
www.it-ebooks.info

http://www.it-ebooks.info/

Arduino Wearable Projects

Design, code, and build exciting wearable projects
using Arduino tools

Tony Olsson

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Arduino Wearable Projects

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1250815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-330-7

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Tony Olsson

Reviewers
Tomi Dufva

Kristina Durivage

Jimmy Hedman

Kallirroi Pouliadou

Gabriela T. Richard

Johnty Wang

Commissioning Editor
Priya Singh

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Pooja Nair

Project Coordinator
Suzanne Coutinho

Technical Editor
Rupali R. Shrawane

Copy Editor
Charlotte Carneiro

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Tony Olsson works as a lecturer at the University of Malmö, where he teaches
multiple design fields with the core being physical prototyping and wearable
computing. His research includes haptic interactions and telehaptic communication.
Olsson has a background in philosophy and traditional arts, but later shifted his
focus to interaction design and computer science. He is also involved in running
the IOIO laboratory at Malmö University.

Besides his work at the university, he also works as a freelance artist/designer and
author. Prior to this publication, Olsson published two books based on wearable
computing and prototyping with Arduino and Arduino-based platforms.

I would like to thank all the people and students of the IOIO
laboratory and the K3 institution, both current and past. The work
we do together has always been inspiring. Thanks to my sister and
mother for all their support. A special thanks to David Cuartielles
and Andreas Göransson. Without our endeavors together, this book
probably would have never been written. I would also like to thank
Hemal and Pooja at Packt; it has been a true pleasure working with
them on this book. I'd also like to thank the rest of the Arduino team,
Massimo Banzi, David Mellis, and Tom Igoe, for their impressive
work with Arduino; and the Arduino community, which remains
the best in the world. Last but not least, I would like to thank Jennie,
I can only hope to repay all the support and understanding she has
given me during the process of writing this book.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Tomi Dufva is an MA in fine arts and a doctoral researcher at Aalto ARTS
University. He is a cofounder of Art and Craft School Robotti and lives and
works in Turku as a visual artist, art teacher, and researcher. Tomi researches
creative coding at Aalto University, in the school of Arts, Design, and Architecture.
Tomi specializes in code literacy, maker culture, pedagogical use of code, and
integrating painting and drawing with electronics and code. Tomi has taught in
schools from kindergartens to universities. You can see Tomi's research on his
blog (www.thispagehassomeissues.com).

Kristina Durivage is a software developer by day and hardware hacker by night.
She is well-known for her TweetSkirt—an item of clothing that displays tweets. She
lives in Minneapolis, Minnesota, and can be found on Twitter at @gelicia.

Jimmy Hedman is a professional HPC (High Performance Computing) geek
who works with large systems where size is measured by the number of racks and
thousands of cores. In his spare time, he goes in the opposite direction and focuses
on smaller things, such as Beaglebone Blacks and Arduinos.

He is currently employed by South Pole AB, the biggest server manufacturer in
Sweden, where he is a Linux consultant with HPC as his main focus.

He has previously reviewed Arduino Robotics Projects for Packt Publishing.

I would like to thank my understanding wife, who lets me go
on with my hobbies like I do. I also would like to thank Packt
Publishing for letting me have this much fun with interesting
stuff to read and review.

www.it-ebooks.info

www.thispagehassomeissues.com
@gelicia
http://www.it-ebooks.info/

Kallirroi Pouliadou is an interaction designer with a strong visual design
and architecture background, and experience in industrial design, animation,
and storytelling. She explores technology as an amateur maker.

Johnty Wang has a masters of applied science degree in electrical and computer
engineering from the University of British Columbia. His main area of research is
developing New Interfaces for Musical Expression (NIME), and it is supported by his
personal passion for music and human-technology interfaces. He has a diverse range
of experience in hardware and software systems, developing embedded, mobile, and
desktop applications for works ranging from interactive installations to live musical
performances. His work has appeared at festivals, conferences, and competitions
internationally. Johnty is currently a PhD student in music technology at McGill
University, supervised by professor Marcelo Wanderley.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt''s online digital
book library. Here, you can search, access, and read Packt''s entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface v
Chapter 1: First Look and Blinking Lights 1

Wearables 2
Installing and using software 3

The Arduino IDE 4
First look at the IDE 4
Getting to know you board 8

The FLORA board 8
Other boards 10
Connecting and testing your board 11
Some notes on programming 13

External LEDs and blinking 14
Summary 18

Chapter 2: Working with Sensors 19
Sensors 20

A bend sensor 20
The pressure sensor 25

Light dependent resistors 30
The accelerometer, compass, and gyroscope 32
Summary 38

Chapter 3: Bike Gloves 39
Electronics needed 39
Trying out the TSL2561 41
Detecting gestures 44
Making a glove 46
Summary 55

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 4: LED Glasses 57
Making the glasses 58
Entering the matrix 60
Programming the glasses 65
Making a pattern 67
Finishing the glasses Knight Rider style 69
Summary 73

Chapter 5: Where in the World Am I? 75
Hocking up the OLED screen 77
Getting the position 81
Making the clock 85
The final sketch 90
Summary 93

Chapter 6: Hands-on with NFC 95
Reading a card 97
Connecting the motor 103
Putting the pieces together 104
The final code 109
Wrapping things up 111
Summary 112

Chapter 7: Hands-on BLE 113
Hello Blend Micro 114
The Blend Micro app 117
Gesture tracking 122
Wrapping things up 129
Summary 131

Chapter 8: On the Wi-fly 133
The Particle Core 134
Programming for the Particle Core 137
The Dashboard 140
HTML control 144
Connecting to IFTTT 150

Monitoring data changes 151
DO – a function 156

Summary 159

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Chapter 9: Time to Get Smart 161
Components 162
Let's get started 163
Watch design and soldering 167
Desoldering 169
Connecting the pieces 172
Leather time 173
Finishing up 178
A smorgasbord of functionality 181
The end of the beginning 187

Index 191

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[v]

Preface
Almost 10 years have passed since I picked up my first Arduino board. At the time, I
was an interaction design student at Malmö University. At the front of the classroom
that day, there was a bearded Spaniard talking, rather claiming, that he could teach
us all about electronics and how to do programming for microprocessors, all in 1
week. Of course, since I knew nothing about electronics and never thought I would
learn anything about it, I did not believe him.

The Spaniard had a completely new approach to teaching, which I had never
encountered before. He wanted to teach us, not by books and lectures, but by doing
things. One of my classmates pointed out that most of us did not know anything
about electronics, so how are we supposed to do anything with it? The Spaniard
replied that it does not matter, you can do things without knowing what you are
doing, and by doing them, you will learn.

After 15 minutes, we all had connected a small lamp to our Arduino boards, and
we had managed to program the lamp so that it would turn itself on and off. What
baffled me was not only what we had achieved in such little time, but also that parts
of what was going on actually made sense. We were learning by doing.

The bearded Spaniard was actually David Cuartielles, who together with Massimo
Banzi, just 1 year before, invented the Arduino board. Soon after they invented it,
Tome Igoe and David Mellis joined the team, and as they say, the rest is history. But
I still remember that day, as if it was yesterday, when I looked down at my blinking
light and something sparked inside me. I wanted to learn and do more. Then David
gave me the second valuable lesson, that the best way to learn more is to share your
knowledge with others, and he put me in a position where I was able to do so. Again
I was skeptical, since I had no knowledge to speak of, but again the lesson followed,
even if you only know a little, it is enough to help those that know nothing yet.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vi]

Soon after, I found out about a field called wearable computing. The idea was
to design and apply a technology to the human body in different ways, and it
all sounded as wonderfully crazy as the idea that you could learn electronics and
programming without any prior knowledge of how to do so. With inspiration from
Arduino and its team members, I leaped headfirst into the field. In this new field, I
found new inspiration in the works of Steve Mann and Leah Buechley. Mann, now a
professor at the University of Toronto, developed his own wearable computer in the
80s and had mostly done so on his own. Buechley, also a professor at MIT, had taken
the Arduino board and developed a new prototyping platform, which is specialized
for a wearable context. Both seemed to have done this against all the odds. Again, I
was inspired, and started to develop my own wearable devices, teaching others how
to do the same. Eventually, I collected enough know-how on things that I started
to write them down. When I started to share my writing, I found out how truly
amazing the Arduino community is a world-wide group of people that share a
love for making things with electronics.

It's safe to say that if it had not been for all these people, I probably would never
have written any of my books, so I would like to extend my thanks to all. I would
also like to thank you for picking up this book. You might be a novice or an expert,
but I do hope it will not matter. This book is based on the idea that anyone can learn
anything by the simple principle of actually "doing." If you are already an expert,
then you know there is always something to learn from "doing" things in a new way.

So, I hope you will gain some new knowledge and inspiration from the projects we
created in this book, and I wish you all the best in your creating endeavors.

Do check out "Soldering with David Cuartielles" on my YouTube channel at
https://www.youtube.com/watch?v=Mg01HFjsn6k.

What this book covers
Chapter 1, First Look and Blinking Lights, covers the basic steps of installing the
development environment and how to get started with coding. We also take a look
at how to create our first circuit and control an LED.

Chapter 2, Working with Sensors, teaches about interfacing with sensors and extracting
data from them. The chapter also introduces digital and analog sensors ranging from
simple to complex sensors.

Chapter 3, Bike Gloves, introduces the reader to the first project of the book, where
the goal is to create a pair of bike gloves. In this chapter, we introduce the use
of LEDs and how to control them, as well as how to use sensors for some simple
gesture recognition.

www.it-ebooks.info

https://www.youtube.com/watch?v=Mg01HFjsn6k
http://www.it-ebooks.info/

Preface

[vii]

Chapter 4, LED Glasses, teaches you to create a pair of programmable LED glasses.
These glasses will be covered by LEDs in the front, which will be programmable
to display different patterns and shapes. The reader will also be introduced to the
construction of a pair of sunglasses.

Chapter 5, Where in the World Am I?, focuses on the making of a wrist-worn GPS
tracking device. The information will be displayed on a small LCD screen. This
chapter also includes instructions and tips on how to create a casing containing
the components so that the device can be worn on the wrist.

Chapter 6, Hands-on with NFC, deals with NFC technology and servomotors and
how they can be combined into a smart door lock. This chapter also includes how
to design around NFC tags and make wearable jewelry that will work as a key for
the lock.

Chapter 7, Hands-on BLE, deals with low-powered Bluetooth technology and how it
can be implemented into wearable projects. This chapter introduces the Blend Micro
board and how it can be used to create projects that connect to your mobile phone.

Chapter 8, On the Wi-fly, introduces you to the Wi-Fi Particle Core board and its web
IDE. This chapter also talks about how to connect to online services.

Chapter 9, Time to Get Smart, focuses on the creation of a smart watch, which connects
to the Internet and uses online services to create custom notifications to be displayed
on a small OLED screen.

The online chapter (Chapter 10), Interactive Name Tag, expands upon Chapter 7,
Hands-on BLE, which deals with small screens, and shows you how to interact
with them over Bluetooth in order to make an interactive name tag. This chapter
is available at https://www.packtpub.com/sites/default/files/downloads/
ArduinoWearableProjects_OnlineChapter.pdf.

What you need for this book
Download and install the preconfigured Arduino IDE from Adafruit: https://
learn.adafruit.com/getting-started-with-flora/download-software.

The Particle Build Web IDE, sign up for a free account on: https://build.particle.
io/login.

Free account on IFTTT: https://ifttt.com/.

www.it-ebooks.info

https://www.packtpub.com/sites/default/files/downloads/ArduinoWearableProjects_OnlineChapter.pdf
https://www.packtpub.com/sites/default/files/downloads/ArduinoWearableProjects_OnlineChapter.pdf
https://learn.adafruit.com/getting-started-with-flora/download-software
https://learn.adafruit.com/getting-started-with-flora/download-software
https://build.particle.io/login
https://build.particle.io/login
https://ifttt.com/
http://www.it-ebooks.info/

Preface

[viii]

Boards
Here's a list of the boards you'll work on:

• Adafruit Trinket—Mini Microcontroller—5V Logic
• Adafruit Pro Trinket—5V 16 MHz
• FLORA—Wearable electronic platform: Arduino-compatible
• Spark Core with Chip Antenna Rev 1.0
• Redbear Blend Micro BLE board

Components and tools
Here's a list of all the components and tools you need:

• Soldering iron
• GA1A12S202 Log-scale Analog Light Sensor
• Long Flex/Bend sensor
• LDRs
• Adafruit TSL2561 Digital Luminosity/Lux/Light Sensor Breakout
• Breadboarding wire bundle
• Flora Wearable Ultimate GPS Module
• Monochrome 128 x 32 I2C OLED graphic display
• Adafruit LED Sequins
• 3.56 MHz RFID/NFC tags
• Adafruit PN532 NFC/RFID Controller Shield for Arduino + Extras
• Lithium Ion Polymer Battery—3.7V 1200 mAh
• SHARP Memory Display Breakout—1.3" 96 x 96 Silver Monochrome
• Small Alligator Clip Test Lead
• Lithium Ion Polymer Battery—3.7V 500mAh
• Monochrome 1.3" 128x64 OLED graphic display
• Adafruit Micro Lipo w/MicroUSB Jack—USB LiIon/LiPoly charger (V1)
• Full-sized breadboard
• OLED Breakout Board—16-bit Color 0.96" w/microSD holder
• Half-sized breadboard
• USB cable—6" A/MiniB

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

• FLORA 9-DOF Accelerometer/Gyroscope/Magnetometer—LSM9DS0 (V1.0)
• Lithium Ion Polymer Battery—3.7V 150mAh
• Hook-up Wire Spool Set—22AWG Solid Core—6 x 25 ft
• Flush diagonal cutters
• Helping Third Hand Magnifier W/Magnifying Glass Tool

Who this book is for
For readers familiar with the Arduino prototyping platform with some prior
experienced with ordinary hardware tools.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

//Variable to store the pin
int ldrSensor = 10;

void setup(){
//Start the serial communication
 Serial.begin(9600);
}

void loop(){
//Save the data from the sensor into storeData
 int storeData=analogRead(ldrSensor);
//Re-map storeData to a new range of values
 int mapValue=map(storeData,130,430,0,2000);
//Print the re-mapped value
 Serial.println(mapValue);
//Give the computer some time to print
 delay(200)
}

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[x]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Preface

[xi]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from https://www.packtpub.com/sites/
default/files/downloads/ArduinoWearableProjects_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

https://www.packtpub.com/sites/default/files/downloads/ArduinoWearableProjects_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ArduinoWearableProjects_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

First Look and Blinking Lights
The basis for this book is the Arduino platform, which refers to three different things:
software, hardware, and the Arduino philosophy. The hardware is the Arduino
board, and there are multiple versions available for different needs. In this book,
we will be focusing on Arduino boards that were made with wearables in mind.
The software used to program the boards is also known as the Arduino IDE. IDE
stands for Integrated Development Environment, which are programs used to write
programs in programming code. The programs written for the board are known
as sketches, because the idea aids how to write programs and works similar to a
sketchpad. If you have an IDE, you can quickly try it out in code. This is also a part
of the Arduino philosophy. Arduino is based on the open source philosophy, which
also reflects on how we learn about Arduino. Arduino has a large community, and
there are tons of projects to learn from.

First, we have the Arduino hardware, which we will use to build all the examples in
this book along with different additional electronic components. When the Arduino
projects started back in 2005, there was only one piece of headwear to speak of,
which was the serial Arduino board. Since then, there have been several iterations of
this board, and it has inspired new designs of the Arduino hardware to fit different
needs. If you are familiar with Arduino for a while, you probably started out with
the standard Arduino board. Today, there are different Arduino boards that fit
different needs, and there are countless clones available for specific purposes. In
this book, we will be using different specialized Arduino boards such as the FLORA
board and Spark core board.

The Arduino software that is Arduino IDE is what we will use to program our
projects. The IDE is the software used to write programs for the hardware. Once
a program is compiled in the IDE, it will upload it to the Arduino board, and the
processor on the board will do whatever your program says. Arduino programs are
also known as sketches. The name sketches is borrowed from another open source
project and software called Processing. Processing was developed as a tool for digital
artists, where the idea was to use Processing as a digital sketchpad.

www.it-ebooks.info

http://www.it-ebooks.info/

First Look and Blinking Lights

[2]

The idea behind sketches and other aspects of Arduino is what we call the Arduino
philosophy, and this is the third thing that makes Arduino. Arduino is based on
open source, which is a type of licensing model where you are free to develop you
own designs based on the original Arduino board. This is one of the reasons why
you can find so many different models and clones of the Arduino boards. Open
source is also a philosophy that allows ideas and knowledge to be shared freely.
The Arduino community has grown strong, and there are many great resources
to be found, and Arduino friends to be made.

The only problem may be where to start? Books like this one are good for getting
you started or developing skills further. Each chapter in this book is based on a
project that will take you from the start, all the way to a finished "prototype". I call
all the project prototypes because these are not finished products. The goal of this
book is also for you to develop these projects further, once you have completed the
chapter. As your knowledge progresses, you can develop new sketches to run on
you prototypes, develop new functions, or change the physical appearance to fit
your needs and preferences.

In this chapter, you will have a look at:

• Installing the IDE
• Working with the IDE and writing sketches
• The FLORA board layout
• Connecting the FLORA board to the computer
• Controlling and connecting LEDs to the FLORA board

Wearables
This book is all about wearables, which are defined as computational devices that are
worn on the body. A computational device is something that can make calculations of
any sort. Some consider mechanical clocks to be the first computers, since they make
calculations on time. According to this definition, wearables have been around for
centuries, if you think about it. Pocket watches were invented in the 16th century, and
a watch is basically as small device that calculates time. Glasses are also an example
of wearable technology that can be worn on your head, which have also been around
for a long time. Even if glasses do not fit our more specified definition of wearables,
they serve as a good example of how humans have modified materials and adapted
their bodies to gain new functionality. If we are cold, we dress in clothing to keep us
warm, if we break a leg, we use crutches to get around, or even if an organ fails, we
can implant a device that replicates their functionality. Humans have a long tradition
of developing technology to extend the functionality of the human body.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

With the development of technology for the army, health care, and professional
sport, wearables have a long tradition. But in recent years, more and more devices
have been developed for the consumer market. Today, we have smart watches,
smart glasses, and different types of smart clothing.

In this book, we will carry on this ancient tradition and develop some wearable
projects for you to learn about electronics and programming. Some of these projects
are just for fun and some have a specific application. The knowledge presented in all
the chapters of this book progresses from the chapter before it. We will start off slow,
and the chapters will gradually become more complex both in terms of hardware
and software. If you are already familiar with Arduino, you can pick any project
and get started. If you find it too hard, you can always go back and take a look at the
chapter that precedes it. If you're completely new to Arduino, continue reading this
chapter as we will go through the installation process of the Arduino IDE and how
to get started with programming.

Installing and using software
The projects in this book will be based on different boards made by the company
Adafruit. Later in this chapter, we will take a look at one of these boards, called the
FLORA, and explain the different parts. These boards come with a modified version
of the Arduino IDE, which we will be using in the chapter. The Adafruit IDE looks
exactly the same as the Arduino IDE. The FLORA board, for example, is based on
the same microprocessor as the Arduino Leonardo board and can be used with the
standard Arduino IDE but programmed using the Leonardo board option. With the
use of the Adafruit IDE the FLORA board is properly named. In this book, we will
use two other models called the Gemma and Trinket boards, which are based on a
microprocessor that is different from the standard Arduino boards. The Adafruit
version of the IDE comes preloaded with the necessary libraries for programming
these boards, so there is no need to install them separately.

For downloading and instructions on installing the IDE, head over to the Adafruit
website and follow the steps on the website:

https://learn.adafruit.com/getting-started-with-flora/download-
software

www.it-ebooks.info

https://learn.adafruit.com/getting-started-with-flora/download-software
https://learn.adafruit.com/getting-started-with-flora/download-software
http://www.it-ebooks.info/

First Look and Blinking Lights

[4]

Make sure to download the software corresponding to your operating system.
The process for installing the software depends on your operating system. These
instructions may change over time and may be different for different versions of
the operating system. The installation is a very straightforward process if you are
working with OS X. On Windows, you will need to install some additional USB
drivers. The process for installing on Linux depends on which distribution you are
using. For the latest instructions, take a look at the Arduino website for the different
operating systems.

The Arduino IDE
On the following website, you can find the original Arduino IDE if you need it in the
future. In this book, you will be fine sticking with the Adafruit version of the IDE,
since the most common original Arduino boards are also supported. The following
is the link for downloading the Arduino software: https://www.arduino.cc/en/
Main/Software.

First look at the IDE
The IDE is where we will be doing all of our programming. The first time you open
up the IDE, it should look like Figure 1.1:

Figure 1.1: The Arduino IDE

www.it-ebooks.info

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
http://www.it-ebooks.info/

Chapter 1

[5]

The main white area of the IDE is blank when you open a new sketch, and this is the
area of the IDE where we will write our code later on. First, we need to get familiar
with the functionality of the IDE.

At the top left of the IDE, you will find five buttons. The first one, which looks like
a check sign, is the compile button. When you press this button, the IDE will try to
compile the code in your sketch, and if it succeeds, you will get a message in the
black window at the bottom of you IDE that should look similar to this:

Figure 1.2: The compile message window

When writing code in an IDE, we will be using what is known as a third-level
programming language. The problem with microprocessors on Arduino boards is that
they are very hard to communicate with using their native language, and this is why
third-level languages have been developed with human readable commands. The code
you will see later needs to be translated into code that the Arduino board understands,
and this is what is done when we compile the code. The compile button also makes
a logical check of your code so that it does not contain any errors. If you have any
errors, the text in the black box in the IDE will appear in red, indicating the line of code
that is wrong by highlighting it in yellow. Don't worry about errors. They are usually
misspelling errors and they happen a lot even to the most experienced programmers.
One of the error messages can be seen in the following screenshot:

Figure 1.3: Error message in the compile window

www.it-ebooks.info

http://www.it-ebooks.info/

First Look and Blinking Lights

[6]

Adjacent to the compile button, you will find the Upload button. Once this button is
pressed, it does the same thing as the compile button, and if your sketch is free from
errors, it will send the code from your computer to the board:

Figure 1.4: The quick buttons

The next three buttons are quick buttons for opening a new sketch, opening an old
sketch, or saving your sketch. Make sure to save your sketches once in a while when
working on them. If something happens and the IDE closes unexpectedly, it does not
autosave, so manually saving once in a while is always a good idea.

At the far right of the IDE you will find a button that looks like a magnifying glass.
This is used to open the Serial monitor. This button will open up a new window
that lets you see the communication form from, and to, the computer and the board.
This can be useful for many things, which we will have a closer look at in Chapter 2,
Working with Sensors.

At the top of the screen you will find a classic application menu, which may look a
bit different depending on your operating system, but will follow the same structure.
Under File, you will find the menu for opening your previous sketches and different
example sketches that come with the IDE, as shown in Figure 1.5. Under Edit, you
will find different options and quick commands for editing your code. In Sketch,
you can find the same functions as in the buttons in the IDE window:

Figure 1.5: The File menu

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

Under Tools, you will find two menus that are very important to keep track of
when uploading sketches to your board. Navigate to Tools | Board and you will
find many different types of Arduino boards. In this menu, you will need to select
the type of board you are working with. Under Tools | Serial port, you will need
to select the USB port which you have connected to your board. Depending on your
operating system, the port will be named differently. In Windows, they are named
COM*. On OS X, they are named /dev/tty.****:

Figure 1.6: The Tools menu

Since there may be other things inside your computer also connected to a port, these
will also show up in the list. The easiest way to figure out which port is connected to
your board is to:

1. Plug you board in to your computer using a USB cable.
2. Then check the Serial port list and remember which port is occupied.
3. Unplug the board and check the list again.
4. The board missing in the list is the port where your board is connected. Plug

your board back in and select it in the list. All Arduino boards connected to
you computer will be given a new number.

In most cases, when your sketch will not upload to you board,
you have either selected the wrong board type or serial port in
the tools menu.

www.it-ebooks.info

http://www.it-ebooks.info/

First Look and Blinking Lights

[8]

Getting to know you board
As I mentioned earlier, we will not be using the standard Uno Arduino boards in
this book, which is the board most people think of when they hear Arduino board.
Most Arduino variations and clones use the same microprocessors as the standard
Arduino boards, and it is the microprocessors that are the heart of the board. As
long as they use the same microprocessors, they can be programmed as normal
by selecting the corresponding standard Arduino board in the Tools menu. In our
case, we will be using a modified version of the Arduino IDE, which features the
types of boards we will be using in this book. What sets other boards apart from
the standard Uno Arduino boards is usually the form factor of the board and pin
layout. In this book, we will be using a board called the FLORA. This board was
created with wearables in mind. The FLORA is based on the same chip used in the
Arduino Leonardo board, but uses a much smaller form factor and has been made
round to ease the use in a wearable context. You can complete all the projects using
most Arduino boards and clones, but remember that the code and construction of
the project may need some modifying.

The FLORA board
In the following Figure 1.7 you will find the FLORA board:

Figure 1.7: The FLORA board

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

The biggest difference to normal Arduino boards besides the form factor is the
number of pins available. The pins are the copper-coated areas at the edge of the
FLORA. The form factor of the pins on FLORA boards is also a bit different from
other Arduino boards. In this case, the pin holes and soldering pads are made bigger
on FLORA boards so they can be easily sewn into garments, which is common when
making wearable projects. The larger pins also make it easier to prototype with
alligator clips, which we will be using later on in this chapter as shown in Figure 1.10.
The pins available on the FLORA are as follows, starting from the right of the USB
connector, which is located at the top of the board in the preceding Figure 1.7:

The pins available on the FLORA are as follows, starting from the right of the USB
connector, which is located at the top of the board in Figure 1.7:

• 3.3V: Regulated 3.3 volt output at a 100mA max
• D10: Is both a digital pin 10 and an analog pin 10 with PWM
• D9: Is both a digital pin 9 and an analog pin 9 with PWM
• GND: Ground pin
• D6: Is both a digital pin 6 and an analog pin 7 with PWM
• D12: Is both a digital pin 12 and an analog pin 11
• VBATT: Raw battery voltage, can be used for as battery power output
• GND: Ground pin
• TX: Transmission communication pin or digital pin 1
• RX: Receive communication pin or digital pin 0
• 3.3V: Regulated 3.3 volt output at a 100mA max
• SDA: Communication pin or digital pin 2
• SCL: Clock pin or digital pin 3 with PWM

As you can see, most of the pins have more than one function. The most interesting
pins are the D* pins. These are the pins we will use to connect to other components.
These pins can either be a digital pin or an analog pin. Digital pins operate only in
1 or 0, which mean that they can be only On or Off. You can receive information on
these pins, but again, this is only in terms of on or off.

The pins marked PWM have a special function, which is called Pulse Width
Modulation. On these pins, we can control the output voltage level. The analog
pins, however, can handle information in the range from 0 to 1023. As we introduce
analog sensors in Chapter 2, Working with Sensors, we will look into the differences
between them in more detail.

www.it-ebooks.info

http://www.it-ebooks.info/

First Look and Blinking Lights

[10]

The 3.3V pins are used to power any components connected to the board. In this
case, an electronic circuit needs to be completed, and that's why there are two GND
pins. In order to make an electronic circuit, power always needs to go back to where
it came from. For example, if you want to power a motor, you need power from a
power source connected via a cable, with another cable directing the power back to
the power source, or the motor will not spin.

TX, RX, SDA, and SCL are pins used for communication, which we will have
a look at later on in the book in the chapters dealing with more complex sensors.
The VBATT pin can be used to output the same voltage as your power source,
which you connect to the connector located at the bottom of the FLORA board
shown in Figure 1.7.

Other boards
In Figure 1.8 you will find the other board types we will be using in this book:

Figure 1.8: The Gemma, Trinket and Trinket pro board

In Figure 1.8, the first one from the left is the Gemma board. In the middle, you will
find the Trinket board, and to the right, you have the Trinket pro board. Both the
Gemma and Trinket board are based on the ATtiny85 microprocessor, which is a
much smaller and cheaper processor, but comes with limitations. These boards only
have three programmable pins, but what they lack in functionality, the make up for
in size. The difference between the Gemma and Trinket board is the form factor,
but the Trinket board also lacks a battery connector. The Trinket Pro board runs on
an Atmega328 chip, which is the same chip used on the standard Arduino board to
handle the USB communication.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

This chip has 20 programmable pins, but also lacks a battery connector. The reason
for using different types of boards in this book is that different projects require
different functionalities, and in some cases, space for adding components will be
limited. Don't worry though, since all of them can be programmed in the same way.

Connecting and testing your board
In order to make sure that you have installed your IDE correctly and to ensure your
board is working, we need to connect it to your computer using a USB to USB micro
cable, as show in Figure 1.9:

Figure 1.9: USB to USB micro cable

The small connector of the cable connects to your board, and the larger connector
connects to your computer. As long as your board is connected to your computer,
the USB port on the computer will power your board. In Chapter 3, Bike Gloves,
we will take a closer look at how to power your board using batteries.

Once your board is connected to the computer, open up your IDE and enter the
following code. Follow the basic structure of writing sketches:

1. First, declare your variables at the top of the sketch.
2. The setup you make is the first segment of code that runs when the board is

powered up.

www.it-ebooks.info

http://www.it-ebooks.info/

First Look and Blinking Lights

[12]

3. Then, add the loop function, which is the second segment of the code that
runs, and will keep on looping until the board is powered off:

int led = 7;

void setup()
{
pinMode(led, OUTPUT);
}

void loop()
{
digitalWrite(led, HIGH);
delay(1000);
digitalWrite(led, LOW);
delay(1000);
}

The first line of code declares pin number 7 as an integer and gives it the name LED.
An integer is a data type, and declaring the variable using the name int allows you
to store whole numbers in memory. On the FLORA board, there is a small on-board
LED connected to the digital pin 7. The next part is void setup(), which is one of
the functions that always needs to be in your sketch in order for it to compile. All
functions use curly brackets to indicate where the function starts and ends. The {
bracket is used for the start, and } the bracket is used to indicated the end of the
function. In void setup(), we have declared the mode of the pin we are using.
All digital pins can be used as either an input or an output. An input is used for
reading the state of anything connected to it, and output is used to control anything
connected to the pin. In this case, we are using pin 7, which is connected to the on-
board LED. In order to control this pin we need declared it as an output.

