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Preface

The notion of transportation refers to the movement of people and goods across
nontrivial geographical distances and its history is as old as our civilization. Its
scope is enormous, ranging from people walking on the earth’s surface to carts
and chariots driven by animals, automobiles, trains, airplanes, and ships. Despite
the great diversity in the modes of transportation, a unique characteristic emerges
—the constant effort that has continued throughout history to improve its
efficiency by providing information and guidance to the constituent entities. In
the past, information was carried by people and by material in the form of
messages and, as a result, the rate of propagation of information was closely
related to that of the mode of the transportation. With the emergence of
electromagnetic communication, in the last century, the discipline of
transportation experienced a remarkable transformation. Information and
guidance could now be provided much faster than the actual rate of movement of
the people and goods implying a qualitative improvement in the transportation
system. Thus, in the railway system, it became a standard practice for a station
master of station A to “wire” ahead to the station master of station B the
impending arrival of the train that has just passed A. For many reasons, including
simplicity and the desire to maintain consistent control, the information and
guidance providers of the transportation systems evolved as centralized units. A
central control would gather information about every entity within a specific
transportation system and provide guidance and information to them as
necessary.

Towards the end of the twentieth century, the number of the constituent units
in many transportation systems, especially the highway system, has simply sky-
rocketed. In the U.S. alone, there are over 200 million vehicles and over 4
million miles of paved roads. In addition, during specific times such as “rush-
hour” the utilization of certain subsets of many transportation systems frequently
exceeds the capacity, leading to grid-lock and related problems. Furthermore, the
average person today is far more demanding when it comes to his/her freedom of
choice and flexibility. For many transportation systems, the cost of expanding
the existing infrastructure is prohibitively expensive. The result is a major strategic
shift from building more infrastructure to providing timely information and high
quality guidance towards improving the quality of transportation, within the



confines of the existing infrastructure. In turn, the centralized paradigm is
confronted with overwhelming challenges, from the sheer number of entities, the
demand for faster and accurate information, and the need for high quality
guidance. 

To serve the needs of the future beyond the year 2000, transportation systems
must necessarily undergo another radical transformation, namely from the
centralized paradigm to the asynchronous, distributed paradigm that will
integrate fast computers and high-performance computer networks through novel
computer algorithms. This book focuses on the fundamental principles in future
transportation systems that, in turn, give rise to new system architectures. The
book argues strongly the need to design innovative and creative approaches to
transportation problems, utilizing the fundamental principles, followed by
thorough scientific validation. It stresses both the need for computer modeling
and simulation of a representative system to help design and validate such
complex, large-scale systems and the design of new performance metrics to
estimate the performance of these systems. Although the scope of transportation
systems is very broad, this book focuses in detail on two ubiquitous
transportation modes—highway and railway systems. It presents the basic
principles pertaining to travel-related decision making that includes
coordination, control, and routing. These principles constitute the core of and
apply equally to all transportation systems including passenger air travel, air
freight, personalized rapid transit, etc. While these principles constitute one of
several key advances necessary to usher transportation systems into the next
century, other relevant issues such as driver behavior analysis, human factors,
congestion originating in human behavior, and other traffic factors are beyond
the scope of this book.

The development of this book has been motivated by two reasons. The first is
my frequent frustration with current transportation systems and a sincere belief
that the technology that is needed to alleviate the problem is already here. My
frustrations, that I am certain I share with millions of my fellow human beings,
include traffic congestion, lost luggage during air travel, misinformation about
train arrivals at stations and public bus arrivals at stops, and driving in an
unknown city late at night and getting lost. The General Electric locomotive-
building unit reports, according to Carley in the Wall Street Journal, dated June
29, 1998, that locomotives sit idle as much as 40% due to bottlenecks in the rail
corridors that stem from poor information, coordination, and control. We are
convinced, through our fundamental analysis of transportation systems and our
own research, that novel distributed control algorithms constitute the most logical
choice for future transportation system architecture design. In our vision, we see
a significant and increasing role for novel computer control algorithms and large
scale, distributed software, in future transportation systems, providing an entirely
new range of personalized, travel-related services, qualitatively enhancing the
efficiency of movement of each entity throughout the system, sophisticated
control of ramp meters at highway entrances, coordinating traffic flow in
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highways and street surfaces, providing personalized rapid transit services, and
fostering a safe environment.

Second, we sincerely believe that to realize a qualitative jump towards
intelligent transportation sy stems, the future highway engineer and traffic
specialist must receive interdisciplinary training in civil and electrical
engineering, transportation engineering and planning, human factors, and most
importantly, computer science and engineering (CSE). Basic knowledge in the
areas of distributed systems, algorithm design, networking, computer modeling,
and distributed simulation, within CSE, are especially important for they hold the
key to understanding the most complex, top-level system architecture. In the
January 1998 issue of Traffic Technology International, while Prof. John Collura
of the University of Massachusetts presents some details on a new undergraduate
and graduate curriculum in response to the recent ITS movement, Prof. Chelsea
White of the University of Michigan notes that the nature of future transportation
problems is essentially interdisciplinary. Recently, Arizona State University has
launched a Graduate Interdisciplinary Certificate program in transportation
systems, supported by faculty from departments of planning and landscape
architecture, civil and environmental engineering, geography, and aeronautical
management and technology. The ideas and principles in this book also underlie
the Autonomous Decentralized Transport Operation System (ATOS) that
controls the world’s largest transportation system—East Japan Railway
Company. Developed by Hitachi, ATOS includes 5000 autonomous computers
that control over 6200 trains/day [1].

Chapter 1 examines the essential nature of all transportation systems,
especially from the perspective of future needs, and presents the fundamental
principles that emerge from the analysis. This chapter presents key design issues
of future systems including the control algorithms, the nature of the interactions
between the different constituent entities of the system, and the network that
interconnects the entities. It also underscores the role of modeling and simulation
in the design of future systems. Chapters 2 through 4 present a number of case
studies that encapsulate the principles outlined in Chapter 1.

Chapter 2 describes in detail the first study of a novel, distributed approach to
routing of trains in a railway network. This chapter begins with an explanation of
the traditional approaches to train control and presents a detailed, critical review
of the literature. It then presents a new, distributed control algorithm, DARYN.
The algorithm is first modeled for a small-scale railway network and then
simulated on Armstrong, a loosely-coupled parallel processor to yield
performance measures. Chapter 3 presents a highly sophisticated algorithm,
RYNSORD, for efficient scheduling and congestion mitigation in railway
networks. In RYNSORD, every train utilizes lookahead to dynamically re-plan
its route and, at every stage, it reserves one or more tracks prior to utilizing
them. The reservation process is characterized as “soft,” i.e., less abrupt and
more flexible in negotiation between the trains and stations, in contrast to the
traditional, rigid, “hard” reservations. RYNSORD is modeled for a subset of the
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eastern United States railroad network and simulated on a network of 65+ SUN
sparc 10 workstations. In Chapter 3, analysis of the performance data focuses on
a comparison of the train travel times and a unique metric in the literature—
quality of the routing decisions.

Chapter 4 introduces DICAF, a novel architecture for IVHS wherein the
overall task of dynamic route guidance and intelligent congestion mitigation is
distributed among every entity, i.e., automobiles and highway infrastructure, of
the IVHS system. The term IVHS is utilized in the limited context of vehicles in
highways while the term ITS commands a broader scope and encompasses all
transportation systems. DICAF utilizes a continuous function—congestion
measure, to influence route guid ance, and presents a novel metric that contrasts
DICAF’s performance, for a realistic highway system, against the absolute best.
While DICAF and RYNSORD share the common goal of achieving efficient
allocation of system resources, they employ different strategies which, in turn,
stem from their basic differences. While trains are confined along tracks which
must be reserved exclusively prior to use, automobiles enjoy greater flexibility in
sharing the road with each other.

Chapter 5 presents a systematic and detailed study of the stability of the novel
computer algorithms for transportation, in the presence of perturbations. This
analysis is key to understanding the robustness and resilience of the complex
transportation systems. It utilizes RYNSORD to illustrate the basic principles.
Chapter 6 presents new techniques that have been developed for the modeling
and simulation of ITS designs.

Thus, the organizational philosophy of this book is as follows. While
Chapter 1 presents the general principles, Chapters 2 through 4 address actual
problems which serve as concrete examples from the real world. The thinking is
that, despite the basic underlying similarity, each transportation problem is
unique in its nature, characteristics, and requirements, and needs a custom
solution to be developed that is subject to the general principles. It is hoped that
the reader will internalize these general and particular concepts and synthesize
innovative solutions to future problems.

This book is intended for graduate students in transportation engineering and
computer science, researchers in the different disciplines of transportation,
practitioners in railways, highway systems, and aviation, and policy makers for
transportation infrastructure. It may be used as one of a limited number of
textbooks in a graduate course in advanced transportation engineering. In
addition to the theoretical concepts, computer modeling, and experimental
analysis, this book provides to the readers executable simulators, included in the
accompanying CD-ROM, for each of the systems described in the Chapters 3
through 5. The aim is to enable the reader to execute the simulations on a
network of Linux workstations for different choices of parameters, network
configurations, and input traffic data, to gain a deeper understanding through
hands-on experimentation and experience. Instructors may also use the
simulators as a part of a laboratory environment for students to work on
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laboratory exercises. Chapter 8 describes the use of the simulators. While these
simulators are meant for academic use and are limited in scope, the reader may
contact rynsord@enpc732.eas.asu.edu for pointers to industrial grade versions of
the simulators.

The authors are indebted to many individuals who have contributed greatly to
their understanding of the transportation systems. They include the first author’s
former students, Raj Iyer, M.D., Noppanunt Utamapathei, and Kwun Han who
had pursued their degrees with him during his tenure at Brown University, Rick
Backlund of the Federal Highway Administration, Boston, and Robert Shauver
of the Rhode Island Department of Transportation. To the many authors of the
papers in the transportation literature that helped us understand the discipline, we
express our sincere gratitude. We are also grateful to the funding agencies of the
U.S. Department of Defense for their continued support. Last, we express our
sincere thanks to the staff at CRC Press for their enthusiasm and meticulous
efforts. 
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Chapter 1
Fundamental Issues in Transportation

Systems

By their very nature, transportation systems span nontrivial physical distances.
Goods and people are transported from one physical location to another, utilizing
routes that pass through one or more interchange points, also known as hubs or
route points in the literature. The organization of the interchange points facilitate
the sharing of resources and offer other conveniences such as refueling, etc.
Thus, the constituent entities of transportation systems include the goods and
people being transported and the interchange points, all of which are
geographically dispersed. Before the discovery of electromagnetic
communication, information on the transport of goods and people propagated
along either with the transported material itself or was physically carried by
some other means the speed of which was similar in scale to the rate of
movement of the goods and people and the information about their transport.

The first major revolution in transportation coincided with the introduction of
electromagnetic communication which enabled the propagation of information
about the movement of goods and people significantly faster than the actual
transport of the material at limited speeds. Thus, a modern transportation
network may be viewed conceptually as consisting of two principal components:
an information network that transports pure electromagnetic energy and a
material transport network that carries goods and people. While the information
network is optional but highly beneficial, the material transport network is a
fundamental requirement.

The availability of computing engines fueled the second major revolution in
transportation systems wherein fast and precise computers were exploited to
efficiently control and coordinate the transport of goods and people across the
system. Excellent examples of computer usage in transportation today include
the centralized control for railways [2], centralized air traffic controllers, and
traffic management centers [3] for automobiles. For simplicity and ease of
comprehension, the coordination and control functions have been consolidated
from the start into centralized units and continue to dominate to this day. The
significant cost and bulk associated with the earlier computers had reinforced the
decision to centralize. Under the centralized paradigm, first, relevant information
is acquired from every constituent entity of the system at the centralized unit.
The information may include the origin and target destinations of the units being



transported, the transport related preferences, if any, of every unit, the state of
occupancy of the transport paths between the interchange points, and the state of
the information network. Next, the centralized unit executes a complex, decision-
making program that aims to achieve overall efficiency, subject to specific pre-
established criteria. The program computes the movement-related decisions for
each of the units that needs to be transported, one at a time. Then, the decisions are
propagated to the respective units which, in turn, realize them.

Conceptually, the generation of the decisions by the centralized computing
engine may be slow, especially where the number of units in the system is large.
Furthermore, the tasks of reading the information from all of the remote units,
and relaying the respective decision to each of the distant units, one at a time,
may greatly diminish the speed of decision making as well as the realization of
these decisions. Slower decision making implies inaccuracy and imprecision.
Furthermore, centralized units are highly susceptible to natural and artificial
disasters. In reality, many of today’s transportation networks are witnessing a
dramatic increase in the number of the constituent units, faster rates of
movement of goods and people, and a sharp increase in the demand for faster and
more precise coordination and control. As a result, it has been projected that, for
some transportation systems, even the use of today’s fastest supercomputers may
not be adequate. Recently, the U.S. Federal Aviation Authority (FAA) has
initiated the concept of “free flight” [4] to enhance the safety and efficiency of
the National Airspace System (NAS). The concept moves NAS from a
centralized command and control system between pilots and air traffic
controllers to a distributed system that allows pilots, whenever practical, to
choose their own routes, dynamically, for efficiency and economy. To achieve
safety within “free flight,” the FAA must establish guidelines to control the
flight routes. Fundamentally, the requirement in the current centralized approach
that the decision making for the constituent units, X, Y,…, be sequential, is
unnecessary. Where the resources pertaining to the transit of X are relatively
independent of those pertaining to Y, the decision making for X and Y, in
theory, may occur independently and simultaneously.

Today, the transportation discipline is on the brink of experiencing the third
major revolution and possibly the most complex—the transformation from the
centralized paradigm to the asynchronous, distributed paradigm that will
integrate fast computers and high-performance computer networks through novel
computer algorithms. The discipline of intelligent transportation systems (ITS)
[5] encompasses all of the advances in transportation and calls for the design of
innovative and creative approaches to the transportation needs, utilizing the
fundamental principles, followed by thorough scientific validation.

2 1. FUNDAMENTAL ISSUES IN TRANSPORTATION SYSTEMS



1.1
Principal Characteristics of Intelligent Transportation

Systems

The principal characteristics of ITS, that promises to gain increasing importance
in the future, include the following: 

1. Automated computation: Unlike in many transportation systems across the
world where the decision making and the computation of the arrival times
are still estimated manually, future system architectures must employ
automated decision-making computer systems to yield accurate information
and achieve precise control and coordination.

2. The demand for flexibility and freedom of choice: The frequent lack of
flexibility, the absence of personalized services, and the availability of
mostly inaccurate estimates, are increasingly being rejected by the
customers of transportation systems. There is strong unwillingness to accept
the traditional excuses of limited computational ability and network
bandwidth. There is an increasing demand for flexibility, freedom of choice,
and personalized service, and the trend is likely to continue into the future.

3. The demand for accurate, i.e., precise and up-to-date, information: In
the traditional approach, data is first collected at a centralized unit,
processed, and the resulting information is disseminated to the
geographically dispersed customers. Given the geographical distance and the
finite speed of propagation of electromagnetic radiation, when a customer
intercepts information relative to the transport of a unit in transit, a finite time
interval has elapsed since the information was originally generated. For
dynamic systems, this delay implies that the information received by the
customer has incurred latency and is, in essence, inaccurate and imprecise.
The degree of the error due to latency is a function of the length of the
delay, relative to the dynamic nature of the system, and the resolution of
accuracy. Thus, latency is fundamental to every transportation system, and
future system architectures must focus on distributed schemes that aim at
eliminating all unnecessary sources of latency, where possible, and realizing
efficient, accurate, and timely decisions.

4. A fundamental, enabling characteristic of transportation networks: Al-
though it is obvious that matter in the form of goods and people is
transported in a transportation network, the implication is profound. The
material units being transported may carry with them their own computing
engines which, at the present time, are also necessarily matter. In contrast, in
a communications network, the units of information constitute pure
electromagnetic energy and they cannot carry with them their own
computing engines while in transit. While carried along with the goods and
people, the computers, in turn, may facilitate dynamic, travel-related
computations and decision making. Also, since the units of a transportation
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system may communicate with each other while in motion using wireless or
infrared techniques, there is hope that the need for centralizing the
information gathering and decision-making functions may be eliminated.
The trend of decreasing physical size and cost, increasing capability, and
lower power consumption in computer designs is encouraging and will
likely render their use in transportation networks increasingly practical. 

5. The design of asynchronous, distributed algorithms for control,
coordination, and resource management: Since the constituent units and
the resources of any transportation system are geographically dispersed, it is
logical for future system architectures to exploit distributed algorithms. The
units to be transported across a network are likely to request service
independent of one another and at irregular intervals of time. Thus, the
interactions in the system in essence will be asynchronous, requiring the
design of asynchronous, distributed algorithms for control, coordination, and
resource allocation.

By design an asynchronous, distributed, algorithm for a transportation
system must necessarily reflect the highest, meta-level purpose or intent of
the system. The algorithm manifests itself in the behavior of every
constituent unit. It will hold the potential of exploiting the maximal
parallelism inherent in the system. Furthermore, local computations must be
maximized while minimizing the communications between the entities,
thereby implying high throughput, robustness, and scalability. The key
properties of such algorithms are:

(a) Identification and Definition of Entities: From the perspective of the
control, coordination, and resource allocation algorithm, entities
constitute the basic decision-making units and define the resolution of
the decision behavior of the transportation system. From the perspective
of the physical system, entities correspond to the system’s natural,
constituent elements and include the resources and the units to be
transported. An entity must be self-contained, i.e., its behavior, under
every possible scenario, is completely defined within itself. Every entity
exists independent of all other entities and, therefore, its behavior is
known only to itself. Unless the entity shares its behavior with a
different entity, no one has knowledge of its unique behavior.
Conceivably, an entity will interact with other entities. Under such
conditions, its behavior must include the scope and nature of the
interactions between itself and other entities.

(b) Asynchronous Nature of Entities: In general, units requesting
transport, are incident on the system at irregular intervals of time. Since
the units are incident at different geographical points of the system, they
are unaware of the presence of each other, their rates of progress are
likely to be different, and their destinations are likely uncorrelated and
different, and therefore the interactions in the system will be
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asynchronous. Time constitutes an important component in the behavior
of the entities and their interactions. Although every entity by virtue of
its independent nature may possess its own unique notion of time, when
a number of entities E1, E2,…. choose to interact with each other, they
must necessarily share a common notion of time, termed universal time,
that enables meaningful interaction. Universal time is derived from the
lowest common denominator of the different notions of time and reflects
the finest resolution of time among all of the interacting entities.
However, the asynchronicity manifests as follows. Where entities A and
B interact, between their successive interactions, A and B each proceeds
independently and asynchronously. That is, for A, the rate of progress is
irregular and uncoordinated (with respect to B) and reflects a lack of
precise knowledge of the rate of progress of B, and vice versa. At the
points of synchronization, however, the time values of A and B must be
identical.

(c) Concurrency in the Entities: Every entity must necessarily be
concurrent since every entity exists independent of others except for the
necessary interaction with other entities. That is, the progress and rate of
its execution is independent of those of other entities and, at any given
instant during execution, the states of the entities are unique. In an
implementation of the algorithm, every entity may be mapped to a
concurrent process of a host computer system. The recognition that
entities are concurrent is important for two reasons. First, it reflects the
correct view of an actual transportation system and, as a result, the
control and coordination algorithm represents reality closely. Second,
when the algorithm is executed on a host computer system that contains
adequate computing resources, the concurrent entities may be executed
simultaneously by dedicated computing engines to achieve faster overall
execution. Faster execution will enable, realistically, the execution of the
algorithm a large number of times, for different parameters, yielding
insight into the system design issues.

(d) Comimmication between Entities: Clearly, an entity may not possess
total and accurate knowledge of everything it may need for its continued
functioning, at every instant of time, due to the geographical distances
and the finite speed of propagation of information. Therefore, the sharing
of data and knowledge through interaction with other entities may
constitute an important and integral component of the algorithm. Entities
may interact with one another, and the nature of the interaction may
assume different forms. First, each set of entities that interacts between
themselves is identified and reflects the corresponding real-world system
exactly. In an extreme case, any entity may interact with any other
entity. Second, the necessary data and information must be shared
between the interacting entities and appropriate message structures must
be developed. Third, the information may be shared on a need to know
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basis to ensure privacy and precision. Fourth, all message
communication is assumed to be guaranteed. That is, once a sender
propagates a message, it is guaranteed to be received by the receiver(s).
Thus, the sharing of data and information among entities implies a
communication network that interconnects the entities and is an integral
component of the algorithm. The topology of the network is determined
by the nature of the interactions.

(e) Proof of Correctness of the Algorithm: By their very nature, the
control and coordination algorithms are difficult for the sequential
human mind to comprehend because they involve hundreds of
autonomous en tities executing simultaneously and asynchronously with
no centralized agent responsible for controlling their activities. To ensure
accuracy, correctness, and safety of a real-world transportation system
under algorithm control, it is therefore crucial to develop a proof of
correctness. Fundamentally, the proof of correctness must guarantee that
the system operates correctly, i.e., the execution of the algorithm must
accurately reflect reality. There must be the absence of any inconsistency
such as accidents, as the system progresses towards its unique objective.
The proof of correctness is especially important since each decision-
making entity uses a subset, though a relevant fraction of, the system-
wide information, and the data from other entities is subject to latency.

(f) Robustness: The asynchronous, distributed algorithm is expected to
yield a robust system that, unlike a centralized system, is much less
susceptible to natural and artificial disasters. Each geographically
dispersed entity is a decision-making unit and the likelihood of a disaster
affecting every entity is remote. Thus, even if one or more of the
asynchronous entities fails, the remaining entities are not likely to be
completely affected and the system is likely to continue to function, in a
degraded mode. For the algorithm to operate under partial failures,
exception handling must be incorporated into the design of the entities
and their asynchronous interactions.

(g) Performance: The use of multiple processors, executing concurrently
under algorithmic control, implies superior performance. The degree to
which the algorithm is able to exploit the parallelism inherent in the
underlying system is reflected in its performance metric. While every
specific transportation system is likely to require its unique set of
metrics, two criteria may be applied uniformly across all algorithms. The
first, “performance scalability,” detailed in Chapter 2, reflects the ability
of the algorithm to continue to function, i.e., achieve the primary
performance objective, despite increasing system size, i.e., increase in
the number of entities constituting the system. Since the computation
under-lying the system-wide decision-making is distributed among every
entity, as the system size increases, both the demand for increased
computational power and the number of computational engines increase.
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Assuming that the communication network experiences proportional
expansion, the ratio of available eomputational power to the required
computational power is expected to decrease only by a marginal fraction,
implying that the achievement of the primary performance objective will
be affected only marginally. Second, consider a hypothetical mechanism
that is capable of determining the absolute performance of any given
real-world problem which, in turn, may serve as the ideal metric against
which the performance of any algorithm may be evaluated. Chapters 3
and 4 present this metric in detail.

(h) Stability: Where the algorithm constitutes an implementation of a
real world transportation system, it is likely to be subject to unexpected
changes in the operating conditions. The property of stability refers to
the behavior of the algorithm under representative perturbations to the
operating environment and is detailed in Chapter 5.

1.2
Scientific Validation of ITS Designs through Modeling and

Simulation

The traditional approach to understanding the behavior of real-world
transportation systems has been to develop analytical models that attempt to
capture the system behavior through exact equations and then solve them using
mathematical techniques. This has been adequate in the past and may continue to
serve effectively in many disciplines. However, for many of today’s
transportation systems, given the increasing size and complexity which implies a
large number of variables and parameters that characterize a system, the wide
variation in their values, and the great diversity in the behaviors, the results of
the analytical efforts have been restrictive. For example, researchers at PATH,
Partners for Advanced Transit and Highways, at the University of California,
Berkeley, have proposed an architecture for IVHS [6], wherein one or more
automobiles are organized into discrete platoons that move through special lanes,
similar to high occupancy vehicle (HOV) lanes, on existing freeways at very
high speeds. When a vehicle enters into the network and announces its ultimate
destination, the system assigns it a nominal route through the network. In their
attempt to develop an analytic model of the architecture, utilizing the principles
of control theory, PATH researchers encounter a system with a formidable
number of states. Tomorrow’s systems are expected to be far more complex,
implying that modeling and large-scale simulation may be the most logical and,
often the only, mechanism to study them objectively.

Modeling refers to the representation of a system in a computer executable
form. The fundamental goal is to represent in a host computer a replica of the
target transportation system’s architecture including all of its constituent
components, as accurately and faithfully as possible. Simulation refers to the
execution of the model of the target system design on the host computer under
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given input stimuli and the collection and analysis of the simulation results. The
benefits of modeling and simulation are many. First, they enable one to detect
design errors prior to developing a prototype in a cost effective manner. Second,
simulation of system operations may identify potential problems during
operations including rare and otherwise elusive ones. Third, analysis of
simulation results may yield performance estimates of the target system
architecture. Unlike in the past, the increased speed and precision of today’s
computers promises the development of high fidelity models of transportation
systems that yield reasonably accurate results quickly. This, in turn, would
permit system architects to study the performance impact of a wide variation of
the key parameters, quickly and, in a few cases, even in real time or faster than
real time. Thus, a qualitative improvement in system design may be achieved. In
many cases, unexpected variations in external stress may be simulated quickly to
yield appropriate system parameter values which are then adopted into the system
to enable it to successfully counteract the external stress. Last, the design of new
performance metrics may be facilitated to gain a better understanding of the
nature of the system behavior. The issue of determining appropriate input traffic
demand patterns is discussed in each of the Chapters 2 through 6.
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Chapter 2
DARYN: A Distributed Decision-Making

Algorithm for Railway Networks

2.1
Introduction

A railway network typically consists of thousands of miles of tracks and hundreds
to thousands of locomotives carrying goods and people from one place to
another. For efficiency and modularity, usually, the tracks are divided into
individual units, each of which may be controlled exclusively by the system.
Thus, a train in propagating from location A to another location B may travel
over several tracks. Given that two or more trains may need to use, at some time
instant, the same track and that only one train may occupy a track at any time,
the principal goal of the railway system is to allocate tracks to trains such that (i)
collisions are avoided and (ii) the resources are utilized optimally.

Traditional approaches utilized the principles of centralized scheduling to
achieve these objectives. In centralized scheduling, the destination of every train
is known a priori by the dispatcher—a uniprocessor computer. Additionally, a
dispatcher receives at regular intervals of time the current position and speed of
every train and the status of every track in the system; for example, whether it is
occupied or empty. The dispatcher analyzes these data sequentially and, based on
a cost function, computes the subsequent sub-route that every train must execute.
Thus, the dispatcher controls the status of every track and the subsequent
movement of every locomotive to achieve overall optimal efficiency of resource
usage.

Consider a railway network, shown in Figure 2.1, where the four tracks T1

through T4 connect the four stations A through D. The centralized scheduler is
represented through the block DPU in Figure 2.1 that is connected to each of the
tracks T1 through T4 by solid lines implying permanent communication link
fixtures. Each line represents bidirectional flow of information. The status of the
track is fed to the DPU and the DPU, in turn, propagates new instructions to the
tracks. Where a train R1 is propagating from the originating station to the
destination station, a temporary communication link (perhaps a radio link) is
established with the DPU. This link is canceled following the arrival of the train
at its destination. Assume that at some time instant, trains R1 through R3 occupy



the tracks T3, T1, and T2 respectively. Thus, temporary links, shown through
dotted lines in Figure 2.1, represent the bidirectional flow of information
between the trains and the DPU. At certain time intervals, each of R1 through R3

and T1 through T4 propagate relevant information to the DPU. The time interval
is determined based on the length of the tracks, speed of trains and information
processing by the DPU, communication link delays, and the desired accuracy of
the decisions. The DPU reads the data sequentially, analyzes them, and computes
the subsequent tracks for R1 through R3 based on a cost function. The cost
function may take into consideration the actual cost of using a track, the priority
of the train, and future implications. The DPU propagates these decisions to the
trains R1 through R3 sequentially and permits them to make appropriate
movements. This process continues until all trains reach their ultimate
destinations when the system is said to have terminated. For simplicity, the
choice of the time intervals may correspond to the time instants when all trains
have arrived at a station.

A description of the centralized algorithm, using pseudo-code, is presented in
Figure 2.2.

Graff and Shenkin [7] describe a simulation of a traditional algorithm, subject
to a set of predetermined objectives, where the decision subroutine of the
dispatcher is executed whenever a train arrives at a node (i.e., an intermediate
station). This algorithm is also used by the Southern Pacific Transportation
Company. The authors note that the CPU time required on an IBM PC remains
manageable provided that the number of tracks and trains is limited to 15 and 25

FIGURE 2.1

Centralized Scheduling in Traditional Approaches
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respectively. Fukumori [8] provides an artificial intelligence approach to address
the scheduling problem for a partially ordered set of events using the timetable as
a given specification. Recent improvements to the traditional algorithm include
sophisticated strategies to communicate train and track information to the
dispatcher computer. Rao and Venkataehalam [9] present an experimental system
that uses microprocessors to interlock control points, monitor track circuits, and
interact between the track circuit and the locomotive currently occupying the
track. The overall objective is to reduce the probability of accidents. Coll, Sheikh,
Ayers, and Bailey [2] present a detailed description of the North American
advanced train control system (ATCS) where the allocation of tracks to trains is
controlled exclusively by a dispatcher. ATCS is novel in its use of
transpondercomputers that are embedded along the tracks to monitor the
necessary data, on-board computers that enforce the allocations issued by the
dispatcher, and a sophisticated computer-to-computer communications
architecture. Kashyap [10] describes the role of telecommunications in the
management of tracks in the context of Indian Railways. Vernazza and Zunino
[11] present a distributed intelligence methodology for railway traffic control
that is described as follows. The entire system of tracks is divided among a few
decision centers (DCs) exclusively. When a train Ri occupies a track that is under
the jurisdiction of a decision center DCj, DCj assumes the role of the dispatcher
for Ri. When Ri needs to use a track that is controlled by another decision center
DCk, DCj must negotiate with DCk for the temporary privilege of using the track

main ()
{
   open file to read information on all stations;
   open file to read information on all tracks;
   open file to read information on all randomly generated train information;
interval=1;
   while not (all trains arrive at destinations) {
   for this interval, read speed and position of every train;
for this interval, read status of every track;
permit the trains to move to the the next tracks;
determine subsequent tracks for every train through cost function

evaluation;
interval <- next interval;
verify whether all trains have reached destinations;
}
}

FIGURE 2.2

Algorithm for Centralized Scheduling
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in question. A principal limitation of the approaches in References [2] through
[10] is that they are limited to centralized scheduling and, as a result, such
systems are bound to be slow for large systems. Furthermore, this may imply
that the control mechanism is as ineffective as a real-time system. Evidently, the
need to send information from every train and track to the dispatcher will imply
slow communication. This results from the large signal propagation delays over
the links and the time necessary for the dispatcher to read every piece of data.
Conceivably, such delays may force trains to unnecessarily idle [12] at stations
awaiting dispatcher’s decisions or may lead to collisions. The approach in
Reference [10], while representing an improvement over the earlier approaches,
is limited in that it (i) resorts to a limited number of decision centers and (ii)
lacks realistic modeling and detailed simulation study. 

 
The remainder of this chapter presents a novel approach, DARYN, that

addresses a number of limitations of the earlier approaches. Section 2.2 presents
a detailed description of the DARYN algorithm and the issue of modeling on a
loosely-coupled parallel processor. Section 2.3 describes the implementation of
DARYN on ARMSTRONG. Section 2.4 presents measurements from the
modeling and simulation and details an analysis of performance of DARYN.

2.2
The DARYN Approach

2.2.1
Algorithm

An analysis of the centralized algorithm reveals that the primary reason for the
dispatcher to compute the routing for every train lies in the fact that the same
track may be required by two or more trains at an instant of time. If the decisions
for the trains are computed by agents that are completely independent and non-
coordinating, this may lead to collisions that are unacceptable. DARYN proposes
a solution that attempts to eliminate collisions, or equivalently, maintain
consistency in all of the decisions while distributing the overall decision process
among concurrently executable, natural entities that execute with a minimum of
synchronizations. Thus, under these circumstances, the maximal inherent
parallelism may be utilized. The word “natural” refers to the physical entities
that are inherent in the system.

In DARYN, the decision process is distributed among the processors
embedded in the stations and locomotives of the system. Every train and station
executes its share of the decision-making concurrently and independently, subject
to necessary synchronizations such that consistency is maintained and the overall
system executes much faster. A processor, associated with a locomotive,
possesses complete knowledge of the track layout of the entire network. Since
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the frequency of changes in the actual layout of the tracks is likely to be
extremely low, it is realistic for the train computer to store this information as a
part of its initialization. This chapter assumes that a train computer has accurate
knowledge of the entire track layout at all times. Although the electronic storage
requirement may seem significant, it is easily and economically achieved through
the use of inexpensive CD-ROMs and 4mm digital audio tapes whose capacities
are rated at 780 megabytes and 4 gigabytes respectively. While most of the track
layout may be assumed stable, the relatively few dynamic changes in the track
layout due to faults, maintenance repair, and others, may be easily read by the trains
from the neighboring station-computers. The train computer, TCi for train Ri, is
also responsible for evaluating the cost function and thereby determining an
optimal route for Ri. In order to achieve its objectives, the train computers must
interact with the station-computers that control the tracks exclusively. Each track
is controlled exclusively by a single station-computer. For obvious reasons, the
tracks in the vicinity of a station are controlled by that station-computer. 

