball. In the following commands, 
replace X.Y.Z with the latest kernel version, such as 2.6.24:

1 Because this necessitates freezing the kernel to a version that is not the latest, distribution-supplied kernels often contain back-
ports of some features released in later offi cial kernels. 

www.osdl.org
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bash> cd /usr/src

bash> wget www.kernel.org/pub/linux/kernel/vX.Y/linux-X.Y.Z.tar.bz2

...

bash> tar xvfj linux-X.Y.Z.tar.bz2

Now that you have the unpacked source tree in /usr/src/linux-X.Y.Z/ on your sys-
tem, let’s enable some experimental test features into the tree by getting a correspond-
ing -mm (Andrew Morton) patch:

bash> cd /usr/src

bash> wget www.kernel.org/pub/linux/kernel/people/akpm/patches/X.Y/X.Y.Z/X.Y.Z-
mm2/X.Y.Z-mm2.bz2

Apply   the patch:

bash> cd /usr/src/linux-X.Y.Z/

bash> bzip2 -dc ../X.Y.Z-mm2.bz2 | patch -p1 

The -dc option asks bzip2 to uncompress the specifi ed fi les to standard output. This 
is piped to the   patch utility, which applies changes to each modifi ed fi le in the code tree. 

If you need to apply multiple patches, do so in the right sequence. To generate a 
kernel enabled with the X.Y.Z-aa-bb patch, fi rst download the full X.Y.Z kernel 
sources, apply  the X.Y.Z-aa patch, and then apply the X.Y.Z-aa-bb patch.

Patch Submission

To generate     a kernel patch out of your changes, use the diff command:

bash> diff –Nur /path/to/original/kernel /path/to/your/kernel > changes.patch

Note that the original kernel precedes the changed version in the diff-ing order. As per 
2.6 kernel patch submission conventions, you also need to add a line at the end of the patch that 
says this: 

Signed-off-by: Name <Email> 

With this, you certify that you wrote the code yourself and that you have the right to con-
tribute it.

You are now all set to post your patch to the relevant mailing list, such as LKML.

Look at Documentation/SubmittingPatches for a guide on creating patches for submission and 
at Documentation/applying-patches.txt for a tutorial on applying patches.

Looking at the Sources 7



8 Chapter 1 Introduction

Now that your patched /usr/src/linux-X.Y.Z/ tree is ready for use, let’s take a moment 
to observe how the source layout is organized. Go to the root of the source tree and list 
its contents. The directories branching out from the root of the code tree are as follows  :

 1. arch. This   directory contains architecture-specific files. You will see separate 
subdirectories under arch/ for processors such as ARM, Motorola 68K, s390, 
MIPS, Alpha, SPARC, and IA64.

 2. block.   This primarily contains the implementation of I/O scheduling algorithms 
for block storage devices.

 3. crypto. This   directory implements cipher operations and the cryptographic 
API, used, for example, by some WiFi device drivers for implementing encryp-
tion algorithms.

 4. Documentation. This   directory has brief descriptions of various kernel subsys-
tems. This can be your first stop to dig for answers to kernel-related queries.

 5. drivers. Device   drivers for numerous device classes and peripheral control-
lers reside in this directory. The device classes include character, serial, Inter-
 Integrated Circuit (I2C), Personal Computer Memory Card International Association 
(PCMCIA), Peripheral Component Interconnect (PCI), Universal Serial Bus
(USB), video, audio, block, Integrated Drive Electronics (IDE), Small Computer 
System Interface (SCSI), CD-ROM, network adapters, Asynchronous Transfer 
Mode (ATM), Bluetooth, and Memory Technology Devices (MTD). Each of these 
classes live in a separate subdirectory under drivers/. You will, for instance, find 
PCMCIA driver sources inside the drivers/pcmcia/ directory and MTD drivers 
inside the drivers/mtd/ directory. The subdirectories present under drivers/ con-
stitute the primary subjects for this book.

 6. fs.   This directory contains the implementation of filesystems such as EXT3, 
EXT4, reiserfs, FAT, VFAT, sysfs, procfs, isofs, JFFS2, XFS, NTFS, and NFS.

 7. include.   Kernel header files live here. Subdirectories prefixed with asm contain 
headers specific to the particular architecture. So the directory include/asm-x86/
contains header files pertaining to the x86 architecture, whereas include/asm-
arm/ holds headers for the ARM architecture.

 8. init. This   directory contains high-level initialization and startup code.

 9. ipc. This   contains support for Inter-Process Communication (IPC) mechanisms 
such as message queues, semaphores, and shared memory.

 10. kernel. The   architecture-independent portions of the base kernel can be found 
here.



 11. lib.   Library routines such as generic kernel object (kobject) handlers and Cyclic 
Redundancy Code (CRC) computation functions stay here.

 12. mm.   The memory management implementation lives here.

 13. net.   Networking protocols reside under this directory. Protocols implemented 
include Internet Protocol version 4 (IPv4), IPv6, Internetwork Protocol eXchange 
(IPX), Bluetooth, ATM, Infrared, Link Access Procedure Balanced (LAPB), and 
Logical Link Control (LLC).

 14. scripts.   Scripts used during kernel build reside here.

 15. security.   This directory contains the framework for security.

 16. sound.   The Linux audio subsystem is based in this directory.

 17. usr.   This   currently contains the initramfs implementation.

Unifi ed x86 Architecture Tree

Starting with the 2.6.24 kernel release, the i386 and the x86_64 (the 64-bit cousin of the 32-bit 
i386) architecture-specifi c trees have been unifi ed into a common arch/x86/ directory. If you are 
using a pre-2.6.24 kernel, replace references to arch/x86/ in this book with arch/i386/. Similarly, 
change any occurrence of include/asm-x86/ to include/asm-i386/. Some fi lenames within these 
directories have also changed.  

Wading through these large directories in search of symbols and other code ele-
ments can be a tough task. The tools in Table 1.1 are worthy aids as you navigate the 
kernel source tree.

TABLE 1.1 Tools That Aid Source    Tree Navigation

 Tool Description

 lxr     The Linux cross-referencer, lxr, downloadable from http://lxr.sourceforge.net/, lets you 
traverse the kernel tree using a web browser by providing hyperlinks to connect kernel 
symbols with their definitions and uses. 

 cscope    cscope, hosted at http://cscope.sourceforge.net/, builds a symbolic database from all files 
in a source tree, so you can quickly locate declarations, definitions, regular expressions, 
and more. Cscope might not be as versatile as lxr, but it gives you the flexibility of using 
the search features of your favorite text editor rather than a browser. From the root of your 
kernel tree, issue the cscope -qkRv command to build the cross-reference database. The 
-q option generates more indexing information, so searches become noticeably faster at 
the expense of extra initial startup time. The –k option requests cscope to tune its behavior 
to suit kernel sources, -R asks for recursive subdirectory traversal, and –v appeals for 
verbose messages. You can obtain the detailed invocation syntax from the man page.

Continues
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TABLE 1.1 Continued

 Tool Description

 ctags/etags      The ctags utility, downloadable from http://ctags.sourceforge.net/, generates cross-
 reference tags for many languages, so you can locate symbol and function definitions in a 
source tree from within an editor such as vi. Do make tags from the root of your kernel 
tree to ctag all source files. The etags utility generates similar indexing information under-
stood by the emacs editor. Issue make TAGS to etag your kernel source files.

 Utilities  Tools such as grep, find, sdiff, strace, od, dd, make, tar, file, and objdump.

 GCC options     You may ask GCC to generate preprocessed source code using the -E option. Preprocessed 
code contains header file expansions and reduces the need to hop-skip through nested 
include files to expand multiple levels of macros. Here is a usage example to pre process 
drivers/char/mydrv.c and produce expanded output in mydrv.i:

bash> gcc -E drivers/char/mydrv.c -D__KERNEL__ -Iinclude 
-Iinclude/asm-x86/mach-default > mydrv.i

The include paths specified using the -I option depend on the header files included by 
your code.

   GCC generates assembly listings if you use the -S option. To generate an assembly listing 
in mydrv.s for drivers/char/mydrv.c, do this:

bash> gcc -S drivers/char/mydrv.c -D__KERNEL__ -Iinclude 
-Ianother/include/path

Building the Kernel

Now   that you have an idea of the source tree layout, let’s make a trivial code change, 
compile, and get it running. Go to the top-level init/ directory and venture to make a 
small code change to the initialization fi le main.c. Add a print statement to the begin-
ning of the function,   start_kernel(), declaring your love for polar bears:

asmlinkage void __init start_kernel(void)

{

    char *command_line;

    extern struct kernel_param __start___param[],

           __stop___param[];

+ printk("Penguins are cute, but so are polar bears\n");

    

    /* ... */

    

    rest_init();

}

http://ctags.sourceforge.net/


You’re now ready to kick off the build process. Go to the root of the source tree and 
start with a clean slate:

bash> cd /usr/src/linux-X.Y.Z/

bash> make clean

Confi gure the kernel. This is when you pick and choose the pieces that form part of 
the operating system. You may specify whether each desired component is to be stati-
cally or   dynamically linked to the kernel:

bash> make menuconfig

menuconfig is a text interface to the kernel confi guration menu. Use make xconfig

to get a graphical interface. The confi guration information that you choose is saved in 
a fi le named .confi g in the root of your source tree. If you don’t want to weave the con-
fi guration from scratch, use the fi le arch/your-arch/defconfi g (or arch/your-arch/confi gs/
your-machine_defconfi g if there are several supported platforms for your architecture) as the 
starting point. So, if you are compiling the kernel for the 32-bit x86 architecture, do this:

bash> cp arch/x86/configs/i386_defconfig .config

Compile the kernel and generate a compressed boot image:

bash> make bzImage

The kernel image is produced in arch/x86/boot/bzImage. Update your boot partition:

bash> cp arch/x86/boot/bzImage /boot/vmlinuz

You might need to alert your bootloader about the arrival of the new boot image. If 
you are using the GRUB bootloader, it fi gures this out automatically; but if you are 
using LILO, raise a fl ag:

bash> /sbin/lilo

Added linux *

Finally, restart the machine and boot in to your new kernel:

bash> reboot

The fi rst message in the boot sequence launches your campaign for polar bears.

Building the Kernel 11
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Loadable Modules

Because     Linux runs on a variety of architectures and supports zillions of I/O devices, 
it’s not feasible to permanently compile support for all possible devices into the base 
kernel. Distributions generally package a minimal kernel image and supply the rest of 
the functionalities in the form of kernel modules. During runtime, the necessary mod-
ules are dynamically loaded on demand.

To generate modules, go to the root of your kernel source tree and build:

bash> cd /usr/src/linux-X.Y.Z/

bash> make modules 

To install the produced modules, do this:

bash> make modules_install

This creates a kernel source directory structure under /lib/modules/X.Y.Z/kernel/ and 
populates it with loadable module objects. This also invokes the depmod utility that 
generates module dependencies in the fi le /lib/modules/X.Y.Z/modules.dep.

The following utilities are available to manipulate modules:     insmod, rmmod, lsmod,
modprobe, modinfo, and depmod. The fi rst two are utilities to insert and remove mod-
ules, whereas lsmod   lists the modules that are currently loaded.   modprobe is a cleverer 
version of insmod that also inserts dependent modules after examining the contents of 
/lib/modules/X.Y.Z/modules.dep. For example, assume that you need to mount a Virtual 
File Allocation Table (VFAT) partition present on a USB pen drive. Use modprobe to 
load the VFAT fi lesystem driver:2

bash> modprobe vfat

bash> lsmod

Module       Size     Used by

vfat         14208    0

fat          49052    1 vfat

nls_base     9728     2 vfat, fat

2 This example assumes that the module is not autoloaded by the kernel. If you enable Automatic Kernel Module Loading 
(CONFIG_KMOD) during confi guration, the kernel automatically runs modprobe with the appropriate arguments when it 
detects missing subsystems. You’ll learn about module autoloading in Chapter 4, “Laying the Groundwork.”



As you see in the lsmod output,   modprobe inserts three modules rather than one. 
modprobe fi rst fi gures out that it has to insert /lib/modules/X.Y.Z/kernel/fs/vfat/vfat.ko.
But when it peeks into the dependency fi le /lib/modules/X.Y.Z/modules.dep, it fi nds the 
following line and realizes that it has to load two other dependent modules fi rst:

/lib/modules/X.Y.Z/kernel/fs/vfat/vfat.ko:

/lib/modules/X.Y.Z/kernel/fs/fat/fat.ko

/lib/modules/X.Y.Z/kernel/fs/nls/nls_base.ko

It then proceeds to load fat.ko and nls_base.ko before attempting to insert vfat.ko,
thus automatically loading all the modules you need to mount your VFAT partition.

Use the   modinfo utility to extract verbose information about the modules you just 
loaded:

bash> modinfo vfat

filename:      /lib/modules/X.Y.Z/kernel/fs/vfat/vfat.ko

license:       GPL

description:   VFAT filesystem support

...

depends:       fat, nls_base

To compile a kernel driver as a module, toggle the corresponding menu choice 
button to <M> while confi guring the kernel. Most of the device driver examples in this 
book are implemented as kernel modules. To build a module mymodule.ko from its 
source fi le mymodule.c, create a one-line Makefi le and execute it as follows:

bash> cd /path/to/module-source/

bash> echo "obj-m += mymodule.o" > Makefile

bash> make –C /path/to/kernel-sources/ M=`pwd` modules

make: Entering directory '/path/to/kernel-sources'

  Building modules, stage 2.

  MODPOST

  CC /path/to/module-sources/mymodule.mod.o

  LD [M] /path/to/module-sources/mymodule.ko

make: Leaving directory '/path/to/kernel-sources'

bash> insmod ./mymodule.ko

Loadable Modules 13



14 Chapter 1 Introduction

Kernel modules render the kernel footprint smaller and the develop-build-test cycle 
shorter. You only need to recompile the particular module and reinsert it to effect a 
change. We look at module debugging techniques in Chapter 21, “Debugging Device 
Drivers.”

There are also some downsides if you choose to design your driver as a kernel mod-
ule. Unlike built-in drivers, modules cannot reserve resources during boot time, when 
success is more or less guaranteed.

Before Starting

Linux has trekked many a terrain and is now state of the art, so you can use it as a 
vehicle to understand operating system concepts, processor architectures, and even 
industry domains. When you learn a technique used by a device driver subsystem, 
look one level deeper and probe the underlying reasons behind that design choice. 

Wherever not explicitly stated, the text assumes the 32-bit x86 architecture. The 
book is, however, mindful of the fact that you are more likely to write device drivers 
for embedded devices than for conventional PC-compatible systems. The chapter on 
serial drivers, for example, examines two devices: a touch controller on a PC deriva-
tive and a UART on a cell phone. Or the chapter on I2C device drivers looks at an 
EEPROM on a PC system and a Real Time Clock on an embedded device. The book 
also teaches you about the core infrastructure that the kernel provides for most driver 
classes, which hides architecture dependencies from device drivers.

Device driver debugging techniques are discussed near the end of the book in 
Chapter 21, so you might fi nd it worthwhile to forward to that chapter as you develop 
drivers while reading the book.

This book is based on the 2.6 kernel, which has substantial changes across the board 
from 2.4, touching all major subsystems. Hopefully, you have installed a 2.6-based 
Linux on your system by now and started experimenting with the kernel sources. Each 
chapter takes the liberty of profusely pointing you to relevant kernel source fi les for 
two main reasons:

 1. Because each driver subsystem in the kernel is tens of thousands of lines long, 
it’s only possible to take a relatively simplistic view in a book. Looking at real 
drivers in the sources along with the example code in this book will give you the 
bigger picture.



 2. Before developing a driver, it’s a good idea to zero in on an existing driver in 
the drivers/ directory that is similar to your requirement and make that your 
starting point.

So, to derive maximum benefi t from this book, familiarize yourself with the kernel 
by frequently browsing the source tree and staring hard at the code. And in tandem 
with your code explorations, follow the goings-on in the kernel mailing list.

Before Starting 15
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Before we start our journey into the mystical world of Linux device driv-
ers, let’s familiarize ourselves with some basic kernel concepts by looking 

at several kernel regions through the lens of a driver developer. We learn about 
kernel timers, synchronization mechanisms, and memory allocation. But let’s 
start our expedition by getting a view from the top; let’s skim through boot 
messages emitted by the kernel and hit the breaks whenever something looks 
interesting.

Booting Up

Figure 2.1   shows the Linux boot sequence on an x86-based computer. Linux boot 
on x86-based hardware is set into motion when the BIOS loads the Master Boot 
Record (MBR) from the boot device. Code resident in the MBR looks at the parti-
tion table and reads a Linux bootloader such as GRUB, LILO, or SYSLINUX from 
the active partition. The fi nal stage of the bootloader loads the compressed kernel 
image and passes control to it. The kernel uncompresses itself and turns on the 
ignition.

x86-based processors have two modes of operation,     real mode and protected 
mode. In real mode, you can access only the fi rst 1MB of memory, that too with-
out any protection. Protected mode is sophisticated and lets you tap into many 
advanced features of the processor such as paging. The CPU has to pass through real 
mode en route to protected mode.

The fi rst-level kernel initializations are done in real mode assembly. Subsequent 
startup is performed in protected mode by the function     start_kernel() defi ned in 
init/main.c, the source fi le you modifi ed in the previous chapter. start_kernel()
begins by initializing the CPU subsystem. Memory and process management are 
put in place soon after. Peripheral buses and I/O devices are started next. As the 
last step in the boot sequence, the init program, the parent of all Linux processes, is 
invoked. Init executes user-space scripts that start necessary kernel services. It fi nally 
spawns terminals on consoles and displays the login prompt.



BIOS

Power On

Bootloader (GRUB/LILO/…)

Real Mode Kernel

Protected Mode Kernel 

The init Process

User Processes and Daemons

arch/x86/boot/pm.c

x86 Real Mode

x86 Protected Mode

FIGURE 2.1 Linux   boot sequence on x86-based hardware.

Each following section header is a message from Figure 2.2 generated during boot 
progression on an x86-based laptop. The semantics and the messages may change if 
you are booting the kernel on other architectures. If some explanations in this section 
sound rather cryptic, don’t worry; the intent here is only to give you a picture from 
100 feet above and to let you savor a fi rst taste of the kernel’s fl avor. Many concepts 
mentioned here in passing are covered in depth later on.

BIOS-Provided Physical RAM Map

The kernel     assembles the system memory map from the BIOS, and this is one of the 
fi rst boot messages you will see:

BIOS-provided physical RAM map:

BIOS-e820: 0000000000000000 - 000000000009f000 (usable)

...

BIOS-e820: 00000000ff800000 - 0000000100000000 (reserved)

Booting Up 19
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FIGURE 2.2 Kernel boot messages.

 Real mode initialization code uses the BIOS int 0x15 service with function 
number 0xe820 (hence the string BIOS-e820 in the preceding message) to obtain the 
system memory map. The memory map indicates reserved and usable memory ranges, 
which is subsequently used by the kernel to create its free memory pool. We discuss 



more on the BIOS-supplied memory map in the section “Real Mode Calls” in Appen-
dix B, “Linux and the BIOS.”

758MB LOWMEM Available

The       normally addressable kernel memory region (< 896MB) is called low memory.
The kernel memory allocator,   kmalloc(), returns memory from this region. Memory 
beyond 896MB (called high memory) can be accessed only using special mappings. 

During boot, the kernel calculates and displays the total pages present in these 
memory zones. We take a deeper look at memory zones later in this chapter.

Kernel Command Line: ro root=/dev/hda1

Linux    bootloaders usually pass a command line to the kernel. Arguments in the com-
mand line are similar to the argv[] list passed to the main() function in C pro-
grams, except that they are passed to the kernel instead. You may add command-line 
arguments to the bootloader confi guration fi le or supply them from the bootloader 
prompt at runtime.1 If you are using the GRUB bootloader, the confi guration fi le is 
either /boot/grub/grub.conf or /boot/grub/menu.lst depending on your distribution. If 
you are a LILO user, the confi guration fi le is /etc/lilo.conf. An example grub.conf fi le 
(with comments added) is listed here. You can fi gure out the genesis of the preceding 
boot message if you look at the line following title kernel 2.6.23:

default 0  #Boot the 2.6.23 kernel by default

timeout 5  #5 second to alter boot order or parameters 

title kernel 2.6.23     #Boot Option 1

  #The boot image resides in the first partition of the first disk 

  #under the /boot/ directory and is named vmlinuz-2.6.23. 'ro' 

  #indicates that the root partition should be mounted read-only.

  kernel (hd0,0)/boot/vmlinuz-2.6.23 ro root=/dev/hda1

  #Look under section "Freeing initrd memory:387k freed"

  initrd (hd0,0)/boot/initrd 

#...

1 Bootloaders on embedded devices are usually “slim” and do not support confi guration fi les or equivalent mechanisms. Because of 
this, many non-x86 architectures support a kernel confi guration option called CONFIG_CMDLINE that you can use to supply 
the kernel command line at build time.
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Command-line arguments affect the code path traversed during boot. As a simple 
example, assume that the command-line argument of interest is called bootmode. If 
this parameter is set to 1, you would like to print some debug messages during boot 
and switch to a runlevel of 3 at the end of the boot. (Wait until the boot messages are 
printed out by the init process to learn the semantics of runlevels.) If bootmode is
instead set to 0, you would prefer the boot to be relatively laconic, and the runlevel set 
to 2. Because you are already familiar with init/main.c, let’s add the following modifi -
cation to it:

static unsigned int bootmode = 1;

static int __init 

is_bootmode_setup(char *str)

{

  get_option(&str, &bootmode);

  return 1;

}

/* Handle parameter "bootmode=" */

__setup("bootmode=", is_bootmode_setup); 

if (bootmode) {

  /* Print verbose output */

  /* ... */

}

/* ... */

/* If bootmode is 1, choose an init runlevel of 3, else 

   switch to a run level of 2 */

if (bootmode) {

  argv_init[++args] = "3";

} else {

  argv_init[++args] = "2";

}

/* ... */

Rebuild the kernel as you did earlier and try out the change. We discuss more 
about kernel command-line arguments in the section “Memory Layout” in Chap-
ter 18, “Embedding Linux.”



Calibrating Delay...1197.46 BogoMIPS (lpj=2394935)

During    boot, the kernel calculates the number of times the processor can execute an 
internal delay loop in one jiffy, which is the time interval between two consecutive 
ticks of the system timer. As you would expect, the calculation has to be calibrated to 
the processing speed of your CPU. The result of this calibration is stored in a kernel 
variable called   loops_per_jiffy. One place where the kernel makes use of loops_
per_jiffy is when a device driver desires to delay execution for small durations in the 
order of microseconds.

To understand the delay-loop calibration code, let’s take a peek inside  calibrate_
delay(), defi ned in init/calibrate.c. This function cleverly derives fl oating-point 
precision using the integer kernel. The following snippet (with some comments 
added) shows the initial portion of the function that carves out a coarse value for 
loops_per_jiffy:

loops_per_jiffy = (1 << 12); /* Initial approximation = 4096 */

printk(KERN_DEBUG "Calibrating delay loop... ");

while ((loops_per_jiffy <<= 1) != 0) {

ticks = jiffies;  /* As you will find out in the section, "Kernel 

                     Timers," the jiffies variable contains the 

                     number of timer ticks since the kernel 

                     started, and is incremented in the timer 

                     interrupt handler */

        

  while (ticks == jiffies); /* Wait until the start 

                               of the next jiffy */

  ticks = jiffies;

  /* Delay */

  __delay(loops_per_jiffy);

  /* Did the wait outlast the current jiffy? Continue if 

     it didn't */ 

  ticks = jiffies - ticks; 

  if (ticks) break;

}

loops_per_jiffy >>= 1; /* This fixes the most significant bit and is 

                          the lower-bound of loops_per_jiffy */
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The preceding code begins by assuming that   loops_per_jiffy is greater than 
4096, which translates to a processor speed of roughly one million instructions per 
second (MIPS).   It then waits for a fresh jiffy to start and executes the delay loop, 
__delay(loops_per_jiffy). If the delay loop outlasts the jiffy, the previous value 
of loops_per_jiffy (obtained by bitwise right-shifting it by one) fi xes its most signif-
icant bit (MSB  ). Otherwise, the function continues by checking whether it will obtain 
the MSB by bitwise left-shifting loops_per_jiffy. After the kernel thus fi gures out 
the MSB of loops_per_jiffy, it works on the lower-order bits and fi ne-tunes its 
precision as follows:

loopbit = loops_per_jiffy;

/* Gradually work on the lower-order bits */

while (lps_precision-- && (loopbit >>= 1)) {

  loops_per_jiffy |= loopbit; 

  ticks = jiffies;

  while (ticks == jiffies); /* Wait until the start 

                               of the next jiffy */

ticks = jiffies;

  /* Delay */

  __delay(loops_per_jiffy);

  if (jiffies != ticks) /* longer than 1 tick */

    loops_per_jiffy &= ~loopbit;

}

The preceding snippet fi gures out the exact combination of the lower bits of 
loops_per_jiffy when the delay loop crosses a jiffy boundary. This calibrated value 
is used to derive an unscientifi c measure of the processor speed, known as  BogoMIPS.
You can use the BogoMIPS rating as a relative measurement of how fast a CPU can 
run. On a 1.6GHz Pentium M-based laptop, the delay-loop calibration yielded a value 
of 2394935 for loops_per_jiffy as announced by the preceding boot message. The 
BogoMIPS value is obtained as follows:

BogoMIPS = loops_per_jiffy * Number of jiffi es in 1 second * Number of 
instructions consumed by the internal delay loop in units of 1 million

                   = (2394935 * HZ * 2) / (1 million)

                   = (2394935 * 250 * 2) / (1000000)

                   = 1197.46 (as displayed in the preceding boot message)



We further discuss jiffies, HZ, and loops_per_jiffy in the section “Kernel 
Timers” later in this chapter.

Checking HLT Instruction

Because    the Linux kernel is supported on a variety of hardware platforms, the boot 
code checks for architecture-dependent bugs. Verifying the sanity of the halt (HLT) 
instruction  is one such check.

The HLT instruction supported by x86 processors puts the CPU into a low-power 
sleep mode that continues until the next hardware interrupt occurs. The kernel uses 
the HLT instruction when it wants to put the CPU in the idle state (see function 
cpu_idle() defi ned in arch/x86/kernel/process_32.c).

For problematic CPUs, the no-hlt kernel command-line argument can be used to 
disable the HLT instruction. If no-hlt is turned on, the kernel busy-waits while it’s 
idle, rather than keep the CPU cool by putting it in the HLT state.

The preceding boot message is generated when the startup code in init/main.c calls 
check_bugs() defi ned in include/asm-your-arch/bugs.h.

NET: Registered Protocol Family 2

The Linux    socket layer is a uniform interface through which user applications access 
various networking protocols. Each protocol registers itself with the socket layer using 
a unique family number (defi ned in include/linux/socket.h) assigned to it. Family 2 in 
the preceding message stands for AF_INET  (Internet Protocol).

Another registered protocol family often found in boot messages is  AF_NETLINK
(Family 16). Netlink   sockets offer a method to communicate between user processes and 
the kernel. Functionalities accomplished via netlink sockets include accessing the routing 
table and the   Address Resolution Protocol (ARP) table (see include/linux/netlink.h for the 
full usage list). Netlink sockets are more suitable than system calls to accomplish such 
tasks because they are asynchronous, simpler to implement, and dynamically linkable.

Another protocol family commonly enabled in the kernel is  AF_UNIX or UNIX-
domain sockets  . Programs such as X Windows use them for interprocess communica-
tion on the same system.

Freeing Initrd Memory: 387k Freed

Initrd is     a memory-resident virtual disk image loaded by the bootloader. It’s mounted 
as the initial root fi lesystem after the kernel boots, to hold additional dynamically 
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loadable modules required to mount the disk partition that holds the actual root fi le-
system. Because the kernel runs on different hardware platforms that use diverse stor-
age controllers, it’s not feasible for distributions to enable device drivers for all possible 
disk drives in the base kernel image. Drivers specifi c to your system’s storage device are 
packed inside initrd and loaded after the kernel boots, but before the root fi lesystem is 
mounted. To create an initrd image, use the   mkinitrd command.

The 2.6 kernel includes a feature called   initramfs that bring several benefi ts over ini-
trd. Whereas the latter emulates a disk (hence called initramdisk or initrd ) and suffers 
the overheads associated with the Linux block I/O subsystem such as caching, the for-
mer essentially gets the cache itself mounted like a fi lesystem (hence called initramfs).

Initramfs, like the page cache over which it’s built, grows and shrinks dynamically 
unlike initrd, and hence reduces memory wastage. Also, unlike initrd, which requires 
you to include the associated fi lesystem driver (e.g., EXT2 drivers if you have an EXT2 
fi lesystem on your initrd), initramfs needs no fi lesystem support. The initramfs code is 
tiny because it’s just a small layer on top of the page cache.

You can pack your initial root fi lesystem into a compressed cpio archive2 and pass it 
to the kernel command line using the initrd= argument or build it as part of the ker-
nel image using the INITRAMFS_SOURCE menu option during kernel confi guration. 
With the latter, you may either provide the fi lename of a cpio archive or the path name 
to a directory tree containing your initramfs layout. During boot, the kernel extracts 
the fi les into an initramfs root fi lesystem (also called    rootfs) and executes a top-level 
/init program if it fi nds one. This method of obtaining an initial rootfs is especially 
useful for embedded platforms, where all system resources are at a premium. To create 
an initramfs image, use   mkinitramfs. Look at Documentation/fi lesystems/ramfs-rootfs-
initramfs.txt for more documentation.

In this case, we are using initramfs by supplying a     compressed cpio archive of the 
initial root fi lesystem to the kernel using the initrd= command-line argument. After 
unpacking the contents of the archive into rootfs, the kernel frees the memory where 
the archive resides (387K in this case) and announces the above boot message. The 
freed pages are then doled out to other parts of the kernel that request memory. 

As we will discuss in Chapter 18, initrd and initramfs are sometimes used to hold 
the actual root fi lesystem on embedded devices during development.

2 cpio is a UNIX fi le archival format. You can download it from www.gnu.org/software/cpio.

www.gnu.org/software/cpio


IO Scheduler Anticipatory Registered (Default)

The    main goal of an I/O scheduler is to increase system throughput by minimizing 
disk seek times, which is the latency to move the disk head from its existing position 
to the disk sector of interest. The 2.6 kernel provides four different I/O schedulers: 
Deadline    , Anticipatory, Complete Fair Queuing, and Noop. As the preceding kernel 
message indicates, the kernel sets Anticipatory as the default I/O scheduler. We look at 
I/O scheduling in Chapter 14, “Block Drivers.”

Setting Up Standard PCI Resources

The     next phase of the boot process probes and initializes I/O buses and peripheral con-
trollers. The kernel probes PCI hardware by walking the PCI bus, and then initializes 
other I/O subsystems. Take a look at the boot messages in Figure 2.3 to see announce-
ments regarding the initialization of the SCSI subsystem, the USB controller, the video 
chip (part of the 855 North Bridge chipset in the messages below), the serial port (8250 
UART in this case), PS/2 keyboard and mouse, fl oppy drives, ramdisk, the loopback 
device, the IDE controller (part of the ICH4 South Bridge chipset in this example), the 
touchpad, the Ethernet controller (e1000 in this case), and the PCMCIA controller. 
The identity of the corresponding I/O device is labeled against →.

This book discusses many of these driver subsystems in separate chapters. Note that 
some of these messages might manifest only later on in the boot process if the drivers 
are dynamically linked to the kernel as loadable modules.

EXT3-fs: Mounted Filesystem

The EXT3 fi lesystem has become the de facto fi lesystem on Linux. It adds a journaling 
layer on top of the veteran EXT2 fi lesystem to facilitate quick recovery after a crash. 
The aim is to regain a consistent fi lesystem state without having to go through a time-
consuming fi lesystem check (fsck) operation. EXT2 remains the work engine, while 
the EXT3 layer additionally logs fi le transactions on a memory area called journal
before committing the actual changes to disk. EXT3 is backward-compatible with 
EXT2, so you can add an EXT3 coating to your existing EXT2 fi lesystem or peel off 
the EXT3 to get back your original EXT2 fi lesystem.

Booting Up 27



28 Chapter 2 A Peek Inside the Kernel

SCSI subsystem initialized SCSI
usbcore: registered new driver hub USB
agpgart: Detected an Intel 855 Chipset. Video
[drm] Initialized drm 1.0.0 20040925
PS/2 Controller [PNP0303:KBD,PNP0f13:MOU] 
at 0x60,0x64 irq 1,12 serio: i8042 KBD port Keyboard
serial8250: ttyS0 at I/O 0x3f8 (irq = 4) 
is a NS16550A Serial Port
Floppy drive(s): fd0 is 1.44M Floppy
RAMDISK driver initialized: 16 RAM disks 
of 4096K size 1024 blocksize Ramdisk
loop: loaded (max 8 devices) Loop back
ICH4: IDE controller at PCI slot 
0000:00:1f.1 Hard Disk
...
input: SynPS/2 Synaptics TouchPad as 
/class/input/input1 Touchpad
e1000: eth0: e1000_probe: Intel® PRO/1000 
Network Connection Ethernet
Yenta: CardBus bridge found at 
0000:02:00.0 [1014:0560] PCMCIA/CardBus
...

FIGURE 2.3 Initializing buses and peripheral controllers during boot.

 EXT4

The latest   version in the EXT fi lesystem series is EXT4, which has been included in the main-
line kernel starting with the 2.6.19 release, with a tag of “experimental” and a name of ext4dev. 
EXT4 is largely backward-compatible with EXT3. The home page of the EXT4 project is at www.
bullopensource.org/ext4.

EXT3 starts a kernel helper thread (we will have an in-depth discussion on kernel 
threads in the next chapter) called   kjournald to assist in journaling. When EXT3 is 
operational, the kernel mounts the root fi lesystem and gets ready for business:

EXT3-fs: mounted filesystem with ordered data mode

kjournald starting. Commit interval 5 seconds 

VFS: Mounted root (ext3 filesystem).

INIT: Version 2.85 Booting

Init, the     parent of all Linux processes, is the fi rst program to run after the kernel fi n-
ishes its boot sequence. In the last few lines of init/main.c, the kernel searches different 
locations in its attempt to locate init:

www.bullopensource.org/ext4
www.bullopensource.org/ext4


if (ramdisk_execute_command) { /* Look for /init in initramfs */

  run_init_process(ramdisk_execute_command);

}

if (execute_command) { /* You may override init and ask the kernel 

                          to execute a custom program using the 

                          "init=" kernel command-line argument. If 

                          you do that, execute_command points to the 

                          specified program */

  run_init_process(execute_command);

}

/* Else search for init or sh in the usual places .. */

run_init_process("/sbin/init");

run_init_process("/etc/init");

run_init_process("/bin/init");

run_init_process("/bin/sh");

panic("No init found. Try passing init= option to kernel.");

Init receives directions from    /etc/inittab. It fi rst executes system initialization scripts 
present in    /etc/rc.sysinit. One of the important responsibilities of this script is to acti-
vate the swap partition, which triggers a boot message such as this:

Adding 1552384k swap on /dev/hda6

Let’s take a closer look at what this means. Linux user processes own a virtual 
address space of 3GB (see the section “Allocating Memory”). Out of this, the pages 
constituting the “working set” are kept in RAM. However, when there are too many 
programs demanding memory resources, the kernel frees up some used RAM pages by 
storing them in a disk partition called   swap space. According to a rule of thumb, the 
size of the swap partition should be twice the amount of RAM. In this case, the swap 
space lives in the disk partition /dev/hda6 and has a size of 1552384K bytes.

Init then goes on to run scripts present in the /etc/rc.d/rcX.d/ directory, where X is 
the runlevel specifi ed in inittab. A runlevel is an execution state corresponding to the 
desired boot mode. For example, multiuser text mode corresponds to a runlevel of 3, 
while X Windows associates with a runlevel of 5. So, if you see the message, INIT:
Entering runlevel 3, init has started executing scripts in the /etc/rc.d/rc3.d/ direc-
tory. These scripts start the dynamic device-naming subsystem udev (which we discuss 
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in Chapter 4, “Laying the Groundwork”) and load kernel modules responsible for 
driving networking, audio, storage, and so on:

Starting udev:  [ OK ]

Initializing hardware... network audio storage [Done]

...

Init fi nally spawns terminals on virtual consoles. You can now log in.

Kernel Mode and User Mode

Some       operating systems, such as MS-DOS, always execute in a single CPU mode, but 
UNIX-like operating systems use dual modes to effectively implement time-sharing. 
On a Linux machine, the CPU is either in a trusted kernel mode or in a restricted user
mode. All user processes execute in user mode, whereas the kernel itself executes in 
kernel mode.

Kernel mode code has unrestricted access to the entire processor instruction set and 
to the full memory and I/O space. If a user mode process needs these privileges, it has 
to channel requests through device drivers or other kernel mode code via system calls. 
User mode code is allowed to page fault, however, whereas kernel mode code isn’t.

In 2.4 and earlier kernels, only user mode processes could be context switched out 
and replaced by other processes. Kernel mode code could monopolize the processor 
until either 

 • It voluntarily relinquished the CPU. 

or

 • An interrupt or an exception occurred.

With the introduction of kernel preemption in the 2.6 release, most kernel mode 
code can also be context switched. 

Process Context and Interrupt Context

The kernel     accomplishes useful work using a combination of process contexts and
interrupt contexts. Kernel code that services system calls issued by user applications 
runs on behalf of the corresponding application processes and is said to execute in pro-
cess context. Interrupt handlers, on the other hand, run asynchronously in interrupt 
context. Processes contexts are not tied to any interrupt context and vice versa. 



Kernel code running in process context is preemptible. An interrupt context, how-
ever, always runs to completion and is not preemptible. Because of this, there are 
restrictions on what can be done from interrupt context. Code executing from inter-
rupt context cannot do the following:

 • Go to sleep or relinquish the processor

 • Acquire a mutex

 • Perform time-consuming tasks

 • Access user-space virtual memory

Look at section “Interrupt Handing” in Chapter 4 for a full discussion of the inter-
rupt context.

Kernel Timers

The    working of many parts of the kernel is critically dependent on the passage of 
time. The Linux kernel makes use of different timers supported by the hardware to 
provide time-dependent services such as busy-waiting and sleep-waiting. The proces-
sor wastes cycles while it busy-waits but relinquishes the CPU when it sleep-waits. 
Naturally, the former is done only when the latter is not feasible. The kernel also 
facilitates scheduling of functions that desire to run after a specifi ed time duration 
has elapsed.

Let’s fi rst discuss the semantics of some important kernel timer variables such as 
jiffies, HZ, and xtime. Next, let’s measure execution times on a Pentium-based sys-
tem using the Pentium Time Stamp Counter (TSC). Let’s also see how Linux uses the 
Real Time Clock (RTC).

HZ and Jiffies

System         timers interrupt the processor (or “pop”) at programmable frequencies. This 
frequency, or the number of timer ticks per second, is contained in the kernel variable 
HZ. Choosing a value for HZ is a trade-off. A large HZ results in fi ner timer granularity, 
and hence better scheduling resolution. However, bigger values of HZ also result in 
larger overhead and higher power consumption, because more cycles are burnt in the 
timer interrupt context.
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The value of HZ is architecture-dependent. On x86 systems, HZ used to be set to 100 in 
2.4 kernels by default. With 2.6, this value changed to 1000, but with 2.6.13, it was low-
ered to 250. On ARM-based platforms, 2.6 kernels set HZ to 100. With current kernels, 
you can choose a value for HZ at build time through the confi guration menu. The default 
setting for this option depends on your distribution. 

The 2.6.21 kernel introduced support for a tickless kernel (CONFIG_NO_HZ), which 
dynamically triggers timer interrupts depending on system load. The tickless system imple-
mentation is outside the scope of this chapter.

jiffies holds the number of times the system timer has popped since the system 
booted. The kernel increments the jiffies variable, HZ times every second. Thus, 
on a kernel with a HZ value of 100, a jiffy is a 10-millisecond duration, whereas on a 
kernel with HZ set to 1000, a jiffy is only 1-millisecond long.

To better understand HZ and jiffies, consider the following code snippet from 
the IDE driver (drivers/ide/ide.c) that polls disk drives for busy status:

unsigned long timeout = jiffies + (3*HZ);

while (hwgroup->busy) {

  /* ... */

  if (time_after(jiffies, timeout)) {

    return -EBUSY;

  }

  /* ... */

}

return SUCCESS;

The preceding code returns SUCCESS if the busy condition gets cleared in less than 
3 seconds, and -EBUSY otherwise. 3*HZ is the number of jiffies present in 3 sec-
onds. The calculated timeout, (jiffies + 3*HZ), is thus the new value of jiffies
after the 3-second timeout elapses. The time_after() macro compares the current 
value of jiffies with the requested timeout, taking care to account for wraparound 
due to overfl ows. Related functions available for doing similar comparisons are time_
before(), time_before_eq(), and time_after_eq().

jiffies is defi ned as volatile, which asks the compiler not to optimize access to 
the variable. This ensures that jiffies, which is updated by the timer interrupt han-
dler during each tick, is reread during each pass through the loop.



For the reverse conversion from jiffies to seconds, take a look at this snippet 
from the USB host controller driver, drivers/usb/host/ehci-sched.c:

if (stream->rescheduled) {

  ehci_info(ehci, "ep%ds-iso rescheduled " "%lu times in %lu 

            seconds\n", stream->bEndpointAddress, is_in? "in": 

            "out", stream->rescheduled, 

((jiffies – stream->start)/HZ));

}

The preceding debug statement calculates the amount of time in seconds within 
which this USB endpoint stream (we discuss USB in Chapter 11, “Universal Serial 
Bus”) was rescheduled stream->rescheduled times. (jiffies-stream->start) is 
the number of jiffies that elapsed since the rescheduling started. The division by HZ
converts that value into seconds.

The 32-bit jiffies variable overfl ows in approximately 50 days, assuming a HZ
value of 1000. Because system uptimes can be many times that duration, the kernel 
provides a variable called jiffies_64 to hold 64-bit (u64) jiffies. The linker posi-
tions jiffies_64 such that its bottom 32 bits collocate with jiffies. On 32-bit 
machines, the compiler needs two instructions to assign one u64 variable to another,
so reading jiffies_64 is not atomic. To get around this problem, the kernel provides 
a function, get_jiffies_64(). Look at cpufreq_stats_update() defi ned in driv-
ers/cpufreq/cpufreq_stats.c for a usage example.

Long Delays

In      kernel terms, delays in the order of jiffies are considered long durations. A pos-
sible, but nonoptimal, way to accomplish long delays is by busy-looping. A function 
that busy-waits has a dog-in-the-manger attitude. It neither uses the processor for 
doing useful work nor lets others use it. The following code hogs the processor for 
1 second:

unsigned long timeout = jiffies + HZ;

while (time_before(jiffies, timeout)) continue;
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A better approach is to sleep-wait, instead of busy-wait. Your code yields the 
processor to others, while waiting for the time delay to elapse. This is done using 
schedule_timeout():

unsigned long timeout = jiffies + HZ;

schedule_timeout(timeout);  /* Allow other parts of the 

                               kernel to run */

The delay guarantee is only on the lower bound of the timeout. Whether from 
kernel space or from user space, it’s diffi cult to get more precise control over timeouts 
than the granularity of HZ because process time slices are updated by the kernel sched-
uler only during timer ticks. Also, even if your process is scheduled to run after the 
specifi ed timeout, the scheduler can decide to pick another process from the run queue 
based on priorities.3

Two other functions that facilitate sleep-waiting are wait_event_timeout() and 
msleep(). Both of them are implemented with the help of schedule_timeout().
wait_event_timeout() is used when your code desires to resume execution if a 
specifi ed condition becomes true or if a timeout occurs. msleep() sleeps for the speci-
fi ed number of milliseconds.

Such long-delay techniques are suitable for use only from process context. Sleep-
waiting cannot be done from interrupt context because interrupt handlers are not 
allowed to schedule() or sleep. (See “Interrupt Handling” in Chapter 4 for a list 
of do’s and don’ts for code executing in interrupt context.) Busy-waiting for a short 
duration is possible from interrupt context, but long busy-waiting in that con-
text is considered a mortal sin. Equally taboo is long busy-waiting with interrupts 
disabled. 

The kernel also provides timer APIs to execute a function at a point of time 
in the future. You can dynamically defi ne a timer using   init_timer() or stati-
cally create one with   DEFINE_TIMER(). After this is done, populate a timer_list

3 These scheduler properties have changed with the advent of the CFS scheduler in the 2.6.23 kernel. Linux process schedulers are
discussed in Chapter 19, “Drivers in User Space.”



with the address and parameters of your handler function, and register it using 
add_timer():

#include <linux/timer.h>

struct timer_list my_timer;

init_timer(&my_timer);            /* Also see setup_timer() */

my_timer.expire = jiffies + n*HZ; /* n is the timeout in number 

                                     of seconds */

my_timer.function = timer_func;   /* Function to execute 

                                     after n seconds */

my_timer.data = func_parameter;   /* Parameter to be passed 

                                     to timer_func */

add_timer(&my_timer);             /* Start the timer */

Note that this is a one-shot timer. If you want to run timer_func() periodically, 
you also need to add the preceding code inside timer_func() to schedule itself after 
the next timeout:

static void timer_func(unsigned long func_parameter)

{

  /* Do work to be done periodically */

  /* ... */

  init_timer(&my_timer);

  my_timer.expire   = jiffies + n*HZ; 

  my_timer.data     = func_parameter;

  my_timer.function = timer_func;

  add_timer(&my_timer);

}

You may use       mod_timer() to change the expiration of my_timer, del_timer()
to cancel my_timer, and timer_pending() to see whether my_timer is pending at 
the moment. If you look at kernel/timer.c, you will fi nd that schedule_timeout()
internally uses these same APIs.

User-space functions such as     clock_settime() and clock_gettime() are used to 
access kernel timer services from user space. A user application may use    setitimer()
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and getitimer() to control the delivery of an alarm signal when a specifi ed timeout 
expires.

Short Delays

In kernel      terms, sub-jiffy delays qualify as short durations. Such delays are commonly 
requested from both process and interrupt contexts. Because it is not possible to use 
jiffy-based methods to implement sub-jiffy delays, the methods discussed in the previ-
ous section to sleep-wait cannot be used for small timeouts. The only solution is to 
busy-wait.

Kernel APIs that implement short delays are       mdelay(), udelay(), and ndelay(),
which support millisecond, microsecond, and nanosecond delays, respectively. The 
actual implementations of these functions are architecture-specifi c and may not be 
available on all platforms.

Busy-waiting for short durations is accomplished by measuring the time the proces-
sor takes to execute an instruction and looping for the necessary number of iterations. 
As discussed earlier in this chapter, the kernel performs this measurement during boot 
and stores the value in a variable called   loops_per_jiffy. The short-delay APIs use 
loops_per_jiffy to decide the number of times they need to busy-loop. To achieve 
a 1-microsecond delay during a handshake process, the USB host controller driver 
drivers/usb/host/ehci-hcd.c, calls udelay(), which internally uses loops_per_jiffy:

do {

  result = ehci_readl(ehci, ptr);

  /* ... */

  if (result == done) return 0; 

udelay(1);     /* Internally uses loops_per_jiffy */ 

  usec--;

} while (usec > 0);

Pentium Time Stamp Counter 

The        Time Stamp Counter (TSC) is a 64-bit register present in Pentium-compatible 
processors that counts the number of clock cycles consumed by the processor since 
startup. Because the TSC gets incremented at the rate of the processor cycle speed, 
it provides a high-resolution timer. The TSC is commonly used for profi ling and 



 instrumenting code. It is accessed using the rdtsc instruction to measure execution 
time of intervening code with microsecond precision. TSC ticks can be converted to 
seconds by dividing by the CPU clock speed, which can be read from the kernel vari-
able, cpu_khz.

In the following snippet, low_tsc_ticks contains the lower 32 bits of the TSC, 
while high_tsc_ticks contains the higher 32 bits. The lower 32 bits overfl ow in a 
few seconds depending on your processor speed but is suffi cient for many code instru-
mentation purposes as shown here:

unsigned long low_tsc_ticks0, high_tsc_ticks0; 

unsigned long low_tsc_ticks1, high_tsc_ticks1; 

unsigned long exec_time;

rdtsc(low_tsc_ticks0, high_tsc_ticks0); /* Timestamp 

                                           before */

printk("Hello World\n");                /* Code to be 

                                           profiled */

rdtsc(low_tsc_ticks1, high_tsc_ticks1); /* Timestamp after */

exec_time = low_tsc_ticks1 - low_tsc_ticks0; 

exec_time measured 871 (or half a microsecond) on a 1.8GHz Pentium box.

Support for high-resolution timers (CONFIG_HIGH_RES_TIMERS) has been merged with 
the 2.6.21 kernel. It makes use of hardware-specifi c high-speed timers to provide high-
 precision capabilities to APIs such as   nanosleep(). On Pentium-class machines, the kernel 
leverages the TSC to offer this capability.

Real Time Clock 

The      RTC tracks absolute time in nonvolatile memory. On x86 PCs, RTC registers con-
stitute the top few locations of a small chunk of battery-powered4 complementary metal 
oxide semiconductor (CMOS)    memory. Look at Figure 5.1 in Chapter 5, “Character 
Drivers,” for the location of the CMOS in the legacy PC architecture. On embedded 

4 RTC batteries last for many years and usually outlive the life span of computers, so you should never have to replace them.
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systems, the RTC might be internal to the processor, or externally connected via the 
I2C or SPI buses discussed in Chapter 8, “The Inter-Integrated Circuit Protocol.”

You may use the RTC to do the following:

 • Read and set the absolute clock, and generate interrupts during clock updates.

 • Generate periodic interrupts with frequencies ranging from 2HZ to 8192HZ.

 • Set alarms

Many applications need the concept of absolute time or  wall time. Because jif-
fies is relative to the time when the system booted, it does not contain wall time. The 
kernel maintains wall time in a variable called xtime. During boot, xtime is initial-
ized to the current wall time by reading the RTC. When the system halts, the wall time 
is written back to the RTC. You can use   do_gettimeofday() to read wall time with 
the highest resolution supported by the hardware:

#include <linux/time.h>

static struct timeval curr_time;

do_gettimeofday(&curr_time);

my_timestamp = cpu_to_le32(curr_time.tv_sec); /* Record timestamp */

There are also a bunch of functions available to user-space code to access wall time. 
They include the following:

 • time(), which returns the calendar time, or the number of seconds since Epoch 
(00:00:00 on January 1, 1970)

 • localtime(), which returns the calendar time in broken-down format

 • mktime(), which does the reverse of localtime()

 • gettimeofday(), which returns the calendar time with microsecond precision 
if your platform supports it

Another way to use the RTC from user space is via the character device, /dev/rtc.
Only one process is allowed to access this device at a time. 

We discuss more about RTC drivers in Chapter 5 and Chapter 8. In Chapter 19, 
we develop an example user application that uses /dev/rtc to perform periodic work 
with microsecond precision. 



Concurrency in the Kernel

With   the arrival of multicore laptops,   Symmetric Multi Processing (SMP) is no longer 
confi ned to the realm of hi-tech users. SMP and kernel preemption are scenarios that 
generate multiple threads of execution. These threads can simultaneously operate on 
shared kernel data structures. Because of this, accesses to such data structures have to 
be serialized.

Let’s discuss the basics of protecting shared kernel resources from concurrent access. 
We start with a simple example and gradually introduce complexities such as inter-
rupts, kernel preemption, and SMP.

Spinlocks and Mutexes

A code      area that accesses shared resources is called a critical section. Spinlocks and 
mutexes (short for mutual exclusion) are the two basic mechanisms used to protect 
critical sections in the kernel. Let’s look at each in turn.

A spinlock ensures that only a single thread enters a critical section at a time. Any 
other thread that desires to enter the critical section has to remain spinning at the door 
until the fi rst thread exits. Note that we use the term thread to refer to a thread of 
execution, rather than a kernel thread.

The basic usage of spinlocks is as follows:

#include <linux/spinlock.h> 

spinlock_t mylock = SPIN_LOCK_UNLOCKED;  /* Initialize */

/* Acquire the spinlock. This is inexpensive if there 

 * is no one inside the critical section. In the face of 

 * contention, spinlock() has to busy-wait.

 */

spin_lock(&mylock);

   

/* ... Critical Section code ... */

spin_unlock(&mylock);  /* Release the lock */

In contrast to spinlocks that put threads into a spin if they attempt to enter a 
busy critical section, mutexes put contending threads to sleep until it’s their turn to 
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occupy the critical section. Because it’s a bad thing to consume processor cycles to 
spin, mutexes are more suitable than spinlocks to protect critical sections when the 
estimated wait time is long. In mutex terms, anything more than two context switches 
is considered long, because a mutex has to switch out the contending thread to sleep, 
and switch it back in when it’s time to wake it up.

In many cases, therefore, it’s easy to decide whether to use a spinlock or a mutex:

 • If the critical section needs to sleep, you have no choice but to use a mutex. 
It’s illegal to schedule, preempt, or sleep on a wait queue after acquiring a 
spinlock.

 • Because mutexes put the calling thread to sleep in the face of contention, you 
have no choice but to use spinlocks inside interrupt handlers. (You will learn 
more about the constraints of the interrupt context in Chapter 4.)

Basic mutex usage is as follows:

#include <linux/mutex.h>

/* Statically declare a mutex. To dynamically 

   create a mutex, use mutex_init() */

static DEFINE_MUTEX(mymutex);

/* Acquire the mutex. This is inexpensive if there 

 * is no one inside the critical section. In the face of

 * contention, mutex_lock() puts the calling thread to sleep.

 */

mutex_lock(&mymutex);

/* ... Critical Section code ... */

mutex_unlock(&mymutex);      /* Release the mutex */

To illustrate the use of concurrency protection, let’s start with a critical section that 
is present only in process context and gradually introduce complexities in the follow-
ing order:

 1. Critical section present only in process context on a Uniprocessor (UP) box 
running a nonpreemptible kernel. 



 2. Critical section present in process and interrupt contexts on a UP machine run-
ning a nonpreemptible kernel.

 3. Critical section present in process and interrupt contexts on a UP machine run-
ning a preemptible kernel.

 4. Critical section present in process and interrupt contexts on an SMP machine 
running a preemptible kernel.

The Old Semaphore Interface

The mutex interface,  which replaces the older semaphore interface, originated in the –rt tree 
and was merged into the mainline with the 2.6.16 kernel release. The semaphore interface is still 
around, however. Basic usage of the semaphore interface is as follows:

#include <asm/semaphore.h>  /* Architecture dependent 
                               header */

/* Statically declare a semaphore. To dynamically 
   create a semaphore, use init_MUTEX() */
static DECLARE_MUTEX(mysem);

down(&mysem);    /* Acquire the semaphore */

/* ... Critical Section code ... */

up(&mysem);      /* Release the semaphore */

Semaphores can be confi gured to allow a predetermined number of threads into the critical 
section simultaneously. However, semaphores that permit more than a single holder at a time are 
rarely used.

Case 1: Process Context, UP Machine, No Preemption 

This is the simplest case and needs no locking, so we won’t discuss this further.

Case 2: Process and Interrupt Contexts, UP Machine, No Preemption

In this case, you need to disable only interrupts to protect the critical region. To see 
why, assume that A and B are process context threads, and C is an interrupt context 
thread, all vying to enter the same critical section, as shown in Figure 2.4.
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Process Context
Thread A

Process Context
Thread B

Interrupt Context
Thread C

Thread A Thread B

Critical Section

Disable Interrupts

Restore Interrupt State

FIGURE 2.4 Process and interrupt context threads inside a critical section.

Because Thread C is executing in interrupt context and always runs to completion 
before yielding to Thread A or Thread B, it need not worry about protection. Thread A, 
for its part, need not be concerned about Thread B (and vice versa) because the kernel 
is not preemptible. Thus, Thread A and Thread B need to guard against only the pos-
sibility of Thread C stomping through the critical section while they are inside the same 
section. They achieve this by disabling interrupts prior to entering the critical section:

Point A:

  local_irq_disable();  /* Disable Interrupts in local CPU */

  /* ... Critical Section ...  */

  local_irq_enable();   /* Enable Interrupts in local CPU */

However, if interrupts were already disabled when execution reached Point A, 
local_irq_enable() creates the unpleasant side effect of reenabling interrupts, 
rather than restoring interrupt state. This can be fi xed as follows:

unsigned long flags;

Point A:

  local_irq_save(flags);     /* Disable Interrupts */

  /* ... Critical Section ... */

  local_irq_restore(flags);  /* Restore state to what 

                                it was at Point A */



This works correctly irrespective of the interrupt state at Point A.

Case 3: Process and Interrupt Contexts, UP Machine, Preemption 

If preemption is enabled, mere disabling of interrupts won’t protect your critical region 
from being trampled over. There is the possibility of multiple threads simultaneously 
entering the critical section in process context. Referring back to Figure 2.4 in this 
scenario, Thread A and Thread B now need to protect themselves from each other in 
addition to guarding against Thread C. The solution apparently, is to disable kernel 
preemption before the start of the critical section and reenable it at the end, in addi-
tion to disabling/reenabling interrupts. For this, Thread A and Thread B use the irq
variant of spinlocks:

unsigned long flags;

Point A:

  /* Save interrupt state.

   * Disable interrupts - this implicitly disables preemption */

  spin_lock_irqsave(&mylock, flags);

  /* ... Critical Section ... */

  /* Restore interrupt state to what it was at Point A */

  spin_unlock_irqrestore(&mylock, flags);

Preemption state need not be explicitly restored to what it was at Point A because the 
kernel internally does that for you via a variable called the   preemption counter. The coun-
ter gets incremented whenever preemption is disabled (using     preempt_disable())
and gets decremented whenever preemption is enabled (using preempt_enable()).
Preemption kicks in only if the counter value is zero.

Case 4: Process and Interrupt Contexts, SMP Machine, Preemption

Let’s now assume that the critical section executes on an SMP machine. Your kernel 
has been confi gured with CONFIG_SMP and CONFIG_PREEMPT turned on.

In the scenarios discussed this far, spinlock primitives have done little more than 
enable/disable preemption and interrupts. The actual locking functionality has 
been compiled away. In the presence of SMP, the locking logic gets compiled in, 
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and the spinlock primitives are rendered SMP-safe. The SMP-enabled semantics is 
as follows:

unsigned long flags;

Point A:

  /*

    - Save interrupt state on the local CPU

    - Disable interrupts on the local CPU. This implicitly disables 

      preemption.

    - Lock the section to regulate access by other CPUs

   */ 

  spin_lock_irqsave(&mylock, flags);

  /* ... Critical Section ... */

  /* 

    - Restore interrupt state and preemption to what it 

      was at Point A for the local CPU

    - Release the lock

   */

  spin_unlock_irqrestore(&mylock, flags);

On SMP systems, only interrupts on the local CPU are disabled when a spinlock is 
acquired. So, a process context thread (say Thread A in Figure 2.4) might be running 
on one CPU, while an interrupt handler (say Thread C in Figure 2.4) is executing on 
another CPU. An interrupt handler on a nonlocal processor thus needs to spin-wait 
until the process context code on the local processor exits the critical section. The 
interrupt context code calls     spin_lock()/spin_unlock()   to do this:

spin_lock(&mylock);

/* ... Critical Section ... */

spin_unlock(&mylock);

Similar to the irq variants, spinlocks also have   bottom half (BH) fl avors.     spin_
lock_bh() disables bottom halves when the lock is acquired, whereas spin_unlock_
bh() reenables bottom halves when the lock is released. We discuss bottom halves in 
Chapter 4.



The –rt tree

The   real time (-rt) tree, also called the CONFIG_PREEMPT_RT patch-set, implements low-latency 
modifi cations to the kernel. The patch-set, downloadable from www.kernel.org/pub/linux/
kernel/projects/rt, allows most of the kernel to be preempted, partly by replacing many spinlocks 
with mutexes. It also incorporates high-resolution timers. Several -rt features have been inte-
grated into the mainline kernel. You will fi nd detailed documentation at the project’s wiki hosted 
at http://rt.wiki.kernel.org/.

The kernel has specialized locking primitives in its repertoire that help improve 
performance under specifi c conditions. Using a mutual-exclusion scheme tailored to 
your needs makes your code more powerful. Let’s take a look at some of the specialized 
exclusion mechanisms.

Atomic Operators

Atomic operators     are used to perform lightweight one-shot operations such as bump-
ing counters, conditional increments, and setting bit positions. Atomic operations are 
guaranteed to be serialized and do not need locks for protection against concurrent 
access. The implementation of atomic operators is architecture-dependent.

To check whether there are any remaining data references before freeing a kernel 
network buffer (called an skbuff), the   skb_release_data() routine defi ned in net/
core/skbuff.c does the following:

if (!skb->cloned ||

  /* Atomically decrement and check if the returned value is zero */

    !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 

                       1,&skb_shinfo(skb)->dataref)) {

  /* ... */

  kfree(skb->head);

}

While skb_release_data() is thus executing, another thread using skbuff_
clone() (defi ned in the same fi le) might be simultaneously incrementing the data 
reference counter:

 /* ... */

 /* Atomically bump up the data reference count */ 

 atomic_inc(&(skb_shinfo(skb)->dataref));

 /* ... */
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The use of atomic operators protects the data reference counter from being tram-
pled by these two threads. It also eliminates the hassle of using locks to protect a single 
integer variable from concurrent access.

The kernel also supports operators such as set_bit(), clear_bit(), and test_

and_set_bit() to atomically engage in bit manipulations. Look at include/asm-your-
arch/atomic.h for the atomic operators supported on your architecture.

Reader-Writer Locks

Another     specialized concurrency regulation mechanism is a reader-writer variant of 
spinlocks. If the usage of a critical section is such that separate threads either read 
from or write to a shared data structure, but don’t do both, these locks are a natural 
fi t. Multiple reader threads are allowed inside a critical region simultaneously. Reader 
spinlocks are defi ned as follows:

rwlock_t myrwlock = RW_LOCK_UNLOCKED;

read_lock(&myrwlock);     /* Acquire reader lock */

/* ... Critical Region ... */

read_unlock(&myrwlock);   /* Release lock */

However, if a writer thread enters a critical section, other reader or writer threads 
are not allowed inside. To use writer spinlocks, you would write this:

rwlock_t myrwlock = RW_LOCK_UNLOCKED;

write_lock(&myrwlock);    /* Acquire writer lock */

/* ... Critical Region ... */

write_unlock(&myrwlock);  /* Release lock */

Look at the IPX routing code present in net/ipx/ipx_route.c for a real-life example 
of a reader-writer spinlock. A reader-writer lock called  ipx_routes_lock protects the 
IPX routing table from simultaneous access. Threads that need to look up the routing 
table to forward packets request reader locks. Threads that need to add or delete entries 
from the routing table acquire writer locks. This improves performance because there 
are usually far more instances of routing table lookups than routing table updates.

Like regular spinlocks, reader-writer locks also have corresponding irq variants—
read_lock_irqsave(), read_lock_irqrestore(),   write_lock_irqsave(), and 



write_lock_irqrestore(). The semantics of these functions are similar to those of 
regular spinlocks.

Sequence locks or seqlocks,   introduced in the 2.6 kernel, are reader-writer locks 
where writers are favored over readers. This is useful if write operations on a variable 
far outnumber read accesses. An example is the jiffies_64 variable discussed earlier 
in this chapter. Writer threads do not wait for readers who may be inside a critical 
section. Because of this, reader threads may discover that their entry inside a critical 
section has failed and may need to retry:

u64 get_jiffies_64(void) /* Defined in kernel/time.c */

{

  unsigned long seq;

  u64 ret;

  do {

    seq = read_seqbegin(&xtime_lock);

    ret = jiffies_64;

  } while (read_seqretry(&xtime_lock, seq));

  return ret;

}

Writers protect critical regions using write_seqlock() and write_sequnlock().
The 2.6 kernel introduced another mechanism called   Read-Copy Update (RCU), 

which yields improved performance when readers far outnumber writers. The basic 
idea is that reader threads can execute without locking. Writer threads are more com-
plex. They perform update operations on a copy of the data structure and replace the 
pointer that readers see. The original copy is maintained until the next context switch 
on all CPUs to ensure completion of all ongoing read operations. Be aware that using 
RCU is more involved than using the primitives discussed thus far and should be used 
only if you are sure that it’s the right tool for the job. RCU data structures and inter-
face functions are defi ned in include/linux/rcupdate.h. There is ample documentation 
in Documentation/RCU/*.

For an RCU usage example, look at fs/dcache.c. On Linux, each fi le is associated with 
directory entry information (stored in a structure called dentry), metadata information 
(stored in an inode), and actual data (stored in data blocks). Each time you operate on 
a fi le, the components in the fi le path are parsed, and the corresponding dentries are 
obtained. The dentries are kept cached in a data structure called the dcache, to speed 
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up future operations. At any time, the number of dcache lookups is much more than 
dcache updates, so references to the dcache are protected using RCU primitives.

Debugging

Concurrency-related    problems are generally hard to debug because they are usually 
diffi cult to reproduce. It’s a good idea to enable SMP (CONFIG_SMP) and preemption 
(CONFIG_PREEMPT) while compiling and testing your code, even if your production 
kernel is going to run on a UP machine with preemption disabled. There is a ker-
nel confi guration option under Kernel hacking called Spinlock and rw-lock debugging
(CONFIG_DEBUG_SPINLOCK) that can help you catch some common spinlock errors. 
Also available are tools such as lockmeter (http://oss.sgi.com/projects/lockmeter/) that 
collect lock-related statistics.

A common concurrency problem occurs when you forget to lock an access to a 
shared resource. This results in different threads “racing” through that access in an 
unregulated manner. The problem, called a  race condition, might manifest in the form 
of occasional strange code behavior.

Another potential problem arises when you miss releasing held locks in certain code 
paths, resulting in deadlocks. To understand this, consider the following example:

spin_lock(&mylock);     /* Acquire lock */

/* ... Critical Section ... */

if (error) {            /* This error condition occurs rarely */

  return -EIO; /* Forgot to release the lock! */

}

spin_unlock(&mylock);   /* Release lock */

After the occurrence of the error condition, any thread trying to acquire mylock
gets deadlocked, and the kernel might freeze.

If the problem fi rst manifests months or years after you write the code, it’ll be all 
the more tough to go back and debug it. (There is a related debugging example in 
the section “Kdump” in Chapter 21, “Debugging Device Drivers.”) To avoid such 
unpleasant encounters, concurrency logic should be designed when you architect your 
software.

http://oss.sgi.com/projects/lockmeter/


Process Filesystem

The  process fi lesystem (procfs)     is a virtual fi lesystem that creates windows into the 
innards of the kernel. The data you see when you browse procfs is generated by the 
kernel on-the-fl y. Files in procfs are used to confi gure kernel parameters, look at kernel 
structures, glean statistics from device drivers, and get general system information.

Procfs is a pseudo fi lesystem. This means that fi les resident in procfs are not asso-
ciated with physical storage devices such as hard disks. Instead, data in those fi les 
is dynamically created on demand by the corresponding entry points in the ker-
nel. Because of this, fi le sizes in procfs get shown as zero. Procfs is usually mounted 
under the /proc directory during kernel boot; you can see this by invoking the mount
command.

To get a fi rst feel of the capabilities of procfs, examine the contents of /proc/cpuinfo,
/proc/meminfo, /proc/interrupts, /proc/tty/driver/serial, /proc/bus/usb/devices, and /proc/stat.
Certain kernel parameters can be changed at runtime by writing to fi les under /proc/sys/.
For example, you can change kernel printk log levels by echoing a new set of values 
to /proc/sys/kernel/printk. Many utilities (such as ps) and system performance monitor-
ing tools (such as sysstat) internally derive information from fi les residing under /proc.

Seq fi les, introduced in the 2.6 kernel, simplify large procfs operations. They are 
described in Appendix C, “Seq Files.”

Allocating Memory

Some    device drivers have to be aware of the existence of   memory zones. In addition, 
many drivers need the services of memory allocation functions. In this section, let’s 
briefl y discuss both. 

The kernel organizes physical memory into   pages. The page size depends on the 
architecture. On x86-based machines, it’s 4096 bytes. Each page in physical memory 
has a struct page (defi ned in include/linux/mm_types.h) associated with it:

struct page {

  unsigned long flags; /* Page status */

  atomic_t _count;     /* Reference count */

  /* ... */

  void * virtual;      /* Explained later on */

};
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On 32-bit x86 systems, the default kernel confi guration splits the available 4GB 
address space into a 3GB virtual memory space for user processes and a 1GB space for 
the kernel, as shown in Figure 2.5. This imposes a 1GB limit on the amount of physi-
cal memory that the kernel can handle. In reality, the limit is 896MB because 128MB 
of the address space is occupied by kernel data structures. You may increase this limit 
by changing the 3GB/1GB split during kernel confi guration, but you will incur the 
displeasure of memory-intensive applications if you reduce the virtual address space of 
user processes. 

ZONE_HIGH

ZONE_NORMAL

ZONE_DMA

Physical Address Space

4GB

896MB

16MB

0

KERNEL SPACE

USER SPACE

Virtual Address Space

4GB

3GB

0

FIGURE 2.5 Default address space split on a 32-bit PC system.

Kernel addresses that map the low 896MB differ from physical addresses by a con-
stant offset and are called   logical addresses. With “high memory” support, the kernel can 
access memory beyond 896MB by generating   virtual addresses for those regions using 
special mappings. All logical addresses are kernel virtual addresses, but not vice versa.

This leads us to the following kernel memory zones:

 1.  ZONE_DMA (<16MB), the zone used for Direct Memory Access (DMA   ). Because 
legacy ISA devices have 24 address lines and can access only the first 16MB, the 
kernel tries to dedicate this area for such devices.

 2.  ZONE_NORMAL (16MB to 896MB), the normally addressable region, also called 
low memory. The “virtual” field in struct page for low memory pages con-
tains the corresponding logical addresses.

 3.   ZONE_HIGH (>896MB), the space that the kernel can access only after map-
ping resident pages to regions in ZONE_NORMAL (using kmap() and kunmap()).



The corresponding kernel addresses are virtual and not logical. The “virtual” 
field in struct page for high memory pages points to NULL if the page is not 
kmapped.

kmalloc() is a memory-allocation function that returns contiguous memory from 
ZONE_NORMAL. The prototype is as follows:

void *kmalloc(int count, int flags);

Where count is the number of bytes to allocate, and flags is a mode specifi er. All 
supported fl ags are listed in include/linux./gfp.h (gfp stands for get free pages), but these 
are the commonly used ones:

 1. GFP_KERNEL: Used by process context code to allocate memory. If this flag 
is specified, kmalloc() is allowed to go to sleep and wait for pages to get 
freed up.

 2. GFP_ATOMIC: Used by interrupt context code to get hold of memory. In this 
mode, kmalloc() is not allowed to sleep-wait for free pages, so the probability 
of successful allocation with GFP_ATOMIC is lower than with GFP_KERNEL.

Because memory returned by kmalloc() retains the contents from its previous 
incarnation, there could be a security risk if it’s exposed to user space. To get zeroed 
kmalloced memory, use   kzalloc().

If you need to allocate large memory buffers, and you don’t require the memory to 
be physically contiguous, use   vmalloc() rather than kmalloc():

void *vmalloc(unsigned long count);

Here count is the requested allocation size. The function returns kernel virtual 
addresses.

vmalloc() enjoys bigger allocation size limits than kmalloc() but is slower and 
can’t be called from interrupt context. Moreover, you cannot use the physically discon-
tiguous memory returned by vmalloc() to perform Direct Memory Access (DMA). 
High-performance network drivers commonly use vmalloc() to allocate large descrip-
tor rings when the device is opened.

The kernel offers more sophisticated memory allocation techniques. These include 
look aside buffers, slabs, and mempools, which are beyond the scope of this chapter.
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Looking at the Sources

Kernel  boot starts with the execution of real mode assembly code living in the arch/
x86/boot/ directory. Look at arch/x86/kernel/setup_32.c to see how the protected mode 
kernel obtains information gleaned by the real mode kernel.

The fi rst boot message is printed by code residing in init/main.c. Dig inside init/
calibrate.c to learn more about BogoMIPS calibration and include/asm-your-arch/bugs.h
for an insight into architecture-dependent checks.

Timer services in the kernel consist of architecture-dependent portions that live in 
arch/your-arch/kernel/ and generic portions implemented in kernel/timer.c. For related 
defi nitions, look at the header fi les, include/linux/time*.h.

jiffies is defi ned in linux/jiffi es.h. The value for HZ is processor-dependent and 
can be found in include/asm-your-arch/param.h.

Memory management sources reside in the top-level mm/ directory.
Table 2.1 contains a summary of the main data structures used in this chapter 

and the location of their defi nitions in the source tree. Table 2.2 lists the main kernel 
programming interfaces that you used in this chapter along with the location of their 
defi nitions.

TABLE 2.1 Summary   of Data Structures

 Data Structure Location Description

 HZ include/asm-your-arch/param.h  Number of times the system timer ticks in 
1 second

 loops_per_jiffy init/main.c Number of times the processor executes an 
internal delay-loop in 1 jiffy

 timer_list include/linux/timer.h  Used to hold the address of a routine that you 
want to execute at some point in the future

 timeval include/linux/time.h Timestamp

spinlock_t include/linux/spinlock_types.h A busy-locking mechanism to ensure that only 
a single thread enters a critical section

semaphore include/asm-your-arch/semaphore.h  A sleep-locking mechanism that allows a 
predetermined number of users to enter a 
critical section

mutex include/linux/mutex.h  The new interface that replaces semaphore

rwlock_t include/linux/spinlock_types.h Reader-writer spinlock

 page include/linux/mm_types.h Kernel’s representation of a physical memory 
page



TABLE 2.2 Summary of Kernel  Programming Interfaces

Kernel Interface Location Description

time_after()
time_after_eq()
time_before()
time_before_eq()

include/linux/jiffies.h Compares the current value of 
jiffies with a specified future 
value

schedule_timeout() kernel/timer.c Schedules a process to run after a 
specified timeout has elapsed

wait_event_timeout() include/linux/wait.h Resumes execution if a specified 
condition becomes true or if a 
timeout occurs

DEFINE_TIMER() include/linux/timer.h Statically defines a timer

init_timer() kernel/timer.c Dynamically defines a timer

add_timer() include/linux/timer.h Schedules the timer for execution 
after the timeout has elapsed

mod_timer() kernel/timer.c Changes timer expiration

timer_pending() include/linux/timer.h Checks if a timer is pending at the 
moment

udelay() include/asm-your-arch/delay.h
arch/your-arch/lib/delay.c

Busy-waits for the specified number 
of microseconds

rdtsc() include/asm-x86/msr.h Gets the value of the TSC on 
Pentium-compatible processors

do_gettimeofday() kernel/time.c Obtains wall time

local_irq_disable() include/asm-your-arch/system.h Disables interrupts on the local CPU

local_irq_enable() include/asm-your-arch/system.h Enables interrupts on the local CPU

local_irq_save() include/asm-your-arch/system.h Saves interrupt state and disables 
interrupts

local_irq_restore() include/asm-your-arch/system.h Restores interrupt state to what it was 
when the matching local_irq_
save() was called

spin_lock() include/linux/spinlock.h
kernel/spinlock.c

Acquires a spinlock.

spin_unlock() include/linux/spinlock.h Releases a spinlock

spin_lock_irqsave() include/linux/spinlock.h
kernel/spinlock.c

Saves interrupt state, disables inter-
rupts and preemption on local CPU, 
and locks their critical section to 
regulate access by other CPUs

spin_unlock_irqrestore() include/linux/spinlock.h
kernel/spinlock.c

Restores interrupt state and preemp-
tion and releases the lock

DEFINE_MUTEX() include/linux/mutex.h Statically declares a mutex

Continues
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Kernel Interface Location Description

mutex_init() include/linux/mutex.h Dynamically declares a mutex

mutex_lock() kernel/mutex.c Acquires a mutex

mutex_unlock() kernel/mutex.c Releases a mutex

DECLARE_MUTEX() include/asm-your-arch/semaphore.h Statically declares a semaphore

init_MUTEX() include/asm-your-arch/semaphore.h Dynamically declares a semaphore

up() arch/your-arch/kernel/semaphore.c Acquires a semaphore

down() arch/your-arch/kernel/semaphore.c Releases a semaphore

atomic_inc()
atomic_inc_and_test()
atomic_dec()
atomic_dec_and_test()
clear_bit()
set_bit()
test_bit()
test_and_set_bit()

include/asm-your-arch/atomic.h Atomic operators to perform light-
weight operations

read_lock()
read_unlock()
read_lock_irqsave()
read_lock_irqrestore()
write_lock()
write_unlock()
write_lock_irqsave()
write_lock_irqrestore()

include/linux/spinlock.h
kernel/spinlock.c

Reader-writer variant of spinlocks

down_read()
up_read()
down_write()
up_write()

kernel/rwsem.c Reader-writer variant of semaphores

read_seqbegin()
read_seqretry()
write_seqlock()
write_sequnlock()

include/linux/seqlock.h Seqlock operations

kmalloc() include/linux/slab.h
mm/slab.c

Allocates physically contiguous 
memory from ZONE_NORMAL

kzalloc() include/linux/slab.h
mm/util.c

Obtains zeroed kmalloced memory

kfree() mm/slab.c Releases kmalloced memory

vmalloc() mm/vmalloc.c Allocates virtually contiguous 
memory that is not guaranteed to be 
physically contiguous.

TABLE 2.2 Continued
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In this chapter, let’s look at some kernel facilities that are useful components in 
a driver developer’s toolbox. We start this chapter by looking at a kernel facil-

ity that is similar to user processes; kernel threads are programming abstractions 
oriented toward concurrent processing.

The kernel offers several helper interfaces that simplify your code, eliminate 
redundancies, increase code readability, and help in long-term maintenance. We 
will look at linked lists, hash lists, work queues, notifier chains, completion 
functions, and error-handling aids. These helpers are bug free and optimized, so 
your driver also inherits those benefits for free.

Kernel Threads

A   kernel thread is a way to implement background tasks inside the kernel. The task 
can be busy handling asynchronous events or sleep-waiting for an event to occur. 
Kernel threads are similar to user processes, except that they live in kernel space 
and have access to kernel functions and data structures. Like user processes, ker-
nel threads have the illusion of monopolizing the processor because of preemptive 
scheduling. Many device drivers utilize the services of kernel threads to implement 
assistant or helper tasks. For example, the khubd kernel thread, which is part of the 
Linux USB driver core (covered in Chapter 11, “Universal Serial Bus”) monitors 
USB hubs and confi gures USB devices when they are hot-plugged into the system.

Creating a Kernel Thread

Let’s   learn about kernel threads with the help of an example. While developing the 
example thread, you will also learn about kernel concepts such as process states, wait 
queues, and user mode helpers. When you are comfortable with kernel threads, you 
can use them as a test vehicle for carrying out various experiments within the kernel.

Assume that you would like the kernel to asynchronously invoke a user mode 
program to send you an email or pager alert, whenever it senses that the health of 
certain key kernel data structures is deteriorating. (For instance, free space in net-
work receive buffers has dipped below a low watermark.)



This is a candidate for being implemented as a kernel thread for the following 
reasons:

 • It’s a background task because it has to wait for asynchronous events.

 • It needs access to kernel data structures because the actual detection of events is 
done by other parts of the kernel.

 • It has to invoke a user mode helper program, which is a time-consuming 
operation.

Built-In Kernel Threads

To         see the kernel threads (also called kernel processes) running on your system, run the ps com-
mand. Names of kernel threads are surrounded by square brackets:

bash> ps -ef 

UID        PID  PPID  C STIME TTY          TIME CMD

root         1     0  0 22:36 ?        00:00:00 init [3]

root         2     0  0 22:36 ?        00:00:00 [kthreadd]

root         3     2  0 22:36 ?        00:00:00 [ksoftirqd/0]

root         4     2  0 22:36 ?        00:00:00 [events/0]

root        38     2  0 22:36 ?        00:00:00 [pdflush]

root        39     2  0 22:36 ?        00:00:00 [pdflush]

root        29     2  0 22:36 ?        00:00:00 [khubd]

root       695     2  0 22:36 ?        00:00:00 [kjournald]

...

root      3914     2  0 22:37 ?        00:00:00 [nfsd]

root      3915     2  0 22:37 ?        00:00:00 [nfsd]

...

root      4015  3364  0 22:55 tty3     00:00:00 -bash

root      4066  4015  0 22:59 tty3     00:00:00 ps -ef

The [  ksoftirqd/0] kernel thread is an aid to implement  softirqs. Softirqs are raised by interrupt 
handlers to request “bottom half ” processing of portions of the handler whose execution can be 
deferred. We take a detailed look at bottom halves and softirqs in Chapter 4, “Laying the Ground-
work,” but the basic idea here is to allow as little code as possible to be present inside interrupt 
handlers. Having small interrupt handlers reduces interrupt-off times in the system, resulting 
in lower latencies. Ksoftirqd’s job is to ensure that a high load of softirqs neither starves the soft-
irqs nor overwhelms the system. On   Symmetric Multi Processing (SMP) machines where multiple 
thread instances can run on different processors in parallel, one instance of ksoftirqd is created per 
CPU to improve throughput (ksoftirqd/n, where n is the CPU number).
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The   events/n threads (where n is the CPU number) help implement   work queues, which are 
another way of deferring work in the kernel. Parts of the kernel that desire deferred execution of 
work can either create their own work queue or make use of the default events/n worker thread. 
Work queues are also dissected in Chapter 4.

The task of the   pdfl ush kernel thread is to fl ush out dirty pages from the page cache. The page 
cache buffers accesses to the disk. To improve performance, actual writes to the disk are delayed 
until the pdfl ush daemon writes out dirtied data to disk. This is done if the available free memory 
dips below a threshold, or if the page has remained dirty for a suffi ciently long time. In 2.4 ker-
nels, these two tasks were respectively performed by separate kernel threads,   bdfl ush and   kupdated.
You might have noticed two instances of pdfl ush in the ps output. A new instance is created if the 
kernel senses that existing instances have their hands full, servicing disk queues. This improves 
throughput, especially if your system has multiple disks and many of them are busy.

As you saw in the preceding chapter, kjournald is the generic kernel journaling thread, which 
is used by fi lesystems such as EXT3. 

The Linux    Network File System (NFS) server is implemented using a set of kernel threads 
named   nfsd.

Our example kernel thread relinquishes the processor until it gets woken up by parts 
of the kernel responsible for monitoring the data structures of interest. When awake, 
it invokes a user mode helper program and passes appropriate identity codes in its 
environment. 

To create a kernel thread, use  kernel_thread():

    ret = kernel_thread(mykthread, NULL, 

                CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

The fl ags specify the resources to be shared between the parent and child threads. 
CLONE_FILES specifi es that open fi les are to be shared, and CLONE_SIGHAND requests 
that signal handlers be shared.

Listing 3.1 shows the example implementation. Because kernel threads usually act 
as helpers to device drivers, they are created when the driver is initialized. In this case, 
however, the example thread can be created from any suitable place, for instance, init/
main.c.

The thread starts by invoking  daemonize(), which performs initial housekeeping 
and changes the parent of the calling thread to a kernel thread called   kthreadd. Each 
Linux thread has a single parent. If a parent process dies without waiting for its child 



to exit, the child becomes a   zombie process and wastes resources. Reparenting the child 
to kthreadd, avoids this and ensures proper cleanup when the thread exits.1

Because  daemonize() blocks all signals by default, use  allow_signal() to enable 
delivery if your thread desires to handle a particular signal. There are no signal handlers 
inside the kernel, so use signal_pending() to check for signals and take appropriate 
action. For debugging purposes, the code in Listing 3.1 requests delivery of SIGKILL
and dies if it’s received.

kernel_thread() is depreciated in favor of the higher-level kthread API, which is 
built over the former. We will look at kthreads later on.

LISTING 3.1  Implementing a Kernel Thread

static DECLARE_WAIT_QUEUE_HEAD(myevent_waitqueue); 

rwlock_t myevent_lock;

extern unsigned int myevent_id;  /* Holds the identity of the

                                    troubled data structure.

                                    Populated later on */

static int mykthread(void *unused)

{

  unsigned int event_id = 0;

  DECLARE_WAITQUEUE(wait, current);

  /* Become a kernel thread without attached user resources */ 

  daemonize("mykthread"); 

  /* Request delivery of SIGKILL */

  allow_signal(SIGKILL);

  /* The thread sleeps on this wait queue until it's 

     woken up by parts of the kernel in charge of sensing

     the health of data structures of interest */ 

  add_wait_queue(&myevent_waitqueue, &wait);

  for (;;) {

    /* Relinquish the processor until the event occurs */ 

    set_current_state(TASK_INTERRUPTIBLE); 

    schedule();  /* Allow other parts of the kernel to run */

    /* Die if I receive SIGKILL */

    if (signal_pending(current)) break;

1 In 2.6.21 and earlier kernels, daemonize() reparents the calling thread to the init task by calling reparent_to_init().
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    /* Control gets here when the thread is woken up */

    read_lock(&myevent_lock);      /* Critical section starts */

    if (myevent_id) { /* Guard against spurious wakeups */

      event_id = myevent_id;

      read_unlock(&myevent_lock);  /* Critical section ends */

      /* Invoke the registered user mode helper and

         pass the identity code in its environment */ 

      run_umode_handler(event_id); /* Expanded later on */

    } else {

      read_unlock(&myevent_lock); 

    }

  }

  set_current_state(TASK_RUNNING); 

  remove_wait_queue(&myevent_waitqueue, &wait); 

  return 0;

}

If you compile and run this as part of the kernel, you can see the newly created thread, 
mykthread, in the ps output:

bash> ps -ef

    UID        PID  PPID  C STIME TTY          TIME CMD

    root         1     0  0 21:56 ?        00:00:00 init [3]

    root         2     1  0 22:36 ?        00:00:00 [ksoftirqd/0]

    ...

root         111   1  0 21:56 ?        00:00:00 [mykthread]

    ...

Before we delve further into the thread implementation, let’s write a code snippet that 
monitors the health of a data structure of interest and awakens mykthread if a problem 
condition is detected:

/* Executed by parts of the kernel that own the 

   data structures whose health you want to monitor */

/* ... */

if (my_key_datastructure looks troubled) {

  write_lock(&myevent_lock);  /* Serialize */



  /* Fill in the identity of the data structure */ 

  myevent_id = datastructure_id; 

  write_unlock(&myevent_lock);

  /* Wake up mykthread */ 

  wake_up_interruptible(&myevent_waitqueue);

}

/* ... */

Listing 3.1 executes in process context, whereas the preceding snippet runs from either 
process or interrupt context. Process and interrupt contexts communicate via kernel 
data structures. Our example uses  myevent_id and  myevent_waitqueue for this 
communication. myevent_id contains the identity of the data structure in trouble. 
Access to myevent_id is serialized using locks.

Note that kernel threads are preemptible only if  CONFIG_PREEMPT is turned on at 
compile time. If CONFIG_PREEMPT is off, or if you are still running a 2.4 kernel with-
out the preemption patch, your thread will freeze the system if it does not go to sleep. 
If you comment out schedule() in Listing 3.1 and disable CONFIG_PREEMPT in your 
kernel confi guration, your system will lock up.

You will learn how to obtain soft real-time responses from kernel threads when we 
discuss scheduling policies in Chapter 19, “Drivers in User Space.”

Process States and Wait Queues

Here’s       the code region from Listing 3.1 that puts mykthread to sleep while waiting for 
events:

add_wait_queue(&myevent_waitqueue, &wait);

for (;;) {

  /* ... */

  set_current_state(TASK_INTERRUPTIBLE);

  schedule();    /* Relinquish the processor */

  /* Point A */

  /* ... */

}

set_current_state(TASK_RUNNING);

remove_wait_queue(&myevent_waitqueue, &wait); 
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The operation of the preceding snippet is based on two concepts: wait queues and 
process states.

Wait queues hold threads that need to wait for an event or a system resource. 
Threads in a wait queue go to sleep until they are woken up by another thread or an 
interrupt handler that is responsible for detecting the event. Queuing and dequeuing 
are respectively done using  add_wait_queue() and  remove_wait_queue(), and 
waking up queued tasks is accomplished via wake_up_interruptible().

A kernel thread (or a normal process) can be in any of the following process states:
running, interruptible, uninterruptible, zombie, stopped, traced, or dead. These states are 
defi ned in include/linux/sched.h:

 • A process in the  running state ( TASK_RUNNING) is in the scheduler run queue
and is a candidate for getting CPU time allotted by the scheduler.

 • A task in the  interruptible state ( TASK_INTERRUPTIBLE) is waiting for an event 
to occur and is not in the scheduler run queue. When the task gets woken up, 
or if a signal is delivered to it, it re-enters the run queue.

 • The  uninterruptible state ( TASK_UNINTERRUPTIBLE) is similar to the inter-
ruptible state except that receipt of a signal will not put the task back into the 
run queue.

 • A stopped  task ( TASK_STOPPED) has stopped execution due to receipt of certain 
signals.

 • If an application such as strace is using the ptrace support in the kernel to inter-
cept a task, it’ll be in the  traced state ( TASK_TRACED).

 • A task in the  zombie state ( EXIT_ZOMBIE) has terminated, but its parent did 
not wait for the task to complete. An exiting task is either in the EXIT_ZOMBIE
state or the  dead ( EXIT_DEAD) state.

You can use  set_current_state() to set the run state of your kernel thread.
Let’s now turn back to the preceding code snippet. mykthread sleeps on a wait 

queue (myevent_waitqueue) and changes its state to TASK_INTERRUPTIBLE, signal-
ing its desire to opt out of the scheduler run queue. The call to schedule() asks the 
scheduler to choose and run a new task from its run queue. When code responsible for 
health monitoring wakes up mykthread using wake_up_interruptible(&myevent_
waitqueue), the thread is put back into the scheduler run queue. The process state 
also gets simultaneously changed to TASK_RUNNING, so there is no race condition even 



if the wake up occurs between the time the task state is set to TASK_INTERRUPTIBLE
and the time schedule() is called. The thread also gets back into the run queue if a 
SIGKILL signal is delivered to it. When the scheduler subsequently picks mykthread 
from the run queue, execution resumes from Point A.

User Mode Helpers

To notify user space of detected events, mykthread invokes run_umode_handler()
in Listing 3.1.

/* Called from Listing 3.1 */

static void 

run_umode_handler(int event_id)

{

  int i = 0;

  char *argv[2], *envp[4], *buffer = NULL;

  int value;

  argv[i++] = myevent_handler; /* Defined in

kernel/sysctl.c */

    

  /* Fill in the id corresponding to the data structure

     in trouble */ 

  if (!(buffer = kmalloc(32, GFP_KERNEL))) return; 

  sprintf(buffer, "TROUBLED_DS=%d", event_id); 

    

  /* If no user mode handlers are found, return */

  if (!argv[0]) return; argv[i] = 0;

  /* Prepare the environment for /path/to/helper */ 

  i = 0; 

  envp[i++] = "HOME=/"; 

  envp[i++] = "PATH=/sbin:/usr/sbin:/bin:/usr/bin";

  envp[i++] = buffer; envp[i]   = 0;

    

  /* Execute the user mode program, /path/to/helper */ 

  value = call_usermodehelper(argv[0], argv, envp, 0);

  /* Check return values */

  kfree(buffer);

}
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The kernel supports a mechanism for requesting user mode programs to help 
perform certain functions. run_umode_handler() uses this facility by invoking 
call_usermodehelper().

You have to register the user mode program invoked by run_umode_handler()
via a node in the /proc/sys/ directory. To do so, make sure that  CONFIG_SYSCTL (fi les 
that are part of the /proc/sys/ directory are collectively known as the sysctl interface) is 
enabled in your kernel confi guration and add an entry to the kern_table array in 
kernel/sysctl.c:

{

  .ctl_name     = KERN_MYEVENT_HANDLER, /* Define in 

include/linux/sysctl.h */

  .procname     = "myevent_handler", 

  .data         = &myevent_handler, 

  .maxlen       = 256,

  .mode         = 0644,

  .proc_handler = &proc_dostring, 

  .strategy     = &sysctl_string,

},

This creates the node /proc/sys/kernel/myevent_handler in the process fi lesystem. To reg-
ister your  user mode helper, do the following:

bash> echo /path/to/helper > /proc/sys/kernel/myevent_handler

This results in /path/to/helper getting executed when mykthread invokes run_umode_
handler().

Mykthread passes the identity of the troubled kernel data structure to the user 
mode helper through the environment variable  TROUBLED_DS. The helper can be a 
simple script like the following that sends you an email alert containing the informa-
tion it gleaned from its environment:

bash> cat /path/to/helper

#!/bin/bash

echo Kernel datastructure $TROUBLED_DS is in trouble | mail -s Alert root

call_usermodehelper() has to be executed from process context and runs with 
root privileges. It’s implemented using a work queue, which we will soon discuss.



Helper Interfaces

Several  useful helper interfaces exist in the kernel to make life easier for device driver 
developers. One example is the implementation of the doubly linked list library. Many 
drivers need to maintain and manipulate linked lists of data structures. The kernel’s 
list interface routines eliminate the need for chasing list pointers and debugging messy 
problems related to list maintenance. Let’s learn to use helper interfaces such as lists, 
hlists, work queues, completion functions, notifi er blocks, and kthreads.

There are equivalent ways to do what the helper facilities offer. You can, for exam-
ple, implement your own list manipulation routines instead of using the list library, or 
use kernel threads to defer work instead of submitting it to work queues. Using stan-
dard kernel helper interfaces, however, simplifi es your code, weeds out redundancies 
from the kernel, increases  code readability, and helps long-term maintenance.

Because the kernel is vast, you can always fi nd parts that do not yet take advantage of 
these helper mechanisms, so updating those code regions might be a good way to start 
contributing to kernel development.

Linked Lists

To     weave doubly linked lists of data structures, use the functions provided in include/
linux/list.h. Essentially, you embed a struct     list_head inside your data structure:

#include <linux/list.h>

struct list_head {

  struct list_head *next, *prev;

};

struct mydatastructure {

  struct list_head mylist;   /* Embed */

  /* ... */                  /* Actual Fields */

};

mylist is the link that chains different instances of mydatastructure. If you have 
multiple list_heads embedded inside mydatastructure, each of them constitutes 
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a link that renders mydatastructure a member of a new list. You can use the list 
library to add or delete membership from individual lists. 

To get the lay of the land before the detail, let’s summarize the linked list program-
ming interface offered    by the list library. This is done in Table 3.1.

TABLE 3.1 Linked List Manipulation Functions

 Function Purpose

INIT_LIST_HEAD() Initializes the list head

list_add() Adds an element after the list head

list_add_tail() Adds an element to the tail of the list

list_del() Deletes an element from the list

list_replace() Replaces an element in the list with another

list_entry() Loops through all nodes in the list

list_for_each_entry()/ Simpler list iteration interfaces
list_for_each_entry_safe()

list_empty() Checks whether there are any elements in the list

list_splice() Joins one list with another

To illustrate list usage, let’s implement an example. The example also serves as a foun-
dation to understand the concept of work queues, which is discussed in the next sec-
tion. Assume that your kernel driver needs to perform a heavy-duty task from an entry 
point. An example is a task that forces the calling thread to sleep-wait. Naturally, your 
driver doesn’t like to block until the task fi nishes, because that slows down the respon-
siveness of applications relying on it. So, whenever the driver needs to perform this 
expensive work, it defers execution by adding the corresponding routine to a linked 
list of work functions. The actual work is performed by a kernel thread, which tra-
verses the list and executes the work functions in the background. The driver submits 
work functions to the tail of the list, while the kernel thread ploughs its way from the 
head of the list, thus ensuring that work queued fi rst gets done fi rst. Of course, the 
rest of the driver needs to be designed to suit this scheme of deferred execution. Before 
understanding this example, however, be aware that we will use the work queue inter-
face in Listing 3.5 to implement the same task in a simpler manner.

Let’s fi rst introduce  the key driver data structures used by our example:

static struct _mydrv_wq {

  struct list_head mydrv_worklist; /* Work List */

  spinlock_t lock;                 /* Protect the list */



  wait_queue_head_t todo;          /* Synchronize submitter 

                                      and worker */

} mydrv_wq;

struct _mydrv_work {

  struct list_head mydrv_workitem; /* The work chain */

  void (*worker_func)(void *);     /* Work to perform */

  void *worker_data;               /* Argument to worker_func */

  /* ... */                        /* Other fields */

} mydrv_work;

mydrv_wq is global to all work submissions. Its members include a pointer to the 
head of the work list, and a wait queue to communicate between driver functions 
that submit work and the kernel thread that performs the work. The list helper func-
tions do not protect accesses to list members, so you need to use concurrency mecha-
nisms to serialize simultaneous pointer references. This is done using a spinlock that 
is also a part of mydrv_wq. The driver initialization routine  mydrv_init()in List-
ing 3.2 initializes the spinlock, the list head, and the wait queue, and kick starts the 
worker thread.

LISTING 3.2 Initialize    Data Structures

static int __init

mydrv_init(void)

{

  /* Initialize the lock to protect against 

     concurrent list access */

  spin_lock_init(&mydrv_wq.lock);

  /* Initialize the wait queue for communication 

     between the submitter and the worker */

  init_waitqueue_head(&mydrv_wq.todo);

  /* Initialize the list head */

  INIT_LIST_HEAD(&mydrv_wq.mydrv_worklist);

  /* Start the worker thread. See Listing 3.4 */

  kernel_thread(mydrv_worker, NULL, 

                  CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

  return 0;

}
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Before examining the worker thread that executes submitted work, let’s look at work 
submission itself. Listing 3.3 implements a function that other parts of the kernel can 
use to submit work. It uses  list_add_tail() to add a work function to the tail of 
the list. Look at Figure 3.1 to see the physical structure of the work list. 

mydrv_wq

mvdrv worklist 

mydrv_work

mydrv_workitem

mydrv_work

Membership in 
another list

(Not shown in 
structure definition)

FIGURE 3.1 Linked list of work functions.

LISTING 3.3 Submitting      Work to Be Executed Later

int

submit_work(void (*func)(void *data), void *data)

{

  struct _mydrv_work *mydrv_work;

  /* Allocate the work structure */

  mydrv_work = kmalloc(sizeof(struct _mydrv_work), GFP_ATOMIC);

  if (!mydrv_work) return -1;

  /* Populate the work structure */

  mydrv_work->worker_func = func; /* Work function */

  mydrv_work->worker_data = data; /* Argument to pass */



  spin_lock(&mydrv_wq.lock);      /* Protect the list */

  /* Add your work to the tail of the list */

  list_add_tail(&mydrv_work->mydrv_workitem, 

                  &mydrv_wq.mydrv_worklist);

  /* Wake up the worker thread */

  wake_up(&mydrv_wq.todo);

  spin_unlock(&mydrv_wq.lock);

  return 0;

}

To submit a work function void job(void *) from a driver entry point, do this: 

submit_work(job, NULL); 

After     submitting the work function, Listing 3.3 wakes up the worker thread. The gen-
eral structure of the worker thread shown in Listing 3.4 is similar to standard kernel 
threads discussed in the previous section. The thread uses  list_entry() to work its 
way through all nodes in the list. list_entry() returns the container data structure 
inside which the list node is embedded. Take a closer look at the relevant line in List-
ing 3.4:

mydrv_work = list_entry(mydrv_wq.mydrv_worklist.next, 

                        struct _mydrv_work, mydrv_workitem);

mydrv_workitem is embedded inside mydrv_work, so list_entry() returns a 
pointer to the corresponding mydrv_work structure. The parameters passed to list_
entry() are the address of the embedded list node, the type of the container struc-
ture, and the fi eld name of the embedded list node.

After executing a submitted work function, the worker thread removes the corre-
sponding node from the list using  list_del(). Note that mydrv_wq.lock is released 
for the time window during which the submitted work function is executed. This is 
because work functions can go to sleep resulting in potential deadlocks if newly sched-
uled code tries to acquire the same spinlock.
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LISTING 3.4 The Worker Thread

static int 

mydrv_worker(void *unused)

{

  DECLARE_WAITQUEUE(wait, current);

  void (*worker_func)(void *);

  void *worker_data;

  struct _mydrv_work *mydrv_work;

  set_current_state(TASK_INTERRUPTIBLE);

  /* Spin until asked to die */

  while (!asked_to_die()) {

    add_wait_queue(&mydrv_wq.todo, &wait);

    

    if (list_empty(&mydrv_wq.mydrv_worklist)) {

      schedule();

      /* Woken up by the submitter */ 

    } else {

      set_current_state(TASK_RUNNING);

    }

    remove_wait_queue(&mydrv_wq.todo, &wait);

    

    /* Protect concurrent access to the list */

    spin_lock(&mydrv_wq.lock);

    /* Traverse the list and plough through the work functions

       present in each node */

    while (!list_empty(&mydrv_wq.mydrv_worklist)) {

      /* Get the first entry in the list */

      mydrv_work = list_entry(mydrv_wq.mydrv_worklist.next, 

          struct _mydrv_work, mydrv_workitem);

      worker_func = mydrv_work->worker_func;

      worker_data = mydrv_work->worker_data;

      /* This node has been processed. Throw it

         out of the list */

      list_del(mydrv_wq.mydrv_worklist.next);

      kfree(mydrv_work);   /* Free the node */

      /* Execute the work function in this node */

      spin_unlock(&mydrv_wq.lock);  /* Release lock */

      worker_func(worker_data);



      spin_lock(&mydrv_wq.lock);    /* Re-acquire lock */

    }

    spin_unlock(&mydrv_wq.lock);

    set_current_state(TASK_INTERRUPTIBLE);

  }

  set_current_state(TASK_RUNNING);

  return 0;

}

For simplicity, the example code does not perform error handling. For example, if 
the call to kernel_thread() in Listing 3.2 fails, you need to free memory allocated 
for the corresponding work structure. Also,  asked_to_die() in Listing 3.4 is left 
unwritten. It essentially breaks out of the loop if it either detects a delivered signal or 
receives a communication from the release() entry point that the module is about 
to be unloaded from the kernel.

Before ending this section, let’s take a look at another useful list library routine, 
list_for_each_entry(). With this macro, iteration becomes simpler and more 
readable because you don’t have to use list_entry() inside the loop. Use the  list_
for_each_entry_safe() variant if you will delete list elements inside the loop. You 
can replace the following snippet in Listing 3.4:

while (!list_empty(&mydrv_wq.mydrv_worklist)) {

  mydrv_work = list_entry(mydrv_wq.mydrv_worklist.next, 

                          struct _mydrv_work, mydrv_workitem);

  /* ... */

}

with:

struct _mydrv_work *temp;

list_for_each_entry_safe(mydrv_work, temp,

                         &mydrv_wq.mydrv_worklist,

                         mydrv_workitem) {

  /* ... */

}

You can’t use list_for_each_entry() in this case because you are removing the 
entry pointed to by mydrv_work inside the loop in Listing 3.4. list_for_each_
entry_safe() solves this problem using the temporary variable passed as the second 
argument (temp) to save the address of the next entry in the list.
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Hash Lists

The      doubly linked list implementation discussed previously is not optimal for cases 
where you want to implement linked data structures such as hash tables. This is because 
hash tables need only a list head containing a single pointer. To reduce memory over-
head for such applications, the kernel provides hash lists (or hlists), a variation of lists. 
Unlike lists, which use the same structure for the list head and list nodes, hlists have 
separate defi nitions:

struct hlist_head {

  struct hlist_node *first;

};

struct hlist_node {

  struct hlist_node *next, **pprev;

};

To suit the scheme of a single-pointer hlist head, the nodes maintain the address of the 
pointer to the previous node, rather than the pointer itself.

Hash tables are implemented using an array of hlist_heads. Each hlist_head
sources a doubly linked list of  hlist_nodes. A hash function is used to locate the 
index (or bucket) in the hlist_head array. When that is done, you may use hlist 
helper routines (also defi ned in include/linux/list.h) to operate on the list of hlist_
nodes linked to the chosen bucket. Look at the implementation of the directory cache 
(dcache) in fs/dcache.c for an example.

Work Queues

Work     queues are a way to defer work inside the kernel.2 Deferring work is useful in 
innumerable situations. Examples include the following:

 • Triggering restart of a network adapter in response to an error interrupt

 • Filesystem tasks such as syncing disk buffers

 • Sending a command to a disk and following through with the storage protocol 
state machine

2 Softirqs and tasklets are two other mechanisms available for deferring work inside the kernel. Table 4.1 of Chapter 4 compares 
softirqs, tasklets, and work queues.



The functionality of work queues is similar to the example described in Listings 3.2 
to 3.4. However, work queues can help you accomplish the same task in a simpler 
manner.

The work queue helper library exposes two interface structures to users: a 
workqueue_struct and a work_struct. Follow these steps to use work queues:

 1. Create a work queue (or a workqueue_struct) with one or more associated 
kernel threads. To create a kernel thread to service a workqueue_struct, use 
create_singlethread_workqueue(). To create one worker thread per CPU 
in the system, use the create_workqueue() variant. The kernel also has default 
per-CPU worker threads (events/n, where n is the CPU number) that you can 
timeshare instead of requesting a separate worker thread. Depending on your 
application, you might incur a performance hit if you don’t have a dedicated 
worker thread.

 2. Create a work element (or a work_struct). A work_struct is initialized using 
INIT_WORK(), which populates it with the address and argument of your work 
function.

 3. Submit the work element to the work queue. A work_struct can be submit-
ted to a dedicated queue using queue_work(), or to the default kernel worker 
thread using schedule_work().

Let’s rewrite Listings 3.2 to 3.4 to take advantage of the work queue interface. This is 
done in Listing 3.5. The entire kernel thread, as well as the spinlock and the wait queue, 
vanish inside the work queue interface. Even the call to create_singlethread_work-
queue() goes away if you are using the default kernel worker thread.

LISTING 3.5 Using Work Queues to Defer Work

#include <linux/workqueue.h>

struct workqueue_struct *wq;

/* Driver Initialization */

static int __init

mydrv_init(void)

{

  /* ... */

  wq = create_singlethread_workqueue("mydrv");

  return 0;

}
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/* Work Submission. The first argument is the work function, and 

   the second argument is the argument to the work function */

int

submit_work(void (*func)(void *data), void *data)

{

  struct work_struct *hardwork;

  hardwork = kmalloc(sizeof(struct work_struct), GFP_KERNEL); 

  /* Init the work structure */

  INIT_WORK(hardwork, func, data);

  /* Enqueue Work */

  queue_work(wq, hardwork);

  return 0;

}

If you are using work queues, you will get linker errors unless you declare your module 
as licensed under GPL. This is because the kernel exports these functions only to GPL’ed 
code. If you look at the kernel work queue implementation, you will see this restriction 
expressed in statements such as this:

EXPORT_SYMBOL_GPL(queue_work);

To announce that your module is copyleft-ed under GPL, declare the following: 

MODULE_LICENSE("GPL");

Notifier Chains

Notifi er chains     are used to send status change messages to code regions that request 
them. Unlike hard-coded mechanisms, notifi ers offer a versatile technique for getting 
alerted when events of interest are generated. Notifi ers were originally added for pass-
ing network events to concerned sections of the kernel but are now used for many 
other purposes. The kernel implements predefi ned notifi ers for signifi cant events. 
Examples of such notifi cations include the following:

 • Die notification  , which is sent when a kernel function triggers a trap or a fault, 
caused by an “oops,” page fault, or a breakpoint hit. If you are, for example, 



writing a device driver for a medical grade card, you might want to register 
yourself with the die notifier so that you can attempt to turn off the medical 
electronics if a kernel panic occurs. 

 •   Net device notification, which is generated when a network interface goes up or 
down.

 •   CPU frequency notification, which is dispatched when there is a transition in 
the processor frequency.

 •   Internet address notifi cation, which is sent when a change is detected in the IP 
address of a network interface.

An example user of notifi ers is the   High-level Data Link Control (HDLC) protocol 
driver drivers/net/wan/hdlc.c, which registers itself with the net device notifi er chain to 
sense carrier changes.

To attach your code to a notifi er chain, you have to register an event handler with 
the associated chain. An event identifi er and a notifi er-specifi c argument are passed as 
arguments to the handler routine when the concerned event is generated. To defi ne a 
custom notifi er chain, you have to additionally implement the infrastructure to ignite 
the chain when the event is detected.

Listing 3.6 contains examples of using predefi ned and user-defi ned notifi ers. 
Table 3.2 contains a brief description of the notifi er chains used by Listing 3.6 and the 
events they propagate, so look at the listing and the table in tandem.

TABLE 3.2 Notifi er Chains and the Events They Propagate

Notifier Chain Description

Die Notifier Chain
(die_chain)

my_die_event_handler() attaches to the die notifier chain, die_
chain, using register_die_notifier(). To trigger invocation of 
my_die_event_handler(), introduce an invalid dereference some-
where in your code, such as the following:     

  int *q = 0;
  *q = 1;

When this code snippet is executed, my_die_event_handler() gets 
called, and you will see a message like this:

my_die_event_handler: OOPs! at EIP=f00350e7

The die event notifier passes the die_args structure to the registered 
event handler. This argument contains a pointer to the regs structure, 
which carries a snapshot of processor register contents when the fault 
occurred. my_die_event_handler() prints the contents of the instruc-
tion pointer register.

Continues
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Notifier Chain Description

Netdevice Notifier Chain
(netdev_chain)

my_dev_event_handler() attaches to the net device notifier chain, 
netdev_chain, using register_netdevice_notifier(). You can 
generate this event by changing the state of a network interface such as 
Ethernet (ethX) or loopback (lo):

bash> ifconfig eth0 up

This results in the execution of my_dev_event_handler(). The 
handler is passed a pointer to struct net_device as argument, 
which contains the name of the network interface. my_dev_event_
handler()uses this information to produce the following message:

my_dev_event_handler: Val=1, Interface=eth0

Val=1 corresponds to the NETDEV_UP event as defined in include/linux/
notifier.h.

User-Defined Notifier Chain Listing 3.6 also implements a user-defined notifier chain, my_noti_
chain. Assume that you want an event to be generated whenever a user 
reads from a particular file in the process filesystem. Add the following in 
the associated procfs read routine:

blocking_notifier_call_chain(&my_noti_chain, 100, NULL);

This results in the invocation of my_event_handler() whenever you 
read from the corresponding /proc file and results in the following message:

my_event_handler: Val=100

Val contains the identity of the generated event, which is 100 for this 
example. The function argument is left unused.

You have to unregister event handlers from notifi er chains when your module is 
released from the kernel. For example, if you up or down a network interface after 
unloading the code in Listing 3.6, you will be rankled by an “oops,” unless you per-
form an   unregister_netdevice_notifier(&my_dev_notifier) from the mod-
ule’s release() method. This is because the notifi er chain continues to think that the 
handler code is valid  , even though it has been pulled out of the kernel.

LISTING 3.6 Notifi er Event Handlers

#include <linux/notifier.h>

#include <asm/kdebug.h> 

#include <linux/netdevice.h>

#include <linux/inetdevice.h>

/* Die Notifier Definition */

static struct notifier_block my_die_notifier = {

  .notifier_call = my_die_event_handler,

};

TABLE 3.2 Continued



/* Die notification event handler */

int

my_die_event_handler(struct notifier_block *self,

             unsigned long val, void *data)

{

  struct die_args *args = (struct die_args *)data;

  if (val == 1) { /* '1' corresponds to an "oops" */

    printk("my_die_event: OOPs! at EIP=%lx\n", args->regs->eip);

  } /* else ignore */

  return 0;

}

/* Net Device notifier definition */

static struct notifier_block my_dev_notifier = {

  .notifier_call = my_dev_event_handler,

};

/* Net Device notification event handler */

int my_dev_event_handler(struct notifier_block *self,

                 unsigned long val, void *data)

{

  printk("my_dev_event: Val=%ld, Interface=%s\n", val,

     ((struct net_device *) data)->name);

  return 0;

}

/* User-defined notifier chain implementation */

static BLOCKING_NOTIFIER_HEAD(my_noti_chain);

static struct notifier_block my_notifier = {

  .notifier_call = my_event_handler,

};

/* User-defined notification event handler */

int my_event_handler(struct notifier_block *self,

             unsigned long val, void *data)

{

  printk("my_event: Val=%ld\n", val);

  return 0;

}
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/* Driver Initialization */

static int __init

my_init(void)

{

  /* ... */

  /* Register Die Notifier */

  register_die_notifier(&my_die_notifier);

  /* Register Net Device Notifier */

  register_netdevice_notifier(&my_dev_notifier);

  /* Register a user-defined Notifier */

  blocking_notifier_chain_register(&my_noti_chain, &my_notifier);

  /* ... */

}

my_noti_chain in Listing 3.6 is declared as a blocking notifi er using  BLOCKING_
NOTIFIER_HEAD() and is registered via blocking_notifier_chain_register().
This means that the notifi er handler is always invoked from process context. So, the 
handler function, my_event_handler(), is allowed to go to sleep. If your notifi er 
handler can be called from interrupt context, declare the notifi er chain using  ATOMIC_
NOTIFIER_HEAD(), and register it via  atomic_notifier_chain_register().

The Old Notifi er Interface

Kernel releases earlier than 2.6.17 supported only a general-purpose notifi er chain. The notifi er 
registration function notifier_chain_register() was internally protected using a spinlock, 
but the routine that walked the notifi er chain dispatching events to notifi er handlers (notifier_
call_chain()) was lockless. The lack of locking was because of the possibility that the handler 
functions may go to sleep, unregister themselves while running, or get called from interrupt con-
text. The lockless implementation introduced race conditions, however. The new notifi er API is 
built over the original interface and is intended to overcome its limitations.

Completion Interface

Many    parts of the kernel initiate certain activities as separate execution threads and 
then wait for them to complete. The completion interface is an effi cient and easy way 
to implement such code patterns.



Some example usage scenarios include the following:

 • Your driver module is assisted by a kernel thread. If you rmmod the module, 
the release() method is invoked before removing the module code from ker-
nel space. The release routine asks the thread to kill itself and blocks until the 
thread completes its exit. Listing 3.7 implements this case.

 • You are writing a portion of a block device driver (discussed in Chapter 14, 
“Block Drivers”) that queues a read request to a device. This triggers a state 
machine change implemented as a separate thread or work queue. The driver 
wants to wait until the operation completes before proceeding with another 
activity. Look at drivers/block/floppy.c for an example.

 • An application requests an   Analog-to-Digital Converter (ADC) driver for a data 
sample. The driver initiates a conversion request waits, until an interrupt signals 
completion of conversion, and returns the data.

LISTING 3.7 Synchronizing  Using Completion Functions

static DECLARE_COMPLETION(my_thread_exit);      /* Completion */

static DECLARE_WAIT_QUEUE_HEAD(my_thread_wait); /* Wait Queue */

int pink_slip = 0;                              /* Exit Flag */

/* Helper thread */

static int 

my_thread(void *unused)

{

  DECLARE_WAITQUEUE(wait, current);

  daemonize("my_thread");

  add_wait_queue(&my_thread_wait, &wait);

  while (1) {

    /* Relinquish processor until event occurs */

    set_current_state(TASK_INTERRUPTIBLE);

    schedule();

    /* Control gets here when the thread is woken 

       up from the my_thread_wait wait queue */

    /* Quit if let go */

    if (pink_slip) {

      break;

    }
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    /* Do the real work */

    /* ... */ 

  }

  /* Bail out of the wait queue */

  __set_current_state(TASK_RUNNING);

  remove_wait_queue(&my_thread_wait, &wait); 

  /* Atomically signal completion and exit */

  complete_and_exit(&my_thread_exit, 0);

}

/* Module Initialization */

static int __init

my_init(void)

{

  /* ... */

  /* Kick start the thread */

  kernel_thread(my_thread, NULL, 

                CLONE_FS | CLONE_FILES | CLONE_SIGHAND | SIGCHLD);

  /* ... */

}

/* Module Release */

static void __exit

my_release(void)

{

  /* ... */

  pink_slip = 1;                        /* my_thread must go */

  wake_up(&my_thread_wait);             /* Activate my_thread */

  wait_for_completion(&my_thread_exit); /* Wait until my_thread 

                                           quits */

  /* ... */

}

A completion object can be declared statically using DECLARE_COMPLETION() or cre-
ated dynamically with init_completion(). A thread can signal completion with 
the help of complete() or  complete_all(). A caller can wait for completion via 
wait_for_completion().



In Listing 3.7,  my_release() raises an exit request fl ag by setting pink_slip
before waking up my_thread(). It then calls wait_for_completion() to wait until 
my_thread() completes its exit. my_thread(), on its part, wakes up to fi nd pink_
slip set, and does the following:

 1. Signals completion to my_release()

 2. Kills itself

my_thread() accomplishes these two steps atomically using  complete_and_exit().
Using complete_and_exit() shuts the window between module exit and thread exit 
that opens if you separately invoke complete() and exit().

We will use the completion API when we develop an example telemetry driver in 
Chapter 11.

Kthread Helpers

Kthread helpers     add a coating over the raw thread creation routines and simplify the 
task of thread management.

Listing 3.8 rewrites Listing 3.7 using the kthread helper interface. my_init()
now uses  kthread_create() rather than kernel_thread(). You can pass the 
thread’s name to kthread_create() rather than explicitly call daemonize() within 
the thread.

The kthread interface provides you free access to a built-in exit synchronization 
mechanism implemented using the completion interface. So, as my_release() does 
in Listing 3.8, you may directly call kthread_stop() instead of laboriously setting 
pink_slip, waking up my_thread(), and waiting for it to complete using wait_for_
completion(). Similarly, my_thread() can make a neat call to  kthread_should_
stop() to check whether it ought to call it a day.

LISTING 3.8 Synchronizing  Using Kthread Helpers

 /* '+' and '-' show the differences from Listing 3.7 */

 #include <linux/kthread.h>

 /* Assistant Thread */

 static int 

 my_thread(void *unused)

 {

    DECLARE_WAITQUEUE(wait, current);
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-   daemonize("my_thread");

-   while (1) {

+   /* Continue work if no other thread has 

+    * invoked kthread_stop() */

+   while (!kthread_should_stop()) {

      /* ... */

-     /* Quit if let go */

-     if (pink_slip) {

-       break;

-     }

      /* ... */

    }

    /* Bail out of the wait queue */

    __set_current_state(TASK_RUNNING);

    remove_wait_queue(&my_thread_wait, &wait); 

-   complete_and_exit(&my_thread_exit, 0);

+   return 0;

 }

+   struct task_struct *my_task;

 /* Module Initialization */

 static int __init

 my_init(void)

 {

   /* ... */

-  kernel_thread(my_thread, NULL, 

-                CLONE_FS | CLONE_FILES | CLONE_SIGHAND |

                 SIGCHLD);

+  my_task = kthread_create(my_thread, NULL, "%s", "my_thread");

+  if (my_task) wake_up_process(my_task);

   /* ... */

 }

 /* Module Release */

 static void __exit

 my_release(void)

 {

    /* ... */



-   pink_slip = 1;

-   wake_up(&my_thread_wait);

-   wait_for_completion(&my_thread_exit);

+   kthread_stop(my_task);

    /* ... */

 }

Instead of creating the thread using kthread_create() and activating it via wake_
up_process() as done in Listing 3.8, you may use the following single call:

kthread_run(my_thread, NULL, "%s", "my_thread");

Error-Handling Aids

Several kernel    functions return pointer values. Whereas callers usually check for failure 
by comparing the return value with NULL, they typically need more information to 
decipher the exact nature of the error that has occurred. Because kernel addresses have 
redundant bits, they can be overloaded to encode error semantics. This is done with 
the help of a set of helper routines. Listing 3.9 implements a simple usage example.

LISTING 3.9 Using Error-Handling Aids

#include <linux/err.h>

char *

collect_data(char *userbuffer)

{

  char *buffer;

  /* ... */

  buffer = kmalloc(100, GFP_KERNEL);

  if (!buffer) {  /* Out of memory */

    return ERR_PTR(-ENOMEM);

  }

  /* ... */

  if (copy_from_user(buffer, userbuffer, 100)) {

    return ERR_PTR(-EFAULT);

  }
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  /* ... */

  return(buffer);

}

int

my_function(char *userbuffer)

{

  char *buf;

  /* ... */

  buf = collect_data(userbuffer);

  if (IS_ERR(buf)) {

    printk("Error returned is %d!\n", PTR_ERR(buf));

  }

  /* ... */

}

If  kmalloc() fails inside  collect_data() in Listing 3.9, you will get the following 
message:

Error returned is -12!

However, if collect_data() is successful, it returns a valid pointer to a data buffer. 
As another example, let’s add error handling using   IS_ERR() and PTR_ERR() to the 
thread creation code in Listing 3.8:

   my_task = kthread_create(my_thread, NULL, "%s", "mydrv");

+  if (!IS_ERR(my_task)) {

+    /* Success */

     wake_up_process(my_task); 

+  } else {

+    /* Failure */

+    printk("Error value returned=%d\n", PTR_ERR(my_task));

+  }



Looking at the Sources

The   ksoftirqd, pdfl ush, and khubd kernel threads live in kernel/softirq.c, mm/pdfl ush.c,
and drivers/usb/core/hub.c, respectively.

The daemonize() function can be found in kernel/exit.c. For the implementation 
of user mode helpers, look at kernel/kmod.c.

The list and hlist library routines reside in include/linux/list.h. They are used all over 
the kernel, so you will fi nd usage examples in most subdirectories. An example is the 
request_queue structure defi ned in include/linux/blkdev.h, which holds a linked list 
of disk I/O requests. We look at this data structure in Chapter 14.

Go to www.ussg.iu.edu/hypermail/linux/kernel/0007.3/0805.html and follow the 
discussion thread in the mailing list for an interesting debate between Linus Torvalds 
and Andi Kleen about the pros and cons of complementing the list library with hlist 
helper routines.

The kernel work queue implementation lives in kernel/workqueue.c. To understand 
the real-world use of work queues, look at the PRO/Wireless 2200 network driver, 
drivers/net/wireless/ipw2200.c.

The kernel notifi er chain implementation lives in kernel/sys.c and include/linux/
notifi er.h. Look at kernel/sched.c and include/linux/completion.h for the guts of the com-
pletion interface. kernel/kthread.c contains the source code for kthread helpers, and 
include/linux/err.h includes defi nitions of error handling aids. 

Table 3.3 contains a summary of the main data structures used in this chapter and the 
location of their defi nitions in the source tree. Table 3.4 lists the main kernel program-
ming interfaces that you used in this chapter along with the location of their defi nitions.

TABLE 3.3 Summary of Data Structures

 Data Structure Location Description

wait_queue_t include/linux/wait.h  Used by threads that desire to wait for an event or a 
system resource

list_head include/linux/list.h  Kernel structure to weave a doubly linked list of data 
structures

hlist_head include/linux/list.h  Kernel structure to implement hash tables

work_struct include/linux/workqueue.h  Implements work queues, which are a way to defer work 
inside the kernel

notifier_block include/linux/notifier.h  Implements notifier chains, which are used to send 
status changes to code regions that request them

completion include/linux/completion.h  Used to initiate activities as separate threads and then 
wait for them to complete
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TABLE 3.4 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

DECLARE_WAITQUEUE() include/linux/wait.h Declares a wait queue.

add_wait_queue() kernel/wait.c Queues a task to a wait queue. The 
task goes to sleep until it’s woken up by 
another thread or interrupt handler.

remove_wait_queue() kernel/wait.c Dequeues a task from a wait queue.

wake_up_interruptible() include/linux/wait.h
kernel/sched.c

Wakes up a task sleeping inside a wait 
queue and puts it back into the scheduler 
run queue.

schedule() kernel/sched.c Relinquishes the processor and allows 
other parts of the kernel to run.

set_current_state() include/linux/sched.h Sets the run state of a process. The 
state can be one of TASK_RUNNING,
TASK_INTERRUPTIBLE, TASK_
UNINTERRUPTIBLE, TASK_STOPPED,
TASK_TRACED, EXIT_ZOMBIE, or 
EXIT_DEAD.

kernel_thread() arch/your-arch/kernel/
process.c

Creates a kernel thread.

daemonize() kernel/exit.c Activates a kernel thread without 
attaching user resources and changes the 
parent of the calling thread to kthreadd.

allow_signal() kernel/exit.c Enables delivery of a specified signal.

signal_pending() include/linux/sched.h Checks whether a signal has been deliv-
ered. There are no signal handlers inside 
the kernel, so you have to explicitly check 
whether a signal has been delivered.

call_usermodehelper() include/linux/kmod.h
kernel/kmod.c

Executes a user mode program.

Linked list library 
functions

include/linux/list.h See Table 3.1.

register_die_notifier() arch/your-arch/kernel/
traps.c

Registers a die notifier.

register_netdevice_
notifier()

net/core/dev.c Registers a netdevice notifier.

register_inetaddr_
notifier()

net/ipv4/devinet.c Registers an inetaddr notifier.

BLOCKING_NOTIFIER_HEAD() include/linux/notifier.h Creates a user-defined blocking notifier.

blocking_notifier_chain_
register()

kernel/sys.c Registers a blocking notifier.



Kernel Interface Location Description

blocking_notifier_call_
chain()

kernel/sys.c Dispatches an event to a blocking notifier 
chain.

ATOMIC_NOTIFIER_HEAD() include/linux/notifier.h Creates an atomic notifier.

atomic_notifier_chain_
register()

kernel/sys.c Registers an atomic notifier.

DECLARE_COMPLETION() include/linux/
completion.h

Statically declares a completion object.

init_completion() include/linux/
completion.h

Dynamically declares a completion object.

complete() kernel/sched.c Announces completion.

wait_for_completion() kernel/sched.c Waits until the completion object 
completes.

complete_and_exit() kernel/exit.c Atomically signals completion and exit.

kthread_create() kernel/kthread.c Creates a kernel thread.

kthread_stop() kernel/kthread.c Asks a kernel thread to stop. 

kthread_should_stop() kernel/kthread.c A kernel thread can poll on this func-
tion to detect whether another thread has 
asked it to stop via kthread_stop().

IS_ERR() include/linux/err.h Finds out whether the return value is an 
error code.
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We are now within whispering distance of writing a device driver. Before 
doing that, however, let’s equip ourselves with some driver concepts. 

We start the chapter by getting an idea of the book’s problem statement; we will 
look at the typical devices and I/O interfaces present on PC-compatible systems 
and embedded computers. Interrupt handling is an integral part of most driv-
ers, so we next cover the art of writing interrupt handlers. We then turn our 
attention to the new device model introduced in the 2.6 kernel. The new model 
is built around abstractions such as sysfs, kobjects, device classes, and udev, which 
distill commonalities from device drivers. The new device model also weeds 
policies out of kernel space and pushes them to user space, resulting in a total 
revamp of features such as /dev node management, hotplug, coldplug, module 
autoload, and fi rmware download.

Introducing Devices and Drivers

User applications  cannot directly communicate with hardware because that entails 
possessing privileges such as executing special instructions and handling interrupts. 
Device drivers assume the burden of interacting with hardware and export interfaces 
that applications and the rest of the kernel can use to access devices. Applications 
operate on devices via nodes in the /dev directory and glean device information 
using nodes in the /sys directory.1

Figure 4.1 shows the hardware block diagram of a typical PC-compatible sys-
tem. As you can see, the system supports diverse devices and interface technologies 
such as memory, video, audio, USB, PCI, WiFi, PCMCIA, I2C, IDE, Ethernet, 
serial port, keyboard, mouse, fl oppy drive, parallel port, and Infrared. The memory 
controller and the graphics controller are part of a North Bridge chipset in the PC 
architecture, whereas peripheral buses are sourced out of a South Bridge.

Figure 4.2 illustrates a similar block diagram for a hypothetical embedded device. 
This diagram contains several interfaces not typical in the PC world such as fl ash 
memory, LCD, touch screen, and cellular modem. 

1 As you’ll learn later, networking applications route their requests to the underlying driver using a different mechanism.



Naturally, the capability to access peripheral devices is a crucial part of a system’s 
functioning. Device drivers provide the engine to achieve this. The rest of the chapters 
in this book will zoom in on a device interface and teach you how to implement the 
corresponding device driver.
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FIGURE 4.1  Hardware   block diagram of a PC-compatible system.
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FIGURE 4.2 Hardware    block diagram of an embedded system.

Interrupt Handling

Because   of the indeterminate nature of I/O, and speed mismatches between I/O devices 
and the processor, devices request the processor’s attention by asserting certain hardware 
signals asynchronously. These hardware signals are called  interrupts. Each interrupt-
ing device is assigned an associated identifi er called an    interrupt request (IRQ) number. 
When the processor detects that an interrupt has been generated on an IRQ, it abruptly 
stops what it’s doing and invokes an   interrupt service routine (ISR) registered for the cor-
responding IRQ. Interrupt handlers (ISRs) execute in interrupt context. 

Interrupt Context

ISRs    are critical pieces of code that directly converse with the hardware. They are given 
the privilege of instant execution in the larger interest of system performance. How-
ever, if ISRs are not quick and lightweight, they contradict their own philosophy. VIPs 
are given preferential treatment, but it’s incumbent on them to minimize the resulting 
inconvenience to the public. To compensate for rudely interrupting the current thread 



of execution, ISRs have to politely execute in a restricted environment called interrupt
context (or atomic context).

Here is a list of do’s and don’ts for code executing in interrupt context:

 1. It’s a jailable offense if your interrupt context code goes to sleep. Interrupt handlers 
cannot relinquish the processor by calling sleepy functions such as   schedule_
timeout(). Before invoking a kernel API from your interrupt handler, penetrate 
the nested invocation train and ensure that it does not internally trigger a block-
ing wait. For example,  input_register_device() looks harmless from the 
surface, but tosses a call to kmalloc() under the hood specifying GFP_KERNEL
as an argument. As you saw in Chapter 2, “A Peek Inside the Kernel,” if your sys-
tem’s free memory dips below a watermark, kmalloc() sleep-waits for memory 
to get freed up by the swapper, if you invoke it in this manner.

 2. For protecting critical sections inside interrupt handlers, you can’t use mutexes 
because they may go to sleep. Use spinlocks instead, and use them only if 
you must.

 3. Interrupt handlers cannot directly exchange data with user space because they 
are not connected to user land via process contexts. This brings us to another 
reason why interrupt handlers cannot sleep: The scheduler works at the granu-
larity of processes, so if interrupt handlers sleep and are scheduled out, how can 
they be put back into the run queue?

 4. Interrupt handlers are supposed to get out of the way quickly but are expected 
to get the job done. To circumvent this Catch-22, interrupt handlers usually 
split their work into two. The slim top half of the handler flags an acknowledg-
ment claiming that it has serviced the interrupt but, in reality, offloads all the 
hard work to a fat bottom half. Execution of the bottom half is deferred to a later 
point in time when all interrupts are enabled. You will learn to develop bottom 
halves while discussing softirqs and tasklets later.

 5. You need not design interrupt handlers to be reentrant. When an interrupt han-
dler is running, the corresponding IRQ is disabled until the handler returns. So, 
unlike process context code, different instances of the same handler will not run 
simultaneously on multiple processors.

 6. Interrupt handlers can be interrupted by handlers associated with IRQs that 
have higher priority. You can prevent this nested interruption by specifically 
requesting the kernel to treat your interrupt handler as a fast handler. Fast han-
dlers run with all interrupts disabled on the local processor. Before disabling 
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interrupts or labeling your interrupt handler as fast, be aware that interrupt-off 
times are bad for system performance. More the interrupt-off times, more is the 
interrupt latency, or the delay before a generated interrupt is serviced. Interrupt 
latency is inversely proportional to the real time responsiveness of the system.

A function can check the value returned by  in_interrupt()to fi nd out whether it’s 
executing in interrupt context.

Unlike     asynchronous interrupts generated by external hardware, there are classes 
of interrupts that arrive synchronously. Synchronous interrupts are so called because 
they don’t occur unexpectedly—the processor itself generates them by executing an 
instruction. Both external and synchronous interrupts are handled by the kernel using 
identical mechanisms.

Examples of synchronous interrupts include the following:

 • Exceptions, which are used to report grave runtime errors

 • Software interrupts such as the int 0x80 instruction used to implement system 
calls on the x86 architecture

Assigning IRQs

Device    drivers have to connect their IRQ number to an interrupt handler. For this, they 
need to know the IRQ assigned to the device they’re driving. IRQ assignments can be 
straightforward or may require complex probing. In the PC architecture, for example, 
timer interrupts are assigned IRQ 0, and RTC interrupts answer to IRQ 8. Modern bus 
technologies such as PCI are sophisticated enough to respond to queries regarding their 
IRQs (assigned by the BIOS when it walks the bus during boot). PCI drivers can poke 
into earmarked regions in the device’s confi guration space and fi gure out the IRQ. For 
older devices such as Industries Standard Architecture (ISA)-based cards, the driver might 
have to leverage hardware-specifi c knowledge to probe and decipher the IRQ.

Take a look at /proc/interrupts for a list of active IRQs on your system.

Device Example: Roller Wheel

Now   that you have learned the basics of interrupt handling, let’s implement an inter-
rupt handler for an example roller wheel device. Roller wheels can be found on some 
phones and   PDAs for easy menu navigation and are capable of three movements: 
clockwise rotation, anticlockwise rotation, and key-press. Our imaginary roller wheel 
is wired such that any of these movements interrupt the processor on IRQ 7. Three 



low order bits of   General Purpose I/O (GPIO) Port D of the processor are connected 
to the roller device. The waveforms generated on these pins corresponding to different 
wheel movements are shown in Figure 4.3. The job of the interrupt handler is to deci-
pher the wheel movements by looking at the Port D GPIO data register.

The driver has to fi rst request    the IRQ and associate an interrupt handler with it:

#define ROLLER_IRQ  7

static irqreturn_t roller_interrupt(int irq, void *dev_id);

if ( request_irq(ROLLER_IRQ, roller_interrupt, IRQF_DISABLED | 

                IRQF_TRIGGER_RISING, "roll", NULL)) {

  printk(KERN_ERR "Roll: Can't register IRQ %d\n", ROLLER_IRQ);

  return -EIO;

}
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Key Press 
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FIGURE 4.3 Sample wave forms generated by the roller wheel  .
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Let’s look at the arguments passed to request_irq(). The IRQ number is not que-
ried or probed but hard-coded to ROLLER_IRQ in this simple case as per the hardware 
connection. The second argument, roller_interrupt(), is the interrupt handler 
routine. Its prototype specifi es a return type of irqreturn_t, which can be IRQ_

HANDLED if the interrupt is handled successfully or IRQ_NONE if it isn’t. The return 
value assumes more signifi cance for I/O technologies such as PCI, where multiple 
devices can share the same IRQ. 

The IRQF_DISABLED fl ag specifi es that this interrupt handler has to be treated 
as a fast handler, so the kernel has to disable interrupts while invoking the handler. 
IRQF_TRIGGER_RISING announces that the roller wheel generates a rising edge on 
the interrupt line when it wants to signal an interrupt. In other words, the roller wheel 
is an    edge-sensitive device. Some devices are instead  level-sensitive and keep the inter-
rupt line asserted until the CPU services it. To fl ag an interrupt as level-sensitive, use 
the IRQF_TRIGGER_HIGH fl ag. Other possible values for this argument include  IRQF_
SAMPLE_RANDOM (used in the section, “Pseudo Char Drivers” in Chapter 5, “Character 
Drivers”) and  IRQF_SHARED (used to specify that this IRQ is shared among multiple 
devices).

The next argument, "roll", is used to identify this device in data generated by 
fi les such as /proc/interrupts. The fi nal parameter, set to NULL in this case, is relevant 
only for shared interrupt handlers and is used to identify each device sharing the 
IRQ line.

Starting with the 2.6.19 kernel, there have been some changes to the interrupt handler 
interface. Interrupt handlers used to take a third argument (struct pt_regs *) that con-
tained a pointer to CPU registers, but this has been removed starting with the 2.6.19 ker-
nel. Also, the IRQF_xxx family of interrupt fl ags replaced the SA_xxx family. For example, 
with earlier kernels, you had to use SA_INTERRUPT rather than IRQF_DISABLED to mark an 
interrupt handler as fast.

Driver initialization is not a good place for requesting an IRQ because that can hog 
that valuable resource even when the device is not in use. So, device drivers usually 
request the IRQ when the device is opened by an application. Similarly, the IRQ is 
freed when the application closes the device and not while exiting the driver module. 
Freeing   an IRQ is done as follows:

free_irq(int irq, void *dev_id);



Listing 4.1 shows the implementation of the roller interrupt handler.  roller_
 interrupt()   takes two arguments: the IRQ and the device identifi er passed as the 
fi nal argument to the associated request_irq(). Look at Figure 4.3 side by side with 
this listing. 

LISTING 4.1 The Roller Interrupt Handler

spinlock_t roller_lock = SPIN_LOCK_UNLOCKED; 

static DECLARE_WAIT_QUEUE_HEAD(roller_poll);

static irqreturn_t 

roller_interrupt(int irq, void *dev_id)

{

  int i, PA_t, PA_delta_t, movement = 0;

  /* Get the waveforms from bits 0, 1 and 2 

     of Port D as shown in Figure 4.3 */

  PA_t = PA_delta_t =  PORTD & 0x07;

  /* Wait until the state of the pins change.

     (Add some timeout to the loop) */

  for (i=0; (PA_t==PA_delta_t); i++){

    PA_delta_t =  PORTD & 0x07;

  }

  movement = determine_movement(PA_t, PA_delta_t); /* See below */

  spin_lock(&roller_lock);

  /* Store the wheel movement in a buffer for

     later access by the read()/poll() entry points */

  store_movements(movement);

  spin_unlock(&roller_lock);

  /* Wake up the poll entry point that might have

     gone to sleep, waiting for a wheel movement */

  wake_up_interruptible(&roller_poll);

  return IRQ_HANDLED;

}
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int

determine_movement(int PA_t, int PA_delta_t)

{

  switch (PA_t){

    case 0:

      switch (PA_delta_t){

      case 1:

        movement = ANTICLOCKWISE;

        break;

      case 2:

        movement = CLOCKWISE;

        break;

      case 4:

        movement = KEYPRESSED;

        break;

      }

      break;

    case 1:

      switch (PA_delta_t){

      case 3:

        movement = ANTICLOCKWISE;

        break;

      case 0:

        movement = CLOCKWISE;

        break;

      }

      break;

    case 2:

      switch (PA_delta_t){

      case 0:

        movement = ANTICLOCKWISE;

        break;

      case 3:

        movement = CLOCKWISE;

        break;

      }

      break;

    case 3:

      switch (PA_delta_t){

      case 2:

        movement = ANTICLOCKWISE;

        break;



      case 1:

        movement = CLOCKWISE;

        break;

      }

    case 4:

      movement   = KEYPRESSED;

      break;

  }

}

Driver entry points such as read() and poll() operate in tandem with roller_
interrupt(). For example, when the handler deciphers wheel movement, it wakes 
up any waiting poll() threads that may have gone to sleep in response to a select()
system call issued by an application such as X Windows. Revisit Listing 4.1 and imple-
ment the complete roller driver after learning the internals of character drivers in 
Chapter 5. 

