
http://www.cambridge.org/9780521857482

ii

This page intentionally left blank

Switching and Finite Automata Theory

Understand the structure, behavior, and limitations of logic machines with this
thoroughly updated third edition.

New topics include:
� CMOS gates
� logic synthesis
� logic design for emerging nanotechnologies
� digital system testing
� asynchronous circuit design

The intuitive examples and minimal formalism of the previous edition are
retained, giving students a text that is logical and easy to follow, yet rigorous.
Kohavi and Jha begin with the basics, and then cover combinational logic
design and testing, before moving on to more advanced topics in finite-state
machine design and testing. The theory is made easier to understand with 200
illustrative examples, and students can test their understanding with over 350
end-of-chapter review questions.

Zvi Kohavi is Executive Vice President and Director General at Technion–Israel
Institute of Technology. He is Professor Emeritus of the Computer Science
Department at Technion, where he held the position of Sir Michael and Lady
Sobell Chair in Computer Engineering and Electronics.

Niraj K. Jha is a Professor at Princeton University and a Fellow of the IEEE and
ACM. He is a recipient of the AT&T Foundation Award and NEC Preceptorship
Award for research excellence, the NCR Award for teaching excellence, and
Princeton’s Graduate Mentoring Award.

i

ii

Switching and Finite
Automata Theory
Third Edition

Zvi Kohavi
Technion–Israel Institute of Technology

Niraj K. Jha
Princeton University

iii

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-85748-2

ISBN-13 978-0-511-65824-2

© Z. Kohavi and N. Jha 2010

2009

Information on this title: www.cambridge.org/9780521857482

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (NetLibrary)

Hardback

http://www.cambridge.org/9780521857482
http://www.cambridge.org

Contents

Preface page xi

Part 1 Preliminaries

1 Number systems and codes 3
1.1 Number systems 3
1.2 Binary codes 10
1.3 Error detection and correction 13

Notes and references 19
Problems 20

2 Sets, relations, and lattices 23
2.1 Sets 23
2.2 Relations 25
2.3 Partially ordered sets 28
2.4 Lattices 30

Notes and references 33
Problems 33

Part 2 Combinational logic

3 Switching algebra and its applications 37
3.1 Switching algebra 37
3.2 Switching functions 44
3.3 Isomorphic systems 52
3.4 Electronic-gate networks 57

∗3.5 Boolean algebras 58
Notes and references 60
Problems 61

v

vi Contents

4 Minimization of switching functions 67
4.1 Introduction 67
4.2 The map method 68
4.3 Minimal functions and their properties 78
4.4 The tabulation procedure for the determination of prime implicants 81
4.5 The prime implicant chart 86
4.6 Map-entered variables 93
4.7 Heuristic two-level circuit minimization 95
4.8 Multi-output two-level circuit minimization 97

Notes and references 100
Problems 101

5 Logic design 108
5.1 Design with basic logic gates 108
5.2 Logic design with integrated circuits 112
5.3 NAND and NOR circuits 125
5.4 Design of high-speed adders 128
5.5 Metal-oxide semiconductor (MOS) transistors and gates 132
5.6 Analysis and synthesis of MOS networks 135

Notes and references 143
Problems 144

6 Multi-level logic synthesis 151
6.1 Technology-independent synthesis 151
6.2 Technology mapping 162

Notes and references 169
Problems 170

7 Threshold logic for nanotechnologies 173
7.1 Introductory concepts 173
7.2 Synthesis of threshold networks 181

Notes and references 200
Problems 202

8 Testing of combinational circuits 206
8.1 Fault models 206
8.2 Structural testing 212
8.3 IDDQ testing 220
8.4 Delay fault testing 224
8.5 Synthesis for testability 232
8.6 Testing for nanotechnologies 250

Notes and references 254
Problems 257

vii Contents

Part 3 Finite-state machines

9 Introduction to synchronous sequential circuits and
iterative networks 265

9.1 Sequential circuits – introductory example 265
9.2 The finite-state model – basic definitions 269
9.3 Memory elements and their excitation functions 272
9.4 Synthesis of synchronous sequential circuits 280
9.5 An example of a computing machine 293
9.6 Iterative networks 296

Notes and references 300
Problems 300

10 Capabilities, minimization, and transformation
of sequential machines 307

10.1 The finite-state model – further definitions 307
10.2 Capabilities and limitations of finite-state machines 309
10.3 State equivalence and machine minimization 311
10.4 Simplification of incompletely specified machines 317

Notes and references 330
Problems 330

11 Asynchronous sequential circuits 338
11.1 Modes of operation 338
11.2 Hazards 339
11.3 Synthesis of SIC fundamental-mode circuits 346
11.4 Synthesis of burst-mode circuits 358

Notes and references 363
Problems 365

12 Structure of sequential machines 372
12.1 Introductory example 372
12.2 State assignments using partitions 375
12.3 The lattice of closed partitions 380
12.4 Reduction of the output dependency 383
12.5 Input independency and autonomous clocks 386
12.6 Covers, and the generation of closed partitions by

state splitting 388
12.7 Information flow in sequential machines 395
12.8 Decomposition 404

∗12.9 Synthesis of multiple machines 413
Notes and references 418
Problems 419

viii Contents

13 State-identification experiments and testing of sequential circuits 431
13.1 Experiments 431
13.2 Homing experiments 435
13.3 Distinguishing experiments 439
13.4 Machine identification 440
13.5 Checking experiments 442

∗13.6 Design of diagnosable machines 448
13.7 Alternative approaches to the testing of sequential circuits 453
13.8 Design for testability 458
13.9 Built-in self-test (BIST) 461

Appendix 13.1 Bounds on the length of synchronizing sequences 464
Appendix 13.2 A bound on the length of distinguishing sequences 467
Notes and references 467
Problems 468

14 Memory, definiteness, and information losslessness of
finite automata 478

14.1 Memory span with respect to input–output sequences
(finite-memory machines) 478

14.2 Memory span with respect to input sequences (definite machines) 483
14.3 Memory span with respect to output sequences 488
14.4 Information-lossless machines 491

∗14.5 Synchronizable and uniquely decipherable codes 504
Appendix 14.1 The least upper bound for information losslessness
of finite order 510
Notes and references 512
Problems 513

15 Linear sequential machines 523
15.1 Introduction 523
15.2 Inert linear machines 525
15.3 Inert linear machines and rational transfer functions 532
15.4 The general model 537
15.5 Reduction of linear machines 541
15.6 Identification of linear machines 550
15.7 Application of linear machines to error correction 556

Appendix 15.1 Basic properties of finite fields 559
Appendix 15.2 The Euclidean algorithm 561
Notes and references 562
Problems 563

16 Finite-state recognizers 570
16.1 Deterministic recognizers 570
16.2 Transition graphs 572

ix Contents

16.3 Converting nondeterministic into deterministic graphs 574
16.4 Regular expressions 577
16.5 Transition graphs recognizing regular sets 582
16.6 Regular sets corresponding to transition graphs 588

∗16.7 Two-way recognizers 595
Notes and references 601
Problems 602

Index 608

x

Preface

Topics in switching and finite automata theory have been an important part of
the curriculum in electrical engineering and computer science departments for
several decades. The third edition of this book builds on the comprehensive
foundation provided by the second edition and adds: significant new material
in the areas of CMOS logic; modern two-level and multi-level logic synthesis
methods; logic design for emerging nanotechnologies; test generation, design
for testability and built-in self-test for combinational and sequential circuits;
modern asynchronous circuit synthesis techniques; etc. We have attempted to
maintain the comprehensive nature of the earlier edition in providing readers
with an understanding of the structure, behavior, and limitations of logical
machines. At the same time, we have provided an up-to-date context in which
the presented techniques can find use in a variety of applications. We start with
introductory material and build up to more advanced topics. Thus, the technical
background assumed on the part of the reader is minimal.

This edition maintains the style of the previous edition in providing a log-
ical and rigorous discussion of various topics with minimal formalism. Thus,
theorems and algorithms are preceded by several intuitive examples to ease
understanding. The original references for various topics are provided. Of
course, readers who want to dig deeper into a subject would need to consult
later works also.

The book is divided into three parts. The first part consists of Chapters 1 and
2. It provides introductory background. The second part consists of Chapters 3
through 8. It deals with combinational logic. The third part consists of Chap-
ters 9 through 16. It is concerned with finite automata. Several chapters contain
specific topics that are not prerequisites for subsequent chapters, e.g. Chap-
ters 6, 7, 11–16. Such chapters can be selected at the preference of instructors.
Sections marked with a star may be omitted without loss of continuity.

The book can be used for courses at the junior or senior levels in electri-
cal engineering and computer science departments as well as at the beginning
graduate level. It is intended as a text for a two-semester sequence. The first
semester can be devoted to switching theory (Chapters 1, 3–11) and the second

xi

xii Preface

semester to finite automata theory (Chapters 2, 12–16). Other partitions into
two semesters are also possible, keeping in mind that Chapters 3–5 are pre-
requisites for the rest of the book and Chapters 9 and 10 are prerequisites for
Chapters 12–16.

Some chapters have undergone major revision and others only minor revision.
Two sections have been added to Chapter 4, on heuristic and multi-output two-
level circuit minimization. A section has been added to Chapter 5 on CMOS
circuit realizations. Chapter 6 has been completely rewritten with an emphasis
on technology-independent multi-level logic synthesis as well as on technology
mapping. Chapter 7 has been updated with synthesis techniques geared towards
emerging nanotechnologies that can efficiently implement threshold, majority,
and minority logic. Chapter 8 has also been completely rewritten to include a
discussion of fault models, structural testing, IDDQ testing, delay fault testing,
synthesis for testability, and testing for nanotechnologies. All these topics
provide the underpinning for the testing of modern integrated circuits. Minor
changes have been made to the flip-flop section in Chapter 9. Chapter 11 has
been updated with material on the synthesis of asynchronous circuits that allow
multiple input changes, including burst-mode circuits. The substantial revisions
of Chapter 13 include the addition of material on sequential test generation,
design for testability, and built-in self-test. These concepts are also important
for understanding how modern integrated circuits are tested. The problem sets
have been expanded in all the above chapters.

The previous edition has been used at many universities, which encouraged
us to undertake the task of revising the book. We are grateful for the feedback
and comments from Professors Sudhakar Reddy, Israel Koren, and Robert Dick.
We are also indebted to students and colleagues at Technion and at Princeton
University for providing a stimulating environment that made this revision
possible.

Last, but not the least, Niraj would like to thank his father, Dr Chintamani
Jha, and his wife, Shubha, without whose encouragement and understanding
this edition would not have been possible.

Zvi Kohavi
Niraj K. Jha

Part 1 Preliminaries

1

2

C H A P T E R

1 Number systems and codes

This chapter deals with the representation of numerical data, with emphasis on
those representations that use only two symbols, 0 and 1. Described are special
methods of representing numerical data that afford protection against various
transmission errors and component failures.

1.1 Number systems

Convenient as the decimal number system generally is, its usefulness in machine
computation is limited because of the nature of practical electronic devices. In
most present digital machines, the numbers are represented, and the arithmetic
operations performed, in a different number system called the binary number
system. This section is concerned with the representation of numbers in various
systems and with methods of conversion from one system to another.

Number representation

An ordinary decimal number actually represents a polynomial in powers of 10.
For example, the number 123.45 represents the polynomial

123.45 = 1 × 102 + 2 × 101 + 3 × 100 + 4 × 10−1 + 5 × 10−2.

This method of representing decimal numbers is known as the decimal number
system, and the number 10 is referred to as the base (or radix) of the system.
In a system whose base is b, a positive number N represents the polynomial

N = aq−1b
q−1 + · · · + a0b

0 + · · · + a−pb−p

=
q−1∑

i=−p

aib
i,

where the base b is an integer greater than 1 and the a’s are integers in the range
0 ≤ ai ≤ b − 1. The sequence of digits aq−1aq−2 · · · a0 constitutes the integer

3

4 Number systems and codes

Table 1.1 Representation of integers

Base

2 4 8 10 12

0000 0 0 0 0
0001 1 1 1 1
0010 2 2 2 2
0011 3 3 3 3
0100 10 4 4 4
0101 11 5 5 5
0110 12 6 6 6
0111 13 7 7 7
1000 20 10 8 8
1001 21 11 9 9
1010 22 12 10 α

1011 23 13 11 β

1100 30 14 12 10
1101 31 15 13 11
1110 32 16 14 12
1111 33 17 15 13

part of N , while the sequence a−1a−2 · · · a−p constitutes the fractional part of
N . Thus, p and q designate the number of digits in the fractional and integer
parts, respectively. The integer and fractional parts are usually separated by a
radix point. The digit a−p is referred to as the least significant digit while aq−1

is called the most significant digit.
When the base b equals 2, the number representation is referred to as the

binary number system. For example, the binary number 1101.01 represents the
polynomial

1101.01 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 + 0 × 2−1 + 1 × 2−2,

that is,

1101.01 =
3∑

i=−2

ai2
i ,

where a−2 = a0 = a2 = a3 = 1 and a−1 = a1 = 0.
A number N in base b is usually denoted (N)b. Whenever the base is not

specified, base 10 is implicit. Table 1.1 shows the representations of integers 0
through 15 in several number systems.

The complement of a digit a, denoted a′, in base b is defined as

a′ = (b − 1) − a.

That is, the complement a′ is the difference between the largest digit in base
b and digit a. In the binary number system, since b = 2, 0′ = 1 and 1′ = 0.

5 1.1 Number systems

In the decimal number system, the largest digit is 9. Thus, for example, the
complement1 of 3 is 9 − 3 = 6.

Conversion of bases

Suppose that some number N , which we wish to express in base b2, is presently
expressed in base b1. In converting a number from base b1 to base b2, it is
convenient to distinguish between two cases. In the first case b1 < b2, and
consequently base-b2 arithmetic can be used in the conversion process. The
conversion technique involves expressing number (N)b1 as a polynomial in
powers of b1 and evaluating the polynomial using base-b2 arithmetic.

Example We wish to express the numbers (432.2)8 and (1101.01)2 in base
10. Thus

(432.2)8 = 4 × 82 + 3 × 81 + 2 × 80 + 2 × 8−1 = (282.25)10,

(1101.01)2 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 + 0

×2−1 + 1 × 2−2 = (13.25)10.

In both cases, the arithmetic operations are done in base 10.

When b1 > b2 it is more convenient to use base-b1 arithmetic. The conversion
procedure will be obtained by considering separately the integer and fractional
parts of N . Let (N)b1 be an integer whose value in base b2 is given by

(N)b1 = aq−1b
q−1
2 + aq−2b

q−2
2 + · · · + a1b

1
2 + a0b

0
2.

To find the values of the a’s, let us divide the above polynomial by b2.

(N)b1

b2
= aq−1b

q−2
2 + aq−2b

q−3
2 + · · · + a1︸ ︷︷ ︸

Q0

+a0

b2
.

Thus, the least significant digit of (N)b2 , i.e., a0, is equal to the first remainder.
The next most significant digit, a1, is obtained by dividing the quotient Q0 by
b2, i.e., (

Q0

b2

)
b1

= aq−1b
q−3
2 + aq−2b

q−4
2 + · · ·︸ ︷︷ ︸

Q1

+a1

b2
.

The remaining a’s are evaluated by repeated divisions of the quotients until
Qq−1 is equal to zero. If N is finite, the process must terminate.

1 In the decimal system, the complement is also referred to as the 9’s complement. In the binary
system, it is also known as the 1’s complement.

6 Number systems and codes

Example The above conversion procedure is now applied to convert (548)10

to base 8. The ri in the table below denote the remainders. The first entries
in the table are 68 and 4, corresponding, respectively, to the quotient Q0

and the first remainder from the division (548/8)10. The remaining entries
are found by successive division.

Qi ri

68 4 = a0

8 4 = a1

1 0 = a2

1 = a3

Thus, (548)10 = (1044)8. In a similar manner we can obtain the conversion
of (345)10 to (1333)6, as illustrated in the table below.

Qi ri

57 3 = a0

9 3 = a1

1 3 = a2

1 = a3

Indeed, (1333)6 can be reconverted to base 10, i.e.,

(1333)6 = 1 × 63 + 3 × 62 + 3 × 61 + 3 × 60 = 345

If (N)b1 is a fraction, a dual procedure is employed. It can be expressed in
base b2 as follows:

(N)b1 = a−1b
−1
2 + a−2b

−2
2 + · · · + a−pb

−p

2 .

The most significant digit, a−1, can be obtained by multiplying the polynomial
by b2:

b2 · (N)b1 = a−1 + a−2b
−1
2 + · · · + a−pb

−p+1
2 .

If the above product is less than 1 then a−1 equals 0; if the product is greater
than or equal to 1 then a−1 is equal to the integer part of the product. The
next most significant digit, a−2, is found by multiplying the fractional part of
the above product part by b2 and determining its integer part; and so on. This
process does not necessarily terminate since it may not be possible to represent
the fraction in base b2 with a finite number of digits.

7 1.1 Number systems

Example To convert (0.3125)10 to base 8, find the digits as follows:

0.3125 × 8 = 2.5000, hence a−1 = 2;

0.5000 × 8 = 4.0000, hence a−2 = 4.

Thus (0.3125)10 = (0.24)8.
Similarly, the computation below proves that (0.375)10 = (0.011)2:

0.375 × 2 = 0.750, hence a−1 = 0;

0.750 × 2 = 1.500, hence a−2 = 1;

0.500 × 2 = 1.000, hence a−3 = 1.

Example To convert (432.354)10 to binary, we first convert the integer part
and then the fractional part. For the integer part we have

Qi ri

216 0 = a0

108 0 = a1

54 0 = a2

27 0 = a3

13 1 = a4

6 1 = a5

3 0 = a6

1 1 = a7

1 = a8

Hence (432)10 = (110110000)2. For the fractional part we have

0.354 × 2 = 0.708, hence a−1 = 0,

0.708 × 2 = 1.416, hence a−2 = 1,

0.416 × 2 = 0.832, hence a−3 = 0,

0.832 × 2 = 1.664, hence a−4 = 1,

0.664 × 2 = 1.328, hence a−5 = 1,

0.328 × 2 = 0.656, hence a−6 = 0,

a−7 = 1,

etc.

Consequently (0.354)10 = (0.0101101 · · ·)2. The conversion is usually car-
ried up to the desired accuracy. In our example, reconversion to base 10
shows that

(110110000.0101101)2 = (432.3515)10

8 Number systems and codes

Table 1.2 Elementary binary operations

Bits
Sum Difference Product

a b a + b Carry a − b Borrow a · b

0 0 0 0 0 0 0
0 1 1 0 1 1 0
1 0 1 0 1 0 0
1 1 0 1 0 0 1

A considerably simpler conversion procedure may be employed in converting
octal numbers (i.e., numbers in base 8) to binary and vice versa. Since 8 = 23,
each octal digit can be expressed by three binary digits. For example, (6)8

can be expressed as (110)2, etc. The procedure of converting a binary number
into an octal number consists of partitioning the binary number into groups
of three digits, starting from the binary point, and to determine the octal digit
corresponding to each group.

Example

(123.4)8 = (001 010 011.100)2,

(1010110.0101)2 = (001 010 110.010 100) = (126.24)8.

A similar procedure may be employed in conversions from binary to hexa-
decimal (base 16), except that four binary digits are needed to represent a single
hexadecimal digit. In fact, whenever a number is converted from base b1 to base
b2, where b2 = bk

1, k digits of that number when grouped may be represented
by a single digit from base b2.

Binary arithmetic

The binary number system is widely used in digital systems. Although a detailed
study of digital arithmetic is beyond the scope of this book, we shall present
the elementary techniques of binary arithmetic. The basic arithmetic operations
are summarized in Table 1.2, where the sum and carry, difference and borrow,
and product are computed for every combination of binary digits (abbreviated
bits) 0 and 1. For a more comprehensive discussion of computer arithmetic, the
reader may consult [2].

Binary addition is performed in a manner similar to that of decimal addition.
Corresponding bits are added and if a carry 1 is produced then it is added to
the binary digits at the left.

9 1.1 Number systems

Example The addition of (15.25)10 and (7.50)10 in binary proceeds as
follows:

1111 carries of 1

1111.01 = (15.25)10

+
0111.10 = (7.50)10

10110.11 = (22.75)10

In subtraction, if a borrow of 1 occurs and the next left digit of the minuend
(the number from which a subtraction is being made) is 1 then the latter is
changed to 0 and subtraction is continued in the usual manner. If, however, the
next left digit of the minuend is 0 then it is changed to 1, as is each successive
minuend digit to the left which is equal to 0. The first minuend digit to the left,
which is equal to 1, is changed to 0, and subtraction is continued.

Example The subtraction of (12.50)10 from (18.75)10 in binary proceeds
as follows:

1 borrows of 1

10010.11 = (18.75)10

−
01100.10 = (12.50)10

00110.01 = (6.25)10

Just as with decimal numbers, the multiplication of binary numbers is per-
formed by successive addition while division is performed by successive sub-
traction.

Example Multiply the binary numbers below:

11001.1 = (25.5)10

×
110.1 = (6.5)10

110011

000000

110011

110011

10100101.11 = (165.75)10

10 Number systems and codes

Example Divide the binary number 1000100110 by 11001.

10110 quotient

11001
∣∣1000100110

11001

00100101

11001

0011001

11001

00000 remainder

1.2 Binary codes

Although the binary number system has many practical advantages and is
widely used in digital computers, in many cases it is convenient to work with the
decimal number system, especially when the communication between human
being and machine is extensive, since most numerical data generated by humans
is in terms of decimal numbers. To simplify the problem of communication
between human and machine, several codes have been devised in which decimal
digits are represented by sequences of binary digits.

Weighted codes

In order to represent the 10 decimal digits 0, 1, . . . , 9, it is necessary to use at
least four binary digits. Since there are 16 combinations of four binary digits,
of which 10 combinations are used, it is possible to form a very large number of
distinct codes. Of particular importance is the class of weighted codes, whose
main characteristic is that each binary digit is assigned a decimal “weight,” and,
for each group of four bits, the sum of the weights of those binary digits whose
value is 1 is equal to the decimal digit which they represent. If w1, w2, w3, and
w4 are the given weights of the binary digits and x1, x2, x3, x4 the corresponding
digit values then the decimal digit N = w4x4 + w3x3 + w2x2 + w1x1 can be
represented by the binary sequence x4x3x2x1. The sequence of binary digits that
represents a decimal digit is called a code word. Thus, the sequence x4x3x2x1

is the code word for N . Three weighted four-digit binary codes are shown in
Table 1.3.

The binary digits in the first code in Table 1.3 are assigned weights 8, 4,
2, 1. As a result of this weight assignment, the code word that corresponds to
each decimal digit is the binary equivalent of that digit; e.g., 5 is represented
by 0101, and so on. This code is known as the binary-coded-decimal (BCD)

11 1.2 Binary codes

Table 1.3 The code words x4x3x2x1 for the decimal digits N in three weighted
binary codes

w4w3w2w1
Decimal
digit N 8 4 2 1 2 4 2 1 6 4 2 −3

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 1 0 1
2 0 0 1 0 0 0 1 0 0 0 1 0
3 0 0 1 1 0 0 1 1 1 0 0 1
4 0 1 0 0 0 1 0 0 0 1 0 0
5 0 1 0 1 1 0 1 1 1 0 1 1
6 0 1 1 0 1 1 0 0 0 1 1 0
7 0 1 1 1 1 1 0 1 1 1 0 1
8 1 0 0 0 1 1 1 0 1 0 1 0
9 1 0 0 1 1 1 1 1 1 1 1 1

code. For each code in Table 1.3, the decimal digit that corresponds to a given
code word is equal to the sum of the weights in those binary positions that
are 1’s rather than 0’s. Thus, in the second code, where the weights are 2, 4,
2, 1, decimal 5 is represented by 1011, corresponding to the sum 2 × 1 + 4 ×
0 + 2 × 1 + 1 × 1 = 5. The weights assigned to the binary digits may also be
negative, as in the code (6, 4, 2,−3). In this code, decimal 5 is represented by
1011, since 6 × 1 + 4 × 0 + 2 × 1 − 3 × 1 = 5.

It is apparent that the representations of some decimal numbers in the (2, 4,
2, 1) and (6, 4, 2,−3) codes are not unique. For example, in the (2, 4, 2, 1) code,
decimal 7 may be represented by 1101 as well as 0111. Adopting the represen-
tations shown in Table 1.3 causes the codes to become self-complementing. A
code is said to be self-complementing if the code word of the “9’s complement
of N”, i.e., 9 − N , can be obtained from the code word of N by interchanging
all the 1’s and 0’s. For example, in the (6, 4, 2,−3) code, decimal 3 is repre-
sented by 1001 while decimal 6 is represented by 0110. In the (2, 4, 2, 1) code,
decimal 2 is represented by 0010 while decimal 7 is represented by 1101. Note
that the BCD code (8, 4, 2, 1) is not self-complementing. It can be shown that
a necessary condition for a weighted code to be self-complementing is that the
sum of the weights must equal 9. There exist only four positively weighted
self-complementing codes, namely, (2, 4, 2, 1), (3, 3, 2, 1), (4, 3, 1, 1), and (5,
2, 1, 1). In addition, there exist 13 self-complementing codes with positive and
negative weights.

Nonweighted codes

There are many nonweighted binary codes, two of which are shown in Table
1.4. The Excess-3 code is formed by adding 0011 to each BCD code word.

12 Number systems and codes

Table 1.4 Nonweighted binary codes

Decimal digit Excess-3 Cyclic

0 0 0 1 1 0 0 0 0
1 0 1 0 0 0 0 0 1
2 0 1 0 1 0 0 1 1
3 0 1 1 0 0 0 1 0
4 0 1 1 1 0 1 1 0
5 1 0 0 0 1 1 1 0
6 1 0 0 1 1 0 1 0
7 1 0 1 0 1 0 0 0
8 1 0 1 1 1 1 0 0
9 1 1 0 0 0 1 0 0

Table 1.5 Decimal numbers in the complete four-bit Gray code
and in binary

Decimal Gray Binary
number g3 g2 g1 g0 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1
2 0 0 1 1 0 0 1 0
3 0 0 1 0 0 0 1 1
4 0 1 1 0 0 1 0 0
5 0 1 1 1 0 1 0 1
6 0 1 0 1 0 1 1 0
7 0 1 0 0 0 1 1 1
8 1 1 0 0 1 0 0 0
9 1 1 0 1 1 0 0 1

10 1 1 1 1 1 0 1 0
11 1 1 1 0 1 0 1 1
12 1 0 1 0 1 1 0 0
13 1 0 1 1 1 1 0 1
14 1 0 0 1 1 1 1 0
15 1 0 0 0 1 1 1 1

Thus, for example, the representation of decimal 7 in Excess-3 is given by
0111 + 0011 = 1010. The Excess-3 code is self-complementing and possesses
a number of properties that made it practical in early decimal computers.

In many practical applications, e.g., analog-to-digital conversion, it is desir-
able to use codes in which the code words for successive decimal integers differ
in only one digit. Codes that have such a property are referred to as cyclic codes.
The second code in Table 1.4 is an example of such a code. (Note that in this,
as in all cyclic codes, the code word representing the decimal digits 0 and 9
differ in only one digit.) A particularly important cyclic code is the Gray code.
A four-bit Gray code is shown in Table 1.5. The feature that makes this cyclic

13 1.3 Error detection and correction

code useful is the simplicity of the procedure for converting from the binary
number system into the Gray code, as follows.

Let gn · · · g2g1g0 denote a code word in the (n + 1)th-bit Gray code, and let
bn · · · b2b1b0 designate the corresponding binary number, where the subscripts
0 and n denote the least significant and most significant digits, respectively.
Then, the ith digit gi can be obtained from the corresponding binary number
as follows:

gi = bi ⊕ bi+1, 0 ≤ i ≤ n − 1,

gn = bn,

where the symbol ⊕ denotes the modulo-2 sum, which is defined as follows:

0 ⊕ 0 = 0, 1 ⊕ 1 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1.

For example, the Gray code word that corresponds to the binary number 101101
is found to be 111011 in a manner indicated in the following diagram:

+ ++++ +

1 0 1 11 0

1 1 1 0 1 1
g5 g4 g3 g2 g1 g0

b5 b4 b3 b2 b1 b0

Thus, to convert from Gray code to binary, start with the leftmost digit
and proceed to the least significant digit, setting bi = gi if the number of 1’s
preceding gi is even and setting bi = g′

i if the number of 1’s preceding gi is
odd. (Note that zero 1’s counts as an even number of 1’s.) For example, the
Gray code word 1001011 represents the binary number 1110010. The proof
that the preceding conversion procedures does indeed work is left to the reader
as an exercise.

The n-bit Gray code is a member of a class called reflected codes. The term
“reflected” is used to designate codes which have the property that the n-bit
code can be generated by reflecting the (n − 1)th-bit code, as illustrated in
Fig. 1.1. The two-bit Gray code is shown in Fig. 1.1a. The three-bit Gray code
(Fig. 1.1b) can be obtained by reflecting the two-bit code about an axis at the
end of the code and assigning a most significant bit of 0 above the axis and 1
below the axis. The four-bit Gray code is obtained in the same manner from
the three-bit code, as shown in Fig. 1.1c.

1.3 Error detection and correction

In the codes presented so far, each code word consists of four binary digits,
which is the minimum number needed to represent the 10 decimal digits. Such

14 Number systems and codes

00
01
11
10

0
0
0
0
1
1
1
1

10
11
01
00

00
01
11
10

0
0
0
0
0
0
0
0

000
001
011
010
110
111
101
100

1
1
1
1
1
1
1
1

100
101
111
110
010
011
001
000

(a) (b) (c)

Fig. 1.1 Reflection of Gray
codes.

codes, although adequate for the representation of decimal digits, are very
sensitive to the transmission errors that may occur because of equipment failure
or noise in the transmission channel. In any practical system there is always
a finite probability of occurrence of a single error. The probability that two
or more errors will occur simultaneously, although nonzero, is substantially
smaller. We, therefore, restrict our discussion mainly to the detection and
correction of single errors.

Error-detecting codes

In a four-bit binary code, the occurrence of a single error in one of the binary
digits may result in another, incorrect but valid, code word. For example, in
the BCD code (see above), if an error occurs in the least significant digit of
0110 then the code word 0111 results and, since it is a valid code word, it is
incorrectly interpreted by the receiver. If a code possesses the property that
the occurrence of any single error transforms a valid code word into an invalid
code word, it is said to be a (single-)error-detecting code. Two error-detecting
codes are shown in Table 1.6.

Error detection in either code in Table 1.6 is accomplished by a parity check.
The basic idea in a parity check is to add an extra digit to each code word of
a given code so as to make the number of 1’s in each code word either odd
or even. In the codes of Table 1.6 we have used even parity. The even-parity
BCD code is obtained directly from the BCD code of Table 1.3. The added
bit, denoted p, is called the parity bit. The 2-out-of-5 code consists of all 10
possible combinations of two 1’s in a five-bit code word. With the exception

15 1.3 Error detection and correction

Table 1.6 Error-detecting codes

Decimal Even-parity BCD 2-out-of-5
digit 8 4 2 1 p 0 1 2 4 7

0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 1 1 1 1 0 0 0
2 0 0 1 0 1 1 0 1 0 0
3 0 0 1 1 0 0 1 1 0 0
4 0 1 0 0 1 1 0 0 1 0
5 0 1 0 1 0 0 1 0 1 0
6 0 1 1 0 0 0 0 1 1 0
7 0 1 1 1 1 1 0 0 0 1
8 1 0 0 0 1 0 1 0 0 1
9 1 0 0 1 0 0 0 1 0 1

of the code word for decimal 0, the 2-out-of-5 code of Table 1.6 is a weighted
code and can be derived from the (1, 2, 4, 7) code.

In each of the codes in Table 1.6 the number of 1’s in a code word is even.
Now, if a single error occurs it transforms the valid code word into an invalid
one, thus making the detection of the error straightforward. Although parity
check is intended only for the detection of single errors, it, in fact, detects any
odd number of errors and some even numbers of errors. For example, if the
code word 10100 is received in an even-parity BCD message, it is clear that the
message is erroneous, since such a code word is not defined although the parity
check is satisfied. We cannot determine, however, the original transmitted word.

In general, to obtain an n-bit error-detecting code, no more than half the
possible 2n combinations of digits can be used. The code words are chosen in
such a manner that, in order to change one valid code word into another valid
code word, at least two digits must be complemented. In the case of four-bit
codes this constraint means that only eight valid code words can be formed of
the 16 possible combinations. Thus, to obtain an error-detecting code for the
10 decimal digits, at least five binary digits are needed. It is useful to define
the distance between two code words as the number of digits that must change
in one word so that the other word results. For example, the distance between
1010 and 0100 is three, since the two code words differ in three bit positions.
The minimum distance of a code is the smallest number of bits in which any
two code words differ. Thus, the minimum distance of the BCD or the Excess-3
codes is one, while that of the codes in Table 1.6 is two. Clearly, a code is an
error-detecting code if and only if its minimum distance is two or more.

Error-correcting codes

For a code to be error-correcting, its minimum distance must be further
increased. For example, consider the three-bit code which consists of only two

16 Number systems and codes

valid code words, 000 and 111. If a single error occurs in the first code word, it
could become 001, 010, or 100. The second code word could be changed by a
single error to 110, 101, or 011. Note that in each case the invalid code words
are different. Clearly, this code is error-detecting since its minimum distance is
three. Moreover, if we assume that only a single error can occur then this error
can be located and corrected, since every error results in an invalid code word
that can be associated with only one of the valid code words. Thus, the two
code words 000 and 111 constitute an error-correcting code whose minimum
distance is three. In general, a code is said to be error-correcting if the correct
code word can always be deduced from the erroneous word. In this section,
we shall discuss a type of single-error-correcting codes known as Hamming
codes.

If the minimum distance of a code is three, then any single error changes
a valid code word into an invalid one, which is distance one away from the
original code word and distance two from any other valid code word. Therefore,
in a code with minimum distance three, any single error is correctable or any
double error detectable. Similarly, a code whose minimum distance is four may
be used for either single-error correction and double-error detection or triple-
error detection. The key to error correction is that it must be possible to detect
and locate erroneous digits. If the location of an error has been determined
then, by complementing the erroneous digit, the message is corrected.

The basic principles in constructing a Hamming error-correcting code are as
follows. To each group of m information or message digits, k parity-checking
digits, denoted p1, p2, . . . , pk , are added to form an (m + k)-digit code. The
location of each of the m + k digits within a code word is assigned a decimal
value; one starts by assigning a 1 to the most significant digit and m + k to the
least significant digit. Then k parity checks are performed on selected digits of
each code word. The result of each parity check is recorded as 1 or 0, depending,
respectively, on whether an error has or has not been detected. These parity
checks make possible the development of a binary number, c1c2 · · · ck , whose
value is equal to the decimal value assigned to the location of the erroneous
digit when an error occurs and is equal to zero if no error occurs. This number
is called the position (or location) number.

The number k of digits in the position number must be large enough to
describe the location of any of the m + k possible single errors, and must in
addition take on the value zero to describe the “no error” condition. Conse-
quently, k must satisfy the inequality 2k ≥ m + k + 1. Thus, for example, if the
original message is in BCD where m = 4 then k = 3 and at least three parity-
checking digits must be added to the BCD code. The resultant error-correcting
code thus consists of seven digits. In this case, if the position number is equal to
101, it means that an error has occurred in position 5. If, however, the position
number is equal to 000, the message is correct.

In order to be able to specify the checking digits by means of only mes-
sage digits and independently of each other, they are placed in positions

17 1.3 Error detection and correction

Table 1.7 Position numbers c1c2c3

Position number
Error position c1 c2 c3

0 (no error) 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1
6 1 1 0
7 1 1 1

1, 2, 4, . . . , 2k−1. Thus, if m = 4 and k = 3 then the checking digits are placed
in positions 1, 2, and 4 while the remaining positions contain the original (BCD)
message bits. For example, in the code word 1100110, the checking digits (in
boldface) are p1 = 1, p2 = 1, p3 = 0, while the message digits are 0, 1, 1, 0,
which correspond to decimal 6.

We shall now show how the Hamming code is constructed, by constructing
the code for m = 4 and k = 3. As discussed above, the parity-checking digits
must be specified in such a way that, when an error occurs, the position number
will take on the value assigned to the location of the erroneous digit. Table
1.7 lists the seven error positions and the corresponding values of the position
number. It is evident that if an error occurs in position 1, or 3, or 5, or 7, the
least significant digit, i.e., c3, of the position number must be equal to 1. If the
code is constructed so that in every code word the digits in positions 1, 3, 5,
and 7 have even parity, then the occurrence of a single error in any of these
positions will cause an odd parity. In such a case, the least significant digit of
the position number is recorded as 1. If no error occurs among these digits,
a parity check will show an even parity and the least significant digit of the
position number is recorded as 0.

From Table 1.7, we observe that an error in positions 2, 3, 6, or 7 should
result in the recording of a 1 in the center of the position number. Hence, the
code must be designed so that the digits in positions 2, 3, 6, and 7 have even
parity. Again, if the parity check of these digits shows an odd parity then the
corresponding position-number digit, i.e., c2, is set to 1; otherwise it is set to 0.
Finally, if an error occurs in positions 4, 5, 6, or 7 then the most significant digit
of the position number, i.e., c1, should be a 1. Therefore, if digits 4, 5, 6, and 7
are designed to have even parity, an error in any of these digits will be recorded
as a 1 in the most significant digit of the position number. To summarize the
situation regarding the checking digits pi :

p1 is selected so as to establish even parity in positions 1, 3, 5, 7;
p2 is selected so as to establish even parity in positions 2, 3, 6, 7;
p3 is selected so as to establish even parity in positions 4, 5, 6, 7.

18 Number systems and codes

Table 1.8 Hamming code for BCD

Digit position and symbol

Decimal 1 2 3 4 5 6 7
digit p1 p2 m1 p3 m2 m3 m4

0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 1
2 0 1 0 1 0 1 0
3 1 0 0 0 0 1 1
4 1 0 0 1 1 0 0
5 0 1 0 0 1 0 1
6 1 1 0 0 1 1 0
7 0 0 0 1 1 1 1
8 1 1 1 0 0 0 0
9 0 0 1 1 0 0 1

The code can now be constructed by adding the appropriate checking digits
to the message digits. Consider, for example, the message 0100 (i.e., decimal
4), as shown in the table below.

Digit position: 1 2 3 4 5 6 7
Digit symbol: p1 p2 m1 p3 m2 m3 m4

Original BCD message: 0 1 0 0
Parity check in positions 1, 3, 5, 7 requires p1 = 1: 1 0 1 0 0
Parity check in positions 2, 3, 6, 7 requires p2 = 0: 1 0 0 1 0 0
Parity check in positions 4, 5, 6, 7 requires p3 = 1: 1 0 0 1 1 0 0

Coded message: 1 0 0 1 1 0 0

Thus checking digit p1 is set equal to 1 so as to establish even parity in positions
1, 3, 5, and 7. Similarly, it is evident that p2 must be 0 and p3 must be 1, so
that even parity is established, respectively, in positions 2, 3, 6, and 7 and 4, 5,
6, and 7. The Hamming code for the decimal digits coded in BCD is shown in
Table 1.8.

Error location and correction are performed for the Hamming code in the fol-
lowing manner. Suppose, for example, that the sequence 1101001 is transmitted
but, owing to an error in the fifth position, the sequence 1101101 is received.
The location of the error can be determined by performing three parity checks
as follows:

Digit position: 1 2 3 4 5 6 7
Message received: 1 1 0 1 1 0 1

4-5-6-7 parity check: 1 1 0 1 c1 = 1 since parity is odd
2-3-6-7 parity check: 1 0 0 1 c2 = 0 since parity is even
1-3-5-7 parity check: 1 0 1 1 c3 = 1 since parity is odd

Thus, the position number formed as c1c2c3 is 101, which means that the
location of the error is in position 5. To correct the error, the digit in position 5
is complemented and the correct message 1101001 is obtained.

19 Notes and references

It is easy to prove that the Hamming code constructed as shown above is a
code whose distance is three. Consider, for example, the case where the two
original four-bit (code) words differ in only one position, e.g., 1001 and 0001.
Since each message digit appears in at least two parity checks, the parity checks
that involve the digit in which the two code words differ will result in different
parities and hence different checking digits will be added to the two words,
making the distance between them equal to three. For example, consider the
two words below.

Digit position: 1 2 3 4 5 6 7
Digit symbol: p1 p2 m1 p3 m2 m3 m4

First word: 1 0 0 1
Second word: 0 0 0 1

First word with parity bits: 0 0 1 0 0 1
Second word with parity bits: 1 1 0 0 0 1

The two words differ in only m1 (i.e., position 3). Parity checks 1-3-5-7 and
2-3-6-7 for these two words will give different results. Therefore, the parity-
checking digits p1 and p2 must be different for these words. Clearly, the
foregoing argument is valid in the case where the original code words differ in
two of the four positions. Thus, the Hamming code has a distance of three.

If the distance is increased to four, by adding a parity bit to the code in
Table 1.8 in such a way that all eight digits have even parity, the code may
be used for single-error correction and double-error detection in the following
manner. Suppose that two errors occur; then the overall parity check is satisfied
but the position number (determined as before from the first seven digits) will
indicate an error. Clearly, such a situation indicates the existence of a double
error. The error positions, however, cannot be located. If only a single error
occurs, the overall parity check will detect it. Now, if the position number is
0 then the error is in the last parity bit; otherwise, it is in the position given
by the position number. If all four parity checks indicate even parities then the
message is correct.

Notes and references

The material on number systems is available in almost all elementary texts on algebra,
switching theory, and digital computers. An extensive discussion of computer arithmetic
is available in Koren [2]. Binary codes have been studied by numerous authors. A
listing of many four-bit weighted codes is given in Richards [3]. The material on error-
correcting codes is due to Hamming [1].

[1] Hamming, R. W.: “Error detecting and error correcting codes,” Bell System Tech.
J., vol. 29, pp. 147–160, April 1950.

[2] Koren, I.: Computer Arithmetic Algorithms, A. K. Peters, Natick MA, 2002.

20 Number systems and codes

[3] Richards, R. K.: Arithmetic Operations in Digital Computers, Van Nostrand, Prince-
ton NJ, 1955.

Problems

Problem 1.1. Convert the following numbers in the way specified:
(a) (1431)8 to base 10
(b) 11001010.0101 to base 10
(c) 11001101.0101 to base 8 and base 4
(d) (1984)10 to base 8
(e) (1776)10 to base 6
(f) (53.1575)10 to base 2
(g) (3.1415 · · ·)10 to base 8 and base 2

Problem 1.2
(a) Given that (16)10 = (100)b, determine the value of b.
(b) Given that (292)10 = (1204)b, determine the value of b.

Problem 1.3. Given binary numbers a = 1010.1, b = 101.01, and c = 1001.1, perform
the following binary operations:
(a) a + c

(b) a − b

(c) a · c

(d) a/b

Problem 1.4. Each of the following arithmetic operations is correct in at least one
number system. Determine the possible bases of the numbers in each operation.
(a) 1234 + 5432 = 6666
(b) 41/3 = 13
(c) 33/3 = 11
(d) 23 + 44 + 14 + 32 = 223
(e) 302/20 = 12.1
(f)

√
41 = 5

Problem 1.5. In the following series, the same integer is expressed in different number
systems. Determine the missing member of the series.

10 000, 121, 100, ?, 24, 22, 20, . . .

Problem 1.6
(a) Encode each of the 10 decimal digits 0, 1, . . . , 9 by means of the following

weighted binary codes:

6 3 1 −1
7 3 2 −1
7 3 1 −2
5 4 −2 −1
8 7 −4 −2

(b) Determine which of the above codes is self-complementing.

21 Problems

Problem 1.7
(a) Prove that, in every positively weighted code, one of the weights must be 1, a second

weight must be either 1 or 2, and the sum of the weights must be equal to or greater
than 9.

(b) Show by listing all such codes that there are only 17 positively weighted codes, of
which only four are self-complementing.

Problem 1.8
(a) Prove that in a self-complementing code the sum of the weights must be 9.
(b) Obtain the weights of three different four-bit self-complementing codes whose only

negative weight is −4.

Problem 1.9. The following were suggested as the first few code words in four cyclic
codes. In each case, either complete the code or show that it cannot be completed. Each
code sequence must contain the set of all possible code words, and the last code word
must be distance one from the first.
(a) 000, 001, 011, 111
(b) 000, 010, 011, 111, 101
(c) 000, 010, 110, 111
(d) 0000, 0100, 0101, 1101, 1111, 1011, 1010

Problem 1.10. Given a Gray code word gn · · · g2g1g0, prove that the ith digit of the
corresponding binary number bn · · · b2b1b0 is given by

bi = gn ⊕ gn−1 ⊕ gn−2 ⊕ · · · ⊕ gi,

bn = gn.

Hint: Prove first that if x ⊕ y = z then x ⊕ z = y and y ⊕ z = x, where x, y, and z

are binary variables.

Problem 1.11. The message below has been coded in the Hamming code of Table 1.8
and transmitted through a noisy channel. Decode the message assuming that at most a
single error has occurred in each code word:

1001001011100111101100011011

Problem 1.12. Construct a seven-bit error-correcting code to represent the decimal
digits by augmenting the Excess-3 code and by using an odd-1 parity check.

Problem 1.13. Consider the following four codes:

Code A Code B Code C Code D
0001 000 01011 000000
0010 001 01100 001111
0100 011 10010 110011
1000 010 10101

110
111
101
100

(a) Which of the following properties is satisfied by each of the above codes?
(i) Detects single errors

22 Number systems and codes

(ii) Detects double errors
(iii) Detects triple errors
(iv) Corrects single errors
(v) Corrects double errors

(vi) Corrects single and detects double errors
(b) How many words can be added to code A without changing its error-detection and

correction capabilities? Give a possible set of such words. Is this set unique?

C H A P T E R

2 Sets, relations, and lattices

The objective of this chapter is twofold: to develop the properties of partially
ordered sets and lattices in an informal manner, and to furnish algebraic con-
cepts necessary for the understanding of later chapters. The chapter develops
in an intuitive manner the notions of sets, relations, and partial ordering, which
together form the basis for the presentation of some results from lattice theory
and, in Chapter 3, Boolean algebras. The chapter is by no means a complete
treatment of the subjects but rather a survey of some results that bear upon
material presented in later chapters.

2.1 Sets

A set S is intuitively defined as a collection of distinct objects. The readers of
this book and prime numbers are examples of sets. The objects that form a set
are called elements, or members, of that set, and the set is said to contain them.
The membership of an element a in a set A is denoted by a ∈ A to mean “a
is an element of A.” A set which has no element is called an empty or null set
and is denoted φ. The elements contained in a set are either listed explicitly or
described by their properties. This is accomplished by placing the elements or
the describing property in braces.

Example The set of all even numbers between 1 and 10 is written as

{2, 4, 6, 8, 10}.
The infinite set of all positive even numbers can be described by

{2, 4, 6, . . .}.
The set

{all readers of this book who live in Antarctica}
is in all likelihood empty.

23

24 Sets, relations, and lattices

ABA

(a) AB. (b) A + B. (c) A .

(d) AB = (e) A

B

BA AB

B..

A

A

'

'

Fig. 2.1 Venn diagrams.

Two sets A and B are equal, or identical, if they contain precisely the same
elements. The equality of two sets is denoted by A = B. A set A is said to be
a subset of B if every element of A is also an element of B. If B contains at
least one element which is not contained in A, then A is said to be a proper
subset of B. We use the notation A ⊆ B to indicate that A is a subset of B,
and A ⊂ B to indicate that A is a proper subset of B. Thus, the collection of
female students in a university is a proper subset of the set of all students. The
subset of students who understand the lecture in a class, on the other hand, is
not necessarily a proper subset of all the students sitting in that class, since it
may happen that they all understand the lecture. The sets that we shall consider
in each particular discussion are subsets of a corresponding set U , which we
shall call the universe.

Example In the rolling of a die, the universe of the possible outcomes is
the set consisting of all six faces of the die, f1, f2, . . . , f6, i.e.,

U = {f1, f2, f3, f4, f5, f6}.
Clearly, U has 26 = 64 subsets, namely,

φ, {f1}, . . . , {f6}, {f1, f2}, . . . , {f5, f6}, {f1, f2, f3}, . . . , U.

New sets can be generated by operating on existing sets. The union, or sum,
of two sets A and B, designated A + B or A ∪ B, is the set containing all
elements which are members of either A or B or both. The intersection, or
product, of two sets A and B, designated AB or A ∩ B, is the set containing
precisely those elements which are members of both A and B. The absolute
complement (or simply complement) A′ of a set A is the set containing the
elements of the universe that are not contained in A.

Two sets A and B are disjoint, or mutually exclusive, if they have no common
element, i.e., AB = φ. For example, if we let A be the set of female students,
and B be the set of male students, then union A + B yields the entire student

25 2.2 Relations

body. The intersection AB = φ is the null set, for obvious reasons, and since
U = A + B then A′ = B and B ′ = A.

A common way of describing various sets graphically is by a Venn diagram,
shown in Fig. 2.1, where the universe is represented by a rectangle, and the
elements of the sets are represented by the interiors of the corresponding
circles. The intersection and union of A and B are shown by the shaded areas
of Figs. 2.1a, b, respectively.

2.2 Relations

The concepts of equivalence relations and partitions, which are presented in this
section, are very useful in the study of finite-state machines and are essential
for the understanding of their structural properties.

An ordered pair (a, b) is a pair of elements with a specific order associated
with them. A father and his son, a teacher and a student, are examples of ordered
pairs. The first element a is the first coordinate of the pair, while the second
element b is its second coordinate. A convenient way of describing a set of
ordered pairs is by means of a directed graph.

Example The graph of Fig. 2.2 describes the set of ordered pairs

{(a, a), (a, b), (b, a), (b, c), (c, a)}.

b

c

a

Fig. 2.2 Graphical representation of a set of ordered pairs.

In a similar manner, we define the notion of an ordered triple (a, b, c), where
a is the first coordinate, b the second, and c the third. Extending the definition
to n elements yields the notion of an ordered n-tuple (a1, a2, . . . , an). The ith
element ai of an ordered n-tuple is referred to as its ith coordinate.

It is often necessary to consider sets whose members are ordered pairs. Such
a set of ordered pairs is called a binary relation. If R is a binary relation and
the pair (a, b) is an element of R, we write a R b to indicate that a is related to
b by R. We often specify relation R by the property that relates the members

26 Sets, relations, and lattices

of each of its ordered pairs. For example, the binary relation “is less than” is
denoted by a < b, “is equal to” is denoted by a = b, and so on.

If A and B are two sets then the Cartesian product of A and B, denoted
A × B, is the set containing all ordered pairs (a, b) such that a ∈ A and b ∈ B.
It is evident that any subset of A × B is a binary relation; it is referred to as a
relation from A to B.

Example Let A = {p, q} and B = {r, s, t}; then

A × B = {(p, r), (p, s), (p, t), (q, r), (q, s), (q, t)}

A relation from a set A to A is called a relation in A, and it is a subset
of the Cartesian product A × A, that is, R ⊆ A × A. The Cartesian product
A × A is usually denoted A2, A × A × A denoted A3, etc. A relation R in
a set A is reflexive if it contains (a, a) for every a ∈ A; it is symmetric if
the existence of the ordered pair (a, b) in R implies the existence of (b, a).
A relation is antisymmetric if for every ordered pair (a, b) that it contains,
where a = b, it does not contain pair (b, a). In other words, if both (a, b) and
(b, a) are contained in an antisymmetric relation then a = b. A relation R is
transitive if the existence of (b, a) and (a, c) in R implies the existence of
(b, c).

Example The relation {(a, a), (b, b), (a, b)} in the set {a, b} is reflex-
ive and transitive but not symmetric. The relation {(a, b), (b, a)} is sym-
metric but not transitive, since it does not contain the pair (a, a) that
would be implied by the existence of the pairs (a, b) and (b, a) if it were
transitive.

A binary relation R in a set S is called an equivalence relation (in S) if it
is reflexive, symmetric, and transitive. Two elements related by an equivalence
relation are said to be equivalent.

Example The relation = is an equivalence relation, since it satisfies the
following for all a, b, and c in R:

a = a (reflexivity)
if a = b then b = a (symmetry)

if a = b and b = c then a = c (transitivity)

An equivalence relation actually partitions the elements of a set into dis-
joint subsets such that all members of a subset are equivalent and members
of different subsets are not equivalent. These disjoint subsets are called equiv-
alence classes, and they play an important role in the study of finite-state
machines.

27 2.2 Relations

Example The relation of parallelism between lines in a plane is an equiva-
lence relation. In particular, the equivalence relation for the lines in Fig. 2.3
is

R = {(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, b), (b, a), (a, c), (c, a),

(b, c), (c, b), (d, e), (e, d)}

a
b

c

f

d
e

Fig. 2.3 Lines in a plane.

The equivalence classes are {a, b, c}, {d, e}, and {f }, and are together
denoted {a, b, c; d, e; f }.

A relation that is reflexive and symmetric but not transitive is called a com-
patibility relation. Two elements related by a compatibility relation are said to
be compatible. A consequence of the nontransitivity of a compatibility relation
is that it classifies the elements of a set into nondisjoint subsets such that all
members of a subset are compatible. These subsets are called compatibility
classes.

Definition 2.1 A partition π on a set S is a collection of disjoint subsets whose
set union is S. The disjoint subsets are called the blocks of π .

The number of blocks in π is denoted #(π), and ρ(π) denotes the number of
elements in the largest block. If every block of π contains precisely the same
number of elements, the partition is said to be uniform.

Since an equivalence relation partitions the elements of a set into disjoint sub-
sets, it defines, or induces, a partition on that set. For example, the equivalence
relation corresponding to Fig. 2.3 induces the partition π = {a, b, c; d, e; f }.
It is quite obvious that the converse is also true and that every partition on S

defines an equivalence relation in that set.
A binary relation F in a set S of ordered pairs is called a function if and

only if the existence of two pairs (a, b) and (a, c) in F such that their first
coordinates are identical implies that b = c. In other words, a function is a
set of ordered pairs in which no two pairs have the same first coordinate. A
function from set A to set B is one which associates with each element a in A

exactly one element b in B such that (a, b) ∈ F .

28 Sets, relations, and lattices

Example If A = {a1, a2, a3} and B = {b1, b2} then {(a1, b1), (a2, b2),
(a3, b1)} is a function from A to B, while {(a1, b1), (a2, b2), (a3, b1), (a3, b2)}
is not, since it assigns two elements of B to a3.

A function from set A to itself is called a unary operation in A and serves
to assign to every element in A a unique element from A. Similarly, a binary
operation is a function from A2 to A and assigns to every ordered pair of A2 a
unique element from A. In general, an n-ary operation in A is a function from
An to A.

Example Consider a set S of positive real numbers. The function square
root is a unary operation which assigns to each a in S an element

√
a from

S. Addition and multiplication are examples of binary operations.

2.3 Partially ordered sets

A reflexive, antisymmetric, and transitive binary relation is called a partial
ordering. A set S together with a partial ordering relation is referred to as a
partially ordered set. A very useful example of partial ordering is the “is less
than or equal to” relation. If (a, b) is an element of a partially ordered set, we
usually say that a is less than or equal to b even if no numerical values are
associated with a or b.

Example The partial ordering ≤ satisfies the following for all a, b, and c

in S:
a ≤ a (reflexivity)

a ≤ b and b ≤ a imply a = b (antisymmetry)
if a ≤ b and b ≤ c, then a ≤ c (transitivity)

A partition π1 on S is said to be smaller than or equal to π2 on S, denoted
π1 ≤ π2, if and only if each pair of elements that are in a common block of
π1 are also in a common block of π2. Two partitions π1 and π2 are said to be
incomparable if neither π1 ≤ π2 nor π2 ≤ π1 is true.

Example Consider a set S and three partitions on S:

S = {a, b, c, d, e, f, g, h, i},
π1 = {a, b; c, d; e, f ; g, h, i},
π2 = {a, f ; b, c; d, e; g, h; i},
π3 = {a, b, e, f ; c, d; g, h, i}.

Clearly π1 ≤ π3, but π1 and π2 are incomparable as are π2 and π3.

29 2.3 Partially ordered sets

If, for every pair of elements a, b ∈ S, either a ≤ b or b ≤ a then set S

is totally ordered by the binary relation ≤. For example, the set of all prime
numbers is totally ordered by the ≤ relation. However, the set of partitions
{π1, π2, π3} defined in the preceding example is partially ordered, since no
ordering by the relation ≤ exists between π1 and π2.

A convenient way of displaying the ordering relation among the elements of
an ordered set S is by means of a graph whose vertices represent the elements
of the set. Vertex a is drawn at a higher level than vertex b whenever b < a,
that is, b ≤ a but b = a. Vertex a is at a higher level immediately adjacent to
vertex b if b < a and there is no element c in S such that b < c < a. In such
cases, a is said to cover b. The graph is called a Hasse graph or Hasse diagram.

It is always possible to reconstruct a partial ordering from the Hasse diagram.
This is accomplished by observing that each upward path from vertex b to vertex
a corresponds to b < a, which in turn may be denoted b ≤ a.

Example The partial ordering displaying the divisibility relation among all
positive integers dividing number 45, such that the quotient is an integer, is
shown in Fig. 2.4a.

5
(0,1)

(1,1)

(0,0)

(1,0)

(b)(a)

1

15

45

9

3

Fig. 2.4 Hasse diagrams for partially ordered sets.

Example Let S = {(0, 0), (0, 1), (1, 0), (1, 1)} and define an ordering rela-
tion as follows:

(a1, a2) ≤ (b1, b2) if and only if a1 ≤ b1 and a2 ≤ b2

Clearly, S is not a totally ordered set under this ordering, since (0,1) and
(1,0) are not related. The graphical description of the partial ordering is
given in Fig. 2.4b.

Consider a partially ordered set S and a given relation ≤. If a ≤ b for every
element b in S then a is said to be the least member of the set S. Not every
set has a least member (see, for example, Fig. 2.5), but whenever it does exist

30 Sets, relations, and lattices

a b

c

d

e f

Maximal members

Minimal members

Fig. 2.5 A Hasse diagram
without least or greatest
elements.

it is unique. In order to prove the uniqueness of the least member, assume
that for some S, there exist two least members, a1 and a2. Since a1 ≤ b for
every element b in S, then a1 ≤ a2. Similarly, since a2 ≤ b, then a2 ≤ a1.
Consequently, ≤ being an antisymmetric relation, a1 = a2. Similarly, if b ≤ a

for all b in S, then a is said to be the greatest member of S and, if such a
member exists, it is unique. In the two graphs of Fig. 2.4, the least and greatest
elements are shown at the lowest and highest levels, respectively.

Whenever a least member does not exist, it is convenient to define a minimal
member a in S such that for no b in S is b < a; that is, there is no smaller element
but there may exist another unrelated minimal member in S. A maximal member
in S is similarly defined (see Fig. 2.5).

Let S be a partially ordered set, and let P be a subset of S; then an element s

in S is an upper bound of P if and only if, for every p in P , p ≤ s. An element
s in S is a lower bound of P if and only if, for every p in P , s ≤ p. Note that
s is not necessarily a member of P . An upper bound s of P is said to be the
least upper bound (lub) if s ≤ s ′ for all upper bounds s ′ of P . Similarly, the
lower bound s in S is called the greatest lower bound (glb) if and only if, for
all lower bounds s ′ of P , s ′ ≤ s.

Example Consider the subset P = {3, 5} of the set S = {1, 3, 5, 9, 15, 45}
illustrated in Fig. 2.4a. The upper bounds are 15 and 45; the lub is 15.
The glb is 1. In the partially ordered set illustrated in Fig. 2.5, the subset
P = {a, b} has no upper bound but four lower bounds, c, d, e, and f ,
of which c is the glb. For subset P = {b, f }, b is the lub while f is the
glb.

2.4 Lattices

Lattices play an important role in the characterization of various computation
models. In particular, it will be shown later that a Boolean algebra is nothing
other than a lattice with a few specific properties.

31 2.4 Lattices

Definition 2.2 A partially ordered set in which every pair of elements has a
unique glb and a unique lub is called a lattice.

Example The partially ordered sets described in Fig. 2.4 are lattices, while
the partially ordered set described in Fig. 2.5 is not.

A consequence of Definition 2.2 is that each finite lattice has both a least
and a greatest element, which are denoted 0 and 1, respectively. Thus, for each
element a of the lattice,

a ≤ 1 and 0 ≤ a.

Example The lattice of all subsets of set S = {a, b, c}, under the ordering
relation of set inclusion, is shown in Fig. 2.6, where {a, b, c} = 1 and φ = 0.

{a,b,c }

{a,c }{a,b } {b,c }

{c }{b } {a }

Fig. 2.6 Lattice of the subsets of {a, b, c}.

Because of the uniqueness of the lub and glb, they may be viewed as binary
operations that assign to each ordered pair of elements their lub and glb. The
first operation, called the sum or join, is denoted by + or ∨; the second operation,
called the product or meet, is denoted by ∧ or ·. Thus,

a + b = lub(a, b),

a · b = glb(a, b).

By definition, the lub and glb satisfy the idempotent and commutative laws,
since

a · a = a + a = a (idempotency),
a · b = b · a and a + b = b + a (commutativity).

In addition, they satisfy the absorption law and are associative, since

a + a · b = a and a · (a + b) = a (absorption),
a · (b · c) = (a · b) · c and a + (b + c) = (a + b) + c (associativity).

32 Sets, relations, and lattices

In order to prove the validity of the absorption law, recall that a · b defines the
glb of a and b, and thus a · b ≤ a. Hence a + a · b, which defines the lub of
a and a · b, is clearly a. The dual property is verified in an analogous manner.
The proof that the operations are associative is left to the reader as an exercise
(see Problem 2.3).

The following properties are valid for every finite lattice:

a + 0 = a, a · 0 = 0,

and

a · 1 = a, a + 1 = 1.

The duality of the idempotent through associative laws, as well as that of the
foregoing operations with the least and greatest elements, is apparent and will
be further discussed in conjunction with the subject of Boolean algebras.

Now consider the partially ordered set whose elements are partitions. Define
as the greatest partition that containing just a single block and as the least
partition that containing as many blocks as elements, i.e., where each block
contains just a single element. These partitions are designated π (I) and π (0),
respectively. The binary operations of lub and glb are applied to the partitions
in the following manner. The sum (or join) π1 + π2 is obtained by including
in every block those elements of π1 and π2 that are chain-connected;1 the
product (or meet) π1 · π2 is obtained by finding the intersection of the blocks
of individual partitions. As a consequence, under the above-defined operations
the set of all partitions constitutes a lattice. It can be shown that these sum
and product operations follow directly from the partition inclusion relation and
indeed yield the lub and glb, respectively. However, the proof is beyond the
scope of this book.

Example Let π1 = {a, b; c, d, e; f, h; g, i} and π2 = {a, b, c; d, e; f, g;
h, i}; then

π1 + π2 = {a, b, c, d, e; f, g, h, i}
and

π1 · π2 = {a, b; c; d, e; f ; g; h; i}.

4 (I)=

0 (0)=

1 32

Fig. 2.7 A nondistributive
lattice.

The distributive law is not necessarily valid for arbitrary lattices, as shown
by the lattice in Fig. 2.7. A lattice is said to be distributive if and only if

a · (b + c) = a · b + a · c,

a + (b · c) = (a + b)(a + c).

1 Two subsets (or blocks) S1 and Sn are said to be chain-connected if and only if there exists a
sequence of subsets S1, S2, . . . , Sn such that Si · Si+1 = φ, i = 1, 2, . . . , n − 1.

33 Problems

Example Consider the following set of partitions:

π0 = {a; b; c} = π (0), π1 = {a, b; c}, π2 = {a; b, c},
π3 = {a, c; b}, π4 = {a, b, c} = π (I).

The product π1 · (π2 + π3) = π1, but π1 · π2 + π1 · π3 = π0; consequently,
the lattice, which is shown in Fig. 2.7, is not distributive.

If, for each element a in the lattice, there exists an element a′ such that

a · a′ = 0 and a + a′ = 1

then the lattice is said to be complemented. The element a′ is said to be a
complement of a, and vice versa. For example, the lattice of subsets of {a, b, c}
shown in Fig. 2.6 is complemented as well as distributive.

Notes and references

The material covered in this chapter is available in many good books on algebra; among
these are Birkhoff and MacLane [2] and Mostow, Sampson, and Meyer [3]. A classical
reference, though an advanced one, is Lattice Theory by Birkhoff [1].

[1] Birkhoff, G.: Lattice Theory, American Mathematical Society Colloquium Publi-
cations, vol. 25, Providence RI, 1948.

[2] Birkhoff, G., and S. MacLane: A Survey of Modern Algebra, third edition, Macmil-
lan, New York, 1965.

[3] Mostow, G. D., J. H. Sampson, and J. Meyer: Fundamental Structures of Algebra,
McGraw-Hill, New York, 1963.

Problems

Problem 2.1. In an examination there are three problems, A, B, and C. The following
tabulation gives the percentages of students who received credit for solving one or more
problems:

A, 40; A, B, 12; A, B, C, 4.

B, 30; A, C, 8;
C, 30; B, C, 6;

(For example, “A, B, 12” means that 12% of the students received credit for both
problem A and problem B). What percent of students received no credit at all for any
of the three problems?

Hint: Use a Venn diagram.

Problem 2.2. Consider a set of triangles S = {A,B, . . .} in a plane. What kind of
relations are the following, and what properties do they have, e.g., are they reflexive,
symmetric, etc.?

34 Sets, relations, and lattices

For every two triangles A and B in S, A and B are related if and only if:
(a) A is congruent to B;
(b) A has area in common with B;
(c) A is similar to B;
(d) A is entirely inside, or the same as, B;
(e) A has a side equal to or smaller than the smallest side of B;
(f) A has a side equal to or smaller than the smallest side of B, but has at least as much

area as B.

Problem 2.3. Prove that the lub and glb operations are associative; that is, for all a, b,
and c of any lattice,

a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c.

Hint: Use the uniqueness of the lub and glb of (a, b, c).

Problem 2.4. The set {a, b, c, d, e, f, g, h, i, j, k} has the partitions

π1 = {a, b, c; d, e; f ; g, h, i; j, k},
π2 = {a, b; c, g, h; d, e, f ; i, j, k},
π3 = {a, b, c, f ; d, e; g, h, i, j, k}.

(a) Find π1 + π2 and π1 · π2.
(b) Find π1 + π3 and π1 · π3.
(c) Find a partition that is greater than π1 and smaller than π3.
(d) Can you find a partition that is greater than π2 and smaller than π3?

Problem 2.5. Prove that if a complemented lattice is not distributive then the comple-
ments of its elements are not necessarily unique. Conversely, if for some element in the
lattice the complement is not unique then the lattice is not distributive.

Problem 2.6. For each lattice given in Fig. P2.6, determine whether it is distributive
and/or complemented. If the lattice is complemented, identify the complementary ele-
ments. Which diagram corresponds to a total ordering?

(1) (2) (3) (4) (5)

a

c

b

d

e

a

b dc

e

a

b c

d

e

a

cb

d

a

b

c

Fig. P2.6

Part 2 Combinational logic

35

36

C H A P T E R

3 Switching algebra and its
applications

The second part of this book is devoted to combinational logic and deals
with various aspects of the analysis and design of combinational switching
circuits. The particular characteristic of a combinational switching circuit is
that its outputs are functions of only the present circuit inputs. First, switching
algebra is introduced as the basic mathematical tool essential for dealing with
problems encountered in the study of switching circuits. Switching expressions
are defined and are found to be instrumental in describing the logical properties
of switching circuits. Systematic simplification procedures of these expressions
are next presented; these lead to more economical circuits. Logical design is
studied with special attention to conventional logic, complementary metal-
oxide semiconductor (CMOS) circuits, and threshold logic. Finally, problems
related to the testing of combinational circuits for various fault models, and
synthesis-for-testability techniques are discussed.

In the current chapter, after developing a switching algebra from the simplest
set of basic postulates we show its applications to the study of switching circuits
as well as to the calculus of propositions. Finally, this switching algebra is
shown to be a special case of Boolean algebra.

3.1 Switching algebra

The basic concepts of switching algebra will be introduced by means of a set of
postulates, from which we shall derive useful theorems and develop necessary
tools that will enable us to manipulate and simplify algebraic expressions.

Fundamental postulates

The basic postulate of switching algebra is the existence of a two-valued switch-
ing variable that can take either of two distinct values, 0 and 1. Precisely stated,

37

38 Switching algebra and its applications

if x is a switching variable then

x = 0 if and only if x = 1,

x = 1 if and only if x = 0.

These values are often referred to as the truth values of x.
A switching algebra is an algebraic system consisting of the set {0, 1},

two binary1 operations called OR and AND, denoted by the symbols + and ·
respectively, and one unary operation called NOT, denoted by a prime.

The definitions of the OR and AND operations are as follows:

OR operation AND operation
0 + 0 = 0, 0 · 0 = 0,

0 + 1 = 1, 0 · 1 = 0,

1 + 0 = 1, 1 · 0 = 0,

1 + 1 = 1. 1 · 1 = 1.

Thus the OR combination of two switching variables x + y is equal to 1 if
the value of either x or y is 1 or if the values of both x and y are 1. The AND
combination of these variables x · y is equal to 1 if and only if the values of x

and y are both equal to 1. The result of the OR operation is very often called
the (logical) sum or union and may be denoted by ∪ or ∨. The result of the
AND operation is referred to as the (logical) product or intersection, and is
denoted by ∩ or ∧. We shall generally omit the dot · and write xy to mean
x · y.

The NOT operation, which is also known as complementation, is defined as
follows:

0′ = 1,

1′ = 0.

The preceding postulates and definitions of switching operations enable us
to derive many useful theorems and develop an entire algebraic structure that
may be advantageously applied to switching circuits.

Basic properties

The first property that drastically differs from the algebra of real numbers and
accounts for the special characteristics of switching algebra, is the idempotent
law for a switching variable x:

x + x = x, (3.1)
(idempotency).

x · x = x (3.2)

1 A binary operation on a set of elements is a rule that assigns a unique element from the set to
each ordered pair of elements from the set. A unary operation is a rule which assigns to every
element in the set another element from the set (see Section 2.2).

39 3.1 Switching algebra

To prove this property, we shall employ perfect induction. Perfect induction is
a method of proof whereby a theorem is verified for every possible combination
of values that the variables may assume. Since x is a two-valued variable, x +
x = x may assume the values 1 + 1 = 1 and 0 + 0 = 0. These equations, being
identities, clearly verify the validity of Eq. (3.1), and similarly for Eq. (3.2) we
have 1 · 1 = 1 and 0 · 0 = 0.

If x is a switching variable, then

x + 1 = 1, (3.3)

x · 0 = 0, (3.4)

x + 0 = x, (3.5)

x · 1 = x. (3.6)

The following two pairs of relations establish the commutativity and asso-
ciativity of switching operations. The convention adopted for parenthesizing is
that of ordinary algebra, where x + y · z means x + (y · z) and not (x + y) · z.
Let x, y, and z be switching variables. Then

x + y = y + x, (3.7)
(commutativity).

x · y = y · x (3.8)

(x + y) + z = x + (y + z), (3.9)
(associativity).

(x · y) · z = x · (y · z) (3.10)

In addition, for every switching variable x,

x + x ′ = 1, (3.11)
(complementation).

x · x ′ = 0 (3.12)

The properties established by Eqs. (3.2) through (3.12) can be proved by the
method of perfect induction. The actual proofs are left to the reader as exercises.
It is the associative law which enables us to extend the definitions of the AND
and OR operations to more than two variables, i.e., we write T = x + y + z

to mean that T equals 1 if any of x, y, or z, or any combination thereof,
equals 1.

In switching algebra, multiplication distributes over addition and addition
distributes over multiplication – a property known as the distributive law:

x · (y + z) = x · y + x · z, (3.13)
(distributivity).

x + y · z = (x + y) · (x + z) (3.14)

To verify Eq. (3.13) for every possible combination of values of x, y, and z,
it is convenient to tabulate these combinations in a table called a truth table or
table of combinations. Since every variable may assume one of two values, 0
or 1, the truth table for the three variables contains 23 = 8 combinations. These
combinations are tabulated in the leftmost column of Table 3.1. The value of
x(y + z) is computed for every possible combination of x and y + z. The value

40 Switching algebra and its applications

Table 3.1 Proof by perfect induction of Eq. (3.13)

x y z xy xz y + z x(y + z) xy + xz

0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0
0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 0
1 0 1 0 1 1 1 1
1 1 0 1 0 1 1 1
1 1 1 1 1 1 1 1

of xy + xz is computed independently by adding the entries in columns xy and
xz. Since the two different methods of computation yield identical results, as
shown in the two rightmost columns, Eq. (3.13) is verified.

We observe that all the preceding properties are grouped in pairs. Within each
pair, one statement can be obtained from the other by interchanging the OR and
AND operations and replacing the constants 0 and 1 by 1 and 0, respectively.
Any two statements or theorems that have this property are called dual, and this
quality of duality that characterizes switching algebra is known as the principle
of duality. It stems from the symmetry of the postulates and definitions of
switching algebra with respect to the two operations and two constants. The
implication of the concept of duality is that it is necessary to prove only one of
each pair of statements because its dual is, henceforth, proved.

Switching expressions and their manipulation

By a switching expression we mean the combination of a finite number of
switching variables (x, y, etc.) and constants (0, 1) by means of switching
operations (+, ·, and ′). More precisely, any switching constant or variable is
a switching expression, and if T1 and T2 are switching expressions then so are
T ′

1, T ′
2, T1 + T2, and T1T2. No other combinations of variables and constants

are switching expressions.
The properties to be presented below in Eqs. (3.15) through (3.20) provide

the basic tools for the simplification of switching expressions. They establish
the notion of redundancy and, like all the preceding properties, they appear in
dual forms. Equation (3.15) and its dual (3.16) express the absorption law of
switching algebra.

x + xy = x, (3.15)
(absorption).

x(x + y) = x (3.16)

The method of proof by perfect induction is efficient, as long as the number
of combinations for which the statement is to be verified is small. In other

41 3.1 Switching algebra

cases, algebraic procedures are more appropriate, such, for example, as are
demonstrated in the following proof of Eq. (3.15).

Proof We have

x + xy = x1 + xy (by Eq. (3.6))
= x(1 + y) (by Eq. (3.13))
= x1 (by Eqs. (3.3) and (3.7))
= x (by Eq. (3.6)). ♦

Another property of switching expressions, important in their simplification,
is the following:

x + x ′y = x + y, (3.17)

x(x ′ + y) = xy. (3.18)

Equation (3.17) is proved as follows.

Proof We have

x + x ′y = (x + x ′)(x + y) (by Eq. (3.14))
= 1(x + y) (by Eq. (3.11))
= x + y (by Eqs. (3.6) and (3.8)). ♦

The consensus theorem is noteworthy in that it is used frequently in the sim-
plification of switching expressions. It is stated in the following two equations:

xy + x ′z + yz = xy + x ′z, (3.19)
(consensus theorem).

(x + y)(x ′ + z)(y + z) = (x + y)(x ′ + z) (3.20)

The extra term yz in Eq. (3.19) is known as the consensus.

Proof We can manipulate the left-hand side of Eq. (3.19) as follows:

xy + x ′z + yz = xy + x ′z + yz1
= xy + x ′z + yz(x + x ′)
= xy + x ′z + xyz + x ′yz

= xy(1 + z) + x ′z(1 + y)
= xy + x ′z. ♦

The preceding properties permit a variety of manipulations on switching
expressions. In particular, they enable us (whenever possible) to convert an
expression into an equivalent one with fewer literals, where by a literal we mean
an appearance of a variable or its complement. For example, while the left-hand
side of Eq. (3.19) consists of six literal appearances, its right-hand side consists
of only four appearances. If the value of a switching expression is independent
of the value of some literal xi , then xi is said to be redundant. Equations
(3.1) through (3.20) provide, among other things, the tools for manipulating
expressions so as to eliminate redundant literals.

42 Switching algebra and its applications

Example Simplify the expression T (x, y, z) = x ′y ′z + yz + xz by elimi-
nating redundant literals.

x ′y ′z + yz + xz = z(x ′y ′ + y + x)

= z(x ′ + y + x)

= z(y + 1)

= z1

= z.

Hence, T (x, y, z) is actually independent of the values of x and y and
depends only on z.

It is important to observe that no inverse operations are defined in switching
algebra and, consequently, no cancellations are allowed. For example, if A +
B = A + C, the equality of B and C is not implied; in fact, if A = B = 1 and
C = 0 then 1 + 1 = 1 + 0, but B = C. Similarly, B is not necessarily equal to
C if AB = AC.

De Morgan’s theorems

The rules governing complementation operations are summarized by three
theorems. The first is the involution theorem:

(x ′)′ = x (involution). (3.21)

Proof Equation (3.21) is obvious by perfect induction. ♦
De Morgan’s theorems for two variables are

(x + y)′ = x ′ · y ′, (3.22)

(x · y)′ = x ′ + y ′. (3.23)

Proof The proof of Eq. (3.22) follows by perfect induction, using the truth
table of Table 3.2; (x + y)′ and x ′y ′ are computed independently and are shown
to be identical for all possible combinations of values of x and y. The proof of
Eq. (3.23) then follows by the principle of duality. ♦

Table 3.2 Truth table for the proof of Eq. (3.22)

x y x ′ y ′ x + y (x + y)′ x ′y ′

0 0 1 1 0 1 1
0 1 1 0 1 0 0
1 0 0 1 1 0 0
1 1 0 0 1 0 0

43 3.1 Switching algebra

For n variables, Eqs. (3.22) and (3.23) can be expressed as follows: the
complement of any expression can be obtained by replacing each variable and
element with its complement and, at the same time, interchanging the OR and
AND operations, that is,

[f (x1, x2, . . . , xn, 0, 1,+, ·)]′ = f (x ′
1, x

′
2, . . . , x

′
n, 1, 0, ·,+). (3.24)

Equation (3.24) is known as the general De Morgan’s theorem and its proof
follows immediately from Eq. (3.22) and mathematical induction on the number
of operations.

Example In order to simplify the expression

T (x, y, z) = (x + y)[x ′(y ′ + z′)]′ + x ′y ′ + x ′z′,

it is necessary first to apply De Morgan’s theorem and then to multiply out
the expressions in parentheses:

T (x, y, z) = (x + y)(x + yz) + x ′y ′ + x ′z′

= (x + xyz + yx + yz) + x ′y ′ + x ′z′

= x + yz + x ′y ′ + x ′z′

= x + yz + y ′ + z′

= x + z + y ′ + z′

= x + y ′ + 1

= 1.

Hence, T = 1 independently of the values of the variables.

Example Prove the following identity:

xy + x ′y ′ + yz = xy + x ′y ′ + x ′z.

From the application of Eq. (3.19) to x ′y ′ + yz, it follows that the term
x ′z may be added to the left-hand side of the equation; i.e., the equation
becomes

xy + x ′y ′ + yz + x ′z = xy + x ′y ′ + x ′z.

Another application of Eq. (3.19) to the first, third, and fourth terms in
the augmented left-hand side of the equation shows that yz is redundant.
After elimination of yz, the left-hand side of the equation is identical to its
right-hand side (i.e., both consist of identical terms), and thus the proof is
complete.

44 Switching algebra and its applications

Table 3.3 Truth table for T (x , y, z) =
x ′z + xz′ + x ′y′

x y z T

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

3.2 Switching functions

Definitions

Let T (x1, x2, . . . , xn) be a switching expression. Since each of the variables
x1, x2, . . . , xn can independently assume either of the two values 0 or 1, there
are 2n combinations of values to be considered in determining the values of
T . In order to determine the value of an expression for a given combination,
it is only necessary to substitute the values for the variables in the expression.
For example, if T (x, y, z) = x ′z + xz′ + x ′y ′ then, for the combination x = 0,
y = 0, z = 1, the value of the expression is 1 because T (0, 0, 1) = 0′1 + 01′ +
0′0′ = 1. In a similar manner, the value of T may be computed for every
combination, as shown in the right-hand column of Table 3.3.

If we now repeat the above procedure and construct the truth table for the
expression x ′z + xz′ + y ′z′, we find that it is identical to that of Table 3.3.
Hence, for every possible combination of variables, the value of the expres-
sion x ′z + xz′ + x ′y ′ is identical to the value of x ′z + xz′ + y ′z′. Thus dif-
ferent switching expressions may represent the same assignment of values
specified by the right-hand column of a truth table. The values assumed by
an expression for all the combinations of variables x1, x2, . . . , xn define a
switching function. In other words, a switching function f (x1, x2, . . . , xn) is
a correspondence that associates an element of the algebra with each of the
2n combinations of variables x1, x2, . . . , xn. This correspondence is best spec-
ified by means of a truth table. Note that each truth table defines only one
switching function, although this function may be expressed in a number of
ways.

The complement f ′(x1, x2, . . . , xn) is a function whose value is 1 whenever
the value of f (x1, x2, . . . , xn) is 0, and 0 whenever the value of f is 1. The
sum of two functions f (x1, x2, . . . , xn) and g(x1, x2, . . . , xn) is 1 for every
combination in which either f or g or both equal 1, while their product is equal

45 3.2 Switching functions

to 1 if and only if both f and g equal 1. If a function f (x1, x2, . . . , xn) is
specified by means of a truth table, its complement is obtained by comple-
menting each entry in the column headed f . New functions that are equal to
the sum f + g and the product fg are obtained by adding or multiplying the
corresponding entries in the f and g columns.

Example Two functions f (x, y, z) and g(x, y, z) are specified in columns
f and g of Table 3.4. The complement f ′, the sum f + g, and the product
fg are specified in the corresponding columns.

Table 3.4 Illustration of the addition, multiplication, and
complementation of switching functions

x y z f g f ′ f + g fg

0 0 0 1 0 0 1 0
0 0 1 0 1 1 1 0
0 1 0 1 0 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 1 1 0
1 0 1 0 0 1 0 0
1 1 0 1 1 0 1 1
1 1 1 1 0 0 1 0

Simplification of expressions

The truth table assigns to each combination of variable values a specific switch-
ing element. Consequently, all the properties of switching elements (Eqs. (3.1)
through (3.24)) are valid when the elements are replaced by expressions. For
example, xy + xyz = xy by virtue of the property established in Eq. (3.15).

Example Simplify the expression

T (A,B,C,D) = A′C ′ + ABD + BC ′D + AB ′D′ + ABCD′.

First, apply the consensus theorem, Eq. (3.19), to the first three terms of T ,
letting x, y, and z replace A′, C ′, and BD, respectively. As a result the third
term, BC ′D, is redundant. Next, apply the distributive law, Eq. (3.13), to
the fourth and fifth terms. This gives the expression AD′(B ′ + BC). Letting
x and y replace B ′ and C, respectively, and applying Eq. (3.17) yields
AD′(B ′ + C). No other literal is redundant; thus the simplest expression for
T is

T = A′C ′ + A[BD + D′(B ′ + C)].

46 Switching algebra and its applications

Example Simplify the expression

T (A,B,C,D) = A′B + ABD + AB ′CD′ + BC.

First apply Eq. (3.17) to the first two terms and to the last two terms. This
yields

T = A′B + BD + ACD′ + BC.

The next step in the simplification is not as obvious; in order to simplify T ,
it is first necessary to expand it. Since BC = (A + A′)BC we have

T = A′B + BD + ACD′ + ABC + A′BC.

The application of Eq. (3.15) to the first and last terms results in the elimi-
nation of the last term. Now apply Eq. (3.19) to the second, third, and fourth
terms, letting x, y, and z replace D, B, and AC, respectively. This step
eliminates ABC and yields

T = A′B + BD + ACD′.

Canonical forms

Truth tables have been shown to be the means for describing switching func-
tions. An expression representing a switching function is derived from the table
by finding the sum of all the terms that correspond to those combinations (i.e.,
rows) for which the function assumes the value 1. Each term is a product of
the variables on which the function depends. Variable xi appears in uncomple-
mented form in the product if it has value 1 in the corresponding combination,
and it appears in complemented form if it has value 0. For example, the product
term that corresponds to row 3 of Table 3.5, where the values of x, y, and z are
0, 1, and 1, is x ′yz. The sum of all product terms for the function defined by
Table 3.5 is

f (x, y, z) = x ′y ′z′ + x ′yz′ + x ′yz + xyz′ + xyz.

A product term that, as for each term in the above expression, contains
each of the n variables as factors in either complemented or uncomple-
mented form is called a minterm. Its characteristic property is that it assumes
the value 1 for exactly one combination of variables. If we assign to each
of the n variables a fixed arbitrary value, either 0 or 1, then, of the 2n

minterms, one and only one minterm will have value 1 while all the remain-
ing 2n − 1 minterms will have value 0, because they differ by at least one
literal, whose value is 0, from the minterm whose value is 1. The sum
of all minterms derived from those rows for which the value of the func-
tion is 1 takes on the value 1 or 0 according to the value assumed by f .

47 3.2 Switching functions

Table 3.5 Truth table for function f (x , y, z) =
x ′y′z′ + x ′yz′ + x ′yz + xyz′ + xyz

Decimal
code x y z f

0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 1
4 1 0 0 0
5 1 0 1 0
6 1 1 0 1
7 1 1 1 1

Therefore, this sum is in fact an algebraic representation of f . An expres-
sion of this type is called a canonical sum of products or disjunctive normal
expression.

Switching functions are usually expressed in a compact form, obtained by
listing the decimal codes associated with the minterms for which f = 1. The
decimal codes are derived from the truth tables by regarding each row as a
binary number; e.g., the minterm x ′yz′ is associated with row 010, which,
when interpreted as a binary number, is equal to 2. The function defined by
Table 3.5 can thus be expressed as

f (x, y, z) =
∑

(0, 2, 3, 6, 7)

where
∑

() means that f (x, y, z) is the sum of all the minterms whose decimal
code is one of the numbers given within the parentheses.

A switching function can also be expressed as a product of sums. This is
accomplished by considering those combinations for which the function is
required to have the value 0. For example, the sum term x + y + z′ has the
value 1 for all combinations of x, y, and z, except for x = 0, y = 0, and
z = 1, when it has the value 0. Any similar term assumes the value 0 for only
one combination. Consequently, a product of such sum terms will assume the
value 0 for precisely those combinations for which the individual terms are 0.
For all other combinations, the product-of-sum terms will have the value 1. A
sum term that contains each of the n variables in either a complemented or
an uncomplemented form is called a maxterm. An expression formed of the
product of all maxterms for which the function takes on the value 0 is called a
canonical product of sums or conjunctive normal expression.

In each maxterm, a variable xi appears in uncomplemented form if it has the
value 0 in the corresponding row in the truth table, and it appears in comple-
mented form if it has the value 1. For example, the maxterm that corresponds
to the row whose decimal code is 1 in Table 3.5 is x + y + z′. The canonical

48 Switching algebra and its applications

product-of-sums expression for the function defined by Table 3.5 is given by

f (x, y, z) = (x + y + z′)(x ′ + y + z)(x ′ + y + z′).

This function can also be expressed in a compact form by listing the combina-
tions for which f is to have value 0, i.e.,

f (x, y, z) =
∏

(1, 4, 5),

where
∏

() means the product of all maxterms whose decimal code is given
within the parentheses.

One way of obtaining the canonical forms of any switching function is by
means of Shannon’s expansion theorem (also called Shannon’s decomposition
theorem), which states that any switching function f (x1, x2, . . . , xn) can be
expressed as either

f (x1, x2, . . . , xn) = x1 · f (1, x2, . . . , xn) + x ′
1 · f (0, x2, . . . , xn) (3.25)

or

f (x1, x2, . . . , xn) = [x1 + f (0, x2, . . . , xn)] · [x ′
1 + f (1, x2, . . . , xn)].

(3.26)

Proof This proceeds by perfect induction. Let x1 be equal to 1; then x ′
1 equals

0 and Eq. (3.25) becomes an identity, i.e.,

f (1, x2, . . . , xn) = 1 · f (1, x2, . . . , xn).

Similarly, substituting x1 = 0 and x ′
1 = 1 also reduces Eq. (3.25) to an identity

and thus the theorem is proved. ♦
If we now apply the expansion theorem with respect to variable x2 to each

of the two terms in Eq. (3.25), we obtain

f (x1, x2, . . . , xn) = x1x2f (1, 1, x3, . . . , xn) + x1x
′
2f (1, 0, x3, . . . , xn)

+ x ′
1x2f (0, 1, x3, . . . , xn) + x ′

1x
′
2f (0, 0, x3, . . . , xn).

The expansion of the function about the remaining variables yields the dis-
junctive normal form. In a similar manner, repeated applications of the dual
expansion theorem, Eq. (3.26), to f (x1, x2, . . . , xn) about its variables x1,
x2, . . . , xn yield the conjunctive normal form.

A simpler and faster procedure for obtaining the canonical sum-of-products
form of a switching function is summarized as follows.

1. Examine each term; if it is a minterm, retain it, and continue to the next
term.

2. In each product that is not a minterm, check the variables that do not occur;
for each xi that does not occur, multiply the product by (xi + x ′

i).
3. Multiply out all products and eliminate redundant terms.

49 3.2 Switching functions

Example Determine the canonical sum-of-products form for T (x, y, z) =
x ′y + z′ + xyz. Applying rules 1–3, we obtain

T = x ′y + z′ + xyz

= x ′y(z + z′) + (x + x ′)(y + y ′)z′ + xyz

= x ′yz + x ′yz′ + xyz′ + xy ′z′ + x ′yz′ + x ′y ′z′ + xyz

= x ′yz + x ′yz′ + xyz′ + xy ′z′ + x ′y ′z′ + xyz.

The canonical product-of-sums form is obtained in a dual manner by express-
ing the function as a product of factors and adding the product xix

′
i to each

factor in which the variable xi is missing. The expansion into canonical form
is obtained by repeated applications of Eq. (3.14).

Example Let us determine the canonical product-of-sums form of
T (x, y, z) = x ′(y ′ + z). Using the above procedure,

T = x ′(y ′ + z)

= (x ′ + yy ′ + zz′)(y ′ + z + xx ′)
= [(x ′ + y + z)(x ′ + y + z′)(x ′ + y ′ + z)(x ′ + y ′ + z′)]

· [(x + y ′ + z)(x ′ + y ′ + z)]

= (x ′ + y + z)(x ′ + y + z′)(x ′ + y ′ + z)(x ′ + y ′ + z′)(x + y ′ + z).

In some instances, it is desirable to transform a function from one form to
another. This transformation can be accomplished by writing down the truth
table and using the previously described techniques. An alternative method,
which is based on the involution theorem (x ′)′ = x, is illustrated by the follow-
ing example.

Example Find the canonical product-of-sums form for the function

T (x, y, z) = x ′y ′z′ + x ′y ′z + x ′yz + xyz + xy ′z + xy ′z′.

Using the involution theorem,

T = (T ′)′ = [(x ′y ′z′ + x ′y ′z + x ′yz + xyz + xy ′z + xy ′z′)′]′.

The complement T ′ consists of those minterms that are not contained in
the expression for T , i.e.,

T = [x ′yz′ + xyz′]′

= (x + y ′ + z)(x ′ + y ′ + z).

50 Switching algebra and its applications

Functional properties

From the foregoing discussion, we may conclude that the canonical sum-
of-products form of a switching function is unique (up to commutation). In
order to prove this assertion, suppose that there exist two different canonical
sum-of-products forms expressing f . Since we are assuming the forms to be
different, they must differ by at least one minterm; that is, there must be at least
one set of values for the variables x1, x2, . . . , xn for which one form results
in f (x1, x2, . . . , xn) = 0 while the other form yields f (x1, x2, . . . , xn) = 1,
a result which contradicts the assumption that both forms express the same
function. (Note that according to the commutativity law there actually exist
more than one such canonical form, but we shall regard them all as identical.)

Two switching functions f1(x1, x2, . . . , xn) and f2(x1, x2, . . . , xn) are said
to be logically equivalent (or simply equivalent) if and only if both functions
have the same value for each combination of variables x1, x2, . . . , xn. Thus, we
have the following property.

� Two switching functions are equivalent if and only if their canonical sum-
of-products forms are identical.

Consequently, in order to prove an identity of two functions it is sufficient to
expand both functions to their canonical forms and to compare the outcomes.

In a similar manner, it can be shown that every switching function may be
expressed uniquely in a canonical product-of-sums form and that two switching
functions are equivalent if and only if their canonical product-of-sums forms
are identical. From here on, we shall confine our discussion to the sum-of-
products form since the applicability of subsequent results to the dual form is
understood.

Let a binary constant ai be the value of the function f (x1, x2, . . . , xn) for
the combination of variables whose decimal code is i. Then every switching
function can be expressed in the form

f (x1, x2, . . . , xn) = a0x
′
1x

′
2 · · · x ′

n + a1x
′
1x

′
2 · · · xn + · · ·

+ arx1x2 · · · xn.

A factor ai is set to 1 (0) if the corresponding minterm is (is not) contained
in the canonical form of the function. There are 2n coefficients, each of which
can have two values, 0 and 1. Hence, there are 22n

possible assignments of
values to the coefficients, and thus there exist 22n

switching functions of n

variables.

Example Tabulate the functions of two variables. The results are given in
Table 3.6.

The canonical sum-of-products form of a function of two variables is
given by

f (x, y) = a0x
′y ′ + a1x

′y + a2xy ′ + a3xy.

51 3.2 Switching functions

Table 3.6 List of switching functions f (x , y) of two variables, x and y

a3 a2 a1 a0 f (x, y) Name of function Symbol

0 0 0 0 0 Inconsistency
0 0 0 1 x ′y ′ NOR x ↓ ya

0 0 1 0 x ′y
0 0 1 1 x ′ NOT x ′

0 1 0 0 xy ′

0 1 0 1 y ′

0 1 1 0 x ′y + xy ′ EXCLUSIVE-OR x ⊕ y

(modulo-2 addition)
0 1 1 1 x ′ + y ′ NAND x|yb

1 0 0 0 xy AND x · y

1 0 0 1 xy + x ′y ′ Equivalence x ≡ y

1 0 1 0 y

1 0 1 1 x ′ + y Implication x → y

1 1 0 0 x

1 1 0 1 x + y ′ Implication y → x

1 1 1 0 x + y OR x + y

1 1 1 1 1 Tautology

a The downward-pointing arrow is reffered to as a dagger.
b The vertical is referred to as a Sheffer stroke.

There are 222 = 16 functions corresponding to the 16 possible assignments
of 0’s and l’s to a0, a1, a2, and a3. There are six nonsimilar functions:
f = 0, f = 1, and f = x, which are known as trivial functions, while
f = xy, f = x + y, and f = xy + x′y ′ are known as nontrivial functions.
Any other function may be obtained from these six by complementation or
the interchange of variables. For example, x ′y + xy ′ can be obtained from
xy + x ′y ′ by interchanging x and x ′.

The EXCLUSIVE-OR operation

The EXCLUSIVE OR, denoted ⊕, is a binary operation on the set of switching
elements. It assigns value 1 to two arguments if and only if they have comple-
mentary values; that is, A ⊕ B = 1 if either A or B is 1 but not when both A

and B are 1. It is evident that the EXCLUSIVE-OR operation assigns to each
pair of elements its modulo-2 sum; consequently, it is often called the modulo-2
addition operation. The following properties of the EXCLUSIVE OR are direct
consequences of its definition:

A ⊕ B = B ⊕ A (commutativity),

(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)

= A ⊕ B ⊕ C (associativity),

(AB) ⊕ (AC) = A(B ⊕ C) (distributivity).

if A ⊕ B = C then

⎧⎨
⎩

A ⊕ C = B,

B ⊕ C = A,

A ⊕ B ⊕ C = 0.

52 Switching algebra and its applications

In general, the modulo-2 addition of an even number of elements whose value is
1 gives 0 and the modulo-2 addition of an odd number of elements whose value
is 1 gives 1. The usefulness of the modulo-2-addition operation will become
evident in subsequent chapters, and especially in the analysis and design of
linear sequential machines.

Functionally complete operations

It has been demonstrated that every switching function can be expressed in
a canonical sum-of-products form, where each expression consists of a finite
number of switching variables, constants, and the operations +, ·, ′.

Definition 3.1 A set of operations is said to be functionally complete (or
universal) if and only if every switching function can be expressed entirely by
means of operations from this set.

The set {+, ·, ′} is clearly functionally complete. Moreover, by means of
De Morgan’s theorems, it can be shown that the set {+, ′} is also functionally
complete. Since x · y = (x ′ + y ′)′, the operations + and ′ can together replace
the operation · in any switching function, and therefore the set {+, ′} is func-
tionally complete. In a similar way, it can be shown that the set {·, ′} is also
functionally complete. Many functionally complete sets of operations exist,
among the more important of which are NAND and NOR operations.

Example Prove that the NOR operation is functionally complete.
A common method for proving the completeness of an operation is to

show that it is capable of generating each operation of a set that is already
known to be functionally complete, for example, {+, ′} or {·, ′}.

Since x ↓ y = x ′y ′ (see Table 3.6), then

x ↓ x = x ′x ′ = x ′,
(x ↓ y) ↓ (x ↓ y) = (x ′y ′)′ = x + y.

In order to implement switching functions, it is sufficient to find a set of
devices capable of implementing a functionally complete set of operations.
In general, it is desirable to reduce the implementation cost by selecting a
minimal set of such devices. Since NAND and NOR operations are functionally
complete, devices implementing them currently serve as major building blocks
in logic design.

3.3 Isomorphic systems

In this section, we shall discuss the relationship between switching algebra (see
Section 3.1), the calculus of propositions, and the algebra of series–parallel
switching circuits.

53 3.3 Isomorphic systems

Two algebraic systems, each consisting of a set of elements and one or more
operations that satisfy a given set of postulates, are said to be isomorphic if the
following are satisfied. First, for every operation in one system there exists a
corresponding operation in the second system, although it may be denoted in
a different way. Second, to each element xi in one system there corresponds
a unique element yi in the second system, and vice versa. Consequently, if
both systems have finite sets of elements then they have the same number of
elements. Finally, if in every postulate of the first system each xi is replaced
by the corresponding yi , and every operation is replaced by the corresponding
operation from the second system, then the resulting postulate must be valid for
the second system. In other words, two algebraic systems are isomorphic if and
only if they are identical except for the labels and symbols used to represent
the operations and elements.

The algebra of series–parallel circuits and the calculus of propositions will
be shown to be isomorphic to switching algebra; therefore all the properties of
the latter system are valid for the former ones.

Series–parallel switching circuits

A switching circuit consists of “gates” through which information flows. This
information may take the form of electric signals, water, pressure, or some
other quantity. A gate is a two-state device capable of switching from one state,
which permits the flow of information, to the other state, which blocks it, and
vice versa. Physically, this gate may be an electrical switch that is either open
or closed, a pneumatic device that may be in either a compressed or released
state, and so on.

We shall associate with each gate a two-valued variable (with symbol x,
y, etc.), which is in a primed form if the gate normally permits the flow of
information and is in an unprimed form if the gate normally blocks that flow.
If two gates operate in such a way that they are always in the same state, they
are associated with the same variable and denoted by the same letter. If they
operate in such a way that one always permits the flow of information when the
other is blocking it, and vice versa, the first is denoted by a primed letter, say
x ′, while the second is denoted by the same unprimed letter, i.e., x. In general,
primed letters are reserved for those gates that normally, i.e., before the circuit
is activated, allow the flow of information, while unprimed letters are assigned
to gates that normally block that flow. If a gate permits the flow of information,
the literal associated with it takes on the value 1, and if it blocks that flow, the
literal takes on the value 0.

The parallel connection of two gates is denoted by x + y and their series
connection by xy, as shown in Fig. 3.1. The circuits of Fig. 3.1, as well
as a circuit that consists of a single gate, are said to be elementary series–
parallel circuits. Any switching circuit constructed of either a series or parallel
connection of two or more elementary series–parallel circuits is called series–
parallel. In other words, a circuit is series–parallel if it can be decomposed into

54 Switching algebra and its applications

Table 3.7 Definition of
transmission functions

x y x + y xy

0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

x

y

x y

(a) A parallel connection x + y. (b) A series connection xy.

Fig. 3.1 Basic connections of
switching circuits. Both are
termed elementary
series–paralled circuits.

either two subcircuits in series or two subcircuits in parallel; these subcircuits,
which are also series–parallel, may be again decomposed as before, and so on
until each subcircuit consists of only an elementary series–parallel circuit.

For each circuit, we define a transmission function, which assumes the value
1 when there is a path from one terminal to the other terminal through which
information flows and assumes the value 0 if there is no such path. The trans-
mission function is said to represent the circuit, and the circuit is said to be a
realization of the function. A transmission function is usually denoted by the
letter T .

In order to determine the value of the transmission function representing
the parallel circuit in Fig. 3.1a, we observe that a path exists between the two
circuit terminals if either gate x or gate y or both allow the flow of information,
that is, T is 1 if either x or y is 1 or both x and y are 1. The circuit blocks the
flow of information if both x and y block such a flow, i.e., if both x and y are
0. These properties of the transmission function are tabulated in Table 3.7. In
a similar manner, we observe that the transmission function, which represents
the series circuit of Fig. 3.1b, is 1 if and only if both gates x and y permit the
flow of information, i.e., x is 1 and y is 1.

From Table 3.7 and from the preceding discussion, it is evident that a com-
plete analogy exists between the OR and AND operations defined in Section 3.1
and, respectively, the operations x + y and xy that define the transmission func-
tions of parallel and series switching circuits. Moreover, since the transmission
function of a gate must be either 0 or 1, if follows that x = 1 if and only if
x ′ = 0, and that x = 0 if and only if x ′ = 1. Thus, the complement of a given
circuit is a circuit which blocks all paths of information flow whenever the
given circuit permits any. Clearly, the algebraic system defined in this sec-
tion for switching circuits is isomorphic to the switching algebra defined in

55 3.3 Isomorphic systems

Section 3.1. Consequently, all the properties of switching functions apply to
transmission functions as well and may be used in the analysis and synthesis
of switching circuits. In particular, since the previous properties of switching
elements (Eqs. (3.1) through (3.26)) hold true when expressions replace the
elements, we may conclude that the transmission function of a circuit consist-
ing of a series connection of two subcircuits whose transmission functions are
T1 and T2 is T1T2. Similarly, the transmission function of a circuit composed
of two parallel subcircuits T1 and T2 is T1 + T2.

Example The transmission function of the circuit in Fig. 3.2a is given by

T = xy ′ + (x ′ + y)z.

Simple algebraic manipulation yields the reduced form

T = xy ′ + z,

which represents the simpler circuit shown in Fig. 3.2b.

(a) Original circuit. (b) Simplified circuit.

x

y

x y

z

x y

z

' '

'

Fig. 3.2 Simplification of a switching circuit.

An important application of the theory of switching circuits is to CMOS cir-
cuits in which transistors allow the transmission of information. The properties
of CMOS circuits and their analysis and design, are studied in Chapter 5.

Propositional calculus

A proposition is a declarative statement that may be either true or false but never
both. For example, the temperature is 100 degrees, the turtle runs faster than
the hare, the sum of 2 and 3 equals 4, etc. With every proposition we associate
a variable, denoted p, q, etc., that assumes the value 1 if the proposition is true
and the value 0 if it is false. Thus, a proposition of value 0 is always false, while
a proposition of value 1 is always true.

New propositions may be derived from existing ones. Consider, for example,
the propositions “the sun is shining” and “the sun is not shining.” It seems
evident that if the first proposition is true then the second one is false, and vice
versa. A proposition is said to be a negation of another proposition if when one

56 Switching algebra and its applications

Table 3.8 Definitions of the
conjunction pq and disjunction
p + q of p and q

p q pq p + q

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

is false the other is true. Thus, negation p′ of a proposition p is defined to be 1
if p is 0 and to be 0 if p is 1.

Two propositions p and q may be combined to form new propositions. For
example, if p designates proposition “the temperature is above 60 degrees” and
q designates “the humidity is over 50 percent,” then we may form a proposition
“the temperature is above 60 degrees and the humidity is over 50 percent” by
combining p and q with a connective and. In general, the conjunction of p and q,
denoted pq, is the proposition “p and q.” Proposition pq is true whenever both
p and q are true and is false whenever either one or both p and q is or are false.

Propositions may also be combined by means of a connective or. For exam-
ple, the preceding propositions, when thus combined, yield the proposition
“either the temperature is above 60 degrees or the humidity is over 50 percent.”
In general, the disjunction of p and q, denoted p + q, means the proposition
“either p or q or both,” where the words “or both” are omitted and “or” is
defined to be the inclusive or. From its definition, it follows that the proposition
p + q is true whenever either p or q or both is or are true and is false whenever
both p and q are false. The conjunction and disjunction of p and q are defined
in Table 3.8.

The analogy between the calculus of propositions and switching algebra is
now apparent. In fact, they are isomorphic algebraic systems. Consequently,
we may speak of variables and functions in precisely the same way as before.

Example An air-conditioning system in a storage warehouse is to be turned
on if one or more of the following three conditions occurs:

1. the weight of the stored material is less than 100 tonnes, the relative
humidity is at least 60 percent, and the temperature is above 60 degrees;

2. the weight of the stored material is 100 tonnes or more and the tempera-
ture is above 60 degrees;

3. the weight of the stored material is less than 100 tonnes and the barometer
stands at 30 inches of mercury (about 1 atmosphere) or over.

Let A denote the proposition that the air conditioning is turned on. It is
our objective to specify A in terms of the following four propositions:

57 3.4 Electronic-gate networks

W designates a weight of 100 tonnes or more;
H designates a relative humidity of at least 60 percent;
T designates a temperature above 60 degrees;
P designates a barometric pressure of 30 or more.

From condition 1, we find that A is 1, i.e. the air conditioning is turned on,
if W ′HT is 1; from condition 2, we conclude that A is 1 if WT is 1; and
condition 3 is represented by W ′P . Consequently, an expression for A is

A = W ′HT + WT + W ′P.

This expression may be simplified by applying Eq. (3.17) to yield

A = HT + WT + W ′P
= T (H + W) + W ′P.

Hence the air-conditioning system is turned on if the temperature is above
60 degrees and either the weight is at least 100 tonnes or the humidity is at
least 60 percent, or if the weight is less than 100 tonnes and the barometer
stands at 30 or over.

3.4 Electronic-gate networks

In the previous sections of the chapter, we have studied methods of deriving
switching functions, manipulating them, and eliminating all redundancies from
them. We consider now the problem of realizing switching functions by means
of electronic devices. We shall introduce briefly the building blocks of these
devices, deferring reference to their actual physical properties to Chapter 5.

Electronic gates generally receive voltages as inputs and produce output
voltages. The precise values of these voltages are not significant in determining
the logic operation of the gates; in fact, they vary from circuit to circuit and from
device to device. The significant point is that the voltages are restricted to two
ranges of values, “high” and “low.” Thus, two-valued variables may be used
to represent them. By convention we shall associate the switching constants 1
and 0 with the higher and lower voltages, respectively.

Electronic gates are constructed of two-state switching devices, each capable
of either permitting a flow of current or blocking it. In order to implement any
switching function, these gates must be capable of implementing a functionally
complete set of operations.

One set of basic gates, capable of implementing the three operations AND,
OR, and NOT, is shown in Fig. 3.3. The AND gate has two or more inputs,
and one output that assumes the value 1 if and only if all the inputs assume
the value 1. Thus, if the input values are a, b, and c then the output value is
given by T1 = abc. Moreover, the OR gate produces an output value 1 if one
or more of its input values is 1 and thus its output may be characterized by

58 Switching algebra and its applications

(a) AND gate. (b) OR gate.

a
b
c

T1 = abc
a
b
c

T2 = a + b + c

(c) NOT gate.

a T3 = a'

Fig. 3.3 Gate symbols.

T

H
W

W
P

A = T(H + W) + W P'

'

Fig. 3.4 Gate network.

T2 = a + b + c. The NOT gate has one input, and one output whose value is
the complement of the input value; i.e., its output value is 1 if its input value is
0, and 0 if its input value is 1.

Gate networks are constructed by the use of interconnecting gates, where the
output of one gate is used to drive the inputs of others. As an example, consider
the network of Fig. 3.4, which implements the function A = T (H + W) +
W ′P describing the preceding air-conditioning control system. The inputs to
this network may come from various thermometers, humidity-measurement
devices, a barometer, and a scale, while its output turns on (or off) the air
conditioner.

The purpose of the preceding discussion was to introduce the basic electronic-
gate logic. A more comprehensive study of the analysis and synthesis of switch-
ing circuits is deferred to Chapter 5.

*3.5 Boolean algebras

In Chapter 2 we established the properties of partially ordered sets and lattices.
We shall now define a Boolean algebra and subsequently show its relationship
to the switching algebra defined in Section 3.1.

Definition 3.2 A Boolean algebra B is a distributive and complemented lattice.

Since a Boolean algebra is defined as a special lattice, all the lattice properties
derived in Chapter 2 are applicable to any Boolean algebra. Accordingly, we
can now summarize the properties of Boolean algebras as follows:

59 3.5 Boolean algebras

� a boolean algebra B is a set of elements a, b, c, . . . , together with two binary
operations, + and ·, that satisfy the idempotent, commutative, absorption,
and associative laws and are mutually distributive;

� B contains two bounds, 0 and 1, which are the least and greatest elements,
respectively;

� B has a unary operation of complementation that assigns to every element
its complement.

We shall now prove that the complement a′ of any element a in B is unique;
that is, there exists only one element a′ such that a + a′ = 1 and a · a′ = 0.
Suppose that there exists some element a that possesses two complements, b1

and b2, satisfying the above properties, i.e.,

a + b1 = 1, a + b2 = 1,

a · b1 = 0, a · b2 = 0.

Then

b1 = b1 · 1 = b1 · (a + b2) = b1 · a + b1 · b2 = 0 + b1 · b2 = b1 · b2.

A similar argument shows that b2 = b1 · b2. Consequently b1 = b2, which
proves the uniqueness of the complement and provides the justification for
defining the unary complement operation. An immediate corollary is that the
complement of a′ is a, i.e., (a′)′ = a.

To find the complements of elements 0 and 1, note that by definition 0 + 0′ =
1 but by virtue of the definition of the lub, it follows that 0′ = 1. Thus,

0′ = 1 and 1′ = 0.

Example Using the above, prove De Morgan’s theorems (see Section 3.1)
for two variables:

(a + b)′ = a′ · b′,
(a · b)′ = a′ + b′.

We need to show that (a + b)(a′ · b′) = 0 and that (a + b) + a′ · b′ = 1. (As
before, we shall subsequently omit the · symbol.) Expanding the parentheses
on the left-hand side of the former equation, we obtain

(a + b)(a′b′) = aa′b′ + ba′b′ = 0 + a′bb′ = 0 + 0 = 0.

Applying the distributive law to (a + b) + a′b′ yields

(a + b) + a′b′ = (a + b + a′)(a + b + b′) = (b + 1)(a + 1) = 1.

The dual property is verified in an analogous manner.

We shall now show that the switching algebra defined in Section 3.1 is a
two-valued Boolean algebra. Define a Boolean algebra that consists of just

60 Switching algebra and its applications

Table 3.9 Definition of a Boolean algebra that is
isomorphic to the switching algebra. Each entry in the
left-hand and middle blocks of the table gives the result of
combining a row label with a column label by means of the
operation specified in the top left-hand corner of the block

+ 0 1 · 0 1

0 0 1 0 0 0 0′ = 1
1 1 1 1 0 1 1′ = 0

two elements, 0 and 1, with the usual binary operations + and · and the
complementation operation ′. If the algebra is to satisfy all lattice properties
and Definition 3.2 above, it must follow the operations shown in Table 3.9. For
example, to show that the operation · is commutative it is necessary to show
that it is commutative for each of the four ways of selecting values for the
two elements, that is, for every combination of values ab = ba. It is evident
that Table 3.9 defines a Boolean algebra which is isomorphic to the switching
algebra defined in Section 3.1.

Example The algebraic system defined in Table 3.10 is a Boolean alge-
bra. The elements 0 and 1 satisfy the definitions of the least and greatest
bounds, namely, that, for every element x in B, x + 0 = x and x + 1 = 1.
The elements a and b are complements of each other since they satisfy
the requirements that a + b = 1 and a · b = 0. Finally, it is easy to verify
that this system defines a distributive lattice by showing that, for every
combination of elements, the operations are idempotent, commutative, and
associative and that they distribute over each other.

Table 3.10 A Boolean algebra (see Table 3.9)

+ 0 1 a b · 0 1 a b

0 0 1 a b 0 0 0 0 0 0′ = 1
1 1 1 1 1 1 0 1 a b 1′ = 0
a a 1 a 1 a 0 a a 0 a′ = b

b b 1 1 b b 0 b 0 b b′ = a

Notes and references

The first significant contribution in the area of switching theory was made by Shannon
[3] in 1938. He developed the algebra of switching circuits and showed its relation to the
calculus of propositions and Boolean algebra [1]. Further developments of switching
theory were made by numerous authors in the 1940s and 1950s, in particular in a second

61 Problems

paper by Shannon [4], in a book by Keister, Ritchie, and Washburn [2], and in a report
by the staff of the Harvard University Computation Laboratory [5].

[1] Boole, G.: An Investigation of the Laws of Thought, Dover, New York, 1854.
[2] Keister, W., S. A. Ritchie, and S. Washburn: The Design of Switching Circuits, Van

Nostrand, New York, 1951.
[3] Shannon, C. E.: “A symbolic analysis of relay and switching circuits,” Trans. AIEE,

vol. 57, pp. 713.723, 1938.
[4] Shannon, C. E.: “The synthesis of two-terminal switching circuits,” Bell System

Tech. J., vol. 28, pp. 59–98, 1949.
[5] Staff of the Computation Laboratory: “Synthesis of electronic computing and con-

trol circuits,” Annals, vol. 27, Harvard University Press, Cambridge MA, 1951.

Problems

Problem 3.1. Prove the properties in Eqs. (3.3) through (3.12).

Problem 3.2. Using mathematical induction, prove De Morgan’s theorem for n vari-
ables,

[f (x1, x2, . . . , xn, 0, 1, +, ·)]′ = f (x ′
1, x

′
2, . . . , x

′
n, 1, 0, ·, +).

Problem 3.3. Simplify the following algebraic expressions:
(a) x ′ + y ′ + xyz′

(b) (x ′ + xyz′) + (x ′ + xyz′)(x + x ′y ′z)
(c) xy + wxyz′ + x ′y
(d) a + a′b + a′b′c + a′b′c′d + · · ·
(e) xy + y ′z′ + wxz′

(f) w′x ′ + x ′y ′ + w′z′ + yz

Problem 3.4. Find, by inspection, the complement of each of the following expressions
and then simplify it.
(a) x ′(y ′ + z′)(x + y + z′)
(b) (x + y ′z′)(y + x ′z′)(z + x ′y ′)
(c) w′ + (x ′ + y + y ′z′)(x + y ′z)

Problem 3.5. Demonstrate, without using perfect induction, whether each of the fol-
lowing equations is valid.
(a) (x + y)(x ′ + y)(x + y ′)(x ′ + y ′) = 0
(b) xy + x ′y ′ + x ′yz = xyz′ + x ′y ′ + yz

(c) xyz + wy ′z′ + wxz = xyz + wy ′z′ + wxy ′

(d) xy + x ′y ′ + xy ′z = xz + x ′y ′ + x ′yz

Problem 3.6. Given AB ′ + A′B = C, show that AC ′ + A′C = B.

Problem 3.7. Find the values of two-valued variables A, B, C, and D by solving the
following set of simultaneous equations:

A′ + AB = 0,

AB = AC,

AB + AC ′ + CD = C ′D.

62 Switching algebra and its applications

Problem 3.8. Prove that if w′x + yz′ = 0, then

wx + y ′(w′ + z′) = wx + xz + x ′z′ + w′y ′z.

Problem 3.9. Define a connective operator * for two-valued variables A, B, and C as
follows:

A ∗ B = AB + A′B ′.

Let C = A ∗ B. Determine which of the following is valid:
(a) A = B ∗ C

(b) B = A ∗ C

(c) A ∗ B ∗ C = 1

Problem 3.10. Determine the canonical sum-of-products representation of the follow-
ing functions:
(a) f (x, y, z) = z + (x ′ + y)(x + y ′)
(b) f (x, y, z) = x + (x ′y ′ + x ′z)′

Problem 3.11. Show the truth table for each of the following functions and find
its simplest product-of-sums form (i.e., the form with the minimum number of
literals).
(a) f (x, y, z) = xy + xz

(b) f (x, y, z) = x ′ + yz′

Problem 3.12. By adding redundant factors or terms to the expression uvw + uwxy +
uvxz + xyz, it may be simplified as follows:

uvw + uwxy + uvxz + xyz = uw(v + xy) + xz(uv + y)

= uw(uv + xy) + xz(uv + xy)

= (uw + xz)(uv + xy).

Factor each of the following expressions into a product of two factors such that the
resulting expression has the least number of literals:
(a) wxyz + w′x ′y ′z′ + w′xy ′z + wx ′yz′

(b) vwx + vwyz + wxy + vxyz

Problem 3.13. The dual fd of a function f (x1, x2, . . . , xn) is obtained by interchanging
the operations of logical addition and multiplication and by interchanging constants 0
and 1 within any expression for that function.
(a) Show that fd = f ′(x ′

1, x
′
2, . . . , x

′
n).

(b) Find a three-variable function that is its own dual. Such a function is called self-dual.
(c) Prove that for any function f and any two-valued variable A, which may or may

not be a variable in f , the function

g = Af + A′fd

is self-dual.

Problem 3.14
(a) Show that f (A,B, C) = A′BC + AB ′ + B ′C ′ is a universal operation.
(b) Assuming that a constant value 1 is available, show that f (A, B) = A′B (together

with the constant) is a universal operation.

63 Problems

Problem 3.15. For each of the following, prove or show a counter-example.
(a) If A ⊕ B = 0 then A = B.
(b) If A ⊕ C = B ⊕ C then A = B.
(c) A ⊕ B = A′ ⊕ B ′.
(d) (A ⊕ B)′ = A′ ⊕ B = A ⊕ B ′.
(e) A ⊕ (B + C) = (A ⊕ B) + (A ⊕ C).
(f) If A ⊕ B ⊕ C = D then A ⊕ B = C ⊕ D and A = B ⊕ C ⊕ D.

Problem 3.16. Any function of two variables can be represented, with proper choice
of truth values for the a’s, as

f (x, y) = a0x
′y ′ + a1x

′y + a2xy ′ + a3xy.

(a) Prove that each representation below can also be used to specify any function of
two variables. Show how to obtain the b’s and c’s from the a’s.

f (x, y) = b0 ⊕ b1y ⊕ b2x ⊕ b3xy,

f (x, y) = c0x
′y ′ ⊕ c1x

′y ⊕ c2xy ′ ⊕ c3xy.

Hint: Compare coefficients by choosing appropriate values for x and y.
(b) Prove that if a function f (x1, x2, . . . , xn) is represented in a canonical sum-of-

products form then all OR operations may be replaced by EXCLUSIVE-OR oper-
ations.

Problem 3.17. Prove that any function f (x1, x2, . . . , xn) can be expressed in a
complement-free form as follows:

f (x1, x2, . . . , xn) = d0 ⊕ d1x1 ⊕ d2x2 ⊕ · · · ⊕ dnxn

⊕ dn+1x1x2 ⊕ dn+2x1x3 ⊕ · · · ⊕ dn(n+1)/2xn−1xn

⊕ d[n(n+1)/2]+1x1x2x3 ⊕ · · · d2n−1x1x2 · · · xn,

where d0, d1, . . . , d2n−1 are two-valued variables.

Problem 3.18. Prove that the expansion of any switching function of n variables
f (y1, y2, . . . , ys, z1, z2, . . . , zn−s) with respect to the variables z1, z2, . . . , zn−s is given
by

f (y1, y2, . . . , ys, z1, z2, . . . , zn−s)

=
2n−s−1∑

i=1

fi(y1, y2, . . . , ys)gi(z1, z2, . . . , zn−s),

where

f0(y1, y2, . . . , ys) = f (y1, y2, . . . , ys, 0, 0, . . . , 0),

f1(y1, y2, . . . , ys) = f (y1, y2, . . . , ys, 0, 0, . . . , 1),
...

f2n−s−1(y1, y2, . . . , ys) = f (y1, y2, . . . , ys, 1, 1, . . . , 1)

and where gi(z1, z2, . . . , zn−s) is the product term whose decimal representation is i,
e.g., g0 = z′

1z
′
2 . . . z′

n−s . Note that the distinction between the y’s and the z’s is only for
convenience and has no other significance.

64 Switching algebra and its applications

Hint: Use Shannon’s expansion theorem as given in Eq. (3.25) and finite induction
on s.

Problem 3.19. The majority function M(x, y, z) is equal to 1 when two or three of its
arguments equal 1, that is,

M(x, y, z) = xy + xz + yz = (x + y)(x + z)(y + z)

(a) Show that M(a, b, M(c, d, e)) = M(M(a, b, c), d,M(a, b, e)).
(b) Show that M(x, y, z), the complementation operation, and the constant 0 form a

functionally complete set of operations.
(c) Find the simplest switching expression f (A, B, C, D) corresponding to the network

of Fig. P3.19.

M M

M

M

A
B
1

A
D

C
D

C f (A,B,C,D)

'
'

'

Fig. P3.19

Problem 3.20. A safe has five locks, v, w, x, y, and z, all of which must be unlocked
for the safe to open. The keys to the locks are distributed among five executives in the
following manner:
A has keys for locks v and x;
B has keys for locks v and y;
C has keys for locks w and y;
D has keys for locks x and z;
E has keys for locks v and z.
(a) Determine the minimum number of executives required to open the safe.
(b) Find all the combinations of executives that can open the safe. Write an expression

f (A,B, C, D, E) which specifies when the safe can be opened as a function of
which executives are present.

(c) Who is the “essential executive” without whom the safe cannot be opened?

Problem 3.21. You are presented with a set of requirements under which an insurance
policy will be issued. The applicant must be
1. a married female 25 years old or over, or
2. a female under 25, or
3. a married male under 25 who has not been involved in a car accident, or
4. a married male who has been involved in a car accident, or
5. a married male 25 years or over who has not been involved in a car accident.
Variables w, x, y, and z assume truth value 1 in the following cases:

w = 1 if the applicant has been involved in a car accident;
x = 1 if the applicant is married;
y = 1 if the applicant is a male;
z = 1 if the applicant is under 25.

65 Problems

(a) Find an algebraic expression that assumes the value 1 whenever the policy should
be issued.

(b) Simplify algebraically the above expression and suggest a simpler set of require-
ments.

Problem 3.22. Five soldiers, A, B, C, D, and E, volunteer to perform an important
military task if the following conditions are satisfied.
1. Either A or B or both must go.
2. Either C or E, but not both, must go.
3. Either both A and C go or neither goes.
4. If D goes then E must also go.
5. If B goes then A and D must also go.
Define variables A, B, C, D, E such that an unprimed variable will mean that the
corresponding soldier has been selected to go. Determine the expression that specifies
the combinations of volunteers that can get the assignment.

Problem 3.23
(a) Show a series–parallel network that realizes the transmission function T = A(B +

C ′D′) + A′B ′.
(b) Show an AND, OR, NOT gate network that realizes the function T = A′B +

AB ′C + B ′C ′, assuming that only unprimed inputs are available.

Problem 3.24. Prove that a Boolean algebra of three elements B = {0, 1, a} cannot
exist.

Problem 3.25. Prove that for every Boolean algebra:
(a) a + a′b = a + b;
(b) if a + b = a + c and a′ + b = a′ + c then b = c;
(c) if a + b = a + c and ab = ac then b = c.

Problem 3.26. Prove that the partial ordering of all positive integers dividing number
30 is a Boolean algebra of eight elements, B = {1, 2, 3, 5, 6, 10, 15, 30}.
(a) Draw the corresponding Hasse diagram.
(b) Define the binary operations by their operations on the integers.
(c) For each element a in B, specify its complement a′.

Problem 3.27. An alternative definition of Boolean algebra is by means of the Hunt-
ington postulates, which are given as follows:

Definition A Boolean algebra is a set B of elements a, b, c, . . . with the following
properties.
1. B has two binary operations + and ·, which satisfy the idempotent laws a + a = a

and a · a = a, the commutative laws a + b = b + a and a · b = b · a, the associative
laws a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c, and the absorption laws
a + (a · b) = a and a · (a + b) = a.

2. The operations are mutually distributive:

a · (b + c) = (a · b) + (a · c) and a + (b · c) = (a + b) · (a + c).

3. There exist in B two universal bounds 0 and 1, which satisfy

0 + a = a, 0 · a = 0, 1 + a = 1, 1 · a = a.

66 Switching algebra and its applications

4. The Boolean algebra B has a unary operation of complementation, which assigns to
every element a in B an element a′ in B such that

a · a′ = 0, a + a′ = 1.

Derive the following properties of Boolean algebras directly from the above Hunt-
ington postulates.
(a) For each a in B, there exists a unique a′ in B.
(b) For every a in B, (a′)′ = a.
(c) For every Boolean algebra, 0′ = 1 and 1′ = 0.
(d) In any Boolean algebra,

(a + b)′ = a′ · b′ and (a · b)′ = a′ + b′.

C H A P T E R

4 Minimization of switching functions

A switching function can usually be represented by a number of expressions.
Our aim in this chapter will be to develop procedures for obtaining a minimal
expression for any such function, after establishing some criteria for minimality.
In the preceding chapter, we dealt with simplification of switching expressions
by means of algebraic manipulations. The deficiency of this method is that it
does not constitute an algorithm and is ineffective for expressions of even a
small number of variables (e.g., four or five). The methods to be introduced in
this chapter partly overcome these limitations. The presented map method is
very effective for the simplification by hand of expressions of up to five or six
variables, while the tabulation procedure is suitable for machine computation
and yields minimal expressions.

4.1 Introduction

Our aim in simplifying a switching function f (x1, x2, . . . , xn) is to find an
expression g(x1, x2, . . . , xn) which is equivalent to f and which minimizes some
cost criteria. There are various criteria to determine minimal cost. The most
common are:

1. the minimum number of appearances of literals (recall that a literal is a
variable in complemented or uncomplemented form);

2. the minimum number of literals in a sum-of-products (or product-of-sums)
expression;

3. the minimum number of terms in a sum-of-products expression, provided
that there is no other such expression with the same number of terms and
fewer literals.

In subsequent discussions, we shall adopt the third criterion and restrict our
attention to the sum-of-products form. Of course, dual results can be obtained
by employing the product-of-sums form instead. Note that the expression

67

68 Minimization of switching functions

xy + xz + x ′y ′ is minimal according to criterion 3, although it may be written
as x(y + z) + x ′y ′, which requires fewer literals.

Consider the minimization of the function f (x, y, z) given below. A combi-
nation of the first and second product terms yields x ′z′(y + y ′) = x ′z′. Simi-
larly, combinations of the second and third, fourth and fifth, and fifth and sixth
terms yield a reduced expression for f :

f (x, y, z) = x ′yz′ + x ′y ′z′ + xy ′z′ + x ′yz + xyz + xy ′z
= x ′z′ + y ′z′ + yz + xz.

This expression is said to be in an irredundant form, since any attempt to reduce
it, either by deleting any of the four terms or by removing a literal, will yield an
expression that is not equivalent to f . In general, a sum-of-products expression,
from which no term or literal can be deleted without altering its logic value, is
called an irredundant, or irreducible, expression.

The above reduction procedure is not unique, and a different combination of
terms may yield different reduced expressions. In fact, if we combine the first
and second terms of f , the third and sixth, and the fourth and fifth, we obtain
the expression

f (x, y, z) = x ′z′ + xy ′ + yz.

In a similar manner, by combining the first and fourth terms, the second and
third, and the fifth and sixth, we obtain a third irredundant expression,

f (x, y, z) = x ′y + y ′z′ + xz.

While all three expressions are irredundant, only the latter two are minimal.
Consequently, an irredundant expression is not necessarily minimal, nor is the
minimal expression always unique. It is, therefore, desirable to develop proce-
dures for generating the set of all minimal expressions, so that the appropriate
one may be selected according to other criteria (e.g., the distribution of gate
loads, etc.).

4.2 The map method

The algebraic procedure of combining various terms and applying to them
the rule Aa + Aa′ = A becomes very tedious as the number of terms and
variables increases. The map method presented in this section and the tabulation
procedure in Section 4.4 provide systematic methods for combining terms and
obtaining minimal expressions.

Representation of functions

A Karnaugh map, hereafter usually referred to simply as a map, is actually
a modified form of truth table in which the arrangement of combinations is

69 4.2 The map method

00 01 11 10

(c) Location of minterms in a
four-variable map.

00

01

11

10

1 11

1

1

1

11

00 01 11 10

(d) Map for function f (w, x, y, z)
(4, 5, 8, 12, 13, 14, 15)= wx + xy + wy z .

00

01

11

10

1

1

xy
z

xy
z

wx
yz

wx
yz

00 01 11 10 00 01 11 10

11

0

3

0

7

2

5

46 0

0

3

2

4

5

7

6

12

13

15

14

8

9

11

10

1

1

(a) Location of minterms in a
three-variable map.

(b) Map for function f (x, y, z)
(2, 6, 7) = yz +'

'''

xy.=

=

Fig. 4.1 Karnaugh maps for
three and four variables.

particularly convenient. The maps for functions of three and four variables are
shown in Fig. 4.1. The column headings are labeled with the four combinations
of the two corresponding variables. The row headings correspond to the binary
values of z in the three-variable map and to the values of yz in the four-
variable map. Each n-variable map consists of 2n cells (squares), representing
all possible combinations of these variables. The decimal codes that correspond
to these combinations are shown in Figs. 4.1a, c. We shall subsequently refer
to particular cells by these decimal codes.

The function value associated with a particular combination is entered in
the corresponding cell. For example, the map of the function f (x, y, z) =∑

(2, 6, 7) is shown in Fig. 4.1b, where the value 1 is entered in cells 2, 6, and
7 (see Fig. 4.1a). A blank cell means that for the corresponding combination,
the value of the function is 0. The minterm that corresponds to a particular cell
is determined as in the truth table. The variable xi appears in uncomplemented
form in the product if it has value 1 in the corresponding cell, and in comple-
mented form if it has value 0. For example, cell 6 in the three-variable map corre-
sponds to xyz′, and in the four-variable map it corresponds to w′xyz′. Fig. 4.1d

shows the map for function f (w, x, y, z) = ∑
(4, 5, 8, 12, 13, 14, 15).

The cyclic code used in listing the combinations as column and row headings
is of particular importance. As a result of this coding, cells that have a com-
mon side correspond to combinations that differ by the value of just a single
variable. In general, two cells that differ in just one variable value are said to

70 Minimization of switching functions

be adjacent and play a major role in the simplification process, because they
may be combined by means of the rule Aa + Aa′ = A, where A denotes a
product of literals and a denotes a single literal. For the purpose of determining
adjacencies, it is useful to regard the three-variable map as the surface of a
cylinder formed by joining the left and right sides of the map. Similarly, the
four-variable map is regarded as an open face of a torus; that is, the left and
right sides of the map are joined, as are its top and bottom. This has the result,
for example, that cell 8 is adjacent to cells 0 and 10 in addition to its obvious
adjacency to cells 9 and 12.

The product term corresponding to two adjacent cells for which the function
has the value 1 is obtained by writing down the product of all those variables
whose values are the same in the two cells and deleting the variable which is
complemented in one cell and uncomplemented in the other. For example, the
term that corresponds to cells 2 and 6 of Fig. 4.1b is yz′, since x ′yz′ + xyz′ =
yz′.

For each minterm of n literals, there are n other minterms that have n − 1
literals in common with it, differing from it in just one literal. Utilizing the
geometrical properties of the map, it is easy to verify that in the three-variable
map each cell is adjacent to three other cells and in the four-variable map each
cell is adjacent to four other cells.

Simplification and minimization of functions

A collection of 2m cells, each adjacent to m cells of the collection, is called a
cube and the cube is said to cover these cells. Each cube can be expressed by a
product containing n − m literals, where n is the number of variables on which
the function depends. The m literals that are not contained in the product can
be eliminated, because each of their 2m combinations appear in the product
with the same factor. For example, the square array of four 1’s in Fig. 4.1d

corresponds to

w′xy ′z′ + w′xy ′z + wxy ′z′ + wxy ′z = xy ′(w′z′ + w′z + wz′ + wz)

= xy ′.

Similarly, the product expressing the linear array of four 1’s is wx, since the
values of both w and x are the same in the four cells while the value of yz is
different in each cell.

Now consider the function f defined by the map of Fig. 4.1b. We could
express f as the sum of three minterms. However, observing that the map
consists of two pairs of adjacent cells, we can express f as the sum of two
product terms:

f = yz′ + xy

The use of cell 6 in forming both cubes is justified by the idempotent law
(cf. Section 3.1). In this example, the corresponding algebraic manipulations

71 4.2 The map method

leading to the above result are

f = x ′yz′ + xyz′ + xyz

= x ′yz′ + xyz′ + xyz′ + xyz

= yz′(x ′ + x) + xy(z′ + z)

= yz′ + xy.

In general, by the idempotent law any cell may be included in as many cubes
as desired. For example, the function f defined by the map of Fig. 4.1d can
be expressed as the sum of three products, corresponding to the three cubes
indicated on the map, i.e.,

f = wx + xy ′ + wy ′z′.

From the preceding discussion, we observe that a function f can be expressed
as a sum of those product terms that correspond to the cubes necessary to cover
all its 1-cells. The number of product terms in the expression for f is equal to
the number of cubes, while the number of literals in each term is determined
by the size of the corresponding cube. In order to obtain a minimal expression,
we must cover all the 1-cells with the smallest number of cubes in such a way
that each cube is as large as possible. Hence, a cube contained in a larger cube
must never be selected. If there is more than one way of covering the map (i.e.,
its 1-cells) with the minimal number of cubes, we must select a covering that
consists of larger cubes. Such a selection guarantees that the corresponding
expression is indeed minimal and that no other expression containing the same
number of terms, but fewer literals, exists. A cube contained in any combination
of other cubes already selected in the covering of the map is redundant by virtue
of the consensus theorem, Eq. (3.19).

The foregoing discussion suggests the following rules for obtaining simple
expressions for f .

1. Start by covering with cubes those 1-cells that cannot be combined with any
other 1-cell, and continue to those which have only a single adjacent 1-cell
and thus can form cubes of only two 1-cells.

2. Next, combine those 1-cells that yield cubes of four but are not part of any
cube of eight cells, and so on.

3. A minimal expression is one that corresponds to a collection of cubes that
are as large and as few in number as possible, such that every 1-cell in the
map of the function is covered by at least one cube.

Example Two irredundant expressions for

f (w, x, y, z) =
∑

(0, 4, 5, 7, 8, 9, 13, 15)

can be derived from the maps of Fig. 4.2. The expression derived from
Fig. 4.2a is f = x ′y ′z′ + w′xy ′ + wy ′z + xz. Since none of the cubes is

72 Minimization of switching functions

11

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

1 1

1

1

00 01 11 10

(a) f = x'y'z' + w'xy' + wy'z + xz
is an irredundant expression.

00

01

11

10

wx
yz

(b) f = w'y'z' + wx'y' + xz is the
unique minimal expression.

11

Fig. 4.2 Two irredundant expressions for f (w, x , y, z) = ∑
(0, 4, 5, 7, 8, 9, 13, 15).

contained either within a combination of other cubes or within a larger
cube, this expression is irredundant. However, since it does not contain
the smallest possible number of terms, it is not a minimal expression. The
expression derived from the map of Fig. 4.2b, f = w′y ′z′ + wx ′y ′ + xz,
is the unique minimal expression for f . There exist two more irredundant
expressions for f , but neither of them is minimal.

Example The function f (w, x, y, z) = ∑
(1, 5, 6, 7, 11, 12, 13, 15) has

only one irredundant form, as opposed to the preceding example. This
unique minimal expression is derived from Fig. 4.3 and is found to be
f = wxy ′ + wyz + w′xy + w′y ′z. Note that the dotted cube xz of four 1’s
becomes redundant if rule 1 is followed, since all its cells are covered by
the other cubes.

11

1

1

1 1

1

00 01 11 10

00

01

11

10

wx
yz

1

Fig. 4.3 Map for f =wxy ′+ wyz+ w′xy+ w ′y ′z.

73 4.2 The map method

00 01 11 10

(a) Map of f (x,y, z) = (5, 6, 9, 10)
= w'xy'z + wx'y'z + w'xyz' + wx'yz'.

00

01

11

10

1 11

1 1

00 01 11 10

(b) Map of f (x, y, z)
=
= (y + z)(y' + z')(w + x)(w' + x').

00

01

11

10

wx
yz

wx
yz

0

1

1

1

0 0

0

0

0

0 0

00

(0, 1, 2, 3, 4, 7, 8, 11, 12, 13,1 4, 15)

0 0

Fig. 4.4 Minimal
sum-of-products and
product-of-sums forms.

So far, we have specified a switching function by combining the 1-cells.
Clearly, it may equally well be specified by the 0-cells. In the latter case, the
expression yields the complement f ′, whose 1’s are the 0’s of f and vice versa.

Determination of the minimal product of sums

The minimization of functions expressed as product of sums is the dual pro-
cedure of that just developed for the sum-of-products form. An immediate
question arises as to whether the number of literals required in the minimal
expressions of both forms is the same. Supposing that we have obtained a
minimal sum-of-products expression for f , does this imply that the minimal
product-of-sums expression will require at least as many literals? The answer
to this question is negative, as is shown subsequently.

Consider the function f (w, x, y, z) = ∑
(5, 6, 9, 10). From the cubes shown

in Fig. 4.4a, it is evident that no two 1-cells are adjacent. Thus f cannot be
reduced, and its minimal sum-of-products form consists of 16 literals in four
minterms:

f (w, x, y, z) = w′xy ′z + w′xyz′ + wx ′y ′z + wx ′yz′.

The minimal product-of-sums expression for a function f is defined in an
analogous manner to the minimal sum of products. It consists of the product
of a minimum number of sum factors, provided that there is no other such
product with the same number of factors and with fewer literals. The product-
of-sums expression is obtained from the map in the same way as from the
truth table. A variable corresponding to a 1 is complemented, and a variable
corresponding to a 0 is uncomplemented. Cubes are formed of 0-cells instead
of 1-cells and are selected in exactly the same manner as in the sum-of-products
case. The minimal product-of-sums expression for f is derived from the map
of Fig. 4.4b, i.e.,

f (w, x, y, z) = (y + z)(y ′ + z′)(w + x)(w′ + x ′).

74 Minimization of switching functions

This expression consists of only eight literals as against 16 in the sum-of-
products form. Hence, if a minimal expression is sought, regardless of its form,
both forms must be determined and the one with a smaller number of literals
selected.

Don’t-care combinations

So far, the functions considered have been completely specified for every com-
bination of variables. There exist situations, however, where, while a function
is to assume the value 1 for some combinations and the value 0 for others, it
may assume either value for a number of combinations. Such situations may
occur when the variables are not mutually independent; that is, dependency
among the variables may preclude the occurrence of certain combinations, for
which, consequently, the value of the function will not be specified. Combina-
tions for which the value of the function is not specified are called don’t-care
combinations. The value of the function for such combinations is denoted by
φ (or d).

In practice, when x1, x2, . . . , xn are variables designating the inputs to a
switching circuit and when f (x1, x2, . . . , xn) designates its output, it often
happens that for certain input combinations the value of the output is unspeci-
fied, either because these input combinations are invalid or because the precise
value of the output is of no importance. Since each don’t-care combination
can be specified in either of two ways, i.e., 0 or 1, an incompletely specified
function containing k don’t-care combinations actually corresponds to a class
of 2k distinct functions. Our task is thus to choose the function (or functions)
having the minimal representation.

When employing the map of an incompletely specified function, we assign
the value 1 to selected don’t-care combinations and the value 0 to others, in
such a way as to increase the size of the selected cubes whenever possible. No
cube containing only don’t-care cells can be formed, because it is not required
that the function equal 1 for these combinations.

Example Design a code converter that converts BCD messages into Excess-
3 code. The converter has four input lines carrying signals labeled w, x, y,
and z, and four output lines carrying signals f1, f2, f3, and f4. The inputs
and outputs correspond, respectively, to BCD and Excess-3 coded messages.
If the system operates properly then the input combinations will correspond
to the decimal values 0 through 9, while the remaining six combinations,
10 through 15, will never occur and thus may be regarded as don’t-care
combinations. The code converter is designed by considering each output
function separately. The truth table specifying the codes is shown in Fig. 4.5a

and the resulting output functions in Fig. 4.5b.
The simplification of output functions is accomplished by use of the

corresponding maps, as shown in Fig. 4.6. Don’t-care combinations are

75 4.2 The map method

Decimal BCD inputs Excess-3 outputs
number w x y z f4 f3 f2 f1

0 0 0 0 0 0 0 1 1
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 0 1
3 0 0 1 1 0 1 1 0
4 0 1 0 0 0 1 1 1
5 0 1 0 1 1 0 0 0
6 0 1 1 0 1 0 0 1
7 0 1 1 1 1 0 1 0
8 1 0 0 0 1 0 1 1
9 1 0 0 1 1 1 0 0

(a) Truth table for BCD and Excess-3 codes

f1 = ∑
(0, 2, 4, 6, 8) +∑

φ (10, 11, 12, 13, 14, 15)
f2 = ∑

(0, 3, 4, 7, 8) +∑
φ (10, 11, 12, 13, 14, 15)

f3 = ∑
(1, 2, 3, 4, 9) +∑

φ (10, 11, 12, 13, 14, 15)
f4 = ∑

(5, 6, 7, 8, 9) +∑
φ (10, 11, 12, 13, 14, 15)

(b) Output functions

Fig. 4.5 Specifications of a code converter.

1 1

1

1

00 01 11 10

00

01

11

10

wx
yz

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

1

1

f3 map f4 map

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

1

f1 map

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

1

f2 map

Fig. 4.6 Maps for a BCD-to-Excess-3 code converter.

76 Minimization of switching functions

considered and specified in each function regardless of the specification in
other functions. Generally, the specification is done in such a way as to
increase the size of the cubes in the map without making it necessary to
select more cubes than would be necessary if fewer don’t-cares were made
1’s. The minimal functions derived from the maps are

f1 = z′,
f2 = y ′z′ + yz,

f3 = x ′y + x ′z + xy ′z′,
f4 = w + xy + xz.

A gate network1 realizing the code translator is shown in Fig. 4.7.
Note that if, owing to a malfunction in the message, an invalid input
combination occurs then the output of the code converter will also be
erroneous.

f2

x

w
y

x

y

y'

z

z'

x'

x'

z'

z'
y'

y

z

f4

f3

f1

x
z

Fig. 4.7 A BCD-to-Excess-3 code converter.

A switching circuit in which a set of n input variables determines the values
of two or more outputs is called a multi-output circuit. The above code converter
is a four-output circuit.

1 Any gate network that realizes a sum-of-products (or a product-of-sums) expression is called a
two-level realization, since it consists of one level of AND (OR) gates driving a second-level
OR (AND) gate. Thus, the longest path through which any input signal must pass until it
reaches the output consists of two gates. A measure of the complexity of a network is either the
overall number of gates or the total number of gate inputs. For example, the network of Fig. 4.7
consists of 10 gates and 23 gate inputs.

77 4.2 The map method

000 001 011 010

00

01

11

10

1

vwx
yz

0

3

2

4

5

7

6

12

13

15

14

8

9

11

10

110 111 101 100

25

24

27

26

28

29

31

30

20

21

23

22

16

17

19

18

Fig. 4.8 Five-variable map with
the locations of minterms.

The five-variable map

The minimization procedure described so far with respect to functions of three
or four variables can be extended to the case of five or six variables. For
functions of seven or more variables, the map is very large and its value as an
effective tool in the minimization procedure decreases, since it becomes very
difficult to keep track of adjacencies.

A five-variable map contains 25 = 32 cells, as shown in Fig. 4.8. Each cell,
in addition to being adjacent to four other cells, can be combined with a fifth
cell on the other side of the center symmetry line. Thus, cell 9 in the map of
Fig. 4.8 is adjacent to (and therefore may be combined with) cell 25, cell 15 is
adjacent to 31, 4 to 20, and so on.

Example With the aid of a map, minimize the function

f (v,w, x, y, z) =
∑

(1, 2, 6, 7, 9, 13, 14, 15, 17, 22, 23, 25, 29, 30, 31).

From the cubes shown in Fig. 4.9, we obtain the minimal sum-of-products
expression

f (v,w, x, y, z) = x ′y ′z + wxz + xy + v′w′yz′

1 1

11

110 111 101 100

1

11

1

000 001 011 010

00

01

11

10

vwx
yz

1

1

1

1

1 1

1

Fig. 4.9 Map for f (v, w, x, y, z) = x ′y′z + wxz + xy + v′w′yz′ .

78 Minimization of switching functions

The extension of the map to six variables is accomplished in a similar
manner. The map is a square consisting of 64 cells, where each cell is adjacent
to six other cells. The actual construction of the map, the determination of the
appropriate row and column headings, and the locations of the minterms are
left to the reader as an exercise.

4.3 Minimal functions and their properties

In Section 4.1, we observed that there exists a distinction between irredundant
and minimal expressions and that neither is necessarily unique. We shall now
investigate the properties of these expressions and determine the characteristics
of the product terms contained in a minimal sum-of-products expression.

Prime implicants

A switching function f (x1, x2, . . . , xn) is said to cover another function
g(x1, x2, . . . , xn), this action being denoted by f ⊇ g, if f assumes the value
1 whenever g does. Thus, if f covers g then it has a 1 in every row of the truth
table in which g has a 1. If f covers g and at the same time g covers f , then f

and g are equivalent.
Let f (x1, x2, . . . , xn) be a switching function and h(x1, x2, . . . , xn) be a

product of literals. If f covers h then h is said to imply f; h is said to be an
implicant of f . The implication is often denoted by h → f .

Example If f = wx + yz and h = wxy ′ then f covers h and h implies f .

Definition 4.1 A prime implicant p of a function f is a product term covered
by f such that the deletion of any literal from p results in a new product that
is not covered by f . Alternatively stated, p is a prime implicant if and only if
p implies f but does not imply any product with fewer literals that in turn also
implies f . The set of all prime implicants of f will be denoted by P .

Example A prime implicant of f = x ′y + xz + y ′z′ is x ′y, since it is
covered by f and neither x ′ nor y alone implies f .

Theorem 4.1 Every irredundant sum-of-products equivalent to f is a union of
prime implicants of f.

Proof Let f ∗ be an irredundant sum-of-products expression equivalent to f

and suppose that f ∗ contains a product term q that is not a prime implicant.
Since q is not a prime implicant, it is possible to replace it with another
product that consists of fewer literals. Hence f contains redundant literals,
which contradicts the initial assumption. ♦

79 4.3 Minimal functions and their properties

The next task is to generate the set of all prime implicants of f and from this
set to select those prime implicants whose union yields a minimal expression
for f . Suppose that f is given in a canonical sum-of-products form; then,
by applying the combining theorem Aa + Aa′ = A to a pair of minterms, we
obtain a product that implies f . Repeated applications of this theorem to all pairs
of terms that differ in the value of just one variable yield a set of products, each
of which implies f . A product that cannot be combined with any other product
to yield a still smaller product, i.e., one with fewer literals, is a prime implicant
of f . Thus, our first step in the determination of the minimal expression is a
systematic combination of terms. The second step, that of selecting the minimal
set of prime implicants, is in general more complicated, as will be demonstrated
in the next section.