Initially, every track is unoccupied and every train, located at the originating
station, is uncommitted with respect to its route. Following initialization, every
train is fully aware of the entire network, i.e., the locations and owners of the
tracks and every station-computer is aware of the tracks it owns. A train Ri uses
its ability to evaluate the cost function and determine an optimal route.
Thereafter, it propagates a request to the station-computer that controls the first
track in its optimal route. This request is implemented in the form of a message
and is sent by Ri to the current station Sj. Where Sj is the owner of the track in
question, it examines other similar requests and arrives at a resolution, utilizing
the notions of first-come-first-serve and priority. That is, a station determines the
lowest time of all times of requests by trains corresponding to a particular track.
The request corresponding to the lowest time is approved and all others are
denied. The response to the original request is propagated by Sj to Ri. Where Sj is
not the owner of the track in question, the request is routed to the appropriate
station-computer, Sk, and a response from it is sent back to Ri via Sj. Where the
request of train Ri is approved, the train may physically proceed on the track
towards the subsequent station that constitutes a subset of its optimal route.
However, if the request is denied, the train-computer must re-evaluate the next
best route and repeat the process for the first track of this new route. Where a
train’s requests for tracks are repeatedly denied, either at the originating or any
intermediate station, the train-computer must continue to issue requests. It is
likely that such a scenario refers to a potential problem. Additionally, until a train
is given permission to occupy a subsequent track, it may not move from the
station where it is currently located. This guarantees absolute consistency of
decisions. When the train reaches the subsequent station, it repeats the same
negotiation process. Every station-computer performs two functions: (i) issuing
permission or denials to requests for tracks that it owns and (ii) routing requests
from trains to appropriate station computers as well as responses in the opposite
direction. This process continues until all trains reach their destinations.
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Thus, in DARYN, a train-computer may issue a request only when it is phy
sically located at a station. Conceivably, the train-computer interacts with the
station-computer through optical, infrared, or other means and the
communication process is initiated as soon as the train enters the station. Given
that trains may travel at a maximum speed of 200 km/hr and that the length of a
typical station is 200 meters, the minimum contact time between a station and a
train may be approximately 3.6s. This is, at least, several times larger than the
CPU time (milliseconds) necessary for negotiations by the digital computers
underlying the trains and stations and, as a result, in most cases, a train may not
even need to physically stop at a station during the negotiation process. Also, a
train-computer necessarily recomputes a new optimal path at a station once its
request for access of a track, based on an earlier optimal route computation, is
denied. Logically, one may argue in favor of permitting a train to request
reservation on two or more consecutive tracks of its optimal route prior to
permitting it to move. While this might facilitate efficient long-term planning, it
has the potential to degrade overall performance by reserving tracks too soon
thereby locking out tracks and leading to poor routing for other trains. DARYN
is restricted to looking ahead and requesting reservation only up to the immediate
track. Furthermore although the nature of the cost function may be complex, in
this chapter, a simple cost function is assumed. Every track has the same cost
associated with it and every train has the same priority. Assuming a X-Y
coordinate system for the train network, where a train has to move M and N units
in the X (horizontal) and Y (vertical) directions respectively, the cost function
forces the train to first move in that direction given by the larger of the values M
and N. When M=N, either of the X or Y directions may be chosen.

A necessary condition in the DARYN approach is that every station and train
must possess clocks that conform to an absolute standard clock. At initialization,
all such clocks are synchronized and reset to 0. This ensures consistency of
timing of all requests, responses, and decisions.

As an example of the DARYN approach, consider the network in Figure 2.3.
In Figure 2.3, the stations A through D are connected by the tracks T1 through
T4. Assume that the station-computer for A controls the tracks T1 and T4 while
each of the station-computers for B and D control the tracks T2 and T3

respectively. Thus, the station-computer for C owns no tracks. The station-
computers communicate with each other through communication links that are laid
alongside the tracks. Assume that, at a time instant, the system contains four
trains R1, R2, R3, and R4. Trains R1 and R2 are asserted at station A at times given
by t=0 unit and t=5 units respectively. Both are destined for C. Trains R3 and R4

are asserted at station C at times given by t=0 unit and t=5 units respectively.
Both are destined for A. In DARYN, assume that trains R1, R3, R2, and R4 determine
their optimal routes as {T4, T3}, {T2, T1}, {T1, T2}, and {T3, T4} respectively.
Thus, R1 requests station-computer A for reserving track T4 while R3 sends a
similar message to station-computer B via station-computer D. Both the requests
will be granted and the trains will move on their respective tracks. Assume that
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the length of the tracks and the trains’ speeds are such that R1 reaches station C
at t=7 units and R3 reaches B at t=4 units. At this point, i.e., t=4, R3 will issue a
request to and receive an approval from the station-computer A with regard to
track T1. Assume that train R3 arrives at A at t=6 units. At t=5, train R2 will issue
a request to A for track T1 and will be denied. Train R2 may then reevaluate its
routing and assume that it decides to issue a request to A for track T4. This track,
T4, is also occupied until t=7 and, therefore, the request will be denied. Train R2

may then revert to its first choice and re-request node A for track T1. This
process will continue until A grants the request of R2 at t=6 units. Then, R2 will
move on T1 to B at t=8 units. Similarly, at t=5 units, train R4 issues a request to D
for track T3 and the request is granted. Therefore, R4 moves towards C via T3 and
will reach C at, say, t=8 units. Meanwhile, train R1 arrives at C at t=7 units and
issues a request to D via C for track T3. This request is denied. Since R1 has no
alternative, it has to wait at node C until a subsequent request to D for track T3 is
granted at t=8 units. This process continues until all four trains reach their
destinations. It may be observed that the routing decisions are made by the
individual train-computers while the track allocations are performed by the
station-computers and, as a result, the overall throughput is likely to be
significantly higher than that of the traditional algorithm. 

Decisions are compute-intensive and as DARYN distributes decisions onto
every physical entity of the railway network namely, locomotives and stations
that execute on independent processors, the overall throughput is likely to be

FIGURE 2.3 The DARYN Approach
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significantly higher than the traditional algorithm executing on a uniprocessor.
Also, trains communicate with local stations, at best, and with neighboring
stations, at worst. Thus, communication time is significantly less than the
traditional approach where every train and track must send information to the
fixed dispatcher-computer. Finally, as the number of trains and tracks increases,
implying an increase in the size of the system, the computational requirement
and the number of computational engines both increase. Thus, it is likely that the
total CPU time will increase much more slowly than the corresponding
traditional system implying superb performance for DARYN.

2.2.2
Proof of Freedom from Deadlock

DARYN is an asynchronous, distributed approach and it is deadlock-free. Multiple
trains may propagate requests to compete for a single track, all such requests are
ultimately routed to a single station-computer that owns the track exclusively.
Upon receiving one or more requests, a station-computer must arbitrate, based on
the time of arrival, and then generate and propagate a response—approval or
denial, within a finite amount of time, to every requesting train. A station-
computer’s response is computed based on the total number of outstanding
requests that it has received and is independent of all other entities in the system.
Thus, the decision-making by the station-computer is centralized, as opposed to
distributed. A station-computer also merely routes messages directed to and from
trains and station-computers in finite time. Between the origin and the final
destination, every train will continuously issue requests to the stations and await
responses. Until a response is received from a station, corresponding to a
request, a train will not issue a second request to any station. Every train’s
decision to propagate a request for a specific track is independent of any other
train or station-computer. When a station-computer grants permission to a
requesting train, the train then becomes the exclusive owner of the track for the
duration of its travel. Thus, there is a complete absence of cyclic dependency and,
therefore, the possibility of deadlock is eliminated and the issue of safety, i.e., two
or more trains may not travel and collide on the same track, is guaranteed.
Moreover, for a system with a finite number of trains and the existence of a set
of track between the origin and destination for every train, DARYN guarantees
that every train will reach its destination in finite time. The proof is contingent on
the assumption that every station-computer handles a finite number of trains.

2.2.3
Modeling DARYN on a Loosely-Coupled Parallel

Processor

To analyze its properties in detail, the DARYN algorithm is modeled on a
loosely-coupled parallel processor, ARMSTRONG [13]. This testbed is
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appropriate because its architecture—concurrent processors communicating over
explicit protocols — closely resembles the geographically distributed and
concurrent train- and station-computers that communicate via explicit messages.
ARMSTRONG [13] consists of 68 high performance MC68010 (10 MHz)
processors that are connected through high speed communication links in the
topology of a hypercube. Each processor is capable of executing an application
program asynchronously and concurrently. Furthermore, processes executing on
unique processors may communicate through explicit, high level communication
primitives. In this investigation, for a given railway network, every station-
computer is represented through an ARMSTRONG node. The communications
channel between two station-computers is modeled through a software protocol
established between the corresponding ARMSTRONG nodes. Ideally, one would
like every train-computer in the system to be represented also by an
ARMSTRONG processor. This would imply that a protocol must be established
dynamically between an arriving train-computer and the station-computer where
the train has just arrived. In addition, the protocol previously established between
the train-computer and the previous station-computer must be deleted because,
most probably, it will never be used again. The dynamic allocation and
deallocation of protocols, while theoretically supported by ARMSTRONG, is
unreliable and, therefore, unusable. In this research, train-computers are
conceptually represented through migratory processes. When a train, Ri, resides
at a station, A, the corresponding train-computer is implemented through a
concurrently executable process along with the process for the station-computer,
on the underlying ARMSTRONG node. When the train moves from A to B, the
process on the previous node is disabled and the vital parameters for the train-
computer are propagated in the form of a message to B. At B, a new,
con currently executable process is initiated along with the station-computer
process on the underlying ARMSTRONG node. The train-computer process is
customized with the parameters of Ri propagated to B. Thus, a train’s functional
behavior is executed successively on the ARMSTRONG nodes corresponding to
the stations that the train visits until it arrives at its destination. That is, the
train’s parameters are successively updated and propagated from node to node as
the train is propagated through the network. A disadvantage of this model is that
the train-computers may not be modeled through independent, concurrent,
ARMSTRONG processors. Furthermore, a node representing a station has to
divide its computational ability between the station- and the train-computer
processes. This dual role of the ARMSTRONG node evidently reduces the
performance of the DARYN approach. An ideal model of DARYN would
implement every train on a concurrent processor of ARMSTRONG.

At every ARMSTRONG node corresponding to a station of the railway
network, a complete knowledge of the entire network is stored. When a train
arrives at a station, the train-computer process reads this information. Every
station-computer is fully aware of the rightful owners of every track in the
system. This assumption is based on the idea that the frequency of change of the
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track layout is very small and any such change information is quickly propagated
through the network. A request for a track, issued by a train-computer, is initially
propagated to the station-computer where the train currently resides. Then, the
message is routed to the station-computer that actually owns and controls the
track. Upon receiving two or more requests for a track, a station-computer
determines the lowest of all request times and grants approval to the train-
computer with the lowest time of request. At this point, all other requests for the
track are denied. Where more than one train-computer qualifies, the station-
computer issues the approval to only one of them arbitrarily.

Since DARYN is asy nchronous, each train-computer maintains its own time
counter. Initially, all of the train-computers start with their time counters
initialized to zero. As the simulation progresses, the train-computers increment
their counters both as they compute train requests and as they move, i.e., the time
it takes to traverse a track is the distance of that track divided by the speed of the
train. Consequently, the advantages of asynchrony are concurrency and lack of
complexity associated with synchronizing a large number of trains in a large
system.

In ARMSTRONG, the communication process utilizes non-blocking
primitives. Once a protocol is established, data may be passed between the nodes
as follows. The sending node sends the data to the receiving node via an
ipc_send (information_path, data_l, data_2,…, data_n) command. The sender
process receives an immediate response from the operating system with regard to
the message. Where the message is sent successfully, the sending node receives a
1. Otherwise, it receives a 0 implying that the attempt failed. It is the
responsibility of the sender process to attempt to send the message again in the
future. Given that the system is asynchronous, the receiving node may not know
the exact time when the sender has sent data. It executes an ipc_select
(information_path), once every so often, to check if data has been transmitted
along a particular information path. If the result is positive, the receiving node
may read that data with an ipc_receive (information_path, data_l, data_2,…,
data_n) command. Otherwise, the receiver does not execute an ipc_receive
command. The ipc_select command is also non-blocking in that it will return
immediately with either a positive or negative response.

For simplicity, the tracks are laid out in x (horizontal) and y (vertical)
directions with the nodes laid out in a rectangular matrix. This ensures that the
track request algorithm for each train remain as simple as possible. Each train
calculates its track request by first computing the difference, in the X-Y coordinate
system, between its current location and the final destination. If the Y-difference
exceeds the X-difference, the train attempts to move in the Y-direction so as to
move closer to its final destination. Similarly, where the X-difference is greater
than the Y-difference, the train attempts to move in the X-direction. Thus, the
train determines the appropriate track request and submits it to the corresponding
node processor which controls the track. Once it receives a response—
confirmation or denial—the train considers its next move. If a train is confirmed,
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it moves along the confirmed track. Where the train’s request is denied, it
recomputes a second track choice and resubmits it. A train’s second choice
consists in its attempt to move in the direction other than its first choice. This
process continues until the train is granted approval on a track.

Given that the simulation on the ARMSTRONG system is also asynchronous,
two or more messages sent from individual nodes at the same time instant may
arrive at their destinations at times that differ greatly. This phenomenon
introduces a “timing” problem in the simulation that may be described as
follows. Assume that in a railway system shown in Figure 2.4, two trains are
both headed towards the New York station.While train A is traveling on track 2,
train B is moving on track 3. Also, assume that upon arrival at New York, both A
and B would wish to travel subsequently on track 1. In the real world, the
following should occur. Where track 2 is much longer in length than track 3,
assuming that both trains travel at the same speed, train B would arrive at New
York prior to train A. Thus, the station-computer at New York would most
probably grant approval of track 1 to train B. However, in the simulation, the time
required to travel is not modeled because the authors intend to measure only the
CPU times required by the decision processes. As a result, the following problem
may occur. The message containing the parameters for train A arrives at New
York prior to train B. That is, given that messages are propagated
asynchronously in ARMSTRONG, train A may “electronically” travel faster
than B. The station-computer at New York would, therefore, first grant approval
to train A thereby creating an inconsistency. It may be stressed that this problem
is purely the result of the hardware limitations of ARMSTRONG.

To address this timing problem, the time required by a train to travel from one
station to the next is modeled through a scaled delay. Thus, the actual

FIGURE 2.4

A Potential Timing Problem in the Distributed Simulation
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propagation of a train’s parameters to the subsequent node is physically delayed
on ARMSTRONG by this delay amount.

2.3
Implementation of DARYN on ARMSTRONG

This section presents the data structures and pseudo-codes for the different
functional units that constitute the implementation.

Each ARMSTRONG node that models a station contains unique information
such as the node’s unique identifier number, the identifier assigned to the node
by the ARMSTRONG operating system, the number of tracks to which it is
connected, the protocol connections for the node, and the delays that are used to
simulate real-life computation times. This information is stored in a structure—
node_info. Each node must also store information on the communication paths
such as their unique identifier, the identifier assigned to them by the Armstrong
operating system, and two link-lists. The first link-list contains the complete set
of input protocols to this node while the second link-list maintains the details of
all of the output protocols from this node.

It has been assumed in this implementation that a station-computer controls all
tracks to the west and south of itself. It may be noted that, since the track
network is rectangular, some station-computers may not control any track at all.
For each track that it controls, each node maintains two lists. The first list
contains the current reservation requests for that track. This list is processed in
every processing cycle and then cleared. The second list stores a single entry
corresponding to the train, if any, that currently occupies the track.

Finally, two structures are used by the node for communications. The first
structure corresponds to the message between any two nodes. ARMSTRONG
requires every message to extend to a finite standard length regardless of the type
of message. Since more than one type of message is utilized in the simulation,
the structure is necessarily a superset of all of the messages. Conceivably, a
message between two nodes may contain a few blank fields depending on the
type of the message being propagated. The second structure is utilized by the
output buffer for each node. Since non-blocking message communication
primitives are utilized, it is possible for message transmissions to fail
occasionally. Under these circumstances, the message must be stored in the
output buffer to attempt retransmission at a later time. The buffer holds the
message until transmission is successful at which point its copy is removed from
the output buffer.

The implementation also uses a structure to store the parameters of a train-
computer. Given that a train exists only through its parameters that are passed
between the ARMSTRONG nodes, every node maintains an array of the trains
currently located at the node.

The host processor, outside of the ARMSTRONG processor, initializes the
simulation and loads a copy of the executable program on each of the
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corresponding ARMSTRONG processors. In the “main” routine, a node first
reads-in its numerical identifier that is propagated to it by the host processor.
Each node then executes the function “initial” that reads its information from an
external input file. The function, initial, performs two actions. First, it establishes
the appropriate communication paths with the neighboring nodes. To achieve
this, it places a function call to the initialize_protocols subroutine. This
subroutine reads the identities of all of the neighboring nodes from the input file.
It then recalls the ARMSTRONG operating system assigned identifier for the
neighbor nodes and compares them with its own corresponding identifier. As per
assumption, where its identifier is numerically lower than that of the neighbor’s,
this node sends the path identifier to the neighbor node. Conversely, if its
identifier exceeds that of the neighbor’s, this node waits to receive the path
identifier from the neighbor node. This process ensures an unambiguous and
uniform mode of establishing the protocol connections. Second, the function
initial reads-in other relevant information with respect to the node such as the
neighbor tracks and the trains, if any, that originate at this node. The pseudo-
code is shown in Figure 2.5.

Following the completion of the initialization routine, each node then initiates
a cyclic execution process that terminates at the end of simulation. The cycle,
embedded in a while loop, consists of five functions namely, read_inputs,
train_function, track_function, clear_buffers, and traveling_trains. They are
detailed as follows.

1. Function read_inputs: This function (Figure 2.6) continually checks every
input protocol for any incoming messages. It utilizes a for loop to scan through
the link list of input protocols. The first step in the loop is to check for, via an
ipc_select command, any outstanding data on the protocol. If the result is
positive, the message is read through an ipc_recv command. Following execution
of the ipc_recv command, the message is sorted with a switch with regard to its
message type. Three types of messages are recognized: (i) a track request from a
train at another node, (ii) a confirmation or denial of a request sent from a train
at this node, and (iii) a train moving into this node. Based on the nature of the
message, sub-functions are invoked to perform appropriate tasks of message
processing. The sub-functions are described as follows.

(i) add_request: This sub-function adds a request generated by a train outside
this node to the appropriate track’s reservation list. It achieves this by using a for
loop to scan through the tracks that are controlled by this node and adds the new
request at the end of the reservation link-list.

(ii) receive_confirmation: This sub-function updates the confirmation status for
a train currently at this node, upon receiving a response from another node. A while
loop is utilized to scan through the train link-list and change the appropriate
confirmation field.

(iii) new_train: This sub-function adds a train’s parameters to the link-list of
trains currently at this node. A while loop is first utilized to determine the end of
the train link-list, and then the new train’s parameters are attached at this point.
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When all new messages have been are read-in and processed appropriately, the
node waits for a length of time equal to comm_delay. This refers to the
communication input protocol again for new messages. If the result is positive,
they are sorted by the message type, as discussed earlier.

2. Function train_function: This function (Figure 2.7) simulates the actions of
the trains currently located at this node. Utilizing a while loop to scan through
the train link-list, each train’s confirmation status is reviewed. There are three
possible values for the confirmation status, and, corresponding to each of the
values, different sub-functions are executed as described subsequently.

(i) The value of confirmation is −1. This implies that the train’s second choice
has been rejected most recently. Thus, the train needs to recompute its first
choice and resubmit it. The sub-function compute_1 computes a train’s first
choice track request as described earlier. After the track request is computed, it
calls the sub-function send_request to resubmit the request. If the train has
requested a track to the west or south of the node, evidently the current node
controls the track and the request is filed in the node. Where the train requests a
track to the north or east of the node, the request is propagated to the node that
controls the requested track. The sub-function send_request calls the function
send_message_to_buffer once send_request is ready to send a request to another
node. Send_message_to_buffer places the track request on the output buffer link-
list.

(ii) The value of confirmation is 1. In this case the train’s first choice has been
denied. Thus, it must compute the second choice and resubmit the request. The
sub-function compute_2 calculates a train’s second choice and places on the

main ()  {    initial(train_array); initialize protocol connections, node
information,                         & originating trains    k_get_uptime
(&starttime); initialize starting time of simulation    simulating =
1;    while (simulating == 1) {       if (counter == end_value) stop
simulation;       train_function(train_array); compute train requests for
this track       read_inputs;           scan input protocols for incoming
messages       track_function;     process reservations for all tracks
controlled by node       clear_buffers;      send output messages to
other nodes       traveling_trains; verify whether trains have arrived at
the node    } }initial(train_array) {   open external input
file;   initialize_protocols;   read group, node identifier, track
coordinates and update structure node_info   read track direction,
identifier, length, nodes connected to track for every                track
and update sub-structure node_info.tracks_connect [ti].   if (track
direction == 3 or 4) update sub-structure
node_info.tracks_control.   read train destination, speed for any train
originating at node & update                          the link-list train_array. }

FIGURE 2.5

The Main and Initial Routines
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appropriate track’s reservation list by executing the sub-function send_request.
Conceivably, a train may not possess a second choice where the possibility of
movement is in a single direction. In such cases the second choice track request
is not computed and the train continues to periodically submit its request for the
first choice of track.

(iii) The value of confirmation is 2. This implies that the train has been
confirmed for its track request. The sub-function move is executed to propagate
the train’s parameters to the subsequent node via the send_message_to_buffer
function.

3. Function track_function: This function processes the track reservations that
are included on the reservation list. First, a check is made to ascertain whether

read_inputs() {    while (searching for each input protocol)
{      check for any incoming message with ipc_select;      if yes, read
the message with ipc_receive;      switch (message_type)
{        message_type = 1: this is a request for a track controlled by this
node                          call add_request to include request in the
reservation list        message_type = 2: this is confirmation/denial of
a request sent by train at this node                          call receive
confirmation to inform the appropriate train        message_type = 3:
a new train moved into this node                          call new_train to
put the train on traveling_trains link-list

FIGURE 2.6

The Read_Inputs Routine

train_function(train_array) {    initialize train_ptr to the dummy
entry of train link-list, train_array;    initialize prev_ptr to the pointer
prior to train_ptr;    while (searching through entries, if any, in the train
link-list) {       if (train has not completed its travel) {           call
check_if_done to verify whether train has reached destination;           if
(train not located at this node) {            switch (train’s confirmation
status) {               confirmation = -1: train is ready to compute its first
choice                                  call compute_1                                  call
send_request to submit request for track               confirmation = 1:
train is ready to compute its second choice                                  call
compute_2                                  call send_request to submit
request for track               confirmation = 2: train has received
confirmation for a track                                  call move to simulate
propagation of train             }           }      }      advance train_ptr and
prev_ptr to subsequent items in the link-list;    } }

FIGURE 2.7

The Train-Function Routine
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the track in question is currently occupied by another train. If the result is
positive, the track is declared unavailable until the train completes its movement.
When the track becomes available, the lowest time of request among the requests
in the reservation list is determined and the corresponding train is confirmed. All
other requests are denied. Then, the corresponding train s in the reservation list
are informed of their confirmation status. A while loop is utilized to scan through
the train link-list. Where the train is located at this node, the train link-list is
updated. If the train is located at a different node, an appropriate confirmation/
denial message is propagated to the corresponding node. Given that the output
protocol of the return path is included with the track request message, the
function uses this information to send the confirmation/denial message back to
the requester. The sub-function send_message_to_buffer is utilized to send the
message.
4. Function clear_buffers: This function (Figure 2.8) is responsible for flushing
any outstanding, unprocessed messages in the output buffer. A while loop is used
to scan each output protocol in the output protocol link-list. Where a message is
outstanding at the output buffer, the function attempts to propagate it via the
ipc_send command. When the message is sent successfully, as indicated by a
return code value of zero, the message is removed from the output buffer. Where
the propagation fails, it is retained for future attempts to propagate it. 
5. Function traveling_trains: When a train is allocated a track of its choice, it
executes a move towards the subsequent station. However, the propagation of the
train parameters to the subsequent node must be delayed by an amount that is
proportional to the actual length of the track divided by the speed of the train and
a scaling factor. This function (Figure 2.9) achieves the desired effect in the

clear-buffer () { while (processing every entry in the output buffer) {
send message on appropriate output protocol; } }

FIGURE 2.8

The Clear_Buffer Routine

traveling_trains () { if a train’s parameters are received, record the
real time of the processor’s clock; read the current real time of

processor’s clock; subtract the real time of the train’s arrival from the
current time to obtain the time for which the train has already been

delayed; compute the scaled time for which the train must be
delayed based on the length of track and train speed; if (the train’s
actual delay exceeds the required value) { search for the end of the
link-list for trains at this node; append this train to the end of the list; }}

FIGURE 2.9

The Traveling_Trains Routine
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following manner. The train’s parameters, propagated to the subsequent node in
the form of a message, remain unprocessed, i.e., the train’s subsequent routing is
not evaluated, until the train has actually waited at the node for the scaled delay
amount. The function first reads the value (say � 1) of the ARMSTRONG node’s
timer when the train parameters arrive. At a later time, when the timer’s current
value, � 2, exceeds � 1 by the scaled delay amount, the train’s existence is recorded
in the node and it is permitted to recompute its forward route.

DARYN is written in C and is approximately 1500 lines in length. The
program is compiled on a SUN 3/60 workstation under the compiler optimization
directive “-O4” (level 4) and executed on the ARMSTRONG system.

2.4
Performance of DARYN

This section details a number of experiments implemented on the ARMSTRONG
system to evaluate the performance of the DARYN algorithm. A total of four
railway networks, consisting of 4, 6, 9, and 12 stations, modeled as
ARMSTRONG nodes, respectively, are used in the experiments. The simulation
of larger networks is difficult because the ARMSTRONG hardware limits the
number of protocols and open file pointers associated with any node at any time
instant. The four networks are shown in Figure 2.10. This section also notes the
limitations of DARYN. 

To evaluate the performance, three measures are proposed. First, the CPU time
required for the simulation is compared against that of the traditional centralized
approach and speedup factors are computed by varying the size of the network,
number of trains, and speed of trains. The speedup factor is defined as the ratio
of the CPU time necessary for completion of distributed simulation to that for a
corresponding uniprocessor simulation. Given that DARYN is asynchronous, the
detection of termination is complex. As an approximation, a special train with a
very long travel path is included in the system. Its speed is deliberately chosen to
ensure that all other trains reach their destinations prior to itself. Thus, the
overall CPU time for completion is given by the time it takes for the special train
to complete its journey. The special train originates at a processor and reaches its
destination at a different ARMSTRONG node. At the originating node, the value
of the node timer is included as a parameter —start_time, of the train. Although
the nodes are asynchronous, their clock-timers are all reset to zero at
initialization and, presumably, the difference in their frequencies is very small.
The difference between the start.time and the value of the timer of the destination
node when the special train arrives there constitutes the required CPU time.

The rationale for the second measure is expressed as follows. If the DARYN
algorithm were to exhibit performance scalability, the CPU time required by a
train traveling a fixed distance at a fixed speed should not be significantly
affected by either the number of trains in the entire system or the size of the network
because any increase in the network size and number of trains must be
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accompanied by a proportionate increase in the number of computational
engines. The CPU time will be affected somewhat where the number of trains,

FIGURE 2.10

Four Railway Networks to Evaluate DARYN's Performance
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but not stations, is increased because of the fact that the increased number of
train-computers will interact with a fixed number of station-computers. This
measure for the distributed simulation is contrasted against that for a
corresponding uniprocessor implementation.

The third measure consists in the measurement of the total “idle time,” i.e., the
cumulative time for which a train remains stationary at all of the nodes that it
encounters while it interacts with the station-computers to receive track
allocation. The idle time also includes the times it requires to perform the
unsuccessful optimal route computations. This measure for the distributed
simulation case is also contrasted against that for a corresponding uniprocessor
implementation.

A significant communication delay is required for periodically reading the
position and speed of every train and the status of every track by the centralized
dispatcher in the traditional approach. This is modeled in the uniprocessor
implementation through a delay of 0.7 millisecond.

Recall that, in order to address the timing problem in the distributed
simulation, the actual travel time was modeled as a delay. In both the distributed
and uniprocessor simulations, these delays slowed down the simulation in a
consistent manner. While this implied consistency, the CPU times, so obtained,
reflect the traveling time in addition to the decision times. That is, the
measurements no longer reflect the decision times only. Since the primary goal of
this research is to measure the performance of distributed decision-making in
DARYN, the following was performed. The CPU times for both simulations
were obtained by varying the scaled traveling delay and then were plotted. For
both cases, the graphs were observed to be linear implying that the existence of
the traveling delay linearly slowed down both simulations proportionately. From
these graphs, the CPU times for the case of traveling delays equal to zero is
obtained through extrapolation. For the uniprocessor case, the extrapolated data
is observed to be consistent with that from another implementation wherein the
traveling delay is not modeled at all.

Furthermore, the uniprocessor implementation is executed on a Sparc 1
+workstation that is observed to be approximately 8.56 times faster than each
processor of the ARMSTRONG [13] system. Thus, all uniprocessor raw data are
scaled up by a factor of 8.56 and then compared against the data from the
distributed simulation.

First, a railway network consisting of four nodes and four tracks is considered.
The variable, number of trains, is assigned values ranging from 2 through 11 and
the corresponding CPU execution times are recorded. In the second, third, and
fourth cases, networks consisting of 6 stations and 7 tracks, 9 stations and 10
tracks, and 12 stations and 17 tracks are considered respectively. For each of
these cases, the variable, the number of trains, is assigned values in the ranges {3,
24}, {4, 36}, and {6, 48} respectively. Also, for all of the experiments, the origin
and destination of the trains are chosen to reflect uniformity of distribution. The
speed of the trains are assigned at random. The nature of variation of the CPU
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execution times is observed to be consistent across all the cases. The graphs in
Figure 2.11(A) present the extrapolated CPU times required for distributed
simulation as a function of the number of trains for all of the four networks. The
graphs in Figure 2.11(B) describe similar data for the traditional approach. It
may be observed that the slopes of the graphs for DARYN are much smaller than
those of the traditional approach. The CPU times for Figure 2.11(B) refer to the
scaled data with respect to the Sparc 1+workstation, i.e., they reflect the fact that
the original data are multiplied by 8.56 before comparing with the corresponding
numbers in Figure 2.11(A).

The graph in Figure 2.12 presents the speedup factor of the distributed
approach over the traditional approach for varying number of trains and for each
of the four networks. The speedup factor is computed as the ratio of the CPU
time for uniprocessor simulation to that for distributed simulation. A significant
speedup factor of 43 is observed for the case of 48 trains and 12 stations. This
speedup, obtained through using only 12 processors, does not violate any of the
principles of thermodynamics. It merely reflects the fact that, as the problem size
increases, the uniprocessor implementation is increasingly slowed down due to
the increasingly larger communication delays.

The graphs in Figure 2.13 present the second measure of performance. The
CPU times required by a single train to travel a fixed distance at a fixed speed
are noted under different conditions, i.e., wherein the number of trains and the
network size are both varied. While Figure 2.13(A) refers to the distributed
simulation, Figure 2.13(B) refers to the uniprocessor approach. It may be
observed that while the slopes in Figure 2.13(B) are significantly large, those in
Figure 2.13(A) are, relatively, very small implying the advantage of distributed
decision-making over centralized decision  making. Furthermore, as the railway
network grows in size, as would be expected over time, the performance
degradation is relatively minor implying DARYN’s growth potential.

Finally, the cumulative idle time of the special train is plotted for varying
number of trains and for all of the four networks. The idle time is determined as
the time for which the train is idle at a station while it computes the optimal path,
makes decisions, and interacts with the station-computers to receive permission
to use its choice track. The idle time is also a measure of the efficiency of
DARYN for it reflects a wastage of valuable resources—trains. The graphs in
Figure 2.14(A) refer to the distributed algorithm and those in Figure 2.14(B)
refer to the traditional approach. Although the graphs do not reveal an easily
observable pattern, it is obvious that an idle time in Figure 2.14(A) is
significantly less than the corresponding value in Figure 2.14(B).

2.4.1
Limitations of DARYN

The present implementation of DARYN is limited in that it does not assign
priorities to the trains. The station-computers discriminate the trains’ requests
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based solely on the arrival times of the requests and not on the importance of the
trains. In the real-world, super-fast trains or those with critical or perishable

FIGURE 2.11

Graphs of CPU times vs. Number of Trains. (A) DARYN Algorithm (B) Traditional
Approach
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cargo may require higher precedence over those carrying non-perishable cargo.
The limitation is easily addressed by introducing the notion of priorities in
DARYN. DARYN also lacks in-line control for managing crossings and
emergencies. To address this problem, additional input signals may be provided
to DARYN at the crossings or other critical points in the tracks and emergency
information may be issued at the stations. The   mechanism of asserting signals
at the crossings may be analogous to those used at the stations. A significant
limitation of DARYN is that it fails to include the notions of congestion and
bottleneck ahead of its current position, which in turn, may affect its
performance.

FIGURE 2.12

Graph of Speedup factor vs. Number of Trains for All Four Railway Networks
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FIGURE 2.13

Graph of CPU times for a Train vs. Number of Trains for All Four Railway
Networks (A) DARYN Algorithm (B) Traditional Approach
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FIGURE 2.14

Graph of Cumulative Idle times vs. Number of Trains for All Four Railway
Networks (A) DARYN Algorithm (B) Traditional Approach
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Chapter 3
RYNSORD: A Novel, Decentralized

Algorithm for Railway Networks with Soft
Reservation

3.1
Introduction

Railway networks are ubiquitous in today’s world and they continue to play a
dominant role in transporting freight and people since 1825 when the first
common carrier railroad was introduced. While countries with larger
geographies such as the U.S., Russia, China, India, and the EEC benefit most
from extensive and cost-effective railway networks, in many smaller but densely
populated countries with large financial resources such as Japan, railway
networks contribute significantly to the well-being of the national economy by
efficiently moving workers and goods. As of 1987, the U.S. [14] maintains a total
of 249,412 miles of railway tracks. It supports a total of 1,249,075,534
locomotive unit miles in one year to carry freight utilizing 5,989,522 loaded cars.
For passenger services, the total unit miles stands at 3,782,470 while carrying the
gross ton-miles of 1,357,097. In Japan, the East Japan Railway Company [15]
carries a total of 16 million passengers each day on 12,000 scheduled trains and
7,500 kms of railway track. For efficiency, modularity, and safety in general, the
tracks are divided into individual units, each of which may be controlled
exclusively by the system. Thus, a train in propagating from location A to
another location B may travel over several tracks. Given that two or more trains
may compete, at some time instant, for the same track and that only one train
may occupy a track at any time, the principal goal of the railway network
management system is to allocate tracks to trains such that (i) collisions are
avoided and (ii) the resources are utilized optimally.