Listing 7.3 in Chapter 7, “Input Drivers,” takes advantage of the kernel’s input
interface to convert this roller wheel into a roller mouse.

Let’s end this section by introducing some functions that enable and disable inter-
rupts on a     particular IRQ.  enable_irq(ROLLER_IRQ) enables interrupt generation 
when the roller wheel moves, while  disable_irq(ROLLER_IRQ) does the reverse. 
disable_irq_nosync(ROLLER_IRQ) disables roller interrupts but does not wait for 
any currently executing instance of roller_interrupt() to return. This nosync
fl avor of disable_irq() is faster but can potentially cause race conditions. Use this 
only when you know that there can be no races. An example user of disable_irq_
nosync() is drivers/ide/ide-io.c, which blocks interrupts during initialization, because 
some systems have trouble with that.

Softirqs and Tasklets

As     discussed previously, interrupt handlers have two confl icting requirements: They 
are responsible for the bulk of device data processing, but they have to exit as fast as 
possible. To bail out of this situation, interrupt handlers are designed in two parts: a 
hurried and harried top half that interacts with the hardware, and a relaxed bottom 
half that does most of the processing with all interrupts enabled. Unlike interrupts, 
bottom halves are synchronous because the kernel decides when to execute them. The 
following mechanisms are available in the kernel to defer work to a bottom half: soft-
irqs, tasklets, and work queues.
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Softirqs   are the basic bottom half mechanism and have strong locking require-
ments. They are used only by a few performance-sensitive subsystems such as the net-
working layer, SCSI layer, and kernel timers. Tasklets are built on top of softirqs and 
are easier to use. It’s recommended to use tasklets unless you have crucial scalability 
or speed requirements. A primary difference between a     softirq and a tasklet is that 
the former is reentrant whereas the latter isn’t. Different instances of a softirq can run 
simultaneously on different processors, but that is not the case with tasklets.

To illustrate the usage of softirqs and tasklets, assume that the roller wheel in the 
previous example has inherent hardware problems due to the presence of moving parts 
(say, the wheel gets stuck occasionally) resulting in the generation of out-of-spec wave-
forms. A stuck wheel can continuously generate spurious interrupts and potentially 
freeze the system. To get around this problem, capture the wave stream, run some 
analysis on it, and dynamically switch from interrupt mode to a polled mode if the 
wheel looks stuck, and vice versa if it’s unstuck. Capture the wave stream from the 
interrupt handler and perform the analysis from a bottom half. Listing 4.2 implements 
this using softirqs, and Listing 4.3 uses tasklets. Both are simplifi ed variants of List-
ing 4.1. This reduces the handler to two functions:     roller_capture() that obtains 
a wave snippet from GPIO Port D, and roller_analyze() that runs an algorithmic 
analysis on the wave and switches to polled mode if required.

LISTING 4.2  Using Softirqs to Offl oad Work from Interrupt Handlers

void __init 

roller_init()

{

  /* ... */

  /* Open the softirq. Add an entry for ROLLER_SOFT_IRQ in

     the enum list in include/linux/interrupt.h */

  open_softirq(ROLLER_SOFT_IRQ, roller_analyze, NULL);

}

/* The bottom half */

void

roller_analyze()

{

  /* Analyze the waveforms and switch to polled mode if required */

}



/* The interrupt handler */

static irqreturn_t 

roller_interrupt(int irq, void *dev_id)

{

  /* Capture the wave stream */

  roller_capture();

  /* Mark softirq as pending */

  raise_softirq(ROLLER_SOFT_IRQ);

  return IRQ_HANDLED; 

}

To defi ne a softirq, you have to statically add an entry to include/linux/interrupt.h. You 
can’t defi ne one dynamically.  raise_softirq() announces that the corresponding 
softirq is pending execution. The kernel will execute it at the next available oppor-
tunity. This can be during exit from an interrupt handler or via the ksoftirqd kernel 
thread. 

LISTING 4.3 Using Tasklets   to Offl oad Work from Interrupt Handlers

struct roller_device_struct { /* Device-specific structure */

  /* ... */

  struct tasklet_struct tsklt;

  /* ... */

};

void __init roller_init()

{

  struct roller_device_struct *dev_struct;

  /* ... */

  /* Initialize tasklet */

  tasklet_init(&dev_struct->tsklt, roller_analyze, dev);

}

/* The bottom half */

void

roller_analyze()

{

/* Analyze the waveforms and switch to 

   polled mode if required */

}
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/* The interrupt handler */

static irqreturn_t 

roller_interrupt(int irq, void *dev_id)

{

  struct roller_device_struct *dev_struct;

  /* Capture the wave stream */

  roller_capture();

  /* Mark tasklet as pending */

  tasklet_schedule(&dev_struct->tsklt); 

  return IRQ_HANDLED; 

}

tasklet_init() dynamically initializes a tasklet. The function does not allocate 
memory for a tasklet_struct, rather you have to pass the address of an allocated 
one. tasklet_schedule() announces that the corresponding tasklet is pending exe-
cution. Like for interrupts, the kernel offers a bunch of functions to control the execu-
tion state of tasklets on systems having multiple processors:

 •  tasklet_enable() enables tasklets.

 •  tasklet_disable() disables tasklets and waits until any currently executing 
tasklet instance has exited.

 •  tasklet_disable_nosync() has semantics similar to disable_irq_

nosync(). The function does not wait for active instances of the tasklet to fi n-
ish execution.

You have seen the differences between interrupt handlers and bottom halves, but there 
are a few similarities, too. Interrupt handlers and tasklets are both not reentrant. And 
neither of them can go to sleep. Also, interrupt handlers, tasklets, and softirqs cannot 
be preempted.

Work queues are a third way to defer work from interrupt handlers. They execute 
in process context and are allowed to sleep, so they can use drowsy functions such as 
mutexes. We discussed work queues in the preceding chapter when we looked at vari-
ous kernel helper facilities. Table 4.1 compares softirqs, tasklets, and work queues. 



TABLE 4.1 Comparing Softirqs, Tasklets, and   Work Queues

Softirqs Tasklets Work Queues

Execution 
context

Deferred work runs in 
interrupt context.

Deferred work runs in 
interrupt context.

Deferred work runs in 
process context.

Reentrancy Can run simultaneously on 
different CPUs.

Cannot run simultane-
ously on different CPUs. 
Different CPUs can run 
different tasklets, however.

Can run simultaneously on 
different CPUs.

Sleep 
semantics

Cannot go to sleep. Cannot go to sleep. May go to sleep.

Preemption Cannot be 
preempted/scheduled.

Cannot be 
preempted/scheduled.

May be 
preempted/scheduled.

Ease of use Not easy to use. Easy to use. Easy to use.

When to use If deferred work will not 
go to sleep and if you have 
crucial scalability or speed 
requirements.

If deferred work will not go 
to sleep.

If deferred work may go 
to sleep.

There is an ongoing debate in LKML on the feasibility of getting rid of the tasklet interface. 
Tasklets enjoy more priority than process context code, so they present latency problems. 
Moreover, as you learned, they are constrained not to sleep and to execute on the same 
CPU. It’s being suggested that all existing tasklets be converted to softirqs or work queues 
on a case-by-case basis.

The –rt patch-set alluded to in Chapter 2 moves interrupt handling to kernel threads 
to achieve wider preemption coverage.

The Linux Device Model

The new   Linux device model introduces C++-like abstractions that factor out com-
monalities from device drivers into bus and core layers. Let’s look at the different 
components constituting the device model such as udev, sysfs, kobjects, and device classes
and their effects on key kernel subsystems such as /dev node management, hotplug, 
fi rmware download, and module autoload. Udev is the best vantage point to view the 
benefi ts of the device model, so let’s start from there.

Udev

Years    ago when Linux was young, it was not fun to administer device nodes. All the 
needed nodes (which could run into thousands) had to be statically created under the 
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/dev directory. This problem, in fact, dated all the way back to original UNIX systems. 
With the advent of the 2.4 kernels came  devfs, which introduced dynamic device node 
creation. Devfs provided services to generate device nodes in an in-memory fi lesys-
tem, but the onus of naming the nodes still rested with device drivers. Device naming 
policy is administrative and does not mix well with the kernel, however. The place for 
policy is in header fi les, kernel module parameters, or user space. Udev arrived on the 
scene to push device management to user space.

Udev depends on the following to do its work:

 1. Kernel sysfs support, which is an important part of the Linux device model. Sysfs 
is an in-memory filesystem mounted under /sys at boot time (look at /etc/fstab
for the specifier). We will look at sysfs in the next section, but for now, take the 
corresponding sysfs file accesses for granted.

 2. A set of user-space daemons and utilities such as udevd and udevinfo.

 3. User-specified rules located in the /etc/udev/rules.d/ directory. You may frame 
rules to get a consistent view of your devices.

To understand how to use udev, let’s look at an example. Assume that you have a USB 
DVD drive and a USB CD-RW drive. Depending on the order in which you hotplug 
these devices, one of them is assigned the name /dev/sr0, and the other gets the name 
/dev/sr1. During pre-udev days, you had to fi gure out the associated names before you 
could use the devices. But with udev, you can consistently view the DVD (as say, /dev/
usbdvd) and the CD-RW (as say, /dev/usbcdrw) irrespective of the order in which they 
are plugged in or out.

First, pull product attributes from corresponding fi les in sysfs. Assume that the 
 (Targus) DVD drive has been assigned the device node /dev/sr0 and that the ( Addonics) 
CD-RW drive has been given the name /dev/sr1. Use udevinfo to collect device 
information:

bash> udevinfo -a -p /sys/block/sr0

...

looking at the device chain at 

‘/sys/devices/pci0000:00/0000:00:1d.7/usb1/1-4':

 BUS=="usb"

 ID=="1-4"

 SYSFS{bConfigurationValue}=="1"

 ...

 SYSFS{idProduct}=="0701"



 SYSFS{idVendor}=="05e3"

 SYSFS{manufacturer}=="Genesyslogic"

 SYSFS{maxchild}=="0"

 SYSFS{product}=="USB Mass Storage Device"

 ...

bash> udevinfo -a -p /sys/block/sr1

 ...

 looking at the device chain at 

 ‘/sys/devices/pci0000:00/0000:00:1d.7/usb1/1-3':

 BUS=="usb"

 ID=="1-3"

 SYSFS{bConfigurationValue}=="2"

  ...

 SYSFS{idProduct}=="0302"

 SYSFS{idVendor}=="0dbf"

 SYSFS{manufacturer}=="Addonics"

 SYSFS{maxchild}=="0"

 SYSFS{product}=="USB to IDE Cable"

 ...

Next, let’s use the product information gleaned to identify the devices and add udev 
naming rules. Create a fi le called /etc/udev/rules.d/40-cdvd.rules and add the following 
rules to it:

BUS=="usb", SYSFS{idProduct}=="0701", SYSFS{idVendor}=="05e3", 

KERNEL=="sr[0-9]*", NAME="%k", SYMLINK="usbdvd" 

BUS=="usb", SYSFS{idProduct}=="0302", SYSFS{idVendor}=="0dbf", 

KERNEL=="sr[0-9]*", NAME="%k", SYMLINK="usbcdrw" 

The fi rst rule tells udev that whenever it fi nds a USB device with a product ID of 
0x0701, vendor ID of 0x05e3, and a name starting with sr, it should create a node of 
the same name under /dev and produce a symbolic link named usbdvd to the created 
node. Similarly, the second rule orders creation of a symbolic link named usbcdrw for 
the CD-RW drive.

To test for syntax errors in your rules, run udevtest on /sys/block/sr*. To turn on 
verbose messages in /var/log/messages, set udev_log to "yes" in /etc/udev/udev.conf. To 
repopulate the /dev directory with newly added rules on-the-fl y, restart udev using 
udevstart. When this is done, your DVD drive consistently appears to the system as 
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/dev/usbdvd, and your CD-RW drive always appears as /dev/usbcdrw. You can deter-
ministically mount them from shell scripts using commands such as this:

mount /dev/usbdvd /mnt/dvd

Consistent naming of device nodes (and network interfaces) is not the sole capabil-
ity of udev. It has metamorphed into the Linux hotplug manager, too. Udev is also 
in charge of automatically loading modules on demand and downloading microcode 
onto devices that need them. But before digging into those capabilities, let’s obtain a 
basic understanding of the innards of the device model.

Sysfs, Kobjects, and Device Classes

Sysfs            , kobjects, and device classes are the building blocks of the device model but are 
publicity shy and prefer to remain behind the scenes. They are mostly in the usage 
domain of bus and core implementations, and hide inside APIs that provide services 
to device drivers.

Sysfs is the user-space manifestation of the kernel’s structured device model. It’s 
similar to procfs in that both are in-memory fi lesystems containing information about 
kernel data structures. Whereas procfs is a generic window into kernel internals, sysfs 
is specifi c to the device model. Sysfs is, hence, not a replacement for procfs. Informa-
tion such as process descriptors and sysctl parameters belong to procfs and not sysfs. As 
will be apparent soon, udev depends on sysfs for most of its extended functions. 

Kobjects introduce an encapsulation of common object properties such as usage 
reference counts. They are usually embedded within larger structures. The following 
are the main fi elds of a kobject, which is defi ned in include/linux/kobject.h:

 1. A  kref object that performs reference count management. The  kref_init()
interface initializes a kref,  kref_get()increments the reference count associ-
ated with the kref, and  kref_put() decrements the reference count and frees 
the object if there are no remaining references. The URB structure (explained 
in Chapter 11, “Universal Serial Bus”), for example, contains a kref to track the 
number of references to it.2

 2. A pointer to a kset, which is an object set to which the kobject belongs.

 3. A   kobj_type, which is an object type that describes the kobject.

2 The usb_alloc_urb() interface calls kref_init(), usb_submit_urb() invokes kref_get(), and usb_
free_urb() calls kref_put().



Kobjects are intertwined with sysfs. Every kobject instantiated within the kernel has a 
sysfs representation.

The concept of device classes is another feature of the device model and is an 
interface you’re more likely to use in a driver. The class interface abstracts the idea 
that each device falls under a broader class (or category) of devices. A USB mouse, 
a PS/2 keyboard, and a joystick all fall under the   input class and own entries under 
/sys/class/input/.

Figure 4.4 shows the sysfs hierarchy on a laptop that has an external USB mouse 
connected to it. The top-level bus, class, and device directories are expanded to show 
that sysfs provides a view of the USB mouse based on its device type as well as its 
physical connection. The mouse is an input class device but is physically a USB device 
answering to two endpoint addresses, a control endpoint ep00, and an interrupt end-
point, ep81. The USB port in question belongs to the USB host controller on bus 
2, and the USB host controller itself is bridged to the CPU via the PCI bus. If these 
details are not making much sense at this point, don’t worry; rewind to this section 
after reading the chapters that teach input drivers (Chapter 7), PCI drivers (Chapter 
10, “Peripheral Component Interconnect”), and USB drivers (Chapter 11).

[/sys]
     +[block]
     -[bus]—[usb]—[devices]—[usb2]—[2-2]—[2-2:1.0]-[usbendpoint:usbdev2.2-ep81]
     -[class]-[input]—[mouse2]—[device]—[bus]—[usbendpoint:usbdev2.2-ep81]
             -[usb_device]—[usbdev2.2]—[device]—[bus]
             -[usb_endpoint]—[usbdev2.2-ep00]—[device]
                            —[usbdev2.2-ep81]—[device]
     -[devices]—[pci0000:00]—[0000:00:1d:1]—[usb2]—[2-2]—[2-2:1.0]
     +[firmware]
     +[fs]
     +[kernel]
     +[module]
     +[power]

FIGURE 4.4 Sysfs hierarchy of a USB mouse.

Browse through /sys looking for entries that associate with another device (for example, 
your network card) to get a better feel of its hierarchical organization. The section 
“Addressing and Identifi cation” in Chapter 10 illustrates how sysfs mirrors the physical 
connection of a CardBus Ethernet-Modem card on a laptop.

The class programming interface is built on top of kobjects and sysfs, so it’s a 
good place to start digging to understand the end-to-end interactions between the 
 components of the device model. Let’s turn to the RTC driver for an example. The 
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RTC driver (drivers/char/rtc.c) is a miscellaneous (or “misc”) driver. We discuss misc 
drivers in detail when we look at character device drivers in Chapter 5.

Insert the RTC driver module and look at the nodes created under /sys and /dev:

bash> modprobe rtc

bash> ls -lR /sys/class/misc

drwr-xr-x 2 root root 0 Jan 15 01:23 rtc

/sys/class/misc/rtc:

total 0

-r--r--r-- 1 root root 4096 Jan 15 01:23  dev

--w------- 1 root root 4096 Jan 15 01:23  uevent

bash> ls -l /dev/rtc

crw-r--r-- 1 root root 10, 135 Jan 15 01:23 /dev/rtc

/sys/class/misc/rtc/dev contains the major and minor numbers (discussed in the next 
chapter) assigned to this device, /sys/class/misc/rtc/uevent is used for coldplugging (dis-
cussed in the next section), and /dev/rtc is used by applications to access the RTC 
driver. 

Let’s understand the code fl ow through the device model. Misc drivers utilize the 
services of  misc_register() during initialization, which looks like this if you peel 
off some code:

/* ... */

dev = MKDEV(MISC_MAJOR, misc->minor);

misc->class = class_device_create(misc_class, NULL, dev, 

                                  misc->dev,

                                  "%s", misc->name);

if (IS_ERR(misc->class)) {

  err = PTR_ERR(misc->class);

  goto out;

}

/* ... */

Figure 4.5 continues to peel off more layers to get to the bottom of the device model-
ing. It illustrates the transitions that ripple through classes, kobjects, sysfs, and udev, 
which result in the generation of the /sys and /dev fi les listed previously.



Kernel
Space

User
Space

rtc_init()

sysfs_create_dir()

class_device_create_file()

sysfs_create_file()

class_device_add_attrs()

class_device_create_file()

sysfs_create_file()

kobject_uevent_env()

udevd receives the uevent  via 
netlink sockets and creates 
/dev  nodes after consulting its 
rules database. 

                 class_device_register() 

kobject_uevent(KOBJ_ADD)

modprobe rtc 

kobject_add ()

misc_register (&rtc_dev) 

/sys/class/misc/rtc/

/sys/class/misc/rtc/uevent

/sys/class/misc/rtc/dev
/dev/rtc

FIGURE 4.5 Tying the pieces of the device model.

Look at the parallel port LED driver (Listing 5.6 in the section “Talking to the Paral-
lel Port” in Chapter 5) and the virtual mouse input driver (Listing 7.2 in the section 
“Device Example: Virtual Mouse” in Chapter 7) for examples on creating device con-
trol fi les inside sysfs.

Another abstraction that is part of the device model is the  bus-device-driver pro-
gramming interface. Kernel device support is cleanly structured into buses, devices, 
and drivers. This renders the individual driver implementations simpler and more 
general. Bus implementations can, for example, search for drivers that can handle a 
particular device.

Consider the kernel’s I2C subsystem (explored in Chapter 8, “The Inter-Integrated 
Circuit Protocol”). The I2C layer consists of a core infrastructure, device drivers for bus 
adapters, and drivers for client devices. The I2C core layer registers each detected I2C
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bus adapter using bus_register(). When an I2C client device (say, an Electrically 
Erasable Programmable Read-Only Memory [EEPROM] chip) is probed and detected, 
its existence is recorded via  device_register(). Finally, the I2C EEPROM client 
driver registers itself using  driver_register(). These registrations are performed 
indirectly using service functions offered by the I2C core.

bus_register() adds a corresponding entry to /sys/bus/, while device_register()
adds entries under /sys/devices/. struct bus_type, struct device, and struct 
device_driver are the main data structures used respectively by buses, devices, and 
drivers. Take a peek inside include/linux/device.h for their defi nitions.

Hotplug and Coldplug

Devices     connected to a running system on-the-fl y are said to be hotplugged, whereas 
those connected prior to system boot are considered to be coldplugged. Earlier, the ker-
nel used to notify user space about hotplug events by invoking a helper program reg-
istered via the /proc fi lesystem. But when current kernels detect hotplug, they dispatch 
uevents to user space via netlink sockets. Netlink sockets are an effi cient mechanism to 
communicate between kernel space and user space using socket APIs. At the user-space 
end, udevd, the daemon that manages device node creation and removal, receives the 
uevents and manages hotplug.

To see how hotplug handling has evolved recently, let’s consider progressive levels of udev running 
different versions of the 2.6 kernel:

 1. With a udev-039 package and a 2.6.9 kernel, when the kernel detects a hotplug event, it 
invokes the user-space helper registered with /proc/sys/kernel/hotplug. This defaults to /sbin/
hotplug, which receives attributes of the hotplugged device in its environment. /sbin/hotplug
looks inside the hotplug configuration directory (usually /etc/hotplug.d/default/) and runs, 
for example, /etc/hotplug.d/default/10-udev.hotplug, after executing other scripts under /etc/
hotplug/.
bash> ls -l /etc/hotplug.d/default/
...
lrwcrwxrwx 1 root root 14 May 11 2005 10-udev.hotplug -> /sbin/udevsend
...

  When /sbin/udevsend thus gets executed, it passes the hotplugged device information to 
udevd.

 2. With udev-058 and a 2.6.11 kernel, the story changes somewhat. The   udevsend utility 
replaces /sbin/hotplug:

bash> cat /proc/sys/kernel/hotplug
/sbin/udevsend



 3. With the latest levels of udev and the kernel, udevd assumes full responsibility of managing 
hotplug without depending on udevsend. It now pulls hotplug events directly from the ker-
nel via netlink sockets (see Figure 4.4). /proc/sys/kernel/hotplug contains nothing:

bash> cat /proc/sys/kernel/hotplug

bash>

Udev also handles coldplug. Because udev is part of user space and is started only after 
the kernel boots, a special mechanism is needed to emulate hotplug events over cold-
plugged devices. At boot time, the kernel creates a fi le named uevent under sysfs for 
all devices and emits coldplug events to those fi les. When udev starts, it reads all the 
uevent fi les from /sys and generates hotplug uevents for each coldplugged device.

Microcode Download

You have    to feed microcode to some devices before they can get ready for action. The 
microcode gets executed by an on-card microcontroller. Device drivers used to store 
microcode inside static arrays in header fi les. But this has become untenable because 
microcode is usually distributed as proprietary binary images by device vendors, and 
that doesn’t mix homogeneously with the GPL-ed kernel. Another reason against mix-
ing fi rmware with kernel sources is that they run on different release time lines. The 
solution apparently is to separately maintain microcode in user space and pass it down 
to the kernel when required. Sysfs and udev provide an infrastructure to achieve this.

Let’s take the example of the Intel PRO/Wireless 2100 WiFi mini PCI card found 
on several laptops. The card is built around a microcontroller that needs to execute 
externally supplied microcode for normal operation. Let’s walk through the steps 
that the Linux driver follows to download microcode to the card. Assume that you 
have obtained the required microcode image (ipw2100-1.3.fw) from http://ipw2100.
sourceforge.net/fi rmware.php and saved it under /lib/fi rmware/ on your system and 
that you have inserted the driver module ipw2100.ko:

 1. During initialization, the driver invokes the following:

request_firmware(..,"ipw2100-1.3.fw",..);

 2. This dispatches a hotplug uevent to user space, along with the identity of the 
requested microcode image.

 3. Udevd receives the uevent and responds by invoking /sbin/firmware_helper. For 
this, it uses a rule similar to the following from a file under /etc/udev/rules.d/:

ACTION=="add", SUBSYSTEM=="firmware", RUN="/sbin/firmware_helper"
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 4. /sbin/firmware_helper looks inside /lib/firmware/ and locates the requested 
microcode image ipw2100-1.3.fw. It dumps the image to /sys/class/0000:02:02.0/
data. (0000:02:02 is the PCI bus:device:function identifier of the WiFi card in 
this case.)

 5. The driver receives the microcode and downloads it onto the device. When 
done, it calls release_firmware() to free the corresponding data structures.

 6. The driver goes through the rest of the initializations and the WiFi adapter 
beacons.

Module Autoload

Automatically      loading kernel modules on demand is a convenient feature that Linux 
supports. To understand how the kernel emits a “module fault” and how udev handles 
it, let’s insert a Xircom CardBus Ethernet adapter into a laptop’s PC Card slot:

 1. During compile time, the identity of supported devices is generated as part of the 
driver module object. Take a peek at the driver that supports the  Xircom Card-
Bus Ethernet combo card (drivers/net/tulip/xircom_cb.c) and find this snippet:

static struct pci_device_id xircom_pci_table[] = {

    {0x115D, 0x0003, PCI_ANY_ID, PCI_ANY_ID,},

    {0,},

};

/* Mark the device table */

MODULE_DEVICE_TABLE(pci, xircom_pci_table);

  This declares that the driver can support any card having a PCI vendor ID of 
0x115D and a PCI device ID of 0x0003 (more on this in Chapter 10). When 
you install the driver module, the   depmod utility looks inside the module image 
and deciphers the IDs present in the device table. It then adds the following 
entry to /lib/modules/kernel-version/modules.alias:

alias pci:v0000115Dd00000003sv*sd*bc*sc*i* xircom_cb

  where v stands for VendorID, d for DeviceID, sv for subvendorID, and * for 
wildcard match.



 2. When you hotplug the Xircom card into a CardBus slot, the kernel generates a 
uevent that announces the identity of the newly inserted device. You may look 
at the generated uevent using   udevmonitor:

bash> udevmonitor --env

   ...

   MODALIAS=pci:v0000115Dd00000003sv0000115Dsd00001181bc02sc00i00

   ...

 3. Udevd receives the uevent via a netlink socket and invokes modprobe with the 
above MODALIAS that the kernel passed up to it:

modprobe pci:v0000115Dd00000003sv0000115Dsd00001181bc02sc00i00

 4. Modprobe finds the matching entry in /lib/modules/kernel-version/modules.alias
created during Step 1, and proceeds to insert xircom_cb:

bash> lsmod

Module      Size   Used by

xircom_cb   10433  0

...

The card is now ready to surf.
You may want to revisit this section after reading Chapter 10.

Udev on Embedded Devices

One school     of thought deprecates the use of udev in favor of statically created device nodes on 
embedded devices for the following reasons:

• Udev creates /dev nodes during each reboot, compared to static nodes that are created only 
once during software install. If your embedded device uses flash storage, flash pages that hold 
/dev nodes suffer an erase-write cycle on each boot in the case of the former, and this reduces 
flash life span. (Flash memory is discussed in detail in Chapter 17, “Memory Technology 
Devices.”) You do have the option of mounting /dev over a RAM-based filesystem, however.

• Udev contributes to increased boot time.

• Udev features such as dynamic creation of /dev nodes and autoloading of modules create 
a degree of indeterminism that some solution designers prefer to avoid on special-purpose 
embedded devices, especially ones that do not interact with the outside world via hotpluggable 
buses. According to this point of view, static node creation and boot-time insertion of any 
modules provide more control over the system and make it easier to test. 
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Memory Barriers

Many     processors and compilers reorder instructions to achieve optimal execution 
speeds. The reordering is done such that the new instruction stream is semantically 
equivalent to the original one. However, if you are, for example, writing to memory 
mapped registers on an I/O device, instruction reordering can generate unexpected 
side effects. To prevent the processor from reordering instructions, you can insert a 
barrier in your code. The  wmb() function inserts a road block that prevents writes 
from moving through it,  rmb() provides a read barricade that disallows reads from 
crossing it, and  mb() results in a read-write barrier.

In addition to the CPU-to-hardware interactions referred to previously, memory 
barriers are also relevant for CPU-to-CPU interactions on SMP systems. If your CPU’s 
data cache is operating in write-back mode (in which data is not copied from cache to 
memory until it’s absolutely necessary), you might want to stall the instruction stream 
until the cache-to-memory queue is drained. This is relevant, for example, when you 
encounter instructions that acquire or release locks. Barriers are used in this scenario to 
obtain a consistent perception across CPUs.

We revisit memory barriers when we discuss PCI drivers in Chapter 10 and fl ash map 
drivers in Chapter 17. In the meanwhile, stop by Documentation/memory-barriers.txt
for an explanation of different kinds of memory barriers.

Power Management

Power   management is critical on devices running on battery, such as laptops and hand-
helds. Linux drivers need to be aware of power states and have to transition across 
states in response to events such as standby, sleep, and low battery. Drivers utilize power-
saving features supported by the underlying hardware when they switch to modes that 
consume less power. For example, the storage driver spins down the disk, whereas the 
video driver blanks the display.

Power-aware code in device drivers is only one piece of the overall power man-
agement framework. Power management also features participation from user-space 
daemons, utilities, confi guration fi les, and boot fi rmware. Two popular power man-
agement mechanisms are   APM (discussed in the section, “Protected Mode Calls” in 
Appendix B, “Linux and the BIOS”) and   Advanced Confi guration and Power Inter-
face (ACPI). APM is getting obsolete, and ACPI has emerged as the de facto power 



 management strategy on Linux systems. ACPI is further discussed in Chapter 20, 
“More Devices and Drivers.”

Looking at the Sources

The core interrupt handling code is generic and is in the kernel/irq/ directory. The 
architecture-specifi c portions can be found in arch/your-arch/kernel/irq.c. The function 
do_IRQ() defi ned in this fi le is a good place to start your journey into the kernel inter-
rupt handling mechanism.

The kernel softirq and tasklet implementations live in kernel/softirq.c. This fi le also 
contains additional functions that offer more fi ne-grained control over softirqs and 
tasklets. Look at include/linux/interrupt.h for softirq vector enumerations and proto-
types required to implement your interrupt handler. For a real-life example of writing 
interrupt handlers and bottom halves, start from the handler that is part of drivers/net/
lib8390.c and follow the trail into the networking stack.

The kobject implementation and related programming interfaces live in lib/kobject.c
and include/linux/kobject.h. Look at drivers/base/sys.c for the sysfs implementation. You 
will fi nd device class APIs in drivers/base/class.c. Dispatching hotplug uevents via netlink 
sockets is done by lib/kobject_uevent.c. You may download udev sources and documen-
tation from www.kernel.org/pub/linux/utils/kernel/hotplug/udev.html.

For a fuller understanding of how APM is implemented on x86 Linux, look at 
arch/x86/kernel/apm_32.c, include/linux/apm_bios.h, and include/asm-x86/mach-default/
apm.h in the kernel tree. If you are curious to know how APM is implemented on 
BIOS-less architectures such as ARM, look at include/linux/apm-emulation.h and its 
users. The kernel’s ACPI implementation lives in drivers/acpi/.

Table 4.2 contains a summary of the main data structures used in this chapter 
and the location of their defi nitions in the source tree. Table 4.3 lists the main kernel 
programming interfaces that you used in this chapter along with the location of their 
defi nitions.

TABLE 4.2 Summary of Data Structures

Data Structure Location Description

tasklet_struct include/linux/interrupt.h  Manages a tasklet, which is a method to implement 
bottom halves

kobject include/linux/kobject.h  Encapsulates common properties of a kernel object

Continues
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Data Structure Location Description

kset include/linux/kobject.h An object set to which a kobject belongs

kobj_type include/linux/kobject.h An object type that describes a kobject

class include/linux/device.h  Abstracts the idea that a driver falls under a broader 
category

bus
device
device_driver

include/linux/device.h Structures that form the pillars under the Linux device 
model

TABLE 4.3 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

request_irq() kernel/irq/manage.c Requests an IRQ and associates an 
interrupt handler with it

free_irq() kernel/irq/manage.c Frees an IRQ

disable_irq() kernel/irq/manage.c Disables the interrupt associated with a 
supplied IRQ

disable_irq_nosync() kernel/irq/manage.c Disables the interrupt associated with 
a supplied IRQ without waiting for 
any currently executing instances of the 
interrupt handler to return

enable_irq() kernel/irq/manage.c Re-enables the interrupt that has been 
disabled using disable_irq() or 
disable_irq_nosync()

open_softirq() kernel/softirq.c Opens a softirq

raise_softirq() kernel/softirq.c Marks the softirq as pending execution

tasklet_init() kernel/softirq.c Dynamically initializes a tasklet

tasklet_schedule() include/linux/interrupt.h
kernel/softirq.c

Marks a tasklet as pending execution

tasklet_enable() include/linux/interrupt.h Enables a tasklet

tasklet_disable() include/linux/interrupt.h Disables a tasklet

tasklet_disable_nosync() include/linux/interrupt.h Disables a tasklet without waiting for 
active instances to finish execution

TABLE 4.2 Continued



Kernel Interface Location Description

class_device_register()
kobject_add()
sysfs_create_dir()
class_device_create()
class_device_destroy()
class_create()
class_destroy()
class_device_create_file()
sysfs_create_file()
class_device_add_attrs()
kobject_uevent()

drivers/base/class.c
lib/kobject.c
lib/kobject_uevent.c
fs/sysfs/dir.c
fs/sysfs/file.c

Family of functions in the Linux device 
model that create/destroy a class, device 
class, and associated kobjects and sysfs 
files

This fi nishes our exploration of device driver concepts. You might want to dip back 
into this chapter while developing your driver. 
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You are   now all set to make a foray into writing simple, albeit real-world, 
device drivers. In this chapter, let’s look at the internals of a character (or 

char) device driver, which is kernel code that sequentially accesses data from a 
device. Char drivers can capture raw data from several types of devices: printers, 
mice, watchdogs, tapes, memory, RTCs, and so on. They are however, not suit-
able for managing data residing on block devices capable of random access such 
as hard disks, fl oppies, or compact discs.

Char Driver Basics

Let’s start with a top-down view.   To access a char device, a system user invokes 
a suitable application program. The application is responsible for talking to the 
device, but to do that, it needs to elicit the identity of a suitable driver. The contact 
details of the driver are exported to user space via the /dev directory:

bash> ls -l /dev

total 0

crw-------   1 root root     5,   1 Jul 16 10:02 console

...

lrwxrwxrwx   1 root root          3 Oct 6 10:02  cdrom -> hdc

...

brw-rw----   1 root disk     3,   0 Oct 6 2007   hda

brw-rw----   1 root disk     3,   1 Oct 6 2007   hda1

...

crw-------   1 root tty      4,   1 Oct 6 10:20  tty1

crw-------   1 root tty      4,   2 Oct 6 10:02  tty2

The fi rst character in each line of the ls output denotes the driver type: c signifi es 
a char driver, b stands for a block driver, and l denotes a symbolic link. The num-
bers in the fi fth column are called   major numbers, and those in the sixth column 
are minor numbers. A major number broadly identifi es the driver, whereas a minor 
number pinpoints the exact device serviced by the driver. For example, the IDE 
block storage driver /dev/hda owns a major number of 3 and is in charge of handling 
the hard disk on your system, but when you further specify a minor number of 1 



(/dev/hda1), that narrows it down to the fi rst disk partition. Char and block drivers 
occupy different spaces, so you can have same major number assigned to a char as well 
as a block driver.

Let’s take a step further and peek inside a char driver. From a code-fl ow perspective, 
char  drivers have the following:

 • An initialization (or  init()) routine that is responsible for initializing the 
device and seamlessly tying the driver to the rest of the kernel via registration 
functions.

 • A set of entry points (or methods) such as open(), read(), ioctl(), llseek(),
and write(), which directly correspond to I/O system calls invoked by user 
applications over the associated /dev node.

 • Interrupt routines, bottom halves, timer handlers, helper kernel threads, and 
other support infrastructure. These are largely transparent to user applications.

From a  data-fl ow perspective, char drivers own the following key data structures:

 1. A per-device structure. This is the information repository around which the 
driver revolves.

 2. struct cdev, a kernel abstraction for character drivers. This structure is usually 
embedded inside the per-device structure referred previously.

 3. struct file_operations, which contains the addresses of all driver entry 
points.

 4. struct file, which contains information about the associated /dev node.

Device Example: System CMOS

Let’s   implement a char driver to access the system CMOS. The BIOS on PC-
compatible hardware (see Figure 5.1) uses the CMOS to store information such as 
startup options, boot order, and the system date, which you can confi gure via the 
BIOS setup menu. Our example CMOS driver lets you access the two PC CMOS 
banks as though they are regular fi les. Applications can operate on /dev/cmos/0 and 
/dev/cmos/1, and use I/O system calls to access data from the two banks. Because the 
BIOS assigns semantics to the CMOS area at bit-level granularity, the driver is capable 
of bit-level access. So, a read() obtains the specifi ed number of bits and advances the 
internal fi le pointer by the number of bits read.
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The CMOS is accessed via two I/O addresses, an index register and a data register, 
as shown in Table 5.1. You have to specify the desired CMOS memory offset in the 
index register and exchange information via the data register. 

TABLE 5.1 Register    Layout on the CMOS

Register Name Description

CMOS_BANK0_INDEX_PORT Specify the desired CMOS bank 0 offset in this register.

CMOS_BANK0_DATA_PORT Read/write data from/to the address specified in CMOS_BANK0_INDEX_PORT.

CMOS_BANK1_INDEX_PORT Specify the desired CMOS bank 1 offset in this register.

CMOS_BANK1_DATA_PORT Read/write data from/to the address specified in CMOS_BANK1_INDEX_PORT.

Because each driver method has a system call counterpart that applications use, we will 
look at the system calls and the matching driver methods in tandem.

Processor

South Bridge

North Bridge

CMOS

FIGURE 5.1 CMOS on a PC-compatible system.

Driver Initialization

The    driver  init() method is the bedrock of the registration mechanism. It’s respon-
sible for the following:

 • Requesting allocation of device major numbers.

 • Allocating memory for the per-device structure.

 • Connecting the entry points (open(), read(), and so on) with the char driver’s 
cdev abstraction.



 • Associating the device major number with the driver’s cdev.

 • Creating nodes under /dev and /sys. As discussed in Chapter 4, “Laying the 
Groundwork,” /dev management has meandered from static device nodes in the 
2.2 kernels, to dynamic names in 2.4, and further to a user-space policy daemon 
(udevd) in 2.6.

 • Initializing the hardware. This is not relevant for our simple CMOS.

Listing 5.1 implements the CMOS driver’s  init() method.

LISTING 5.1 CMOS Driver Initialization

#include <linux/fs.h>

#include <linux/cdev.h>

#define NUM_CMOS_BANKS          2

/* Per-device (per-bank) structure */

struct cmos_dev {

  unsigned short current_pointer; /* Current pointer within the

                                     bank */

  unsigned int size;              /* Size of the bank */

  int bank_number;                /* CMOS bank number */

  struct cdev cdev;               /* The cdev structure */

  char name[10];                  /* Name of I/O region */

  /* ... */                       /* Mutexes, spinlocks, wait 

                                     queues, .. */

} *cmos_devp[NUM_CMOS_BANKS];

/* File operations structure. Defined in linux/fs.h */

static struct file_operations cmos_fops = {

  .owner    =   THIS_MODULE,      /* Owner */

  .open     =   cmos_open,        /* Open method */

  .release  =   cmos_release,     /* Release method */

  .read     =   cmos_read,        /* Read method */

  .write    =   cmos_write,       /* Write method */

  .llseek   =   cmos_llseek,      /* Seek method */

  .ioctl    =   cmos_ioctl,       /* Ioctl method */

};

static dev_t cmos_dev_number;   /* Allotted device number */

struct class *cmos_class;       /* Tie with the device model */

#define CMOS_BANK_SIZE          (0xFF*8)

#define DEVICE_NAME           "cmos"
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#define CMOS_BANK0_INDEX_PORT   0x70

#define CMOS_BANK0_DATA_PORT    0x71

#define CMOS_BANK1_INDEX_PORT   0x72

#define CMOS_BANK1_DATA_PORT    0x73

unsigned char addrports[NUM_CMOS_BANKS] = {CMOS_BANK0_INDEX_PORT, 

                                           CMOS_BANK1_INDEX_PORT,};

unsigned char dataports[NUM_CMOS_BANKS] = {CMOS_BANK0_DATA_PORT, 

                                           CMOS_BANK1_DATA_PORT,};

/*

 * Driver Initialization

 */

int __init 

cmos_init(void)

{

  int i, ret;

  /* Request dynamic allocation of a device major number */

  if (alloc_chrdev_region(&cmos_dev_number, 0, 

                          NUM_CMOS_BANKS, DEVICE_NAME) < 0) {

    printk(KERN_DEBUG "Can't register device\n"); return -1;

  }

  /* Populate sysfs entries */ 

  cmos_class = class_create(THIS_MODULE, DEVICE_NAME);

  for (i=0; i<NUM_CMOS_BANKS; i++) {

    /* Allocate memory for the per-device structure */

    cmos_devp[i] = kmalloc(sizeof(struct cmos_dev), GFP_KERNEL);

    if (!cmos_devp[i]) {

      printk("Bad Kmalloc\n"); return -ENOMEM;

    }

    /* Request I/O region */

    sprintf(cmos_devp[i]->name, "cmos%d", i);

    if (!(request_region(addrports[i], 2, cmos_devp[i]->name)) {

      printk("cmos: I/O port 0x%x is not free.\n", addrports[i]);

      return –EIO;

    }



    /* Fill in the bank number to correlate this device 

       with the corresponding CMOS bank */

    cmos_devp[i]->bank_number = i;

    /* Connect the file operations with the cdev */ 

    cdev_init(&cmos_devp[i]->cdev, &cmos_fops);

    cmos_devp[i]->cdev.owner = THIS_MODULE;

    /* Connect the major/minor number to the cdev */

    ret = cdev_add(&cmos_devp[i]->cdev, (cmos_dev_number + i), 1); 

    if (ret) {

      printk("Bad cdev\n"); 

      return ret;

    }

    /* Send uevents to udev, so it'll create /dev nodes */

    device_create(cmos_class, NULL, MKDEV(MAJOR(cmos_dev_number), i),

                  "cmos%d", i);

  }

  printk("CMOS Driver Initialized.\n");

  return 0;

}

/* Driver Exit */

void __exit

cmos_cleanup(void)

{

  int i;

  /* Release the major number */

  unregister_chrdev_region((cmos_dev_number), NUM_CMOS_BANKS);

  /* Release I/O region */

  for (i=0; i<NUM_CMOS_BANKS; i++) {

    device_destroy (cmos_class, MKDEV(MAJOR(cmos_dev_number), i));

    release_region(addrports[i], 2);

    cdev_del(&cmos_devp[i]->cdev);

    kfree(cmos_devp[i]);

  }
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  /* Destroy cmos_class */

  class_destroy(cmos_class);

  return();

}

module_init(cmos_init);

module_exit(cmos_cleanup);

Most steps performed by cmos_init() are generic, so if you remove references to 
CMOS data structures, you may use Listing 5.1 as a template to develop other char 
drivers, too. 

First, cmos_init() invokes  alloc_chrdev_region() to dynamically request an 
unused major number. cmos_dev_number contains the allotted device number if the 
call is successful. The second and third arguments to alloc_chrdev_region() spec-
ify the start minor number and the number of supported minor devices, respectively. 
The last argument is the device name used to identify the CMOS in /proc/devices:

bash> cat /proc/devices | grep cmos

253 cmos

253 is the dynamically allocated major number for the CMOS device. During pre-2.6 
days, dynamic device node allocation was not supported, so char drivers made calls to 
register_chrdev() to statically request specifi c major numbers.

Before proceeding further down the code path, let’s take a peek at the data struc-
tures used in Listing 5.1.  cmos_dev is the per-device data structure referred to earlier. 
cmos_fops is the file_operations structure that contains the address of driver 
entry points. cmos_fops also has a fi eld called owner that is set to THIS_MODULE, the 
address of the driver module in question. Knowing the identity of the structure owner 
enables the kernel to offl oad from the driver the burden of some housekeeping func-
tions such as tracking the use-count when processes open or release the device.

As you saw, the kernel uses an abstraction called cdev to internally represent char 
devices. Char drivers usually embed their cdev inside their per-device structure. In our 
example, cdev sits inside cmos_dev. cmos_init() loops over each supported minor 
device (CMOS bank in this case) allocating memory for the associated per-device 
structure and, hence, for the cdev structure living inside it. cdev_init() associates 
the fi le operations (cmos_fops) with the cdev, and cdev_add() connects the major/
minor numbers allocated by  alloc_chrdev_region() to the cdev.



class_create() populates a sysfs entry for this device, and device_

create() results in the generation of two uevents: cmos0 and cmos1. As you learned 
in Chapter 4, udevd listens to uevents and generates device nodes after consulting 
its rules database. Add the following to the udev rules directory (/etc/udev/rules.d/) to 
produce device nodes corresponding to the two CMOS banks (/dev/cmos/0 and /dev/
cmos/1) on receiving the respective uevents (cmos0 and cmos1):

KERNEL=="cmos[0-1]*", NAME="cmos/%n"

Device drivers that need to operate on a range of I/O addresses stake claim to the 
addresses via a call to  request_region(). This regulatory mechanism ensures that 
requests by others for the same region fail until the occupant releases it via a call to 
release_region(). request_region() is commonly invoked by I/O bus drivers 
such as PCI and ISA to mark ownership of on-card memory in the processor’s address 
space (more on this in Chapter 10, “Peripheral Component Interconnect”). cmos_
init() requests access to the I/O region of each CMOS bank by calling request_
region(). The last argument to request_region() is an identifi er used by /proc/
ioports, so you will see this if you peek at that fi le1:

bash>  grep cmos /proc/ioports

0070-0071  :  cmos0

0072-0073  :  cmos1

This completes the registration process, and cmos_init() prints out a message sig-
naling its happiness.

Open and Release

The         kernel invokes the driver’s open() method when an application opens the corre-
sponding device node. You can trigger execution of  cmos_open() by doing this:

bash> cat /dev/cmos/0

The kernel calls the release() method when an application closes an open device. So 
when cat closes the fi le descriptor attached to /dev/cmos/0 after reading the contents of 
CMOS bank 0, the kernel invokes  cmos_release().

Listing 5.2 shows the implementation of cmos_open() and cmos_release().
Let’s take a closer look at cmos_open(). There are a couple of things worthy of note 
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here. The fi rst is the extraction of cmos_dev. The inode passed as an argument to 
cmos_open() contains the address of the cdev structure allocated during initializa-
tion. As shown in Listing 5.1, cdev is embedded inside cmos_dev. To elicit the address 
of the container structure cmos_dev, cmos_open() uses the kernel helper function, 
container_of().

The other notable operation in cmos_open() is the usage of the private_data
fi eld that is part of struct file, the second argument. You can use this fi eld (file->
private_data) as a placeholder to conveniently correlate information from inside 
other driver methods. The CMOS driver uses this fi eld to store the address of cmos_
dev. Look at cmos_release() (and the rest of the methods) to see how private_
data is used to directly obtain a handle on the  cmos_dev structure belonging to the 
corresponding CMOS bank.

LISTING 5.2 Open and Release

/*

 * Open CMOS bank

 */

int

cmos_open(struct inode *inode, struct file *file)

{

  struct cmos_dev *cmos_devp;

  /* Get the per-device structure that contains this cdev */ 

  cmos_devp = container_of(inode->i_cdev, struct cmos_dev, cdev);

  /* Easy access to cmos_devp from rest of the entry points */

  file->private_data = cmos_devp; 

  /* Initialize some fields */

  cmos_devp->size    = CMOS_BANK_SIZE;

  cmos_devp->current_pointer = 0;

  return 0;

}

/*

 * Release CMOS bank

 */

int

cmos_release(struct inode *inode, struct file *file)



{

  struct cmos_dev *cmos_devp = file->private_data;

  /* Reset file pointer */

  cmos_devp->current_pointer = 0;

  return 0;

}

Exchanging Data

read()     and write() are the basic char driver methods responsible for exchanging data 
between user space and the device. The extended read()/write() family contains 
several other methods, too: fsync(), aio_read(), aio_write(), and mmap().

The CMOS driver operates on a simple memory device and does not have to work 
through some of the complexities faced by usual char drivers:

 • CMOS data access routines do not need to sleep-wait for device I/O to complete, 
whereas read() and write() methods belonging to many char drivers have to 
support both blocking and nonblocking modes of operation. Unless a device 
file is opened in the nonblocking (O_NONBLOCK) mode, read() and write()
are allowed to put the calling process to sleep until the corresponding operation 
completes.

 • CMOS driver operations complete synchronously and do not depend on inter-
rupts. However, data access methods belonging to many drivers depend on 
interrupts for data collection and have to communicate with interrupt context 
code via data structures such as wait queues.

Listing 5.3 contains the read()and write() methods belonging to the CMOS 
driver. You cannot directly access user buffers from kernel space and vice versa, so to 
copy CMOS memory contents to user space,   cmos_read() uses the services of copy_
to_user(). cmos_write() does the reverse using copy_from_user(). Because 
copy_to_user() and copy_from_user()may fall asleep on the job, you cannot 
hold spinlocks while calling them.

As you saw earlier, accessing CMOS memory is accomplished by operating on a 
pair of I/O addresses. To read different sizes of data from an I/O address, the ker-
nel provides a family of architecture-independent functions: in[b|w|l|sb|sl]().
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Similarly, a cluster of routines, out[b|w|l|sb|sl](), are available for writing to 
I/O regions. port_data_in() and port_data_out() in Listing 5.3 use inb() and 
oub() for data transfer. 

LISTING 5.3 Read and Write

/*

 * Read from a CMOS Bank at bit-level granularity

 */

ssize_t

cmos_read(struct file *file, char *buf, 

          size_t count, loff_t *ppos)

{

  struct cmos_dev *cmos_devp = file->private_data; 

  char data[CMOS_BANK_SIZE]; 

  unsigned char mask; 

  int xferred = 0, i = 0, l, zero_out; 

  int start_byte = cmos_devp->current_pointer/8; 

  int start_bit  = cmos_devp->current_pointer%8;

  if (cmos_devp->current_pointer >= cmos_devp->size) {

    return 0;  /*EOF*/

  }

  /* Adjust count if it edges past the end of the CMOS bank */

  if (cmos_devp->current_pointer + count > cmos_devp->size) {

    count = cmos_devp->size - cmos_devp->current_pointer;

  }

  /* Get the specified number of bits from the CMOS */

  while (xferred < count) {

    data[i] = port_data_in(start_byte, cmos_devp->bank_number) 

              >> start_bit;

    xferred += (8 - start_bit);

    if ((start_bit) && (count + start_bit > 8)) {

      data[i] |= (port_data_in (start_byte + 1, 

                  cmos_devp->bank_number) << (8 - start_bit));                    

      xferred += start_bit;

    }

    start_byte++;

    i++;

  }



  if (xferred > count) {

    /* Zero out (xferred-count) bits from the MSB 

       of the last data byte */

    zero_out = xferred - count;

    mask = 1 << (8 - zero_out);

    for (l=0; l < zero_out; l++) {

      data[i-1] &= ~mask; mask <<= 1;

    }

    xferred = count;

  }

  if (!xferred) return -EIO;

    

  /* Copy the read bits to the user buffer */

  if (copy_to_user(buf, (void *)data, ((xferred/8)+1)) != 0) {

    return -EIO;

  }

  /* Increment the file pointer by the number of xferred bits */

  cmos_devp->current_pointer += xferred;

  return xferred; /* Number of bits read */

}

/*

 * Write to a CMOS bank at bit-level granularity. 'count' holds the 

 * number of bits to be written.

 */

ssize_t

cmos_write(struct file *file, const char *buf, 

           size_t count, loff_t *ppos)

{

  struct cmos_dev *cmos_devp = file->private_data; 

  int xferred = 0, i = 0, l, end_l, start_l; 

  char *kbuf, tmp_kbuf; 

  unsigned char tmp_data = 0, mask; 

  int start_byte = cmos_devp->current_pointer/8; 

  int start_bit  = cmos_devp->current_pointer%8;

  if (cmos_devp->current_pointer >= cmos_devp->size) {

    return 0; /* EOF */

  }
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  /* Adjust count if it edges past the end of the CMOS bank */

  if (cmos_devp->current_pointer + count > cmos_devp->size) {

    count = cmos_devp->size - cmos_devp->current_pointer;

  }

    

  kbuf = kmalloc((count/8)+1,GFP_KERNEL);

  if (kbuf==NULL)

    return -ENOMEM;

  /* Get the bits from the user buffer */

  if (copy_from_user(kbuf,buf,(count/8)+1)) {

    kfree(kbuf);

    return -EFAULT;

  }

  /* Write the specified number of bits to the CMOS bank */

  while (xferred < count) {

    tmp_data = port_data_in(start_byte, cmos_devp->bank_number);

    mask = 1 << start_bit;

    end_l = 8;

    if ((count-xferred) < (8 - start_bit)) {

      end_l = (count - xferred) + start_bit;

    }

    

    for (l = start_bit; l < end_l; l++) {

      tmp_data &= ~mask; mask <<= 1;

    }

    tmp_kbuf = kbuf[i];

    mask = 1 << end_l;

    for (l = end_l; l < 8; l++) {

      tmp_kbuf &= ~mask;

      mask <<= 1;

    }

    port_data_out(start_byte, 

                  tmp_data |(tmp_kbuf << start_bit), 

                  cmos_devp->bank_number);

    xferred += (end_l - start_bit);

    if ((xferred < count) && (start_bit) && 

        (count + start_bit > 8)) {

      tmp_data = port_data_in(start_byte+1, 

                              cmos_devp->bank_number); 



      start_l = ((start_bit + count)  % 8); 

      mask = 1 << start_l;

      for (l=0; l < start_l; l++) {

        mask >>= 1;

        tmp_data &= ~mask;

      }

      port_data_out((start_byte+1),

                    tmp_data |(kbuf[i] >> (8 - start_bit)),

                    cmos_devp->bank_number);

      xferred += start_l;

    }

    start_byte++;

    i++;

  }

  if (!xferred) return -EIO;

  /* Push the offset pointer forward */

  cmos_devp->current_pointer += xferred;

  return xferred; /* Return the number of written bits */

}

/*

 * Read data from specified CMOS bank

 */

unsigned char

port_data_in(unsigned char offset, int bank)

{

  unsigned char data;

  if (unlikely(bank >= NUM_CMOS_BANKS)) {

    printk("Unknown CMOS Bank\n");

    return 0;

  } else {

    outb(offset, addrports[bank]);  /* Read a byte */

    data = inb(dataports[bank]);

  }

  return data;

}

Device Example: System CMOS 133



134 Chapter 5 Character Drivers

/*

 * Write data to specified CMOS bank

 */

void

port_data_out(unsigned char offset, unsigned char data,

          int bank)

{

  if (unlikely(bank >= NUM_CMOS_BANKS)) {

    printk("Unknown CMOS Bank\n");

    return;

  } else {

    outb(offset, addrports[bank]); /* Output a byte */

    outb(data, dataports[bank]);

  }

  return;

}

If a char driver’s write() method returns successfully, it implies that the driver has 
assumed responsibility for the data passed down to it by the application. However it 
does not guarantee that the data has been successfully written to the device. If an appli-
cation needs this assurance, it can invoke the  fsync()system call. The corresponding 
fsync() driver method ensures that application data is fl ushed from driver buffers 
and written to the device. The CMOS driver does not need an fsync() method 
because, in this case, driver-writes are synonymous with device-writes.

If a user application has data sitting on multiple buffers that it needs to send to a 
device, it can request multiple driver writes, but that is ineffi cient for the following 
reasons:

 1. The overhead of multiple system calls and related context switches.

 2. The driver is the one who knows the device intimately, so it can probably do a 
more clever job of efficiently gathering data from different buffers and dispatch-
ing it to the device.

Because of this, vectored versions of read() and write() are supported on Linux 
and other UNIX fl avors. The Linux char driver infrastructure used to offer two dedi-
cated methods to perform vector operations:   readv() and writev(). Starting with 
the 2.6.19 kernel release, these two methods have been folded into the generic    Linux 



Asynchronous I/O (AIO) layer, however. Linux AIO is a broad topic and is outside the 
scope of this discussion, so we just concentrate on the synchronous vector capabilities 
offered by AIO.

The prototypes of the vector driver methods are as follows:

 ssize_t aio_read(struct kiocb *iocb, const struct iovec *vector, 

                 unsigned long count, loff_t offset); 

 ssize_t aio_write(struct kiocb *iocb, const struct iovec *vector, 

                  unsigned long count, loff_t offset);

The fi rst argument to   aio_read()/aio_write() describes the AIO operation, and 
the second argument is an array of iovecs. The latter is the principal data structure 
used by the vector functions and contains the addresses and lengths of buffers that hold 
the data. In fact, this mechanism is the user space equivalent of scatter-gather DMA 
discussed in Chapter 10. Look at include/linux/uio.h for the defi nition of iovecs and 
at drivers/net/tun.c21 for an example implementation of vectored char driver methods.

Another data access method is mmap(), which associates device memory with 
user virtual memory. Applications may call the corresponding system call, also called 
mmap(), and directly operate on the returned memory region to access device- resident 
memory. Not many drivers implement mmap(), so we won’t delve into that here. 
Instead, have a look at drivers/char/mem.c for an example mmap() implementation. 
The section “Accessing Memory Regions” in Chapter 19, “Drivers in User Space,” 
illustrates how applications use mmap(). Our example CMOS driver does not imple-
ment mmap().

You might have noticed that  port_data_in() and port_data_out() envelop 
the bank number sanity check within a macro called     unlikely(). Two macros, 
likely() and unlikely(), inform GCC about the probability of success of the 
associated conditional evaluation. This information is used by GCC while predict-
ing branches. Because we mark it unlikely that the bank sanity check will fail, GCC 
generates intelligent code that gels the else{} clause sequentially with the code fl ow. 
Branching is done for the if{} clause. The reverse happens if you use likely()
rather than unlikely().

2 Discussed in the sidebar “TUN/TAP Driver” in Chapter 15, “Network Interface Cards.”

Device Example: System CMOS 135



136 Chapter 5 Character Drivers

Seek

The       kernel uses an internal pointer to keep track of the current fi le access position. 
Applications use the   lseek() system call to request repositioning of this internal fi le 
pointer. Using the services of lseek(), you can reset the fi le pointer to any offset 
within the fi le. The char driver counterpart of lseek() is the llseek() method. 
cmos_llseek() implements this method in the CMOS driver.

As we saw previously, the internal fi le pointer for the CMOS moves bit-wise rather 
than byte-wise. If a byte of data is read from the CMOS driver, the fi le pointer has to 
be moved by 8, so applications have to seek accordingly. cmos_llseek() also imple-
ments end-of-fi le semantics depending on the size of the CMOS bank.

To understand the semantics of llseek(), let’s start by looking at the commands 
supported by the lseek() system call:

 1.       SEEK_SET, which sets the file pointer to a supplied fixed offset.

 2. SEEK_CUR, which calculates the offset relative to the current location. 

 3. SEEK_END, which calculates the offset relative to the end-of-file. This command 
can maneuver the file pointer beyond the end of the file, but does not change 
the file size. Reads beyond the end-of-file marker return naught if no data is 
explicitly written. This technique is often used to create big files. The CMOS 
driver does not support SEEK_END.

Look at cmos_llseek() in Listing 5.4 and co-relate with the preceding defi nitions.

LISTING 5.4 Seek

/*

 * Seek to a bit offset within a CMOS bank

 */

static loff_t 

cmos_llseek(struct file *file, loff_t offset, 

            int orig)

{

  struct cmos_dev *cmos_devp = file->private_data; 

  switch (orig) {

    case 0: /* SEEK_SET */

      if (offset >= cmos_devp->size) {

        return -EINVAL;

      }



      cmos_devp->current_pointer = offset; /* Bit Offset */

      break;

    case 1:  /* SEEK_CURR */

      if ((cmos_devp->current_pointer + offset) >= 

           cmos_devp->size) {

        return -EINVAL;

      }

      cmos_devp->current_pointer = offset; /* Bit Offset */

      break;

    case 2: /* SEEK_END - Not supported */

      return -EINVAL;

    default:

      return -EINVAL;

  }

  return(cmos_devp->current_pointer);

}

Control

Another    common char driver method is called I/O Control (or ioctl). This routine 
is used to receive and implement application commands that request device-specifi c 
actions. Because CMOS memory is used by the BIOS to store crucial information such 
as the boot device order, it’s usually protected via cyclic redundancy check (CRC) algo-
rithms. To detect data corruption, the CMOS driver supports two ioctl commands:

 1. Adjust checksum,   which is used to recalculate the CRC after the CMOS contents 
have been modified. The calculated checksum is stored at a predetermined off-
set in CMOS bank 1.

 2. Verify checksum, which is used to check whether the CMOS contents are healthy. 
This is done by comparing the CRC of the current contents with the value pre-
viously stored.

Applications send these commands down to the driver via the   ioctl() system call 
when they want to request it to perform checksum operations. Look at cmos_ioctl()
in Listing 5.5 for the implementation of the CMOS driver’s ioctl method. adjust_
cmos_crc(int bank, unsigned short seed) implements the standard CRC algo-
rithm and is not shown in the listing.
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LISTING 5.5  I/O Control

#define CMOS_ADJUST_CHECKSUM   1

#define CMOS_VERIFY_CHECKSUM   2

#define CMOS_BANK1_CRC_OFFSET  0x1E

/*

 * Ioctls to adjust and verify CRC16s.

 */

static int 

cmos_ioctl(struct inode *inode, struct file *file, 

           unsigned int cmd, unsigned long arg)

{

  unsigned short crc = 0;

  unsigned char buf;

  switch (cmd) {

    case CMOS_ADJUST_CHECKSUM:

      /* Calculate the CRC of bank0 using a seed of 0 */

      crc = adjust_cmos_crc(0, 0);

      /* Seed bank1 with CRC of bank0 */

      crc = adjust_cmos_crc(1, crc); 

      /* Store calculated CRC */

      port_data_out(CMOS_BANK1_CRC_OFFSET, 

                    (unsigned char)(crc & 0xFF), 1);

      port_data_out((CMOS_BANK1_CRC_OFFSET + 1), 

                    (unsigned char) (crc >> 8), 1);

      break;

    case CMOS_VERIFY_CHECKSUM:

     /* Calculate the CRC of bank0 using a seed of 0 */

      crc = adjust_cmos_crc(0, 0);

      /* Seed bank1 with CRC of bank0 */

      crc = adjust_cmos_crc(1, crc); 

      /* Compare the calculated CRC with the stored CRC */ 

      buf = port_data_in(CMOS_BANK1_CRC_OFFSET, 1); 

      if (buf != (unsigned char) (crc & 0xFF)) return -EINVAL;

      buf = port_data_in((CMOS_BANK1_CRC_OFFSET+1), 1); 

      if (buf != (unsigned char)(crc >> 8)) return -EINVAL;

      break;



    default:

      return -EIO;

  }

  return 0;

}

Sensing Data Availability

Many    user applications are sophisticated and are not satisfi ed with the vintage open()/
read()/write()/close() calls. They desire synchronous or asynchronous notifi ca-
tions that alert them when new data is available from the device or when the driver 
is ready to accept new data. In this section, we examine two char driver methods that 
sense data availability: poll() and fasync(). The former is synchronous, whereas 
the latter is asynchronous. Because these mechanisms are relatively advanced, let’s fi rst 
understand how applications use these features before fi nding out how the underlying 
driver implements them. Sensing data availability is not relevant for the simple CMOS 
memory device discussed previously, so let’s take a few usage scenarios from a popular 
user-space application: the X Windows server.

Poll

Consider     the following code snippet from the X Windows source tree (downloadable 
from www.xfree86.org) that handles mice events:

xc/programs/Xserver/hw/xfree86/input/mouse/mouse.c:

case PROT_THINKING:           /* ThinkingMouse */

  /* This mouse may send a PnP ID string, ignore it. */

  usleep(200000); xf86FlushInput(pInfo->fd);

  /* Send the command to initialize the beast. */

  for (s = "E5E5"; *s; ++s) {

    xf86WriteSerial(pInfo->fd, s, 1); 

    if ((xf86WaitForInput(pInfo->fd, 1000000) <= 0))

    break; 

    xf86ReadSerial(pInfo->fd, &c, 1); 

    if (c != *s) break;

  }

  break;
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Essentially, the code sends an initialization command to the mouse, polls until it 
senses input data, and reads the response from the device. If you peel the envelope 
off   Xf86WaitForInput() used previously, you will fi nd a call to the  select()
system call:

xc/programs/Xserver/hw/xfree86/os-support/shared/posix_tty.c:

int

xf86WaitForInput(int fd, int timeout)

{

  fd_set readfds;

  struct timeval to;

  int r;

  FD_ZERO(&readfds);

  if (fd >= 0) {

    FD_SET(fd, &readfds);

  }

  to.tv_sec  = timeout / 1000000;

  to.tv_usec = timeout % 1000000;

  if (fd >= 0) {

    SYSCALL (r = select(FD_SETSIZE, &readfds, NULL, NULL, &to));

  } else {

    SYSCALL (r = select(FD_SETSIZE, NULL, NULL, NULL, &to));

  }

  if (xf86Verbose >= 9)

    ErrorF ("select returned %d\n", r); 

  return (r);

}

You may supply a bunch of fi le descriptors to select() and ask it to keep an eye on 
them until there is a change in the associated data state. You may also request a time-
out to override data availability. If you ask for a timeout of NULL, select() blocks 
forever. Refer to the man or info pages of select() for detailed documentation. The 
call to select() in the preceding snippet induces the X server to poll for data from a 
connected mouse within a timeout.



Linux supports another system call, poll(), which has semantics similar to select().
The 2.6 kernel supports a new non-POSIX system call named  epoll() that is a more 
scalable superset of poll(). All these system calls rely on the same underlying char driver 
method, poll().

Most I/O system calls are POSIX-compliant and are not Linux-specifi c (programs 
such as X Windows after all, run on many UNIX fl avors, not just on Linux), but the 
internal driver methods are specifi c to the operating system. On Linux, the poll()
driver method is the pillar under the select() system call. In the previous X server 
scenario, the mouse driver’s   poll() method looks like this:

static DECLARE_WAIT_QUEUE_HEAD(mouse_wait); /* Wait Queue */

static unsigned int 

mouse_poll(struct file *file, poll_table *wait)

{

  poll_wait(file, &mouse_wait, wait);

  spin_lock_irq(&mouse_lock);

  /* See if data has arrived from the device or 

     if the device is ready to accept more data */

  /* ... */

  spin_unlock_irq(&mouse_lock);

  /* Availability of data is detected from interrupt context */

  if (data_is_available()) return(POLLIN | POLLRDNORM);

  /* Data can be written. Not relevant for mice */ 

  if (data_can_be_written()) return(POLLOUT | POLLWRNORM);

  return 0;

}

When Xf86WaitForInput() invokes select(), the generic kernel poll implementa-
tion (defi ned in fs/select.c) calls mouse_poll(). mouse_poll() takes two arguments, 
the usual fi le pointer (struct file *) and a pointer to a kernel data structure called 
the poll_table. The  poll_table is a table of wait queues owned by device drivers 
that are being polled for data.
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mouse_poll() uses the library function,  poll_wait(), to add a wait queue 
(mouse_wait) to the kernel poll_table and go to sleep. As you saw in Chapter 3, 
“Kernel Facilities,” device drivers usually own several wait queues that block until they 
detect a change in a data condition. This condition can be the arrival of new data from 
the device, willingness of the driver to pass new data to the application, or the readiness 
of the device (or the driver) to accept new data. Such conditions are usually (but not 
always) detected by the driver’s interrupt handler. When the mouse driver’s interrupt 
handler senses mouse movement, it calls  wake_up_interruptible(&mouse_wait)
to wake up the sleeping mouse_poll().

If there is no change in the data condition, the poll()method returns 0.
If the driver is ready to send at least one byte of data to the application, it returns 
POLLIN|POLLRDNORM. If the driver is ready to accept at least a byte of data from 
the application, it returns POLLOUT|POLLWRNORM.32Thus, if there is no mouse move-
ment, mouse_poll() returns 0, and the calling thread is put to sleep. The kernel 
invokes mouse_poll() again when the mouse interrupt handler senses device data 
and wakes up the mouse_wait queue. This time around, mouse_poll() returns 
POLLIN|POLLRDNORM, so the select() call and hence Xf86WaitForInput() return 
positive values. The X server’s mouse handler (xc/programs/Xserver/hw/xfree86/input/
mouse/mouse.c) goes on to read data from the mouse.

User applications that poll a driver are usually more interested in driver characteristics 
than device characteristics. For example, depending on the health of its buffers, a driver 
might be ready to accept new data from the application before the device itself is.

Fasync

Some     applications, for performance reasons, desire asynchronous notifi cations from 
the device driver. Assume that an application on a Linux pacemaker programmer 
device is busy performing complex computations but wants to be notifi ed as soon as 
data arrives from an implanted pacemaker via a telemetry interface. The select()/
poll() mechanism is not of use in this case because it blocks the computations. What 

3 The full list of return codes is defi ned in include/asm-generic/poll.h. Some of them are used only by the networking stack.



the application needs is an asynchronous event report. If the telemetry driver can asyn-
chronously dispatch a signal (usually SIGIO) as soon as it detects data from the pace-
maker, the application can catch it using a signal handler and accordingly steer the 
code fl ow.

For a real-world example of asynchronous notifi cation, let’s revert to a region of the 
X server that requests alerts when data is detected from input devices. Take a look at 
this snippet from the X server sources: 

xc/programs/Xserver/hw/xfree86/os-support/shared/sigio.c:

int xf86InstallSIGIOHandler(int fd, void (*f)(int, void *), 

                            void *closure)

{

  struct sigaction sa;

  struct sigaction osa;

     

  if (fcntl(fd, F_SETOWN, getpid()) == -1) {

    blocked = xf86BlockSIGIO();

   /* O_ASYNC is defined as SIGIO elsewhere by the X server */

   if (fcntl(fd, F_SETFL, fcntl(fd, F_GETFL) | O_ASYNC) == -1) {

     xf86UnblockSIGIO(blocked); return 0;

   }

   sigemptyset(&sa.sa_mask);

   sigaddset(&sa.sa_mask, SIGIO);

   sa.sa_flags   = 0;

   sa.sa_handler = xf86SIGIO;

   sigaction(SIGIO, &sa, &osa);

   /* ... */

   return 0;

}

static void

xf86SIGIO(int sig)

{

  /* Identify the device that triggered generation of this 

     SIGIO and handle the data arriving from it */

  /* ... */

}
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As you can decipher from the above snippet, the X server does the following:

 • Calls fcntl(F_SETOWN). The  fcntl() system call is used to manipulate file 
descriptor behavior. F_SETOWN sets the ownership of the descriptor to the call-
ing process. This is required since the kernel needs to know where to send the 
asynchronous signal. This step is transparent to the device driver.

 • Invokes fcntl(F_SETFL). F_SETFL requests the driver to deliver SIGIO to 
the application whenever there is data to be read, or if the driver is ready to 
receive more application data. The invocation of fcntl(F_SETFL) results in 
the invocation of the fasync() driver method. It’s this method’s responsibil-
ity to add or remove entries from the list of processes that are to be delivered 
SIGIO. To this end, fasync() utilizes the services of a kernel library function 
called fasync_helper().

 • Implements the SIGIO signal handler,  xf86SIGIO(), as per its code architec-
ture and installs it using the  sigaction() system call. When the underlying 
input device driver detects a change in data status, it dispatches SIGIO to regis-
tered requesters and this triggers execution of xf86SIGIO().43 Char drivers call 
kill_fasync() to send SIGIO to registered processes. To notify a read event, 
POLLIN is passed as the argument to kill_fasync(). To notify a write event, 
the argument is POLLOUT.

To see how the driver-side of the asynchronous notifi cation chain is implemented, let’s 
look at a fi ctitious fasync()method belonging to the driver of an input device:

/* This is invoked by the kernel when the X server opens this

 * input device and issues fcntl(F_SETFL) on the associated file

 * descriptor. fasync_helper() ensures that if the driver issues a 

 * kill_fasync(), a SIGIO is dispatched to the owning application.

 */

static int 

inputdevice_fasync(int fd, struct file *filp, int on)

{

  return fasync_helper(fd, filp, on, &inputdevice_async_queue);

}

4 If your signal handler services asynchronous events from multiple devices, you will need additional mechanisms, such as a 
select() call inside the handler, to fi gure out the identity of the device responsible for the event.



/* Interrupt Handler */

irqreturn_t

inputdevice_interrupt(int irq, void *dev_id)

{

  /* ... */

  /* Dispatch a SIGIO using kill_fasync() when input data is 

     detected. Output data is not relevant since this is a read-only 

     device */

  wake_up_interruptible(&inputdevice_wait); 

  kill_fasync(&inputdevice_async_queue, SIGIO, POLL_IN);

  /* ... */

  return IRQ_HANDLED;

}

To see how SIGIO delivery can be complex, consider the case of a tty driver (discussed 
in Chapter 6, “Serial Drivers”). Interested applications get notifi ed under different 
scenarios:

 • If the underlying driver is not ready to accept application data, it puts the call-
ing process to sleep. When the driver interrupt handler subsequently decides 
that the device can accept more data, it wakes the application and invokes 
kill_fasync(POLLOUT).

 • If a newline character is received, the tty layer calls kill_fasync(POLLIN).

 • When the driver wakes up a sleeping reader thread after detecting that suffi cient 
data bytes beyond a threshold have arrived from a device, it sends that informa-
tion to stakeholder processes by invoking kill_fasync(POLLIN).

Talking to the Parallel Port

The    parallel port is a ubiquitous 25-pin interface popularly found on PC-compatible 
systems. The capability of a parallel port (whether it’s unidirectional, bidirectional, 
supports DMA, and so on) depends on the underlying chipset. Look at Figure 4.1 in 
Chapter 4 to fi nd out how the PC architecture supports parallel ports.

The drivers/parport/ directory contains code (called  parport) that implements IEEE 
1284 parallel port communication. Several devices that connect to the parallel port such 
as printers and scanners use parport’s services. Parport has an architecture- independent 
module called parport.ko and an architecture-dependent one (parport_pc.ko for the PC 
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architecture) that provide programming interfaces to drivers of devices that interface 
via the parallel port.

Let’s take the example of the  parallel printer driver, drivers/char/ lp.c. These are the 
high-level steps needed to print a fi le:

 1. The printer driver creates char device nodes /dev/lp0 to /dev/lpN, one per con-
nected printer.

 2. The   Common UNIX Printing System (CUPS) is the framework that provides 
print capabilities on Linux. The CUPS configuration file (/etc/printers.conf on 
some distributions) maps printers with their char device nodes (/dev/lpX).

 3. CUPS utilities consult this file and stream data to the corresponding device 
node. So, if you have a printer connected to the first parallel port on your sys-
tem and you issue the command, lpr myfile, it’s streamed via /dev/lp0 to the 
printer’s write() method, lp_write(), defined in drivers/char/lp.c.

 4.  lp_write() uses the services of parport to send the data to the printer.

Apple Inc. has acquired ownership of CUPS software. The code continues to be licensed 
under GPLv2.

A char driver called  ppdev (drivers/char/ppdev.c) exports the /dev/parportX device nodes 
that let user applications directly communicate with the parallel port. (We talk more 
about ppdev in Chapter 19.)

Device Example: Parallel Port LED Board

To learn     how to use the services offered by parport, let’s write a simple driver. Consider 
a board that has eight light-emitting diodes (LEDs) interfaced to a standard 25-pin par-
allel port connector. Because the 8-bit parallel port data register on the PC is directly 
mapped to pins 2 to 9 of the parallel port connector, those pins are wired to the LEDs 
on the board. Writing to the parallel port data register controls the voltage levels of 
these pins and turns the LEDs on or off. Listing 5.6 implements a char driver that 
communicates with this board over the system parallel port. Embedded comments 
explain the parport service routines that Listing 5.6 uses.



LISTING 5.6 Driver for the Parallel LED Board (     led.c)

#include <linux/fs.h>

#include <linux/cdev.h>

#include <linux/parport.h>

#include <asm/uaccess.h>

#include <linux/platform_device.h>

#define DEVICE_NAME "led"

static dev_t dev_number;          /* Allotted device number */

static struct class *led_class;   /* Class to which this device 

                                     belongs */

struct cdev led_cdev;             /* Associated cdev */

struct pardevice *pdev;           /* Parallel port device */

/* LED open */

int

led_open(struct inode *inode, struct file *file)

{

  return 0;

}

/* Write to the LED */

ssize_t

led_write(struct file *file, const char *buf, 

   size_t count, loff_t *ppos)

{

  char kbuf;

  if (copy_from_user(&kbuf, buf, 1)) return -EFAULT;

  /* Claim the port */

  parport_claim_or_block(pdev);

  /* Write to the device */

  parport_write_data(pdev->port, kbuf);

  /* Release the port */

  parport_release(pdev);

  return count;

}
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/* Release the device */

int

led_release(struct inode *inode, struct file *file)

{

  return 0;

}

/* File Operations */

static struct file_operations led_fops = {

  .owner   = THIS_MODULE,

  .open    = led_open,

  .write   = led_write,

  .release = led_release,

};

static int 

led_preempt(void *handle)

{

  return 1;

}

/* Parport attach method */

static void 

led_attach(struct parport *port)

{

  /* Register the parallel LED device with parport */

  pdev = parport_register_device(port, DEVICE_NAME, 

                                 led_preempt, NULL, 

                                 NULL, 0, NULL);

  if (pdev == NULL) printk("Bad register\n");

}

/* Parport detach method */

static void 

led_detach(struct parport *port)

{

  /* Do nothing */

}

/* Parport driver operations */

static struct parport_driver led_driver = {

  .name   = "led",

  .attach = led_attach,

  .detach = led_detach,

};



/* Driver Initialization */

int __init 

led_init(void)

{

  /* Request dynamic allocation of a device major number */

  if (alloc_chrdev_region(&dev_number, 0, 1, DEVICE_NAME) 

                          < 0) {

    printk(KERN_DEBUG "Can't register device\n");

    return -1;

  }

  /* Create the led class */

  led_class = class_create(THIS_MODULE, DEVICE_NAME);

  if (IS_ERR(led_class)) printk("Bad class create\n");

  /* Connect the file operations with the cdev */

  cdev_init(&led_cdev, &led_fops);

  led_cdev.owner = THIS_MODULE;

  /* Connect the major/minor number to the cdev */

  if (cdev_add(&led_cdev, dev_number, 1)) {

    printk("Bad cdev add\n");

    return 1;

  }

  class_device_create(led_class, NULL, dev_number,

                                 NULL, DEVICE_NAME);

  /* Register this driver with parport */

  if (parport_register_driver(&led_driver)) {

    printk(KERN_ERR "Bad Parport Register\n");

    return -EIO;

  }

  printk("LED Driver Initialized.\n");

  return 0;

}

/* Driver Exit */

void __exit

led_cleanup(void)

{
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  unregister_chrdev_region(dev_number, 1);

  class_device_destroy(led_class,dev_number);

  class_destroy(led_class);

  return;

}

module_init(led_init);

module_exit(led_cleanup);

MODULE_LICENSE("GPL");

led_init() is similar to cmos_init() developed in Listing 5.1, but for a couple 
of things:

 1. As you saw in Chapter 4, the new device model distinguishes between drivers and 
devices. led_init() registers the LED driver with parport via a call to   parport_
register_driver().When the kernel finds the LED board during led_
attach(), it registers the device by invoking  parport_register_device().

 2. led_init() creates the device node /dev/led, which you can use to control the 
state of individual LEDs.

Compile and insert the driver module into the kernel:

bash> make –C /path/to/kerneltree/ M=$PWD modules

bash> insmod ./led.ko

LED Driver Initialized

To selectively drive some parallel port pins and glow the corresponding LEDs, echo 
the appropriate value to /dev/led:

bash> echo 1 > /dev/led

Because ASCII for 1 is 31 (or 00110001), the first, fifth, and sixth LEDs should 
turn on.

The preceding command triggers invocation of  led_write(). This driver method 
fi rst copies user memory (the value 31 in this case) to kernel buffers via  copy_from_
user(). It then claims the parallel port, writes data, and releases the port, all using 
parport interfaces.

Sysfs is a better place than /dev to control device state, so it’s a good idea to entrust 
LED control to sysfs fi les. Listing 5.7 contains the driver implementation that achieves 



this. The sysfs manipulation code in the listing can serve as a template to achieve 
device control from other drivers, too.

LISTING 5.7 Using     Sysfs to Control the Parallel LED Board

#include <linux/fs.h>

#include <linux/cdev.h>

#include <linux/parport.h>

#include <asm/uaccess.h>

#include <linux/pci.h>

static dev_t dev_number;         /* Allotted Device Number */

static struct class *led_class;  /* Class Device Model */

struct cdev led_cdev;            /* Character dev struct */

struct pardevice *pdev;          /* Parallel Port device */

struct kobject kobj;             /* Sysfs directory object */

/* Sysfs attribute of the leds */

struct led_attr {

  struct attribute attr;

  ssize_t (*show)(char *);

  ssize_t (*store)(const char *, size_t count);

};

#define glow_show_led(number)                             \

static ssize_t                                            \

glow_led_##number(const char *buffer, size_t count)       \

{                                                         \

  unsigned char buf;                                      \

  int value;                                              \

                                                          \

  sscanf(buffer, "%d", &value);                           \

                                                          \

  parport_claim_or_block(pdev);                           \

  buf = parport_read_data(pdev->port);                    \

  if (value) {                                            \

    parport_write_data(pdev->port, buf | (1<<number));    \

  } else {                                                \

    parport_write_data(pdev->port, buf & ~(1<<number));   \

  }                                                       \

  parport_release(pdev);                                  \

  return count;                                           \

}                                                         \
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                                                          \

static ssize_t                                            \

show_led_##number(char *buffer)                           \

{                                                         \

  unsigned char buf;                                      \

                                                          \

  parport_claim_or_block(pdev);                           \

                                                          \

  buf = parport_read_data(pdev->port);                    \

  parport_release(pdev);                                  \

                                                          \

  if (buf & (1 << number)) {                              \

    return sprintf(buffer, "ON\n");                       \

  } else {                                                \

    return sprintf(buffer, "OFF\n");                      \

  }                                                       \

}                                                         \

                                                          \

static struct led_attr led##number =                      \

__ATTR(led##number, 0644, show_led_##number, glow_led_##number);

glow_show_led(0); glow_show_led(1); glow_show_led(2);

glow_show_led(3); glow_show_led(4); glow_show_led(5);

glow_show_led(6); glow_show_led(7);

#define DEVICE_NAME    "led"

static int 

led_preempt(void *handle)

{

  return 1;

}

/* Parport attach method */

static void 

led_attach(struct parport *port)

{

  pdev = parport_register_device(port, DEVICE_NAME, 

             led_preempt, NULL, NULL, 0,

             NULL);

  if (pdev == NULL) printk("Bad register\n");

}



/* Parent sysfs show() method. Calls the show() method 

   corresponding to the individual sysfs file */

static ssize_t 

l_show(struct kobject *kobj, struct attribute *a, char *buf)

{

  int ret;

  struct led_attr *lattr = container_of(a, struct led_attr,attr);

  ret = lattr->show ? lattr->show(buf) : -EIO;

  return ret;

}

/* Sysfs store() method. Calls the store() method 

   corresponding to the individual sysfs file */

static ssize_t 

l_store(struct kobject *kobj, struct attribute *a, 

        const char *buf, size_t count)

{

  int ret;

  struct led_attr *lattr = container_of(a, struct led_attr, attr);

  ret = lattr->store ? lattr->store(buf, count) : -EIO;

  return ret;

}

/* Sysfs operations structure */

static struct sysfs_ops sysfs_ops = {

  .show  = l_show,

  .store = l_store,

};

/* Attributes of the /sys/class/pardevice/led/control/ kobject.

   Each file in this directory corresponds to one LED. Control

   each LED by writing or reading the associated sysfs file */

static struct attribute *led_attrs[] = {

  &led0.attr,

  &led1.attr,

  &led2.attr,

  &led3.attr,

  &led4.attr,

  &led5.attr,

  &led6.attr,

  &led7.attr,
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  NULL

};

/* This describes the kobject. The kobject has 8 files, one 

   corresponding to each LED. This representation is called the 

ktype of the kobject */

static struct kobj_type ktype_led = {

  .sysfs_ops   = &sysfs_ops,

  .default_attrs = led_attrs,

};

/* Parport methods. We don't have a detach method */

static struct parport_driver led_driver = {

  .name   = "led",

  .attach = led_attach,

};

/* Driver Initialization */ 

int __init 

led_init(void)

{

  struct class_device *c_d;

  if (alloc_chrdev_region (&dev_number, 0, 1, DEVICE_NAME)

   < 0) {

    printk(KERN_DEBUG "Can’t register new device\n");

    return -1;

  }

  /* Create the pardevice class - /sys/class/pardevice */

  led_class = class_create(THIS_MODULE, "pardevice");

  if (IS_ERR(led_class)) printk("Bad class create\n");

  /* Create the led class device - /sys/class/pardevice/led/ */

  c_d = class_device_create(led_class, NULL, dev_number,

                NULL, DEVICE_NAME);

  /* Register this driver with parport */

  if (parport_register_driver(&led_driver)) {

    printk(KERN_ERR "Bad Parport Register\n");

    return -EIO;

  }

  /* Instantiate a kobject to control each LED 

     on the board */

  /* Parent is /sys/class/pardevice/led/ */

  kobj.parent = &c_d->kobj;



  /* The sysfs file corresponding to kobj is 

/sys/class/pardevice/led/control/ */

  strlcpy(kobj.name, "control", KOBJ_NAME_LEN);

  /* Description of the kobject. Specifies the list of attribute 

     files in /sys/class/pardevice/led/control/ */

  kobj.ktype = &ktype_led;

  /* Register the kobject */

  kobject_register(&kobj);

  printk("LED Driver Initialized.\n");

  return 0;

}

/* Driver Exit */

void

led_cleanup(void)

{

  /* Unregister kobject corresponding to 

/sys/class/pardevice/led/control */

  kobject_unregister(&kobj); 

  /* Destroy class device corresponding to 

/sys/class/pardevice/led/ */

  class_device_destroy(led_class, dev_number);

  /* Destroy /sys/class/pardevice */

  class_destroy(led_class);

  return;

}

module_init(led_init);

module_exit(led_cleanup);

MODULE_LICENSE("GPL");

The macro defi nition of  glow_show_led() in Listing 5.7 uses a technique popular 
in kernel source fi les to compactly defi ne several similar functions. The defi nition pro-
duces read() and write() methods (called show() and store() in sysfs terminol-
ogy) attached to eight /sys fi les, one per LED on the board. Thus, glow_show_led(0)
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attaches glow_led_0() and show_led_0() to the /sys fi le corresponding to the fi rst 
LED. These functions are respectively responsible for glowing/extinguishing the fi rst 
LED and reading its status. ## glues a value to a string, so glow_led_##number translates 
to glow_led_0() when the compiler processes the statement,  glow_show_led(0).

This sysfs-aware version of the driver uses a kobject to represent a “control” abstrac-
tion, which emulates a software knob to control the LEDs. Each kobject is represented 
by a directory name in sysfs, so  kobject_register() in Listing 5.7 results in the 
creation of the /sys/class/pardevice/led/control/ directory. 

A ktype describes a kobject. The “control” kobject is described via the  ktype_led
structure, which contains a pointer to the attribute array, led_attrs[]. This array 
contains the addresses of the device attributes of each LED. The attributes of each 
LED are tied together by the statement:

static struct led_attr led##number =

__ATTR(led##number, 0644, show_led_##number, glow_led_##number);

This results in instantiating the control fi le for each LED, /sys/class/pardevice/led/con-
trol/ledX, where X is the LED number. To change the state of ledX, echo a 1 (or a 0) to 
the corresponding control fi le. To glow the fi rst LED on the board, do this:

bash> echo 1 > /sys/class/pardevice/led/control/led0

During module exit, the driver unregisters the kobjects and classes using  kobject_
unregister(), class_device_destroy(), and class_destroy().

Listing 7.2 in Chapter 7, “Input Drivers,” uses another route to create fi les 
in sysfs.

Writing a char driver is no longer as simple as it used to be in the days of the 2.4 
kernel. To develop the simple LED driver above, we used half a dozen abstractions: 
cdev, sysfs, kobjects, classes, class device, and parport. The abstractions, however, bring 
several advantages to the table such as bug-free building blocks, code reuse, and ele-
gant design.

RTC Subsystem

RTC   support in the kernel is architected into two layers: a hardware-independent top-
layer char driver that implements the kernel RTC API, and a hardware-dependent bot-
tom-layer driver that communicates with the underlying bus. The RTC API, specifi ed 



in Documentation/rtc.txt, is a set of standard ioctls that conforming applications such 
as hwclock leverage by operating on /dev/rtc. The API also specifi es attributes in sysfs 
(/sys/class/rtc/) and procfs (/proc/driver/rtc). The RTC API guarantees that user-space 
tools are independent of the underlying platform and the RTC chip. The bottom-layer 
RTC driver is bus-specifi c. The embedded device discussed in the section “Device 
Example: Real Time Clock” in Chapter 8, “The Inter-Integrated Circuit Protocol,” 
has an RTC chip connected to the I2C bus, which is driven by an I2C client driver. 

The kernel has a dedicated RTC subsystem that provides the top-layer char driver 
and a core infrastructure that bottom-layer RTC drivers can use to tie in with the top 
layer. The main components of this infrastructure are the  rtc_class_ops structure 
and the registration functions,  rtc_device_[register|unregister](). Bottom-
layer RTC drivers scattered under different bus-specifi c directories are being unifi ed 
with this subsystem under drivers/rtc/. 

The RTC subsystem allows the possibility that a system can have more than one 
RTC. It does this by exporting multiple interfaces, /dev/rtcN and /sys/class/rtc/rtcN,
where N is the number of RTCs on your system. Some embedded systems, for exam-
ple, have two RTCs: one built in to the microcontroller to support sophisticated 
operations such as periodic interrupt generation, and another no-frills low-power bat-
tery-backed external RTC for timekeeping. Because RTC-aware applications operate 
over /dev/rtc, set up a symbolic link so that one of the created /dev/rtcX nodes can be 
accessed as /dev/rtc.

To enable the RTC subsystem, turn on  CONFIG_RTC_CLASS during kernel 
confi guration.

The Legacy PC RTC Driver

On PC systems, you have the option of bypassing the RTC subsystem by using the legacy RTC 
driver, drivers/char/ rtc.c. This driver provides top and bottom layers for the RTC on PC- compatible 
systems and exports /dev/rtc and /proc/driver/rtc to user applications. To enable this driver, turn on 
CONFIG_RTC during kernel confi guration.

Pseudo Char Drivers

Several   commonly used kernel facilities are not connected with any physical hard-
ware, but are elegantly implemented as char devices. The null sink, the perpetual zero
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source, and the kernel random number generator are treated as virtual devices and are 
accessed using pseudo char device drivers.

The /dev/null  char device sinks data that you don’t want to display on your screen. 
So if you need to check out source fi les from a   Concurrent Versioning System (CVS) 
repository without spewing fi lenames all over the screen, do this:

bash> cvs co kernel > /dev/null 

This redirects command output to the write entry point belonging to the /dev/null
driver. The driver’s read() and write() methods simply return success ignoring the 
contents of the input and output buffers, respectively.

If you want to fi ll an image fi le with zeros, call upon   /dev/zero to come to your 
service:

bash> dd if=/dev/zero of=file.img bs=1024 count=1024 

This sources a stream of zeros from the read() method belonging to the  /dev/zero
driver. The driver has no write() method.

The kernel has a built-in random number generator. For the benefi t of kernel users 
who desire to use random sequences, the  random number generator exports APIs such 
as get_random_bytes(). For user mode programs, it exports two char interfaces: 
/dev/random and /dev/urandom. The quality of randomness is higher for reads from /dev/
random compared to that from  /dev/ urandom. When a user program reads from /dev/
random, it gets strong (or true) random numbers, but reads from /dev/urandom yield 
pseudo random numbers. The  /dev/ random driver does not use formulae to generate 
strong random numbers. Instead, it gathers “environmental noise” (interval between 
interrupts, key clicks, and so on) for maintaining a reservoir of disorder (called an 
entropy pool) that seeds the random stream. To see the kernel’s input subsystem (dis-
cussed in Chapter 7) contributing to the entropy pool when it detects a keyboard press 
or mouse movement, look at  input_event() defi ned in drivers/input/input.c:

void

input_event(struct input_dev *dev, unsigned int type, 

            unsigned int code, int value)

{

  /* ... */

  add_input_randomness(type, code, value); /* Contribute to entropy 

                                              pool */

  /* ... */

}



To see how the core interrupt handling layer contributes inter-interrupt periods to the 
entropy pool, look at  handle_IRQ_event() defi ned in kernel/irq/handle.c:

irqreturn_t handle_IRQ_event(unsigned int irq, 

                             struct irqaction *action)

{

  /* ... */

  if (status & IRQF_SAMPLE_RANDOM)

    add_interrupt_randomness(irq); /* Contribute to entropy pool */

  /* ... */

}

The generation of strongly random numbers depends on the size of the entropy pool:

bash> od –x /dev/random

0000000 7331 9028 7c89 4791 7f64 3deb 86b3 7564

0000020 ebb9 e806 221a b8f9 af12 cb30 9a0e cc28

0000040 68d8 0bbf 68a4 0898 528e 1557 d8b3 57ec

0000060 b01d 8714 b1e1 19b9 0a86 9f60 646c c269

The output stops after a few lines, signaling that the entropy pool is exhausted. To 
replenish the entropy pool and restart the random stream, jab the keyboard several 
times after switching to an unused terminal or push the mouse around the screen. 

A dump of /dev/ urandom, however, produces a continuous pseudo random stream 
that never stops.

/dev/mem and  /dev/ kmem are classic pseudo char devices that are tools that let you 
peek inside system memory. These char nodes export raw interfaces connected to 
physical memory and kernel virtual memory, respectively. To manipulate system mem-
ory, you may mmap() these nodes and operate on the returned regions. As an exercise, 
change the hostname of your system by accessing /dev/mem.

All the char devices discussed in this section (null, zero, random, urandom, mem, 
and kmem) have different minor numbers but the same statically assigned major num-
ber, 1. Look at drivers/char/mem.c and drivers/char/random.c for their implementation. 
Two other pseudo drivers belong to the same major number family:    /dev/full, which 
emulates an always full device; and /dev/port, which peeks at system I/O ports. We use 
the latter in Chapter 19.
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Misc Drivers

Misc    (or miscellaneous) drivers are simple char drivers that share certain common 
characteristics. The kernel abstracts these commonalities into an API (implemented 
in drivers/char/misc.c), and this simplifi es the way these drivers are initialized. All misc 
devices are assigned a major number of 10, but each can choose a single minor num-
ber. So, if a char driver needs to drive multiple devices as in the CMOS example dis-
cussed earlier, it’s probably not a candidate for being a misc driver.

Consider the sequence of initialization steps that a char driver performs:

 • Allocates major/minor numbers via  alloc_chrdev_region() and friends

 • Creates /dev and /sys nodes using device_create()

 • Registers itself as a char driver using  cdev_init() and cdev_add()

A misc driver accomplishes all this with a single call to  misc_register():

static struct miscdevice mydrv_dev = {

  MYDRV_MINOR,

  "mydrv",

  &mydrv_fops

};

misc_register(&mydrv_dev);

In the preceding example, MYDRV_MINOR is the minor number that you want to stati-
cally assign to your misc driver. You may also request a minor number to be dynami-
cally assigned by specifying MISC_DYNAMIC_MINOR rather than MYDRV_MINOR in the 
mydrv_dev structure.

Each misc driver automatically appears under /sys/class/misc/ without explicit effort 
from the driver writer. Because misc drivers are char drivers, the earlier discussion on 
char driver entry points hold for misc drivers, too. Let’s now look at an example misc 
driver.

Device Example: Watchdog Timer

A watchdog’s      function is to return an unresponsive system to operational state. It does 
this by periodically checking the system’s pulse and issuing a reset54 if it can’t detect 

5 A watchdog may issue audible beeps rather than a system reset. An example scenario is when a timeout occurs due to a power 
supply problem, assuming that the watchdog circuit is backed up using a battery or a super capacitor.



any. Application software is responsible for registering this pulse (or “heartbeat”) by 
periodically strobing (or “petting”) the watchdog using the services of a watchdog 
device driver. Most embedded controllers support internal watchdog modules. Exter-
nal watchdog chips are also available. An example is the Netwinder W83977AF chip.

Linux watchdog drivers are implemented as misc drivers and live inside drivers/
char/watchdog/. Watchdog drivers, like RTC drivers, export a standard device interface 
to user land, so conforming applications are rendered independent of the internals of 
watchdog hardware. This API is specifi ed in Documentation/watchdog/watchdog-api.txt
in the kernel source tree. Programs that desire the services of a watchdog operate on 
/dev/watchdog, a device node having a misc minor number of 130. 

Listing 5.9 implements a device driver for a fi ctitious watchdog module built in 
to an embedded controller. The example watchdog contains two main registers as 
shown in Table 5.2: a service register (WD_SERVICE_REGISTER) and a control register 
(WD_CONTROL_REGISTER). To pet the watchdog, the driver writes a specifi c sequence 
(0xABCD in this case) to the service register. To program watchdog timeout, the driver 
writes to specifi ed bit positions in the control register.

TABLE 5.2 Register Layout on the Watchdog Module

Register Name Description

WD_SERVICE_REGISTER Write a specific sequence to this register to pet the watchdog.

WD_CONTROL_REGISTER Write the watchdog timeout to this register.

Strobing the watchdog is usually done from user space because the goal of having a 
watchdog is to detect and respond to both application and kernel hangs. A critical 
application65 such as the graphics engine in Listing 5.10 opens the watchdog driver in 
Listing 5.9 and periodically writes to it. If no write occurs within the watchdog tim-
eout due to an application hang or a kernel crash, the watchdog triggers a system reset. 
In the case of Listing 5.10, the watchdog will reboot the system if

 • The application hangs inside process_graphics()

 • The kernel, and consequently the application, dies

The watchdog starts ticking when an application opens /dev/watchdog. Closing this 
device node stops the watchdog unless you set CONFIG_WATCHDOG_NOWAYOUT during 

6 If you need to monitor the health of several applications, you may implement a multiplexer in the watchdog device driver. If any
one of the processes that open the driver becomes unresponsive, the watchdog attempts to self-correct the system.
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kernel confi guration. Setting this option helps you tide over the possibility that the 
watchdog monitoring process (such as Listing 5.10) gets killed by a signal while the 
system continues running.

LISTING 5.9 An Example Watchdog Driver

#include <linux/miscdevice.h>

#include <linux/watchdog.h>

#define DEFAULT_WATCHDOG_TIMEOUT 10  /* 10-second timeout */

#define TIMEOUT_SHIFT             5  /* To get to the timeout field 

                                        in WD_CONTROL_REGISTER */

#define WENABLE_SHIFT             3  /* To get to the

                                        watchdog-enable field in 

                                        WD_CONTROL_REGISTER */

/* Misc structure */

static struct miscdevice my_wdt_dev = {

 .minor = WATCHDOG_MINOR, /* defined as 130 in 

                             include/linux/miscdevice.h */

 .name  = "watchdog",     /* /dev/watchdog */

 .fops  = &my_wdt_dog     /* Watchdog driver entry points */

};

/* Driver methods */

struct file_operations my_wdt_dog = {

.owner   = THIS_MODULE,

.open    = my_wdt_open,

.release = my_wdt_close,

.write   = my_wdt_write,

.ioctl   = my_wdt_ioctl

}

/* Module Initialization */

static int __init

my_wdt_init(void)

{

  /* ... */

  misc_register(&my_wdt_dev);

  /* ... */

}



/* Open watchdog */

static void

my_wdt_open(struct inode *inode, struct file *file)

{

  /* Set the timeout and enable the watchdog */

  WD_CONTROL_REGISTER |= DEFAULT_WATCHDOG_TIMEOUT << TIMEOUT_SHIFT;

  WD_CONTROL_REGISTER |= 1 << WENABLE_SHIFT;

}

/* Close watchdog */

static int

my_wdt_close(struct inode *inode, struct file *file)

{

  /* If CONFIG_WATCHDOG_NOWAYOUT is chosen during kernel 

     configuration, do not disable the watchdog even if the 

     application desires to close it */

#ifndef CONFIG_WATCHDOG_NOWAYOUT

  /* Disable watchdog */

  WD_CONTROL_REGISTER &= ~(1 << WENABLE_SHIFT);

#endif

  return 0;

}

/* Pet the dog */

static ssize_t

my_wdt_write(struct file *file, const char *data, 

             size_t len, loff_t *ppose)

{

  /* Pet the dog by writing a specified sequence of bytes to the

     watchdog service register */

  WD_SERVICE_REGISTER = 0xABCD;

}

/* Ioctl method. Look at Documentation/watchdog/watchdog-api.txt

   for the full list of ioctl commands. This is standard across 

   watchdog drivers, so conforming applications are rendered 

   hardware-independent */

static int 

my_wdt_ioctl(struct inode *inode, struct file *file,

             unsigned int cmd, unsigned long arg)

{

   /* ... */
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   switch (cmd) {

     case WDIOC_KEEPALIVE:

       /* Write to the watchdog. Applications can invoke 

          this ioctl instead of writing to the device */

       WD_SERVICE_REGISTER = 0xABCD;

       break;

     case WDIOC_SETTIMEOUT:

        copy_from_user(&timeout, (int *)arg, sizeof(int));

        

       /* Set the timeout that defines unresponsiveness by

          writing to the watchdog control register */

        WD_CONTROL_REGISTER = timeout << TIMEOUT_BITS;

       break;

     case WDIOC_GETTIMEOUT:

       /* Get the currently set timeout from the watchdog */

       /* ... */

       break;

     default:

       return –ENOTTY;

   }

}

/* Module Exit */

static void __exit

my_wdt_exit(void)

{

  /* ... */

  misc_deregister(&my_wdt_dev); 

  /* ... */

}

module_init(my_wdt_init);

module_exit(my_wdt_exit);

LISTING 5.10 A Watchdog User

#include <fcntl.h>

#include <asm/types.h>

#include <linux/watchdog.h>

int

main()



{

  int new_timeout;

  int wfd = open("/dev/watchdog", O_WRONLY);

  /* Set the watchdog timeout to 20 seconds */

  new_timeout = 20;

  ioctl(fd, WDIOC_SETTIMEOUT, &new_timeout);

  while (1) {

    /* Graphics processing */

    process_graphics();

    /* Pet the watchdog */

    ioctl(fd, WDIOC_KEEPALIVE, 0); 

    /* Or instead do: write(wfd, "\0", 1); */

    fsync(wfd);

  }

}

External Watchdogs

To ensure  that the system attempts to recover even in the face of processor failures, some regula-
tory bodies stipulate the use of an external watchdog chip, even if the main processor has a sophis-
ticated built-in watchdog module such as the one in our example. Because of this requirement, 
embedded devices sometimes use an inexpensive no-frill watchdog chip (such as MAX6730 from 
Maxim) that is based on simple hard-wired logic rather than a register interface. The watchdog 
asserts a reset pin if no voltage pulse is detected on an input pin within a fi xed reset timeout. The 
reset pin is connected to the reset logic of the processor, and the input pin is wired to a processor 
GPIO port. All that software has to do to prevent reset is to periodically pulse the watchdog’s 
input pin within the chip’s reset timeout. If you are writing a driver for such a device, the ioctl()
method is not relevant. The driver’s write() method pulses the watchdog’s input pin whenever 
application software writes to the associated device node. To aid manufacturing and fi eld diagnos-
tics, the watchdog may be wired such that it can be disabled by wiggling a processor GPIO pin.

Such chips usually allow a large initial timeout to account for boot time, followed by shorter 
reset timeouts.

For platforms that do not support a hardware watchdog module, the kernel imple-
ments a software watchdog, also called a softdog. The softdog driver, drivers/char/watch-
dog/softdog.c, is a pseudo misc driver because it does not operate on real hardware. The 
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softdog  driver has to perform two tasks that a watchdog driver doesn’t have to do, 
which the latter accomplishes in hardware:

 • Implement a timeout mechanism

 • Initiate a soft reboot if the system isn’t healthy

This is done by delaying the execution of a timer handler whenever an application 
writes to the softdog. If no write occurs to the softdog within a timeout, the timer 
handler fi res and reboots the system.

A related support in 2.6 kernels is the sensing of   soft lockups, which are instances 
when scheduling does not occur for 10 or more seconds. A kernel thread watchdog/
N, where N is the CPU number, touches a per-CPU timestamp every second. If the 
thread doesn’t touch the timestamp for more than 10 seconds, the system is deemed 
to have locked up. Soft lockup detection (implemented in kernel/softlockup.c) will aid 
us while debugging a kernel crash in the section “Kdump” in Chapter 21, “Debugging 
Device Drivers.”

There are several more misc drivers in the kernel. The  Qtronix infrared keyboard 
driver, drivers/char/qtronix.c, is another example of a char driver that has a misc form 
factor. Do a grep on misc_register() in the drivers/char/ directory to fi nd other 
misc device drivers present in the kernel.

Character Caveats

Driver  methods, and hence the associated system calls issued by user applications, may 
fail or partially succeed. Your application has to factor this in to avoid unpleasant sur-
prises. Let’s look at some common pitfalls:

 • An open() call may fail for several reasons. Some char drivers support only a 
single user at a time, so they fail with -EBUSY if an application attempts to open 
a device that is already in use. If a printer is out of paper, the driver fails with 
-ENOSPC if you issue a device open().

 • A successful read() or write() can return anything between 1 byte and the num-
ber of bytes requested, so your application needs sufficient logic to handle this.

 • A select() call returns success even if a single byte of data is ready to be read 
or written.

 • Some char devices such as mice and touch screens are input-only, so their drivers 
will not support the write method family (write()/aio_write()/fsync()).



Other devices such as printers are output-only, and their drivers will not sup-
port the read method family (read()/aio_read()). Also, many char driver 
methods are optional, so all methods will not be present in all drivers. When a 
method is absent, the corresponding system call fails.

Looking at the Sources

Char   drivers do not exclusively live in the drivers/char/ directory. Here are some exam-
ples of “super” char drivers that merit special treatment and directories:

 • Serial drivers are char drivers that manage your computer’s serial port. However, 
they are much more than simple char drivers and reside separately in the  drivers/
serial/ directory. The next chapter discusses serial drivers.

 • Input drivers are responsible for devices such as keyboards, mice, and joysticks. 
They live in a separate source directory drivers/input/, and hence get a distinct 
chapter, Chapter 7.

 • Frame buffers (/dev/fb/*) offer access to video memory, the way /dev/mem exports 
access to system memory. Chapter 12, “Video Drivers,” looks at frame buffer 
drivers. 

 • Some device classes support a minority of hardware possessing a char interface. 
For example, SCSI devices are generally block devices, but a SCSI tape is a char 
device.

 • Some subsystems export additional char interfaces that present a raw device 
model to user space. The MTD subsystem is generally used for emulating a disk 
on top of diverse types of flash memory, but some applications might be better 
served if they are provided with a raw view of the underlying flash memory. This 
is done by the MTD char driver drivers/mtd/mtdchar.c, which is discussed in 
Chapter 17, “Memory Technology Devices.”

 • Certain kernel layers provide hooks for implementing user-space device drivers 
by exporting suitable char interfaces. Applications can directly access the innards 
of the device via these interfaces. One example is the generic SCSI driver drivers/
scsi/sg.c used to implement user-space device drivers for SCSI scanners and CD 
drives. Another example is the I2C device interface, i2c-dev. Such char interfaces 
are explained in Chapter 19.
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Meanwhile, run a grep -r on register_chrdev in the drivers/ directory to get an 
idea of the popularity of char drivers in the kernel.

Table 5.3 contains a summary of the main data structures used in this chapter 
and the location of their defi nitions in the source tree. Table 5.4 lists the main kernel 
programming interfaces that you used in this chapter along with the location of their 
defi nitions.

TABLE 5.3 Summary of Data Structures 

 Data Structure Location Description

cdev include/linux/cdev.h Kernel abstraction of a char device

file_operations include/linux/fs.h Char driver methods

dev_t include/linux/types.h Device major/minor numbers

poll_table include/linux/poll.h A table of wait queues owned by drivers that are being 
polled for data

pardevice include/linux/parport.h  Kernel abstraction of a parallel port device

rtc_class_ops include/linux/rtc.h  Communication interface between top layer and 
bottom layer RTC drivers

miscdevice include/linux/miscdevice.h Representation of a misc device

TABLE 5.4 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

alloc_chrdev_region() fs/char_dev.c  Requests dynamic allocation of a 
device major number

unregister_chrdev_region() fs/char_dev.c Reverse of 
alloc_chrdev_region()

cdev_init() fs/char_dev.c  Connects char driver methods with 
the associated cdev

cdev_add() fs/char_dev.c Associates a device number with a 
cdev

cdev_del() fs/char_dev.c Removes a cdev

container_of() include/linux/kernel.h  From a structure member, gets the 
address of its containing structure

copy_from_user() arch/x86/lib/usercopy_32.c 
(For i386)

 Copies data from user space to 
kernel space

copy_to_user() arch/x86/lib/usercopy_32.c 
(For i386)

 Copies data from kernel space to 
user space

likely()
unlikely()

include/linux/compiler.h Informs GCC about the possibility 
of success of the associated condi-
tional evaluation



Kernel Interface Location Description

request_region() include/linux/ioport.h
kernel/resource.c

Stakes claim to an I/O region

release_region() include/linux/ioport.h
kernel/resource.c

Relinquishes claim to an  I/O region

in[b|w|l|sn|sl]()
out[b|w|l|sn|sl]()

include/asm-your-arch/io.h Family of functions to exchange data 
with I/O regions

poll_wait() include/linux/poll.h Adds a wait queue to the kernel 
poll_table

fasync_helper() fs/fcntl.c Ensures that if a driver issues a 
kill_fasync(), a SIGIO is 
dispatched to the owning application

kill_fasync() fs/fcntl.c Dispatches a SIGIO to the owning 
application

parport_register_device() drivers/parport/share.c Registers a parallel port device with 
parport

parport_unregister_device() drivers/parport/share.c Unregisters a parallel port device

parport_register_driver() drivers/parport/share.c Registers a parallel port driver with 
parport

parport_unregister_driver() drivers/parport/share.c Unregisters a parallel port driver

parport_claim_or_block() drivers/parport/share.c Claims a parallel port

parport_write_data() include/linux/parport.h Writes data to a parallel port

parport_read_data() include/linux/parport.h Reads data from a parallel port

parport_release() drivers/parport/share.c Releases a parallel port

kobject_register() lib/kobject.c Registers a kobject and creates asso-
ciated files in sysfs

kobject_unregister() lib/kobject.c Reverse of kobject_register()

rtc_device_register()/
rtc_device_unregister()

drivers/rtc/class.c Registers/unregisters a bottom-layer 
driver with the RTC subsystem

misc_register() drivers/char/misc.c Registers a misc driver

misc_deregister() drivers/char/misc.c Unregisters a misc driver
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T he serial port   is a basic communication channel used by a slew of tech-
nologies and applications. A chip known as the   Universal Asynchronous 

Receiver Transmitter (UART) is commonly used to implement serial communi-
cation. On PC-compatible hardware, the UART is part of the Super I/O chip-
set, as shown in Figure 6.1. 

Though  RS-232 communication channels are the common type of serial hard-
ware, the kernel’s serial subsystem is architected in a generic manner to serve 
diverse users. You will touch the serial subsystem if you

 • Run a terminal session over an RS-232 serial link

 • Connect to the Internet via a dialup, cellular, or software modem

 • Interface with devices such as touch controllers, smart cards, Bluetooth 
chips, or Infrared dongles, which use a serial transport

 • Emulate a serial port using a USB-to-serial converter

 • Communicate over an RS-485 link, which is a multidrop variant of RS-232 
that has larger range and better noise immunity

In this chapter, let’s find out how the kernel structures the serial subsystem. We 
will use the example of a Linux cell phone to learn about low-level UART driv-
ers and the example of a serial touch controller to discover the implementation 
details of higher-level line disciplines.

The UART usually found on PCs is National Semiconductor’s 16550, or compat-
ible chips from other vendors, so you will fi nd references to “ 16550-type UART” in 
code and documentation. The 8250 chip is the predecessor of the 16550, so the 
Linux driver for PC UARTs is named  8250.c.



Processor

North Bridge

South Bridge
Super I/O

UART

Serial Port

RS-232 Line Shifter

LPC Bus

FIGURE 6.1 Connection diagram of the PC serial port.

Layered Architecture

As   you just saw, the users of the serial subsystem are many and different. This has 
motivated kernel developers to structure a layered serial architecture using the follow-
ing building blocks: 

 1. Low-level drivers that worry about the internals of the UART or other underly-
ing serial hardware.

 2. A tty driver layer that interfaces with the low-level driver. A tty driver insulates 
higher layers from the intricacies of the hardware. 

 3. Line disciplines that “cook” data exchanged with the tty driver. Line disciplines 
shape the behavior of the serial layer and help reuse lower layers to support dif-
ferent technologies.

To help custom driver implementations, the serial subsystem also provides core APIs 
that factor commonalities out of these layers.

Figure 6.2 shows the connection between the layers. N_TTY, N_IRDA, and N_PPP
are drop-in line disciplines that mold the serial subsystem to respectively support 
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terminals, Infrared, and dialup networking. Figure 6.3 maps the serial subsystem to 
kernel source fi les.

TTY
I/O Core

TTY Driver

Serial Port/Low-Level Hardware

UART/Low-Level Driver

N_TTY

/dev/ttySX

N_IRDA

/dev/ircommX

N_PPP Line Disciplines

ppp0

FIGURE 6.2 Connection between the layers in the serial subsystem.

To illustrate the advantages of a layered serial architecture, let’s use an example. Assume 
that you are using a USB-to-serial adapter to obtain serial capabilities on a laptop that 
does not have a serial port. One possible scenario is when you are debugging the ker-
nel on a target embedded device from a host laptop using kgdb (kgdb is discussed in 
Chapter 21, “Debugging Device Drivers”), as shown in Figure 6.4.

As shown in Figure 6.3, you fi rst need a suitable USB physical layer driver (the 
USB counterpart of the UART driver) on your host laptop. This is present in the 
kernel USB subsystem, drivers/usb/. Next, you need a tty driver to sit on top of the 
USB physical layer. The usbserial driver (drivers/usb/serial/usb-serial.c) is the core layer 
that implements a generic tty over USB-serial converters. This driver, in tandem with 
device-specifi c tty methods registered by the converter driver (drivers/usb/serial/keyspan.
c if you are using a Keyspan adapter, for example), constitutes the tty layer. Last, but 
not the least, you need the N_TTY line discipline for terminal I/O processing.



N_TTY
(n_tty.c)

serial_core.c
usb-serial.c

(Core Module)

8250.c

N_IRDA
(irtty_sir.c)

User Applications (System call interface)

Line Discipline LayerLine Discipline LayerLine Discipline Layer

Physical Layer

Low-level driverLow-Level driver

TTY Layer

16550-type UART

USB-Serial
Converter
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tty_io.c
(Core Module)

Infared USB-Serial Converter

FIGURE 6.3 Serial layers mapped to kernel sources.

USB

Host Laptop

UART

Target
Embedded

Device

FIGURE 6.4 Using a USB-to-serial converter.
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The tty driver insulates the line discipline and higher layers from the internals of 
USB. In fact, the line discipline still thinks it’s running over a conventional UART. 
This is so because the tty driver pulls data from USB Request Blocks or URBs (discussed 
in Chapter 11, “Universal Serial Bus”) and encapsulates it in the format expected by 
the N_TTY line discipline. The layered architecture thus renders the implementation 
simpler—all blocks from the line discipline upward can be reused unchanged.

The preceding example uses a technology-specifi c tty driver and a generic line dis-
cipline. The reverse usage is also common. The Infrared stack, discussed in Chap-
ter 16, “Linux Without Wires,” uses a generic tty driver and a technology-specifi c line 
discipline called N_IRDA.

As you might have noticed in Figure 6.2 and Figure 6.3, although UART drivers 
are char drivers, they do not directly expose interfaces to kernel system calls like regu-
lar char drivers that we saw in the preceding chapter. Rather, UART drivers (like key-
board drivers discussed in the next chapter) service another kernel layer, the tty layer. 
I/O system calls start their journey above top-level line disciplines and fi nally ripple 
down to UART drivers through the tty layer.

In the rest of this chapter, let’s take a closer look at the different driver components 
of the serial layer. We start at the bottom of the serial stack with low-level UART driv-
ers, move on to middle-level tty drivers, and then proceed to top-level line discipline 
drivers.

UART Drivers

UART drivers revolve around three key data structures. All three are defi ned in include/
linux/serial_core.h:

 1. The per-UART driver structure, struct    uart_driver:

struct uart_driver {

  struct module  *owner;          /* Module that owns this 

                                     struct */

  const char     *driver_name;    /* Name */

  const char     *dev_name;       /* /dev node name 

                                     such as ttyS */

  /* ... */

  int             major;          /* Major number */

  int             minor;          /* Minor number */



  /* ... */

  struct tty_driver *tty_driver;  /* tty driver */

};

The comments against each fi eld explain the associated semantics. The owner
fi eld allows the same benefi ts as that discussed in the previous chapter for the 
file_operations structure.

 2. struct uart_port. One instance of this structure exists for each port owned 
by the UART driver:

  struct uart_port {

    spinlock_t     lock;             /* port lock */

    unsigned int   iobase;           /* in/out[bwl]*/ 

    unsigned char  __iomem *membase; /* read/write[bwl]*/

    unsigned int   irq;              /* irq number */

    unsigned int   uartclk;          /* base uart clock */

    unsigned char  fifosize;         /* tx fifo size */

    unsigned char  x_char;           /* xon/xoff flow 

                                        control */

    /* ... */

  };

 3. struct uart_ops. This is a superset of entry points that each UART driver 
has to support and describes the operations that can be done on physical hard-
ware. The methods in this structure are invoked by the tty layer:

  struct uart_ops {

    uint (*tx_empty)(struct uart_port *);     /* Is TX FIFO empty? */

    void (*set_mctrl)(struct uart_port *, 

                      unsigned int mctrl);    /* Set modem control params */

    uint (*get_mctrl)(struct uart_port *);    /* Get modem control params */

    void (*stop_tx)(struct uart_port *);      /* Stop xmission */

    void (*start_tx)(struct uart_port *);     /* Start xmission */

    /* ... */

    void (*shutdown)(struct uart_port *);     /* Disable the port */

    void (*set_termios)(struct uart_port *, 

                        struct termios *new,

                        struct termios *old); /* Set terminal interface 

                                                 params */
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    /* ... */

    void (*config_port)(struct uart_port *, 

                        int);                /* Configure UART port */

    /* ... */

  };

There    are two important steps that a UART driver has to take to tie itself with the 
kernel:

 1. Register with the serial core by calling 

uart_register_driver(struct uart_driver *);

 2. Invoke  uart_add_one_port(struct uart_driver *, struct uart_port 
*) to register each individual port that it supports. If your serial hardware is 
hotplugged, the ports are registered with the core from the entry point that 
probes the presence of the device. Look at the CardBus Modem driver in List-
ing 10.4 in Chapter 10, “Peripheral Component Interconnect,” for an example 
where the serial device is plugged hot. Note that some drivers use the wrapper 
registration function  serial8250_register_port(struct uart_port *),
which internally invokes uart_add_one_port().

These data structures and registration functions constitute the least common denomi-
nator present in all UART drivers. Armed with these structures and routines, let’s 
develop a sample UART driver.

Device Example: Cell Phone

Consider    a Linux cell phone built around an embedded      System-on-Chip (SoC). The 
SoC has two built-in UARTs, but as shown in Figure 6.5, both of them are used up, 
one for communicating with a cellular modem, and the other for interfacing with a 
Bluetooth chipset. Because there are no free UARTs for debug purposes, the phone 
uses two USB-to-serial converter chips, one to provide a debug terminal to a PC host, 
and the other to obtain a spare port. USB-to-serial converters, as you saw earlier in this 
chapter, let you connect serial devices to your PC via USB. We discuss more on USB-
to-serial converters in Chapter 11.

The serial sides of the two USB-to-serial converter chips are connected to the SoC 
via a      Complex Programmable Logic Device or CPLD (see the section “CPLD/FPGA” 



in Chapter 18, “Embedding Linux”). The CPLD creates two virtual UARTs (or USB_
UARTs) by providing a three-register interface to access each USB-to-serial converter, as 
shown in Table 6.1: a status register, a read-data register, and a write-data register. To 
write a character to a USB_UART, loop on a bit in the status register that clears when 
there is space in the chip’s internal transmit    fi rst-in fi rst-out (FIFO) memory and then 
write the byte to the write-data register. To read a character, wait until a specifi ed bit in 
the status register shows presence of data in the receive FIFO and then read from the 
read-data register.

At the PC end, use the appropriate Linux  usbserial driver (for example, drivers/
usb/serial/ftdi_sio.c if you are using an FT232AM chip on the cell phone) to create 
and manage /dev/ttyUSBX device nodes that correspond to the USB-serial ports. You 
may run terminal emulators such as  minicom over one of these device nodes to obtain 
a console or debug terminal from the cell phone. At the cell phone end, we have to 
implement a UART driver for the USB_UARTs. This driver creates and manages /dev/
ttyUUX nodes that are responsible for communication at the device side of the link.

Linux Cell Phone

GSM/GPRS

UART1

UART2

UART3

UART4

Serial

USB

USB

Serial

/dev/ttyUU1

/dev/ttyUU0

/dev/ttyUSB0

USB-to-Serial
Converter chip

USB-to-Serial
Converter chip

Bluetooth

Embedded SoC CPLD

FIGURE 6.5 USB_UART ports on a Linux cell phone.
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TABLE 6.1 Register Layout of      the USB_UART

Register Name Description Offset from USB_UART
Memory Base

UU_STATUS_REGISTER Bits to check whether the transmit FIFO is 
full or whether the receive FIFO is empty

0x0

UU_READ_DATA_REGISTER Read a character from the USB_UART 0x1

UU_WRITE_DATA_REGISTER Write a character to the USB_UART 0x2

The cell phone shown in Figure 6.5 can act as an intelligent gateway for Bluetooth devices—
to the GSM network and, hence, to the Internet. The phone can, for example, ferry data 
from your Bluetooth blood pressure monitor to your health-care provider’s server on the 
Internet. Or it can alert a doctor if it detects a problem while communicating with your 
Bluetooth-enabled heart-rate monitor. The Bluetooth MP3 player used in Chapter 13, 
“Audio Drivers,” and the Bluetooth pill dispenser used in Chapter 16 are also examples of 
devices that can use the Linux cell phone to get Internet-enabled.

Listing 6.1 implements the USB_UART driver. It’s implemented as    a  platform driver. A
platform is a pseudo bus usually used to tie lightweight devices integrated into SoCs, 
with the Linux device model. A platform consists of

 1. A platform device. The architecture-specific setup code adds the platform device 
using platform_device_register() or its simpler version,  platform_
device_register_simple(). You may also register multiple platform devices 
at one shot using platform_add_devices(). The platform_device struc-
ture defined in include/linux/platform_device.h represents a platform device:

struct platform_device {

  const char *name;  /* Device Name */

  u32 id;            /* Use this field to register multiple 

                        instances of a platform device. In 

                        this example, the two USB_UARTs 

                        have different IDs. */

  struct device dev; /* Contains a release() method and 

                        platform data */

  /* ... */

};



 2. A platform driver. The  platform driver registers itself into the platform using 
platform_driver_register(). The  platform_driver structure, also de-
fined in include/linux/platform_device.h, represents a platform driver:

struct platform_driver {

  int (*probe)(struct platform_device *); /*Probe method*/

  int (*remove)(struct platform_device *);/*Remove method*/

  /* ... */

  /* The name field in the following structure should match 

     the name field in the associated platform_device 

     structure */

  struct device_driver driver; 

};

See Documentation/driver-model/platform.txt for more on platform devices and drivers. 
For simplicity, our sample driver registers both the platform device and the platform 
driver. 

During initialization, the USB_UART driver fi rst registers itself with the serial core 
using   uart_register_driver(). When this is done, you will fi nd a new line start-
ing with usb_uart in /proc/tty/drivers. Next, the driver registers two platform devices 
(one per USB_UART) using platform_device_register_simple(). As mentioned 
earlier, platform device registrations are usually done during boot-time board setup. 
Following this, the driver registers platform driver entry points (probe(), remove(),
suspend(), and resume()) using platform_driver_register(). The USB_
UART platform driver ties into both the above platform devices and has a match-
ing name (usb_uart). After this step, you will see two new directories appearing in 
sysfs, each corresponding to a USB_UART port: /sys/devices/platform/usb_uart.0/ and 
/sys/devices/platform/usb_uart.1/.

Because the Linux device layer now detects a platform driver matching the name of 
the registered USB_UART platform devices, it invokes the probe() entry point1 ( usb_
uart_probe()) belonging to the platform driver, once for each USB_UART. The probe 
entry point adds the associated USB_UART port using  uart_add_one_port(). This 
triggers invocation of the  config_port() entry point (part of the uart_ops structure 

1 Such platform devices usually cannot be hotplugged. This invocation semantics of the probe() method is different from what 
you will learn in later chapters for hotpluggable devices such as PCMCIA, PCI, and USB, but the similar structure of driver 
entry points helps the Linux device model to have a uniform and consistent view of all devices.
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discussed earlier) that claims and maps the USB_UART register space. If both USB_UART
ports are successfully added, the serial core emits the following kernel messages:

ttyUU0 at MMIO 0xe8000000 (irq = 3) is a USB_UART

ttyUU1 at MMIO 0xe9000000 (irq = 4) is a USB_UART

Claiming       the IRQ, however, is deferred until an application opens the USB_UART port. 
The IRQ is freed when the application closes the USB_UART. Table 6.2 traces the driv-
er’s code path for claiming and freeing memory regions and IRQs.

TABLE 6.2 Claiming and Freeing Memory and IRQ Resources

Module 
Insert

usb_uart_
init()

uart_
register_
driver()

usb_
uart_
probe()

uart_
add_one_
port()

usb_uart_
config_
port()

request_
mem_
region()

Module 
Unload

usb_uart_
exit()

usb_
unregister_
driver()

usb_
uart_
remove()

uart_
remove_
one_port()

usb_uart_
release_
port()

release_
mem_
region()

Open 
/dev/
ttyUUX

usb_uart_
startup()

request_
irq()

Close
/dev/
ttyUUX

usb_uart_
shut-
down()

free_irq()

In the transmit path, the driver collects egress data from the circular buffer asso-
ciated with the UART port. Data is present in port->info->xmit.buf[port-
>info->xmit.tail] as is evident from the UART driver’s  start_tx() entry point, 
usb_uart_start_tx().

In the receive path, the driver pushes data collected from the USB_UART to the asso-
ciated tty driver using  tty_insert_flip_char() and  tty_flip_buffer_push().
This is done in the receive interrupt handler,  usb_uart_rxint(). Revisit this routine 
after reading the next section, “TTY Drivers.”

Listing 6.1 uses comments to explain the purpose of driver entry points and their 
operation. It leaves some of the entry points in the uart_ops structure unimple-
mented to cut out extra detail.



LISTING 6.1 USB_UART Driver for the     Linux Cell Phone

#include <linux/console.h>

#include <linux/platform_device.h>

#include <linux/tty.h>

#include <linux/tty_flip.h>

#include <linux/serial_core.h>

#include <linux/serial.h>

#include <asm/irq.h>

#include <asm/io.h>

#define USB_UART_MAJOR        200  /* You've to get this assigned */

#define USB_UART_MINOR_START  70   /* Start minor numbering here */

#define USB_UART_PORTS        2    /* The phone has 2 USB_UARTs */

#define PORT_USB_UART         30   /* UART type. Add this to 

include/linux/serial_core.h */

/* Each USB_UART has a 3-byte register set consisting of

   UU_STATUS_REGISTER at offset 0, UU_READ_DATA_REGISTER at 

   offset 1, and UU_WRITE_DATA_REGISTER at offset 2 as shown

   in Table 6.1 */

#define USB_UART1_BASE    0xe8000000 /* Memory base for USB_UART1 */

#define USB_UART2_BASE    0xe9000000 /* Memory base for USB_UART2 */

#define USB_UART_REGISTER_SPACE  0x3 

/* Semantics of bits in the status register */

#define USB_UART_TX_FULL         0x20  /* TX FIFO is full */

#define USB_UART_RX_EMPTY        0x10  /* TX FIFO is empty */

#define USB_UART_STATUS          0x0F  /* Parity/frame/overruns? */

#define USB_UART1_IRQ            3     /* USB_UART1 IRQ */

#define USB_UART2_IRQ            4     /* USB_UART2 IRQ */

#define USB_UART_FIFO_SIZE       32    /* FIFO size */

#define USB_UART_CLK_FREQ        16000000

static struct uart_port usb_uart_port[]; /* Defined later on */

/* Write a character to the USB_UART port */

static void 

usb_uart_putc(struct uart_port *port, unsigned char c)

{
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  /* Wait until there is space in the TX FIFO of the USB_UART. 

     Sense this by looking at the USB_UART_TX_FULL bit in the 

     status register */

  while (__raw_readb(port->membase) & USB_UART_TX_FULL);

  /* Write the character to the data port*/

  __raw_writeb(c, (port->membase+1));

}

/* Read a character from the USB_UART */

static unsigned char 

usb_uart_getc(struct uart_port *port)

{

  /* Wait until data is available in the RX_FIFO */

  while (__raw_readb(port->membase) & USB_UART_RX_EMPTY);

  /* Obtain the data */

  return(__raw_readb(port->membase+2));

}

/* Obtain USB_UART status */

static unsigned char 

usb_uart_status(struct uart_port *port)

{

  return(__raw_readb(port->membase) & USB_UART_STATUS);

}

/*

 * Claim the memory region attached to USB_UART port. Called

 * when the driver adds a USB_UART port via uart_add_one_port().

 */

static int 

usb_uart_request_port(struct uart_port *port)

{

  if (!request_mem_region(port->mapbase, USB_UART_REGISTER_SPACE,

                          "usb_uart")) {

    return -EBUSY;

  }

  return 0;

}

/* Release the memory region attached to a USB_UART port.

 * Called when the driver removes a USB_UART port via 

 * uart_remove_one_port().

 */



static void 

usb_uart_release_port(struct uart_port *port)

{

  release_mem_region(port->mapbase, USB_UART_REGISTER_SPACE);

}

/*

 * Configure USB_UART. Called when the driver adds a USB_UART port.

 */

static void 

usb_uart_config_port(struct uart_port *port, int flags)

{

  if (flags & UART_CONFIG_TYPE && usb_uart_request_port(port) == 0) 

  {

    port->type = PORT_USB_UART;

  }

}

/* Receive interrupt handler */

static irqreturn_t 

usb_uart_rxint(int irq, void *dev_id)

{

  struct uart_port *port = (struct uart_port *) dev_id;

  struct tty_struct *tty = port->info->tty;

  unsigned int status, data;

  /* ... */

  do {

    /* ... */

    /* Read data */

    data   = usb_uart_getc(port);

    /* Normal, overrun, parity, frame error? */

    status = usb_uart_status(port);

    /* Dispatch to the tty layer */

    tty_insert_flip_char(tty, data, status);

    /* ... */

  } while (more_chars_to_be_read()); /* More chars */

  /* ... */

  tty_flip_buffer_push(tty);

  return IRQ_HANDLED;

}

UART Drivers 185



186 Chapter 6 Serial Drivers

/* Called when an application opens a USB_UART */

static int 

usb_uart_startup(struct uart_port *port)

{

  int retval = 0;

  /* ... */

  /* Request IRQ */

  if ((retval = request_irq(port->irq, usb_uart_rxint, 0,

                            "usb_uart", (void *)port))) {

    return retval;

  }

  /* ... */

  return retval;

}

/* Called when an application closes a USB_UART */

static void 

usb_uart_shutdown(struct uart_port *port)

{

  /* ... */

  /* Free IRQ */

  free_irq(port->irq, port);

  /* Disable interrupts by writing to appropriate 

     registers */

  /* ... */

}

/* Set UART type to USB_UART */

static const char *

usb_uart_type(struct uart_port *port)

{

  return port->type == PORT_USB_UART ? "USB_UART" : NULL;

}

/* Start transmitting bytes */

static void 

usb_uart_start_tx(struct uart_port *port)

{

  while (1) {

    /* Get the data from the UART circular buffer and

       write it to the USB_UART's WRITE_DATA register */



    usb_uart_putc(port, 

                  port->info->xmit.buf[port->info->xmit.tail]);

    /* Adjust the tail of the UART buffer */

    port->info->xmit.tail = (port->info->xmit.tail + 1) & 

                            (UART_XMIT_SIZE - 1);

    /* Statistics */

    port->icount.tx++;

    /* Finish if no more data available in the UART buffer */

    if (uart_circ_empty(&port->info->xmit)) break;

  }

  /* ... */

}

/* The UART operations structure */

static struct uart_ops usb_uart_ops = {

  .start_tx     = usb_uart_start_tx,    /* Start transmitting */

  .startup      = usb_uart_startup,     /* App opens USB_UART */

  .shutdown     = usb_uart_shutdown,    /* App closes USB_UART */

  .type         = usb_uart_type,        /* Set UART type */

  .config_port  = usb_uart_config_port, /* Configure when driver 

                                           adds a USB_UART port */

  .request_port = usb_uart_request_port,/* Claim resources 

                                           associated with a

                                           USB_UART port */

  .release_port = usb_uart_release_port,/* Release resources 

                                           associated with a

                                           USB_UART port */

#if 0    /* Left unimplemented for the USB_UART */

  .tx_empty     = usb_uart_tx_empty,    /* Transmitter busy? */

  .set_mctrl    = usb_uart_set_mctrl,   /* Set modem control */

  .get_mctrl    = usb_uart_get_mctrl,   /* Get modem control

  .stop_tx      = usb_uart_stop_tx,     /* Stop transmission */

  .stop_rx      = usb_uart_stop_rx,     /* Stop reception */

  .enable_ms    = usb_uart_enable_ms,   /* Enable modem status 

                                           signals */

  .set_termios  = usb_uart_set_termios, /* Set termios */

#endif

};

static struct uart_driver usb_uart_reg = {

  .owner          = THIS_MODULE,          /* Owner */

  .driver_name    = "usb_uart",           /* Driver name */

  .dev_name       = "ttyUU",              /* Node name */
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  .major          = USB_UART_MAJOR,       /* Major number */

  .minor          = USB_UART_MINOR_START, /* Minor number start */

  .nr             = USB_UART_PORTS,       /* Number of UART ports */

  .cons           = &usb_uart_console,    /* Pointer to the console 

                                             structure. Discussed in Chapter 

                                             12, "Video Drivers" */

};

/* Called when the platform driver is unregistered */

static int 

usb_uart_remove(struct platform_device *dev)

{

  platform_set_drvdata(dev, NULL);

  /* Remove the USB_UART port from the serial core */

  uart_remove_one_port(&usb_uart_reg, &usb_uart_port[dev->id]);

  return 0;

}

/* Suspend power management event */

static int 

usb_uart_suspend(struct platform_device *dev, pm_message_t state)

{

  uart_suspend_port(&usb_uart_reg, &usb_uart_port[dev->id]);

  return 0;

}

/* Resume after a previous suspend */

static int 

usb_uart_resume(struct platform_device *dev)

{

  uart_resume_port(&usb_uart_reg, &usb_uart_port[dev->id]);

  return 0;

}

/* Parameters of each supported USB_UART port */

static struct uart_port usb_uart_port[] = {

  {

    .mapbase  = (unsigned int) USB_UART1_BASE,

    .iotype   = UPIO_MEM,           /* Memory mapped */

    .irq      = USB_UART1_IRQ,      /* IRQ */

    .uartclk  = USB_UART_CLK_FREQ,  /* Clock HZ */

    .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */

    .ops      = &usb_uart_ops,      /* UART operations */



    .flags    = UPF_BOOT_AUTOCONF,  /* UART port flag */

    .line     = 0,                  /* UART port number */

  },

  {

    .mapbase  = (unsigned int)USB_UART2_BASE,

    .iotype   = UPIO_MEM,           /* Memory mapped */

    .irq      = USB_UART2_IRQ,      /* IRQ */

    .uartclk  = USB_UART_CLK_FREQ,  /* CLock HZ */

    .fifosize = USB_UART_FIFO_SIZE, /* Size of the FIFO */

    .ops      = &usb_uart_ops,      /* UART operations */

    .flags    = UPF_BOOT_AUTOCONF,  /* UART port flag */

    .line     = 1,                  /* UART port number */

  }

};

/* Platform driver probe */

static int __init

usb_uart_probe(struct platform_device *dev)

{

  /* ... */

  /* Add a USB_UART port. This function also registers this device 

     with the tty layer and triggers invocation of the config_port() 

     entry point */

  uart_add_one_port(&usb_uart_reg, &usb_uart_port[dev->id]);

  platform_set_drvdata(dev, &usb_uart_port[dev->id]);

  return 0;

}

struct platform_device *usb_uart_plat_device1; /* Platform device 

                                                  for USB_UART 1 */

struct platform_device *usb_uart_plat_device2; /* Platform device 

                                                  for USB_UART 2 */

static struct platform_driver usb_uart_driver = {

  .probe   = usb_uart_probe,            /* Probe method */

  .remove  = __exit_p(usb_uart_remove), /* Detach method */

  .suspend = usb_uart_suspend,          /* Power suspend */

  .resume  = usb_uart_resume,           /* Resume after a suspend */

  .driver  = {

     .name = "usb_uart",                /* Driver name */

  },

};
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/* Driver Initialization */

static int __init 

usb_uart_init(void)

{

   int retval;

   /* Register the USB_UART driver with the serial core */

   if ((retval = uart_register_driver(&usb_uart_reg))) {

     return retval;

   }

   /* Register platform device for USB_UART 1. Usually called 

      during architecture-specific setup */

   usb_uart_plat_device1 = 

      platform_device_register_simple("usb_uart", 0, NULL, 0);

   if (IS_ERR(usb_uart_plat_device1)) {

     uart_unregister_driver(&usb_uart_reg);

     return PTR_ERR(usb_uart_plat_device1);

   }

   /* Register platform device for USB_UART 2. Usually called 

      during architecture-specific setup */

   usb_uart_plat_device2 = 

     platform_device_register_simple("usb_uart", 1, NULL, 0);

   if (IS_ERR(usb_uart_plat_device2)) {

     uart_unregister_driver(&usb_uart_reg);

     platform_device_unregister(usb_uart_plat_device1);

     return PTR_ERR(usb_uart_plat_device2);

   }

   

   /* Announce a matching driver for the platform 

      devices registered above */

   if ((retval = platform_driver_register(&usb_uart_driver))) {

     uart_unregister_driver(&usb_uart_reg);

     platform_device_unregister(usb_uart_plat_device1);

     platform_device_unregister(usb_uart_plat_device2);

   }

   return 0;

}

/* Driver Exit */

static void __exit 

usb_uart_exit(void)



{

  /* The order of unregistration is important. Unregistering the 

     UART driver before the platform driver will crash the system */

  /* Unregister the platform driver */

  platform_driver_unregister(&usb_uart_driver);

  /* Unregister the platform devices */

  platform_device_unregister(usb_uart_plat_device1);

  platform_device_unregister(usb_uart_plat_device2);

  /* Unregister the USB_UART driver */

  uart_unregister_driver(&usb_uart_reg);

}

module_init(usb_uart_init);

module_exit(usb_uart_exit);

RS-485

RS-485    is not a standard PC interface like RS-232, but in the embedded space, you 
may come across computers that use RS-485 connections to reliably communicate 
with control systems. RS-485 uses differential signals that let it exchange data over dis-
tances of up to a few thousand feet, unlike RS-232 that has a range of only a few dozen 
feet. On the processor side, the RS-485 interface is a UART operating in half-duplex 
mode. So, before sending data from the transmit FIFO to the wire, the UART device 
driver needs to additionally enable the RS-485 transmitter and disable the receiver, 
possibly by wiggling associated GPIO pins. To obtain data from the wire to the receive 
FIFO, the UART driver has to perform the reverse operation. 