On the map for f , an irreducible product corresponds to a cube that is not
contained in any larger cube. Consequently, the set P of all prime implicants
can be obtained by writing down the products corresponding to all the cubes
that are not contained in any larger cubes.

Example Consider the map of f (w, x, y, z) = ∑
(0, 4, 5, 7, 8, 9, 13, 15)

given in Fig. 4.2. The set of all prime implicants of f is

P = {xz,w′y ′z′, wx ′y ′, x ′y ′z′, w′xy ′, wy ′z}.
Note that xyz is not a prime implicant since it implies xz.

Deriving minimal expressions

An inspection of the maps in Fig. 4.2 reveals that the prime implicant xz must
be contained in any irredundant expression equivalent to f , since it is the only
product that covers the combinations 7 and 15. However, any other 1-cell is
covered by two prime implicants and, consequently, none of them is essential
for the specification of an irredundant expression.

A prime implicant p of a function f is said to be an essential prime implicant
if it covers at least one minterm of f that is not covered by any other prime
implicant. Since every minterm of f must be covered by an expression for f ,
all essential prime implicants must be contained in any irredundant expression
for this function.

Example The prime implicants of the function

f (w, x, y, z) =
∑

(4, 5, 8, 12, 13, 14, 15)

are all essential, as demonstrated by the map of Fig. 4.1d.

80 Minimization of switching functions

Example The map for the function f (x, y, z) = ∑
(0, 2, 3, 4, 5, 7) is

shown in Fig. 4.10; it is known as a cyclic prime implicant map since
no prime implicant is essential, all prime implicants have the same size,
and every cell is covered by exactly two prime implicants. The reader can
verify by means of this map the results obtained in an algebraic manner in
Section 4.1.

1

1 1

1 1

1

xy
z

0

1

00 01 11 10

Fig. 4.10 A map for the function f (x , y, z) = ∑
(0, 2, 3, 4, 5, 7).

Since every minterm covered by a nonessential prime implicant is covered
by at least two prime implicants, any nonessential prime implicant is covered
by the sum of some prime implicants. For example, the prime implicant w′xy ′

of the function whose map is shown in Fig. 4.2 is covered by the sum of the
prime implicants xz and w′y ′z′. An essential prime implicant, however, is not
covered by any such sum.

When simplifying expressions by means of a map, we start by selecting
essential prime implicants, if any. This is accomplished by first forming maxi-
mal cubes of those 1’s that can be combined to form only one cube. Any other
cube whose 1’s are contained in one or more of these cubes corresponds to
a redundant term and need not be considered further. We thus arrive at the
following conclusion.

� The set of all essential prime implicants must be contained in any irredundant
sum-of-products expression, while any prime implicant covered by the sum
of the essential prime implicants must not be contained in an irredundant
expression.

For example, the prime implicant xz of function f of Fig. 4.3 is covered by the
sum of four essential prime implicants and, therefore, must not be contained
in any irredundant expression for f . We can thus summarize the procedure for
obtaining a minimal sum-of-products expression for a function f .

1. Determine all essential prime implicants and include them in the minimal
expression.

2. Remove from the list of prime implicants all those that are covered by the
essential prime implicants.

3. If the set derived in step 1 covers all the minterms of f then it is the unique
minimal expression. Otherwise, select additional prime implicants such that

81 4.4 The tabulation procedure for the determination of prime implicants

f is covered completely and such that the total number and size of the prime
implicants thus added are minimal.

The execution of step 3 is not always straightforward. While in most cases
with only a small number of variables this execution can be done by inspecting
the map, in more complicated cases, and when the number of variables is large,
a more systematic method is needed. The prime implicant chart presented in
the next section is a possible tool aiding the search for a minimal expression.

4.4 The tabulation procedure for the determination of prime implicants

The Karnaugh map method described in the preceding sections is very useful
for functions of up to six variables. In order to manipulate functions of a larger
number of variables a more systematic procedure, preferably one that can be
carried out by a computer, is necessary. The tabulation procedure, known also as
the Quine–McCluskey method of reduction, satisfies the above requirements.
It is suitable for hand computation and is also easily programmable.

The binary representation

The fundamental idea on which this procedure is based is that repeated appli-
cations of the combining theorem Aa + Aa′ = A to all adjacent pairs of terms
yield the set of all prime implicants, from which a minimal sum may be selected.
The technique will be introduced by minimizing the function

f1(w, x, y, z) =
∑

(0, 1, 8, 9) = w′x ′y ′z′ + w′x ′y ′z + wx ′y ′z′ + wx ′y ′z.

The first two and last two terms of f1 can be combined to yield

f1(w, x, y, z) = w′x ′y ′(z′ + z) + wx ′y ′(z′ + z)

= w′x ′y ′ + wx ′y ′.

These two terms can be combined in turn, and we obtain

f1(w, x, y, z) = x ′y ′(w′ + w)

= x ′y ′.

In the first step we obtained, for each of the two pairs of adjacent terms,
consisting of four literals per term, one term that consists of three literals. In
the second step, these two terms were combined again and reduced to a single
two-literal product. A similar result could have been obtained by initially
combining the first and third and the second and fourth terms in the original
function. However, no combination of the first and fourth or the second and
third terms is possible because they are not adjacent. Therefore our first task is

82 Minimization of switching functions

to determine, in a simple and systematic way, which terms can (or cannot) be
combined and to carry out all possible such combinations.

Two k-variable terms can be combined into a single (k − 1)-variable term if
and only if they have in common k − 1 identical literals and differ in just a single
literal. The combined term consists of the product of the k − 1 identical literals
while the variable, which is uncomplemented in one term and complemented
in the other, is deleted. Thus, the terms w′x ′y ′z′ and w′x ′y ′z can be combined
to w′x ′y ′, while w′x ′y ′z and wx ′y ′z′ cannot be combined, since they differ
in two variables (i.e., w and z). If we consider the binary representation of
the minterms, we observe that the necessary and sufficient condition for two
minterms to be combinable is that their binary representations differ in just
one position. For example, the representations for w′x ′y ′z and wx ′y ′z are 0001
and 1001, respectively. The combined term is denoted –001, where the dash
indicates that variable w has been absorbed and the combined term is x ′y ′z.
The terms w′x ′y ′z and wx ′y ′z′, however, cannot be combined since their binary
representations 0001 and 1000 differ in two positions, i.e., in the first and fourth
digits.

For the binary representations of two minterms to be different in just one
position, it is necessary that their numbers of 1’s differ by exactly one. Con-
sequently, to facilitate the combination process the minterms are arranged in
groups according to the number of 1’s in their binary representation. With the
following steps, the procedure becomes systematic.

1. Arrange all minterms in groups, such that all terms in the same group have
the same number of 1’s in their binary representation. Start with the least
number of 1’s and continue with groups of increasing numbers of 1’s. The
number of 1’s in a term is called the index of that term.

2. Compare every term of the lowest-index group with each term in the suc-
cessive group; whenever possible, combine the two terms being compared
by means of the combining theorem Aa + Aa′ = A. Repeat this by com-
paring each term in a group of index i with every term in the group of index
i + 1 until all possible applications of the combining theorem have been
exhausted.

Two terms from adjacent groups are combinable if their binary repre-
sentations differ by just a single digit in the same position; the combined
term consists of the original fixed representation, the different digit being
replaced by a dash (–). A check mark () is placed next to every term which
has been combined with at least one term. (Note that each term may be com-
bined with several terms, but only a single check is required.)

3. Now compare the terms generated in step 2, in the same fashion: a new
term is generated by combining two terms that differ by only a single 1 and
whose dashes are in the same position. The process continues until no further
combinations are possible. The remaining unchecked terms constitute the
set of prime implicants of the function.

83 4.4 The tabulation procedure for the determination of prime implicants

Step 1

w x y z

0 0 0 0

1 1 1 1

1 1 0 1

0 1 1 1

1 0 1 0

1 0 0 1

0 1 0 1

1 0 0 0

0 0 1 0

0 0 0 1

0

1

8

5

9

10

7

13

15

2

Step 2

w x y z

– 1 0 1

0 1 –- 1

1 0 – 0

1 0 0 –-

– 0 1 0

– 0 0 1

0 –- 0 1

– 0 0 0

0 0 – 0

0, 1

0, 2

1, 5

1, 9

2,10

8, 9

8,10

5, 7

5, 13

0, 8

1 1 – 1

– 1 1 1

1 –- 0 1

13,15

7,15

9,13

0 0 0 –

Step 3

w x

– 0 0 –

– 1 –- 1

– – 0 1

– 0 –- 0

0, 1, 8, 9

0, 2, 8, 10

5, 7,13,15

1, 5, 9,13

y z

A

D

C

B

Fig. 4.11 Determination of the
set of prime implicants for the
function f2 (w, x , y, z) =∑

(0, 1, 2, 5, 7, 8, 9, 10,
13, 15).

The entire procedure is, actually, a mechanized process for combining and
reducing all adjacent pairs of terms. The unchecked terms are the prime
implicants of f , since each implies f and is not covered by any other term
with fewer literals. We shall illustrate the procedure by applying it to the
function

f2(w, x, y, z) =
∑

(0, 1, 2, 5, 7, 8, 9, 10, 13, 15).

The left-hand part of Fig. 4.11, corresponding to the application of step 1,
consists of all minterms, arranged in groups of increasing indices. The reduced
terms, after the first application of step 2, are given in the center part. For
example, the combination of the terms 0000 and 0001 is recorded by writing
000– in its first row, where the dash indicates that variable z is redundant. The
terms 0000 and 0001 in the left-hand part of the figure are now checked off.
The same rule is applied repeatedly until all combinable terms are recorded in
the center part.

The entire procedure is now repeated for the groups just formed in the center
part of the figure. Again, only adjacent groups need be compared, and a new
term is generated whenever two terms that differ in only one position and
have their dashes in the same position are found. This procedure guarantees
that the two combined terms actually consist of the same variables; that is, the
same variable was deleted from both terms in the previous step. The new terms
are recorded in the right-hand part of the figure, while the appropriate terms are
checked off. For example, the term 000– can be combined with 100– to form
–00–, which is recorded in the first row.

While recording the terms in the right-hand part of the figure, we observe that
each term is generated in two ways. For example, the term –00– is generated
in the preceding manner as well as by combining –000 and –001. Clearly it is

84 Minimization of switching functions

1 1

1

00 01 11 10

00

01

11

10

wx
yz

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

(000−)

(−000)

(−001)

(100−)

Fig. 4.12 Illustration of the two
ways of generating a term.

sufficient to record it once, but checks must be placed next to each of the four
terms 000–, 100–, –000, and –001. The cause of this phenomenon is that every
four-cell cube can be formed by combining two adjacent two-cell cubes in two
ways, as illustrated for the preceding example in Fig. 4.12.

The terms recorded in the right-hand part of Fig. 4.11 and labeled A, B, C,
and D cannot be combined with any other term and, therefore, form the set of
prime implicants of f2. From this set, we must now select a minimal subset
whose union is equivalent to f2. This is accomplished by means of the prime
implicant chart presented in the Section 4.5.

The decimal representation

The tabulation procedure can be simplified further by adopting the decimal
code for the minterms rather than their binary representation. Two minterms
can be combined only if they differ by a power of 2, that is, only if the difference
between their decimal codes is 2i . The combined term consists of the same
literals as the minterms with the exception of the variable whose weight is 2i ,
which is deleted. For example, if we consider the function f1(w, x, y, z) =∑

(0, 1, 8, 9), the minterms 1 and 9 differ by 23 = 8 and consequently the
variable w, whose weight is 8, is deleted. This combining process, which is
recorded by placing the weight of the redundant variable in parentheses, e.g.,
1, 9 (8), is simply a numerical way of describing the algebraic manipulation
w′x ′y ′z + wx ′y ′z = x ′y ′z. Similarly, the combination of the minterms 0 and 8
is written as 0, 8 (8).

The condition that the decimal codes of two combinable terms must differ by
a power of 2 is necessary but not sufficient. Two terms whose codes differ by a
power of 2 but which have the same index cannot be combined, since they differ
by more than one variable. Similarly, if a term with a smaller index has a higher
decimal value than another term whose index is higher, then the two terms
cannot be combined although they may differ by a power of 2. For example,
the terms 9 and 7 in Fig. 4.11, whose indices are 2 and 3, respectively, cannot
be combined since they differ in the values of three variables. Except for the

85 4.4 The tabulation procedure for the determination of prime implicants

1

21

19

13

24

20

18

17

12

2

(2)

(1)

(1)

(1)

(8)

(4)

(2)

(1)

1, 17

2, 18

17, 19

17, 21

17, 25

18, 19

20, 21

24, 25

13, 15

12, 13

(8)

(4)

(16)

19, 27

19, 23

13, 29

H

D

F

G

31

29

27

23

15

25

(16)

(16)

29, 31

27, 31

23, 31

15, 31

25, 29

25, 27

21, 29

21, 23

(2)

(4)

(8)

(16)

(4)

(2)

(8)

(2)

C

E

17, 19, 21, 23 (2, 4)

17, 19, 25, 27 (2, 8)

13, 15, 29, 31 (2,16)B

19, 23, 27, 31 (4, 8)

21, 23, 29, 31 (2, 8)

25, 27, 29, 31 (2, 4)

17, 21, 25, 29 (4, 8)

(2, 4, 8) A17, 19, 21, 23, 25, 27, 29, 31

(a)

(b)

(c)

(d)

Fig. 4.13 Tabulation procedure
for f3 (v, w, x , y, z) using
decimal notation. The tables are
derived in the order (a)–(d).

above phenomenon, the tabulation procedure using the decimal representation
is completely analogous to that using the binary representation.

The tabulation procedure can easily handle the case of don’t-care combina-
tions. During the process of generating the set of prime implicants, don’t-care
combinations are regarded as true combinations, that is, combinations for which
the function assumes value 1. This, in effect, increases to the maximum the
number of possible prime implicants. The don’t-care terms are, however, not
considered in the next step, that of selecting a minimal set of prime implicants,
as will be shown in the following section.

The tabulation procedure for generating the set P of prime implicants for
the function

f3(v,w, x, y, z)

=
∑

(13, 15, 17, 18, 19, 20, 21, 23, 25, 27, 29, 31) +
∑

φ

(1, 2, 12, 24)

is shown in Fig. 4.13. This set consists of eight prime implicants, denoted A

through H , i.e.,

P = {vz,wxz, vwx ′y ′, vw′xy ′, vw′x ′y, v′wxy ′, w′x ′yz′, w′x ′y ′z′}.

86 Minimization of switching functions

A = x'y'

B = x'z'
C = y'z
D = xz

0 1 10 13 152 95 87
Fig. 4.14 Prime implicant chart
for f2 (w, x , y, z) of Fig. 4.11.

The selection of the prime implicants to be used in the minimal sum is
accomplished with the aid of the prime implicant chart presented in the next
section.

4.5 The prime implicant chart

The prime implicant chart displays pictorially the covering relationships
between the prime implicants and minterms of a function. It consists of an array
of u columns and v rows, where u and v designate the number of minterms
for which the function takes on the value 1 and the number of prime impli-
cants, respectively. The entries of the ith row in the chart consist of ×’s placed
at its intersections with columns corresponding to minterms covered by the
ith prime implicant. For example, the prime implicant chart of f2(w, x, y, z) =∑

(0, 1, 2, 5, 7, 8, 9, 10, 13, 15) is shown in Fig. 4.14. It consists of 10 columns
corresponding to the minterms of f2, and four rows which correspond to the
prime implicants A, B, C, and D generated in Fig. 4.11. Row C contains four
×’s at the intersections with columns 1, 5, 9, and 13, because these minterms
are covered by the prime implicant C. A row is said to cover the columns in
which it has ×’s.

The problem now is to select a minimal subset of prime implicants such that
each column contains at least one × in the rows corresponding to the selected
subset and the total number of literals in the prime implicants selected is as
small as possible. These requirements guarantee that the union of the selected
prime implicants is indeed equivalent to the original function f , and that no
other expression containing fewer literals and equivalent to f can be found.

Essential rows

If any column contains just a single × then the prime implicant corresponding to
the row in which this × appears is essential and consequently must be included
in any irredundant expression for f . The × is circled, and a check mark is
placed next to the essential prime implicant. The row that corresponds to an
essential prime implicant is referred to as an essential row. Once an essential
prime implicant has been selected, all the minterms it covers are checked off.
For example, essential prime implicant B covers, in addition to columns 2 and

87 4.5 The prime implicant chart

10, columns 0 and 8. Consequently columns 0, 2, 8, and 10 are checked off.
If, after all essential prime implicants and their corresponding columns have
been checked, the entire function is covered, i.e., every column is checked off,
then the union of all essential prime implicants yields the minimal expression.
If this is not the case then additional prime implicants are necessary.

The two essential prime implicants B and D of f2 cover all the minterms
except 1 and 9. These minterms may be covered by either prime implicant A

or C, and since both are expressed with the same number of literals, we obtain
two minimal expressions for f2, namely,

f2(w, x, y, z) = x ′z′ + xz + x ′y ′

and

f2(w, x, y, z) = x ′z′ + xz + y ′z.

Don’t-care combinations

Don’t-care minterms need not be listed as column headings in the prime impli-
cant chart, since they do not have to be covered by the minimal expression.
By not listing them, we actually leave the specification of the don’t-care terms
open; that is, if a minimal expression contains a prime implicant derived from
a don’t-care combination, this amounts to specifying that combination as 1;
otherwise, the don’t-care combination is, in effect, assigned the value 0. The
prime implicant chart thus yields a minimal expression of a function which
covers all the specified minterms.

The prime implicant chart for the function

f3(v,w, x, y, z)

=
∑

(13, 15, 17, 18, 19, 20, 21, 23, 25, 27, 29, 31) +
∑

φ

(1, 2, 12, 24),

whose prime implicants have been computed in Fig. 4.13, is shown in Fig. 4.15.

A = vz

B = wxz

C = vwx'y'

D = vw'xy'

13 2715 2517 2318 2119 20 3129

H = w'x'y'z

G = w'x'yz'

F = v'wxy'
E = vw'x'y

Fig. 4.15 The prime implicant
chart for f3 (v, w, x , y, z) of
Fig. 4.13.

88 Minimization of switching functions

The selection of nonessential prime implicants is facilitated by the initial
listing of prime implicants in a descending order, according to the number of
minterms they cover. Thus, prime implicants that are located in a higher group
in the chart are expressed with fewer literals than those located in a lower group.
A horizontal line across the chart separates one group from the other.

The essential prime implicants in the chart of Fig. 4.15 are A, B, and D.
They cover all the specified minterms with the exception of 18. This last
minterm can be covered by either of prime implicants E and G and, since
both have the same number of literals, two minimal expressions can be found,
namely,

f3(v,w, x, y, z) = vz + wxz + vw′xy ′ + vw′x ′y

and

f3(v,w, x, y, z) = vz + wxz + vw′xy ′ + w′x ′yz′.

Determination of the set of all irredundant expressions

So far, we have been able to determine minimal sum-of-products expressions
by inspecting the prime implicant chart. In more complex cases, however,
the inspection process becomes prohibitively time consuming, and different
techniques are in order. As an illustration, consider the minimization of the
function

f4(v,w, x, y, z) =
∑

(0, 1, 3, 4, 7, 13, 15, 19, 20, 22, 23, 29, 31).

The corresponding prime implicant chart is shown in Fig. 4.16a, where the
essential prime implicants and all minterms covered by them have been checked
off. While every irredundant expression must contain the prime implicants
A and C, none may contain B, since B covers only terms already covered
by A and C. The reduced chart, which results after the removal of rows A, B,
and C and all columns covered by them, is shown in Fig. 4.16b. Every column
of the reduced chart contains two ×’s, and our task is to select a minimal
number of additional prime implicants so as to cover the entire function.

Utilizing the techniques of propositional calculus, we associate a two-valued
variable with each remaining prime implicants. The truth value of such a
variable is 1 if the corresponding prime implicant is included in the irredundant
expression, and is 0 if it is not. Define a prime implicant function p to be equal
to 1 if each column is covered by at least one of the chosen prime implicants
and 0 if it is not. For example, column 0 can be covered by either row H or row
I . Consequently, either H or I must be included in any irredundant expression.
Similarly, either G or I must also be included, since only they have ×’s in
column 1. Deriving the appropriate expressions from the remaining columns

89 4.5 The prime implicant chart

20 221 03 194 157 13 2923 31

D

20 21 204

H

G

F

E

I

(a) Prime implicant chart.

(b) Reduced prime implicant chart.

A = wxz

B = xyz

C = w'yz

D = vw'xy

H = v'w'y'z'
G = v'w'x'z
F = w'xy'z'
E = vw'xz'

I = v'w'x'y'

Fig. 4.16 Determination of all
irredundant expressions for
f4 = ∑

(0, 1, 3, 4, 7, 13, 15, 19,
20, 22, 23, 29, 31).

of Fig. 4.16b, we obtain the expression for p,

p = (H + I)(G + I)(F + H)(E + F)(D + E),

which can also be written as a sum of products,

p = EHI + EFI + DFI + EGH + DFGH.

From this expression for p we find that at least three rows are needed to
cover the reduced chart, for example rows E, H , and I , or rows E, F , and I .
There are five irredundant expressions for f4, corresponding to the five product
terms for which p assumes the value 1. Also, since all the prime implicants that
correspond to the rows of the reduced chart have the same number of literals,
there are only four minimal expressions, corresponding to the first four terms
in p. Each of these minimal expressions is obtained by forming the sum of the
essential prime implicants A and C and a minimal number of prime implicants
necessary to set p equal 1. Thus we have

f4(v,w, x, y, z) = wxz + w′yz + vw′xz′ + v′w′y ′z′ + v′w′x ′y ′,
f4(v,w, x, y, z) = wxz + w′yz + vw′xz′ + w′xy ′z′ + v′w′x ′y ′,
f4(v,w, x, y, z) = wxz + w′yz + vw′xy + w′xy ′z′ + v′w′x ′y ′,
f4(v,w, x, y, z) = wxz + w′yz + vw′xz′ + v′w′x ′z + v′w′y ′z′.

90 Minimization of switching functions

The foregoing method for determining the irredundant sets of prime impli-
cants can be applied directly to the prime implicant chart, instead of to the
reduced chart. However, the prime implicant function will be, in most cases,
considerably simpler if first the essential rows and columns covered by them
are removed. Note that in deciding whether a product term in p corresponds
to a minimal expression, two factors must be considered: the number of prime
implicants and the number of literals in each such prime implicant.

Reduction of the chart

In general, prime implicant charts are not as simple as the examples we have
given, and more elaborate techniques for manipulating them are required.
Whenever our aim is limited to finding just one minimal expression rather
than all minimal expressions, the selection of prime implicants may be consid-
erably simplified. Consider the minimization of the function

f5(v,w, x, y, z)

=
∑

(1,3,4,5,6,7,10,11,12,13,14,15, 18, 19, 20, 21, 22, 23, 25, 26, 27).

Its prime implicant chart is shown in Fig. 4.17a, where the essential prime
implicants A, B, J , and K and all minterms covered by them have been
checked off.

The reduced chart, which is obtained by removing the essential rows and the
columns covered by them, is shown in Fig. 4.17b. Although none of the rows
in the reduced chart is essential, some of them may be removed. For example,
row H has an × in column 19, while row G has ×’s in columns 19 and 11.
Since both prime implicants G and H belong to the same group in the chart,
i.e., both are expressed with the same number of literals, the removal of row
H cannot prevent us from finding at least one minimal expression. In other
words, two expressions that are identical except that one contains G while the
other contains H will have the same number of literals; and since G covers the
minterm covered by H , it can replace H in every expression for f5 without
affecting its logic value or its number of literals. Note that the converse is not
true, since the removal of row G may leave column 11 without any × in a
row whose corresponding prime implicant must be contained in the minimal
expression.

A row U of a prime implicant chart is said to dominate another row V of
that chart if U covers every column covered by V . Generalizing the preceding
arguments, we conclude that, if row U dominates row V and the prime implicant
corresponding to row U does not have more literals than the prime implicant
corresponding to row V, then row V can be deleted from the chart. Thus, row I

of Fig. 4.17b can be deleted because it is dominated by row G and, similarly,
rows D and F are removed because they are dominated by rows C and E,
respectively. The final reduced chart is shown in Fig. 4.17c. It contains three

91 4.5 The prime implicant chart

A = w x

B = v x

C = vx y

D = vw y

1 133 124 115 106 7 1514

H = w yz

G = x yz

F = v wy

E = wx y

I = v yz

18

C

10 2611 1918

G

F

E

D

H

(a) Prime implicant chart.

(b) Reduced prime implicant chart.

19 20 21 22 23 25 26 27

J = v w'z
K = vwx z

I

C

10 2611 1918

G

E

(c) Final chart.

'
'
'
'
'

'
'
'

'

'
'

Fig. 4.17 Minimization of
f5 = ∑

(1, 3, 4, 5, 6, 7, 10, 11,
12, 13, 14, 15, 18, 19, 20, 21, 22,
23, 25, 26, 27).

rows, of which two (C and E) must be included in the minimal expression,
since only they cover columns 18 and 10, respectively. Clearly, the inclusion
of C and E is also sufficient, since they cover all the columns not covered by
the essential prime implicants. The minimal expression for f5 thus consists of
the prime implicants A, B, J , K , C, and E, i.e.,

f5(v,w, x, y, z) = w′x + v′x + v′w′z + vwx ′z + vx ′y + wx ′y.

Prime implicant charts can also be reduced by removing certain columns.
Consider, for example, columns 10 and 11 in Fig. 4.17b. In order to cover
column 10, either row E or F must be selected, whereby column 11 will also
automatically be covered since it has ×’s in rows E and F . The converse is
not true, since column 11 can also be covered by row G, but this will not cover
column 10.

A column i in a prime implicant chart is said to dominate another column
j of that chart if i has an × in every row in which j has an ×. Clearly, any
minimal expression derived from a chart which contains both columns i and
j can be derived from a chart which contains only the dominated column.
Hence, if column i dominates column j, then column i can be deleted from

92 Minimization of switching functions

A = w'x'y'

B = w'y'z

C = w'xz

D = xyz

H = x'y'z'

G = wx'z'

F = wyz'

E = wxy

B

5 147 108

F

E

D

C

G

(b) Cyclic prime implicant chart.

(c) Reduced chart after
selection of row A.

0 1 5 7 8 10 14 15

H

15

A

1 145 107

E

D

C

B

F

(d) Reduced chart after
selection of row H.

G

15

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

1

(a) Cyclic map.

Fig. 4.18 Minimization of
f6 = ∑

(0, 1, 5, 7, 8, 10, 14, 15)
by the branching method.

the chart without affecting the search for a minimal expression. In fact, the
removal of dominating columns does not prevent us from finding all minimal
expressions.

Note that, when reducing columns the dominating ones are removed, while
of the rows the dominated ones are deleted. The removal of dominated rows
and dominating columns may alternate a number of times; that is, we may start
by removing dominated rows and dominating columns. This in turn may create
new dominated rows that can be removed, and so on.

The branching method

It may happen that a prime implicant chart has no essential prime implicants,
dominated rows, or dominating columns. Whenever this happens, a different
approach must be taken, called the branching method. Consider, for example,
the function

f6(w, x, y, z) =
∑

(0, 1, 5, 7, 8, 10, 14, 15),

whose map, which is cyclic, is given in Fig. 4.18a. Eight prime implicants of
equal size are derived from the map and are shown in the chart of Fig. 4.18b,

93 4.6 Map-entered variables

where each prime implicant covers two minterms and each minterm is cov-
ered by two prime implicants. Such a chart is called a cyclic prime implicant
chart.

In order to find a minimal expression for f6, it is necessary to make an
arbitrary selection of one row and then apply the above reduction procedure.
Consider, for example, column 0 in Fig. 4.18b. It can be covered by either row
A or H . Consequently, one of these rows must be included in any minimal
expression. If row A is arbitrarily chosen, the chart of Fig. 4.18c results. In this
chart row B is dominated by row C and row H is dominated by row G. After
removal of these dominated rows, we find that rows C and G must be selected,
since only they cover columns 5 and 8, respectively. This selection, in turn,
implies the inclusion of row E in the expression for f6, i.e.,

f6(w, x, y, z) = w′x ′y ′ + w′xz + wxy + wx ′z′.

The entire process must now be repeated for row H as the initial selection.
The removal of this row results in the chart of Fig. 4.18d. This chart is again
reduced by removing the dominated rows A and G and including the prime
implicants B, D, and F in the expression for f6:

f6(w, x, y, z) = w′y ′z + xyz + wyz′ + x ′y ′z′.

Since the two expressions for f6 have the same number of literals, both are
minimal.

In general, there is no guarantee that the initial arbitrary selection will result
in a minimal expression. It is, therefore, necessary to repeat the process for
each row that could be substituted for the initially selected one.

Although the prime implicant chart of a function whose map is cyclic is itself
always cyclic, it is possible to encounter cyclic charts in the process of reducing
a prime implicant chart that corresponds to a noncyclic map. Moreover, a cyclic
chart may result while applying the branching process and reducing another
cyclic chart. Whenever such a situation occurs, another arbitrary row selection
must be made and all alternative expressions must be obtained, such that a
minimal one may be selected.

4.6 Map-entered variables

The Karnaugh map can be made a considerably more powerful tool if the
variables themselves are entered into the map cells. In the preceding utilization
of the map, the function value associated with a particular combination was
entered in the corresponding cell, that is, a value of 1, 0, or don’t-care is entered
into a cell. In practice, it often happens that, for a particular combination, the
function value is neither a constant (i.e., 0 or 1) nor a don’t care but, rather,
depends on the value of some other external variable. For example, the entry
in cell xyz = 010 in the map of Fig. 4.19a is A. This implies that the value

94 Minimization of switching functions

1

0 A

B'

C

xy
z

0

1

00 01 11 10

0

110

0

0

xy
z

0

1

00 01 11 10

1

00

0

xy
z

0

1

00 01 11 10

(a) Initial map.

(b) Map for A. (c) Map for B.

A

B

00

Fig. 4.19 Deriving expressions
from map-entered variables.

of the function f for this combination is a function of the variable A, that is,
f is equal to 1 if A = 1 and f is equal to 0 if A = 0. Similarly, the value of
f corresponding to the input combination xyz = 001 depends on the value of
variable B, while the value of f corresponding to input combination xyz = 101
depends on the value of B ′.

A map of the type shown in Fig. 4.19a, in which some cell entries are
external variables, is said to have map-entered variables. A major advantage of
such a map is that with an n-variable map (i.e., a map containing 2n cells), we
can specify functions of more than n variables. The three-variable map shown
in Fig. 4.19a, for example, specifies a function of six variables, x, y, z and
A, B, C.

The product term that corresponds to a cell-entered variable is equal to the
product of the variable entered into the cell and the combination that identifies
the cell. For example, the product corresponding to cell 010 is Ax ′yz′ and the
product corresponding to cell 101 is B ′xy ′z.

The procedure for covering such a map and generating a simple expression
for the corresponding function can be summarized as follows.

1. Treat all map-entered variables as 0’s and find a minimal expression for the
resulting map.

2. To cover the first map-entered variable, say A, treat all other map-entered
variables as 0’s and treat all 1’s as don’t-cares. Find a minimal cover for the
resulting map.

3. Repeat step 2 for each map-entered variable. (Note that, in this context, a
variable and its complement are treated as distinct variables, i.e., B and B ′

in Fig. 4.19a are distinct variables.)

95 4.7 Heuristic two-level circuit minimization

Following this procedure, we can find a minimal expression corresponding to
the map in Fig. 4.19a. From step 1, it is evident that the 1 in the map is covered
by the cube yz. Step 2 for variable A is illustrated in Fig. 4.19b. Clearly, the
corresponding term is Ay. Similarly, from Fig. 4.19c, we obtain the term for
B, namely, Bx ′z. The terms for B ′ and C are found in a similar manner and
the entire function is given by

f = yz + Ay + Bx ′z + B ′xz + Cxy ′z′.

4.7 Heuristic two-level circuit minimization

The prime implicant chart method requires that first all prime implicants are
found and then a minimal subset of these prime implicants that covers all the
minterms of the function is chosen. If more than one subset is of minimal
cardinality then the one with fewest literals is chosen. The problem with this
approach is that it may become impractical for many functions of interest. One
reason is that for an n-variable function, the number of prime implicants can
be as large as 3n/n. The second reason is that prime implicant chart covering
can itself be a very time-consuming process.

Heuristic two-level circuit minimization tries to alleviate the above prob-
lem by reducing the number of prime implicants that need to be tackled. A
very successful computer-aided design tool that encapsulates this approach is
called ESPRESSO. We shall briefly discuss the minimization approach used in
ESPRESSO next.

There are three main steps in ESPRESSO: expand, reduce and irredundant,
which we now describe.

� The expand step targets implicants and expands them into prime implicants.
Any implicants that are now covered by the expanded prime implicant are
omitted from any further consideration.

� The reduce step transforms the prime implicants into implicants of the least
possible size such that all the minterms of the function are still covered.
This actually makes the implementation suboptimal but may lead to better
solutions later.

� The irredundant step chooses a minimal subset of the prime implicants
obtained so far such that the subset covers all the minterms of the function.
This is similar to prime implicant chart covering. However, since the number
of prime implicants targeted is usually much smaller, the process is not as
time consuming.

The direction and order in which an implicant is expanded into a prime
implicant has a bearing on the quality of the final result.

96 Minimization of switching functions

Example Consider the circled implicant x ′y ′z′ in the map shown in
Fig. 4.20. Suppose that it is expanded in the y direction first. Then we
arrive at the prime implicant x ′z′. However, if we expand it in the x direc-
tion first and then the z direction, we arrive at prime implicant y ′ via the
following route: x ′y ′z′ → y ′z′ → y ′. We actually arrive at prime implicant
y ′ by expanding in another order of directions, first z and then x, as follows:
x ′y ′z′ → x ′y ′ → y ′.

1

xy
z 00 01 11 10

1

0 1 1

1

1

Fig. 4.20 Example illustrating expansion direction and order.

Since all possible prime implicants of the targeted function will not be gen-
erated, the quality of the prime implicants generated, i.e., how many minterms
they cover, is important. The heuristics for determining a good expansion direc-
tion and order are included in ESPRESSO.

Since the implicants obtained after the reduce step need not be prime, it
is followed by the expand and irredundant steps to derive another, possibly
superior, covering of the minterms of the function. This process continues until
it is no longer possible to improve on the best solution seen so far regarding the
number of product terms or the number of literals included in them. Of course,
in order to save time, essential prime implicants can be identified and set aside
so that they are not subjected to further transformation.

The different steps of heuristic minimization are illustrated next.

Example Consider the initial set of prime implicants, shown in Fig. 4.21a,
that covers all the minterms of function f . Such a set could be obtained
by applying expand and irredundant steps to the initial set of minterms.
Suppose that the prime implicant x ′y is now reduced to the implicant x ′yz′,
as shown in Fig. 4.21b. When the implicant x ′yz′ is now expanded in another
direction, the prime implicant yz′ is obtained, as shown in Fig. 4.21c. The
prime implicant xz′ can now be removed in the irredundant step since its
minterms are covered by the remaining prime implicants, thus obtaining the
covering of minterms shown in Fig. 4.21d. This corresponds to the minimal
sum-of-products x ′z + yz′ + xy ′. This expression is obviously superior to
the original expression, x ′z + x ′y + xz′ + xy ′.

97 4.8 Multi-output two-level circuit minimization

1

xy
z 00 01 11 10

1

0

1

1

1

11

(a) Initial covering of f. (b) After the reduce step.

1

xy
z 00 01 11 10

1

0

1

1

1

11

1

xy
z 00 01 11 10

1

0

1

1

1

11

(c) After the expand step. (d) After the irredundant step.

1

xy
z 00 01 11 10

1

0

1

1

1

11

Fig. 4.21 Illustration of the reduce, expand, and irredundant steps.

x zy f

100 1

011 1

1 110

1 100

0 111

0 101 expand and

irredundant

x y fz
–0 1 1

01 – 1

–1 0 1

10 – 1 reduce

y z f

–0 1 1

01 – 1

–1 0 1

expand

x

11 00

x y fz
–0 1 1

01 – 1

–1 0 1

– 101 irredundant

y z
–0 1 1

01 – 1

– 01 1

fx

Fig. 4.22 Transformations
using encoded truth tables.

The input to ESPRESSO is typically an encoded truth table, similar to those
used in the tabulation procedure. Truth tables equivalent to the set of transfor-
mations performed in the example above are shown in Fig. 4.22. The set of
minterms of function f is subjected to expand and irredundant steps to obtain
the initial covering containing the prime implicants x ′z, x ′y, xz′ and xy ′.
Then, the reduction of prime implicant x ′y to the implicant x ′yz′ is depicted
by the transformation of 01– to 010. The expansion step converts 010 to –10.
Finally, the irredundant step eliminates 1–0.

4.8 Multi-output two-level circuit minimization

In the preceding sections, we have dealt with single-output two-level circuit
minimization. However, in general, most circuits that we might want to design
have multiple outputs. In this section, we shall see how such multi-output
circuits can be minimized.

98 Minimization of switching functions

A trivial way to deal with an n-output circuit is to treat it as n single-output
circuits and minimize them separately.

Example Consider the functions f1 and f2 shown in Fig. 4.23 and the
prime implicants shown in the maps. Since all four prime implicants are
essential, the corresponding two-level circuit can be derived as shown in the
figure.

x

f1

z

f2

y

y
z'

xy
z 00 01 11 10

1

0

1

1 1

(a) f1 = xy + yz'.

1

xy
z 00 01 11 10

1

0

1

1

(c) Two-level implementation.

(b) f2 = x'y + x'z.

x'

x'

y

Fig. 4.23 A separately minimized two-level circuit.

The above approach, however, can be suboptimal. The reason is that it does
not exploit the possibility of sharing logic among different outputs. To enable
sharing, the concept of the multi-output prime implicant is needed. Suppose
that there are only two output functions, f1 and f2. Then, their multi-output
prime implicants are the prime implicants of f1 and f2 as well as those of the
product f1f2. Similarly, if there are three output functions, f1, f2 and f3, then
their multi-output prime implicants are the prime implicants of f1, f2, f3, f1f2,
f1f3, f2f3, and f1f2f3. In general, for n outputs the number of functions one
has to consider is 2n − 1.

Consider a scenario in which a prime implicant of the function f1 is also a
prime implicant of the function f1f2. Then further consideration of this prime
implicant is given only for f1f2, not for f1. The reason is that this enables
sharing of the prime implicant among more outputs. In general, if a prime
implicant of the function f1f2 · · · fi is also a prime implicant of a product
function that includes all these individual functions, e.g., f1f2 · · · fifj , the

99 4.8 Multi-output two-level circuit minimization

prime implicant is only considered for the latter, in order to enable greater
sharing.

The next step is to obtain an augmented prime implicant chart. This aug-
mented chart has rows corresponding to each of the 2n − 1 functions that has
at least one prime implicant deserving further consideration and columns cor-
responding to the minterms of each individual function. If the objective is to
minimize the number of gates in the multi-output two-level implementation
then the usual steps of identifying the essential prime implicants and removing
dominated rows and dominating columns can be used to simplify the augmented
chart, using the branching method or the prime implicant function when nec-
essary. However, if a secondary objective is to minimize the interconnections
then removing dominated rows is not allowed as this sometimes eliminates a
solution that has fewer interconnections. The next example illustrates the above
method.

Example Consider the functions f1 and f2 shown in Fig. 4.23 once again.
They are reproduced in Fig. 4.24 along with the product function f1f2.
Since none of the prime implicants of f1 and f2 is also a prime implicant
of f1f2, all five multi-output prime implicants shown in these maps deserve
further consideration. The augmented prime implicant chart is shown in
Fig. 4.24d . The essential prime implicants and the minterms they cover
are then checked. This leads to the reduced chart shown in Fig. 4.24e.
Assuming that we are interested in minimizing the number of gates as
a primary objective and the number of interconnections as a secondary
objective, we cannot use the concept of dominated rows to reduce this chart
further. Thus, we can use the prime implicant function p to resolve the
situation as follows:

p = (B + E)(C + E) = BC + E.

xy
z 00 01 11 10

1

0

1

1 1

(a) f1.

1

xy
z 00 01 11 10

1

0

1

1

(d) Augmented prime implicant chart.

(b) f2.

xy
z 00 01 11 10

1

0 1

(c) f1f2.

Function
Prime

implicant

f1 f2

f1

f2

f1f2

A = xy

B = yz'
C = x'y

= x'zD

E = x'yz'

2 6 7 1 2 3

(e) Reduced chart.

Function
Prime

implicant

f1 f2

f1

f2

f1f2

B = yz'

C = x'y

E = x'yz'

2 2

Fig. 4.24 Multi-output prime implicants and augmented prime implicant chart.

100 Minimization of switching functions

Thus, the minimum-gate implementation contains AND gates realizing
multi-output prime implicants A, D, and E in the first level. The complete
implementation is shown in Fig. 4.25.

x

f1

z

f2

y

y

x'

z'

x'

Fig. 4.25 Multi-output minimized two-level circuit.

x y z f1
– 1 0 1 0

0 1 – 0 1

0 – 1 0 1

1 1 – 1 0 reduce

f2 x y z f1
– 1 0 1 0

0 1 – 0 1

0 – 1 0 1

1 1 – 1 0 irredundant

f2

0 01 11

x y z f1

0 – 1 0 1

1 1 – 1 0

f2

0 01 11

Fig. 4.26 Using encoded truth
tables for minimization.

One can perform multi-output two-level minimization using the encoded
truth table as well. The equivalent sequence of steps required for the above
example is shown in Fig. 4.26. In the initial covering of minterms, there is no
way to expand the input part of any row or reduce its output part (by turning
a 1 into a 0) and still realize the same set of functions. However, if –10 or
01– is reduced to 010 then its output part can be expanded to 11. Since both
–10 and 01– now become redundant they can be eliminated, obtaining the final
multi-output minimized implementation.

Notes and references

The problem of minimizing switching expressions has been studied extensively in the
literature. The map method was introduced by Veitch [10] in 1952 and modified to its
present form by Karnaugh [4]. The tabulation algorithm was developed by Quine [8, 9]
and modified by McCluskey [5]. ESPRESSO was described in [2]. It built upon prior
tools, such as MINI [3]. Tabular simplification of multi-output circuits was discussed
by Bartee [1] and McCluskey and Schorr [6]. Multi-output two-level minimization is
described in greater detail in [7].

[1] Bartee, T. C.: “Computer design of multiple output logical networks,” IRE Trans.
Electron. Computers, vol. EC-10, no. 1, pp. 21–30, March 1961.

101 Problems

[2] Brayton, R. K., G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli:
Logic Minimization Algorithms for VLSI Synthesis, Kluwer Academic, Boston,
1984.

[3] Hong, S. J., R. G. Cain, and D. L. Ostapko: “MINI: a heuristic approach for logic
minimization,” IBM J. Research & Development, vol. 18, pp. 443–458, September
1974.

[4] Karnaugh, M.: “The map method for synthesis of combinational logic circuits,”
Trans. AIEE part I, vol. 72, no. 9, pp. 593–599, 1953.

[5] McCluskey, E. J., Jr: “Minimization of Boolean functions,” Bell System Tech. J.,
vol. 35, no. 6, pp. 1417–1444, November 1956.

[6] McCluskey, E. J., and H. Schorr: “Essential multiple-output prime implicants,” in
Mathematical Theory of Automata, Proc. Polytech. Inst. Brooklyn Symp., vol. 12,
pp. 437–457, 1962.

[7] Muroga, S.: Logic Design and Switching Theory, John Wiley & Sons, New York,
1979.

[8] Quine, W. V.: “The problem of simplifying truth functions,” Am. Math. Monthly,
vol. 59, no. 8, pp. 521–531, October 1952.

[9] Quine, W. V.: “A way to simplify truth functions,” Am. Math. Monthly, vol. 62,
no. 9, pp. 627–631, November 1955.

[10] Veitch, E. W.: “A chart method for simplifying truth functions,” in Proc. ACM,
Pittsburgh, pp. 127–133, May 1952.

Problems

Problem 4.1. With the aid of a four-variable Karnaugh map, derive minimal sum-of-
products expressions for each of the following functions:
(a) f1(w, x, y, z) = ∑

(0, 1, 2, 3, 4, 6, 8, 9, 10, 11);
(b) f2(w, x, y, z) = ∑

(0, 1, 5, 7, 8, 10, 14, 15);
(c) f3(w, x, y, z) = ∑

(0, 2, 4, 5, 6, 8, 10, 12).

Problem 4.2
(a) Find the minimal sum-of-products and minimal product-of-sums expressions for

f (w, x, y, z) =
∏

(1, 4, 5, 6, 11, 12, 13, 14, 15).

Is your answer unique?
(b) Determine the minimal sum-of-products expression for

f (w, x, y, z) =
∑

(0, 2, 4, 9, 12, 15) +
∑

φ

(1, 5, 7, 10).

Problem 4.3. Given the function T (w, x, y, z) = ∑
(1, 2, 3, 5, 13) +∑

φ(6, 7, 8,

9, 11, 15):
(a) find a minimal sum-of-products expression;
(b) find a minimal product-of-sums expression;
(c) compare the expressions obtained in (a) and (b); if they do not represent identical

functions, explain why.

102 Minimization of switching functions

Problem 4.4. Find all minimal four-variable functions that assume the value 1 when
the minterms 4, 10, 11, 13 are equal to 1, and the value 0 when the minterms 1, 3, 6, 7,
8, 9, 12, 14 are equal to 1.

Problem 4.5. Each of the following functions actually represents a set of four functions,
corresponding to the possible assignments of the don’t-care terms.

f1(w, x, y, z) =
∑

(1, 3, 4, 5, 9, 10, 11) +
∑

φ

(6, 8),

f2(w, x, y, z) =
∑

(0, 2, 4, 7, 8, 15) +
∑

φ

(9, 12).

(a) Find f3 = f1 · f2. How many functions does f3 represent?
(b) Find f4 = f1 + f2. How many functions does f4 represent?
(c) Simplify the above functions, their product, and their sum.

Problem 4.6. Let f = ∑
(5, 6, 13) and f1 = ∑

(0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13). Find
f2 such that f = f1 · f ′

2. Is f2 unique? If not, indicate all possibilities.

Problem 4.7. Given the network of Fig. P4.7, determine the functions f2 and f3 if
f1 = xz′ + x ′z and the overall transmission function is to be

f (w, x, y, z) =
∑

(0, 4, 9, 10, 11, 12).

f2 f (w,x,y,z)f3

f1Fig. P4.7

Problem 4.8. A binary-coded-decimal (BCD) message appears in four input lines of
a switching circuit. Design an AND, OR, NOT gate network that produces an output
value 1 whenever the input combination is 0, 2, 3, 5, or 8.

Problem 4.9. Find the simplest function g(A, B, C, D) that will make the function
f = A′BC + (AC + B)D + g(A, B, C, D) self-dual.

Hint: Determine first the properties of maps of self-dual functions.

Problem 4.10. Use the map method to simplify each of the following functions:
(a) f1(v,w, x, y, z)

= ∑
(3, 6, 7, 8, 10, 12, 14, 17, 19, 20, 21, 24, 25, 27, 28);

(b) f2(v,w, x, y, z)
= ∑

(0, 1, 2, 4, 5, 9, 11, 13, 15, 16, 18, 22, 23, 26, 29, 30, 31).

Problem 4.11. The five-variable map can be constructed from two disjoint four-variable
maps that correspond to the fifth variable and its complement, as shown in Fig. P4.11.
(a) Devise an algorithm that specifies the minimization procedure using such maps.
(b) Simplify the function

T (v,w, x, y, z) =
∑

(1, 2, 6, 7, 9, 13, 14, 15, 17, 22, 23, 25, 29, 30, 31).

103 Problems

whose maps are given in Fig. P4.11.

1

1

1

1 1

1

1

00 01 11 10

00

01

11

10

wx
yz

1

1

1

1

1 1

1

1

00 01 11 10

00

01

11

10

wx
yz

v = 0 v = 1

Fig. P4.11

Problem 4.12. Construct a six-variable map and show the representation of

T (u, v, w, x, y, z) = u′w′y ′ + uwy + w′xy ′z.

Problem 4.13. For the function T (w, x, y, z) = ∑
(0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 15):

(a) Show the map;
(b) Find all prime implicants and indicate which are essential;
(c) Find a minimal expression for T and determine whether it is unique.

Problem 4.14. Given the function T (w, x, y, z) = ∑
(1, 3, 4, 5, 7, 8, 9, 11, 14, 15):

(a) use the map to obtain the set of all prime implicants and indicate specifically the
essential ones;

(b) find three distinct minimal expressions for T ;
(c) find the complement T ′ directly from the map;
(d) assume that only unprimed variables are available and construct a circuit that realizes

T and requires no more than 13 gate inputs and two NOT gates.
Hint: Use the result obtained in part (c).

Problem 4.15. Show maps for four-variable functions with the following specifications.
If this is impossible, explain why.
(a) A function with eight minterms for which

(i) there are no essential prime implicants.
(ii) all the prime implicants are essential.

(b) Repeat (a) for functions with nine minterms.
(c) A function with an even number of prime implicants, of which exactly half are

essential.
(d) A function with six prime implicants, of which four are essential and two are covered

by essential ones.

Problem 4.16. Prove or show a counterexample to each of the following statements.
(a) If a function f has a unique minimal sum-of-products expression then all its prime

implicants are essential.
(b) If a function f has a unique minimal sum-of-products expression then it also has a

unique minimal product-of-sums expression.

104 Minimization of switching functions

(c) If the pairwise product of all prime implicants of f is 0 then it has a unique minimal
expression.

(d) For every prime implicant p that is not essential, there is an irredundant expression
that does not contain p.

(e) If a function f does not have any essential prime implicant then it has at least two
minimal sum-of-products forms.

Problem 4.17
(a) Give the map of an irreducible four-variable function whose sum-of-products rep-

resentation consists of 23 minterms.
(b) Prove that there exists a function of n variables whose minimal sum-of-products

form consists of 2n−1 minterms and that no function when expressed in sum-of-
products form requires more than 2n−1 product terms.

(c) Derive a bound on the number of literals needed to express any n-variable function.

Problem 4.18
(a) Let f (x1, x2, . . . , xn) be equal to 1 if and only if exactly k of the variables equal 1.

How many prime implicants does this function have?
(b) Repeat (a) for the case where f assumes the value 1 if and only if k or more of the

variables are equal to 1.
(Note: The above functions are known as symmetric.)

Problem 4.19
(a) Let T (A, B, C, D) = A′BC + B ′C ′D. Prove that any expression for T must con-

tain at least one instance of the literal D or of the literal D′.
(b) If, in a minimal sum-of-products expression, each variable appears either in a primed

form or in an unprimed form but not in both then the function is said to be unate.
Prove that the minimal sum-of-products form of a unate function is unique.

(c) Is the converse true, i.e., if the minimal sum-of-products expression is unique then
the function is unate?
Hint: The function f = w′z + x ′y + x ′z is unate. If you relabel the variables, the

function may be transformed into another function whose variables are all in an unprimed
form.

Problem 4.20 Use the tabulation procedure to generate the set of prime implicants and
to obtain all minimal expressions for the following functions:
(a) f1(w, x, y, z) = ∑

(1, 5, 6, 12, 13, 14) +∑
φ(2, 4)

(b) f2(v,w, x, y, z) = ∑
(0, 1, 3, 8, 9, 13, 14, 15, 16, 17, 19, 24, 25, 27, 31)

(c) f3(w, x, y, z) = ∑
(0, 1, 4, 5, 6, 7, 9, 11, 15) +∑

φ(10, 14)
(d) f4(v,w, x, y, z) = ∑

(1, 5, 6, 7, 9, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 29, 30)
(e) f5(w, x, y, z) = ∑

(0, 1, 5, 7, 8, 10, 14, 15)

Problem 4.21 Apply the branching method to find a minimal expression for

f (v,w, x, y, z) =
∑

(0, 4, 12, 16, 19, 24, 27, 28, 29, 31).

Problem 4.22
(a) Prove that if x and y are switching variables, then:

(i) x + y = x ⊕ y ⊕ xy;
(ii) x ′ = x ⊕ 1.

105 Problems

(b) Using the equations in (a), any switching expression can be converted to an equiva-
lent expression containing only the operations EXCLUSIVE OR and AND. Demon-
strate the conversion procedure by transforming the expression

f = xyz′ + xy ′z + x ′z.

(c) Derive a procedure to transform an expression containing the EXCLUSIVE-OR
operation to an equivalent switching expression containing only AND, OR, and
NOT operations. Apply your procedure to the expression

f = x ⊕ y ⊕ z.

Problem 4.23. Consider the minimization of modulo-2 sum-of-products expressions
by means of a Karnaugh map. Since for every such expression the following are valid,

x ⊕ x ⊕ · · · ⊕ x =
{

0 for an even number of x’s,
x for an odd number of x’s,

xy ⊕ xy ′ = x,

then, when forming cubes, every 1-cell must be included in an odd number of cubes
while any 0-cell may be included in selected cubes as long as it is included in an even
number of such cubes. For example, the map for the function

f (x, y, z) = x ′y ′z′ ⊕ x ′yz ⊕ xy ′z ⊕ xyz′

is shown in Fig. P4.23. From the three cubes shown, it is evident that the minimal
expression is

f = x ⊕ y ⊕ z′.

(a) Derive an algorithm for simplifying modulo-2 sum-of-products expressions by
means of the map.2

(b) Apply your algorithm to simplify the following expressions:

f1(w, x, y, z) = w′xy ′z′ ⊕ w′xyz′ ⊕ wx ′y ′z ⊕ wx ′yz ⊕ wxy ′z′ ⊕ wxy ′z

(note that three terms containing seven literals constitute a minimum);

f2(w, x, y, z) = w′x ′yz ⊕ w′xy ′z ⊕ w′xyz′ ⊕ wx ′y ′z ⊕ wx ′yz′ ⊕ wxy ′z′

(note that five terms containing 14 literals constitute a minimum).

1

1 1

1

xy
z

0

1

00 01 11 10
Fig. P4.23

2 For a reference, see Even, S., I. Kohavi, and A. Paz: “On minimal modulo 2 sums of products
for switching functions,” IEEE Trans. Electron. Computers, vol. EC-16, October 1967.

106 Minimization of switching functions

Problem 4.24. Shown in Fig. P4.24 is a prime implicant chart for f (a, b, c, d) in which
some of the row and column headings are unknown. It is known, however, that the chart
has a row for each prime implicant of f and a column for each minterm for which f

has a value 1.
(a) Find with the aid of a map all the minterms and prime implicants that correspond,

respectively, to the columns and rows with unknown headings.
(b) Is your solution to (a) unique?
(c) Give the minterms for which f must be equal to 0.
(d) Find a minimal expression for f .

A = b'd'

B = ?

C = bcd

D = ?

0 15 ?10 ?7 8

F = ?
E = ?

Fig. P4.24

Problem 4.25. A combinational network with four inputs A, B, C, and D, three inter-
mediate outputs Q, P , and R, and final two outputs T1 and T2 is shown in Fig. P4.25.
(a) Assuming that G1 and G2 are both AND gates, show the map for the smallest

function Pmin (i.e., with the minimum number of minterms) that makes it possible
to produce T1 and T2.

(b) Show the maps for Q and R that correspond to the above Pmin. Indicate explicitly
the don’t-care positions.

(c) Assuming that G1 and G2 are both OR gates, find the largest Pmax and show the
corresponding maps for Q and R.

(d) Can both T1 and T2 be produced if G1 is an AND gate and G2 is an OR gate? Or if
G1 is an OR gate and G2 is an AND gate?

A

B

C

D

Q

P

R

T1 =

=

(0,1, 3, 4, 5, 7,11,15)

T2

G1

G2
(2,3,6,7,11,15)

Fig. P4.25

Problem 4.26. A gate T has logical properties that are defined by the map in
Fig. P4.26.
(a) Prove that if the logic value 1 is given then any switching function can be realized by

means of T gates, that is, T gates plus the logic value 1 are functionally complete.
(b) Realize, by means of two T gates, the function

f (w, x, y, z) =
∑

(0, 1, 2, 4, 7, 8, 9, 10, 12, 15).

Hint: Realize the 0’s of f .

107 Problems

1

0 0

0 1

0

AB
C

0

1

00 01 11 10

1

0

A

B

C

TT

Fig. P4.26

Problem 4.27. The initial covering of minterms for the function f = ∑
(0, 2, 3, 4, 5, 7)

is shown on the left in Fig. P4.27. It needs to be converted into the covering shown on
the right. Find a sequence of reduce, expand, and irredundant steps needed to do so.
This sequence is not unique.

y z

0 –- 0 1

1 0 –- 1

– 1 1 1

x f y z

– 0 0 1

1 –- 1 1

0 1 – 1

x f

?

Fig. P4.27

Problem 4.28. For the three functions shown below, obtain a multi-output minimized
two-level implementation using an augmented prime implicant chart. Assume that min-
imizing the total number of gates is the sole objective.

f1 =
∑

(2, 3);

f2 =
∑

(2, 3, 4, 5, 6, 7);

f3 =
∑

(1, 3, 5, 7).

Problem 4.29. The initial covering of minterms for two functions, f1 and f2, is shown
on the left in Fig. P4.29. It needs to be converted into the covering shown on the right.
Find a sequence of reduce, expand, and irredundant steps that will achieve this.

y z

– 0 1 1 0

1 – 0 1 0

0 1 – 1 0

x f1

?

f2

0 0 – 0 1

1 – 1 0 1

– 1 0 0 1

y z

0 – 1 1 0

0 1

0 1

1 1

1 0

– 1 0

1 0 –

0 0 –

1 –- 1

x 1 ff 2Fig. P4.29

C H A P T E R

5 Logic design

The principal application of switching theory is in the design of digital circuits.
The design of such circuits is commonly referred to as logical (or logic) design.
Most digital systems are constructed from electronic switching circuits. In this
chapter, we describe some components that are typical of the basic building
blocks used in constructing digital systems. Switching algebra will be used to
describe the logical behavior of networks composed of these building blocks
as well as to manipulate and simplify switching expressions, thereby reducing
the number of components used in the design. We shall be concerned with the
logic functions that a circuit performs rather than with its electronic structure
or behavior. Special attention will be given to the design of high-speed binary
adders. These examples will introduce us to some practical aspects of logic
design in which the speed of operation and area limitations require ingenuity
in arriving at a proper compromise.

5.1 Design with basic logic gates

Although modern digital systems are composed of a large number of compo-
nents, they usually employ only a small number of different kinds of elementary
circuits, called gates, whose task is to perform logic operations on input signals.
In Section 3.2, we showed that in order to implement any switching function,
it is necessary to have a set of two-valued switching devices capable of imple-
menting a functionally complete set of operations. The objective of this section
is to present some commonly used devices of this type.

Introductory definitions

Switching variables can be represented by either voltage or current. We shall
consider only the voltage representation, since that of the current is similar.
It is customary to represent the switching constants 1 and 0 by higher and
lower voltages, respectively. Such an assignment of voltages to the switching
constants is referred to as positive logic polarity. The converse, that is, the

108

109 5.1 Design with basic logic gates

representation of 1 and 0 by lower and higher voltages, respectively, is referred
to as negative logic polarity. Both these representations are valid by virtue of
the duality principle in switching algebra.

In practice, 0 and 1 do not correspond to specific, carefully controlled,
voltages but to two voltage ranges; that is, they may be nominally “high” and
“low,” but within large tolerances. Consequently, only the range of the signal is
important, while its precise value may be subject to changes due to variations in
temperature or in the electronic parameters. This flexibility is important because
it enables logic devices to employ simple circuits that operate correctly in spite
of wide variations in the circuit parameters and the presence of noise on the
signal wires.

Circuits may be either synchronous or asynchronous. In the former, synchro-
nization is usually achieved by a timing device called a clock, which produces a
train of equally spaced pulses. The clock pulses are fed into the circuit in such a
way that the various operations take place only with the arrival of the appropri-
ate synchronization pulses. The clock for a particular circuit may have a number
of outputs, on which pulses appear at certain intervals and with a fixed relation
between the pulses on the various outputs. This process ensures an orderly exe-
cution of the various operations and logical decisions to be made by the circuit.
Asynchronous circuits, however, are usually faster because they are almost
free-running and do not depend on the frequency of a clock, which in most
cases would be well below the speed of operation of a free-running gate. The
orderly execution of operations in asynchronous circuits is controlled by a num-
ber of completion and initiation signals, such that the completion signal of one
operation initiates the execution of the next consecutive operation, and so on.

In practice there is a maximum amount of current that can be drawn from
a gate without affecting its operation. Also, a minimum amount of current is
necessary to drive each gate. Consequently, the number of gate inputs that can
be driven by the output of a single gate is limited; the maximum such number
is called the fanout of the gate. The overloading of a gate will cause a serious
deterioration in the signal value and may affect circuit performance. A less
critical, though still serious, restriction is the bound on the number of inputs
that a single gate may have. This bound is referred to as the fanin of the gate.

The basic logic gates, which implement the logic operations AND, OR, and
NOT, were introduced in Section 3.4. The NOT gate is also called an inverter.
In practice, a finite amount of time is required to propagate a signal through a
gate, or to switch a gate output from one value to another. This delay, which
is known as the propagation delay, strongly affects logic design. It may cause
hazards or races, which are discussed in Chapters 8 and 11. In this introductory
chapter, however, we shall assume that the propagation delay is very small and
therefore it will generally be ignored.

In all conventional gates, the output of a gate is either connected to the input
of another gate or serves as an external circuit output. It is never connected to
the output of another gate since that could lead to nondeterministic operation

110 Logic design

(A +B +C)[AB + C (A + B)]'

AB

B

AB + (A + B)C

A

ABC

(A + B)C

C

A + B + C

A + B

C0

S

Fig. 5.1 Analysis of a full-adder
circuit.

or to the destruction of the gate. There are gates, known as wired-OR and
wired-AND, in which special circuitry is provided such that their outputs can
be directly connected. However, we shall not consider these gates separately
because in most cases they can be handled by using the same procedures that
are applicable to conventional gates.

Analysis of combinational circuits

To every combinational switching circuit there corresponds a Boolean function
that describes the logic behavior of the circuit. The analysis of a circuit is
concerned with determining the function that describes that circuit.

A combinational circuit is analyzed by tracing the output of each gate,
starting from the circuit inputs and continuing toward each circuit output. This
procedure is illustrated by the analysis of the circuit shown in Fig. 5.1, which is
a minimal realization of a full binary adder. (A more comprehensive discussion
of the properties of this circuit is deferred to Section 5.4). The output, designated
C0, is given by

C0 = AB + (A + B)C

= AB + AC + BC.

The second output, designated S, is found to be

S = (A + B + C)[AB + (A + B)C]′ + ABC

= (A + B + C)(A′ + B ′)(A′ + C ′)(B ′ + C ′) + ABC

= AB ′C ′ + A′BC ′ + A′B ′C + ABC

= A ⊕ B ⊕ C.

The circuit shown in Fig. 5.1 is referred to as a multi-level realization, because
incoming input signals must pass through several levels of gates before they
reach the outputs. In this circuit, the signals corresponding to A must pass as
many as six levels of gates before reaching output S. Multi-level circuits have
several practical limitations. Since a finite delay is associated with each gate,

111 5.1 Design with basic logic gates

the propagation time of input signals increases proportionately to the increase
in the number of gate levels. The lengths of the various paths in a multi-level
circuit are not necessarily the same. Some paths are shorter than others (i.e.,
they involve fewer gates); e.g., in Fig. 5.1 there is one path going from A to
S of length three, while other paths from A to S range in length from four
to six levels. Consequently, different propagation times are associated with
various paths, which may cause certain hazardous situations. Such situations
are discussed in Chapter 8 and 11. A two-level realization overcomes these
limitations, at the price of considerable increase in the number of gates required
for the realization. Two-level realizations of some circuits are shown later. In
Chapter 8, we shall also show that the testing of a multi-level circuit for faults
is considerably more complicated than the testing of two-level circuits.

Some simple design problems

In the preceding chapters, we have introduced some of the most important tools
used in designing switching circuits. These tools include switching algebra,
truth tables, and minimization procedures. In this section we shall employ
these tools to design and implement some simple circuits.

Example Suppose that we are required to design a parallel parity-bit gen-
erator. This circuit must produce an output value 1 if and only if an odd
number of its inputs have the value 1. As an illustration, we shall design
a parity-bit generator for three-bit code words; that is, the circuit has three
inputs x, y, and z, and its output p must be 1 whenever either only one of
the input values is 1 or all three input values are 1. The map for this function
is shown in Fig. 5.2a. Clearly,

p = x ′y ′z + x ′yz′ + xy ′z′ + xyz.

A simple implementation of p is shown in Fig. 5.2b.

0

0 1

1 0

1

xy
z

0

1

00 01 11 10

1

0

z xy

P

(a) Map. (b) Implementation.

Fig. 5.2 Design of a parallel parity-bit generator.

112 Logic design

Example An input line x to a serial-to-parallel converter receives a long
sequence of binary digits that must be distributed into four different output
lines, as specified by external control signals. Let C1 and C2 be the two
control signals and let L1, L2, L3, and L4 denote the output lines. The truth
table shown in Table 5.1 specifies the logic values of the output lines for
every combination of control signals. For example, if the control signals
have values C1 = C2 = 0 then the input signals must be directed to L1, and
so on for other control signal values. The resulting logic equations are given
in Table 5.1 and a two-level implementation is shown in Fig. 5.3.

Table 5.1 Truth table and logic equations for the
serial-to-parallel converter

Control Output lines

C1 C2 L1 L2 L3 L4 Logic equations

0 0 x 0 0 0 L1 = xC ′
1C

′
2

0 1 0 x 0 0 L2 = xC ′
1C2

1 0 0 0 x 0 L3 = xC1C
′
2

1 1 0 0 0 x L4 = xC1C2

C1C2

L1

L4

L3

L2

x

Fig. 5.3 A serial-to-parallel converter.

5.2 Logic design with integrated circuits

Thus far we have developed the traditional techniques of logic design, in
which discrete gates are used as basic building blocks for implementing digital

113 5.2 Logic design with integrated circuits

systems. Since the 1950s, more modern devices, called integrated circuits, have
been developed and now serve as the main building blocks of all logic circuits.
Integrated circuits are produced in packages, or chips, and are historically
classified into four categories, as follows.

1. Small-scale integration (SSI) usually refers to packages containing single
gates, e.g., AND, OR, NOT, NAND, NOR, XOR, or small packages con-
taining two or four gates of the same type.

2. Medium-scale integration (MSI) refers to intermediate packages containing
up to about 100 gates. They usually realize standard circuits that are used
often in logic design, e.g., code converters, adders, etc.

3. Large-scale integration (LSI), may contain many hundreds or thousands
of gates in a single package. Some LSI circuits are standard, e.g., sub-
systems for computer control or for a computer arithmetic unit, while
other LSI circuits are manufactured to the specification of the logic
designer.

4. Very-large-scale integration (VLSI) is what we currently observe, in chips
in which there may be millions of gates.

Integrated circuits have several important advantages over the older discrete
components. First, they are relatively inexpensive; in fact, the integrated circuit
cost becomes an increasingly small part of the total cost of a system. Second,
they are more reliable and easily available. Presently, a logic designer will
make every effort to incorporate as many standard VLSI packages as possible
in building a system, since their use will result in a lower cost, at the same
time increasing the system’s reliability and making it easier to maintain by
simple replacement of a defective package by a new one. In this section, we
present several standard circuits that used to be available as MSI packages but
now constitute parts of VLSI packages. Their design will not only illustrate the
design techniques for other, nonstandard, circuits but also enhance our ability
to use these circuits, modify them, or enlarge them by connecting several such
circuits.

Comparators

An n-bit comparator is a circuit that compares the magnitude of two numbers
X and Y . It has three outputs f1, f2, and f3, such that: f1 = 1 iff (if and only
if) X > Y ; f2 = 1 iff X = Y ; f3 = 1 iff X < Y . As an example, consider an
elementary 2-bit comparator, as in Fig. 5.4a.

The circuit has four inputs x1, x2, y1 and y2, where x1 and y1 denote the
most significant digit of X and Y , respectively. The logic equations may be
determined with the aid of the map in Fig. 5.4b, where the values 1, 2, and
3 are entered in appropriate cells to denote, respectively, f1 = 1, f2 = 1, and

114 Logic design

x1
f1

y2

x2

y1

x1

y1

00 01 11 10

(b) Map for f1, f2, and f3.

00

01

11

10

3

x1x2
y1y2

2

3

3

1

2

3

3

1

1

2

1

1

1

3

2

x1

f3f2f1

y2y1x2

(a) Block diagram.

(c) Circuit for f1.

2-bit comparator

'

'

'

Fig. 5.4 Designing a 2-bit
comparator.

f3 = 1. Thus

f1 = x1x2y
′
2 + x2y

′
1y

′
2 + x1y

′
1

= (x1 + y ′
1)x2y

′
2 + x1y

′
1,

f2 = x ′
1x

′
2y

′
1y

′
2 + x ′

1x2y
′
1y2 + x1x

′
2y1y

′
2 + x1x2y1y2

= x ′
1y

′
1(x ′

2y
′
2 + x2y2) + x1y1(x ′

2y
′
2 + x2y2)

= (x ′
1y

′
1 + x1y1)(x ′

2y
′
2 + x2y2),

f3 = x ′
2y1y2 + x ′

1x
′
2y2 + x ′

1y1

= x ′
2y2(y1 + x ′

1) + x ′
1y1.

The circuit for f1 is shown in Fig. 5.4c. Similar circuits are obtained for f2

and f3.
The reader can verify that X > Y , i.e., f1 = 1, when the most significant bit

of X is larger than that of Y , i.e., x1 > y1, or when the most significant bits are
equal but the least significant bit of X is larger than that of Y , namely, x1 = y1

and x2 > y2. In a similar way, we can determine the conditions for f2 = 1 and
f3 = 1.

This line of reasoning can be further generalized to yield the logic equations
for a 4-bit comparator.

115 5.2 Logic design with integrated circuits

x1

f3

f2

f1

y4y1x4

(a) A 4-bit comparator.

Inputs from
preceding

stage

x1

f3

f2

f1

y4y1x4 y8y5 y12y9x12x9x8x5

>
=
<

>
=
<

>
=
<

>
=
<

>
=
<

>
=
<

>
=
<

>
=
<

(b) A 12-bit comparator.

0

0
1

Fig. 5.5 Design of a 12-bit
comparator using three 4-bit
comparators.

A 4-bit comparator is shown in Fig. 5.5a. It has 11 inputs, four representing
X, four representing Y , and three connected to the outputs f1, f2, and f3 of the
preceding 4-bit stage. Three such stages can be connected in cascade, as shown
in Fig. 5.5b, to obtain a 12-bit comparator. Initial conditions are inserted at the
inputs of the comparator corresponding to the least significant bits in such a
way that the outputs of this comparator will depend only on the values of its
own x’s and y’s.

Data selectors

A multiplexer is essentially an electronic switch that can connect one out
of n inputs to the output. The most important application of the multiplexer
is as a data selector. In general, a data selector has n data input lines D0,
D1, . . . , Dn−1, m select digit inputs s0, s1, . . . , sm−1, and one output. The m

select digits form a binary select number ranging from 0 to 2m − 1, and when
this number has the value k then Dk is connected to the output. Thus this circuit
selects one of n data input lines, according to the value of the select number,
and in effect connects it to the output. Clearly, the number of select digits must
equal m = log2 n, so that it can identify all the data inputs.

Data selectors have numerous applications. For example, they may be used
to connect one out of n input sources of a device to its output. As we shall
subsequently show, data selectors may also be used to implement all Boolean
functions.

A block diagram for a data selector with eight data input lines is shown
in Fig. 5.6a. The select number consists of the three digits s2s1s0. Thus, for
example, when s2s1s0 = 101 then D5 is to be connected to the output, and
so on. The Enable (or Strobe) input “enables” or turns the circuit on. A logic

116 Logic design

Enable

(a) Block diagram.

Select
number

Data inputs

D7 D0D1D2D3D4D5D6s2

s0

s1

z'
z

(b) Logic diagram.

s0s1s2 D0D1D2D3D4D5D6D7 Enable

Select number Data inputs

z

Fig. 5.6 Data selector with eight
data-input lines.

diagram for this data selector is shown in Fig. 5.6b. Such a unit provides the
complement z′ of the output as well as the output z itself. The Enable input
turns the circuit on when it assumes the value 0.

Implementing switching functions with data selectors

An important application of data selectors is the implementation of arbitrary
switching functions. As an example, we shall show how functions of two
variables can be implemented by means of the data selector of Fig. 5.7. Clearly,
in this circuit, if s = 0 then z assumes the value of D0 and if s = 1 then z

assumes the value of D1. Thus, z = sD1 + s ′D0. Now, suppose that we want to
implement the EXCLUSIVE-OR operation A ⊕ B. This can be accomplished
by connecting variable A to the input s and variables B and B ′ to D0 and
D1, respectively. In this case z = AB ′ + A′B = A ⊕ B. Similarly, if we want
to implement the NAND operation z = A′ + B ′ then we connect variable A

to s and variable B ′ to D1; D0 is connected to a constant 1. Clearly, z =
AB ′ + A′1 = A′ + B ′.

117 5.2 Logic design with integrated circuits

z

s

D1 D0

Enable
z = sD1 + s D .0

If s = A, B = D0, and
B = D1 then z = A B.

If s = A, D0 = 1, and
D1 = B then z = A + B.

+

'

' ' '

'

Fig. 5.7 Implementing
two-variable functions with a
data selector.

In a similar manner, a judicial choice of inputs will implement any of the
16 different two-variable functions (see Table 3.6). In general, to implement
an n-variable function we require a data selector with n − 1 select inputs and
2n−1 data inputs. Hence, for example, to implement all three-variable functions
we require a data selector with two select inputs, s1 and s2, and 23−1 = 4 data
inputs, D0, D1, D2, and D3. The output of such a data selector is

z = s ′
1s

′
2D0 + s1s

′
2D1 + s ′

1s2D2 + s1s2D3.

The reader can verify that, if we connect variables A and B to s1 and s2,
respectively, and variables C and C ′ to D0 and D3, respectively, and assign
constants 1 to D1 and 0 to D0 then the circuit will realize the function z =
A′B ′C + AB ′ + ABC ′ = AC ′ + B ′C.

In general, then, to implement an n-variable function we assign n − 1 vari-
ables to the select inputs, one to each such input. The last variable and the
constants 0 and 1 are assigned to the data inputs in such a way that together
with the select input variables they will yield the required function. Such an
implementation is usually possible when at least one variable is available in
both its complemented as well as its uncomplemented form; otherwise, a larger
data selector may be required. Implementations of functions of five or more
variables are usually accomplished by means of a multi-level arrangement of
several smaller standard data selectors.

Priority encoders

A priority encoder is a device with n input lines and log2 n output lines. The
input lines represent units which may request service. When two lines pi and
pj , such that i > j , request service simultaneously, line pi has priority over line
pj . The encoder produces a binary output code indicating which of the input
lines requesting service has the highest priority. An input line pi indicates a
request for service by assuming the value 1. A block diagram for an eight-input
three-output priority encoder is shown in Fig. 5.8a.

118 Logic design

(c) Logic diagram.

z1

Enable

Enable

z1

p0

z4

z0

(a) Block diagram.

Priority
encoder

z2

p7

p6

p5

p4

p3

p1

p2

z4p7

(b) Truth table.

z2p6

0 0 0 00

0 0

1

0

1

1 0 1 0

1

1

11

01 1

0

0

0

1

0 0

0

0 1

0

1 0

10

Input lines Outputs
p5p4 z1

0 00

0

000

0

0

0

0

0

0

0

0

0

0

0

0

1

1

11

1

1

p3p2p1p0

z4

z2

p7

p6

p5

p4

p3

p2

p1

p0

z0

Request
indicator

'

'

'

'

'

'

'

'

Fig. 5.8 Design of a priority
encoder.

The truth table for this encoder is shown in Fig. 5.8b. In the first row, only
p0 requests service and, consequently, the output code should be the binary
number zero to indicate that p0 has priority. This is accomplished by setting
z4z2z1 = 000. The fourth row, for example, describes the situation where p3

requests service while p0, p1, and p2 each may or may not request service
simultaneously. This is indicated by an entry 1 in column p3 and don’t-cares

119 5.2 Logic design with integrated circuits

in columns p0, p1, and p2. No request of a higher priority than p3 is present
at this time. Since in this situation p3 has the highest priority, the output code
must be the binary number three. Therefore, we set z1 and z2 to 1 while z4 is
set to 0. (Note that the binary number is given by N = 4z4 + 2z2 + z1.) In a
similar manner the entire table is completed.

From the truth table, we can derive the logic equations for z1, z2, and z4.
Starting with z4, we find that

z4 = p4p
′
5p

′
6p

′
7 + p5p

′
6p

′
7 + p6p

′
7 + p7.

This equation can be simplified to

z4 = p4 + p5 + p6 + p7.

For z2 and z1, we find

z2 = p2p
′
3p

′
4p

′
5p

′
6p

′
7 + p3p

′
4p

′
5p

′
6p

′
7 + p6p

′
7 + p7

= p2p
′
4p

′
5 + p3p

′
4p

′
5 + p6 + p7,

z1 = p1p
′
2p

′
3p

′
4p

′
5p

′
6p

′
7 + p3p

′
4p

′
5p

′
6p

′
7 + p5p

′
6p

′
7 + p7

= p1p
′
2p

′
4p

′
6 + p3p

′
4p

′
6 + p5p

′
6 + p7.

An implementation of such an encoder is given in Fig. 5.8c. In this encoder,
the inputs are given in complemented form. The circuit also has an Enable
signal and contains an output z0 that indicates whether any requests are present.
Specifically, z0 = 0 if there is no request and z0 = 1 if there are one or more
requests present. It is possible to combine several such encoders, by means of
external gating, to handle more than eight inputs.

Decoders

A decoder is a combinational circuit with n inputs and at most 2n outputs. Its
characteristic property is that for every combination of input values, only one
output value will be equal to 1 at any given time. Decoders have a wide variety
of applications in digital technology. They may be used to route input data to
a specified output line, as, for example, is done in memory addressing, where
input data are to be stored in (or read from) a specified memory location. They
can be used for some code conversions. Or they may be used for data distri-
bution, i.e., demultiplexing, as will be shown later. Finally, decoders are also
used as basic building blocks for implementing arbitrary switching functions.

Figure 5.9a illustrates a basic 2-to-4 decoder. Clearly, if w and x are the input
variables then each output corresponds to a different minterm of two variables.
Two such 2-to-4 decoders plus a gate-switching matrix can be connected, as
shown in Fig. 5.9b, to form a 4-to-16 decoder. Switching matrices are very
widely used in the design of digital circuits.

Not all decoders have exactly 2n outputs. Figure 5.10 describes a decimal
decoder that converts information from BCD to decimal. It has four inputs w,

120 Logic design

x
w

y

f0

z

f0

f12

f8

f4

f1

f13

f9

f5

f2

f14

f10

f6

f3

f15

f11

f7

2-to-4

2-to-4

(b) Design of a 4-to-16 decoder.

f3
f2f1

f0

f3

f2

f1

xw

f0 = w'x'

f3 = wx

f2 = wx

f1 = w x

(a) A 2-to-4 decoder.

'

'

Fig. 5.9 Illustration of n-to-2n

decoders.

x, y, and z, where w is the most significant and z the least significant digit, and
10 outputs, f0 through f9, corresponding to the decimal numbers. In designing
this decoder, we have taken advantage of the don’t-care combinations, f10

through f16, as can be verified by means of the map in Fig. 5.10b. Another
implementation of decimal decoders is by means of a partial-gate matrix, as
shown in Fig. 5.11.

A decoder with exactly n inputs and 2n outputs can also be used to imple-
ment any switching function. Each output of such a decoder realizes one dis-
tinct minterm. Thus, by connecting the appropriate outputs to an OR gate, the
required function can be realized. Figure 5.12 illustrates the implementation of
the function f (A,B,C,D) = ∑

(1, 5, 9, 15) by means of a complete decoder,
i.e., one with n inputs and 2n outputs.

A decoder with one data input and n address inputs is called a demultiplexer.
It directs the input data to any one of the 2n outputs, as specified by the n-bit

121 5.2 Logic design with integrated circuits

x y

f0

f3

f2

f1

(c) Logic diagram.

f4

f7

f6

f5

f9

f8

w z

Enable

Enable

f1
w f0

f4

f3z
y
x

(a) Block diagram. (b) Map.

f9

00 01 11 10

00

01

11

10

wx
yz

Decimal
decoder

f9

f2

f8

f7

f6

f5

f0

f1

f2

f3

f4

f5

f6

f7

f8

Fig. 5.10 Design of a
BCD-to-decimal decoder.

122 Logic design

w'

w'
x

x'
w

x'

y

f3

f7

z y'

f0

f4

z'y

f2

f6

z' y'

f1

f5

z

f9 f8

Fig. 5.11 BCD-to-decimal
decoder.

f15

f1A

f0

f9

f5

D
C
B 4-to-16

line
decoder

Enable

f = (1, 5, 9,15)

Fig. 5.12 Implementing a
switching function with a
decoder.

Enable

2n outputs

n-bit address

Data inputFig. 5.13 A demultiplexer.

input address. A block diagram for a demultiplexer is shown in Fig. 5.13. A
demultiplexer with four outputs is shown in Fig. 5.3.

When larger-size decoders are needed, they can usually be formed by inter-
connecting several smaller decoders with some additional logic.

Seven-segment display

A popular method for displaying decimal digits is by means of the seven-
segment display shown in Fig. 5.14. The display consists of a BCD-to-seven-
segment decoder and seven separate light segments (usually light-emitting

123 5.2 Logic design with integrated circuits

Table 5.2 Seven-segment pattern and code

Decimal BCD code Seven-segment code
digit x1 x2 x3 x4 A B C D E F G

1 0 0 0 1 0 1 1 0 0 0 0
2 0 0 1 0 1 1 0 1 1 0 1
3 0 0 1 1 1 1 1 1 0 0 1
4 0 1 0 0 0 1 1 0 0 1 1
5 0 1 0 1 1 0 1 1 0 1 1
6 0 1 1 0 0 0 1 1 1 1 1
7 0 1 1 1 1 1 1 0 0 0 0
8 1 0 0 0 1 1 1 1 1 1 1
9 1 0 0 1 1 1 1 0 0 1 1
0 0 0 0 0 1 1 1 1 1 1 0

D
E

x1

C

A
B

x4

x3

x2
BCD to

7-segment
decoder

G
F

A

B

C

D

E

F

G

Fig. 5.14 Seven-segment
display.

diodes or crystals) each of which can be turned on and off independently of
the others. The display receives its inputs in the form of BCD coded digits and
transforms these inputs to obtain the pattern of the corresponding decimal digit.

Table 5.2 can be viewed as the truth table for the output functions of the BCD-
to-seven-segment decoder. The seven-segment code corresponding to each digit
is directly obtained from the pattern. For example, to display the decimal digit
2, segments A, B, G, E, D are turned on while segments C and F remain
off. In a similar manner, the rest of the seven-segment code is obtained. The
segment excitation functions can now be determined directly from the table
or by using maps. Note that there are six don’t-care combinations identical to
those in Fig. 5.10b. The expressions for the segment excitation functions are
thus as follows:

A = x1 + x ′
2x

′
4 + x2x4 + x3x4,

B = x ′
2 + x ′

3x
′
4 + x3x4,

C = x2 + x ′
3 + x4,

D = x ′
2x

′
4 + x ′

2x3 + x3x
′
4 + x2x

′
3x4,

E = x ′
2x

′
4 + x3x

′
4,

F = x1 + x2x
′
3 + x2x

′
4 + x ′

3x
′
4,

G = x1 + x ′
2x3 + x2x

′
3 + x3x

′
4.

124 Logic design

The realization of the decoder is now straightforward. It can be implemented
either as a conventional multi-output circuit or using a single 4-to-16 line
decoder plus seven OR gates, in a manner similar to that shown in Fig. 5.12.

Sine generators

Trigonometric functions can either be generated sequentially or produced by
combinational circuits. Combinational sine generators are used whenever the
sine function must be evaluated fast and repeatedly.

A combinational sine generator receives as its input the angle and as output
produces the sine of that angle. The angle is given in radians converted to
binary and the sine value is produced in binary. Naturally, the accuracy of the
calculation is a function of the number of bits that describe the angles and
sine values. In practical applications, at least eight binary digits are required to
describe the angles or sine values. In our case, however, in order to simplify
the computations we shall consider a four-bit sine generator.

Let the sine function be sin(πx), where 0 ≤ x < 1. The angle x will be
described by four binary digits x1, x2, x3, x4, where x1 has weight 1

2 , x2 weight
1
4 , and so on. Thus, for example, to specify an angle of 45◦, the input x must
equal 1

4 , i.e., x = 0100. To specify an angle of 30◦, x must equal 1
6 . However,

it is impossible to represent this value precisely with four bits; the closest
possible value is 3

16 or x = 0011. The truth table of the sine generator is shown
in Fig. 5.15a and its block diagram in Fig. 5.15b. The sine is given by the binary

z1x4

(a) Truth table.

z2x3

Sine
generatorx3

z1

0 0 0 00

x2

x1

0 0 1 0 1

1

1

0 1 0

1

1

1 11

1 01 1 0

1

0

0

0

1

0 1

0

01

0 1

1

10

(b) Block diagram.

Angle x sin(x)
x2x1 z4z3

000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00

0
0

1
1

1

1

11

1

1

11

0

0

00

111

111

11

111

11

11

1

1111

11

111

111

1111

1111

11

11

1

1

00

000

0

0

0

00

x4 z4

z3

z2x sin(x)

Fig. 5.15 Designing a sine
generator.

125 5.3 NAND and NOR circuits

number z = z1z2z3z4 such that 0 ≤ z < 1, z1 has weight 1
2 , z2 has weight 1

4 , and
so on. The sine of 30◦ is equal to 0.5. Hence, the output values in row x = 0011
are specified to be z = 1000. Similarly, the sine of 45◦ is 0.707. Clearly, the
closest output value would be z = 1011, which is equal to 0.6875. In a similar
manner, the entire truth table is constructed.

The logic equations specifying the outputs can be derived from a set of four
maps that correspond to the truth tables and are as follows:

z1 = x ′
1x2 + x1x

′
2 + x2x

′
3 + x ′

1x3x4,

z2 = x1x
′
2 + x3x

′
4 + x ′

1x2x4,

z3 = x3x
′
4 + x2x3 + x2x

′
4 + x ′

2x
′
3x4 + x1x

′
4,

z4 = x ′
2x

′
3x4 + x2x

′
3x

′
4 + x1x

′
2x

′
3 + x1x3x4 + x ′

1x2x4.

The sine generator, which is a special-purpose code converter, can be imple-
mented in a variety of ways, namely, as a conventional multi-output circuit or
by using a 4-to-16 line decoder plus the necessary OR gates.

5.3 NAND and NOR circuits

In Section 3.2 we proved that the NAND and NOR operations are each func-
tionally complete. It is highly desirable to construct digital circuits of NAND
or NOR gates because of the simplicity and uniformity of such circuits, which
have just a single primitive component. NAND gates constitute the major com-
ponents used today by logic designers. In some future nanotechnologies, NOR
gates may play a similar role.

Logic symbols

The analysis and design of NAND and NOR circuits pose difficulties not
encountered in AND, OR, NOT logic. Switching algebra, which is a powerful
tool for the design of circuits constructed of AND, OR, and NOT gates, is not as
directly applicable in the cases of NAND and NOR logic. The main difficulty
lies in the fact that, in order to obtain simple NAND (or NOR) circuits, the
corresponding algebraic expressions must be factored in such a way that the
NAND (or NOR) operation will be the only one in the expression. This step
is usually quite complicated because it involves a large number of applications
of De Morgan’s theorem. For example, the implementation of the function
T = A′ + (B + C ′)(D′ + EF ′) with AND, OR, NOT logic is straightforward,
but its NAND-logic realization is not as evident. It can be, however, consid-
erably simplified by expressing the function as T = A|((B ′|C)|(D|(E|F ′))).
Evidently, the determination of this expression by algebraic means would be
quite involved, but it may be avoided through the use of special symbols and
simple circuit manipulations.

126 Logic design

A

AA

(AB)'

A'B'
B

B (A + B)

(a)

A
B

A + B B

(d)(b)

(c)

' '

'
Fig. 5.16 (a), (b) NAND and
(c), (d) NOR gate symbols.

Thus the interpretation and manipulation of logic diagrams, as well as
the implementation of switching functions, becomes more evident if we use
a system of symbols such that each logic gate can be represented by one
of two symbols. This system, known as the MIL-STD-806B, is shown in
Fig. 5.16. Each symbol is formed by combining the AND-gate or OR-gate
symbol with the inversion symbol, which is a small circle.

The symbol in Fig. 5.16a represents a circuit that generates the complement
of the AND combination of its inputs, i.e., (AB)′. The symbol of Fig. 5.16b,
however, represents a circuit that generates the OR combination of its inverted
inputs, i.e., A′ + B ′. Clearly, both symbols describe the NAND operation but,
for reasons that will become more evident later, we prefer to think in terms
of AND, OR, and NOT. For example, when realizing the function P + Q it
is natural to think in terms of an OR operation; consequently, a gate of the
type shown in Fig. 5.16b, whose inputs are P ′ and Q′, is used to describe the
realization of this function. Similar arguments explain the use of the symbols
shown in Fig. 5.16c, d for NOR gates.

The assignment of two symbols to represent the same gate circuit is con-
fusing, at first, but very convenient, because it provides a deeper insight into
the logic operations taking place within the circuit. It enables the designer to
analyze a circuit constructed of NAND or NOR gates by employing the same
techniques as those used for circuits consisting of AND, OR, and NOT gates.
In other words, the main feature of this notation is that a given circuit may be
viewed as either an AND gate or an OR gate, depending on the required logic
operation.

Analysis and synthesis of NAND-NOR network

The usefulness of having two symbols to represent a NAND gate will be
demonstrated by analyzing the circuit shown in Fig. 5.17a. Since every small
circle represents an inversion, if a line connecting two gates has circles at both
ends then both circles may be ignored because their net logic effect is nil.
Whenever a circuit has a line with a circle at one end and a switching variable
(or expression) at the other end (e.g., input or output lines), it is logically
equivalent to a circuit that has a connecting line from which the circle has been
removed and the variable complemented. This process does not guarantee that

127 5.3 NAND and NOR circuits

B + C

A

(EF)

D + EF

[(B + C')(D + EF)]

(a) NAND-logic circuit.

F
E

D

T = A + (B + C)(D + EF)
B
C

5

4

2

B + C

A

EF

D + EF

(b) Logically equivalent AND-OR circuit.

F
E

D

B
C

1

3
'

'

'

' '

''

'

''

'

'

'

' ' '

(B + C)(D + EF)' ' '

'
'

'' '

T = A + (B + C)(D + EF)' '' '

'

Fig. 5.17 Analysis of a
NAND-logic circuit.

all inversion circles will be removed, but in most cases it ensures a considerably
simpler circuit. In the special case in which, each gate output is connected to
just a single gate input, the above process yields a circuit with no inversion
circles. It follows, for the purpose of analysis, that the circuit of Fig. 5.17a is
logically equivalent to the circuit of Fig. 5.17b.

With some experience, circuits consisting of NAND or NOR logic can be
analyzed directly, without actually converting the circuit to its equivalent AND–
OR form. For example, gate 1 of Fig. 5.17a performs an AND operation
and an inversion on its inputs E and F ′. This is denoted by (EF ′)′. Gate 2,
however, performs an OR operation on the inverted inputs. Its output, therefore,
is D′ + [(EF ′)′]′ = D′ + EF ′. In a similar manner, we find that the output of
gate 3 is B + C ′ while that of gate 4 is the complement of the AND combination
of its inputs, as shown in the diagram. The analysis is completed by determining
the OR combination of the complemented inputs to gate 5.

The logic diagram of Fig. 5.17a is characterized by the property that the
polarities at all points match completely; that is, if a line connecting two gates
has an inversion circle at one end then it also has such a circle at the other end. As
a result, the logically equivalent AND–OR circuit contains no inversion circles.
In general, however, it may happen that a circled gate output is connected to an
uncircled gate input, or vice versa. In such cases, some inversion circles cannot
be removed, and the logically equivalent circuit will consist of AND and OR
as well as NOT gates, where each NOT gate replaces an inversion circle.

Consider now the function T = w(y + z) + xy ′z′, whose realization, con-
sisting of four NAND gates, is shown in Fig. 5.18a. The choice of symbol to
be used for each gate is dictated by the operation which that gate must per-
form. For example, the function of gate 1 is to produce the OR combination of
y + z and, accordingly, the symbol of Fig. 5.16b is selected. Gate 2, however,

128 Logic design

y

y
z

[w (y + z)]'

[w (y + z)]'

y + z

(a) First realization.

(xy z)

w

x
z

T = w (y + z) + xy'z'

T = w (y + z) + xy'z'

1 2

3

4

y

y
z

y + z

(b) Realization with two-input gates.

w

x

z

1 2

3

4

3'
(xy'z')'(y'z')' y'z'

'

' ' ' '
'

'
'

'
'

'
Fig. 5.18 Synthesis of a NAND
circuit.

is to produce the complement of the AND combination of w and y + z, and
thus the symbol of Fig. 5.16a is chosen. The symbols for the other gates are
selected in a similar manner, and we find the output of gate 3 to be (xy ′z′)′,
while that of gate 4 is the OR combination of its complemented inputs, that is,
T = w(y + z) + xy ′z′.

This circuit can also be realized with just two-input gates, as shown in
Fig. 5.18b. (For the moment, disregard the line connecting the outputs of gates
1 and 3.) In this circuit, the output of gate 3 is the complement of the AND
combination of its inputs, i.e., (y ′z′)′. The NOT1 gate inverts this output, so
that the input to gate 3′ is y ′z′. The outputs of gates 3′ and 4 are established
in a similar manner. At this point, we observe that the inputs and functional
operations of gates 1 and 3 are identical. We may, therefore, delete gate 3 after
having connected its output to that of gate 1.

It must be emphasized that the assumed logic polarity and symbols used to
describe a circuit are important only insofar as the interpretation of the circuit
is concerned; the circuit’s actual operation is independent of the precise symbol
used and the logic polarity assumed. In other words, the circuit “does not know”
which symbols are used to describe it and whether we associate the constant 1
or the constant 0 with the high voltage.

5.4 Design of high-speed adders

The design of high-speed adders serves as an example of the methods of logic
design and at the same time illustrates the important and interesting circuits

1 The NOT gate can be implemented by either joining together the two inputs of a two-input
NAND or NOR gate or by providing 1 (0) to one of the inputs of the NAND (NOR) gate.

129 5.4 Design of high-speed adders

SC

(a) Truth table for S and C0.

C0A B

FA
C

S

C0

0 0 0 00

B
A

0 0 1 01

1 1 0 10

1 1 1 11

1 0 1 10

1 0 0 01

0 1 0 01

0 1 1 10

(b) Block diagram.

Fig. 5.19 A full adder FA.

widely used in most computing machines. Since addition2 is one of the most
important operations of a computer, the minimization of addition time is an
important task of any logic designer. It will subsequently be shown that carry-
propagation is the most critical issue in speeding up addition, and the usual
trade-off between speed, on the one hand, and simplicity and area, on the other,
will become evident.

The full adder

A full adder is a device capable of performing the binary addition of three
binary digits, arguments A and B and carry-in C, from which it computes
the sum S and carry-out C0. Consider, for example, the addition of the binary
numbers 1011 and 0011:

0 1 1 carry-in
1 0 1 1 augend
0 0 1 1 addend
1 1 1 0 sum

The carry-out produced in the addition of the ith significant digits must be
incorporated, as a carry-in, in the addition process for the (i + 1)th significant
digit.

The truth table defining the input–output functional relationship for the full
adder is shown in Fig. 5.19, together with its block-diagram representation.
The logic equations for the sum and carry-out, derived from the truth table, are

2 By “addition,” we shall mean both addition and subtraction in all subsequent discussions, since
the latter operation is generally accomplished by the addition of the inverted subtrahend (the
term subtracted) in sign-and-magnitude machines, or by the addition of the 2’s complement of
the subtrahend in 2’s-complement machines.

130 Logic design

given by

S = A′B ′C + A′BC ′ + AB ′C ′ + ABC

= A ⊕ B ⊕ C,

C0 = A′BC + ABC ′ + AB ′C + ABC

= AB + AC + BC.

A realization of the full adder was shown in Fig. 5.1. A NAND-logic real-
ization is shown in Fig. P5.15.

The ripple-carry adder

In order to add two n-digit binary numbers, it is necessary to connect n stages
of full adders in such a way that each stage computes the corresponding sum
and carry. All high-speed adders are basically parallel devices, i.e., devices
constructed of full adders connected in such a manner that all digits of the
augend and addend are fed into them simultaneously. Hence, the number of
full adders required for a parallel implementation of an adder is equal to the
word length n of the machine.

Let Ai and Bi be the ith digits of the two arguments being added, and let Si

be their sum; C0i and Ci designate the carry-out of the ith full adder and the
carry-in of that adder, respectively. The logic equations of the ith full adder are

Si = Ai ⊕ Bi ⊕ Ci,

C0i = AiBi + AiCi + BiCi,

where i = 0, 1, . . . , n − 1. The carry-in Cf into the zeroth (least significant)
full adder is zero if the adder is being used for binary addition but can be
equal to 1 for other operations, such as incrementing results or subtracting in a
2’s-complement machine.

The conventional ripple-carry adder consists of a number of stages of full
adders, such that the carry-out of the ith stage becomes the carry-in for the
(i + 1)th stage, i.e., C0i = Ci+1, as illustrated in Fig. 5.20. The carry Cf is
usually referred to as the forced carry, while C0(n−1) is the overflow carry.

The time required to perform addition in the ripple-carry adder is the time
required for the propagation (or ripple) of the carries in the stages. Although a
carry will not propagate through all stages in every addition, the time allotted

C1

S1

C01

B1A1

C0(n−1)

FA0

Cf

S0

B0A0Cn −1
BnAn

Sn−1

FA1FAn−1

Fig. 5.20 A ripple-carry adder.

131 5.4 Design of high-speed adders

for the addition operation must be at least equal to the longest carry-propagation
time (plus the addition time in the last full adder). The adder is assumed to
produce the sum in a fixed time regardless of the actual carry or the numbers
being added. If we assume that two time units are required for generating
the carry in one (two-level) full-adder stage then the fixed time that must be
allotted to the n-stage ripple-carry adder is at least 2n units. This implies that
the adder is part of a synchronous system and that the next summands must not
be transferred into the adder until at least 2n time units have elapsed since the
transfer of the current summands. In order to increase the speed of the adder, it
is necessary to minimize the fixed time required for carry propagation.

The carry-lookahead adder

The carry-lookahead adder is a fixed-time adder in which several stages are
simultaneously examined and their carries are generated in parallel.

The carry equation can be rewritten as follows. Define Di and Ti as the
generated and propagated carry signals for the ith stage, where

Di = AiBi,

Ti = Ai ⊕ Bi = A′
iBi + AiB

′
i .

Then

C0i = Di + TiCi, (5.1)

where Di equals 1 if a carry is generated in the ith stage, i.e., if Ai = Bi = 1; Ti

equals 1 if either Ai or Bi , but not both, is equal to 1. If Ti = 1 and Ci = 1 then
C0i = 1; that is, the carry-out of the (i − 1)th stage will propagate uninterrupted
through the ith stage into the (i + 1)th stage.

In order to generate the carries in a parallel manner, it is necessary to trans-
form the recursive form of the carry function into a nonrecursive form. This
can be achieved as follows:

C0i = Di + TiCi,

Ci = C0(i−1),

C0i = Di + Ti(Di−1 + Ti−1Ci−1)

= Di + TiDi−1 + TiTi−1(Di−2 + Ti−2Ci−2)

= Di + TiDi−1 + TiTi−1Di−2 + TiTi−1Ti−2Ci−2.

If we continue this iteration, we are able to express the carry-out of the ith stage
directly in terms of external inputs (i.e., excluding carries) of the preceding
stages and the forced carry (note that Ci−i = Cf). Hence,

C0i = Di + TiDi−1 + TiTi−1Di−2 + · · · + TiTi−1Ti−2 · · · T0Cf . (5.2)

132 Logic design

Equation (5.2) actually defines the ith carry-out C0i to be 1 if it has been
generated in the ith stage or originated in a preceding stage and propagated by
all subsequent stages.

The implementation of the above lookahead scheme for the entire adder is
not practical, because it requires a very large number of gates and, in addition,
for each stage of the adder it is necessary to have an OR gate with n inputs
and n AND gates with 1 through n inputs. Also, since a modern computer may
have 64-bit words, such a complete lookahead scheme cannot be economically
accomplished. The limitation can be overcome, though at the expense of com-
putation speed, by dividing the n stages of the adder into groups such that within
each group a full carry lookahead, as defined by Eq. (5.2), is achieved while a
ripple carry is maintained between groups. For the purpose of illustration, let
us consider groups consisting of three full-adder stages, i.e., group 1 consists
of stages 0 through 2, group 2 consists of stages 3 through 5, etc. The carry-out
of group k (i.e., the carry-in for the group k + 1) will be denoted Cgk . The
first three-stage group with full carry lookahead is shown in Fig. 5.21a, where
the block diagram of each full adder is shown with its sum network (SN) and
carry network (CN) separated. The details of the carry networks are given in
Fig. 5.21b. The sum networks are the conventional ones, i.e., Si = Ti ⊕ Ci .
The double-arrow inputs to carry network CNi indicate that A0 through Ai and
B0 through Bi are the inputs to that carry network.

It takes four time units to generate Cg1, because there are four levels of gates
in CN2. (Two units are required to produce Ti and two units to compute Cg1

in CN2.) The generation of Cg2 and any subsequent group carry requires only
two time units, because the necessary generate (Di) and propagate (Ti) signals
are already available. Two additional time units are required in the final sum
stage. Consequently, for an n-stage adder divided into three-stage groups with
full lookahead within each group and ripple carry between groups, the longest
propagation time is 4 + 2n/3 units as compared with 2n units for the ripple-
carry adder. A schematic diagram of a 30-digit adder with full lookahead within
each three-digit group and ripple carry between groups is shown in Fig. 5.22.
The lookahead adder requires about 50% additional hardware, a relatively small
price for the threefold increase in speed.

The adder shown in Fig. 5.22 is called one-level lookahead. It is also possible
to design adders with higher levels of lookahead. This is accomplished by des-
ignating a number of groups as a section and having a second level of lookahead
to speed up the propagation of carries between groups within a section.

5.5 Metal-oxide semiconductor (MOS) transistors and gates

Currently, complementary metal-oxide semiconductor (CMOS) is the dominant
technology for implementing chips. Thus, it would be instructive to see how
gates and Boolean functions can be implemented in CMOS technology.

133 5.5 Metal-oxide semiconductor (MOS) transistors and gates

B

A2

Cg1 = C02

S2
B2

SN2

C2

CN2

(a) Block diagram of initial three-stage group.

Cf

A B

A1

C01

S1 B1

SN1

CN1

A B0

A0

C00

S0
B0

SN0

CN0

A0

C1

C00

Cf
T0

D0

(CN0)

C01

(CN1)

T0

T1

Cf

D0

T1

D1

Cf

(CN2)

T1

T2

D0

D1

T2

D2

Cg1 = C02

T1

T2

T0

(b) The carry networks.

Di = AiBi

Ti = Ai Bi
+

Fig. 5.21 Three-digit adder
group with full carry lookahead.

Bi Ai

Cg10

S29 S27

SN29 SN27

CN29 CN27 Cg9

Bi Ai Cf

S2 S0

SN2 SN0

CN2 CN0

Bi Ai

Cg2

S5 S3

SN5 SN3

CN5 CN3 Cg1

Fig. 5.22 Schematic diagram of
a 30-digit adder with full
lookahead within three-digit
groups and ripple carry between
groups.

134 Logic design

x

x

(a) nMOS transistor

x

x

(d) pMOS transistor

(g) Complementary
switch

x = 0

x = 1

(b) nMOS operation

x = 1

x = 0

(e) pMOS operation

x = 0

x = 1

(h) Complementary
switch operation

a b

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

xa b

(c) nMOS model

x b

(f) pMOS model

a

x

(i) Complementary
switch model

a b

'

'

Fig. 5.23 MOS transistor
operation.

Two types of transistor are used in CMOS: nMOS and pMOS. Both are
three-terminal devices and act like a switch. An nMOS transistor and its switch
operation are shown in Fig. 5.23a. The switch is open when x = 0 and closed
when x = 1, as shown in Fig. 5.23b. The opposite is true for the pMOS transistor
shown in Fig. 5.23d. It is closed when x = 0 and open when x = 1, as shown
in Fig. 5.24e.

An nMOS transistor passes a 0 perfectly, but a 1 imperfectly. For example,
in Fig. 5.23a, if a 0 is placed at terminal a and x is set to 1 then terminal
b assumes close to the same voltage as a and thus also has a 0. However,
if a 1 is placed at terminal a and x is again set to 1, then the voltage level
at terminal b is somewhat lower than at a, although it is still recognized as
a 1. The opposite is true for a pMOS transistor. It is good at propagating a 1,
but bad at propagating a 0. To overcome this drawback of nMOS and pMOS
transistors they can be connected in parallel, as shown in Fig. 5.23g, in what
is called a complementary switch. This switch is closed when x = 1 since both
its transistors are closed for this value, as shown in Fig. 5.23h. It is open when
x = 0 since both its transistors are open in this case.

The analogy of MOS transistors to the gates defined in Section 3.3 is evident.
We may, therefore, utilize switching expressions to represent MOS transistors
and networks and, conversely, any switching expression can be realized by an
appropriate connection of such transistors. The models indicating the condition
for transmission for the nMOS transistor, pMOS transistor, and complementary
switch are shown in Fig. 5.23c, parts f and i, respectively. The transmission
function of a network consisting of a parallel connection of two switches

135 5.6 Analysis and synthesis of MOS networks

Tab = x + ya
x

Network

y

a

b

Transmission function

x y b

xa b Tab = x

Tab = xy

''

Fig. 5.24 Basic transmission
functions.

x

1 (Vdd)

x f

x

0 (Vss)

f

1

0

'

Fig. 5.25 CMOS NOT gate and
its transmission functions.

with symbols x and y is x + y, whereas that for a network consisting of
a serial connection of these switches is xy. The transmission functions of
various networks are shown in Fig. 5.24. Each switch in these networks can be
implemented with an nMOS or pMOS transistor or a complementary switch.

Networks of nMOS and pMOS transistors can be connected to form CMOS
gates. The simplest is a CMOS NOT gate. Such a gate and the transmission
functions of both its transistors are shown in Fig. 5.25. When x = 0 the value
1 propagates to output f of the gate and when x = 1 the value 0 propagates to
f , thus realizing a NOT operation.

The CMOS NAND and NOR gates and the corresponding transmission
functions of their nMOS and pMOS networks are shown in Fig. 5.26. For a
NAND gate, we can see that a 0 propagates to output f only if x = y = 1. For
all other combinations of input values, a 1 propagates to f . For a NOR gate, a 1
propagates to output f only if x = y = 0. For all other combinations of input
values, a 0 propagates to f .

From the above analysis, it should be obvious that only one of the two
networks (nMOS or pMOS) conducts in the steady state for a given set of input
values. This is true for all such CMOS gates.

5.6 Analysis and synthesis of MOS networks

By the analysis of a two-terminal MOS network we mean the determina-
tion of its transmission function. For networks that have more than two

136 Logic design

x y

1 (Vdd)

x f

0 (Vss)

y

1

x

f

0

y

(a) CMOS NAND gate and its transmission functions.

x

y

1 (Vdd)

x

f

0 (Vss)

y

1

x

f

0

y

(b) CMOS NOR gate and its transmission functions.

''

'

'

Fig. 5.26 NAND and NOR gate
operation.

terminals the analysis involves the determination of a transmission func-
tion for each pair of terminals. The synthesis problem of a MOS net-
work is the converse of its analysis; the desired network performance is
specified by a switching expression, from which a corresponding circuit is
derived.

Analysis of series–parallel networks

In the preceding section, it was shown that the transmission function of a
network that consists of two MOS transistors with transmission functions x

and y, connected in parallel, is x + y and that the transmission function of a
network consisting of two MOS transistors connected in series is xy. Since the
algebra of MOS networks is isomorphic to switching algebra, the transmission
function of two networks, T1 and T2, connected in series is T1T2 and the
transmission function of a parallel connection of these two networks is T1 + T2.
Utilizing these properties, we can determine the transmission function of any
series–parallel network.

137 5.6 Analysis and synthesis of MOS networks

Example Find the transmission function for the network of Fig. 5.27a. The
network consists of a switch x ′ in series with another network, which con-
tains two parallel subnetworks. The transmission function of the upper
subnetwork can be written by inspection as (y ′z + yz′)w′. The lower
subnetwork contains three parallel branches. Its transmission function is
w + y ′ + x ′z′. Thus, the overall transmission function is given by

Tab(w, x, y, z) = x ′[(y ′z + yz′)w′ + w + y ′ + x ′z′].

This expression may be simplified to

Tab(w, x, y, z) = x ′(w + y ′ + z′).

The simplified network is shown in Fig. 5.27b. For some CMOS implemen-
tations discussed later, we will also need the complement of the transmission
function. From De Morgan’s theorem,

T ′
ab = x + w′yz.

The network corresponding to T ′
ab is shown in Fig. 5.27c.

(a) Tab = x [(y z + z y)w + w + y + x z].

b

y

b

z

z

y
z

xa

w

w

z x
y

w
yxa

(b) Tab = x (w + y + z).

x

w y z
dc

(c) Tcd = Tab = x + w yz.

'
'

'

'

'' ' '''

'
'

' ' '

'

' '

'
' '

'
'

Fig. 5.27 Analysis and simplification of a series–parallel network.

Using the procedure illustrated in the preceding example, we can associate a
switching expression with every series–parallel network; conversely, to every
switching expression there corresponds a series–parallel network. This example
also demonstrates that in order to simplify a network it is advisable first to find
its transmission function and then to simplify it wherever possible.

Let us next see how a CMOS implementation can be derived from the sim-
plified network shown in Fig. 5.27b. A complementary-switch-based CMOS

138 Logic design

Tab

x

x

y

y
z

z

w

w

1

'

'

'

'Fig. 5.28
Complementary-switch-based
implementation.

x

1 (Vdd)

x

Tab

w

0 (Vss)

y

w

z

z

y

pMOS network

nMOS network

'

'

Fig. 5.29 A complex CMOS
gate.

implementation for realizing Tab is shown in Fig. 5.28. From the complementary
switch and its symbol shown in Fig. 5.23g, i, we can see that this simply involves
a one-to-one mapping from the network in Fig. 5.27b to the one in Fig. 5.28.

A complex CMOS-gate3 implementation for Tab is shown in Fig. 5.29. Its
pMOS network is derived from Fig. 5.27b. Note that, since a pMOS transistor
fed by x conducts when x ′ is true (see Fig. 5.23d, f), a transmission network

3 A CMOS gate is said to be complex if it does not implement a primitive function such as a
NOT, NAND or NOR gate.

139 5.6 Analysis and synthesis of MOS networks

branch fed by x ′ is replaced by a pMOS transistor fed by x. This type of straight-
forward mapping is possible for a pMOS network since it transmits a 1 through
it to the output. However, since an nMOS network transmits a 0 through it to
the output, we must first derive the network for the complement of the function
being synthesized. The network for T ′

ab is shown in Fig. 5.27c. Since an nMOS
transistor fed by x conducts when x is true (see Fig. 5.23a, c), a transmission
network branch fed by x is replaced by an nMOS transistor fed by x.

A simpler way to obtain the pMOS network for a complex gate given its
nMOS network, or vice versa, is to replace a series (parallel) connection in one
network with a parallel (series) connection in the other. One can deduce this
from the nMOS and pMOS networks of Fig. 5.29.

Analysis of non-series–parallel networks

A question now arises as to the relationship between switching expressions and
non-series–parallel networks. The previously described analysis procedure is
clearly not applicable to bridge-type networks (e.g., Fig. 5.30), and a different,
more general, procedure must be developed. In the case of series–parallel
networks, switching expressions provide information regarding the structure
(or geometry) of the network as well as its transmission. Switching expressions
can also be found that reflect the transmission properties, but not the structure,
of nonseries–parallel networks.

One way to obtain the transmission function between two terminals of a
given network is by tracing all paths from one terminal to the other (see the
broken lines). In the bridge network of Fig. 5.30, one path from terminal i to
terminal j consists of a series connection of branches w and x. Transmission
through this path is 1 if both w and x are 1, i.e., conducting. Hence, this path can
be expressed by the product wx. If we associate with each path from terminal i

to terminal j a product of literals corresponding to the branches encountered in
the path then the sum of all these products is the required transmission function
Tij . These paths are known as the tie sets of the network. Each tie set represents
a minimal path between the two network terminals such that, whenever all
the branches in the path are conducting, the transmission through the path is 1
regardless of the state of all other branches in the network. Using this technique,
the transmission function for the bridge network of Fig. 5.30a is found to be

Tij = wx + wvz + yvx + yz.

A dual technique is illustrated in Fig. 5.30b. Broken lines are drawn through,
rather than along, the network branches, so as to separate terminal i from termi-
nal j in all possible ways and thus to render the transmission Tij equal to 0. For
example, the transmission Tij is 0 if both branches w and y are open, regardless
of the state of the other branches in the network. Similarly, if w, v, and z are
open then Tij is 0, and so on. If we express each such “cut” through the network
by a sum of literals, e.g., w + y, then the product of all these sums is 0 whenever

140 Logic design

w

i j

(a) Tie sets. Tij = wx + wvz + yvx + yz.

zy

v

x

w

i j

(b) Cut sets. Tij = (w + y)(w + v + z)(x + v + y)(x + z).

zy

v

x

Fig. 5.30 Analysis of a bridge
network.

any of its factors is 0. For all other combinations, the product will have the value
1. Consequently, this product is a conjunctive expression for the transmission
function of the network. For the bridge network of Fig. 5.30b, we thus have

Tij = (w + y)(w + v + z)(x + v + y)(x + z).

The minimal sets of switches which, when open, ensure that the network
transmission is 0 are known as the cut sets of the network. Thus, no conducting
path can be found between terminals i and j of a given network when any cut
set equals 0.

In determining the tie sets, all paths containing a product of a variable and its
complement, e.g., xx ′, are ignored. Similarly disregarded are all sums contain-
ing a variable and its complement, e.g., x + x ′, when determining the cut sets.

Synthesis of MOS networks

The synthesis of a network with given properties can be accomplished in several
steps. First, the requirements that the network needs to satisfy are expressed
algebraically in the form of switching expressions. For simple networks, this
can be done directly from a “verbal” description of the required properties. In
other cases a truth table must be employed and switching expressions derived
from it. Next, these switching expressions are simplified as much as possible,

141 5.6 Analysis and synthesis of MOS networks

and a corresponding series–parallel network is obtained. In general, although
the expressions may be minimal, the corresponding series–parallel network can
be further simplified. Consequently the final step in the synthesis procedure is
the simplification of the network.

When simplifying a network, extreme care must be taken to prevent the
introduction of undesired paths through the network, which may change its
transmission function. Such paths, called sneak paths, occur in MOS networks
because they are bilateral: they allow the flow of current in both directions.

Example Design a minimal network, with four inputs, w, x, y, and z, that
receives BCD numbers and produces a signal whenever the current number
is 3 or a multiple of 3.

The map that specifies the transmission function of the desired network
is shown in Fig. 5.31a. It contains three 1-cells, in combinations 3, 6, and
9, and six don’t-care combinations corresponding to all invalid BCD code
words. The minimal sum-of-products expression derived from the map is

T (w, x, y, z) = wz + xyz′ + x ′yz

= z(w + x ′y) + xyz′.

The corresponding series–parallel network is shown in Fig. 5.31b. In order
to eliminate one of its y branches, we check whether the connection shown
by the broken line can be made without introducing any undesired path. If
we actually make the connection and eliminate one of the y branches, we
obtain the network of Fig. 5.31c where the only sneak path that could be
introduced is z′xx ′w; but, since it is always open, it has no effect on the
transmission of the network.

The network of Fig. 5.31c consists of only six branches, as opposed to
seven in the series–parallel network of Fig. 5.31b, and is minimal.

yz

z
w

x

x y

(b) Series–parallel realization of T.

z

z
w

x

x y

(c) Minimal realization of T.

(a) Map for T = wz + xyz + x yz.

1

1

00 01 11 10

00

01

11

10

wx

1

yz

'

'

'

'

''

Fig. 5.31 Realization of T (w, x , y, z) = ∑
(3, 6, 9) +∑

φ (10, 11, 12, 13, 14, 15).

142 Logic design

A complementary-switch-based CMOS implementation can be derived
directly from the nonseries–parallel network in Fig. 5.31c by one-to-one map-
ping. While complex CMOS gates can also be implemented with non series–
parallel nMOS and pMOS networks, in practice most complex gates employ
series–parallel networks.

Example Design a minimal network that realizes the function T (w, x,

y, z) = ∑
(0, 3, 13, 14, 15).

With the aid of the map of Fig. 5.32a, the algebraic expression corre-
sponding to T is found to be

T = wxy + wxz + w′x ′y ′z′ + w′x ′yz

= wx(y + z) + w′x ′(y ′z′ + yz).

(b) Series–parallel realization of T.(a) Map for T = wxy + wxz
+ w x y z + w'x yz.

1

1

00 01 11 10

00

01

11

10

wx

1

yz

1

1

y
w

w
y

x

x
z

z

z

y

(c) An alternative series–parallel realization of T.

y
w

w
y

x

x
z

y

z

z

(d) A minimum realization of T.

y
w

w y

x

x

y

z

z

'

'''''

' '
' '

'
'

' '

'
' '

Fig. 5.32 Realization of T (w, x , y, z) = ∑
(0, 3, 13, 14, 15).

143 5.6 Analysis and synthesis of MOS networks

The corresponding series–parallel network is shown in Fig. 5.32b. In
Fig. 5.32c, the lower branch of the network has been redrawn utilizing the
identity yz + y ′z′ = (y + z′)(y ′ + z). This enables us to combine the two
parallel z branches, as shown in Fig. 5.32d.

There exist several synthesis procedures for nonseries–parallel networks.
Among the more important and interesting of these approaches are applications
of the theory of matrices and graph theory to the synthesis problem. These
methods are available in various references among which are [2, 4, 9].

Notes and references

There are numerous books on logic design, among which are Hill and Peterson [3], Katz
and Borriello [5], Mano and Ciletti [8], Wakerly [11], and many others. A comprehensive
review of high-speed adders is given in MacSorley [7] and Koren [6]. The material
on transmission networks dates back to Shannon’s original work [10]. An extensive
treatment of such networks is available in Caldwell [1].

[1] Caldwell, S. H.: Switching Circuits and Logical Design, John Wiley & Sons, New
York, 1958.

[2] Gould, R.: “Application of graph theory to the synthesis of contact networks,”
in Proc. Int. Symp. Theory of Switching, pp. 244–292, Harvard University Press,
Cambridge MA, 1959.

[3] Hill, F. J., and G. R. Peterson: Computer Aided Logical Design with Emphasis on
VLSI, fourth edition, John Wiley & Sons, New York, 1993.

[4] Hohn, F. E., and L. R. Schissler: “Boolean matrices and the design of combina-
tional relay switching circuits,” Bell System Tech. J., vol. 34, no. 1, pp. 177–202,
1955.

[5] Katz, R. H., and G. Borriello: Contemporary Logic Design, second edition, Pear-
son Prentice Hall, Upper Saddle River NJ, 2005.

[6] Koren, I: Computer Arithmetic Algorithms, A. K. Peters, Natick, MA,
2002.

[7] MacSorley, O. L.: “High-speed arithmetic in binary computers,” Proc. IRE, vol.
49, no. 1, pp. 67–91, January 1961.

[8] Mano, M. M., and M. D. Ciletti: Digital Design, fourth edition, Prentice Hall,
Upper Saddle River NJ, 2007.

[9] Semon, W.: “Matrix methods in the theory of switching,” in Proc. Int. Symp.
Theory of Switching, pp. 13–50, Harvard University Press, Cambridge MA,
1959.

[10] Shannon, C. E.: “A symbolic analysis of relay and switching circuits,” Trans.
AIEE, vol. 57, pp. 713–723, 1938.

[11] Wakerly, J. F.: Digital Design Principles and Practices, Prentice Hall, Englewood
Cliffs NJ, 1990.

144 Logic design

Problems

Problem 5.1. Express T1 and T2 (see Fig. P5.1a, b) as functions of A, B, C, and D.

C

A

(a)

D

B

T1

C

A

(b)

D

B

T2

Fig. P5.1

Problem 5.2
(a) Design a two-level code converter from BCD to the 2-out-of-5 code shown in

Table P5.2a.
(b) Design a two-level code converter from the Ringtail code shown in Table P5.2b to

BCD.

Table P5.2

Decimal 2-out-of-5

0 1 1 0 0 0
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 0
7 1 0 0 0 1
8 1 0 0 1 0
9 1 0 1 0 0

(a)

Decimal Ringtail

0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 1
3 0 0 1 1 1
4 0 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1 0
7 1 1 1 0 0
8 1 1 0 0 0
9 1 0 0 0 0

(b)

Problem 5.3. Design a circuit with four inputs, x1, x2, x3, x4, and seven outputs, p1,
p2, m1, p3, m2, m3, m4, that receives BCD code words and generates the corresponding
Hamming code words defined in Table 1.8.

145 Problems

Problem 5.4. You are supplied with just one NOT gate and an unlimited amount of
AND and OR gates and are required to design a circuit that realizes the expression

T (w, x, y, z) = w′x + x ′y + xz′.

Only unprimed variables are available as inputs.
Hint: You may find the map of T helpful.

Problem 5.5. The tables shown in Fig. P5.5 define two devices whose inputs and
outputs may assume any one of the three values 0, 1, or 2.

B

A

B

A

B

A

A

B

0 1 2

0
1
2

2 0 2

2 1 0
0 1 1

A

B

0 1 2

0
1
2

2 0 0

0 0 2
0 2 0

B

f (A,B)

Fig. P5.5

Give the equivalent of a Karnaugh-map description of the function f (A, B) that is
realized by the network of Fig. P5.5.

Problem 5.6. A certain four-input gate, called a LEMON gate, realizes the switching
function LEMON (A,B, C, D) = BC(A + D). Assume that the input variables are
available in both primed and unprimed form.
(a) Show a realization of the function

f (w, x, y, z) =
∑

(0, 1, 6, 9, 10, 11, 14, 15)

with only three LEMON gates and one OR gate.
(b) Can all switching functions be realized with LEMON and OR logic?

Hint: Draw the map for LEMON and utilize possible “patches” (coverings of the
minterms of f with the LEMON function) on the map of f .

Problem 5.7. A three-input gate, BOMB, whose characteristics are shown in Fig. P5.7,
has been mass-produced by an unfortunate company. Experimental evidence shows that
input combinations 101 and 010 cause the gate to physically explode. Your task is to
determine whether the gate is completely useless or can be externally modified such
that it may be efficiently used to implement any switching function without causing
explosions.

146 Logic design

1

1 1

0 0

1

AB
C

0

1

00 01 11 10

0

0

A B C

BOMB (A,B,C) BOMB (A,B,C)

Fig. P5.7

Problem 5.8. A logic module A, shown in Fig. P5.8, operates as follows: output yi = 1
iff i inputs out of x0, x1, x2 are equal to 1. Design unit B in such a way that the overall
logic function of unit C will be to produce an output zi = 1 iff i inputs out of x0, x1, x2,
x3 are equal to 1.

x0

x1

x2

C

A

y0

y1

y2 B

y3

z4

z3

z2

z1

z0

x3

Fig. P5.8

Problem 5.9. Given a logic module A that compares the magnitudes of two 3-bit
numbers, X3 = x1x2x3 and Y3 = y1y2y3, where x3 and y3 are the least significant bits.
Module A has two outputs G3 and S3, such that: G3 = 1 iff X3 > Y3; S3 = 1 iff X3 < Y3;
and G3 = S3 = 0 iff X3 = Y3.
(a) Design a logic unit B such that together with module A it will serve as a comparator

for two four-bit numbers, X4 = x1x2x3x4 and Y4 = y1y2y3y4, as shown in Fig. P5.9.
Find expressions for G4 and S4 in terms of the inputs to unit B and show a realization
of these expressions using only NAND gates.

(b) Show a realization of module A by means of only units of type B. Assume that the
constants 0 and 1 are available.

x1
x2
x3

A B

G3

y4

S3 G4

S4x4
y1
y2
y3

Fig. P5.9

Problem 5.10. Given a function g(x1, x2, x3, x4) = ∑
(4, 6, 7, 15) +∑

φ(2, 3, 5, 11),
realize g in the form shown in Fig. P5.10, i.e., find the correspondence between the xi

and a, b, c, d, and determine the functions A, B, and C.

147 Problems

b

a

c

A B C

d

g

Fig. P5.10

Problem 5.11. A half adder is a device capable of performing the addition of two bits.
It has two binary inputs, A and B, and two outputs, S and C0. (Note that there is no
carry into the half adder.)
(a) Write truth tables that define the half adder and derive logic expressions for S and

C0.
(b) Assuming that only uncomplemented inputs are available, show an implementation

of the half adder that requires only three two-input AND or OR gates and one NOT
gate.

(c) Under the above assumption, design the half adder using no more than five NAND
gates or NOR gates, but not both together.

Problem 5.12. Construct a full adder using only two half adders and one OR gate.

Problem 5.13. A half subtractor is a device capable of subtracting one binary digit
from the other. Show a realization of the half subtractor using AND, OR, NOT logic.

Problem 5.14. Define a full subtractor, show its truth tables, and derive logic expres-
sions for difference (D) and borrow (B) outputs.

Problem 5.15. Analyze the two-output circuit shown in Fig. P5.15. Indicate the logic
expression associated with every gate output.

C

A
B

T1

T2

Fig. P5.15

Problem 5.16. Design a device capable of adding three binary digits simultaneously.
The device has five inputs, as shown in Fig. P5.16; X, Y , and Z are the arguments,
C1 is the carry-in from the preceding stage, and C2 is the carry-in from the next-to-
the-preceding stage. The output S designates the sum, while C01 and C02 designate the
carry-outs to the succeeding stage and to the next-to-the-succeeding stage, respectively.
Express explicitly the sum and carry-out functions and show a circuit diagram.

X

S

C01 C1

ZY

C2
C02

Fig. P5.16

148 Logic design

Problem 5.17. The schematic diagram in Fig. P5.17 shows a multiplier capable of
multiplying two two-digit binary numbers. The digits of the two numbers are designated
a0 and a1, b0 and b1, while c0, c1, c2, and c3 designate the digits of the product. Design
the combinational logic.

c0

Combinational
logic

c3c2c1

a0 b0a1 b1
Fig. P5.17

Problem 5.18. The schematic diagram shown in Fig. P5.18 shows a ternary full adder
that receives two ternary digits X and Y plus a carry-in Ci and produces their sum S in
base 3 plus a carry-out C0. The ternary digits are coded in binary, that is, each of the three
ternary digits 0, 1, 2 is coded by two binary digits: 0 by 00, 1 by 01, and 2 by 10. Thus,
for example, if X and Y are each equal to 2 in base 3 and Ci equals 1 then the ternary
full adder is required to perform the ternary addition of (2)3 + (2)3 + (1)3 = (12)3.
Accordingly, the sum S must be 2 while the carry-out must be 1. Design the circuit
assuming that you have as many gates as necessary as well as binary half and full
adders.

C0

Ternary
full adder

s1s0

Ci

y0x1 y1x0

{

{

{

S

YXFig. P5.18

Problem 5.19. A communication system is designed to transmit just two code words,
A = 0010 and B = 1101. However, owing to noise in the system, the received word
may have as many as two errors. Design a combinational circuit that receives the words
and that can correct one error and detect the existence of two errors. Specifically, design
the circuit in Fig. P5.19 in such a way that output A will be equal to 1 if the received
word is A, output B will be equal to 1 if the received word is B, and output C will be
equal to 1 if the word received has two errors and thus cannot be corrected.

x1

x2

x3 C

A

B

x4

Fig. P5.19

149 Problems

Problem 5.20
(a) Find all cut and tie sets for the circuit shown in Fig. P5.20. What function T is

realized by this circuit?
(b) Prove that any network realization of T must contain at least one branch d. Gener-

alize your arguments to determine the necessity of branches for other literals.
(c) Find a minimum-branch series–parallel network for T .

c

b

a

c

b

d

'

'

Fig. P5.20

Problem 5.21
(a) Find a minimal network equivalent to that shown in Fig. P5.21a. It requires only

five branches.
(b) Find a minimal complex CMOS gate which realizes a function that is the same as

the transmission function realized by the network in Fig. P5.21b. It requires only
14 transistors.

w

y

x

(a)

z

z

x

x

y'y

w

yx

(b)

z

z
x

x
y

yw

' ' '

'
'

'
'

'

'Fig. P5.21

Problem 5.22. For the network of Fig. P5.22, find an equivalent network with only 11
branches.

ap b

k

c

c
h

b

j
a

fd
ee

fd

g

Fig. P5.22

Problem 5.23. Design a minimal complementary-switch-based CMOS implementation
that can turn a lamp on or off from three different locations independently. Denote the
switches as x, y, and z.

Problem 5.24. For each of the following functions, find a network realization that
requires as few branches as possible:
(a) T (w, x, y, z) = ∑

(0, 4, 6, 8, 9, 12);
(b) T (w, x, y, z) = ∑

(3, 7, 8, 9, 13);
(c) T (w, x, y, z) = ∑

(5, 6, 7, 9, 10, 11, 13, 14);
(d) T (w, x, y, z) = ∑

(5, 6, 9, 10, 11, 12, 13, 14, 15);
(e) T (w, x, y, z) = ∑

(5, 6, 7, 9, 10, 11, 12).

150 Logic design

Problem 5.25. In a meeting of a board of directors, four resolutions, A, B, C, and
D, are to be put to the vote. The decisions are complicated, however, by the fact that
the resolutions are not mutually independent. In fact, voting must be governed by the
following rules.
1. Those who vote for resolution B must also vote for resolution C.
2. It is possible to vote for both resolutions A and C only if a vote for either B or D is

also cast.
3. Those who vote for either resolution C or D or vote against resolution A must vote

for resolution B.
Each member of the board has four switches, A, B, C, and D, which he presses

or releases, depending on whether he is in favor of or against the resolution under
consideration. The switches of each member are inputs to a complex CMOS gate
associated with that member. The gate produces a red signal at the end of the vote if the
member did not vote according to the rules. Design such a gate with as few transistors
as possible.

Problem 5.26. Four people, w, x, y, and z, own a company. Their shares in the company
are: w, 40%; x, 30%; y, 20%; z, 10%. A 60% majority of the shares is required to pass a
resolution. Around their conference table are mounted four buttons, w, x, y, and z. Each
person presses his button to vote in favor of, or releases it to oppose, the resolution under
consideration. Design a complex CMOS gate whose output gives a signal whenever a
resolution is passed.

Problem 5.27. For f = w′x ′ + w′v′z′ + v′x ′y ′ + y ′z′, derive a static CMOS complex
gate that has a total of only 10 transistors.

Hint: Both nMOS and pMOS networks would need to be nonseries–parallel.

C H A P T E R

6 Multi-level logic synthesis

In Chapter 4, we discussed techniques for obtaining minimal two-level AND–
OR or OR–AND realizations. In the present chapter we generalize the discus-
sion to the synthesis of multi-level realizations, i.e., those that contain more
than two levels of logic gates. Such realizations are important since they often
require less area and delay compared to the corresponding two-level realiza-
tions and hence are more practical. However, unlike two-level realizations, it
is difficult to obtain provably optimal multi-level realizations because of the
much larger design space available for exploration. Thus, the goal of multi-
level logic synthesis is to obtain the best possible realization that targets some
design objective such as area reduction while meeting some design constraint
such as circuit delay.

There are two phases in multi-level logic synthesis; these are the technology-
independent and technology-dependent phases. In the technology-independent
phase, the circuit is improved for the targeted design criterion, using the laws
of Boolean algebra. In the technology-dependent phase, the resultant circuit is
mapped to a library of gates available for the given semiconductor technology.
We shall discuss the techniques involved in both phases.

6.1 Technology-independent synthesis

Technology-independent multi-level logic synthesis is carried out with the help
of various logic transformations that preserve the input–output behavior of
the circuit. The most important transformations are factoring, decomposition,
extraction, substitution, and elimination. We discuss these transformations next.

Introduction to logic transformations

We begin the discussion of logic transformations with the concept of factoring.

151

152 Multi-level logic synthesis

Factoring
In factoring, an expression in sum-of-products form is converted into an expres-
sion with multiple levels without introducing any subfunctions.

Example Consider the following sum-of-products expression:

f = uvxz + wxz + u′y ′z + v′x ′z′ + v′yz′. (6.1)

One way to factor it is shown below:

f = z(x(uv + w) + u′y ′) + (x ′ + y)v′z′. (6.2)

These expressions can be represented by network graphs, as shown in
Fig. 6.1a, b. The corresponding two-level and multi-level circuits are shown
in Fig. 6.1c, d . As can be seen, the multi-level circuit has six levels of logic.

f = uvxz + wxz + u'y'z + v'x'z' + v'yz'x

(a) Network graph for sum of products.
z
y
w
v
u

x

(b) Network graph for factored expression.
z
y
w
v
u

f = z (x (uv + w) + u'y') + (x'+y)v'z'

f

v'
z'
y

v'

w

u

y'

v

z

z

x

z'
x'

u'

x

(c) Two-level circuit.

z

(d) Multi-level circuit.

f

u
v

w x

u'
y'

z

x'
y

v'
z'

Fig. 6.1 Network graphs and corresponding circuits.

The expression in Eq. (6.2) is said to be in factored form, which is a common
way to represent a multi-level circuit. A factored form is a recursive sum-of-
products representation in which the products themselves can consist of a sum
of products.

A factored form generally makes the expression more compact. For exam-
ple, the minimal sum-of-products expression shown in Eq. (6.1) has 16 literals

153 6.1 Technology-independent synthesis

whereas its factored form has only 11 literals. Since the number of transis-
tors in the complex CMOS-gate implementation of an expression is twice
its literal-count (see Section 5.6), the literal-count is a good measure of the
implementation complexity.

Decomposition
In decomposition, a factored switching expression is replaced with a set of new
expressions.

Example Consider the factored expression in Eq. (6.2). It can be decom-
posed as follows:

f1 = uv + w, f2 = x ′ + y,

f3 = v′z′, f4 = xf1 + u′y ′,
f = f2f3 + zf4.

The decomposition is depicted by the network graph in Fig. 6.2. One can
see that decomposition replaces a network graph node by a set of smaller
nodes. Since the functions f1, f2, f3, f4, and f are assumed to be separately
implemented, the literal-count after the decomposition is the sum of the
literal-counts for each function. Thus, the literal-count is now 15.

x

z

y

w

v

u f1 = uv +w

f2 = x'+ y

f3 = v'z'

f4 = xf1 + u y

f = f2f3 + zf4

' '

Fig. 6.2 Network graph after decomposition.

Extraction
Extraction is the process of extracting common subexpressions from two or
more expressions in factored form.

Example Consider the expressions for f1 and f2 below:

f1 = (uv + w)x + u′y ′,
f2 = (uv + w)z.

After extracting the subexpression uv + w from the two expressions, we
get the following expressions:

f1 = f3x + u′y ′, f2 = f3z,

f3 = uv + w.

154 Multi-level logic synthesis

Thus, the literal-count reduces from 10 to 9. The network graphs are shown
in Fig. 6.3.

x

z

y

w

v

u

f1 = (uv + w)x + u y

(a) Network graph before
extraction.

f2 = f3z
f2 = (uv + w)z

x

z

y

w

v

u

f3 = uv + w

(b) Network graph after
extraction.

f1 = f3x +u y
' '

' '

Fig. 6.3 Network graphs depicting extraction.

Substitution
Substitution is the process of replacing a subexpression in an expression f with
a variable g corresponding to a node in a network graph. In other words, g is
substituted into f or f is expressed in terms of g.

Example Consider f1 and f2 below:

f1 = uvx + wx + u′y ′,
f2 = uv + w.

The expression f1 can be given in terms of f2 as f2x + u′y ′. Thus, f2

has been substituted into f1. Figure 6.4 shows the network graphs for this
example.

x

y

w

v

u

f1 = uvx + wx + u y

(a) Network graph before
substitution.

f2 = uv +w

(b) Network graph after
substitution.

x

y

w

v

u

f1 = f2x + u y

f2 = uv + w

' ' ' '

Fig. 6.4 Network graphs depicting substitution.

Elimination
Elimination is the process of removing an internal node from the network
graph; it becomes possible if the corresponding expression replaces the variable
corresponding to that node. Whenever the elimination step reduces the literal-
count, it may be useful to employ it.

155 6.1 Technology-independent synthesis

Example Consider f1 = x + f2 and f2 = y + z. If f2 is not needed else-
where in the network then it can be eliminated in the expression for f1 by
replacing it with y + z, thus obtaining f1 = x + y + z. This reduces the
literal-count from four to three.

In multi-level logic synthesis, the above five logic transformations are applied
to an initial logic network iteratively (they need not be applied in the given order)
until no more improvement is possible in the targeted objective. Examples of
synthesis objectives are optimization of area, delay, or power consumption.

Factoring

We next explore the different techniques employed in the factoring step.
There are two kinds of switching expression: algebraic and Boolean. In an

algebraic expression, no implicant of the expression contains another implicant.
An expression that does not satisfy this condition is a Boolean expression. For
example, x + xy is not an algebraic expression whereas x + yz is.

Operations on algebraic expressions are simpler – they can be treated simi-
larly to the multiplication and division of polynomials. However, this prevents
the full exploitation of all the laws of Boolean algebra. For example, idempo-
tency, the dual of distributivity (i.e., x + yz = (x + y)(x + z)), and absorption
cannot be used to manipulate algebraic expressions because they do not have
an analog in conventional polynomial algebra. Similarly, complementation
(i.e., x + x ′ = 1 and xx ′ = 0), involution, and De Morgan’s theorem cannot
be used since complements are not defined in polynomial algebra. Thus, com-
plemented literals are deemed to be unrelated to uncomplemented literals. All
laws of Boolean algebra are applicable to Boolean expressions.

A factored form is called algebraic if multiplication of its terms yields an
algebraic sum-of-products expression without the application of the above-
mentioned laws, else it is called Boolean.

Example The factored form (w + x)(y + z) is algebraic since multiplying
out its factors yields the sum-of-products expression wy + wz + xy + xz,
which is algebraic. However, (w + yz)(x + yz) is not an algebraic factored
form but a Boolean factored form, since multiplying out its factors yields
wx + wyz + xyz + yzyz, which is not an algebraic expression. Here, yzyz

cannot be simplified to yz because the use of idempotency is not allowed,
neither can it absorb xyz since the absorption law cannot be used. Similarly,
(x + y)(x ′ + z) is not algebraic since multiplying out its terms yields the
term xx ′ which cannot be simplified further.

156 Multi-level logic synthesis

Division operation
We next look at the division operation, which is a key operation in multi-
level logic synthesis. Given the expressions f and fd, if f can be expressed
as f = fdfq + fr then this is said to be a division operation where fd is the
divisor, fq the quotient, and fr the remainder. If fd and fq have no variables in
common then it is said to be an algebraic division operation; otherwise it is said
to be a Boolean division operation. Correspondingly, fd is either an algebraic
divisor or a Boolean divisor. If fr = 0 then fd is correspondingly either an
algebraic factor or a Boolean factor.

Example Let f1 = vx + vy + wx + wy + z. Since it has a factored form
(v + w)(x + y) + z, (v + w) is an algebraic divisor with quotient (x + y)
and remainder z.

Consider a slightly different expression, f2 = vx + vy + wx + wy =
(v + w)(x + y). In this case (v + w) is an algebraic factor of f2 (so, of
course, is (x + y)).

Next, consider f3 = w + xy + z = (w + x)(w + y) + z. Here, (w + x)
is a Boolean divisor of f3, not an algebraic divisor, since (w + x) and
(w + y) have w in common.

Similarly, for f4 = w + xy = (w + x)(w + y), (w + x) is a Boolean fac-
tor, not an algebraic factor.

Given an expression, there may be more than one way to factor it.
For example, f5 = xy + xz + yz can be factored as x(y + z) + yz or
(x + y)z + xy. For the first factored form, (y + z) is an algebraic divisor,
and for the second factored form, (x + y) is an algebraic divisor.

Algebraic kernels and co-kernels
The concept of kernels and co-kernels helps determine the common sub-
expressions that can be extracted from switching expressions. In this sec-
tion, we shall use this concept to factor a single expression. Later, when we
discuss extraction, we shall use it to extract subexpressions from two or more
expressions.

If an expression cannot be factored by a cube (see Section 4.2), it is said
to be cube-free. For example, wx + yz is cube-free. However, xy + xz is not
cube-free since it can be factored by x. Similarly, xyz is not cube-free since it
can be factored by any combination of its literals. Thus, for an expression to be
cube-free, it must contain more than one cube.

If, when an expression is divided by a cube, the result is a cube-free quotient
then the quotient is called a kernel and the cube the corresponding co-kernel.
If a kernel has no kernel except itself, it is called a level-0 kernel. If a kernel
has at least one kernel of level n − 1 but no kernel of level n or greater
except itself, it is called a level-n kernel. A co-kernel has the same level as its
kernel.

157 6.1 Technology-independent synthesis

Example Consider the expression f = uwz + uxz + vwz + vxz + yz +
uv. Its kernels and co-kernels and their levels are shown in Table 6.1. When f

is divided by the cube wz, we get f = (u + v)wz + uxz + vxz + yz + uv.
Thus, its kernel is u + v and wz its co-kernel. Since u + v does not have
any kernel but itself, it is a level-0 kernel. When f is divided by u, we get
f = (wz + xz + v)u + vwz + vxz + yz. Thus, wz + xz + v is its kernel
and u its co-kernel. Since wz + xz + v can be factored as (w + x)z + v

and w + x is a level-0 kernel, wz + xz + v is a level-1 kernel. If we divide
f by w, we obtain the quotient uz + vz, which is not cube-free. Thus, w

is not a co-kernel. Dividing f by y leads to the quotient z, which is not
cube-free. Thus, y is not a co-kernel. However, f is itself cube-free. Thus,
it is its own kernel with a co-kernel 1. It has level 2 because it has level-1
kernels.

Table 6.1 Kernels and their co-kernels

Level Kernel Co-kernel

0 u + v wz, xz

0 w + x uz, vz

1 wz + xz + v u

1 wz + xz + u v

1 uw + ux + vw + vx + y z

2 uwz + uxz + vwz + vxz + yz + uv 1

Rectangle covering
We discuss next a method for computing kernels and co-kernels called rectangle
covering.

Consider a sum-of-products expression f with p cubes and q distinct lit-
erals. A p × q cube–literal incidence matrix can be defined for f in which
element (i, j) is 1 if the j th literal is used in the ith cube, and 0 otherwise. A
rectangle of this matrix denotes a set of rows and columns in which all entries
are 1. Let (r, c) denote the row and column subsets of the rectangle. A rectangle
(r1, c1) is said to contain another rectangle (r2, c2) if r1 ⊇ r2 and c1 ⊇ c2. A
rectangle is called prime if it is not strictly contained in another rectangle.
The co-rectangle of rectangle (r, c) is denoted as (r, c̄) where c̄ is the com-
plement of the column subset c, i.e., it includes all columns of the matrix not
in c.

Example Consider f = uwz + uxz + yz + uv. It has four cubes and six
distinct literals. Its cube–literal incidence matrix is shown in Table 6.2.
({uwz, uxz}, {u, z}) is a prime rectangle whose co-rectangle is ({uwz, uxz},
{v,w, x, y}). Two other prime rectangles are: ({uwz, uxz, uv}, {u}) and
({uwz, uxz, yz}, {z}).

158 Multi-level logic synthesis

Table 6.2 Cube–literal incidence matrix for f

Literal

Cube u v w x y z

uwz 1 0 1 0 0 1
uxz 1 0 0 1 0 1
yz 0 0 0 0 1 1
uv 1 1 0 0 0 0

A co-kernel of an expression can be derived from a prime rectangle (r, c)
that contains at least two rows. Its co-rectangle (r, c̄) yields the corresponding
kernel, which can be derived as the sum of the cubes in r restricted to the literals
in c̄.

Example We now continue with the previous example. The prime
rectangle ({uwz, uxz}, {u, z}) yields co-kernel uz. Its co-rectangle
({uwz, uxz}, {v,w, x, y}) yields the kernel w + x, which is obtained by
restricting uwz + uxz to literals in {v,w, x, y}.

A factoring approach
One factoring approach is to start with a sum-of-products expression and derive
a factored form. A possible objective might be to reduce the literal-count of the
logic network.

Suppose that a sum-of-products expression f has been given as f = fdfq +
fr, where fd is the divisor, fq the quotient, and fr the remainder. If the division
is algebraic, fd could be the kernel and fq the co-kernel. A straightforward
approach is to factor fd, fq, and fr recursively until their forms cannot be
factored any further. It is possible that, at some stage in the factoring process,
the quotient and part of the remainder may have a common subexpression that
can be extracted. This is illustrated using the following example. The process
of extraction is discussed in more detail in the next subsection.

Example Consider the expression f = uwz + uxz + vwz + vxz + yz +
uv once again. Dividing by the kernel (u + v) gives the factored form

f = (u + v)(wz + xz) + yz + uv,

where fd = u + v, fq = wz + xz, and fr = yz + uv. Here, fd and fr can-
not be factored any further. However, fq can be, giving the following factored
form at this point:

f = (u + v)(w + x)z + yz + uv.

159 6.1 Technology-independent synthesis

Although recursive factoring has been taken as far as it can, we can see
that in fact f can be factored further by extracting z from fq = (w + x)z
and yz, which is part of fr, as follows:

f = ((u + v)(w + x) + y)z + uv.

This is the final factored form. It reduces the literal count from 16 in the
original expression to just 8.

Of course, the above factoring approach is not limited to algebraic fac-
tors. Boolean factors can also be used at each step. However, for full-fledged
multi-level Boolean optimization, the concepts of the satisfiability don’t-care
set and the observability don’t-care set are useful. We introduce these concepts
in Chapter 8 in the context of redundant logic removal.

Extraction

If two or more expressions have common divisors, the divisors can be extracted.
The rectangle-covering method, which was used for factoring earlier, can be
extended to perform extraction as well.

There are two types of extraction methods: cube extraction and kernel extrac-
tion. As the name implies, cube extraction refers to the extraction of a cube and
kernel extraction that of a kernel from two or more expressions. We discuss
cube extraction first, then kernel extraction.

