

Advances in Heterocyclic Chemistry, volume 95

Elsevier 2007, ISBN 9780123742728
Edited By Alan Katritzky

Contents:

Contributors	Page vii
Preface	Page ix

Peri-Annulated Heterocyclic Systems. Part I
Pyrazol-3-ones. Part III: Reactivity of the Ring Substituents
Recent Progress in 1,2,4-Triazolo[1,5-a]pyrimidine Chemistry
Organometallic Chemistry of Polypyridine Ligands III

Pages 1-25
Pages 27-141
Pages 143-219
Pages 221-256

Contributors

Numbers in parentheses indicate the pages on which the author's contribution begins.

Yiannis Fiamegos (27) Department of Chemistry, University of Ioannina, GR-451 10 Ioannina, Greece

Gunther Fischer (143) Geibelstraße 15, D-04129 Leipzig, Germany
Valerii V. Mezheritskii (1) Research Institute of Physical and Organic Chemistry, Rostov-on-Don State University, 344090 Rostov-on-Don, Russia

George Pilidis (27) Department of Chemistry, University of Ioannina, GR-451 10 Ioannina, Greece

Alexander P. Sadimenko (219) Department of Chemistry, University of Fort Hare, Alice 5701, Republic of South Africa

George Varvounis (27) Department of Chemistry, University of Ioannina, GR-451 10 Ioannina, Greece

Preface

Volume 95 of Advances in Heterocycle Chemistry commences with Part I of an update of Peri-Annulated Heterocyclic Systems by Valerii V. Mezheritskii (Rostov-onDon State University, Russia). This chapter comprises an update of a review published in Volume 51 of our series (1990) by the same author together with V. V. Tkachenko. The present chapter is concerned with naphthalene derivatives with a four-membered peri-annulated heterocyclic ring.

Varvounis, Fiamegos, and Pilidis (University of Ioannina, Greece) have contributed the third part of their overview of pyrazol-3-ones, which deals with the reactions of substituents.

Recent progress in the chemistry of 1,2,4-triazolo[1,5-a]pyrimidines, which is of increasing importance in drug research, is the subject of a review by G. Fischer (University of Leipzig, Germany).

The final chapter is a further installment in the ongoing series on the organic chemistry of heterocylic ligands in metallic complexes. The present contribution covers organoiron, organoruthenium, and organoosmium poly-pyridine complexes and is again authored by Alexander Sadimenko (Fort Hare University, Republic of South Africa).

Alan R. Katritzky

Gainesville, Florida

Peri-Annulated Heterocyclic Systems. Part I

Valerii V. Mezheritskii
Research Institute of Physical and Organic Chemistry, Rostov-on-Don State University, 344090 Rostov-on-Don, Russia

I. Introduction 1
II. Peri-Annulated Heterocyclic Naphthalene Derivatives with a Four-Membered Hetero Ring 4
A. Naphth[1,8-bc]azete. 5
B. Naphtho $[1,8-b c]$ phosphete 6
C. Naphth $[1,8-b c]$ oxete 8
D. Naphtho $[1,8-b c]$ thiete and Its S-Oxides 10
E. Naphtho[1,8-bc]borete. 18
F. Naphtho[1,8-bc]silete. 20
References 23

I. Introduction

The present-day chemistry of heterocyclic compounds with a closed aromatic ($4 n+2$ electrons) and nonaromatic ($4 n$ electrons) π-system is based on heteromonocycles (e.g., I-III) and their ortho-fused derivatives (e.g., IV-VI) (Figure 1).

The distinguishing feature of ortho-annulation is the possibility of formally extracting the parent heteromonocycle from the fused structure (IV-VI) (cf. formulas I-III and IV-VI). Moreover, the chemical characteristics of the ortho-fused compounds to a large extent reproduce the properties of their heteromonocyclic precursors. In particular, the fundamental qualities are retained that govern their properties, including π-excess and π-deficiency, which originate from the nature and hybridization character of the heteroatom (or atoms). With certain qualifications the so-called bridged heterocyclic systems where the heteroatom belongs simultaneously to two or three rings may also be assigned to this type.

The specific feature of peri-annulation consists in the fact that the extraction of a heteromonocycle is impossible. Therefore, the minimum structural unit in this case is the tricyclic framework, for instance, (VII-IX). It is therefore obvious that periannulated heterocyclic systems possess qualitatively new structural features sufficient to separate these substances into an independent domain distinct from the array of the heteromonocyclic and ortho-fused heterocycles.

Nonetheless no treatise or monograph on the chemistry of heterocycles contains a mention, let alone an entire chapter, on peri-fused heterocyclic compounds as independent objects worthy of special consideration, equal to those of heteromonocyclic and ortho-fused substances. The previously published chapter (90AHC(51)1) and present review attempts to remedy this situation.