You have to enable/disable the RS-485 transmitter/receiver at the right places in 
the serial layer. If you disable the transmitter too soon, it might not get suffi cient time 
to drain the last bytes from the transmit FIFO, and this can result in data truncation. 
If you disable the transmitter too late, on the other hand, you prevent data reception 
for that much time, which might lead to receive data loss.

RS-485 supports multidrop, so the higher-layer protocol must implement a suit-
able addressing mechanism if you have multiple devices connected to the bus. RS-485 
does not support hardware fl ow control lines using   Request To Send (RTS) and   Clear
To Send (CTS).
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TTY Drivers

Let’s   now take a look at the structures and registration functions that lie at the heart of 
tty drivers. Three structures are important for their operation:

 1. struct tty_struct defined in include/linux/tty.h. This structure contains all 
state information associated with an open tty. It’s an enormous structure, but 
here are some important fields:

  struct tty_struct {

    int magic;                    /* Magic marker */

    struct tty_driver *driver;    /* Pointer to the tty 

                                     driver */

    struct tty_ldisc   ldisc;     /* Attached Line 

                                     discipline */

    /* ... */

    struct tty_flip_buffer flip;  /* Flip Buffer. See 

                                     below. */

    /* ... */

    

    wait_queue_head_t write_wait; /* See the section 

                                     "Line Disciplines" */

    wait_queue_head_t read_wait;  /* See the section 

                                     "Line Disciplines" */

    /* ... */

  };

 2. struct tty_flip_buffer or the flip buffer embedded inside tty_struct.
This is the centerpiece of the data collection and processing mechanism:

   struct tty_flip_buffer {

     /* ... */

     struct semaphore pty_sem;      /* Serialize */

     char *char_buf_ptr;            /* Pointer to the flip 

                                       buffer */

     /* ... */

     unsigned char char_buf[2*TTY_FLIPBUF_SIZE]; /* The flip 

                                                    buffer */

     /* ... */

   };

The low-level serial driver uses one half of the fl ip buffer for gathering data, 
while the line discipline uses the other half for processing the data. The buffer 



pointers used by the serial driver and the line discipline are then fl ipped, and 
the process continues. Have a look at the function flush_to_ldisc() in driv-
ers/char/tty_io.c to see the fl ip in action. 

In recent kernels, the  tty_flip_buffer structure has been somewhat rede-
signed. It’s now made up of a buffer header ( tty_bufhead) and a buffer list 
(tty_buffer):

 struct tty_bufhead {

   /* ... */

   struct semaphore pty_sem;            /* Serialize */

   struct tty_buffer *head, tail, free; /* See below */

   /* ... */

 };

 struct tty_buffer {

   struct tty_buffer *next;

   char *char_buf_ptr;     /* Pointer to the flip buffer */

   /* ... */

   unsigned long data[0];  /* The flip buffer, memory for 

                              which is dynamically 

                              allocated */

 };

  3. struct tty_driver defined in include/linux/tty_driver.h. This specifies the 
programming interface between tty drivers and higher layers:

struct tty_driver {

  int  magic;            /* Magic number */

  /* ... */

  int  major;            /* Major number */

  int  minor_start;      /* Start of minor number */

  /* ... */

  /* Interface routines between a tty driver and higher 

     layers */

  int  (*open)(struct tty_struct *tty, struct file *filp);

  void (*close)(struct tty_struct *tty, struct file *filp);

  int  (*write)(struct tty_struct *tty, 

                const unsigned char *buf, int count);

  void (*put_char)(struct tty_struct *tty, 

                   unsigned char ch);

  /* ... */

};
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Like a UART driver, a tty driver needs to perform two steps to register itself with the 
kernel:

 1. Call  tty_register_driver(struct tty_driver *tty_d) to register itself 
with the tty core.

 2. Call

tty_register_device(struct tty_driver *tty_d, 

                    unsigned device_index, 

                    struct device *device)

  to register each individual tty that it supports. 

We won’t develop a sample tty driver, but here are some common ones used on 
Linux:

 • Serial emulation over Bluetooth, discussed in Chapter 16, is implemented 
in the form of a tty driver. This driver (drivers/net/bluetooth/rfcomm/ tty.c) calls 
tty_register_driver() during initialization and tty_register_device()
while handling each incoming Bluetooth connection.

 • To work with a system console on a Linux desktop, you need the services of 
virtual terminals (VTs) if you are in text mode or   pseudo terminals (PTYs) if you 
are in graphics mode. VTs and PTYs are implemented as tty drivers and live in 
drivers/char/ vt.c and drivers/char/ pty.c, respectively.

 • The tty driver used over conventional UARTs resides in drivers/serial/serial_core.c.

 • The USB-serial tty driver is in drivers/usb/serial/ usb-serial.c.

Line Disciplines

Line disciplines     provide an elegant mechanism that lets you use the same serial driver 
to run different technologies. The low-level physical driver and the tty driver handle 
the transfer of data to and from the hardware, while line disciplines are responsible for 
processing the data and transferring it between kernel space and user space.

The serial subsystem supports 17 standard line disciplines. The default line dis-
cipline that gets attached when you open a serial port is N_TTY, which implements 
terminal I/O processing. N_TTY is responsible for “cooking” characters received from 



the keyboard. Depending on user request, it maps the control character to newline, 
converts lowercase to uppercase, expands tabs, and echoes characters to the associated 
VT. N_TTY also supports a raw mode used by editors, which leaves all the preceding 
processing to user applications. See Figure 7.3 in the next chapter, “Input Drivers,” 
to learn how the keyboard subsystem is connected to N_TTY. The example tty drivers 
listed at the end of the previous section, “TTY Drivers,” use N_TTY by default.

Line disciplines also implement network interfaces over serial transport protocols. 
For example, line disciplines that are part of the   Point-to-Point Protocol (N_PPP) and 
the   Serial Line Internet Protocol (N_SLIP) subsystems, frame packets, allocate and pop-
ulate associated networking data structures, and pass the data on to the corresponding 
network protocol stack. Other line disciplines handle  Infrared Data (N_IRDA) and the 
Bluetooth Host Control Interface (N_HCI).

Device Example: Touch Controller

Let’s    take a look at the internals of a line discipline by implementing a simple line dis-
cipline for a serial touch-screen controller. Figure 6.6 shows how the touch controller 
is connected on an embedded laptop derivative. The   Finite State Machine (FSM) of 
the touch controller is a candidate for being implemented as a line discipline because 
it can leverage the facilities and interfaces offered by the serial layer.

Processor

North Bridge

South Bridge
Super I/O

UART

Touch Controller

LPC Bus

Touch Panel

FIGURE 6.6 Connection diagram of a touch controller on a PC-derivative.
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Open and Close

To      create a line discipline, defi ne a struct tty_ldisc and register a prescribed set 
of entry points with the kernel. Listing 6.2 contains a code snippet that performs both 
these operations for the example touch controller.

LISTING 6.2 Line Discipline Operations

struct tty_ldisc n_touch_ldisc = {

  TTY_LDISC_MAGIC,         /* Magic */

  "n_tch",                 /* Name of the line discipline */

  N_TCH,                   /* Line discipline ID number */

  n_touch_open,            /* Open the line discipline */

  n_touch_close,           /* Close the line discipline */

  n_touch_flush_buffer,    /* Flush the line discipline's read 

                              buffer */

  n_touch_chars_in_buffer, /* Get the number of processed characters in 

                              the line discipline's read buffer */

  n_touch_read,            /* Called when data is requested 

                              from user space */

  n_touch_write,           /* Write method */

  n_touch_ioctl,           /* I/O Control commands */

  NULL,                    /* We don't have a set_termios

                              routine */

  n_touch_poll,            /* Poll */

  n_touch_receive_buf,     /* Called by the low-level driver

                              to pass data to user space*/

  n_touch_receive_room,    /* Returns the room left in the line

                              discipline's read buffer */

  n_touch_write_wakeup     /* Called when the low-level device 

                              driver is ready to transmit more

                              data */

};

/* ... */

if ((err = tty_register_ldisc(N_TCH, &n_touch_ldisc))) {

  return err;

}



In Listing 6.2, n_tch is the name of the line discipline, and  N_TCH is the line disci-
pline identifi er number. You have to specify the value of N_TCH in include/linux/tty.h,
the header fi le that contains all line discipline defi nitions. Line disciplines active on 
your system can be found in /proc/tty/ldiscs.

Line     disciplines gather data from their half of the tty fl ip buffer, process it, and 
copy the resulting data to a local read buffer. For N_TCH, n_touch_receive_room()
returns the memory left in the read buffer, while  n_touch_chars_in_buffer()
returns the number of processed characters in the read buffer that are ready to be 
delivered to user space.  n_touch_write() and  n_touch_write_wakeup() do noth-
ing because N_TCH is a read-only device.  n_touch_open() takes care of allocating 
memory for the main line discipline data structures, as shown in Listing 6.3.

LISTING 6.3 Opening the Line Discipline

/* Private structure used to implement the Finite State Machine 

(FSM) for the touch controller. The controller and the processor 

communicate using a specific protocol that the FSM implements */ 

struct n_touch {

  int current_state;       /* Finite State Machine */

  spinlock_t touch_lock;   /* Spinlock */

  struct tty_struct *tty;  /* Associated tty */

  /* Statistics and other housekeeping */

  /* ... */

} *n_tch;

/* Device open() */

static int 

n_touch_open(struct tty_struct *tty)

{

  /* Allocate memory for n_tch */

  if (!(n_tch = kmalloc(sizeof(struct n_touch), GFP_KERNEL))) {

    return -ENOMEM;

  }

  memset(n_tch, 0, sizeof(struct n_touch));

  tty->disc_data = n_tch; /* Other entry points now 

                             have direct access to n_tch */
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  /* Allocate the line discipline's local read buffer

     used for copying data out of the tty flip buffer */

  tty->read_buf = kmalloc(BUFFER_SIZE, GFP_KERNEL); 

  if (!tty->read_buf) return -ENOMEM; 

  /* Clear the read buffer */

  memset(tty->read_buf, 0, BUFFER_SIZE); 

  /* Initialize lock */ 

  spin_lock_init(&ntch->touch_lock);

  /* Initialize other necessary tty fields.

     See drivers/char/n_tty.c for an example */

  /* ... */

  return 0;

}

You might want to set N_TCH as the default line discipline (rather than N_TTY) when -
ever the serial port connected to the touch controller is opened. See the section “Chang-
ing Line Disciplines” to see how to change line disciplines from user space.

Read Path

For     interrupt-driven devices, the read data path usually consists of two threads work-
ing in tandem:

 1. A top thread originating from the user process requesting the read 

 2. A bottom thread springing from the interrupt service routine that collects data 
from the device

Figure 6.7 shows these threads associated with the read data fl ow. The interrupt han-
dler queues the receive_buf() method (n_touch_receive_buf() in our example) 
as a task. You can override this behavior by setting the tty->low_latency fl ag.

The touch controller and the processor communicate using a specifi c protocol 
described in the controller’s data sheet. The driver implements this communication 
protocol using an FSM as indicated earlier. Listing 6.4 encodes this FSM as part of the 
receive_buf() entry point,  n_touch_receive_buf().



             Flip Buffer 
(tty->flip.char_buf)

sk_buff

read()

tty_read()

tty_flip_buffer_push() 

 Serial ISR 

queue_task 

ldisc.receive_room()

ThrottleUnthrottle

read_wait queue Local Read Buffer 
(tty->read_buf)

Kernel Space 

Line Discipline Layer

User Buffer 

Terminal IO Network I/O
(TTY, TCH) (PPP, SLIP, Bluetooth, IrDA) 

User Space 

ldisc.receive_buf()

Networking Protocols  

ldisc.chars_in_buf()

ldisc.read() 

FIGURE 6.7 Line discipline read path.

LISTING 6.4 The n_touch_receive_buf() Method

static void 

n_touch_receive_buf(struct tty_struct *tty, 

                    const unsigned char *cp, char *fp, int count)

{

  /* Work on the data in the line discipline's half of 

     the flip buffer pointed to by cp */

  /* ... */

  /* Implement the Finite State Machine to interpret commands/data 

     arriving from the touch controller and put the processed data 

     into the local read buffer */
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/* Datasheet-dependent Code Region */

  switch (tty->disc_data->current_state) { 

    case RESET:

      /* Issue a reset command to the controller */

      tty->driver->write(tty, 0, mode_stream_command, 

                         sizeof(mode_stream_command)); 

      tty->disc_data->current_state = STREAM_DATA;

      /* ... */

      break;

    case STREAM_DATA:

      /* ... */

      break;

    case PARSING:

      /* ... */

      tty->disc_data->current_state = PARSED;

      break;

    case PARSED:

      /* ... */

   }

 if (tty->disc_data->current_state == PARSED) { 

   /* If you have a parsed packet, copy the collected coordinate 

      and direction information into the local read buffer */ 

   spin_lock_irqsave(&tty->disc_data->touch_lock, flags); 

   for (i=0; i < PACKET_SIZE; i++) { 

     tty->disc_data->read_buf[tty->disc_data->read_head] =

                          tty->disc_data->current_pkt[i];

     tty->disc_data->read_head = 

                (tty->disc_data->read_head + 1) & (BUFFER_SIZE - 1); 

     tty->disc_data->read_cnt++; 

   }

   spin_lock_irqrestore(&tty->disc_data->touch_lock, flags);

/* ... */  /* See Listing 6.5 */

  } 

}



n_touch_receive_buf() processes the data arriving from the serial driver. It 
exchanges a series of commands and responses with the touch controller and puts the 
received coordinate and direction (press/release) information into the line discipline’s 
read buffer. Accesses to the read buffer have to be serialized using a spinlock because 
it’s used by both ldisc.receive_buf() and ldisc.read() threads shown in Fig -
ure 6.7 (n_touch_receive_buf() and n_touch_read(), respectively, in our exam-
ple). As you can see in Listing 6.4, n_touch_receive_buf() dispatches commands 
to the touch controller by directly calling the write() entry point of the serial driver. 

n_touch_receive_buf() needs to do a couple more things:

 1. The top read() thread in Figure 6.7 puts the calling process to sleep if no data 
is available. So, n_touch_receive_buf() has to wake up that thread and let it 
read the data that was just processed.

 2. If the line discipline is running out of read buffer space, n_touch_receive_
buf() has to request the serial driver to throttle data arriving from the device. 
ldisc.read() is responsible for requesting the corresponding unthrottling 
when it ferries the data to user space and frees memory in the read buffer. The 
serial driver uses software or hardware flow control mechanisms to achieve the 
throttling and unthrottling.

Listing 6.5 performs these two operations.

LISTING 6.5 Waking Up the Read Thread and Throttling the Serial Driver

/* n_touch_receive_buf() continued.. */

/* Wake up any threads waiting for data */

if (waitqueue_active(&tty->read_wait) && 

    (tty->read_cnt >= tty->minimum_to_wake))

  wake_up_interruptible(&tty->read_wait); 

}

/* If we are running out of buffer space, request the 

   serial driver to throttle incoming data */

if (n_touch_receive_room(tty) < TOUCH_THROTTLE_THRESHOLD) {

  tty->driver.throttle(tty);

}

/* ... */ 
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A wait queue (tty->read_wait) is used to synchronize between the  ldisc.read()
and ldisc.receive_buf() threads. ldisc.read() adds the calling process to the 
wait queue when it does not fi nd data to read, while ldisc.receive_buf() wakes 
the ldisc.read() thread when there is data available to be read. So, n_touch_
read()does the following:

 • If there is no data to be read yet, put the calling process to sleep on the read_
wait queue. The process gets woken by n_touch_receive_buf() when data 
arrives.

 • If data is available, collect it from the local read buffer (tty->read_buf[tty-
>read_tail]) and dispatch it to user space.

 • If the serial driver has been throttled and if enough space is available in the read 
buffer after this read, ask the serial driver to unthrottle.

Networking line disciplines usually allocate an sk_buff (the basic Linux networking 
data structure discussed in Chapter 15, “Network Interface Cards”) and use this as the 
read buffer. They don’t have a read() method, because the corresponding receive_
buf() copies received data into the allocated sk_buff and directly passes it to the 
associated protocol stack.

Write Path

A line     discipline’s write() entry point performs any post processing that is required 
before passing the data down to the low-level driver.

If the underlying driver is not able to accept all the data that the line discipline 
offers, the line discipline puts the requesting thread to sleep. The driver’s interrupt 
handler wakes the line discipline when it is ready to receive more data. To do this, 
the driver calls the  write_wakeup() method registered by the line discipline. The 
associated synchronization is done using a wait queue (tty->write_wait), and 
the operation is similar to that of the read_wait queue described in the previous 
section.

Many networking line disciplines have no write() methods. The protocol imple-
mentation directly transmits the frames down to the serial device driver. However, 
these line disciplines usually still have a write_wakeup() entry point to respond to 
the serial driver’s request for more transmit data.



N_TCH does not need a write() method either, because the touch controller is 
a read-only device. As you saw in Listing 6.4, routines in the receive path directly 
talk to the low-level UART driver when they need to send command frames to the 
controller.

I/O Control

A     user program can send commands to a device via  ioctl() calls, as discussed in 
Chapter 5, “Character Drivers.” When an application opens a serial device, it can usu-
ally issue three classes of ioctls to it:

 • Commands supported by the serial device driver, such as TIOCMSET that sets 
modem information

 • Commands supported by the tty driver, such as TIOCSETD that changes the 
attached line discipline

 • Commands supported by the attached line discipline, such as a command to 
reset the touch controller in the case of N_TCH

The ioctl() implementation for N_TCH is largely standard. Supported commands 
depend on the protocol described in the touch controller’s data sheet.

More Operations

Another line discipline operation is      flush_buffer(), which is used to fl ush any data 
pending in the read buffer. flush_buffer() is also called when a line discipline is 
closed. It wakes up any read threads that are waiting for more data as follows:

if (tty->link->packet){

  wake_up_interruptible(&tty->disc_data->read_wait);

}

Yet another entry point (not supported by N_TCH) is set_termios(). The N_TTY line 
discipline supports the set_termios() interface, which is used to set options specifi c 
to line discipline data processing. For example, you may use set_termios() to put 
the line discipline in raw mode or “cooked” mode. Some options specifi c to the touch 
controller (such as changing the baud rate, parity, and number of stop bits) are imple-
mented by the set_termios() method of the underlying device driver. 
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The remaining entry points such as poll() are fairly standard, and you can return 
to Chapter 5 in case you need assistance.

You     may compile your line discipline as part of the kernel or dynamically load it as 
a module. If you choose to compile it as a module, you must, of course, also provide 
functions to be called during module initialization and exit. The former is usually the 
same as the init() method. The latter needs to clean up private data structures and 
unregister the line discipline. Unregistering the discipline is a one-liner:

tty_unregister_ldisc(N_TCH);

An easier way to drive a serial touch controller is by leveraging the services offered by 
the kernel’s input subsystem and the built-in serport line discipline. We look at that 
technique in the next chapter.

Changing Line Disciplines

N_TCH gets bound to the low-level serial driver when a user-space program opens the 
serial port connected to the touch controller. But sometimes, a user-space application 
might want to attach a different line discipline to the device. For instance, you might 
want to write a program that dumps raw data received from the touch controller with-
out processing it. Listing 6.6 opens the touch controller and changes the line discipline 
to N_TTY to dump the data that is coming in.

LISTING 6.6 Changing a Line Discipline from User Space

fd = open("/dev/ttySX", O_RDONLY | O_NOCTTY);

/* At this point, N_TCH is attached to /dev/ttySX, the serial port used

   by the touch controller. Switch to N_TTY */

ldisc = N_TTY;

ioctl(fd, TIOCSETD, &ldisc); 

/* Set termios to raw mode and dump the data coming in */

/* ... */

The TIOCSETD ioctl() closes the current line discipline and opens the newly 
requested line discipline.



Looking at the Sources

The   serial core resides in drivers/serial/, but tty implementations and low-level drivers 
are scattered across the source tree. The driver fi les referred to in Figure 6.3, for exam-
ple, live in four different directories: drivers/serial/, drivers/char/, drivers/usb/serial/, and 
drivers/net/irda/. The drivers/serial/ directory, which now also contains UART drivers, 
didn’t exist in the 2.4 kernel; UART-specifi c code used to be dispersed between driv-
ers/char/ and arch/your-arch/ directories. The present code partitioning is more logical 
because UART drivers are not the only folks that access the serial layer—devices such 
as USB-to-serial converters and IrDA dongles also need to talk to the serial core. 

Look at drivers/serial/ imx.c for a real-world, low-level UART driver. It handles 
UARTs that are part of Freescale’s i.MX series of embedded controllers.

For a list of line disciplines supported on Linux, see include/linux/tty.h. To get a feel 
of networking line disciplines, look at the corresponding source fi les for PPP (driv-
ers/net/ppp_async.c), Bluetooth (drivers/bluetooth/hci_ldisc.c), Infrared (drivers/net/irda/
irtty-sir.c), and SLIP (drivers/net/slip.c).

Table 6.3 contains a summary of the main data structures used in this chapter 
and the location of their defi nitions in the source tree. Table 6.4 lists the main kernel 
programming interfaces that you used in this chapter along with the location of their 
defi nitions.

TABLE 6.3 Summary of  Data Structures

 Data Structure Location Description

uart_driver include/linux/serial_core.h  Representation of a low-level UART 
driver.

uart_port include/linux/serial_core.h Representation of a UART port.

uart_ops include/linux/serial_core.h  Entry points supported by UART 
drivers.

platform_device include/linux/platform_device.h Representation of a platform device.

platform_driver include/linux/platform_device.h Representation of a platform driver.

tty_struct include/linux/tty.h State information about a tty.

tty_bufhead, tty_buffer include/linux/tty.h  These two structures implement the flip 
buffer associated with a tty.

tty_driver include/linux/tty_driver.h  Programming interface between tty 
drivers and higher layers.

tty_ldisc include/linux/tty_ldisc.h  Entry points supported by a line 
discipline.
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TABLE 6.4 Summary  of Kernel Programming Interfaces

Kernel Interface Location Description

uart_register_driver() drivers/serial/sderial_core.c Registers a UART driver 
with the serial core

uart_add_one_port() drivers/serial/sderial_core.c Registers a UART port 
supported by the UART 
driver

uart_unregister_driver() drivers/serial/sderial_core.c Removes a UART driver 
from the serial core

platform_device register()
platform_device_register_simple()
platform_add_devices()

drivers/base/platform.c Registers a platform device

platform_device_unregister() drivers/base/platform.c Unregisters a platform device

platform_driver_register()/
platform_driver_unregister()

drivers/base/platform.c Registers/unregisters a plat-
form driver

tty_insert_flip_char() include/linux/tty_flip.h Adds a character to the tty 
flip buffer

tty_flip_buffer_push() drivers/char/tty_io.c Queues a request to push 
the flip buffer to the line 
discipline

tty_register_driver() drivers/char/tty_io.c Registers a tty driver with 
the serial core

tty_unregister_driver() drivers/char/tty_io.c Removes a tty driver from 
the serial core

tty_register_ldisc() drivers/char/tty_io.c Creates a line discipline by 
registering prescribed entry 
points

tty_unregister_ldisc() drivers/char/tty_io.c Removes a line discipline 
from the serial core

Some serial data transfer scenarios are complex. You might need to mix and match 
different serial layer blocks, as you saw in Figure 6.3. Some situations may necessitate 
a data path passing through multiple line disciplines. For example, setting up a dialup 
connection over Bluetooth involves the movement of data through the HCI line disci-
pline as well as the PPP line discipline. If you can, establish such a connection and step 
through the code fl ow using a kernel debugger.
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T he kernel’s   input subsystem was created to unify scattered drivers that 
handle diverse classes of data-input devices such as keyboards, mice, track-

balls, joysticks, roller wheels, touch screens, accelerometers, and tablets. The 
input subsystem brings the following advantages to the table:

 • Uniform handling of functionally similar input devices even when they are 
physically different. For example, all mice, such as PS/2, USB or Bluetooth, 
are treated alike. 

 • An easy event interface for dispatching input reports to user applications. 
Your driver does not have to create and manage /dev nodes and related access 
methods. Instead, it can simply invoke input APIs to send mouse move-
ments, key presses, or touch events upstream to user land. Applications such 
as X Windows work seamlessly over the event interfaces exported by the 
input subsystem. 

 • Extraction of common portions out of input drivers and a resulting abstrac-
tion that simplifi es the drivers and introduces consistency. For example, the 
input subsystem offers a collection of low-level drivers called serio that pro-
vides access to input hardware such as serial ports and keyboard controllers.

Figure 7.1 illustrates the operation of the input subsystem. The subsystem con-
tains two classes of drivers that work in tandem: event drivers and device drivers. 
Event drivers are responsible for interfacing with applications, whereas device 
drivers are responsible for low-level communication with input devices. The 
mouse event generator mousedev, is an example of the former, and the PS/2 
mouse driver is an example of the latter. Both event drivers and device drivers 
can avail the services of an efficient, bug-free, reusable core, which lies at the 
heart of the input subsystem.



Because event drivers are standardized and available for all input classes, you are more 
likely to implement a device driver than an event driver. Your device driver can use a suit-
able existing event driver via the input core to interface with user applications. Note that 
this chapter uses the term device driver to refer to an input device driver as opposed to an 
input event driver. 
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FIGURE 7.1 The input subsystem.
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Input Event Drivers

The    event interfaces exported by the input subsystem have evolved into a standard 
that many graphical windowing systems understand. Event drivers offer a hardware-
independent abstraction to talk to input devices, just as the frame buffer interface 
(discussed in Chapter 12, “Video Drivers”) presents a generic mechanism to commu-
nicate with display devices. Event drivers, in tandem with frame buffer drivers, insu-
late graphical user interfaces (GUIs) from the vagaries of the underlying hardware.

The Evdev Interface

Evdev      is a generic input event driver. Each event packet produced by evdev has the fol-
lowing format, defi ned in include/linux/input.h:

struct input_event {

  struct timeval time;  /* Timestamp */

  __u16 type;           /* Event Type */

  __u16 code;           /* Event Code */

  __s32 value;          /* Event Value */

};

To learn how to use evdev, let’s implement an input device driver for a virtual mouse.

Device Example: Virtual Mouse

This is      how our virtual mouse works: An application (coord.c) emulates mouse move-
ments and dispatches coordinate information to the virtual mouse driver (vms.c) via 
a sysfs node, /sys/devices/platform/vms/coordinates. The virtual mouse driver (vms driver 
for short) channels these movements upstream via evdev. Figure 7.2 shows the details.

General-purpose mouse (gpm) is a server that lets you use a mouse in text mode with-
out assistance from an X server. Gpm understands evdev messages, so the vms driver 
can directly communicate with it. After you have everything in place, you can see the 
cursor dancing over your screen to the tune of the virtual mouse movements streamed 
by coord.c.

Listing 7.1 contains coord.c, which continuously generates random X and Y coordi-
nates. Mice, unlike joysticks or touch screens, produce relative coordinates, so that is 
what coord.c does. The vms driver is shown in Listing 7.2.
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FIGURE 7.2 An input driver for a virtual mouse.

LISTING 7.1 Application to Simulate Mouse Movements     (coord.c)

#include <fcntl.h>

int

main(int argc, char *argv[])

{

  int sim_fd;

  int x, y;

  char buffer[10];

  /* Open the sysfs coordinate node */

  sim_fd = open("/sys/devices/platform/vms/coordinates", O_RDWR);

  if (sim_fd < 0) {

    perror("Couldn't open vms coordinate file\n");

    exit(-1);

  }
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  while (1) {

    /* Generate random relative coordinates */

    x = random()%20; 

    y = random()%20;

    if (x%2) x = -x; if (y%2) y = -y;

    /* Convey simulated coordinates to the virtual mouse driver */

    sprintf(buffer, "%d %d %d", x, y, 0);

    write(sim_fd, buffer, strlen(buffer));

    fsync(sim_fd);

    sleep(1);

  }

  close(sim_fd);

}

LISTING 7.2 Input  Driver     for the Virtual Mouse (vms.c)

#include <linux/fs.h>

#include <asm/uaccess.h>

#include <linux/pci.h>

#include <linux/input.h>

#include <linux/platform_device.h>

struct input_dev *vms_input_dev;        /* Representation of an input device */

static struct platform_device *vms_dev; /* Device structure */

/* Sysfs method to input simulated 

   coordinates to the virtual 

   mouse driver  */

static ssize_t

write_vms(struct device *dev,

          struct device_attribute *attr,

          const char *buffer, size_t count)

{

  int x,y;

  sscanf(buffer, "%d%d", &x, &y);

                                        /* Report relative coordinates via the 

                                           event interface */

  input_report_rel(vms_input_dev, REL_X, x);

  input_report_rel(vms_input_dev, REL_Y, y);



  input_sync(vms_input_dev);

  return count;

}

/* Attach the sysfs write method */

DEVICE_ATTR(coordinates, 0644, NULL, write_vms);

/* Attribute Descriptor */

static struct attribute *vms_attrs[] = {

  &dev_attr_coordinates.attr,

  NULL

};

/* Attribute group */

static struct attribute_group vms_attr_group = {

  .attrs = vms_attrs,

};

/* Driver Initialization */

int __init 

vms_init(void)

{

  /* Register a platform device */

  vms_dev = platform_device_register_simple("vms", -1, NULL, 0);

  if (IS_ERR(vms_dev)){

    printk ("vms_init: error\n");

    return PTR_ERR(vms_dev);

  }

  /* Create a sysfs node to read simulated coordinates */

  sysfs_create_group(&vms_dev->dev.kobj, &vms_attr_group);

  /* Allocate an input device data structure */

  vms_input_dev = input_allocate_device();

  if (!vms_input_dev) { 

    printk("Bad input_allocate_device()\n"); return -ENOMEM;

  }

  /* Announce that the virtual mouse will generate 

     relative coordinates */

  set_bit(EV_REL, vms_input_dev->evbit);

  set_bit(REL_X, vms_input_dev->relbit);
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  set_bit(REL_Y, vms_input_dev->relbit);

  /* Register with the input subsystem */

  input_register_device(vms_input_dev);

  printk("Virtual Mouse Driver Initialized.\n");

  return 0;

}

/* Driver Exit */

void

vms_cleanup(void)

{

  /* Unregister from the input subsystem */

  input_unregister_device(vms_input_dev);

  /* Cleanup sysfs node */

  sysfs_remove_group(&vms_dev->dev.kobj, &vms_attr_group);

  /* Unregister driver */

  platform_device_unregister(vms_dev);

  return;

}

module_init(vms_init);

module_exit(vms_cleanup);

Let’s take a closer look at Listing 7.2. During initialization, the vms driver registers 
itself as an input device driver. For this, it fi rst allocates an input_dev structure using 
the core API,  input_allocate_device():

vms_input_dev = input_allocate_device();

It then announces that the virtual mouse generates relative events:

set_bit(EV_REL, vms_input_dev->evbit);  /* Event Type is EV_REL */

Next, it declares the event codes that the virtual mouse produces:

set_bit(REL_X, vms_input_dev->relbit); /* Relative 'X' movement */

set_bit(REL_Y, vms_input_dev->relbit); /* Relative 'Y' movement */



If your virtual mouse is also capable of generating button clicks, you need to add this 
to vms_init():

set_bit(EV_KEY, vms_input_dev->evbit);  /* Event Type is EV_KEY */

set_bit(BTN_0,  vms_input_dev->keybit); /* Event Code is BTN_0 */

Finally, the registration:

input_register_device(vms_input_dev);

write_vms() is the sysfs store() method that attaches to /sys/devices/platform/
vms/coordinates. When coord.c writes an X/Y pair to this fi le, write_vms() does the 
following:

input_report_rel(vms_input_dev, REL_X, x);

input_report_rel(vms_input_dev, REL_Y, y);

input_sync(vms_input_dev);

The fi rst statement generates a REL_X event or a relative device movement in the X 
direction. The second produces a REL_Y event or a relative movement in the Y direc-
tion. input_sync() indicates that this event is complete, so the input subsystem col-
lects these two events into a single evdev packet and sends it out of the door through 
/dev/input/eventX, where X is the interface number assigned to the vms driver. An appli-
cation reading this fi le will receive event packets in the input_event format described 
earlier. To request gpm to attach to this event interface and accordingly chase the cur-
sor around your screen, do this:

bash> gpm -m /dev/input/eventX -t evdev

The ADS7846 touch controller driver and the accelerometer driver, discussed respec-
tively under the sections “Touch Controllers” and “Accelerometers” later, are also 
evdev users.

More Event Interfaces

The vms driver utilizes the generic evdev event interface, but input devices such as 
keyboards, mice, and touch controllers have custom event drivers. We will look at 
them when we discuss the corresponding device drivers.
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To write your own event driver and export it to user space via /dev/input/mydev, you 
have to populate a structure called input_handler and register it with the input core 
as follows:

static struct input_handler my_event_handler = {

  .event      = mydev_event,      /* Handle event reports sent by 

                                     input device drivers that use 

                                     this event driver's services */

  .fops       = &mydev_fops,      /* Methods to manage 

/dev/input/mydev */

  .minor      = MYDEV_MINOR_BASE, /* Minor number of 

/dev/input/mydev */

  .name       = "mydev",          /* Event driver name */

  .id_table   = mydev_ids,        /* This event driver can handle

                                     requests from these IDs */

  .connect    = mydev_connect,    /* Invoked if there is an 

                                     ID match */

  .disconnect = mydev_disconnect, /* Called when the driver unregisters 

                                   */

};

/* Driver Initialization */

static int __init 

mydev_init(void)

{

  /* ... */

  input_register_handler(&my_event_handler);

  /* ... */

  return 0;

}

Look at the implementation of mousedev (drivers/input/mousedev.c) for a complete 
example.

Input Device Drivers

Let’s turn our attention to drivers for common input devices such as keyboards, mice, 
and touch screens. But fi rst, let’s take a quick look at an off-the-shelf hardware access 
facility available to input drivers.



Serio

The    serio layer offers library routines to access legacy input hardware such as i8042-
compatible keyboard controllers and the serial port. PS/2 keyboards and mice interface 
with the former, whereas serial touch controllers connect to the latter. To communicate 
with hardware serviced by serio, for example, to send a command to a PS/2 mouse, 
register prescribed callback routines with serio using serio_register_driver().

To add a new driver as part of serio, register open()/close()/start()/stop()/
write() entry points using serio_register_port(). Look at drivers/input/serio/
serport.c for an example.

As you can see in Figure 7.1, serio is only one route to access low-level hardware. 
Several input device drivers instead rely on low-level support from bus layers such as 
USB or SPI.

Keyboards

Keyboards  come in different fl avors—legacy PS/2, USB, Bluetooth, Infrared, and so 
on. Each type has a specifi c input device driver, but all use the same keyboard event 
driver, thus ensuring a consistent interface to their users. The keyboard event driver, 
however, has a distinguishing feature compared to other event drivers: It passes data to 
another kernel subsystem (the tty layer), rather than to user space via /dev nodes.

PC Keyboards

The     PC keyboard (also called PS/2 keyboard or AT keyboard) interfaces with the pro-
cessor via an i8042-compatible keyboard controller. Desktops usually have a dedicated 
keyboard controller, but on laptops, keyboard interfacing is one of the responsibilities 
of a general-purpose embedded controller (see the section “Embedded Controllers” in 
Chapter 20, “More Devices and Drivers”). When you press a key on a PC keyboard, 
this is the road it takes:

 1. The keyboard controller (or the embedded controller) scans and decodes the 
keyboard matrix and takes care of nuances such as key debouncing. 

 2. The keyboard device driver, with the help of serio, reads raw scancodes from the 
keyboard controller for each key press and release. The difference between a press 
and a release is in the most significant bit, which is set for the latter. A push on 
the “a” key, for example, yields a pair of scancodes, 0x1e and 0x9e. Special keys 
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are escaped using 0xE0, so a jab on the right-arrow key produces the sequence, 
(0xE0 0x4D 0xE0 0xCD). You may use the showkey utility   to observe scancodes 
emanating from the controller (the symbol attaches explanations):

bash> showkey -s

kb mode was UNICODE 

[ if you are trying this under X, it might not work since

 the X server is also reading /dev/console ]

 press any key (program terminates 10s after last

 keypress)...

 ...

 0x1e 0x9e  A push of the "a" key

    3. The keyboard device driver converts received scancodes to  keycodes, based on 
the input mode. To see the keycode corresponding to the “a” key:

bash> showkey 

...

keycode  30 press  A push of the "a" key

keycode  30 release  Release of the "a" key

To report the keycode upstream, the driver generates an input event, which 
passes control to the keyboard event driver.

 4. The keyboard event driver undertakes keycode translation depending on the 
loaded key map. (See man pages of  loadkeys and the map files present in /lib/
kbd/keymaps.) It checks whether the translated keycode is tied to actions such as 
switching the virtual console or rebooting the system. To glow the CAPSLOCK and 
NUMLOCK LEDs instead of rebooting the system in response to a Ctrl+Alt+Del 
push, add the following to the Ctrl+Alt+Del handler of the keyboard event 
driver, drivers/char/keyboard.c:

static void fn_boot_it(struct vc_data *vc, 

                       struct pt_regs *regs) 

{

+  set_vc_kbd_led(kbd, VC_CAPSLOCK); 

+  set_vc_kbd_led(kbd, VC_NUMLOCK);

-  ctrl_alt_del(); 

}



   5. For regular keys, the translated keycode is sent to the associated virtual ter-
minal and the N_TTY line discipline. (We discussed virtual terminals and line 
disciplines in Chapter 6, “Serial Drivers.”) This is done as follows by drivers/
char/keyboard.c:

/* Add the keycode to flip buffer */

tty_insert_flip_char(tty, keycode, 0);

/* Schedule */

con_schedule_flip(tty);

The N_TTY line discipline processes the input thus received from the keyboard, echoes 
it to the virtual console, and lets user-space applications read characters from the /dev/
ttyX node connected to the virtual terminal.

Figure 7.3 shows the data fl ow from the time you push a key on your keyboard until 
the time it’s echoed on your virtual console. The left half of the fi gure is hardware-
specifi c, and the right half is generic. As per the design goal of the input subsystem, the 
underlying hardware interface is transparent to the keyboard event driver and the tty 
layer. The input core and the clearly defi ned event interfaces thus insulate input users 
from the intricacies of the hardware.

USB and Bluetooth Keyboards

The USB         specifi cations related to   human interface devices (HID) stipulate the pro-
tocol that USB keyboards, mice, keypads, and other input peripherals use for com-
munication. On Linux, this is implemented via the usbhid USB client driver , which 
is responsible for the USB HID class (0x03). Usbhid registers itself as an input device 
driver. It conforms to the input API and reports input events appropriate to the con-
nected HID.

To understand the code path for a USB keyboard, revert to Figure 7.3 and modify 
the hardware-specifi c left half. Replace the keyboard controller in the Input Hardware 
box with a USB controller, serio with the USB core layer, and the Input Device Driver 
box with the usbhid driver.

For a Bluetooth keyboard, replace the keyboard controller in Figure 7.3 with a 
Bluetooth chipset, serio with the Bluetooth core layer, and the Input Device Driver 
box with the Bluetooth hidp driver.

USB and Bluetooth are discussed in detail in Chapter 11, “Universal Serial Bus,” 
and Chapter 16, “Linux Without Wires,” respectively.
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FIGURE 7.3 Data fl ow from a PS/2-compatible keyboard.

Mice

Mice, like keyboards, come with different capabilities and have different interfacing 
options. Let’s look at the common ones.



PS/2 Mice

Mice     generate relative movements in the X and Y axes. They also possess one or more 
buttons. Some have scroll wheels, too. The input device driver for PS/2-compatible 
legacy mice relies on the serio layer to talk to the underlying controller. The input 
event driver for mice, called  mousedev, reports mouse events to user applications via 
/dev/input/mice.

Device Example: Roller Mouse

To     get a feel of a real-world mouse device driver, let’s convert the roller wheel discussed 
in Chapter 4, “Laying the Groundwork,” into a variation of the generic PS/2 mouse. 
The “roller mouse” generates one-dimensional movement in the Y-axis. Clockwise and 
anticlockwise turns of the wheel produce positive and negative relative Y coordinates 
respectively (like the scroll wheel in mice), while pressing the roller wheel results in a 
left button mouse event. The roller mouse is thus ideal for navigating menus in devices 
such as smart phones, handhelds, and music players.

The roller mouse device driver implemented in Listing 7.3 works with windowing 
systems such as X Windows. Look at  roller_mouse_init() to see how the driver 
declares its mouse-like capabilities. Unlike the roller wheel driver in Listing 4.1 of 
Chapter 4, the roller mouse driver needs no read() or poll() methods because 
events are reported using input APIs. The roller interrupt handler roller_isr()
also changes accordingly. Gone are the housekeepings done in the interrupt han-
dler using a wait queue, a spinlock, and the store_movement() routine to support 
read() and poll().

In Listing 7.3, the leading + and - denote the differences from the roller wheel 
driver implemented in Listing 4.1 of Chapter 4.

LISTING 7.3 The Roller Mouse Driver

+  #include <linux/input.h>

+  #include <linux/interrupt.h>

+  /* Device structure */

+  struct {

+    /* ... */

+    struct input_dev dev;

+  } roller_mouse;

+  static int __init

+  roller_mouse_init(void)
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+    {

+      /* Allocate input device structure */

+      roller_mouse->dev = input_allocate_device();

+

+      /* Can generate a click and a relative movement */

+      roller_mouse->dev->evbit[0] = BIT(EV_KEY) | BIT(EV_REL);

+      /* Can move only in the Y-axis */

+      roller_mouse->dev->relbit[0] = BIT(REL_Y);

+

+      /* My click should be construed as the left button 

+         press of a mouse */

+      roller_mouse->dev->keybit[LONG(BTN_MOUSE)] = BIT(BTN_LEFT);

+      roller_mouse->dev->name = "roll";

+

+      /* For entries in /sys/class/input/inputX/id/ */

+      roller_mouse->dev->id.bustype = ROLLER_BUS; 

+      roller_mouse->dev->id.vendor  = ROLLER_VENDOR;

+      roller_mouse->dev->id.product = ROLLER_PROD;

+      roller_mouse->dev->id.version = ROLLER_VER;

+      /* Register with the input subsystem */

+      input_register_device(roller_mouse->dev);

+    }

/* Global variables */

- spinlock_t roller_lock = SPIN_LOCK_UNLOCKED; 

- static DECLARE_WAIT_QUEUE_HEAD(roller_poll);

/* The Roller Interrupt Handler */

static irqreturn_t 

roller_interrupt(int irq, void *dev_id)

{

  int i, PA_t, PA_delta_t, movement = 0;

  /* Get the waveforms from bits 0, 1 and 2 

     of Port D as shown in Figure 7.1 */

  PA_t =  PORTD & 0x07;

  /* Wait until the state of the pins change.

     (Add some timeout to the loop) */

  for (i=0; (PA_t==PA_delta_t); i++){



    PA_delta_t =  PORTD & 0x07;

  }

  movement = determine_movement(PA_t, PA_delta_t);

- spin_lock(&roller_lock);

-

- /* Store the wheel movement in a buffer for

-    later access by the read()/poll() entry points */

- store_movements(movement);

-

- spin_unlock(&roller_lock);

-

- /* Wake up the poll entry point that might have

-    gone to sleep, waiting for a wheel movement */

- wake_up_interruptible(&roller_poll);

-

+ if (movement == CLOCKWISE) {

+   input_report_rel(roller_mouse->dev, REL_Y, 1);

+ } else if (movement == ANTICLOCKWISE) {

+   input_report_rel(roller_mouse->dev, REL_Y, -1);

+ } else if (movement == KEYPRESSED) {

+   input_report_key(roller_mouse->dev, BTN_LEFT, 1);

+ }

+ input_sync(roller_mouse->dev);

  return IRQ_HANDLED;

}

Trackpoints

A trackpoint     is a pointing device that comes integrated with the PS/2-type keyboard 
on several laptops. This device includes a joystick located among the keys and mouse 
buttons positioned under the spacebar. A trackpoint essentially functions as a mouse, 
so you can operate it using the PS/2 mouse driver.

Unlike a regular mouse, a trackpoint offers more movement control. You can com-
mand the trackpoint controller to change properties such as sensitivity and inertia. 
The kernel has a special driver, drivers/input/mouse/trackpoint.c, to create and manage 
associated sysfs nodes. For the full set of track point confi guration options, look under 
/sys/devices/platform/i8042/serioX/serioY/.
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Touchpads

A touchpad     is a mouse-like pointing device commonly found on laptops. Unlike 
conventional mice, a touchpad does not have moving parts. It can generate mouse-
compatible relative coordinates but is usually used by operating systems in a more 
powerful mode that produces absolute coordinates. The communication protocol used 
in absolute mode is similar to the PS/2 mouse protocol, but not compatible with it.

The basic PS/2 mouse driver is capable of supporting devices that conform to dif-
ferent variations of the bare PS/2 mouse protocol. You may add support for a new 
mouse protocol to the base driver by supplying a protocol driver via the psmouse
structure. If your laptop uses the Synaptics touchpad in absolute mode, for example, 
the base PS/2 mouse driver uses the services of a Synaptics protocol driver to interpret 
the streaming data. For an end-to-end understanding of how the Synaptics protocol 
works in tandem with the base PS/2 driver, look at the following four code regions 
collected in Listing 7.4:

 • The PS/2 mouse driver drivers/input/mouse/psmouse-base.c, instantiates a 
psmouse_protocol structure with information regarding supported mouse 
protocols (including the Synaptics touchpad protocol).

 • The psmouse structure, defined in drivers/input/mouse/psmouse.h, ties various 
PS/2 protocols together.

 •  synaptics_init() populates the psmouse structure with the address of asso-
ciated protocol functions.

 • The protocol handler function  synaptics_process_byte(), populated in 
synaptics_init(), gets called from interrupt context when serio senses mouse 
movement. If you unfold synaptics_process_byte(), you will see touchpad 
movements being reported to user applications via mousedev.

LISTING 7.4 PS/2 Mouse Protocol Driver for the Synaptics Touchpad

drivers/input/mouse/psmouse-base.c:

/* List of supported PS/2 mouse protocols */

static struct psmouse_protocol psmouse_protocols[] = {

 {

   .type     = PSMOUSE_PS2,  /* The bare PS/2 handler */

   .name     = "PS/2",

   .alias    = "bare",



   .maxproto = 1,

   .detect   = ps2bare_detect,

 },

 /* ... */

 {

   .type    = PSMOUSE_SYNAPTICS, /* Synaptics TouchPad Protocol */

   .name    = "SynPS/2",

   .alias   = "synaptics",

   .detect  = synaptics_detect,  /* Is the protocol detected? */

   .init    = synaptics_init,    /* Initialize Protocol Handler */

 },

  /* ... */

}

drivers/input/mouse/psmouse.h:

/* The structure that ties various mouse protocols together */

struct psmouse {

  struct input_dev *dev; /* The input device */

  /* ... */

  /* Protocol Methods */

  psmouse_ret_t (*protocol_handler)

                 (struct psmouse *psmouse, struct pt_regs *regs);

  void (*set_rate)(struct psmouse *psmouse, unsigned int rate);

  void (*set_resolution)

        (struct psmouse *psmouse, unsigned int resolution);

  int (*reconnect)(struct psmouse *psmouse);

  void (*disconnect)(struct psmouse *psmouse);

  /* ... */

};

drivers/input/mouse/synaptics.c:

/* init() method of the Synaptics protocol */

int synaptics_init(struct psmouse *psmouse)

{

  struct synaptics_data *priv;

  psmouse->private = priv = kmalloc(sizeof(struct synaptics_data), 

                                    GFP_KERNEL);

  /* ... */

  /* This is called in interrupt context when mouse 

     movement is sensed */
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  psmouse->protocol_handler = synaptics_process_byte;

  /* More protocol methods */

  psmouse->set_rate = synaptics_set_rate;

  psmouse->disconnect = synaptics_disconnect;

  psmouse->reconnect = synaptics_reconnect;

  /* ... */

}

drivers/input/mouse/synaptics.c:

/* If you unfold synaptics_process_byte() and look at

   synaptics_process_packet(), you can see the input 

   events being reported to user applications via mousedev */

static void synaptics_process_packet(struct psmouse *psmouse)

{

  /* ... */

  if (hw.z > 0) {

    /* Absolute X Coordinate */

    input_report_abs(dev, ABS_X, hw.x);

    /* Absolute Y Coordinate */

    input_report_abs(dev, ABS_Y, 

                     YMAX_NOMINAL + YMIN_NOMINAL - hw.y);

  }

  /* Absolute Z Coordinate */

  input_report_abs(dev, ABS_PRESSURE, hw.z);

  /* ... */

  /* Left TouchPad button */

  input_report_key(dev, BTN_LEFT, hw.left);

  /* Right TouchPad button */

  input_report_key(dev, BTN_RIGHT, hw.right);

  /* ... */

}

USB and Bluetooth Mice

USB         mice are handled by the same input driver ( usbhid) that drives USB keyboards. 
Similarly, the hidp driver  that implements support for Bluetooth keyboards also takes 
care of Bluetooth mice.

As you would expect, USB and Bluetooth mice drivers channel device data through 
mousedev.



Touch Controllers

In Chapter 6,    we implemented a device driver for a serial touch controller in the form 
of a line discipline called N_TCH. The input subsystem offers a better and easier way to 
implement that driver. Refashion the fi nite state machine in N_TCH as an input device 
driver with the following changes:

 1. Serio offers a line discipline called  serport for accessing devices connected to the 
serial port. Use serport’s services to talk to the touch controller.

 2. Instead of passing coordinate information to the tty layer, generate input reports 
via evdev as you did in Listing 7.2 for the virtual mouse.

With this, the touch screen is accessible to user space via /dev/input/eventX. The actual 
driver implementation is left as an exercise.

An example of a touch controller that does not interface via the serial port is the 
Analog Devices ADS7846 chip, which communicates over a Serial Peripheral Interface
(SPI  ). The driver for this device uses the services of the SPI core rather than serio. The 
section “The Serial Peripheral Interface Bus” in Chapter 8, “The Inter-Integrated Cir-
cuit Protocol,” discusses SPI. Like most touch drivers, the ADS7846 driver uses the 
evdev interface to dispatch touch information to user applications.

Some touch controllers interface over USB. An example is the 3M USB touch con-
troller, driven by drivers/input/touchscreen/usbtouchscreen.c.

 Many PDAs have four-wire resistive touch panels superimposed on their LCDs. The X 
and Y plates of the panel (two wires for either axes) connect to an analog-to-digital con-
verter (ADC), which provides a digital readout of the analog voltage difference arising 
out of touching the screen. An input driver collects the coordinates from the ADC and 
dispatches it to user space.

Different instances of the same touch panel may produce slightly different coordinate 
ranges (maximum values in the X and Y directions) due to the nuances of manufactur-
ing processes. To insulate applications from this variation, touch screens are calibrated
prior to use. Calibration  is usually initiated by the GUI by displaying cross-marks at 
screen boundaries and other vantage points, and requesting the user to touch those 
points. The generated coordinates are programmed back into the touch controller 
using appropriate commands if it supports self-calibration, or used to scale the coordi-
nate stream in software otherwise.
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The input subsystem also contains an event driver called  tsdev that generates coor-
dinate information according to the Compaq touch-screen protocol. If your system 
reports touch events via tsdev, applications that understand this protocol can elicit 
touch input from /dev/input/tsX. This driver is, however, scheduled for removal from 
the mainline kernel in favor of the user-space tslib library. Documentation/feature-
removal-schedule.txt lists features that are going away from the kernel source tree.

Accelerometers

An    accelerometer measures acceleration. Several IBM/Lenovo laptops have an acceler-
ometer that detects sudden movement. The generated information is used to protect 
the hard disk from damage using a mechanism called Hard Drive Active Protection 
System (HDAPS  ), analogous to the way a car airbag shields a passenger from injury. 
The HDAPS driver is implemented as a platform driver that registers with the input 
subsystem. It uses evdev to stream the X and Y components of the detected accelera-
tion. Applications can read acceleration events via /dev/input/eventX to detect condi-
tions, such as shock and vibe, and perform a defensive action, such as parking the hard 
drive’s head. The following command spews output if you move the laptop (assume 
that event3 is assigned to HDAPS): 

bash> od –x /dev/input/event3

0000000 a94d 4599 1f19 0007 0003 0000 ffed ffff

...

The accelerometer also provides information such as temperature, keyboard activity, 
and mouse activity, all of which can be gleaned via fi les in /sys/devices/platform/hdaps/.
Because of this, the HDAPS driver is part of the hardware monitoring (hwmon) sub-
system in the kernel sources. We talk about hardware monitoring in the section “Hard-
ware Monitoring with LM-Sensors” in the next chapter.

Output Events

Some     input device drivers also handle output events. For example, the keyboard 
driver can glow the CAPSLOCK LED, and the PC speaker driver can sound a beep. 
Let’s zoom in on the latter. During initialization, the speaker driver declares its out-
put capability by setting appropriate evbits and registering a callback routine to han-
dle the output event:



drivers/input/misc/pcspkr.c:

static int __devinit pcspkr_probe(struct platform_device *dev)

{

  /* ... */

  /* Capability Bits */

  pcspkr_dev->evbit[0]  = BIT(EV_SND);

  pcspkr_dev->sndbit[0] = BIT(SND_BELL) | BIT(SND_TONE);

  /* The Callback routine */

  pcspkr_dev->event = pcspkr_event;

  err = input_register_device(pcspkr_dev);

  /* ... */

}

/* The callback routine */

static int pcspkr_event(struct input_dev *dev, unsigned int type, 

                        unsigned int code, int value)

{

  /* ... */

  /* I/O programming to sound a beep */

  outb_p(inb_p(0x61) | 3, 0x61);

  /* set command for counter 2, 2 byte write */

  outb_p(0xB6, 0x43);

  /* select desired HZ */

  outb_p(count & 0xff, 0x42);

  outb((count >> 8) & 0xff, 0x42);

  /* ... */

}

To sound the beeper, the keyboard event driver generates a sound event (EV_SND) as 
follows:

input_event(handle->dev, EV_SND,   /* Type */

                         SND_TONE, /* Code */ 

                         hz        /* Value */);
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This triggers execution of the callback routine,  pcspkr_event(), and you hear 
the beep.

Debugging

You   can use the  evbug module as a debugging aid if you’re developing an input driver. 
It dumps the (type, code, value) tuple (see struct input_event defi ned previously) 
corresponding to events generated by the input subsystem. Figure 7.4 contains data 
captured by evbug while operating some input devices:

/* Touchpad Movement */
evbug.c Event. Dev: isa0060/serio1/input0: Type: 3, Code: 28, Value: 0
evbug.c Event. Dev: isa0060/serio1/input0: Type: 1, Code: 325, Value: 0
evbug.c Event. Dev: isa0060/serio1/input0: Type: 0, Code: 0, Value: 0

/* Trackpoint Movement */
evbug.c Event. Dev: synaptics-pt/serio0/input0: Type: 2, Code: 0, Value: -1
evbug.c Event. Dev: synaptics-pt/serio0/input0: Type: 2, Code: 1, Value: -2
evbug.c Event. Dev: synaptics-pt/serio0/input0: Type: 0, Code: 0, Value: 0

/* USB Mouse Movement */
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 2, Code: 1, Value: -1
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 0, Code: 0, Value: 0
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 2, Code: 0, Value: 1
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 0, Code: 0, Value: 0

/* PS/2 Keyboard keypress 'a' */
evbug.c Event. Dev: isa0060/serio0/input0: Type: 4, Code: 4, Value: 30
evbug.c Event. Dev: isa0060/serio0/input0: Type: 1, Code: 30, Value: 0
evbug.c Event. Dev: isa0060/serio0/input0: Type: 0, Code: 0, Value: 0

/* USB keyboard keypress 'a' */
evbug.c Event. Dev: usb-0000:00:1d.1-1/input0: Type: 1, Code: 30, Value: 1
evbug.c Event. Dev: usb-0000:00:1d.1-1/input0: Type: 0, Code: 0, Value: 0
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 1, Code: 30, Value: 0
evbug.c Event. Dev: usb-0000:00:1d.1-2/input0: Type: 0, Code: 0, Value: 0

FIGURE 7.4 Evbug output.

To make sense of the dump in Figure 7.4, remember that touchpads generate absolute 
coordinates (EV_ABS) or event type 0x03, trackpoints produce relative coordinates 
(EV_REL) or event type 0x02, and keyboards emit key events (EV_KEY) or event type 



0x01. Event type 0x0 corresponds to an invocation of input_sync(), which does the 
following:

input_event(dev, EV_SYN, SYN_REPORT, 0);

This translates to a (type, code, value) tuple of (0x0, 0x0, 0x0) and completes each 
input event.

Looking at the Sources

Most   input event drivers are present in the drivers/input/ directory. The keyboard event 
driver, however, lives in drivers/char/keyboard.c, because it’s connected to virtual termi-
nals and not to device nodes under /dev/input/.

You can fi nd input device drivers in several places. Drivers for legacy keyboards, 
mice, and joysticks, reside in separate subdirectories under drivers/input/. Bluetooth 
input drivers live in net/bluetooth/hidp/. You can also fi nd input drivers in regions such 
as drivers/hwmon/ and drivers/media/video/. Event types, codes, and values, are defi ned 
in include/linux/input.h.

The serio subsystem stays in drivers/input/serio/. Sources for the serport line disci-
pline is in drivers/input/serio/serport.c. Documentation/input/ contains more details on 
different input interfaces.

Table 7.1 summarizes the main data structures used in this chapter and their loca-
tion inside the source tree. Table 7.2 lists the main kernel programming interfaces that 
you used in this chapter along with the location of their defi nitions.

TABLE 7.1 Summary  of Data Structures 

 Data Structure Location Description

input_event include/linux/input.h  Each event packet produced by evdev has 
this format.

input_dev include/linux/input.h Representation of an input device.

input_handler include/linux/serial_core.h  Contains the entry points  supported by an 
event driver.

 psmouse_protocol drivers/input/mouse/psmouse-base.c  Information about a supported PS/2 mouse 
protocol driver.

psmouse drivers/input/mouse/psmouse.h  Methods supported by a PS/2 mouse driver.
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TABLE 7.2 Summary of Kernel Programming Interfaces

 Kernel Interface Location Description

 input_register_device() drivers/input/input.c  Registers a device with the 
input core

 input_unregister_device() drivers/input/input.c  Removes a device from the 
input core

 input_report_rel() include/linux/input.h  Generates a relative movement in 
a specified direction

input_report_abs() include/linux/input.h  Generates an absolute movement 
in a specified direction

input_report_key() include/linux/input.h Generates a key or a button press

input_sync() include/linux/input.h  Indicates that the input subsystem 
can collect previously gener-
ated events into an evdev packet 
and send it to user space via 
/dev/input/inputX

input_register_handler() drivers/input/input.c Registers a custom event driver

sysfs_create_group() fs/sysfs/group.c  Creates a sysfs node group with 
specified attributes

sysfs_remove_group() fs/sysfs/group.c  Removes a sysfs group created 
using sysfs_create_group()

tty_insert_flip_char() include/linux/tty_flip.h  Sends a character to the line 
discipline layer

platform_device_register_simple() drivers/base/platform.c  Creates a simple platform device

platform_device_unregister() drivers/base/platform.c  Unregisters a platform device
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T he Inter-Integrated Circuit, or   I2C (pronounced I squared C) bus and its 
subset, the System Management Bus (SMBus   ), are synchronous serial inter-

faces that are ubiquitous on desktops and embedded devices. Let’s fi nd out how 
the kernel supports I2C/SMBus host adapters and client devices by implement-
ing example drivers to access an I2C EEPROM and an I2C RTC. And before 
wrapping up this chapter, let’s also peek at two other serial interfaces supported 
by the kernel: the Serial Peripheral Interface or SPI (often pronounced spy) bus
and the 1-wire bus. 

All these serial interfaces (I2C, SMBus, SPI, and 1-wire) share two common 
characteristics:

 • The amount of data exchanged is small.

 • The required data transfer rate is low.

What’s I2C/SMBus?

I2C      is a serial bus that is widely used in desktops and laptops to interface the pro-
cessor with devices such as EEPROMs, audio codecs, and specialized chips that 
monitor parameters such as temperature and power-supply voltage. In addition, 
I2C is widely used in embedded devices to communicate with RTCs, smart battery 
circuits, multiplexers, port expanders, optical transceivers, and other similar devices. 
Because I2C is supported by a large number of microcontrollers, there are loads of 
cheap I2C devices available in the market today.

I2C and SMBus are master-slave protocols where communication takes place 
between a    host adapter (or host controller) and client devices (or slaves). The host 
adapter is usually part of the South Bridge chipset on desktops and part of the 
microcontroller on embedded devices. Figure 8.1 shows an example I2C bus on PC-
compatible hardware. 
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FIGURE 8.1 I2C/SMBus on PC-compatible hardware.

I2C  and its subset SMBus are 2-wire interfaces originally developed by Philips and 
Intel, respectively. The two wires are clock and bidirectional data, and the correspond-
ing lines are called     Serial CLock (SCL) and Serial DAta (SDA). Because the I2C bus 
needs only a pair of wires, it consumes less space on the circuit board. However, the 
supported bandwidths are also low. I2C allows up to 100Kbps in the standard mode 
and 400Kbps in a fast mode. (SMBus supports only up to 100Kbps, however.) The 
bus is thus suitable only for slow peripherals. Even though I2C supports bidirectional 
exchange, the communication is half duplex because there is only a single data wire.

I2C and SMBus devices own 7-bit addresses. The protocol also supports 10-bit 
addresses, but many devices respond only to 7-bit addressing , which yields a maxi-
mum of 127 devices on the bus. Due to the master-slave nature of the protocol, device 
addresses are also known as   slave addresses.

I2C Core

The  I2C core is a code base consisting of routines and data structures available to 
host adapter drivers and client drivers. Common code in the core makes the driver 
developer’s job easier. The core also provides a level of indirection that renders client 
drivers independent of the host adapter, allowing them to work unchanged even if the 
client device is used on a board that has a different I2C host adapter. This philosophy 
of a core layer and its attendant benefi ts is also relevant for many other device driver 
classes in the kernel, such as PCMCIA, PCI, and USB.
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In addition to the core, the kernel I2C infrastructure consists of the following:

 • Device drivers for I2C host adapters. They fall in the realm of bus drivers and 
usually consist of an adapter (or controller) driver and an algorithm driver. The 
former uses the latter to talk to the I2C bus.

 • Device drivers for I2C client devices.

 • i2c-dev, which allows the implementation of user mode I2C client drivers.

You are more likely to implement client drivers than adapter or algorithm drivers 
because there are a lot more I2C devices than there are I2C host adapters. So, we will 
confi ne ourselves to client drivers in this chapter.

Figure 8.2 illustrates the Linux I2C subsystem. It shows I2C kernel modules talking 
to a host adapter and a client device on an I2C bus.

User Application
I2C User Mode
Device Driver

User Space

Kernel Space

Kernel Space

Hardware

/sys, /dev i2c-core i2c-dev

I2C Client
Driver

I2C Adapter/Algo
Driver

I2C Device
I2C Bus

I2C Host
Controller

FIGURE 8.2 The Linux I2C subsystem.



Because SMBus is a subset of I2C, using only SMBus commands to talk to your device 
yields a driver that works with both SMBus and I2C adapters. Table 8.1 lists the 
SMBus-compatible data transfer routines provided by the I2C core.

Bus Transactions

Before    implementing an example driver, let’s get a better understanding of the I2C
protocol by peering at the wires through a magnifying glass. Listing 8.1 shows a code 
snippet that talks to an I2C EEPROM and the corresponding transactions that occur 
on the bus. The transactions were captured by connecting an I2C bus analyzer while 
running the code snippet. The code uses user mode I2C functions. (We talk more 
about user mode I2C programming in Chapter 19, “Drivers in User Space.”)

LISTING 8.1 Transactions on the I2C Bus

/* ... */

/*

 * Connect to the EEPROM. 0x50 is the device address.

 * smbus_fp is a file pointer into the SMBus device.

 */

ioctl(smbus_fp, 0x50, slave); 

/* Write a byte (0xAB) at memory offset 0 on the EEPROM */ 

i2c_smbus_write_byte_data(smbus_fp, 0, 0xAB);

/*

 * This is the corresponding transaction observed

 * on the bus after the write:

* S 0x50 Wr [A] 0 [A] 0xAB [A] P

*

 * S is the start bit, 0x50 is the 7-bit slave address (0101000b),

 * Wr is the write command (0b), A is the Accept bit (or 

 * acknowledgment) received by the host from the slave, 0 is the 

 * address offset on the slave device where the byte is to be 

 * written, 0xAB is the data to be written, and P is the stop bit.

 * The data enclosed within [] is sent from the slave to the

 * host, while the rest of the bits are sent by the host to the

 * slave.

 */
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/* Read a byte from offset 0 on the EEPROM */ 

res =  i2c_smbus_read_byte_data(smbus_fp, 0);

/*

 * This is the corresponding transaction observed

 * on the bus after the read:

 * S 0x50 Wr [A] 0 [A] S 0x50 Rd [A] [0xAB] NA P

 * 

 * The explanation of the bits is the same as before, except that 

 * Rd stands for the Read command (1b), 0xAB is the data received 

 * from the slave, and NA is the Reverse Accept bit (or the 

 * acknowledgment sent by the host to the slave).

 */

Device Example: EEPROM

Our   fi rst example client device is an EEPROM sitting on an I2C bus, as shown in 
Figure 8.1. Almost all laptops and desktops have such an EEPROM for storing BIOS 
confi guration information. The example EEPROM    has two memory banks. The driver 
exports /dev interfaces corresponding to each bank: /dev/eep/0 and /dev/eep/1. Applica-
tions operate on these nodes to exchange data with the EEPROM. 

Each I2C/SMBus client device is assigned a slave address that functions as the device 
identifi er. The EEPROM in the example answers to two slave addresses, SLAVE_ADDR1
and SLAVE_ADDR2, one per bank.

The example driver uses I2C commands that are compatible with SMBus, so it 
works with both I2C and SMBus EEPROMs.

Initializing

As is    the case with all driver classes, I2C client drivers also own an  init() entry point. 
Initialization entails allocating data structures, registering the driver with the I2C core, 
and hooking up with sysfs and the Linux device model. This is done in Listing 8.2.

LISTING 8.2 Initializing the EEPROM Driver

/* Driver entry points */

static struct file_operations eep_fops = {

  .owner   = THIS_MODULE,

  .llseek  = eep_llseek,



  .read    = eep_read,

  .ioctl   = eep_ioctl,

  .open    = eep_open,

  .release = eep_release,

  .write   = eep_write,

};

static dev_t dev_number;          /* Allotted Device Number */

static struct class *eep_class;   /* Device class */

/* Per-device client data structure for each 

 * memory bank supported by the driver

 */

struct eep_bank {

  struct i2c_client *client;      /* I2C client for this bank */

  unsigned int addr;              /* Slave address of this bank */

  unsigned short current_pointer; /* File pointer */

  int bank_number;                /* Actual memory bank number */

  /* ... */                       /* Spinlocks, data cache for

                                     slow devices,.. */

};

#define NUM_BANKS  2              /* Two supported banks */

#define BANK_SIZE  2048           /* Size of each bank */

struct ee_bank *ee_bank_list;     /* List of private data 

                                     structures, one per bank */

/*

 * Device Initialization

 */

int __init 

eep_init(void)

{

  int err, i;

  /* Allocate the per-device data structure, ee_bank */

  ee_bank_list = kmalloc(sizeof(struct ee_bank)*NUM_BANKS,

                         GFP_KERNEL);

  memset(ee_bank_list, 0, sizeof(struct ee_bank)*NUM_BANKS);
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  /* Register and create the /dev interfaces to access the EEPROM

     banks. Refer back to Chapter 5, "Character Drivers" for

     more details */

  if (alloc_chrdev_region(&dev_number, 0, 

                          NUM_BANKS, "eep") < 0) {

    printk(KERN_DEBUG "Can’t register device\n");

    return -1;

  }

  eep_class = class_create(THIS_MODULE, DEVICE_NAME);

  for (i=0; i < NUM_BANKS;i++) {

    /* Connect the file operations with cdev */

    cdev_init(&ee_bank[i].cdev, &ee_fops);

    /* Connect the major/minor number to the cdev */

    if (cdev_add(&ee_bank[i].cdev, (dev_number + i), 1)) {

      printk("Bad kmalloc\n");

      return 1;

    }

    device_create(eep_class, NULL, MKDEV(MAJOR(dev_number), i),

     "eeprom%d", i);

  }

  /* Inform the I2C core about our existence. See the section 

     "Probing the Device" for the definition of eep_driver */

  err = i2c_add_driver(&eep_driver);

  if (err) {

    printk("Registering I2C driver failed, errno is %d\n", err);

    return err;

  }

  printk("EEPROM Driver Initialized.\n");

  return 0; 

}

Listing 8.2 initiates creation of the device nodes, but to complete their production, 
add the following to an appropriate rule fi le under /etc/udev/rules.d/:

KERNEL=="eeprom[0-1]*", NAME="eep/%n"



This creates /dev/eep/0 and /dev/eep/1 in response to reception of the corresponding 
uevents from the kernel. A user mode program that needs to read from the nth memory 
bank can then operate on /dev/eep/n.

Listing 8.3 implements the     open() method for the EEPROM driver. The kernel 
calls eep_open() when an application opens /dev/eep/X. eep_open() stores the per-
device data structure in a private area so that it’s directly accessible from the rest of the 
driver methods.

LISTING 8.3 Opening the EEPROM Driver

int

eep_open(struct inode *inode, struct file *file)

{

  /* The EEPROM bank to be opened */ 

  n = MINOR(file->f_dentry->d_inode->i_rdev); 

  file->private_data = (struct ee_bank *)ee_bank_list[n];

  /* Initialize the fields in ee_bank_list[n] such as

     size, slave address, and the current file pointer */

  /* ... */

}

Probing the Device

The    I2C client driver, in partnership with the host controller driver and the I2C core, 
attaches itself to a slave device as follows:

 1. During initialization, it registers a  probe() method, which the I2C core invokes 
when an associated host controller is detected. In Listing 8.2, eep_init() reg-
istered eep_probe() by invoking i2c_add_driver():

static struct i2c_driver eep_driver = 

{

  .driver = {

    .name         =  "EEP",            /* Name */

  },

  .id             =  I2C_DRIVERID_EEP, /* ID */

  .attach_adapter =  eep_probe,        /* Probe Method */

  .detach_client  =  eep_detach,       /* Detach Method */

};

i2c_add_driver(&eep_driver); `
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The driver identifi er, I2C_DRIVERID_EEP, should be unique for the device and 
should be defi ned in include/linux/i2c-id.h.

 2. When the core calls the driver’s probe() method  signifying the presence of a 
host controller, it, in turn, invokes i2c_probe() with arguments specifying the 
addresses of the slave devices that the driver is responsible for and an associated 
attach() routine. 

Listing 8.4 implements eep_probe(), the probe() method of the EEPROM 
driver. normal_i2c specifi es the EEPROM bank addresses and is populated 
as part of the i2c_client_address_data structure . Additional fi elds in this 
structure can be used to request fi ner addressing control. You can ask the I2C
core to ignore a range of addresses using the ignore fi eld. Or you may use the 
probe fi eld to specify (adapter, slave address) pairs if you want to bind a slave 
address to a particular host adapter. This will be useful, for example, if your pro-
cessor supports two I2C host controllers, and you have an EEPROM on bus 1 
and a temperature sensor on bus 2, both answering to the same slave address.

 3. The host controller walks the bus looking for the slave devices specified in 
Step 2. To do this, it generates a bus transaction such as S SLAVE_ADDR Wr,
where S is the start bit, SLAVE_ADDR is the associated 7-bit slave address as 
specified in the device’s datasheet, and Wr is the write command, as described in 
the section “Bus Transactions.” If a working slave device exists on the bus, it’ll 
respond by sending an acknowledgment bit ([A]).

 4. If the host controller detects a slave in Step 3, the I2C core invokes the attach()
routine supplied via the third argument to i2c_probe() in Step 2. For the 
EEPROM driver, this routine is  eep_attach(), which registers a per-device 
client data structure, as shown in Listing 8.5. If your device expects an initial 
programming sequence (for example, registers on an I2C Digital Visual Inter-
face transmitter chip have to be initialized before the chip can start function-
ing), perform those operations in this routine.

LISTING 8.4 Probing the Presence of EEPROM Banks

#include <linux/i2c.h>

/* The EEPROM has two memory banks having addresses SLAVE_ADDR1 

 * and SLAVE_ADDR2, respectively

 */



static unsigned short normal_i2c[] = {

  SLAVE_ADDR1, SLAVE_ADDR2, I2C_CLIENT_END 

};

static struct i2c_client_address_data addr_data = {

  .normal_i2c = normal_i2c,

  .probe      = ignore,

  .ignore     = ignore,

  .forces     = ignore,

};

static int 

eep_probe(struct i2c_adapter *adapter)

{

  /* The callback function eep_attach(), is shown

   * in Listing 8.5

   */ 

   return i2c_probe(adapter, &addr_data, eep_attach);

}

LISTING 8.5 Attaching a Client   

int

eep_attach(struct i2c_adapter *adapter, int address, int kind)

{

  static struct i2c_client *eep_client;

  eep_client = kmalloc(sizeof(*eep_client), GFP_KERNEL);

  eep_client->driver  = &eep_driver; /* Registered in Listing 8.2 */

  eep_client->addr    = address;     /* Detected Address */

  eep_client->adapter = adapter;     /* Host Adapter */

  eep_client->flags   = 0;

  strlcpy(eep_client->name, "eep", I2C_NAME_SIZE);

  /* Populate fields in the associated per-device data structure */

  /* ... */

  /* Attach */

  i2c_attach_client(new_client);

}
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Checking Adapter Capabilities

Each   host adapter might be limited by a set of constraints. An adapter might not 
support all the commands that Table 8.1 contains. For example, it might allow the 
SMBus read_word command but not the read_block command. A client driver has 
to check whether a command is supported by the adapter before using it.

The I2C core provides two functions to do this:

 1.   i2c_check_functionality() checks whether a particular function is supported.

 2. i2c_get_functionality() returns a mask containing all supported functions.

See include/linux/i2c.h for the list of possible functionalities.

Accessing the Device

To    read data from the EEPROM, fi rst glean information about its invocation thread 
from the private data fi eld associated with the device node. Next, use SMBus- compatible 
data access routines provided by the I2C core (Table 8.1 shows the available functions) 
to read the data. Finally, send the data to user space and increment the internal fi le 
pointer so that the next read()/write() operation starts from where the last one 
ended. These steps are performed by Listing 8.6. The listing omits sanity and error 
checks for   convenience.

TABLE 8.1 SMBus-Compatible Data Access Functions Provided by the I2C Core

 Function Purpose

 i2c_smbus_read_byte() Reads a single byte from the device without specifying a location 
offset. Uses the same offset as the previously issued command.

 i2c_smbus_write_byte()  Sends a single byte to the device at the same memory offset as the 
previously issued command.

 i2c_smbus_write_quick()  Sends a single bit to the device (in place of the Rd/Wr bit shown 
in Listing 8.1).

 i2c_smbus_read_byte_data()  Reads a single byte from the device at a specified offset.

 i2c_smbus_write_byte_data()  Sends a single byte to the device at a specified offset.

 i2c_smbus_read_word_data()  Reads 2 bytes from the specified offset.

 i2c_smbus_write_word_data()  Sends 2 bytes to the specified offset.

 i2c_smbus_read_block_data()  Reads a block of data from the specified offset.

 i2c_smbus_write_block_data()  Sends a block of data (<= 32 bytes) to the specified offset.



LISTING 8.6 Reading from the EEPROM

ssize_t

eep_read(struct file *file, char *buf, 

         size_t count, loff_t *ppos)

{

  int i, transferred, ret, my_buf[BANK_SIZE];

  /* Get the private client data structure for this bank */ 

  struct  ee_bank *my_bank = 

                    (struct ee_bank *)file->private_data;

  /* Check whether the smbus_read_word() functionality is

     supported */

  if (i2c_check_functionality(my_bank->client,

                              I2C_FUNC_SMBUS_READ_WORD_DATA)) {

    /* Read the data */

    while (transferred < count) {

      ret = i2c_smbus_read_word_data(my_bank->client, 

                                     my_bank->current_pointer+i);

      my_buf[i++] = (u8)(ret & 0xFF); 

      my_buf[i++] = (u8)(ret >> 8);

      transferred += 2;

    }

    /* Copy data to user space and increment the internal 

       file pointer. Sanity checks are omitted for simplicity */

    copy_to_user(buffer, (void *)my_buf, transferred); 

    my_bank->current_pointer += transferred;

  }

  return transferred;

}

Writing to the device is done similarly, except that an i2c_smbus_write_XXX()
function is used instead.
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Some EEPROM chips have a     Radio Frequency Identifi cation (RFID) transmitter to wire-
lessly transmit stored information. This is used to automate supply-chain processes such 
as inventory monitoring and asset tracking. Such EEPROMs usually implement safeguards 
via an access protection bank that controls access permissions to the data banks. In such 
cases, the driver has to wiggle corresponding bits in the access protection bank before it 
can operate on the data banks.

To access the EEPROM banks from user space, develop applications that operate on 
/dev/eep/n. To dump the contents of the EEPROM banks, use od:

bash> od –a /dev/eep/0

0000000   S   E   R   # dc4  ff soh   R   P nul nul nul nul nul nul nul

0000020   @   1   3   R   1   1   5   3   Z   J   1   V   1   L   4   6

0000040   5   1   0   H  sp   1   S   2   8   8   8   7   J   U   9   9

0000060   H   0   0   6   6 nul nul nul  bs   3   8   L   5   0   0   3

0000100   Z   J   1   N   U   B   4   6   8   6   V   7 nul nul nul nul

0000120 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul

*

0000400

As an exercise, take a stab at modifying the EEPROM driver to create /sys interfaces 
to the EEPROM banks rather than the /dev interfaces. You may reuse code from List-
ing 5.7, “Using Sysfs to Control the Parallel LED Board,” in Chapter 5 to help you in 
this endeavor.

More Methods

To obtain    a fully functional driver, you need to add a few remaining entry points. 
These are hardly different from those of normal character drivers discussed in Chap-
ter 5, so the code listings are not shown:

 • To support the lseek() system call that assigns a new value to the internal 
file pointer, implement the llseek() driver method. The internal file pointer 
stores state information about EEPROM access.

 • To verify data integrity, the EEPROM driver can support an    ioctl() method 
to adjust and verify checksums of stored data.

 • The poll() and fsync() methods are not relevant for the EEPROM.



 • If you choose to compile the driver as a module, you have to supply an exit()
method to unregister the device and clean up client-specifi c data structures. 
Unregistering the driver from the I2C core is a one-liner:
i2c_del_driver(&eep_driver);

Device Example: Real Time Clock

Let’s now    take the example of an RTC chip connected to an embedded controller over 
the I2C bus. The connection diagram is shown in Figure 8.3.

Embedded
Controller

RTC

CLK

SDA/SCL

I2C Bus

Battery
Backup

GND

FIGURE 8.3 An I2C RTC on an embedded system.

Assume that the I2C slave address of the RTC is 0x60 and that its register space is 
organized as shown in Table 8.2.

TABLE 8.2 Register Layout on the I2C RTC

 Register Name Description Offset

 RTC_HOUR_REG Hour counter 0x0

 RTC_MINUTE_REG Minute counter 0x1

 RTC_SECOND_REG Second counter 0x2

 RTC_STATUS_REG Flags and interrupt status 0x3

 RTC_CONTROL_REG Enable/disable RTC 0x4

Let’s base our driver for this chip on the EEPROM driver discussed previously. We will 
take the I2C client driver architecture, slave registration, and I2C core functions for 
granted and implement only the code that communicates with the RTC. 
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When the I2C core detects a device having the RTC’s slave address (0x60) on the 
I2C bus, it invokes  myrtc_attach(). The invocation train is similar to that for eep_
attach()in Listing 8.5. Assume that you have to perform the following chip initial-
izations in myrtc_attach():

 1. Clear the RTC status register (RTC_STATUS_REG).

 2. Start the RTC (if it is not already running) by turning on appropriate bits in the 
RTC control register (RTC_CONTROL_REG).

To do this, let’s build an i2c_msg and generate I2C transactions on the bus using 
i2c_transfer(). This transfer mechanism is exclusive to I2C and is not SMBus-
compatible. To write to the two RTC registers referred to previously, you have to build 
two i2c_msg messages. The fi rst message sets the register offset. In our case, it’s 3, the 
offset of RTC_STATUS_REG. The second message carries the desired number of bytes 
to the specifi ed offset. In this context, it ferries 2 bytes, one each to RTC_STATUS_REG
and RTC_CONTROL_REG.

#include <linux/i2c.h> /* For struct i2c_msg */

int

myrtc_attach(struct i2c_adapter *adapter, int addr, int kind)

{

  u8 buf[2];

  int offset = RTC_STATUS_REG;  /* Status register lives here */

  struct i2c_msg rtc_msg[2];

  /* Write 1 byte of offset information to the RTC */

  rtc_msg[0].addr  = addr;      /* Slave address. In our case, 

                                   this is 0x60 */

  rtc_msg[0].flags = I2C_M_WR;  /* Write Command */

  rtc_msg[0].buf   = &offset;   /* Register offset for 

                                   the next transaction */

  rtc_msg[0].len   = 1;         /* Offset is 1 byte long */

  /* Write 2 bytes of data (the contents of the status and

     control registers) at the offset programmed by the previous

     i2c_msg */

  rtc_msg[1].addr  = addr;      /* Slave address */

  rtc_msg[1].flags = I2C_M_WR;  /* Write command */

  rtc_msg[1].buf   = &buf[0];   /* Data to be written to control

                                   and status registers */

  rtc_msg[1].len   = 2;         /* Two register values */



  buf[0] = 0;                   /* Zero out the status register */ 

  buf[1] |= ENABLE_RTC;         /* Turn on control register bits 

                                   that start the RTC */

  /* Generate bus transactions corresponding to the two messages */

  i2c_transfer(adapter, rtc_msg, 2);

  /* ... */

  printk("My RTC Initialized\n");

}

Now that the RTC is initialized and ticking, you can glean the current time by read-
ing the contents of RTC_HOUR_REG, RTC_MINUTE_REG, and RTC_SECOND_REG. This 
is done as follows:

#include <linux/rtc.h> /* For struct rtc_time */

int

myrtc_gettime(struct i2c_client *client, struct rtc_time *r_t)

{

  u8 buf[3];      /* Space to carry hour/minute/second */

  int offset = 0; /* Time-keeping registers start at offset 0 */

  struct i2c_msg rtc_msg[2];

  /* Write 1 byte of offset information to the RTC */

  rtc_msg[0].addr  = addr;      /* Slave address */

  rtc_msg[0].flags = 0;         /* Write Command */

  rtc_msg[0].buf   = &offset;   /* Register offset for 

                                   the next transaction */

  rtc_msg[0].len   = 1;         /* Offset is 1 byte long */

  /* Read current time by getting 3 bytes of data from offset 0 

     (i.e., from RTC_HOUR_REG, RTC_MINUTE_REG, and RTC_SECOND_REG) */

  rtc_msg[1].addr  = addr;      /* Slave address */

  rtc_msg[1].flags = I2C_M_RD;  /* Read command */

  rtc_msg[1].buf   = &buf[0];   /* Data to be read from hour, minute

                                   and second registers */

  rtc_msg[1].len   = 3;         /* Three registers to read */

  /* Generate bus transactions corresponding to the above 

     two messages */

  i2c_transfer(adapter, rtc_msg, 2);
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  /* Read the time */

  r_t->tm_hour = BCD2BIN(buf[0]);  /* Hour */

  r_t->tm_min  = BCD2BIN(buf[1]);  /* Minute */

  r_t->tm_sec  = BCD2BIN(buf[2]);  /* Second */

  return(0);

}

myrtc_gettime() implements the bus-specifi c bottom layer of the RTC driver. The 
top layer of the RTC driver should conform to the kernel RTC API, as discussed in the 
section “RTC Subsystem” in Chapter 5. The advantage of this scheme is that applica-
tions can run unchanged irrespective of whether your RTC is internal to the South 
Bridge of a PC or externally connected to an embedded controller as in this example. 

RTCs usually store time in   Binary Coded Decimal (BCD), where each nibble repre-
sents a number between 0 and 9 (rather than between 0 and 15). The kernel provides 
a macro called BCD2BIN() to convert from BCD encoding to decimal and BIN2BCD()
to perform the reverse operation. myrtc_gettime() uses the former while reading 
time from RTC registers.

Look at drivers/rtc/rtc-ds1307.c for an example RTC driver that handles the  Dallas/
Maxim DS13XX series of I2C RTC chips.

Being a 2-wire bus, the I2C bus does not have an interrupt request line that slave 
devices can assert, but some I2C host adapters have the capability to interrupt the pro-
cessor to signal completion of data-transfer requests. This interrupt-driven operation 
is, however, transparent to I2C client drivers and is hidden inside the service routines 
offered by the I2C core. Assuming that the I2C host controller that is part of the embed-
ded SoC in Figure 8.3 has the capability to interrupt the processor, the invocation of 
i2c_transfer() in myrtc_attach() might be doing the following under the hood:

 • Build a transaction corresponding to rtc_msg[0] and write it to the bus using 
the services of the host controller device driver.

 • Wait until the host controller asserts a transmit complete interrupt signaling 
that rtc_msg[0] is now on the wire.

 • Inside the interrupt handler, look at the I2C host controller status register to see 
whether an acknowledgment has been received from the RTC slave.

 • Return error if the host controller status and control registers indicate that all’s 
not well.

 • Repeat the same for rtc_msg[1].



I2C-dev

Sometimes  , when you need to enable support for a large number of slow I2C devices, 
it makes sense to drive them wholly from user space. The I2C layer supports a driver 
called i2c-dev to achieve this. Fast forward to the section “User Mode I2C” in Chap-
ter 19 for an example that implements a user mode I2C driver using i2c-dev. 

Hardware Monitoring Using LM-Sensors

The   LM-Sensors project, hosted at www.lm-sensors.org, brings hardware-monitoring 
capabilities to Linux. Several computer systems use sensor chips to monitor parameters 
such as temperature, power supply voltage, and fan speed. Periodically tracking these 
parameters can be critical. A blown CPU fan can manifest in the form of strange and 
random software problems. Imagine the consequences if the system is a medical grade 
device!

LM-Sensors comes to the rescue with device drivers for many sensor chips, a utility 
called sensors to generate a health report, and a script called   sensors-detect to scan your 
system and help you generate appropriate confi guration fi les.

Most chips that offer hardware monitoring, interface to the CPU via I2C/SMBus. 
Device drivers for such devices are normal I2C client drivers but reside in the drivers/
hwmon/ directory, rather than drivers/i2c/chips/. An example is National Semiconduc-
tor’s LM87 chip, which can monitor multiple voltages, temperatures, and fans. Have a 
look at drivers/hwmon/lm87.c for its driver implementation. I2C driver IDs from 1000 
to 1999 are reserved for sensor chips (look at include/linux/i2c-id.h).

Several sensor chips interface to the CPU via the ISA/LPC bus rather than I2C/
SMBus. Others emit analog output that reaches the CPU through an Analog-to-Digi-
tal Converter (ADC  ). Drivers for such chips share the drivers/hwmon/ directory with 
I2C sensor drivers. An example of a non-I2C sensor driver is drivers/hwmon/hdaps.c, the 
driver for the accelerometer present in several IBM/Lenovo laptops that we discussed 
in Chapter 7, “Input Drivers.” Another example of a non-I2C sensor is the Winbond 
83627HF Super I/O chip, which is driven by drivers/hwmon/w83627hf.c.

The Serial Peripheral Interface Bus

The     Serial Peripheral Interface (SPI) bus is a serial master-slave interface similar to I2C
and comes built in on many microcontrollers. It uses four wires (compared to two on 
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I2C): Serial CLocK (SCLK        ), Chip Select (CS), Master Out Slave In (MOSI), and Master 
In Slave Out (MISO). MOSI is used for shifting data into the slave device, and MISO 
is used for shifting data out of the slave device. Because the SPI bus has dedicated wires 
for transmitting and receiving data, it can operate in full-duplex mode, unlike the I2C
bus. The typical speed of operation of SPI is in the low-megahertz range, unlike the 
mid-kilohertz range on I2C, so the former yields higher throughput. 

SPI peripherals available in the market today include   Radio Frequency (RF) chips, 
smart card interfaces, EEPROMs, RTCs, touch sensors, and ADCs.

The kernel provides a core API for exchanging messages over the SPI bus. A typical 
SPI client driver does the following:

 1. Registers probe() and remove() methods with the SPI core. Optionally regis-
ters suspend() and resume() methods:

  #include <linux/spi/spi.h>

  static struct spi_driver myspi_driver = {

    .driver  = {

      .name  = "myspi",

      .bus   = &spi_bus_type,

      .owner = THIS_MODULE,

    },

    .probe   = myspidevice_probe,

    .remove  = __devexit_p(myspidevice_remove),

  };

  spi_register_driver(&myspi_driver);

The SPI core creates an  spi_device structure corresponding to this device and 
passes this as an argument when it invokes the registered driver methods.

 2. Exchanges messages with the SPI device using access functions such as spi_
sync()and spi_async(). The former waits for the operation to complete, 
whereas the latter asynchronously triggers invocation of a registered callback 
routine when message transfer completes. These data access routines are invoked 
from suitable places such as the SPI interrupt handler, a sysfs method, or a timer 
handler. The following code snippet illustrates SPI message submission:

#include <linux/spi/spi.h>

struct spi_device *spi;  /* Representation of an 

                            SPI device */



struct spi_transfer xfer;         /* Contains transfer buffer 

                                     details */

struct spi_message sm;            /* Sequence of spi_transfer 

                                     segments */

u8 *command_buffer;               /* Data to be transferred */

int len;                          /* Length of data to be 

                                     transferred */

spi_message_init(&sm);            /* Initialize spi_message */

xfer.tx_buf = command_buffer;     /* Device-specific data */

xfer.len    = len;                /* Data length */

spi_message_add_tail(&xfer, &sm); /* Add the message */

spi_sync(spi, &sm);               /* Blocking transfer request */

For an example SPI device, consider the ADS7846 touch-screen controller that we 
briefl y discussed in Chapter 7. This driver does the following:

 1. Registers probe(), remove(), suspend(), and resume() methods with the 
SPI core using  spi_register_driver().

 2. The probe() method registers the driver with the input subsystem using 
input_register_device() and requests an IRQ using  request_irq().

 3. The driver gathers touch coordinates from its interrupt handler using spi_
async(). This function triggers invocation of a registered callback routine 
when the SPI message transfer completes. 

 4. The callback function in turn, reports touch coordinates and clicks via the input 
event interface, /dev/input/eventX, using input_report_abs() and input_
report_key(), as discussed in Chapter 7. Applications such as X Windows 
and gpm seamlessly work with the event interface and respond to touch input.

A driver that wiggles I/O pins to get them to talk a protocol is called a bit-banging
driver . For an example SPI bit-banging driver, look at drivers/spi/spi_butterfl y.c, which 
is a driver to talk to DataFlash chips that are present on Butterfl y boards built by Atmel 
around their AVR processor family. For this, connect your host system’s parallel port 
to the AVR Butterfl y using a specially made dongle and use the spi_butterfl y driver  do 
the bit banging. Look at Documentation/spi/butterfl y for a detailed description of this 
driver.

Currently there is no support for user-space SPI drivers à la i2c-dev. You only have 
the option of writing a kernel driver to talk to your SPI device.
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In the embedded world, you may come across solutions where the processor uses a com-
panion chip that integrates various functions. An example is the Freescale MC13783 
Power Management and Audio Component (PMAC)    used in tandem with the ARM9-
based i.MX27 processor. The PMAC integrates an RTC, a battery charger, a touch-screen 
interface, an ADC module, and an audio codec. The processor and the PMAC communi-
cate over SPI. The SPI bus does not contain an interrupt line, so the PMAC has the capa-
bility to externally interrupt the processor using a GPIO pin confi gured for this purpose.

The 1-Wire Bus

The   1-wire protocol developed by Dallas/Maxim uses a 1-wire (or   w1) bus that carries 
both power and signal; the return ground path is provided using some other means. It 
provides a simple way to interface with slow devices by reducing space, cost, and com-
plexity. An example device that works using this protocol is the ibutton (www.ibutton.
com), which is used for sensing temperature, carrying data, or holding unique IDs.

Another w1 chip that interfaces through a single port pin of an embedded control-
ler is the DS2433 4kb 1-wire EEPROM from Dallas/Maxim. The driver for this chip, 
drivers/w1/slaves/w1_ds2433.c, exports access to the EEPROM via a sysfs node. 

The main data structures associated with a w1 device driver are w1_family and 
w1_family_ops, both defi ned in w1_family.h.  

Debugging

To   collect I2C-specifi c debugging messages, turn on a relevant combination of I2C
Core debugging messages, I2C Algorithm debugging messages, I2C Bus debugging messages,
and I2C Chip debugging messages under Device Drivers → I2C Support in the kernel 
confi guration menu. Similarly, for SPI debugging, turn on Debug Support for SPI driv-
ers under Device Drivers → SPI Support.

To understand the fl ow of I2C packets on the bus, connect an I2C bus analyzer to 
your board as we did while running Listing 8.1. The lm-sensors package contains a 
tool called i2cdump that dumps register contents of devices on the I2C bus.

There is a mailing list dedicated to Linux I2C at http://lists.lm-sensors.org/mailman/
listinfo/i2c.

www.ibutton.com
www.ibutton.com
http://lists.lm-sensors.org/mailman/listinfo/i2c
http://lists.lm-sensors.org/mailman/listinfo/i2c


Looking at the Sources

In the   2.4 kernel source tree, a single directory (drivers/i2c/) contained all the I2C/
SMBus-related sources. The I2C code in 2.6 kernels is organized hierarchically: The 
drivers/i2c/busses/ directory contains adapter drivers, the drivers/i2c/algos/ directory has 
algorithm drivers, and the drivers/i2c/chips/ directory contains client drivers. You can 
fi nd client drivers in other regions of the source tree, too. The drivers/sound/ directory, 
for example, includes drivers for audio chipsets that use an I2C control interface. Take 
a look inside the Documentation/i2c/ directory for tips and more examples.

Kernel SPI service functions live in drivers/spi/spi.c. The SPI driver for the ADS7846 
touch controller is implemented in drivers/input/touchscreen/ads7846.c. The MTD 
subsystem discussed in Chapter 17, “Memory Technology Devices,” implements driv-
ers for SPI fl ash chips. An example is drivers/mtd/devices/mtd_datafl ash.c, the driver to 
access Atmel DataFlash SPI chips.

The drivers/w1/ directory contains kernel support for the w1 protocol. Drivers for 
the host controller side of the w1 interface live in drivers/w1/masters/, and drivers for 
w1 slaves reside in drivers/w1/slaves/.

Table 8.3 summarizes the main data structures used in this chapter and their loca-
tion in the kernel tree. Table 8.4 lists the main kernel programming interfaces that you 
used in this chapter along with the location of their defi nitions.

TABLE 8.3 Summary of  Data Structures

 Data Structure Location Description

 i2c_driver include/linux/i2c.h Representation of an I2C driver

 i2c_client_address_data include/linux/i2c.h  Slave addresses that an I2C client driver is 
responsible for

i2c_client include/linux/i2c.h  Identifies a chip connected to an I2C bus

 i2c_msg include/linux/i2c.h  Information pertaining to a transaction 
that you want to generate on the I2C bus

spi_driver include/linux/spi/spi.h  Representation of an SPI driver

spi_device include/linux/spi/spi.h  Representation of an SPI device

spi_transfer include/linux/spi/spi.h  Details of an SPI transfer buffer 

spi_message include/linux/spi/spi.h  Sequence of spi_transfer segments

w1_family drivers/w1/w1_family.h  Representation of a w1 slave driver

w1_family_ops drivers/w1/w1_family.h  A w1 slave driver’s entry points
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TABLE 8.4 Summary of  Kernel Programming Interfaces

Kernel Interface Location Description

i2c_add_driver() include/linux/i2c.h
drivers/i2c/i2c-core.c

Registers driver entry points with the 
I2C core.

i2c_del_driver() drivers/i2c/i2c-core.c Removes a driver from the I2C core.

i2c_probe() drivers/i2c/i2c-core.c Specifies the addresses of slave devices that 
the driver is responsible for and an associ-
ated attach() routine to be invoked if 
one of the specified addresses is detected by 
the I2C core.

i2c_attach_client() drivers/i2c/i2c-core.c Adds a new client to the list of clients 
serviced by the associated I2C host adapter.

i2c_detach_client() drivers/i2c/i2c-core.c Detaches an active client. Usually done 
when the client driver or the associated host 
adapter unregisters.

i2c_check_functionality() include/linux/i2c.h Verifies whether a particular function is 
supported by the host adapter. 

i2c_get_functionality() include/linux/i2c.h Obtains a mask containing all functions 
supported by the host adapter.

i2c_add_adapter() drivers/i2c/i2c-core.c Registers a host adapter.

i2c_del_adapter() drivers/i2c/i2c-core.c Unregisters a host adapter.

SMBus-compatible I2C data 
access routines

drivers/i2c/i2c-core.c See Table 8.1.

i2c_transfer() drivers/i2c/i2c-core.c Sends an i2c_msg over the I2C bus. This 
function is not SMBus-compatible.

spi_register_driver() drivers/spi/spi.c Registers driver entry points with the 
SPI core.

spi_unregister_driver() include/linux/spi/spi.h Unregisters an SPI driver.

spi_message_init() include/linux/spi/spi.h Initializes an SPI message.

spi_message_add_tail() include/linux/spi/spi.h Adds an SPI message to a transfer list.

spi_sync() drivers/spi/spi.c Synchronously transfers data over the SPI 
bus. This function blocks until completion.

spi_async() include/linux/spi/spi.h Asynchronously transfers data over the 
SPI bus using a completion callback 
mechanism.
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Today’s popular technologies such as wireless and wired Ethernet, General 
Packet Radio Service (GPRS), Global Positioning System (GPS), miniature 

storage, and modems are ubiquitous in the form factor of PCMCIA (an acronym 
for Personal Computer Memory Card International Association) or CF (Compact
Flash)   cards. Most laptops and many embedded devices support PCMCIA or 
CF interfaces, thus instantly enabling them to take advantage of these technolo-
gies. On embedded systems, PCMCIA/CF slots offer a technology upgrade path 
without the need to re-spin the board. A cost-reduced version of an  Internet-
enabled device can, for example, use a PCMCIA dialup modem, while a higher-
end fl avor can have WiFi.

The Linux kernel supports PCMCIA devices on a variety of architectures. In 
this chapter, let’s explore the support present in the kernel for PCMCIA/CF 
host adapters and client devices.

What’s PCMCIA/CF? 

PCMCIA    is a 16-bit data-transfer interface specifi cation originally used by memory 
cards. CF cards are smaller, but compatible with PCMCIA, and are frequently used 
in handheld devices such as PDAs and digital cameras. CF cards have only 50 pins 
but can be slipped into your laptop’s 68-pin PCMCIA slot using a passive CF-to-
PCMCIA adapter. PCMCIA and CF have been confi ned to the laptop and hand-
held space and have not made inroads into desktops and higher-end machines.

The PCMCIA specifi cation has now grown to include support for higher speeds 
in the form of 32-bit   CardBus cards. The term  PC Card is used while referring to 
either PCMCIA or CardBus devices. CardBus is closer to the PCI bus, so the kernel 
has moved support for CardBus devices from the PCMCIA layer to the PCI layer. 
The latest technology specifi cation from the PCMCIA industry standards group is 
the   ExpressCard, which is compatible with PCI Express, a new bus technology based 
on PCI concepts. We look at CardBus and ExpressCard when we discuss PCI in the 
next chapter. 

PC cards come in three fl avors in the increasing order of thickness: Type I 
(3.3mm), Type II (5mm), and Type III (10.5mm).



Figure 9.1 shows     PCMCIA bus connection on a laptop, and Figure 9.2 illustrates 
PCMCIA on an embedded device. As you might have noticed, the PCMCIA host 
controller bridges the PCMCIA card with the system bus. Laptops and their deriva-
tives generally have a PCMCIA host controller chip connected to the PCI bus, while 
several embedded controllers have a PCMCIA host controller built in to their silicon. 
The controller maps card memory to host I/O and memory windows and routes inter-
rupts generated by the card to a suitable processor interrupt line.

Processor

North Bridge

South Bridge
PCI Bus

PCI Slot

Socket PCMCIA
Card

PCMCIA/
CardBus
Controller

PCI Slot

FIGURE 9.1 PCMCIA on a laptop. 
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Embedded Controller
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PCMCIA
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…

Internal Local Bus

Socket PCMCIA Card

FIGURE 9.2 PCMCIA on an embedded system.
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Linux-PCMCIA Subsystem

Linux-PCMCIA   support is available on Intel-based laptops as well as on architec-
tures such as ARM, MIPS, and PowerPC. The PCMCIA subsystem consists of device 
drivers for PCMCIA host controllers, client drivers for different cards, a daemon that 
aids hotplugging, user mode utilities, and a  Card Services module that interacts with 
all of these.

Figure 9.3 illustrates the interaction between the modules that constitute the Linux-
PCMCIA subsystem.

The Old Linux-PCMCIA Subsystem

The Linux-PCMCIA subsystem has recently undergone an overhaul. To get PCMCIA work-
ing with 2.6.13 and newer kernels, you need the    pcmciautils package (http://kernel.org/pub/
linux/utils/kernel/pcmcia/howto.html), which obsoletes the   pcmcia-cs package (http://pcmcia-cs.
sourceforge.net) used with earlier kernels. Internal kernel programming interfaces and data struc-
tures have also changed. Earlier kernels relied on a user-space daemon called   cardmgr to support 
hotplugging, but the new PCMCIA implementation handles hotplug using   udev, just as other bus 
subsystems do. So with new setups, you don’t need cardmgr and should make sure that it is not 
started. There is a migration guide at http://kernel.org/pub/linux/utils/kernel/pcmcia/cardmgr-
to-pcmciautils.html.

Figure 9.3 contains the following components:

 • Host controller device drivers that implement low-level routines for commu-
nicating with the PCMCIA host controller. Your handheld and laptop have 
different host controllers and, hence, use different host controller drivers. Each 
PCMCIA slot that the host controller supports is called a  socket.

 • PCMCIA client drivers (XX_cs in Figure 9.3) that respond to socket events 
such as card insertion and ejection. This is the driver that you are most likely 
to implement when you attempt to Linux-enable a PCMCIA card. The XX_cs 
driver usually works in tandem with a generic driver (XX in Figure 9.3) that is 
not PCMCIA-specific. In relation to Figure 9.3, if your device is a PCMCIA 
IDE disk, XX is the IDE disk driver, XX_cs is the ide_cs driver, XX-dependent 
layers are filesystem layers, and XX-applications are programs that access data 
files. XX_cs configures the generic driver (XX) with resources such as IRQs, I/O 
base addresses, and memory windows.

http://kernel.org/pub/linux/utils/kernel/pcmcia/howto.html
http://kernel.org/pub/linux/utils/kernel/pcmcia/howto.html
http://pcmcia-cs.sourceforge.net
http://pcmcia-cs.sourceforge.net
http://kernel.org/pub/linux/utils/kernel/pcmcia/cardmgr-to-pcmciautils.html
http://kernel.org/pub/linux/utils/kernel/pcmcia/cardmgr-to-pcmciautils.html


 • The PCMCIA core that provides services to host controller drivers and client 
drivers. The core provides an infrastructure that makes driver implementations 
simpler and adds a level of indirection that renders client drivers independent of 
host controllers. Irrespective of whether you are using your Bluetooth CF card 
on an XScale-based handheld or an x86-based laptop, the same client drivers 
can be pressed into service. 

 • A    driver services module (ds) that offers registration interfaces and bus services to 
client drivers.

 • The    pcmciautils package, which contains tools such as   pccardctl that control 
the state of PCMCIA sockets and select between different card-confi guration 
schemes.
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FIGURE 9.3 The Linux-PCMCIA subsystem.
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Figure 9.4 glues kernel modules on top of Figure 9.1 to illustrate how the Linux-
PCMCIA subsystem interacts with hardware on a PC-compatible system.
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Device
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Higher Layers/Applications

FIGURE 9.4 Relating PCMCIA driver components with PC hardware.

In the following sections, let’s take a closer look at the components constituting the 
Linux-PCMCIA subsystem. To better understand the role of these components and 
their interaction, we will insert a PCMCIA WiFi card into a laptop and trace the code 
fl ow in the section “Tying the Pieces Together.”

Host Controller Drivers

Whereas  the generic card driver (XX) is responsible for handling interrupts generated 
by the card function (say, receive interrupts when a PCMCIA network card receives 
data packets), the host controller driver is responsible for handling bus-specifi c inter-
rupts triggered by events such as card insertion and ejection.

Figure 9.2 shows the block diagram of an embedded device designed around an 
embedded controller that has built-in PCMCIA support. Even if you are using a con-
troller supported by the kernel PCMCIA layer, you might need to tweak the host con-
troller driver (for example, to confi gure GPIO lines used for detecting card insertion 
events or switching power to the socket) depending on your board’s design. If you are 



porting the kernel to a StrongARM-based handheld, for example, tailor drivers/pcmcia/
sa1100_assabet.c to suit your hardware. 

This chapter does not cover the implementation of host controller device drivers.

PCMCIA Core

Card Services    is the main constituent of the PCMCIA core. It offers a set of services 
to client drivers and host controller drivers. It contains a kernel thread called   pccardd
that polls for socket-related events. Pccardd notifi es the Driver Services event handler 
(discussed in the next section) when the host controller reports events such as card 
insertion and card removal.

Another component of the PCMCIA core is a library that manipulates the Card 
Information Structure (CIS)     that is part of PCMCIA cards. PCMCIA/CF cards have 
two memory spaces: Attribute memory    and Common memory. Attribute memory con-
tains the CIS and card confi guration registers. Attribute memory of a PCMCIA IDE 
disk, for example, contains its CIS and registers that specify the sector count and the 
cylinder number. Common memory in this case contains the memory array that holds 
disk data. The PCMCIA core offers CIS manipulation routines such as pccard_get_
first_tuple(), pccard_get_next_tuple(), and pccard_parse_tuple()to cli-
ent drivers. Listing 9.2 uses the assistance of some of these functions.

The PCMCIA core passes CIS information to user space via sysfs and udev. Utili-
ties such as pccardctl, part of the pcmciautils package, depend on sysfs and udev for 
their operation. This simplifi es the earlier design approach that relied on a custom 
infrastructure when these facilities were absent in the kernel.

Driver Services

Driver     Services provides an infrastructure that offers the following:

 • A handler that catches event alerts dispatched by the pccardd kernel thread. 
The handler scans and validates the card’s CIS space and triggers the load of an 
appropriate client driver.

 • A layer that has the task of communicating with the kernel’s bus core. To 
this end, Driver Services implements the pcmcia_bus_type and related bus 
operations.
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 • Service routines such as pcmcia_register_driver() that client drivers use to 
register themselves with the PCMCIA core. The example driver in Listing 9.1 
uses some of these routines.

Client Drivers

The client device driver (XX_cs in Figure 9.3) looks at the card’s CIS space and confi g-
ures the card depending on the information it gathers.

Data Structures

Before proceeding to develop an example PCMCIA client driver, let’s meet some 
related data structures:

 1. A PCMCIA device is identified by the      pcmcia_device_id structure defined in 
include/linux/mod_devicetable.h:

  struct pcmcia_device_id {

    /* ... */

    __u16 manf_id;    /* Manufacturer ID */

    __u16 card_id;    /* Card ID */

    __u8  func_id;    /* Function ID */

    /* ... */

  };

manf_id, card_id, and func_id hold the card’s manufacturer ID, card 
ID, and function ID, respectively. The PCMCIA core offers a macro called 
PCMCIA_DEVICE_MANF_CARD() that creates a pcmcia_device_id structure 
from the manufacturer and card IDs supplied to it. Another kernel macro called 
MODULE_DEVICE_TABLE() marks the supported pcmcia_device_ids in the 
module image so that the module can be loaded on demand when the card is 
inserted and the PCMCIA subsystem gleans matching manufacturer/card/func-
tion IDs from the card’s CIS space. We explored this mechanism in the section 
“Module Autoload” in Chapter 4, “Laying the Groundwork.” This procedure 
is analogous to that used by device drivers for two other popular I/O buses that 
support hotplugging: PCI and USB. Table 9.1 gives a heads-up on the similari-
ties between drivers for these three bus technologies. Don’t worry if that is hard 
to digest; we will have a detailed discussion on PCI and USB in the following 
chapters.



TABLE 9.1 Device IDs   and Hotplug Methods for PCMCIA, PCI, and USB

PCMCIA PCI USB

Device ID table 
structure

pcmcia_device_id pci_device_id usb_device_id

Macro to create a 
device ID

PCMCIA_DEVICE_MANF_CARD() PCI_DEVICE() USB_DEVICE()

Device 
representation

struct pcmcia_device struct pci_dev struct usb_device

Driver 
representation

struct pcmcia_driver struct pci_driver struct usb_driver

Hotplug methods probe() and remove() probe() and 
remove()

probe() and 
disconnect()

Hotplug event 
detection

pccardd kthread PCI-family-dependent khubd kthread

 2. PCMCIA client drivers need to associate their pcmcia_device_id table with 
their probe() and remove() methods. This tie up is achieved by the pcmcia_
driver structure    :

struct pcmcia_driver {

  int  (*probe)(struct pcmcia_device *dev);  /* Probe 

                                                method */

  void (*remove)(struct pcmcia_device *dev); /* Remove 

                                                method */

  /* ... */

  struct pcmcia_device_id *id_table;         /* Device ID 

                                                table */

  /* ... */

};

 3. struct pcmcia_device internally represents a PCMCIA device and is defined 
as follows in drivers/pcmcia/ds.h:
struct pcmcia_device {

  /* ... */

  io_req_t      io;        /* I/O attributes*/

  irq_req_t     irq;       /* IRQ settings */

  config_req_t  conf;      /* Configuration */

  /* ... */

  struct device dev;       /* Connection to device model */

  /* ... */

};
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 4. CIS manipulation     routines use a tuple_t structure defined in include/pcmcia/
cistpl.h to hold a CIS information unit. A CISTPL_LONGLINK_MFC tuple type, 
for example, contains information related to a multifunction card. For the full 
list of tuples and their descriptions, look at    include/pcmcia/cistpl.h and http://
pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-PROG.html.

   typedef struct tuple_t {

     /* ... */

     cisdata_t TupleCode;     /* See 

include/pcmcia/cistpl.h */

     /* ... */

     cisdata_t DesiredTuple;  /* Identity of the desired 

                                 tuple */

     /* ... */

     cisdata_t *TupleData;    /* Buffer space */

   };

 5. The CIS contains configuration table entries for each configuration that the 
card supports.     cistpl_cftable_entry_t, defined in include/pcmcia/cistpl.h,
holds such an entry:

   typedef struct cistpl_cftable_entry_t {

     /* ... */

     cistpl_power_t vcc, vpp1, vpp2;   /* Voltage level */

     cistpl_io_t  io;                  /* I/O attributes */

     cistpl_irq_t irq;                 /* IRQ settings */

     cistpl_mem_t mem;                 /* Memory window */

     /* ... */

   };

 6.     cisparse_t, also defined in include/pcmcia/cistpl.h, holds a tuple parsed by the 
PCMCIA core:

   typedef union cisparse_t {

     /* ... */

     cistpl_manfid_t  manfid;                 /* Manf ID */

     /* ... */

     cistpl_cftable_entry_t  cftable_entry;   /* Configuration 

                                                 table entry */

     /* ... */

   } cisparse_t;

http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-PROG.html
http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-PROG.html


Device Example: PCMCIA Card

Let’s develop a skeletal client device driver (because too many details will make it a 
loaded discussion) to learn the workings of the PCMCIA subsystem. The implemen-
tation is general, so you may use it as a template irrespective of whether your card 
implements networking, storage, or some other technology. Only the XX_cs driver is 
implemented; the generic XX driver is assumed to be available off the shelf.

As alluded to earlier, PCMCIA drivers contain probe() and remove() methods 
to support hotplugging. Listing 9.1 registers the driver’s probe() method, remove()
method, and pcmcia_device_id table with the PCMCIA core. XX_probe() gets 
invoked when the associated PCMCIA card is inserted, and XX_remove() is called 
when the card is ejected    .

LISTING 9.1 Registering a Client Driver

#include <pcmcia/ds.h>  /* Definition of struct pcmcia_device */

static struct pcmcia_driver XX_cs_driver = {

  .owner       = THIS_MODULE,

  .drv         = {

    .name = "XX_cs",           /* Name */

  },

  .probe       = XX_probe,     /* Probe */

  .remove      = XX_remove,    /* Release */

  .id_table    = XX_ids,       /* ID table */

  .suspend     = XX_suspend,   /* Power management */

  .resume      = XX_resume,    /* Power management */

};

#define  XX_MANFUFACTURER_ID  0xABCD  /* Device's manf_id */

#define  XX_CARD_ID           0xCDEF  /* Device's card_id */

/* Identity of supported cards */

static struct pcmcia_device_id XX_ids[] = {

  PCMCIA_DEVICE_MANF_CARD(XX_MANFUFACTURER_ID, XX_CARD_ID),

  PCMCIA_DEVICE_NULL,

};

MODULE_DEVICE_TABLE(pcmcia, XX_ids); /* For module autoload */
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/* Initialization */

static int __init 

init_XX_cs(void)

{

  return pcmcia_register_driver(&XX_cs_driver);

}

/* Probe Method */

static int      

XX_probe(struct pcmcia_device *link)

{

  /* Populate the pcmcia_device structure allotted for this card by 

     the core. First fill in general information */

  /* ... */

  /* Fill in attributes related to I/O windows and 

     interrupt levels */

  XX_config(link);  /* See Listing 9.2 */

}

Listing 9.2     shows the routine that confi gures the generic device driver (XX) with 
resource information such as I/O and memory window base addresses. After this step, 
data fl ow to and from the PCMCIA card passes through XX and is transparent to 
the rest of the layers. Any interrupts generated by the PCMCIA card, such as those 
related to data reception or transmit completion for network cards, are handled by the 
interrupt handler that is part of XX. Listing 9.2 is loosely based on drivers/net/ wireless/ 
airo_cs.c, the client driver for the Cisco Aironet 4500 and 4800 series of PCMCIA 
WiFi cards. The listing uses the services of the PCMCIA core to do the following:

 • Obtain a suitable configuration table entry tuple from the card’s CIS

 • Parse the tuple

 • Glean card configuration information such as I/O base addresses and power set-
tings from the parsed tuple

 • Request allocation of an interrupt line

It then confi gures the chipset-specifi c driver (XX) with the information thus 
obtained.



LISTING 9.2 Confi guring the Generic Device Driver

#include <pcmcia/cistpl.h>

#include <pcmcia/ds.h>

#include <pcmcia/cs.h>

#include <pcmcia/cisreg.h>

/* This makes the XX device available to the system. XX_config()

   is based on airo_config(), defined in

drivers/net/wireless/airo_cs.c */

static int 

XX_config(struct pcmcia_device *link)

{

  tuple_t tuple;

  cisparse_t parse;

  u_char buf[64];

  /* Populate a tuple_t structure with the identity of the desired

     tuple. In this case, we're looking for a configuration table

     entry */

  tuple.DesiredTuple = CISTPL_CFTABLE_ENTRY;

  tuple.Attributes   = 0;

  tuple.TupleData    = buf;

  tuple.TupleDataMax = sizeof(buf);

  /* Walk the CIS for a matching tuple and glean card configuration 

     information such as I/O window base addresses */

  /* Get first tuple */

  CS_CHECK(GetFirstTuple, pcmcia_get_first_tuple(link, &tuple));

  while (1){

    cistpl_cftable_entry_t dflt = {0};

    cistpl_cftable_entry_t *cfg = &(parse.cftable_entry);

    /* Read a configuration tuple from the card's CIS space */

    if (pcmcia_get_tuple_data(link, &tuple) != 0 ||

        pcmcia_parse_tuple(link, &tuple, &parse) != 0) {

      goto next_entry;

    }

    /* We have a matching tuple! */
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    /* Configure power settings in the pcmcia_device based on

       what was found in the parsed tuple entry */

    if (cfg->vpp1.present & (1<<CISTPL_POWER_VNOM))

      link->conf.Vpp = cfg->vpp1.param[CISTPL_POWER_VNOM]/10000;

    /* ... */

    /* Configure I/O window settings in the pcmcia_device based on

       what was found in the parsed tuple entry */

    if ((cfg->io.nwin > 0) || (dflt.io.nwin > 0)) {

      cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt.io;

      /* ... */

      if (!(io->flags & CISTPL_IO_8BIT)) {

        link->io.Attributes1 = IO_DATA_PATH_WIDTH_16;

      }

      link->io.BasePort1 = io->win[0].base;

      /* ... */

    } 

    /* ... */

    break;

  next_entry:

    CS_CHECK(GetNextTuple, pcmcia_get_next_tuple(link, &tuple);

  }

  /* Allocate IRQ */

  if (link->conf.Attributes & CONF_ENABLE_IRQ) {

    CS_CHECK(RequestIRQ, pcmcia_request_irq(link, &link->irq));

  }

  /* ... */

  /* Invoke init_XX_card(), which is part of the generic 

     XX driver (so, not shown in this listing), and pass 

     the I/O base and IRQ information obtained above */ 

  init_XX_card(link->irq.AssignedIRQ, link->io.BasePort1, 

               1, &handle_to_dev(link)); 

  /* The chip-specific (form factor independent) driver is ready 

     to take responsibility of this card from now on! */

}



Tying the Pieces Together

As you     saw in Figure 9.3, the PCMCIA layer consists of various components. The 
data-fl ow path between the components can sometimes get complicated. Let’s trace 
the code path from the time you insert a PCMCIA card until an application starts 
transferring data to the card. Assume that a Cisco Aironet PCMCIA card is inserted 
onto a laptop having an 82365-compatible PCMCIA host controller:

 1. The PCMCIA host controller driver (drivers/pcmcia/yenta_socket.c) detects the 
insertion event via its interrupt service routine and makes note of it using suit-
able data structures.

 2. The pccardd kernel thread that is part of Card Services (drivers/pcmcia/cs.c) sleeps 
on a wait queue until the host controller driver wakes it up when it detects the 
card insertion in Step 1.

 3. Card Services dispatches an insertion event to Driver Services (drivers/pcmcia/
ds.c). This triggers execution of the event handler registered by Driver Services 
during initialization.

 4. Driver Services validates the card’s CIS space, determines information about 
the inserted device such as its manufacturer ID and card ID, and registers 
the device with the kernel. The appropriate client device driver (drivers/net/
wireless/airo_cs.c) is then loaded. Revisit our previous discussion on MODULE_
DEVICE_TABLE() to see how this is accomplished.

 5. The client driver (airo_cs.c) loaded in Step 4 initializes and registers itself 
using   pcmcia_register_driver(), as shown in Listing 9.1. This registra-
tion interface internally sets the bus type of the device to pcmcia_bus_type.
PCMCIA bus operations such as probe() and remove(), defined by Driver 
Services (ds.c), are also internally registered.

 6. The kernel invokes the bus probe() operation registered by Driver Services, 
which in turn invokes the probe()method owned by the matching client driver 
(airo_probe()), registered in Step 5. The client probe() routine populates 
settings such as I/O windows and interrupt lines, and configures the generic 
chipset-specific driver (drivers/net/wireless/airo.c), as shown in Listing 9.2.
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 7. The chipset driver (airo.c) creates a network interface (ethX) and is responsible 
for normal operation from this point onward. It’s this driver that handles inter-
rupts generated by the card in response to packet reception and transmit com-
pletion. The form factor of the device (for example, whether it’s a PCMCIA or 
a PCI card) is transparent to the chipset driver as well as to the applications that 
operate over ethX.

PCMCIA Storage

Today’s    PCMCIA/CF storage support densities in the gigabyte realm. The storage 
cards come in different fl avors:

 • Miniature IDE disk drives or  microdrives. These are tiny versions of mechani-
cal hard drives that use magnetic media. Their data transfer rates are typically 
higher than solid state memory devices, but IDE drives have spin-up and seek 
latencies before data can be transferred. The IDE Card Services driver ide_cs, in 
conjunction with legacy IDE drivers, is used to communicate with such mem-
ory cards.

 • Solid-state memory cards that emulate IDE. Such cards have no moving parts 
and are usually based on flash memory, which is transparent to the operating 
system because of the IDE emulation. Because these drives are effectively IDE- 
based, the same IDE Card Services driver (ide_cs) can be used to talk to them.

 • Memory cards that use fl ash memory, but without IDE emulation. The mem-
ory_cs Card Services driver  provides block and character interfaces over such 
cards. The block interface is used to put a fi lesystem onto card memory, whereas 
the character interface is used to access raw data. You may also use memory_cs 
to read the attribute memory space of any PCMCIA card.

Serial PCMCIA

Many   networking technologies such as GPRS, Global System for Mobile Communica-
tions (GSM), GPS, and Bluetooth use a serial transport mechanism to communicate 
with host systems. In this section, let’s fi nd out how the PCMCIA layer handles cards 



that feature such technologies. Note that this section is only to help you understand 
the bus interface part of GPRS, GSM, and Bluetooth cards having a PCMCIA/CF 
form factor. The technologies themselves are discussed in detail in Chapter 16, “Linux 
Without Wires.”

The generic serial Card Services driver  serial_cs, allows the rest of the operating sys-
tem to see the PCMCIA/CF card as a serial device. The fi rst unused serial device /dev/
ttySX, gets allotted to the card. serial_cs thus emulates a serial port over GPRS, GSM, 
and GPS cards. It also allows Bluetooth PCMCIA/CF cards that use a serial transport 
to transfer   Host Control Interface (HCI) packets to Bluetooth protocol layers.

Figure 9.5 illustrates how kernel modules implementing different networking tech-
nologies interact with serial_cs to communicate with their respective cards.

The   Point-to-Point Protocol (PPP) allows networking protocols such as TCP/IP to 
run over a serial link. In the context of Figure 9.5, PPP gets TCP/IP applications run-
ning over GPRS and GSM dialup. The PPP daemon   pppd, attaches over virtual serial 
ports emulated by serial_cs. The PPP kernel modules—ppp_generic, ppp_async, and 
slhc—have to be loaded for pppd to work. Invoke pppd as follows:

bash> pppd ttySX call connection-script

where connection-script is a fi le containing command sequences that pppd exchanges 
with the service provider to establish a link. The connection script depends on the 
particular card that is being used. A GPRS card would need a context string to be 
sent as part of the connection script, whereas a GSM card might need an exchange 
of passwords. An example connection script is described in the section “GPRS” in 
Chapter 16. 

Debugging

To    effectively debug PCMCIA/CF client drivers, you need to see debug messages emit-
ted by the PCMCIA core. For this, enable   CONFIG_PCMCIA_DEBUG (Bus options →
PCCARD support → Enable PCCARD debugging) during kernel confi guration. Verbos-
ity levels of the debug output can be controlled either via the pcmcia_core.pc_debug
kernel command-line argument or using the pc_debug module insertion parameter.
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FIGURE 9.5 Networking with PCMCIA/CF cards that use serial transport.

 Information about PC Card client drivers is available in the process fi lesystem 
entry /proc/bus/pccard/drivers. Look at /sys/bus/pcmcia/devices/* for card-specifi c infor-
mation such as manufacturer and card IDs. Take a look inside /proc/bus/pci/ to know 
more about your PCMCIA host controller if your system uses a PCI-to-PCMCIA 
bridge. /proc/interrupts lists IRQs active on your system, including those used by the 
PCMCIA layer. 

There is a   mailing list dedicated to Linux-PCMCIA at http://lists.infradead.
org/mailman/listinfo/linux-pcmcia.

http://lists.infradead.org/mailman/listinfo/linux-pcmcia
http://lists.infradead.org/mailman/listinfo/linux-pcmcia


Looking at the Sources

In the   Linux source tree, the drivers/pcmcia/ directory contains the sources for Card 
Services, Driver Services, and host controller drivers. Look at drivers/pcmcia/yenta_
socket.c for the host controller driver that runs on many x86-based laptops. Header 
fi les present in include/pcmcia/ contain PCMCIA-related structure defi nitions. 

Client drivers live alongside other drivers belonging to the associated device class. 
So, you will fi nd drivers for PCMCIA networking cards inside drivers/net/pcmcia/.
The client driver for PCMCIA memory devices that emulate IDE is drivers/ide/legacy/ 
ide-cs.c. See drivers/serial/serial_cs.c for the client driver used by PCMCIA modems.

Table 9.2 summarizes the main data structures used in this chapter and their loca-
tion in the kernel tree. Table 9.3 lists the main kernel programming interfaces that you 
used in this chapter along with the location of their defi nitions.

TABLE 9.2 Summary of   Data Structures

 Data Structure Location Description

pcmcia_device_id include/linux/mod_devicetable.h Identity of a PCMCIA card.

 pcmcia_device include/pcmcia/ds.h  Representation of a PCMCIA device.

 pcmcia_driver include/pcmcia/ds.h  Representation of a PCMCIA client 
driver.

 tuple_t include/pcmcia/cistpl.h CIS manipulation routines use a tuple_t
structure to hold information.

 cistpl_cftable_entry_t include/pcmcia/cistpl.h Configuration table entry in the CIS 
space.

 cisparse_t include/pcmcia/cistpl.h A parsed CIS tuple.

TABLE 9.3 Summary  of Kernel Programming Interfaces

 Kernel Interface Location Description

 pcmcia_register_driver() drivers/pcmcia/ds.c  Registers a driver with the PCMCIA 
core

 pcmcia_unregister_driver() drivers/pcmcia/ds.c  Unregisters a driver from the 
PCMCIA core

pcmcia_get_first_tuple() include/pcmcia/cistpl.h Library routines to manipulate
 pcmcia_get_tuple_data() drivers/pcmcia/cistpl.c CIS space

pcmcia_parse_tuple()

pcmcia_request_irq() drivers/pcmcia/pcmcia_resource.c  Gets an IRQ assigned for a PCMCIA 
card
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Peripheral Component Interconnect   (PCI) is an omnipresent I/O backbone. 
Whether  you are backing up data on a storage server, capturing video from 

your desktop, or surfi ng the web from your laptop, PCI might be serving you 
in some avatar or the other. PCI, and form factors adapted or derived from PCI 
such as Mini PCI, CardBus, PCI Extended, PCI Express, PCI Express Mini 
Card, and Express Card have become de facto peripheral connection technolo-
gies on today’s computers.

The PCI Family

PCI is  a high-speed bus used for communication between the CPU and I/O devices. 
The PCI specifi cation enables transfer of 32 bits of data in parallel at 33MHz or 
66MHz, yielding a peak throughput of 266MBps.

CardBus   is a derivative of PCI and has the form factor of a PC Card. Card-
Bus cards are also 32-bits wide and run at 33MHz. Even though CardBus and 
PCMCIA cards use the same 68-pin connectors, CardBus devices support 32 data 
lines compared to 16 for PCMCIA by multiplexing address and data lines as done 
in the PCI bus.

  Mini PCI, also a 33MHz 32-bit bus, is another adaptation of PCI found in 
small-footprint computers such as laptops. A PCI card can connect to a Mini PCI 
slot using a compatible connector.

An extension to PCI called    PCI Extended (or PCI-X) expands the bus width to 
64 bits, frequency to 133MHz, and the throughput to about 1GBps. PCI-X 2.0 is 
the current version of the standard.

    PCI Express (PCIe or PCI-E) is the present generation of the PCI family. Unlike 
the parallel PCI bus, PCIe uses a serial protocol to transfer data. PCIe supports a 
maximum of 32 serial links. Each PCIe link (in the commonly used version 1.1 of 
the specifi cation) yields a throughput of 250MBps in each transfer direction, thus 
producing a maximum PCIe data rate of 8GBps in each direction. PCIe 2.0 is the 
current version of the standard and supports higher data rates.



Serial   communication is faster and cheaper than parallel data transfer due to the 
absence of factors such as signal interference, so the industry trend is to move from 
parallel buses to serial technologies. PCIe and its adaptations aim to replace PCI and 
its derivatives, and this shift is also part of the methodology change from parallel to 
serial communication. Several I/O interfaces discussed in this book, such as RS-232, 
USB, FireWire, SATA, Ethernet, Fibre Channel, and Infi niBand, are serial communi-
cation architectures.

The CardBus equivalent in the PCIe family is the   Express Card. Express Cards 
directly connect to the system bus via a PCIe link or USB 2.0 (discussed in the next 
chapter), and circumvent middlemen such as CardBus controllers. Mini PCI’s cousin 
in the PCIe family is PCI Express Mini Card. 

Recent laptops support Express Card slots instead of (or in addition to) CardBus, 
and PCI Express Mini Card slots in place of Mini PCI. The former two have smaller 
footprints and higher speeds compared to the latter two.

Table 10.1 summarizes the important relatives of PCI. From the kernel’s perspec-
tive, all these technologies are compatible with one another. A kernel PCI driver will 
work with all related technologies mentioned previously; so even though we base 
example code in this chapter on a CardBus card, the concepts apply to other PCI 
derivatives, too.

Solutions  based on the PCI family are available for a vast spectrum of hardware 
domains:

 • Networking technologies such as Gigabit Ethernet, WiFi, ATM, Token Ring, 
and ISDN.

 • Host adapters for storage technologies, such as SCSI.

 • Host controllers for I/O buses such as USB, FireWire, IDE, I2C, and PCMCIA. 
On PC-compatible systems, these host controllers function as bridges between 
the PCI controller on the South Bridge and the bus technology they source. 
Verify this by running lspci (discussed later).

 • Graphics, video streaming, and data capture.

 • Serial port and parallel port cards.

 • Sound cards.

 • Devices such as Watchdogs, EDAC-capable memory controllers, and game 
ports.
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TABLE 10.1 PCI’s Siblings, Children, and Cousins

Bus Name Characteristics Form Factor

PCI 32-bit bus at 33MHz or 66MHz; 
yields up to 266MBps.

Internal slot in desktops and servers.

Mini PCI              32-bit bus at 33MHz. Internal slot in laptops.

CardBus 32-bit bus at 33MHz. External PC card slot in laptops. 
Compatible with PCI.

PCI Extended (PCI-X) 64-bit bus at 133 MHz, yielding up 
to 1GBps.

Internal slot in desktops and servers. 
Wider than PCI, but a PCI card can 
be plugged into a PCI-X slot.

PCI Express (PCIe) 250MBps per PCIe link in each 
transfer direction, yielding a 
maximum throughput of 8GBps in 
each direction.

Replaces the internal PCI slot in newer 
systems. PCIe is a serial protocol 
unlike native PCI, which is parallel.

PCI Express Mini 
Card

250MBps in each direction if the 
interface is based on a PCIe link; 
60MBps if the interface is based on 
USB 2.0.

Replaces Mini PCI as the internal slot 
in newer laptops. Smaller form factor 
than Mini PCI.

Express Card 250MBps in each direction if the 
interface is based on a PCIe link; 
60MBps if the interface is based on 
USB 2.0.

Thin external slot in newer laptops 
that replaces CardBus. Interfaces with 
the system bus via PCIe or USB 2.0.

For the driver developer, the PCI family offers an attractive advantage: a system of 
automatic device confi guration. Unlike drivers for the older ISA generation, PCI driv-
ers need not implement complex probing logic. During boot, the BIOS-type boot 
fi rmware (or the kernel itself if so confi gured) walks the PCI bus and assigns resources 
such as interrupt levels and I/O base addresses. The device driver gleans this assign-
ment by peeking at a memory region called the PCI confi guration space. PCI devices 
possess 256 bytes of confi guration memory. The top 64 bytes of the confi guration 
space is standardized and holds registers that contain details such as the status, inter-
rupt line, and I/O base addresses. PCIe and PCI-X 2.0 offer an extended confi guration 
space of 4KB. We will learn how to operate on the PCI confi guration space later.

Figure 10.1   shows PCI in a PC-compatible system. Components integrated into 
the South Bridge such as controller silicon for USB, IDE, I2C, LPC, and Ethernet 
reside off the PCI bus. Some of these controllers contain an internal PCI-to-PCI 
bridge to source a dedicated PCI bus for the respective I/O technology. The South 



Bridge additionally contains an external PCI bus to connect I/O peripherals such as 
CardBus controllers and WiFi chipsets. Figure 10.1 also shows PCI address tuples cor-
responding to each connected subsystem. This will get clearer when we learn about 
PCI addressing next.
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FIGURE 10.1 PCI inside a PC South Bridge.

Addressing and Identification

PCI    devices are addressed using bus, device, and function numbers, and they are identi-
fi ed via vendorIDs, deviceIDs, and class codes. Let’s learn these concepts with the help 
of the lspci   utility that is part of the PCI Utilities package downloadable from http://
mj.ucw.cz/pciutils.shtml. 
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Assume that you’re using a Xircom Ethernet-Modem multifunction CardBus card 
on a Pentium-class laptop served by a Texas Instruments PCI4510 CardBus controller, 
as shown in Figure 10.1. Run lspci:

bash>lspci

00:00.0 Host bridge: Intel Corporation 82852/82855 GM/GME/PM/GMV Processor to I/O 
Controller (rev 02)

...

02:00.0 CardBus bridge: Texas Instruments PCI4510 PC card Cardbus Controller (rev 03)

...

03:00.0 Ethernet controller: Xircom Cardbus Ethernet 10/100 (rev 03)

03:00.1 Serial controller: Xircom Cardbus Ethernet + 56k Modem (rev 03)

Consider the tuple (XX:YY.Z) at the beginning of each entry in the preceding output. 
XX stands for the PCI bus number. A PCI domain can host up to 256 buses. In the 
laptop used previously, the CardBus bridge is connected to PCI bus 2. This bridge 
sources another PCI bus numbered 3 that hosts the Xircom card. 

YY is the PCI device number. Each bus can connect to a maximum of 32 PCI 
devices. Each device can, in turn, implement up to eight functions represented by Z.
The Xircom card can simultaneously perform two functions. Thus, 03:00.0 addresses 
the Ethernet function of the card, while 03:00.1 corresponds to its modem commu-
nication function. Issue lspci –t to elicit a tree-like layout of the PCI buses and 
devices on your system:

bash> lspci –t

-[0000:00]-+-00.0

           +-00.1

           +-00.3

           +-02.0

           +-02.1

           +-1d.0

           +-1d.1

           +-1d.2

           +-1d.7

           +-1e.0-[0000:02-05]--+-[0000:03]-+-00.0

           |                    |           \-00.1

           |                    \-[0000:02]-+-00.0

           |                                +-00.1

           |                                +-01.0

           |                                \-02.0

           +-1f.0



As you can see from the preceding output (and in Figure 10.1), to walk the PCI 
bus and reach the Xircom modem (03:00.01) or Ethernet controller (03:00.0), you 
have to start from your PCI domain (labeled 0000 in the preceding output), traverse 
a PCI-to-PCI bridge (00:1e.0), and then cross a PCI-to-CardBus host controller 
(02:0.0). The sysfs representation of the PCI subsystem mirrors this layout:

bash>  ls /sys/devices/pci0000:00/0000:00:1e.0/0000:02:00.0/0000:03:00.0/

...

net:eth2  Ethernet

...

bash>  ls /sys/devices/pci0000:00/0000:00:1e.0/0000:02:00.0/0000:03:00.1/

...

tty:ttyS1  Modem

...

As you saw earlier, PCI devices possess a 256-byte memory region that holds con-
fi guration registers. This space is the key to identify the make and capabilities of PCI 
cards. Let’s take a peek inside the confi guration spaces of the CardBus controller and 
the Xircom dual-function card previously used. The Xircom card has two confi gura-
tion spaces, one per supported function:

bash> lspci –x

00:00.0 Host bridge: Intel Corporation 82852/82855 GM/GME/PM/GMV Processor to I/O 
Controller (rev 02)

00: 86 80 80 35 06 01 90 20 02 00 00 06 00 00 80 00

10: 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

20: 00 00 00 00 00 00 00 00 00 00 00 00 14 10 5c 05

30: 00 00 00 00 40 00 00 00 00 00 00 00 00 00 00 00

...