To perform cube extraction, the rectangle-covering method requires a minor
extension. First, an auxiliary expression fa is formed as the sum of all the expres-
sions in the logic network. Then a cube–literal incidence matrix is obtained for
fa. Each cube of each expression is tagged with an identifier for that expression.
The rest of the approach is the same as before, i.e., it is based on finding a prime
rectangle.

Example Suppose the network has two expressions, f1 = uwz + uxz +
yz + uv and f2 = vz + wyz. The auxiliary function fa = f1 + f2 =
uwz + uxz + yz + uv + vz + wyz. Its cube–literal incidence matrix is
shown in Table 6.3. The prime rectangle ({yz,wyz}, {y, z}) has a corres-
ponding cube yz. Thus yz can be extracted from the two expressions, as
shown in Fig. 6.5. However, since the literal-count remains at 15 after
the extraction, this may not be an attractive step to carry out in logic
synthesis.

Note that even though fa includes the term yz, which absorbs the term
wyz, fa should not be simplified since yz and wyz belong to two different
expressions, f1 and f2, in the original logic network.

160 Multi-level logic synthesis

Table 6.3 Cube–literal incidence matrix for fa = f1 + f2. “Id”
identifies the expression to which a cube belongs

Literal

Cube Id u v w x y z

uwz f1 1 0 1 0 0 1
uxz f1 1 0 0 1 0 1
yz f1 0 0 0 0 1 1
uv f1 1 1 0 0 0 0
vz f2 0 1 0 0 0 1
wyz f2 0 0 1 0 1 1

x

z

y

w

v

u

f1 = uwz + uxz + yz + uv

f2 = vz +wf3
f2 = vz + wyz

x

z

y

w

v
u

f3 = yz

f1 = uwz + uxz + f3 +uv

Fig. 6.5 Cube extraction.

To perform kernel extraction, a kernel–cube incidence matrix is defined
analogously to the cube–literal incidence matrix. To derive such a matrix, we
first represent each cube in a kernel with a new variable and the kernel by a set
of such variables. The set of kernels for expression fi is denoted by K(fi).

Example Consider the two expressions f1 = uwz + uxz + yz and f2 =
vw + vx + vyz. From their cube–literal incidence matrices we can obtain
K(f1) = {(w + x), (uw + ux + y)} and K(f2) = {(w + x + yz)}. Let us
represent the cubes in these kernels by new variables as follows: we set
aw = w, ax = x, ay = y, auw = uw, aux = ux, and ayz = yz. The sets of
kernels can now be represented in terms of these variables by K(f1) =
{{aw, ax}, {auw, aux, ay}} and K(f2) = {{aw, ax, ayz}}.

We next form an auxiliary function fa as a sum of cubes, where a cube is
the product of the new variables corresponding to a kernel for all the expres-
sions under consideration. For the above example, fa = awax + auwauxay +
awaxayz.

The row headings in the kernel–cube incidence matrix denote the cubes
representing the kernels and the columns headings denote the new variables.
Element (i, j) of this matrix is 1 if the j th new variable is used in the ith
cube, and 0 otherwise. A prime rectangle in such a matrix corresponds to
a kernel intersection. If the rows of such a rectangle correspond to different

161 6.1 Technology-independent synthesis

expressions then the kernel intersection corresponds to the subexpression that
can be extracted from these expressions.

Example The kernel–cube incidence matrix for the above example is shown
in Table 6.4. The first column lists all the kernels in K(f1) and K(f2).
The second column shows the cube representations corresponding to these
kernels. The third column identifies the expression to which the kernel
belongs. We can see that a prime rectangle is ({awax, awaxayz}, {aw, ax}).
This corresponds to the kernel intersection w + x. Since the two rows of the
rectangle correspond to two different expressions this kernel intersection
can be extracted from them, as shown in Fig. 6.6. This kernel extraction
reduces the literal-count from 15 to 12. Of course, f1 and f2 can be factored
further in the next synthesis step to reduce the literal-count to 10.

Table 6.4 Kernel-cube incidence matrix for fa

Literals corresponding to cubes

Kernel Representation Id aw ax ay auw aux ayz

w + x awax f1 1 1 0 0 0 0
uw + ux + y auwauxay f1 0 0 1 1 1 0
w + x + yz awaxayz f2 1 1 0 0 0 1

f2 = vf3+vyz

x

z

y

w

v
u

f3 = w +x f1 = uzf3+ yz

Fig. 6.6 Kernel extraction.

The above example shows that use of new variables makes it possible to
treat and manipulate the kernel–cube incidence matrix in the same fashion as a
cube–literal incidence matrix.

Decomposition and substitution

The decomposition step helps to reduce a complex expression to a manageable
size that can be implemented with standard logic cells. Assuming algebraic
division, let us express f as fdfq + fr as before. Decomposition represents
the divisor fd by a variable a, reducing f to afq + fr where a = fd. Just like
factoring, the decomposition process can then be carried out recursively on the
divisor, quotient, and remainder.

162 Multi-level logic synthesis

Example Consider the expression f = xz + yz + wx + wy + vw. Let the
divisor be x + y. Using the variable a to represent the divisor gives

f = aw + az + vw,

a = x + y.

Next, decomposing the quotient gives

f = ab + vw,

a = x + y,

b = w + z.

The above steps are shown in Fig. 6.7.

a = x + yx

z

y

w

v

f = xz + yz + wx + wy + vw f = aw + az + vwx

z

y

w

v

a = x + yx

z

y

w

v

b = w + z

f = ab +vw

Fig. 6.7 Decomposition.

The end product of decomposition obviously depends on the choice of the
divisor. All kernels can be evaluated for this purpose and the one that gives
the greatest literal-count reduction chosen. However, this is time consuming.
A faster alternative is to consider only level-0 kernels.

As noted earlier, the process of replacing the divisor by the correspond-
ing variable is substitution. In the above example, the divisor x + y has been
replaced by the variable a, which has been substituted into f . Thus decompo-
sition and substitution go hand in hand. If a divisor of expression f is also a
divisor of expression g then its corresponding variable can be substituted into
both f and g.

6.2 Technology mapping

After technology-independent logic synthesis, the circuit components need
to be mapped to a set of logic cells constituting the cell library that can be
implemented in the targeted technology. This process is called technology
mapping. The area and propagation delay of the logic cells are provided in the

163 6.2 Technology mapping

cell library. The objective of technology mapping may be to minimize circuit
area or delay, or to minimize area (delay) under delay (area) constraints.

Example Consider the circuit in Fig. 6.8a. Suppose that the cell library
has only an inverter, a two-input NAND gate, and a three-input NAND
gate, with area costs 1, 2, and 3, respectively. We first implement the circuit
with only inverters and two-input NAND gates, as shown in Fig. 6.8b. A
trivial technology mapping for this circuit is shown in Fig. 6.8c. The area
cost is 9. However, we can take advantage of the three-input NAND gate
available in the cell library and obtain the alternative technology mapping
shown in Fig. 6.8d. The area cost is now only 7. Thus, the aim of technology
mapping is to take full advantage of the cell library and obtain a minimum-
cost solution.

(c) Technology mapping
with area cost 9.

y
f

z

x

v
w

y
f

z

x

v
w

y
f

z

x

v
w

y
f

z

x

v
w

(b) NAND implementation.(a) Technology-independent
network.

(d) Technology mapping
with area cost 7.

3-input NAND

Fig. 6.8 Technology mapping example.

The above example demonstrates a popular approach to technology mapping
called network covering. Network covering refers to the process of replacing
subnetworks of the technology-independent logic network with cells from the
cell library such that the whole network is covered and the desired objective is
met. A cell is said to match a subnetwork if they are functionally equivalent.

The technology-independent logic network is first converted into a graph in
which each node is derived from a set of base functions; for example, a possible
set of base functions may consist of an inverter and a two-input NAND gate.
Such a graph is called the subject graph. In the above example, the original
logic network shown in Fig. 6.8a was converted into the subject graph shown
in Fig. 6.8b. Similarly, each cell in the cell library is also represented by a
graph (or a set of graphs, as we shall see later) in which each node is derived
from the set of base functions. Such a graph is called the pattern graph. For the
above example, we chose a cell library consisting of an inverter, a two-input

164 Multi-level logic synthesis

Table 6.5 Area and delay costs of the
pattern graphs in Fig. 6.9

Pattern Area Delay
graph cost cost

INV 1 1
NAND2 2 2
NAND3 3 3
NAND4 4 4
AOI21 3 6
AOI22 4 8

(a) INV. (b) NAND2. c) NAND3.

(d) NAND4_1. (e) NAND4_2.

(g) AOI22.(f) AOI21.

)

Fig. 6.9 Pattern graphs.

NAND gate, and a three-input NAND gate. The corresponding pattern graphs
are shown in Figs. 6.9a, b, c; the pattern graphs are labeled INV, NAND2,
and NAND3, respectively. A cell may have more than one pattern graph. Two
decompositions of a four-input NAND cell, labeled NAND4 1 and NAND4 2,
into the inverter and two-input NAND base functions are shown in Figs. 6.9d, e,
respectively. Another common cell is the AND-OR-INVERT (AOI) cell. Fig-
ures 6.9f , g give the pattern graphs for two versions of an AOI cell, AOI21 and
AOI22. The numbers in the labels denote the numbers of inputs of the gates in
the first logic level of the cell. Thus, an AOI21 cell implements an expression
of the type (xy + z)′ and an AOI22 cell implements an expression of the type
(wx + yz)′.

Typically, area and delay costs are associated with each pattern graph.
Table 6.5 presents one such set of costs. Here, we have assumed that the
area cost is equal to the number of transistors in the nMOS or pMOS network
of the corresponding primitive- or complex-gate CMOS implementation. The
delay cost depicts the relative propagation delays through these gates.

165 6.2 Technology mapping

A network cover refers to an ensemble of pattern graphs with minimum cost
that collectively matches every node in the subject graph. Of course, the input
of a pattern graph must be the output of another pattern graph or a primary
input. Note that a node in the subject graph may be covered by more than one
pattern graph. That is why the relevant term is “network cover,” not “network
partition.” If area optimization is the objective then the cost to be minimized
is the sum of the areas of the ensemble of pattern graphs chosen. If delay
optimization is the objective then the critical path delay through the network
cover is the cost that needs to be minimized.

Next, we discuss the various steps in technology mapping: decomposi-
tion into base functions, partitioning networks into subject graphs, obtaining
matches, and obtaining the network cover.

Decomposing a network into base functions

To ensure that any arbitrary network can be decomposed into a set of base
functions, obviously the set must be functionally complete. Thus, it could
consist of an inverter, a two-input OR, and a two-input AND. The base functions
must be supported by the cell library. In this case, the cell library would include
INV, OR2 (which implements a two-input OR), and AND2 (which implements
a two-input AND). Other possible sets of base functions include: an inverter and
a two-input NAND supported by a cell library that includes {INV, NAND2};
an inverter and two-input NOR gate supported by a cell library that includes
{INV, NOR2}. Note that even though an inverter can be obtained from a
NAND or NOR gate by shorting its inputs, explicitly including an inverter in
the set of base functions leads to lower cost. An inverter and two-input NAND
constitutes a popular set of base functions since it simplifies the work needed in
the subsequent steps. With the above choice of base functions, a trivial network
cover always exists in which each node in the subject graph is mapped to the
cell that implements that base function.

Partitioning a network into subject graphs

Typically, the technology-independent logic network has multiple inputs and
outputs. Let us suppose that the network has been decomposed into the chosen
set of base functions. If this network is treated as the starting point then the
subsequent technology-mapping steps become quite cumbersome. Thus, usu-
ally the network is partitioned into a set of connected subject graphs and each
such subject graph is then subjected to the matching and network-covering
steps. A popular way of partitioning the network is in terms of subnetworks
called leaf-directed-acyclic graphs (leaf-DAGs). A leaf-DAG does not have
any internal fanouts. Thus, all fanout points in the decomposed network can be
marked. Such fanout points form the boundaries of a partition; each partitioned
subnetwork forms a subject graph.

166 Multi-level logic synthesis

Example Consider the network graph shown in Fig. 6.3b. Its technology-
independent implementation is shown in Fig. 6.10a. Assuming an inverter
and two-input NAND as base functions, the decomposed version of the
implementation is shown in Fig. 6.10b. The three subject graphs, s1, s2, and
s3, are also shown. Note that the fanout point at f3 forms a natural boundary
between s1 and s2 as well as between s1 and s3.

y f1

u

x

z f2

u
v

w

(a) Technology-dependent
network.

y f1

u

x

z f2

u
v

w

(b) Decomposed network and its
subject graphs.

s1

s3

s2

f3 f3

Fig. 6.10 Partitioning the network into subject graphs.

The technology mapping for each subject graph is done separately and the
solutions for the subject graphs are connected together to get the technology
mapping for the original decomposed network.

Obtaining matches

The third step in technology mapping is to obtain all possible ways in which
pattern graphs can match each node in the subject graph. When all the pattern
graphs are trees, i.e., they do not have a fanout even at their primary inputs,
this step is called tree matching. For example, all the pattern graphs shown in
Fig. 6.9 are trees.

Example Consider the subject graph shown in Fig. 6.11a. Suppose that
the cell library has cells whose pattern graphs are those shown in Fig. 6.9.
The various matches obtained at the different nodes of the subject graph
are shown in Fig. 6.11b. We start at the output and find matches as we
go towards the inputs. At node f both NAND2 and NAND3 are matches.
Similarly, at node c1 both INV and AOI21 are matches. However, at nodes
c2, c3, and c4, only one match is found. Since the base functions (inverter
and two-input NAND) are available as cells, at least one match is guaranteed
to be found at each node of the subject graph.

167 6.2 Technology mapping

(a) Subject graph.

w
x

y

c3

z

c1c2

c4
f

Node Match

f
c1
c2
c3
c4

NAND2, NAND3
INV, AOI21
NAND2
NAND2
INV

(b) Matches.

Fig. 6.11 Tree matching.

From the above example, we can see that that tree matching entails finding
whether a pattern graph is isomorphic to a subgraph of the subject graph. Since
the base functions used in the subject graph are an inverter and two-input
NAND, each gate in this graph can have either one input or two inputs. To find
the pattern graphs that match a particular node in the subject graph, the output
of the pattern graph can be matched with this node and the number of inputs
of the corresponding nodes can be recursively checked to see if they are equal.
If they are not then there is no match for the node in question with that pattern
graph. If, in the above process, the primary inputs of the pattern graph have
been reached then a match has been found. If the primary inputs of the subject
graph have been reached but not the primary inputs of the pattern graph then
there is no match.

Obtaining the network cover

In the final step in technology mapping, for each node in the subject graph a
possible match needs to be chosen to obtain a network cover such that some
given cost, such as area or delay, is minimized. An optimum method for deriving
this cover is dynamic programming. This method traverses the subject graph
from the primary inputs towards the output and chooses the best match for each
node. This is illustrated by the following example.

Example Consider the subject graph in Fig. 6.11a. Suppose that the opti-
mum area cover needs to be obtained from among the matches shown in
Fig. 6.11b. The area cost for the pattern graphs is taken from Table 6.5.
Table 6.6 shows how the cover is obtained. Traversing forward from the
primary inputs, the first set of nodes encountered includes c3 and c4, for
each of which there is only one match, NAND2 and INV, respectively. In
the second column of Table 6.6, the inputs of these pattern graphs are also
shown. The cost of the cover is obtained from the sum of the area cost of
the match and the optimum cost of the input nodes of the match. Thus, at c3

and c4 the cost of the cover is just the area cost of the corresponding pattern
graphs. When we move forward to node c2, we again have a single match,

168 Multi-level logic synthesis

NAND2. The cost of the cover at c2 is 2 + 1 + 2 = 5. This includes the
cost of all the pattern graphs chosen so far. When we reach c1, there are two
matches. If INV is chosen then the cost of the cover is 5 + 1 = 6. However,
if AOI21 is chosen then the cost of the cover is simply 3, the area cost of
AOI21. The reason is that the inputs of AOI21 are the primary inputs of
the subject graph, w, x, and y, and thus covers for the nodes c3, c4, and c2

are no longer required. Hence the best cost of the cover obtained at c1 is 3.
Moving forward to f , we again have two matches, NAND2 and NAND3.
If NAND2 is chosen then the cost of the cover is 3 + 2 = 5. However, if
NAND3 is chosen then the covers for nodes c2 and c1 are no longer required.
Thus, the cost of the cover is the sum of those for nodes c3, c4, and f , i.e.,
2 + 1 + 3 = 6. Thus, at output f the optimum cost of the cover is 5. This
cover is shown in Fig. 6.12.

Table 6.6 Covering of the subject graph

Node Match Cost of cover

c3 NAND2(w, x) 2
c4 INV(y) 1
c2 NAND2(c3, c4) 5
c1 INV(c2) 6

AOI21(w, x, y) 3
f NAND2(c1, z) 5

NAND3(c3, c4, z) 6

w
x

y

c3

z

c1c2

c4
f

AOI21

NAND2

Fig. 6.12 Area cover of the subject graph.

Next, suppose the optimum delay cover needs to be obtained. In this case, the
above process can simply be repeated by taking the delay cost of each match
into account, instead of the area cost, as illustrated next.

Example Consider the subject graph in Fig. 6.11a once again. For the sake
of simplicity, suppose that its primary input values arrive at time 0. The
delay cost for each pattern graph is shown in Table 6.5. Again, the best
set of matches needs to be selected from those shown in Fig. 6.11b. The
different steps are shown in Table 6.7. The delays at nodes c3 and c4 are 2
and 1, respectively. In general, the delay at the output of a pattern graph is

169 Notes and references

the maximum delay at its inputs plus the delay of the pattern graph itself.
Thus, the delay at c2 is max(1, 2) + 2 = 4. At c1 there are two matches with
delays of 5 and 6. Choosing the better of these two, i.e., INV(c2), implies
the choice of NAND2(c1, z) for node f with a delay of max(5, 0) + 2 =
7. However, there is another match at node f , NAND3(c3, c4, z). With this
match the delay at f is max(2, 1, 0) + 3 = 5. This is therefore a better
match at f . The cover thus obtained is shown in Fig. 6.13.

Table 6.7 Obtaining the optimum delay cover

Node Match Cost of cover

c3 NAND2(w, x) 2
c4 INV(y) 1
c2 NAND2(c3, c4) 4
c1 INV(c2) 5

AOI21(w, x, y) 6
f NAND2(c1, z) 7

NAND3(c3, c4, z) 5

w
x

y

c3

z

c1c2

c4
f

NAND3

NAND2

INV

Fig. 6.13 Delay cover of the subject graph.

Notes and references

The material covered in this chapter is addressed in much greater detail in
[5, 7]. The concept of kernels is presented in [1]. Rectangle covering and other
methods for deriving kernels and co-kernels are given in [2, 4]. Various multi-
level logic synthesis steps are discussed in [3]. Network covering is described
in [8, 9]. The approach presented in this chapter is derived from the technology
mapper presented in [8]. The matching problem is discussed in [6, 10]. In [12],
a set of base functions including a two-input NAND and inverter is used. In
[11, 13], more comprehensive methods of obtaining delay-oriented technology
mapping are given; these include the impact of interconnects on delay. In this
chapter, we have presented a technology-mapping technique based on tree
matching. However, directed acyclic graphs (DAGs) can be tackled directly
using an exact algorithm called binate covering, although this is practical only
for small networks. This approach is also discussed in [11].

170 Multi-level logic synthesis

[1] Brayton, R. K., and C. McMullen: “The decomposition and factorization of
Boolean expressions,” in Proc. IEEE Int. Symp. Circuits & Systems, pp. 49–54,
May 1982.

[2] Brayton, R. K., R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R. Wang: “Multi-
level logic optimization and the rectangular covering problem,” in Proc. IEEE Int.
Conf. Computer-Aided Design, pp. 66–69, November 1987.

[3] Brayton, R. K., R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R. Wang:
“A multi-level logic optimization system,” IEEE Trans. Computer-Aided Design,
vol. CAD-6, no. 6, pp. 1062–1081, November 1987.

[4] Brayton, R. K., G. D. Hachtel, and A. L. Sangiovanni-Vincentelli: “Multilevel
logic synthesis,” Proc. IEEE, vol. 78, no. 2, pp. 264–300, February 1990.

[5] De Micheli, G.: Synthesis and Optimization of Digital Circuits, McGraw-Hill,
New York, 1994.

[6] Detjens, E., G. Gannot, R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R. Wang:
“Technology mapping in MIS,” in Proc. IEEE Int. Conf. Computer-Aided Design,
pp. 116–119, November 1987.

[7] Hachtel, G. D., and F. Somenzi: Logic Synthesis and Verification Algorithms,
Kluwer Academic, Boston MA, 1998.

[8] Keutzer, K.: “DAGON: technology optimization and local optimization by DAG
matching,” in Proc. IEEE Design Automation Conf., pp. 341–347, June 1987.

[9] Mailhot, F., and G. De Micheli: “Technology mapping with Boolean matching,”
IEEE Trans. Computer-Aided Design, vol. CAD-12, no. 5, pp. 599–620, May
1993.

[10] Morrison, C. R., R. M. Jacoby, and G. D. Hachtel: “TECHMAP: technology
mapping with delay and area optimization,” in G. Saucier and P. M. McLellan
(eds.), Logic and Architecture Synthesis for Silicon Compilers, pp. 53–64, North-
Holland, Amsterdam, Holland, 1989.

[11] Rudell, R.: “Logic synthesis for VLSI design,” Ph.D. thesis, Dept of Electrical
Engineering and Computer Sciences, University of California, Berkeley, 1989.

[12] Sentovich, E. M., K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli: “Sequential circuit design using synthesis and optimiza-
tion,” in Proc. IEEE Int. Conf. Computer Design, pp. 328–333, October 1992.

[13] Touati, H.: “Performance oriented technology mapping,” Ph.D. thesis, Dept of
Electrical Engineering and Computer Sciences, University of California, Berkeley,
1990.

Problems

Problem 6.1. Determine which of the following factored forms are algebraic:
(a) (v + wx)(w + yz),
(b) x ′(y ′ + z′) + yz′,
(c) y ′(w′z + wx) + y(w′x + z) + wyz.

Problem 6.2
(a) Obtain all the algebraic and Boolean divisors of the expression

v + wx + wy + wz.

(b) Which divisor leads to the least number of literals after factorization?

171 Problems

Problem 6.3. For the following expression, find all level-0, level-1, and level-2 kernels:

vwy ′ + vwz + x ′y ′ + x ′z + wx.

Problem 6.4. For f = wxz′ + uwx + wyz′ + uwy + v:
(a) obtain the cube-literal incidence matrix;
(b) obtain all prime rectangles and co-rectangles from the matrix;
(c) obtain the set of kernels and corresponding co-kernels from the prime rectangles

and co-rectangles.

Problem 6.5. For the following three expressions

f1 = uwz + uxz + vwz + vxz + yz + uv,

f2 = vw + vx + vyz + uz,

f3 = xyz,

(a) derive all the kernels from their cube-literal incidence matrices,
(b) derive the kernel–cube incidence matrix and identify all its prime rectangles,
(c) perform a kernel extraction based on each prime rectangle and show the network

graph for each extraction.

Problem 6.6. For f (w, x, y, z) = ∑
(1, 3, 5, 7, 8, 11, 13, 15), find functions G and H

for the decomposition f (w, x, y, z) = G(H (x, y), w, z).

Problem 6.7. The function f (w, x, y, z) = ∑
(4, 7, 8, 11, 13, 14, 23, 27, 28, 29, 30)

can be decomposed to form G(H (v, y, z), w, x). Determine the functions G and H .

Problem 6.8. For each of the following functions, specify the don’t-care combinations
and determine functions G and H such that the given function is decomposable, as
follows:

(a) f (v, w, x, y, z) =
∑

(4, 8, 10, 16, 21, 27, 28) +
∑

φ

(1, 5, 23, 25, 30, 31)

= G(H (v, x, z), w, y);

(b) f (v, w, x, y, z) =
∑

(1, 2, 7, 9, 10, 17, 19, 26, 31) +
∑

φ

(0, 15, 20, 23, 25)

= G(H (v,w, y), x, z).

Problem 6.9. A switching function is said to be symmetric if and only if it is invariant
under any permutation of its variables. For example, f (x, y, z) = xyz is symmetric
since permuting x and y, or x and z, or y and z, yields the same function.
(a) Show that f (x, y, z) = xyz + xy ′z′ + x ′yz′ + x ′y ′z is symmetric.
(b) Show that there is a decomposition of f with a total of only eight literals.

Problem 6.10. Consider a cell library consisting of INV, NAND2, NOR2, AOI21,
AOI22, OAI21 (an OR-AND-INVERT cell that implements an expression of the type
[(x + y)z]′), and OAI22 (which implements an expression of the type [(w + x)(y +
z)]′).
(a) Assuming an inverter and two-input NOR as base functions, obtain the pattern

graphs for all the cells in the library.
(b) Repeat part (a) assuming an inverter and two-input NAND as base functions.

Problem 6.11
(a) Decompose the subject graph shown in Fig. P6.11 using an inverter and two-input

NAND as base functions.

172 Multi-level logic synthesis

w
x

y
v f

z

Fig. P6.11

(b) Using the library and area costs shown in Table 6.11, find all matches at all nodes
of the decomposed subject graph and then obtain the optimum-area network cover.

Table P6.11

Pattern Area Delay
graph cost cost

INV 1 1
NAND2 2 2
NOR2 2 3
AOI21 3 6
AOI22 4 8
OAI21 3 7
OAI22 4 9

(c) Now add a new pseudo-member to the cell library, called an inverter-pair (INVP),
with cost 0, which matches two inverters in series. Replace every interconnect
in the decomposed subject graph from part (a) with two inverters in series if the
interconnect does not already have an inverter. Obtain all matches at all nodes of this
modified decomposed subject graph and obtain the optimum-area network cover.
What impact did replacing interconnects with inverter pairs have?

(d) Obtain an optimum-delay network cover for the modified decomposed subject graph
derived in part (c). Assume that all primary input values are available at time 0.

Problem 6.12
(a) Decompose the subject graph shown in Fig. P6.12 using an inverter and two-input

NOR as base functions, and assume that all primary input values arrive at time 0.

w
x

y

u

f

z

v
tFig. P6.12

(b) Obtain an optimum delay cover for the decomposed subject graph using the cell
library shown in Table P6.11. What is its area cost?

(c) Suppose that the time constraint is relaxed to 11. Find the optimum-area cover under
this constraint.

C H A P T E R

7 Threshold logic for
nanotechnologies

We have been concerned with the design of switching circuits constructed of
electronic gates or bilateral devices. There exists another type of switching
device called a threshold element. With the advent of novel nanotechnologies,
threshold elements are attracting attention once again since they form the basic
logic primitives in some of these technologies.

Circuits constructed of threshold elements usually consist of fewer compo-
nents and simpler interconnections than the corresponding circuits implemented
with conventional gates. However, while the input–output relations of circuits
constructed with conventional gates can be specified by switching algebra, dif-
ferent algebraic means must be developed for threshold circuits. In this chapter,
we shall study the properties of threshold elements and present necessary and
sufficient conditions for a switching function to be realizable by just a single
element. We shall then present a general synthesis procedure for synthesizing
switching circuits using only threshold elements. Finally, we shall discuss syn-
thesis methods based on majority or minority logic gates, which are simple
threshold elements.

7.1 Introductory concepts

The usefulness of threshold logic, or any other new logic in digital system
design, is determined by the availability, cost, and capabilities of the basic
building blocks, as well as by the existence of effective synthesis procedures.
In this section, we shall study the properties of the threshold element, and
discuss its limitations and capabilities.

The threshold element

A threshold element, or gate, has n two-valued inputs x1, x2, . . . , xn and a single
two-valued output y. Its internal parameters are a threshold T and weights
w1, w2, . . . , wn, where each weight wi is associated with a particular input

173

174 Threshold logic for nanotechnologies

T

w1

w2

wn

x1

x y2

xn

Fig. 7.1 Symbol for a threshold
element.

variable xi . The values of the threshold T and the weights wi (i = 1, 2, . . . , n)
may be any real, finite, positive or negative numbers. The input–output relation
of a threshold element is defined as follows:

y = 1 if and only if
n∑

i=1

wixi ≥ T ,

(7.1)

y = 0 if and only if
n∑

i=1

wixi < T ,

where the sum and product operations are the conventional arithmetic ones.
The sum

∑n
i=1 wixi is called the weighted sum of the element. The symbol

representing a threshold element is shown in Fig. 7.1.

Example The input–output relation of the threshold element shown in
Fig. 7.2 is given in Table 7.1. The weighted sum is computed in the center
column for every input combination. The value 1 is entered in the output

Table 7.1 Input output relation of the gate shown in Fig. 7.2

Input variables
Weighted sum Output

x1 x2 x3 −x1 + 2x2 + x3 y

0 0 0 0 0
0 0 1 1 1
0 1 0 2 1
0 1 1 3 1
1 0 0 −1 0
1 0 1 0 0
1 1 0 1 1
1 1 1 2 1

x1

x2 y

x3

−1

2

1

1
2
_

Fig. 7.2 A threshold element.

175 7.1 Introductory concepts

column in every row for which the weighted sum is greater than or equal
to 1

2 (because T = 1
2), and the value 0 is entered in all the remaining rows.

From the input–output relation (Table 7.1), it is evident that this threshold
element realizes the switching function

y = f (x1, x2, x3) =
∑

(1, 2, 3, 6, 7)

= x ′
1x3 + x2.

Load

Driver
Negative-

weight input

Positive-
weight inputs

RTD

HFET

x
1

Clk

T

w
1 w

2

−w
3

f

x
2

x
3

Fig. 7.3 An RTD–HFET MOBILE
[3] c© 1996, IEEE.

The threshold element defined algebraically by Eqs. (7.1) can be constructed
physically in various ways. Consider, for example, the threshold element shown
in Fig. 7.3, which is based on resonant tunneling diodes (RTDs) and het-
erostructure field-effect transistors (HFETs). It is called a monostable–bistable
transition logic element (MOBILE). A MOBILE is a rising-edge-triggered
current-controlled gate. It has serially connected load and driver RTDs. The
RTD and HFET structures connected in parallel to the load and driver RTDs per-
form positive and negative weighting of the inputs, respectively. The area of the
RTD in these structures determines the corresponding weight. The difference
in the areas of the driver and load RTDs determines the threshold.

Majority and minority gates

A majority gate is a special type of threshold element. A three-input majority
gate produces an output value 1 if a majority of its inputs (i.e., two or three)
are at 1. It implements a majority function M given by

M(x1, x2, x3) = x1x2 + x2x3 + x1x3.

A majority gate can be implemented as a threshold element with wi = 1, 1 ≤
i ≤ 3, and T = 2. It is the basic logic primitive in various nanotechnologies,
such as quantum cellular automata (QCA), single-electron box (SEB), and
tunneling phase logic (TPL). By tying one of its inputs to 0 or 1 it can implement

176 Threshold logic for nanotechnologies

Input x
1 0

1

1 1

Inpu t x
2

Device
cell

Output
cell

In put x
3

Fig. 7.4 A QCA majority gate
[18]

Input
capacitor

Vd

C L

Node 1
Output

terminal

Output
capacitor

Node 2

C j C j

Inputs

C
0

C LC

C

C

x
1

x 2

x 3
C

C

C

f 1

f 2

f 3

Fig. 7.5 An SEB majority gate
[16].

an AND or OR gate, respectively. However, this is a very suboptimal use of a
majority gate.

A QCA majority gate is shown in Fig. 7.4. It consists of five QCA cells:
three input cells, a device cell, and an output cell. A QCA cell contains four
quantum dots at the corners of a square and two electrons that can move to a
quantum dot by electron tunneling. Owing to Coulombic interactions, the two
electrons can only exist at opposite corners. One such polarization denotes the
value 1 and the other the value 0, as shown in the figure. Electron tunneling is
controlled by potential barriers that can be raised or lowered across neighboring
cells. Computation in a majority gate is performed by driving the device cell
to its lowest energy state. This occurs when this cell assumes the polarization
of the majority of the three input cells. In this state, the Coulombic repulsions
between electrons in the input cells are minimized. The polarization state of
the device cell is transferred to the output cell.

An SEB majority gate is shown in Fig. 7.5. An SEB consists of a bias voltage
Vd, tunneling junction Cj, and bias capacitor CL in series. The internal state of
the SEB is fully determined by Vd. The majority gate contains a balanced pair
of SEBs, three input capacitors and three output capacitors. First, the output
terminals are grounded; then Vd is gradually increased to establish the bistability
of the balanced pair. With an increase in Vd, electron tunneling occurs and the
balanced pair enters the (0, 1) or (1, 0) state, depending on the three input
values. If the majority of the three inputs are at 1, the balanced pair goes to
the state (1, 0) and produces a positive output voltage at node 2. Otherwise, a
negative voltage is produced at node 2.

177 7.1 Introductory concepts

A three-input minority gate produces an output value 1 if a majority of its
inputs are at 0. It implements a minority function m given by

m(x1, x2, x3) = x ′
1x

′
2 + x ′

2x
′
3 + x ′

1x
′
3.

It can be seen that a minority function is just the complement of the majority
function. A minority gate can implement a NAND or NOR gate if one of its
inputs is set to 0 or 1, respectively.

Clock 1
C

i

J
1

J
2

J
3

Clock 2

C
j

J
4

Pump

Pump

Fig. 7.6 A TPL minority gate [6]
c© 1999, IEEE.

A TPL minority gate is shown in Fig. 7.6. It has two states and uses the
phase of a waveform to represent these two logic values. The tunneling junction
capacitance is Cj. The TPL operation is based on the phase locking of single
electron tunneling oscillations to a pump signal that is distributed through-
out the circuit. The pump frequency is set to twice the tunneling frequency.
Hence, the electrical phase of the locked oscillation can take on two different
values.

Capabilities and limitations of threshold logic

From the definition of threshold elements, it is evident that they are more
powerful than conventional gates. Their higher capability is manifested in the
ability of single threshold elements to realize a larger class of functions than
is realizable by any single conventional gate. In fact, a threshold gate can be
considered as a generalization of a conventional gate, because any type of the
latter can be realized by a single threshold element. A two-input NAND gate,
for example, can be realized by a single threshold element with weights −1,
−1, and threshold T = − 3

2 , as shown in Fig. 7.7. Similarly, a threshold gate
whose weights are unity and threshold T = 1

2 realizes the OR operation, and so
on. Since NAND is a functionally complete operation, any switching function
can be realized by threshold elements alone.

Because of the wide range of weights and threshold combinations possi-
ble, a large class of switching functions can be realized by single thresh-
old elements. As to whether every switching function is realizable by only
one threshold element, the answer is no, as shown by the following example.
Suppose that f (x1, x2, x3, x4) = x1x2 + x3x4 is realizable by a threshold ele-
ment, with weights w1, w2, w3, w4, and threshold T . Then the output value
of this element must be 1 for each of the input combinations x1x2x

′
3x

′
4 and

x ′
1x

′
2x3x4 and 0 for each of the input combinations x ′

1x2x
′
3x4 and x1x

′
2x3x

′
4.

x1

x2

y
−1

−1

3
2
_−

Fig. 7.7 A threshold gate
realizing the NAND operation.

178 Threshold logic for nanotechnologies

Thus

w1 + w2 ≥ T ,

w3 + w4 ≥ T

}
⇒ w1 + w2 + w3 + w4 ≥ 2T , (7.2)

w2 + w4 < T

w1 + w3 < T

}
⇒ w1 + w2 + w3 + w4 < 2T . (7.3)

Clearly, the requirements in inequalities (7.2) and (7.3) are conflicting, and no
threshold value can satisfy them. Consequently, f = x1x2 + x3x4 cannot be
realized by a single threshold element.

In light of the fact that not every switching function is realizable by just
a single threshold element, we now formulate the basic problem of threshold
logic as follows.

� Given a switching function f (x1, x2, . . . , xn), determine whether it is realiz-
able by a single threshold element and, if it is, find appropriate weights and
threshold.

A switching function that can be realized by a single threshold element is called
a threshold function.

A straightforward approach to the identification problem of threshold func-
tions is to derive a set of 2n linear simultaneous inequalities from the truth table
and solve them. From the input combinations for which f = 1, we derive all
the weighted sums that must exceed or equal the threshold T , and from the
input combinations for which f = 0 we derive all the weighted sums that must
be less than T . If a solution (not necessarily unique) to the above inequalities
exists, it provides the values for the weights and threshold. If, however, no
solution exists then f is not a threshold function.

Example Let f (x1, x2, x3) = ∑
(0, 1, 3). The truth table and the corres-

ponding inequalities are given in Table 7.2.
From the inequality which corresponds to combination 0, we observe

that T must be negative and so must w2 and w1 (see combinations 2 and 4).

Table 7.2 Truth table with linear inequalities for f = ∑
(0, 1, 3)

Combination x1 x2 x3 f Inequality

0 0 0 0 1 0 ≥ T

1 0 0 1 1 w3 ≥ T

2 0 1 0 0 w2 < T

3 0 1 1 1 w2 + w3 ≥ T

4 1 0 0 0 w1 < T

5 1 0 1 0 w1 + w3 < T

6 1 1 0 0 w1 + w2 < T

7 1 1 1 0 w1 + w2 + w3 < T

179 7.1 Introductory concepts

From combinations 3 and 5, we conclude that w2 must be greater than w1,
and from combination 1 we conclude that w3 is greater than or equal to T .
Thus, we are able at this point to establish the relation

w3 ≥ T > w2 > w1,

where only w3 may be positive. If we restrict the weights to integer values
and want to use weights of the smallest possible magnitude, we obtain

w2 = −1, w1 = −2, T = − 1
2 .

It is easy to verify that if we choose w3 = 1 then all the inequalities are
satisfied; f is therefore a threshold function.

For an n-variable switching function there are 2n inequalities, some of which
may be eliminated because they are implied by others (e.g., if inequalities 2 and
4 in Table 7.2 are satisfied then, since T is negative, inequality 6 is automati-
cally implied and, similarly, inequality 7 is implied by 2 and 5). Although any
set of linear inequalities can be either solved or shown by various methods to be
inconsistent, it is desirable to explore further those properties of threshold func-
tions that will make possible the development of more effective identification
procedures. These properties will be explored in the next section.

The realization of other, nonthreshold, switching functions, whose corre-
sponding AND–OR networks can be quite complex, can often be accomplished
with just a few threshold elements. Thus, the use of threshold elements may
result, among other things, in a considerable reduction in the number of gates
and inputs as well as in the size of the final circuit.

A limitation of threshold logic is its sensitivity to variations in the circuit
parameters. Owing to these variations and changes in the input and supply
voltages, the weighted sum for a particular combination, especially with a
large number of inputs, may deviate from its prescribed value and cause cir-
cuit malfunction. Restrictions must, therefore, be imposed on the maximum
allowable number of inputs and on the threshold value T . Care must be taken
to increase the difference between the values of the weighted sums for which
f must equal 1 and for which f must equal 0. One way to do this is to intro-
duce defect tolerances δon and δoff in the definition of a threshold function, as
follows:

y = 1 if and only if
n∑

i=1

wixi ≥ T + δon,

(7.4)

y = 0 if and only if
n∑

i=1

wixi < T − δoff .

Generally, δon and δoff take nonnegative values. Higher values of δon and δoff

imply greater tolerances of parametric variations. However, they also imply
greater circuit area since larger weights may be required.

180 Threshold logic for nanotechnologies

Elementary properties

In the discussions to follow, a threshold element will be specified by its input
variables and a weight–threshold vector

V = {w1, w2, . . . , wn; T }
Thus, the threshold element of Fig. 7.2 is completely specified by its input
variables x1, x2, x3 and V = {−1, 2, 1; 1

2 }.
Consider a function f (x1, x2, . . . , xn) that is realized by a single

threshold element V1 = {w1, w2, . . . , wj , . . . , wn; T } whose inputs are x1,

x2, . . . , xj , . . . , xn. Now suppose that one of the inputs, say xj , is comple-
mented. Then, as we will show, the same function f is realizable by a single
threshold element V2 = {w1, w2, . . . ,−wj, . . . , wn; T − wj }, whose inputs
are x1, x2, . . . , x

′
j , . . . , xn.

From the inequalities in Eq. (7.1) and from V1, we find that

if wjxj +
∑
i =j

wixi

{≥T then f = 1,

<T then f = 0.
(7.5)

When V2 replaces V1 and x ′
j replaces xj , we find that

if − wjx
′
j +

∑
i =j

wixi

{≥T − wj then g = 1,

<T − wj then g = 0,
(7.6)

where g is the function realized by element V2. To prove that g and f are identi-
cal functions, let xj = 0 so that x ′

j = 1. Then Eqs. (7.5) and (7.6) become iden-
tical. Next, let xj = 1 so that x ′

j = 0. Again, Eqs. (7.5) and (7.6) become
identical. Consequently, both f and g assume identical values for each input
combination and are thus identical functions.

The above property leads to several important conclusions. If a function is
realizable by a single threshold element then, by an appropriate selection of
complemented and uncomplemented input variables, it is possible to obtain a
realization by an element whose weights have any desired sign distribution.
Therefore, if a function is realizable by a single threshold element then it is
realizable by an element with only positive weights. Clearly, this assertion
is valid only if the input variables are available in both complemented and
uncomplemented forms.

We shall next show that if a function f (x1, x2, . . . , xn) is realizable by a
single threshold element whose weight–threshold vector is V1 = {w1, w2, . . . ,

wn; T } then its complement f ′(x1, x2, . . . , xn) is realizable by a single threshold
element whose weight–threshold vector is V2 = {−w1,−w2, . . . ,−wn; −T },
under a given condition.1

1 The condition requires us to restrict the values of the weights and threshold such that for no
input combination will the weighted sum be exactly equal to T .

181 7.2 Synthesis of threshold networks

From the inequalities in Eq. (7.1) and from V1 we obtain

n∑
i=1

wixi > T when f = 1,

n∑
i=1

wixi < T when f = 0. (7.7)

Multiplying both sides of Eq. (7.7) by −1 yields

n∑
i=1

−wixi < −T when f = 1 or f ′ = 0,

n∑
i=1

−wixi > −T when f = 0 or f ′ = 1. (7.8)

Clearly, the inequalities in Eq. (7.8) demonstrate that f ′ is realizable by the
threshold element whose weight–threshold vector is V2.

7.2 Synthesis of threshold networks

Our principal goal in this section is the development of methods for the identi-
fication and realization of threshold functions as well as for the synthesis of
networks of threshold elements, called threshold networks. Before proceeding
with this general study, we shall present a number of properties of threshold
functions that provide the theoretical background necessary for the development
of simpler and more effective synthesis methods. We shall be concerned with
the synthesis of threshold functions as well as the realization of nonthreshold
functions with a network of threshold elements.

Unate functions

A function f (x1, x2, . . . , xn) is said to be positive in a variable xi if there exists
a disjunctive or conjunctive expression for the function in which xi appears
only in uncomplemented form. Analogously, f (x1, x2, . . . , xn) is said to be
negative in xi if there exists a disjunctive or conjunctive expression for f in
which xi appears only in complemented form. If f is either positive or negative
in xi then it is said to be unate in xi .

Example The function f = x1x
′
2 + x2x

′
3 is positive in x1 and negative in

x3 but is not unate in x2.

If a function f (x1, x2, . . . , xn) is unate in each of its variables then it is called
unate. Thus, a function is unate if it can be represented by a disjunctive or
conjunctive expression in which no variable appears in both its complemented
and uncomplemented forms.

182 Threshold logic for nanotechnologies

Example The function f = x ′
1x2 + x1x2x

′
3 is unate because a disjunctive

expression for f exists that satisfies the above definition, namely, f =
x ′

1x2 + x2x
′
3. However, the function f = x1x

′
2 + x ′

1x2 is clearly not unate in
either of its variables.

If f (x1, x2, . . . , xn) is positive in xi then it can be expressed as

f (x1, x2, . . . , xn) = xig1(x1, . . . , xi−1, xi+1, . . . , xn)

+h1(x1, . . . , xi−1, xi+1, . . . , xn). (7.9)

Similarly, if f (x1, x2, . . . , xn) is negative in xi then it can be expressed as

f (x1, x2, . . . , xn) = x ′
ig2(x1, . . . , xi−1, xi+1, . . . , xn)

+h2(x1, . . . , xi−1, xi+1, . . . , xn). (7.10)

By definition, if a function f can be expressed by Eq. (7.9) (Eq. (7.10)) then
it is positive (negative) in xi . Hence, the existence of two such functions, g1

and h1 (g2 and h2), is a necessary and sufficient condition for f to be positive
(negative) in xi .

Geometric representation

Unate functions have several interesting properties, which are best illustrated
by a geometrical representation. An n-cube contains 2n vertices, each of which
represents an assignment of values to the n variables and thus corresponds to
a minterm. A line is drawn between every pair of vertices that differ in just
one variable, and no other lines are drawn. The vertices corresponding to true
minterms, that is, for which the function assumes the value 1, are called true
vertices while those for which the function assumes the value 0 are called false
vertices. The analogy between the n-cube and map methods for representing
switching functions is evident.

Example The three-cube representation of the function f = x ′y ′ + xz is
shown in Fig. 7.8. The bolder lines connecting the two pairs of true vertices,
i.e., the pair (1, 1, 1) and (1, 0, 1) and the pair (0, 0, 1) and (0, 0, 0), represent
the cubes xz and x ′y ′, respectively.

(1,1,1)

(0,1,1) (1,0,1)

(0,0,1)

(0,0,0)

(0,1,0)

(1,1,0)

(1,0,0)

Fig. 7.8 A three-cube (23-vertex) representation of f = x ′y′ + xz.

183 7.2 Synthesis of threshold networks

It is convenient to define a partial-ordering relation between vertices of the
n-cube, such that

(a1, a2, . . . , an) ≤ (b1, b2, . . . , bn)

if and only if, for all i, ai ≤ bi . As shown in Chapter 2, this partially ordered
set of vertices is a lattice and the vertices (0, 0, . . . , 0) and (1, 1, . . . , 1) are,
respectively, the least vertex and the greatest vertex of the lattice. As in any
partial ordering, some pairs of vertices may be incomparable, for example,
(0, 0, . . . , 0, 1) and (1, 0, . . . , 0, 0).

Without loss of generality, we shall subsequently restrict our attention to
unate functions that are positive in all their variables, that is, functions with-
out any complemented variable. Such a restriction is justified because every
complemented variable in a unate function may be relabeled, so that x ′

i → yi ,
etc., and obviously, the resulting function is unate if and only if the original
one is. For example, the unate function x ′

1x2x
′
3 + x2x

′
3x4 may be converted to

x1x2x3 + x2x3x4, using the relabelings x ′
1 → x1 and x ′

3 → x3. By reconverting
the latter function it is possible to determine the original one.

Theorem 7.1 A switching function f (x1, x2, . . . , xn) is unate if and only if it
is not a tautology2 and the above partial ordering exists, such that, for every
pair of vertices (a1, a2, . . . , an) and (b1, b2, . . . , bn), if (a1, a2, . . . , an) is a
true vertex and (b1, b2, . . . , bn) ≥ (a1, a2, . . . , an) then (b1, b2, . . . , bn) is also
a true vertex of f .

Proof Suppose that f is unate. Let us find an expression � that represents
f as a positive function in all its variables. Obviously, � is not a tautol-
ogy. If (a1, a2, . . . , an) is a true vertex then it represents an assignment of
values to input variables that causes some prime implicant of � to be true.
If (b1, b2, . . . , bn) ≥ (a1, a2, . . . , an) then, for every ai = 1, the correspond-
ing bi = 1. Therefore, since � is positive, (b1, b2, . . . , bn) also represents an
assignment of values of the input variables, which causes at least the previ-
ously mentioned prime implicant to be true. This proves the “only if” part of
the theorem.

Now suppose that f is not a tautology and that, for every pair of its
vertices (a1, a2, . . . , an) and (b1, b2, . . . , bn), if (a1, a2, . . . an) is true and
(b1, b2, . . . , bn) ≥ (a1, a2, . . . , an) then (b1, b2, . . . , bn) is also true. Since f

is not a tautology, (0, 0, . . . , 0) is a false vertex. Consider the k vertices S1,
S2, . . . , Sk , which are the minimal3 true vertices of the lattice. To each vertex
Si there corresponds a product term that consists of just those uncomplemented
literals whose corresponding value in Si is 1; for example, if for a function
f (x1, x2, x3, x4) we have Si = (0, 1, 0, 1) then the corresponding product term
is x2x4. The expression formed by the disjunction of the k product terms, which

2 A tautology is a function which is equal to 1 for all combinations of its variables.
3 A true vertex Si is said to be minimal if no other true vertex Sj < Si . A false vertex Si is said to

be maximal if no other false vertex Sj > Si . (See Section 2.3.)

184 Threshold logic for nanotechnologies

correspond to all the minimal true vertices, is an expression for �. Since � is
positive in all its variables, f is unate. ♦

Example For the unate function f = x1x2 + x3x4 there are two minimal
true vertices, namely, S1 = (1, 1, 0, 0) and S2 = (0, 0, 1, 1). According to
Theorem 7.1, every vertex (a1, a2, a3, a4) that is greater than S1 or S2 must
be a true vertex. For example, (1, 1, 1, 0) and (0, 1, 1, 1) are true vertices
since (1, 1, 1, 0) > (1, 1, 0, 0) and (0, 1, 1, 1) > (0, 0, 1, 1). Indeed, these
vertices correspond, respectively, to the products x1x2x3 and x2x3x4, which
are covered by f .

Linear separability

If we use the n-cube representation for threshold functions and regard the
vertices as points in an n-dimensional space, we observe that the linear equation

w1x1 + w2x2 + · · · + wnxn = T (7.11)

corresponds to an (n − 1)-dimensional hyperplane that cuts the n-cube. Now,
since f = 0 when

w1x1 + w2x2 + · · · + wnxn < T

and f = 1 when

w1x1 + w2x2 + · · · + wnxn ≥ T

we observe that the hyperplane separates the true vertices from the false ones.
A switching function whose true vertices can be separated by a linear equation
from its false ones is called a linearly separable function, and the functional
property that makes such a separation possible is known as linear separability.
Since by definition every function whose true vertices are separable from its
false ones by Eq. (7.11) is a threshold function, we may conclude that all
threshold functions are linearly separable and vice versa. Indeed, the terms
“threshold function” and “linearly separable function” are used interchangeably
to describe the same functional property.

Let f (x1, x2, . . . , xn) be a threshold function that depends upon and is
positive in the variable xi and to which there corresponds the weight–
threshold vector V = {w1, w2, . . . , wn; T }. Since f is positive in xi , there
exists a set of values a1, a2, . . . , ai−1, ai+1, . . . , an for the input variables
x1, x2, . . . , xi−1, xi+1, . . . , xn such that

f (a1, . . . , ai−1, 1, ai+1, . . . , an) = 1

and

f (a1, . . . , ai−1, 0, ai+1, . . . , an) = 0.

185 7.2 Synthesis of threshold networks

Hence,

w1a1 + · · · + wi−1ai−1 + wi + wi+1ai+1 + · · · + wnan > T,

w1a1 + · · · + wi−1ai−1 + wi+1ai+1 + · · · + wnan < T,

and consequently wi > 0. Since the above argument may be applied to every
xi in {x1, x2, . . . , xn}, it follows that the weights associated with a threshold
function that is positive in all its variables are all positive. A threshold function
that is positive (negative) in all its variables is called a positive (negative)
threshold function. Note that if f has a positive expression independent of xi

then wi = 0; but we shall not consider such functions.

Theorem 7.2 Every threshold function is unate.

Proof Let f (x1, x2, . . . , xn) be a threshold function whose true vertices can
be separated from the false ones by the hyperplane

w1x1 + w2x2 + · · · + wnxn = T .

Suppose that f depends upon xi and wi > 0; then, for every combination
(a1, a2, . . . , ai−1, ai+1, . . . , an) of the variables x1, x2, . . . , xi−1, xi+1, . . . , xn,
if the vertex (a1, a2, . . . , ai−1, 0, ai+1, . . . , an) is true then the vertex
(a1, a2, . . . , ai−1, 1, ai+1, . . . , an) must also be true, because

w1a1 + w2a2 + · · · + wi + · · · + wnan

> w1a1 + w2a2 + · · · + wi−1ai−1 + wi+1ai+1 + · · · + wnan.

However, since f is not independent of xi , the vertex (a1, a2, . . . , ai−1, 0, ai+1,

. . . , an) must be false, proving that f is positive in xi . Now consider a vari-
able xi whose weight is negative, i.e., wi < 0; if vertex (a1, a2, . . . , ai−1,

1, ai+1, . . . , an) is true then so is (a1, a2, . . . , ai−1, 0, ai+1, . . . , an), because

w1a1 + w2a2 + · · · + wi + · · · + wnan

< w1a1 + w2a2 + · · · + wi−1ai−1 + wi+1ai+1 + · · · + wnan.

Also, since f is not independent of xi , the vertex (a1, a2, . . . ,

ai−1, 1, ai+1, . . . , an) must be false, proving that f is negative in xi .
Consequently f is either positive or negative in each of its variables, and thus
it is unate. ♦

The converse of Theorem 7.2 is not true, because there exist many unate
functions that are not linearly separable, e.g., x1x2 + x3x4.

Theorem 7.3 Suppose that, given an expression for a unate switching function
f (x1, x2, . . . , xn), literal xj is replaced by literal x ′

k , j = k, resulting in the
expression g(x1, x2, . . . , xn). If g is not a threshold function then neither is f .

Proof We will prove the contrapositive of the claim. That is, if f is a threshold
function then g is a threshold function. Suppose that the weight–threshold

186 Threshold logic for nanotechnologies

vector of f is {w1, w2, . . . , wn; T }. We have

n∑
i=1

wixi ≥ T ⇒ f = 1,

(7.12)n∑
i=1

wixi < T ⇒ f = 0.

The above equations represent 2n inequalities for all value combinations of
variables x1, x2, . . . , xn. By replacing xj with x ′

k , we obtain the following 2n−1

inequalities:

n∑
i=1,i =j

wixi + wjx
′
k ≥ T ⇒ g = 1,

(7.13)n∑
i=1,i =j

wixi + wjx
′
k < T ⇒ g = 0.

Since x ′
k = 1 − xk , we obtain

n∑
i=1,i =j,k

wixi + (wk − wj)xk ≥ (T − wj) ⇒ g = 1,

(7.14)n∑
i=1,i =j,k

wixi + (wk − wj)xk < (T − wj) ⇒ g = 0.

The above inequalities can be satisfied by the weight–threshold vector {w1,

w2, . . . , wj−1, wj+1, . . . , wk−1, wk − wj,wk+1, . . . , wn; T − wj }. The vari-
able sequence corresponding to the weights is x1, x2, . . . , xj−1, xj+1, . . . , xk−1,

xk, xk+1, . . . , xn. Thus, g is also a threshold function. ♦

Example Let us apply Theorem 7.3 to f = x1x2 + x3x4. To determine
whether f is a threshold function, we replace x2 by x ′

3. This results in
g = x1x

′
3 + x3x4. Since g is not unate in x3, it is not a threshold function

and, therefore, neither is f .

Identification and realization of threshold functions

Our current objective is to present a procedure that will determine whether a
given switching function is a threshold function and, if it is, whether it will
provide the values of the weights and threshold. The approach to be taken
utilizes the linear separability property of threshold functions. In fact, it is a test
to determine whether there exists a hyperplane that separates the true vertices
of the function from the false ones. This is accomplished in several steps.

First, the given function is tested for unateness. This test is executed by
examining a minimal expression of the function. Also, since a unate function has
a unique minimal form (see Problem 7.10), if this expression is not unate then
the function is not linearly separable. If it is unate, it is converted into another

187 7.2 Synthesis of threshold networks

function that is positive in all its variables. For example, if f = x1x2x
′
3x4 +

x2x
′
3x

′
4 then its reduced expression is f = x1x2x

′
3 + x2x

′
3x

′
4 and, since it is

unate, it is converted to � = x1x2x3 + x2x3x4.
Next, one finds all the minimal true and maximal false vertices of �. In

the above example, there are two minimal true vertices, namely, (1, 1, 1, 0)
and (0, 1, 1, 1). The maximal false vertices are found by determining all false
vertices with just one variable whose value is 0, then all false vertices with
two variables whose value is 0, and so on, leaving out all vertices smaller than
the ones already selected. Clearly, the list of minimal true vertices contains all
the necessary information for the determination of the maximal false vertices.
In our running example, the maximal false vertices are (1, 1, 0, 1), (1, 0, 1, 1),
and (0, 1, 1, 0).

To determine whether � is linearly separable and, if it is, to find an appro-
priate set of weights and threshold, it is necessary to determine the coeffi-
cients of the separating hyperplane. This is accomplished by deriving and solv-
ing a system of pq inequalities, corresponding to the p minimal true and
q maximal false vertices. For each pair of vertices A = {a1, a2, . . . , an} and
B = {b1, b2, . . . , bn}, where A and B are, respectively, the minimal true and
maximal false vertices, we write the inequality

w1a1 + w2a2 + · · · + wnan > w1b1 + w2b2 + · · · + wnbn. (7.15)

In our example, since p = 2 and q = 3, we find six inequalities, as follows:

w1 + w2 + w3 > w1 + w2 + w4,

w1 + w2 + w3 > w1 + w3 + w4,

w1 + w2 + w3 > w2 + w3,

w2 + w3 + w4 > w1 + w2 + w4,

w2 + w3 + w4 > w1 + w3 + w4,

w2 + w3 + w4 > w2 + w3, (7.16)

Since � is a positive function, if it is linearly separable then the separating
hyperplane, Eq. (7.11), will have positive coefficients. This hyperplane sepa-
rating the minimal true vertices from the maximal false vertices separates all
true vertices from all false ones and thus yields the weight–threshold vector for
�. Solving the system of inequalities given in Eq. (7.16), we observe that the
following are the constraints that must be satisfied:

w3 > w4, w3 > w1,

w2 > w4, w2 > w1,

w1 > 0, w4 > 0.

Letting w1 = w4 = 1 and w2 = w3 = 2, we find, by substituting these values
into Eq. (7.16), that T must be smaller than 5 but larger than 4. Selecting T = 9

2
yields the weight–threshold vector for �, V = {1, 2, 2, 1; 9

2 }.
Finally, it is necessary to convert this weight–threshold vector to one that

corresponds to the original function f . The conversion process is based on the

188 Threshold logic for nanotechnologies

properties established in Eq. (7.6), where, for every input xj that is comple-
mented in the original function, wj must be changed to −wj and T to T − wj .
In the above example, the inputs x3 and x4 appear in f in complemented form.
Thus, in the new weight–threshold vector the weights are 1, 2, −2, and −1,
and the threshold is 9

2 − 2 − 1 = 3
2 , which yields V = {1, 2,−2,−1; 3

2 }.

Example Determine whether the function

f (x1, x2, x3, x4) =
∑

(0, 1, 3, 4, 5, 6, 7, 12, 13)

is a threshold function and, if it is, find a weight–threshold vector. Note that
f = x′

1x2 + x ′
1x4 + x2x

′
3 + x ′

1x
′
3 is unate and, therefore, can be converted

into the positive function � = x1x2 + x1x4 + x2x3 + x1x3. The minimal
true vertices are

(1, 1, 0, 0), (1, 0, 0, 1), (0, 1, 1, 0), (1, 0, 1, 0).

The maximal false vertices are

(0, 1, 0, 1), (0, 0, 1, 1), (1, 0, 0, 0).

Consequently, we obtain a system of 12 inequalities:

w1 + w2

w1 + w4

w2 + w3

w1 + w3

⎫⎪⎪⎬
⎪⎪⎭ >

⎧⎨
⎩

w2 + w4

w3 + w4

w1

These inequalities impose several constraints on the weights associated with
�, namely,

w1 > w4, w3 > w4, w2 > 0,

w1 > w2, w2 > w4, w3 > 0,

w1 > w3, w4 > 0.

If we let w4 = 1 and w2 = w3 = 2, then it is necessary to make the assign-
ment w1 = 3, because w1 must be smaller than w2 + w3.

Now we have, for example, a true vertex (0, 1, 1, 0) whose weighted sum
is 4 and a false vertex (1, 0, 0, 0) whose weighted sum is 3. Consequently,
T = 7

2 and the weight–threshold vector for the � is V = {3, 2, 2, 1; 7
2 }. To

find the corresponding vector for the original function f , note that x1 and
x3 must be complemented. Thus, f is a threshold function whose weight–
threshold vector is V = {−3, 2,−2, 1; − 3

2 }.

In more complex problems, and when the number of inequalities is large, it
becomes necessary to resort to machine computation. By utilizing other proper-
ties of threshold functions it is possible to simplify somewhat the identification
procedure, but all known methods still involve a solution of some complex sys-
tem of equations. A listing of all threshold functions of up to seven variables

189 7.2 Synthesis of threshold networks

11

11

11

1

1 1

1

11 1 1

1

1

1
Fig. 7.9 Admissible patterns for
threshold functions of three
variables.

can be found in various references; see, for example [19]. Such a listing, which
usually contains the weights and threshold corresponding to each linearly sep-
arable function, is very helpful in the design of threshold networks.

Map-based synthesis of two-level threshold networks

We have been concerned mainly with the problem of identifying and realizing
threshold functions. The next natural problem is that of synthesizing networks
constructed of threshold elements to realize any arbitrary switching function.
One approach to such synthesis is to develop a procedure for the decomposition
of nonthreshold functions into two or more factors, each of which is a threshold
function.

For functions of three or four variables, the identification problem may be
solved by detecting certain patterns in the corresponding maps. A pattern of
1-cells is said to be an admissible pattern if it can be realized by a single
threshold element. The admissible patterns for threshold functions of three
variables are shown in Fig. 7.9. Each admissible pattern may be in any position
on the map, provided that its basic topological structure is preserved. Clearly,
any admissible pattern for functions of three variables is also an admissible
pattern for functions of four or more variables, and so on. Note that, since the
complement of a threshold function is also a threshold function, the patterns
formed by 0-cells are also admissible.

Analogously to the synthesis of AND–OR networks, a threshold-logic real-
ization of an arbitrary switching function can now be achieved by selecting
a minimal number of admissible patterns such that each 1-cell of the map is
covered by at least one admissible pattern.

Example Given a switching function

f (x1, x2, x3, x4) =
∑

(2, 3, 6, 7, 10, 12, 14, 15),

find a minimal threshold-logic realization. (By a minimal realization, we
mean one that requires the smallest number of threshold elements.)

The map of f is shown in Fig. 7.10a, where the admissible patterns are
marked by broken lines. A quick test (see Problem 7.10) reveals that f

190 Threshold logic for nanotechnologies

g

(b) Threshold elements realizing the admissible patterns

x3

x2

x4

−2

1

51
23

x1

x3

x2

x4

2

−1

51
21

x1

h

x3

x2

x1

x4

−2
1
3
1

5
2 f

x3

x2

x1

x4

2
1
3

−1

5
2

(c) Threshold-logic realization of f

g

1

00

01

11

10

1

1 1

1

1

1

1

1

00 01 11 10x3x4

g h

(a) Map for f exhibiting two admissible patterns

x1x2

Fig. 7.10 Synthesis of the function f (x1, x2, x3, x4) = ∑
(2, 3, 6, 7, 10, 12, 14, 15).

is not unate and consequently not linearly separable. Hence, we shall attempt
to synthesize it as a cascade of two threshold elements, such that the first
element realizes an admissible pattern g, and the second element realizes an
admissible pattern h. By applying the techniques of the preceding section
to the function g(x1, x2, x3, x4) = ∑

(2, 3, 6, 7, 15), the weight–threshold
vector for the first element is found to be Vg = {−2, 1, 3, 1; 5

2 }. Similarly,
the weight–threshold vector for the element that realizes admissible pat-
tern h is found to be Vh = {2, 1, 1,−1; 5

2 }. These elements are shown in
Fig. 7.10b.

If we select the threshold element that realizes g as the first element then
the second element must be such that it will realize h and at the same time
allow g to propagate through it uninterrupted. In other words, the second
element must, in addition to realizing h, act as an OR gate whose output
value is 1 if either g or h or both are 1. This is accomplished by providing
it with five inputs, as shown in Fig. 7.10c. The four inputs associated with

191 7.2 Synthesis of threshold networks

the variables x1, x2, x3, and x4 have the weights determined earlier, while
the fifth input is reserved for g.

It is now only necessary to determine the weight wg associated with the
input g. This weight can be determined by computing the minimal weighted
sum that can occur in the second element when g has the value 1. Since f

must have the value 1 whenever g does, this minimal weighted sum must
be larger than the threshold of the second element. In our case, the minimal
weighted sum is wg , and it occurs when x1 = x2 = 0 and x3 = x4 = 1.
Clearly, wg must be larger than 5

2 and, therefore, the value wg = 3 has been
selected.

To simplify the computation of wg , it can be set equal to (or larger than) the
sum of the threshold and absolute values of all negative weights of the second
element. This, however, will not always yield a minimal value for wg .

Example Consider the switching function

f (x1, x2, x3, x4) =
∑

(3, 5, 7, 10, 12, 14, 15),

whose map is shown in Fig. 7.11a. Its minimal two-level AND–OR realiza-
tion, shown in Fig. 7.11b, requires six gates but only two threshold elements,
as shown in Fig. 7.11d.

x3

x2

x1

x4

−1
1
1

2

5
2 f

x3

x2

x1

x4

2
1

−1

(d) A threshold-logic realization of f.

g

1
7
2

1 1

1

1

1

1

00 01 11 10x3x4

(c) Map showing the admissible pattern
realized by each threshold element.

x1x2

00

01

11

10

1

f

x1

x4

x3

x1

x1

x1

x3

x3

x4

x4

x4

x4

x2

x2

x2

(b) AND–OR realization of f.

1

1

1

1

1

1

1

00 01 11 10x3x4

(a) Map showing a minimal set of prime
implicants that covers f.

x1x2

00

01

11

10

'

'

'

'

5
2

Fig. 7.11 Two realizations of f (x1, x2, x3, x4) = ∑
(3, 5, 7, 10, 12, 14, 15).

192 Threshold logic for nanotechnologies

The admissible patterns realized by the threshold elements are indicated
by the patches on the map of Fig. 7.11c. The first element realizes the
threshold function g = ∑

(3, 5, 7, 15), while the second element realizes
the function g +∑

(10, 12, 14, 15). The weight wg associated with input g

has been specified as 7
2 , which is equal to the sum of the threshold and the

absolute value of w4. This ensures that f = 1 whenever g = 1, regardless
of the weighted sum of the variables within the second element. Hence,
f = 1 whenever either g = 1 or the weighted sum in the second element is
greater than 5

2 .

The synthesis procedure outlined in the preceding examples is particularly
useful when the number of admissible patterns is small. Whenever the choice of
admissible patterns is not obvious, it is necessary to construct a chart of patterns
versus true vertices that is analogous to the prime implicant chart and is such
that a minimal subset of admissible patterns can be determined. For functions
of five or more variables, it is possible to derive the set of all admissible patterns
by a tabulation procedure (see [4]) and then to construct the chart for selecting
a minimal subset of admissible patterns.

Synthesis of multi-level threshold networks

It may be inefficient to implement large switching functions with a two-level
threshold network. A multi-level threshold network, consisting of many levels
of threshold elements, may be much more compact. As we saw in Chapter 6,
traditional multi-level network synthesis is a rich and mature area. We shall
see next how traditional synthesis techniques can be enhanced for multi-level
threshold network synthesis.

Example Consider the switching network shown in Fig. 7.12a. It has seven
gates (including the inverter at x1) and five levels. If we simply replace each
gate with a threshold element, the resulting threshold network will also
contain seven threshold elements and five levels. However, this threshold
network is suboptimal because some nodes in Fig. 7.12a can be collapsed
into a single threshold node. Choosing which node to collapse is critical. If
we set the fanin restriction of a node to four, f = n1 + n2 can be collapsed
to get f = n3x5 + x6x7.

We must next determine whether f is a threshold function, using the
system of inequalities described earlier. It turns out that f is not a threshold
function. Consequently, we must split f into two or more nodes. Suppose
we choose to split f into n1 + x6x7, where n1 = n3x5. Since n1 + x6x7

is a threshold function, we proceed to synthesize n1. After collapsing the

193 7.2 Synthesis of threshold networks

n1

n2

n3

n5

n4

f

x1

'

x2
x3 x5

x4

x6
x7

x1

3
1

1
1

11
−1

3
1
1 2

1

1
2

x1

x3

x2

x4

x1 x7

x6
x5

f
n1

n4

n5

(a) Switching network.

(b) Equivalent threshold network.

2

Fig. 7.12 A switching network and an equivalent threshold network [20] c© 2005, IEEE.

function, n1 can be expressed as n1 = n4x5 + n5x5. Since this is also a
threshold function, we next synthesize n4 = x1x2x3 and n5 = x ′

1x4, which
are both threshold functions. The corresponding synthesized threshold net-
work shown in Fig. 7.12b contains only four threshold gates and three
levels.

We next provide an overview of how multi-level threshold network synthesis
can be done. One can start with a multi-output algebraically factored switching
network G that implements the given set of switching functions, since its nodes
are more likely to be unate and hence possibly threshold functions. The user
can specify the maximum number of inputs allowed for any threshold element
in the final threshold network that needs to be synthesized.

The synthesis procedure begins by processing each circuit output of G. First,
the node representing a circuit output is collapsed. If the node represents a binate
function it is split into multiple nodes, which are then processed recursively. If
the node is unate and is also a threshold function, it is saved in the threshold
network and the inputs of the node processed recursively. Otherwise, the unate
node is split into two or more nodes that are threshold functions. The synthesis
procedure terminates when all the nodes in the network G are mapped to
threshold nodes. Sometimes, for a given node in G, directly mapping the AND
and OR gates in the subnetwork implementing it to threshold elements may
result in fewer threshold elements for that subnetwork than synthesizing it with

194 Threshold logic for nanotechnologies

I

IV

III

II

Time

CLK 1

CLK 4

CLK 3

CLK 2

P 2PP
2

3P
2

Evaluate

Hold

Reset

Wait

Fig. 7.13 Four-phase clocking
for MOBILE circuits [3] c© 1996,
IEEE.

the above procedure. One can then choose the better of the two subnetworks to
implement that node.

Mapping of threshold networks to MOBILEs

A threshold network can be mapped to RTD–HFET structures called MOBILEs,
which were introduced earlier (see Fig. 7.3 for an example of a MOBILE). A
MOBILE is said to be a self-latching threshold gate, because its output is
valid only when the clock is high. One possible clocking scheme for MOBILE
circuits consists of four phases, as shown in Fig. 7.13. During the evaluate
phase, the output of a MOBILE is computed. In the hold (i.e., self-latching)
phase, the result is valid. In the reset phase, the load capacitance is discharged
and the MOBILE returns to the monostable mode of operation. Finally, in
the wait phase, the inputs of the present MOBILE are loaded with the results
obtained from the predecessor MOBILE.

In order to make sure that a MOBILE-based threshold network functions
correctly under four-phase clocking, we have to make sure that all the input
signals of any embedded threshold element arrive in the same clock phase. This
can be done by inserting threshold buffers, wherever needed, in the network.
Suppose that all primary input signals arrive in the same clock phase. Examining
the threshold network from the primary inputs to circuit outputs, if a node fans
out to several nodes and those fanout nodes are not at the same level of the
network, one needs to insert buffers to make sure that all the input signals of a
node arrive in the same clock phase.

Example Consider a threshold network, shown in Fig. 7.14a, that imple-
ments a full adder, with switching functions co = ab + aci + bci and
s = c′

oa + c′
ob + c′

oci + abci. We observe that the inputs a, b, ci, and co to
node s do not arrive in the same clock phase. After inserting three buffers,
as shown in Fig. 7.14b, all input signals of each node in the network arrive
in the same clock phase. A MOBILE implementation of a threshold buffer
and its symbol are shown in Fig. 7.15.

195 7.2 Synthesis of threshold networks

2
1

1
1

1
−2

1

a

c i

b

s1
1

c

Level: 1 2

threshold
buffer

2
1

1
1

1
−2

1

a

c i

b

s1
1

co

o

Level: 1 3

3

2

(a) Network before the insertion of buffers.

(b) Network after the insertion of buffers.

Fig. 7.14 Mapping a threshold network to MOBILEs.

1

CLK

T =

wa = 1

a

f
a f1

2

1
2

Fig. 7.15 A MOBILE threshold buffer and its symbol.

196 Threshold logic for nanotechnologies

x1 + x3 = M (x1,1, x3)

x2x3 = M (0, x2, x3) x1x2 + x1x3 +x2x3 = M(x1, x2, x3)

x3

x1x2
00 01 11 10

1

0 1

1 11

x3

x1x2
00 01 11 10

1

0

11

x1= M (x1,1,0) = M(x1, 0, 1) x2 = M (1, x2, 0) = M (0,x2,1) x3 = M (1,0,x3) = M (0, 1, x3)

x2 + x3 = M (1, x2, x3)

x3

x1x2
00 01 11 10

1

0

11 1 1

x3

x1x2
00 01 11 10

1

0 11

11

x3

x1x2
00 01 11 10

1

0 1 1

1 1

x3

x1x2
00 01 11 10

1

0 1

1 1 11

1

x1x2 = M (x1, x2, 0) 1xx 3 = M (x1, 0, x3)

x3

x1x2
00 01 11 10

1

0

1 1

x3

x1x2
00 01 11 10

1

0 1

1

x1 + x2 = M (x1, x2,1)

x1x2

x3
00 01 11 10

1

0 1 1

1 111

x3

x1x2

1

0 1 1

1 1

1

1

00 01 11 10

Fig. 7.16 Realizable patterns
for majority gates.

Synthesis of multi-level majority and minority networks

Majority and minority gates are also threshold elements. In this section, we
shall discuss a synthesis procedure specifically targeted towards multi-level
majority network realization. Using De Morgan’s theorem, this procedure is
trivially applicable to minority network synthesis as well.

Assuming that the constants 0 and 1 are available as inputs, Fig. 7.16 shows
all the positive functions that can be realized by a majority gate. A pattern of
1-cells is called a realizable pattern if it can be realized by a majority gate.
Note that these are slightly different from the admissible patterns shown in
Fig. 7.9. Some admissible patterns shown in Fig. 7.9 are realizable by threshold
elements but not by a majority gate. Figure 7.16 shows all realizable patterns
of three-input positive functions. If we remove the restriction that the function

197 7.2 Synthesis of threshold networks

be positive then there are a total of 38 three-input functions that can be realized
by a majority gate.

Example Consider a switching network that implements f (x1, x2, x3) =
x ′

1x
′
2x

′
3 + x ′

1x2x3 + x1x2x
′
3 + x1x

′
2x3. A straightforward, but naive, approach

for constructing a majority network is to decompose the network into two-
input AND and OR gates since we know that such gates can be easily imple-
mented by “reduced” majority gates (recall that a majority gate with one
input tied to 0 (1) realizes an AND (OR) gate). For this function, the decom-
posed two-input AND–OR-gate-based network is shown in Fig. 7.17a. It
contains 11 gates (each gate being a “reduced” majority gate) and four levels.
However, if we can make full use of all three inputs of a majority gate then
the number of gates and levels may be reduced. Such an implementation
is shown in Fig. 7.17b, which consists of only four majority gates and two
levels. An equivalent minority gate implementation is shown in Fig. 7.17c;
this can be easily derived from the majority network by using De Morgan’s
theorem.

x2

x1

x1

x2

x1

x1

x3

x2
x3

f

x2

x3

x3

(a) (b)

(c)

M

M

M

M

x2

x3

x1
x2

x1

x3

f

f1

f2

f3

x3

x1

x2

m

m

m

m

x2

x3

x1
x2

x1

x3

f

f1

f2

f3

x3

x1

x2

'
'

'

'

'

'
'

'

'

'

' '

'

'

'

'

'

Fig. 7.17 (a) A two-input AND–OR-gate-based network, (b) the majority network, and (c) the
minority network [21] c© 2007, IEEE.

We next describe a synthesis procedure for multi-level majority networks.
Just as in the case of threshold network synthesis, an algebraically factored
multi-output combinational network G is also a good starting point for majority
network synthesis. The procedure begins by the preprocessing of network G,
during which it is decomposed into a network in which no node has more

198 Threshold logic for nanotechnologies

than three inputs. Then, each node in the decomposed network is checked to
determine whether it is a majority function. If it is, we proceed to synthesize the
next node. Otherwise we check to see whether there exists a common literal in
all the product terms of the node function. If one exists, we factor this literal out.
An AND–OR mapping is then performed on the factored node. If no common
literal exists, we check to see whether this node can be implemented with
fewer than four AND or OR gates. If this is the case, we perform an AND–OR
mapping on this node. Otherwise, we map the node onto at most four majority
gates using a Karnaugh-map-based method. It is known that all functions of
three variables can be realized by at most four majority gates in two levels. The
procedure terminates when all the nodes in the decomposed network have been
synthesized.

Example Consider f = x1x
′
2 + x ′

2x3. If we use AND–OR mapping, three
majority gates are needed for f as f1 = x1x

′
2, f2 = x ′

2x3, and f = f1 + f2.
However, since the literal x ′

2 appears in both the product terms of f , it can
be factored out. Node f can, therefore, be expressed as f = f1x

′
2, where

f1 = x1 + x3, thus requiring only two majority gates.

The map-based method is described next. First, we obtain the map for the
logic function of node n, which is a function of at most three inputs. Next we find
a realizable pattern in the map, which gives the first majority function f1. Then
we try to find a second realizable pattern based on the first realizable pattern and
the original map of node n. This realizable pattern gives the second majority
function f2. Finally, from the two previously found realizable patterns and the
original map, we find the third realizable pattern. This realizable pattern gives
us the third majority function f3. These three majority functions are chosen in
such a way that original node n can be represented as their majority function,
i.e., n = M(f1, f2, f3) = f1f2 + f2f3 + f1f3.

The chosen realizable pattern for f1 can contain “make-up” minterms that
are not minterms of n. After finding f1, we use the following rule for finding f2

and f3. A minterm (maxterm) of n must also be a minterm (maxterm) of at least
two of the three functions f1, f2, and f3. This rule is enforced by defining two
sets ψ1 and ψ0. For finding f2, the set ψ1 is obtained as follows. If a minterm
of n is not a minterm of f1, add this minterm to ψ1. Similarly, for finding f2,
the set ψ0 is obtained as follows. If a maxterm of n is not a maxterm of f1,
add this maxterm to ψ0. When picking a realizable pattern for f2, we need to
make sure that the 1’s in ψ1 are included in the pattern and that the 0’s in ψ0
are not. For finding f3, the sets ψ1 and ψ0 are updated as follows. If a minterm
(maxterm) of node n is not a minterm (maxterm) of both f1 and f2, add this
minterm (maxterm) to ψ1 (ψ0). Again, when picking a realizable pattern for
f3, we need to make sure that the 1’s in ψ1 are included in the pattern and that
the 0’s in ψ0 are not.

199 7.2 Synthesis of threshold networks

It can be seen that f3 is not guaranteed to be found on the basis of the two
previously chosen functions f1 and f2. Hence, if we fail to find f3 from the
current choices of f1 and f2, backtracking is needed to find a new f2. If f3 can
still not be found after a few tries, the AND–OR mapping method can be used
to speed up the process.

Example Consider the function f (x1, x2, x3) = x ′
1x

′
2x

′
3 + x ′

1x2x3 +
x1x2x

′
3 + x1x

′
2x3 once again. The corresponding maps are shown in

Fig. 7.18. As can be seen, one make-up minterm is needed for finding the
realizable pattern for f1. This make-up minterm x ′

1x2x
′
3 is shown in italic in

Fig. 7.18b. Then ψ1 and ψ0 are computed. The second make-up minterm,
x1x2x3, is needed for the second realizable pattern for f2, as shown in
Fig. 7.18e. Finally, the third realizable pattern for f3 is found. We then
obtain the majority network shown earlier in Fig. 7.17b.

x1x2

x3
00 01 11 10

1

0 1

1 11

Step 2: find f2 x1x2

x3
00 01 11 10

1

0 1

Update ψ1

1

f2 = x1x2 +x2 x3 +x1x3 = M (x1, x2, x3)
(e) (f)

x1x2

x3
00 01 11 10

1

0

Update ψ 0

0

0

Step 3: find f3x1x2
00 01 11 10

1

1 11

1

0

f3 = x1x2 + x2 x3 + x1x3 = M (x1, x2, x3)
(g) h)(

x3

x1x2

x3
00 01 11 10

1

0

Compute ψ 0

0

(d)

x1x2
x3 00 01 11 10

1

111

1

0

Step 1: find f1

n = x1x2 x3 + x1 x2x3 + x1 x2x3 + x1 x2x3 f1 = x1 x2+ x2x3 + x1x3 = M (x1, x2, x3)
(a) (b)

x3

(c)

x1x2

x3
00 01 11 10

1

0 1

11

1

x1x2
00 01 11 10

1

0

1

Compute ψ 1

' ' ' ' ' ' ''

' ' ' ' ' '

' ' ' '

Fig. 7.18 Map-based majority network synthesis [21] c© 2007, IEEE.

Mapping of majority networks to QCA, SEB, or TPL

The efficient and automatic mapping of majority networks to networks of
quantum cellular automata (QCA) cells is still an ongoing area of research.

A multi-level majority network can be implemented with single-electron
boxes (SEBs) by letting the output capacitor of one majority gate act as the

200 Threshold logic for nanotechnologies

Input
capacitor

Vd

CL

Node 1
Output

terminal

Output
capacitor

Node 2

Cj Cj

Inputs

C0

CLC
C
C

x1

x2 =1

x3

C
C
C

f1

f2

f3

Fig. 7.19 An SEB buffer [16].

input capacitor of the following gate. A three-phase overlapping clock can
be used for successive gates. Thus, the mapped majority network needs to be
partitioned into three groups, where each group is activated by one phase of
the clock. An overlap between successive clock phases allows the output of a
stage to be established while the preceding stage maintains its output during
its holding period. In order to make an SEB-based majority network function
correctly under three-phase overlapping clocking, we have to make sure that
all the input signals of any embedded majority gate arrive in the same clock
phase. This is a problem similar to that encountered in the mapping of threshold
networks to MOBILEs, requiring the insertion of buffers. Figure 7.19 shows
an implementation of an SEB buffer.

When mapping a minority network onto tunneling phase logic (TPL) prim-
itives, we have to consider the fanout restriction. So far, only a fanout of at
most three has been demonstrated for TPL. This restriction can be satisfied by
post-processing the minority network that has been generated without taking
into account the fanout restriction. If a node violates the fanout restriction, new
nodes are generated by duplicating that node. The inputs and outputs of these
nodes are updated to satisfy the fanout restriction.

By now the reader can appreciate the importance of threshold and majority
or minority networks in circuit design for various nanotechnologies. This area
is likely to attract considerable attention in the coming years.

Notes and references

McNaughton [11] studied the properties of unate functions and established the unateness
of a function as a necessary condition for its single-threshold-element realizability.
Various properties of threshold functions, as well as synthesis procedures, were studied
by Elgot [5], Muroga et al. [14], Winder [19], Dertouzos [4], and Lewis and Coates
[7]. Synthesis techniques were presented by Oliveira and Sangiovanni-Vincentelli for
two-level threshold logic [15] and by Zhang et al. [20] for multi-level threshold logic.
Synthesis techniques for small majority networks were presented by Akers [1], Miller
and Winder [12], and Muroga [13]. Synthesis techniques for large multi-level majority
and minority networks were presented by Zhang et al. [21]. Very large scale integrated

201 Notes and references

(VLSI) implementations of threshold logic were surveyed by Beiu et al. [2]. An excellent
treatment of threshold logic can be found in the book by Muroga [13].

Resonant-tunneling-diode (RTD) based threshold networks were discussed by Pacha
et al. [17], Chen et al. [3], Maezawa et al. [8], Mazumder et al. [10], and Mathews
et al. [9], QCA-based majority gates by Tougaw and Lent [18], SEB-based majority
networks by Oya et al. [16], and TPL-based minority gates by Fahmy and Kiehl [6].

[1] Akers, S. B.: “Synthesis of combinational logic using three-input majority gates,”
in Proc. Third Annual Symp. Switching Circuit Theory & Logical Design,
pp. 149–157, October 1962.

[2] Beiu, V., J. M. Quintana, and M. J. Avedillo: “VLSI implementations of thresh-
old logic – a comprehensive survey,” IEEE Trans. Neural Networks, vol. 14,
pp. 11 217–11 243, September 2003.

[3] Chen, K. J., K. Maezawa, and M. Yamamoto: “InP-based high-performance
monostable–bistable transition logic elements (MOBILEs) using integrated
multiple-input resonant-tunneling devices,” IEEE Electron Device Letters,
vol. 17, no. 3, pp. 127–129, March 1996.

[4] Dertouzos, M.: Threshold Logic: A Synthesis Approach, MIT Press, Cambridge
MA, 1965.

[5] Elgot, C. C.: “Truth functions realizable by single threshold organs,” in
Proc. Ann. Symp. Switching Circuit Theory and Logical Design, 1960; also in
AIEE Publ., S-134, pp. 225–245, September 1961.

[6] Fahmy, H. A., and R. A. Kiehl: “Complete logic family using tunneling-phase-
logic devices,” in Proc. Int. Conf. Microelectronics, pp. 22–24, November 1999.

[7] Lewis, P. M., and C. L. Coates: Threshold Logic, John Wiley & Sons, New York,
1967.

[8] Maezawa, K., H. Matsuzaki, M. Yamamoto, and T. Otsuji: “High-speed and low-
power operation of a resonant tunneling logic gate (MOBILE),” IEEE Electron
Device Letters, vol. 19, no. 3, pp. 80–82, March 1998.

[9] Mathews, R. H. et al.: “A new RTD–FET logic family,” Proc. IEEE, vol. 87, no. 4,
pp. 596–605, April 1999.

[10] Mazumder, P., S. Kulkarni, M. Bhattacharya, J. P. Sun, and G. I. Haddad: “Digital
circuit applications of resonant tunneling devices,” Proc. IEEE, vol. 86, no. 4,
pp. 664–668, April 1998.

[11] McNaughton, R.: “Unate truth functions,” IRE Trans. Electronic Computers,
vol. EC-10, pp. 1–6, March 1961.

[12] Miller, H. S., and R. O. Winder: “Majority logic synthesis by geometric methods,”
IRE Trans. Electronic Computers, vol. EC-11, no. 1, pp. 89–90, February 1962.

[13] Muroga, S.: Threshold Logic and its Applications, John Wiley, New York, 1971.
[14] Muroga, S., I. Toda, and S. Takasu: “Theory of majority decision elements,”

J. Franklin Inst., vol. 271, pp. 376–418, May 1961.
[15] Oliveira, A. L., and A. L. Sangiovanni-Vincentelli: “LSAT – an algorithm for the

synthesis of two level threshold gate networks,” in Proc. Int. Conf. Computer-
Aided Design, pp. 130–133, November 1991.

[16] Oya, T., T. Asai, T. Fukui, and Y. Amemiya: “A majority-logic nanodevice using
a balanced pair of single-electron boxes,” J. Nanosci. Nanotech., vol. 2, nos. 3–4,
pp. 333–342, June–August 2002.

202 Threshold logic for nanotechnologies

[17] Pacha, C., W. Prost, F. J. Tegude, P. Glösekötter, and K. F. Goser: “Resonant tunnel-
ing device logic: a circuit designer’s perspective,” in Proc. European Conf. Circuit
Theory & Design, August 2001.

[18] Tougaw, P. D., and C. S. Lent: “Logical devices implemented using quantum
cellular automata,” J. Applied Physics, vol. 75, no. 3, pp. 1811–1817, February
1994.

[19] Winder, R. O.: “Threshold logic,” doctoral dissertation for the Mathematics
Department, Princeton University, May 1962.

[20] Zhang, R., P. Gupta, L. Zhong, and N. K. Jha: “Threshold network synthesis and
optimization and its application to nanotechnologies,” IEEE Trans. Computer-
Aided Design, vol. 23, no. 1, pp. 107–118, January 2005.

[21] Zhang, R., P. Gupta, and N. K. Jha: “Majority and minority network synthesis
with application to QCA, SET and TPL based nanotechnologies,” IEEE Trans.
Computer-Aided Design, vol. 25, no. 7, pp. 1233–1245, July 2007.

Problems

Problem 7.1. Find the function f (x1, x2, x3, x4) realized by each of the threshold net-
works shown in Fig. P7.1. Show the map of each function.

x3

x2

x1

x4

−2
−2
1
1

f (x1,x2,x3,x4)

x3

x2

x1

x4

2
2
4

1

7
2

2

x3

x2

x4

−1

−3

1
2

2
1
2

x1

f (x1,x2,x3,x4)

(a)

(b)

−
g

1

−

Fig. P7.1

Problem 7.2. By examining the relevant linear inequalities, determine which of the
following functions is a threshold function (see the discussion after Eq. (7.3)) and, for
each one that is, find the corresponding weight–threshold vector:
(a) f1(x1, x2, x3) = ∑

(1, 2, 3, 7);
(b) f2(x1, x2, x3) = ∑

(0, 2, 4, 5, 6);
(c) f3(x1, x2, x3) = ∑

(0, 3, 5, 6).

Problem 7.3. For each of the functions of Problem 7.2 that is realizable by a single
threshold element, find a realization for f ′(x ′

1, x2, x3).

203 Problems

Problem 7.4
(a) Obtain the function f (x1, x2, x3, x4) realized by the network shown in Fig. P7.4.
(b) Show that f (x1, x2, x3, x4) can be realized by a single threshold element. Find this

element.

−2

x3

x2

x3

x2

x4

1

−1

32
2

x1

x4

1
1
−1
3

x1

5
2

1
1

1
2

f (x1,x2,x3,x4)

Fig. P7.4

Problem 7.5. Consider the type of threshold functions for which all the weights are
equal, that is, w1 = w2 = · · · = wn. In particular, consider those f (x1, x2, . . . , xn) for
which

f (x1, x2, . . . , xn) = 1 if and only if
n∑

i=1

xi ≥ T/w,

f (x1, x2, . . . , xn) = 0 if and only if
n∑

i=1

xi < T/w.

Determine the value of f when (1) T/w = 0, (2) T/w > n, (3) 0 < T/w ≤ n.

Problem 7.6
(a) Prove that if f (x1, x2, . . . , xn) is a threshold function with weight–threshold vec-

tor V1 = {w1, w2, . . . , wn; T } then its dual, fd(x1, x2, . . . , xn), is also a threshold
function. Determine its weight–threshold vector.

(b) Prove that if f is a threshold function then so is

g = x ′
if + xifd,

where xi may or may not be a member of set {x1, x2, . . . , xn}. Find the weight–
threshold vector of g.

Problem 7.7
(a) Prove that if f (x1, x2, . . . , xn) is a threshold function with weight–threshold vector

{w1, w2, . . . , wn; T } then G = xp + f and H = xpf are also threshold functions,
where xp may or may not be a member of the set {x1, x2, . . . , xn}. Find wp and the
weight–threshold vectors for G and H .
Hint: Define two numbers M and N such that

M =
∑

all positive weights

wi, N =
∑

all negative weights

wi,

and, if convenient, use them in the expression for wp .

204 Threshold logic for nanotechnologies

(b) Given that f (x1, x2, x3) = x1x3 + x ′
3 is a threshold function, use the result of (a) to

show that

f1(x1, x2, x3, x4) = x2 + x ′
3 + x4

and

f2(x1, x2, x3, x4) = x1x2x4 + x2x
′
3x4

are threshold functions. Give the weight–threshold vector in each case.

Problem 7.8. The functions f1(x1, x2, x3) and f2(x1, x2, x3) are each realizable by a
single threshold element. The weight–threshold vectors of these elements are, respec-
tively,

V1 = {−1,−1, 1; 0}, V2 = {1, 2, −1; 2}.

Is the function

f (x1, x2, x3, x4) = x4f1(x1, x2, x3) + x ′
4f2(x1, x2, x3)

realizable by a single threshold element? If yes, give its weight–threshold vector. If not,
indicate clearly why it is not a threshold function.

Problem 7.9. Prove that if an expression corresponding to a function that is positive
(negative) in xi contains both xi and x ′

i then every occurrence of the literal x ′
i (xi) is

redundant.

Problem 7.10
(a) Prove that a necessary and sufficient condition for a function to be unate is that all

its prime implicants intersect in a common implicant. (For example, the common
implicant for

f1(x1, x2, x3, x4) =
∑

(0, 1, 3, 4, 5, 6, 7, 12, 13)

is the minterm 5.)
(b) Prove that the minimal sum-of-products form of a unate function is unique and

consists of all prime implicants.
Hint: Use Problem 7.9 and the fact that the conjunction of all product prime implicants

of a unate function cannot be zero.

Problem 7.11. Use the result of Problem 7.10 to determine which of the following
functions is unate and show its minimal form:
(a) f1(x1, x2, x3, x4) = ∑

(1, 2, 3, 8, 9, 10, 11, 12, 14);
(b) f2(x1, x2, x3, x4) = ∑

(0, 8, 9, 10, 11, 12, 13, 14);
(c) f3(x1, x2, x3, x4) = ∑

(2, 3, 6, 10, 11, 12, 14, 15).

Problem 7.12. For each of the following functions, find a two-element cascade real-
ization of the type illustrated in Fig. 7.10c:
(a) f1(x1, x2, x3, x4) = ∑

(2, 3, 6, 7, 8, 9, 13, 15);
(b) f2(x1, x2, x3, x4) = ∑

(0, 3, 4, 5, 6, 7, 8, 11, 12, 15).

205 Problems

Problem 7.13. The MOBILE implementation of a full adder, if based on the threshold
network in Fig. 7.14b, requires five threshold gates. Obtain a MOBILE implementation
of a full adder that requires only four threshold gates.

Hint: It does not contain any threshold buffers.

Problem 7.14. Prove that any three-variable function can be implemented with at most
four majority gates in a two-level network.

Problem 7.15. Assuming that only uncomplemented inputs are available, implement a
full adder with only three majority gates and two inverters.

Problem 7.16. Implement the function f = x ′
1x

′
2x3 + x1x

′
3 + x2x

′
3 + x1x2 with at most

four minority gates.

C H A P T E R

8 Testing of combinational circuits

The problem of determining whether a digital circuit operates correctly is of
both theoretical interest and practical concern. Present-day digital systems may
be disabled by almost any internal failure. Failures are caused by faults that are
initially manifested as errors and finally as failures. In this chapter, we shall
study various fault models, techniques for generating tests, and logic synthesis
techniques that ensure testability with respect to various types of fault.

8.1 Fault models

In order to alleviate the complexity of test generation, one needs to model the
actual defects that may occur in a chip with fault models at higher levels of
abstraction. This process of fault modeling considerably reduces the burden of
testing because it obviates the need for deriving tests for each possible defect.
This is due to the fact that many physical defects map to a single fault at the
higher level.

Faults may change the logic values at some internal lines in the integrated
circuit, or they may result in a change in the voltage or current levels. They
may also change the temporal behavior of the circuit.

Currently, most popular fault models are described at the structure and switch
levels of the integrated-circuit design hierarchy. In this section, we shall exam-
ine these fault models.

Structural fault models

In structural testing we need to make sure that the interconnections in the given
structure are fault-free and are able to carry both 0 and 1 signals. The stuck-at
fault model is directly derived from these requirements. A line is said to be
stuck-at 0 (s-a-0) or stuck-at 1 (s-a-1) if the line remains fixed at a low or high
voltage level, respectively (assuming positive logic). A stuck-at fault does not
necessarily imply that the line is shorted to the ground or power line. It could
be a model for many other cuts and shorts internal or external to a gate. For

206

207 8.1 Fault models

example, a cut on the stem of a fanout may result in an s-a-0 fault on all its
fanout branches. However, a cut on just one fanout branch may result in an
s-a-0 fault on just that fanout branch. Therefore, stuck-at faults on stems and
fanout branches have to be considered separately.

If the stuck-at fault is assumed to occur on only one line in the circuit, it is
said to belong to the single stuck-at fault model. Otherwise, if stuck-at faults
are simultaneously present on more than one line in the circuit, the faults are
said to belong to the multiple stuck-at fault model. If the circuit has k lines, it
can have 2k single stuck-at faults, two for each line. However, the number of
multiple stuck-at faults is 3k − 1 because there are three possibilities for each
line (s-a-0, s-a-1, fault-free), and the resultant 3k cases include the case where
all lines are fault-free. Clearly, even for relatively small values of k, testing
for all multiple stuck-at faults is impossible. However, as we shall see later in
this chapter, synthesis methods exist that can guarantee circuit testability with
respect to all multiple stuck-at faults.

Example Consider the circuit shown in Fig. 8.1. Assume first that only the
line c1 has an s-a-0 fault. To test for this single stuck-at fault, we can apply
(x1, x2, x3, x4) = (1, 1, 0, 1) to the circuit. In the fault-free case f = 1 and
in the presence of the fault f = 0. Thus, the fault is detected. If a c1 s-a-
0 fault, a c2 s-a-0 fault, and an x3 s-a-1 fault are simultaneously present
then we have a multiple stuck-at fault. This multiple stuck-at fault is also
detected by the test vector (1, 1, 0, 1). In fact, one can check that any vector
that makes f = 1 in the fault-free case will detect this fault.

x1
x2

f
x3
x4 c2

c1

Fig. 8.1 A logic circuit with stuck-at faults.

The stuck-at fault model is not only the most popular one for current tech-
nologies but will also be useful for future nanotechnologies. As an example,
consider the MOBILE shown in Fig. 8.2.1 It shows the cuts and shorts that
commonly occur in a defective chip. These defects can be modeled as stuck-at
faults at the threshold gate level. A cut (e.g., at defect sites 1, 2, and 3) on an
HFET or on a line connecting the RTD and HFET makes the line nonconduct-
ing and can be modeled as an s-a-0. Similarly, a short across an RTD (site 4)
or the driver RTD (site 8) can also be modeled as an s-a-0 fault because in

1 Recall from Chapter 7 that a MOBILE implements a threshold gate.

208 Testing of combinational circuits

x1

Clk

T

w1 w2

−w3

f

x2

x3

1

2

3

4

5

6

8

7

Fault
site

Equivalent
fault

1
2
3
4
5
6
7
8

cut
short

x1 s-a-0

x1 s-a-0
x1 s-a-0

x3 s-a-0
x2 s-a-1
f s-a-0 or f s-a-1
f s-a-1
f s-a-0

Fig. 8.2 Fault modeling for a
MOBILE threshold gate [11] c©
2008, IEEE.

the former the input weight becomes zero while in the latter there is a direct
connection between the output and ground. A cut at site 6 represents an s-a-1
or s-a-0 fault depending on whether the threshold of the gate is less than 0 or
greater than or equal to 0. However, defects at sites 5 and 7 can be modeled
as s-a-1 faults. A short across the HFET will make it conduct permanently
whereas a direct connection between the output and bias voltage makes the
fault appear as an s-a-1 when the MOBILE is active.

Switch-level fault models

Switch-level fault modeling deals with faults in transistors and interconnects in a
switch-level description of a circuit. This fault model has mostly been used with
MOS technologies, specifically CMOS technology. The most prominent mem-
bers in this category are the stuck-open, stuck-on, and bridging fault models.

The stuck-open fault model
A stuck-open fault refers to a transistor that becomes permanently nonconduct-
ing owing to some defect.

Example Consider the two-input static CMOS NOR gate shown in
Fig. 8.3a. This gate consists of an nMOS network containing transistors
Q1 and Q2 and a pMOS network containing transistors Q3 and Q4. Recall
that an nMOS (pMOS) transistor conducts when the value 1 (0) is fed to
its input, otherwise it remains nonconducting. Suppose that a defect d1

causes an open connection in the gate, as shown. This prevents Q1 from
conducting and is thus said to result in a stuck-open fault in Q1. Let us
see what happens when we apply an exhaustive set of input vectors to the
faulty gate in the sequence (x1, x2) = {(0, 0), (0, 1), (1, 0), (1, 1)}. When
(0, 0) is applied, Q3 and Q4 conduct and the output f = 1. Next, with
the application of (0, 1) f gets pulled down to the value 0 through Q2.
When (1, 0) is applied, there is no conduction path from f to Vss because

209 8.1 Fault models

Q3

Vdd

x1

f

Vss

x2

(a) CMOS NOR gate.

Q1 Q2

Q4

Vdd

x1 f

Vss

x2

(b) CMOS NAND gate.

Q3 Q4

Q1

Q2xd1

d2

Fig. 8.3 Two-input static CMOS gates.

of the stuck-open fault in Q1. Therefore f retains its previous value, which
is 0. Finally, with the application of the vector (1, 1), f = 0 because of the
conduction path through Q2. Therefore, we obtain the correct output values
at f in the presence of the stuck-open fault even after the application of the
exhaustive test set containing all two-bit input vectors. This is due to the
fact that the stuck-open fault has forced the gate to behave in a sequential
fashion.

Thus, in order to test the circuit for a stuck-open fault, we need a sequence
of vectors. Usually two-pattern tests, consisting of an initialization vector and
a test vector, are used. Because the CMOS gate can retain its previous value at
its output in the presence of a stuck-open fault, the initialization vector is used
to initialize the output to the value that is the complement of the value expected
when the stuck-open fault is tested.

Example To detect a stuck-open fault caused by the defect d1 in the NOR
gate mentioned above, one needs to activate a conduction path through the
faulty transistor without activating any parallel path. There is only one such
test vector: (1, 0). Since, in the fault-free case, for this input vector we
expect f = 0, the initialization vector should make f = 1. There is only
one such vector: (0, 0). Therefore, {(0, 0), (1, 0)} is a unique two-pattern
test for this stuck-open fault. When the fault is present, we get the value 1 at
the output when (1, 0) is applied. Thus, the fault is detected. Similarly, the
two-pattern test {(0, 0), (0, 1)} can detect the stuck-open fault in transistor
Q2. For detecting stuck-open faults in transistors Q3 or Q4, {(0, 1), (0, 0)}
or {(1, 0), (0, 0)} can be used. Therefore, one possible test sequence that
detects all four stuck-open faults in the NOR gate is {(0, 0), (0, 1), (0, 0),
(1, 0)}.

210 Testing of combinational circuits

The stuck-on fault model
If a transistor has become permanently conducting due to some defect, it is said
to have a stuck-on fault.

Example Consider the two-input NAND gate shown in Fig. 8.3b. Suppose
that owing to a defect d2, the source and drain of transistor Q4 become
shorted, as shown. This results in a stuck-on fault in this transistor. In order
to try to test for this fault, the only vector we could possibly apply to the
NAND gate is (1, 1). In the presence of the fault, transistors Q1, Q2 and
Q4 will conduct. This will result in some intermediate voltage at the output.
The exact value of this voltage will depend on the on-resistances of the
nMOS and pMOS transistors. If it maps to the value 1 at the output then
the stuck-on fault is detected, otherwise it is not. Now suppose that the only
fault present in the gate is a stuck-on fault in transistor Q2. In order to try
to test for this fault, the only vector we could possibly apply is (1, 0). In the
presence of the fault, again the same set of transistors, Q1, Q2 and Q4, will
conduct. However, this time we would like the intermediate voltage to map
to the value 0 in order to detect the fault. Since the same set of transistors is
activated in both cases, the resultant voltage at the output will be the same.
Therefore, because of the contradictory requirements for the detection of the
stuck-on faults in Q4 and Q2, only one of these two faults can be detected.

The above example illustrates that simply monitoring the logic value at the
output of the gate, called logic monitoring, is not enough if we are interested
in detecting all single stuck-on faults in it. Fortunately, a method called IDDQ

testing is available, which measures the current drawn by the circuit and can
ensure the detection of all stuck-on faults. This method is based on the fact that,
whenever there is a conduction path from Vdd to Vss due to a stuck-on fault, the
current drawn by the circuit increases by several orders of magnitude compared
to the fault-free case. Thus, with the help of an IDDQ (quiescent drain current)
current monitor, such faults can be detected. The disadvantage of IDDQ testing
is that it is slow, since it may be possible to feed vectors only at the rate of a
few KHz, whereas in logic monitoring, it may be possible to apply vectors at
tens or hundreds of MHz.

The bridging fault model
With shrinking geometries, the percentage of chip defects causing shorts, also
called bridging faults, has been on the increase.

Example Consider the bridging fault between lines c1 and c2 in the circuit
shown in Fig. 8.4. Such a fault will be denoted by <c1, c2>. For some
input vectors this fault will create a conducting path from Vdd to Vss . For
example, for (x1, x2, x3) = (1, 1, 0), there is a path from Vdd to Vss through

211 8.1 Fault models

Vdd

x1

c1

Vss

x2

Vdd

f

VssVdd

x3 c2

Vss

Fig. 8.4 Bridging fault in a static CMOS circuit.

the pMOS network of the inverter, the fault, and the nMOS network of the
NAND gate. During fault-free operation, this vector causes opposite values
to appear at c1 and c2, i.e., c1 = 0 and c2 = 1. When the fault is present,
this will result in an intermediate voltage at the bridged lines. Whether this
results in the values 0 or 1 at these lines depends on the relative impedances
of the two networks. The resultant value may also differ from one vector to
another. For example, (0, 1, 1) also creates a conduction path from Vdd to
Vss.2 However, it is possible that the shorted lines have the value 1 for the
vector (1, 1, 0) and the value 0 for vector (0, 1, 1). Furthermore, different
gates fed by the shorted lines may interpret the intermediate voltage on these
lines as different logic values.

Even though it is clear that bridging faults in CMOS circuits cannot be
guaranteed to be detected by logic monitoring, they can be detected by IDDQ

testing since they activate a path from Vdd to Vss.
Bridging faults are sometimes categorized as feedback or nonfeedback faults.

If one or more feedback paths are created in the circuit owing to the fault then
it is called a feedback fault, otherwise a nonfeedback fault.

Delay fault models

Instead of affecting the logical behavior of the circuit, a fault may affect its tem-
poral behavior only. Such faults are called delay faults. Delay faults adversely

2 During fault-free operation, this vector causes opposite values to appear at c1 and c2, i.e.,
c1 = 1 and c2 = 0.

212 Testing of combinational circuits

affect the propagation delays of signals in the circuit. Hence, an incorrect
value may be latched at the output. With the continuing emphasis on design-
ing circuits for very high performance, delay fault models have attracted wide
attention.

Two types of delay fault models are typically used.

� The transition fault model A circuit is said to have a transition fault in
some gate if the output of the gate has a lumped delay fault that delays its
0 → 1 or 1 → 0 transition by more than the system clock period.

� The path delay fault model A circuit is said to have a path delay fault if
there exists a path from a primary input to a circuit output in it which is slow
to propagate a 0 → 1 or 1 → 0 transition from its input to its output.

Clearly, the path delay fault model is the more general of the two models, as it
models the cumulative effect of the delay variations of the gates and wires along
the path. However, because the number of paths in a circuit can be very large,
the path delay fault model may require much more time for test generation and
test application than the transition fault model.

Because of the need to propagate a transition, delay faults, just like stuck-
open faults, require two-pattern tests.

Example Consider the circuit shown in Fig. 8.5. A path is shown in bold
from x2 to f1. If this path significantly delays the propagation of the 0 → 1
or 1 → 0 transition launched at x2 then the circuit is said to have a path
delay fault.

x1
x2

f1

G1

x5x4

c1

f2

G5

G3

G2x3

x4
G4

c3c2

Fig. 8.5 A circuit for illustrating delay faults.

Next, consider gate G3. If either logic transition, i.e., 0 → 1 or 1 → 0,
through every path going through G3 gets significantly delayed then G3 is
said to have a transition fault. Note that there are eight such paths, four to
f1 and four to f2.

When a 0 → 1 (1 → 0) transition is delayed, it is said to be a slow-to-rise
(slow-to-fall) transition fault.

8.2 Structural testing

Structural testing refers to the detection of faults on the interconnections in
the structure of the circuit. This is done by finding input test vectors that

213 8.2 Structural testing

pm
1

A n
q

0
010 1

01 01 0 1

0

1

1

1

Fig. 8.6 Part of a circuit
describing a sensitized path.

expose the fault at circuit outputs by causing an error (an unexpected out-
put response) to occur. Typically, the structure is assumed to be a gate-level
description and the faults targeted are of the single stuck-at kind. In this section
we shall first discuss the basic concepts employed in this area and then use
them to discuss the D-algorithm, which is a complete structural test generation
algorithm.

In testing, one frequently comes across the following three terms: the test
generation time, the test application time, and the fault coverage. The test
generation time refers to the time it takes to generate the test set for a circuit
on a computer. The test application time refers to the time it takes to apply the
test vectors in the test set to the circuit under test. The fault coverage refers to
the percentage of all the targeted faults that are actually detected by the derived
test set.

Path sensitization

The main idea behind path sensitization can be illustrated by deriving a test
vector that detects an s-a-1 fault at input A of the circuit in Fig. 8.6. Suppose
that this path is the only one from A to the circuit output. In order to test for
an s-a-1 fault at input A, it is necessary to apply a 0 to A and 1’s to all the
remaining inputs of the AND and NAND gates in the path, and 0’s to all the
remaining inputs of the OR and NOR gates along the path. This ensures that all
the gates will allow the propagation of the signal from A to the circuit output,
and that only this signal will reach the circuit output. This assignment of values
is shown in Fig. 8.6. The path is now said to be sensitized.

If input A is s-a-1 then m has an error that changes its value from 1 to 0, and
this change propagates through connections n and p and causes q to change
from 0 to 1. Clearly, in addition to detecting an s-a-1 fault at A, this test vector
also detects s-a-0 faults at m, n, and p, and an s-a-1 fault at q. An s-a-0 fault
at A is detected in a similar manner. The value 1 is applied to A, while the
other gate input values remain the same as before. This second test vector will
also detect a set of faults on this path that is complementary to the set detected
by the previous test vector. Thus, the two test vectors together are sufficient to
detect all s-a-0 and s-a-1 faults on this path.

The basic principles of the above method, which is also known as one-
dimensional path sensitization, can be summarized as follows.

1. At the site of the fault, assign a logic value complementary to the fault being
tested. That is, to test xi for s-a-0 assign xi = 1, and to test it for s-a-1
assign xi = 0.

214 Testing of combinational circuits

2. Select a path from the primary inputs through the site of the fault to a circuit
output. The path is said to be sensitized if the inputs to the gates along the
path are assigned values so as to propagate to the path output any error on
the wires along the path. This process is called error propagation.

3. Determine the primary input values that produce all the necessary signal
values specified in the preceding steps. This is accomplished by tracing the
signals backward from each of the gates along the path to the primary inputs.
This process is called line justification or consistency.

Example Suppose that we want to derive a test vector for an s-a-1 fault at
line c1 in the circuit in Fig. 8.7. Error propagation starts with assigning a 0
to c1 and selecting a path to be sensitized. Let us choose to sensitize the path
consisting of gates G5, G7, and G9 to the output f2. Clearly, since G5 and
G9 are OR gates, their other inputs (also called side inputs) must be 0. This
completes error propagation and the path is now sensitized. Next, we need
to justify the 0’s at lines c2 and c7 at the primary inputs. The line c7 can be
made 0 by making x3 = x4 = 0. To make c2 = 0, we have three choices at
(x1, x2), i.e., (0, 0), (0, 1), or (1, 0). If we choose (0, 0) then a test vector for
a c1 s-a-1 fault is

(x1, x2, x3, x4, x5) = (0, 0, 0, 0, 1).

x1
x2

f1

f2

x3
x4

c4

c3
s-a-1

c6c5

x5
c7

c1

c2

G1

G9

G8

G7G5

G6G4

G3

G2
x

Fig. 8.7 Example of path sensitization.

If, in response to the above test vector, the circuit produces an output
value f2 = 1 then the fault in question does not exist. However, if f2 = 0
then the circuit has a fault. This does not necessarily mean that c1 is s-a-1,
since such an erroneous output value can be caused by a c3 or c5 s-a-1 fault
or by a c6 or f2 or x5 s-a-0 fault.

An important concept that is useful in speeding up the test generation pro-
cess is called implication. Given the logic value of some line in the circuit,
implication determines the logic values uniquely implied at other lines in the
circuit. This can be done in both the backward and forward directions. In
the above example, knowing that the assignment c7 = 0 has been made in the

215 8.2 Structural testing

error propagation step, backward implication determines that x3 = c4 = 0. The
forward implication of c7 = 0 determines that f1 = 0. In this case, only the
backward implication is helpful in arriving at a test vector. However, in general
both forward and backward implications are helpful in speeding up test gen-
eration and should be performed after steps 1 and 2 in the path sensitization
procedure given above.

In general there may be several possible choices of sensitized paths from the
fault site to a circuit output. In the above example, one could have tried instead
to sensitize the path through gates G4, G6, and G9 or gates G4, G6, and G8. It
may so happen that one choice leads to a conflict in the required logic values
and then it may be necessary to backtrack and choose another path. Moreover,
for a given sensitized path, there may be more than one way of specifying the
input values so as to propagate the error along the path. This process may also
involve backtracking.

A major advantage of the path sensitization method is that, as illustrated by
Fig. 8.6, in many cases a test vector for a primary input is also a test vector
for all the lines along the sensitized path to a circuit output. Consequently, if
we can select a set of test vectors (called a test set) that sensitizes a set of
paths containing all the lines in the circuit then it is sufficient to detect just
those faults that appear at the primary inputs. However, when a circuit contains
fanout, in particular reconvergent fanout, one-dimensional path sensitization
is not guaranteed always to generate a test vector even if one is known to
exist (see Problem 8.1). This has led to a more general two-dimensional path
sensitization method called the D-algorithm that is complete, i.e., it guarantees
finding a test vector if one exists.

Fault collapsing

The number of faults that need to be targeted for test generation can be sig-
nificantly reduced through the process of fault collapsing. Consider a circuit
whose fault-free output is f . Let fα denote the circuit output in the presence
of fault α. A test vector that detects α must clearly satisfy the condition

f ⊕ fα = 1.

For example, consider an AND gate with inputs a and b and output f . Suppose
that at input a an s-a-0 fault is present, and let the corresponding function be
denoted as fa/0. Then the only vector that satisfies the above condition is (1, 1).
Thus, this is a test vector for an s-a-0 fault at a.

In some circuits, it is possible that f ⊕ fα = 0. This would mean that the
fault-free and faulty circuits yield the same logic value for each input vector.
In this case, fault α cannot be detected and is referred to as untestable or
redundant. A circuit in which all single stuck-at faults are testable is called
fully testable or irredundant. We will deal with untestable faults later.

216 Testing of combinational circuits

Next, consider two faults α and β for which the following condition is
satisfied:

fα ⊕ fβ = 0.

This means that fα and fβ are identical. In such a case, faults α and β are said
to be equivalent. Consider again the two-input AND gate. Faults s-a-0 at a,
s-a-0 at b, and s-a-0 at f are all equivalent since, for all the four input vectors,
they produce identical logic values at the output. The vector (1, 1) detects each
of these faults. Therefore, it is enough to target only one fault from a set of
equivalent faults. This is called equivalence fault collapsing.

In general, for an n-input primitive gate, i.e., for AND, OR, NAND or NOR
gates, n + 1 stuck-at faults are equivalent. This applies to:

� all s-a-0 faults at the inputs and output of an AND gate;
� all s-a-1 faults at the inputs and output of an OR gate;
� all s-a-0 faults at the inputs and an s-a-1 fault at the output of a NAND gate;
� all s-a-1 faults at the inputs and an s-a-0 fault at the output of a NOR gate.

The above result implies that out of the 2(n + 1) single stuck-at faults possible
in an n-input gate (two faults at each input and output), we need to consider
only n + 2 faults for test generation on the basis of equivalence fault collapsing.
For example, for an AND gate these would be the n + 1 s-a-1 faults and any
s-a-0 fault chosen as a representative of the equivalent set of faults containing
all the n + 1 s-a-0 faults.

Next, consider two faults α and β once again. Let the set of test vectors that
can detect α (β) be denoted as Tα (Tβ). Fault β is said to dominate fault α if
Tα ⊂ Tβ . This means that whenever α is detected, so is β. Thus the dominating
fault can be removed from the list of faults that need to be targeted. In the
case of a two-input AND gate, one can see that an f s-a-1 fault dominates
both an a s-a-1 fault and a b s-a-1 fault since Tf/1 = {(0, 0), (0, 1), (1, 0)},
Ta/1 = {(0, 1)}, and Tb/1 = {(1, 0)}. Since either (0,1) or (1,0) will detect an f

s-a-1 fault, this fault can be omitted from the list of faults (also called the fault
list).

The above result further reduces the set of faults for an n-input primitive gate
from n + 2 to n + 1. This is called dominance fault collapsing. We can see that
for an AND (NAND) gate, the output s-a-1 (s-a-0) fault dominates each of the
input s-a-1 faults and can thus be omitted. Similarly, for an OR (NOR) gate,
the output s-a-0 (s-a-1) fault dominates each of the input s-a-0 faults.

The above fault-collapsing techniques lead to the following theorem.

Theorem 8.1 A test set that detects all the single stuck-at faults at all the
primary inputs and fanout branches of an irredundant combinational circuit
detects all the circuit’s single stuck-at faults. The primary inputs and fanout
branches are referred to as its checkpoints.

217 8.2 Structural testing

Proof The proof follows from the fact that a stuck-at fault at the output of
each gate in the circuit is either equivalent to one of the input stuck-at faults of
that gate or dominates it. However, a stuck-at fault at a fanout branch is neither
equivalent to nor dominates a stuck-at fault at that fanout stem. Hence, if we
scan the circuit from its output to its primary inputs, we can delete all faults
not located at the primary inputs or fanout branches. ♦

Corollary A test set that detects all the single stuck-at faults at all the primary
inputs of a fanout-free combinational circuit detects all its single stuck-at faults.

Example Consider the circuit in Fig. 8.8. Theorem 8.1 indicates that the
checkpoints are the primary inputs x1, x2, x3, and x4 and the fanout branches
c1, c2, c4, and c5. Thus, only the 16 stuck-at faults on these eight lines need to
be considered for test generation. One can, in fact, reduce this fault list even
further. Since the x1 s-a-0 and c1 s-a-0 faults are equivalent, one of them
can be eliminated. Similarly, the s-a-0 faults at x3 and c2 are equivalent,
as are the s-a-0 faults at x4 and c5, and again one from each pair can be
eliminated. Finally, the c4 s-a-0 fault is equivalent to the c3 s-a-0 fault,
which dominates both the x1 s-a-1 and c1 s-a-1 faults. Thus, the c4 s-a-0
fault can be eliminated. Finally, we end up with only 12 single stuck-at
faults. One such fault list contains the s-a-0 faults at lines x1, x2, x3, and x4,
and the s-a-1 faults at lines x1, x2, x3, x4, c1, c2, c4, and c5.

c3x1

x3

x2

f2

f1

x4

c2

c5

c4

c1

Fig. 8.8 Fault-collapsing example.

The D-algorithm

D-algorithm is a generalization of the one-dimensional path sensitization pro-
cedure. It can simultaneously sensitize multiple paths, when necessary. The
name of the algorithm is derived from the error symbol D, which is a com-
posite value that represents a 1 on a line in the fault-free circuit and a 0 on
that line in the faulty circuit. The symbol D′ denotes the complementary sit-
uation, 0 in the fault-free circuit and 1 in the faulty circuit. The D-algorithm
uses a five-valued algebra composed of {0, 1, φ,D,D′}, where φ denotes an
unknown value. Thus, a line in a circuit can take any of these five values
during test generation. The symbols D and D′ behave like any Boolean vari-
able in Boolean algebra. For example, D + 0 = D, D · D′ = 0, D + D′ = 1,

218 Testing of combinational circuits

a

(a) NAND gate.

b f

0 0 1
a b f

1 1 0
1 0 1
0 1 1

D 1 D'
a b f

D D D
1 D D

a b f

(d) Propagation
D-cubes.

(c) Singular cover.(b) Truth table.

0 1

0
0

1 1
1 '

'

Fig. 8.9 A NAND gate and its
tables.

D · D = D + D = D, etc. We next discuss the basic definitions behind the
D-algorithm.

The singular cover of a gate represents a compacted form of its truth table.
For example, the singular cover of a NAND gate is shown in Fig. 8.9c. Each
row of a singular cover denotes a singular cube. Thus, 0 φ 1 is a singular
cube. The singular cubes can be seen to represent the prime implicants of f

and f ′.
A propagation D-cube gives the minimal condition for the propagation of

error through a gate. It is formed by combining two singular cubes or vectors
with opposite output values. For example, combining the first and third singular
cubes of the NAND gate yields the propagation D-cube D′ 1 D. If we combine
the third and first singular cubes, in that order, we instead obtain D 1 D′. Thus,
by interchanging D and D′ in a propagation D-cube, we can obtain another
propagation D-cube. Three propagation D-cubes for the NAND gate are shown
in Fig. 8.9d. Three others can be obtained by interchanging D and D′ in each
cube.

Different cubes can be combined through the process of D-intersection using
the following rules:

0 ∩ 0 = 0 ∩ φ = φ ∩ 0 = 0,

1 ∩ 1 = 1 ∩ φ = φ ∩ 1 = 1,

φ ∩ φ = φ.

The D-intersection C1 ∩ C2, of two D-cubes C1 and C2 is defined to have
the same value in each position where C1 and C2 have identical values, and
if the value is unknown in one cube then it denotes the value of the other
cube in that position. If C1 and C2 have known, but different, values in any
position then their intersection is null, i.e., it leads to a conflict. For example, let
C1 = 0 1 φ D, C2 = φ 1 D′ D, and C3 = 0 0 D′ 1. Then C1 ∩ C2 = 0 1 D′ D.
However, C1 ∩ C3 is null because of the conflicts in the second and fourth
positions.

The primitive D-cube of a fault (PDCF) gives the minimal condition for the
detection of a fault. For example, 1 1 D′ is a PDCF for the output f s-a-1
fault in a NAND gate, as well as its input a s-a-0 and input b s-a-0 faults.
This implies that the vector (1, 1) results in a 0 at f in the fault-free case but
a 1 in the faulty case. Similarly, there are two PDCFs for the output f s-a-0
fault in a NAND gate: 0 φ D and φ 0 D. Similarly, the PDCF of a s-a-1

219 8.2 Structural testing

(b s-a-1) is 0 1 D (1 0 D). An s-a-0 (s-a-1) fault at a line can be represented by
a single-element cube D (D′) at that line. Note that a PDCF gives the condition
for detecting a fault at a gate whereas a propagation D-cube gives the condition
for the propagation of error through a gate.

A test cube refers to the collection of all the circuit signals set to a particular
value from the five-valued algebra in order to derive a test vector.

We are now in a position to discuss the D-algorithm, whose steps are sum-
marized below.

1. PDCF selection Select a PDCF for the targeted fault as the initial test cube
and place the gate output that is assigned a D or D′ on the D-frontier.

2. Implication Perform implication (both forward and backward) of the val-
ues assigned in step 1. Do this by intersecting the test cube with the singular
cubes of other gates whenever a unique choice exists. If a conflict occurs,
backtrack to the previous point where a choice existed and renew the search
with the next available choice.

3. D-drive Intersect the current test cube with a propagation D-cube of a gate
whose input is on the D-frontier. Backtrack when necessary.

4. Implication of D-drive Perform implication of the values assigned in the
previous step. Repeat the D-drive and its implication until an error signal
has propagated to a circuit output.

5. Line justification For any gate G whose output is specified as 1 or 0 but
whose inputs are not yet justified, perform line justification by intersecting
the current test cube with a singular cube of G.

6. Implication of line justification Perform implication of the values assigned
in step 5. Repeat line justification and its implication until all specified values
have been justified. Backtrack when necessary.

Example Suppose that we want to derive a test vector for the s-a-0 fault
shown in Fig. 8.10. The different steps involved in applying the D-algorithm
to this example are shown in Table 8.1. Step 1 specifies the PDCF, which is
also the initial test cube tc0. Steps 2 and 3 involve propagation of the error
signal at x1 through gate G1. The implication of the current test cube results
in a 1 at line c3. At this point the D-frontier becomes empty. Since there
is no error signal left to be propagated, we backtrack to step 1. In steps 5

c3

x1

x3

x2

s-a-0

f

G1

c2

c1

G3

G4

G2

x

c4

Fig. 8.10 A D-algorithm example.

220 Testing of combinational circuits

Table 8.1 Different steps in the D-algorithm example

Step x1 x2 x3 c2 c3 c4 f Test cubes

1 D tc0: PDCF – initial test cube
2 D 1 D′ p1: propagation D-cube of G1

3 D 1 D′ tc1 = tc0 ∩ p1

4 D 1 D′ 1 tc2: implication of tc1; backtrack
5 D 1 D′ p2: propagation D-cube of G2

6 D 1 D′ tc3 = tc0 ∩ p2

7 D 0 1 D′ tc4: implication of tc3

8 D′ 1 D p3: propagation D-cube of G4

9 D 0 1 D′ 1 D tc5 = tc4 ∩ p3

10 0 1 s1: singular cube of G3

11 D 0 0 1 D′ 1 D tc6 = tc5 ∩ s1; test vector found

and 6, we propagate the D at x1 through gate G2. In step 7, c2 = 1 implies
x2 = 0 since x1 is already specified. In steps 8 and 9, the current error signal
at c3 is propagated through gate G4. Since an error signal has reached the
circuit output, the D-drive is over. Steps 10 and 11 involve line justification
through gate G3. At this point, the test vector (x1, x2, x3) = (1, 0, 0) has
been found.

The circuit in Fig. 8.10 actually contains an untestable fault. It is left as an
exercise to the reader to show that a c1 s-a-1 fault at the fanout branch of x1 is
untestable. This means that the circuit can be simplified, as we will see later.
Interestingly, one can easily ascertain that an x1 s-a-1 fault is testable.

8.3 IDDQ testing

Quiescent drain current (IDDQ) testing refers to the detection of defects in inte-
grated circuits through the use of supply current monitoring. This is specially
suited to CMOS circuits, in which the quiescent supply current is normally very
low. Therefore, an abnormally high current indicates the presence of a defect. In
order to achieve high quality, it is now well established that integrated circuits
need to be tested with structural, delay, and IDDQ tests.

In IDDQ testing, the error effects of the fault no longer have to be propagated
to circuit outputs for observation. The faults just have to be activated. Because
observability is no longer a problem, it is easier to derive tests for IDDQ-testable
faults. Next, we study test generation techniques for such faults.

Test generation for bridging faults

In this subsection, we first discuss conditions for the detection of bridging faults.
Then we consider fault collapsing methods for such faults, which reduce the

221 8.3 IDDQ testing

number of bridging faults that need to be targeted. Next, we present a test
generation method for bridging faults. We limit ourselves to the consideration
of a bridging fault between two nodes only, since if a bridging fault between
multiple nodes is present and we activate a path from Vdd to Vss through any two
nodes involved in the fault then IDDQ testing will detect the multiple-node fault
as well. Also, we will consider all two-node bridging faults in the circuit from
here on. It becomes necessary to do this in the absence of layout information.
However, if layout information is available then the list of faults can be reduced
on the basis of their likelihood of occurrence, e.g., the proximity of the two
nodes.

Condition for detecting bridging faults
Let P (r) denote the value of node r when vector P is applied to a
fault-free circuit. For the nonfeedback bridging fault <r1, r2>, as discussed
earlier, the only requirement for detection is that P (r1) and P (r2) assume
opposite values. However, this represents an optimistic condition for the
detection of feedback bridging faults. This can be seen as follows. Sup-
pose that P (r1) = 0 and P (r2) = 1. Because of the feedback bridging fault,
node r2 may be prevented in some cases from being connected to Vdd in
the faulty circuit. Thus, there may not be conduction between Vdd and Vss,
which is a prerequisite for IDDQ testing. However, for simplicity of exposi-
tion, henceforth we shall assume that fault detection is based on the optimistic
condition.

Fault collapsing
In order to reduce the test generation effort, we need to collapse the initial list
of bridging faults. Suppose that two nodes r1 and r2 exist in the circuit such
that, for every input vector P , P (r1) = P (r2). Then the bridging fault <r1, r2>

is redundant, i.e., no test exists for it. Furthermore, if a set of vectors T is such
that it detects the bridging faults between node r1 and nodes in set R then T

will also detect the bridging faults between node r2 and nodes in R. Hence,
every bridging fault involving node r2 can be replaced with a corresponding
fault involving node r1.

The first method for fault collapsing that uses the above arguments involves
the identification of logic trees containing inverters and/or buffers in the circuit.
Consider a root ci of such a tree. If there exists at least one inverter with output
cj in this tree such that the path from ci to cj in the tree does not contain any
other inverters, then we need to consider only those bridging faults for which
one node is ci or cj . The bridging faults involving the other nodes in the tree can
be ignored. If many inverters satisfying the condition for selecting cj exist then
one can be picked randomly. If no such inverter exists (i.e., the tree consists
of only buffers) then only node ci from the tree needs to be considered for the
bridging faults in the circuit.

222 Testing of combinational circuits

Example Consider the logic circuit shown in Fig. 8.11. Node c1 is the root
of a tree of inverters and a buffer. The path from c1 to c2 does not contain
any other inverters. Therefore bridging faults involving nodes c3, c4, c5, c6,
among themselves or with other nodes not be considered.

c1

x5

c4

c3

c2 x4

f3

x3

x2

x1 f2

f1c5

c6

c7

c8 G2

G1

Fig. 8.11 Fault collapsing.

The second method for fault collapsing involves fanout nodes. Consider a
set of nodes S such that each node in S has the same fanin nodes and realizes
the same function. Then a bridging fault between any pair of nodes in S is
redundant, and the above arguments can again be applied.

Example In Fig. 8.11, the fanins of nodes f1 and f2 are the same and
these two nodes realize the same function. Therefore, only bridging faults
involving either f1 or f2, not those involving both, need to be considered.
This argument can be extended to the internal nodes of gates G1 and G2 as
well, i.e., only those bridging faults need to be considered that involve the
internal nodes of either gate G1 or G2, but not both.

Test generation
Bridging faults can be detected by applying a stuck-at fault test generator to a
transformed circuit, as follows.

For a bridging fault <c1, c2> where both c1 and c2 are gate outputs, we insert
an EXCLUSIVE-OR gate G with inputs c1 and c2. The target fault given to
the stuck-at fault test generator is an s-a-0 fault at the output of G. If a test
is found for this fault then it would drive c1 and c2 to opposite values in the
fault-free case and, hence, be a test for the bridging fault. Otherwise, the fault
is redundant.

For a bridging fault <c1, c2> involving two internal nodes of a gate,
we use the detection criterion <c1 = 0, c2 = 1> or <c1 = 1, c2 = 0>, as
before.

223 8.3 IDDQ testing

Example Consider the bridging fault in the CMOS circuit shown in
Fig. 8.12. There are two ways to detect this fault, as follows:

� c3 = 0 and c5 = 1 This requires c1 = 1 and x4 = 0, x5 = 0. We can
introduce a gate G1 into a circuit model in such a way that the output
value of G1 is 1 if this condition holds, as shown in Fig. 8.13.

� c3 = 1 and c5 = 0 This requires x1 = 1, c1 = 0 and x4 = 1 or x5 = 1.
As before, we can introduce a gate G2 into a circuit model in such a
way that the output value of G2 is 1 if this condition holds, as shown in
Fig. 8.13.

Vdd

x4

f2

Vss

x5

Vdd

x2 c1

Vss

x3

Vdd

x1 f1

Vss

c3

c2

c5

c4

Fig. 8.12 Bridging faults between internal nodes.

Using G1 and G2, we can obtain a test for the bridging fault <c3, c5>

if the output of either G1 or G2 is 1. This is accomplished by adding a
two-input OR gate G, as shown in Fig. 8.13. The target stuck-at fault is an
s-a-0 fault at the output of G. A test vector for such a fault would result

224 Testing of combinational circuits

c1

x5

x'
'
4

x1
x3

x2

x5 G

G2

G1

x4

Fig. 8.13 Modeling of bridging faults between internal nodes.

in either (0, 1) or (1, 0) or (1, 1) to appear at the outputs of (G1,G2). Each
case would result in the detection of the bridging fault. This approach is, of
course, also applicable when one of the shorted nodes is a gate-level node
and the other is an internal node.

8.4 Delay fault testing

Delay fault testing exposes temporal defects in an integrated circuit. Even when
a circuit performs its logic operations correctly, it may be too slow to propagate
signals through certain paths or gates. In such cases, incorrect values may get
latched at the circuit outputs.

In this section, we first describe the clocking schemes and basic concepts.
We then present test generation methods for path delay faults and transition
faults.

An underlying assumption behind the fault models and most testing methods
presented here is that the gate propagation delays are fixed and independent of
the input values. Therefore, it is assumed that if a circuit passes a test for a given
fault then the fault will not cause an incorrect circuit operation for any other
sequence of input patterns. This does not strictly correspond to what happens
in actual circuits. Thus, this assumption can lead to some pitfalls in delay fault
testing. However, making this assumption keeps the delay fault testing problem
tractable.

Clocking schemes for delay fault testing

Delay fault testing techniques are based on either a variable clock scheme or
a rated clock scheme. The most commonly used is the variable clock scheme.
Consider the combinational circuit shown in Fig. 8.14a.3 In the variable clock

3 In this circuit, input and output latches are also shown. These are sequential elements that store
logic values; they will be considered in detail in Chapter 9.

225 8.4 Delay fault testing

Input
clock

In
pu

tl
at

ch
es

Combinational
circuit

t1

(a) Circuit under test.

O
ut

pu
tl

at
ch

es

P1

Output
clock

t3t2

(b) Variable clock.

P2P1

t0 t3t2t1

(c) Rated clock.

P0

P2

Fig. 8.14 Different clocking
schemes for combinational
circuit testing [4] c© 1998, IEEE.

scheme, two clocks are required to separately strobe the primary inputs and
circuit outputs, as shown in Fig. 8.14b. In a two-pattern test (P1, P2), the first
pattern (or vector) P1 is applied to the primary inputs at time t1 and second
pattern P2 at time t2. The shaded area represents the amount of time required
for the faulty circuit to stabilize after the application of P1. The circuit response
is observed at time t3.

This two-pattern test determines whether the propagation delay of a path,
through which a transition or path delay fault is being tested, exceeds the
time interval t3 − t2, which is the maximum allowable path delay for the rated
frequency of operation. Owing to the skewed input–output strobing, the interval
t3 − t2 is less than the interval t2 − t1, which is the time allowed for signal values
to stabilize in the faulty circuit. If we assume that no path delay in a faulty circuit
exceeds twice the clock period then t2 − t1 should be at least twice t3 − t2. This
delay fault testing methodology increases the test application time and renders
the hardware required for controlling the clock or the test application software
more complex. However, it makes test generation easier.

In the rated clock scheme, all input vectors are applied at the rated circuit
speed using the same strobe for the primary inputs and circuit outputs, as
shown in Fig. 8.14c. All the path delays in the fault-free circuit are assumed
to be smaller than the interval t2 − t1. However, paths in the faulty circuit
may have delays exceeding this interval. Therefore, logic transitions and

226 Testing of combinational circuits

hazards4 that arise at the time t1 owing to the vector pair P0, P1 may still be
propagating through the circuit during the time interval t3 − t2. This is shown
in Fig. 8.14c. In addition, other transitions may originate at time t2 owing
to the vector pair P1, P2. If we assume, as before, that no path delay in the
faulty circuit exceeds twice the clock period then signal conditions during the
interval t3 − t2 depend on three vectors P0, P1, P2. This, in general, makes test
generation more complex. However, this is the type of scenario one encounters
often in the industry. Contrast the above situation with the one in Fig. 8.14b for
the variable clock scheme, where signal conditions during the interval t3 − t2

depend on the vector pair P1, P2 only.
We will assume the use of the variable clock scheme in the rest of this

chapter, unless otherwise stated.

Basic definitions

An input of a gate is said to have a controlling value if it uniquely determines
the output of the gate independently of its other inputs. Otherwise, the value is
said to be noncontrolling. For example, 1 is the controlling value of an OR or
NOR gate, and 0 the noncontrolling value.

A path R in a circuit is a sequence (g0g1 · · · gr), where g0 is a primary input,
g1, g2, . . . , gr−1 are gate outputs, and gr is a circuit output. Let the gate with
output gj be denoted Gj . An on-input of R is a connection between two gates
along R. A side-input of R is any connection to a gate along R other than its
on-input.

There are two path delay faults (or logical paths) for each physical path R,
one for each direction of signal transition along R. A path delay fault can be
depicted in two equivalent ways: by considering the transition at its input or its
output. If the desired transition at the input g0 of R is a rising (falling) one, the
path delay fault is denoted ↑R (↓R). Alternatively, if the desired transition at
output gr of R is a rising (falling) one then the path delay fault is denoted R↑
(R↓).

There are various ways to classify path delay faults. However, the most
popular approach is to consider only two types of fault: robustly testable and
nonrobustly testable. We consider conditions for detecting such faults next.

A two-pattern test (P1, P2) is a nonrobust test for a path delay fault if and
only if it satisfies the following conditions: (i) it launches the desired logic
transition at the primary input of the targeted path, and (ii) all side-inputs of
the targeted path settle to noncontrolling values under P2.

4 Hazards represent a momentary transition to the opposite logic value. They are of two kinds:
static and dynamic. A static hazard indicates such a transition when the initial and final values
are the same, e.g., 0 → 1 → 0 or 1 → 0 → 1. A dynamic hazard indicates such a transition
when the initial and final values are different, e.g., 0 → 1 → 0 → 1 or 1 → 0 → 1 → 0.

227 8.4 Delay fault testing

Example Consider the EXCLUSIVE-OR gate implementation shown in
Fig. 8.15. It shows the signals at each node when the two-pattern test
{(0, 1), (1, 1)} is applied. The arrows show how the signal transitions propa-
gate. Signal value S1 denotes a steady value 1 at input x2. This is a nonrobust
test for a path delay fault x1c1c2f↓, which is shown in bold. The test is non-
robust because if the observation point were t2 then this test would be
invalidated since we would obtain the correct output value 0 for the second
vector even when the above fault is present. This would happen if a path
delay fault x1c2f↑ were also present in the circuit. Thus, a nonrobust test
cannot guarantee the detection of the targeted path delay fault.

x1
x

2
f

c
3

c2

c
1 G

3

G4

G
2

G1

S1 t
4

t
3

t
2

t
1

Fig. 8.15 An EXCLUSIVE-OR gate implementation [10] c© 1995, IEEE.

A robust test can detect the targeted path delay fault independently of the
delays in the rest of the circuit. (i) It must satisfy the conditions of nonrobust
tests, and (ii) whenever the logic transition at an on-input is from a noncon-
trolling to a controlling value, each corresponding side-input should maintain
a steady noncontrolling value.

Example Consider the EXCLUSIVE-OR gate implementation in Fig. 8.15
again. The test {(0, 0), (1, 0)} is robust for the path delay fault x1c2f↑, parts
of which are shown in the dotted and bold lines.

We saw above that a nonrobust test for a targeted path delay fault may be
invalidated by other path delay faults. However, in the presence of tests in the
test set that robustly test for invalidating path delay faults, a nonrobust test is
called validatable.

Example In Fig. 8.15, the rising transition at f just after t2 corresponds
to the path delay fault x1c2f↑, which was shown to have a robust test
{(0, 0), (1, 0)} in the previous example. Suppose that this test is in the test
set. If the circuit passed this test then the observation time can only be
t3 or t4 when {(0, 1), (1, 1)} is applied. In both cases, this test is valid.
Thus, {(0, 1), (1, 1)} is a validatable nonrobust test for the path delay fault
x1c1c2f↓, because either the path delay fault is caught, if the observation
time is t3, or the circuit is free of this fault, if the observation time is t4.

228 Testing of combinational circuits

U 1

XX S0 S1

U 1

XX

U 0

S1

S0

(a) Five-valued system.

U 0

(b) Covering relationship.

t2 t3
Fig. 8.16 Five-valued logic
system and the covering
relationship [21] c© 1987, IEEE.

Test generation for path delay faults

We next present a test generation method for path delay faults based on a five-
valued logic system. The number of values determines the time and memory
complexity of the methods based on them. The fewer the values, the less
complex the implementation. However, in general fewer values also imply less
efficiency (i.e., test generation takes longer).

The five values we consider are {S0, S1, U0, U1, XX}. They are depicted in
Fig. 8.16a. Each value represents a type of signal on the lines in a circuit in the
time interval t3 − t2 (see Fig. 8.14b). Let the two-pattern test be (P1, P2). Let
the initial value (final value) of a line in the circuit be the binary value on the line
after P1 (P2) has been applied and the circuit has stabilized. Under the variable
clock scheme, recall from Fig. 8.14b that at time t2 any signal on a line in the
circuit has stabilized to the initial value of that line. However, at time t3 a signal
in a faulty circuit may not have stabilized to the final value of the line. The
purpose of delay fault testing is to check whether signals do stabilize by time
t3. The value S0 (S1) represents signals on lines whose initial and final values
are 0 (1). Furthermore, the line remains free of hazards. The value U0 (U1)
represents signals on lines whose final value is 0 (1). The initial values of these
lines could be either 0 or 1. In addition, in the time interval t3 − t2, the lines
could have hazards. Obviously, the value U0 (U1) includes the value S0 (S1).
The value XX represents signals whose initial and final values are unspecified.
The covering relationship among the five values is shown in Fig. 8.16b. The
value U0 covers S0, U1 covers S1, and XX covers both U0 and U1.

In Fig. 8.17, implication tables for the five-valued logic system are given
for AND, OR, and NOT gates. From these tables and the associative law of
Boolean algebra, one can determine the output values of multiple-input AND,
OR, NAND, and NOR gates, given their input values.

Test generation for robustly testable path delay faults
In deriving two-pattern tests for path delay faults, the signals U0 and U1
are interpreted in two different ways. The U0 (U1) signal on an on-input is

229 8.4 Delay fault testing

S0 U0 U0

U0U0U0

U0

S1 U1 S1

S1

S1

S1 S0

S0

U0

U0U1

U1

S1

U1

U1

U1 U1

U1

U1U1U1

U1

(a) AND table.

S0

U0

S1

U1

S0

x2
x1

S0 S0

S0

S0S0

S1 S1 S1 S1

S1

S1

S1U0

U0

U0

U1

U1U1

U0 U0 U0 U0

S0 S0 S0

S0 S1

S0

XX XXS0XX XX

XX

XX

XX

(b) OR table.

x2
x1

XXXXXX

XX

XX

XX

S1

XX x1

XX

(c) NOT table.

f

XX

x1x1 fx1fx2
fx2

Fig. 8.17 Implication tables [21]
c© 1987, IEEE.

U0

S0

S1

U1

Falling (U0)

On-input
transition

AND or NAND

Gate
type

Rising (U1)

OR or NOR

Fig. 8.18 Robustly sensitizing
input values [21] c© 1987, IEEE.

x1
x2

(a) Robust side-input.

S1U1

x1
x2

x1
x2

(b) Non-robust side-input.

Fig. 8.19 Different types of
side-inputs for an AND gate.

interpreted as a 1 → 0 (0 → 1) transition. The U0 and U1 signals on lines in
the circuit, other than on-inputs, are interpreted according to Fig. 8.16a, i.e.,
with final values of 0 and 1, respectively.

The following key result is used for the robust test generation of path delay
faults. A two-pattern test (P1, P2) robustly tests such a fault if and only if: (i) it
launches the desired transition at the input of the targeted path, and (ii) the side-
inputs have values that are covered by the values indicated in Fig. 8.18. Such
side-inputs are called robust. This result follows directly from the definition of
a robust test. Figure 8.19a shows examples of robust side-inputs for an AND
gate; the on-input is shown in bold.

230 Testing of combinational circuits

Example Consider the bold path in the circuit in Fig. 8.20. Suppose that
the path delay fault with a rising transition at input x3 of this path needs to
be tested. Therefore we place the signal U1 at x3. The current side-input is
x4. From Fig. 8.18, we find that signal S0 must be placed on x4. From the
implication table in Fig. 8.17b, we find that the signal on line c2 is, therefore,
U1. The side-input of c2 is c1. From Fig. 8.18, we see that we need to place
S0 at c1. This results in U0 at line c3 (from the tables in Figs. 8.17b, c). The
side-input now is c4. From Fig. 8.18 we need to place U0 at c4, which allows
the propagation of U0 to the circuit output f . At this point, the sensitization
of the path under test is complete. Next, signals S0 at line c1 and U0 at
line c4 need to be justified at the primary inputs. This is accomplished as
shown in Fig. 8.20. In general, this step may need backtracking, just as in
the case of stuck-at fault test generation. The corresponding two-pattern
test is {(0, φ, 0, 0, φ), (0, φ, 1, 0, 0)}. Note that, for on-input x3, U1 was
interpreted as a 0 → 1 transition, whereas U0 on x5 was interpreted just as
a signal with a final value 0. However, if the unknown value for x5 in the
first vector is chosen to be 1, which gives the two-pattern test {(0, φ, 0, 0, 1),
(0, φ, 1, 0, 0)}, then readers can check that this two-pattern test also robustly
tests for the path delay fault ↓x5c4f .

f

x1
x2

x3

x5

x4

c1

S0

U0
x1

'

U0U0

U0
S1

U1

S0

S0
U1

XX

c4

c3c2

Fig. 8.20 Circuit illustrating robust test generation.

Test generation for nonrobustly testable path delay faults
The method presented above can be very easily modified to perform nonro-
bust test generation when robust test generation fails. The only modification
that is needed is to relax the conditions for side-input values, as shown in
Fig. 8.21. This follows directly from the definition of a nonrobust two-pattern
test. Figure 8.19b shows an example of a nonrobust side-input for an AND
gate.

When the on-input has a transition from a noncontrolling value to a con-
trolling value, nonrobust tests simply require that the side-inputs settle to a
noncontrolling value on the second vector, as opposed to the requirement
of a steady noncontrolling value for robust tests. The former side-inputs are
called nonrobust. Thus, a nonrobustly testable path delay fault has at least one

231 8.4 Delay fault testing

U0

U0

U1

U1

Falling (U 0)

On-input
transition

AND or NAND

Gate
type

Rising (U1)

OR or NOR

Fig. 8.21 Nonrobustly
sensitizing input values
[21] c© 1987, IEEE.

nonrobust side-input, the other side-inputs being robust for any two-pattern test.
The number of nonrobust side-inputs can be different for different two-pattern
tests. To reduce the chance of test invalidation, we aim to reduce the number
of nonrobust side-inputs. The time elapsed between when the noncontrolling
value on the side-input becomes stable and before the on-input becomes sta-
ble is called the slack of the side-input. If the slacks of all the side-inputs for
the fault under test are positive then there can be no test invalidation. Thus,
another objective of test generation is to maximize the slack of the nonrobust
side-inputs. Such two-pattern tests can tolerate larger timing variations at these
side-inputs.

The quality of nonrobust tests can be improved further by converting them
into validatable nonrobust tests, if possible. A two-pattern test P , obtained as
above with a minimal number of nonrobust side-inputs and maximal slack,
can be processed further as follows. If P has don’t-cares at some primary
inputs, we should specify the don’t-cares in such a fashion that the number of
transitions at the primary inputs is minimized (i.e., U1 is specified as 11, U0 is
specified as 00, and XX as 00 or 11). After performing the implications of the
new two-pattern test, Pnew, we examine the nonrobust side-inputs and identify
the path delay faults that need to be robustly tested to validate Pnew. If these
identified paths are indeed robustly testable then the nonrobust two-pattern test
in question is validatable.