1

II

III

IV

V

VI

vII

vIII

IX

Figure 1. Types of heterocyclic systems

The introduction to the first publication (90AHC(51)1) dedicated to syntheses of peri-annulated heterocyclic naphthalene derivatives outlined the problems of this new field. Nomenclature was considered, some basic concepts were introduced, a classification of all presumable structural types containing a heterocycle from fourmembered to seven-membered rings, and the principles of their building were discussed. We have not limited the present review to synthetic procedures but tried to consider all the aspects of the chemistry of peri-fused heterocyclic systems taking into account the new findings that have appeared since the first review (90AHC(51)1). The presentation follows the previously developed sequence, describing successively compounds with larger heterocycles, with increasing number of heteroatoms in the heteroatom order N, O, S, and occasionally other heteroatoms.

The immense amount of information available induced us to divide it into separate chapters. This first chapter draws the attention to peri-fused heterocyclic naphthalene derivatives with a four-membered heterocyclic ring.

Those peri-annulated heterocycles with a closed π-system that possess a double bond or another π - or p-electron "bridge" situated in the peri-position of the naphthalene ring opposite to the heterocycle should be set apart. Examples include the 16π-electron peri-fused heterocyclic acenaphthylene derivatives XII and XV, whose $14 p$ - and π-electrons are situated on the perimeter of the heteroaromatic skeleton forming an aromatic contour (according to Hückel), while two π-electrons occupy an internal orbital.

Electronic structures of XII and XV should be compared with peri-annulated heterocyclic pair X and XI and pair XIII and XIV, respectively, each lacking a vinyl chain in the peri-position opposite to the heterocycle (Figure 2). The heterocyclic triad X, XI, and XII and triad XIII, XIV, and XV should be compared with their isoelectronic hydrocarbons XVI, XVII, and XVIII. In the hydrocarbon triad XVI, XVII, and XVIII the first two compounds, plyediene and aceplyediene, belong to the so-called unsaturated aromatic hydrocarbons possessing two 4π-electron nonbonding orbitals and a pronounced divinyl character of the seven-membered ring, which is prone to addition and not to substitution reactions (81MI1281, $73 \mathrm{MI} 1240)$. They do not fit the Hückel $(4 n+2) \pi$ rule in spite of the presence of 14π-electrons.

X
$X=O, N R ; Y=C H, N$

XIII
$\mathbf{X}=\mathbf{O}^{+}, \mathrm{S}^{+}, \mathrm{RN}^{+}, \mathrm{N}$

XVI

XI

XIV

XVII

XII

XV

XVIII

Figure 2. Examples of aromatic and nonaromatic peri-annulated carbocyclic and heterocyclic systems

In contrast, aceplyedilen (XVIII, Figure 2) is aromatic since it contains a closed 14π-electron (Hückel) external contour with alternating double bonds. The peripheral electrons are believed to play the dominant part in the formation of a stable 14π-electron ensemble (57 JOC 36), (64 HCA 1172). The internal double bond in XVIII may be regarded as having a proper importance but as part of the overall electronic system.

The above principle is apparently also true for heterocyclic systems X, XI, and XII and also XIII, XIV, and XV. The comparison of the degree of aromaticity of heterocycles XII and XV with that of aceplyedilen (XVIII) is as appropriate as the likening of the aromaticity of 6π-electron five- and six-membered heterocycles to that of benzene or more generally of the aromaticity of aromatic hydrocarbons to heteroaromatic compounds (85MI280).

Each of the above real and hypothetical heteroaromatic systems should possess a specific set of characteristics and its own chemistry whose study may be a subject of extensive fundamental research.

Not only is the investigation of the chemical reactions of novel heteroaromatic compounds of interest, but also the comparison of their physical properties (magnetic susceptibility, dipole moments, etc.), spectral characteristics (UV, IR, and NMR spectra), and the calculation criteria on going from nonaromatic structures XI and XIV to aromatic ones XII and XV, Figure 2.

II. Peri-Annulated Heterocyclic Naphthalene Derivatives with a Four-Membered Hetero Ring

This section treats the hypothetical and real compounds with formula XIX whose positions 1 and 8 of the naphthalene framework are bonded to a single X heteroatom (Figure 3).

In addition to article $(90 \mathrm{AHC}(51) 1)$ where the methods of preparation of these compounds were systematized, J. Nakayama published in 1981 (81MI2682) a review in Japanese, perhaps not available, dedicated to the chemistry of the peri-fused naphthalene derivatives with four-membered carbon and hetero rings.