02:00.0 CardBus bridge: Texas Instruments PCI4510 PC card Cardbus Controller (rev 03)

00: 4c 10 44 ac 07 00 10 02 03 00 07 06 20 a8 82 00

10: 00 00 00 b0 a0 00 00 22 02 03 04 b0 00 00 00 f0

20: 00 f0 ff f1 00 00 00 d2 00 f0 ff d3 00 30 00 00

30: fc 30 00 00 00 34 00 00 fc 34 00 00 0b 01 00 05

...

03:00.0 Ethernet controller: Xircom Cardbus Ethernet 10/100 (rev 03)

00: 5d 11 03 00 07 00 10 02 03 00 00 02 00 40 80 00

10: 01 30 00 00 00 00 00 d2 00 08 00 d2 00 00 00 00

20: 00 00 00 00 00 00 00 00 07 01 00 00 5d 11 81 11

30: 00 00 00 00 dc 00 00 00 00 00 00 00 0b 01 14 28
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03:00.1 Serial controller: Xircom Cardbus Ethernet + 56k Modem (rev 03)

00: 5d 11 03 01 03 00 10 02 03 02 00 07 00 00 80 00

10: 81 30 00 00 00 10 00 d2 00 18 00 d2 00 00 00 00

20: 00 00 00 00 00 00 00 00 07 02 00 00 5d 11 81 11

30: 00 00 00 00 dc 00 00 00 00 00 00 00 0b 01 00 00

PCI registers are little-endian, so factor that while interpreting the preceding output. 
You may also dump PCI confi guration regions via sysfs. So, to look at the confi gura-
tion space of the Ethernet function of the Xircom card, do this:

bash> od -x /sys/devices/pci0000:00/0000:00:1e.0/0000:02:00.0/0000:03:00.0/config

0000000 115d 0003 0007 0210 0003 0200 4000 0080

0000020 3001 0000 0000 d200 0800 d200 0000 0000

0000040 0000 0000 0000 0000 0107 0000 115d 1181

...

Table 10.2 explains some of the values shown in the preceding dump. The fi rst two 
bytes contain the vendor ID, which identifi es the company that manufactured the 
card. PCI vendor IDs are maintained and assigned globally. (Point your browser to 
www.pcidatabase.com for a database.) As you can decipher from the preceding out-
put, Intel, Texas Instruments, and Xircom (now acquired by Intel) own vendor IDs 
of 0x8086, 0x104C, and 0x115D, respectively. The next two bytes are specifi c to the 
functionality of the card and constitute its device ID. From the preceding output, 
the Ethernet functionality of the Xircom card owns a device ID of 0x0003, while the 
modem answers to a device ID of 0x0103. PCI cards additionally possess subvendor 
and subdevice IDs (see words at offsets 44 and 46 in the preceding dump) to further 
pinpoint their identity.

Ten bytes into the confi guration space lies the code that describes the class of the 
device. PCI bridges have a class code starting with 0x06, network devices possess a class 
code beginning with 0x02, and communication devices own a class code commencing 
with 0x07. Thus, in the preceding example, the CardBus bridge, the Ethernet card, 
and the serial modem own class codes of 0x0607, 0x0200, and 0x0700, respectively. 
You can fi nd class code defi nitions in include/linux/pci_ids.h.

www.pcidatabase.com


TABLE 10.2 PCI Confi guration Space Semantics

 Configuration   Values from the Dump Output 
 Space Offset  Semantics for the Xircom Card

 0 Vendor ID 0x115D

 2 Device ID 0x0003

 10 Class code 0x0200

 16 to 39 Base address register 0 (BAR 0) to BAR5 0x3001...0000

 44 Subvendor ID 0x115D

 46 Subdevice ID 0x1181

PCI drivers register the vendor IDs, device IDs, and class codes that they support with 
the PCI subsystem. Using this database, the PCI subsystem binds an inserted card to 
the appropriate device driver after gleaning its identity from its confi guration space. 
We will see how this is done when we implement an example driver later. 

Accessing PCI Regions

PCI devices   contain three addressable regions: confi guration space, I/O ports, and 
device memory. Let’s learn how to access these memory regions from a device driver.

Configuration Space

The    kernel offers a set of six functions that your driver can use to operate on PCI con-
fi guration space:

pci_read_config_[byte|word|dword](struct pci_dev *pdev,

                                  int offset, int *value);

and

pci_write_config_[byte|word|dword](struct pci_dev *pdev,

                                   int offset, int value);

In the argument list, struct pci_dev is the PCI device structure, and offset is the 
byte position in the confi guration space that you want to access. For read functions, 
value is a pointer to a supplied data buffer, and for write routines, it contains the data 
to be written.
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Let’s consider some examples:

 • To decipher the IRQ number assigned to a card function, use the following:

unsigned char irq;

      pci_read_config_byte(pdev, PCI_INTERRUPT_LINE, &irq);

As per the PCI specification, offset 60 inside the PCI configuration space holds 
the IRQ number assigned to the card. All configuration register offsets are 
expressively defined in include/linux/pci_regs.h, so use PCI_INTERRUPT_LINE
rather than 60 to specify this offset. Similarly, to read the PCI status register 
(two bytes at offset six in the configuration space), do this:

unsigned short status;

pci_read_config_word(pdev, PCI_STATUS, &status);

 • Only the first 64 bytes of the configuration space are standardized. The device 
manufacturer defines desired semantics to the rest. The Xircom card used earlier, 
assigns four bytes at offset 64 for power management purposes. To disable power 
management, the Xircom CardBus driver drivers/net/tulip/xircom_cb.c, does this:

#define PCI_POWERMGMT 0x40

pci_write_config_dword(pdev, PCI_POWERMGMT, 0x0000);

I/O and Memory

PCI cards have up to six I/O or memory regions. I/O regions contain registers, and 
memory regions hold data. Video cards, for example, may have I/O spaces that accom-
modate control registers and memory regions that map to frame buffers. Not all cards 
have addressable memory regions, however. The semantics of I/O and memory spaces 
are hardware-dependent and can be obtained from the device data sheet.

Like for   confi guration memory, the kernel offers a set of helpers to operate on I/O 
and memory regions of PCI devices:

unsigned long pci_resource_[start|len|end|flags]         (struct pci_dev *pdev, int bar);

To operate on an I/O region such as the device control registers of a PCI video card, 
the driver needs to do the following:

 1. Get the I/O base address from the appropriate base address register (bar) in the 
configuration space:

unsigned long io_base = pci_resource_start(pdev, bar);



This assumes that the device control registers for this card are mapped to the IO 
region associated with bar, whose value can range from 0 through 5, as shown 
in Table 10.2.

 2. Mark this region as being spoken for, using the kernel’s   request_region()
regulatory mechanism discussed in Chapter 5, “Character Drivers”:

request_region(io_base, length, "my_driver");

Here, length is the size of the control register space and my_driver identifi es 
the region’s owner. Look for the entry containing my_driver in /proc/ioports to 
spot this I/O region.

You may use the wrapper function   pci_request_region(), defi ned in 
drivers/pci/pci.c, instead of calling request_region().

 3. Add the register’s offset obtained from the data-sheet, to the base address gleaned 
in Step 1. Operate on this address using the inb() and outb() family of func-
tions discussed in Chapter 5:

/* Read */

register_data = inl(io_base + REGISTER_OFFSET);

/* Use */

/* ... */

/* Write */

outl(register_data, iobase + REGISTER_OFFSET);

To operate on a memory region such as a frame buffer on the above PCI video card, 
follow these steps:

 1. Get the base address, length, and flags associated with the memory region:

unsigned long mmio_base   = pci_resource_start(pdev, bar);

unsigned long mmio_length = pci_resource_length(pdev, bar);

unsigned long mmio_flags  = pci_resource_flags(pdev, bar);

This assumes that this memory is mapped to the base address register, bar.

 2. Mark ownership of this region using the kernel’s   request_mem_region() reg-
ulatory mechanism:

request_mem_region(mmio_base, mmio_length, "my_driver");

You may instead use the wrapper function   pci_request_region(), men-
tioned previously.

Accessing PCI Regions 287



288 Chapter 10 Peripheral Component Interconnect

 3. Obtain CPU access to the device memory obtained in Step 1. Certain memory 
regions, such as the ones that hold registers, need to guard against side effects, 
so they are marked as not being prefetchable (or cacheable) by the CPU. Other 
regions, such as the one used in this example, can be cached. Depending on the 
access flag, use the appropriate function to obtain kernel virtual addresses cor-
responding to the mapped region:

void __iomem *buffer;

if (flags & IORESOURCE_CACHEABLE) {

  buffer  = ioremap(mmio_base, mmio_length);

} else {

  buffer = ioremap_nocache(mmio_base, mmio_length);

}

To be safe, and to avoid performing the preceding checks, use the services of   pci_
iomap() defi ned in lib/iomap.c instead:

buffer = pci_iomap(pdev, bar, mmio_length);

Direct Memory Access

Direct Memory Access (DMA)         is the capability to transfer data from a peripheral to main 
memory without the CPU’s intervention. DMA boosts the performance of peripher-
als manyfold, because it doesn’t burn CPU cycles to move data. PCI networking cards 
and IDE disk drives are common examples of peripherals relying on DMA for data 
transfer. 

DMA is initiated by     a DMA master. The PC motherboard has a DMA control-
ler on the South Bridge that can master the I/O bus and initiate DMA to or from a 
peripheral. This is usually the case for legacy ISA cards. However, buses such as PCI 
can master the bus and initiate DMA transfers. CardBus cards are similar to PCI and 
also support DMA mastering. PCMCIA devices, on the other hand, do not support 
DMA mastering, but the PCMCIA controller, which is usually wired to a PCI bus, 
might have DMA mastering capabilities.

The issue of cache coherency is synonymous with DMA. For optimum performance, 
processors cache recently accessed bytes, so data passing between the CPU and main 
memory streams through the processor cache. During DMA, however, data travels 
directly between the peripheral device and main memory and, hence, bypasses the pro-
cessor cache. This evasion has the potential to introduce inconsistencies because the 



processor might work on stale data living in its cache. Some architectures automati-
cally synchronize the cache with main memory using a technique called bus snooping. 
Many others rely on software to achieve coherency, however. We will learn how to 
perform coherent DMA operations after introducing a few more topics.

DMA can occur      synchronously or asynchronously. An example of the former is DMA 
from a system frame buffer to an LCD controller. A user application writes pixel data 
to a DMA-mapped frame buffer via /dev/fbX, while the LCD controller uses DMA 
to collect this data synchronously at timed intervals. We discuss more about this in 
Chapter 12, “Video Drivers.” An example of asynchronous DMA is the transmit and 
receive of data frames between the CPU and a network card discussed in Chapter 15, 
“Network Interface Cards.”

System memory regions that are the source or destination of DMA transfers are 
called DMA     buffers. If a bus interface has addressing limitations, that’ll affect the 
memory range that can hold DMA buffers. So, DMA buffers suitable for a 24-bit bus 
such as ISA can live only in the bottom 16MB of system memory called ZONE_DMA
(see the section “Allocating Memory” in Chapter 2, “A Peek Inside the Kernel”). PCI 
buses are 32-bits wide by default, so you won’t usually face such limitations on 32-bit 
platforms. To inform the kernel about any special needs of DMA-able buffers, use the 
following:

dma_set_mask(struct device *dev, u64 mask);

If this function returns success, you may DMA to any address that is mask bits in 
length. For example, the e1000 PCI-X Gigabit Ethernet driver  (drivers/net/e1000/
e1000_main.c) does the following:

if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {

/* System supports 64-bit DMA */

   pci_using_dac = 1;

} else {

  /* See if 32-bit DMA is supported */

  if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {

    /* No, let’s abort */

    E1000_ERR("No usable DMA configuration, aborting\n");

    return err;

  }

  /* 32-bit DMA */

  pci_using_dac = 0;

}
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I/O devices view DMA buffers through the lens of the bus controller and any interven-
ing      I/O memory management unit (IOMMU). Because of this, I/O devices work with 
bus addresses  , rather than physical or kernel virtual addresses. So, when you inform a 
PCI card about the location of a DMA buffer, you have to let it know the buffer’s bus 
address. DMA service routines map the kernel virtual address of DMA buffers to bus 
addresses so that both the device and the CPU can access the buffers. Bus addresses are 
of type dma_addr_t, defi ned in include/asm-your-arch/types.h. 

There are a couple more concepts worth knowing about DMA. One is the idea 
of bounce buffers. Bounce buffers reside in DMA-able regions and are used as tempo-
rary memory when DMA is requested to/from non-DMA-able memory regions. An 
example is DMA to an address higher than 4GB from a 32-bit PCI peripheral when 
there is no intervening IOMMU. Data is fi rst transferred to a bounce buffer and then 
copied to the fi nal destination. The second concept is a fl avor of DMA called scatter-
gather.     When data to be DMA’ed is spread over discontiguous regions, scatter-gather
capability enables the hardware to gather contents of the scattered buffers at one go. 
The reverse occurs when data is DMA’ed from the card to buffers scattered in memory. 
Scatter-gather capability boosts performance by eliminating the need to service mul-
tiple DMA requests.

The kernel features a healthy API that masks many of the internal details of con-
fi guring DMA. This API gets simpler if you are writing a driver for a PCI card that 
supports bus mastering. (Most PCI cards do.) PCI DMA routines are essentially wrap-
pers around the generic DMA service routines and are defi ned in include/asm-generic/
pci-dma-compat.h. In this chapter, we use only the PCI DMA API. 

The kernel provides two classes of DMA service routines to PCI drivers:

 1. Consistent (or coherent)     DMA access methods. These routines guarantee data 
coherency in the face of DMA activity. If both the PCI device and the CPU are 
likely to frequently operate on a DMA buffer, consistency is crucial, so use the 
consistent API. The trade-off is a degree of performance penalty. To obtain a 
consistent DMA buffer, call this service routine:

void * pci_alloc_consistent(struct pci_dev *pdev, 

                           size_t size,

                           dma_addr_t *dma_handle);

This function allocates a DMA buffer, generates its bus address, and returns 
the associated kernel virtual address. The fi rst two arguments respectively hold 
the PCI device structure (which is discussed later) and the size of the requested 



DMA buffer. The third argument dma_handle, is a pointer to the bus address 
that the function call generates. The following snippet allocates and frees a con-
sistent DMA buffer:

/* Allocate */

void *vaddr = pci_alloc_consistent(pdev, size, 

                                   &dma_handle);

/* Use */

/* ... */

/* Free */

pci_free_consistent(pdev, size, vaddr, dma_handle);

 2. Streaming     DMA access methods. These routines do not guarantee consistency 
and are faster as a result. They are useful when there is not much need for 
shared access between the CPU and the I/O device. When a streamed buffer 
has been mapped for device access, the driver has to explicitly unmap (or sync) 
it before the CPU can reliably operate on it. There are two families of stream-
ing access routines: pci_[map|unmap|dma_sync]_single()and pci_[map|

unmap|dma_sync]_sg().

The fi rst function family maps, unmaps, and synchronizes a single preallocated 
DMA buffer. pci_map_single() is prototyped as follows:

dma_addr_t pci_map_single(struct pci_dev *pdev, void *ptr,

                          size_t size, int direction);

The fi rst three arguments respectively hold the PCI device structure, the ker-
nel virtual address of a preallocated DMA buffer, and the size of the sup-
plied buffer. The fourth argument, direction, can be one of the following: 
PCI_DMA_BIDIRECTION, PCI_DMA_TODEVICE, PCI_DMA_FROMDEVICE, or 
PCI_DMA_NONE. The names are self-explanatory, but the fi rst option is expen-
sive, and the last is for debugging. We discuss streamed DMA mapping further 
when we develop an example driver later.

The second function family maps, unmaps, and synchronizes a scatter-gather 
list of DMA buffers.   pci_map_sg()is prototyped as follows: 

int pci_map_sg(struct pci_dev *pdev, 

               struct scatterlist *sgl, 

               int num_entries, int direction);

The scattered list is specifi ed using the second argument struct scatterl-

ist, defi ned in include/asm-your-arch/scatterlist.h. num_entries is the num-
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of entries in scatterlist. The fi rst and last arguments are the same as that 
described for   pci_map_single(). The function returns the number of mapped 
entries:

num_mapped = pci_map_sg(pdev, sgl, num_entries, 

                        PCI_DMA_TODEVICE);

for (i=0; i<num_mapped; i++) {

  /* sg_dma_address(&sgl[i]) returns the bus address 

     of this entry */

  /* sg_dma_len(&sgl[i]) returns the length of this region

   */

}

Let’s summarize the characteristics of coherent and streaming DMA to help you 
decide their suitability for your usage scenario:

 • Coherent mappings are simple to code but expensive to use. Streaming map-
pings have the reverse characteristic.

 • Coherent mappings are preferred when both the CPU and the I/O device need 
to frequently manipulate the DMA buffer. This is usually the case for synchro-
nous DMA. An example is the frame buffer driver mentioned previously, where 
each DMA operates on the same buffer. Because the CPU and the video con-
troller are constantly accessing the frame buffer, it makes sense to use coherent 
mappings in this situation. 

 • Use streaming mappings when the I/O device owns the buffer for long dura-
tions. Streamed DMA is common for asynchronous operation when each DMA 
operates on a different buffer. An example is a network driver, where the buffers 
that carry transmit packets are mapped and unmapped on-the-fly. 

 • DMA descriptors are good candidates for coherent mapping. DMA descriptors 
contain metadata about DMA buffers such as their address and length and are 
frequently accessed by both the CPU and the device. Mapping descriptors on-
the-fl y is expensive because that entails frequent unmappings and remappings 
(or sync operations).

Device Example: Ethernet-Modem Card

Armed     with the knowledge acquired so far, let’s venture to write a skeletal device 
driver for a fi ctitious Ethernet-Modem dual-function CardBus card and see how it 
can be used for networking on a LAN and for establishing a dialup connection to an 



Internet service provider. You will essentially need one device driver per supported 
function. Assuming you already have a serial driver (we learned to write serial drivers 
in Chapter 6, “Serial Drivers”) and an Ethernet driver (we will learn to implement 
network drivers in Chapter 15) that support the chipsets used on the card, let’s tinker 
with those drivers and get them to work with the CardBus interface. The example 
here is generic but is loosely based on the kernel driver for the Xircom card that we 
used previously. The Ethernet and modem portions of the Xircom driver live sepa-
rately in drivers/net/tulip/xircom_cb.c and drivers/serial/8250_pci.c, respectively.

Initializing and Probing

PCI drivers use an array of pci_device_id structures     defi ned in include/linux/mod_
devicetable.h to describe the identity of the cards they support:

struct pci_device_id {

  __u32 vendor, device;         /* Vendor and Device IDs */

  __u32 subvendor, subdevice;   /* Subvendor and Subdevice IDs */

  __u32 class, classmask;       /* Class and class mask */

  kernel_ulong_t driver_data;   /* Private data */

};

The semantics of the fi rst six fi elds in pci_device_id conform to the PCI parlance dis-
cussed previously. The last fi eld driver_data is private to the driver and is commonly 
used to co-relate confi guration information if the driver supports multiple cards. 

The Ethernet-Modem card has a device ID and a confi guration space corre-
sponding to each of its two functions. Because the two card functions are uncon-
nected, you need separate PCI drivers to handle them. The drivers/net/ directory 
is a good place to hold the Ethernet driver, and drivers/serial/ is the right location 
to place its serial counterpart. The Ethernet driver in Listing 10.1 supports the 
network function and announces a set of associated IDs in its pci_device_id
table. The serial driver in Listing 10.2 is similar, except that it’s responsible for the 
modem function. The associated class codes and class masks are left unstated by 
both drivers because the vendor ID/device ID combination itself uniquely identi-
fi es their functionality.

The PCI subsystem provides macros such as    PCI_DEVICE() and PCI_DEVICE_
CLASS() to ease the creation of the pci_device_id table. PCI_DEVICE(), for  example, 
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creates a pci_device_id element from the specifi ed vendor ID and device ID. So you 
may rewrite network_device_pci_table in Listing 10.1 as follows:

struct pci_device_id network_driver_pci_table[] __devinitdata = {

  {PCI_DEVICE(MY_VENDOR_ID, MY_DEVICE_ID_NET)

   .driver_data = (unsigned long)network_driver_private_data},

  {0},

};

The     MODULE_DEVICE_TABLE() macro in Listing 10.1 and Listing 10.2 marks the 
pci_device_id table in the module image. This information loads the module on 
demand when the CardBus card is inserted. We explored this mechanism in the sec-
tion “Module Autoload” in Chapter 4, “Laying the Groundwork,” and used it in the 
context of pcmcia_device_id in Chapter 9, “PCMCIA and Compact Flash.”

When the PCI hotplug layer senses the presence of a card with properties matching 
the ones announced by the pci_device_id table of a driver, it invokes the probe()
method belonging to that driver. This gives an opportunity to the driver to claim the 
card. Obviously, PCI drivers have to associate their pci_device_id table with their 
probe() method. This tie up is achieved by the pci_driver structure that drivers 
register with the PCI subsystem during initialization. To perform this registration, 
drivers call   pci_register_driver().

LISTING 10.1 Registering the      Network Function

#include <linux/pci.h>

#define MY_VENDOR_ID      0xABCD

#define MY_DEVICE_ID_NET  0xEF01

/* The set of PCI cards that this driver supports. Only a single

   entry in our case. Look at include/linux/mod_devicetable.h for 

   the definition of pci_device_id */

struct pci_device_id network_driver_pci_table[] __devinitdata = {

{

  { MY_VENDOR_ID,               /* Interface chip manufacturer ID */

    MY_DEVICE_ID_NET,           /* Device ID for the network 

                                   function */

    PCI_ANY_ID,                 /* Subvendor ID wild card */



    PCI_ANY_ID,                 /* Subdevice ID wild card */

    0, 0,                       /* class and classmask are

                                   unspecified */

    network_driver_private_data /* Use this to co-relate 

                                   configuration information if the 

                                   driver supports multiple

                                   cards. Can be an enumerated type. */

  }, {0},

};

/* struct pci_driver is defined in include/linux/pci.h */

struct pci_driver network_pci_driver = {

  .name     =  "ntwrk",                      /* Unique name */

  .probe    =  net_driver_probe,             /* See Listing 10.3 */

  .remove   = __devexit_p(net_driver_remove),/* See Listing 10.3 */

  .id_table = network_driver_pci_table,      /* See above */

                                    

  /* suspend() and resume() methods that implement power

     management are not used by this driver */

};

/* Ethernet driver initialization */

static int __init 

network_driver_init(void)

{

  pci_register_driver(&network_pci_driver);

  return 0;

}

/* Ethernet driver exit */

static void __exit 

network_driver_exit(void)

{

  pci_unregister_driver(&network_pci_driver);

}

module_init(network_driver_init);

module_exit(network_driver_exit);

MODULE_DEVICE_TABLE(pci, network_driver_pci_table);
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LISTING 10.2 Registering the      Modem Function

#include <linux/pci.h>

#define MY_VENDOR_ID      0xABCD

#define MY_DEVICE_ID_MDM  0xEF02

/* The set of PCI cards that this driver supports */

struct pci_device_id modem_driver_pci_table[] __devinitdata = {

{

  { MY_VENDOR_ID,               /* Interface chip manufacturer ID */

    MY_DEVICE_ID_MDM,           /* Device ID for the modem 

                                   function */

    PCI_ANY_ID,                 /* Subvendor ID wild card */

    PCI_ANY_ID,                 /* Subdevice ID wild card */

    0, 0,                       /* class and classmask are

                                   unspecified */

    modem_driver_private_data   /* Use this to co-relate 

                                   configuration information if the driver 

                                   supports multiple cards. Can be an

                                   enumerated type. */

  }, {0},

};

struct pci_driver modem_pci_driver = {

  .name     =  "mdm",                          /* Unique name */

  .probe    =  modem_driver_probe,             /* See Listing 10.4 */

  .remove   = __devexit_p(modem_driver_remove),/* See Listing 10.4 */

  .id_table =  modem_driver_pci_table,         /* See above */ 

  /* suspend() and resume() methods that implement power

   management are not used by this driver */

};

/* Modem driver initialization */

static int __init 

modem_driver_init(void)

{

  pci_register_driver(&modem_pci_driver);

  return 0;

}



/* Modem driver exit */

static void __exit 

modem_driver_exit(void)

{

  pci_unregister_driver(&modem_pci_driver);

}

module_init(modem_driver_init);

module_exit(modem_driver_exit);

MODULE_DEVICE_TABLE(pci, modem_driver_pci_table);

Listing 10.3 implements the   probe() method for the network function. This

 • Enables the PCI device

 • Discovers resource information such as I/O base addresses and IRQ

 • Allocates and populates a networking data structure associated with this 
device 

 • Registers itself with the kernel networking layer

Listing 10.4 performs similar work for the modem function. In this case, the driver 
registers with the kernel serial layer instead of the networking layer.

Listings 10.3 and 10.4 also implement remove() methods, which are invoked 
when the CardBus card is ejected or when the driver module is unloaded. remove() is 
the reverse of probe(); it frees resources and unregisters the driver from relevant sub-
systems. The __devexit_p() macro that Listing 10.1 uses to declare the remove()
method discards the supplied function at compile time if you haven’t enabled hotplug 
support and if the driver is not a dynamically loadable module.

The PCI subsystem calls probe() with two arguments:

 1. A pointer to pci_dev, the data structure that describes this PCI device. This 
structure, defined in include/linux/pci.h, is maintained by the PCI subsystem for 
each PCI device on your system.

 2. A pointer to pci_device_id, the entry in the driver’s pci_device_id
table that matches the information found in the configuration space of the 
inserted card.
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LISTING 10.3 Probing the      Network Function

#include <linux/pci.h>

unsigned long ioaddr;

/* Probe method */

static int __devinit 

net_driver_probe(struct pci_dev *pdev, 

                 const struct pci_device_id *id)

{

  /* The net_device structure is defined in include/linux/netdevice.h.

     See Chapter 15, "Network Interface Cards," for the description */

     struct net_device *net_dev;

  /* Ask low-level PCI code to enable I/O and memory regions for

     this device. Look up the IRQ for the device that the PCI

     subsystem allotted when it walked the bus */

  pci_enable_device(pdev);

  /* Use this device in bus mastering mode, since the network 

     function of this card is capable of DMA */

  pci_set_master(pdev);

  /* Allocate an Ethernet interface and fill in generic values in 

     the net_dev structure. prv_data is the private driver data 

     structure that contains buffers, locks, and so on. This is 

     left undefined. Wait until Chapter 15 for more on

     alloc_etherdev() */

  net_dev = alloc_etherdev(sizeof(struct prv_data));

  /* Populate net_dev with your network device driver methods */

  net_dev->hard_start_xmit = &mydevice_xmit; /* See Listing 10.6 */

  /* More net_dev initializations */

  /* ... */

  /* Get the I/O address for this PCI region. All card registers 

     specified in Table 10.3 are assumed to be in bar 0 */

  ioaddr = pci_resource_start(pdev, 0); 

  /* Claim a 128-byte I/O region */

  request_region(ioaddr, 128, "ntwrk");



  /* Fill in resource information obtained from the PCI layer */

  net_dev->base_addr = ioaddr;

  net_dev->irq       = pdev->irq;

  /* ... */

  /* Setup DMA. Defined in Listing 10.5 */

  dma_descriptor_setup(pdev);

  /* Register the driver with the network layer. This will allot 

     an unused ethX interface */

  register_netdev(net_dev);

  /* ... */

}

/* Remove method */

static void __devexit 

net_driver_remove(struct pci_dev *pdev)

{

  /* Free transmit and receive DMA buffers. 

     Defined in Listing 10.5 */

  dma_descriptor_release(pdev); 

  /* Release memory regions */

  /* ... */

  /* Unregister from the networking layer */

  unregister_netdev(dev);

  free_netdev(dev);

  /* ... */

}

LISTING 10.4 Probing the     Modem Function

/* Probe method */

static int __devinit 

modem_driver_probe(struct pci_dev *pdev, 

                   const struct pci_device_id *id)

{

  struct uart_port port; /* See Chapter 6, "Serial Drivers" */
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  /* Ask low-level PCI code to enable I/O and memory regions

     for this PCI device */

  pci_enable_device(pdev);

  /* Get the PCI IRQ and I/O address to be used and populate the 

     uart_port structure (see Chapter 6) with these resources. Look at

include/linux/pci.h for helper functions */

       

  /* ... */

  /* Register this information with the serial layer and get an

     unused ttySX port allotted to the card. Look at Chapter 6 for 

     more on serial drivers */

  serial8250_register_port(&port);

  /* ... */

}

/* Remove method */

static void __devexit 

modem_driver_remove(struct pci_dev *dev)

{

  /* Unregister the port from the serial layer */

  serial8250_unregister_port(&port);

  /* Disable device */

  pci_disable_device(dev);

}

To recap, let’s trace the code path from the time you insert the Ethernet-Modem 
CardBus card until you are allotted a network interface (ethX) and a serial port 
(/dev/ttySX):

 1. For each supported CardBus function, the corresponding driver initializa-
tion routine registers a pci_device_id table of supported cards and a 
probe()routine. This is shown in Listing 10.1 and Listing 10.2.

 2. The PCI hotplug layer detects card insertion and gleans the vendor ID and 
device ID of each device function from the card’s PCI configuration space.

 3. Because the IDs match with those registered by the card’s Ethernet and serial 
drivers, the corresponding probe() methods are invoked. This results in the 



invocation of net_driver_probe()and modem_driver_probe() described 
respectively in Listing 10.3 and Listing 10.4.

 4. The probe() methods configure the Ethernet and modem portions of the PCI 
driver with resource information. This leads to the allocation of a networking 
interface (ethX) and a serial port (ttySX) to the card. From this point on, appli-
cation data flows over these interfaces. 

Data Transfer

The    network function belonging to the sample CardBus device uses the following strat-
egy for data transfer: The card expects the device driver to supply it with an array of two 
receive DMA descriptors and an array of two transmit DMA descriptors. Each DMA 
descriptor contains the address of an associated data buffer, its length, and a control 
word. You can use the control word to tell the device whether the descriptor contains 
valid data. For a transmit descriptor, you may also program it to request an interrupt 
after data transmission. The card looks for a valid descriptor and DMA’s data to/from 
the associated data buffer. To suit this elementary scheme, the example driver uses only 
the coherent DMA interface. The driver coherently allocates a large buffer that holds 
the descriptors and their associated data buffers. The receive and transmit buffers are 
1536 bytes long to match the   maximum transmission unit (MTU) of Ethernet frames. 
The descriptors and buffers are pictorially shown in Figure 10.2. The top 24 bytes of 
each array in the fi gure hold two 12-byte DMA descriptors, and the rest of the memory 
is occupied by two 1536-byte DMA buffers. The 12-byte descriptor layout shown in 
the fi gure is assumed to match the format specifi ed in the card’s data sheet.

Table 10.3 shows   the register layout of the card’s network function.

TABLE 10.3 Register Layout of the Card’s Network Function

Register Name Description
Offset into 
I/O Space

DMA_RX_REGISTER Holds the bus address of the receive DMA descriptor array 
(dma_bus_rx)

0x0

DMA_TX_REGISTER Holds the bus address of the transmit DMA descriptor array 
(dma_bus_tx)

0x4

CONTROL_REGISTER Control word that commands the card to initiate DMA, stop 
DMA, and so on

0x8
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FIGURE 10.2 DMA descriptors and buffers for the CardBus device.

LISTING 10.5 Setting Up DMA      Descriptors and Buffers

/* Device-specific data structure for the Ethernet Function 

   allocated during device initialization */

struct device_data {

  struct pci_dev *pdev;     /* The PCI Device structure */

  struct net_device *ndev;  /* The Net Device structure */

  void *dma_buffer_rx;      /* Kernel virtual address of the

                               receive descriptor */

  dma_addr_t dma_bus_rx;    /* Bus address of the receive

                               descriptor */

  void *dma_buffer_tx;      /* Kernel virtual address of the

                               transmit descriptor */

  dma_addr_t dma_bus_tx;    /* Bus address of the transmit

                               descriptor */

  /* ... */

  spin_lock_t device_lock;  /* Serialize */

} *mydev_data;



/* On-card registers related to DMA */

#define DMA_RX_REGISTER_OFFSET  0x0 /* Offset of the register

                                       holding the bus address

                                       of the RX descriptor */

#define DMA_TX_REGISTER_OFFSET  0x4 /* Offset of the register

                                       holding the bus address

                                       of the TX descriptor */

#define CONTROL_REGISTER        0x8 /* Offset of the control 

                                       register */

/* Control Register Defines */

#define INITIATE_XMIT           0x1

/* Descriptor control word definitions */

#define FREE_FLAG               0x1 /* Free Descriptor */

#define INTERRUPT_FLAG          0x2 /* Assert interrupt after DMA */
              

/* Invoked from Listing 10.3 */

static void 

dma_descriptor_setup(struct pci_dev *pdev)

{

  /* Allocate receive DMA descriptors and buffers */

  mydev_data->dma_buffer_rx = 

     pci_alloc_consistent(pdev, 3096, &mydev_data->dma_bus_rx);

  /* Fill the two receive descriptors as shown in Figure 10.2 */

  /* RX descriptor 1 */

  mydev_data->dma_buffer_rx[0] = cpu_to_le32((unsigned long) 

              (mydev_data->dma_bus_rx + 24));  /* Buffer address */

  mydev_data->dma_buffer_rx[1] = 1536;         /* Buffer length */

  mydev_data->dma_buffer_rx[2] = FREE_FLAG;    /* Descriptor is free */

  /* RX descriptor 2 */

  mydev_data->dma_buffer_rx[3] = cpu_to_le32((unsigned long) 

             (mydev_data->dma_bus_rx + 1560)); /* Buffer address */

  mydev_data->dma_buffer_rx[4] = 1536;         /* Buffer length */

  mydev_data->dma_buffer_rx[5] = FREE_FLAG;    /* Descriptor is free */

  wmb();   /* Write Memory Barrier */

  /* Write the address of the receive descriptor to the appropriate

     register in the card. The I/O base address, ioaddr, was populated

     in Listing 10.3 */

  outl(cpu_to_le32((unsigned long)mydev_data->dma_bus_rx), 

                   ioaddr + DMA_RX_REGISTER_OFFSET);
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  /* Allocate transmit DMA descriptors and buffers */

  mydev_data->dma_buffer_tx = 

      pci_alloc_consistent(pdev, 3096, &mydev_data->dma_bus_tx);

  /* Fill the two transmit descriptors as shown in Figure 10.2 */

  /* TX descriptor 1 */

  mydev_data->dma_buffer_tx[0] = cpu_to_le32((unsigned long) 

              (mydev_data->dma_bus_tx + 24));   /* Buffer address */

  mydev_data->dma_buffer_tx[1] = 1536;          /* Buffer length */

  /* Valid descriptor. Generate an interrupt 

     after completing the DMA */

  mydev_data->dma_buffer_tx[2] = (FREE_FLAG | INTERRUPT_FLAG);

  /* TX descriptor 2 */

  mydev_data->dma_buffer_tx[3] = cpu_to_le32((unsigned long) 

              (mydev_data->dma_bus_tx + 1560)); /* Buffer address */

  mydev_data->dma_buffer_tx[4] = 1536;          /* Buffer length */

  mydev_data->dma_buffer_tx[5] = (FREE_FLAG | INTERRUPT_FLAG);

  wmb();   /* Write Memory Barrier */

  /* Write the address of the transmit descriptor to the appropriate

     register in the card. The I/O base, ioaddr, was populated in 

     Listing 10.3 */

  outl(cpu_to_le32((unsigned long)mydev_data->dma_bus_tx), 

                   ioaddr + DMA_TX_REGISTER_OFFSET);

}

/* Invoked from Listing 10.3 */

static void 

dma_descriptor_release(struct pci_dev *pdev)

{

  pci_free_consistent(pdev, 3096, mydev_data->dma_bus_tx);

  pci_free_consistent(pdev, 3096, mydev_data->dma_bus_rx);

}

Listing 10.5 enforces a write barrier by calling   wmb() to prevent the CPU from reor-
dering the outl() before populating the DMA descriptor. On an x86 processor, 
wmb() reduces to a NOP because Intel CPUs enforce writes in program order. When 
writing the DMA descriptor address to the card and when populating the buffer’s bus 
address inside the DMA descriptor, the driver converts the native byte order to PCI 
little-endian format using cpu_to_le32(). On Intel CPUs, this again has no effect 



because both PCI and Intel processors communicate in little-endian. On several other 
architectures, for example, an ARM9 CPU running in the big-endian mode, both 
wmb() and cpu_to_le32() assume signifi cance. 

Now that you have the descriptors and buffers mapped and ready to go, it’s time to 
look at how data is exchanged between the system and the CardBus device, as shown 
in Listing 10.6. We won’t dwell on the network interfaces and networking data struc-
tures because Chapter 15 is devoted to doing that.

LISTING 10.6 Receiving and     Transmitting Data

/* The interrupt handler */

static irqreturn_t

mydevice_interrupt(int irq, void *devid)

{

  struct sk_buff *skb;

  /* ... */

  /* If this is a receive interrupt, collect the packet and pass it 

     on to higher layers. Look at the control word in each RX DMA 

     descriptor to figure out whether it contains data. Assume for

     convenience that the first RX descriptor was used by the card 

     to DMA this received packet */

  packet_size = mydev_data->dma_buffer_rx[1];

  /* In real world drivers, the sk_buff is pre-allocated, stream-

     mapped, and supplied to the card after setting the FREE_FLAG 

     during device open(). The received data is directly 

     DMA’ed to this sk_buff instead of the memcpy() performed here, 

     as you will learn in Chapter 15. The card clears the FREE_FLAG 

     before the DMA */

  skb = dev_alloc_skb(packet_size); /* See Figure 15.2 of Chapter 15 */

  skb->dev = mydev_data->ndev;      /* Owner network device */

  memcpy(skb, mydev_data->dma_buffer_rx[24], packet_size);

  /* Pass the received data to higher-layer protocols */

  skb_put(skb, packet_size);

  netif_rx(skb);

  /* ... */

  /* Make the descriptor available to the card again */

  mydev_data->dma_buffer_rx[2] |= FREE_FLAG;

}

/* This function is registered in Listing 10.3 and is called from

   the networking layer. More on network device interfaces in 

   Chapter 15 */
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static int 

mydevice_xmit(struct sk_buff *skb, struct net_device *dev)

{

  /* Use a valid TX descriptor. Look at Figure 10.2 */

  /* Locking has been omitted for simplicity */

  if (mydev_data->dma_buffer_tx[2] & FREE_FLAG) {

    /* Use first TX descriptor */

    /* In the real world, DMA occurs directly from the sk_buff as 

       you will learn later on! */

    memcpy(mydev_data->dma_buffer_tx[24], skb->data, skb->len);

    mydev_data->dma_buffer_tx[1] = skb->len;

    mydev_data->dma_buffer_tx[2] &= ~FREE_FLAG;

    mydev_data->dma_buffer_tx[2] |= INTERRUPT_FLAG;

  } else if (mydev_data->dma_buffer[5] & FREE_FLAG) {

    /* Use second TX descriptor */

    memcpy(mydev_data->dma_buffer_tx[1560], skb->data, skb->len);

    mydev_data->dma_buffer_tx[4] = skb->len;

    mydev_data->dma_buffer_tx[5] &= ~FREE_FLAG;

    mydev_data->dma_buffer_tx[5] |= INTERRUPT_FLAG;

  } else {

    return –EIO; /* Signal error to the caller */

  }

  wmb(); /* Don’t reorder writes across this barrier */

  /* Ask the card to initiate DMA. ioaddr is defined 

     in Listing 10.3 */

  outl(INITIATE_XMIT, ioaddr + CONTROL_REGISTER);

}

When the CardBus device receives an Ethernet packet, it DMAs it to a free RX descrip-
tor and interrupts the CPU. The interrupt handler mydevice_interrupt() collects 
the packet from the receive DMA buffer, copies it to a networking data structure 
(sk_buff), and passes it on to higher protocol layers. 

The transmit routine   my_device_xmit() is responsible for initiating DMA in the 
reverse direction. It DMAs transmit packets to card memory. For this, my_device_
xmit() chooses a TX DMA descriptor that is unused by the card (or whose FREE_
FLAG is set) and uses the associated transmit buffer for data transfer. FREE_FLAG is 
cleared soon after, signaling that the descriptor now belongs to the card. The descriptor 



is released in the interrupt handler (FREE_FLAG is set again) when the card asserts an 
interrupt after completing the transmit (not shown in Listing 10.6).

This example driver uses a simplifi ed buffer management scheme that is not per-
formance-sensitive. High-speed network drivers implement a more elaborate plan that 
employs a combination of coherent and streaming DMA mappings. They maintain 
linked lists of transmit and receive descriptors and implement free and in-use pools for 
buffer management. Their receive and transmit data structures look like this:

/* Ring of receive buffers */

struct rx_list {

  void *dma_buffer_rx;        /* Kernel virtual address of the

                                 receive descriptor */

  dma_addr_t dma_bus_rx;      /* Bus address of the receive

                                 descriptor */

  unsigned int size;          /* Buffer size */

  struct list_head next_desc; /* Pointer to the next element */

  struct sk_buff *skb;        /* Network Packet */

  dma_addr_t  sk_bus;         /* Bus address of network packet */

} *rxlist;

/* Ring of transmit buffers */

struct tx_list {

  void *dma_buffer_tx;        /* Kernel virtual address of the

                                 transmit descriptor */

  dma_addr_t dma_bus_tx;      /* Bus address of the transmit

                                 descriptor */

  unsigned int size;          /* Buffer size */

  struct list_head next_desc; /* Pointer to the next element */

  struct sk_buff *skb;        /* Network Packet */

  dma_addr_t  sk_bus;         /* Bus address of network packet */

} *txlist;

The receive and transmit DMA descriptors (rxlist->dma_buffer_rx and txlist->
dma_buffer_tx) are mapped coherently as done in Listing 10.5. The payload buf-
fers (rxlist->skb->data and txlist->skb->data) are, however, mapped using 
streaming DMA. The receive buffers are preallocated and stream mapped into 
a free pool during device open, while the transmit buffers are mapped on-the-fl y. 
This avoids the extra data copy performed by mydevice_interrupt() from the 
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coherently mapped receive DMA buffer to the network buffer (and the extra copy 
done by mydevice_xmit() in the reverse direction).

/* Preallocating/replenishing receive buffers. Also see the section, "Buffer 

   Management and Concurrency Control" in Chapter 15 */

/* ... */

struct sk_buff *skb = dev_alloc_skb(); 

skb_reserve(skb, NET_IP_ALIGN);

/* Map using streaming DMA */

rxlist->sk_bus = pci_map_single(pdev, rxlist->skb->data, 

                                rxlist->skb->len, PCI_DMA_TODEVICE);

/* Allocate a DMA descriptor and populate it with the address mapped 

   above. Add the descriptor to the receive descriptor ring */

/* ... */

Debugging

Enable   Bus Options PCI Support PCI Debugging in the kernel confi guration 
menu to ask the PCI core to emit debug messages. Explore /proc/bus/pci/devices and 
/sys/devices/pciX:Y/ for information about PCI devices on your system such as the Card-
Bus Ethernet-Modem card discussed in this chapter. /proc/interrupts lists IRQs active 
on your system, including those used by the PCI layer.

As you saw, lspci gleans information about all PCI buses and devices on your sys-
tem. You may also use it to dump the confi guration space of PCI cards. 

A PCI bus analyzer can help debug low-level problems and tune performance.

Looking at the Sources

PCI core   and bus access routines live in drivers/pci/. To obtain a list of helper routines 
offered by the PCI subsystem, search for EXPORT_SYMBOL inside this directory. For 
defi nitions and prototypes related to the PCI layer, look at include/linux/pci*.h.

You can spot several PCI device drivers in subdirectories under drivers/net/,
drivers/scsi/, and drivers/video/. To locate all PCI drivers, recursively grep the drivers/
tree for pci_register_driver().

If you do not fi nd a good starting point to develop a custom PCI network driver, 
begin with the skeletal PCI network driver drivers/net/pci-skeleton.c. For a brief tuto-
rial on PCI programming, look at Documentation/pci.txt. For a description of the PCI 
DMA API, read Documentation/DMA-mapping.txt.



Table 10.4 summarizes the main data structures used in this chapter. Table 10.5 
lists the main kernel programming interfaces that you used in this chapter along with 
the location of their defi nitions.

TABLE 10.4 Summary   of Data Structures

 Data Structure Location Description

 pci_dev include/linux/pci.h Representation of a PCI device

 pci_driver include/linux/pci.h Representation of a PCI driver

 pci_device_id include/linux/mod_devicetable.h Identity of a PCI card

 dma_addr_t include/asm-your-arch/types.h Bus address of a DMA buffer

 scatterlist include/asm-your-arch/scatterlist.h  Scatter-gather list of DMA buffers

 sk_buff include/linux/skbuff.h  Main networking data structure (see 
Chapter 15 for more explanations)

TABLE 10.5 Summary of Kernel Programming Interfaces

Kernel Interface Location Description

pci_read_config_byte()

pci_read_config_word()

pci_read_config_dword()

pci_write_config_byte()

pci_write_config_word()

pci_write_config_dword()

include/linux/pci.h

drivers/pci/access.c

Routines to operate on the 
PCI configuration space.

pci_resource_start()

pci_resource_len()

pci_resource_end()

pci_resource_flags()

include/linux/pci.h These routines operate on 
PCI I/O and memory regions 
to obtain the base address, 
length, end address, and 
control flags.

pci_request_region() drivers/pci/pci.c  Reserves PCI I/O or memory 
regions.

ioremap()

ioremap_nocache()

pci_iomap()

include/asm-your-arch/io.h

arch/your-arch/mm/ioremap.c

lib/iomap.c

Obtains CPU access to device 
memory.

pci_set_dma_mask() drivers/pci/pci.c If this function returns 
success, you may DMA to 
any address within the mask 
specified as argument.

pci_alloc_consistent() include/asm-generic/pci-dma-compat.h

include/asm-your-arch/dma-mapping.h

Obtains a cache-coherent 
DMA buffer mapping.

Continues
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Kernel Interface Location Description

pci_free_consistent() include/asm-generic/pci-dma-compat.h

include/asm-your-arch/dma-mapping.h

Unmaps a cache-coherent 
DMA buffer.

pci_map_single() include/asm-generic/pci-dma-compat.h

include/asm-your-arch/dma-mapping.h

Obtains a streaming DMA 
buffer mapping.

pci_unmap_single() include/asm-generic/pci-dma-compat.h

include/asm-your-arch/dma-mapping.h

Unmaps a streaming DMA 
buffer.

pci_dma_sync_single() include/asm-generic/pci-dma-compat.h

include/asm-your-arch/dma-mapping.h

Synchronizes a streaming 
DMA buffer so that the CPU 
can reliably operate on it.

pci_map_sg()

pci_unmap_sg()

pci_dma_sync_sg()

include/asm-generic/pci-dma-compat.h

include/asm-your-arch/dma-mapping.h

Maps/unmaps/synchronizes a 
scatter-gather list of streaming 
DMA buffers.

pci_register_driver() include/linux/pci.h

drivers/pci/pci-driver.c

Registers a driver with the
PCI core.

pci_unregister_driver() drivers/pci/pci-driver.c Unregisters a driver from the 
PCI core.

pci_enable_device() drivers/pci/pci.c  Asks low-level PCI code to 
enable I/O and memory 
regions for this device.

pci_disable_device() drivers/pci/pci.c  Reverse of 
pci_enable_device().

pci_set_master() drivers/pci/pci.c  Sets the device in DMA bus-
mastering mode.

TABLE 10.5 Continued
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Universal serial bus (USB)     is the de facto external bus in today’s computers. 
USB, with its support for hotplugging, generic class drivers, and versatile 

data-transfer modes, is the usual route in the consumer electronics space to bring 
a diverse spectrum of technologies to computer systems. Its sweeping popularity 
and the accompanying economics of volume have played a part in fueling the 
adoption and acceptance of computer peripheral technologies around the world.

USB Architecture

USB   is a master-slave protocol where a host controller communicates with client devices. 
Figure 11.1 shows USB in the PC environment. The USB host controller is part of the 
South Bridge chipset and communicates with the processor over the PCI bus.

Figure 11.2 illustrates USB on an embedded device. The SoC in the fi gure has built-
in USB controller silicon that supports four buses and three modes of operation:

 • Bus 1 runs in host mode and is wired to an A-type receptacle via a USB trans-
ceiver (see the sidebar “USB Receptacles and Transceivers”). You can connect 
a USB pen drive or a keyboard to this port.

 • Bus 2 also functions in host mode but the associated transceiver is connected 
to an internal USB device rather than to a receptacle. Examples of internal 
USB devices are biometric scanners, cryptographic engines, printers, Disk-
On-Chips (DOCs), touch controllers, and telemetry cards.

 • Bus 3 runs in device mode and is wired to a B-type receptacle through a 
transceiver. The B-type receptacle connects to a host computer via a B-to-A 
cable. In this mode, the embedded device functions as, for example, a USB 
pen drive, and exports a storage partition to the outside world. Embedded 
devices such as MP3 players and cell phones are more likely than PC systems 
to be at the device side of USB, so many embedded SoCs support a USB 
device controller in addition to a host controller.

 • Bus 4 is driven by an    On-The-Go (OTG) controller. You can use this port, for 
example, to either connect a pen drive to your system or to turn your system 
into a pen drive and connect it to a host. Unlike buses 1 to 3, bus 4 uses an 



intelligent transceiver that exchanges control information with the processor over 
I2C. The transceiver is wired to a Mini-AB OTG receptacle. If two embedded 
devices support OTG, they can directly communicate without the intervention 
of a host computer.

Most of this chapter is written from the perspective of a system residing at the host-
side of USB. We briefl y look at the device function in the section “Gadget Drivers.” 
Mainstream host controller drivers (HCDs) are already available, so in this chapter we 
further confi ne ourselves to drivers for USB devices (also called client drivers).

Processor

North Bridge

South Bridge

USB Host
Controller

USB Host
Transceiver

USB Host
Transceiver

‘A’ Connector

‘A’ Connector

PCI Bus USB Device

USB Device

FIGURE 11.1 USB in the PC environment.

USB Receptacles and Transceivers

USB hosts     use four-pin A-type rectangular receptacles, whereas USB devices connect via four-pin 
B-type square receptacles. In both cases, the four pins are differential data signals D+ and D-, a 
voltage line VBUS, and ground. VBUS is used to supply power from USB hosts to USB devices. 
VBUS is thus pulled high on an A connector but receives power on a B connector. USB OTG 
controllers connect to fi ve-pin Mini-AB rectangular receptacles having a smaller form factor. Four 
of the Mini-AB pins are identical to what we discussed previously; the fi fth is an ID pin used to 
detect whether the connected peripheral is a host or a device.

The same transceiver chip (such as TUSB1105 from Texas Instruments) can be used on USB 
hosts and devices. You may thus choose to use the same transceiver part on buses 1 through 3 
in Figure 11.2. OTG requires a special-purpose transceiver chip (such as ISP1301 from Philips 
Semiconductors), however. 
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FIGURE 11.2 USB on an embedded system.

Bus Speeds

USB   supports three operational speeds. The original USB 1.0 specifi cation supports 
1.5MBps, referred to as  low-speed USB. USB 1.1, the next version of the specifi ca-
tion, handles 12MBps, called  full-speed USB. The current level of the specifi cation 
is USB 2.0, which supports 480MBps, or  high-speed USB. USB 2.0 is backward-
 compatible with the earlier versions of the specifi cation. Peripherals such as USB key-
boards and mice are examples of low-speed devices, and USB storage drives are examples 
of full-speed and high-speed devices. Today’s PC systems are USB 2.0- compliant and 
allow all three target speeds, but some embedded controllers adhere to USB 1.1 and 
support only full-speed and low-speed modes of operation.



Host Controllers

USB host   controllers conform to one of a few standards:

 •   Universal Host Controller Interface (UHCI): The UHCI specification was ini-
tiated by Intel, so your PC is likely to have this controller if it’s Intel-based.

 •   Open Host Controller Interface (OHCI): The OHCI specification originated 
from companies such as Compaq and Microsoft. An OHCI-compatible con-
troller has more intelligence built in to hardware than UHCI, so an OHCI 
HCD is relatively simpler than a UHCI HCD.

 •   Enhanced Host Controller Interface (EHCI): This is the host controller that 
supports high-speed USB 2.0 devices. EHCI controllers usually have either a 
UHCI or OHCI companion controller to handle slower devices.

 •  USB OTG controllers: They are getting increasingly popular in embedded 
microcontrollers. With OTG support, each communicating end can act as a 
dual-role device (DRD). By initiating a dialog using the Host Negotiation Proto-
col (HNP  ), a DRD can switch itself to host mode or device mode based on the 
desired functionality.

In addition to these mainstream USB host controllers, Linux supports a few more 
controllers. An example is the HCD for the ISP116x chip.

Host controllers have a built-in hardware component called the   root hub. The root 
hub is a virtual hub that sources USB ports. The ports, in turn, can connect to external 
or internal physical hubs and source more ports, yielding a tree topology.

Transfer Types

Data    exchange with a USB device can be one of four types:

 • Control transfers, used to carry configuration and control information

 • Bulk transfers that ferry large quantities of time-insensitive data

 • Interrupt transfers that exchange small quantities of time-sensitive data

 • Isochronous transfers for real-time data at predictable bit rates

A USB storage drive, for example, uses control transfers to issue disk access commands 
and bulk transfers to exchange data. A keyboard uses interrupt transfers to carry key 
strokes within predictable delays. A device that needs to stream audio data in real 
time uses isochronous transfers. The responsibilities of the four transfer types for USB
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 Bluetooth devices are discussed in the section “Device Example: USB Adapter” in 
Chapter 16, “Linux Without Wires.”

Addressing

Each   addressable unit in a USB device is called an   endpoint. The address assigned to an 
endpoint is called an   endpoint address. Each endpoint address has an associated data trans-
fer type. If an endpoint is responsible for bulk data transfer, for example, it’s called a bulk 
endpoint. Endpoint address 0 is used exclusively for device confi guration. A control pipe 
is attached to this endpoint for device enumeration (see the section “Enumeration”).

An endpoint can be associated with upstream or downstream data transfer. Data arriv-
ing upstream from a device is called an IN transfer, whereas data fl owing downstream to 
a device is an OUT transfer. IN and OUT transfers own separate address spaces. So, you can 
have a bulk IN endpoint and a bulk OUT endpoint answering to the same address.

USB resembles I2C on some counts and PCI on others as summarized in Table 11.1. 
USB’s device addressing is similar to I2C, while it supports hotplugging like PCI. USB 
device addresses, like standard I2C, do not consume a portion of the CPU’s address 
space. Rather, they reside in a private space ranging from 1 to 127. 

TABLE 11.1 USB’s    Similarities with I2C and PCI

 USB’s similarities with I2C:

• USB and I2C are master-slave protocols.

  • Device addresses reside in a private 7-bit space.

  •  Device-resident memory is not mapped to the CPU’s memory or I/O space, so it does not consume CPU 
resources.

 USB’s similarities with PCI:

  • Devices can be hotplugged.

  •  Device driver architecture resembles PCI drivers. Both classes of drivers own probe()/disconnect()1

methods and ID tables identifying the devices they support.

  •  Supports high speeds. Slower than PCI, however. See Table 10.1 in Chapter 10, “Peripheral Component 
Interconnect,” for the speeds supported by different members of the PCI family.

  • USB host controllers, like PCI controllers, usually have built-in DMA engines that can master the bus.
  •  Supports multifunction devices. USB supports interface descriptors per function. Each PCI device func-

tion has its own device ID and configuration space.

1 disconnect() is called remove() in PCI parlance.



Linux-USB Subsystem

  Look at Figure 11.3 to understand the architecture of the Linux-USB sub system. The 
constituent pieces of the subsystem are as follows:

 • The USB core. Like the core layers of driver subsystems that you saw in previ-
ous chapters, the USB core is a code base consisting of routines and structures 
available to HCDs and client drivers. The core also provides a level of indirec-
tion that renders client drivers independent of host controllers.

 • HCDs that drive different host controllers.

 • A hub driver for the root hub (and physical hubs) and a helper kernel thread 
khubd that monitors all ports connected to the hub. Detecting port status 
changes and configuring hotplugged devices is time-consuming and is best 
accomplished using a helper thread for reasons you learned in Chapter 3, 
“Kernel Facilities.” The khubd thread is asleep by default. The hub driver 
wakes khubd whenever it detects a status change on a USB port connected 
to it.

 • Device drivers for USB client devices.

 • The USB filesystem usbfs that lets you drive USB devices from user 
space. We discuss user mode USB drivers in Chapter 19, “Drivers in User 
Space.”

For end-to-end operation, the USB subsystem calls on various other kernel layers for 
assistance. To support USB mass storage devices, for example, the USB subsystem 
works in tandem with SCSI drivers, as shown in Figure 11.3. To drive USB-Bluetooth 
keyboards, the stakeholders are fourfold: the USB subsystem, the Bluetooth layer, the 
input subsystem, and the tty layer.

Driver Data Structures

When you write a USB client driver, you have to work with several data structures. 
Let’s look at the important ones.
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FIGURE 11.3 The  Linux-USB subsystem.

 The usb_device Structure

Each    device driver subsystem relies on a special-purpose data structure to internally 
represent a device. The usb_device structure is to the USB subsystem, what pci_dev
is to the PCI layer, and what net_device is to the network driver layer. usb_device
is defi ned in include/linux/usb.h as follows:

struct usb_device {

  /* ... */

  enum usb_device_state state; /* Configured, Not Attached, etc */

  enum usb_device_speed speed; /* High/full/low (or error) */



  /* ... */

  struct usb_device *parent;  /* Our hub, unless we’re the root */

  /* ... */

  struct usb_device_descriptor descriptor; /* Descriptor */

  struct usb_host_config *config;          /* All of the configs */

  struct usb_host_config *actconfig;       /* The active config */

  /* ... */

  int maxchild;                                 /* No: of ports if hub */

  struct usb_device *children[USB_MAXCHILDREN]; /* Child devices */

  /* ... */

};

We use this structure when we develop an example driver for a USB telemetry card 
later.

USB Request Blocks

USB Request Block (URB)      is the centerpiece of the USB data transfer mechanism. A 
URB is to the USB stack, what an sk_buff (discussed in Chapter 15, “Network Inter-
face Cards”) is to the networking stack.

Let’s take a peek inside a URB. The following defi nition is from include/linux/usb.h,
omitting fi elds not of particular interest to device drivers:

struct urb

{

  struct kref kref;              /* Reference count of the URB */

  /* ... */

  struct usb_device *dev;        /* (in) pointer to associated

                                     device */

  unsigned int pipe;             /* (in) pipe information */

  int status;                    /* (return) non-ISO status */

  unsigned int transfer_flags;   /* (in) URB_SHORT_NOT_OK | ...*/

  void *transfer_buffer;         /* (in) associated data buffer */

  dma_addr_t transfer_dma;       /* (in) dma addr for 

                                     transfer_buffer */

  int transfer_buffer_length;    /* (in) data buffer length */

  /* ... */

  unsigned char *setup_packet;   /* (in) setup packet */

  /* ... */

  int interval;                  /* (modify) transfer interval

                                    (INT/ISO) */
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  /* ... */

  void *context;                 /* (in) context for completion */

  usb_complete_t complete;       /* (in) completion routine */

  /* ... */

};

There are three steps to using a URB: create, populate, and submit. To create a URB, 
use   usb_alloc_urb(). This function allocates and zeros-out URB memory, initial-
izes a kobject associated with the URB, and initializes a spinlock to protect the URB.

To populate a  URB, use the following helper routines offered by the USB core:

void usb_fill_[control|int|bulk]_urb( 

       struct urb *urb,              /* URB pointer */

       struct usb_device *usb_dev,   /* USB device structure */

       unsigned int pipe,            /* Pipe encoding */

       unsigned char *setup_packet,  /* For Control URBs only! */

       void *transfer_buffer,        /* Buffer for I/O */

       int buffer_length,            /* I/O buffer length */

       usb_complete_t completion_fn, /* Callback routine */

       void *context,                /* For use by completion_fn */

       int interval);                /* For Interrupt URBs only! */

The semantics of the previous routines will get clearer when we develop the exam-
ple driver later on. These helper routines are available to control, interrupt, and bulk 
URBs but not to isochronous ones.

To submit a URB for data transfer, use    usb_submit_urb(). URB submission is 
asynchronous. The usb_fill_[control|int|bulk]_urb() functions listed previ-
ously take the address of a callback function as argument. The callback routine exe-
cutes after the URB submission completes and accomplishes things such as checking 
submission status and freeing the data-transfer buffer.

The USB core also offers wrapper interfaces that provide a facade of synchronous 
URB submission:

int usb_[control|interrupt|bulk]_msg(struct usb_device *usb_dev, 

                                     unsigned int pipe, ...);



usb_bulk_msg(), for example, builds a bulk URB, submits it, and blocks until the 
operation completes. You don’t have to supply a callback function because a generic 
completion routine serves that purpose. You don’t need to explicitly create and popu-
late the URB either, because usb_bulk_msg() does that for you at no additional cost. 
We will use this interface in our example driver.

usb_free_urb() is used to free a reference to a completed URB, whereas usb_
unlink_urb() cancels a pending URB operation.

As mentioned in the section “Sysfs, Kobjects, and Device Classes” in Chapter 4, 
“Laying the Groundwork,” a URB contains a kref object to track references to it. usb_
submit_urb() increments the reference count using kref_get(). usb_free_urb()
decrements the reference count using kref_put() and performs the free operation 
only if there are no remaining references.

A URB is associated with an abstraction called a pipe, which we discuss next.

Pipes

A pipe    is an integer encoding of a combination of the following:

 • The endpoint address

 • The direction of data transfer (IN or OUT)

 • The type of data transfer (control, interrupt, bulk, or isochronous)

A pipe is the address element of each USB data transfer and is an important fi eld in 
the URB structure. To help populate this fi eld, the USB core provides the following 
helper macros:

usb_[rcv|snd][ctrl|int|bulk|isoc]pipe(struct usb_device *usb_dev, 

                                      __u8 endpointAddress);

where usb_dev is a pointer to the associated usb_device structure, and 
endpointAddress is the assigned endpoint address between 1 and 127. To create a 
bulk pipe in the OUT direction, for example, call usb_sndbulkpipe(). For a control 
pipe in the IN direction, invoke usb_rcvctrlpipe().

While referring to a URB, it’s often qualifi ed by the transfer type of the associated 
pipe. If a URB is attached to a bulk pipe, for example, it’s called a  bulk URB.
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Descriptor Structures

The USB   specifi cation defi nes a series of descriptors to hold information about a 
device. The Linux-USB core defi nes data structures corresponding to each descriptor. 
Descriptors are of four types:

 • Device descriptors contain general information such as the product ID and ven-
dor ID of the device.   usb_device_descriptor is the structure corresponding 
to device descriptors.

 • Configuration descriptors are used to describe different configuration modes such 
as bus-powered and self-powered operation. usb_config_descriptor is the 
data structure associated with configuration descriptors.

 • Interface descriptors allow USB devices to support multiple functions. usb_
interface_descriptor   defines interface descriptors.

 • Endpoint descriptors carry information associated with the final endpoints of a 
device.   usb_endpoint_descriptor is the structure in question.

These descriptor formats are defi ned in Chapter 9 of the USB specifi cation, whereas 
the matching structures are defi ned in include/linux/usb/ch9.h. Listing 11.1 shows the 
hierarchical topology of the descriptors and prints all endpoint addresses associated 
with a USB device. To this end, it traverses the tree consisting of the four types of 
descriptors described previously. The following is the output generated by Listing 11.1 
for a USB CD drive:

Endpoint Address = 1

Endpoint Address = 82

Endpoint Address = 83

The fi rst address belongs to a bulk IN endpoint, the second address is owned by a bulk 
OUT endpoint, and the third addresses an interrupt IN endpoint.

There are more data structures associated with USB client drivers, such as usb_
device_id, usb_driver, and usb_class_driver. We will meet them when we do 
hands-on development in the section “Device Example: Telemetry Card.”



LISTING 11.1 Print All USB Endpoint Addresses on a Device

Device Descriptor

Configuration
Descriptor

Interface
Descriptor

Endpoint
Descriptor

/* ... */
/* USB device */
struct usb_device *udevice;
/* ... */
struct usb_device_descriptor u_d_desc = udevice->descriptor;    

/* Device's active configuration */
struct usb_host_config *uconfig;   
struct usb_config_desriptor u_c_desc;

/* Interfaces in the active configuration */
struct usb_interface *uinterface;  

/* Alternate Setting for this interface */
struct usb_host_interface *ualtsetting; 
struct usb_interface_descriptor u_i_desc;

/* Endpoints for this altsetting */
struct usb_host_endpoint *uendpoint;  
struct usb_endpoint_descriptor u_e_desc;

uconfig = udevice->actconfig;

u_c_desc = uconfig->desc;

for (i = 0; i < u_c_desc.bNumInterfaces; 
     i++) {
  uinterface = udevice->actconfig->interface[i];
  for (j = 0; j < uinterface->num_altsetting; j++) {
ualtsetting = &uinterface->altsetting[j];
u_i_desc = ualtsetting->desc;
  for (k = 0; k <  u_i_desc.bNumEndpoints; k++) {
    uendpoint = &ualtsetting->endpoint[k];
    u_e_desc = uendpoint->desc;
    printk ("Endpoint Address = %d\n", 
            u_e_desc.bEndpointAddress\n");
  }
}
/* ... */
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Enumeration

The life   of a hotplugged USB device starts with a process called enumeration by which 
the host learns about the device’s capabilities and confi gures it. The hub driver is the 
component in the Linux-USB subsystem responsible for enumeration. Let’s look at 
the sequence of steps that achieve device enumeration when you plug in a USB pen 
drive into a host computer:

 1. The root hub reports a change in the port’s current due to the device attach-
ment. The hub driver detects this status change, called a USB_PORT_STAT_C_
CONNECTION in Linux-USB terminology, and awakens  khubd.

 2. Khubd deciphers the identity of the USB port subjected to the status change. In 
this case, it’s the port where you plugged in the pen drive.

 3. Next, khubd chooses a device address between 1 and 127 and assigns it to the 
pen drive’s bulk endpoint using a control URB attached to endpoint 0.

 4. Khubd uses the above control URB attached to endpoint 0 to obtain the device 
descriptor from the pen drive. It then requests the device’s configuration descrip-
tors and selects a suitable one. In the case of the pen drive, only a single configu-
ration descriptor is on offer.

 5. Khubd requests the USB core to bind a matching client driver to the inserted 
device.

When enumeration is complete and the device is bound to a driver, khubd invokes 
the associated client driver’s probe() method. In this case, khubd calls storage_
probe() defi ned in drivers/usb/storage/usb.c. From this point on, the mass storage 
driver is responsible for normal device operation.

Device Example: Telemetry Card

Now that   you know the basics of Linux-USB, it’s time to look at an example device. 
Consider a system equipped with a telemetry card connected to the processor via 
internal USB, as shown in bus 2 of Figure 11.2. The card acquires data from a remote 
device and ferries it to the processor over USB. An example telemetry card is a medi-
cal-grade board that monitors or programs an implanted device.

Let’s assume that our example telemetry card has the following endpoints having 
the semantics described in Table 11.2:



 • A control endpoint attached to an on-card configuration register

 • A bulk IN endpoint that passes remote telemetry information collected by the 
card to the processor

 • A bulk OUT endpoint that transfers data in the reverse direction

TABLE 11.2 Register   Space in the Telemetry Card

Register Associated Endpoint

Telemetry Configuration Register Control endpoint 0 (register offset 0xA).

Telemetry Data-In Register  Bulk IN endpoint. The endpoint address is assigned during device enumeration.

Telemetry Data-Out Register  Bulk OUT endpoint. The endpoint address is assigned during device 
enumeration.

Let’s build a minimal driver for this card partly based on the USB skeleton driver 
drivers/usb/usb-skeleton.c.

Because PCMCIA, PCI, and USB devices have similar characteristics such as hot-
plug support, some driver methods and data structures belonging to these subsystems 
resemble each other. This is especially true for the portions responsible for initializing 
and probing. As we progress through the telemetry driver and notice parallels with 
what we learned for PCI drivers in Chapter 10, we will pause and take note.

Initializing and Probing

Like PCI and PCMCIA drivers, USB drivers have probe()/disconnect()2 methods 
to support hotplugging, and a table that contains the identity of devices they support. 
A USB device is identifi ed by the usb_device_id structure defi ned in include/linux/
mod_devicetable.h. You may recall from the previous chapter that the pci_device_id
structure    , also defi ned in the same header fi le, identifi es PCI devices.

struct usb_device_id {

  /* ... */

  __u16         idVendor;        /* Vendor ID */

  __u16         idProduct;       /* Device ID */

  /* ... */

  __u8          bDeviceClass;    /* Device class */

  __u8          bDeviceSubClass; /* Device subclass */

  __u8          bDeviceProtocol; /* Device protocol */

 /* ... */

};

2 disconnect() is called remove() in PCI and PCMCIA parlance.
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idVendor and idProduct, respectively, hold the manufacturer ID and product ID, 
whereas bDeviceClass, bDeviceSubClass, and bDeviceProtocol categorize the 
device based on its functionality. This classifi cation, determined by the USB specifi ca-
tion, allows implementation of generic client drivers as discussed in the section “Class 
Drivers” later.

Listing 11.2    implements the telemetry driver’s initialization routine, usb_tele_
init(), which calls on usb_register() to register its usb_driver structure with 
the USB core. As shown in the listing, usb_driver ties the driver’s probe() method, 
disconnect() method, and usb_device_id table together. usb_driver is simi-
lar to pci_driver, except that the disconnect() method in the former is named 
remove() in the latter.

LISTING 11.2 Initializing the Driver

#define USB_TELE_VENDOR_ID    0xABCD  /* Manufacturer’s Vendor ID */

#define USB_TELE_PRODUCT_ID   0xCDEF  /* Device’s Product ID */

/* USB ID Table specifying the devices that this driver supports */

static struct usb_device_id tele_ids[] = {

  { USB_DEVICE(USB_TELE_VENDOR_ID, USB_TELE_PRODUCT_ID) },

  { } /* Terminate */

};

MODULE_DEVICE_TABLE(usb, tele_ids);

/* The usb_driver structure for this driver */

static struct usb_driver tele_driver

{

  .name       =  "tele",           /* Unique name */

  .probe      =  tele_probe,       /* See Listing 11.3 */

  .disconnect =  tele_disconnect,  /* See Listing 11.3 */

  .id_table   =  tele_ids,         /* See above */

};

/* Module Initialization */

static int __init 

usb_tele_init(void)

{

  /* Register with the USB core */

  result = usb_register(&tele_driver);

  /* ... */



  return 0;

}

/* Module Exit */

static void __exit 

usb_tele_exit(void)

{

  /* Unregister from the USB core */

  usb_deregister(&tele_driver);

  return;

}

module_init(usb_tele_init);

module_exit(usb_tele_exit);

The USB_DEVICE() macro   creates a usb_device_id from the vendor and product 
IDs supplied to it. This is analogous to the PCI_DEVICE() macro   discussed in the pre-
vious chapter. The   MODULE_DEVICE_TABLE() macro marks tele_ids in the module 
image so that the module can be loaded on demand if the card is hotplugged. This is 
again similar to what we discussed for PCMCIA and PCI devices in the previous two 
chapters.

When the USB core detects a device with properties matching the ones declared in 
the usb_device_id table belonging to a client driver, it invokes the probe() method 
registered by that driver. When the device is unplugged or if the module is unloaded, 
the USB core invokes the driver’s disconnect() method.

Listing 11.3     implements the probe() and disconnect() methods of the telem-
etry driver. It starts by defi ning a device-specifi c structure tele_device_t, which 
contains the following fi elds:

 • A pointer to the associated usb_device.

 • A pointer to the usb_interface. Revisit Listing 11.1 to see this structure 
in use.

 • A control URB (ctrl_urb) to communicate with the telemetry configuration 
register, and a ctrl_req to formulate programming requests to this register. 
These fields are described in the next section “Accessing Registers.”

 • The card has a bulk IN endpoint through which you can glean the collected 
telemetry information. Associated with this endpoint are three fields: bulk_in_
addr, which holds the endpoint address; bulk_in_buf, which stores received 
data; and bulk_in_len, which contains the size of the receive data buffer.
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 • The card has a bulk OUT endpoint to facilitate downstream data transfer. tele_
device_t has a fi eld called bulk_out_addr to store the address of this end-
point. There are fewer data structures in the OUT direction because in this simple 
case we use a synchronous URB submission interface that hides several imple-
mentation details.

Khubd invokes the card’s probe() method   tele_probe(), soon after enumeration. 
tele_probe() performs three tasks:

 1. Allocates memory for the device-specific structure tele_device_t .

 2. Initializes the following fields in tele_device_t related to the device’s bulk 
endpoints: bulk_in_buf, bulk_in_len, bulk_in_addr, and bulk_out_
addr. For this, it uses the data collected by the hub driver during enumeration. 
This data is available in descriptor structures discussed in the section “Descrip-
tor Structures.”

 3. Exports the character device /dev/tele to user space. Applications operate over 
/dev/tele to exchange data with the telemetry card. tele_probe() invokes usb_
register_dev() and supplies it the file_operations that form the under-
lying pillars of the /dev/tele interface via the usb_class_driver structure.

The address of the device-specifi c structure allocated in Step 1 has to be saved so that 
other methods can access it. To achieve this, the telemetry driver uses a threefold strat-
egy depending on the function arguments available to various driver routines. To save 
this structure pointer between the probe() and open() invocation threads, the driver 
uses the device’s driver_data fi eld via the pair of functions, usb_set_intfdata()   
and usb_get_intfdata(). To save the address of the structure pointer between 
the open() thread and other entry points, open() stores it in the /dev/tele’s file->
private_data fi eld. This is because the kernel supplies these char entry points with 
/dev/tele’s inode pointer as argument rather than the usb_interface pointer. To 
glean the address of the device-specifi c structure from URB callback functions, the 
associated submission threads use the URB’s context fi eld as the storage area. Look at 
Listings 11.3, 11.4, and 11.5 to see these mechanisms in action.

All USB character devices answer to major number 180. If you enable CONFIG_
USB_DYNAMIC_MINORS during kernel confi guration, the USB core dynamically selects 
a minor number from the available pool. This behavior is similar to registering misc 
drivers after specifying MISC_DYNAMIC_MINOR in the miscdevice structure (as dis-
cussed in the section “Misc Drivers” in Chapter 5, “Character Drivers”). If you choose 



not to enable CONFIG_USB_DYNAMIC_MINORS, the USB subsystem selects an available 
minor number starting at the minor base set in the usb_class_driver structure.

LISTING 11.3 Probing and Disconnecting

/* Device-specific structure */

typedef struct {

  struct usb_device      *usbdev;         /* Device representation */ 

  struct usb_interface   *interface;      /* Interface representation*/

  struct urb             *ctrl_urb;       /* Control URB for 

                                             register access */

  struct usb_ctrlrequest  ctrl_req;       /* Control request 

                                             as per the spec */

  unsigned char          *bulk_in_buf;    /* Receive data buffer */

  size_t                  bulk_in_len;    /* Receive buffer size */

  __u8                    bulk_in_addr;   /* IN endpoint address */

  __u8                    bulk_out_addr;  /* OUT endpoint address */

  /* ... */                               /* Locks, waitqueues, 

                                             statistics.. */

} tele_device_t;

#define TELE_MINOR_BASE  0xAB   /* Assigned by the Linux-USB 

                                   subsystem maintainer */

/* Conventional char driver entry points. 

   See Chapter 5, "Character Drivers." */

static struct file_operations tele_fops = 

{

  .owner   =  THIS_MODULE,  /* Owner */

  .read    =  tele_read,    /* Read method */

  .write   =  tele_write,   /* Write method */

  .ioctl   =  tele_ioctl,   /* Ioctl method */

  .open    =  tele_open,    /* Open method */

  .release =  tele_release, /* Close method */

};

static struct usb_class_driver tele_class = {

  .name       = "tele",

  .fops       = &tele_fops,      /* Connect with /dev/tele */

  .minor_base = TELE_MINOR_BASE, /* Minor number start */

};
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/* The probe() method is invoked by khubd after device

   enumeration. The first argument interface, contains information

   gleaned during the enumeration process. id is the entry in the

   driver’s usb_device_id table that matches the values read from

   the telemetry card. tele_probe() is based on skel_probe()

   defined in drivers/usb/usb-skeleton.c */

static int 

  tele_probe(struct usb_interface *interface, 

           const struct usb_device_id *id)

{

  struct usb_host_interface *iface_desc;

  struct usb_endpoint_descriptor *endpoint;

  tele_device_t *tele_device;

  int retval = -ENOMEM;

  /* Allocate the device-specific structure */

  tele_device = kzalloc(sizeof(tele_device_t), GFP_KERNEL);

  /* Fill the usb_device and usb_interface */

  tele_device->usbdev =

                 usb_get_dev(interface_to_usbdev(interface));

  tele_device->interface = interface;

  /* Set up endpoint information from the data gleaned 

     during device enumeration */

  iface_desc = interface->cur_altsetting;

  for (int i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {

    endpoint = &iface_desc->endpoint[i].desc;

    if (!tele_device->bulk_in_addr &&

        usb_endpoint_is_bulk_in(endpoint)) {

      /* Bulk IN endpoint */

      tele_device->bulk_in_len = 

                       le16_to_cpu(endpoint->wMaxPacketSize);

      tele_device->bulk_in_addr = endpoint->bEndpointAddress;

      tele_device->bulk_in_buf = 

                kmalloc(tele_device->bulk_in_len, GFP_KERNEL);

    }

    if (!tele_device->bulk_out_addr &&

       usb_endpoint_is_bulk_out(endpoint)) {

      /* Bulk OUT endpoint */

      tele_device->bulk_out_addr = endpoint->bEndpointAddress;

    }



  }

  if (!(tele_device->bulk_in_addr && tele_device->bulk_out_addr)) {

    return retval;

  }

  /* Attach the device-specific structure to this interface.

     We will retrieve it from tele_open() */

  usb_set_intfdata(interface, tele_device);

  /* Register the device */

  retval = usb_register_dev(interface, &tele_class);

  if (retval) {

    usb_set_intfdata(interface, NULL);

    return retval;

  }

  printk("Telemetry device now attached to /dev/tele\n");

  return 0;

}

/* Disconnect method. Called when the device is unplugged or when the module is
   unloaded */

static void 

tele_disconnect(struct usb_interface *interface) 

{

  tele_device_t *tele_device;

  /* ... */

  /* Reverse of usb_set_intfdata() invoked from tele_probe() */

  tele_device = usb_get_intfdata(interface);

  /* Zero out interface data */

  usb_set_intfdata(interface, NULL);

  /* Release /dev/tele */

  usb_deregister_dev(interface, &tele_class);

  /* NULL the interface. In the real world, protect this 

     operation using locks */

  tele_device->interface = NULL;

  /* ... */

}
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Accessing Registers

The open()     method initializes the on-card telemetry confi guration register when an 
application opens /dev/tele. To set the contents of this register,   tele_open() submits 
a control URB attached to the default endpoint 0. When you submit a control URB, 
you have to supply an associated control request. The structure that sends a control 
request to a USB device has to conform to Chapter 9 of the USB specifi cation and is 
defi ned as follows in include/linux/usb/ch9.h:

struct usb_ctrlrequest {

  __u8 bRequestType;

  __u8 bRequest;

  __le16 wValue;

  __le16 wIndex;

  __le16 wLength;

} __attribute__ ((packed));

Let’s take a look at the components that make up a usb_ctrlrequest. The bRequest
fi eld identifi es the control request. bRequestType qualifi es the request by encoding 
the data transfer direction, the request category, and whether the recipient is a device, 
interface, endpoint, or something else. bRequest can either belong to a set of standard 
values or be vendor-defi ned. In our example, the bRequest for writing to the telem-
etry confi guration register is a vendor-defi ned one. wValue holds the data to be writ-
ten to the register, wIndex is the desired offset into the register space, and wLength is 
the number of bytes to be transferred.

Listing 11.4 implements tele_open(). Its main task is to program the telemetry 
confi guration register with appropriate values. Before browsing the listing, revisit the 
tele_device_t structure defi ned in Listing 11.3 focusing on two fi elds: ctrl_urb
and ctrl_req. The former is a control URB for communicating with the confi gura-
tion register, whereas the latter is the associated usb_ctrlrequest.

To program the telemetry confi guration register, tele_open() does the following:

 1. Allocates a control URB to prepare for the register write.

 2. Creates a usb_ctrlrequest and populates it with the request identifier, request 
type, register offset, and the value to be programmed.

 3. Creates a control pipe attached to endpoint 0 of the telemetry card to carry the 
control URB.



 4. Because   tele_open() submits the URB asynchronously, it needs to wait for 
the associated callback function to finish before returning to its caller. To this 
end, tele_open() calls on the kernel’s completion API for assistance using 
init_completion(). Step 7 calls the matching wait_for_completion()
that waits until the callback function invokes complete(). We discussed the 
completion API in the section “Completion Interface” in Chapter 3.

 5. Initializes fields in the control URB using   usb_fill_control_urb(). This 
includes the usb_ctrlrequest populated in Step 2.

 6. Submits the URB to the USB core using usb_submit_urb().

 7. Waits until the callback function signals that the register programming is complete.

 8. Returns the status.

LISTING 11.4 Initialize the  Telemetry Confi guration Register

/* Offset of the Telemetry configuration register 

   within the on-card register space */

#define TELEMETRY_CONFIG_REG_OFFSET      0x0A

/* Value to program in the configuration register */

#define TELEMETRY_CONFIG_REG_VALUE       0xBC

/* The vendor-defined bRequest for programming the 

   configuration register */

#define TELEMETRY_REQUEST_WRITE          0x0D

/* The vendor-defined bRequestType */

#define TELEMETRY_REQUEST_WRITE_REGISTER 0x0E

/* Open method */

static int 

tele_open(struct inode *inode, struct file *file)

{

  struct completion tele_config_done;

  tele_device_t *tele_device;

  void *tele_ctrl_context;

  char *tmp;

  __le16 tele_config_index = TELEMETRY_CONFIG_REG_OFFSET;
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  unsigned int tele_ctrl_pipe;

  struct usb_interface *interface;

  /* Obtain the pointer to the device-specific structure. 

     We saved it using usb_set_intfdata() in tele_probe() */

  interface = usb_find_interface(&tele_driver, iminor(inode));

  tele_device = usb_get_intfdata(interface);

  /* Allocate a URB for the control transfer */

  tele_device->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);

  if (!tele_device->ctrl_urb) {

    return -EIO;

  }

  /* Populate the Control Request */

  tele_device->ctrl_req.bRequestType = TELEMETRY_REQUEST_WRITE;

  tele_device->ctrl_req.bRequest = 

                        TELEMETRY_REQUEST_WRITE_REGISTER;

  tele_device->ctrl_req.wValue = 

                        cpu_to_le16(TELEMETRY_CONFIG_REG_VALUE);

  tele_device->ctrl_req.wIndex = 

                        cpu_to_le16p(&tele_config_index);

  tele_device->ctrl_req.wLength = cpu_to_le16(1);

  tele_device->ctrl_urb->transfer_buffer_length = 1;

  tmp = kmalloc(1, GFP_KERNEL);

  *tmp = TELEMETRY_CONFIG_REG_VALUE;

  /* Create a control pipe attached to endpoint 0 */

  tele_ctrl_pipe = usb_sndctrlpipe(tele_device->usbdev, 0);

  /* Initialize the completion mechanism */

  init_completion(&tele_config_done);

  /* Set URB context. The context is part of the URB that is passed 

     to the callback function as an argument. In this case, the 

     context is the completion structure, tele_config_done */

  tele_ctrl_context = (void *)&tele_config_done;

  /* Initialize the fields in the control URB */

  usb_fill_control_urb(tele_device->ctrl_urb, tele_device->usbdev,

                       tele_ctrl_pipe,

                       (char *) &tele_device->ctrl_req,

                       tmp, 1, tele_ctrl_callback, 

                       tele_ctrl_context);



  /* Submit the URB */

  usb_submit_urb(tele_device->ctrl_urb, GFP_ATOMIC);

  /* Wait until the callback returns indicating that the telemetry

     configuration register has been successfully initialized */

  wait_for_completion(&tele_config_done);

   

  /* Release our reference to the URB */

  usb_free_urb(urb);

  kfree(tmp);

  /* Save the device-specific object to the file’s private_data 

     so that you can directly retrieve it from other entry points 

     such as tele_read() and tele_write() */

  file->private_data = tele_device;

  /* Return the URB transfer status */

  return(tele_device->ctrl_urb->status);

}

/* Callback function */

static void 

tele_ctrl_callback(struct urb *urb)

{

  complete((struct completion *)urb->context);

}

You can render tele_open() simpler using   usb_control_msg(), a blocking version 
of usb_submit_urb() that internally hides synchronization and callback details for 
control URBs. We preferred the asynchronous approach for learning purposes.

Data Transfer

Listing    11.5 implements the read() and write() entry points of the telemetry 
driver. These methods perform the real work when an application reads or writes to 
/dev/tele. tele_read() performs synchronous URB submission because the calling 
process wants to block until telemetry data is available. tele_write(), however, uses 
asynchronous submission and returns to the calling thread without waiting for a con-
fi rmation that the data accepted by the driver has been successfully transferred to the 
device.
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Because asynchronous transfers go hand in hand with a callback routine, List-
ing 11.5 implements   tele_write_callback(). This routine examines urb->
status to decipher the submission status. It also frees the transfer buffer allocated by 
tele_write().

LISTING 11.5 Data Exchange with the Telemetry Card

/* Read entry point */

static ssize_t 

tele_read(struct file *file, char *buffer, 

          size_t count, loff_t *ppos)

{

  int retval, bytes_read;

  tele_device_t *tele_device;

  /* Get the address of tele_device */

  tele_device = (tele_device_t *)file->private_data;

  /* ... */

  /* Synchronous read */

  retval = usb_bulk_msg(tele_device->usbdev, /* usb_device */

       usb_rcvbulkpipe(tele_device->usbdev, 

                tele_device->bulk_in_addr),  /* Pipe */

       tele_device->bulk_in_buf,             /* Read buffer */

       min(tele_device->bulk_in_len, count), /* Bytes to read */

       &bytes_read,                          /* Bytes read */

       5000);                                /* Timeout in 5 sec */

  /* Copy telemetry data to user space */

  if (!retval) {

    if (copy_to_user(buffer, tele_device->bulk_in_buf, 

                     bytes_read)) {

      return -EFAULT;

    } else {

      return bytes_read;

    }

  }

  return retval;

}

/* Write entry point */

static ssize_t 



tele_write(struct file *file, const char *buffer, 

           size_t write_count, loff_t *ppos)

{

  char *tele_buf = NULL;

  struct urb *urb = NULL;

  tele_device_t *tele_device;

  /* Get the address of tele_device */

  tele_device = (tele_device_t *)file->private_data;

  /* ... */

  /* Allocate a bulk URB */

  urb = usb_alloc_urb(0, GFP_KERNEL);

  if (!urb) {

    return -ENOMEM;

  }

  /* Allocate a DMA-consistent transfer buffer and copy in 

     data from user space. On return, tele_buf contains

     the buffer’s CPU address, while urb->transfer_dma 

     contains the DMA address */

  tele_buf = usb_buffer_alloc(tele_dev->usbdev, write_count, 

                              GFP_KERNEL, &urb->transfer_dma);

  if (copy_from_user(tele_buf, buffer, write_count)) {

    usb_buffer_free(tele_device->usbdev, write_count, 

                    tele_buf, urb->transfer_dma);

    usb_free_urb(urb);

    return -EFAULT

  }

  /* Populate bulk URB fields */

  usb_fill_bulk_urb(urb, tele_device->usbdev,

                    usb_sndbulkpipe(tele_device->usbdev, 

                    tele_device->bulk_out_addr),

                    tele_buf, write_count, tele_write_callback, 

                    tele_device);

  /* urb->transfer_dma is valid, so preferably utilize 

     that for data transfer */

  urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

  /* Submit URB asynchronously */

  usb_submit_urb(urb, GFP_KERNEL);
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  /* Release URB reference */

  usb_free_urb(urb);

  return(write_count);

}

/* Write callback */

static void 

tele_write_callback(struct urb *urb)

{

  tele_device_t *tele_device;

  /* Get the address of tele_device */

  tele_device = (tele_device_t *)urb->context;

  /* urb->status contains the submission status. It’s 0 if 

     successful. Resubmit the URB in case of errors other than 

     -ENOENT, -ECONNRESET, and -ESHUTDOWN */

  /* ... */

  /* Free the transfer buffer. usb_buffer_free() is the 

     release-counterpart of usb_buffer_alloc() called 

     from tele_write() */

  usb_buffer_free(urb->dev, urb->transfer_buffer_length,

                  urb->transfer_buffer, urb->transfer_dma);

}

Class Drivers

The USB   specifi cation introduces the concept of device classes and describes the func-
tionality of each class driver. Examples of standard device classes include mass stor-
age, networking, hubs, serial converters, audio, video, imaging, modems, printers, and 
  human interface devices. Class drivers are generic and let you plug and play a wide 
array of cards without the need for developing and installing drivers for every single 
device. The Linux-USB subsystem includes support for major class drivers.

Each USB device has a class and a subclass code. The mass storage class (0x08), for 
example, supports subclasses such as compact disc (0x02), tape (0x03), and solid-state 



storage (0x06). As you saw previously, device drivers populate the usb_device_id
structure with the classes and subclasses they support. You can glean a device’s class and 
subclass information by looking at the “I:” lines in the /proc/bus/usb/devices output.

Let’s take a look at some important class drivers.

Mass Storage

In USB    parlance, mass storage refers to USB hard disks, pen drives, CD-ROMs, 
fl oppy drives, and similar storage devices. USB mass storage devices adhere to the 
Small Computer System Interface (SCSI  ) protocol to communicate with host systems. 
Block access to USB storage devices is hence routed through the kernel’s SCSI sub-
system. Fig ure 11.4 provides you an overview of the interaction between USB storage 
and SCSI subsystems. As shown in the fi gure, the SCSI subsystem is architected into 
three layers:

 1. Top-level drivers for devices such as disks (sd.c) and CD-ROMs (sr.c)

 2. A middle-level layer that scans the bus, configures devices, and glues top-level 
drivers to low-level drivers

 3. Low-level SCSI adapter drivers

The mass storage driver registers itself as a virtual SCSI adapter. The virtual adapter 
communicates upstream via SCSI commands and downstream using URBs. A USB 
disk appears to higher layers as a SCSI device attached to this virtual adapter.

To better understand the interactions between the USB and SCSI layers, let’s imple-
ment a modifi cation to the USB mass storage driver. The usbfs node /proc/bus/usb/
devices, contains the properties and connection details of all USB devices attached to 
the system. The “T:” line in the /proc/bus/usb/devices output, for example, contains the 
bus number, the device’s depth from the root hub, operational speed, and so on. The 
“P:” line contains the vendor ID, product ID, and revision number of the device. All 
the information available in /proc/bus/usb/devices is managed by the USB subsystem, 
but there is one piece missing that is under the jurisdiction of the SCSI subsystem. 
The /dev node name associated with the USB storage device (sd[a-z][1-9] for disks 
and sr[0-9] for CD-ROMs) is not available in /proc/bus/usb/devices. To overcome this 
limitation, let’s add an “N:” line that displays the /dev node name associated with the 
device. Listing 11.6 shows the necessary code changes in the form of a source patch to 
the 2.6.23.1 kernel tree.
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LISTING 11.6 Adding a Disk’s /dev Name   to usbfs

include/scsi/scsi_host.h:

struct Scsi_Host {

  /* ... */

  void *shost_data;

+ char snam[8];      /* /dev node name for this disk */

  /* ... */

};

drivers/usb/storage/usb.h:

struct us_data {

  /* ... */

+ char magic[4];

};

include/linux/usb.h:

struct usb_interface {

  /* ... */

+ void *private_data;

};

drivers/usb/storage/usb.c:

static int storage_probe(struct usb_interface *intf,

    const struct usb_device_id *id)

{

  /* ... */

  memset(us, 0, sizeof(struct us_data));

+ intf->private_data = (void *) us;

+ strncpy(us->magic, "disk", 4);

  mutex_init(&(us->dev_mutex));

  /* ... */

}

drivers/scsi/sd.c:

static int sd_probe(struct device *dev)

{

  /* ... */

  add_disk(gd);

+ memset(sdp->host->snam,0, sizeof(sdp->host->snam)); 
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+ strncpy(sdp->host->snam, gd->disk_name, 3);

  sdev_printk(KERN_NOTICE, sdp, "Attached scsi %sdisk %s\n",

              sdp->removable ? "removable " : "", gd->disk_name);

  /* ... */

}

drivers/scsi/sr.c:

static int sr_probe(struct device *dev)

{

  /* ... */

  add_disk(disk);

+ memset(sdev->host->snam,0, sizeof(sdev->host->snam));

+ strncpy(sdev->host->snam, cd->cdi.name, 3);

  sdev_printk(KERN_DEBUG, sdev, "Attached scsi CD-ROM %s\n",

              cd->cdi.name);

  /* ... */

}

drivers/usb/core/devices.c:

  /* ... */

  #include <asm/uaccess.h>

+ #include <scsi/scsi_host.h>

+ #include "../storage/usb.h"

static ssize_t usb_device_dump(char __user **buffer, size_t *nbytes, 

                         loff_t *skip_bytes, loff_t *file_offset,

                         struct usb_device *usbdev, 

                         struct usb_bus *bus, int level, 

                         int index, int count)

{

  /* ... */

  ssize_t total_written = 0;

+ struct us_data *us_d;

+ struct Scsi_Host *s_h;

  /* ... */

  data_end = pages_start + sprintf(pages_start, format_topo,

                                   bus->busnum, level, 

                                   parent_devnum,

                                   index, count, usbdev->devnum,

                                   speed, usbdev->maxchild);

+ /* Assume this device supports only one interface */

+ us_d =  (struct us_data *) 

+     (usbdev->actconfig->interface[0]->private_data); 



+

+ if ((us_d) && (!strncmp(us_d->magic, "disk", 4))) {

+   s_h = (struct Scsi_Host *) container_of((void *)us_d, 

+                                           struct Scsi_Host, 

+                                           hostdata);

+   data_end += sprintf(data_end, "N:  ");

+   data_end += sprintf(data_end, "Device=%.100s",s_h->snam);

+   if (!strncmp(s_h->snam, "sr", 2)) {

+     data_end += sprintf(data_end, " (CDROM)\n");

+   } else if (!strncmp(s_h->snam, "sd", 2)) {

+     data_end += sprintf(data_end, " (Disk)\n");

+   }

+ }

   /* ... */

}

To understand Listing 11.6, let’s fi rst trace the code fl ow, continuing from where we 
left off in the section “Enumeration.” In that section, we inserted a USB pen drive and 
followed the execution train until the invocation of storage_probe(), the probe()
method of the mass storage driver. Moving further:

 1.   storage_probe() registers a virtual SCSI adapter by calling scsi_add_
host(), supplying a private data structure called us_data as argument. scsi_
add_host() returns a Scsi_Host structure for this virtual adapter, with space 
at the end for us_data.

 2. It starts a kernel thread called usb-storage to handle all SCSI commands queued 
to the virtual adapter.

 3. It schedules a kernel thread called usb-stor-scan that requests the SCSI middle-
level layer to scan the bus for attached devices.

 4. The device scan initiated in Step 3 discovers the presence of the inserted pen 
drive and binds the upper-level SCSI disk driver (sd.c) to the device. This results 
in the invocation of the SCSI disk driver’s probe method, sd_probe().

 5. The sd driver allocates a /dev/sd* node to the disk. From this point on, applica-
tions use this interface to access the USB disk. The SCSI subsystem queues disk 
commands to the virtual adapter, which the usb-storage kernel thread handles 
using appropriate URBs.
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Now that you know the basics, let’s dissect Listing 11.6, looking at the data structure 
additions fi rst. The listing adds a snam fi eld to the Scsi_Host structure to hold the 
associated SCSI /dev name that we are interested in. It also adds a private fi eld to the 
usb_interface structure to associate each USB interface with its us_data. Because 
us_data is relevant only for storage devices, we need to ensure the validity of the pri-
vate fi eld of a USB interface before accessing it as us_data. For this, Listing 11.6 adds 
a magic string, “disk,” to us_data.

The usbfs modifi cation in Listing 11.6 (to drivers/usb/core/devices.c) pulls out the 
us_data associated with each interface via the private data fi eld of its usb_interface.
It then latches on to the associated Scsi_Host using the container_of() function  , 
because as you saw in Step 1 previously, usb_data is glued to the end of the cor-
responding Scsi_Host. As you further saw in Step 5, Scsi_Host contains the /dev
node names that the sd and sr drivers populate. Usbfs stitches together an “N:” line 
using this information.

The following is the /proc/bus/usb/devices output after integrating the changes in 
Listing 11.6 and attaching a PNY USB pen drive, an Addonics CD-ROM drive, and a 
Seagate hard disk to a laptop via a USB hub. The “N:” lines announce the identity of 
the /dev node corresponding to each device:

bash> cat /proc/bus/usb/devices

...

T:  Bus=04 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#=  3 Spd=480 MxCh= 0

N:  Device=sda(Disk)

D:  Ver= 2.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS=64 #Cfgs=  1

P:  Vendor=154b ProdID=0002 Rev= 1.00

S:  Manufacturer=PNY

S:  Product=USB 2.0 FD

S:  SerialNumber=6E5C07005B4F

C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=  0mA

I:* If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-

    storage

E:  Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

E:  Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms

T:  Bus=04 Lev=02 Prnt=02 Port=01 Cnt=02 Dev#=  5 Spd=480 MxCh= 0

N:  Device=sr0(CDROM)

D:  Ver= 2.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS=64 #Cfgs=  1

P:  Vendor=0bf6 ProdID=a002 Rev= 3.00

S:  Manufacturer=Addonics



S:  Product=USB to IDE Cable

S:  SerialNumber=1301011002A9AFA9

C:* #Ifs= 1 Cfg#= 2 Atr=c0 MxPwr= 98mA

I:* If#= 0 Alt= 0 #EPs= 3 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-

    storage

E:  Ad=01(O) Atr=02(Bulk) MxPS= 512 Ivl=125us

E:  Ad=82(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

E:  Ad=83(I) Atr=03(Int.) MxPS=   2 Ivl=32ms

T:  Bus=04 Lev=02 Prnt=02 Port=02 Cnt=03 Dev#=  4 Spd=480 MxCh= 0

N:  Device=sdb(Disk)

D:  Ver= 2.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS=64 #Cfgs=  1

P:  Vendor=0bc2 ProdID=0501 Rev= 0.01

S:  Manufacturer=Seagate

S:  Product=USB Mass Storage

S:  SerialNumber=000000062459

C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr=  0mA

I:* If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 Driver=usb-

    storage

E:  Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms

E:  Ad=88(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

...

As you can see, the SCSI subsystem has allotted sda to the pen drive, sr0 to the 
CD-ROM, and sdb to the hard disk. User-space applications operate on these nodes 
to communicate with the respective devices. As you saw in Chapter 4, with the arrival 
of udev, however, you have the option of creating higher-level abstractions to identify 
each device without relying on the identity of the /dev names allocated by the SCSI 
subsystem.

USB-Serial

USB-to-serial    converters bring serial port capabilities to your computer via USB. You 
can use a USB-to-serial converter, for example, to get a serial debug console from an 
embedded device on a development laptop that has no serial ports.

In Chapter 6, “Serial Drivers,” you learned the benefi ts of the kernel’s layered serial 
architecture. Figure 11.5 illustrates how the USB-Serial layer fi ts into the kernel’s serial 
framework.
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 A USB-serial driver is similar to other USB client drivers except that it avails the 
services of a USB-Serial core in addition to the USB core. The USB-Serial core pro-
vides the following:

 • A tty driver that insulates low-level USB-to-serial converter drivers from higher 
serial layers such as line disciplines.

 • Generic probe() and disconnect() routines that individual USB-serial driv-
ers can leverage.

 • Device nodes to access USB-serial ports from user space. Applications operate 
on USB-serial ports via /dev/ttyUSBX, where X is the serial port number. Termi-
nal emulators such as minicom and protocols such as PPP run unchanged over 
these interfaces.



A low-level USB-to-serial converter driver essentially does the following:

 1. Registers a   usb_serial_driver structure with the USB-Serial core using 
usb_serial_register(). The entry points supplied as part of usb_serial_
driver form the crux of the driver.

 2. Populates a usb_driver structure and registers it with the USB core using 
usb_register(). This is similar to what the example telemetry driver does, 
except that a serial converter driver can count on the generic probe() and 
disconnect() routines provided by the USB-Serial core.

Listing 11.7 contains snippets from the FTDI driver (drivers/usb/serial/ftdi_sio.c)
that accomplish these two registrations for USB-to-serial converters based on FTDI 
chipsets.

LISTING 11.7 A Snippet from the FTDI Driver 

/* The usb_driver structure */

static struct usb_driver ftdi_driver = {

  .name          =  "ftdi_sio",           /* Name */

  .probe         =  usb_serial_probe,     /* Provided by the 

                                             USB-Serial core */

  .disconnect    =  usb_serial_disconnect,/* Provided by the 

                                             USB-Serial core */

  .id_table      =  id_table_combined,    /* List of supported

                                             devices built 

                                             around the FTDI chip */

  .no_dynamic_id =  1,                    /* Supported ids cannot be 

                                             added dynamically */

};

/* The usb_serial_driver structure */

static struct usb_serial_driver ftdi_sio_device = {

  /* ... */

  .num_ports           = 1,

  .probe               = ftdi_sio_probe,

  .port_probe          = ftdi_sio_port_probe,

  .port_remove         = ftdi_sio_port_remove,

  .open                = ftdi_open,

  .close               = ftdi_close,

  .throttle            = ftdi_throttle,

  .unthrottle          = ftdi_unthrottle,

  .write               = ftdi_write,
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  .write_room          = ftdi_write_room,

  .chars_in_buffer     = ftdi_chars_in_buffer,

  .read_bulk_callback  = ftdi_read_bulk_callback,

  .write_bulk_callback = ftdi_write_bulk_callback,

  /* ... */

};

/* Driver Initialization */

static int __init ftdi_init(void)

{

   /* ... */

   /* Register with the USB-Serial core */

   retval = usb_serial_register(&ftdi_sio_device);

   /* ... */

   /* Register with the USB core */

   retval = usb_register(&ftdi_driver);

   /* ... */

}

Human Interface Devices

Devices such as keyboards and mice are called     human interface devices (HIDs). Take a 
look at the section “USB and Bluetooth Keyboards” in Chapter 7, “Input Drivers,” for 
a discussion on the USB HID class.

Bluetooth

A USB-Bluetooth    dongle is a quick way to Bluetooth-enable your computer so that 
it can communicate with Bluetooth-equipped devices such as cell phones, mice, or 
handhelds. Chapter 16 discusses the USB Bluetooth class.

Gadget Drivers

In   a typical usage scenario, an embedded device connects to a PC host over USB. 
Embedded computers usually belong to the device side of USB, unlike PC systems 
that function as USB hosts. Because Linux runs on both embedded and PC systems, 
it needs support to run on either end of USB. The USB Gadget project brings USB 
device mode capability to embedded Linux systems. Bus 3 of the embedded Linux 



device in Figure 11.2 can, for example, use a gadget driver to let the device function as 
a mass storage drive when connected to a host computer.

Before proceeding, let’s briefl y look at some related terminology. The USB control-
ler at the device side is variously called a device controller     , peripheral controller, client 
controller, or function controller. The terms gadget and gadget driver are commonly used 
rather than the heavily overloaded words device and device driver.

USB gadget support is now part of the mainline kernel and contains the 
following:

 • Drivers for USB device controllers integrated into SoC families such as Intel 
PXA, Texas Instruments OMAP, and Atmel AT91. These drivers additionally 
provide a gadget API that gadget drivers can use.

 • Gadget drivers for device classes such as storage, networking, and serial convert-
ers. These drivers answer to their class when they receive enumeration requests 
from host-side software. A storage gadget driver, for example, identifies itself as 
a class 0x08 (mass storage class) device and exports a storage partition to the 
host. You can specify the associated block device node or filename via a mod-
ule-insertion parameter. Because the exported region has to appear to the host 
as a mass storage device, the gadget driver implements the SCSI interactions 
required by the USB mass storage protocol. Gadget drivers are also available for 
Ethernet and serial devices.

 • A skeletal gadget driver drivers/usb/gadget/zero.c, that you may use to test device 
controller drivers.

Gadget drivers use the services of the gadget API provided by device controller drivers. 
They populate a usb_gadget_driver structure and register it with the kernel using 
usb_gadget_register_driver (). Hardware specifi cs are hidden inside the gadget 
API implementation offered by individual device controller drivers, so the gadget driv-
ers themselves are hardware independent.

Documentation/DocBook/gadget.tmpl provides an overview of the gadget API. Have 
a look at http://linux-usb.org/gadget/ for more on the gadget project.

Debugging

A USB   bus analyzer magnifi es the goings-on in the bus and is useful for debugging 
low-level problems. If you can’t get hold of an analyzer, you might be able to make do 
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with the kernel’s soft USB tracer   usbmon. This tool captures traffi c between USB host 
controllers and devices. To collect a trace, read from the debugfs3 fi le /sys/kernel/debug/
usbmon/Xt, where X is the bus number to which your device is connected.

For example, consider a USB disk connected to a PC. From the associated “T:” line 
in /proc/bus/usb/devices, you can see that the drive is attached to bus 1:

T: Bus=01 Lev=01 Prnt=01 Port=03 Cnt=01 Dev#=  2 Spd=480 MxCh= 0

Ensure that you have enabled   debugfs (CONFIG_DEBUG_FS) and usbmon (CONFIG_
USB_MON) support in your kernel. This is a snapshot of usbmon output while copying 
a fi le from the disk:

bash> mount -t debugfs none_debugs /sys/kernel/debug/

bash> cat /sys/kernel/debug/usbmon/1u

...

ee6a5c40 3718782540 S Bi:1:002:1 -115 20480 <

ee6a5cc0 3718782567 S Bi:1:002:1 -115 65536 <

ee6a5d40 3718782595 S Bi:1:002:1 -115 36864 <

ee6a5c40 3718788189 C Bi:1:002:1 0 20480 = 0f846801 118498f\ 15c60500 01680106 
5e846801 608498fe 6f280087 68000000

ee6a5cc0 3718800994 C Bi:1:002:1 0 65536 = 118498fe 15c60500\ 01680106 5e846801 
608498fe 6f280087 68000000 00884800

ee6a5d40 3718801001 C Bi:1:002:1 0 36864 = 13608498 fe4f4a01\ 00514a01 006f2800 
87680000 00008848 00000100 b7f00100

...

Each output line starts with the URB address, followed by an event timestamp. An 
S in the next column indicates URB submission, and a C announces a callback. The 
following fi eld has the format URBType:Bus#:DeviceAddress:Endpoint#. In the 
preceding output, a URBType of Bi stands for a bulk URB in the IN direction. After 
this, usbmon dumps the URB status, data length, a data tag (= or < in the preceding 
output), and the data words (if the tag is =). The last three lines in the preceding out-
put are callbacks associated with bulk URBs submitted in earlier lines. You can match 
the callbacks with the related submissions using the URB addresses. Documentation/
usb/usbmon.txt details usbmon syntax and contains example code to parse the output 
into human readable form.

3 An in-memory fi lesystem to export kernel debug data to user space.



If you turn on Device Drivers → USB Support → USB Verbose Debug Messages 
during kernel confi guration, the kernel will emit the contents of all dev_dbg() state-
ments present in the USB subsystem.

You can glean device and bus specifi c information from the USB fi lesystem (usbfs)
node /proc/bus/usb/devices. And as we discuss in Chapter 19, “Drivers in User Space,” 
usbfs also lets you implement USB device drivers in user space. Even when the fi nal 
destination of your USB driver is inside the kernel, starting with a user-space driver 
can ease debugging and testing. 

The  linux-usb-devel mailing list is the forum to discuss questions related to USB 
device drivers. Visit https://lists.sourceforge.net/lists/listinfo/linux-usb-devel for sub-
scription and archive retrieval information. Read www.linux-usb.org/usbtest for ideas 
on USB testing.

The home page of the  Linux-USB project is www.linux-usb.org. You may down-
load the USB 2.0 specifi cation, OTG supplement, and other related standards from 
www.usb.org/developers/docs.

Looking at the Sources

The USB   core layer lives in drivers/usb/core/. This directory also contains URB manip-
ulation routines and the usbfs implementation. The hub driver and khubd are part of 
drivers/usb/core/hub.c. The drivers/usb/host/ directory contains host controller device driv-
ers. USB-related header defi nitions reside in include/linux/usb*.h. The usbmon tracer is 
in drivers/usb/mon/. Look inside Documentation/usb/ for Linux-USB documentation.

USB class drivers stay in various subdirectories under drivers/usb/. The mass storage 
driver drivers/usb/storage/, in tandem with the SCSI subsystem drivers/scsi/, implements 
the USB mass storage protocol. The drivers/input/4 directory tree includes drivers for 
USB input devices such as keyboards and mice; drivers/usb/serial/ has drivers for USB-
to-serial converters; drivers/usb/media/ supports USB multimedia devices; drivers/net/
usb/5 has drivers for USB Ethernet dongles; and drivers/usb/misc/ contains drivers for 
miscellaneous USB devices such as LEDs, LCDs, and fi ngerprint sensors. Look at 
drivers/usb/usb-skeleton.c for a starting point driver template if you can’t zero in on a 
closer match.

4 Before the 2.6.22 kernel release, USB input device drivers used to reside in drivers/usb/input/.
5 Before the 2.6.22 kernel release, USB network device drivers used to reside in drivers/usb/net/.
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The USB gadget subsystem is in drivers/usb/gadget/. This directory contains USB 
device controller drivers, and gadget drivers for mass storage (fi le_storage.c), serial con-
verters (serial.c), and Ethernet networking (ether.c).

Table 11.3 contains the main data structures used in this chapter and their location 
in the source tree. Table 11.4 lists the main kernel programming interfaces that you 
used in this chapter along with the location of their defi nitions.

TABLE 11.3 Summary of  Data Structures

Data Structure Location Description

urb include/linux/usb.h  Centerpiece of the USB data 
transfer mechanism

pipe include/linux/usb.h  Address element of a URB

usb_device_descriptor
usb_config_descriptor
usb_interface_descriptor
usb_endpoint_descriptor

include/linux/usb/ch9.h Descriptors that hold information 
about a USB device

usb_device include/linux/usb.h Representation of a USB device

usb_device_id include/linux/mod_devicetable.h Identity of a USB device

usb_driver include/linux/usb.h Representation of a USB client 
driver

usb_gadget_driver include/linux/usb_gadget.h Representation of a USB gadget 
driver

TABLE 11.4 Summary of  Kernel Programming Interfaces

Kernel Interface Location Description

usb_register() include/linux/usb.h
drivers/usb/core/driver.c

Registers a usb_driver with the USB core

usb_deregister() drivers/usb/core/driver.c Unregisters a usb_driver from the USB core

usb_set_intfdata() include/linux/usb.h Attaches device-specific data to a
usb_interface

usb_get_intfdata() include/linux/usb.h Detaches device-specific data from a
usb_interface

usb_register_dev() drivers/usb/core/file.c Associates a character interface with a USB 
client driver

usb_deregister_dev() drivers/usb/core/file.c Dissociates a character interface from a USB 
client driver



Kernel Interface Location Description

usb_alloc_urb() drivers/usb/core/urb.c Allocates a URB

usb_fill_[control|int|bulk]_urb() include/linux/usb.h Populates a URB

usb_[control|interrupt|bulk]_msg() drivers/usb/core/message.c Wrappers for 
synchronous URB 
submission

usb_submit_urb() drivers/usb/core/urb.c Submits a URB to 
the USB core

usb_free_urb() drivers/usb/core/urb.c Frees references to a 
completed URB

usb_unlink_urb() drivers/usb/core/urb.c Frees references to a 
pending URB

usb_[rcv|snd][ctrl|int|bulk|isoc]pipe() include/linux/usb.h Creates a USB pipe

usb_find_interface() drivers/usb/core/usb.c Gets the usb_
interface associ-
ated with a USB 
client driver

usb_buffer_alloc() drivers/usb/core/usb.c Allocates a consis-
tent DMA transfer 
buffer

usb_buffer_free() drivers/usb/core/usb.c Frees a buffer that 
was allocated using 
usb_buffer_
alloc()

usb_serial_register() drivers/usb/serial/usb-serial.c Registers a driver 
with the USB-Serial 
core

usb_serial_deregister() drivers/usb/serial/usb-serial.c Unregisters a driver 
from the USB-
Serial core

usb_gadget_register_driver() Device controller drivers 
in drivers/usb/gadget/

Registers a gadget 
with a device 
controller driver
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V ideo hardware generates visual output for a computer system to display. In 
this chapter, let’s fi nd out how the kernel supports video controllers and 

discover the advantages offered by the frame buffer abstraction. Let’s also learn to 
write console drivers that display messages emitted by the kernel.

Display Architecture

Figure 12.1 shows the display assembly on a PC-compatible system. The graphics 
controller that is part  of the North Bridge (see the sidebar “The North Bridge”) 
connects to different types of display devices using several interface standards (see 
the sidebar “Video Interfacing Standards”).

Video Graphics Array (VGA) is   the original display standard introduced by 
IBM, but it’s more of a resolution specifi cation today. VGA refers to a resolution 
of 640×480, whereas newer standards such as   Super Video Graphics Array (SVGA) 
and   eXtended Graphics Array (XGA) support higher resolutions of 800×600 and 
1024×768, respectively. Quarter VGA (QVGA)   panels having a resolution of 
320×240 are common on embedded devices, such as handhelds and smart phones.

Graphics controllers in the x86 world compatible with VGA and its derivatives offer 
a character-based text mode and a pixel-based graphics mode. The non-x86 embed-
ded space is non-VGA, however, and has no concept of a dedicated text mode. 

Processor

North Bridge

South Bridge

Graphics
Controller

Display
UnitAnalog/LVDS/DVI/HDMI

FIGURE 12.1 Display connection on a PC system.



The North Bridge

In earlier chapters, you learned about peripheral buses such as LPC, I2C, PCMCIA, PCI, and 
USB, all of which are sourced from the South Bridge on PC-centric systems. Display architecture, 
however, takes  us inside the  North Bridge. A North Bridge in the Intel-based PC architecture is 
either a Graphics and Memory Controller Hub (GMCH)   or a Memory Controller Hub (MCH).   The 
former contains a memory controller, a Front Side Bus (FSB)   controller, and a graphics controller. 
The latter lacks an integrated graphics controller but provides an   Accelerated Graphics Port (AGP) 
channel to connect external graphics hardware.

Consider, for example, the Intel 855 GMCH North Bridge chipset. The FSB controller in 
the 855 GMCH interfaces with Pentium M processors. The memory controller supports Dual
Data Rate (DDR) SDRAM memory chips. The integrated graphics controller lets you connect 
to display devices using analog VGA, LVDS, or DVI (see the sidebar “Video Interfacing Stan-
dards”). The 855 GMCH enables you to simultaneously send output to two displays, so you can, 
for example, dispatch similar or separate information to your laptop’s LCD panel and an external 
CRT monitor at the same time.

Recent North Bridge chipsets, such as the AMD 690G, include support for HDMI (see the 
following sidebar) in addition to VGA and DVI.

Video Interfacing Standards

Several interfacing standards specify the connection between video controllers and display devices. 
Display devices and the interfacing technologies they use follow:

• An analog display such as a   cathode ray tube (CRT) monitor that has a standard VGA connector.

• A digital flat-panel display such as a laptop Thin Film Transistor (TFT)   LCD that takes in low-
voltage differential signaling (LVDS).

• A display monitor that complies with the   Digital Visual Interface (DVI) specification. DVI is 
a standard developed by the   Digital Display Working Group (DDWG) for carrying high-qual-
ity video. DVI monitors take in Transition Minimized Differential Signaling (TMDS). There 
are three DVI subclasses: digital-only (DVI-D), analog-only (DVI-A), and digital-and-analog
(DVI-I).

• A display monitor that complies with the   High-Defi nition Television (HDTV) specifi cation 
using the High-Defi nition Multimedia Interface (HDMI).   HDMI is a modern digital audio-
video cable standard that supports high data rates. Unlike video-only standards such as DVI, 
HDMI can carry both picture and sound.
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Embedded SoCs usually have an on-chip LCD controller, as shown in Figure 12.2. 
The output emanating from the LCD controller   are TTL (Transistor-Transistor Logic)
signals that pack  18 bits of fl at-panel video data, six each for the three primary colors, 
red, green, and blue. Several handhelds and phones use QVGA-type internal LCD 
panels that directly receive the TTL fl at-panel video data sourced by LCD controllers.

CPU Core

Embedded Controller

LCD
Controller

QVGA LCD
Panel

USB
Controller 18-bit Flat Panel data…

Internal Local Bus

FIGURE 12.2 Display connection on an embedded system.
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GPIO (Enable/Disable)

I2C (Configuration)
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LVDS

FIGURE 12.3 LVDS and DVI connections on an embedded system.

Figure 12.3 shows an embedded device that supports dual display panels: an internal 
LVDS fl at-panel LCD and an external DVI monitor. The internal TFT LCD under-
stands LVDS, so an LVDS transmitter chip is used to convert the fl at-panel signals 
to LVDS. An example of an LVDS transmitter chip is DS90C363B from National 
Semiconductor. The external DVI monitor talks in TMDS, so a DVI transmitter chip 
is used to convert the 18-bit fl at panel data signals to TMDS. An I2C interface is pro-
vided so that the device driver can confi gure the DVI transmitter registers. An example 
of a DVI transmitter chip is SiI164 from Silicon Image. 



Linux-Video Subsystem

The concept of frame buffers  is central to video on Linux, so let’s fi rst fi nd out what 
that offers.

Because video adapters can be based on different hardware architectures, the imple-
mentation of higher kernel layers and applications might need to vary across video cards. 
This results in nonuniform schemes to handle different video cards. The ensuing non-
portability and extra code necessitate greater investment and maintenance. The frame 
buffer concept solves this problem by describing a general abstraction and specifying a 
programming interface that allows applications and higher kernel layers to be written in 
a platform-independent manner. Figure 12.4 shows you the frame buffer advantage.

The kernel’s frame buffer interface thus allows applications to be independent of 
the vagaries of the underlying graphics hardware. Applications run unchanged over 
diverse types of video hardware if they and the display drivers conform to the frame 
buffer interface. As you will soon fi nd out, the common frame buffer programming 
interface also brings hardware independence to kernel layers, such as the frame buffer 
console driver.

Today, several applications, such as web browsers and movie players, work directly over 
the frame buffer interface. Such applications can do graphics without help from a win-
dowing system.

The X Windows server (Xfbdev) is capable of working over the frame buffer interface, 
as shown in Figure 12.5.

Common Framebuffer API

GUIs, Consoles,
Movie players,…

Framebuffer Driver N

Video Card N

Framebuffer Driver I

Video Card I

…
Video cards having
different graphics

controllers

FIGURE 12.4 The frame buffer advantage.
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The Linux-Video subsystem shown in Figure 12.5 is a collection of low-level display 
drivers, middle-level frame buffer and console layers, a high-level virtual terminal 
driver, user mode drivers part of X  Windows, and utilities to confi gure display param-
eters. Let’s trace the fi gure top down:

 • The X Windows GUI has two options for operating over video cards. It can use 
either a suitable built-in user-space driver for the card or work over the frame 
buffer subsystem. 

 • Text mode consoles function over the virtual terminal character driver. Virtual 
terminals, introduced in the section “TTY Drivers” in Chapter 6, “Serial Driv-
ers,” are full-screen text-based terminals that you get when you logon in text 
mode. Like X Windows, text consoles have two operational choices. They can 
either work over a card-specifi c console driver, or use the generic frame buffer 
console driver (fbcon) if the kernel supports a low-level frame buffer driver for 
the card in question.
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for Video Card X

fbset

setterm

FB-aware applications
such as video players

Virtual Terminal
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Console
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Frame buffer
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Card X

Intel Framebuffer
Driver (intelfb)

Intel Graphics
Memory Controllers

User Space
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Hardware
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usb_uart

…

…

…

FIGURE 12.5 Linux-Video subsystem.



Display Parameters

Sometimes, confi guring the properties associated with your display panel might be 
the only driver changes that you need to make to enable video on your device, so let’s 
start learning about video drivers  by looking at common display parameters. We will 
assume that the associated driver conforms to the frame buffer interface, and use the 
fbset utility to obtain display characteristics:

bash> fbset

mode "1024x768-60"

    # D: 65.003 MHz, H: 48.365 kHz, V: 60.006 Hz

    geometry 1024 768 1024 768 8

    timings 15384 168 16 30 2 136 6

    hsync high

    vsync high

    rgba 8/0,8/0,8/0,0/0

endmode

The D: value in the output stands for the dotclock, which is the speed at which the 
video hardware draws pixels on the display. The value of 65.003MHz in the preceding 
output means that it’ll take (1/65.003*1000000) or about 15,384 picoseconds for the 
video controller to draw a single pixel. This duration is called the pixclock and is shown 
as the fi rst numeric parameter in the line starting with timings. The numbers against 
“geometry” announce that the visible and virtual resolutions are 1024×768 (SVGA) 
and that the bits required to store information pertaining to a pixel is 8.

The H: value specifi es the horizontal scan rate, which is the number of horizontal 
display lines scanned by the video hardware in one second. This is the inverse of the 
pixclock times the X-resolution. The V: value is the rate at which the entire display is 
refreshed. This is the inverse of the pixclock times the visible X-resolution times the 
visible Y-resolution, which is around 60Hz in this example. In other words, the LCD 
is refreshed 60 times in a second.

Video controllers  issue a horizontal sync (HSYNC) pulse at the end of each line and a 
vertical sync (VSYNC) pulse after each display frame. The durations of HSYNC (in terms 
of pixels) and VSYNC (in terms of pixel lines) are shown as the last two parameters in 
the line starting with “timings.” The larger your display, the bigger the likely values 
of HSYNC and VSYNC. The four numbers before the HSYNC duration in the timings
line announce the length of the right display margin (or horizontal front porch), left 
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margin (or horizontal back porch), lower margin (or vertical front porch), and upper 
margin (or vertical back porch), respectively. Documentation/fb/framebuffer.txt and the 
man page of fb.modes pictorially show these parameters.

To tie these parameters together, let’s calculate the pixclock value for a given refresh rate, 
which is 60.006Hz in our example:

dotclock = (X-resolution + left margin + right margin 
           + HSYNC length) * (Y-resolution + upper margin 
           + lower margin + VSYNC length) * refresh rate
         = (1024 + 168 + 16 + 136) * (768 + 30 + 2 + 6) * 60.006
         = 65.003 MHz
pixclock = 1/dotclock 
         = 15384 picoseconds (which matches with the fbset output 
                              above)

The Frame Buffer API

Let’s next wet our feet in the frame buffer API. The frame buffer core layer exports 
device nodes to user space so  that applications can access each supported video device. 
/dev/fbX is the node associated with frame buffer device X. The following are the 
main data structures that interest users of the frame buffer API. Inside the kernel, 
they are defi ned in include/linux/fb.h, whereas in user land, their defi nitions reside in 
/usr/include/linux/fb.h:

 1. Variable information pertaining to the video card that you saw in the fbset out-
put in the previous section is held in struct fb_var_screeninfo. This struc-
ture contains fields such as the X-resolution, Y-resolution, bits required to hold 
a pixel, pixclock, HSYNC duration, VSYNC duration, and margin lengths. These 
values are programmable by the user:

struct fb_var_screeninfo {

  __u32 xres;             /* Visible resolution in the X axis */

  __u32 yres;             /* Visible resolution in the Y axis */

  /* ... */

  __u32 bits_per_pixel;   /* Number of bits required to hold a 

                             pixel */

  /* ... */



  __u32 pixclock;         /* Pixel clock in picoseconds */

  __u32 left_margin;      /* Time from sync to picture */

  __u32 right_margin;     /* Time from picture to sync */

  /* ... */

  __u32 hsync_len;        /* Length of horizontal sync */

  __u32 vsync_len;        /* Length of vertical sync */

  /* ... */

};

 2.  Fixed information about the video hardware, such as the start address and size 
of frame buffer memory, is held in struct fb_fix_screeninfo. These values 
cannot be altered by the user:

struct fb_fix_screeninfo {

  char id[16];              /* Identification string */ 

  unsigned long smem_start; /* Start of frame buffer memory */

  __u32 smem_len;           /* Length of frame buffer memory */

  /* ... */

};

 3. The fb_cmap structure specifies the color map, which is used to convey the 
user’s definition of colors to the underlying video hardware. You can use this 
structure to define the RGB (Red, Green, Blue) ratio that you desire for differ-
ent colors:

struct fb_cmap {

  __u32 start;    /* First entry */

  __u32 len;      /* Number of entries */

  __u16 *red;     /* Red values */

  __u16 *green;   /* Green values */

  __u16 *blue;    /* Blue values */

  __u16 *transp;  /* Transparency. Discussed later on */

};

Listing 12.1 is a simple application that works over the frame buffer API. The program 
clears the screen by operating on /dev/fb0, the frame buffer device node correspond-
ing to the display. It fi rst deciphers the visible resolutions and the bits per pixel in a 
hardware-independent manner using the frame buffer API, FBIOGET_VSCREENINFO.
This interface command gleans the display’s variable parameters by operating on the 
fb_var_screeninfo structure. The program then goes on to mmap() the frame buf-
fer memory and clears each constituent pixel bit.
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LISTING 12.1 Clear the Display in a Hardware-Independent Manner

#include <stdio.h>

#include <fcntl.h>

#include <linux/fb.h>

#include <sys/mman.h>

#include <stdlib.h>

struct fb_var_screeninfo vinfo;

int

main(int argc, char *argv[])

{

  int fbfd, fbsize, i;

  unsigned char *fbbuf;

  /* Open video memory */

  if ((fbfd = open("/dev/fb0", O_RDWR)) < 0) {

    exit(1);

  } 

  /* Get variable display parameters */

  if (ioctl(fbfd, FBIOGET_VSCREENINFO, &vinfo)) {

    printf("Bad vscreeninfo ioctl\n");

    exit(2);

  }

  /* Size of frame buffer = 

         (X-resolution * Y-resolution * bytes per pixel) */

  fbsize = vinfo.xres*vinfo.yres*(vinfo.bits_per_pixel/8);

  /* Map video memory */

  if ((fbbuf = mmap(0, fbsize, PROT_READ|PROT_WRITE, 

            MAP_SHARED, fbfd, 0)) == (void *) -1){

    exit(3);

  }

  /* Clear the screen */

   for (i=0; i<fbsize; i++) {

     *(fbbuf+i) = 0x0;

   }

   munmap(fbbuf, fbsize);

   close(fbfd);

}



We look at another frame buffer application when we learn to access memory regions 
from user space in Chapter 19, “Drivers in User Space.”

Frame Buffer Drivers

Now that you have an idea of the frame buffer API and how it provides hardware inde-
pendence, let’s discover  the architecture of a low-level frame buffer device driver using 
the example of a navigation system.

Device Example: Navigation System

Figure 12.6 shows video operation on an example vehicle navigation system built 
around an embedded SoC. A GPS receiver streams coordinates to the SoC via a UART 
interface. An application   produces graphics from the received location information 
and updates a frame buffer in system memory. The frame buffer driver DMAs this pic-
ture data to display buffers that are part of the SoC’s LCD controller. The controller 
forwards the pixel data to the QVGA LCD panel for display.

Our goal is to develop the video software for this system. Let’s assume that Linux 
supports the SoC used on this navigation device and that all architecture- dependent 
services such as DMA are supported by the kernel.

One possible hardware implementation of the device shown in Figure 12.6 is by using a 
Freescale i.MX21 SoC. The CPU core in that case is an ARM9 core, and the on-chip video 
controller is the   Liquid Crystal Display Controller (LCDC). SoCs commonly have a high-
performance internal local bus that connects to controllers such as DRAM and video. In 
the case of the iMX.21, this bus is called the Advanced High-Performance Bus (AHB). The 
LCDC connects to the AHB.

The navigation system’s video software is broadly architected as a GPS application 
operating over a low-level frame buffer driver for the LCD controller. The applica-
tion fetches location coordinates from the GPS receiver by reading /dev/ttySX, where 
X is the UART number connected to the receiver. It then translates the geographic fi x 
information into a picture and writes the pixel data to the frame buffer associated with 
the LCD controller. This is done on the lines of Listing 12.1, except that picture data 
is dispatched rather than zeros to clear the screen.
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FIGURE 12.6 Display on a Linux navigation device.

 The rest of this section focuses only on the low-level frame buffer device driver. Like 
many other driver subsystems, the full complement of facilities, modes, and options 
offered by the frame buffer core layer are complex and can be learned only with cod-
ing experience. The frame buffer driver for the example navigation system is relatively 
simplistic and is only a starting point for deeper explorations.

Table 12.1 describes the register model of the LCD controller shown in Figure 12.6. 
The frame buffer driver in Listing 12.2 operates over these registers.

TABLE 12.1 Register Layout of the LCD  Controller Shown in Figure 12.6

 Register Name Used to Configure

 SIZE_REG LCD panel’s maximum X and Y dimensions

 HSYNC_REG HSYNC duration

 VSYNC_REG VSYNC duration

 CONF_REG  Bits per pixel, pixel polarity, clock dividers for generating pixclock, color/monochrome 
mode, and so on

 CTRL_REG Enable/disable LCD controller, clocks, and DMA

 DMA_REG Frame buffer’s DMA start address, burst length, and watermark sizes

 STATUS_REG Status values

 CONTRAST_REG Contrast level



Our frame buffer driver (called myfb) is implemented as a platform driver in List-
ing 12.2. As you learned in Chapter 6, a platform is a pseudo bus usually used to 
connect lightweight devices integrated into SoCs, with the kernel’s device model. 
Architecture-specifi c setup code (in arch/your-arch/your-platform/) adds the platform 
using platform_device_add(); but for simplicity, the probe() method of the 
myfb driver performs this before registering itself as a platform driver. Refer back to 
the section “Device Example: Cell Phone” in Chapter 6 for the general architecture of 
a platform driver and associated entry points.

Data Structures

Let’s take a look at the major data structures and methods associated with frame buffer 
drivers and then zoom in    on myfb. The following two are the main structures:

 1. struct fb_info is the centerpiece data structure of frame buffer drivers. This 
structure is defined in include/linux/fb.h as follows:

struct fb_info {

  /* ... */

  struct fb_var_screeninfo var;    /* Variable screen information. 

                                      Discussed earlier. */

  struct fb_fix_screeninfo fix;    /* Fixed screen information.

                                      Discussed earlier. */

  /* ... */

  struct fb_cmap cmap;             /* Color map. 

                                      Discussed earlier. */

  /* ... */

  struct fb_ops *fbops;            /* Driver operations. 

                                      Discussed next. */

  /* ... */

  char __iomem *screen_base;       /* Frame buffer's 

                                      virtual address */

  unsigned long screen_size;       /* Frame buffer's size */ 

  /* ... */

  /* From here on everything is device dependent */

  void *par;                       /* Private area */

};

  Memory for fb_info is allocated by framebuffer_alloc(), a library routine 
provided by the frame buffer core. This function also takes the size of a private 
area as an argument and appends that to the end of the allocated fb_info. This 
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private area can be referenced using the par pointer in the fb_info structure. 
The semantics of fb_info fields such as fb_var_screeninfo and fb_fix_
screeninfo were discussed in the section “The Frame Buffer API.”

 2. The fb_ops structure contains the addresses of all entry points provided by the 
low-level frame buffer driver. The first few methods in fb_ops are necessary for 
the functioning of the driver, while the remaining are optional ones that provide 
for graphics acceleration. The responsibility of each function is briefly explained 
within comments:

struct fb_ops {

  struct module *owner;

  /* Driver open */

  int (*fb_open)(struct fb_info *info, int user);

  /* Driver close */

  int (*fb_release)(struct fb_info *info, int user);

  /* ... */

  /* Sanity check on video parameters */

  int (*fb_check_var)(struct fb_var_screeninfo *var,

                      struct fb_info *info);

  /* Configure the video controller registers */

  int (*fb_set_par)(struct fb_info *info);

  /* Create pseudo color palette map */

  int (*fb_setcolreg)(unsigned regno, unsigned red, 

                unsigned green, unsigned blue,

                unsigned transp, struct fb_info *info);

  /* Blank/unblank display */

  int (*fb_blank)(int blank, struct fb_info *info);

  /* ... */

  /* Accelerated method to fill a rectangle with pixel lines */

  void (*fb_fillrect)(struct fb_info *info,

                      const struct fb_fillrect *rect);

  /* Accelerated method to copy a rectangular area from one 

     screen region to another */

  void (*fb_copyarea)(struct fb_info *info, 

                      const struct fb_copyarea *region);

  /* Accelerated method to draw an image to the display */

  void (*fb_imageblit)(struct fb_info *info,

                       const struct fb_image *image);

  /* Accelerated method to rotate the display */

  void (*fb_rotate)(struct fb_info *info, int angle);



  /* Ioctl interface to support device-specific commands */

  int (*fb_ioctl)(struct fb_info *info, unsigned int cmd,

                  unsigned long arg);

  /* ... */

};

Let’s now look at the driver methods that Listing 12.2 implements for the myfb 
driver.

Checking and Setting Parameters

The fb_check_var() method     performs a sanity check of variables such as X-resolu-
tion, Y-resolution, and bits per pixel. So, if you use fbset to set an X-resolution less 
than the minimum supported by the LCD controller (64 in our example), this func-
tion will limit it to the minimum allowed by the hardware.

fb_check_var() also sets the appropriate RGB format. Our example uses 16 bits 
per pixel, and the controller maps each data word in the frame buffer into the com-
monly used RGB565 code: 5 bits for red, 6 bits for green, and 5 bits for blue. The 
offsets into the data word for each of the three colors are also set accordingly.

The fb_set_par() method confi gures the registers of the LCD controller depend-
ing on the values found in fb_info.var. This includes setting

 • Horizontal sync duration, left margin, and right margin in HSYNC_REG

 • Vertical sync duration, upper margin, and lower margin in VSYNC_REG

 • The visible X and Y resolutions in SIZE_REG

 • DMA parameters in DMA_REG

Assume that the GPS application attempts to alter the resolution of the QVGA display 
to 50×50. The following is the train of events:

 1. The display is initially at QVGA resolution:

bash> fbset

mode "320x240-76"

    # D: 5.830 MHz, H: 18.219 kHz, V: 75.914 Hz

    geometry 320 240 320 240 16

    timings 171521 0 0 0 0 0 0

    rgba 5/11,6/5,5/0,0/0

endmode
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 2. The application does something like this:

struct fb_var_screeninfo vinfo;

fbfd = open("/dev/fb0", O_RDWR);

vinfo.xres = 50;

vinfo.yres = 50;

vinfo.bits_per_pixel = 8;

ioctl(fbfd, FBIOPUT_VSCREENINFO, &vinfo); 

  Note that this is equivalent to the command fbset -xres 50 -yres 50

-depth 8.

 3. The FBIOPUT_VSCREENINFO ioctl in the previous step triggers invocation of 
myfb_check_var(). This driver method expresses displeasure and rounds up 
the requested resolution to the minimum supported by the hardware, which is 
64×64 in this case.

 4. myfb_set_par() is invoked by the frame buffer core, which programs the new 
display parameters into LCD controller registers.

 5. fbset now outputs new parameters:

bash> fbset

mode "64x64-1423"

    # D: 5.830 MHz, H: 91.097 kHz, V: 1423.386 Hz

    geometry 64 64 320 240 16

    timings 171521 0 0 0 0 0 0

    rgba 5/11,6/5,5/0,0/0

endmode

Color Modes

Common color modes supported by video hardware include pseudo color and true 
color. In the former, index    numbers are mapped to RGB pixel encodings. By choosing 
a subset of available colors and by using the indices corresponding to the colors instead 
of the pixel values themselves, you can reduce demands on frame buffer memory. Your 
hardware needs to support this scheme of a modifi able color set (or palette), however.

In true color mode (which is what our example LCD controller supports), modifi -
able palettes are not relevant. However, you still have to satisfy the demands of the 
frame buffer console driver, which uses only 16 colors. For this, you have to create a 
pseudo palette by encoding the corresponding 16 raw RGB values into bits that can 
be directly fed to the hardware. This pseudo palette is stored in the pseudo_palette



fi eld of the fb_info structure. In Listing 12.2, myfb_setcolreg() populates it as 
follows:

((u32*)(info->pseudo_palette))[color_index] = 

              (red << info->var.red.offset)     |

              (green << info->var.green.offset) |

              (blue << info->var.blue.offset)   |

              (transp << info->var.transp.offset);

Our LCD controller uses 16 bits per pixel and the RGB565 format, so as you saw ear-
lier, the fb_check_var() method ensures that the red, green and blue values reside at 
bit offsets 11, 5, and 0, respectively. In addition to the color index and the red, blue, and 
green values, fb_setcolreg()takes in an argument transp, to specify desired trans-
parency effects. This mechanism, called alpha blending, combines the specifi ed pixel 
value with the background color. The LCD controller in this example does not support 
alpha blending, so myfb_check_var() sets the transp offset and length to zero.

The frame buffer abstraction is powerful enough to insulate applications from the char-
acteristics of the display panel—whether it’s RGB or BGR or something else. The red, 
blue, and green offsets set by fb_check_var() percolate to user space via the fb_var_
screeninfo structure populated by the FBIOGET_VSCREENINFO ioctl(). Because appli-
cations such as X Windows are frame buffer-compliant, they paint pixels into the frame 
buffer according to the color offsets returned by this ioctl().