Test generation for transition faults

In transition fault testing, since the delay defect size is assumed to be larger
than the system clock period, the delay fault can be exposed by appropriately
sensitizing an arbitrary path through the faulty gate. Consider a two-pattern
test (P1, P2) for a slow-to-rise transition fault at the output gi of some gate in a
circuit. The two-pattern test needs to satisfy two conditions: (i) gi(P1) = 0 and
(ii) gi(P2) = 1 and a path should be sensitized from gi to some circuit output
under P2. Thus, the two-pattern test launches a rising transition at the fault site
and makes the effect observable at a circuit output for the second vector. In
the presence of the transition fault, both the fault site and the circuit output
under question will have an error for the vector P2. Note that P2 is simply a
test for an s-a-0 fault at gi . For testing a slow-to-fall fault at gi the conditions
are similar, except that gi(P1) = 1 and gi(P2) = 0. In this case, P2 is an s-a-1
fault test for gi . In this method, possible test invalidation due to hazards at the

232 Testing of combinational circuits

circuit output under question is ignored. However, such a possibility can be
reduced by choosing two-pattern tests in which P1 and P2 differ in only one
bit, whenever possible.

Example Consider the circuit in Fig. 8.22. Suppose there is a slow-to-
rise transition fault at line c3. First, we need to derive a vector P1 that
makes c3 = 0. Such a vector is (φ, φ, 0, φ, φ). Then, we need to derive
a vector P2 that makes c3 = 1 and sensitizes any path from c3 to f .
One such vector is (0, φ, 1, 1, 1). Thus, one possible two-pattern test is
{(0, 0, 0, 1, 1), (0, 0, 1, 1, 1)}, which reduces the number of bits in which
the two vectors differ to just one.

x1

x2

f

c1

x3

x4

c4

c3

c2
c6

c5

x5

Fig. 8.22 Transition fault testing.

At-speed test generation

All the test generation methods presented so far have been under the variable
clock scheme. We now consider test generation under the rated clock scheme.
Rated clock tests are also called at-speed tests.

Suppose we make the assumption that the delay fault does not cause the
delay of the path it is on to exceed two clock cycles. Then a trivial way of
obtaining an at-speed test from a two-pattern test (P1, P2) derived under a
variable clock scheme, is to use the three-pattern test (P1, P1, P2). By doing
this, the signal values in the circuit are guaranteed to stabilize when the first
vector is left unchanged for two clock cycles. This method is applicable to
two-pattern variable clock tests derived for either fault model, path delay or
transition. If we relax our assumption and say that the delay fault does not
cause the delay of the path it is on to exceed n clock cycles then we can
simply derive an (n + 1)-pattern test where the first vector P1 is replicated n

times.

8.5 Synthesis for testability

Synthesis-for-testability techniques incorporate testability considerations dur-
ing the synthesis process itself. There are two major sub-areas: synthesis for full

233 8.5 Synthesis for testability

testability and synthesis for easy testability. In the former, one tries to remove
all redundancies from the circuit so that it becomes completely testable. In the
latter, one tries to synthesize the circuit in order to achieve one or more of the
following aims: small test generation time, small test application time, high
fault coverage. Of course, one would ideally like to achieve both full and easy
testability.

In this section, we consider both the stuck-at and delay fault models. Under
the stuck-at fault model, we look at single as well as multiple faults. Under the
delay fault model, we consider both path delay and transition faults.

Synthesis for stuck-at fault testability

In this subsection, we limit ourselves to the stuck-at fault model. We will
discuss the testability of two-level circuits, logic transformations for preserving
single or multiple stuck-at fault testability, and redundancy identification and
removal.

Two-level circuits
Two-level circuits are frequently the starting point for further logic optimiza-
tion. Hence, it is important to consider the testability of such circuits. Suppose
an irredundant sum of products is implemented as an AND–OR two-level cir-
cuit. Such a circuit is fully testable for all single stuck-at faults. In fact, a single
stuck-at fault test set also detects all multiple stuck-at faults in the two-level
circuit. The same result holds for a NAND–NAND two-level circuit, which can
also be derived from an irredundant sum of products, or for an OR–AND or
NOR–NOR two-level circuit derived from an irredundant product of sums.

Example Consider the two-level circuit shown in Fig. 8.23, which imple-
ments the irredundant sum of products f = x1x2 + x2x3. It is easy to
check that the test set {(0, 1, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} detects all single
stuck-at faults in this circuit.

x1
x2

x3

f

Fig. 8.23 An AND–OR two-level circuit.

Transformations to preserve single stuck-at fault testability
Given an initial circuit that implements the desired functions, one can apply
various transformations to it to obtain another circuit that meets certain desired

234 Testing of combinational circuits

area, delay, testability, and power constraints. In this section, we shall look at
transformations which can be applied to initial circuits that are testable for all
single stuck-at faults to produce final circuits that are also completely single
stuck-at fault testable. We first recapitulate some background material from
Chapter 6.

A cube is a product of a set C of literals such that if a literal x ∈ C then
x ′ ∈ C. Suppose that a function f is expressed as fdfq + fr. If fd and fq have
no inputs in common then both fd and fq are said to be algebraic divisors of f ,
where fr is the remainder. If an algebraic divisor has exactly one cube in it, it is
called a single-cube divisor. If it has more than one cube, it is called a multiple-
cube divisor. For example, if f = x1x2x3 + x1x2x4 + x5 then g1 = x1x2 is a
single-cube divisor of f whereas g2 = x2x3 + x2x4 is a multiple-cube divisor
of f . If we express f as x1g2 + x5 in this example, g2 is said to be algebraically
resubstituted in f . By identifying algebraic divisors common to two or more
expressions and resubstituting them, one can convert a two-level circuit into
a multi-level circuit. This process is referred to as algebraic factorization. If
the complement of the algebraic divisor is not used in this factorization, the
process is said to be algebraic factorization without the use of the complement.
A Boolean expression f is said to be cube-free if the only cube dividing
f without remainder is 1. A cube-free expression must have more than one
cube. For example, x1x2 + x3 is cube-free but x1x2 + x1x3 and x1x2x3 are not.
A double-cube divisor of a Boolean expression is a cube-free multiple-cube
divisor having exactly two cubes. For example, if f = x1x4 + x2x4 + x3x4 then
the double-cube divisors of f are {x1 + x2, x1 + x3, x2 + x3}.

We next consider a method for obtaining multi-level circuits that uses only
single-cube divisors, double-cube divisors, and their complements. These divi-
sors are extracted from functions that are given in irredundant sum-of-products
form. The complements are obtained by using only De Morgan’s theorem.
Boolean reductions such as a + a = a, a + a′ = 1, a · a = a, and a · a′ = 0
are not used. Furthermore, for simplicity, only two-literal single-cube divisors
are used, and the double-cube divisors are assumed to have at most two literals
in each of the two cubes and at most three variables as inputs.

In multi-level circuits, the first gate level processes primary inputs and
produces intermediate nodes. Then successive logic levels use both primary
inputs and intermediate nodes to produce new high-level intermediate nodes
and circuit outputs. Single-cube extraction is the process of extracting cubes
that are common to two or more cubes. The common part is then created
as an intermediate node. The transformation is as follows. From the expres-
sion f = x1x2A1 + x1x2A2 + · · · + x1x2An, the cube C = x1x2 is extracted
and substituted to obtain CA1 + CA2 + · · · + CAn. The double-cube extrac-
tion transformation consists of extracting a double-cube from a single-output
sum-of-products expression AC + BC to obtain C(A + B). Dual expres-
sion extraction transforms a sum-of-product expression f in the following
ways:

235 8.5 Synthesis for testability

1. f = x1A1 + x2A1 + x ′
1x

′
2A2 is transformed

to M = x1 + x2 and f = MA1 + M ′A2;
2. f = x1x

′
2A1 + x ′

1x2A1 + x ′
1x

′
2A2 + x1x2A2 is transformed

to M = x1x
′
2 + x ′

1x2 and f = MA1 + M ′A2.
3. f = x1x2A1 + x ′

2x3A1 + x ′
1x2A2 + x ′

2x
′
3A2 is transformed

to M = x1x2 + x ′
2x3 and f = MA1 + M ′A2.

At each step of the synthesis process the method selects and extracts a
double-cube divisor jointly with its dual expression or a single-cube divisor
that results in the greatest cost reduction in terms of the total literal-count. If
the above transformations are applied to a single-output sum of products then
single stuck-at fault testability is preserved.

In order to apply this method to a multiple-output two-level circuit, one
implements each output in an irredundant sum-of-products form (such cir-
cuits are sometimes called single-output minimized multiple-output two-level
circuits). Also, care must be taken during resubstitution. In a multiple-output
circuit, many nodes y1, y2, . . . , yk may be represented by the same expression.
Resubstitution is a transformation that replaces each copy of y1, y2, . . . , yk with
a single node. Resubstitution of common subexpressions in a multiple-output
function preserves single stuck-at fault testability if no two subexpressions
control the same output.

Suppose that some single stuck-at fault testable circuit C1 is transformed to
another circuit C2 using the above method; then not only is C2 guaranteed to be
single fault testable but also the single stuck-at fault test set of C1 is guaranteed
to detect all single stuck-at faults in C2. Such transformations are called test set
preserving.

Transformations to preserve multiple stuck-at fault testability
If algebraic factorization without complement (see above) is applied to a single-
output two-level circuit based on an irredundant sum of products, then the
resultant multi-level circuit is testable for all multiple stuck-at faults using
the single stuck-at fault test set of the two-level circuit. Unlike the method in
the previous section, the algebraic divisors in this case need not be limited to
single-cube and double-cube divisors.

The proof that algebraic factorization without complement preserves mul-
tiple stuck-at fault testability and test sets is intuitively quite simple. If we
collapse the algebraically factored multi-level circuit to a two-level circuit, we
arrive at the original sum-of-products expression from which we began the
synthesis process. Therefore, for every multiple stuck-at fault in the multi-level
circuit, we can obtain a corresponding multiple stuck-at fault in the two-level
circuit. Since the test set for the two-level circuit detects all multiple stuck-at
faults in it, it also detects all multiple stuck-at faults in the multi-level circuit.
However, frequently the size of the test set for two-level circuits is about two
to 10 times larger than the size of the single stuck-at fault test set for the

236 Testing of combinational circuits

multi-level circuit. Therefore, an increase in the test set size is the price paid
for multiple stuck-at fault testability.

Surprisingly, even though general algebraic factorization without comple-
ment preserves multiple stuck-at fault testability, it does not preserve single
stuck-at fault testability. This is owing to the fact that, in a single stuck-at fault
testable circuit, a multiple stuck-at fault may be redundant and after algebraic
factorization can become a single redundant stuck-at fault.

Example Consider the circuit in Fig. 8.24a, which can be verified to be
completely single stuck-at fault testable. If we replace gates G1 and G2 with
a single gate, corresponding to factoring out a single cube, we get the circuit
in Fig. 8.24b. In this circuit, an s-a-0 or s-a-1 fault at the output of gate H

is not testable. These single stuck-at fault redundancies are a result of the
double s-a-0 (or s-a-1) redundant fault at the outputs of gates G1 and G2 in
the circuit in Fig. 8.24a.

x4
x2

x5

G1

(a) Testable circuit.

x3

x1

f

x6

(b) Circuit with untestable fault.

x7

G2
M
U
X

x4

x2

x5

H

x3

x1

x6x7

M
U
X

Fig. 8.24 Activation of a latent redundant multiple stuck-at fault [12] c© 1992, IEEE.

One can also derive a multiple stuck-at or stuck-open fault testable and delay
fault testable multi-level circuit using Shannon’s decomposition. This will be
discussed later.

Redundancy identification and removal
Owing to suboptimal logic synthesis, unintentional redundancies can be intro-
duced into a circuit, and this can lead to a larger chip area and increase in its
propagation delay. However, the identification of redundant faults is computa-
tionally expensive since, typically, test generation algorithms declare a fault to
be redundant only if they fail to generate a test vector for it after implicit exhaus-
tive enumeration of all the vectors. Furthermore, the presence of a redundant
fault may invalidate the test for another fault, make a detectable fault redundant,
or make a redundant fault detectable. Therefore, the removal of such redundant
faults from a circuit can, in general, help reduce area and delay while at the
same time improving its testability.

One can categorize the redundancy identification and removal methods as
either indirect or direct. If redundancy identification is a byproduct of test
generation, it is called indirect. A direct method can identify redundancies

237 8.5 Synthesis for testability

without the search process involved in test generation. Such a method can be
further subdivided into three categories: static, dynamic, and don’t-care based.
Static methods analyze the circuit structure and perform value implications to
identify and remove redundancies; they usually work as a preprocessing step to
an indirect method. Dynamic methods work in concert with an indirect method.
However, they do not require an exhaustive search. Don’t-care-based methods
involve functional extraction, logic minimization, and logic modification.

Indirect methods If a complete test generation algorithm (i.e., one that can
guarantee the detection of a fault, given enough time) fails to generate a test for
an s-a-0 (s-a-1) fault at l which we abbreviate to “l s-a-0 (l s-a-1),” then l can
be connected to the value 0 (1) without changing the function of the circuit.
The circuit can then be reduced by simplifying gates connected to constant
values, replacing a single-input AND or OR (NAND or NOR) gate obtained
as a result of simplification with a direct connection (inverter), and deleting all
gates that do not fan out to any circuit output. The simplification rules are as
follows.

1. If the input s-a-0 fault of an AND (NAND) gate is redundant, remove the
gate and replace it with a 0 (1).

2. If the input s-a-1 fault of an OR (NOR) gate is redundant, remove the gate
and replace it with a 1 (0).

3. If the input s-a-1 fault of an AND (NAND) gate is redundant, remove the
input.

4. If the input s-a-0 fault of an OR (NOR) gate is redundant, remove the input.

Since the removal of a redundancy can make detectable faults undetectable
or undetectable faults detectable, it is not possible to remove all redundan-
cies in a single pass using these methods, as illustrated by the following
example.

Example Consider the circuit given in Fig. 8.25a. The following faults in
it are redundant: x1 s-a-0, x1 s-a-1, x3 s-a-0, x3 s-a-1, c1 s-a-0, c1 s-a-1,
c2 s-a-1, and c3 s-a-1. If none of these faults is present we can detect c4

s-a-1 by the vector (1, 0, 1, 1). However, if the redundant fault x1 s-a-0 is
present, it makes the former fault redundant too.

x1

x2 f

G1

x3

x4

c4

c3

c2

c1

G3
G2

(a) Initial circuit.

x2

x2

x4

f

(b) First pass.

x2
x4

f

(c) Second pass.

G5G4

Fig. 8.25 Redundancy identification and removal using the indirect method.

238 Testing of combinational circuits

Suppose we target x1 s-a-0 for removal. Using the above simplification
rules, we obtain the circuit in Fig. 8.25b in the first pass. We perform test
generation for all the faults in this circuit again and find that both the x2 s-a-1
faults seen in this figure are redundant. However, if either of these redundant
faults is present then the other becomes detectable. Targeting either fault
for redundancy removal, we get the irredundant circuit in Fig. 8.25c in the
second pass.

The need to target each fault in each test generation pass makes this method
computationally very expensive.

An interesting use of the indirect method is based on deliberately adding
redundancies to an irredundant circuit in order to create yet more redundancies,
which, upon removal, yield a better optimized circuit. This is done using the
concept of mandatory assignments. These are value assignments to some lines
in the circuit that must be satisfied by any test vector for the given fault.
These consist of control and observation assignments, which make it possible
to control and observe the fault, respectively. If these assignments cannot be
simultaneously justified then the fault is redundant. Using this approach, we
can add redundant connections (with or without inversions) to the circuit in
such a way that the number of connections that become redundant elsewhere in
the circuit is maximized. Then after redundancy removal targeted first towards
these additional redundancies, we obtain a better irredundant circuit realizing
the same functions.

Example Consider the c1 s-a-0 fault in the irredundant circuit shown in
Fig. 8.26a (ignore the broken-line connection for the time being). The
mandatory control assignment for detecting this fault is c1 = 1 and the
mandatory observation assignment is c2 = 0. These assignments imply x ′

1 =
1, x3 = 1, and x2 = 0, which in turn imply c3 = 1, c4 = 0, and f2 = 1.

x'

'
'

'
'

1

x2

f1
x3

x2

c1

f2

x3

x2

x1

x3

x1

(a) Original circuit.

x2

f1

x2

f2

x3

x2

x1

x3

x1

(b) Final circuit.

c4

c3

c2

Fig. 8.26 Redundancy addition and removal.

239 8.5 Synthesis for testability

Since c3 = 1, if we were to add the broken-line connection, the effect
of the c1 s-a-0 fault would be no longer visible at f1. Thus this fault
would become redundant. However, we still have to verify that adding the
broken-line connection does not change the input–output behavior of the
circuit. In order to test for an s-a-0 fault on this connection, the mandatory
control assignment is c3 = 1 and the mandatory observation assignments are
c1 = 0 and c2 = 0. However, these three assignments are not simultaneously
satisfiable at the primary inputs. Thus, the broken-line connection is indeed
redundant. After adding this connection, we can use the simplification rules
to remove some logic circuitry, since c1 s-a-0 is now redundant. Finally, we
obtain the circuit in Fig. 8.26b, which implements the same input–output
behavior as the circuit in Fig. 8.26a yet requires less area. In the modified
circuit, of course, the broken-line connection is no longer redundant.

We now consider the three categories of direct methods.

Static direct methods Static methods for redundancy identification are very
fast since they do not need an exhaustive search. However, they are usually not
able to identify all redundancies; hence, they can be used as a preprocessing
step to an indirect method.

One can use an “illegal” combination of values to identify redundancies.
Suppose that the values v1, v2, and v3 cannot simultaneously occur on, respec-
tively, lines c1, c2, and c3 in a circuit, i.e., this combination is illegal. Then
faults for which this combination of values is mandatory are redundant. The
problem of finding such faults is decomposed into first finding faults for which
each condition is individually mandatory. If S

vj

ci
denotes the set of faults that

must have value vj on line ci for detection then the faults that require the above
combination for detection are in the set Sv1

c1
∩ Sv2

c2
∩ Sv3

c3
. To find these faults,

the concept of uncontrollability and unobservability analysis is used.
Recall that the controlling value of a gate is the value that determines its

output irrespective of its other input values. Thus, the value 0 (1) is the con-
trolling value for AND and NAND (OR and NOR) gates. Let 0u (1u) denote
the uncontrollability status of a line that cannot be controlled to the value 0
(1). The propagation rules of the uncontrollability status indicators are given
in Fig. 8.27. Similar rules can be obtained for gates with more inputs. The
uncontrollability status indicators are propagated forward and backward. The
forward propagation of uncontrollability may make some lines unobservable.
In general, if a gate input cannot be set to the noncontrolling value of the gate
then all its other inputs become unobservable. The unobservability status can
be propagated backward from a gate output to all its inputs. When all fanout
branches of a stem s are marked unobservable, the stem is also marked unob-
servable if for each fanout branch b of s, there exists at least one set of lines
{lb} such that the following conditions are met:

240 Testing of combinational circuits

1u

1u

1u 1u

1u
0u

0u(1u)0u
0u

0u0u

0u(1u)

0u(1u)

1u(0u)0u(1u)
Fig. 8.27 Uncontrollability
propagation rules [14] c© 1996,
IEEE.

1. b is unobservable because there are uncontrollability indicators on every
line in {lb}; and

2. every line in {lb} is unreachable from s.

These conditions ensure that stem faults that can be detected by multiple-path
sensitization are not marked as unobservable. The redundant faults are identified
as those which cannot be activated (an s-a-0 fault on lines with 1u and an
s-a-1 fault on lines with 0u) and those that cannot be propagated; both stuck-at
faults on unobservable lines. The process of propagating uncontrollability and
unobservability indicators is called implication.

A simple extension of this method based on an arbitrary illegal combination
of values is as follows. We first form a list L of all fanout stems and reconvergent
inputs of reconvergent gates in the circuit. For each line c ∈ L, we find the
implications of c = 0u to determine all uncontrollable and unobservable lines.
Let F0 be the set of corresponding faults. Similarly, we find the implications of
c = 1u to get the set F1. The redundant faults are in the set F0 ∩ F1. The reason
is that such faults simultaneously require c to have the values 0 and 1, which is
not possible.

Example Consider the circuit in Fig. 8.28a. For this circuit, L = {x1, x2,

c6, c7}, where x1 and x2 are fanout stems and c6 and c7 are reconver-
gent inputs (note that the fanouts from x1 and x2 reconverge at these
inputs). Suppose that we target c6. The status c6 = 0u does not imply
the uncontrollability or unobservability of any other specific line. Hence,
F0 = {c6 s-a-1}. The status c6 = 1u implies x3 = c5 = c1 = c3 = x1 =
x2 = c2 = c4 = c7 = f = 1u. Since c6 = 1u (c7 = 1u), the error propagat-
ing to c7 (c6) owing to any fault cannot propagate further to f . Hence,

x1
x2 f

x3

c4

c3

c2

c1

(a) Initial circuit.

x1
x2

f

(b) Final circuit.

c6

c7

c5

Fig. 8.28 An example circuit to illustrate the static method.

241 8.5 Synthesis for testability

from uncontrollability and unobservability analysis, F1 = {c6 s-a-0, x3 s-a-
0, c5 s-a-0, c1 s-a-0, c3 s-a-0, x1 s-a-0, x2 s-a-0, c2 s-a-0, c4 s-a-0, c7 s-a-0,
f s-a-0, c6 s-a-1, x3 s-a-1, c5 s-a-1, c1 s-a-1, c3 s-a-1, c7 s-a-1, c2 s-a-1,
c4 s-a-1}. Since F0 ∩ F1 = {c6 s-a-1}, c6 s-a-1 is redundant. Removing
this fault using the simplification rules yields the circuit in Fig. 8.28b.

Dynamic direct methods Dynamic direct methods, like static direct methods,
do not require an exhaustive search. However, they use a test generator to first
identify a redundant fault. Thereafter, they identify additional redundant faults.
They can remove identified redundancies in just one pass of test generation (but
cannot guarantee a single stuck-at fault testable circuit at the end), in contrast
with the multiple passes required for indirect methods. They also take advan-
tage of the uncontrollability and unobservability analysis method introduced
above.

We define the region of a redundant fault to be the subcircuit that can be
removed because of it, using the simplification rules mentioned earlier. Also,
we define the level of a gate in the circuit to be one more than the maximum
level of any fanin of the gate, assuming that all primary inputs are at level 0.
When the region of one redundant fault r1 is contained within the region of
another redundant fault r2, then it makes sense to target r2 first. In general,
with only a few exceptions this can be accomplished by targeting the faults at
higher levels first for test generation. Once a redundant fault has been removed,
we need to identify newly created redundancies (these are faults that would
have been detectable had the removal not occurred). This can be done using
the following theorem.

Theorem 8.2 Let A be an output of a redundant region R and let G be the gate
fed by A. Let c be the controlling value and i the inversion of G (i = 0 for a
noninverting gate and i = 1 for an inverting gate). Assume that the combination
consisting of the c′ values on the remaining inputs of G and the c ⊕ i value on
its output was feasible (legal) in the old circuit. Then this combination becomes
illegal as a result of removal.

The proof of this theorem is left to the reader as an exercise.
Once an illegal combination of values is identified, uncontrollability and

unobservability analysis can identify the newly created redundancies. In doing
so, we need to keep in mind that uncontrollability status indicators can be
propagated forward and backward everywhere except through gate G. This
allows us to identify newly created redundancies, as opposed to redundancies
that would be present independently of whether the redundancy removal on the
input of G occurred. Of all the newly created redundancies, only the highest
level fault is removed and the above process repeated until no more newly
created redundancies are found.

242 Testing of combinational circuits

Example Consider the circuit in Fig. 8.25a again. Suppose that the test
generator has identified x1 s-a-0 as redundant. The region R for this fault
consists just of gate G1. This region feeds gate G2, whose controlling value
is 1 and inversion 0. The combination c2 = 0, c3 = 1 was legal in the old
circuit. However, once region R is removed, according to the above theorem
this combination becomes illegal. This illegal combination can be translated
in terms of uncontrollability status indicators as c2 = 0u and c3 = 1u. The
status 0u on c2 can be propagated backward. Using the notation and analysis
introduced in the previous subsection, we obtain S0

c2
= {c2 s-a-1, x2 s-a-1,

c4 s-a-1}. Similarly, by propagating 1u on c3 forward and recognizing that
the side-inputs of G3 become unobservable, we obtain S1

c3
= {c3 s-a-0, f

s-a-0, c4 s-a-0, c4 s-a-1, x4 s-a-0, x4 s-a-1}. Since S0
c2

∩ S1
c3

= {c4 s-a-1},
it follows that c4 s-a-1 is the newly redundant fault. After removing this fault
as well, we obtain the circuit in Fig. 8.25c in just one pass of test generation.
Note that earlier the indirect method required two passes to obtain this final
circuit.

Don’t-care-based direct methods A multi-level circuit consists of an inter-
connection of various logic blocks. Even if each logic block is individually
irredundant, the multi-level circuit can still contain redundancies. These redun-
dancies may stem from the fact that it may not be possible to feed certain
input vectors to some embedded blocks in the circuit. These vectors consti-
tute the satisfiability don’t-care set (also called the intermediate variable or
fanin don’t-care set). Also, for certain input vectors, the output of the block
may not be observable at a circuit output. These vectors constitute the observ-
ability don’t-care set (also called the transitive fanout don’t-care set). These
don’t-cares can be exploited to resynthesize the logic blocks in such a way that
the multi-level circuit has fewer redundancies. Even if the original multi-level
circuit is irredundant, this approach can frequently yield another irredundant
circuit implementing the same functions with less area and delay.

Let the Boolean variable corresponding to node j , for j = 1, 2, . . . , p, of the
multi-level circuit be fj and the logic representation of fj be Fj ; here “node”
refers to the output of the logic blocks. The satisfiability don’t-care set, DSAT ,
is common to all nodes and is defined as

DSAT =
p∑

j=1

DSATj ,

where

DSATj = fj ⊕ Fj .

The expression DSATj can be interpreted to mean that, since fj = Fj , the
condition fj = Fj is a don’t-care.

243 8.5 Synthesis for testability

Next, define the cofactor of a function g with respect to a literal l, denoted
by gl , as the function g with l = 1. Let the set of circuit outputs be PO. Then
the observability don’t-care set, DOBSj , for each node j is defined as

DOBSj =
∏

i∈PO

DOBSij ,

where

DOBSij = [(Fi)fj
⊕ (Fi)f ′

j
]′.

The expression DOBSj corresponds to a set of values at the primary inputs
under which all the circuit outputs are insensitive to the value fj that node j

takes on.

Example Consider the circuit in Fig. 8.29a. Suppose that this circuit
is partitioned into three logic blocks, as shown by the dotted boxes.
Even though each logic block is individually irredundant, the circuit
can be easily checked to be redundant. Since f3 = f1f2x

′
1x

′
4 + x1x3,

DOBS1 = [(f2x
′
1x

′
4 + x1x3) ⊕ (x1x3)]′ = f ′

2 + x1 + x4. Therefore, f1 =
x1x2 + x3 can be simplified to just x3 since x1 is in DOBS1, which includes
x1x2 in f1. Here, the interpretation is that the x1x2 term in f1 is not observable
at circuit output f3. One can think of the don’t-care minterms in DOBS1 as
having been superimposed on f1, resulting in a new, incompletely specified,
function that needs to be synthesized, as shown in Fig. 8.30a. Similarly, one

x1

x4

f1

x1

x4

x3

f2 x4

x3
x5

x3

x5

x2

x1

x3

x1

(a) Original circuit. (b) Final circuit.

f3 f3

f1

f2
'
'

'

Fig. 8.29 Don’t-care-based redundancy removal.

11

x1x2x3

0

1

00 01 11 10

1

x4x5

0

1

0 1

(a) Simplified f1 = x3. (b) Simplified f2 = x5.

Fig. 8.30 Utilizing satisfiability and observability don’t-cares.

244 Testing of combinational circuits

can show that DOBS2 = f ′
1 + x1 + x4. Hence, f2 = x4 + x5 can be sim-

plified to just x5 since x4 is present in DOBS2, as shown in Fig. 8.30b.
Using the simplified equations f1 = x3 and f2 = x5, we can conclude that
DSAT1 = f1x

′
3 + f ′

1x3 and DSAT2 = f2x
′
5 + f ′

2x5. Therefore f3 can be
simplified with respect to the don’t-cares in DSAT1 + DSAT2. In other
words, the don’t-care minterms in DSAT1 + DSAT2 can be superimposed
on f3, which gives us the simplified expression f3 = f1f2x

′
4 + x1x3; this

follows since the consensus (see Section 3.1) of x1x3 and f1x
′
3 is x1f1, which

simplifies the term f1f2x
′
1x

′
4 to f1f2x

′
4. The resultant irredundant circuit is

shown in Fig. 8.29b.

Synthesis for delay fault testability

In this subsection, we concentrate on path delay and transition fault models,
with primary emphasis on the former. We discuss the testability of two-level
circuits and also transformations to preserve or enhance delay fault testability.

A circuit is said to be robustly path delay fault testable if robust two-pattern
tests exist for every path delay fault in it.

Two-level circuits
A simple way to check whether a single-output two-level AND–OR circuit is
robustly path delay fault testable is to use tautology checking.5 Suppose that
we want to test a path starting with the literal l and going through AND gate G

and the OR gate. Both the faults along this path, i.e., for the rising and falling
transitions, are robustly testable if and only if, after making the side-input values
of G equal to 1, the output values of the remaining AND gates can be made 0
using some input combination without using l or l′. Thus, we can first make the
side-input values of G equal to 1, delete l and l′ from the remaining products,
and then delete G from the corresponding sum of products. If the remaining
switching expression becomes a tautology then the path is not robustly testable;
otherwise, it is.

Example Consider the two-level circuit in Fig. 8.31a, for which the cor-
responding sum of products is f = x1x2 + x1x

′
3 + x ′

1x3. Suppose that we
want to robustly test the rising transition on the path through the literal x1

in G1, as shown in bold. In order to do this, we first need to enable the
side-input of G1 by making x2 = 1. Thereafter we delete G1, the literal
x1 from G2, and the literal x ′

1 from G3, obtaining the reduced expression
fred = x ′

3 + x3. Since fred reduces to 1 (i.e., it is a tautology), the literal, and
hence the path, in question is not robustly testable. The reason is that in the
transition from the initialization vector to the test vector in the two-pattern

5 A function is a tautology if it is 1 for all input vectors.

245 8.5 Synthesis for testability

test for this path, the outputs of G2 and G3 could have a static-0 hazard
(i.e., a spurious transition from 0 to 1 and back to 0), thus invalidating
the two-pattern test. This can be seen from the partial value assignment
shown in Fig. 8.31a (made using the table in Fig. 8.18). One can see that no
assignment is possible for x3 that will result in S0 at the outputs of both G2

and G3.

x1

f

x3

x2

x1

x3

x
' '

''

1

(a) Untestable fault.

U1
G1

S0

S0

U1

U 0

U1

U1

G4

G3

G2

x1

f

x3

x2

x1

x3

x1

(b) Testable fault.

S1
G1

S0

S0

U1

S0

S1

U1

G4

G3

G2

S1

S0

Fig. 8.31 Robust path delay fault testability of two-level circuits.

Next, consider the path through the literal x2 in G1, as highlighted in bold
in Fig. 8.31b. To test this path, after making x1 = 1 we obtain fred = x ′

3,
which can be made 0 by setting x3 = 1. Figure 8.31b shows the possible
value assignments. Note that since S1 is a more stringent condition than
U1, assigning S1 instead of U1 to x1 is perfectly valid. Therefore, a robust
test for a rising transition on this path is {(1, 0, 1), (1, 1, 1)}. Reversing the
two vectors, we get a robust test for the falling transition. Readers can check
that all the other paths in this circuit are also robustly testable.

An interesting point to note here is that implementing a circuit based on an
irredundant sum of products is a necessary condition for robust testability but
not a sufficient one. This stems from the fact that if the circuit is not based on
an irredundant sum of products then a stuck-at fault in it will be untestable and,
hence, the path going through the fault will not be robustly testable. However,
the above example shows that, even when the circuit is based on an irredundant
sum of products, the robust testability property is not guaranteed.

To check whether a multiple-output two-level circuit is robustly testable, one
can simply check whether the above conditions are satisfied for paths starting
from each literal to each circuit output it feeds.

In order to verify that a two-level circuit is robustly testable for all tran-
sition faults, one just needs to verify that at least one path going through
each gate in it is robustly testable for rising and falling transitions. Using an
irredundant sum of products is neither necessary nor sufficient for the robust
testability of all transition faults in a two-level circuit, as the following example
shows.

246 Testing of combinational circuits

Example Consider the two-level circuit based on the expression f1 = x1 +
x2 + x ′

1x
′
2x3, as shown in Fig. 8.32a. This is not an irredundant sum-of-

products expression, yet the slow-to-rise and slow-to-fall transition faults
(see the end of Section 8.1) at the outputs of both G1 and G2 are robustly
testable. However, consider the irredundant sum-of-products expression
f2 = x1x3 + x1x2 + x ′

1x
′
2 + x3x4 + x ′

3x
′
4. Even though it is irredundant, the

transition faults at the output of the first AND gate with inputs x1 and x3 are
not robustly testable since neither of the two paths starting from these two
literals is robustly testable.

x1

x2 f1

x3

(a) Robustly testable.

x1
x2

f1

(b) Non-robustly testable.

x1

x2

x3

x1
x2

G3

G2

G1'
'

'
'

Fig. 8.32 Transition fault testability.

Multi-level circuits
Various methods have been presented for obtaining nearly 100% or fully
robustly testable multi-level circuits. We consider some of them here.

Shannon’s decomposition Shannon’s decomposition can be used for obtain-
ing completely robustly testable multi-level circuits. This method results in a
circuit that is testable for all multiple stuck-at faults, multiple stuck-open faults,
and a combination of these faults, using a particular path delay fault test set.

Shannon’s decomposition theorem states that

f (x1, x2, . . . , xn) = xifxi
+ x ′

ifx ′
i
,

where fxi
and fx ′

i
are cofactors of the function f with respect to the variable

xi and are obtained by making xi = 1 and xi = 0, respectively, in f . The
corresponding decomposed circuit is shown in Fig. 8.33. The importance of
this theorem in the present context is that one can show that if f is binate in xi

(i.e., f depends on both xi and x ′
i) then the decomposed circuit for f is robustly

x1 Subcircuit
for f

x

xi

xi

'

f

c1

i

Subcircuit
for f

x i
c2

c4

c3x
xn

xi−1
i+1

i+1

x1

x
xn

xi−1
'

•••

•••

•••

•••

Fig. 8.33 Circuit based on
Shannon’s decomposition [17]
c© 1988, IEEE.

247 8.5 Synthesis for testability

testable if the subcircuits for the two cofactors are robustly testable. The reason
is that for such a decomposition one can always find at least one vector which,
when applied to x1, x2, . . . , xi−1, xi+1, . . . , xn, results in fxi

= 1 and fx ′
i
= 0

(fxi
= 0 and fx ′

i
= 1), which allows the path xic3f (x ′

ic4f) to be robustly tested.
In addition, making xi = 1 (xi = 0) allows us to test the subcircuit for fxi

(fx ′
i
)

fully by feeding the robust tests to the corresponding subcircuits. It is possible
that the subcircuits will not be robustly testable after one decomposition. Then
the method can be applied recursively to the cofactors until a robustly testable
circuit is obtained. This method is guaranteed to terminate in a robustly testable
circuit since after at most n − 2 Shannon decompositions we shall get a two-
variable cofactor which is guaranteed to be robustly testable. In fact, one can
stop further decomposition if the cofactor is unate in all its variables since robust
tests can be found for each path in such a subcircuit in which the initialization
and test vectors differ in just the literal being tested. Of course, even if the
cofactor is binate in some of its variables, further decomposition can be stopped
if the corresponding subcircuit is already robustly testable. Furthermore, the
sharing of logic among the cofactor subcircuits does not compromise the robust
testability property.

As a useful heuristic for determining which binate variable to target first
for decomposition, one can simply choose the variable that appears the most
times in complemented or uncomplemented form in the given sum-of-products;
alternatively, one can choose a variable that leads to robust untestability in a
maximum number of gates.

Example Consider the two-level circuit based on the expression f2 =
x1x3 + x1x2 + x ′

1x
′
2 + x3x4 + x ′

3x
′
4, which we considered in the previous

example. The only robustly untestable literals are x1 and x3 in the first AND
gate. Using one of the above two heuristics, we choose either x1 or x3. If
we choose x1, we obtain the decomposition

f2 = x1(x2 + x3 + x ′
4) + x ′

1(x ′
2 + x3x4 + x ′

3x
′
4).

Since the two cofactors are robustly testable, so is the decomposed circuit
for f2.

Algebraic factorization Readers may not be surprised, having been presented
various examples of testability preservation based on algebraic factorization
for other fault models, that it plays an important role in delay fault testability
as well. Many variations on this factorization technique have been shown to be
useful, as we now discuss.

If the given circuit is completely robustly testable for path delay faults then
algebraic factorization with a constrained use of the complement maintains
its robust testability. Furthermore, the robust test set is also preserved after
factorization. The only problem that limits the usefulness of this approach is

248 Testing of combinational circuits

that, frequently, two-level circuits based on an irredundant sum of products,
which often form the starting point for multi-level logic synthesis are not them-
selves completely robustly testable. In fact, simple functions exist for which
none of the irredundant sum-of-products expressions are robustly testable. We
have already seen an example of such a function: f = x1x2 + x1x

′
3 + x ′

1x3.
The only other irredundant sum-of-products expression for this function is
f = x2x3 + x1x

′
3 + x ′

1x3, which also is not robustly testable. In fact it may
happen that one such expression of a given function is robustly testable, but
another is not.

Example The function f = x1x
′
2 + x ′

1x2 + x1x
′
3 + x ′

1x3 is not robustly
testable in the literal x1 in x1x

′
2. However, another implementation of this

function, f = x1x
′
2 + x ′

1x3 + x2x
′
3, is robustly testable.

One can use a heuristic to bias the two-level logic synthesizer towards
robustly testable implementations, whenever it is possible to do so. Define
a relatively essential vertex of a prime implicant in a sum of products to
be a minterm that is not contained in any other prime implicant of the sum
of products. Also, define the ON-set (OFF-set) of a function to be the set of
vertices for which the function is 1 (0). Then the above-mentioned heuristic tries
to maximize the number of relatively essential vertices in the prime implicants
that are just one bit different from some vertex in the OFF-set of the function.
This increases the probability that the necessary and sufficient conditions for
robust testability presented earlier will be met. After that, algebraic factorization
can be used to obtain a highly robustly testable multi-level circuit.

Surprisingly, algebraic factorization does not preserve the robust transition
fault testability property.

Example Consider the function f1 = x1 + x2 + x ′
1x

′
2x3. Its robustly tran-

sition fault testable implementation is shown in Fig. 8.32a. However, after
one possible algebraic factorization, we obtain the circuit in Fig. 8.32b,
which is not robustly transition fault testable since no path through gate
G3 is robustly testable. To preserve robust testability for transition faults,
we need to use a constrained form of algebraic factorization in which each
cube in each factor should have at least one path through it that is robustly
testable. Thus, in the above example, if we had used x ′

1x3 or x ′
2x3 as a factor

instead of x ′
1x

′
2, the robust testability property would have been maintained.

Since many implementations based on irredundant sum-of-products expres-
sions are not robustly testable for path delay faults, another method based on
targeted algebraic factorization can be used; this results in a robustly testable
multi-level circuit in the vast majority of cases in which the original two-level
circuit is not robustly testable.

249 8.5 Synthesis for testability

The main idea here is first to convert the two-level circuit, which is not
robustly testable, into an intermediate circuit (generally with three or four
levels) that is robustly testable, making targeted use of the distributive law
from switching algebra. Then algebraic factorization with a constrained use
of the complement can be employed, as before, to obtain a circuit with more
levels but which is robustly testable. Consider the irredundant sum-of-products
expression f = ∑q1

j=1 x1x2 · · · xnMj +∑q2
j=1 Nj , where Mj and Nj are prod-

ucts of literals. Suppose that (i) in each product term in f , all literals in Mj are
robustly testable, (ii) each literal in the set {x1, x2, . . . , xn} is robustly testable
in at least one product term in f , and (iii) the other literals in f are not nec-
essarily robustly testable. Then the literals x1, x2, . . . , xn are robustly testable
when factored out from the first set of product terms, resulting in the following
modified expression, f = x1x2 · · · xn(

∑q1
j=1 Mj) +∑q2

j=1 Nj . Furthermore, all
literals in

∑q1
j=1 Mj remain robustly testable, and the robust testability (or lack

thereof) of the literals in
∑q2

j=1 Nj is not affected. This synthesis rule may have
to be applied more than once to obtain a robustly testable circuit.

Example Consider the irredundant sum-of-products expression f1 =
x1x2x

∗
3 + x∗

1x3x4 + x ′
1x

′
2x4 + x ′

3x
′
4, where the starred literals are not robustly

testable. Using the above synthesis rule, we obtain the modified expression
f1 = x1x3(x2 + x4) + x ′

1x
′
2x4 + x ′

3x
′
4, which is completely robustly testable.

Consider another expression, f2 = x1x
∗
2M1 + x∗

1x2M2 + x∗
1x∗

2M3 +
x∗

1M4 + N1. Applying the synthesis rule once we get f2 = x1x2(M1 + M2 +
M3) + x∗

1M4 + N1. After applying it again we get f2 = x1[x2(M1 + M2 +
M3) + M4] + N1, where both x1 and x2 are now robustly testable.

Even when the synthesis rule is not successful with the sum-of-products for
f , it is frequently successful with the sum-of-products for f ′, which can then
be followed by an inverter to get f .

It is worth recalling that both simple and targeted algebraic factorizations
also result in a multi-level circuit that is completely multiple stuck-at fault
testable, using the results described earlier.

Repeated Shannon decomposition, although it guarantees the robust testabil-
ity property, is not very area efficient. However, area-efficient methods based
on the different variations of algebraic factorization cannot guarantee the robust
testability property. Hence a possible compromise to obtain both area efficiency
and guaranteed robust testability is to marry these two techniques. For the sake
of area efficiency, we should generally do this only if targeted algebraic fac-
torization has failed with the switching expression and its complement. After
applying Shannon decomposition once to such an expression, we first determine
whether the cofactors are already robustly testable or else amenable to targeted
algebraic factorization. Only when the answer is negative do we consider apply-
ing Shannon decomposition again. Cases where Shannon decomposition needs

250 Testing of combinational circuits

to be applied more than once are extremely rare, however. Since multiple stuck-
at fault testability is guaranteed by both Shannon decomposition and targeted
algebraic factorization, it is also guaranteed by their combination.

8.6 Testing for nanotechnologies

In Chapter 7, we saw that various nanotechnologies implement threshold and
majority gates. Since majority gates are also a specific type of threshold gate,
it is useful to see how test generation can be achieved for threshold networks
and how redundancies can be removed.

Test generation

Let us first see how we can derive a test vector for a single stuck-at fault in a
threshold gate. Let f (x1, x2, . . . , xn) be the corresponding threshold function.
The s-a-0 fault at input xi can be activated by xi = 1. In the fault-free case, we
have

n∑
j=1,j =i

wjxj + wi ≥ T ⇒ f = 1 (8.1)

or
n∑

j=1,j =i

wjxj + wi < T ⇒ f = 0. (8.2)

Moving wi to the right-hand side of the inequalities results in
n∑

j=1,j =i

wjxj ≥ T − wi ⇒ f = 1 (8.3)

or
n∑

j=1,j =i

wjxj < T − wi ⇒ f = 0. (8.4)

When the fault is present, we have
n∑

j=1,j =i

wjxj ≥ T ⇒ f = 1 (8.5)

or
n∑

j=1,j =i

wjxj < T ⇒ f = 0. (8.6)

A test vector can be found for the xi s-a-0 fault by finding an assignment on
the input variables with xi = 1 such that either Eqs. (8.3) and (8.6) or Eqs. (8.4)
and (8.5) are satisfied.

251 8.6 Testing for nanotechnologies

A similar analysis for deriving a test vector for xi s-a-1 shows that the
constraints are the same except that now Eqs. (8.3) and (8.4) (Eqs. (8.5) and
8.6)) refer to the faulty (fault-free) cases. This leads to the following general
result.

Theorem 8.3 Given a threshold gate implementing the threshold function
f (x1, x2, . . . , xn), to find test vectors for xi s-a-0 and xi s-a-1 faults we must
find an assignment of values to the remaining input variables such that one of
the following inequalities is satisfied:

T − wi ≤
n∑

j=1,j =i

wjxj < T (8.7)

or

T ≤
n∑

j=1,j =i

wjxj < T − wi. (8.8)

If an assignment exists then it, along with xi = 1 (xi = 0) is a test vector for
xi s-a-0 (s-a-1). If no assignment exists then both faults are untestable and,
therefore, redundant.

Proof This is obvious from the above discussion. ♦

Example Consider a threshold gate that realizes the threshold func-
tion f (x1, x2, x3) = x1x2 + x1x3, with weight–threshold vector 〈2, 1, 1; 3〉.
Table 8.2 shows an exhaustive list of the test vectors (in bold) for each
fault. For example, to test for x1 s-a-0, the inequalities to be satisfied are
1 ≤ ∑3

j=2 wjxj < 3 or 3 ≤ ∑3
j=2 wjxj < 1. This leads to three test vec-

tors: 101, 110, and 111. The test vectors for x1 s-a-1 can be obtained just by
replacing x1 = 1 with x1 = 0 in the original test vectors. The new vectors
are 001, 010, and 011.

Table 8.2 Test vectors for stuck-at faults in a threshold gate implementing
f = x1x2 + x1x3

x1 x2 x3 f x1 x1 x2 x2 x3 x3 f f

s-a-0 s-a-1 s-a-0 s-a-1 s-a-0 s-a-1 s-a-0 s-a-1

0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0 1
0 1 1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0 1 0 1
1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 0 1 0 1 1 1 0 1
1 1 1 1 0 1 1 1 1 1 0 1

252 Testing of combinational circuits

To derive a test set for detecting all single stuck-at faults in a threshold
network using the D-algorithm, we need to derive the PDCF, singular covers,
and propagation D-cubes. A PDCF for the faulty threshold gate can be obtained
on the basis of the above discussion. For example, the three vectors that detect x1

s-a-0 in the above example give rise to the following PDCFs: 101D, 110D, and
111D. The singular cover of a threshold gate can be derived in a straightforward
fashion using its truth table. We next discuss how propagation D-cubes can be
obtained.

Propagation D-cubes are used in the D-algorithm to sensitize a path from the
fault site to one or more of the circuit outputs. Knowing the threshold function
that is implemented by a threshold gate, we can use algebraic substitution to
obtain the propagation D-cubes.

Example To obtain the propagation D-cubes from x1 in f (x1, x2, x3) =
x1x2 + x1x3, substituting D for x1 in f we get Dx2 + Dx3. For the
fault to propagate, only the cubes containing D (or D′) should be acti-
vated in f . In this case, since both cubes contain D, activating either
or both cubes will result in a propagation D-cube. Whether a vec-
tor propagates D or D′ to the output can be determined in a straight-
forward manner: this depends upon whether it satisfies Eq. (8.7) or
(8.8), respectively. Table 8.3 shows this. Hence, the propagation D-
cubes from x1 are {D10D,D01D,D11D}. Of course, {D′10D′,D′01D′,
D′11D′} are also propagation D-cubes.

Table 8.3 Error propagation

Input error signal Eq. (8.7) Eq. (8.8)

D D D′

D′ D′ D

Example To propagate a D on x1 in f (x1, x2, x3) = x1x2 + x1x3, we
observe that if x2 = 1 and x3 = 0 then Eq. (8.7) is satisfied. Thus, f = D.
However, to propagate a D on x1 in g(x1, x2, x3) = x ′

1x2 + x ′
1x3 (a thresh-

old function with weight–threshold vector 〈−2, 1, 1; 1〉), we observe that if
x2 = 1 and x3 = 0 then Eq. (8.8) is satisfied. In this case, f = D′.

Using the above methods to obtain PDCFs, singular covers, and propagation
D-cubes, the D-algorithm can be applied directly to threshold networks. The
fault collapsing theorem (Theorem 8.1) applicable to Boolean networks is also
applicable to threshold networks. Demonstrating this is left as an exercise for
the reader (see Problem 8.25).

253 Notes and references

Example Consider the threshold network in Fig. 8.34. Suppose that we
want to derive a test vector for x1 s-a-1. The PDCF for the fault shown in
gate G1 is 0000D′. Using the propagation D-cube of gate G2 as shown,
the fault effect can be propagated to circuit output f1. This requires 1
to be justified on line c2 through the application of the relevant singu-
lar cube to gate G3, as shown. Thus, a test vector for the above fault is
(0, 0, 0, 0, φ, 1, 0, 0, φ, φ).

1

f1
x3

x2

x1

x4

2
2

1
2

c1
1

f2x6

x5

x7

−1

1
2 2

x9

x10

1

1
1 3

D

x8G1

1

2
1 2

G4

G2

G3

0

0

0
0

0

c2

1

1

D''

c3

0

Fig. 8.34 Testing for x1 s-a-1 [11] c© 2008, IEEE.

Redundancy removal

If a stuck-at fault in a threshold network is redundant then corresponding
lines and gates can be removed without affecting the functionality of the
circuit.

Figure 8.35 shows a fault-free threshold gate and its faulty representations
for two faults. For an input s-a-0 fault, the weight of that input becomes 0.
Hence, the input can be simply removed. For an input xi s-a-1 fault, the weight
of that input becomes wi . Hence, the input can be removed and the threshold
of the gate lowered by wi .

When a stuck-at fault in a threshold network is redundant, all gates and lines
in the subnetwork that do not fan out to other parts of the circuit and that feed
the removed line can be removed from the network.

x2

x1

xn

wn

w1
w2

(a) Fault-free.

T f x3

x2

xn

wn

w2
w3

(c) x
1

s -a -1 .

T −
w1

fx3

x2

xn

wn

w2
w3

(b) x
1

s-a -0 .

T f
Fig. 8.35 Representations for
fault-free and faulty threshold
gates [11] c© 2008, IEEE.

254 Testing of combinational circuits

Example Consider the threshold network shown in Fig. 8.36a. Suppose
that c1 s-a-0 (s-a-1) is redundant; then the simplified network shown in
Fig. 8.36b (Fig. 8.36c) can be obtained.

f2

c1 f1T1

x4

x5

w6

w4w5 T2

x6

w9

w7
w8 T3

x7

x2

x1

x3

w3

w1
w2

x6

x7

w9

w7

x4

x5

w6

w4

x6

x7

w9

w7

x4

x5

w6

w4

T3−
w8

T −2
w5

T3

T2

f2

f1

f2

f1T1

(a) Fault-free. (b) c1 s-a-0. (c) c1 s-a-1.

Fig. 8.36 Redundancy removal in a threshold network [11] c© 2008, IEEE.

Notes and references

The stuck-open and stuck-on fault models were discussed by Wadsack [37]. Monitoring
the current drawn by a CMOS circuit to detect stuck-on faults in it was first studied by
Malaiya and Su [23]. Using current monitoring to detect bridging faults was discussed
by Levi [20]. The transition fault model was investigated by Hsieh et al. [13] and Storey
and Barry [35]. The path delay fault model was investigated by Lesser and Shedletsky
[19] and Smith [34]. The nonrobust testing of delay faults was discussed by Smith [34]
and Lin and Reddy [21] and robust testing by Savir and McAnney [32], Pramanick and
Reddy [27] and Devadas and Keutzer [8]. The concept of a validatable nonrobust test
was presented by Reddy et al. [29].

Path sensitization was studied by Armstrong [2]. Fault equivalence methods were
discussed by McCluskey and Clegg [24] and fault dominance by Poage and McCluskey
[26]. The D-algorithm was presented by Roth [31].

Techniques for bridging fault collapsing were presented by Reddy et al. [30] and
efficient testing methodology by Thadikaran and Chakravarty [36].

The variable and rated clock schemes were discussed in [4] by Bose et al. The five-
valued logic system was used by Lin and Reddy [21] and Cheng et al. [6] for path delay
fault testing. These works form the basis for the discussion in Section 8.4. Transition
and gate delay fault detection methods were discussed by Park and Mercer [25] and
Mahlstedt [22]. The at-speed test generation method is due to Bose et al. [5]. Gharaybeh
et al. presented a classification of path delay faults [10].

It was shown by Kohavi and Kohavi [16] and Schertz and Metze [33] that a test set
for all single stuck-at faults in a two-level circuit based on an irredundant sum of prod-
ucts also detects all multiple stuck-at faults in it. Transformations for preserving single
stuck-at fault testability were presented by Rajski and Vasudevamurthy [28]. Trans-
formations for preserving multiple stuck-at fault testability were presented by Hachtel
et al. [12]. Synthesis-for-full-testability methods involving the deliberate introduction
of redundancies were presented by Entrena and Cheng [7]. An efficient static redun-
dancy identification method was introduced by Iyer and Abramovici [14]. A dynamic

255 Notes and references

redundancy identification method was given by Abramovici and Iyer [1]. The concepts
of satisfiability and observability don’t-care sets were first presented by Bartlett et al. [3].
Necessary and sufficient conditions for robust delay fault testability were discussed by
Lin and Reddy [21] and Devadas and Keutzer [8]. The first method, based on Shannon’s
decomposition, for guaranteeing completely robustly testable multi-level circuits was
presented by Kundu and Reddy [17]. This method was later shown to guarantee testa-
bility of all multiple stuck-at faults, multiple stuck-open faults, and their combinations
by Kundu et al. [18]. Heuristics for robust path delay fault testability based on simple
and targeted algebraic factorizations were presented by Devadas and Keutzer [9] and
by Jha et al. [15], respectively. Testing of threshold networks was considered by Gupta
et al. [11].

[1] Abramovici, M., and M. A. Iyer: “One-pass redundancy identification and
removal,” in Proc. Int. Test Conf., pp. 807–815, October 1992.

[2] Armstrong, D. B.: “On finding a nearly minimal test set of fault detection tests
for combinational logic nets,” IEEE Trans. Electronic Computers, vol. EC-15,
pp. 66–73, February 1966.

[3] Bartlett, K. A., R. K. Brayton, G. D. Hachtel, et al.: “Multilevel logic minimization
using implicit don’t-cares,” IEEE Trans. Computer-Aided Design, vol. 7, no. 6,
pp. 723–740, June 1988.

[4] Bose, S., P. Agrawal, and V. D. Agrawal: “A rated-clock test method for path
delay faults,” IEEE Trans. Very Large Scale Integration Systems, vol. 6, no. 2,
pp. 323–342, June 1998.

[5] Bose, S., P. Agrawal, and V. D. Agrawal: “Deriving logic systems for path delay
test generation,” IEEE Trans. Computers, vol. 47, no. 8, pp. 829–846, August
1998.

[6] Cheng, K.-T., A. Krstic, and H.-C. Chen: “Generation of high quality tests for
robustly untestable path delay faults,” IEEE Trans. Computers, vol. 45, no. 12,
pp. 1379–1392, December 1996.

[7] Entrena, L., and K.-T. Cheng: “Combinational and sequential logic optimiza-
tion by redundancy addition and removal,” IEEE Trans. Computer-Aided Design,
vol. 14, no. 7, pp. 909–916, July 1995.

[8] Devadas, S., and K. Keutzer: “Synthesis of robust delay fault testable circuits:
theory,” IEEE Trans. Computer-Aided Design, vol. 11, no. 1, pp. 87–101, January
1992.

[9] Devadas, S., and K. Keutzer: “Synthesis of robust delay fault testable circuits:
practice,” IEEE Trans. Computer-Aided Design, vol. 11, no. 3, pp. 277–300,
March 1992.

[10] Gharaybeh, M. A., M. L. Bushnell, and V. D. Agrawal: “Classification and test
generation for path-delay faults using single stuck-fault test,” in Proc. Int. Test
Conf., pp. 139–148, Oct. 1995.

[11] Gupta, P., R. Zhang, and N. K. Jha: “Automatic test pattern generation for com-
binational threshold logic networks,” IEEE Trans. VLSI Systems, vol. 16, no. 8,
pp. 1035–1045, Aug. 2008.

[12] Hachtel, G. D., R. M. Jacoby, K. Keutzer, and C. R. Morrison: “On proper-
ties of algebraic transformations and the synthesis of multifault-irredundant cir-
cuits,” IEEE Trans. Computer-Aided Design, vol. 11, no. 3, pp. 313–321, March
1992.

256 Testing of combinational circuits

[13] Hsieh, E. P., R. A. Rasmussen, L. J. Vidunas, and W. T. Davis: “Delay test
generation,” in Proc. Design Automation Conf., pp. 486–491, June 1977.

[14] Iyer, M. A., and M. Abramovici: “FIRE: a fault-independent combinational redun-
dancy identification algorithm,” IEEE Trans. Very Large Scale Integration Sys-
tems, vol. 4, no. 2, pp. 295–301, June 1996.

[15] Jha, N. K., I. Pomeranz, S. M. Reddy, and R. J. Miller: “Synthesis of multi-
level combinational circuits for complete robust path delay fault testability,” in
Proc. Int. Symp. Fault-Tolerant Computing, pp. 280–287, June 1992.

[16] Kohavi, I., and Z. Kohavi: “Detection of multiple faults in combinational net-
works,” IEEE Trans. Computers, vol. C-21, no. 6, pp. 556–568, June 1972.

[17] Kundu, S., and S. M. Reddy: “On the design of robust testable combinational logic
circuits,” in Proc. Int. Symp. Fault-Tolerant Computing, pp. 220–225, June 1988.

[18] Kundu, S., S. M. Reddy, and N. K. Jha: “Design of robustly testable combinational
logic circuits,” IEEE Trans. Computer-Aided Design, vol. 10, no. 8, pp. 1036–
1048, August 1991.

[19] Lesser, J. P., and J. J. Shedletsky: “An experimental delay test generator for LSI
logic,” IEEE Trans. Computers, vol. C-29, no. 3, pp. 235–248, March 1980.

[20] Levi, M. W.: “CMOS is most testable,” in Proc. Int. Test Conf., pp. 217–220,
October 1981.

[21] Lin, C. J., and S. M. Reddy: “On delay fault testing in logic circuits,” IEEE
Trans. Computer-Aided Design, vol. 6, no. 9, pp. 694–703, September 1987.

[22] Mahlstedt, U.: “DELTEST: deterministic test generation for gate delay faults,” in
Proc. Int. Test Conf., pp. 972–980, October 1993.

[23] Malaiya, Y. K., and S. Y. H. Su: “A new fault model and testing technique for
CMOS devices,” in Proc. Int. Test Conf., pp. 25–34, October 1982.

[24] McCluskey, E. J., and F. W. Clegg: “Fault equivalence in combinational circuits,”
IEEE Trans. Computers, vol. 20, no. 11, pp. 1286–1293, November 1971.

[25] Park, E. S., and M. R. Mercer: “An efficient delay test generation system for
combinational logic circuits,” IEEE Trans. Computer-Aided Design, vol. 11, no. 7,
pp. 926–938, July 1992.

[26] Poage, J. F., and E. J. McCluskey: “Derivation of optimal test sequences for
sequential machines,” in Proc. Symp. Switching Theory and Logic Design, pp. 121–
132, 1964.

[27] Pramanick, A. K., and S. M. Reddy: “On the design of path delay fault testable
combinational circuits,” in Proc. Int. Symp. Fault-Tolerant Computing, pp. 374–
381, June 1990.

[28] Rajski, J., and J. Vasudevamurthy: “The testability-preserving concurrent decom-
position and factorization of Boolean expressions,” IEEE Trans. Computer-Aided
Design, vol. 11, no. 6, pp. 778–793, June 1992.

[29] Reddy, S. M., C. J. Lin, and S. Patil: “An automatic test pattern generator for
the detection of path delay faults,” in Proc. Int. Conf. Computer-Aided Design,
pp. 284–287, November 1987.

[30] Reddy, R. S., I. Pomeranz, S. M. Reddy, and S. Kajihara: “Compact test generation
for bridging faults under IDDQ testing,” in Proc. VLSI Test Symp., pp. 310–316,
April 1995.

[31] Roth, J. P.: “Diagnosis of automata failures: a calculus and a method,” IBM
J. Research & Development, vol. 10, pp. 278–291, July 1966.

257 Problems

[32] Savir, J., and W. H. McAnney: “Random pattern testability of delay faults,” in
Proc. Int. Test Conf., pp. 263–273, October 1986.

[33] Schertz, D., and G. Metze: “A new representation for faults in combinational
digital circuits,” IEEE Trans. Computers, vol. C-21, no. 8, pp. 858–866, August
1972.

[34] Smith, G. L.: “A model for delay faults based on paths,” in Proc. Int. Test Conf.,
pp. 342–349, October 1985.

[35] Storey, T. M., and J. W. Barry: “Delay test simulation,” in Proc. Design Automation
Conf., pp. 492–494, June 1977.

[36] Thadikaran, P., and S. Chakravarty: “Fast algorithms for computing IDDQ tests for
combinational circuits,” in Proc. Int. Conf. VLSI Design, pp. 103–106, January
1996.

[37] Wadsack, R. L.: “Fault modeling and logic simulation of CMOS and MOS inte-
grated circuits,” Bell System Tech. J., vol. 57, no. 5, pp. 1449–1474, 1978.

Problems

Problem 8.1. In the circuit in Fig. P8.1, suppose that we want to obtain a test vector
for the c1 s-a-0 fault.
(a) Show that one-dimensional path sensitization through gates G5 and G8 or G6 and

G8 does not yield such a test vector.
(b) Obtain a test vector by sensitizing both the above paths simultaneously.

x1

x2 f
x3

x4

s-a-0
c1

G1

G8

G7

G5

G6

G4

G3

G2
x

Fig. P8.1

Problem 8.2. For the circuit in Fig. P8.2:
(a) Find all the test vectors that detect input A′ s-a-0 by using the D-algorithm.
(b) Show all the single stuck-at faults that can be detected by the test vector

(A, B, C, E) = (1, 1, 1, 1).

B

C'

'
'

'
f

E

A
c1

E

B

c4

c3

c2

Fig. P8.2

258 Testing of combinational circuits

Problem 8.3. Let Nx and Ny in Fig. P8.3 be combinational networks. To test Nx ,
we need n0

x test vectors that result in X = 0 and n1
x test vectors that result in X = 1.

Similarly, to test Ny , we need n0
y and n1

y test vectors.
(a) Define n0

f and n1
f in a similar manner and find minimal values for them in terms of

n0
x , n1

x , n0
y , n1

y .
(b) Repeat (a) when the OR gate in Fig. P8.3 is replaced by a NAND gate.

F

x1

xn

Xx2

y1

ym

y2
Y

Nx

Ny

Fig. P8.3

Problem 8.4. The test vector (A,B, C, D,E, F,G, H) = (0, 1, 1, 1, 1, 1, 1, 1) was
applied to the circuit shown in Fig. P8.4 and output f indicated an error.
(a) What are the single stuck-at faults in this network that could cause the output to be

erroneous?
(b) Which of the faults in (a) are equivalent?

B
C

fD
E

A

F

H
G

G1

G7

G6
G5

G3

G2

G4
Fig. P8.4

Problem 8.5. Derive all test vectors that will detect the multiple stuck-at fault consisting
of x3 s-a-1, c1 s-a-0, and c2 s-a-0 in the circuit shown in Fig. 8.1.

Problem 8.6. The following will demonstrate that a test set which detects all single
stuck-at faults in a fanout-free network does not necessarily detect all multiple stuck-at
faults in it as well.
(a) Show that the following test set detects all single stuck-at faults in the network of

Fig. P8.6:

(A, B, C, D, E, F) = {(1, 1, 1, 0, 1, 0), (0, 0, 1, 0, 0, 1), (0, 1, 1, 1, 1, 0),

(1, 0, 0, 1, 0, 0), (1, 0, 1, 1, 0, 1), (0, 1, 0, 1, 1, 1)}

(b) Prove that the multiple fault consisting of the four faults A and F s-a-0 and B and
E s-a-1 is not detected by the test set in (a).

259 Problems

B
C

f
D
E

A

F

Fig. P8.6

Problem 8.7. Derive a minimal test set to detect all single stuck-open faults in the
two-input NAND gate shown in Fig. 8.3b.

Problem 8.8. Assuming that IDDQ testing is used, derive a minimal test set for all single
stuck-on faults in the two-input NOR gate shown in Fig. 8.3a.

Problem 8.9. Assuming that IDDQ testing is used, derive all test vectors that will detect
the bridging fault shown in Fig. 8.4.

Problem 8.10. In the circuit in Fig. 8.11:
(a) How many gate-level two-node feedback and nonfeedback bridging faults are there?
(b) How many of the gate-level two-node bridging faults remain after fault collapsing?
(c) Of the collapsed set of bridging faults, how many are detected by following test set

T applied to (x1, x2, x3, x4, x5): {(1, 0, 0, 1, 0), (1, 1, 0, 0, 0), (0, 1, 1, 1, 1)}?
Problem 8.11. For the circuit shown in Fig. P8.11, derive a gate-level model for detect-
ing the bridging fault <c1, c2>. Obtain all possible test vectors for this bridging fault
by targeting the appropriate stuck-at fault in the gate-level model.

Vdd

x5

f2

Vss

x6

x1

Vdd

x1

f1

x2

Vss

x3

x2

x4

x4

x3

c2

c1

'

'

Fig. P8.11

Problem 8.12. For the circuit shown in Fig. P8.12, a test set that detects
all gate-level two-node bridging faults is {(0, 0, 0, 0, 1), (1, 1, 0, 0, 1), (1, 0, 1, 0, 0),
(1, 1, 1, 1, 0), (0, 0, 0, 0, 0), (0, 1, 1, 1, 0)}. Obtain a minimum subset of this test set
that also detects all such bridging faults.

260 Testing of combinational circuits

x1
x2

f

c1

x3
x4

x5

c3

c2

Fig. P8.12

Problem 8.13. The EXCLUSIVE-OR gate implementation shown in Fig. 8.15 has six
physical paths, hence 12 logical paths. Six of the logical paths are robustly testable.
Identify which these are and derive two-pattern tests for them.

Problem 8.14. For the circuit shown in Fig. P8.14, derive the following tests.
(a) A robust two-pattern test for the path delay fault shown by the bold path for the

falling transition at input x ′
1.

(b) A robust test for a slow-to-rise transition fault at the output of gate G1.

x1

G1

f1

x3

x2

c1

f2

x3

x2

x1

x4

x'
'
1

c4

c3

c2

Fig. P8.14

Problem 8.15. Derive a two-pattern test for a slow-to-fall transition fault on line c1 in
the circuit in Fig. 8.22.

Problem 8.16. Show that a single-output two-level circuit based on an irredundant sum
of products is fully testable for all single stuck-at faults.

Problem 8.17. Give an example of a multiple-output two-level circuit in which no
output is based on an irredundant sum of products, yet the circuit is single stuck-at fault
testable.

Problem 8.18. Obtain a multi-level circuit with as few literals as possible using single-
cube, double-cube, and dual expression extraction, starting with a prime and irredundant
two-level single-output circuit represented by the expression f = x1x2x4 + x1x2x5 +
x3x4 + x3x5 + x ′

1x
′
3x6 + x ′

2x
′
3x6. Obtain a single stuck-at fault test set for the two-

level circuit and show that it also detects all single stuck-at faults in the multi-level
circuit.

Problem 8.19. Consider the irredundant circuit shown in Fig. P8.19, to which a broken-
line connection is added as shown. Show that this connection is redundant. What
are the other faults in the circuit that now become redundant because of the pres-
ence of the broken-line connection? Simplify the circuit by removing these redundan-
cies and obtain another irredundant circuit which implements the same input–output
behavior.

261 Problems

x1

x2

f1

G1

x3

x4

x5

c1

f2

G9G8

G4

G7

G6

G5

G3

G2x3

x4

x2

x6

c2

'

Fig. P8.19

Problem 8.20. Obtain a redundant circuit in which the region of a redundant fault at
level i also contains the region of a redundant fault at a level greater than i.

Problem 8.21. Simplify an AND–OR circuit based on the redundant sum-of-products
expression f = x1x2 + x1x2x3 + x1x

′
2 using observability and satisfiability don’t-cares.

Problem 8.22. Derive a robustly path-delay-fault-testable circuit using Shannon
decomposition for the function f = x1x2 + x ′

1x
′
2 + x ′

3x4 + x3x
′
4 + x1x

′
3. Obtain a robust

test set for this multi-level circuit.

Problem 8.23. Find the literals in the following expression, paths starting from
which do not have robust tests for either rising or falling transitions: f = x1x2x3x5 +
x1x

′
3x4x5 + x1x3x

′
4x5x6 + x1x

′
2x4x

′
5 + x ′

1x2x4x
′
5 + x ′

1x2x
′
3x

′
4 + x2x

′
3x5x

′
6 + x2x3x4x5 +

x2x
′
3x

′
4x

′
5. Use targeted algebraic factorization to obtain a three-level robustly testable

circuit.

Problem 8.24. Given a threshold gate implementing the function f (x1, x2, . . . , xn),
show that
(a) an output f s-a-0 (s-a-1) dominates an xi s-a-0 (s-a-1) if Eq. (8.7) is satisfied;
(b) an output f s-a-1 (s-a-0) dominates an xi s-a-0 (s-a-1) if Eq. (8.8) is satisfied.

Problem 8.25. Using the proof method from Problem 8.24, prove that any test set that
detects all single stuck-at faults on all the primary inputs and fanout branches of an
irredundant threshold network detects all single stuck-at faults in the network.

Problem 8.26. For the network shown in Fig. P8.26, obtain all test vectors that detect
an s-a-0 fault at the x2 input of the threshold gate.

f (x1, x2, x3, x4)
x3

x2

x1

x4

1
2

1

7
21

x'
'
1

x3

Fig. P8.26

Problem 8.27. Given a threshold gate that implements the function f (x1, x2, . . . , xn),
prove that if there exist two (or more) inputs xj and xk such that wj = wk then test vectors
to detect xk s-a-0 and xk s-a-1 can, respectively, be obtained simply by interchanging

262 Testing of combinational circuits

the bit positions of xj and xk in the s-a-0 and s-a-1 test vectors for xj , assuming that
they exist.

Verify this result by deriving test vectors for the s-a-0 and s-a-1 faults on inputs x1

and x2 of a three-input threshold gate that has a weight–threshold vector 〈1, 1, −1; 2〉.
Problem 8.28. For the network shown in Fig. P8.28:
(a) show a map for f (w, x, y, z);
(b) realize f with a single threshold element;
(c) derive a test vector for an s-a-0 fault on the w input of the threshold gate on the left.

x

w

y
−1

1
1 3

2 f (w, x, y, z)

y

x
w

z

3
−2
2

1

5
2

g

1

Fig. P8.28

Part 3 Finite-state machines

263

264

C H A P T E R

9 Introduction to synchronous
sequential circuits and
iterative networks

In Part 2 we considered combinational switching circuits in which the output
values are functions of only the current circuit input values. In most digital
systems, however, additional circuits are necessary that are capable of storing
information and data and also of performing some logical or mathematical
operations upon this data. The output values of these circuits at any given time
are functions of external input values as well as of the stored information at
that time. Such circuits are called sequential circuits.1

A finite-state machine (or finite automaton) is an abstract model describing
the synchronous sequential machine and its spatial counterpart, the iterative
network. It is the basis for the understanding and development of the vari-
ous computation structures discussed in Part 3 of this book. The behavior,
capabilities, limitations, and structure of finite-state machines are studied in
Chapters 12 through 16, while Chapters 9 and 10 are devoted to the synthe-
sis of these machines. Chapter 11 is concerned with asynchronous sequential
circuits.

9.1 Sequential circuits – introductory example

In our daily activities, we all encounter the use of various sequential circuits.
The elevator control which “remembers” to let us out before it picks up people
coming into elevator; traffic-light systems on our roads, trains, and subways;
the lock on a safe that not only remembers the combination numbers but also
their sequence; all these are examples of sequential circuits in action. Before
deriving the basic model and general synthesis procedures, we shall investigate
the properties of a simple sequential circuit.

1 Conventionally, the term sequential machine refers to the abstract model that represents the
actual sequential circuit. In many cases, however, these terms are used interchangeably.

265

266 Introduction to synchronous sequential circuits and iterative networks

Serial
adder

Z
0 01 01

1

X1

X2

0 01 1

Fig. 9.1 Block diagram of a
serial binary adder.

The state table

Consider the serial binary adder whose block diagram is shown in Fig. 9.1. It
is a synchronous circuit with two inputs, X1 and X2, carrying the two binary
numbers to be added and one output, Z, which represents the sum. Fixed-length
sequences of 0’s and 1’s are fed to the inputs and obtained at the outputs. The
addition is to be performed serially: the least significant digits of numbers X1

and X2 arrive at the corresponding input terminals at time t1; a unit time later,
the next-to-least significant digits arrive at the input terminals; and so on. The
time interval between the arrival of two consecutive input digits is determined
by the frequency of the circuit’s clock. We shall assume that the delay within
the combinational circuit is small with respect to the clock period (which is the
inverse of the clock frequency) and, as a consequence, the sum digit arrives at
the Z terminal soon after the arrival of the corresponding input digits at the
input terminals.

We shall denote by X and Z the input and output sequences, respectively,
and by x and z the input and output symbols at a specified point in time. We
may often want to emphasize the precise time at which the input or output value
occurs. In such cases, the notation x(ti), z(ti) will be used.

Consider the following addition of two binary numbers:

t5 t4 t3 t2 t1

0 1 1 0 0 = X1

+ 0 1 1 1 0 = X2

1 1 0 1 0 = Z

An examination of the correlation between the input values and the required
output value reveals the basic difference between a combinational circuit and
the serial binary adder. While in a combinational circuit the output value at
time ti is defined uniquely by the input values at ti , in the serial adder different
output values are required for identical input conditions. For example, at t1 and
t5 the input values are x1x2 = 00, but the required output values are z = 0 and
z = 1, respectively. Similarly, at t3 and t4 the input values are x1x2 = 11 while
the desired output values are 0 and 1, respectively. It is, therefore, evident that
the output value of the serial adder cannot be specified merely in terms of the
external input values, and so different design procedures must be employed.

Following the rules of elementary binary arithmetic, it is evident that the
output value at time ti is a function of the input values x1 and x2 at that time
and of the carry that was generated at ti−1. This carry (which may have either

267 9.1 Sequential circuits – introductory example

Table 9.1 State table for a serial binary adder

NS, z

PS x1x2 = 00 01 11 10

A A, 0 A, 1 B, 0 A, 1
B A, 1 B, 0 B, 1 B, 0

of the two values 0 or 1) in turn depends on the input values at ti−1 and on the
carry generated at ti−2, and so on. Hence the adder must be able to preserve
information regarding its input values from the time it is set into operation up
to time ti . However, since the starting time may be long past, it is impossible to
preserve the whole history of input values. We therefore seek a different relation
between the input values x1(ti) and x2(ti) and the output value z(ti), as follows.

In the case of the serial adder, we can distinguish two classes of past input
histories, one resulting in the production of a carry 0 and the other in producing
a carry 1. These classes will be called the internal states (or simply states) of
the adder. By “memorizing” the value of the carry, the adder actually shows
some “trace” of its past input values, at least to the extent of their influence on
the response to current input values.

Let A designate the state of the adder at ti if a carry 0 is generated at ti−1,
and let B designate the state of the adder at ti if a carry 1 is generated at ti−1.
We refer to the state of the adder at the time when the current input values are
applied to it as its present state (PS) and the state to which the adder goes, as a
result of the new (not necessarily different) carry value, as the next state (NS).
The output value z(ti) is a function of the input values x1(ti) and x2(ti) and the
state of the adder at time ti . The next state of the adder depends only on the
current input values and on the present state. A convenient way of describing
the behavior of the serial adder is by means of a state table, as shown in
Table 9.1.

Each row of the state table corresponds to a state of the adder, and each
column to a particular combination of the external input values x1 and x2. Each
entry of the table denotes the state to which a transition is made and the output
value associated with this transition. For example, if the adder is in state A, i.e.,
the current carry is 0, and it receives the input combination x1x2 = 11 then it
will go to state B, which corresponds to carry 1, and produce an output value
z = 0. The remaining entries of the table can be verified in a straightforward
manner and, since the table contains eight entries, corresponding to the eight
combinations of states and input values, it completely specifies the serial adder.

It is often convenient to use a directed graph as a counterpart to the state
table. Such a graph, shown in Fig. 9.2, is known as the state diagram (or state
graph). The vertices and directed arcs of the graph correspond to the states of
the adder and to its state transitions, respectively. The labels of the directed

268 Introduction to synchronous sequential circuits and iterative networks

BA
00/0
01/1
10/1

00/1

11/0
01/0
10/0
11/1

Fig. 9.2 State diagram for a
serial adder.

arcs specify the input values and the corresponding output values; e.g., 10/0
represents the condition x1 = 1, x2 = 0, and z = 0. Clearly, both the state
diagram and state table provide the same information regarding the operation
of the adder, and one can be obtained directly from the other. While in many
cases these representations are equally suitable, in some applications one may
be more convenient than the other.

The state assignment

In order to implement the serial adder, it is necessary to use some device
capable of storing the information regarding the presence or absence of a carry.
Such a device must have two distinct states, such that each can be assigned to
represent a state of the adder. A number of such devices exist, among which is
the delay element, which may simply consist of a D flip-flop, to be described
subsequently. The capability of the delay element to store information is a
result of the fact that it takes a finite amount of time for input signal Y to reach
its output y. The length of the delay is usually equal to the interval between
two successive clock pulses. For convenience, we will assume that this delay
is one time unit long.

The state of the delay element is specified by the value of its output y, which
may assume either of two values, namely, y = 0 or y = 1. Since the current
input value Y of the delay is equal to its next output value, the input value is
referred to as the next state of the delay, that is, Y (t) = y(t + 1).

If we assign the states of the delay to those of the adder in such a way that
y = 0 is assigned to A and y = 1 to B, the value of y at ti will correspond to
the value of the carry generated at ti−1. The process of assigning the states of
a physical device to the states of the serial adder is known as state assignment
(or secondary state assignment). The output value y is referred to as the state
variable (or secondary variable, to distinguish it from the external primary
input variables).

The state assignment is completed by modifying the entries of the state table
to correspond to the states of y, in accordance with the selected state assignment.
The resulting table is given in Table 9.2, where the next-state and output entries
have been separated into two sections. The entries of the next-state table define
the necessary state transitions of the adder and thus specify the next value of the
output, y(t + 1), of the delay. In addition, since Y (t) = y(t + 1), these entries
also specify the input values to the delay at time t required to achieve the

269 9.2 The finite-state model – basic definitions

Table 9.2 The transition and output tables for a serial
binary adder

Next state Y Output z

x1x2 x1x2

y 00 01 11 10 00 01 11 10

0 0 0 1 0 0 1 0 1
1 0 1 1 1 1 0 1 0

Full
adder

z

y

x1
x2

C0

Delay
Y

Fig. 9.3 Serial binary adder.

desired state transitions. Thus, the next-state part of Table 9.2, which is called
the transition table, serves also to specify the required excitation of the delay.

The output part of Table 9.2, which is identical to that of Table 9.1, specifies
the output value z for every combination of x1, x2, and y. Consequently, using
the map method the following logic equations result:

Y = x1x2 + x1y + x2y,

z = x ′
1x

′
2y + x ′

1x2y
′ + x1x

′
2y

′ + x1x2y.

These equations are clearly identical to those obtained in Section 5.4 for
the carry and sum functions of the full adder. The addition is accomplished
by retransmitting the carry C0 of the full adder through the delay Y into the
full adder’s input, as shown in Fig. 9.3. (Note that a delay whose input is Y is
generally referred to as “delay Y .”)

9.2 The finite-state model – basic definitions

The behavior of a finite-state machine is described as a sequence of events that
occur at discrete instants designated t = 1, 2, 3, etc. Suppose that a machine
M has been receiving input signals and has been responding by producing
output signals. If now, at time t , we were to apply an input signal x(t) to M

then its response z(t) would depend on x(t) as well as on the past input signals
to M . Also, since a given machine M might have an infinite variety of possible
histories, it would need an infinite capacity for storing them.

Since it is impossible to implement machines that have infinite storage capa-
bilities, we shall concentrate on those machines whose past histories can affect
their future behavior in only a finite number of ways. For example, suppose

270 Introduction to synchronous sequential circuits and iterative networks

Combinational
logic

z1x1

xl

y1 Y1

yk Yk

y2 Y2

zm

“Memory’’ devices

Fig. 9.4 Circuit representation
of a synchronous sequential
machine.

that the serial binary adder of the previous section has been receiving input
signals; its response to the signals at t is a function only of these signals and
the value of the carry generated at t − 1. Thus, although the adder may have a
large number of possible input histories, they may be grouped into two classes,
those resulting in a carry 1 and those resulting in a carry 0 at t .

We shall study machines that can distinguish among a finite number of
classes of input histories and shall refer to these classes as the internal states
of the machine. Every finite-state machine, therefore, contains a finite number
of memory devices, which store the information regarding the past input history.
Note that, although we are restricting our attention to machines that have finite
storage capacity, no bound has been set on the duration for which a particular
input value may affect the future behavior of the machine. A discussion of this
subject is deferred to Chapter 14.

Synchronous sequential machines

In general, a synchronous sequential machine is represented schematically by
the circuit of Fig. 9.4. The circuit has a finite number l of input terminals. The
signals entering the circuit via these terminals constitute a set {x1, x2, . . . , xl}
of input variables, where each xj , for all j , may take on one of the two possible
values 0 or 1. An ordered l-tuple of 0’s and 1’s is an input configuration
(alternatively, input symbol, pattern, or vector). The set I of p = 2l distinct
input patterns is called the input alphabet, and each configuration is referred to
as a symbol of the alphabet. Thus, the input alphabet is given by

I = {I1, I2, . . . , Ip}.
For example, if a machine has two input variables x1 and x2 then its input alpha-
bet I consists of four symbols (or configurations), that is, I = {00, 01, 11, 10}.

Similarly, the circuit has a finite number m of output terminals which define
the set {z1, z2, . . . , zm} of output variables, where each zj , for all j , is a

271 9.2 The finite-state model – basic definitions

binary variable. An ordered m-tuple of 0’s and 1’s is an output configuration
(alternatively, output symbol, pattern, or vector). The set O of q = 2m ordered
m-tuples is called the output alphabet and is given by

O = {O1,O2, . . . , Oq}

where each output configuration is a symbol of the output alphabet.
The signal value at the output of each memory element is referred to as the

state variable, and {y1, y2, . . . , yk} constitutes the set of state variables. The
combination of values at the outputs of the k memory elements y1, y2, . . . , yk

defines the present internal state (or state) of the machine. The set S of n = 2k

k-tuples constitutes the entire set of states of the machine, where

S = {S1, S2, . . . , Sn}

The external input values x1, x2, . . . , xl and the values of the state variables
y1, y2, . . . , yk are supplied to the combinational circuit, which in turn produces
the output values z1, z2, . . . , zm and the Y1, Y2, . . . , Yk values. The values of
the Y ’s, which appear at the outputs of the combinational circuit at time t , are
identical to the values of the state variables at t + 1 and, therefore, they define
the next state of the machine, i.e., the state that the machine will assume next.

Synchronization is achieved by means of clock pulses feeding the memory
devices.

Specification of machine behavior

The relationships between the input symbol, present state, output symbol, and
next state are described by either a state table or state diagram. A state table
has p columns, one for each input symbol, and n rows, one for each state.
For each combination of input symbol and present state, the corresponding
entry specifies the output symbol that will be generated and the next state to
which the machine will go. Although in practice every machine of the type
shown in Fig. 9.4 has 2l input symbols and 2k states, some of them may be
theoretically unnecessary. In other words, theoretically a machine may have any
number p of input symbols and n of states. However, in practice, when realizing
such a machine the actual circuit will have l = �log2 p� input terminals and
k = �log2 n� memory elements, where �g� is the smallest integer larger than
or equal to g.

To each state of the machine there corresponds a vertex in the state diagram
(cf. Fig. 9.2). From each vertex emanate p directed arcs, corresponding to
the state transitions caused by the various input symbols. Each directed arc
is labeled by the input symbol that causes the transition and by the output
symbol that is to be generated. Since both the state table and state diagram
contain the same information, the choice between the two representations is a
matter of convenience, as mentioned above. Both have the advantage of being

272 Introduction to synchronous sequential circuits and iterative networks

precise, unambiguous, and thus more suitable for describing the operation of a
sequential machine than any verbal description.

The succession of states through which a sequential machine passes, and the
output sequence which it produces in response to a known input sequence, are
specified uniquely by the state diagram (or table) and the initial state, where by
the initial state we refer to the state of the machine prior to the application of
the input sequence. The state of the machine after the application of the input
sequence is called the final state.

9.3 Memory elements and their excitation functions

In discussing the basic model for synchronous sequential machines, we showed
that a state table (or diagram) completely specifies the behavior of the machine.
In order to design a circuit that operates according to the specifications of a
given table, it is necessary first to select a number of memory elements, each
of which is a device with two distinct states and is capable of storing a binary
digit. The states of these elements are next assigned to the states of the machine,
a process known as state assignment.

A transition table is derived from a state table by the replacement of each
next-state entry with the corresponding state of memory elements. A transition
table thus specifies for every combination of input values and state variables
the next state of the memory elements, which is given by Y1, Y2, . . . , Yk . To
generate these Y ’s, the memory elements must be supplied with appropriate
input values. The switching functions, which describe the effect of the circuit
inputs x1, x2, . . . , xl and state variables y1, y2, . . . , yk on the memory-element
inputs, are called excitation functions. These functions are derived from an
excitation table, whose entries are the values of the memory-element inputs.

In Section 9.1, we described the delay element as a memory device. Its
storage capability is due to the fact that it takes a finite time for the signal to
propagate through it. In practice, the most widely used memory element is the
flip-flop, which is made up of latches.

Set–reset or SR latch

The set-reset (SR) latch has two inputs, S and R, and two outputs, y and y ′

(often denoted as the 1 and 0 outputs or Q and Q′ outputs, respectively). A
block diagram representing an SR latch is shown in Fig. 9.5a. Such latches
are easily implemented with cross-coupled NOR or NAND gates, as shown in
Figs. 9.5b, 9.5c, respectively.

The SR latch has two states, defined by y = 1 and y = 0. The output y ′ is
the complement of y. The latch possesses the property that it remains in one
state indefinitely until it is directed by an input signal to do otherwise. A signal

273 9.3 Memory elements and their excitation functions

Table 9.3 Excitation characteristics of the
SR latcha

y(t) S(t) R(t) y(t + 1)b

0 0 0 0
0 0 1 0
0 1 1 ?
0 1 0 1
1 1 0 1
1 1 1 ?
1 0 1 0
1 0 0 1

a RS = 0.
b y(t + 1) = R′y(t) + S.

1 yS

R

(a) Block diagram.

y0

R

S

y

y

(b) NOR latch.

R

S y

y

(c) NAND latch.

'

'

'

Fig. 9.5 The SR latch.

at the input S sets the latch to the 1 state, i.e., it sets y = 1; a signal at the
input R resets it to the 0 state. The excitation characteristics of the SR latch are
given in Table 9.3. If both R and S are excited simultaneously, the operation
of the latch becomes unpredictable. Consequently, the requirement that the
product RS = 0 must be imposed to ensure that the two invalid combinations
in Table 9.3 will never occur. The excitation requirements of the SR latch are
summarized in Table 9.4, in which a dash denotes a situation where the value
of the input is a don’t-care, since it does not affect the output value.

In practice, a clocked, or synchronous, version of the SR latch is gener-
ally used. In this version, shown in Fig. 9.6, state changes can occur only in
synchronization with the pulses from an electronic clock. To ensure proper
operation, restrictions must be placed on the length of the clock pulses and
on the frequency of the input changes so that the circuit will change state no
more than once for each clock pulse. The synchronization of the S and R inputs
with the clock is accomplished in Fig. 9.6b by AND-gating them before they
enter the latch inputs.

274 Introduction to synchronous sequential circuits and iterative networks

Table 9.4 Excitation requirements
for the SR latch

Required value
Change in y
from to S R

0 0 0 —
0 1 1 0
1 0 0 1
1 1 — 0

yS

R

(a) Block diagram.

y

R

S

y

y

(b) Logic diagram.

ClockC
'

'

Fig. 9.6 Clocked SR latch.

y
S

R

(a) Block diagram.

y
y

y

(b) Deriving the T latch from the
clocked SR latch.

ClockT T1

0

1

0
'

'

Fig. 9.7 Trigger (or T) latch.

To simplify the logic diagrams in subsequent sections we will often ignore
the clock, but it is important to note that in all synchronous circuits, the clock
is implicit whether shown or not.

Trigger or T latch

The block diagram of the trigger (T) latch is shown in Fig. 9.7a. The T latch
has one input denoted T and two outputs denoted y and y ′. It has two distinct
states, defined by the logic value of y; namely, the latch is in the 1 state when
y = 1 and in the 0 state when y = 0. The output y ′ is the complement of y. As
in the case of the SR latch, the T latch remains in one state indefinitely until
it is directed by an input signal to do otherwise. A value 1 applied to its input
triggers the latch and it changes state.

The terminal characteristics of the T latch are summarized in Table 9.5. The
next-state function y(t + 1) can be expressed in terms of the present state and

275 9.3 Memory elements and their excitation functions

Table 9.5 Excitation requirements
for the T latch

Change in y Required
from to value T

0 0 0
0 1 1
1 0 1
1 1 0

y
S

R

(a) Block diagram.

y
y

y

(b) Constructing the JK latch from the
clocked SR latch.

Clock
J

C
1

0

1

0
K

J

K
'

'

Fig. 9.8 The JK latch.

input as follows:

y(t + 1) = Ty ′(t) + T ′y(t)

= T ⊕ y(t).

A clocked T latch can be realized by cross-coupling a clocked SR latch, as
shown in Fig. 9.7b. (The clock in Fig. 9.6b is replaced by an AND combination
of the input T and a clock.) If nonclocked operation is desired, the clock and
AND gate in Fig. 9.7b may be removed and T applied directly to the latch.
In the clocked realization, if the value of the output y is 1 then the reset
input value is 1. The latch will now change state (to y = 0) when T C = 1,
that is, when the values of T and the clock are both 1. Similarly, when y =
0 the set input value is 1, and the latch will change state (to y = 1) when
T C = 1.

The JK latch

The JK latch has the characteristics of both the SR and T latches. Inputs J

and K , like S and R, set and reset the latch, respectively. The combination
J = K = 1 is permitted. When it occurs, the latch acts like a trigger and
switches to its complement state; that is, if y = 1 it switches to y = 0 and
vice versa. The block diagram and excitation requirements for the JK latch are
shown in Fig. 9.8a and Table 9.6, respectively.

276 Introduction to synchronous sequential circuits and iterative networks

Table 9.6 Excitation requirements for
the JK latch

Required valueChange in y
from to J K

0 0 0 —
0 1 1 —
1 0 — 1
1 1 — 0

y
J

K

(a) Block diagram.

y
y

y

(b) Transforming the JK latch to a
D latch.

Clock
D

C
1

0

1

0
Clock

D

'
'

Fig. 9.9 The D latch.

One possible realization of a clocked JK latch can be obtained by general-
izing the clocked SR latch in the way shown in Fig. 9.8b.

The D latch

The block diagram and a possible realization of the D latch are shown in
Fig. 9.9. The next state of this device is equal to its present excitation. Hence,
it is characterized by the equation

y(t + 1) = D(t).

This latch clearly behaves like the delay element discussed in the preceding
sections and, consequently, its excitation requirements are specified by the
transition table.

Clock timing and the master–slave flip-flop

A clocked latch is characterized by the fact that it changes states only in syn-
chronization with the clock pulse. Moreover, it changes state only once during
each occurrence of a clock pulse. A sequential circuit operating under these
restrictions is said to be a synchronous sequential circuit. The duration of the
clock pulse is usually determined by the circuit delays and signal propagation
time through the latches. In fact, the clock pulse must be long enough to allow
the latch to change state and, at the same time, it must be short enough that the
latch will not change state twice due to the same excitation.

277 9.3 Memory elements and their excitation functions

y

J

K

y

Clock

Combinational
logic

1

0

Fig. 9.10 Excitation of a JK
latch within a sequential circuit.

S

R y

y

Clock

1

0

S

R

S

R

1

0 '

Fig. 9.11 Master–slave SR
flip-flop.

In general, referring to the sequential circuit model of Fig. 9.4, the outputs of
a latch (which serves as a memory element) are inserted into a combinational
circuit, which, in turn, generates the excitation functions for that latch, as
illustrated in Fig. 9.10. The length of the clock pulse must be such that it will
allow the latch to generate the y’s but will not be present when the values of the
y’s have propagated through the combinational circuit. This fine tuning of the
length of the clock pulse is difficult to accomplish. To overcome this, another
type of synchronous memory element, called a master–slave flip-flop, can be
used. This flip-flop eliminates the timing problems associated with the feedback
loop by essentially isolating the inputs of the flip-flop from its outputs.

A master–slave SR flip-flop, shown in Fig. 9.11, is constructed of two set–
reset latches connected in series, with their clock inputs driven in a comple-
mentary manner. The first latch, called the master, can change state only when
the clock is at 1, while the second latch, called the slave, can change state only
when the clock is at 0. A change in excitation causes a change of state in the
master latch. During that period, the slave latch maintains its previous state
and serves as a buffer between the master and the next stage. When the clock
changes from 1 to 0, the state of the master latch is frozen while the slave latch
is enabled and changes its state to that of the master latch. The new state of the
slave then determines the state of the entire master–slave flip-flop.

Since the master–slave SR flip-flop still suffers from the drawback that both
its inputs cannot simultaneously be 1, it can be converted to a master–slave JK

flip-flop to avoid this problem, as shown in Fig. 9.12a. Note the similarity to the
JK latch shown in Fig. 9.8b. The only difference is that the SR latch has been
replaced by a master–slave SR flip-flop. Thus, when a master–slave JK flip-
flop is substituted for the JK latch in Fig. 9.10, the inputs of the combinational
circuit do not change when the clock is at 1. When the clock is at 0, the y’s

278 Introduction to synchronous sequential circuits and iterative networks

S

R y

y

(a) Master–slave JK flip-flop.

SR
Master–
slave

1

0

J

K

J

K y

y

(b) Master–slave D flip-flop.

1

0

D
JK

Master–
slave' '

Fig. 9.12 Master–slave
flip-flops.

J

K

y

y

Clock

Set

Clear

Master Slave

'

Fig. 9.13 Master–slave JK
flip-flop with set and clear
inputs.

change and, consequently, the output of the combinational circuit changes, but
this cannot affect the state of the master latch.

In practice, a master–slave flip-flop has three regular inputs, namely J , K (or
S, R) and the clock, and two additional inputs, called (direct) set and (direct)
clear, as shown in Fig. 9.13. These latter inputs are added to the slave flip-flop
and they override the regular input signals and clock. They are used either to
set the slave output to 1, by applying 0 to the set input and 1 to the clear input,
or to clear the slave output to 0 by applying complementary values to the set
and clear inputs. It is not allowable to assign 0’s to both the set and clear inputs
simultaneously. If we assign both of them 1’s, however, the circuit returns to the
normal clocked master–slave operation. Such external inputs are very useful,
for example, in the design of counters, where it may be necessary to reset a
counter to a prespecified count, or in the design of shift registers,2 which must
be cleared before the start of certain computations.

Both master–slave SR and JK flip-flops suffer from the problem of “1’s
catching” and “0’s catching.” This arises from the fact that the master latch
is transparent when the clock is high. Consider the JK flip-flop shown in
Fig. 9.12a. When the output of the slave latch is at 0 and the J input has a
static-0 hazard (a transient glitch to 1) after the clock has gone high, then the
master latch catches this set condition and its output attains the value 1. It then

2 A shift register consists of a number of cascaded flip-flops.

279 9.3 Memory elements and their excitation functions

Clock

R

S

y

y

D

Fig. 9.14 A negative
edge-triggered D flip-flop.

passes this 1 to the slave latch when the clock goes low. This leads to “1’s
catching.” Similarly, when the output of the slave latch is at 1 and the K input
has a static-0 hazard after the clock has gone high, then the master latch catches
this reset condition and its output attains the value 0, which is then passed on
to the slave latch when the clock goes low. This leads to “0’s catching.”

To avoid the above problems, a popular solution is to use a master–slave D

flip-flop, as shown in Fig. 9.12b (note again the similarity to the D latch shown
in Fig. 9.9b). Now, even if a static hazard were to occur at the D input when
the clock is high, the output of the master latch would revert to its old value
when the glitch goes away.

The master–slave T flip-flop can be obtained analogously by replacing the
SR latch in Fig. 9.7b with master and slave SR latches.

Another type of flip-flop called an edge-triggered flip-flop yields a more
efficient implementation, in terms of the number of gates, than master–slave
flip-flops and hence is popular. This is discussed next.

Edge-triggered flip-flop

A positive (negative) edge-triggered D flip-flop stores the value available
on the D input when the clock makes a 0 → 1 (1 → 0) transition. Any change
at the D input after the clock has made a transition does not have any effect on
the value stored in the flip-flop.

Consider the negative edge-triggered D flip-flop shown in Fig. 9.14 (a pos-
itive edge-triggered flip-flop can be obtained simply by using the complement
of the clock). It consists of three latches. When the clock is high, the output of
the bottommost (topmost) NOR gate is at D′ (D), whereas the S and R inputs
of the output latch are both at 0, causing it to hold the previous value. When
the clock goes low, the value from the bottommost (topmost) NOR gate gets
transferred as D (D′) to the S (R) input of the output latch. Thus, the output
latch stores the value of D. If there is a change in the value of the D input of the

280 Introduction to synchronous sequential circuits and iterative networks

flip-flop after the clock has made its transition, the output of the bottommost
NOR gate attains the value 0 (since its two inputs must have complementary
values). However, it can be seen that this cannot change the SR inputs of the
output latch.

The excitation characteristics and requirements presented earlier for the
various types of latch are also applicable to the corresponding flip-flops. In the
subsequent discussion, we shall synthesize sequential circuits using flip-flops.
To simplify the resulting tables and circuits, the clock is generally not shown.
However, as mentioned before, it is implicit in all synchronous circuits.

9.4 Synthesis of synchronous sequential circuits

We have seen a synthesis procedure in Section 9.1 for a serial binary adder
using a delay as the memory element. In this section, we shall develop a
general method for designing sequential circuits, using various types of memory
elements, and apply this method to the design of some commonly used circuits.
The main steps in the method are summarized as follows.

1. From a word description of the problem, form a state table (or a state
diagram) that specifies the circuit behavior.

2. Check this table to determine whether it contains any redundant states. (The
notion of a redundant state will be defined in Chapter 10, where we shall
also present methods for detecting and eliminating such states. The state
tables in this section do not contain any redundant states.)

3. Select a state assignment and determine the type of memory elements to be
used.

4. Derive the transition and output tables.
5. Derive an excitation table and obtain the excitation and output functions

from their respective tables.
6. Draw a circuit diagram.

In effect, in step 5 we are converting a less familiar problem, that of sequential
circuit synthesis, into a more familiar problem, that of combinational circuit
synthesis, since the construction of the excitation table is actually equivalent to
the construction of a set of maps, from which the derivation of the excitation
functions is straightforward.

The sequence detector

We wish to design a one-input one-output sequence detector that produces an
output value 1 every time the sequence 0101 is detected and an output value
0 at all other times. For example, if the input sequence is 010101 then the
corresponding output sequence is 000101. In designing the sequence detector,

281 9.4 Synthesis of synchronous sequential circuits

Table 9.7 State table for a
sequence detector

NS, z

PS x = 0 x = 1

A B, 0 A, 0
B B, 0 C, 0
C D, 0 A, 0
D B, 0 C, 1

A B C D
0/0

0/0

1/1

1/0

0/00/0

1/0

1/0Fig. 9.15 State diagram for a
sequence (0101) detector.

we may find it more convenient to start the synthesis procedure by constructing
the state diagram of the machine.

At time t1 the machine is assumed to be in the initial state, designated
(arbitrarily) as A. While in this state, the machine can receive input values 0
or 1. For each of these input values, an arc is drawn originating in state A and
terminating in the appropriate next state, as shown in Fig. 9.15. The arc labeled
1/0 forms a self-loop around state A, since the machine does not initiate the
sequence detection process until it receives a 0 input value. The input value
0 indicates a possible start of the sequence to be detected and, therefore, an
arc labeled 0/0 leads from state A to B. When the machine is in state B, a
1 input value takes it to state C, while a 0 input value leaves it in the same
state. If, when the machine is in state C, it receives a 1 input value, its last
two input values are 11 and, since this input sequence cannot be completed
in any way to yield 0101, the machine is directed back to its initial state. The
machine arrives at state D after having received an input sequence whose last
three symbols are 010. An additional 1 input value produces a 1 output value
and causes a transition from state D to C, which is the state corresponding to
input sequences whose last two symbols are 01. A 0 input value, applied to the
machine when in state D, causes a transition to B because the last 0 symbol
may be the prefix of 0101.

The state table corresponding to the diagram of Fig. 9.15 is given in
Table 9.7. The input and output symbols are denoted by x and z, respectively.

Two state variables with 22 = 4 states are needed for the representation of
the four states of the sequence detector. If we select two delay elements, Y1 and
Y2, as memory devices and choose the state assignment shown in the left-hand
block of Table 9.8, we obtain the transition and output tables in the center and

282 Introduction to synchronous sequential circuits and iterative networks

Table 9.8 Transition and output tables

Y1Y2 z

y1y2 x = 0 x = 1 x = 0 x = 1

A 00 01 00 0 0
B 01 01 11 0 0
C 11 10 00 0 0
D 10 01 11 0 1

1

1

1 11

y1y2

1

1

(b) Y1 map.

0 1

00

01

11

10

x

1

(a) z map.

0 1

00

01

11

10

x

1

(c) Y2 map.

0 1

00

01

11

10

x
y1y2y1y2

Fig. 9.16 Output and excitation
maps.

right-hand blocks of Table 9.8. The entries of the transition table specify, for
each combination of present state and input symbol, the values that the outputs
of the delays should assume next. However, since the next values of the delays
are equal to their present excitation, the transition table entries in effect specify
the required excitation of the delay elements. Consequently, whenever delay
elements are used as memory devices the transition and excitation tables are
identical.

The output table is, actually, a three-variable map in which the value of z is
specified for every combination of x, y1, and y2, as shown in Fig. 9.16a. The
excitation table consists of two distinct three-variable maps, corresponding to
the excitation functions for Y1 and Y2. Entries for the map of Y1 (Y2) are given
by the left-hand (right-hand) entries of the second block of Table 9.8. The logic
equations, derived from the maps of Fig. 9.16, for the output and excitation
functions are

z = xy1y
′
2,

Y1 = x ′y1y2 + xy ′
1y2 + xy1y

′
2,

Y2 = y1y
′
2 + x ′y ′

1 + y ′
1y2.

The implementation of these equations yields the sequence detector shown in
Fig. 9.17.

The reader may have observed that the state assignment employed in
Table 9.8 is not the only possible one. In general, different state assignments

283 9.4 Synthesis of synchronous sequential circuits

Table 9.9 A second assignment

Y1Y2 z

y1y2 x = 0 x = 1 x = 0 x = 1

A 00 01 00 0 0
B 01 01 10 0 0
C 10 11 00 0 0
D 11 01 10 0 1

z

y1Y1
D

x

y2Y2 D

Fig. 9.17 Logic diagram of a
sequence detector.

yield different logic equations, which can affect to a considerable degree the
area and structure of the resulting circuit. For example, if we interchange the
codes assigned to states C and D then we obtain Table 9.9 and the following
logic equations:

Y1 = x ′y1y
′
2 + xy2,

Y2 = x ′,
z = xy1y2.

The implementation of the equations derived from this second state assign-
ment requires less than half the number of gates required for the circuit of
Fig. 9.17. Also, the second excitation function for Y2 is independent of the
state variables y1 and y2; it depends only on the input. Unfortunately, there
is no simple procedure that can be used to arrive at an assignment yielding a
minimal circuit under some well-defined cost criterion. Some trial and error
is consequently necessary until an acceptable assignment is achieved. The
state-assignment problem and, in particular, its effect on the machine structure
will be discussed extensively in Chapter 12.

284 Introduction to synchronous sequential circuits and iterative networks

Table 9.10 State table for a modulo-8 binary counter

NS Output

PS x = 0 x = 1 x = 0 x = 1

S0 S0 S1 0 0
S1 S1 S2 0 0
S2 S2 S3 0 0
S3 S3 S4 0 0
S4 S4 S5 0 0
S5 S5 S6 0 0
S6 S6 S7 0 0
S7 S7 S0 0 1

0/0 0/01/1 1/0

0/0

0/0

1/0 1/0

S0

S3S5

S7

S6 S2

S4

S1

1/0

1/01/0

1/0

0/0

0/0

0/00/0

Fig. 9.18 State diagram for a
modulo-8 binary counter.

A binary counter

A modulo-8 binary counter is to be designed with one input terminal and one
output terminal. It should be capable of counting in the binary number system
up to 7 and producing an output value 1 for every eight input 1 values. After
a count of seven is reached, the next input value 1 will reset the counter to its
initial state, i.e., to a count of zero.

Let S0, S1, . . . , S7 respectively be the states of the counter after it has received
0, 1, . . . , 7 input values equal to 1. The state S0 that designates the zero count
is the initial state. Transitions occur between successive states only when the
counter receives the input value 1. The state diagram and state table of the
counter are shown in Fig. 9.18 and Table 9.10.

285 9.4 Synthesis of synchronous sequential circuits

Table 9.11 Transition and output tables for a
modulo-8 binary counter

NS z
PS

y3y2y1 x = 0 x = 1 x = 0 x = 1

000 000 001 0 0
001 001 010 0 0
010 010 011 0 0
011 011 100 0 0
100 100 101 0 0
101 101 110 0 0
110 110 111 0 0
111 111 000 0 1

From the correspondence between the states and the count, it is evident that
no state in Table 9.10 is redundant. Also, since the counter has eight states, a
state assignment requires three state variables (having 23 = 8 states). The states
of these variables, starting from the all-zero position, are 000, 001, . . . , 111.
The choice of assignment in this example should not be made arbitrarily since
it determines the characteristics of the circuits and, in particular, specifies the
code and number system in which the counter actually counts. Our objective
is to design a counter that counts in the binary number system. Accordingly,
the code assigned to each state must be a binary representation of the actual
count associated with that state, that is, S0 → 000, S1 → 001, . . . , S7 → 111.
The transition and output tables corresponding to the foregoing assignment are
shown in Table 9.11.

Implementing the counter with T flip-flops

To complete the synthesis, we need to choose an appropriate set of memory
elements and derive their excitation functions. Let us select T flip-flops whose
excitation requirements are specified by Table 9.5.

Up to now we have used a delay element whose output y(t) equals its
excitation at time t − 1 and, consequently, the transition table that specifies the
required changes in the values of the y’s yields the necessary current excitations
as well. Table 9.11, however, does not yield the necessary excitations for
the T flip-flops. Consider, for example, entries 000 at the top of the x = 0
column and the bottom of the x = 1 column. In the first case the flip-flops
remain unchanged, since the transitions are from S0 = 000 to S0 = 000. In
the second case, however, the transitions are from S7 = 111 to S0 = 000 and,
therefore, all three flip-flops must change state. Hence, while in the first case no
excitations are needed, in the second case all three flip-flops must be triggered,
i.e., T1 = T2 = T3 = 1. Similarly, the transition from S5 = 101 to S6 = 110,

286 Introduction to synchronous sequential circuits and iterative networks

Table 9.12 Excitation table for T flip-flops

T3T2T1

y3y2y1 x = 0 x = 1

000 000 001
001 000 011
010 000 001
011 000 111
100 000 001
101 000 011
110 000 001
111 000 111

z

T1

1

0

x

y1

T3

1

0

y3

T2

1

0

y2

Fig. 9.19 Schematic diagram of
a modulo-8 binary counter with
T flip-flops.

under x = 1, requires y3 to remain unchanged while y1 and y2 change state.
Thus, from Table 9.5 it is evident that the required excitation is 011. In the
same manner we can specify the required excitations for each transition, and
the excitation table shown in Table 9.12 results.

This excitation table consists of three distinct maps specifying T1, T2, and
T3 as functions of x, y1, y2, and y3. The logic equations for the output and
excitation functions are derived from Tables 9.11 and 9.12, respectively, and are
as follows (note that the code resulting from the binary state assignment is
not cyclic and thus the reader must be careful when “reading” the equations
from the corresponding tables; alternatively, it is possible to transform the
tables into three maps and to determine the equations directly from these
maps):

T1 = x,

T2 = xy1,

T3 = xy1y2,

z = xy1y2y3.

A schematic diagram for a modulo-8 counter is shown in Fig. 9.19. The
clock has not been shown but is implicit in this and subsequent figures. A
1 appears on terminal z whenever the total number of 1’s received at input line
x is a multiple of 8. The actual count (modulo 8) of the number of incoming 1’s
is given by the values of the state variables y1, y2, and y3, which have binary

287 9.4 Synthesis of synchronous sequential circuits

Table 9.13 Excitation table for SR flip-flops

x = 0 x = 1

y3y2y1 S3R3 S2R2 S1R1 S3R3 S2R2 S1R1

000 0− 0− 0− 0− 0− 10
001 0− 0− −0 0− 10 01
010 0− −0 0− 0− −0 10
011 0− −0 −0 10 01 01
100 −0 0− 0− −0 0− 10
101 −0 0− −0 −0 10 01
110 −0 −0 0− −0 −0 10
111 −0 −0 −0 01 01 01

weights 1, 2, and 4, respectively. For example, if y1 = 1, y2 = 0, and y3 = 1,
the number of incoming 1’s has been 5 modulo 8, i.e. 5, 13, 21, . . .

Implementing the counter with SR flip-flops

The modulo-8 binary counter can also be implemented using SR flip-flops. The
excitation table (Table 9.13) is derived from the transition table (Table 9.11)
and from the excitation requirements in Table 9.4. As an example, consider the
specification of the transition from S5 = 101, under x = 1, to S6 = 110. The
value of y1 will change from 1 to 0 and, consequently, the flip-flop must be
reset. From Table 9.4, it is evident that this is accomplished by setting S1 = 0
and R1 = 1, and thus the value 01 is entered in row 101, column S1R1, of
Table 9.13. Similarly, y2 must change from 0 to 1, and the value 10 is entered
in column S2R2, row 101. The value of y3, however, is to remain unchanged;
hence R3 must not be 1 while S3 may be either 0 or 1, which means that the
appropriate entry in row 101, column S3R3, is − 0. The entire excitation table
is specified in a similar way.

Table 9.13 consists of six distinct maps for S1, R1, S2, R2, S3, and R3 as
functions of the variables x, y1, y2, and y3. The logic equations for the excitation
functions are

S1 = xy ′
1, S2 = xy1y

′
2, S3 = xy1y2y

′
3,

R1 = xy1, R2 = xy1y2, R3 = xy1y2y3.

The schematic diagram3 corresponding to these equations is shown in
Fig. 9.20.

3 It is interesting to observe that the binary counter is an iterative network, in the sense that, from
the terminal viewpoint, each cell, containing a flip-flop and its associated logic, is
indistinguishable from the others. Consequently, in order to design a modulo-16 counter, all that
is necessary is to add a fourth identical cell in cascade with the three cells shown in Fig. 9.20.

288 Introduction to synchronous sequential circuits and iterative networks

S3

R3

y3
0

1
y3

y3

S1

R1

x

y1
0

1
y1

y1

S2

R2

y2
0

1
y2

y2

Cell 1 Cell 3Cell 2

z

' ' '

Fig. 9.20 Schematic diagram of
a modulo-8 binary counter with
SR flip-flops. A

B C

D

0/0

0/0
0,1/0

1/0

0/0

0/0

1/0

1/0

E

F G

0/0

1/0

1/0

0,1/1

Fig. 9.21 State diagram for a
parity-bit generator.

A parity-bit generator

A serial parity-bit generator is a one-terminal circuit that receives coded mes-
sages and adds a parity bit to every m-bit message, so that the resulting out-
come is an error-detecting coded message. The input values in our example
are assumed to arrive in strings of three symbols, i.e., m = 3, the strings being
spaced apart by single time units. The parity bits are to be inserted in the
appropriate spaces, and the resulting outcome is a continuous string of symbols
without spaces. Even parity will be used; that is, a parity bit 1 is to be inserted
if and only if the number of 1’s in the preceding string of three symbols is
odd.

The state diagram for the parity-bit generator is shown in Fig. 9.21. States
B, D, and F correspond to even numbers of 1’s out of one, two, and three
incoming input symbols, respectively. Similarly, states C, E, and G correspond
to odd numbers of 1’s out of one, two, and three incoming input symbols,
respectively. From either state F or state G the machine goes to state A, regard-
less of the input symbol. (Note that, in fact, the fourth input symbol is a blank,
i.e., 0.)

Since the state diagram of Fig. 9.21 contains seven states, three state vari-
ables are needed for an assignment. However, since three state variables

289 9.4 Synthesis of synchronous sequential circuits

Table 9.14 State table for a parity-bit generator

NS z
PS

y1y2y3 x = 0 x = 1 x = 0 x = 1

A 000 B C 0 0
B 010 D E 0 0
C 011 E D 0 0
D 110 F G 0 0
E 111 G F 0 0
F 100 A A 0 0
G 101 A A 1 1

have a total of eight states, one of the states will not be assigned and so
its entries in the corresponding state table may be considered as don’t-cares.
We shall defer the study of the properties of incompletely specified machines to
Chapter 10, however. The state table and a possible state assignment are shown
in Table 9.14. The reader can verify that the following logic equations result if
JK flip-flops are used as memory elements:

J1 = y2, J2 = y ′
1, J3 = xy ′

1 + xy2, z = y ′
2y3,

K1 = y ′
2, K2 = y1, K3 = y ′

2 + x.

Since the specification of the problem does not offer any clue as to which
assignment to select, it may be chosen arbitrarily. The assignment shown in
Table 9.14 has been selected so as to yield “reduced dependency” among the
state variables; that is, J1 and K1 depend only on the second flip-flop while J2

and K2 depend only on the first flip-flop. The method of selecting assignments
that result in such circuit properties will be presented in Chapter 12.

A sequential circuit as a control element in a computation

In the preceding examples, each sequential circuit received an input sequence
and, in turn, produced an output sequence. This output sequence was the objec-
tive of the computation. However, many sequential circuits are used to control
more complex computations. Indeed, the data for such computations do not
even pass through the controlling circuit and are, therefore, not processed by it.
The main role of a sequential circuit in the capacity of a control element is to
streamline the computation by providing the appropriate control signals. Such
circuits usually have a large number of inputs and outputs and, consequently,
more informal design techniques simplify the design process considerably. The
following example illustrates a simple computation in which a sequential circuit
is the control element.

290 Introduction to synchronous sequential circuits and iterative networks

k2

L

ADD

Sequential circuit M

x

b

u
Initiate

(4a + b)16

z

X

K
k1

a

4

4

44

a

g

b

4

Fig. 9.22 A system to compute
(4a + b) modulo 16.

The schematic diagram in Fig. 9.22 describes a digital system that computes
the value of (4a + b) modulo 16, where a and b are each a four-bit binary
number. In this figure, X is a register4 containing four flip-flops while x is the
number stored in X. The register can be loaded with either b or a + x. The
addition of a and x is performed by the four-bit parallel adder, denoted ADD.
Input b to X is the channel through which the four-bit binary number b is loaded
into the register in such a way that each bit enters the corresponding flip-flop.
In general, if a number is loaded into the register then it replaces the number
presently stored in it. The slash followed by the number 4 across several lines
in Fig. 9.22 indicates that each such line actually consists of four wires. The
output L of the modulo-4 binary counter K is equal to 1 whenever the count is
3 modulo 4.

The sequential circuit M has two inputs – an input u which initiates the
computation and an input L that gives the count of K . It has four outputs,
α, β, γ , z, whose tasks are as follows. The outputs α and β are control lines
for loading the register X. Whenever α = 1, the contents of b are transferred
into X. Whenever β = 1, the values of x and a are added and transferred back
into X. The input of the counter is γ . Hence, whenever γ = 1 the count of
K increases by 1. Output z assumes the value 1 whenever the final result is
available in X, that is, whenever x = (4a + b) modulo 16. Output z can itself
be a control input of another register that is to receive the final result of the
computation. However, to simplify the design, this register is not shown.

Initially the count of K is zero, as are the values of u and z. When the
value of u becomes 1 the computation starts by setting α = 1, which causes
b to be loaded into X. Next, a is added to x. This is accomplished by setting
β to 1 and, simultaneously, γ to 1, so that the count in K will keep track of
the number of times that a has been added to x. After four such additions,
z assumes the value 1 and the computation is complete. At this point, the
count in K is again zero and, hence, K is ready for the start of the next
computation.

4 A k-bit register is a group of k flip-flops such that each flip-flop can store one binary digit and
the entire register thus stores a k-bit binary word.

291 9.4 Synthesis of synchronous sequential circuits

A

B

u = 0

D

00

11

10

L = 0 b
g = 1 g = 1

/ = 1

01

C

−/z = 1

u = 1

L = 1/ = 1

–/a = 1

b

Fig. 9.23 State diagram for
circuit M .

A compact state diagram for M is shown in Fig. 9.23. In this diagram, only
some of the input and output symbols are shown, in particular, only those that
change during the transition and are relevant for the transition in question.
The clock is as usual omitted, although it is implicit. Initially, M is in state
A. When u = 1, M goes to state B without changing the output values. The
next clock pulse causes M to go to state C and to produce the output symbol
α = 1, regardless of the other input symbols. This is indicated by the symbol
−/α = 1 on the line going from B to C. Register X contains the value of b

now. If u is at 1, its value may change to 0 without affecting the computation;
u was only needed to cause the transition from A to B and thus initiate the
computation. Since L = 0, the machine remains in state C and for each clock
pulse it produces two output values, β = 1 and γ = 1. These output values add
a to x while advancing the count in K by one unit. After three such advances,
L’s value becomes 1 and M goes to state D. During this transition, a is added
to x for the fourth time and K is set to zero. At this point, x = (4a + b) modulo
16 and, consequently, z’s value becomes 1. The system is now back in state A,
ready to start a new computation.

Let the state variables y1y2 be assigned to the states of M as follows: A → 00,
B → 01, C → 11, D → 10. This assignment is indicated in Fig. 9.23. The
output functions can now be derived directly from the state diagram without
any tables or maps. For example, α’s value must become 1 whenever the state
variable values are y1y2 = 01. Thus

α = y ′
1y2.

Expressions for the other outputs are obtained in a similar manner:

β = γ = y1y2,

z = y1y
′
2.

The next-state variables can be obtained with the aid of the transition table
shown in Fig. 9.24a and the corresponding maps shown in Fig. 9.24b, assuming
a realization of M by two D flip-flops. In the transition table, some next-state
entries are variables, and the treatment of such variables is analogous to the

292 Introduction to synchronous sequential circuits and iterative networks

z

b, g

a

u

y2Y2 D2

Clock

L

D1

Clock

y2

y1

y1

Clock

Y1

0

1 11

(b) Maps for Y1 and Y2.

0 1
y1

y2

0 0 u

1 L1

0 1
y1

y2

0 0

Y1 Y2

PS NS
y1y2 Y1Y2

00

00

1L

11

0u

10

11

01

(a) Transition table.

(c) Logic diagram.

'

'

'

'

Fig. 9.24 Implementing the
sequential circuit M with D
flip-flops.

treatment of the map-entered variables discussed in Section 4.6. When the
present state of M is y1y2 = 00, the next state depends on u; that is, the next
state is 00 if u = 0 and 01 if u = 1. Consequently, the next-state entry in row 00
is 0u. However, if the present state is 01 then the next state is 11, regardless of
the input values; hence, the next-state entry in row 01 is 11. In a similar manner
we derive the entire transition table of Fig. 9.24a. The maps in Fig. 9.24b are
obtained directly from the transition table. For example, the entry in row 11 of
the transition table is Y1Y2 = 1L′. Consequently, a 1 is entered in the Y1 map
in cell 11 while an L′ is entered in the same cell in the Y2 map. Following
the procedure for covering maps with map-entered variables, we obtain the
following next-state equations:

Y1 = y2,

Y2 = y ′
1y2 + uy ′

1 + L′y2.

It is useful to note that the next-state equations can also be derived directly
from the state diagram: Y1 is 1 in states C and D, hence it must change to 1
whenever the circuit is in either state B or C. Thus, from the state assignments

293 9.5 An example of a computing machine

1 11

Finite-state
control unit

1

Head

Tape

Fig. 9.25 An example of a
writing machine. of these states we obtain

Y1 = y ′
1y2 + y1y2 = y2.

This equation is clearly identical to the one obtained above. Similarly, we can
obtain the foregoing equation for Y2 just by inspecting the state diagram. A
logic diagram for M is shown in Fig. 9.24c.

9.5 An example of a computing machine

We have been considering sequential machines as independent units possessing
finite and limited memory capabilities, whose task is to produce prespecified
output sequences in response to the application of external input sequences.
Such finite-state machines are known as nonwriting, since they have no control
on the external input and, in particular, cannot “write” or change their own
input symbols. We shall subsequently consider a simple example of a writing
machine, that is, a finite-state machine that is capable of modifying its own
input symbols.

The machine

Consider a system consisting of a finite-state machine M that is coupled through
a head to an arbitrarily long storage register, called the tape (Fig. 9.25). The tape
is divided into squares, and each square stores a single symbol at any moment.
(Blank squares will be said to store the symbol “blank,” denoted 0.) The head
is capable of performing three operations, reading the symbol contained in the
square being scanned, writing a new, not necessarily distinct, symbol in the
scanned square, and shifting the tape one square in either direction. When a
new symbol is written on the tape, it replaces the symbol previously there. The
finite-state machine acts as the control unit, specifying the operations to be
executed by the head. In what is termed a cycle of computation, the machine
starts in some state Si , reads the symbol currently being scanned by the head,
writes a new symbol there, shifts right or left according to its state table, and
then enters state Sj . For convenience, we shall assume that the tape is stationary
and the head is moving. Such a machine is usually called a Turing machine,
after A. M. Turing.

294 Introduction to synchronous sequential circuits and iterative networks

1 1(a) 0

A

0 11111 00 000

1 1(c) 0

A

0 11110 00 001

0 1(d) 0

C

0 11110 00 011

0 0(e) 0

C

0 11110 01 011

1 1(b) 0

C

0 11110 00 001

Fig. 9.26 Cycles of
computation.

The machine receives its input symbols by reading the pattern of symbols
written on the tape. Its output has the dual function of providing the head
with the new symbols to be written on the tape and shifting the head in either
direction. At the end of the computation, a new pattern of symbols is written
on the tape. This pattern is the final objective of the entire computation.

The computation

As an example, let us design a finite-state machine that executes the following
computation. The initial pattern of symbols on the tape consists of two finite
blocks of 1’s separated by a finite block of blanks. The machine is to shift the
left-hand block of 1’s to the right until it touches the right-hand block, and then
halt. The machine is initially in state A, and its head is placed under the leftmost
square containing a 1. Let the initial tape consist, for example, of the pattern
· · · 00111000111100 · · ·, as shown in Fig. 9.26a, where the 0’s designate blank
squares. The desired final pattern is shown in Fig. 9.26e.

A simple way of performing the above computation is to erase, at each step,
the leftmost 1 and write a new 1 in the first blank square to the right of the
left-hand block of 1’s, as shown in Fig. 9.26b. This computation is described in

295 9.5 An example of a computing machine

Table 9.15 State table

NS, write shift

PS 0 1

A — B, 0R

B C, 1R B, 1R

C D, 0L Halt
D A, 0R D, 1L

Halt Halt Halt

Table 9.15, where the letters R and L designate right and left shifts, respectively,
while 1 and 0 designate the symbols to be written on the tape in each cycle.
Thus, for example, the entry B, 0R in row A, column 1, means that the machine
is to write symbol 0 in the currently scanned square, shift its head one square
to the right, and go to state B.

The computation starts when the machine erases the leftmost 1, currently
under the head, shifts one square to the right, and enters state B. As long as
it scans squares containing 1 symbols, it leaves them unchanged, shifts to the
right, and stays in state B, in accordance with the specification B, 1R in row B,
column 1, of the state table. After the third right shift, the head scans a square
containing a 0 and, consequently, it must replace it by a 1, shift right, and go
to state C. This situation is illustrated in Fig. 9.26b.

At this point, the machine is in state C, scanning a 0. The entry in row C,
column 0, indicates that the machine is to leave that symbol unchanged, shift
left, and enter state D. The machine now moves to the left, leaving all 1’s
unchanged and remaining in state D until it reaches the first 0 symbol, where
it changes direction, shifts right, and enters state A. (See Fig. 9.26c.)

The machine is now in a similar situation to that illustrated in Fig. 9.26a.
Hence, the foregoing sequence of operations will be repeated; that is, the 1
symbol under the head will be replaced by a 0, the machine will move right
until it scans the first 0, which it replaces by a 1, shifts right once again, and
enters state C. It is now in the position illustrated in Fig. 9.26d. The direction
of shifts is now to the left until it scans the first 0 symbol, which once again
causes a change in the shift direction and sends the machine to state A, with
its head scanning the leftmost 1 symbol. After an additional cycle the machine
will be in the position shown in Fig. 9.26e, in state C and scanning a 1. This
terminates the computation, and the machine halts. Clearly, the computation
described by Table 9.15 is independent of the precise size of the blocks of 1’s
and blocks of 0’s separating the 1’s as long as each block is finite.

The unspecified entry in row A, column 0, is a result of our initial assumption
that at the start the head is placed on the leftmost square containing a 1 and,
similarly, in all other cases when M enters A it is scanning a 1. This entry
may be considered as a don’t-care, or alternatively, one may specify that the

296 Introduction to synchronous sequential circuits and iterative networks

machine is to halt, or to cycle in a self-loop, etc. If the initial pattern on the tape
contained two or more blocks of 1’s, separated by blocks of 0’s, the machine
will execute the above computation on the two leftmost blocks and will always
halt. If, however, it is presented with a tape containing just a single block of 1’s
then it will shift this block continuously to the right, looking for a second block
of 1’s, until the entire tape is exhausted. If we assume that the tape is infinite in
length, the machine will never halt.

It can be shown that a Turing machine is more powerful than a finite-
state machine, in the sense that it can execute computations that cannot be
accomplished by any finite-state machine. In the next chapter, we shall show
that the preceding computation, for arbitrarily large blocks of 1’s, cannot be
performed by any finite-state machine. This is clearly a result of the ability
of the writing machines to change and write their own input symbols. From
a theoretical viewpoint, each finite-state control unit is given access to an
arbitrarily large external memory, in which it executes the computations, stores
partial results, modifies and replaces input information, and finally stores the
output pattern and halts. (We shall keep in mind, however, that there exist
computations that never halt, as shown above, but will not refer to them further.)

From the nature of the computations that can be performed by a Turing
machine, we may suspect that it can serve as a theoretical model for digital
computers. Clearly, no physical computing machine operates as inefficiently as
the preceding model, nor does it have an arbitrarily large memory. The model,
however, can serve as a tool for studying the capabilities and limitations of
physical computing machines, the nature of computations, and the types of
function that are not computable by any realizable machine. The study of these
important problems is, however, beyond the scope of this book.

Our main objectives in this section have been the introduction of a finite-state
machine as the control unit of a larger computing system and the development of
a simple model for studying the computation power of digital computers. There
is no point in implementing Table 9.15, although this could be accomplished
in the usual manner.

9.6 Iterative networks

An iterative network is a digital structure composed of a cascade of identical
circuits or cells. An iterative network may be sequential in nature, where each
cell is a sequential circuit, e.g., the counter in Fig. 9.20 or a shift register, or
it may be a combinational network where each cell is itself a combinational
network. The description and synthesis of combinational iterative networks
are similar to those of synchronous sequential circuits. Moreover, it will be
shown that every finite output sequence that can be produced sequentially by
a sequential machine can also be produced spatially (or simultaneously) by a
combinational iterative network.

297 9.6 Iterative networks

Cell 1

x11 x1lx12

z11 z1mz12

Cell 2

x21 x2lx22

z21 z2mz22

Cell i

xi 1 xilxi 2

zi 1 zimzi 2

Y21

Y2k

Y22

yi 1

yi 2

yik

Yi 1

Yik

Yi 2

Fig. 9.27 General structure of
an iterative network.

Because an iterative network consists of identical cells, we shall restrict our
attention to the design of any arbitrary cell, which will be referred to as a typical
cell.

The analogy between iterative networks and sequential machines

The general structure of an iterative network is shown in Fig. 9.27. The exter-
nal cell inputs applied to the ith cell are designated xi1, xi2, . . . , xil , where
the ith (typical) cell is counted from the left. The cell outputs are designated
zi1, zi2, . . . , zim. In addition, each cell receives information from the preced-
ing cell via the intercell carry wires yi1, yi2, . . . , yik , which are called input
carries, and transmits information to the next cell via the intercell carry wires
Yi1, Yi2, . . . , Yik , called output carries. Often, we are interested only in the out-
put values from the rightmost cell. In this case the cell outputs are eliminated
and the output is taken from the output carries of the last cell.

The operation of a cell can be described by means of a cell table, which
specifies, for each combination of cell inputs and input carries, the values of
the cell outputs and output carries. For example, let us construct the iterative
network analogous to the sequence detector of Section 9.4. That is, we want to
design an iterative network that consists of an arbitrarily large number of cells
and whose typical cell contains a single cell input xi and a single cell output
zi . The input symbols are applied to all cells simultaneously and the output
symbols are assumed to be generated instantaneously in such a way that the
output zi is 1 if and only if the input pattern of the four cells i − 3, i − 2, i − 1,
and i is 0101, i.e., xi−3 = xi−1 = 0, and xi−2 = xi = 1.

The technique of specifying the cell table for the ith cell is similar to that used
in forming Table 9.7. The table must have four rows (or states), corresponding
to the four possible distinct signals delivered by the intercell input carries. The
resulting table, which is identical to Table 9.7, is repeated in Table 9.16. Row
D designates the signals received by the ith cell when the input pattern in the
three preceding cells is 010. Similarly, row C designates the signal when the
input pattern in the two preceding cells is 01, and so on. From these incoming
intercell signals and from cell input xi , the ith cell can compute the necessary

298 Introduction to synchronous sequential circuits and iterative networks

Table 9.16 Cell table for an
iterative pattern detector

NS, zi

PS xi = 0 xi = 1

A B, 0 A, 0
B B, 0 C, 0
C D, 0 A, 0
D B, 0 C, 1

0

0

1

0

1

1

0

0

1

0

1

1

1

1

0

0

0

1

1

1

0

0

0

1

Fig. 9.28 Pattern detection.

cell output value and the signals to be transmitted to the next cell via the output
carry wires.

If we specify the intercell signals in such a way that A is represented by
yi1yi2 = 00, B by 01, C by 11, and D by 10, the transition table shown
in Table 9.8 results and, as a consequence, the logic equations derived in Sec-
tion 9.4 are obtained. In general, if the same assignment is selected for the itera-
tive network as for the sequential circuit, the logic circuit of the ith cell and
the combinational logic of the sequential circuit are identical. While in the
sequential case information is fed back through delays, in the iterative network,
the entire computation is executed by using many identical cells. Clearly, the
number of cells in an iterative network must equal the length of the input
patterns applied to it. For example, if the input patterns are limited to length
6, and the specific input pattern applied to the above pattern detector has the
form 010101, then the resulting output pattern will be 000101, as shown in
Fig. 9.28. (The symbols along the intercell carry leads denote the transmitted
signals.)

The reader is encouraged to apply the foregoing procedure and to design a
parallel parity-bit generator as a counterpart to the sequential parity-bit gener-
ator specified by Table 9.14.

Synthesis

The synthesis procedure for iterative networks is best illustrated by an example.
We wish to design an n-cell network where each cell has one cell input xi and

299 9.6 Iterative networks

Table 9.17 Cell table

NS, zi

PS xi = 0 xi = 1

A A, 0 B, 1
B B, 1 C, 1
C C, 1 D, 0
D D, 0 D, 0

Table 9.18 Output carries and
cell output table

Yi1Yi2, zi

yi1yi2 xi = 0 xi = 1

00 00, 0 01, 1
01 01, 1 11, 1
11 11, 1 10, 0
10 10, 0 10, 0

xi

yi1

Yi 2
yi 2

Yi1

zi

Fig. 9.29 Iterative network cell
derived from Table 9.18.

one cell output zi , such that zi = 1 if and only if either one or two of the cell
inputs x1, x2, . . . , xi have the value 1.

The cell table of the ith cell must have at least four rows to distinguish the
following four distinct states. Row A designates the state where none of the
cell inputs to preceding cells has the value 1. Similarly, rows B, C, and D

designate, respectively, the states where one, two, three or more of the cell
inputs to preceding cells have the value 1. The resulting cell table is given as
Table 9.17. The state assignment and output tables are shown in Table 9.18,
and the typical cell is shown in Fig. 9.29.

The logic equations corresponding to the output carries and the ith cell output
are

Yi1 = yi1 + xiyi2,

Yi2 = x ′
iyi2 + xiy

′
i1,

zi = Yi2.

As a consequence of their iterative structure, such networks are easier
to design and construct. The time of operation may be substantially longer

300 Introduction to synchronous sequential circuits and iterative networks

than for other possible realizations, however. When realizing combinational
circuits, for which the speed of operation is not crucial and which can be
composed of identical cells, iterative networks prove to be very useful and
economical.

Notes and references

The finite-state model described in this chapter was proposed by Mealy [7] in 1955,
on the basis of earlier models by Huffman [3] and Moore [8]. The applicability of the
model to iterative combinational circuits was pointed out by McCluskey [6]. Recently,
there have been several texts devoted to finite-state machines, among which are Hill and
Peterson [2], Katz [4], Mano and Ciletti [5], and Wakerly [10]. A collection of original
basic papers dealing with various aspects of finite automata is available in a book
edited by Moore [9]. A comprehensive presentation of iterative networks is available in
Hennie [1].

[1] Hennie, F. C.: Iterative Arrays of Logical Circuits, MIT Press, Cambridge MA,
1961.

[2] Hill, F. J., and G. R. Peterson: Computer Aided Logical Design With Emphasis on
VLSI, fourth edition, John Wiley & Sons, New York, 1993.

[3] Huffman, D. A.: “The synthesis of sequential switching circuits,” J. Franklin Inst.,
vol. 257, pp. 161–190, March 1954; pp. 275–303, April 1954. Reprinted in Moore
[9].

[4] Katz, R. H., and G. Borriello: Contemporary Logic Design, second edition, Pear-
son Prentice Hall, Upper Saddle River NJ, 2005.

[5] Mano, M. M., and M. D. Ciletti: Digital Design, fourth edition, Prentice Hall,
Upper Saddle River, NJ, 2007.

[6] McCluskey, E. J.: “Iterative combinational switching networks: general design
considerations,” IRE Trans. Electron. Computers, vol. EC-7, pp. 285–291, Decem-
ber 1958.

[7] Mealy, G. H.: “A method for synthesizing sequential circuits,” Bell System Tech.
J., vol. 34, pp. 1045–1079, September 1955.

[8] Moore, E. F.: Gedanken-experiments on sequential machines, pp. 129–153,
Automata Studies, Princeton University Press, 1956.

[9] Moore, E. F. (ed.): Sequential Machines: Selected Papers, Addison Wesley, Read-
ing, Mass., 1964.

[10] Wakerly, J. F.: Digital Design Principles and Practices, Prentice Hall, Englewood
Cliffs NJ, 1990.

Problems

Problem 9.1. Analyze the synchronous circuit of Fig. P9.1 (the clock is not shown, but
is implicit).

301 Problems

(a) Write down the excitation and output functions.
(b) Form the excitation and state tables.
(c) Give a word description of the circuit operation.

z

1x J2

K2

y2

y20

1J1

K1

y1

y10x

Fig. P9.1

Problem 9.2. A long input sequence enters a one-input one-output synchronous sequen-
tial circuit, that is required to produce an output symbol z = 1 whenever the sequence
1111 occurs. Overlapping sequences are accepted; for example, if the input sequence is
01011111 · · ·, the required output sequence is 00000011 · · ·.
(a) Draw a state diagram.
(b) Select an assignment and show the excitation and output tables.
(c) Write down the excitation functions for SR flip-flops, and draw the corresponding

logic diagram.

Problem 9.3. Repeat Problem 9.2 for the sequence 01101, and implement the circuit
with T flip-flops as memory elements.

Problem 9.4. Construct the state diagram for a one-input eight-state machine that is to
produce an output symbol z = 1 whenever the last string of five input symbols contains
exactly three 1’s and starts with two 1’s. After each string that starts with two 1’s,
analysis of the next string does not start until the end of this string of five symbols,
whether it produces an output value 1 or not. For example, if the input sequence is
11011010 then the output sequence is 00000000, while an input sequence 10011010
produces an output sequence 00000001.

Problem 9.5. For each of the following cases, show the state table that describes a
one-input one-output machine having the following specifications.
(a) An output symbol z = 1 is to be produced to coincide with every occurrence of the

input symbol 1 following a string of two or three consecutive 0’s at the input. At all
other times, the output symbol is to be 0.

(b) Regardless of the input symbols, the first two output symbols are 0’s. Thereafter,
output symbol z is a replica of input symbol x but delayed by two time units, that
is, z(t) = x(t − 2) for t ≥ 3.

(c) The output z(t) is 1 if and only if x(t) = x(t − 2). At all other times, z is to
be 0.

302 Introduction to synchronous sequential circuits and iterative networks

(d) The output z has the value 1 whenever the last four input symbols correspond to a
BCD number that is a multiple of 3, i.e., 0, 3, 6,

Problem 9.6. Design a one-input one-output synchronous sequential circuit that pro-
duces an output symbol z = 1 whenever any of the following input sequences occurs:
1100, 1010, or 1001. The circuit resets to its initial state after an output symbol 1 has
been generated.
(a) Form the state diagram or table. (Seven states are sufficient.)
(b) Choose an assignment, and show the excitation functions for JK flip-flops.

Problem 9.7. Design a one-input one-output synchronous sequential circuit that exam-
ines the input sequence in nonoverlapping strings having three input symbols each and
produces an output symbol 1 that is coincident with the last input symbol of the string
if and only if the string consisted of either two or three 1’s. For example, if the input
sequence is 010101110, the required output sequence is 000001001. Use SR flip-flops
in your realization.

Problem 9.8. Design a modulo-8 counter that counts in the way specified in Table P9.8.
Use JK flip-flops in your realization.

Table P9.8

Decimal Gray code
0 0 0 0
1 0 0 1
2 0 1 1
3 0 1 0
4 1 1 0
5 1 1 1
6 1 0 1
7 1 0 0

Problem 9.9. Construct the state diagram for a synchronous sequential machine that
can be used to detect faults in coded messages of the 2-out-of-5 type. That is, the
machine examines the messages serially and produces an output symbol 1 whenever an
illegal message of five binary digits is detected.

Problem 9.10. When a certain serial binary communication channel is operating cor-
rectly, all blocks of 0’s are of even length and all blocks of 1’s are of odd length.
Show the state diagram or table of a machine that will produce an output symbol
z = 1 whenever a discrepancy from the above pattern is detected. The following is an
example.

X : 0 0 1 0 0 0 1 1 1 0 1 1 0 0 · · ·
Z : 0 0 0 0 0 0 1 0 0 0 1 0 1 0 · · ·

Problem 9.11. A new kind of flip-flop has been designed. It is equivalent to an SR

flip-flop with gated inputs, as shown in Fig. P9.11.
A synchronous sequential circuit that generates an output symbol z = 1 whenever

the string 0101 is scanned in the input sequence is to be designed. Overlapping strings

303 Problems

are accepted; for example, corresponding to the input sequence 0010101, the required
output sequence is 0000101.
(a) Construct the state diagram and table for the circuit, using the letters A, B, C, etc.
(b) Make a state assignment (use a Gray code, starting with an all-0 assignment for the

initial state).
(c) Realize the sequential circuit using the new flip-flops as memory elements. Give

the logic equations for the memory elements and the output.

1S

R 0+

Fig. P9.11

Problem 9.12. The clocked memory device shown in Fig. P9.12 has one binary input
Y and one binary output y. If Y (t) = 0 then y(t + 1) = 0; if Y (t) = 1 then y(t + 1) =
y ′(t).
(a) The state table given in Table P9.12 is to be realized using two such memory devices.

Choose an appropriate state assignment and give the corresponding excitation and
output equations.

(b) Briefly discuss the possibility and practicality of using such memory devices to
realize an arbitrary state table.

y(t)Memory
device

Clock

Y(t)

Fig. P9.12

Table P9.12

NS, z

PS x = 0 x = 1

A B, 0 B, 0
B C, 0 A, 1
C B, 0 D, 0
D C, 0 B, 1

Problem 9.13. Write the state table for a synchronous circuit, with one input x and
one output z, that operates according to the following specifications. At time t = 0, the
initial state is A, and x(t) = 0 for t < 0. The output function is given by either (a) or
(b) as follows:
(a) z(t) = x(t) + x(t − 1),
(b) z(t) = x(t) · x(t − 1)
where the change from (a) to (b) occurs at times τ such that

x(τ) = x(τ − 1) = x(τ − 2) = 1

and the change from (b) to (a) occurs at times T such that

x(T) = x(T − 1) = x(T − 2) = 0.

An example is shown in Fig. P9.13.

304 Introduction to synchronous sequential circuits and iterative networks

t =

(a) (b) (a)

0 1 2 3 4 5 6 7 8 9 10 11 12 …

…

…x (t)= 0 1 1 1 0 0 1 1 0 0 0 1 0

z (t) = 0 1 1 1 0 0 0 1 0 0 0 1 1

Fig. P9.13

Problem 9.14. The synchronous circuit shown in Fig. P9.14, where D denotes a
unit delay, produces a periodic binary output sequence. Assume that initially x1 = 1,
x2 = 1, x3 = 0, x4 = 0 and that the initial output sequence is 1100101000. Thereafter,
this sequence repeats itself. Find a minimal expression for the combinational circuit
f (x1, x2, x3, x4).

x4
OutputD

f (x1, x2, x3, x4)

D DD
x1x2x3

Fig. P9.14

Problem 9.15. A synchronous machine N is part of a transmitter and is used to encode
binary serial messages. The coded messages are then transmitted to a receiver, as shown
in Fig. P9.l5. The receiver contains a synchronous machine M that is used to decode
the received messages.
(a) Given that the initial state of N is A, find the state diagram of machine M .
(b) Suppose the initial state of N is unknown and machine M received a 10-

bit message; which of the 10 bits can be uniquely decoded without an error?
Explain.

A B

0/1

1/1
0/0

1/0

Transmitter, N

Original
message

Coded
message

Receiver, M

?

Received
message

Original
message

Fig. P9.15

Problem 9.16. A palindrome is a sequence which reads the same backward as forward,
e.g., 11011 or 01010. Show the finite-state control of a Turing machine that is capable
of detecting arbitrarily long palindromes. Assume that you are given a tape initially
marked only with symbols #, 0, 1, where the blanks (#) separate blocks of intermixed
0’s and 1’s. The machine will be started on a # and then checks whether the sequence
to its right is a palindrome. If not, the machine should proceed to the next block. If the
sequence is a palindrome, the machine should stop at the # to the right of the block. An
example is shown in Fig. P9.16.

305 Problems

111

start

1 ## #000100#0 11111 01 000 #

stop

Fig. P9.16

Hint: It is often useful in the course of computation to mark certain digits. This can
be accomplished by replacing those digits with different symbols; for example, 0’s may
be replaced by 2’s, while 1’s may be replaced by 3’s, etc. When these markers are no
longer necessary, they are replaced with the old symbols. Use as many new symbols as
necessary.

Problem 9.17. Assume that you have a Turing machine that is started at the leftmost
1 in a block of n 1’s on a tape that otherwise contains only #’s (blanks), as shown in
Fig. P9.17. Using as many symbols as you like:
(a) Show a finite-state control that will duplicate the block of 1’s immediately to the

right of the original block, leaving the original block and the rest of the tape intact
when the machine stops (viz., the block is simply doubled in size – it now contains
2n 1’s). The machine should stop at the leftmost 1.

(b) Show a finite-state control that will produce a number of replicas equal to the
original number of 1’s (it stops with a block of n2 1’s).

(c) Show a finite-state control that will increase the number of 1’s to 2n and will then
stop.

1 11

Finite-state
control

1# ##########

Fig. P9.17

Problem 9.18. An iterative network to be used for detecting faults in Ringtail-coded
messages is to be designed. The network consists of five cells, each receiving a digit of
the coded message, and is to produce an output symbol 1 when and only when an illegal
message is detected. (The Ringtail code is defined in Problem 5.2.)
(a) Construct a cell table.
(b) Select an assignment and derive the logic equations for the output carries and the

cell output.
(c) Construct a typical cell using AND, OR, and NOT gates.

Problem 9.19. The cell output of a typical cell of an iterative network has the value 1
if and only if the input pattern of the preceding cells consists of groups of 0’s and 1’s
such that each group contains an odd number of members.
(a) Construct a cell table.
(b) Realize the typical cell using AND, OR, and NOT gates.

306 Introduction to synchronous sequential circuits and iterative networks

Problem 9.20. The typical cell of an iterative network has one binary input xi and one
binary output zi . The output zi = 1 if and only if xi = xi−2. For the first two cells (i.e.,
i = 1, 2), assume that x−1 = x0 = 0.
(a) Construct a cell table.
(b) Make a Gray-code state assignment and give the output and carry functions.

C H A P T E R

10 Capabilities, minimization, and
transformation of sequential
machines

This chapter extends some of the concepts introduced in Chapter 9 and presents
important techniques for the synthesis of sequential machines and for other
problems considered in later chapters. The first two sections are concerned
with the general finite-state model, its definition, capabilities, and limitations.
The last two sections are concerned with the minimization of completely, as
well as incompletely, specified machines.

10.1 The finite-state model – further definitions

Our attention will be focused primarily on deterministic machines, which pos-
sess the property that the next state S(t + 1) is determined uniquely by the
present state S(t) and the present input x(t). Thus,

S(t + 1) = δ{S(t), x(t)}, (10.1)

where δ is called the state transition function. The value of the output z(t) is, in
the most general case, a function of the present state S(t) and the inputs x(t),
i.e.,

z(t) = λ{S(t), x(t)}, (10.2)

where λ is called the output function. A machine possessing properties in
Eqs. (10.1) and (10.2) is generally known as a Mealy machine. Another
machine, known as a Moore machine, results when the output is a function
of only the present state and is independent of the external input. In this
case,

z(t) = λ{S(t)}. (10.3)

Thus, we arrive at the following formal definition of a sequential machine.