A detailed analysis of the existing literature in centralized scheduling for railway
networks occurs earlier in Chapter 2. In addition, the ASTREE [16] railway
traffic management system maintains a distributed database of up-to-date,
accurate, and comprehensive representation of route layout and train progress; it
uses the information in the database to either automatically make decisions or
assist human operators with decisions, relative to route settings and train control.
The settings are then down loaded to the wayside equipment and locomotives.
Hill, Yu, and Dunn [17] report their effort in modeling electromagnetic



interference in railway networks. Ayers [18] presents the use of error correcting
codes to achieve reliable radio-link communication in the Advanced Train
Control System. Sheikh, Coll, Ayers, and Bailey [19] present the issue of signal
fading in mobile communications. While Hill [20] presents coding issues to
facilitate the communication of train positions efficiently, Shayan, Tho, and
Bhargava [21] report of the use of Reed-Solomon Codec to improve the
Advanced Train Control System. The Association of American Railroads [22]
notes that distributed algorithms can enhance the efficacy of train scheduling and
that several socio-economic factors including ownership, track capacity, speed
capability, grades, curvatures, clearances, crew districts, and operating
agreements, may influence the choice of alternate paths. As noted earlier in
Chapter 2, DARYN constitutes a novel, distributed algorithm but is limited in
that it employs unit lookahead. That is, at any time instant, it reserves only one
track beyond its current position. Consequently, it is unable to utilize congestion
information beyond its current position to plan its future route, and this may lead
to inefficiency.

This chapter presents RYNSORD that addresses key limitations of the
traditional approaches described earlier and marks a significant advancement.
RYNSORD studies the concept of lookahead, i.e., reserving N tracks ahead of its
current position, to improve the utilization of the resources (tracks) and mitigate
congestion. It also introduces a new concept, soft reservation, that is
characterized by greater flexibility in reservation as opposed to the conventional,
hard reservation technique wherein a reservation request for a specific time
instant is either approved or disapproved.

The remainder of this chapter is organized as follows. Section 3.2 presents a
detailed description of the RYNSORD approach while Section 3.3 describes the
modeling of RYNSORD on an accurate and realistic testbed constituted by a
network of 70 SUN sparc 10 workstations, configured as a loosely-coupled
parallel processor. Section 3.4 presents key implementation issues. Section 3.5
first reports the performance data from executing a simulation of RYNSORD for
realistic railway networks and under stochastic input traffic stimulus, and then
presents a detailed performance analysis.

3.2
The RYNSORD Approach

The RYNSORD approach for railway networks is novel and defined by the
following characteristics. First, it is decentralized in that the overall task of
routing all trains through the network is shared by all entities in the system—
trains and station nodes. The routing is dynamic, i.e., the choice of the successive
tracks as a train proceeds towards its final destination, takes into account the
actual demand of the tracks by other trains in the system. What makes
RYNSORD unique among all disciplines including modern communications
networks is that every mobile agent, the train, possesses intelligence, information
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gathering facilities, and autonomy to solely and completely determine its own
routing. Trains ride on tracks and safety concerns demand that a train first gain
an exclusive reservation guarantee from the owner node of a track prior to
propagating on it. Conceivably, a train can insist on reserving every track from
origin to destination along its chosen route before starting its journey. Such an
approach may lock the train to faraway tracks too soon based on old information
and thereby fail to take advantage of better route choices which may become
available as time progresses. On the contrary, the RYNSORD approach utilizes a
lookahead N wherein every train requests reservations at intervals of N tracks
and a specific reservation entails the acquisition of approvals of N subsequent
tracks along its route towards its destination, before it resumes its travel. Within
the reservation process for N subsequent tracks, RYNSORD proposes a novel
concept: “soft reservation.” In the traditional, “hard reservation,” a train issues N
consecutive requests for N tracks at specific time instances. The owner stations
for the corresponding tracks will either approve or disapprove the reservation,
depending on whether the respective tracks are free at the requested time
instances. Thus, when a train requests a track from time t1 to t2 and even if the
station notes that the track is occupied up to time t1+1 but free thereafter, it will still
refuse approval. Then the train will have to try an alternate track. Assume that
the alternate track is a worse solution than if the train had waited idly for 1 time
unit and then used the original track. If the train had been aware of the
knowledge possessed by the station, it could have idled 1 time unit and opted for
the better solution. Thus, with regard to reservation, the nodes’ behaviors are
binary and rigid. In contrast, RYNSORD proposes soft reservation wherein a
train specifies monotonically increasing time instants to the successive station
nodes corresponding to the N subsequent tracks. In turn, a node grants approval
at either the requested time instant or the earliest time instant beyond the
requested time instants when the track is available. These characteristics are
expected to endow RYNSORD with efficiency, robustness, and reduced
vulnerability to catastrophic system-wide failures.

In RYNSORD, a railway network is assumed to consist of a set of railroad
stations, also termed nodes, that are connected by lengths of railroad tracks.
Every station is equipped with a computing engine and communications
facilities. For every pair of stations that are connected by a track, there exists a
bidirectional communication link between the stations. Every track is
bidirectional. Furthermore, every train is equipped with an on-board computing
engine and facilities to initiate communication with the computing engine of the
corresponding node when it is located at a station. RYNSORD does not require
train-to-train communication or train-to-station communication while the train is
moving. Every track segment is characterized by its length and the station node
that owns it exclusively. A track between nodes X and Y is owned either by X or
Y, and the owner is solely responsible for negotiating the use of the track with
the competing trains. This characteristic is crucial to guaranteeing safety and
collision avoidance in RYNSORD. Consider Figure 3.1 that presents a simple
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railway network with station nodes A through F that are connected through a
partially connected network of track segments. The owners and lengths of the
respective tracks are shown on Figure 3.1. 

Trains can be asserted into RYNSORD asynchronously, i.e., at any arbitrary
time, and at any station. Every train is characterized by its originating station,
destination station, and its maximum speed. In general, the exact route, i.e., the
sequence of tracks from origin to final destination, and the consequent arrival
time, is determined dynamically by RYNSORD. However, where specific
intermediate stops are mandated, the overall path is organized into multiple sets
of smaller paths and RYNSORD is applied to each set successively. Thus, if the
desired path is A� C� E, it is equivalent to first traveling A� C, under
RYNSORD, and then from C� E, also under RYNSORD. Excessive use of
intermediate stops can lead to poor performance since RYNSORD’s strength lies
in the dynamic routing of trains to maximize efficiency, resources allocation, and
avoid congestion.

As indicated earlier, a key concept in RYNSORD is the notion of lookahead
which is defined as the number of track segments that a train negotiates at
reservation time for future use. Lookahead reflects how far into the future a train
attempts to reserve resources; these include the subsequent track segments that
the train may need to reach its destination, starting with the immediate, next track
segment.

Upon entering the RYNSORD system, every train computer first determines
the shortest path between its origin and destination. This is termed the “primary
path” and is based on the mileage between the stations. The determination of the
primary path does not take congestion into account. A “secondary path” is then
determined whose component tracks are mutually exclusive relative to those of
the primary path, with one exception. In a relatively few scenarios, the primary

FIGURE 3.1

An Example Railway Network in RYNSORD
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and secondary paths may share one (or more) common track segment if it is the
only segment that connects one part to another part of the network. For instance,
in Figure 3.1, the E� F link is a necessary component of any path originating or
ending at station F and will therefore occur in both the primary and secondary
paths.

Next, a train extracts the stations corresponding to the first N tracks
(lookahead=N) from both the primary and secondary paths, synthesizes
reservation request packets, and initiates them. A reservation request packet
consists of a list of successive stations and the expected arrival times at each of
the stations. The arrival times are calculated based on the current time, the speed
of the train, lengths of the track segments adjoining the stations, and the
assumption that trains do not wait at the intermediate stations. That is, the
departure time from station X is identical to the arrival time at station X. Of
course, a train may be subject to waiting at the originating station and other
stations where it initiates reservation requests for the subsequent N tracks. The
arrival and departure times determine the time interval for which a track
reservation is desired. Thus, for a track segment X� Y, the train must reserve the
track for the interval— (departure time from X, arrival time at Y).

The train propagates the reservation packet to the first station in the list. If this
station is the owner of the first track segment, it will negotiate for reservation for
this track. Assume that the train requests reservation for the interval of (t1, t2). If
the station determines that the track is not occupied for this interval, reservation
is granted. If, on the contrary, the requested interval is already occupied by
another train, clearly reservation cannot be granted for the requested interval.
The station then computes the earliest time interval beyond t2 and reserves the
track for this new interval, say (t3, t4). The length of the interval is computed
using the length of the track and the train speed. It overwrites the first interval
entry in the reservation packet and the subsequent intervals for the corresponding
tracks are also modified. If the first station is not the owner of the first track
segment, the reservation packet is forwarded to the second station which must be
the owner of the first track. Following the completion of reservation for the first
track segment, the reservation packet is sent to the subsequent station that owns
the subsequent track segment. A reservation process, similar to the one described
earlier, is initiated, culminating in a reservation time interval for the second track
segment. This process continues until reservation intervals are obtained for all N
track segments. The modified reservation packet is then returned to the train,
located at the station node from where it had initiated the reservation process.
This process is executed simultaneously for both the primary and secondary
paths.

When a train receives responses to both of its reservation requests along the
primary and secondary paths, it may not select as its best choice the route (say
R1) that yields the smallest value of time to reach the station at the end of N
subsequent tracks. The reason is that although the primary and secondary paths
both lead to the ultimate destination, reaching the end of the N tracks along route
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R1 earlier does not automatically guarantee that the train will reach its final
destination faster. Therefore, for each of the primary and secondary paths, the train
adds the arrival time at the end of the N tracks to the time of travel from the end
of the N tracks to the final destination along the shortest path. Assume that these
times are represented through TT1 and TT2 along the primary and secondary
paths. The train selects the route that yields the smaller of the TT1 and TT2

values. Where TT1=TT2, the train arbitrarily selects the primary path. Then, the
train generates a reservation removal request and propagates it to the stations
along the route that is not selected to free the corresponding track reservations. 

As a train proceeds from one station to the subsequent station along the N
tracks, it is guaranteed use of the corresponding tracks in accordance with the
reservation times approved earlier. However, should a train arrive at a station
earlier that its expected arrival time and if the track is available for a sufficiently
long time interval, the station may permit the train to proceed immediately. The
train, in turn, withdraws the original reservation time interval for the
corresponding track segment and modifies its time interval of use of the track.
The reason a train, upon arrival at a station node, may find a track available
sooner than its requested time interval is because tracks are often freed through
reservation removal requests when a train that originally requested reservation
decides to select an alternate route. Thus, the previously approved reservation
time interval for a track is an upper bound on the travel time for the train. In the
event that there are multiple trains competing for a track freed by a train, the
train that has been waiting the longest at the station is given the highest
preference.

To understand the operation of RYNSORD, consider the railway network in
Figures 3.2a and 3.2b that is identical to that in Figure 3.1 except that node F is
missing. Assume that two trains, Ta and Tb, are asserted into the system at the
same time, t=0, at nodes A and B respectively. Both Ta and Tb are destined for
station E. Figure 3.2a describes the computations of the primary and secondary
paths for Ta, from the origin A to the destination E. Figure 3.2b describes the
computations for the primary and secondary paths for Tb, from origin B to
destination E. In both Figures 3.2a and 3.2b, the solid and dotted lines represent
the primary and secondary paths respectively. Assume that the lookahead N=2.

Assuming the value of lookahead N=2, trains Ta and Tb extract the stations
relative to N=2 tracks from both primary and secondary paths. For this example,
assume that the primary path for Tb is selected based on the number of tracks, not
the mileage from the source to the destination. The stations for the primary and
secondary paths are: 

Train Ta: Primary path station list: A->C->E Secondary path station
list: A->B->DTrain Tb: Primary path station list: B->D->E Secondary

path station list: B->A->C
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Assuming the speeds of the trains at 1 mile per minute, the reservation request
packets generated and initiated by Ta and Tb are:

Train Ta: Primary path: arrival at A at time 0 departure from A at
time 0 arrival at C at time 2 departure from C at time 2 arrival at E at

time 4 [no departure since E is the final destination] Secondary
path: arrival at A at time 0 departure from A at time 0 arrival at B at
time 1 departure from B at time 1 arrival at D at time 3 [no departure
since D is the last station in the station list]Train Tb: Primary path:

arrival at B at time 0 departure from B at time 0 arrival at D at time 2
departure from D at time 2 arrival at E at time 8 [no departure since

E is the final destination] Secondary path: arrival at B at time 0
departure from B at time 0 arrival at A at time 1 departure from A at
time 1 arrival at C at time 3 [no departure since D is the last station

in the station list]

Figures 3.3a through 3.3d describe the operation of RYNSORD relative to the
reservation packet propagation by the trains and their processing by the respective
stations. In Figure 3.3a, Ra1 and Ra2 express the reservation packets propagated
by Ta along the primary and secondary paths. Rb1 and Rb2 represent the
corresponding packets for Tb. In Figure 3.3a, Ra2 requests station A to reserve
the track A� B for time (0,1). The request is approved successfully since the
track A� B is free for the time interval (0,1). Since station A does not own track
A� C, Ra1 cannot utilize station A to accomplish its goal. Neither Rb1 nor Rb2
are able to utilize station B since the latter neither owns track B� D nor B� A.

Figure 3.3b represents the propagation of the reservation packets to the
subsequent stations. Here, Ra1 and Rb1 successfully reserve the tracks A� C and
B� D for time intervals (0,1) and (0,1) respectively. Ra2 fails to accomplish
anything since B is not the owner of track B� D. When Rb2 attempts to reserve

FIGURE 3.2

Computation of Primary and Secondary Paths in RYNSORD (a) for Train Ta, (b)
for Train Tb
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track B� A for the time interval (0,1), it fails since train Ta has already reserved
that interval. Therefore, station A reserves the next available time interval (1,2)
for train Tb. Train Tb updates its reservation packet for the secondary path as
shown through the compact representation: [B@0/1][A@2/X][C@X/X], which
implies that train Tb waits at station B from time 0 to 1, then proceeds to station
A at time 2, and then departs from A at time 2 to arrive at station C at time 4.
Train Tb is restricted from reserving tracks beyond station C by the lookahead
value of 2 and this is reflected by the subfield “[C@4/X]” where X implies
unknown. Each subfield of the compact reservation packet represents [station
name@arrival time/departure time (X implies unknown)].

Figure 3.3c represents the subsequent propagation of the reservation packets.
Ra1 and Rb1 successfully reserve the tracks C� E and D� E for time intervals
(2,4) and (2,8), respectively. Ra2 fails to reserve the time interval (1,3) on track
B� D as train Tb has already reserved the interval (0,2). Train Tb is allowed
reservation for the time interval (2,4) and its compact reservation representation
is [A@0/0][B@1/2][D@4/X]. Rb2 succeeds in reserving track A� C for the time
interval (2,4).

All of the reservation packets Ra1 through Rb2 have successfully reserved the
last track under lookahead=2, and are returned to the respective trains Ta and Tb
at stations A and B respectively. At node A, train Ta notes that the total time to
reach the destination E through the primary path is 4. The secondary path
requires 4 time units to reach D and the extra travel time to destination E will
demand at least 6 time units, implying a total travel time of 4+6=10 time units.
Clearly, train Ta selects the primary path, i.e., A� C� E, as the best choice and
then propagates a reservation removal request to the stations contained in Ra2.
For train Tb, the primary path requires 8 time units to reach the destination E. The
secondary path requires 4 time units to reach C and the extra travel time to
destination E will demand at least 2 time units, implying a total travel time of 4
+2=6 time units. Therefore, train Tb selects the secondary path, i.e., B� A� C
and propagates a reservation removal request to free reservations that it had
earlier acquired along the primary path. 

Figure 3.3d represents RYNSORD when the trains Ta and Tb have started to
travel and the reservation removal requests have been processed. It may be noted
that following the removal of the reservation for train Ta on track A� B,
conceivably train Tb may be permitted to travel earlier than its reserved time
interval of (1,2).

3.3
Modeling RYNSORD on an Accurate, Realistic, Parallel

Processing Testbed

The key contribution of RYNSORD is in distributing the overall task of routing
all trains through the network among all the entities in the system: trains and
station nodes. Thus, in reality, for a given railway network with N trains and S
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stations, the total number of coordinating computing engines is (N+S). To
understand its performance and its dependence on different factors, RYNSORD
is first modeled and then simulated on a parallel processing testbed that is
constituted by a network of work-stations configured as a loosely-coupled
parallel processor. The simulation, coupled with the testbed, virtually resembles
a real implementation with one exception. To facilitate the simulation of a
realistic system, i.e., with a reasonable number of trains and while every station
node is represented by a workstation, the trains are modeled as tasks and
executed by the workstations underlying the stations. When a train is located at a
host station, its computations are performed by the underlying work-station and
its communications with other stations are also carried out through this station.
When a train travels from the current (say A) to another station (say B), the
corresponding train-task in the underlying workstation for A is encapsulated
through a message, propagated to B, and remanifested as a train-task in the
underlying work-station at B. Thus, trains move in the simulation at electronic
speeds instead of their physical speeds and a train’s computation and
communication subtasks are executed on the host station’s underlying
workstation.

FIGURE 3.3

Initiation and Progress of Reservation Processing
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While trains propagate at approximately 120 miles/hour, the underlying, fast,
computing engines of the testbed enable the simulation to execute many times
faster than reality. This, in turn, facilitates the rapid performance evaluation of
RYNSORD for different values of the parameters. The basic unit of time in the
simulation is termed a timestep and it defines the finest resolution of train
movements. Thus, while the smallest distance traveled by any train is limited to
that within the interval of one timestep, a train must also wait at a station for at
least 1 timestep if it has not received the necessary reservations to commence
travel. In the current implementation of RYNSORD, the timestep value is set to 1
minute of actual operation. The principal reasons for this choice are, (i) the
distance traveled by the fastest train, namely 2 miles, is significantly smaller than
the shortest track of length 50 miles, and (ii) relative to processing a reservation
for N tracks, all necessary computing and electronic communication between
stations and trains may be accomplished within 1 minute. While a train requires a
certain number of minutes to travel a single track, a message propagation and
computing function only requires 10 milliseconds. RYNSORD permits trains to
be introduced into the system asynchronously, i.e., at irregular intervals of time.
In addition, the trains themselves are autonomous and, therefore, their decisions
are executed asynchronous with respect to each other. Furthermore, the testbed
consists of heterogeneous workstations that may have differing clock speeds,
Therefore, for consistency and accuracy of the propagation of the trains in the
system, RYNSORD requires that the timestep values of every station node and
train be synchronized. This guarantees that if two trains, Ta and Tb, for example,
reach their destination, station E, at actual times 12:01 P.M. and 12:05 P.M., in
the corresponding RYNSORD model, Ta must arrive at E prior to Tb, despite
differing processor and communications link speeds. Synchronization is achieved
in RYNSORD through asynchronous, distributed, discrete event simulation
technique utilizing null messages [23] [24] and is not detailed here.

The previously stated assumption that all message communications and
decision processes relative to a reservation request must be completed within a
timestep, implies the following. If a train Ta, at a station A, initiates a reservation
packet at timestep t1 and propagates it to other appropriate stations (X, Y, Z,…),
the reservation packet must be processed at the appropriate stations and returned
to Ta at A prior to advancing the timestep value at A and every one of the
workstations underlying the stations (X, Y, Z,…) to timestep value t1+1. To
achieve this objective, RYNSORD employs a special, synchronizing node that is
connected to all station nodes. It monitors whether all necessary communications
and responses corresponding to all reservations that are launched out of the
stations, if any, are completed before permitting the station nodes to increment
their timestep values. The special, synchronizing node in RYNSORD is an
artifact of the parallel simulation on the testbed and has no counterpart in reality.
In an actual railway network, electronic communication and computations will
require approximately 10 to 100 milliseconds within which the fastest train will
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have traveled a mere 18 feet of track. Thus, for all practical purposes,
communications and computations are instantaneous.

The basic functionalities of every station node and the special, synchronizing
node are encapsulated in pseudocode as shown in Figures 3.4 and 3.5
respectively.
RYNSORD requires four types of communications messages: first to represent
“reservation packets” that are initiated and launched by trains, second to model
the encapsulation of and propagation of trains from one station to the subsequent
station, third to allow a train to negotiate with the owner station for earlier than
scheduled travel on the subsequent track if it arrives early at a station at the head
of the track, and fourth to allow a station to grant permission to a train to travel
on a track immediately. Reservation packets are assumed to propagate without
any delay, i.e., within the same timestep. Once received at a station, they are
processed immediately and within the same timestep. The final, approved
reservation packets are also returned to the originating trains within the same
timestep. At the originating station, initially a train lacks a reservation packet. It
creates and then launches the reservation packet. Upon receiving the approved
reservation packets, the train selects one of them as its best choice which
thereafter becomes its reservation packet. The reservation packet, however, is
only good for N subsequent tracks and the train will need to repeat the process
until it reaches its final destination. A reservation packet is characterized by five
fields, that are enumerated and explained as follows.

Reservation packet:

1. Station list: The complete station list, including the station i.d., arrival time,
and departure time, for each station.

2. Status: The status of the reservation: (i) RESERVING if the reservation
packet is traveling forward through its station list attempting to make
reservations, (ii) REMOVING if the reservation removal packet is
propagating forward while releasing the previously granted reservations, or
(iii) ACCEPTED if the reservation packet is returning to the originating
train.

While simulation is not finished { send out reservation requests
while not done { process incoming trains process incoming

reservation requests process incoming reservation responses if
received responses to all reservation requests send done to

synchronization node if received update from synchronization node
set done to true } update internal time}

FIGURE 3.4

Functionality of a Station Node in Pseudocode
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3. Train i.d.: The unique identification number for the train. The i.d.=
(originating station *100000)+time at which the train is introduced into the
system.

4. Train speed: The speed information is necessary when the station must
modify the reservation time for the train since the original request cannot be
satisfied. The speed information is used to compute the travel time over the
track.

5. Reservation i.d.: The unique identification number for the reservation.

Since a train may require a substantial amount of travel time from one station to
the subsequent station, the “train packet” is not assumed to propagate
instantaneously. In fact, every train packet is labeled with a timestamp value
which represents the timestep at which it is expected to arrive at the destination
station. Upon receiving a train packet, a station node stores it in a buffer until the
timestamp value of the packet equals the station’s own timestep value. Then the
train is assumed to have arrived at the station node and further processing is
initiated. A train packet consists of six fields that are enumerated and detailed
subsequently.

Train packet:

1. Timestamp: The expected arrival time of the train at the receiving station.
2. Train i.d.: The unique identification number for the train. The i.d.=

(originating station *100000)+time at which the train is introduced into the
system.

3. Origin: The originating station of the train.
4. Destination: The final destination station of the train.
5. Path: A sequential list of the tracks traveled by the train, for the purposes of

data collection and analysis.
6. Reservation: The reservation packet associated with this train.

Since a train may request cancellation of previously approved reservations for
tracks along a path when it decides to select an alternate path, conceivably, a
train upon arrival at a station may find its subsequent track unoccupied. For
efficient use of tracks, the train must be allowed to travel along the track, if

while simulation is not finished { while not done { if received done
from station node increment count if count is equal to number of
stations set done to true } send update to all stations update internal
time}

FIGURE 3.5

Functionality of the Special, Synchronizing Node
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possible. To achieve this objective, when a train arrives at a station before its
scheduled departure time from that node, it generates and propagates a “waiting
packet” to the station that owns the track. Upon receiving the waiting packet, the
corresponding owner station queues the train. At every timestep, the station
examines whether the track is free and notes the number of timesteps (say Q) for
which the track is unreserved. The station then selects from the queue a train, if
any, that may successfully complete the travel within Q timesteps and that has
been waiting the longest. The station sends a “permission packet” to the train,
allowing it to use the track immediately and removes the corresponding entry
from the queue. The waiting packet consists of four fields, as shown below and
the permission packet contains a single field.

Waiting packet:

1. Train i.d.: The unique identification number for the train. The i.d.=
(originating station *100000)+time at which the train is introduced into the
system.

2. Train speed: The train’s speed, which is needed to calculate the travel time
over the subsequent track.

3. Wait start time: The timestep at which the train arrives at the station,
earlier than its scheduled departure time, and is queued.

4. Location: The station, at the head or tail of a track, where a train is waiting.
This information is used by the station that owns the track to direct the
permission packet, if and when necessary.

Permission packet:

1. Train i.d.: The unique identification number for the train. The i.d.=
(originating station *100000)+time at which the train is introduced into the
system.

To facilitate understanding the distributed, dynamic routing of trains in
RYNSORD and the impact of different parameters on the performance of
RYNSORD, a visual display of the operation of RYNSORD is achieved through
the use of a graphical front end. The graphics supports the following
characteristics.

• Developing and editing a railway network
• Viewing a replay of a simulation run
• Monitoring and interacting with the simulation, at runtime
• Viewing statistical information related to the input traffic, results, and runtime

performance of a simulation run

The runtime display also shows the following parameters.
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• The location of train
• The cumulative number of reservations processed at each station
• The number of trains waiting at each station
• The cumulative number of reservations propagated along every segment,

categorized by type—Reserving, Removing, or Accepted
• The cumulative number of trains that have propagated over each track

Figure 3.6 presents a screen shot of the graphical interface that displays the 50
station railway network detailed in Figure 3.8. In Figure 3.6, each station is
labeled by the first three characters of its name and its unique identification
number. Stations and links are easily added or deleted directly through this
interface and the graphical program will reconfigure RYNSORD automatically
and correctly to execute the simulation accurately. Figure 3.7 presents a screen
shot of an actual simulation run. The trains are described through circles and are
located on top of the tracks on which they are traveling. They are identified by
their respective identifiers, origins, and destinations. During an actual simulation
run, a user may interactively communicate with any of the stations, retrieve any
desired data structure and information, and generate and introduce trains into the
system at any timestep and at any station.   

3.4
Implementation Issues

The RYNSORD model and simulator is written in C and designed to execute on
a heterogeneous network of Unix-based workstations, connected through a 10
Mbit/sec Ethernet and configured as a loosely-coupled parallel processor. The
workstation mix includes SUN sparc 1, sparc 2, and sparc 10 under SUN OS 4.1.
2 and Sun Solaris 5.3 operating systems and Intel 486DX2/66 and Pentium under
the freely available and copyrighted Linux operating system. Station nodes and
trains are modeled through processes and they communicate through TCP/IR
The code segment for every station including the trains located at it is
approximately 1700 lines of C code while the networking code is approximately
1000 lines of C code. The simulator is complied by the public domain GNU C
compiler, gcc, and executed at a low priority in the background, utilizing the
“nice” utility. It may be noted that the workstations may be executing primary
jobs for the users at the consoles. With 50 SUN sparc 10 workstations executing
concurrently, the average execution time of a single simulation experiment is
approximately 2 hours of wall clock time.

RYNSORD is an application program that is built on top of the transport
payer, TCP/IP. By definition, the layers in the ISO-OSI model starting with the
session and beyond are responsible for any required data conversion while
communicating between two or more machines. Since Intel 80×86 machines
employ Little Endian model while the SUN sparc machines utilize the Big
Endian model [25], the necessary conversion of data in the heterogeneous
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network of workstations is achieved through the use of n-to-h 1 (network to host
long integer), n-to-h s (network to host short integer), h-to-n 1 (host to network
long integer), and h-to-n s (host to network short integer) utilities [26].

In this chapter, a subset of the eastern United States railroad network is
selected, based on the existing primary railroads in the eastern United States, as
shown in the 1994 Rand McNally Commercial Atlas. A few additional tracks are
added to represent a few secondary railroad segments. Figure 3.8 presents the
representative railway network that consists of 50 major stations, 84 track
segments, and a total length of 14,469 miles of track. A model of the network in
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Figure 3.8 is developed in RYNSORD and the simulation is executed on a network
of 50 workstations with one station being executed on a workstation.

To obtain representative performance results, a number of experiments is
executed with input trains generated stochastically and asserted into RYNSORD.
Guidance relative to the choice of density of train traffic, i.e., the number of trains
introduced into the system per unit timestep, is obtained from the actual number
of freight trains per 365 day-year that utilize the tracks of the eastern United
States railroad. For the experiments in this chapter, three train traffic densities
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are selected: low, medium, and high. For low, medium, and high traffic
densities, the probabilities that a train is generated within a timestep, i.e., 1
minute of real time, are set at 0.075, 0.15, and 0.30 respectively. For every train
originating at a station, train speeds are generated stochastically and they range
from 60 mph to 100 mph. The final destination is  also generated stochastically
by assigning equal weight to every station, except the originating station, and
selecting a station at random. Geographic proximity plays no part in the selection
process. Since major stations, corresponding to major urban cities, are more
likely to encounter high traffic densities, a set of nine “high traffic” stations are
selected from Figure 3.8. They include Chicago, Detroit, St. Louis, Philadelphia,
New York, Washington, Pittsburgh, Columbus, and Cincinnati. For the stations
corresponding to these cities, the input train traffic densities are assumed to be
doubled. Also, during the process of selecting final destinations of trains, these
cities are assigned twice the weight of other stations.

The representative railway network is simulated in excess of 150 times, under
different scenarios and for different parameters. Every simulation is executed for
10,080 timesteps that corresponds to one week of real time operation. As
indicated earlier, while a typical simulation experiment executes for
approximately 2 hours of wall clock time, the longest running of the 50
workstations often executes for 7 hours. Input trains are introduced throughout
every simulation run at a constant and uniform rate that is set at the start of the
simulation. Table 3.1 presents the cumulative number of trains introduced into the
system and the estimated cumulative miles traveled by the trains for each of the
low, medium, and high input train densities. The estimate is based on the
assumption that every train actually travels along the shortest path from the
origin to destination which may be not be true in every case.

Table 3.1 Input Train Traffic Parameters

Input Traffic Density Cumulative Trains Introduced
in RYNSORD

Estimated Cumulative Distance
Traveled by all Trains (miles)

low 484 288,860

medium 869 497,658

high 1,772 1,033,123

3.5
Simulation Data and Performance Analysis

To understand the performance of RYNSORD, first the independent parameters
and key performance measures are identified and a number of simulation
experiments are executed on the realistic railway network (presented in
Figure 3.8). The independent parameters include (1) the number of trains
asserted into the system, (2) the density of trains, i.e., the frequency with which
the trains are input into the system, and (3) the lookahead utilized. To evaluate
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the role of soft reservations objectively, this chapter also implements a
competing distributed routing algorithm, referred to as approach B. Approach B

FIGURE 3.8

A Representative Railway Network: A 50 station subset of the eastern United States
Railroad Network
 

50 3. RYNSORD: A NOVEL, DECENTRALIZED ALGORITHM



is similar to RYNSORD in all respects except that it employs the traditional,
hard reservations policy. A train first sends out hard reservation requests for the
primary path. The stations, in sequential order, will try to reserve the requested
track at the desired timesteps. If successful, the train uses the approved tracks of
the primary path. Otherwise, if any of the tracks are busy, the reservation request
is denied and immediately returned to the train at the originating station. Under
these circumstances, the train then sends out a hard reservation request on the
secondary path. If this also fails, the train must wait a minimum of one timestep
before initiating a request again to the primary path. This process continues until
the train is able to acquire reservation and move forward. Conceivably, a train
may have to wait at a station prior to succeeding in acquiring reservation
approval. If the reservation request is successfully approved, the train moves
along the N consecutive tracks.

The key performance measures include (a) the travel time of trains, averaged
over all trains arriving at their destinations, (b) the percentage of trains reaching
their destinations, (c) the distribution of the number of hops (tracks) utilized by
the trains, (d) the average number of hops traveled by the trains as a function of
the lookahead, (e) the travel time of individual trains as functions of the times of
their assertion into the simulation, and (f) the track utilization. Furthermore, to
understand the importance of distributing the overall computation and
communication tasks among all entities, three additional performance measures
are defined. They include (g) the distribution of computations performed by the
trains, (h) the distribution of the numbers of reservations processed by the
stations, and (i) the maximum communication rate of the inter-station links.

Figure 3.9(a) presents a plot of the (actual travel time of a train minus its ideal
travel time), averaged over all trains, as a function of the lookahead size. The
ideal travel time of every train is used as a reference and it refers to the travel time
that a train would require if it was the only one in the entire system and could
proceed to its destination along the shortest path, unhindered by any other train.
Clearly, in the presence of other trains in the system, a specific train may not
succeed in acquiring reservation for and traveling on the tracks along its shortest
path. Figure 3.9(a) shows six graphs, corresponding to RYNSORD and approach
B for each of the three densities. For low and medium input traffic densities,
RYNSORD’s performance consistently exceeds that of approach B.
Figure 3.9(a) reveals that the average travel time of trains increases modestly
with increasing lookahead size. For high traffic density, the relatively poor
performance of RYNSORD compared to approach B is an aberration that may be
explained by the graphs in Figure 3.9(b). Figure 3.9(b) plots the percentage of
trains reaching their destinations prior to the termination of simulation for both
RYNSORD and approach B and for all three densities. As the density increases,
the consequent greater congestion is responsible for lowering the percentage of
trains that are able to finish their journeys. Also, in every case, a greater
percentage of trains reach their destinations under RYNSORD than approach B,
implying the superiority of soft reservations. Furthermore, since significantly
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less number of trains reach their destinations in approach B under high traffic
density, relative to RYNSORD, the corresponding travel time graph for approach
B in Figure 3.9(a) fails to include trains that run to farther destinations and is
therefore skewed.   