If you are using a different board, remember to change the
pin number in your code. On most other Arduino boards,
the onboard LED is connected to pin 13.

The void loop() function is where the magic happens. This is where we put the
actual commands that operate the pins on the board. In the preceding code, the first
thing we do is turn the led pin HIGH by using the digitalWrite()command. The
digitalWrite() function is a built-in function that takes two parameters. The first
is the number of the pin, in this case, we put in the variable led that has the value
7. The second parameter is the state of the pin, and we can use the HIGH or LOW
shortcuts to turn the pin on or off, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Then, we make a pause in the program using the delay() command. The delay
command takes one parameter, which is the number of milliseconds you want to
pause your program for. After this, we use the same command as before to control
the state of the pin, but this time we turn it LOW, which is the same as turning the pin
off. Then we wait for an additional 1000 milliseconds. Once the sketch reaches the
end of the loop function, the sketch will start over from the start of the same function
and keep on looping until a new sketch is uploaded. The reset button is pressed on
the FLORA board, or until the power is disconnected.

Now that we have the sketch ready, you can press the upload button. If everything
goes as planned, the on-board LED should start to blink with a 1 second delay. The
sketch you have uploaded will stay on the board even if the board is powered off,
until you upload a new sketch that overwrites the old one. If you run into problems
with uploading the code, remember to perform the following steps:

• Check your code for errors or misspelling
• Check your connections and USB cable
• Make sure you have the right board type selected
• Make sure your have the right USB port selected

Some notes on programming
Now that we know that your IDE and board are working, we will have a look at some
more code. Programming with Arduino is a fairly straightforward process, but as
with any other skill, it takes some practice. You should never feel stupid if you don't
understand straightaway or if you can't get something to work as it should. This is
a part of the process we call prototyping. When you prototype something, you may
have a clear idea of what you want to do, but not a clear plan of how to achieve this.
A big part of prototyping is the process of trial and error. If you try something and
it does not work, then you try something different. A common misconception is that
electronics break easily. It is true that components can break if connected the wrong
way, but even breaking stuff can be helpful in the process of understanding how they
work. However, it is very hard to break anything by code. Again, it is possible to break
the microprocessor in most Arduino boards by uploading faulty code to them, but the
IDE makes this nearly impossible since it always checks your code for errors before
uploading it to the board. Microprocessors are logical in the strictest sense.

www.it-ebooks.info

http://www.it-ebooks.info/

First Look and Blinking Lights

[14]

When learning to program, the most important part is to learn how to debug.
Debugging is simply the process of finding where the problem is. Compile errors
are the most obvious, since the IDE will let you know that your sketch contains an
error somewhere. However, the IDE can only check for semantic errors and it does
not know what you are trying to achieve. Your sketch might compile, but it still
does not do what you want it to do. The deeper your understanding of the different
commands, the faster you will become in the debugging process. In this book, I will
explain the different commands as they are used in the chapters, but even if we use
a lot of them, we will not cover all possible commands. If you want to learn more
about all the possible commands, the Arduino website has a reference list in which
you can find them (http://arduino.cc/en/Reference/HomePage). This book is
aimed at readers who have some experience with programming for Arduino, and
it does not include an introduction to programming. With this said, you should not
feel excluded if you don't know how to program, since it should be possible to follow
all the projects without a deeper understanding of programming. By following the
instructions and code in this book, you should be able to create your own working
version of all the projects. The following sketches are examples to get you going,
which includes some of the basic functions and commands.

Note that all code that is proceeded by the use of // or /*……*/ are
comments. The // (comment character) hides the line of code from the
compiler, and will not be a part of the sketch. The /*……*/ (comment
character) hides comments that are spread over multiple lines, where
anything written in between /* and */ will be hidden from the compiler.
It is good programming practice to add comments to document your code.

External LEDs and blinking
Now that we've tried a really simple example with the board by itself, it's time to add
some extra components:

• FLORA board
• USB to USB micro cable
• Two alligator clips
• PCB mounted LED

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

www.it-ebooks.info

http://arduino.cc/en/Reference/HomePage
http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 1

[15]

In this sketch example, we will use an external LED, but if you want, you can
stick with the on-board LED on the FLORA board. The LED used in following
Figure 1.10 is a special surface-mounted LED that is placed on a PCB. If you are using
another LED, make sure to pair it with the right resistor. In the case of the custom
LED found in Figure 1.6, the resistor is mounted on a PCB (printed circuit board).
These LEDs are made with wearables in mind, and you can find them in most
specialized electronic stores:

Figure 1.10. The LED connected to the board using alligator clips

To connect the LED to the board, we used alligator clips. Alligator clips are normal
wires with metal clips at the end that are great for prototyping, and work especially
well with wearable Arduino boards like the FLORA. LEDs have a positive and a
negative side to them. In the case of the LED in Figure 1.10, these are marked on the
PCB with a + sign for the positive and a - sign for the negative side. The positive side
connects to pin D12 on the FLORA board, and to complete the circuit, the negative
side connects to GND.

www.it-ebooks.info

http://www.it-ebooks.info/

First Look and Blinking Lights

[16]

Different speed blinking
The following sketches show how to blink the LED at different speeds, using the
for loops:

int led = 12; //declares a variable called led connected to pin 12

void setup() {
 pinMode(led, OUTPUT); //declares led as an output pin
}

void loop() {
//start looping until the counter is bigger then 5
 for(int i=0; i<5; i++){
 digitalWrite(led, HIGH); //turn the led on
 delay(1000); //wait for a bit
 digitalWrite(led, LOW); //turn the led off
 delay(1000); //wait some more
 }
//start looping until the counter is bigger then 5
 for(int j=0; j<5; j++){
 digitalWrite(led, HIGH); //turn the led on
 delay(500); //wait for a bit
 digitalWrite(led, LOW); //turn the led off
 delay(500); //wait some more
 }
//start looping until the counter is bigger then 5
 for(int k=0; k<5; k++){
 digitalWrite(led, HIGH); //turn the led on
 delay(100); //wait for a bit
 digitalWrite(led, LOW); //turn the led off
 delay(100); //wait some more
 }
}

In this sketch, we use three different for loops. In the for loop, a counter, end
condition, and counter increment is declared. All the counters in this sketch start on
0, and as long as the counter is smaller than 5, the for loop will keep on looping.
For every time the for loop makes a loop, the counter is increased by one. Inside the
for loop, the LED is first turned on and then there is a delay. The delay time is the
difference between the three for loops.

Then, the LED is turned off and there is a new delay. Once the first loop has met the
end condition, the second loop takes over, and so on. The for loops are good if you
know you want to do a certain thing a certain number of times.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

As you can see in the preceding sketch, the procedure for turning the LED on and
off is the same for all of the for loops. This is a perfect opportunity to introduce a
function into your code. Functions help save memory space. In the case of the sketch
we are working with, memory space will not become a problem since the sketch is
very small. However, as you progress, sketches will become bigger and bigger,
and memory space may become a problem. Depending on the board you are using,
there is a limit to how big you can make you sketches. Optimizing your code helps
save space, but is also good coding practice, since it gives you a better overview of
your code:

int led = 12;

void setup() {
 pinMode(led, OUTPUT);
}

void loop() {
 for(int i=0; i<5; i++){
 blinkLed(1000); //call the function and add the delay time
 }
 for(int j=0; j<5; j++){
 blinkLed(500); //call the function and add the delay time
 }
 for(int k=0; k<5; k++){
 blinkLed(100); //call the function and add the delay time
 }
}

/*declares the function blinkLed and adds a parameter that needs to be
included with the use of the function*/
void blinkLed(int delayTime){
digitalWrite(led, HIGH); //turn the led on
 delay(delayTime); //wait for a bit
 digitalWrite(led, LOW); //turn the led off
 delay(delayTime); //wait some more
}

The blinkLed function has been declared so it takes a parameter, which is delayTime.
This variable is then used inside the function to set the speed of the blinking.

www.it-ebooks.info

http://www.it-ebooks.info/

First Look and Blinking Lights

[18]

Summary
In this chapter, we have had a look at the different parts of the FLORA board and
how to install the IDE. We also made some small sketches to work with the on-board
LED. We made our first electronic circuit using an external LED.

In the next chapter, I will introduce you to some analog sensors that are suitable for
working with wearable's. We will keep using LEDs as our output, to show how we
can interact with the data gathered from the sensors, as well as how to control the
intensity of the LED.

www.it-ebooks.info

http://www.it-ebooks.info/

[19]

Working with Sensors
A sensor is a device that can detect changes or events and provide a corresponding
output. The output is usually an electronic signal, for example, a light dependent
resistor (LDR) outputs a voltage, which depends on the level of light cast on the
sensors. When working with electronics, sensors are often divided into analog and
digital sensors. Digital sensors can only detect two states, either on or off. The digital
sensor can only distinguish if there is voltage going into the sensor or not. In code, this
transfers into a 1 for voltage coming in and 0 if there is no voltage present. This is why
they are called digital sensors, since they only operate in 0s and 1s. This means that
these sensors only have two states, either on or off. A button, for example, is a digital
sensor, which can only sense two states, if the button is pushed or not.

Analog sensors, however, can sense a range of values. The LDR, for example, is an
analog sensor that changes the output voltage depending on the light level cast on the
sensor surface. The problem with microprocessors is that they are digital by nature,
and don't know how to handle analog information by default. This is why there are
analog pins on almost all Arduino boards, which have an analog to digital conversion
built in. These pins can read values ranging from 0 to 1023. In this chapter, we will
have a look at some different sensors that may be useful for wearable projects and
introduce them to readers that are not too familiar with programming yet.

In this chapter, we will take a look at a collection of analog sensors, which can
be used to track movement and light. In the first two examples, we will focus
on a stand-alone sensor component, which will involve building circuits using
a breadboard. The remaining examples will use sensors that include prebuilt
circuits on a PCB board. In this chapter, we will also take a look at different
ways to communicate with our prototyping board and how to send data back
to the computer.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Sensors

[20]

If you run out of digital pins, you can always use the analog pins even
for reading digital sensors. Just remember that the output will be read
in the range of 0 to 1023 and not HIGH and LOW if you are reading
them as analog pins. The analog pins can be used as digital pins as
well. Analog pin A1 is the same as digital pin 14, and so on.

Sensors
In this chapter, we will cover bend sensors, pressure sensors, light sensors,
accelerometer, gyroscopes, and compass sensors. A sensor is a device that can
detect events or changes of different kinds and can provide a corresponding output.
It is a device that changes some characteristics due to external conditions and can
be connected to a circuit, converting the signal so that it can be interpreted by
a microprocessor.

With some sensors, you need to build you own circuitry and interpret the data
provided by the sensor through code. Some complex sensors have a built-in
communication protocol, which enables them to provide data corresponding to their
function. The sensitivity of a sensor indicates how much the output data can change.

A bend sensor
The first sensor we will try out is a bend sensor. Sometimes it is also known as a
flex sensor, and the name gives a good hint at what kind of sensor this is. As the
name suggests, this sensor senses bends. The sensor works similarly to most analog
sensors. These sensors are built on the same principal, where they take a voltage
input and the sensor acts as a resistor that can change its own resistance. In Figure 2.1
you will find all the components needed for this example. The component labeled
as 1, in Figure 2.1, is a regular resistor, which measures 10kΩ. Resistors are some of
the most common electronic components that you can find, and are used in almost
all electronic devices. A resistor is used to limit the flow of current in an electronic
signal. This means that if you apply a voltage at one end of the resistor, it will output
a lower voltage at the other end. In the case of this example, we need a resistor to
create what is known as a voltage divider in order to get good values from our
sensor. The component labeled number 2, in Figure 2.1, is the bend sensor. These
sensors detect bending in one direction. When left untouched, the bend sensor will
measure about 10kΩ, and when fully bent it will measure around 20 kΩ. Number 3,
in Figure 2.1, is the FLORA board we used in the previous chapter:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

Figure 2.1: Showing 1. The 10kΩ resistor 2. A Bend/flex sensor 3. The FLORA board 4. The bread board

Number 4, in Figure 2.1, is a breadboard, and this is not technically a component.
Breadboards are used for prototyping with electronics. When electronics are made,
components are soldered together, but before you show how everything connects and
what you want to make, it's good if you can try connections out before soldering them
together. This is when a breadboard comes in handy. The breadboard in Figure 2.1 is a
miniature version of a standard breadboard. The lines of a breadboard are connected
vertically in the middle of the board and horizontally at the edges. The + and – line
marks the horizontal connections, while in the middle segment of the board the lines
connect between the numbers and down from a to j. The following Figure 2.2 shows
an illustration of how the breadboard lines connect on the inside of the board:

Figure 2.2: Internal connections of the breadboard

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Sensors

[22]

Breadboards make a circuit bulkier, but they are not used for the final designs. They
are mainly used for trying out connections before soldering your components together.

Wires have also been added, so we can connect our sensor to the FLORA board later
on. In Figure 2.3, you will find the necessary connections to be made:

Figure 2.3: A close up of the breadboard connections

On the left side of the resister, we have a wire that connects to the 3.3 V output of the
FLORA board. Resistors have no polarity, which means the direction of connection
does not matter. They work both ways so to say.

On the right side of the resistor, we connected one of the connections to the bend
sensor, and one to a wire that we will connect to an analog pin of the FLORA board.
The second connection of the bend sensor is connected to ground. In this circuit,
power will be passed and limited through the resistor. Once on the other side of the
resistor, some of the electricity will be passed through the sensor and some will be
passed back to the analog pin. When we bend the sensor, we make it harder or easier
for the electricity to pass through the sensor depending on how we bend it. The
overflow of electricity that can't be passed through the sensor will be passed back
along the analog pin, which we will read through our FLORA board.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

Figure 2.4: Connecting the bend sensor

The preceding Figure 2.4 shows how to connect everything to the FLORA board
using alligator clips:

• Cable number 1 connects to 3.3 V
• Cable number 2 connects to D10
• Cable number 3 connects to GND

In order to check that everything works, we need to connect the FLORA board to
our computer and write some code. For all of the sensor examples in this chapter,
we will be using the serial library to send the data back to the serial monitor in your
Arduino IDE. Serial communication is not used in every sketch, so to save memory
space, the code that enables the communications is put in a library, which we can call
upon when we need it. This is why all serial commands start with Serial., which
means that we are calling the any command afterwards from the library. Serial
communication is just one of the many communication protocols that can be used.
Communication protocols are basically a set of rules on how two devices should
act in order to communicate with each other.

//variable to store the analog pin
int bendSensor = 10;

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Sensors

[24]

void setup(){
//Start the serial communication
 Serial.begin(9600);
}

void loop(){
//Save the data from the sensor into storeData
 int storeData=analogRead(bendSensor);
//Print the data and add a new line
 Serial.println(storeData);
//Give the computer some time to receive the data
 delay(200);
}

The setup is where we initialize the serial communication. When this is done,
you always need to declare the speed of your communication, which is calculated
in baud, that is, same as bits per second. The speeds are fixed, so if you want to
see what speeds are available, open up your serial monitor and you should find
something that looks like Figure 2.5:

When using serial communication, always use a delay in your
sketch to give the receiving side some time to be able to read it.
If you don't need to read it at human readable speed, a delay of
about 30 milliseconds will suffice.

Figure 2.5: Showing the serial monitor

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

In the bottom of the right corner in the serial monitor you will find a drop-down
menu with the available speeds. If there is no reason for choosing a particular
speed, I usually use 9600 baud. This rate is fast enough for most applications and is
supported by most devices. At the top of the serial monitor, you will find an input
box where you can send information to the FLORA board. The preceding Figure 2.5
also shows data that is sent from the sensor. In my case, the sensor outputs a steady
value of 489 when left untouched. When the sensor is fully bent, the value increases
to around 650. In the previous code example, the data was sent back to the computer
using the Serial.println() command, which adds a carriage return. This means
that when the data is received by the computer, it adds it to a new line when
presented on the screen. You can send data without the carriage return by simply
using the Serial.print()command. However, this will keep on printing data on
the right, on the same line, until the Arduino sends a line return.

The data can instead be formatted by the serial monitor using the drop-down menu
to the left of the speed menu. In this drop down, you will find different formatting
options such as adding a new line, carriage return, both, or none of them. Remember
that the built-in formatting in the serial monitor only works for incoming data.
On outgoing data, you will need to format your data in code.

In the next example, we will take a look at how to interact with a pressure sensor.

The pressure sensor
This example follows the same principals as the previous bend sensor, but this time,
we will try out a pressure sensor. The pressure sensor does the same thing as the
bend sensor where it regulates a voltage output depending on the pressure applied
to the sensor. If the sensor is pressed, it will add to the resistance and the voltage
coming out the other end of the sensor will be lower. Again, we will use the FLORA
board to detect the changes in the value of the output.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Sensors

[26]

You will need the following components found in Figure 2.6:

Figure 2.6: The FLORA board, bread board, pressure sensor and 10 kΩ resistor

From the left, you have the FLORA board, breadboard, pressure sensor, and a 10 kΩ
resistor. In order to make the circuit, we will be using the same setup as we did in
the bend sensor example. The pressure sensor is also known as a force sensor and
can be used to detect physical force, touching, or even weight. If weight is what you
are looking for, this might not be the best choice since this sensor doesn't output an
actual weight value, though by using some fixed weights and some calibration you
could make a crude scale.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

In Figure 2.7 you will find the necessary connections that need to be made:

Figure 2.7: Showing the connections to the FLORA board

Let's take a closer look at the connections:

• On the side of the resistor with only one wire, we have a connection to the
3.3V pin on the FLORA board.

• On the other side of the resistor, we have a connection to the first pin of
the pressure sensor and a wire connection to D12 on the FLORA board.

• The second pin of the pressure sensor connects to GND of the FLORA board.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Sensors

[28]

To test the range of the sensor, you can use the same code used for the bend sensor,
as it prints the analog data back to your serial monitor. In the case of the sensor,
I was using, it gave me almost the full range from 0 up to 1023. In the following
example, we use the value from the sensor to make a small visualization using the
onboard LED on the FLORA board:

//declare variables to store pin numbers
int pressureSensor=12;
int led=13;
void setup() {
 //declar pin as an output
 pinMode(led,OUTPUT);
}

void loop() {
 // read the input on analog pin 12:
 int pressureValue = analogRead(pressureSensor);
 //turn the led on
 digitalWrite(led,HIGH);
 //wait using the value from the sensor
 delay(pressureValue);
 //turn the led off
 digitalWrite(led,LOW);
 //turn the led on
 delay(pressureValue);
}

In the sketch, we use the data from the sensor to set the delay time of the LED. When
you press the sensor, this will lower the value, which will lessen the delay between
blinks. This in turn will mean that the LED will start to blink faster. Remember that
your sensor might have a slightly different value range, so you might need to modify
the value in order to find a satisfactory blinking speed. The best way is to print out
your sensor data to the serial monitor using serial communication in order to check
your range of values. Then, you can add or subtract with any amount you prefer
inside the delay, an example of this is shown as follows:

digitalWrite(led,HIGH);
 //wait using the value from the sensor
 delay(pressureValue+1000);
 //turn the led off
 digitalWrite(led,LOW);
 //turn the led on
 delay(pressureValue+1000);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

In the next sketch, for example, we will make a mini game where the goal is to find
the sweet spot. The code is set up so that you have to press the sensor in order to
find the hidden spot defined in the code. Once you find it, the LED will start to
shine for as long as you can hold the spot:

//declare variables to store pin number
int pressureSensor=10;
int led=7;

void setup() {
 //declare pin as an output
 pinMode(led,OUTPUT);
 Serial.begin(9600);
}

void loop() {
 //read the input on analog pin 12:
 int pressureValue = analogRead(pressureSensor);
 //as long as the value is in between 500 and 700 keep on looping
 while(pressureValue>500 && pressureValue<700){
 //turn the led on
 digitalWrite(led,HIGH);
 //check so that the value
 pressureValue = analogRead(pressureSensor);
 }
 //turn the led off
 digitalWrite(led,LOW);
}

The sweet spot is hidden in the range of 500 to 700. When the value is in the sweet
spot range, we enter the while loop, which will keep on looping until the condition
for the while loop is no longer met. This is why we need to add an additional
reading of the sensor inside the loop, or the code will get stuck inside the while loop
forever. As long as you can keep the value inside the range, the LED will light up.
If you press the sensor too hard or too little, the while loop will be broken and the
LED will turn off. If you find it too easy to find the sweet spot, try to decrease the
range. This will make it much hard to find the spot.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Sensors

[30]

Light dependent resistors
In this example, we will have a closer look at an LDR. The principal behind it is the
same as the bend sensor used in previous bend sensor example. Depending on the
light levels cast onto the sensor, the sensor changes its output voltage. LDR comes in
different shapes and sizes and the LDR used in Figure 2.8 comes premounted with a
surface mounted resistor on a small PCB manufactured by Adafruit. The principal
of the PCB is similar to the circuit created using a breadboard and components in
Figure 2.3.

Figure 2.8: A PCB mounted LDR and resistor

The difference is that in the case of the PCB, in this example, everything is mounted
nicely and we only need to attach it to the FLORA board using alligator clips. As
shown in Figure 2.8, the LDR PCB has three connections VCC, OUT, and GND.
Sometimes VCC is used to indicate power in. OUT in this case is the output signal,
which is an analog signal. In Figure 2.9, you will find the necessary connections to the
FLORA board. There is not a lot of space between the connections, so make sure that
the alligator clips do not touch one another.

Figure 2.9: The LDR connected to the FLORA board

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Since we are using the same connections as in the previous example in the chapter,
you can use the same code to test you sensor. The following sketch is based on the
same code as used in the bend/flex sensor example, but we have implemented some
code to remap the range of values from the sensor into a new larger range of values.

//Variable to store the pin
int ldrSensor = 10;

void setup(){
//Start the serial communication
 Serial.begin(9600);
}

void loop(){
//Save the data from the sensor into storeData
 int storeData=analogRead(ldrSensor);
//Re-map storeData to a new range of values
 int mapValue=map(storeData,130,430,0,2000);
//Print the re-mapped value
 Serial.println(mapValue);
//Give the computer some time to print
 delay(200);
}

The map() function in the code is used to take on a value range and remap it to a
new range of values. In order for this function to work, you need to know the range
of values possible from the senor you are using. Using the code from the bend sensor
example, you can do this. In order to check you LDR sensor range, you need to print
the data to your serial monitor. First, check the value you get when the LDR is not
covered and write this down. Then, cover the LDR as much as possible and check
the value. Make sure to remember this value as well since you'll need it.

The map function takes five parameters map(sensorValue, sensorMin, sensorMax,
desiredMin, and desiredMax). The first parameter is the actual sensor data. The
second and third are the minimum and maximum values from the sensor, which
you wrote down from the previous test. The fourth and fifth are the minimum and
maximum values of your desired range. In the case of the LDR that I an using, this
gives a range of values between 130 to 430, which we will choose to remap into a
value range of 0 to 2000.

The map function comes in handy in many cases when you want to use the data
from a sensor but the default range does not fit your needs. Using the map function,
you can translate it into any desired range.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Sensors

[32]

The accelerometer, compass, and
gyroscope
In the following example, we will try out an accelerometer, which is a device used
for sensing g-force. The accelerometer can sense movement in different directions.
Normally, there are two types of accelerometer: the 2 axes and 3 axes. The 2 axes
measures in two directions, left to right and front to back, and these directions are
often named as the x axis and y axis. The 3 axes accelerometer also measures in a z
axis, which is up and down. The accelerometer measures movement relative to its
own position, which means that when you move it, it measures the g-force in the
direction you are moving it.

The sensor used in this example is the FLORA accelerometer/compass/gyroscope,
which is actually three sensors in one. Besides the accelerometer, it holds a compass,
known as a magnetometer, which senses where the strongest magnetic field is
coming from. If there are no other magnets near by, the strongest magnetic field
comes from the Earth's north pole.

The third sensor is the gyroscope, which is a device that can sense rate of orientation
on a spin axis through external torque. This basically means that the gyroscope can
sense in which direction you are turning, compared to the accelerometer that senses
which direction you are tilting the sensor.

In previous examples, we have been using serial communication to communicate
with our sensors, but in the case of the FLORA accelerometer/compass/gyro, we
will be using a different communication protocol called I2C. The I2C is a protocol
developed by Philips, and is used to connect low-speed devices to microprocessors,
among other things. It uses a master-slave system, which involves one device acting
as the master and all the other devices connected to the communication channel
acting as slaves. The master can talk to all of the slaves, but the slaves can only
talk to the master. I2C is a two-wire protocol where you can hook up multiple
slaves to the same communication lines in any order you want, since all slaves are
given a unique ID to keep track of them. Keeping track of the communication is
the master job so no more than one slave can communicate at the time. In the case
of this example, we only have two devices, the FLORA, which will be acting as a
master, and the accelerometer/compass/gyro sensor, acting as slaves. Using I2C,
we can communicate with all three sensors without connecting them on separate
communication channels.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

The FLORA accelerometer/compass/gyro is based on a chip called LSM9DS0, which
by default is a bit tricky to communicate with. There are many breakout boards based
on the LSM9DS0 available, and most of them are supplied with Arduino libraries, even
the FLORA one. On the following GitHub link, https://github.com/adafruit/
Adafruit_LSM9DS0_Library you can find the Adafruit LSM9DS0 library written by
Kevin Towsend, which is an excellent library that simplifies the communication with
the LSM9DS0. Just press the Download ZIP button on the GitHub repository and the
library will start downloading.

As I mentioned before, libraries contain code that is usually too long and complicated
to copy. In most cases, the code is used for different functionalities, and does not need
to be changed. In order to make life easier for others to use their code, some kind souls
have made them into libraries so that they can easily be shared.

Once the LSM9DS0 library is downloaded, you need to unzip the folder and rename
it to Adafruit_LSM9DS0. then place it into your libraries folder, inside you Arduino
folder, by navigating to Arduino | libraries. If this is the first time you are installing
a library, this folder might be missing, and in that case, you just create a folder inside
the Arduino folder called libraries. To find out where your libraries folder is
located, you can check in the Arduino IDE by navigating to Arduino | preferences.

This will open up a new window that shows the full path to your libraries folder.

The LSM9DS0 library is dependent on another library by Adafruit, which you also
need to install, and you can find it on the following link:

https://github.com/adafruit/Adafruit_Sensor.

www.it-ebooks.info

https://github.com/adafruit/Adafruit_LSM9DS0_Library
https://github.com/adafruit/Adafruit_LSM9DS0_Library
https://github.com/adafruit/Adafruit_Sensor
http://www.it-ebooks.info/

Working with Sensors

[34]

Install it as you did with the LSM9DS0 library and rename it as Adafruit_Sensor.
When the libraries are installing, we can carry on with hooking up our sensor to
the FLORA board, as shown in Figure 2.10:

Figure 2.10: Connecting the sensor to the FLORA board

The first connection that needs to be made is the 3.3 V, which connects to the 3.3 V
pin on the FLORA board. Then connect SDA, SCL, and GND to the same pins with
the same name on the FLORA board. Once all the connections have been made, you
can enter the following code into the IDE and upload it to the FLORA board:

/*Import the necessary libraries. Wire.h and SPI.h are included in the
IDE and does not need to be downloaded*/
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_LSM9DS0.h>
#include <Adafruit_Sensor.h>

// set up i2c
Adafruit_LSM9DS0 lsm = Adafruit_LSM9DS0();

void setupSensor()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[35]

{
 /*Set the accelerometer range where the range can be changed to
4G,8G or 16G */
 lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_2G);
 //lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_4G);
 //lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_6G);
 //lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_8G);
 //lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_16G);
}

void setup()
{
 //Wait for communication to start
 while (!Serial);
 //Set the baud rate
 Serial.begin(9600);
 //Print message to serial monitor
 Serial.println("Starting communication");

 // Try to initialize and warn if we couldn't detect the chip
 if (!lsm.begin())
 {
 Serial.println("Something went wrong, check you connections");
 while (1);
 }
 Serial.println("Connection established");
 Serial.println("");
 Serial.println("");
}

void loop()
{
 //Get data from the sensor
 lsm.read();
 //Print the accelrometer sensor data to the serial monitor
Serial.print("Accel X: ");
Serial.print((int)lsm.accelData.x);
Serial.print(" ");
Serial.print("Y: ");
Serial.print((int)lsm.accelData.y);
Serial.print(" ");
Serial.print("Z: ");
Serial.println((int)lsm.accelData.z);
Serial.print(" ");
 delay(200);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Sensors

[36]

This code example initializes the accelerometer and prints the data from the sensor
back to the serial monitor. Don't forget to open the monitor in order to see the data
flow. If the sensor is left untouched, you will find that the sensor data does not change
that much. In the case of my sensor, the values on all three axes ranged from +30 to -30
as some noise is expected. When I start tilting the sensor to the left, the value starts to
increase on the x axis, and if I tilt it to the right, the x axis value starts to decrease. The
value range on your sensor might be different, so try it out yourself by tilting the sensor
in different directions while looking at the serial monitor to get a sense of you sensor
range. Accelerometers can only sense movement in 180 degrees, so once your flip it to
180 degrees, the value starts over for the corresponding value on the other side.

In the next code example, we added the functionality of both the compass
and gyroscope along side the accelerometer code in order to show the sensors
full functionality.