Bit lengths used by the RGB encoding (5+6+5=16 in this case) is called the color depth,
which is used by the frame buffer console driver to choose the logo fi le to display dur-
ing boot (see the section “Boot Logo”).

Screen Blanking

The fb_blank() method     provides support for blanking and unblanking the display. 
This is mainly used for power management. To blank the navigation system’s display 
after a 10-minute period of inactivity, do this:

bash> setterm -blank 10

This command percolates down the layers to the frame buffer driver and results in the 
invocation of myfb_blank(), which programs appropriate bits in CTRL_REG.
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Accelerated Methods

If your user interface needs to perform heavy-duty video operations such as blend-
ing, stretching, moving    bitmaps, or dynamic gradient generation, you likely require 
graphics acceleration to obtain acceptable performance. Let’s briefl y visit the 
fb_ops methods that you can leverage if your video hardware supports graphics 
acceleration.

The fb_imageblit() method draws an image to the display. This entry point 
provides an opportunity to your driver to leverage any special capabilities that your 
video controller might possess to hasten this operation. cfb_imageblit() is a generic 
library function provided by the frame buffer core to achieve this if you have non-
accelerated hardware. It’s used, for instance, to output a logo to the screen during 
boot up. fb_copyarea() copies a rectangular area from one screen region to another. 
cfb_copyarea() provides an optimized way of doing this if your graphics control-
ler does not possess any magic to accelerate this operation. The fb_fillrect()
method   speedily fi lls a rectangle with pixel lines. cfb_fillrect() offers a generic 
nonaccelerated way to achieve this. The LCD controller in our navigation system does 
not provide for acceleration, so the example driver populates these methods using the 
generic software-optimized routines offered by the frame buffer core.

DirectFB

DirectFB (www.directfb.org) is a library built on top of the frame buffer interface that provides 
a simple window manager framework, hooks for hardware graphics acceleration, and virtual 
interfaces that allow coexistence of multiple frame buffer applications. DirectFB, along with an 
accelerated frame buffer device driver downstream and a DirectFB-aware rendering engine such 
as Cairo (www.cairographics.org) upstream, is sometimes used on graphics-intensive embedded 
devices instead of more traditional solutions such as X Windows.

DMA from the Frame Buffer

The LCD controller    in the navigation system contains a DMA engine that fetches 
picture frames from system memory. The controller dispatches the obtained graph-
ics data to the display panel. The rate of DMA sustains the refresh rate of the display. 
A non cacheable frame buffer suitable for coherent access is allocated using dma_
alloc_coherent() from myfb_probe(). (We discussed coherent DMA mapping 

www.directfb.org
www.cairographics.org


in  Chapter 10, “Peripheral Component Interconnect.”) myfb_set_par() writes this 
allocated DMA address to the DMA_REG register in the LCD controller.

When the driver enables DMA by calling myfb_enable_controller(), the con-
troller starts ferrying pixel data from the frame buffer to the display using synchro-
nous DMA. So, when the GPS application maps the frame buffer (using mmap()) and 
writes location information to it, the pixels gets painted onto the LCD.

Contrast and Backlight 

The LCD controller    in the navigation system supports contrast control using the CON-
TRAST_REG register. The driver exports this to user space via myfb_ioctl(). The 
GPS application controls contrast as follows:

unsigned int my_fd, desired_contrast_level = 100;

/* Open the frame buffer */

my_fd = open("/dev/fb0", O_RDWR);

ioctl(my_fd, MYFB_SET_BRIGHTNESS, &desired_contrast_level);

The LCD panel on the navigation system is illuminated using a backlight. The pro-
cessor controls the backlight inverter through GPIO lines, so you can turn the light 
on or off by wiggling the corresponding pins. The kernel abstracts a generic back-
light interface via sysfs nodes. To tie with this interface, your driver has to populate 
a backlight_ops structure with methods for obtaining and updating backlight 
brightness, and register it with the kernel using  backlight_device_register().
Look inside drivers/video/backlight/ for the backlight interface sources and recursively 
grep the drivers/ tree for backlight_device_register() to locate video drivers 
that use this interface. Listing 12.2 does not implement backlight manipulation 
operations.

LISTING 12.2 Frame Buffer Driver for the Navigation System

#include <linux/fb.h>

#include <linux/dma-mapping.h>

#include <linux/platform_device.h>

/* Address map of LCD controller registers */

#define LCD_CONTROLLER_BASE   0x01000D00

#define SIZE_REG     (*(volatile u32 *)(LCD_CONTROLLER_BASE))

#define HSYNC_REG    (*(volatile u32 *)(LCD_CONTROLLER_BASE + 4))
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#define VSYNC_REG    (*(volatile u32 *)(LCD_CONTROLLER_BASE + 8))

#define CONF_REG     (*(volatile u32 *)(LCD_CONTROLLER_BASE + 12))

#define CTRL_REG     (*(volatile u32 *)(LCD_CONTROLLER_BASE + 16))

#define DMA_REG      (*(volatile u32 *)(LCD_CONTROLLER_BASE + 20))

#define STATUS_REG   (*(volatile u32 *)(LCD_CONTROLLER_BASE + 24))

#define CONTRAST_REG (*(volatile u32 *)(LCD_CONTROLLER_BASE + 28))

#define LCD_CONTROLLER_SIZE   32

/* Resources for the LCD controller platform device */

static struct resource myfb_resources[] = {

  [0] = {

    .start      = LCD_CONTROLLER_BASE,

    .end        = LCD_CONTROLLER_SIZE,

    .flags      = IORESOURCE_MEM,

  },

};

/* Platform device definition */

static struct platform_device myfb_device = {

  .name      = "myfb",

  .id        = 0,

  .dev       = {

    .coherent_dma_mask = 0xffffffff,

  },

  .num_resources = ARRAY_SIZE(myfb_resources),

  .resource      = myfb_resources,

};

/* Set LCD controller parameters */

static int 

myfb_set_par(struct fb_info *info)

{

  unsigned long adjusted_fb_start;

  struct fb_var_screeninfo *var = &info->var;

  struct fb_fix_screeninfo *fix = &info->fix;

  /* Top 16 bits of HSYNC_REG hold HSYNC duration, next 8 contain

     the left margin, while the bottom 8 house the right margin */

  HSYNC_REG = (var->hsync_len << 16) |

              (var->left_margin << 8)|

              (var->right_margin); 



  /* Top 16 bits of VSYNC_REG hold VSYNC duration, next 8 contain

     the upper margin, while the bottom 8 house the lower margin */ 

  VSYNC_REG = (var->vsync_len << 16)  |

              (var->upper_margin << 8)| 

              (var->lower_margin); 

  /* Top 16 bits of SIZE_REG hold xres, bottom 16 hold yres */

  SIZE_REG  = (var->xres << 16) | (var->yres); 

  /* Set bits per pixel, pixel polarity, clock dividers for

     the pixclock, and color/monochrome mode in CONF_REG */

  /* ... */

  /* Fill DMA_REG with the start address of the frame buffer 

     coherently allocated from myfb_probe(). Adjust this address 

     to account for any offset to the start of screen area */

  adjusted_fb_start = fix->smem_start + 

          (var->yoffset * var->xres_virtual + var->xoffset) *

          (var->bits_per_pixel) / 8;

  __raw_writel(adjusted_fb_start, (unsigned long *)DMA_REG);

  /*  Set the DMA burst length and watermark sizes in DMA_REG */

  /* ... */

  /* Set fixed information */

  fix->accel  = FB_ACCEL_NONE;       /* No hardware acceleration */

  fix->visual = FB_VISUAL_TRUECOLOR; /* True color mode */ 

  fix->line_length = var->xres_virtual * var->bits_per_pixel/8;

  return 0;

}

/* Enable LCD controller */

static void 

myfb_enable_controller(struct fb_info *info)

{

  /* Enable LCD controller, start DMA, enable clocks and power

     by writing to CTRL_REG */

  /* ... */

}

Frame Buffer Drivers 375



376 Chapter 12 Video Drivers

/* Disable LCD controller */

static void 

myfb_disable_controller(struct fb_info *info)

{

  /* Disable LCD controller, stop DMA, disable clocks and power

     by writing to CTRL_REG */

  /* ... */

}

/* Sanity check and adjustment of variables */

static int

myfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)

{

  /* Round up to the minimum resolution supported by

     the LCD controller */

  if (var->xres < 64) var->xres = 64;

  if (var->yres < 64) var->yres = 64;

  /* ... */

  /* This hardware supports the RGB565 color format.

     See the section "Color Modes" for more details */

  if (var->bits_per_pixel == 16) {

    /* Encoding Red */

    var->red.length = 5;

    var->red.offset = 11;

    /* Encoding Green */

    var->green.length = 6;

    var->green.offset = 5;

    /* Encoding Blue */

    var->blue.length = 5;

    var->blue.offset = 0;

    /* No hardware support for alpha blending */

    var->transp.length = 0;

    var->transp.offset = 0;

  }

  return 0;

}

/* Blank/unblank screen */

static int 

myfb_blank(int blank_mode, struct fb_info *info)

{



  switch (blank_mode) {

  case FB_BLANK_POWERDOWN:

  case FB_BLANK_VSYNC_SUSPEND:

  case FB_BLANK_HSYNC_SUSPEND:

  case FB_BLANK_NORMAL:

    myfb_disable_controller(info);

    break;

  case FB_BLANK_UNBLANK:

    myfb_enable_controller(info);

    break;

  }

  return 0;

}

/* Configure pseudo color palette map */

static int

myfb_setcolreg(u_int color_index, u_int red, u_int green, 

               u_int blue, u_int transp, struct fb_info *info)

{

  if (info->fix.visual == FB_VISUAL_TRUECOLOR) {

    /* Do any required translations to convert red, blue, green and 

       transp, to values that can be directly fed to the hardware */

    /* ... */

      

    ((u32 *)(info->pseudo_palette))[color_index] = 

           (red << info->var.red.offset)     |

           (green << info->var.green.offset) |

           (blue << info->var.blue.offset)   |

           (transp << info->var.transp.offset);

  }

  return 0;

}

/* Device-specific ioctl definition */

#define MYFB_SET_BRIGHTNESS _IOW('M', 3, int8_t) 

/* Device-specific ioctl */

static int 

myfb_ioctl(struct fb_info *info, unsigned int cmd,

           unsigned long arg)

{
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  u32 blevel ;

  switch (cmd) {

    case MYFB_SET_BRIGHTNESS :

      copy_from_user((void *)&blevel, (void *)arg, 

                     sizeof(blevel)) ;

      /* Write blevel to CONTRAST_REG */

      /* ... */

      break;

    default:

      return –EINVAL;

  }

  return 0;

}

/* The fb_ops structure */

static struct fb_ops myfb_ops = {

  .owner        = THIS_MODULE,

  .fb_check_var = myfb_check_var,/* Sanity check */

  .fb_set_par   = myfb_set_par,  /* Program controller registers */

  .fb_setcolreg = myfb_setcolreg,/* Set color map */

  .fb_blank     = myfb_blank,    /* Blank/unblank display */

  .fb_fillrect  = cfb_fillrect,  /* Generic function to fill

                                    rectangle */

  .fb_copyarea  = cfb_copyarea,  /* Generic function to copy area */

  .fb_imageblit = cfb_imageblit, /* Generic function to draw */

  .fb_ioctl     = myfb_ioctl,    /* Device-specific ioctl */

};

/* Platform driver's probe() routine */

static int __init 

myfb_probe(struct platform_device *pdev)

{

  struct fb_info *info;

  struct resource *res;

  info = framebuffer_alloc(0, &pdev->dev);

  /* ... */

  /* Obtain the associated resource defined while registering the 

     corresponding platform_device */

  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

  /* Get the kernel's sanction for using the I/O memory chunk 

     starting from LCD_CONTROLLER_BASE and having a size of

     LCD_CONTROLLER_SIZE bytes */



  res = request_mem_region(res->start, res->end - res->start + 1, 

                           pdev->name);

  /* Fill the fb_info structure with fixed (info->fix) and variable

     (info->var) values such as frame buffer length, xres, yres,

     bits_per_pixel, fbops, cmap, etc */

  initialize_fb_info(info, pdev);  /* Not expanded */

  info->fbops = &myfb_ops;

  fb_alloc_cmap(&info->cmap, 16, 0);

  /* DMA-map the frame buffer memory coherently. info->screen_base

     holds the CPU address of the mapped buffer, 

     info->fix.smem_start carries the associated hardware address */

  info->screen_base = dma_alloc_coherent(0, info->fix.smem_len,

                                  (dma_addr_t *)&info->fix.smem_start,

                                   GFP_DMA | GFP_KERNEL);

  /* Set the information in info->var to the appropriate 

     LCD controller registers */

  myfb_set_par(info);

  /* Register with the frame buffer core */

  register_framebuffer(info);

  return 0;

}

/* Platform driver's remove() routine */

static int 

myfb_remove(struct platform_device *pdev)

{

  struct fb_info *info = platform_get_drvdata(pdev);

  struct resource *res;

  /* Disable screen refresh, turn off DMA,.. */

  myfb_disable_controller(info);

  /* Unregister frame buffer driver */

  unregister_framebuffer(info);

  /* Deallocate color map */

  fb_dealloc_cmap(&info->cmap);

  kfree(info->pseudo_palette);

  /* Reverse of framebuffer_alloc() */

  framebuffer_release(info); 
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  /* Release memory region */

  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

  release_mem_region(res->start, res->end - res->start + 1);

  platform_set_drvdata(pdev, NULL);

  return 0;

}

/* The platform driver structure */

static struct platform_driver myfb_driver = {

  .probe     = myfb_probe,

  .remove    = myfb_remove,

  .driver    = {

    .name    = "myfb",

  },

};

/* Module Initialization */

int __init 

myfb_init(void)

{

  platform_device_add(&myfb_device);

  return platform_driver_register(&myfb_driver);

}

/* Module Exit */

void __exit 

myfb_exit(void)

{

  platform_driver_unregister(&myfb_driver);

  platform_device_unregister(&myfb_device);

}

module_init(myfb_init);

module_exit(myfb_exit);

Console Drivers

A console is a  device that displays printk() messages  generated by the kernel. If 
you look at Figure 12.5, you can see that  console drivers lie in two tiers: a top level 



 constituting drivers such as the virtual terminal driver, the printer console driver, and 
the example USB_UART console driver (discussed soon), and bottom-level drivers that 
are responsible for advanced operations. Consequently, there are two main interface 
defi nition structures used by console drivers. Top-level console drivers revolve around 
struct console, which defi nes basic operations such as setup() and write(). Bot-
tom-level drivers center on struct consw that specifi es advanced operations such 
as setting cursor properties, console switching, blanking, resizing, and setting palette 
information. These structures are defi ned in include/linux/console.h as follows:

 1. struct console { 
  char  name[8];

  void  (*write)(struct console *, const char *, unsigned);

  int   (*read)(struct console *, char *, unsigned);

  /* ... */

  void  (*unblank)(void);

  int   (*setup)(struct console *, char *);

  /* ... */

};

 2. struct consw { 
  struct module *owner;

  const char *(*con_startup)(void);

  void        (*con_init)(struct vc_data *, int);

  void        (*con_deinit)(struct vc_data *);

  void        (*con_clear)(struct vc_data *, int, int, int, int);

  void        (*con_putc)(struct vc_data *, int, int, int);

  void        (*con_putcs)(struct vc_data *, 

                           const unsigned short *, int, int, int);

  void        (*con_cursor)(struct vc_data *, int);

  int         (*con_scroll)(struct vc_data *, int, int, int, int);

  /* ... */

};

As you might have guessed by looking at Figure 12.5, most console devices need both 
levels of drivers working in tandem. The vt driver is the top-level console driver in 
many situations. On PC-compatible systems, the VGA console driver (vgacon) is usu-
ally the bottom-level console driver; whereas on embedded devices, the frame buf-
fer console driver (fbcon) is often the bottom-level driver. Because of the indirection 
offered by the frame buffer abstraction, fbcon, unlike other bottom-level console driv-
ers, is hardware-independent.
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Let’s briefl y look at the architecture of both levels of console drivers:

 • The top-level driver populates a struct console with prescribed entry points 
and registers it with the kernel using register_console(). Unregistering is 
accomplished using unregister_console(). This is the driver that interacts 
with printk(). The entry points belonging to this driver call on the services of 
the associated bottom-level console driver.

 • The bottom-level console driver populates a struct consw with specifi ed 
entry points and registers it with the kernel using register_con_driver().
Unregistering is done using unregister_con_driver(). When the system 
supports multiple console drivers, the driver might instead invoke take_over_
console() to register itself and take over the existing console. give_up_
console() accomplishes the reverse. For conventional displays, bottom-level 
drivers interact with the top-level vt console driver and the vc_screen character 
driver that allows access to virtual console memory.

Some simple consoles, such as line printers and the USB_UART discussed next, need 
only a top-level console driver.

The fbcon driver in the 2.6 kernel also supports console rotation. Display panels 
on PDAs and cell phones are usually mounted in portrait orientation, whereas auto-
motive dashboards and IP phones are examples of systems where the display panel 
is likely to be in landscape mode. Sometimes, due to economics or other factors, an 
embedded device may require a landscape LCD to be mounted in portrait mode or 
vice versa. Console rotation support comes handy in such situations. Because fbcon is 
hardware-independent, the console rotation implementation is also generic. To enable 
console rotation, enable CONFIG_FRAMEBUFFER_CONSOLE_ROTATION during kernel 
confi guration and add fbcon=rotate:X to the kernel command line, where X is 0 
for normal orientation, 1 for 90-degree rotation, 2 for 180-degree rotation, and 3 for 
270-degree rotation.

Device Example: Cell Phone Revisited

To learn how to write   console drivers, let’s revisit the Linux cell phone that we used in 
Chapter 6. Our task in this section is to develop a console driver that operates over the 
USB_UARTs in the cell phone. For convenience, Figure 12.7 reproduces the cell phone 
from Figure 6.5 in Chapter 6. Let’s write a console driver that gets printk() mes-
sages out of the door via a USB_UART. The messages are picked up by a PC host and 
displayed to the user via a terminal emulator session. 



Listing 12.3 develops the console driver that works over the USB_UARTs. The usb_
uart_port[] structure and a few defi nitions used by the USB_UART driver in Chap-
ter 6 are included in this listing, too, to create a complete driver. Comments associated 
with the listing explain the driver’s operation.

Figure 12.5 shows the position of our example USB_UART console driver within the 
Linux-Video subsystem. As you can see, the USB_UART is a  simple device that needs 
only a top-level console driver.
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FIGURE 12.7 Console over USB_UART.

LISTING 12.3 Console  over USB_UART

#include <linux/console.h>

#include <linux/serial_core.h>

#include <asm/io.h>

#define USB_UART_PORTS          2          /* The cell phone has 2 

                                              USB_UART ports */

/* Each USB_UART has a 3-byte register set consisting of

   UU_STATUS_REGISTER at offset 0, UU_READ_DATA_REGISTER at 

   offset 1, and UU_WRITE_DATA_REGISTER at offset 2, as shown

   in Table One of Chapter 6, "Serial Drivers" */
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#define USB_UART1_BASE           0xe8000000 /* Memory base for USB_UART1 */

#define USB_UART2_BASE           0xe9000000 /* Memory base for USB_UART1 */

#define USB_UART_REGISTER_SPACE  0x3 

/* Semantics of bits in the status register */

#define USB_UART_TX_FULL         0x20

#define USB_UART_RX_EMPTY        0x10

#define USB_UART_STATUS          0x0F

#define USB_UART1_IRQ            3

#define USB_UART2_IRQ            4

#define USB_UART_CLK_FREQ        16000000

#define USB_UART_FIFO_SIZE       32

/* Parameters of each supported USB_UART port */

static struct uart_port usb_uart_port[] = {

  {

    .mapbase  = (unsigned int)USB_UART1_BASE,

    .iotype   = UPIO_MEM,             /* Memory mapped */

    .irq      = USB_UART1_IRQ,        /* IRQ */

    .uartclk  = USB_UART_CLK_FREQ,    /* Clock HZ */

    .fifosize = USB_UART_FIFO_SIZE,   /* Size of the FIFO */

    .flags    = UPF_BOOT_AUTOCONF,    /* UART port flag */

    .line     = 0,                    /* UART Line number */

  },

  {

    .mapbase   = (unsigned int)USB_UART2_BASE,

    .iotype    = UPIO_MEM,            /* Memory mapped */

    .irq       = USB_UART2_IRQ,       /* IRQ */

    .uartclk   = USB_UART_CLK_FREQ,   /* CLock HZ */

    .fifosize  = USB_UART_FIFO_SIZE,  /* Size of the FIFO */

    .flags     = UPF_BOOT_AUTOCONF,   /* UART port flag */

    .line      = 1,                   /* UART Line number */

  }

};

/* Write a character to the USB_UART port */

static void 

usb_uart_putc(struct uart_port *port, unsigned char c)

{

  /* Wait until there is space in the TX FIFO of the USB_UART. 

     Sense this by looking at the USB_UART_TX_FULL

     bit in the status register */



  while (__raw_readb(port->membase) & USB_UART_TX_FULL);

  /* Write the character to the data port*/

  __raw_writeb(c, (port->membase+1));

}

/* Console write */

static void 

usb_uart_console_write(struct console *co, const char *s,

               u_int count)

{

  int i;

  /* Write each character */

  for (i = 0; i < count; i++, s++) {

    usb_uart_putc(&usb_uart_port[co->index], *s);

  }

}

/* Get communication parameters */

static void __init 

usb_uart_console_get_options(struct uart_port *port,

                             int *baud, int *parity, int *bits)

{

  /* Read the current settings (possibly set by a bootloader)

     or return default values for parity, number of data bits, 

     and baud rate */

  *parity = 'n';

  *bits = 8;

  *baud = 115200;

}

/* Setup console communication parameters */

static int __init 

usb_uart_console_setup(struct console *co, char *options)

{

  struct uart_port *port;

  int baud, bits, parity, flow;

  /* Validate port number and get a handle to the 

     appropriate structure */

  if (co->index == -1 || co->index >= USB_UART_PORTS) {

    co->index = 0;
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  }

  port = &usb_uart_port[co->index];

  /* Use functions offered by the serial layer to parse options */

  if (options) {

    uart_parse_options(options, &baud, &parity, &bits, &flow);

  } else {

    usb_uart_console_get_options(port, &baud, &parity, &bits);

  }

  return uart_set_options(port, co, baud, parity, bits, flow);

}

/* Populate the console structure */

static struct console usb_uart_console = {

  .name    =  "ttyUU",                /* Console name */

  .write   =  usb_uart_console_write, /* How to printk to the 

                                         console */

  .device  =  uart_console_device,    /* Provided by the serial core */

  .setup   =  usb_uart_console_setup, /* How to setup the console */

  .flags   =  CON_PRINTBUFFER,        /* Default flag */

  .index   =  -1,                     /* Init to invalid value */

};

/* Console Initialization */

static int __init 

usb_uart_console_init(void)

{

  /* ... */

  /* Register this console */

  register_console(&usb_uart_console);

  return 0;

}

console_initcall(usb_uart_console_init); /* Mark console init */

After this driver has been built as part of the kernel, you can activate it by appending 
console=ttyUUX (where X is 0 or 1) to the kernel command line.



Boot Logo

A popular feature offered by the frame buffer subsystem is the boot logo. To display 
a logo, enable CONFIG_LOGO during kernel confi guration and select an available logo. 
You may also add a   custom logo image in the drivers/video/logo/ directory. 

CLUT224 is a commonly  used boot logo image format that supports 224 colors. 
The working of this format is similar to pseudo palettes described in the section “Color 
Modes.” A CLUT224 image is a C fi le containing two structures:

 • A CLUT (Color Look Up Table),  which is a character array of 224 RGB tuples 
(thus having a size of 224*3 bytes). Each 3-byte CLUT element is a combina-
tion of red, green, and blue colors. 

 • A data array whose each byte is an index into the CLUT. The indices start at 
32 and extend until 255 (thus supporting 224 colors). Index 32 refers to the 
fi rst element in the CLUT. The logo manipulation code (in drivers/video/fbmem.
c) creates frame buffer pixel data from the CLUT tuple corresponding to each 
index in the data array. Image display is accomplished using the low-level frame 
buffer driver’s fb_imageblit() method, as indicated in the section “Acceler-
ated Methods.”

Other supported logo formats are the 16-color vga16 and the black-and-white mono.
Scripts are available in the top-level scripts/ directory to convert standard Portable Pixel 
Map (PPM) fi les to the supported logo formats.

If the frame buffer device is also the console, boot messages scroll under the logo. 
You may prefer to disable console messages on production-level systems (by adding 
console=/dev/null to the kernel command line) and display a customer-supplied 
CLUT224 “splash screen” image as the boot logo.

Debugging

The virtual frame buffer  driver, enabled by setting CONFIG_FB_VIRTUAL in the con-
fi guration menu, operates over a pseudo graphics adapter. You can use this driver’s 
assistance to debug the frame buffer subsystem. 

Some frame buffer drivers, such as intelfb, offer an additional confi guration option 
that you may enable to generate driver-specifi c debug information.
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To discuss issues related to frame buffer drivers, subscribe to the linux-fbdev-devel 
mailing list, https://lists.sourceforge.net/lists/listinfo/linux-fbdev-devel/.

Debugging console drivers is not an easy job because you can’t call printk() from 
inside the driver. If you have a spare console device such as a serial port, you can imple-
ment a UART/tty form factor of your console  driver fi rst (as we did in Chapter 6 
for the USB_UART device used in this chapter) and debug that driver by operating 
on /dev/tty and printing messages to the spare console. You can then repackage the 
debugged code regions in the form of a console driver.

Looking at the Sources

The frame buffer core layer and low-level frame buffer drivers reside in the drivers/
video/ directory. Generic frame buffer structures are defi ned in include/linux/fb.h,
whereas chipset-specifi c headers stay inside include/video/. The fbmem driver drivers/
video/fbmem.c, creates the /dev/fbX character devices and is the front end for handling 
frame buffer ioctl commands issued by user applications.

The intelfb driver drivers/video/intelfb/*, is the low-level frame buffer driver for sev-
eral Intel graphics controllers such as the one integrated with the 855 GME North 
Bridge. The radeonfb driver drivers/video/aty/*, is the frame buffer driver for  Radeon 
Mobility AGP graphics hardware from ATI technologies. The source fi les drivers/
video/*fb.c, are all frame buffer drivers for graphics controllers, including those inte-
grated into several SoCs. You can use drivers/video/skeletonfb.c as the starting point if 
you are writing a custom low-level frame buffer driver. Look at Documentation/fb/* for 
more documentation on the frame buffer layer.

The home page of the Linux frame buffer project is www.linux-fbdev.org. This 
website contains HOWTOs, links to frame buffer drivers and utilities, and pointers to 
related web pages.

Console drivers, both frame buffer-based and otherwise, live inside drivers/video/
console/. To fi nd out how printk() logs kernel messages to an internal buffer and calls 
console drivers, look at kernel/printk.c.

Table 12.2 contains the main data structures used in this chapter and their location 
in the source tree. Table 12.3 lists the main kernel programming interfaces that you 
used in this chapter with the location of their defi nitions.

www.linux-fbdev.org
https://lists.sourceforge.net/lists/listinfo/linux-fbdev-devel/


TABLE 12.2 Summary of Data  Structures

Data Structure Location Description

fb_info include/linux/fb.h Central data structure used by low-level frame buffer 
drivers

fb_ops include/linux/fb.h Contains addresses of all entry points provided by 
low-level frame buffer drivers

fb_var_screeninfo include/linux/fb.h Contains variable information pertaining to video 
hardware such as the X-resolution, Y-resolution, and 
HYSNC/VSYNC durations

fb_fix_screeninfo include/linux/fb.h Fixed information about video hardware such as the 
start address of the frame buffer

fb_cmap include/linux/fb.h The RGB color map for a frame buffer device

console include/linux/console.h Representation of a top-level console driver

consw include/linux/console.h Representation of a bottom-level console driver

TABLE 12.3 Summary of Kernel Programming  Interfaces

Kernel Interface Location Description

register_framebuffer() drivers/video/fbmem.c Registers a low-level frame buffer device.

unregister_framebuffer() drivers/video/fbmem.c Releases a low-level frame buffer device. 

framebuffer_alloc() drivers/video/fbsysfs.c Allocates memory for an fb_info structure.

framebuffer_release() drivers/video/fbsysfs.c Reverse of framebuffer_alloc().

fb_alloc_cmap() drivers/video/fbcmap.c Allocates color map.

fb_dealloc_cmap() drivers/video/fbcmap.c Frees color map.

dma_alloc_coherent() include/asm-generic/
dma-mapping.h

Allocates and maps a coherent DMA buffer. 
See pci_alloc_consistent() in 
Chapter 10.

dma_free_coherent() include/asm-generic/
dma-mapping.h

Frees a coherent DMA buffer. See pci_
free_consistent() in Chapter 10.

register_console() kernel/printk.c Registers a top-level console driver.

unregister_console() kernel/printk.c Unregisters a top-level console driver.

register_con_driver()
take_over_console()

drivers/char/vt.c Registers/binds a bottom-level console driver.

unregister_con_driver()
give_up_console()

drivers/char/vt.c Unregisters/unbinds a bottom-level console 
driver.
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A udio  hardware provides computer systems the capability to generate and 
capture sound. Audio is an integral component in both the PC and the 

embedded space, for chatting on a laptop, making a call from a cell phone, lis-
tening to an MP3 player, streaming multimedia from a set-top box, or announc-
ing instructions on a medical-grade system. If you run Linux on any of these 
devices, you need the services offered by the Linux-Sound subsystem.

In this chapter, let’s find out how the kernel supports audio controllers and 
codecs. Let’s learn the architecture of the Linux-Sound subsystem and the pro-
gramming model that it exports.

Audio Architecture

Figure   13.1 shows audio connection on a PC-compatible system. The audio con-
troller on the South Bridge, together with an external codec, interfaces with analog 
audio circuitry.
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FIGURE 13.1 Audio in the PC environment.
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FIGURE 13.2 Audio connection on an embedded system.

An audio codec  converts digital audio data to analog sound signals for playing through 
speakers and performs the reverse operation for recording through a microphone. 
Other common audio inputs and outputs that interface with a codec include head-
sets, earphones, handsets, hands-free, line-in, and line-out. A codec also offers  mixer
functionality that connects it to a combination of these audio inputs and outputs, and 
controls the volume gain of associated audio signals.1

Digital audio data is obtained by sampling analog audio signals at specifi c bit rates 
using a technique called   pulse code modulation (PCM). CD quality is, for example, 
sound sampled at 44.1KHz, using 16 bits to hold each sample. A codec is responsible 
for recording audio by sampling at supported PCM bit rates and for playing audio 
originally sampled at different PCM bit rates. 

A sound card may support one or more codecs. Each codec may, in turn, support 
one or more audio substreams in mono or stereo.

The Audio Codec’97 (AC’97)   and the   Inter-IC Sound (I2S) bus are examples of 
industry standard interfaces that connect audio controllers to codecs:

 • The Intel AC’97 specification, downloadable from http://download.intel.com/, 
specifies the semantics and locations of audio registers. Configuration registers 
are part of the audio controller, while the I/O register space is situated inside the 
codec. Requests to operate on I/O registers are forwarded by the audio control-
ler to the codec over the AC’97 link. The register that controls line-in volume, 
for example, lives at offset 0x10 within the AC’97 I/O space. The PC system in 
Figure 13.1 uses AC’97 to communicate with an external codec.

1 This defi nition of a mixer is from a software perspective.    Sound mixing or data mixing refers to the capability of some codecs to 
mix multiple sound streams and generate a single stream. This is needed, for example, if you want to superimpose an announce-
ment while a voice communication is in progress on an IP phone. The alsa-lib library, discussed in the latter part of this chapter, 
supports a plug-in feature called dmix that performs data mixing in software if your codec does not have the capability to per-
form this operation in hardware.
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 • The I2S specifi cation, downloadable from www.nxp.com/acrobat_download/
various/I2SBUS.pdf, is a codec interface standard developed by Philips. The 
embedded device shown in Figure 13.2 uses I2S to send audio data to the codec. 
Programming the codec’s I/O registers is done via the I2C bus.

AC’97 has limitations pertaining to the number of supported channels and bit rates. 
Recent South Bridge chipsets from Intel feature a new technology called High Defi nition 
(HD) Audio   that offers higher-quality, surround sound, and multistreaming capabilities.

Linux-Sound Subsystem

Advanced Linux Sound Architecture (ALSA)    is the sound subsystem of choice in the 2.6 
kernel.    Open Sound System (OSS), the sound layer in the 2.4 kernel, is now obsolete 
and depreciated. To help the transition from OSS to ALSA, the latter provides OSS 
emulation that allows applications conforming to the OSS API to run unchanged over 
ALSA. Linux-Sound frameworks such as ALSA and OSS render audio applications 
independent of the underlying hardware, just as codec standards such as AC’97 and 
I2S do away with the need of writing separate audio drivers for each sound card.

Take a look at Figure 13.3 to understand the architecture of the Linux-Sound sub-
system. The constituent pieces of the subsystem are as follows:

 • The sound core, which is a code base consisting of routines and structures avail-
able to other components of the Linux-Sound layer. Like the core layers belong-
ing to other driver subsystems, the sound core provides a level of indirection 
that renders each component in the sound subsystem independent of the oth-
ers. The core also plays an important role in exporting the ALSA API to higher 
applications. The following /dev/snd/* device nodes shown in Figure 13.3 are cre-
ated and managed by the ALSA core: /dev/snd/controlC0 is a control node (that 
applications use for controlling volume gain and such), /dev/snd/pcmC0D0p is a 
playback device (p at the end of the device name stands for playback), and /dev/
snd/pcmC0D0c is a recording device (c at the end of the device name stands for 
capture). In these device names, the integer following C is the card number, and 
that after D is the device number. An ALSA driver for a card that has a voice codec 
for telephony and a stereo codec for music might export /dev/snd/pcmC0D0p to 
read audio streams destined for the former and /dev/snd/pcmC0D1p to channel 
music bound for the latter.

www.nxp.com/acrobat_download/various/I2SBUS.pdf
www.nxp.com/acrobat_download/various/I2SBUS.pdf


 • Audio controller drivers specific to controller hardware. To drive the audio con-
troller present in the Intel ICH South Bridge chipsets, for example, use the 
snd_intel8x0 driver.

 • Audio codec interfaces that assist communication between controllers and 
codecs. For AC’97 codecs, use the   snd_ac97_codec and ac97_bus modules.

 • An OSS emulation layer that acts as a conduit between OSS-aware applications 
and the ALSA-enabled kernel. This layer exports /dev nodes that mirror what the 
OSS layer offered in the 2.4 kernels. These nodes, such as /dev/dsp, /dev/adsp, and 
/dev/mixer, allow OSS applications to run unchanged over ALSA. The OSS /dev/
dsp node maps to the ALSA nodes /dev/snd/pcmC0D0*, /dev/adsp corresponds to 
/dev/snd/pcmC0D1*, and /dev/mixer associates with /dev/snd/controlC0.

 • Procfs and sysfs interface implementations for accessing information via /proc/
asound/ and /sys/class/sound/.

 • The user-space ALSA library   alsa-lib, which provides the libasound.so object. 
This library eases the job of the ALSA application programmer by offering sev-
eral canned routines to access ALSA drivers.

 • The   alsa-utils package that includes utilities such as alsamixer, amixer, alsactl,
and aplay. Use         alsamixer or amixer to change volume levels of audio signals such 
as line-in, line-out, or microphone, and alsactl to control settings for ALSA 
drivers. To play audio over ALSA, use aplay.

To obtain a better understanding of the architecture of the Linux-Sound layer, let’s 
look at the ALSA driver modules running on a laptop in tandem with Figure 13.3 
(→ is used to attach comments):

bash> lsmod|grep snd

snd_intel8x0       33148  0 → Audio Controller Driver

snd_ac97_codec     92000  1 snd_intel8x0 → Audio Codec Interface

ac97_bus            3104  1 snd_ac97_codec → Audio Codec Bus

snd_pcm_oss        40512  0 → OSS Emulation

snd_mixer_oss      16640  1 snd_pcm_oss → OSS Volume Control

snd_pcm            73316  3 snd_intel8x0,snd_ac97_codec,snd_pcm_oss

→ Core layer

snd_timer          22148  1 snd_pcm → Core layer

snd                50820  6 snd_intel8x0,snd_ac97_codec,snd_pcm_oss,

                            snd_mixer_oss,snd_pcm,snd_timer 

→ Core layer

soundcore           8960  1 snd → Core layer

snd_page_alloc     10344  2 snd_intel8x0,snd_pcm → Core layer
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FIGURE 13.3 Linux-Sound (ALSA) subsystem.

Device Example: MP3 Player

Figure   13.4 shows audio operation on an example Linux Bluetooth MP3 player built 
around an embedded SoC. You can program the Linux cell phone (that we used in 
Chapter 6, “Serial Drivers,” and Chapter 12, “Video Drivers”) to download songs 
from the Internet at night when phone rates are presumably cheaper and upload it to 
the MP3 player’s Compact Flash (CF) disk via Bluetooth so that you can listen to the 
songs next day during offi ce commute.

Our task is to develop the audio software for this device. An application on the 
player reads songs from the CF disk and decodes it into system memory. A kernel ALSA 
driver gathers the music data from system memory and dispatches it to transmit buffers 



that are part of the SoC’s audio controller. This PCM data is forwarded to the codec, 
which plays the music through the device’s speaker. As in the case of the navigation 
system discussed in the preceding chapter, we will assume that Linux supports this SoC, 
and that all architecture-dependent services such as DMA are supported by the kernel.

The audio software for the MP3 player thus consists of two parts:

 1. A user program   that decodes MP3 files reads from the CF disk and converts it 
into raw PCM. To write a native ALSA decoder application, you can leverage 
the helper routines offered by the   alsa-lib library. The section “ALSA Program-
ming” looks at how ALSA applications interact with ALSA drivers.

You also have the option of customizing public domain MP3 players such as 
madplay (http://sourceforge.net/projects/mad/) to suit this device. 

 2.  A low-level kernel ALSA audio driver. The following section is devoted to writ-
ing this driver.

One possible hardware implementation of the device shown in Figure 13.4 is by using 
a PowerPC 405LP SoC and a Texas Instruments TLV320 audio codec. The CPU core in 
that case is the 405 processor and the on-chip audio controller is the Codec Serial Inter-
face (CSI). SoCs commonly have a high-performance internal local bus that connects to 
controllers, such as DRAM and video, and a separate on-chip peripheral bus to interface 
with low-speed peripherals such as serial ports, I2C, and GPIO. In the case of the 405LP, 
the former is called the Processor Local Bus (PLB) and the latter is known as the On-chip 
Peripheral Bus (OPB). The PCMCIA/CF controller hangs off the PLB, whereas the audio 
controller interface connects to the OPB.
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 TABLE 13.1 Register Layout of the Audio Hardware in Figure 13.4   

 Register Name Description

VOLUME_REGISTER Controls the codec’s global volume.

SAMPLING_RATE_REGISTER Sets the codec’s sampling rate for digital-to-analog conversion.

CLOCK_INPUT_REGISTER Configures the codec’s clock source, divisors, and so on.

CONTROL_REGISTER Enables interrupts, configures interrupt cause (such as completion of a 
buffer transfer), resets hardware, enables/disables bus operation, and so on.

STATUS_REGISTER Status of codec audio events.

DMA_ADDRESS_REGISTER The example hardware supports a single DMA buffer descriptor. Real-world 
cards may support multiple descriptors and may have additional registers 
to hold parameters such as the descriptor that is currently being processed, 
the position of the current sample inside the buffer, and so on. DMA is 
performed to the buffers in the audio controller, so this register resides in 
the controller’s memory space.

DMA_SIZE_REGISTER Holds the size of the DMA transfer to/from the SoC. This register also 
resides inside the audio controller.

An audio driver is built out of three main ingredients:

 1. Routines that handle playback

 2. Routines that handle capture 

 3. Mixer control functions

Our driver implements playback, but does not support recording because the MP3 
player in the example has no microphone. The driver also simplifi es the mixer func-
tion. Rather than offering the full compliment of volume controls, such as speaker, 
earphone, and line-out, it allows only a single generic volume control.

The register layout of the MP3 player’s audio hardware shown in Table 13.1 mir-
rors these assumptions and simplifi cations, and does not conform to standards such 
as AC’97 alluded to earlier. So, the codec has a  SAMPLING_RATE_REGISTER to con-
fi gure the playback (digital-to-analog) sampling rate but no registers to set the capture 
(analog-to-digital) rate. The VOLUME_REGISTER confi gures a single global volume.

Listing 13.1 is a skeletal ALSA audio driver for the MP3 player and liberally employs 
pseudo code (within comments) to cut out extraneous detail. ALSA is a sophisticated 
framework, and conforming audio drivers are usually several thousand lines long. List-
ing 13.1 only gets you started on your audio driver explorations. Continue your learn-
ing by falling back to the mighty Linux-Sound sources inside the top-level sound/
directory. 



Driver Methods and Structures

Our example driver is implemented as a platform driver. Let’s take a look at the steps 
performed by the platform driver’s probe() method, mycard_audio_probe(). We 
will digress a bit under each step to explain related concepts and important data struc-
tures that we encounter, and this will take us to other parts of the driver and help tie 
things together. 

mycard_audio_probe()does the following:

 1. Creates an instance of a sound card by invoking      snd_card_new():

struct snd_card *card = snd_card_new(-1, id[dev->id], THIS_MODULE, 0);

The fi rst argument to snd_card_new() is the card index (that identifi es this 
card among multiple sound cards in the system), the second argument is the ID 
that’ll be stored in the id fi eld of the returned snd_card structure, the third 
argument is the owner module, and the last argument is the size of a private 
data fi eld that’ll be made available via the private_data fi eld of the returned 
snd_card structure (usually to store chip-specifi c data such as interrupt levels 
and I/O addresses). 

snd_card represents the created sound card and is defi ned as follows in include/
sound/core.h:

struct  snd_card {

  int number;             /* Card index */

  char id[16];            /* Card ID */

  /* ... */

  struct module *module;  /* Owner module */

  void *private_data;     /* Private data */

  /* ... */

  struct list_head controls;

                          /* All controls for this card */

  struct device *dev;     /* Device assigned to this card*/

  /* ... */

};

The remove() counterpart of the probe method      mycard_audio_remove(),
releases the snd_card from the ALSA framework using     snd_card_free().
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 2.  Creates a PCM playback instance and associates it with the card created in 
Step 1, using     snd_pcm_new():

int snd_pcm_new(struct snd_card *card, char *id,

                int device,

                int playback_count, int capture_count,

                struct snd_pcm **pcm);

The arguments are, respectively, the sound card instance created in Step 1, an 
identifi er string, the device index, the number of supported playback streams, 
the number of supported capture streams (0 in our example), and a pointer to 
store the allocated PCM instance. The allocated PCM instance is defi ned as fol-
lows in include/sound/pcm.h:

struct snd_pcm {

  struct snd_card *card;         /* Associated snd_card */

  /* ... */

  struct snd_pcm_str streams[2]; /* Playback and capture streams of this PCM 

                                    component. Each stream may support 

                                    substreams if your h/w supports it 

                                  */

  /* ... */

  struct device *dev;            /* Associated hardware 

                                    device */

};

  The snd_device_new() routine lies at the core of snd_pcm_new() and other 
similar component instantiation functions.

 3.  Connects playback operations with the PCM instance created in Step 2, by calling 
snd_pcm_set_ops(). The     snd_pcm_ops structure specifies these operations for 
transferring PCM audio to the codec. Listing 13.1 accomplishes this as follows:

/* Operators for the PCM playback stream */

static struct snd_pcm_ops mycard_playback_ops = {

  .open   = mycard_pb_open,      /* Open */

  .close  = mycard_pb_close,     /* Close */

  .ioctl  = snd_pcm_lib_ioctl,   /* Use to handle special commands, else 

                                    specify the generic ioctl handler 

                                    snd_pcm_lib_ioctl()*/

  .hw_params = mycard_hw_params, /* Called when higher layers set hardware 

                                    parameters such as audio format. DMA

                                    buffer allocation is also done from here */

  .hw_free = mycard_hw_free,     /* Free resources allocated in 

                                    mycard_hw_params() */



  .prepare = mycard_pb_prepare,  /* Prepare to transfer the audio stream. 

                                    Set audio format such as S16_LE 

                                    (explained soon), enable interrupts,.. */

  .trigger = mycard_pb_trigger,  /* Called when the PCM engine starts, 

                                    stops, or pauses. The second argument 

                                    specifies why it was called. This 

                                    function cannot go to sleep */

};

/* Connect the operations with the PCM instance */

snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &mycard_playback_ops);

In Listing 13.1,     mycard_pb_prepare() confi gures the sampling rate into the 
SAMPLING_RATE_REGISTER, clock source into the CLOCK_INPUT_REGISTER,
and transmit complete interrupt enablement into the CONTROL_REGISTER. The 
trigger() method,     mycard_pb_trigger(), maps an audio buffer populated 
by the ALSA framework on-the-fl y using   dma_map_single(). (We discussed 
streaming DMA in Chapter 10, “Peripheral Component Interconnect.”) The 
mapped DMA buffer address is programmed into the DMA_ADDRESS_REGIS-
TER. This register is part of the audio controller in the SoC, unlike the ear-
lier registers that reside inside the codec. The audio controller forwards the 
DMA’ed data to the codec for playback.

Another related object is the     snd_pcm_hardware structure, which announces 
the PCM component’s hardware capabilities. For our example device, this is 
defi ned in Listing 13.1 as follows:

/* Hardware capabilities of the PCM playback stream */

static struct snd_pcm_hardware mycard_playback_stereo = {

  .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_PAUSE | 

           SNDRV_PCM_INFO_RESUME);   /* mmap() is supported. The stream has 

                                        pause/resume capabilities */

  .formats = SNDRV_PCM_FMTBIT_S16_LE,/* Signed 16 bits per channel, little 

                                        endian */

  .rates = SNDRV_PCM_RATE_8000_48000,/* DAC Sampling rate range */

  .rate_min = 8000,                  /* Minimum sampling rate */

  .rate_max = 48000,                 /* Maximum sampling rate */

  .channels_min = 2,                 /* Supports a left and a right channel */

  .channels_max = 2,                 /* Supports a left and a right channel */

  .buffer_bytes_max = 32768,         /* Max buffer size */

};

This object is tied with the associated snd_pcm from the open() operator, 
mycard_playback_open(), using the PCM runtime instance. Each open PCM 
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stream has a runtime object called snd_pcm_runtime that contains all infor-
mation needed to manage that stream. This is a gigantic structure of software 
and hardware confi gurations defi ned in include/sound/pcm.h and contains snd_
pcm_hardware as one of its component fi elds.

 4.  Preallocates buffers using     snd_pcm_lib_preallocate_pages_for_all().
DMA buffers are subsequently obtained from this preallocated area by     mycard_
hw_params() using     snd_pcm_lib_malloc_pages() and stored in the PCM 
runtime instance alluded to in Step 3. mycard_pb_trigger() DMA-maps 
this buffer while starting a PCM operation and unmaps it while stopping the 
PCM operation.

 5.  Associates a mixer control element with the sound card using     snd_ctl_add()
for global volume control:

snd_ctl_add(card, snd_ctl_new1(&mycard_playback_vol, &myctl_private));

snd_ctl_new1() takes an snd_kcontrol_new structure as its fi rst argument 
and returns a pointer to an snd_kcontrol structure    . Listing 13.1 defi nes this 
as follows:

static struct snd_kcontrol_new mycard_playback_vol = {

  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,

                               /* Ctrl element is of type MIXER */

  .name  = "MP3 volume",       /* Name */

  .index = 0,                  /* Codec No: 0 */

  .info  = mycard_pb_vol_info, /* Volume info */

  .get   = mycard_pb_vol_get,  /* Get volume */

  .put   = mycard_pb_vol_put,  /* Set volume */

};

The snd_kcontrol structure describes a control element. Our driver uses it as 
a knob for general volume control. snd_ctl_add() registers an snd_kcontrol
element with the ALSA framework. The constituent control methods are invoked 
when user applications such as alsamixer are executed. In Listing 13.1, the snd_
kcontrol put() method mycard_playback_volume_put(), writes requested 
volume settings to the codec’s VOLUME_REGISTER.

 6. And finally, registers the sound card with the ALSA framework:
    snd_card_register(card);

codec_write_reg() (used, but left unimplemented in Listing 13.1) writes values 
to codec registers by communicating over the bus that connects the audio control-
ler in the SoC to the external codec. If the underlying bus protocol is I2C or SPI, for 



example, codec_write_reg() uses the interface functions discussed in Chapter 8, 
“The Inter-Integrated Circuit Protocol.”

If you want to create a /proc interface in your driver for dumping registers during 
debug or to export a parameter during normal operation, use the services of snd_
card_proc_new() and friends. Listing 13.1 does not use /proc interface fi les.

If you build and load the driver module in Listing 13.1, you will see two new device 
nodes appearing on the MP3 player: /dev/snd/pcmC0D0p and /dev/snd/controlC0. The 
former is the interface for audio playback, and the latter is the interface for mixer con-
trol. The MP3     decoder application, with the help of alsa-lib, streams music by operat-
ing over these device nodes. 

LISTING 13.1 ALSA Driver for the Linux MP3 Player

include <linux/platform_device.h>

#include <linux/soundcard.h>

#include <sound/driver.h>

#include <sound/core.h>

#include <sound/pcm.h>

#include <sound/initval.h>

#include <sound/control.h>

/* Playback rates supported by the codec */

static unsigned int mycard_rates[] = {

  8000,

  48000,

};

/* Hardware constraints for the playback channel */

static struct snd_pcm_hw_constraint_list mycard_playback_rates = {

  .count = ARRAY_SIZE(mycard_rates),

  .list = mycard_rates,

  .mask = 0,

};

static struct platform_device *mycard_device;

static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;

/* Hardware capabilities of the PCM stream */

static struct snd_pcm_hardware mycard_playback_stereo = {

  .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_BLOCK_TRANSFER),

  .formats = SNDRV_PCM_FMTBIT_S16_LE, /* 16 bits per channel, little endian */

  .rates = SNDRV_PCM_RATE_8000_48000, /* DAC Sampling rate range */

  .rate_min = 8000,                   /* Minimum sampling rate */

  .rate_max = 48000,                  /* Maximum sampling rate */
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  .channels_min = 2,                  /* Supports a left and a right channel */

  .channels_max = 2,                  /* Supports a left and a right channel */

  .buffer_bytes_max = 32768,          /* Maximum buffer size */

};

/* Open the device in playback mode */

static int 

mycard_pb_open(struct snd_pcm_substream *substream)

{

  struct snd_pcm_runtime *runtime = substream->runtime;

  /* Initialize driver structures */

  /* ... */

  /* Initialize codec registers */

  /* ... */

  /* Associate the hardware capabilities of this PCM component */

  runtime->hw = mycard_playback_stereo;

  /* Inform the ALSA framework about the constraints that

     the codec has. For example, in this case, it supports

     PCM sampling rates of 8000Hz and 48000Hz only */

  snd_pcm_hw_constraint_list(runtime, 0,

                             SNDRV_PCM_HW_PARAM_RATE,

                             &mycard_playback_rates);

  return 0;

}

/* Close */

static int 

mycard_pb_close(struct snd_pcm_substream *substream)

{

  /* Disable the codec, stop DMA, free data structures */

  /* ... */

  return 0;

}

/* Write to codec registers by communicating over 

   the bus that connects the SoC to the codec */

void

codec_write_reg(uint codec_register, uint value)

{

  /* ... */

}



/* Prepare to transfer an audio stream to the codec */

static int 

mycard_pb_prepare(struct snd_pcm_substream *substream)

{

  /* Enable Transmit DMA complete interrupt by writing to

     CONTROL_REGISTER using codec_write_reg() */

  /* Set the sampling rate by writing to SAMPLING_RATE_REGISTER */ 

  /* Configure clock source and enable clocking by writing 

     to CLOCK_INPUT_REGISTER */

  /* Allocate DMA descriptors for audio transfer */

  return 0;

}

/* Audio trigger/stop/.. */

static int

mycard_pb_trigger(struct snd_pcm_substream *substream, int cmd)

{

  switch (cmd) {

  case SNDRV_PCM_TRIGGER_START:

    /* Map the audio substream’s runtime audio buffer (which is an 

       offset into runtime->dma_area) using dma_map_single(), 

       populate the resulting address to the audio controller’s

       DMA_ADDRESS_REGISTER, and perform DMA */

    /* ... */

    break;

  case SNDRV_PCM_TRIGGER_STOP:

    /* Shut the stream. Unmap DMA buffer using dma_unmap_single() */

    /* ... */

    break;

  default:

    return -EINVAL;

    break;

  }

  return 0;

}
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/* Allocate DMA buffers using memory preallocated for DMA from the

   probe() method. dma_[map|unmap]_single() operate on this area

   later on */

static int 

mycard_hw_params(struct snd_pcm_substream *substream,

                 struct snd_pcm_hw_params *hw_params)

{

  /* Use preallocated memory from mycard_audio_probe() to 

     satisfy this memory request */

  return snd_pcm_lib_malloc_pages(substream, 

                                  params_buffer_bytes(hw_params));

}

/* Reverse of mycard_hw_params() */

static int 

mycard_hw_free(struct snd_pcm_substream *substream)

{

  return snd_pcm_lib_free_pages(substream);

}

/* Volume info */

static int 

mycard_pb_vol_info(struct snd_kcontrol *kcontrol,

                   struct snd_ctl_elem_info *uinfo)

{

  uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 

                                  /* Integer type */

  uinfo->count = 1;               /* Number of values */

  uinfo->value.integer.min =  0;  /* Minimum volume gain */

  uinfo->value.integer.max =  10; /* Maximum volume gain */

  uinfo->value.integer.step = 1;  /* In steps of 1 */

  return 0;

}

/* Playback volume knob */

static int 

mycard_pb_vol_put(struct snd_kcontrol *kcontrol,

                  struct snd_ctl_elem_value *uvalue)

{

  int global_volume = uvalue->value.integer.value[0];

  /* Write global_volume to VOLUME_REGISTER 

     using codec_write_reg() */

  /* ... */



  /* If the volume changed from the current value, return 1. 

     If there is an error, return negative code. Else return 0 */

}

/* Get playback volume */

static int 

mycard_pb_vol_get(struct snd_kcontrol *kcontrol,

                  struct snd_ctl_elem_value *uvalue)

{

  /* Read global_volume from VOLUME_REGISTER 

     and return it via uvalue->integer.value[0] */

  /* ... */

  return 0;

}

/* Entry points for the playback mixer */

static struct snd_kcontrol_new mycard_playback_vol = {

  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,

                                /* Control is of type MIXER */

  .name  = "MP3 Volume",        /* Name */

  .index = 0,                   /* Codec No: 0 */

  .info  = mycard_pb_vol_info,  /* Volume info */

  .get   = mycard_pb_vol_get,   /* Get volume */

  .put   = mycard_pb_vol_put,   /* Set volume */

};

/* Operators for the PCM playback stream */

static struct snd_pcm_ops mycard_playback_ops = {

  .open      = mycard_playback_open,    /* Open */

  .close     = mycard_playback_close,   /* Close */

  .ioctl     = snd_pcm_lib_ioctl,       /* Generic ioctl handler */

  .hw_params = mycard_hw_params,        /* Hardware parameters */

  .hw_free   = mycard_hw_free,          /* Free h/w params */

  .prepare   = mycard_playback_prepare, /* Prepare to transfer audio stream */

  .trigger   = mycard_playback_trigger, /* Called when the PCM engine 

                                           starts/stops/pauses */

};

/* Platform driver probe() method */

static int __init 

mycard_audio_probe(struct platform_device *dev)

{

  struct snd_card *card;

  struct snd_pcm *pcm;
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  int myctl_private;

  /* Instantiate an snd_card structure */

  card = snd_card_new(-1, id[dev->id], THIS_MODULE, 0);

  /* Create a new PCM instance with 1 playback substream

     and 0 capture streams */

  snd_pcm_new(card, "mycard_pcm", 0, 1, 0, &pcm);

  /* Set up our initial DMA buffers */

  snd_pcm_lib_preallocate_pages_for_all(pcm, 

                         SNDRV_DMA_TYPE_CONTINUOUS,

                         snd_dma_continuous_data

                         (GFP_KERNEL), 256*1024,

                         256*1024);

  /* Connect playback operations with the PCM instance */

  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,

                  &mycard_playback_ops);

  /* Associate a mixer control element with this card */

  snd_ctl_add(card, snd_ctl_new1(&mycard_playback_vol, 

                                 &myctl_private));

  strcpy(card->driver, “mycard");

  /* Register the sound card */

  snd_card_register(card);

  /* Store card for access from other methods */

  platform_set_drvdata(dev, card);

  return 0;

}

/* Platform driver remove() method */

static int 

mycard_audio_remove(struct platform_device *dev)

{

  snd_card_free(platform_get_drvdata(dev));

  platform_set_drvdata(dev, NULL);



  return 0;

}

/* Platform driver definition */

static struct platform_driver mycard_audio_driver = {

  .probe  = mycard_audio_probe,    /* Probe method */

  .remove = mycard_audio_remove,   /* Remove method */

  .driver = {

    .name = "mycard_ALSA",

  },

};

/* Driver Initialization */

static int __init 

mycard_audio_init(void)

{

  /* Register the platform driver and device */

  platform_driver_register(&mycard_audio_driver);

  mycard_device = platform_device_register_simple("mycard_ALSA", 

                                                  -1, NULL, 0);

  return 0;

}

/* Driver Exit */

static void __exit 

mycard_audio_exit(void)

{

  platform_device_unregister(mycard_device);

  platform_driver_unregister(&mycard_audio_driver);

}

module_init(mycard_audio_init);

module_exit(mycard_audio_exit);

MODULE_LICENSE("GPL");

ALSA Programming

To     understand how the user-space alsa-lib library interacts with kernel space ALSA driv-
ers, let’s write a simple application that sets the volume gain of the MP3 player. We will 
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map the alsa-lib services used by the application to the mixer control methods defi ned in 
Listing 13.1. Let’s begin by loading the driver and examining the mixer’s capabilities:

bash> amixer contents

...

numid=3,iface=MIXER,name="MP3 Volume"

     ; type=INTEGER,...

...

In the volume-control application, fi rst allocate space for the alsa-lib objects necessary 
to perform the volume-control operation:

#include <alsa/asoundlib.h>

snd_ctl_elem_value_t *nav_control;

snd_ctl_elem_id_t    *nav_id;

snd_ctl_elem_info_t  *nav_info;

snd_ctl_elem_value_alloca(&nav_control);

snd_ctl_elem_id_alloca(&nav_id);

snd_ctl_elem_info_alloca(&nav_info);

Next, set the interface type to SND_CTL_ELEM_IFACE_MIXER as specifi ed in the 
mycard_playback_vol structure in Listing 13.1:

snd_ctl_elem_id_set_interface(nav_id, SND_CTL_ELEM_IFACE_MIXER);

Now set the numid for the MP3 volume obtained from the amixer output above:

snd_ctl_elem_id_set_numid(nav_id, 3); /* num_id=3 */

Open the mixer node /dev/snd/controlC0. The third argument to snd_ctl_open()
specifi es the card number in the node name:

snd_ctl_open(&nav_handle, card, 0);

/* Connect data structures */

snd_ctl_elem_info_set_id(nav_info, nav_id);

snd_ctl_elem_info(nav_handle, nav_info);

Elicit the type fi eld in the   snd_ctl_elem_info structure defi ned in mycard_pb_
vol_info() in Listing 13.1 as follows:



if (snd_ctl_elem_info_get_type(nav_info) != 

                      SND_CTL_ELEM_TYPE_INTEGER) {
  printk("Mismatch in control type\n");

}

Get the supported codec volume range by communicating with the mycard_pb_vol_
info() driver method:

long desired_volume = 5;

long min_volume = snd_ctl_elem_info_get_min(nav_info);

long max_volume = snd_ctl_elem_info_get_max(nav_info);

/* Ensure that the desired_volume is within min_volume and 

   max_volume */

/* ... */

As per the defi nition of mycard_pb_vol_info() in Listing 13.1, the minimum 
and maximum values returned by the above alsa-lib helper routines are 0 and 10, 
respectively.

Finally, set the desired volume and write it to the codec:

snd_ctl_elem_value_set_integer(nav_control, 0, desired_volume); 

snd_ctl_elem_write(nav_handle, nav_control);

The call to   snd_ctl_elem_write() results in the invocation of mycard_pb_vol_
put(), which writes the desired volume gain to the codec’s VOLUME_REGISTER.

MP3 Decoding Complexity

The   MP3 decoder application running on the player, as shown in Figure 13.4, requires a sup-
ply rate of MP3 frames from the CF disk that can sustain the common MP3 sampling rate of 
128KBps. This is usually not a problem for most low-MIPs devices, but in case it is, consider 
buffering each song in memory before decoding it.  (MP3 frames at 128KBps roughly consume 
1MB per minute of music.)

MP3 decoding is lightweight and can usually be accomplished on-the-fl y, but MP3 encoding 
is heavy-duty and cannot be achieved in real time without hardware assist. Voice codecs such as 
G.711 and G.729 used in Voice over IP (VoIP) environments can, however, encode and decode 
audio data in real time.
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Debugging

You may   turn on options under Device Drivers → Sound → Advanced Linux Sound 
Architecture in the kernel confi guration menu to include ALSA debug code (CONFIG_
SND_DEBUG), verbose printk() messages (CONFIG_SND_VERBOSE_PRINTK), and ver-
bose procfs content (CONFIG_SND_VERBOSE_PROCFS).

Procfs information pertaining to ALSA drivers resides in /proc/asound/. Look inside 
/sys/class/sound/ for the device model information associated with each sound-class 
device.

If you think you have found a bug in an ALSA driver, post it to the alsa-devel mailing 
list  (http://mailman.alsa-project.org/mailman/listinfo/alsa-devel). The linux-audio-dev 
mailing list  (http://mailman.alsa-project.org/mailman/listinfo/alsa-devel), also called 
the   Linux Audio Developers (LAD) list, discusses questions related to the Linux-sound 
architecture and audio applications.

Looking at the Sources

The   sound core, audio buses, architectures, and the obsolete OSS suite all have their 
own separate subdirectories under sound/. For the AC’97 interface implementation, 
look inside sound/pci/ac97/. For an example I2S-based audio driver, look at sound/soc/
at91/at91-ssc.c, the audio driver for Atmel’s AT91-series ARM-based embedded SoCs. 
Use sound/drivers/dummy.c as a starting point for developing your custom ALSA driver 
if you cannot fi nd a closer match.

Documentation/sound/* contains information on ALSA and OSS drivers. Documenta-
tion/sound/alsa/DocBook/ contains a DocBook on writing ALSA drivers. An ALSA con-
fi guration guide is available in Documentation/sound/alsa/ALSA-Confi guration.txt. The 
Sound-HOWTO, downloadable from http://tldp.org/HOWTO/Sound-HOWTO/, 
answers several frequently asked questions pertaining to Linux support for audio 
devices.

Madplay is a software MP3 decoder and player that is both ALSA- and OSS-aware. 
You can look at its sources for tips on user-space audio programming. 

Two no-frills OSS tools for basic playback and recording are rawplay and rawrec,
whose sources are downloadable from http://rawrec.sourceforge.net/.

You can fi nd the home page of the Linux-ALSA project at www.alsa-project.org. 
Here, you will fi nd the latest news on ALSA drivers, details on the ALSA program-
ming API, and information on subscribing to related mailing lists. Sources of alsa-utils 

www.alsa-project.org
http://mailman.alsa-project.org/mailman/listinfo/alsa-devel
http://tldp.org/HOWTO/Sound-HOWTO/
http://rawrec.sourceforge.net/
http://mailman.alsa-project.org/mailman/listinfo/alsa-devel


and alsa-lib, downloadable from this page, can aid you while developing ALSA-aware 
applications.

Table 13.2 contains the main data structures used in this chapter and their location 
in the source tree. Table 13.3 lists the main kernel programming interfaces that you 
used in this chapter along with the location of their defi nitions.

TABLE 13.2 Summary of   Data Structures

 Data Structure Location Description

 snd_card include/sound/core.h Representation of a sound card

 snd_pcm include/sound/pcm.h An instance of a PCM object

 snd_pcm_ops include/sound/pcm.h Used to connect operations with a PCM object

 snd_pcm_substream include/sound/pcm.h Information about the current audio stream

 snd_pcm_runtime include/sound/pcm.h Runtime details of the audio stream

 snd_kcontrol_new include/sound/control.h Representation of an ALSA control element

TABLE 13.3 Summary of Kernel Programming Interfaces

 Kernel Interface Location Description

 snd_card_new() sound/core/init.c  Instantiates an snd_card
structure

 snd_card_free() sound/core/init.c  Frees an instantiated 
snd_card

 snd_card_register() sound/core/init.c  Registers a sound card with 
the ALSA framework

snd_pcm_lib_preallocate_pages_for_all() sound/core/pcm_memory.c  Preallocates buffers for a 
sound card

snd_pcm_lib_malloc_pages() sound/core/pcm_memory.c  Allocates DMA buffers for a 
sound card

snd_pcm_new() sound/core/pcm.c  Creates an instance of a PCM 
object

snd_pcm_set_ops() sound/core/pcm_lib.c  Connects playback or capture 
operations with a PCM object

snd_ctl_add() sound/core/control.c  Associates a mixer control 
element with a sound card

 snd_ctl_new1() sound/core/control.c  Allocates an snd_kcontrol
structure and initializes it with 
supplied control operations

snd_card_proc_new() sound/core/info.c  Creates a /proc entry and 
assigns it to a card instance

Looking at the Sources 413



This page intentionally left blank 



415

14

Block Drivers

In This Chapter

■ Storage Technologies 416

■ Linux Block I/O Layer 421

■ I/O Schedulers 422

■ Block Driver Data Structures and Methods 423

■ Device Example: Simple Storage Controller 426

■ Advanced Topics 434

■ Debugging 436

■ Looking at the Sources 437



416

Block devices are storage media capable of random access. Unlike character 
devices, block devices can hold fi lesystem data. In this chapter, let’s fi nd 

out how Linux supports storage buses and devices.

Storage Technologies

Let’s   start by taking a tour of the popular storage technologies found in today’s com-
puter systems. We’ll also associate these technologies with the corresponding device 
driver subsystems in the kernel source tree.

Integrated Drive Electronics (IDE) is the common storage interface technology 
used in the PC environment. ATA (short for Advanced Technology Attachment  ) is 
the offi cial name for the related specifi cations. The IDE/ATA standard began with 
ATA-1; the latest version is ATA-7 and supports bandwidths of up to 133MBps. 
Intervening versions of the specifi cation are ATA-2, which introduced logical block 
addressing (LBA   ); ATA-3, which enabled SMART-capable disks (discussed later); 
ATA-4, which brought support for Ultra DMA and the associated 33MBps through-
put; ATA-5, which increased maximum transfer speeds to 66MBps; and ATA-6, 
which provided for 100MBps data rates.

Storage devices such as CD-ROMs and tapes connect to the standard IDE cable 
using a special protocol called the     ATA Packet Interface (ATAPI).1 ATAPI was intro-
duced along with ATA-4.

The fl oppy disk controller in PC systems has traditionally been part of the Super 
I/O chipset about which we learned in Chapter 6, “Serial Drivers.” These internal 
drives, however, have given way to faster external USB fl oppy drives in today’s PC 
environment.

Figure 14.1 shows an ATA-7 disk drive connected to an IDE host adapter that’s 
part of the South Bridge chipset on a PC system. Also shown connected are an 
ATAPI CD-ROM drive and a fl oppy drive.

1 The ATAPI protocol is closer to SCSI than to IDE.
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FIGURE 14.1 Storage media in a PC system.

IDE/ATA is a parallel bus technology (sometimes called Parallel ATA   or PATA) and can-
not scale to high speeds, as you learned while discussing PCIe in Chapter 10, “Periph-
eral Component Interconnect.”     Serial ATA (SATA) is a modern serial bus evolution of 
PATA that supports transfer speeds in the realm of 300MBps and beyond. In addition 
to offering higher throughput than PATA, SATA brings capabilities such as hot swap-
ping. SATA technology is steadily replacing PATA. See the sidebar “libATA” to learn 
about the new ATA subsystem in the kernel that supports both SATA and PATA.

libATA

libATA is the new ATA subsystem in the Linux kernel. It consists of a set of ATA library routines 
and a collection of low-level drivers that use them. libATA supports both SATA and PATA. SATA 
drivers in libATA have been around for some time under drivers/scsi/, but PATA drivers and the 
new drivers/ata/ directory that now houses all libATA sources were introduced with the 2.6.19 
kernel release.                       
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If your system is enabled with SATA storage, you need the services of libATA in tandem with 
the SCSI subsystem. libATA support for PATA is still experimental, and by default, PATA drivers 
continue to use the legacy IDE drivers that live in drivers/ide/.

Assume that your system is SATA-enabled via an Intel ICH7 South Bridge chipset. You need 
the following libATA components to access your disk:

 1. The libATA core—To enable this, set CONFIG_ATA during kernel configuration. For a 
list of library functions offered by the core, grep for EXPORT_SYMBOL_GPL inside the 
drivers/ata/ directory.

 2.   Advanced Host Controller Interface (AHCI) support—AHCI specifies the register interface 
supported by SATA host adapters and is enabled by choosing CONFIG_AHCI at configura-
tion time.

 3. The host controller adapter driver—For the ICH7, enable CONFIG_ATA_PIIX.

Additionally, you need the mid-level and upper-level SCSI drivers (CONFIG_SCSI and 
friends). After you have loaded all these kernel components, your SATA disk partitions appear to 
the system as /dev/sd*, just like SCSI or USB mass storage partitions.

The home page of the libATA project is http://linux-ata.org/. A DocBook is available as part 
of the kernel source tree in Documentation/DocBook/libata.tmpl. A libATA developer’s guide is 
available at www.kernel.org/pub/linux/kernel/people/jgarzik/libata.pdf.

Small Computer System Interface (SCSI)     is the storage technology of choice in servers 
and high-end workstations. SCSI is somewhat faster than SATA and supports speeds 
of the order of 320MBps. SCSI has traditionally been a parallel interface standard, 
but, like ATA, has recently shifted to serial operation with the advent of a bus technol-
ogy called   Serial Attached SCSI (SAS).

The kernel’s SCSI subsystem is architected into three layers: top-level drivers for 
media such as disks, CD-ROMs, and tapes; a middle-level layer that scans the SCSI 
bus and confi gures devices; and low-level host adapter drivers. We learned about these 
layers in the section “Mass Storage” in Chapter 11, “Universal Serial Bus.” Refer back 
to Figure 11.4 in that chapter to see how the different components of the SCSI sub-
system interact with each other.2 USB mass storage drives use fl ash memory internally 
but communicate with host systems using the SCSI protocol.

2 SCSI support is discussed in other parts of this book, too. The section “User Mode SCSI” in Chapter 19, “Drivers in User 
Space,” discusses the SCSI Generic (sg) interface that lets you directly dispatch commands from user space to SCSI devices. The 
section “iSCSI” in Chapter 20, “More Devices and Drivers,” briefl y looks at the iSCSI protocol, which allows the transport of 
SCSI packets to a remote block device over a TCP/IP network.

www.kernel.org/pub/linux/kernel/people/jgarzik/libata.pdf
http://linux-ata.org/


Redundant array of inexpensive disks (RAID) is a technology built in to some SCSI 
and SATA controllers to achieve redundancy and reliability. Various RAID levels have 
been defi ned. RAID-1, for example, specifi es   disk mirroring, where data is duplicated 
on separate disks. Linux drivers are available for several RAID-capable disk drives. 
The kernel also offers a multidisk (md) driver that implements most RAID levels in 
software.

Miniature storage is the name of the game in the embedded consumer electronics 
space. Transfer speeds in this domain are much lower than that offered by the tech-
nologies discussed thus far. Secure Digital (SD) cards     and their smaller form- factor 
derivatives (miniSD and microSD) are popular storage media3 in devices such as cam-
eras, cell phones, and music players. Cards complying with version 1.01 of the SD 
card specifi cation support transfer speeds of up to 10MBps. SD storage has evolved 
from an older, slower, but compatible technology called     MultiMediaCard (MMC) 
that supports data rates of 2.5MBps. The kernel contains an SD/MMC subsystem in 
drivers/mmc/.

The section “PCMCIA Storage” in Chapter 9, “PCMCIA and Compact Flash,” 
looked at different PCMCIA/CF fl avors of storage cards and their corresponding ker-
nel drivers. PCMCIA memory cards such as microdrives support true IDE operation, 
whereas those that internally use solid-state memory emulate IDE and export an IDE 
programming model to the kernel. In both these cases, the kernel’s IDE subsystem can 
be used to enable the card.

Table 14.1 summarizes important storage technologies and the location of the asso-
ciated device drivers in the kernel source tree.

TABLE 14.1 Storage   Technologies and Associated Device Drivers

Storage Technology Description Source File

IDE/ATA Storage interface technology in the PC envi-
ronment. Supports data rates of 133MBps 
for ATA-7.

drivers/ide/ide-disk.c, driver/ide/
ide-io.c, drivers/ide/ide-probe.c
or
drivers/ata/ (Experimental)

ATAPI Storage devices such as CD-ROMs and tapes 
connect to the standard IDE cable using the 
ATAPI protocol.

drivers/ide/ide-cd.c
or
drivers/ata/ (Experimental)

3 See the sidebar “WiFi over SDIO” in Chapter 16, “Linux Without Wires,” to learn about nonstorage technologies available in 
SD form factor.

Continues
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Storage Technology Description Source File

Floppy (internal) The floppy controller resides in the Super 
I/O chip on the LPC bus in PC- compatible
systems. Supports transfer rates of the order 
of 150KBps.

drivers/block/floppy.c

SATA Serial evolution of IDE/ATA. Supports 
speeds of 300MBps and beyond.

drivers/ata/, drivers/scsi/

SCSI Storage technology popular in the server 
environment. Supports transfer rates of 
320MBps for Ultra320 SCSI.

drivers/scsi/

USB Mass Storage This refers to USB hard disks, pen drives, 
CD-ROMs, and floppy drives. Look at the 
section “Mass Storage” in Chapter 11. USB 
2.0 devices can communicate at speeds of up 
to 60MBps.

drivers/usb/storage/, drivers/scsi/

RAID:

Hardware RAID This is a capability built into high-end 
SCSI/SATA disk controllers to achieve 
redundancy and reliability.

drivers/scsi/, drivers/ata/

Software RAID   On Linux, the multidisk (md) driver imple-
ments several RAID levels in software.

drivers/md/

SD/miniSD/
microSD

Small form-factor storage media popular in 
consumer electronic devices such as cameras 
and cell phones. Supports transfer rates of up 
to 10MBps. 

drivers/mmc/

MMC Older removable storage standard that’s 
compatible with SD cards. Supports data 
rates of 2.5MBps.

drivers/mmc/

PCMCIA/ CF 
storage cards

PCMCIA/CF form factor of miniature IDE 
drives, or solid-state memory cards that 
emulate IDE. See the section “PCMCIA 
Storage” in Chapter 9.

drivers/ide/legacy/ide-cs.c
or
drivers/ata/pata_pcmcia.c 
(Experimental)

Block device 
emulation over 
flash memory

Emulates a hard disk over flash memory. 
See the section “Block Device Emulation” 
in Chapter 17, “Memory Technology 
Devices.”

drivers/mtd/mtdblock.c,

drivers/mtd/mtd_blkdevs.c

Virtual block devices on Linux:

RAM disk Implements support to use a RAM region as 
a block device.

drivers/block/rd.c

Loopback device Implements support to use a regular file as a 
block device.

drivers/block/loop.c

TABLE 14.1 Continued



Linux Block I/O Layer

The   block I/O layer was considerably overhauled between the 2.4 and 2.6 kernel 
releases. The motivation for the redesign was that the block layer, more than other 
kernel subsystems, has the potential to impact overall system performance.

Let’s take a look at Figure 14.2 to learn the workings of the Linux block I/O layer. 
The storage media contains fi les residing in a fi lesystem, such as EXT3 or Reiserfs. 
User applications invoke I/O system calls to access these fi les. The resulting fi lesys-
tem operations pass through the generic Virtual File System (VFS)    layer before enter-
ing the individual fi lesystem driver. The buffer cache speeds up fi lesystem access to 
block devices by caching disk blocks. If a block is found in the buffer cache, the time 
required to access the disk to read the block is saved. Data destined for each block 
device is lined up in a request queue. The fi lesystem driver populates the request queue 
belonging to the desired block device, whereas the block driver receives and consumes 
requests from the corresponding queue. In between, I/O schedulers manipulate the 
request queue so as to minimize disk access latencies and maximize throughput.

Request Queue 

Kernel Space 

Request Queue 

         Buffer Cache (Page Cache) 

 CD 
Drive 

User Space 

Kernel Space 

   Disk …

Virtual File System (VFS) Layer 

Individual Filesystems (EXT3, EXT4, JFFS2, Reiserfs, VFAT, …)

Block Driver 

                   I/O Schedulers 

Block Driver 

Storage Media 

File I/O File I/O

FIGURE 14.2 Block I/O on Linux.
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Let’s next examine the different I/O schedulers available on Linux.

I/O Schedulers

Block    devices suffer  seek times, the latency to move the disk head from its existing 
position to the disk sector of interest. The main goal of an I/O scheduler is to increase 
system throughput by minimizing these seek times. To achieve this, I/O schedulers 
maintain the request queue in sorted order according to the disk sectors associated 
with the constituent requests. New requests are inserted into the queue such that this 
order is maintained. If an existing request in the queue is associated with an adjacent 
disk sector, the new request is merged with it. Because of these properties, I/O sched-
ulers bear an operational resemblance to elevators—they schedule requests in a single 
direction until the last requester in the line is serviced.

The I/O scheduler in 2.4 kernels implemented a straightforward version of this 
algorithm and was called the Linus elevator. This turned out to be inadequate under 
real-world conditions, however, and was replaced in the 2.6 kernel by a suite of four 
schedulers: Deadline, Anticipatory, Complete Fair Queuing, and Noop. The scheduler 
used by default is Anticipatory, but this can be changed during kernel confi guration 
or by changing the value of /sys/block/[disk]/queue/scheduler. (Replace [disk] with hda
if you are using an IDE disk, for example.) Table 14.2 briefl y describes Linux I/O 
schedulers.

TABLE 14.2 Linux I/O Schedulers

I/O Scheduler Description Source File

Linus elevator Straightforward implementation of the standard merge-
and-sort I/O scheduling algorithm.

drivers/block/elevator.c
(in the 2.4 kernel tree)

Deadline In addition to what the Linus elevator does, the Deadline 
scheduler associates expiration times with each request in 
order to ensure that a burst of requests to the same disk 
region do not starve requests to regions that are farther 
away. Moreover, read operations are granted more priority 
than write operations because user processes usually block 
until their read requests complete.

The Deadline scheduler thus ensures that each I/O request 
is serviced within a time limit, which is important for some 
database loads.

block/deadline-iosched.c
(in the 2.6 kernel tree)



I/O Scheduler Description Source File

Anticipatory Similar to the Deadline scheduler, except that after 
servicing read requests, the Anticipatory scheduler waits 
for a predetermined amount of time anticipating further 
requests.

This scheduling technique is suited for workstation/
interactive loads.

block/as-iosched.c
(in the 2.6 kernel tree)

Complete Fair 
Queuing (CFQ)  

Similar to the Linus elevator, except that the CFQ sched-
uler maintains one request queue per originating process, 
rather than one generic queue. This ensures that each 
process (or process group) gets a fair portion of the I/O and 
prevents one process from starving others.

block/cfq-iosched.c
(in the 2.6 kernel tree)

Noop The Noop scheduler doesn’t spend time traversing the 
request queue searching for optimal insertion points. 
Instead, it simply adds new requests to the tail of the 
request queue. This scheduler is thus ideal for semicon-
ductor storage media that have no moving parts and, 
hence, no seek latencies. An example is a Disk-On-Module
(DOM), which internally uses flash memory.

block/noop-iosched.c
(in the 2.6 kernel tree)

At a conceptual level, I/O scheduling resembles process scheduling. Whereas I/O 
scheduling provides an illusion to processes that they own the disk, process scheduling 
gives processes the illusion that they own the CPU. Both I/O and process schedulers 
on Linux have undergone extensive changes in recent times. Process scheduling is dis-
cussed in Chapter 19.

Block Driver Data Structures and Methods

Let’s  now shift focus to the main topic of this chapter, block device drivers. In this sec-
tion, we take a look at the important data structures and driver methods that you are 
likely to encounter while implementing a block device driver. We use these structures 
and methods in the next section when we implement a block driver for a fi ctitious 
storage controller.

The following are the main block driver data structures:

 1. The kernel represents a disk using the gendisk (short for generic disk) struc-
ture defined in include/linux/genhd.h:

struct gendisk {

  int major;                     /* Device major number */

  int first_minor;               /* Starting minor number */

 Block Driver Data Structures and Methods 423



424 Chapter 14 Block Drivers

  int minors;                     /* Maximum number of minors.

                                     You have one minor number 

                                     per disk partition */

  char disk_name[32];             /* Disk name */

  /* ... */

  struct block_device_operations *fops; 

                                  /* Block device operations.

                                     Described soon. */

  struct request_queue *queue;    /* The request queue associated

                                     with this disk. Discussed 

                                     next. */

  /* ... */

};

 2. The I/O request queue associated with each block driver is described using the 
request_queue structure defined in include/linux/blkdev.h. This is a big struc-
ture, but its only constituent field that you might use is the request structure, 
which is described next.

 3. Each request in a request_queue is represented using a  request structure 
defined in include/linux/blkdev.h:

struct request {

  /* ... */

  struct request_queue *q;  /* The container request queue */

  /* ... */

  sector_t sector;          /* Sector from which data access 

                               is requested */

  /* ... */

  unsigned long nr_sectors; /* Number of sectors left to 

                               submit */

  /* ... */

  struct bio *bio;          /* The associated bio. Discussed 

                               soon. */

  /* ... */

  char *buffer;             /* The buffer for data transfer */

  /* ... */

  struct request *next_rq;  /* Next request in the queue */

};

 4. block_device_operations is the block driver counterpart of the file_
operations structure  used by character drivers. It contains the following entry 
points associated with a block driver:



 • Standard methods such as open(), release(), and ioctl()

 • Specialized methods such as media_changed() and revalidate_disk()
that support removable block devices

   block_device_operations is defined as follows in include/linux/fs.h:

   struct block_device_operations {

     int (*open) (struct inode *, struct file *);   /* Open */

     int (*release) (struct inode *, struct file *);/* Close */

     int (*ioctl) (struct inode *, struct file *, 

                   unsigned, unsigned long);    /* I/O Control */

     /* ... */

     int (*media_changed) (struct gendisk *);   /* Check if media is

                                                   available or 

                                                   ejected */

     int (*revalidate_disk) (struct gendisk *); /* Gear up for newly

                                                   inserted media */

     /* ... */

   };

 5. When we looked at the request structure, we saw that it was associated with a 
bio. A bio structure  is a low-level description of block I/O operations at page-
level granularity. It’s defined in include/linux/bio.h as follows:

struct bio {

  sector_t        bi_sector; /* Sector from which data 

                                access is requested */

  struct bio     *bi_next;   /* List of bio nodes */

  /* .. */

  unsigned long   bi_rw;     /* Bottom bits of bi_rw contain

                                the data-transfer direction */

  /* ... */

  struct bio_vec *bi_io_vec; /* Pointer to an array of 

                                bio_vec structures */

  unsigned short  bi_vcnt;   /* Size of the bio_vec array */

  unsigned short  bi_idx;    /* Index of the current bio_vec 

                                in the array */

  /* ... */

};

  Block data is internally represented as an I/O vector using an array of bio_vec
structures.  Each element of the bio_vec array is made up of a (page, page_
offset, length) tuple that describes a segment of the I/O block. Maintaining 

 Block Driver Data Structures and Methods 425



426 Chapter 14 Block Drivers

I/O requests as a vector of pages brings several advantages, including a leaner 
implementation and efficient scatter/gather.

Before ending this section, let’s briefl y look at block driver entry points. Block drivers 
are broadly built using  three types of methods:

 • The usual initialization and exit methods.

 • Methods that are part of the block_device_operations described previously.

 • A request method. Block drivers, unlike char devices, do not support read()/
write() methods for data transfer. Instead, they perform disk access using a 
special routine called the request method.

The block core layer offers a set of library routines that driver methods can leverage. 
The sample driver in the next section calls on the services of several of these library 
routines.

Device Example: Simple Storage Controller

Consider    the embedded device shown in Figure 14.3. The SoC contains a built-in 
storage controller that communicates with a block device. The architecture is similar 
to SD/MMC media, but our sample storage controller is described by the elemen-
tary register set listed in Table 14.3. The SECTOR_NUMBER_REGISTER specifi es the 
sector from which data access is requested.4 The SECTOR_COUNT_REGISTER contains 
the number of sectors to be transferred. Data is  moved via the DATA_REGISTER. The 
COMMAND_REGISTER programs the action that the storage controller has to take (for 
example, whether to read from the media or write to it). The STATUS_REGISTER con-
tains bits that signal whether the controller is busy performing an operation.

Embedded SoC

CPU
Core

Storage
Controller

Media slot/
Connector

CPU Interconnect Bus

Block
Media

FIGURE 14.3 Storage on an embedded device.

4 The storage media in our sample device has a fl at sector-space geometry. IDE controllers, on the other hand, support a cylinder
head sector (CHS) geometry specifi ed by a device head register, a low cylinder register, and a high cylinder register, in addition 
to the sector number register.



TABLE 14.3 Register    Layout of the Storage Controller

 Register Name Description of Contents

SECTOR_NUMBER_REGISTER The sector on which the next disk operation is to be performed.

SECTOR_COUNT_REGISTER Number of sectors to be read or written.

COMMAND_REGISTER The action to be taken (for example, read or write).

 STATUS_REGISTER Results of operations, interrupt status, and error flags.

DATA_REGISTER In the read path, the storage controller fetches data from the disk to 
internal buffers. The driver accesses the internal buffer via this register. 
In the write path, data written by the driver to this register is transferred 
to the internal buffer, from where the controller copies it to disk.

Let’s call the storage controller myblkdev. This simple device is neither interrupt driven 
nor supports DMA. We’ll also assume that the media is not removable. Our task is to 
write a block driver for myblkdev. Our driver is minimal, albeit complete. It does not 
handle power management and is not particularly performance-sensitive.

Initialization

Listing 14.1    contains the driver initialization method myblkdev_init(), which per-
forms the following steps:

 1. Registers the block device using  register_blkdev(). This block library rou-
tine assigns an unused major number to myblkdev and adds an entry for the 
device in /proc/devices.

 2. Associates a request method with the block device. It does this by supplying 
the address of myblkdev_request() to blk_init_queue(). The call to blk_
init_queue() returns the request_queue for myblkdev. Refer back to Fig-
ure 14.2 to see how the request_queue sits relative to the driver. The second 
argument to blk_init_queue(), myblkdev_lock, is a spinlock to protect the 
request_queue from concurrent access.

 3. Hardware performs disk transactions in units of   sectors, whereas software subsys-
tems, such as filesystems, deal with data in terms of blocks. The common sector 
size is 512 bytes; the usual block size is 4096 bytes. You need to inform the block 
layer about the sector size supported by your storage hardware and the maxi-
mum number of sectors that your driver can receive per request.  myblkdev_
init() accomplishes these by invoking blk_queue_hardsect_size() and 
blk_queue_max_sectors(), respectively.
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 4. Allocates a gendisk corresponding to myblkdev using  alloc_disk() and 
populates it. One important gendisk field that  myblkdev_init() supplies 
is the address of the driver’s block_device_operations. Another parameter 
that myblkdev_init() fills in is the storage capacity of myblkdev in units of 
sectors. This is accomplished by calling  set_capacity(). Each gendisk also 
contains a flag that signals the properties of the underlying storage hardware. If 
the drive is removable, for example, the gendisk’s flag field should be marked 
GENHD_FL_REMOVABLE.

 5. Associates the gendisk prepared in Step 4 with the request_queue obtained 
in Step 2. Also, connects the gendisk with the device’s major/minor numbers 
and a name.

 6. Adds the disk to the block I/O layer by invoking  add_disk(). When this is 
done, the driver has to be ready to receive requests. So, this is usually the last 
step of the initialization sequence.

The block device is now available to the system as /dev/myblkdev. If the device sup-
ports multiple disk partitions, they appear as /dev/myblkdevX, where X is the partition 
number.

LISTING 14.1 Initializing the Driver

#include <linux/blkdev.h>

#include <linux/genhd.h>

static struct gendisk *myblkdisk;     /* Representation of a disk */

static struct request_queue *myblkdev_queue; 

                                      /* Associated request queue */

int myblkdev_major = 0;               /* Ask the block subsystem 

                                         to choose a major number */

static DEFINE_SPINLOCK(myblkdev_lock);/* Spinlock that protects

                                         myblkdev_queue from

                                         concurrent access */

int myblkdisk_size     = 256*1024;    /* Disk size in kilobytes. For 

                                         a PC hard disk, one way to 

                                         glean this is via the BIOS */

int myblkdev_sect_size = 512;         /* Hardware sector size */



/* Initialization */

static int __init 

myblkdev_init(void)

{

  /* Register this block driver with the kernel */

  if ((myblkdev_major = register_blkdev(myblkdev_major, 

                                        "myblkdev")) <= 0) {

    return -EIO;

  }

  /* Allocate a request_queue associated with this device */

  myblkdev_queue = blk_init_queue(myblkdev_request, &myblkdev_lock);

  if (!myblkdev_queue) return -EIO;

  /* Set the hardware sector size and the max number of sectors */

  blk_queue_hardsect_size(myblkdev_queue, myblkdev_sect_size);

  blk_queue_max_sectors(myblkdev_queue, 512);

  /* Allocate an associated gendisk */

  myblkdisk = alloc_disk(1);

  if (!myblkdisk) return -EIO;

  /* Fill in parameters associated with the gendisk */

  myblkdisk->fops   = &myblkdev_fops;

  /* Set the capacity of the storage media in terms of number of

     sectors */

  set_capacity(myblkdisk, myblkdisk_size*2);

  myblkdisk->queue  = myblkdev_queue;

  myblkdisk->major = myblkdev_major;

  myblkdisk->first_minor = 0;

  sprintf(myblkdisk->disk_name, "myblkdev");

  /* Add the gendisk to the block I/O subsystem */

  add_disk(myblkdisk);

  return 0;

}

/* Exit */

static void __exit 

myblkdev_exit(void)
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{

  /* Invalidate partitioning information and perform cleanup */

  del_gendisk(myblkdisk);

  /* Drop references to the gendisk so that it can be freed */

  put_disk(myblkdisk);

  /* Dissociate the driver from the request_queue. Internally calls 

     elevator_exit() */

  blk_cleanup_queue(myblkdev_queue);

  /* Unregister the block device */

  unregister_blkdev(myblkdev_major, "myblkdev");

}

module_init(myblkdev_init);

module_exit(myblkdev_exit);

MODULE_LICENSE("GPL");

Block Device Operations

Let’s    next take a look at the main methods contained in a block driver’s block_
device_operations.

A block driver’s  open() method is called during operations such as mounting a 
fi lesystem residing on the media or performing a fi lesystem check (fsck). Many of the 
tasks accomplished during open() are hardware-dependent. The CD-ROM driver, 
for example, locks the drive door. The SCSI driver checks whether the device has set 
a write-protect tab, and, if so, fails if a write-enabled open is requested. If the device 
is removable, open() invokes the service routine check_disk_change() to check 
whether the media has changed.

If your driver needs to support specifi c commands, implement support for it using 
the   ioctl() method. A fl oppy driver, for example, supports a command to eject the 
media.

The media_changed() method checks whether the storage media has changed, 
so this is not relevant for fi xed devices such as myblkdev. The SCSI disk driver’s 
media_changed() method, for example, detects whether an inserted USB pen drive 
has changed.



The sole block device operation supported by myblkdev is the  ioctl() method, 
myblkdev_ioctl(). The block layer itself handles generic ioctls and invokes the 
driver’s ioctl() method only to handle device-specifi c commands. In Listing 14.2, 
myblkdev_ioctl() implements the   GET_DEVICE_ID command that elicits a device 
ID from the controller. The command is issued via the COMMAND_REGISTER, and the 
ID data is obtained from the DATA_REGISTER.

LISTING 14.2 Block Device Operations

#define GET_DEVICE_ID  0xAA00   /* Ioctl command definition */

/* The ioctl operation */

static int 

myblkdev_ioctl (struct inode *inode, struct file *file, 

                unsigned int cmd, unsigned long arg)

{

  unsigned char status;

  switch (cmd) {

  case GET_DEVICE_ID:

    outb(GET_IDENTITY_CMD, COMMAND_REGISTER);

    /* Wait as long as the controller is busy */

    while ((status = inb(STATUS_REGISTER)) & BUSY_STATUS);

    /* Obtain ID and return it to user space */

    return put_user(inb(DATA_REGISTER), (long __user *)arg);

  default:

    return -EINVAL;

  }

}

/* Block device operations */

static struct block_device_operations myblkdev_fops = {

  .owner   = THIS_MODULE,      /* Owner of this structure */

  .ioctl   = myblkdev_ioctl,

  /* The following operations are not implemented for our example

     storage controller: open(), release(), unlocked_ioctl(), 

     compat_ioctl(), direct_access(), getgeo(), revalidate_disk(), and 

     media_changed() */

};
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Disk Access

As    mentioned previously, block drivers perform disk access operations using a  request()
method. The block I/O subsystem invokes a driver’s request() method whenever it 
desires to process requests waiting in the driver’s request_queue. The request()
method does not run in the context of the user process requesting the data transfer, 
however. The address of the associated request_queue is passed as an argument to 
the request() method.

As you saw earlier, the kernel holds a request lock before calling the request()
method. This is to protect the associated request queue from concurrent access. Because 
of this, if your request() method has to call any functions that may go to sleep, it has 
to drop the lock before doing so and reacquire it before returning.

Listing 14.3 contains our driver’s request method, myblkdev_request(). This 
function uses the services of  elv_next_request() to obtain the next request from 
the request_queue. If the queue contains no more pending requests, elv_next_
request() returns NULL. elv_next_request() is named so because, as you learned 
previously, I/O scheduling algorithms are variations of the basic modus operandi 
adopted by elevators to service requests. After handling a request, the driver asks the 
block layer to end I/O on that request by calling end_request(). You can specify 
success or an error code using the second argument to end_request().

Requests collected from the request_queue contain the starting sector from 
which data access is requested (req->sector in Listing 14.3), the number of sec-
tors on which I/O needs to be performed (req->nr_sectors), the buffer that con-
tains the data to be transferred (req->buffer), and the direction of data movement 
(rq_data_dir(req)). As shown in Listing 14.3, myblkdev_request() performs 
the required register programming with the help of these parameters.

LISTING 14.3 The Request Function

#define READ_SECTOR_CMD           1 

#define WRITE_SECTOR_CMD          2

#define GET_IDENTITY_CMD          3

#define BUSY_STATUS               0x10

#define SECTOR_NUMBER_REGISTER    0x20000000

#define SECTOR_COUNT_REGISTER     0x20000001



#define COMMAND_REGISTER          0x20000002

#define STATUS_REGISTER           0x20000003

#define DATA_REGISTER             0x20000004

/* Request method */

static void

myblkdev_request(struct request_queue *rq)

{

  struct request *req;

  unsigned char status;

  int i, good = 0;

  /* Loop through the requests waiting in line */

  while ((req = elv_next_request(rq)) != NULL) {

    /* Program the start sector and the number of sectors */

    outb(req->sector, SECTOR_NUMBER_REGISTER);

    outb(req->nr_sectors, SECTOR_COUNT_REGISTER);

   /* We are interested only in filesystem requests. A SCSI command 

      is another possible type of request. For the full list, look 

      at the enumeration of rq_cmd_type_bits in

include/linux/blkdev.h */

    if (blk_fs_request(req)) { 

      switch(rq_data_dir(req)) {

      case READ: 

        /* Issue Read Sector Command */         

        outb(READ_SECTOR_CMD, COMMAND_REGISTER);

        /* Traverse all requested sectors, byte by byte */ 

        for (i = 0; i < 512*req->nr_sectors; i++) {

          /* Wait until the disk is ready. Busy duration should be 

             in the order of microseconds. Sitting in a tight loop 

             for simplicity; more intelligence required in the real 

             world */

          while ((status = inb(STATUS_REGISTER)) & BUSY_STATUS);

     /* Read data from disk to the buffer associated with the

      request */    

   req->buffer[i] = inb(DATA_REGISTER);

        }

        good = 1;

        break;

      case WRITE:
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        /* Issue Write Sector Command */

        outb(WRITE_SECTOR_CMD, COMMAND_REGISTER);

        /* Traverse all requested sectors, byte by byte */

        for (i = 0; i < 512*req->nr_sectors; i++) {

          /* Wait until the disk is ready. Busy duration should be 

             in the order of microseconds. Sitting in a tight loop 

             for simplicity; more intelligence required in the real 

             world */

    while ((status = inb(STATUS_REGISTER)) & BUSY_STATUS);

          /* Write data to disk from the buffer associated with the

             request */

          outb(req->buffer[i], DATA_REGISTER);

        }

        good = 1;

        break;

      }

    }

    end_request(req, good);

  }

}

Advanced Topics

Unlike    our sample storage driver that transfers data byte by byte, performance-sensitive 
block drivers rely on DMA for data transfer. Consider, for example, the request()
method of the disk array driver for Compaq SMART2 controllers drivers/block/ 
cpqarray.c reproduced here from the 2.6.23.1 kernel sources:

static do_ida_request(struct request_queue *q)

{

  struct request *creq;

  struct scatterlist tmp_sg[SG_MAX];

  cmdlist_t *c;

  ctrl_info_t *h = q->queuedata;

  int seg;

  /* ... */

  creq = elv_next_request(q);



  /* ... */

  c->rq = creq;

  seg = blk_rq_map_sg(q, creq, tmp_sg);

  /* ... */

  for (i=0; i<seq; i++)

  {

    c->req.sg[i].size = tmp_sg[i].length;

    c->req.sg[i].addr = (__u32) pci_map_page(h->pci_dev,

                                             tmp_sg[i].page, 

                                             tmp_sg[i].offset, 

                                             tmp_sg[i].length, dir);

  }

  /* ... */

}

DMA operations work at bio level. As you saw earlier, I/O requests are made up of 
bios, each of which contains an array of bio_vecs, which in turn hold information 
about the constituent memory pages. Assuming that bio points to the bio structure 
associated with an I/O request, bio->bi_sector contains the starting sector from 
which data access is requested, bio_cur_sectors(bio) returns the number of sec-
tors on which I/O is to be performed, and bio_data_dir(bio) provides the direc-
tion of data transfer. The addresses of the physical pages associated with the data buffer 
are described by the array of bio_vecs pointed to by bio->bi_io_vec. To iterate 
over each bio in a request, you can use the rq_for_each_bio()macro. To further 
loop through each page segment in a bio, use bio_for_each_segment().

In the preceding code snippet,  blk_rq_map_sg() internally invokes rq_for_
each_bio() and bio_for_each_segment()to loop through all pages constituting 
the request and builds a scatter/gather list, tmp_sg. Streaming DMA mappings for 
each page in the created scatter/gather list is performed by pci_map_page().

Unlike our sample driver that busy-waits for requested operations to fi nish, the 
cpqarray driver implements an   interrupt handler do_ida_intr(), to receive alerts 
from the hardware upon completion of commands.

Some drivers, such as the ramdisk driver (drivers/block/rd.c) and the loopback 
driver (drivers/block/loop.c), work over virtual block devices that do not benefi t from 
the optimizing sort and merge operations on the request queue. Such drivers entirely 
bypass the request queue and directly obtain bios from the block layer using a 
make_request() function. So, instead of registering a request queue handler using 
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blk_init_queue(), drivers/block/rd.c supplies a make_request() routine using 
blk_queue_make_request() as follows:

static int __init rd_init(void)

{

  /* ... */

  blk_queue_make_request(rd_queue[i], &rd_make_request);

  /* ... */

}

static int rd_make_request(struct request_queue *q, struct bio *bio)

{

  /* ... */

}

Debugging

The     hdparm utility elicits various PATA/SATA disk parameters from the underlying 
kernel driver. To benchmark disk read speeds on a SATA drive, for example, do this:

bash> hdparm -T -t /dev/sda

/dev/sda:

 Timing cached reads: 2564 MB in 2.00 seconds = 1283.57 MB/sec

 Timing buffered disk reads: 132 MB in  3.03 seconds = 43.61 MB/sec

For the full capabilities of hdparm, read the man pages.
Self-Monitoring, Analysis, and Reporting Technology (SMART) is a system built in 

to many modern ATA and SCSI disks to monitor failures and perform self-tests. 
A user-space daemon named smartd collects the information gathered by SMART-
capable disks with the help of the underlying device driver. Look at the man pages of 
smartd, smartctl, and smartd.conf to learn how to obtain health status from SMART-
enabled disks.

If your distribution doesn’t prepackage hdparm and SMART tools, you may down-
load them from http://sourceforge.net/projects/hdparm/ and http://sourceforge.net/
projects/smartmontools/, respectively.

Files under /proc/ide/ contain information about IDE disk drives on your system. 
To obtain the geometry of the fi rst IDE disk, for example, look at the contents of 

http://sourceforge.net/projects/hdparm/
http://sourceforge.net/projects/smartmontools/
http://sourceforge.net/projects/smartmontools/


/proc/ide/ide0/hda/geometry. Information pertaining to SCSI devices is available under 
/proc/scsi/. You can gather disk partition information from /proc/partitions.

The sysfs directory of interest for IDE devices is /sys/bus/ide/ and for SCSI is /sys/
bus/scsi/. In addition, each block device active on the system owns a subdirectory under 
/sys/block/, which contains associated request queue parameters, constituent partition 
details, and state information.

Some kernel confi guration options are available that trigger the emission of debug 
output from the block subsystem. CONFIG_BLK_DEV_IO_TRACE provides the ability 
to trace the block layer. CONFIG_SCSI_CONSTANTS and CONFIG_SCSI_LOGGING turn 
on SCSI error reporting and logging, respectively.

The   linux-ide mailing list is the forum to discuss questions related to the Linux-
IDE subsystem. Subscribe to the linux-scsi mailing list and browse through its archives 
for discussions pertaining to the Linux-SCSI subsystem.

Looking at the Sources

Table 14.1   contains the location of kernel driver sources for various storage technolo-
gies. Take a look at Documentation/ide.txt, Documentation/scsi/*, and Documentation/
cdrom/ for information about associated storage drivers.

The top-level block/ directory contains I/O scheduling algorithms and the block 
core layer. Table 14.2 lists the source fi les in this directory that implement various I/O 
schedulers. Look at Documentation/block/ for related documentation.

Table 14.4 contains the main data structures used in this chapter and their location 
in the source tree. Table 14.5 lists the main kernel programming interfaces that you 
used in this chapter, along with the location of their defi nitions. 

TABLE 14.4  Summary  of Data Structures

 Data Structure Location Description

 gendisk include/linux/genhd.h Representation of a disk.

 request_queue include/linux/blkdev.h  The I/O request queue associated with a 
gendisk.

 request include/linux/blkdev.h  Each request in a request_queue is 
 described using this structure.

block_device_operations include/linux/fs.h  Block device driver methods. 

 bio include/linux/bio.h  Low-level description of block I/O 
operations.
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TABLE 14.5 Summary of Kernel  Programming Interfaces

Kernel Interface Location Description

register_blkdev() block/genhd.c  Registers a block driver with the kernel

unregister_blkdev() block/genhd.c  Unregisters a block driver from the kernel

alloc_disk() block/genhd.c  Allocates a gendisk

add_disk() block/genhd.c  Adds a populated gendisk to the kernel block 
layer

del_gendisk() fs/partitions/check.c  Frees a gendisk

blk_init_queue() block/ll_rw_blk.c  Allocates a request_queue and registers a 
request() function to process the requests in 
the queue

blk_cleanup_queue() block/ll_rw_blk.c Reverse of blk_init_queue()

blk_queue_make_request() block/ll_rw_blk.c  Registers a make_request() function, which 
bypasses the request queue and directly obtains 
requests from the block layer

rq_for_each_bio() include/linux/blkdev.h Iterates over each bio in a request

bio_for_each_segment() include/linux/bio.h  Loops through each page segment in a bio

blk_rq_map_sg() block/ll_rw_blk.c  Iterates through the bio segments constituting a 
request and builds a scatter/gather list

blk_queue_max_sectors() block/ll_rw_blk.c  Sets the maximum sectors for a request in the 
associated request queue

blk_queue_hardsect_size() block/ll_rw_blk.c  Sector size supported by the storage hardware.

set_capacity() include/linux/genhd.h  Sets the capacity of the storage media in terms of 
number of sectors

blk_fs_request() include/linux/blkdev.h  Checks whether a request obtained from the 
request queue is a filesystem request

elv_next_request() block/elevator.c  Obtains the next entry from the request queue

end_request() block/ll_rw_blk.c  Ends I/O on a request
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Connectivity    imparts intelligence. You rarely come across a computer sys-
tem today that does not support some form of networking. In this chap-

ter, let’s focus on device drivers for network interface cards (NICs) that carry 
Internet Protocol (IP) traffi c on a     local area network (LAN). Most of the chapter 
is bus agnostic, but wherever bus specifi cs are necessary, it assumes PCI. To 
give you a fl avor of other network technologies, we also touch on Asynchronous 
Transfer Mode (ATM). We end the chapter by pondering on performance and 
throughput.

NIC drivers are different from other driver classes in that they do not rely on 
/dev or /sys to communicate with user space. Rather, applications interact with 
a NIC driver via a network interface (for example, eth0 for the first Ethernet 
interface) that abstracts an underlying protocol stack.

Driver Data Structures

When  you write a device driver for a NIC, you have to operate on three classes of 
data structures:

 1. Structures that form the building blocks of the network protocol stack. The 
socket buffer or struct sk_buff defined in include/linux/sk_buff.h is the 
key structure used by the kernel’s TCP/IP stack.

 2. Structures that define the interface between the NIC driver and the protocol 
stack. struct net_device defined in include/linux/netdevice.h is the core 
structure that constitutes this interface.

 3. Structures related to the I/O bus. PCI and its derivatives are common buses 
used by today’s NICs.

We take a detailed look at socket buffers and the net_device interface in the next 
two sections. We covered PCI data structures in Chapter 10, “Peripheral Compo-
nent Interconnect,” so we won’t revisit them here.



Socket Buffers

sk_buffs       provide effi cient buffer handling and fl ow-control mechanisms to Linux 
networking layers. Like DMA descriptors that contain metadata on DMA buffers, 
sk_buffs hold control information describing attached memory buffers that carry 
network packets (see Figure 15.1). sk_buffs are enormous structures having dozens 
of elements, but in this chapter we confi ne ourselves to those that interest the network 
device driver writer. An sk_buff links itself to its associated packet buffer using fi ve 
main fi elds:

 • head,      which points to the start of the packet

 • data, which points to the start of packet payload

 • tail, which points to the end of packet payload

 • end, which points to the end of the packet

 • len, the amount of data that the packet contains

Assuming that skb points to an sk_buff, skb->head, skb->data, skb->tail,
and skb->end slide over the associated packet buffer as the packet traverses the 
protocol stack in either direction. skb->data, for example, points to the header 
of the protocol that is currently processing the packet. When a packet reaches the 
IP layer via the receive path, skb->data points to the IP header; when the packet 
passes on to TCP, however, skb->data moves to the start of the TCP header. And as 
the packet drives through various protocols adding or discarding header data, skb-
>len gets updated, too. sk_buffs also contain pointers other than the four major 
ones previously mentioned. skb->nh, for example, remembers the position of the 
network protocol header irrespective of the current position of skb->data.

To illustrate how a NIC driver works with sk_buffs, Figure 15.1 shows data 
transitions on the receive data path. For convenience of illustration, the fi gure sim-
plistically assumes that the operations shown are executed in sequence. However, for 
operational effi ciency in the real world, the fi rst two steps (dev_alloc_skb() and 
skb_reserve()) are performed while initially preallocating a ring of receive buffers; 
the third step is accomplished by the NIC hardware as it directly DMA’s the received 
packet into a preallocated sk_buff; and the fi nal two steps ( skb_put() and netif_

rx()) are executed from the receive interrupt handler.
To create an sk_buff to hold a received packet, Figure 15.1 uses  dev_alloc_

skb(). This is an interrupt-safe routine that allocates memory for an sk_buff and 
associates it with a packet payload buffer.  dev_kfree_skb() accomplishes the reverse 
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of dev_alloc_skb(). Figure 15.1 next calls  skb_reserve() to add a 2-byte pad-
ding between the start of the packet buffer and the beginning of the payload. This 
starts the IP header at a performance-friendly 16-byte boundary because the preceding 
Ethernet headers are 14 bytes long. The rest of the code statements in Figure 15.1 fi ll 
the payload buffer with the received packet and move skb->data, skb->tail, and 
skb->len to refl ect this operation.

There are more sk_buff access routines relevant to some NIC drivers.  skb_
clone(), for example, creates a copy of a supplied skb_buff without copying the 
contents of the associated packet buffer. Look inside net/core/skbuff.c for the full list of 
sk_buff library functions.

struct sk_buff  *skb;
/* ... */

skb = dev_alloc_skb(length +
                NET_IP_ALIGN);

skb_reserve(skb, NET_IP_ALIGN);

mempcy(skb->data, dma_buffer, 
       length)

skb_put(skb, length);

netif_rx(skb);

length +
 NET_IP_ALIGN

sk_buff

skb

data, 
head, 
tail

Data Buffer

     
NET_IP_ALIGN

  length

sk_buff

skb

data, 
tail

data

head

data, 
tail

head

head

Data Buffer

  (PACKET DATA)
  length

sk_buff

skb

Data Buffer

NET_IP_ALIGN

sk_buff

skb

  (PACKET DATA)
  length

Data Buffer

NET_IP_ALIGN

TCP
IP

Protocol
Stack

skb

NIC Driver

tail

FIGURE 15.1 sk_buff operations.



The Net Device Interface

NIC drivers use a standard interface to interact with the TCP/IP stack. The    net_
device structure, which is even more gigantic than the sk_buff structure, defi nes 
this communication interface. To prepare ourselves for exploring the innards of the 
net_device structure, let’s fi rst follow the steps traced by a NIC driver during initial-
ization. Refer to init_mycard() in Listing 15.1 as we move along:

 • The driver allocates a net_device structure using  alloc_netdev(). More 
commonly, it uses a suitable wrapper around alloc_netdev(). An Ethernet 
NIC driver, for example, calls  alloc_etherdev(). A WiFi driver (discussed in 
the next chapter) invokes  alloc_ieee80211(), and an IrDa driver calls upon 
alloc_irdadev(). All these functions take the size of a private data area as 
argument and create this area in addition to the net_device itself:

struct net_device  *netdev;

struct priv_struct *mycard_priv;

netdev      = alloc_etherdev(sizeof(struct 

                             priv_struct));

mycard_priv = netdev->priv; /* Private area created 

                               by alloc_etherdev() */

 • Next, the driver populates various fields in the net_device that it allo-
cated and registers the populated net_device with the network layer using 
register_netdev(netdev).

 • The driver reads the NIC’s    Media Access Control (MAC) address from an accom-
panying EEPROM and configures Wake-On-LAN (WOL) if required. Ethernet 
controllers usually have a companion nonvolatile EEPROM to hold information 
such as their MAC address and WOL pattern, as shown in Figure 15.2. The 
former is a unique 48-bit address that is globally assigned. The latter is a magic 
sequence; if found in received data, it rouses the NIC if it’s in suspend mode.

 • If the NIC needs on-card fi rmware to operate, the driver downloads it using 
request_firmware(), as discussed in the section “Microcode Download” in 
Chapter 4, “Laying the Groundwork.”

Let’s now look at the methods that defi ne the net_device interface. We categorize 
them under six heads for simplicity. Wherever relevant, this section points you to 
the example NIC driver developed in Listing 15.1 of the section “Device Example: 
 Ethernet NIC.”
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Activation

The   net_device interface requires conventional methods such as    open(), close(),
and ioctl(). The kernel opens an interface when you activate it using a tool such as 
ifconfi g:

bash> ifconfig eth0 up

open() sets up receive and transmit DMA descriptors and other driver data struc-
tures. It also registers the NIC’s interrupt handler by calling request_irq(). The 
net_device structure is passed as the devid argument to  request_irq() so that 
the interrupt handler gets direct access to the associated net_device. (See mycard_
open() and mycard_interrupt() in Listing 15.1 to fi nd out how this is done.)

The kernel calls close() when you pull down an active network interface. This 
accomplishes the reverse of open().

Data Transfer

Data     transfer methods form the crux of the net_device interface. In the transmit 
path, the driver supplies a method called  hard_start_xmit, which the protocol layer 
invokes to pass packets down for onward transmission:

netdev->hard_start_xmit = &mycard_xmit_frame; /* Transmit Method. See Listing 15.1 */

Until recently, network drivers didn’t provide a  net_device method for collecting 
received data. Instead, they asynchronously interrupted the protocol layer with packet 
payload. This old interface has, however, given way to a   New API (NAPI) that is a mix-
ture of an interrupt-driven driver push and a poll-driver protocol pull. A NAPI-aware 
driver thus needs to supply a  poll() method and an associated weight that controls 
polling fairness:

netdev->poll   = &mycard_poll; /* Poll Method. See Listing 15.1 */

netdev->weight = 64;

We elaborate on data-transfer methods in the section “Talking with Protocol Layers.”



Watchdog

The    net_device interface provides a hook to return an unresponsive NIC to opera-
tional state. If the protocol layer senses no transmissions for a predetermined amount of 
time, it assumes that the NIC has hung and invokes a driver-supplied recovery method 
to reset the card. The driver sets the watchdog timeout through netdev->watchdog_
timeo and registers the address of the recovery function via netdev->tx_timeout:

netdev->tx_timeout = &mycard_timeout; /* Method to reset the NIC */

netdev->watchdog_timeo = 8*HZ;        /* Reset if no activity 

                                         detected for 8 seconds */

Because the recovery method executes in timer-interrupt context, it usually schedules 
a task outside of that context to reset the NIC.

Statistics

To enable    user land to collect network statistics, the NIC driver populates a   net_
device_stats structure and provides a  get_stats() method to retrieve it. Essen-
tially the driver does the following:

 1. Updates different types of statistics from relevant entry points:

#include <linux/netdevice.h>

struct net_device_stats mycard_stats;

   

static irqreturn_t 

mycard_interrupt(int irq, void *dev_id) 

{

  /* ... */

  if (packet_received_without_errors) {

    mycard_stats.rx_packets++;   /* One more received 

                                    packet */

  }

  /* ... */

}

 2. Implements the get_stats() method to retrieve the statistics:

static struct net_device_stats 

*mycard_get_stats(struct net_device *netdev)

{
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   /* House keeping */

   /* ... */

   return(&mycard_stats);

}

 3. Supplies the retrieve method to higher layers:

netdev->get_stats = &mycard_get_stats; 

/* ... */

register_netdev(netdev);

To collect statistics from your NIC, trigger invocation of  mycard_get_stats() by 
executing an appropriate user mode command. For example, to fi nd the number of 
packets received through the eth0 interface, do this:

bash> cat /sys/class/net/eth0/statistics/rx_packets 

124664

WiFi drivers need to track several parameters not relevant to conventional NICs, so 
they implement a statistic collection method called get_wireless_stats() in addi-
tion to get_stats(). The mechanism for registering get_wireless_stats() for 
the benefi t of WiFi-aware user-space utilities is discussed in the section “WiFi” in the 
next chapter.

Configuration

NIC     drivers need to support user-space tools that are responsible for setting and get-
ting device parameters. Ethtool  confi gures parameters for Ethernet NICs. To support 
ethtool, the underlying NIC driver does the following:

 1. Populates an  ethtool_ops structure, defined in include/linux/ethtool.h with 
prescribed entry points:

#include <linux/ethtool.h> 

/* Ethtool_ops methods */

struct ethtool_ops mycard_ethtool_ops = {

  /* ... */

  .get_eeprom = mycard_get_eeprom, /* Dump EEPROM 

                                      contents */

  /* ... */

};



 2. Implements the methods that are part of ethtool_ops:

static int

mycard_get_eeprom(struct net_device *netdev,

                  struct ethtool_eeprom *eeprom, 

                  uint8_t *bytes)

{

  /* Access the accompanying EEPROM and pull out data */

  /* ... */

}

 3. Exports the address of its ethtool_ops:

netdev->ethtool_ops = &mycard_ethtool_ops; 

/* ... */

register_netdev(netdev);

After these are done, ethtool can operate over your Ethernet NIC. To dump EEPROM 
contents using ethtool, do this:

bash> ethtool -e eth0

Offset          Values

------          ------

0x0000          00 0d 60 79 32 0a 00 0b ff ff 10 20 ff ff ff ff

...

Ethtool comes packaged with some distributions; but if you don’t have it, download 
it from http://sourceforge.net/projects/gkernel/. Refer to the man page for its full 
capabilities.

There are more confi guration-related methods that a NIC driver provides to higher 
layers. An example is the method to change the    MTU size of the network interface. To 
support this, supply the relevant method to net_device:

netdev->change_mtu = &mycard_change_mtu;

/* ... */

register_netdev(netdev);

The kernel invokes  mycard_change_mtu() when you execute a suitable user com-
mand to alter the MTU of your card:

bash> echo 1500 > /sys/class/net/eth0/mtu
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Bus Specific

Next  come bus-specifi c details such as the start address and size of the NIC’s on-card 
memory. For a PCI NIC driver, this confi guration will look like this:

netdev->mem_start = pci_resource_start(pdev, 0);

netdev->mem_end   = netdev->mem_start + pci_resource_len(pdev, 0);

We discussed PCI resource functions in Chapter 10.

Talking with Protocol Layers

In the preceding section, you discovered the driver methods demanded by the net_
device interface. Let’s now take a closer look at how network data fl ows over this 
interface.

Receive Path

You    learned in Chapter 4 that softirqs are bottom half mechanisms used by perfor-
mance-sensitive subsystems. NIC drivers use NET_RX_SOFTIRQ to offl oad the work 
of posting received data packets to protocol layers. The driver achieves this by calling 
netif_rx() from its receive interrupt handler:

netif_rx(skb);   /* struct sk_buff *skb */

 NAPI, alluded to earlier, improves this conventional interrupt-driven receive algo-
rithm to lower demands on CPU utilization. When network load is heavy, the system 
might get bogged down by the large number of interrupts that it takes. NAPI’s strategy 
is to use a polled mode when network activity is heavy but fall back to interrupt mode 
when the traffi c gets light. NAPI-aware drivers switch between interrupt and polled 
modes based on network load. This is done as follows:

 1. In interrupt mode, the interrupt handler posts received packets to protocol layers 
by scheduling NET_RX_SOFTIRQ. It then disables NIC interrupts and switches 
to polled mode by adding the device to a poll list:

if (netif_rx_schedule_prep(netdev)) /* Housekeeping */ {

  /* Disable NIC interrupt */

  disable_nic_interrupt();

      



  /* Post the packet to the protocol layer and

     add the device to the poll list */

  __netif_rx_schedule(netdev);

}

 2. The driver provides a  poll() method via its net_device structure.

 3. In the polled mode, the driver’s poll() method processes packets in the ingress 
queue. When the queue becomes empty, the driver re-enables interrupts and 
switches back to interrupt mode by calling  netif_rx_complete().

Look at mycard_interrupt(), init_mycard(), and mycard_poll() in List-
ing 15.1 to see NAPI in action.

Transmit Path

For    data transmission, the interaction between protocol layers and the NIC driver is 
straightforward. The protocol stack invokes the driver’s  hard_start_xmit() method 
with the outgoing sk_buff as argument. The driver gets the packet out of the door by 
DMA-ing packet data to the NIC. DMA and the management of related data struc-
tures for PCI NIC drivers were discussed in Chapter 10.

The driver programs the NIC to interrupt the processor after it fi nishes transmit-
ting a predetermined number of packets. Only when a transmit-complete interrupt 
occurs signaling completion of a transmit operation can the driver reclaim or free 
resources such as DMA descriptors, DMA buffers, and sk_buffs associated with the 
transmitted packet.

Flow Control

The    driver conveys its readiness or reluctance to accept protocol data by, respectively, 
calling netif_start_queue() and netif_stop_queue().

During device open(), the NIC driver calls netif_start_queue() to ask the 
protocol layer to start adding transmit packets to the egress queue. During normal 
operation, however, the driver might require egress queuing to stop on occasion. 
Examples include the time window when the driver is replenishing data structures, or 
when it’s closing the device. Throttling the downstream fl ow is accomplished by calling 
netif_stop_queue(). To request the networking stack to restart egress queuing, say 
when there are suffi cient free buffers, the NIC driver invokes  netif_wake_queue().
To check the current fl ow-control state, toss a call to  netif_queue_stopped().
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Buffer Management and Concurrency Control

A     high-performance NIC driver is a complex piece of software requiring intricate data 
structure management. As discussed in the section “Data Transfer” in Chapter 10, a 
NIC driver maintains linked lists (or “rings”) of transmit and receive DMA descrip-
tors, and implements free and in-use pools for buffer management. The driver typi-
cally implements a multipronged strategy to maintain buffer levels: preallocate a ring 
of DMA descriptors and associated sk_buffs during device open, replenish free pools 
by allocating new memory if available buffers dip below a predetermined watermark, 
and reclaim used buffers into the free pool when the NIC generates transmit-complete 
and receive interrupts. 

Each element in the NIC driver’s receive ring, for example, is populated as 
follows:

 /* Allocate an sk_buff and the associated data buffer. 

    See Figure 15.1 */

 skb = dev_alloc_skb(MAX_NIC_PACKET_SIZE);

 /* Align the data pointer */

   skb_reserve(skb, NET_IP_ALIGN);

 /* DMA map for NIC access. The following invocation assumes a PCI

    NIC. pdev is a pointer to the associated pci_dev structure */

 pci_map_single(pdev, skb->data, MAX_NIC_PACKET_SIZE, 

                PCI_DMA_FROMDEVICE);

 /* Create a descriptor containing this sk_buff and add it 

    to the RX ring */

 /* ... */

During reception, the NIC directly DMA’s data to an sk_buff in the preceding preal-
located ring and interrupts the processor. The receive interrupt handler, in turn, passes 
the packet to higher protocol layers. Developing ring data structures will make this 
discussion as well as the example driver in the next section loaded, so refer to the 
sources of the Intel PRO/1000 driver in the drivers/net/e1000/ directory for a complete 
illustration.

Concurrent access protection goes hand-in-hand with managing such complex data 
structures in the face of multiple execution threads such as transmit, receive, transmit-
complete interrupts, receive interrupts, and NAPI polling. We discussed several con-
currency control techniques in Chapter 2, “A Peek Inside the Kernel.”



Device Example: Ethernet NIC

Now    that you have the background, it’s time to write a NIC driver by gluing the pieces 
discussed so far. Listing 15.1 implements a skeletal Ethernet NIC driver. It only imple-
ments the main net_device methods. For help in developing the rest of the methods, 
refer to the e1000 driver mentioned earlier. Listing 15.1 is generally independent of 
the underlying I/O bus but is slightly tilted to PCI. If you are writing a PCI NIC 
driver, you have to blend Listing 15.1 with the example PCI driver implemented in 
Chapter 10.

LISTING 15.1 An Ethernet NIC Driver

#include <linux/netdevice.h>

#include <linux/etherdevice.h>

#include <linux/skbuff.h>

#include <linux/ethtool.h> 

struct net_device_stats mycard_stats;   /* Statistics */

/* Fill ethtool_ops methods from a suitable place in the driver */

struct ethtool_ops mycard_ethtool_ops = {

  /* ... */

  .get_eeprom = mycard_get_eeprom,      /* Dump EEPROM contents */

  /* ... */

};

/* Initialize/probe the card. For PCI cards, this is invoked

   from (or is itself) the probe() method. In that case, the 

   function is declared as:

   static struct net_device *init_mycard(struct pci_dev *pdev, const 

                                         struct pci_device_id *id) 

*/

static struct net_device * 

init_mycard()

{

  struct net_device *netdev;

  struct priv_struct mycard_priv;

  /* ... */ 

  netdev = alloc_etherdev(sizeof(struct priv_struct));
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  /* Common methods */

  netdev->open = &mycard_open;

  netdev->stop = &mycard_close;

  netdev->do_ioctl = &mycard_ioctl;

  /* Data transfer */

  netdev->hard_start_xmit = &mycard_xmit_frame; /* Transmit */

  netdev->poll = &mycard_poll;                  /* Receive - NAPI */

  netdev->weight = 64;                          /* Fairness */

  /* Watchdog */

  netdev->tx_timeout = &mycard_timeout;      /* Recovery function */

  netdev->watchdog_timeo = 8*HZ;             /* 8-second timeout */

  /* Statistics and configuration */

  netdev->get_stats = &mycard_get_stats;     /* Statistics support */

  netdev->ethtool_ops = &mycard_ethtool_ops; /* Ethtool support */

  netdev->set_mac_address = &mycard_set_mac; /* Change MAC */

  netdev->change_mtu = &mycard_change_mtu;   /* Alter MTU */

  strncpy(netdev->name, pci_name(pdev), 

          sizeof(netdev->name) - 1);         /* Name (for PCI) */

  /* Bus-specific parameters. For a PCI NIC, it looks as follows */

  netdev->mem_start = pci_resource_start(pdev, 0);

  netdev->mem_end   = netdev->mem_start + pci_resource_len(pdev, 0);

  /* Register the interface */

  register_netdev(netdev); 

  /* ... */

  /* Get MAC address from attached EEPROM */

  /* ... */

  /* Download microcode if needed */

  /* ... */

}

/* The interrupt handler */

static irqreturn_t 

mycard_interrupt(int irq, void *dev_id) 



{

  struct net_device *netdev = dev_id;

  struct sk_buff *skb;

  unsigned int length;

  /* ... */

  if (receive_interrupt) {

    /* We were interrupted due to packet reception. At this point, 

       the NIC has already DMA'ed received data to an sk_buff that 

       was pre-allocated and mapped during device open. Obtain the 

       address of the sk_buff depending on your data structure 

       design and assign it to 'skb'. 'length' is similarly obtained

       from the NIC by reading the descriptor used to DMA data from 

       the card. Now, skb->data contains the received data. */

    /* ... */

    /* For PCI cards, perform a pci_unmap_single() on the

       received buffer in order to allow the CPU to access it */

    /* ... */

    /* Allow the data go to the tail of the packet by moving 

       skb->tail down by length bytes and increasing

       skb->len correspondingly  */

    skb_put(skb, length)

    /* Pass the packet to the TCP/IP stack */

#if !defined (USE_NAPI)  /* Do it the old way */

    netif_rx(skb);

#else                    /* Do it the NAPI way */

    if (netif_rx_schedule_prep(netdev))) {

      /* Disable NIC interrupt. Implementation not shown. */

      disable_nic_interrupt();

      

      /* Post the packet to the protocol layer and

         add the device to the poll list */

      __netif_rx_schedule(netdev);

    }

#endif

  } else if (tx_complete_interrupt) {

    /* Transmit Complete Interrupt */

    /* ... */
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    /* Unmap and free transmit resources such as 

       DMA descriptors and buffers. Free sk_buffs or

       reclaim them into a free pool */

    /* ... */

  }

}

/* Driver open */

static int 

mycard_open(struct net_device *netdev) 

{

  /* ... */

  /* Request irq */

  request_irq(irq, mycard_interrupt, IRQF_SHARED, 

              netdev->name, dev);

  /* Allocate Descriptor rings */

  /* See the section, 

     "Buffer Management and Concurrency Control" */

  /* ... */

  /* Provide free descriptor addresses to the card */

  /* ... */

  /* Convey your readiness to accept data from the

     networking stack */

   netif_start_queue(netdev);

  /* ... */

}

/* Driver close */

static int 

mycard_close(struct net_device *netdev) 

{

  /* ... */

  /* Ask the networking stack to stop sending down data */

   netif_stop_queue(netdev);

  /* ... */

}



/* Called when the device is unplugged or when the module is

   released. For PCI cards, this is invoked from (or is itself) 

   the remove() method. In that case, the function is declared as:

   static void __devexit mycard_remove(struct pci_dev *pdev)

*/

static void __devexit 

mycard_remove()

{

  struct net_device *netdev;

  /* ... */

  /* For a PCI card, obtain the associated netdev as follows, 

     assuming that the probe() method performed a corresponding 

     pci_set_drvdata(pdev, netdev) after allocating the netdev */

  netdev = pci_get_drvdata(pdev); /* 

  unregister_netdev(netdev);  /* Reverse of register_netdev() */

  /* ... */

  free_netdev(netdev);        /* Reverse of alloc_netdev() */

  /* ... */

}

/* Suspend method. For PCI devices, this is part of

   the pci_driver structure discussed in Chapter 10 */

static int 

mycard_suspend(struct pci_dev *pdev, pm_message_t state)

{

  /* ... */

  netif_device_detach(netdev);

  /* ... */

}

/* Resume method. For PCI devices, this is part of

   the pci_driver structure discussed in Chapter 10 */

static int 

mycard_resume(struct pci_dev *pdev)

{
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  /* ... */

  netif_device_attach(netdev);

  /* ... */

}

/* Get statistics */

static struct net_device_stats *

mycard_get_stats(struct net_device *netdev)

{

  /* House keeping */

  /* ... */

  return(&mycard_stats);

}

/* Dump EEPROM contents. This is an ethtool_ops operation */

static int

mycard_get_eeprom(struct net_device *netdev,

                  struct ethtool_eeprom *eeprom, uint8_t *bytes)

{

  /* Read data from the accompanying EEPROM */

  /* ... */

}

/* Poll method */

static int

mycard_poll(struct net_device *netdev, int *budget)

{

   /* Post packets to the protocol layer using 

      netif_receive_skb() */

   /* ... */

   if (no_more_ingress_packets()){

     /* Remove the device from the polled list */

     netif_rx_complete(netdev);

     /* Fall back to interrupt mode. Implementation not shown */

     enable_nic_interrupt();

     return 0;

  }

}



/* Transmit method */

static int 

mycard_xmit_frame(struct sk_buff *skb, struct net_device *netdev)

{

  /* DMA the transmit packet from the associated sk_buff 

     to card memory */

  /* ... */

  /* Manage buffers */

  /* ... */

}

Ethernet PHY 

Ethernet controllers implement the MAC layer and have to be used in tandem with a Physical 
layer (PHY) transceiver.    The former corresponds to the datalink layer of the Open Systems Inter-
connect (OSI) model, while the latter implements the physical layer. Several SoCs have built-in 
MACs that connect to external PHYs. The   Media Independent Interface (MII) is a standard 
interface that connects a Fast Ethernet MAC to a PHY. The Ethernet device driver communicates 
with the PHY over MII to confi gure parameters such as PHY ID, line speed, duplex mode, and 
auto negotiation. Look at include/linux/mii.h for MII register defi nitions.

ISA Network Drivers

Let’s    now take a peek at an ISA NIC. The CS8900   is a 10Mbps Ethernet controller 
chip from Crystal Semiconductor (now Cirrus Logic). This chip is commonly used to 
Ethernet-enable embedded devices, especially for debug purposes. Figure 15.2 shows 
a connection diagram surrounding a CS8900. Depending on the processor on your 
board and the chip-select used to drive the chip, the CS8900 registers map to different 
regions in the CPU’s I/O address space. The device driver for this controller is an ISA-
type driver (look at the section “ISA and MCA” in Chapter 20, “More Devices and 
Drivers”) that probes candidate address regions to detect the controller’s presence. The 
ISA probe method elicits the controller’s I/O base address by looking for a signature 
such as the chip ID.

Look at drivers/net/cs89x0.c for the source code of the CS8900 driver.  cs89x0_
probe1() probes I/O address ranges to sense a CS8900. It then reads the current con-
fi guration of the chip. During this step, it accesses the CS8900’s companion EEPROM 
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and gleans the controller’s MAC address. Like the driver in Listing 15.1, cs89x0.c is 
also built using netif_*() and skb_*() interface routines.

Some platforms that use the CS8900 allow DMA. ISA devices, unlike PCI cards, 
do not have DMA mastering capabilities, so they need an external DMA controller to 
transfer data.

PHY
Transceiver

EEPROM

To CPU
Data lines

RXD/TXD

EEDATA

D0 to D15A0 to A19

CS8900 Ethernet
MAC Controller

Interrupt

Chip Select
CPU

GPIO pins

To CPU
Addr lines

RJ45
Jack

FIGURE 15.2 Connection diagram surrounding a CS8900 Ethernet controller.

Asynchronous Transfer Mode

ATM    is a high-speed, connection-oriented, back-bone technology. ATM guarantees 
high   quality of service (QoS) and low latencies, so it’s used for carrying audio and video 
traffi c in addition to data. 

Here’s a quick summary of the ATM protocol: ATM communication takes place 
in units of 53-byte cells. Each cell begins with a 5-byte header that carries a   virtual 
path identifi er (VPI) and a   virtual circuit identifi er (VCI). ATM connections are either 
switched virtual circuits (SVCs) or   permanent virtual circuits (PVCs). During SVC estab-
lishment, VPI/VCI pairs are confi gured in intervening ATM switches to route incom-
ing cells to appropriate egress ports. For PVCs, the VPI/VCI pairs are permanently 
confi gured in the ATM switches and not set up and torn down for each connection.

There are three ways you can run TCP/IP over ATM, all of which are supported by 
Linux-ATM:

 1. Classical IP over ATM (CLIP) as specified in RFC1 1577.

 2. Emulating a LAN over an ATM network. This is called   LAN Emulation (LANE).

1 Request For Comments (RFC) are documents that specify networking standards.



 3.   Multi Protocol over ATM (MPoA). This is a routing technique that improves 
performance.

Linux-ATM is an experimental collection of kernel drivers, user-space utilities, and 
daemons. You will fi nd ATM drivers and protocols under drivers/atm/ and net/atm/,
respectively, in the source tree. http://linux-atm.sourceforge.net/ hosts user-space pro-
grams required to use Linux-ATM. Linux also incorporates an ATM socket API con-
sisting of SVC sockets (AF_ATMSVC) and PVC sockets (AF_ATMPVC).

A protocol called   Multiprotocol Label Switching (MPLS) is replacing ATM. The 
Linux-MPLS project, hosted at http://mpls-linux.sourceforge.net/, is not yet part of 
the mainline kernel.

We look at some ATM-related throughput issues in the next section.

Network Throughput

Several     tools are available to benchmark network performance.  Netperf, available for 
free from www.netperf.org, can set up complex TCP/UDP connection scenarios. You 
can use scripts to control characteristics such as protocol parameters, number of simul-
taneous sessions, and size of data blocks. Benchmarking  is accomplished by comparing 
the resulting throughput with the maximum practical bandwidth that the networking 
technology yields. For example, a 155Mbps ATM adapter produces a maximum IP 
throughput of 135Mbps, taking into account the ATM cell header size, overheads due 
to the   ATM Adaptation Layer (AAL), and the occasional maintenance cells sent by the 
physical Synchronous Optical Networking (SONET) layer.

To obtain optimal throughput, you have to design your NIC driver for high per-
formance. In addition, you need an in-depth understanding of the network protocol 
that your driver ferries.

Driver Performance

 Let’s    take a look at some driver design issues that can affect the horsepower of your NIC:

 • Minimizing the number of instructions in the main data path is a key criterion 
while designing drivers for fast NICs. Consider a 1Gbps Ethernet adapter with 
1MB of on-board memory. At line rate, the card memory can hold up to 8 mil-
liseconds of received data. This directly translates to the maximum allowable 
instruction path length. Within this path length, incoming packets have to be 
reassembled, DMA-ed to memory, processed by the driver, protected from con-
current access, and delivered to higher layer protocols.

Network Throughput 459

www.netperf.org
http://linux-atm.sourceforge.net/
http://mpls-linux.sourceforge.net/


460 Chapter 15 Network Interface Cards

 • During   programmed I/O (PIO), data travels all the way from the device to the 
CPU, before it gets written to memory. Moreover, the CPU gets interrupted 
whenever the device needs to transfer data, and this contributes to latencies and 
context switch delays. DMAs do not suffer from these bottlenecks, but can turn 
out to be more expensive than PIOs if the data to be transferred is less than a 
threshold. This is because small DMAs have high relative overheads for build-
ing descriptors and flushing corresponding processor cache lines for data coher-
ency. A performance-sensitive device driver might use PIO for small packets 
and DMA for larger ones, after experimentally determining the threshold.

 • For PCI network cards having DMA mastering capability, you have to deter-
mine the optimal DMA burst size, which is the time for which the card controls 
the bus at one stretch. If the card bursts for a long duration, it may hog the bus 
and prevent the processor from keeping up with data DMA-ed previously. PCI 
drivers program the burst size via a register in the PCI configuration space. Nor-
mally the NIC’s burst size is programmed to be the same as the cache line size of 
the processor, which is the number of bytes that the processor reads from system 
memory each time there is a cache miss. In practice, however, you might need 
to connect a bus analyzer to determine the beneficial burst duration because fac-
tors such as the presence of a split bus (multiple bus types like ISA and PCI) on 
your system can influence the optimal value.

 • Many high-speed NICs offer the capability to offload the CPU-intensive com-
putation of TCP checksums from the protocol stack. Some support DMA 
scatter-gather that we visited in Chapter 10. The driver needs to leverage these 
capabilities to achieve the maximum practical bandwidth that the underlying 
network yields.

 • Sometimes, a driver optimization might create unexpected speed bumps if it’s 
not sensitive to the implementation details of higher protocols. Consider an 
NFS-mounted fi lesystem on a computer equipped with a high-speed NIC. 
Assume that the NIC driver takes only occasional transmit complete interrupts 
to minimize latencies, but that the NFS server implementation uses freeing of 
its transmit buffers as a fl ow-control mechanism. Because the driver frees NFS 
transmit buffers only during the sparsely generated transmit complete inter-
rupts, fi le copies over NFS crawl, even as Internet downloads zip along yielding 
maximum throughput.