Figure 3.10 shows a plot of the hop (track) distribution of trains, i.e., the
number of tracks, ranging from 1 to 20, that are used by the trains to reach their
destinations corresponding to low input traffic density. Figure 3.10 shows five
graphs, one corresponding to the ideal scenario, two relative to RYNSORD for
lookahead values of 2 and 4, and two corresponding to approach B also for

FIGURE 3.9

(a) Average over all Trains of (Actual Travel Time of a Train Minus Its Ideal Travel
Time), as a Function of the Lookahead
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lookahead values of 2 and 4. The ideal scenario, described earlier, refers to the
computation of the ideal paths that trains would take if every train was assumed
to be the only one in the system. Under actual conditions, simulated on the
testbed, it is highly probable that most trains will fail to acquire reservations for
every track of their ideal paths since there will be demand for them from other
competing trains. In sharp contrast, the graphs obtained from simulation show
that the hop distribution closely follows the ideal scenario. That is, despite 484
trains competing for tracks, RYNSORD’s distributed, dynamic routing with

FIGURE 3.9

(b) Percentage of Trains Reaching their Destinations within the Maximum
Simulation Time
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soft reservation yields results that are close to ideal. The graphs are especially
revealing for the following reason. There is a belief in the technical community
that while distributed algorithms may yield faster results, in general, the quality
of the distributed solution cannot approach that obtained from centralized
algorithms. This belief is fueled by the fact that in distributed algorithms, local
agents execute the decision-making but are allowed access to only a fraction of
the system-wide data. The results from the rigorous RYNSORD simulation
unquestionably refute the generality of the belief. RYNSORD shows that under
certain circumstances, distributed algorithms may yield very high quality
solutions while generating them fast. The authors are currently engaged in
studying a new mathematical framework to extract distributed algorithms from
centralized descriptions of problems. The graphs also reveal the superiority of
RYNSORD’s soft reservation over approach B’s hard reservations.  

The graphs in Figures 3.11(a) through 3.11(c) contrast the hop distribution of
RYNSORD under different lookahead values relative to the ideal scenario for
low, medium, and high traffic densities. The RYNSORD graphs in each of
Figures 3.11(a) through 3.11(c) differ slightly from one another implying that the
impact of lookahead on the hop distribution is modest. Furthermore, with
increasing traffic densities, the hop distributions increasingly deviate from the
ideal scenario, implying that the increased competition for the tracks causes
individual trains to select tracks other than those along their shortest paths from
the origin to the destinations. In each of Figures 3.11(a) through 3.11(c), the
graphs corresponding to lookahead 2 reveals that a small, yet nontrivial, number
of trains requires an excessive number of hops. This is due to double-backs, i.e.,
where a train oscillates back and forth between two or more stations, while
attempting to negotiate a suitable route to its destination. Despite the fact that
this normally implies inefficiency of track usage, results from Figure 3.9(a) show
that trains under lookahead 2, in general, reach their destinations faster. The
occurrence of double-backs decreases substantially with higher lookahead values.

FIGURE 3.10

Distribution of Actual Number of Hops for Trains in RYNSORD vs. Approach B vs.
Ideal Distribution
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Figure 3.12 reports on the effort to study the impact of lookahead size on the
average number of hops (tracks) for RYNSORD and approach B, for each of the
three input traffic density values. Once again, for every train, the ideal number of
hops is computed and used as the standard against which actual number of hops
used by the train is contrasted. The graphs for all three density values in
RYNSORD appear to converge to a small value that is slightly lower than the
corresponding value for approach B, once again demonstrating the superiority of
soft reservations. Furthermore, for lower lookahead values in every case in
Figure 3.12, the average  number of hops relative to the ideal hop count is
significantly higher. This corroborates the earlier finding that lower lookahead

FIGURE 3.11

Distribution of Actual Number of Hops for Trains in RYNSORD vs. Ideal
Distribution under (a) Low Input Train Density
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encourages frequent switching of tracks in the course of routing and trains
traverse more tracks in the process.

Figures 3.13(a) through 3.13(c) present the tuples [(actual travel time of a train
—its ideal travel time), time of assertion of the train into the system] for all
trains that reach their destinations. Figures 3.13(a) through 3.13(c) correspond to
low, medium, and high input traffic densities, respectively. In general, as more
and more trains compete for tracks, trains will require longer to reach their
destinations. This is reflected by the increasing timestep scales along the Y-axes
from Figure 3.13(a) to Figure 3.13(c). For low input traffic density, most trains
reach their destinations regardless of their time of assertion into the system and
this is reflected by the relatively uniform distribution in Figure 3.13(a). While the

FIGURE 3.11

Distribution of Actual Number of Hops for Trains in RYNSORD vs. Ideal
Distribution under (b) Medium Input Train Density
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plot in Figure 3.13(b) exhibits modest cut off at high values of assertion time,
i.e., 10,000 timesteps, that for Figure 3.13(c) is quite severe. This reflects the
fact that under higher input traffic densities, a train, Ta, that is asserted later into
the system relative to another train, Tb, may require more time for travel time
than Ta and, under certain circumstances, may not succeed in completing its
journey within the maximum allowed simulation time. Clearly, to achieve a
stable, continuous running system with minimal cutoff, one must select an
appropriate input traffic density.

Figures 3.14(a) and 3.14(b) present track utilization results, i.e., the
cumulative number of times every track is utilized by trains, for approach B and
RYNSORD. Track segments are identified by unique identifiers 1 through 84.
While most of the tracks are utilized reasonably, reflecting efficient resource

FIGURE 3.11

Distribution of Actual Number of Hops for Trains in RYNSORD vs. Ideal
Distribution under (c) High Input Train Density
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utilization, a few tracks exhibit high utilization which merely reflects the
stochastic destinations of trains and the choice of the “high traffic” stations. The
track utilization plot in Figure 3.14(b) is observed to be, in general, higher than
that in Figure 3.14(a) implying the superiority of RYNSORD’s soft reservation
over hard reservation in approach B.

FIGURE 3.12

Average of (Actual Hops for each Train Minus Its Ideal Hops) over all Trains, as a
Function of Lookahead
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Figures 3.15(a) and 3.15(b) present the track utilization for high input traffic
density and, clearly, it is significantly higher than that for low input traffic
density in Figure 3.14(b). However, the track utilization in RYNSORD is not
significantly affected by the choice of the lookahead value.

Figure 3.16 presents the distribution of a part of the overall computation task
of routing the trains among the stations. A principal component of the overall
computation task is reservations processing. While Figure 3.16(a) corresponds to
lookahead 2, Figure 3.16(b) relates to lookahead 4. The computational load
distribution among the stations is slightly higher for lookahead 2 than lookahead
4. Although the individual trains under low lookaheads execute the Dijkstra’s
shortest path computations [27] more frequently, they reserve fewer stations at
any given time. Both Figures 3.16(a) and 3.16(b) underscore the achievement of
the original goal of efficiently distributing the overall task among the station
nodes. The nonuniform distribution of the reservations processing is due to the
stochastic destinations of trains which, in turn, affects their routing.

Figure 3.17 presents the distribution of the remainder of the overall
computation task, among the trains. A principal component of the overall task is
the Dijkstra short-
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FIGURE 3.13
Actual Travel Time of a Train in RYNSORD minus Ideal Travel Time for
Lookahead 4 as a function of Assertion Time of the Train, (a) Low Input Traffic
Density, (b) Medium Input Traffic Density, and (c) High Input Traffic Density

est path algorithm execution by the trains for computing the primary and
secondary paths. While Figure 3.17(a) corresponds to lookahead 2,
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Figure 3.17(b) relates to lookahead 4. Both Figures 3.17(a) and 3.17(b)
underscore RYNSORD’s original goal of efficiently distributing the overall task
among the trains. In both Figures 3.17(a) and 3.17(b), with the exception of a few
trains, the computational burden is uniform among most trains which
underscores the achievement of equitable distribution of the overall task among
all trains. The computational load in Figure 3.17(a) is significantly higher than
that in Figure 3.17(b) since, under low lookahead, trains perform shortest path
computations more frequently.

Tables 3.2 and 3.3 present data collected from the simulations to assist in the
understanding of the impact of lookahead on key performance measures. The
“average time” refers to the travel time of trains relative to the ideal travel times
and is computed as equal to ((sum over all trains of (actual travel time of a train—
its ideal travel time))÷by the total number of trains). While Table 3.2 presents
data for low input traffic density, Table 3.3 corresponds to medium input traffic
density. In Table 3.2, for high lookahead values, the average travel time of trains
increases and it correlates to the commensurate increase in the average waiting
time. The latter, in turn, is due to the fact that to reserve more tracks for
increasing N, trains must wait longer at the host stations where they initiate
reservations, while engaged in communicating with more stations. However, the
average number of hops decreases with increasing lookahead while the decrease
in the number of double-backs is even more dramatic.  

FIGURE 3.14

Track Utilization for Low Input Traffic Density and Lookahead 6, (a) Approach B,
(b) RYNSORD
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Table 3.2 Comparative impact of lookahead on performance parameters in RYNSORD
under low input traffic density.

Lookahe
ad value

Link
Usage
(%)

Total
No. of
Hops

Total
No.
Double-
backs

Average
No.
Hops Per
Train

Average
time

Average
Miles Per
Train

Average
Waiting
Time
(timestep
s)

1 27 2313 321 5.039 122.11 620 113

2 27 2053 17 4.483 151.91 627 119

3 27 2026 5 4.443 164.24 619 137

4 27 2029 3 4.450 170.56 627 136

5 27 2046 2 4.458 182.01 620 151

Table 3.3 Comparative impact of lookahead on performance parameters in RYNSORD
under medium input traffic density.

Lookahe
ad value

Link
Usage
(%)

Total
No. of
Hops

Total
No.
Double-
backs

Average
No.
Hops Per
Train

Average
time

Average
Miles Per
Train

Average
Waiting
Time
(timestep
s)

1 52 4656 1274 6.151 545.94 647 615

FIGURE 3.15

Track Utilization in RYNSORD for Medium Input Traffic Density, (a) Lookahead 2,
(b) Lookahead 4
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Lookahe
ad value

Link
Usage
(%)

Total
No. of
Hops

Total
No.
Double-
backs

Average
No.
Hops Per
Train

Average
time

Average
Miles Per
Train

Average
Waiting
Time
(timestep
s)

2 48 3428 144 4.565 688.95 619 647

3 46 3194 12 4.357 759.77 610 711

4 45 3186 9 4.341 769.62 604 728

5 45 3137 3 4.274 780.01 603 737

The contrast between low and high lookaheads is more pronounced in
Table 3.3.

For low lookahead, the average travel time of trains and average waiting time
are significantly lower. However, the average miles traveled by trains, the
average number of hops, and the link usage are higher. In addition, the number
of double-backs is particularly high. Trains under low lookahead have a
restricted view of the system-wide congestion and are more likely to make poor
long-term choices. However, they make routing decisions more frequently and,
although this increases their computational burden, their decisions are up-to-date
and superior as reconfirmed by the shorter average travel times. In contrast,
trains under high lookahead are locked into tracks for longer periods of time and

FIGURE 3.16

Distribution of Reservations Processed by Stations in RYNSORD for Medium Input
Traffic Density as a function of Stations, (a) Lookahead 2, (b) Lookahead 4
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fail to take advantage of rapid dynamic changes in the system-wide track usage as
reflected by their longer average travel times. Nevertheless, their routing is more
organized, requires less hops and distance traveled, and virtually eliminates
double-backs. Thus, where shorter travel times are of paramount importance and
the cost of track usage is negligible, low lookahead values are logical. Where the
cost of using tracks is appreciable relative to the idle waiting of trains at stations,
high lookahead value is recommended.

A principal objective of RYNSORD is to minimize the intra-network
communications through distributing the overall computational task to the local
entities. Figure 3.18 presents a plot of the maximum communications rate for
every inter-station communication link. Given that the resolution of the
simulation is 1 timestep or 1 minute of real operation, the resolution of the data
presented here is also limited to 1 minute. A maximum of 500 bytes/minute of
data propagation is observed in Figure 3.18 which is easily realizable through
commercial wireless modems rated at 9,600 or 19,200 baud. Thus, one of the
principal objectives of RYNSORD is achieved. In contrast, a centralized
algorithm would theoretically require a much higher communications rate
implying expensive interfaces.

Limitations of RYNSORD

FIGURE 3.17

Distribution of Computation among the Trains in RYNSORD for Medium Input
Traffic Density for, (a) Lookahead 2, (b) Lookahead 4
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One limitation of the current RYNSORD implementation is that it does not
model abrupt track failures. Conceivably, track failures may cause severe local
congestions which may spread to other parts of the network. While RYNSORD
allows trains to utilize congestion information to re-plan their routes, its
performance in the event of track failures warrants further study, and is reported
in Chapter 5. 

FIGURE 3.18

Maximum communications rate (bytes/minute) of inter-station links
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Chapter 4
DICAF: A Distributed, Scalable Architecture

for IVHS

4.1
Introduction

According to ITS America [5], surface transportation in the United States is at a
crossroads. While the nation’s roads are badly clogged and congestion continues
to increase, the conventional wisdom of building more roads will not work for
both financial and environmental reasons. Congestion costs billions of dollars
annually in lost productivity, energy wastage, and increased emissions from
vehicle idling. Traffic accidents in 1993 alone caused 40,000 deaths and 5
million injuries. In response to these problems, the U.S. Congress passed ISTEA,
the Intermodal Surface Transportation Efficiency Act of 1991, whose basic goal
is to develop a national transportation system that is economically efficient,
environmentally sound, and moves people and goods in an energy efficient
manner. The U.S. Department of Transportation, led by the Federal Highway
Administration, has launched the Intelligent Vehicle Highway System (IVHS)
program to meet the demands of the ISTEA. IVHS does not aim to address the
capacity problem. It aims to assist in steering drivers away from bottlenecks and
in introducing and managing reasonable enforcement measures such as
congestion pricing. Surface transportation-related problems are not unique to the
U.S. In fact, in countries with higher population densities such as Europe and
Japan, the problem is more acute. The Programme for a European Traffic with
Highest Efficiency and Unprecedented Safety (PROMETHEUS) [28], project in
Europe and the Advanced Mobile Traffic Information and Communication
System (AMTICS) program [29] in Japan closely parallel the IVHS program in
the U.S..

To virtually every driver today, the current interstate and state highway system
is often a source of frustration, primarily because of congestion. King [30] notes
that driver navigational waste is equal to 6.4% of all distance and 12% of all time
spent in travel by non-commercial motorists, amounting to millions of dollars.
The Rhode Island Department of Transportation (RIDOT) [31] [32], estimates
that 60% of all vehicle-hours lost is due to accidents, stalled vehicles, and other
road mishaps which are dynamic and unpredictable. Similar findings are reported



by other State DOT agencies. Peters, McGurrin, Shank, and Cheslow [33] estimate
that the ITS infrastructure must improve vehicle handling capacity by 30% in
order to keep congestion from growing beyond the current level. Other sources
of congestion include routine maintenance, construction, and special events
which are mostly predictable. It is generally and probably correctly believed that
availability of accurate highway-related information may constitute an effective
antidote to such problems.

Consider the following three typical scenarios: (1) A driver enters into a
highway near exit 24 (for example) and runs into congestion within a mile. The
congestion is severe but extends only up to exit 22. Had the driver been aware of
this problem before entering into the highway, he or she could have easily driven
on a short back-road and entered the highway past the congestion. (2) A driver
passes a gas exit and, after driving 20 miles, notices that the fuel level is low and
that most gas exits are closed. Had the driver been aware of this problem, he or
she could have easily filled the tank at the last gas exit. (3) A driver needs to
reach home in Rhode Island from New Jersey on a Sunday. It is 1 P.M. in the
afternoon and it has just started to snow. The forecast calls for heavy snow after
7 P.M.. The driver assumes that I-95, an important thoroughfare, will be kept
cleared and that it would require approximately 5 hours to drive the 240 miles
yielding an estimated time of arrival of 6 P.M.. The driver enters Interstate 95
only to find out that the interstate is not being cleared of snow and that it is
impossible even to pause in the breakdown lane to clear the icy rain from the
windshield. The average speed hovers around 25 miles per hour and the driver is
caught in the heavy snow storm only to reach home after a painful 10 hours. In
each of the above scenarios, clearly, if accurate information was made available,
the drivers could have judiciously planned their trips and thereby avoided
contributing to the congestion, while ensuring safety and economy.

In addition to substantial research reports on traffic management and traffic
control, the recent literature reports a number of research efforts in intelligent
transportation systems (ITS). Haver and Tarnoff [34] report a new, efficient
traffic management system that utilizes microprocessors and local area networks
to achieve online signal optimization. Fenton and Mayhan [35] report their
studies and findings relative to the development of theoretical control concepts
and controllers for longitudinal and lateral control towards an automated
highway system. Powell [36] presents a summary of current tools used in the
optimization of assignments of drivers to motor carriers, dynamic fleet
management, i.e., pickup and delivery schedules and vehicle routing. He observes
that the traditional vehicle routing problem is a fundamentally hard, mathematical
problem, and that there is little difference between the different techniques that
are in use today. Batz [37] reports on the use of TRANSCOM, the real-time
traffic information that is dispatched by over 14 transportation and traffic
enforcement agencies in the New York/New Jersey metropolitan area and is used
by the trucking industry. When an incident occurs, TRANSCOM reports the
location and time of incidence and an estimated time to clear through a 80-
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character message. This is intercepted by the participating motor carriers which
then analyze the impact on their individual trucks and relay appropriate
information on a timely basis. While the system is currently under evaluation, it
is expected to facilitate increase in fleet productivity, driver’s environment, and
customer service. Roper and Endo [38] report on the Santa Monica Smart
Corridor Project whose primary objective is to create a better balance of flows
among all roadway facilities. It is proposed to develop a centrally located urban
freeway traffic control center, Central, that will collect traffic data from multiple
sources and disseminate them, in real-time, to in-vehicle displays on 25 selected,
en-route vehicles. Once every minute, the in-vehicle processor receives messages
containing link congestion data that are broadcast from the Central and uses it to
extract relevant congestion data that is pertinent to the location and heading of
the vehicle. At the Central, a dedicated workstation tracks every one of the test
vehicles to monitor vehicle routes and diversions made by drivers. This scheme
is expected to lower the million vehicle hours per year by 15%, the average
freeway trip duration by 12%, and increase the average freeway speeds from 15–
35 mph to 40–50 mph.

In its incident management plan [31] [32], the RIDOT aims to inform the
public of predictable and dynamic sources of congestion through traffic reports
on radio stations. For accurate reports, RIDOT plans to consolidate information
from visual air traffic patrols, video cameras, RIDOT ground vehicles, public
safety patrols, emergency vehicles, and motorists through a standardized
information exchange format and by using a combination of computers,
modems, and fax machines. A 24-hour toll-free telephone incident reporting
mechanism and a free “SP” dedicated cellular phone line are also planned. In
addition, RIDOT plans to improve the use of existing traffic loops and explore
alternate detection schemes in high accident prone areas.

Kremer, Hubner, Hoff, Benz, and Schafer [39] present a short-range mobile
radio network, referred to as mobile radio LAN’s, for IVHS and describe a
simulator, MONET3, that allows evaluations of protocols to operate in networks
with hundreds of stations. A key advantage is that most traffic data may be
provided locally without the need for global communications. Sakagami,
Aoyama, Kuboi, Shirota, and Akeyama [40] describe a methodology to
determine vehicle position in multipath environments from the angle of arrival of
waves received by multibeam antennas. While the accuracy is hindered by tall
buildings, the approach may be highly beneficial to track lost vehicles. Hussain,
Saadawi, and Ahmed [41] describe a mechanism to detect and monitor traffic
through an experimental overhead infrared optical system. The system
successfully detects and counts vehicles and is weather-resistant and cost
effective. Kim, Liu, Swarnam, and Urbanik [42] describe an areawide traffic
control system (ARTC), wherein traffic flow information is frequently
exchanged between signal controllers to successfully address frequent
occurrences of congestion. The system exhibits improved success over an
optimized fixed time control and adequate level of fault tolerance. In a related
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discipline of automobile highway, Von Tomkewitsch presents ALI-SCOUT
[43], a dynamic route guidance system with on-board computers. An automobile
receives routing information from a centrally located traffic computer through
infrared communications beacons that are strategically located at traffic lights.
The central computer uses current traffic conditions to determine a route tree,
i.e., the best routes. The on-board computer receives the route tree and selects the
appropriate route based on its destination. The report superbly discusses key
issues relative to the use of infrared communications beacons and notes that the
approach had been field tested for 700 vehicles. However, it does not provide
any performance measures and while it is uncertain whether the approach will
scale up, the use of a central computer to generate the route tree is likely to
inhibit the scalability of ALI-SCOUT. Denney and Chase [44] report that the use
of distributed processing in the San Antonio downtown traffic system has
resulted in an open architecture that is responsive yet cost-effective and reliable.
Kline and Fuchs [45] report that while the visibility of symbolic highway signs is
significantly higher than those of same-sized text, it may be greatly enhanced
through the use of improved symbolic signs designed using an optical blur (i.e.,
low pass) approach in order to avoid higher spatial frequencies. Robertson and
Bretherton [46] describe the SCOOT method of optimizing traffic signals in real
time that adapts the signal timings automatically to new flow patterns. Bernard
[16] proposes the ASTREE railway traffic management system which maintains
a distributed database of up-to-date, accurate, and comprehensive representation
of route layout and train progress. However, the centralized decision making in
ASTREE uses the information in the database to either automatically make
decisions or assist human operators with decisions, relative to route settings and
train control. The settings are then downloaded to the wayside equipment and
locomotives.

Researchers at PATH, Partners for Advanced Transit and Highways, at the
University of California, Berkeley, have proposed an architecture for IVHS [6]
wherein one or more automobiles are organized into discrete platoons that move
through special lanes, similar to high occupancy vehicle (HOV) lanes, on
existing freeways at very high speeds. When a vehicle enters into the network
and announces its ultimate destination, the IVHS system assigns it a nominal
route through the network. While the approach has been successfully tested [47],
its limitations include the risks of entering and exiting the HOV lanes in the
presence of other lower speed vehicles on the freeway and the fact that many
drivers may resent the idea of being forced to travel at very high speeds. Shladover
and colleagues [48] summarize their accomplishments relative to automating
vehicle lateral (steering) and longitudinal (spacing and speed) control. Von
Aulock [49] reports that a feasibility analysis of automatic guidance system on
German freeways conducted by Prof. Hiersche of the Technical University of
Karlsruhe has concluded that while existing freeways and bridges are not built for
and cannot be modified economically for automatic vehicle guidance system,
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entering and leaving the system with vehicles zooming along 5 meters apart at
speeds reaching 120 km/hr is a highly likely source of accidents.

ITS America has recently published [5] the design proposals released by the
four national architecture development teams led by Hughes Aircraft, Loral
Federal Systems, Rockwell International, and Westinghouse Electric. The
Hughes approach consists of a centralized, traffic management center (TMC),
that detects and analyzes incidents and mitigates congestion by issuing real-time
traffic information, routing parameters, and through controlling ramp metering
and traffic signal timing. The TMC is aided by area processors that principally
control the communication between the TMC and the beacons that interact with
the vehicles. The Loral approach utilizes the concept of a fully-integrated
transportation system, allows for modular and flexible sub-systems, and supports
open standardized interfaces. Rockwell proposes a multi-layered architecture and
recommends interface standards at the application layer for each interface. It also
proposes the development of a traffic management center but deliberately avoids
specifying the design and configuration of the TMC. The Westinghouse team
proposes the use of traffic management centers and traffic control centers to
provide centralized route guidance and other information to vehicles. A key
concern with the proposed architectures is that they are yet to be supported by
either scientific experimentation, mathematical validation, or simulation. Under
contract from the FHWA, Nynex Corporation [50] has developed a traffic
management system wherein a centralized TMC serves selected test vehicles that
are equipped with specialized cellular phones. Initial data from the “operational
tests” show that the length of an average cellular phone call necessary for a TMC
to provide route guidance instructions to a single vehicle is approximately 5 to 10
minutes. The total number of vehicles in the NYNEX study is extremely small.
While NYNEX estimates that it is too costly to gain widespread consumer
acceptance, a more serious problem is that the length of the call will increase
significantly as more and more vehicles demand interaction with the TMC.
Studies by VanGrol and Bakker [51] in Germany corroborate Nynex’s finding in
that centralized TMCs that perform dynamic traffic management and short-term
traffic forecasting are increasingly unable to keep up with the demand. Iqbal,
Konheim, and Ketcham [52] note that the accuracy of the projections of
recurring and non-recurring congestions along corridors is limited by the static
nature and highly variable quality of existing data. Jing, Huang, and
Rundensteiner [53] recognize the difficulty of simultaneously computing a large
number of paths for a huge transportation network, and in storing the large
number of precomputed paths in the computer memory. They propose a
hierarchical encoding of the partial paths that offers improved performance and
space efficiency. Talib, Love, Gealow, Hall, Masaki, and Sodini [54] propose
incorporating a special, high density pixel parallel processor chip onto a desktop
computer to achieve fast low-level image processing in ITS systems.
Ziliaskopoulos, Kotzinos, and Mahmassani [55] present techniques to execute
shortest-path algorithms, fast, on CRAY supercomputers. Rouphail, Ranjithan, El
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Dessouki, Smith, and Brill [56] propose the development of a decision support
system for pre-trip route planning that generates maximally different routes for a
network that is characterized by time-dependent link travel times. Centralized
TMCs are complex and expensive to build and maintain. For instance, the
Minneapolis TMC [57] contains 48,17-inch monitors, controls 354 ramp meters,
receives data from 142 CCTV cameras that are located along the highways and
connected through fiber optics, and managed by 37 personnel. Upchurch,
Powell, and Pretorius [58] describe the deployment of a closed-circuit television
camera network along 256 kms of arterial corridors in Phoenix, Arizona, at a
cost of $42 million.

Chang, Junchaya, and Santiago [59] describe a traffic simulator implemented
on a connection machine CM-2 and note that its performance is promising.
Junchaya and Chang [60] state that their simulator has the inherent path
processing capability to represent driver’s route-choice behavior. They report
being able to simulate 32,000 vehicles for 30 minutes at one-second intervals in
3.5 minutes with 16,384 pro cessors. Given that CM-2 is a SIMD (single-
instruction multiple-data) architecture, i.e., every processor executes the same
instruction in lock step, and the processors are extremely simple, the simulator is
incapable of modeling the complex, concurrent, autonomous, and unique
behavior of the individual vehicles. Also, SIMD machines are in essence
synchronous machines and, therefore, they are not naturally suited to model the
real-world, asynchronous, traffic system.

FIGURE 4.1

IVHS Architecture Utilizing Centralized Traffic Management Center
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To illustrate the traditional efforts, consider a highway system, shown in
Figure 4.1, that consists of 12 highway segments labeled 1 through 12, and the
centralized traffic management center (TMC). The TMC is connected to each of
the twelve segments through permanent links, shown through solid lines, that
carry status information to the TMC as well as ramp metering commands back to
the highway segments. The frequency of information exchange is governed by
the flow of traffic and it defines the accuracy of the TMC’s knowledge of the
system state at any given time. When a vehicle, labeled Vehicle 1 in Figure 4.1,
enters the system, it establishes a temporary communication link with the TMC,
shown through dotted line and informs the latter of its final destination. The
TMC then determines the route, taking into account the number of vehicles in the
system, their destinations, and its goal of balancing the use of resources against
the shortest travel times of the vehicles, and imposes it on Vehicle 1.

A significant limitation with all of the above efforts is explained as follows. It
must be recognized that it is neither logical nor feasible for a single, centralized
traffic management center to continually broadcast every piece of highway data
that any of the thousands of vehicles on the road may desire to know. Moreover,
a single centralized traffic management center possibly cannot serve a wide
geographical area effectively given the limited power of radio transmitters,
uneven terrain, and other factors. Fur thermore, it is a well-known fact that a
single, centralized unit cannot maintain the most precise information on the
status of every highway segment at all times. Accuracy and precision are best
achieved through a number of relatively autonomous and communicating local
units. If the U.S. DOT bases the IVHS architecture on centralized traffic
management centers, this chapter hypothesizes that the increase in the number of
vehicles, the associated increase in congestion, and the increased demand for
sophisticated traveler services and other highway related information by drivers
in the future will possibly require the total redesign of the IVHS system. The
reason lies in the fundamental limitation of a single-processor computer. A TMC
is a serial computing entity, i.e., it executes its sub-tasks one at a time, and no
matter how sophisticated and powerful it may be, its performance is bound to
deteriorate as the number of vehicles interacting with it increases.

An additional limitation is that current efforts call for the TMC to exclusively
divert and control the flow of traffic, based on its knowledge of congestion of all
relevant highways. While this may be beneficial under certain scenarios, at other
times, this may evoke resentment from independent-minded drivers. There are
additional problems. First, as explained earlier, it is certain that a TMC will not
have accurate and up-to-date information on all highway segments at all times,
particularly when the numbers of segments and vehicles are large. Second, the
TMC dictated alternate route to a vehicle may not be ideal since the TMC cannot
consider reasons that are unique to each and every driver. For example, assume
that a TMC dictates a driver, traveling through Rhode Island on I-95 and
currently near exit 5, to take I-495 so as to divert traffic from an accident around
exit 14. On the contrary, the driver who is tired from driving all night would
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have opted to travel forward up to exit 12, enjoyed breakfast at a restaurant for
an hour, and then driven forward, had he or she been advised of the problem
rather than dictated a re-routing. By that time, the accident would have been
cleared. In this nation of independent-minded individuals, technology that offers
choices is preferred to technology that dictates one-size-fits-all type solutions.
Kawashima [29] observes that a unified AMTICS and RACS in Japan may
realize route guidance through on-board computers and not by central
computers, but also notes that this is merely a conceptual model. Dailey,
Haselkorn, and Meyers [52] correctly observe that a key element in ITS is the
distribution of dynamic data in real time to a large but authorized group of users.
They propose the use of an asynchronous, distributed, client/server architecture
that relies on the creation of autonomous, reusable pieces of hardware. Hall [61]
argues that advanced traveler information systems must aim at utilizing alternate
routes, where possible, to steer traffic away from disequilibrium behavior and to
provide to the user confidence and comfort in the system.

Recently, in a number of U.S. cities, notably Seattle, Houston, and Los
Angeles, the congestion information on different interstate and highway
segments is collected periodically and displayed on the Internet [62]. A total of
five categories [42] are used to overlay the congestion information on a map:
wide-open, heavy, moderate, stop-and-go, and no data available. While the
practical difficulty of automatically acquiring this information onto every vehicle
needs to be addressed, the approach supports a rudimentary requirement of
DICAF, the central theme in this Chapter. A serious issue, however, is the
latency of this information, i.e., the difference between the times that the
information is generated and utilized and its impact on the timeliness and
accuracy of this highly dynamic information.

This chapter recognizes these problems and proposes the use of a distributed
strategy, DICAF. DICAF uses the same basic principles of asynchronous,
distributed algorithms, as presented in Chapters 2 and 3. The principles consist
of utilizing data locally to compute decisions, wherever possible, and in
propagating changes, i.e., new information, to other entities in the system on a
need-to-know basis. Clark and Daigle [63] review the vital importance of
computer simulation in traffic engineering and stress its critical role in the
development and evaluation of new ideas, algorithms, and traffic control
systems. The remainder of this chapter is organized as follows. Section 4.2
details the DICAF algorithm while Section 4.3 describes the modeling of DICAF
on an accurate, realistic, parallel processing testbed. Section 4.4 presents the
details of implementing DICAF on the testbed. Section 4.5 reports on the
simulation of representative traffic networks under stochastic and realistic input
traffic and also presents a detailed performance analysis.
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4.2
DICAF: A Novel, Distributed and Scalable Approach to

IVHS

The vehicle routing problem is perhaps one of the richest problems in
transportation [36] both because of its wide applicability and its fundamental
complexity from a mathematical point of view. The Bodin et al. review [64]
contains over 700 references over the past four decades, a testimony to the
richness of the problem. As indicated earlier, it must be recognized that it is
neither logical nor feasible for a single, centralized traffic management center to
continually broadcast every piece of highway data that any of the thousands of
vehicles on the road may desire to know. Moreover, a single centralized traffic
management center possibly cannot serve a wide geographical area effectively
given the limited power of radio transmitters, uneven terrain, and other factors.
Furthermore, it is a well-known fact that a single, centralized unit cannot
maintain the most precise information on the status of every highway segment at
all times. Accuracy and precision are best achieved through a number of
relatively autonomous and communicating local units.

DICAF recognizes these problems and proposes the use of a distributed
architecture wherein the overall task of data collection, processing, dissemination
of information, and decision making is distributed among all of the components
of the IVHS system. The fundamental philosophy is to intelligently distribute
decision-making tasks among the entities to maximize local computations,
minimize communications, and achieve robustness, and high throughput. A direct
consequence of this philosophy is scalability, i.e., where the underlying system
will continue to function and deliver relatively undiminished performance as the
system grows in size with an increasing number of vehicles and highway segments.
The intent of the architecture is to influence every driver’s routing decision by
providing accurate, adequate, and timely highway data, to help him or her plan
alternatives, rather than dictate routes which inevitably leads to driver
resentment and rejection of the system. Allen, Ziedman, Rosenthal, Stein,
Torres, and Halati [65] report that, in simulation studies, the navigational system
characteristics have significant effect on driver route diversion behavior with
better systems allowing more anticipation of traffic congestion. Laboratory
simulation studies with human drivers also indicate that the number of miles
driven decreases when travelers are provided with better and more information.

To achieve the goals, this research effort requires (i) the understanding and
analysis of the basic requirements of the entities—vehicles and road segments—
constituting the traffic system, (ii) identification of the essential information to
be communicated between the entities, and (iii) the determination of a generic
model for all entities. The generic model must be capable of making independent
decisions based on input information from a limited number of appropriate
entities, yet each decision must be “consistent” with the others and cooperatively
conform to the global goals of efficiency and safety. The proposed approach will
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carefully determine the basic rules of decision-making and communication
between the entities to address all possible scenarios. By definition,
asynchronous, distributed algorithms offer, theoretically, the highest benefit from
concurrent processing since there is no unnecessary interference nor
synchronization. It allows the use of maximal distributed intelligence from the
different entities. During the operation of an actual traffic system, the outcomes
at different instances of time are functions of many parameters such as the
change of intent of a driver of a vehicle, vehicle malfunction, deterioration of
road condition, accidents, etc., and cannot be predicted a priori. Since no single
entity may possess accurate and complete knowledge of the entire traffic system
at all instants of time, the asynchronous approach permits each entity to proceed
as fast as it possibly can, without jeopardizing any aspect of the overall goal,
namely efficiency of utilization of the resources and safety. The asynchronous
approach also recognizes the intrinsic unique capabilities of every entity, if any,
and permits their best utilization.