//Import the necessary libraries
#include <Wire.h>
#include <SPI.h>
#include <Adafruit_LSM9DS0.h>
#include <Adafruit_Sensor.h>

// set up i2c
Adafruit_LSM9DS0 lsm = Adafruit_LSM9DS0();

void setupSensor()
{
 /*Set the accelerometer range where the range can be changed to
4G,8G or 16G*/
 lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_2G);

 //Set the magnetometer sensitivity where the range can be changed to
4GAUSS, 8GAUSS or 12GAUSS
 lsm.setupMag(lsm.LSM9DS0_MAGGAIN_2GAUSS);

 /*Setup the gyroscope sensitivity where the range can be changed
500DPS or 2000DPS*/
 lsm.setupGyro(lsm.LSM9DS0_GYROSCALE_245DPS);

}

void setup()
{
 //Wait for communication to start
 while (!Serial);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[37]

 //Set the baud rate
 Serial.begin(9600);
 //Print message to serial monitor
 Serial.println("Starting communication");

 // Try to initialize and warn if we couldn't detect the chip
 if (!lsm.begin())
 {
 Serial.println("Something went wrong, check you connections");
 while (1);
 }
 Serial.println("Connection established");
 Serial.println("");
 Serial.println("");
}

void loop()
{
 //Get data from the sensors
 lsm.read();
 //Print the accelrometer sensor data to the serial monitor
 Serial.print("Accel X: "); Serial.print((int)lsm.accelData.x);
Serial.print(" ");
 Serial.print("Y: "); Serial.print((int)lsm.accelData.y);
Serial.print(" ");
 Serial.print("Z: "); Serial.println((int)lsm.accelData.z);
Serial.print(" ");
 //Print the compass sensor data to the serial monitor
 Serial.print("Compass X: "); Serial.print((int)lsm.magData.x);
Serial.print(" ");
 Serial.print("Y: "); Serial.print((int)lsm.magData.y);
Serial.print(" ");
 Serial.print("Z: "); Serial.println((int)lsm.magData.z);
Serial.print(" ");
 //Print the gyro sensor data to the serial monitor
 Serial.print("Gyro X: "); Serial.print((int)lsm.gyroData.x);
Serial.print(" ");
 Serial.print("Y: "); Serial.print((int)lsm.gyroData.y);
Serial.print(" ");
 Serial.print("Z: "); Serial.println((int)lsm.gyroData.z);
Serial.println(" ");
 //wait for a bit
 delay(200);
}

With the help of the preceding code, we will now be able to show the sensors
full functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Working with Sensors

[38]

Summary
In this chapter, we had a look at some different analog sensors that might be suitable
for working with wearables. What defines an analog sensor is that they can output
a range of values, not just 0s and 1s. The selection of sensors used in this chapter is
just a small portion of the sensors available on the market, and if you can think of
something that you might want to sense in the future, there is a good chance there
is a sensor available for it.

The purpose of the chapter has also been to introduce readers not familiar
with Arduino programming to some new commands, as well as two different
communication protocols for interfacing with more complex sensors. Sensors that
use some form of communication protocol are often referred to as complex sensors,
and the ones that don't, such as the bend sensor and LDR used in this chapter, are
normally just called sensors.

Finding the right sensor for your project may be tricky sometimes, and some of
the sensors available can be expensive. Think twice before you pick your sensor.
Sometimes it is possible to use cheaper components for the same purpose. For
example, if you need to track movement very precisely, a combination sensor such as
the accelerometer/compass/gyro in this chapter is great. But if its basic movement or
non-movement you are looking for, you might be fine with using a inexpensive tilt
sensor, which acts as a button with a metal ball inside it. When the tilt sensor moves,
the metal ball rolls over and completes the circuit. This can be used as a digital switch
that switches between HIGH and LOW, instead of using one with a large number of
continuous variables, which need processing. This simpler option might save you
time and money.

All of the sensors in this chapter were picked for their "wearability" in terms
of function. They were also picked because they are fairly easy to get started with.
When it comes to developing wearable project, you will find that these sensors
come in handy. When it comes to the human body, we have a tendency to move
around, and this is where the accelerometer/gyro/compass sensor may come
in handy. The bend/flex sensor might come in handy if you want to track more
specific movements of the body, especially if placed in the right location such as
the cress of an arm or knee. Even if LDRs are simple sensors, they are good
enough to distinguish if some one is inside or outside.

As I just mentioned, this chapter and the first one are designed to get you going if
you are completely new to working with electronics and programming. In the next
chapter, you will create your first project, which implements both analog sensors
and LEDs in order, to create two automated turning light bike gloves.

www.it-ebooks.info

http://www.it-ebooks.info/

[39]

Bike Gloves
In this chapter, we will take a look at how we can create an automated lighting
system for indicating turns while biking. When biking in the dark, it can sometimes
be hard to see when a cyclist indicates to make a turn or stop. This project will help
in these situations by adding some light to the bicyclist's hands. The goal is to create
a set of devices that work both with and without gloves, which can be worn on top
of your hands. Since we have the advantage of using microcontrollers, we will also
build these bike gloves so that they can detect if lighting is needed or not.

In this chapter, you will learn more about accelerometers, light sensors, and some
more advanced coding. The chapter will also introduce the basic concept of gesture
recognition and how to program for interactivity. We will also take a look at how to
finalize you project and power the device using external power sources.

Electronics needed
For this project, we will need the following components as shown in Figure 3.1. Up
on the right, you will find the FLORA board used in previous chapters. The round
sensor at the bottom in Figure 3.1 may seem familiar. This is the same accelerometer/
compass/gyro we used in the previous chapter. We will be using this sensor to track
some basic gestures, so we know when to turn on the light and if we want to make a
turn or stop. To the left and right of the accelerometer/compass/gyro you will find
a set of white and red LEDs. These are surface mounted LEDs specially made for
working with wearables. For this project, you can use any amount of LEDs and any
color you want, but the idea is to have white LEDs for indicating direction and red
ones for indicating stopping. When choosing the color of your LEDs, first make sure
that they follow the biking laws in your country. Some countries have special rules
for the color of the light in relation to their position on the bike. For instance,
in some countries, you're only allowed to use green lights on the front of the bike
and red ones on the back.

www.it-ebooks.info

http://www.it-ebooks.info/

Bike Gloves

[40]

The last component in the top-left corner is a light sensor based on the TSL2561 chip.
This sensor senses luminosity and is an advanced digital sensor:

Figure 3.1: The FLORA board, LEDs, accelerometer/compass/gyro, TSL2561

Light is usually measured in the unit candela, while lumens measure the total
amount of light. Lux is a unit defined by lumens per area, where 1 lux is the same
as 1 lumen per square meter. The TSL2561 sensor can measure anything from -0.1 to
40000+ lux, which makes it a pretty good sensor for detecting light levels.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[41]

You might now wonder why we are not using the light sensor from previous
examples. The reason is that the analog light sensor used in the previous chapter
is not very precise and will need to be constantly calibrated, since riding a bike might
entail moving around in multiple light conditions. The TSL2561 sensor actual reads
the level of light, making it more reliable and providing more interesting scenarios
for use. Other components needed for this chapter are:

• 220 Ω resistors
• Straps or wristband with an approximate width of 4 cm
• Soldering iron
• Wires
• Pliers and scissors

Trying out the TSL2561
Since the TSL2561 sensor is an advanced digital sensor, we will need to communicate
with over I2C, since we can't read it as an analog sensor. Unlike other simpler
light sensors, the TSL2561 chip measures both infrared and visible light to better
approximate the response of our own eyes. As many of the components used in this
book, the TSL2561 breakout board we will be using is from Adafruit, which also
supplies a library for this sensor. This makes communicating with the sensor a bit
easier. You can find the library on their GitHub: https://github.com/adafruit/
Adafruit_TSL2561.

Download and install the library into you Arduino library folder. If you don't
remember how to do this or if it is your first time installing a library, please take
a look at Chapter 2, Working with Sensors where we explained the processes.

www.it-ebooks.info

https://github.com/adafruit/Adafruit_TSL2561
https://github.com/adafruit/Adafruit_TSL2561
http://www.it-ebooks.info/

Bike Gloves

[42]

Once you have your library installed, its time to connect the TSL2561 sensor to you
FLORA board. For testing the TSL2561 sensor, we will use alligator clip wires to
connect the FLORA board. Remember there is not a whole lot of space in between the
pins, so makes sure that the alligator clips do not connect to any other pins. Figure 3.2
shows the necessary connections that need to be made to the FLORA Board:

Figure 3.2: Showing the connections from the TSL2561 to the FLORA board

The 3.3 V pin on the TSL2561 board connects to the 3.3 V pin on the FLORA board.
The SDA pin on the TSL2561 board connects to the SDA on the FLORA, and the SCL
pin connects to the SCL pin. Don't forget to connect GND on both boards. As always,
in order to be complete a circuit, ground needs to be shared in-between components.

Once everything is connected, we can upload the following code to the FLORA
board to check if we can receive any data:

//Include the libraries needed
#include <Wire.h>
/*If you a missing the Adafruit sensor library have a look at chapter
2 for a link to the library and install instructions*/
#include <Adafruit_Sensor.h>
#include <Adafruit_TSL2561_U.h>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

//Give the sensor a ID which in this case is 12345
Adafruit_TSL2561_Unified tsl = Adafruit_TSL2561_Unified(TSL2561_ADDR_
FLOAT, 12345);

//Function to configure the sensor
void configureSensor()
{
 /* This set the gain to auto, you can also manual set the gain to no
gain or 16x the gain.*/
tsl.enableAutoRange(true);
 // To manually set the gain use the following commans
 // tsl.setGain(TSL2561_GAIN_1X);
 // tsl.setGain(TSL2561_GAIN_16X);

 /* modifying the integration time gives you better a resolution on
you readings (402ms = 16-bit data) */

/*Faster reading but lower resolution
tsl.setIntegrationTime(TSL2561_INTEGRATIONTIME_13MS);
Medium speed and medium resolution tsl.setIntegrationTime(TSL2561_
INTEGRATIONTIME_101MS);
High resolution but slow speed which we will be using for this
example*/
 tsl.setIntegrationTime(TSL2561_INTEGRATIONTIME_402MS);

}

void setup()
{
//Start serial communication
 Serial.begin(9600);
//Print test message
 Serial.println("Light Sensor Test");

 /* Initialize the sensor */
 if(!tsl.begin())
 {
 /* There was a problem detecting the sensor check your wires */
 Serial.print("Cant detect the TSL2561 detected Check your
wiring");
 while(1);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Bike Gloves

[44]

 /* Setup the sensor gain and integration time */
 configureSensor();

}

void loop()
{
 /* Get a new sensor event */
 sensors_event_t event;
 tsl.getEvent(&event);

 /* If there is light display the results */
 if (event.light)
 {
 Serial.print(event.light); Serial.println(" lux");
 }
 else
 {
 /* If there is no light */
 Serial.println("Cant see anything..Show me some light");
 }
 delay(250);
}

Note that you can set the gain of this sensor. Gain is the measurement of the ability
to increase the power or amplitude of a signal. What this means is that you can set
the sensitivity of a sensor by increasing or decreasing the gain. The TSL2561 can also
set the gain automatically using the command:

tsl.enableAutoRange(true);

In order to get a sense of how the sensor reacts under different light conditions,
I recommend you do some testing with the sensor outdoors.

Detecting gestures
In this next part, we will have a look at how to detect gestures with the accelerometer.
For this project, we will not be using the gyro and compass. However, remember that
even though this chapter will eventually end, it does not mean your projects have to.
Once you are done, you can keep developing the project further and implementing
the compass into the bike gloves, which may come in handy in the future.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

First, let's take a look at how we can detect gestures. We will need three different
interactions, the holding of the handlebar, indicating a turn, and stopping. We need
to know that we are holding the handlebar, since this will act as our default state
when the light should be off. In order to turn the white LEDs on, we need to know
when the hand is lifted to indicate a turn, and we need to know when the hand is in
a vertical position so we can turn on the red LEDs to indicate that we are stopping.
Take a look at Chapter 2, Working with Sensors in order to connect the accelerometer.
As mentioned earlier, the connections that need to be made from the accelerometer
to the FLORA board is 3 V to 3.3 V, GND to GND, SDA to SDA, and SCL to SCL:

#include <Wire.h>
#include <SPI.h>
#include <Adafruit_LSM9DS0.h>
#include <Adafruit_Sensor.h>

// i2c
Adafruit_LSM9DS0 lsm = Adafruit_LSM9DS0();

void setupSensor()
{
 //Set range of the accelerometer
 lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_2G);
}

void setup()
{
 //wait until serial starts
 while (!Serial);

 Serial.begin(9600);

 // Try to initialize sensor and warn if it cant find it
 if (!lsm.begin())
 {
 Serial.println("Cant find the sensor, Check your connections!");
 while (1);
 }
 Serial.println("Found the sensor");
 Serial.println("");
 Serial.println("");
}

void loop()

www.it-ebooks.info

http://www.it-ebooks.info/

Bike Gloves

[46]

{
 //read the sensor
 lsm.read();
 if(lsm.accelData.x<0 && lsm.accelData.y<0){
 Serial.println("Holding handlebar");
 }
 if(lsm.accelData.y>1000 && lsm.accelData.x<0){
 Serial.println("Stopping");
 }
 if(lsm.accelData.x<-1000 && lsm.accelData.y<3000){
 Serial.println("Turning");
 }
delay(500);
}

In the sketch, we are using a combination of the x and y axis to detect the gestures.
Note that the values used in the preceding sketch were generated from the direction
of my sensor, and the reference value that you need might be something completely
different. It all depends in which direction you sensor is placed. The easiest way to
figure out the gestures is to place the sensor flat on the table and read the x and y
values. This will act as your default state, or the "holding of the handlebar" state.
In my case, I got steady negative readings, so any changes to the positive, or bigger
then 0 as presented in the code, would indicate that the hand is moving. Hold the
sensor vertically in order to figure out what value readings will be suitable for
indicating a stopping gesture. From the stopping position, turn the sensor about
45 degrees and you will find the turning position.

This sketch is just a rough estimate and shows how you can make your own simple
gesture recognition in code. The values we base our gestures on also depend on
whether we are calibrating the left or right glove. In the final version of the code for
this project, we will need to modify the values. In order to fine-tune everything, we
need to put all the components together.

Making a glove
For this first project, we will keep the casing of the project fairly simple. When
it comes to your own casing, you can use whatever material you find suitable
and let your creativity flow. The idea for bike gloves lights in this chapter is to encase
the electronics, which can then be attached to a pair of gloves using Velcro. The
reason for this is to be able to swap for a wristband during warmer weather.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

In Figure 3.3 you will find the connection layout of how to connect all the LEDs,
the TSL2561, and the accelerometer to the FLORA board:

Figure 3.3: The connection needed for all the components

The LEDs are connected in parallel, in combinations of three and two LEDs. There
are many ways you can connect electronic components, and the two easiest are
parallel and series connection. When connected in parallel, the same voltage is
applied to all the components. When connected in series, the same current is passed
through all the components. The reason for connecting more than one LED to the
pins is so that we can control multiple LEDs with one pin. The reason for having
them in pairs of three and two LEDs is to make a small animation when turning and
stopping. The setup in this chapter is just an example of the LED configuration, and
you can use any setup you like for your project. Remember that the special surface
mounted LEDs in this chapter have an on-board 220 Ω resistor built in. If you are
using a normal resistor, you need to add an external resistor to your circuit. As you
can see, both sensors are connected to the same communication pins on the FLORA
board. While using I2C, you can connect multiple devices in the same way and have
them communicate with the microcontroller. One disadvantage with I2C is that we
can only communicate with one device at a time because it uses the same wire for
all devices on the I2C port. However, this is not a problem, since the Atmega chip
used on most Arduino boards is pretty fast. Switching the communication from one
device to the other is how it is done, and in terms of human interaction, the FLORA
board is much faster, and that is why we can precise.

www.it-ebooks.info

http://www.it-ebooks.info/

Bike Gloves

[48]

To start we will solder wires to the LEDs and mount them on the casing. For the
casing I'm using a transparent spray can cap, which I have cut down a bit to make
it narrower. It has a nice round form factor and will protect the circuit from rain if
case you get stuck in bad weather. The spray can cap I found is slightly bigger than
the FLORA board, which is great since we need to fit in all the wiring and the rest of
the components. Stack all the components together to give a rough estimate of how
much you need to cut from the cap.

Figure 3.4: The LEDs soldered in place

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

Figure 3.4 shows the LEDs inside the can cap. In order to fix them to the cap, use hot
glue and glue them with the LEDs facing down. The idea is that the LEDs will shine
through the transparent cap. You can use any glue you want, but hot glue is great,
since if you place something in the wrong place, you can still remove it and try again.
The LEDs in Figure 3.4 are soldered together according to schematic in Figure 3.3. All
the ground connections have been soldered together since ground is the same for
all components. From each set of LEDs and the ground connection we have added
a wire so that we can connect them to the FLORA board. The next step is to connect
the TSL2561 and accelerometer to the FLORA board.

Figure 3.5: The TSL2561 and accelerometer connected and soldered to the FLORA board

Figure 3.5 shows how the sensors can be connected to the FLORA board. The setup to
the left in Figure 3.5 shows how the sensors have been attached to the FLORA board
using hot glue. The hot glue also acts as a separator, so the sensors do not come in
direct contact with the FLORA board, avoiding short circuits. To the left in Figure 3.5,
you will find the necessary connections soldered. If you're new to soldering, I would
suggest training before you attempt soldering the sensor to the board, since it is a bit
tricky. Beware of cold soldering and exposed wiring, and take your time with the
soldering. Cold soldering are solder joints with a bad connection due to the solder
not melting properly. In the following link, you can find more information about
cold soldering and what it looks like: https://learn.adafruit.com/adafruit-
guide-excellent-soldering/common-problems.

www.it-ebooks.info

https://learn.adafruit.com/adafruit-guide-excellent-soldering/common-problems
https://learn.adafruit.com/adafruit-guide-excellent-soldering/common-problems
http://www.it-ebooks.info/

Bike Gloves

[50]

The FLORA board is actually designed to be stitched into garments using conductive
thread, but when it comes to small project such as this one, the increased connection
pads really make things a bit easier to solder to the FLORA board.

Figure 3.6: Showing a 3.7V battery and all the components in place

Once you have soldered the sensors to the FLORA board it is time to connect the LEDs
and place all the components inside the cap. The LEDs connect to available digital pins
left on the FLORA board. You can have a look at the final code for this project in order
to see which LEDs connect to which pins. It is no problem if you end up soldering the
wrong LEDs to the wrong pins, since you can always swap the order of the pins in the
code later on. In Figure 3.6, you will find all the components in place, and the battery
we will be using for this project. I have chosen a 3.7 V 500mAh battery for this project.
The primary reason for choosing this battery is that it fits inside the cap and it outputs
the right voltage. The 500 mAh should also keep the light going for some time before
you need to recharge the battery. Batteries are measured in voltage and amperes.
The abbreviated unit mAh is short for milliampere hours, which will determine how
long the battery can be powered. The battery we are using can produce 500 mAh
for 1 hour. How long a battery last depends on the circuit using it. Let's say that the
bike light will use 100 mAh when it is done. With a 500 mAh battery it would then
last for 5 hours. Alternatively, calculating the time a battery will last is hard, since it
depends on many conditions. Sometimes, your circuits might use more power under
intensive operations, and sometimes less power when things connected are not active.
The outside temperature can also affect the battery life time, so I would consider any
calculations made on battery life time to be rough estimates.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[51]

Recharging the battery is possible since this is a lithium-ion battery. In lithium-ion
batteries, the ions move between the anode and the cathode. They use a lithium
compound as the electrode material instead of metallic lithium used in lithium
batteries, which are not rechargeable. You can use any battery really as long as the
output voltage is in the range of what the FLORA board can handle and it has a
JST connector. The JST connecter is the name of the connector on the opposite side
of the mini USB connector.

This is a standard form factor connector, and this type of connector is found on many
electronic components. In order to power the FLORA board from an external power
source, you need to switch the small switch found on the top of the board over to
BAT. The switch also acts as an on off switch while powering your FLORA board
from an external power source.

But before you attach your battery, we need to upload the following code to the
board. When connecting your FLORA board to the USB cable, the FLORA board
will be powered from your computer:

#include <Wire.h>
#include <SPI.h>
#include <Adafruit_LSM9DS0.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_TSL2561_U.h>

// i2c
Adafruit_LSM9DS0 lsm = Adafruit_LSM9DS0();
//Give the accelerometer a name
Adafruit_TSL2561_Unified tsl = Adafruit_TSL2561_Unified(TSL2561_ADDR_
FLOAT, 12345);
//Declare names for all the led pins
int redLed1=9;
int redLed2=10;
int whiteLed1=12;
int whiteLed2=6;

void setup()
{
//Declare all the led pins as outputs
 pinMode(redLed1,OUTPUT);
 pinMode(redLed2,OUTPUT);
 pinMode(whiteLed1,OUTPUT);
 pinMode(whiteLed2,OUTPUT);
//Start the serial communication
 Serial.begin(9600);

www.it-ebooks.info

http://www.it-ebooks.info/

Bike Gloves

[52]

//Wait until the communication starts
 while (!Serial);

 // Setup both sensor
 configureSensors();

 if(!tsl.begin())
 {
 /* Cant find the TSL2561, check your connections */
 Serial.print("Cant detect the TSL2561 detected Check your
wiring");
 while(1);
 }
 // Try to initialize the light sensor
 if (!lsm.begin())
 {
 Serial.println("Can not find the sensor, Check your
connections!");

 }

void loop()
{

 /* Get a new sensor event */
 sensors_event_t event;
 tsl.getEvent(&event);

 /* If the lux goes below 70 then its dark and we can start using the
leds */
 if (event.light>70){
 lsm.read();
 //If the hand is in the turn position light the white leds
 if(lsm.accelData.x<-1000 && lsm.accelData.y<3000){
 digitalWrite(whiteLed1,HIGH);
 delay(500);
 digitalWrite(whiteLed1,LOW);
 digitalWrite(whiteLed2,HIGH);
 delay(500);
 digitalWrite(whiteLed2,LOW);
 }
 //If the hand is in the turn position light the red leds
 if(lsm.accelData.y>1000 && lsm.accelData.x<0){
 digitalWrite(redLed1,HIGH);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[53]

 delay(500);
 digitalWrite(redLed1,LOW);
 digitalWrite(redLed2,HIGH);
 delay(500);
 digitalWrite(redLed2,LOW);

 }
 }
 delay(500);
}
//Configure both the sensors
void configureSensors()
{
 tsl.enableAutoRange(true);
 tsl.setIntegrationTime(TSL2561_INTEGRATIONTIME_402MS);
 lsm.setupAccel(lsm.LSM9DS0_ACCELRANGE_2G);
}

In the preceding sketch, we first checked the light conditions. I found that the lux
levels were around 70 when the sun started to set, so I used this as my condition for
activating the bike glove. The light condition might be different where you are located,
so remember to make some tests outside before you choose you own condition. If its
dark outside, we then carry on and read the accelerometer to detect which position the
hand is in. If the hand is in the turning position, we activate the white LED pattern,
and if it is in the stop position, we activate the red light pattern.

Figure 3.7: Everything in place

www.it-ebooks.info

http://www.it-ebooks.info/

Bike Gloves

[54]

Once your code is done, it is time to put everything in place. In Figure 3.7, you can
see how we added a round piece of MDF as a lid. MDF stands for medium density
fiberboard, which is a wooden fiber material that is fairly cheap and easy to cut. I
made mine a little bit bigger than the bottom of the cap so that I could press it in for
a snug fit. The last thing you need to do is to add Velcro to the bottom of the MDF
and stich the opposite piece of Velcro to any pair of gloves, and you are good to go.
In order for this turn light system to work, you would have to duplicate the project,
so you can fit it to a second glove. But once you have made one, the second should
be much easier. In Figure 3.8 you can see the finished project and how the lighting
animation works.

Once you have completed the steps in this chapter, you are free to do any
modifications to the project you wish. You could start experimenting with different
light patterns, adding more gestures, or experimenting with other materials for the
casing. The choice is yours.

Figure 3.8: Bike lights blinking

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[55]

Summary
In this chapter, we experimented a bit with the TSL2561 sensor and the accelerometer
sensors. The TSL2561 sensor may seem a bit over the top for this project, since you
can make the bike gloves using an LDR sensor such as the one in Chapter 2, Working
with Sensors. Besides being a more accurate light sensor, the TSL2561 sensor has one
advantage in regards to this project. Since the pin layout is limited on the FLORA
board, we save an analog pin. Using a digital sensor we can communicate with over
I2C. The same protocol is what we used to communicate with the accelerometer.
Using this sensor, we have also introduced the concept of gesture tracking. This is
one possible use of the accelerometer. As your programming knowledge progresses,
this sensor might offer new possibilities. We have also learned a bit about how we
can finalize projects and how to power them with external power sources. In the
following chapters, we will keep on using batteries to power our project and dig
deeper into coding.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[57]

LED Glasses
In this chapter, we will look at how to create a pair of LED glasses. In essence,
these glasses are an LED matrix. A matrix is an arrangement of LEDs in columns
and rows, where we take advantage of the polarity of the LEDs so we can control
30 LEDs separately using only 15 pins on the Arduino board. The LED matrix has
been around for many years and is still used today in some screen technologies. For
example, digital bus signs are usually made by implementing an LED matrix, where
each individual LED acts like a pixel.

In this chapter you will also learn a little bit about how to create your own glasses and
soldering techniques. We will also have a look at some more advanced programming,
where we will be implementing some simple animation for you to build upon.

The materials needed are:

• 30 LEDs (5 mm) in any color
• A trinket board or an Arduino micro board
• An FTDI to USB converter
• Wires
• A soldering iron
• A 3-5V lithium battery (the smaller the better)
• A JST female connector
• 3 mm MDF
• 220Ω resistors

www.it-ebooks.info

http://www.it-ebooks.info/

LED Glasses

[58]

Making the glasses
You can make your glasses out of anything you like and it might even be possible to
modify a pair of existing sunglasses if they are big enough. My good friend Roger
Persson was nice enough to design a pair of glasses for this book. In Figure 3.1 you will
find the design of the glasses with measurements. Remember that these measurements
might need to be modified so that the glasses fit your particular head size.

Figure 3.1: The glasses design

The design of the glasses is very simple yet fits the purpose. The design consists
of three main pieces, the front and two side frames. The two smaller pieces are
used for added support when connecting the frames to the front panel. The frames
can be simply glued to the corners of the front panel, while the two small pieces are
glued to the inside corners on each end, as shown in Figure 3.2. The design template
can be used to cut the pieces out from any material you like, but I recommend a
sturdy material of at least 3 mm thickness. Plastic materials would also work for this
project, or you could even make the frames out of cardboard, which can easily be cut
by hand.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[59]

The glasses presented in this chapter were cut from 3 mm MDF using a laser
cutter. I don't expect most readers to have their own laser cutter, but many bigger
cities today have something called hacker spaces or Fab Labs, and some even
have them in their city's libraries. The concept of Fab Labs was developed by the
Massachusetts Institute of Technology, building on the idea of hacker spaces, which
are locations that offer access to different fabrication tools and equipment where
different people come to work on projects. Hacker spaces are usually a place where
people interested in electronics and programming meet to share ideas and work on
projects. Fab Labs are more oriented toward fabrication, not just digital entity, and
are open to the public. If you haven't checked already, I suggest you investigate
whether there is a hacker space or Fab Labs close by since you now have the perfect
excuse to head over for a visit.

Figure 3.2: The laser-cut pieces

If you choose to modify the design, remember to keep the size of the holes at 5 mm
since this is the size of the LEDs we will be using. You can swap these LEDs for the
smaller 3 mm ones if you like, but I would not recommend LEDs bigger than 5 mm
since these might complicate the design.

www.it-ebooks.info

http://www.it-ebooks.info/

LED Glasses

[60]

Entering the matrix
An LED matrix is also known as a diode matrix, referring to the LED's one-directional
polarity. An LED matrix is a two-dimensional grid with an LED connected to each
intersection where a row crosses a column. The columns and rows are isolated from
one another in order for the matrix to work. In electronics this is also known as
multiplexing.

Figure 3.3 illustrates the entire schematic of all the connections. To the right, you will
find the matrix layout. All the negative sides of the LEDs are connected in rows and
all the positive sides of the LEDs are connected in columns. When power is applied
to one of the columns, and a ground connection is opened up on the negative rows,
only one LED will light up. As you might have noticed, we have connected part of
the matrix to the analog pins. Since there are not enough digital pins, we will use
some of the analog pins instead. The analog pins can be operated as digital pins and
their numbering continues on from pin 13. In other words, analog pin A1 is the same
as digital pin 14, and so on.

As I said before, the current can only pass through an LED in one direction, a fact we
are using to our benefit while creating the LED matrix, giving us the possibility of
controlling many LEDs with fewer pins. If we did not connect everything in a matrix,
we would need 30 pins in order to control all the LEDs separately. The downside of
using a matrix configuration is that we can only control one LED at a time.

However, we will take advantage of another phenomenon called POV (persistence
of vision). POV is a term used to describe an optical illusion where multiple images
blend into one image in the mind of the beholder. The brain can only interpret about
25 discreet images per second; any more than that and the images start to blend
together.

The following Figure 3.3 illustrates the entire schematic of all the connections:

Figure 3.3: The matrix schematic

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[61]

Arduino is fast, even faster than the human eye, so we will use this speed to our
advantage in order to give the impression of lighting up many LEDs at the same
time. As I said, we can't technically light up more than one LED at once in the
matrix but we can switch between them so fast that the human eye will perceive it
as more than one LED being on. But before we get to this part, we need to connect
everything, and this means it is time to turn on the soldering iron.