Definition 10.1 A synchronous sequential machine M is a quintuple

M = (I,O, S, δ, λ),

307

308 Capabilities, minimization, and transformation of sequential machines

A

B DC

0/0

0,1/0
1/0

0/1

1/0

0/0

1/0

Fig. 10.1 State diagram for
machine M .

where I , O, and S are finite nonempty sets of inputs, outputs, and states,
respectively:

δ: I × S → S is the state transition function;
λ is the output function such that
λ: I × S → O for Mealy machines;
λ: S → O for Moore machines.

The Cartesian product I × S is the set containing all pairs of elements
(Ii, Sj). The state transition function δ associates with each pair (Ii, Sj) an
element Sk from S called the next state. In a Mealy machine the output function
λ associates with each pair (Ii, Sj) an element Ok from O, while in a Moore
machine a correspondence exists between the states and outputs.

Input–output transformations

Consider the machine M whose state diagram is given in Fig. 10.1. It is a
four-state machine, with one input variable and one output variable, for which

S = {A,B,C,D}, I = {0, 1}, O = {0, 1}.
Suppose that the initial state of M is A and the input sequence is 110.

Then the machine will proceed through states B and C and return to
state A, while producing the output sequence 001. Thus, for an initial state
A, the machine M transforms the input sequence 110 into 001. Similarly, for
the same initial state, the input sequence 01100 is transformed into 00010. Since
every computation involves some transformation of input-to-output sequences,
a finite-state machine is capable of performing a variety of computations and
solving a number of problems that can be expressed as a transformation of
sequences.

An important function of a sequential machine is to determine whether a
given input sequence is a member of some prespecified set of sequences. The
machine accomplishes this function by accepting those sequences that are
members of the set and rejecting those that are not. A machine, when started
in its initial state, accepts an input sequence by producing an output value 1
as it receives the last symbol of that sequence. Thus machine M accepts the

309 10.2 Capabilities and limitations of finite-state machines

sequences 110 and 0110 and rejects the sequence 01100, since its corresponding
last output symbol is 0. The sequence detector of Fig. 9.15 can also be described
as a machine that accepts those input sequences that are members of the set
{all sequences whose last four symbols are 0101}.

The general problem of characterizing a machine’s behavior by observing
its input–output transformations is quite complex. Clearly, it is impractical to
feed a machine with all possible input sequences in order to decide which it
accepts. The problem increases in complexity if we wish to determine whether
two arbitrary machines are related, in the sense that one machine accepts all
the sequences accepted by the other. In this chapter, we shall present finite
experiments to determine the characteristics, capabilities, and limitations of
a machine and the relations between machines. These subjects are further
developed in Chapters 13, 14, and 16.

Returning to the state diagram for M , we note that the application of input
symbol 1 to M , when initially in state A, causes a transition to state B. We thus
say that B is the 1-successor of A. In general, if an input sequence X takes a
machine from state Si to Sj then Sj is said to be the X-successor of Si . For
example, state D is the 111-successor of A. If M is known to be initially in
either state B or C, the 10-successor will be either state A or D. We say that
(AD) is the 10-successor of (BC) if A is the 10-successor of B and D that of C.

It is evident that no input sequence exists that can take M out of state D,
and thus D is said to be a terminal state. Generally, a state is called terminal if
either of the following is true: (i) the corresponding vertex in the state diagram
is a sink vertex, i.e., no outgoing arcs that emanate from it terminate in other
vertices; (ii) the corresponding vertex is a source, i.e., no arcs that emanate
from other vertices terminate in it.

A source state is clearly not accessible from any other state and, similarly, no
state is accessible from a sink state. These are extreme examples of situations
that limit the state transitions in a sequential machine. In other cases, certain
subsets of states may not be reachable from other subsets of states, even if the
machine does not contain any terminal state. If, for every pair of states Si, Sj

of a machine M , there exists an input sequence that takes M from Si to Sj then
M is said to be strongly connected. Clearly, any nontrivial machine that has
terminal states is not strongly connected.

10.2 Capabilities and limitations of finite-state machines

At this point, having established several behavioral properties and synthesis
procedures for finite-state machines, we turn our attention to some basic ques-
tions regarding the capabilities of these machines. What can a machine do? Are
there any limitations on the type of input–output transformations that can be
performed by a machine? What restrictions are imposed on the capabilities of

310 Capabilities, minimization, and transformation of sequential machines

the machine by the finiteness of the number of its states? Although a precise
answer to these questions will be deferred to Chapter 16, we will point out the
existence of problems not solvable by any finite-state machine and determine
a characteristic of the transformations that are realizable by such machines.

Let the input to an n-state machine be an arbitrarily long sequence of 1’s. In
response, the machine will progress, starting from some initial state, through
a succession of states, in accordance with its specified state transitions. Now,
if we let the sequence be longer than n, the machine must eventually arrive at
a state in which it has previously been. Consequently, from this point on, and
because the input symbol remains the same, the machine must continue in a
periodically repeating fashion. Clearly, for an n-state machine the period cannot
exceed n and could be smaller. Moreover, the transient time until the output
reaches its periodic pattern cannot exceed the number of states n. The preceding
result can easily be generalized to any arbitrary input sequence consisting of a
string of repeated symbols. In every such case, the output will become periodic
after a transient time no longer than n.

This conclusion leads to many interesting results that exhibit the limitations
of finite-state machines. For example, suppose that we want to design a machine
which receives a long sequence of 1’s and is to produce output symbol 1 when
and only when the number of input symbols that it has received so far is equal to
k(k + 1)/2, for k = 1, 2, 3, . . . That is, the desired input–output transformation
has the following form:

input = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
output = 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 · · ·

Clearly, since the output sequence does not eventually become periodic, no
finite-state machine can produce such an infinite sequence.

In Section 9.1 we designed a serial adder capable of serially adding two
binary numbers of arbitrary length. As another example demonstrating the
limitations on the capabilities of finite-state machines, we shall show that the
serial-multiplication problem is not solvable by a fixed finite-state machine,
i.e., no finite-state machine with a fixed number of states can multiply two
arbitrarily large binary numbers.

To prove the foregoing assertion, suppose that there does exist an n-state
machine capable of serially multiplying any two binary numbers. Let us select
2p as each of the two numbers to be multiplied, so that 2p × 2p = 22p, where
p > n. The inputs are fed serially into the machine, least significant digits first:
2p is represented by a 1 followed by p 0’s, and 22p by a 1 followed by 2p 0’s.
The input symbols are fed into the machine during the first p + 1 time units,
i.e., between t1 and tp+1, as shown in the table below. During this period, the
machine produces 0’s. At tp+1 the input stops, while the machine must go on
producing p additional 0’s followed by a 1.

311 10.3 State equivalence and machine minimization

t2p+1 time. . .

01

t1t2tptp+1t2p
. . .

product

second number

first number

.

. . .

. . .

00 0 0 0

0 0 0

00

1

1

During the time period between tp+1 and t2p the machine receives no
input but, since p > n, it must have been at one of the states twice during
that time. Following the same line of argument as that pursued earlier, we
are led to the conclusion that its output must be periodic and the period is
smaller than p. Therefore, the machine will never produce the required output
symbol 1.

Note that, for any two finite numbers, we can find a machine that is capable
of multiplying them. However, the preceding result demonstrates that, for every
finite-state machine capable of performing serial multiplication, we can find
finite numbers that it cannot multiply. The reason for this limitation stems
from the limited “memory” available to the machine. While in performing
addition it only had to store information regarding a single-digit carry, in
the multiplication problem it must be able to store arbitrarily large partial
products.

In a similar manner, we can show that no finite-state machine with a fixed
number of states can perform, for arbitrarily large size blocks, the computation
executed by the Turing machine of Section 9.5.

As mentioned earlier, a more general and precise study of the capabilities
and limitations of finite-state machines is deferred to Chapter 16, where they
will be defined in terms of regular expressions.

10.3 State equivalence and machine minimization

In constructing the state diagram (or table) for a finite-state machine, it often
happens that the diagram contains redundant states, i.e., states whose functions
can be accomplished by other states. We note that the number of memory ele-
ments required for the realization of a machine is directly related to the number
of states. (Recall that, for an n-state machine, k = �log2 n� state variables are
needed for an assignment.) Consequently, the minimization of the number of
states does reduce the complexity and cost of the realization in many cases.
Moreover, the testing of sequential machines, which is studied in Chapter 13,
is considerably simpler when the machine does not contain redundant states. It
is, therefore, desirable to develop techniques for transforming a given machine
into another machine that has no redundant states, such that both have the same
terminal behavior.

312 Capabilities, minimization, and transformation of sequential machines

Table 10.1 (a) Machine M1 and (b) its state partitions

NS, z

PS x = 0 x = 1

A E, 0 D, 1
B F, 0 D, 0
C E, 0 B, 1
D F, 0 B, 0
E C, 0 F, 1
F B, 0 C, 0

(a)

Symbol Partition

P0 (ABCDEF)
P1 (ACE)(BDF)
P2 (ACE)(BD)(F)
P3 (AC)(E)(BD)(F)
P4 (AC)(E)(BD)(F)

(b)

The k-equivalence of states

Two states, Si and Sj , of a machine M are distinguishable if and only if
there exists at least one finite input sequence that, when applied to M , causes
different output sequences depending on whether Si or Sj is the initial state.
The sequence that distinguishes these states is called a distinguishing sequence
for the pair (Si, Sj). If there is any uncertainty as to whether the state of M is Si

or Sj then an application of the corresponding distinguishing sequence yields
an output sequence that is sufficient to determine the unknown state uniquely.
If there exists a distinguishing sequence of length k for the pair (Si, Sj), the
states Si, Sj are said to be k-distinguishable.

As an example, consider pair (A,B) of the machine M1 whose state table
is shown in Table 10.1a. The pair (A,B) is 1-distinguishable, since the input
symbol 1 applied to M1 when initially in state A yields the output symbol 1
and when initially in state B yields the output symbol 0. However, the pair
(A,E) is 3-distinguishable since there is no input sequence of length less
than 3 that distinguishes A from E. Furthermore, the only sequence of length
3 that is a distinguishing sequence for the pair (A,E) is X = 111, and the
output sequences corresponding to the initial states A and E are 100 and 101,
respectively. Note that 1101 is also a sequence that distinguishes A from E,
although it is not the shortest such sequence. An all-zero sequence will produce
identical output sequences independently of whether the initial state is A or E.

The concept of k-distinguishability leads directly to the definition of k-
equivalence and equivalence. States that are not k-distinguishable are said to be
k-equivalent. For example, states A and E of M1 are 2-equivalent. States that
are k-equivalent are also r-equivalent, for all r < k. States that are k-equivalent
for all k are said to be equivalent. Thus, we arrive at the following definition.

Definition 10.2 The states Si and Sj of machine M are said to be equivalent
if and only if, for every possible input sequence, the same output sequence is
produced regardless of whether Si or Sj is the initial state.

313 10.3 State equivalence and machine minimization

Thus, Si and Sj are equivalent (indicated by Si = Sj) if there is no input
sequence that distinguishes them. It will be subsequently shown (see Theorem
10.2) that states which are k-equivalent for all k ≤ n − 1 are equivalent. Clearly,
if Si = Sj and Sj = Sk then Si = Sk . It therefore follows (see Section 2.2) that
state equivalence is an equivalence relation. In consequence of this character-
istic, the set of states of the machine can be partitioned into disjoint subsets,
known as equivalence classes, such that two states are in the same equivalence
class if and only if they are equivalent and are in different classes if and only if
they are distinguishable. Definition 10.2 can be generalized to the case where
Si is a possible initial state in machine M1 while Sj is an initial state in machine
M2, where both M1 and M2 have the same input alphabet.

The procedure for determining the sets of equivalent states in a machine,
i.e., the equivalence classes, ensues from the following property. If Si and
Sj are equivalent states then their corresponding X-successors, for all X, are
also equivalent. This follows since otherwise it would be trivial to construct
a distinguishing sequence for (Si, Sj) by first applying an input sequence that
transfers the machine to the distinguishable successors of Si and Sj .

The minimization procedure

The object of this section is to describe a procedure for determining the sets of
equivalent states of a specified machine M . The result sought is a partition on
the states of M such that two states are in the same block if and only if they are
equivalent.

The first step is to partition the states of M into subsets such that all states
in the same subset are 1-equivalent. This is accomplished by placing states
having identical output symbols under all possible input symbols in the same
subset. Clearly, two states that are in different subsets are 1-distinguishable.
As an example, consider the partitions of the states of machine M1 given in
Table 10.1b. The first partition P0 corresponds to 0-distinguishability and
defines our initial “ignorance,” regarding the response of the various states,
prior to the application of any input symbol. The partition P1 is obtained sim-
ply by inspecting the table and placing in the same block states having the same
output symbols for all input symbols. Thus A, C, and E are in the same block
since their output symbols, for input symbols 0 and 1, are 0 and 1, respec-
tively. A similar argument places B, D, and F in the other block. Clearly, P1

establishes the sets of states that are 1-equivalent.
The next step is to obtain the partition P2 whose blocks consist of the sets

of states which are 2-equivalent, that is, equivalent under any input sequence
of length 2. This is accomplished by observing that two states are 2-equivalent
if and only if they are 1-equivalent and their Ii-successors, for all possible Ii ,
are also 1-equivalent. Consequently, two states are placed in the same block
of P2 if and only if they are in the same block of P1 and, for each possible Ii ,
their Ii-successors are also contained in a block of P1. This step is carried out

314 Capabilities, minimization, and transformation of sequential machines

by splitting the blocks of P1 whenever their successors are not contained in a
common block of P1. The 0- and 1-successors of (ACE) are (CE) and (BDF),
respectively, and, since both are contained in common blocks of P1, the states
in (ACE) are 2-equivalent and therefore (ACE) constitutes a block in P2. The
1-successor of (BDF) is (DBC) but, since (DB) and (C) are not contained in
a single block of P1, block (BDF) must be split into (BD) and (F) in such a
way that the successors of the blocks in the refined1 partition are 1-equivalent.
In a similar manner P3 is obtained by splitting block (ACE) of P2 into (AC)
and (E), since the 1-successors of A, C, and E are D, B, and F , which are not
2-equivalent.

In general, the partition Pk+1 is obtained from Pk by placing in the same
block of Pk+1 those states that are in the same block of Pk and whose Ii-
successors for every possible Ii are also in a common block of Pk . This process
places the states that are (k + 1)-equivalent in the same block and states that
are (k + 1)-distinguishable in different blocks. Note that no state can belong to
more than one block since this would make it distinguishable with respect to
itself.

If, for some k, Pk+1 = Pk then the process terminates and Pk defines the
sets of equivalent states of the machine; that is, all states contained in the
same block of Pk are equivalent while states belonging to different blocks are
distinguishable. The partition Pk is thus called the equivalence partition, and
the foregoing procedure is referred to as the Moore reduction procedure. For
the machine M1, the equivalence partition is P3 and therefore states A and C

are equivalent and so are B and D. Before proceeding with the minimization
procedure, we shall prove two theorems to establish its validity and determine
its length.

Theorem 10.1 The equivalence partition is unique.

Proof Suppose that there exist two equivalence partitions Pa and Pb and that
Pa = Pb. Then there exist two states Si and Sj that are in the same block
of one partition and are not in the same block of the other. Since Si and Sj

are in different blocks of (say) Pb, there exists at least one input sequence
that distinguishes Si from Sj and, therefore, they cannot be in the same block
of Pa . ♦
Theorem 10.2 If two states Si and Sj of machine M are distinguishable then
they are distinguishable by a sequence of length n − 1 or less, where n is the
number of states in M.

Proof The partition P1 contains at least two blocks; otherwise M would be
reducible to a combinational circuit that has only a single state. At each step,
the partition Pk+1 is smaller than or equal to Pk . (Recall that a partition Pi ≤ Pj

if every block of Pi is contained in a block of Pj ; e.g., P2 of M1 is smaller

1 A partition P is said to be a refinement of a partition Q if P is smaller than Q.

315 10.3 State equivalence and machine minimization

Table 10.2 Machine M∗
1

NS, z

PS x = 0 x = 1

α β, 0 γ, 1
β α, 0 δ, 1
γ δ, 0 γ, 0
δ γ, 0 α, 0

than P1.) If Pk+1 is smaller than Pk then it contains at least one more block
than Pk . However, since the number of blocks is limited to n, at most n − 1
partitions can be generated in the reduction procedure and, thus, if Si and Sj

are distinguishable then they are distinguishable by a sequence of length n − 1
or smaller. ♦

It can be shown (see Problem 10.15) that the above is indeed the least upper
bound.

Machine equivalence

Before proceeding with the determination of the minimal machine that is equiv-
alent to M1, we shall define precisely what we mean by equivalent and minimal
machines.

Definition 10.3 Two machines M1 and M2 are said to be equivalent if and only
if for every state in M1 there is a corresponding equivalent state in M2 and vice
versa.

The equivalence partition has been shown to be unique. Thus, the number
of blocks in the equivalence partition of a machine M defines the minimum
number of states that any machine equivalent to M must have. The machine
that contains no equivalent states and is equivalent to M is called the minimal,
or reduced, form of M .

If we denote the blocks of the equivalence partition P3 of M1 by α, β, γ ,
and δ, corresponding respectively to (AC), (E), (BD), and (F), we obtain the
machine M∗

1 (Table 10.2). In constructing M∗
1 , we specify the 1-successor of α

to be γ , since the 1-successor of (AC) is (BD), and so on. In this manner, M∗
1

is specified to duplicate the state transitions and response of M1 and, therefore,
is equivalent to it. In addition, since it has been generated by the equivalence
partition of M1, it is its minimal form.

Example We shall illustrate the reduction procedure further by applying
it to a machine M2 (Table 10.3) and finding its minimal form. The blocks

316 Capabilities, minimization, and transformation of sequential machines

of the equivalence partition P4 are denoted α, β, . . . , ε, and the reduced
machine M∗

2 (Table 10.4) results.

Table 10.3 (a) Machine M2 and (b) its state partition

NS, z

PS x = 0 x = 1

A E, 0 C, 0
B C, 0 A, 0
C B, 0 G, 0
D G, 0 A, 0
E F, 1 B, 0
F E, 0 D, 0
G D, 0 G, 0

(a)

Symbol Partition

P0 (ABCDEFG)
P1 (ABCDFG)(E)
P2 (AF)(BCDG)(E)
P3 (AF)(BD)(CG)(E)
P4 (A)(F)(BD)(CG)(E)
P5 (A)(F)(BD)(CG)(E)

(b)

Table 10.4 Machine M∗
2

NS, z

PS x = 0 x = 1

(A) α ε, 0 δ, 0
(F) β ε, 0 γ, 0
(BD) γ δ, 0 α, 0
(CG) δ γ, 0 δ, 0
(E) ε β, 1 γ, 0

The selection of labels α, β, . . . assigned to the blocks of P4 is obviously
arbitrary. A different assignment of labels would have described a machine
with the same behavioral properties. In general, if one machine can be obtained
from the other by relabeling its states then they are said to be isomorphic to
each other. The foregoing results lead to the following basic conclusion:

� To every machine M there corresponds a minimal machine M∗ that is equiv-
alent to M and is unique up to isomorphism.

The detection of isomorphism is not always easy and is best accomplished
by using a canonical representation for a machine. Such a representation is
obtained by selecting a state (preferably the starting state if specified) and
labeling it A. The next labels are selected in such a way that when successive
rows of the table, starting in A and going down through B, C, etc., are read
from left to right, the first occurrence of each new label will be in alphabetical
order. Whenever a machine is given in this canonical representation, it is said
to be in standard form. Clearly, when the starting state of a reduced machine is
specified, its standard form is unique.

317 10.4 Simplification of incompletely specified machines

Table 10.5 Standard form
for M∗

2

NS, z

PS x = 0 x = 1

α A B, 0 C, 0
ε B D, 1 E, 0
δ C E, 0 C, 0
β D B, 0 E, 0
γ E C, 0 A, 0

The transformation of a machine into its standard form will be illustrated by
means of M∗

2 . Denoting α by A implies that its 0-successor ε must be denoted
B, because it is the first occurrence of a new label. Similarly, its 1-successor δ

must be denoted C. Row B (i.e., ε) must be relabeled next; its first entry is β

and, since it is a new label, it is denoted D. Similarly, γ is denoted E, and the
standard form of Table 10.5 results.

When the starting states are not specified the detection of isomorphism is,
in general, not as simple. If the number of states is not too large, however,
isomorphism can be detected by inspecting the state diagrams of the machines.
The necessary and sufficient condition for two machines to be isomorphic to
each other is that their state diagrams are identical except for the labeling of
their vertices.

10.4 Simplification of incompletely specified machines

In practice, it often happens that various combinations of states and input sym-
bols are not possible. For example, the machine of Table 9.15, when in state
A, will never receive input symbol 0 and, consequently, the corresponding
transition and its associated output symbol may be left unspecified. In other
situations the state transitions are completely defined but, for some combina-
tions of states and input symbols, the output values may not be critical and
thus are left unspecified. Such machines are said to be incompletely specified;
the determination of their properties and methods for simplifying them are the
subject of this section.

Whenever a state transition is unspecified the future behavior of the machine
may become unpredictable. In order to avoid such a situation, we shall assume
that the input sequences applied to the machine, when in any of its possible
starting states, are such that no unspecified next state is encountered except
possibly at the final step. Such an input sequence is said to be applicable to
the starting state Si of M . Note that the output symbols encountered need not

318 Capabilities, minimization, and transformation of sequential machines

Table 10.6 Machine M3

with unspecified transitions

NS, z

PS x = 0 x = 1

A B, 1 —
B –, 0 C, 0
C A, 1 B, 0

Table 10.7 An equivalent
description where all
transitions are specified

NS, z

PS x = 0 x = 1

A B, 1 T , –
B T, 0 C, 0
C A, 1 B, 0
T T , – T , –

all be specified for a sequence to be applicable to Si . The next states, however,
must be specified except possibly for the last symbol of the sequence.

Actually, the specified behavior of a machine with partially specified tran-
sitions can be described by another machine whose state transitions are com-
pletely specified. This transformation is accomplished by adding a terminal
state T whose output symbols are unspecified and replacing all the dashes in
the next-state entries by T . As an illustration, consider the machine M3 shown
in Table 10.6. The specified behavior of M3 can be described by Table 10.7,
in which all state transitions are specified and only the output symbols are
partially defined.

Compatible states

In Section 10.3 we defined state and machine equivalence. We shall find it
useful to generalize these concepts as follows.

Definition 10.4 State Si of M1 is said to cover, or contain, state Sj of M2 if
and only if every input sequence applicable to Sj is also applicable to Si and its
application to both M1 and M2 when they are initially in Si and Sj , respectively,
results in identical output sequences whenever the output symbols of M2 are
specified.

This covering concept can be extended to machines as follows. Machine M1

is said to cover machine M2 if and only if, for every state Sj in M2, there is
a corresponding state Si in M1 such that Si covers Sj . Clearly the machine
specified by Table 10.6 is covered by that of Table 10.7. If state Si of machine
M covers another state Sj of the same machine then only Si must be retained;
Sj may be deleted.

Definition 10.5 Two states Si and Sj of a machine M are compatible if and
only if, for every input sequence applicable to both Si and Sj , the same output
sequence will be produced whenever both output symbols are specified and
regardless of whether Si or Sj is the initial state.

319 10.4 Simplification of incompletely specified machines

Hence Si and Sj are compatible if and only if their output symbols are not
conflicting (i.e., identical when specified) and their Ii-successors, for every
Ii for which both are specified, are either the same or also compatible. In
general, three or more states, Si, Sj , Sk, . . . , are compatible if and only if, for
every applicable input sequence, no two conflicting output sequences will be
produced, without regard as to which of the above states is the initial state.
Thus, a set of states (Si, Sj , Sk, . . .) is called a compatible if all its members
are compatible.

A compatible Ci is said to be larger than, or to cover, another compatible Cj

if and only if every state contained in Cj is also contained in Ci . A compatible
is maximal if it is not covered by any other compatible. (Note that a single state
that is not compatible with any other state is a maximal compatible.) Thus, if
we find the set of all the maximal compatibles, this in effect is equivalent to
finding all compatibles since every subset of a compatible is also a compatible.

Generalizing slightly, we find that, in the case of incompletely specified
machines, the analog to the equivalence relation studied earlier is the compati-
bility relation. The similarities and differences between these two relations will
be pointed out subsequently.

The nonuniqueness of the reduced and minimal machines

Before developing the simplification procedure for incompletely specified
machines, we shall illustrate some difficulties encountered in applying the
minimization procedure of Section 10.3 to the machine M4 shown in
Table 10.8.

The dashes in row A, column 1, and in row B, column 0, mean that the
output symbols associated with these transitions will be ignored and thus may
be specified according to our convenience. If we replace both dashes by 1’s,
we find that states A and B become equivalent since their output symbols
and corresponding successors are identical. Consequently, we may combine
these states by redirecting to A all the transitions presently leading to B. The
resulting simplified machine, shown in Table 10.9, is in reduced form and thus
cannot be further simplified. If, however, we choose to specify the dashes as
0’s then it is easy to verify that states A and E are equivalent, and in addition
states B, C, and D become equivalent. Thus, we may relabel blocks (AE)
and (BCD) by α and β, respectively, and the minimal machine of Table 10.10
results.

From the foregoing example, the following observations can be made. States
A and B of M4 are compatible and, if C and D are also compatible, so are A and
E. However, states B and E are 1-distinguishable and, therefore, incompatible.
Consequently, since it is not transitive the compatibility relation is not an
equivalence relation. It thus follows that a set of states is a compatible if and
only if every pair of states in that set is compatible. For example, states B, C,

320 Capabilities, minimization, and transformation of sequential machines

Table 10.8 Machine M4

NS, z

PS x = 0 x = 1

A C, 1 E, –
B C, – E, 1
C B, 0 A, 1
D D, 0 E, 1
E D, 1 A, 0

Table 10.9 A simplified reduced
machine, M∗

4

NS, z

PS x = 0 x = 1

A C, 1 E, 1
C A, 0 A, 1
D D, 0 E, 1
E D, 1 A, 0

Table 10.10 A minimal machine, M#
4

NS, z

PS x = 0 x = 1

(AE) α β, 1 α, 0
(BCD) β β, 0 α, 1

and D of M4 form the compatible (BCD), since (BC), (BD), and (CD) are
compatibles.

The machines M∗
4 and M#

4 both cover M4, and their numbers of states are
each smaller than the number of states of M4. Both are in reduced form;
i.e., they contain no redundant states. This situation, in which two different
reduced machines cover a third one, is evidently in contrast with Theorem
10.1. This poses a serious difficulty in applying the previously derived mini-
mization procedure, since we can no longer be content with finding a reduced
machine covering the original one; our aim must be to find a reduced machine
that not only covers the original machine but also has a minimal number of
states.

A further and crucial difference between completely and incompletely speci-
fied machines is demonstrated by means of machine M5 (Table 10.11). Because
of the output entries, the only candidates for equivalence are the states A and
B or B and C. Also, because of the next-state entries, A is equivalent to B

only if B is equivalent to C. However, for A and B to be equivalent the dash
must be replaced by a 0 while for B and C to be equivalent the dash must be
replaced by a 1. Evidently, there is no way of specifying the unspecified entry
so as to achieve any state equivalence. However, a hasty conclusion that M5 is
in reduced form would be false, as is shown subsequently.

The augmented machine of Table 10.12 is obtained by a process known as
state splitting. This process involves the replacement of a state Si by two or
more states S ′

i , S
′′
i , . . . such that each new state covers Si . To ensure that the

321 10.4 Simplification of incompletely specified machines

Table 10.11 Machine M5

NS, z

PS x = 0 x = 1

A A, 0 C, 0
B B, 0 B, –
C B, 0 A, 1

Table 10.12 Augmented machine

NS, z

PS x = 0 x = 1

A A, 0 C, 0
B ′ B ′, 0 B ′′, –
B ′′ B+, 0 B ′, –
C B+, 0 A, 1

Table 10.13 Two minimal machines corresponding to M5

NS, z

PS x = 0 x = 1

(AB ′) α α, 0 β, 0
(B ′′C) β α, 0 α, 1

(a) Setting B+ = B ′

NS, z

PS x = 0 x = 1

(AB ′) α α, 0 β, 0
(B ′′C) β β, 0 α, 1

(b) Setting B+ = B ′′

augmented machine covers the original one, it is necessary to modify the next-
state entries in such a way that each transition to Si is replaced by a transition
to either S ′

i or S ′′
i , etc. In our case, state B has been split into B ′ and B ′′ and

the next-state entries modified as shown in Table 10.12, where the symbol
B+ means that the transition may be either B ′ or B ′′. Clearly, the augmented
machine covers M5 and is reducible to it by letting B ′ = B ′′ = B.

In general, since B ′ and B ′′ both cover B, we may specify the next-state
entries B arbitrarily as B ′ or B ′′. If, however, we select the specification
shown in Table 10.12 then a simplification of M5 becomes possible. States
A and B ′ are compatible if their 1-successors C and B ′′ are compatible. Sim-
ilarly, states B ′′ and C are compatible if their 1-successors B ′ and A are
compatible. Thus, if we designate the compatibles (AB ′) and (B ′′C) by α

and β, respectively, we obtain the minimal machines of Table 10.13. The
result is Table 10.13a or 10.13b, depending on whether B+ is specified as B ′

or B ′′.
The foregoing example demonstrates the nonuniqueness of the minimal

machine in the case of incompletely specified machines. The minimal machines
of Table 10.13 were obtained by allowing state B to be split in such a way that
it can be made equivalent to both A and C (by specifying the unspecified output
symbol differently). This points out the main difference between completely
and incompletely specified machines. While the equivalence partition consists
of disjoint blocks, the subsets of compatibles may be overlapping.

322 Capabilities, minimization, and transformation of sequential machines

Table 10.14 Machine M6

NS, z

PS I1 I2 I3 I4

A — C, 1 E, 1 B, 1
B E, 0 — — —
C F, 0 F, 1 — —
D — — B, 1 —
E — F, 0 A, 0 D, 1
F C, 0 — B, 0 C, 1

The merger graph

In reducing the machine M4, we actually specified the don’t-care entries and
thus transformed the incompletely specified machine into a completely speci-
fied one. Such a specification may not be optimal and then would drastically
reduce our freedom in simplifying the machine. It is, therefore, desirable first to
generate the entire set of compatibles and then to select an appropriate subset,
which will form the basis for a state reduction leading to a minimal machine.

Since a set of states is compatible if and only if every pair of states in that
set is compatible, it is sufficient to consider only pairs of states and to use them
to generate the entire set. We shall refer to a compatible pair of states as a
compatible pair. Let the Ik-successors of Si and Sj be Sp and Sq , respectively;
then (SpSq) is said to be implied by (SiSj). For example, the compatible (CF)
of machine M6 (Table 10.14) is implied by (AC), and so on. Thus, if (SiSj) is
a compatible pair then (SpSq) is referred to as its implied pair. In general, a set
of states P is implied by a set of states Q if, for some input symbol Ik , P is the
set of all Ik-successors of the states in Q. The merger graph, presented below,
serves as a major tool in the determination of the set of all compatibles.

A

B

C

D

E

(AB)
(CD)

(BE)

(CE)

(CF)
(EF)

F

Fig. 10.2 Merger graph for M6.

The merger graph of an n-state machine M is an undirected graph defined
as follows.

1. It consists of n vertices, each of which corresponds to a state of M .
2. For each pair of states (SiSj) in M , whose next-state and output entries are

not conflicting, an undirected arc is drawn between the vertices Si and Sj .
3. If, for a pair of states (SiSj), the corresponding output symbols under all

input symbols are not conflicting but the successors are not the same, an
interrupted arc is drawn between Si and Sj and the implied pairs are entered
in the space.

Consider the machine M6 (Table 10.14) and its merger graph, shown in
Fig. 10.2. Since the next-state and output entries of states A and B are not
conflicting, an arc is drawn between vertices A and B. States A and C, however,
have nonconflicting output symbols but their successors under the input symbol
I2 are C and F . Therefore, (AC) is a compatible only if (CF) is; consequently,

323 10.4 Simplification of incompletely specified machines

an interrupted arc is drawn between the vertices A and C and (CF) is entered
in the space. Similarly, (AD) is a compatible only if (BE) is, and thus (BE)
is entered in the space of the interrupted arc drawn between A and D. No arc
is drawn between A and E since these states are incompatible, their output
symbols under I2 and I3 being conflicting. In a similar manner, every possible
pair of states is checked, and the entire merger graph obtained.

A merger graph displays all possible pairs of states and their implied pairs,
and since a pair of states is compatible only if its implied pair is, one must now
check to determine whether the implied pairs are indeed compatibles. A pair
(SpSq) is incompatible if no arc is drawn between vertices Sp and Sq . In such
a case, if (SpSq) is written in the space of an interrupted arc, entry (SpSq) is
crossed off and the corresponding arc ignored. For example, in Fig. 10.2 the
condition for (BF) to be compatible is that (CE) be compatible but, since there
is no arc drawn between C and E, (CE) is incompatible and the arc between B

and F is ignored. Thus, states B and F are incompatible. Next it is necessary to
check whether the incompatibility of (BF) invalidates any other implied pair,
that is, whether (BF) is written in the space of another interrupted arc, and
so on. The interrupted arcs that remain in the graph, after all the implied pairs
have been verified to be compatible, are regarded as solid ones.

For the machine M6, the merger graph reveals the existence of nine compat-
ible pairs:

(AB), (AC), (AD), (BC), (BD), (BE), (CD), (CF), (EF)

Moreover, since (AB), (AC), and (BC) are compatibles then (ABC) is also a
compatible, and so on. In this manner, the entire set of compatibles of M6 can
be generated from its compatible pairs.

In order to find a minimal set of compatibles, which covers the original
machine and can be used as a basis for the construction of a minimal machine,
it is often useful to find the set of maximal compatibles. Recall that a compatible
is maximal if it is not contained in any other compatible. In terms of the merger
graph, we are looking for complete polygons that are not contained within
any higher-order complete polygons. (A complete polygon is one in which all
possible (n − 3)n/2 diagonals exist, where n is the number of sides in the
polygon.) Since the states covered by a complete polygon are all pairwise
compatible, they constitute a compatible; and, if the polygon is not contained
in any higher-order complete polygon, they constitute a maximal compatible.

In Fig. 10.2 the set of highest-order polygons are the tetragon (ABCD) and
the arcs (CF), (BE), and (EF). Generally, after a complete polygon of order
n has been found, all polygons of order n − 1 contained in it can be ignored.
Consequently, the triangles (ABC), (ACD), etc., are not considered. Thus, the
following set of maximal compatibles for machine M6 results:

{(ABCD), (BE), (CF), (EF)}

324 Capabilities, minimization, and transformation of sequential machines

The closed sets of compatibles

Consider the set of compatibles {(ABCD), (EF)} of machine M6. Since this
is the minimal number of compatibles covering all the states of M6, it defines
a lower bound on the number of states in the minimal machine that covers M6.
However, if we select the maximal compatible (ABCD) to be a state in the
reduced machine, its I2- and I3-successors, (CF) and (BE), respectively, must
also be selected. Since none of these compatible pairs is contained in the above
set the lower bound cannot be achieved, and the set of maximal compatibles
{(ABCD), (EF)} cannot be used to define the states of a minimal machine that
covers M6.

Definition 10.6 A set of compatibles (for a machine M) is said to be closed if,
for every compatible contained in the set, all its implied compatibles are also
contained in the set. A closed set of compatibles that contains all the states of
M is called a closed covering.

Example For M6, the set {(AD), (BE), (CD)} is closed. The set {(AB),
(CD), (EF)} is a closed covering.

For incompletely specified machines, the closed covering serves the same
function as that served by the equivalence partition for completely specified
machines. It specifies the states that are compatible and may be covered by a
single state of a reduced machine. However, as demonstrated by the preceding
examples, the closed covering is not unique and so our task is to select the one
which has a minimum number of compatibles and thus defines a minimal-state
machine that covers the original one.

The set containing all the maximal compatibles is, clearly, a closed covering
since it covers all the states of the machine and every implied compatible is
contained in the set. Consequently, the set of maximal compatibles places an
upper bound on the number of states in the machine that cover the original
state. For machine M6, this upper bound is four. It must be noted at this point
that the concept of an upper bound is meaningless when the number of maximal
compatibles is larger than the number of states in the original machine.

In the preceding discussion, we showed that the bounds on the number of
states in the minimal machine can be derived from the set of all the maximal
compatibles. For machine M6, these bounds were found to be two and four.
However, since the lower bound cannot be achieved it becomes necessary
to determine whether a closed covering containing three compatibles can be
found. These compatibles need not necessarily be maximal; in fact, the maximal
compatible (ABCD) cannot be included in that set since it implies the entire
set of maximal compatibles.

An inspection of the merger graph of Fig. 10.2 reveals that states A and B

can be covered by the compatible pair (AB) and, similarly, states C and D

325 10.4 Simplification of incompletely specified machines

Table 10.15 A minimal machine covering M6

NS, z

PS I1 I2 I3 I4

(AB) α γ, 0 β, 1 γ, 1 α, 1
(CD) β γ, 0 γ, 1 α, 1 —
(EF) γ β, 0 γ, 0 α, 0 β, 1

Table 10.16 Machine M7

NS, z

PS I1 I2 I3 I4

A — — E, 1 —
B C, 0 A, 1 B, 0 —
C C, 0 D, 1 — A, 0
D — E, 1 B, – —
E B, 0 — C, – B, 0

can be covered by (CD); no pairs are implied by these compatibles, which
thus form a closed set. In order to obtain the desired covering, all we need
is a single compatible that covers states E and F . Fortunately, the pair (EF)
is compatible and implies the pairs (AB) and (CD), which are contained in
the above set. Consequently, the set {(AB), (CD), (EF)} is a closed covering
containing three compatibles, and it thus yields a minimal three-state machine
that covers M6. This machine is shown in Table 10.15. In a similar manner,
we can show that the set {(AD), (BE), (CF)} is also a closed covering that
corresponds to a minimal machine containing M6.

A

B

C
D

E

(BC)
(AB)

(BC)

(CE)
(BC)
(AE)

(AD)

(DE)

(BE)

Fig. 10.3 Merger graph for M7.

The preceding closed coverings have been obtained by inspecting the merger
graph and employing a “trial-and-error” procedure. In the following section,
we shall discuss in detail a more systematic procedure for obtaining minimal
closed coverings.

The compatibility graph

Consider the machine M7 and its merger graph, shown in Table 10.16 and
Fig. 10.3, respectively. The merger graph is constructed in the usual manner;
since states A and B are incompatible, the arc between C and E is crossed off
and, as a result, (AE) and (BD) are also found to be incompatible. The set of
maximal compatibles derived from the merger graph contains four members
and is given by

{(ACD), (BC), (BE), (DE)}.

326 Capabilities, minimization, and transformation of sequential machines

(BC)

(AC)

(CD)

(AD)

(DE)

(BE)

Fig. 10.4 Compatibility graph
for M7.

The compatibility graph is a directed graph whose vertices correspond to
all compatible pairs and for which an arc leads from vertex (SiSj) to vertex
(SpSq) if and only if (SiSj) implies (SpSq). It is a tool that aids our search for
a minimal closed covering.

The compatible pairs and their implied pairs are usually obtained from
the merger graph and, since a set of states is a compatible if and only if
every pair of states in that set is compatible, then for a given machine the
set of compatible pairs uniquely defines the entire set of compatibles.2 In the
compatibility graph of machine M7 (Fig. 10.4), an arc leads from vertex (AD)
to vertex (BE) because (AD) implies (BE). No arcs emanate from (AC) since
no other compatible is implied by it.

A subgraph of a compatibility graph is said to be closed if, for every vertex
in the subgraph, all outgoing arcs and their terminating vertices also belong to
the subgraph. In addition, if every state of the machine is covered by at least
one vertex of the subgraph then the subgraph forms a closed covering for that
machine.

Example The compatibility graph of Fig. 10.4 contains seven closed sub-
graphs (including (AC) alone and the graph itself), six of which form closed
coverings for M7; among them, we find the subgraphs corresponding to the
following coverings:

{(BC), (AD), (BE)}
{(AC), (BC), (AD), (BE)}
{(DE), (BC), (AD), (BE)}

The compatibility graph itself forms a closed covering. However, it is often
desirable to look for a closed subgraph that yields a simpler machine. If a closed
subgraph containing the compatible pairs (SiSj), (SjSk), and (SiSk) has been
found, the compatible (SiSjSk) can be formed, and so on. Although the number
of states in the minimal machine is not necessarily proportional to the number

2 In order to take into account states that are incompatible with all other states, the definition
of the set of compatible pairs must be generalized to include the pairs corresponding to
self-compatibility, i.e., (AA), (BB), etc.

327 10.4 Simplification of incompletely specified machines

Table 10.17 A minimal machine that covers M7

NS, z

PS I1 I2 I3 I4

(AD) α – γ, 1 γ, 1 –
(BC) β β, 0 α, 1 β/γ, 0 α, 0
(BE) γ β, 0 α, 1 β, 0 β/γ, 0

EFB

BC,
DE

AB,
DF

BD
BC,
CD

CD,
CF

AC,
EF

EF

DE

BC

EDCBA

F

E

D

C

Fig. 10.5 Merger table for the
machine M8.

of vertices in the closed graph, the inclusion of many redundant vertices in
it does tend to increase the size of the machine. A trial-and-error technique
can be employed for this step. The compatibility graph thus serves to display
the various possible reduced machines that correspond to the different closed
coverings.

In the compatibility graph of the machine M7, state B is covered by the
vertices (BE) and (BC) and, since at least one of them must be included in any
closed covering, the entire triangle {(BC), (AD), (BE)} must also be included.
This triangle, being a closed graph that covers every state of M7, implies that
the corresponding set of compatibles yields the desired minimal machine. Its
state table is shown in Table 10.17, where the entry β/γ means that the next
state may be either β or γ .

The merger table

When dealing with machines with a large number of states, it may be more
convenient to record the compatible pairs and their implications in a merger
table of the form illustrated in Fig. 10.5, instead of using a merger graph. Each
cell of the table corresponds to the compatible pair defined by the intersection
of the row and column headings. The incompatibility of two states is recorded
by placing an × in the corresponding cell, while their compatibility is recorded

328 Capabilities, minimization, and transformation of sequential machines

Table 10.18 Machine M8

NS, z

PS I1 I2

A E, 0 B, 0
B F, 0 A, 0
C E, – C, 0
D F, 1 D, 0
E C, 1 C, 0
F D, – B, 0

by a check mark (). The entries in the cell Si, Sj are the pairs implied by
(SiSj).

As an example, let us consider the machine M8, whose state table is given
in Table 10.18. Its merger table is shown in Fig. 10.5. An × is inserted in cell
(AD) since states A and D have conflicting output symbols; a check mark is
inserted in cell (CE) because state E contains state C. In a similar way the entire
table is completed and the implied compatibles entered in the appropriate cells.
Now it becomes necessary to check whether these entries indeed correspond to
compatible pairs. Starting from the rightmost cell, we find no contradiction until
we arrive at the entry (BD) in cell (DF). Since there is an × in cell (BD), the
pair (DF) is incompatible and is, therefore, “crossed off.” As a consequence
of the incompatibility of (DF), the pair (BF) is also incompatible and the
corresponding cell is crossed off.

Once the merger table has been completed, we continue to construct the cor-
responding compatibility graph and to find a closed subgraph, in order to obtain
the smallest closed set of compatibles. Before continuing in the above-outlined
direction, we shall pause and describe a procedure for finding the set of all max-
imal compatibles. This procedure is the tabular counterpart to that of finding
complete polygons in the merger graph. It is executed in the following manner.

1. Start in the rightmost column of the merger table for the machine and proceed
left until a column containing a compatible pair is encountered. List all the
compatible pairs in that column. In our example, this step yields the pair
(EF).

2. Proceed left to the next column containing at least one compatible pair. If the
state to which this column corresponds is compatible with all members of
some previously determined compatible, add this state to that compatible to
form a larger compatible. If the state is not compatible with all members of
a previously determined compatible but is compatible with some members
of such a compatible, form a new compatible that includes those members
and the state in question. Next, list all compatible pairs that are not included
in any previously derived compatible.

3. Repeat step 2 until all columns have been considered. The final set of
compatibles constitutes the set of maximal compatibles.

329 10.4 Simplification of incompletely specified machines

(BC)

(AC)

(CD)

(CF)

(DE)

(AF) (AB)

(EF)

(CE)Fig. 10.6 Compatibility graph
for M8.

Applying this procedure to the merger table for machine M8 yields the
following sequence of compatibility classes:

column E, (EF);
column D, (EF), (DE);
column C, (CEF), (CDE);
column B, (CEF), (CDE), (BC);
column A, (CEF), (CDE), (ABC), (ACF).

From column C, it is evident that state C is compatible with states D, E, and F

and consequently the compatibles generated previously are enlarged to include
state C. Column B, however, consists of a single compatible pair, which is
added to the previously generated list. From column A and rows B and C we
obtain the compatible (ABC), while rows C and F , together with previously
available compatibility relations, yield the compatible (ACF). The final list is
the set of maximal compatibles of M8.

The set of maximal compatibles clearly indicates that M8 can be covered
by a four-state machine and cannot be covered by any two-state machine. To
determine whether a three-state machine that covers M8 exists, we construct
the compatibility graph shown in Fig. 10.6. It must be emphasized at this point
that in many simple cases a shortcut can be taken, and the compatibility graph
can be constructed directly from the state table, without the need to first find
the merger graph or table.

An initial inspection of the compatibility graph does not reveal any subgraph
that covers every state of M8 and consists of just three vertices. In fact, any
such graph must contain the subgraph whose vertices are (AC), (BC), (EF),
and (CD). Also, since this subgraph is closed, it may seem that there exists
no three-state machine that covers M8. However, it was pointed out earlier that
it may be desirable to find a larger closed subgraph if the added vertices can
be used to merge compatible pairs to yield larger compatibles. In the above
example, if we add the vertex (AB) to the preceding subgraph, we obtain a set
that consists of five compatible pairs, {(AB), (AC), (BC), (EF), (CD)}, and
is reducible to the following closed covering:

{(ABC), (CD), (EF)}.

330 Capabilities, minimization, and transformation of sequential machines

Table 10.19 A minimal
machine that covers M8

NS, z

PS I1 I2

(ABC) α γ, 0 α, 0
(CD) β γ, 1 β, 0
(EF) γ β, 1 α, 0

Thus, the minimum-state machine that covers M8 consists of three states and
is given in Table 10.19.

Notes and references

The minimization of completely specified machines was first studied by Moore [7] and
Huffman [4] and later extended to synchronous machines by Mealy [6]. The reduction
procedure for incompletely specified machines is due to Ginsburg [1, 2], Paull and Unger
[8], and Kohavi [5]. Other techniques for obtaining minimal machines are available in
Grasselli and Luccio [3].

[1] Ginsburg, S.: “A synthesis technique for minimal state sequential machines,” IRE
Trans. Electron. Computers, vol. EC-8, no. 1, pp. 13–24, March 1959.

[2] Ginsburg, S.: “On the reduction of superfluous states in a sequential machine,”
J. Assoc. Computing Machinery, vol. 6, pp. 259–282, April 1959.

[3] Grasselli, A., and F. Luccio: “A method for combined row–column reduction of
flow tables,” in Proc. Seventh Symp. Switching and Automata Theory, Oct. 26–28,
pp. 136–147, 1966.

[4] Huffman, D. A.: “The synthesis of sequential switching circuits,” J. Franklin Inst.,
vol. 257, no. 3, pp. 161–190, 1954; no. 4, pp. 275–303, 1954.

[5] Kohavi, Z.: “Minimization of incompletely specified sequential switching circuits,”
Research Report of the Polytechnic Institute of Brooklyn, PIBMRI, May 1962, New
York.

[6] Mealy, G. H.: “A method for synthesizing sequential circuits,” Bell System Tech. J.,
vol. 34, pp. 1045–1079, September 1955.

[7] Moore, E. F.: “Gedanken-experiments on sequential machines,” pp. 129–153, in
Automata Studies, Princeton University Press, 1956.

[8] Paull, M. C., and S. H. Unger: “Minimizing the number of states in incom-
pletely specified sequential switching functions,” IRE Trans. Electron. Computers,
vol. EC-8, pp. 356–366, September 1959.

Problems

Problem 10.1
(a) Prove that n(n − 1)/2 is an upper bound on the length of the shortest input sequence

that will take a strongly connected n-state machine through each of its states at least
once, regardless of the initial state. Is this the least upper bound?

331 Problems

(b) Find a one-input 12-state machine for which the length of an input sequence such
as that in (a) is as large as possible. (A machine for which the length is 26 can be
obtained after a number of trials.)

Problem 10.2. An n-state machine is supplied with a periodic input sequence whose
period is p.
(a) Prove that the output sequence must eventually become periodic, and find a bound

for the period.
(b) Show the response of the machine M∗

1 (Table 10.2) to the input sequence
010010010 · · ·. In particular, find the period of the output sequence and the amount
of time required for periodic behavior to start.

Problem 10.3. Prove that there exists no finite-state machine that accepts precisely all
those sequences that read the same forward as backward, i.e., sequences that are their
own reverses. (Such sequences are called palindromes.)

Hint: Suppose that there exists an n-state machine that accepts all palindromes; then
it accepts the sequence 00 · · · 00︸ ︷︷ ︸

n+1

1 00 · · · 00︸ ︷︷ ︸
n+1

. However, this implies that it also accepts a

sequence that is not a palindrome.

Problem 10.4. Determine which of the machines with the following specifications is
realizable with a finite number of states. If any machine is not realizable, explain why.
(a) A machine is to produce an output symbol 1 whenever the number of 1’s in the

input sequence, starting at t = 1, exceeds the number of 0’s. For example, if the
input sequence is 01100111, the required output sequence is 00100011.

(b) A machine with a single input line and 10 output lines numbered 0 through 9 is to
be designed such that, following the nth input symbol, only one output symbol 1
will be produced on the line whose corresponding number is equal to the nth digit
of π (i.e., 3.14 · · ·).

Problem 10.5
(a) Find the equivalence partition for the machine shown in Table P10.5.
(b) Show the standard form of the corresponding reduced machine.
(c) Find a minimum-length sequence that distinguishes state A from state B.

Table P10.5

NS, z

PS x = 0 x = 1

A B, 1 H, 1
B F, 1 D, 1
C D, 0 E, 1
D C, 0 F, 1
E D, 1 C, 1
F C, 1 C, 1
G C, 1 D, 1
H C, 0 A, 1

Problem 10.6. For each machine in Table P10.6, find the equivalence partition and the
corresponding reduced machine in standard form.

332 Capabilities, minimization, and transformation of sequential machines

Table P10.6

NS, z

PS x = 0 x = 1

A B, 0 E, 0
B E, 0 D, 0
C D, 1 A, 0
D C, 1 E, 0
E B, 0 D, 0

(a)

NS, z

PS x = 0 x = 1

A F, 0 B, 1
B G, 0 A, 1
C B, 0 C, 1
D C, 0 B, 1
E D, 0 A, 1
F E, 1 F, 1
G E, 1 G, 1

(b)

NS, z

PS x = 0 x = 1

A D, 0 H, 1
B F, 1 C, 1
C D, 0 F, 1
D C, 0 E, 1
E C, 1 D, 1
F D, 1 D, 1
G D, 1 C, 1
H B, 1 A, 1

(c)

Problem 10.7. Two columns of the state table of an eight-state p-input symbol finite-
state machine are shown in Table P10.7. Prove that this machine has either no equivalent
states or no distinguishable states.

Table P10.7

NS, z

PS · · · Ii Ij · · ·
A A, 1 H, 0
B C, 1 A, 0
C D, 1 B, 0
D E, 1 C, 0
E F, 1 D, 0
F G, 1 E, 0
G H, 1 F, 0
H B, 1 G, 0

Problem 10.8. A transfer sequence T (Si, Sj) is defined as the shortest input sequence
that takes a machine from state Si to state Sj .

Table P10.8

NS, z

PS x = 0 x = 1

A A, 0 B, 0
B C, 0 D, 1
C E, 0 D, 0
D F, 0 E, 1
E G, 0 A, 0
F G, 0 B, 1
G C, 0 F, 0

333 Problems

(a) Find a general procedure to determine the transfer sequence for a given machine
and two specified states.

(b) Find a transfer sequence T (A, G) for the machine shown in Table P10.8.
Hint: It is helpful to determine which states can be reached from Si first by sequences

of length 1, then by sequences of length 2, and so on.

Problem 10.9
(a) Develop a procedure to determine the shortest input sequence that distinguishes a

state Si from another state Sj of a given machine.
(b) Apply your procedure to determine the shortest input sequence that distinguishes

state A from state G in the machine of Table P10.8.
Hint: Start from the first partition Pk in which Si and Sj appear in separate blocks.

Problem 10.10. The direct sum M1 + M2 of two machines M1 and M2 is obtained by
combining the tables of the individual machines, as shown in Table P10.10, in such a
way that each state of the direct sum is denoted by a distinct symbol.
(a) Use the direct sum to determine whether state A of machine M1 is equivalent to

state H of machine M2.
(b) Prove that machine M1 is contained in machine M2.
(c) Under what starting conditions are machines M1 and M2 equivalent?

Hint: Find the equivalence partition of the direct sum.

Table P10.10

NS, z

PS x = 0 x = 1

A B, 0 C, 1
B D, 1 C, 0
C A, 1 C, 0
D B, 1 C, 0

M1

NS, z

PS x = 0 x = 1

E H, 1 E, 0
F F, 1 E, 0
G E, 0 G, 1
H F, 0 E, 1

M2

NS, z

PS x = 0 x = 1

A B, 0 C, 1
B D, 1 C, 0
C A, 1 C, 0
D B, 1 C, 0
E H, 1 E, 0
F F, 1 E, 0
G E, 0 G, 1
H F, 0 E, 1

M1 + M2

Problem 10.11
(a) Let M1 and M2 be strongly connected and completely specified machines, and

suppose that a state Si of M1 is equivalent to a state Sj of M2. Prove that M1 is
equivalent to M2.

(b) Let M1 be a strongly connected machine, and let M2 be completely specified. Prove
that if Si of M1 is equivalent to Sj of M2 then M1 is covered by M2.

Problem 10.12. Determine the conditions under which two equivalent machines are
isomorphic.

Problem 10.13. An unknown one-input three-state machine produces an output
sequence Z in response to an input sequence X, as follows.

334 Capabilities, minimization, and transformation of sequential machines

X : 0 0 0 0 1 0 1 0 0 0 1 0
Z : 1 0 1 0 0 1 1 0 0 0 0 1

Assuming that A is the initial state, determine the reduced standard form description of
the machine.

Problem 10.14. In this problem, we shall establish a procedure for transforming a
Mealy machine into a corresponding Moore machine accepting exactly the same set of
sequences. To obtain the Moore machine, it is first necessary to split every state of the
Mealy machine if different output values are associated with the transitions into that
state. For example, state B of Table P10.14a can be reached from either state A or C.
However, since different output symbols are associated with these transitions, state B

must be replaced by two equivalent states, B0 with an output symbol 0 and B1 with an
output symbol 1, as shown in Table P10.14b. Every transition to B with output symbol
0 is directed to B0, and every transition to B with output symbol 1 to B1. Applying
the same procedure to state D yields the state table of Table P10.14b, which can be
transformed to the Moore machine of Table P10.14c.

We now observe that the Moore machine in Table P10.14c accepts the sequences
accepted by the Mealy machine in Table P10.14a, but, in addition, it produces an output
symbol 1 when started in state A without having been presented with any input sequence.
This Moore machine in fact accepts a zero-length sequence, called the null sequence. To
prevent this situation we add a new starting state A′, whose state transitions are identical
to those of A but whose output symbol is 0, as shown in Table P10.14d.
(a) Prove that, to every q-output-symbol n-state Mealy machine, there corresponds a

q-output-symbol Moore machine that accepts exactly the same sequences and has
no more than qn + 1 states.

(b) If the definition of acceptance by a Moore machine is modified so that acceptance
of the null sequence is disregarded, show a procedure for transforming a Moore
machine to the corresponding Mealy machine such that both accept the same set of
sequences.

(c) Prove that if the Mealy machine is strongly connected and completely specified,
the corresponding Moore machine will also be strongly connected and completely
specified.

Table P10.14

NS, z

PS x = 0 x = 1

A C, 0 B, 0
B A, 1 D, 0
C B, 1 A, 1
D D, 1 C, 0

(a)

NS, z

PS x = 0 x = 1

A C, 0 B0, 0
B0 A, 1 D0, 0
B1 A, 1 D0, 0
C B1, 1 A, 1
D0 D1, 1 C, 0
D1 D1, 1 C, 0

(b)

335 Problems

NS

PS x = 0 x = 1 z

A C B0 1
B0 A D0 0
B1 A D0 1
C B1 A 0
D0 D1 C 0
D1 D1 C 1

(c)

NS

PS x = 0 x = 1 z

A′ C B0 0
A C B0 1
B0 A D0 0
B1 A D0 1
C B1 A 0
D0 D1 C 0
D1 D1 C 1

(d)

Problem 10.15. By referring to the machine shown in Fig. P10.15, prove that the
bound established in Theorem 10.2 is the least upper bound; that is, show that, for
every n, the states in the pair (S1S2) cannot be distinguished by a sequence shorter than
n − 1.

S 1S1

0/0

1/01/0

0/0

1/0

0/0

1/0

SnS2

0/1

Fig. P10.15

Problem 10.16. A given machine is known to be either a machine M1 in state Si

or a machine M2 in state Sj , where Si is not equivalent to Sj . Suppose that you
are given the state tables of M1 and M2, and assume that M1 has n1 states and
M2 has n2 states. Prove that the given machine and its initial state can always be
identified by means of an input sequence whose length L is bounded by L ≤ n1 +
n2 − 1.

Problem 10.17. Give a procedure that can be used to determine whether two incom-
pletely specified machines M1 and M2 are related, in such a way that either M1 contains
M2 or vice versa.

Problem 10.18
(a) Find all the state containments present in the machine shown in Table P10.18.
(b) Find two minimum-state machines that contain the given machine, and prove that

these machines are indeed minimal.

336 Capabilities, minimization, and transformation of sequential machines

Table P10.18

NS, z

PS x = 0 x = 1

A B, 0 C, 1
B D, 0 C, 1
C A, 0 E, 0
D — F, 1
E G, 1 F, 0
F B, 0 —
G D, 0 E, 0

Problem 10.19. For the incompletely specified machines shown in Table P10.19, find
a minimum-state reduced machine containing the original one.

Table P10.19

NS, z

PS I1 I2 I3

A C, 0 E, 1 —
B C, 0 E, – —
C B, – C, 0 A, –
D B, 0 C, – E, –
E — E, 0 A, –

NS, z

PS I1 I2

A — F, 0
B B, 0 C, 0
C E, 0 A, 1
D B, 0 D, 0
E F, 1 D, 0
F A, 0 —

Problem 10.20. Prove that the machine shown in Table P10.20 is minimal.

Table P10.20

NS, z

PS I1 I2 I3 I4 I5 I6 I7

A F, 0 A, – D, – C, – — — —
B –, 1 — — — C, – D, – E, –
C C, – E, – — — F, 0 B, – —
D — — F , – E, – –, 1 — A, –
E A, – — A, 1 — B, – — C, –
F — D, – –, 0 B, – — E, – —

Problem 10.21. Find the reduced state table for the machine of Table P10.21. Design
the circuit using a single SR flip-flop.

337 Problems

Table P10.21

NS, z1z2

PS 00 01 11 10

A A, 00 E, 01 — A, 01
B — C, 10 B, 00 D, 11
C A, 00 C, 10 — —
D A, 00 — — D, 11
E — E, 01 F, 00 —
F — G, 10 F, 00 G, 11
G A, 00 — — G, 11

Problem 10.22. Design a serial-to-parallel Excess-3-to-BCD code converter. The cir-
cuit has a single input line, receiving messages in Excess-3 code, and four output lines,
z1, z2, z4, and z8, which are to reproduce the input messages in BCD code. Input symbols
arrive serially, with the least significant digit first. Output symbols are specified only at
the occurrence of every fourth input symbol. For example, if the input sequence is 1001
(which is 6 in Excess-3 code), the required output sequence is z1 = 0, z2 = 1, z4 = 1,
z8 = 0.

C H A P T E R

11 Asynchronous sequential circuits

In many practical situations, synchronous circuits lead to more power con-
sumption and delay than asynchronous circuits. Moreover, within large syn-
chronous systems, it is often desirable to allow certain subsystems to operate
asynchronously, thereby avoiding some of the problems associated with clock-
ing. In this chapter, we present some of the basic properties of asynchronous
sequential circuits and methods for their synthesis.

11.1 Modes of operation

Although there are many forms that an asynchronous sequential circuit might
take, the one shown in Fig. 11.1 is the most straightforward for a quick under-
standing of how such a circuit works. Externally, the circuit is characterized by
the fact that its inputs can change at any time. Internally, it is characterized by
the use of delay elements as memory devices.1

The combination of the signals that appear at the primary inputs and delay
outputs defines what is called the total state of the circuit. The combination
of input signals x1, x2, . . . , xl is referred to as the input state; the combina-
tion of signals at the outputs of the delays, i.e., y1, y2, . . . , yk , is referred to
as the secondary or internal state of the circuit. The output values generated
by the combinational logic define the output symbol of the entire circuit as
well as the secondary state that the circuit will assume next. The variables
y1, y2, . . . , yk are referred to as secondary or internal variables, and the vari-
ables Y1, Y2, . . . , Yk are called excitation variables.

For a given input state, the circuit is said to be in a stable state if and
only if yi = Yi for i = 1, 2, . . . , k. In response to a change in the input state,

1 In practice, when the inherent delay of the combinational logic is large enough the external
delay elements may not be necessary. However, for clarity of presentation, we shall assume
they are present.

338

339 11.2 Hazards

Combinational
logic

z1x1

xl

y1 Y1

yk Yk

y2 Y2

zm

D

D

D

Level
inputs

Level
outputs

Fig. 11.1 The basic model for
fundamental-mode circuits.

the combinational logic produces a new set of values for the excitation vari-
ables. As a result, the circuit enters what is called an unstable state. When the
secondary variables assume their new values, i.e., the y’s become equal to the
corresponding Y ’s, the circuit enters its “next” stable state. Thus, a transition
from one stable state to another occurs only in response to a change in the
input state. We shall initially assume that, after a change in input values has
occurred, there is no other change in any input value until the circuit enters a
stable state. Such a mode of operation is often referred to as the fundamental
mode. If only a single input value is allowed to change at any given time, it
is called a single-input-change (SIC) fundamental mode, otherwise a multiple-
input-change (MIC) fundamental mode. Even though SIC fundamental-mode
circuits work under very restrictive assumptions, we will discuss first method-
ologies applicable to them, for ease of exposition, and then those applicable
to MIC fundamental-mode circuits. We will then consider a generalization of
MIC fundamental-mode circuits called burst-mode circuits. There are many
other types of asynchronous circuits as well. However, they are beyond the
scope of this book.

11.2 Hazards

Hazards refer to glitches. They are of two types: logic hazards and function haz-
ards. Logic hazards are caused by noninstantaneous changes in circuit signals.
Function hazards are inherent in the functional specification. The presence of
hazards poses a fundamental challenge to the design of asynchronous circuits
since a glitch may be misunderstood by another part of the circuit as a valid
transition and cause incorrect behavior. Since we are interested in both SIC
and MIC fundamental modes of operation, we will see how hazards can form
under each mode and how to design circuits to be free of hazards whenever
possible.

340 Asynchronous sequential circuits

1

1

1 1

xy
z

0

1

00 01 11 10
x
y

x
z

G1

G2
1

1

(a) Map for T = x'y + xz. (b) Gate network.

'

Fig. 11.2 Single-input-change
static hazard example.

Design of SIC hazard-free circuits

Consider the function T (x, y, z) = ∑
(2, 3, 5, 7), whose map is shown in

Fig. 11.2a, and its minimal sum-of-products implementation in Fig. 11.2b.
Suppose that the value of inputs y and z is 1 and that the value of input x

is changed from 0 to 1. Clearly, the value of T must remain at 1 regardless
of the value of x. As the value of x changes, the transmission path through
the network of Fig. 11.2b changes from gate G1 to G2. In an ideal situa-
tion this change would be instantaneous, and the value of T would remain
constant at 1. In practice, however, different delays are associated with the
gates G1 and G2. As a consequence, if, for example, the delay of gate G1 is
smaller than that of gate G2, and if x changes from 0 to 1 (while y = z = 1),
then the transmission x ′y through gate G1 will become 0 shortly before the
transmission xz through gate G2 becomes 1. During this period, T will be
0. This phenomenon is known as a static logic hazard and is indicated by
the arrow in the map of Fig. 11.2a. More specifically, since only a single bit
changes in the transition, it is called an SIC static logic hazard. In general, an
SIC static logic hazard is a scenario in which a single input-variable change
might cause a momentarily incorrect output value when, in fact, the output
value should remain constant. Whether such an incorrect output value actually
occurs depends on the exact amounts of delay associated with the various circuit
elements.

Two input combinations are said to be adjacent if they differ by the value of
a single input variable. For example, x ′yz and xyz are adjacent. A transition
between a pair of adjacent input combinations that correspond to identical out-
put values contains an SIC static logic hazard if it makes possible the generation
of a momentary spurious output value. Such hazards may occur whenever there
exists a pair of adjacent input combinations that produce the same output value
and there is no cube (in the map) containing both combinations.

On the basis of the above discussion, in the above example the static logic
hazard can be removed by including the prime implicant yz in the expression
for T , as indicated by the dotted cube in the map of Fig. 11.2a, that is, writing
T = x ′y + xz + yz. The resulting circuit is shown in Fig. 11.3. Clearly, when

341 11.2 Hazards

x
y

x
z 1

1

y
z 1

1

1

1

'
Fig. 11.3 Single-input change
hazard-free network.

y = z = 1 the output value will be 1 regardless of the delays associated with
x ′ and x.

When the hazard occurs during a static 0 → 0 transition at the output it is
called a static-0 logic hazard, and for a 1 → 1 transition a static-1 logic hazard.

A transition cube [m1,m2] is a set of all minterms that can be reached starting
from minterm m1 and ending at minterm m2. For example, the transition cube
[010, 100] contains the following minterms: 000, 010, 100, 110. In the example
in Fig. 11.2, we saw that transition cube [011, 111] must be included in some
product of the sum-of-products realization in order to get rid of the static-1
logic hazard. Such a cube is called a required cube.

In the sum-of-products realization of a function, no cube for any product
term can contain either of the two input combinations involved in a 0 → 0
output transition since a cube only includes the 1’s of a function. Thus, the only
way in which a static-0 logic hazard can occur is if a product term has both xi

and x ′
i as input literals. Since there is no reason to include such product terms

in the expression for the function, such hazards can be trivially avoided.
If the two input combinations are such that they correspond to a 0 → 1 output

transition but during the transition the 0 may change to 1 and then 0 and finally
stabilize at 1 then the sum-of-products realization is said to have a dynamic
0 → 1 logic hazard. A dynamic 1 → 0 logic hazard can be similarly defined.
Using reasoning similar to that above for static-0 logic hazards, a dynamic
0 → 1 or 1 → 0 logic hazard is not possible in the SIC scenario unless some
product term has both xi and x ′

i as input literals.

Design of MIC hazard-free circuits

In an MIC scenario, several inputs change values monotonically, i.e., at most
once, from one input combination to another. In this transition, if the function
changes values more than once then the transition is said to have a function
hazard.

Example Consider the MIC transition, denoted by the broken arrow in the
map shown in Fig. 11.4a, from wxyz = 0110 to wxyz = 0011. If z changes
before x does then the function will go from 1 to 0 and then back to 1. Hence,
the function changes values more than once and thus this transition has a
function hazard.

342 Asynchronous sequential circuits

1

1

1

1

1

1

1

00 01 11 10

(a) Static-1 logic hazard.

00

01

11

10

wx
yz

1

x
y

w
x

f

1

1

w
z

1

1

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

y
z

1

(b) Logic-hazard-free network.

x
y

w
x

f

1

1

w
z

1

y
z

1

w
y

1

1

1
1

'

'

'

'

Fig. 11.4 Static MIC hazard.

If a transition has a function hazard then no implementation can be guaranteed
to be hazard-free for this transition, assuming that the gates and wires have
arbitrary delays, because the glitch is present in the functional specification
itself. Fortunately synthesis approaches, such as those based on the burst mode,
only need to deal with transitions that are free of function hazards. Thus, we
shall focus only on MIC transitions that are free of function hazards.

Example Consider the MIC transition, denoted by the solid arrow in the
map shown in Fig. 11.4a, from wxyz = 1010 to wxyz = 1111. This tran-
sition does not have a function hazard. However, it may lead to a static-1
logic hazard, as shown in the AND–OR circuit in Fig. 11.4a. Such a hazard
could occur in a situation in which the falling transitions at the outputs of
two AND gates are faster than the rising transitions at the outputs of the
other two AND gates. Such hazards can be tackled in the same manner as
those caused by an SIC transition, as shown in Fig. 11.4b. The AND gate
that realizes wy has a steady 1 at its output during the above transition. The
reason is that it covers the entire required cube [1010, 1111] in the map.
Such a cube includes all the minterms that can be encountered during such
a monotonic transition. This eliminates the hazard at f .

343 11.2 Hazards

Just as in the SIC case, avoiding a static-0 logic hazard is straightforward
(simply avoid any product term with both xi and x ′

i as literals). Thus, we will
look at MIC dynamic hazards next.

Example Consider the MIC transition, denoted by the solid arrow in
the map shown in Fig. 11.5a, from wxyz = 1110 to wxyz = 0111. This
dynamic transition does not have a function hazard. However, the transition
does have a dynamic logic hazard, as can be seen from the AND–OR circuit
in Fig. 11.5a. This dynamic hazard may be created by a combination of the
static-0 hazard at the output of the AND gate G1 and the falling transition
at the outputs of several other AND gates.

A necessary condition for a dynamic transition to be hazard-free is
that each of its 1 → 1 subtransitions are also hazard-free. This can be
ensured by including these subtransitions in some product of the sum-of-
products realization. For the above dynamic transition, these subtransitions
are [1110, 1111] and [1110, 0110]. They are called the required cubes of
this dynamic transition. The set of required cubes includes all minterms
that can be encountered in the dynamic transition. Since [1110, 1111] and
[1110, 0110] are included in the products wx and yz′, respectively, the
above necessary condition is already met in this case.

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

(a) Dynamic 1 0 hazard.

x
y

w
x

f

1

1

w
z

y
z

1

w
y

G1

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

00

(b) Dynamic-hazard-free network.

x
y

w
x

f

1

1

w

z

y
z

1

w
y 1

00

0y 0

'

'

'

'

'

Fig. 11.5 Dynamic MIC hazard.

344 Asynchronous sequential circuits

In order to prevent the dynamic hazard at f , we also need to make
sure that no AND gate temporarily turns on during the MIC transition.
For example, the static-0 hazard at the output of G1 needs to be avoided.
This hazard is caused when G1 temporarily turns on. This happens because
the corresponding product term wz intersects the dynamic MIC transition
1110 → 0111. This is called an illegal intersection and the dynamic tran-
sition is called a privileged cube. One can see that, during this dynamic
transition, the inputs could be momentarily at 1111 (if z changes before w),
which is a minterm of wz. To avoid this situation, illegal intersections of
privileged cubes are disallowed by reducing the product term wz to wy ′z,
as shown in the map in Fig. 11.5b, thus eliminating the hazards as can be
seen from the corresponding circuit.

The above discussions show how to eliminate hazards for an MIC transition.
An MIC transition that results in a 1 → 1 transition at the output must be
completely covered by a product term. The 0 → 0 MIC transition does not
lead to a hazard. For the 1 → 0 and 0 → 1 cases, we have to make sure that
every product term that intersects the MIC transition also contains its starting
or end point, respectively.

To obtain a hazard-free sum-of-products implementation H of function f

for a specified set of input transitions, we need to make sure that (i) each
required cube is contained in some implicant of H and (ii) no implicant of H

illegally intersects any specified dynamic transition. Such an implicant is called
a dynamic-hazard-free implicant (dhf-implicant).

The above problem requires that we make use only of dhf-prime impli-
cants2 while covering every required cube in the sum-of-products minimization.
This is similar to the Quine–McCluskey minimization method we discussed in
Chapter 4.

Example Consider the map shown in Fig. 11.6a. It contains four function-
hazard-free transitions, depicted by the four arrows. The set of required
cubes is also shown in this map. The map in Fig. 11.6b shows the set
of privileged cubes. The prime implicants that do not have any illegal
intersections with the two dynamic transitions (1101 → 0000 and 0011 →
0110), i.e., the dhf-prime implicants, are shown in Fig. 11.6c. However,
the prime implicant xz does have an illegal intersection with the transition
0011 → 0110, as shown by the shaded region in Fig. 11.6d. This intersection
can be avoided by reducing xz to the dhf-prime implicant xy ′z, as shown in
Fig. 11.6e.

2 A dhf-prime implicant is a dhf-implicant that is not contained in any other dhf-implicant.

345 11.2 Hazards

Table 11.1 Chart for dhf-prime implicants

Required cubes
Dhf-prime
implicants wy ′ wy xy ′z w′yz w′x ′y

w × ×
yz ×
x ′y ×
xy ′z ×

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

(c) Prime implicants with no
illegal intersections.

0

0

0

0

1

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

(a) Required cubes.

0

0

0

0

1

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

(b) Privileged cubes.

0

0

0

0

1

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

(d) Prime implicant xz has an
illegal intersection.

0

0

0

0

1

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

0

0

0

0

1

1

(e) Prime implicant xz reduced to
dhf-prime implicant xy z.'

Fig. 11.6 Derivation of a hazard-free sum-of-products expression.

A minimal hazard-free sum-of-products realization can now be obtained
using a concept similar to the prime implicant chart (see Chapter 4). This is
shown in Table 11.1, in which the rows correspond to dhf-prime implicants
and the columns to required cubes. The aim is to find a minimal set of dhf-
prime implicants that contains all required cubes. This can be done using
the analogous concepts of essential rows, dominated rows, and dominating
columns used earlier for prime implicant charts. From Table 11.1, we see
that all rows are essential. Thus, w + yz + x ′y + xy ′z is a hazard-free sum-
of-products expression.

Since the hazard-free AND–OR implementation may be too large, it may
be necessary to obtain a hazard-free multi-level implementation from it. In
order to do so, we have to apply hazard-nonincreasing logic transformations.
These transformations ensure that if the initial circuit is hazard-free, so is the
final circuit. The following laws from Boolean algebra constitute some hazard-
nonincreasing transformations:

346 Asynchronous sequential circuits

� the associative law, (x + y) + z ⇔ x + (y + z), and its dual, (xy)z ⇔ x(yz),
� De Morgan’s theorem, (x + y)′ ⇔ x ′y ′, and its dual, (xy)′ ⇔ x ′ + y ′,
� the distributive law, xy + xz ⇒ x(y + z),
� the absorption law, x + xy ⇒ x, and
� the x + x ′y ⇒ x + y law.

The directions of the implication arrows indicate in which directions the
transformations are applicable. Similarly, the insertion of inverters at the pri-
mary inputs and the circuit output is also hazard-nonincreasing.

Example Consider the AND–OR realization in Fig. 11.5b, which is
dynamic-hazard-free for the MIC transition 1110 → 0111. A multi-level
realization can be obtained from it using the distributive law: x ′y + wx +
yz′ + wy ′z + wy = (x ′ + z′ + w)y + wx + wy ′z, as shown in Fig. 11.7.
As can be seen, this multi-level realization is also dynamic-hazard-free.

1

f

w

y

w
y

z
x

z

w
x

0

'
'

'

Fig. 11.7 Multi-level hazard-nonincreasing realization.

11.3 Synthesis of SIC fundamental-mode circuits

The purpose of this section is to develop systematic techniques for the design
of SIC fundamental-mode asynchronous sequential circuits. The approach to
be followed is to construct a flow table which describes the circuit behavior, to
simplify the table, whenever possible, and finally, to realize it at the gate level.

The flow table

As in the case of synchronous circuits, the least systematic step in the synthesis
procedure is that of transforming a verbal statement of the desired circuit
behavior into a precise description that specifies the circuit operation for every
applicable input sequence. A convenient method for describing the behavior of
an asynchronous circuit is by means of a flow table. As an example, consider
a sequential circuit with two inputs, x1 and x2, and one output, z. The initial

347 11.3 Synthesis of SIC fundamental-mode circuits

Table 11.2 Partial flow table

State, output

x1x2

00 01 11 10

1, 0 → 2
↓
2, 0 → 3

↓
3, 1

x1

x2

z

1

1

1

0

0

0

31 2542

Fig. 11.8 Input–output
sequences.

input state is x1 = x2 = 0. The output value is to be 1 if and only if the input
state is x1 = x2 = 1 and the preceding input state is x1 = 0, x2 = 1. A possible
pair of input sequences and the corresponding output sequence are illustrated
in Fig. 11.8.

We now show how to construct the flow table for the given circuit. The
column headings of Table 11.2 are the input combinations. The table entries
give the states and output values. The arrows indicate state transitions between
the table entries. Initially, the input values are x1 = x2 = 0, and the circuit is
in a state designated 1; the use of boldface indicates that the state in question
is stable. This is recorded in the table by entering a 1 in the first row of column
x1x2 = 00. To the right of the 1, output entry 0 is entered, since the output value
is 0 when the circuit is in state 1. Now x2 becomes 1 while x1 remains 0, as
illustrated in Fig. 11.8; the circuit enters a different state, designated 2, while
its output value is still 0. This is recorded in Table 11.2 by entering a 2 in the
second row, column x1x2 = 01, and a 0 in the corresponding output location.
In the first row of the 01 column, we enter a 2 to indicate that, as a result of
the change in the value of the input variables, a transition to state 2 will occur.
Thus, while the lightface entry 2 designates an unstable transient condition,
the boldface entry 2 designates the stable state assumed by the circuit as a
result of the above input change. If input x1 changes from 0 to 1 while the
circuit is in state 2, the circuit enters another stable state, designated 3, which is
associated with the output value z = 1. This is indicated by entering a lightface
3 in the second row, column 11. In the same column and immediately below
the lightface 3, a boldface 3 is entered to identify the stable state to which the
circuit goes as a result of the last change of input values. The output value 1 is
associated with the stable state 3.

348 Asynchronous sequential circuits

Table 11.3 Primitive flow table

State, output

x1x2

00 01 11 10

1, 0 2 — 4
1 2, 0 3 —
— 2 3, 1 4
1 — 5 4, 0
— 2 5, 0 4

Thus a change in the value of the circuit inputs causes a horizontal move in
the flow table to the column whose heading corresponds to the new input value.
A change in the internal state of the circuit is reflected by a vertical move, as
shown by the arrows in Table 11.2. (Note that, since a change in the inputs can
occur only when the circuit is in a stable state, a horizontal move can emanate
only from a boldface entry.) For the time being, we shall specify only the output
symbols of stable states, leaving the output symbols of unstable states for later
consideration.

So far, we have specified the state transitions leading from the initial state to
a state that generates an output value 1. Clearly, we must also specify what is
to happen if an input sequence other than the one considered occurs. Suppose,
for example, that initially x1 changes before x2. As a result, the circuit will go
through unstable state 4 to stable state 4 (see Table 11.3), for which the output
symbol is 0. Since the two inputs are not allowed to change simultaneously, a
dash is entered in the first row, column 11, and in the second row, column 10,
of Table 11.3 and so on. In general, to specify the operation of a circuit, we use
a partly developed table similar to Table 11.2 and specify the transitions for
each allowable input change, starting from every stable state. If a new stable
state is to be added, a new row is created in the column corresponding to the
present values of input variables. Any move from a stable state can be caused
only by a change in the input variables.

The table thus constructed is called a primitive flow table. Its main character-
istics are that only one stable state appears in each row and the output symbols
are specified only for stable states.

We will now complete the flow table. Starting from entry 2 in column 01,
if the inputs change to 00, it is necessary to send the circuit into the state that
corresponds to the input conditions x1 = x2 = 0 and output z = 0, i.e., the
state 1. Therefore, a lightface 1 is entered in column 00 of the row containing
2. The circuit can leave state 3 by a change of inputs from x1x2 = 11 to
either x1x2 = 01 or x1x2 = 10. In the first case the value of input x1 has
changed from 1 to 0, while x2 remains equal to 1; if x1 changes again (to 11,
we want the circuit to go back to state 3 and to produce a 1 output value.

349 11.3 Synthesis of SIC fundamental-mode circuits

This transition can be accomplished if we enter a lightface 2 in column 01
in the third row. If, however, x2 changes from 1 to 0 while x1 remains at 1 then
the circuit goes to state 4, which satisfies these conditions. Starting from state
4, we observe that if the value of x2 changes from 0 to 1 then the two circuit
input values are 1’s. However, since the last input to change was x2, not x1, the
output value should be 0. Consequently, a new state, designated 5, for which
the output value is 0 must be added in column 11.

At this point, we have obtained all the stable states shown in Table 11.3. The
table is completed by entering the unstable states corresponding to the various
possible changes of input variables. A dash has been entered wherever a change
of input variables is not allowed.

Reduction of flow tables

The primitive flow table developed in Table 11.3 has five distinct states. Thus,
it appears that at least three variables are needed to represent these states.
However, as we shall see, this does not necessarily mean that three secondary
variables must be employed, since the input variables may be used to distinguish
some of the states. This problem can be better understood if we think of each
stable state as representing a total state of the circuit, i.e., a state defined
by the state of the internal (i.e., secondary) variables as well as by the state
of the primary input variables. Accordingly, an asynchronous circuit can go
from one stable state to another stable state without necessarily changing the
values of any of its internal variables. Such a situation simply means that
these two states are distinguished only by the states of the input variables.
(Note that in the case of synchronous circuits the input variables cannot be
used to specify the total state of the circuit since, although a synchronous circuit
is stable when the clock pulses are absent, the input values are not available
to it.)

In general, when setting up a primitive flow table, one is not concerned
about adding states that may turn out to be redundant. All that is necessary is
that a sufficient number of states be included, such that the circuit behavior
is completely specified for every allowable input sequence. The reduction of
a primitive flow table thus has two functions, namely, eliminating redundant
stable states and merging those stable states that are distinguishable by the input
states. Since there is only one stable state in each row of the primitive flow
table, we may think of it as the “present state (PS)” and rewrite Table 11.3 in
the form shown in Table 11.4, where the boldface entries again serve to identify
stable states. The flow table in the form of Table 11.4 is now indistinguishable
from the state table of an incompletely specified synchronous circuit, possibly
with the exception that every row of the flow table contains one “next-state”
entry which is identical to the “present state.”

The analogy between the minimization problem of synchronous circuits and
the reduction of primitive flow tables of asynchronous circuits is now apparent.

350 Asynchronous sequential circuits

Table 11.4 Primitive flow table

State, output

x1x2

PS 00 01 11 10

1 1, 0 2 — 4
2 1 2, 0 3 —
3 — 2 3, 1 4
4 1 — 5 4, 0
5 — 2 5, 0 4

Table 11.5 Reduced flow tables

State, output

x1x2

00 01 11 10

1, 0 2, 0 3, 1 4, 0
1, 0 2, 0 5, 0 4, 0

(a) The closed covering
{(123), (45)}

State, output

x1x2

00 01 11 10

1, 0 2, 0 5, 0 4, 0
1, 0 2, 0 3, 1 4, 0

(b) The closed covering
{(145), (23)}

We may, therefore, utilize the techniques of Section 10.4 to reduce the number
of rows in primitive flow tables. The merger graph for the flow table of Table
11.4 is shown in Fig. 11.9, where the maximal compatibles are {(123), (145)}.
Whenever bold and lightface entries are to be combined, the resulting entry is
bold since the corresponding state must be stable. Thus, for example, the row
of Table 11.4 that corresponds to the maximal compatible (123) is

1, 0 2, 0 3, 1 4,−

1

3

25

4

Fig. 11.9 Merger graph for
Table 11.4.

Two minimum-row flow tables corresponding to Table 11.3 are shown in
Table 11.5. Table 11.5a corresponds to the closed covering {(123), (45)} while
Table 11.5b corresponds to the closed covering {(145), (23)}. The output
symbols associated with unstable states have been specified to correspond
to their respective stable states, e.g., the output symbol associated with the
unstable state 2 is 0 since the output symbol of the stable state 2 is 0, and so on.

Specifying the output symbols

Our next step is to consider the assignment of output values to the unstable
states in the reduced flow table. This assignment depends on the required output
value changes, as well as on a number of design objectives that will be discussed
subsequently. Suppose that the circuit is to go from one stable state to another
stable state associated with the same output value, as is the case, for example,

351 11.3 Synthesis of SIC fundamental-mode circuits

Table 11.6 Specification of output symbols

State, output

x1x2

00 01 11 10

1, 0 2 3, 0 4
1 2, 1 3 4, 0
5, 1 6 7, 1 8
5 6, 0 7 8, 0

(a) Reduced flow table

State, output

x1x2

00 01 11 10

1, 0 2, 1 3, 0 4, 0
1, 0 2, 1 3, 0 4, 0
5, 1 6, 0 7, 1 8, 0
5, 1 6, 0 7, 1 8, 0

(b) Reduced flow table with
output values specified

in Table 11.5a in the transition from state 1 to state 4. In such a case there must
be no momentary complementary output value. Consequently, unstable state 4
must be assigned a 0 output value. Similarly, the output value associated with
unstable state 2 is specified as 0.

When a circuit changes from one stable state with a given output value
to another stable state with a different output value, the transition may be
associated with either output value. The choice of output value can be made
according to whether it is desired that the output-value change will occur as
soon as possible or as late as possible. When the relative timing of the output-
value change is of no importance, the choice of output value is made in such
a way as to minimize the output logic. Consider, for example, the flow table
in Table 11.6a. To determine the output value associated with unstable state 2,
note that state 2 can be reached from either state 1 or state 3. Since both are
associated with a 0 output value, while the output value of state 2 is 1, then if
a fast output value change is desired the output value associated with unstable
state 2 must be a 1 but if a slow output value change is desired then the output
of 2 should be set to 0. However, the output of unstable state 1 must be set to
0, since the output values of states 1 and 4 are both 0’s.

The output value associated with unstable state 4 must be a 0, as must the
output value associated with 3, since in each case the transition is between
stable states associated with 0 output values. Note that this output assignment
means that the output value associated with the transition from 2 to 3 cannot
be made in such a way that the change is as late as possible. An examination of
the output values associated with the unstable states in the last two rows shows
that they are all optional. The output assignment shown in Table 11.6b has been
made in such a way as to obtain fast output value changes.

Excitation and output tables

To realize a reduced flow table, it is necessary to assign distinct combinations
of the secondary-variable values to the rows of the flow table and derive the
corresponding excitation and output functions. For a state to be stable, the

352 Asynchronous sequential circuits

Table 11.7 Excitation and output table

Y, z

x1x2

y 00 01 11 10

0 0, 0 0, 0 0, 1 1, 0
1 0, 0 0, 0 1, 0 1, 0

Y

x2x1

D
y

z

Fig. 11.10 A realization of
Table 11.7.

values of the Y ’s must be the same as those of the y’s. Therefore, the excitation
required for any stable state is determined from the value of the secondary
variables assigned to the row in which the stable state is contained. A lightface
entry represents an unstable state, which must eventually assume the value of the
secondary state assigned to the boldface entry having the same number. There
are several difficulties associated with the state-assignment problem and with
the transitions assigned to the unstable states. These problems are discussed in
detail later.

To realize the reduced flow table of Table 11.5a, we assign a 0 to the first
row and a 1 to the second row, as shown in Table 11.7. Every boldface entry
in the first row is now replaced by a 0, and in the second row by a 1. The
lightface entry 2 is assigned a 0, since the circuit must go into stable state 2;
this assignment thus requires the variable y to change its state from 1 to 0 upon
receiving input symbol 01. Similarly, the lightface entries 1 and 4 are assigned
0 and 1, corresponding respectively to the assignments of the boldface entries
1 and 4. The excitation and output functions derived from Table 11.7 are

Y = x1x
′
2 + x1y,

z = x1x2y
′.

A corresponding realization is shown in Fig. 11.10.

A synthesis example

The synthesis procedure for SIC fundamental-mode asynchronous circuits
developed in the foregoing section consists of several steps, which can be
summarized as follows.

353 11.3 Synthesis of SIC fundamental-mode circuits

1. A primitive flow table is constructed from the verbal description of cir-
cuit operation. In most cases, we specify only those output values that are
associated with stable states.

2. A minimum-row reduced flow table is obtained by merging the rows in the
primitive flow table. Either the merger graph or the merger table may be
used to perform the reduction.

3. Secondary variables are assigned to the rows of the reduced flow table,
from which excitation and output tables are constructed. The output values
associated with unstable states are specified according to various design
requirements.

4. The excitation and output functions are derived, and the corresponding
hazard-free circuit constructed.

We shall now illustrate the above procedure by designing an asynchronous
sequential circuit with two inputs, x1 and x2, and two outputs, G and R, which
is to behave in the following manner. Initially, both input values and both output
values are equal to 0. Whenever G = 0 and either the value of x1 or x2 becomes
1, G turns “on” (i.e., attains the value 1). When the value of the second input
becomes 1, R turns on. The first input value that changes from 1 to 0 turns G

“off” (i.e., sets G equal to 0). The output R turns off when G is off and either
input value changes from 1 to 0.

From the specification of the problem, it is evident that whenever x1 = x2 = 0
then G = R = 0, and whenever x1 = x2 = 1 then G = R = 1. Consequently,
columns 00 and 11 of the primitive flow table must each contain a single stable
state. When the input combination x1x2 is 01, the output symbol GR may
be either 10 or 01, depending on the preceding input combination. Since a
different stable state must be included in each column of the flow table for
every possible output condition, column 01 must contain at least two stable
states. Similar arguments show that column 10 must also contain at least two
stable states, which will be associated with the output combinations 01 and 10.
We thus conclude that the primitive flow table for the circuit in question must
contain six stable states, as illustrated in Table 11.8a. The primitive flow table
can now be completed by inserting the dashes, whenever a multiple change of
input values is implied, and by specifying the unstable states.

When the circuit is in state 1, any allowed change of input symbols causes a
change in output symbols from 00 to 10. Hence, the circuit must be directed to
either state 2 or 5, depending on whether the change in input symbols is from
00 to 01 or 10, respectively. This is accomplished by entering a 2 in column
01 and a 5 in column 10 in the first row of Table 11.8b. It is a simple matter
to complete the unstable entries in columns 00 and 11, since each of these
columns contains just a single stable state. Therefore, 1’s and 4’s are entered
in the appropriate locations in Table 11.8b. The only as yet unspecified entries
are those in the row containing 4 in columns 01 and 10. If we start from state
4 and change the input symbols to 01 or 10, G must be turned off. Hence, we

354 Asynchronous sequential circuits

Table 11.8 Primitive flow table

State, GR

x1x2

00 01 11 10

1, 00
2, 10
3, 01

4, 11
5, 10
6, 01

(a) Table containing only
stable states

State, GR

x1x2

00 01 11 10

1, 00 2 — 5
1 2, 10 4 —
1 3, 01 4 —
— 3 4, 11 6
1 — 4 5, 10
1 — 4 6, 01

(b) Completed primitive
flow table

Table 11.9 Reduced flow table

State, GR

x1x2

00 01 11 10

1, 00 2, 10 4, 11 5, 10
1, 01 3, 01 4, 11 6, 01

Table 11.10 Excitation and output table

Y,GR

x1x2

y 00 01 11 10

0 0, 00 0, 10 1, 11 0, 10
1 0, 01 1, 01 1, 11 1, 01

direct the transitions to states 3 and 6, which correspond to the output condition
GR = 01.

The merger graph for the primitive flow table is shown in Fig. 11.11. It con-
tains two triangles leading to the closed covering {(125), (346)}. The reduced
flow table, which consists of two rows, is given in Table 11.9. The optional
output symbols associated with the unstable states have been specified in such
a way that R will be fast in turning on and slow in turning off.

1

3

2

5

4

6

Fig. 11.11 Merger graph for the
flow table of Table 11.8b.

The assignment of y = 0 to the first row and y = 1 to the second row of the
reduced flow table leads to the excitation and output tables of Table 11.10. The
excitation and output functions are

Y = (x1 + x2)y + x1x2,

G = (x1 + x2)y ′ + x1x2,

R = y + x1x2.

Races and cycles

In Section 11.1, we discussed the difficulties that may arise as a result of the
different delays associated with the various gates if multiple input changes are
allowed. The same difficulties may arise if two or more secondary variables
are required to change their values simultaneously. For practical reasons, it

355 11.3 Synthesis of SIC fundamental-mode circuits

Table 11.11 Illustration of races and cycles

00 01 11 10

00

01

11

10

x1x2
y1y2

Y 1Y 2

11

11

11

11

01

01

11

11

10

11

10

10

00

00

00

10

is clearly impossible to guarantee that all secondary elements indeed have
precisely the same delays. As a result, the assignment of secondary variables
to the rows of a reduced flow table must be such that the circuit will operate
correctly even if different delays are associated with the various secondary
elements.

A reduced excitation table is shown in Table 11.11. When both input values
are 0 and y1y2 = 00, the required transition to the state y1y2 = 11 involves a
change in the values of two secondary variables. If these two changes occur
simultaneously, the transition specified in the table will actually take place.
However, if either y1 or y2 changes first then, instead of going directly to the
secondary state 11, the circuit will go to either state 01 or state 10. Fortunately,
since in either case the required transition is to state 11, as indicated by the
entries 11 in rows 01 and 10, column 00, the circuit will finally reach its
destination. Such a situation, where a change in more than one secondary
variable is required, is called a race. If the final state reached by the circuit does
not depend on the order in which the variables change, as is the case discussed
above, then the race is said to be a noncritical race.

Now suppose that the circuit is in the state y1y2 = 11 and that the input state
is x1x2 = 01. The required transition is to the state y1y2 = 00. If y1 changes
faster than y2 then the circuit will go to state 01, from which it will reach state
00, as indicated by entry 00 in row 01, column 01. However, if y2 changes faster
than y1 then the circuit will go to the state y1y2 = 10 and remain there, since
the total state x1x2 = 01, y1y2 = 10 is a stable state. Thus, the circuit operation
will be incorrect. Such a situation, where the final stable state reached by the
circuit depends on the order in which the internal variables change, is referred
to as a critical race and must always be avoided.

Races can sometimes be avoided by directing the circuit through intermediate
unstable states, before it reaches its final destination. When the circuit of Table
11.11 is in the secondary state y1y2 = 01 and the input state x1x2 = 11, the
required transition is to state 10. However, since such a transition, from 01
to 10, involves two simultaneous changes in the ys, the unstable state 11 is
entered in row 01, column 11, thereby directing the circuit to row 11, from

356 Asynchronous sequential circuits

Table 11.12 A valid assignment for the
flow table of Table 11.11

Y1Y2

y1y2 x1x2

00 01 11 10

00 10 00 10 01
01 10 00 11 01
10 10 00 11 10
11 10 11 11 10

which it is directed to go to 10. Such a situation, where a circuit goes through a
unique sequence of unstable states, is called a cycle. When a state assignment
is made such that it introduces cycles, care must be taken to ensure that each
cycle terminates on a stable state. If a cycle does not contain a stable state
then the circuit will go from one unstable state to another, until the inputs are
changed. Obviously, such a situation must always be avoided when designing
asynchronous circuits.

To eliminate the critical race in column 01, it is necessary to select another
secondary assignment such that all critical transitions involve single variable
changes. This can be accomplished by the assignment shown in Table 11.12. It
is, of course, necessary to check that no new critical races have been introduced
by this assignment. Having verified this, we can proceed to realize the flow
table.

An assignment that contains no critical races or undesired cycles is referred
to as a valid assignment. As we shall subsequently see, in many situations a
valid assignment cannot be obtained merely by interchanging the assignments
of several states in an invalid assignment; more sophisticated methods must be
used.

Methods of secondary assignment

We now propose methods for obtaining secondary-state assignments such that
each transition is accomplished either by a change of secondary state in which
only one secondary variable changes or by a change of secondary state in which
a multiple change of secondary variables does not result in a critical race. One
way of arriving at the desired result is to test each transition and to ensure that
the assignment of rows containing a lightface entry i will be adjacent to the
assignment of the row containing the boldface entry i . Subsequently, we shall
refer to states that differ in only one variable as adjacent states.

The flow table of Table 11.13 contains three rows, denoted a, b, and c.
Inspection of column 00 in the table reveals that the assignment of row a must
be adjacent to that of row b, such that the transition from unstable state 1 to the

357 11.3 Synthesis of SIC fundamental-mode circuits

Table 11.13 A flow table

State

x1x2

PS 00 01 11 10

a 1 3 4 6
b 1 3 5 7
c 2 3 5 6

stable state 1 will involve just a single variable change. In a similar fashion, we
arrive at the following required adjacencies for race-free operation:3

column 00 : row b must be adjacent to row a

column 01 : rows a and b must be adjacent to row c

column 11 : row c must be adjacent to row b

column 10 : row c must be adjacent to row a

These required adjacencies can be demonstrated by the diagram shown in
Fig. 11.12, where each row is represented by a vertex and, for each pair of
adjacent rows, an arc is drawn between the corresponding vertices. The arc
labels (in parentheses) indicate the columns of the flow table in which the
transitions are required. Such a diagram is known as a transition diagram.
The problem now is to assign secondary states to the vertices of the transition
diagram, such that each pair of adjacent vertices is assigned a pair of adjacent
secondary states.

(00)

bc

a

(11)

(10)

Fig. 11.12 Transition diagram
for the flow table of Table 11.13.

If row a of Table 11.13 is assigned a combination of values of state variables
with an even number of 1’s, say 00, row b must contain an odd number of 1’s,
say 01. Now, for row c to be adjacent to both rows a and b, it must contain
an odd number of 1’s and an even number of 1’s, which obviously cannot be
achieved. To overcome this difficulty, it is necessary to augment the flow table
either by assigning two secondary states to row c or by introducing cycles that
lead the circuit to the desired stable states. These possibilities are illustrated
in Tables 11.14a, b. In the first case, each transition to state c (see below) is
directed to the adjacent one, as illustrated in column 01. In the second case, an
entry in row 10 is used as an intermediate unstable state to direct the circuit to
the desired stable state.

(01)

b

c

a

(11)

(10)
d

(11)

(01)

Fig. 11.13 Transition diagram
for the flow table of Table 11.15.

Here, the use of a fourth row does not increase the number of secondary
variables. In other situations, however, the augmentation of a flow table may
involve such an increase. To examine this problem in terms of a specific situa-
tion, consider the flow table in Table 11.15 and its transition diagram shown in
Fig. 11.13. We observe that row a must be adjacent to three other rows, as must
row d . Clearly there is no way of assigning four secondary states such that the

3 If noncritical races are permitted, as is usually the case, then column 01 requirement may be
eliminated, since column 01 contains only one stable state.

358 Asynchronous sequential circuits

Table 11.14 Augmented flow tables

00 01 11 10

00

01

11

10

y1y2 y1y2

y1y2 x1x2

Y1Y2 Y1Y2

00

00

11

10

00

01

10

00

00

01

01

11

10

11

11

10

a

b

c

c

(a) Two assignments to row c

00 01 11 10

00

01

11

10

00

00

11

–

00

01

10

00

00

01

01

–

01

11

11

–

a

b

c

(b) Utilizing an unspecified entry as an
unstable state

a d

d

d

y1y2
y3

0

1

00 01 11 10

c

b

Fig. 11.14 Transition diagram.

Table 11.15 A flow table that requires
three secondary variables

State

x1x2

PS 00 01 11 10

a 1 2 4 6
b 1 3 4 7
c 1 2 5 8
d 1 3 5 6

above adjacencies will be satisfied. Hence a third secondary variable must be
added.

The eight combinations of three secondary variables are represented by the
cells of the map of Fig. 11.14. To find a valid assignment, we start by placing a
bold a in cell y1y2y3 = 000 to indicate that row a will be assigned the secondary
state 000. Similarly, we place b, c, and d in the three cells adjacent to cell a.
This, however, means that each of the transitions from rows b to d and d to c

requires two changes of secondary variables. These multiple changes can be
accomplished by directing the circuit to its final destination through unstable
states, as shown by the arrows in Fig. 11.14. The flow table resulting from this
assignment is shown in Table 11.16.

11.4 Synthesis of burst-mode circuits

Since SIC fundamental-mode machines are quite restrictive, a straightfor-
ward generalization leads to multiple-input-change (MIC) fundamental-mode
machines, in which several inputs can change values in a narrow time interval
and no further inputs change values until the machine has stabilized. However,
because of the narrow time interval allowed for all input value changes, MIC

359 11.4 Synthesis of burst-mode circuits

A

B D

C

x1+,x2+/z1+,z2+

x1+,x2−/z1−,z2+

x1 z2−

x1 z2−

Fig. 11.15 A burst-mode specification.

Table 11.16 A race-free flow table

00 01 11 10

000

001

011

010

y1y2y3

x1x2

State

1

1

1

6

7

8

4

4

5

2

3

2

a

b

c

100

101

111

110

d 1

3

3

5

65

fundamental-mode machines are still quite restrictive. A further generalization
of such machines is burst-mode machines. Such machines also allow several
inputs to change values concurrently. However, all the changes need not occur
in a narrow time interval. They can change in any order at any time within a
given input burst and respond with a set of output value changes called the
output burst. This eases the timing constraints imposed on the environment in
which the machine is placed.

Burst-mode specification

A burst-mode specification with two inputs, x1 and x2, and two outputs, z1 and
z2, is shown in Fig. 11.15. The start state is A, as indicated. The initial values
of the inputs and outputs can be specified or assumed to have a default value 0.
A label is associated with each arc consisting of an input burst and an output
burst separated by /. A rising (falling) transition is denoted by + (−).

The machine is initially stable in any given state. The rising or falling
transitions associated with an input burst of an outgoing arc can arrive in
any order and at any time. However, their change is monotonic. When the
last input transition arrives, the burst is deemed complete. The machine then
generates the corresponding output burst, if any, and moves to the specified
next state. After the machine stabilizes, this process can begin anew.

There are three restrictions that a burst-mode specification must obey.

� Nonempty input bursts If no input undergoes a transition, the machine
remains in its current state.

� Maximal set property No input burst on an outgoing arc from any state
must be a subset of an input burst on another outgoing arc from the same
state. Note that if such a subset were allowed, the machine would not know
whether it should wait for another input transition.

360 Asynchronous sequential circuits

Table 11.17 A flow table

State, z1z2

x1x2

PS 00 01 11 10

A A, 00 A, 00 B, 11 A, 00
B — C, 10 B, 11 —
C C, 10 C, 10 C, 10 D, 01
D A, 00 — — D, 01

� Unique entry point Each state should have a unique set of input and output
values through which it is entered. For example, in the specification shown
in Fig. 11.15, let us assume that in starting state A, x1x2 = 00 and z1z2 = 00.
Then we can check that the input/output values for states B, C, and D are
11/11, 01/10, 10/01, respectively. The arc from D to A takes these values
back to 00/00, which is the unique entry point for A.

Flow table

In order to synthesize a circuit from a burst-mode specification, first it has to be
translated into a flow table. For the specification shown in Fig. 11.15, the flow
table is shown in Table 11.17. Each state in the specification is represented by
a row in the flow table and each input combination by a column. Each entry
in the table represents the complete state of the machine, which includes the
state the machine goes to and the corresponding output values. Consider initial
state A, which is mapped to row A where the complete state A, 00 is stable.
The input burst x1+, x2+ on the outgoing arc from state A is also mapped to
this row. This input burst leads to four possible temporary input combinations:
no change, x1+, x2+, and (x1+, x2+). The complete state remains the same
until the input burst is complete, after which the state is specified as are the
output values based on the output burst z1+, z2+, thus leading to the complete
state B, 11. On the outgoing arc from state B to C the input burst is simply
x1−. Thus, there are only two temporary input combinations in this case: no
change and x1−. The latter yields the entry C, 10 in this row. This complete
state incorporates the effect of the output burst z2−. The remaining two entries
in this row cannot be reached and are hence left unspecified. A similar analysis
applies to the other rows.

Flow table reduction and state assignment

The flow table for a burst-mode specification has no function hazards; this
stems from the requirement that the complete state must not change until the
full input burst has arrived. Also, it is always possible to obtain a hazard-free

361 11.4 Synthesis of burst-mode circuits

sum-of-products realization H for each secondary variable and output. This
follows from the fact that, for each such variable, the required cube can be
included in some product of H and no product of H illegally intersects any
privileged cube. The latter is true because all transitions in any row of the flow
table have the same complete start state, which will be included in the required
cubes for these transitions.

It is possible to minimize the number of states in a flow table through state
merging. However, even when two states are compatible it may sometimes
be incorrect to merge them since it may no longer be possible to guarantee a
hazard-free realization of all secondary and output variables. The conditions
under which state merging is possible are given in [13]. However, for the rest
of the discussion, we will assume that no state merging is done.

Various methods are available for obtaining a critical race-free secondary
state assignment for the flow table. One way is use the transition diagrams
discussed earlier.

Example Consider the burst-mode specification in Fig. 11.15. Its transition
diagram and a possible state assignment are shown in Fig. 11.16.

D

C

y1y2

0

1

0 1

(b) State assignment(a) Transition diagram

A

B

A

B C

D

Fig. 11.16 A critical race-free state assignment.

A synthesis example

The excitation and output table is the starting point for further synthesis. As
discussed earlier, we need to identify next the required cubes and dhf-prime
implicants for each next-state and output variable and obtain the minimal sum-
of-products expressions based on the subset of the dhf-prime implicants that
covers all the required cubes.

Continuing with the state assignment in Fig. 11.16, consider its excitation
and output table, shown in Table 11.18. For Y1, Y2, z1, and z2, the maps with
the relevant transitions as well as the dhf-prime implicant charts are shown in
Fig. 11.17. The horizontal transitions shown in the maps correspond to the input
burst and the vertical transitions to the change in state. For example, the input
burst x1+, x2+ in the specification shown in Fig. 11.15 takes the machine from

1

1

0

0

00 01 11 10

00

01

11

10

x1x2y1y2

1

Y1 map

1 11

0 0 0

0

dhf-prime
implicants

Required cubes
x1x2y2 y1y2 x1x2y1

x1y2

x2y1

x1y1

y1y2

x2y2

Minimal hazard-free sum-of-products
Y1 = x1y2 + y1y2 + x1y1

1

1

0

0

00 01 11 10

00

01

11

10

x1x2y1y2

0

Y2 map

1 01

0 0 1

1

dhf-prime
implicants

Required cubes
x1x2y1 x1x2y2

x2y1

x2y2

x1y2

y1y2

Minimal hazard-free sum-of-products
Y2 = x1x2y1 + x1y2 + x2y2

x2y1y2 x1y1y2x2y1y2

x1x2y1

1

1

0

0

00 01 11 10

00

01

11

10

x1x2y1y2

0

z1 map

1 01

0 0 1

1

0

0

0

0

00 01 11 10

00

01

11

10

x1x2y1y2

1

z2 map

0 10

0 0 1

1

dhf-prime
implicants

Required cubes
x1x2y1

Minimal hazard-free sum-of-products
z1 = Y2 = x1x2y1 + x1y2 + x2y2

x1x2y1

x1x2y1

x1x2y2

x1y1y2

x1x2y1

x1y1y2

Minimal hazard-free sum-of-products
z2 = x1x2y1 + x1x2y1

'

'

'

'

'

'

'

'

' '

''

'

'

'

'

'

'

' '

'

' ' '

'

'

Fig. 11.17 Synthesis from a burst-mode specification.

362

363 Notes and references

Table 11.18 Excitation and output table

Y1Y2, z1z2

x1x2

y1y2 00 01 11 10

00 00, 00 00, 00 01, 11 00, 00
01 — 11, 10 01, 11 —
11 11, 10 11, 10 11, 10 10, 01
10 00, 00 — — 10, 01

Y2

z2

Y1

x2x1

D

D
y1

y2

z1

Fig. 11.18 Synthesized circuit.

state A to B. This corresponds to a horizontal transition from (x1, x2, y1, y2) =
0000 to 1100, followed by a vertical transition from 1100 to 1101 (note that A’s
assignment is 00 whereas B’s assignment is 01). Some dhf-prime implicants
are not needed for any required cube, with the result that the corresponding
row is blank in the dhf-prime implicant chart. The minimal hazard-free sum-of-
products expressions are also shown in Fig. 11.17. The corresponding circuit
is shown in Fig. 11.18.

Notes and references

The first systematic treatment of asynchronous sequential circuits was due to Huff-
man [7], whose model for fundamental-mode circuits was presented in this chapter.
McCluskey [10] also studied fundamental-mode circuits. Huffman [6] and McCluskey
[9] were also the main initial contributors to hazard analysis and hazard-free circuit

364 Asynchronous sequential circuits

design. Eichelberger [4] dealt with MIC logic hazards. Beister [1] showed how to
get rid of MIC dynamic logic hazards. Nowick and Dill [13] presented an exact
two-level minimization algorithm for obtaining hazard-free circuits. Unger [15], Bre-
deson [2], and Kung [8] presented hazard-nonincreasing logic transformations. Huff-
man [5] studied the secondary-assignment problem for asynchronous circuits and pro-
posed several race-free universal assignments. Unger [14] pointed out the existence
of inherent hazards within fundamental-mode circuits and showed how to eliminate
such hazards by inserting delays. Good presentations of asynchronous circuits are
available in Miller [11] and Unger [15]. The survey article by Davis and Nowick [3]
and the book by Myers [12] provide excellent further reading material for interested
readers.

[1] Beister, J.: “A unified approach to combinational hazards,” IEEE Trans. Comput-
ers, vol. C-23, no. 6, pp. 566–575, June 1974.

[2] Bredeson, J. G.: “Synthesis of multiple-input change hazard-free combinational
switching circuits without feedback,” Int. J. Electronics (GB), vol. 39, no. 6, pp.
615–624, December 1975.

[3] Davis, A., and S. M. Nowick: “An introduction to asynchronous circuit design,”
University of Utah Technical Report, Department of Computer Science, UUCS-
97-013, September 1997.

[4] Eichelberger, E. B.: “Hazard detection in combinational and sequential switching
circuits,” IBM J. Research & Development, vol. 9, pp. 90–99, 1965.

[5] Huffman, D. A.: “A study of the memory requirements of sequential switching
circuits,” MIT Res. Lab. Electron. Technical Report 293, April 1955.

[6] Huffman, D. A.: “The design and use of hazard-free switching networks,” J. Assoc.
Computing Machinery, vol. 4, pp. 47–62, January 1957.

[7] Huffman, D. A.: “The synthesis of sequential switching circuits,” J. Franklin Inst.,
vol. 257, pp. 275–303, March-April 1954.

[8] Kung, D. S.: “Hazard-nonincreasing gate-level optimization algorithms,”
in Proc. In. Conf. Computer-Aided Design, pp. 631–634, November
1992.

[9] McCluskey, E. J.: “Transient in combinational logic circuits,” in Redun-
dancy Techniques for Computing Systems, pp. 9–46, Spartan, Washington, DC,
1962.

[10] McCluskey, E. J.: “Fundamental and pulse mode sequential circuits,” in Proc.
IFIP Congress 1962, North Holland, Amsterdam, 1963.

[11] Miller, R. E.: Switching Theory, vol. 2, John Wiley & Sons, New York,
1965.

[12] Myers, C. J.: Asynchronous Circuit Design, John Wiley & Sons, New York, July
2001.

[13] Nowick, S. M., and D. L. Dill: “Exact two-level minimization of hazard-free logic
with multiple-input changes,” IEEE Trans. Computer-Aided Design, vol. 14, no.
8, pp. 986–997, August 1995.

[14] Unger, S. H.: “Hazards and delays in asynchronous sequential switching circuits,”
IRE Trans. Circuit Theory, vol. CT-6, no. 12, 1959.

[15] Unger, S. H.: Asynchronous Sequential Switching Circuits, John Wiley & Sons,
New York, 1969.

365 Problems

Problems

Problem 11.1. Analyze the circuit in Fig. P11.1 for SIC static hazards. Redesign it to
make it SIC hazard-free.

x
z

w
y

w
y

z
x

'
'

'
'

Fig. P11.1

Problem 11.2. Consider the two-output circuit shown in Fig. P11.2. Without inserting
any extra gates in it, make both outputs SIC hazard-free.

Hint: You are allowed to add connections to the circuit.

x
y

x
z

f2

x
y

y
z

f1

'

'
'

'

Fig. P11.2

Problem 11.3
(a) If two AND–OR two-level circuits are SIC hazard-free, is the single-output circuit

obtained by performing an OR of the two outputs guaranteed to be SIC hazard-free?
Either prove this or provide a counter-example.

(b) Conversely, if two AND–OR two-level circuits each have an SIC hazard, is the
single-output circuit obtained by, performing an OR of the two outputs guaranteed
to have an SIC hazard? Either prove this or provide a counter-example.

Problem 11.4. Two different realizations, R1 and R2, of a function F are fed to an OR
gate, as shown in Fig. P11.4. If both R1 and R2 are SIC hazard-free, is the overall circuit
guaranteed to be SIC hazard-free? Explain your reasoning.

R1

R2

Fig. P11.4

Problem 11.5
(a) Find all SIC static hazards in the circuit shown in Fig. P11.5. (Assume the individual

elements to be hazard-free.)

366 Asynchronous sequential circuits

(b) Changing only the parameters of the threshold element, redesign the circuit in such
a way that all SIC static hazards are eliminated.

f (x1,x2,x3,x4)
x3

x2

x1

x4

1
2

1

7
21

x1
x3

'
'

Fig. P11.5

Problem 11.6. For the network shown in Fig. P11.6:
(a) show a map for f (w, x, y, z);
(b) find all SIC hazards of the network;
(c) realize f with a single threshold element.

x

w

y
−1

1
1 3

2 f (w,x,y, z)

y

x
w

z

3
−2
2

1

5
2

g

1

Fig. P11.6

Problem 11.7. In the function f (x, y, z) = ∑
(1, 3, 4, 5, 6, 7):

(a) find all MIC transitions that have a function hazard;
(b) find the required cubes for the MIC transition 111 → 010. What is the privileged

cube for this transition?
(c) find the required cubes for MIC transition 111 → 000.

Problem 11.8. For the function f (w, x, y, z) = ∑
(0, 1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 15)

and the transitions 0001 → 0100, 0110 → 0011, 1101 → 1010, and 1011 → 1010:
(a) find all the dhf-prime implicants;
(b) find a hazard-free sum-of-products expression.

Problem 11.9. From the excitation and output tables, in Table P11.9, for an SIC
fundamental-mode asynchronous sequential circuit, determine which input sequences
result in a 1 output value.

Table P11.9

Y1Y2, z

x1x2

y1y2 00 01 11 10

00 00, 0 10, 0 01, 0 00, 0
01 00, 0 11, 0 01, 1 11, 0
11 00, 0 11, 0 10, 0 11, 0
10 00, 0 10, 0 10, 0 11, 0

367 Problems

Problem 11.10. Each of the following specifications describes an SIC fundamental-
mode sequential circuit with two inputs, x1 and x2, and one output, z. Show a primitive
and a reduced flow table for each circuit.
(a) The output z = 1 if both x1 and x2 are at 1 and the value of x1 becomes 1 before

that of x2.
(b) When x2 = 1, the value of the output z is equal to the value of x1; when x2 = 0, the

output remains fixed at its last value prior to when the value of x2 became 0.
(c) The value of the output z is equal to 0 whenever x1 = 0. The first change in the value

of input x2 occurring while x1 = 1 causes the value of z to become 1. Thereafter,
the value of z remains at 1 until the value of x1 returns to 0.

Problem 11.11. Give a minimum-row reduced-flow-table description of an SIC
fundamental-mode two-input (x1, x2), one-output (z) sequential circuit that operates
in the following manner: the output z = 1 if and only if the input state x1 = x2 = 1 and
the next-to-last input variable change was a change in the value of x1. Assume that the
circuit is initially in the input state x1 = x2 = 0. Is the reduced flow table unique?

Problem 11.12. The value of the output z of an SIC fundamental-mode two-input
sequential circuit is to change from 0 to 1 only when the value of x2 changes from 0
to 1 while x1 = 1. The output value is to change from 1 to 0 only when the value of x1

changes from 1 to 0 while x2 = 1.
(a) Find a minimum-row reduced flow table. The output should be fast and flicker-free.
(b) Show a valid assignment and write a set of (static) hazard-free excitation and output

equations.

Problem 11.13. An SIC fundamental-mode sequential circuit with two inputs, x1 and
x2, and two outputs, z1 and z2, is to be designed so that zi (for i = 1, 2) takes on the
value 1 if and only if xi was the input whose value changed last.
(a) Find a minimum-row reduced flow table and a valid assignment.
(b) Assuming that all inputs are available in an uncomplemented as well as a comple-

mented form, show a realization using NAND gates. (fourteen gates are sufficient.)

Problem 11.14. Design an SIC fundamental-mode asynchronous sequential circuit
with two inputs, x1 and x2, and two outputs, G and R, which is to operate in the
following manner. Initially, both input values and both output values are equal to 0.
The first input to assume the value 1, either x1 or x2, turns G “on” (i.e., sets G to 1).
With the first input value equal to 1, if the second input value becomes equal to 1 then
R turns on. Thereafter, as long as either input value remains equal to 1, the input that
first caused G to turn on controls the operation of G, i.e., it causes G to turn off when it
assumes the value 0 and to turn on again when it assumes the value 1. The second input
controls the operation of R in the same manner.
(a) Show a minimum-row reduced flow table and find a valid assignment.
(b) Find the excitation and output equations.

Problem 11.15. At a junction of a single-track railroad and a road, traffic lights are to
be installed. The lights are to be controlled by switches that are pressed or released by
the trains. When a train approaches the junction from either direction and is within 1500
feet from it, the lights are to change from green to red and remain red until the train is
1500 feet past the junction.

368 Asynchronous sequential circuits

(a) Write a primitive flow table and reduce it. You may assume that the length of a train
is smaller than 3000 feet.

(b) Show a circuit realization of the light-control network.
(c) Repeat the design if it is known that the trains may be longer than 3000 feet.

Problem 11.16. Figure P11.16 illustrates an office for two students. Instead of light
switches the room has two photocells, one at each door. If either or both students are in
the office, the light is to be on. The students can enter or exit only as shown; entrances
and exits never occur simultaneously. The photocells indicate a 1 when their beam is
interrupted by a student entering or exiting and a 0 at all other times.
(a) Find a primitive and a minimum-row reduced flow table that describe the light-

control operation.
(b) Show a valid assignment and find the excitation and output equations.
(c) Repeat (a) if entering and exiting the room simultaneously is allowed.

x1

Photocells

x2

Exit
only

Entrance
only

LightFig. P11.16

Problem 11.17. A factory produces steel bars of length L + δ and L − δ. It is required
that the bars are to be sorted by placing them on a conveyor belt passing under two
photocells, as shown in Fig. P11.17. The spacing between the bars on the belt is greater
than δ. To the right of P2 is a trap door through which short bars can drop. The trap door
should not be open when the beam of P2 is interrupted and should be open immediately
after a short bar, of length L − δ, has completely passed P2. Let the value of output xi

of Pi be 1 when the beam of Pi is interrupted. Let the value of the trap-door control z

be 1 when the door is open.
(a) Find a minimum-row reduced flow table, with eight stable states, that describes the

trap-door control operation.
(b) Show a valid assignment and find the logic equations for the memory elements and

the trap-door control.

LDirection
of motion P1

Trap
door

P2

Short
bar

Fig. P11.17

Problem 11.18. A completely automatic and independent traffic-light system for the
intersection of roads x and y consists of two sensors, some processing circuitry, and
the lights. The sensors and circuitry generate two outputs, z and w. Output z attains
the value 1 if and only if m(x) − m(y) ≥ 6, where m(x) indicates the number of cars
waiting to cross a road y. Output w attains the value 1 if and only if m(y) − m(x) ≥ 6.
We wish to design an SIC fundamental-mode sequential circuit with inputs (z, w, z′, w′)
and outputs (Gx, Rx, Gy, Ry), where G and R refer to green and red lights, respectively,
and the subscripts indicate the street from which the light is visible. The objective is
to minimize intersection load by unloading whichever street is overloaded, i.e., has at

369 Problems

least six cars more than the other. The lights of the street being unloaded should remain
green until the other street becomes overloaded.
(a) Show a primitive flow table.
(b) Give a reduced flow table.
(c) Show a circuit realization. The outputs are to be fast and flicker-free.

Problem 11.19. In the circuit of Fig. P11.19, the values of input variables x1 and x2

never change simultaneously.
(a) Describe in words the terminal behavior of the circuit.
(b) Derive the flow table for the circuit.
(c) Show how one of the gates can be eliminated without changing the flow table. What

physical problems might this cause, and how can they be prevented?
Hint: To derive the flow table, open the feedback loop.

x
1

x2
z

x
2

Fig. P11.19

Problem 11.20. The reduced flow table of Table P11.20a is to be assigned three sec-
ondary variables, as shown in Table P11.20b. Note that several combinations of y1y2y3

values have been assigned to the first two rows of the reduced table. Consequently the
circuit will be stable when x1x2 = 00 in any of the y1y2y3 combinations 000, 001, 011,
for example, and each of these stable configurations must be equivalent to 1. Complete
an excitation table for the situation when each transition takes as short a time as possible.
Is the excitation table unique?

Table P11.20

State

x1x2

PS 00 01 11 10

a 1 5 6 9
b 1 4 7 8
c 2 5 7 9
d 3 4 6 9

(a) Reduced flow table

Y1Y2Y3

x1x2

y1y2y3 00 01 11 10

a 000
a 001
a 011
b 010
b 100
b 101
c 111
d 110

(b) Excitation table

Problem 11.21
(a) Find all the races in the flow table of Table P11.21 and indicate those that are critical

and those that are not.
(b) Find another assignment that contains no critical races.

370 Asynchronous sequential circuits

Table P11.21

State

x1x2

y1y2 00 01 11 10

00 00 11 00 11
01 11 01 11 11
10 00 10 11 11
11 11 11 00 11

Problem 11.22. For each of the reduced flow tables in Table P11.22, find an assignment
that contains no critical races and requires a minimum of secondary variables.

Table P11.22

State

x1x2

00 01 11 10

1 3 5 7
2 3 6 7
1 4 6 7

(a)

State

x1x2

00 01 11 10

1 3 6 7
1 3 5 7
2 4 5 7
2 4 6 7

(b)

State

x1x2

00 01 11 10

1 3 5 7
1 4 6 8
2 3 6 7
2 4 5 8

(c)

State

x1x2

00 01 11 10

1 5 7 10
2 4 8 10
3 5 9 12
2 5 9 11
3 4 7 11
1 6 8 12

(d)

State

x1x2

00 01 11 10

1 4 7 10
1 5 8 11
2 6 8 10
2 4 9 11
3 6 9 10
3 5 7 11

(e)

371 Problems

Problem 11.23. Consider the burst-mode specification shown in Fig. P11.23.
(a) Assuming that the unique entry point for state A is 00/00, what are the entry points

for each of the other four states?
(b) Obtain a flow table from the specification.
(c) Find a secondary state assignment that is free of critical races.
(d) Obtain an excitation and output table based on the above state assignment.
(e) Synthesize a minimal two-level hazard-free circuit.

A

B D

C

x1−,x2−/
z2−

x2+/z2+x1−/
z1−,z2−

E

x1+/z1+

x2+/z1−,z2+ x1+,x2 z1+

Fig. P11.23

Problem 11.24. Repeat Problem 11.23 for the burst-mode specification shown in
Fig. P11.24.

A

B

C

x1−,x2−/
z1−,z2−

x2+/z2+
x1−/z1−,z2+

D

x1+/z1+

x1+,x2+/z1+

Fig. P11.24

C H A P T E R

12 Structure of sequential machines

One of the main problems in the synthesis of sequential machines is that of
assigning combinations of state-variable values to the states of the machine.
This assignment determines the complexity and structure of the circuit which
realizes the machine. Various restrictions and requirements may be imposed on
the state assignment, depending on the design objectives and intended use of
the circuit. It may be desirable, for example, to construct it using a minimum
amount of logic, or to build it from an interconnection of smaller circuits, and
so on. The structure of a sequential machine includes the manner in which a
machine can be realized from a set of smaller component machines as well as
the functional dependencies of its state and output variables. It is our aim in this
chapter to study the state-assignment problem and how it affects the structure
and complexity of sequential machines.

12.1 Introductory example

The close relationship between the state-assignment problem and the structure
of sequential machines will be demonstrated by means of the machine M1

shown in Table 12.1. Two possible state assignments for M1 are shown in Table
12.2. The logic equations corresponding to assignment α, which are derived
from the excitation and output tables, are

Y1 = x ′y1 + xy ′
1 = f1(x, y1),

Y2 = x ′y1 + xy2 = f2(x, y1, y2),

z = xy ′
2 = f0(x, y2).

From these equations, it is evident that Y1 is a function of y1 and of the
external input and is independent of y2. However, Y2 depends on the external
input as well as y1 and y2. The output z is a function of x and y2 only. The
circuit diagram of M1 is shown in Fig. 12.1a. The dependency of the next-state
variables and the output is illustrated by the block diagram of Fig. 12.1b, where,

372

373 12.1 Introductory example

Table 12.1 Machine M1

NS z

PS x = 0 x = 1 x = 0 x = 1

A A D 0 1
B A C 0 0
C C B 0 0
D C A 0 1

Table 12.2 Excitation and output tables for M1

Y1Y2 z

y1y2 x = 0 x = 1 x = 0 x = 1

A 00 00 10 0 1
B 01 00 11 0 0
C 11 11 01 0 0
D 10 11 00 0 1

(a) Assignment α

Y1Y2 z

y1y2 x = 0 x = 1 x = 0 x = 1

A 00 00 11 0 1
B 01 00 10 0 0
C 10 10 01 0 0
D 11 10 00 0 1

(b) Assignment β

f1(x, y1)

zy1

x

Y1

(a) Circuit diagram.

y2
Y2

z
y1

x

Y1

(b) Block diagram.

f2(x, y1, y2)
y2

Y2
f0(x, y2)

Fig. 12.1 First realization of
M1.

374 Structure of sequential machines

f1(x,y1)

z

y1

x

Y1

(a) Circuit diagram.

y2

z

y1

x

Y1

(b) Block diagram.

f2(x,y2)
y2Y2

f0(x,y1, y2)

x

Y2

x

x

Fig. 12.2 Second realization of
M1.

for example, the block labeled f1(x, y1) corresponds to the combinational logic
associated with memory element Y1, and so on.

The logic equations corresponding to assignment β, shown in Table 12.2b,
are

Y1 = x ′y1 + xy ′
1 = f1(x, y1),

Y2 = xy ′
2 = f2(x, y2),

z = xy ′
1y

′
2 + xy1y2 = f0(x, y1, y2).

In this case Y1 is independent of y2 and Y2 is independent of y1. In other
words, the next value of each state variable can be computed from its present
value and the value of the present input, regardless of the value of the other
state variable. The dependency of the output function, however, has increased
in comparison with its dependency in assignment α, shown in Table 12.2a.
The circuit and block diagrams corresponding to assignment β are shown in
Fig. 12.2.

The preceding two realizations of machine M1 clearly demonstrate that
the choice of assignment affects the complexity of the circuit and determines
the dependency of the next-state variables and the overall structure of the
machine. Our objective in this chapter is to investigate the relationship of the

375 12.2 State assignments using partitions

state assignment and the reduction in dependency of the state variables to the
structure of a sequential machine. These factors will be shown to affect the
complexity and cost of the final circuits as well.

12.2 State assignments using partitions

In this section we shall derive necessary and sufficient conditions for a sequen-
tial machine M to have assignments that result in reduced dependencies among
the state variables. Such assignments generally yield simpler logic equations
and circuits; they are also the fundamental means by which machine decom-
positions are obtained.

Closed partitions

Let machine M have a set of n states S = {S1, S2, . . . , Sn} and a set of p

input symbols I = {I1, I2, . . . , Ip}; then k = �log2 n� state variables and l =
�log2 p� input variables are needed for a complete assignment, where �g� is
defined as the smallest integer equal to or greater than g. Each of the k next-state
variables depends, in general, on the external inputs x1, x2, . . . , xl and the k

state variables, i.e.,

Yi = fi(y1, y2, . . . , yk, x1, x2, . . . , xl), i = 1, 2, . . . , k.

Our objective is to obtain assignments in which the values of one or more subsets
of the next-state variables can be determined independently of the values of
the remaining variables, that is, assignments which yield logic equations for
the variables Y1, Y2, . . . , Yr , where 1 ≤ r < k, that are independent of the
remaining k − r variables. Thus,

Yi = fi(y1, y2, . . . , yr , x1, x2, . . . , xl), i = 1, 2, . . . , r.

The subset {Y1, Y2, . . . , Yr} of state variables, whose values are independent
of the values of yr+1, yr+2, . . . , yk , is said to be a self-dependent subset, and an
assignment that yields such a subset is said to possess self-dependent subsets.
Assignments α and β of machine M1 both have this property.

The state-assignment problem may be viewed as either a coding problem or
a partitioning problem. In viewing the state assignment as a coding problem,
a distinct code is assigned to each row (state) of the state table. From the
partitioning point of view, which we shall adopt in this chapter, each state
variable yi induces a partition τi on the set of states of the machine, such that
two states are in the same block of τi if and only if they are assigned the
same value of yi . For example, in assignment α for machine M1, y1 = 0 for
states A and B and y1 = 1 for states C and D. Hence y1 induces the partition
τ1 = {A,B; C,D} (see Definition 2.1) on the states of M1. Similarly, y2 induces
the partition τ2 = {A,D; B,C}. Clearly, if the assignment is such that each

376 Structure of sequential machines

state has a unique code then the product of the k partitions τ1, τ2, . . . , τk

corresponding to y1, y2, . . . , yk is equal to zero, that is,

τ1 · τ2 · · · · · τk = π (0).

We have shown how an assignment induces a set of partitions whose product
is the zero partition π (0). The inverse process, that of assigning the values of
the state variables to distinguish the blocks of a set of partitions, is the process
of significance in the synthesis procedure. Given a partition τ with #(τ) blocks
on the set of states of M , to distinguish between these blocks it is necessary
to select r = �log2 #(τ)� state variables and assign a distinct combination of
these variables to each block of τ ; that is, all the states in each block are
assigned the same values of y1, y2, . . . , yr . Each partition on the states of M

provides some information regarding M’s state. If M possesses two partitions
τ1 and τ2 such that τ1 > τ2 then τ2 provides more information than τ1. Clearly,
the zero partition provides all the necessary information, since knowledge of
which block of π (0) the machine is in is sufficient to determine the state of M

uniquely. Thus, to obtain an assignment for M such that each state has a distinct
code, it is necessary to assign the values of the state variables in such a way
that they distinguish between the blocks of a set of partitions whose product is
the zero partition.

Example For machine M1, the product of the partitions τ1 = {A,B; C,D}
and τ2 = {A,C; B,D} is zero, i.e., τ1 · τ2 = π (0). Hence, if we assign y1 in
such a way as to distinguish block (A,B) from block (C,D), and y2 in such
a way as to distinguish the blocks of τ2, then each state of M1 will have a
distinct code. One such assignment is β, shown in Table 12.2b.

Definition 12.1 A partition π on the set of states of a sequential machine M is
said to be closed if, for every two states Si and Sj which are in the same block
of π and any input symbol Ik in I , the states IkSi and IkSj are in a common
block of π ; IkSi denotes the Ik-successor of Si .

Example For machine M1, Table 12.1, the partitions π1 = {A,B; C,D}
and π2 = {A,C; B,D} are closed.1 The 0- and 1-successors of (A,C)
are (A,C) and (B,D), respectively, while the only successor of (B,D)
is (A,C). If we denote the blocks of π2, (A,C) and (B,D), by P and
Q respectively then we may describe the successor relationships of these
blocks by means of the graph of Fig. 12.3. Clearly, knowledge of the present
block of M1 and the input symbol is sufficient to determine the next block

1 In general, we shall reserve π to denote closed partitions while τ , θ , etc., will denote arbitrary
partitions.

377 12.2 State assignments using partitions

uniquely. (We shall subsequently say that a machine is in a block when we
mean that it is in one of the states contained in the block.)

QP

0

0,1

1

Fig. 12.3 Successor relationships of the blocks of the partition π2 = {A, C ; B, D} = {P ; Q}.

Reduction of the functional dependency of the state variables

We shall now establish the relationship between closed partitions and the reduc-
tion in functional dependency of state variables.

Theorem 12.1 Let M be a sequential machine with k state variables,
y1, y2, . . . , yk . If there exists a closed partition π on the states of M and if
r state variables, where r = �log2 #(π)�, are assigned to the blocks of π , such
that all the states contained in each block are assigned the same values of
y1, y2, . . . , yr , then the next-state variables Y1, Y2, . . . , Yr are independent of
the remaining k − r variables. Conversely, if the first r next-state variables,
Y1, Y2, . . . , Yr (1 ≤ r < k), can be determined from the values of the inputs
and the first r state variables, independently of the values of the remaining
k − r variables, then there exists a closed partition π on the states of M such
that two states, Si and Sj , are in the same block of π if and only if they are
assigned the same values of the first r variables.

Proof Since each block of π is assigned the same values of the variables
y1, y2, . . . , yr , and since π is closed, knowledge of the present block of π and
the present input values is sufficient to determine the next block of π . In other
words, knowledge of the present values of y1, y2, . . . , yr and of the present
input values is sufficient to determine the values of Y1, Y2, . . . , Yr , regardless
of the values of the remaining variables. To prove the converse, form a partition
π on the states of M such that all the states with the same assigned values of
y1, y2, . . . , yr are in the same block of π . To prove that π is closed, consider
two states Si and Sj that belong to the same block of π . Each of these states
has the same assigned values of the first r variables and, since these variables
are independent of the values of the remaining ones, an application of the same
input sequence to both Si and Sj causes the same change in the values of
the first r variables for these two states. Therefore, for each value of Ik , the
successors IkSi and IkSj have the same assignment of values for the first r

variables and, consequently, are contained in the same block of π . Thus, π is
closed. ♦

378 Structure of sequential machines

Example For machine M1, the partitions π1 = {A,B; C,D} and π2 =
{A,C; B,D} are closed. Since y1 in assignment β has been assigned to
distinguish the blocks of π1, it is independent of y2. Similarly, since y2 has
been assigned to distinguish the blocks of π2, it is independent of y1.

Theorem 12.1 actually states a necessary and sufficient condition for the
decomposition of sequential machines. The existence of a partition τ and a
closed partition π on the set of states of a machine M , such that π · τ = π (0)
guarantees that M can be composed of two component machines connected in
series. The first component in the connection consists of �log2 #(π)� memory
elements (and their excitation circuitry), corresponding to the state variables
assigned to distinguish the blocks of π . Since these variables are independent
of the remaining variables, the first component is often referred to as the
independent component. The second component in the serial connection, also
referred to as the dependent component, contains �log2 #(τ)� memory elements,
corresponding to the state variables assigned to distinguish the blocks of τ . We
shall refer to the independent component as the predecessor machine and
the dependent component as the successor machine. It is often convenient to
view the predecessor machine as the component that distinguishes between the
blocks of π , and the successor machine as the component that distinguishes
between the states within the blocks of π .

The existence of two closed partitions on the states of M such that their
product is zero, i.e., π1 · π2 = π (0), implies that M can be composed of two
components operating in parallel, independently of each other. One compo-
nent consists of �log2 #(π1)� memory elements, corresponding to the variables
assigned to distinguish the blocks of π1. The second component consists of
�log2 #(π2)� memory elements, corresponding to the variables assigned to dis-
tinguish the blocks of π2.

The preceding arguments can thus be summarized as follows.

� An n-state machine M can be decomposed into two independent components
operating in parallel if and only if there exist two nontrivial closed partitions
π1 and π2 on the states of M such that π1 · π2 = π (0). This decomposition
requires a minimal number (i.e., �log2 n�) of state variables if and only if

�log2 #(π1)� + �log2 #(π2)� = �log2 n�.

Example Consider the machine M2 given in Table 12.3. It can be shown
that M2 has seven closed partitions, which are listed in Fig. 12.4. Since
M2 has eight states, three state variables are needed for an assignment. The
existence of the closed partition π5 suggests that M2 can be realized as two
component machines connected in series. The predecessor component has
two state variables, y1 and y2, which are assigned to the blocks of π5 and,

379 12.2 State assignments using partitions

Table 12.3 Machine M2

NS

PS x = 0 x = 1 z

A H B 0
B F A 0
C G D 0
D E C 1
E A C 0
F C D 0
G B A 0
H D B 0

π0 = {A; B; C ; D; E ;F ; G ; H } = π (0),

π1 = {A, B, C , D; E , F , G, H },
π2 = {A, D, E , H ; B, C , F , G},
π3 = {A, D; B, C , F , G ; E , H },
π4 = {A, D, E , H ; B, C ; F , G},
π5 = {A, D; B, C ; E , H ; F , G},
π6 = {A, B, C , D, E , F , G, H } = π (I).

Fig. 12.4 Closed partitions for M2.

consequently, are independent of y3, while the successor component has a
single variable, y3, which distinguishes the states in the blocks of π5.

Maximal reduction in the dependency of state variables would be achieved
if we could find three two-block closed partitions whose product is zero.
In such a case, each state variable would be independent of the remaining
two variables and the machine would be realized as a parallel connection of
three component machines. It is evident, however, from the list of nontrivial
closed partitions of M2 that only two two-block partitions can be found,
namely, π1 and π2. In fact, since each nontrivial closed partition is greater
than π5, no combination of closed partitions can be found whose product is
zero. Therefore, we must select a partition τ such that

π1 · π2 · τ = π (0).

One possible such partition is

τ = {A,D,G,H ; C,D,E, F }.

Assigning y1 to distinguish the blocks of π1, y2 to distinguish the blocks
of π2, and y3 to distinguish the blocks of τ results in the assignment given
in Table 12.4. Clearly, y1 and y2, which are assigned to the blocks of closed
partitions, will be self-dependent, while y3, which is assigned to the blocks

380 Structure of sequential machines

Table 12.4 Excitation and output table for M2

Y1Y2Y3

y1y2y3 x = 0 x = 1 z

A 000 100 010 0
B 010 111 000 0
C 011 110 001 0
D 001 101 011 1
E 101 000 011 0
F 111 011 001 0
G 110 010 000 0
H 100 001 010 0

of τ , will be a function of the external input and all three state variables.
The logic equations derived from Table 12.4 are

Y1 = x ′y ′
1,

Y2 = x ′y2 + xy ′
2,

Y3 = xy3 + x ′y ′
1y2y

′
3 + y ′

1y
′
2y3 + y1y2y3 + x ′y1y

′
2y

′
3,

z = y ′
1y

′
2y3.

The corresponding schematic diagram is shown in Fig. 12.5.

Logic

zx

Y1

Logic Y2

Logic Y3 Logic

Fig. 12.5 Schematic diagram
for M2.

12.3 The lattice of closed partitions

Closed partitions have been shown to play a significant role in the state-
assignment problem and in determining the dependency of the state variables.
Therefore we will present a method for generating these partitions and will
investigate their properties.

Theorem 12.2 The product π1 · π2 and the sum π1 + π2 of two closed partitions
on the set of states of M are also closed.

381 12.3 The lattice of closed partitions

Proof Let π1 and π2 be two closed partitions on the states of M . We will
show that the partition π1 · π2 is also closed, leaving the proof that π1 + π2 is
closed as an exercise to the reader.

Let B be an arbitrary block of π1 · π2. Since B is the intersection of some
blocks B1 of π1 and B2 of π2, B is contained in both B1 and B2. Since π1

and π2 are closed, the Ik-successor of B is also contained within some block
IkB1 of π1 and some block IkB2 of π2, where IkBi is the Ik-successor of Bi .
Therefore IkB is contained within the intersection IkB1 · IkB2. However, the
intersection IkB1 · IkB2 is contained in a block of π1 · π2 and, consequently,
IkB is contained in a block of π1 · π2. Therefore, π1 · π2 is closed. ♦

From this theorem, it follows that to each pair of closed partitions π1 and
π2 there corresponds a least upper bound (lub) π1 + π2 and a greatest lower
bound (glb) π1 · π2. Consequently, the set of closed partitions on the states of
a machine is closed under the + and · binary operations and, therefore, forms
a lattice (by Definition 2.2 in Section 2.4). This lattice is referred to as the
π -lattice.

Let πSiSj
be the smallest closed partition containing Si and Sj in one block.

We shall subsequently refer to the placing of Si and Sj in one block as identifying
them. To determine πSiSj

, we first identify Si and Sj . This identification implies
that we must also identify the successors IkSi and IkSj for every input symbol
Ik in I . States IkSi and IkSj are said to be implied by Si and Sj . Whenever a
state Si is identified with Sj and Sk , the transitive law must be applied in such a
way that (Si, Sj , Sk) are placed in the same block of π . If we repeat the above
procedure and find the smallest closed partition πSiSj

for every pair of states
SiSj , we obtain a set of partitions known as the basic partitions. The π -lattice
can now be obtained in two steps:

1. for every pair of states SiSj , obtain πSiSj
;

2. obtain all possible sums of basic partitions.

Since every closed partition can be shown (see Problem 12.5) to be the sum of
one or more basic partitions, the above procedure indeed generates the set of
all closed partitions.

As an illustration, we shall determine the π -lattice of the machine M3 shown
in Table 12.5. The table in Fig. 12.6a shows the possible initial identifications
and their implications. Within the cell in row Si , column Sj , we write the
identifications implied by the initial identification of Si and Sj . For example,
if we start by identifying the states A,B, we find that no other pair of states is
implied. Consequently, the partition {A,B; C; D; E; F } is closed. We continue
by identifying A,C, which, in turn, implies A,B and D,E. These implications
may be described as

A,C → A,B; D,E.

382 Structure of sequential machines

Table 12.5 Machine M3

NS

PS x = 0 x = 1

A E B

B E A

C D A

D C F

E F C

F E C

AB; C;
D; E; F

B

ABCF;
DE

EDCBA

F

E

D

C
ABCF;

DE

ABCF;
DE

ABCF;
DE

ABCF;
DE

ABCF;
DE

A; EF;
B; C; D

(I)

(I)

(I)

(I)

(I)(I)

(I)

(a) Derivation of basic partitions.

(I)

(0)

4

3

1

(b) -lattice.

2

0 (0)=

1 {A,B; C; D; E; F }=

{A,B,C,F; D,E }=2

{A; B; C; D; E,F }=3

{A,B; C; D; E,F }=4

(I)=5

p p

p

p

p p

p

p

p

p

p
p

p

p
p
p
p
p
p

p

pp

Fig. 12.6 Construction of the
π -lattice of M3.

It is already known that the identification of A,B does not imply any other pair.
Hence, we need to check only the implications due to D,E. From the state
table we find that D,E implies C,F . Since A,C and C,F are identified, the
transitive law must be applied to yield A,C, F . This process is thus summarized
as follows:

A,C → A,B; D,E → A,C, F ; A,B; D,E → A,B,C, F ; D,E.

383 12.4 Reduction of the output dependency

The entire table is completed in a similar manner. Many shortcuts are possible.
For example, while identifying B, D, the pair A, F is implied. However, since
the implications which result from the identification of A,F have already been
determined, it becomes immediately evident that the identification of B,D

implies the identity partition, i.e.,

B,D → C,E; A,F → A,B,C, F ; D,E; C,E → π (I).

The next step in the procedure is to determine the remaining (nonbasic) closed
partitions. This is done by computing the sums of pairs of basic partitions to
obtain “second-level” partitions and then using only pairs of “second-level”
partitions to obtain “third-level” partitions, and so on. For the machine M3, the
basic partitions are

π1 = {A,B; C; D; E; F },
π2 = {A,B,C, F ; D,E},
π3 = {A; B; C; D; E,F }.

The only sum that yields a nontrivial closed partition is

π4 = π1 + π3 = {A,B; C; D; E,F }.
The π -lattice for the machine M3 is shown in Fig. 12.6b.

12.4 Reduction of the output dependency

So far, attention has been focused on reducing the dependency of state variables.
In assigning the states of these variables to the blocks of a closed partition, we
have a considerable amount of freedom. It is our aim in the following discussion
to show how this freedom can be used to obtain simpler output circuits with
reduced dependencies. The problem is illustrated by considering two possible
assignments for the machine M4 shown in Table 12.6.

Machine M4 possesses the closed partition π = {A,B; C,D}. To obtain
a state assignment, we are looking for a partition τ such that π · τ = π (0).
The assignments α and β shown in Table 12.7 correspond, respectively, to the
partitions τa = {A,C; B,D} and τb = {A,D; B,C}. The state variables and

Table 12.6 Machine M4

NS z

PS x = 0 x = 1 x = 0 x = 1

A B D 1 0
B A C 0 1
C D A 0 1
D C B 1 0

384 Structure of sequential machines

Table 12.7 Two possible assignments for
machine M4

y1y2

A 00
B 01
C 10
D 11

(a) Assignment α

y1y2

A 00
B 01
C 11
D 10

(b) Assignment β

output function corresponding to assignment α are as follows:

Y1 = x ′y1 + xy ′
1,

Y2 = x ′y ′
2 + y ′

1y
′
2 + xy1y2,

z = x ′y ′
1y

′
2 + x ′y1y2 + xy ′

1y2 + xy1y
′
2.

The number of transistors required for a two-level NAND–NAND CMOS
realization of these functions is 64.

For assignment β, we obtain

Y1 = x ′y1 + xy ′
1,

Y2 = x ′y ′
2 + xy ′

1y2 + y1y
′
2,

z = x ′y ′
2 + xy2.

The realization of these functions requires only 40 transistors.
Evidently, the reduction in circuit complexity is the outcome of the decrease

in the dependency of the output function. While in assignment α the output
depends on x, y1, and y2, in assignment β it is independent of y1. Although such
a reduction in the dependency of the output does not always ensure simpler
output circuits, in most cases it does tend to decrease the complexity of the
circuit. Our aim, therefore, is directed towards obtaining assignments which
reduce the dependencies of the output logic.

Definition 12.2 A partition λo on the states of a machine M is said to be
output-consistent if, for every block of λo and every input symbol, all the states
contained in the block have the same output symbols.

Example The partition λo = τb = {A,D; B,C} is an output-consistent
partition of the machine M4.

Let M have n states to which we assign k variables, where k = �log n�. Let
r = �log2 #(λo)� variables be assigned to the blocks of M’s output-consistent
partition λo. Because λo is output-consistent, the output symbols associated
with the blocks of λo can be computed from these r variables, independently

385 12.4 Reduction of the output dependency

of the remaining k − r variables assigned to the states in the blocks of λo.
Consequently, we arrive at the following general result.

� The existence of an output-consistent partition λo on the states of a sequential
machine M implies that there exists an assignment for M such that the outputs
depend, at most, on the external inputs and on the variables assigned to the
blocks of λo.

This result can be generalized as follows. Let � = {τ1, τ2, . . . , τk} be the
set consisting of partitions induced by the state variables y1, y2, . . . , yk . Let
λo1, λo2, . . . , λom be the output-consistent partitions induced by the outputs
z1, z2, . . . , zm. If, for some subset Q of �,

λoi ≥
∏
j∈Q

τj

then zi is a function of the external input x and the variables assigned to the
partitions contained in Q.