The current highway system is constituted by two components—highway
segments and vehicles. A highway segment is simply a part of an existing
highway, perhaps between two consecutive exits. While it is within a highway
segment, a vehicle may not leave it to travel on an alternate route. Thus, when a
highway segment, say between exits 2 and 3, is severely congested, a vehicle on
the preceding segment may take exit 2 and travel on an alternate path. If it fails
to take exit 2, the vehicle may not leave the segment until exit 3. The DICAF
architecture introduces a third component—highway infrastructure, that is key to
achieving its objectives. The infrastructure is organized into a number of
constituent, Distributed, Traffic Management Centers (DTMCs), each of which
is responsible for the collection and dissemination of information within a well-
defined locality. Every vehicle is assumed to be autonomous in that it is capable
of requesting necessary information from the DTMCs which it then uses to
synthesize decisions. The information may assume many forms. Consider a
vehicle, in transit, that requires very specific information. It communicates
its request to the distributed traffic management center, DTMC1, whose
jurisdiction includes the current position of the vehicle. Such requests may either
include local information such as the congestion information of a particular
highway segment, or non-local information such as the weather and driving
condition of a highway segment significantly far away from its current position,
or locations and business hours of banks, post offices, hospitals, and restaurants
along the highway, further up from its current position. Corresponding to a
request for local information, DTMC1 immediately propagates the data to the
requesting vehicle. When the information requested is outside its jurisdiction,
DTMC1 may retrieve the data from the appropriate DTMC through the network
and propagate it to the requesting vehicle. This chapter focuses only on the most
fundamental parameter that is essential for route guidance, namely congestion
information. The issue of retrieving information on the locations and business
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hours of banks, post offices, hospitals, and restaurants along the highway, is
beyond the scope of this chapter.

The exact location and number of the DTMCs in the DICAF system will be a
function of (i) the number of vehicles requesting service, (ii) the average
electronic contact time between a vehicle and a DTMC, i.e., the time needed to
propagate the information, (iii) the desired level of service, and (iv) the range of
the communication mechanism, i.e., wireless or infra-red beacon, between a
vehicle and a DTMC. The principal choices in wireless communications
mechanisms include the normal cellular telephones, cellular digital packet data
system (CDPD), 220 Mhz radio transmission [66] that has been set aside by the
FCC for FHWA’s IVHS, and others. Kamali [67] presents a comprehensive
review of a number of wireless communication technologies for intelligent
transportation systems. Sodeikat [68] reports that the short range roadside
infrared beacon, successfully demonstrated in the LISB field trials in Germany,
supports up to 500 bits/sec. The design of the inter-DTMC network, will also be
a function of the traffic volume and desired level of service. While a high-
bandwidth is likely to be necessary in an urban situation, a medium-bandwidth
network will probably suffice for a rural community.

A driver’s choice of the routing may be based on the weather, urgency, road
condition, fatigue, the condition of the vehicle, and other objective and
subjective issues. Although DICAF grants full freedom to every driver, for an
objective evaluation of the DICAF algorithm, this approach assumes that every
driver’s basic objective is to reach the ultimate destination in the shortest
possible time. The driver’s objective is not necessarily to use the shortest
distance path since one or more segments of the path may experience greater
congestion level. To assist the driver, this chapter records the following
observations regarding the issue of congestion. As a first approximation, the
average speed of vehicles on a given highway segment is a good measure since it
reflects the throughput through the highway. However, the average speed does
not capture the total number of vehicles on the highway segment which, intuitively,
must bear an impact on the congestion. Although the average inter-vehicle
distance for a highway segment appears to reflect the total number of vehicles on
the segment, by itself, it is neither a good measure of throughput nor congestion.
It fails to differentiate between two scenarios where all vehicles are traveling at
50 mph and 100 mph respectively, while still maintaining the same average
distance between the vehicles. For similar reasons, the total number of vehicles
on a highway segment at any time instant is also not a good indicator of
congestion. This chapter proposes a new definition of congestion measure
(C.M.) of a highway segment, one that reflects the combined influence of the
total number of vehicles on a highway segment and their average speeds:

(4.1)
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In Equation (4.1), X represents the total number of vehicles on the highway
segment at any instant. The maximum number of vehicles allowed on the
highway segment, Q, is , where N, D, and L refer to the number of lanes, the
length of the highway segment, and the average length of a vehicle. Presumably,
the highway segment can physically hold at most vehicles at any instant, all of
which are traveling at the same speed. As an engineering approximation, Q, the
maximum number of vehicles allowed on a highway segment, anytime, is
assumed to be 0.5× . The number of lanes for all segments, in this chapter, is
assumed to be unity without any loss in generality. There is a general rule of
thumb, usually found in the state driver manuals, of 1 car length separation
between adjacent vehicles for every 10 mph speed. The reason this assumption is
not reflected in the definition of C.M. above is that the maximum number of cars
must reflect the physical maximum that a highway can hold, at any time. This
physical maximum is clearly defined by the length of the highway segment and
the car lengths, and is not dependent on the vehicle speeds. The proposed
definition in Equation (4.1) is more general in that the “maximum number of
cars” encompasses even severe congestion scenarios. It also permits a much
higher vehicle density than the rule of thumb would allow and this, in turn,
enables the DICAF simulations to be driven hard to analyze its behavior under
extreme conditions. The rule of thumb, as the term suggests, is only a rule of
thumb. It neither has any formal basis nor is it strictly obeyed. It is also violated
under severe congestion scenarios.

Additional rationale for the choice of the definition in Equation (4.1) is as
follows. Under normal circumstances, the speeds of the individual vehicles are
different, as evident by the well-known fact that the lanes towards the left are
designated as higher speed lanes while the right lane is meant for slower vehicles.
In addition, the “passing” of lower speed vehicles by higher speed vehicles, is a
common occurrence in any highway. Now, when the number of vehicles in a
segment is sparse, higher speed vehicles will be able to maintain their speeds
even if a few vehicles are traveling at lower speeds for any number of reasons.
Thus, the average speed is likely to be high. The situation changes dramatically
when the number of vehicles increases and the inter-vehicle distance decreases.
The higher speed vehicles find it increasingly difficult and unsafe to maneuver
around the slower speed vehicles to maintain their higher speeds. Consequently,
they slow down, thereby bringing down the average speed for that highway
segment. Thus, the impact of increasing number of vehicles on a highway
segment is that the congestion becomes severe and the C.M. value decreases.
Where the average speed goes down to zero as is likely to be the case in the event
of a severe accident, the C.M. value drops to 0. Also, when X equals Q, the C.M.
value is 0. Since vehicles are assumed to travel at differing speeds, this condition
implies that all vehicles have come to a stand still. This chapter assumes that the
speeds of the vehicles follow a normal distribution curve with the “µ” and “� ”
values defined by the specific highway segment, the time of day, etc. It is also
pointed out that when the absolute value of C.M. is high, the level of congestion
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is low while a high level of congestion is implied by low values of C.M. While
the highest C.M. value is defined by the maximum permitted speed on a highway
segment, the lowest value is 0. Clearly, the definition of C.M. in Equation (4.1)
will not apply in scenarios where all vehicles are traveling at the exact same
speed. One could have used the well-known Poisson distribution. However, it is
noted that while the Poisson distribution lends itself to easy mathematical
manipulation, the DICAF simulation is greatly facilitated by the readily
generated tables from normal distribution. It is also pointed out that the
simulations assume typical scenarios, i.e., vehicles traveling year round as
opposed to the time-of-day and day-of-year variation. Thus, the continuous normal
distribution is utilized in this study without any loss in generality. Furthermore
Kreyszig [69] notes that, for large n, i.e., the number of independent
performances of an experiment, a binomial distribution may be approximated by
a normal distribution, while it is well known that the Poisson distribution may be
derived as a limiting case of the binomial distribution.

As stated earlier in the chapter, most of the traditional route guidance
approaches adopt a binary admittance policy, i.e., they allow entry or refuse
admittance, depending on the level congestion. It is well known that binary
policies [70] generally lead to abrupt decisions. In contrast, in this chapter, the
C.M. value evolves gradually as a function of the average speed and the number
of vehicles on the segment. Congestion measure is a continuous function [69] in
that, for any given segment, it is defined for and may assume any value in the
range—{0 mph, maximum permitted speed on that segment}. No vehicle is
refused admittance into a highway segment, regardless of the level of congestion
unless of course X is equal to Q.

It is expected that vehicles that are not already within the segment in question
will, in general, avoid segments with lower values of C.M. in favor of those
whose C.M. values are higher. Thus, the overall routing decisions of the vehicles
are expected to be less abrupt and the distribution of the vehicles over all segments
of the highway system is likely to be more gradual and uniform.

Figure 4.2 presents the DICAF architecture of a highway system that consists
of twelve highway segments and nine intersection points through which traffic is
introduced into the system. DICAF organizes the highway system into nine
regions each of which is controlled exclusively by its respective DTMC.
Although the DTMCs are located precisely at intersection points in Figure 4.2, in
truth, they may be located anywhere in the vicinity of the segments that they
control. Thus, DTMC1 controls segments 1 and 3, while DTMC2 controls
segments 2 and 4, and DTMC8 controls segment 12. DTMC9 does not control
any highway segment. The DTMCs are connected through a wide-area network
where the links parallel the highway segments. As soon as a vehicle enters the
system, it communicates with the local DTMC to obtain the C.M. of other
relevant segments. It then determines its own route based on the goal of reaching
its destination quickly. The vehicle recomputes its route when it reaches the
subsequent DTMC and this process is repeated at every DTMC that it
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encounters, until it arrives at its destination. The C.M. value for a highway
segment is most accurate within the DTMC that controls it and the accuracy
decreases progressively due to data latency as one encounters other DTMCs that
are further away. Thus, the vehicle progressively accesses accurate C.M.
measures of the segments during its travel towards its destination. As a result, the
vehicle continually refines its routing and achieves high efficiency.

Every vehicle contains a complete static topology of the highway system, i.e.,
the number, length, and connectivity of the segments. However, a vehicles lacks
knowledge of the C.M. values of the segments since they are dynamic. This chapter
assumes that there is no permanent change in the static topology. The issue of
road segment failure due to construction and incidents, is beyond the scope of
this chapter. When a vehicle is within the jurisdiction of a DTMC, it downloads
from it the C.M. measures for the relevant segments. Then, it executes a
modified Dijkstra shortest path algorithm [71] where the objective is to select a
route that minimizes the estimated travel time from the current position to the
eventual destination. The estimated travel time (ETT) for a segment relative to
the vehicle in question, is obtained by,

ETT = (length of segment)÷minimum (C.M., desired speed of the vehicle) (4.2)

FIGURE 4.2

The DICAF Architecture
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In Equation (4.2), ETT is an estimate for the following reason. The C.M.
measure for a subsequent segment is dynamic and it may assume a value
different from that used at the instance of computing ETT when the vehicle
actually travels on that segment, if the vehicle does end up traveling on that
segment. In addition, since C.M. is only an indicator of the congestion level, this
chapter assumes the following. If the C.M. value is lower than a vehicle’s desired
speed when the vehicle is about to commence traveling on a segment, the vehicle
is allowed to travel at a maximum speed of either 125% of the C.M. value or its
desired speed. If the C.M. value is higher than the vehicle’s desired speed, then
clearly, the vehicle is permitted to travel on the segment at its desired speed.

In turn, each DTMC computes the C.M. measures for the segments that it
controls and propagates the values to other DTMCs using the flooding algorithm
[71]. For efficiency, when a C.M. value for a highway segment differs from the
previously propagated value by more than a predetermined fraction, only then is
that value propagated. In addition, when a DTMC receives the C.M. values of
other segments from other DTMCs, it updates its local record of the DICAF
system and propagates them in accordance with the principles in the flooding
algorithm [71]. The appropriate information from its local record is propagated
to a requesting vehicle within its jurisdiction. The DTMC utilizes its knowledge
of the number of vehicles and their respective speeds on a segment at any given
time instance, to compute the C.M. Again, for efficiency, the computation is
triggered when either one or more vehicles enter the segment or leave the
segment. When a vehicle enters the jurisdiction of a DTMC and requests
information, the DTMC registers the entry of the vehicle for the purpose of
triggering the computation of C.M. When a vehicle leaves the jurisdiction of a
DTMC1 and enters that of DTMC2, the latter will notify DTMC1 as soon as it
registers the entry of the vehicle. Then, DTMC1 again retriggers the computation
of the C.M.

The functions of each DTMC and vehicle is expressed, in pseudo code, in
Figures 4.3 and 4.4 respectively.

DICAF is scalable, i.e., as the system evolves and the number of vehicles and
DTMCs increases, DICAF continues to function and its performance is expected
to remain relatively undiminished. With an increase in the system size, the
predominant task of computing the routing for the vehicles increases, which, in
turn is equitably shared by the proportionately higher number of computing
entities. In contrast, under similar conditions, the sequentially executing central
computer of the traditional TMC will be quickly overwhelmed by a significant
increase in the computational burden. DICAF is economical, i.e., unlike the need
for an expensive, central supercomputer at the TMC, each DTMC may be
designed with a relatively inexpensive state-of-the-art microprocessor. The
computational burden on a computing element of a DTMC is significantly lower.
The maintenance cost of a DTMC computer in addition is also significantly lower.
The DTMCs in DICAF may be fully automated, unmanned, and stand alone,
much like the traffic signal boxes at street corners. The computing elements in
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the vehicles may consist of very low cost microprocessors such as the Intel 8086,
Motorola 6809, etc. Similar to the traditional TMC, the DTMC computers of
DICAF may be easily upgraded with more powerful processors as they become
available. DICAF is robust and reliable. Where one or more DTMCs fail, the
remainder of the DICAF system will continue to function unlike a complete
breakdown of the traditional system following the failure of the TMC. The
vehicles within the jurisdiction of the failed DTMCs will be temporarily locked
out of the C.M. values but will resume their normal activities as soon as they
enter into the jurisdictions of other functional DTMCs.

4.3
Modeling DICAF on an Accurate, Realistic, Parallel

Processing Testbed

The key contribution of DICAF consists in distributing the overall task of routing
all vehicles through the network among all the entities in DICAF—vehicles and
DTMCs. Thus, in reality, for a given DICAF system with V vehicles and D
DTMCs, the total number of coordinating computing engines is (V+D). To

While (simulation is not complete) { Check for flooding messages
from neighbors If (a message with higher sequence number) {
Update C.M. of segments for other DTMCs stored locally Propagate
the message to other neighbors } Check for vehicles entering any
highway segment it owns If (a vehicle has entered) { Communicate
with the vehicle, download C.M. measures Upload vehicle’s actual
speed Determine when vehicle will exit segment based on its actual
speed Add vehicle to the wait-to-leave list Update C.M. of the
affected segment If (change in C.M. exceeds a specified threshold)
{ Send flooding message to other neighbors } } Check the wait-to-
leave list If (a vehicle exits the segment) { Update the C.M. of the
affected segment If (the change in C.M. exceeds a specified
threshold) { Send flooding message } }}

FIGURE 4.3

Functionality of a DTMC in DICAF

While (destination not reached yet) { If (entered the jurisdiction of a
DTMC) { Communicate with the DTMC, download appropriate C.M.
values Compute maximum permitted speed Set actual speed equal
to maximum permitted speed Upload actual speed to DTMC
Compute best route and execute travel } else { continue travel }}

FIGURE 4.4

Functionality of a Vehicle
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understand its performance and its dependence on different factors, DICAF is
first modeled and then simulated on a parallel processing testbed that is
constituted by a network of workstations configured as a loosely-coupled
parallel processor. The simulation coupled with the testbed virtually resembles a
real implementation with one exception. To facilitate the simulation of a realistic
system, i.e., with a reasonable number of vehicles, while every DTMC is
represented by a workstation, the vehicles are modeled as tasks and executed by
the workstations underlying the DTMCs. When a vehicle is traveling along a
highway segment, its computations are performed by the workstation underlying
the DTMC that controls the segment. Every vehicle is represented through a
process that migrates from one DTMC to the subsequent DTMC in the form of a
message, the vehicle must be represented through a data structure where the
fields represent the vehicle’s key parameters. The fields include preferred speed,
actual speed, origin, and destination. When a vehicle travels from the current
DTMC (say A) to another DTMC (say B), the key parameters of the
corresponding process in the underlying workstation for A are encapsulated
through a message, propagated to B, and remanifested as a process in the
underlying workstation at B. Thus, vehicles move in the simulation at electronic
speeds instead of their physical speeds and, during its travel along a segment, a
vehicle’s computation subtask is executed on the workstation underlying the
DTMC that controls the highway segment. Thus, DICAF is capable of simulating
a highway system many times faster than the actual operation.

This chapter assumes that a representative highway system is organized in the
form of a rectangular grid, with any loss in generality. A DTMC is located at every
intersection and while it may be connected to a maximum of four segments in
four directions, it may only control a maximum of two segments: east and south.
For DTMCs located at the bottom of the highway system, there are no south
segments. Also, for DTMCs located to the extreme right of the highway system,
there are no east segments. Thus, the maximum number of segments they control
is unity. 

Every DTMC maintains key information on the highway segments that it
controls using the following data structure. The first field, “index,” stores the
DTMC’s unique identifier, based on its location on the rectangular grid. While
the second through fifth fields relate to the highway segment to its east, the sixth
through ninth fields correspond to the highway segment to the south of the
DTMC. For the east segment, the congestion measure is stored in the field
“eastCM” in miles/hr units. Where the segment is non-existent, this field is
assigned a value of −1. The “eLastSent” stores the most recent value of
congestion measure for the segment that had been propagated to other DTMCs
and “eSeq” refers to the sequence number of this value. The field “eCar” stores
the number of vehicles currently traveling along the segment. The last four fields,
southCM, sLastSent, sSeq, and sCar, correspond to eastCM, eLastSent, eSeq,
and eCar respectively.
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typedef struct DTMC { int     index; float eastCM; float eLastSent; int
eSeq; int eCar; float southCM; float sLastSent; int sSeq; int sCar;}

In addition, every DTMC maintains the congestion measure values for all other
highway segments in DICAF. These values are updated with new information
received periodically from other DTMCs in the form of flooding messages.
When a vehicle connects with a DTMC, it downloads a part of this database for
determining its routing. For efficiency of memory usage, each DTMC declares
an array of pointers of size MAX_DTMC, as shown below. Additional memory
is dynamically allocated during initialization to store the C.M. values of all
highway segments corresponding to the specific highway system modeled in
DICAF.

typedef struct DTMC *DTMC_PTR;DTMC_PTR DTMC
[MAX_DTMC];

DICAF utilizes two types of messages: one to encapsulate vehicles and emulate
the migration of the vehicles from one DTMC to the subsequent DTMC and
another to propagate updated congestion measure values for the highway
segments. The data structure, shown below, is used to encapsulate vehicles. The
“origin” field stores the DTMC identifiers where the vehicle originates while
“dest” stores the final destination. The vehicle’s unique identifier is stored in
“id.” The identifier is assigned at the DTMC where the vehicle is generated and
it is synthesized utilizing the DTMC identifier and the sequence number of the
vehicle generated at that DTMC. The “update” and “from” fields store
information to instruct the receiving DTMC to update local information on the
congestion measure and other measures relative to the highway segment. The
“update” flag is set if the current highway segment on which the vehicle is
traveling is owned by the receiving DTMC. The “from” flag distinguishes
whether the east or south segment of the DTMC requires updating. While the
“inserted” field contains the time of assertion of the vehicle into a segment, the
fields “appSec (in seconds)” and “appMSec (in milliseconds)” collectively store
the time at which the vehicle is scheduled to appear, i.e., arrive, at the destination
DTMC. Evidently, this is computed from the length of the segment and the speed
of the vehicle along it. The fields “trvSec (in seconds)” and “trvMsec (in
milliseconds)” contain collectively the cumulative actual travel time of the
vehicle from the origin to its current position while “idealTrvSec (in seconds)”
and “idealTrvMSec (in milliseconds)” store the ideal time that the vehicle
requires from origin to final destination, i.e., the theoretical minimum travel time.
While “speed” stores the speed of the vehicle along the current highway
segment, the “prefSpeed” refers to its desired speed.

typedef struct Vehicle{        int origin;        int dest;        int id;        int
update;        int from;        long inserted;        long appSec;        long
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appMSec;        long trvSec;        long trvMSec;        long
idealTrvSec;        long idealTrvMSec;        float speed;        float

prefSpeed;}

The behavior of the workstation underlying every DTMC is presented in
Figure 4.5, in pseudo-code.

In Figure 4.5, the first two statements correspond to initialization. During
initialization, the workstations underlying the DTMCs are interconnected
through software links such that the resulting network corresponds to the
highway system. In addition, vehicles are generated at the DTMC with unique
identifiers and stochastic destinations. While their desired speeds are also
stochastic, they conform to a normal distribution. The generated vehicles are
included in the wait-to-leave list for the DTMC and are organized according to
the times when they either enter the segment or depart the DTMC along an
appropriate highway segment. The DICAF simulation continues until the end of
simulation time is reached. The simulation runs through the following phases.
First, the incoming messages are read and processed by the function
Process_Message, shown in Figure 4.6. Where the message corresponds to a
flooding message, i.e., a C.M. update, it is used to update the local database and
then forwarded to other DTMCs. If the incoming message is an encapsulated
vehicle, it is remanifested as a vehicle-process within the current DTMC and it is
inserted into the wait-to-leave list. Second, the wait-to-leave list is examined to
check whether any vehicle must depart the DTMC at the current time. The
vehicle’s routing is computed, them encapsulated in the form of a message, and
propagated along to the subsequent DTMC. Simultaneously, the C.M. values of
the affected highway segments are recomputed and propagated to other DTMCs.
The process continues until the simulation terminates. 

Figure 4.7 details the organization of the function “check wait-to-leave list,” in
pseudo-code. During simulation, when the current time equals the time of
departure from the DTMC of a vehicle contained in the wait-to-leave list, the
vehicle is first extracted from the list. Then, utilizing the most recent C.M. values
of the highway segments, the vehicle’s routing is determined, and it is
propagated to the subsequent DTMC along the appropriate segment. For a given
segment, the value of C.M. may change when either a vehicle enters or exits.

main { Synthesize the DICAF network; Generate vehicles and
include in wait-to-leave list; While (simulation time is not expired) {
Check incoming message(s) -- may be encapsulated vehicle or C.M.
update; Process incoming message -- process vehicle or forward
C.M. updates; Check wait-to-leave list; Process vehicle(s) off from
the list; Propagate updated C.M. values; }}

FIGURE 4.5

The ªmainº routine in DICAF
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This causes the list to contain two kinds of entries: (i) vehicles entering the
segment that are labeled normal, and (ii) “shadow” vehicles exiting the segment.
Since only the owner DTMC maintains the C.M. for a segment, the “shadow”
entry helps to ensure that the C.M. is updated when the vehicle completes its
travel along the segment.
When the updated C.M. value for a highway segment differs substantially from
its previous value, the owner DTMC must propagate the information to other
DTMCs through the flooding scheme. The responsible function is
“Update_segment.” In this scheme, a sequence number is associated with every
message to cut down on duplicate transmissions. When a message is broadcast
from an originating DTMC to its neighbors, the DTMC increments the sequence
number. When this message is received by a different DTMC, it will forward the
message to its neighbors only if the sequence number is more recent than that
associated with the previous copy of the C.M. The algorithm is presented in
pseudo-code in Figure 4.8. 

Process-Message { if (Message relates to flooding) Receive-
Flooding; else { if (Vehicle commences travel of segment owned by
current DTMC) { Update segment ; }      Insert vehicle into wait-to-
leave list; }}Receive-Flooding { if (Message sequence number >
previous sequence number of the segment) { Update segment --
update C.M. & advance sequence number; Forward flooding
messages to all its neighbors; }}

FIGURE 4.6

The ªprocess messageº routine in DICAF

Process_vehicle {   if (entry refers to a “shadow” vehicle)
{      Update segment since vehicle reaches the end;   }   else {      if
(current segment used by vehicle is owned by DTMC) {         Update

segment since vehicle exits the segment;      }      Determine best
route and the subsequent DTMC;      if (this DTMC is the final

destination of vehicle) {         Record relevant statistics in vehicle’s
data structure;      }      else if (subsequent segment is owned by

current DTMC) {         Determine the vehicle’s speed on the
segment;         Update segment since vehicle enters the

segment;         Create a “shadow” entry for time when vehicle will
complete travel         Include entry in the list with shadow flag

set      }      else if (current DTMC does not own highway segment)
{         set the “update” field in vehicle’s structure      }      Propagate

the data structure to the next DTMC;   }}

FIGURE 4.7

ªCheck wait-to-leave listº function
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4.4
Implementation and Debugging Issues

The DICAF model and simulator is written in C and designed to execute on a
network of Unix-based workstations, connected through a 10 Mbit/sec Ethernet
and configured as a loosely-coupled parallel processor. The network includes
over 65 SUN sparc 10 workstations under Sun Solaris 2.4 operating system. The
code segment for every DTMC including the vehicles introduced into the system
at that location is approximately 4432 lines of C code while the networking code
is approximately 1500 lines of C++ code. The simulator is compiled by the
public domain GNU C compiler, gcc, and executed at a low priority in the
background, utilizing the “nice” utility. The execution of DICAF generates
approximately 4 to 9.5 megabytes of data which is then parsed by a parser to
yield the performance graphs. The parser consists of 910 lines of C. Each
simulation run corresponds to an experiment which, in turn, represents 24 hours
of actual highway traffic and requires approximately 16 minutes of wall clock
time for both a 10 processor and 51 processor DICAF system. The maximum
number of vehicles introduced into DICAF is 45,000. The underlying testbed
consists of 65 concurrently executing SUN sparc 10 workstations, each with 32
Megabytes of RAM and a 424-Mbyte hard drive. A total of 400 simulation runs
are executed throughout this research. It may be noted that the workstations may
be executing primary jobs for the users at the respective consoles.

A unique characteristic of asynchronous, distributed algorithms, DICAF being
a specific instance, is that they are extremely complex to debug. It is estimated
that debugging a 50-node DICAF simulation is equivalent to debugging
approximately 4000×50=200,000 lines of C code, given that DICAF is
approximately 4000 lines long. In truth, however, the problem is more severe. At
any instant during execution, every processor may be executing a unique line of
the DICAF program and there may be little to no correlation between them.
Since we human beings think sequentially, in general, comprehending the
simultaneous execution of multiple autonomous entities is very difficult, at the

Update_segment {   if (vehicle exits highway
segment)      Decrement number of vehicles on highway

segment;   else      Increment the number of vehicles on highway
segment;   Compute new C.M. value;   Update local copy of the C.M.
value;   if (C.M. differs from previous value by a margin exceeding

threshold) {    Propagate C.M. value through Send-flooding;   }}
Send_flooding {   Increment sequence number associated with the
segment;   Initialize message with sequence number, segment ID,

and C.M. value; Propagate message to all the neighbors;}

FIGURE 4.8

ªUpdate_segmentº function in DICA F
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least. Conceivably, one can add printf statements in the code to display the
values of key variables and structures as the execution progresses. However, the
numbers of times that the values of the variables are printed out quickly runs into
the thousands and becomes overwhelming. Timing-related problems are more
acute and even harder to debug since they can become intermittent if printf
statements are added to the code. In the experience of the authors, efficient
debugging requires an extremely thorough knowledge of the program, very high
degrees of concentration, commitment, and patience.

Asynchronous, distributed algorithms also impose great demand on the
accuracy and correctness of the underlying operating system. First, such
algorithms require fast propagation of small to modest size messages. Second,
the distribution of messages is highly bursty. Third, given that each processor
must execute the route guidance computations for 45,000 vehicles in addition to
computing and disseminating the congestion measures, the burstiness of the
message distribution reaches an extreme. This, in turn, imposes frequent writes
into the buffers that are constantly full. It was observed that at a few times, the
simulation failed unexpectedly, accompanied by the errors: can’t write, broken
pipe, and sigpipe error. Other, hard-to-explain errors include a scenario where
one of the processors fails to write data into a file despite successfully opening it.

During simulation, a vehicle collects and stores its travel-related information
including routing, C.M. values, and time of travel. The data is written out into a
file when the vehicle reaches the destination DTMC. The parser utilizes it to
generate performance statistics including the average speeds of vehicles
throughout their travel, the actual elapse times, the theoretical minimum travel
times, the actual speed distributions of the vehicles, and the percentage
differential travel times as a function of the vehicle identifiers and as a function
of the time of assertion of the vehicle into DICAF. The percentage differential
travel time is defined later in this chapter. In addition, the parser assists in
plotting the congestion measures on the highway segments both as functions of
the highway segments and the simulation time. The distribution of the number of
vehicles on the highway segments and the number of vehicle-DTMC and inter-
DTMC messages is also obtained by the parser. Corresponding to a number of
measures, the parser also computes the average and standard deviation values.

4.5
Simulation Results and Performance Analysis of DICAF

The ultimate objectives of DICAF include (a) fast arrival of all vehicles at their
destinations and (b) superior utilization of all resources, i.e., highway
segments. In addition, DICAF aims to deliver a scalable, pragmatic, yet
economical system wherein the communication and computational demands on
the individual DTMCs are minimal. Furthermore, for a given highway system
and a given realistic, input traffic distribution over a time interval of interest, the
travel time required for any vehicle between any given origin and destination, in
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DICAF, must be uniform and independent of the time at which the vehicle
commences its travel during the interval.

For a systematic presentation of the performance of DICAF, in this chapter,
first the independent parameters and key performance measures are identified
and a number of simulation experiments are executed, corresponding to
representative traffic conditions, on two highway systems, shown in Figures 4.1
and 4.9. While the highway system in Figure 4.1 consists of 9 DTMCs and 12
highway segments, that shown in Figure 4.9 consists of 50 DTMCs and 85
highway segments. Every DTMC controls the segments to its east and south. All
segments are assumed to be 10 miles in length, without any loss in generality,
since the speeds of the vehicles, as described later, are stochastically determined.

The independent parameters include (1) the number of vehicles asserted into
the system, (2) the density of vehicles, i.e., the frequency with which the vehicles
are input into DICAF, and (3) the distribution of vehicle speeds.

The key performance measures include (a) the distribution of the travel times
of vehicles arriving at their destinations, (b) the fraction of vehicles reaching
their destinations, (c) the average and standard deviation of the travel times as a
function of traffic density, (d) the distribution of the C.M. for selected highway
segments as a function of the simulation time, (e) the average C.M. values for the
highway segments for different traffic densities, (f) the travel times of the
individual vehicles as a function of the times of their assertion into DICAF, and
(g) the average number of vehicles on each of the highway segments, under
different traffic densities. In addition, two measures are presented to permit
closer examination of DICAF’s performance relative to shorter travel times of
vehicles. The first, (h), is the distribution of the actual average speeds of every
vehicle during its travel, relative to its desired speed. The second measure aims
to provide an insight into the impact of the distribution of desired speeds of
vehicles on DICAF. This is achieved by measuring the average of the travel
times of vehicles for higher µ  value and identical �  value and for higher µ  value
coupled with smaller �  value. These are labeled measures (i) and (j) respectively.

To estimate DICAF’s achievement in distributing the overall communication
task, two additional performance measures are defined. They include (k) the
maximum data transfer rate from each of the DTMCs to the vehicles measured
every second of the simulation execution and (1) the distribution of the total
number of flooding messages, both received and sent by the DTMCs, as a
function of simulation time. The flooding messages carry the C.M. values for
other highway segments from other DTMCs.

In DICAF, a vehicle is represented through a data structure and is propagated
from one DTMC to another at electronic speeds unlike the slow actual highway
speeds. Thus, the DICAF simulation can execute many times faster than an actual
highway operation and this permits a detailed study of DICAF under many
representative sce narios. The DICAF design is organized to execute 90 times
faster than an actual highway operation. That is, 1 second of the simulation
corresponds to 90 seconds of actual highway operation and a 24-hour highway
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operation is simulated in (24×60×60÷ 90)=960 seconds or 16 minutes of wall
clock time. This is achieved in DICAF as follows. In DICAF, a vehicle arrives at
a DTMC from the preceding DTMC in only a few milliseconds. However, the
arrival of the vehicle is deliberately delayed at the destination DTMC by a value
that corresponds to the travel time in the actual highway divided by 90. This also

FIGURE 4.9

A Second Representative Highway System modeled in DICAF
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guarantees the accuracy of modeling and representing the travel of every vehicle
in DICAF relative to the resolution of the simulation.

The average vehicle length is assumed to be 0.0025 miles which yields the
maximum number of vehicles allowed on any segment at , as per Equation (4.1).
The input traffic distribution uses a stochastic function to generate vehicles that
are uniformly asserted at the DTMCs of DICAF. Every simulation run executes
corresponding to 24 hours of actual highway operation. Accordingly, the traffic
generator asserts vehicles during the simulation corresponding to a 24-hour day.
At every DTMC, the vehicles generated are assigned destination DTMCs
stochastically. The number of vehicles asserted at any DTMC is a uniform
function of time throughout the simulation. However, the vehicles’ speeds are
stochastically generated, utilizing the “drand48” pseudo-random generator
function, and they follow a normal distribution with specified �  and µ  values.
Every vehicle is assigned a unique identifier. For the 9–DTMC highway system,
the identifier is computed as: ((DTMC identifier×10,000)+(1 .. maximum
number of vehicles generated at that DTMC)). For the 50–DTMC highway
system, the identifier is computed as: ((DTMC identifier ×1,000,000)+(1 ..
maximum number of vehicles generated at that DTMC)). The maximum C.M.
value allowed for the highway segments is 100 mph and the highest and lowest
permitted vehicle speeds are 90 mph and 30 mph respectively. Thus, in this
chapter, most of the performance results for both highways systems in Figures
4.1 and 4.9 are obtained for µ =50 mph and � =10 mph. In addition, the highway
system of Figure 4.1 is simulated in DICAF for the scenarios: (i) µ=65 mph and
� =10 mph and (ii) µ =65 mph and � =5 mph. While the highway system in
Figure 4.1 requires 10 processors that execute concurrently and asynchronously,
that in Figure 4.9 requires 51 simultaneously executing SUN sparc 10s. The
number of vehicles asserted into DICAF is controlled by the traffic density
function that assumes the values 3, 6, and 8, for the highway system in
Figure 4.1. A traffic density value, D, implies that, at every DTMC, a stochastically
generated number of vehicles, ranging from 0 to D, is asserted into DICAF at
every second of the simulation. The corresponding numbers of vehicles are 8,
528, 21,572, and 30,284, respectively.