Protocol Performance

Let’s      now dig into some protocol-specifi c characteristics that can boost or hurt net-
work throughput:

 • TCP window size can impact throughput. The window size provides a measure 
of the amount of data that can be transmitted before receiving an acknowl-
edgment. For fast NICs, a small window size might result in TCP sitting idle, 
waiting for acknowledgments of packets already transmitted. Even with a 
large window size, a small number of lost TCP packets can affect performance 
because lost frames can use up the window at line speeds. In the case of UDP, 
the window size is not relevant because it does not support acknowledgments. 
However, a small packet loss can spiral into a big rate drop due to the absence of 
flow-control mechanisms.

 • As the block size of application data written to TCP sockets increases, the num-
ber of buffers copied from user space to kernel space decreases. This lowers the 
demand on processor utilization and is good for performance. If the block size 
crosses the MTU corresponding to the network protocol, however, processor 
cycles get wasted on fragmentation. The desirable block size is thus the outgoing 
interface MTU, or the largest packet that can be sent without fragmentation 
through an IP path if Path MTU discovery mechanisms are in operation. While 
running IP over ATM, for example, because the ATM adaptation layer has a 
64K MTU, there is virtually no upper bound on block size. (RFC 1626 defaults 
this to 9180.) If you are running IP over ATM LANE, however, the block size 
should mirror the MTU size of the respective LAN technology being emulated. 
It should thus be 1500 for standard Ethernet, 8000 for jumbo Gigabit Ethernet, 
and 18K for 16Mbps Token Ring.

Looking at the Sources

The   drivers/net/ directory contains sources of various NIC drivers. Look inside driv-
ers/net/e1000/ for an example NIC driver. You will fi nd network protocol implemen-
tations in the net/ directory. sk_buff access routines are in net/core/skbuff.c. Library 
routines that aid the implementation of your driver’s net_device interface stay in 
net/core/dev.c and include/linux/netdevice.h.
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TUN/TAP Driver

The  TUN/TAP device driver drivers/net/tun.c, used for protocol tunneling, is an example of a 
combination of a virtual network driver and a pseudo char driver. The pseudo char device (/dev/
net/tun) acts as the underlying hardware for the virtual network interface (tunX), so instead of 
transmitting frames to a physical network, the  TUN network driver sends it to an application that 
is reading from /dev/net/tun. Similarly, instead of receiving data from a physical network, the TUN 
driver accepts it from an application writing to /dev/net/tun. Look at Documentation/networking/
tuntap.txt for more explanations and usage scenarios. Since both network and char portions of the 
driver do not have to deal with the complexities of hardware interaction, it serves as a very read-
able, albeit simplistic, driver example.

Files under /sys/class/net/ let you operate on NIC driver parameters. Use the nodes 
under /proc/sys/net/ to confi gure protocol-specifi c variables. To set the maximum TCP 
transmit window size, for example, echo the desired value to /proc/sys/net/core/wmem_
max. The /proc/net/ directory has a collection of system-specifi c network information. 
Examine /proc/net/dev for statistics on all NICs on your system and look at /proc/net/arp
for the ARP table.

Table 15.1 contains the main data structures used in this chapter and their location 
in the source tree. Table 15.2 lists the main kernel programming interfaces that you 
used in this chapter along with the location of their defi nitions.

TABLE 15.1  Summary of Data Structures

 Data Structure Location Description

sk_buff include/linux/skbuff.h sk_buffs provide efficient buffer handling and 
flow-control mechanisms to Linux networking 
layers.

net_device include/linux/netdevice.h  Interface between NIC drivers and the TCP/IP 
stack.

net_device_stats include/linux/netdevice.h  Statistics pertaining to a network device.

ethtool_ops include/linux/ethtool.h  Entry points to tie a NIC driver to the ethtool 
utility.



TABLE 15.2 Summary   of Kernel Programming Interfaces

Kernel Interface Location Description

alloc_netdev() net/core/dev.c Allocates a net_device

alloc_etherdev()
alloc_ieee80211()
alloc_irdadev()

net/ethernet/eth.c
net/ieee80211/ieee80211_module.c
net/irda/irda_device.c

Wrappers to alloc_netdev()

free_netdev() net/core/dev.c Reverse of alloc_netdev()

register_netdev() net/core/dev.c Registers a net_device

unregister_netdev() net/core/dev.c Unregisters a net_device

dev_alloc_skb() include/linux/skbuff.h Allocates memory for an 
sk_buff and associates it with 
a packet payload buffer

dev_kfree_skb() include/linux/skbuff.h
net/core/skbuff.c

Reverse of dev_alloc_skb()

skb_reserve() include/linux/skbuff.h Adds a padding between the 
start of a packet buffer and the 
beginning of payload

skb_clone() net/core/skbuff.c Creates a copy of a supplied 
sk_buff without copying the 
contents of the associated packet 
buffer

skb_put() include/linux/skbuff.h Allows packet data to go to the 
tail of the packet

netif_rx() net/core/dev.c Passes a network packet to the 
TCP/IP stack

netif_rx_schedule_prep()
__netif_rx_schedule()

include/linux/netdevice.h
net/core/dev.c

Passes a network packet to the 
TCP/IP stack (NAPI)

netif_receive_skb() net/core/dev.c Posts packet to the protocol 
layer from the poll() method 
(NAPI)

netif_rx_complete() include/linux/netdevice.h Removes a device from polled 
list (NAPI)

netif_device_detach() net/core/dev.c Detaches the device (commonly 
called during power suspend)

netif_device_attach() net/core/dev.c Attaches the device (commonly 
called during power resume)

netif_start_queue() include/linux/netdevice.h Conveys readiness to accept data 
from the networking stack

netif_stop_queue() include/linux/netdevice.h Asks the networking stack to 
stop sending down data

netif_wake_queue() include/linux/netdevice.h Restarts egress queuing

netif_queue_stopped() include/linux/netdevice.h Checks flow-control state

Looking at the Sources 463



This page intentionally left blank 



465

16

Linux Without Wires

In This Chapter

■ Bluetooth 467

■ Infrared 478

■ WiFi 489

■ Cellular Networking 496

■ Current Trends 500



466

Several small-footprint devices are powered by the dual combination of a 
wireless technology and Linux. Bluetooth, Infrared, WiFi, and cellular net-

working are established wireless technologies that have healthy Linux support. 
Bluetooth  eliminates cables, injects intelligence into dumb devices, and opens a 
fl ood gate of novel applications. Infrared  is a low-cost, low-range, medium-rate, 
wireless technology that can network laptops, connect handhelds, or dispatch 
a document to a printer. WiFi is  the wireless equivalent of an Ethernet LAN. 
  Cellular networking  using   GPRS or code division multiple access  (CDMA)  keeps 
you Internet-enabled on the go, as long as your wanderings are confi ned to ser-
vice provider coverage area.

Because these wireless technologies are widely available in popular form factors, 
you are likely to end up, sooner rather than later, with a card that does not work 
on Linux right away. Before you start working on enabling an unsupported 
card, you need to know in detail how the kernel implements support for the 
corresponding technology. In this chapter, let’s learn how Linux enables Blue-
tooth, Infrared, WiFi, and cellular networking.

Wireless Trade-Offs

Bluetooth, Infrared, WiFi, and GPRS serve different niches. The trade-offs can be gauged in 
terms of speed, range, cost, power consumption,  ease of hardware/software co-design, and 
PCB real estate usage.

Table 16.1 gives you an idea of these parameters, but you will have to contend with several 
variables when you measure the numbers on the ground. The speeds listed are the theoretical 
maximums. The power consumptions indicated are relative, but in the real world they also 
depend on the vendor’s implementation techniques, the technology subclass, and the operat-
ing mode. Cost economics depend on the chip form factor and whether the chip contains 
built-in microcode that implements some of the protocol layers. The board real estate con-
sumed depends not just on the chipset, but also on transceivers, antennae,  and whether you 
build using off-the-shelf (OTS) modules. 



TABLE 16.1 Wireless  Trade-Offs

Speed Range Power Cost
Co-Design
Effort

Board
Real
Estate

Bluetooth 720Kbps 10m to 100m ** ** ** **

Infrared 
Data

4Mbps
(Fast IR)

Up to 1 meter within a 
30-degree cone

* * * *

WiFi 54Mbps 150 meters (indoors) **** *** *** ***

GPRS 170Kbps Service provider coverage *** **** * ***

Note: The last four columns give relative measurement (depending on the number of  * symbols) rather than  
absolute values.

Some sections in this chapter focus more on “system programming” than device driv-
ers. This is because the corresponding regions of the protocol stack (for example, Blue-
tooth RFCOMM and Infrared networking) are already present in the kernel and you 
are more likely to perform associated user mode customizations than develop protocol 
content or device drivers.

Bluetooth

Bluetooth is a short-range  cable-replacement technology that carries both data and 
voice. It supports speeds of up to 723Kbps (asymmetric) and 432Kbps (symmetric). 
Class 3 Bluetooth devices have a range of 10 meters, and Class 1 transmitters can com-
municate up to 100 meters.

Bluetooth is designed to do away with wires that constrict and clutter your envi-
ronment. It can, for example, turn your wristwatch into a front-end for a bulky Global 
Positioning System (GPS) hidden inside your backpack. Or it can, for instance, let 
you navigate a presentation via your handheld. Again, Bluetooth can be the answer 
if you want your laptop to be a hub that can Internet-enable your Bluetooth-aware 
MP3 player. If your wristwatch, handheld, laptop, or MP3 player is running Linux, 
knowledge of the innards of the Linux Bluetooth stack will help you extract maximum 
mileage out of your device.
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As per the Bluetooth specifi cation, the protocol stack consists of the layers shown 
in Figure 16.1. The radio, link  controller, and link manager roughly correspond to the 
physical, data link, and network layers in  the Open  Systems Interconnect (OSI) standard 
reference model. The  Host Control Interface (HCI)  is the protocol that carries data to/
from the hardware and, hence, maps to the transport layer. The Bluetooth Logical Link 
Control and Adaptation Protocol  (L2CAP)  falls in the session layer. Serial port emula-
tion using     Radio Frequency Communication (RFCOMM), Ethernet emulation using 
Bluetooth Network Encapsulation Protocol (BNEP), and the Service Discovery Protocol
(SDP)   are part of the feature-rich presentation layer. At the top of the stack reside 
various application environments   called profi les. The radio, link controller, and link 
manager are usually part of Bluetooth hardware, so operating system support starts at 
the HCI layer.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Profiles

RFCOMM/BNEP/SDP

L2CAP

Host Control Interface

Link Manager

Link Controller

Radio

OSI Model Bluetooth Stack

Linux BlueZ

Bluetooth Chipset

FIGURE 16.1 The Bluetooth stack.

A common method of interfacing Bluetooth hardware with a microcontroller is by 
connecting the chipset’s data lines to the controller’s UART pins. Figure 13.4 of 
Chapter 13, “Audio Drivers,” shows a Bluetooth chip on an MP3 player communi-
cating with the processor via a UART. USB is another oft-used vehicle for commu-
nicating   with Bluetooth chipsets. Figure 11.2 of Chapter 11, “Universal Serial Bus,” 
shows a Bluetooth chip on an embedded device interfacing with the processor over 



USB. Irrespective of whether you use UART or USB (we will look at both kinds of 
devices later), the packet format used to transport Bluetooth data is HCI.

BlueZ

The BlueZ Bluetooth   implementation is part of the mainline kernel and is the offi cial 
Linux Bluetooth stack. Figure 16.2 shows how BlueZ maps Bluetooth protocol layers 
to kernel modules, kernel threads, user-space daemons, confi guration tools, utilities, 
and libraries. The main BlueZ components are explained here:

 1. bluetooth.ko contains  the core BlueZ infrastructure. All other BlueZ mod-
ules utilize its services. It’s also responsible for exporting the Bluetooth fam-
ily of sockets (AF_BLUETOOTH) to user space and for populating related sysfs 
entries.

 2. For transporting Bluetooth HCI packets over UART, the corresponding BlueZ 
HCI implementation is  hci_uart.ko. For USB transport, it’s hci_usb.ko.

 3. l2cap.ko  implements the L2CAP adaptation layer that is responsible for seg-
mentation and reassembly. It also multiplexes between different higher-layer 
protocols.

 4. To run TCP/IP applications over Bluetooth, you have to emulate Ethernet ports 
over L2CAP using BNEP. This is accomplished by bnep.ko. To service BNEP 
connections, BlueZ spawns  a kernel thread  called kbnepd.

 5. To run serial port applications such as terminal emulators over Bluetooth, you 
need to emulate serial ports over L2CAP.  This is accomplished by rfcomm.ko.
RFCOMM also functions as the pillar that supports networking over PPP. To 
service incoming RFCOMM connections, rfcomm.ko spawns a kernel thread 
called krfcommd. To set up and maintain connections to individual RFCOMM 
channels on target devices, use the rfcomm utility.

 6. The HID layer is   implemented via hidp.ko. The user mode daemon hidd lets 
BlueZ handle input devices such as Bluetooth mice.

 7. Audio is handled via   the Synchronous Connection Oriented (SCO) layer imple-
mented  by sco.ko.

Let’s now trace the kernel code fl ow for two example Bluetooth devices: a Compact
Flash (CF)   card and a USB adapter.
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FIGURE 16.2 Bluetooth protocol layers   mapped to BlueZ kernel modules.



Device Example: CF Card

The Sharp Bluetooth    Compact Flash card is built using a Silicon Wave chipset and 
uses a serial transport to carry HCI packets. There are three different ways by which 
HCI packets can be transported serially:

 1. H4 (UART), which is used by the Sharp CF card. H4 is the standard method to 
transfer Bluetooth data over UARTs as defined by the Bluetooth specification. 
Look at drivers/bluetooth/hci_h4.c for the BlueZ implementation.

 2. H3 (RS232). Devices using H3 are hard to find. BlueZ has no support for H3.

 3. BlueCore Serial Protocol (BCSP),   which is a proprietary protocol from Cam-
bridge Silicon Radio (CSR)   that supports error checking and retransmission. 
BCSP is used on non-USB devices based on CSR BlueCore chips including 
PCMCIA and CF cards. The BlueZ BCSP implementation lives in drivers/ 
bluetooth/hci_bcsp.c.

The read data path for the Sharp Bluetooth card is shown in Figure 16.3. The fi rst 
point of contact between the card and the kernel is at the UART driver. As you saw 
in Figure 9.5 of Chapter 9, “PCMCIA and Compact Flash,” the serial Card Services 
driver drivers/serial/serial_cs.c, allows the rest of the operating system to see the Sharp 
card as if it were a serial device. The serial driver passes on the received HCI packets to 
BlueZ. BlueZ implements HCI processing in the form of a kernel line discipline. As 
you learned in Chapter 6, “Serial Drivers,” line disciplines reside above the serial driver 
and shape its behavior. The HCI line discipline invokes associated protocol routines 
(H4 in this case) for assistance in data processing. From then on, L2CAP and higher 
BlueZ layers take charge.

Device Example: USB Adapter

Let’s now look at a    device that uses USB to transport HCI packets. The Belkin Blue-
tooth USB adapter is one such gadget. In this case, the Linux USB layer (drivers/usb/*),
the HCI USB transport driver (drivers/bluetooth/hci_usb.c), and the BlueZ protocol 
stack (net/bluetooth/*) are the main players that get the data rolling. Let’s see how these 
three kernel layers interact.
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Higher Layers
(See Figure 16.2)

12cap_receive_acldata L2CAP

h4_recv
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Card Info Structure
(CIS)

Serial ISR

BlueZ
Stack

serial_cs

PCMCIA/CardBus
Host Controller

FIGURE 16.3 Read data path from a Sharp Bluetooth CF card.



 As you learned in Chapter 11, USB devices exchange data using one or more of    
four pipes. For Bluetooth USB devices, each pipe is responsible for carrying a particu-
lar type of data:

 1. Control pipes are used to transport HCI commands.

 2. Interrupt pipes are responsible for carrying HCI events.

 3. Bulk pipes transfer asynchronous connectionless (ACL) Bluetooth data.

 4. Isochronous pipes carry SCO audio data.

You also saw in Chapter 11 that when a USB device is plugged into a system, the host 
controller driver enumerates it using a control pipe and assigns endpoint addresses 
between 1 and 127. The confi guration descriptor read by the USB subsystem during 
enumeration contains information about the device, such as its class, subclass, and 
protocol. The Bluetooth specifi cation defi nes the (class, subclass, protocol)
codes of Bluetooth USB devices as (0xE, 0x01, 0x01). The HCI USB transport driver 
(hci_usb) registers these values with the USB core during initialization. When the Bel-
kin USB adapter is plugged in, the USB core reads the (class, subclass, proto-
col) information from the device confi guration descriptor. Because this information 
matches the values registered by hci_usb, this driver gets attached to the Belkin USB 
adapter. hci_usb reads Bluetooth data from the four USB pipes described previously 
and passes it on to the BlueZ protocol stack. Linux applications now run seamlessly 
over this device, as shown in Figure 16.2.

RFCOMM

RFCOMM emulates serial ports over Bluetooth. Applications such as terminal emu-
lators and protocols such as PPP    can run unchanged over the virtual serial interfaces 
created by RFCOMM.

Device Example: Pill Dispenser

To take an example, assume that you have a Bluetooth-aware pill dispenser. When you 
pop a pill out of the dispenser, it sends a message over a Bluetooth RFCOMM chan-
nel. A Linux cell phone, such as the one shown in Figure 6.5 of Chapter 6, reads this 
alert using a simple application that establishes an RFCOMM connection to the pill 
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dispenser. The phone then dispatches this information to the health-care provider’s 
server on the Internet via its GPRS interface. 

A skeletal application on the Linux cell phone that reads data arriving from the pill 
dispenser using the BlueZ socket API is shown in Listing 16.1. The listing assumes 
that you are familiar with the basics of socket programming.

LISTING 16.1 Communicating with a Pill Dispenser over RFCOMM

#include <sys/socket.h>

#include <bluetooth/rfcomm.h>  /* For struct sockaddr_rc */

void

sense_dispenser()

{

  int pillfd;

  struct sockaddr_rc pill_rfcomm;

  char buffer[1024];

  /* ... */

  /* Create a Bluetooth RFCOMM socket */

  if ((pillfd = socket(PF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)) 

       < 0) {

    printf("Bad Bluetooth RFCOMM socket"); 

    exit(1);

  }

  /* Connect to the pill dispenser */

  pill_rfcomm.rc_family  = AF_BLUETOOTH;

  pill_rfcomm.rc_bdaddr  = PILL_DISPENSER_BLUETOOTH_ADDR;

  pill_rfcomm.rc_channel = PILL_DISPENSER_RFCOMM_CHANNEL;

  if (connect(pillfd, (struct sockaddr *)&pill_rfcomm, 

              sizeof(pill_rfcomm))) { 

    printf("Cannot connect to Pill Dispenser\n"); 

    exit(1);

  }

  printf("Connection established to Pill Dispenser\n");



  /* Poll until data is ready */ 

  select(pillfd, &fds, NULL, NULL, &timeout);

  /* Data is available on this RFCOMM channel */

  if (FD_ISSET(pillfd, fds)) {

    /* Read pill removal alerts from the dispenser */ 

    read(pillfd, buffer, sizeof(buffer));

    

    /* Take suitable action; e.g., send a message to the health 

       care provider's server on the Internet via the GPRS 

       interface */

    /* ... */

  }

  /* ... */

}

Networking

Trace down the code   path from the telnet/ftp/ssh box in Figure 16.2 to see how net-
working is architected over BlueZ Bluetooth. As you can see, there are two different 
ways to network over Bluetooth:

 1. By running TCP/IP directly over BNEP. The resulting network is   called a per-
sonal area network (PAN).

 2. By running TCP/IP over PPP over RFCOMM. This is   called dialup networking
(DUN).

The kernel implementation of Bluetooth networking is unlikely to interest the device 
driver writer and is not explored. Table 16.2 shows the steps required to network two 
laptops using PAN, however. Networking with DUN resembles this and is not exam-
ined. The laptops are respectively Bluetooth-enabled using the Sharp CF card and the 
Belkin USB adapter discussed earlier. You can slip the CF card into the fi rst laptop’s 
PCMCIA slot using a passive CF-to-PCMCIA adapter. Look at Figure 16.2 in tandem 
with Table 16.2 to understand the mappings to corresponding BlueZ components. 
Table 16.2 uses bash-sharp> and bash-belkin> as the respective shell prompts of 
the two laptops.
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TABLE 16.2 Networking Two Laptops   Using Bluetooth PAN

On the laptop 
with the Sharp 
 Bluetooth CF card

1. Start the HCI and service discovery daemons:

bash-sharp> hcid

bash-sharp> sdpd

Because this device possesses a UART interface, you have to attach the BlueZ 
stack to the appropriate serial port. In this case, assume that serial_cs has allotted 
/dev/ttyS3 to the card:

bash-sharp> hciattach ttyS3 any

2. Verify that the HCI interface is up:

bash-sharp> hciconfig -a

 hci0:   Type: UART

 BD Address: 08:00:1F:10:3B:13 ACL MTU: 60:20  SCO MTU: 31:1

 UP RUNNING PSCAN ISCAN

 ...

Manufacturer: Silicon Wave (11)

3. Verify that basic BlueZ modules are loaded:

bash-sharp> lsmod

 Module                  Size  Used by

 hci_uart               16728  3

 l2cap                  26144  2

 bluetooth              47684  6 hci_uart,l2cap

 ...

4. Insert the BlueZ module that implements network encapsulation:

bash-sharp> modprobe bnep

5. Listen for incoming PAN connections: 1

bash-sharp> pand –s

On the laptop with 
the Belkin USB 
Bluetooth adapter

1.  Start daemons, such as hcid and sdpd, and insert necessary kernel modules, such 
as bluetooth.ko and l2cap.ko.

2.  Because this is a USB device, you don’t need to invoke hciattach, but make sure 
that the hci_usb.ko module is inserted.

3.  Verify that the HCI interface is up:

bash-belkin> hciconfig -a

 hci0:   Type: USB

1 A useful command-line option to pand is --persist, which automatically attempts to reconnect when a connection drops. 
Dig into the man pages for more invocation options.



 BD Address: 00:02:72:B0:33:AB ACL MTU: 192:8  SCO MTU: 64:8

 UP RUNNING PSCAN ISCAN

 ...

 Manufacturer: Cambridge Silicon Radio (10) 

4.  Search and   discover devices in the neighborhood:

bash-belkin> hcitool -i hci0 scan --flush 

 Scanning....

 08:00:1F:10:3B:13  bash-sharp

5. Establish a PAN with the first laptop. You can get its Bluetooth address 
(08:00:1F:10:3B:13) from its hciconfig output:

bash-belkin> pand -c 08:00:1F:10:3B:13

If you now look at the ifconfig output on the two laptops, you will find that a new 
interface named bnep0 has made an appearance at both ends. Assign IP addresses to 
both interfaces and get ready to telnet and FTP!

Human Interface Devices

Look at sections “USB and Bluetooth Keyboards” and “USB and Bluetooth Mice” in 
Chapter 7, “Input Drivers,” for a discussion on Bluetooth human interface devices.

Audio

Let’s take the example   of an HBH-30 Sony Ericsson Bluetooth headset to understand 
Bluetooth SCO audio. Before the headset can start communicating with a Linux 
device, the Bluetooth link layer on the latter has to discover the former. For this, put 
the headset in discover mode by pressing the button earmarked for device discovery. In 
addition, you have to confi gure BlueZ with the headset’s personal identifi cation number
(PIN) by   adding it to /etc/bluetooth/pin. An application on the Linux device that uses 
BlueZ SCO APIs can now send audio data to the headset. The audio data should be in 
a format that the headset understands. The HBH-30 uses the A-law PCM (pulse code 
modulation) format. There are public domain utilities for converting audio into vari-
ous PCM formats.

Bluetooth chipsets commonly have PCM interface pins in addition to the HCI 
transport interface. If a device supports, for instance, both Bluetooth and GSM,   the 
PCM lines from the GSM chipset may be directly wired to the Bluetooth chip’s PCM 
audio lines. You might then have to confi gure the Bluetooth chip to receive and send 
SCO audio packets over its HCI interface instead of its PCM interface.
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Debugging

There are two   BlueZ tools useful for debugging:

 1. hcidump taps HCI packets flowing back and forth, and parses them into human-
readable form. Here’s an example dump while a device inquiry is in progress:

bash> hcidump -i hci0

HCIDump - HCI packet analyzer ver 1.11

device: hci0 snap_len: 1028 filter: 0xffffffff

   HCI Command: Inquiry (0x01|0x0001) plen 5

   HCI Event: Command Status (0x0f) plen 4

   HCI Event: Inquiry Result (0x02) plen 15

   ... 

   HCI Event: Inquiry Complete (0x01) plen 1 < HCI Command: 

   Remote Name Request (0x01|0x0019) plen 10

   ...

 2. The virtual HCI driver (hci_vhci.ko), as shown in Figure 16.2, emulates a Blue-
tooth interface if you do not have actual hardware.

Looking at the Sources

Look inside drivers/bluetooth/ for BlueZ low-level drivers. Explore net/bluetooth/ for 
insights into the BlueZ protocol implementation.

Bluetooth applications fall under different profi les based on how they behave. For 
example, the cordless telephony profi le specifi es how a Bluetooth device can imple-
ment a cordless phone. We discussed profi les for PAN and serial access, but there 
are many more profi les out there such as fax profi le, General Object Exchange Profi le
(GOEP)   and SIM Access Profi le (SAP).   The  bluez-utils package, downloadable from 
www.bluez.org, provides support for several Bluetooth profi les.

The offi cial Bluetooth website is www.bluetooth.org. It contains Bluetooth specifi -
cation documents and information about   the Bluetooth Special Interest Group (SIG). 

Affi x is  an alternate Bluetooth stack on Linux. You can download Affi x from http://
affi x.sourceforge.net/.

Infrared

Infrared (IR) rays are  optical waves lying between the visible and the microwave regions 
of the electromagnetic spectrum. One use of IR is in point-to-point data communica-
tion. Using IR, you can exchange visiting cards between PDAs, network two laptops, 

www.bluez.org
www.bluetooth.org
http://affix.sourceforge.net/
http://affix.sourceforge.net/


or dispatch a document to a printer. IR has a range of up to 1 meter within a 30-degree 
cone, spreading from –15 to +15 degrees.

There are two popular fl avors of IR communication: Standard IR (SIR), which 
supports speeds of up to 115.20 Kbaud; and Fast IR (FIR), which has a bandwidth 
of 4Mbps. 

Figure 16.4 shows IR connection on a laptop. UART1 in the Super I/O chipset 
is IR-enabled, so an IR transceiver is directly connected to it. Laptops having no IR 
support in their Super I/O chip may rely on an external IR dongle (see the section 
“Device Example: IR Dongle”) similar  to the one connected to UART0. Figure 16.5 
shows IR connection on an embedded SoC having a built-in IR dongle connected to 
a system UART.

Processor

North Bridge

South Bridge
Super I/O

RS232

IR Dongle

IR
Transceiver
(SIR/FIR)

UART1UART0

FIGURE 16.4 IrDA on a laptop.
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FIGURE 16.5 IrDA on an embedded device (for example, EP7211).
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Linux supports IR communication on two planes:

 1. Intelligent data-transfer via protocols specified by the Infrared Data Association
(IrDA). This is implemented by the Linux-IrDA project.

 2. Controlling applications via a remote control. This is implemented by the Linux 
Infrared Remote Control (LIRC) project.

This section primarily  explores Linux-IrDA but takes a quick look at LIRC before 
wrapping up.

Linux-IrDA

The Linux-IrDA project (http://irda.sourceforge.net/) brings IrDA capabilities to the 
kernel. To get an idea of   how Linux-IrDA components relate vis-à-vis the IrDA stack 
and possible hardware confi gurations, let’s criss-cross through Figure 16.6:

 1. Device drivers constitute the bottom layer. SIR chipsets that are 16550-
 compatible can reuse the native Linux serial driver after shaping its behavior 
using the IrDA line discipline, IrTTY. An alternative to this combo is the IrPort 
driver. FIR chipsets have their own special drivers.

 2. Next comes the core protocol stack. This consists of the   IR Link Access Pro-
tocol (IrLAP),   IR Link Management Protocol (IrLMP), Tiny Transport Protocol
(TinyTP),   and the IrDA socket (IrSock)   interface. IrLAP provides a reliable 
transport as well as the state machine to discover neighboring devices. IrLMP is 
a multiplexer over IrLAP. TinyTP provides segmentation, reassembly, and flow 
control. IrSock offers a socket interface over IrLMP and TinyTP.

 3. Higher regions of the stack marry IrDA to data-transfer applications. IrLAN 
and IrNET enable networking, while IrComm allows serial communication.

 4. You also need the applications that ultimately make or break the technology. 
An example is openobex (http://openobex.sourceforge.net/), which implements 
the OBject EXchange (OBEX)   protocol used to exchange objects such as doc-
uments and visiting cards. To configure Linux-IrDA, you need the irda-utils
package  that comes bundled with many distributions. This provides tools such 
as irattach, irdadump, and irdaping.

http://irda.sourceforge.net/
http://openobex.sourceforge.net/


     IrDA Drivers 
(drivers/net/irda/* )

IrSock

                IrDA Hardware 
(See Figure 16.4 and Figure 16.5) 

SY N CA S Y N C

User Applications 

  IrTTY 
(i r tty . k o)

   Serial     
   Driver 

(8 2 5 0 . ko)

    IrPort 
(i rport . k o )

  FIR Driver 
(nsc- i rcc.ko)

                                          IrLAP 

                                         TinyTP 

                                          IrLMP 

PPP   

TCP/IP 

/dev/ircommX 

Serial Apps 

Socket  
Apps 

i rda. ko
     IrDA Stack   
   ( net/irda/* )

Networking Stack 

        IrNET 
      ( i rnet . k o )

     IrLAN 
   ( i r l an. k o )

      IrComm       
  ( i rcom m . k o )

Dongle Driver 
(ep7211_ir.ko)si r_

_ _
dev . k o /

irda sir wq

irattach, irdadump, irdaping, irsend

   USB 
 Dongle   
 Driver 
 ( i rda-
usb. k o)

pppX irlanX 

   telnet , ft p, ssh ,… OpenOBEX 

FIGURE 16.6 Communicating   over Linux-IrDA.
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Device Example: Super I/O Chip

To get a fi rst taste of Linux-IrDA, let’s get two laptops talking to each other over IR. 
Each laptop is IR-  enabled via National Semiconductor’s NSC PC87382 Super I/O 
chip.2 UART1 in Figure 16.4 shows the connection scenario. The PC87382 chip can 
work in both SIR and FIR modes. We will look at each in turn.

SIR chips offer a UART interface to the host computer. For communicating in SIR 
mode, attach the associated UART port (/dev/ttyS1 in this example) of each laptop to 
the IrDA stack:

bash> irattach /dev/ttyS1 -s

Verify that IrDA kernel modules (irda.ko, sir_dev.ko, and irtty_sir.ko) are loaded and 
that the irda_sir_wq kernel thread is running. The irda0 interface should also have 
made an appearance in the ifconfig output. The -s option to irattach triggers a 
search for IR activity in the neighborhood. If you slide the laptops such that their IR 
transceivers lie within the range cone, they will be able to spot each other:

bash> cat /proc/net/irda/discovery

nickname: localhost, hint: 0x4400, saddr: 0x55529048, daddr: 0x8fefb350

The other laptop makes a similar announcement, but with the source and destination 
addresses (saddr and daddr) reversed. You may set the desired communication speed 
using stty on ttyS1. To set the baud rate to 19200, do this:

bash> stty speed 19200 < /dev/ttyS1

The easiest way to cull IR activity from the air is by using the debug tool, irdadump.
Here’s a sample dump obtained during the preceding connection establishment, which 
shows the negotiated parameters:

bash> irdadump -i irda0

...

22:05:07.831424 snrm:cmd ca=fe pf=1 6fb7ff33 > 2c0ce8b6 new-ca=40 

LAP QoS: Baud Rate=19200bps Max Turn Time=500ms Data Size=2048B Window Size=7 Add 
BOFS=0 Min Turn Time=5000us Link Disc=12s (32) 

22:05:07.987043 ua:rsp ca=40 pf=1 6fb7ff33 < 2c0ce8b6 

LAP QoS: Baud Rate=19200bps Max Turn Time=500ms Data Size=2048B Window Size=7 Add 
BOFS=0 Min Turn Time=5000us Link Disc=12s (31) 

...

2 Super I/O chipsets typically support several peripherals besides IrDA, such as serial ports, parallel ports, Musical Instrument 
Digital Interface (MIDI), and fl oppy controllers.



You can also obtain debug information out of the IrDA stack by controlling the ver-
bosity level in /proc/sys/net/irda/debug.

To set the laptops in FIR mode, dissociate ttyS1 from the native serial driver and 
instead attach it to the NSC FIR driver, nsc-ircc.ko:

bash> setserial /dev/ttyS1 uart none 

bash> modprobe nsc-ircc dongle_id=0x09

bash> irattach irda0 -s

dongle_id depends on your IR hardware and can be found from your hardware docu-
mentation. As you did for SIR, take a look at /proc/net/irda/discovery to see whether things 
are okay thus far. Sometimes, FIR communication hangs at higher speeds. If irdadump 
shows a communication freeze, either put on your kernel hacking hat and fi x the code, 
or try lowering the negotiated speed by tweaking /proc/sys/net/irda/max_baud_rate.

Note that unlike the Bluetooth physical layer that can establish one-to-many con-
nections, IR can support only a single connection per physical device at a time.

Device Example: IR Dongle

Dongles are IR devices that   plug into serial or USB ports. Some microcontrollers (such 
as Cirrus Logic’s EP7211 shown in Figure 16.5) that have on-chip IR controllers wired 
to their UARTs are also considered dongles.

Dongle drivers are a set of control methods responsible for operations such as 
changing the communication speed. They have four entry points: open(), reset(),
change_speed(), and close(). These entry points are defi ned as part of a  dongle_
driver structure and are invoked from the context of the IrDA kernel thread, irda_
sir_wq. Dongle driver methods are allowed to block because they are invoked from 
process context with no locks held. The IrDA core offers three helper functions to 
dongle drivers: sirdev_raw_write() and sirdev_raw_read() to exchange control 
data with the associated UART, and sirdev_set_dtr_rts() to wiggle modem con-
trol lines connected to the UART.

Because you’re probably more likely to add kernel support for dongles than modify 
other parts of Linux-IrDA, let’s implement an example dongle driver. Assume that 
you’re enabling a yet-unsupported simple serial IR dongle that communicates only at 
19200 or 57600 baud. Assume also that when the user wants to toggle the baud rate 
between these two values, you have to hold the UART’s Request-to-Send (RTS) pin low 
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for 50 microseconds and pull it back high for 25 microseconds. Listing 16.2 imple-
ments a dongle driver for this device.

LISTING 16.2 An Example Dongle Driver

#include <linux/delay.h>

#include <net/irda/irda.h>

#include "sir-dev.h"   /* Assume that this sample driver lives in 

drivers/net/irda/ */

/* Open Method. This is invoked when an irattach is issued on the 

   associated UART */

static int

mydongle_open(struct sir_dev *dev)

{

  struct qos_info *qos = &dev->qos;

  /* Power the dongle by setting modem control lines, DTR/RTS. */

  sirdev_set_dtr_rts(dev, TRUE, TRUE);

  /* Speeds that mydongle can accept */

  qos->baud_rate.bits &= IR_19200|IR_57600;

  irda_qos_bits_to_value(qos); /* Set QoS */

  return 0;

}

/* Change baud rate */

static int 

mydongle_change_speed(struct sir_dev *dev, unsigned speed)

{

  if ((speed == 19200) || (speed = 57600)){

    /* Toggle the speed by pulsing RTS low

       for 50 us and back high for 25 us */ 

    sirdev_set_dtr_rts(dev, TRUE, FALSE); 

    udelay(50); 

    sirdev_set_dtr_rts(dev, TRUE, TRUE); 

    udelay(25);

    return 0;

  } else {

    return -EINVAL;

  }



}

/* Reset */

static int 

mydongle_reset(struct sir_dev *dev)

{

  /* Reset the dongle as per the spec, for example, 

     by pulling DTR low for 50 us */ 

  sirdev_set_dtr_rts(dev, FALSE, TRUE); 

  udelay(50);

  sirdev_set_dtr_rts(dev, TRUE, TRUE); 

  dev->speed = 19200; /* Reset speed is 19200 baud */

  return 0;

}

/* Close */

static int

mydongle_close(struct sir_dev *dev)

{

  /* Power off the dongle as per the spec, 

     for example, by pulling DTR and RTS low.. */

  sirdev_set_dtr_rts(dev, FALSE, FALSE);

  return 0;

}

/* Dongle Driver Methods */

static struct dongle_driver mydongle = {

  .owner     = THIS_MODULE,

  .type      = MY_DONGLE,             /* Add this to the enumeration

                                         in include/linux/irda.h */

  .open      = mydongle_open,         /* Open */

  .reset     = mydongle_reset,        /* Reset */

  .set_speed = mydongle_change_speed, /* Change Speed */

  .close     = mydongle_close,        /* Close */

};

/* Initialize */

static int __init 

mydongle_init(void)

{

  /* Register the entry points */ 

  return irda_register_dongle(&mydongle);

}
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/* Release */

static void __exit 

mydongle_cleanup(void)

{

  /* Unregister entry points */

  irda_unregister_dongle(&mydongle);

}

module_init(mydongle_init);

module_exit(mydongle_cleanup);

For real-life examples, look at drivers/net/irda/tekram.c and drivers/net/irda/ep7211_ir.c.
Now that you have the physical layer running, let’s venture to look at IrDA 

protocols.

IrComm

IrComm emulates serial ports. Applications such as terminal emulators and protocols 
such as PPP can run   unchanged over the virtual serial interfaces created by IrComm. 
IrComm is implemented by two related modules, ircomm.ko and ircomm_tty.ko. The 
former provides core protocol support, while the latter creates and manages the emu-
lated serial port nodes /dev/ircommX.

Networking

There are three ways   to get TCP/IP applications running over IrDA:

 1. Asynchronous PPP over IrComm

 2. Synchronous PPP over IrNET

 3. Ethernet emulation with IrLAN

Networking over IrComm is equivalent to running asynchronous PPP over a serial 
port, so there is nothing out of the ordinary in this scenario.

Asynchronous PPP needs to mark the start and end of frames using techniques 
such as byte stuffi ng, but if PPP is running over data links such as Ethernet, it need 
not be burdened with the overhead of a framing protocol. This is called synchro-
nous PPP and is used to confi gure networking over IrNET.3 Passage through the PPP 

3  For a scholarly discussion on networking over IrNET, read www.hpl.hp.com/personal/Jean_Tourrilhes/Papers/IrNET.
Demand.html.

www.hpl.hp.com/personal/Jean_Tourrilhes/Papers/IrNET.Demand.html
www.hpl.hp.com/personal/Jean_Tourrilhes/Papers/IrNET.Demand.html


layer provides features such as on-demand IP address confi guration, compression, 
and authentication. 

To start IrNET, insert irnet.ko. This also creates the character device node /dev/irnet,
which is a control channel over which you can attach the PPP daemon:

bash> pppd /dev/irnet 9600 noauth a.b.c.d:a.b.c.e

This yields the pppX network interfaces at either ends with the respective IP addresses 
set to a.b.c.d and a.b.c.e. The interfaces can now beam TCP/IP packets.

IrLAN provides raw Ethernet emulation over IrDA. To network your laptops using 
IrLAN, do the following at both ends:

 • Insert irlan.ko. This creates the network interface irlanX, where X is the assigned 
interface number.

 • Configure the irlanX interfaces. To set the IP address, do this:

bash> ifconfig irlanX a.b.c.d 

Or automate it by adding the following line to /etc/sysconfig/network-scripts/ 
ifcfg-irlan0:4

DEVICE=irlanX IPADDR=a.b.c.d

You can now telnet between the laptops over the irlanX interfaces.

IrDA Sockets

To develop   custom applications over IrDA, use the IrSock interface. To create a socket 
over TinyTP, do this:

int fd = socket(AF_IRDA, SOCK_STREAM, 0);

For a datagram socket over IrLMP, do this:

int fd = socket(AF_IRDA, SOCK_DGRAM, 0);

Look at the irsockets/ directory in the irda-utils package for code examples.

4 The location of this fi le is distribution-dependent.
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Linux Infrared Remote Control

The goal of the LIRC project is to let you control your Linux computer via a remote. 
For example, you can   use LIRC to control applications that play MP3 music or DVD 
movies via buttons on your remote. LIRC is architected into

 1. A base LIRC module called lirc_dev.

 2. A hardware-specific physical layer driver. IR hardware that interface via serial 
ports use lirc_serial. To allow lirc_serial to do its job without interference from 
the kernel serial driver, dissociate the latter as you did earlier for FIR:

bash> setserial /dev/ttySX uart none

  You may have to replace lirc_serial with a more suitable low-level LIRC driver 
depending on your IR device.

 3. A user mode daemon called lircd that runs over the low-level LIRC driver. Lircd 
decodes signals arriving from the remote and is the centerpiece of LIRC. Sup-
port for many remotes are implemented in the form of user-space drivers that are 
part of lircd. Lircd exports a UNIX-domain socket interface /dev/lircd to higher 
applications. Connecting to lircd via /dev/lircd is the key to writing LIRC-aware 
applications.

 4. An LIRC mouse daemon called lircmd that runs on top of lircd. Lircmd con-
verts messages from lircd to mouse events. These events can be read from a 
named pipe /dev/lircm and input to programs such as gpm or X Windows.

 5. Tools such as irrecord and irsend. The former records signals received from your 
remote and helps you generate IR configuration files for a new remote. The lat-
ter streams IR commands from your Linux machine.

Visit the LIRC home page hosted at www.lirc.org to download all these and to obtain 
insights on its design and usage.

IR Char Drivers

If your embedded device requires only simple Infrared receive capabilities, it might be using a 
miniaturized IR receiver (such as the TSOP1730 chip from Vishay Semiconductors). An example 
application device is an IR locator installed in hospital rooms to read data emitted by IR badges 
worn by nurses. In this scenario, the IrDA stack is not relevant because of the absence of IrDA 
protocol interactions. It may also be an overkill to port LIRC to the locator if it’s using a lean pro-
prietary protocol to parse received data. An easy solution might be to implement a tiny read-only 
char or misc driver that exports raw IR data to a suitable application via /dev or /sys interfaces.

www.lirc.org


Looking at the Sources

Look inside drivers/net/irda/ for low-level IrDA drivers, net/irda/ for the protocol 
implementation, and include/net/irda/ for the header fi les. Experiment with /proc/sys/
net/irda/* to tune the IrDA stack and  explore /proc/net/irda/* for state information per-
taining to different IrDA layers.

Table 16.3 contains the main data structures used in this section and their location 
in the source tree. Table 16.4 lists the main kernel programming interfaces that you 
used in this section along with the location of their defi nitions.

TABLE 16.3 Summary of Data   Structures

 Data Structure Location Description

 dongle_driver drivers/net/irda/sir-dev.h Dongle driver entry points

 sir_dev drivers/net/irda/sir-dev.h Representation of an SIR device

 qos_info include/net/irda/qos.h Quality-of-Service information

TABLE 16.4  Summary of Kernel   Programming Interfaces

 Kernel Interface Location Description

 irda_register_dongle() drivers/net/irda/sir_dongle.c Registers a dongle driver

 irda_unregister_dongle() drivers/net/irda/sir_dongle.c Unregisters a dongle driver

 sirdev_set_dtr_rts() drivers/net/irda/sir_dev.c  Wiggles modem control lines on the serial 
port attached to the IR device

 sirdev_raw_write() drivers/net/irda/sir_dev.c  Writes to the serial port attached to the IR 
device

 sirdev_raw_read() drivers/net/irda/sir_dev.c  Reads from the serial port attached to the 
IR device

WiFi

WiFi, or wireless local-area network (WLAN), is   an alternative to wired LAN and is 
generally used within a  campus. The IEEE 802.11a WLAN standard uses the 5GHz 
ISM (Industrial, Scientifi c, Medical) band and supports speeds of up to 54Mbps. The 
802.11b and the 802.11g standards use the 2.4GHz band and support speeds of 
11Mbps and 54Mbps, respectively.

WLAN resembles wired Ethernet in that both are assigned MAC addresses from 
the same address pool and both appear to the operating system as regular network 
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interfaces. For example, Address Resolution Protocol (ARP) tables contain WLAN MAC 
addresses alongside Ethernet MAC addresses.

WLAN and wired Ethernet differ signifi cantly at the link layer, however:

 • The 802.11 WLAN standard uses collision avoidance (CSMA/CA) rather than 
collision detection (CSMA/CD) used by wired Ethernet.

 • WLAN frames, unlike Ethernet frames, are acknowledged.

 • Due to security issues inherent in wireless networking, WLAN uses an encryp-
tion mechanism called Wired Equivalent Privacy (WEP) to provide a level of 
security equivalent to wired Ethernet. WEP combines a 40-bit or a 104-bit key 
with a random 24-bit initialization vector to encrypt and decrypt data.

WLAN supports two communication modes:

 1. Ad-hoc mode, where a small group of nearby stations directly communicate 
without using an access point.

 2. Infrastructure mode,   where data exchanges pass via an access point. Access points 
periodically broadcast a   service set identifier (SSID or ESSID) that identifies one 
WLAN network from another.

Let’s fi nd out how Linux supports WLAN.

Configuration

The Wireless Extensions   project defi nes a generic Linux API to confi gure WLAN device 
drivers in a device-independent manner. It also provides a collection of common tools 
to set and access information from WLAN drivers. Individual drivers implement sup-
port for Wireless Extensions to connect themselves with the common interface, and 
hence, with the tools.

With Wireless Extensions, there are primarily three ways to talk to WLAN drivers:

 1. Standard operations using the iwconfig utility. To glue your driver to iwconfig, 
you need to implement prescribed functions corresponding to commands that 
set parameters such as ESSID and WEP keys.

 2. Special-purpose operations using iwpriv. To use iwpriv over your driver, define 
private ioctls relevant to your hardware and implement the corresponding han-
dler functions.

 3. WiFi-specifi c statistics through /proc/net/wireless. For this, implement the get_
wireless_stats() method in your driver. This is in addition to the  get_stats()



method implemented by NIC drivers for generic statistics collection as described 
in the section “Statistics” in Chapter 15, “Network Interface Cards.”

WLAN drivers tie these three pieces of information inside a structure called iw_han-
dler_def, defi ned in include/net/iw_handler.h. The address of this structure is supplied 
to the kernel via the device’s   net_device structure (discussed in Chapter 15) during 
initialization. Listing 16.3 shows a skeletal WLAN driver implementing support for 
Wireless Extensions. The comments in the listing explain the associated code.

LISTING 16.3 Supporting Wireless Extensions

#include <net/iw_handler.h>

#include <linux/wireless.h>

/* Populate the iw_handler_def structure with the location and number 

   of standard and private handlers, argument details of private

   handlers, and location of get_wireless_stats() */

static struct iw_handler_def mywifi_handler_def = {

  .standard           = mywifi_std_handlers,

  .num_standard       = sizeof(mywifi_std_handlers) / 

                        sizeof(iw_handler),

  .private            = (iw_handler *) mywifi_pvt_handlers,

  .num_private        = sizeof(mywifi_pvt_handlers) / 

                        sizeof(iw_handler),

  .private_args       = (struct iw_priv_args *)mywifi_pvt_args,

  .num_private_args   = sizeof(mywifi_pvt_args) / 

                        sizeof(struct iw_priv_args),

  .get_wireless_stats = mywifi_stats,

};

/* Handlers corresponding to iwconfig */

static iw_handler mywifi_std_handlers[] = {

  NULL,                /* SIOCSIWCOMMIT */

  mywifi_get_name,     /* SIOCGIWNAME */

  NULL,                /* SIOCSIWNWID */

  NULL,                /* SIOCGIWNWID */

  mywifi_set_freq,     /* SIOCSIWFREQ */

  mywifi_get_freq,     /* SIOCGIWFREQ */

  mywifi_set_mode,     /* SIOCSIWMODE */

  mywifi_get_mode,     /* SIOCGIWMODE */

  /* ... */

};
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#define MYWIFI_MYPARAMETER    SIOCIWFIRSTPRIV

/* Handlers corresponding to iwpriv */

static iw_handler mywifi_pvt_handlers[] = {

  mywifi_set_myparameter,

  /* ... */

};

/* Argument description of private handlers */

static const struct iw_priv_args mywifi_pvt_args[] = {

  { MYWIFI_MYPARAMATER,

    IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "myparam"},

}

struct iw_statistics mywifi_stats;  /* WLAN Statistics */

/* Method to set operational frequency supplied via mywifi_std_handlers. Similarly 
implement the rest of the methods */

mywifi_set_freq()

{

  /* Set frequency as specified in the data sheet */

  /* ... */

}

/* Called when you read /proc/net/wireless */

static struct iw_statistics *

mywifi_stats(struct net_device *dev)

{

  /* Fill the fields in mywifi_stats */

  /* ... */

  return(&mywifi_stats);

}

/*Device initialization. For PCI-based cards, this is called from the

  probe() method. Revisit init_mycard() in Listing 15.1 in Chapter 15 

  for a full discussion */

static int 

init_mywifi_card()

{

  struct net_device *netdev;



  /* Allocate WiFi network device. Internally calls

     alloc_etherdev() */

  netdev = alloc_ieee80211(sizeof(struct mywifi_priv));

  /* ... */

  /* Register Wireless Extensions support */

  netdev->wireless_handlers = &mywifi_handler_def;

  /* ... */

  register_netdev(netdev);

}

With Wireless Extensions support compiled in, you can use iwconfi g to confi gure the 
ESSID and the WEP key, peek at supported private commands, and dump network 
statistics:

bash> iwconfig eth1 essid blue key 1234-5678-9012-3456-7890-1234-56

bash> iwconfig eth1

eth1   IEEE 802.11b ESSID:"blue" Nickname:"ipw2100"

       Mode:Managed Frequency:2.437 GHz Access Point: 00:40:96:5E:07:2E

       ...

       Encryption key:1234-5678-9012-3456-7890-1234-56 

       Security mode:open

       ...

bash> dhcpcd eth1

bash> ifconfig

eth1    Link encap:Ethernet  Hwaddr 00:13:E8:02:EE:18

        inet addr:192.168.0.41   Bcasr:192.168.0.255

        Mask:255.255.255.0

        ...

bash> iwpriv eth1

eth1   Available private ioctls:

       myparam   (8BE2): set 2 int  & get 0

bash> cat /proc/net/wireless

Inter-| sta-| Quality        | Discarded packets             | Missed | WE

 face | tus |link level noise|nwid  crypt   frag  retry  misc| beacon | 19

  eth1: 0004  100.  207.  0.    0      0      0     2     1        0
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Local iwconfi g parameters such as the ESSID and WEP key should match the confi gu-
ration at the access point.

There is another project called cfg80211 having similar goals as Wireless Exten-
sions. This has been merged into the mainline kernel starting with the 2.6.22 kernel 
release.

Device Drivers

There are hundreds   of WLAN original equipment manufacturers (OEMs) in the market, 
and cards come in   several form factors such as PCI, Mini PCI, CardBus, PCMCIA, 
Compact Flash, USB, and SDIO (see the sidebar “WiFi over SDIO”) . However, the 
number of controller chips that lie at the heart of these devices, and hence the num-
ber of Linux device drivers, are relatively less in number. The Intersil Prism chipset, 
Lucent Hermes chipset, Atheros chipset, and Intel Pro/Wireless are among the popular 
WLAN controllers. The following are example devices built using these controllers:

 • Intersil Prism2 WLAN Compact Flash Card—The Orinoco WLAN driver, part 
of the kernel source tree, supports both Prism-based and Hermes-based cards. 
Look at orinoco.c and hermes.c in drivers/net/wireless/ for the sources. orinoco_cs
provides PCMCIA/CF Card Services support.

 • The Cisco Aironet CardBus adapter—This card uses an Atheros chipset. The 
Madwifi project (http://madwifi.org/) offers a Linux driver that works on hardware 
built using Atheros controllers. The Madwifi source base is not part of the kernel 
source tree primarily due to licensing issues. One of the modules of the Madwifi 
driver called   Hardware Access Layer (HAL) is closed source. This is because the 
Atheros chip is capable of operating at frequencies that are outside permissible 
ISM bands and can work at various power levels. The U.S. Federal Communica-
tions Commission (FCC)   mandates that such settings should not be easily change-
able by users. Part of HAL is distributed as binary-only to comply with FCC 
regulations. This binary-only portion is independent of the kernel version.

 • Intel Pro/Wireless Mini PCI (and PCIe Mini) cards embedded on many 
laptops—The kernel source tree contains drivers for these cards. The drivers 
for the 2100 and 2200 BG series cards are drivers/net/wireless/ipw2100.c and 
drivers/net/wireless/ipw2200.c, respectively. These devices need on-card firmware 
to work. You can download the firmware from http://ipw2100.sourceforge.net/ 

http://madwifi.org/
http://ipw2100.sourceforge.net/


or http://ipw2200.sourceforge.net/ depending on whether you have a 2100 or a 
2200. The section “Microcode Download” in Chapter 4, “Laying the Ground-
work,” described the steps needed to download firmware on to these cards. Intel’s 
distribution terms for the firmware are restrictive.

 • WLAN USB devices—The Atmel USB WLAN driver (http://atmelwlandriver.
sourceforge.net/) supports USB WLAN devices built using Atmel chipsets.

The WLAN driver’s task is to let your card appear as a normal network interface. 
Driver implementations are generally split into the following parts:

 1. The interface that communicates with the Linux networking stack—We dis-
cussed this in detail in the section “The Net Device Interface” in Chapter 15. 
You can use Listing 15.1 in that chapter as a template to implement this portion 
of your WLAN driver. 

 2. Form factor–specific code—If your card is a PCI card, it has to be architected 
to conform to the kernel PCI subsystem as described in Chapter 10, “Peripheral 
Component Interconnect.” Similarly, PCMCIA and USB cards have to tie in 
with their respective core layers.

 3. Chipset specific part—This is the cornerstone of the WLAN driver and is 
based on register specifications in the chip’s data sheet. Many companies do not 
release adequate documentation for writing open source device drivers, how-
ever, so this portion of some Linux WLAN drivers is at least partly based on 
reverse-engineering.

 4. Support for Wireless Extensions—Listing 16.3, shown earlier, implements an 
example.

Hardware-independent portions of the 802.11 stack  are reusable across drivers, 
so they are implemented as a collection of common library functions in the net/
ieee80211/ directory. ieee80211 is the core protocol module, but if you want to con-
fi gure WEP keys via the iwconfig command, you have to load ieee80211_crypt and 
ieee80211_crypt_wep, too. To generate debugging output from the 802.11 stack, 
enable CONFIG_IEEE80211_DEBUG while confi guring your kernel. You can use /proc/
net/ieee80211/debug_level as a knob to fi ne-tune the type of debug messages that you 
want to see. Starting with the 2.6.22 release, the kernel has an alternate 802.11 stack 
(net/mac80211/) donated by a company called Devicescape. WiFi device drivers may 
migrate to this new stack in the future.
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WiFi over SDIO

Like PCMCIA cards whose functionality has extended from storage to various other technologies, 
SD cards are no longer confi ned to the consumer electronics memory space. The Secure Digital 
Input/Output (SDIO) standard brings technologies such as WiFi, Bluetooth, and GPS to the SD 
realm. The Linux-SDIO project hosted at http://sourceforge.net/projects/sdio-linux/ offers driv-
ers for several SDIO cards.

Go to www.sdcard.org to browse the SD Card Association’s website. The latest standards 
adopted by the association are microSD and miniSD, which are miniature form factor versions 
of the SD card.

Looking at the Sources

WiFi device drivers live in drivers/net/wireless/. Look inside net/wireless/ for the imple-
mentations of Wireless Extensions and the new cfg80211 confi guration interface. The 
two Linux 802.11 stacks live under net/ieee80211/ and net/mac80211/, respectively.

Cellular Networking

Global System for Mobile Communications (GSM) is a prominent digital cellular stan-
dard. GSM networks are   called 2G or second-generation networks. GPRS represents 
the evolution from 2G to 2.5G. Unlike 2G networks, 2.5G networks are “always on.” 
Compared to GSM’s 9.6Kbps  throughput, GPRS supports theoretical speeds of up to 
170Kbps. 2.5G GPRS has given way to 3G networks based on technologies such as 
CDMA that offer higher speeds. 

In this section, let’s look at GPRS and CDMA.

GPRS

Because GPRS chips are cellular   modems, they present a UART interface to the sys-
tem and usually don’t require specialized Linux drivers. Here’s how Linux supports 
common GPRS hardware:

 1. For a system with built-in GPRS support, say, a board having a Siemens MC-45 
module wired to the microcontroller’s UART channel, the conventional Linux 
serial driver can drive the link.

www.sdcard.org
http://sourceforge.net/projects/sdio-linux/


 2. For a PCMCIA/CF GPRS device such as an Options GPRS card, serial_cs, the 
generic serial Card Services driver allows the rest of the operating system to see 
the card as a serial device. The first unused serial device (/dev/ttySX ) gets allotted 
to the card. Look at Figure 9.5 in Chapter 9, for an illustration.

 3. For USB GPRS modems, a USB-to-serial converter typically converts the USB 
port to a virtual serial port. The usbserial driver lets the rest of the system see 
the USB modem as a serial device (/dev/ttyUSBX ). The section “USB-Serial” in 
Chapter 11 discussed USB-to-serial converters.

The above driver descriptions also hold for driving GPS receivers and networking over 
GSM.

After the serial link is up, you may establish a network connection via AT com-
mands, a standard language to talk to modems. Cellular devices support an extended 
AT command set. The exact command sequence depends on the particular cellular 
technology in use. Consider for example, the AT string to connect over GPRS. Before 
entering data mode and connecting to an external network via a gateway GPRS support 
node (GGSN), a GPRS device must defi ne a context using an AT command. Here’s an 
example context string:

'AT+CGDCONT=1,"IP","internet1.voicestream.com","0.0.0.0",0,0'

where 1 stands for a context number, IP is the packet type, internet1.voicestream.
com is an access point name (APN)   specifi c to the service provider, and 0.0.0.0 asks 
the service provider to choose the IP address. The last two parameters pertain to data 
and header compression. A username and password are usually not needed.

As you saw in Chapter 9, PPP is used as the vehicle to carry TCP/IP payload over 
GPRS. A common syntax for invoking the PPP daemon, pppd, is this:

bash> pppd ttySX call connection-script

where ttySX is the serial port over which PPP runs, and connection-script is a fi le 
in /etc/ppp/peers/5 that contains the AT command sequence to establish the link. After 
establishing connection and completing authentication, PPP starts a Network Control 
Protocol (NCP)   such as Internet Protocol Control Protocol (IPCP). When IPCP success-
fully negotiates IP addresses, PPP starts talking with the TCP/IP stack.

5 The path name might vary depending on the distribution you use.
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Here is an example PPP connection script (/etc/ppp/peer/gprs-seq) for connecting to 
a GPRS service provider at 57600 baud. For the semantics of all constituent lines in 
the script, refer to the man pages of pppd:

57600

connect "/usr/sbin/chat -s -v "" AT+CGDCONT=1,"IP",

"internet2.voicestream.com","0.0.0.0",0,0 OK AT+CGDATA="PPP",1"

crtscts

noipdefault

modem

usepeerdns

defaultroute

connect-delay 3000

CDMA

For performance   reasons, many CDMA PC Cards have an internal USB controller 
through which a CDMA modem is connected. When such cards are inserted, the sys-
tem sees one or more new PCI-to-USB bridges on the PCI bus. Let’s take the example 
of a Huawei CDMA CardBus card. Look at the additional entries in the lspci output 
after inserting this card into the CardBus slot of a laptop:

bash> lspci -v

...

07:00:0 USB Controller: NEC Corporation USB (rev 43) (prog-if 10 [OHCI])

07:00:1 USB Controller: NEC Corporation USB (rev 43) (prog-if 10 [OHCI])

07:00:2 USB Controller: NEC Corporation USB 2.0 (rev 04) (prog-if 20 [EHCI])

These are standard OHCI and EHCI controllers, so the host controller drivers on 
Linux seamlessly talk to them. If a CDMA card, however, uses a host controller unsup-
ported by the kernel, you will have the unenviable task of writing a new USB host 
controller driver. Let’s take a closer look at the new USB buses in the above lspci output 
and see whether we can fi nd any devices connected to them:

bash> cat /proc/bus/usb/devices

T: Bus=07 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#=  1 Spd=480 MxCh= 2

B:  Alloc=  0/800 us ( 0%), #Int=  0, #Iso=  0

D:  Ver= 2.00 Cls=09(hub  ) Sub=00 Prot=01 MxPS=64 #Cfgs=  1

...



T: Bus=06 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#=  1 Spd=12  MxCh= 1

B:  Alloc=  0/900 us ( 0%), #Int=  0, #Iso=  0

D:  Ver= 1.10 Cls=09(hub  ) Sub=00 Prot=00 MxPS=64 #Cfgs=  1

...

T: Bus=05 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#=  1 Spd=12  MxCh= 1

B:  Alloc=  0/900 us ( 0%), #Int=  1, #Iso=  0

D:  Ver= 1.10 Cls=09(hub  ) Sub=00 Prot=00 MxPS=64 #Cfgs=  1

...

T: Bus=05 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#=  3 Spd=12  MxCh= 0

D:  Ver= 1.01 Cls=00(>ifc ) Sub=00 Prot=00 MxPS=16 #Cfgs=  1

P: Vendor=12d1 ProdID=1001 Rev= 0.00

S:  Manufacturer=Huawei Technologies

S:  Product=Huawei Mobile

C:* #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=100mA

I:  If#= 0 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=pl2303

E:  Ad=81(I) Atr=03(Int.) MxPS=  16 Ivl=128ms

E:  Ad=8a(I) Atr=02(Bulk) MxPS=  64 Ivl=0ms

E:  Ad=0b(O) Atr=02(Bulk) MxPS=  64 Ivl=0ms

I:  If#= 1 Alt= 0 #EPs= 2 Cls=ff(vend.) Sub=ff Prot=ff Driver=pl2303

E:  Ad=83(I) Atr=02(Bulk) MxPS=  64 Ivl=0ms

E:  Ad=06(O) Atr=02(Bulk) MxPS=  64 Ivl=0ms

...

The top three entries (bus7, bus6, and bus5) correspond to the three host control-
lers present in the CDMA card. The last entry shows that a full-speed (12Mbps) USB 
device is connected to bus 5. This device has a vendorID of 0x12d1 and a  productID
of 0x1001. As is evident from the preceding output, the USB core has bound this 
device to the pl2303 driver. If you look at the source fi le of the PL2303 Prolifi c USB-
to-serial adapter driver (drivers/usb/serial/pl2303.c), you will fi nd the following mem-
ber in the usb_device_id table:

static struct usb_device_id id_table [] = {

  /* ... */

  {USB_DEVICE(HUAWEI_VENDOR_ID, HUAWEI_PRODUCT_ID)},

  /* ... */

};

A quick peek at pl2303.h living in the same directory confi rms that HUAWEI_VENDOR_
ID and HUAWEI_PRODUCT_ID match the values that you just gleaned from /proc/
bus/usb/devices. The pl2303 driver presents a serial interface, /dev/ttyUSB0, over the 
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detected USB-to-serial converter. You can send AT commands to the CDMA modem 
over this interface. Attach pppd over this device and connect to the net. You are now a 
3G surfer!

Current Trends

At one end of today’s on-the-move connectivity spectrum, there are standards that 
allow coupling between cellular networks and WiFi to provide cheaper networking 
solutions. At the other end, technologies such as Bluetooth and Infrared are being 
integrated into cell phones to bridge consumer electronics devices with the Internet. 
Figure 16.7 shows a sample scenario.

In tandem with the coupling of existing standards and technologies, there is a steady 
stream of new communication standards arriving in the wireless space.

Zigbee (www.zigbee.org) adopts the  new 802.15.4 standard for wireless networking 
in the embedded space that is characterized by low range, speed, energy consumption, 
and code footprint. It primarily targets home and industrial automation. Of the wire-
less protocols discussed in this chapter, Zigbee is closest to Bluetooth but is considered 
complementary rather than competitive with it.

WiMax (Worldwide interoperability for Microwave access), based on the IEEE 802.16 
standard, is    a metropolitan-area network (MAN) fl avor of WiFi that has a range of sev-
eral kilometers. It supports fi xed connectivity for homes and offi ces, and a mobile 
version for networking on the go. WiMax is a cost-effective way to solve the last-mile 
connectivity problem (which is analogous to the task of reaching your home from 
the nearest metro rail station) and create broadband clouds that span large areas. The 
WiMax forum is hosted at www.wimaxforum.org.

MIMO (Multiple In Multiple Out) is   a new multiple-antenna technology utilized 
by WiFi and WiMax products to enhance their speed, range, and connectivity. 

Working groups are developing new standards that fall under the ambit of fourth-
generation or 4G networking. 4G will  signal the convergence of several communica-
tion technologies.

Some of the new communication technologies are transparent to the operating 
system and work unchanged with existing drivers and protocol stacks. Others such 
as Zigbee need new drivers and protocol stacks but do not have accepted open source 
implementations yet. Linux mirrors the state of the art, so look out for support for 
these new standards in future kernel releases.

www.zigbee.org
www.wimaxforum.org
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W hen you push the power switch on your handheld, it’s more than likely 
that it boots from fl ash memory. When you click some buttons to save 

data on your cell phone, in all probability, your data starts life in fl ash memory. 

Today, Linux has penetrated the embedded space and is no longer confined to 
desktops and servers. Linux avatars manifest in PDAs, music players, set-top 
boxes, and even medical-grade devices. The      Memory Technology Devices (MTD) 
subsystem of the kernel is responsible for interfacing your system with various 
flavors of flash memory found in these devices. In this chapter, let’s use the 
example of a Linux handheld to learn about MTD.

What’s Flash Memory? 

Flash memory     is rewritable storage that does not need power supply to hold informa-
tion. Flash memory banks are usually organized into     sectors. Unlike conventional 
storage, writes to fl ash addresses have to be preceded by an erase of the corresponding 
locations. Moreover, erases of portions of fl ash can be performed only at the granu-
larity of individual sectors. Because of these constraints, fl ash memory is best used 
with device drivers and fi lesystems that are tailored to suit them. On Linux, such 
specially designed drivers and fi lesystems are provided by the MTD subsystem.

Flash memory chips generally come in two fl avors: NOR and NAND.     NOR is 
the variety used to store fi rmware images on embedded devices, whereas     NAND   is 
used for large, dense, cheap, but imperfect1 storage as required by solid-state mass 
storage media such as USB pen drives and Disk-On-Modules (DOMs  ). NOR fl ash 
chips are connected to the processor via address and data lines like normal RAM, 
but NAND fl ash chips are interfaced using I/O and control lines. So, code resident 
on NOR fl ash can be executed in place, but that stored on NAND fl ash has to be 
copied to RAM before execution. 

1 It’s normal to have bad blocks scattered across NAND fl ash regions as you will learn in the section, “NAND Chip 
Drivers.” 



Linux-MTD Subsystem

The kernel’s MTD   subsystem shown in Figure 17.1 provides support for fl ash and 
similar nonvolatile solid-state storage. It consists of the following:

 • The      MTD core, which is an infrastructure consisting of library routines and data 
structures used by the rest of the MTD subsystem

 • Map drivers    that decide what the processor ought to do when it receives requests 
for accessing the flash

 • NOR Chip drivers    that know about commands required to talk to NOR flash chips

 •    NAND Chip drivers that implement low-level support for NAND flash controllers

 • User Modules   , the layer that interacts with user-space programs

 • Individual device drivers for some special fl ash chips

NORNAND

User Space
File I/0 File I/0 Raw I/0, MTD-Utils

User Modules

Driver Modules

MTD Layer

I/O
Probe

Kernel Space

Kernel Space

Hardware

Virtual File System (VFS) Layer

mtdblock, FTL, NFTL mtdchar JFFS2 YAFFS2

Individual Filesystems

NAND Chip
Drivers

NOR Chip Drivers
(CFI, JEDEC)

Map
Drivers

MTD Core

FIGURE 17.1 The Linux-MTD subsystem.
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Map Drivers

To MTD-  enable your device, your fi rst task is to tell MTD how to access the fl ash 
device. For this, you have to map your fl ash memory range for CPU access and pro-
vide methods to operate on the fl ash. The next task is to inform MTD about the dif-
ferent storage partitions residing on your fl ash. Unlike hard disks on PC-compatible 
systems, fl ash-based storage does not contain a standard partition table on the media. 
Because of this, disk-partitioning tools such as fdisk and cfdisk2 cannot be used to parti-
tion fl ash devices. Instead, partitioning information has to be implemented as part of 
kernel code.3 These tasks are accomplished with the help of an MTD map driver.

To better understand the function of map drivers, let’s look at an example.

Device Example: Handheld

Consider the Linux handheld shown in Figure 17.2. The fl ash has a size of 32MB and 
is mapped to 0xC0000000 in the processor’s address space. It contains three partitions, 
one each for the bootloader, the kernel, and the root fi lesystem. The bootloader parti-
tion starts from the top of the fl ash, the kernel partition begins at offset MY_KERNEL_
START, and the root fi lesystem starts at offset MY_FS_START.4 The bootloader and the 
kernel reside on read-only partitions to avoid unexpected damage, while the fi lesystem 
partition is fl agged read-write.

Let’s       fi rst create the fl ash map and then proceed with the driver initialization. The 
map driver has to translate the fl ash layout shown in the fi gure to an mtd_partition
structure. Listing 17.1 contains the   mtd_partition defi nition corresponding to Fig-
ure 17.2. Note that the mask_flags fi eld holds the permissions to be masked, so 
MTD_WRITEABLE implies a read-only partition.

LISTING 17.1 Creating an MTD Partition Map

#define FLASH_START          0x00000000

#define MY_KERNEL_START      0x00080000 /* 512K for bootloader */

#define MY_FS_START          0x00280000 /* 2MB for kernel */

#define FLASH_END            0x02000000 /* 32MB */

2 Fdisk and cfdisk are used to manipulate the partition table residing in the fi rst hard disk sector on PC systems.
3 You may also pass partitioning information to MTD via the kernel command line argument mtdpart=, if you enable 
CONFIG_MTD_CMDLINE_PARTS during kernel confi guration. Look at drivers/mtd/cmdlinepart.c for the usage syntax. 

4 Some devices have additional partitions for bootloader parameters, extra fi lesystems, and recovery kernels.



static struct mtd_partition pda_partitions[] = {

  {

    .name       = "pda_btldr",        /* This string is used by

/proc/mtd to identify 

                                         the bootloader partition */

    .size:      = (MY_KERNEL_START-FLASH_START),

    .offset     = FLASH_START,        /* Start from top of flash */

    .mask_flags = MTD_WRITEABLE       /* Read-only partition */

  }, 

  {

    .name       = "pda_krnl",         /* Kernel partition */

    .size:      = (MY_FS_START-MY_KERNEL_START),

    .offset     = MTDPART_OFS_APPEND, /* Start immediately after

                                         the bootloader partition */

    .mask_flags = MTD_WRITEABLE       /* Read-only partition */

  },

  {

    .name:      = "pda_fs",           /* Filesystem partition */

    .size:      = MTDPART_SIZ_FULL,   /* Use up the rest of the 

                                         flash */

    .offset     = MTDPART_OFS_NEXTBLK,/* Align this partition with 

                                         the erase size */

  }

};

Listing 17.1 uses MTDPART_OFS_APPEND to start a partition adjacent to the previous 
one. The start addresses of writeable partitions, however, need to be aligned with the 
erase/sector size of the fl ash chip. To achieve this, the fi lesystem partition uses MTD_
OFS_NEXTBLK rather than MTD_OFS_APPEND.

Embedded
Controller

DRAM Banks

32-bit
Addr/

Data

Bootloader
(Partition 0)

Two 16-bit interleaved
CFI-compliant NOR flash banks

Kernel
(Partition 1)

Filesystem
(Partition 2)

32-bit
Addr/

Data

FLASH_START

MY_KERNEL_START

MY_FS_START

FLASH END

0xC0000000 to
0xC2000000

FIGURE 17.2 Flash Memory on a sample Linux handheld.
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 Now     that you have populated the mtd_partition structure, let’s proceed and 
complete a basic map driver for the example handheld. Listing 17.2 registers the map 
driver with the MTD core. It’s implemented as a platform driver, assuming that your 
architecture-specifi c code registers an associated platform device having the same name. 
Rewind to the section “Device Example: Cell Phone” in Chapter 6, “Serial Drivers,” 
for a discussion on platform devices and platform drivers. The platform_device is 
defi ned by the associated architecture-specifi c code as follows:

struct resource pda_flash_resource = { /* Used by Listing 17.3 */

  .start = 0xC0000000,                 /* Physical start of the 

                                          flash in Figure 17.2 */

  .end   = 0xC0000000+0x02000000-1,    /* Physical end of flash */

  .flags = IORESOURCE_MEM,             /* Memory resource */

};

struct platform_device pda_platform_device = {

  .name = "pda",                   /* Platform device name */

  .id   = 0,                       /* Instance number */

  /* ... */

  .resource = &pda_flash_resource, /* See above */

};

platform_device_register(&pda_platform_device);

LISTING 17.2 Registering the Map Driver

static struct platform_driver pda_map_driver = {

  .driver = {

    .name     =  "pda",         /* ID */

   },

  .probe      =  pda_mtd_probe, /* Probe */

  .remove     =  NULL,          /* Release */

  .suspend    =  NULL,          /* Power management */

  .resume     =  NULL,          /* Power management */

};

/* Driver/module Initialization */

static int __init pda_mtd_init(void)

{

  return platform_driver_register(&pda_map_driver);

}

/* Module Exit */



static int __init pda_mtd_exit(void)

{

  return platform_driver_uregister(&pda_map_driver);

}

Because the kernel fi nds that the name of the platform driver registered in Listing 17.2 
matches with that of an already-registered platform device, it invokes the probe method 
pda_mtd_probe(), shown in Listing 17.3. This routine

 • Reserves the flash memory address range using   request_mem_region(), and 
obtains CPU access to that memory using   ioremap_nocache(). You learned 
how to do this in Chapter 10, “Peripheral Component Interconnect.”

 • Populates a map_info structure   (discussed next) with information such as the 
start address and size of flash memory. The information in this structure is used 
while performing the probing in the next step.

 • Probes the flash via a suitable MTD chip driver (discussed in the next section). 
Only the chip driver knows how to query the chip and elicit the command-set 
required to access it. The chip layer tries different permutations of bus widths 
and interleaves while querying. In Figure 17.2, two 16-bit flash banks are con-
nected in parallel to fill the 32-bit processor bus width, so you have a two-way 
interleave.

 • Registers the mtd_partition structure that you populated earlier, with the 
MTD core.

Before looking at Listing 17.3, let’s meet the map_info structure. It contains the 
address, size, and width of the fl ash memory and routines to access it:

struct map_info {

  char * name;               /* Name */

  unsigned long size;        /* Flash size */

  int bankwidth;             /* In bytes */

  /* ... */

  /* You need to implement custom routines for the following methods 

     only if you have special needs. Else populate them with built-

     in methods using simple_map_init() as done in Listing 17.3 */

  map_word (*read)(struct map_info *, unsigned long);

  void     (*write)(struct map_info *, const map_word, 

                    unsigned long);

  /* ... */

};
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While   we are in the topic of accessing fl ash chips, let’s briefl y revisit memory barri-
ers that we discussed in Chapter 4, “Laying the Groundwork.” An instruction reor-
dering that appears semantically unchanged to the compiler (or the processor) may 
not be so in reality, so the ordering of data operations on fl ash memory is best left 
alone. You don’t want to, for example, end up erasing a fl ash sector after writing to it, 
instead of doing the reverse. Also, the same fl ash chips, and hence their device drivers, 
are used on diverse embedded processors having different instruction reordering algo-
rithms. For these reasons, MTD drivers are notable users of hardware memory barri-
ers. simple_map_write(), a generic routine available to map drivers for use as the 
write() method in the map_info structure previously listed, inserts a call to mb()
before returning. This ensures that the processor does not reorder fl ash reads or writes 
across the barrier. 

LISTING 17.3 Map Driver Probe Method

#include <linux/mtd/mtd.h>

#include <linux/mtd/map.h>

#include <linux/ioport.h>

static int 

pda_mtd_probe(struct platform_device *pdev) 

{

  struct map_info *pda_map;

  struct mtd_info *pda_mtd;

  struct resource *res = pdev->resource;

  /* Populate pda_map with information obtained

     from the associated platform device */

  pda_map->virt = ioremap_nocache(res->start, 

                                  (res->end – res->start + 1));

  pda_map->name = pdev->dev.bus_id;

  pda_map->phys = res->start;

  pda_map->size = res->end – res->start + 1;

  pda_map->bankwidth = 2;     /* Two 16-bit banks sitting 

                                 on a 32-bit bus */

  simple_map_init(&pda_map);  /* Fill in default access methods */

  /* Probe via the CFI chip driver */ 

  pda_mtd = do_map_probe("cfi_probe", &pda_map); 



  /* Register the mtd_partition structure */

  add_mtd_partitions(pda_mtd, pda_partitions, 3); /* Three Partitions */

  /* ... */

}

Don’t worry if the CFI probing done in Listing 17.3 seems esoteric. It’s discussed in 
the next section when we look at NOR chip drivers.

MTD now knows how your fl ash device is organized and how to access it. When 
you boot the kernel with your map driver compiled in, user-space applications can 
respectively see your bootloader, kernel, and fi lesystem partitions as /dev/mtd/0, /dev/
mtd/1, and /dev/mtd/2. So, to test drive a new kernel image on the handheld, you can 
do this:

bash> dd if=zImage.new of=/dev/mtd/1 

Flash Partitioning from Bootloaders

The    Redboot bootloader maintains a partition table that holds fl ash layout, so if you are using 
Redboot on your embedded device, you can confi gure your fl ash partitions in the bootloader 
instead of writing an MTD map driver. To ask MTD to parse fl ash mapping information from 
Redboot’s partition table, turn on CONFIG_MTD_REDBOOT_PARTS during kernel confi guration.

NOR Chip Drivers

As you     might have noticed, the NOR fl ash chip used by the handheld in Figure 
17.2 is labeled CFI-compliant. CFI stands for   Common Flash Interface, a specifi cation 
designed to do away with the need for developing separate drivers to support chips 
from different vendors. Software can query CFI-compliant fl ash chips and automati-
cally detect block sizes, timing parameters, and the command-set to be used for com-
munication. Drivers that implement specifi cations such as CFI and JEDEC are called 
chip drivers.

According to the CFI specifi cation, software must write 0x98 to location 0x55
within fl ash memory to initiate a query. Look at Listing 17.4 to see how MTD imple-
ments CFI query.
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LISTING 17.4 Querying CFI-compliant Flash   

 /* Snippet from cfi_probe_chip()  (2.6.23.1 kernel) defined in 

drivers/mtd/chips/cfi_probe.c, with comments added */

 /* cfi is a pointer to struct cfi_private defined in 

include/linux/mtd/cfi.h */

 /* ... */

 /* Ask the device to enter query mode by sending 

    0x98 to offset 0x55 */

 cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, 

                  cfi->device_type, NULL);

 /* If the device did not return the ASCII characters

    ‘Q’, ‘R’ and ‘Y’, the chip is not CFI-compliant */

 if (!qry_present(map, base, cfi)) {

   xip_enable(base, map, cfi);

   return 0;

 }

 /* Elicit chip parameters and the command-set, and populate 

    the cfi structure */ 

 if (!cfi->numchips) {

   return cfi_chip_setup(map, cfi);

 }

 /* ... */

The CFI specifi cation defi nes various command-sets that compliant chips can imple-
ment. Some of the common ones are as follows:

 • Command-set 0001,    supported by Intel and Sharp flash chips

 • Command-set 0002, implemented on AMD and Fujitsu flash chips

 • Command-set 0020, used on ST fl ash chips

MTD supports these command-sets as kernel modules. You can enable the one sup-
ported by your fl ash chip via the kernel confi guration menu.



NAND Chip Drivers

NAND technology users such as USB pen drives, DOMs, Compact Flash memory, 
and SD/MMC cards emulate standard storage interfaces such as SCSI or IDE over 
NAND fl ash, so you don’t need to develop NAND drivers to communicate with 
them.5 On-board NAND fl ash chips need special drivers, however, and are the topic 
of this section. 

As you learned previously in this chapter, NAND fl ash chips, unlike their NOR 
counterparts, are not connected to the CPU via data and address lines. They interface 
to the CPU through special electronics called a     NAND fl ash controller that is part of 
many embedded processors. To read data from NAND fl ash, the CPU issues an appro-
priate read command to the NAND controller. The controller transfers data from 
the requested fl ash location to an internal RAM memory, also part of the controller. 
The data transfer is done in units of the fl ash chip’s       page size (for example, 2KB). In 
general, the denser the fl ash chip, the larger is its page size. Note that the page size is 
different from the fl ash chip’s block size, which is the minimum erasable fl ash memory 
unit (for example, 16KB). After the transfer operation completes, the CPU reads the 
requested NAND contents from the internal RAM. Writes to NAND fl ash are done 
similarly, except that the controller transfers data from the internal RAM to fl ash. The 
connection diagram of NAND fl ash memory on an embedded device is shown in 
Figure 17.3.

Because of this unconventional mode of addressing, you need special drivers to 
work with NAND storage. MTD provides such drivers to manage NAND-resident 
data. If you are using a supported chip, you have to only enable the appropriate 
low-level MTD NAND driver. If you are writing a NAND fl ash driver, however, 
you need to explore two datasheets: that of the NAND fl ash controller and the 
NAND fl ash chip.

NAND    fl ash chips do not support automatic confi guration using protocols such as 
CFI. You have to manually inform MTD about the properties of your NAND chip by 
adding an entry to the   nand_flash_ids[] table defi ned in drivers/mtd/nand/nand_
ids.c. Each entry in the table consists of an identifi er name, the device ID, page size, 
erase block size, chip size, and options such as the bus width.

5 Unless you are writing drivers for the storage media itself. If you are embedding Linux on a device that will export part of its
NAND partition to the outside world as a USB mass storage device, you do have to contend with NAND drivers.
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FIGURE 17.3 NAND fl ash connection.

There is another characteristic that goes hand in hand with NAND memory. NAND 
fl ash chips, unlike NOR chips, are not faultless. It’s normal to have some problem bits 
and bad blocks scattered across NAND fl ash regions. To handle this, NAND devices 
associate a    spare area with each fl ash page (for example, 64 bytes of spare area for 
each 2KB data page). The spare area contains out-of-band (OOB) information     to help 
perform bad block management and error correction. The OOB area includes error 
correcting codes (ECCs)   to implement error correction and detection. ECC algorithms 
correct single-bit errors and detect multibit errors. The   nand_ecclayout structure 
defi ned in include/mtd/mtd-abi.h specifi es the layout of the OOB spare area:

struct nand_ecclayout {

  uint 32_t eccbytes;

  uint32_t  eccpos[64];

  uint32_t  oobavail;

  struct    nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES];

};

In this structure, eccbytes holds the number of OOB bytes that store ECC data, and 
eccpos is an array of offsets into the OOB area that contains the ECC data. oobfree
records the unused bytes in the OOB area available to fl ash fi lesystems for storing fl ags 
such as   clean markers that signal successful completion of erase operations.

Individual NAND drivers initialize their nand_ecclayout according to the chip’s 
properties. Figure 17.4 illustrates the layout of a NAND fl ash chip having a page size 
of 2KB. The OOB semantics used by the fi gure is the default for 2KB page-sized chips 
as defi ned in the generic NAND driver, drivers/mtd/nand/nand_base.c.



Often, the NAND controller performs error correction and detection in hardware by 
operating on the ECC fi elds in the OOB area. If your NAND controller does not support 
error management, however, you will need to get MTD to do that for you in software. 
The MTD nand_ecc driver (drivers/mtd/nand/nand_ecc.c) implements software ECC. 

Figure 17.4   also shows OOB memory bytes that contain bad block markers. These 
markers are used to fl ag faulty fl ash blocks and are usually present in the OOB region 
belonging to the fi rst page of each block. The position of the marker inside the OOB 
area depends on the properties of the chip. Bad block markers are either set at the fac-
tory during manufacture, or by software when it detects wear in a block. MTD imple-
ments bad block management in drivers/mtd/nand/nand_bbt.c.

The mtd_partition structure used in Listing 17.1 for the NOR fl ash in Fig-
ure 17.2 works for NAND memory, too. After you MTD-enable your NAND fl ash, 
you can access the constituent partitions using standard device nodes such as /dev/
mtd/X and /dev/mtdblock/X. If you have a mix of NOR and NAND memories on 
your hardware, X can be either a NOR or a NAND partition. If you have a total of 
more than 32 fl ash partitions, accordingly change the value of MAX_MTD_DEVICES in 
include/linux/mtd/mtd.h.

NAND Chip

2KB Page
Main Data Area

Offsets 0 and 1 hold
bad block markers

0 2047

0 2 40 63

64-byte
OOB Area

2111

2KB Page
Main Data Area

4159

64-byte
OOB Area

4223

static struct nand_ecclayout nand_oob_64 = {
  .eccbytes = 24,   /* 24 bytes are used to hold ECC information */

  .eccpos = {
  40, 41, 42, 43, 44, 45, 46, 47,    /* The 24 OOB offsets
  48, 49, 50, 51, 52, 53, 54, 55,       that hold ECC
  56, 57, 58, 59, 60, 61, 62, 63},      information */

  .oobfree = {                   /* 38 bytes starting at
  {.offset = 2,                  offset 2 are available
  .length = 38}                  to JFFS2 */
  }
};

FIGURE 17.4 Layout of a NAND fl ash chip.
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To effectively make use of NAND storage, you need to use a fi lesystem tuned for 
NAND access, such as JFFS2 or YAFFS2, in tandem with the low-level NAND driver. 
We discuss these fi lesystems in the next section.

User Modules

After   you have added a map driver and chosen the right chip driver, you’re all set to let 
higher layers use the fl ash. User-space applications that perform fi le I/O need to view 
the fl ash device as if it were a disk, whereas programs that desire to accomplish raw 
I/O access the fl ash as if it were a character device. The MTD layer that achieves these 
and more is called User Modules, as shown in Figure 17.1. Let’s look at the components 
constituting this layer.

Block Device Emulation

The     MTD subsystem provides a block driver called  mtdblock that emulates a hard disk 
over fl ash memory. You can put any fi lesystem, say EXT2, over the emulated fl ash 
disk. Mtdblock hides complicated fl ash access procedures (such as preceding a write 
with an erase of the corresponding sector) from the fi lesystem. Device nodes created 
by mtdblock are named /dev/mtdblock/X, where X is the partition number. To create 
an EXT2 fi lesystem on the pda_fs partition of the handheld shown in Figure 17.2, do 
the following: 

bash> mkfs.ext2 /dev/mtdblock/2 →  Create an EXT2 filesystem 
                                      on the second partition

bash> mount /dev/mtdblock/2 /mnt →  Mount the partition

As you will soon see, it’s a much better idea to use JFFS2 rather than EXT2 to hold 
fi les on fl ash partitions.

The   File Translation Layer (FTL) and the NAND File Translation Layer (NFTL)   
perform a transformation called  wear leveling. Flash memory sectors can withstand 
only a fi nite number of erase operations (in the order of 100,000). Wear leveling pro-
longs fl ash life by distributing memory usage across the chip. Both FTL and NFTL 
provide device interfaces similar to mtdblock over which you can put normal fi lesys-
tems. The corresponding device nodes are named /dev/nftl/X, where X is the partition 
number. Certain algorithms used in these modules are patented, so there could be 
restrictions on usage.



Char Device Emulation

The     mtdchar driver presents a linear view of the underlying fl ash device, rather than 
the block-oriented view required by fi lesystems. Device nodes created by mtdchar are 
named /dev/mtd/X, where X is the partition number. You may update the bootloader 
partition of the handheld shown in Figure 17.2, by using dd over the corresponding 
mtdchar interface:

bash> dd if=bootloader.bin of=/dev/mtd/0

An example use of a raw mtdchar partition is to hold POST error logs generated by the 
bootloader on an embedded device. Another use of a char fl ash partition on an embed-
ded system is to store information similar to that present in the CMOS or the EEPROM 
on PC-compatible systems. This includes the boot order, power-on password, and   Vital 
Product Data (VPD) such as the device serial number and model number.

JFFS2

Journaling Flash File System (JFFS) is considered the best-suited fi lesystem for fl ash 
memory. Currently, version 2 (JFFS2) is in use, and JFFS3 is under development. 
JFFS was originally written for NOR fl ash chips, but support for NAND devices is 
merged with the 2.6 kernel.

Normal Linux fi lesystems are designed for desktop computers that are shut down 
gracefully. JFFS2 is designed for embedded systems where power failure can occur 
abruptly, and where the storage device can tolerate only a fi nite number of erases. Dur-
ing fl ash erase operations, current sector contents are saved in RAM. If there is a power 
loss during the slow erase process, entire contents of that sector can get lost. JFFS2 
circumvents this problem using a log-structured design. New data is appended to a 
log that lives in an erased region. Each JFFS2 node contains metadata to track disjoint 
fi le locations. Memory is periodically reclaimed using garbage collection. Because of 
this design, fl ash writes do not have to go through a save-erase-write cycle, and this 
improves power-down reliability. The log-structure also increases fl ash life span by 
spreading out writes.

To create a JFFS2 image of a tree living under /path/to/fi lesystem/ on a fl ash chip 
having an erase size of 256KB, use mkfs.jffs2 as follows:

bash> mkfs.jffs2 -e 256KiB –r /path/to/filesystem/ -o jffs2.img
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JFFS2 includes a   garbage collector (GC) that reclaims fl ash regions that are no longer 
in use. The garbage collection algorithm depends on the erase size, so supplying an 
accurate value makes it more effi cient. To obtain the erase size of your fl ash partitions, 
you may seek the help of /proc/mtd. The output for the Linux handheld shown in 
Figure 17.2 is as follows:

bash> cat /proc/mtd

dev:    size    erasesize   name

mtd0: 00100000  00040000  "pda_btldr"

mtd1: 00200000  00040000  "pda_krnl"

mtd2: 01400000  00040000  "pda_fs"

JFFS2 supports compression. Enable appropriate options under CONFIG_JFFS2_
COMPRESSION_OPTIONS to choose available compressors, and look at fs/jffs2/compr*.c
for their implementations.

Note that JFFS2 fi lesystem images are usually created on the host machine where 
you do cross-development and then transferred to the desired fl ash partition on the 
target device via a suitable download mechanism such as serial port, USB, or NFS. 
More on this in Chapter 18, “Embedding Linux.”

YAFFS2

The      implementation of JFFS2 in the 2.6 kernel includes features to work with the 
limitations of NAND fl ash, but Yet Another Flash File System (YAFFS) is a fi lesystem 
that is designed to function under constraints specifi c to NAND memory. YAFFS is 
not part of the mainline kernel, but some embedded distributions prepatch their ker-
nels with support for YAFFS2, the current version of YAFFS.

You can download YAFFS2 source code and documentation from www.yaffs.net.

MTD-Utils

The     MTD-utils package, downloadable from ftp://ftp.infradead.org/pub/mtd-utils/, 
contains several useful tools that work on top of MTD-enabled fl ash memory. Exam-
ples of included utilities are fl ash_eraseall, nanddump, nandwrite, and sumtool.

www.yaffs.net


To erase the second fl ash partition (on NOR or NAND devices), use fl ash_eraseall 
as follows:

bash> flash_eraseall –j /dev/mtd/2 

Because NAND chips may contain bad blocks, use ECC-aware programs such as 
nandwrite and nanddump to copy raw data, instead of general-purpose utilities, such 
as dd. To store the JFFS2 image that you created previously, on to the second NAND 
partition, do this:

bash> nandwrite /dev/mtd/2 jffs2.img

You can reduce JFFS2 mount times by inserting summary information into a JFFS2 
image using sumtool and turning on CONFIG_JFFS2_SUMMARY while confi guring your 
kernel. To write a summarized JFFS2 image to the previous NAND fl ash, do this:

bash> sumtool –e 256KiB –i jffs2.img –o jffs2.summary.img

bash> nandwrite /dev/mtd/2 jffs2.summary.img

bash> mount –t jffs2 /dev/mtdblock/2 /mnt

Configuring MTD

To MTD-  enable your kernel, you have to choose the appropriate confi guration 
options. For the fl ash chip shown in Figure 17.2, the required options are as follows:

CONFIG_MTD=y  Enable the MTD subsystem

CONFIG_MTD_PARTITIONS=y  Support for multiple partitions

CONFIG_MTD_GEN_PROBE=y  Common routines for chip probing

CONFIG_MTD_CFI=y  Enable CFI chip driver

CONFIG_MTD_PDA_MAP=y  Option to enable the map driver

CONFIG_JFFS2_FS=y  Enable JFFS2

CONFIG_MTD_PDA_MAP is assumed to be a new option added to enable the map driver 
we previously wrote. Each of these features can also be built as a kernel module unless 
you have an MTD-resident root fi lesystem. To mount the fi lesystem partition in Fig-
ure 17.2 as the root device during boot, ask your bootloader to append root=/dev/
mtdblock/2 to the command-line string that it passes to the kernel.

You may reduce kernel footprint by eliminating redundant probing. Because our 
example handheld has two parallel 16-bit banks sitting on a 32-bit physical bus (thus 
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resulting in a two-way interleave and a 2-byte bank width), you can optimize using 
these additional options:

CONFIG_MTD_CFI_ADV_OPTIONS=y

CONFIG_MTD_CFI_GEOMETRY=y

CONFIG_MTD_MAP_BANK_WIDTH_2=y

CONFIG_MTD_CFI_I2=y

CONFIG_MTD_MAP_BANK_WIDTH_2 enables a CFI bus width of 2, and CONFIG_MTD_
CFI_I2 sets an interleave of 2.

eXecute In Place

With    eXecute In Place (XIP), you can run the kernel directly from flash. Because 
you do away with the extra step of copying the kernel to RAM, your kernel boots 
faster. The downside is that your flash memory requirement increases because the 
kernel has to be stored uncompressed. Before deciding to go the XIP route, also 
be aware that the slower instruction fetch times from flash can impact runtime 
performance.

The Firmware Hub

PC-compatible    systems use a NOR fl ash chip called the Firmware Hub (FWH) to 
hold the BIOS. The FWH is not directly connected to the processor’s address and 
data bus. Instead, it’s interfaced via the    Low Pin Count (LPC) bus, which is part of 
South Bridge chipsets. The connection diagram is shown in Figure 17.5.

The MTD subsystem includes drivers to interface the processor with the FWH. 
FWHs are usually not compliant with the CFI specifi cation. Instead, they conform 
to the JEDEC (Joint Electron Device Engineering Council) standard. To inform MTD 
about a yet unsupported JEDEC chip, add an entry to the jedec_table array in 
drivers/mtd/chips/jedec_probe.c with information such as the chip manufacturer ID 
and the command-set ID. Here is an example:

static const struct amd_flash_info jedec_table[] = {

  /* ... */

  {



    .mfr_id  = MANUFACTURER_ID, /* E.g.: MANUFACTURER_ST */

    .dev_id  = DEVICE_ID,       /* E.g.: M50FW080 */

    .name    = "MYNAME",        /* E.g.: "M50FW080" */

    .uaddr   = {

      [0] = MTD_UADDR_UNNECESSARY,

    },

    .DevSize  = SIZE_1MiB,    /* E.g.: 1MB */

    .CmdSet   = CMDSET,       /* Command-set to communicate with the

                                 flash chip e.g., P_ID_INTEL_EXT */

    .NumEraseRegions = 1,     /* One region */

    .regions  = {

      ERASEINFO (0x10000, 16),/* Sixteen 64K sectors */

    }

  },

  /* ... */

};

When you have your chip details imprinted in the jedec_table as shown here, MTD 
should recognize your fl ash, provided you have enabled the right kernel confi guration 
options. The following confi guration makes the kernel aware of an FWH that inter-
faces to the processor via an Intel ICH2 or ICH4 South Bridge chipset:

CONFIG_MTD=y  Enable the MTD subsystem

CONFIG_MTD_GEN_PROBE=y  Common routines for chip probing

CONFIG_MTD_JEDECPROBE=y  JEDEC chip driver

CONFIG_MTD_CFI_INTELEXT=y  The command-set for communicating 

                               with the chip

CONFIG_MTD_ICHXROM=y  The map driver

CONFIG_MTD_JEDECPROBE enables the JEDEC MTD chip driver, and CONFIG_MTD_
ICH2ROM adds the MTD map driver that maps the FWH to the processor’s address 
space. In addition, you need to include the appropriate command-set implementation 
(for example, CONFIG_MTD_CFI_INTELEXT for Intel Extension commands).

After these modules have been loaded, you can talk to the FWH from user-space 
applications via device nodes exported by MTD. You can, for example, reprogram the 
BIOS from user space using a simple application, as shown in Listing 17.5. Be warned 
that incorrectly operating this program can corrupt the BIOS and render your system 
unbootable!
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Processor

North Bridge

South BridgeFirmware Hub
(BIOS Flash)

LPC BUS

FIGURE 17.5 The Firmware Hub on a PC-compatible system.

 Listing 17.5 operates on the MTD char device associated with the FWH, which it 
assumes to be /dev/mtd/0. The program issues three MTD-specifi c ioctl commands:

 •       MEMUNLOCK to unlock the flash sectors prior to programming

 • MEMERASE to erase flash sectors prior to rewriting

 • MEMLOCK to relock the sectors after programming

LISTING 17.5 Updating the BIOS  

#include <linux/mtd/mtd.h>

#include <stdio.h>

#include <fcntl.h>

#include <asm/ioctl.h>

#include <signal.h>

#include <sys/stat.h>

#define BLOCK_SIZE    4096

#define NUM_SECTORS   16

#define SECTOR_SIZE   64*1024

int

main(int argc, char *argv[])

{

  int fwh_fd, image_fd;

  int usect=0, lsect=0, ret;

  struct erase_info_user fwh_erase_info;

  char buffer[BLOCK_SIZE];

  struct stat statb;



  /* Ignore SIGINTR(^C) and SIGSTOP (^Z), lest

     you end up with a corrupted flash and an 

     unbootable system */

  sigignore(SIGINT); 

  sigignore(SIGTSTP);

  /* Open MTD char device */

  fwh_fd = open("/dev/mtd/0", O_RDWR);

  if (fwh_fd < 0) exit(1);

  /* Open BIOS image */

  image_fd = open("bios.img", O_RDONLY);

  if (image_fd < 0) exit(2);

  /* Sanity check */

  fstat(image_fd, &statb);

  if (statb.st_size != SECTOR_SIZE*NUM_SECTORS) {

    printf("BIOS image looks bad, exiting.\n");

    exit(3);

  }

  /* Unlock and erase all sectors */

  while (usect < NUM_SECTORS) {

    printf("Unlocking & Erasing Sector[%d]\r", usect+1);

    fwh_erase_info.start = usect*SECTOR_SIZE;

    fwh_erase_info.length = SECTOR_SIZE;

    ret = ioctl(fwh_fd, MEMUNLOCK, &fwh_erase_info);

    if (ret != 0) goto bios_done;

    ret = ioctl(fwh_fd, MEMERASE, &fwh_erase_info);

    if (ret != 0) goto bios_done;

    usect++;

  }

   /* Read blocks from the BIOS image and dump it to the

      Firmware Hub */

  while ((ret = read(image_fd, buffer, BLOCK_SIZE)) != 0) {

    if (ret < 0) goto bios_done;

    ret = write(fwh_fd, buffer, ret);

    if (ret <= 0) goto bios_done;

  }
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  /* Verify by reading blocks from the BIOS flash and comparing 

     with the image file */

  /* ... */

 bios_done: 

  /* Lock back the unlocked sectors */

  while (lsect < usect) {

    printf("Relocking Sector[%d]\r", lsect+1);

    fwh_erase_info.start  = lsect*SECTOR_SIZE;

    fwh_erase_info.length = SECTOR_SIZE;

    ret = ioctl(fwh_fd, MEMLOCK, &fwh_erase_info);

    if (ret != 0) printf("Relock failed on sector %d!\n", lsect);

    lsect++;

  }

  close(image_fd);

  close(fwh_fd);

}

Debugging

To   debug fl ash-related problems, enable CONFIG_MTD_DEBUG (Device Drivers → 
Memory Technology Devices → Debugging) during kernel confi guration. You can fur-
ther tune the debug verbosity level to between 0 and 3.

The Linux-MTD project page www.linux-mtd.infradead.org has FAQs, various 
pieces of documentation, and a paper  that provides insights into JFFS2 design. The 
linux-mtd mailing list is the place to discuss questions related to MTD device drivers. 
Look at http://lists.infradead.org/pipermail/linux-mtd/ for the mailing list archives.

Looking at the Sources

In   the kernel tree, the drivers/mtd/ directory contains the sources for the MTD sub-
system. Map, chip, and NAND drivers live in the drivers/mtd/maps/, drivers/mtd/chips/,

www.linux-mtd.infradead.org
http://lists.infradead.org/pipermail/linux-mtd/


and drivers/mtd/nand/ subdirectories, respectively. Most MTD data structures are 
defi ned in header fi les present in include/linux/mtd/.

To   access an unsupported BIOS fi rmware hub from Linux, implement a driver 
using drivers/mtd/maps/ichxrom.c as your starting point.

For examples of operating on NAND OOB data from user space, look at  nanddump.c
and nandwrite.c in the MTD-utils package.

Table 17.1contains the main data structures used in this chapter and their location 
in the source tree. Table 17.2 lists the main kernel programming interfaces that you 
used in this chapter along with the location of their defi nitions.

TABLE 17.1 Summary of  Data Structures 

 Data Structure Location Description

mtd_partition include/linux/mtd/partitions.h  Representation of a flash chip’s partition layout.

 map_info include/linux/mtd/map.h  Low-level access routines implemented by the 
map driver are passed to the chip driver using 
this structure.

 mtd_info include/linux/mtd/mtd.h  General device-specific information.

 erase_info, include/linux/mtd/mtd.h, Structures used for flash erase management.
 erase_info_user include/mtd/mtd-abi.h  

 cfi_private include/linux/mtd/cfi.h  Device-specific information maintained by NOR 
chip drivers.

 amd_flash_info drivers/mtd/chips/jedec_probe.c  Device-specific information supplied to the 
JEDEC chip driver.

 nand_ecclayout include/mtd/mtd-abi.h  Layout of the OOB spare area of a NAND chip.

TABLE 17.2 Summary  of Kernel Programming Interfaces

 Kernel Interface Location Description

 simple_map_init() drivers/mtd/maps/map_funcs.c  Initializes a map_info structure with generic 
flash access methods

do_map_probe() drivers/mtd/chips/chipreg.c Probes the NOR flash via a chip driver

add_mtd_partitions() drivers/mtd/mtdpart.c  Registers an mtd_partition structure with 
the MTD core
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L inux  is making inroads into industry domains such as consumer electron-
ics, telecom, networking, defense, and health care. With its popularity 

surging in the embedded space, it’s more likely that you will use your Linux 
device driver skills to enable embedded devices rather than legacy systems. In 
this chapter, let’s enter the world of embedded Linux wearing the lens of a device 
driver developer. Let’s look at the software components of a typical embedded 
Linux solution and see how the device classes that you saw in the previous chap-
ters tie in with common embedded hardware.

Challenges

Embedded  systems present several signifi cant software challenges:

 • Embedded software has to be cross-compiled and then downloaded to the 
target device to be tested and verified. 

 • Embedded systems, unlike PC-compatible computers, do not have fast pro-
cessors, fat caches, and wholesome storage. 

 • It’s often difficult to get mature development and debug tools for embedded 
hardware for free. 

 • The Linux community has a lot more experience on the x86 platform, so you 
are less likely to get instant online help from experts if you are working on 
embedded computers.

 • The hardware evolves in stages. You may have to start software development 
on a proof-of-concept prototype or a reference board, and progressively move 
on to engineering-level debug hardware and a few passes of  production-
 level units.

All these result in a longer development cycle.
From a device-driver perspective, embedded software developers often face inter-

faces not commonly found on conventional computers. Figure 18.1 (which is an 
expanded version of Figure 4.2 in Chapter 4, “Laying the Groundwork”) shows a 



hypothetical embedded device that could be a handheld, smart phone, point-of-sale
(POS)   terminal, kiosk, navigation system, gaming device, telemetry gadget on an 
automobile dashboard, IP phone, music player, digital set-top box, or even a pace-
maker programmer. The device is built around an SoC and has some combination of 
fl ash memory, SDRAM, LCD, touch screen, USB OTG, serial ports, audio codec, 
connectivity, SD/MMC controller, Compact Flash, I2C devices, SPI devices, JTAG, 
biometrics, smart card interfaces, keypad, LEDs, switches, and electronics specifi c 
to the industry domain. Modifying and debugging drivers for some of these devices 
can be tougher than usual: NAND fl ash drivers have to handle problems such as bad 
blocks and failed bits, unlike standard IDE storage drivers. Flash-based fi lesystems 
such as JFFS2, are more complex to debug than EXT2 or EXT3 fi lesystems. A USB 
OTG driver is more involved than a USB OHCI driver. The SPI subsystem in the 
kernel is not as mature as, say, the serial layer. Moreover, the industry domain using 
the embedded device might impose specifi c requirements such as quick response times 
or fast boot.
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FIGURE 18.1 Block diagram of a hypothetical embedded device.
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Component Selection

Evaluating   and selecting components is one of the important tasks undertaken during 
the concept phase of a project. Look at the sidebar “Choosing a Processor and Periph-
erals” for some important factors that hardware designers and product managers con-
sider while choosing components for building an embedded device. In today’s world, 
where time to market is often the critical factor driving device design, the software 
engineer also has a considerable say in shaping component selection. Availability of a 
Linux distribution can infl uence processor choice, while existence of device drivers or 
close starting points can affect the choice of peripheral chipsets.

Although the kernel engineer needs to do due diligence and evaluate several Linux 
distributions (or even operating systems), he may nix a technologically superior distri-
bution in favor of a familiar one if he believes that’ll mitigate project risks. Or a pre-
ferred distribution might be the one that offers indemnifi cation from lawsuits arising 
out of kernel bugs, if that is a crucial consideration in the relevant industry domain. 
The electrical engineer can limit evaluation to processors supported by the chosen dis-
tribution and prefer peripheral chipsets enabled by the distribution in question.

Choosing a Processor and Peripherals

Let’s     look at some common questions that electrical engineers and product managers ask when 
selecting components for an embedded device. Assume that a hypothetical processor P is on the 
shortlist because it satisfi es basic product requirements such as power consumption and packag-
ing. P and accompanying peripheral chipsets are under evaluation:

Performance: Is the processor frequency suffi cient to drive target applications? If the embed-
ded device intends to implement CPU-intensive tasks, does the MIPS budgeting for all software 
subsystems balance with the processor’s MIPS rating? If the target device requires high-resolution 
imaging, for example, will the MHz impact of graphics manipulation drag down the performance 
of other subsystems, such as networking? 

Cost: Will I save a buck on the component but end up spending two more on the surround-
ing electronics? For example, will P need an extra regulator? Will I need to throw in an additional 
accessory, for example, an RTC chip, because P does not have one built-in? Does P have more 
pins than other processors under evaluation leading to a denser board having a larger number of 
layers and vias that increase the raw board cost? Does P consume more power and generate more 
heat necessitating a bigger power supply and additional passive components? Is there errata in the 
data sheet that has the possibility of increasing software development costs?

Functionality: What’s the maximum size of DRAM, SRAM, NOR, and NAND memory that 
P can address? 



Business Planning: Does P’s vendor offer an upgrade path to a higher horsepower processor 
that is a drop-in (pin-compatible) replacement? Is the vendor company stable? 

Supplier: Is this a single-source component? If so, is the supplier volatile? What are the lead 
times to procure the parts?

End-of-Life: Is P likely to go end-of-life before the expected lifespan of the embedded device?

Credibility: Is P an accepted component? Do peripheral chipsets under evaluation have an 
industry segment behind them? Perhaps a landscape LCD under consideration is being used on 
automobile dashboards?

Ruggedness: Need the components be MIL (military) or industrial grade?

One has to evaluate different candidates and fi gure out the sweet spot in terms of all these.

Tool Chains

Because   the target device is unlikely to be binary-compatible with your host develop-
ment platform, you have to cross-compile embedded software using tool chains. Set-
ting up a full-fl edged tool chain entails building the following:

 1. The GNU C (cross-)Compiler.   GCC supports all platforms that Linux runs on, 
but you have to configure and build it to generate code for your target architec-
ture. Essentially, you have to compile the compiler and generate the appropriate 
cross-compiler.

 2. Glibc  , the set of C libraries that you will need when you build applications for 
the target device.

 3. Binutils , which includes the cross-assembler, and tools such as objdump.

Getting a development tool chain in place used to be a daunting task several years ago 
but is usually straightforward today because Linux distributions offer precompiled 
binaries and easy-installation tools for a variety of architectures.

Embedded Bootloaders 

Bootloader       development is usually the starting point of any embedded software effort. 
You have to decide whether to write a bootloader from scratch or tailor an existing 
open source bootloader to suit your needs. Each candidate bootloader might be built 
based on a different philosophy: small footprint, easy portability, fast boot, or the 
capability to support certain specifi c features. After you home-in on a starting point, 
you can design and implement device-specifi c modifi cations.
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In this section, let’s use the term  bootloader to mean the boot suite. This includes 
the following:

 • The BIOS, if present

 • Any bootstrap code needed to put the bootloader onto the boot device

 • One or more stages1 of the actual bootloader 

 • Any program executing on an external host machine that talks with the boot-
loader for the purpose of downloading fi rmware onto the target device

At the minimum, a bootloader is responsible for processor- and board-specifi c initial-
izations, loading a kernel and an optional initial ramdisk into memory and passing 
control to the kernel. In addition, a bootloader might be in charge of providing BIOS 
services, performing POST, supporting fi rmware downloads to the target, and passing 
memory layout and confi guration information to the kernel. On embedded devices 
that use encrypted fi rmware images for security reasons, bootloaders may have the task 
of decrypting fi rmware. Some bootloaders support a debug monitor to load and debug 
stand-alone code on to the target device. You may also decide to build a failure- recovery 
mechanism into your bootloader to recoup from kernel corruption on the fi eld.

In general, bootloader architecture depends on the processor family, the chipsets 
present on the hardware platform, the boot device, and the operating system running 
on the device. To illustrate the effects of the processor family on the boot suite, con-
sider the following:

 • A bootloader for a device designed around the StrongARM processor has to 
know whether it’s booting the system or waking it up from sleep, because the 
processor starts execution from the top of its address space (the bootloader) in 
both cases. The bootloader has to pass control to the kernel code that restores 
the system state if it’s waking up from sleep or load the kernel from the boot 
device if the system is starting from reset.

 • An x86 bootloader might need to switch to protected mode to load a kernel big-
ger than the 1MB real-mode limit.

 • Embedded systems not based on x86 platforms cannot avail the services of a leg-
acy BIOS. So, if you want your embedded device to boot, for example, from an 
external USB device, you have to build USB capabilities into your bootloader.

1 In embedded bootloader parlance, the fi rst stage of  a two-stage bootloader is sometimes called the Initial Program Loader (IPL),
and the second stage is called the Secondary Program Loader (SPL).



 • Even when two platforms are based on similar processor cores, the bootloader 
architecture may differ based on the SoC. For example, consider two ARM-
based devices, the Compaq iPAQ H3900 PDA and the Darwin Jukebox. The 
former is built around the Intel PXA250 controller chip, which has an XScale 
CPU based on an ARMv5 core, and the latter is designed using the Cirrus Logic 
EP7312 controller that uses an ARMv3 core. Whereas XScale supports JTAG 
(named after the   Joint Test Action Group, which developed this hardware-assisted 
debugging standard) to load a bootloader onto fl ash, the EP7312 has a boot-
strap mode to accomplish the same task.

The boot suite needs a mechanism to transfer a bootloader image from the host devel-
opment system to the target’s boot device. This is called      bootstrapping. Bootstrapping 
is straightforward on PC-compatible systems where the BIOS fl ash is programmed 
using an external burner if it’s corrupted or updated after booting into an operating 
system if it’s healthy. Embedded devices, however, do not have a generic method for 
bootstrapping.

To illustrate bootstrapping on an embedded system, take the example of the Cir-
rus Logic EP7211 controller   (which is the predecessor of the EP7312 discussed in the 
previous section). The EP7211 executes code from a small internal 128-byte memory 
when it’s powered on in a bootstrap mode. This 128-byte code downloads a bootstrap 
image from a host via the serial port to an on-board 2KB SRAM and transfers control 
to it. The boot suite has to be thus architected into three stages, each loaded at a dif-
ferent address:

 • The first stage (the 128-byte image) is part of processor firmware. 

 • The second stage lives in the on-chip SRAM, so it can be up to 2KB. This is the 
bootstrapper.

 • The bootstrapper downloads the actual bootloader image from an external host 
to the top of fl ash memory. The bootloader gets control when the processor 
powers on in normal operation mode.

Note that the processor-resident microcode (the fi rst stage) itself cannot function as 
the bootstrapper because a bootstrapper needs to have the capability to program fl ash 
memory. Because many types of fl ash chips can be used with a processor, the boot-
strapper code needs to be board-specifi c.

Many controller chips do not support a bootstrap mode. Instead, the bootloader 
is written to fl ash via a JTAG interface. You can use your JTAG debugger’s command 

Embedded Bootloaders 533



534 Chapter 18 Embedding Linux

interface to access the processor’s debug logic and burn the bootloader to the target 
device’s fl ash memory. We will have a more detailed discussion on JTAG debugging in 
the section “JTAG Debuggers” in Chapter 21, “Debugging Device Drivers.”

There are controllers that support both bootstrap execution mode and JTAG. The 
Freescale i.MX21 (and its upgraded version i.MX27) based on an ARM9 core is one 
such controller.

After a bootloader is resident on fl ash, it can update itself as well as other fi rmware 
components such as the kernel and the root fi lesystem. The bootloader can directly talk 
to a host machine and download fi rmware components via interfaces such as UART, 
USB, or Ethernet.

Table 18.1 looks at a few example Linux bootloaders for ARM, PowerPC, and x86. 

TABLE 18.1 Linux Bootloaders   

 Processor 
 Platform Linux Bootloaders

 ARM       RedBoot (www.cygwin.com/redboot) is a bootloader popular on ARM-based hardware. 
Redboot is based on a hardware abstraction offered by the eCos operating system (http://ecos.
sourceware.org/).

   The      BootLoader Object or BLOB (http://sourceforge.net/projects/blob/), a bootloader origi-
nally developed for StrongARM-based boards, is commonly custom ported to other ARM-
based platforms, too. BLOB is built as two images, one that performs minimal initializations, 
and the second that forms the bulk of the bootloader. The first image relocates the second to 
RAM, so the bootloader can easily upgrade itself.

 PowerPC  PowerPC chips used on embedded devices include SoCs such as IBM’s 405LP and the 
440GP, and Motorola’s MPC7xx and MPC8xx. Bootloaders such as  U-Boot (http:// 
sourceforge.net/projects/u-boot/),  SLOF, and  PIBS, boot Linux on PowerPC-based hardware.

 x86   Most x86-based systems boot from disk drives. Embedded x86 boards may boot from solid-
state disks rather than mechanical drives. The first stage of a disk-resident bootloader consists 
of a sector-sized chunk that is loaded by the BIOS. This is called the Master Boot Record
(MBR  ) and contains up to 446 bytes of code, four partition table entries consuming 16 bytes 
each, and a 2-byte signature (thus making up a 512-byte sector). The MBR is responsible for 
loading the second stage of the bootloader. Each intervening stage has its own tasks, but the 
final stage lets you choose the kernel image and command-line arguments, loads the kernel 
and any initial ramdisk to memory, and transfers control to the kernel.

   As an illustration, let’s look at three bootloaders popularly used to boot Linux on x86-based 
hardware:

  •   The      Linux Loader  or LILO (http://freshmeat.net/projects/lilo/) is packaged along with 
some Linux distributions. When the first stage of the bootloader is written to the boot 
sector, LILO precalculates the disk locations of the second stage and the kernel. If you build 
a new kernel image, you have to rewrite the boot sector. The second stage allows the user to 
interactively select the kernel image and configure command-line arguments. It then loads 
the kernel to memory.

www.cygwin.com/redboot
http://ecos.sourceware.org/
http://ecos.sourceware.org/
http://sourceforge.net/projects/blob/
http://sourceforge.net/projects/u-boot/
http://sourceforge.net/projects/u-boot/
http://freshmeat.net/projects/lilo/


 Processor 
 Platform Linux Bootloaders

  •   GRUB     (www.gnu.org/software/grub) is different from LILO in that the kernel image can 
live in any supported filesystem, and the boot sector need not be rewritten if the kernel 
image changes. GRUB has an extra stage 1.5 that understands the filesystem holding the 
boot images. Currently supported filesystems are EXT2, DOS FAT, BSD FFS, IBM JFS, 
SGI XFS, Minix, and Reiserfs. GRUB complies with the Multiboot specification, which 
allows any complying operating system to boot via any complying bootloader. You looked 
at a sample GRUB configuration file in Chapter 2, “A Peek Inside the Kernel.”

  •       SYSLINUX (http://syslinux.zytor.com/) is a no-frills Linux bootloader. It understands the 
FAT filesystem, so you can store the kernel image and the second stage bootloader on a 
FAT partition.

Giving due thought to the design and architecture of the bootloader suite lays a solid 
foundation for embedded software development. The key is to choose the right boot-
loader as your starting point. The benefi ts range from a shorter software development 
cycle to a feature-rich and robust device.

Memory Layout

Figure   18.2 shows an example memory layout on an embedded device. The bootloader 
sits on top of the NOR fl ash. Following the bootloader lies the param block, a stati-
cally compiled binary image of kernel command-line arguments. The compressed ker-
nel image comes next. The fi lesystem occupies the rest of the available fl ash memory. 
In the initial phase, when you start development with a fi rst-shot kernel, the fi lesystem 
is usually a compressed ramdisk (initrd or initramfs), because having a fl ash-based fi le-
system entails getting the kernel MTD subsystem confi gured and running. 

During power-on, the bootloader in Figure 18.2 uncompresses the kernel and loads 
it to DRAM at 0xc0200000. It then loads the ramdisk at 0xc0280000 (unless you 
build an initramfs into the base kernel as you learned in Chapter 2). Finally, it obtains 
command-line arguments from the param block and transfers control to the kernel. 

Because you may have to work with unconventional consoles and memory parti-
tions on embedded devices, you have to pass the right command-line arguments to the 
kernel. For the device in Figure 18.2, this is a possible command line:

console=/dev/ttyS0,115200n8 root=/dev/ram initrd=0xC0280000

When you have the kernel MTD drivers recognizing your fl ash partitions, the area 
of fl ash that holds the ramdisk can instead contain a JFFS2-based fi lesystem. With 
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this, you don’t have to load the initrd to DRAM. Assuming that you have mapped the 
bootloader, param block, kernel, and fi lesystem to separate MTD partitions, the com-
mand line now looks like this:

console=/dev/ttyS0,115200n8 root=/dev/mtdblock3

See the sidebar “ATAGs” for another method of passing parameters from the boot-
loader to the kernel.

ATAGs

On ARM kernels, command-line arguments are deprecated in favor of a tagged list of parameters. 
This mechanism, called  ATAG, is described in Documentation/arm/Booting. To pass a param-
eter to the kernel, create the corresponding tag in system memory from the bootloader, supply 
a kernel function to parse it, and add the latter to the list of tag parsing functions using the 
__tagtable() macro. The tag structure and its relatives are defi ned in include/asm-arm/setup.h,
whereas arch/arm/kernel/setup.c contains functions that parse several predefi ned ATAGs.

Embedded Device

Development host connected
to the target over a serial port

Serial port
(/dev/ttyS0)

at 115K baud

NOR FLASH

Bootloader

Param Block

Kernel zImage

Phase 1: Ramdisk

Phase 2: JFFS2   

DRAM

Run-time Kernel

Kernel Modules

Filesystem

0xC00000000xC8000000

0xC0200000

0xC0280000

FIGURE 18.2 Example memory layout on an embedded device.



Kernel Porting

Like    setting up tool chains, porting the kernel to your target device was a serious 
affair a few years ago. One had to evaluate the stability of the current kernel tree for 
the architecture of interest, apply available patches that were not yet part of the main-
line, make modifi cations, and hope for good luck. But today, you are likely to fi nd a 
close starting point, not just for your SoC, but for a hardware board that is similar 
to yours. For example, if you are designing an embedded device around the Freescale 
i.MX21 processor, you have the option of starting off with the kernel port (arch/arm/ 
mach-imx/) for the i.MX21-based reference board built by the processor vendor. If 
you thus start development from a suitable distribution-supplied or standard kernel 
available for a board that resembles yours, chances are, you won’t have to grapple with 
complex kernel bring-up issues. 

But even with a close match, you are likely to face issues caused by modifi ed mem-
ory maps, changed chip selects, board-specifi c GPIO assignments, dissimilar clock 
sources, disparate fl ash banks, timing requirements of a new LCD panel, or a differ-
ent debug UART port. A change in clocking for example, can ripple through dozens 
of registers and impact the operation of several I/O peripherals. You might need an 
in-depth reading of the CPU reference manual to resolve it. To fi gure out a modifi ed 
interrupt pin routing caused by a different GPIO assignment, you might have to pore 
over your board schematics. To program an LCD controller with HSYNC and VSYNC
durations appropriate to your LCD panel, you may need to connect an oscilloscope to 
your board and digest the information that it gathers.

Depending on the demands on your device, you may also need to make kernel 
changes unrelated to bring up. It could be as simple as exporting some information via 
procfs or as complex as modifying the kernel for fast boot. 

After you have the base kernel running, you can turn your attention to enabling 
device drivers for the different I/O interfaces on your hardware.

uClinux

uClinux   is a branch of the Linux kernel intended for lower-end microprocessors that have no 
Memory Management Units (MMUs). uClinux ports are available for processors such as H8, 
Blackfi n, and Dragonball. Most portions of uClinux are merged with the mainline 2.6 kernel. 

The uClinux project is hosted at www.uclinux.org. The website contains patches, documenta-
tion, the code repository, list of supported architectures, and information for subscribing to the 
uclinux-dev mailing list.
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Embedded Drivers 

One   of the reasons Linux is so popular in the embedded space is that its formidable 
application suite works regardless of the hardware platform, thanks to kernel abstrac-
tion layers that lie beneath them. So, as shown in Figure 18.3, all you need to do to get 
a feature-rich embedded system is to implement the low-level device drivers ensconced 
between the abstraction layers and the hardware. You need to do one of the following 
for each peripheral interface on your device:

 • Qualify an existing driver. Test and verify that it works as it’s supposed to.

 • Find a driver that is a close match and modify it for your hardware.

 • Write a driver from scratch.

Assuming a kernel engineer participates in component selection, you’re likely to have 
existing drivers or close enough matches for most peripheral devices. To take advantage 
of existing drivers, go through the block diagram and schematics of your hardware, 
identify the different chipsets, and cobble together a working kernel confi guration 
fi le that enables the right drivers. Based on your footprint or boot time requirements, 
modularize possible device drivers or build them into the base kernel.
To learn about device drivers for I/O interfaces commonly found on embedded hard-
ware, let’s take a clockwise tour around the embedded controller shown in Figure 18.1, 
starting with the NOR fl ash.

Flash Memory

Embedded     devices such as the one in Figure 18.2, boot from fl ash memory and have 
fi lesystem data resident on fl ash-based storage. Many devices use a small NOR fl ash 
component for the former and a NAND fl ash part for the latter.2 NOR memory, thus, 
holds the bootloader and the base kernel, whereas  NAND storage contains fi lesystem 
partitions and device driver modules. 

Flash drivers are supported by the kernel’s MTD subsystem discussed in Chap-
ter 17, “Memory Technology Devices.” If you’re using an MTD-supported chip, you 
need to write only an MTD map driver to suitably partition the fl ash to hold the boot-
loader, kernel, and fi lesystem. Listings 17.1, 17.2, and 17.3 in Chapter 17 implement 
a map driver for the Linux handheld, as shown in Figure 17.2 of the same chapter.

2 In today’s embedded market where the Bill Of Material (BOM) cost is often all-important, it’s not uncommon for devices to 
contain only NAND storage. Such devices boot from NAND fl ash and have their fi lesystems also reside in NAND memory. 
NAND boot needs support from both the processor and the bootloader.
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FIGURE 18.3 Hardware-independent applications and hardware-dependent drivers.

UART

The    UART is responsible for serial communication and is an interface you are likely to 
fi nd on all microcontrollers. UARTs are considered basic hardware, so the kernel con-
tains UART drivers for all microcontrollers on which it runs. On embedded devices, 
UARTs are used to interface the processor with debug serial ports, modems, touch 
controllers, GPRS chipsets, Bluetooth chipsets, GPS devices, telemetry electronics, 
and so on.

Look at Chapter 6, “Serial Drivers,” for a detailed discussion on the Linux serial 
subsystem.

Buttons and Wheels

Your      device may have several miscellaneous peripherals such as keypads (micro key-
boards organized in the common QWERTY layout, data-entry devices having over-
loaded keys as found in cell phones, keypads having ABC-type layout, and so on), 
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LEDs, roller wheels, and buttons. These I/O devices interface with the CPU via GPIO 
lines or a CPLD (see the following “CPLD/FPGA” section). Drivers for such peripher-
als are usually straightforward char or misc drivers. Some of the drivers export device-
access via procfs or sysfs rather than through /dev nodes.

PCMCIA/CF

A      PCMCIA or CF slot is a common add-on to embedded devices. The advantage 
of, say, WiFi enabling an embedded device using a CF card is that you won’t have to 
respin the board if the WiFi controller goes end of life. Also, because diverse technolo-
gies are available in the PCMCIA/CF form factor, you have the freedom to change the 
connectivity mode from WiFi to another technology such as Bluetooth later. The dis-
advantage of such a scheme is that even with mechanical retaining, sockets are inher-
ently unreliable. There is the possibility of the card coming loose due to shock and 
vibe, and resulting intermittent connections.

PCMCIA and CF device drivers are discussed in Chapter 9, “PCMCIA and Com-
pact Flash.”

SD/MMC

Many    embedded processors include controllers that communicate with SD/MMC 
media. SD/MMC storage is built using NAND fl ash memory. Like CF cards, SD/MMC 
cards add several gigabytes of memory to your device. They also offer an easy memory 
upgrade path, because the available density of SD/MMC cards is constantly increasing.

Chapter 14, “Block Drivers,” points you to the SD/MMC subsystem in the kernel.

USB

Legacy    computers support the USB host mode, by which you can communicate with 
most classes of USB devices. Embedded systems frequently also require support for the 
USB device mode, wherein the system itself functions as a USB device and plugs into 
other host computers. 

As you saw in Chapter 11, “Universal Serial Bus,” many embedded controllers sup-
port USB OTG that lets your device work either as a USB host or as a USB device. 
It allows you, for example, to connect a USB pen drive to your embedded device. It 
also allows your embedded device to function as a USB pen drive by exporting part of 
its local storage for external access. The Linux USB subsystem offers drivers for USB 
OTG. For hardware that is not compatible with OTG, the   USB Gadget project, now 
part of the mainline kernel, brings USB device capability. 



RTC 

Many    embedded SoCs include RTC support to keep track of wall time, but some rely 
on an external RTC chip. Unlike x86-based computers where the RTC is part of the 
South Bridge chipset, embedded controllers commonly interface with external RTCs 
via slow serial buses such as I2C or SPI. You can drive such RTCs by writing client 
drivers that use the services of the I2C or SPI core as discussed in Chapter 8, “The 
Inter-Integrated Circuit Protocol.” Chapter 2 and Chapter 5, “Character Drivers,” 
discussed RTC support on x86-based systems.

Audio

As you    saw in Chapter 13, “Audio Drivers,” an audio codec converts digital audio data 
to analog sound signals for playback via speakers and performs the reverse operation 
for recording through a microphone. The codec’s connection with the CPU depends 
on the digital audio interface supported by the embedded controller. The usual way to 
communicate with a codec is via buses such as AC’97 or I2S.

Touch Screen

Touch    is the primary input mechanism on several embedded devices. Many PDAs 
offer soft keyboards for data entry. In Chapter 6, we developed a driver for a serial 
touch controller, and in Chapter 7, “Input Drivers,” we looked at a touch controller 
that interfaced with the CPU via the SPI bus. 

If your driver conforms to the input API, it should be straightforward to tie it with 
a graphical user interface. You might, however, need to add custom support to cali-
brate and linearize the touch panel.

Video

Some    embedded systems are headless, but many have associated displays. A suitably 
oriented (landscape or portrait) LCD panel is connected to the video controller that is 
part of the embedded SoC. Many LCD panels come with integrated touch screens.

As you learned in Chapter 12, “Video Drivers,” frame buffers insulate applications 
from display hardware, so porting a compliant GUI to your device is easy, as long as 
your display driver conforms to the frame buffer interface.
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CPLD/FPGA

Complex     Programmable Logic Devices (CPLDs) or their heavy-duty counterparts,     Field 
Programmable Gate Arrays (FPGAs), can add a thick layer of fast OS-independent logic. 
You can program CPLDs (and FPGAs) in a language such as Very high speed integrated 
circuit Hardware Description Language (VHDL  ). Electrical signals between the proces-
sor and peripherals propagate through the CPLD, so by appropriately programming 
the CPLD, the OS obtains elegant register interfaces for performing complex I/O. 
The VHDL code in the CPLD internally latches these register contents onto the data 
bus after performing necessary control logic.

Consider, for example, an external serial LCD controller that has to be driven by 
shifting in each pixel bit. The Linux driver for this device will have a tough time tog-
gling the clock and wiggling I/O pins several times for sending each pixel or command 
byte to the serial LCD controller. If this LCD controller is routed to the processor via a 
CPLD, however, the VHDL code can perform the necessary serial shifting by clocking 
each bit in and present a parallel register interface to the OS for command and data. 
With these virtual LCD command and data registers, the LCD driver implementation 
is rendered simple. Essentially, the CPLD converts the cumbersome serial LCD con-
troller to a convenient, parallel one. 

If the CPLD engineer and the Linux driver developer collaborate, they can arrive 
at an optimum partitioning between the VHDL code and the Linux driver that’ll save 
time and cost.

Connectivity

Connectivity    injects intelligence, so there are few embedded devices that have no com-
munication capability. Popular networking technologies found on embedded devices 
include WiFi, Bluetooth, cellular modems, Ethernet, and radio communication. 

Chapter 15, “Network Interface Cards,” explored device drivers for wired network-
ing, and Chapter 16, “Linux Without Wires,” looked at drivers for wireless communi-
cation technologies.

Domain-Specific Electronics

Your    device is likely to contain electronics specifi c to the usage industry domain. It 
could be a telemetry interface for a hospital-grade device, a sensor for automotive hard-
ware, biometrics for a security gadget, GPRS for a cellular phone, or GPS for a naviga-
tion system. These peripherals usually communicate with the embedded controller over 



standard I/O interfaces such as UART, USB, I2C, SPI, or controller area network (CAN  ). 
For devices interfacing via a UART, you often have little work to do at the device driver 
level because the UART driver takes care of the communication. For devices such as a 
fi ngerprint sensor that interface via USB, you may have to write a USB client driver. 
You might also face proprietary interfaces, such as a switching fabric for a network pro-
cessor, in which case, you may need to write a full-fl edged device driver.

Consider the digital media space. Cable or   Direct-to-home (DTH) interface systems 
are usually built around   set-top box (STB) chipsets. These chips have capabilities such 
as personal video recording (recording multiple channels to a hard disk, recording a 
channel while viewing another and so forth) and conditional access (allowing the ser-
vice provider to control what the end user sees depending on subscription). To achieve 
this, STB chips have a processor core coupled with a powerful graphics engine. The 
latter implements MPEG codecs in hardware. Such audio-video codecs can decode 
compressed digital media standards such as MPEG2 and MPEG4. (MPEG is an acro-
nym for   Moving Picture Experts Group, the body responsible for developing motion 
picture standards.) If you are embedding Linux onto an STB, you will need to drive 
such audio-video codecs.

More Drivers

If your device serves a life-critical industry domain such as health care, the system 
memory might have    ECC capabilities. Chapter 20, “More Devices and Drivers,” dis-
cusses ECC reporting.

If your embedded device is battery powered, you may want to use a suitable CPU 
frequency governor to dynamically scale processor frequency and save power. Chap-
ter 20 also discusses CPU frequency drivers and power management.

Most embedded processors have a built-in hardware watchdog that recovers the 
system from freezes. You looked at watchdog drivers in Chapter 5. Use a suitable driver 
from drivers/char/watchdog/ as the starting point to implement a driver for your sys-
tem’s watchdog.

If your embedded device contains circuitry to detect    brownout,3 you might need to 
add capability to the kernel to sense that condition and take appropriate action.

Several embedded SoCs contain built-in     pulse-width modulator (PWM) units. 
PWMs let you digitally control analog devices such as buzzers. The voltage level 

3 Brownout is the scenario when input voltage drops below tolerable levels. (Blackout, on the other hand, refers to total loss of 
power.) Brownout detection is especially relevant if your device is powered by a technology such as Power over Ethernet (PoE) 
rather than a conventional wall socket.
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 supplied to the target device is varied by programming the PWM’s duty cycle (the On 
time of the PWM’s output waveform relative to its period). LCD brightness is another 
example of a feature controllable using PWMs. Depending on the target device and 
the usage scenario, you can implement char or misc driver interfaces to PWMs.

The Root Filesystem 

Before    the advent of Linux distributions, it used to be a project by itself to put together 
a compact application-set tailored to suit the size limitations of available storage. One 
had to cobble together the sources of a minimal set of utilities, libraries, tools, and 
daemons; ensure that their versions liked each other; and cross-compile them. Today’s 
distributions supply a ready-made application-set built for supported processors and 
offer tools that let you pick and choose components at the granularity of packages. Of 
course, you may still want to implement custom utilities and tools to supplement the 
distribution-supplied applications. 

On embedded devices, fl ash memory (discussed in Chapter 17) is the commonly 
used vehicle to hold the application-set and is mounted as the root device at the end of 
the boot process. Hard disks are uncommon because they are power-intensive, bulky, 
and have moving parts that are not tolerant to shock and vibe. Common places that 
hold the root fi lesystem on embedded devices include the following:

 • An initial ramdisk (initramfs or initrd) is usually the starting point before you 
get drivers for other potential root devices working and is used for development 
purposes.

 • NFS-mounting the root filesystem is a development strategy much more pow-
erful than using a ramdisk. We discuss this in detail in the next section.

 • Storage media such as fl ash chips, SD/MMC cards, CF cards, DOCs, and DOMs.

Note that it may not be a good idea to let all the data stay in the root partition. It’s 
common to spread fi les across different storage partitions and tag desired read-write
or read-only protection fl ags, especially if there is the possibility that the device will be 
shut down abruptly.

NFS-Mounted Root

NFS-mounting     the root fi lesystem can serve as a catalyst to hasten the embedded devel-
opment cycle. In this case, the root fi lesystem physically resides on your  development 
host and not on the target, so its size is virtually unlimited and not restricted by the 



amount of storage locally available on the target. Downloading device driver modules 
or applications to the target, as well as uploading logs, is as simple (and fast) as copying 
them to /path/to/target/rootfi lesystem/ on your development host. Such ease of testing 
and debugging is a good reason why you should insist on having Ethernet on engi-
neering-level hardware, even if production units won’t have Ethernet support. Having 
Ethernet on your board also lets your bootloader use the Trivial File Transfer Protocol 
(TFTP) to download the kernel image to the target over a network. 

Table 18.24 shows the typical steps   needed to get TFTP and NFS working with 
your embedded device. It assumes that your development host also doubles up as 
TFTP, NFS, and DHCP servers, and that the bootloader (BLOB in this example) sup-
ports the Ethernet chipset used on the embedded device.

TABLE 18.2 Saving Development Time with TFTP and NFS

Target Embedded Device Host Development Platform

Kernel Boot 
over TFTP

Configure the IP address of the target 
and the server (host) from the boot-
loader prompt:

/* Target IP */

blob> ip 4.1.1.2 

/* Host IP */

blob> server 4.1.1.1 

/* Kernel image */

blob> TftpFile /tftpdir/zImage

/* Pull the Kernel over the 
net */

blob> tftp

TFTPing /tftpboot/zImage…………Ok

blob>

Configure the host IP address:

bash> ifconfig eth0 4.1.1.1

Install and configure the TFTP server (the exact 
steps depend on your distribution):

bash> cat /etc/xinetd.conf/tftp

service tftp

{

  socket_type  = dgram

  protocol     = udp

  wait         = yes

  user         = root

  server       = /usr/sbin/in.tftpd

  server_args  = /tftpdir

  disable      = no

  per_source   = 11

  cps          = 100 2

  flags        = IPv4

}

Make sure that the TFTP server is present in 
/usr/sbin/in.tftpd and that xinetd is alive.

Compile the target kernel with NFS enabled 
and copy it to /tftpdir/zImage.

4 The fi lenames and directory path names used in Table 18.2 are distribution-dependent.

Continues
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Target Embedded Device Host Development Platform

Root file-
system over 
NFS

blob> boot console=/dev/
ttyS0,115200n8 root=/dev/nfs 
ip=dhcp

/*Kernel boot messages*/

/* ... */

VFS: Mounted root (nfs 
filesystem)

/* ... */

login:

Export /path/to/target/root/ for NFS access:

bash> cat /etc/exports

/path/to/target/root/ *(rw,sync,no_
root_squash,no_all_squash)

Start NFS:

bash> service nfs start

Configure the DHCP server. The kernel on the 
embedded device relies on this server to assign 
it the 4.1.1.2 IP address during boot and to 
supply /path/to/target/root/:

bash> cat /etc/dhcpd.conf

...

subnet 4.1.1.0 netmask 
255.255.255.0 {

range 4.1.1.2 4.1.1.10

max-lease-time 43200

option routers 4.1.1.1

option ip-forwarding off

option broadcast-address 4.1.1.255

option subnet-mask 255.255.255.0

group {

  next-server 4.1.1.1

  host target-device {

   /* MAC of the embedded device */

   hardware Ethernet AA:BB:CC:DD:
   EE:FF;

   fixed-address 4.1.1.2;

   option root-path 
   "/path/to/target/root/";

  }

}

...

bash> service dhcpd start

bash>

Compact Middleware

Embedded     devices that are tight on memory prefer middleware implementations that 
have small footprint and low runtime memory requirements. The trade-offs usually 

TABLE 18.2 Continued



lie in features, standards compatibility, and speed. Let’s take a look at some popular 
compact middleware solutions that may be potential candidates for populating your 
root fi lesystem.