Figure 3.4: Showing all the LEDs lined up for soldering

Before we start soldering, we need to place the LEDs in the right order. A good
idea is to check that all your LEDs work before soldering them. By connecting the
LEDs one by one to a 3.3V coin cell battery, or using the power that goes from your
Arduino to a breadboard, you can easily do this. If you are using a breadboard, don't
forget to add a 220Ω resistor.

If you cut 5 mm holes, the LEDs should fit nicely. If they are a bit loose don't worry,
as once they are soldered together everything will be held in place. To create the
matrix, we need to solder the LEDs into rows and columns. In Figure 3.4 you can see
how I have prepared the LEDs for soldering by bending the legs of the LEDs into the
desired rows and columns. All the negative legs (the shorter ones) will be soldered
in horizontal lines, and then the positive legs (the longer ones) will be soldered in
vertical lines. Make sure that you bend the positive lines over the negative lines
so they do not come into contact with one another. If they do, the matrix will not
work as it is supposed to. If you want, you can cover up your lines using some tape
needed. This is done by placing a small piece of tape in between the legs of the LEDs
so they do not touch one another.

www.it-ebooks.info

http://www.it-ebooks.info/

LED Glasses

[62]

Once you are done, we can move on and add the wiring and the resistors that will
connect to our Arduino board. Figure 3.5 shows a close-up of the resistors connected
straight to the positive column in the glasses, and the wires connected to the other side
of the resistors. The idea is to place the Arduino board on the inside of either the left or
right frame. Before you cut your wires, measure the distance between the row and the
location of the Arduino board where it will be placed on the inside of the side frame.
Make sure you add some extra length before you cut them because it is better to have
wires that are too long than too short.

Figure 3.5: A close-up of the matrix

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

Now is also a good time to put the JST female connector in place as shown in Figure
3.6. JST connectors are fairly standard connector for batteries, and in this project we
will be using a very small 3.7V battery with a male JST connector. You can place the
JST connector anywhere you like, but I found a good spot where the front panel meets
the frame just under the supporting piece of MDF. Make sure you leave enough space
on the back side of the connector to fit the power cable that connects to the Arduino
board. To keep the JST connector in place, use some glue:

Figure 3.6: The JST female connector in place

When you have added the wires to all the positive columns, you can add three
cables for the negative rows, again ensuring you make them long enough to
reach the Arduino board. You don't need resistors on these lines since these will
act as our GND channels.

Once you have all the LEDs, resistors, and wires in place, it is time to connect
everything to the Arduino board. In this chapter, we are using the Trinket board
from Adafruit, but you could also use an Arduino micro board, which is very similar
in size. These boards are some of the smallest Arduino boards that offer most of the
functionality of a standard Arduino board.

www.it-ebooks.info

http://www.it-ebooks.info/

LED Glasses

[64]

Soldering all the wires in place might be tricky. I started by gluing the board to
the inside of the frame and then soldering the wires one by one. I would suggest
that you place them where they fit best. You can always switch the layout in the
code later on. In Figure 3.7 you will see what it might look like once all the wires
are connected:

Figure 3.7: The Trinket board in place

Take your time soldering all the wires in place. I admit that even someone with
good soldering skills might find this project a bit tricky since it requires some
unconventional soldering. I call this type of solder action "soldering" since you
usually end up with something that looks like it came from a movie. Usually, you
solder components on a flat surface, but with wearable projects like this one you
need to be a bit creative when it comes to soldering things together. Eventually you
will end up with an inside that is as impressive as the outside.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[65]

Next, we will move on to the programming side, and this is where we get to see the
glasses in action. For the programming part, we will power the glasses via the USB
cable, and once we are done we will add a battery, then you will be ready to head
out into the night to impress everyone.

Programming the glasses
In order to make the Trinket board so small, the serial to USB conversion is left out
from the design. On a regular Arduino board, this conversion is handled by another
Atmega chip, and on older versions this was done by an FTDI (Future Technology
Devices International) chip. The FTDI chips are still around and you can buy these
as standalone breakout boards as shown in Figure 3.8 to the left of the Trinket board:

Figure 3.8: The FTDI serial to USB converter and the Trinket board

Normally, you solder male pins to the end of the Trinket board that connects to the
FTDI converter, but in this case we want to keep the Trinket board as flat as possible
and we don't want sharp pins on the inside of the glasses that might hurt your eyes. So
the trick is to just attach the male pin headers to the FTDI converter and hold it in place
while programming the Trinket board. Once in a while there will be glitches in the
connection and the upload will fail. This is probably due to the FTDI not connecting
properly to the Trinket board. However, this is not a big problem since you can just
start the upload over again while making sure the pins have a good connection.

www.it-ebooks.info

http://www.it-ebooks.info/

LED Glasses

[66]

Now let's make a sketch that checks that all of the LEDs light up. In order to do
so, we will loop through the LEDs one by one to see that everything works as it is
supposed to. The Trinket is programmed as a normal Arduino. Uno board, so make
sure you select this type in the board menu Upload the following code and check
the LEDs in front of the glasses:

/*Collect all the positive columns pins in one array. You need to make
sure that these pins correspond to the direction you have placed the
columns in the glasses*/
int powerPin[]={
 3,4,5,6,8,9,14,16,17,18,19};
/*Collect all the negative row pins in one array. Again make sure they
are added in the same order corresponding to the glasses*/
int gndPins[]={
 10,11,12};

void setup(){
 /*In order for the matrix to work we need to be able to control
our gnd lines in the matrix. The trick is to use all pins as output.
When we turn the gnd pins HIGH we will be able to block the ground
connection*/
 for(int i=0; i<20;i++){
 pinMode(i,OUTPUT);
 }
 //Turn all the gnd pins HIGH in order to keep all LEDs off
 for(int j=0;j<3;j++){
 digitalWrite(gndPins[j],HIGH);
 }
}
void loop(){
 //Run the function
 looper();
}

void looper(){
 /*In this function we run through all the LEDs using two for loops
starting by opening a gnd connection*/
 for(int i=0; i<11;i++){
 digitalWrite(powerPin[i],HIGH);
 //Once a gnd pin is accessible we turn on one of the LEDs
 for(int j=0;j<3;j++){
 digitalWrite(gndPins[j],LOW);
 delay(50);
 digitalWrite(gndPins[j],HIGH);
 delay(50);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[67]

 }
 digitalWrite(powerPin[i],LOW);
 }
 //Loop everything backwards
 for(int i=10; i>=0;i--){
 digitalWrite(powerPin[i],HIGH);
 for(int j=3;j>=0;j--){
 digitalWrite(gndPins[j],LOW);
 delay(50);
 digitalWrite(gndPins[j],HIGH);
 delay(50);
 }
 digitalWrite(powerPin[i],LOW);
 }
}

In this example sketch, we are implementing a trick in order to be able to control
the ground connections. If we connected the negative rows of the matrix straight to
GND we would not be able to control the separate LEDs. The trick is to use normal
pins as outputs. When a pin is LOW, it connects to ground, which we can use to light
up our LEDs in the matrix. But once it turns to HIGH, we block the connection to the
ground. So now we can control each LED individually by turning one of the positive
columns HIGH and one of the negatives rows LOW. You will need to make sure that
your pin declarations line up with the actual physical layout in your glasses or else
looping through them could get very hard. As you can see in the schematic in Figure
3.3, the columns are connected after one another to the digital pins.

Making a pattern
In the next code example, we will implement some pattern designs. These patterns
are stored in arrays that correspond to the layout of the LEDs in the glasses. We can
draw our patterns in code and later loop through the array and activate the LEDs.
When the code is formatted as it is in the next sketch, we get a visual repetition of
the pattern. A 0 in the array represents a turned off LED in the same position in the
matrix and a 1 represent an LED that is turned HIGH:

/*Collect all the positive columns pins in one array. You need to make
sure that these pins correspond to the direction you have placed the
columns in the glasses*/
int powerPin[]={
 19,18,17,16,14,9,8,6,5,4,3};
/*Collect all the negative row pins in one array. Again make sure they
are added in the same order corresponding to the glasses*/
int gndPins[]={

www.it-ebooks.info

http://www.it-ebooks.info/

LED Glasses

[68]

 12,11,10};
//This is a two dimensional array that holds the pattern
int pattern[3][11] = {
 {1,1,1,1,0,0,0,1,1,1,1 },
 {0,1,1,0,0,0,0,1,0,0,1 },
 {0,1,1,0,0,0,0,1,1,1,1 }
 ,
};
//Variable to store the refresh rate on the led display
int refreshRate=200;

void setup(){
 //Declare all pins as outputs
 Serial.begin(9600);
 for(int i=0; i<20;i++){
 pinMode(i,OUTPUT);
 }
 //turn all the gnd ports High to keep them blocked
 for(int j=0;j<3;j++){
 digitalWrite(gndPins[j],HIGH);
 }
}
void loop(){
 //Run the pattern function
 displayPattern();

}
/*Function that runs through all the positions in the pattern array*/
void displayPattern()
{
 for (byte x=0; x<3; x++) {
 for (byte y=0; y<11; y++) {
 int data =pattern[x][y];
 //If the data stored in the array is 1 turn on the led
 if (data==1) {
 digitalWrite(powerPin[y],HIGH);
 digitalWrite(gndPins[x],LOW);
 delayMicroseconds(refreshRate);
 digitalWrite(powerPin[y],LOW);
 digitalWrite(gndPins[x],HIGH);
 }
 //If it is something else turn the led off
 else {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[69]

 digitalWrite(powerPin[y],LOW);
 digitalWrite(gndPins[x],HIGH);
 }
 }

 }
}

This sketch implements a two-dimensional array, which is the same as placing
an array into an array. As you can see, we have three arrays, and inside each of
those arrays we have 11 positions in the first two and eight in the last one, which
corresponds to the layout of the matrix. Using the two-dimensional array, we can
now fetch the positions of the LEDs similar to x and y coordinates, which is much
easier than storing everything in a normal array. If the values are stored in a normal
array, we would need to define where each row ends on our own. This could be
done using if sentences to check where the row begins, but using a two-dimensional
array makes things much easier and makes for better-looking code.

Then the arrays run through the display pattern function, which loops through all
the positions in the array. Every time it finds a 1 in the array it turns on the LED
corresponding to the position in the actual glasses. It only turns it on for a brief time
based on the refresh rate before it turns it off, since we can only have one LED on at
a time in the LED matrix. Again, this is where we use the POV phenomenon, looping
through all the LEDs very fast so that when we look at the glasses it looks like
multiple LEDs are on, though in fact there is only one LED on at a time.

In order to get a better understanding of the code, I would suggest you modify the
pattern array by changing which LEDs light up. If you look closely at the array, you
might make out that I have tried to spell my initials TO with 1s in the code, which
corresponds to LEDs turned on. Try switching the letters for your own
initials and upload the code to your glasses.

Finishing the glasses Knight Rider style
For the last code example, we will have a look at how to create an animation.
An animation is a simulation of motion, and in one sense the first code example
in this chapter is a form of animation. We will build on the same principle in this
section. Once you get the hang of the basic concepts, you can start building your
own animations, combining the knowledge from the pattern example with the
knowledge in this sketch.

www.it-ebooks.info

http://www.it-ebooks.info/

LED Glasses

[70]

In my beginner Arduino classes, the Knight Rider example is a classic. This example
is inspired by the 80s hit show Knight Rider with David Hasselhoff. To be more precise,
the example is inspired by the robotic car featured in the show, which is called Kit. In
the front of Kit there is a small LED display that shows a bouncing light effect. This is
the effect we will recreate on the front of the glasses.

The code example is fairly simple and does the same thing as the test sketch, but
instead of lighting up only one LED at a time we will light up an entire column.
We will move the light column from left to right and once we hit the end of the
glasses, we will move the column back again:

int powerPin[]={
 19,18,17,16,14,9,8,6,5,4,3};

int gndPins[]={
 12,11,10};

int refreshRate=200;

void setup(){
 for(int i=0; i<20;i++){
 pinMode(i,OUTPUT);
 }
 //
 for(int j=0;j<3;j++){
 digitalWrite(gndPins[j],HIGH);
 }
}
void loop(){
 nightrider();

}
//
void nightrider()
{
 /*Instead of starting to loop through the columns we loop through
the row*/
 for(int i=0; i<11; i++){
/*Then we loop through the column
 for(int j=0; j<3; j++){
/*In order to perceive that the column is lit we need to loop it a few
times*/
 for(int k=0; k<50; k++){
/*Then we light the column

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[71]

 digitalWrite(powerPin[i],HIGH);
 digitalWrite(gndPins[j],LOW);
 delayMicroseconds(refreshRate);
 digitalWrite(powerPin[i],LOW);
 digitalWrite(gndPins[j],HIGH);
 }
 }
 }
 /*Once we have reached the end of the glasses we do the same thing
backward*/
 for(int i=11; i>0; i--){
 for(int j=3; j>0; j--){
 for(int k=0; k<50; k++){
 digitalWrite(powerPin[i],HIGH);
 digitalWrite(gndPins[j],LOW);
 delayMicroseconds(refreshRate);
 digitalWrite(powerPin[i],LOW);
 digitalWrite(gndPins[j],HIGH);
 }
 }
 }
}

Once your code is done, upload it to the board and enjoy. In order to show off your
new glasses, we need to finish up the circuit by attaching the battery to the glasses so
you can walk around with them (since being forced to be connected to a USB ports at
all times might not look as cool). Any battery between 3-5V will work for this project,
and the more amperes the battery has, the longer the glasses will stay on. However,
large ampere batteries are also bigger. The smallest lithium battery I have found is the
3.7V 150mAh battery, which I recommend. There are smaller ones with less amperes
but this type will still fit your glasses and give you enough power to keep the glasses
on long enough for you to impress a few people.

Before you connect the battery, you need to solder wires from the JST connector to
the board. The pins for external power on the Trinket board are marked BAT+ for
the positive connection. Next to this pin there is a pin marked with only a G for
the ground connection. This connection is connected to the negative side of the JST
connector. In order to figure out which pin is which on the JST connector, check with
the battery cables. Usually, these cables are red and black; the red one is the positive
and the black one is the ground. The design of the glasses should leave enough space
on the inside of the frames to place a small battery. Figure 3.9 shows what it might
look like. I recommend gluing the battery in place using hot glue, but be careful
not to heat the battery for too long or it might explode. This might sound scary,
but you would need to heat it for some time before it explodes. However, I always
recommend caution when combining heat and batteries.

www.it-ebooks.info

http://www.it-ebooks.info/

LED Glasses

[72]

As you might have noticed by now, visibility is limited in these glasses and it has to
be fairly dark for the light to be visible, so be careful when using them. You can still
look cool while keeping safe.

Figure 3.9: Battery connection

In Figure 3.10 you will find my co-worker Johannes at the university showing
off the finished glasses. Unfortunately, pictures do not show the full effect of
animating the LEDs, but hopefully you will be close to finishing your pair by the
time you read this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[73]

Figure 3.10: Johannes Nilsson showing off the LED glasses

Summary
In this chapter, you learned how to create an LED matrix in a pair of custom-made
LED glasses. The principles behind the LED matrix are the same as in any matrix that
you might use in another project. On the code side, we had a look at some pattern
designs and how to generate animations. This chapter introduces the basic concepts,
but as you progress you can build upon this knowledge and develop your own
patterns and animations.

In this chapter, we also had a look at what the custom casings looks like when cut
using a laser cutter. If you do not have access to a laser cutter don't worry, as you can
still achieve the same results using cutting tools and materials such as plastic, wood,
or cardboard if you like. The only difference is that it might take a bit longer to cut.
The material for the frame also gives you a lot of personalization options, so I
recommend you test a few materials before you decide.

The remaining projects will also implement laser-cut designs, but remember that
the casings for all the projects in this book are just examples of how it can be done.
I encourage you to develop your own designs since it is more fun to personalize
your creations, and let the designs in this book act as inspiration.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[75]

Where in the World Am I?
I hope you enjoyed the projects so far, but now its time to get into some serious
prototyping. Does the idea of connecting your project to satellites orbiting the earth
tingle your creative senses? It certainty gets me going, and this is just what we will
be doing in this chapter. The goal is to make your own a watch, which besides telling
time, it will also give you your exact GPS position, with some added information
about how fast you are traveling and your altitude above sea level. GPS stands
for Global Positioning System. The development of GPS started in the 1970s, but
was not completed until 1992. Today there are 27 satellites orbiting the earth. These
satellites give anyone with a GPS receiver the possibility to access their own position,
in coordinates of longitude and latitude. Today, you can find GPS in a range of
devices for cars, airplanes, boats, and soon in your own watch.

www.it-ebooks.info

http://www.it-ebooks.info/

Where in the World Am I?

[76]

In order to be able to actually see the information, we will introduce the use of LED
screens. LED screens come in all shapes and sizes, and in this chapter we will be
using one of the smallest one. We will learn how to receive data from a GPS receiver
and to display it on the screen. We will also take a look at how to create your own
watch casing. The watch we will be making will be slightly bigger then a normal
watch, but since it is a GPS watch you made by yourself, your really want it to stand
out anyway. In Figure 5.1, you will find the modules needed for this chapter:

Figure 5.1: The FLORA board, OLED and GPS

We will stick with the FLORA board for this project, mainly because of the round
form factor, which will be used to base the design of the watch on. To the right
of the FLORA board we have an OLED screen that displays 128 x 32 pixels.
We also have a GPS breakout board based on the MTK3339 chipset. In addition
to these components, you will need the following materials:

• Soldering iron
• Wires
• Cable cutters
• 3 mm MDF or 3 mm Acrylic plastic (shown in Figure 5.6)
• 3.3V 150mA lithium battery
• Fabric straps
• Velcro

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[77]

Hocking up the OLED screen
The screen we will be using for this project is a 128 x 32 pixel monochrome OLED
screen based on a SSD1306 driver. OLED stands for organic light-emitting diode.
The technology is based around a type of coal, which is the organic part of the
screen. The benefits with OLED technology is that these screens do not require back
light in order to display information. This makes them thinner than normal LCD
screens, which are the most common small displays. OLED screens can also achieve
a much higher contrast than regular LED screens. The screen we will be using is a
monochrome screen, which means that it's only black and white, but there are color
OLED displays available too.

To help ease the programming part of the project, we will be using a great library
written by Limor Fried for the SSD1306 driver. Limor Fried is also the founder
of Adafruit, the company that has designed many of the boards and components
used in this book. You can find the library at https://github.com/adafruit/
Adafruit_SSD1306 by pressing the download zip button, then unzip ping the folder
and installing it to you library folder. If you have forgotten where your library
folder is placed, you can find the path in the Arduino IDE setting by navigating to
Preferences | Options. Don't forget to rename the folder adafruit_sdd1306.

Limor has also developed another library that provides different graphical
components such as lines, circles, points, and so on. This is a great resource and
will be using these graphical components later on. You can find the library at
https://github.com/adafruit/Adafruit-GFX-Library and install it using
the same method as used for the previous library.

www.it-ebooks.info

https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit-GFX-Library
http://www.it-ebooks.info/

Where in the World Am I?

[78]

Before we get started with the code, let's take a look at how we hook up the screen to
the FLORA board. The connections are fairly easy since we will be communicating
with the screen over I2C, which is the supported communication protocol for this
device. If you need to refresh you memory on I2C, take a look at Chapter 3, Bike Gloves.

Figure 5.2: Connecting the OLED to the FLORA board

In Figure 5.2, you will find the necessary connections. The SDA and SCL pins connect
to one and other, as do the 3.3 V and GND pins. The screen has a reset pin, which we
will connect to pin number 6 on the FLORA board. For testing the screen, I recommend
soldering wires to your screen and hooking it up to the FLORA board using alligator
clips. If you make the wires about 10 cm long, you can then use them for soldering
everything to the FLORA board once you are done testing.

Now, let's try something simple to check if you screen is working properly. In
the next sketch example, we will just display random pixels in order to test that
everything is working:

//Add the nessesary libraries
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
//Set the reset pin on the FLORA board
#define OLED_RESET 6
Adafruit_SSD1306 display(OLED_RESET);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[79]

void setup() {
 Serial.begin(9600);
 //initialize the screen with the I2C addr 0x3C
 display.begin(SSD1306_SWITCHCAPVCC, 0x3C);

}

void loop() {
 //Clear the screen buffer
 display.clearDisplay();
 //Draw a random pixel on the screen and make it white
 display.drawPixel(random(0,128), random(0,32), WHITE);
 //Send the information to the screen
 display.display();
 //Wait for a bit
 delay(50);
}

The preceding sketch will display a pixel in white for 100 milliseconds before it
shows a new one. Keep in mind that any graphics or information sent to the screen
is stored on the screen until you clear it. This means that if you display something on
the screen and then turn it off and on again, the same image will appear. This is why
we first clear the screen of any information at the start of the sketch. Then we can add
all the information we want, and this is not displayed on the screen until we send the
display.display() command.

Upload the sketch to you FLORA board, and if you see white pixels jumping
around, everything is working fine and we can try the following example. In the
next sketch, we will make a simple watch in order to see how we display information
on the screen:

#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
//Make sure to set the resetpin to the one you are using
#define OLED_RESET 6
Adafruit_SSD1306 display(OLED_RESET);

//Variables for the clock
int s=0;
int m=0;
int h=0;

www.it-ebooks.info

http://www.it-ebooks.info/

Where in the World Am I?

[80]

void setup() {
 Serial.begin(9600);

 //initialize with the I2C addr 0x3C (for the 128x32)
 display.begin(SSD1306_SWITCHCAPVCC, 0x3C);

}

void loop() {
 //Start the counter for the stop watch
 s++;
 //Clear the screen
 display.clearDisplay();
 //Set the text size (1 is the smallest size)
 display.setTextSize(3);
 //Set the color of the text
 display.setTextColor(WHITE);
 //Set the starting position for the text in x and y coordinates
 display.setCursor(0,0);
 //Print the information to the screen
 display.print(h);
 display.print(":");
 display.print(m);
 display.print(":");
 display.print(s);
 //If the counter becomes bigger then 59 eg 1 minute make it 0 again
and increase the minutes by one
 if(s>59){
 s=0;
 m++;
 }
 //If the minute counter becomes bigger then 59 eg 1 hour make it 0
again and increase the hour by one
 if(m>59){
 m=0;
 h++;
 }
//If the minute counter becomes bigger then 59 eg 1 hour make it 0
again and increase the houre by one
 if(h>23){
 h=0;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[81]

 //Send everything to the screen
 display.display();
 //Wait for a second before we update everything
 delay(1000);
}

As you can see it the preceding sketch, we can set the size of the text and where
we want to display it on the screen. If you change the size to 1, you can fit up to
four lines of text on the screen you are using, which is prefect since there is a lot
of information available from the GPS receiver.

Getting the position
Now it's time to take a look at the GPS receiver. The GPS we will be using is
based on the MTK3339 chipset, which is very easy to use but still very powerful.
Adafruit manufactures the board shown in Figure 5.1, and this module was built
with wearables in mind. This GPS can track up to 22 satellites and has very low
power consumptions, which makes it ideal for battery-powered projects. The GPS
is incredibly easy to read, you just need to connect over the serial port and you are
good to go. In Figure 5.3, you will find the necessary connections that need to be
made. I recommend connecting everything using alligator clips while you are
trying out the GPS receiver:

Figure 5.3: Connecting the GPS to the FLORA board

www.it-ebooks.info

http://www.it-ebooks.info/

Where in the World Am I?

[82]

Don't forget to connect the serial pins in the right order. The TX pin of the GPS
needs to connect to the RX pin on the FLORA board and vice versa, since we want to
transmit from the transmitting pin to the receiving pin. The GPS module will receive
the position data. In order to display it on the OLED screen, we need to pass it on to
the FLORA board for processing. Once you are done, you can upload the following
code. Once uploaded, you can open your serial monitor and the information should
start flowing:

void setup() {
 //Setup the usb serial
 Serial.begin(9600);
 //Set up the FLORA serial
 Serial1.begin(9600);
}

void loop() {
 //If there is data coming in on the FLORA serial port
 if (Serial1.available()) {
 //Store it
 char c = Serial1.read();
 //Print it back over the usb serial
 Serial.write(c);
 }
}

As you can see in the setup, we declared two serial ports. This is because the FLORA
board has two separate serial ports. On the standard Arduino board, the RX and TX
pins are connected to the same serial port as the USB, but on the FLORA board, they
are two separate ports. In order to read the information sent from the GPS, we first
have to pick up on the FLORA board and then send it back to the serial monitor.

The down side of this GPS is that the receiver sends information continually over
the serial port, so that at a glance it can be hard to tell what information is relevant.
The information is sent in four different packages, each starting with a dollar sign.
Parsing this data flow is tricky business and will take too long to explain in this
chapter, but as usual, the components from Adafruit come with a great library for
sorting out the data, and this one is also written by Limor Fried. You can find the
library at https://github.com/adafruit/Adafruit-GPS-Library, just download
it and install as you did with the ones before.

www.it-ebooks.info

https://github.com/adafruit/Adafruit-GPS-Library
http://www.it-ebooks.info/

Chapter 5

[83]

When a GPS receiver connects to a satellite and gets the information about its position,
this is also known as getting a fix. There are a lot of things that can interfere with the
GPS receiver, such as static electricity or other objects, and getting a fix indoors can
be hard sometimes. In some cases, it can even take up to 45 minutes before a receiver
gets a fix on a satellite, so some patience may be required. A good tip is to move
around until you find a spot that allows you to get a fix on you position, and use this
spot for future debugging. The ideal place to get a fix is outdoors, with clear visibility
from the top of the GPS and the sky. Upload the following sketch and take a look
in you monitor, if you can get a fix. The following example sketch will print all the
information available from the GPS receiver:

//Add the libraries
#include <Adafruit_GPS.h>
#include <SoftwareSerial.h>
//Connect the GPS to the FLORA serial port
Adafruit_GPS GPS(&Serial1);

void setup()
{
 /* connect at 115200 serial to USB at a high speed so information
does not get dropped*/
 Serial.begin(115200);
 //Send a test message
 Serial.println("Testing GPS");

 // 9600 NMEA is the default baud rate for MTK3339
 GPS.begin(9600);
 // Set the update rate of the GPS
 GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ);
 delay(1000);
}
//Make a timestamp for our timer
uint32_t timer = millis();
void loop()
{
 // read data from the GPS
 char c = GPS.read();

 // if there is data we parse the information
 if (GPS.newNMEAreceived()) {
 //
 if (!GPS.parse(GPS.lastNMEA()))
 return;

www.it-ebooks.info

http://www.it-ebooks.info/

Where in the World Am I?

[84]

 }
 // If the timer goes wrong reset it
 if (timer > millis()) timer = millis();

 //if the timer is bigger than 2 sec print the data
 if (millis() - timer > 2000) {
 // reset the timer
 timer = millis();
 Serial.print("\nTime: ");
 Serial.print(GPS.hour, DEC);
 Serial.print(':');
 Serial.print(GPS.minute, DEC);
 Serial.print(':');
 Serial.print(GPS.seconds, DEC);
 Serial.print('.');
 Serial.println(GPS.milliseconds);
 Serial.print("Date: ");
 Serial.print(GPS.day, DEC);
 Serial.print('/');
 Serial.print(GPS.month, DEC);
 Serial.print("/20");
 Serial.println(GPS.year, DEC);
 Serial.print("Fix: ");
 Serial.print((int)GPS.fix);
 Serial.print(" quality: ");
 Serial.println((int)GPS.fixquality);
 //If we get a satellite fix
 if (GPS.fix) {
 Serial.print("Location: ");
 Serial.print(GPS.latitude, 4);
 Serial.print(GPS.lat);
 Serial.print(", ");
 Serial.print(GPS.longitude, 4);
 Serial.println(GPS.lon);
 Serial.print("Speed (knots): ");
 Serial.println(GPS.speed);
 Serial.print("Angle: ");
 Serial.println(GPS.angle);
 Serial.print("Altitude: ");
 Serial.println(GPS.altitude);
 Serial.print("Satellites: ");
 Serial.println((int)GPS.satellites);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[85]

As if making a GPS watch was not cool enough, your watch will be the most accurate
wristwatch there is. As you can see in the beginning of the messages that are being
printed out in the sketch, we are printing the time and date. Now, you may wonder
how the GPS receiver knows what time it is. Well, GPS satellites carry atomic clocks,
which are the most accurate clocks there are. These clocks are synced everyday
with ground clocks on earth and the other satellites, and any drift from true time is
corrected. The time is displayed in Coordinated Universal Time (UTC), which is the
standard for telling time. This timeline is based in Greenwich, in London, and it is
from this timeline that time zones are based. If you want your local time, you need to
add or subtract hours to or from the Greenwich time.

If the GPS gets a fix, it will also print out data regarding your longitude and latitude,
as well as your altitude, the number of satellites we can find, and your speed
measured in knots per second. Now we have a screen and the information to display
it, so it is time to put everything together.

Making the clock
As we progress through the book, some of the projects will become smaller and
smaller in size, and this is no exception. Before we get started with putting everything
together, I would just like to make a friendly note on planning the construction of your
clock. The next part is a step-by-step guide on how to construct your watch. However,
it might be a good idea to read through everything before you get started. Even if
this watch is slightly bigger then a normal watch, it can still be tricky to fit all the
components in. It should be possible, but if you find it too hard you can always modify
the design of the watch and scale it up a bit.

www.it-ebooks.info

http://www.it-ebooks.info/

Where in the World Am I?

[86]

First, we have the schematic of all the connections we need to make. In order to
fit everything inside the watch, we will need to solder the connections with wires,
as shown in the following Figure 5.4:

Figure 5.4: Connecting the GPS receiver and OLED screen to the FLORA board

In Figure 5.4, you will find the schematic. But before you start soldering everything,
you need to make a case for your watch. In Figure 5.5, you will find the design of the
case with measurements. The design was made for laser cutting using 3 mm MDF or
acrylic plastic, as shown in the following Figure 5.5:

Figure 5.5: The watch design

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[87]

The idea is to make the casing in layers, which are glued together so that you can
cut the design in any material or just use it as inspiration for your own case design.
On the left in Figure 5.5, you will find the base plate with two rectangular holes.
These holes are for running the fabric straps through the casing, which in my case,
has a width of 38 mm. A thinner strap will also work as long as you make sure to
modify your design.