The Rhode Island Department of Transportation maintains traffic density for
the key highways including I-95, I-195, and I-295, in terms of the maximum
number of vehicles carried by each of the segments over a 24-hour period. Since
the same vehicle may travel on different highway segments, it is nontrivial to
estimate the total number of vehicles asserted into the entire Rhode Island
highway system from the traffic density map [72]. It is noted that the 3-lane, I-95
highway carries the most traffic, namely a maximum of 89,302 vehicles
throughout a 24-hour period. Therefore, the maximum, normalized traffic
density, relative to a single lane highway every lane, will correspond to 30,000
vehicles in a 24-hour period. Given that Rhode Island is a tiny state, approximately
40 miles by 16 miles in size, with I-95 assuming the role of the most important
roadway, this chapter assumes that I-95 constitutes a part of the itinerary of
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nearly every vehicle that travels on any highway segment of Rhode Island.
Therefore, the maximum number of vehicles asserted into the Rhode Island
highway system is approximately 30,000 over a 24-hour period. Thus, the highest
traffic density utilized in DICAF, namely 8, is representative of actual traffic
conditions.

For the 50-DTMC highway system shown in Figure 4.9, the total number of
vehicles asserted into DICAF is 45,296, corresponding to a density of 3. The
simulation is also designed to execute 90 times faster than the actual highway
operation.

It is noted that each vehicle is generated stochastically, i.e., its source,
destination, and desired speed of travel, are all stochastic quantities. Given that
over 45,000 vehicles are generated and simulated, the results obtained are
assumed, reasonably and justifiably, to yield a general insight into the
performance of DICAF. Although over 400 simulation runs were executed, each
time with different seed values, the general behavior of the data was observed to
be similar, and the results reported here correspond to a specific run. It may be
further noted that neither µ  nor �  values were measured. They were assumed for
the sake of generality. The confidence interval for a µ , is given by , where  is
the computed mean and k= , where c relates to the confidence level � , �  is the
measured variance, and n is the number of samples. In this chapter, n is over 45,
000 which implies a very small value for k, i.e., a very narrow confidence
interval, even for a large value of c, i.e., very high confidence level.

The performance data, presented in this section, is obtained from sampling key
measures every simulation second.

Figure 4.10 presents the normal distribution of the desired speeds of the
vehicles for traffic density values of 3, 6, and 8, for the 9-DTMC highway
system. The x axis represents the speeds of the vehicles, ranging from 30 mph to
90 mph while the y-axis presents the number of vehicles corresponding to the
respective desired speeds. Clearly, the bulk of the vehicles desire travel speeds
around 55 mph while fewer vehicles desire to travel at the lower and higher
speeds.

To contrast the performance of DICAF against the traditional TMC scheme
requires the development of a simulator that utilizes centralized scheduling and
executes sequentially on a single processor. In this research, a uniprocessor
simulator is not developed for two reasons. First, the memory requirement to
represent the data structures corresponding to an excess of 30,000 vehicles is
prohibitively large. Second, the speed of execution of the simulator is likely to be
excruciatingly slow. This chapter proposes to evaluate the absolute performance
of DICAF. In this chapter, corresponding to every vehicle, the time to complete
the travel is computed as the length of the shortest path from the origin DTMC to
the destination DTMC, in miles, divided by the desired speed of the vehicle. This
corresponds to the ideal travel time since it may be achieved by the vehicle only
in the complete absence of any other vehicle in DICAF competing with it for
resources. The ideal travel time for a vehicle is the best that it can achieve, in the
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absolute sense. When a simulation run is complete, the actual travel time
required by each of the vehicles is obtained from the information that the
vehicles collect as they progress from their origins to the respective destinations.
For a vehicle, the actual travel time is the cumulative sum of the travel times
between every DTMC pair in its route during the simulation. The percentage
differential travel time for a vehicle is then computed as: ((actual travel time for
a vehicle—ideal travel time)/(ideal travel time)×100). By definition, the
percentage differential travel time for every vehicle must be a positive
percentage, i.e., greater than or equal to 0%, and it reflects the travel time that the
corresponding vehicle requires in excess of the absolute minimum.
Figures 4.11(a) through 4.11(c) plot the percentage differential travel time along
the y-axis for every vehicle in DICAF, for density values 3, 6, and 8,
respectively. The x-axis represents the unique vehicle identifiers that range from
10,000 to 90,000. The average and standard deviation value pairs for density
values 3,6, and 8 are {1.89%, 6.09%}, {1.85%, 5.71%}, and {2.12%, 6.14%}

FIGURE 4.10

Normal Distribution of the Desired Speeds of Vehicles for traffic density values of 3,
6, and 8
 

92 4. DICAF: A DISTRIBUTED, SCALABLE ARCHITECTURE FOR IVHS



respectively. The increase in the average of the percentage differential travel
times over all vehicles, from 1.89% to 2.12%, corresponding to traffic densities 3
and 8 respectively, reflects the increased competition for highway segments by
more vehicles which, as expected, results in greater travel times for all vehicles.
Furthermore, with over 30,000 vehicles asserted into DICAF, the average
vehicle’s travel time is only 2.12% higher than the absolute best. In addition, the
worst-case travel time, shown in Figure 4.11(c), is only 85% more than the
absolute best or less than twice the ideal travel time.

Clearly, these findings attest to DICAF’s strong performance. Thus, despite 30,
284 vehicles competing for highway segments, the autonomous, distributed, and
dynamic routing of each vehicle in DICAF yields results that are very close to
ideal. The graphs are especially revealing for the following reason. In the
parallel processing community, while it is generally accepted that the use of
distributed algorithms may yield faster results, the issue of the quality of the
solution relative to that from the  centralized algorithm, is an open one. In
distributed algorithms, local entities execute the decision making while allowing
access to only a fraction of the system-wide state. While the lack of access to the
system-wide state may raise concern, the results of DICAF reveal that the quality
of the results is very high. That is, as evident from DICAF under certain
circumstances, distributed algorithms may yield very high quality solutions while
also generating them quickly. The authors have developed [73] a new
mathematical framework to extract distributed algorithms from centralized
descriptions of problems.

In the DICAF simulation, vehicles are uniformly asserted at the DTMCs
throughout the entire simulation run, i.e., up to 960 simulation seconds. The
simulation is permitted to continue execution up to 1100 seconds when it is
observed that all vehicles arrive at their respective destinations.

Figures 4.12(a) through 4.12(c) present the variation of the C.M. value for a
selected highway segment, 7, under the traffic density values 3, 6, and 8,
respectively. The variation of the C.M. value is continuous and consistent with
the definition in Equation (4.1). The reason for the choice of segment 7 is that it
is located at the center of the highway system and many vehicles traveling
diagonally are likely to include it in their itinerary. The initial, default C.M.
value is 100 mph while, following the completion of travel of all vehicles, i.e., at
1100 simulation seconds, the C.M. value increases to 100 mph. As expected, the
average C.M. value is higher for low traffic density and lower when the total
number of vehicles is high.

Figures 4.13(a) through 4.13(c) present the average C.M. values for all
highway segments computed over the entire simulation run for each of the three
traffic density values. It is noted that the average C.M. values for the highway
segments are close to one another, ranging from 54 mph to 57 mph, implying
that all resources are equitably utilized in DICAF.

Figures 4.14(a) through 4.14(c) present the highway resource utilization
through a plot of the average number of vehicles over the entire simulation run
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for each of the highway segments, for the three traffic density values. Although all
highway segments are utilized reasonably, which reflects DICAF’s success in

FIGURE 4.11

Percentage differential travel times for all vehicles, i.e., difference of Actual Travel
time of each vehicle relative to its ideal travel time as a fraction of the ideal travel
time, for (a) density 3, (b) density 6, and (c) density 8
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utilizing all highway resources, the average number of vehicles is higher on
some segments than on others principally due to the stochastic speeds and
destinations of the vehicles. The average number of vehicles for every segment is
higher in Figure 4.14(c) than in Figure 4.14(b) which, in turn, is greater than in
Figure 4.14(a). This is expected since higher traffic density value implies a
greater number of vehicles that must utilize the highway segments to achieve
their travels. For density 3, the maximum of the average number of vehicles over
all segments is 16, while for density 6 and 8, the corresponding figures are 83
and 130 respectively. The average number of vehicles for any segment is
obtained by sampling the vehicle queue length associated with the segment of
every simulation second. To relate these figures to the maximum capacity of the
highway segments, consider the following. A highway segment may support a
maximum of 2000 vehicles on it, all of which must be traveling at the same
speed anywhere from 0 mph to 90 mph. The shortest time for which this
statement may be true, may be obtained as 10 miles÷90 mph=399.9 actual highway
seconds,    assuming an average speed of 90 mph. This, in turn, corresponds to 4.
4 simulation seconds. Therefore, corresponding to 1 simulation second, the
maximum number of vehicles on a highway segment is 2000÷4.4=454. Thus, the
maximum of the average number of vehicles on any segment under DICAF,
namely 130, corresponds to approximately 28% of the absolute maximum. Thus,
for a given number of vehicles, unlike the traditional approach where only a few
segments are extremely congested, traffic is equitably distributed among all
highway segments in DICAF.

To understand the influence of the assertion time of the vehicles on their travel
times, Figures 4.15(a) through 4.15(c) present the tuples [(Difference of Actual
Travel time of a vehicle relative to its ideal travel time as a fraction of its ideal
travel time), time of assertion of the vehicle into DICAF] for all vehicles.
Figures 4.15(a) through 4.15(c) correspond to traffic density values of 3, 6, and 8
respectively. The increased darkening of the graphs in Figures 4.15(a) through 4.
15(c) reflects the increased number of vehicles. Except for a dark band between
600 seconds and 960 seconds in Figure 4.15(c), the outlines of the three graphs
are similar. This implies that, except at the beginning of simulation, vehicle travel
times remain unchanged regardless of where, in the simulation time line, they are
introduced into DICAF. The dark band between 600 seconds and 960 seconds in
Figure 4.15(c) is not significant. It merely reflects the introduction of an
appreciable number of vehicles into DICAF within the simulation time interval—
{600 sec, 960 sec}, and that for these vehicles, the percentage differential travel
times range from 0 to 10%. However, the negative slopes of the outlines of the
three graphs, or stated differently, the absence of data points in the upper right
hand corner of the graphs, is significant. It implies that, despite a realistic and
high traffic density, DICAF successfully achieves efficient routing for all
vehicles. Given the observation that in every simulation, all vehicles reach their
respective destinations correctly, the graphs in Figures 4.15(a) through 4.15(c)
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also imply that the given highway system is stable through the highest traffic
density of 8, i.e., it can accommodate at least 30,284 vehicles.

FIGURE 4.12

Distribution of C.M. for highway segment 7 as a function of the simulation time, (a)
density 3, (b) density 6, (c) density 8
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In the graphs, vehicles asserted into DICAF early in the day appear to take
longer travel times relative to those that are asserted at all other times during the

FIGURE 4.13

Average C.M. value for all highway segments of DICAF, for (a) density 3, (b) density
6, (c) density 8
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simulation. This is counter-intuitive as one would normally expect very little to
no vehicle build up, due to congestion, early in the day. The reasoning is

FIGURE 4.14

Average number of vehicles on the highway segments computed over the entire
simulation run, for (a) density 3, (b) density 6, (c) density 8
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obtained from examining the speed distribution of the vehicles asserted into
DICAF as a function of the simulation time which is shown in Figure 4.16.

Figure 4.16 reveals that the speeds of the vehicles, asserted into DICAF, range
from 30 mph to 90 mph from simulation time 0 to 100 seconds. From 100 to 550
seconds, the speed range narrows to a band—{40 mph, 80 mph}, which is followed
by an even narrow band—{50 mph, 70 mph} up to 960 seconds. Given the goal
that the vehicle speeds must follow a normal distribution, as shown in
Figure 4.10, the traffic generator program first creates “speed buckets” with
speed ranges extending from {30 mph, 35 mph} to {85 mph, 90 mph} and then
allocates the appropriate number of vehicles for each bucket and for each of the
three traffic density values. Next, vehicles with stochastic destinations and
speeds are generated, and they are assigned to the appropriate buckets to meet
the appropriate allocation, starting at simulation time  0 seconds. As expected,
the buckets with the extreme ranges—{30 mph, 35 mph} and {85 mph, 90
mph}, get filled first, i.e., at lower values of simulation time. Thereafter, the
buckets with the subsequent extreme speed bands—{40 mph, 45 mph), {45 mph,
50 mph}, {70 mph, 75 mph}, and {75 mph, 80 mph} are filled at simulation
times ranging from 100 to 550 seconds. By this time, all buckets except those in
the range {50 mph, 70 mph}, have been filled. So, from 550 to 960 simulation
seconds, the vehicles asserted into DICAF bear speeds within a narrow band.

Logically, the slower speed vehicles are very likely to lower the C.M. values of
the segments. Therefore, in addition to the expected longer travel times of the
slow vehicles, those with higher desired speeds will also require longer travel
times. As simulation progresses, the average of the desired speeds of the vehicles
is observed to increase, resulting in faster travel and shorter travel times.

In addition, a comparison of the graphs in Figures 4.17 and 4.10 reveals that
while the actual speed distribution of vehicles resemble the initial desired normal
distribution, the distribution in Figure 4.17 is somewhat flattened due to
congestion.

Figure 4.17 plots the actual average speeds of every vehicle obtained through
dividing the total distance traveled by each vehicle by its respective travel time.
It may be observed that, throughout the simulation, vehicles travel at average
speeds ranging from 30 mph to 80 mph although the number of vehicles beyond
75 mph is minimal. The average speeds are crowded around 60 mph implying
that, despite competition for resources from over 30,000 vehicles, most of the
vehicles are able to determine their routes efficiently in DICAF, thereby realizing
shorter travel times.

The contrast between the percentage differential travel times for vehicles
introduced into DICAF at the beginning of simulation versus those that are
asserted later in the simulation, as observed in Figure 4.15, appears to indicate
that narrow speed bands may bear significant impact on routing efficiency and
faster travel times for all vehicles. To examine this hypothesis, simulations are
designed to execute for two input traffic patterns—{µ =65 mph, � =10 mph} and
{µ =65 mph, � =5 mph}. The traffic density selected is 8. Figures 4.18(a) and
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4.18(b) present the difference of actual travel time of each vehicle relative to its

FIGURE 4.15

Percentage differential travel times for all vehicles, i.e., difference of Actual Travel
time of each vehicle relative to its ideal travel time as a fraction of its ideal travel
time, as a function of the assertion time of the vehicle, (a) density 3, (b) density 6, (c)
density 8
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ideal travel time as a fraction of the ideal travel time, for all vehicles. Figures
4.18(a) and 4.18(b) correspond to the traffic generator parameters—{µ =65 mph,
� =10 mph}. Corresponding to Figure 4.18(a), the number of vehicles is 30,284
and the average and standard deviation values are 1.11% and 4.13%. For
Figure 4.18(b), the number of vehicles is 30,302 and the average and standard
deviation values are 0.03% and 0.45%.

A comparison with the corresponding figures for Figure 4.11(c) reveals that
travel efficiency, i.e., shorter travel times for all vehicles, may be achieved with
relative ease through mandating and enforcing a narrow speed band, defined by
minimum and maximum permitted speed values, unlike the current policy of a
single, 55 mph  maximum speed limit. Conceivably, in the current highway
system, a key cause of speed fluctuation of vehicles arises from the lack of
information on the highway conditions, such as exit location and speeds, all of
which may be successfully resolved by DICAF.

A principal objective of DICAF is to equitably distribute the overall
communications task to all entities. Figure 4.19(a) presents the distribution of the

FIGURE 4.16

Desired speeds of vehicles asserted into DICAF for traffic density 8 as a function of
the simulation time
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number of vehicles connecting to DTMC 5 as a function of the simulation time.
As explained earlier, the reason for the choice of DTMC 5 is that it is located at
the center of the highway system, and it is likely to be in the itinerary of many
vehicles; as a result, the communications related data reflects the worst-case
scenario. The graph in Figure 4.19(a) also reflects the fact that the number of
vehicles on any highway segment and the consequent C.M. of the segment are
highly dynamic function of time. Figure 4.19(b) plots the maximum number of
vehicles connecting to all of the DTMCs. The data presented in both Figures
4.19(a) and 4.19(b) are obtained from sampling the appropriate queues every
simulation second. When a vehicle connects to a DTMC, it downloads the C.M.
values of the appropriate segments and the average information is 96 bytes. Thus,
corresponding to the maximum number of vehicles of 68 for DTMC 5, the
maximum DTMC-vehicle communications rate is given by 68× 96 bytes/
simulation-second=6,528/1.5 bytes/minute=4,352 bytes/minute. This
communications rate is easily realizable through affordable, commercial wireless
modems rated at 9,600 or 19,200 baud.

FIGURE 4.17

Actual average speeds of vehicles in DICAF for traffic density 8
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Figure 4.20(a) presents the distribution of the number of flooding messages,
both sent and received, at DTMC 5, as a function of the simulation time. The

FIGURE 4.18

Percentage differential travel times for all vehicles, i.e., difference of Actual Travel
time of each vehicle relative to its ideal travel time as a fraction of the ideal travel
time, for (a) {µ =65 mph, � =10 mph}, (b) {µ =65 mph, � =5 mph}
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reasoning underlying the choice of DTMC 5 is provided earlier in this chapter.
For every DTMC, the maximum number of inter-DTMC flooding messages,
both sent and received, is recorded and the data is graphed in Figure 4.20(b). It is
observed that for every DTMC, the maximum number of inter-DTMC flooding
messages coincides with the beginning of simulation. The reason is as follows, As
soon as vehicles are introduced on the highway segments, all of the DTMCs
compute new C.M. values for the segments they control. The new C.M. values
are likely to differ substantially from the default value of 100 mph, thereby
requiring them to be propagated immediately to all other DTMCs. As simulation
progresses, changes in the C.M. values of the segments are incremental and the
frequency of flooding messages decreases. The graph in Figure 4.20(b) is
obtained for traffic density 8, i.e., 30,284 vehicles and is the result of sampling
the message queue of each DTMC every simulation second. Every flooding
message consists of four fields and requires 16 bytes. In Figure 4.20(b), the
minimum and maximum number of flooding messages are 55 and 122
respectively. The corresponding data communications rate are 55×16 bytes/
simulation second= 55×16÷1.5 bytes/min=586 bytes/min and 122×16 bytes/
simulation second= 122×16÷1.5 bytes/min=1,301 bytes/min which is also easily
realizable through commercial wireless modems rated at 9,600 or 19,200 baud.
Given that the resolution of the simulation is 1 simulation second or 1.5 minutes
of real operation, the resolution of the data presented here is also limited to 1.5
minutes.

Thus, as evident from Figures 4.19 and 4.20, one the principal objectives of
DICAF   is achieved: an affordable and cost-effective highway infrastructure. In
contrast, a centralized algorithm would theoretically require a much higher
communications rate implying expensive interfaces.

Figures 4.21(a) and 4.21(b) present results from modeling and simulating a
large-scale, complex, highway system shown in Figure 4.9. The purpose of this
study is to examine the applicability of the asynchronous, distributed algorithm,
DICAF, to a large-scale system with 50 DTMCs and 45,296 autonomous
vehicles, executing on 51 concurrently executing workstations. The graphs in
Figures 4.21(a) and 4.21(b) correspond to traffic density 3, represent 24 hours of
actual highway operation, and traffic generator parameters of µ =65 mph and � =5
mph. Figure 4.21(a) yields the average and standard deviation values of 0.038%
and 0.577% respectively which reveal that despite competition for resources
among 45,296 vehicles, the average vehicle’s travel time exceeds the absolute
minimum by only 0.038%. Figure 4.21(b) reveals that, except for those that are
asserted at the beginning of the simulation, all vehicles asserted into DICAF
reach their destinations and their travel times are uniform regardless of the time
at which the vehicles are asserted. Other performance graphs reveal the same
general behavior as those observed for the 9-DTMC system and are not
presented here.
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Limitations of DICAF

The issues of accidents, incidents, and the consequent congestion are not

FIGURE 4.19

(a) Number of vehicles connecting to DTMC 5, as a function of simulation time, (b)
Maximum number of vehicles connecting to the DTMCs

4.1. INTRODUCTION 105



modeled in this chapter. Thus, the only source of congestion in this study arises

FIGURE 4.20

(a) Number of inter-DTMC flooding messages at DTMC 5, as a function of
simulation time, (b) Maximum inter-DTMC communication messages (send+
receive) for every DTMC
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from the stochastic speeds and destinations of the traffic that are generated and
asserted into DICAF. In general, it is likely that the C.M. values for the up and
down lanes for any highway segment will differ. However, DICAF assumes that
the up and down lanes share a single C.M. This assumption is justified because
the stochastic destinations of vehicles in DICAF will probably imply similar
number of vehicles and C.M. values for both up and down lanes. This chapter is
interested in uncovering general insights about the performance of DICAF under
representative highway conditions and not in accurately modeling realistic traffic
in specific federal and state highways. Therefore, the traffic distribution is assumed
to be independent of the time of day, day of year, etc. As described earlier in this
chapter, while every DTMCs is modeled through a workstation, each of the
thousands of vehicles is modeled as a process. Processes migrate from one
DTMC to a subsequent DTMC and are executed by the workstation underlying
the DTMC in whose jurisdiction the corresponding vehicle is currently located.
The principal reason for choosing this approach is the lack of availability of a
testbed with 45,000 interconnected workstations. While this model differs from
reality, it has its advantages and disadvantages. On the negative side, it does not
explicitly model the procedures related to connection establishment between the
DTMCs and the vehicles. Also, the exchange of data between DTMCs and
vehicles in an operational system will involve actual messages that are slow
relative to the exchange of local data structures in the simulation. On the positive
side, the performance data presented in the chapter is conservative in that the 50
workstations  bear the computational burden of every one of over 45,000
vehicles. The performance data of an actual operational system, developed based
on DICAF, where each vehicle’s computing engine executes its own routing
functions, is very likely to be vastly superior to that predicted by the simulation
reported in this chapter.
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FIGURE 4.21

Modeling and simulation of the 50-DTMC highway system in DICAF, (a) Difference
of Actual Travel time of each vehicle relative to its ideal travel time as a fraction of
the ideal travel time, for all vehicles, (b) Difference of Actual Travel time of a vehicle
relative to its ideal travel time as a fraction of its ideal travel time, as a function of
the assertion time of the vehicle
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Chapter 5
Stability of RYNSORD Under Perturbations

5.1
Introduction

According to the literature, the most comprehensive treatment of stability occurs
in the disciplines of physics and control systems. The motivation for defining
stability is well stated by Stewart in the foreword of the 1992 translation of
A.M.Lyapunov’s The General Problem of the Stability of Motion [74]. Stewart
notes that Lyapunov recognized that there are many distinct concepts of stability
—different ways to formalize the idea that “small disturbances lead to small
changes in the motion.” This general concept has applied to a wide range of
disciplines from engineering to political science. In each case, however, the
definition has been adapted to the area to which it is being applied. This chapter
will take the same liberties but will remain motivated by the concept of “small
disturbances lead to small changes in the motion.”

Chen [75] describes three types of stability in control theory: (i) Bounded-
Input Bounded-Output, (ii) Marginal Stability and (iii) Asymptotic Stability, that
are presented subsequently. For each of these types, control theory allows their
definitions to be expressed through differential equations, state-space, and
transfer function models.

Bounded-Input Bounded-Output Stability

Bounded-Input Bounded-Output (BIBO) stability is defined as one where for
every bounded input the output is also bounded. A bounded function is one
whose magnitude is less than some constant for all time. The application of this
definition to RYNSORD [76] [77] is straightforward in that the input may be
represented by the number of trains asserted into the system, at either a single
station or any set of stations, at every time instance. The output consists of the
time at which each train corresponding to each input leaves the system, i.e.,
reaches its destination, which may also be viewed as a function of time. Thus,
for RYNSORD to be BIBO stable, for any given bounded input function, the
output function must also be bounded. This will only be true if every train



asserted into the system reaches its destination in bounded amount of time—an
important property of RYNSORD which will be used subsequently in
determining a steady-state input rate for the system. However, it will also be
shown later that, for RYNSORD, one may always chose an input rate which will
result in an unbounded output. In general, however, the choice of BIBO-based
stability is inappropriate since not all ADDM systems will necessarily lend
themselves to a clear input-output relationship. Nevertheless, BIBO is an
important property of RYNSORD and will be explored in greater details during
steady-state analysis.

Marginal Stability

Marginal stability is generally referred to as Lyapunov’s definition of stability
and Fuller [74] notes that this stemmed from his interest in astronomical problems.
For many problems, a perturbation may not be fully dissipated but rather
persists, within some bounds, for all time. For example, a particle in a circular
trajectory around a point continually oscillates around it and is, therefore,
marginally stable. This definition of stability is analogous to the definition of
marginal stability adopted for RYNSORD.

Asymptotic Stability

In contrast to marginal stability, asymptotic stability is one where the
perturbation is eventually dissipated. Letov [78], in explaining Lyapunov’s
Second Theorem, notes that, under asymptotic stability, the disturbed motion
converges to an undisturbed state as time progresses to infinity. Control systems
engineers find this definition most appealing and it constitutes the basis of the
definition of strong stability in this chapter.

Casavant [79], regrets that it is difficult to apply control theory directly to
distributed systems in that the mathematical methods generally used are difficult
to apply to distributed systems. This stems from the complex interactions within
a distributed system which defies attempts to describe their generally nonlinear
behavior through a set of differential equations or transfer function unless
significant simplifications are assumed. In contrast, this chapter adopts the
approach that control theory is a valuable step in analyzing the properties of
ADDM systems such as RYNSORD, even if the accuracy of the evaluation
depends on the impact of the simplifications. Many of the basic concepts of
control theory apply even where the rigorous mathematical foundations fail to
apply.

In the discipline of distributed systems, the issue of stability is discussed
relative to the properties of self-stabilization, correctness, i.e., absence of
deadlock, robustness, fault-tolerance, and quality of service.

Self-Stabilization
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The study of self-stabilization in distributed systems was introduced by
Dijkstra in 1973. He writes: “I call a system ’self-stabilizing’ when, regardless of
its initial state, it is guaranteed to arrive at a legitimate state in a finite number of
steps” [80]. Thus, self-stabilization implies that the system is robust enough to
recover from an illegal state. The definition of legitimate state is defined by
Dijkstra [81] in terms of privileges which are predicates based on a process’ own
state and that of its immediate neighbors. However, there is a difficulty in finding
realistic systems which conform to this definition of legitimate states and
privileges. An additional problem is that this definition is based on the
identification of specific states and the identification of which global states are
legitimate and which are not. This is a very difficult problem as the set of
possible states can be enormous for a large and complex system.

A more general definition, without the specific definition of privileges, is
given by Awerbuch et al. [82]. They write: “Self-stabilization formalizes the
following intuitive goal: despite a history of catastrophic failures, once
catastrophic failures stop, the system should stabilize to correct behavior
without manual intervention” A catastrophic fault is defined as where the global
state has been arbitrarily corrupted. This definition is a much more practical one
yet goes well beyond Dijkstra’s definition. They only become the same if we
define “correct behavior” to be a legitimate state. The definition proposed in this
chapter espouses this intuitive goal but is not limited to corruptions in state.
Awerbuch’s work focuses on noninteractive systems and approaches self-
stabilization through periodically checking correctness and performing a re-
execution whenever a fault has been found. In contrast, the RYNSORD system is
one that continuously interacts with the environment and it may not be stopped
and re-executed due to practical considerations.

Stable Properties

Related to this model of a distributed system is the definition of stable
properties by Chandy and Lamport [83]. They note that if y is a predicate and is
a stable property of a distributed system D, then in a computation of D, once y is
true, it remains true for the remainder of the computation. Other researchers
including Venkatesan and Garg [84] [85] use stable “predicate” rather than
property. However this definition of stable properties is very different in that it
deals with properties defined as predicates of the system while the definition
proposed here deals with stability in a system-wide perspective. For instance,
Chandy and Lamport [83] consider deadlock as a stable property. In contrast, in
this chapter, if a system were to deadlock, it would result in the system being
unstable. This apparent contradiction reflects the view that system stability is
based on bounding the error in a system and that a deadlocked system is a case
of infinite error. The assumption here is that the system is not designed to
deadlock, as is the case with RYNSORD and most practical systems, so this is a
characteristic of an unstable system.
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Robustness

Robustness is the ability to maintain correct behavior despite changes in the
system. Schreiber [86] makes the distinction between robustness and fail-soft
behavior by the type of errors; robustness are errors in the inputs and fail-soft
behavior are faults in the system. Stankovic [87] offers a different definition,
stating that “in the computer science literature, robustness normally refers to the
ability of a system to handle failures.” The disagreement lies in the scope of the
definition. Schreiber’s definition is limited only to errors in the input while
Stankovic describes it in terms of “failures.” Meyer [88] identifies four
properties for distributed real-time systems: 1) Concurrency, 2) Timeliness, 3)
Fault tolerance, and 4) Degradable performance in the presence of faults. In
control theory, a robust system is one that performs correctly despite
perturbations in its state. This chapter is concerned with the performance impact
of both failures as well as changes in input patterns. Perturbations do not
necessarily imply a failure but represent any changes in the normal operating
environment, and therefore, the definition proposed here encompasses
robustness, fail-soft behavior, and degradable performance.

Fault-Tolerance

Fault-tolerance is concerned with making the system resilient against failures
in the system which is fundamentally different from the concerns of this chapter.
The concern of stability is the performance after the fault, not how to recover
from the fault.

Quality of Service

In [89] Garg et al. have defined stability for distributed applications. They
have also adopted a performance perspective for stability and have chosen to use
the Quality of Service (QoS) provided to the user as their performance index.
They define a stable distributed application as one where the QoS is bounded for
all time, including during the perturbation. The definition is limited in that, first
QoS attributes do not relate to RYNSORD and other systems and second, the
error during a perturbation may be unbounded.

5.2
Formal Definition of Stability of RYNSORD

This section formally introduces the concept of stability for RYNSORD and a
few definitions are presented. The goal of this chapter is to define stability of
RYNSORD in terms of a performance criteria so as to provide performance
guarantees for the system in a dynamically changing environment. Ferrari [90]
defines performance as an indication of how well a system that is already
assumed to be correct, works.
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A critical concept for RYNSORD is a need for a quantitative error
measurement which is referred to as a user defined, measurable quantity. The
three requirements for the error criteria are as follows: first, it is a quantifiable
value. Second, conceptually, it represents the deviation of the system from some
ideal, so the ideal must also be quantifiable. Third, the user desires to minimize
the error quantity. 

DEFINITION 5.1 Error quantity: A quantitative measurement of the system
performance which is expressed as error=\ideal—actual\. Both ideal and actual
must be measurable or computable.

The equilibrium or steady-state for a distributed system is defined simply as
the operational environment, i.e., set of inputs and system resources, under which
the system operates when the error is bounded by some finite constant for all
time. The exact magnitude of this bound is unspecified except that it must be less
than some constant which is less than infinity.

DEFINITION 5.2 Steady-state: If a system exists in a steady-state, then the
error of the system, e, is defined by e<K<�  for all time where K is an arbitrary
constant.

The primary focus of defining stability is in what happens to the system in a
steady state following changes in the environment. These are perturbations that
are inevitable in a real-world environment. The changes are classified into two
categories: system level perturbations and input perturbations. System level
perturbations are generally those that are considered as faults or failures. These
include all forms of hardware failures as well as the arbitrary corruption of local
states. Input perturbations are changes in the manner, or rate, of the input into the
RYNSORD system. A perturbation is described in terms of the assumption it has
violated. An assumption is described as a characteristic of the steady-state
operating environment. Although multiple perturbations may conceivably infect
the system simultaneously, this chapter limits a perturbation to a single change in
the environment.

DEFINITION 5.3 Perturbation: A perturbation is a violation of an
assumption which is specified by the nature of the violation, the magnitude when
applicable, and two time values: tpert is the time at which the perturbation occurs
and tpert_end signifying the end of the changes to the system. Also tpert_dur=tpert_end

—tpert, is defined as the perturbation duration.
DEFINITION 5.4 Stability: If a system is in a steady state and a

perturbation occurs, it will return to a steady state as t� � . Let K1 be the bounds
on the original steady state and K2 be the bound on the final steady state. If
K2� K1 the system is strong stable, otherwise it is marginally stable.

The distinction between strong and marginal stability is an important one.
Given a strongly stable system, its steady-state, and a perturbation, following
repeated applications of the perturbation, the system will eventually return to a
steady state that is either better or equal, in terms of the error bound, to its
original steady state. In contrast, following a perturbation, a marginally stable
system may result in a steady state with a worse error bound. Furthermore,
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repeated applications of the perturba tion may exhibit a growing error bound. In
the worst case, a periodic perturbation may either capitulate the system into
instability or the error may oscillate between consecutive perturbations.

This chapter defines two related classes of stability distinguished by the
perturbations to which they correspond: input stability and system-level stability.

DEFINITION 5.5 Input Stability: Stability related to input perturbations,
i.e., input rate, distribution, or magnitude.

DEFINITION 5.6 System-level Stability: Stability related to system level
perturbations. The definition is inclusive of anything other than input
perturbations; examples are component failures, i.e., links and nodes, and
component degradation, i.e., dropped messages.

5.3
Modeling RYNSORD for Stability Analysis

To perform the stability analysis, RYNSORD is first modeled as a distributed
discrete event simulation. This resembles a real implementation with one
exception. To facilitate the simulation of a realistic system, i.e., with a
reasonable number of trains, while every station node is represented by a
workstation, the trains are modeled as tasks and executed by the workstations
underlying the stations. When a train is located at a host station, its computations
are performed by the underlying workstation and its communications with other
stations are carried out also through this station. When a train travels from the
current station (for example A) to another station (for example B), the
corresponding train-task in the underlying workstation for A is encapsulated
through a message, propagated to B, and re-manifested as a train-task in the
underlying workstation at B. Thus, trains move in the simulation at electronic
speeds instead of their physical speeds and a train’s computation and
communication subtasks are executed on the host station’s underlying
workstation.