BusyBox is a tool commonly used to provide a multi-utility environment on embed-
ded systems having limited memory. It scratches out some features but provides an 
optimized replacement for several shell utilities.

uClibc is a compact version of the GNU C library that was originally developed to 
work with uClinux. uClibc works on normal Linux systems, too, and is licensed under 
LGPL. If your embedded device is short on space, try uClibc rather than glibc.

Embedded systems that need to run an X Windows server commonly rely on   TinyX,
a low-footprint X server shipped along with the XFree86 4.0 code. TinyX runs over 
frame buffer drivers and can be used on devices, such as the one showed in Figure 12.6 
of Chapter 12.

Thttpd is a lightweight HTTP server that makes low demands on CPU and mem-
ory resources.

Even if you are creating a non-Linux solution using a tiny 8-bit MMU-less micro-
controller, you will likely want it to interoperate with Linux. Assume, for example, 
that you are writing deeply embedded fi rmware for an Infrared storage keychain. The 
keychain can hold a gigabyte of personal data that can be accessed via a web browser 
from your Linux laptop over Infrared. If you are running a compact TCP/IP stack, 
such as   uIP over a minimal IrDA stack such as Pico-IrDA   on the Infrared keychain, 
you have the task of ensuring their interoperability with the corresponding Linux pro-
tocol stacks.

Table 18.3 lists the home pages of the compact middleware projects referred to in 
this section.

TABLE 18.3 Examples of Compact Middleware 

 Name Description Download Location

 BusyBox Small footprint shell environment www.busybox.net

 uClibc Small-sized version of glibc www.uclibc.org

 TinyX X server for devices that are tight on memory  Part of the X Windows source tree 
downloadable from ftp://ftp.xfree86.
org/pub/XFree86/4.0/

 Thttpd Tiny HTTP server www.acme.com/software/thttpd

 uIP Compact TCP/IP stack for microcontrollers www.sics.se/~adam/uip

 Pico-IrDA Minimal IrDA stack for microcontrollers http://blaulogic.com/pico_irda.shtml
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Test Infrastructure

Most   industry domains that use embedded devices are governed by regulatory bod-
ies. Having an extensible and robust test infrastructure is likely to be as important as 
implementing modifi cations to the kernel and device drivers. Broadly, the test frame-
work is responsible for the following:

 1. Demonstrating compliance to obtain regulatory approvals. If your system is a 
medical-grade device for the U.S. market, for example, you should orient your 
test suite for getting approvals from the Food and Drug Administration (FDA).

 2. Most electronic devices intended for the U.S. market have to comply with emis-
sion standards such as electromagnetic interference (EMI) and electromagnetic 
compatibility (EMC) as laid down by the Federal Communications Commission
(FCC). To demonstrate compliance, you may need to run a battery of tests 
inside a chamber that models different operating environments. You might also 
have to verify that the system runs normally when an electrostatic gun is pointed 
at different parts of the board.

 3. Build verification tests. Whenever you build a software deliverable, subject it to 
quality assurance (QA) using these tests.

 4. Manufacturing tests. Each time a  device is assembled, you have to verify its 
functionality using a set of tests. These tests assume significance when manufac-
turing moves into volume production.

To have a common test base for all these, it’s a good idea to implement your test har-
ness over Linux, rather than develop it as a stand-alone suite. Stand-alone code is not 
easily scalable or extendable. Adding a simple test to ping the next-hop router is a fi ve-
line script on a Linux-based test system but can entail writing a network driver and a 
protocol stack if you are using a stand-alone test monitor. 

A test engineer need not be a kernel guru but will need to imbibe implementation 
information from the development team and think critically.

Debugging

Before closing this chapter, let’s visit a few topics related to debugging embedded 
software.



Board Rework

Navigating    board schematics and datasheets is an important debugging skill you need 
while bringing up the bootloader or kernel on embedded hardware. Understanding 
your board’s placement plot, which is a fi le that shows the position of chips on your 
board, is a big help when you are debugging a potential hardware problem using an 
oscilloscope, or when you need to perform minor board rework.  Reference designators
(such as U10 and U11 in Figure 18.4) associate each chip in the schematic with the 
placement plot.   Printed circuit boards (PCBs) are usually clothed with  silk screens that 
print the reference designator near each chip. 

Consider this fi ctitious scenario where USB enumeration doesn’t occur on your 
board under test. The USB hub driver detects device insertions but is not able to 
assign endpoint addresses. A close look at the schematics reveals that the connections 
originating from the SPEED and MODE pins of the USB transceiver have been inter-
changed by mistake. An examination of the placement plot identifi es the location of 
the transceiver on the PCB. Matching the transceiver’s reference designator on the 
placement plot with the silk screen on the PCB pinpoints the places where you have to 
solder “yellow wires” to repair the faulty connections.

A  multimeter and an oscilloscope are worthy additions to your embedded debug-
ging toolkit. As an illustration, let’s consider an example situation involving the I2C
RTC shown in Figure 8.3 of Chapter 8. Figure 18.4 reproduces it with a multimeter/
scope attached to probe points of interest. Consider this scenario: You have written 
an I2C client driver for this RTC chip as described in the section “Device Example: 
Real Time Clock” in Chapter 8. However, when you run your driver on the board, it 
renders the system unbootable. Neither does the bootloader come up when you reset 
the board, nor does your JTAG debugger connect to the target. To understand possible 
causes of this seemingly fatal error, let’s take a closer look at the connection diagram. 
Because both the RTC and the CPU need an external clock, the board supplies it 
using a single 32KHz crystal. This 32KHz clock needs to be buffered, however. The 
RTC buffers the clock for its use and makes it available on an output pin for free. This 
pin CLK_OUT, feeds the clock to the processor. Connect an oscilloscope (or a multim-
eter that can measure frequency) between CLK_OUT and ground to verify the processor 
clock frequency. As you can see in Figure 18.4, the scope reads 1KHz rather than the 
expected 32KHz! What could be wrong here?

The RTC control register contains bits that choose the frequency of CLK_OUT.
While probing the chip (on the lines of myrtc_attach() in Chapter 8), the driver 
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has erroneously initialized these bits to generate 1KHz on CLK_OUT. RTC registers 
are nonvolatile because of the battery backup, so the control register holds this bad 
value across reboots. The resulting skewed clock is suffi cient to render the system 
unbootable. Disconnect the RTC’s backup battery, drain the registers, reconnect the 
battery, verify using the scope that the 32KHz clock is restored on CLK_OUT, fi x your 
driver code, and start afresh!

Processor RTC

CLK

32KHz

I2C Bus

CLK_OUT

U10

U11

Battery
Backup

GND

Scope/Multimeter

1KHz

FIGURE 18.4 Debugging an I2C RTC on an embedded system.

Debuggers

You    can use most of the debugging techniques that you will learn in Chapter 21 while 
embedding Linux. Kernel debuggers are available for several processor platforms. JTAG 
debuggers, also explored in Chapter 21, are more powerful than kernel debuggers and 
are popularly used in the embedded space to debug the bootloader, base kernel, and 
device-driver modules.
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Most   device drivers prefer to lead a privileged life inside the kernel, but 
some are at home in the indeterministic world outside. Several kernel 

subsystems such as SCSI, USB, and I2C, offer some level of support for user 
mode drivers, so you might be able to control those devices without writing a 
single line of kernel code. 

In spite of the inclement weather in user land, user mode drivers enjoy certain 
advantages. They are easy to develop and debug. You won’t have to reboot the 
system every time you dereference a dangling pointer. Some user mode driv-
ers will even work across operating systems if the device subsystem enjoys the 
services of a standard user-space programming library. Here are some rules of 
thumb to help decide whether your driver should reside in user space:

 • Apply the possibility test. What can be done in user space should probably 
stay in user space. 

 • If you have to talk to a large number of slow devices and if performance 
requirements are modest, explore the possibility of implementing the driv-
ers in user space. If you have time-critical performance requirements, stay 
inside the kernel.

 • If your code needs the services of kernel APIs, access to kernel variables, 
or is intertwined with interrupt handling, it has a strong case for being in 
kernel space.

 • If much of what your code does can be construed as policy, user land might 
be its logical residence. 

 • If the rest of the kernel needs to invoke your code’s services, it’s a candidate 
for staying inside the kernel.

 • You can’t easily do fl oating-point arithmetic inside the kernel. Floating-
point unit (FPU) instructions can, however, be used from user space.

That said, you can’t accomplish too much from user space. Many important 
device classes, such as storage media and network adapters, cannot be driven 
from user land. But even when a kernel driver is the appropriate solution, it’s a 



good idea to model and test as much code as you can in user space before moving 
it to kernel space. The testing cycle is faster, and it’s easier to traverse all possible 
code paths and ensure that they are clean. 

In this chapter, the term user-space driver (or user mode driver) is used in a generic 
sense that does not strictly conform to the semantics of a driver implied thus far in 
the book. An application is considered to be a user mode driver if it’s a candidate 
for being implemented inside the kernel, too.

The 2.6 kernel overhauled a subsystem that is of special interest to user-space driv-
ers. The new process scheduler offers huge response-time benefits to user mode 
code, so let’s start with that.

Process Scheduling and Response Times

Many     user mode drivers need to perform some work in a time-bound manner. In 
user space, indeterminism due to scheduling and paging often come in the way of 
fast response times, however. To see how you can minimize the impact of the for-
mer hurdle, let’s dip into recent Linux schedulers and understand their underlying 
philosophy.

The Original Scheduler

In the   2.4 and earlier days, the scheduler used to recalculate scheduling parameters of 
each task before taking its pick. The time consumed by the algorithm thus increased 
linearly with the number of contending tasks in the system. In other words, it used 
O(n) time, where n is the number of active tasks. On a system running at high loads, 
this translated to signifi cant overhead. The 2.4 algorithm also didn’t work very well on 
SMP systems.

The O(1) Scheduler

Time    consumed by an O(n) algorithm depends linearly on the size of its input, and 
an O(n2) solution depends quadratically on the length of its input, but an O(1) tech-
nique is independent of the input and thus scales well. The 2.6 scheduler replaced 
the O(n) algorithm with an O(1) method. In addition to being super-scalable, the 
scheduler has built-in heuristics to improve user responsiveness by providing preferen-
tial treatment to tasks involved in I/O activity. Processes are of two kinds: I/O bound 
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and CPU bound. I/O-bound tasks are often sleep-waiting for device I/O, while CPU-
bound ones are workaholics addicted to the processor. Paradoxically, to achieve fast 
response times, lazy tasks get incentives from the O(1) scheduler, while studious ones 
draw fl ak. Look at the sidebar “Highlights of the O(1) Scheduler” to fi nd out some of 
its important features.

Highlights of the O(1) Scheduler

The following are some of the important features of the O(1) scheduler:

• The algorithm uses two run queues   made up of 140 priority lists: an active   queue that holds 
tasks that have time slices left and an   expired queue that contains processes whose time slices 
have expired. When a task finishes its time slice, it’s inserted into the expired queue in sorted 
order of priority. The active and expired queues are swapped when the former becomes empty. 
To decide which process to run next, the scheduler does not navigate through the entire queue. 
Instead, it picks that task from the active queue having the highest priority. The overhead of 
picking the task thus depends not on the number of active tasks, but on the number of priori-
ties. This makes it a constant-time or an O(1) algorithm.

• The scheduler supports two priority ranges: standard  nice values supported on UNIX systems 
and internal priorities. The former range from –20 to +19, while the latter extend from 0 to 
139. In both cases, lower values correspond to higher priorities. The top 100 (0 to 99) internal 
priorities are reserved for real time (RT) tasks, and the bottom 40 (100 to 139) are assigned to 
normal tasks. The 40 nice values map to the bottom 40 internal priorities. Internal priorities 
of normal tasks can be dynamically varied by the scheduler, whereas nice values are statistically 
set by the user. Each internal priority gets an associated run list. 

• The scheduler uses a heuristic to figure out whether the nature of a process is I/O-intensive or 
CPU-intensive. In simple terms, if a task sleeps often, it’s likely to be I/O-intensive, but if it 
uses its time slice fast, it’s CPU-intensive. Whenever the scheduler finds that a task has demon-
strated I/O-bound characteristics, it rewards it by dynamically increasing its internal priority. 
CPU-bound characteristics, on the other hand, are punished with negative marks.

• The allotted time slice is directly proportional to the priority. A higher priority task gets a big-
ger time slice. 

• A task will not be preempted by the scheduler as long as it has time slice credit. If it yields the 
processor before using up its time slice quota, it can roll over the reminder of its slice when it’s 
run next. Because I/O-bound processes are the ones that often yield the CPU, this improves 
interactive performance. 

• The scheduler supports RT scheduling policies. RT tasks preempt normal (SCHED_OTHER)
tasks. Users of RT policies can override the scheduler’s dynamic priority assignments. Unlike 
SCHED_OTHER tasks, their priorities are not recalculated by the kernel on-the-fly. RT scheduling 



comes in two flavors: SCHED_FIFO and SCHED_RR. They are used for producing “soft” real-time 
behavior, rather than stringent “hard” RT guarantees. SCHED_FIFO has no concept of time 
slices; SCHED_FIFO tasks run until they sleep-wait for I/O or yield the processor. SCHED_RR is 
a round-robin variant of SCHED_FIFO that also assigns time slices to RT tasks. SCHED_RR tasks 
with expired slices are appended to the end of the corresponding priority list. 

• The scheduler improves SMP performance by using per-CPU run queues and per-CPU 
synchronization. 

The CFS Scheduler

The     Linux scheduler has undergone another rewrite with the 2.6.23 kernel. The Com-
pletely Fair Scheduler (CFS) for the SCHED_OTHER class removes much of the com-
plexities associated with the O(1) scheduler by abandoning priority arrays, time slices, 
interactivity heuristics, and the dependency on HZ. CFS’s goal is to implement fairness 
for all scheduling entities by providing each task the total CPU power divided by the 
number of running tasks. Dissecting CFS is beyond the scope of this chapter. Have a 
look at Documentation/sched-design-CFS.txt for a brief tutorial.

Response Times

As a   user mode driver developer, you have several options to improve your application’s 
response time:

 • Use RT scheduling policies that give you a finer grain of control than usual. 
Look at the man pages of sched_setscheduler() and its relatives for insights 
into achieving soft RT response times.

 • If you are using non-RT scheduling, tune the nice values of different processes 
to achieve the required performance balance.

 • If you are using a 2.6.23 or later kernel enabled with the CFS scheduler, you 
may fine-tune /proc/sys/kernel/sched_granularity_ns. If you are using a pre-2.6.23 
kernel, modify #defines in kernel/sched.c and include/linux/sched.h to suit your 
application. Change these values cautiously to satisfy the needs of your applica-
tion suite. Usage scenarios of the scheduler are complex. Settings that delight 
certain load conditions can depress others, so you may have to experiment by 
trial and error.
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 • Response times are not solely the domain of the scheduler; they also depend on 
the solution architecture. For example, if you mark a busy interrupt handler as 
fast, it disables other local interrupts frequently and that can potentially slow 
down data acquisition and transmission on other IRQs. 

Let’s implement an example and see how a user mode driver can achieve fast response 
times by guarding against indeterminism introduced by scheduling and paging. As 
you learned in Chapter 2, “A Peek Inside the Kernel,” the RTC is a timer source 
that can generate periodic interrupts with high precision. Listing 19.1 implements 
an example that uses interrupt reports from /dev/rtc to perform periodic work with 
microsecond precision. The Pentium Time   Stamp Counter (TSC) is used to measure 
response times. 

The program in Listing 19.1 fi rst changes its scheduling policy to SCHED_FIFO
using sched_setscheduler(). Next, it invokes  mlockall() to lock all mapped 
pages in memory to ensure that swapping won’t come in the way of deterministic tim-
ing. Only the super-user is allowed to call sched_setscheduler()and mlockall()

and request RTC interrupts at frequencies greater than 64Hz.

LISTING 19.1 Periodic Work with Microsecond Precision

#include <linux/rtc.h>

#include <sys/ioctl.h>

#include <sys/time.h>

#include <fcntl.h>

#include <pthread.h>

#include <linux/mman.h>

/* Read the lower half of the Pentium Time Stamp Counter 

   using the rdtsc instruction */

#define rdtscl(val) __asm__ __volatile__ ("rdtsc" : "=A" (val))

    

main()

{

  unsigned long ts0, ts1, now, worst; /* Store TSC ticks */ 

  struct sched_param sched_p;         /* Information related to 

                                         scheduling priority */
                                                     

  int fd, i=0;

  unsigned long data;

        



  /* Change the scheduling policy to SCHED_FIFO */ 

  sched_getparam(getpid(), &sched_p); 

  sched_p.sched_priority = 50; /* RT Priority */

  sched_setscheduler(getpid(), SCHED_FIFO, &sched_p);

  /* Avoid paging and related indeterminism */

  mlockall(MCL_CURRENT);

  /* Open the RTC */

  fd = open("/dev/rtc", O_RDONLY);

  /* Set the periodic interrupt frequency to 8192Hz 

     This should give an interrupt rate of 122uS */ 

  ioctl(fd, RTC_IRQP_SET, 8192);

  /* Enable periodic interrupts */

  ioctl(fd, RTC_PIE_ON, 0);

  rdtscl(ts0);

  worst = 0;

  while (i++ < 10000) {

    /* Block until the next periodic interrupt */ 

    read(fd, &data, sizeof(unsigned long));

    /* Use the TSC to precisely measure the time consumed.

       Reading the lower half of the TSC is sufficient */   

    rdtscl(ts1);

    now = (ts1-ts0);

    /* Update the worst case latency */

    if (now > worst) worst = now; 

    ts0 = ts1; 

    /* Do work that is to be done periodically */

    do_work(); /* NOP for the purpose of this measurement */

  }

  printf("Worst latency was %8ld\n", worst);

  /* Disable periodic interrupts */

  ioctl(fd, RTC_PIE_OFF, 0);

 }
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The code in Listing 19.1 loops for 10,000 iterations and prints out the worst-case 
latency that occurred during execution. The output was 240899 on a Pentium 1.8GHz 
box, which roughly corresponds to 133 microseconds. According to the data sheet 
of the RTC chipset, a timer frequency of 8192Hz should result in a periodic inter-
rupt rate of 122 microseconds. That’s close. Rerun the code under varying loads using 
SCHED_OTHER instead of SCHED_FIFO and observe the resultant drift.

You may also run kernel threads in the RT mode. For that, do the following when 
you start the thread:

static int 

my_kernel_thread(void *i)

{

  daemonize();

  current->policy = SCHED_FIFO;

  current->rt_priority = 1;

  /* ... */

}

Accessing I/O Regions

PC-compatible    systems have 64K I/O ports, all of which may be driven from user 
space. User access to I/O ports on Linux is controlled by two functions:  ioperm()
and iopl(). ioperm() controls access permissions to the fi rst 0x3ff ports. iopl()
changes the I/O privilege level of the calling process, thus allowing among other things, 
unrestricted access to all ports. Only the super-user can invoke both these functions.

To write data to an I/O port, use outb(), outw(), outl(), or their cousins. To 
read data from a port, use inb(), inw(), inl(), or their relatives. Let’s implement a 
simple program that reads the seconds ticking inside the RTC chip. I/O regions in the 
PC CMOS, of which the RTC is a part, are accessed via an index port (0x70) and a 
data port (0x71), as shown in Table 5.1 of Chapter 5, “Character Drivers.” To read a 
byte of data from offset off within an I/O address range, write off to the index port 
and read the associated data from the data port. Listing 19.2 reads the seconds fi eld of 
the RTC; but to use it to obtain data from other I/O regions, change the arguments 
passed to dump_port() suitably.



LISTING 19.2 Utility to Dump Bytes from an I/O Region  

#include <linux/ioport.h>

void

dump_port(unsigned char addr_port, unsigned char data_port, 

          unsigned short offset, unsigned short length)

{

  unsigned char i, *data;

  if (!(data = (unsigned char *)malloc(length))) {

    perror("Bad Malloc\n");

    exit(1);

  }

  /* Write the offset to the index port

     and read data from the data port */

  for(i=offset; i<offset+length; i++) {

    outb(i, addr_port );

    data[i-offset] = inb(data_port);

  }

  /* Dump */

  for(i=0; i<length; i++) 

    printf("%02X ", data[i]);

  free(data);

}

int

main(int argc, char *argv[])

{

  /* Get access permissions */

  if( iopl(3) < 0)  {

    perror("iopl access error\n");

    exit(1);

  }

  dump_port(0x70, 0x71, 0x0, 1);

}
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You may also accomplish the same task by operating on /dev/port. This will incur a per-
formance penalty because code fl ow has to pass through a kernel driver, but you have 
the fl exibility to control access permissions on the device node without using iopl()
or ioperm(). Here’s the /dev/port equivalent of Listing 19.2:

#include <unistd.h>

#include <fcntl.h>

int

main(int argc, char *argv[])

{

  char seconds=0;

  char data = 0;

  int  fd = open("/dev/port", O_RDWR);

  lseek(fd, 0x70, SEEK_SET);

  write(fd, &data, 1);

  lseek(fd, 0x71, SEEK_SET);

  read(fd, &seconds, 1);

  printf("%02X ", seconds);

}

In Chapter 5, you learned to talk to your computer’s parallel port via a kernel driver. 
Let’s now implement a sample program that interacts with a parallel port device from 
user space. The kernel’s parallel port subsystem provides a character driver called  ppdev
that exports parallel port access to user land. Ppdev creates device nodes /dev/parportX,
where X is the parallel port number. Applications can open /dev/parportX, exchange 
data via read()/write() system calls, and issue a variety of ioctl() commands. 
Using kernel interfaces such as ppdev, is preferable to directly operating over I/O ports 
using ioperm(), iopl(), or /dev/port. The former technique is safer, works across 
architectures, and functions over different device form factors such as USB-to-parallel 
converters.

Consider the simple LED board that you used in Chapter 5. It had 8 LEDs inter-
faced to pins 2 to 9 on a standard 25-pin parallel connector. Listing 19.3 implements 
a simple user application that glows alternate diodes on this parallel port LED board 
using the ppdev interface. It’s the user-space equivalent of the kernel driver developed 
in Listing 5.6 of Chapter 5.



LISTING 19.3 Controlling a Parallel Port LED Board from User Space  

#include <stdio.h>

#include <linux/ioctl.h>

#include <linux/parport.h>

#include <linux/ppdev.h>

#include <fcntl.h>

int main(int argc, char *argv[])

{

  int led_fd;

  char data = 0xAA; /* Bit pattern to glow alternate LEDs */

  /* Open /dev/parport0. This assumes that the LED connector board

     is connected to the first parallel port on your computer */

  if ((led_fd = open("/dev/parport0", O_RDWR)) < 0) {

    perror("Bad Open\n");

    exit(1);

  }

  /* Claim the port */

  if (ioctl(led_fd, PPCLAIM)) {

    perror("Bad Claim\n");

    exit(2);

  }

  /* Set pins to forward direction and write a

     byte to glow alternate LEDs */

  if (ioctl(led_fd, PPWDATA, &data)) {

    perror("Bad Write\n");

    exit(3);

  }

  /* Release the port */

  if (ioctl(led_fd, PPRELEASE)) {

    perror("Bad Release\n");

    exit(4);

  }

  /* Close /dev/parport0 */

  close(led_fd);

}
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Accessing Memory Regions

Memory    mapping    (or mmaping) a fi le associates it with an area of user virtual memory. 
Because Linux treats devices as fi les, you can also map device memory to RAM and 
directly operate on it from user space. Here are some mmap() users on Linux:

 1. Graphical user interfaces such as  X Windows (www.xfree86.org) and SVGAlib  
(www.svgalib.org), mmap video memory and directly access graphics hardware.

 2.  Madplay is an integer-only MP3 player that runs on several architectures. Mem-
ory mapping improves throughput, so madplay mmaps MP3 files for faster 
access. This helps maintain the correct bit rates necessary for high-quality music 
playback.

 3.   MPEG (Moving Picture Experts Group) decoders play movies by directly operat-
ing on mmapped frame buffer memory.

The prototype of the  mmap() system call looks like this:

void *mmap(void *start, size_t length, int prot, int flag, 

           int fd, off_t offset);

This requests the kernel to associate the device fi le specifi ed by the fi le descriptor fd to 
a chunk of user memory beginning at start. (start is only a preference and is usu-
ally set to 0; the actual associated memory is returned by mmap().) The kernel maps 
length bytes of memory starting from offset in the specifi ed fi le. prot specifi es 
the desired access protection, and flag describes the type of the mapping. The MAP_
SHARED fl ag mirrors your modifi cations to other users of the same memory region, 
whereas MAP_PRIVATE keeps your changes to yourself.

All mmapped pages need not be present in physical memory. Areas not being 
accessed can be in swap space from where they are paged in on demand. Underlying 
device drivers may control the semantics of the mmap() system call by implementing 
an mmap() method.

Listing 19.4 is an image display program that performs the following to illustrate 
usage of mmap():

 • Mmaps an image file. 

 • Mmaps a frame buffer. (We discussed frame buffer drivers in Chapter 12, “Video 
Drivers.”)

www.xfree86.org
www.svgalib.org


 • Transfers the former to the latter after performing necessary transformations 
depending on the properties of the image fi le (not shown in the listing).

LISTING 19.4 Displaying an Image   Using Mmap

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/mman.h>  /* For definition of mmap() */

#include <linux/fb.h>  /* For frame buffer structures and ioctls */

int

main(int argc, char *argv[])

{

  int imagefd, fbfd;                  /* File descriptors */

  char *imagebuf, *fbbuf;             /* mmap buffers */

  struct fb_var_screeninfo vinfo;     /* Variable Screen info */

  struct stat statbuf;                /* Image info */

  int fbsize;                         /* Frame buffer size */

  /* Open image file */

  if ((imagefd = open(argv[1], O_RDONLY)) < 0) {

    perror("Bad image open\n");

    exit(1);

  } 

  /* Get the size of the image file */

  if (fstat(imagefd, &statbuf) < 0) {

    perror("Bad fstat\n");

    exit(1);

  }

  /* mmap the image file */

  if ((imagebuf = mmap(0, statbuf.st_size, PROT_READ, MAP_SHARED, 

                       imagefd, 0)) == (char *) -1){

    perror("Bad image mmap\n");

    exit(1);

  }
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  /* Open video memory */

  if ((fbfd = open("/dev/fb0", O_RDWR)) < 0) {

    perror("Bad frame buffer open\n");

    exit(1);

  } 

  /* Get screen attributes such as resolution and depth */

  if (ioctl(fbfd, FBIOGET_VSCREENINFO, &vinfo)) {

    perror("Bad vscreeninfo ioctl\n");

    exit(1);

  }

  /* Size of video memory = 

     (X-resolution * Y-resolution * Bytes per pixel) */

  fbsize = (vinfo.xres * vinfo.yres * vinfo.bits_per_pixel)/8;

  /* mmap the video memory */

  if ((fbbuf = mmap(0, fbsize, PROT_WRITE, MAP_SHARED, fbfd, 0))

      == (char *) -1){

    perror("Bad frame buffer mmap\n");

    exit(1);

  }

  /* Transfer imagebuf to fbbuf after applying transformations 

     dependent on the format, resolution, depth, data offset, 

     and other properties of the image file. Not implemented in 

     this listing */

  copy_image_to_fb();

  msync(fbbuf, fbsize, MS_SYNC); /* Flush changes to device */

  /* ... */

  /* Unmap frame buffer memory */

  munmap(fbbuf, fbsize);

  close(fbfd);

  /* Unmap image file */

  munmap(imagebuf, statbuf.st_size);

  close(imagefd);

}



User Mode SCSI

The     SCSI Generic (sg) interface lets you directly dispatch SCSI commands from user 
space. The sg driver essentially exports a char interface, so applications can use the 
open(), close(), read(), write(), ioctl(), poll(), fcntl(), and mmap() sys-
tem calls to talk to the underlying device. Drivers for SCSI devices such as CD burners 
and scanners are implemented in user space over sg. Look at the sources of cdrtools  
(previously called  cdrecord) available from http://freshmeat.net/projects/cdrecord/ for 
a real-life sg user.

Let’s learn how to use the sg interface with the help of an example. Listing 19.5 
implements a user program that sends a READ_CAPACITY SCSI command to a storage 
device such as a SCSI hard disk or a USB mass storage drive to glean its data capacity.
The   READ_CAPACITY command consists of 10 bytes, starting with the command code 
0x25. For the purpose of this example, let’s set the rest of the bytes to zero. When a 
SCSI device receives a READ_CAPACITY command, it responds with an 8-byte reply; 
the top 4 bytes contain the address of the last logical block, and the bottom 4 bytes 
contain the block length.

sg device nodes are named /dev/sgX, where X is the device number, so Listing 19.5 
opens /dev/sg0, which is assumed to be the sg char node corresponding to your SCSI 
storage device. It then sets about populating the sg_io_hdr_t structure , which is 
the main data structure that sg users have to manage. The read(), write(), and 
ioctl()calls expect a pointer to this structure (defi ned in /usr/include/scsi/sg.h) as an 
argument. The cmdp fi eld of sg_io_hdr_t is set to the address of the command block 
that holds the 10-byte READ_CAPACITY command. The dxferp fi eld supplies the 
address of a buffer that will carry the response data arriving from the device. The sbp
fi eld contains the address of a sense buffer that will return the status of the requested 
operation. The interface_id has to be set to S, and timeout holds the wait time in 
milliseconds before sg gives up on the command.

SG_IO is an oft-used ioctl command supported by sg. Internally, it writes a com-
mand to the device, waits for a response, and reads the received reply into a user-  
supplied buffer. In Listing 19.5, SG_IO issues a READ_CAPACITY command and reads 
the 8-byte response into rcap_buff[]. The program calculates and prints the disk 
capacity by interpreting the data in rcap_buff[].
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LISTING 19.5 Obtaining Disk Capacity via SCSI Generic  

#include <stdio.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <scsi/sg.h>

#define RCAP_COMMAND     0x25

#define RCAP_COMMAND_LEN 10

#define RCAP_REPLY_LEN   8

int

main(int argc, char *argv[])

{

  int fd, i;

  /* READ_CAPACITY command block */

  unsigned char RCAP_CmdBlk[RCAP_COMMAND_LEN]=

                              {RCAP_COMMAND, 0,0,0,0,0,0,0,0,0};

  sg_io_hdr_t sg_io;

  unsigned char rcap_buff[RCAP_REPLY_LEN];

  unsigned int lastblock, blocksize;

  unsigned long long disk_cap;

  unsigned char sense_buf[32];

  /* Open the sg device */

  if ((fd = open("/dev/sg0", O_RDONLY)) < 0) {

    printf("Bad Open\n");

    exit(1);

  }

  /* Initialize */

  memset(&sg_io, 0, sizeof(sg_io_hdr_t));

  /* Command block address and length */

  sg_io.cmdp = RCAP_CmdBlk;

  sg_io.cmd_len = RCAP_COMMAND_LEN;

  /* Response buffer address and length */

  sg_io.dxferp = rcap_buff;

  sg_io.dxfer_len = RCAP_REPLY_LEN;

  /* Sense buffer address and length */

  sg_io.sbp = sense_buf;

  sg_io.mx_sb_len = sizeof(sense_buf);



  /* Control information */

  sg_io.interface_id = 'S'; 

  sg_io.dxfer_direction = SG_DXFER_FROM_DEV;

  sg_io.timeout = 10000; /* 10 seconds */

  /* Issue the SG_IO ioctl */

  if (ioctl(fd, SG_IO, &sg_io) < 0) {

    printf("Bad SG_IO\n");

    exit(1);

  }

  /* Obtain results */

  if ((sg_io.info & SG_INFO_OK_MASK) == SG_INFO_OK) {

    /* Address of last disk block */

    lastblock =  ((rcap_buff[0]<<24)|(rcap_buff[1]<<16)|

              (rcap_buff[2]<<8)|(rcap_buff[3]));

    /* Block size */

    blocksize =  ((rcap_buff[4]<<24)|(rcap_buff[5]<<16)|

              (rcap_buff[6]<<8)|(rcap_buff[7]));

    /* Calculate disk capacity */

    disk_cap  = (lastblock+1);

    disk_cap *= blocksize;

    printf("Disk Capacity = %llu Bytes\n", disk_cap);

  }

  close(fd);

}

For the full list of SG_IO commands, take a look at include/scsi/scsi.h and drivers/scsi/
sg.c. Read the Linux SCSI Generic HOWTO for an in-depth explanation of the sg 
interface. Download the  sg3_utils package from http://sg.torque.net/sg/sg3_utils.html 
and browse the sources to fi nd several useful programs that operate over sg.

User Mode USB 

The     usbfs virtual fi lesystem allows raw access to USB devices from user space. Usbfs 
is usually mounted over /proc/bus/usb/. The usbfs tree contains directories correspond-
ing to each USB controller (or bus) on your system. Each of these directories, in turn, 
contains nodes corresponding to USB devices present on that bus. 
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To better understand usbfs, let’s look at a system with an Intel ICH4 South Bridge 
chipset. As you learned in Chapter 11, “Universal Serial Bus,” USB controllers are 
part of the South Bridge chipset on PC systems. The ICH4 supports one USB EHCI 
(high-speed USB 2.0) controller and three USB UHCI controllers and can connect to 
six physical USB ports. The EHCI controller   can converse with all six ports, and the 
three UHCI controllers can talk to two ports each. Let’s call the EHCI controller bus1
and the three UHCI controllers bus2, bus3, and bus4, respectively. Now assume that 
the system has only two physical USB ports and that they are connected to the UHCI 
controller corresponding to bus3. (The  symbol attaches comments to command 
output.)

bash> ls –lR /proc/bus/usb

/proc/bus/usb:

total 0

dr-xr-xr-x  2 root root 0 Dec  2 12:44 001  EHCI. Can talk to

                                                 any physical port

dr-xr-xr-x  2 root root 0 Dec  2 12:44 002  No corresponding 

                                                 physical ports 

dr-xr-xr-x  2 root root 0 Dec  2 12:44 003  UHCI bus for the 2

                                                 physical USB ports 

                                                 on this system

dr-xr-xr-x  2 root root 0 Dec  2 12:44 004  No corresponding 

                                                 physical ports 

-r--r--r--  1 root root 0 Dec  2 20:02 devices

/proc/bus/usb/001:

total 0

-rw-r--r--  1 root root 43 Dec  2 12:44 001  Root Hub (bus1)

/proc/bus/usb/002:

total 0

-rw-r--r--  1 root root 43 Dec  2 12:44 001  Root Hub (bus2)

/proc/bus/usb/003:

total 0

-rw-r--r--  1 root root 43 Dec  2 12:44 001  Root Hub (bus3)

/proc/bus/usb/004:

total 0

-rw-r--r--  1 root root 43 Dec  2 12:44 001  Root Hub (bus4)



Let’s connect a full-speed Nikon digital camera and a high-speed Seagate USB 2.0 
hard disk to the two USB ports on the system. First, take a peek at /proc/bus/usb/devices
and fi nd the relevant entries:

bash> ls –lR /proc/bus/usb/devices

...

T:  Bus=03 Lev=01 Prnt=01 Port=01 Cnt=01 Dev#=  5 Spd=12  MxCh= 0

D:  Ver= 1.10 Cls=00(>ifc ) Sub=00 Prot=00 MxPS=64 #Cfgs=  1

P:  Vendor=04b0 ProdID=0205 Rev= 1.00

S:  Manufacturer=NIKON

S:  Product=NIKON DSC E5200

S:  SerialNumber=2507597

C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr=  2mA

I:  If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 

    Driver=usb-storage

E:  Ad=01(O) Atr=02(Bulk) MxPS=  64 Ivl=0ms

E:  Ad=82(I) Atr=02(Bulk) MxPS=  64 Ivl=0ms

...

T:  Bus=01 Lev=01 Prnt=01 Port=02 Cnt=01 Dev#= 12 Spd=480 MxCh= 0

D:  Ver= 2.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS=64 #Cfgs=  1

P:  Vendor=0bc2 ProdID=0501 Rev= 0.01

S:  Manufacturer=Seagate

S:  Product=USB Mass Storage

S:  SerialNumber=000000062459

C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 0mA

I:  If#= 0 Alt= 0 #EPs= 2 Cls=08(stor.) Sub=06 Prot=50 

    Driver=usb-storage

E:  Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms

E:  Ad=88(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms

Look at the T: lines in the preceding output, which display the topology. As expected, 
the hard disk has arrived on the EHCI bus, bus1, and the camera has appeared on the 
UHCI bus, bus3. This is how the usbfs tree looks now:

bash> ls –lR /proc/bus/usb

/proc/bus/usb:

total 0

dr-xr-xr-x  2 root root 0 Dec  2 12:44 001

dr-xr-xr-x  2 root root 0 Dec  2 12:44 002

dr-xr-xr-x  2 root root 0 Dec  2 12:44 003

dr-xr-xr-x  2 root root 0 Dec  2 12:44 004

-r--r--r--  1 root root 0 Dec  2 19:51 devices
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/proc/bus/usb/001: → EHCI: bus1 

total 0

-rw-r--r--  1 root root 43 Dec  2 12:44 001

-rw-r--r--  1 root root 50 Dec  2 19:51 007 → High-speed disk

/proc/bus/usb/002: → UHCI: bus2

total 0

-rw-r--r--  1 root root 43 Dec  2 12:44 001

/proc/bus/usb/003: → UHCI: bus3

total 0

-rw-r--r--  1 root root 43 Dec  2 12:44 001

-rw-r--r--  1 root root 50 Dec  2 19:16 003 → Full-speed camera

/proc/bus/usb/004: →  UHCI: bus4

total 0

-rw-r--r--  1 root root 43 Dec  2 12:44 001

The usbfs fi les corresponding to plugged-in devices contain the associated USB device 
and confi guration descriptors. In the preceding example, read /proc/bus/usb/003/003 to 
get descriptor information for the camera and /proc/bus/usb/001/007 for the descrip-
tor associated with the hard disk. Managing usbfs fi les is not straightforward however, 
because the device fi lenames get reused after a device is plugged out. The solution is to 
use the libusb library, which uses usbfs under the hood. Using libusb instead of directly 
operating on usbfs has another benefi t: Your driver is likely to work unchanged on 
other operating systems that support this library. If you don’t fi nd libusb bundled 
along with your distribution, download its sources from http://libusb.sourceforge.
net/. The full list of USB access functions offered by this library is available under the 
doc/ directory of the libusb sources.

Listing 19.6 implements a skeletal user-space driver for the digital camera using an 
oft-used   libusb programming template. The camera’s vendor ID (0x04b0) and device 
ID (0x0205) are obtained from the /proc/bus/usb/devices output shown previously.

LISTING 19.6 A Skeletal User-Space USB Driver Using libusb

#include <usb.h>                   /* From the libusb package */

#define DIGICAM_VENDOR_ID   0x04b0 /* From /proc/bus/usb/devices */

#define DIGICAM_PRODUCT_ID  0x0205 /* From /proc/bus/usb/devices */

http://libusb.sourceforge.net/
http://libusb.sourceforge.net/


int

main(int argc, char *argv[])

{

  struct usb_dev_handle *mydevice_handle;

  struct usb_bus *usb_bus;

  struct usb_device *mydevice;

  /* Initialize libusb */

  usb_init();

  usb_find_buses();

  usb_find_devices();

  /* Walk the bus */

  for (usb_bus = usb_buses; usb_bus; usb_bus = usb_bus->next) {

    for (mydevice = usb_bus->devices; mydevice; 

         mydevice = mydevice->next) {

      if ((mydevice->descriptor.idVendor == DIGICAM_VENDOR_ID) &&

       (mydevice->descriptor.idProduct == DIGICAM_PRODUCT_ID)) {

     

        /* Open the device */

        mydevice_handle = usb_open(mydevice);

     

        /* Send commands to the camera. This is the heart of the

           driver. Getting information about the USB control 

           messages to which your device responds is often a 

           challenge since many vendors do not readily divulge 

           hardware details */

        usb_control_msg(mydevice_handle, ...);

        /* ... */

        /* Close the device */

        usb_close(mydevice_handle);

      }

    }

  }

}

User Mode I2C

In   Chapter 8, “The Inter-Integrated Circuit Protocol,” you learned to develop kernel 
mode drivers for I2C devices; but sometimes, when you need to enable support for 
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a large number of slow I2C devices, it makes sense to drive them from user space. 
The i2c-dev module enables the development of user mode I2C/SMBus device drivers. 
User-space code can access I2C host adapters via device nodes. To operate on the nth

adapter, open /dev/i2c-n. After you have a fi le descriptor tied to a host adapter device 
node, you can command it through ioctls to connect to specifi c slave devices attached 
to it. You can then use the services of a family of data access routines to exchange data 
with the slaves.

Listing 19.7 is a simple user mode driver that performs common operations on 
an I2C EEPROM from user space. The EEPROM is the same as the one discussed in 
Chapter 8 and has two memory banks and a slave address corresponding to each bank. 
The listing uses inline functions from i2c-dev.h to operate on device nodes associ-
ated with the banks. Get this header fi le from the lm-sensors package (also discussed 
in Chapter 8) downloadable from www.lm-sensors.org. This fi le contains user-space 
equivalents for all kernel space I2C access functions listed in Table 8.1 of Chapter 8.

LISTING 19.7 A  User-Space I2C/SMBus Driver

#include <linux/i2c.h>

#include <linux/i2c-dev.h>

/* Bus addresses of the memory banks */

#define SLAVE_ADDR1  0x60 

#define SLAVE_ADDR2  0x61 

int main(int argc, char *argv[])

{

  /* Open the host adapter */

  if ((smbus_fp = open("/dev/i2c-0", O_RDWR)) < 0) {

    exit(1);

  } 

  /* Connect to the first bank */

  if (ioctl(smbus_fp, I2C_SLAVE, SLAVE_ADDR1) < 0) {

    exit(1);

  }

  /* ... */

www.lm-sensors.org


  /* Dump data from the device */

  for (reg=0; reg < length; reg++) {

    /* See i2c-dev.h from the lm-sensors package for the 

       implementation of the following inline function */

    res = i2c_smbus_read_byte_data(smbus_fp, (unsigned char) reg);

    if (res < 0) {

      exit(1);

    }

    /* Dump data */

    /* ... */

  }

  /* ... */

  /* Switch to bank 2 */

  if (ioctl(smbus_fp, I2C_SLAVE, SLAVE_ADDR2) < 0) {

    exit(1);

  }

  /* Clear bank 2 */

  for (reg=0; reg < length; reg+=2){

    i2c_smbus_write_word_data(smbus_fp, (unsigned char) reg, 0x0);

  }

  /* ... */

  close(smbus_fp);

}

UIO

Starting    with the 2.6.23 release, the kernel includes a subsystem called UIO (Userspace 
IO) that eases the implementation of some user-space drivers. UIO’s intent is to allow 
the development of a bare-bones kernel driver for tasks such as interrupt handling, and 
push most of the device I/O logic to user space. UIO is especially relevant for some 
classes of industrial I/O cards.

Look inside drivers/uio/ for the UIO sources. A user guide is available under Docu-
mentation/DocBook/uio-howto.tmpl. Exploring UIO is beyond the scope of this chapter.
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Looking at the Sources

The   Linux scheduler lives in kernel/sched.c. The SCSI generic implementation is in 
drivers/scsi/sg.c, and drivers/usb/core/devio.c is responsible for supporting user-space 
USB drivers. The i2c-dev driver that enables support for user mode I2C programming 
resides in drivers/i2c/i2c-dev.c.

Table 19.1 contains the main data structures used in this chapter, and Table 19.2 
lists the functions that we used to aid user mode driver development.

TABLE 19.1 Summary of Data  Structures 

Data Structure Location (User Space) Description

sched_param /usr/include/bits/sched.h  Information related to scheduling priorities.

fb_var_screeninfo /usr/include/linux/fb.h  Used to operate on frame buffers. Contains vari-
able screen information such as resolution and 
pixclock. See Chapter 11 for more details.

sg_io_hdr_t /usr/include/scsi/sg.h  Information to manage SCSI generic devices.

usb_dev_handle
usb_bus
usb_device

Header files in the libusb 
package.

Structures to operate on USB devices from user 
space.

TABLE 19.2 Summary of   User-Space Functions

User-Space Function Description

sched_getparam() Obtains scheduling parameters associated with a given process

sched_setscheduler() Sets scheduling parameters associated with a given process

mlockall() Locks pages of the calling process in memory and thus avoids page 
faults

ioperm() Controls access permissions to the first 0x3FF I/O ports

iopl() Changes the I/O privilege level of the calling process

outb()/outw()/outl() Outputs a byte/word/long to a specified port

inb()/inw()/inl() Inputs a byte/word/long from a specified port

mmap() Associates a file or a device address region with a chunk of user 
virtual memory

msync() Flushes changes made to an mmap-ed memory area

munmap() Reverse of mmap()



User-Space Function Description

usb_init()
usb_find_buses()
usb_find_devices()
usb_open()
usb_control_msg()
usb_close()

Functions provided by the libusb library to help you operate over 
usbfs

i2c_smbus_read_byte_data()
i2c_smbus_write_word_data()

User-space I2C/SMBus data access routines available as part of the 
lm-sensors package
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So far, we have devoted a full chapter to each major device driver class, but 
there are several subdirectories under drivers/ that we haven’t yet descended 

into. In this chapter let’s venture inside some of them at a brisk pace.

ECC Reporting

Several     memory controllers contain special silicon to measure the fi delity of 
stored data using error correcting codes (ECCs). The Error Detection And Correc-
tion (EDAC)   driver subsystem announces occurrences of memory error events gen-
erated by ECC-aware memory controllers. Typical ECC DRAM chips have the 
capability to correct       single-bit errors (SBEs) and detect multibit errors (MBEs    ). In 
EDAC parlance, the former errors are     correctable errors (CEs), whereas the latter 
are uncorrectable errors (UEs).

ECC operations are transparent to the operating system. This means that if your 
DRAM controller supports ECC, error correction and detection occurs silently with-
out operating system participation. EDAC’s task is to report such events and allow 
users to fashion error handling policies (such as replace a suspect DRAM chip).

The EDAC driver subsystem consists of the following:

 • A core module called      edac_mc that provides a set of library routines.

 • Separate drivers for interacting with supported memory controllers. For  example, 
the driver module that works with the memory controller that is part of the 
Intel 82860 North Bridge is called i82860_edac.

EDAC reports errors via fi les in the sysfs directory     /sys/devices/system/edac/. It also 
generates messages that can be gleaned from the kernel error log.

The layout of DRAM chips is specifi ed in terms of the number of chip-selects 
emanating from the memory controller and the data-transfer width (channels) 
between the memory controller and the CPU. The number of rows in the DRAM 
chip array depends on the former, whereas the number of columns hinge on the 
latter. One of the main aims of EDAC is to point the needle of suspicion at prob-
lem DRAM chips, so the EDAC sysfs node structure is designed according to 



the  physical chip layout: /sys/devices/system/edac/mc/mcX/csrowY/ corresponds to chip-
select row Y in memory controller X. Each such directory contains details such as the 
number of detected CEs (ce_count), UEs (ue_count), channel location, and other 
attributes.

Device Example: ECC-Aware Memory Controller

Let’s add     EDAC support for a yet-unsupported memory controller. Assume that you’re 
putting Linux onto a medical grade device that is an embedded x86 derivative. The 
North Bridge chipset (which includes the memory controller as discussed in the sidebar 
“The North Bridge” in Chapter 12, “Video Drivers”) on your board is the Intel 855GME 
that is capable of ECC reporting. All DRAM banks connected to the 855GME on this 
system are ECC-enabled chips because this is a life-critical device. EDAC does not yet 
support the 855GME, so let’s take a stab at implementing it.

ECC DRAM controllers have two major ECC-related registers: an error status reg-
ister and an error address pointer register, as shown in Table 20.1. When an ECC 
error occurs, the former contains the status (whether the error is an SBE or an MBE), 
whereas the latter contains the physical address where the error occurred. The EDAC 
core periodically checks these registers and reports results to user space via sysfs. From 
a confi guration standpoint, all devices inside the 855GME appear to be on PCI
bus 0. The DRAM controller resides on device 0 of this bus. DRAM interface con-
trol registers (including the ECC-specifi c registers) map into the corresponding PCI 
confi guration space. To add EDAC support for the 855GME, add hooks to read these 
registers, as shown in Listing 20.1. Refer back to Chapter 10, “Peripheral Component 
Inter connect,” for explanations on PCI device driver methods and data structures.

TABLE 20.1 ECC-Related Registers     on the DRAM Controller

 ECC-Specific Registers Residing  
 in the DRAM Controller’s PCI
 Configuration Space  Description

 I855_ERRSTS_REGISTER   The error status register, which signals occurrence of an ECC error. 
Shows whether the error is an SBE or an MBE.

 I855_EAP_REGISTER  The error address pointer register, which contains the physical 
address where the most recent ECC error occurred.
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LISTING 20.1 An EDAC Driver for the 855GME

/* Based on drivers/edac/i82860_edac.c */

#define I855_PCI_DEVICE_ID   0x3584 /* PCI Device ID of the memory 

                                       controller in the 855 GME */

#define I855_ERRSTS_REGISTER 0x62   /* Error Status Register's offset

                                       in the PCI configuration space */

#define I855_EAP_REGISTER    0x98   /* Error Address Pointer Register's

                                       offset in the PCI configuration space */

struct i855_error_info {

  u16 errsts;  /* Error Type */

  u32 eap;     /* Error Location */

};

/* Get error information */

static void 

i855_get_error_info(struct mem_ctl_info *mci,

                    struct i855_error_info *info)

{

  struct pci_dev *pdev;

  pdev = to_pci_dev(mci->dev);

  /* Read error type */

  pci_read_config_word(pdev, I855_ERRSTS_REGISTER, &info->errsts);

  /* Read error location */

  pci_read_config_dword(pdev, I855_EAP_REGISTER, &info->eap);

}

/* Process errors */

static int 

i855_process_error_info(struct mem_ctl_info *mci,

                        struct i855_error_info *info, 

                        int handle_errors)

{

  int row;

  info->eap >>= PAGE_SHIFT;

  row = edac_mc_find_csrow_by_page(mci, info->eap); /* Find culprit row */

  /* Handle using services provided by the EDAC core.

     Populate sysfs, generate error messages, and so on */



  if (is_MBE()) {          /* is_MBE() looks at I855_ERRSTS_REGISTER and checks

                              for an MBE. Implementation not shown */

    edac_mc_handle_ue(mci, info->eap, 0, row, "i855 UE");

  } else if (is_SBE()) {   /* is_SBE() looks at I855_ERRSTS_REGISTER and checks

                              for an SBE. Implementation not shown */ 

    edac_mc_handle_ce(mci, info->eap, 0, info->derrsyn, row, 0,

                      "i855 CE");

  }

  return 1;

}

/* This method is registered with the EDAC core from i855_probe() */

static void 

i855_check(struct mem_ctl_info *mci)

{

  struct i855_error_info info;

  i855_get_error_info(mci, &info);

  i855_process_error_info(mci, &info, 1);

}

/* The PCI driver probe method, part of the pci_driver structure */

static int 

i855_probe(struct pci_dev *pdev, int dev_idx)

{

  struct mem_ctl_info *mci;

  /* ... */

  pci_enable_device(pdev);

  /* Allocate control memory for this memory controller.

     The 3 arguments to edac_mc_alloc() correspond to the

     amount of requested private storage, number of chip-select

     rows, and number of channels in your memory layout */

  mci = edac_mc_alloc(0, CSROWS, CHANNELS);

  /* ... */

  mci->edac_check = i855_check;  /* Supply the check method to the 

                                    EDAC core */

  /* Do other memory controller initializations */

  /* ... */
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  /* Register this memory controller with the EDAC core */

  edac_mc_add_mc(mci, 0);

  /* ... */

}

/* Remove method */

static void __devexit 

i855_remove(struct pci_dev *pdev)

{

  struct mem_ctl_info *mci = edac_mc_find_mci_by_pdev(pdev);

  if (mci && !edac_mc_del_mc(mci)) {

    edac_mc_free(mci); /* Free memory for this controller. Reverse 

                          of edac_mc_alloc() */

  }

}

/* PCI Device ID Table */

static const struct pci_device_id i855_pci_tbl[] __devinitdata = {

  {PCI_VEND_DEV(INTEL, I855_PCI_DEVICE_ID), 

   PCI_ANY_ID, PCI_ANY_ID, 0, 0,},

  {0,},

};

MODULE_DEVICE_TABLE(pci, i855_pci_tbl);

/* pci_driver structure for this device. 

   Re-visit Chapter 10 for a detailed explanation */

static struct pci_driver i855_driver = {

  .name     = "855",

  .probe    = i855_probe,

  .remove   = __devexit_p(i855_remove),

  .id_table = i855_pci_tbl,

};

/* Driver Initialization */

static int __init 

i855_init(void)

{

  /* ... */

  pci_rc = pci_register_driver(&i855_driver);

  /* ... */

}



Look at drivers/edac/* for EDAC source fi les and at Documentation/drivers/edac/edac.txt
for detailed semantics of EDAC sysfs nodes.

Frequency Scaling

The    CPU frequency (cpufreq) driver subsystem aids power management by scaling 
CPU frequencies on-the-fl y. If you use a suitable scaling algorithm (called a  governor),
your device’s battery can potentially last longer. Cpufreq supports several architectures 
such as x86, ARM, and PowerPC. To obtain cpufreq capabilities, you also need to 
enable a suitable processor driver (say, the Intel Enhanced SpeedStep driver if you are 
using a SpeedStep-enabled CPU such as Pentium M).

You can control cpufreq’s behavior via fi les in the /sys/devices/system/cpu/cpuX/cpu-
freq/ directory, where X is the CPU number. To set maximum and minimum frequency 
scaling limits, write desired values to scaling_max_freq and scaling_min_freq,
respectively. To see a list of supported cpufreq governors, look at the contents of 
scaling_available_governors. The kernel supports several governors:

 • The  performance governor statically sets the CPU frequency to scaling_max_freq.

 • Powersave  sets the CPU frequency to scaling_min_freq.

 • Ondemand  adjusts the frequency depending on CPU load.

 • Conservative  is a variant of ondemand where the speed change occurs smoothly 
in gradual steps.

 • Userspace  lets applications dictate the scaling technique. Some distributions set 
the governor to userspace and implement the scaling algorithm via a daemon 
called   cpuspeed, which is spawned during boot.

 • You may also implement your own kernel governor using the cpufreq_
register_governor()   interface.

Each supported governor is implemented as a kernel module. To see cpufreq in action, 
assign a governor and vary the system load:

bash> cd /sys/devices/system/cpu/cpu0/cpufreq

bash>cat scaling_max_freq → Maximum frequency

1700000

bash> cat scaling_min_freq → Minimum frequency

600000
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bash> cat cpuinfo_cur_freq → Current frequency

600000

bash> cat scaling_governor → Scaling algorithm in use

powersave

bash> cat scaling_available_frequencies

1700000 1400000 1200000 1000000 800000 600000

bash> cat scaling_available_governors

conservative ondemand powersave userspace performance

bash> echo conservative > scaling_governor

→ Assign 'conservative' governor

bash> ls -lR / → Switch to another terminal and

                                     load your system by recursively

                                     traversing all directories.

If you now monitor the running frequency by looking at /sys/devices/system/cpu/cpu0/
cpufreq/cpuinfo_cur_freq, you will see it dancing to the tune of the CPU load.

The CPU scaling code lives in the drivers/cpufreq/ directory. Look at Documentation/
cpu-freq/* for the detailed semantics of cpufreq sysfs nodes.

Embedded Controllers

Notebook    computers and their derivatives usually contain a built-in embedded control-
ler (EC) to take care of various side responsibilities, including the following:

 • Interfacing with the keyboard controller

 • Managing thermal events

 • Handling special buttons and LEDs

 • Controlling system and CPU fan speeds

 • Monitoring battery voltage

Most of these functions are specifi c to the OEM’s hardware implementation. Differ-
ent OEMs use different ECs; IBM/Lenovo laptops, for example, embed a Renesas H8 
microcontroller to assist the main processor. The interface to access the EC, however, 
is standard irrespective of the make of the controller. The BIOS and the operating sys-
tem operate on I/O port 0x80 to read information from the EC and I/O port 0x81
to write data to the EC. On desktops, these ports provide access to the keyboard con-
troller rather than to a general-purpose EC. 

The next section refers to an example driver that detects telemetry strength by 
accessing EC memory space.



ACPI

Advanced Confi guration and Power Interface (ACPI) is a power-management specifi ca-
tion that replaces earlier standards such as Advanced Power Management (APM). ACPI 
is responsible for transitioning the system between power states. It also has the task 
of interfacing with devices and sensors connected to the EC. Such devices are called 
ACPI devices  , and memory devoted to handle them is called   ACPI space.

As you saw elsewhere in this book, low-level code is not the place to implement 
policy. This was the main problem with APM, where most of the power-management 
policies were part of BIOS fi rmware. ACPI shifts policy one level up, to the operat-
ing system. Using a daemon called acpid, ACPI even allows policy to be pushed one 
more level up, to user-space confi guration fi les. By adding rules to an acpid confi gura-
tion fi le, you can decide what to do when a hotkey is pressed or when a thermal trip 
occurs.

Even with ACPI, low-level BIOS fi rmware retains the responsibility of interfacing 
with hardware and detecting ACPI events such as a power button press or a thermal 
sensor report. To perform this, the BIOS utilizes a special x86 execution mode trig-
gered via   system management interrupts (SMIs). The SMI execution mode is transparent 
to the operating system. To notify the operating system about ACPI events detected in 
SMI mode, the BIOS asserts a   system control interrupt (SCI). Look at drivers/acpi/osl.c
for the Linux ACPI code that requests the SCI IRQ.

Linux ACPI components include the following:

 1. A core layer that provides ACPI essentials such as the   ACPI Machine Language
(AML) interpreter. ACPI-specific BIOS code is written in AML, a language 
that runs on a virtual machine implemented by the operating system’s AML 
interpreter.

 2. ACPI drivers  for interfacing with standard components such as the EC (driv-
ers/acpi/ec.c), buttons (drivers/acpi/button.c), and fan (drivers/acpi/fan.c). OEM-
specific drivers offer support for features not supported by the standard ACPI 
drivers. For example, drivers/misc/thinkpad_acpi.c1 is the OEM-specific driver 
that implements extras for IBM/Lenovo Thinkpads. On an IBM/Lenovo 
Thinkpad, the files under /proc/acpi/ are generated by the standard ACPI  drivers, 

1 Prior to 2.6.22, this driver used to be drivers/acpi/ibm_acpi.c.
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whereas those in /proc/acpi/ibm/ are produced by the OEM-specific driver. So, to 
get the current temperature, do this:

bash> cat /proc/acpi/thermal_zone/THM0/temperature

temperature:       39 C

But to turn on the nightlight on top of the LCD display, get help from the 
OEM-specifi c driver:

bash> echo on > /proc/acpi/ibm/light

 3.  A kernel  thread   kacpid that ACPI uses to queue work for execution.

 4.  Individual device drivers that use ACPI’s services to respond to transitions 
in the system’s power state. To achieve this, drivers register   suspend() and 
resume() methods with the kernel’s device model. We alluded to these meth-
ods while discussing the platform_driver structure in Chapter 6, “Serial 
Drivers,” the spi_driver structure in Chapter 8, “The Inter-Integrated Cir-
cuit Protocol,” the pcmcia_driver structure in Chapter 9, “PCMCIA and 
Compact Flash,” and the pci_driver structure in Chapter 10.

 5.  User-space tools  such as   acpitool, which report the state of various ACPI devices, 
show thermal zone information and suspend the system to different sleep 
states:

bash> acpitool

Battery #1     : charging, 69.08%, 01:14:02

AC adapter     : on-line

Thermal zone 1 : ok, 38 C

 6.  The acpid daemon   , which is the policy enabler for ACPI events. It listens on 
/proc/acpi/events for power-management events reported by the kernel. When 
you press the power button or when a thermal trip occurs, the kernel ACPI 
driver dispatches an event to user space via /proc/acpi/events. The acpid dae-
mon reads this, passes it through configuration scripts present in /etc/acpi/
events/ and takes specified actions. Assume that you want to execute a specific 
program (/bin/lidhandler) when your laptop’s lid button is pressed. For this, 
add the following to /etc/acpi/events/acpi_handler.sh:

event=button/lid.*

action=/bin/lidhandler



You may use cpufreq in tandem with ACPI. You can, for example, add this line 
inside /bin/lidhandler to drop down the processor frequency when you shut your 
laptop’s lid:

echo powersave > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

You can download the ACPI specifi cations from www.acpi.info.
As an exercise, consider that you have a telemetry card2 built in to an embedded 

laptop derivative, and that the EC is connected to a sensor that measures telemetry 
strength. To access telemetry strength via /proc/acpi/ (or /sys/bus/acpi/), update the corre-
sponding laptop model’s “extras” driver present in drivers/misc/. If your board is a deriv-
ative of an IBM/Lenovo Thinkpad, for example, modify drivers/misc/thinkpad_acpi.c
accordingly. You may use the ec_read() and ec_write() kernel functions to access 
the location that stores telemetry strength in the EC’s ACPI space.

ISA and MCA

The    Industries Standard Architecture (ISA) started as a bus for interfacing I/O devices 
with the PC but evolved into a de facto standard. ISA drivers would have merited a 
separate chapter several years earlier; but today, with the advent of the PCI bus, ISA 
has all but disappeared.

There are two main bus-specifi c factors that ISA device drivers have to contend 
with:

 • ISA does not offer standard interfaces that drivers can use to detect resource 
information that is electrically wired or assigned by boot firmware. Imple-
menting complex probing logic, often leveraging device-specific quirks, is an 
important part of ISA driver initialization. This is unlike the PCI bus, where 
the device driver can cleanly decipher the identity of resources such as interrupt 
request lines and I/O base addresses assigned by boot firmware. You learned 
how to do this when we discussed the PCI configuration space in Chapter 10. 
We also briefly looked at ISA probing in the section “ISA Network Drivers” in 
Chapter 15, “Network Interface Cards.” 

2 We developed a driver for an example telemetry card in Chapter 11, “Universal Serial Bus.”
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The ISA   Plug-and-Play (PnP) specification attempts to bring a degree of auto-
configurability to ISA, however. 

 • The ISA bus has a width of 24 bits, so devices can access only the low 16MB of 
system memory. To DMA network data from an ISA Ethernet card, for exam-
ple, DMA buffers have to reside in the low 16MB range called ZONE_DMA. The 
Extended Industry Standard Architecture (EISA), however, widens the ISA bus to 
32 bits. You can plug ISA devices into EISA slots.

Today, the LPC bus is used rather than the ISA bus to connect legacy peripherals 
to the CPU on PC-compatible systems. We discussed LPC devices such as Super I/O 
chipsets, fi rmware hubs, and thermal sensors in earlier chapters.

The   Micro-Channel Architecture (MCA) bus overcomes many of the limitations 
of the ISA family. MCA supports bus mastering, autoconfi guration, and 32-bit bus 
widths. Though technologically superior to ISA, MCA didn’t become as popular 
because of its proprietary nature. 

Look at drivers/net/tokenring/skisa.c for a sample ISA driver for a Token Ring card. 
The IBM Token Ring driver drivers/net/tokenring/ibmtr.c, supports ISA, PnP, and 
MCA form factors of IBM Token Ring hardware. The 3COM Ethernet driver drivers/
net/3c509.c, drives MCA, PnP, and EISA form factors of a 3COM Ethernet card. The 
kernel provides core routines for the use of PnP, EISA, and MCA drivers. These imple-
mentations live in drivers/pnp/, drivers/eisa/, and drivers/mca/, respectively.

FireWire

FireWire,   or IEEE 1394, is a high-speed serial bus protocol invented by Apple for con-
necting peripheral devices to a system. It provides data rates of up to   800Mbps (IEEE 
1394b). Figure 10.1 in Chapter 10 shows the connection of the FireWire controller on 
an x86-based laptop.

FireWire is similar to USB 2.0 in that both are external I/O buses that support high 
speeds and device hotplugging. FireWire, however, is a peer-to-peer protocol, unlike 
the master-slave USB 2.0, so two FireWire-enabled devices can exchange information 
without the intervention of a PC. Because of this characteristic, FireWire is popular on 
multimedia devices such as camcorders. As you learned in Chapter 11, the On-The-Go 
supplement brings peer-to-peer capability to USB 2.0, too.



FireWire on Linux is architected as follows:

 • Device drivers such as  ohci1394 that interface with FireWire controllers.

 • Protocol drivers for applications such as storage, video, and networking. The 
FireWire   Serial Bus Protocol 2 (SBP2) driver is a low-level FireWire protocol 
driver that lets you use your FireWire storage media as you would use a SCSI 
disk or a USB mass storage device. SBP2 has to be used in tandem with a high-
level SCSI driver such as sd_mod (for disks) or sr_mod (for CD-ROMs). Appli-
cations such as cdrecord work over FireWire CD drives just as they work with 
USB CD drives. The    dv1394 and video1394 protocol drivers enable you to cap-
ture video via FireWire, and the eth1394 protocol driver lets you run TCP/IP 
over FireWire. 

 • A FireWire core that provides services to both the above.

 • User-space libraries such as   libraw1394 that assist in developing FireWire-aware 
applications.

Look at drivers/ieee1394/* for FireWire kernel sources and go to www.linux1394.org 
for detailed documentation.

Starting with the 2.6.22 release, the kernel has an alternate, slimmer FireWire stack 
living in the drivers/fi rewire/ directory.

Intelligent Input/Output

Intelligent Input/Output (or I2O)   is a standard that calls for offl oading I/O activities 
from the main processor to an I/O coprocessor residing on an I2O adapter. I2O is 
largely defunct today, and the I2O Special Interest Group (I2O SIG) has ceased to exist. 
However, many operating systems, including Linux, continue support for I2O.

I2O hardware is available for technologies such as SCSI, RAID, and networking. 
I2O partitions the software architecture into an     OS-specifi c module (OSM) running 
on the main processor and a hardware-specifi c module (HDM) executing on the I2O 
adapter. HDMs are OS-agnostic and can be reused across operating systems, so the 
OSMs are rendered simpler.

Linux supports I2O in the form of an I2O core, drivers for I2O adapters, and vari-
ous OSMs. Look at the Linux I2O home page at http://i2o.shadowconnect.com and 
the sources in drivers/message/i2o/ for more details.
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Amateur Radio

Amateur (ham)    radio is a packet radio technology used for round-the-world commu-
nication by hobbyists. It’s also often used to respond to calamities such as fl oods and 
cyclones. To use amateur radio on Linux, you need the following:

 • A low-level modem driver to access your radio. Modem drivers for several ama-
teur radio devices are present in drivers/net/hamradio/.

 • One or more packet protocols such as AX.25, Rose, and Netrom. The AX.25 
protocol   is an adaptation of the X.25 protocol for amateur radio. Look at the 
 Linux Amateur Radio AX.25 HOWTO for an explanation of the protocol, the 
net/ax25/ directory for the sources, and http://hams.sourceforge.net for user-
space utilities and libraries that operate over AX.25.  Rose (net/rose/) and  Netrom 
(net/netrom/) are network protocols that use AX.25 as the data link layer. You 
can write Linux socket applications that run over AX.25, Rose, and Netrom 
using the AF_AX25, AF_ROSE, and AF_NETROM protocol families, respectively.

Voice over IP

Voice over Internet Protocol (VoIP) is a technology that uses the Internet to carry voice 
traffi c. VoIP lets you make voice-quality telephone calls at cheap rates. There are sev-
eral PCI-, PC Card-, and USB-based VoIP solutions available for the PC environ-
ment. Device drivers for several of these cards are available on Linux. Not many are 
integrated into the mainline kernel, however. The drivers/telephony/ directory contains 
drivers for a few VoIP devices and a registration API that future drivers can use.

With the increasing popularity of Linux in the embedded telecom space, there are 
several Linux IP telephones in the market today. Figure 20.1 shows a VoIP-enabled 
device having a hardware voice codec that implements standards such as G.711 and 
G.729 for encoding and decoding voice streams. The device draws power using a tech-
nology called   Power over Ethernet (PoE) that transmits power along with the Ethernet 
cable. A device driver communicates with the VoIP hardware. 

VoIP drivers work in tandem with transport protocols such as Real Time Transport 
Protocol (RTP)   and call control signaling stacks such as Session Initiation Protocol (SIP)   
and H.323. On top of these protocols sit various IP telephony applications.

http://hams.sourceforge.net


Solutions that implement VoIP codecs in software are also popular in the embed-
ded space. They usually reside in user space and interact with the following:

 • Kernel audio drivers using OSS or ALSA APIs

 • Kernel network drivers using the socket API
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MAC CPU Core

RJ45
Jack
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Handset

Internet

VoIP Stack
(SIP, RTP,…)
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(Codec interface)

 FIGURE 20.1 A VoIP phone.

SoCs oriented toward the   Video-and-Voice over IP (V2IP) market usually contain 
hardware support for video codecs such as H.264. If you are putting Linux onto a 
V2IP phone, you need to implement drivers to interface with such codecs, too.

High-Speed Interconnects

High-speed  interconnecting technologies such as Infi niBand, RapidIO, Hyper-
Transport, and 10 Gigabit Ethernet are not common in the PC or low-end embedded 
environments. You are more likely to fi nd them on clusters, blade servers, gaming sys-
tems, switches, or high-speed routers. Networking technologies such as Fibre Channel 
and   Internet SCSI (iSCSI) can be found in enterprise environments served by storage- 
area networks (SANs  ). 

Let’s peek at the driver subsystems for some of these technologies.
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InfiniBand

Infi niBand   is a high-speed serial bus standard originally intended to replace PCI. PCI 
Express, however, has become the accepted future of system buses. Today, Infi niBand 
technology is commonly used in blade server designs to provide a high-performance 
storage and networking fabric. Infi niBand supports   Remote DMA (RDMA), which 
allows data to be DMA-ed from the memory of one computer system to another.

The Linux Infi niBand subsystem includes core support for Infi niBand, device driv-
ers for host channel adapters, and an implementation of IP over Infi niBand. Look 
inside drivers/infi niband/ for the Linux Infi niBand subsystem and at Documentation/
infi niband/* for related documentation.

RapidIO

RapidIO   is another high-speed serial bus technology, which is used for connecting 
boards via a back plane. It supports speeds of the order of 10Gbps. An example proces-
sor that supports RapidIO is the power-based   MPC8540 from Freescale, targeted at 
embedded devices such as network routers and switches.

The Linux RapidIO subsystem provides a core set of routines that can be used to 
drive devices on the RapidIO bus. There are two ways to communicate over a  RapidIO 
interconnect:

 1.  Short, out-of-band messages using  doorbells. Doorbell services provided by the 
RapidIO core are rio_request_inb_dbell(), rio_release_inb_dbell(),
rio_request_outb_dbell(), and rio_release_outb_dbell().

 2.  High-bandwidth data delivery using  mailboxes. Mailbox services provided by the 
RapidIO    core are rio_request_inb_mbox(), rio_release_inb_mbox(),
rio_request_outb_mbox(), and rio_release_outb_mbox().

Take a look inside drivers/rapidio/ for the sources.

Fibre Channel

Fibre Channel    is a modern high-speed serial bus protocol used to talk with storage 
systems. Fibre Channel interface cards have fi ber-optic ports to talk to storage devices 
on SANs. Fibre Channel is compatible with SCSI, so an associated device driver is 
essentially a SCSI driver with extras to handle fi ber channels. 



Linux supports a Fibre Channel core and device drivers to handle Fibre Channel 
hardware. Look inside drivers/fc4/ for the sources.

iSCSI

iSCSI is     another SAN technology. It allows the transport of SCSI packets over TCP/IP 
networks. With iSCSI, a remote block device appears to your system as local storage. 
The remote system owning the storage is called an iSCSI target, and local systems 
using the storage are called iSCSI initiators.

Linux supports iSCSI via a kernel driver drivers/scsi/iscsi_tcp.c , and a user-space dae-
mon called iscsid. The home page of the Linux-iSCSI project is at http://linux-iscsi.
sourceforge.net.
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Now  that we have learned how to implement diverse classes of device driv-
ers, let’s take a step back and explore some debugging techniques. Invest-

ing time in logic design and software engineering before code development and 
staring hard at the code after development can minimize or even eliminate bugs. 
But because that is easier said than done, and because we are all humans, devel-
opers need debugging tools. In this chapter, let’s look at a variety of methods to 
debug kernel code.

Reliability, Availability, Serviceability

Many systems, especially mission critical ones, have a need for    reliability, availability, and ser-
viceability (RAS). The Linux RAS effort has resulted in the development of several powerful 
tools. Exercisers such as the   Linux Test Project (LTP) measure the reliability and robustness of 
your kernel port. CPU hotplugging and the Linux   High Availability (HA) project can be seen 
in the context of availability. Kernel debuggers, Kprobes, Kdump, EDAC, and the Linux Trace 
Toolkit (LTT) come under the ambit of serviceability. The line dividing these classifi cations 
is sometimes thin; you can use any or a combination of these methods to suit your debugging 
needs. For example, output from a kernel profi ler such as  OProfi le can be used either to search 
for potential code bottlenecks (reliability) or to debug a fi eld problem (serviceability).

Kernel Debuggers

The   Linux kernel has no built-in debugger support. Whether to include a debug-
ger as part of the stock kernel is an oft-debated point in kernel mailing lists. The 
instruction level Kernel Debugger (kdb) and the source-level Kernel GNU Debugger
(kgdb) are the two main Linux kernel debuggers. As of today, whether you use kdb 
or kgdb, you need to download relevant patches and apply them to your kernel 
sources. Even if you want to stay away from the hassle of patching your kernel 
sources with debugger support, you can glean information about kernel panics and 
peek at kernel variables via the plain GNU Debugger (gdb). JTAG debuggers use 
hardware-assisted debugging and are powerful, but expensive.



Kernel debuggers make kernel internals more transparent. You can single-step 
through instructions, disassemble instructions, display and modify kernel variables, 
and look at stack traces. In this chapter, let’s learn the basics of kernel debuggers with 
the help of some examples.

Entering a Debugger

You can     enter a kernel debugger in multiple ways. One way is to pass command-line 
arguments that ask the kernel to enter the debugger during boot. Another way is via 
software or hardware   breakpoints. A breakpoint is an address where you want execu-
tion stopped and control transferred to the debugger. A software breakpoint replaces 
the instruction at that address with something else that causes an exception. You may 
set software breakpoints either using debugger commands or by inserting them into 
your code. For x86-based systems, you can set a software breakpoint in your kernel 
source code as follows:

asm(" int $3");

Alternatively, you can invoke the   BREAKPOINT macro, which translates to the appro-
priate architecture-dependent instruction.

You may use hardware breakpoints in place of software breakpoints if the instruc-
tion where you need to stop is in fl ash memory, where it cannot be replaced by the 
debugger. A hardware breakpoint needs processor support. The corresponding address 
has to be added to a debug register. You can only have as many hardware breakpoints 
as the number of debug registers supported by the processor.

You may also ask a debugger to set a   watchpoint on a variable. The debugger stops 
execution whenever an instruction modifi es data at the watchpoint address.

Yet another common method to enter a debugger is by hitting an attention key, but 
there are instances when this won’t work. If your code is sitting in a tight loop after 
disabling interrupts, the kernel will not get a chance to process the attention key and 
enter the debugger. For example, you can’t enter the debugger via an attention key if 
your code does something like this:

unsigned long flags;

local_irq_save(flags);

while (1) continue;

local_irq_restore(flags);
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When control is transferred to the debugger, you can start your analysis using various 
debugger commands.

Kernel Debugger (kdb)

Kdb    is an instruction-level debugger used for debugging kernel code and device driv-
ers. Before you can use it, you need to patch your kernel sources with kdb support and 
recompile the kernel. (Refer to the section “Downloads” for information on down-
loading kdb patches.) The main advantage of kdb is that it’s easy to set up, because 
you don’t need an additional machine to do the debugging (unlike kgdb). The main 
disadvantage is that you need to correlate your sources with disassembled code (again, 
unlike kgdb).

Let’s wet our toes in kdb with the help of an example. Here’s the crime scene: You 
have modifi ed a kernel serial driver to work with your x86-based hardware. But the 
driver isn’t working, and you would like kdb to help nab the culprit. 

Let’s start our search for fi ngerprints by setting a breakpoint at the serial driver 
open() entry point. Remember, because kdb is not a source-level debugger, you have 
to open your sources and try to match the instructions with your C code. Let’s list the 
source snippet in question:

drivers/serial/myserial.c:

static int rs_open(struct tty_struct *tty, struct file *filp)

{

  struct async_struct *info;

  /* ... */

  retval = get_async_struct(line, &info);

  if (retval) return(retval);

  tty->driver_data = info;

  /* Point A */

        

  /* ... */

}

Press the Pause key and enter kdb. Let’s fi nd out how the disassembled rs_open()
looks. As usual, all debug sessions shown in this chapter attach explanations using 
the  symbol.



Entering kdb (current=0xc03f6000, pid 0) on processor 0 due to

Keyboard Entry

kdb> id rs_open → Disassemble rs_open

0xc01cce00 rs_open:       sub $0x1c, %esp

0xc01cce03 rs_open+0x03:  mov $ffffffed, %ecx

...

0xc01cce4b rs_open+0x4b:  call 0xc01ccca0, get_async_struct

...

0xc01cce56 rs_open+0x56:  mov 0xc(%esp,1), %eax

0xc01cce5a rs_open+0x5a:  mov %eax, 0x9a4(%ebx)

...

Point A in the source code is a good place to attach a breakpoint because you can peek 
at both the tty structure and the info structure to see what’s going on.

Looking side by side at the source and the disassembly, rs_open+0x5a corresponds 
to Point A. Note that correlation is easier if the kernel is compiled without optimiza-
tion fl ags.

Set a breakpoint at rs_open+0x5a (which is address 0xc01cce5a) and continue 
execution by exiting the debugger:

kbd> bp rs_open+0x5a → Set breakpoint

kbd> go → Continue execution

Now you need to get the kernel to call  rs_open()to hit the breakpoint. To trigger 
this, execute an appropriate user-space program. In this case, echo some characters to 
the corresponding serial port (/dev/ttySX):

bash> echo “kerala monsoons” > /dev/ttySX

This results in the invocation of rs_open(). The breakpoint gets hit, and kdb assumes 
control:

Entering kdb on processor 0 due to Breakpoint @ 0xc01cce5a

kdb>

Let’s now fi nd out the contents of the info structure. If you look at the disassem-
bly, one instruction before the breakpoint (rs_open+0x56), you will see that the 
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EAX register contains the address of the info structure. Let’s look at the register 
contents:

kbd> r → Dump register contents

eax = 0xcf1ae680 ebx = 0xce03b000 ecx = 0x00000000

...

So, 0xcf1ae680 is the address of the info structure. Dump its contents using   the md
command:

kbd> md 0xcf1ae680 → Memory dump

0xcf1ae680 00005301 0000ABC 00000000 10000400

...

To make sense of this dump, let’s look at the corresponding structure defi nition. info
is defi ned as struct async_struct in include/linux/serialP.h as follows:

struct async_struct {

  int            magic;  /* Magic Number */

  unsigned long  port;   /* I/O Port */

  int            hub6;

  /* ... */

};

If you match the dump with the defi nition, 0x5301 is the magic number and 0xABC
is the I/O port. Well, isn’t this interesting! 0xABC doesn’t look like a valid port. If 
you have done enough serial port debugging, you will know that the I/O port base 
addresses and IRQs are confi gured in include/asm-x86/serial.h for x86-based hardware.
Change the port defi nition to the correct value, recompile the kernel, and continue 
your testing!

Kernel GNU Debugger (kgdb)

Kgdb    is a source-level debugger. It is easier to use than kdb because you don’t have to 
spend time correlating assembly code with your sources. However it’s more diffi cult to 
set up because an additional machine is needed to front-end the debugging.



You have to use gdb in tandem with kgdb to step through kernel code. gdb runs on 
the host machine, while the kgdb-patched kernel (refer to the “Downloads” section for 
information on downloading kgdb patches) runs on the target hardware. The host and 
the target are connected via a serial null-modem cable, as shown in Figure 21.1.1

Serial Cable

Target machine running a
kernel patched with kgdb

Host running gdb

FIGURE 21.1 Kgdb setup.

You have to inform the kernel about the identity and baud rate of the serial port via 
command-line arguments. Depending on the bootloader used, add the following ker-
nel arguments to either syslinux.cfg, lilo.conf, or grub.conf:

kgdbwait kgdb8250=X,115200 

kgdbwait asks the kernel to wait until a connection is established with the host-side 
gdb, X is the serial port connected to the host, and 115200 is the baud rate used for 
communication.

Now confi gure the same baud rate on the host side:

bash> stty speed 115200 < /dev/ttySX

If your host computer is a laptop that does not have a serial port, you may use a USB-
to-serial converter for the debug session. In that case, instead of /dev/ttySX, use the 
/dev/ttyUSBX node created by the usbserial driver. Figure 6.4 of Chapter 6, “Serial 
Drivers,” illustrates this scenario.

Let’s learn kgdb basics using the example of a buggy kernel module. Modules are eas-
ier to debug because the entire kernel need not be recompiled after making code changes, 
but remember to compile your module with the -g option to generate symbolic infor-
mation. Because modules are dynamically loaded, the debugger needs to be informed 

1 You can also launch kgdb debug sessions over Ethernet.
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about the symbolic information that the module contains. Listing 21.1 contains a buggy 
trojan_function(). Assume that it’s defi ned in drivers/char/my_module.c.

LISTING 21.1 Buggy Function

char buffer;

int

trojan_function()

{

  int *my_variable = 0xAB, i;

  /* ... */

  Point A:

  i = *my_variable; /* Kernel Panic: my_variable points 

                       to bad memory */

  return(i);

}

Insert my_module.ko on the target and look inside /sys/module/my_module/sections/ to deci-
pher ELF (Executable and Linking Format) section addresses.2 The .text section in ELF 
fi les contains code, .data contains initialized variables, .rodata contains initialized read-
only variables such as strings, and .bss contains variables that are not initialized during 
startup. The addresses of these sections are available in the form of the fi les .text, .data,
.rodata, and .bss in /sys/module/my_module/sections/ if you enable CONFIG_KALLSYMS dur-
ing kernel confi guration. To obtain the code section address, for instance, do this:

bash> cat /sys/module/my_module/sections/.text

0xe091a060

2 If you are still using a 2.4 kernel, get the section addresses using the –m option to insmod instead:

bash> insmod my_module.o –m 
Using /lib/modules/2.x.y/kernel/drivers/char/my_module.o
Sections:       Size      Address   Align
.this           00000060  e091a000  2**2
.text           00001ec0  e091a060  2**4
...
.rodata         0000004c  e091d1fc  2**2
.data           00000048  e091d260  2**5
.bss            000000e4  e091d2c0  2**5
...



More module load information is available from /proc/modules and /proc/kallsyms.
After you have the section addresses, invoke gdb on the host-side machine:

bash> gdb vmlinux → vmlinux is the uncompressed kernel

(gdb) target remote /dev/ttySX → Connect to the target

Because you passed kgdbwait as a kernel command-line argument, gdb gets control 
when the kernel boots on the target. Now inform gdb about the preceding section 
addresses using the   add-symbol-file command:

(gdb) add-symbol-file drivers/char/mymodule.ko 0xe091a060 

      -s .rodata 0xe091d1fc -s .data 0xe091d260 -s .bss 0xe091d2c0

add symbol table from file "drivers/char/my_module.ko" at

        .text_addr = 0xe091a060

        .rodata_addr = 0xe091d1fc

        .data_addr = 0xe091d260

        .bss_addr = 0xe091d2c0

(y or n) y

Reading symbols from drivers/char/mymodule.ko ...done.

To debug the kernel panic, let’s set a breakpoint at trojan_function():

(gdb) b trojan_function → Set breakpoint

(gdb) c → Continue execution

When kgdb hits the breakpoint, let’s look at the stack trace, single-step until Point A, 
and display the value of my_variable:

(gdb) bt → Back (stack) trace

#0 trojan_function () at my_module.c :124

#1 0xe091a108 in my_parent_function (my_var1=438, my_var2=0xe091d288)

..

(gdb) step 

(gdb) step → Continue to single-step up to 

                                    Point A

(gdb) p my_variable

$0 = 0
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There is an obvious bug here. my_variable points to NULL because trojan_
function() forgot to allocate memory for it. Let’s just allocate the memory using 
kgdb, circumvent the kernel crash, and continue testing:

(gdb) p &buffer  Print address of buffer

$1 = 0xe091a100 ""

(gdb) set my_variable=0xe091a100  my_variable = &buffer

(gdb) c  Continue your testing 

Kgdb ports  are available for several architectures such as x86, ARM, and PowerPC. When 
you use kgdb to debug a target embedded device (instead of the PC shown in Figure 21.1), 
the gdb front-end that you run on your host system needs to be compiled to work with 
your target platform. For example, to debug a device driver developed for an ARM-based 
embedded device from your x86-based host development system, you have to use the 
appropriately generated gdb, often named arm-linux-gdb. The exact name depends on 
the distribution you use.

GNU Debugger (gdb)

As     mentioned earlier, you can use plain gdb to gather some kernel debug informa-
tion. However, you can’t step through kernel code, set breakpoints, or modify kernel 
variables. Let’s use gdb to debug the kernel panic caused by the buggy function in List-
ing 21.1, but assume this time that trojan_function() is compiled as part of the 
kernel and not as a module, because you can’t easily peek inside modules using gdb.

This is part of the “oops” message generated when trojan_function() is executed:

Unable to handle kernel NULL pointer dereference at 

virtual address 000000ab

 ...

 eax: f7571de0   ebx: ffffe000   ecx: f6c78000   edx: f98df870

 ...

 Stack: c019d731 00000000 

        ...

        bffffbe8 c0108fab 

 Call Trace:    [<c019d731>] [<c013b8ac>] [<c0108fab>]

 ...

Copy this cryptic “oops” message to oops.txt and use the ksymoops utility to obtain more 
verbose output. You might need to hand-copy the message if the system is hung:



bash> ksymoops oops.txt 

Code;  c019d710 <trojan_function+0/10>

00000000 <_EIP>:

Code;  c019d710 <trojan_function+0/10>   <=====

   0:   a1 ab 00 00 00            mov    0xab,%eax   <=====

Code;  c019d715 <trojan_function+5/10>

   5:   c3                        ret

2.6 kernels emit “oops” output that can be used as is without the need of decoding 
using ksymoops if you enable CONFIG_KALLSYMS during kernel confi guration.

Looking at the preceding dump, the “oops” has occurred inside trojan_function().
Let’s use gdb to obtain more information. In the following invocation, vmlinux is the 
uncompressed kernel image, and /proc/kcore is the kernel address space:

bash> gdb vmlinux /proc/kcore

(gdb) p xtime → Test the waters by printing a kernel variable

$0 = 1113173755

Repeated access to the same variable will not yield refreshed values due to gdb’s cached 
access. You can force a fresh access by rereading the core fi le using gdb’s core-file
command. Let’s now look at the disassembly of  trojan_function():

(gdb) x/2i trojan_function → Disassemble trojan_function

0xc019d710 <trojan_function>:    mov 0xab, %eax

0xc019d715 <trojan_function+5>:  ret

trojan_function() looks laconic when seen in assembly due to compiler opti-
mizations. It’s effectively copying the contents of address 0xab to the EAX register, 
which holds the return value from functions on x86-based systems. But 0xab does 
not look like a valid kernel address! Fix the bug by allocating valid memory space to 
my_variable, recompile, and continue your testing.

JTAG Debuggers

JTAG    debuggers use hardware-assist to debug code. You need specialized monitor 
hardware3 and a front-end user interface (some JTAG debuggers use gdb as the 

3 Some JTAG debuggers work with several processor architectures if you suitably replace the probe that connects the debugger 
to the target board. 
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front-end) to step through code. JTAG can also be used for purposes other than debug-
ging, such as burning code onto on-board fl ash memory, as discussed in Chapter 18, 
“Embedding Linux.” JTAG connectors are common on development boards but are 
usually not part of production units.

JTAG debuggers usually connect to target hardware via serial port, USB, or Ether-
net. With Ethernet, you can remotely access the JTAG debugger, and hence the target 
board, even if the board itself does not possess a network interface.

Figure 21.2 shows a JTAG-based remote debugging session in action. The JTAG 
debugger used in this scenario supports a gdb front end. The development host and 
the JTAG hardware are connected to an Ethernet LAN. The debug serial port on 
the target hardware is connected to the serial port on the JTAG box. Figure 21.2 
achieves remote debugging on the Linux development host using fi ve terminal ses-
sions. Terminal 1 runs gdb, which connects to the JTAG box over the network using 
telnet:

(gdb) target remote 10.1.1.2:1001  10.1.1.2 is the IP address of 

                                     the JTAG hardware. 1001 is the

                                     JTAG TCP port that listens to

                                     incoming gdb connections

To debug boot portions of the kernel, for example, set a gdb breakpoint at start_
kernel(). (You can fi nd its address from System.map, which is generated in the root 
of your source tree when you build the kernel.)

Terminal 2 attaches a serial console to the target. A telnet client running on  Termi -
nal 2 connects to a prespecifi ed TCP port on the JTAG box, which is confi gured (using 
Terminal 3) to tunnel data arriving via its serial port:

bash> telnet 10.1.1.2 50  10.1.1.2 is the IP address of 

                                     the JTAG hardware. 50 is the 

                                     JTAG TCP port that tunnels data

                                     arriving via its serial port

This is equivalent to running an emulator such as minicom after directly connecting 
the target’s debug serial port to the host (instead of to the JTAG box, as shown in Fig-
ure 21.2), but that’ll constrain the host to be physically adjacent to the target. 



Terminal 3 telnets to the JTAG box and offers debugger-specifi c semantics. You can 
use it for example, to do the following:

 • Pull a JTAG definition script over TFTP from the host and execute it dur-
ing JTAG boot. A JTAG definition script usually initializes the processor, clock 
registers, chip select registers, and memory banks. After this is done, the JTAG 
hardware is ready to download code on to the target and execute it. The JTAG 
manufacturer usually provides definition files for all supported platforms, so 
you are likely to have a close starting point for your board.

 • Download your bootloader, kernel, or stand-alone code from the host over 
TFTP, to flash memory or RAM on the target. File formats such as ELF and 
binary are usually supported by JTAG debuggers.

 • Single-step code, set breakpoints, examine registers, and dump memory regions.

 • Reset the target.

JTAG debugging can be fl aky at times, so if you are debugging remotely, it might be 
a good idea to power the target via a remote power control switch, as shown in Fig-
ure 21.2. That way, you can hard-reset the target from the host using a web browser, as 
shown in Terminal 4. You may also choose to power the JTAG hardware via a remote 
power switch. That will let you test run a bootloader directly from fl ash without the 
intervention of JTAG and its defi nition fi les.

If the target board possesses a network interface, it can mount its root fi lesystem 
over NFS from the development host. (See the section “NFS-Mounted Root” in 
Chapter 18 for details on doing this.) Terminal 5 on the host operates locally on the 
exported root fi lesystem.4

If your team is scattered geographically, run Terminals 1 through 5 within an envi-
ronment such as   Virtual Network Computing (VNC). If VNC is not already part of 
your distribution, download it from www.realvnc.com. With such a setup, you can 
debug the electrons on your remote board from the comfort of your home! Some 
JTAG vendors provide a sophisticated integrated development environment5 that 
encompasses all the functionalities previously detailed, so you don’t need to manage 
VNC terminal sessions if you’re using one of those. 

4 You may have more such terminals depending on your debug scenario. If you are using an oscilloscope that has remote display 
capabilities, for example, you may operate it via a web browser on another terminal.

5 While JTAG hardware is independent of the target operating system, the front-end interface is likely to have OS dependencies. 
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Remote Linux Development Host

Terminal 1 (GDB Session)

VNC Session

bash> gdb vmlinux
gdb> target remote 
10.1.1.2:1001
gdb>

Terminal 4 (Hard Reset)

Target PowerON

Target PowerOFF

bash> elinks 10.1.1.4

Terminal 5 (Exported Root Filesystem)

bash>  cat /etc/exports
/path/to/exported/root/
10.1.1.3(rw,sync,no_root_squash,no_all_squash)
bash> cp testcode /path/to/exported/root

Terminal 2 (Target Console)

bash> telnet 10.1.1.2 
50

target:bash>

Terminal 3 (JTAG Control)

bash> telnet 10.1.1.2
jtag>

Remote Power Switch

Target
Hardware

JTAG
Debugger

Ethernet
10.1.1.1

10.1.1.4

10.1.1.3

10.1.1.2

Serial Port

FIGURE 21.2 An example JTAG-based remote debug setup.

During hardware bring up, when you are porting your bootloader or other stand-alone 
code to the target, it’s a good idea to fi rst generate an ELF image and debug it from 
RAM before running it from fl ash. Remember, however, to eliminate bootloader ini-
tializations that duplicate the ones performed by the JTAG defi nition script.

A key advantage of JTAG debuggers is that you can use a single tool to debug 
the different pieces that constitute your fi rmware solution. So, you can use the same 



debugger to debug the BIOS, bootloader, base kernel, device driver modules, as well as 
user-space applications, at source level.

Downloads

You   may download kdb patches for the x86 and IA64 architectures from http://oss.sgi.
com/projects/kdb. Each supported kernel version needs two patches: a common one 
and an architecture-dependent one. 

The home page for the kgdb project is http://kgdb.sourceforge.net. The website 
also has documentation on confi guring and using kgdb.

If your Linux distribution does not already contain gdb, you can obtain it from 
www.gnu.org/software/gdb/gdb.html.

Kernel Probes

Kernel probes can intrude into a kernel function and extract debug information or 
apply a medicated patch. It’s a useful addition to your debugging repertoire for inves-
tigating inexplicable behavior at a customer site, especially when you don’t have the 
luxury of rebooting the system. Linux supports a generic form of kernel probes called 
Kprobes and two specialized variants, Jprobes and return probes.

Kprobes

Kprobes     can save you the trouble of building and booting a debug kernel by provid-
ing capabilities to dynamically dump kernel data structures or insert code into a run-
ning kernel. You can, for example, add a few printks on-the-fl y inside the scheduler 
without recompiling the kernel. You can even patch a bug on a Mars rover without 
rebooting it.

To insert a kprobe inside a kernel function, follow these steps:

 1. Turn on CONFIG_KPROBES (Instrumentation Support Kprobes) in the kernel 
configuration menu.

 2. Implement a kernel module that registers a kprobe at the instruction of interest. 
You need to register a          pre-handler that Kprobes will run just before executing 
the probed instruction and a post-handler that Kprobes will run after executing 
the probed instruction. You may also supply a fault-handler that will run if a 
fault is detected while executing the pre- or post-handlers (because you don’t 
want to “oops” due to a debugging bug!).
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When a kprobe is registered, it saves the probed instruction and replaces it with an 
instruction that generates a breakpoint (int 0x03 on x86-based systems). When the 
breakpoint is hit, the kernel generates a  die notifi cation. (We discussed notifi er chains 
in Chapter 3, “Kernel Facilities.”) Kprobes inserts itself into the die notifi er chain, so 
it gets notifi ed about the breakpoint hit.

When notifi ed, Kprobes executes the registered pre-handler. Next, it steps through 
a copy of the probed instruction. It executes a copy instead of swapping the probed 
instruction with the breakpoint instruction for reasons of SMP consistency. Finally, it 
runs the post-handler. The pre- and post-handler windows are the hooks offered to the 
Kprobes user to inject debug code. The handlers can be registered and unregistered 
on-the-fl y, so serviceability is not merely static at compile time but programmable dur-
ing runtime.

Let’s learn to use   Kprobes with the help of an example. Consider the code snippet 
in Listing 21.2, which is a kernel thread that adds npages number of pages to the 
free memory pool, whenever a SIGUSR1 signal is delivered to it. Most of the logic has 
been scissored out of the listing because it’s not relevant. Assume that you are at a cus-
tomer site to debug a problem reported with this code. You notice bad things when-
ever npages crosses 10, so you want to apply a runtime patch that limits it to 10.

LISTING 21.2 Problem Code (   mydrv.c)

int npages=0;

EXPORT_SYMBOL(npages);

static int memwalkd(void *unused)

{

  long curr_pfn = (64*1024*1024 >> PAGE_SHIFT);

  struct page *curr_page;

  /* ... */

  daemonize("memwalkd"); /* kernel thread */

  sigfillset(&current->blocked);

  allow_signal(SIGUSR1);

  for (;;) {

    /* Dequeue a signal if it's pending */

    if (signal_pending(current)) {

      sig = dequeue_signal(current, &current->blocked, &info);



      /* Point A */

      /* Free npages pages when SIGUSR1 is received */

      if (sig == SIGUSR1) {

      /* Point B */

        /* Problem manifests when npages crosses 10 in the following 

           loop. Let’s apply run time medication here via Kprobes */

        for (i=0; i < npages; i++, curr_pfn++) {

          /* ... */

        }

      }

      /* ... */

  }

  /* ... */

}

LISTING 21.3 Registering   Kprobe Handlers

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/kprobes.h>

#include <linux/kallsyms.h>

#include <linux/sched.h>

extern int npages; /* Defined in Listing 21.2 */

/* Per-probe structure */

static struct kprobe bandaid;

/* Pre Handler: Invoked before running probed instruction */

int bandaid_pre(struct kprobe *p, struct pt_regs *regs)

{

  if (npages > 10) npages = 10;

  return 0;

}

/* Post Handler: Invoked after running probed instruction */

void bandaid_post(struct kprobe *p, struct pt_regs *regs, 

                  unsigned long flags)

{

  /* Nothing to do */

}
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/* Fault Handler: Invoked if the pre/post-handlers 

   encounter a fault */

int bandaid_fault(struct kprobe *p, struct pt_regs *regs, 

                  int trapnr)

{

  return 0;

}

int init_module(void)

{

  int retval;

  /* Fill the kprobe structure */

  bandaid.pre_handler   = bandaid_pre;

  bandaid.post_handler  = bandaid_post;

  bandaid.fault_handler = bandaid_fault;

  /* Arrive at the target address as explained */

  bandaid.addr = (kprobe_opcode_t*) 

                 kallsyms_lookup_name("memwalkd") + 0xaa;

  if (!bandaid.addr) {

    printk("Bad Probe Point\n");

    return -1;

  }

  /* Register the kprobe */

  if ((retval = register_kprobe(&bandaid)) < 0) {

    printk("register_kprobe error, return value=%d\n",

            retval);

    return -1;

  }

  return 0;

}

void module_cleanup(void)

{

  unregister_kprobe(&bandaid);

}

MODULE_LICENSE("GPL"); /* You can't link the Kprobes API

                          unless your user module is GPL'ed */



Listing 21.3 uses  Kprobes to insert a patch at kallsyms_lookup_name("memwalkd")
+ 0xaa, which limits npages to 10. To fi gure out how to arrive at this probe address, 
take another look at Listing 21.2. You want the patch to be inserted at Point B. To 
calculate the kernel address at Point B, disassemble the contents of mydrv.ko using 
objdump:

bash> objdump -D mydrv.ko

mydrv.ko:     file format elf32-i386

Disassembly of section .text:

00000000 <memwalkd>:

   0:     55                        push   %ebp

   1:     bd 00 40 00 00            mov    $0x4000,%ebp

   6:     57                        push   %edi

   7:     56                        push   %esi

   8:     53                        push   %ebx

   9:     bb 00 f0 ff ff            mov    $0xfffff000,%ebx

   e:     81 ec 90 00 00 00         sub    $0x90,%esp

  ...

  ...

  7a:     83 f8 0a                  cmp    $0xa,%eax Point A

  7d:     74 2b                     je     aa <memwalkd+0xaa>

  7f:     83 f8 09                  cmp    $0x9,%eax

  82:     75 cc                     jne    50 <memwalkd+0x50>

  ...

  a9:     c3                        ret

  aa:     a1 00 00 00 00            mov    0x0,%eax Point B

  af:     85 c0                     test   %eax,%eax

  b1:     0f 8e b5 00 00 00         jle    16c <memwalkd+0x16c>

  b7:     81 fd 7b f6 00 00         cmp    $0xf67b,%ebp

  ...

  fa:     a1 00 00 00 00            mov    0x0,%eax

You have to use an architecture-specifi c objdump if you’re cross-compiling for a differ-
ent processor platform. You will need something like arm-linux-objdump if you’re disas-
sembling a binary cross-compiled for an ARM-based target device. Pass the -S option to 
objdump to mix source code with the disassembled output:

bash> arm-linux-objdump –d –S mydrv.ko
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If you try and match the C code in Listing 21.2 with its disassembled dump above, 
you can associate Point A and Point B with the shown kernel addresses.  kallsyms_
lookup_name()6 locates the address of memwalkd(), and 0xaa is the offset where 
Point B resides, so apply the kprobe at kallsyms_lookup_name("memwalkd") + 0xaa.

After you register the kprobe,  memwalkd() equivalently looks like this:

static int memwalkd(void *unused)

{

  /* ...*/ 

  for (;;) {

    /* ... */

    /* Point A */

    /* Free npages pages when SIGUSR1 is received */

    if (sig == SIGUSR1) {

    /* Point B */

if (npages > 10) npages = 10; /* The medicated patch! */

      for (i=0; i < npages; i++, curr_pfn++) {

        /* ... */

      }

    }

    /* ... */

  }

  /* ... */

}

Whenever npages is assigned a value greater than 10, the kprobed patch pulls it back 
to 10, thus stepping around the problem.

In the next two sections, let’s look at a couple of helper facilities that make it easier 
to use Kprobes during function entry and exit.

Jprobes

A jprobe    is a specialized kprobe. It eases the work of adding a probe when the point of 
investigation is at the entry to a kernel function. The jprobe handler has the same pro-
totype as the probed function. It’s invoked with the same argument list as the probed 
function, so you can easily access the function arguments from the jprobe handler. If 
you use Kprobes rather than Jprobes, imagine the hassles your probe handler needs to 

6 You have to enable CONFIG_KALLSYMS during kernel confi guration to obtain the services of this function.



undergo, wading through the dark alleys of the function stack to extract function argu-
ments! And this code that delves into the stack to elicit argument values has to be heav-
ily function-specifi c, not to mention being architecture-dependent and unportable.

To learn how to use Jprobes, let’s revert to an example. Assume that you’re debugging 
a network device driver (that is built as part of the kernel) by looking at the printk()
messages it’s generating. The driver is emitting crucial values in octal (base 8), but to 
your horror, the driver writer has introduced a typo in the print format string by cod-
ing %O rather than %o. So, all you can see are messages such as this:

Number of Free Receive buffers = %O.

Jprobes to the rescue. You can fi x this in a few seconds, without recompiling or reboot-
ing the kernel. First, take a look at  printk() defi ned in kernel/printk.c:

asmlinkage int printk(const char *fmt, ...)

{

  va_list args;

  int r;

  va_start(args, fmt);

  r = vprintk(fmt, args);

  va_end(args);

  return r;

}

Let’s add a simple jprobe at the entry to printk() and transform every %O into %o.
Listing 21.4 does this job. Note that the jprobe handler needs to have the same pro-
totype as printk(). Both functions are marked with the asmlinkage tag that asks 
them to expect arguments from the stack, rather than from CPU registers.

LISTING 21.4 Registering Jprobe  Handlers

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/kprobes.h>

#include <linux/kallsyms.h>

/* Jprobe the entrance to printk */

asmlinkage int 

jprintk(const char *fmt, ...)

{
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  for (; *fmt; ++fmt) {

    if ((*fmt=='%')&&(*(fmt+1) == 'O')) *(char *)(fmt+1) = 'o';

  }

  jprobe_return();

  return 0;

}

/* Per-probe structure */

static struct jprobe jprobe_eg = {

  .entry = (kprobe_opcode_t *) jprintk

};

int

init_module(void)

{

  int retval;

  jprobe_eg.kp.addr = (kprobe_opcode_t*) 

                      kallsyms_lookup_name("printk");

  if (!jprobe_eg.kp.addr) {

    printk("Bad probe point\n");

    return -1;

  }

  /* Register the Jprobe */

  if ((retval = register_jprobe(&jprobe_eg) < 0)) {

    printk("register_jprobe error, return value=%d\n",

            retval);

    return -1;

  }

  printk("Jprobe registered.\n");

  return 0;

}

void

module_cleanup(void)

{

  unregister_jprobe(&jprobe_eg);

}

MODULE_LICENSE("GPL");



When Listing 21.4 invokes  register_jprobes() to register the jprobe, a kprobe is 
inserted at the beginning of printk(). When this probe is hit, Kprobes replaces the 
saved return address with that of the registered jprobe handler  jprintk(). It then 
copies a portion of the stack and returns, thus passing control to jprintk() with 
printk()’s argument list. When jprintk() calls  jprobe_return(), the original 
call state is restored, and printk() continues to execute normally.

When you insert this jprobe user module, the network driver no longer emits use-
less messages announcing %O buffers, rather it prints saner information such as this:

Number of Free Receive buffers = 12.

Return Probes

A return probe (or a     kretprobe in Kprobes terminology) is another specialized Kprobes 
helper. It eases the work of inserting a kprobe when you need to probe a function’s 
return point. If you use vanilla Kprobes to investigate return points, you might need to 
register them at multiple places because a function can return via multiple code paths. 
However, if you use return probes, you need to insert only one kretprobe, rather than 
register, say, 20 Kprobes to cover a function’s 20 return paths.

The function tty_open() defi ned in drivers/char/tty_io.c has seven return paths. 
The successful path returns 0, and others return error values such as –ENXIO and 
-ENODEV. A single kretprobe is suffi cient to alert you about failures, irrespective of the 
associated code path. Listing 21.5 implements this kretprobe.

LISTING 21.5 Registering  Return Probe Handlers

#include <linux/kernel.h>

#include <linux/module.h>

#include <linux/kprobes.h>

#include <linux/kallsyms.h>

/* kretprobe at exit from tty_open() */

static int 

kret_tty_open(struct kretprobe_instance *kreti, 

              struct pt_regs *regs)

{

  /* The EAX register contains the function return value 

     on x86 systems */
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  if ((int) regs->eax) {

    /* tty_open() failed. Announce the return code */

    printk("tty_open returned %d\n", (int)regs->eax);

  }

  return 0;

}

/* Per-probe structure */

static struct kretprobe kretprobe_eg = {

  .handler = (kretprobe_handler_t)kret_tty_open

};

int

init_module(void)

{

  int retval;

  kretprobe_eg.kp.addr = (kprobe_opcode_t*) 

                         kallsyms_lookup_name("tty_open");

  if (!kretprobe_eg.kp.addr) {

    printk("Bad Probe Point\n");

    return -1;

  }

  /* Register the kretprobe */

  if ((retval = register_kretprobe(&kretprobe_eg) < 0)) {

    printk("register_kretprobe error, return value=%d\n",

            retval);

    return -1;

  }

  printk("kretprobe registered.\n");

  return 0;

}

void module_cleanup(void)

{

  unregister_kretprobe(&kretprobe_eg);

}

MODULE_LICENSE("GPL");



When Listing 21.5 invokes  register_kretprobes(), a kprobe is internally inserted 
at the beginning of tty_open(). When this probe gets hit, this internal kprobe handler 
replaces the function return address with that of a special routine (called a trampoline
in Kprobes terminology). Look at arch/your-arch/kernel/kprobes.c for the implementa-
tion of the trampoline.

When tty_open() returns via any of its seven return paths, control returns to 
the trampoline instead of the caller function. The trampoline invokes the kretprobe 
handler kret_tty_open(), registered by Listing 21.5, which prints the return value 
if tty_open() has not returned successfully.

Limitations

Kprobes   has its limitations. Some of them are obvious. You won’t, for example, see 
desired results if you insert a kprobe inside an inline function. And, of course, you 
can’t probe Kprobes code.

Kprobes are more useful for applying probes inside the base kernel. If the subject 
code is part of a dynamically loadable module, you might as well rewrite and recompile 
your module rather than write and compile a new module to “kprobe” it. However, 
you might still want to use Kprobes if bringing down the module is not acceptable.

There are less-obvious limitations, too. Optimizations are done at compile time, 
whereas Kprobes are inserted during runtime. So, the effect of inserting instructions 
via Kprobes is not equivalent to adding code in the original source fi les. For example, 
the buggy code snippet

volatile int *integerp = 0xFF;

int integerd = *integerp;

is reduced by the compiler to

mov 0xff, %eax

So, you can’t easily use Kprobes if you want to sneak in between those two lines of C 
code, allocate a word of memory, point integerp to the allocated word, and circum-
vent a kernel crash.

 SystemTap (http://sourceware.org/systemtap/) is a diagnostic tool that eases the use of 
Kprobes.
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Looking at the Sources

The    Kprobes implementation consists of a generic portion defi ned in kernel/kprobes.c
(and include/linux/kprobes.h) and an architecture-dependent part that lives in arch/
your-arch/kernel/kprobes.c (and include/asm-your-arch/kprobes.h).

Peek inside Documentation/kprobes.txt for further information about Kprobes, 
Jprobes, and Kretprobes.

Kexec and Kdump

Now that you have learned how to use Kprobes, let’s continue and look at more fac-
ets of Linux RAS. Kexec and kdump are serviceability features introduced in the 2.6 
kernel.

Kexec uses the image overlay philosophy of the UNIX exec() system call to spawn 
a new kernel over a running kernel without the overhead of boot fi rmware. This can 
save several seconds of reboot time because boot fi rmware spends cycles walking buses 
and recognizing devices. The less the reboot latency, the less the system downtime; 
so, this was one of the main motivations for developing kexec. However, kexec’s most 
popular user is kdump. Capturing a dump after a kernel crash is inherently unreli-
able because kernel code that accesses the dump device might be in an unstable state. 
Kdump circumvents this problem by collecting the dump after booting into a healthy 
kernel via kexec.

Kexec

Before   you   can kexec a kernel, you need to do some preparations:

 1.  Compile and boot into a kernel that has kexec support. For this, turn on CON-
FIG_KEXEC (Processor Type and Features Kexec System Call) in the kernel con-
figuration menu. This kernel is called the first kernel or the running kernel.

 2.  Prepare the kernel that is to be kexec-ed. This second kernel can be the same as 
the first kernel.

 3.  Download the   kexec-tools package source tar ball from www.kernel.org/pub/
linux/kernel/people/horms/kexec-tools/kexec-tools-testing.tar.gz. Build and pro-
duce the user-space tool called kexec.

www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools-testing.tar.gz
www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools-testing.tar.gz


The kexec     tool built in Step 3 is invoked in two stages. The fi rst stage loads the second 
kernel image into the buffers of the running kernel, while the second stage actually 
overlays the running kernel:

 1. Load the second (overlay) kernel using the kexec command:

bash> kexec -l /path/to/kernelsources/arch/x86/boot/bzImage --

append="root=/dev/hdaX" --initrd=/boot/myinitrd.img

bzImage is the second kernel, hdaX is the root device, and myinitrd.img is the 
initial root fi lesystem. The kernel implementation of this stage is mostly archi-
tecture-independent. At the heart of this stage is the sys_kexec() system call. 
The kexec command loads the new kernel image into the running kernel’s buf-
fers using the services of this system call.

 2.  Boot into the second kernel:

bash> kexec -e

... → Kernel boot up messages

Kexec abruptly starts the new kernel without gracefully halting the operating 
system. To shut down prior to reboot, invoke kexec from the bottom of the halt
script (usually /etc/rc.d/rc0.d/S01halt) and invoke halt instead.

  The implementation of the second stage is architecture-dependent. The crux 
of this stage is a reboot_code_buffer that contains assembly code to put the 
new kernel in place to boot.

Kexec bypasses the initial kernel code that invokes the services of boot fi rmware and 
directly jumps to the protected mode entry point (for x86 processors). An important 
challenge to implement kexec is the interaction that happens between the kernel and 
the boot fi rmware (BIOS on x86-based systems, Openfi rmware on POWER-based 
machines, and so on). On x86 systems, information such as the e820 memory map 
passed to the kernel by the BIOS (see Appendix B, “Linux and the BIOS”) needs to be 
supplied to the kexec-ed kernel, too.

Kexec with Kdump

The      kexec invocation semantics is somewhat special when it’s used in tandem with 
kdump. In this case, kexec is required to automatically boot a new kernel when it 
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encounters a kernel panic. If the running kernel crashes, the new kernel (called the 
capture kernel) is booted to reliably collect the dump. A typical call syntax is this:

bash> kexec -p /path/to/capture-kernel-sources/vmlinux

            --args-linux --append="root=/dev/hdaX irqpoll"

--initrd=/boot/myinitrd.img

The -p option asks kexec to trigger a reboot when a kernel panic occurs. A  vmlinux
ELF kernel image is used as the capture kernel. Because vmlinux is a general ELF 
boot image and because kexec is theoretically OS agnostic, you need to specify via the 
--args-linux option that the following arguments have to be interpreted in a Linux-
specifi c manner. The capture kernel boots asynchronously during a kernel crash, so 
device drivers using shared interrupts may fatally express their unhappiness during 
boot. To be nice to such drivers, specify irqpoll in the command line passed to the 
capture kernel using --append.

To use kexec with kdump, you need some additional kernel confi guration settings. 
The capture kernel requires access to kernel memory of the crashed kernel to generate 
a full dump, so the latter cannot just overwrite the former as was done by kexec in the 
non-kdump case. The running kernel needs to reserve a memory region to run the 
capture kernel. To mark this region

 • Boot the first kernel with the command-line argument crashkernel=64M@16M
(or other suitable size@start values). Also include debug symbols in the ker-
nel image by enabling CONFIG_DEBUG_INFO (Kernel Hacking Compile the 
Kernel with Debug Info) in the configuration menu.

 • While confi guring the capture kernel, set CONFIG_PHYSICAL_START to the 
same start value assigned above (16M in this case). If you kexec into the cap-
ture kernel and peek inside /proc/meminfo, you will fi nd that size (64M in this 
case) is the total amount of physical memory that this kernel can see.

Now that you’re comfortable with kexec and have mastered it from the perspective of a 
kdump user, let’s delve into kdump and use it to analyze some real-world kernel crashes.

Kdump

An image   of system memory captured after a kernel crash or hang is called a   crash 
dump. Analyzing a crash dump can give valuable clues for postmortem analysis of ker-
nel problems. However, obtaining a dump after a kernel crash is inherently unreliable 



because the storage driver responsible for logging data onto the dump device might be 
in an undefi ned state.

Until the advent of kdump,   Linux Kernel Crash Dump (LKCD) was the popular 
mechanism to obtain and analyze dumps. LKCD uses a temporary dump device (such 
as the swap partition) to capture the dump. It then warm reboots back to a healthy 
state and copies the dump from the temporary device to a permanent location. A tool 
called lcrash is used to analyze the dump. The disadvantages with LKCD include the 
following:

 • Even copying the dump to a temporary device might be unreliable on a crashed 
kernel.

 • Dump device configuration is nontrivial.

 • The reboot might be slow because swap space can be activated only after the 
dump has been safely saved away to a permanent location.

 • LKCD is not part of the mainline kernel, so installing the proper patches for 
your kernel version is a hurdle.

Kdump is not burdened with these shortfalls. It eliminates indeterminism by collect-
ing the dump after booting into a healthy kernel via kexec. Also, because memory state 
is preserved after a kexec reboot, the memory image can be accurately accessed from 
the capture kernel.

Let’s fi rst get   the preliminary kdump setup out of the way:

 1.  Ask the running kernel to kexec into a capture kernel if it encounters a panic. 
The capture kernel should additionally have CONFIG_HIMEM and CONFIG_
CRASH_DUMP turned on. (Both these options sit inside Processor type and Features
in the kernel configuration menu.)

 2. After the capture kernel boots, copy the collected dump information from 
/proc/vmcore (obtained by enabling CONFIG_PROC_VMCORE in the kernel 
configuration menu) to a file on your hard disk:

bash> cp /proc/vmcore /dump/vmcore.dump

You can also save other information such as the raw memory snapshot of the 
crashed kernel, via /dev/oldmem.

 3.  Boot back into the first kernel. You are now ready to start dump analysis.
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Let’s use   the collected dump fi le and the   crash tool to analyze some example kernel 
crashes. Introduce this bug inside the interrupt handler of the RTC driver (drivers/
char/rtc.c):

irqreturn_t rtc_interrupt(int irq, void *dev_id)

{

+  volatile int *integerp = 0xFF;

+  int integerd = *integerp;  /* Bad memory reference! */

   

   spin_lock(&rtc_lock);

   /* ... */

Trigger execution of the handler by enabling interrupts via the   hwclock command:

bash> hwclock

... → Kernel panic occurs when execution hits rtc_interrupt()

         causing kexec to boot into the capture kernel.

Save /proc/vmcore to /dump/vmcore.dump, reboot back into the fi rst (crashed) kernel, 
and start analysis using the crash tool. In a real-world situation, of course, the dump 
might be captured at a customer site, whereas the analysis is done at a support center:

bash> crash /usr/src/linux/vmlinux /dump/vmcore.dump

crash 4.0-2.24

...

      KERNEL: /usr/src/linux/vmlinux

    DUMPFILE: /root/vmcore.dumpfile

        CPUS: 1

        DATE: Mon Nov 26 04:15:49 2007

      UPTIME: 00:17:22

LOAD AVERAGE: 0.82, 1.02, 0.87

       TASKS: 63

       ...

       PANIC: "Oops: 0000 [#1]" (check log for details)

crash>

Examine the stack trace to understand the cause of the crash:

crash> bt

PID: 0      TASK: c03a32e0  CPU: 0   COMMAND: "swapper"

 #0 [c0431eb8] crash_kexec at c013a8e7



 #1 [c0431f04] die at c0103a73

 #2 [c0431f44] do_page_fault at c0343381

 #3 [c0431f84] error_code (via page_fault) at c010312d

    EAX: 00000008  EBX: c59a5360  ECX: c03fbf90  EDX: 00000000

    EBP: 00000000

    DS:  007b      ESI: 00000000  ES:  007b      EDI: c03fbf90

    CS:  0060      EIP: f8a8c004  ERR: ffffffff  EFLAGS: 00010092

 #4 [c0431fb8] rtc_interrupt at f8a8c004

 #5 [c0431fc4] handle_IRQ_event at c013de51

 #6 [c0431fdc] __do_IRQ at c013df0f

The stack trace points the needle of suspicion at rtc_interrupt(). Let’s disassemble 
the instructions near rtc_interrupt():

crash> dis 0xf8a8c000 5

0xf8a8c000 <rtc_interrupt>:     push   %ebx

0xf8a8c001 <rtc_interrupt+1>:   sub    $0x4,%esp

0xf8a8c004 <rtc_interrupt+4>:   mov    0xff,%eax

0xf8a8c009 <rtc_interrupt+9>:   mov    $0xc03a6640,%eax

0xf8a8c00e <rtc_interrupt+14>:  call   0xc0342300 <_spin_lock>

The instruction at address 0xf8a8c004 is attempting to move the contents of the EAX
register to address 0xff, which is clearly the invalid deference that caused the crash. 
Fix this and build a new kernel.

If you use the   irq command, you can fi gure out the identity of the interrupt that 
was in progress during the time of the crash. In this case, the output confi rms that the 
RTC interrupt was indeed active:

crash> irq

    IRQ: 8

 STATUS: 1 (IRQ_INPROGRESS)

...

...

handler: f8a8c000  <rtc_interrupt>

            flags: 20000000  (SA_INTERRUPT)

             mask: 0

             name: f8a8c29d  "rtc"

crash> quit

bash>

Kexec and Kdump 625



626 Chapter 21 Debugging Device Drivers

Let’s now shift gears and look at a case where the kernel freezes, rather than generate an 
“oops.” Consider the following buggy driver init()routine:

static int __init

mydrv_init(void)

{

  spin_lock(&mydrv_wq.lock);  /* Usage before initialization! */

  spin_lock_init(&mydrv_wq.lock);

  /* ... */

}

The code is erroneously using a spinlock before initializing it. Effectively, the CPU 
spins forever trying to acquire the lock, and the kernel appears to hang. Let’s debug 
this problem using kdump. In this case, there will be no auto-trigger because there is 
no panic, so force a crash dump by pressing the magic Sysrq key combination, Alt-
Sysrq-c. You may need to enable Sysrq by writing a 1 to /proc/sys/kernel/sysrq:

bash> echo 1 > /proc/sys/kernel/sysrq

bash> insmod mydrv.ko

This induces the kernel to hang inside mydrv_init(). Press the Alt-Sysrq-c key com-
bination to trigger a crash dump:

Alt-Sysrq-c

... → Messages announcing that a crash dump 

                          has been triggered

Save the dump to disk after kexec boots the capture kernel, boot back to the original 
kernel, and run crash on the saved dump:

bash> crash vmlinux vmcore.dump

       ...

       PANIC: "SysRq : Trigger a crashdump"

         PID: 2115

     COMMAND: "insmod"

        TASK: f7c57000  [THREAD_INFO: f6170000]

         CPU: 0

       STATE: TASK_RUNNING (SYSRQ)

crash>



Test the waters by checking the identity of the process that was running at the time of 
the crash. In this case, it was apparently insmod (of mydrv.ko):

crash> ps

    ...

    2171   2137   0  f6bb7000  IN   0.5   11728   5352  emacs-x

    2214      1   0  f6b5b000  IN   0.1    2732   1192  login

    2230   2214   0  f6bb0550  IN   0.1    4580   1528  bash

  > 2261   2230   0  c596f550  RU   0.0    1572    376  insmod

The stack trace doesn’t yield much information other than telling you that a Sysrq key 
press was responsible for the dump:

crash> bt

PID: 2115   TASK: f7c57000  CPU: 0   COMMAND: "insmod"

 #0 [c0431e68] crash_kexec at c013a8e7

 #1 [c0431eb4] __handle_sysrq at c0254664

 #2 [c0431edc] handle_sysrq at c0254713

Let’s next try peeking at the log messages generated by the crashed kernel. The   log com-
mand reads the messages from the kernel printk ring buffer present on the dump fi le:

crash> log

...

BUG: soft lockup detected on CPU#0!

Pid: 2261, comm:               insmod

EIP: 0060:[<c010ec1b>] CPU: 0

EIP is at delay_pmtmr+0xb/0x20

EFLAGS: 00000246    Tainted: P       (2.6.16.16 #11)

EAX: 5caaa48c EBX: 00000001 ECX: 5caaa459 EDX: 00000012

ESI: 02e169c9 EDI: 00000000 EBP: 00000001 DS: 007b ES: 007b

CR0: 8005003b CR2: 08062017 CR3: 35e89000 CR4: 000006d0

 [<c01fede9>] __delay+0x9/0x10

 [<c0200089>] _raw_spin_lock+0xa9/0x150

 [<f893d00d>] mydrv_init+0xd/0xb2 [wqdrv]

 [<c0136565>] sys_init_module+0x175/0x17a2

 [<c015d834>] do_sync_read+0xc4/0x100

 [<c013ce4d>] audit_syscall_entry+0x13d/0x170

 [<c0105578>] do_syscall_trace+0x208/0x21a

 [<c0102f05>] syscall_call+0x7/0xb

SysRq : Trigger a crashdump

crash>
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The log offers two useful pieces of debug information. First, it lets you know that a 
soft lockup was detected on the crashed kernel. As discussed in the section “Device 
Example: Watchdog Timer” in Chapter 5, “Character Drivers,” the kernel detects soft 
lockups as follows: A kernel watchdog thread runs once a second and touches a per-
CPU timestamp variable. If the CPU sits in a tight loop, the watchdog thread cannot 
update this timestamp. An update check is carried out during timer interrupts using 
softlockup_tick() (defi ned in kernel/softlockup.c). If the watchdog timestamp is 
more than 10 seconds old, it concludes that a soft lockup has occurred and emits a 
kernel message to that effect.

Second, the log frowns upon mydrv_init()+0xd (or 0xf893d00), so let’s look at 
the disassembly of the surrounding code region:

crash> dis f893d000 5

dis: WARNING: f893d000: no associated kernel symbol found

0xf893d000:     mov    $0xf89f1208,%eax

0xf893d005:     sub    $0x8,%esp

0xf893d008:     call   0xc0342300 <_spin_lock>

0xf893d00d:     movl   $0xffffffff,0xf89f1214

0xf893d017:     movl   $0xffffffff,0xf89f1210

The return address in the stack is 0xf893d00d, so the kernel is hanging inside the 
previous instruction, which is a call to  spin_lock(). If you co-relate this with the 
earlier source snippet and look at it in the eye, you can see the error sequence, spin_
lock()/spin_lock_init(), staring sorrowfully back at you. Fix the problem by 
swapping the sequence.

You may also use crash to peek at data structures of interest, but be aware that 
memory regions that were swapped out during the crash are not part of the dump. In 
the preceding example, you can examine mydrv_wq as follows:

crash> rd mydrv_wq 100

f892c200:  00000000 00000000 00000000 00000000   ................

...

f892c230:  2e636373 00000068 00000000 00000011   scc.h...........

Gdb is integrated with crash, so you can pass commands from crash to gdb for evalua-
tion. For example, you can use gdb’s p command to print data structures.



Looking at the Sources

Architecture-dependent       portions of kexec reside in arch/your-arch/kernel/machine_kexec.c
and arch/your-arch/kernel/relocate_kernel.S. The generic parts live in kernel/kexec.c (and 
include/linux/kexec.h). Peek inside arch/your-arch/kernel/crash.c and arch/your-arch/kernel/
crash_dump.c for the kdump implementation. Documentation/kdump/kdump.txt con-
tains installation information.

Profiling

Profi ling   points you to those regions of code that burn more CPU cycles. Profi lers 
help sense the presence of code bottlenecks and come in different fl avors. The OProfi le
kernel profi ler, included with the 2.6 kernel, uses hardware assist to gather profi le data. 
The gprof application profi ler, on the other hand, relies on compiler assist to collect 
profi ling information.

Kernel Profiling with OProfile

   OProfi le samples data at regular intervals using hardware performance counters sup-
ported by many processors. The performance counters can be programmed to count 
events such as the number of cache misses. On systems where the processor does not 
support performance counters, OProfi le obtains limited information by collecting 
data during timer events.

OProfi le consists of the following:

 • A kernel layer that collects profiling information.7 To enable OProfile in your 
kernel, enable CONFIG_PROFILING, CONFIG_OPROFILE, and CONFIG_APIC
and recompile.

 • The   oprofiled daemon.

 • A suite of post-profi ling tools such as opcontrol, opreport, and op_help that help 
in detailed analysis of the collected data. These tools are included with several 
distributions; if your distribution doesn’t have them, however, you can down-
load precompiled binaries.

7 If you are still using a 2.4 kernel, you have to patch your kernel sources with OProfi le support.

Profiling 629



630 Chapter 21 Debugging Device Drivers

To illustrate the basics of kernel profi ling, let’s simulate a bottleneck in the fi lesystem 
layer and use OProfi le to detect it. Our code area of interest is the portion of the fi le-
system layer that reads directories (function vfs_readdir() in fs/readdir.c)

First, use    opcontrol to confi gure OProfi le:

bash> opcontrol --setup --vmlinux=/path/to/kernelsources/vmlinux

                --event=GLOBAL_POWER_EVENTS:100000:1:1:1

The event specifi er asks OProfi le to collect samples during GLOBAL_POWER_EVENTS
(time during which the processor is not stopped). The numerals adjacent to the event 
specifi er denote the sampling count in clock cycles, unit mask fi lter, kernel-space 
counting, and user-space counting, respectively. If you would like to sample x times 
every second and your processor is running at a frequency of cpu_speed HZ, your 
sample count should approximately be (cpu_speed/x). A larger count generates a 
fi ner profi le but also results in more CPU overhead. 

The events supported by OProfi le depend on your processor:

bash> opcontrol -l → List available events on a Pentium 4 CPU

GLOBAL_POWER_EVENTS: (counter: 0, 4)

 time during which processor is not stopped (min count: 3000)

BRANCH_RETIRED: (counter: 3, 7)

 retired branches (min count: 3000)

MISPRED_BRANCH_RETIRED: (counter: 3, 7)

 retired mispredicted branches (min count: 3000)

BSQ_CACHE_REFERENCE: (counter: 0, 4)

...

Next, start OProfi le and run a benchmarking tool that stresses those parts of the kernel 
you would like to profi le. Look at http://lbs.sourceforge.net/ for a list of benchmark-
ing projects on Linux. For this example, let’s exercise the    Virtual File System (VFS) 
layer by recursively listing all fi les in the system:

bash> opcontrol --start → Start data collection

bash> ls -lR / → Stress test

bash> opcontrol --dump → Save profiled data

http://lbs.sourceforge.net/


Use    opreport to look at the profi ling results. The % column provides a measure of the 
function’s load on the system:

bash> opreport -l /path/to/kernelsources/vmlinux

CPU: P4 / Xeon, speed 2992.9 MHz (estimated)

Counted GLOBAL_POWER_EVENTS events (time during which processor 

is not stopped) with a unit mask of 0x01 (count cycles when processor is active) 

count 100000

samples  %        symbol name

914506   24.2423  vgacon_scroll → ls output printed to console

406619   10.7789  do_con_write

273023    7.2375  vgacon_cursor

206611    5.4770  __d_lookup

...

1380      0.0366  vfs_readdir → Our routine of interest

...

1        2.7e-05  vma_prio_tree_next

Let’s now simulate a bottleneck in the VFS code by introducing a 1-millisecond delay 
in vfs_readdir(). This is done in Listing 21.6.

LISTING 21.6 vfs_readdir() Defi ned in fs/read_dir.c

int vfs_readdir(struct file *file, filldir_t filler, void *buf)

{

  struct inode *inode = file->f_ dentry->d_inode;

  int res = -ENOTDIR;

+ /* Introduce a millisecond bottleneck

+    (HZ is set to 1000 on this system) */

+ unsigned long timeout = jiffies+1;

+ while (time_before(jiffies, timeout));

+ /* End of bottleneck */

  /* ... */

}
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Compile the kernel with this change and recollect the profi le. The new data looks 
like this:

bash> opreport -l /path/to/kernelsources/vmlinux

CPU: P4 / Xeon, speed 2993.08 MHz (estimated)

Counted GLOBAL_POWER_EVENTS events (time during which processor is not stopped) 
with a unit mask of 0x01 (count cycles when processor is active) 

count 100000

samples  %        symbol name

6178015  57.1640  vfs_readdir  Our routine of interest

1065197   9.8561  vgacon_scroll ls output printed to console

479801    4.4395  do_con_write

...

As you can see, the bottleneck is clearly refl ected in the profi led data. vfs_readdir()
has now jumped to the top of the list!

You can use     OProfi le to obtain a lot more information. You can, for example, 
gather the percentage of data cache line misses. Caches are fast memory close to the 
processor. Fetches to cache are done in units of the processor cache line (32 bytes for 
Pentium 4). If the data you need to access is not already present in the cache (a cache 
miss), the processor has to fetch it from main memory, and this burns more CPU 
cycles. Subsequent accesses to that memory (and the surrounding bytes touched 
into the cache) will be faster until the corresponding cache line gets invalidated. You 
can confi gure OProfi le to count the number of cache misses by profi ling your ker-
nel code for the BSQ_CACHE_REFERENCE event (for Pentium 4). You can then tune 
your code, possibly by realigning fi elds in data structures, to achieve better cache 
utilization:

bash> opcontrol --setup 

                --event=BSQ_CACHE_REFERENCE:50000:0x100:1:1

                --vmlinux=/path/to/kernelsources/vmlinux

 Unit mask 0x100 denotes an L2 cache miss 

bash> opcontrol --start  Start data collection

bash> ls -lR /  Stress

bash> opcontrol --dump  Save profile

bash> opreport -l /path/to/kernelsources/vmlinux



CPU: P4 / Xeon, speed 2993.68 MHz (estimated)

Counted BSQ_CACHE_REFERENCE events (cache references seen by the bus unit) with a 
unit mask of 0x100 (read 2nd level cache miss) count 50000

samples  %        symbol name

73       29.6748  find_inode_fast

59       23.9837  __d_lookup

27       10.9756  inode_init_once

...

If you run OProfi le on different kernel versions and look at the corresponding 
change logs, you might be able to fi gure out reasons for code changes in different 
parts of the kernel. 

You have only touched the surface of what can be accomplished using OProfi le. For 
more information, visit http://oprofi le.sourceforge.net/.

Application Profiling with Gprof

If you    need to profi le only an application process in isolation without profi ling the 
kernel code that might get executed on its behalf, use gprof rather than OProfi le. Gprof 
relies on additional code generated by the compiler to profi le C, Pascal, or Fortran 
programs. Let’s use gprof to profi le the following code snippet:

main(int argc, char *argv[])

{

  int i;

  for (i=0; i<10; i++) {

    if (!do_task()) {       /* Perform task */

      do_error_handling();  /* Handle errors */

    }

  }

}

Use the -pg option to ask the compiler to include extra code that generates a call graph 
profi le when the program runs. The -g option generates symbolic information:

bash> gcc -pg -g -o myprog myprog.c 

bash> ./myprog
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This produces gmon.out, which is a call graph of myprog. Run gprof to view the profi le:

bash> gprof -p -b myprog

Flat profile:

Each sample counts as 0.01 seconds.

  %   cumulative   self              self     total

 time   seconds   seconds    calls   s/call   s/call  name

 65.17      2.75     2.75        2     1.38     1.38  do_error_handling

 34.83      4.22     1.47       10     0.15     0.15  do_task

This shows that the error path was hit twice during execution. You can tune the code to 
produce fewer traversals of the error path and rerun gprof to generate an updated profi le.

Tracing

Tracing   provides insight into behavioral problems that manifest during interactions 
between different code modules. A common way to obtain execution traces is by using 
printks. While printk is perhaps the most heavily used method for kernel debug-
ging (there are more than 62,000 printk() statements in the 2.6.23 source tree), it is 
not sophisticated enough for high-volume tracing. Linux Trace Toolkit (LTT) is a pow-
erful tool that lets you obtain complex system level traces with minimum overhead. 

Linux Trace Toolkit

LTT     extracts execution traces that are useful for postmortem analysis and is valuable 
in situations where it may not be possible to use a debugger. Unlike OProfi le, which 
collects data by sampling events at regular intervals, LTT provides exact traces of 
events as and when they occur.

LTT   consists of four components:

 • A core module that provides trace services to the rest of the kernel. The col-
lected traces are copied to a kernel buffer.

 • Code that makes use of the trace services. These are inserted at points where you 
want to capture trace dumps.

 • A trace daemon that pulls trace information from the kernel buffer to a perma-
nent location in the filesystem.



 • Utilities such as   tracereader and tracevisualizer that interpret raw trace data and 
convert it into human-readable form. If you are developing code for an embed-
ded device having no GUI support, you can transparently run these tools on 
another machine.

LTT is not part of the mainline kernel.8 You may download LTT kernel patches, trace 
daemon, and user-space trace utilities from www.opersys.com/LTT.

Let’s fi nd out what LTT offers with the help of a simple example. Assume that you 
are seeing data corruption when your application is reading from a device. You fi rst 
want to fi gure out whether the device is sending bad data or whether a kernel layer is 
introducing the corruption. To do that, dump data packets and data structures at the 
device driver   level. Listing 21.7 initializes the LTT events that you plan to generate.

LISTING 21.7 Creating LTT Events 

#include <linux/trace.h>

int data_packet, driver_data; /* Trace events */

/* Driver init */

static int __init mydriver_init(void)

{

  /* ... */

  /* Event to dump packets received from the device */

  data_packet = trace_create_event("data_pkt",

                                   NULL,

                                   CUSTOM_EVENT_FORMAT_TYPE_HEX,

                                   NULL);

  /* Event to dump a driver structure */

  driver_data = trace_create_event("dvr_data",

                                   NULL,

                                   CUSTOM_EVENT_FORMAT_TYPE_HEX,

                                   NULL);

  /* ... */

}

8 LTT was included as a release candidate in the 2.6.11-rc1-mm1 patch, downloadable from www.kernel.org.
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Next, let’s add trace hooks to dump received packets and data structures when the 
driver reads data from the device. This is done in Listing 21.8 in the driver read()
method  .

LISTING 21.8 Obtaining Trace Dumps

struct mydriver_data driver_data; /* Private device structure */

/* Driver read() method */

ssize_t

mydriver_read(struct file *file, char *buf, 

              size_t count, loff_t *ppos)

{

  char *buffer;

  /* Read numbytes bytes of data from the device into

     buffer */

  /* ... */

  /* Dump data Packet. If you see the problem only 

     under certain conditions, say, when the packet length is

     greater than a value, use that as a filter */

  if (condition) { 

    /* See Listing 21.7 for the definition of data_packet*/

    trace_raw_event(data_packet, numbytes, buffer);

  }

  /* Dump driver data structures */

  if (some_other_condition) {

    /* See Listing 21.7 for the definition of driver_data */

    trace_raw_event(driver_data, sizeof(driver_data), &driver_data);

  }

  /* ... */

}

Compile and run this code as part of the kernel or as a module. Remember to turn 
on trace support in the kernel by setting CONFIG_TRACE while confi guring the kernel. 
The next step is to start the   trace daemon:

bash> tracedaemon -ts60 /dev/tracer mylog.txt mylog.proc



/dev/tracer is the interface used by the trace daemon to access the trace buffer, -ts60
asks the daemon to run for 60 seconds, mylog.txt is the fi le where you want to store 
the generated raw trace, and mylog.proc is where you want to save the system state 
obtained from procfs. Later versions of LTT use a mechanism called relayfs rather 
than the /dev/tracer device for effi ciently transferring data from the kernel trace buf-
fer to user space.