In the middle of Figure 5.5, you will find the top plate. The hole in the middle of this
piece is for the OLED screen. The hole only measures the size of the visible parts
of the screen, and not the entire module. The last piece on the right is one of the
rings that make the actual casing. These are stacked upon one and other and glued
together. Depending on your material thinness, you will need a few of them to cover
the electronics. All the pieces are 55 mm in diameter, and make sure to keep the four-
corner pieces left over from the top piece, since we will use them to hold the top in
place, as shown in the following Figure 5.6:

Figure 5.6: All the cut pieces

Once you have cut all the pieces, you should end up with something that looks like
Figure 5.6. Then it's time to start gluing everything together. I recommend using
super glue if you are using acrylic plastic, or normal wood glue if you are using MDF
or any other wooden material. Start by gluing one of the rings to the base plate and
as soon as it dry, add another one and so on until you think you have enough space
on the inside, to fit the electronics. You might need to add another one once we have
soldered all the electronics together.

www.it-ebooks.info

http://www.it-ebooks.info/

Where in the World Am I?

[88]

For now, just make a rough estimate based on stacking all the electronics together
inside the casing. Don't forget to measure the battery as well:

Figure 5.7: the case glued together

Once done, you should end up with something that looks like Figure 5.7, and you
can go on and fit the strap into the case. In Figure 5.6, the corner pieces left over from
the top cut have been glued in place. I recommend waiting before gluing these pieces
in place until you are sure that everything will fit inside, just in case you need to add
an extra ring.

Figure 5.8: Attaching the OLED display

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[89]

Soon it will be time to turn on the soldering iron, but before we do so, you need
to glue the OLED screen into place, as shown in Figure 5.8. For this, I recommend
using hot glue, since this will not damage your screen and it gives you some room
for errors. Make sure the display is visible from the other side before you glue it into
place.

Now its time to solder everything together. Take a good look at the schematic in
Figure 5.4 before you get started in order to get a sense of how to solder everything
together. I first placed the GPS receiver on top of the FLORA board and then
soldered all the connections between them before attaching the OLED screen. Figure
5.9 shows how to place everything so it stacks up nicely:

Figure 5.9: The FLORA board connected to the OLED screen

The idea is to have the battery located under the FLORA board once everything is
placed inside the case. Once you are sure everything will fit inside the case, you can
go ahead and glue the last four corner pieces into place. If the measurements are
correct, it will almost give you a press fit so that the lid will be held in place with out
any glue. You want to avoid gluing the to the case, since you will need to recharge
the battery once in a while and you might want to explore some more creative code
for the display.

www.it-ebooks.info

http://www.it-ebooks.info/

Where in the World Am I?

[90]

The final sketch
By now you should have your case ready and all your components soldered, so it is
time to add the final sketch to the FLORA board. The following sketch is basically a
combination of the GPS and OLED sketches we tried out before. Once you are done,
you can upload it to the board. If everything is correct, the information should be
displayed on the screen:

#include <Adafruit_GPS.h>
#include <SoftwareSerial.h>
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
Adafruit_GPS GPS(&Serial1);

#define OLED_RESET 6
Adafruit_SSD1306 display(OLED_RESET);

void setup()
{
Serial.begin(115200);
 display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
 // Clear the buffer.
 display.clearDisplay();
 Serial.println("Testing GPS");

 // 9600 NMEA is the default baud rate for MTK3339
 GPS.begin(9600);

 // Set the update rate of the GPS
 GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ);

 delay(1000);
}

uint32_t timer = millis();
void loop()
{
char c = GPS.read();

if (GPS.newNMEAreceived()) {

 if (!GPS.parse(GPS.lastNMEA()))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[91]

 return;
 }

 if (timer > millis()) timer = millis();

 if (millis() - timer > 1000) {
 timer = millis();
 display.clearDisplay();
 display.setTextSize(1);
 display.setTextColor(WHITE);
 display.setCursor(0,0);
 display.print(GPS.hour, DEC);
 display.print(':');
 if(GPS.minute<10){
 display.print('0');
 display.print(GPS.minute, DEC);
 }
 else{
 display.print(GPS.minute, DEC);
 }
 display.print(':');
 if(GPS.seconds<10){
 display.print('0');
 display.print(GPS.seconds, DEC);
 }
 else{
 display.print(GPS.seconds, DEC);
 }
 display.print(" ");
 display.print(GPS.day, DEC);
 display.print('/');
 display.print(GPS.month, DEC);
 display.print("/20");
 display.println(GPS.year, DEC);
if (GPS.fix) {
display.print("Longitude:");
 display.print(GPS.latitude, 4);
 display.println(GPS.lat);
 display.print("Latitude:");
 display.print(GPS.longitude, 4);
 display.println(GPS.lon);
 display.print("Speed:");
 display.print(GPS.speed);

www.it-ebooks.info

http://www.it-ebooks.info/

Where in the World Am I?

[92]

 display.print(" Alt:");
 display.println(GPS.altitude);
 }
display.display();

 }
}

Once you have uploaded the code and checked that everything is working, you can
attach the battery and place everything inside the casing. This design does not have
an on–off switch, but instead uses the battery switch on the FLORA board to turn the
clock on and off, which is another reason for not gluing the top to the case.

When everything is in place, you should end up with something that looks like
Figure 5.10. In the first line of the display, the time and date are shown. The second
and third lines show the longitude and latitude. The last line shows the speed and
altitude. Unfortunately, I could not get a fix inside my photo studio, so there is no
actual position displayed in Figure 5.10, but by now you probably have the real
thing in front of you.

The last thing to do is to add some Velcro to the straps, or you could also use a
normal watchstrap if you have one lying around. However, once you show your
watch off, the last thing people will focus on is the strap:

Figure 5.10: The final result

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[93]

Summary
In this chapter, you learned about how to interact with small screens in the form
of an OLED display. We have learned how to display text on the screen and how to
program a simple clock. We have also played around with GPS receivers and how
to gather information, such as the position of the receiver, speed and altitude from
satellites. Then we took a look at how you can design your own watchcase.

There is still tons of fun stuff you can do with displays and if you want to learn
more I suggest you check out the example code that comes with the SSD1306 library,
which you can find under examples in you Arduino IDE if you have installed the
library. For more information about the MTK3339 GPS receiver you can try searching
online for the product name and datasheet. Most electronic components are supplied
with a datasheet that contains detailed information about it, but may be tricky to
read if you are a newcomer.

A good place to start when developing projects in the future is to think of new ways
to display the information on the screen. For example, you can make the font bigger
and switch between the different types of information that can be displayed, instead
of displaying everything at once.

As always, the case design shown in this chapter is just a suggestion, and I urge you
to improve upon it in any way you like. Make your own watch case look as good as
a high-end watch if you can. But if you ask me which one is better, an expensive gold
watch or a watch that connects to a satellite in outer space? The answer is easy.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[95]

Hands-on with NFC
In this chapter, we will be taking a closer look at NFC, which stands for Near Field
Communication. NFC technology is a means to transfer data wirelessly over short
distances. The name comes from the antenna used that usually does not permit
communication between devices further than 10 cm. So, what is the benefit of using
it? Well, the forced close communication range can be used to create secure and
innovative interactions between devices, since you need to be physically present in
order to exchange the information.

You can find NFC technology in many modern phones where it is used for a variety
of applications, but the most common is probably as a payment system. With NFC
on your mobile phone, you can make purchases by simply holding up your phone to
a receiver on a cash register. Many public transports around the world also use NFC
for paying on buses and trains, but then the NFC is in a plastic card.

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on with NFC

[96]

Some more modern applications include keyless doors. To be honest, this is not
a new invention, but it is only in recent years that they have been commercially
available. For example, hotels have been using them for some time. Doors will also
be the basis for this chapter's project. Since the theme of this book
is wearables, basing a project on doors might seem odd, but don't worry. We will
also take a look at how to create your own NFC enable "bling" that can be worn,
which will also be used as our keyless keys. To complete the project, you will
need the following components found in Figure 6.1:

Figure 6.1: The Arduino UNO, Adafruit NFC shield, Mifare 1K NFC tags and cars

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[97]

In addition to the components shown in Figure 6.1, you need the following materials:

• 6 mm MDF board
• Wood or other solid materials for the ring
• USB cable
• Soldering iron
• Wood glue
• Standard servo motor
• Battery or transformer 7–12V
• Male pin headers

Reading a card
Sometimes people also refer to NFC as RFID, which is a similar older technology.
RFID stands for radio frequency identification and both NFC and RFID employ radio
signals for tagging all sorts of objects. NFC is a newer technology, which includes the
same, read and write feature of RFID but has two more functions, which involve card
emulation and P2P (peer-to-peer) communication. In this chapter, we will focus on the
read and write function. The tags and the card show in Figure 6.1 have a small memory
of 1K where a unique number is stored. The wonderful part of NFC/RFID technology
is that the tags and cards do not need any batteries to work. These tags and cards are
powered from the signal of the receiver, which gives them enough "juice" to broadcast
the information stored in the memory. This is why these tags and cards can't be read if
they are further away than 10 cm from the receiver. The electromagnetic field simply
can't travel that far. But still, this gives the technology some interesting capabilities in
terms of the interactions we can create with them.

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on with NFC

[98]

Before we get started with the code, we will need to solder the pins to the NFC
shield. Any PCB that can be placed on an Arduino board is usually called a shield.
When it comes to soldering pins to an Arduino shield, there is a common trick you
can use. First, start by dividing the pins for the corresponding pins of the shield,
which matches the pin layout of the Arduino board. Then place the pins into the
Arduino board pin holes and place the shield on top. In this way, everything is kept
in place while you are soldering the connection on the top. Once you are done, it
should look something like Figure 6.2.

Figure 6.2: The pins solder into place on the NFC shield

Once done with the soldering, let's gets started with some code to see if we can read
one of the tags. The NFC shield we are using for this project comes with a library by
Limor Fried and Kevin Townsend. You can find the library at: https://github.
com/adafruit/Adafruit-PN532.

Just download and install it as done in previous chapters. Don't forget to rename the
folder to Adafruit_PN532.

www.it-ebooks.info

https://github.com/adafruit/Adafruit-PN532
https://github.com/adafruit/Adafruit-PN532
http://www.it-ebooks.info/

Chapter 6

[99]

Once the library is in place, use the following code to enable the reading of tags
and cards:

#include <Wire.h>
#include <SPI.h>
#include <Adafruit_PN532.h>
// Define the I2C pins
#define PN532_IRQ (2)
// Not connected by default on the NFC Shield
#define PN532_RESET (3)

//Connect the shield I2C connection:
Adafruit_PN532 nfc(PN532_IRQ, PN532_RESET);

void setup(void) {
 //Start serial communication
 Serial.begin(115200);
 Serial.println("Starting the NFC shield");
 nfc.begin();
 //Check the firmware version of the shield
 uint32_t versiondata = nfc.getFirmwareVersion();
 if (! versiondata) {
 Serial.print("Cant find the shield, check you connection");
 while (1); // wait
 }
 // Got ok data, print it out!
 Serial.println("Connected");
 //Print out the firmware version
 Serial.print("Firmware ver. ");
 Serial.print((versiondata>>16) & 0xFF, DEC);
 Serial.print('.'); Serial.println((versiondata>>8) & 0xFF, DEC);
 // Set the number of retry attempts to read from a card
 nfc.setPassiveActivationRetries(0xFF);
 // configure the board to read RFID tags
 nfc.SAMConfig();
 Serial.println("Waiting for a tag");
}
void loop(void) {
 //Decalre a variable to store state
 boolean success;
 //Buffer to store the ID of the card
 byte uid[] = { 0, 0, 0, 0, 0, 0, 0 };
 //Variable to store the length of the ID
 byte uidLength;

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on with NFC

[100]

 // Waits for and tag and reads the lenght of the ID and the ID
 success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, &uid[0],
&uidLength);
 if (success) {
 //If a card or tag is successfully read print the information
 Serial.println("Tag registered");
 Serial.print("ID Length: ");
 Serial.print(uidLength, DEC);
 Serial.println(" bytes");
 Serial.print("UID Value: ");

 for (uint8_t i=0; i < uidLength; i++)
 {
 Serial.print(uid[i]);
 Serial.print(",");
 }
 Serial.println();
 // Wait 1 second before continuing
 delay(1000);
 }
}

Once the code is uploaded to your Arduino board, open up your serial monitor and
place a tag or card near the NFC shield. If everything works as it's supposed to, the
monitor should receive a message that looks like the one in Figure 6.3. As you can
see, the UID (unique identification number) stored on my tag is a 4 byte number,
which is 39, 246, 64, and 175.

Figure 6.3: The serial monitor output

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[101]

If you have more then one tag or card, you can check the ID of all of them to see if
there are any faulty ones in your mix. Then it is time to pick one of your tags, which
we will continue using for the rest of the chapter. I picked the transparent circle tag
shown above the NFC card in Figure 6.1. The reason for this is that later I will use this
tag in the design of my "keyring," but of course, you can choose any tag available to
you as long as you can extract the ID number from it.

Write down your number, since we will need it for the next code example where we
implement a check into the code that will act as the out lock/unlock mechanism.

Upload the following code to your Arduino board:

#include <Wire.h>
#include <SPI.h>
#include <Adafruit_PN532.h>

//Define the I2C pins
#define PN532_IRQ (2)
#define PN532_RESET (3) // Not connected by default on the NFC Shield
//Connect the shield I2C connection:
Adafruit_PN532 nfc(PN532_IRQ, PN532_RESET);

void setup(void) {
 Serial.begin(115200);
 Serial.println("Starting the NFC shield");
 nfc.begin();
 //Check the firmware version of the shield
 uint32_t versiondata = nfc.getFirmwareVersion();
 if (! versiondata) {
 Serial.print("Cant find the shield, check you connection");
 while (1); // wait
 }

 // Got ok data, print it out!
 Serial.println("Connected");
 //Print out the firmware version
 Serial.print("Firmware ver. ");
 Serial.print((versiondata>>16) & 0xFF, DEC);
 Serial.print('.'); Serial.println((versiondata>>8) & 0xFF, DEC);

 // Set the number of retry attempts to read from a card
 nfc.setPassiveActivationRetries(0xFF);

 // configure the board to read RFID tags
 nfc.SAMConfig();

 Serial.println("Waiting for a tag");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on with NFC

[102]

void loop(void) {
 //Decalre a variable to store state
 boolean success;
 //Buffer to store the ID of the card
 byte uid[] = { 0, 0, 0, 0, 0, 0, 0 };
 //Keychain that stores the card information
 byte keyID[] = {39, 246, 64, 175};
 int counter=0;
 //Variable to store the length of the ID
 byte uidLength;

 // Waits for and tag and reads the lenght of the ID and the ID
 success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A,
 &uid[0], &uidLength);

 if (success) {

 for (uint8_t i=0; i < uidLength; i++)
 {
 if(uid[i]==keyID[i]){
 counter++;
 }
 }
 Serial.println();
 //If 4 out of 4 i right we unlock
 if(counter==4){
 Serial.println("unlocked");
 //if not the card is wrong
 }else{
 Serial.println("wrong card try again");
 }
 // Wait 1 second before continuing
 delay(1000);
 }
}

In the preceding code, we are basically doing the same reading operation as before,
but instead of printing the ID number, we check it with the key code stored in the
sketch. If the numbers match the one we stored, we will get a message in the serial
monitor that says, unlocked.

Now when we have the basic functionality of the NFC reader covered in code, let's
take a look at how to operate a servomotor, which we will be using to twist the lock
on the physical door.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[103]

Connecting the motor
In order to actually open a door, we will need some help from the inside. Servomotors
are the most common motors used in robotics and they are very easy to operate.
There are two kinds of servomotors, there are the standard ones that only rotate 180
degrees and there are the continuous rotation servos that can rotate as much as you
want in both directions. The trade-off with continuous rotation servos is that they are
less precise. For this project, we will be using a standard servo since we only need to
turn 45 degrees and the standard servo is usually more precise than the continuous
rotation servo. Again, this depends on the kind of door you have. There is no such
thing as a universal door, and you might need to modify the design of this project a
bit depending on the door you have. In the next section of this chapter, we will take
a closer look at the doors I used for this project, but first let's just take a quick look at
how to operate the motor.

As servomotors are so common and popular to use among the Arduino community,
the Arduino IDE has built-in functions for operating them. First, we need to connect
the motor; they always come with three wires. In some cases, these wires are red,
black and white or red, black and yellow in color. The red wires connect to 5+ and
the black ones connect to GND. The yellow or white is the signal cable, which
connects to a digital pin on the Arduino board, which in our case will be pin 9.
Figure 6.4 shows how to hook the motor up to the Arduino:

Figure 6.4: The servomotor connected to the Arduino Uno

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on with NFC

[104]

Once you are hooked up and ready to go, upload the following code. If everything is
connected right, the motor should start moving from its original start position to 180
degrees and back again. There are different sizes of servomotor available and the one
used in this chapter is on the smaller side of the range. But even if it's small, it packs
some serious torque, which was enough the turn the lock on my door. If it's too weak
for your door, you could try a bigger one. Keep in mind that some of the bigger sized
motors can't be powered straight from the Arduino board, since the current in the 5
V pin is not enough for some motors.

#include <Servo.h>
//Create servo object
Servo myservo;

void setup()
{
 //Name the signal pin
 myservo.attach(9);
}

void loop()
{
 //Rotate the motor from position 0 to 180 degrees
 myservo.write(0);
 delay(1000);
 myservo.write(180);
 delay(1000);
}

Putting the pieces together
Now, it's time for some serious construction in order to actually fit our project to the
door. Mind you, this project was based on a standard lock used in Sweden; if you
have a different door lock, this design might need some heavy modification. The goal
was to keep the design of the construction as simple and transparent for this reason. I
would suggest that you start by taking a look at Figure 6.8 to get a general idea of the
finished result before you get started.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[105]

In Figure 6.5, you will find the design measurement for the construction that holds
the motor, shield, and Arduino board in place:

Figure 6.5: The cutting measurements for all the parts

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on with NFC

[106]

The largest piece, which measures 200 x 80 mm, will act as our baseplate. The idea is
that the front of the lock will be removed and then the baseplate will be inserted on
the door. The front of the lock will then be put back into place, which will hold the
baseplate in place. In this way, you don't have to modify the door in anyway or drill
screws into the door to keep it in place. Drilling screws into the door is an easier option
but most door locks can easily be unscrewed from the inside, so I do not recommend
that you parentally fix anything to the door since these might be expensive to replace.
The 75 x 80 mm piece to the left in Figure 6.5 is where the motor will be place. The 22
x 10 mm pieces will be inserted into the middle holes of this piece in order to hold
the motor in place. Figure 6.6 should give you an idea of what this will look like. The
second 75 x 80 mm piece to the right of the first one will only be used for steadiness.
Both the 75 x 80 mm pieces and the 200 x 80 mm have three identical holes, which are
placed in the same location. The idea is to run the three 200 x 10 mm pieces in order to
make "floors" in the construction and hold everything together, which is also shown in
Figure 6.5. The 200 x 10 mm pieces are longer than needed, but this will give you room
to move things around if needed to get the right distance between the lock and motor.
Once you are done, you can cut them into the right size.

Note that this design is based on a material that has a thickness of 6 mm. If you use
any other material thickness, the pieces will not fit the holes. For this project, I used
MDF since it's affordable and easy to use with a laser cutter. Even if it is possible to
cut all the pieces by hand, I would recommend using a laser cutter for this project.
If you don't have access to one, I would recommend that you use the design as a
general guideline for how it can be done, but try to rethink the design so it fits with
the tools and material available to you.

Figure 6.6: The motor plate in place together with the base plate

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[107]

The measurement for the "claw" in Figure 6.7 is 40 x 40 mm on all three pieces.
However, I recommend that you make a few of them to try out with your own
lock. The general guideline is that you don't want a snug fit between the lock and
the "claw," since then, the axel of the motor needs to be perfectly aligned with the
locks rotational axel. If you give it some room, the alignment does not need to be
perfect. This makes the rest of the construction easier. Figure 6.7 shows the "claw"
that will be attached to the servo motor and placed over the actual lock:

Figure 6.7: The "claw" attached to the servomotor

The motor can be attached using either the screw mount on the actual motor or using
plastic straps. I choose to use plastic straps, since again this gives the motor some room
to move a little bit in case the axels don't align perfectly. But make sure not to strap it
in too loose so that the motor falls out. Servomotors usually come with some different
attachments for connecting them to other things and in Figure 6.7 you can see the type
of leaver I used for this project. This was simply screwed into the bottom of the "claw."

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on with NFC

[108]

The process for putting everything together, I recommend, starts with attaching
the baseplate to the door. Place the motor plate in the right position so it covers
the lock, and make sure it's able to twist the lock. Then attach the last plate if some
extra sturdiness is needed, and hopefully you'll end up with something that looks
like Figure 6.8. The Arduino and shield is held into place using straps, since this is
safer than attaching it with screws. You can use the screw holes on the NFC shield,
but watch out so you don't scratch the PCB since this might cut one of the PCB
connections. For this project, I cut the JST connector off the motor cable and soldered
them to the NFC shield, which has an extension pin for all the pins on the Arduino
board. The connections are the same as used before where the signal pin is connected
to digital pin number 9 and the black cable to GND and the red one to 5V:

Figure 6.8: The final door lock in place

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[109]

The final code
The following sketch is basically a combination of the three previous sketch examples
in this chapter. First, it will activate the NFC shield and look for a tag or card. If the
right card or tag is registered, this will activate the motor, which will turn the look and
then the door will be open. The door will be open for 20 seconds and then the motor
will turn back again locking the door. The code should work as supposed to, but the
construction might need some tinkering before everything lines up as it should. Once
everything is in place, it's time to upload the final code, which you will find here:

#include <Wire.h>
#include <SPI.h>
#include <Adafruit_PN532.h>
#include <Servo.h>

// Define the I2C pins
#define PN532_IRQ (2)
#define PN532_RESET (3) // Not connected by default on the NFC Shield
//Connect the shield I2C connection:
Adafruit_PN532 nfc(PN532_IRQ, PN532_RESET);
//Create servo object
Servo myservo;

void setup(void) {
 Serial.begin(115200);
 Serial.println("Starting the NFC shield");
 nfc.begin();
 //Check the firmware version of the shield
 uint32_t versiondata = nfc.getFirmwareVersion();
 if (! versiondata) {
 Serial.print("Cant find the shield, check you connection");
 while (1); // wait
 //Name the signal pin
 myservo.attach(9);
 myservo.write(0);
 delay(1000);

 }

 // Got ok data, print it out!
 Serial.println("Connected");
 //Print out the firmware version

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on with NFC

[110]

 Serial.print("Firmware ver. ");
 Serial.print((versiondata>>16) & 0xFF, DEC);
 Serial.print('.'); Serial.println((versiondata>>8) & 0xFF, DEC);

 // Set the number of retry attempts to read from a card
 nfc.setPassiveActivationRetries(0xFF);

 // configure the board to read RFID tags
 nfc.SAMConfig();

 Serial.println("Waiting for a tag");
}

void loop(void) {
 //Decalre a variable to store state
 boolean success;
 //Buffer to store the ID of the card
 byte uid[] = { 0, 0, 0, 0, 0, 0, 0 };
 //Keychain that stores the card information
 byte keyID[] = {39, 246, 64, 175};
 int counter=0;
 //Variable to store the length of the ID
 byte uidLength;

// Waits for and tag and reads the length of the package and the //ID
 success = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, &uid[0],
&uidLength);

 if (success) {

 for (uint8_t i=0; i < uidLength; i++)
 {
 if(uid[i]==keyID[i]){
 counter++;
 }

 }
 Serial.println();
 //If 4 out of 4 i right we unlock
 if(counter==4){
 Serial.println("Open door");
 myservo.write(180);
 //Keep the door open for 20sec
 delay(2000);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[111]

 Serial.println("Close door");
 myservo.write(0);
 //if not the card is wrong
 }else{
 Serial.println("wrong card try again");
 }
 // Wait 1 second before continuing
 delay(1000);
 }

}

Have a look at my NFC ring:

Figure 6.9: The wooden NFC ring

Wrapping things up
The last thing you have to do for your project is to choose a power source. Powering
your board with a transformer is the most secure approach, since if the lock runs
out of power it will not work. With most servos you could still turn the lock with
a regular key, so don't worry. But with a transformer, you will need a cable from
the lock to a wall socket, which might not be aesthetically pleasing for some. In that
case, you can power the lock with a battery but keep in mind that the battery will
eventually drain. Any transformer that outputs between 7–12V DC will probably do
the trick and the same goes for batteries. The power source you choose needs to have
a DC-Jack male connector to fit the Arduino board and do not forget to check the
polarity of the DC-Jack. For most batteries, there are battery connectors you can buy;
if you have the parts you can solder your own. You can't, however, power the lock
via USB since there is not enough power for both the servo and NFC shield at the
same time.

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on with NFC

[112]

As I said before, NFC cards and tags are available in all different shapes and sizes.
There are even NFC tags made to be inserted into the body. I actually have two friends
that have NFC implants, which technically makes them cyborgs. But if you're not on
the extreme edge of wearables, I would hold off on implants and stick with tags for
now. There is still tons of fun to be had making your own gear and hiding NFC tags in
them. For inspiration, you will find my NFC ring in Figure 6.9. I simply carved it out of
wood and fitted an NFC tag in the front. I wanted to go for a low/high tech look with
the antenna and chip visible in the front.

Summary
In this chapter, you learned a bit about NFC technology and how it can be used as
a means to give objects a unique identifier that can be digitally registered. You also
learned a bit about servomotors and how they can be used to move things around.
The construction part of this project might seem tricky to some and it is but with some
patience, I am sure you will get there. The good part is that once you're done with the
door, you can have a lot of fun creating new objects to open the door with minimum
effort. Instead of hiding a spare key under the doormat or a garden stone, why not
make the actual doormat or stone into the key. I bet no one would ever think of trying
to open a door with these objects. If you are worried about losing your tags, there are
re-programmable tags available, which means you can clone your tags.

In the next chapter, we will stick with wireless communication but we will be
switching over to Bluetooth. This gives us a larger range of functions to play
around with.

www.it-ebooks.info

http://www.it-ebooks.info/

[113]

Hands-on BLE
In this chapter, we will take a look at Bluetooth technology and how to make
your own activity and gesture-monitoring device. Bluetooth is a standard for
wireless communication between devices that was developed by the Swedish
telecom company Ericsson in the 90s. The Nordic Viking king, Harald Blåtand,
who united the Norwegians and the Danish, was known for his communication
skills and as a great speaker inspired the name Bluetooth. The word Bluetooth
is a direct translation of his last name, which seemed fitting.

The actual technology was off to a slow start and struggled for its existence for the
first year, but now it's safe to say that it has become a success and the market has
exploded with Bluetooth connected devices. Today, it seems that everything is
connected with Bluetooth. Cars, controllers, headphones, keyboards, and even lamps
connect to other devices over Bluetooth. In 2010, Sony started the development
of a Bluetooth version called smart Bluetooth, a smaller low-powered version of
Bluetooth, which targeted the market of fitness and healthcare. As in the case of all
wearables, size and power composition are always a concern, so smart Bluetooth
needed to be small and power efficient. However, small and power efficiency is
loved by all, so a part of the Sony development became a part of the Bluetooth
version 4.0 standard. This standard is also known as BLE, which stands for
Bluetooth low energy, and as I say, "With low energy comes great possibilities".

BLE will act as the base for this chapter where we will be using the technology to
create our own gesture-tracking device. As always, the projects in this book aim
to get you started, then get you to take over and make the project your own. Maybe
you want to make a keyboardless keyboard, a gesture controlled lamp, or add some
cool sound effect to your karate training. The possibilities are endless.

In this chapter, we will also introduce a new prototype board called the Blend Micro,
which is a very special board, prefect for creating wearables.

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on BLE

[114]

Materials needed:

• Blend Micro board
• ADXL355 accelerometer
• Mini or regular breadboard
• Mobile phone supporting Bluetooth Version 4.0
• Cables
• 3.7V 150–500mAh lithium Battery
• 220Ω resistor
• Micro USB cable

Hello Blend Micro
The Blend Micro board produced by RedBearLabs combines the ATmega32U4
chip used in many Arduino boards with the Nordic nRF8001 Bluetooth chips.
The boards are very small, but still feature the same functions as a normal Arduino
board with the added feature of BLE. This board can connect to anything that
supports Bluetooth version 4.0 and above.

In order to be able to program the board from the Arduino IDE, we need to add
support for this type of board. In the Arduino IDE 1.6.4 and above, adding support
has been made very easy. If you take a look in the menu by navigating to Tools |
Boards, at the top of the list you will find the Boards Manager…. If you open it up,
it should look something like Figure 7.1:

Figure 7.1: The Boards Manager

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[115]

Just search for Blend Micro and press the Install button and all the necessary files to
support the Blend Micro board will be installed. If you are using an older version of
the IDE, you will need to manually modify the IDE according to the following steps:

1. First, head over to the Red Bear GitHub on the following link and download
the .zip file from https://github.com/RedBearLab/Blend.

2. Unzip the file once downloaded and locate the hardware folder inside
Blend-**** | Arduino.

3. Copy this folder and move to the Arduino folder created inside your
documents folder where the IDE is installed. Place the copied hardware
folder into the Documents | Arduino folder. It should end up in the same
level as your libraries folder.

In the next step, we need to modify the main.cpp file located in the Arduino IDE
application folder in order for the Blend Micro to be listed in the IDE. Note that this
is not the same folder as the Documents | Arduino folder. The folder we are looking
for is inside the folder where you find your Arduino application.