Example In the machine M4, λo = λo1 = {A,D; B,C}. Since y2 has been
assigned to λo in assignment β, the output z depends only on this variable
and is independent of y1.

In assignment β we obtained a reduction in the dependency of y1 and (simul-
taneously) of the output z. This is possible since π · λo = π (0). In general, how-
ever, we cannot efficiently obtain a complete assignment on the basis of any
arbitrary closed partition π and any output-consistent partition λo. For example,
if π · λo = π (0) but �log2 #(π)� + �log2 #(λo)� > �log2 n� then an assignment
can be obtained in which the outputs depend on �log2 #(λo)� variables and these
�log2 #(π)� variables are independent of the remaining ones. However, such
an assignment is not minimal since it requires extra variables. For example,
if π = {A,B; C,D; E,F ; G,H } while λo = {A,C; B,E; D,G; F,H } then
π · λo = π (0) but log2 4 + log2 4 = 4. If we use only π or only λo, we can
obtain an assignment with only three variables. It should be noted that, while
λo simplifies the output circuit, the additional variables (the fourth one in the
above case), which are not assigned to any closed partition, may add a signifi-
cant amount of logic to the overall circuit. Consequently, we have two different
requirements: to make an assignment based on an output-consistent partition
λo and, at the same time, to reduce the dependencies of the state variables, i.e.,
to assign the variables to the blocks of a closed partition π . These two require-
ments often conflict. Various approaches have been tried in attempts to solve
this problem (see, for example, [10]). This may require some trial and error.

386 Structure of sequential machines

12.5 Input independency and autonomous clocks

Some machines can be constructed from two components: one input-
independent and the other input-dependent. Our aim in this section is to deter-
mine necessary and sufficient conditions for the existence of state assignments
that result in such a structure.

Definition 12.3 A partition λi on the states of a machine M is said to be
input-consistent if, for every state Si of M and all input symbols I1, I2, . . . , Ip,
the next states I1Si, I2Si, . . . , IpSi are in the same block of λi .

Example Consider the machine M5 shown in Table 12.8. State A implies
the identification of states C and D. Similarly, the identification of E and
F is implied by state C, while the identification of A and B is implied
by state E. Thus, the smallest input-consistent partition for M5 is λi =
{A,B; C,D; E,F }. Clearly, any partition that contains λi is also input-
consistent. Unless otherwise indicated, λi will subsequently designate the
smallest input-consistent partition.

Table 12.8 Machine M5

NS z

PS x = 0 x = 1 x = 0 x = 1

A D C 0 1
B C D 0 0
C E F 0 1
D F F 0 0
E B A 0 1
F A B 0 0

Since the successor relationships between the blocks of λi are independent
of the inputs, the �log2 #(λi)� variables assigned to distinguish the blocks of
λi are input-independent. If, in addition to λi , a machine M possesses a closed
partition π such that π ≥ λi then, for a given state Sj and every input symbol
I1, I2, . . . , Ip in I , the next states, I1Sj , I2Sj , . . . , IpSj , must be in the same
block of λi and, therefore, in the same block of π as well. Consequently, for a
given initial state, the block of π in which the state of M is contained after any
finite input sequence depends only on the initial block and on the length of the
sequence. This property may be summarized as follows.

� The existence of a closed partition π and a nontrivial input-consistent par-
tition λi on the states of M , where π ≥ λi , is a necessary and sufficient
condition for the existence of an assignment for M such that the �log2 #(π)�
variables assigned to the blocks of π are independent of the input and of the
remaining state variables.

387 12.5 Input independency and autonomous clocks

A component machine whose output at any time is independent of the input is
called an autonomous clock. If M possesses an input-consistent partition λi and
several closed partitions, each greater than or equal to λi , then the autonomous
clock corresponding to the smallest such closed partition is referred to as the
maximal autonomous clock.

Example For M5, the input-consistent partition λi = {A,B; C,D; E,F }
is closed. The output-consistent partition is λo = {A,C,E; B,D,F }. Since
π = λi and π · λo = π (0) the assignment and logic equations in Table 12.9
result. The schematic diagram corresponding to this assignment is shown in
Fig. 12.7. It clearly displays the existence of an autonomous clock as well
as the reduction in the dependency of z due to λo. The external clock has
not been shown but is implicit. In fact, it triggers the autonomous clock and
causes it to change states.

Table 12.9 Assignments and equations for M5

y1y2y3

A 000
B 001
C 010
D 011
E 100
F 101

(a) Assignment

Y1 = y2

Y2 = y ′
1y

′
2

Y3 = xy2 + xy3 + x ′y ′
2y

′
3 + y2y3

z = xy ′
3

(b) Logical equations

z

Y1 Autonomous
clock

Y2

x

Y3

Fig. 12.7 Realization of M5.

388 Structure of sequential machines

It is easy to show that if M is a strongly connected machine then any
component induced by a closed partition on the states of M is also strongly
connected. Hence, the autonomous clock of a strongly connected machine is
also strongly connected and, furthermore, it is a periodic machine. To find the
period p of the autonomous clock, suppose that the machine M possesses a
closed partition π such that π ≥ λi . The clock has #(π) states and, therefore,
during #(π) + 1 time units, it must pass at least twice through one of the
states. Thus, the period p is less than or equal to #(π).

Example The maximal autonomous clock of machine M5 is determined
from the partition π = λi , where

π = {A,B; C,D; E,F } = {α; β; γ }.
In the state table of M5, let us denote the blocks (A,B), (C,D), and (E,F)

by α, β, and γ , respectively. The graph describing the block-successor
relationships of π yields the state diagram of the maximal autonomous
clock, as shown in Fig. 12.8. From the graph it is clear that the period p of
the clock is 3.

a b

g

Fig. 12.8 The autonomous clock of machine M5.

12.6 Covers, and the generation of closed partitions by state splitting

The correlation between closed partitions and the existence of assignments with
self-dependent and autonomous subsets have been established in the preceding
sections. These assignments have been shown to yield simpler circuits and
affect a circuit’s structure. Many machines, however, do not possess such
partitions and therefore cannot be implemented with independent components.
Our objective in this section is to develop a method that will enable us to
generalize the preceding structure theory and, by allowing the classification
of the states into nondisjoint subsets, to augment a machine that does not
possess any closed partition into an equivalent machine that does possess such
partitions. Such an augmentation is achieved by splitting some states of the
original machine. The basic tool in this procedure is the implication graph,
which will be defined shortly.

389 12.6 Covers, and the generation of closed partitions by state splitting

Table 12.10 Machine M6

NS z

PS x = 0 x = 1 x = 0 x = 1

A A B 0 1
B C B 0 0
C A C 0 0

Table 12.11 Machine M ′
6

NS z

PS x = 0 x = 1 x = 0 x = 1

A A B 0 1
B C ′ B 0 0
C ′ A C ′′ 0 0
C ′′ A C ′′ 0 0

Covers

To illustrate the basic ideas, consider the machine M6 shown in Table 12.10.
It can be verified that no closed partition exists for this machine and therefore
it would appear that it cannot be decomposed in any manner. Consider next
the machine M ′

6 (Table 12.11), which is reducible to machine M6 since the
states C ′ and C ′′ are equivalent. Machine M ′

6 possesses the closed partition
π = {A,C ′; B,C ′′}. If we choose a partition τ = {A,B; C ′, C ′′} such that
π · τ = π (0), and if we assign y1 and y2 to the blocks of π and τ , respectively,
then the following equations result:

Y1 = x,

Y2 = xy2 + x ′y1y
′
2,

z = xy ′
1y

′
2.

Clearly, machine M ′
6 is realizable as a serial connection of a predecessor com-

ponent (Y1) and a successor component (Y2). Such a decomposition of machine
M ′

6 is also a valid realization of the equivalent machine M6, although the latter
machine does not possess any closed partition. If we work backward from
machine M ′

6 to M6, we observe that the closed partition π = {A,C ′; B,C ′′}
becomes equal to {A,C; B,C} when the two equivalent states C ′ and C ′′ are
merged. Although this collection of subsets covers all the states and is closed
with respect to the states of M6, it does not constitute a partition since its
blocks are not disjoint. In order to cover such situations it becomes necessary
to generalize the structure theory and to define sets consisting of overlapping
subsets of states.

390 Structure of sequential machines

Table 12.12 State transitions of the
predecessor component in the serial
decomposition of M6

x = 0 x = 1

P P Q

Q P Q

A collection ϕ of subsets, whose set union is S, such that no subset is included
in another subset in the collection, is referred to as a cover on set S. The subsets
are called the blocks of ϕ. The cover ϕ on the set of states of a machine M is
said to be closed if, for every two states Si and Sj which are in the same block
of ϕ and any input symbol Ik in I , the states IkSi and IkSj are in a common
block of ϕ. The number of blocks in ϕ and the number of elements in the largest
block of ϕ are denoted #(ϕ) and ρ(ϕ), respectively.

Example The covers {A,C; B,C} and {A,B; A,C; B,C} on the set of
states of M6 are closed.

If we denote subsets (AC) and (BC) by P and Q, respectively, we obtain the
successor relationships given in Table 12.12. Since the predecessor machine in
the serial connection of M6 distinguishes the blocks of ϕ, the successor rela-
tionships of Table 12.12 define uniquely the state transitions of the predecessor
component.

In order to be able to decompose machines that do not possess any closed
partition, it is necessary either to generalize the results of the previous sections
to include covers or develop a method whereby any such machine can be
augmented to an equivalent machine that has one or more closed partitions and
is, therefore, decomposable. The approach taken in this section is the latter.

The implication graph

The main difference between the machines M6 and M ′
6 is that state C of M6

has been split into states C ′ and C ′′ in M ′
6. In general, state Si is said to be split

into states S ′
i and S ′′

i if (i) the output symbols of S ′
i and S ′′

i are exactly the same
as those of Si and (ii) for every Ik in I , states IkS

′
i and IkS

′′
i are identical to

IkSi , except where “primes" are necessary, as will be shown later.
An implication graph is a directed graph, with vertices representing subsets

of the set of states of a machine M . Each subset consists of states to be identified
in the state table of M or which are implied by previously identified subsets
of states. The arc labeled Ik represents the transition from one subset of states
(Si, Sj , . . .) to the subset consisting of the Ik-successors (IkSi, IkSj , . . .).

391 12.6 Covers, and the generation of closed partitions by state splitting

Definition 12.4 A closed implication graph is a subgraph of an implication
graph such that: (i) for every vertex in the subgraph all outgoing arcs and their
terminating vertices also belong to the subgraph; and (ii) every state of M is
represented by at least one vertex.

From the definition of the implication graph for a given machine M , it is
evident that the collection of subsets associated with the vertices of the closed
graph constitutes a closed cover on the set of states of M . From now on, we shall
consider implication graphs whose vertices represent only pairs of states. It will
be shown later that such graphs provide the necessary information regarding
all closed covers.

An implication graph is constructed in the following manner. Identify any
pair of states Si and Sj and assign (Si, Sj) to some initial vertex. For each input
symbol Ik , draw an arc from the vertex (Si, Sj) to the vertex that represents the
successors (IkSi, IkSj). Repeat this process for all the vertices implied by the
initial identification until no new vertex is generated.

If M is strongly connected, an initial identification of any pair of states will
result in a closed graph. If, however, M is not strongly connected then the closed
graph might have to be constructed from two or more disjoint subgraphs, that
is, another pair of states not implied by (SiSj) must be identified, its successors
determined, and so on.

Example To construct the implication graph for the machine M6, start by
identifying the pair of states (A,B). This identification implies the identifi-
cation of (A,C), which in turn implies (B,C). The graph, which is closed,
is shown in Fig. 12.9. It is evident that the subgraph enclosed by the broken
lines is also closed, since it satisfies Definition 12.4.

(A,B)

0

1

1

0

0

(A,C) (B,C)

Closed
graph

Fig. 12.9 Implication graph for M6.

The general procedure for augmenting an arbitrary machine M into an equiv-
alent machine M ′ that possesses one or more closed partitions can now be
summarized as follows.

1. Construct the implication graph of the given machine M .
2. From the implication graph, choose a closed subgraph with a minimal num-

ber of vertices. This subgraph yields a closed cover ϕ on M . If any state Si

392 Structure of sequential machines

is represented by more than one vertex, relabel Si in the first vertex as S ′
i , in

the second vertex as S ′′
i , and so on.

3. For each Si that has been replaced by S ′
i , S

′′
i , . . . , split the corresponding

state in M’s state table.
4. Modify the entries of the new state table by inserting the necessary

primes. An entry Sp in row Si , column Ik , is changed to S ′
p if Si

is represented by some vertex (Si, Sj) and the Ik-successor vertex is
(S ′

p, Sq).

Example In the implication graph of Fig. 12.9, state C appears in two
vertices and thus is split into C ′ and C ′′, as shown in Table 12.11. The par-
tition π = {A,C ′; B,C ′′}, whose blocks correspond to subsets represented
by vertices of the implication graph, is clearly closed.

In general, a partition π whose blocks correspond to subsets represented
by vertices of the closed implication graph is closed with respect to the set
of states of the augmented machine M ′. This partition has a finite number of
blocks, since (n − 1)n/2 is the total number of distinct pairs of states. The
closed implication graph actually describes the successor relationship of the
blocks of π graphically and, consequently, represents the state diagram of
the predecessor component in a possible serial realization of M ′. The implica-
tion table, which is the tabular representation of the implication graph, is there-
fore the state table of the predecessor component. The implication table that
corresponds to the closed graph of Fig. 12.9 was derived earlier and is shown in
Table 12.12.

From the foregoing procedure it follows that corresponding to every finite-
state machine M, there exists at least one equivalent finite-state machine M ′

that possesses a closed partition and is therefore serially decomposable. It
should be emphasized, however, that such decompositions are not necessar-
ily the most economical way of realizing a machine. In fact, for an n-state
machine, the closed cover may have up to (n − 1)n/2 blocks, which means that
the predecessor component will have more states than the original machine.
The primary case of practical interest is that in which none of the components
in the decomposition is equal to or greater than the original machine. This
condition is satisfied whenever the number of vertices in the closed implication
graph is smaller than n.

In the foregoing discussion, attention has been focused primarily on uniform
closed covers containing two states per block. The remaining covers can be
determined from this set of basic covers by obtaining all possible sums in a
manner analogous to the method of generating the set of closed partitions.
The preceding techniques can be extended easily to blocks of any size and of
uniform, as well as nonuniform, covers.

393 12.6 Covers, and the generation of closed partitions by state splitting

Table 12.13 Machine M7

NS z

PS x = 0 x = 1 x = 0 x = 1

A B C 0 0
B A F 1 1
C F E 1 0
D F E 1 1
E G D 0 0
F D B 0 0
G E F 1 0

(I)

(0)

4 31

2

(I) =

1 { A,C,D,E; B,F,G }=

{ A,G; B,E; C,D,F }=2

{ A,B,E,G; C,D,F }=3

{ A,E,F; B,C,D,G }=4

(0)

=5

=6

=

{ A,E; B,G; C,D; F }

{ A; B; C,D; E; F; G }

{ A,B,C,D,E,F,G }

{ A; B; C; D; E; F; G }

5

6

p

p

p

pp

p

p

p

p

p

p
p
p
p
p
p

Fig. 12.10 The π -lattice for M7.

An application of state splitting to parallel decomposition

A machine M7 and its π -lattice are given in Table 12.13 and Fig. 12.10,
respectively. In addition to these closed partitions, M7 possesses an output-
consistent partition λo and an input-consistent partition λi, namely,

λo = {A,E,F ; B,D; C,G},
λi = {A,E,F ; B,C,D,G} = π4.

Our aim is to obtain a parallel decomposition of M7. A brief inspection of the
π -lattice reveals that no such decomposition is possible, since no two nontrivial
closed partitions exist such that πi · πj = π (0) (the subset (C,D) is common to
all nontrivial partitions). Consequently, it becomes necessary to check whether
there exist any closed covers that yield a parallel decomposition.

The implication graph, when started by the identification of (A,B), is given
in Fig. 12.11. From the closed graph, we obtain the closed cover

ϕ = {A,G; B,E; C,F ; D,F }.
The corresponding augmented machine M ′

7 is given in Table 12.14.

394 Structure of sequential machines

Table 12.14 Machine M ′
7

NS z

PS x = 0 x = 1 x = 0 x = 1

A B C 0 0
B A F ′′ 1 1
C F ′′ E 1 0
D F ′′ E 1 1
E G D 0 0
F ′ D B 0 0
F ′′ D B 0 0
G E F ′ 1 0

(A,B)

0

1

00

1 (C,F)
(D,F)

Closed
graph

1 11

0

0

(B,E)(A,G)

Fig. 12.11 The implication
graph for M7.

In general, for every closed partition π on M , a corresponding closed partition
π ′ on M ′ can be obtained by placing the states S ′

i , S ′′
i , etc., in π ′ for every split

state Si in π . The closed partitions of machine M ′
7, which may be used to

achieve a parallel decomposition, are

π = {A,G; B,E; C,F ′; D,F ′′},
π ′

4 = {A,E,F ′, F ′′; B,C,D,G},
π ′

3 = {A,B,E,G; C,D,F ′, F ′′}.

In addition, the augmented machine possesses the following output-consistent
and input-consistent partitions:

λ′
o = {A,E,F ′, F ′′; B,D; C,G},

λ′
i = π ′

4.

From this set of partitions, the following observations can be made:

1. The product π · π ′
4 = π (0), which implies that a parallel decomposition is

possible.
2. The component machine corresponding to π ′

4 consists of a single variable,
y1. It is an autonomous clock since π ′

4 = λ′
i .

3. Because each block of π ′
3 contains exactly two blocks of π , we may assign

y2 to the blocks of π ′
3 and thus make it independent of the value of y3.

395 12.7 Information flow in sequential machines

y1 y2 y3

A 000
B 101
C 110
D 111
E 001
F ′ 010
F ′′ 011
G 100

(a) Assignment and logic equations.

Y1 = y′
1

Y2 = x ′y2 + xy′
2

Y3 = y2 + xy3 + x ′y′
3

z = x ′y1 + y1 y3

Fig. 12.12 Decomposition of
M ′

7.

zx

Y1

Logic Y2
Logic Y3

Logic

Autonomous
clock y1

y3y2

(b) Schematic diagram.

4. The variable y3 must be assigned to the blocks of a partition τ such that
π ′

3 · τ = π . The partition τ = {A,C, F ′,G; B,D,E, F ′′} satisfies this con-
dition.

5. The product τ · π ′
4 = {A,F ′; B,D; C,G; E,F ′′} is smaller than λ′

o; conse-
quently, the output z will be a function of only y1 and y3.

The assignment and logic equations resulting from the preceding observa-
tions are shown in Fig. 12.12a. The schematic diagram is shown in Fig. 12.12b.

12.7 Information flow in sequential machines

In the previous sections we have dealt mainly with serial and parallel decom-
positions. Of course, there are more complex structures, and our aim in this
section is to define them and determine the conditions under which they exist.
The main tool for accomplishing this task is the partition pair. It will be shown
that the problem of finding state assignments leading to specified machine
structures is equivalent to the problem of finding an appropriate set of partition
pairs and determining their properties.

396 Structure of sequential machines

Table 12.15 Machine M8

NS

x1x2

PS 00 01 11 10 z

A A C D F 0
B C B F E 0
C A B F D 0
D E F B C 0
E E D C B 0
F D F B A 1

Table 12.16 Two possible assignments for M8

y1y2y3

A 000
B 010
C 011
D 111
E 100
F 110

(a) Assignment α

y1y2y3

A 000
B 011
C 010
D 110
E 100
F 111

(b) Assignment β

Introduction

The machine M8 shown in Table 12.15 possesses two closed partitions:
π1 = {A,B,C; D,E,F } and π2 = {A,E; B,F ; C,D}, where π1 · π2 = π (0).
Consequently, M8 can be decomposed into two parallel components, as shown
by assignment α in Table 12.16a. The corresponding logic equations for the
state variables are

Y1 = x ′
1y1 + x1y

′
1 = f1(x1, y1),

Y2 = x2 + x1y
′
2 + x1y3 + x ′

1y2y
′
3 = f2(x1, x2, y2, y3),

Y3 = x ′
1x

′
2y2y

′
3 + x2y

′
2 + x1x

′
2y2y3 = f3(x1, x2, y2, y3).

The two-level NAND–NAND CMOS realization of the above equations
requires 60 transistors, and the functional dependencies are such that two of
the next-state variables (Y2 and Y3) each depend on two of the present-state
variables (y2 and y3).

Next, we examine assignment β in Table 12.16b, which yields the following
equations:

Y1 = x ′
1y1 + x1y

′
1 = f1(x1, y1),

Y2 = x2 + x ′
1y3 + x1y

′
3 = f2(x1, x2, y3),

Y3 = x2y2 + x1x
′
2y

′
2 = f3(x1, x2, y2).

397 12.7 Information flow in sequential machines

The two-level realization of these equations requires only 40 transistors. This
reduction in the number of transistors has been accomplished by reducing
the functional dependencies of the variables, since each next-state variable
now depends on just a single present-state variable. Evidently, this type of
reduced dependency (which actually contains “cross dependencies”) cannot be
predicted just from the closed partitions. Consequently, a more general tool is
needed.

Partition pairs

In order to determine the cause of the cross dependencies obtained by assign-
ment β, we first observe that y1 induces π1 while y2 and y3 induce the par-
titions τ (y2) = {A,E; B,C,D,F } and τ (y3) = {A,C,D,E; B,F }, respec-
tively, where π1 · τ (y2) · τ (y3) = π (0). Except for π1, neither of these partitions
is closed although the product τ (y2) · τ (y3) = π2 is closed. However, knowl-
edge of the block of τ (y2) and the input symbols is sufficient to determine
uniquely the successor block contained in some block of τ (y3); that is, succes-
sors of the blocks of τ (y2) are contained in the blocks of τ (y3). Similarly, it is
evident that the blocks of τ (y2) are successors of the blocks of τ (y3).

Definition 12.5 A partition pair (τ, τ ′) on the states of a sequential machine
M is an ordered pair of partitions such that, if Si and Sj are in the same block
of τ then, for every input symbol Ik in I , IkSi and IkSj are in the same block
of τ ′.

Thus τ ′ consists of all the successor blocks implied by τ . If τ = τ ′ then τ

is closed, since it contains its own successor blocks. Hence, the set of closed
partitions may be viewed as a special case of the (more general) set of partition
pairs.

Example The following are partition pairs on the states of M8:

(π1, π
′
1) = ({A,B,C; D,E,F }, {A,B,C; D,E,F }),

(τ1, τ
′
1) = ({A,C,D,E; B,F }, {A,E; B,C,D,F }),

(τ2, τ
′
2) = ({A,E; B,C,D,F }, {A,C,D,E; B,F }).

In assignment β of Table 12.16, y1, y2, and y3 have been assigned to π ′
1,

τ ′
1, and τ ′

2, respectively. Note that in this example, (τ ′
1, τ1) and (τ ′

2, τ2) are
also partition pairs.

In general, since τ consists of the blocks we want to identify while τ ′ contains
the implied successor blocks, it is evident that any partition τ ′

p such that τ ′
p ≥ τ ′

will also contain the successor blocks of τ . Similarly, the implied successors
of any partition τq such that τq ≤ τ are smaller than those of τ and, therefore,

398 Structure of sequential machines

will be contained within the blocks of τ ′. Thus, the pairs (τq, τ
′) and (τ, τ ′

p) are
also partition pairs on the states of M .

Example The pair (τ3, τ
′
3) = ({A,D; B; C,E; F }, {A,E; B,D; C,F }) is

a partition pair on M8. The following are also partition pairs on M8:

({A,D; B; C; E; F }, {A,E; B,D; C,F }),
({A,D; B; C,E; F }, {A,E; B,C,D,F }).

A partial ordering on partition pairs is defined in the following way. If (τ1, τ
′
1)

and (τ2, τ
′
2) are partition pairs then (τ1, τ

′
1) ≥ (τ2, τ

′
2) if and only if τ1 ≥ τ2 and

τ ′
1 ≥ τ ′

2. We shall now prove that if (τ1, τ
′
1) and (τ2, τ

′
2) are partition pairs on

the states of a machine M then (τ1 · τ2, τ
′
1 · τ ′

2) and (τ1 + τ2, τ
′
1 + τ ′

2) are also
partition pairs on the states of M and define, respectively, the glb and lub of
the given partition pairs. The assertion that (τ1 · τ2, τ

′
1 · τ ′

2) is the glb of (τ1, τ
′
1)

and (τ2, τ
′
2) can be proved by observing that if Si and Sj are contained in some

block of τ1 · τ2, then they are contained in the same block in τ1 and in τ2.
Therefore, for every input symbol Ik , the successors IkSi and IkSj are also
contained in the same block of τ ′

1 and τ ′
2 and, hence, of τ ′

1 · τ ′
2. The assertion

that (τ1 + τ2, τ
′
1 + τ ′

2) is the lub of (τ1, τ
′
1) and (τ2, τ

′
2) can be proved in a similar

manner. Consequently, the set of all partition pairs forms a lattice under the
above partial ordering.

Definition 12.6 Let τ ′ be a partition on the set of states of M . Define a partition
M(τ ′) such that M(τ ′) = ∑

τi , where the sum is over all τi such that (τi, τ
′) is

a partition pair. Similarly, define a partition m(τ) = ∏
τ ′
i , where the product is

over all τ ′
i such that (τ, τ ′

i) is a partition pair. A partition pair (τ, τ ′) is said to
be an Mm pair if and only if τ = M(τ ′) and τ ′ = m(τ).

Since the lub of two partition pairs is a partition pair it follows that (M(τ ′), τ ′)
is a partition pair, where M(τ ′) is the lub of all τi such that (τi, τ

′) is a partition
pair. In fact, M(τ ′) is the largest partition the successors of whose blocks are
contained in the blocks of τ ′. Similarly, since the glb of two partition pairs
is a partition pair, it follows that (τ,m(τ)) is a partition pair, where m(τ) is
the glb of all τ ′

i such that (τ, τ ′
i) is a partition pair. The partition m(τ) is thus

the smallest partition containing all the successors of the blocks of τ . Hence,
m(τ) describes the largest amount of information that can be obtained from τ

regarding the next state of the machine M .
It can be shown (see Problem 12.15) that the M and m partitions possess the

following properties. If τ is a partition on machine M then

m[M(τ)] ≤ τ,

M[m(τ)] ≥ τ,

M{m[M(τ)]} = M(τ),

m{M[m(τ)]} = m(τ).

399 12.7 Information flow in sequential machines

Consequently, for every partition τ on the states of M , {M(τ),m[M(τ)]} and
{M[m(τ)],m(τ)} are Mm pairs on the states of M .

If (λ, λ′) is an Mm pair then λ is the largest partition from that we can
determine λ′ and, at the same time, λ′ is the smallest partition that contains the
successor blocks implied by λ. Thus, by enlarging λ′ or by refining λ, we can
obtain other partition pairs. Consequently, corresponding to every partition pair
(τ, τ ′) there exists an Mm pair (λ, λ′) such that λ ≥ τ and λ′ ≤ τ ′. Clearly, the
set of all Mm pairs (which is, in general, substantially smaller than the set of
all partition pairs) completely characterizes the set of all partition pairs on the
states of M , since any partition pair can be generated from the corresponding
Mm pair, as shown above.

Information-flow inequalities

In this section we shall derive the main theorem relating the algebraic properties
of partitions to the dependencies of state variables and the structure of sequential
machines. We shall also show that the existence of assignments with reduced
dependencies of state variables can be predicted from the set of Mm pairs
associated with the machine.

Theorem 12.3 Let the variables y1, y2, . . . , yk be assigned to the states of
machine M , and let τ (yi) be the partition induced by the variable yi , where
1 ≤ i ≤ k. If the next-state variable Yi can be computed from the external
inputs and a subset Pi of variables, then∏

τ (yj) ≤ M[τ (yi)],

where the product is taken over all τ (yj) such that yj is contained in subset Pi .
Conversely, a sufficient condition for the existence of an assignment, in which
a next-state variable Yi depends only on the external inputs and the value of a
corresponding subset Pi of state variables, is the existence of a partition pair
(τ, τ (yi)) on M such that, for each τ ′

i ,∏
τ (yj) ≤ M[τ (yi)],

where the product is taken over all τ (yj) such that yj is in Pi .

Proof The blocks of the partition
∏

τ (yj) consist of all the states that have
the same value of the variables contained in Pi . Recalling that Yi depends only
on variable yj if yj is in Pi then, for any two states Sp and Sq that are in the
same block of

∏
τ (yj), and for all input symbols Ik in I , the successor states

IkSp and IkSq are in the same block of τ (yi). Consequently,(∏
τ (yj), τ (yi)

)

400 Structure of sequential machines

is a partition pair. However, since M[τ (yi)] is the largest partition such that
(M[τ (yi)], τ (yi)) is a partition pair,

M[τ (yi)] ≥
∏

τ (yj).

Hence, if the next-state variable Yi can be computed from a subset of the state
variables then we must have at least as much information about the present
state as is contained in M[τ (yi)].

To prove the converse note that (M[τ (yi)], τ (yi)) is a partition pair and, since∏
τ (yj) ≤ M[τ (yi)], (∏

τ (yj), τ (yi)

)

is also a partition pair. Knowledge of the values of the variables yj in Pi is
sufficient to determine the present block of

∏
τ (yj) and, therefore (by the

definition of partition pairs), it is also sufficient to determine the successor
block in τ (yi). This in turn determines the value of the next state of yi , that is,
Yi . Thus, the theorem is proved. ♦

Returning to machine M8 we note that π ′
1 · τ ′

1 · τ ′
2 = π (0) and that π1 = π ′

1,
τ ′

1 = τ2, and τ ′
2 = τ1. Therefore, a three-variable assignment exists such that

Y1 (which is assigned to π ′
1) is self-dependent while Y2 and Y3 (which are

assigned to τ ′
1 and τ ′

2) can be computed from y3 and y2, respectively. The above
arguments lead to assignment β of Table 12.16b.

The partition inequality in Theorem 12.3 is frequently referred to as
information-flow inequality. It defines the minimal amount of information
which we must have in order to compute the value of yi for the next state.
In other words, since M[τ (yi)] is the largest partition (the least amount of
information regarding the machine’s state) from which we can determine the
block of τ (yi) containing the next state of the machine then, in order to compute
the value of yi for the next state, we must have at least as much information
about the present state as is contained in M[τ (yi)]. Thus, knowledge of the
information-flow inequalities is sufficient to specify the dependencies of the
state variables and determine the direction of “information flow” in the machine.

Computing the Mm pairs

Having established (in Theorem 12.3) the role of Mm pairs in the determination
of assignments with reduced dependencies, we proceed to develop a systematic
procedure to generate these pairs. Let a and b be two arbitrary states of machine
M , and let τab be the partition that includes a block (ab) and leaves all other
states in separate blocks. Then m(τab) is the smallest partition containing the
blocks implied by the identification of (ab). Clearly, (τab,m(τab)) is a partition
pair.

401 12.7 Information flow in sequential machines

Table 12.17 Machine M9

NS

x1x2

PS 00 01 11 10 z

A C A D B 0
B E C B D 0
C C D C E 0
D E A D B 0
E E D C E 1

Any partition τ can be expressed as a sum τ = ∑
τab, where the sum is

taken over all τab such that τab ≤ τ . In addition, since the sum of partition pairs
is also a partition pair, (

∑
τab,

∑
m(τab)) must be a partition pair. Therefore,

if τ is the M-partition then (τ,
∑

m(τab)) is an Mm pair.
The preceding result provides us with the basic tool for the computation of

Mm pairs. First, we find the set {m(τab)} for all distinct a and b. This process
requires n(n − 1)/2 computations. Next, we find all possible sums of these
partitions. From the preceding results, it is evident that this process gener-
ates all the m-partitions. The M-partition τ = M(τ ′) corresponding to every
m-partition τ ′ is given by τ = ∑

τab, where the sum is taken over all τab such
that m(τab) ≤ τ ′. This procedure actually generates the sum of all τab which
satisfy the requirement that (τab, τ

′) is a partition pair. As an example, we shall
compute the Mm pairs for the machine M9 given in Table 12.17.

First, we compute the m(τab), starting from m(τAB) and continuing through
all possible pairs up to m(τDE). The m-partition m(τAB) is found by obtaining
the successors implied by the identification of A and B. From the state table
we conclude that the identification of (AB) implies the identifications of (CE),
(AC), and (BD). The application of the transitive rule yields

m(τAB) = {A,C,E; B,D} = τ ′
1.

Hence, if the uncertainty regarding the present state of M , which is specified
by τAB , is (AB) then the uncertainty regarding the next state of M is given by
m(τAB) = τ ′

1. In a similar fashion, we find the following set of distinct m(τab)’s
for machine M9:

m(τAC) = m(τDE) = {A,C,D; B,E} = τ ′
2,

m(τAD) = m(τCE) = {A; B; C,E; D} = τ ′
3,

m(τAE) = m(τCD) = π (I),

m(τBC) = m(τBE) = {A; B,C,D,E} = τ ′
4,

m(τBD) = {A,C; B,D; E} = τ ′
5.

The next step in the computation of m-partitions is to form all possible
sums of the m(τab). This is accomplished by performing all pairwise sums,

402 Structure of sequential machines

then pairwise sums of the new partitions generated, and so on. In the above
example, no new nontrivial m-partitions are generated in this step.

Using the above set of m-partitions, we compute next the corresponding set
of M-partitions. Recalling that M(τ ′

i) = ∑
τab, where the sum is taken over

all τab such that m(τab) ≤ τ ′
i , we obtain

M(τ ′
1) = τAB + τAD + τCE + τBD = {A,B,D; C,E} = τ1,

M(τ ′
2) = τAC + τDE = {A,C; B; D,E} = τ2,

M(τ ′
3) = τAD + τCE = {A,D; B; C,E} = τ3,

M(τ ′
4) = τBC + τBE + τAD + τCE = {A,D; B,C,E} = τ4,

M(τ ′
5) = τBD = {A; B,D; C; E} = τ5.

Thus, the machine M9 possesses a set of seven Mm pairs (of which two pairs
are trivial), namely,

(π (I), π (I)),

(τ1, τ
′
1) = ({A,B,D; C,E}, {A,C,E; B,D}),

(τ2, τ
′
2) = ({A,C; B; D,E}, {A,C,D; B,E}),

(τ3, τ
′
3) = ({A,D; B; C,E}, {A; B; C,E; D}),

(τ4, τ
′
4) = ({A,D; B,C,E}, {A; B,C,D,E}),

(τ5, τ
′
5) = ({A; B,D; C; E}, {A,C; B,D; E}),

(π (0), π (0)).

The Mm-lattice can now be drawn in a straightforward manner.
The above Mm pairs characterize the machine and contain all the information

regarding its structure. In addition to numerous partition pairs that can be
generated from these Mm pairs, two closed partitions π1 and π2 exist, where

π1 = {A,D; B; C,E},
π2 = {A; B; C,E; D}.

The closed partitions are generated by enlarging the m-partition and refining
the M-partition of the Mm pair (τ3, τ

′
3).

State assignments based on partition pairs

We shall now apply the principles developed in this section, and our knowledge
about the information flow in the machine M9, to obtain an assignment in which
the dependencies of the variables will be reduced. For the example at hand our
aim is to obtain a three-variable assignment. Consequently, we are seeking
three partitions, λ1, λ2, λ3, of two blocks each, such that

λ1 · λ2 · λ3 = π (0).

For each λi , we shall determine the corresponding M(λi) and thus obtain three
partition pairs, (M(λ1), λ1), (M(λ2), λ2), (M(λ3), λ3), from which the structure
of the machine can be determined.

403 12.7 Information flow in sequential machines

To each partition λi we assign one state variable, yi (in general, there are
�log2 #(λi)� state variables). Then M(λi) is the partition containing the smallest
amount of information from which we can compute the value of yi assigned
to the block of λi that contains the next state of the machine. From Theorem
12.3 it is evident that a reduction in the dependency of the variable assigned to
a partition λi is achieved if M(λi) is greater than or equal to the product of a
small subset of partitions, λ1, λ2, λ3. The variables assigned to the partitions in
the subset provide yi with at least that information specified by M(λi).

In order to select the partitions λ1, λ2, λ3, we look for two-block partitions
in the set of m-partitions τi’s. In particular, if a variable yi assigned to λi is to
depend on just one other variable assigned to the blocks of λj then λj ≤ M(λi)
and M(λi) can have at most two blocks. Thus, as our initial selection, let
λ1 = τ ′

1. Since M(τ ′
1) consists of two blocks, we may select it as the second

partition, i.e., λ2 = M(τ ′
1). Hence the variable Y1 defined by λ1 will depend

only on the information provided by y2, which is defined by λ2. As λ1 and λ2

have already been selected, the selection of λ3 is simple, since it must satisfy
λ1 · λ2 · λ3 = π (0). We thus choose λ3 = τ ′

2. The partitions λ1, λ2, λ3 and their
corresponding M-partitions M(λ1), M(λ2), M(λ3) are given as follows:

(M(λ1), λ1) = ({A,B,D; C,E}, {A,C,E; B,D}),
(M(λ2), λ2) = ({A,D; B; C,E}, {A,B,D; C,E}),
(M(λ3), λ3) = ({A,C; B; D,E}, {A,C,D; B,E}).

Note that λ2 is not an m-partition but, since λ2 > τ ′
3, we have M(λ2) ≥ M(τ ′

3).
From the way in which we selected the above partition pairs it is evident that

Y1 depends only on y2, since λ2 provides all the information that Y1 requires
as specified by M(λ1). In order to determine the dependencies of Y2 and Y3,
we check to see whether there exists a partition λi ≤ M(λ2) or λj ≤ M(λ3).
Since there are no such partitions, the next step is to check whether we can
form a product of two partitions such that λi · λj ≤ M(λ2) or λp · λq ≤ M(λ3).
Indeed, this can be accomplished, since

λ2 · λ3 < M(λ2),

λ1 · λ3 < M(λ3).

Consequently, Y2 depends on the information supplied by y2 and y3, while Y3

receives its inputs from y1 and y3. The functional dependencies of the next-state
variables are summarized as follows:

Y1 = f1(x1, x2, y2),

Y2 = f2(x1, x2, y2, y3),

Y3 = f3(x1, x2, y1, y3).

The schematic diagram of the circuit structure is shown in Fig. 12.13.

404 Structure of sequential machines

(M(),)

x1

Y1
1 1

y1

(M(),)
Y2

2 2

y2

(M(),)
Y3

3 3

y3

x2
Fig. 12.13 Schematic diagram
of the structure of M9 when
realized using λ1, λ2, and λ3.

12.8 Decomposition

In the preceding sections we have studied the relationship between the state-
assignment problem and the structure of sequential machines and have deter-
mined necessary and sufficient conditions for a machine to be decomposable.
Our objective in this section is to investigate further the properties of decom-
posable machines and of various component machines.

Serial decomposition

We shall first determine the conditions for a machine M to be decomposable
into a serial (cascade) chain of component machines C1, C2, . . . , Cm in which
the outputs of any component may be used as inputs to other components. If
an output of machine Ci is an input of machine Cj then Ci is said to be a
predecessor of Cj and Cj is said to be a successor of Ci . We shall assume
that the component machines operate concurrently, i.e., that the next state of
each component depends on its present state, on the current values of external
inputs, and on the present state of its predecessors. We shall assume further
that the component machines form a loop-free interconnection; i.e., if Ci or
any of its successors or successors of successors, etc., is a predecessor of Cj

then Cj must not be a predecessor of Ci . A schematic diagram of such a serial
decomposition is shown in Fig. 12.14a.

Theorem 12.4 Let a machine M be realizable as a serial loop-free connection
of m components C1, C2, . . . , Cm; then there exists a set of m closed partitions
{π1, π2, . . . , πm} such that π1 ≥ π2 ≥ · · · ≥ πm and πm = π (0). Conversely,

405 12.8 Decomposition

C1

I

C3C2

(a) Cascaded chain. (The double arrows indicate a
transfer of information from all predecessor stages.)

Cm

Ma Mb

I

(b) Block diagram of the cascaded chain.

Fig. 12.14 Serial
decomposition of a machine.

such a set of closed partitions is a sufficient condition for the existence of a
serial decomposition in which Ci is a predecessor of Cj if and only if πi ≥ πj .

Proof Suppose that the machine M has been realized as a serial connection
of m components, as shown in Fig. 12.14a. For the purpose of analysis we may
divide these components into two groups, as shown in Fig. 12.14b. The first
group, denoted Ma , consists of k components and the second group, denoted
Mb, consists of m − k components. If we let k equal 1 then, by Theorem 12.1,
there exists a closed partition π1 on the states of M . Similarly, if we group the
machines together as (C1, C2) and (C3, C4, . . . , Cm), we obtain another serial
decomposition, of the type shown in Fig. 12.14b, to which there corresponds
another closed partition π2 on the states of the machine M .

To determine the relation between π1 and π2, note that, since C1 distinguishes
the blocks of π1, each block of π1 in fact corresponds to a state of C1. Similarly,
each block of π2 corresponds to a state of the composite machine (C1, C2).
However, since (C1, C2) can be decomposed into C1 in series with C2, it follows
that each state of C1 represents one or more states of the composite machine
(C1, C2). Consequently, each block of π1 contains one or more blocks of π2, i.e.,
π1 ≥ π2. There exist m possible ways (one of which is trivial) of arranging the
component machines in two groups, (C1, . . . , Ck) and (Ck+1, . . . , Cm). Hence,
there exist m closed partitions π1 ≥ π2 ≥ · · · ≥ πm. Note that the equality sign
in the above relation can be omitted, since it corresponds to a degenerate case.
In fact, if πk−1 = πk then the component Ck is redundant and may be deleted.

The converse can be proved by illustrating the construction of the decom-
posed machine. Let π1 > π2 > · · · > πm be a set of closed partitions on M .
Select another set of partitions, τ1, τ2, . . . , τm−1, such that, for each value of i

in the range 1 ≤ i ≤ m − 1,

πi · τi = πi+1

406 Structure of sequential machines

and

π1 · τ1 · τ2 · . . . · τm−1 = π (0).

The first component, C1, contains �log2 #(π1)� state variables, which are
assigned to distinguish the blocks of π1. Thus, C1 is independent of the remain-
ing components. The second component, C2, consists of the �log2 #(τ1)� vari-
ables assigned to the blocks of τ1. Since τ1 is not necessarily closed, C2 depends
on C1. However, since π1 · τ1 = π2, C2 is independent of the remaining compo-
nents C3, . . . , Cm. In a similar manner, the decomposed machine is constructed
in such a way that each component Ck is independent of Ck+1, . . . , Cm and is
a function of C1, . . . , Ck . ♦

Theorem 12.4 establishes the concept of information flow in a sequential
machine, i.e., a machine realized as a serial connection of smaller components.
In fact we have proved that, in the cascaded chain, information flows from
component Ci to Cj if and only if πi ≥ πj .

Example Consider the machine M10 given in Table 12.18. It has three
closed partitions (including the zero partition) and an output-consistent par-
tition λo. Since πa > πb > π0, M10 is decomposable into three components
connected in series such that each component is a two-state machine:

Table 12.18 Machine M10

NS

PS x = 0 x = 1 z

A G D 1
B H C 0
C F G 1
D E G 0
E C B 1
F C A 0
G A E 1
H B F 0

π0 = π (0),

πa = {A,B,G,H ; C,D,E, F },
πb = {A,B; C,D; E,F ; G,H },
λo = {A,C,E,G; B,D,F,H }.

The machine Ca , which is derived from πa , consists of #(πa) = 2 states
and, therefore, can be realized by a single state variable, ya . The second
component, Cb, is derived from a partition τ1 such that πa · τ1 = πb. One

407 12.8 Decomposition

possible such partition, τ1, is given by

τ1 = {A,B,C,D; E,F,G,H }.
Since #(τ1) = 2, the machine Cb will consist of a single variable, yb. Vari-
ables ya and yb are actually assigned to the blocks of the closed partition πb

and, therefore, are independent of the remaining variable, which is assigned
to the blocks of some partition τ2 such that τ2 · πb = π (0). Several partitions
satisfy the last requirement. It is desirable, however, to select (whenever pos-
sible) a partition yielding simpler output circuits, i.e., for which τ2 ≤ λo. A
choice satisfying this condition is

τ2 = λo = {A,C,E,G; B,D,F,H }.
An assignment based on the above partitions will yield the following

functional relationships:

Ya = fa(x, ya),

Yb = fb(x, ya, yb),

Yc = fc(x, ya, yb, yc),

z = f0(yc).

The schematic diagram of this realization and the π -lattice of M10 are shown
in Fig. 12.15.

z

x

Ca

fa Ya

Cc

fc Yc

Cb

fb Yb f0

p(I)

p(0)

(a) Serial decomposition.

p

(b) p -lattice.

a

pb

Fig. 12.15 Schematic diagram
and π -lattice of M10.

The machine M10 has thus been decomposed into three components con-
nected in series. It is often necessary to determine the state table of each of
these components, a task accomplished as follows. The state diagram of Ca is
obtained by constructing the implication graph of πa . It consists of two vertices,

408 Structure of sequential machines

Table 12.19 State tables of the component machines realizing M10

x

PS 0 1 ya

P P Q 0
Q Q P 1

(a) Ca

yax

PS 00 01 10 11 yb

α β α β β 0
β α β α α 1

(b) Cb

PS i1 i2 yb

α β α 0
β α β 1

(c) Cb – reduced form

yaybx

PS 000 001 010 011 100 101 110 111 z

γ γ δ γ γ δ γ γ δ 1
δ δ γ δ δ γ γ γ γ 0

(d) Cc

PS I1 I2 I3 z

γ γ δ γ 1
δ δ γ γ 0

(e) Cc – reduced form

P and Q, corresponding respectively to the blocks (ABGH) and (CDEF).
The state table of Ca , which is identical to the implication table derived from
πa , is given in Table 12.19a. The output of Ca is associated with its state and
is identical to the value of ya .

The inputs to Cb are x and ya , and its state-dependent output is yb. It contains
two states, α and β, corresponding respectively to the blocks (ABCD) and
(EFGH) of τ1. The state table of Cb is shown in Table 12.19b; the input
symbol 00 means that Ca is in state P , i.e., ya = 0, and that the external input
value is x = 0. When Ca is in state P and Cb is in state α then M10 is in either
state A or state B. From these states Cb goes to state β, which corresponds to
G and H . When Ca is in state P , Cb is in state β, and the input value x = 0
is applied, Cb is to go to state α, which corresponds to states A and B in M10.
The entire table is completed in a similar fashion. The composite states of Ca

and Cb correspond to the blocks of πb. Since πa = {P ; Q} and τ1 = {α; β},

πb = πa · τ1 = {Pα; Pβ; Qα; Qβ} = {A,B; G,H ; C,D; E,F }.

Finally, we note that Cb can be reduced to a machine with only two input
symbols, since the next-state entries in three columns of Cb are identical. If we
define i1 and i2 as

i1 = x ′ + ya,

i2 = xy ′
a

we obtain the reduced form of Cb, as shown in Table 12.19c.
The machine Cc consists of two states, γ and δ, corresponding to the blocks of

τ2 = {A,C,E,G; B,D,F,H } = {γ ; δ}, as shown in Table 12.19d. It receives
three inputs, x, ya , and yb, and produces one output, z. The input symbol 000
in this table means that Ca and Cb are in states P and α, respectively, and

409 12.8 Decomposition

Table 12.20 Machine M11

NS

PS x = 0 x = 1 z

A D G 0
B C E 0
C H F 0
D F F 0
E B B 0
F G D 0
G A B 0
H E C 1

x = 0. This, in turn, implies that M10 is in either state A or B, depending on
whether Cc is in state γ or δ, respectively. The 0-successors of A and B are G

and H , which correspond to Pβγ and Pβδ, respectively. Therefore, the entries
in column 000 of Cc are γ and δ. In a similar fashion, the state table of Cc is
derived from Table 12.18 and set of partitions πa , τ1, and τ2. By making the
appropriate input assignment, Table 12.19d may be reduced to the form shown
in Table 12.19e.

Parallel decompositions

We have already shown that a necessary and sufficient condition for a sequential
machine M to be decomposable into two independent components operating in
parallel is the existence of two closed partitions (or covers), π1 and π2, such that
π1 · π2 = π (0). This result can be easily generalized to a decomposition into
m parallel components, which can be accomplished if and only if there exists a
set of m closed partitions (or covers) on M such that π1 · π2 · . . . · πm = π (0).

The machine M11 given in Table 12.20 has the π -lattice of Fig. 12.16a and
the following nontrivial closed partitions:

πa = {A,B; C,D; E,G; F,H },
πb = {A,H ; B,F ; C,G; D,E},
πc = {A,B, F,H ; C,D,E,G}.

Since πa · πb = π (0), a parallel decomposition of M11 is possible. However,
�log2 #(πa)� + �log2 #(πb)� = 4 and so such a decomposition requires four
state variables. The state tables of the component machines Ma and Mb, which
correspond respectively to πa and πb, are given in Table 12.21. The schematic
diagram of the realization is shown in Fig. 12.16b.

Since this realization requires four state variables, we next seek another
decomposition, one which will require only three variables. Ultimately, our

410 Structure of sequential machines

Table 12.21 Parallel decomposition of M11

NS

PS x = 0 x = 1 z1

A, B a b c 0
C, D b d d 0
E, G c a a 0
F,H d c b 1

(a) Ma

NS

PS x = 0 x = 1 z2

A, H α δ γ 1
B, F β γ δ 0
C, G γ α β 0
D,E δ β β 0

(b) Mb

(I)

(0)

c

b

(a) -lattice.

a

Ma

Mb

z = z1 z2

z1

z2

(b) Schematic diagram.

x

p

p

p p

p
p

.

Fig. 12.16 Parallel
decomposition of M11.

aim is to determine whether the machines Ma and Mb can each be seri-
ally decomposed in such a manner that both have an identical independent
component. If such a component can be found, it may be “factored out” to
serve as a common predecessor for both Ma and Mb. A necessary condi-
tion for the existence of such a common component is that both Ma and
Mb can be serially decomposed; i.e., that both Ma and Mb have nontriv-
ial closed partitions on their respective states. Clearly, the largest compo-
nent machine that can be factored out is given by the smallest closed par-
tition that is greater than πa and πb, i.e., lub πa + πb. For the machine
M11,

πc = πa + πb = {A,B, F,H ; C,D,E,G}.

Since lub πc is nontrivial, a two-state component can be factored out and thus
a decomposition of the form shown in Fig. 12.17 is possible for M11. The
common factor Mc in series with Md realizes Ma , while Mc in series with
Me realizes Mb. The factor Mc and the components Md and Me are given in
Table 12.22.

411 12.8 Decomposition

Table 12.22 The component machines corresponding
to Fig. 12.17

x

PS 0 1 yc

A, B, F,H P Q Q 0
C, D, E, G Q P P 1

(a) Mc

ycx

PS 00 01 10 11 zd

A, B, C, D r r s s s 0
E, F,G, H s s r r r 1

(b) Md

ycx

PS 00 01 10 11 zd

A, C, G, H u v u u v 1
B, D, E, F v u v v v 0

(c) Me

Mc

Md

z = y . .
c zd zeLogic

Me

x '

Fig. 12.17 Another
decomposition of M11.

Decompositions with specified components

We have studied several machine structures and determined the conditions for
a machine to be decomposable into these structures. Our present objective is
to determine whether a machine can be decomposed in such a manner that one
(or more) of its components is specified. One possible approach to the solution
of this problem is to check all closed partitions and covers and determine
whether any of them yields the desired specified component. This approach,
however, is long and impractical, and so a new technique to handle this type of
decompositions will be developed.

As an example, consider the machines M12 and C1 given in Tables 12.23 and
12.24, respectively. Our objective is to determine whether M12 can be serially

412 Structure of sequential machines

Table 12.23 Machine M12

NS z

PS I1 I2 I1 I2

A C D 0 0
B D E 0 1
C A C 0 0
D B D 0 0
E F E 1 1
F C D 1 1

Table 12.24 Machine C1

NS

PS I1 I2

P S Q

Q R Q

R S Q

S P S

Table 12.25 Composite
machine for M12 and C1 and
initial states A and P

NS

PS I1 I2

AP CS DQ

CS AP CS

DQ BR DQ

BR DS EQ

DS BP DS

EQ FR EQ

BP DS EQ

FR CS DQ

decomposed in such a way that C1 is the predecessor component. In order to
determine whether such a decomposition is possible, it is necessary to establish
what information regarding the states of M12 is contained in C1. This can be
accomplished by constructing a composite machine that contains both M12 and
C1 and is defined as follows.

Let the general composite machine, corresponding to the two machines M1

and M2, having sets of states R and S, respectively, be the machine that contains
the set of states R × S. We shall use RiSj to denote the state of the general
composite machine which corresponds to Ri in M1 and (simultaneously) Sj in
M2. For two machines M1 and M2 having simultaneous initial states R1 and S1,
the composite machine is that having initial state R1S1 and subsequent states
implied in chain fashion by R1S1 and its successors.

The composite machine corresponding to the machines M12 and C1 and to
the initial states A and P respectively is given in Table 12.25. Starting with
AP , the application of the input symbol I1 takes M12 to state C and C1 to state
S. Therefore, the I1-successor of AP is CS. In a similar fashion, we conclude
that the I2-successor of AP is DQ, and so on. Next, we obtain the successors of
states CS and DQ, and this process continues until no new states are generated.

413 12.9 Synthesis of multiple machines

In general, if M1 has n1 states and M2 has n2 states, the general composite
machine has n1 · n2 states. However, it may have as many as n1 · n2 states, or
as few as the smaller of n1 or n2 states. The Ik-successor of state RiSj of the
composite machine is obtained from the Ik-successors of Ri and Sj in their
respective machines, i.e., if IkRi is Rp and IkSj is Sq then the Ik-successor of
RiSj is RpSq .

For the machine M12 to be serially decomposable in such a way that C1 is
the predecessor component, it is necessary that M12 should have a closed cover
whose corresponding implication graph is equivalent to the state diagram of
C1; i.e., both graphs must be isomorphic and the labels of the arcs connecting
corresponding vertices must be identical. This closed cover can be obtained
from the composite machine of Table 12.25 in a straightforward manner. From
the names of the new states in this table, it can be concluded that when C1 is
in state P the composite machine can be in either state AP or state BP , and
M12 can only be in A or B. Similarly, when C1 is in state S, M12 can only be in
state C or D, and so on. We can thus form a cover ϕ on the states of M12 such
that two states (say Ri and Rj) are in the same block of ϕ if and only if they are
associated with the same state of C1 (say Sk); i.e., the composite machine of
M12 and C1 contains the states RiSk and RjSk . Thus, for machine M12, we have

ϕ = {A,B; D,E; B,F ; C,D}.
Blocks (A,B) and (D,E) of ϕ correspond respectively to states P and Q

in C1, while (B,F) and (C,D) correspond respectively to states R and S.
Consequently, knowledge of the state of C1 is always sufficient to obtain the
state of M12 to within at most two states.

In order to complete the synthesis it is necessary to specify the successor
component. A simple way to accomplish this is first to split states B and D of
machine M12 in such a way that π = {A,B ′; D′, E; B ′′, F ; C,D′′} is a closed
partition on the states of the augmented machine. The predecessor component
of the augmented machine is isomorphic to C1, while the successor component,
which consists of two states, distinguishes the blocks of a partition τ given by

τ · {A,B ′; D′, E; B ′′, F ; C,D′′} = π (0).

One possibility is

τ = {A,D′,D′′, F ; B ′, B ′′, E,C}.
The state tables of the augmented machine and the successor component are
obtained in the usual manner, as illustrated in the previous sections.

∗12.9 Synthesis of multiple machines

We shall now generalize the decomposition problem to include the simultaneous
decomposition of two or more machines. More precisely, given two reduced

414 Structure of sequential machines

Mc

M1S Z 1

M2S

I

Z 2

Fig. 12.18 Two machines
having a common predecessor
component MC.

Table 12.26 Two machines, M1 and M2, to be
decomposed simultaneously

NS

R I1 I2 Z1

R1 R1 R2 Z1
1

R2 R2 R3 Z1
2

R3 R3 R4 Z1
3

R4 R4 R1 Z1
4

(a) M1

NS

S I1 I2 Z2

S1 S3 S2 Z2
1

S2 S4 S3 Z2
2

S3 S1 S4 Z2
3

S4 S2 S1 Z2
4

(b) M2

(a)M .1

I1
(R1R3)

I1

I2

I2

(R2R4)

(b)M .2

I1
(S1S3)

I1

I2

I2

(S2S4)

Fig. 12.19 Implication graphs.

machines M1 and M2 having the same input alphabet I , which are initially
in states R1 and S1 respectively, we wish to find three machines MC, M1S,
and M2S, where MC is a common predecessor component whose output feeds
the successors M1S and M2S in such a way that MC and M1S form a serial
decomposition of M1 while MC and M2S form a serial decomposition of M2.
Figure 12.18 shows the desired structure, in which Z1 and Z2 are the outputs of
M1S and M2S, respectively. When a maximum common predecessor component
exists, the total state variables required for the realization is minimum, while
the total output logic circuitry is not more complex than if the two machines
were realized separately.

The common predecessor machine

As an example, consider the two reduced Moore-type machines given in Table
12.26. The implication graphs of machines M1 and M2, for the initial identifica-
tions of (R1R3) and (S1S3) respectively, are shown in Fig. 12.19. These closed

415 12.9 Synthesis of multiple machines

Table 12.27 Machine MC

NS

PS I1 I2

P P Q

Q Q P

graphs are equivalent since they are isomorphic and the labels of arcs that
connect corresponding vertices are identical. We have already established that
the closed implication graph of a sequential machine M is actually equivalent
to the state diagram of the predecessor component in a serial decomposition
of M . Consequently, each graph in Fig. 12.19 can serve as a state diagram
of the predecessor component in the serial decomposition of the respective
machine. In addition, since the two graphs are equivalent they correspond to
equivalent machines. Because the two predecessor components are equiva-
lent, one may be removed and the other retained as the common predecessor
component.

The graphs of Fig. 12.19 correspond respectively to the closed partitions

π1 = {R1, R3; R2, R4} and π2 = {S1, S3; S2, S4}.

If we denote the first and second blocks of each partition by P and Q respec-
tively then we obtain the implication table in Table 12.27. This is the state table
of the common predecessor component MC. Successor components M1S and
M2S can be obtained by using the methods developed in the foregoing section.

From the preceding example, it is evident that a collection of two (or more)
machines contains a common predecessor component MC if and only if they
possess equivalent implication graphs; the vertices and arcs of this common
graph are in one-to-one correspondence with the states and state transitions
respectively of MC. The procedure for finding the equivalent graphs is not
entirely systematic, however, since it depends on the selection of the initial
state identifications. This limitation can be overcome by using the composite
machine, as is shown subsequently.

The composite machine corresponding to M1 and M2 and to initial states R1

and S1 is given in Table 12.28. It consists of eight states. While the composite
machine includes all states of M1 and M2, it does not include all combinations
of these states; e.g., R1S2 is not encountered when any of the eight states of
the composite machine is selected as the initial state. Furthermore, if M1 is
initially in state R1, then M2 can be started only in either S1 or S3, since the
only combinations of states included in the composite machine are R1S1 and
R1S3. Thus, the choice of an initial state, in effect, locks the two machines
together, in an operational sense.

416 Structure of sequential machines

Table 12.28 Composite machine for M1

and M2 and initial states R1 and S1

NS

PS I1 I2 Z1Z2

R1S1 R1S3 R2S2 Z1
1Z

2
1

R1S3 R1S1 R2S4 Z1
1Z

2
3

R2S2 R2S4 R3S3 Z1
2Z

2
2

R2S4 R2S2 R3S1 Z1
2Z

2
4

R3S3 R3S1 R4S4 Z1
3Z

2
3

R3S1 R3S3 R4S2 Z1
3Z

2
1

R4S4 R4S2 R1S1 Z1
4Z

2
4

R4S2 R4S4 R1S3 Z1
4Z

2
2

Using the above procedure, we have transformed the two-machine prob-
lem into the well-known single-machine decomposition problem. The meth-
ods developed in the preceding sections are now applicable to the composite
machine which contains the two machines M1 and M2.

Decomposing the composite machine

Let us now define two partitions, πR and πS , on the states of the composite
machine such that two states are placed in the same block of πR if and only if
their labels start with the same state Ri in M1; two states are placed in the same
block of πS if and only if their names end with the same state Sj in M2. Such
partitions are often referred to as state-consistent partitions and are derived
directly from the composite machine.

Example The state-consistent partitions for the composite machine of Table
12.28 are

πR = {R1S1, R1S3; R2S2, R2S4; R3S3, R3S1; R4S4, R4S2},
πS = {R1S1, R3S1; R2S2, R4S2; R1S3, R3S3; R2S4, R4S4}.

The block (R1S1, R1S3) of πR corresponds to state R1 in M1, the block
(R1S1, R3S1) of πS corresponds to state S1 in M2, and so on. From the way
in which the state-consistent partitions πR and πS are constructed, it is evident
that they correspond to the zero partitions on the set of states of the machines
M1 and M2, respectively. Consequently, the implication graphs corresponding
to πR and πS are equivalent to the state graphs of M1 and M2 respectively;
therefore these partitions are closed with respect to the states of the composite
machine.

417 12.9 Synthesis of multiple machines

C1I

Composite
machine
(8 states)

Z 1

C3C2

Z 2

I

Z 1

Z 2

(a) Simple realization.

(b) Decomposition of the composite machine.

Fig. 12.20 Two possible
realizations of the composite
machine.

From the composite machine of Table 12.28, it is apparent that the required
outputs Z1 and Z2 can be generated by a machine having three state variables
and the appropriate output logic rather than by two separate machines having
a total of four state variables. This result is illustrated in Fig. 12.20a. We also
observe that πR · πS = π (0), which, since both partitions are closed, is the
condition for a parallel decomposition of the composite machine. In this case
of course the result is simply the original two machines, M1 and M2, realized
separately and having four state variables.

The composite machine is next examined for other possible decompositions,
following the techniques previously developed. For example, the partitions

π1 = {R1S1, R2S2, R3S3, R4S4; R1S3, R2S4, R3S1, R4S2}
and

π2 = {R1S1, R3S3; R2S2, R4S4; R1S3, R3S1; R2S4, R4S2}
are easily shown to be closed and, since π1 > π2, a cascade realization of the
type shown in Fig. 12.20b results, where each component, C1, C2, and C3, is a
two-state machine.

At this point, we turn our attention to the question of determining whether
a common predecessor component exists for M1 and M2 and, if several such
components exist, how to find the largest. From the results of the preceding sec-
tion and from the properties of the composite machine and the state-consistent
partitions πR and πS , it is evident that a common component exists if and only
if we can find a closed partition πC such that πC > πR and πC > πS . Clearly,
the smallest partition that satisfies these inequalities and, thus, yields the largest
common component MC, is

πC = πR + πS.

For our example, we obtain

πC = πR + πS = {R1S1, R1S3, R3S1, R3S3; R2S2, R2S4, R4S2, R4S4}.

418 Structure of sequential machines

(0)

1

R

(I)

C

2

p

p
p

p

p

p

pS

Fig. 12.21 The π -lattice for the
composite machine.

Thus, a common predecessor component consisting of one state variable exists.
The resulting decomposition is shown in Fig. 12.18. It is easy to verify that
this machine is identical to that obtained using the implication graphs (see
Table 12.27). Successor machines M1S and M2S (each consisting of one state
variable) are obtained by partitions τ1S and τ2S , respectively, such that

πC · τ1S = πR and πC · τ2S = πS.

Possible partitions are

τ1S = {R1S1, R1S3, R2S2, R2S4; R3S1, R3S3, R4S2, R4S4},
τ2S = {R1S1, R3S1, R2S2, R4S2; R1S3, R3S3, R2S4, R4S4}.

Clearly, Z1 and Z2 are each dependent upon only two state variables and the
entire machine requires a total of three state variables.

The lattice of all closed partitions on the set of states of the composite
machine is shown in Fig. 12.21. However, it is of interest that our two-machine
cascade decomposition has been obtained without searching for closed parti-
tions; πR and πS were obtained directly by inspection of the composite machine
while πC followed from the addition of the two partitions πR and πS . Thus, the
process involves a minimum of computation or manipulation.

Notes and references

The structure theory of machines and the study of machine decomposition were origi-
nated by Hartmanis [5] in 1960 and further developed in a series of papers by Hartmanis
[6], Stearns and Hartmanis [14], Karp [8], Yoeli [15, 16], and Kohavi [9, 10]. The
concept of closed covers and the procedure for augmenting a machine by state split-
ting were introduced by Kohavi [9] and further developed to cover multiple machines
by Kohavi and Smith [11] and Smith and Kohavi [13]. Other contributions to general
machine-structure theory include Krohn and Rhodes [12], Zeiger [17], and Gill [4]. A
comprehensive treatment of structure and decomposition theory can be found in the
book by Hartmanis and Stearns [7].

The state-assignment problem has been treated from different points of views by
many authors. Of particular interest are the papers by Armstrong [1, 2] and Dolotta and
McCluskey [3].

419 Problems

[1] Armstrong, D. B.: “A programmed algorithm for assigning internal codes to
sequential machines,” IRE Trans. Electron. Computers, vol. EC-11, no. 4, pp.
466–472, August 1962.

[2] Armstrong, D. B.: “On the efficient assignment of internal codes to sequential
machines,” IRE Trans. Electron. Computers, vol. EC-11, no. 5, pp. 611–622,
October 1962.

[3] Dolotta, T. A., and E. J. McCluskey, Jr: “The coding of internal states of sequential
circuits,” IEEE Trans. Electron. Computers, vol. EC-13, no. 5, pp. 549–562,
October 1964.

[4] Gill, A.: “Cascaded finite-state machines,” IRE Trans. Electron. Computers, vol.
EC-10, no. 3, pp. 366–370, September 1961.

[5] Hartmanis, J.: “Symbolic analysis of a decomposition of information processing
machines,” Information and Control, vol. 3, no. 2, pp. 154–178, June 1960.

[6] Hartmanis, J.: “On the state assignment problem for sequential machines I,” IRE
Trans. Electron. Computers, vol. EC-10, pp. 157–165, June 1961.

[7] Hartmanis, J., and R. E. Stearns: Algebraic Structure Theory of Sequential
Machines, Prentice-Hall, Englewood Cliffs NJ, 1966.

[8] Karp, R. M.: “Some techniques of state assignment for synchronous sequential
machines,” IEEE Trans. Electron. Computers, vol. EC-13, no. 5, pp. 507–518,
October 1964.

[9] Kohavi, Z.: “Secondary state assignment for sequential machines,” IEEE Trans.
Electron. Computers, vol. EC-13, no. 3, pp. 193–203, June 1964.

[10] Kohavi, Z.: “Reduction of output dependency in sequential machines,” IEEE
Trans. Electron. Computers, vol. EC-14, pp. 932–934, December 1965.

[11] Kohavi, Z., and E. J. Smith: “Decomposition of sequential machines,” in Proc.
Sixth Ann. Symp. Switching Theory and Logical Design, Ann Arbor, Mich., Octo-
ber 1965.

[12] Krohn, K. B., and J. L. Rhodes: “Algebraic theory of machines,” in Proc. Symp.
Mathematical Theory of Automata, Polytechnic Press, Brooklyn NY, 1962.

[13] Smith, E. J., and Z. Kohavi: “Synthesis of multiple sequential machines,” in Proc.
Seventh Ann. Symp. Switching and Automata Theory, Berkeley CA, October 1966.

[14] Stearns, R. E., and J. Hartmanis: “On the state assignment problem for sequential
machines II,” IRE Trans. Electron. Computers, vol. EC-10, no. 4, pp. 593–603,
December 1961.

[15] Yoeli, M.: “The cascade decomposition of sequential machines,” IRE Trans. Elec-
tron. Computers, vol. EC-10, pp. 587–592, April 1961.

[16] Yoeli, M.: “Cascade-parallel decompositions of sequential machines,” IEEE Trans.
Electron. Computers, vol. EC-12, no. 3, pp. 322–324, June 1963.

[17] Zeiger, H. P.: “Loop-free synthesis of finite-state machines,” MIT. Ph.D. thesis,
Dept of Electrical Engineering, Cambridge MA, September 1964.

Problems

Problem 12.1. Show that every n-state machine has N distinct state assignments, where

N = (2k − 1)!

(2k − n)!k!
, k = �log2 n�.

420 Structure of sequential machines

Note that two assignments are said to be distinct if one cannot be obtained from the
other by permuting or complementing the variables or by relabeling them.

Hint: Recall that k binary variables can be permuted in k! ways and that there are 2k

ways of complementing them.

Problem 12.2
(a) Given the machine shown in Table P12.2 and two assignments α and β, derive in

each case the logic equations for the state variables and output function and compare
the results.

(b) Express explicitly in each case the dependency of the output and state variables.

Table P12.2

NS z

PS x = 0 x = 1 x = 0 x = 1

A D C 0 0
B F C 0 1
C E B 0 0
D B E 1 0
E A D 1 1
F C D 1 0

y1y2y3

A 000
B 001
C 010
D 011
E 100
F 101

Assignment α

y1y2y3

A 110
B 101
C 100
D 000
E 001
F 010

Assignment β

Problem 12.3. A six-state machine is said to have the five closed partitions shown
below and no other closed partitions. Is this possible?

π1 = {A, C; B; D; E, F }, π4 = π (0),

π2 = {A,D; B, C; E; F }, π5 = π (I),

π3 = {A,B; C, D; E, F }.

Problem 12.4. The machine shown in Table P12.4 has the following closed partitions:

π1 = {A,C, E; B, D,F }, π2 = {A, F ; B, E; C, D}.

Table P12.4

NS

PS x = 0 x = 1 z

A D C 1
B A D 0
C B E 0
D E B 0
E F C 0
F C D 0

421 Problems

(a) Find a state assignment that reduces the interdependencies of the state variables.
(b) Derive the logic equations and show the circuit diagram when unit delays are used

as memory elements.

Problem 12.5
(a) Show that every closed partition is the sum of some basic partitions. (Recall

that a basic partition πSiSj
is the smallest closed partition containing SiSj in one

block.)
(b) Use the result of (a) to show that the procedure outlined in Section 12.3 for the

construction of the π -lattice indeed gives all the closed partitions.

Problem 12.6. Let λo and λ′
o be two output-consistent partitions on the set of states of

a machine M . Prove that λo + λ′
o and λo · λ′

o are also output-consistent partitions.

Problem 12.7
(a) Let π be a closed partition on the set of states of a machine M . Prove that if π is also

an output-consistent partition, i.e., π ≤ λo, then M can be reduced to an equivalent
machine that has only #(π) states. Conversely, if there are no closed partitions on
M that are also output-consistent then M is in reduced form.

(b) Demonstrate the above reduction procedure by first finding a closed partition that
is also output-consistent for the machine shown in Table P12.7 and then reducing
it.

Table P12.7

NS

PS x = 0 x = 1 z

A E C 0
B B A 1
C B D 0
D E C 1
E E F 1
F B C 0

Problem 12.8. The incompletely specified machine in Table P12.8 has a nontrivial
closed partition that is also input-consistent. Does it have an autonomous clock? If yes,
show its state diagram; if no, explain why not.

Table P12.8

NS

PS I1 I2 I3

A — A —
B C — D

C A B A

D B A B

422 Structure of sequential machines

Problem 12.9. In each of the following sets of partitions, π1 and π2 designate closed
partitions while λo and λi designate output-consistent and input-consistent partitions,
respectively.
(a) Construct the corresponding π -lattice for each case by obtaining all the necessary

sums and products.
(b) Show schematic diagrams, demonstrating in each case the possible machine decom-

positions that yield minimal interdependencies of state variables as well as of out-
puts.

(i) π1 = {A,B, E, F ; C, D,G, H }, λo = {A,B, G, H ; C, D, E, F },
π2 = {A,F, C, H ; B, D, E, G}, λi = {A, C; B, D; E, G; F,H },

(ii) π1 = {A,B; C, D; E, F ; G, H }, λo = λi,

π2 = {A,E; B, F ; C, G; D,H }, λi = {A,B, C, D; E, F,G, H },
(iii) π1 = {A,C, E,G; B, D, F,H }, λ0 = {A,C; B, D; E,G; F, H },

π2 = {A,G; B, F ; C, E; D,H }, λi = 1.

Problem 12.10
(a) For the machine shown in Table P12.10, find the π -lattice and obtain the input-

consistent and output-consistent partitions.

Table P12.10

NS z

PS x = 0 x = 1 x = 0 x = 1

A D C 0 0
B C D 0 1
C E F 0 0
D F F 0 1
E G H 0 0
F H G 0 1
G B A 0 0
H A B 0 1

(b) Show two assignments that result in autonomous clocks of different frequencies.
In each case, determine the period of the clock and draw a schematic diagram
indicating the interdependencies within the decomposed machine.

Problem 12.11
(a) For the machine shown in Table P12.11, find λi and λo and construct the π -lattice.
(b) Choose as a basis for your state assignment three partitions, τ1, τ2, and τ3 (which

may or may not be closed), such that the following functional dependencies result:

Y1 = f1(y1),

Y2 = f2(x, y2, y3),

Y3 = f3(x, y2, y3),

z = f0(y1, y2).

Specify the desired relationship between the chosen τ ’s and λo and λi, and show a
schematic diagram of the resulting structure.

423 Problems

(c) From the chosen τ ’s, obtain a state assignment and derive the corresponding logic
equations.

Table P12.11

NS

PS x = 0 x = 1 z

A F D 0
B D E 0
C E F 0
D A B 0
E B C 0
F C A 1

Problem 12.12
(a) Find a state assignment for the machine shown in Table P12.12 such that it will

have the structure shown in Fig. P12.12.Ma

Mb
zx

Fig. P12.12

Table P12.12

NS z

PS x = 0 x = 1 x = 0 x = 1

A D B 0 0
B A C 1 0
C B E 1 0
D F A 0 1
E F C 0 0
F E D 0 1

(b) Obtain the logic equations for the output function and state variables.
(c) Show the state diagram of the input-independent component.

Problem 12.13
(a) Find the π -lattice of the machine M shown in Table P12.13, and specify all the

possible ways of decomposing the machine.

Table P12.13

NS

PS x = 0 x = 1

A B C

B C D

C D C

D E B

E D A

424 Structure of sequential machines

(b) Identify the states (A, B) and construct the implication graph. Augment the machine
accordingly.

(c) Describe all the possible ways of decomposing the augmented machine M ′. Specify
in each case the dependencies of state variables.

Problem 12.14. The machine shown in Table P12.14 has the closed partition π =
{A, C, D, F ; B, E, G}.
(a) Can you find another closed partition such that a parallel decomposition is possible,

without increasing the number of state variables?
(b) Construct an implication graph, starting with the vertex (A, B), and show that there

exists a machine M ′, equivalent to M , that can be decomposed into the form shown
in Fig. P12.14.

Table P12.14

NS, z

PS x = 0 x = 1

A F, 1 C, 0
B E, 0 B, 1
C D, 0 C, 0
D F, 1 C, 1
E G, 0 B, 0
F A, 1 F, 1
G E, 1 G, 0

M3

M1

z

C
om

bi
na

tio
na

l
lo

gi
c

x

M2

y1

y3y2

Fig. P12.14

(c) Show the state tables of the component machines.
(d) Select an assignment that will lead to the structure of Fig. P12.14. Derive the

corresponding logic equations.

Problem 12.15
(a) Prove that if τ is a partition on C1 then

M{m[M(τ)]} = M(τ) and m{M[m(τ)]} = m(τ).

(b) Use the above to show that, for the partition τ of C1,

{M(τ),m[M(τ)]} and {M[m(τ)],m(τ)}
are Mm pairs.

Problem 12.16. This problem is concerned with establishing a number of algebraic
properties of Mm pairs and demonstrating that the set of all Mm pairs on a machine
forms a lattice under the ordering defined in the text.

425 Problems

(a) Show that if λ = M(λ′) and τ = M(τ ′) then λ · τ = M(λ′ · τ ′).
(b) Show that if λ′ = m(λ) and τ ′ = m(τ) then λ′ + τ ′ = m(λ + τ).
(c) Prove that if (λ, λ′) and (τ, τ ′) are Mm pairs then their glb and lub are given by

glb{(λ, λ′), (τ, τ ′)} = [λ · τ, m(λ · τ)]

and

lub{(λ, λ′), (τ, τ ′)} = [M(λ′ + τ ′), λ′ + τ ′].

Problem 12.17. Find the set of all Mm pairs for the machine M8 (Table 12.15) and
draw its Mm-lattice.

Problem 12.18
(a) Obtain the set of all Mm pairs for the machine shown in Table P12.18 and draw the

corresponding Mm-lattice.
(b) Show a state assignment that results in the following functional dependencies:

Y1 = f1(x1, x2, y1),

Y2 = f2(x1, x2, y2, y3),

Y3 = f3(x1, x2, y1, y2, y3).

Table P12.18

NS

x1x2

PS 00 01 10 z

A C B D 0
B A E C 0
C E B D 0
D C C E 0
E E D B 1

Problem 12.19
(a) Find all the m-partitions for the machine shown in Table P12.19.

Table P12.19

NS

x1x2

PS 00 01 11 10 z

A A A D A 1
B C C D A 0
C D A A A 0
D B A D B 0
E E C A B 0

426 Structure of sequential machines

(b) Select a number of m-partitions and find their corresponding M-partitions, such that
they yield an assignment in which every variable depends on just one variable and
the external input.

(c) Draw a schematic diagram of the resulting machine structure.

Problem 12.20. Construct an arbitrary machine with five or six states and three or
four input symbols such that there exists at least one assignment that causes each state
variable to be dependent only on the other variables and independent of itself, that is,
Y1 is independent of y1, etc.

Problem 12.21. The machine shown in Table P12.21 can be serially decomposed into
three components without any increase in the number of state variables.
(a) Determine the period of the maximal autonomous clock.
(b) Select a set of partitions which induces an assignment such that the above serial

decomposition is accomplished and the output logic is minimized.
(c) Show the state table of each component.

Table P12.21

NS z

PS x = 0 x = 1 x = 0 x = 1

A D C 0 0
B C D 0 1
C E F 0 0
D F F 0 1
E G H 0 0
F H G 0 1
G B A 0 0
H A B 0 1

Problem 12.22. The machine shown in Table P12.22 has the following partitions:

π1 = {A,B, C; D,E, F }, λo = {A, D, E; B, C, F },
π2 = {A,F ; B, E; C, D}, λi = {A, C; B; D, F ; E}.

Table P12.22

NS NS

PS x = 0 x = 1 x = 0 x = 1

A E E 0 0
B D F 0 1
C F D 0 1
D A C 0 0
E C A 0 0
F B B 0 1

427 Problems

(a) Draw a schematic diagram of the machine’s structure induced by these partitions.
(b) Show complete state tables for the component machines.

Problem 12.23. The machine of Table P12.23 is to be realized in the form shown in
Fig. P12.23, where each block designated D represents a pure delay without internal
feedback. Find a state table for a successor machine MS such that the number of state
variables and the functional complexity of the output are minimized.

Table P12.23

NS NS

PS x = 0 x = 1 x = 0 x = 1

A E A 0 0
B D B 0 1
C D B 0 0
D F C 1 1
E E C 1 0
F F B 1 1

D
MS

z
x DFig. P12.23

Problem 12.24. Prove that if two machines M1 and M2 are reduced then, for specified
initial states, the composite machine is also reduced.

Problem 12.25. The machine M1 shown in Table P12.25 is to be realized in a cascade
form, with a machine M2 as the predecessor component. The starting states are A and P .
(a) Show the state table of an appropriate successor component.
(b) Choose a state assignment for M1 that preserves the above structure and, at the

same time, minimizes the complexity of the output function.
(c) Derive the logic equations for the state variables and output function.

Table P12.25

NS z

PS x = 0 x = 1 x = 0 x = 1

A B E 0 1
B D C 1 1
C G C 0 0
D E F 0 0
E B A 0 1
F C D 1 1
G F E 0 0

M1

NS

PS x = 0 x = 1

P R Q

Q R P

R S Q

S Q S

M2

428 Structure of sequential machines

Problem 12.26. The machine M of Table P12.26 is to be realized in the form of
Fig. P12.26. The state transitions of the component Ma are specified as shown. The
starting state of M is A and that of Ma is G. Find the state table of Mb and specify the
combinational logic that generates z.

Table P12.26

NS, z

PS x = 0 x = 1

A B, 0 C, 0
B C, 0 D, 1
C D, 1 E, 1
D E, 0 F, 1
E F, 1 A, 0
F A, 1 B, 1

M

NS

PS x = 0 x = 1

G H G

H G H

Ma

Mb

Ma

z

C
om

bi
na

tio
na

l
lo

gi
c

x

Fig. P12.26

Problem 12.27. The machines M1 and M2 of Table P12.27 can be jointly realized in
the form shown in Fig. P12.27, with only three state variables.

Table P12.27

NS

PS x = 0 x = 1 Z1

P Q R 0
Q P Q 0
R Q P 1

M1

NS

PS x = 0 x = 1 Z2

A B D 0
B E C 0
C A B 0
D B A 1
E C E 1

M2

MC

Z 1

M2S

x Z 2

y1,y2

y3

Fig. P12.27

429 Problems

(a) Construct a composite machine from M1 and M2 when the initial states are P and
A for M1 and M2, respectively.

(b) Show the state tables for MC and M2S. Use the state names S1, S2, . . . and R1,

R2, . . . , etc.
(c) Show the logic equations for the outputs.

Problem 12.28. Consider the machines M1 and M2 shown in Table P12.28. Their
starting states are R1 and S1, respectively.
(a) Find the π -lattice for each machine and determine whether a common predecessor

machine exists.
(b) Show that if the state S2 is split into S ′

2 and S ′′
2 , a common predecessor can be found.

(c) Realize the two machines in the form shown in Fig. 12.18. Show the state tables
of the predecessor and successor machines.

Table P12.28

NS Z1

PS x = 0 x = 1 x = 0 x = 1

R1 R2 R4 1 0
R2 R1 R3 0 1
R3 R1 R4 0 1
R4 R2 R3 1 0

M1

NS Z2

PS x = 0 x = 1 x = 0 x = 1

S1 S1 S3 0 0
S2 S1 S2 0 1
S3 S2 S3 1 1

M2

Problem 12.29. The disjoint realization of machines M1 and M2 shown in Table
P12.29, requires six state variables. Find another realization for these machines that
requires just four state variables and has the form shown in Fig. P12.29. Assume that

Table P12.29

NS

PS x = 0 x = 1 Z1

S1 S6 S3 0
S2 S5 S2 0
S3 S4 S3 0
S4 S6 S2 0
S5 S7 S2 0
S6 S1 S6 0
S7 S5 S7 1

M1

NS

PS x = 0 x = 1 Z2

Q1 Q3 Q4 0
Q2 Q4 Q5 0
Q3 Q1 Q3 0
Q4 Q2 Q4 0
Q5 Q6 Q5 0
Q6 Q3 Q4 1

M2

430 Structure of sequential machines

states S1 and Q1 are the initial states. Show the state table of each component and
indicate the functional dependencies of the outputs.

Hint: You may find it necessary to split some states.

MC2

MS1 Z 1

MS2

x

Z 2

MC1

Fig. P12.29

Problem 12.30. Repeat Problem 12.29 for the machine M1 shown in Table P12.30
and the machine M2 shown in Table P12.29.

Hint: It is quite straightforward to find a common-factor machine that has two
states. However, if you construct the composite machine for M1 and M2 and draw its
implication graphs for the initial identifications (S1Q1, S2Q1) and (S1Q1, S1Q2), you
can show that a common-factor machine that has four states can be found, while each
of the successors has only two states.

Table P12.30

NS

PS x = 0 x = 1 Z1

S1 S5 S4 1
S2 S5 S3 0
S3 S1 S3 0
S4 S2 S4 0
S5 S2 S5 1

C H A P T E R

13 State-identification experiments
and testing of sequential circuits

In this chapter, we shall be concerned with experimental analysis of the behav-
ior of finite-state machines, test generation for sequential circuits, design for
testability, and built-in self-test (BIST).

A machine will be assumed to be reduced, strongly connected, and com-
pletely specified. State-identification experiments are designed to identify the
unknown initial state of the machine and, whenever such an identification
is unnecessary or impossible, to identify the final state of the machine. These
experiments are known as distinguishing and homing experiments, respectively.
Machine-identification experiments are concerned with the problem of deter-
mining whether a given n-state machine is distinguishable from all other n-state
machines. This problem is shown to be, under certain conditions, equivalent to
the problem of determining whether a given machine is operating correctly.

Test generation methodologies will be presented for sequential circuits under
two fault models: functional and stuck-at. A functional fault alters the machine’s
state table. A stuck-at fault is manifested as a permanent 0, i.e., a stuck-at-0
(s-a-0) fault, or as a permanent 1, i.e., a stuck-at-1 (s-a-1) fault on some line
in the circuit, as discussed in Chapter 8. Since there is no direct way to control
the present state lines of a sequential circuit or observe its next state lines,
sequential test generation is a difficult task. To ease the testing burden, one can
use design-for-testability methods, such as scan design, to allow the control
and observation of state lines. Another way to reduce the testing burden is to
allow the circuit to test itself through the BIST method.

13.1 Experiments

The application of an input sequence to the input terminals of a machine is
referred to as an experiment on the machine. An experiment designed to take
the machine through all its transitions, in such a way that a definite conclusion
can be reached as to whether the machine is operating correctly, is said to be a
checking experiment. At the beginning of an experiment, the machine is said to

431

432 State-identification experiments and testing of sequential circuits

be in an initial (or starting) state and at the end of an experiment the machine
is said to be in a final state. It is customary to distinguish between two types of
experiments:

1. simple experiments, which are performed on a single copy of the machine;
2. multiple experiments, which are performed on two or more identical copies

of the machine.

In practice, most machines are available in just a single copy, and therefore
simple experiments are preferable to multiple ones.

Experiments are classified according to their performance as:

1. adaptive experiments, in which the input symbol at any instant of time
depends on the previous output symbols;

2. preset experiments, in which the entire input sequence is predetermined
independently of the outcome of the experiment.

Since preset experiments are simpler to perform in today’s technology, we shall
focus on such experiments.

A measure of the efficiency and cost of an experiment is its length, which is
the total number of input symbols applied to the machine during the execution
of the experiment.

In Chapter 10 we studied the properties of experiments used to distinguish
between two nonequivalent states, Si and Sj , of an n-state machine. We showed
that if Si and Sj are distinguishable then they can be distinguished by an
experiment of length at most n − 1. We now consider more general problems,
that of identifying the initial or final state of a given machine and that of
distinguishing a given n-state machine from all other n-state machines that
have the same input and output alphabets.

Introductory example

Consider the machine M1 (Table 13.1), which may initially be in any of the
states A, B, C, or D. The responses of M1 to the input sequences 01 and 111 are
listed in Table 13.2. Knowing the output sequence that M1 produces in response
to input sequence 01 is always sufficient to determine uniquely M1’s final state,
since each of the output sequences that might result from the application of
01 is associated with just one final state. For example, output sequence 00
indicates that the final state is B, while output sequences 11 or 01 indicate that
the final state is D or A, respectively. On the other hand, the knowledge of the
response of M1 to input sequence 01 is not sufficient to determine M1’s initial
state, since the production of output sequence 00 could mean that the initial
state was A or that it was B. In fact, if M1 was initially in either state A or
B, it is impossible to determine the initial state by an experiment which starts
with a 0, since the 0-successors of both A and B are C, and the output symbol

433 13.1 Experiments

Table 13.1 Machine M1

NS, z

PS x = 0 x = 1

A C, 0 D, 1
B C, 0 A, 1
C A, 1 B, 0
D B, 0 C, 1

Table 13.2 Responses of M1 to the input sequences 01 and 111

Initial Response Final Initial Response Final
state to 01 state state to 111 state

A 00 B A 110 B

B 00 B B 111 C

C 11 D C 011 D

D 01 A D 101 A

(a) (b)

produced in both cases is 0. No sequence following the initial 0 input symbol
will yield any new information regarding the initial state.

Using the same line of argument, it is evident that the output sequence that
M1 produces in response to input sequence 111 is always sufficient to determine
uniquely M1’s final state, as well as its initial state. As shown in Table 13.2,
each of the output sequences that might result from the application of 111 to
M1 is associated with just one initial state and one final state.

Before presenting techniques to be used in the design of experiments, we
shall introduce some terminology and define the successor tree, which will
prove to be an effective tool in the design of minimal experiments.

Uncertainties

Suppose that a machine M , which is given to the experimenter, can initially be
in any of its n states. In such a case, we say that the initial uncertainty regarding
the state of the machine is given by (S1S2 · · · Sn). Thus, the initial uncertainty is
the minimal subset of S (including S itself) that is known to contain the initial
state. For example, if the machine M1 can initially be in any of its four states
then the initial uncertainty is (ABCD).

Our aim is to perform experiments that reduce the initial uncertainty and,
whenever possible, reveal the initial or final state. For example, suppose that
we apply an input symbol 1 to machine M1 and that in response it produces the
output symbol 0. We may conclude that M1 was initially in state C, since only
from that state is a response of 0 to input symbol 1 possible. The final state in
this case is B. However, suppose the response of M1 to input symbol 1 is 1;

434 State-identification experiments and testing of sequential circuits

then all we can say regarding the final state of the machine is that it may be any
of the states D, A, or C, depending on whether the initial state was A, B, or D,
respectively. The set of states (ACD) thus represents the uncertainty regarding
the final state of M1 after the application of the input symbol 1. In general,
the uncertainty regarding the state of M after the application of X is a specific
subset of the X-successors of the states contained in the initial uncertainty. The
elements of the uncertainty are not necessarily distinct.

Let U0 be the initial uncertainty, and let input symbol Ii result in an uncer-
tainty Ui ; then Ui is said to be the Ii-successor of U0. Suppose, for example,
that the initial uncertainty regarding the state of M1 is (ACD). If an input
symbol 1 is now applied to M1, the successor uncertainty will be (B) or (CD),
depending on whether the output symbol is 0 or 1, respectively. We thus say
that the uncertainties (B) and (CD) are the 1-successors of (ACD). Subse-
quently, we shall refer to a collection of uncertainties as an uncertainty vector.
The individual uncertainties contained in the vector are called the components
of the vector. An uncertainty vector whose components contain a single state
each is said to be a trivial uncertainty vector. An uncertainty vector whose
components contain either single states or identical repeated states is said to be
a homogeneous uncertainty vector. Thus, for example, the vectors (AA)(B)(C)
and (A)(B)(A)(C) are homogeneous and trivial, respectively.

The successor tree

The successor tree, which is defined for a specified machine M and a given
initial uncertainty, displays graphically the Ii-successor uncertainties for all Ii

and thus assists the experimenter in the selection of the most suitable input
sequence. It is composed of branches arranged in successive levels, numbered
0, 1, . . . , j, . . . Each branch in the j th level splits into p branches, labeled I1,
I2, . . . , Ip, corresponding to the input symbols of the machine. The branches
emanating from the j th level form the (j + 1)th level, and so on. Each node
of the successor tree is associated with an uncertainty vector. The highest
node (in level 0) is associated with initial uncertainty U0, and each of the p

nodes in level 1 is associated with a successor of U0. The j th level of the
tree consists of pj branches, each terminating at a node. A sequence of j

branches, starting at the highest node and terminating at a node in the j th level,
is referred to as a path in the tree; j is called the length of the path. Each path
describes an input sequence which, when applied to the machine, results in the
uncertainty vector associated with the terminal node in the j th level. Hence, a
tree with j + 1 levels contains pj paths, describing the pj input sequences of
length j .

The successor tree for the machine M1 and an initial uncertainty (ABCD) is
shown in Fig. 13.1. It contains four levels numbered 0 through 3. Each branch
is labeled with the input symbol that it represents, and every node is associated
with the corresponding uncertainty vector. The highest node is associated with

435 13.2 Homing experiments

0

0

(ABCD)

Level

0

1

1

(ACD)(B)(A)(BCC)

(AA)(C)(C) A)(B)(CD))(A)(BC)(C)(A)(BB)(D)

(A)(A)(C)(C) (A)(B)(B)(D)

0

1

1 0

3

2

1

0

(A)(B)(C)(C) (A)(B)(C)(D)

1

Fig. 13.1 Successor tree for M1.

the initial uncertainty while the nodes in level 1 are associated with its 1- and
0-successors, and so on. For example, an input symbol 1 applied to M1 when
the initial uncertainty is (ABCD) results in the uncertainty vector (ACD)(B),
while an input symbol 0 results in the uncertainty vector (A)(BCC). The 1-
successor of the vector (ACD)(B) is determined by obtaining the 1-successors
of (ACD) and (B) separately. For example, the 1-successor of (B) is (A), since
the application of an input symbol 1 to M1, when in state B, takes it to state
A. The 1-successor of (ACD), however, depends on the output symbol; it is
(CD) if the output symbol is 1, and (B) if it is 0. Thus, the corresponding
uncertainty vector is (A)(B)(CD). Similarly, the 0-successor of (ACD)(B)
is (A)(BC)(C), since the 0-successor of (B) is (C) while that of (ACD) is
(A)(BC).

An uncertainty is said to be smaller than another uncertainty if it contains
fewer elements; e.g., (BC) is smaller than (ACD). From the way in which the
tree is constructed, it is evident that an uncertainty associated with a node in
the j th level is either smaller than or contains the same number of elements as
its predecessor in the (j − 1)th level. A homogeneous uncertainty vector will
always have as its successors homogeneous uncertainty vectors. For example,
in the tree of machine M1 the successors of the uncertainty (BCC) are (AA)(C)
and (A)(BB). The tree may be continued as far as is necessary but, for it to be
of practical value, a truncated version must be defined by stipulating a number
of termination rules.

13.2 Homing experiments

The objective of this section is to develop techniques for the construction of
experiments to identify the final state of a given n-state machine. It is shown that
such experiments can be constructed for every reduced machine, and bounds
on their lengths are derived.

436 State-identification experiments and testing of sequential circuits

Table 13.3 Machine M2

NS, z

PS x = 0 x = 1

A B, 0 D, 0
B A, 0 B, 0
C D, 1 A, 0
D D, 1 C, 0

0

0

(ABCD)

Level

0

1

(ABCD)(AB)(DD)

(AB)(DD) (BD)(CC)

(A)(D)(DD) (AA)(BC)

0

1

1

3

2

1

Fig. 13.2 Homing tree for M2.

Definition 13.1 An input sequence Y0 is said to be a homing sequence if the
final state of the machine can be determined uniquely from the machine’s
response to Y0, regardless of the initial state.

The homing tree

A homing sequence for a given machine M may be obtained from a truncated
version of its successor tree. Our task is to construct the tree and obtain the
shortest path leading from the initial uncertainty to a trivial uncertainty or a
homogeneous uncertainty. The presence of such an uncertainty at the kth level
of the tree guarantees that there exists an input sequence consisting of k symbols
whose application to M is sufficient to specify uniquely M’s final state.

A homing tree is a successor tree in which a j th-level node becomes terminal
when either of the following occur:

1. the node is associated with an uncertainty vector whose nonhomogeneous
components are associated with some node in a preceding level;

2. some node in the j th level is associated with a trivial or homogeneous vector.

The homing tree of a machine M2 (Table 13.3) is shown in Fig. 13.2. The node
associated with the vector (AB)(DD) in level 2 is a terminal node, since its
predecessor in level 1 is also associated with vector (AB)(DD).

437 13.2 Homing experiments

Table 13.4 The response of M2 to
the homing sequence 010

Initial Response Final
state to 010 state

A 000 A

B 001 D

C 101 D

D 101 D

Similarly, the node (ABCD) in level 1 is terminated, since it is identical
with the node (ABCD) in level 0. The nodes in level 3 are also terminal nodes,
since (A)(D)(DD) is a homogeneous uncertainty vector. The shortest homing
sequence is 010, since it is the shortest sequence described by a path leading
from the zeroth level to a homogeneous uncertainty. The response and final
states corresponding to this sequence are given in Table 13.4.

We shall now establish the existence of the homing experiment and derive a
bound on its length.

Theorem 13.1 A preset homing sequence, whose length is at most (n − 1)2,
exists for every reduced n-state machine M.

Proof Let the initial uncertainty be (S1S2 · · · Sn). Since M is reduced, for
every pair of states Si, Sj there exists an experiment (i.e., a sequence) of length
n − 1 or shorter that distinguishes Si from Sj . Let us denote this experiment
as λk . Starting at the initial uncertainty, application of sequence λ1, which
distinguishes between some pair of states in M , yields the λ1-successor uncer-
tainty vector, which contains at least two components. Next, we select any two
states in one component and apply the appropriate sequence λ2, which distin-
guishes between them. The λ1λ2-successor uncertainty vector contains at least
three components. In a similar manner, we obtain the λ1λ2 · · · λn−1-successor
vector, which consists of n components, each containing only one state. There-
fore, the sequence λ1λ2 · · · λn−1 is a homing sequence whose length is at most
(n − 1)2. ♦

This value is an upper bound on the length of the homing sequence, but
is not the least upper bound. It can be shown that the length of the homing
sequence need not exceed 1

2n(n − 1) and that this is indeed a tight bound (see
Problem 13.5).

Synchronizing experiments

A synchronizing sequence of a machine M is a sequence that takes M to a
specified final state, regardless of the output symbols or initial state. Some
machines possess such sequences; others do not.

438 State-identification experiments and testing of sequential circuits

0

0

(ABCD)

Level

0

1

(ABCD)(ABD)

(ABD) (BCD)

(AD) (ABC)

0

1

1

3

2

1

0

(BD) (CD)

1

0

(D) (AC)

1

5

4

Fig. 13.3 Synchronizing tree for
M2.

For a given machine, we can construct a successor tree by ignoring the
output symbols and associating with every node in the j th level the uncertainty
regarding the final state resulting from the application of the first j input
symbols. For example, if the initial uncertainty of the machine M2 is (ABCD)
then the 0-successor uncertainty is (ABD), and so on. Note that, since we
are interested only in the final state regardless of the output symbols, it is not
necessary to write down repeated entries; e.g., (ABDD) may be simply written
as (ABD), etc. A j th-level node in the tree becomes terminal whenever either
of the following occurs:

1. the node is associated with an uncertainty that is also associated with some
node in a preceding level;

2. some node in the j th level is associated with an uncertainty containing just
a single element.

A tree so constructed will be called a synchronizing tree. The synchronizing
tree for the machine M2 is shown in Fig. 13.3.

A synchronizing sequence is described by (corresponds to) a path in the
tree leading from the initial uncertainty to a singleton uncertainty, i.e., an
uncertainty containing just a single state. For the machine M2, the path 01010
describes a synchronizing sequence that, when applied to M2, synchronizes the
machine to state D regardless of the output symbols or initial state. Note that
if the initial uncertainty of M2 is (BCD) then the sequence 010 synchronizes
M2 to state D, since the 010-successors of B, C, and D are D, as shown in
Table 13.4.

Theorem 13.2 If a synchronizing sequence for an n-state machine M exists
then its length is at most 1

2 (n − 1)2n.

439 13.3 Distinguishing experiments

Proof Let the initial uncertainty be (S1S2 · · · Sn). Select any two states Si, Sj

and apply to them a sequence ξ1 that takes them into some state Sk . This task
can always be accomplished, since M is known to possess a synchronizing
sequence. The length of the sequence ξ1 is at most 1

2 (n − 1)n, since the longest
path for the synchronization of (SiSj) is through all possible pairs of states, i.e.,
(S1S2), (S1S3), . . . , (Sn−1Sn). Consequently, Sk is the ξ1-successor of (SiSj).
Next, select a state Sp from the resultant uncertainty, and determine the sequence
ξ2 that takes (SkSp) into some state Sq . The length of ξ2 is also at most 1

2 (n − 1)n.
In the same way, it is possible to find sequences ξ3, ξ4, . . . , ξn−1, which, when
concatenated, yield the synchronizing sequence ξ1ξ2 · · · ξn−1, whose length is
at most 1

2 (n − 1)2n. ♦
The above bound is not the least upper bound. For a tighter bound, see

Appendix 13.1.

13.3 Distinguishing experiments

Distinguishing experiments are concerned with the identification of the initial
state of a machine whose state table is known but about which there is no other
information regarding its condition.

Definition 13.2 Let M be an n-state machine. An input sequence X0 is said to
be a distinguishing sequence if the output sequence produced by M in response
to X0 is different for each initial state.

Knowing the output sequence that M produces in response to X0 is sufficient
to identify uniquely M’s initial state. However, knowledge of the initial state
and the input sequence is always sufficient to determine uniquely the final
state as well. Consequently, every distinguishing sequence is also a homing
sequence. The converse, however, is not true, since many homing sequences
do not provide all the information regarding the initial state, e.g., the sequence
010 for machine M2.

The distinguishing tree

A distinguishing tree is a successor tree in which a node in the j th level becomes
terminal when any of the following occurs:

1. the node is associated with an uncertainty vector whose nonhomogeneous
components are associated with some node in a preceding level;

2. the node is associated with an uncertainty vector containing a homogeneous
nontrivial component;

3. some node in the j th level is associated with a trivial uncertainty vector.

A path in the tree describes a distinguishing sequence of M if and only if it
starts in the initial uncertainty (which is assumed to consist of the entire set of

440 State-identification experiments and testing of sequential circuits

states S) and terminates in a node associated with a trivial uncertainty. A bound
on the length of distinguishing sequences is shown in Appendix 13.2.

The distinguishing tree of the machine M1 is obtained from the correspond-
ing successor tree (Fig. 13.1). The node associated with the homogeneous
uncertainty vector (A)(BCC) is terminated, since no further experiment can
split the component (CC); i.e., there is no way of knowing, once the machine
has passed to state C, whether the initial state was A or B. The machine M1 has
four distinguishing sequences of length 3, 111, 110, 101, and 100. The response
of M1 to the sequence 111 is summarized in Table 13.2b. This sequence clearly
causes four distinct responses, depending on the initial state.

While every machine has at least one homing sequence, not every machine
has a distinguishing sequence. For example, the distinguishing tree of the
machine M2 must be terminated in level 1 (see Fig. 13.2), since the vector
(ABCD) is identical to the initial uncertainty and the vector (AB)(DD) has
a nontrivial homogeneous component. An inspection of the state table of M2

(Table 13.3) would have revealed the same result, since no experiment that starts
with an input symbol 0 will distinguish between states C and D or between
states A and B, while no experiment that starts with a 1 will reduce the initial
uncertainty.

The shortest distinguishing prefix

In many cases, the initial state of a machine can be determined just from the
prefix of distinguishing sequence X0. The length of the required prefix is a
function of the initial state. Consider again the machine M1, whose response
to the distinguishing sequence 111 is given in Table 13.2b. It is evident that if
the response of the machine to the first input symbol is 0 then the initial state
must have been C, and the distinguishing experiment may be terminated at
this stage. However, if the response is 1 then the initial state could have been
either A, B, or D. The experiment must continue, and M1 is supplied with a
second input symbol 1. If M1’s response is now 0 then the initial state must have
been D, and the distinguishing experiment may be terminated. If, however, the
response is 1 then the uncertainty regarding the initial state is (AB) and a third
input symbol 1 must be applied to the machine. Thus, for the machine M1 and
the distinguishing sequence 111, the shortest distinguishing prefix for state C

is 1, for state D 11, and for states A and B 111.
The shortest distinguishing prefixes can be determined by means of a mod-

ified distinguishing tree (see [9]). They are particularly useful in checking
experiments and machine identification, where they lead to relatively short
experiments.

13.4 Machine identification

Up to now we have been concerned with the problems of identifying the initial
and final states of a known machine. We shall now address ourselves to a

441 13.4 Machine identification

more general problem – that of identifying an unknown machine. The machine
identification problem is essentially that of experimentally determining the state
table of an unknown machine. In its most general form, when no information is
available on the unknown machine, this problem cannot be solved for several
reasons. First, the experimenter must have complete information regarding the
input alphabet of the machine, since otherwise he or she can never be sure that
the next input symbol will not reveal new information regarding the machine.
Similarly, the machine cannot be identified unless there is an upper bound on the
number of its states since, for any given machine and any experiment of length
L, it is possible to construct another machine that responds to the experiments
of length L exactly like the given machine but will respond differently to
experiments of length greater than L. Finally, if a given machine Mi is in initial
state Si then it is indistinguishable experimentally from a machine Mj whose
initial state Sj is equivalent to Si , although machines Mi and Mj may, in fact,
be distinguishable. This situation clearly will not occur if both Mi and Mj are
strongly connected.

To make the problem of machine identification solvable, we impose several
restrictions on the machines. We assume that the input alphabet is known, as is
an upper bound on the number of states of the machine. Moreover, the machine
is assumed to be reduced and strongly connected.

An unknown machine with at most n states can now be identified in the
following manner. Construct the direct-sum table (see Problem 10.10) from all
tables that have n or fewer states and find a homing sequence for it. Clearly such
a homing sequence can always be found, and its application to the machine in
question will reveal which set of equivalent states from the direct-sum table
contains the final state of the machine. Also, if the direct-sum table contains
only those tables that correspond to reduced and strongly connected machines,
the homing sequence will uniquely identify the final state of the machine and,
in turn, the machine itself. This demonstrates that, under specified conditions,
in principle the machine identification problem can be solved. However, as
a procedure for actually designing experiments the direct-sum approach is
impractical, since the number of distinct tables is staggeringly large even for
relatively small n’s. It will be shown subsequently that the problem of devising
checking experiments for sequential machines is directly related to the machine
identification problem. More efficient procedures will be presented for the
design of such experiments directly from the state table, without the use of the
direct sum.

As an example, suppose that a machine is known to have two states and that
its response to input sequence X is output sequence Z, as shown below.

Time : t1 t2 t3 t4 t5 t6 t7 t8

Input, X : 1 1 1 0 1 0 1
Output, Z : 0 1 0 0 1 0 0

The first step in the analysis of these sequences is the identification of the
distinct states of the tested machine. Let us name these two states A and B and

442 State-identification experiments and testing of sequential circuits

Table 13.5 Machine M3

NS, z

PS x = 0 x = 1

A A, 0 B, 0
B B, 0 A, 1

suppose that, at the start of the experiment, the machine was in state A. The
application of an input symbol 1 results in an output symbol 0 and a transition
that is yet to be determined. However, since the second input symbol is also
a 1 but the response is 1, the machine must have been in a state other than
A at t2. Hence, the experimenter may conclude that at t2 the machine was in
state B.

Since state A is the only state which responds to an input symbol 1 by
producing an output symbol 0, it is evident that at t3 the machine was in state A.
At t4, it was again in state B, since it has already been verified (at t2) that an
input symbol 1 causes a transition from state A to B. In a similar manner, it is
easy to show that at t5 the machine was again in state B, which, in turn, implies
(see t3) that at t6, it was in state A. Finally, at t7, it must have been in state A,
since this is the only state in which the machine produces a 0 output symbol as a
response to a 1 input symbol. As a result of the above analysis, the experimenter
is able to demonstrate that the machine indeed has two states, named A and
B, and that its transitions and output symbols are given by the state table of
Table 13.5. Thus, the above experiment is an identification experiment for a
machine M3.

13.5 Checking experiments

The problem of designing checking experiments is actually a restricted version
of the problem of machine identification. An experimenter is supplied with a
machine and its state table. The task is to determine from terminal experiments
whether the given table accurately describes the behavior of the machine; that
is, to decide whether the actual machine is isomorphic to the one described by
the state table. As discussed before, we shall restrict our attention to machines
that are strongly connected, completely specified, and reduced. We also assume
that any faults are permanent, owing to some defect. This assumption excludes
transient errors due to noise or incorrect input symbols.

First, we consider machines that possess at least one distinguishing sequence.
In subsequent sections, we shall relax this restriction and discuss machines that
have no distinguishing sequence. Note that these experiments are intended to
detect the presence of one or more faults but will not locate or diagnose them.

443 13.5 Checking experiments

Table 13.6 Machine M4

NS, z

PS x = 0 x = 1

A B, 0 C, 1
B C, 0 D, 0
C D, 1 C, 1
D A, 1 B, 0

Table 13.7 Responses of M4

Initial Response Final Initial Response Final
state to 00 state state to 01 state

A 00 C A 00 D

B 01 D B 01 C

C 11 A C 10 B

D 10 B D 11 C

(a) (b)

We will make the assumption that the machine either has a synchronizing
sequence or a reset input that can transfer it to the initial state.

Designing checking experiments

In the procedure we use, each checking experiment consists of two parts.

1. The first part uses the synchronizing sequence or a reset input to transfer
the machine into a prespecified state, which is the initial state for the second
part of the experiment.

2. The second part is a preset experiment in which the machine is taken through
all possible transitions. This part is subdivided into two subparts. In the
first subpart the machine is caused to display the response of each of its
states to the distinguishing sequence, while in the second subpart the actual
transitions are verified.

As an example, consider the machine M4 whose state table is given in
Table 13.6 and whose responses to the sequences 00 and 01 are summarized in
Table 13.7. Suppose that the synchronizing sequence or reset input places the
machine in state A, from which the preset part of the experiment can commence.

In designing the preset part of the checking experiment, the first task is to
ascertain that the starting state is indeed A and that the machine being tested
actually contains four distinct states. This can be accomplished by displaying
the response of each state to the same distinguishing sequence. The machine M4

has two distinguishing sequences, 00 and 01, whose applications to the machine
result in the responses shown in Table 13.7. The design of experiments based

444 State-identification experiments and testing of sequential circuits

on distinguishing sequence 00 is somewhat shorter but will be left to the reader
as an exercise.

To display the response of the starting state, we apply the distinguishing
sequence X0 = 01. If the machine has operated correctly up to this point, its
output response is 00 and it is now in state D. To display the response of
this state, the distinguishing sequence X0 is applied again and, as a result, the
machine goes to state C. The application of a third distinguishing sequence
leaves the machine in state B and displays the response of state C. Applying
X0 twice more leaves the machine in state B, as shown below:

Input : 0 1 0 1 0 1 0 1 0 1
State : A D C B C B

Output : 0 0 1 1 1 0 0 1 1 0

The first eight symbols, by displaying four different responses to input
sequence 01, i.e., 00, 11, 10, and 01, verify that the machine in question indeed
has four distinct states. The last two symbols guarantee that the machine termi-
nates in state B, since it has already been established that a response of 10 to
the distinguishing sequence indicates a transition from state C to state B. The
above sequence thus verifies the existence of at least four states and, since we
are assuming that M4 has no more than four states, each state must have been
visited at least once, and its response to the distinguishing sequence determined.
From this point on, if at any time during the course of the experiment one of
the above responses to the distinguishing sequence is produced, the state of the
machine at that time is uniquely identifiable. (It must be emphasized that the
names given to the states are of no importance; a different set of names would
result in an isomorphic machine.)

If the machine has not produced the expected output sequence up to this
point, we may conclude that a fault exists. If, however, the above expected
output sequence has been produced then no conclusion can be reached as to
whether the machine has operated correctly and is indeed in state B or a fault
exists and the actual final state is different from B. We, therefore, assume for
the present that the machine actually started in state A and terminated in B. If
this assumption is incorrect, it will be revealed as such in the next part of the
experiment.

To complete the experiment it is now necessary to verify every state transi-
tion. The general procedure to be followed is to apply the input symbol that
causes the desired transition and to identify it by applying the distinguishing
sequence. Since the machine is in state B, we shall start by applying an input
symbol 0, followed by a distinguishing sequence 01. This input sequence takes
the machine back to state B, and thus a 101 input sequence is applied to check
the transition from B to D under a 1 input symbol and verify that the machine
actually has moved to state D. In each of these three-bit sequences, the first
bit causes the transition, while the distinguishing sequence ascertains that the
transition is indeed the assumed one. At this point we have obtained additional

445 13.5 Checking experiments

information about another transition. It has earlier been shown that the applica-
tion of 01 to the machine while in state B causes it to go to state C. However,
since input symbol 0 itself takes the machine from B to C, we may conclude
that if a 1 input symbol is applied to the machine while in state C then it
stays in state C. In other words, since the 01-successor of state B is C and the
0-successor of B is also C, the 1-successor of C must be C.

At this point, the machine is in state C. If, in response to the input sequence
001, the machine produces an output sequence 111, we may conclude that the
0-successor of C is D and that the final state is again C. However, since it
has already been established that the 01-successor of C is B, it means that the
1-successor of D is B. The experiment at this stage is as follows; note that the
second and third rows continue the first row.

Input : 0 1 0 1 0 1 0 1 0
State : A D C D B C C D

Output : 0 0 1 1 1 0 0 1 1

Input : 1 0 0 1 1 0 1 0
State : D B C D B D C D

Output : 0 0 1 0 0 1 1 1

Input : 0 1
State : D C

Output : 1 1

Up to this point, we have checked every possible transition, except those from
D to A and from A to B and C. Since the machine is presently in state C, we
must apply a transfer sequence1 to get to either state D or A. Such sequences
can always be found for a strongly connected machine, and require at most
n − 1 symbols. Furthermore, the transfer sequences should be applied in such
a way that they will take the machine through “checked” transitions only. Thus,
the only possible transfer sequence in this case is T (C,D) = 0, because, as has
already been demonstrated, the machine goes from C to D under input symbol
0. The application of a 0 followed by 01 ascertains the transition from D to
A and returns the machine back to state D. This sequence provides enough
information to verify the transition from A to C under a 1 input symbol. This
verification is achieved by inspection of the preceding sequence and observing
that C is the 01-successor of D and A is the 0-successor of D. Thus, C is the
1-successor of A.

The last transition that needs to be checked is from state A to B. Since the
machine is in state D, a transfer sequence T (D,A) = 0 is applied, followed by

1 Recall that a transfer sequence T (Si, Sj) is the shortest input sequence that takes a machine
from state Si to state Sj .

446 State-identification experiments and testing of sequential circuits

001. The complete experiment is shown below:

Input : 0 1 0 1 0 1 0 1
State : A B D A C D B C C

Output : 0 0 1 1 1 0 0 1

Input : 0 1 0 0 1 1 0 1
State : C D B C D B D A C

Output : 1 0 0 1 0 0 1 1

Input : 0 0 1 0 0 0 1 0
State : C D A C D A B D A

Output : 1 1 1 1 1 0 0 1

Input : 0 0 1
State : A B C C

Output : 0 0 1

The preset part of the checking experiment thus consists of the above input
sequence, whose length is 27 symbols. If the machine at hand responds as
shown above then it must be isomorphic to M4, since it has been shown
to contain four states whose responses are identical to the corresponding
responses of M4 and since all state transitions, which have been verified
in terms of the behavior exhibited at the beginning of the experiment, are
also isomorphic to those of M4. Clearly, if the machine has not produced
the above expected output sequence then it cannot be operating correctly.
The location of the fault, however, cannot be determined merely by the above
response.

Testing machines that have distinguishing sequences

The procedure can be summarized as follows. A checking experiment starts
with a synchronizing sequence or a reset input, so as to maneuver the machine
to the desired initial state. The machine is next supplied with an input sequence
that causes it to visit each state and display its response to the distinguishing
sequence. Finally, the machine is made to go through every state transition and,
in each case, the transition is verified by displaying its response to the distin-
guishing sequence. In practice it is not necessary to display all the responses
at the beginning of the experiment. Any response or transition that is verified
at a later point in the experiment may be used to determine a state transition at
some earlier point.

More precisely, the procedure for constructing checking experiments for
machines that have distinguishing sequences is as follows. Let S1, S2, . . . , Sn

be the states of machine M , and suppose that X0 is a distinguishing sequence
for this machine. Let Qi be the state to which M goes, when it is initially in

447 13.6 Design of diagnosable machines

Si , as a result of the input sequence X0. Also, let T (Si, Sj) denote an input
sequence (not necessarily unique) that transfers the machine from state Si to
Sj . Now suppose that M is initially in its starting state S1. Then, the sequence

X0T (Q1, S2)X0T (Q2, S3)X0T (Q3, S4) · · ·X0T (Qn, S1)X0

will serve to take the machine through each of its states and display all the
different responses to the distinguishing sequence. For example, starting in
S1, X0 leaves the machine in Q1. Then T (Q1, S2) transfers the machine to
S2, where X0 is applied again, leaving the machine in Q2. The corresponding
output sequence clearly displays the response of M to X0, when initially in
either state S1 or S2. The machine is similarly led through all its n states and,
at each point, the sequence X0 is applied followed by the transfer sequence
T (Qi, Si+1).

At the end of this part of the experiment, the machine receives the sequence
X0T (Qn, S1). If it operates correctly, it will be in state S1. This is veri-
fied by applying the distinguishing sequence X0 to it again. Clearly, if the
machine’s response to the last X0 is identical to its response to the first X0

then it will indeed be in state Q1 at the end of this part. Thus, the next part
of the experiment starts at this point, as the transitions out of state Q1 are
identified.

In the second part of the experiment, we establish various state transitions.
To check, for example, the 0-transition out of state Si , when the machine is
initially in some state Qj , the appropriate sequence is

T (Qj, Si−1)X0T (Qi−1, Si)0X0

The sequence T (Qj, Si−1)X0 guarantees that the machine indeed goes to
state Qi−1, as it did in the previous part of the experiment. The sequence
T (Qi−1, Si) transfers M to state Si , and then 0X0 is applied to cause the 0-
transition out of Si and also to identify it. In a similar manner the machine
can be taken through every transition, in each case identifying the transi-
tion by means of the response already established in the first part of the
experiment. In general, however, to reduce the length of the experiment it
is possible to apply the two parts of the experiment simultaneously instead of
sequentially.

The method outlined above can be applied to any reduced and strongly
connected machine that has at least one distinguishing sequence. The design
of checking experiments for machines that do not have any distinguishing
sequence is quite complicated, and the resulting experiments are very long.
To alleviate this situation, whenever a distinguishing sequence does not exist,
extra output terminals can be added to make sure that such a sequence does
exist for the augmented machine, as discussed next. Then the above method
can be applied to the augmented machine.

448 State-identification experiments and testing of sequential circuits

Table 13.8 Testing table for M2

0/0 0/1 1/0 1/1

A B — D —
B A — B —
C — D A —
D — D C —

AB AB — BD —
AC — — AD —
AD — — CD —
BC — — AB —
BD — — BC —
CD — D D AC —

∗13.6 Design of diagnosable machines

A diagnosable sequential machine is one that possesses one or more distin-
guishing sequences and thus permits us to identify uniquely the states of the
machine by inspecting its response to such a sequence. In this section, we shall
present a method to modify the design of sequential machines in such a way that
they will possess special distinguishing sequences for which relatively short
checking experiments can be constructed.

The testing graph

The machine M2 (Table 13.3) does not possess any distinguishing sequence.
We shall now show how it may be augmented by an additional output in such a
way that the augmented machine will possess several distinguishing sequences.

The state table of M2 may be rewritten as shown in the upper half of
Table 13.8. The column headings consist of all input–output symbol com-
binations, where the pair Ik/Ol indicates a combination of input symbol Ik and
output symbol Ol . The row labels in the upper half of the table are the states
of the machine. The entry in column Ik/Ol , row Si , is the Ik-successor of Si if
this successor is associated with output symbol Ol and is a dash (—) otherwise.
For example, the 0-successor of A is B and the corresponding output symbol
is 0. Consequently, B is entered in row A under the column 0/0 and a dash is
entered in row A under the column 0/1. In a similar manner, the other next-state
entries of M2 are entered in the upper half of the table.

The lower half of the table is derived directly from the upper half. The
row labels are all unordered pairs of states, while the table entries are their
corresponding successors. If the entries in rows Si and Sj , column Ik/Ol , of
the upper half are Sp and Sq respectively then the entry in row SiSj , column
Ik/Ol , of the lower half is SpSq . For example, since the entries in rows A and

449 13.6 Design of diagnosable machines

AC AD

AB

CD

1/0

0/0

1/0 1/0

1/0

BC BD
1/0

1/0

Fig. 13.4 Testing graph for M2.

B, column 1/0, are D and B respectively the corresponding entry in row AB,
column 1/0, is BD, and so on. If for some pair of states Si and Sj , either one or
both corresponding entries in some column Ik/Ol are dashes, the corresponding
entry in row SiSj , column Ik/Ol , is a dash. For example, the entry in row AC,
column 0/0, is a dash, since the entry in row C, column 0/0, is a dash. The
table thus completed is referred to as a testing table.

We shall refer to a pair (SiSj) as an uncertainty pair and to its successor
(SpSq) as the implied pair. Thus, for example, pair (BD) is implied by (AB).
An uncertainty pair that does not imply any other pair, so that all the entries in
the corresponding row are dashes, can be omitted from the table. Whenever an
entry in the testing table consists of a repeated state (e.g., DD in row CD), that
entry is given in boldface. Thus the boldface entry DD means that states C and
D are merged, under input symbol 0, into state D and are indistinguishable by
an experiment which starts with a 0 input symbol.

Let us define a directed graph G, which will be called a testing graph, in the
following way.

1. Corresponding to each row in the lower half of the testing table, there is a
vertex in G.

2. If there exists an entry SpSq , where p = q, in row SiSj , column Ik/Ol , of
the testing table then G has a directed arc leading from the vertex labeled
SiSj to the vertex labeled SpSq . The arc is labeled Ik/Ol . No arc is needed
if SiSj implies SpSp, e.g., DD in row CD.

The testing graph for the machine M2 is derived directly from the lower half of
the testing table and is shown in Fig. 13.4.

450 State-identification experiments and testing of sequential circuits

Definitely diagnosable machines

A machine M is defined as a definitely diagnosable machine of order μ if μ is the
least integer such that every sequence of length μ is a distinguishing sequence
for M . In other words, a machine is definitely diagnosable if every node at the
level μ of the distinguishing tree is associated with a trivial uncertainty vector.
The distinguishing tree can thus serve as a tool for recognizing definitely
diagnosable machines. In this section, however, we shall derive a different test
by means of the testing graph.

Theorem 13.3 A machine M is definitely diagnosable if and only if its testing
graph G is loop-free and no repeated states (i.e., boldface entries) exist in the
testing table.

Proof If the testing table contains a repeated entry in row SiSj , column
Ik/Ol , then state Si cannot be distinguished from state Sj by an experiment
that starts with Ik . Thus, if M is definitely diagnosable then its testing table
does not contain repeated entries. Now suppose that G is not loop-free. Then,
by repeatedly applying the symbols coinciding with the labels of the arcs
in the loop, we find an arbitrarily long input sequence that cannot resolve
the uncertainty regarding the initial state. Consequently, the machine is not
definitely diagnosable. To prove sufficiency, assume that G is loop-free. If M

is not definitely diagnosable then there exists an arbitrarily long path in G

corresponding to some input sequence X and some pair of states SiSj , such
that Si cannot be distinguished from Sj by X. However, since the number of
vertices in G cannot exceed 1

2 (n − 1)n (corresponding to the number of distinct
pairs of states), arbitrarily long paths in G are possible only if it contains a loop.
Thus, the theorem is proved. ♦

The above testing procedure is clearly equivalent to testing by means of
the distinguishing tree. In fact, that the graph is loop-free means that no node
in the tree is associated with an uncertainty vector whose nonhomogeneous
components are also associated with some node in a preceding level. Similarly,
if the testing table is free of repeated entries then no node in the tree is associated
with an uncertainty vector containing a homogeneous nontrivial component.
Hence, every node in the μth level of the tree is associated with a trivial
uncertainty vector.

Corollary Let the testing table of machine M be free of repeated entries, and
let G be a loop-free testing graph for M. If the length of the longest path in G
is l then μ = l + 1.

Proof Since G is loop-free, M is definitely diagnosable. Assume that μ >

l + 1; then there exists at least one uncertainty pair (SiSj) that is transferred,
by the application of an input sequence of length l + 1, to another pair (SpSq).
Consequently, there must exist a path, between vertices SiSj and SpSq in G,

451 13.6 Design of diagnosable machines

Table 13.9 Machine M ′
2

NS, zz1

PS x = 0 x = 1

A B, 01 D, 00
B A, 00 B, 00
C D, 10 A, 01
D D, 11 C, 01

whose length is l + 1. This contradicts our assumption, and thus μ cannot
exceed l + 1. The proof that μ cannot be smaller than l + 1 is trivial. ♦

We thus arrive at the general result that if a machine is definitely diagnosable
of order μ, then μ ≥ 1

2 (n − 1)n. In Problem 13.22, we show that this bound is
in fact the least upper bound for μ.

Designing definitely diagnosable machines

In order to obtain a machine M ′
2 that contains M2 and possesses a distinguishing

sequence, it is necessary to augment M2 by adding to it an output terminal
and assigning different output symbols to selected transitions. We shall, in fact,
show that the addition of one output terminal is sufficient to make M ′

2 definitely
diagnosable. The first step toward this end is to assign different output symbols
to each transition that may cause a repeated entry in the testing table. In the case
of M2, this is accomplished by assigning the output symbol 10 to the transition
from C to D and the output symbol 11 to the transition from D to D. Such an
assignment of output values ensures that the testing table of M ′

2 will be free of
repeated entries.

The testing graph of M2 contains three loops: a self-loop around AB and two
other loops, each containing three vertices. Clearly, these loops must be opened
if M ′

2 is to be definitely diagnosable. In general, a loop is opened by the removal
of any of its arcs. To remove an arc, it is necessary to assign different output sym-
bols to the next-state entries represented by the vertex to which that arc leads. In
other words, an arc leading from the vertex SiSj to the vertex SpSq is eliminated
by assigning different output symbols to the transitions from Si and Sj to Sp and
Sq . For example, the self-loop around AB in Fig. 13.4 is opened by assigning the
output symbols 01 and 00, respectively, to the next-state entries B and A in the
column x = 0. The loop AB − BD − BC − AB can be opened by the removal
of the arc from BD to BC. This is achieved by assigning the output symbols
00 and 01 to the next-state entries B and C in rows B and D, column x = 1.
In a similar manner, we open loop AC − AD − CD − AC by assigning a 00
output symbol to the next-state entry D in row A, column x = 1, thus removing
the arc from AD to CD. The resulting state table is shown in Table 13.9.

452 State-identification experiments and testing of sequential circuits

0

(ABCD)

1

(AC)(BD)(A)(B)(D)(D)

(A)(B)(C)(D)(A)(B)(D)(D)

10

Fig. 13.5 Distinguishing tree for
M ′

2.

Since the length of a checking experiment is directly proportional to the
length of the distinguishing sequence for the machine, we attempt to open all
loops while simultaneously minimizing the length of various paths in the graph.
In opening the loops in the graph of Fig. 13.4, all the output entries, with the
exception of the entry in row C, column x = 1, have been assigned new values.
The longest path in the loop-free graph is of length 2 and, consequently, the
order of the modified machine is μ = 3. This result can, however, be improved
by specifying the output entry in row C, column x = 1, as 01. This specification
actually eliminates the arcs from AC to AD and from BC to AB. As a result,
the length of the longest path in the graph is now 1, and M ′

2 is definitely
diagnosable of order 2. The distinguishing tree of machine M ′

2 is shown in
Fig. 13.5.

It is clear that, for any 2k-state machine, the addition of k output termi-
nals is sufficient to convert it into a definitely diagnosable machine. However,
frequently fewer additional output terminals suffice.

Since the procedure followed in the above example can be applied to any
machine, we arrive at the following general result.

� To every reduced machine M there corresponds a definitely diagnosable
machine M ′, which is obtained from M by the addition of one or more
output terminals.

The block diagram of the definitely diagnosable machine M ′ that corresponds
to machine M is shown in Fig. 13.6.

A question now arises regarding the purpose of designing definitely diag-
nosable machines. Evidently, checking experiments can be designed with just
one distinguishing sequence. Moreover, even when a machine possesses two
or more distinguishing sequences it is not easy to utilize them efficiently and
simultaneously in an experiment. The main motivation for designing definitely
diagnosable machines and studying their properties is the fact that it is pos-
sible to design checking experiments for them. Such experiments are simpler
to design for definitely diagnosable machines, since it is possible to cross-
check the machine with every sequence of length μ, not with just a single
sequence.

453 13.7 Alternative approaches to the testing of sequential circuits

zS Logicx

(a) M.

zS Logicx

M

(b) M is modified to produce M'. The output z1 is only used for
diagnostic purposes.

z1Logic

Fig. 13.6 Design of a definitely
diagnosable machine.

13.7 Alternative approaches to the testing of sequential circuits

We saw earlier how finite-state machines can be tested using checking experi-
ments. However, often the test sequences derived by such an approach are quite
long. In this section, we shall describe two alternative test generation methods
for such machines. The first method also uses a state table; however, the second
method uses the sequential circuit implementation of the machine.

State-table-based test generation

This test generation approach uses a functional fault model. This fault model
assumes that the fault is associated with a state transition in the state table.
For example, a single-state-transition (SST) fault model assumes that the fault
results in the destination state of a state transition becoming corrupted while
retaining its correct input/output symbols. Test sequences derived using the
SST fault model have been shown to detect a very high percentage of single
stuck-at faults in the sequential circuit implementation of the machine.

We shall make the assumption that the SST fault does not increase the number
of states in the state table.

We designate each state transition in a machine by the four-tuple

< input symbol, source state, destination state, output symbol>.

A state transition can become corrupted if its destination state or output symbol
or both are faulty. However, if a test sequence detects a corrupted destination
state then it will also detect the corrupted output symbol or both the corrupted
destination state and output symbol of that state transition. We can prove this as

454 State-identification experiments and testing of sequential circuits

follows. In order to detect a corrupt destination state, a test sequence needs to
have three parts: an initialization sequence that takes the machine to the source
state of the state transition in question; the input symbol of the transition
to activate the fault; and a state-pair differentiating sequence (SPDS) that
differentiates between the correct and faulty destination states, i.e., produces
different output sequences starting from these states. If the output symbol
associated with the state transition is faulty then the initialization sequence
and the input symbol that activates the fault together detect the fault. Hence,
we can limit our attention to faulty destination states only. We shall derive the
three parts of the test sequence from the fault-free state table. Strictly speaking,
we should employ both the fault-free and faulty state tables to derive them.
However, deriving them from the fault-free state table considerably speeds up
the test generation process without much loss in the ability to detect the targeted
fault.

An n-state m-transition machine has m(n − 1) SST faults. If the machine is
large, this number can also be quite large. However, it is possible to use fault
collapsing to reduce the number. For each state transition, there are n − 1 faulty
destination states possible. However, we often need to target only a subset of
these faulty states. Suppose that the four-tuple <Ik, Sj , Si,Ol> is corrupted to
<Ik, Sj , S

′
i , Ol> by the SST fault f1 and to <Ik, Sj , S

′′
i , Ol> by the SST fault

f2. If we find that the SPDS of Si and S ′
i also differentiates between Si and S ′′

i

then fault f2 dominates fault f1, and f2 can be removed from the fault list.

Example Consider the machine M5 shown in Table 13.10. Since the input
symbol x = 0 differentiates between states A and B as well as A and C,
SPDS(A,B) = SPDS(A,C) = 0. Similarly, SPDS(B,C) = 1. Next, consider
the state transition <1, C,A, 0>. Its destination state A can be corrupted in
three ways to give <1, C, B, 0>, <1, C,C, 0>, or <1, C,D, 0>. However,
since SPDS(A,B) is also SPDS(A,C), the first two of these faulty transitions
can be collapsed into just the first one.

Table 13.10 Machine M5

NS, z

PS x = 0 x = 1

A C, 0 C, 0
B C, 1 B, 1
C D, 1 A, 0
D A, 0 B, 1

Another reasonable fault-collapsing heuristic, which does not reduce the
SST fault coverage much, is the following. If two state transitions have an
identical source state, destination state, and output label then they are collapsed
into a single transition. For example, in the machine in Table 13.10 the two

455 13.7 Alternative approaches to the testing of sequential circuits

transitions from state A satisfy this condition. Hence, only one of the these
faulty transitions needs to be considered, not both.

Before test generation starts, we first compute transfer sequences between
every pair of states. Then, we compute the relevant SPDSs. Test generation
consists of the following three steps.

1. Initialization In this step the machine is brought from the current state
to the source state of the faulty transition using an appropriate transfer
sequence.

2. Excitation In this step the faulty transition is executed.
3. State differentiation In this step the corresponding SPDS is applied to

differentiate between the good and faulty states.

Example Consider an SST fault that corrupts the transition <0,D,A, 0>
to <0,D,B, 0> in machine M5. To derive a test sequence for this SST,
we first need T (A,D) = 00 (10 is also a valid transfer sequence). Then
the activation vector x = 0 is applied. Finally, SPDS(A,B) = 0 is applied.
Hence, one possible test sequence is 0000.

Sequential circuit based test generation

In this subsection, we shall show how test generation can be performed for
sequential circuits with the help of the iterative array model. An iterative-
array model of a sequential circuit was presented in Chapter 9. This approach
generates a test sequence to activate the fault and propagate its effect to a circuit
output by finding a sensitized path through multiple time frames.

Since we are targeting a faulty sequential circuit, we shall assume that the
initial state of the circuits is unknown.

Extended D-algorithm
In Chapter 8, we discussed the D-algorithm, which can be used to generate
test vectors for faults in combinational circuits. It is possible to extend the
D-algorithm to generate test sequences for sequential circuits. We can target
a fault in some time frame, say time frame 0, in the iterative array model and
use the D-algorithm to generate a test vector for it. If a D or D′ propagates to
a circuit output, no further error propagation is required. However, if it only
propagates to the next-state lines, we need to add a new time frame as the next
time frame, labeled time frame 1, to try to propagate the error signal further.
This process is repeated until the error signal reaches some circuit output. If
the test vector contains assignments of specific logic values to any present state
lines in time frame 0, we add a new time frame as the previous time frame,
labeled time frame −1. We then try to justify (trace) the current state backwards
through the previous time frame. This process of line justification (Section 8.2)
is repeated until no particular logic values are required at the present state lines.

456 State-identification experiments and testing of sequential circuits

z

x1

D

(a) A sequential circuit.

y Y

x2 s-a-1

z

x1
x2 s-a-1
y

−1

−1

−1

1
1

0

−1

−1

Y

Time frame −1

z

x1

x2 s-a-1

y

0

0

0

1
D

D
0

0

Y

Time frame 0

z

x1
x2 s-a-1

y

1

1

1

1

1

1

Y

Time frame 1

D

D

1

(b) Iterative array model.

'
'

Fig. 13.7 Application of the
extended D-algorithm.

Example Consider the sequential circuit shown in Fig. 13.7a and its itera-
tive array model in Fig. 13.7b. The signals are superscripted with i in time
frame i. Suppose the target stuck-at fault is s-a-1 on input x2. This targeted
stuck-at fault has to be included in every time frame. First, let us consider
time frame 0. After applying the D-algorithm to the stuck-at fault in this
time frame, the error signal D′ propagates to the next-state line Y and the
value 1 needs to be justified at the present state line y. To propagate the
error further, time frame 1 is added to the right. The error signal can now be
propagated to the circuit output z in this time frame. Therefore, we need to
justify the value at y in time frame 0. A time frame −1 is added to the left of
time frame 0 for this purpose. The signal x1 = x2 = 1 is needed at the input
of this time frame to obtain y = 1 in time frame 0. Since the stuck-at fault
is present in each time frame, we need to make sure that the fault-free and
stuck-at values are the same in this state justification step. Since no value
was assigned to line y in time frame −1, there is no need to add any further
time frames to the left. We thus arrive at the test sequence for the above
fault, consisting of vectors at inputs (x1, x2), as {(1, 1), (1, 0), (1, φ)}.

The nine-valued logic
Although the above extension of the D-algorithm is straightforward, the five-
valued logic {0, 1, φ,D,D′} used in the D-algorithm is not adequate for
sequential circuits because it overspecifies the value requirements at some
lines in the circuit. This may prevent the test generator from obtaining a test
sequence even when one exists. This problem can be tackled by using a nine-
valued logic instead. This logic accounts for the effects of the fault in each
time frame correctly. The nine values in this logic each represent an ordered

457 13.7 Alternative approaches to the testing of sequential circuits

pair from the ternary values 0, 1, and φ. The first value of the pair represents
the ternary value of the fault-free circuit and the second value represents the
ternary value of the faulty circuit. Hence, the nine ordered pairs are 0/0, 0/1,
0/φ, 1/0, 1/1, 1/φ, φ/0, φ/1, and φ/φ.

We next illustrate through an example why nine-valued logic succeeds where
the extended D-algorithm may not.

(a) A sequential circuit.

y

−1

−1

−1

1

0

0

−1

−1

Time frame −1

0

0

0

D

D

0

0

Y

Time frame 0

D'

'
1

(b) Application of the extended D-algorithm.

z

x1

Dy Y

x2

s-a-1

z

x1

G1

x2

s-a-1

0

y

0

0

0

Y

z

x1

x2

s-a-1

1

conflict

Fig. 13.8 Test generation with
five-valued logic.

y

−1

−1

−1

1/

0/

0/

−1

−1

Time frame −1

0

0

0/

0/1

1/0

0

0

Y

Time frame 0

0/1

1/

z

x1

G1

x2

s-a-1

0/

y

0/0

0/

0

Y

z

x1

x2

s-a-1

1/

Fig. 13.9 Test generation with
nine-valued logic.

Example Consider the sequential circuit shown in Fig. 13.8a. Application
of the extended D-algorithm to this circuit is illustrated in Fig. 13.8b.
Since, with the shown logic values in time frame 0, the error signal D′ gets
propagated to the circuit output, there is no need to add time frame 1 to
the right. However, we need to add time frame −1 to the left in order to
justify the value 0 required at y0. Justifying the values in time frame −1
results in a conflict at x−1

1 , on which a 0 is required whereas it has an s-a-1
fault present. Thus the algorithm concludes that no two-vector test sequence
exists to detect this fault. Note that if a 1 had been placed at y−1 to justify a
0 at Y−1, then we would need to add time frame −2 to the left.

458 State-identification experiments and testing of sequential circuits

Next, consider the application of nine-valued logic to this circuit, as
shown in Fig. 13.9. In order to propagate the error from x1 to the output of
gate G1 in time frame 0, the other input of G1 must have a 0 for the fault-
free circuit but does not require any particular value for the faulty circuit.
This is denoted as 0/φ. Eventually, we require 0/φ at the line y0. Owing to
this relaxed requirement, there is no conflict at x−1

1 . The corresponding test
sequence for this fault is thus {(0,0), (0,1)}.

13.8 Design for testability

Since it is difficult to control the present-state lines and observe the next-state
lines of a sequential circuit, sequential test generation generally does not lead
to a high fault coverage. When certain design features are added to a circuit to
make it easier to derive tests or test sequences for the circuit, the corresponding
approach is called design for testability.

Scan design

A popular design-for-testability approach for sequential circuits is called scan
design. In scan design there are two modes of operation, normal and test. In the
normal mode, the circuit exhibits its original input–output behavior. However,
in the test mode the flip-flops of the circuit are chained into a shift register. If
all the flip-flops of the circuit are so chained, the circuit is said to be a full-scan
design. If a fraction, but not all, of the flip-flops are so chained, the resultant
circuit is said to be a partial-scan design.

Since a flip-flop may have two sources of inputs, one corresponding to its
normal mode of operation and another corresponding to its test mode, a special
flip-flop, called a scan flip-flop, is needed. Such a scan flip-flop essentially has
a 2-to-1 multiplexer at its input, as shown in Fig. 13.10a. The ith D flip-flop
has a normal-mode input Yi and a test-mode input Y S

i (where the superscipt
S denotes “scan”). When the mode-select signal T is 0, the upper input of
the multiplexer is selected and this corresponds to the normal mode. However,
when T = 1 the lower input is selected and this corresponds to the test mode.
We shall, henceforth, use the compact symbol shown in Fig. 13.10b.

We are now in a position to analyze the scan chain shown in Fig. 13.11. An
extra input, called the scan input (labeled ScanIn) and an extra output, called

yi

M
U
X

D
Yi

(a) Scan flip-flop.

S

T

(b) Symbol.

Yi

yi

M
U
X

D
Yi

S

T

Yi

Fig. 13.10 A flip-flop with an
input multiplexer.

459 13.8 Design for testability

Combinational logic

z1x1

xl
y1

Y1

ykYk
y2Y2 zm

ScanIn

T

Y1

M
U
X

D

S

M
U
X

D

S

M
U
X

D

S
ScanOut

Y2 Yk

x2 z2

Y3
S

Fig. 13.11 A scan chain.

the scan output (labeled ScanOut), are added to the circuit. When T = 0, the
next-state value at line Yi , 1 ≤ i ≤ k, gets transferred to the present-state line yi

after the flip-flop is clocked, as one would expect during the normal operation of
a sequential circuit. However, when T = 1 the value at ScanIn is transferred to
the output of the first flip-flop after clocking, the output of the first flip-flop gets
transferred to the output of the second flip-flop, and so on. In other words, the
value at Y S

i = yi−1 gets transferred to yi . The value at yk also gets propagated
to ScanOut.

Testing of circuits using scan design

The scan chain enables any state of the sequential circuit to be scanned into the
flip-flops in the test mode, essentially making the flip-flops fully controllable.
After applying the test to the circuit, the next-state values can be captured in
the flip-flops in the normal mode. Then these values can be shifted out through
ScanOut in the test mode, thus also making the flip-flops fully observable. This
reduces the sequential test generation problem to that of test generation for the
combinational logic of the circuit. This logic has x1, x2, . . . , xl , y1, y2, . . . , yk

as primary inputs and z1, z2, . . . , zm, Y1, Y2, . . . , Yk as circuit outputs. Thus,
the test vectors for such a circuit will have l + k bits and the resulting output
response will have m + k bits. The first l input bits are said to constitute the
primary input part of the vector and last k input bits its state part. A test
set can be obtained for such a circuit using any combinational test generation
algorithm, e.g., the D-algorithm presented in Chapter 8 if stuck-at faults are
the targeted faults.

Example Consider the sequential circuit in Fig. 13.12a. Its combinational
logic is shown in Fig. 13.12b. Readers can check that the test set shown in
Fig. 13.12c detects all single stuck-at faults in this combinational logic. The
first two bits of each of the test vectors in this set denote the primary input
part and the last two bits its state part.

460 State-identification experiments and testing of sequential circuits

z

D

x2

D

y1 Y1

x1

Y2
y2

z

x2

x1

y1

y1

y2

y2

Y2

Y1

x1 x2 y1 y2

1 0 0 1
0 1 1 0
1 1 0 0
0 0 1 1

(a) Sequential circuit. (b) Combinational logic. (c) Stuck-at fault test set.

Fig. 13.12 Testing of scan
designs. To apply the test set derived for the combinational logic to the sequential

circuit, the following procedure can be followed.

1. Make T = 1 to set the sequential circuit into test mode.
2. Scan in the state part of the vector through the ScanIn input in the next k

clock cycles. In these cycles, the primary inputs can be fed arbitrary values.
3. Apply the primary input part of the vector to the primary inputs. At this point,

all the l + k bits of the test vector have been applied to the combinational
logic. After allowing the combinational logic to settle down, observe the
output response at circuit outputs z1, z2, . . . , zm.

4. Make T = 0 to set the circuit into normal mode.
5. Apply a clock pulse. This results in the values on the next state lines, Y1,

Y2, . . . , Yk , being latched in the k flip-flops.
6. Make T = 1 and observe the values captured in the flip-flops by scanning

them out through ScanOut while repeating this procedure for the next test
vector.

The flip-flops are themselves tested beforehand by shifting through them a
sequence of 1’s and then a sequence of 0’s to make sure that both a 1 and a 0
can be shifted through each flip-flop.

Suppose that there are n test vectors in the test set. A total of k clock cycles
are required to scan-in the state part, one cycle to capture the state response,
and k − 1 clock cycles to scan-out the captured state. Since the state part of
the next test vector is scanned-in at the same time as the captured state for the
previous vector is being scanned out, the total number of clock cycles needed
to apply the complete test set is n(k + 1) + k − 1.

Example For the test set in Fig. 13.12c, n = 4 and k = 2. Thus, a total of
13 clock cycles is required for it.

461 13.9 Built-in self-test (BIST)

T
P
G

CUT R
A

Fig. 13.13 A circuit with BIST.

13.9 Built-in self-test (BIST)

The BIST approach allows the circuit to test itself. This requires that some extra
circuitry be integrated on-chip. It reduces the need for expensive automatic test
equipment. It allows the test vectors to be applied to the circuit under test
(CUT) at the normal clock rate. This is called at-speed testing and has been
found useful for detecting delay faults. A chip with BIST can also be tested in
the field, which enhances the reliability of the system.

A CUT that incorporates BIST is shown in Fig. 13.13. It contains a test
pattern generator (TPG), CUT, and response analyzer (RA). The TPG gen-
erates pseudo-random test sequences and applies them to the CUT. The RA
compresses the output response of the CUT into a vector called the signa-
ture. When there is no fault present in the CUT, the corresponding compressed
response is called the golden signature. When a fault is present, it is highly
likely that the compressed response will not match the golden signature, thus
indicating the presence of a fault.

Test pattern generator

The TPG usually comprises a linear feedback shift register (LFSR). An LFSR
consists of D flip-flops and XOR gates. It belongs to the class of linear sequen-
tial machines which will be discussed in detail in Chapter 15.

A k-stage LFSR is shown in Fig. 13.14 (the number of stages refers to the
number of flip-flops present). In it, the output y1 of the last flip-flop is fed
back to a subset of the flip-flops determined by whether the corresponding bj ,
1 ≤ j ≤ k, is 0 or 1. The presence (absence) of the feedback is indicated by
bj = 1 (bj = 0). An LFSR is often described by a feedback polynomial:

p(x) = xk + b1x
k−1 + · · · + bk−1x + bk.

Such a polynomial is said to have degree k.

+
yk y2 Y1

bk−1bk

Yk +

b1

Y2
y1Yk−1

D DD

Fig. 13.14 A k-stage LFSR.

462 State-identification experiments and testing of sequential circuits

Example Consider the three-stage LFSR shown in Fig. 13.15. Its feedback
polynomial is p(x) = x3 + x2 + 1. Note that in this case b3 = b1 = 1 and
b2 = 0.

D +
Y3

y3 Y2 Y1
y2 y1

DD

Fig. 13.15 An example of a three-stage LFSR.

A feedback polynomial is said to be primitive if the state diagram of the
corresponding k-stage LFSR consists of two loops, a trivial loop with the all-0
state and a nontrivial loop with the remaining 2k − 1 states. The outputs of
the k flip-flops can be directly fed to the inputs of a k-input CUT. The output
patterns generated by such an LFSR are known to have very good randomness
properties and hence are very useful for obtaining a high coverage of faults in
the CUT.

Example For the three-stage LFSR shown in Fig. 13.15, the state diagram
is shown in Fig. 13.16. Thus its feedback polynomial p(x) = x3 + x2 + 1
is primitive.

001

100

011

101110

111

010

000

Fig. 13.16 State diagram of the LFSR in Fig. 13.15.

A list of primitive polynomials for various values of k is known. As an
example, readers can verify that p1(x) = x4 + x + 1 is a primitive polynomial
but that p2(x) = x4 + x2 + 1 is not.