Run your application that reads data from the device:

bash> ./application  Trigger invocation of mydriver_read()

mylog.txt should now contain the requested trace data. The generated raw trace can be 
analyzed using the  tracevisualizer tool. Choose the Custom Events option and search for 
data_pkt and dvr_data events. The output looks like this:

####################################################################

Event      Time SECS    MICROSEC   PID     Length  Description

####################################################################

data_pkt   1,110,563,008,742,457    0       27      12 43 AB AC 00 01 0D 56

data_pkt   1,110,563,008,743,151    0       27      01 D4 73 F1 0A CB DD 06

dvr_data   1,110,563,008,743,684    0       25      0D EF 97 1A 3D 4C

...

The last column holds the trace data. The timestamp shows the instant when the 
trace was collected. If the data looks corrupt, the device could be sending bad data. 
Otherwise, the problem must be in a higher kernel layer and can be further isolated by 
obtaining traces from a different point in the data-fl ow path.

The next generation of LTT called    LTTng is available for download from http://ltt.
polymtl.ca/. This project also includes a post-trace analyzer called     Linux Trace Toolkit 
Viewer (LTTV).

If your need is only to perform limited tracing of a user application, you can use the 
strace utility rather than LTT. Strace uses the     ptrace support in the kernel to intercept 
system calls. It prints out a list of system calls made by your application, along with the 
corresponding arguments and return values. 
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Linux Test Project

Linux Test Project (LTP), hosted at http://ltp.sourceforge.net/, is a suite consisting of 
around 3,000 tests designed to exercise different parts of the kernel. Most tests run 
without user intervention. Others such as networking and storage media tests need 
some manual confi guration.

Download the source tar ball from the LTP home page, run make, and invoke the 
wrapper script   runltp from the root of the source tree to start the tests. To capture the 
results in logfi le in the results/ directory, do this:

bash> runltp –p –l logfile

Some errors generated by LTP are “expected.” The LTP website documents the list of 
expected errors for various kernel versions. Also in the website is an interesting analysis 
of LTP’s code coverage (overall coverage, lines in path, and distinct lines hit) for a few 
kernel versions, split across directories in the kernel tree.

User Mode Linux

User Mode Linux (UML), hosted at http://user-mode-linux.sourceforge.net/, lets you 
debug the kernel without “oops”ing the machine. To accomplish this, an instance of 
the kernel (called the guest kernel) runs as a user mode process over the running kernel 
(called the host kernel). 

UML has diverse users. It can function as an environment for testing kernel and 
application code, a vehicle to experiment with unstable kernels, a secure pseudo com-
puter for hosting services such as web servers, or a tool to learn Linux internals. UML 
is more useful for debugging hardware-independent portions of the kernel than for 
device driver debugging.

Diagnostic Tools

The   sysfsutils package   helps you navigate the voluminous amount of data present inside 
sysfs. This, and other Linux diagnostic tools such as   sysdiag and   lsvpd, can be down-
loaded from http://linux-diag.sourceforge.net/.    

http://ltp.sourceforge.net/
http://user-mode-linux.sourceforge.net/
http://linux-diag.sourceforge.net/


Kernel Hacking Config Options 

Several options exist under Kernel hacking in the kernel confi guration menu that can 
emit valuable debug information. If you enable an option, corresponding debug code 
gets compiled when you build the kernel.9 Here are a few examples:

 1.  Show Timing information on printks ( CONFIG_PRINTK_TIME) adds timing instru-
mentation to printk() output, so you can use printks as checkpoints for 
measuring execution times and identifying slow code regions.

 2.  Using freed memory results in memory poisoning. Debug slab memory alloca-
tions (CONFIG_DEBUG_SLAB) helps you detect such problems.

 3.  Spinlock and rw-lock debugging: basic checks ( CONFIG_DEBUG_SPINLOCK) finds 
lock-related problems such as uninitialized spinlock usage and helps catch code 
that is not SMP-safe.

 4.  You have already worked with Magic SysRq key (CONFIG_MAGIC_SYSRQ) when 
you learned to use kdump. If you turn this on, you will have some avenues left 
even if the kernel crashes during debugging. For example, pressing Alt-Sysrq-t 
produces a dump of current tasks, whereas Alt-Sysrq-p prints the contents of 
processor registers.

 5.  Detect Soft Lockups (CONFIG_DETECT_SOFTLOCKUP) utilizes the services of a 
watchdog to detect tight loops in kernel code that last for more than 10 sec-
onds. We looked at this when we analyzed a kernel hang using kdump. Note 
that hardware lockups cannot be found this way. For that, use the services of a 
Non-Maskable Interrupt (NMI)-watchdog if your platform supports it.

 6.  If you enable  CONFIG_DEBUG_SLAB, CONFIG_DEBUG_HIMEM, or CONFIG_

DEBUG_PAGE_ALLOC while configuring your kernel, additional error-checking 
code gets compiled that help debug problems related to memory management.

 7.  Check for stack overflows (CONFIG_DEBUG_STACKOVERFLOW) adds code to emit 
warnings if the available stack space falls below a threshold. Stack utilization 
instrumentation (CONFIG_DEBUG_STACK_USAGE) adds stack space instrumenta-
tion to the magic Sysrq key output. Another related option  CONFIG_4KSTACKS,
lets you set the kernel stack size to 4KB rather than 8KB.

9 Some kernel hacking options are architecture-dependent.
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 8.  Verbose BUG() reporting (CONFIG_DEBUG_BUGVERBOSE) produces extra debug 
information when any kernel code invokes BUG(), assuming that you have 
CONFIG_BUG turned on during kernel configuration.

Some debug options live outside the Kernel hacking submenu, too. For example, we 
enabled CONFIG_KALLSYMS in this chapter to debug an “oops” message using gdb and 
to kprobe a kernel module. This option lives under General setup Confi gure Stan-
dard Kernel Features (for small systems) in the confi guration menu.

Kernel hacking options result in overhead and increased footprint, so don’t leave 
them on in production-level kernels.

Test Equipment

It goes    without saying that you need the full complement of relevant test equipment 
for device driver debugging. If you are testing a modem interface in a digital-only 
laboratory environment for example, you will be well served by a phone simulator. 
If a high-speed serial driver is manifesting parity errors, an oscilloscope will aid your 
problem analysis. If you are writing an I/O device driver, it will help if you have the 
associated bus analyzer. If you are writing a network driver, the corresponding protocol 
line sniffer will ease your debugging effort. 
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You have reached the end of the device driver tour, but implementing a driver 
is only a part of the software development life cycle. Before wrapping up, 

let’s discuss a few ideas that contribute to operational effi ciency during software 
maintenance and delivery.

Coding Style

The    life span of many Linux devices range from 5 to 10 years, so adherence to a 
standard coding style helps support the product long after you have moved out of 
the project.

A powerful editor coupled with an organized writing style makes it easier to cor-
relate code with thought. There can be no infallible guidelines for good style because 
it’s a matter of personal preference, but a uniform manner of coding is invaluable if 
there are multiple developers working on a project. 

Agree on common coding standards with team members and the customer before 
starting a project. The coding style preferred by kernel developers is described in 
Documentation/CodingStyle in the source tree.

Change Markers

Using    a marker such as  CONFIG_MYPROJECT to tag additions and deletions to exist-
ing kernel source fi les helps highlight project-specifi c changes to the source tree. 
One can recursively grep for the marker string from the root of the code tree to 
learn the location of all kernel changes implemented for the project. The following 
example marks code changes to drivers/i2c/busses/i2c-i801.c. The modifi cation intro-
duces a check for a new PCI device ID during setup and eliminates a confi guration 
byte access:

/* ... */

switch(dev->device) {

  case PCI_DEVICE_ID_INTEL_82801DB_3:

#if defined (CONFIG_MYPROJECT)

  case PCI_DEVICE_ID_MYID :

#endif



  /* ... */

}

/* ... */

#if !defined (CONFIG_MYPROJECT)

pci_write_config_byte(I801_dev, SMBHSTCFG, temp);

#endif

return 0;

/* ... */

CONFIG_MYPROJECT  also functions as a confi guration-time switch to enable or dis-
able project-specifi c changes.

It’s a good idea to have submarkers for various subtasks in your project. So, if you 
are modifying the kernel for fast boot as part of your project, wrap those changes 
within a submarker such as  CONFIG_MYPROJECT_FASTBOOT.

Version Control

You    can’t execute a serious project without the services of a robust version control 
repository. A version control system helps manage multiple versions of source code 
and regulates fi le accesses by team members. Concurrent Versions System   or CVS 
(www.nongnu.org/cvs) is an open source revision control software that has been 
around for a long time and comes bundled with many Linux distributions. Another 
versioning system called  subversion (http://subversion.tigris.org) was developed as an 
intended replacement for CVS. Git (http://git.or.cz) is the version control system 
of choice for kernel developers and is used to maintain several open source projects, 
including the Linux kernel. Ample documentation on these systems is available on 
the Internet.

Consistent Checksums

Because     of legal issues latent in distributing the kernel, companies often ship kernel 
modifi cations to customers in the form of a source patch generated against an agreed-
upon base. Customers, in turn, integrate the patch into an in-house code repository 
and build the software locally. 

Comparing the MD5 checksum of your binary images with that of your customer’s 
is a guard against patching errors, but the values may not match as-is because the ker-
nel and module images often contain information specifi c to the build environment. 
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To force identical MD5 sums, exclude such data while generating kernel and module 
images at either end. Here are some typical scenarios that inject environmental data 
into the object image:

 • Some driver methods toss a call to BUG() to announce conditions that are 
never supposed to occur. BUG() spits out, among other things, the offending 
filename and line number. The pathname of the file depends on the location 
of your build sandbox. It gets imprinted in the produced image and contrib-
utes to MD5 variance. For example, look at nfs_unlock_request() in fs/nfs/
pagelist.c:

  void

  nfs_unlock_request(struct nfs_page *req) 

  {

    if (!NFS_WBACK_BUSY(req)) {

      printk(KERN_ERR "NFS: Invalid unlock attempted\n");

      BUG();

    }

    /* ... */

  }

BUG() is defined in include/asm-your-arch/bug.h:

  #define BUG() do {\

  __asm__ __volatile__ ("ud2\n"\

                        ...

                        : : "I" (__LINE__), "I"(__FILE__))

You can compile BUG() away by disabling CONFIG_BUG during kernel configu-
ration. Or you may get rid of the line number and filename information emit-
ted by BUG() by switching off CONFIG_DEBUG_BUGVERBOSE.

 • The wd33c93 driver (drivers/scsi/wd33c93.c) announces the time of compilation 
during initialization. You will find this snippet if you go to the end of the initial-
ization routine,   wd33c93_init():

void

  wd33c93_init(struct Scsi_Host *instance, 

               const wd33c93_regs regs, dma_setup_t setup,

               dma_stop_t stop, int clock_freq)

  {



    /* ... */

    printk(" Version %s - %s, Compiled %s at %s\n",                   

    WD33C93_VERSION, WD33C93_DATE, __DATE__, __TIME__);

  }

The build timestamp thus gets embedded inside the image, causing the MD5 
checksum to depend on it.

 • The   CONFIG_IKCONFIG_PROC configuration option, if enabled, introduces the 
configuration timestamp in the kernel image. This information is available as 
part of /proc/config.gz at runtime.

 • Utilities living inside the scripts/ directory in the kernel tree also contribute 
to MD5 variance by injecting the output of programs such as hostname, 
date, whoami and domainname, into kernel header files such as include/linux/
 compile.h.

Hunt down and mask out such direct and indirect references to environmental 
information to generate identical checksums at both ends. Of course, you need not 
bother about kernel modules that aren’t relevant. Envelope your code modifi cations 
within a change marker such as CONFIG_MYPROJECT_SAME_MD5 and create a kernel 
confi guration switch to turn consistent MD5 generation on or off. When you fi nish, 
run md5sum on the stripped vmlinux image.

Build Scripts

Customers     generally ask for periodic software builds during the development cycle. 
Each build includes new features or bug fi xes. The deliverables for an embedded PC 
derivative, for example, may include fi rmware components such as the base kernel, 
loadable device driver modules, fi lesystem utilities, bootloader, BIOS, and on-card 
microcode. To automate build generation, it’s a good idea to implement a set of versa-
tile build scripts that obtain a source code snapshot from the version control repository 
and generate a packaged deliverable. 

Listing 22.1 shows a skeletal build script that assumes use of CVS for version con-
trol. This is a simple script that shows only the kernel build. In the real world, you 
might need a sophisticated suite of scripts that package several software components 
and manage different installation scenarios.
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LISTING 22.1 A Simple Build Script

# Check that compilation tools are installed

#...

# Assume that $user contains the user name, $cvsserver contains 

# the CVS server name and /path/to/repository is the location 

# of your project's repository on the CVS server

CVS="cvs –d :pserver:$user@$cvsserver:/path/to/repository"

$CVS login

# Check-out the kernel

$CVS checkout kernel

# Build the kernel

cd kernel

make mrproper

#Get the .config file for your platform

cp arch/your-arch/configs/your_platform_defconfig .config

make oldconfig

make –j5 bzImage # Accelerate by spawning 5 instances of 'make'

if [ $? != 0 ]

then

  echo "Error building Kernel. Bailing out.."

  exit 1

fi

# Copy the kernel image to a target directory

cp arch/x86/boot/bzImage /path/to/target_directory/productname.kernel

# Build modules and install them in an appropriate directory

make modules

if [ $? != 0 ]

then

  echo "Error building modules. Bailing.."

  exit 2

fi

export INSTALL_MOD_PATH="$TARGET_DIRECTORY/modules"

make modules_install

# Rebuild after forcing generation of identical MD5 sums and

# package the resulting checksum information.



#...

# Generate a source patch from the base starting point, assuming

# that KERNELBASE is the CVS tag for the vanilla kernel

cvs rdiff –u –r KERNELBASE kernel > patch.kernel

# Generate a changelog using "cvs log"

#...

# Package everything nicely into a tar ball

#...

After you satisfactorily complete build verifi cation tests on the generated deliver-
able, initiate a post-build process to tag the current state of the version control system 
with a build identifi er. This essentially attaches a name to the source snapshot cor-
responding to the build and helps trace problems to code versions. You can check 
out source versions based on the relevant build identifi er when you later attempt to 
re- create reported fi eld problems in your lab.

Portable Code 

Portability     directly translates to code reusability and easier maintenance. This is sig-
nifi cant in today’s marketplace, where there are an assortment of processors and innu-
merable peripheral chipsets. Things will fast spin out of control if you have to code 
separate bus drivers for each processor and different client device drivers for each host 
controller. Here are some hints for writing portable drivers:

 • Make portability a design goal while architecting your driver.

 • Using appropriate kernel APIs automatically injects a degree of portability. A 
USB driver using the services of the USB core is rendered independent of the 
USB host controller. It will work unchanged on different systems, irrespective 
on whether they use UHCI, OHCI, or something else.

 • Write SMP-safe code.

 • Write code that is 64-bit clean. Do not, for example, assign a pointer to an inte-
ger, even with valid typecasts.

 • Write drivers such that they can be easily adapted for other similar devices.

Portable Code 647



648 Chapter 22 Maintenance and Delivery

 • Use architecture-independent APIs wherever available. For example, calls to 
outb() or inb() will work irrespective of whether the processor uses I/O-mapped 
or memory-mapped addressing. If you do need to use architecture-specific code 
such as inline assembly, stow it away inside the appropriate arch/your-arch/
directory    .

 • Push policy to header files and user space. Use macros and definitions wherever 
suitable.
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Before transitioning to init runlevel 0, let’s summarize how to set forth on 
your way to Linux-enablement when you get hold of a new device. Here’s 

a quick checklist.

Checklist

 1. Identify    the device’s functionality and interface technology. Depending on 
what you find, review the chapter describing the associated device driver sub-
system. As you learned, almost every driver subsystem on Linux contains a 
core layer that offers driver services, and an abstraction layer that renders 
applications independent of the underlying hardware (revisit Figure 18.3 in 
Chapter 18, “Embedding Linux”). Your driver needs to fit into this frame-
work and interact with other components in the subsystem. If your device is 
a modem, learn how the UART, tty, and line discipline layers operate. If your 
chip is an RTC or a watchdog, learn how to conform to the respective kernel 
APIs. If what you have is a mouse, find out how to tie it with the input event 
layer. If your hardware is a video controller, glean expertise on the frame buf-
fer subsystem. Before embarking on driving an audio codec, investigate the 
ALSA framework. 

 2.  Obtain the device’s data sheet and understand its register programming 
model. For an I2C DVI transmitter, for example, get the device’s slave address 
and the programming sequence for initialization. For an SPI touch control-
ler, understand how to implement its finite state machine. For a PCI Ether-
net card, find out the configuration space semantics. For a USB device, figure 
out the supported endpoints and learn how to communicate with them. 

 3.  Search for a starting point driver inside the mighty kernel source tree. Research 
candidate drivers and hone in on a suitable one. Certain subsystems offer skel-
etal drivers that you can model after, if you don’t find a close match. Examples 
are sound/drivers/dummy.c, drivers/usb/usb-skeleton.c, drivers/net/pci-skeleton.c,
and drivers/video/skeletonfb.c.



 4.  If you obtain a starting point driver, investigate the exact differences between 
the associated device and your hardware by comparing the respective data sheets 
and schematics. For illustration, assume that you are putting Linux on a cus-
tom board that is based on a distribution-supported reference hardware. Your 
distribution includes the USB controller driver that is tested on the reference 
hardware, but does your custom board use different USB transceivers? You have 
a frame buffer driver for the LCD controller, but does your board use a different 
display panel interface such as LVDS? Perhaps an EEPROM that sat on the I2C
bus on the reference board now sits on a 1-wire bus. Is the Ethernet controller 
now connected to a different PHY chip or even to a Layer 2 switch chip? Or 
perhaps the RS-232 interface to the UART has given way to RS-485 for better 
range and fidelity.

 5.  If you don’t have a close starting point or if you decide to write your own driver 
from scratch, invest time in designing and architecting the driver and its data 
structures.

 6.  Now that you have all the information you need, arm yourself with software 
tools (such as ctags, cscope, and debuggers) and lab equipment (such as oscil-
loscopes, multimeters, and analyzers) and start writing code.

What Next?

Linux is here to stay, but internal kernel interfaces tend to get fossilized as soon as 
someone fi gures out a cleverer way of doing things. No kernel code is etched in stone. 
As you learned, even the scheduler, considered sacred, has undergone two rewrites 
since the 2.4 days. The number of new lines of code appearing in the kernel tree 
runs into the millions each year. As the kernel evolves, new features and abstractions 
keep getting added, programming interfaces redesigned, subsystems restructured for 
extracting better performance, and reusable regions fi ltered into common cores.

You now have a solid foundation, so you can adapt to these changes. To maintain 
your cutting-edge, refresh your kernel tree regularly, browse the kernel mailing list 
frequently, and write code whenever you can. Linux is the future, and being a kernel 
guru pays. Stay at the front lines!
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Device   drivers sometimes need to implement some code snippets in assem-
bly, so let’s take a look at the different facets of assembly programming 

on Linux.

Figure A.1    shows the Linux boot sequence on a PC-compatible system and is a 
simpler version of Figure 2.1 in Chapter 2, “A Peek Inside the Kernel.” The fi rm-
ware components in the fi gure are implemented using different assembly syntaxes:

 • The BIOS is typically written wholly in assembly. Some of the popular PC BIOSes 
are coded using assemblers such as the     Microsoft Macro Assembler (MASM).

 • Linux bootloaders such as LILO and GRUB are implemented using a mix of 
C and assembly. The SYSLINUX bootloader is entirely written in assembly 
using the     Netwide Assembler (NASM).

 • Real mode Linux startup code uses the     GNU Assembler (GAS).

 • Protected mode BIOS invocations are done in    inline assembly, which is a con-
struct supported by GCC to insert assembly in between C statements.

In Figure A.1, the top two components generally follow Intel-based assembly 
syntax, whereas the bottom two are coded in AT&T (or GAS) syntax. There are 
exceptions; the assembly parts of GRUB use GAS.

BIOS (MASM)

Power On

SYSLINUX Bootloader (NASM)

Real Mode Kernel (GAS)

Protected Mode Kernel (GCC inline assembly)

FIGURE A.1 Firmware components and assembly syntaxes.



To illustrate the differences between these two syntaxes, consider code that outputs 
a byte to the parallel port. In Intel format used by the BIOS or the bootloader, you 
would write the following:

mov dx, 03BCh   ;0x3BC is the I/O address of the parallel port

mov al, 0ABh    ;0xAB is the data to be output

out dx, al      ;Send data to the parallel port

However, if you want to perform the same task from Linux real mode startup code, 
you need to do this:

movw $0x3BC, %dx

movb $0xAB,  %al

outb %al,    %dx

You can see that unlike in Intel format, in AT&T syntax, the source operand comes 
fi rst, and the destination operand comes second. Register names in AT&T format 
are preceded by   %, and immediate operands are preceded by   $. AT&T opcodes have 
suffi xes such as b (for byte) and w (for word) to specify the size of memory operands, 
whereas Intel syntax accomplishes this by looking at the operands rather than the 
opcodes. To move pointer references in Intel syntax, you have to specify operand pre-
fi xes such as byte ptr.

The advantage of learning AT&T syntax is that it’s understood by GAS and inline GCC, 
which work not only on Intel-based systems, but also on a variety of processor archi-
tectures.

Next, let’s    rewrite the preceding snippet using GCC inline assembly, which is what 
you would use from the protected mode kernel:

unsigned short port = 0x3BC;

unsigned char data  = 0xAB;

asm("outb %%al,    %%dx\n\t"

      : 

      : "a" (data), "d" (port)

   );
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The general format of   the asm construct supported by GCC is as follows:

asm(assembly

      : output operand constraints

      : input operand constraints

      : clobbered operand specifier 

   );

In the operand sections, a, b, c, d, S, and D stand for EAX, EBX, ECX, EDX, ESI,
and EDI registers, respectively. Input operand constraints copy data from the sup-
plied variables to the specifi ed registers before executing the assembly instructions, 
whereas output operand constraints (written as =a, =b, and so on) copy data from 
the specifi ed registers to the supplied variables after executing the assembly instruc-
tions. The clobbered operand constraints ask GCC to assume that the listed registers 
are not available for use. Look at the  GCC Inline Assembly HOWTO (www.ibiblio.
org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html) for more details on the GCC 
inline assembly syntax.

The only constraint used in our example is specifi c to input operands. This effec-
tively copies the value of data to the AL register and the value of port to the DX regis-
ter. Register names are preceded by   %% in inline assembly, because % is used to refer to 
the supplied operands. %i stands for the ith operand; so, if you want to refer to data and 
port inside the example inline assembly snippet, you may respectively use %0 and %1.

To obtain a clearer picture of inline assembly translation, let’s look at the assembly 
code generated by the compiler corresponding to the preceding inline assembly snip-
pet by supplying the -s command-line argument to GCC. Look at the comment 
against each generated code line for explanations:

    movw $956, -2(%ebp)  # Value of data in stack set to 0x3BC

    movb $-85, -3(%ebp)  # Value of port in stack set to 0xAB

    movb -3(%ebp), %al   # movb 0xAB,  %al

    movw -2(%ebp), %dx   # movw 0x3BC, %dx

#APP                     # Marker to note start of inline assembly

    outb %al, %dx        # Write to parallel port

#NO_APP                  # Marker to note end of inline assembly

You may use inline assembly from user mode programs, too. Here is an application 
written using inline assembly that invokes the syslog() system   call to read the last 
128 bytes from the kernel   printk() ring buffer:

www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html


#define READ_COMMAND   3    /* First argument to 

                               syslog() system call */

#define MSG_LENGTH     128  /* Third argument to syslog() */

int

main(int argc, char *argv[])

{

  int syslog_command = READ_COMMAND;

  int bytes_to_read  = MSG_LENGTH; 

  int retval;

  char buffer[MSG_LENGTH]; /* Second argument to syslog() */

  asm volatile(

              "movl %1, %%ebx\n"     /* READ_COMMAND */

              "movl %2, %%ecx\n"     /* buffer */

              "movl %3, %%edx\n"     /* bytes_to_read */

              "movl $103, %%eax\n"   /* __NR_syslog */

              "int $128\n"           /* Generate System Call */

              "movl %%eax, %0"       /* retval */

              :"=r" (retval)

              :"m"(syslog_command),"r"(buffer),"m"(bytes_to_read)

              :"%eax","%ebx","%ecx","%edx");

  if (retval > 0) printf("%s\n", buffer);

}

As you learned in Chapter 4, “Laying the Groundwork,” the int $128 (or int
0x80) instruction generates a software interrupt that traps into system calls. Because 
system calls result in transition from user mode to kernel mode, the function argu-
ments are not passed in user or kernel stacks, but in CPU registers. The system call 
number (include/asm-your-arch/unistd.h has the full list) is stored in the EAX register. 
For the   syslog() system call, this number is 103. If you look at the man page for 
syslog(), you will see that it takes three arguments: a command, the address of a 
buffer to hold returned data, and the length of the buffer. These are passed in registers 
EBX, ECX and EDX, respectively. The return value is transferred from EAX to retval.
The inline assembly invocation effectively translates to this:

retval = syslog(syslog_command, buffer, bytes_to_read);
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If you compile and run the code, you will see output like this, fetched from the 
kernel ring buffer:

0:0:0:0: Attached scsi removable disk sda

<5>sd 0:0:0:0: Attached scsi generic sg0 type 0

<7>usb-storage: device scan complete

...

The kernel system call trap in arch/x86/kernel/entry_32.S saves all register contents 
to stack, so the real system calls see their arguments on stack, even though user-space 
code passes them in CPU registers. To ensure that system call routines expect argu-
ments on stack, they are all tagged with the GCC attribute,  asmlinkage. Note that 
asmlinkage has nothing to do with asm (or __asm__) that is used to declare inline 
assembly.

Let’s end this section by illustrating an example of inline assembly modifi cation to 
a Linux bootloader for a PowerPC-based board. Assume that the fl ash memory on the 
board does not support   BackGround Operation (BGO). This means that the bootloader 
code cannot write to fl ash while executing from fl ash, which is needed, for example, 
if the bootloader needs to update a kernel image that is residing in another part of the 
fl ash. One solution is to modify the bootloader so that the boot code used to write 
and erase the fl ash gets executed entirely from     Instruction Cache (I-cache) with the data 
segment residing in Data Cache (D-cache). The sample macro written here in GCC 
inline assembly does the job of pretouching the necessary bootloader instructions onto 
I-cache. You need a working knowledge of PowerPC assembly to understand this code 
snippet:

/* instr_length is the number of instructions to touch 

   into I-cache. _load_i$_copy and _end_i$_copy are

   program labels */

#define load_into_icache_copy(instr_length)        \

asm volatile("lis     %%r3, 0x1@h\n                \

              ori     %%r3, %%r3, 0x1@l\n          \

              mticcr  %%r3\n                       \

              isync\n                              \

              \n                                   \

              lis     %%r6, _end_i$_copy@h\n       \

              ori     %%r6, %%r6, _end_i$_copy@l\n \

              icbt    %%r0, %%r6\n                 \

              lis     %%r4, %0@h\n                 \



              ori     %%r4, %%r4, %0@l\n           \

              mtctr   %%r4\n                       \

      _load_i$_copy:                               \

              addis   %%r6, %%r6, 32@ha\n          \

              addi    %%r6, %%r6, 32@l\n           \

              icbt    %%r0, %%r6\n                 \

              bdnz    _load_i$_copy\n              \

      _end_i$_copy:                                \

              nop\n"                               \

      :                                            \

      : "i"(instr_length)                          \

      :"%r6","%r4","%r0","r8","r9");

Debugging

To     debug the real mode kernel, you cannot use debuggers such as the Kernel Debug-
ger (kdb) or the Kernel GNU Debugger (kgdb), which we discussed in Chapter 21, 
“Debugging Device Drivers.” A quick way to debug kernel assembly snippets is by 
using the    DOS debug tool after converting your code to Intel-style syntax. But debug
was created in the 16-bit era, so you can’t, for instance, step through code that ini-
tializes the EAX register. You can fi nd 32-bit debug-type freeware tools available for 
download on the Internet.   JTAG debuggers, also discussed in Chapter 21, are a kind 
of panacea because a single tool can be used to debug the BIOS, bootloader, Linux real 
mode code, and kernel-BIOS interactions.
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P arts  of the x86 kernel, such as the    video frame buffer driver (vesafb) and 
Advanced Power Management (APM), explicitly use BIOS services to 

accomplish certain functions. Other sections of the kernel, such as the serial 
driver, implicitly depend on the BIOS to initialize I/O base addresses and inter-
rupt levels. Real mode kernel code makes extensive use of BIOS calls during 
boot to perform tasks such as assembling the system memory map.1 Because 
some device drivers depend directly or indirectly on the BIOS, let’s learn how 
to interact with it. 

Real Mode Calls

Many    parts of the kernel glean information from the BIOS in real mode and use the 
collected information during normal operation in protected mode.

The steps needed to accomplish this are as follows:

 1. Real mode kernel code invokes BIOS services and populates returned infor-
mation in the first physical memory page, called the   zero page. This is done 
by the source files in the   arch/x86/boot/ directory. The full layout of the zero 
page can be found in    Documentation/i386/zero-page.txt.

 2. After the kernel switches to protected mode, but before it clears the zero 
page, the obtained data is saved in kernel data structures. This is done in arch/
x86/kernel/setup_32.c.

 3. The protected mode kernel makes suitable use of the saved information dur-
ing normal operation.

As an example, let’s fi nd out how the kernel assembles the system memory 
map from the BIOS. Listing B.1 is a snippet from    arch/x86/boot/memory.c in the 
2.6.23.1 source tree that invokes the BIOS int 0x15 service  to obtain the system 
memory map.

1 On BIOS-less embedded architectures, similar responsibilities (for example, waking the kernel from suspend on ARM 
Linux) rest with the bootloader. 



LISTING B.1 Obtaining     the System Memory Map (arch/x86/boot/memory.c)

static int detect_memory_e820 (void)

{

  int count = 0;

  u32 next = 0;

  u32 size, id;

  u8 err;

  /* The boot_params structure contains the zero page */

      struct e820entry *desc = boot_params.e820_map;

  do {

    size = sizeof(struct e820entry);

    asm("int $0x15; setc %0"

          : "=d" (err), "+b" (next), "=a" (id), "+c" (size),

            "=m" (*desc)

          : "D" (desc), "d" (SMAP), "a" (0xe820));

    /* ... */

    count++;

    desc++;

  } while (next && count < E820MAX);

  return boot_params.e820_entries = count;

}

In the listing, 0xe820 is the function number specifi ed in the AX register 
before invoking int 0x15 to procure the memory map. If you look at the BIOS 
call defi nition for  int 0x15, function 0xe820 (the full list is available at 
http://lrs.fi m.uni-passau.de/support/doc/interrupt-57/INT.HTM), you will see that 
the BIOS writes the current element of the memory map in a buffer pointed to by the 
DI register. In Listing B.1, DI points to the offset in the zero page where the memory 
map is to be stored (boot_params.e820_map). The code then loops until all elements 
in the memory map are collected. The number of elements is computed and stored at 
offset boot_params.e820_entries in the zero page. When execution successfully 
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exits the loop, the memory map is available in the zero page in the form of struct
e820map, defi ned in    include/asm-x86/e820.h:

struct e820entry {

  _u64 addr;  /* start of memory segment */

  _u64 size;  /* size of memory segment */

  _u32 type;  /* type of memory segment */

} _attribute_((packed)); 

struct e820map {

  _u32 nr_map;

  struct e820entry map[E820MAX];

};

The kernel switches to protected mode later in arch/x86/boot/pm.c. When in pro-
tected mode, the kernel saves the collected memory map via   copy_e820_map(),
defi ned in    arch/x86/kernel/e820_32.c. This is shown in Listing B.2. For simplicity, the 
listing     scissors out error checks and folds the   add_memory_region() routine.

LISTING B.2 Copying the Memory Map (arch/x86/kernel/e820_32.c)

struct e820map e820;

static int __init 

copy_e820_map(struct e820entry *biosmap, int nr_map)

{

  int x;

  /* ... */

  do {

    /* Copy memory map information collected from 

       the BIOS into local variables */

    unsigned long long start = biosmap->addr;

    unsigned long long size = biosmap->size;

    unsigned long long end = start + size;

    unsigned long type = biosmap->type;

    /* Sanitize start and size */

    /* ... */

    /* Populate the kernel data structure, e820 */

    x = e820.nr_map;



    e820.map[x].addr = start;

    e820.map[x].size = size;

    e820.map[x].type = type;

    e820.nr_map++;

  } while (biosmap++,--nr_map);  /*Do for all elements in map*/

   

  /* ... */

}

Look at arch/x86/mm/init_32.c to see how the e820 structure populated in Listing 
B.2 is used later on in the boot process.

The Old i386 Boot Code

Starting with the 2.6.23 kernel, the    i386 boot assembly code has been largely rewritten in C. 
Prior to 2.6.23, the code in Listing B.1 lived in arch/i386/boot/setup.S rather than in arch/x86/
boot/memory.c. Also, the switch to protected mode now occurs in arch/x86/boot/pm.c rather than 
setup.S.

To take another example, the kernel makes use of the BIOS int 0x10 service to 
obtain video mode parameters while it’s in real mode (arch/x86/boot/video*.c). The 
VESA frame buffer driver (drivers/video/vesafb.c) relies on these parameters to turn on 
graphics mode at boot time.

As an exercise, use a similar approach to obtain BIOS Power-On Self Test (POST) 
error codes from the real mode kernel (via int 0x15, function 0x2100) and display 
them during normal operation via the /proc fi lesystem.

Bootloaders also make use of BIOS services in real mode. If you browse through 
the sources of LILO, GRUB, or SYSLINUX, you will see a liberal sprinkling of int
0x13 calls to read the kernel image from the boot device.

Protected Mode Calls

To     see how the kernel makes protected mode BIOS calls, let’s look at the APM 
implementation.

APM is a BIOS interface specifi cation, which is now almost obsolete (see the sec-
tion “Power Management” in Chapter 4, “Laying the Groundwork”). Power man-
agement policies are defi ned in the BIOS, and a kernel thread called kapmd polls it 
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  every second to fi gure out the course of action. The polling is done using protected 
mode BIOS calls. To do this, kapmd needs to know the protected mode entry segment 
address and offset. These are obtained from the real mode kernel during boot using the 
int 0x15, function 0x5303 BIOS service.

The actual protected mode BIOS call is invoked using inline assembly from 
apm_bios_call_simple_asm(), defi ned in include/asm-x86/mach-default/apm.h:

__asm__ __volatile__(APM_DO_ZERO_SEGS

    "pushl %%edi\n\t"

    "pushl %%ebp\n\t"

    "lcall *%%cs:apm_bios_entry\n\t"

    "setc %%bl\n\t"

    "popl %%ebp\n\t"

    "popl %%edi\n\t"

    APM_DO_POP_SEGS

        : "=a" (*eax), "=b" (error), "=c" (cx), "=d" (dx),

          "=S" (si)

        : "a" (func), "b" (ebx_in), "c" (ecx_in)

        : "memory", "cc");

APM_DO_ZERO_SEGS zeros out segment registers. apm_bios_entry contains the 
protected mode entry address. The input constraint "a"(func) copies the desired 
BIOS function number to the EAX register before invocation. For example, function 
number APM_FUNC_GET_EVENT (0x530b) elicits an APM event from the BIOS, and 
function number APM_FUNC_IDLE (0x5305) notifi es the BIOS that the processor is 
idle. Results are returned by the BIOS in registers EAX, EBX, ECX, and EDX. As per the 
previous output operand constraints, these are propagated to the caller in variables 
*eax, error, cx, and dx, respectively. In the assembly body, registers are saved onto 
the kernel stack before the BIOS call and restored afterward to prevent the BIOS from 
trampling on them.

BIOS and Legacy Drivers

The BIOS    provides a degree of hardware abstraction to some Linux drivers. Let’s 
take the PC serial port driver (discussed in Chapter 6, “Serial Drivers”) as an exam-
ple. The BIOS probes the Super I/O chipset and assigns I/O base addresses and 
IRQs to the respective serial (and Infrared) ports. The serial driver needs to be told 
about the resources assigned by the BIOS either via hard-coded values in a header 



fi le (include/asm-x86/serial.h) or via user-space commands. As an exercise, dig into 
the data sheet of your Super I/O chipset and add support in the serial driver to probe 
for the resource values set by the BIOS.

To take another example, even if you disable USB support in the kernel, you can 
use USB keyboards and mice on PC systems with help from the BIOS. The BIOS 
turns on an emulation mode in the South Bridge that routes USB keyboard and mouse 
input from the USB controller to the keyboard controller. This tricks the operating 
system into thinking that you are using a legacy keyboard or mouse.

The kernel used to rely on the BIOS to walk the PCI bus and confi gure detected 
devices. This is now obsolete, but take a look at arch/x86/pci/pcbios.c to see how PCI 
BIOS can be accessed from the kernel. Chapter 10, “Peripheral Component Intercon-
nect,” discussed PCI drivers.
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Monitoring   and trending data points offered by procfs might help diag-
nose device driver problems when the cause of a symptom looks fuzzy. 

But sometimes, especially when the amount of data is large, the correspond-
ing procfs read() implementations become complex. The seq fi le interface is a 
kernel helper mechanism designed to simplify such implementations. Seq fi les 
render procfs operations cleaner and easier.

Let’s gradually introduce complexities to a procfs read() routine and see how 
the seq file interface transforms the labored routine into a graceful one. We’ll also 
update one of the few remaining 2.6 drivers that does not yet leverage seq files. 

The Seq File Advantage

Let’s   discover the advantages offered by seq fi les with the help of an example. As is 
common with many device drivers, assume that you have a linked list of data struc-
tures and that each node in the list contains a string fi eld (called info). The example 
code in Listing C.1 uses a procfs fi le named /proc/readme to export these strings to 
user space. When a user reads this fi le, the procfs read() method readme_proc(),
gets invoked. This routine traverses the linked list and appends the info fi eld of 
each node to the fi lesystem buffer passed down to it.

LISTING C.1 Reading via      Procfs

/* Private Data structure */

struct _mydrv_struct {

  /* ... */

  struct list_head list;  /* Link to the next node */

  char info[10];          /* Info to pass via the procfs file */

  /* ... */

};

static LIST_HEAD(mydrv_list);  /* List Head */

/* Initialization */

static int __init

mydrv_init(void)



{

  int i;

  static struct proc_dir_entry *entry = NULL ;

  struct _mydrv_struct *mydrv_new;

  /* ... */

  /* Create /proc/readme */

  entry = create_proc_entry("readme", S_IWUSR, NULL);

  /* Attach it to readme_proc() */

  if (entry) {

    entry->read_proc = readme_proc;

  }

  /* Handcraft mydrv_list for testing purpose.

     In the real world, device driver logic

     maintains the list and populates the 'info' field */

  for (i=0;i<100;i++) {

    mydrv_new = kmalloc(sizeof(mydrv_struct), GFP_ATOMIC);

    sprintf(mydrv_new->info, "Node No: %d\n", i);

    list_add_tail(&mydrv_new->list, &mydrv_list);

  }

  return 0;

}

/* The procfs read entry point */

static int 

readme_proc(char *page, char **start, off_t offset,

            int count, int *eof, void *data)

{

  int i = 0;

  off_t thischunk_len = 0;

  struct _mydrv_struct *p;

  /* Traverse the list and copy info into the supplied buffer */

  list_for_each_entry(p, &mydrv_list, list) {

    thischunk_len += sprintf(page+thischunk_len, p->info);

  }

  *eof = 1; /* Indicate completion */

  return thischunk_len;

}
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Boot the kernel with these changes and peek inside /proc/readme:

bash> cat /proc/readme

Node No: 0

Node No: 1

...

Node No: 99

When procfs read() methods are invoked, they are supplied one page of memory 
that they can use to pass information to user space. As you can see in Listing C.1, 
the fi rst argument passed to   readme_proc() is a pointer to this page-sized buffer. 
The second argument start, is used to aid the implementation of procfs fi les larger 
than a page. The use of this parameter will get clear when we look at the example in 
Listing C.2. The next two arguments respectively specify the offset from where the 
read operation is requested and the number of bytes to be read. The eof argument is 
used to tell the caller whether there is more data to be read. If *eof is not set before 
returning, the procfs read entry point is called again for more data. In Listing C.1, if 
you comment out the line that sets *eof, readme_proc() gets called again with the 
offset argument set to 1190 (which is the number of ASCII bytes contained in the 
strings, Node No: 0 to Node No: 99). readme_proc() returns the number of bytes 
copied to the supplied buffer.

The      size of data generated by the procfs read routine in Listing C.1 falls within 
the one-page limit. However, if you increase the number of nodes in the linked list 
from 100 to 500 in mydrv_init(), the amount of data generated while reading /proc/
readme crosses a page and triggers the following output:

bash> cat /proc/readme

Node No: 0

Node No: 1

...

Node No: 322

proc_file_read: Apparent buffer overflow!

As you can see, an overfl ow occurs after one page (4,096 in this case) worth of 
ASCII characters have been produced.

To handle such large procfs fi les, you need to refashion the code in Listing C.1 
using the start parameter alluded to earlier. This makes the function somewhat 



 complicated and is shown in Listing C.2. The semantics of this modifi ed implementa-
tion is as follows:

 • readme_proc() is called multiple times, each invocation yielding a maximum 
of count bytes starting at offset. The count requested during each call is less 
than the size of a page.

 • During each invocation, the kernel increments offset by the number of bytes 
returned by the previous invocation. 

 • readme_proc() signals eof only if the amount of data produced is less than 
or equal to the requested count plus the current offset. If eof is not set, the 
function is called again with offset advanced by the number of bytes returned 
previously.

 • After each invocation, only those bytes starting from *start are collected and 
returned to the caller.

Print the values of *start, offset, count, and page, and look at the output gen-
erated during each invocation to better understand the operation sequence.

With this hack, your procfs fi le can supply large amounts of data to user space 
without size limitations:

bash> cat /proc/readme

Node No: 0

Node No: 1

...

Node No: 499

LISTING C.2 Large Procfs      Reads

static int 

readme_proc(char *page, char **start, off_t offset,

            int count, int *eof, void *data)

{

  int i = 0;

  off_t thischunk_start = 0;

  off_t thischunk_len = 0;

  struct _mydrv_struct *p;
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  /* Loop thru the list collecting device info */

  list_for_each_entry(p, &mydrv_list, list) {

    thischunk_len += sprintf(page+thischunk_len, p->info);

    /* Advance thischunk_start only to the extent that the next

     * read will not result in total bytes more than (offset+count)

     */

    if (thischunk_start + thischunk_len < offset) {

      thischunk_start += thischunk_len;

      thischunk_len = 0;

    } else if (thischunk_start + thischunk_len > offset+count) {

      break;

    } else {

      continue;

    }

  }

  /* Actual start */

  *start = page + (offset - thischunk_start);

  /* Calculate number of written bytes */

  thischunk_len -= (offset - thischunk_start);

  if (thischunk_len > count) {

    thischunk_len = count;

  } else {

    *eof = 1;

  }

  return thischunk_len;

}

The seq fi le       interface comes to the rescue when you are faced with the prospect of 
awkwardly implementing large procfs fi les as in Listing C.2. As the name implies, the 
seq fi le interface views the contents of procfs fi les as a sequence of objects. Program-
ming interfaces are provided to iterate through this object sequence. Your code has to 
supply the following iterator methods expected by the seq interface:

 1.      start(), which is called first by the seq interface. This initializes the position 
within the iterator sequence and returns the first iterator object of interest.

 2. next(), which increments the iterator position and returns a pointer to the 
next iterator. This function is agnostic to the internal structure of the iterator 
and considers it an opaque object.



 3. show(),   which interprets the iterator passed to it and generates output strings 
to be displayed when a user reads the corresponding procfs file. This method 
makes use of helpers such as seq_printf(), seq_putc(), and seq_puts() to 
format the output.

 4. stop(), which is called at the end for cleanup.

The seq fi le interface automatically invokes these iterator methods to produce out-
put in response to user operations on related procfs fi les. You no longer need to worry 
about page-sized buffers and signaling the end of data.

Let’s rewrite Listing C.2 making use of seq fi les. This is done in Listing C.3 by 
viewing the linked list as a sequence of nodes. The basic iterator object is the node, and 
each invocation of the next() method returns the next node in the list.

LISTING C.3  Using Seq Files to Simplify Listing C.2

#include <linux/seq_file.h>

/* start() method */

static void *

mydrv_seq_start(struct seq_file *seq, loff_t *pos)

{

  struct _mydrv_struct *p;

  loff_t off = 0;

  /* The iterator at the requested offset */

  list_for_each_entry(p, &mydrv_list, list) {

    if (*pos == off++) return p;

  }

  return NULL;

}

/* next() method */

static void *

mydrv_seq_next(struct seq_file *seq, void *v, loff_t *pos)

{

  /* 'v' is a pointer to the iterator returned by start() or

     by the previous invocation of next() */

  struct list_head *n = ((struct _mydrv_struct *)v)->list.next;

  ++*pos; /* Advance position */
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  /* Return the next iterator, which is the next node in the list */

  return(n != &mydrv_list) ? 

        list_entry(n, struct _mydrv_struct, list) : NULL;

}

/* show() method */

static int 

mydrv_seq_show(struct seq_file *seq, void *v)

{

  const struct _mydrv_struct *p = v;

  /* Interpret the iterator, 'v' */

  seq_printf(seq, p->info);

  return 0;

}

/* stop() method */

static void 

mydrv_seq_stop(struct seq_file *seq, void *v)

{

  /* No cleanup needed in this example */

}

/* Define iterator operations */

static struct seq_operations mydrv_seq_ops = {

  .start = mydrv_seq_start,

  .next  = mydrv_seq_next,

  .stop  = mydrv_seq_stop,

  .show  = mydrv_seq_show,

};

static int 

mydrv_seq_open(struct inode *inode, struct file *file)

{

  /* Register the operators */

  return seq_open(file, &mydrv_seq_ops);

}

static struct file_operations mydrv_proc_fops = {

  .owner   = THIS_MODULE,

  .open    = mydrv_seq_open, /* User supplied */

  .read    = seq_read,       /* Built-in helper function */



  .llseek  = seq_lseek,      /* Built-in helper function */

  .release = seq_release,    /* Built-in helper funciton */

};

static int __init

mydrv_init(void)

{

  /* ... */

  /* Replace the assignment to entry->read_proc in Listing C.1,

     with a more fundamental assignment to entry->proc_fops. So 

     instead of doing "entry->read_proc = readme_proc;", do the

     following: */

entry->proc_fops = &mydrv_proc_fops;

  /* ... */

}

Updating the NVRAM Driver

The       seq fi le interface has been around since the latter versions of the 2.4 kernel, but 
its use has become widespread only with 2.6. Let’s update the NVRAM driver (drivers/
char/nvram.c), one of the few remaining drivers that hasn’t switched over to use seq 
fi les. (As usual, + and - show the differences from the original source fi le.) To do 
this, you may use an extra-simple fl avor of seq fi les that uses only the show()iterator
method. Use   single_open() to register this method. 

Listing C.4 contains the updated NVRAM driver. Because the seq interface won’t 
sleep between calls to iterator methods, you may hold locks inside the methods.

LISTING C.4 Update the NVRAM Driver Using Seq Files

+static struct file_operations nvram_proc_fops = {

+  .owner   = THIS_MODULE,

+  .open    = nvram_seq_open,

+  .read    = seq_read,

+  .llseek  = seq_lseek,

+  .release = single_release,

+};
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-static struct file_operations nvram_fops = {

-  .owner    = THIS_MODULE,

-  .llseek   = nvram_llseek,

-  .read     = nvram_read,

-  .write    = nvram_write,

-  .ioctl    = nvram_ioctl,

-  .open     = nvram_open,

-  .release  = nvram_release,

-};

+static int nvram_seq_open(struct inode *inode, struct file *file)

+{

+  return single_open(file, nvram_show, NULL);

+}

+static int nvram_show(struct seq_file *seq, void *v)

+{

+  unsigned char contents[NVRAM_BYTES];

+  int i;

+

+  spin_lock_irq(&rtc_lock);

+  for (i = 0; i < NVRAM_BYTES; ++i)

+  contents[i] = __nvram_read_byte(i);

+  spin_unlock_irq(&rtc_lock);

+

+  mach_proc_infos(seq, contents);

+  return 0;

+}

static int __init

nvram_init(void)

{

+  ent = create_proc_entry("driver/nvram", 0, NULL);

+  if (!ent) {

+    printk(KERN_ERR "nvram: can't create /proc/driver/nvram\n");

+    ret = -ENOMEM;

+    goto outmisc;

+  }

+  ent->proc_fops = &nvram_proc_fops;



-  if (!create_proc_read_entry("driver/nvram", 0, NULL, 

-                              nvram_read_proc, NULL)) {

-    printk(KERN_ERR "nvram: can't create /proc/driver/nvram\n");

-    ret = -ENOMEM;

-    goto outmisc;

-  }

   /* ... */

}

-#define PRINT_PROC(fmt,args...) \

-/* ... */

-static int

-nvram_read_proc(char *buffer, char **start, off_t offset,

-    int size, int *eof, void *data)

-{

- /* ... */

-}

In addition to the modifi cations in Listing C.4, change all references to 
PRINT_PROC() in the original driver to seq_printf(). The original driver and the 
one in Listing C.4 produce the same output if you read from /proc/driver/nvram.

Looking at the Sources

Look   at Documentation/fi lesystems/proc.txt for more information about procfs. The 
fs/proc/ directory contains code that implements the procfs core. The    seq fi le inter-
face lives in fs/seq_fi le.c. Users of procfs and seq fi les are sprinkled all over the kernel 
sources.
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Symbols
$ (dollar sign), 655
% (percent sign), 655-656
1-wire protocol, 254
4G networking, 500
7-bit addressing, 235
802.11 stack, 495
855GME EDAC driver, 579-583
8250.c driver, 172
16550-type UART, 172

A
AAL (ATM Adaptation Layer), 459
AC’97, 393
ac97_bus module, 395
accelerated methods, 372
accelerometers, 228
accessing

char drivers, 120
EEPROM device, 244-246
I/O regions, 558-561
memory regions from user space, 562-564
PCI regions, 285-288

configuration space, 285-286
I/O and memory regions, 286-288

registers, 332-335
access point names (APNs), 497
Acclerated Graphics Port (AGP), 357
ACPI (Advanced Configuration and Power Interface), 

114, 585-587
acpid daemon, 586
AML (ACPI Machine Language Interpreter), 585
devices, 585
drivers, 585
kacpid, 586
spaces, 585
user-space tools, 586

acpid daemon, 586

acpitool command, 586
activation

net_device structure, 444
NICs (network interface cards), 444

active queues, 554
ad-hoc mode (WLAN), 490
ADC (Analog-to-Digital Converter), 79, 251
add_disk() function, 428, 438
add_memory_region() function, 664
add_mtd_partitions() function, 525
add-symbol-file command, 603
add_timer() function, 35, 53
add_wait_queue() function, 61-62, 86
addresses

ARP (Address Resolution Protocol), 25
bus addresses, 290
endpoint addresses, 316
LBA (logical block addressing), 416
logical addresses, 50
MAC (Media Access Control) addresses, 443
PCI, 281-285
slave addresses, 235
USB (universal serial bus), 316
virtual addresses, 50

Address Resolution Protocol (ARP), 25
adjust checksum command (ioctl), 137
adjust_cmos_crc() function, 137
Advanced Configuration and Power Interface. See ACPI
Advanced Host Controller Interface (AHCI), 418
Advanced Linux Sound Architecture. See ALSA
Advanced Power Management (APM), 114, 662. 

See also BIOS (basic input/output system)
Advanced Technology Attachment (ATA), 416
AF_INET protocol family, 25
AF_NETLINK protocol family, 25
AF_UNIX protocol family, 25
Affix, 478
AGP (Acclerated Graphics Port), 357
AHCI (Advanced Host Controller Interface), 418
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AIO (Asynchronous I/O), 134
aio_read() function, 135
aio_write() function, 135
alloc_chrdev_region() function, 126, 160, 168
alloc_disk() function, 428, 438
alloc_etherdev() function, 443, 463
alloc_ieee80211() function, 443, 463
alloc_irdadev() function, 443, 463
alloc_netdev() function, 443, 463
allocating memory, 49-51
allow_signal() function, 59, 86
ALSA (Advanced Linux Sound Architecture), 394-396

ALSA driver for MP3 player, 403-409
ALSA programming, 409-411

alsa-devel mailing list, 412
alsa-lib library, 395-397
alsa-utils package, 395
alsactl command, 395
alsamixer command, 395
amateur radio, 590
amd_flash_info structure, 525
amixer command, 395
AML (ACPI Machine Language Interpreter), 585
Analog-to-Digital Converter (ADC), 79, 251
anticipatory I/O scheduler, 27, 423
aplay command, 395
APM (Advanced Power Management), 114, 662. 

See also BIOS (basic input/output system)
apm_bios_call_simple_asm() function, 666
APM_DO_ZERO_SEGS, 666
APM_FUNC_GET_EVENT, 666
APM_FUNC_IDLE, 666
APNs (access point names), 497
applying patches, 7
arch directory, 8

arch/x86/boot/ directory, 662
arch/x86/boot/memory.c fi le, 662
arch/x86/kernel/e820_32.c fi le, 664

ARM bootloaders, 534
ARP (Address Resolution Protocol), 25
asked_to_die() function, 71
asm construct, 656
asmlinkage attribute, 658
assembly

boot sequence, 654
debugging, 659
GNU Assembler (GAS), 654
i386 boot assembly code, 665
inline assembly, 654-659
Microsoft Macro Assembler (MASM), 654
Netwide Assembler (NASM), 654

assigning IRQs (interrupt requests), 94
asynchronous DMA, 289

Asynchronous I/O (AIO), 134
asynchronous interrupts, 94
asynchronous transfer mode (ATM), 458-459
ATA (Advanced Technology Attachment), 416
ATAGs, 536
ATAPI (ATA Packet Interface), 416
ATM (asynchronous transfer mode), 458-459
ATM Adaptation Layer (AAL), 459
atomic_dec() function, 54
atomic_dec_and_test() function, 54
atomic_inc() function, 54
atomic_inc_and_test() function, 54
atomic_notifier_chain_register() function, 78, 87
ATOMIC_NOTIFIER_HEAD() macro, 78, 87
atomic operators, 45-46
Attribute memory (PCMCIA), 263
audio codecs, 393
audio drivers

ALSA (Advanced Linux Sound 
Architecture), 394-396
ALSA driver for MP3 player, 403-409
ALSA programming, 409-411

audio architecture, 392-394
audio codecs, 393
Bluetooth, 477
data structures, 413
debugging, 412
embedded drivers, 541
kernel programming interfaces, table of, 413
MP3 player example

ALSA driver code listing, 403-409
ALSA programming, 409-411
codec_write_reg() function, 402
MP3 decoding complexity, 411
mycard_audio_probe() function, 399
mycard_audio_remove() functions, 399
mycard_hw_params() function, 402
mycard_pb_trigger() function, 401
mycard_playback_open() function, 401
overview, 396
register layout of audio hardware, 398
snd_card_free() function, 399
snd_card_new() function, 399
snd_card_proc_new() function, 403
snd_card_register() function, 402
snd_ctl_add() function, 402
snd_ctl_new1() function, 402
snd_device_new() function, 400
snd_kcontrol structure, 402
snd_pcm_hardware structure, 401
snd_pcm_lib_malloc_pages() function, 402
snd_pcm_lib_preallocate_pages_for_all() 

function, 402
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snd_pcm_new() function, 400
snd_pcm_ops structure, 400
snd_pcm_set_ops() function, 400-401
user programs, 397

OSS (Open Sound System), 394
overview, 392
sound directory, 9
sound mixing (fn), 393
sources, 412-413

audio players. See MP3 player example
autoloading modules, 112-113
AX.25 protocol, 590

B
BackGround Operation (BGO), 658
backlight_device_register(), 373
barriers (memory), 114
BCD (Binary Coded Decimal), 250
BCD2BIN() macro, 250
BCSP (BlueCore Serial Protocol), 471
bdflush kernel thread, 58
benchmarking, 459
BGO (BackGround Operation), 658
BH (bottom half) flavors, 44
Binary Coded Decimal (BCD), 250
Binutils, 531
bio_for_each_segment() function, 435, 438
bio structure, 425, 437
bio_vec structure, 425
BIOS (basic input/output system)

BIOS-provided physical RAM map, 19-21
legacy drivers, 666
protected mode calls, 665-666
real mode calls, 662-665
updating, 522-525

bit-banging drivers, 253
blk_cleanup_queue() function, 438
blk_fs_request() function, 438
blk_init_queue() function, 427, 438
blk_queue_hardsect_size() function, 426, 438
blk_queue_make_request() function, 436, 438
blk_queue_max_sectors() function, 427, 438
blk_rq_map_sg() function, 435, 438
BLOBs (BootLoader Objects), 534
block device emulation, 516
block directory, 8
block drivers

block_device_operations structure, 437
block I/O layer, 421-422
data structures, 423-426, 437
debugging, 436-437
DMA data transfer, 434-435

entry points, 426
interrupt handlers, 435
I/O schedulers, 422-423
kernel programming interfaces, table of, 438
myblkdev storage controller

block device operations, 430-431
disk access, 432-434
initialization, 427-430
overview, 426-427
register layout, 427

sources, 437-438
storage technologies

ATAPI (ATA Packet Interface), 416
IDE (Integrated Drive Electronics), 416
libATA, 417-418
MMC (MultiMediaCard), 419
RAID (redundant array of inexpensive disks), 419
SATA (Serial ATA), 417
SCSI (Small Computer System Interface), 418
SD (Secure Digital) cards, 419
summary of, 419-420

block I/O layer, 421-422
blocking_notifier_call_chain() function, 76, 87
blocking_notifier_chain_register() function, 86
BLOCKING_NOTIFIER_HEAD() macro, 78, 86
blocks, 427
BlueCore Serial Protocol (BCSP), 471
Bluetooth, 348, 466-468

audio, 477
Bluetooth Host Control Interface, 195
Bluetooth Network Encapsulation Protocol 

(BNEP), 468
Bluetooth Special Interest Group (SIG), 478
BlueZ, 469-470

CF cards, 471
RFCOMM, 473
USB adapters, 471-473

debugging, 478
keyboards, 219-220
mice, 226
networking, 477
profi les, 468
USB, 468

bluetooth.ko, 469
Bluetooth Host Control Interface, 195
Bluetooth Network Encapsulation Protocol 

(BNEP), 468
Bluetooth Special Interest Group (SIG), 478
BlueZ, 469-470

CF cards, 471
RFCOMM, 473
USB adapters, 471-473

bluez-utils package, 478
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BNEP (Bluetooth Network Encapsulation 
Protocol), 468

bnep.ko, 469
board rework, 549-550
BogoMIPS, 24
BootLoader Objects (BLOBs), 534
bootloaders

defi nition, 532
embedded bootloaders

BLOB (BootLoader Object), 534
bootstrapping, 533-534
GRUB, 535
LILO (Linux Loader), 534
overview, 531-532
RedBoot, 534
SYSLINUX, 535
table of, 534-535

Redboot bootloader, 511
boot logo (console drivers), 387
boot process, 18-30, 654. See also bootloaders

BIOS-provided physical RAM map, 19-21
delay-loop calibration, 23-25
EXT3 fi lesystem, 26
HLT instruction, 25
I/O scheduler, 27
init process, 28-30
initrd memory, 25-26
kernel command line, 21-22
Linux boot sequence, 19
low memory/high memory, 21
PCI resource confi guration, 27
registered protocol families, 25
start_kernel() function, 18

bootstrapping, 533-534
bottom half (BH) flavors, 44
BREAKPOINT macro, 597
breakpoints, 597
brownouts, 543
buffers

DMA, 289, 302-304
NIC buffer management, 450
socket buffers, 441-442

BUG() function, 644
build scripts, 645-647
building kernels, 10-11
built-in kernel threads, 57-58
bulk endpoints, 316
bulk URBs, 321
bus addresses, 290
bus-device-driver programming interface, 109
bus_register() function, 110

buses
bus addresses, 290
I2C bus transactions, 237-238
LPC (Low Pin Count) bus, 520
SMBus, 234, 244
SPI (Serial Peripheral Interface) bus, 251-254
USB. See USB (universal serial bus)
user space I2C/SMBus driver, 572-573
w1 bus, 254

BusyBox, 547

C
cache

cache misses, counting, 632-633
coherency. See DMA

calibrate_delay() function, 23-25
calibrating touch controllers, 227
call_usermodehelper() function, 64, 86
Cambridge Silicon Radio (CSR), 471
CAN (controller area network), 543
capacity of disks, obtaining via SCSI Generic, 566-567
CardBus, 258, 278-280
Card Information Structure (CIS), 263
cardmgr daemon, 260
Card Services, 260, 263
Carrier Grade Linux (CGL), 6
cathode ray tube (CRT), 357
cdev_add() function, 126, 160, 168
cdev_del() function, 168
cdev_init() function, 160, 168
cdev structure, 121, 168
CDMA (code division multiple access), 466, 498-500
cdrecord, 565
cdrtools, 565
CELF (Consumer Electronics Linux Forum), 5
cell phone devices

claiming/freeing memory, 182
console drivers, 382-386
CPLD (Complex Programmable Logic Device), 179
overview, 178
platform drivers, 180-181
SoC (System-on-Chip), 178
USB_UART driver, 183-191
USB_UART ports, 179
USB_UART register layout, 180

cellular networking, 466
CDMA, 498-500
GPRS, 496-498

CEs (correctable errors), 578
CF (Compact Flash), 469. See also PCMCIA

BlueZ, 471
debugging, 273-274
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defi nition, 258
embedded drivers, 540
storage, 272

cfb_fillrect(), 372
CFI (Common Flash Interface), 511-512
cfi_private structure, 525
cfi_probe_chip() function, 512
CFQ (Complete Fair Queuing), 27, 423
CFS (Completely Fair Scheduler), 555
CGL (Carrier Grade Linux), 6
change markers, 642-643
changing

line disciplines, 204
MTU size, 447

character drivers. See char drivers
char device emulation, 517
char drivers

accessing, 120
char device emulation, 517
CMOS driver

I/O Control, 137-139
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fasync() function, 142-145
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sources, 167-169
UART drivers, 191
watchdog timer, 160-166

check_bugs() function, 25
checklist for new devices, 650-651
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chip drivers. See NOR chip drivers
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cistpl.h file, 266
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class_device_add_attrs() function, 117
class_device_create() function, 117, 160
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class_device_destroy() function, 117, 156
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class drivers
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HIDs (human interface devices), 348
mass storage, 339-345
overview, 338-339
USB-Serial, 345-348
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input class, 107
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clear_bit() function, 54
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clock_gettime() function, 35
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CMOS_BANK0_INDEX_PORT register, 122
CMOS_BANK1_DATA_PORT register, 122
CMOS_BANK1_INDEX_PORT register, 122
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CMOS drivers

I/O Control, 137-139
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cmos_read() function, 129-134
cmos_release() function, 127-129
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codec_write_reg() function, 402
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coldplug, 110-111
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color modes, 370-371
command-line utilities. See specific utilities
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command-set 0002, 512
command-set 0020, 512
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commands. See specific commands
Common Flash Interface (CFI), 511
Common memory (PCMCIA), 263
Common UNIX Printing System (CUPS), 146
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compact middleware, 546-547
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GCC compiler, 531
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complete_all() function, 80
complete_and_exit() function, 81, 87
Complete Fair Queuing (CFQ), 27, 423
Completely Fair Scheduler (CFS), 555
completion interface, 78-81
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CVS (Concurrent Versioning System), 158, 643
debugging, 48
NICs (network interface cards), 450
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reader-writer locks, 46-48
spinlocks and mutexes, 39-45

Concurrent Versioning System (CVS), 158, 643
CONFIG_4KSTACKS configuration option, 639
CONFIG_DEBUG_BUGVERBOSE 
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option, 639
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option, 639

CONFIG_DEBUG_SLAB configuration option, 639
CONFIG_DEBUG_SPINLOCK configuration 
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CONFIG_DEBUG_STACK_USAGE 
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CONFIG_DEBUG_STACKOVERFLOW 
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option, 645
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CONFIG_PREEMPT_RT patch-set, 44
CONFIG_PREEMPT configuration option, 61
CONFIG_PRINTK_TIME configuration option, 639
CONFIG_RTC_CLASS configuration option, 157
CONFIG_SYSCTL configuration option, 64
configuration

kernel hacking confi guration options, 638
MTD, 519-520
NAND chip drivers, 513
net_device structure, 446-447
NICs, 446-447
PCI resources, 27
Wireless Extensions, 490-494

configuration space (PCI), accessing, 285-286
connectivity of embedded drivers, 542
conservative governor, 583
consistency of checksums, 643-645
consistent DMA access methods, 290-291
console drivers, 380-382

boot logo, 387
cell phones, 382-386

consoles, 380
Consumer Electronics Linux Forum (CELF), 5
container_of() function, 128, 168, 344
contexts, interrupt, 92-94
contrast and backlight, 373-380
CONTROL_REGISTER, 301, 398
controller area network (CAN), 543
controllers

CAN (controller area network), 543
CS8900 controller, 457
DRAM controllers, 579
ECC-aware memory controller, 579-583
EHCI controller, 568
host controllers, 234
NAND fl ash controllers, 513
OTG (On-The-Go) controllers, 312
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coord.c application, 211-212
copy_e820_map() function, 664
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copy_to_user() function, 168
copying system memory maps, 664-665
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correctable errors (CEs), 578
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Devices), 179, 542

cpqarray driver, 435
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CPU frequency (cpufreq) driver subsystem, 583-584
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crash command, 624-628
crash dumps, 622
create_singlethread_workqueue() function, 73
create_workqueue() function, 73
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crypto directory, 8
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CS8900 controller, 457
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CTS (Clear To Send), 191
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CVS (Concurrent Versioning System), 158, 643
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daemonize() function, 58-59, 86
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acpid, 586
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iscsid, 592
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pppd, 273
trace, 636
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data availability, sensing

fasync() function, 142-145
overview, 139
select()/poll() mechanism, 139-142

Data Cache (D-cache), 658
data field (sk_buff structure), 441

data flow, Linux-PCMCIA subsystem, 271-272
data mixing (fn), 393
data structures. See specific structures
data transfer

DMA data transfer, 434-435
net_device structure, 444
NICs (network interface cards), 444
PCI

DMA descriptors and buffers, 302-304
receiving and transmitting data, 305-308
register layout of network functions, 301

telemetry card example, 335-338
USB, 315-316

DDWG (Digital Display Working Group), 357
deadline I/O scheduler, 27, 422
dead state (threads), 62
debugfs, 350
debuggers. See kernel debuggers
debugging. See also ECC reporting

audio drivers, 412
block drivers, 436-437
Bluetooth, 478
breakpoints, 597
concurrency, 48
crash dumps, 622
diagnostic tools, 638
embedded Linux

board rework, 549-550
debuggers, 550

I2C, 254
input drivers, 230-231
JTAG debuggers, 659
kdump, 622-628

example, 624-628
kexec with kdump, 621-622
setup, 623
sources, 629

kernel debuggers
downloads, 609
entering, 597-598
gdb (GNU debugger), 604-605
JTAG debuggers, 605-609
kdb (kernel debugger), 598-600
kgdb (kernel GNU debugger), 600-604
overview, 596-597

kernel hacking confi guration options, 638
kexec, 620-621

invoking, 621
preparation, 620
sources, 629
with kdump, 621-622

kprobes
example, 610-614
fault-handlers, 609
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sources, 620

Linux assembly, 659
LTP (Linux Test Project), 638
MTD (Memory Technology Devices), 524
overview, 387-388, 550, 596
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PCMCIA, 273-274
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gprof, 633-634
OProfile, 629-633
overview, 629

RAS (reliability, availability, serviceability), 596
test equipment, 640
tracing, 634-637
UDB (universal serial bus), 349-351
UML (User Mode Linux), 638
watchpoints, 597

debug tool, 659
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DECLARE_WAITQUEUE() macro, 86
DEFINE_MUTEX() function, 53
DEFINE_TIMER() function, 53
DEFINE_TIMER() macro, 34
del_gendisk() function, 438
del_timer() function, 35
delay-loop calibration, 23-25
delays

long delays, 33-36
short delays, 36

delivery
build scripts, 645-647
change markers, 642-643
checksum consistency, 643-645
code portability, 647-648
coding styles, 642
version control, 643

depmod utility, 112
descriptors (USB), 322-323
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dev_alloc_skb() function, 441-442, 463
/dev directory
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/dev/full driver, 159
/dev/kmem driver, 159
/dev/mem driver, 159
/dev/null char device, 158
/dev/port driver, 159

/dev/random driver, 158
/dev/urandom driver, 158, 159
/dev/zero driver, 158

dev_kfree_skb() function, 441-463
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devfs, 104
device checklist, 650-651
device classes, 106-110
device controllers, 349
device_driver structure, 116
device_register() function, 110
devices. See also specific devices

ACPI (Advanced Confi guration and Power 
Interface) devices, 585

interrupt handling. See interrupt handling
Linux device model

device classes, 106-110
hotplug/coldplug, 110-111
kobjects, 106-110
microcode download, 111-112
module autoload, 112-113
overview, 103
sysfs, 106-110
udev, 103-106, 113

memory barriers, 114
power management, 114-115

diagnostic tools, 638
dialup networking (DUN), 475
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Digital Visual Interface (DVI), 357
direct-to-home (DTH) interface, 543
Direct Memory Access. See DMA
directories, 8-9. See also specific directories
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disable_irq_nosync() function, 99, 116
disabling IRQs (interrupt requests), 99
disconnecting telemetry drivers, 327-331
Disk-On-Modules (DOMs), 504
disk capacity, obtaining via SCSI Generic, 566-567
disk mirroring, 419
display architecture, 356-358
displaying images with mmap(), 563-564
display parameters, 361-362
distributions, 5-6
dma_addr_t structure, 309
DMA_ADDRESS_REGISTER, 398
DMA (Direct Memory Access), 50. See also

Ethernet-Modem card example
buffers, 289
consistent DMA access methods, 290-291
defi nition, 288



Index 689

descriptors and buffers, 302-304
IOMMU (I/O memory management unit), 290
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dma_map_single() function, 401
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DMA data transfer, 434-435
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documentation
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ds (driver services) module, 261
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embedded drivers, 543
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correctable errors (CEs), 578
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eep_read() function, 245
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accessing, 244-246
adapter capabilities, checking, 244
clients, attaching, 243
i2c_del_driver() function, 247
initializing, 238-241
ioctl() function, 246
llseek() method, 246
memory banks, 238
opening, 241
overview, 238
probing, 241-243
RFID (Radio Frequency Identifi cation) 

transmitters, 246
EHCI (Enhanced Host Controller Interface), 315, 568
EISA (Extended Industry Standard Architecture), 588
elv_next_request() function, 432, 438
embedded bootloaders

BLOB (BootLoader Object), 534
bootstrapping, 533-534
GRUB, 535
LILO (Linux Loader), 534
overview, 531-532
RedBoot, 534
SYSLINUX, 535
table of, 534-535

embedded controllers (ECs), 584
embedded drivers

audio, 541
brownouts, 543
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overview, 538
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PWM (pulse-width modulator) units, 543-544
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SD/MMC, 540
touch screens, 541
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video, 541

embedded Linux
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board rework, 549-550
debuggers, 550

embedded bootloaders
BLOB (BootLoader Object), 534
bootstrapping, 533-534
GRUB, 535
LILO (Linux Loader), 534
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RedBoot, 534
SYSLINUX, 535
table of, 534-535
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hardware block diagram, 92
kernel porting, 537

memory layout, 535-536
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root fi lesystem

compact middleware, 546-547
NFS-mounted root, 544-546
overview, 544

test infrastructure, 548
tool chains, 531
USB (universal serial bus), 312-314

emulation
block device emulation, 516
char device emulation, 517

enable_irq() function, 99, 116
enabling IRQs (interrupt requests), 99
end field (sk_buff structure), 441
end_request() function, 438
endpoint addresses, 316
endpoints (USB), 316
Enhanced Host Controller Interface (EHCI), 315, 568
enumeration, 324
EP7211 controller, 533
epoll() function, 141
erase_info_user structure, 525
erase_info structure, 525
error correcting codes (ECCs). See ECC reporting
Error Detection And Correction. See EDAC
/etc/inittab file, 29
/etc/rc.sysinit, 29
etags command, 10
eth1394 driver, 589
Ethernet-Modem card example, 292-293

data transfer
DMA descriptors and buffers, 302-304
receiving and transmitting data, 305-308
register layout of network functions, 301

modem functions
probing, 299-300
registering, 296-297

MODULE_DEVICE_TABLE() macro, 294
network functions

probing, 298-299
registering, 294-295

PCI_DEVICE() macro, 293
pci_device_id structures, 293

Ethernet NIC driver, 451-457
ethtool, 446-447
ethtool_ops structure, 446, 462
evbug module, 230
Evdev interface, 210
events

input event drivers, 228-230
Evdev interface, 210
overview, 210
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writing, 216

LTT events, 635
notifi er event handlers, 76-78

events/n threads, 58
evolution of Linux, 2-3
eXecute In Place (XIP), 520
EXIT_DEAD state, 62
EXIT_ZOMBIE state, 62
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ExpressCards, 258, 279-280
EXT3 filesystem, 26
EXT4 filesystem, 28
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Extended Industry Standard Architecture (EISA), 588
external watchdogs, 165
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fasync() function, 142-145
fasync_helper() function, 144, 169
fault-handlers (kprobes), 609
fb_blank() method, 371
fb_check_var() method, 369
fb_fillrect(), 372
fb_var_screeninfo structure, 574
FCC (Federal Communications Commission), 494
fcntl() function, 144
Federal Communications Commission (FCC), 494
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Field Programmable Gate Arrays (FPGAs), 542
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file_operations structure, 121, 168, 424-425
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filesystems

debugfs, 350
EXT3, 26
EXT4, 28
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NFS (Network File System), 58
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rootfs

compact middleware, 546-547
NFS-mounted root, 544-546
obtaining, 26
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sysfs, 106-110
usbfs virtual fi lesystem, 567-571
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Firmware Hub (FWH), 520-524
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NAND, 504
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floppy storage, 420
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FSM (Finite State Machine), 195
fsync() function, 134
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FTL (File Translation Layer), 516
full char device, 159
full-speed USB, 314
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garbage collector (GC), 518
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GC (garbage collector), 518
GCC compiler, 531
GCC Inline Assembly HOWTO, 656
gdb (GNU debugger), 604-605
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General Packet Radio Service (GPRS), 466, 496-498
General Purpose I/O (GPIO), 95
generating

patches, 7
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HNP (Host Negotiation Protocol), 315
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transmitters, 246
i2c-dev, 251
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myblkdev storage controller, 427-430
telemetry confi guration register, 333-335
telemetry driver, 326-327

initiators (iSCSI), 592
init process, 28-30
initramfs root filesystem, 26
initrd memory, 25-26
inittab file, 29
inl() function, 169, 574
inline assembly, 654-659
input_allocate_device() function, 214
input_dev structure, 231
input_event() function, 158
input_event structure, 231
input_handler structure, 216, 231
input_register_device() function, 93, 215, 232, 253
input_register_handler() function, 232
input_report_abs() function, 232, 253
input_report_key() function, 232
input_report_rel() function, 232
input_sync() function, 215, 232
input_unregister_device() function, 232
input class, 107
input drivers

debugging, 230-231
input device drivers

accelerometers, 228
Bluetooth keyboards, 219-220
Bluetooth mice, 226
output events, 228-230
PC keyboards, 217-219
PS/2 mouse, 221
roller mouse device example, 221-223
serio, 217
touch controllers, 227-228
touchpads, 224-226
trackpoints, 223
USB keyboards, 219-220
USB mice, 226

input event drivers
Evdev interface, 210
overview, 210
virtual mouse device example, 210-215
writing, 216

input subsystem, 208-209
sources, 231-232
summary of data structures, 231

input subsystem, 208-209
insmod command, 12

Instruction Cache (I-cache), 658
int 0x15 service, 662, 663
Integrated Drive Electronics (IDE), 416
Intelligent Input/Output (I2O), 589
Inter-IC Sound (I2S) bus, 393-394
Inter-Integrated Circuit. See I2C
internal file pointer, setting with 

cmos_llseek(), 136-137
Internet address notification, 75
Internet Protocol (IP), 440
Internet SCSI (iSCSI), 591-593
interrupt contexts, 30-31, 92-94
interrupt handling

asynchronous interrupts, 94
block drivers, 435
interrupt contexts, 92-94
IRQs (interrupt requests)

assigning, 94
definition, 92
enabling/disabling, 99
freeing, 96
requesting, 95-96

overview, 92
roller wheel device example, 94-99

edge sensitivity, 96
free_irq() function, 96
request_irq() function, 95-96
roller interrupt handler, 97-99
softirqs, 100-101
tasklets, 101-102
wave forms generated by, 95

softirqs, 99-103
synchronous interrupts, 94
tasklets, 99-103

interruptible state (threads), 62
interrupt requests. See IRQs
interrupts, 92
interrupt service routine (ISR), 92
invoking kexec, 621
inw() function, 169, 574
ioctl() function, 137, 203, 246, 430-431, 444
IOMMU (I/O memory management unit), 290
ioperm() function, 558, 574
iopl() function, 558, 574
ioremap() function, 309
ioremap_nocache() function, 309, 509
iovec structure, 135
IP (Internet Protocol), 440
ipc directory, 8
ipx_routes_lock, 46
IrCOMM, 486
irda-utils package, 480
IrDA socket (IrSock), 480, 487
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IrLAP (IR Link Access Protocol), 480
IrLMP (IR Link Management Protocol), 480
irq command, 625
IRQ_HANDLED flag, 96
IRQF_DISABLED flag, 96
IRQF_SAMPLE_RANDOM flag, 96
IRQF_SHARED flag, 96
IRQF_TRIGGER_HIGH flag, 96
IRQF_TRIGGER_RISING flag, 96
IRQs (interrupt requests)

assigning, 94
cell phone device example, 182
defi nition, 92
enabling/disabling, 99
freeing, 96
requesting, 95-96
roller wheel device example, 94-95

IrSock (IrDA socket), 480
IS_ERR() function, 84, 87
ISA (Industries Standard Architecture), 587-588
ISA NICs, 457-458
iSCSI (Internet SCSI), 591-593
iscsi_tcp.c driver, 593
iscsid daemon, 592
ISR (interrupt service routine), 92
iterator methods

next(), 674
show(), 675
start(), 674
stop(), 675

J
JFFS (Journaling Flash File System), 517
jiffies, 23, 31-33
Journaling Flash File System (JFFS), 517
jprintk() function, 617
jprobe_return() function, 617
jprobes, 614-617
JTAG (Joint Test Action Group), 533

debuggers, 605-609, 659

K
kacpid thread, 586
kallsyms_lookup_name() function, 614
kapmd thread, 666
kbnepd, 469
kdb (kernel debugger), 598-600
kdump, 622-628

example, 624-628
kexec with kdump, 621-622
setup, 623
sources, 629

kernel.org, 4
kernel_thread() function, 58-59, 86
kernel debuggers

downloads, 609
entering, 597-598
gdb (GNU debugger), 604-605
JTAG debuggers, 605-609
kdb (kernel debugger), 598-600
kgdb (kernel GNU debugger), 600-604
overview, 596-597

kernel directory, 8
kernel hacking configuration options, 638
kernel mode, 30
kernel modules. See modules
kernel probes. See kprobes
kernel processes. See kernel threads
kernel programming interfaces. See specific functions
kernels

boot process, 18-30
BIOS-provided physical RAM map, 19-21
delay-loop calibration, 23-25
EXT3 filesystem, 26
HLT instruction, 25
I/O scheduler, 27
init process, 28-30
initrd memory, 25-26
kernel command line, 21-22
Linux boot sequence, 19
low memory/high memory, 21
PCI resource configuration, 27
registered protocol families, 25
start_kernel() function, 18

building, 10-11
concurrency

atomic operators, 45-46
debugging, 48
overview, 39
reader-writer locks, 46-48
spinlocks and mutexes, 39-45

data structures, table of, 52
debuggers

downloads, 609
entering, 597-598
gdb (GNU debugger), 604-605
JTAG debuggers, 605-609
kdb (kernel debugger), 598-600
kgdb (kernel GNU debugger), 600-604
overview, 596-597

helper interfaces
completion interface, 78-81
error-handling aids, 83-84
hash lists, 72
kthread helpers, 81-83
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linked lists, 65-71
notifier chains, 74-78
overview, 65
work queues, 72-74

interrupt contexts, 30-31
kernel.org repository, 4
kernel hacking confi guration options, 638
kernel mode, 30
kernel programming interfaces, table of, 53-54
memory allocation, 49-51
modules

edac_mc, 578
loading, 12-14

porting, 537
process contexts, 30-31
sources, 52-54, 85-87
source tree layout, 6-10

directories, 8, 9
navigating, 9-10

threads
bdflush, 58
creating, 56-61
definition, 56
events/n threads, 58
kacpid, 586
kapmd, 666
kjournald, 28
ksoftirqd/0, 57
kthreadd, 58
kthread helpers, 81-83
kupdated, 58
listing active threads, 57
nfsd, 58
pccardd, 263
pdflush, 58
process states, 61-63
user mode helpers, 63-65
wait queues, 61-63

timers
HZ, 31-33
jiffies, 31-33
long delays, 33-36
overview, 31
RTC (Real Time Clock), 37-38
short delays, 36
TSC (Time Stamp Counter), 36-37

uClinux, 537
user mode, 30

kernel threads
bdfl ush, 58
creating, 56-61
defi nition, 56

events/n threads, 58
kacpid, 586
kapmd, 666
kjournald, 28
ksoftirqd/0, 57
kthreadd, 58
kthread helpers, 81-83
kupdated, 58
listing active threads, 57
nfsd, 58
pccardd, 263
pdfl ush, 58
process states, 61-63
user mode helpers, 63-65
wait queues, 61-63

kernel timers
HZ, 31-33
jiffi es, 31-33
long delays, 33-36
overview, 31
RTC (Real Time Clock), 37-38
short delays, 36
TSC (Time Stamp Counter), 36-37

kerneltrap.org, 5
kexec

invoking, 621
preparation, 620
sources, 629
with kdump, 621-622

kexec-tools package, 620
keyboards

Bluetooth keyboards, 219-220
overview, 217
PC keyboards, 217-219
USB keyboards, 219-220

keycodes, 218
keypads, 539
kfree() function, 54
kgdb (kernel GNU debugger), 600-604
kgdbwait command, 601
khubd, 324
kill_fasync() function, 144-145, 169
kjournald thread, 28
kmalloc() function, 21, 51, 54, 84
kmem char device, 159
kobj_type structure, 106, 116
kobject_add() function, 117
kobject_register() function, 156, 169
kobject_uevent() function, 117
kobject_unregister() function, 156, 169
kobjects, 106-110, 115
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kprobes
example, 610-614

kprobe handlers, registering, 611-612
mydrv.c file, 610-611
patches, inserting, 613-614

fault-handlers, 609
inserting inside kernel functions, 609-610
jprobes, 614-617
kretprobes, 617-619
limitations, 619
post-handlers, 609
pre-handlers, 609
sources, 620

kref_get() function, 106
kref_init() function, 106
kref_put() function, 106
kref object, 106
kret_tty_open() function, 619
kretprobes, 617-619
kset structure, 116
ksoftirqd/0 kernel thread, 57
kthread_create() function, 81, 87
kthread_run() function, 83
kthread_should_stop() function, 81, 87
kthread_stop() function, 87
kthreadd kernel thread, 58
kthread helpers, 81-83
ktype_led structure, 156
kupdated kernel thread, 58
kzalloc() function, 51, 54
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L2CAP (Logical Link Control and 

Adaptation Protocol), 468
l2cap.ko, 469
LAD (Linux Audio Developers) list, 412
LAN Emulation (LANE), 458
LANs (local area networks), 440, 466
laptops, 259
large procfs reads, 672-674
layered architecture (serial drivers), 173-176
LBA (logical block addressing), 416
LCDC (Liquid Crystal Display Controller), 365
LCD controllers, 366
ldisc.read() function, 202
ldisc.receive_buf() function, 202
led.c driver, 147-150
led_init() function, 150
led_write() function, 150
LED board. See parallel port LED board

legacy drivers
BIOS, 666
RTC driver, 157

len field (sk_buff structure), 441
level-sensitive devices, 96
LGPL (GNU Lesser General Public License), 3
libATA, 417-418
lib directory, 9
libraries

alsa-lib, 395-397
Glibc, 531
libraw1394, 589

libraw1394 library, 589
libusb programming template, 570-571
likely() function, 135, 168
LILO (Linux Loader), 534
line disciplines (touch controller device example)

changing, 204
compiling, 204
connection diagram, 195
fl ushing data, 203
I/O Control, 203
open/close operations, 196
opening, 197-206
overview, 194-195
read paths, 198-202
unregistering, 204
write paths, 202-203

linked lists
creating, 65
data structures, initializing, 67
functions, 66
worker thread, 69-71
work submission, 68-69

links (PCIe), 278
linux.conf.au, 4
Linux Amateur Radio AX.25 HOWTO, 590
Linux assembly

boot sequence, 654
debugging, 659
GNU Assembler (GAS), 654
i386 boot assembly code, 665
inline assembly, 654-659
Microsoft Macro Assembler (MASM), 654
Netwide Assembler (NASM), 654

Linux Asynchronous I/O (AIO), 134
linux-audio-dev mailing list, 412
Linux Audio Developers (LAD) list, 412
Linux device model

device classes, 106-110
hotplug/coldplug, 110-111
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kobjects, 106-110
microcode download, 111-112
module autoload, 112-113
overview, 103
sysfs, 106-110
udev, 103-106, 113

Linux distributions, 5-6
Linux history and development, 2-3
linux-ide mailing list, 437
Linux-IrDA, 480-481
Linux Kernel Crash Dump (LKCD), 623
Linux Kernel Mailing List (LKML), 4
Linux Kongress, 4
Linux Loader (LILO), 534
Linux-MTD JFFS HOWTO, 524
linux-mtd mailing list, 4
Linux-MTD subsystem. See MTD
Linux-PCMCIA subsystem. See PCMCIA (Personal 

Computer Memory Card International Association)
linux-scsi mailing list, 437
Linux Symposium, 4
Linux Test Project (LTP), 596, 638
Linux Trace Toolkit. See LTT
Linux Trace Toolkit Viewer (LTTV), 637
linux-usb-devel mailing list, 4, 351
Linux-USB subsystem. See USB
Linux-video subsystem, 359-360
LinuxWorld Conference and Expo, 5
Liquid Crystal Display Controller (LCDC), 365
LIRC (Linux Infrared Remote Control), 488
list_add() function, 66
list_add_tail() function, 66-69
list_del() function, 66, 69
list_empty() function, 66
list_entry() function, 66, 69
list_for_each_entry() function, 66, 71
list_for_each_entry_safe() function, 66, 71
list_head structure, 65, 85
list_replace() function, 66
list_splice() function, 66
lists

hash lists, 72
linked lists

creating, 65
data structures, initializing, 67
functions, 66
worker thread, 69-71
work submission, 68-69

LKCD (Linux Kernel Crash Dump), 623
LKML (Linux Kernel Mailing List), 4
llseek() function, 136, 246
LM-Sensors, 251
loading modules, 12-14
loadkeys, 218

local_irq_disable() function, 53
local_irq_enable() function, 42, 53
local_irq_restore() function, 53
local_irq_save() function, 53
local area networks (LANs), 440, 466
localtime() function, 38
locks, 46-48
lockups, soft, 166
log command, 627
logical addresses, 50
logical block addressing (LBA), 416
Logical Link Control and Adaptation Protocol 

(L2CAP), 468
long delays, 33-36
loopback devices, 420
loops_per_jiffy variable, 23-24, 36, 52
low-speed USB, 314
low-voltage differential signaling (LVDS), 357
low memory, 21
Low Pin Count (LPC) bus, 520
lp.c driver, 146
lp_write() function, 146
LPC (Low Pin Count) bus, 520
lseek() function, 136
lsmod command, 12
lspci command, 281-285
lsvpd utility, 638
LTP (Linux Test Project), 596, 638
LTT (Linux Trace Toolkit), 634-637

components, 634-635
events, 635
LTTng, 637
LTTV (Linux Trace Toolkit Viewer), 637
trace dumps, 636-637

LTTng, 637
LTTV (Linux Trace Toolkit Viewer), 637
LVDS (low-voltage differential signaling), 357
lwn.net, 5
lxr command, 9

M
MAC (Media Access Control) addresses, 443
macros. See specific macros
Madplay, 397, 562
mailboxes (RapidIO), 592
mailing lists, 4-5, 274
maintenance

build scripts, 645-647
change markers, 642-643
checksum consistency, 643-645
code portability, 647-648
coding styles, 642
version control, 643
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major numbers (char drivers), 120
make command, 11
MAN (metropolitan area network), 500
map_info structure, 509, 525
map drivers

defi nition, 504-505
MTD partition maps, creating, 506-507
probe method, 510-511
registering, 508-509

mapping memory, 562
maps, system memory map

copying, 664-665
obtaining, 663

markers, clean, 514
MASM (Microsoft Macro Assembler), 654
mass storage devices (USB), 339-345
Master Boot Record (MBR), 534
Master In Slave Out (MISO), 252
Master Out Slave In (MOSI), 252
masters (DMA), 288
maximum transmission unit (MTU), 301, 447
mb() function, 114
MBEs (multibit errors), 578
MBR (Master Boot Record), 534
MCA (Micro-Channel Architecture), 588
MCH (Memory Controller Hub), 357
md command, 600
mdelay() function, 36
media_changed() method, 430
Media Access Control (MAC) addresses, 443
Media Independent Interface (MII), 457
mem char device, 159
MEMERASE command, 522
MEMLOCK command, 522
memory

accessing from user space, 562-564
allocating, 49-51
cache misses, counting, 632-633
claiming/freeing, 182
CMOS (complementary metal oxide 

semiconductor), 37
DMA (Direct Memory Access), 50. See also 

Ethernet-Modem card example
buffers, 289
consistent DMA access methods, 290-291
definition, 288
IOMMU (I/O memory management unit), 290
masters, 288
scatter-gather, 290
streaming DMA access methods, 291-292
synchronous versus asynchronous, 289

embedded Linux memory layout, 535-536
FIFO (fi rst-in fi rst-out) memory, 179

fl ash memory
CFI-compliant flash, querying, 512
definition, 504
embedded drivers, 538-544
NAND, 504
NOR, 504
sectors, 504

high memory, 21
initrd memory, 25-26
low memory, 21
mapping, 562
memory barriers, 114
memory zones, 49
MTD (Memory Technology Devices)

flash memory, 504
illustration of Linux-MTD subsystem, 505
map drivers, 505-511
MTD core, 505
NAND drivers, 505
NOR Chip drivers, 505
overview, 504
partition maps, creating, 506-507
User Modules, 505

pages, 49
system memory map

copying, 664-665
obtaining, 663

zero page, 662
ZONE_DMA, 50
ZONE_HIGH, 50
ZONE_NORMAL, 50

memory.c file, 662
memory banks (EEPROM), 238
Memory Controller Hub (MCH), 357
memory_cs Card Services driver, 272
Memory Technology Devices. See MTD
memory zones, 49
MEMUNLOCK command, 522
memwalkd() function, 614
methods. See specific methods
metropolitan area network (MAN), 500
mice

Bluetooth mice, 226
PS/2 mouse, 221
roller mouse device example, 221-223
touchpads, 224-226
trackpoints, 223
USB mice, 226
virtual mouse device example

gpm (general-purpose mouse), 210-211
vms.c input driver, 212-215

Micro-Channel Architecture (MCA), 588
microcode download, 111-112
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microdrives, 272
Microsoft Macro Assembler (MASM), 654
middleware, 547
MII (Media Independent Interface), 457
million instructions per second (MIPS), 24
MIMO (Multiple In Multiple Out), 500
minicom, 179
Mini PCI, 278-280
minor numbers (char drivers), 120
MIPS (million instructions per second), 24
mirroring disks, 419
misc_deregister() function, 169
misc_register() function, 108, 160, 169
Miscdevice structure, 168
misc (miscellaneous) drivers, 160. See also

watchdog timer
MISO (Master In Slave Out), 252
mixers, 393
mkinitramfs command, 26
mkinitrd command, 26
mktime() function, 38
mlockall() function, 556, 574
-mm patch, 4
mmap() function, 135, 562-564, 574
mmapping, 562
MMC (MultiMediaCard), 419
mm directory, 9
mod_timer() function, 35, 53
modem functions

probing, 299-300
registering, 296-297

modes
kernel mode, 30
protected mode, 18
real mode, 18
user mode, 30

modinfo command, 13
modprobe command, 12-13
MODULE_DEVICE_TABLE() macro, 264, 294, 327
modules

autoloading, 112-113
edac_mc, 578
loading, 12-14

Molnar, Ingo, 4
Morton, Andrew, 4
MOSI (Master In Slave Out), 252
most significant bit (MSB), 24
mouse_poll() function, 141-142
mousedev, 221
Moving Picture Experts Group (MPEG), 543, 562
MP3 player example

ALSA driver code listing, 403-409
ALSA programming, 409-411

codec_write_reg() function, 402
MP3 decoding complexity, 411
mycard_audio_probe() function, 399
mycard_audio_remove() functions, 399
mycard_hw_params() function, 402
mycard_pb_prepare() function, 401
mycard_pb_trigger() function, 401
mycard_playback_open() function, 401
overview, 396
register layout of audio hardware, 398
snd_card_free() function, 399
snd_card_new() function, 399
snd_card_proc_new() function, 403
snd_card_register() function, 402
snd_ctl_add() function, 402
snd_ctl_new1() function, 402
snd_device_new() function, 400
snd_kcontrol structure, 402
snd_pcm_hardware structure, 401
snd_pcm_lib_malloc_pages() function, 402
snd_pcm_lib_preallocate_pages_for_all() 

function, 402
snd_pcm_new() function, 400
snd_pcm_ops structure, 400
snd_pcm_set_ops() function, 400-401
user programs, 397

MPC8540 (Freescale), 592
MPEG (Moving Picture Experts Group), 543, 562
MPLS (Multiprotocol Label Switching), 459
MPoA (Multi Protocol over ATM), 459
MSB (most significant bit), 24
msleep() function, 34
msync() function, 574
MTD (Memory Technology Devices)

confi guration, 519-520
data structures, 525
debugging, 524
fl ash memory, 504
FWH (Firmware Hub), 520-524
illustration of Linux-MTD subsystem, 505
kernel programming interfaces, 525
map drivers

definition, 504-505
MTD partition maps, creating, 506-507
overview, 506
probe method, 510-511
registering, 508-509

MTD core, 505
NAND chip drivers

block size, 513
configuring, 513
definition, 505
layout, 515
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NAND flash controllers, 513
OOB (out-of-band) information, 514-515
page size, 513
spare area, 514

NOR chip drivers
definition, 505
querying CFI-compliant flash, 511-512

partition maps, creating, 506-507
sources, 524-525
User Modules

block device emulation, 516
char device emulation, 517
definition, 505
JFFS (Journaling Flash File System), 517
MTD-utils, 518-519
overview, 516
YAFFS (Yet Another Flash File System), 518

XIP (eXecute In Place), 520
mtd_info structure, 525
mtd_partition structure, 506-507, 525
MTD-utils, 518-519
mtdblock driver, 516
mtdchar driver, 516
MTU (maximum transmission unit), 301, 447
multibit errors (MBEs), 578
MultiMediaCard (MMC), 419
multimeters, 549
Multiple In Multiple Out (MIMO), 500
Multiprotocol Label Switching (MPLS), 459
Multi Protocol over ATM (MPoA), 459
munmap() function, 574
mutex_init() function, 53
mutex_lock() function, 53
mutex_unlock() function, 54
mutexes, 39-45, 52
mutual exclusion (mutexes), 39-45
my_dev_event_handler() function, 76
my_device_xmit() function, 306
my_die_event_handler() function, 75
my_noti_chain structure, 76
my_release() function, 81
myblkdev_init() function, 427-430
myblkdev_ioctl() function, 431
myblkdev_request() function, 432-434
myblkdev storage controller

block device operations, 430-431
disk access, 432-434
initialization, 427-430
overview, 426-427
register layout, 427

mycard_audio_probe() function, 399
mycard_audio_remove() function, 399
mycard_change_mtu() function, 447

mycard_get_eeprom() function, 447
mycard_get_stats() function, 446
mycard_hw_params() function, 402
mycard_pb_prepare() function, 401
mycard_pb_trigger() function, 401
mycard_pb_vol_info() function, 411
mycard_playback_open() function, 401
mydrv.c file, 610-611
mydrv_dev structure, 160
mydrv_init() function, 67
mydrv_worker() function, 70-71
mydrv_workitem structure, 69
mydrv_wq structure, 66-67
myevent_id structure, 61
myevent_waitqueue structure, 61
myrtc_attach() function, 248
myrtc_gettime() function, 250

N
N_TCH line discipline, 197-198, 227
n_touch_chars_in_buffer() function, 197
n_touch_open() function, 197
n_touch_receive_buf() function, 198-202
n_touch_receive_room() function, 197
n_touch_write() function, 197
n_touch_write_wakeup() function, 197
nand_ecclayout structure, 514, 525
nand_flash_ids[] table, 513
NAND chip drivers

block size, 513
confi guring, 513
defi nition, 505
layout, 515
NAND fl ash controllers, 513
OOB (out-of-band) information, 514-515
page size, 513
spare area, 514

NAND File Translation Layer (NFTL), 516
NAND flash controllers, 513
NAND flash memory, 504
NAND storage, 538
nanosleep() function, 37
NAPI (New API), 444, 448-449
NASM (Netwide Assembler), 654
navigation

frame buffer drivers, 365-367
accelerated methods, 372
color modes, 370-371
contrast and backlight, 373-380
data structures, 367-368
DMA, 372-373
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parameters, 369-370
screen blanking, 371-372

source tree layout, 9-10
NCP (Network Control Protocol), 497
ndelay() function, 36
net_device_stats structure, 445-446, 462
net_device method, 444
net device notification, 75
net_device structure, 462

activation, 444
bus-specifi c methods, 448
confi guration, 446-447
data transfer, 444
overview, 443
statistics, 445-446
watchdog timeout, 445

net directory, 9
netdev_chain structure, 76
netif_device_attach() function, 463
netif_device_detach() function, 463
netif_queue_stopped() function, 449, 463
netif_receive_skb() function, 463
netif_rx() function, 441, 448, 463
netif_rx_complete() function, 449, 463
netif_rx_schedule() function, 463
netif_rx_schedule_prep() function, 463
netif_start_queue() function, 449, 463
netif_stop_queue() function, 449, 463
netif_wake_queue() function, 449, 463
Netlink sockets, 25
netperf, 459
Netrom, 590
Netwide Assembler (NASM), 654
Network Control Protocol (NCP), 497
Network File System (NFS), 58
network interface cards. See NICs
networks

Bluetooth, 475-501, 476, 477
Infrared, 486-487
LANs (local area networks), 440
network functions

probing, 298-299
registering, 294-295

NICs (network interface cards). See NICs
throughput

driver performance, 459-460
overview, 459
protocol performance, 461

New API (NAPI), 444
new device checklist, 650-651
next() function, 674
NFS (Network File System), 58, 544-546
nfs_unlock_request() function, 644

nfsd kernel thread, 58
NFTL (NAND File Translation Layer), 516
nice values, 554
NICs (network interface cards)

activation, 444
ATM (asynchronous transfer mode), 458-459
buffer management, 450
concurrency control, 450
confi guration, 446-447
data structures, 440-462
data transfer, 444
Ethernet NIC driver, 451-457
ISA NICs, 457-458
MTU size, changing, 447
net device interface. See net_device structure
network throughput

driver performance, 459-460
overview, 459
protocol performance, 461

overview, 440
protocol layers

flow control, 449-459
receive path, 448-449
transmit path, 449

socket buffers, 441-442
sources, 461-463
statistics, 445-446
summary of kernel programming interfaces, 463
watchdog timeout, 445

Noop, 27, 423
NOR chip drivers

defi nition, 505
querying CFI-compliant fl ash, 511-512

NOR flash memory, 504
North Bridge, 357
notebooks, 584
notifications

CPU frequency notifi cation, 75
die notifi cation, 74
Internet address notifi cation, 75
net device notifi cation, 75
notifi er chains, 74-78

notifier_block structure, 85
notifier chains, 74-78
null sink, 158
NVRAM drivers, updating with seq files, 677-679

O
O(1) scheduler, 553-555
OBEX (OBject EXchange), 480
objdump command, 613
OBject EXchange (OBEX), 480
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objects, kobjects, 106-110
obtaining system memory map, 663
OEMs (original equipment manufacturers), 494
off-the-shelf (OTS) modules, 466
OHCI (Open Host Controller Interface), 315
ohci1394 driver, 589
On-The-Go (OTG) controllers, 312
ondemand governor, 583
OOB (out-of-band) information, 514-515
opcontrol, 630
open() method

block drivers, 430
CMOS driver, 127-129
EEPROM driver, 241
net_device structure, 444

open_softirq() function, 116
Open Host Controller Interface (OHCI), 315
opening

CMOS driver, 127-129
EEPROM driver, 241
touch controllers, 197-206

Open Sound System (OSS), 394
Open Source Development Lab (OSDL), 6
Open Systems Interconnect (OSI), 468
operators, atomic, 45-46
opreport, 631
OProfile, 596, 629-633

cache misses, counting, 632-633
opcontrol, 630
opreport, 631

oprofiled daemon, 629
original equipment manufacturers (OEMs), 494
OS-specific modules (OSMs), 589
oscilloscopes, 548
OSDL (Open Source Development Lab), 6
OSI (Open System Connect), 468
OSMs (OS-specific modules), 589
OSS (Open Sound System), 394
OTG (On-The-Go) controllers, 312
out-of-band (OOB) information, 514-515
outb() function, 169, 574, 648
outl() function, 169, 574
outsl() function, 169
outsn() function, 169
output events (input device drivers), 228-230
outw() function, 169, 574

P
packages

alsa-utils, 395
kexec-tools, 620
MTD-utils, 518-519

pcmcia-cs, 260
pcmciautils, 260-261
sysfsutils, 638

pages (memory), 49
PAN (personal area network), 475
Parallel ATA (PATA), 417
parallel port communication, 145-146
parallel port LED boards, 146-156

controlling from user space, 561
controlling with sysfs, 151-156
led.c driver, 147-150

parallel printer drivers, 146
Pardevice structure, 168
parport, 145-146
parport_claim_or_block() function, 169
parport_read_data() function, 169
parport_register_device() function, 150, 169
parport_register_driver() function, 150, 169
parport_release() function, 169
parport_unregister_device() function, 169
parport_unregister_driver() function, 169
parport_write_data() function, 169
partitions

MTD partition maps, creating, 506-507
swap space, 29

PATA (Parallel ATA), 417
patches

applying, 7
CONFIG_PREEMPT_RT patch-set, 44
creating, 7
defi nition, 4
kernel.org repository, 4

patch utility, 7
PC-compatible system hardware block diagram, 91
PCBs (printed circuit boards), 549
pccardctl command, 261
pccardd thread, 263
PC Cards, 258
PC keyboards, 217-219
PCI (Peripheral Component Interconnect)

accessing PCI regions
configuration space, 285-286
I/O and memory regions, 286-288

addressing and identifi cation, 281-285
CardBus, 278, 280
compared to USB, 316
data structures, 309
debugging, 308
defi nition, 278
DMA (Direct Memory Access)

buffers, 289
consistent DMA access methods, 290-291
definition, 288
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descriptors and buffers, 302-304
IOMMU (I/O memory management unit), 290
masters, 288
scatter-gather, 290
streaming DMA access methods, 291-292
synchronous versus asynchronous, 289

Ethernet-Modem card example, 292-293
data transfer, 301-308
modem functions, probing, 299-300
modem functions, registering, 296-297
MODULE_DEVICE_TABLE() macro, 294
network functions, probing, 298-299
network functions, registering, 294-295
PCI_DEVICE() macro, 293
pci_device_id structures, 293

Express Cards, 279-280
kernel programming interfaces, 309-310
Mini PCI, 278-280
PCI-based solutions, 279
PCI Express, 278-280
PCI Express Mini Card, 280
PCI Extended (PCI-X), 278-280
PCI inside South Bridge system, 280-281
resources, confi guring, 27
serial communication, 279
sources, 308-310

pci_alloc_consistent() function, 290, 309
PCI_DEVICE() macro, 293, 327
pci_device_id structure, 293, 309, 325
pci_dev structure, 285, 309
pci_disable_device() function, 310
pci_dma_sync_sg() function, 310
pci_dma_sync_single() function, 310
pci_driver structure, 309
pci_enable_device() function, 310
PCI Express, 258, 278-280
PCI Express Mini Card, 280
PCI Extended (PCI-X), 278-280
pci_free_consistent() function, 310
pci_iomap() function, 288, 309
pci_map_page() function, 435
pci_map_sg() function, 291, 310
pci_map_single() function, 291-292, 310
pci_read_config_byte() function, 285-286, 309
pci_read_config_dword() function, 285, 309
pci_read_config_word() function, 285-286, 309
pci_register_driver() function, 294-295, 310
pci_request_region() function, 287, 309
pci_resource_end() function, 286, 309
pci_resource_flags() function, 286, 309
pci_resource_len() function, 286, 309
pci_resource_start() function, 286, 309
pci_set_dma_mask() function, 309

pci_set_master() function, 310
pci_unmap_sg() function, 310
pci_unmap_single() function, 310
pci_unregister_driver() function, 310
pci_write_config_byte() function, 285, 309
pci_write_config_dword() function, 285-286, 309
pci_write_config_word() function, 285, 309
PCI-X (PCI Extended), 278-280
PCIe (PCI Express), 278-280
PCM (pulse code modulation), 393
PCMCIA (Personal Computer Memory Card 

International Association)
Attribute memory, 263
CardBus devices, 258
Card Services, 263
CIS (Card Information Structure), 263
client drivers, registering, 267-270
Common memory, 263
data-fl ow path between components, 271-272
data structures

cisparse_t, 266
cistpl_cftable_entry_t, 266
pcmcia_device, 265
pcmcia_device_id, 264
pcmcia_driver structure, 265
summary of, 275
tuple_t, 266

debugging, 273-274
defi nition, 258
device IDs and hotplug methods, 265
Driver Services, 263-264
driver services module (ds), 261
embedded drivers, 540
ExpressCards, 258
kernel programming interfaces, 275
Linux-PCMCIA subsystem interaction, 260-262
mailing list, 274
on embedded systems, 259
on laptops, 259
pcmciautils package, 260-261
serial PCMCIA, 272-273
sources, 275
storage, 272
udev, 260

pcmcia-cs package, 260
pcmcia_device_id structure, 264, 275
PCMCIA_DEVICE_MANF_CARD() macro, 264
pcmcia_device structure, 265, 275
pcmcia_driver structure, 265, 275
pcmcia_get_first_tuple() function, 275
pcmcia_get_tuple_data() function, 275
pcmcia_parse_tuple() function, 275
pcmcia_register_driver() function, 271, 275



Index 705

pcmcia_request_irq() function, 275
pcmcia_unregister_driver() function, 275
pcmciautils package, 260-261
pcspkr_event() function, 230
pda_mtd_probe() function, 509-511
pdflush kernel thread, 58
Pentium TSC (Time Stamp Counter), 36-37
percent sign (%), 655-656
performance

network throughput
driver performance, 459-460
overview, 459
protocol performance, 461

performance governor, 583
Peripheral Component Interconnect. See PCI
peripherals

choosing, 530-531
peripheral controllers, 349

permanent virtual circuits (PVCs), 458
personal area network (PAN), 475
personal identification numbers (PINs), 477
PHY (physical layer) transceivers, 457
PIBS bootloader, 534
Pico-IrDA, 547
PINs (personal identification numbers), 477
PIO (programmed I/O), 460
pipes, 321, 352
placement plots, 549
platform_add_devices() function, 180, 206
platform_device_register() function, 180
platform_device_register_simple() function, 180-181, 

206, 232
platform_device_unregister() function, 206, 232
platform_device register() function, 206
platform_device structure, 180, 205
platform_driver_register() function, 181, 206
platform_driver_unregister() function, 206
platform_driver structure, 181, 205
platform drivers, 180-181
Plug-and-Play (PnP), 588
PMAC (Power Management and Audio 

Component), 254
PnP (Plug-and-Play), 588
PoE (Power over Ethernet), 590
point-of-sale (POS), 529
Point-to-Point Protocol (PPP), 195, 273
pointers, 136-137
poll() method, 141-142, 444, 449
poll_table structure, 141, 168
poll_wait() function, 142, 169
polling in char drivers, 139-142
populating URBs, 320

port_data_in() function, 135
port_data_out() function, 135
portability of code, 647-648
port char device, 159
porting kernels, 537
ports

kgdb ports, 604
parallel port communication, 145-146
parallel port LED board, 146-156

controlling with sysfs, 151-156
led.c driver, 147-150

serial ports, 172
USB_UART ports, 179

POS (point-of-sale), 529
post-handlers (kprobes), 609
power management, 114-115
Power Management and Audio Component 

(PMAC), 254
Power over Ethernet (PoE), 590
PowerPC bootloaders, 534
powersave governor, 583
ppdev driver, 146, 560
PPP (Point-to-Point Protocol), 195, 273
pppd daemon, 273
pre-handlers (kprobes), 609
preempt_disable() function, 43
preempt_enable() function, 43
preemption counters, 43
preprocessed source code, generating, 10
printed circuit boards (PCBs), 549
printk() function, 380, 615, 656
probe() function, 241-242, 267, 268, 297
probes. See kprobes
probing

EEPROM driver, 241-243
kprobes. See kprobes
network functions, 298-299
telemetry card example, 327-331

processes
contexts, 30-31
init, 28-30
kernel processes. See kernel threads
states, 61-63
zombie processes, 59

process filesystem. See procfs
processors, choosing, 530-531
process scheduling (user mode drivers)

CFS (Completely Fair Scheduler), 555
O(1) scheduler, 553-555
original scheduler, 553
overview, 553
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procfs, 49
documentation, 679
reading with

example, 670-671
large procfs reads, 672-674
seq files, 674-677

profiling
Bluetooth, 468
gprof, 633-634
OProfi le

cache misses, counting, 632-633
opcontrol, 630
opreport, 631

overview, 629
programmed I/O (PIO), 460
protected mode, 18, 665-666
PS/2 mouse, 221
ps command, 57-58
pseudo char drivers, 157-159
pseudo terminals (PTYs), 194
psmouse_protocol structure, 224, 231
psmouse structure, 231
PTR_ERR() function, 84
ptrace utility, 637
pty.c driver, 194
PTYs (pseudo terminals), 194
public domain software, 3
pulse code modulation (PCM), 393
pulse-width modulator (PWM) units, 543-544
PVCs (permanent virtual circuits), 458
PWM (pulse-width modulator) units, 543-544

Q
QoS (quality of service), 458
Qtronix infrared keyboard driver, 166
quality of service (QoS), 458
Quarter VGA (QVGA), 356
queries, CFI-compliant flash, 511-512
queues

active queues, 554
expired queues, 554
overview, 61-63
run queues, 554
work queues, 58, 72-74, 103

QVGA (Quarter VGA), 356

R
race conditions, 48
radio

amateur radio, 590
RF (Radio Frequency) chips, 252

RFCOMM (Radio Frequency Communication), 468
RFID (Radio Frequency Identifi cation) 

transmitters, 246
RAID (redundant array of inexpensive disks), 419-420
raise_softirq() function, 101, 116
random char device, 158
random number generator, 158
RapidIO

Fibre Channel, 592-593
iSCSI (Internet SCSI), 593

RAS (reliability, availability, serviceability), 596
rc.sysinit file, 29
RCU (Read-Copy Update), 47
RDMA (Remote DMA), 592
rdtsc() function, 53
read() method, 129-135
READ_CAPACITY command, 565-567
Read-Copy Update (RCU), 47
read_lock() function, 54
read_lock_irqrestore() function, 46, 54
read_lock_irqsave() function, 46, 54
read_seqbegin() function, 54
read_seqlock() function, 54
read_seqretry() function, 54
read_sequnlock() function, 54
read_unlock() function, 54
reader-writer locks, 46-48
reading data

CMOS driver, 129-135
with procfs

example, 670-671
large procfs reads, 672-674
seq files, 674-677

readme_proc() function
arguments, 672
example, 670-671
large procfs reads, 673-674
large proc reads, 672
seq fi les, 674-677

read paths, 198-202
readv() function, 134
real mode, 18, 662-665
real time (-rt) patch, 4, 45
Real Time Clock (RTC), 37-38, 247-250
Real Time Transport Protocol (RTP), 590
receive_buf() function, 198
receive path (NICs), 448-449
receptacles (USB), 313
RedBoot, 511, 534
redundant array of inexpensive disks (RAID), 419-420
reference designators, 549
register_blkdev() function, 427, 438
register_chrdev() function, 126
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register_die_notifier() function, 86
register_inetaddr_notifier() function, 86
register_jprobes() function, 617
register_kretprobes() function, 619
register_netdev() function, 443, 463
register_netdevice_notifier() function, 86
registered protocol families, 25
registering

jprobe handlers, 615-616
kprobe handlers, 611-612
map drivers, 508-509
modem functions, 296-297
network functions, 294-295
PCMCIA client drivers, 267-270
platform drivers, 181
return probe handlers, 617-619
UART drivers, 178
user mode helpers, 64

register layout
audio hardware, 398
char drivers, 122
myblkdev storage controller, 427
USB_UART, 180

release() method, 79, 127-129
release_firmware() function, 112
release_region() function, 127, 169
reliability, availability, serviceability (RAS), 596
Remote DMA (RDMA), 592
remove() function, 267
remove_wait_queue() function, 62, 86
reporting (ECC). See ECC reporting
request() method, 432-434
request_firmware() function, 111, 443
request_irq() function, 95-96, 116, 253, 444
request_mem_region() function, 287, 509
request_queue structure, 424, 437
request_region() function, 127, 169, 287
requests, interrupt. See IRQs (interrupt requests)
request structure, 424, 437
Request To Send (RTS), 191
response times (user mode drivers), 555-558
resume() function, 586
return probes (kretprobes), 617-619
RF (Radio Frequency) chips, 252
RFCOMM (Radio Frequency Communication), 

468, 473-501
RFID (Radio Frequency Identification) 

transmitters, 246
rjcomm.ko, 469
rmb() function, 114
rmmod command, 12
roller_analyze() function, 100-101
roller_capture() function, 100-101

roller_interrupt() function, 97-99
roller mouse device example, 221-223
roller_mouse_init() function, 221
roller wheel device example, 94-99

edge sensitivity, 96
free_irq() function, 96
overview, 94-95
request_irq() function, 95-96
roller interrupt handler, 97-99
softirqs, 100-101
tasklets, 101-102
wave forms generated by, 95

rootfs
compact middleware, 546-547
NFS-mounted root, 544-546
obtaining, 26
overview, 544

root hubs, 315
Rose, 590
rq_for_each_bio() function, 435, 438
RS-485, 191
rs_open() function, 599
–rt (real time) patch, 4, 45
RTC (Real Time Clock), 37-38, 156-157, 247-250, 541
rtc.c driver, 157
rtc_class_ops structure, 157, 168
rtc_device_register() function, 157, 169
rtc_device_unregister() function, 157, 169
rtc_interrupt() function, 625
RTP (Real Time Transport Protocol), 590
RTS (Request To Send), 191
run_umode_handler() function, 63
runltp script, 638
running state (threads), 62
run queues, 554
rwlock_t structure, 52

S
SAMPLING_RATE_REGISTER, 398
SANs (storage area networks), 591
SAP (SIM Access Profile), 478
SAS (Serial Attached SCSI), 418
SATA (Serial ATA), 417
SBEs (single-bit errors), 578
SBP2 (Serial Bus Protocol 2), 589
scatter-gather, 290
Scatterlist structure, 309
sched_getparam() function, 574
sched_param structure, 574
sched_setscheduler() function, 555-556, 574
schedule() function, 86
schedule_timeout() function, 34, 53, 93
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schedulers, I/O, 422-423
scheduling processes. See process scheduling
SCIs (system control interrupts), 585
SCLK (Serial CLocK), 235, 252
SCO (Synchronous Connection Oriented), 469
sco.ko, 469
screen blanking, 371-372
scripts

build scripts, 645-647
runltp, 638
scripts directory, 9
sensors-detect, 251

SCSI (Small Computer System Interface), 339, 418
scsi_add_host() function, 343
SCSI Generic (sg), 565-567
SD (Secure Digital) cards, 419
SD/MMC, 540
SDA (Serial Data), 235
SDP (Service Discovery Protocol), 468
SECTOR_COUNT_REGISTER, 427
SECTOR_NUMBER_REGISTER, 427
sectors, 427, 504
Secure Digital (SD) cards, 419
security directory, 9
SEEK_CUR command, 136
SEEK_END command, 136
SEEK_SET command, 136
seek operation (CMOS driver), 136-137
seek times, 422
select() method, 140
Self-Monitoring, Analysis, and Reporting 

Technology (SMART), 436
semaphore structure, 41, 52
sensing data availability (char drivers)

fasync() function, 142-145
overview, 139
select()/poll() mechanism, 139-142

sensors-detect script, 251
seq files

advantages, 670-677
documentation, 679
large procfs reads, 674-677
NVRAM drivers, updating, 677-679
overview, 670

seqlocks, 47
sequence locks, 47
serial_cs Card Services driver, 273
serial8250_register_port() function, 178
Serial ATA (SATA), 417
Serial Attached SCSI (SAS), 418
Serial Bus Protocol 2 (SBP2), 589
Serial CLocK (SCLK), 235, 252
serial communication, 279

Serial Data (SDA), 235
serial drivers

cell phone device example
claiming/freeing memory, 182
CPLD (Complex Programmable Logic Device), 179
overview, 178
platform drivers, 180-181
SoC (System-on-Chip), 178
USB_UART driver, 183-191
USB_UART ports, 179
USB_UART register layout, 180

data structures, 205
layered architecture, 173-176
line disciplines (touch controller device example)

changing, 204
compiling, 204
connection diagram, 195
flushing data, 203
I/O Control, 203
open/close operations, 196
opening, 197-206
overview, 194-195
read paths, 198-202
unregistering, 204
write paths, 202-203

overview, 172
sources, 205-206
summary of kernel programming interfaces, 206
TTY drivers, 192-194
UART drivers

registering, 178
uart_driver structure, 176
uart_ops structure, 177-178
uart_port structure, 177

Serial Line Internet Protocol (SLIP), 195
serial PCMCIA, 272-273
Serial Peripheral Interface (SPI), 227, 251-254
serial ports, 172
serio, 217
serio_register_port() function, 217
serport, 227
Service Discovery Protocol (SDP), 468
service set identifiers (SSIDs), 490
Session Initiation Protocol (SIP), 590
set_bit() function, 54
set_capacity() function, 428, 438
set_current_state() function, 62, 86
set_termios() function, 203
set-top box (STB), 543
setitimer() function, 35
sg (SCSI Generic), 565-567
SG_IO command, 565
sg_io_hdr_t structure, 565, 574
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sg3_utils package, 567
short delays, 36
showkey utility, 218
SIG (Bluetooth Special Interest Group), 478
sigaction() function, 144
signal_pending() function, 59, 86
SIGs (Special Interest Groups), 5
silk screens, 549
SIM Access Profile (SAP), 478
simple_map_init() function, 525
simple_map_write() function, 510
simulating mouse movements, 211-212
single-bit errors (SBEs), 578
single_open() function, 677
SIP (Session Initiation Protocol), 590
sk_buff structure, 309, 441-442, 462
skb_clone() function, 442, 463
skb_put() function, 441, 463
skb_release_data() function, 45
skb_reserve() function, 441-442, 463
skbuff_clone() function, 45
slave addresses, 235
slaves, 234
SLIP (Serial Line Internet Protocol), 195
SLOF bootloader, 534
Small Computer System Interface (SCSI), 339, 418
SMART (Self-Monitoring, Analysis, and Reporting 

Technology), 436
SMBus. See also I2C

data access functions, 244
defi nition, 234
overview, 234

SMIs (system management interrupts), 585
SMP (Symmetric Multi Processing), 39, 57
snd_ac97_codec module, 395
snd_card_free() function, 399, 413
snd_card_new() function, 399, 413
snd_card_proc_new() function, 403, 413
snd_card_register() function, 402, 413
snd_card structure, 413
snd_ctl_add() function, 402, 413
snd_ctl_elem_id_set_interface() function, 410
snd_ctl_elem_id_set_numid() function, 410
snd_ctl_elem_info structure, 410
snd_ctl_elem_write() function, 411
snd_ctl_new1() function, 402, 413
snd_ctl_open() function, 410
snd_device_new() function, 400
snd_intel8x0 driver, 395
snd_kcontrol_new structure, 413
snd_kcontrol structure, 402
snd_pcm_hardware structure, 401
snd_pcm_lib_malloc_pages() function, 402, 413

snd_pcm_lib_preallocate_pages_for_all() 
function, 402, 413

snd_pcm_new() function, 400, 413
snd_pcm_ops structure, 400, 413
snd_pcm_runtime structure, 413
snd_pcm_set_ops() function, 400-401, 413
snd_pcm_substream structure, 413
snd_pcm structure, 413
SoC (System-on-Chip), 178
sockets, 260

buffers, 441-442
Netlink sockets, 25
UNIX-domain sockets, 25

softdogs, 164-166
softirqs, 99-103

compared to tasklets, 100
defi nition, 100
ksoftirqd/0 kernel thread, 57

softlockup_tick() function, 628
soft lockups, 166
software RAID, 420
sound. See audio
sources

audio drivers, 412-413
block drivers, 437-438
char drivers, 167-169
input drivers, 231
Inter-Integrated Circuit Protocol, 255-256
kdump, 629
kernels, 85-87
kexec, 629
kprobes, 620
MTD, 524, 525
NICs (network interface cards), 461-463
PCI, 308-310
PCMCIA, 275
serial drivers, 205-206
source tree layout, 6-10
USB (universal serial bus), 351-353
user mode drivers, 574-575

source tree layout
directories, 8-9
navigating, 9-10

South Bridge system, 280-281
spaces (ACPI), 585
spare area (NAND chip drivers), 514
Special Interest Groups (SIGs), 5
speeds (USB), 314
SPI (Serial Peripheral Interface), 227, 251-254
spi_asaync() function, 252
spi_async() function, 253, 256
spi_butterfly driver, 253
spi_device structure, 252, 255
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spi_driver structure, 255
spi_message_add_tail() functions, 256
spi_message_init() functions, 256
spi_message structure, 255
spi_register_driver() function, 253, 256
spi_sync() function, 252, 256
spi_transfer structure, 255
spi_unregister_driver() function, 256
spin_lock() function, 44, 53, 628
spin_lock_bh() function, 44
spin_lock_init() function, 628
spin_lock_irqsave() function, 53
spin_unlock() function, 44, 53
spin_unlock_bh() function, 44
spin_unlock_irqsave() function, 53
spinlock_t structure, 52
spinlocks, 39-45
SSID (service set identifier), 490
ssize_t aio_read() function, 135
ssize_t aio_write() function, 135
start() function, 674
start_kernel() function, 10, 18
start_tx() function, 182
states of kernel threads, 61-63
STATUS_REGISTER, 398, 427
STB (set-top box), 543
stop() function, 675
stopped state (threads), 62
storage area networks (SANs), 591
storage controller. See myblkdev storage controller
storage_probe() function, 343
storage technologies

ATAPI (ATA Packet Interface), 416
IDE (Integrated Drive Electronics), 416
libATA, 417-418
MMC (MultiMediaCard), 419
PCMCIA/CF, 272
RAID (redundant array of inexpensive disks), 419
SATA (Serial ATA), 417
SCSI (Small Computer System Interface), 418
SD (Secure Digital) cards, 419
summary of, 419-420

strace utility, 637
streaming DMA access methods, 291-292
struct e820map, 664
structures. See specific structures
submit_work() function, 68-69
submitting

URBs for data transfer, 320
work to be executed later, 68-69

subversion, 643
Super I/O chips, 482-483
Super Video Graphics Array (SVGA), 356

suspend() function, 586
SVCs (switched virtual circuits), 458
SVGA (Super Video Graphics Array), 356
SVGAlib, 562
swap space, 29
switched virtual circuits (SVCs), 458
Symmetric Multi Processing (SMP), 39, 57
synaptics_init() function, 224
synaptics_process_byte() functions, 224
synchronization

completion functions, 79-80
kthread helpers, 81-83
SCO (Synchronous Connection Oriented), 469
synchronous DMA, 289
synchronous interrupts, 94

/sys/devices/system/edac/ directory, 578
sysdiag utility, 638
sysfs, 106-110, 151-156
sysfs_create_dir() function, 117
sysfs_create_file() function, 117
sysfs_create_group() function, 232
sysfs_remove_group() function, 232
sysfsutils package, 638
SYSLINUX, 535
syslog() function, 656-657
System-on-Chip (SoC), 178
system control interrupts (SCIs), 585
System Management Bus. See SMBus
system management interrupts (SMIs), 585
system memory map

copying, 664-665
obtaining, 663

SystemTap, 619

T
tables, nand_flash_ids[], 513
tail field (sk_buff structure), 441
TASK_INTERRUPTIBLE state, 62
TASK_RUNNING state, 62
TASK_STOPPED state, 62
TASK_TRACED state, 62
TASK_UNINTERRUPTIBLE state, 62
tasklet_disable() function, 102, 116
tasklet_disable_nosync() function, 102, 116
tasklet_enable() function, 102, 116
tasklet_init() function, 102, 116
tasklet_schedule() function, 102, 116
tasklet_struct structure, 115
tasklets, 99-103
tele_device_t structure, 328
tele_disconnect() function, 331
tele_open() function, 332-335
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tele_probe() function, 328-330
tele_read() function, 335-338
tele_write() function, 335-338
tele_write_callback() function, 336-338
telemetry card example, 324-325

data transfer, 335-338
driver initialization, 326-327
pci_device_id structure, 325
probing and disconnecting, 327-331
register access, 332-335
register space, 325

templates, libusb programming template, 570-571
test_and_set_bit() function, 54
test_bit() function, 54
testing

LTP (Linux Test Project), 638
test equipment, 640
test infrastructure, 548

TFT (Thin Film Transistor), 357
TFTP embedded devices, 545-546
Thin Film Transistor (TFT), 357
threads. See kernel threads
throughput

driver performance, 459-460
overview, 459
protocol performance, 461

Thttpd, 547
time() function, 38
time_after() function, 53
time_after_eq() function, 53
time_before() function, 53
time_before_eq() function, 53
timer_func() functions, 35
timer_list structure, 52
timer_pending() function, 35, 53
timers

HZ, 31-33
jiffi es, 31-33
long delays, 33-36
overview, 31
RTC (Real Time Clock), 37-38
short delays, 36
TSC (Time Stamp Counter), 36-37
watchdog timer, 160-166

Time Stamp Counter (TSC), 36-37, 556
timeval structure, 52
TinyTP (Tiny Transport Protocol), 480
TinyX, 547
tool chains, 531
Torvalds, Linus, 2
touch controller, 227-228

compiling, 204
connection diagram, 195

fl ushing data, 203
I/O Control, 203
open/close operations, 196
opening, 197-206
read paths, 198-202
write paths, 202-203

touchpads, 224-226
touch screens, 541
trace daemon, 636
traced state (threads), 62
tracereader, 635
tracevisualizer, 635-637
tracing

LTT (Linux Trace Toolkit)
components, 634-635
events, 635
LTTng, 637
LTTV (Linux Trace Toolkit 
Viewer), 637
trace dumps, 636-637

overview, 634
trackpoints, 223
transactions (I2C), 237-238
transceivers (USB), 313
transfer. See data transfer
Transistor-Transistor Logic (TTL), 358
transmit paths (NICs), 449
trojan_function() function, 602-605
TROUBLED_DS environmental variable, 64
TSC (Time Stamp Counter), 36-37, 556
tsdev driver, 228
TTL (Transistor-Transistor Logic), 358
tty.c driver, 194
tty_buffer structure, 193, 205
tty_bufhead structure, 193, 205
tty_driver structure, 193, 205
TTY drivers, 192-194
tty_flip_buffer_push() function, 182, 206
tty_flip_buffer structure, 192-193
tty_insert_flip_char() function, 182, 206, 232
tty_ldisc structure, 196, 205
tty_open() function, 617
tty_register_device() function, 194
tty_register_driver() function, 194, 206
tty_register_ldisc() function, 206
tty_struct structure, 192, 205
tty_unregister_driver() function, 206
tty_unregister_ldisc() function, 204-206
TUN/TAP device driver, 462
TUN network driver, 462
tuple_t structure, 266, 275



712 Index

U
U-Boot, 534
uart_add_one_port() function, 178, 181, 206
uart_driver structure, 176, 205
UART (Universal Asynchronous Receiver 

Transmitter) drivers, 172, 539
cell phone device example

claiming/freeing memory, 182
CPLD (Complex Programmable Logic Device), 179
overview, 178
platform drivers, 180-181
SoC (System-on-Chip), 178
USB_UART driver, 183-191
USB_UART ports, 179
USB_UART register layout, 180

registering, 178
RS-485, 191
uart_driver structure, 176
uart_ops structure, 177-178
uart_port structure, 177

uart_ops structure, 177-178, 205
uart_port structure, 177, 205
uart_register_driver() function, 178, 181, 206
uart_unregister_driver() function, 206
UCEs (uncorrectable errors), 578
uClibc, 547
uClinux, 537
UDB

class drivers, 348
debugging, 349-351

udelay() function, 36, 53
udev, 103-106

on embedded devices, 113
PCMCIA, 260

udevmonitor, 113
udevsend, 110
UHCI (Universal Host Controller Interface), 315
UIO (Userspace IO), 573
uIP, 547
UML (User Mode Linux), 638
uncorrectable errors (UCEs), 578
uninterruptible state (threads), 62
Universal Asynchronous Receiver Transmitter. See

UART drivers
Universal Host Controller Interface (UHCI), 315
universal serial bus. See USB
UNIX-domain sockets, 25
unlikely() function, 135, 168
unregister_blkdev() function, 438
unregister_chrdev_region() function, 168
unregister_netdev() function, 463
unregister_netdevice_notifier() function, 76

up() function, 54
up_read() function, 54
up_write() function, 54
updating

BIOS, 522-525
NVRAM drivers, 677-679

urandom char device, 158-159
URBs (USB Request Blocks), 319-321
urb structure, 319-321, 352
USB (universal serial bus)

addressing, 316
Bluetooth, 468, 471-473
bus speeds, 314
class drivers

HIDs (human interface devices), 348
mass storage, 339-345
overview, 338-339
USB-Serial, 345-348

compared to I2C and PCI, 316
data structures

descriptors, 322-323
pipes, 321
tables of, 352
URBs (USB Request Blocks), 319-321
usb_device structure, 318-319

embedded drivers, 540
on embedded systems, 312-314
endpoints, 316
enumeration, 324
gadget drivers, 348-349
host controllers, 315
illustration of Linux-USB subsystem, 318
kernel programming interfaces, table of, 352-353
Linux-USB subsystem architecture, 317
mice, 226
OTG controllers, 315
overview, 312
receptacles, 313
sources, 351-353
telemetry card example, 324-325

data transfer, 335-338
driver initialization, 326-327
pci_device_id structure, 325
probing and disconnecting, 327-331
register access, 332-335
register space, 325

transceivers, 313
transfer types, 315-316
URBs (USB Request Blocks), 319-321
usbfs virtual fi lesystem, 567-571
USB Gadget project, 540
USB-Serial, 345-348

usb-serial.c driver, 194
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usb_[control|interrupt|bulk]_msg() function, 353
usb_[rcv|snd][ctrl|int|bulk|isoc]pipe() 

function, 321, 353
usb_alloc_urb() function, 320, 353
usb_buffer_alloc() function, 353
usb_buffer_free() function, 353
usb_bulk_msg() function, 321
usb_bus structure, 574
usb_close() function, 575
usb_config_descriptor structure, 322, 352
usb_control_msg() function, 335, 353, 575
usb_ctrlrequest structure, 332
usb_deregister() function, 352
usb_deregister_dev() function, 352
usb_dev_handle structure, 574
USB_DEVICE() macro, 327
usb_device_descriptor structure, 322, 352
usb_device_id structure, 352
usb_device structure, 318-319, 352, 574
usb_driver structure, 352
usb_endpoint_descriptor structure, 322, 352
usb_fill_bulk_urb() function, 320, 353
usb_fill_control_urb() function, 320, 333, 353
usb_fill_int_urb() function, 320, 353
usb_find_buses() function, 575
usb_find_devices() function, 575
usb_find_interface() function, 353
usb_free_urb() function, 321, 353
usb_gadget_driver structure, 348, 352
usb_gadget_register_driver() function, 349, 353
usb_get_intfdata() function, 328, 352
usb_init() function, 575
usb_interface_descriptor structure, 322, 352
usb_open() function, 575
usb_register() function, 347, 352
usb_register_dev() function, 352
usb_serial_deregister() function, 353
usb_serial_driver structure, 347
usb_serial_register() function, 347, 353
usb_set_intfdata() function, 328, 352
usb_submit_urb() function, 320-321, 353
usb_tele_init() function, 326
USB_UART, 383-386
USB_UART driver

code listing, 183-191
register layout, 180

USB_UART ports, 179
usb_uart_probe() function, 181
usb_uart_rxint() function, 182
usb_uart_start_tx() function, 182
usb_unlink_urb() function, 321, 353
usbfs virtual filesystem, 341-343, 567-571
USB Gadget project, 540

usbhid driver, 226
usbhid USB client driver, 219
USB keyboards, 219-220
usbmon command, 350
USB Request Blocks (URBs), 319-321
usbserial drivers, 179
user mode drivers, 30

data structures, 574
I/O regions

accessing, 558-561
dumping bytes from, 559

memory regions, accessing, 562-564
parallel port LED boards, controlling, 561
process scheduling

CFS (Completely Fair Scheduler), 555
O(1) scheduler, 553-555
original scheduler, 553
overview, 553

response times, 555-558
sg (SCSI Generic), 565-567
sources, 574-575
UIO (Userspace IO), 573
usbfs virtual fi lesystem, 567-571
user mode I2C, 571-573
user space library functions, 574-575
when to use, 552-553

user mode helpers, 63-65
User Mode Linux (UML), 638
User Modules

block device emulation, 516
char device emulation, 517
defi nition, 505
JFFS (Journaling Flash File System), 517
MTD-utils, 518-519
overview, 516
YAFFS (Yet Another Flash File System), 518

user space drivers. See user mode drivers
userspace governor, 583
Userspace IO (UIO), 573
user space library functions, 574-575
usr directory, 9
UU_READ_DATA_REGISTER, 180
UU_STATUS_REGISTER, 180
UU_WRITE_DATA_REGISTER, 180

V
V2IP (Video-and-Voice over IP), 591
variables

loops_per_jiffy, 23-24, 36, 52
xtime, 38

VCI (virtual circuit identifier), 458
verify checksum command (ioctl), 137
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version control, 643
Very high speed integrated circuit Hardware 

Description Language (VHDL), 542
vesafb (video frame buffer driver), 662
VFS (Virtual File System), 421, 630
vfs_readdir() function, 631
VGA (Video Graphics Array), 356
VHDL (Very high speed integrated circuit Hardware 

Description Language, 542
video

cabling standards, 357
controllers, 361
embedded drivers, 541
VGA (Video Graphics Array), 356
video frame buffer driver. See vesafb

Video-and-Voice over IP (V2IP), 591
video1394 driver, 589
virtual addresses, 50
virtual circuit identifier (VCI), 458
Virtual File System (VFS), 421, 630
virtual mouse device example

gpm (general-purpose mouse), 210
simulating mouse movements, 211-212
vms.c input driver, 212-215

Virtual Network Computing (VNC), 607
virtual path identifier (VPI), 458
virtual terminals (VTs), 194
Vital Product Data (VPD), 517
vmalloc() function, 51, 54
vmlinux kernel image, 622
vms.c application, 212-215
vms_init() function, 215
VNC (Virtual Network Computing), 607
VoIP (Voice over Internet Protocol), 590-591
VOLUME_REGISTER, 398
VPD (Vital Product Data), 517
VPI (virtual path identifier), 458
vt.c driver, 194
VTs (virtual terminals), 194

W
w1 bus, 254
w1_family_ops structure, 254-255
w1_family structure, 254-255
wait_event_timeout() function, 34, 53
wait_for_completion() function, 80, 87
wait_queue_t structure, 85
wait queues. See queues
wake_up_interruptible() function, 62, 86, 142
wall time, 38
watchdog timeout, 445
watchdog timer, 160-166

watchpoints, 597
wd33c93_init() function, 644
wear leveling, 516
WiFi, 466, 489-490, 494-496
WiMax, 500
wireless

trade-offs for, 466-467
WiFi, 466, 489-490, 494-496
Wireless Extensions, 490-494

wmb() function, 114, 304
work, submitting to be executed later, 68-69
work_struct structure, 73, 85
worker thread, 69-71
workqueue_struct structure, 73
work queues, 58, 72-74, 103
write() method, 129-135
write_lock() function, 54
write_lock_irqrestore() function, 47, 54
write_lock_irqsave() function, 46, 54
write_seqlock() function, 46
write_sequnlock() function, 46
write_unlock() function, 54
write_vms() function, 215
write_wakeup() function, 202
writev() function, 134
writing

CMOS driver, 129-135
input event drivers, 216

X
x86 bootloaders, 534-535
xf86SIGIO() function, 144
Xf86WaitForInput() function, 140
XGA (eXtended Graphics Array), 356
XIP (eXecute In Place), 520
xtime variable, 38
X Windows, 562

Y-Z
YAFFS (Yet Another Flash File System), 518

zero-page.txt file, 662
zero char device, 158
zero page, 662
Zigbee, 500
zombie processes, 59
zombie state (threads), 62
ZONE_DMA, 50
ZONE_HIGH, 50
ZONE_NORMAL, 50
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