On a windows computer, you will find the main.cpp folder:

1. Find the Arduino IDE folder.
2. Navigate to hardware | arduino | cores | arduino | main.cpp.

On an OS X computer, you need to:

1. Find your Arduino application and then right-click on the application.
2. Choose Show package content, which will open up a folder in finder.
3. Navigate through the Contents | Resources | Java | hardware | arduino

| cores | arduino | main.cpp folder.

Once you have located the main.cpp file, open it with any text editor and edit the
code with the following code and then save it:

#if defined(BLEND_MICRO_8MHZ)
PPLCRS |= 0x 10;
while (!(PPLCRS & (1<<PLOCK)));
#elif defined(BLEND_MICRO_16MHZ)
run (i.e. overclock running at 3.3v)
CLKPR = 0x80;
CLKPR = 0;
#endif

www.it-ebooks.info

https://github.com/RedBearLab/Blend
http://www.it-ebooks.info/

Hands-on BLE

[116]

If you have your IDE open, you will need to restart the IDE in order for the changes
to take effect. Once reloaded, check your board menu by navigating to Tools | Board,
and you should be able to find the Blend Micro in the list. As you may have noticed,
there are two different Blend Micro boards, one 8MHz and one 16MHz. The Blend
Micro runs at 8MHz by default, but you can run it at a higher processing speed of
16MHz if you want. The risk is that the board might be a bit less stable at the higher
speed even if this risk is low.

Once we have added the support for the board, we need to install the libraries for
the BLE chip. In Arduino 1.6.4 and above, libraries are installed through library
manager. If you are working with an older version of the IDE or if the library is
not available through the manager, you can still install it manually. Download the
following library .zip files from the following links:

https://github.com/NordicSemiconductor/ble-sdk-arduino/

https://github.com/RedBearLab/nRF8001.

Once you've downloaded, perform the following:

1. Unzip both .zip files and open up you IDE.
2. Navigate to the Sketch | Add library menu.
3. Select the libraries folder from the downloaded nRF8001 folder

nRF8001-**** | Arduino | libraries and import it.
4. Do the same for the ble_sdk_arduino | libraries folder.

If you are running a Windows computer, you will need to install an additional
driver for the board. In the following link on the Red Bear website, you will find
a short tutorial on how to do this and where to download the drivers from:

http://redbearlab.com/windows-driver/

In order to test that everything works, upload the standard blink example found
under File | Example | Basic | Blink or write the following code in the IDE and
upload it to your board:

void setup() {

 pinMode(13, OUTPUT);
}

www.it-ebooks.info

https://github.com/NordicSemiconductor/ble-sdk-arduino/
https://github.com/RedBearLab/nRF8001
http://redbearlab.com/windows-driver/
http://www.it-ebooks.info/

Chapter 7

[117]

void loop() {
 digitalWrite(13, HIGH);
 delay(1000);
 digitalWrite(13, LOW);
 delay(1000);
}

If everything was installed correctly, the on-board LED on the Blend Micro should
start to blink with a 1 second delay. If it does not, first make sure that:

• The main.cpp was changed properly and saved
• The board is connected
• The right board and com port is selected in the tools menu
• The IDE was restarted after changing the main.cpp file

When you're done with setting up the IDE, you can play around a bit by controlling
the Blend Micro from a mobile phone.

The Blend Micro app
Red Bear has developed an application for both Android and IOS, which are great
companions for developing and debugging the Blend boards. Start by downloading
the application to you mobile phone. If you are running Android, you will find
the application at https://play.google.com/store/apps/details?id=com.
redbear.redbearbleclient.

And for IOS:

https://itunes.apple.com/app/ble-controller/id855062200.

You can also search for BLE Controller in the Android Play store or in iTunes.

www.it-ebooks.info

 https://play.google.com/store/apps/details?id=com.redbear.redbearbleclient
 https://play.google.com/store/apps/details?id=com.redbear.redbearbleclient
https://itunes.apple.com/app/ble-controller/id855062200
http://www.it-ebooks.info/

Hands-on BLE

[118]

In order to give some feedback on the Blend Micro let's set it up on a breadboard
with an external LED, which we will control from the mobile application. When you
buy a Blend Micro board, it comes with the male pin headers unsoldered. I suggest
you keep them unsoldered since we want to keep the circuit for the project as flat
as possible later on. For this next part, you can just place the male pin headers on
a breadboard so that they line up with the pins of the Blend Micro, and then place
the Blend Micro on top as shown in Figure 7.2. In this way, we can remove it later
on. This might create a bit of a glitch sometimes, so make sure the pins are pressed
snug against the solder pads:

Figure 7.2: The Blend Micro attached to the breadboard

Once the Blend Micro is placed on the breadboard, we can add the external LED and
we will need a 220Ω resistor as well. Figure 7.3 shows everything connected;

1. Connect the resistor between GND and the ground line.
2. Connect the positive leg of the LED to pin 3 and the negative to the ground

line.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[119]

Figure 7.3: The LED and resistor connected to the breadboard

Note that I flipped the Blend Micro over in Figure 7.3. The only reason for this is to
expose the numbering of pins on the board.

Once your breadboard and Blend Micro is set up, we need to upload some code.
At this point, we just want to make sure that things are working, so to make things
easy, we will be using some of the examples from the BLE library:

1. Navigate to File | Examles | BLE | BLEcontrollerSketch.
2. Select the Blend Micro in the board menu.
3. Check that the right USB port is selected under Tools.
4. Upload the code.

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on BLE

[120]

This sketch acts as a firmware for the Blend Micro, so we can access the basic functions
from the mobile application. Now open up the mobile application and press on the
Menu button to open the menu as shown in Figure 7.4:

Figure 7.4: The BLE Controller app menu

Choose the BLE Controller and you will be prompted with a screen and Scan button.
Press the Scan button and the application will start searching for BLE devices in
your vicinity. If the Blend Micro is powered, it should find it within a few seconds
as shown in Figure 7.5:

Figure 7.5: Scanning for BLE devices

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[121]

Figure 7.5 shows the expected result of the scan. It shows the local name (which
is Blend Micro) and the actual MAC address of the BLE chips, which is a unique
address for your particular chip and board. Press the arrow button and wait a few
seconds for the application to pair with you board. Once paired, the interface as
show in Figure 7.6 should appear:

Figure 7.6: The options for direct pin control

From the application, you can set the basic pin modes and basic state options. In
order to try your breadboard setup, switch the pin mode state on pin 3 from Input
to Output and then toggle the Low to High switch. If everything is connected, the
LED should turn on and off. The PWM and Servo options are also included, so you
can also try to switch the pin mode to PWM and the Low/High toggle will switch to
a slider. Sliding the slider around should change the intensity of the LED light. Note
that there might be a slight delay because the application has to send the information
to the Blend Micro board.

Now that we know that the Blend Micro board is up and running, we can set up a
connection to another device. Let's take a look at how to connect an accelerometer
to the mix and get started with coding some algorithms for tracking gestures.

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on BLE

[122]

Gesture tracking
For this chapter, I will be using an accelerometer breakout board based on the
ADXL335 chip. You can basically use any accelerometer you find for this project.
If you already have gone through this chapter, you might have the combined
accelerometer/compass/gyro from earlier, which will also work. The reason for
using the ADXL335 in this chapter is that it has a different form factor, which fits
this project better. This accelerometer also makes readout on analog pins, so there is
no need for I2C as presented in Chapter 3, Bike Gloves. Accelerometers are suited for
measuring acceleration of gravity or as a result of motion of chocks, however, they
are known to be very noisy sensors, which means that their readouts are not always
exact. The following sketch demonstrates how to "smoothen" the readouts and
how to display the information in degrees, as well as indicate which direction the
accelerometer is moving.

First, we need to connect our accelerometer to the Blend Micro board. I recommend
connecting it to the small breadboard we used before while connecting the LED to the
Blend Micro. Some accelerometers breakout boards come with the pins unsoldered, so
before you connect it to the breadboard, you might need to solder them in place or just
place it on the pin headers on the breadboard as done with the Blend Micro:

Figure 7.7: The ADXL355 connected to the Blend Micro

You can connect it as per the following sequence as shown in Figure 7.7:

• VIN connects to V33
• Xout to analogpin A2
• Yout to analogpin A1
• Zout to analogpin A0
• GND to GND

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[123]

Figure 7.7 shows all the connections that need to be made. In the case of the ADXL335,
you can connect it to either 3.3V or 5V if you ever use it with a standard Arduino.

Getting good values from an accelerometer is a science on its own, and
unfortunately, this chapter is not long enough to really get into depth on
accelerometers. To get you started, we will take a look at how to detect direction and
degrees of movement.

Let's try out the accelerometer with the Blend Micro and see if we can get some
values that are good for most projects. Even if accelerometers are noisy sensors,
they still work for most applications based on human interaction. Even if the
accelerometer generates a faulty value readout in-between moving it 0.01 mm and
0.02 mm, it's very hard to move the sensor as little as this. In most cases, human
interactions have a greater span and a super exact sensor makes little difference since
humans have a hard time being perfectly still.

As you will see in the following sketch, we can still get pretty decent measurements
in degrees with some simple code. Upload the following sketch to your board and
open up your serial monitor.

int samples=50;
int acc=20;
float sampleX;
float sampleY;
float sampleZ;
float lastX=0;
float lastY=0;
float lastZ=0;
float degreeX=0;
float degreeY=0;
float degreeZ=0;
float zeroX;
float zeroY;
float zeroZ;
void setup(){
 //Initiate the serial communication
 Serial.begin(57600);
 //Calculate the zero position
 zeroX=calibrateX();
 zeroY=calibrateY();
 zeroZ=calibrateZ();
}

void loop(){
 //Get the sensor data for x, y and z axis and store it

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on BLE

[124]

 float x=calibrateX();
 float y=calibrateY();
 float z=calibrateZ();
 /*Calculate the degrees by subtracting the zero position for the
recent readout*/
 degreeX=x-zeroX;
 degreeY=y-zeroY;
 degreeZ=z-zeroZ;
/*Delay only needed when printing information to the serial monitor*/
 delay(200);
 Serial.println(degreeX);
 /*If the axis is smaller or bigger then the value we use for
accuracy we print out the data and degrees*/
 if(x<lastX-acc){
 Serial.print("X Degrees: ");
 Serial.print(degreeX);
 Serial.println(" Moving right");
 }
 if(x>lastX+acc){
 Serial.print("X Degrees: ");
 Serial.print(degreeX);
 Serial.println("Moving left");
 }
 if(y<lastY-acc){
 Serial.print("Y Degrees: ");
 Serial.print(degreeY);
 Serial.println("Moving backwards");
 }
 if(y>lastY+acc){
 Serial.print("Y Degrees: ");
 Serial.print(degreeY);
 Serial.println("Moving forwards");
 }
 if(z<lastZ-acc){
 Serial.print("Z Degrees: ");
 Serial.print(degreeZ);
 Serial.println("Moving up");
 }
 if(z>lastZ+acc){
 Serial.print("Z Degrees: ");
 Serial.print(degreeZ);
 Serial.println("Moving down");
 }
 lastX=x;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[125]

 lastY=y;
 lastZ=z;
}
/*Functions for better readouts which takes 50 samples and calculate
the median*/
void calibrateX(){

 for(int i=0;i<samples;i++){
 sampleX += analogRead(2);
 }
 sampleX = sampleX/samples;
}
void calibrateY(){

 for(int i=0;i<samples;i++){
 sampleY += analogRead(1);
 }
 sampleY = sampleY/samples;
}
void calibrateZ(){

 for(int i=0;i<samples;i++){
 sampleZ += analogRead(1);
 }
 sampleZ = sampleZ/samples;
}

In the preceding sketch, we are performing two operations, calculating the degrees of
movement and detecting if the movement is above or below the desired range. As I
said before, accelerometers are noisy, which means that the values jump around a bit
even if you don't move the sensor. This is why we implemented a threshold and if you
want a higher or lower accuracy, you can change the acc variable. Again, since the
sensor is a bit noisy, we implemented a function for readouts on the axes. The function
takes 50 sample readings and calculates the average from these readings in order to get
smoother readouts. The median is returned every time we call each of the functions.

Next, we will take a look at how we can send information over the Bluetooth instead.
Since some of you might have a computer which doesn't support Bluetooth Version
4.0, we will use a mobile phone to act as our serial port. With the Blend Micro,
we can only send one byte at the time, so this sketch shows how messages can be
formatted so we can send full messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on BLE

[126]

Start by uploading the following code to your board:

#include <SPI.h>
#include <EEPROM.h>
#include <boards.h>
#include <RBL_nRF8001.h>
unsigned char buf[16] = {
 0};
unsigned char len = 0;

int samples=50;
float sampleX;
float sampleY;
float sampleZ;
int acc=20;
float lastX=0;
float lastY=0;
float lastZ=0;
void setup(){
 // Init. and start BLE library.
 ble_begin();
 Serial.begin(57600);
}

void loop(){

 float x=calibrateX();
 float y=calibrateY();
 float z=calibrateZ();

 if (ble_connected()){
 if(x<lastX-acc){
 ble_write('R');
 ble_write('i');
 ble_write('g');
 ble_write('h');
 ble_write('t');
 ble_write(' ');
 }
 if(x>lastX+acc){
 ble_write('L');
 ble_write('e');
 ble_write('f');

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[127]

 ble_write('t');
 ble_write(' ');
 }
 if(y<lastY-acc){
 ble_write('B');
 ble_write('a');
 ble_write('c');
 ble_write('k');
 ble_write(' ');
 }
 if(y>lastY+acc){
 ble_write('F');
 ble_write('o');
 ble_write('r');
 ble_write('w');
 ble_write('a');
 ble_write('r');
 ble_write('d');
 ble_write(' ');
 }
 if(z<lastZ-acc){
 ble_write('U');
 ble_write('p');
 ble_write(' ');
 }
 if(z>lastZ+acc){
 ble_write('D');
 ble_write('o');
 ble_write('w');
 ble_write('n');
 ble_write(' ');
 }
 }
 ble_do_events();
 lastX=x;
 lastY=y;
 lastZ=z;
}

float calibrateX(){

 for(int i=0;i<samples;i++){
 sampleX += analogRead(2);

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on BLE

[128]

 }
 sampleX = sampleX/samples;

 return sampleX;
}
float calibrateY(){

 for(int i=0;i<samples;i++){
 sampleY += analogRead(1);
 }
 sampleY = sampleY/samples;

 return sampleY;
}
float calibrateZ(){

 for(int i=0;i<samples;i++){
 sampleZ += analogRead(0);
 }
 sampleZ = sampleZ/samples;

 return sampleZ;
}

Once the code is uploaded to the board, it is time to switch over to your mobile phone
and open the BLE Controller app you previously used in this chapter. Open up the app
and select Simple chat in the menu as shown in Figure 7.4. Then scan for devices and
select your BlendMicro. This will open up a new window that looks like Figure 7.8,
and as soon as you start moving your accelerometer around, the different directions
should appear on your mobile screen:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[129]

Figure7.8: The app printout from the accelerometer

Wrapping things up
Once you have gone through the setup process in this chapter and tested a working
connection between your Blend Micro and another device, you can move on from
the breadboard and solder the connections shown in Figure 7.6 with wires. You also
need to add a connector to VIN and GND for a battery. This depends on the type of
battery you want to connect, but if it's a small lithium one, there is a chance that you
will need a two-pin female JST connector.

The gesture-tracking device created in this chapter can have a range of functions,
depending on where you put it. In some of these cases, weatherproofing might be
of importance but making a waterproof casing from scratch is trickier than might be
expected. In my case, I found that an old film bottle works perfectly as a container
for the Blend Micro and accelerometer used in this project. It protects the electronics
from any liquids and is still small enough to place into other objects. Since not
everyone is into film photography these days, any plastic container with a good seal
will do. Once inside a container, you can start experimenting with the circuit placing
it on different parts of your body, in order to figure out what type of data you might
want to collect. Once you know, you can start experimenting with different garments
to place them in. The best way is to find a material that is water resistant and place
your electronics in that. Then place them inside a garment either by sewing it into
place or using Velcro so that things can easily be removed. If you are skilled in
sewing, an option is to look at water resistant fabrics that can be used to sew a
pouch into a garment to hold the electronics in place.

www.it-ebooks.info

http://www.it-ebooks.info/

Hands-on BLE

[130]

As I mentioned in the beginning of this book, the possibilities are endless with
Bluetooth and I can probably write an entire book about Arduino and Bluetooth.
In order to really dig into Bluetooth possibilities, eventually we will need to turn to
some mobile application development, but unfortunately there is no room for that in
this book. There are also a few things on other wearable technology I would like
to cover before the book ends.

Figure 7.9: The components inside a film bottle

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[131]

If you want to learn more about the possibilities of Blend Micro, both
the nRF8001 and Arduino SDK libraries used in this chapter have a
few examples included that are worth mentioning as inspiration for
further development. If you want to learn more about accelerometer, I
recommend you head over to Jeff Rowbergs website about "Keyglove".
Keyglove is an open source project about a connected glove, which can
be used for a range of applications and the website has a good segment
about accelerometers.
http://www.keyglove.net

If you want to learn more about developing mobile applications that
can be connected to the Blend Micro the BLE Controller app used
in this chapter is available as open source together with the SDK for
Android and IOS.
https://github.com/RedBearLab/Android

https://github.com/RedBearLab/IOS

If you are completely new to mobile application development, but
want to learn more about it in a wearable context, I recommend the
book Professional Android Wearables, Wrox Press by David Cuartielles
Ruiz and Andreas Goransson.

Summary
This chapter has presented the basics of getting you up and running with Bluetooth.
In this chapter, we introduced BLE with the Blend Micro and had a closer look at
how to get stared with gesture recognition using accelerometers. We also learned
two ways of adding support for third party boards to the Arduino IDE.

In the next chapter, we will introduce yet another Arduino compatible board using
wireless communication called the Particle core, but this time, the focus will be on
Wi-Fi. The next chapter is an "in-between" chapter where we will introduce the Spark
Core. This will act as the foundation for the last chapter and project where we will
combine most of the technologies and knowledge from the previous chapters.

www.it-ebooks.info

http://www.keyglove.net
https://github.com/RedBearLab/Android
https://github.com/RedBearLab/IOS
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[133]

On the Wi-fly
In this chapter, we will have a look at yet another new Arduino compatible board
called the Particle Core. The big feature with this board is that it includes Wi-Fi
connectivity in a very small form factor. I guess most of you are familiar with Wi-Fi
technology these days as Wi-Fi has become a standard for wireless communication
in almost all personal computers and smart phones, and in recent years we can
even find Wi-Fi technology in many consumer electronics. One of the first consumer
products including Wi-Fi technology which was not a personal computer was
weirdly a bathroom scale. Today, we find stereos, robot vacuum cleaners, light
bulbs, and even refrigerators that include Wi-Fi technology. The reason for this is of
course to connect these products to the Internet.

Even though I am not that old, I still remember a time when anything connected
to the Internet needed a cable, but fortunately those days are long gone. Wi-Fi
technology is still older than one might think. The development started in the early
70s, but it was not until the late 90s that Wi-Fi started to become commercially
available and used. Even in the beginning of the age of Wi-Fi for personal computers,
Internet connections over cable were preferred since the speed over Wi-Fi nowhere
near matched the speed over cable connections. Wi-Fi has still not caught up with
cable connections, but it is still fast enough for our everyday needs.

Wi-Fi is a local area wireless computer networking technology, which can be used
for peer-to-peer connections, or connecting to the Internet through a router. The
actual name of the technology is IEEE 802.11x where x is a letter that indicates the
version of the technology. The term Wi-Fi was not used until the late 90s when the
name was rebranded for commercial purposes. The reason was simple: it is easier
to say Wi-Fi than to refer to the technology as IEEE 802.11. In recent years, Wi-Fi
has become faster, smaller, and cheaper, which has made it one of the backbone
technologies of the "Internet of Things".

www.it-ebooks.info

http://www.it-ebooks.info/

On the Wi-fly

[134]

By now, you are familiar with wearables and some consider wearables as a
sub-domain in the Internet of Things where ordinary objects are modified with
computational abilities and connected to the Internet. Personally, I like to think
that wearables will become the "glue" devices that connect all of these things to
the Internet.

So, of course we will have a look at Wi-Fi technology in this book since I find it
fitting to end the book with what will become the future (hopefully the future will
prove me right). The remaining two chapters will focus on the Particle Core, where
we will first introduce the board and how to wirelessly program it then, in the last
chapter, use the Particle Core to make our own smart watch.

In this chapter, we will have a look at how to connect to the Core board and how
to code for it. We will also have a look at how to send information to and from the
Internet and how to control the board from a simple web page. We will also have a
look at how to connect the Core to third-party services through the use of a mash-up
service called IFTTT.

The following are the materials that you will need for this chapter:

• Particle Core
• Micro USB (included in the development kit)
• Mini breadboard (included in the development kit)
• LEDs
• A 220Ω resistor
• An Android or iPhone phone

The Particle Core
The Particle Core is an Arduino-compatible board but with some reservations.
In fact, the Particle Core is based on ARM Cortex-M3 processors, which use a
different architecture from the Atmega microprocessors used in most Arduino-
compatible boards. This means that the Particle Core can't be programmed from
the Arduino IDE at the moment, but don't worry as there are other options.

Still we can consider the Particle Core to be Arduino-familiar since we can program
them using the same commands and structure as used to program all Arduino
boards. Many of the libraries available for Arduino boards also work for the Particle
Core and some are specifically developed for the Particle Core in order to utilize the
Wi-Fi connectivity. Figure 8.1 shows the development kit available from:

https://www.particle.io/.

www.it-ebooks.info

https://www.particle.io/
http://www.it-ebooks.info/

Chapter 8

[135]

This kit includes the Particle Core board, a mini breadboard, and a micro USB cable:

Figure 8.1: The Particle Core starter kit

In order to get started on programming the Particle Core, we need to connect it to
your network. To do so, we will need some help from the Particle app in order to
connect your Particle Core to your network. The app is available for both Android
at https://play.google.com/store/apps/details?id=io.particle.android.
app and for IOS at: https://itunes.apple.com/us/app/particle-build-
photon-electron/id991459054?ls=1&mt=8.

To set up your Particle Core, perform the following steps:

1. Download and install the app on your smartphone.
2. Once installed, you need to create a new account or sign in with an

existing one.
3. Power the Particle Core using the included Micro USB cable.
4. Connect the phone to the Wi-Fi network you want to use and then enter the

password for the network in the app.

www.it-ebooks.info

https://play.google.com/store/apps/details?id=io.particle.android.app
https://play.google.com/store/apps/details?id=io.particle.android.app
https://itunes.apple.com/us/app/particle-build-photon-electron/id991459054?ls=1&mt=8
https://itunes.apple.com/us/app/particle-build-photon-electron/id991459054?ls=1&mt=8
http://www.it-ebooks.info/

On the Wi-fly

[136]

The app should automatically find your Particle Core board and connect it to the
network. In order to debug the different modes of the Particle Core, the board
includes an RGB LED on the top in order to indicate the different states:

• The blue light blinking means that the board is looking for Wi-Fi credentials
• The blue light full on means that the board is getting information from

the app
• Green blinking means that the board is connecting to a Wi-Fi network
• Cyan blinking means that the board is connecting to the Particle cloud
• Magenta blinking means that the board is updating its firmware to the

newest version
• Pulsating magenta means that the board is connected and ready to use

If the app should fail to connect and the LED just keeps blinking blue, try to connect
one more time from the app. If the board gets stuck on green blinking, try holding
down the small Mode button on top of the board for a few seconds until the light
starts blinking blue again. The Mode button is located to the left of the RGB LED
There is a button to the right of the LED also marked RST, which means RESET,
and as suggested by its name, this button resets the program on the board.

Hopefully everything went smoothly and if so, the Tinker screen should appear
in the app as shown in Figure 8.2. The Tinker screen enables basic read and write
operations on the pins on the Particle Core board from the phone app:

Figure 8.2 The Tinker screen in the core app

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[137]

In order to test that everything works:

• Try tapping on the D7 pin in the application and set it to digital write
• Press on it again and set the mode to High. This should turn on a small blue

LED at the top of the Particle Core next to the USB connector
• If the blue LED turns on, everything works and the Particle Core board is

connected to your Wi-Fi network
• If not, run the connection process again and make sure you connect to the

right network from the application

Once connected to the Particle Core, you also have the option to change the name of
your board, which might be a good idea if you have multiple boards. If not, you can
leave the name as is.

Programming for the Particle Core
As I mentioned before, we can't use the Arduino IDE to program the Particle Core
board since the Arduino IDE has no support for this type of board at the time I am
writing this book. But using the Arduino IDE to program the Particle Core is to miss
of the point of using them a bit. Since these boards implement Wi-Fi technology,
we can program them wirelessly, which might be a huge benefit in some cases and
especially when it comes to wearable projects. Debugging a wearable project is a
pain sometimes if you constantly have to be connected to a computer in order to
make changes to the code. So wireless programming alone is a reason for considering
the Particle Core for a wearable project. Then we also have a connection to the
Internet, which makes for some really interesting projects.

In order to make these projects, we need to be able to program the Particle Core, and
Particle, the company behind the Particle Core, has developed a web-based IDE that
can be accessed at the following link: https://build.particle.io/login.

www.it-ebooks.info

https://build.particle.io/login
http://www.it-ebooks.info/

On the Wi-fly

[138]

This link will direct you to a login screen where you log in with the account
information used to create an account through the phone app. When you have
logged in, it should look something like Figure 8.3:

Figure 8.3: The web IDE

As you can tell from Figure 8.3, this IDE looks a bit different from the Arduino IDE
but the basic functions remain the same. To the left you have your basic operations.
First, at the top you will find a button marked with a small lightning, which is the
flashing button that is equivalent to the upload button in the Arduino IDE. This
button pushes the code from the web IDE to the Particle Core board. Since this is
done over Wi-Fi, the flashing will not be as fast on a regular Arduino board. But
usually, it does not take more than a few seconds. In order to test the flashing of
code, add the following code to the web IDE in the code input area, which is the
large dark grey space shown in Figure 8.3:

int led = D7;

void setup(){

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[139]

pinMode(led,OUTPUT);
}

void loop(){
digitalWrite(led,HIGH);
delay(1000);
digitalWrite(led,LOW);
delay(1000);
}

As you might have guessed, the code will turn the blue LED next to the USB port on
and off with a 1 second delay. Now try flashing the code to your Particle Core board.
If you are on the same Wi-Fi, the IDE should automatically find your board and
upload the code. The RGB LED should turn to cyan and start to blink when flashing
the board. Once the flashing is done, the RGB LED should turn back to a pulsating
magenta and the blue LED should start to blink.

Below the Flash button, you will find a Verify button and under this one, you will
find a Save button. Both have the same function as in the Arduino IDE. A bit further
down, you will find five more buttons. The first one hides and shows the code panel
where you can find your saved sketches and recently used ones. Next you have the
Libraries where you can search for all the available libraries. The Docs button will
direct you to a tutorial page with more information about the Particle Core and
available services. Below the Docs button, you will find the Device button, which
shows/hides the available devices connected. The last button is the settings button,
where you can change your password and find your access token, which might be
needed for some services to connect to the Particle Core.

Figure 8.4: The IDE menu buttons

www.it-ebooks.info

http://www.it-ebooks.info/

On the Wi-fly

[140]

The Dashboard
So hopefully you have your Particle Core connected to your Wi-Fi network and have
succeeded in flashing new code to the board over the air. Wireless programming has
many benefits but there is more to the Particle Core, which makes it very interesting
for wearable applications. What's the point of being connected to the Internet if we
can't use it to send data? The people behind the Particle Core have already thought
of this and have implemented some really nice features for data transfers and remote
communication with the board.

First off, there is the Particle Dashboard, which you can find at the following link:
https://dashboard.particle.io.

This will open up a website, which should look something like Figure 8.5. If you are
logged in to the web IDE, the dashboard should automatically open. If not, you need
to enter your account information, which is the same as for the app and web IDE:

Figure 8.5: The Particle Dashboard

www.it-ebooks.info

 https://dashboard.particle.io
 https://dashboard.particle.io
http://www.it-ebooks.info/

Chapter 8

[141]

This dashboard is able to visualize data sent from the Particle Core board. In
software architecture, there is a messaging pattern often used called publish-
subscribe, or pub/sub for short. The basic idea behind this form of messaging
is that a sender of messages, called a publisher, can send messages without a
specific receiver in mind. On the other side, you have subscribers who can collect
data without the need to connect to the publisher. This works by naming the data
and storing the data on a server where it will remain until changed or removed
and the subscribers can collect the data from this server. The whole idea is similar
to a radio where a publisher acts as a radio station and anyone with a radio receiver
can tune in to a channel and listen to whatever is broadcasted on this channel.

In practice, this means that you can connect your Particle Core and broadcast whatever
sensor data you want and anyone or any application can listen in to your channel and
use this data for something else. In order to try this out for yourself, we first need to
have a look at some code:

 void setup() {
 //No need to do anything
}

void loop() {
 //Publish the data
 Spark.publish("MyMessage","Hello",60,PUBLIC);
 //Wait for a bit
 delay(1000);
 //Publish the data
 Spark.publish("MyMessage","Goodby",60, PUBLIC);
 // Wait for a bit
 delay(1000);

}

In the code example just given, we are using the publishing command to send
information to the dashboard. This first parameter of this function is the event name,
or channel name if you like. If the event name does not exist, it will be created.

The next parameter is the actual data you want to send. In the case of the previous
code, these are the messages Hello and Goodbye.