While trains can propagate at speeds up to approximately 120 miles/hour (192
km/h), the underlying, fast, computing engines of the testbed enable the
simulation to execute many times faster than reality. The basic unit of time in the
simulation is the timestep and it defines the finest resolution of train movements.
For the reasons underlying the choice of the timestep, the reader is referred to
[76] [77]. RYNSORD permits trains to be introduced into the system
asynchronously, i.e., at irregular intervals of time. In addition, the trains
themselves are autonomous and, therefore, their decisions are executed
asynchronous with respect to each other. 
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5.3.1
Implementation Issues

For this study, a subset of the eastern United States railroad network is selected,
as described in Chapter 3. A few additional tracks are added to represent a few
secondary railroad segments. Figure 5.1 presents the representative railway
network that consists of 50 major stations, 84 track segments, and a total length
of 14,469 miles of track. A model of the network in Figure 5.1 is developed in
RYNSORD with each station as a process. Additionally, the lookahead for all of
the experiments is set to three.

5.4
Stability Analysis of RYNSORD

5.4.1
Error Criteria for Stability Analysis

The key performance measures in RYNSORD are the travel times required by
the trains to reach their destinations and the average number of trains waiting at
each station. Since stability is measured through performance behavior, this
chapter proposes two error criteria, I and II, that are designed to capture the
deviation of the performance measures from standard, benchmark values. This
chapter proposes a novel benchmark: ideal performance measures. The ideal travel
time for each train is the time required for the train to travel the shortest path
from origin to destination in the total absence of any competing trains. The ideal
number of trains waiting at any time instance at any station is zero. While these
ideal values may be achieved in the total absence of any competing trains and are
impractical, they are absolute minimum values and ideally suited as benchmarks.
The error criteria I is expressed as,

error=|actual travel time—ideal travel time|,
where the actual travel time of a train is computed as the time elapsed between
the time the train is asserted into the system, in the presence of other competing
trains, and the time the train reaches its destination. The error criteria II is
expressed as,

error=|actual number of trains waiting at a station—0|.
Although both error criteria aim to achieve the best overall performance, they
may be at odds under certain scenarios. To minimize the travel times of trains,
the first error criterion may encourage a train to wait at a specific station along an
optimal route until a track becomes available for travel. In contrast, the second
error criterion may encourage the train to keep moving through selecting longer
and slower routes while the optimal routes are occupied. Although RYNSORD
selects routes based on minimizing travel time and does not directly consider the
time spent waiting at the stations, both error criteria exhibit similar stability
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properties, reflecting the fact that the average waiting queue size and travel time
for each train are related. 

A real implementation of RYNSORD is a continuously running system.
However, in this chapter, the simulation maintains both start and finish.
Simulation is initiated with no trains in the system and the timestep set to one.
The system is then executed until the end time, which for most of the
experiments in this analysis correspond to 17,280 timesteps or 12 operational
days. Following the initiation of simulation, the trains asserted into the system
experience very little contending traffic which appears to extend superior
performance for these trains. These trains are not considered in the performance
analysis of RYNSORD. Following the termination of simulation corresponding
to a predetermined timestep, there may be trains still in progress in the system.
These trains are marked as having been asserted but never having reached their
destinations and are not considered in the performance data. In computing the
results, RYNSORD only considers those trains that have successfully completed
their journeys.

FIGURE 5.1

A Representative Railway Network: A 50 station subset of the eastern United States
Railroad Network
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5.4.2
Steady-State Analysis

Since any error analysis of a system caused by perturbations is relative to the
system’s normal behavior, it is imperative to first identify the steady-state
behavior of the system. This section presents a steady-state analysis of
RYNSORD and identifies a key criteria as the input traffic distribution. Given
that freight trains dominate passenger trains in RYNSORD, this chapter assumes
that the assertion of trains into RYNSORD follow a uniform distribution over
time. Unlike a bursty traffic model, a uniform distribution is likely to imply a
constant level of network usage, leading to efficient use of resources. At every
station, the probability of a train originating at that station at each timestep, is
defined as the input rate. For every train originating at a station, train speeds are
generated stochastically, ranging from 60 mph (96 km/h) to 100 mph (160 km/
h). The final destination is also generated stochastically by assigning equal
weight to every station, except the originating station, and selecting a station at
random. Geographic proximity plays no part in the selection process. Since
major stations, corresponding to major urban centers, are more likely to
encounter high traffic densities, a set of nine “high traffic” stations are identified
in Figure 5.1: Chicago, Detroit, St. Louis, Philadelphia, New York, Washington,
Pittsburgh, Columbus, and Cincinnati. For the stations corresponding to these
cities, the input train traffic density is set at 0.3, which, as shown later, is well
above the maximum steady-state rate for the system. However, as the steady-
state analysis will show, the presence of these high traffic stations does not
prevent the system from achieving a global steady-state. Also, during the process
of selecting final destinations of trains, these cities are assigned twice the weight
of other stations to reflect that they are more likely to be selected than other
cities.

A trial and error approach is utilized to determine the steady-state conditions.
RYNSORD is simulated corresponding to different input rate values. Table 5.1
summarizes the average number of input trains that are generated corresponding
to different input rate choices. Figures 5.2(a) through 5.2(c) present the error
criterion I as a function of the assertion time, i.e., the time at which a specific
train is asserted into the system. 

In Figure 5.2(a), the error does not continue to increase as time increases and,
as a result, RYNSORD is considered to exhibit steady-state behavior
corresponding to the input rate of 0.125. In contrast, in Figure 5.2(c) that
corresponds to a rate of 0.175, the error clearly grows as a function of time,
reflecting non-steady-state behavior. For the input rate of 0.140, as shown in
Figure 5.2(b), RYNSORD exhibits both bounded behavior and growth depending
on the specific stochastic input, reflecting that this input rate marks the boundary
between bounded and unbounded error. As expected, different steady-state
conditions exhibit different error bound values, as revealed in Figure 5.3 for the
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error criterion II corresponding to steady-state input rates ranging from 0.05 to 0.
125.

5.4.3
Perturbations to the Input Rate and Stability Analysis

As with any real world system, RYNSORD is designed to execute in steady-state
but is likely to encounter periods of rapid fluctuation of input rates arising from
any number of unforeseen circumstances. Thus, the most logical perturbation to
the input rate in RYNSORD consists of an abrupt increase in the input traffic rate
sustained for a short duration. Along with the magnitude of the increase in the
input rate and the length of duration of the perturbation, the choice of the steady-
state operating point of RYNSORD is likely to influence the stability. It is
desired that the RYNSORD design reflect a strongly stable system, i.e., it returns
to the original steady-state, at least, within finite time, following the termination
of the perturbation. A number of experiments are designed and executed wherein
first a steady-state RYNSORD system is exposed to different perturbations under
different original steady-state operating points. Second, the error criteria I and II
are measured as simulation progresses and is analyzed.

Table 5.1 Input Traffic Parameters for Steady-State Analysis of RYNSORD

Input Traffic
Density

Total Trains
Introduced

Total Trains
Finishing

Average Error
for completed
trains (in
timesteps)

Maximum
Error (in
timesteps)

0.050 453 439 (97%) 67.95 439

0.100 858 822 (96%) 183.18 822

0.125 1093 1048 (96%) 309.65 1387

0.140 1250 1156 (92%) 710.25 3207

0.175 1506 1292 (86%) 1115.62 5324

Table 5.2 summarizes the system characteristics under three different input
rate perturbations. The magnitudes of the three perturbations are designed to
push RYNSORD successively further beyond the steady-state point.
Figures 5.4(a) through 5.4(c) present the error criterion I for each train as a
function of its assertion time into the system for each of the three scenarios.
Figure 5.5 presents the error criterion II for each of the three scenarios, as a
function of the simulation time. In all of the Figures 5.4(a)  
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Table 5.2 Perturbations to Input Rate and System Characteristics

Input Rate Perturbation
magnitude

Perturbation
start time
(timestep)

Perturbation
duration
(timestep)

Total Trains
Introduced

Total Trains
Finishing

0.05 +0.5 5760 720 1230 1219(99%)

FIGURE 5.2

Error Criterion I for each Train as a function of the Assertion Time, for (a) Input
Rate=0.125, (b) for Input Rate=0.14, and (c) for Input Rate=0.175
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Input Rate Perturbation
magnitude

Perturbation
start time
(timestep)

Perturbation
duration
(timestep)

Total Trains
Introduced

Total Trains
Finishing

0.125 +0.5 5760 720 2955 2911 (99%)

0.125 +3.0 5760 720 3755 3443 (92%)

through 5.5, the error criteria increase immediately following the
perturbations. However, as time progresses, the error magnitudes decrease, with
RYNSORD ultimately returning to the original steady-state point for all three
cases. Thus, RYNSORD is strongly stable with respect to input perturbations.

5.4.4
Perturbations to System Characteristics and Stability

Analysis

The basic infrastructure of RYNSORD assumes that every train is able to
communicate with an appropriate station and that stations can communicate
between themselves. Although the RYNSORD algorithm does not explicitly take
into consideration the possibility of track failures, trains are capable of
determining alternate routes when one or more tracks are in use or unavailable.

FIGURE 5.3

Error Criterion II as a function of Simulation Time, for Steady-State Input Rates
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This section presents an investigation into the stability of the RYNSORD
algorithm under such failures.  

FIGURE 5.4

Error Criterion I for each Train as a function of the Assertion Time, for (a) Input
Rate=0.05 input rate and Perturbation=0.5, (b) Input Rate=0.125 input rate and
Perturbation=0.5, and (c) Input Rate=0.125 input rate and Perturbation =3.0
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5.4.4.1
Perturbations to Inter-station and Train-to-station

Communications

Interactions between stations and between a train and a station constitute the key
communications in RYNSORD without which trains can neither succeed in
reserving tracks nor travel towards their destinations. The correctness
requirement prevents a train from traveling on a track segment unless it has been
granted explicit reservation. Should a reservation request initiated by a train
remain unanswered, the train will never attempt to use the track in question.
Thus, perturbations that are deliberately introduced here to affect the reservation
process will bear no impact on RYNSORD’s correctness.

The characteristics of the perturbations are as follows. A message propagated
from one station to another never arrives at the destination. Also, a
communication between a station and a train does not reach the receiver. Under
such scenarios, the behavior of a train in RYNSORD is as follows. When a train
does not receive a reply to its reservation request, it decides to travel on the
alternate path, where available, rather than wait indefinitely for the response.
When responses to both of its requests for reservation fail to arrive, the train

FIGURE 5.5

Error Criterion II as a function of Simulation Time, for different Input
Perturbations
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temporarily alters its lookahead to unity and renews its reservation effort. Unless
both communications links along which the train propagates its reservation
requests are down (which is unlikely) the most recent action by the train ensures
at least one reservation response. When the unlikely event occurs, the train waits
at the station and renews its reservation effort at the subsequent timestep with the
restored lookahead value. Conceivably, computer communication failures are
relatively short-lived, and in this chapter we reason that it is logical to wait for a
single timestep within which the communication link is likely restored as
opposed to engaging in a very round-about detour. It is pointed out that a
communication failure between two stations does not eliminate all uses of the
corresponding track segment. The failure only affects those trains that attempt at
reservation through the non-owner station since the messages never arrive at the
owner which alone has sole capability in committing the reservation. Trains
traveling from the station that owns the track are able to request and use the track.

A number of experiments are designed to measure stability: a number of
different communications links are failed, different failure durations are selected
ranging up to permanent failure, and different values for the input traffic rate are
utilized. The objective is to analyze the impact of communications perturbation
on RYNSORD and to determine a traffic input rate for which RYNSORD is
stable under perturbations. In the first experiment, two sets of three and eight
links are failed separately. The links are identified subsequently through the
stations at either ends. Care is exercised to avoid failing a link that is the only
communication path from any station to the remainder of the network. While the
set of three links are suspected high-traffic links, the choice of the set of eight
links reflects the desire to distribute failures throughout the network. The
simulation is executed for 17,280 timesteps for steady-state input rates of 0.05
and 0.125 respectively. The failures are asserted at timestep 5760 and last for a
duration of 1440 timesteps. Thus, tpert=5760, while tpert_end=5760+1440= 7200.
The choice of the failure duration of 1440 timesteps, which corresponds to one
full day of actual operation, reflects adequate time for repairs. In another set of
experiments, the links are failed permanently, i.e., tpert=5760 and tpert_end=� .

Set of Three Links: Baltimore (34):Washington (33); Detroit (9): Toledo (10);
and Roanoke (48):Lynchburg (47).

Set of Eight Links: Cleveland (11):Columbus (12); Rochester (27):Syracuse
(28); St.Louis (5):Detroit (9); Wilson(40):Raleigh(41); Charlottesville
(35):Richmond (36); New York(31):Philadelphia(25); Knoxville (18):Bristol
(20), and Parkersburg (44): Huntington (45).

Table 5.3 Performance Results for Communication Perturbations

No. of Links
Failed

Base Input Rate
of System

Perturbation
Time (timestep)

Perturbation
Duration (in
timesteps)

Stability Class

3 0.05 5760 1440 Strongly Stable
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No. of Links
Failed

Base Input Rate
of System

Perturbation
Time (timestep)

Perturbation
Duration (in
timesteps)

Stability Class

3 0.125 5760 1440 Strongly Stable

3 0.05 5760 � Marginally
Stable

3 0.125 5760 � Unstable

8 0.05 5760 1440 Strongly Stable

8 0.125 5760 1440 Strongly Stable

8 0.05 5760 � Marginally
Stable

8 0.125 5760 � Unstable

Table 5.3 summarizes the performance results and reveals that RYNSORD is
strongly stable with respect to failures of finite duration. Given the higher
probability of communication failures that are repaired quickly, the results are
encouraging. However, for permanent perturbations in both sets of links,
RYNSORD is observed to be marginally stable and unstable under input traffic
rates of 0.05 and 0.125, respectively. Clearly, the boundary between marginal
stability and instability is a function of the input traffic rate, the number of tracks
failed, and the specific tracks failed. Figures 5.6(a) through 5.9(b) correspond to
the set of 8 failed tracks and present the error criteria I and II for different input
traffic rates and perturbation durations. It is pointed out that the error criterion II
mirrors the behavior of error criterion I. The results for the set of 3 tracks failed
are similar to those for the set of 8 tracks and are not presented here.

However, a comparative analysis of error criterion II for the two sets of tracks
failed reveals the following, as evident through Figure 5.10. The data in
Figure 5.10 corresponds to low input traffic rate and permanent failures. While
RYNSORD is marginally stable for both cases, the final steady-state point for
the set of 3 links is worse, i.e., higher error bound value, relative to that for the
set of 8 links. The result clearly underscores the importance of the specific links
failed over the number of links failed and a likely cause is the degree of
congestion. Further, off-line analysis, i.e., following the termination of
simulation, reveals that for a total of 201 trains one or more of the set of 3 links
are used in their shortest paths. In contrast, only 167 trains utilized one or more of
the set of 8 links. Thus, stability analysis may contribute towards identifying
communications links whose failure are more likely to adversely impact the
performance.
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5.4.4.2
Perturbations Relative to the Track Segments

A track may become unavailable following an accident, breakdown, sabotage, or

FIGURE 5.6

(a) Error Criterion I for each Train as a function of the Assertion Time, for the Set of
8 Link Failures for 1440 timesteps and Input Rate=0.05, (b) Error Criterion II as a
function of Simulation Time, for the Set of 8 Link Failures for 1440 timesteps and
Input Rate=0.05
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due to routine maintenance. Although RYNSORD lacks elaborate mechanisms to
handle such failures by design, this chapter assumes the following. Upon

FIGURE 5.7

(a) Error Criterion I for each Train as a function of the Assertion Time, for the Set of
8 Links Failed Permanently for Input Rate=0.05, (b) Error Criterion II as a function
of Simulation Time, for the set of 8 Links Failed Permanently for Input Rate=0.05
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occurrence of a failure, the stations at the two endpoints of the track segment

FIGURE 5.8

(a) Error Criterion I for each Train as a function of the Assertion Time, for the Set of
8 Link Failures for 1440 timesteps and Input Rate=0.125, (b) Error Criterion II as a
function of Simulation Time, for the Set of 8 Link Failures for 1440 timesteps and
Input Rate=0.125

5.1. INTRODUCTION 127



become aware within a single timestep, i.e., 60 seconds of actual operation.
Also, a train already traveling on a track segment at the time of the failure will

FIGURE 5.9

(a) Error Criterion I for each Train as a function of the Assertion Time, for the Set of
8 Link Failed Permanently for Input Rate=0.125, (b) Error Criterion II as a function
of Simulation Time, for the Set of 8 Link Failed Permanently for Input Rate=0.125
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continue to travel and reach the other end safely. The stations at the endpoints
will prevent future trains from using the track by canceling all reservations and
by forcibly initiating re-route computations for all affected trains.

Although track failures may appear to impact the propagation of the trains
similar to communication link failures, there are important differences as
described subsequentiy. Consider Figures 5.11(a) and 5.11(b) that represent a
subset of the overall network. Figure 5.11(a) illustrates a communication link
failure between Charlottesville (35) and Richmond (36) while Figure 5.11(b)
implies the failed track between Charlottesville (35) and Richmond (36).
Consider that a train is asserted at Roanoke (48) with the destination Richmond at
some time prior to the communication link failure. Reservation requests are
answered while the link is good and the train chooses to follow the path A that it
had requested. The propagation of the train on the track segment between
Charlottesville and Richmond is guaranteed regardless of the condition of the
corresponding communication link. In contrast, in Figure 5.11(b), the train
initiates its journey, and then the track fails. The train arrives at Charlottesville
and the track segment is still not repaired. The train is forced to recompute a new
route and may need to backtrack to Lynchburg before continuing to Richmond

FIGURE 5.10

Error Criterion II as a function of Simulation Time, for the Set of 3 and Set of 8
Links Permanently Failed and Input Traffic Rate=0.05
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via Petersburg. While this example appears to imply that track failures are likely
to adversely impact the performance, subsequent analysis reveals that the impact
of communication failures is more adverse.

An experiment is designed wherein the tracks corresponding to the two sets of
3 and 8 links, described earlier in this chapter, are failed. The performance
results, presented in Table 5.4 are identical to those for the communications
perturbations (Table 5.3). The error criteria graphs are also similar in behavior to
those for the communications perturbations except that there are key differences.
Figure 5.12(a) presents the error criterion II for communications link failures and
corresponding track failures for the set of 8 links, under high input traffic rate,
and subject to a perturbation of finite duration—1440 timesteps. While
RYNSORD is strongly stable relative to both kinds of perturbations and the
behaviors of the graphs in Figure 5.12(a) are similar asymptotically, the
magnitude of the error for communications perturbation is significantly worse
than for track perturbation. Figure 5.12(b) presents the error criterion II for
communications link failures and corresponding track failures for the set of 8
links, under low input traffic rate, and subject to permanent perturbations. While
RYN  

Table 5.4 Performance Results for Track Perturbations

No. of Links
Failed

Base Input Rate
of System

Perturbation
Time (timestep)

Perturbation
Duration (in
timesteps)

Stability Class

3 0.05 5760 1440 Strongly Stable

3 0.125 5760 1440 Strongly Stable

3 0.05 5760 � Marginally
Stable

3 0.125 5760 � Unstable

8 0.05 5760 1440 Strongly Stable

8 0.125 5760 1440 Strongly Stable

8 0.05 5760 � Marginally
Stable

8 0.125 5760 � Unstable

SORD is observed to be marginally stable for both scenarios and their
asymptotic behaviors are similar, the error magnitude corresponding to
communications perturbation is considerably higher than for track perturbation.
A possible explanation lies in the fact that while only the failed track becomes
unavailable to a train, a communication link failure may impair a train’s ability
to compete for reservation and therefore, travel access, for multiple tracks.

Limitations of the Research
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The stability analysis of RYNSORD has revealed that it is strongly stable with
respect to perturbations of finite durations to the input traffic rate and track
segment failures. For permanent perturbations, the stability measure is dependent

FIGURE 5.11

(a) Illustrating Communication Link Failure, (b) Illustrating Track Segment Failure
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on the input traffic rate prior to the onset of the perturbation. However, it is weak

FIGURE 5.12

Error Criterion II as a function of Simulation Time, for Communications Link and
Track Perturbations, for (a) High Input Traffic Rate and Finite Duration
Perturbation, (b) Low Input Traffic Rate and Permanent Perturbation
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with respect to communication link failures and the underlying algorithm needs
redesign for superior immunity to perturbations. 

5.1. INTRODUCTION 133



Chapter 6
Modeling and Simulation Techniques for ITS

Designs

6.1
Introduction

A key characteristic of ITS designs, as explained in Chapter 1 and reflected in
Chapters 2 through 5, is that each entity, e.g., locomotives, cars, etc., carries its
own computing engine while subject to transportation through the system, under
asynchronous, distributed algorithm control. Every entity is viewed as an
asynchronous and autonomous process with well-defined computational and
communications needs. While some processes may be “stationary,” others are
“mobile” within the transportation system. The exact pattern of migration of the
mobile processes is dictated by the nature of the transportation system and the
actual input data. The migration pattern is further complicated by the fact that
every mobile process is autonomous, i.e., every mobile entity determines its own
migration pattern based on its unique behavior, input stimulus, and dynamic
interactions with the stationary entities. Every mobile and stationary entity is
characterized by unique computation and communication needs. Furthermore,
the nature of the migration is asynchronous, i.e., it is initiated at irregular
intervals of time and may not be known a priori. Finally, in many transportation
systems, the number of mobile and stationary entities is likely to be large which,
in turn, necessitates a distributed, scalable approach to modeling and simulation.

The remainder of this chapter is organized as follows. Section 6.2 introduces
two competing process migration strategies that may be used to model and
simulate ITS designs. Section 6.3 details their underlying software techniques
while section 6.4 presents the details of implementation of the simulation on a
parallel processor testbed. Section 6.5 first presents the results obtained from
executing the two simulation approaches for a representative network under
realistic input conditions followed by a comparative analysis. 



6.2
Virtual and Physical Process Migration Strategies for ITS

Designs

This chapter assumes the following characterization of an ITS design: (1) The
number of stationary entities is relatively modest but the number of migrating
entities is large, ranging from 10s to 100s, (2) the system is likely to grow in size
with time requiring that the underlying approach be scalable, (3) while the
stationary entities are geographically dispersed, the mobile entities are
autonomous implying that their migration patterns are unique to every mobile
process and are unknown a priori, (4) while the stationary processes are
permitted to communicate directly between themselves through a static
interconnection network, the mobile processes are assumed not to require direct
communication between themselves for the following reasons. First, given that
the number of mobile processes is large, facilities to provide direct
communication between any two entities are likely to incur large overhead. This
may also adversely impact scalability. Second, the underlying distributed
algorithms are intelligently designed so that the stationary nodes perform the
function of coordinating information between the mobile processes when
necessary. For some transportation systems, it may be necessary to provide
communications between the mobile processes.

Thus, the computer model of an ITS design will consist of stationary and
migrating processes executing on computing engines and mechanisms to
facilitate stationary-stationary entity and mobile-stationary entity
communications. Every process owns its own thread of control and is thus
autonomous and asynchronous relative to other processes in the system. The
capabilities of the processes are defined by the nature of the system. The
stationary processes acquire necessary information from other stationary
processes and mobile processes; that information is subsequently downloaded
and utilized by appropriate mobile processes. While the static network
interconnecting the stationary processes is permanent, the mobile processes
connect and disconnect dynamically and asynchronously, i.e., at irregular intervals
of time, with appropriate stationary processes. A migration occurs when a mobile
process, Mi, chooses to disassociate itself from the stationary process, Sj, and
associate itself with the stationary process, Sk, for all legitimate values of j and k.

In an operational transportation system, every stationary and mobile process is
provided with its own computing engine and facilities to initiate communication
with other processes. It is therefore logical to assume that in a simulation of an
ITS design, every stationary and mobile process will have access to its own
computing engine. However, many parallel processing testbeds, including the
one utilized in this chapter, are likely to have far fewer available processors than
the total number of stationary and mobile processes. This results in two principal
strategies for representing mobile entities through processes in the testbed. They
are termed virtual and physical process migration strategies and are detailed
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subsequently. There is a third mechanism, a variation of the physical process
migration strategy wherein, at initialization, connections are established between
each mobile entity and every stationary entity. When a mobile entity needs to
interact with a specific stationary unit, the corresponding connection is utilized.
At other times, the connection is idle. Thus, while the overhead of dynamically
establishing and destroying connections is eliminated, a maximum limit on the
number of open connections per Unix process may constitute a weakness. This
mechanism is not discussed in this chapter.

6.2.1
Virtual Process Migration Strategy

The obvious logical choice is to represent the relatively modest number of
stationary entities as actual processes, assign them to the processors of the
parallel processing testbed on a one-on-one basis, and represent the mobile
entities through virtual processes. A stationary node represents an entity located
at a specific geographic position. A virtual process migrates between processors,
when necessary, and its computational needs are executed by the host processor
underlying the stationary node where it may happen to be located at that instant
of time. By definition, a virtual process is not permanently associated with any
processor. From time to time, it is associated with a processor corresponding to a
stationary node that executes its computing needs and temporarily assigns it the
status of an actual process. This strategy is termed Virtual Process Migration
(VPM) and has been utilized in Chapters 2 and 4. In Chapters 3 and 5, the VPM
strategy is slightly modified in that the stationary and mobile entities are
expressed through Unix processes that may be executed on a testbed with an
arbitrary number of processors. Thus, unlike in Chapters 2 and 4, where the
number of processors used equals the number of stationary entities, in Chapters
3 and 5, the number of processors required for execution need not equal the
number of stationary entities. Although described earlier in the context of
specific systems, this section explains VPM in detail and as a general mechanism
for modeling and simulation of ITS designs. The processors are interconnected in
the same topology as the stationary entities, through software protocols that are
initiated at initialization time and remain unchanged throughout the simulation.

A virtual process in VPM is similar to a “thread” of an operating system.
However, unlike a “thread” that contains the code, stack, stack pointer and the
program counter, a virtual process only contains the essential parameters
required for its execution. The exact parameters are defined by the application
program. As an example, in the modeling and simulation of the intelligent
vehicle highway system, the parameters for the mobile automobiles may include
the vehicle license plate, model, manufacturer, current speed, desired speed,
location, heading, origin, and destination. When a mobile entity is located at a
stationary node, it “appears” at the node, i.e., it is manifested as an actual process
and its computing needs are executed by the host processor. Utilizing relevant

136 6. MODELING AND SIMULATION TECHNIQUES FOR ITS DESIGNS



information contained at the stationary node and within itself, the mobile entity
determines its subsequent course of action which may include the decision to
migrate to a different stationary node. Then, the simulation migrates the
corresponding virtual process with all of its parameters to the appropriate
stationary node where the mobile entity again “reappears.” Thus, the behavior of
a mobile entity is self-contained and is neither visible to the stationary node nor
to other virtual processes that may be temporarily co-resident at the same
stationary node. Also, at any given time, one or more virtual processes may be
resident at a stationary node and compete for the computation and
communication resources. Thus, a scheduler may be utilized to assign slots of
computing and communication facilities to the processes. Communication of
information between the stationary process and a virtual process is achieved
simply through buffer copying.

Figure 6.1 describes a simple ITS design with three stationary entities,
represented thorough stationary processes, SP-1, SP-2, and SP-3. The simulation
consists of three underlying processors: Processor-1, Processor-2, and
Processor-3. At a given time instant, virtual processes VP-1 through VP-5 are
resident on the three processors as shown in Figure 6.1 while VP-6 is being
migrated from Processor-2 to Processor-1. During migration, the actual process
corresponding to VP-6 that is resident on Processor-2 is first terminated, its
essential parameters are encapsulated in a message, the message is propagated to
the Processor-1, the message is decoded in Processor-2, and finally an actual
process is synthesized corresponding to VP-6. Every processor is responsible for
executing the stationary process and one or more virtual processes, the
scheduler, and the communication primitives. A close examination yields two
important characteristics of VPM. First, in general, for a mobile entity to migrate
from stationary node A to stationary node B, A and B must be connected directly.
While this implies reduced complexity, it does not preclude the design of
facilities to allow more complex migration. Second, the number of mobile entities
at a stationary node at any given time instant is limited by the maximum number
of processes permitted by the underlying operating system. 

6.2.2
Physical Process Migration Strategy

Despite its successful use in Chapters 2 and 3, VPM incurs important limitations
that may pose difficulties in modeling future ITS systems. As the number of mobile
entities increases, the competition for the host processors’ computing and
communication resources is likely to become acute thereby slowing down the
simulation significantly. To address this limitation, this chapter proposes a
competing approach, Physical Process Migration (PPM). In PPM, every process
—stationary or mobile, is allocated a unique processor. The allocation is engaged
at the instant the process is initiated into the system and is disengaged when the
process terminates. When a mobile process desires to communicate with a
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stationary process at runtime, first a communication protocol is dynamically
established between the underlying processors and then information exchange is
initiated. Thereafter, when the mobile process desires to interact with a different
stationary process, the old protocol is first disconnected and a new connection is
established. A mobile process is allowed to maintain a connection with a single
stationary process at any time. Thus, the PPM strategy is a more accurate model
of reality. The static interconnection network between the stationary processes
remains identical to that of the VPM. Clearly, the computational need of every
mobile process is executed by its underlying processor, and where the
computational needs of the mobile entities are high, there is the potential for
higher efficiency and throughput relative to VPM. Unlike VPM, a mobile
process may easily migrate from stationary node A to stationary node Z in PPM
where a direct connection from A to Z may be lacking. PPM’s principal
advantage is in the use of one processor per process. Unfortunately, this also
results in a weakness in the context of the limitations of today’s testbed
technology. Since testbeds with 1000s of processors are not yet ubiquitous,
simulation of ITS systems under PPM is limited to modest-sized mobile
computing networks. PPM also inherits the limitation of high overhead for
mobile-stationary process communication which includes explicit message
communication following the dynamic establishment of a communications
protocol.

Figure 6.2 describes the use of PPM for the simple ITS design shown earlier in
Figure 6.1. In addition to the three processors that model the stationary processes,

FIGURE 6.1

Illustrating Virtual Process Migration
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six processors, Processor-4 through Processor-9, constitute the underlying
processors for the six physical processes, PP-1 through PP-6, corresponding to
the six mobile entities. In Figure 6.2, solid lines between stationary and mobile
processes represent protocols that are established at a given time instant while a
broken line represents a protocol that is in the state of either being established or
disconnected. Thus, the broken lines between VP-6 and each of Processor-2 and
Processor-1 reflect the fact that the physical process PP-6 is migrating from the
stationary node, SP-2, to the stationary node, SP-1. 

6.3
Software Techniques Underlying the Process Migration

Strategies

The static network interconnecting the stationary processes in both VPM and
PPM is established during initialization of the simulation. As indicated earlier,
every stationary process is assigned a distinct processor or workstation, termed
node. During execution, first, a process opens a unique external input file,
utilizing the identifier of the underlying workstation. This file contains the
node’s operating characteristics that includes its connectivity to other stationary
processes. Second, the process starts to build the point-to-point connections, one
at a time, utilizing the Berkeley socket protocols. When establishing a point-to-
point connection between two processors, the initiator process executes a
“connect” while the corresponding receiving process executes an “accept.” Every

FIGURE 6.2

Illustrating Physical Process Migration
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connection is half-duplex, implying directed edges in the network, and there may
be multiple, overlapping cycles in the network. Furthermore, “connect” requires
the receiving process identifier as an argument and it is nonblocking while
“accept” is blocking and is designed to receive any “connect,” i.e., from any
processor. This threatens the network initialization with the possibility of
deadlock and, to counter it, the following algorithm is used. The underlying
nodes possess unique identifiers. When a stationary process at a node (identifier
X) requires connection with a stationary process at a different node (identifier Y,
Y>X), X always executes a “connect” while Y will execute an “accept.” Upon
completion of the network configuration in its memory, every node initiates
execution of the stationary and mobile processes which differs for the VPM and
PPM strategies. The pseudocode in Figure 6.3 underscores the function at each
node. In Figure 6.3, the code at label L1 first determines the set of stationary
nodes in the system with identifiers higher than that of the current node. Then,
the code starting at label L2 attempts to establish a connection between the
current node and each of the nodes in the set through executing “connect,” one at
a time, until all the connections are successfully established. The code starting at
label L3 corresponds to the connection establishment between the current node
and all other nodes in the system with identifiers lower than that of the current
node.

6.3.1
Software Techniques Underlying VPM

In VPM, every mobile entity is represented through a set of parameters which are
organized into a structure. The size of the structure is a function of the
application and may be dynamic. For a comparative study of the performance of
VPM and PPM, the following fields are assumed for every mobile entity
structure and shown in Figure 6.4. The first field is the identifier of the entity, the
second reflects its computational need, the third encapsulates the remaining
number of messages that this entity must exchange with the host stationary
process, and the fourth field stores the remaining number of hops in this entity’s
migration pattern.

The computational load of a mobile unit is represented by an integer, ranging
from 100 to 10,000,000, and it constitutes the index of a simple “for loop.” That
is, the number of iterations in the “for loop” equals the load value and the
execution time of the iterative loop emulates the actual computational time. In
VPM, at any given time instant, one or more mobile entities may be co-resident
at a stationary node, competing for the single thread of control. To ensure that
every mobile entity receives its fair share of the thread of control, the simulation
proposes to use “time slicing,” wherein every virtual process voluntarily gives up
control after executing the loop for every 100 iterations.

Upon arrival at a node, a mobile entity is remanifested as an actual process and
is enqueued in the scheduler’s list. The scheduler allocates a time slot and

140 6. MODELING AND SIMULATION TECHNIQUES FOR ITS DESIGNS



executes the body of the mobile entity in the time slot. The pseudocode in
Figure 6.5 represents the body of the mobile entity where its activity is emulated
through executing iterations. The iterations are executed in sets of 100. In
Figure 6.5, the statement at label L1 checks whether any iterations remain to be
executed. If affirmative, a number of iterations equal to the minimum of 100 and
the value of load is executed. If negative, all of the scheduled iterations have
been completed. Next, the statement at label L2 checks whether any of the
scheduled number of messages that need to be communicated are outstanding. If
affirmative, a message communication is emulated by writing into a variable
location. Otherwise, all scheduled messages have been communicated. The
statement at label L3 detects the scenario that all scheduled iterations and
messages have been completed. Then, the subsequent migration of the mobile
entity is determined and it is propagated to the subsequent destination node. 
During migration, the parameters of the mobile entity are encapsulated in a
message. The address and size of the message are passed to the operating system
through the “write” system call, which then writes it to the appropriate outgoing
socket and executes the transfer.

void make_connections (){L1: let t be the set of nodes with greater
identifier values;L2: while (number of elements in t != 0)

{         create socket;         choose a node from t;         execute a
connect system call to the select ed node;         if (fails) {            
close socket;         } else {             send my identifier value to the

selected node;             save the socket descriptor;             remove
the node from t;         }    }L3: create socket;    set up address
(sockaddr_in) structure;    bind the socket using the address

structure;    call listen relative to the socket;    let f be the set of
nodes with lower identifier values;    while (number of elements in f !