Usually, LFSRs based on primitive polynomials find use in BIST. Test pattern
generation can start with any state in the nontrivial loop of such an LFSR. The
initial state is called the seed. Clocking of the LFSR causes it to transition

463 13.9 Built-in self-test (BIST)

from the seed to the next state, and so on. For example, in the state diagram in
Fig. 13.16, if the seed is state 001 then the next state will be 101 and then 111,
and so on. These patterns can be fed to a three-input CUT in order to test it. It is
possible, however, that many patterns from this test sequence are not needed to
detect any targeted faults in the CUT. Thus, if we started from different seeds
and applied a few test patterns from each, we could shorten the time it takes to
test the CUT. This process is called LFSR re-seeding.

Example Consider the circuit shown in Fig. 13.17. A possible test set
for detecting all single stuck-at faults in this circuit is (x3, x2, x1) =
{(1, 0, 1), (1, 1, 1), (1, 0, 0), (0, 1, 0)}. Suppose that the LFSR shown in
Fig. 13.15 is used to test it, with yi connected to the input xi , 1 ≤ i ≤ 3. From
the state diagram in Fig. 13.16, we can see that testing can be accomplished
by applying two patterns starting with the seed (1, 0, 1) and two additional
patterns starting with the seed (1, 0, 0). The two seeds can be stored on-chip
and fed to the LFSR when needed. Thus, we see that four clock cycles are
needed to test this circuit, which is the minimum possible. However, if only
one seed were used, say (1, 0, 1), then we would have to cycle through six
patterns from (1, 0, 1) to (0, 1, 0), for a total of six clock cycles.

x3 z

x2

x1

Fig. 13.17 Re-seeding example.

Response analyzer

For a k-output CUT to which ν test patterns have been applied by the TPG, we
need to analyze the kν output bits to see if any bit is erroneous, thus indicating
the presence of a fault in the CUT. To do this, we would need to store the
fault-free values of these bits and do a bit-by-bit comparison with the response
obtained from the CUT. Since this can be quite expensive in terms of space and
time, output responses are usually compressed into a signature and compared
with the golden signature that would be obtained if no faults were present in
the CUT. However, it is possible that, even if erroneous bits are present in
the response, its signature is the same as the golden signature. This is called
aliasing. This will lead us to declare a faulty circuit to be fault-free, which is
obviously a scenario we would like to avoid. Luckily, the aliasing probability
of an RA is typically extremely small.

A commonly used RA is the multiple-input signature register (MISR), which
is obtained by modifying an LFSR, as shown in Fig. 13.18. The k outputs of
the CUT, z1, z2, . . . , zk , are connected to the k-stage MISR as shown. When

464 State-identification experiments and testing of sequential circuits

+

bk−1bk

+

b1

D DD+

z1zk−1zk
Fig. 13.18 A multiple-input
signature register.

the CUT is being tested, in each cycle a k-bit response is fed to the MISR,
leading it to a new state. When the final k-bit response is fed to the MISR, the
state it enters is the signature in which we are interested. It has been shown
that the aliasing probability of such a MISR is close to 1/2k (note that this is
independent of the CUT under test). For reasonable values of k, such as k = 32,
this probability is negligible.

Appendix 13.1 Bounds on the length of synchronizing sequences

We shall next establish a range of values for the length of a synchronizing
sequence and show that the value of the least upper bound on the length must
be in this range.

Theorem 13.4 If an n-state machine has a synchronizing sequence, or
sequences, then it has one such sequence whose length is at most 1

6n(n +
1)(n − 1).

Proof A necessary condition for a machine to have a synchronizing sequence
is that, under at least one input symbol Ik , the Ik-successors of some two states
Si, Sj will be identical. The synchronization of a machine, whose initial state
is unknown, into some state Sc can be accomplished by applying Ik to the
machine in such a that way if it is in either Si or Sj then it will go to the
common successor; next, a sequence that transfers another pair of states Sp, Sq

into Si, Sj is applied, and after that Ik is again applied to the machine to take it
into the common successor, and so on. This process actually reduces the initial
uncertainty (S1S2 · · · Sn) to the singleton uncertainty (Sc).

Suppose now that k − 1 states have already been taken out of the uncertainty,
which presently consists of n − k + 1 states. We wish to obtain an upper bound
on the length of the sequence needed to reduce the uncertainty by another
state, that is, to reduce it to n − k states. Suppose also that Su and Sv are the
states that will now be taken by this sequence into a common successor. The
present uncertainty U thus consists of Su, Sv , and the remaining n − k − 1
states. The length of the required sequence depends on the number of pairs
of states through which SuSv passes before reaching the common successor.
This number will be maximized if SuSv does not pass through any other pair of
states contained in the remaining n − k − 1 states of the uncertainty (because

465 Appendix 13.1 Bounds on the length of synchronizing sequences

in such a case we could use that pair of states to reduce the uncertainty). For
the same reason, SuSv should not pass through any pair of states contained in
the successors of these n − k − 1 states.

Thus the length of the sequence to be obtained will be maximized if all the
uncertainty successors of U contain the same n − k − 1 states and only SuSv

passes through various pairs of states. The successors of SuSv may be any pair of
states not contained in these n − k − 1 states. Since there are n − (n − k − 1) =
k + 1 such states, there are 1

2k(k + 1) pairs of possible successors to SuSv .
Consequently, at most 1

2k(k + 1) (which is equal to 1 + 2 + 3 + · · · + k) input
symbols are needed to take out the kth state from the uncertainty.

To reduce the initial uncertainty (S1S2 · · · Sn) to a singleton uncertainty, a
sequence of length 1 + (1 + 2) + (1 + 2 + 3) + · · · + (1 + 2 + 3 + · · · + n −
1) = ∑n

k=2
1
2k(k − 1) is needed. Since 1

2k(k − 1) = 0 for k = 1, we can take
the sum from 1 to n, i.e.,

1

2

n∑
k=1

k(k − 1) = 1

2

n∑
k=1

k2 − 1

2

n∑
k=1

k

= 1

2

[
n(n + 1)(2n + 1)

6
− 3n(n + 1)

6

]
= n(n + 1)(n − 1)

6
. ♦

Theorem 13.4 thus establishes an upper bound on the length of synchronizing
sequences, which is lower by a constant factor than that in Section 13.2.

Theorem 13.5 For every n, there exists an n-state machine that has a synchro-
nizing sequence of length (n − 1)2.

Proof A machine that satisfies the theorem is given in Table 13.11. The
proof that the shortest synchronizing sequence for this machine is of the form
0(1n−10)n−2 is left to the reader as a (nontrivial) exercise. Note that the proof
must consist of two parts: first, the proof that the above is indeed a synchronizing

Table 13.11 A machine with a synchronizing
sequence of length (n − 1)2

NS

PS x = 0 x = 1

S1 S1 Sn

S2 S1 S1

S3 S3 S2

...
...

...
Sk Sk Sk−1

...
...

...
Sn−1 Sn−1 Sn−2

Sn Sn Sn−1

466 State-identification experiments and testing of sequential circuits

sequence, and second a demonstration that it is the shortest synchronizing
sequence.

The length of the subsequence within the parentheses is n, since it consists of
n − 1 1’s followed by a 0. There are n − 2 such subsequences, preceded by a sin-
gle 0. Hence, the total length is 1 + (n − 2)n = n2 − 2n + 1 = (n − 1)2. ♦

Example A machine that illustrates Theorem 13.5 for n = 5 is shown in
Fig. 13.19a. The corresponding path in the synchronizing tree, which leads
to the singleton uncertainty, is given in Fig. 13.19b.

S3

S2

x = 0

S1

S4

S5

PS

(a) Machine M6

NS
x = 1

S3

S1

S1

S4

S5

S2

S1

S5

S3

S4

0

(S1S2S3S4S5)

1

(S1S3S4S5)

1

(S2S3S4S5)

0

(S1S2S4S5)
1

(S1S2S3S5)
1

(S1S2S3S4)

1

(S1S4S5)

1

(S3S4S5)

1

(S2S3S4)

1

(S1S2S3)

0

(S1S2S5)

1

(S1S5)

1

(S4S5)

1

(S3S4)

1

(S2S3)

0

(S1S2)

(S1)

(b) Shortest synchronizing
sequence for M6

Fig. 13.19 Demonstrating Theorem 13.5 for n = 5.

467 Notes and references

Combining the results in Theorems 13.4 and 13.5, we obtain the following
corollary.

Corollary The least upper bound L on the length of synchronizing sequences
is bounded by (n − 1)2 ≤ L ≤ 1

6n(n + 1)(n − 1).

Appendix 13.2 A bound on the length of distinguishing sequences

Next, we prove that the length of the distinguishing tree is bounded and,
consequently, the construction of such a tree is a finite process.

Theorem 13.6 If a preset distinguishing sequence for an n-state machine M
exists then its length is at most (n − 1)nn.

Proof Let the uncertainty vector at some level in the distinguishing tree
consist of m components whose sizes are k1, k2, . . . , km. Clearly, the sum of the
sizes of all the components must be equal to n; i.e., k1 + k2 + · · · + km = n.
Let the numbers k1, k2, . . . , km be subsets in a partition μ such that μ =
{k1, k2, . . . , km}. Clearly, μ defines the size distribution of the components in
the uncertainty vector. The number of different uncertainty vectors with the
same size distribution μ is equal to nk1nk2 · · · nkm = nn.

Consider now a path in the tree leading from the initial uncertainty vector
to a trivial uncertainty vector. Let U1 and U2 be uncertainty vectors along this
path, with corresponding partitions μ1 and μ2. Clearly, if U2 is a successor of
U1 then the size distribution of U2 is either equal to that of U1 or is a refinement
of that of U1; i.e., μ1 ≥ μ2. Also, since the initial uncertainty vector contains n

states, there are at most n − 1 possible refinements of partitions along the path
leading to the distinguishing sequence. Accordingly, the length of this path is
L ≤ (n − 1)nn. ♦

The above bound is not necessarily the least upper bound.

Notes and references

The study of machine behavior from terminal experiments was first introduced by Moore
[13] in 1956. He established the notions of homing, synchronizing, and distinguishing
experiments and derived bounds on their lengths. Moore’s ideas were further developed
by Gill [5], who simplified the search for the homing and distinguishing sequences,
Ginsburg [6], Hibbard [8], and Kohavi and Winograd [12]. The material on checking
experiments is taken from Hennie [7], Kohavi and Lavallee [10], Kohavi and Kohavi [9],
and Kohavi et al. [11]. State-table-based test generation using a functional fault model
was presented by Cheng and Jou [2]. A survey of sequential test generation methods was
presented by Cheng [3]. Sequential test generation based on nine-valued logic was first
presented by Muth [14]. Scan design was first discussed by Williams and Angell [15].
A level-sensitive scan design, which is quite influential, was discussed by Eichelberger
and Williams [4]. A more detailed description of BIST techniques can be found in the
book by Bardell, McAnney, and Savir [1].

468 State-identification experiments and testing of sequential circuits

[1] Bardell, P. H., W. H. McAnney, and J. Savir: Built-in Test for VLSI: Pseudorandom
Techniques, John Wiley & Sons, 1987.

[2] Cheng, K.-T., and J.-Y. Jou: “A functional fault model for finite state machines,”
IEEE Trans. Computer-Aided Design, vol. 11, no. 9, pp. 1065–1073, September
1992.

[3] Cheng, K.-T.: “Gate-level test generation for sequential circuits: a survey,” ACM
Trans. Design Automation of Electronic Systems, vol. 1, no. 3, pp. 405–442, 1996.

[4] Eichelberger, E. B., and T. W. Williams: “A logic design structure for design for
testability,” in Proc. Design Automation Conf., pp. 462–468, June 1977.

[5] Gill, A.: “State-identification experiments in finite automata,” Information and
Control, vol. 4, pp. 132–154, 1961.

[6] Ginsburg, S.: “On the length of the smallest uniform experiment which distin-
guishes the terminal states of a machine,” J. Assoc. Computing Machinery, vol. 5,
pp. 266–280, July 1958.

[7] Hennie, F. C.: “Fault detecting experiments for sequential circuits,” in
Proc. Fifth Ann. Symp. Switching Circuit Theory and Logical Design,
pp. 95–110, November 1964.

[8] Hibbard, T. N.: “Least upper bounds on minimal terminal state experiments for
two classes of sequential machines,” J. Assoc. Computing Machinery, vol. 8,
pp. 601–612, October 1961.

[9] Kohavi, I., and Z. Kohavi: “Variable-length distinguishing sequences and their
application to the design of fault-detection experiments,” IEEE Trans. Computers,
vol. C-17, pp. 792–795, August 1968.

[10] Kohavi, Z., and P. Lavallee: “Design of sequential machines with fault-
detection capabilities,” IEEE Trans. Electron. Computers, vol. EC-16,
pp. 473–484, August 1967.

[11] Kohavi, Z., J. A. Rivierre, and I. Kohavi: “Checking experiments for sequential
machines,” Information Sciences, vol. 7, no. 1, pp. 11–28, January 1974.

[12] Kohavi, Z., and J. Winograd: “Establishing bounds concerning finite automata,”
J. Computer & System Sciences, vol. 7, no. 3, pp. 288–299, June 1973.

[13] Moore, E. F.: “Gedanken-experiments on sequential machines,” pp. 129–153,
Automata Studies, Princeton University Press, 1956.

[14] Muth, P.: “A nine-valued circuit model for test generation,” IEEE Trans. Comput-
ers, vol. C-25, no. 6, pp. 630–636, June 1976.

[15] Williams, M., and J. Angell: “Enhancing testability of large-scale inte-
grated circuits via test points and additional logic,” IEEE Trans. Computers,
vol. C-32, pp. 46–60, 1973.

Problems

Problem 13.1. For each machine shown in Table P13.1:
(a) find the shortest homing sequences;
(b) determine whether synchronizing sequences exist, and if any do exist, find the

shortest ones.

469 Problems

Table P13.1

NS, z NS, z NS, z

PS x = 0 x = 1 PS x = 0 x = 1 PS x = 0 x = 1

A A, 1 E, 0
B A, 0 C, 0 A B, 0 A, 0 A C, 0 D, 1
C B, 0 D, 1 B B, 1 C, 1 B C, 0 A, 1
D C, 1 C, 0 C A, 1 D, 0 C A, 1 B, 0
E C, 0 D, 0 D C, 0 A, 1 D B, 0 C, 1

M1 M2 M3

Problem 13.2. It is necessary to synchronize the machine of Table P13.2 to state A

with a minimum number of input symbols. Devise such a procedure.

Table P13.2

NS, z

PS x = 0 x = 1

A C, 1 E, 1
B A, 0 D, 1
C E, 0 D, 1
D F, 1 A, 1
E B, 1 F, 0
F B, 1 C, 1

Problem 13.3. You are presented with a machine that is known to be described by one
of the two state tables shown in Table P13.3. No information is available regarding the
initial state of the machine. Devise a procedure for identifying the machine, and find all
minimal preset experiments that can perform this task.

Hint: Construct a machine which is the direct sum of the two machines.

Table P13.3

NS, z NS, z

PS x = 0 x = 1 PS x = 0 x = 1

A A, 0 B, 0 D E, 0 F, 1
B C, 0 A, 0 E F, 0 D, 0
C A, 1 B, 0 F E, 0 F, 0

Problem 13.4. Find the shortest homing sequence for the machine shown in Table
P13.4. (Note that this machine is a special case, n = 4, of the machine of
Fig. P13.5.)

470 State-identification experiments and testing of sequential circuits

Table P13.4

NS, z

PS I1 I2 I3

S1 S1, 0 S1, 0 S1, 0
S2 S3, 0 S2, 0 S2, 0
S3 S2, 0 S4, 0 S3, 0
S4 S4, 0 S3, 0 S4, 1

Problem 13.5. It can be shown that every n-state machine has a preset homing sequence
whose length does not exceed 1

2 (n − 1)n. By referring to Fig. P13.5, prove that this bound
cannot be lowered; i.e., there exists a class of machines the length of whose homing
sequences is precisely 1

2 (n − 1)n.

S3

S2

I1/0

S1

S4

S5

Sn−1

Sn

I1/0

I2/0I2/0

I3/0I3/0

I4/0I4/0

In−3/0 I /0

In−2 n−2

n−3

/0 I /0

I1/0 + I2/0+ I3/0+ …

+ …

+ …

+ …

+ …

+ …

+ …

+ In−1

n−1

n−1

n−1

n−1

n−1n−4

n−4 n−3

n−5

n−1

/0

I1/0 + I /0+ I /0 + I /0

I1/0 + I2/0 + I5/0 + I /0

I1/0 + I4/0 + I5/0 + I /0

I3/0+ I4/0 + I5/0 + I /0

I2/0 + I3/0 + I4/0 + I /0

I1/0 + I /0 + I /0 + I /1

Fig. P13.5

471 Problems

Problem 13.6
(a) Find a single sequence of 0’s and 1’s that can serve as a homing sequence for all

reduced and strongly connected three-state machines whose input symbols are 0
and 1.

(b) Can you generalize the result of part (a) to n-state machines? Show a bound on the
length of such sequences.

Problem 13.7. Prove that, in a reduced n-state machine, every set of n − k states (n −
2 ≥ k ≥ 0) contains at least one pair of states that is distinguishable by an experiment
of length k + 1.

Problem 13.8. It is necessary to determine the final state of the machine shown in
Table P13.8 when the initial state is unknown and only output sequences from the
machine are available to the experimenter; that is, no information regarding the input to
the machine is available.
(a) Devise a procedure to determine whether a specific output sequence can be used to

identify the final state of the machine.
(b) Find a reduced standard-form state table that accepts precisely those output

sequences which can be used to identify the final state of the machine. Use the
state names A, B, etc.

Table P13.8

NS, z

PS x = 0 x = 1

A B, 0 C, 0
B A, 0 D, 1
C D, 1 B, 0
D A, 1 D, 1

Problem 13.9. For each of the machines shown in Table P13.9, determine whether
preset distinguishing sequences exist, and if any do exist then find the shortest ones.

Table P13.9

NS, z NS, z NS, z

PS x = 0 x = 1 PS x = 0 x = 1 PS x = 0 x = 1

A C, 1 A, 0 A D, 0 C, 1 A A, 0 E, 1
B D, 0 D, 0 B A, 0 B, 1 B E, 1 A, 0
C A, 0 D, 0 C E, 0 B, 1 C F, 1 B, 0
D B, 0 C, 0 D B, 0 D, 1 D B, 0 F, 1

E C, 1 E, 1 E C, 1 G, 0
M1 F G, 0 C, 1

M2 G H, 0 D, 1
H D, 1 H, 0

M3

472 State-identification experiments and testing of sequential circuits

Problem 13.10
(a) Find a preset distinguishing experiment that determines the initial state of the

machine shown in Table P13.10, given that it cannot initially be in state E.
(b) Can you identify the initial state when the initial uncertainty is (ABCDE)?

Table P13.10

NS, z

PS x = 0 x = 1

A B, 1 A, 1
B E, 0 A, 1
C A, 0 E, 1
D C, 1 D, 1
E E, 0 D, 1

Problem 13.11. Specify the entries marked * in the machine of Table P13.11 in such
a way that the machine will be strongly connected and the sequences 000 and 111 will
be distinguishing sequences.

Table P13.11

NS, z

PS x = 0 x = 1

A ∗, 0 ∗, 0
B C, 0 D, 0
C A, 0 B, 0
D D, 1 A, 1

Problem 13.12. Prove that the length L of the minimal distinguishing sequence for a
machine with n states and q output symbols is bounded by

L ≥ log2 n

log2 q
.

Problem 13.13. Let M be a reduced n-state machine with input alphabet
I = {I1, I2, . . . , Ip}.
(a) Prove that if, for every input symbol Ii in M , there exists a pair of states whose

successors are identical while producing the same output symbol in response to Ii

then M does not have any distinguishing sequence.
(b) Prove that if there exists no such pair of states as that described in (a) for any input

symbol Ii in M then M has a preset distinguishing sequence whose length is at
most 1

2 n(n − 1).

Problem 13.14
(a) (a) Show that every machine of the form in Fig. P13.14 has a synchronizing

sequence. Find such a sequence and specify its length.

473 Problems

x

zCombinational logic

D DDFig. P13.14

(b) Does every machine of this form also have a distinguishing sequence? Prove that
it does or show a counter-example.

(c) Can every finite-state machine be realized in this form?

Problem 13.15. The response of the machine shown in Table P13.15 to an unknown
input sequence is given to an experimenter. Devise a procedure that the experimenter
may use in order to identify the initial state. What are the minimum-length sequences
that will make such an identification possible?

Table P13.15

NS, z

PS x = 0 x = 1

A A, 0 B, 0
B C, 0 D, 0
C D, 1 C, 1
D B, 1 A, 1

Problem 13.16. The machine shown in Table P13.16 is initially provided with an
input sequence 01 to which it responds by producing an output sequence 10. It is
next provided with the sequence 1010101010010011010001. Assuming that no fault
increases the number of states, show that this sequence is a checking experiment for
this machine and find the correct output sequence.

Table P13.16

NS, z

PS x = 0 x = 1

A A, 1 B, 0
B C, 0 A, 0
C B, 0 C, 1

Problem 13.17. The initial state of the machine shown in Table P13.17 is A, but
its entry in row D, column 1, is unknown. An input sequence 0110 was applied to
the machine, which produced an output sequence whose last two symbols are 00.
Following this sequence, a sequence 101 was applied, and this in turn produced an
output sequence whose last symbol is a 0. Determine the missing entry.

474 State-identification experiments and testing of sequential circuits

Table P13.17

NS, z

PS x = 0 x = 1

A B, 0 C, 1
B A, 1 D, 1
C C, 0 A, 1
D E, 1 ∗
E A, 0 E, 0

Problem 13.18. The input sequence X shown below was applied to a reduced five-state
machine whose state table is to be determined. In response, the machine produced output
sequence Z. Give the state table of the machine in standard form if its starting state
is A.

X : 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0
Z : 0 1 2 0 1 3 2 1 1 0 1 3 3 2 0 1 3 3 3 2 1 2 1 1

Problem 13.19. Construct a checking experiment for the machine of Table P13.19.
(Such an experiment need not require more than 24 symbols.)

Table P13.19

NS, z

PS x = 0 x = 1

A D, 0 C, 0
B C, 0 D, 0
C A, 0 B, 0
D D, 1 A, 1

Problem 13.20. The following experiment was proposed as a checking experiment for
the machine shown in Table P13.20, when started in state A and under the assumption
that the number of states will not increase as a result of a fault. Either prove that it is
a proper checking experiment, i.e., that it identifies the machine uniquely, or show by

Table P13.20

NS, z

PS x = 0 x = 1

A A, 2 B, 2
B C, 0 A, 1
C D, 1 E, 0
D E, 2 A, 0
E B, 1 C, 2

475 Problems

means of a counter-example that it is not such an experiment.

Input : 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0
Output : 2 2 2 0 1 0 2 2 0 0 2 1 2 1 1 2 2

Problem 13.21. A four-state machine received the input sequence X shown below
and, in response, produced output sequence Z.
(a) What are the distinguishing sequences for the machine?
(b) Assuming the machine starts in state A, do the sequences below correspond to a

unique machine? If yes, show its state table; if not, show all possible state tables.

X : 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1
Z : 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0

Problem 13.22. By referring to the machine in Table P13.22, where �g� is the largest
integer not exceeding g, prove that the bound established in Section 13.6 for definite
diagnosability is the least upper bound. That is, prove that for every n there exists an
n-state machine, as given in Table P13.22, which is definitely diagnosable and of order
μ = 1

2 n(n − 1).

Table P13.22

PS I1 I2 I3

1 2, 0 3, 0 2, 0
2 3, 0 4, 0 3, 0
3 4, 0 5, 0 4, 0
...

...
...

...
i i + 1, 0 i + 2, 0 i + 1, 0
...

...
...

...
�n/2� − 1 �n/2�, 0 �n/2� + 1, 0 �n/2�, 0
�n/2� �n/2� + 1, 0 �n/2� + 2, 1 �n/2� + 1, 1
...

...
...

...
j j + 1, 0 j + 2, 1 j + 1, 1
...

...
...

...
n − 2 n − 1, 0 n, 1 n − 1, 1
n − 1 n, 0 1, 1 n, 0
n 1, 1 1, 0 n, 1

Problem 13.23
(a) Show the testing table and graph for the machine given in Table P13.23.
(b) Add to the machine one output terminal such that the sequence 11 becomes a

distinguishing sequence.
(c) Design a checking experiment for the augmented machine. (Twenty four symbols

are sufficient.)

476 State-identification experiments and testing of sequential circuits

Table P13.23

NS, z

PS x = 0 x = 1

A A, 0 B, 0
B A, 0 C, 0
C A, 0 D, 0
D A, 1 A, 0

Problem 13.24. An unknown three-state machine with two input symbols 0 and 1
is provided with input sequence X, and it responds by producing output sequence Z.
These sequences are given below:

X : 1 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1
Z : 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 0 0

Show that this experiment is sufficient to identify the machine uniquely (up to
isomorphism).

Problem 13.25. For the machine M5 shown in Table 13.10:
(a) obtain a minimum set of collapsed SST faults;
(b) derive a test sequence for the SST fault that corrupts <1, B, B, 1> to <1, B, C, 1>.

Problem 13.26. For the circuit in Fig. 13.7(a):
(a) find a test sequence for the fault y s-a-1 using the extended D-algorithm;
(b) repeat (a) for the fault y s-a-0.

Problem 13.27. Consider the sequential circuit shown in Fig. P13.27. Suppose that it
is to be tested for all single stuck-at faults in its combinational logic using full scan.
(a) Find a minimal test set for its combinational logic.
(b) What is the minimum number of clock cycles needed to apply all vectors from

your test set to the circuit using scan?

zx1

D

x2

Dy1 Y1

x1

Y2
y2

Fig. P13.27

477 Problems

Problem 13.28
(a) How many loops does the state diagram of the LFSR based on feedback polynomial

p(x) = x4 + x2 + 1 consist of?
(b) Find a primitive polynomial of degree 4, and show that the state diagram of the

corresponding LFSR consists of only two loops, one with the all-0 state and the
other with all the remaining states.

Problem 13.29
(a) Consider an LFSR based on a primitive polynomial. Prove that if its seed is the

all-0 state then it remains in the all-0 state.
(b) Show how one can modify the design of such a k-stage LFSR such that it can

generate all the 2k states in one loop in its state diagram.
Hint: The addition of a (k − 1)-input NOR gate and a two-input EXCLUSIVE-OR
gate to the design shown in Fig. 13.14 is enough.

(c) Verify that your modification of the LFSR shown in Fig. 13.15 generates all eight
states in a loop.

Problem 13.30. Consider the sequence of test patterns generated by a k-stage LFSR
with a feedback polynomial p(x), where the values at yk, yk−1, . . . , y1 are said to said
to constitute a test pattern. The above sequence of patterns can be generated in reverse
order if the k-stage LFSR is based on the feedback polynomial xnp(1/x) instead and the
values at y1, y2, . . . , yk are said to constitute a test pattern. For example, x3 + x2 + 1
and x3 + x + 1 form such a pair of polynomials. Verify the above assertion for the
LFSRs based on this pair by comparing their state diagrams.

Problem 13.31. Suppose the circuit given in Fig. P13.31 is to be tested by the LFSR
shown in Fig. 13.15 for all single stuck-at faults. Derive a stuck-at fault test set for this
circuit such that this test set can be applied to it in four clock cycles from the LFSR,
starting from a particular seed. Assume that y1 is connected to x1, y2 to x2, and y3

to x3.
Hint: No re-seeding is necessary.

x2 fx3

x1Fig. P13.31

C H A P T E R

14 Memory, definiteness, and
information losslessness of
finite automata

An important characteristic of a finite-state machine is that it has a “memory,”
i.e., the behavior of the machine is dependent upon its past history. While the
behavior of some machines depends on remote history, the behavior of others
depends only on more recent events. The amount of past input and output
information needed to determine the machine’s future behavior is called the
memory span of the machine.

If the initial state of a deterministic completely specified machine and the
input sequence to it are known then the corresponding final state and out-
put sequence can be determined uniquely. However, there are special situa-
tions in which either the initial state is unknown or some past input sym-
bols are unknown. In such situations, the behavior of the machines cannot
always be predicted in advance. In this chapter, we shall try to answer the
following questions. For a given machine, what is the minimum amount of
past input–output information required in order to render its future behavior
completely predictable? Under what conditions can the input sequence to the
machine be reconstructed from its output sequence? Finally, we shall investi-
gate some aspects of the relationship between finite-state machines and coding
theory.

14.1 Memory span with respect to input–output sequences
(finite-memory machines)

A finite-state machine M is defined as a finite-memory machine of order μ,
if μ is the least integer such that the present state of M can be determined
uniquely from the knowledge of the last μ input symbols and the correspond-
ing μ output symbols. In other words, a machine is finite-memory of order μ

if and only if every input sequence of length μ is a homing sequence. Con-
sequently, the homing tree can serve as a possible tool for the detection and
recognition of a finite memory for M . In this section, however, we shall derive

478

479 14.1 Memory span with respect to input–output sequences

Table 14.1 Machine M1

NS, z

PS x = 0 x = 1

A B, 0 C, 1
B D, 0 C, 0
C D, 0 B, 1
D C, 0 A, 0

Table 14.2 Testing table for M1

PS 0/0 0/1 1/1 1/0

A B — C —
B D — — C

C D — B —
D C — — A

AB BD — — —
AC BD — BC —
AD BC — — —
BC DD — — —
BD CD — — AC

CD CD — — —

a different test, which will be shown to be valid for all memory aspects of
automata.

The testing table and testing graph1

Consider a machine M1, whose state table is shown in Table 14.1. We may
rewrite that state table as shown in the upper half of Table 14.2. The column
headings of Table 14.2 consist of all input–output symbol combinations, and
the entries of the upper half of the table are the next-state entries corresponding
to these combinations. For example, the 1-successor of state C is B, and the
corresponding output symbol is z = 1. Consequently, a B is entered in row C,
column 1/1, of the table, and a dash (—) is entered in row C, column 1/0. The
entire upper half of Table 14.2 is completed in a similar manner.

The row headings in the lower half of the table are all the unordered pairs of
states, while the table entries are the corresponding successors. If the entries in
rows Si and Sj , column Ik/Ol , of the upper half are Sp and Sq respectively then
the entry in row SiSj , column Ik/Ol , of the lower half is SpSq . For example, the
entries in rows A and C, column 1/1, are C and B, respectively. Consequently,
the entry in row AC, column 1/1, is BC. If, for some pair of states Si and Sj ,
either one or both corresponding entries in some column Ik/Ol are dashes then
the entry in row SiSj , column Ik/Ol , is a dash. For example, the entry in row
AB, column 1/0, is a dash since the entry in row A, column 1/0, is a dash,
and so on. The table so completed is called a testing table for finite memory, or
simply, a testing table.

We shall refer to a pair of states (SiSj) as an uncertainty pair, and to its
successor (SpSq) as the implied pair. Thus, for example, the pair (AC) is
implied by (BD).

1 The testing table and graph are similar to those presented in Section 13.6, but are redefined
here for completeness of the presentation.

480 Memory, definiteness, and information losslessness of finite automata

AB BD CD

AC

0/0

1/1

0/00/0

1/0

0/0

BC AD
0/0

Fig. 14.1 The testing graph G1

for M1.

Let us now define a directed graph G, which will be called a testing graph
(for finite memory), in the following way.

1. Corresponding to each row in the lower half of the testing table, there is a
vertex in G. The vertex label is the same as the row heading.

2. An arc is drawn leading from the vertex labeled SiSj to the vertex labeled
SpSq , where p = q, if and only if there exists an entry SpSq in row SiSj ,
column Ik/Ol , of the testing table. The arc is labeled Ik/Ol . No arc is needed
if SiSj implies SpSp, e.g., DD in row BC.

The testing graph G1 for machine M1 is derived directly from the lower half of
the testing table and is shown in Fig. 14.1.

Conditions for finite memory

Let the initial uncertainty regarding the state of machine M be (S1S2 · · · Sn).
M is finite-memory of order μ if the application of any input sequence of
length μ transfers the machine into an identifiable state, and if there exists an
input sequence of length μ − 1 that, together with the corresponding output
sequence, does not provide enough information for a unique identification of
the final state.

Theorem 14.1 A sequential machine M has a finite memory if and only if its
testing graph G is loop-free.

Proof Assume that G is not loop-free. Then, by repeatedly applying the
symbols coinciding with the labels of the arcs in the loop, we can find an
arbitrarily long input sequence that cannot resolve the uncertainty regarding
the final state, thus the machine is not finite-memory. To prove sufficiency,
assume that G is loop-free. If M is not finite-memory then there exists an
arbitrarily long path in G corresponding to some input sequence X and some
pair of states (SiSj) such that Si and Sj cannot be distinguished by X. However,
since the number of vertices in G cannot exceed 1

2 (n − 1)n (corresponding to
the number of distinct pairs of states), arbitrarily long paths in G are possible
only if it contains a loop. Thus, the theorem is proved. ♦

481 14.1 Memory span with respect to input–output sequences

Table 14.3 Machine M2

NS, z

PS x = 0 x = 1

A B, 0 D, 0
B C, 0 C, 0
C D, 0 A, 0
D D, 0 A, 1

Table 14.4 Testing table for M2

PS 0/0 0/1 1/1 1/0

A B — — D

B C — — C

C D — — A

D D — A —

AB BC — — CD

AC BD — — AD

AD BD — — —
BC CD — — AC

BD CD — — —
CD DD — — —

Example From the testing graph of M1 (Fig. 14.1), it is evident that, since
G1 contains two loops, M1 is not finite-memory. An arbitrarily long string
of 0 input symbols will never resolve the uncertainty (CD). Similarly, if the
initial uncertainty is (AC) then the input sequence 0101 · · · 01 will transfer
the machine to (BD), (AC), (BD), . . . , and so on.

Corollary Let G be a loop-free testing graph for machine M. If the length of
the longest path in G is l then μ = l + 1.

Proof Since G is loop-free, M has a finite memory. Assume that μ > l + 1;
then there exists at least one uncertainty pair (SiSj) that is transferred, by
the application of an input sequence of length l + 1, to another pair (SpSq).
Consequently, there must exist a path between vertices SiSj and SpSq in G

whose length is l + 1. This contradicts our assumption and thus μ cannot
exceed l + 1. The proof that μ cannot be smaller than l + 1 is trivial. ♦

From the preceding results, it is evident that if a machine is finite-memory of
order μ then μ ≤ 1

2 (n − 1)n.

A machine for which μ = 1
2 (n − 1)n

The machine M2 shown in Table 14.3 illustrates the case where the bound of μ

is achieved. The corresponding testing table and graph are given in Table 14.4
and Fig. 14.2, respectively.

Clearly, the testing graph of M2 is loop-free and its maximal path, emanating
from AB and terminating at CD, is of length 5. Hence, μ = 6. In general, it
can be shown (see Problem 14.3) that there exists a class of machines for which
μ = 1

2 (n − 1)n and, therefore, the bound of μ is the least upper bound and
cannot be improved.

482 Memory, definiteness, and information losslessness of finite automata

AB BC AC

CD

0/0

0/0

0/0

1/0

1/00/0

BD AD
0/0

1/0

Fig. 14.2 Testing graph for M2.

*An algorithm to determine whether a graph is loop-free

When the number of vertices in a testing graph G is large, it is desirable to
have a more systematic algorithm to determine whether it is loop-free and, if it
is, the length of the longest path l. We present here one such algorithm, which
does not require the actual drawing of the graph and can be easily executed by
a computer.

Let G be a directed graph with p vertices. Define the connection matrix of G

to be a p × p matrix whose (i, j)th entry is 1 if there is an arc emanating from
vertex i and terminating at vertex j , and is 0 otherwise. The labels associated
with the rows and columns of the matrix are the same as the labels of the
vertices of G. The labels associated with corresponding rows and columns are
identical; i.e., the ith row and the ith column have the same label.

The procedure for determining whether a graph is loop-free can be illustrated
by means of the machine M2. The connection matrix of M2 is derived directly
from the testing table and is as follows:

(AB)
(AC)
(AD)
(BC)
(BD)
(CD)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 1
0 0 1 0 1 0
0 0 0 0 1 0
0 1 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Two arcs emanate from vertex AB: to BC and CD. Therefore, the entries in
row AB, columns BC and CD, are 1, and so on.

If a directed graph G is loop-free then it has one or more terminal vertices.2

Furthermore, the subgraph resulting from the removal of a terminal vertex and
all arcs leading to it is also loop-free. This can be proved by observing that
if G has no terminal vertex then we can construct arbitrarily long paths in G.
However, since G is finite, this means that G has a loop. In the matrix represen-
tation, the removal of a vertex and all arcs leading to and from it is accomplished
by the deletion from the matrix of the row and column corresponding to this
vertex.

2 A vertex from which no arcs emanate is called a terminal vertex.

483 14.2 Memory span with respect to input sequences (definite machines)

The testing algorithm is summarized as follows.

1. Given a testing table, construct the corresponding connection matrix.
2. Delete all the rows having 0’s in all positions and remove the corresponding

columns. If there are none, go to step 4.
3. Repeat step 2.
4. If the matrix has not completely vanished then G is not loop-free. If the

matrix has vanished, G is loop-free. (A “vanished” matrix has no rows or
columns.)

Returning to the connection matrix of M2, the first application of step 2
results in the removal of the row labeled (CD) and its corresponding column.
The resulting matrix is

(AB)
(AC)
(AD)
(BC)
(BD)

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 1 0 1
0 0 0 0 1
0 1 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ .

Repeated applications of step 2 result in the removal of the rows labeled (BD),
(AD), (AC), and so on:

(AB)
(AC)
(AD)
(BC)

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦

(AB)
(AC)
(BC)

⎡
⎣0 0 1

0 0 0
0 1 0

⎤
⎦ (AB)

(BC)

[
0 1
0 0

]
(AB)

[
0
]
.

Clearly, at the next step the matrix vanishes.
We observe that at each application of step 2 we remove the terminal vertices

and all arcs leading to them. Consider the terminal vertices at the end of
the longest paths whose length is l. It takes l + 1 applications of step 2 to
remove all the vertices in these paths and to eliminate the matrix. Consequently,
the number of times that step 2 is applied is equal to order μ of the memory.
In the preceding example, step 2 was applied six times; consequently, M2 is
finite-memory of order μ = 6, as is already known. Note that if at some time
the matrix contains two (or more) rows consisting of 0’s in all their positions,
all these rows and their corresponding columns must be deleted simultaneously,
and this step counts as a single application of step 2.

14.2 Memory span with respect to input sequences (definite machines)

A sequential machine M is called a definite machine of order μ if μ is the
least integer such that the present state of M can be determined uniquely from
knowledge of the last μ input symbols to M . A definite machine is thus said to

484 Memory, definiteness, and information losslessness of finite automata

x1

z

D

Combinational logic

DD
xux

x2
Fig. 14.3 Canonical realization
of a μ-definite machine.

have a finite input memory. However, for a nondefinite machine there always
exists at least one input sequence of arbitrary length that does not provide
enough information to identify the state of the machine. A definite machine of
order μ is often called a μ-definite machine. Clearly, if a machine is μ-definite
then it is also finite-memory of order equal to or smaller than μ.

The knowledge of any μ past input values is always sufficient to completely
specify the present state of a μ-definite machine. Therefore, any μ-definite
machine can be realized as a cascade connection of μ delay elements, which
store the last μ input values, and a combinational circuit that generates the spec-
ified output value. This realization, which is often referred to as the canonical
realization of a definite machine, is shown in Fig. 14.3.

Properties of definite machines

We shall now study some properties of definite machines, from which we shall
derive tests for definiteness. The first obvious property is that a machine is
definite of order μ if and only if every sequence of length μ is a synchroniz-
ing sequence. This property can be detected by means of the synchronizing
tree presented in Section 13.2. The tree is terminated whenever either of the
following occurs.

1. An uncertainty in the kth level is also associated with some node in a
preceding level.

2. All nodes of the kth level are associated with singleton uncertainties, i.e.,
uncertainties that consist of a single state each.

Clearly, if the tree terminates by virtue of rule 1 then the corresponding machine
is not definite. However, if the tree terminates by virtue of rule 2 then the corre-
sponding machine is definite, since this means that every input sequence (i.e.,
path in the tree) leads to a unique final state. Furthermore, the length of the
path determines the order of definiteness; that is, if the tree is terminated in
level k and rule 2 is satisfied then the corresponding machine is k-definite.
Note that if some node is associated with a singleton uncertainty then that
node may become terminal, but the successors of other nodes must be deter-
mined. The order of definiteness is determined by the length of the longest
path.

485 14.2 Memory span with respect to input sequences (definite machines)

Example Consider the machine M3 whose state table is given in Table 14.5.
The output entries have been omitted, since only the inputs to the machine
play a role in the determination of definiteness. The synchronizing tree for
machine M3 is shown in Fig. 14.4. Its length is k = 3 and, consequently,
M3 is definite of order 3.

Table 14.5 Machine M3

NS

PS x = 0 x = 1

A A B

B C B

C A D

D C B

0

0

(ABCD)

Level

0

1

(BD)(AC)

(A B)(C)((BD))

(C) (B)

0

1

1 10

3

2

1

Fig. 14.4 Synchronizing tree for M3.

Let M be a μ-definite machine, and let (SiSj) be a nontrivial uncertainty
in the (μ − 1)th level of the corresponding synchronizing tree. Since the μth
level of the tree consists of only single states, the Ik-successors of both Si and
Sj must be identical for every possible Ik in I ; that is, every definite machine
contains at least two distinct states for which IkSi = IkSj for all Ik in I . Define
the contracted table M as the table obtained by deleting row Sj and replacing in
the entire table all appearances of Sj by Si . It is easy to show that the application
of any input sequence X to M or M , when initially in any state Sk such that
Sk = Sj , will pass both M and M to the same final state if the final state is
different from Sj and will pass M to Si if the final state of M is Sj .

More generally, let M be the contracted table obtained from M by replacing
each set of states whose Ik-successors are identical by a single member from
that set. Clearly, the synchronizing tree of M has only μ − 1 levels, and its

486 Memory, definiteness, and information losslessness of finite automata

last level consists of only singleton uncertainties. However, since such a tree
corresponds to a machine which is (μ − 1)-definite, we arrive at the following
general result.

� If M is a μ-definite machine then the contracted machine M is (μ − 1)-
definite. Conversely, if M is k-definite then M is (k + 1)-definite. If M is
not definite, neither is M .

Tests for definiteness

The synchronizing tree can be used to test for definiteness. In this section
we shall illustrate two additional testing procedures. The first procedure, which
utilizes the previously derived properties of definite machines, involves repeated
derivations of contracted tables. The second procedure is based on the familiar
testing graph.

The first test for the definiteness of a machine M is as follows.

1. Determine the subsets of states whose Ik-successors are identical.
2. Select one representative state in each subset.
3. Obtain the contracted table M by replacing each subset with its representa-

tive and modifying the table entries accordingly.
4. Regard M as a new table and repeat the previous steps until no new contrac-

tions are possible.

The machine M is definite if and only if the final contracted table obtained in
step 4 consists of just a single state.

Example The machine M4 of Table 14.6 will be tested for definiteness. The
nontrivial subsets of states whose corresponding successors are identical
are (B,F) and (C,D). Select B and C as the representative states and
obtain the contracted table M4, which consists of four states as shown in
Table 14.7. States B and C in the contracted table can now be represented by

Table 14.6 Machine M4

NS

PS x = 0 x = 1

A A B

B E B

C E F

D E F

E A D

F E B

Table 14.7 The contracted
machine M4

NS

PS x = 0 x = 1

A A B

B E B

C E B

E A C

487 14.2 Memory span with respect to input sequences (definite machines)

Table 14.8 Repeated contractions of M4

NS

PS x = 0 x = 1

A A B

B E B

E A B

(a)

NS

PS x = 0 x = 1

A A B

B A B

(b)

NS

PS x = 0 x = 1

A A A

(c)

state B, and the contracted table shown in Table 14.8a results. The fourth
contraction yields a single-state machine. Thus, M4 is definite.

We shall now show that the test for definiteness is always finite, and determine
the bound on its length.

Theorem 14.2 Given that a machine M is μ-definite, μ ≤ n − 1, where n is
the number of states of the machine. Moreover, the order of definiteness is equal
to the number of contractions needed to obtain a one-state machine.

Proof Since M is μ-definite, M is (μ − 1)-definite. Each contracted table
must contain at least one state less than its predecessor. Consequently, after
at most n − 1 repeated contractions we obtain a one-state machine that is 0-
definite, i.e., no input symbol is required in order to determine its present or final
state. To determine the order of definiteness, it is necessary to count backward;
that is, the last contracted table is 0-definite, its predecessor is 1-definite, and
so on. ♦

For machine M4, μ = 4 since four contractions are necessary in order to
obtain a one-state machine.

The second test for definiteness is based on a testing table and graph, which
are defined as follows. The testing table (for definiteness), which is divided
into two parts, has p columns corresponding to I1, I2, . . . , Ip. The rows in the
upper part of the table correspond to the states of the machine, and the table
entries are the state transitions. The row headings in the lower part of the table
are all unordered pairs of states, while the table entries are the corresponding
successors. The testing graph (for definiteness) is defined as in the previous
section and is derived directly from the lower part of the testing table. The
arc labels, however, are now input symbols instead of input–output symbol
combinations.

Example The testing table for the machine M3 is shown in Table 14.9, and
the corresponding testing graph, which is loop-free, is shown in Fig. 14.5.

488 Memory, definiteness, and information losslessness of finite automata

Table 14.9 The testing table
for M3 (see Table 14.5)

PS x = 0 x = 1

A A B

B C B

C A D

D C B

AB AC BB

AC AA BD

AD AC BB

BC AC BD

BD CC BB

CD AC BD

AB

BC

AC

CD

0

0

1

10
BD

AD

0

1

Fig. 14.5 Testing graph for M3.

Theorem 14.3 A machine M is μ-definite if and only if its corresponding
testing graph G is loop-free. If the length of the longest path in G is l then
μ = l + 1.

Proof The proof is similar to that of Theorem 14.1 and is left to the reader as
an exercise. ♦

The machine M3 is definite of order μ = 3, since its testing graph is loop-free
and the longest path in the graph is of length l = 2.

The relationship between the testing graph and the synchronizing tree is
evident. A loop-free graph means that no uncertainty in the kth level of the tree
is also associated with some node in a preceding level and, conversely, a loop
in the graph means that such a situation does occur.

14.3 Memory span with respect to output sequences

A finite-state machine M is said to have an output memory of order μ if μ is
the least integer such that the knowledge of the last μ output symbols suffices
to determine the state of M at some time during the last μ transitions. In this
section, emphasis is placed on the specification of the state of M at some time
during the experiment, instead of on the identification of the final state. The
case of identifying the final state is more restricted and is left to the reader as
an exercise.

Test for output memory

The major tools for testing whether a given machine has a finite output memory
are a modified testing table and its corresponding testing graph. The testing table
(for output memory), which consists of two parts, has q columns corresponding
to the output symbols of the machine, i.e., O1, O2, . . . , Oq . The row names of

489 14.3 Memory span with respect to output sequences

Table 14.10 Machine M5

NS, z

PS x = 0 x = 1

A B, 0 D, 1
B C, 1 A, 1
C B, 0 C, 0
D C, 0 C, 1

Table 14.11 Testing table for M5

PS z = 0 z = 1

A B D

B — (AC)
C (BC) —
D C C

AB — (AD)(CD)
AC (BB)(BC) —
AD (BC) (CD)
BC — —
BD — (AC)(CC)
CD (BC)(CC) —

the upper part of the table are the states of M . The entries in row Si , column Oj ,
are the states that can be reached from Si by single transitions associated with
the output symbol Oj . We shall call these states the (output) Oj -successors of
Si . The entire upper half of the testing table is, actually, a listing of the output
successors of the states of M and is therefore called an output successor table.
Thus, for the machine M5 of Table 14.10, the output 1-successors of B are A

and C; state B has no output 0-successors. This is recorded in Table 14.11 by
entering AC in row B, column 1, and a dash in row B, column 0. When the
reference to output successors is self-evident in the context, we shall omit the
adjective “output.”

For each unordered pair of states there is a row in the lower half of the testing
table. The table entries are the corresponding output successors. The output Ok-
successors of SiSj are all pairwise combinations of the output Ok-successors
of Si and Sj . For example, if the successors of Si and Sj are SpSq and SrSt

respectively then the corresponding successors of SiSj are SpSr , SpSt , SqSr ,
SqSt . If, for some pair of states Si and Sj , either one or both Ok-successors
are dashes then the Ok-successor of SiSj is also a dash. Thus, since the output
1-successor of C is a dash, the output 1-successor of AC is also a dash, as
shown in the lower half of Table 14.11.

A testing graph (for output memory) G is a directed graph, such that:

1. corresponding to each row in the lower half of the testing table there is a
vertex in G, whose label is the same as the row heading;

2. an arc labeled Ok is drawn from vertex SiSj to vertex SpSq , where p = q,
if and only if SpSq is an entry at row SiSj , column Ok .

The testing graph of the machine M5 is shown in Fig. 14.6. Note that two or
more arcs having the same label may emanate from a single vertex, e.g., vertex
AB.

490 Memory, definiteness, and information losslessness of finite automata

AB AD BD

CD

1

0

10

BC AC
0

1 1

Fig. 14.6 Testing graph G5 for
M5.

Theorem 14.4 A finite-state machine M has a finite output memory if and only
if its corresponding testing graph G is loop-free. Furthermore, if G is loop-free
and the longest path in G is of length l then M has an output memory of order
μ = l + 1.

Proof If G contains a loop, choose any two vertices in the loop, say SiSj and
SpSq ; then there exist two identical output sequences, produced by M while in
transition from Si via Sp to Si and from Sj via Sq to Sj . Since these sequences
may be repeated as many times as we wish, they will never distinguish the states
associated with any vertex contained in the loop and, consequently, M does
not have a finite output memory. If G is loop-free but M does not have a finite
output memory then, for every possible positive integer μ, there exists a path,
emanating from some vertex SiSj , that does not pass M into an identifiable
state. This implies arbitrarily long paths in G. However, since G is finite and
loop-free, this cannot be achieved and thus M has a finite output memory.

The proof that μ = l + 1 follows from the same line of argument used in the
corollary in Section 14.1. ♦

For example, G5 in Fig. 14.6 is loop-free and its longest path is of length 3;
this is the path from AB through AD and CD to BC. Thus, M5 has a finite
output memory of order μ = 4.

Note that the testing graph does not contain any vertex corresponding to
pairs consisting of repeated entries, e.g., BB, etc. The existence of such a pair
means, in effect, that there is no uncertainty regarding the state of the machine.
Therefore, the deletion of such pairs from the graph (or even from the testing
table) does not affect the test for finite output memory.

Determining the state of the machine

If a machine M has a finite output memory, it is possible to determine the state
of M at some point during any experiment of length μ. We shall now show
how to identify this state when the only available information is the output
sequence.

Suppose, for example, that the output sequence produced by the machine M5,
in response to some unknown input sequence, is 1110. Initially, the machine
could have been in either state A, B, or D, since no 1 output symbol can be

491 14.4 Information-lossless machines

generated by a transition from state C. Thus, the initial uncertainty is (ABD).
From the output successor table, we find that the output 1-successor of A is
D, of B is (AC), and of D is C. Consequently, the 1-successor uncertainty
of (ABD) is (ACD). (In general, the output successor of a set of states Q is
the set consisting of all output successors of the members of Q.) In a similar
manner, we find that the 1-successor of (ACD) is (CD), and so on. The next
state is clearly C, as shown below:

A A C C B

Possible uncertainties B C D C

D D

Output sequence 1 1 1 0

Note that although the state of M5 has been identified at one point during the
above experiment, the uncertainty increases to (BC) one time unit later.

The reason for suggesting the above definition of output memory, which
is somewhat different from those of input–output memory or definiteness, is
that the output successor table might have multivalued entries. Therefore, the
identification of the state of the machine at some point during the experiment
does not guarantee the identification of its successor. All we can say is that,
within μ transitions corresponding to any output sequence, there must be at
least one time period during which the machine is unambiguously in a certain
state, regardless of the initial state.

14.4 Information-lossless machines

A central problem in coding and information transmission is the determination
of conditions under which it is possible to reconstruct the input sequence
to the machine from the corresponding output sequence. It will be shown
that whenever a machine is used as an encoding device (i.e., the machine is
provided with an input sequence and its output sequence is the coded message)
and when its initial and final states are known, its information losslessness
guarantees that the coded message can always be deciphered. Thus, we define
a machine M to be (information) lossless if the knowledge of the initial state,
output sequence, and final state is sufficient to determine uniquely the input
sequence.

Conditions for lossiness

A machine that is not lossless is said to be lossy. A simple example of a lossy
machine is one in which, for some state Si and two distinct input symbols Ip

492 Memory, definiteness, and information losslessness of finite automata

Sc Sf

x1/z1

x1/z1

x2/z2

x2/z2 Sj

Si

xn /zn

xn /zn

Fig. 14.7 Condition for
information loss.

and Iq , the Ip- and Iq-successors and the corresponding output symbols are
identical. Clearly, in such a case, knowledge of the output sequence and the
initial and final states is not sufficient to determine whether Ip or Iq was applied
to the machine.

Loss of information occurs whenever two states, Si and Sj , which can be
reached from a common state Sc by means of two distinct input sequences
while producing identical output sequences, merge into a final state Sf and
produce the same output sequence. Clearly, once the machine has reached state
Sf , no future experiment will make possible the retrieval of the input sequence
that transferred M from Sc to Sf . This case, which is necessary and sufficient
for a machine to be lossy, is illustrated in Fig. 14.7.

Example The machine M6 of Table 14.12 is lossy, as demonstrated in
Fig. 14.8. Two distinct input sequences (01 and 10) take the machine from
state A to state B, while producing identical output sequences (00). After
M6 has reached state B, it is impossible to determine which input sequence
actually occurred.

Table 14.12 Machine M6

NS, z

PS x = 0 x = 1

A A, 0 B, 0
B B, 0 A, 1

A

A

B

B

0/0 1/0

0/01/0

Fig. 14.8 Demonstration that M6 is lossy.

From the foregoing discussion it is evident that in order to test a machine
for losslessness, it is first necessary to determine whether, for a given state,
two or more successors and their corresponding output sequences are iden-
tical or whether a merger of the type illustrated in Fig. 14.7 exists. Before
presenting a test for information losslessness, we shall define an “order” of
losslessness.

493 14.4 Information-lossless machines

Table 14.13 Machine M7

NS, z

PS x = 0 x = 1

A C, 1 D, 0
B D, 0 A, 1
C D, 1 B, 0
D C, 0 B, 1

Information losslessness of finite order

Suppose that a system of lossless machines is used for encoding and decoding
purposes. The “encoder” receives an input sequence and, in turn, produces an
output sequence, which is transmitted to a “decoder.” Clearly, if the encoder is
lossless then its input sequence can be reconstructed from its output sequence as
well as the information regarding its initial and final states. The major drawback
in such a decoding process lies in the fact that the information regarding the
final state is transmitted by the encoder only after the entire message has
been transmitted. Consequently, the entire message must be stored before the
deciphering process can begin. In addition, since the output sequence may
be arbitrarily long, the lossless machine cannot serve as a practical tool for
encoding and decoding purposes. In view of this limitation, it becomes desirable
to look for machines for which it is not necessary to store the entire message,
but where the deciphering process can start when only the initial state and a
finite length of the output sequence are available.

A machine is said to be (information) lossless of finite order if the knowledge
of the initial state and the first μ output symbols is sufficient to determine
uniquely the first input symbol. Knowledge of the initial state and the first
input symbol is sufficient to determine the next state, and thus the second input
symbol can be computed from the (μ + 1)th output symbol, and so on. The
integer μ that is a measure of the delay in the deciphering of the input symbols
is said to be the order of losslessness if μ is the least integer satisfying the
above definition, that is, if for some initial state and a sequence of μ − 1 output
symbols there exist at least two possible input sequences that differ in their
initial input symbols.

The simplest example of lossless machines of finite order is that of first
order, where the first input symbol can be determined from knowledge of the
initial state and the first output symbol. Hence, there is no delay in deciphering
the input symbols for this class of machines. As an example, consider the
machine M7 shown in Table 14.13. Since for every state of M7, the output
symbol associated with the 0-successor is different from the output symbol
associated with the 1-successor, knowing the initial state and first output symbol
is sufficient to identify the first input symbol. For example, if M7 is initially

494 Memory, definiteness, and information losslessness of finite automata

Table 14.14 Machine M8

NS, z

PS x = 0 x = 1

A A, 1 C, 1
B E, 0 B, 1
C D, 0 A, 0
D C, 0 B, 0
E B, 1 A, 0

Table 14.15 Testing table for M8

PS z = 0 z = 1

A — (AC)
B E B

C (AD) —
D (BC) —
E A B

AC — —
AD — —
BC (AE)(DE) —
AE — (AB)(BC)
DE (AB)(AC) —
AB — (AB)(BC)

in state A and if, in response to an as yet unknown input symbol, output
symbol 1 is produced then we can unambiguously identify the input symbol
as a 0.

Test for information losslessness

We now derive a test to determine whether a given machine is lossless and to
find its order of losslessness if it is finite. Before proceeding with the testing
procedure, we introduce some terminology that facilitates discussion on infor-
mation losslessness. Two states Si and Sj are said to be (output) compatible
if there exists some state Sp such that both Si and Sj are its Ok-successors,
or if there exists a compatible pair of states Sr , St such that Si , Sj are their
Ok-successors. In such a case, we say that the compatible pair (SiSj) is implied
by (SrSt).

The first step in the testing procedure is to check each row of the state table
for the appearance of two identical next-state entries associated with the same
output symbol. If no identical entries appear, the next step is to construct the
output successor table. A testing table (for information losslessness) is now
constructed in two parts. The upper part consists of the output successor table,
while the lower part is constructed in the following manner. Every compatible
pair appearing in the successor table is made a row heading in the lower part
of the testing table. The successors of these pairs are found in the usual way;
they consist of all implied compatible pairs. Any implied pair that has not yet
been used as a row heading is now made a row heading, its successors found,
and so on. The process terminates when all compatible pairs have been used as
row headings.

The machine M8 given in Table 14.14 may be used to illustrate the testing
procedure. The output successor table is shown in the upper half of Table 14.15.
The pair (AC) is compatible, since both A and C are the output 1-successors

495 14.4 Information-lossless machines

AD BC AB

0

0

11

1

0

DE

AE

1

AC

0

Fig. 14.9 Testing graph G8 for
M8.

of A. Similarly, the pairs (AD) and (BC) are compatible. Consequently, these
pairs are used as row headings for the lower part of the testing table. The pairs
(AE) and (DE), which are implied by (BC), are now made row headings, and
so on.

Note that, contrary to the testing procedure for finite output memory, the test-
ing table for information losslessness does not necessarily include all distinct
pairs of states; it includes only the compatible pairs.

At this point, we are ready to derive necessary and sufficient conditions for
a machine to be information lossless. Suppose that the testing table contains
a compatible pair consisting of repeated entries, e.g., (SkSk); then there exists
either some compatible pair (SiSj) that implies (SkSk) or some state Si that
has identical output successors for two or more input symbols. However, since
these cases have been shown to be necessary and sufficient for lossiness, the
machine in question must be lossy. We thus arrive at the following general
result.

� A machine is lossless if and only if its testing table does not contain any
compatible pair consisting of repeated entries.

A testing graph (for information losslessness) G is a directed graph such
that:

1. corresponding to every compatible pair there is a vertex in G;
2. an arc labeled Ok is drawn from vertex SiSj to vertex SpSq , where p = q,

if and only if (SpSq) is a compatible implied by (SiSj).

The testing graph G8 of M8 is derived in the usual way from the lower
half of the testing table and is shown in Fig. 14.9. The machine M8 is
clearly lossless, because there are no compatible pairs consisting of repeated
entries. Before determining the order of losslessness, we prove the following
theorem.

496 Memory, definiteness, and information losslessness of finite automata

Theorem 14.5 A machine M is lossless of order μ = l + 2 if and only if its
testing graph is loop-free and the length of the longest path in the graph is l.

Proof Assume that M is lossless. Suppose that G is not loop-free, and let
SiSj be some vertex in the loop. Clearly, every compatible pair is accessible
from some state of M by a pair of distinct input sequences that yield identical
output sequences. Thus, we can find a pair of different input sequences that
take M to SiSj while producing identical output sequences. If we now observe
the output symbols that the machine produces while going through all the
compatible pairs in the loop, we find that the machine is back in SiSj without
supplying any additional information to make possible the identification of the
first input symbol. In addition, since this loop may be repeated as many times
as we wish, we may construct a pair of arbitrarily long input sequences that
start in the same state of M and differ in the first symbol but produce identical
output sequences. Thus, M is not lossless of finite order. The proof that the
loop-free condition is indeed sufficient for finite order is trivial and follows the
line of arguments used in the proof of Theorem 14.1.

To determine the order of losslessness, consider the longest path in G. It
takes one input symbol to get from a state of M into the first compatible (pair),
and it takes l input symbols to go through the longest path in G. Since the
compatible that has been reached after l + 1 input symbols does not imply any
other compatible, one more input symbol will yield different output symbols,
depending on which state of the compatible the machine is in. This, in turn,
determines the initial input symbol. Thus, μ = l + 2 output symbols (plus
the knowledge of the initial state) are sufficient to determine the first input
symbol. ♦

From Theorem 14.5 we conclude that if M is lossless of order μ then
μ ≤ 1 + 1

2n(n − 1). The proof that this is indeed the least upper bound is given
in Appendix 14.1.

The case μ = 1 is detected by the absence of compatible pairs (see the
machine M7), while the case μ = 2 is detected by the absence of arcs in the
graph.

Returning to the machine M8, we observe that, since G8 is not loop-free, M8

is not lossless of finite order. It is interesting to note that M8 is lossless even
though state A can be reached by input symbol 1 from both states C and E

and the output symbol produced is 0. This situation does not imply lossiness,
since the pair (CE) is not compatible, i.e., C and E cannot be reached from any
initial state by means of two distinct input sequences while producing identical
output sequences.

Example As another illustration, the above test is applied to the machine
M9 of Table 14.16. This machine is shown to be lossless of order 3,

497 14.4 Information-lossless machines

since its testing graph (Fig. 14.10) is loop-free and the longest path is of
length 1.

Table 14.16 Machine M9

NS, z

PS x = 0 x = 1

A A, 0 B, 0
B C, 0 D, 0
C D, 1 C, 1
D B, 1 A, 1

Table 14.17 Testing table for M9

PS z = 0 z = 1

A (AB) —
B (CD) —
C — (CD)
D — (AB)

AB (AC)(AD) —
(BC)(BD)

CD — (AC)(AD)
(BC)(BD)

AB

AD BD

CD

1

0
00

BCAC

0

1 1 1

Fig. 14.10 Testing graph for machine M9.

Retrieval of the input sequence

Knowledge of the output sequence produced by a lossless machine, as well as
its initial and final states, is sufficient to determine the input sequence applied
to the machine. We shall now present a procedure to retrieve the input sequence
by first reconstructing the state sequence. Since the machine is lossless, the
input sequence is uniquely specified by the state sequence.

Let M be a lossless machine that is initially in a known state and, after
producing a given output sequence of length r , terminates in a known final
state. Suppose that we now wish to determine the state of the machine just after
it has produced the j th output symbol. By applying the first j output symbols
to the output successor table, starting from the known initial state, we can find
a set of states in which the machine could be. In an analogous way, we can
trace the predecessors of the final state by applying (in reverse order) the r − j

output symbols to the output predecessor table (which will be defined shortly).
This last step yields a set of possible predecessors just prior to the production of

498 Memory, definiteness, and information losslessness of finite automata

the (j + 1)th output symbol. Clearly, since the machine is lossless, there is only
one state in which it could have been at the time in question; the intersection of
the set derived from the successor table and the set derived from the predecessor
table will reveal this state.

As an example, consider the machine M8 (see Table 14.14). Assume that
this machine was initially in state A, has in response to a yet unknown input
sequence produced the output sequence 110001100101, and has terminated
in state B. From the output successor table (Table 14.15), we find that the
1-successors of A are A and C and the 1-successors of AC are also A and C.
Just after the third output symbol, the machine could have been in either state
A or D, since AD is the 0-successor of AC. Similar reasoning is used to find
the states in which the machine could be after the production of every output
symbol. These steps can be summarized as follows, moving from left to right:

A
A
C

1

A
C

B
C

A
D

A
D
E

A
D
E

A
B
C

A
B
C

A
B
C

A
B
C

A
D
E

B

01 10 010001 1

We have not yet utilized the information that can be obtained from the final
state. This is best accomplished by an (output) predecessor table, which is
constructed as follows. There is a column labeled Ok in the table for each
output symbol Ok in O and a row for each state of the machine. The entries
in row Si , column Ok , are those states for which Si is an output Ok-successor.
These states are often referred to as the (output) Ok-predecessors of state Si .
The output predecessors of each machine state can be found directly from the
state table. For convenience, the row headings of the predecessor table are
placed on the right-hand side of the table. This emphasizes the fact that the row
headings are the successors of the corresponding table entries.

For example, state B of the machine M8 can be reached by a single transition
from states B and E while producing output symbol 1 and from state D while
producing output symbol 0. Thus, the entry in row B, column 1, of the output
predecessor table (Table 14.18) is BE while the entry in row B, column 0, is
D. In a similar manner, we can obtain the entire predecessor table.

Table 14.18 Output predecessor table
for machine M8

z = 0 z = 1 NS

CE A A

D BE B

D A C

C — D

B — E

499 14.4 Information-lossless machines

Possible successors
to initial state:

A
A
C

1 1

1 0

1

Possible predecessors
to final state:

Output sequence:

State sequence:

Input sequence:

A
C

B
C

A
D

A
D
E

A
D
E

A
B
C

A
B
C

A
B
C

A
B
C

A
D
E

B

A A
C
D

C
E

B
D

A
B
D

A
B
D

B
E

C
D

B
E

B

A A C CD A DA BC B

01 10 01000

1 11 001000 0

EB

Fig. 14.11 Retrieval of an input
sequence.

If we now wish to determine the state of M8 just prior to the production of the
last output symbol, we look for the output 1-predecessors of state B, which is
known to be the final state. As shown before, the 1-predecessors of B are B and
E. However, from the output successor table we have found that, at the time in
question, the machine could have been in one of states A, D, or E. In addition,
since it could have been in only one state at that time, this state must be given
by the intersection of (B,E) and (A,D,E). Therefore, the 1-predecessor of B

is E. The entire procedure is summarized in Fig. 14.11. It is easy to verify by
means of the state table that the input sequence that corresponds to the state
sequence in Fig. 14.11 is 010010101100.

Whenever a given output sequence has been generated by a lossless machine,
the state transitions and input sequence can be determined uniquely. If, how-
ever, at some point the intersection of the sets containing the possible succes-
sors and predecessors consists of two or more states then there exist at least
two distinct input sequences that produce identical output sequences. There-
fore, the machine in question is not lossless. If at some point the intersection
is empty then the corresponding output sequence could not have been pro-
duced by the given machine subject to the specified initial and final states.
In fact, if the intersection is empty at one point then it must be empty at all
points.

Inverse machines

An inverse Mi is a machine which, when excited by the output sequence
of a machine M , produces as its output the input sequence to M , after at
most a finite delay. Evidently, a deterministic inverse can be constructed
only if M is lossless, and it can be constructed such that it produces M’s
input sequence after just a finite delay if and only if M is lossless of finite
order.

Consider, for example, the machine M7 of Table 14.13, which is lossless of
first order. For any possible initial state and output sequence, knowledge of the
initial state of M7 and the first output symbol is sufficient to determine uniquely
the first input symbol to the machine. Hence, there is no delay in deciphering
the input symbols to this machine. The state transitions of the inverse machine

500 Memory, definiteness, and information losslessness of finite automata

Table 14.19 Machine Mi
7

NS, x

PS z = 0 z = 1

A D, 1 C, 0
B D, 0 A, 1
C B, 1 D, 0
D C, 0 B, 1

Mi
7 are, therefore, given by the output successor table, as shown in Table 14.19.

The output symbols associated with these state transitions are found by means
of the state table of the machine M7. If Mi

7 is placed in cascade with M7,
it will produce as its output sequence an exact replica of the input sequence
to M7.

For every lossless machine of order μ, knowledge of the state at time t − μ +
1 and of the last μ output symbols, i.e., z(t − μ + 1), z(t − μ + 2), . . . , z(t), is
sufficient to determine uniquely the input symbol x(t − μ + 1). Consequently,
if we send the output sequence produced by a lossless machine M of order μ

into a register that consists of μ − 1 delay units, we can design a combinational
circuit that has as inputs the contents of that register and the state of M at time
t − μ + 1 and, in turn, produces the value of x(t − μ + 1).

The combinational circuit can be specified by a truth table in which the value
of x(t − μ + 1) is specified for every possible combination of S(t − μ + 1)
and z(t − μ + 1), z(t − μ + 2), . . . , z(t). The information regarding the state
of M can be supplied to the combinational circuit by a copy of M that is set
to be at t = μ − 1 in the same state that M was in at t = 0 and receives as its
inputs a version delayed by μ − 1 time units of the inputs to M . The schematic
diagram of such a deciphering system is shown in Fig. 14.12.

z (t − m + 1)

S (t − m + 1)

x (t − m + 1)

D

Combinational logic

DD

x(t)

(m - 1)-delay register

Logic

Delays

Decoded
message

Copy of original
machine M

Logic

Delays

Coding machine M

Input

S(t)

Output
z(t)

Inverse machine

Fig. 14.12 Schematic diagram
of a deciphering system.

501 14.4 Information-lossless machines

Table 14.20 Machine M10

NS, z

PS x = 0 x = 1

A C, 0 D, 1
B D, 0 C, 1
C A, 0 B, 0
D C, 1 D, 1

The foregoing deciphering system does not yield an economical realization,
since it requires a copy of the original machine as well as a (μ − 1)-delay
register. In fact, if we were to construct a composite state table for the inverse
machine (i.e., a composite table for both the register and the copy of M), we
would find that in many cases it can be considerably simplified. The question
that now arises is whether we can find a minimal inverse directly from M’s
description, without going through the above construction procedure. Indeed,
this can be accomplished, as will be shown subsequently.

*The minimal inverse machine

We shall demonstrate a construction procedure that yields a minimal inverse
machine by finding the inverse of the machine M10 shown in Table 14.20. This
machine is lossless of third order and, therefore, if we know the initial state
and the values of three successive output symbols produced by transitions from
this state then we can determine the first input symbol to the machine. Let us
now define a set of triples, denoted (S(t), z(t + 1), z(t + 2)). The first member
of each triple is a possible initial state of M10; the second member is one of
the output symbols that can be produced by a single transition from this state;
and the third member is an output symbol that can follow this initial state and
the first output symbol. A triple is defined for each possible initial state and for
all possible output sequences of length 2. For the machine M10 we obtain the
following triples:

(A, 0, 0) (B, 0, 1) (C, 0, 0) (D, 1, 0)
(A, 1, 1) (B, 1, 0) (C, 0, 1) (D, 1, 1)

The triple (A, 0, 1), for example, is not defined because the output sequence 01
cannot be generated by M10 when it is initially in state A.

The set of triples so generated contains all possible combinations of initial
states and output sequences of length 2. To determine the input symbol that
causes the transition from the initial state while producing the output symbol
specified by the second member of the triple, all that is necessary is one
additional output symbol. Accordingly, if we construct a machine, each of
whose states corresponds to a triple and represents the “information” carried

502 Memory, definiteness, and information losslessness of finite automata

Table 14.21 Machine M i
10

NS, x

PS z = 0 z = 1

(A, 0, 0) (C, 0, 0), 0 (C, 0, 1), 0
(A, 1, 1) (D, 1, 0), 1 (D, 1, 1), 1
(B, 0, 1) (D, 1, 0), 0 (D, 1, 1), 0
(B, 1, 0) (C, 0, 0), 1 (C, 0, 1), 1
(C, 0, 0) (A, 0, 0), 0 (B, 0, 1), 1
(C, 0, 1) (B, 1, 0), 1 (A, 1, 1), 0
(D, 1, 0) (C, 0, 0), 0 (C, 0, 1), 0
(D, 1, 1) (D, 1, 0), 1 (D, 1, 1), 1

by that triple, and if we supply the machine with the output symbols of the
original machine, then it will have all the necessary information to compute the
input symbols in question.

The inverse of the machine M10, denoted M i
10, has eight states corresponding

to the eight triples derived earlier. We shall often refer to a state of the inverse
machine as an inverse state. For every state of M i

10, the next inverse state is a
triple whose members are obtained in the following manner.

1. The first member is the state to which machine M10 goes when it is initially
in the state that is the first member of the present inverse state, and when it
is supplied with the first input symbol.

2. The second member is the third member of the corresponding present inverse
state.

3. The third member is the present output of M10.

The state table of the machine M i
10 is given in Table 14.21. Suppose, for

example, that M i
10 is in the state (A, 0, 0) and that its current input symbol is

0. To obtain its 0-successor, we observe that M10, when initially in state A, can
produce three consecutive 0 output symbols only if the first input symbol is 0;
as a result, M10’s first transition is to state C and the 0-successor of (A, 0, 0)
contains C as its first member. The second member of the triple (C, 0, 0)
equals the third member of (A, 0, 0), while its third member is the current
output symbol of M10, which constitutes the current input symbol to M i

10 and is
given by M i

10’s input column heading. The output sequence of M i
10 is a delayed

replica of the input sequence to M10; that is, the output symbol of M i
10 at t is

equal to M10’s input symbol at t − 2.
The set of states generated by the set of triples is clearly sufficient for a

realization of the inverse machine. It does not, however, yield the smallest
set of states. The machine M i

10, for example, can be reduced since (A, 0, 0)
is equivalent to (D, 1, 0) and similarly (A, 1, 1) is equivalent to (D, 1, 1).

503 14.4 Information-lossless machines

Table 14.22 The minimal
machine M i

10

NS, x

PS z = 0 z = 1

S1 S5, 0 S6, 0
S2 S1, 1 S2, 1
S3 S1, 0 S2, 0
S4 S5, 1 S6, 1
S5 S1, 0 S3, 1
S6 S4, 1 S2, 0

If we denote (A, 0, 0) by S1, (A, 1, 1) by S2, and so on, we obtain the minimal
inverse, given in Table 14.22.

The foregoing procedure is applicable to any lossless machine of finite order.
In general, for a machine of order μ we define a set of μ-tuples that constitutes
the set of states of the inverse machine. The first member of each μ-tuple is a
state of the original machine M; the remaining members are the possible output
sequences of length μ − 1 that can be produced by successive transitions from
that state. The fact that this procedure yields more economical realizations
than the “canonic” realization of the preceding section can be explained as
follows. In the canonic realization, we stored the output sequence in a shift
register and used a copy of the original machine to provide the information
regarding the state of the original machine. In the present realization we use the
same memory devices to store information regarding both the states and output
sequences, thus achieving a reduction in the number of states of the inverse
machine.

Suppose that M10 is initially in state A and, in response to some input
sequence, it produces one of the output sequences 00 or 11. Then, two units of
time later, M i

10 must be in the state that corresponds to A and the appropriate
output sequence, i.e., (A, 0, 0) or (A, 1, 1). However, since S4 = (B, 1, 0) is
the only state from which M i

10 can reach (A, 0, 0) and (A, 1, 1) when supplied
with the input sequences 00 and 11 respectively, it follows that if the initial
state of M10 is A then the initial state of M i

10 must be (B, 1, 0). In a similar
fashion, the reader can verify that if M10 is initially in state B then M i

10 can be
initially in either S1 or S4 and if M10 is initially in either state C or D then M i

10

can be initially in S2, S3, S5, or S6.
As an example demonstrating the deciphering capability of M i

10 let M10 and
M i

10 be initially in states A and S4 respectively and let the input sequence
010001101 be applied to M10. The deciphering process is shown in Fig. 14.13.
The first two output symbols of M i

10, as well as the last two input symbols to
M10, must be ignored. In the remaining positions of both sequences, the input
to M10 and output of M i

10 are identical although shifted in time.

504 Memory, definiteness, and information losslessness of finite automata

Table 14.23 A binary code

Source Code
symbols words

A 00
B 01
C 11
D 10

State of :

:

:

:

:

M
10

0

A C B CD A C BD D

01 110001Input to M
10

Output of M
10

State of M
10

i

Output of M
10

i

0 1 1 010100

0 1 10001

S4 S5 S1 S3S5 S1 S2S6 S1S2

Fig. 14.13 Deciphering by
means of M i

10.

*14.5 Synchronizable and uniquely decipherable codes

The objective of this section is twofold: to introduce some of the basic issues
in coding theory and to demonstrate the applicability of the preceding test-
ing techniques to the area of information transmission and codes. We do not
intend to develop the entire subject of coding theory but, rather, to illustrate
some aspects of this subject that are relevant to the memory and information-
losslessness aspects of automata. These concepts will, therefore, be introduced
without formal definitions and proofs.

Introduction

Let the symbols {A,B,C, . . .} denote a finite source alphabet, and let
L = {0, 1, 2, . . .} be a code alphabet. We shall be concerned only with binary
codes, where L = {0, 1}. A concatenation of a finite number of code symbols
is referred to as a code word. A code consists of a finite number of distinct code
words of finite length, each representing a source symbol. A coded message is
constructed by concatenating code words without spacing or any other punc-
tuation. For example, let the code alphabet be L = {0, 1} and the set of code
words γ1 be {00, 01, 11, 10}. The code shown in Table 14.23 is a mapping from
the source alphabet {A,B,C,D} to γ1. Thus, the sequence ABDC would be
coded as 00011011.

By using the code in Table 14.23 we may obtain a sequence of binary digits
for any sequence of source symbols. We may also work backward to obtain a
sequence of source symbols for any sequence of binary digits arising from this
code. In fact, since each source symbol is represented by a distinct code word
and all code words are of equal length, to every sequence of code words from

505 14.5 Synchronizable and uniquely decipherable codes

this code there corresponds a unique sequence of source symbols. Not in every
case can we work backward and find a unique sequence of source symbols that
corresponds to a given binary sequence. For example, if γ2 = {0, 00, 01} is the
code representing {A,B,C} then the sequence 0001 may be decoded as either
AAC or BC.

A code is said to be uniquely decipherable if and only if every coded message
can be decomposed into a sequence of code words in only one way. Thus,
γ1 is uniquely decipherable while γ2 is not. Whenever the number of code
symbols is not the same for all code words the code is not necessarily uniquely
decipherable, as illustrated by γ2. However, the code γ3 = {1, 01, 001, 0001}
is uniquely decipherable since the symbol 1 actually serves as a separator
between successive code words. Such a separator is referred to as a comma,
and such a code is called a comma code. A code in which all code words
contain the same number of symbols is called a block code. A code in which
the numbers of symbols representing different code words are not the same is
called a variable-length code.

Whenever each code word can be deciphered without knowledge of the
succeeding code words, the code is said to be an instantaneous code. For
example, γ1 and γ3 are instantaneous codes while γ4 = {1, 10, 100} is not, since
the sequence 10 cannot be deciphered until we verify that the next symbol is a 1.

Let ξ = ξ1ξ2 · · · ξn be a code word; then the sequence of code symbols
ξ1ξ2 · · · ξm, where m ≤ n, is called a prefix of ξ . It can be shown that a necessary
and sufficient condition for a code to be instantaneous is that no code word is
a prefix of some other code word. Clearly, γ4 is not instantaneous because 1 is
a prefix of both 10 and 100.

A major reason for using variable-length codes is the consequent reduction in
the average length of coded messages. Certain symbols of the source alphabet
are more frequently used than others. For example, in English the letter e is
more often used than the letter q. It is advantageous to assign shorter code
words to those symbols that appear most often and longer code words to other
symbols. If we let Pi and li denote, respectively, the probability of occurrence
and the length of the code word representing the ith source symbol then we
obtain the average length of the code, which is defined as the sum

∑
Pili

over all code words. For a given source alphabet and a given code alphabet,
it is usually possible to construct many uniquely decipherable codes. In some
codes, however, if an error occurs at the beginning of the coded message then
it may invalidate the entire message. It is therefore desirable to have codes that
are synchronizable, that is, for which the propagation of an error is bounded to
a fixed portion of the message.

A test for unique decipherability

A code is said to be uniquely decipherable with a finite delay μ if and only if
μ is the least integer such that knowledge of the first μ symbols of the coded

506 Memory, definiteness, and information losslessness of finite automata

Table 14.24 Testing table for
γ = {0, 01, 1010}

0 1

S (SB1) —
SB1 — (SC1)
SC1 (SC2)(B1C2) —
SC2 — (C1C3)
B1C2 — (SC3)
C1C3 (SC2) —
SC3 (SB1)(SS) —

message suffices to determine its first code word. We now present a testing
procedure to determine whether a code is uniquely decipherable and, if it is,
the delay μ. This procedure is analogous to tests for information losslessness
or for information losslessness of finite order.

Let us insert a separation symbol S at the beginning and end of each code
word in γ . In addition, in every code word representing the source symbol N ,
we insert the symbol Ni between its ith symbol and its (i + 1)th symbol. For
example, if the source symbols are {A,B,C} and γ = {0, 01, 1010} then the
code words with the inserted symbols are as follows:

A → S 0 S

B → S 0 B1 1 S

C → S 1 C1 0 C2 1 C3 0 S

Each code symbol ξk is now situated between two separation symbols. We say
that the separation symbol to the right of the code symbol is the ξk-successor,
denoted Ri , of the left separation symbol. For example, C1 is the 1-successor
of S because S1C1 occurs in the third code word. Two successors, Ri and Rj ,
are compatible if SξkRi and SξkRj occur in the code words, or if RpξkRi and
RqξkRj occur, and Rp and Rq are compatible. In such a case, (RiRj) is said to
be the compatible pair implied by (RpRq).

A testing table (for unique decipherability) can now be constructed in the
following manner.

1. The column headings of the table are the symbols of the code alphabet.
2. The first row heading is S. The other row headings are the compatible

pairs.
3. The entries in row RpRq , column ξk , are the compatible pairs implied by

(RpRq) under ξk .

The testing table for our example is given in Table 14.24. The entry in row
S, column 0, is (SB1), since S0S and S0B1 occur in the first and second words.
The compatible implied by (SB1) is (SC1), since S is the 1-successor of B1 in
code word B while C1 is the 1-successor of S in code word C; i.e., B11S and
S1C1 occur in the code words. If (RiRjRk) is a compatible, we enter into the

507 14.5 Synchronizable and uniquely decipherable codes

Table 14.25 The testing table for γ = {1, 10, 001}

0 1

A → S1S S — (SB1)
B → S1B10S (SB1) (SC1) —
C → S0C10C21S (SC1) (C1C2) —

(C1C2) — —

S (SB1)
0 01

(SC1) (SS)(SC3)(B1C2)
01

Fig. 14.14 Determination of an
ambiguous message.

S SB1 SC1

0 01
C1C2

Fig. 14.15 Testing graph.

table all unordered pairs (RiRj), (RiRk), (RjRk). The table is complete when
all the compatible pairs have been used as row headings.

If during the construction of the testing table a repeated pair (SS) occurs then
the code is not uniquely decipherable. The occurrence of such a compatible
pair means that there exists some compatible pair (RiRj) such that S is the ξ -
successor of both Ri and Rj . However, since both Ri and Rj (like all compatible
pairs) are reachable from S by a binary sequence that corresponds to two or more
different sequences of source symbols, the code is not uniquely decipherable.
Moreover, by tracing back the compatible pairs that implied the pair (SS),
we can find one of the shortest ambiguous messages, which in our example
is 01010, as shown in Fig. 14.14. The pair (SS) is written in the rightmost
position, and its 0-predecessor is written in the next-left position, and so on.
The sequence of arrow labels leading from S to (SS) is an ambiguous message.
Indeed, 01010 may be interpreted as AC or as BBA.

It is easy to show that if pair (SS) is not generated then the code is uniquely
decipherable. Hence, a necessary and sufficient condition for a code to be
uniquely decipherable is that a pair (SS) is not generated in the testing
table.

A testing graph (for unique decipherability) G can now be constructed as
follows.

1. Corresponding to every row in the testing table, create a vertex in G.
2. Take directed arcs from each such vertex to the vertices corresponding to

the implied compatible pairs.

The testing table for the code γ = {1, 10, 001} is shown in Table 14.25. The
corresponding testing graph is shown in Fig. 14.15. Since pair (SS) has not
been generated in the testing table, the code is uniquely decipherable.

508 Memory, definiteness, and information losslessness of finite automata

0 0 , 1 , 1 , 1 , 0 1 , 1 , 0 0 , 0 1 , 1 , 0 1 , 0 0 , 1 , 1
, , ,, ,, , ,,,,,Fig. 14.16 Deciphering a coded

message.

In analogy to Theorem 14.5, we can show that a code is uniquely decipherable
with finite delay μ if and only if its testing graph is loop-free. The delay μ is
equal to l + 1, where l is the length of the longest path in G. The longest path
in the graph of Fig. 14.15 is 3 and thus μ = 4.

Deciphering a coded message

We now describe a procedure to decipher a coded message. The decoding
procedure is similar to the input-retrieval procedure for lossless machines
and will be illustrated by means of an example. Consider the code γ =
{11, 011, 001, 01, 00}, which is known to be uniquely decipherable, and sup-
pose that we want to decode the sequence 0011101100011010011. Scanning
the message from the left, we insert a lower comma whenever a sequence that
corresponds to a legitimate code word is detected. For example, the first comma
from the left follows the initial 00, since 00 is a code word in γ . Next, a comma
follows the 1 since the sequence 001 is also a code word in γ , and so on.
Although the tenth and eleventh symbols are 0’s, no lower comma is inserted
between the eleventh and twelfth symbols because there is no comma between
the ninth and tenth symbols, and a new code word cannot start unless a comma
indicates the end of the preceding code word. The procedure is illustrated in
Fig. 14.16.

Next, we scan the coded message from the right and inset an upper comma
whenever a sequence that corresponds to the inverse of a legitimate code word
is scanned. The inverses of the code words in our example are {11, 110, 100,
10, 00}. If the code is uniquely decipherable then the message can be decoded
by retaining only those commas that occur in the upper and lower spaces
simultaneously. In our example, we find the following message:

001; 11; 011; 00; 011; 01; 00; 11

Although in general the above procedure will require keeping track of a
number of sequences and the locations of the various commas, it is in principle
a simple procedure that can be carried out by a finite-state machine.

A test for the synchronizability of codes

A code is said to be synchronizable of order μ if μ is the least integer such that
the knowledge of any μ consecutive code symbols is sufficient to determine a
separation of code words within these symbols. We shall restrict our attention
to synchronizable codes that are uniquely decipherable with a finite delay, since
these are the only ones of practical interest.

509 14.5 Synchronizable and uniquely decipherable codes

The problem of testing a code for synchronizability is analogous to the
problem of testing a machine for finite output memory. In fact, since in both
cases the objective is to specify the sequence at some point, we can use the
same testing procedure. Let us construct a testing table (for synchronizability)
in the following manner. The row headings in the upper half of the table consist
of all the separation symbols. The column headings are the code symbols. The
entries in row Ri , column ξk , of the upper half of the table are the ξk-successors
of Ri . The row headings in the lower half of the table are all pairs of separation
symbols. The entries in row RiRj , column ξk , are the pairs implied by (RiRj)
and symbol ξk . The testing graph (for synchronizability) has a vertex for each
row in the lower half of the testing table. A directed arc labeled ξk leads from
the vertex RiRj to the vertex RpRq , where p = q, if and only if (RpRq) is
the ξk-successor of (RiRj). We now state, without proof, the necessary and
sufficient condition for a code to be synchronizable.

� A code is synchronizable if and only if it is uniquely decipherable and its
testing graph is loop-free. It is synchronizable of order μ if and only if the
longest path in the graph is of length μ − 1.

Example Consider the code γ = {1, 10, 001}, whose testing table is shown
in Table 14.26 and testing graph in Fig. 14.17. Since the code is uniquely
decipherable and the graph is loop-free, γ is synchronizable of order 5.

Table 14.26 The testing table for
γ = {0, 10, 001}

0 1

S C1 (SB1)
B1 S —
C1 C2 —
C2 — S

SB1 (SC1) —
SC1 (C1C2) —
SC2 — (SB1)
B1C1 (SC2) —
B1C2 — —
C1C2 — —

1

0

SB1

SC1

C1C2

0

0

SC2B1C2

B1C1

Fig. 14.17 Testing graph.

The main advantage of using a synchronizable code is that the propagation of
errors within messages composed of such a code is bounded. In other words, if
an error occurs in transmitting a coded message, its effect on the decipherability
of the message is limited to at most μ symbols, since the knowledge of any μ

code symbols is sufficient to determine a single separation within these symbols.

510 Memory, definiteness, and information losslessness of finite automata

Table 14.27 State table of an information lossless machine of maximal order

NS, z

PS I1 I2 I3 I4

1 2, 0 3, 2 2, 3 2, 5
2 3, 0 4, 2 3, 3 3, 5
3 4, 0 5, 2 4, 3 4, 5
...

...
...

...
...

i i + 1, 0 i + 2, 2 i + 1, 3 i + 1, 5
...

...
...

...
...

� 1
2 n� − 1 � 1

2 n�, 0 � 1
2 n� + 1, 2 � 1

2 n�, 3 � 1
2 n�, 5

� 1
2 n� � 1

2 n� + 1, 0 � 1
2 n� + 2, 1 � 1

2 n� + 1, 3 � 1
2 n� + 1, 5

...
...

...
...

...
j j + 1, 0 j + 2, 1 j + 1, 3 j + 1, 5
...

...
...

...
...

n − 2 n − 1, 0 n, 1 n − 1, 3 n − 1, 5
n − 1 n, 0 1, 1 1, 6 n, 5
n 1, 4 1, 2 n, 3 2, 4

In addition, since synchronizable codes are also uniquely decipherable with a
finite delay, the determination of a single separation of code words is sufficient
for the decoding of the message from that point on.

*Appendix 14.1 The least upper bound for information
losslessness of finite order

In the following, we shall prove that the bound for information losslessness
established by Theorem 14.5 is the least upper bound. Specifically, we shall
show that, for every n, there exists a machine with four input symbols and
seven output symbols which is information lossless of maximal order, that is,
for which μ = 1 + 1

2 (n − 1)n. Such a machine is shown in Table 14.27, where
�g� is the least integer greater than or equal to g.

Theorem 14.6 For every n there exists an information lossless machine of
order

μ = 1 + (n − 1)n

2
.

Proof We prove the theorem by demonstrating that the class of machines
described in Table 14.27 is information lossless of order 1 + 1

2 (n − 1)n. The
upper part of the testing table for this machine is given in Table 14.28. The
testing graph is derived directly from the table and is shown for even n in

511 Appendix 14.1 The least upper bound for information losslessness of finite order

Table 14.28 Testing table for information losslessness for the machine in Table 14.27

Output

PS 0 1 2 3 4 5 6

1 2 — 3 2 — 2 —
2 3 — 4 3 — 3 —
3 4 — 5 4 — 4 —
4 5 — 6 5 — 5 —
...

...
...

...
...

...
...

...
� 1

2 n� − 1 � 1
2 n� — � 1

2 n� + 1 � 1
2 n� — � 1

2 n� —

� 1
2 n� � 1

2 n� + 1 � 1
2 n� + 2 — � 1

2 n� + 1 — � 1
2 n� + 1 —

� 1
2 n� + 1 � 1

2 n� + 2 � 1
2 n� + 3 — � 1

2 n� + 2 — � 1
2 n� + 2 —

...
...

...
...

...
...

...
...

n − 3 n − 2 n − 1 — n − 2 — n − 2 —
n − 2 n − 1 n — n − 1 — n − 1 —
n − 1 n 1 — — — n 1
n — — 1 n (1, 2) — —

Fig. 14.18. The graph contains no vertex with repeated entries because all the
entries in every column of the upper part of the testing table are distinct. The
graph contains 1

2 (n − 1)n vertices arranged in n − 1 columns. The maximal
path, which connects all these vertices, is shown in Fig. 14.18 by the solid
lines. The maximal path is constructed in the following manner. The first
compatible pair (1, 2) is introduced in column 4 of the testing table. This
pair, in turn, implies the pairs (2, 3), (3, 4), . . . , (n − 2, n − 1). Because of
the arrangement of the entries in column 1 of Table 14.28, the pair (1, n) is
implied by (n − 2, n − 1). In addition, because of the entries in column 2, the
pair (1, 3) is implied by (1, n) and similarly for every column of vertices in the
graph. The path goes from the vertex (1, k), for all 2 ≤ k ≤ 1

2n, to the vertex
(n − k, n − 1), from which it goes to the vertex (1, n − k + 2), as implied by
the entries in column 1 of the testing table.

The path continues from the vertex (1, h), for all (1
2n) + 1 < h ≤ n to the

vertex (n − h + 1, n), from which it goes to (1, n − h + 3), as implied by
the entries in column 2 of the testing table. Finally, the path goes from the
vertex (1

2n, n) to (1
2n + 1, n), and so on to (n − 1, n), as implied by entries in

column 3 of Table 14.28. The vertex (n − 1, n) is a terminal vertex since the
corresponding compatible pair implies no other compatible pair.

It is evident from the structure of the graph that it has no loops, although it
contains a number of shorter paths. The testing graph for n odd can be obtained
from Table 14.28 in a similar manner, and it too has a path that connects all
1
2n(n − 1) vertices. Consequently, for any given n the machine in Table 14.27
is information lossless of maximal order. ♦

512 Memory, definiteness, and information losslessness of finite automata

n − 4,
n − 1

1, 2

2, 3

3, 4 3, 5

4, 5 4, 6

2, 4

1, 3 1, 4

2, 5

3, 6

1, n1, n − 11, n − 2

2, n − 1 2, n

3, n

n − 3,
n − 1

n − 3,
n − 2

n − 3,
n

n − 2,
n

n − 2,
n − 1

n − 1,
n

3,
+ 3

2,
+ 2

1,
+1

, nn

n

n
2
1

2
1

2
1

2
1

n

Fig. 14.18 Testing graph for
even n for the lossless machine
of Table 14.27.

It seems that it may be possible to find an information lossless machine of
maximal order with fewer inputs or outputs. It is not clear, however, whether
there exists such a machine with only two input symbols and two output
symbols.

Notes and references

The various memory aspects of automata have been investigated by numerous authors,
among whom are Liu [6, 7, 8], McCluskey [10], Massey [9], Simon [12], and Perles,
Rabin, and Shamir [11]. Lossless machines were first studied by Huffman [4], who
devised tests for losslessness and losslessness of finite order. Even [1] devised a different
testing procedure, the one adopted in this chapter. The least upper bound developed in
the above appendix is due to Kohavi and Winograd [5]. The tests for decipherability
and synchronizability of codes are due to Even [2, 3].

513 Problems

[1] Even, S.: “On information lossless automata of finite order,” IEEE Trans. Electron.
Computers, vol. EC-14, pp. 561–569, August 1965.

[2] Even, S.: “Test for synchronizability of automata and variable length codes,” IEEE
Trans. Information Theory, vol. IT-10, pp. 185–189, July 1964.

[3] Even, S.: “Tests for unique decipherability,” IEEE Trans. Information Theory,
vol. IT-9, pp. 109–112, April 1963.

[4] Huffman, D. A.: “Canonical forms for information lossless finite-state machines,”
IRE Trans. Circuit Theory, vol. CT-6, Special Supplement, pp. 41–59, May 1959.

[5] Kohavi, Z., and J. Winograd: “Establishing bounds concerning finite automata,”
J. Computer and System Sciences, vol. 7, no. 3, pp. 288–299, June 1973.

[6] Liu, C. L.: “Some memory aspects of finite automata,” MIT. Res. Lab. Electron.
Tech. Rept 411, May 1963.

[7] Liu, C. L.: “Determination of the final state of an automaton whose initial state is
unknown,” IEEE Trans. Electron. Computers, vol. EC-12, December 1963.

[8] Liu, C. L.: “kth-order finite automaton,” IEEE Trans. Electron. Computers,
vol. EC-12, October 1963.

[9] Massey, J. L.: “Note on finite-memory sequential machines,” IEEE Trans. Elec-
tron. Computers, vol. EC-l5, pp. 658–659, 1966.

[10] McCluskey, E. J.: “Reduction of feedback loops in sequential circuits and carry
leads in iterative networks,” in Proc. Third Ann. Symp. Switching Theory and
Logical Design, pp. 91–102, Chicago, 1962.

[11] Perles, M., M. O. Rabin, and E. Shamir: “The theory of definite automata,” IEEE
Trans. Electron. Computers, pp. 233–243, June 1963.

[12] Simon, S. M.: “A note on memory aspects of sequence transducers,” IRE Trans.
Circuit Theory, vol. CT-6, Special Supplement, pp. 26–29, May 1959.

Problems

Problem 14.1. For each of the machines in Table P14.1, determine whether it has a
finite memory and, if it does, find its order.

Table P14.1

NS, z

PS x = 0 x = 1

A B, 0 B, 0
B C, 0 D, 0
C D, 0 C, 0
D A, 0 C, 1

(a)

NS, z

PS x = 0 x = 1

A D, 0 C, 1
B A, 0 E, 0
C C, 1 E, 0
D C, 1 C, 1
E B, 0 B, 1

(b)

NS, z

PS x = 0 x = 1

A B, 0 E, 0
B C, 0 D, 0
C D, 0 C, 0
D E, 0 A, 0
E E, 0 A, 1

(c)

Problem 14.2. The canonical realization of finite-memory machines is shown in
Fig. P14.2. Verify that the machine of Table P14.2 has a finite memory, and show
its canonical realization. In particular, design the combinational logic.

514 Memory, definiteness, and information losslessness of finite automata

Table P14.2

NS, z

PS x = 0 x = 1

A A, 0 B, 1
B C, 0 D, 1
C B, 1 A, 0
D D, 1 C, 0

x1

z

D

Combinational logic

DD
xux

x2

z1

D DD
z2zu

Fig. P14.2
Problem 14.3. Prove that, for every n, the machine of Table P14.3 has a finite memory
of order μ = 1

2 (n − 1)n. (Recall that �g� is the least integer greater than or equal to g.)
Hint: Use a testing graph for finite memory.

Table P14.3

NS z

PS x = 0 x = 1 x = 0 x = 1

1 2 3 0 0
2 3 4 0 0
3 4 5 0 0
4 5 6 0 0
...

...
...

...
...

� 1
2 (n − 3)� � 1

2 (n − 1)� � 1
2 (n + 1)� 0 0

� 1
2 (n − 1)� � 1

2 (n + 1)� � 1
2 (n + 3)� 0 1

� 1
2 (n + 1)� � 1

2 (n + 3)� � 1
2 (n + 5)� 0 1

...
...

...
...

...
n − 3 n − 2 n − 1 0 1
n − 2 n − 1 n 0 1
n − 1 n 1 0 1
n n 1 0 0

Problem 14.4. Let M be a p-input symbol, q-output symbol, n-state, strongly con-
nected machine. Prove that if M has a finite memory of order μ then (pq)μ ≥ n.

515 Problems

Problem 14.5
(a) Test the machine of Table P14.5 for definiteness.
(b) Show the canonical realization of this machine (see Fig. 14.3). In particular, specify

the combinational logic.

Table P14.5

NS, z

PS x = 0 x = 1

A D, 1 E, 0
B A, 0 B, 1
C C, 0 B, 0
D C, 1 B, 1
E A, 0 B, 0

Problem 14.6
(a) Specify the unspecified entries in Table P14.6a in such a way that the resulting

machine will be definite. Is your answer unique? If not, show all possible ways to
specify the table.

(b) Is it possible to specify Table P14.6b in such a way that it corresponds to a definite
machine? Justify your answer.

Table P14.6

NS

PS x = 0 x = 1

A A B

B — B

C E —
D — F

E — D

F E —

(a)

NS

PS x = 0 x = 1

A A B

B C C

C — —
D — —

(b)

Problem 14.7. Determine which of the machines in Table P14.7 has a finite output
memory, and find its order.

Table P14.7

NS, z

PS x = 0 x = 1

A A, 0 B, 1
B C, 1 D, 0
C D, 0 C, 1
D B, 1 A, 0

(a)

NS, z

PS x = 0 x = 1

A C, 0 C, 0
B D, 1 A, 0
C C, 1 B, 0
D D, 1 D, 1

(b)

NS, z

PS x = 0 x = 1

A B, 0 C, 0
B D, 0 E, 1
C F, 1 D, 0
D F, 1 F, 1
E B, 0 B, 0
F A, 1 A, 1

(c)

516 Memory, definiteness, and information losslessness of finite automata

Problem 14.8. Given the state table of the machine M shown in Table P14.8, specify
the missing output entries in such a way that the machine will be finite-memory of
maximal order.

Table P14.8

NS, z

PS x = 0 x = 1

A B, 0 C, 1
B D, 0 D, −
C C, − A, 0
D C, 0 A, 1

Problem 14.9. Given a machine M with n states S1, S2, . . . , Sn:
(a) Devise a procedure to determine whether the machine has n preset sequences

X1, X2, . . . , Xn such that Xi is the shortest sequence that takes M from any unknown
initial state to state Si .

(b) Apply your procedure to find the appropriate sequences for the machine M in
Table P14.9.

(c) Find an upper bound on the length of Xi .
(d) Does the existence of such a set of sequences imply that M must be a definite

machine?

Table P14.9

NS, z

PS x = 0 x = 1

A C, 0 B, 0
B E, 1 F, 0
C A, 1 F, 1
D E, 0 B, 1
E C, 1 D, 0
F E, 0 F, 0

Problem 14.10. Consider the class of machines that have a finite output memory of
order μ such that knowledge of the last μ output symbols suffices to determine the final
state of the machine.
(a) Devise a test to determine whether a given machine belongs to the above

class.
(b) Find such a four- or five-state machine and apply your test to it.

Problem 14.11. For each machine in Table P14.11, determine whether it is lossless. If
it is lossy, find a shortest output sequence produced by two different input sequences
with the same initial and final states. If it is lossless, determine its order.

517 Problems

Table P14.11

NS, z

PS x = 0 x = 1

A B, 1 C, 0
B A, 0 D, 1
C B, 0 A, 0
D C, 1 A, 1

(a)

NS, z

PS x = 0 x = 1

A B, 0 C, 1
B D, 1 A, 0
C E, 1 F, 1
D F, 0 E, 0
E C, 1 A, 0
F B, 0 D, 1

(b)

NS, z

PS x = 0 x = 1

A B, 0 C, 0
B D, 0 E, 1
C E, 0 A, 1
D E, 0 D, 0
E C, 1 B, 1

(c)

NS, z

PS x = 0 x = 1

A B, 0 A, 1
B C, 0 D, 1
C E, 1 A, 0
D E, 0 C, 0
E C, 1 E, 0

(d)

Problem 14.12. In Table P14.12 you are presented with only the lower half of a testing
table (for losslessness) of an unknown machine. Specify the upper half of the table and
find a corresponding four-state machine. Is your answer unique?

Table P14.12

z = 0 z = 1

A

B

C

D

AB — (BC)(CC)
AC — (AB)(AC)
AD — —
BC (BD) (AC)
BD (AD)(CD) —
CD (AB)(BC) —

Problem 14.13
(a) The machine described in Table P14.13 has two binary outputs, z1 and z2. Some

output entries are incompletely specified. Specify all these output entries in such a
way that the machine will be lossless of first order.

518 Memory, definiteness, and information losslessness of finite automata

(b) Prove that any binary-input binary-output machine can be transformed into a lossless
machine of first order by adding to it a single binary output terminal.

Table P14.13

NS, z1z2

PS x = 0 x = 1

A B, −1 C, 11
B D, 0− D, 0−
C D, 0− E, −−
D B, 0− D,−0
E C, 0− D,−0

Problem 14.14. The machine described in Table P14.14 has two binary outputs, z1 and
z2, some of whose entries are incompletely specified. Specify all these output entries in
such a way that the machine will be lossless of the least order. Is such a specification
unique?

Table P14.14

NS, z1z2

PS x = 0 x = 1

A B, 10 C, 10
B C, 00 C, 1−
C A, 1− D, 00
D D, 1− A, 00

Problem 14.15. Prove that the machine of Table P14.15 is lossless of maximal order,
i.e., μ = 11.

Table P14.15

NS, z

PS x = 0 x = 1

S1 S2, 1 S1, 1
S2 S3, 1 S5, 3
S3 S4, 1 S4, 3
S4 S5, 1 S3, 2
S5 S1, 2 S1, 3

Problem 14.16. For the machine shown in Table P14.16:
(a) Find in a systematic way output sequence Z2 when output sequence Z1 is 001001,

and it is known that the initial and final states are both B.

519 Problems

(b) Given the initial and final states as well as output sequence Z1, is it always possible
to determine the output sequence Z2?

Table P14.16

NS, z1z2

PS x = 0 x = 1

A A, 11 B, 10
B D, 00 A, 00
C E, 00 C, 10
D B, 01 C, 01
E C, 11 A, 01

Problem 14.17. For the machine shown in Table P14.17:
(a) Does the machine have a finite output memory? If yes, find the order λ.
(b) Is the machine information lossless of finite order? If yes, find the order μ.
(c) The machine produced an output sequence Z = 0101000. What is the corresponding

input sequence? Is it unique?
(d) What is the minimal length of output sequence Z that enables us to determine at

least one input symbol?

Table P14.17

NS, z

PS x = 0 x = 1

A B, 0 C, 0
B D, 0 E, 1
C A, 1 E, 0
D E, 0 D, 0
E A, 1 E, 1

Problem 14.18. Given the cascade connection of machines M1 and M2, as shown in
Fig. P14.18:
(a) For M1 and M2 as shown in Table P14.18, given that the output sequence Z =

110011 and the final state of M2 is B, determine the initial state of M1.
(b) For the machines in Table P14.18 prove that, for every given output sequence Z of

length L, knowledge of the final state of M2 is sufficient to determine the state of
M1 at some time during the experiment. Find the value of L.

y
zM1 M2

x
Fig. P14.18

520 Memory, definiteness, and information losslessness of finite automata

Table P14.18

NS, y

PS x = 0 x = 1

A B, 0 C, 1
B C, 0 B, 1
C D, 0 D, 0
D D, 0 A, 1

NS, z

PS y = 0 y = 1

A B, 0 C, 1
B A, 0 C, 0
C D, 1 A, 1
D B, 1 D, 0

Problem 14.19. The machines M1 and M2 shown in Table P14.19 are connected in
cascade, as shown in Fig. P14.18. The initial state of M1 is A. Find in a systematic way
all the shortest input sequences which, when applied to M1, make it possible to identify
the initial state of M2 by means of its response z.

Table P14.19

NS, y

PS x = 0 x = 1

A B, 0 C, 1
B C, 1 A, 0
C A, 0 B, 0

M1

NS, z

PS y = 0 y = 1

D E, 1 D, 0
E F, 1 G, 0
F D, 1 E, 0
G F, 0 D, 0

M2

Problem 14.20
(a) In response to an unknown input sequence, the machine of Table P14.20 produces

the output sequence 10011. Find the input sequence if it is known that the final state
is B.

(b) Prove that knowledge of the final state of this machine and the last output symbol
is sufficient to determine the next-to-final state.

(c) Devise a test, to determine whether a given machine is lossless, such that the
knowledge of the final state and the last μ output symbols is sufficient to identify
the next-to-final state.
Hint: Use the output-predecessor table.

Table P14.20

NS, z

PS x = 0 x = 1

A B, 0 C, 1
B A, 0 C, 0
C D, 1 A, 1
D B, 1 D, 0

521 Problems

Problem 14.21
(a) In response to an unknown input sequence, the machine of Table P14.21 produces

the output sequence 1110000010. Find the input sequence to the machine if it is
known that its initial state is A and final state is F .

(b) Can the machine produce the output sequence 11011000 when both its initial and
final states are A?

Table P14.21

NS, z

PS x = 0 x = 1

A B, 1 C, 0
B D, 1 B, 1
C E, 1 B, 0
D A, 0 E, 0
E F, 0 D, 1
F D, 0 A, 1

Problem 14.22. Find a reduced four-state machine that is lossless of first order and is
isomorphic to its own inverse.

Problem 14.23. Design an inverse of the machine shown in Table P14.23. Give a
reduced, standard-form, state table, assuming that the initial state of the lossless machine
is A. For each of the other possible initial states of this machine, specify appropriate
initial states of the inverse.

Table P14.23

NS, z

PS x = 0 x = 1

A B, 1 C, 1
B D, 0 E, 0
C A, 1 F, 1
D C, 0 B, 0
E F, 1 A, 1
F E, 0 D, 0

Problem 14.24
(a) Prove that the inverse of a lossless machine of finite order is a lossless machine of

finite order.
(b) Demonstrate, by finding the inverse of the machine M i

10 (Table 14.22), that the
inverse of the inverse of a lossless machine of finite order is isomorphic to the
original machine, i.e., show that the inverse of M i

10 is isomorphic to M10.

Problem 14.25. The output symbol of a finite-state machine is the modulo-2 sum of
the current input symbol and the second and third past input symbols, i.e.,

z(t) = x(t) ⊕ x(t − 2) ⊕ x(t − 3).

522 Memory, definiteness, and information losslessness of finite automata

(a) Prove that such a machine is lossless of finite order.
(b) Realize the machine and its inverse.

Problem 14.26. Show that the code γ = {1, 110, 010, 100} is uniquely decipherable.
Is it also uniquely decipherable with a finite delay? If so, find the delay; if not, show a
message that cannot be deciphered in a finite time.

Problem 14.27. Given the uniquely decipherable code γ = {0, 001, 101, 011}, deci-
pher the message 0010100110100110001.

C H A P T E R

15 Linear sequential machines

Linear sequential machines constitute a subclass of linear systems in which
the input vector, output vector, and state transitions occur in discrete steps.
Consequently, the tools and techniques available for the analysis and synthesis
of linear systems can be applied to linear machines as well. The numerous
applications of linear machines give further incentive to the investigation of
their properties and to the development of efficient synthesis procedures.

In the first few sections we present an intuitive, though well-justified,
approach that requires only a limited knowledge of modem algebra. In sub-
sequent sections (i.e., Sections 15.4 through 15.6) a matrix formulation is
presented, and methods for minimizing and detecting linear machines are devel-
oped.

15.1 Introduction

A linear sequential machine (also called a linear machine) is a network that
has a finite number of input and output terminals and is composed of inter-
connections of three types of basic components, to be introduced shortly.
The input signals applied to the machine are elements of a finite field1

GF (p) = {0, 1, . . . , p − 1}, and the operations performed by the basic com-
ponents on their inputs are carried out according to the rules of GF (p). A
block-diagram representation of a linear machine with l input terminals and m

output terminals is shown in Fig. 15.1.
For a machine to be linear, its response to a linear combination of inputs

must preserve the scale factor and the principle of superposition. Thus, each
of the basic components used to realize a linear machine must be linear. This
requirement clearly precludes the use of an AND gate whose output is the
product of its inputs; e.g., if the inputs are x1 and x2 and the signal values

1 Some relevant basic properties of finite fields are summarized in Appendix 15.1. The
understanding of these properties is essential to the study of linear machines.

523

524 Linear sequential machines

Adders
and

multipliers

z2x2

xl

y1 Y1

yk Yk

y2 Y2

zm

x1 z1
Fig. 15.1 Block diagram of a
linear machine.

x1

xl
(a) Unit delay.

Y(t) +y(t) = Y(t − 1)

x cx (modulo p)

(c) Modulo-p scalar multiplier.

x1 + x2 + … + xl
(modulo p)

x2

(b) Modulo-p adder.

c

Fig. 15.2 Basic components of
linear circuits.

are elements of GF (2) then the output is z = x1x2 modulo 2. Using similar
arguments, we observe that the OR gate is not linear either since, for example,
the output2 of a two-input gate is z = x1 + x2 + x1x2 modulo 2. The following
three types of basic component are clearly linear.

1. Unit delays A unit delay is a two-terminal element whose output y(t) is
related to its input Y (t) by y(t) = Y (t − 1).

2. Modulo-p adders An adder has l input terminals and one output termi-
nal. The output is the modulo-p sum of the inputs; i.e., if the inputs are
x1, x2, . . . , xl then the output is x1 + x2 + · · · + xl (modulo p).

3. Modulo-p scalar multipliers A multiplier c (where c is an element of
GF (p)) has one input and one output terminal. If the input is x then the
output is cx (modulo p).

Modulo-p addition and scalar multiplication are assumed to be executed
instantaneously. For most purposes, we shall restrict p to prime numbers. The
symbols representing the above components are shown in Fig. 15.2.

Any network that is constructed by interconnecting components of the types
shown in Fig. 15.2 is referred to as a linear circuit, provided that every closed
loop contains at least one delay element. The unit delay is equal to the discrete

2 In this chapter, the symbol + represents the addition operation in accordance with the rules of
GF (p) (i.e., modulo p).

525 15.2 Inert linear machines

x1
+ +y1

+ y2

x2

+y3
2 +y4

2

z2

z1

Fig. 15.3 A four-terminal
four-dimensional linear machine
over G F (3).

interval of time between two successive clock pulses. The state variables of
a linear machine are the outputs y1, y2, . . . , yk of the delay elements. The
state of a machine at time t is specified by the value of the y’s at t , i.e.,
y1(t), y2(t), . . . , yk(t). The number of delay elements (or state variables) in a
linear machine is referred to as the dimension of the machine. A linear machine
whose components are modulo p and whose input signals are elements of
GF (p) is said to be a linear machine over GF(p).

Example Figure 15.3 illustrates a four-terminal four-dimensional linear
machine over GF (3).

A linear machine over GF (2) is called a binary machine. Binary machines
are practical and simple to construct and are widely used in various applications.
Consequently, although we shall develop the theory of linear machines over
GF (p), most examples will be selected from linear machines over the GF (2)
field.

15.2 Inert linear machines

A linear machine whose delay elements are initially in the zero state is referred
to as an inert (or quiescent) linear machine. Inert linear machines are used
extensively as encoding and decoding devices and in various applications that
require transformations of sequences. It will subsequently be shown that the
study of these machines provides insight into the problem of arbitrary linear
machines, as well as some of the basic tools for the analysis of the subject.

Feedforward shift registers

The simplest type of inert linear machine is a two-terminal shift register that con-
tains only feedforward paths and whose output is a modulo-p sum of selected
input digits. The schematic representation of a feedforward shift register over
GF (p) is shown in Fig. 15.4.

The output z can be described by a polynomial in D over the GF (p) field,
i.e.,

z = a0x + a1Dx + · · · + akD
kx (15.1)

526 Linear sequential machines

x

+yk y2 Y1

z

ak−1ak

Yk

+

a1

Y2
y1

+

a0

Fig. 15.4 A feedforward shift
register. where the symbol Di is an i-unit delay operator, which delays by i time units

the variable on which it operates. For example, equation z = D2x means that,
for all t ≥ 2, z(t) = x(t − 2). The operator D0 = 1 is referred to as the identity
operator. Equation (15.1) is a valid description of the shift register of Fig. 15.4
only if initial conditions of delays are zero, i.e., y1(0) = y2(0) = · · · = yk(0) =
0, since otherwise the output cannot be expressed for all times as only a function
of the input. Equation (15.1) can be rewritten as

z = (a0 + a1D + · · · + akD
k)x

or as

z

x
= a0 + a1D + · · · + akD

k = T (D), (15.2)

where the polynomial T (D), which expresses the ratio z/x, is defined as the
transfer function of the inert linear machine.

Example Consider the inert linear machine over GF (2) of Fig. 15.5, where
the output digit is a modulo-2 sum of the present input digit and the first
and third past input digits, i.e., z(t) = x(t) + x(t − 1) + x(t − 3). The cor-
responding polynomial in the delay operator is

z = x + Dx + D3x

and the transfer function is

T1 = z

x
= 1 + D + D3.

Note that, for GF (2), the scalar multiplier ai is either 1 or 0, depending on
whether there is or is not a connection to the ith modulo-2 adder.

x

z+ +

Fig. 15.5 Realization of the transfer function T1 = 1 + D + D3.

To show that the circuit represented by Eq. (15.1) and Fig. 15.4 is indeed
linear, let z and z∗ be the responses to two distinct input sequences x and x∗

527 15.2 Inert linear machines

respectively and let v and v∗ be scalars taken from GF (p). Then

z = a0x + a1Dx + · · · + akD
kx

and

z∗ = a0x
∗ + a1Dx∗ + · · · + akD

kx∗.

The response Z to a linear combination of inputs is given by

Z = a0(vx + v∗x∗) + a1D(vx + v∗x∗) + · · · + akD
k(vx + v∗x∗)

or

Z = v(a0x + a1Dx + · · · + akD
kx) + v∗(a0x

∗ + a1Dx∗ + · · · + akD
kx∗).

Hence,

Z = vz + v∗z∗. (15.3)

The response of the machine to a linear combination of inputs preserves the
scale factor and principle of superposition and consequently the machine is
linear. As a result, we may apply the linear theory of polynomials to delay
polynomials as well.

Consider now a serial connection of two linear machines of the type shown
in Fig. 15.4; that is, the output of the predecessor machine is the input to the
successor machine. Let x1, z1, and T1 denote the input, output, and transfer
function of the predecessor machine, and let x2, z2, and T2 denote the input,
output, and transfer function of the successor machine. The transfer function
T3 of the serial connection is given by

T3 = z2

x1
.

However, since x2 and z1 are identical we have

T3 = z1

x1
· z2

x2
= T1 · T2.

Similarly, the transfer function of a parallel connection of the above machines
is given by T4 = T1 + T2. The multiplication and addition of polynomials are
performed over the GF (p) field.

Example Let T1 = D2 + 2D + 1 and T2 = D + 1 be transfer functions
over the field GF (3). The transfer functions, which correspond to the serial
and parallel connections of T1 and T2, are given by

T3 = (D2 + 2D + 1)(D + 1) = D3 + 1,

T4 = (D2 + 2D + 1) + (D + 1) = D2 + 2.

528 Linear sequential machines

Impulse response and null sequences

It is useful to define the impulse response h of an inert linear machine as its
response to the input sequence 100 · · · 0. For example, the impulse response of
the (inert) feedforward shift register of Fig. 15.4 is a0a1a2 · · · ak0 · · · 0. After at
most k + 1 time units, the output of the k-dimensional feedforward shift register
will be a sequence of 0’s. In analogy to linear system theory, we can determine
the response of an inert linear machine to an arbitrary input sequence from its
impulse response. This is accomplished by performing a discrete “convolution”
in GF (p).

Example The impulse response of T1 = 1 + D + D3 is h = 110100 · · · 0.
The response of T1 to the input sequence 1011 is obtained by addition
(modulo 2) of the sequences h,D2h, and D3h, as follows:

Impulse: 1 0 0 0 0 · · 0
Impulse response h: 1 1 0 1 0 · · 0

Input sequence: 1 0 1 1
h: 1 1 0 1 0 0 0 0 · · 0

D2h: 0 0 1 1 0 1 0 0 · · 0
D3h: 0 0 0 1 1 0 1 0 · · 0

Output sequence: 1 1 1 1 1 1 1 0 · · 0

The reader can similarly verify that the response of T1 to the input sequence
11101 is 10000001.

If the initial state at t = 0 of an inert linear machine is 00 · · · 0, i.e., y1(0) =
y2(0) = · · · = yk(0) = 0, and the input to the machine is a sequence of 0’s
then the output is also a sequence of 0’s. However, it is possible to generate
an output sequence consisting of 0’s by providing the machine with a nonzero
input sequence. Such a sequence is called a null sequence of the linear machine
T and is denoted X0, so that T X0 is a sequence of 0’s. If X0 and X∗

0 are null
sequences for a machine T , that is, T X0 = 00 · · · 0 and T X∗

0 = 00 · · · 0, then
v1T X0 + v2T X∗

0 = T (v1X0 + v2X
∗
0) = 00 · · · 0, where v1 and v2 are scalars

from GF (p). Thus, any linear combination of null sequences is also a null
sequence for the machine.

Example A null sequence of T1 = 1 + D + D3 is determined as follows:

0 = X0 + DX0 + D3X0,

X0 = DX0 + D3X0.

Thus, the present digit of X0 is found by adding (modulo 2) the first and
third past input digits of X0. The null sequence is obtained by selecting
an arbitrary nonzero sequence of length 3 (in general, of length equal to

529 15.2 Inert linear machines

dimension k) and specifying the subsequent digits. For T1, the selection of
001 as the initial sequence yields the following null sequence:

X0 = (0 0 1) 1 1 0 1 0 0 1.

After seven digits the null sequence, which consists of the last seven digits,
repeats itself.

Example The null sequence for the polynomial T = 1 + 2D2 + D3 over
GF (3) is found from

0 = X0 + 2D2X0 + D3X0.

Adding 2X0 to both sides and recalling that 2X0 + X0 = 0 in modulo 3
yields

2X0 = 2D2X0 + D3X0.

Multiplying both sides by 2 yields

X0 = D2X0 + 2D3X0.

Starting with 111, we obtain the null sequence

X0 = (1 1 1) 0 0 2 0 2 1 2 2 1 0 2 2 2 0 0 1 0 1 2 1 1 2 0 1 1 1.

The preceding null sequences are known as maximal sequences, since each
contains (pk − 1) digits and includes all possible k-tuples except 00 · · · 0. Addi-
tional properties of null sequences and their relationships to delay polynomials
are discussed in [7].

Inverse machines

Feedforward shift registers are often used for encoding purposes. It is useful
to determine whether an inverse machine that can be used as a decoder exists
and, if it does, how to construct it. We shall say that a polynomial T (D), where
z = T x, has an inverse, which will be denoted by 1/T (D), if there exists a
network that realizes x = (1/T)z. We shall consider only those inverses that
decode without any delay. The inverse of the feedforward shift register of
Fig. 15.4 is obtained by reversing the directions of z and x in this schematic
diagram and inverting the scalar multipliers, as shown in Fig. 15.6.

If we provide the inverse machine of Fig. 15.6 with the impulse response of
the original machine of Fig. 15.4, i.e., a0a1 · · · ak−1ak00 · · · 0, its response will
be the original message, x = 100 · · · 0. Since the inverse machine is linear and
initially inert, it will decode any message produced by the original machine.
(Note that negative scalars are actually positive integers since (−a) modulo
p = (p − a) modulo p.)

530 Linear sequential machines

x

+ z

−a
k−1−a

k

+

−a1

+

1/a0

w0

wi

Fig. 15.6 Inverse machine for
the shift register of Fig. 15.4. From Fig. 15.6 it is evident that the inverse is realizable only if a0 = 0.

In general, an inert linear machine described by a delay polynomial T has a
linear inverse described by T −1, which decodes without a delay, if and only if T
contains a nonzero constant term that is prime to modulo p. The general proof
of this result is left to the reader as an exercise. The following demonstrates it
for the case GF (2).

The assertion is that an inert linear machine over the field of integers modulo
2 has an inverse, which decodes the output of the original machine without a
delay, if and only if a0 = 1 in T . To prove this assertion, consider the polynomial
T = a1D + a2D

2 + · · · + akD
k , for which a0 = 0. Let the input to and the

output from the inverse machine be denoted wi and wo, respectively; then the
transfer function is given by

wo

wi
= 1

a1D + a2D2 + · · · + akDk

or

a1Dwo = wi + a2D
2wo + · · · + akD

kwo.

The above equation means that a past output of the inverse machine (i.e., Dwo)
is a function of past outputs as well as the present input to the inverse machine.
Such a condition is clearly not physically realizable. (If a1 = 0, the above
argument holds for the term containing the lowest order ai = 0.)

If T does not contain a nonzero constant term, no instantaneous inverse can
be found. However, an “inverse” that decodes the original input after a finite
delay can be found. Let ai be the scalar associated with the lowest power of D

for which ai = 0, i.e.,

T = Di + ai+1D
i+1 + · · · + akD

k

(modulo 2). The “inverse” is given by

wo

wi
= 1

Di + ai+1Di+1 + · · · + akDk
(15.4)

or

Diwo

wi
= 1

1 + ai+1D + · · · + akDk−i
. (15.5)

531 15.2 Inert linear machines

Although an inverse that decodes instantaneously does not exist for T ,
Eq. (15.5) corresponds to a realizable inverse, which regenerates the origi-
nal message after a delay of i time units. Hence, if a sufficient finite delay is
allowed then the messages generated by a feedforward shift register can always
be decoded. This means that the shift register of Fig. 15.4 is actually lossless
of order μ, where μ < k.

Example The inverse of the inert linear machine of Fig. 15.5 is given by
T −1

1 = 1/(1 + D + D3) and is shown in Fig. 15.7. (Note that for binary
inert linear machines −ai = ai .)

x

z+ +

w0
wi

Fig. 15.7 The inverse of the machine in Fig. 15.5.

Linear machines with nonzero initial conditions

The inverse of an inert linear machine might not be inert. Consequently, its
response to a sequence of zero input digits is not necessarily a sequence of
zero output digits but could be a null sequence X0 whose starting digits are
determined by the initial state of the inverse. This can be shown by observing
that the transfer function of the inverse is x/z = T −1, or z = T x = 0, because
the input z to the inverse is assumed to be an all-0’s sequence. Clearly, the
solution of equation T x = 0 is the null sequence X0.

Let the input digits to the linear machine realizing T1 and its inverse T −1
1

(Figs. 15.5 and 15.7, respectively) be 0’s. If the machines are inert then their
respective output digits will also be 0’s. If, however, they are not inert then
their respective output digits will not be 0’s but will depend on their initial
states. Since T1 contains only feedforward paths, its response to a sequence of
0’s might initially be nonzero, depending on the initial state. However, after at
most three time units the response will be a sequence of 0’s. In general, for
every k-dimensional feedforward shift register the response to a sequence of 0’s
will also be a sequence of 0’s, after a transient period of at most k time units in
which the output digit might be nonzero. In the case of a noninert shift register
that contains feedback paths, e.g., T −1

1 , the response to a sequence of 0’s is not
necessarily a sequence of 0’s. The behavior of a noninert linear machine whose
input is a sequence of 0’s is often referred to as autonomous behavior, and it can
be described by the state diagram of the corresponding machine whose input
terminals are ignored. The state diagrams describing the autonomous behavior
of the machines realizing T1 and T −1

1 are given in Fig. 15.8.

532 Linear sequential machines

001

100

011

101110

111

010

000

100 101

010

110 111

011

001

000

(a) T1 = 1 + D + D3. (b) T1
−1 = 1/(1 + D + D3).

Fig. 15.8 State diagrams for
autonomous behavior of linear
machines.

An autonomous linear machine is a linear machine that contains no inputs
(except a clock). A transition is caused by the clock pulse and, since the machine
is deterministic, only one transition is permitted from each state. While the state
diagram of T1 contains only a single loop, corresponding to the case where the
initial condition is 000, the diagram of T −1

1 contains two loops, which are called
cycle sets. The nontrivial cycle in T −1

1 contains seven states and is maximal. (In
general, the maximum number of distinct states in a k-dimensional modulo-p
machine is pk and, therefore, a maximal cycle contains pk − 1 states.) For a
more comprehensive study of the properties of autonomous linear machines,
the reader is referred to Gill [9].

15.3 Inert linear machines and rational transfer functions

In the preceding section, the output of an inert linear machine was assumed to
be a function of the present and some of the past input digits. In this section,
we develop the more general case where the present output digit depends on
the present and selected past input digits and also on a finite number of past
output digits. In this latter case, the transfer function is a rational polynomial
in the delay operator, i.e., T = P (D)/Q(D).

Realization of rational polynomials

As an example, consider the inert linear machine whose output z is the modulo-
2 sum of the present, first, second, and fourth previous input digits and of the
first and third previous output digits, i.e.,

z = x + Dx + D2x + D4x + Dz + D3z. (15.6)

533 15.3 Inert linear machines and rational transfer functions

Equation (15.6) can be rewritten as

z(1 + D + D3) = x(1 + D + D2 + D4)

and the transfer function is given by

T2 = z

x
= 1 + D + D2 + D4

1 + D + D3
.

It can be shown that the numerator and denominator of T2 do not contain any
common factor and, thus, T2 cannot be further simplified.

There are several methods for realizing the above transfer function. An obvi-
ous approach, although a very inefficient one, is to synthesize the inert linear
machines given by the polynomials 1 + D + D2 + D4 and 1/(1 + D + D3)
and to form a serial connection of these machines. Such a realization requires
seven delay elements, four for the numerator and three for the denominator.
Other synthesis procedures, which involve factoring of the numerator, partial
fraction expansion, and ladder-type expansions, although useful do not neces-
sarily yield a minimal realization. (A minimal realization is one that yields a
machine of smallest dimension.) Clearly, the minimal possible dimension is
determined by the degree of the polynomial and is equal to the highest degree
in either the numerator or denominator of the transfer function. The chain
realization described below yields a minimal realization in an efficient manner.

For T2, the number of delay elements required in the minimal realization is
four, the degree of the numerator. To demonstrate this assertion, let us rewrite
Eq. (15.6) in increasing powers of D as follows:

x + z = D(x + z) + D2x + D3z + D4x

or

x + z = D{(x + z) + D[x + D(z + Dx)]}. (15.7)

The realization of Eq. (15.7), which is known as a chain realization, and that
of its inverse, which corresponds to

T −1
2 = x

z
= (1 + D + D3)

(1 + D + D2 + D4)
,

are shown in Fig. 15.9. The output z is generated by adding x to x + z, which
gives (x + z) + x = z (modulo 2). This realization uses only EXCLUSIVE-OR
adders, i.e., two-input modulo-2 adders, which are relatively inexpensive. In
general, one characteristic of the chain realization is that it employs modulo-2
adders with only two inputs.

To obtain the chain realization of an arbitrary transfer function over GF (2),
note that the transfer function T = P (D)/Q(D) of any realizable inert linear
machine over GF (p) has the form

T = z

x
= a0 + a1D + · · · + akD

k

1 + b1D + · · · + bkDk
= P (D)

Q(D)
, (15.8)

534 Linear sequential machines

x

x + z
+

z

+ + +

(a) Realization of T2 =
1 + D + D2 + D4

1 + D + D 3
.

x

x + z
+

z

+ + +

(b) Realization of T2
−1 =

1 + D + D2 + D4

1 + D + D3
.

Fig. 15.9 Chain realization of
an inert linear machine and its
inverse.

x

+

x

x + z

k + 1 +2+k − 1 x + z

z

z

Fig. 15.10 Chain realization of
an arbitrary transfer function
over G F (2).

where the ai’s and bi’s are elements of GF (p). The denominator Q(D) must
contain the term 1 if T is to be realizable, as shown in the preceding section.
Clearly, a realizable instantaneous inverse T −1 exists if and only if the numera-
tor contains a nonzero constant term a0 that is prime to modulo p. The machine
T2 has such an instantaneous inverse, as illustrated in Fig. 15.9b, since the
numerator of T2 contains a nonzero constant term, i.e., a0 = 1.

For any invertible transfer function over GF (2) of the form Eq. (15.8), we
can write an expression for x + z as a sum of past input and output digits,
e.g., Eq. (15.7). This expression can be realized by an alternating chain of
delay elements and modulo-2 adders, as shown in Fig. 15.10. In general, the
chain realization of a k-dimensional inert linear machine requires k delay
elements and at most k two-input modulo-2 adders. One input to the ith adder
from the right (except the first adder) is the output of the ith delay element.
The second input, if required, is x, z, or x + z, depending respectively on
whether the term Di−1 is present in the numerator or denominator of T or both.
The second input to the rightmost adder is always x, so that x + (x + z) =
z. If Di−1 is absent from both P (D) and Q(D), i.e., ai−1 = bi−1 = 0, no
second input is required and the ith adder may be deleted. The inverse machine

535 15.3 Inert linear machines and rational transfer functions

x

+

z

ak−1ak

+

a1

+

a0

−bk−1−bk −b1

+

Fig. 15.11 Realization of
T = (a0 + a1 D + · · · +
ak Dk)/(1 + b1 D + · · · +
bk Dk)(modulo p).

is obtained simply by interchanging the roles of x and z, as illustrated in
Fig. 15.9b.

The realization of a two-terminal k-dimensional inert linear machine, over
the GF (p) field, whose transfer function is given by Eq. (15.8), is shown in
Fig. 15.11. Note that for p ≥ 3 it is generally not sufficient to employ only
two-terminal adders, unless the number of adders is increased. The realization
of Fig. 15.11 is obtained in a direct manner from the realizations in Figs. 15.4
and 15.6. The verification that it indeed realizes Eq. (15.8) is left to the reader
as an exercise.

Example The realization of

T3 = 1 + 2D + D2 + 2D4

1 + 2D + D2 + D3

over GF (3) is shown in Fig. 15.12.

x

+

z

2

+

2

+

2

+

2

Fig. 15.12 Realization of T3 = (1 + 2D + D2 + 2D4)/(1 + 2D + D2 + D3)(modulo 3).

Impulse response and transfer function

The impulse response h of an inert linear machine has been defined as its
response to the input sequence 100 · · · 0. For any given impulse response,
a transfer function can always be specified and if the impulse response is
realizable then a corresponding machine can be synthesized. We shall now

536 Linear sequential machines

zx

Tp

+

Tt

Impulse: 10000000000000000. . .

h: 10101001110100111. . .

ht: 01000000000000000. . .

hp: 11101001110100111. . ., ,

(a) Impulse response and
its components.

(b) T = T
p
+ T

t
.

Fig. 15.13 Synthesis of an inert
linear machine from its impulse
response.

show how to synthesize an inert linear machine from its impulse response.
In particular, we shall prove that if the impulse response is realizable then it
consists of two components: a transient component denoted ht and a periodic
component denoted hp.

In Section 10.2, it was shown that the response of an arbitrary sequential
machine to a periodic excitation is periodic. In particular, the response to a
sequence of 0’s is periodic with period shorter than or equal to n, where n

is the number of states. For a k-dimensional inert linear machine, the period
of the response to a sequence of 0’s is at most pk − 1 = n − 1, since this
is the maximal nontrivial cycle set (excluding the zero state). Consequently,
a necessary condition for an impulse response h to be realizable is that it
will ultimately become periodic. In addition, since the length of the transient
response is at most k + 1, the transfer function of a realizable two-terminal
k-dimensional inert linear machine can be specified uniquely by observing the
first k + pk symbols of the impulse response:

As an example, consider the impulse response h = 1010100,

1110100, 1110100, . . . of an inert linear machine over GF (2). The impulse
response can be separated into a transient and a periodic component such that
h = ht + hp, as shown in Fig. 15.13a. The synthesis of the corresponding
inert linear machine can be accomplished by specifying separately transfer
functions Tt and Tp, corresponding, respectively, to ht and hp, such that the
overall transfer function T = Tt + Tp (see Fig. 15.13b). The transfer function
Tt is found from ht to equal D. The periodic component hp can be described
by 1 + D + D2 + D4 and, since the period is 7, the entire periodic transfer
function is specified by

Tp = (1 + D + D2 + D4)(1 + D7 + D14 + · · ·)
or

Tp = 1 + D + D2 + D4

1 + D7
.

Hence,

T = Tp + Tt = 1 + D + D2 + D4

1 + D7
+ D

= 1 + D2 + D4 + D8

1 + D7
.

537 15.4 The general model

x1

z1

+

+

T11

+

T12 T1m

x2

T21 T22 T2m

xl

Tl1 Tl 2 Tlm

zm

z2

Fig. 15.14 Schematic diagram
of a multi-terminal inert linear
machine.

This function can be simplified as (see Appendix 15.2)

T = (1 + D + D2 + D4)2

(1 + D + D2 + D4)(1 + D + D3)
= 1 + D + D2 + D4

1 + D + D3
.

A minimal realization of this transfer function is shown in Fig. 15.9a.

Multi-terminal machines

In the preceding sections we developed the properties of two-terminal inert
linear machines characterized by rational polynomials in the delay operator
D. A multi-terminal inert linear machine with l input terminals and m output
terminals can be characterized by a set of lm transfer functions, where

Tij (D) = zj

xi

for all i = 1, 2, . . . , l and j = 1, 2, . . . , m.

The transfer function Tij is evaluated when xi = 0 for all i = j ; i.e., Tij spec-
ifies the dependency of output zj on input xi when all other inputs are held
at zero. The synthesis problem of a multi-terminal inert linear machine can
thus be transformed to the well-known problem of synthesizing a set of two-
terminal inert linear machines. A realization of an arbitrary multi-terminal
inert linear machine from an appropriate set of two-terminal machines is
shown in Fig. 15.14. It must be emphasized that this is not always a min-
imal realization; rather, it demonstrates that a realization exists. More effi-
cient methods, that yield minimal realizations, are developed in subsequent
sections.

15.4 The general model

The specification of the outputs zj of an inert linear machine by means of a
set of polynomials, such that zj = ∑l

i=1 Tij xi , is actually a “black box” type

538 Linear sequential machines

of specification; that is, each output is specified in terms of only the external
inputs and the characterizing polynomials. Such a specification is possible
since the machine is assumed to be initially inert, i.e., x(t) = 0 for all t < 0
and, therefore, yi(t) = 0 for all t < 0 and i = 1, 2, . . . , k. The specification of
an arbitrary (not necessarily inert) linear machine is accomplished by specifying
the output and next-state functions in terms of the inputs as well as the present
states of the machine.

The matrix formulation

Consider a k-dimensional linear machine over GF (p), with l inputs and m

outputs, as shown in Fig. 15.1. Since the combinational logic consists of only
adders and scalar multipliers, the next state of the delay Yi can be expressed as
a function of the external inputs of the machine and its present state, as follows:

Yi = (αi1y1 + αi2y2 + · · · + αikyk) + (βi1x1 + βi2x2 + · · · + βilxl)

or

Yi =
k∑

j=1

αijyj +
l∑

j=1

βij xj . (15.9)

Equation (15.9) is called the next-state equation for delay Yi . The entire set
of next-state equations for a given machine can be expressed compactly in a
matrix form as follows:⎡
⎢⎢⎢⎣

Y1

Y2
...

Yk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

α11 α12 · · · α1k

α21 α22 · · · α2k

...
...

...
...

αk1 αk2 · · · αkk

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

y1

y2
...
yk

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

β11 β12 · · · β1l

β21 β22 · · · β2l

...
...

...
...

βk1 βk2 · · · βkl

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2
...
xl

⎤
⎥⎥⎥⎦

(15.10)

or
Y(t) = y(t + 1) = Ay(t) + Bx(t).

The vector y(t) is called the present-state vector; its elements are the state
variables. The vector Y(t) is the next-state vector, where Y(t) = y(t + 1). The
vector x(t) is the input vector; its elements are the input variables, where xi(t)
is the input applied to the ith terminal at time t . The dimensions of the state
and input vectors are k and l, respectively, i.e.,

y(t) =

⎡
⎢⎢⎢⎣

y1

y2
...
yk

⎤
⎥⎥⎥⎦ , Y(t) =

⎡
⎢⎢⎢⎣

Y1

Y2
...

Yk

⎤
⎥⎥⎥⎦ , x(t) =

⎡
⎢⎢⎢⎣

x1

x2
...
xl

⎤
⎥⎥⎥⎦ .

When the dependence on t is understood, yi(t) and xi(t) are written as yi and
xi , respectively.

539 15.4 The general model

In a similar manner, each output function can be specified in terms of the
present state and inputs of the machine. The ith output is expressed as

zi = (γi1y1 + γi2y2 + · · · + γikyk) + (δi1x1 + δi2x2 + · · · + δilxl)

or

zi =
k∑

j=1

γij yj +
l∑

j=1

δij xj . (15.11)

Equation (15.11) is called the output equation. The entire set of output equations
for a given machine can also be expressed in a matrix form, as follows:⎡
⎢⎢⎢⎣

z1

z2
...

zm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

γ11 γ12 · · · γ1k

γ21 γ22 · · · γ2k

...
...

...
...

γm1 γm2 · · · γmk

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

y1

y2
...
yk

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

δ11 δ12 · · · δ1l

δ21 δ22 · · · δ2l

...
...

...
...

δm1 δm2 · · · δml

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2
...
xl

⎤
⎥⎥⎥⎦

(15.12)

or

z(t) = Cy(t) + Dx(t),

where z(t) is the output vector; its ith element zi(t) is the output generated at
terminal i at time t .

The matrices A, B, C, and D defined by Eqs. (15.10) and (15.12) are the
characterizing matrices of the linear machine; A is referred to as the character-
istic matrix and specifies the autonomous behavior of the machine. The matrix
formulation completely characterizes any linear machine, and thus it leads to a
precise definition of a linear machine in terms of the characterizing matrices,
as follows.

Definition 15.1 A machine is said to be linear over a finite field GF (p) if its
states can be identified with the elements of a vector space and its next-state and
output functions can be specified by a pair of matrix equations over GF (p),

Y(t) = Ay(t) + Bx(t), (15.13)

z(t) = Cy(t) + Dx(t). (15.14)

The dimension of the machine is the dimension of its state vector.

Equations (15.13) and (15.14) represent a Moore or Mealy machine, accord-
ing to whether D is or is not identically zero. We subsequently refer to a machine
whose characterizing matrices are A, B, C, and D as the machine {A, B, C, D}.

The elements of the characterizing matrices are determined from the next-
state and output equations, Eqs. (15.9) and (15.11) respectively, in the following
manner. The coefficient αij denotes the product of scalar multipliers contained

540 Linear sequential machines

in the path leading from yj to Yi . If there are two or more paths from yj to
Yi , αij denotes the sum of all such products; if no path exists between yj and
Yi , αij = 0. The coefficient βij denotes the corresponding values for the paths
leading from the input xj to Yi . Similarly, γij denotes the sum of products of the
scalar multipliers contained in the paths leading from yj to output terminal zi ; if
no path exists between yj and zi then γij = 0. The coefficient δij denotes the cor-
responding values for paths originating at input xj and terminating at output zi .

Example The characterizing matrices for the four-terminal linear machine
of Fig. 15.3 are

A =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 1 0 0
0 2 2 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 0
0 1
0 1
0 2

⎤
⎥⎥⎦ , C =

[
0 2 0 1
0 1 1 0

]
, D =

[
0 2
0 1

]
.

The response of linear machines

The relationship between the input sequence to the machine {A, B, C, D} and
its corresponding output sequence is obtained by iterating Eqs. (15.13) and
(15.14), i.e.,

y(1) = Ay(0) + Bx(0),

z(0) = Cy(0) + Dx(0),

z(1) = CAy(0) + CBx(0) + Dx(1),

z(2) = CA2y(0) + CABx(0) + CBx(1) + Dx(2),

z(3) = CA3y(0) + CA2Bx(0) + CABx(1) + CBx(2) + Dx(3),
...

z(t) = CAty(0) +
t−1∑
j=0

CAt−1−j Bx(j) + Dx(t)

or

z(t) = CAty(0) +
t∑

j=0

H(t − j)x(j) (15.15)

where

H(t − j) =
{

D when t − j = 0,

CAt−1−j B when t − 1 − j ≥ 0.
(15.16)

From Eq. (15.15) we see that the response of a linear machine consists of
two components. The first component, known as the autonomous response, is
obtained by setting x(t) = 0 for all t ≥ 0, i.e.,

za(t) = CAty(0). (15.17)

541 15.5 Reduction of linear machines

The second component, known as the forced response, is obtained by setting
y(0) = 0, i.e.,

zf(t) =
t∑

j=0

H(t − j)x(j). (15.18)

The total response is thus given by

z(t) = za(t) + zf(t). (15.19)

Equation (15.18) actually describes the response of inert machines in matrix
form. These machines have been studied extensively in earlier sections by
means of the polynomial representation. The total response, Eq. (15.19), of
a linear machine for a given input sequence and an arbitrary initial state can
be found by separately determining the forced and autonomous responses and
adding them up.

The autonomous response is generally determined from the analysis of the
internal circuit.3 The state behavior of the internal circuit is completely char-
acterized by the characteristic matrix A, since Eq. (15.13) becomes

Y(t) = y(t + 1) = Ay(t).

Because the internal circuit is autonomous, the λ-successor Sj of state Si , where
Si = yi(t), is given by

yj (t) = Aλyi(t)

where λ denotes the number of state transitions. (Note that while yj denotes
the state of the j th delay, yi denotes the state Si of the machine.)

The sequence of predecessors of a given state is established by constructing
the inverse internal circuit; such an inverse exists only if each state has a unique
predecessor. For an internal circuit given by A, the inverse is given by A−1 since

y(t) = A−1Y(t).

Thus, the inverse circuit exists if and only if A is nonsingular, i.e., the
determinant |A| is nonzero.

Autonomous linear machines are best analyzed either by means of their state
diagrams (as illustrated earlier in Fig. 15.8) or by means of the characteristic
polynomials derived from A. For further discussion on autonomous linear
machines, see [9].

15.5 Reduction of linear machines

We now determine conditions, in terms of characterizing matrices, for lin-
ear machines to be finite-memory and definitely diagnosable. The length of

3 The internal circuit is that part of the circuit that can be specified by A alone, that is, it contains
only the delay elements and their interconnections; the input and output lines have been deleted.

542 Linear sequential machines

the shortest distinguishing sequence for arbitrary initial uncertainty will be
obtained. A procedure will be presented to determine whether a given linear
machine is minimal and, if it is not, how to minimize it. The techniques devel-
oped in earlier chapters for arbitrary sequential machines are valid for linear
machines as well. Our current objective, however, is to develop an analyti-
cal procedure, rather than an enumerative one, which is valid only for linear
machines and which utilizes the matrix formulation.

The diagnostic matrix

Let L be a k-dimensional linear machine over GF (p). To describe an experi-
ment of length k, Eqs. (15.15) and (15.16) can be expressed compactly as

Z(k) = Kky(0) + VkX(k), (15.20)

where

Z(k) =

⎡
⎢⎢⎢⎣

z(0)
z(1)

...
z(k − 1)

⎤
⎥⎥⎥⎦ , Kk =

⎡
⎢⎢⎢⎣

C
CA

...
CAk−1

⎤
⎥⎥⎥⎦ , X(k) =

⎡
⎢⎢⎢⎣

x(0)
x(1)

...
x(k − 1)

⎤
⎥⎥⎥⎦ ,

and

Vk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D 0 0 · · · 0
CB D 0 · · · ·

CAB CB · · · · ·
· · · · · · ·
· · · · · · 0

CAk−2B · · · · · D

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The vector y(0) denotes the initial state at t = 0. For initial states Sa and
Sb, the corresponding state vectors are denoted ya(0) and yb(0), respectively.
The matrix Kk, which consists of submatrices corresponding to the different
outputs, is called the diagnostic (or distinguishing) matrix.

From Eq. (15.20) it is evident that if Sa is equivalent to Sb then

Kkya(0) = Kkyb(0), (15.21)

since the second term VkX(k) is independent of the initial state and depends only
on the input sequence. Moreover, since the inputs enter Eq. (15.20) additively,
all input sequences are equally effective in state-distinguishing experiments.
Consequently, to simplify the computation X(k) may be selected as the all-zero
sequence X(k) = 0, reducing Eq. (15.20) to

Z(k) = Kky(0). (15.22)

543 15.5 Reduction of linear machines

The proof that Eq. (15.21) is a necessary and sufficient condition for Sa and
Sb to be equivalent follows from Theorem 15.1, and is left to the reader as an
exercise.