The third parameter is the TTL value, which is short for time-to-live, which limits
the lifetime of data in a computer or network. TTL prevents data from circulating
indefinitely. In the case of the Particle Core, the default TTL is 60 milliseconds and
if you don't have a good reason to change it, I would just stick with this value.

www.it-ebooks.info

http://www.it-ebooks.info/

On the Wi-fly

[142]

The last parameter is used to indicate whether you want your data to be private or
public, for example, if you want other people to be able to access your data or not.
You do not need to add the last two parameters if you don't want to. If you don't,
the default values will be used, which are TTL 60 and the data will be published
as public.

So to sum up, what this sketch does is basically send a message every second, where
it alternates between Hello and Goodbye. Flash the code from the web IDE and once
done, open up your dashboard. It should start to look something like Figure 8.6:

Figure 8.6 Receiving data in the dashboard

As you can see, we have multiple messages displayed; every second, the data is
updated since this is the delay we use in the code. We can also see when the data
was published and from which device. In my case, I have changed the name of the
Particle Core to tonyC. The interface also includes a visualization of a timeline when
the data was received.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[143]

Now let's say we have the opposite scenario, where you want to read data from
someone else's data stream. In order for the next code to work, you need an additional
Particle Core set up with the first code example below and the second Particle Core
with the second example code. I don't expect you to buy two Particle Cores, but you
might have a friend that owns one who could help you to try out this next part. Or
you could head over to the Particle community forum and ask someone to help you,
or check whether someone has an open data stream you could try subscribing to:
https://community.particle.io/.

Once you have found another Particle Core buddy, ask them to flash the following
onto their board:

void setup() {
//Do nothing
}

void loop() {

Spark.publish("tonyC_data_stream","ON");
delay(2000);
Spark.publish("tonyC_data_stream","OFF");
delay(2000);

}

Make sure you change the event name to something that corresponds to your
application. If everyone that reads this book uses the same event name, we might
end up in trouble! So just make sure that the name is unique. The reason for this is
that the name works as a filter. In the next code, we will search for this event name
in the subscribe command. But this command is very smart so it uses the event
name as a prefix filter. This means that if we were to add the event name hello,
the command would subscribe to data streams that starts with hello, for example,
streams named helloworld, hello_all, or hello_to_me. But if you make the event
name unique enough, you will avoid unwanted data subscriptions.

Once you have one Particle Core set up with the previous code, flash the second one
with the following code:

int led = D7;

void setup() {
pinMode(led,OUTPUT);
Particle.subscribe("tonyC_data_stream", doFunction);
}

www.it-ebooks.info

https://community.particle.io/
http://www.it-ebooks.info/

On the Wi-fly

[144]

void loop() {
//Do nothing

}

void doFunction(const char *event, const char *data)
{

 //Compares the incoming data to the string "ON"
 if (strcmp(data,"ON")==0) {
digitalWrite(led,LOW);
 }
 //Compares the incoming data to the string "OFF"
 else if (strcmp(data,"OFF")==0) {
digitalWrite(led,HIGH);
 }

}

In the second code example, we are subscribing to the same channel that the first
Particle Core board is publishing to. If the data string ON is sent, the second board
will turn on the LED next to the USB port and if OFF is sent, the LED will turn off.

If you can't find anyone with a second Particle Core and you don't want to spend the
extra money, don't worry, the Internet can be your friend. Next, I will show you how
to connect and control your Particle Core from the Web.

HTML control
One of the cool things about the Particle Core is that you can implement something
called cloud functions. The cloud part of course refers to data and services stored
on the Internet, and with the Core boards you can include functions in your code
that can be accessed by anyone with your device ID and token. Don't be alarmed to
think anyone could hack into your board and take control; in order to do so, they
would need your device ID and access token, which is a fairly long number and is
impossible to guess.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[145]

This is not the same as the name you gave your board, which you can change. This
name is just a reference name, which makes it easier for us humans to tell it apart
from other boards. Your particular Core board has a unique identifier ID, which is
hard-coded and cannot be changed. You can find your ID using the web IDE. If you
press on the devices button (the one that looks like a crosshair), and press on the
dropdown next to the name of your board, the ID will appear as shown in Figure 8.7:

Figure 8.7 The device menu

www.it-ebooks.info

http://www.it-ebooks.info/

On the Wi-fly

[146]

We will need this ID later on. The second part, which makes it very hard to connect
to your Core board if you don't have it, is the Access Token. A token is a piece of
data used in network communication for different things such as login sessions,
user identification, or to give privileges. It's like an access code that enables you to
communicate with the Core board. You need the ID to find the board and you need
an access token in order to connect to it. You can find the Access Token under the
Settings in the web IDE. Figure 8.8 shows the Access Token:

Figure 8.8: The settings menu where you can find the access token

The access token can be reset at any time for security reasons. Before you do so,
make sure that you don't have something important connected to your Core board
since you would need to update all devices with the new access token.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[147]

Now let's have a look at the cloud function. The next code example implements the
function and triggers the internal function if the cloud function is called upon:

int led = D7;

void setup() {
 pinMode(led,OUTPUT);
 //Declare the function "led" and trigger the "ledOnOff" function
 Spark.function("led",ledOnOff);

}

void loop() {

}

int ledOnOff(String inData) {
//Check the incoming data a responded accordingly
 if (inData =="on") {
 digitalWrite(led,HIGH);
 return 1;
 }
 else if (inData =="off") {
 digitalWrite(led,LOW);
 return 0;
 }
 else {
 return -1;
 }
}

To use the function, you need to provide a function key, which is a string that is
used to create a post request and a function name, which is the actual name of the
function that is called. In the case of the code example just given, the function name
is led. Note that the function name cannot be longer than 12 characters. If it is longer,
the function will just skip any characters after the 12th character.

In the function, you can include yet another function to be triggered whenever
the cloud function is called upon. In the case of the previous example, this is the
ledOnOff function. Later, when we make a request to our Core board, we will do
this by adding a string value. This value will be checked in the ledOnOff function
and if the value is on, the on-board LED next to the USB port will turn on. If the
value is off, then we will turn off the same LED. Once you have copied the code into
the web IDE, flash it to your Core board.

www.it-ebooks.info

http://www.it-ebooks.info/

On the Wi-fly

[148]

Now let's make a simple website to try things out. If you are not familiar with HTML
coding, don't worry because we will not go into it in any depth in this book. If you
know HTML, this should get you started and if you don't I'm sure it will get you
interested since the next part makes things very interesting, if you ask me:

<!DOCTYPE html>
<html>
<body>
Select and press send
<form action="https://api.particle.io/v1/devices/your-device-ID/
led?access_token=your-token" method="POST">
<input type="radio" name="args" value="on">Turn led on

<input type="radio" name="args" value="off">Turn led off

<input type="submit" value="Send to Core">
</form>
</body>
</html>

The website we have just created is by no means visually impressive, but is still
very cool. It includes a simple form with two radio buttons and a normal button.
From the radio buttons, you can select either on or off, and once you press Send
to core, the website will make a request to the Core board and add the value of the
button, which will activate the cloud function and turn the state of the on-board
LED depending on the value.

In order for the website to connect to your Core board, you need to add your device
ID and access token. Find your device ID and access token as shown previously in
this chapter and change the HTML code where it says your-device-id and your-
token. In order to make the website, copy the code into a text file and save it.
Once saved, change the ending from .txt to .html and you are done.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[149]

Figure 8.9: A simple HTML web page with control options

Open up the file in a web browser (double-click the file). Figure 8.9 shows what the
website should look like. Select the Turn led on option and press Send to Core. If
everything works as it should, the on-board LED on the Core board should light up
and your browser should display a message that looks like Figure 8.10:

Figure 8.10 The response message from the Core board

The message displayed is information about the board and you can see the ID of
your board, whether the board is connected to Wi-Fi, and last—the return value
from the ledOnOff function. In Figure 8.10, the value is 1, which means that the
LED is on. If the value is -1, this means something went wrong. If so:

• Check all your connections
• Try re-flashing the Core board
• Check that you are connected to the Internet both on your computer and

Core board

www.it-ebooks.info

http://www.it-ebooks.info/

On the Wi-fly

[150]

As you might have already figured out, having a web page connection to your
wearable project opens up tons of possibilities for interesting projects, and in
the last chapter we will get the chance to implement some of these cool functions.
But we are not done yet; in the next part we will have a look at how to connect the
Particle Core to online services such as IFTTT.

Connecting to IFTTT
If you are not excited about the possibilities of Particle Core yet, I am fairly sure a
connection to IFTTT will get your creative juices flowing. IFTTT stands for
If This Then That and is a web mashup service that brings together different online
services and lets you connect them in different ways. Most big services with an
open API are represented with IFTTT, where IFTTT lets you create what they call
recipes. Recipes consist of triggers and actions. A trigger could be any device or
service connected to IFTTT and the same goes for actions. For example, every time
you upload a new picture to Instagram, you might want to store this photo in your
Dropbox. With an IFTTT recipe, this process can be fully automated by connecting
your Instagram account to your Dropbox account and letting IFTTT do its magic.

Now the cool thing is that with IFTTT, you can connect the Particle board to the
same online services and automate different processes. For example, you can make
a wearable button and every time you press it, it will store a note in Evernote about
your geographical location or update your Facebook status. Possible services on
IFTTT are called channels, which also include control options for Android phones.
This means that you could activate a phone call or send an SMS from your Particle
board. With the number of channels on IFTTT, the possibilities are basically endless.
For the last project and chapter in this book, we will also use IFTTT as the backbone
of the different functionalities in the project, but first let's start by getting familiar
with IFTTT and trying out some basic interactions with the Particle board.

In order to get started, head over to: https://ifttt.com/, and sign up for an account,
which is completely free. Once you are logged in, you can have a look at the different
channels just to get a sense of what you can connect to what.

www.it-ebooks.info

https://ifttt.com/
http://www.it-ebooks.info/

Chapter 8

[151]

Before we get started with creating our first recipe, let's create some firmware for the
Particle board so we can connect it to some services. We have two options, and we
will have a look at these in this part. The first scenario is that we interact with the
Particle Core and make something happen with IFTTT. The second scenario is that
through interacting some service, we want something to happen on our Particle
Core through IFTTT.

Monitoring data changes
Let's start with something simple by connecting a potentiometer to the Particle Core
and if the value from the Particle Core reaches a certain point, we will make IFTTT
post a Facebook status update for us. By using the monitor function for the Particle
Core, we can open up variables for outside access and then we will use IFTTT to
determine when to send the Facebook update. Start by flashing the following code
to your Core board. If you run into problems, check that the Core board is connected
to your Wi-Fi through the phone app and that you don't have any misspelling in
your code:

int potVal = 0;

void setup()
{
 /* The variable function takes three parameters. The first is the
name of your variable. The name can be no longer than 12 characters.
The second one is your actual variable for the data you want to
monitor and the last parameter is the data type */
 Spark.variable("Pot value", &potVal, INT);
 pinMode(A0, INPUT);
}

void loop()
{
 potVal = analogRead(A0);
 delay(200);
}

The function called P enables the information to be accessed and called upon from
the outside when connected to Wi-Fi from any device that has your Core ID and
access token.

www.it-ebooks.info

http://www.it-ebooks.info/

On the Wi-fly

[152]

Next let's hook up a potentiometer to our Core board. To make things easy, we will
hook everything up on the mini breadboard included in the Particle Core kit. Figure
8.11 shows how to connect the wires in-between the Core and potentiometer:

Figure 8.11: Connecting a potentiometer to the Core board

There are many types of potentiometers out there and most of them will do for this
test. The one I am using is a 10k potentiometer, but anything in between 1-10k will
do fine. Potentiometers come in a variety of shapes and sizes and yours might not
look exactly the same. Don't worry since most have the same pin layout. There are
always three pins and the left and right pin is your power and ground respectively.
The middle one is usually your signal pin but I can't account for every potentiometer
out there, so if you are unsure please refer to the datasheet of your particular
potentiometer. In Figure 8.11:

• The first wire, which the arrow on the potentiometer is pointing to,
is connected to GND

• The middle pin connects to the analog pin A1 on the Core

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[153]

• The third pin is connected to 3V3

Now we are ready on the hardware side so let's turn back to IFTTT. Navigate to the
My Recipes tab and you should find something that looks like Figure 8.12:

Figure 8.12: The IFTTT website

As you can see, there are two options for creating a new recipe. Either you can create
an IF recipe or a DO recipe. In our case, we want to make an IF recipe since we want
things to happen depending on our sensor data. Press the Create a Recipe button
and follow these instructions:

1. When prompted with the trigger channel option, search for Particle and
press the icon.

2. You will now be prompted with a login screen for your Particle account.
Just log in using your Particle account information.

3. Now you will be asked to choose a trigger where you have the options of
New event publisher, Monitor a variable, Monitor a function result, or
Monitor your device status.

4. Choose the Monitor a variable option, but before you do, make sure your
Core board is up and running with the code example.

www.it-ebooks.info

http://www.it-ebooks.info/

On the Wi-fly

[154]

5. Now you will be give the option to select a variable from your Core board.
If you only have one Core board with the example code, the only thing shown
in the drop-down menu will be your device and available variables, which in
our case would be Pot value. Choose this variable.

6. Now we need to select a test operation, which will act as our if condition.
Let's make it greater.

7. The last thing you need to add is the comparison value, which we will set
to 500.

Figure 8.13 shows the last part of the configuration page for the Particle channel:

Figure 8.13: Creating the trigger for the recipe

As you might have figured out by now, you can set up the Core firmware with
multiple monitor functions, which will appear in the variable list, and you can
then choose your actions for IFTTT. In our recipe, we have now set it up so when
the analog value we are monitoring on our Core board is greater than 500, we can
make something happen. Now press Create trigger and we will move on to setting
up our action.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[155]

You will now be prompted with the same option but this time for the intended
action, which will take place once the analog value goes above 500. This time,
peform the following steps:

1. Search for the Facebook channel and select it.
2. The first time you use a channel, you will need to fill in your account details

for that service. Now, I'm just assuming most of you have a Facebook
account, which might be presumptuous. If you don't have a Facebook
account, you can choose one of the other services since most follow the same
steps.

3. Once you are connected, your account will be displayed with the available
functions, which are Create a status message, Create a link post, or Upload
a photo from URL. Choose Create a status message.

4. Now type in the message you want to display on your Facebook page
when the analog value goes above 500. As you can see in the message,
there is already a message written, which says, Variable is now Value
where variable and value have a grey background. This means that these
are the actual variable name and value from your Core firmware. You can
add your own message instead and still use these variables if you like.

5. Once you are satisfied with your message, press Create action.

Now you will be presented with a summary of your recipe, and if everything looks
good, press the Create recipe button and you are done.

Log in into your Facebook account and open up your own personal page. Then turn
the potentiometer at least 180 degrees to get above 500 and wait. You might need
to refresh your browser if it does not do this automatically. After a few seconds, the
message should appear in your status update. Figure 8.14 shows what the standard
message looked like on my Facebook:

Figure 8.14: Status update made from the potentiometer value

Don't forget to turn the potentiometer back since it will keep posting new messages
as long as the value is greater than 500. Trust me, your Facebook friends will wonder
what's going on if you don't.

www.it-ebooks.info

http://www.it-ebooks.info/

On the Wi-fly

[156]

We had a look at how to connect a simple sensor to the Core board and implement
the monitor function in order to enable access to the variable data from the outside.
We then used this data as a trigger for our IFTTT recipe where we connected it to a
Facebook status update, which acts as our action in the recipe. Now let's have a look
at how we can do the opposite, activating a function of the Particle Core from an
outside web service.

DO – a function
For the DO function part we will make a mini SMS post box, which will give you a
more physical indication that you have received a new SMS. The idea is that every
time you receive a new SMS, we show a small light pattern on the Core board. This
only works with Android phones so if you don't have one, you can choose one of
the many other channels to work as your trigger. All of their functionalities are
explained and the Core firmware in this part will remain the same. In order to be
able to use functions on your Android device, you need to install the IFTTT app on
your phone. You can find the app at the following link: https://play.google.com/
store/apps/details?id=com.ifttt.ifttt&hRL.

Now let's start by connecting a few LEDs to the Core board. Figure 8.15 shows how to
connect four LEDs to the board using the mini breadboard:

Figure 8.15: Connecting the LEDs and resistors

www.it-ebooks.info

https://play.google.com/store/apps/details?id=com.ifttt.ifttt&hRL
https://play.google.com/store/apps/details?id=com.ifttt.ifttt&hRL
http://www.it-ebooks.info/

Chapter 8

[157]

From the pins D0-D3, we have connected a 220Ω resistor for each of the pins. Each
resistor connects to each of the positive legs of the LEDs. All the negative legs of the
LEDs are connected to the ground ditch, which is connected back to Core board with
a cable to GND.

In the firmware we will need to include a function, which will be accessible for IFTTT.
This function will enable external control of the LEDs and it will display a simple light
pattern. The patterns runs through all the LEDs forwards and then backwards:

//Declare all the digital pins into an array
int leds[]={0,1,2,3,4};

//Declare the function
int runPattern(String command);

//The led pattern
void runLed(){
//Run the forward/backward pattern 5 times
for(int t=0; t<5;t++){
for(int j=0; j<4; j++){
digitalWrite(leds[j],HIGH);
delay(200);
digitalWrite(leds[j],LOW);
delay(200);
}
for(int k=2; k>=0; k--){
 digitalWrite(leds[k],HIGH);
 delay(200);
 digitalWrite(leds[k],LOW);
 delay(200);
}
 }
}

void setup()
{
 // register the Particle function
 Spark.function("flahsLeds", runPattern);
 //Set all pins as outputs
 for(int i=0; i<4; i++){
 pinMode(leds[i],OUTPUT);
 }
//Run the pattern once just to test
runLed();

www.it-ebooks.info

http://www.it-ebooks.info/

On the Wi-fly

[158]

}

void loop()
{
//Do nothing in here
}

int runPattern(String command)
{
 //Look for the command "ledsOn"
 if(command == "ledsOn")
 {
//Activate the led pattern
 runLed();
 //Returns 1 if everything went ok
 return 1;
}
 //Returns -1 if something went wrong
 else return -1;
}

Now the firmware is set up so that every time the function flash LEDs is called
from the outside, it will run the internal runPattern function if it is supplied with
the right string, which is ledsOn. Flash the firmware to your Core board from the
web IDE. Later, once everything is up and running, you can add more modes to
your code by adding multiple activation strings and functions. But before I leave
you to your own experimentation, let's first finish our IFTTT recipe and check that
everything works.

Now head over to IFTTT and create a new if recipe:

1. For the trigger, choose Android SMS.
2. Then choose the Any new SMS received option.
3. Press the Create trigger button.
4. For the that action, choose the Particle channel.
5. Select the Call a function option.
6. From the drop-down list, choose the flashLeds function.
7. Add the sting ledsOn to the function input.
8. Press the Create action button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[159]

Now you will be prompted with a summary of your recipe as before. If everything
looks good according to the checklist, press the Create recipe button.

Make sure that your Particle Core board is flashed with the firmware and that the
board is connected to your Wi-Fi. I guess most people only have one mobile phone
so you will need to ask someone to send you an SMS. Once you receive it, you
should see the LEDs start flashing. If you don't, always make sure you:

• First check your code for errors
• Check that the Particle Core is connected to your Wi-Fi
• Check that you have Internet access
• If these suggestions do not fix the problem, reset the Core board settings

by holding down the MODE button until the RGB starts to flash and then
reconnect the board using the Particle app

Summary
I hope you are as excited as I was about the possibilities the Particle Core board
offered with Wi-Fi connectivity. To find out more about the functions of the Core
board, I suggest you have a look Particles' online documentation: http://docs.
particle.io/core.

In this chapter, we looked at how to set up and program for the Particle Core board.
As you might have noticed, the process is a bit different from the normal Arduino
board since this board is actually programmed over the Internet and not straight from
the computer over USB. We also had a look at how to make a simple HTML web page
in order to gain access to the Core board's functions. Last but not least, we had a look
at how to connect the Core board to IFTTT, which offers endless mashup possibilities.
We will progress on in the next chapter where we will be creating our very own smart
watch.

As you can see, in this chapter there were a lot of steps in order to get the Particle
board up and running, even though these steps were made very easy. In order to cover
the basics, this chapter did not include full projects but acts a prequel to the next and
final project.

www.it-ebooks.info

http://docs.particle.io/core
http://docs.particle.io/core
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[161]

Time to Get Smart
The time has come to end this book, but before it's all over, we will end with one
final project that ties up all the knowledge and information in previous chapters.
This chapter is a continuation of Chapter 8, On the Wi-fly, where we introduced the
Particle Core board and how to interact with different online services. The same
board will act as the hardware base in this chapter where we will create our own
smart watch. But this project is based on my idea of the future, where all areas of
even the smallest town will be covered by Wi-Fi and where smart watches, among
other things, will connect straight to the Internet in a seamless manner. We might
not be there yet but don't worry, the smart watch in this chapter will still work in
the present. Let's not forget the best part about this project. Every time some one
asks–what's that on your arm? You can reply, it's a smart watch I built myself.

I have always had a problem with smart watches. First of all, I don't like that all
watches you could buy up to the point I am writing this book are dependent on a
mobile phone. The second part I don't like is that these devices never seem to do
exactly what I want them to do.

The solution, then, is to build your own, and with off-the-shelf components, you can
come very close to the real thing. Or in some ways, better than the real thing since
with this watch you can customize it in any way you see fit.

By the end of this chapter, you should have a good grasp on how to build your own
wearable projects using the tools and knowledge in this book. As I have said before,
the knowledge in this book is an introduction, but the goal is for you to build upon
this knowledge in order to truly make the project your own. Make modifications,
tweak the designs, and make any changes you see fit in order to
make the knowledge yours. But before we end, let's make a watch.

www.it-ebooks.info

http://www.it-ebooks.info/

Time to Get Smart

[162]

Components
For this project, you will need the components mentioned in the following list. All
the components listed can be swapped for similar components, and in Figure 9.1, you
will find the components I used. If you do swap the components, make sure that you
keep track of the dimensions of your components. The design for the watch in this
book is based on the components shown in Figure 9.1 and leaves very little room
for modification since we are trying to achieve as small a casing as possible.

• A Particle Core board
• A 3.7V lithium battery
• An Adafruit 128 inch x 64 inch OLED screen
• An Adafruit Battery charging circuit
• A 1 mm plastic sheet material
• Leather or heavy duty material, at least 30 cm x 10 cm
• A soldering iron
• An Exacto knife
• Leather sewing awls and heavy duty thread
• Eyelets and an eyelet tool
• A mini breadboard

Figure 9.1: The components needed for the smart watch

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[163]

If you want to pack the full punch with your watch, you could consider including a
GPS, however this will make the design much bulkier. The design for this chapter
aims for as thin a design as possible. However, if you want, you can add many of the
sensors used in prior chapters of this book and attach them to the watch later. In this
chapter, we will stick to the basics of making a smart watch and limit ourselves to
the use of online services. But don't worry, there is still a lot that can been done with
this watch.

In this project, we will also include a battery charging circuit so that we can charge
our watch without opening up the project. The idea is that later on, when finishing
the project, we will glue everything together in order to make the project somewhat
weather-proof. We will only leave a small hole for the USB micro connector of the
battery charger in order for the watch to be recharged.

Let's get started
We could start building the watch straight away since the Particle Core board can
be programmed wirelessly and there is no need to have the parts exposed. However,
when it comes to any form of prototyping, this is never a good idea, as a lot of things
can go wrong on the way, so it's better to break down any project into parts,
as we have done throughout this book.

The star of the show will be the screen we use for this project. There is a large variety
of different small screens that can be used, and I have chosen the SSD1306, 1.3 inch,
128 x 64 OLED screen from Adafruit. For this project, we will be using the same
screen libraries from Adafruit as in the previous chapters, and they have a large
selection of screens that work with this library, so you can choose any one you like.
The screen I have chosen is black and white, but you can switch it to any of the
color screens as well. The design for this project was inspired by a mix of 80s Casio
watches and leather straps, so I went for the black and white screen as I think this
gives it a nice retro look. If you do change the screen, make sure that you modify the
design of the wristband for your watch so the screen fits the design.

www.it-ebooks.info

http://www.it-ebooks.info/

Time to Get Smart

[164]

Let's start by connecting the screen to the Core board to see whether we can display
some graphics. Most of these screens come without the pinheads soldered, which is
perfect since we want to use cables instead. For this project, I recommend using soft
cables for all the connections as we need to keep things flexible. We will not solder
the screen to the Core board yet we want to try out all our components first.
In the meanwhile, we will use a mini breadboard.

Figure 9.2: Soldering the SJ1 and SJ2 pad together

With the 128 x 64 display used in this chapter, you will need to modify the PCB in
order to get it to work over I2C. The reason for using I2C is that this will make it
easier to interact with both the screen and the sensor accelerometer/gyro/compass
sensor at the same time. Figure 9.2 shows the pads named SJ1 and SJ2 on the back
of the screen pcb that need to be soldered together to tell the board to communicate
over I2C.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[165]

Once the pads are soldered together, do the following:

1. First, cut and strip 6 cables to approximately 10 cm in length.
2. Solder the cables to the OLED screen on by one, but skip the VIN since this is

not used.
3. Once done soldering, connect all the wires to the breadboard and Core board

in the following sequence:
 ° Data connects to D0
 ° CLK connects to D1
 ° RST connects to D4
 ° SA0 connects to GND
 ° 3V3 connects to 3V3
 ° GND connects to GND

Now that we have everything connected, let's turn to the web IDE and get started
with the code. Many libraries are available from the web IDE and can be installed
with a click of a button, but these libraries rely on them being available on GitHub.
In the next part, I will show you how to add your own libraries to the web IDE in
case you run into trouble or need to modify an existing library. We will still use the
Adafruit libraries, but we will manually add them to your firmware
this time.

1. First, start by opening up a new sketch from the web IDE.
2. Next, add a new tab by pressing the + sign at the top right corner, as shown

in Figure 9.3, which will open up a new tab for you.
3. Name this tab Adafruit_SSD1306.h and this will automatically generate an

Adafruit_SSD1306.cpp tab for you as well.
4. Next, head over to the GitHub repositories: https://github.com/tchoney/

Adafruit_SSD1306.
Copy the code from Adafruit_SSD1306.h into the tab of the web IDE with
the same name. I have forked this repository from Paul Kourany, who
has made a port of the original Adafruit library to the Particle Core board.
Forking a library means making a copy of it so you can modify the code.

5. Do the same for the Adafruit_SSD1306.cpp code.
6. Now we have to do the same operation for the Adafruit_GFX library.

Press the + sign in the IDE and name the .h tab as Adafruit_GFX library
and the .ccp tab will automatically generated.

www.it-ebooks.info

https://github.com/tchoney/Adafruit_SSD1306
https://github.com/tchoney/Adafruit_SSD1306
http://www.it-ebooks.info/

Time to Get Smart

[166]

7. Copy the code from the GitHub repository mentioned earlier to the tabs with
the corresponding names.

Figure 9.3: Manually adding libraries to the web IDE

Now, we have successfully included the libraries and we are free to make
modifications to them if needed. The library is set up for 128 x 64 display in the
Adafruit_SSD1306.h file. For example, if you are using the 128 x 32 pixel version,
you would need to modify the Adafruit_SSD1306.h file, which includes comment
on how to do so. In order to test that everything is working, add the following code to
the .ino tab, which is the main tab for your firmware. When done, flash the firmware
to the Core board.

#include "Adafruit_GFX.h"
#include "Adafruit_SSD1306.h"

#define OLED_RESET D4
Adafruit_SSD1306 display(OLED_RESET);

#define NUMFLAKES 10
#define XPOS 0
#define YPOS 1
#define DELTAY 2

#define LOGO16_GLCD_HEIGHT 16
#define LOGO16_GLCD_WIDTH 16

#if (SSD1306_LCDHEIGHT != 64)
#error("Height incorrect, please fix Adafruit_SSD1306.h!");
#endif

void setup() {
 Serial.begin(9600);

 // Init display
 display.begin(SSD1306_SWITCHCAPVCC, 0x3C); // initialize with the
I2C addr 0x3D (for the 128x64)
 //Clear the memory
 display.clearDisplay();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[167]

void loop() {
 display.clearDisplay();
 display.setTextSize(2);
 display.setTextColor(WHITE);
 display.setCursor(0,0);
 display.println("Time to");
 display.display();
 delay(2000);
 display.clearDisplay();
 display.setTextSize(2);
 display.setTextColor(WHITE);
 display.setCursor(0,0);
 display.println("Get smart!");
 display.display();
 delay(2000);

}

If the message from the code does not appear on the screen:

• Check your cable connections
• Check that the code is correct
• Check that your Core board is connected to your Wi-Fi
• Try re-flashing the board

Watch design and soldering
Now it's time to move on to the design of the watch; as mentioned before, you can
incorporate any kind of sensors you like into the design of your watch, but take
into account the size of any component you add. In order to turn your components
into a watch, we will base the design on the template shown in Figure 9.3. Ideally
use this template to cut the shape out of a 1 mm thick plastic material. This can be
any material as long as it's sturdy enough but has some flexibility to it. The plastic
material I used, also shown in Figure 9.4, is a fairly common 1 mm plastic material
found in arts and crafts stores.

Figure 9.4: The template design for the watch strap

www.it-ebooks.info

http://www.it-ebooks.info/

Time to Get Smart

[168]

The inspiration for the design comes from traditional wristwatch leather crafts where
they often use plastic inlays to make the straps more ridgid. The leather inspiration
does not stop there, since we will be using leather as our other casing for the watch,
giving the design a nice mix between high and low tech.

As you can see in Figure 9.4, the edges are covered with small holes. The idea is to
use these holes later on as guidance once we sew our watch together. You can cut
the template by hand since 1 mm plastic is fairly easy to cut with a pair of normal
scissors. But, once again, if you do have access to a laser cutter, it would be the
preferred choice since the spacing between the holes can be hard to achieve by
hand. There are specialized watch-making tools for making holes like this, but if
this is the only watch you plan to make, a nail and a hammer will do just fine.