= 0) {        execute an accept system call;        if(fails) {           
continue;        } else {            accept returns new socket;            read
the remote node’s identifier value from the new socket;            save
new socket descriptor;            remove the node from f;        }  }  close

original socket;}

FIGURE 6.3

Establishing the Static Interconnection Network During Initialization at Each Node,
in Pseudocode

                     struct VPM_entity {                       int id;                          int
load;                         int messages_per_hop_remain;                       int

hops_remain;                     };

FIGURE 6.4

Structure for every Mobile Entity in VPM
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At the receiving end, the node polls for the arrival of the mobile entity using
the “select” system call with 0 timeout. Select maintains the ability to monitor
multiple socket connections from within a single function call. When the
message arrives, the node remanifests it as an actual process and enqueues it in
the scheduler’s list. The pseudocode in Figure 6.6 underscores this function of
the node. The code statement at label L1 in Figure 6.6 checks for a new message
that encapsulates the arrival of a mobile unit. If affirmative, the message is read
and the corresponding process is synthesized.

The scheduler implements round-robin scheduling of the stationary process
and one or more mobile processes that may be co-resident in the host processor.
When it is scheduled for execution, a mobile entity is first dequeued, then
executed, and then either requeued into the scheduler’s list or marked for
migration to a different node. The functionality of the scheduler is shown in
Figure 6.7, in pseudocode. In Figure 6.7, the statement at label L1 reflects the
scheduler dequeueing the first element from the queue of mobile entities and
then executing it. If the entity has exhausted its iterations and is marked for
migration as detected by the code at label L2, the scheduler encapsulates it in the
form of a message and propagates it to the output. Otherwise, following
execution, the entity is requeued back into the list of mobile units at the node.
The main body of the program, executed by the node, integrates all of the above
functions to describe the overall operation and is shown in Figure 6.8. First, the
data structures are initialized as reflected by the statement at label L1. Then
the mobile entities are synthesized utilizing information contained in the external

void wake_mobile_entity(struct VPM_entity){L1: if (load > 0) {       do
minimum (100 load) for-loop iterations; // time slice is 100 //      

decrement load; }L2: if (messages_per_hop_remain > 0) {       write
to a variable location to emulate a message;       decrement

messages_per_hop_remain; }L3: if (load equals 0 AND
messages_per_hop_remain equals 0) {       determine stochastically
where this entity must migrate;       migrate the process and remove

it from the scheduler’s list; }}

FIGURE 6.5

A Mobile Entity Remanifested as a Process, at a Node

         VPM_entity check_migrate()         {             struct timeval
timeout;             timeout.tv_sec = 0             timeout.tv_usec =
0             fd_set fdvar;             FD_ZERO(&fdvar);             FD_SET
(socket, &fdvar);         L1: if (select(socket + 1, &fdvar, 0, 0,
&timeout))                 VPM_entity new_entity;                read(socket,
&new_entity, size of (VPM_entity))                return
new_entity;             } else {                return 0;             }         }

FIGURE 6.6 A Node Intercepts a Message Encapsulating a Mobile Entity
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data file as represented by the code at label L2. The remainder of the program
executes the following two operations, repeatedly and in the proper sequence: (i)
check if a new mobile node has migrated from an adjacent stationary node. If
affirmative, remanifest the mobile entity as an actual process using the network
message, and then insert the process into the scheduler’s queue for execution at a
later instant of time, (ii) execute the scheduler which allocates time slices to the
enqueued mobile nodes. The statements at labels L3 and L4 reflect the tasks (i)
and (ii) respectively.

6.3.2
Software Techniques Underlying PPM

Mobile Entities

At initialization, every mobile entity is associated with a processing node
which is responsible for executing the iterative loop, message transfer, and
migration routines. A message transfer with respect to a stationary node requires
the presence of a network protocol.

In the event of migration, first the old connection between the mobile process
and a stationary process, if any, must be terminated. Normally, at either end of
the connection, a “close” system call is executed. However, if the execution of
the system calls by the two processors are not synchronized, the connection may
be closed only partially and a SIGPIPE signal is generated when a process
attempts to write to it. To avoid this undesirable side effect, cooperation is

void schedule (){L1: dequeue the first element from the queue of
waiting mobile entities; call wake_mobile_entities () for this mobile
entity;L2: if (mobile entity migrated) { write (socket) &mobile_entity,

sizeof (VPM_entity)); free the structure corresponding to the
migrated mobile entity;L3: } else enqueue the mobile entity back into

the queue of waiting mobile entities;}

FIGURE 6.7

The Function of the Scheduler at Each Node

void main (){L1: intialize data structures for the scheduler, etc.;L2:
synthesize mobile entities at this location; loop until end of

simulation {L3: call check_migrate; if (new mobile entity has arrived
from an adjacent stationary entity) { assign the mobile entity to the

scheduler; }L4: execute schedule 0 to schedule the execution of the
mobile entities;}

FIGURE 6.8

The Main Program Corresponding to Each Node
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required at both ends. In this chapter, when a connection is slated to be
terminated, first a termination command is sent from the mobile node to the
stationary node. Second, the mobile node awaits an acknowledgment from the
stationary node, following which both processes execute the “close” system call.
Next, a new connection is established with the target stationary node. The
pseudocode in Figure 6.9 describes the migration, disconnection, and
reconnection functions. The migrate function executes calls to the disconnect and
try_connect functions. 
The mainLoop(), shown in Figure 6.10, integrates all of the subfunctions,
described earlier, to present the overall function of mobile node in PPM. First,
the network topology of the stationary nodes is read from an external data file, as
reflected by the statement at label L1. This information is utilized to determine
migration-related decisions during the simulation. Second, the internal data
structures are created, represented by label L2. Third, the following three
operations are executed repeatedly: (i) the iterative loop is executed to simulate
actual computational operations, (ii) it exchanges dummy data elements with the
stationary node to which it is connected at the current time instant, (iii) it
examines whether the required number of data elements have been exchanged
and the loop executed for the desired number of iterations. If affirmative, the
mobile entity determines a new stationary node, stochastically, and initiates
migration. The statements starting at labels L3, L4, and L5 represent the tasks
(i), (ii), and (iii), respectively.

It is pointed out that for the VPM paradigm, the software pieces in Figures 6.9
and 6.10 that are executed by every mobile entity process in the PPM paradigm
are contained within and executed by the stationary node. Also, the disconnect
and try_connect functions in Figure 6.9 that underlie the mobile units in PPM
have no counterpart in VPM.

Stationary Entities

void migrate(stationary node){ call disconnect0 to terminate
connection; determine stochastically where this process will

migrate; try_connect(stationary node); // attempt connection to the
new stationary entity //}void disconnect(){ send disconnect

command to the current stationary node; wait for an acknowledge
signal; call close to terminate the connection;} int try_connect

(stationary node)} call connect() to attempt connection; if (success) {
send id of this mobile entity; return OK; } else { return ERROR; }}

FIGURE 6.9

The Migration, Disconnection, and Reconnection Functions of Each Mobile Entity in
PPM
 

144 6. MODELING AND SIMULATION TECHNIQUES FOR ITS DESIGNS



The behavior of a stationary node includes three functions: (i) accept
connection from the mobile entities, (ii) exchange data with mobile entities, and
(iii) accept termination request from a mobile entity. 
Given that a connection from a mobile node to a stationary node is initiated
asynchronously and dynamically by the mobile entity, every stationary node
must necessarily provide an entry point where the mobile node can initiate a
connection. To realize the entry point, every stationary node binds a special
socket and periodically listens to it through a select system call to determine
whether a mobile node desires connection with it. The statement at label L1 in
Figure 6.11 realizes this task. If affirmative, the stationary node executes an
accept system call, reads and stores the identifier, and initiates the establishment
of a connection with the mobile node. Upon connection, two kinds of messages
are communicated: data elements and disconnection request. Data elements are
exchanged between the mobile and stationary nodes and, in this chapter, the data
is dummy and simply discarded. When the mobile node intends to disconnect, it
propagates a disconnection message to the stationary node. In turn, the stationary
node will propagate an acknowledgment of the disconnection and execute the
“close” system call to disconnect. The statements at labels L2 and L3 in
Figure 6.11 correspond to the receipt of disconnection and data element transfer.

It is pointed out that the program executed by each stationary node in PPM, as
shown in Figure 6.11, differs from that in 6.8 in that it neither emulates nor
executes the activities corresponding to the mobile entities. Instead, it accepts
connection and disconnection requests from the mobile entities. 

6.4
Implementation Issues

The VPM and PPM strategies are implemented on a testbed of 65+ SUN Sparc
10/40 workstations that are configured as a loosely-coupled parallel processor.
While each workstation is outfitted with 32 Mbytes of memory and executes

void mainLoop() {L1: read static network topology from external data
file;L2: initialize internal data structures; establish connection with

the default stationary node; loop until end of simulation {L3: if (load
> 0) { do minimum(100, load) for-loop iterations; decrement load; }

L4: if (messages_per_hop_remain > 0) { write(socket,
default_message, length(default_message)); decrement
messages_per_hop_remain; }L5: if (load equals 0 AND

messages_per_hop_remain equals 0) { reset the values of load and
messages_per_hop_remain; determine a new target stationary

node, stochastically, call migrate(); } }}

FIGURE 6.10

The Main Program Corresponding to Each Mobile Entity in PPM
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Solaris 2.3 operating system, they are interconnected by a 10 Mbit/sec Ethernet.
In addition, the code design permits execution under both SUN OS 4.1.3 and the
freely available Linux operating systems [91]. The code is written in C++, is
approximately 2000 lines in length, and is compiled by public-domain GNU g++
compiler. The code executes in the background while the user executes programs
on the consoles. The data presented here is obtained from simulations that are
run late at night when network load is minimal.

6.5
Simulation Results and Performance Analysis

For a comparative analysis of their performance, both VPM and PPM strategies
are modeled and simulated on a parallel processing testbed. The testbed closely
resembles reality and a number of experiments are designed and executed.
Corresponding to an actual mobile computing network where the key parameters
include the size of the static network, i.e., the number of stationary nodes, the
interconnection topology of the static network, the number of mobile entities, the
computational load of the mobile entities, the number of messages exchanged
between the mobile and stationary entities at each hop, and the migration pattern
of the mobile entities, the simulation represents these parameters through
independent variables. The key measure of performance is the maximum over
the wall clock times required by all processors in the testbed. In the experiments,
the number of entities chosen reflects the fact that the testbed is limited to 65
workstations. The number of stationary nodes range from 5 to 10, the static
interconnection topology is assumed to be fully connected, and the number of
mobile entities ranges from 5 to 50. The computational load of a mobile unit is

void mainLoop () { read the static network topology from the external
data file; establish connections to other stationary nodes using
make_connections (); create and bind special socket to permit

mobile nodes to connect; struct timeval timeout; timeout.tv_sec = 0
timeout.tv_usec = 0 loop until end of simulation { fd_set fdvar;

FD_ZERO (&fdvar);L1: if (select (mobile node connection socket +
1, 0, 0, &timeout)) { issue accept system call; read mobile node id

and save new socket descriptor and id; } for(all mobile node sockets)
FD_SET(socket, &fdvar); select (higest discriptor value + 1, &fdvar,

0, 0, 0)) read message from socket; switch (message type) {L2:
case disconnection: send acknowledge signal ; close the socket;

remove the socket handle from storage; break;L3: case data transfer:
read message; discard message; break; } }}

FIGURE 6.11

The Main Program Corresponding to Each Stationary Node in PPM
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represented by an integer, ranging from 100 to 10,000,000, and it constitutes the
index of a simple “for loop,” as explained in Figures 6.5 and 6.10. That is, the
number of iterations in the “for loop” equals the load value and the execution time
of the iterative loop emulates the actual computational time. The number of data
elements exchanged between a mobile and stationary entity is assumed to range
from 1 to 100, where each data element is 128 bytes long dummy. The choice of
the 128 byte size reflects the message size used in Chapter 2. The message
communications are also referred to in Figures 6.5 and 6.10. Every mobile
entity’s migration pattern, reflected in Figures 6.5 and 6.10, is (i) stochastic, i.e.,
randomly determined, (ii) unique, i.e., independent of the migration patterns of
all other mobile nodes, and (iii) asynchronous, i.e., the mobile entity may
migrate at irregular intervals of time. The only constraint imposed on the mobile
units is that an entity will not immediately reconnect to the stationary node to
which it was connected most recently. In the simulation, unless otherwise
specified, every mobile entity connects and disconnects with the stationary nodes
a total of 1000 times.

Given that the processors of a parallel processing testbed are asynchronous,
their execution rates differ, and that their clocks are out of phase, the order in
which events are executed in the simulation may, in general, differ from that in
actual operation. To preserve the order of event execution, often different
synchronization techniques are utilized. The use of such techniques, however,
constitutes an artifact of the simulation and has no correspondence in reality.
These synchronization techniques slow down the simulation significantly and, as
they affect both VPM and PPM similarly, the VPM and PPM implementations in
this chapter are deliberately designed without them, without any loss in
generality. The implementations of VPM in Chapters 3 through 5, however,
utilize synchronization techniques.

The results presented here reflect a total of over 200 simulation runs, each
requiring an average 1000 seconds of wall clock time, 65 concurrently executing
workstations, and several Mbytes of data collected from the simulation. When a
mobile entity connects with a stationary entity, it performs computations, defined
by the load value, and then exchanges data with the stationary process. The
simulation terminates when every mobile entity has completed the specified
number of connections and disconnections. The measured simulation time
includes the time required for establishing the software protocol connection, the
computation time, time for exchange of data, and disconnection time.

The graphs in Figure 6.12a present the variation of the simulation time as a
function of the computational load of the mobile entities for both VPM and
PPM. The number of stationary nodes is set to 10 and the number of mobile
nodes ranges from 5 to 10 to 50. The number of data elements exchanged at each
hop is set to 1 and each mobile entity engages itself in 1000 connections and
disconnections. The graphs are revealing in that while the VPM simulation times
rise sharply with increasing load, the PPM simulation times remain relatively
constant. For 5, 10, and 50 mobile entities, the PPM simulation times remain
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unchanged at 110 sec, 300 sec, and 710 sec, respectively. For low computational
load values, VPM exhibits superior performance due to the high overhead of
connections and disconnections in PPM. For 5 mobile entities, beyond a
computational load value of 20,000, PPM exhibits superior performance relative
to VPM. Similarly, for 10 mobile entities, PPM’s performance exceeds that of
VPM for a computational load value beyond 50,000. Furthermore, while the PPM
simulation executes successfully for 50 mobile entities with load values ranging
up to 100,000 and requiring 710 seconds, the VPM simulation requires
extraordinarily large run times beyond load value of 10,000. The comparative
behavior of PPM versus VPM is similar when the number of data elements
exchanged at each hop is set at 10 for 5 stationary nodes and 5 mobile entities, as
shown in Figure 6.12b. Thus, for smaller numbers of data elements exchanged,
modest number of mobile entities, and computational load under 100,000, the
PPM strategy is scalable and exhibits superior performance.

Figure 6.13 reorganizes the data presented in Figure 6.12a and plots the
simulation time as a function of the number of mobile nodes for different values
of computational load ranging from 1000 to 100,000. The aim is to reveal the
impact of computational load on PPM and VPM performance while the number
of mobile entities is varied. It may be observed that while the VPM performance
for smaller computation load values of 1000 and 10,000 exceeds the
corresponding PPM graphs, the trend reverses for a high load value of 100,000.
The PPM graphs are virtually overlapping implying that the high computational
load is equitably and efficiently shared by the greater number of processors in
PPM.

Figures 6.14a and 6.14b plot the VPM and PPM simulation times as functions
of the number of data elements exchanged at each hop. The number of mobile
entities is  set to 10. The computational load values are set 10,000 and 100,000 in
Figures  6.14a and 6.14b respectively. The number of stationary nodes ranges
from 5 to 10. The VPM graphs remain relatively uniform with increasing
number of data elements exchanged since buffer copying is extremely fast.
However, the observation that the VPM graph corresponding to 10 stationary
nodes requires more simulation time than that for 5 stationary nodes, appears to
be counter-intuitive. One would have normally expected the 10 processors,
corresponding to the 5 stationary nodes scenario, to finish executing the
computational burden imposed by the mobile entities faster than the 5 processors
corresponding to the 10 stationary nodes scenario. The reason for the observed
behavior is that the function, within every stationary node, that translates the
processor identifier to the socket descriptor, is implemented through a linked list.
Although a general approach, the linked list must be searched sequentially for
every execution of the function. Given that the stationary nodes are fully
connected, the number of sockets increases rapidly thereby slowing down the
simulation for 10  stationary nodes relative to 5 stationary nodes. The Unix
profiler, gprof, reveals that 40% of the simulation time is spent in the function
for 10 stationary nodes as opposed to 23% of the simulation time for 5 stationary
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FIGURE 6.12

VPM and PPM Simulation Time as a Function of Computational Load of Mobile
Entities, (a) 10 Stationary Nodes and 1 Data Element Exchanged at each Hop, (b) 5
Stationary Nodes and 10 Data Elements Exchanged at each Hop. The number of
stationary nodes=10, the number of data elements exchanged at each hop=1. and the
mobile unit engages in 1000 connections and disconnections
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nodes. Since the binding between processor identifiers and socket descriptors is
static, it is planned that array data structure will be utilized to provide direct and
fast access.

In PPM, however, exchange of data elements involves explicit messages and
an increase in their number will require increasing simulation time, as evident
from the linear slope of the PPM graphs. For 10 stationary nodes, the PPM
simulation time continues to trail the VPM simulation time up to 90 data
elements exchanged per hop. Clearly, the overall computational load is executed
faster by 10+10=20 processors in PPM relative to only 10 processors in VPM.
However, when the number of data elements exchanged increases beyond 90, the
overhead from explicit message passing in PPM surpasses the advantage of the

FIGURE 6.13

VPM and PPM Simulation Time as a Function of the Number of Mobile Entities for
Varying Computational Load Values. The number of stationary nodes=10, the
number of data elements exchanged at each hop=1, and the mobile unit engages in
1000 connections and disconnections
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greater number of computing elements and VPM supersedes PPM in
performance. Where the number of stationary nodes is 5, the total number of

FIGURE 6.14

VPM and PPM Simulation Time as a Function of Number of Data Elements
Exchanged at each Hop, (a) Load=10,000, (b) Load=100,000. The number of mobile
units=10, and the mobile unit engages in 1000 connections and disconnections
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processors at the disposal of PPM is 5+10=15 in contrast to 5 for VPM. Given
the modest load of 10,000, the increased stress of connections and
disconnections on 5 stationary processors in PPM, coupled with the high
overhead of explicit message passing causes PPM to exhibit inferior performance
relative to VPM. Thus, PPM loses it performance edge beyond 10 data elements
exchanged at each hop.

When the computational load value is high, namely 100,000, the greater
number of processors associated with PPM relative to VPM is likely to yield a
superior performance for PPM. The graphs in Figure 6.14b confirm this
expectation even when the number of data elements exchanged at each hop is
increased from 1 to 75. Unlike Figure 6.14a where the slopes of the PPM graphs
are greater than those for the VPM graphs, in Figure 6.14b, the slopes of VPM
and PPM are comparable. This is due to the large computational load that lessens
the influence of the message communication overhead in PPM. The PPM
simulation with 10 stationary nodes employs 10+10=20 processors while the
PPM simulation with 5 stationary nodes employs 5+10=15 processors, and, as
expected, the performance of the former exceeds that of the latter.

In summary, both VPM and PPM play useful and effective roles in the
modeling and simulation of real-world, mobile computing networks. While PPM
is a more accurate model of reality, VPM helps realize the modeling of networks
with large numbers of mobile entities on testbeds with modest number of
processors although at greatly reduced performance. Chapter 4 had described an
IVHS simulation with 45,000 entities representing autonomous vehicles, on a
network of 60+SUN sparc 10 workstations. In contrast, a PPM implementation
would be difficult to realize due to the large number of processors required and it
would be unacceptably slow due to the large numbers of connections and
disconnections. PPM is unquestionably superior when the computational loads
associated with the mobile entities are high. However, its performance suffers
relative to VPM where the system demands intense data exchange between the
mobile and stationary units. It is hoped that with significant advances in the
testbed technology in the future, with large number of processors and reduced
connection and disconnection overhead, the PPM strategy may be utilized
profitably.
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Chapter 7
Future Issues in Intelligent Transportation

Systems

In our vision, the future will witness remarkable progress in ITS on two key
fronts. First, in the near future, the key ideas underlying the intelligent
transportation of matter will extend beyond vehicular traffic and trains to other
modes of transportation including cargo air transport, passenger air transport,
marine ferries, and personalized rapid transport (PRT) system. The distant future
may even witness its extension into inter-planetary travel. The need for intelligent
transportation will be felt most acutely under three scenarios: increased travel
speeds, significant increase in the number of travelers, and increased demand for
precise and timely information by travelers, all of which are highly likely in the
future. From the scientific and engineering perspective, the advances in
intelligent transportation will occur in the theoretical and technological
innovations. From the ordinary traveler’s point of view, however, the real ad
vance and the direct benefit will occur in the seamless and natural integration of
the different modes of transportation. As a result of the integration, the traveler will
(i) gain access to fairly accurate status information of any transportation mode,
anywhere in the world, from any point in the system, and (ii) be permitted to
effect reservations, dynamically, even while en-route, on any transportation
mode in the world. Precision and timeliness of information are crucial to
developing faith and trust in the system among the travelers which may be
delivered, in general, by distributed systems. Utilizing intelligent personalized
decision aids, the traveler may process the available information to compute the
most efficient route or re-route across all different transportation modes
including air, railways, automobiles, ferries, etc.. The most frequent causes for
replanning include changes in the traveler’s intention and needs and unscheduled
delays in a currently reserved transportation system.

Second, ITS systems are complex, very expensive, and once deployed, it is
logical to expect them to remain in service for a reasonably long period of time.
It is absolutely essential to develop a very comprehensive understanding since
the system must be amenable to enhancements as the needs evolve with time.
For this as well as for efficiency and economy, the exact details of the system
architecture and design tradeoffs must be studied thoroughly, utilizing the most
practical scientific tool available to us today: behavior modeling and
asynchronous distributed simulation. Under asynchronous distributed simulation,



a single simulation run for a highly complex system may be executed in a matter
of days while the current uniprocessor simulators may require up to months.
Given that a study may require up to hundreds of simulation runs, behavior
modeling and asynchronous distributed simulation may yield insights into the
behaviors of such complex systems, thereby constituting an indispensable tool
towards developing future ITS systems. As an example, consider the need to
interconnect a number of traffic management centers in a given geographical
region of the U.S.. A behavior modeling and simulation effort may provide
meaningful and valuable insights into the topology of the interconnection and the
nature of the information exchange between the centers, for a given set of long-
term, high-level objectives.

The scope of research in intelligent transportation systems in the future is vast.
Additional focus areas in the future range from new architecture designs for PRT
and exploiting the use of embedded optical fibers in highways for assessing the
average speeds of vehicles to incorporating the fundamental principles of
communication network design into ITS systems. 

154 7. FUTURE ISSUES IN INTELLIGENT TRANSPORTATION SYSTEMS



Chapter 8
Description of the RYNSORD Simulator on

CD-ROM and Scope of Experiments

In this chapter, we will describe the configuration and use of the RYNSORD
simulator which is included in the accompanying CD-ROM. Unlike the versions
described in Chapters 3 and 5, the provided software has been built for the Linux
operating system. We believe that the low cost and high availability of Linux
PCs make them an ideal choice of platform for distributed simulation. The
system requirements include:

• Pentium class CPU
• 32 MB of memory
• Approximately 100 kb of disk space for the executables, while additional disk

space will be required for the input and output files
• Linux glibc ELF system—kernel 2.0.36 has been tested but others should

work
• TCP/IP networking enabled

In addition, the helper scripts provided assume that the rsh destination will be a
trusted host so that no password will be required. Because of the security
implications of this, it is not a recommended configuration for Internet connected
hosts.

If multiple hosts are used in a parallel processor configuration, the executables
and input files must also be distributed either manually or via NFS.

8.1
Installation

1. mount the cd as root mount/dev/cdrom/mnt/cdrom
2. copy the rynsord tar file into your directory (for example:/rynsord) cp/mnt/

cdrom/rynsord.tar/rynsord 
3. extract it:

• cd/rynsord
• tar xvf rynsord.tar



4. manifest:

-rwxr-xr-x 1 ts1 ts1 10316 Jul 26 21:18 in_gendrwxr-xr-x 2 ts1
ts1 1024 Jul 26 21:41 input-rwxr-xr-x 1 ts1 ts1 4296 Jul 26 21:
39 input_merge-rw 1 ts1 ts1 989 Jul 26 21:55 network.
10Irwxrwxrwx 1 ts1 ts1 10 Jul 26 21:44 network. out->network.
10-rwxr-xr-x 1 ts1 ts1 19396 Jul 26 21:18 out_andrwxr-xr-x 2 ts1
ts1 1024 Jul 26 21:56 output-rwx 1 ts1 ts1 2252 Jul 26 21:53
script.10-rwx 1 ts1 ts1 11466 Jul 26 21:40 script_night_4. sh-
rwxr-xr-x 1 ts1 ts1 36296 Jul 26 21:17 tsw4-rwxr-xr-x 1 ts1 ts1
28360 Jul 26 21:17 tsy4

The output and input directories will be automatically created.

8.2
Overview

Each train station is modeled as a single Unix process (’tsw4’). The set of stations
representing the simulated railway topology can be run on any collection of
available host computers, from the extremes of one process per host to running
all the processes on a single host. This simulation is not CPU intensive for
contemporary machines and there should be no problem running on a single
host. Note that the provided simulation is currently limited to 10 stations.

The typical method of operation, regardless of how many hosts are involved,
is as follows (example below is for a 10 station topology, with the users home
directory given as ’ ’ and the rynsord root as ’/rynsord’)

• the appropriate network.out file is created. All processes will look for the file
’/rynsord/network.out’.

• user opens 10 xterms (rsh if necessary to the different hosts)
• in each xterm, performs the following operations

cd ~/rynsord setenv NETUID <uid> setenv NETPORTNUM
<portnum> where uid and portnum are the unique identifier and
portnumber for that node. A complete description of this is in the
next section.

• the station software is started in each node:

tsw4 -t 10080 -1 4 the ‘-t’ argument is the length of the simulation
in simulated minutes, the ‘-1’ argument is the lookahead in hops.
without these arguments, the default length is 10080, and the
default lookahead is 1.

• Finally, an 11th xterm is opened
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cd ~/rynsord setenv NETUID 99 setenv NETUID <sync node
portnum> tsy4 -t 10080

This will start the synchronization node which will begin the simulation.

8.3
Getting Ready to Run

8.3.1
network.out

Mandatory file which describes the network topology.
The provided example is for a 10 node network and is named ’network.10’. As

described earlier, this file must be copied or renamed to ’network.out’. Format for
this file is:

comments begin with #, everything following the # on that line is
ignored. two types of entries, node lines and link lines node lines

begin with ‘n’ and have the following syntax n <uid> <name>
<unused> <unused> <hostname> <portnum> <uid> is the unique
identifier for this node, this is an integer and as it implies, must be

unique throughout the network <name> is a string with the name of
the node—this is a read by scanf so the standard rules of no

spaces, etc, holds true. <unused> are unused, safest to set to ‘0’
<hostname> Is the name of the host upon which this node will run.

The same value returned by ‘uname -n’ <portnum> is the
portnumber upon which this node will listen for incoming

connections. There must be a unique number for each individual
node running on a given host. It also cannot conflict with any other

running services. Use netstat -a | grep <portnum> to check for
conflicts the IANA reports that the following software use the range

of 5300–5320 which is used in the provided examples.

link lines begin with ‘1’ and have the following syntax

1 <uid_A>|<uid_B> <owner> <unused> <distance><uid_A> and
<uid_B> are the unique identifiers of the endpoints <owner> is the

name of the endpoint that ‘owns’ this link for reservation
purposes<unused> unused, safest to set to ‘0’<distance> is the

distance of this link in miles

Note that each network has the Sync node as uid 99 and it is connected by links
to every other node. These links are given a pseudo-infinite distance in order to
prevent any routes from actually using them. Note also that the owner is not
relevant for these links.
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8.3.2
Helper Scripts

• script. 10: Is a very simple csh script which is designed to open up 10 xterms
with the environment variables set to facilitate running the simulation. script.
10 is configured to correspond with network. 10 in terms of node uids, names,
and portnumbers. The geometry of the xterms is setup to work nicely on a
Xwindows setup of 1024x768 with a virtual desktop (note that the x offsets
start at 1040). They have been used especially for fvwm2@1024x768. Simply
modify the geometry parameters as necessary.

• script_night. 10: Is a variant of script. 10 which can be used to run the
simulation in batch mode. This is very useful for doing parameter studies
overnight.

8.3.3
Input Generation

The input files live in/rynsord/input and have the following format:

<id> <orig> <dest> <speed> <time> where id is the unique train
identifier, orig is the origin stations uid, dest is the destination

stations uid, speed is the train speed in mph, time is the time at
which the train is first scheduled at the origin.

The program ’in_gen’ is one method of automatically generating these input
files. To run it, simply type ’in_gen’ in the /rynsord directory. It will read the
’network.out’ file to get topology information and then prompt the user for some
parameters. These include:

Orig vol: The traffic volume (see Chapter 4 for more information)
Max time: The time at which trains will cease to be asserted.Enter
spike time…: This allows the user to force a perturbation period in
the form of higher than normal traffic. The three numbers required

are time to begin, the duration, and the additional volume. If no
spike is desired, answer ‘0 0 0’.

Given this information, in_gen will go ahead and generate the input files. 

8.3.4
Output Files

Each station produces its own output file called t_output_<uid> in /rynsord/
output.
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The format of these files follows the convention that the first letter defines the
type on output line:

t: train information linet [<timestamp>] id <train id> from <origin> time
(<orig time>, <time left origin>)

Note that the final destination of each train is the node that logs the train
information. For this train, the following lines will be present:

a <number of route computation made> <number of messages
sent> p [<A>-><B>(<time arrive B>, <time leave B>) this is the hop

by hop path that the train took w <time spent waiting> graphs!
xgraph

At the end of each output file are the following entries:

1 [<A>-><B>] usage <timesteps> of <max time> per <percentage>
trains <num trains> this is a summary of the link usage for those

links owned by this node

For this link, the following information also applies:

r <reservations attempted> <reservations made> <reservations
removed> <diff> <traveled> where <diff> is the total difference

between the reserved time and the departure time and <traveled> is
the number of times a train traversed this track segment. R <a> <b>

<c> <d> <e> <f> This is a summary of simulated network usage.
<a> total number of integers sent <b> maximum number of integers

sent in any one timestep <c> time at which <b> occurred <d>
minimum number of messages sent <e> time at which <d> occurred

<f> number of integers sent for waiting messages

Finally, at the end of the file are 10 statistics:

s1: reservations originated from this node s2: reservations accepted
at this node s3: reservations denied at this node s4: reservations

processed at this node s5: number of reservations which are ‘ideally’
met s6: number of times the primary path was used s7: number of

times the secondary path was used s8: number of times a train was
allowed to leave early s9: total number of minutes saved by this

s10: number of trains processed by this node

The utility ’out_an’ is provided to do analysis of these output files. Among other
things it will do is create some text files with a ’.dat’ extension. These are meant
to be opened with the ’xgraph’ tool which can provide limited graphing
functionality. 
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8.3.5
Troubleshooting

8.3.5.1
How you know it is working

There are two phases to simulation startup. The first is to complete the network
initialization. A node has finished this when its output appears something like
this:

fd 4 [0<−>1] status 0 fd 5 [0<−>4] status 0 fd 6 [0<−>99] status 0

It will pause here until all the other nodes have also completed network
initialization.

The second phase then begins which is the actual simulation. The only
obvious output will be the sync node which will be giving constant ’TIME
UPDATE’ messages as simulation time progresses. The other nodes will give
period train messages as they process trains and messages.

8.3.5.2
Problems

If not all of the nodes complete network initialization properly, then it is mostly
an error in either the network.out file or the environment variables used. Double
check each xterm with the contents of the network.out file and also verify that
the same port number is not used twice on the same machine.

If everything looks good, then it is possible that there is contention for a port.
The command ’netstat -a’ can be used (in conjunction with grep) to check for
conflicts with the portnumbers that you have selected.

If you kill (control-C or via ’kill’) a simulation (and you must kill all nodes
before restarting), there may be a time delay before you can reuse the same port
numbers. The ’netstat -a’ command will show these as being in TIME_WAIT state.
They will become available again after a short time.

If the simulation appears to freeze after running for sometime, then one
possibility is that the network graph is not fully connected.

8.3.6
Track and Commimication Failures

The provided simulator has the capability of simulating a single track or
communication link failure. To initiate this, simply add the following command
line arguments to all nodes (except the SYNC node):
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-k <A> <B> <time to initiate> <duration> to fail a track segment
between uid A and B. -f <A> <B> <time to initiate> <duration> to fail

a communication link between uid A and B.

Note that you cannot use both flags concurrently. 

8.4
Conclusions

The information provided in this chapter, along with the accompanying software,
should be sufficient for the reader to perform a set of simple experiments with
the RYNSORD algorithm. Note that this is research software and may not be
completely robust. This is definitely not supported software. However, if you do
experience problems or have comments, feel free to e-mail us at
rynsord@enpc732.eas.asu.edu. We will try our best to get back to you in a timely
fashion. 
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