Before proceeding with the investigation of the minimal linear machines,
it is necessary to show that the first r linearly independent rows of the diag-
nostic matrix Kk occur in a consecutive sequence in C, CA, . . . , CAi , where
i < r . To prove this assertion, assume that all the rows of CAi are linear com-
binations of the rows of Ki , i.e., the rows of C, CA, . . . , CAi−1. Then the
rows of CAi+1 are the same linear combinations of rows of KiA, i.e., CA,
CA2, . . . , CAi . However, since the rows of CAi are linear combinations of the
rows of C, CA, . . . , CAi−1, the rows of CAi+1 are also linear combinations
of the rows of C, CA, . . . , CAi−1. Consequently, the process of finding the
linearly independent rows of Kk terminates as soon as some submatrix CAi

is generated whose rows are linearly dependent on the rows of the preceding
submatrices.

Theorem 15.1 A k-dimensional linear machine {A, B, C, D} is definitely
diagnosable of order k if and only if diagnostic matrix Kk has k linearly
independent rows.

Proof The state vector y is k-dimensional and consequently Kk has exactly
k columns. Thus, the rank of Kk cannot exceed k. If Kk contains k linearly
independent rows then, under a sequence of all-zero inputs, the outputs corre-
sponding to these rows in Eq. (15.22) impose k linearly independent constraints
on y(0). Since y(0) is k-dimensional, it is specified uniquely by these con-
straints and thus the all-zero sequence of length k is a distinguishing sequence.
However, since all input sequences of a given length have been shown to
be equally effective in distinguishing experiments, every input sequence of
length k or more is a distinguishing sequence and the machine is definitely
diagnosable.

To prove that it is definitely diagnosable of order k, it is sufficient to note that
the rows of CAk , CAk+1, . . . are linearly dependent on the rows of Kk and thus
the length of distinguishing sequences need not exceed the rank of Kk . If Kk

contains fewer than k linearly independent rows, there must exist some nonzero
y(0) = 0 that is annihilated by Kk and, hence, results in the same input–output
behavior as in the case y(0) = 0. This means that the machine in question is
not reduced. ♦

From Theorem 15.1, it follows that a linear machine is in reduced
form if and only if the rank of Kk is k. Moreover, every reduced k-
dimensional linear machine is definitely diagnosable of order k and is
finite-memory of order less than or equal to k. These properties are
also known as the observability and predictability properties of linear
machines.

544 Linear sequential machines

Example Consider the linear machine L1 over GF (2) given by the follow-
ing matrices

A =
⎡
⎣0 1 1

1 0 0
1 0 0

⎤
⎦ , B =

⎡
⎣1

1
0

⎤
⎦ , C =

[
1 1 0
1 1 1

]
, D =

[
0
1

]
.

The diagnostic matrix K3 is obtained:

K3 =
⎡
⎣ C

CA
CA2

⎤
⎦ .

Thus Eq. (15.22) becomes⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z1(0)
z2(0)
z1(1)
z2(1)
z1(2)
z2(2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
1 1 1
1 1 1
0 1 1
0 1 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
⎡
⎣y1(0)

y2(0)
y3(0)

⎤
⎦ ·

The rank of K3 is 3 and hence the dimension of L1 cannot be reduced.
For a given initial state, the values of y1(0), y2(0), and y3(0) are specified,
and the matrix Z(t) yields the response of L1 to the distinguishing sequence
000. For example, if the initial state is (111) then in response to 000 the
sequences z1 = 010 and z2 = 100 are produced. It is suggested that the
reader should draw the circuit diagram and compare actual circuit responses
with responses obtained in an analytical manner.

The minimization procedure

Let L be a k-dimensional linear machine {A, B, C, D} over GF (p) and let r

be the rank of the diagnostic matrix, where r < k. Define an r × k matrix T
consisting of the first r linearly independent rows of Kk , and a k × r matrix
R denoting the right inverse of T, such that TR = Ir where Ir is the r ×
r identity matrix. Define an r-dimensional machine L∗ with characterizing
matrices {A∗, B∗, C∗, D∗}. such that

A∗ = TAR, B∗ = TB, C∗ = CR, D∗ = D. (15.23)

At this point, we shall state and prove a major theorem that establishes the
validity of the following minimization procedure.

Theorem 15.2 The State y of L is equivalent to the state y∗ = Ty of L∗. The
machine L∗ is a reduced machine equivalent to L.

545 15.5 Reduction of linear machines

Proof 4 In order to prove the first part, it is necessary and sufficient to show
that, for every state of L, y∗ and Ty have equivalent successors and yield
identical output digits, i.e.,

T(Ay + Bx) = A∗y∗ + B∗x

and

Cy + Dx = C∗y∗ + D∗x.

Define ȳ = y − RTy; then, since TR = Ir we obtain

Tȳ = Ty − TRTy = Ty − Ty = 0.

Since Tȳ = 0, we have Kk ȳ = 0. Therefore, by Eq. (15.21), state ȳ is equivalent
to state 0. In addition, since A0 = 0,

Aȳ = 0 and TAȳ = 0.

Also, since the rows of C are spanned by those of T, Cȳ = 0. The next-state
and output equations are

T(Ay + Bx) = T[A(ȳ + RTy) + Bx] = TAȳ + TARTy + TBx

= 0 + (TAR)(Ty) + (TB)x = A∗y∗ + B∗x,

Cy + Dx = C(ȳ + RTy) + Dx = Cȳ + CRTy + Dx

= 0 + (CR)(Ty) + Dx = C∗y∗ + D∗x.

Hence, y∗ = Ty under the transformation of Eq. (15.23). Similarly, since Ry∗ =
RTy = y, the state y∗ of L∗ is equivalent to the state y = Ry∗ of L.

We shall now show that L∗ is a reduced machine and thus is the minimal
machine equivalent to L. Since Kk has rank less than k, it partitions the states
of L into subsets (usually called cosets) as follows. Let G0 denote the subset
containing all states that are equivalent to the zero state y = 0. From Eq. (15.21)
we conclude that G0 denotes the null space of Kk . Let us now generate a set of
subsets from G0 such that two states ya and yb are in the same subset if and only
if ya − yb is in G0. Hence, Kk(ya − yb) = 0 and Kkya = Kkyb, which means
that ya is equivalent to yb and the subsets so generated are the equivalence
classes of L. Moreover, since states in different subsets are distinguishable by
the all-zero sequence (or any other input sequence), the subsets generated by
Kk correspond to states of the reduced form of the original machine. (These
subsets are actually identical to the blocks of the final partition in the reduction
procedure outlined in Chapter 10.)

Since G0 generates pr − 1 distinct subsets, the reduced form of L over
GF (p) has pr states, where r is the rank of Kk . Since L and L∗ are equivalent
and L∗ has exactly pr states, it is the minimal machine equivalent to L. ♦

4 This proof requires some knowledge of matrix algebra and may be skipped at first reading.

546 Linear sequential machines

Example Consider the linear machine L2 over GF (2) defined by the
matrices

A =
⎡
⎣ 0 1 0

1 0 0
0 1 1

⎤
⎦ , B =

⎡
⎣1

1
1

⎤
⎦ , C = [

1 0 0
]
, D = [

1
]
,

K3 =
⎡
⎣ C

CA
CA2

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
1 0 0

⎤
⎦ ·

The rank of K3 is 2 and thus L2 is reducible. The first two rows of K3 are
linearly independent; therefore

T =
[

1 0 0
0 1 0

]
.

The right inverse R of T is constructed by selecting a set of r linearly
independent columns from T. Since the rank of T is r and column rank
equals row rank, such a set always exists. Form an r × r matrix Q from
these columns and find its inverse, Q−1. The right inverse R, which is
a k × r matrix, is formed by placing in it the rows of Q−1 in positions
corresponding to the columns selected from T, all other rows being set to
zero.

In our case,

Q =
[

1 0
0 1

]
, Q−1 =

[
1 0
0 1

]
, R =

⎡
⎣1 0

0 1
0 0

⎤
⎦ ·

Following the definitions of the characterizing matrices of L∗
2, we obtain

y∗ = Ty =
[

1 0 0
0 1 0

]
y

A∗ = TAR =
[

1 0 0
0 1 0

]⎡⎣0 1 0
1 0 0
0 1 1

⎤
⎦
⎡
⎣1 0

0 1
0 0

⎤
⎦ =

[
0 1
1 0

]
,

B∗ = TB =
[

1 0 0
0 1 0

]⎡⎣1
1
1

⎤
⎦ =

[
1
1

]
,

C∗ = CR = [
1 0 0

]⎡⎣1 0
0 1
0 0

⎤
⎦ = [

1 0
]
,

D∗ = D = [1]·

547 15.5 Reduction of linear machines

The circuit diagram of the reduced machine L∗
2 given by {A∗, B∗, C∗, D∗}

is shown in Fig. 15.15.

x z+ +y2
+ y1

Fig. 15.15 Realization of the reduced machine L ∗
2 .

The minimal machine L∗
2 has been obtained without explicitly constructing

the equivalence classes of L2. We shall now find them to demonstrate the
procedure outlined in the proof of Theorem 15.2. From Eq. (15.22), we have

[
z1(0)
z1(1)

]
= Ty(0) =

[
1 0 0
0 1 0

]⎡⎣y1(0)
y2(0)
y3(0)

⎤
⎦ · (15.24)

Here G0 contains all the states, designated by their corresponding vectors, for
which 0 = Ty(0), i.e.,

G0 =
⎧⎨
⎩
⎡
⎣0

0
0

⎤
⎦ ,

⎡
⎣ 0

0
1

⎤
⎦
⎫⎬
⎭ .

The remaining subsets, which yield equivalence classes of L2, are obtained by
adding to G0 any element not contained in it and such that two states ya and yb

are in the same subset if and only if ya − yb is in G0. Let the first such element
be the vector ⎡

⎣0
1
0

⎤
⎦ , which yields G1 =

⎧⎨
⎩
⎡
⎣0

1
0

⎤
⎦ ,

⎡
⎣ 0

1
1

⎤
⎦
⎫⎬
⎭ ·

Similarly, we obtain the remaining equivalence classes,

G2 =
⎧⎨
⎩
⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣ 1

0
1

⎤
⎦
⎫⎬
⎭ , G3 =

⎧⎨
⎩
⎡
⎣1

1
0

⎤
⎦ ,

⎡
⎣ 1

1
1

⎤
⎦
⎫⎬
⎭ ·

Note that, since y∗ = Ty, the output vector of Eq. (15.24) actually spec-
ifies the state of L∗

2 that corresponds to the equivalence class given by
Gi .

548 Linear sequential machines

Example Consider the linear machine L3 given by {A, B, C, D} over
GF (2) and shown in Fig. 15.16.

A =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 1
1 1 0 0
1 0 1 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

1 0
0 0
1 1
1 1

⎤
⎥⎥⎦ , C =

[
0 1 0 1
1 1 1 0

]
, D =

[
1 0
0 0

]
,

x2

z1+

+
y1+

y2 y3+ +
y4+

+

z2

x1

+

+

+

Fig. 15.16 Realization of the machine L 3.

K3 =
⎡
⎣ C

CA
CA2

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1
1 1 1 0
1 0 0 1
0 1 1 1
0 0 1 0
0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

T =
⎡
⎣0 1 0 1

1 1 1 0
1 0 0 1

⎤
⎦ , Q =

⎡
⎣0 1 0

1 1 1
1 0 0

⎤
⎦ ,

Q−1 =
⎡
⎣0 0 1

1 0 0
1 1 1

⎤
⎦ , R =

⎡
⎢⎢⎣

0 0 1
1 0 0
1 1 1
0 0 0

⎤
⎥⎥⎦ .

The matrix Q occupies the first three columns of T and Q−1 the first three
rows of R, since the linearly independent columns in T have been selected
from positions 1, 2, and 3. We have

A∗ = TAR =
⎡
⎣0 1 0 1

1 1 1 0
1 0 0 1

⎤
⎦
⎡
⎢⎢⎣

1 0 0 0
0 0 1 1
1 1 0 0
1 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 0 1
1 0 0
1 1 1
0 0 0

⎤
⎥⎥⎦ =

⎡
⎣0 0 1

0 1 1
1 1 1

⎤
⎦ ,

549 15.5 Reduction of linear machines

B∗ = TB =
⎡
⎣0 1 0 1

1 1 1 0
1 0 0 1

⎤
⎦
⎡
⎢⎢⎣

1 0
0 0
1 1
1 1

⎤
⎥⎥⎦ =

⎡
⎣1 1

0 1
0 1

⎤
⎦ ,

C∗ = CR =
[

0 1 0 1
1 1 1 0

]⎡⎢⎢⎣
0 0 1
1 0 0
1 1 1
0 0 0

⎤
⎥⎥⎦ =

[
1 0 0
0 1 0

]
,

D∗ = D =
[

1 0
0 0

]
·

The reduced circuit corresponding to {A∗, B∗, C∗, D∗} is shown in
Fig. 15.17.

x2

z1

+
y1+

y2 y3+

z2

x1

+

+ +

+

Fig. 15.17 The reduced machine L ∗
3 .

It is useful to note that the first three linearly independent rows of the
diagnostic matrix K∗

3 of the reduced machine L∗
3 are the rows of I3 in natural

order, that is,

K∗
3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 1 1
1 1 1
1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

From Eq. (15.23) we can show that the matrix (A∗)t of the reduced machine is
related to the original matrix At by

(A∗)t = TAtR

and that the diagnostic matrix K∗ is related to K by

K∗ = KR.

550 Linear sequential machines

The formal proof of the above relationships is left to the reader as an exercise
(see Problem 15.23). Their immediate consequence is summarized as follows.

� The first r linearly independent rows of the matrix K∗
r of a reduced linear

machine are the rows of the identity matrix Ir .

Applying the above results to Eq. (15.22) suggests that for an initial state
y∗

a = [y∗
1, y∗

2, . . . , y∗
r]T (where [y]T denotes the transpose of y) and under an

all-0’s input sequence the output values corresponding to the unit vector rows
of K∗

r are identical to the values y∗
1 , y∗

2 , . . . , y∗
r . This result is of paramount

importance in the identification problem of linear machines, which is discussed
in the following section.

15.6 Identification of linear machines

We shall now establish certain conditions under which a reduced sequential
machine will be linearly realizable. We shall determine an appropriate state
assignment and define the characterizing matrices of a linear machine of the
smallest dimension. We will assume that the input and output symbols of the
machine are taken from GF (p) and that the zero element of the field is specified.
If a machine is not linearly realizable, one of several tests in the procedure will
fail.

The identification procedure

From the discussion in Section 15.5 we know that a linearly realizable machine
must have exactly pk states for some integer k. Moreover, a machine is equiv-
alent to a linear machine if and only if its reduced form is linear.

Let a sequential machine M have pk states, denoted Sa , Sb, . . . , Spk , and
let the l-dimensional vector x and the m-dimensional vector z denote its input
and output vectors, respectively. We construct for M a distinguishing table that
contains the output symbols generated by M in response to a sequence of 0’s.
The table contains pk columns corresponding to the states of M . It is formed
block by block; the ith block corresponds to the output vector z(t) at t = i.
The table thus contains at most k blocks of m rows each, corresponding to the
output vectors z(0), z(1), . . . , z(k − 1). The process of adding blocks to the
table is terminated when, for some t , the set of rows contained in block z(t) is
linearly dependent on the rows in preceding blocks.

As an example, we will construct the distinguishing table for the machine
M4 of Table 15.1. It is given in Table 15.2. The entries in the column headed
A are 11, 01 and correspond to the output symbols of M4 when it is initially
in state A and given the input sequence 00. The construction of Table 15.2
terminates after the second block since the rows of z(1) are linear combinations
of those of z(0). We shall subsequently denote the distinguishing table by U .

551 15.6 Identification of linear machines

Table 15.1 Machine M4

NS, z1z2

PS x = 0 x = 1

A B, 11 D, 01
B A, 01 C, 11
C C, 10 A, 00
D D, 00 B, 10

Table 15.2 Distinguishing table for M4

A B C D

z(0) 1 0 1 0
1 1 0 0

z(1) 0 1 1 0

1 1 0 0

Since the input and output symbols of M4 are limited to 0 and 1, the linear
realization has to be over GF (2). The first test is based on the fact that, for
every linear machine, the all-0’s sequence is a distinguishing sequence. If M is
reduced then the columns of U must be distinct, since otherwise there would be
two or more states in M that are indistinguishable under the all-0’s sequence,
and M would not be linear. Clearly, Table 15.2 passes this test.

Let U∗ be the table consisting of the first r linearly independent rows of U ,
and let Si denote the ith column of U ∗. Assuming that a linear realization of M

is possible, let the states A, B, . . . of M correspond to the state vectors ya , yb,
. . . of its linear realization L. This is accomplished by selecting the pk columns
of U ∗ as the state assignment for the pk states of L. For the machine L4, which
is to be the linear realization of M4, we have

ya =
[

1
1

]
, yb =

[
0
1

]
, yc =

[
1
0

]
, yd =

[
0
0

]
·

In the above step, it has been implicitly assumed that if a linear realization
exists, its state assignment is given by U ∗. This assertion follows directly from
the result of the preceding section, in which it was shown that, under an all-0’s
input sequence, the output values corresponding to the r linearly independent
rows of K∗

r are identical to the state assignment given by (y∗
1 , y∗

2 , . . . , y∗
r).

In addition, since the rows of U ∗ are the linearly independent output vectors
associated with the states of L, they are also equal to the state assignment of L.

In order to obtain the set of characterizing matrices {A, B, C, D} of L, we
select r linearly independent columns from U∗, corresponding to the r state
vectors of L, and form an r × r matrix v such that

v = [ya yb · · · yr].

From Eq. (15.13), we find that the next-state function of L under input symbols
0 is

[Y0
a Y0

b · · · Y0
r] = Av,

where Y0
i denotes the 0-successor of yi . Since v is nonsingular, we can write

A = [Y0
a Y0

b · · · Y0
r]v−1. (15.25)

552 Linear sequential machines

If all r unit vectors appear in U ∗ then v can be chosen as Ir , which yields
v = v−1, and so Eq. (15.25) is reduced to

A = [Y0
a Y0

b · · · Y0
r]. (15.26)

Whenever the number of states pk = pr , i.e., k = r , v can be specified as Ir .
Similarly, from Eq. (15.14) and for x(t) = 0, we find that

[z0
a z0

b · · · z0
r] = Cv,

where z0
i denotes the output symbol produced by L when in the state yi and

excited by the input symbol x = 0. Thus

C = [z0
a z0

b · · · z0
r]v−1 (15.27)

and so, when v = Ir ,

C = [z0
a z0

b · · · z0
r]. (15.28)

In order to obtain B and D, let us denote a unit input vector as ui , where the
ith component of ui is 1 and all other components are 0’s. From Eq. (15.13)
we obtain

Bx = Y − Ay.

In order to obtain B, we select some state yi (preferably the zero state if it exists
in U ∗) and specify B in terms of the constraints imposed on it by yi and the unit
input vectors. Clearly, such a process does not guarantee that the selection of
another yj will specify the same B matrix, unless the machine being identified
is indeed linear. For the time being, we shall specify a set of characterizing
matrices and will check them for all possible input and state combinations at
the end of the test.

Let the input consist of the unit vectors

u = [u1 u2 · · · ul].

The next-state vector Yuj

i denotes the uj -successor of yi . Thus,

Yu
i = [Yu1

i Yu2
i · · · Yul

i]

and

Bu = Yu
i − Ayi

or

B = [Yu
i − Ayi] u−1. (15.29)

Since u generally consists of unit vectors, when y is the zero state Eq. (15.29)
reduces to

B = [Yu1
i Yu2

i · · · Yul

i]. (15.30)

553 15.6 Identification of linear machines

Similarly, from Eq. (15.14) we obtain

D = {[zu1
i zu2

i · · · zul

i] − Ayi}u−1, (15.31)

where zuj

i is the output vector associated with the transition from yi under an
input uj . In analogy with Eq. (15.30) the reduced equation is

D = [zu1
i zu2

i · · · zul

i]. (15.32)

Returning to machine M4, we make the specification

v = [
yc yb

] =
[

1 0
0 1

]
= I2.

From Eqs. (15.26) and (15.28), we obtain

A = [
Y0

c Y0
b

] =
[

1 1
0 1

]
, C = [

z0
c z0

b

] =
[

1 0
0 1

]
.

The only unit input vector is u = [1], and hence Y1
i is the 1-successor of yi .

Since the zero state is contained in U ∗, let yi = yd ; then, by Eqs. (15.30) and
(15.32), we obtain

B = [
Y1

d

] = [yb] =
[

0
1

]
, D = [

z1
d

] =
[

1
0

]
.

The state and output equations are

Y(t) =
[

1 1
0 1

]
y(t) +

[
0
1

]
x(t),

z(t) =
[

1 0
0 1

]
y(t) +

[
1
0

]
x(t).

The final test is to verify that the above equations indeed repre-
sent the machine M4 under all input and state combinations. This is
accomplished by verifying each state transition and its corresponding out-
put symbol. For example, substituting ya for A and 0 for x(t), the
machine should go to the state yb and produce the output symbol 11,
corresponding to the entry B, 11 in column 0, row A, in Table 15.1.
Indeed, [

1 1
0 1

] [
1
1

]
+
[

0
1

]
[0] =

[
0
1

]
→ yb,

[
1 0
0 1

] [
1
1

]
+
[

1
0

]
[0] =

[
1
1

]
→ z0

a.

The characterizing matrices are thus verified, and the linear realization of
Fig. 15.18 results.

554 Linear sequential machines

x

z1

+

+

y2+
y1

z2

Fig. 15.18 The machine L 4.

Example The machine M5 and its distinguishing table are given in Tables
15.3 and 15.4, respectively. The “checked” rows are linearly independent,
and since U ∗ contains all eight possible 3-tuples, the identification procedure
is continued.

Table 15.3 Machine M5

NS, z1z2

PS x = 0 x = 1

A A, 00 E, 10
B A, 10 E, 00
C B, 11 F , 01
D B, 01 F , 11
E C, 01 G, 11
F C, 11 G, 01
G D, 10 H , 00
H D, 00 H , 10

Table 15.4 Distinguishing table for M5

A B C D E F G H

z(0) 0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0

z(1) 0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

z(2) 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0

Therefore, select

v = [
yb yd yh

] =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ = I3.

From Eqs. (15.26) and (15.28), we obtain

A = [
Y0

b Y0
d Y0

h

] =
⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ , C = [

z0
b z0

d z0
h

] =
[

1 0 0
0 1 0

]
.

555 15.6 Identification of linear machines

Setting u = [1] and yi = ya = 0, Eqs. (15.30) and (15.32) yield

B = [
Y1

a

] =
⎡
⎣0

1
1

⎤
⎦ , D = [

z1
a

] =
[

1
0

]
.

Thus

Y(t) =
⎡
⎣ 0 1 0

0 0 1
0 0 0

⎤
⎦ y(t) +

⎡
⎣0

1
1

⎤
⎦ x(t),

z(t) =
[

1 0 0
0 1 0

]
y(t) +

[
1
0

]
x(t).

The matrices are verified as corresponding to M5, and their linear realization
is given in Fig. 15.19.

z1+
y2+

y1

z2

y3x

Fig. 15.19 The machine L 5.

Example As another example, consider the four-stage up–down Gray-code
counter of Table 15.5, whose distinguishing table is given in Table 15.6.

Table 15.5 The machine M6

NS

PS x = 0 x = 1 z1z2

A B D 00
B C A 01
C D B 11
D A C 10

Table 15.6 Distinguishing table for M6

A B C D

z(0) 0 0 1 1
0 1 1 0

z(1) 0 1 1 0
1 1 0 0

z(2) 1 1 0 0
1 0 0 1

556 Linear sequential machines

The state assignment is given by

ya =
⎡
⎣0

0
1

⎤
⎦ , yb =

⎡
⎣0

1
1

⎤
⎦ , yc =

⎡
⎣1

1
0

⎤
⎦ , yd =

⎡
⎣1

0
0

⎤
⎦ .

Note that although M6 has only four states, its minimal linear realization
has a third dimension; that is, if M6 is linearly realizable then it is realizable
as a submachine of an eight-state linear machine. Note also that v cannot
be chosen as the identity matrix, and the zero state yi = 0 is not contained
in the state assignment. Consequently, the simplified equations cannot be
used, and matrix inversion cannot be avoided. Let

v = [
yd yb ya

] =
⎡
⎣1 0 0

0 1 0
0 1 1

⎤
⎦ ; then v−1 =

⎡
⎣1 0 0

0 1 0
0 1 1

⎤
⎦ .

From Eqs. (15.25) and (15.27), we obtain

A =
⎡
⎣0 1 0

0 1 1
1 0 1

⎤
⎦ v−1 =

⎡
⎣0 1 0

0 0 1
1 1 1

⎤
⎦ ,

C =
[

1 0 0
0 1 0

]
v−1 =

[
1 0 0
0 1 0

]
.

Let y1
i = ya . Then from Eq. (15.29) we obtain

B =
⎡
⎣1

0
0

⎤
⎦− A

⎡
⎣0

0
1

⎤
⎦ =

⎡
⎣1

1
1

⎤
⎦ , D =

[
0
0

]
.

The minimum-dimensional linear circuit realizing the counter is shown in
Fig. 15.20.

z1++

x

+

z2

y2 y1y3

Fig. 15.20 Linear realization of the Gray-code counter.

15.7 Application of linear machines to error correction

The availability of analysis and synthesis techniques for linear machines and
their economical realization by means of shift registers have made them widely

557 15.7 Application of linear machines to error correction

Z +
Message

X Encoder
Transmitted
sequence DecoderZReceived

sequence

Channel

Noise sequence, N

Received
message X

Fig. 15.21 A model for a
communication system. applicable in communication and digital computation. Linear machines are

particularly useful in computations involving the multiplication and division of
polynomials and in error detection and correction. In this section we describe
in detail how they can be used in a simple error-correcting coding scheme. For
a more complete survey of coding and digital computation applications, the
reader is referred to Peterson [15] and Gill [9].

Consider the communication-system model shown in Fig. 15.21. The mes-
sage, denoted X, consists of a sequence over GF (p) of length n. The encoder,
whose transfer function is T , transforms the message into another sequence over
GF (p) of length n. This sequence is referred to as the transmitted sequence
and is designated Z, where Z = T X. The sequence Z is transmitted through a
noisy channel, whose output sequence Z̄ is called the received sequence. In the
channel, a noise sequence over GF (p), denoted N , is added to the transmitted
sequence, so that the received sequence is equal to

Z̄ = Z + N

= T X + N.

The decoder, whose transfer function is T −1, processes the received sequence
and produces a sequence X̄ such that

X̄ = T −1Z̄

= T −1(T X + N)

= X + T −1N.

If the noise sequence is equal to zero, that is, N = 0, then the received message
X̄ is a replica of the original message X, that is, X = X̄. If the noise sequence
is different from zero then the received message X̄ consists of the modulo-p
sum of the original message X and the response T −1N of the decoder to the
noise sequence.

As an illustration of the error-correction procedure, let us analyze in detail
the communication system shown in Fig. 15.22, where the encoder’s transfer
function is given by T = 1 + D2 + D3 and the message as well as the noise are
over GF (2). We assume that the noise sequence contains only a single nonzero
digit; i.e., the communication system is single-error-correcting. Suppose that
a seven-bit message X is to be transmitted, where the first four digits are
the information digits and the remaining three digits are the checking digits.
The checking digits in X are always 0’s. Consequently, if X̄ is received with
three 0’s in the last three positions then it means that no noise is present in the
channel and X̄ is an identical replica of X. If, however, the received message
X̄ contains nonzero digits in the last three positions, this indicates that an error

558 Linear sequential machines

T −1=+X:
1010000

1
T = 1 + D 2 + D3 Z:

1101110

N: 0100000

X:
1111110

Z:
1001110 1 + D 2 + D 3

Fig. 15.22 An example of a
linear single-error-correcting
scheme.

has occurred during transmission and an error-correcting procedure must be
employed to recover the original message.

When an error occurs, it is necessary to obtain the sequence T −1N and
subtract it from the received message X̄. To obtain T −1N , we observe that
since the last three digits of X were originally 0’s then the last three digits of
X̄ must consist only of digits of T −1N , without any contribution from X. In
fact, if only a single error occurred at time t then the sequence T −1N is simply
the response of decoder T −1 to a unit impulse occurring at t . Therefore, the
checking digits of X̄ consist of a subsequence of three digits of the impulse
response of T −1. (Clearly, if the error occurs in one of the checking digits, say
in the second checking digit, then the first digit will be a zero and the remaining
two checking digits will be the first two digits of the impulse response of T −1.)

The decoder is chosen so that its impulse response has a maximal period of
seven digits. This ensures that, by observing the subsequence contained in the
last three digits of X̄, we can determine uniquely the entire sequence T −1N .
Since a maximal impulse response contains all seven possible combinations of
three successive nonzero digits, each noise impulse corresponds to only one
pattern of checking digits and thus its location can be uniquely determined.

As an example, suppose that the sequence 1010000 is to be transmitted by
means of the communication system of Fig. 15.22. The transmitted sequence
Z is found to be 1001110. If an error occurs in the second digit, the received
sequence Z̄ will be 1101110. Since the impulse response of the decoder, whose
transfer function is T −1 = (1 + D2 + D3)−1, is 1011100, the received message
X̄ is equal to 1111110. The checking digits of X̄ are identical to the fourth, fifth,
and sixth digits of the impulse response. Consequently, we may conclude that
the noise impulse has occurred in the second information digit. The sequence
T −1N is thus found to be 0101110, and it may now be added (the same as
subtracting modulo 2) to X̄ to obtain the original message X, i.e.,

Decoder’s impulse response: 1 0 1 1 1 0 0

X̄: 1 1 1 1 1 1 0 +
T −1N : 0 1 0 1 1 1 0

X: 1 0 1 0 0 0 0

In a similar manner, the reader can verify that if the message 1110000 is
transmitted by means of the system of Fig. 15.22, and the noise N is given by
0010000, then the received message would be 1100111. The checking digits

559 Appendix 15.1 Basic properties of finite fields

contain the third, fourth, and fifth digits of the decoder’s impulse response. Con-
sequently, T −1N is equal to 0010111, and the message X can be reconstructed.

To obtain single-error correction for messages over GF (2) containing m

information digits and k checking digits, we need a decoder whose impulse
response is of length m + k, with each string of k successive digits different
from every other subsequence of length k. Such an impulse response can be
obtained from a decoder whose transfer function is of degree k and whose
impulse response is maximal, i.e., of length m + k = 2k − 1. If the last k

digits of received message X̄ are not zeros then the sequence T −1N must be
subtracted from X̄. This can be accomplished by shifting X̄ over the decoder’s
impulse response until the last k digits of X̄ match a corresponding subsequence
of the impulse response. This is always possible since the impulse response
contains every nonzero subsequence of length k. The modulo-2 sum of X̄ and
the digits of the impulse response appearing directly below it yield the original
message X.

Appendix 15.1 Basic properties of finite fields5

A set R is said to form a ring if two operations, addition and multiplication,
are defined for every pair of elements in R, and if it satisfies the following
postulates.

1. Closure For every a and b in R, a + b and ab are in R.
2. Associativity For every a, b, and c in R, (a + b) + c = a + (b + c) and

(ab)c = a(bc).
3. The set R contains a unique zero element, denoted 0, such that, for every a

in R, a + 0 = 0 + a = a.
4. To each a in R, there corresponds a unique element −a in R such that

a + (−a) = (−a) + a = 0; −a is called the inverse of a.
5. Distributivity Multiplication distributes over addition; that is, a(b + c) =

ab + ac, for all a, b, and c in R.
6. Commutativity For all a and b in R, a + b = b + a.

If multiplication is also commutative, i.e., ab = ba, R is said to be a commu-
tative ring.

Example The set of integers {0, 1, . . . , p − 1} under modulo-p addition
and multiplication operations forms a commutative ring. (Note that modulo
p means that a is equal to b whenever a − b is a multiple of p). The
definition of modulo-4 operations is shown in Table A15.1.

5 This is only a short summary of several definitions and results in the area of fields. For a more
complete coverage, the reader is referred to any book on algebra.

560 Linear sequential machines

Table A15.1 Addition and multiplication modulo 4

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

The set F is said to be a field if it is a commutative ring and, in addition,
satisfies the following two postulates.

1. There is a unique nonzero element 1 in F such that a1 = a for every a in F .
2. To each nonzero a in F , there corresponds a unique element a−1 (or 1/a) in

F such that aa−1 = 1.

The set of real numbers and the set of complex numbers each forms an
infinite field. Fields containing a finite number of elements are usually called
finite fields.

Example The modulo-4 ring defined in Table A15.1 is not a field, since
the element 2 does not have a multiplicative inverse; that is, the equation
2a = 1 does not have a solution for a, as can be seen from the defining
table. However, the equation 2a = 2 (modulo 4) has two solutions, a = 1
and a = 3.

The above example illustrates the reason for restricting our discussion of
linear machines to modulo p of prime numbers: multiplication by numbers that
are not prime to the modulo may be irreversible and, consequently, may not
preserve information. It can be shown that if p is a prime integer, then the ring
of integers, modulo p, forms a field. This finite field is called a Galois field and
is denoted GF (p).

Example The set of integers {0, 1, 2} and the operations defined in
Table A15.2 form the finite field GF (3).

Table A15.2 Modulo-3 operations

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

Any Galois field with prime characteristic p contains exactly pk elements,
for some integer k. This field is denoted GF (pk). It can also be shown that, for

561 Appendix 15.2 The Euclidean algorithm

any finite field, there exists a prime integer p and a positive integer k such that
the given field is equivalent to GF (pk).

In this chapter the fields were defined over GF (p), where p is a prime.
The theory and results obtained can be generalized to include linear machines
defined over any finite field. It can be shown [17] that there exists an equivalence
between a linear machine defined over any finite field and a linear machine
defined over GF (p). Consequently, any linear machine defined over any finite
field can be synthesized by the techniques developed for machines defined over
GF (p), where p is a prime integer.

Appendix 15.2 The Euclidean algorithm

The Euclidean algorithm provides a procedure for obtaining the greatest com-
mon divisor of two polynomials over a field F .

Let P (D)/Q(D) be a rational polynomial of the following form:

P (D)

Q(D)
= a0 + a1D + · · · + amDm

b0 + b1D + · · · + bnDn
,

where the degree of P (D) is smaller than that of Q(D). (The degree of a
polynomial P (D) is the greatest i such that ai = 0.) The Euclidean algorithm
is based on the result that every rational polynomial can be divided in a unique
manner such that

Q(D) = q(D)P (D) + r(D).

When the remainder r(D) = 0, P (D) is said to divide Q(D). To find the greatest
common divisor, we use successive division as follows:

Q(D) = q1(D)P (D) + r1(D),

P (D) = q2(D)r1(D) + r2(D),

r1(D) = q3(D)r2(D) + r3(D),
...

ri−2(D) = qi(D)ri−1(D).

Then ri−1(D) is the greatest common divisor of P (D) and Q(D).

Example Determine the greatest common divisor for the polynomial

T (D) = P (D)

Q(D)
= 1 + D + D4 + D6

D + D3 + D4 + D6 + D8 + D9
(over GF(2)).

562 Linear sequential machines

Proceeding by successive division,

D6 + D4 + D + 1

determination of r1(D)

D3 + D2 + D
D9 + D8 + D6 + D4 + D3 + D
D9 + D7 + D4 + D3

D8 + D7 + D6 + D
D8 + D6 + D3 + D 2

D7 + D3 + D2 + D
D7 + D5 + D2 + D
D5 + D3

D5 + D3 D6 + D4 + D + 1
D

D6 + D4

D + 1 determination of r2(D)

D + 1 D5 + D3
D4 + D3

D5 + D4

D4 + D3

D4 + D3 r3(D) = 0

Since r3(D) = 0, r2(D) = D + 1 is the greatest common divisor. To find
the reduced polynomial, it is necessary to divide P (D) and Q(D) by D + 1.
This division yields

T (D) = 1 + D4 + D5

D + D2 + D4 + D5 + D8
.

Notes and references

Linear machines were first investigated by Huffman in 1956 [13]. This original
work, which was restricted to inert machines, was later expanded by several
people, notably Cohn [3, 4], Elspas [7], Friedland [8], Hartmanis [10], and
Stern and Friedland [17]. The problem of identifying linear machines was
treated by numerous authors, among them Brzozowski and Davis [2], Davis
and Brzozowski [6] and Hartmanis [11]. The most general minimization and
identification procedure is due to Cohn and Even [5], whose approach has
been followed in this chapter. Other aspects of linear machines were studied by
Booth [1], Pugsley [16], and Zierler [18]. The application of linear machines
to error-correcting codes is due to Huffman [12] and Peterson [15]. A good
collection of papers on linear machines is available in Kautz [14]. One of the
best general treatments of linear machines can be found in the book by Gill [9].

563 Problems

[1] Booth, T. L.: “An analytic representation of signals in sequential networks,” in
Proc. Symp. Mathematical Theory of Automata, vol. 12, pp. 301–340, Polytechnic
Institute of Brooklyn, New York, 1963.

[2] Brzozowski, J. A., and W. A. Davis: “On the linearity of autonomous sequential
machines,” Trans. IEEE, vol. EC-13, pp. 673–679, 1964.

[3] Cohn, M.: “Controllability in linear sequential networks,” Trans. IRE, vol. CT-9,
pp. 74–78, 1962.

[4] Cohn, M.: “Properties of linear machines,” J. Assoc. Computing Machinery, vol.
11, pp. 296–301, 1964.

[5] Cohn, M., and S. Even: “Identification and minimization of linear machines,”
Trans. IEEE, vol. EC-14, pp. 367–376, 1965.

[6] Davis, W. A., and J. A. Brzozowski: “On the linearity of sequential machines,”
Trans. IEEE, vol. EC-15, pp. 21–29, 1966.

[7] Elspas, B.: “The theory of autonomous linear sequential networks,” Trans. IRE,
vol. CT-6, pp. 45–60, 1959.

[8] Friedland, B.: “Linear modular sequential circuits,” Trans. IRE, vol. CT-6,
pp. 61–68, 1959.

[9] Gill, A.: Linear Sequential Circuits, McGraw-Hill, New York, 1967.
[10] Hartmanis, J.: “Linear multivalued sequential coding networks,” Trans. IRE, vol.

CT-6, pp. 69–74, 1959.
[11] Hartmanis, J.: “Two tests for the linearity of sequential machines,” Trans. IEEE,

vol. EC-14, pp. 781–786, 1965.
[12] Huffman, D. A.: “A linear circuit viewpoint of error-correcting codes,” Trans. IRE,

vol. IT-2, pp. 20–28, 1956.
[13] Huffman, D. A.: “The synthesis of linear sequential coding networks,” in C. Cherry

(ed.), Information Theory, pp. 77–95, Academic Press, New York, 1956.
[14] Kautz, W. H. (ed.): Linear Sequential Switching Circuits: Selected Technical

Papers, Holden-Day, 1965.
[15] Peterson, W. W.: Error-correcting Codes, M.I.T. Press, Cambridge MA, 1961.
[16] Pugsley, J. H.: “Sequential functions and linear sequential machines,” Trans. IEEE,

vol. EC-14, pp. 376–382, 1965.
[17] Stern, T. E., and B. Friedland: “The linear modular sequential circuit generalized,”

Trans. IRE, vol. CT-8, pp. 79–80, 1961.
[18] Zierler, N.: “Linear recurring sequences,” J. Soc. Ind. Appl. Math., vol. 7,

pp. 31–48, 1959.

Problems

Problem 15.1. A combinational linear circuit is a circuit constructed only of modulo-
p adders and multipliers. The block diagram in Fig. P15.1 represents a combinational
linear circuit over GF (2). The circuit outputs can be expressed as

za = xa,

zb = xa + xb,

zc = xb + xc.

(a) Show the circuit diagram.

564 Linear sequential machines

(b) Find the output sequences in response to the following input sequences:

xa : 0 1 0 1 1 1 1 0 0 0 1 0 1 1
xb : 1 1 0 1 0 0 0 0 1 0 1 1 0 1
xc : 0 0 1 1 0 1 1 0 1 0 0 0 0 1

(c) Design the inverse of this circuit; i.e., express the inputs as functions of the outputs
and show the inverse circuit.

Combinational
linear
circuit

xb zb

xc

xa

zc

zaFig. P15.1

Problem 15.2
(a) Determine the transfer function of the shift register shown in Fig. P15.2.
(b) Find its null sequence and show that it is maximal.
(c) Find the inverse machine.

z+x + + +

Fig. P15.2

Problem 15.3. For each of the following polynomials over GF (2),

z1 = x + D3x + D4x, z2 = x + D2x + D4x + D5x :

(a) show the corresponding linear circuit and its inverse;
(b) find the null sequence and determine whether it is maximal;
(c) utilize the impulse response to determine the response of each circuit to the input

sequence 000001101.

Problem 15.4. Show the state diagram of the linear machine whose transfer function
is T = 1 + D + D3.

Problem 15.5. Prove that the two circuits over GF (3) of Fig. P15.5 are equivalent.

zx + + +

2

z+x

Fig. P15.5

Problem 15.6. Prove that the two circuits over GF (16) of Fig. P15.6 have the same
transfer functions. (Note that the use of feedback allows us in this case to construct a
machine whose output symbol depends on input symbols three time units in the past,
by using just a single delay element.)

565 Problems

zx + +

14

zx

4

+

8

+

−2

Fig. P15.6
Problem 15.7. Determine the null sequence of the linear machine over GF (3) whose
transfer function is T = 2 + D2 + 2D3. Prove that it is a maximal sequence.

Problem 15.8. Prove that the delay polynomial T (D) = a0 + a1D + · · · + akD
k has a

linear inverse that decodes without a delay if and only if T (D) has a nonzero constant
term that is relatively prime to p.

Hint: Assume initially a0 = 1. Expand 1/T (D) into the form

1

T (D)
= 1

1 +∑n

1 aiDi
= 1 −

n∑
1

aiD
i +

(
n∑
1

aiD
i

)2

− · · ·

Problem 15.9. Figure P15.9 shows an inert linear machine over GF (3). Prove that its
transfer function is

T = z

x
= 2D + 2D2 + D3

1 + D2
.

z++x

2

+ 2

Fig. P15.9

Problem 15.10
(a) Prove that the transfer function of the inert linear machine of Fig. P15.10 is given

by

T = z

x
= T1

1 − T1T2
,

where T1 and T2 are transfer functions of the individual submachines.
(b) Use the result of part (a) to find the transfer function of the machine in Fig. P15.9.

Hint: In part (b), determine first the direct paths through which the input signal can
reach the output terminal.

zx T1
+

T2

Fig. P15.10

566 Linear sequential machines

Problem 15.11
(a) Determine the transfer function of the linear machine over GF (2) shown in

Fig. P15.11 and find its impulse response. Assume that it is initially inert.
(b) Prove that its state table is isomorphic to Table P15.11.

z

x

+

+

+Fig. P15.11

Table P15.11

NS, z

PS x = 0 x = 1

A A, 0 E, 1
B E, 1 A, 0
C F , 1 B, 0
D B, 0 F , 1
E C, 1 G, 0
F G, 0 C, 1
G H , 0 D, 1
H D, 1 H , 0

Problem 15.12. For each of the following transfer functions,

T1 = 1 + D2

1 + D + D3
over GF (2),

T2 = D2

2D2 + D + 1
over GF (3),

(a) show the corresponding network;
(b) find its impulse response;
(c) determine whether it is invertible and, if it is, show the inverse.

Problem 15.13. Given the following transfer function over GF (2),

T = D10 + D9 + D8 + D7 + D

D7 + D4 + D2 + D + 1
,

(a) determine by means of the Euclidean algorithm the greatest common divisor of the
numerator and denominator, and simplify the function;

(b) show a minimal chain realization, using no more than eight delay elements.

Problem 15.14. Show minimal realizations of the transfer function below and of its
inverse.

T = 1 + D + 2D2 + D3

1 + D + D3 + 2D4
over GF (3).

567 Problems

Problem 15.15. Design a four-dimensional linear machine over GF (2) whose impulse
response is

h = 1 1 1 1 1 0 0 1 0 1 1 1 0 0 (1 0 1 1 1 0 0) · · ·

(The sequence in parentheses repeats itself thereafter.)

Problem 15.16. Show the linear circuit over GF (2) whose characterizing matrices are

A =

⎡
⎢⎣ 1 1 0

1 1 1
1 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣ 1 1

0 0
0 1

⎤
⎥⎦ , C =

[
1 0 0
1 0 0

]
, D =

[
0 0
0 1

]
.

Problem 15.17
(a) Find the characteristic matrix A that is realized by the internal circuit of Fig. P15.17.
(b) Determine the transpose of the matrix A in part (a), and show a circuit that realizes

the transposed matrix.

yk

+

y y1

ak−1 k−2

k−1

a a0

Fig. P15.17

Problem 15.18
(a) Prove that a linear machine {A, B, C, D} is μ-definite if and only if μ is the least

integer such that Aμ = 0.
(b) Prove that if a k-dimensional linear machine is μ-definite then μ ≤ k.

Hint: See [4].

Problem 15.19
(a) Design the linear circuit over GF (2) whose characterizing matrices are

A =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 1
0 0 1 1 1
1 1 0 0 0
1 0 1 0 0
0 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎣

1 0
0 0
1 1
1 1
1 1

⎤
⎥⎥⎥⎥⎥⎦ ,

C =
[

0 1 0 1 1
1 1 1 0 1

]
, D =

[
1 0
0 0

]
.

(b) Minimize the machine of part (a), and show that it is independent of x2.

568 Linear sequential machines

Problem 15.20
(a) Minimize the linear machine over GF (2) given by the following characterizing

matrices:

A =

⎡
⎢⎢⎢⎣

0 1 0 1
0 1 1 1
1 1 0 0
1 1 1 1

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎥⎦ , C =

[
1 0 1 0

]
, D = [0].

(b) For each state of the reduced machine, show the equivalent states of the original
machine.

Problem 15.21
(a) Design the linear circuit over GF (2) whose characterizing matrices are

A =

⎡
⎢⎣ 0 1 1

1 0 0
1 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣ 1

1
0

⎤
⎥⎦ , C =

[
1 1 0
1 1 1

]
, D =

[
0
1

]
.

(b) Prove that no reduction in the machine dimension is possible but that the reduction
procedure can be applied to obtain an equivalent machine {A∗, B∗, C∗, D∗} that is
realizable with a single modulo-2 adder.

Problem 15.22
(a) Given a linear machine L = {A, B, C, D} and a nonsingular matrix G, prove that

the state y of L is equivalent to the state ȳ = Gy of L̄, where L̄ is the linear machine
characterized by

Ā = GAG−1, B̄ = GB, C̄ = CG−1, D̄ = D.

(b) Prove that the machines L and L̄ are isomorphic.

Problem 15.23
(a) Prove that, for all t ≥ 0,

(A∗)t = TAtR,

where A∗ is the characteristic matrix of the reduced machine, defined in Eq. (15.23).
Hint: Prove the assertion for t = 0 and use induction on t .

(b) Use the result of part (a) to prove that the diagnostic matrix K∗ of the reduced
machine is related to K by

K∗ = KR.

(c) Prove that if T∗ is the r × r matrix consisting of the first r linearly independent rows
of K∗

r of a reduced linear machine then T∗ = Ir , where Ir is the identity matrix.

Problem 15.24. A k-dimensional linear machine {A, B, C, D} is said to be
μ-controllable if for every pair of states Si and Sj there is an input sequence of length
exactly μ that takes the machine from state Si to state Sj .
(a) Prove that a k-dimensional machine L is μ-controllable if and only if the rank of

k × μl matrix

Gμ = [Aμ−1B Aμ−2B · · · AB B]

is k; i.e., there are k linearly independent columns in Gμ.

569 Problems

(b) Determine whether the following machine over GF (2) is μ-controllable:

A =

⎡
⎢⎣ 0 1 0

1 0 0
0 0 1

⎤
⎥⎦ , B =

⎡
⎢⎣ 0

1
1

⎤
⎥⎦ .

Hint: Try the 3-controllable case first and show that G3 is singular.

Problem 15.25. For each machine in Table P15.25, determine whether it is linear and,
if it is, show a linear realization.

Table P15.25

NS, z

PS x = 0 x = 1

A A, 0 E, 1
B E, 1 A, 0
C F , 1 B, 0
D B, 0 F , 1
E C, 1 G, 0
F G, 0 C, 1
G H , 0 D, 1
H D, 1 H , 0

NS z1z2

PS 00 01 11 10 00 01 11 10

A E F A B 10 11 00 01
B G H C D 11 10 01 00
C B A F E 01 00 11 10
D D C H G 00 01 10 11
E B A F E 11 10 01 00
F D C H G 10 11 00 01
G E F A B 00 01 10 11
H G H C D 01 00 11 10

Problem 15.26. Test the machine of Table P15.26 for linearity. In particular, determine
whether the state transitions are linear and the outputs are linear.

Table P15.26

NS, z

PS x = 0 x = 1

A A, 0 B, 0
B C, 0 D, 0
C A, 1 B, 1
D C, 1 D, 0

C H A P T E R

16 Finite-state recognizers

In this chapter we consider the characterization of finite-state machines and
the sets of sequences that they accept. We investigate a number of general-
ized forms of finite-state machines and prove that these forms are equivalent,
with respect to the sets of sequences that they accept, to the basic determin-
istic finite-state model. In Sections 16.2 and 16.3 we study the properties of
nondeterministic state diagrams, called transition graphs, which will prove to
be a useful tool in the study of regular expressions. Procedures are devel-
oped whereby any transition graph can be converted into a deterministic state
diagram.

Section 16.4 presents the language of regular expressions, which provides
a precise characterization of the sets of sequences accepted by finite-state
machines. In the following two sections we prove that any finite-state machine
can be characterized by a regular expression and that every regular expression
can be realized by a finite-state machine. Finally, in Section 16.7 we will be
concerned with a generalized form of finite-state machines known as two-way
machines.

16.1 Deterministic recognizers

So far, we have regarded a finite-state machine as a transducer that transforms
input sequences into output sequences. In this chapter we shall view a machine
as a recognizer that classifies input strings into two classes, those that it accepts
and those that it rejects. The set consisting of all the strings that a given machine
accepts is said to be recognized by that machine.

The finite-state model that we shall use is shown in Fig. 16.1, where a
finite-state control is coupled through a head to a finite linear sequence of
squares, each containing a single symbol of the alphabet. Such a sequence
of squares is called an (input) tape. Initially, the finite-state control is in the
starting state, and the head scans the leftmost symbol of the string that appears
on the tape. The head then scans the tape from left to right. In what is termed

570

571 16.1 Deterministic recognizers

1 01

Finite
control

0

Head

Tape

0 0 11

Fig. 16.1 A finite-state
recognizer.

A

C B

(a) Deterministic state diagram.

0
1

01

0,1

A

B

1 0

1

(b) Transition graph.

Fig. 16.2 Two ways of
describing a string.

a cycle of computation, the machine starts in some state Si , reads the symbol
currently scanned by the head, shifts one square to the right, and then enters the
state Sj .

Clearly, the concept of a head reading from left to right the symbols contained
in a linear tape is equivalent to a string of input symbols entering the machine at
successive times. In fact, the finite-state control is a Moore finite-state machine.1

States whose assigned output symbol is 1 are referred to as accepting (or
terminal) states while states whose assigned output symbol is 0 are called
rejecting (or nonterminal) states. A string (or a tape) is accepted by a machine
if and only if the state that the machine enters after having read the rightmost
tape symbol is an accepting state. Otherwise the string is rejected. The set of
strings recognized by a machine thus consists of all the input strings that take
the machine from its starting state to an accepting state.

The machine of Fig. 16.1 can be described by a state diagram in which the
starting state is marked by an incoming short arrow and the accepting states
are indicated by double circles. For example, the state diagram of Fig. 16.2a

describes a machine that accepts a string if and only if the string begins and
ends with a 1 and every 0 in the string is preceded and followed by at least
a single 1. The machine consists of three states, of which A is the starting
state and B is an accepting state. Note that in general a starting state may also
be an accepting state. In such a case, the machine is said to accept the null
string.

1 By allowing the head to write on the tape, while restricting its motion to left-to-right, we can
generalize the model to include Mealy machines.

572 Finite-state recognizers

16.2 Transition graphs

Because a state diagram describes a deterministic machine, the next-state transi-
tion must be determined uniquely by the present state and the currently scanned
input symbol. No alternative behavior is allowed. Moreover, in a deterministic
state diagram a transition must be specified for each input symbol. Conse-
quently, a state diagram consists of a vertex for every state and a directed arc
labeled α emanating from each vertex for every input symbol α. However, if
our prime objective is to study and classify sets of sequences, some of these
restrictions may be removed and different diagrams, called transition graphs,
may prove more convenient.

Nondeterministic recognizers

A transition graph (or transition system) is a directed graph. It consists of a set
of vertices labeled A, B, C, etc. and various directed arcs connecting them. At
least one vertex is specified as a starting vertex and at least one is specified as
an accepting (or terminal) vertex. The arcs are labeled with symbols from the
(input) alphabet of the graph. If the graph contains an arc labeled α leading
from vertex Vi to vertex Vj then Vj is said to be the α-successor of Vi . For a
given input symbol α, a vertex may have one or more α-successors or none.
Thus, for example, in the transition graph of Fig. 16.2b, vertex A has two
1-successors, namely A and B, but no 0-successor. A set of vertices S is said to
be the α-successor of a set R if and only if every element of S is an α-successor
of some element of R.

A sequence of directed arcs in a graph is referred to as a path. Every path is
said to describe the string that consists of the symbols assigned to the arcs in
the path. A string is accepted by a transition graph if it is described by at least
one path that emanates from a starting vertex and terminates at an accepting
vertex. Thus, for example, the string 1110 is accepted by the graph of Fig. 16.3,
since it is described by a path that emanates from vertex A, passes through
vertices B, D, and C, and terminates at vertex A. In the same manner, we
find that the string 11011 is accepted by the graph, since it is described by a
path that emanates from a starting vertex B, passes through D, C, B, D, and

A D

B
0

1 0

1

1
1

C
0

Fig. 16.3 A transition graph.

573 16.2 Transition graphs

A B C
0 0

0

1

A B C
0 0

0

1

Fig. 16.4 Two equivalent
transition graphs. terminates at an accepting vertex C. However, the string 100, for example, is

rejected since there is no path in the graph which describes it.
As in the case of state diagrams, the set of strings that are accepted by a

transition graph is said to be recognized by the graph. For example, the transition
graph of Fig. 16.2b recognizes the same set of strings as is recognized by the
state diagram of Fig. 16.2a. If two or more graphs recognize the same set of
strings then they are said to be equivalent graphs. Thus, the graphs in Fig. 16.4
are equivalent since each graph accepts a string if and only if each 1 in the
string is preceded by at least two 0’s.

Clearly, a state diagram is a special case of a transition graph and is, therefore,
referred to as a deterministic (transition) graph. Other transition graphs are
referred to as nondeterministic (transition) graphs. The two graphs in Fig. 16.2,
for example, are equivalent although one is deterministic and the other is not.
Because deterministic graphs describe the behavior of deterministic finite-state
machines, we often regard nondeterministic graphs as describing the behavior
of nondeterministic finite-state machines. It must, however, be emphasized
that the notion of nondeterministic recognizers is useful for classifying sets of
strings but should not be confused with the notion of realizable machines.

Graphs containing λ-transitions

Nondeterministic transition graphs can be generalized further by allowing tran-
sitions that are associated with a null symbol λ. Such transitions are referred to
as λ-transitions, and they can occur when no input symbol is applied. When
determining the string described by a path that contains arcs labeled λ, the
λ-symbols are disregarded and deleted from the string.

The use of λ-transitions may sometimes simplify the transition graph by
reducing the number of labeled arcs, as for the graph of Fig. 16.5a. This graph
recognizes the set of strings that start with an even number of 1’s, followed by an
even number of 0’s, and end up with substring 101. (Note that zero is considered
as an even number.) Thus, for example, the strings 101, 11101, 110000101, and
00101 are accepted by the graph, while 110011101 and 0011101 are rejected.

It is a simple matter to convert a transition graph containing λ-transitions
into an equivalent graph that contains no such transitions. A λ-transition from
vertex V1 to vertex V2 of a given graph can always be replaced by a set of
arcs emanating from V1 and duplicating the transitions that emanate from V2.
In addition, if V1 is a starting vertex then V2 must also be made a starting
vertex. If V2 is an accepting vertex then V1 must also be made an accepting

574 Finite-state recognizers

B D

A

0

1

0
1

0

C
1

E F G
1

B D

A

0

1

0
1

0

C
1

E F G
1

(a) A graph containing a -transition.

(b) An equivalent graph without -transitions.

0

1

l

l

Fig. 16.5 Elimination of
λ-transition.

vertex. To remove the λ-transition from the graph of Fig. 16.5a it is necessary
to duplicate the transitions from vertex C to vertices D and E by directing arcs,
correspondingly labeled, from vertex A to vertices D and E. The equivalent
graph that contains no λ-transition is shown in Fig. 16.5b.

16.3 Converting nondeterministic into deterministic graphs

A natural question, which now arises, is whether a nondeterministic graph
can recognize sets of strings that cannot be recognized by a deterministic
graph. At first, one might suspect that the added flexibility of nondeterministic
graphs increases their computational capabilities. However, as we shall now
show, there exists an effective procedure for converting a nondeterministic
transition graph into an equivalent deterministic transition graph. This leads
to the conclusion that nondeterministic graphs and deterministic graphs have
identical computational capabilities.

Introductory example

Consider the nondeterministic transition graph of Fig. 16.6a. A tabular descrip-
tion of the graph, called a transition table, is shown in Fig. 16.6b, where
the starting vertices are indicated by the small arrows next to rows A and
B, and the accepting vertex is indicated by a circle around the row head-
ing C. The table entry in row Vi , column α, consists of the α-successors of
vertex Vi .

575 16.3 Converting nondeterministic into deterministic graphs

B

A C

(a) Transition graph.

0

101

0,1

0 1

A

B

C

C

AB

AC

A

(b) Transition table.

Fig. 16.6 A nondeterministic
graph to be converted to a
deterministic one.

Suppose now that we wish to determine whether a given string w =
a1a2 · · · ak is accepted by the graph of Fig. 16.6a; that is, whether the graph
contains a path that emanates from a starting vertex, terminates at an accepting
vertex, and describes the string w. Since A and B are the starting vertices, any
such path must include as its first arc an arc emanating from either A or B.
Specifically, if the first symbol in w is a1 then the first arc in the path can reach
any vertex in the subset that consists of the a1-successors of {A,B}. Using
similar reasoning, we find that the ith arc in a path that describes w must lead to
a vertex contained in the subset which consists of the a1a2 · · · ai-successors of
{A,B}. If the final subset of vertices reached by the path contains an accepting
vertex then the string w is accepted; otherwise, it is rejected.

For example, any path that describes string 0010 must start with the arc
leading from vertex A to vertex C. Also, since the 0-successors of C are A and
B, one of these vertices must be encountered next in the path describing the
given string. In the same manner, since {AC} is the 1-successor of {AB}, we
find that the third arc in the path leads to either of the vertices A or C. The
fourth symbol might lead to one of the vertices A, B, or C and, since vertex
C is an accepting vertex, the string is accepted. A similar argument shows, for
example, that the string 1100 is rejected, since it might lead to either vertex A

or vertex B and neither vertex is an accepting vertex.
The foregoing example suggests a procedure for determining whether a

specified string is accepted by a given graph. The procedure involves tracing the
various paths that describe the given string and determining the sets of vertices
that can be reached from the starting vertices by applying the symbols of the
string. The procedure can be facilitated and applied to arbitrary strings by the
use of a successor table, which lists all the subsets of vertices that are reachable
from the starting vertices. The successor table for the graph of Fig. 16.6 is
shown in Fig. 16.7a. Its column headings are symbols of the alphabet. The first
row heading is the set of starting vertices, while the remaining row headings are
subsets of vertices reachable from starting vertices. The entry in row Q, column
α, is determined from the transition table and consists of the α-successor
of {Q}.

The first row heading in Fig. 16.7a is AB, since A and B are the starting
vertices. The entries in row AB are the 0- and 1-successors of {AB}, namely

576 Finite-state recognizers

(a) Successor table.

0 1

AB

C

C

AB

AC

A

AB C

AC

0

0

0

1

1

A

(b) State diagram of an equivalent
deterministic machine.

AC

ABC

ABC A

C

ACABC

A

ABC

0

1

1

0 0,1

Fig. 16.7 Deterministic form of
the graph of Fig. 16.6.

{C} and {AC}, respectively. The entries C and AC are now made row headings,
their successors found, and so on. Since vertex A has no 1-successor, the 1-
successor of row A must correspond to the set that contains no vertex of the
transition graph. Such a set is referred to as the empty, or null, set and is denoted
φ. Finally, the row headings of the rows C, AC, and ABC are circled to indicate
that each of the sets {C}, {AC}, and {ABC} contains the accepting vertex C

of the original transition graph.

Proof of the conversion procedure

The graph in Fig. 16.7b is derived directly from the successor table. It is clearly a
deterministic graph, since only one transition is allowed for each input symbol
in its construction. To verify that this graph indeed accepts a given string
if and only if that string is accepted by the corresponding nondeterministic
graph, note that the last vertex of the deterministic graph reached by the string
corresponds to the subset of vertices that can be reached by the same string in
the nondeterministic graph. The string is accepted by the deterministic graph if
and only if there is at least one path in the nondeterministic graph that results
in the string being accepted, that is, if one vertex reachable by the string is
an accepting vertex. The foregoing procedure, which is also known as subset
construction, can be applied to any nondeterministic graph. Thus, we arrive at
the following theorem.

Theorem 16.1 Let S be a set of strings that can be recognized by a nondeter-
ministic transition graph Gn. Then S can also be recognized by an equivalent
deterministic graph Gd. Moreover, if Gn has p vertices then Gd will have at
most 2p vertices.

577 16.4 Regular expressions

Proof The existence of a deterministic graph Gd that is equivalent to
the given nondeterministic graph Gn is guaranteed by the subset construc-
tion procedure developed above. If we denote the p vertices of Gn by
V1, V2, . . . , Vp, then, by subset construction, the equivalent deterministic
graph may have at most 2p vertices labeled as follows: φ, V1, V2, . . . , Vp;
V1V2, V1V3, . . . , V2V3, . . . , Vp−1Vp; V1V2V3, . . . , Vp−2Vp−1Vp; . . .; V1V2 . . .

Vp. ♦
Theorem 16.1 permits us to describe deterministic finite-state machines by

means of nondeterministic transition graphs. Such descriptions will prove very
convenient in the following discussion of regular expressions.

16.4 Regular expressions

In this chapter we are mainly concerned with the characterization of sets of
strings recognized by finite automata. It is therefore appropriate to develop a
compact language for describing such sets of strings. The language developed
in this section is known as type-3 language or as the language of regular
expressions.

Describing sets of strings

We shall first consider informally some sets recognized by simple graphs,
leaving the formal presentation to subsequent sections. Consider the transition
graph in Fig. 16.8a, which recognizes a set {101} that contains just one string.
We shall describe the set {101} by the expression 101.2 Similarly, for an
arbitrary alphabet {a, b}, the set {abba} is described by the expression abba,
and so on.

The graph in Fig. 16.8b recognizes the set of strings {01, 10}, that consists
of two strings, 01 and 10. To represent such a set we employ the set union
operation +, and express the set {01, 10} as 01 + 10. In the same manner, the
set {abb, a, b, bba} can be described by the expression abb + a + b + bba.
Clearly, since the set union operation is commutative and associative, the union
operation of expressions is also commutative and associative.

Next, consider the graph in Fig. 16.8c, which recognizes the set {0111,
1011}. This set can be described by the expression 0111 + 1011. However,
we observe that this graph recognizes precisely those strings that are recog-
nized by the graph in Fig. 16.8b and which are followed immediately by the
substring 11. In other words, the graph of Fig. 16.8c recognizes the set whose
members are those strings formed by concatenating the strings in {01, 10}
and {11}. In general, the concatenation of two sets {P} and {Q} is the set

2 In this chapter, boldface type is used to describe expressions.

578 Finite-state recognizers

0 11

(a)

1

1 0

0

(b)
1

1 0

0

(c)

1

1 (d)

1

Fig. 16.8 Simple transition
graphs. consisting of strings formed by taking any string of {P} and attaching to it

any string of {Q}. The above set can thus be described by the concatena-
tion of the two corresponding expressions 01 + 10 and 11, i.e., (01 + 10)11.
Clearly the concatenation operation is associative, that is, if P, Q, and R are
expressions then (PQ)R = P(QR), but it is not commutative, PQ = QP. To
simplify the notation, we can omit the parentheses and write the product (PQ)R
as PQR.

The graph in Fig. 16.8d recognizes the set of strings whose members consist
of an arbitrary number (possibly zero) of 1’s, i.e., {λ, 1, 11, 111, 1111, . . .}.
This set can be described by the infinite expression λ + 1 + 11 + 111 + 1111
+ · · · or, compactly, by 1∗, where

1∗ = λ + 1 + 11 + 111 + 1111 + · · · .

The symbol * is referred to as the star (or closure) operation. In general, R∗

describes the set consisting of the null string λ and those strings that can be
formed by concatenating a finite number of strings from {R}. For example,
the expression 01(01)∗ describes the set consisting of those strings that can be
formed by concatenating one or more 01 substrings, that is,

01(01)∗ = 01 + 0101 + 010101 + 01010101 + · · · .

579 16.4 Regular expressions

For convenience, RR may be abbreviated as R2, RRR as R3, etc. Thus,

R∗ = λ + R + R2 + R3 + · · · .
We are now able to describe some sets of strings on a given alphabet by

means of the operations + , ·, *. For example, the set of strings on {0, 1}
beginning with a 0 and followed only by 1’s can be described by 01∗ while
the set of strings containing exactly two 1’s can be described by 0∗10∗10∗.
An important expression is (0 + 1)∗, which describes the set containing all the
strings that can be formed on the binary alphabet; that is,

(0 + 1)∗ = λ + 0 + 1 + 00 + 01 + 11 + 10 + 000 + · · · .
Thus, for example, the set of strings that begin with the substring 11 is described
by the expression 11(0 + 1)∗.

Example The transition graph of Fig. 16.9a accepts those strings that can
be formed by concatenating a finite number of 01 and 10 substrings followed
by a 11. Accordingly, it can be described by the expression (01 + 10)∗11.
In a similar manner, the reader can verify that the set of strings recognized
by the graph of Fig. 16.9b can be described by (10∗)∗.

B

C

1

B

A

0

1

1

A
1

D E

(a) (01 + 10)*11.

0

1

(b) (10*)*.

0

Fig. 16.9 Transition graphs and the sets of strings that they recognize.

We have thus shown that some sets of strings may be described by expressions
formed of symbols from the alphabets of these sets and the operations union,
concatenation, and star. We now formalize these ideas.

Definition and basic properties

Let A = {α1, α2, . . . , αp} be a finite alphabet; then the class of regular expres-
sions over alphabet A is defined recursively as follows.

1. Any single symbol α1,α2, . . . ,αp is a regular expression, as are the null
string λ and the empty set φ.

580 Finite-state recognizers

BA

(a) A graph accepting . (b) A graph accepting f.

Fig. 16.10 Recognizers for λ

and φ.

2. If P and Q are regular expressions then so is their concatenation PQ and
their union P + Q. If P is a regular expression then so is its closure P∗.

3. No other expressions are regular unless they can be generated in a finite
number of applications of the above rules.

By convention, the precedence of the operations in decreasing order is *, ·,
+.

At this point, it is appropriate to consider the significance of the expressions
λ and φ. The expression λ describes the set that consists of just the null string.
It can be recognized, for example, by the graph of Fig. 16.10a. Expression φ,
however, describes the set that has no strings at all. In other words, φ describes
the set recognized by a graph that accepts no strings, such as the graph shown in
Fig. 16.10b. The reader may verify that each of the following identities, which
involve the expressions φ and λ, exhibits different ways of describing the same
sets of strings:

φ + R = R, (16.1)

φR = Rφ = φ, (16.2)

Rλ = λR = R, (16.3)

λ∗ = λ, (16.4)

φ∗ = λ. (16.5)

A set of strings that can be described by a regular expression is called a
regular set. Not every set of strings is regular. For example, the set over the
alphabet {0, 1} that consists of k 0’s (for all k), followed by a 1, followed in
turn by k 0’s is not regular, as will be proved later. This set can be described by
the expression 010 + 00100 + 0001000 + · · · + 0k10k + · · ·. However, such a
description involves an infinite number of applications of the union operation.
Consequently, it is not a regular expression. There are, however, certain infinite
sums that are regular. For example, the set that consists of alternating 0’s
and 1’s, starting and ending with a 1, i.e., {1, 101, 10101, 1010101, . . .}, can be
described by the expression 1 + 101 + 10101 + · · ·, or 1(01)∗, which is clearly
regular.

Manipulating regular expressions

A regular set may be described by more than one regular expression. For exam-
ple, the above set of alternating 0’s and 1’s can be described by the expression
1(01)∗, as well as by (10)∗1. Two expressions that describe the same set of
strings are said to be equivalent. Unfortunately, no straightforward methods are

581 16.4 Regular expressions

available to determine whether two given expressions are equivalent. In certain
cases, however, a regular expression can be converted into another equivalent
expression by the use of simple identities. Some of these identities (whose
proofs are left to the reader as an exercise) are listed as follows.

Let P, Q, and R be regular expressions; then

R + R = R, (16.6)

PQ + PR = P(Q + R), PQ + RQ = (P + R)Q, (16.7)

R∗R∗ = R∗, (16.8)

RR∗ = R∗R, (16.9)

(R∗)∗ = R∗, (16.10)

λ + RR∗ = R∗, (16.11)

(PQ)∗P = P(QP)∗. (16.12)

To prove the last identity, note that each of the expressions (PQ)∗P and P(QP)∗

can be written in the form P + PQP + PQPQP + · · ·.
The set described by the expression (P + Q)∗ consists of all the strings that

can be formed by concatenating P’s and Q’s, including the null string λ. It is
easy to verify that the expression (P∗ + Q∗)∗ describes the same set of strings,
as does the expression (P∗Q∗)∗. Thus, we find that

(P + Q)∗ = (P∗Q∗)∗ = (P∗ + Q∗)∗. (16.13)

However, note that (P + Q)∗ = P∗ + Q∗.
The following identity will be proved in Section 16.5:

(P + Q)∗ = P∗(QP∗)∗ = (P∗Q)∗P∗. (16.14)

This identity leads in turn to

λ + (P + Q)∗Q = (P∗Q)∗. (16.15)

Indeed, by Eqs. (16.11) and (16.14),

(P∗Q)∗ = λ + (P∗Q)∗P∗Q

= λ + (P + Q)∗Q.

The preceding identities can sometimes be used to simplify regular
expressions or demonstrate their equivalence, as illustrated in the following
examples.

Example Prove that the set of strings in which every 0 is immediately
followed by at least two 1’s can be described by both R1 and R2, where

R1 = λ + 1∗(011)∗(1∗(011)∗)∗,
R2 = (1 + 011)∗.

582 Finite-state recognizers

We proceed as follows.

R1 = λ + 1∗(011)∗(1∗(011)∗)∗ (by (16.11))

= (1∗(011)∗)∗ (by (16.13))

= (1 + 011)∗ = R2.

The reader can verify that R2 indeed describes the set in question.

Example Prove the identity

(1 + 00∗1) + (1 + 00∗1)(0 + 10∗1)∗(0 + 10∗1) = 0∗1(0 + 10∗1)∗.

Consider the left-hand side:

(1 + 00∗1) + (1 + 00∗1)(0 + 10∗1)∗(0 + 10∗1)

= (1 + 00∗1)[λ + (0 + 10∗1)∗(0 + 10∗1)]

= [(λ + 00∗)1][λ + (0 + 10∗1)∗(0 + 10∗1)] (by (16.11))

= 0∗1(0 + 10∗1)∗.

In many situations, however, algebraic manipulations of regular expressions
are extremely involved and thus are not a suitable tool for determining the
equivalence of two regular expressions. As we shall see in the next section,
perhaps the best approach is to convert the expressions in question into their
equivalent state diagrams and to test the diagrams for equivalence by the tech-
niques of Chapter 10. Other procedures for establishing the equivalence of
regular expressions can be found in [3].

16.5 Transition graphs recognizing regular sets

We have already seen in several examples that transition graphs are capable of
recognizing regular sets. We wish to show now that to every regular set there
corresponds a transition graph (and hence a deterministic finite-state machine)
that recognizes that set of strings.

Constructing the transition graphs

We now prove the following theorem.

Theorem 16.2 Every regular expression R can be recognized by a transition
graph.

Proof We shall prove the theorem by constructing the required transition
graph. The construction procedure is inductive on the total number of characters
in R, where by a character we refer to an appearance of any of the expressions

583 16.5 Transition graphs recognizing regular sets

(a) R = (b) R = (c) R = i

i

. . .

Fig. 16.11 Transition graphs
recognizing elementary regular
sets.

α1,α2, . . . ,αp,λ,φ or the star operation * in R. For example, the number of
characters in R = λ + (1∗0)∗1∗ is seven.

Basis Let the number of characters in R be one. Then R must be either φ,
λ, or a symbol, say αi , from the alphabet. The graphs in Fig. 16.11 recognize
these regular sets.3

Induction step Assume the theorem is true for expressions with n or fewer
characters. We now show that it must also be true for any expression R having
n + 1 characters. The expression R must be in one of the following three forms:

1. R = P + Q,
2. R = PQ,
3. R = P∗,

where P and Q are each expressions having n or fewer characters. According
to the induction hypothesis, the sets P and Q can be recognized by transition
graphs, which we shall denote G and H , respectively, as shown in Fig. 16.12a.
(Note that each graph in Fig. 16.12 contains just one starting and one accepting
vertex.)

The set described by P + Q can be recognized by a transition graph com-
posed of G and H , as shown in Fig. 16.12b. The set described by PQ can be
recognized by a transition graph constructed in the following manner. Coalesce
the accepting vertex of G with the starting vertex of H and regard the combined
vertex as one that is neither starting nor accepting. The resulting graph is shown
in Fig. 16.12c. The starting vertices of this graph are the starting vertices of
G, while the accepting vertices are those of H . Clearly, this graph will accept
a string if and only if that string belongs to R = PQ. Finally, to recognize the
set P∗, construct the graph of Fig. 16.12d. The graphs in Fig. 16.12, which are
composed of G and H , are referred to as composite graphs.

Since every regular set can be described by an expression obtained by a finite
number of applications of operations +, ·, * on an alphabet {α1,α2, . . . ,αp},
φ and λ, the theorem is proved. ♦

The foregoing proof makes it possible to state an upper bound on the number
of vertices in a graph that recognizes a given regular expression R. Every
graph clearly contains one starting and one accepting vertex. Subexpressions
connected by the + operation yield a composite graph that has as many vertices
as the sum of vertices in the graphs that recognize individual subexpressions.

3 Although there is a distinction between regular expressions and the sets that they describe, it is
customary to speak of the regular set R as the set that can be described by the expression R.

584 Finite-state recognizers

(a) Graphs recognizing P and Q.

G

H

(c) A graph recognizing PQ.

G H

(b) A graph recognizing P + Q.

G

H

G

(d) A graph recognizing P*.

Fig. 16.12 Construction of
composite graphs.

Two subexpressions connected by the concatenation operation add a new vertex
to the composite graph, and similarly for the closure operation *. By induction
on the number of vertices, we find that the number of vertices v in a graph that
recognizes the given expression R need not exceed

v = 2 + number of concatenations + number of stars.

Theorem 16.2 provides us with a procedure for constructing a transition
graph that recognizes a given regular expression R. Converting the graph to a
deterministic form yields a state diagram of a finite-state machine that recog-
nizes the set R.

Example Consider the regular expression R = (0 + 1(01)∗)∗. Since it is
of the form P∗, where P = 0 + 1(01)∗, it is recognized by the graph of
Fig. 16.13a. We now observe that P = 0 + Q, where Q = 1(01)∗, and the
resulting graph is shown in Fig. 16.13b. The subexpression Q can be decom-
posed into Q = ST, where S = 1 and T = (01)∗. This yields the graph of
Fig. 16.13c. The process is continued in a similar manner until each subex-
pression consists of only a single symbol. The final transition graph that

585 16.5 Transition graphs recognizing regular sets

recognizes R is shown in Fig. 16.13d. Note that the number of vertices in
the graph is six, in agreement with the value of v derived above.

0

P

(a) R = P* ; P = 0 + 1(01)*.

A B

(b) P = 0 + Q; Q = 1(01)*.

A

Q

0

(c) Q = 1T ; T = (01)*.

A

T

D

1

0

(d) Final step.

A

D E

1

1

0

F

C

B C

B C

B C

Fig. 16.13 Construction of a transition graph recognizing R = (0 + 1(01)∗)∗ .

We can now prove the first identity in Eq. (16.14) by demonstrating that the
expressions (P + Q)∗ and P∗(QP∗)∗ can be recognized by equivalent transition
graphs. The graph in Fig. 16.14a recognizes the set described by P∗(QP∗)∗.
Removal of the λ-transitions results in the graph of Fig. 16.14b, which can be
converted to the deterministic graph of Fig. 16.14c. Clearly this graph recog-
nizes set (P + Q)∗, and thus the two expressions are equivalent. By Eq. (16.12),
we obtain P∗(QP∗)∗ = (P∗Q)∗P∗, which proves the second identity.

586 Finite-state recognizers

P

(a) Graph recognizing P*(QP*)*.

Q

(b) Equivalent graph with no
l-transitions.

P

P

Q

P,Q

P
P

Q

P,Q

(c) Equivalent deterministic
graph recognizing (P+Q)*.

Fig. 16.14 Illustration of the
proof that P∗(QP∗)∗ =
(P + Q)∗.

Informal techniques

In practice, in many cases it is possible to construct transition graphs from
their corresponding regular expressions in a straightforward manner, without
resorting to the above induction procedure.

Example Construct a graph that recognizes the regular set

P = (01 + (11 + 0)1∗0)∗11.

As an introduction, we shall construct a graph that recognizes the subex-
pression Q = (11 + 0)1∗0. Every string in Q starts with one of the substrings
11 and 0, followed by an arbitrary number of 1’s, and ends with a 0. The
graph of Fig. 16.15 clearly recognizes just this set of strings. The subex-
pressions 11 and 0 are represented by parallel paths between the vertices
A and C, while 1∗ corresponds to a self-loop around vertex C. To ensure
that a string is accepted only if it ends with a 0, an arc labeled 0 leads from
vertex C to accepting vertex D.

A

0

B 1

C

D

1
1

0

Fig. 16.15 A graph recognizing Q = (11 + 0)1∗0.

587 16.5 Transition graphs recognizing regular sets

Now consider expression P. The graph that recognizes P is constructed
in such a way that paths are provided for strings from the sets 01 and
(11 + 0)1∗0, followed by a string from the set 11. One such possible graph
is shown in Fig. 16.16.

A
0

B 1

C

F

1
1

0

D

1

E

0

1

1

Fig. 16.16 A graph recognizing P = (01 + (11 + 0)1∗0)∗11.

In a number of cases it is convenient to use λ-transitions to preserve the
order in which substrings appear. As an example, consider the expression R =
(11)∗(00)∗101. In this expression, substrings from (00)∗ must follow substrings
from (11)∗. One way of ensuring that this order is preserved is by using a
λ-transition, as shown in Fig. 16.5a. This graph accepts only those strings that
start with a substring from (11)∗, continue with a substring from (00)∗, and end
with the substring 101.

Example Construct a transition graph that recognizes the set

R = (1(00)∗1 + 01∗0)∗.

We begin by setting up paths for the subexpressions 1(00)∗1 and 01∗0, as
shown in Fig. 16.17a. Vertex A is the starting vertex, while A, C, and F are
accepting vertices. To complete the graph, an arc labeled αi is drawn from
vertex Vj to vertex Vk if and only if a sequence leading from the starting
vertex to Vj that is followed by αi and then by a sequence that emanates
from Vk to an accepting vertex is an acceptable sequence. Accordingly,
for example, an arc labeled 0 is drawn from F to B since 1100 is an
acceptable sequence. The graph is completed in a similar manner, as shown
in Fig. 16.17b.

588 Finite-state recognizers

E

B0

0

1 D

1

F

C

(a) Partial graph.

0

1

A

0

E

B0

0

1 D

1

F

C

(b) Complete graph.

0

1

A

0

0

1
1

0

Fig. 16.17 Transition graph recognizing R = (1(00)∗1 + 01∗0)∗ .

In conclusion, we have established that every regular set can be recognized
by a finite-state machine. Moreover, there is a routine procedure for determining
the machine that recognizes a given regular set. This procedure involves the
use of nondeterministic transition graphs, which can later be converted into the
equivalent deterministic graphs. Other methods, however, are available [6] that
provide a state-diagram description of the machine directly, without the need
to resort to nondeterministic graphs.

16.6 Regular sets corresponding to transition graphs

We now consider the problem of deriving regular expressions that describe
specified transition graphs. Specifically, we shall show that the set of strings
that can be recognized by a transition graph (and hence a finite-state machine)
is a regular set.

589 16.6 Regular sets corresponding to transition graphs

Proof of uniqueness

Before proceeding with our main topic, we shall establish the following theo-
rem.

Theorem 16.3 Let Q, P, and R be regular expressions on a finite alphabet.
Then, if P does not contain λ, the equation

R = Q + RP (16.16)

has a unique solution given by

R = QP∗. (16.17)

Proof Clearly, R = QP∗ is a solution to the equation R = Q + RP, since (by
substitution and Eq. (16.11))

R = Q + RP = Q + QP∗P = Q(λ + P∗P) = QP∗.

To prove uniqueness, make the expansion

R = Q + RP

= Q + (Q + RP)P = Q + QP + RP2

= Q + QP + (Q + RP)P2 = Q + QP + QP2 + RP3

...

= Q(λ + P + P2 + · · · + Pi−1 + Pi) + RPi+1, (16.18)

where i is any arbitrary integer. Choose some string w in R, suppose that the
length of w is k, and then substitute i = k into Eq. (16.18):

R = Q(λ + P + P2 + · · · + Pk) + RPk+1.

Since P does not contain λ, the length of the shortest string in the set RPk+1

is at least k + 1. Consequently, w is not contained in RPk+1, but is contained
in Q(λ + P + P2 + · · · + Pk). However, since Q(λ + P + P2 + · · · + Pk) is
contained in QP∗, w is contained in QP∗.

To prove the converse, suppose that w is a string in QP∗. Then there exists
some integer k such that w is in QPk . This, in turn, implies that w is contained
in Q(λ + P + P2 + · · · + Pk) and hence in R = Q + RP. ♦

In an analogous manner, we can show that if P does not contain λ then
R = P∗Q is the unique solution to the equation R = Q + PR. Note that if P
contains λ, the solution of Eq. (16.16) is not unique. If P = φ then R = Q.

*Systems of equations

Consider the transition graph of Fig. 16.18, whose starting vertex is A and
accepting vertex C. The set of strings recognized by this graph consists of
all the strings that can be described by paths emanating from vertex A and

590 Finite-state recognizers

A B C

0

0 01

0

1Fig. 16.18 A transition graph to
be analyzed.

terminating at vertex C. However, since vertex C can be reached only through
vertex B, each of these strings must end with a 0 and have as prefix a string
leading from A to B. Let us denote the set of strings leading from A to B by B
and the set of strings that take the graph from A to C by C. Set C can then be
expressed as C = B0.

Next consider set A, which consists of exactly those strings that take the graph
from vertex A to itself. Vertex A can be reached from B with a 1, from A with
a 0, and with the null string λ. Thus, A can be expressed as A = λ + A0 + B1.
Finally, vertex B can be reached from A with a 0, from B with a 1, and from
C with a 0. As a result, we obtain the equation B = A0 + B1 + C0.

The foregoing analysis yields a system of three simultaneous equations which
characterize the sets of strings that take the graph from its starting vertex to
each of its vertices. In Theorem 16.4 we shall prove that each of these sets of
strings is regular, i.e.,

A = λ + A0 + B1, (16.19)

B = A0 + B1 + C0, (16.20)

C = B0. (16.21)

These equations can now be solved for the variables A, B, and C. Substituting
Eq. (16.21) for C into Eq. (16.20) yields

B = A0 + B1 + B00 = A0 + B(1 + 00). (16.22)

Equation (16.22) is now of the form of Eq. (16.16),

R = Q + RP,

and its solution is given by Eq. (16.17), i.e.,

R = QP∗.

Applying Eq. (16.17) to Eq. (16.22), we obtain

B = A0(1 + 00)∗. (16.23)

Now B can be substituted into Eq. (16.19) to give

A = λ + A0 + A0(1 + 00)∗1 = λ + A(0 + 0(1 + 00)∗1). (16.24)

Equation (16.24) is again of the general form of Eq. (16.16) and, thus, has the
solution

A = λ(0 + 0(1 + 00)∗1)∗ = (0 + 0(1 + 00)∗1)∗. (16.25)

591 16.6 Regular sets corresponding to transition graphs

Since the set recognized by the graph is given by C, we want to find a solution
for this variable. Substituting Eq. (16.25) for A into Eq. (16.23), we obtain a
solution for B that, in turn, may be substituted into Eq. (16.21) to yield the
solution for C, i.e.,

B = (0 + 0(1 + 00)∗1)∗0(1 + 00)∗, (16.26)

C = (0 + 0(1 + 00)∗1)∗0(1 + 00)∗0. (16.27)

The above procedure can now be applied to find a system of simultaneous
equations for any transition graph that contains no λ-transitions and has a
single starting vertex. (Recall that every transition graph can be converted to an
equivalent graph with no λ-transitions and just one starting vertex.) Suppose
that V1 is the starting vertex in a graph containing n vertices, V1, V2, . . . , Vn.
Let Vi denote the set of strings that take the graph from V1 to Vi , and let αij

denote the set of strings that take the graph from vertex Vi to vertex Vj without
going through any other vertex; αij = φ if no direct transition exists from Vi

to Vj . Then we arrive at the following equations:

V1 = V1α11 + V2α21 + · · · + Vnαn1 + λ,

V2 = V1α12 + V2α22 + · · · + Vnαn2, (16.28)
...

Vn = V1α1n + V2α2n + · · · + Vnαnn.

This system of equations can now be solved for V1, V2, . . . , Vn by repeated
substitution and successive applications of Eq. (16.17) in the following manner.
Whenever an equation is of the form Vi = Vjαji + Vkαki or Vi = Vjαji +
Vkαki + λ, where i = j = k, then Vi can be substituted into all other equations
to yield a system with fewer equations and unknowns. Whenever an equation
has the form Vi = Viαii + Vjαji (plus λ if appropriate), then Eq. (16.17) can
be applied to yield Vi = Vjαji(αii)∗, which can now be substituted for Vi

in the other equations. Note that, since the graph is assumed to contain no
λ-transitions, the condition in Theorem 16.3 that αii should not contain λ can
always be met. This procedure will finally lead to a single equation in one
variable. This variable can in turn be determined by another application of
Eq. (16.17).

The set of strings recognized by a given graph can be described by the
union of the V’s that correspond to accepting vertices. For example, if vertices
B and C in the graph of Fig. 16.18 were accepting vertices then the set of
strings recognized by the graph could be described by B + C = (0 + 0(1 +
00)∗1)∗0(1 + 00)∗(λ + 0).

Clearly, any system of equations of the form Eq. (16.28) can be uniquely
solved by the procedure just outlined, provided that we prove that each of the
Vi’s and αij ’s is a regular expression. This proof is given in the following
theorem.

592 Finite-state recognizers

Theorem 16.4 The set of strings that take a finite-state machine M from an
arbitrary state Si to another state Sj is a regular set.

Proof Let Q be any subset of the states of M containing both Si and Sj , and
let R

Q
ij denote the set of strings that take the machine from state Si to state Sj

without passing through any state that is outside Q. Since Q may consist of all
the states in M , the theorem will be proved if we can show that R

Q
ij is regular.

The proof will be by induction on the number of states in Q.

Basis Suppose that Q consists of just a single state, which we shall call
Si . Then the set of strings that take Si into itself without passing through any
other state consists of only a finite number of single input symbols. Since by
definition each such input symbol is regular, the above set of strings is regular.
The corresponding regular expression will be denoted Tii .

Induction step Assume that RQ
ij is regular for all subsets of states containing

m or fewer states. Thus, R
Q
ij can be described by the regular expression RQ

ij .
We shall now prove that the set of strings RP

ij is also regular, where P is a set
containing m + 1 states, including the states Si and Sj . Suppose now that we
remove state Si from P . The resulting subset consists of only m states and will
be referred to as Q; the theorem is assumed to hold for this subset.

Consider a string from RP
ij . In general, it will cause the machine to go through

state transitions as follows:

Si, St , . . . , Su, Si, . . . , Si, . . . , Sj

where the ellipses correspond to transitions within set Q and therefore do not
contain occurrences of Si . The substrings that take the machine from Si and
back into Si may consist of either single input symbols from the regular set Tii

or of sequences of symbols that take the machine from Si through some states,
say St , . . . , Su, and back into Si . Such an input sequence actually consists of a
single symbol, denoted Tit , that takes M from Si to St followed by a sequence
from RQ

tu and ending with a symbol Tui that returns M to Si . Each of the
symbols Tit and Tui is clearly regular and, consequently, the set of strings that
take M from Si into Si can be described by the regular expression

Tii +
∑
tu

TitR
Q
tuTui,

where the sum is taken over all possible pairs of states in Q. In addition, since
the machine can be taken an arbitrary number of times from Si through states
in Q and back into Si , the set of corresponding strings can be described by the
regular expression (

Tii +
∑
tu

TitR
Q
tuTui

)∗

593 16.6 Regular sets corresponding to transition graphs

This set of strings is followed by the set of substrings that take the machine
from Si into Sj . This latter set of substrings consists of all single symbols Tij

that take the machine from Si to Sj and all other strings that take the machine
from Si to Sj via certain states St , . . . , Su. Clearly, this set can be described by
the regular expression

Tij +
∑
tu

TitR
Q
tuTuj .

Consequently, the set of strings RP
ij is regular and can be described by the

expression

RP
ij =

(
Tii +

∑
tu

TitR
Q
tuTui

)∗ (
Tij +

∑
tu

TitR
Q
tuTuj

)
.

♦
Combining Theorems 16.2 and 16.4, we obtain the following general result,

which is known as Kleene’s theorem.

� A finite-state machine recognizes a set of strings if and only if it is a regular
set.

Applications

The correspondence between regular sets and finite-state machines enables us
to determine whether certain sets are regular. For example, let R denote a
regular set on an alphabet A that can be recognized by a (Moore) machine M1.
Define the complement of R, denoted R′, as the set containing all the strings on
A that are not contained in R. The set R′ is regular, since it can be recognized
by a machine M2 that is obtained from M1 by complementing the output values
associated with the states of M1.

As another example, let us define the intersection of two sets, P and Q,
denoted P&Q, as the set consisting of all the strings that are contained in both
P and Q. We can show that the set P&Q is regular by observing that each of the
sets P′ and Q′ is regular and, consequently, P′ + Q′ and (P′ + Q′)′ are regular. In
addition, since P&Q = (P′ + Q′)′, the set P&Q is regular. Regular expressions
containing the complementation and intersection operations as well as union,
concatenation, and closure are called extended regular expressions.

The added operations increase our versatility in describing regular sets. For
example, consider the set of strings on the alphabet {0, 1} such that no string in
the set contains three consecutive 0’s. This set can be described by the expres-
sion [(0 + 1)∗000(0 + 1)∗]′, whereas a more complicated expression, such as
(1 + 01 + 001)∗(λ + 0 + 00), would be required if the complementation oper-
ation were not used. However, since expressions containing the complementa-
tion and intersection operations are difficult to manipulate or transform to the
corresponding graphs, their usefulness is limited.

594 Finite-state recognizers

The following example will illustrate some additional techniques that can be
used to determine whether certain sets are regular.

Example Let M be a finite-state machine whose input and output alphabets
are {0, 1}. Assume that the machine has a designated starting state. Let
z1z2 · · · zn denote the output sequence produced by M in response to the
input sequence x1x2 · · · xn. Define a set SM that consists of all the strings w

such that w = z1x1z2x2 · · · znxn, for any x1x2 · · · xn in (0 + 1)∗. Prove that
SM is regular.

Given the state diagram of M , replace each directed arc with two directed
arcs and a new state, as shown in Fig. 16.19. Retain the original starting
state and designate all the original states as accepting states. The resulting
nondeterministic transition graph recognizes the set SM . Therefore, SM must
be regular.

xzReplace A B
x/z

A B with

Fig. 16.19 Illustration of the procedure for designing a recognizer for SM .

This procedure will now be applied to find a deterministic machine that
recognizes the set SN , where N is the machine described in Fig. 16.20.
Replacing every arc of the machine N with two directed arcs, and following
the procedure just outlined, we arrive at the transition graph in Fig. 16.21a.
Converting this graph into deterministic form yields the state diagram of
Fig. 16.21b.

A B0/1

1/0

1/1

0/0

Fig. 16.20 Machine N .

A B

F

1 0

1

0

D
0

C
1

0

E

1

A

1

CE

(a) Transition graph.

DF

B

1

1

1

000

0

(b) Equivalent deterministic form.

0,1

Fig. 16.21 Constructing a finite-state machine that recognizes SN .

595 16.7 Two-way recognizers

*16.7 Two-way recognizers

In Section 16.1, we introduced the concept of a recognizer as a finite-state
control coupled through a head to a linear input tape. We assumed that the
recognizer could move its head in only one direction, to the right. In an attempt
to generalize the model further, we will consider recognizers that are not
confined to a strict forward motion but can move two ways on their input tapes,
that is, to the right and left. A natural question that now arises is whether
the option given to the machine to move left and reexamine the input tape
increases its computational capabilities. In other words, what characterizes
the sets of tapes that are recognized by this class of machines? As we shall
see, machines that can move both ways but cannot change the tape symbols
are no more (nor less) powerful than machines that can move in only one
direction.

Description of the model

A two-way recognizer, or two-way machine, consists of a finite-state control
coupled through a head to a tape. Initially, the finite-state control is in its
designated starting state, with its head scanning the leftmost square of the tape.
The machine then proceeds to read the symbols of the tape one at a time. In each
cycle of computation, the machine examines the symbol currently scanned by
the head, shifts the head one square to the right or left, and then enters a new
(not necessarily distinct) state.

If, when operating in this manner on a given tape, the machine eventually
moves off the tape at the right-hand end and at that time enters an accepting
state, then we shall say that the tape is accepted by the machine. A machine can
reject a tape either by moving off its right-hand end while entering a rejecting
state or by looping within the tape. As in the case of one-way machines, the set
of tapes that are accepted by a given two-way machine is said to be recognized
by that machine. The null string λ can be represented either by the absence of
an input tape or by a completely blank tape. A machine accepts λ if and only
if its starting state is an accepting state.

It is convenient to supply the two-way machine with a new symbol, ¢, called a
left-end marker, which is entered in the leftmost square of the tape and prevents
the head from moving off the left-hand end of the tape. The end marker is not
a symbol of the machine’s alphabet and must not appear on any other square
within the tape.

A two-way machine can be described by a state table (or diagram) that
specifies, for every possible combination of present state and tape symbol
being scanned, the next state that the machine should assume and the direction
in which the head is to move. As directional entries, we use the letters L to
denote a shift to the left and R to denote a shift to the right.

596 Finite-state recognizers

Example Table 16.1 describes a two-way machine having four states and
two tape symbols, 0 and 1, plus the ¢ marker. The starting state is A and
the accepting state is C. A blank tape entry indicates that the corresponding
state-symbol combination cannot occur. Figure 16.22a illustrates the com-
putation that the machine will perform when supplied with a tape that starts
with the symbols ¢0. The computation begins with the machine in state A

and with its head scanning the left-end marker. According to the state table,
the machine will move one square to the right while remaining in state A. The
machine will then be scanning a 0 and, consequently, will enter state B and
move one square to the left. From now on, the machine will oscillate between
these two squares and thus all strings beginning with a 0 will be rejected.

Table 16.1 A two-way-machine recognizing
set 100∗

¢ 0 1

A A, R B, L B, R

B A, R C, R D,R

C C,R D,R

D D,R D,R

Next, suppose that the machine is presented with a tape that starts with
¢11. The computation is illustrated in Fig. 16.22b. When the third symbol
is reached, the machine is in state D. Thereafter, it remains in state D

regardless of the tape content until it moves off the tape. Since D is a
rejecting state, all sets of tapes starting with 11 are rejected. Finally, let the
tape consist of the string ¢10. Again, the machine starts by moving to the
right, and it goes through a succession of states until it moves off the tape in
state C. Since C is an accepting state, the tape in question is accepted. By
similar reasoning, we can verify that the machine recognizes the set 100∗.

1

A

0

A

B

A

B

1

A A B D D D D

(a) A loop. (b) Rejection of a tape.

c c

Fig. 16.22 Illustration of
computations.

597 16.7 Two-way recognizers

In the next section we shall prove that two-way machines are as powerful as
one-way machines with respect to the classes of tapes that they can recognize.
For some computations, however, it is convenient to use two-way recognizers
since they may require fewer states than the equivalent one-way recognizers.
However, for the ability of a two-way machine to reverse direction and reread
its tape, we pay in terms of an increased computation time.

Example Consider the two-way machine shown in Table 16.2, which
accepts a tape if and only if it contains at least three 1’s and at least two
0’s. The starting and accepting states are A and G, respectively. Some typ-
ical computations are shown in Fig. 16.23. The operation of the machine
can be summarized as follows. Initially the machine is in state A and the
head is scanning the left-end marker. The head then proceeds to the right to
determine whether the tape contains at least three 1’s. If the tape contains
two or fewer 1’s, it is rejected; if it contains three 1’s then the head reverses
its direction and moves left until it again reaches the left-end marker. The
machine then proceeds to the right to determine whether the tape contains
two or more 0’s. If it does, the machine enters state G and will eventually
accept the tape; otherwise the tape will be rejected.

Table 16.2 A two-way machine

¢ 0 1

A A, R A, R B, R

B B, R C, R

C C, R D,L

D E,R D,L D,L

E F,R E, R

F G, R F,R

G G, R G, R

01

A A B B B C C

(a) Rejecting a tape.

0 00 1

C

01

A A B B C

DD

0 01 1

DD

E E F F F G G

(b) Accepting a tape.

c c

Fig. 16.23 Example of computations.

The minimal one-way machine that is equivalent to the two-way machine
in Table 16.2 has 12 states. This larger number of states is necessary because
of the way in which a one-way machine operates. Any one-way machine
that recognizes the above set of tapes must examine the tapes for the proper

598 Finite-state recognizers

number of 0’s and 1’s simultaneously. This can be done, for example, by the
use of two separate counters, one for the 1’s and the other for the 0’s. The
state of the machine in such a case is the composite state of the two counters.
Consequently, the number of states required to perform the above computation
is proportional to the product of the numbers of states required to test the tapes
for the number of 0’s and the number of 1’s separately. The two-way machine in
this example tests the tapes first for the appropriate number of 1’s and then for
the appropriate number of 0’s. Thus, the number of states is proportional to the
sum of the numbers of states required to test the tapes for the two requirements
separately.

Conversion to one-way recognizers

We now turn to proving that two-way machines can recognize sets of tapes
(or strings) if and only if they are regular sets. Specifically, we shall show that
for every given two-way machine there is an equivalent one-way machine that
recognizes the same set of tapes. Since the details of the construction procedure
do not add significantly to its understanding, we shall confine our discussion to
sketching the main ideas of the proof.

Since a one-way machine makes as many moves as there are symbols on
the tape while a two-way machine can make moves by reversing direction, the
one-way machine cannot keep track of all the moves of the two-way machine
or simulate them. It is, therefore, necessary to isolate the significant informa-
tion gained by a two-way machine on moving to the left from the particular
sequence of moves. Consider an initial segment at the left of the input tape,
and suppose that the head is scanning the rightmost square of this segment.
The only way in which this segment can influence the future behavior of the
two-way machine is via the state which the machine is in when (and if) it leaves
this segment. Thus, when a two-way machine backs up and reexamines a seg-
ment of the tape, the state Si in which the machine reenters the segment and
the corresponding state S ′

i which the machine would be in if it left the segment
are the only two factors of significance in predicting the future behavior of the
machine.

A two-way machine having n states can be in any of these states when it
scans the rightmost square of the initial segment. Two cases must be considered.
First, the machine may never leave the segment but oscillate within it. Second,
the machine will ultimately leave the segment on the right in one of its n states.
Thus, a reentry into a segment may have n + 1 outcomes, that is, leaving the
segment in one of the n states or not leaving it. Consequently the effect of
the segment on the computation can be determined by specifying, for each
state Si in which the machine might reenter the segment, which of the n + 1
outcomes would indeed result. Such a specification is accomplished by means
of a crossing function (or crossing table), denoted C(S).

599 16.7 Two-way recognizers

Table 16.3 A two-way
machine M

¢ 0 1

A A, R B, R C, R

B A, R A, L

C B, R D,L

D C, L B, R

Table 16.4 Crossing
functions for M

C(Si) C(Si)
Si for ¢001 for ¢0011

A C C

B 0 0
C C 0
D B B

A C

00

C D C

B

1

A C

(c)

00 1 00 1 00 1

D BA B

B

A

B

((((a b d))

c c c c

Fig. 16.24 Computations on
the segment ¢001.

The following is extracted from Shepherdson’s proof [11]. It summarizes
the informal arguments in support of his proof. (Note that M denotes the given
two-way machine and t denotes an initial tape segment.)

If we think of the different states which M could be in when it reentered t

as the different questions M could ask about t , and the corresponding states
M would be in when it subsequently left t again, as the answers, then we can
state the result more crudely and succinctly thus: A machine can spare itself
the necessity of coming back to refer to a piece of tape t again, if, before
it leaves t , it thinks of all the possible questions it might later come back
and ask about t , answers these questions now and carries the table of question–
answer combinations forward along the tape with it, altering the answers where
necessary as it goes along.

As an example, consider the two-way machine M given in Table 16.3 and
the initial tape segment ¢001. The starting and accepting states are A and
C, respectively. Figure 16.24 illustrates, for each possible initial state, the
computation performed by the machine if its head is initially scanning the
rightmost symbol of the given segment. If the initial state is A than the machine
immediately leaves the segment in state C. If, however, the initial state is B

then the machine will oscillate between states B and A and will never leave
the segment. From Fig. 16.24 we can derive the crossing function associated
with the segment ¢001, as shown in the first two columns of Table 16.4. The
first column, Si , of this table lists the states of the machine while the second
column, C(Si), lists the states in which the machine crosses the given segment
to the right. An entry 0 indicates that the tape will be rejected.

600 Finite-state recognizers

A C

00 1 0 0 1

A B

C

D

B

((a b))

11c c
Fig. 16.25 Illustration of
computations on the segment
¢0011.

An important property of crossing functions is that the crossing function
of a (k + 1)-symbol segment can be obtained from the crossing function of a
k-symbol segment. The rightmost column of Table 16.4 contains the crossing
function associated with the segment ¢0011. This crossing function can be
obtained from the crossing function of the segment ¢001. Suppose, for example,
that the machine is in state A and is scanning the rightmost symbol of ¢0011.
According to the state table in Table 16.3, the machine will move to the right and
enter state C, as illustrated in Fig. 16.25a. Accordingly, the entry in row A in
the rightmost column is C. If, however, the machine is in state B while scanning
the rightmost symbol of the given segment then it will move left and enter state
A. According to the crossing function associated with the segment ¢001, the
machine will leave this segment in state C, as shown in Fig. 16.25b. Again it
will scan the rightmost symbol of ¢0011 and, according to the state table, again
it will move left and enter state D. According to the crossing function for ¢001,
the machine will ultimately leave this segment on the right and enter state B.
Evidently such a sequence of moves indicates that the computation will never
halt and, consequently, a 0 is entered in row B of Table 16.4. The same line of
reasoning leads to the specification of the entries in rows C and D.

The procedure followed in this example leads to the conclusion that,
given the crossing functions associated with the initial segments containing
k symbols, we can readily obtain the crossing functions associated with all
initial segments containing k + 1 symbols. In fact, since the number of distinct
crossing functions associated with a specific two-way machine cannot exceed
(n + 1)n, where n is the number of states, it is possible to construct a one-way
machine that will read the tape from left to right and compute with each
move the crossing function associated with the corresponding initial segment.
Such a machine will have as many states as there are crossing functions. Its
input alphabet is the same as that of the corresponding two-way machine. The
next-state entries of the one-way machine are obtained as follows. For a given
state, which corresponds to a crossing function of the two-way machine, the
next-state entry under the input symbol α corresponds to the new crossing
function obtained from the given one and the symbol α, as illustrated in
Fig. 16.25.

601 Notes and references

Once we have a one-way machine that scans the tape from left to right and
computes the crossing functions associated with successive initial segments,
since the starting state of the two-way machine is specified it is a simple matter
to determine, after each move of the one-way machine, the corresponding next
state of the two-way machine. Consequently, we can determine the state of the
two-way machine when it moves off the tape. If this state is an accepting state
then the one-way machine will also accept the tape; otherwise it will reject the
tape. We thus have the following result.

� The sets of strings recognized by two-way finite-state machines are the
same as the sets recognized by one-way finite-state machines. Moreover,
there exists an effective procedure for constructing a one-way machine that
recognizes the same set of strings as a given two-way machine.

Although two-way machines are no more powerful than one-way machines
with respect to the sets of strings that they can recognize, it is often more
convenient to describe certain computations in terms of two-way machines.
The equivalence of the two models, however, makes it generally possible to use
either.

Notes and references

Nondeterministic graphs were first used by Myhill [8] and further developed by numer-
ous investigators, in particular those working on languages. The initial concept of regular
expressions and the equivalence between regular expressions and finite-state machines
were presented by Kleene [5]. Simpler techniques for converting regular expressions
into transition graphs, and vice versa, were subsequently developed by Copi, Elgot, and
Wright [4], McNaughton and Yamada [6], and Ott and Feinstein [9]. The procedure
presented in this chapter of constructing transition graphs from regular expressions is
due to Ott and Feinstein [9], while the procedure used to derive regular expressions
that describe transition graphs is due to Arden [1]. A survey of regular expressions is
available in Brzozowski [2].

Two-way machines were first investigated by Rabin and Scott [10], who pro-
vided the first proof that two-way machines are equivalent to one-way machines.
Shepherdson [11] subsequently provided a simpler proof, the one outlined in
Section 16.7.

[1] Arden, D. N.: “Delay logic and finite state machines,” in Proc. Second Ann. Symp.
Switching Theory and Logical Design, pp. 133–151, October 1961.

[2] Brzozowski, J. A.: “A survey of regular expressions and their applications,” IRE
Trans. Electron. Computers, vol. EC-11, pp. 324–335, June 1962.

[3] Brzozowski, J. A.: “Derivatives of regular expressions,” J. Assoc. Computing
Machinery, vol. 11, pp. 481–494, 1964.

[4] Copi, I. M., C. C. Elgot, and J. B. Wright: “Realization of events by logical nets,”
J. Assoc. Computing Machinery, vol. 5, pp. 181–196, April 1958; reprinted in
Moore [7].

602 Finite-state recognizers

[5] Kleene, S. C.: Representation of Events in Nerve Nets and Finite Automata,
pp. 3–41, Automata Studies, Princeton University Press, 1956.

[6] McNaughton, R., and H. Yamada: “Regular expressions and state graphs for
automata,” IRE Trans. Electron. Computers, vol. EC-9, pp. 39–47, March 1960;
reprinted in Moore [7].

[7] Moore, E. F. (ed.): Sequential Machines: Selected Papers, Addison-Wesley, Read-
ing MA, 1964.

[8] Myhill, J.: “Finite automata and the representation of events,” WADC Technical
Report 57–624, pp. 112–137, 1957.

[9] Ott, G. H., and N. H. Feinstein: “Design of sequential machines from their reg-
ular expressions,” J. Assoc. Computing Machinery, vol. 8, pp. 585–600, October
1961.

[10] Rabin, M. O., and D. Scott: “Finite automata and their decision problems,”
IBM J. Res. Develop., vol. 3, no. 2, pp. 114–125, April 1959; reprinted in
Moore [7].

[11] Shepherdson, J. C.: “The reduction of two-way automata to one-way automata,”
IBM J. Res. Develop., vol. 3, no. 2, pp. 198–200, April 1959; reprinted in Moore
[7].

Problems

Problem 16.1. For each of the sets described as follows, find a transition graph that
recognizes the set.
(a) The set of strings on the alphabet {0, 1} that start with 01 and end with 10.
(b) The set of strings on the alphabet {0, 1} that start and end with a 1, and in which

every 0 is immediately preceded by at least two 1’s.
(c) The set of strings on the alphabet {0, 1, 2} in which every 2 is immediately

followed by exactly two 0’s and every 1 is immediately followed by either 0 or else
by 20.

Problem 16.2. Consider the class of transition graphs containing no λ-transitions.
(a) Show a procedure for converting a specified transition graph with several starting

vertices into a graph with just one starting vertex. Apply your procedure to the graph
in Fig. P16.2.
Hint: Add a new vertex and designate it as the starting vertex.A C

B

0
1

0

1

1

Fig. P16.2

(b) Show a procedure for converting a given transition graph with several accepting
vertices into a graph with just one accepting vertex. Apply your procedure to the
graph in Fig. P16.2.

(c) Is it always possible to convert an arbitrary transition graph into a graph with just
one starting vertex and just one accepting vertex? Determine the conditions under
which such a conversion is possible.

Problem 16.3. For each of the nondeterministic graphs in Fig. P16.3, find an
equivalent deterministic graph (in standard form) that recognizes the same set of
strings.

603 Problems

A B

C

1

0

1

0

1

D

0

A B C

0

01

(b)

((c d))

(a)

A B

C

0

1

0

1
1

1

0

0

A B

C

0

0

0

1

1

0

1

1Fig. P16.3

Problem 16.4. Show that the two graphs in Fig. P16.4 are equivalent by converting
them to deterministic forms.

B C

A

1
1 1

0

0

D F

E
0

1 1

1

1
1

G
0

Fig. P16.4

Problem 16.5. Design a finite-state machine that accepts only those input sequences
that end with either 101 or 0110. First construct a nondeterministic graph that recognizes
the above set of sequences and then convert this graph into an equivalent deterministic
graph. Discuss the merits of this approach versus the direct approach of deriving a state
diagram from a word description.

Problem 16.6. Give a word description of the sets described by the following regular
expressions:
(a) 110∗(0 + 1);
(b) 1(0 + 1)∗101;
(c) (10)∗(01)∗(00 + 11)∗;
(d) (00 + (11)∗0)∗10.

604 Finite-state recognizers

Problem 16.7. Find a regular expression for each set described in Problem 16.1.

Problem 16.8. Use the identities in Section 16.4 to verify the identities below:
(a) 10 + (1010)∗[λ∗ + λ(1010)∗] = 10 + (1010)∗;
(b) (0∗01 + 10)∗0∗ = (0 + 01 + 10)∗;
(c) λ + 0(0 + 1)∗ + (0 + 1)∗00(0 + 1)∗ = [(1∗0)∗01∗]∗.

Problem 16.9.
(a) Use the induction procedure developed in Section 16.5 to find a transition graph

that recognizes the set of strings described by

R = 0(11 + 0(00 + 1)∗)∗.

(b) Convert the graph found in (a) to a deterministic state diagram.

Problem 16.10. For each of the following expressions, find a transition graph that
recognizes the corresponding set of strings:
(a) (0 + 1)(11 + 0∗)∗(0 + 1);
(b) (1010∗ + 1(101)∗0)∗1;
(c) (0 + 11)∗(1 + (00)∗)∗11.

Problem 16.11. The regular expression that corresponds to the transition graph in
Fig. P16.11 is

R = [(1∗0)∗01∗]∗.

Find a finite-state machine that recognizes the same set of strings.

A B

D

1

0

1

0

C
Fig. P16.11

Problem 16.12. The nondeterministic graph in Fig. P16.12 has A and B as starting
vertices and C as an accepting vertex.
(a) Find a regular expression that describes the set of strings accepted by this graph.
(b) Derive a reduced deterministic machine equivalent to this graph.

A B

C

0
1

0

1

1

0Fig. P16.12

605 Problems

Problem 16.13. For each machine in Table P16.13, find a regular expression that
describes the set of input strings recognized by the machine. In each case the start-
ing state is A.

Table P16.13

NS

PS x = 0 x = 1 z

A A B 0
B B A 1

(a)

NS

PS x = 0 x = 1 z

A B A 1
B B C 0
C A B 1

(b)

NS, z

PS x = 0 x = 1

A B, 0 A, 1
B A, 1 C, 1
C C, 0 B, 0

(c)

Problem 16.14. Find a regular expression on the alphabet {0, 1, 2} for the set of strings
recognized by the graph of Fig. P16.14.

A C

B

2

0
1 0

1

0,1

Fig. P16.14

Problem 16.15. Determine whether each of the following sets on the alphabet {0, 1}
is regular and justify your answer:
(a) the set consisting of those strings that contain, for all k, k 1’s and k + 1 0’s;
(b) the set of strings in which every 0 is immediately preceded by at least k 1’s and is

immediately followed by exactly k 1’s, where k is a specified integer;
(c) the set of strings that contain more 1’s than 0’s;
(d) the set of strings consisting of a block of k2 0’s immediately followed by a single 1,

where k = 0, 1, 2, . . .

Problem 16.16
(a) Let M be a deterministic Mealy-type finite-state machine with a starting state A.

Prove that if T is the set of strings that can be produced as output strings by M

then T is a regular set. Find a procedure to design a finite-state machine that will
recognize T .
Hint: Use the output successor table of M .

(b) Apply your procedure to find a finite-state machine that will recognize the
set of output strings that can be produced by the machine defined by
Table P16.16.

606 Finite-state recognizers

Table P16.16

NS, z

PS x = 0 x = 1

A B, 1 A, 1
B A, 0 C, 0
C D, 1 B, 0
D C, 0 A, 1

Problem 16.17. The reverse Rr of a set R is the set that consists of the reverses of the
strings in R. Thus, for example, if 0101 is in R then 1010 is in Rr.
(a) Prove that if R is regular then so is Rr.

Hint: Develop a systematic procedure to convert a given regular expression into its
reverse.

(b) Apply the above procedure to find the reverse of the expression

R = (00)∗(0 + 10∗)∗ + 10∗(01∗10∗)∗.

Problem 16.18. Either prove each of the following statements or show a counter
example.
(a) Every finite subset of a nonregular set is regular.
(b) The expressions P = (1∗0 + 001)∗01 and Q = (1∗001 + 00101)∗ are equivalent.
(c) Let R denote a regular set. Then the set consisting of all the strings in R that are

identical to their own reverses is also a regular set.
(d) Every subset of a regular set is also regular.

Problem 16.19. Consider the nondeterministic machine Mn, which is obtained from a
strongly connected deterministic machine M by interchange of the sets of starting and
accepting states and reversal of the arrows on the state diagram.
(a) If the machine M recognizes the set R, what is the set recognized by Mn?
(b) Prove that the deterministic machine obtained by applying “subset construction” to

Mn has no equivalent states.

Problem 16.20. Let P be a regular set consisting of strings of even length. Define a set
Q that consists of exactly those strings that can be formed by taking the first half of each
member of P. (For example, if 10110100 is contained in P then 1011 will be contained
in Q.) Prove that Q is a regular set.

Hint: Design a machine that recognizes Q.

Problem 16.21. Let P be a regular set, and let Q be the set formed of all the strings
from P with even-numbered symbols deleted; that is, if a1a2a3a4a5 · · · is a string in P,
then a1a3a5 · · · is a string in Q. Prove that Q is a regular set.

Problem 16.22. Let P be an arbitrary regular set. Consider those strings w in P such
that both w and ww are in P. Define Q to be the set consisting of all the above w’s.
Thus, for example, if 101 and 101101 are in P then 101 is in Q. Prove that Q is a regular
set.

607 Problems

Problem 16.23. Let R be a regular set on the alphabet {0, 1}. The derivative of R with
respect to x, denoted Rx , is defined as the set consisting of all substrings y such that xy

is in R. For example, if R = 01∗ + 100∗ then R0 = 1∗ and R10 = 0∗.
(a) Prove that, for all x, Rx is a regular set.
(b) Show that there is only a finite number of distinct derivatives for any regular set

(although there is an infinite number of choices for x). Find an upper bound on this
number if it is known that R can be recognized by a transition graph with k vertices.

Problem 16.24. The right quotient of two sets X and Y , denoted X/Y , is defined as
the set Z that consists of all strings z such that x = zy is a string in X and y is a string
in Y . Prove that if X is a regular set then Z = X/Y is also a regular set. The set Y may
or may not be regular.

Problem 16.25. Determine which of the following tapes is accepted by the two-way
machine shown in Table P16.25. The starting and accepting states are A and D, respec-
tively.
(a) ¢010101
(b) ¢010110
(c) ¢10101

Table P16.25

¢ 0 1

A A, R B, R C, R

B D, L C, L

C C, R D, R

D B, R C, L

Problem 16.26. A two-way machine with n states is started at the left end of a tape
containing p squares. What is the maximum number of moves that the machine can
make before accepting the tape?

Problem 16.27. Construct a two-way machine whose tape may contain symbols from
the alphabet {0, 1, 2} plus the left-end marker and which accepts a string if and only
if it starts and ends with a 2 and every 2 except the first is immediately preceded by a
substring from the set 0(01)∗.

Problem 16.28. A given two-way machine recognizes a set of tapes A, rejects a set B,
and does not accept (by never halting) a set C. Can a two-way machine be designed so
that it:
(a) recognizes B, rejects A, does not accept C?
(b) recognizes A and rejects B and C?
(c) recognizes A but does not accept B and C?
(d) recognizes A and C and rejects B?
(e) recognizes C, rejects B, and does not accept A?

Hint: Determine first which of the sets A, B, and C is regular.

Index

adder
carry-lookahead, 131–133
full, 110, 129
half, 147
modulo-p, 524
ripple-carry, 130
serial-binary, 266–268
ternary, 148

admissible pattern, 189
algebraic divisor, 156, 234

double-cube, 234
multiple-cube, 234
single-cube, 234

algebraic factorization, 234–236, 247–250
targeted, 248

algebraic resubstitution, 234
aliasing, 463
alphabet

code, 504–506
input, 270, 313, 414, 432, 441
output, 271, 432
source, 504–506

AND gate, 57
AND operation, 38
Arden’s rule, 601
asynchronous circuits, 109

sequential, 338–371
at-speed test, 232, 461
autonomous clock, 386

maximal, 387

backtrack, 199, 215, 219, 230
base, 3
base function, 163
binary arithmetic, 8–10

binary-coded decimal (BCD) code, 10
binary codes, 10–19
binate function, 193, 246
binate input, 247
Boolean algebra, 58–60
Boolean functions, 110
branching, 92, 93
bridging fault, 210

fault collapsing, 220
feedback, 211
gate-level, 224
IDDQ testing, 210, 220–224
nonfeedback, 211
optimistic condition, 221

built-in self-test (BIST), 461–464
aliasing, 463
degree of polynomial, 461
linear feedback shift register, 461
primitive polynomial, 462
reseeding, 463
response analyzer, 463
signature, 461
test pattern generator, 461

burst
input, 359
output, 359

burst-mode, 358–363

canonical forms
product of sums, 47
sum of products, 47

Cartesian product, 26
cell library, 162
cell table, 297
chain-connected blocks, 32

608

609 Index

checking experiment, 431, 442–448
checkpoint, 216
clock, 109
closed covering, 324
code converter, 74–77
codes

BCD, 10
binary, 10–19
block, 505
cyclic, 12
decipherable, 504–510
error-detecting and correcting,

14–19
Excess-3, 11
Gray, 12, 13
Hamming, 16
instantaneous, 505
reflected, 13
ringtail, 144
self-complementing, 11
synchronizable, 508–510
2-out-of-5, 14
variable-length, 505
weighted, 10, 11

cofactor, 243
co-kernel, 156–161
combinational logic, 37
common subexpression, 153–158
comparators, 113–115
compatibility graph, 325–327
compatibility relation, 27
compatible pair, 322–329, 494–496
compatible states, 318

maximal, 319
complement

1’s, 5
9’s, 5

complementation, 38
complex gate, 139
composite graph, 583
composite machine, 405

decomposition of, 404–413
general, 411

concatenation, 504, 577
conflict, 215–219
conjunctive normal form, 47
connection matrix, 482
consistency, 214
contracted table, 485
control assignment, 238
controlling value, 226

conversion of bases, 5–8
counters, 284–288
cover, 29, 78, 390
crossing function, 598
cube, 70

D-, 218–220
privileged, 344
required, 341
singular, 218
test, 219
transition, 341

cube-free expression, 156
cube–literal incidence matrix, 157
current monitoring, 220
cut set, 140
cycle, 354–356

of computation, 293
cycle set, 532
cyclic codes, 12

D-algorithm, 217–220
backtrack, 219
D-drive, 219
D-frontier, 219
D-intersection, 218
implication, 219
line justification, 219
primitive D-cube of a fault, 218
propagation D-cube, 218
singular cover, 218
singular cube, 218
test cube, 219

data selectors, 115–117
De Morgan’s theorem, 42, 43
decoders, 119–125

BCD, 119
decimal, 119

decomposition
of switching functions, 153, 161, 165
parallel, 393, 409–411
serial, 390, 404–409
Shannon’s, 48
with specified components, 411–413

definitely diagnosable machines,
450–453

definiteness, 483–488
tests for, 486–488

delay element, 268, 276, 338
delay fault, 211

path, 212
transition, 212

610 Index

delay fault test, 224–232
nonrobust, 226
robust, 227
validatable nonrobust, 227

delay operator, 526
demultiplexer, 120–122
design for testability, 458–460

full scan, 458
normal mode, 458
partial scan, 458
test mode, 458

deterministic machine, 307
dimension of a machine, 525
direct sum, 333
disjunctive normal form, 47
distance, 15

minimal, 15
distinguishing sequence, 312, 439
distinguishing table, 550
division operation, 5–9, 156

divisor, 156
quotient, 156
remainder, 156

divisor, 156
algebraic, 156, 234
Boolean, 156

don’t-cares, 74
observability, 242
satisfiability, 242

double-cube divisor, 234
double-cube extraction, 234
dual-expression extraction, 234
duality, principle of, 40

equivalence classes, 26, 313
equivalence partition, 314
equivalence relation, 25–27
equivalent faults, 216
error, 14–19

detection and correction of, 14–19
propagation, 214

ESPRESSO, 95–97
expanded, 95
irredundant, 95
reduce, 95

Euclidean algorithm, 561, 562
Excess-3 code, 11
excitation function, 272–280
excitation table, 272
excitation variables, 338
EXCLUSIVE-OR operation, 51

experiments, 431–435
adaptive, 432
checking, 431, 442–448
distinguishing, 439, 440
homing, 435–437
multiple, 432
preset, 432
synchronizing, 437–439

expressions (see switching expressions)
extended D-algorithm, 455
extraction, 153, 159–161

cube, 159
dual expression, 234
kernel, 159

factor, 155
algebraic, 156
Boolean, 156

factored form, 152
false vertex, 183

maximal, 183
fanin, 109
fanout, 109
fanout-free circuit, 217
fault, 206

bridging, 210
coverage, 213
delay, 211
list, 216
redundant, 236, 240
stuck-at, 206
stuck-on, 210
stuck-open, 208

fault collapsing, 216
dominance, 216
equivalence, 216

fault model, 206–212
bridging, 210, 211
delay, 211, 212
functional, 453
single-state-transition (SST), 453
stuck-at, 206
stuck-on, 210
stuck-open, 208
structural, 206–208
switch-level, 208–211

fields, 559–561
finite, 559
Galois, 560

finite memory, 478–483
tests for, 479–481

611 Index

finite-state machine, 265
deterministic, 307
head, 293
incompletely specified, 317–330
Mealy, 307
Moore, 307
nondeterministic, 572–577
nonwriting, 293
writing, 293
tape, 293

five-valued logic, 217
flip-flop, 276–280

D, 279
edge-triggered, 279
JK, 277
master–slave, 276–279
set–reset, 277

flow table, 346–350
primitive, 348
reduced, 350

four-phase clocking, 194
evaluate, 194
hold, 194
reset, 194
wait, 194

functionally complete operations,
52

function, 27
base, 163
binate, 193
crossing, 598
excitation, 272–280
linearly separable, 184
majority, 64, 175
minority, 177
output, 74, 307
self-dual, 62
state transition, 307
symmetric, 171
threshold, 178
transfer, 526
transmission, 54
unate, 104, 183

full scan, 458
fundamental mode, 339

multiple-input change, 339
single-input change, 339

gate, 53
AND, 57
majority, 175

minority, 177
NAND, 125–128
NOR, 125–128
NOT, 58
OR, 57
threshold, 177

geometric representation, 182
Gray code, 12, 13
greatest lower bound, 30, 381

of closed partitions, 381

Hamming code, 16
Hasse diagram, 29
hazards, 226

dynamic, 226
function, 339
logic, 339
static, 226

homing sequence, 436
Huntington postulates, 65

IDDQ testing, 210
illegal intersection, 344
implicant, 78

dynamic-hazard-free, 344
implication, 78, 214

backward, 214
conflict, 215–219
forward, 214

implication table, 229, 392, 408
implied pair, 322, 449, 494
impulse response, 528
incompletely specified machines,

317–330
information-flow inequality, 400
information losslessness, 491–499

of finite order, 493
tests for, 494–497

initialization sequence, 454
initialization vector, 209
input alphabet, 270
input-consistent partition, 386
input variable, 76
integration, 113
internal state, 176, 267
inverse machine, 499–504

for a linear machine, 529–531
inverter, 109
irredundant circuit, 68
isomorphic machines, 444
isomorphic systems, 53

612 Index

iterative array model, 455
iterative networks, 296–300

cell inputs, 297
cell outputs, 297
cell table, 298
input carries, 297
output carries, 297

justification, 214, 456
line, 214

Karnaugh map, 68
kernel, 156–161
kernel–cube incidence matrix, 160
Kleene’s theorem, 593

latch, 272–276
master, 277
slave, 277

lattice, 30–33
of closed partitions, 380–383
complemented, 33
distributive, 32
Mm-, 402
π -, 381

leaf-DAG, 165
least significant digit, 4
least upper bound, 30
linear feedback shift registers (LFSRs),

461
feedback polynomial, 461
primitive polynomial, 462
seed, 462

linear separability, 184
linear sequential machines, 461,

523
autonomous, 532
chain realization of, 533
controllable, 568
identification of, 550–556
inert, 525–527
observability, 543
predictability, 543
reduction of, 541–550
response of, 528, 540, 541

literal, 41
redundant, 41

logic hazard, 339
static-0, 245, 341
static-1, 341

logic polarity, 108
logic transformations, 151–155

decomposition, 161
elimination, 154
extraction, 159–161
factoring, 155–159
hazard-nonincreasing, 345
substitution, 162

logical path, 226

machines
common predecessor, 410
composite, 405
concurrently operating, 404
definite, 483–488
definitely diagnosable, 450–453
finite-memory, 478–483
finite-state, 265
identification of, 440–442
information lossless, 491–499
inverse, 499–504
linear sequential, 461, 523
Mealy, 307
minimal, 319–322
Moore, 307
predecessor, 378
sequential, 307
successor, 378
Turing, 293
two-way, 595

majority
function, 64, 175
gate, 175

mandatory assignments, 238
map, 68–78

cyclic, 93
of five variables, 77
of four variables, 69
Karnaugh, 68

map-entered variables, 93–95
marker, left-end, 595
match, 163, 166
matrices, 119, 482

characteristic, 541
characterizing, 544
connection, 482
cube–literal incidence, 157
diagnostic, 542
kernel–cube incidence, 160

maxterm, 47

613 Index

Mealy machine, 307
transformation to Moore machine,

334
memory span, 478

with respect to input–output sequences,
478–483

with respect to input sequences,
483–488

with respect to output sequences,
488–491

merger graph, 322, 323
merger table, 327–330
minimal machine, 319–322
minority

function, 177
gate, 177

minterm, 46
multiple-input signature register (MISR),

463
Mm pairs, 398
modulo-2 addition, 524
MOBILE, 175
Moore machine, 307
MOS transistors and gates, 132–143
most significant digit, 4
multiple faults, 233
multi-output circuit, 76
multiplexer, 115
multiplier, modulo-p, 524

n-cube, 182
NAND gate, 125–128
NAND–NAND implementation, 233,

384
NAND operation, 116
networks

bridge, 139
electronic gate, 57
iterative, 296–300
non-series–parallel, 139, 140
series–parallel, 136–139

network covering, 163, 167–169
nine-valued logic, 456–458
noncontrolling value, 226
nonfeedback bridging faults, 211
nonrobust test, 226
NOR gate, 125–128
NOR operation, 52
NOT gate, 58
NOT operation, 38

null sequence, 334, 528
maximal, 529

number systems, 3–10
binary, 4
decimal, 3
hexadecimal, 8
octal, 8

observability don’t-care set, 242
observation assignment, 238
OFF-set, 248
on-input, 226
ON-set, 248
operation

AND, 38
division, 5–9, 156
EXCLUSIVE-OR, 51
functionally complete, 52
NAND, 116
NOR, 38
NOT, 38
OR, 38
star, 583
unary, 28

optimistic condition, 221
OR gate, 57
OR operation, 38
ordered pair, 25
ordering, 28–30

partial, 28
total, 29

output alphabet, 271
output-consistent partition, 384
output dependency, reduction of,

383–385
output function, 74, 307
output predecessor, 497
output (compatible) states, 494
output successor, 489
output variable, 270

path-delay fault, 212
palindromes, 304, 331
parity

even, 14
odd, 17

parity bit, 14
parity check, 14

generator, 111
partial scan, 458

614 Index

partition, 28
basic, 381
blocks of, 397
closed, 376
equivalence, 314
greatest, 32
input-consistent, 386
least, 32
output-consistent, 384
refinement of, 314
state-consistent, 416
uniform, 28

partition pair, 397
path sensitization, 213–215

one-dimensional, 215
two-dimensional, 215

pattern generators, 461–463
feedback polynomial, 461
linear feedback shift registers,

461
seed, 462

pattern graph, 163
perfect induction, 39
physical path, 226
polynomial, 3–6, 155, 461

feedback, 462
primitive, 462

position number, 16
positive unate function, 181
predecessor machine, 378
predecessor table, output, 497
present state, 267

vector of, 538
prime implicant, 78

essential, 79
prime implicant chart, 86–93

augmented, 99
branching method, 92, 93
construction of, 86
cyclic, 93
reduction of, 90–92

prime implicant function, 88
primitive gates, 216
priority encoder, 117–119
product of sums, 47

canonical, 47
propagation D-cube, 218
propositional calculus, 88

quantum cellular automata, 175
Quine–McCluskey method, 81

race, 354–356
critical, 355
noncritical, 355

radix, 3
radix point, 4
rated clock scheme, 225
realizable pattern, 196
recognizers

deterministic, 570, 571
finite-state, 570–607
nondeterministic, 572–574
two-way, 595

conversion to one-way,
598–601

rectangle covering, 157, 158
prime, 157

redundancy identification and removal,
236–244

direct, 239–244
don’t-care-based, 242–244
dynamic, 241, 242
indirect, 237–239
static, 239–241

redundant literal, 41
regular expressions, 577–582

definition of, 579, 580
derivative of, 607
equivalent, 580
extended, 593

regular set, 580
relation, 25–28

antisymmetric, 26
binary, 25
compatibility, 27
equivalence, 26
reflexive, 26
symmetric, 26
transitive, 26

relatively essential vertex, 248
re-seeding, 463
resonant tunneling diodes (RTDs),

175
response analyzer, 461
response compression, 461

aliasing, 463
multiple-input signature register,

463
ring, 559

commutative, 559
ripple-carry adder, 130, 131
robust test, 227

615 Index

stuck-at fault, 206
multiple, 207
single, 207

satisfiability don’t-care set, 242
scan design, 458–460

normal mode, 458
scan-in, 458
scan-out, 459
test mode, 458

secondary variable, 268
self-dual function, 62
sensitizable path, 213
sensitizing input values, 229–231

nonrobust, 231
robust, 229

sequence detector, 280–283
sequential circuit, 265

asynchronous, 338–371
sequential machine, 307

linear, 461, 523
serial-to-parallel converter, 112
series–parallel switching circuits, 52

elementary, 53
sets

Cartesian product, 26
complement, 24
disjoint, 26
elements of, 23
empty, 23
equal, 24
intersection of, 24
null, 23
partially ordered, 28
totally ordered, 29
universe, 24
union of, 24

seven-segment display, 123
Shannon’s expansion theorem, 48
shift register, 278

feedback, 461
feedforward, 525–527

side input, 214
signature, 461

golden, 461
sine generator, 124, 125
single-cube divisor (see algebraic divisor)
single-electron box (SEB), 175, 176
single-state-transition (SST) fault, 453
singular cover, 218
slack, 231
sneak path, 141

stable state, 338
standard form, 316
states, 267

adjacent, 356
accepting, 571
compatible, 318

closed set of, 324
complete, 360
distinguishable, 312
equivalent, 312
final, 272
initial, 272
input, 338
rejecting, 595
secondary, 338
stable, 338
total, 338
unstable, 339

state assignment,
in asynchronous circuits,

356–358
race-free, 361
using partitions, 375–380
valid, 356

state diagram, 267
state justification, 456
state-pair differentiating sequence

(SPDS), 454
state splitting, 320

application to parallel decomposition,
393–395

state table, 266–268
state transition, 267

function, 307
state variables, 268

reduction of functional dependency
of, 377–380

static hazard, 226
status

uncontrollability, 239
unobservability, 239

strongly connected machine, 309
structural testing, 206
stuck-on fault, 210
stuck-open fault, 208
subject graph, 163
subset, 24

proper, 24
self-dependent, 375

subset construction procedure,
576

616 Index

subtractor, 147
half, 147
full, 147

successor, 309
successor machine, 378
successor table, 489

output, 489
sum of products, 46

canonical, 47
switching algebra, 37–44
switching expressions, 40

algebraic, 155
Boolean, 155
cube-free, 156
irredundant, 68
simplification of, 40

switching functions, 44
canonical forms of, 46–49
decomposition of, 153
minimization of, 67–107
number of, 50
of two variables, 50, 51

symmetric functions, 171
synchronizing sequence, 437
synchronous circuits, 266, 274
synthesis for testability, 232–250

table of combinations, 39
tabulation procedure, 81–86
tape, 293
tautology, 183
technology mapping, 162
test

application time, 213
delay, 212
generation time, 213
IDDQ, 210
nonrobust, 226
robust, 227
set, 213
transition, 212
two-pattern, 209

test modes, 458
test pattern, 461
test vector, 209
testing graph and testing table

for definiteness, 486–488
for diagnosability, 448–451
for finite memory, 479–483
for information losslessness,

494–497

for output memory, 488–490
for synchronizability, 508–510
for unique decipherability,

505–508
theorem

absorption, 40
combining, 79
consensus, 41
De Morgan’s, 42, 43
dual, 32, 40
involution, 42
Kleene’s, 593
Shannon’s expansion, 48

three-pattern test, 232
threshold element, 173
threshold function, 178

identification of, 186–189
threshold network, 181
tie set, 139
transducer, 570
transfer function, 526
transfer sequence, 332
transition, λ, 573
transition diagram, 357
transition faults, 212

slow-to-fall, 212
slow-to-rise, 212

transition graph, 572
conversion to deterministic form,

574–577
transition table, 269
transmission function, 54
tree

distinguishing, 439, 440
homing, 436, 437
successor, 433
synchronizing, 438

tree matching, 166
true vertex, 183

minimal, 183
truth table, 39
truth values, 38
tunneling phase logic (TPL), 177
Turing machine, 293
two-level realization, 76
two-pattern test, 209

initialization vector, 209
test vector, 209

unate function, 181, 182
uncertainty, 433

617 Index

uncertainty vector, 434
homogeneous, 434
initial, 433
nonhomogeneous, 436
trivial, 434

uncontrollability analysis, 239
0-uncontrollable, 239
1-uncontrollable, 239
status, 239

unobservability status, 239
unstable state, 339
untestable fault, 215

validatable nonrobust test, 227
variable clock scheme, 224,

225
Venn diagram, 24

weight, 10
weight–threshold vector, 180
wired-AND, 110
wired-OR, 110
writing machine, 293

X-successor, 309

	Half-title
	Title
	Copyright
	Contents
	Preface
	Part 1 Preliminaries
	Chapter 1: Number systems and codes
	1.1 Number systems
	Number representation
	Conversion of bases
	Binary arithmetic

	1.2 Binary codes
	Weighted codes
	Nonweighted codes

	1.3 Error detection and correction
	Error-detecting codes
	Error-correcting codes

	Notes and references
	Problems

	Chapter 2: Sets, relations, and lattices
	2.1 Sets
	2.2 Relations
	2.3 Partially ordered sets
	2.4 Lattices
	Notes and references
	Problems

	Part 2 Combinational logic
	Chapter 3: Switching algebra and its applications
	3.1 Switching algebra
	Fundamental postulates
	Basic properties
	Switching expressions and their manipulation
	De Morgan's theorems

	3.2 Switching functions
	Definitions
	Simplification of expressions
	Canonical forms
	Functional properties
	The EXCLUSIVE-OR operation
	Functionally complete operations

	3.3 Isomorphic systems
	Series–parallel switching circuits
	Propositional calculus

	3.4 Electronic-gate networks
	3.5 Boolean algebras
	Notes and references
	Problems

	Chapter 4: Minimization of switching functions
	4.1 Introduction
	4.2 The map method
	Representation of functions
	Simplification and minimization of functions
	Determination of the minimal product of sums
	Don't-care combinations
	The five-variable map

	4.3 Minimal functions and their properties
	Prime implicants
	Deriving minimal expressions

	4.4 The tabulation procedure for the determination of prime implicants
	The binary representation
	The decimal representation

	4.5 The prime implicant chart
	Essential rows
	Don't-care combinations
	Determination of the set of all irredundant expressions
	Reduction of the chart
	The branching method

	4.6 Map-entered variables
	4.7 Heuristic two-level circuit minimization
	4.8 Multi-output two-level circuit minimization
	Notes and references
	Problems

	Chapter 5: Logic design
	5.1 Design with basic logic gates
	Introductory definitions
	Analysis of combinational circuits
	Some simple design problems

	5.2 Logic design with integrated circuits
	Comparators
	Data selectors
	Implementing switching functions with data selectors
	Priority encoders
	Decoders
	Seven-segment display
	Sine generators

	5.3 NAND and NOR circuits
	Logic symbols
	Analysis and synthesis of NAND-NOR network

	5.4 Design of high-speed adders
	The full adder
	The ripple-carry adder
	The carry-lookahead adder

	5.5 Metal-oxide semiconductor (MOS) transistors and gates
	5.6 Analysis and synthesis of MOS networks
	Analysis of series–parallel networks
	Analysis of non-series–parallel networks
	Synthesis of MOS networks

	Notes and references
	Problems

	Chapter 6: Multi-level logic synthesis
	6.1 Technology-independent synthesis
	Introduction to logic transformations
	Factoring
	Extraction
	Decomposition and substitution

	6.2 Technology mapping
	Decomposing a network into base functions
	Partitioning a network into subject graphs
	Obtaining matches
	Obtaining the network cover

	Notes and references
	Problems

	Chapter 7: Threshold logic for nanotechnologies
	7.1 Introductory concepts
	The threshold element
	Majority and minority gates
	Capabilities and limitations of threshold logic
	Elementary properties

	7.2 Synthesis of threshold networks
	Unate functions
	Geometric representation
	Linear separability
	Identification and realization of threshold functions
	Map-based synthesis of two-level threshold networks
	Synthesis of multi-level threshold networks
	Mapping of threshold networks to MOBILEs
	Synthesis of multi-level majority and minority networks
	Mapping of majority networks to QCA, SEB, or TPL

	Notes and references
	Problems

	Chapter 8: Testing of combinational circuits
	8.1 Fault models
	Structural fault models
	Switch-level fault models
	The stuck-open fault model
	The stuck-on fault model
	The bridging fault model

	Delay fault models

	8.2 Structural testing
	Path sensitization
	Fault collapsing
	The D-algorithm

	8.3 IDDQ testing
	Test generation for bridging faults
	Condition for detecting bridging faults
	Fault collapsing
	Test generation

	8.4 Delay fault testing
	Clocking schemes for delay fault testing
	Basic definitions
	Test generation for path delay faults
	Test generation for robustly testable path delay faults
	Test generation for nonrobustly testable path delay faults

	Test generation for transition faults
	At-speed test generation

	8.5 Synthesis for testability
	Synthesis for stuck-at fault testability
	Two-level circuits
	Transformations to preserve single stuck-at fault testability
	Transformations to preserve multiple stuck-at fault testability
	Redundancy identi.cation and removal

	Synthesis for delay fault testability
	Two-level circuits
	Multi-level circuits

	8.6 Testing for nanotechnologies
	Test generation
	Redundancy removal

	Notes and references
	Problems

	Part 3 Finite-state machines
	Chapter 9: Introduction to synchronous sequential circuits and iterative networks
	9.1 Sequential circuits – introductory example
	The state table
	The state assignment

	9.2 The finite-state model – basic definitions
	Synchronous sequential machines
	Specification of machine behavior

	9.3 Memory elements and their excitation functions
	Set–reset or SR latch
	Trigger or T latch
	The JK latch
	The D latch
	Clock timing and the master–slave flip-flop
	Edge-triggered flip-flop

	9.4 Synthesis of synchronous sequential circuits
	The sequence detector
	A binary counter
	Implementing the counter with T flip-flops
	Implementing the counter with SR flip-flops
	A parity-bit generator
	A sequential circuit as a control element in a computation

	9.5 An example of a computing machine
	The machine
	The computation

	9.6 Iterative networks
	The analogy between iterative networks and sequential machines
	Synthesis

	Notes and references
	Problems

	Chapter 10: Capabilities, minimization, and transformation of sequential machines
	10.1 The finite-state model – further definitions
	Input–output transformations

	10.2 Capabilities and limitations of finite-state machines
	10.3 State equivalence and machine minimization
	The k-equivalence of states
	The minimization procedure
	Machine equivalence

	10.4 Simplification of incompletely specified machines
	Compatible states
	The nonuniqueness of the reduced and minimal machines
	The merger graph
	The closed sets of compatibles
	The compatibility graph
	The merger table

	Notes and references
	Problems

	Chapter 11: Asynchronous sequential circuits
	11.1 Modes of operation
	11.2 Hazards
	Design of SIC hazard-free circuits
	Design of MIC hazard-free circuits

	11.3 Synthesis of SIC fundamental-mode circuits
	The flow table
	Reduction of flow tables
	Specifying the output symbols
	Excitation and output tables
	A synthesis example
	Races and cycles
	Methods of secondary assignment

	11.4 Synthesis of burst-mode circuits
	Burst-mode specification
	Flow table
	Flow table reduction and state assignment
	A synthesis example

	Notes and references
	Problems

	Chapter 12: Structure of sequential machines
	12.1 Introductory example
	12.2 State assignments using partitions
	Closed partitions
	Reduction of the functional dependency of the state variables

	12.3 The lattice of closed partitions
	12.4 Reduction of the output dependency
	12.5 Input independency and autonomous clocks
	12.6 Covers, and the generation of closed partitions by state splitting
	Covers
	The implication graph
	An application of state splitting to parallel decomposition

	12.7 Information flow in sequential machines
	Introduction
	Partition pairs
	Information-flow inequalities
	Computing the Mmpairs
	State assignments based on partition pairs

	12.8 Decomposition
	Serial decomposition
	Parallel decompositions
	Decompositions with specified components

	12.9 Synthesis of multiple machines
	The common predecessor machine
	Decomposing the composite machine

	Notes and references
	Problems

	Chapter 13: State-identification experiments and testing of sequential circuits
	13.1 Experiments
	Introductory example
	Uncertainties
	The successor tree

	13.2 Homing experiments
	The homing tree
	Synchronizing experiments

	13.3 Distinguishing experiments
	The distinguishing tree
	The shortest distinguishing prefix

	13.4 Machine identification
	13.5 Checking experiments
	Designing checking experiments
	Testing machines that have distinguishing sequences

	13.6 Design of diagnosable machines
	The testing graph
	Definitely diagnosable machines
	Designing definitely diagnosable machines

	13.7 Alternative approaches to the testing of sequential circuits
	State-table-based test generation
	Sequential circuit based test generation
	Extended D-algorithm
	The nine-valued logic

	13.8 Design for testability
	Scan design
	Testing of circuits using scan design

	13.9 Built-in self-test (BIST)
	Test pattern generator
	Response analyzer

	Appendix 13.1 Bounds on the length of synchronizing sequences
	Appendix 13.2 A bound on the length of distinguishing sequences
	Notes and references
	Problems

	Chapter 14: Memory, definiteness, and information losslessness of finite automata
	14.1 Memory span with respect to input–output sequences (finite-memory machines)
	The testing table and testing graph1
	Conditions for finite memory
	A machine for which…
	An algorithm to determine whether a graph is loop-free

	14.2 Memory span with respect to input sequences (definite machines)
	Properties of definite machines
	Tests for definiteness

	14.3 Memory span with respect to output sequences
	Test for output memory
	Determining the state of the machine

	14.4 Information-lossless machines
	Conditions for lossiness
	Information losslessness of finite order
	Test for information losslessness
	Retrieval of the input sequence
	Inverse machines
	The minimal inverse machine

	14.5 Synchronizable and uniquely decipherable codes
	Introduction
	A test for unique decipherability
	Deciphering a coded message
	A test for the synchronizability of codes

	Appendix 14.1 The least upper bound for information losslessness of finite order
	Notes and references
	Problems

	Chapter 15: Linear sequential machines
	15.1 Introduction
	15.2 Inert linear machines
	Feedforward shift registers
	Impulse response and null sequences
	Inverse machines
	Linear machines with nonzero initial conditions

	15.3 Inert linear machines and rational transfer functions
	Realization of rational polynomials
	Impulse response and transfer function
	Multi-terminal machines

	15.4 The general model
	The matrix formulation
	The response of linear machines

	15.5 Reduction of linear machines
	The diagnostic matrix
	The minimization procedure

	15.6 Identification of linear machines
	The identification procedure

	15.7 Application of linear machines to error correction
	Appendix 15.1 Basic properties of finite fields
	Appendix 15.2 The Euclidean algorithm
	Notes and references
	Problems

	Chapter 16: Finite-state recognizers
	16.1 Deterministic recognizers
	16.2 Transition graphs
	Nondeterministic recognizers
	Graphs containing λ-transitions

	16.3 Converting nondeterministic into deterministic graphs
	Introductory example
	Proof of the conversion procedure

	16.4 Regular expressions
	Describing sets of strings
	Definition and basic properties
	Manipulating regular expressions

	16.5 Transition graphs recognizing regular sets
	Constructing the transition graphs
	Informal techniques

	16.6 Regular sets corresponding to transition graphs
	Proof of uniqueness
	Systems of equations
	Applications

	16.7 Two-way recognizers
	Description of the model
	Conversion to one-way recognizers

	Notes and references
	Problems

	Index