Figure 9.5: The cut template and a selection of leather types

In Figure 9.5, you will find the cut template and a selection of different leather types.
Any type of leather you prefer should work for this project, but my recommendation
is to choose one that is not too thick. I would stay below 3 mm or else it might be
hard to sew when it's time to stitch things together. There are also synthetic leathers
available if you are not to keen on the idea of using real leather, or you could use
fabric as well. Don't forget that this might not make the watch as weather-resistant as
with leather. In any case, this watch will never be waterproof so don't go swimming
with it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[169]

Before we start soldering the components together, it is a good idea to place them
onto the template in order to figure out the best location. In Figure 9.6, you will find
the layout I was aiming for, which gives you a good general direction. In my case,
I have very thin wrists so it is a good idea to put the components in place using
sticky tape in order to wrap the template with the components around your wrist to
see whether the placements works for your wrists. The important parts are that the
screen needs to line up with the hole in the template and the micro USB connector on
the battery charger. The USB connector needs to be placed close to the edge so that
we can access it later on once everything is stitched together.

Figure 9.6: The placement of components on the watch template

Once you feel your components are located in the right place, you can mark their
position onto the template using a pen. Before we attach and solder them together,
we need to make some modifications to the Core board and the USB battery charger.
As you might have noticed, the JST connecter and the pins of the Core board are not
optimal for a flat design like in this project, and we can fix this by desoldering the
pins and JST connector since there is no need for them.

Desoldering
There are many ways you can desolder components and it is truly an art in itself. If
you are new to desoldering electronics, I would recommend starting with cheaper
components. An old broken radio is a perfect training ground as it includes many
types of components in different sizes and shapes. There are special materials
available for desoldering components, such as solder wicker and suction pens, but
personally, I found that the best way to do it is to use a soldering iron and a pair of
tweezers to grab and pull the components. How to desolder electronics is hard to
illustrate in a book so I recommend having a look at these videos to get a sense of
what we are dealing with:

https://www.youtube.com/watch?v=77JgIqraX_I

https://www.youtube.com/watch?v=Z38WsZFmq8E

www.it-ebooks.info

https://www.youtube.com/watch?v=77JgIqraX_I
https://www.youtube.com/watch?v=Z38WsZFmq8E
http://www.it-ebooks.info/

Time to Get Smart

[170]

There is no single way that is the best way, so I would watch as many videos you can
in order to get a good grasp on the concept. Then, start training on your own on any
kind of electronic junk you might have lying around. However, two ways you could
do this is:

• To heat the solder, hold a component in place and then drop it hard on to
a table. When the component hits the table with force, if the solder is hot,
the solder will usually fall off on to the table. Be very careful using this
technique as you do not want to splash hot solder onto your finger or any
flammable materials of surface. Never use a table that is not meant for
working on, since the hot solder can leave a mark.

• The alternative approach is to heat the solder pads and pull the component
using tweezers or a pair of needle nose pliers. Again, you heat the solder
holding the components in place, and then you pull the components
using the tweezers and your other hand. Make sure that you never heat a
component for too long since this can damage the components. Only heat it
for a few seconds and then try pulling the component. If it does not come off,
let it cool down for a few seconds before you try again. Beware of heating the
tweezers as they can get hot fast.

Once you feel confident in desoldering, you can get going with removing the JST
connector from the battery charger assuming you are using a similar charger and
the male pin headers from the Particle Core board. If everything goes to plan, you
should end up with something that looks like Figure 9.7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[171]

Figure 9.7: The JST connector and male pins desoldered

In order to remove all the male pin headers from the Core board, the trick is to cut
the plastic that holds all the pins together using a pair of mini side cutters, or similar,
and then you can desolder the pins one by one instead. In order to remove the JST
connector from the USB charger, I recommend starting the ground pads on the side.
Start with one side heating the solder and pull it up as much as you can, and then do
the same for the other side. Do this a couple of times and eventually the connector
clears from the pcb board. Then, heat the positive and negative connectors at the
same time and simply remove the JST connector.

After you have finished desoldering, have a look at your pcbs and check that you
haven't soldered connections together by accident. Take your time desoldering
the components in order to not damage any of the other components. For future
investigations into desoldering, I would recommend looking up solder suckers
or the desoldering braid shown in the video link mentioned earlier. Personally,
I don't prefer these tools, but this should not stop you from trying them out. As I
said before, when it comes to soldering and desoldering, there are a lot of different
techniques and tools, and you should investigate different approaches and try to
find a work method that fits your needs.

www.it-ebooks.info

http://www.it-ebooks.info/

Time to Get Smart

[172]

Connecting the pieces
Now it is time to solder all of the components together. First, use your template
and the marks of the components to measure out the cables needed to connect
everything. The screen already has the cable connected to it so you don't need to
make new ones, but you will need two cables for power and ground connected
from the USB charger to the Core board.

Figure 9.8: The battery and charging circuit soldered together with the screen and Core board

Figure 9.8 shows the cable connections that need to be made at this stage. Right now
we will not connect the battery to the Core board as this would leave the Core board
on, which we don't want while working on the watch. As you might suspect, this
watch will be on at all times. This was a conscious design choice since adding an on-
off button would complicate things. In order to keep the design as sleek as possible,
I chose not to include one since it is not really needed. Even with a small battery, the
watch will last a long time depending on the firmware you put on the Core board. If
the battery does run out, you will simply need to connect a USB cable and it will turn
on again and charge the battery.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[173]

Now, back to the connection that needs to be made. For the battery charger, you will
need to do the following:

1. Connect a cable to the GND and the BAT pin of the charger PCB and leave
the other ends unsoldered for now. Later, we will solder the ends to the VIN
and GND on the Core board.

2. Cut the male JST connector off the wires on your lithium battery. Don't cut
both wires at once since this will short-circuit the battery.

3. Start by soldering the red cable to the solder pad marked + where you have
removed the female JST connector from the battery charge PCB.

4. Then, solder the black cable to the pad marked with a – sign.

Once the battery is in place, try connecting the USB cable to the battery charger and
the other end to a computer. This is done in order to check that the soldering is good,
and if it is, the battery should start to charge. If you are using the same USB battery
charger shown in Figure 9.7, the LEDs should start glowing red if the battery is
uncharged. Once it is charged, the LED should turn green.

The connections that need to be made from the OLED screen to the Core board are
the same as when you were testing the screen on your breadboard:

• Data connects to D0
• CLK connects to D1
• RST connects to D4
• SA0 connects to GND
• 3V3 connects to 3V3
• GND connects to GND

As you can see in Figure 9.8, the SA0 pin is bridged to the GND pin on the screen
and then connected from the same pin to the GND on the Core board. Once you
have the connections soldered, it is time to prepare one side of the watch template
with some leather.

Leather time
Once you have soldered your components together, it is time to bring out the needle
and thread as we will need to stitch the last part of the construction. There are a few
steps to this next part in order to finish the watch. I recommend that you first read
through this part to get a good overview of the steps so you can make the necessary
preparations and gather your tools.

www.it-ebooks.info

http://www.it-ebooks.info/

Time to Get Smart

[174]

You will also need the piece of leather you have selected. Figure 9.9 shows how the
watch template is placed onto the piece of leather I used for the watch in this chapter.
There is no need to cut the leather yet, since once we will start stitching, you will
note that the components on top of the template will add to the demotions of the
watch and having some extra length to the leather really helps. The amount in Figure
9.9 is a bit overregulated, but I would leave a minimum of 1 cm around the edge of
the template if you are cutting yours from a bigger piece of leather.

Figure 9.9: Attaching the template to the piece of leather

The next step is to cut a hole for the screen. Figure 9.10 shows how the screen was
marked out on the inside of the leather and then cut from corner to corner using an
exacto knife.

Make sure you mark the inside and not the outside of the
leather so you don't end up with markings on the side that
will make your outer casing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[175]

Figure 9.10 Cutting a hole for the OLED screen

1. Once the hole is made, we will attach the watch template and leather together.
2. Cutting the hole into the leather should leave you with four flaps as in

Figure 9.10. Folds these flaps one by one so that they end up on the inside of
the template to the left, as shown in Figure 9.11.

3. Use super glue in order to fix them in place. Make sure you don't use too
much super glue since it has a tendency to make leather very hard.

4. Once you have folded and glued the flaps in place, you can try lining the
hole up with your OLED screen.

If you are happy with the result, we can move on. Remember, what you are looking
for is for the hole to cover enough of the edge of the screen so you can't see the edge.
If you are scared that you have covered too much of the edge, don't worry. Later on,
we can change the position on anything we display from our code, so everything
lines up nicely on the screen. Once the leather is fixed to the template, you can cut
the flaps so they don't extend beyond the side of the watch. Then, start stitching
around the screen using the template holes. This is to secure the template in place
and to give a nice border around the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Time to Get Smart

[176]

You have countless options here in terms of color design. Thread and leather both
come in any color you could imagine, so there are a lot of options. Note that you
want to use a heavy-duty thread for this project. The thread needs to be strong
in order to hold everything together. If you are not sure on which thread to use, I
would recommend you head over to your local sewing shop and ask around.

Figure 9.11: The flaps glued on the inside and the stitching around the screen from the outside

Once you are done with stitching your screen border, it's time to start adding your
components to the template.

1. Start by lining up your screen to the hole in the leather, and once you have it
lined up, secure it in place using hot glue around the edges of the screen.

2. Follow the component layout in Figure 9.6, then glue the Particle Core board,
battery, and battery charger in place.

3. Make sure the micro USB port on the battery charger lines up with the edge
of the template since you will want to be able to access it once on both sides
of the watch.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[177]

Figure 9.12: Checking the components once placed on to the template

When you glue the components, remember any modifications to the design you
made depending on your wrist size. I also recommend that you hot glue your entire
solder joint to add some extra sturdiness to your circuit. Put some glue on the solder
pads and all the way up to the cable casing in order to secure things. Once all the
components are glued in place, it's time to connect the battery charger to your Core
board. Start by soldering the 5V connector from the battery charger to the VIN on
the Core board. When the last cable is connected, the Core board should light up.
From now on, your watch will be on, so be careful not to poke your circuit with
any metal as this might cause a short circuit.

www.it-ebooks.info

http://www.it-ebooks.info/

Time to Get Smart

[178]

Finishing up
Now that you have your circuit in place, it is time to take the final steps of turning
everything into a watch. The first thing we need to do is to add a watch latch to the
strap of the watch. This is done on the second piece of leather that will cover the watch.

1. In Figure 9.13, you can see how this can be done by cutting a 2 x 2 cm flap
from the leather. Make sure that this piece of leather will fit the watch plus
the latch flap.

2. In order to hold the latch in place, a hole is cut at the base of the flap, and
then the flap is pulled through the latch and glued in place, as seen on the
left-side of Figure 9.11.

3. The pin in the middle of the latch should go through the hole in the leather.

Figure 9.13: Cutting a flap to hold the latch in place

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[179]

When the latch is in place, it's time to bring out the needle and thread. You want the
latch flap to extend the short strap of the watch template, and Figure 9.12 shows how
the second piece of leather covers everything.

Figure 9.14: Lining up the leather

www.it-ebooks.info

http://www.it-ebooks.info/

Time to Get Smart

[180]

When it comes to stitching everything together, use the holes in the template
to guide you. Note that you will need to give some slack to one of the sides of
leather since the components add some dimensions to your watch. When it comes
to stitching techniques, you should go with the one you feel most comfortable with,
however, I found the best way to get good results is to go over and under all the
way around the watch, as in Figure 9.15.

Figure 9.15: Stitching around the edges of the watch

Once you have reached the end of one side, reverse the stitching and go the other
way around to fill in the gaps.

Don't forget the micro USB connector; you will need to
leave a gap for it in order to be able to access it later on.

You might want to put on a pot of coffee for this stitching part since it will take
some time, but keep the result in mind to stay motivated. Once the stitching is done,
you can cut the watch into shape using a good pair of scissors or your exacto knife.
Remember not to cut too close to the template and the stitching. I would suggest you
leave about 2-3 mm on the edge of the watch template.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[181]

Figure 9.16: Attaching eyelets to the strap

Once you are done stitching, you should end up with something that looks like the
watch shown in Figure 9.16. The last step is to punch some eyelets into the longer strap
on the watch. You can buy an eyelets kit fairly cheap, where you get some eyelets and
a punishing tool. These tools are fairly self-explanatory, but make sure you check and
feel the strap so there are no hidden wires in the area where you plan to punch a hole.
The number of eyelets all depends on your wrist size and style preferences.

Once you have reached this point, I hope you fingers are not too sore from stitching
leather because it is time to do some coding for the watch.

A smorgasbord of functionality
As I mentioned before, the version of smart watch we are building in this chapter is
based mainly on receiving notifications. The idea is to base most of the notifications
on IFTTT since it has a nice infrastructure to connect different services and saves us
a lot of code and time. We could connect to most of the services available through
IFTTT without using IFTTT and using the open APIs available from the different
services. However, IFTTT makes it much easier to connect different services without
the need to learn about all the APIs from each individual service. But remember that
your watch project does not need to end with this chapter since what I present here
is just the tip of an iceberg of possibilities.

www.it-ebooks.info

http://www.it-ebooks.info/

Time to Get Smart

[182]

Now back to the code part, the following example shows the basic principle that we
will use to connect your watch to different services and display notifications on the
screen. The first firmware for the watch uses the same IFTTT function as presented in
Chapter 8, On the Wi-fly. Once the following firmware is updated to the Core board,
you will need to head over to the IFTTT website and create a recipe from your account
where any updates made to your Facebook status triggers the "getMail" from your
Particle channel. If you don't remember the steps, have a look at Chapter 8, On the Wi-
fly again to refresh your memory. For the following example to work, you need to
include the Adafruit_GFX and the Adafruit_SSD1306 libraries as previously used in
this chapter:

#include "Adafruit_GFX.h"
#include "Adafruit_SSD1306.h"

#define OLED_RESET D4
Adafruit_SSD1306 display(OLED_RESET);

#define NUMFLAKES 10
#define XPOS 0
#define YPOS 1
#define DELTAY 2

#define LOGO16_GLCD_HEIGHT 16
#define LOGO16_GLCD_WIDTH 16

#if (SSD1306_LCDHEIGHT != 64)
#error("Height incorrect, please fix Adafruit_SSD1306.h!");
#endif
//Declare the function
int fbStatus (String topic);

void setup() {
 Serial.begin(9600);
 //Initialize the function
 Spark.function("getFbStatus", fbStatus);
 // Initialize display
 display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
//Clear the memory
 display.clearDisplay();
 display.setTextSize(2);
 display.setTextColor(WHITE);
 display.setCursor(10,11);
 display.println("ON");
 display.display();
 delay(2000);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[183]

}

void loop() {
 //Leave the loop empty
}

int fbStatus(String topic){
 if(topic !=""){
 display.clearDisplay();
 display.setTextSize(2);
 display.setTextColor(WHITE);
 display.setCursor(10,11);
 display.println(topic);
 display.display();
 delay(2000);
 }
 else return -1;

}

In the code example, once the function is triggered it will display any message
included in the trigger where I have included the actual message posted from
Facebook into my trigger. Of course, you can change this to whatever you want.
If you noticed, I have shifted the starting point of the cursor in the example just
given. The reason for this is that on the watch presented in all of the figures in this
chapter, the leather rim of the hole for the screen covers the screen slightly. This
was intentional, as I did not want the edge of the screen to be visible since we
can move the cursor so that the text lines up with the leather instead. If the rim of
your screen is slightly covered, you can play around with the cursor configuration
until you are satisfied. The cursor is calculated from the left top corner in X and Y,
where increasing X would move the cursor to the right, and increasing Y would
move the cursor down.

For the next and final code example for the watch, I have added a few more
notifications just to show off some of the many possible functions. How about getting a
notification when your favorite person on Instagram posts a new picture, or how about
getting updates on any price changes on a particular product you are looking to buy?
Of course, this would not be a watch if it did not tell the time, so I have included some
code that displays the time and date, which the watch will receive from the Particle
servers. This means that you know the time received is reliable because it relies on the
same atom clocks on the GPS satellites that we connected to in a prior chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Time to Get Smart

[184]

Right now, this example is set up for testing purposes and to get you going with
your watch. The time and date is always shown on the screen until an event is
triggered from IFFTTT. Then, the information corresponding to the particular IFTTT
recipe is shown for 2 seconds before turning back to showing the watch and date:

#include "Adafruit_GFX.h"
#include "Adafruit_SSD1306.h"

#define OLED_RESET D4
Adafruit_SSD1306 display(OLED_RESET);

#define NUMFLAKES 10
#define XPOS 0
#define YPOS 1
#define DELTAY 2

#define LOGO16_GLCD_HEIGHT 16
#define LOGO16_GLCD_WIDTH 16

#if (SSD1306_LCDHEIGHT != 64)
#error("Height incorrect, please fix Adafruit_SSD1306.h!");
#endif
//Declare the functions
int fbStatus(String topic);
int displayTime();
int instaGram(String insta);
int bestBuy(String pebble);
int missedCall(String pNbr);

void setup() {
 Serial.begin(9600);
 //Initialize the functions
 Spark.function("getfbStatus", fbStatus);
 Spark.function("getBSinsta", instaGram);
 Spark.function("getBestBuy", bestBuy);
 Spark.function("getMissCall", missedCall);
 // Init display
 display.begin(SSD1306_SWITCHCAPVCC, 0x3C); // initialize with the
I2C addr 0x3D (for the 128x64)
 //Clear the memory

}

void loop() {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[185]

//Show the time and date
displayTime();

}
//If your Facebook status is updated show the status
int fbStatus(String topic){
 if(topic !=""){
 display.clearDisplay();
 display.setTextSize(2);
 display.setTextColor(WHITE);
 display.setCursor(10,11);
 display.println(topic);
 display.display();
 delay(2000);
 }
 else return -1;

}
//If Brittany Spears updates her Instagram let me know
int instaGram(String insta){
 if(insta !=""){
 display.clearDisplay();
 display.setTextSize(2);
 display.setTextColor(WHITE);
 display.setCursor(10,11);
 display.println("New Briteny");
 display.display();
 delay(2000);
 }
 else return -1;
}
//If the price on the latest Pebble smart watch changes let me know
int bestBuy(String pebble){
 if(pebble !=""){
 display.clearDisplay();
 display.setTextSize(2);
 display.setTextColor(WHITE);
 display.setCursor(10,11);
 display.println("Pebble price");
 display.println(pebble);
 display.display();
 delay(2000);
 }
 else return -1;

www.it-ebooks.info

http://www.it-ebooks.info/

Time to Get Smart

[186]

}
//If I have a missed phone call on my Android device show the number
int missedCall(String pNbr){
 if(pNbr !=""){
 display.clearDisplay();
 display.setTextSize(2);
 display.setTextColor(WHITE);
 display.setCursor(10,11);
 display.println("Missed call");
 display.println(pNbr);
 display.display();
 delay(2000);
 }
 else return -1;
}
int displayTime(){
 /*Set the courser and display the time in hours, minutes and
seconds. Remember this is standard time so you need to add or decrease
the hours depending on your time zone*/
 display.clearDisplay();
 display.setTextSize(2);
 display.setTextColor(WHITE);
 display.setCursor(15,15);
 display.print(Time.hour());
 display.print(":");
 display.print(Time.minute());
 display.print(":");
 display.print(Time.second());
 /*Set the cursor and display the date in days, months and
year*/
 display.setCursor(15,40);
 display.print(Time.day());
 display.print("/");
 display.print(Time.month());
 display.print("/");
 display.println(Time.year());
 display.display();
 delay(1000);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[187]

If you have problems uploading the firmware to the Core board, make sure you
check the following:

• That your board is powered on.
• That your Core board is connected to the same Wi-Fi network.
• If nothing works, try resetting the board and holding down the mode button.

Once inside the watch, you will not see the mode button, but you should be
able to feel it from the outside. Hold it down for 5 seconds, and then try to
reconnect your board to your Wi-Fi using the Particle mobile app.

This is what your final watch should look like:

Figure 9.17: The final watch result

The end of the beginning
We have finally reached the end of the chapter, and so the end of the book. In this
chapter, you learned a lot more about the Core board and how to add libraries
manually to the web IDE. You also learned more about how to interface with OLED
screens over both SPI and I2C and how to connect everything in a small form factor.
This chapter also introduced you to some leather crafting and how to shape your
project into a watch.

www.it-ebooks.info

http://www.it-ebooks.info/

Time to Get Smart

[188]

On the programming side, we extended the introduction made in Chapter 8,
On the Wi-fly to program the Core board. While we have created a working Wi-Fi
connected watch with some notifications from different online services, we have
barely scratched the surface of the possibilities for your smart watch. Hopefully,
you have gained enough insight to start developing the project in the future in
order to meet your needs and wishes.

In fact, this to me is what wearables are all about, bending technology to the will
of the user. I hope I have shown that you do not need to wait for manufacturers to
eventually make something that fits your preferences. The technology already exists,
and with a bit of knowledge, you can create your own devices. As with any craft,
the more time you spend doing it, the better you will become at it.

As I mentioned at the beginning of the chapter, there aren't that many cities around
the world that have full Wi-Fi coverage. This might be a problem for those readers
who want to use their smart watch beyond the coverage of their own Wi-Fi router.
In the meanwhile, you can share the Internet using most modern phones as they
can act as a Wi-Fi hotspot. Just set one up on your phone, connect to your watch,
and you are good to go. Remember that this watch is not dependent on any particular
operating system, so it does not matter whether you are running Android, OS X, or
Windows. Another potential problem is switching between Wi-Fi networks. In order
to do so, you will need to use the Particle app on your iOS or Android device.

You can also use a computer to set up your Particle Core board over USB. On the
following website, you can find more information on how to do so:

http://docs.particle.io/core/connect/

Before we end this chapter, I would like to suggest that you have a look at the
following recourse in order to progress your own smart watch. First, there is a lot
of functionality in the Particle Core board that we did not have room to cover in
this book. On the following site, you will find more information on the Core board,
which might be useful for your project:

http://docs.particle.io/core/start/

IFTTT still has a lot to offer in terms of notifications that can be made and just
browsing through the different channels will certainly inspire new possibilities.

https://ifttt.com/

www.it-ebooks.info

http://docs.particle.io/core/connect/
http://docs.particle.io/core/start/
https://ifttt.com/
http://www.it-ebooks.info/

Chapter 9

[189]

The watch presented in this chapter is the bare bones of what I consider to be a smart
watch for you to improve on. Even if there is a lot of functionality you can add on
the software side, modifying the hardware would also create some new possibilities.
Many of the sensors used in this book were picked for their versatility and some
could be added to this project. A natural step would be to add an accelerometer and
the possibilities will multiply yet again, or maybe think of ways you can connect
some of the projects to one and other. My recommendation is to not stop here, but to
keep on developing all of the projects in the book.

Unfortunately, this book has to end at some point and this is it. I hope you have
enjoyed the projects presented, and as always,

Happy prototyping!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[191]

Index
A
accelerometer

2 axes 32
3 axes 32
about 32

ADXL335 chip 122
analog sensor 19
Arduino IDE

about 1, 2
installing 4
URL 4
using 4

automated lighting system, creating
electronic requisites 39
gestures, detecting 44
glove, creating 46
TSL2561 41

B
bend sensor 20-25
BLE Controller

URL, for Android 117
URL, for IOS 117

Blend Micro
about 113-116
app 117-121
gesture, tracking 122-128
summarizing 129-131

ble-sdk-arduino
URL 116

Bluetooth low energy (BLE) 113

C
card, NFC

reading 97-102
clock

creating 85-89
compass 32-37
component

requisites 163
Coordinated Universal Time (UTC) 85

D
desoldering

components 169-171
URLs 169
ways 170

diode matrix. See LED matrix
display.display() command 79

E
electronic requisites

for automated lighting system 39-41

F
flex sensor 20
FLORA board

about 3, 8-11
final sketch, adding 90-92
pins 9

Future Technology Devices
International (FTDI) 65

www.it-ebooks.info

http://www.it-ebooks.info/

[192]

G
gestures

detecting 44-46
Global Positioning System (GPS) 75
glove

creating 46-54
GND channels 63
gyroscope 32-37

I
I2C 32
IEEE 802.11x 133
If This Then That (IFTTT)

about 134, 150
connecting to 150
data changes, monitoring 151-156
DO function 156-158
URL 150, 156

Integrated Development Environment
(IDE) 1-7

K
Keyglove

about 131
URL 131

Knight Rider style, LED glasses
finishing 69-73

L
light dependent resistor (LDR) PCB

about 19, 30, 31
GND 30
OUT 30
VCC 30

LED glasses
creating 58, 59
Knight Rider style, finishing 69
programming 65, 66

LED matrix
entering 60-65

LED screens 76
LSM9DS0 33

M
magnetometer 32
medium density fiberboard (MDF) 54
multiplexing 60

N
NFC

about 95-97
card, reading 97-102
construction 104-108
final code, uploading 109-111
power source, selecting 111, 112
servomotor, connecting 103, 104

O
organic light-emitting diode (OLED) screen

hocking up 77-81

P
Particle community

URL 143
Particle Core

about 133-137
cloud functions, implementing 144
HTML control 145-149
programming 137, 138
URL 134, 137
URL, for Android 135
URL, for IOS 135

Particle Dashboard
about 140-144
URL 140

pattern
creating 67-69

persistence of vision (POV) 60
position

obtaining 81-85
power source, NFC

selecting 111, 112
pressure sensor 25-29
processing 1
programming 13, 14

www.it-ebooks.info

http://www.it-ebooks.info/

[193]

R
radio frequency identification (RFID) 97
recipes

about 150
actions 150
triggers 150

Red Bear GitHub
URL 115

RedBearLab
URL, for Android 131
URL, for IOS 131

RX pin 82

S
SCL pins 78
SDA pins 78
sensors

about 20
bend sensor 20-25
pressure sensor 25-29

Serial monitor
about 6
blinking 14, 15
external LED 14, 15
speed blinking 16, 17

Serial.print()command 25
Serial.println() command 25
servomotor, NFC

connecting 103, 104
software

installing 3, 4
using 3, 4

T
TSL2561

about 40-44
URL 41

TX pin 82

U
Uno Arduino boards

about 8-10
connecting 11-13
FLORA board 8, 9
testing 11-13

W
watch

building 163-167
component, requisites 162
creating, summarizing steps 178-181
design 167-169
leather, stitching 173-177
notifications, receiving 181-187
pieces, connecting 172, 173
soldering 167-169

wearables 2, 3

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Arduino Wearable Projects

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Arduino Essentials
ISBN: 978-1-78439-856-9 Paperback: 206 pages

Enter the world of Arduino and its peripherals and
start creating interesting projects

1. Meet Arduino and its main components and
understand how they work to use them in your
real-world projects.

2. Assemble circuits using the most common
electronic devices such as LEDs, switches,
optocouplers, motors, and photocells and
connect them to Arduino.

3. A Precise step-by-step guide to apply basic
Arduino programming techniques in the
C language.

Python Programming for Arduino
ISBN: 978-1-78328-593-8 Paperback: 400 pages

Develop practical internet of Things prototypes and
applications with Arduino and Python

1. Transform your hardware ideas into real-world
applications using Arduino and Python.

2. Design and develop hardware prototypes,
interactive user interfaces, and cloud-connected
applications for your projects.

3. Explore and expand examples to enrich
your connected device's applications with
this step-by-step guide.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Raspberry Pi Home Automation
with Arduino
Second Edition
ISBN: 978-1-78439-920-7 Paperback: 148 pages

Unleash the power of the most popular microboards
to build convenient, useful, and fun home automation
projects

1. Revolutionize the way you automate your
home by combining the power of the Raspberry
Pi and Arduino.

2. Build simple yet awesome home automated
projects using an Arduino and the Raspberry Pi.

3. Learn how to dynamically adjust your living
environment with detailed step-by-step
examples.

Arduino Electronics Blueprints
ISBN: 978-1-78439-360-1 Paperback: 252 pages

Make common electronic devices interact
with an Arduino board to build amazing
out-of-the-box projects

1. Build interactive electronic devices using
the Arduino.

2. Learn about web page, touch sensor, Bluetooth,
and infrared controls.

3. A project-based guide to create smartly
interactive electronic devices with the Arduino.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: First Look and Blinking Lights
	Wearables
	Installing and using software
	The Arduino IDE
	First look at the IDE
	Getting to know you board
	The FLORA board

	Other boards
	Connecting and testing your board
	Some notes on programming
	External LEDs and blinking

	Summary

	Chapter 2: Working with Sensors
	Sensors
	A bend sensor
	The pressure sensor

	Light dependent resistors
	The accelerometer, compass, and gyroscope
	Summary

	Chapter 3: Bike Gloves
	Electronics needed
	Trying out the TSL2561
	Detecting gestures
	Making a glove
	Summary

	Chapter 4: LED Glasses
	Making the glasses
	Entering the matrix
	Programming the glasses
	Making a pattern
	Finishing the glasses Knight Rider style
	Summary

	Chapter 5: Where in the World Am I?
	Hocking up the OLED screen
	Getting the position
	Making the clock
	The final sketch
	Summary

	Chapter 6: Hands-on with NFC
	Reading a card
	Connecting the motor
	Putting the pieces together
	The final code
	Wrapping things up
	Summary

	Chapter 7: Hands-on BLE
	Hello Blend Micro
	The Blend Micro app
	Gesture tracking
	Wrapping things up
	Summary

	Chapter 8: On the Wi-fly
	The Particle Core
	Programing for the Particle Core
	The Dashboard
	HTML control
	Connecting to IFTTT
	Monitoring data changes
	DO a function

	Summary

	Chapter 9: Time to Get Smart
	Components
	Let's get started
	Watch design and soldering
	Desoldering
	Connecting the pieces
	Leather time
	Finishing up
	A smorgasbord of functionality
	The end of the beginning

	Index