These strained structures are of interest for theoretical and experimental studies. The recent semiempirical (95MI1696) and ab initio (01JST287) calculations of the structural parameters of such molecules have provided information on their stability and made it possible to suggest the conditions for their existence and isolation.

Roohi et al. (01JST287) suggested as stability criteria for the peri-fused naphthalenes XIX the quantities r (the value of the ratio of bond angles C4-C10$\mathrm{C} 5 / \mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 8$) and p (the value of the torsion angle $\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$). Based on these calculations a structure should have an r value not exceeding 1.4 in order to exist. Thus, structures with the following X could be relatively stable: CH_{2} (1.40); $\mathrm{C}=\mathrm{O}$ (1.37); S (1.30); SO (1.26); SO_{2} (1.24); PH (1.25); PHO (1.23). In contrast the structures with $\mathrm{X}=\mathrm{NH}$ or O having $r 1.51$ and 1.54 , respectively, should be extremely unstable ($c f$. the values of naphthalene, $r=1$, and acenaphthene, $r=1.14$).

The p value is related to the extent of coplanarity of the naphthalene skeleton. In the stable molecules ($\mathrm{X}=\mathrm{C}, \mathrm{S}, \mathrm{P}$) the p value falls into the range $0-2.8^{\circ}$ meaning that the naphthalene framework is a virtually planar highly conjugated aromatic π-system. When nitrogen or oxygen is involved as heteroatom ($\mathrm{X}=\mathrm{N}, \mathrm{O}$) the p values

Figure 3. General formula of peri-fused heterocycles with a four-memebered hetero ring
are 18.7° and 22.6°, respectively. To put it differently, in the latter case the naphthalene skeleton resembles a gable roof and suffer from significantly distorted conjugation of the aromatic π-system. Just these strong distortions in the aromatic skeleton and not the strain in the nitrogen or oxygen four-membered ring are apparently the main obstacle to the generation and existence of these molecules. Actually, a large number of stable representatives of four-membered heterocycles with a nitrogen or oxygen ring heteroatom are described, among them also their benzoannulated derivatives (84MI2237, 84MI1363).

A. Naphth $[1,8-B C]$ azete

Despite all attempts to synthesize naphth[1,8-bc]azete or its derivatives 2 not a single example has been prepared and no traces of such compounds as intermediates in chemical reactions have been found in keeping with the theoretical analysis (Figure 4).

The plan for the preparation of naphth[1,8-bc]azete (2) was based on sulfur dioxide elimination from naphtho $[1,8-d e]$ thiazole S, S-dioxide (3, Scheme 1) or on nitrogen liberation from naphtho $[1,8-b c]$ triazine (4) under pyrolysis $\left(500-800^{\circ} \mathrm{C}\right)$ or photolysis (68CC1026, 69JA1035, 70JCS(C)298, 72JOC2152). In all investigated instances biradical 6 formed as a key intermediate. Inasmuch as this biradical cannot close into a four-membered azetidine heterocycle as stated above, it suffers further transformations into a whole set of isolated and identified compounds $\mathbf{8}, \mathbf{9}, \mathbf{1 2}$, and 14-16, Scheme 1. For instance, biradical $\mathbf{6}(\mathrm{R}=\mathrm{H})$ undergoes fragmentation in two ways generating a pair of isomeric cyanoindenes $\mathbf{8}$ and $\mathbf{9}$ and naphthylamine $\mathbf{1 0}$. Presumably nitrene 7 as a reactive intermediate is a precursor to the formation of indenes $\mathbf{8}$ and 9 . Three research groups (75TL3845, 77TL943, 80CC499) unsuccessfully later tried to obtain naphtho[1,8-bc]azetidine 2 via nitrene 7 generated by a photolysis of azide 5.

Figure 4. General formula, bond angles in the hetero ring, and other calculated parameters of naphth $[1,8-b c]$ azete

3

2

16

Scheme 2

17
Figure 5. General formula, bond angles in the hetero ring, and the other calculated parameters of naphtho[1,8-bc]phosphete
(P-phenyl)naphtho[1,8-bc]phosphete a product resulting from closure to a fivemembered heterocycle forming peri-annulated diphosphetol (22) (Scheme 2). The structures of compounds 19 and 22 were proved by X-ray diffraction analysis. The X-ray data for 19 provide bond lengths, bond angles, and the coplanar position of the hetero ring and the naphthalene skeleton, these and the other parameters have values close to those calculated for the simplest naphtho $1,8-b c]$ phosphetol (17) (Figure 5). Compound 19 is a white powder, very soluble in organic solvents (the melting point is not mentioned). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra show the symmetry of the molecule and confirm the structure of the compound with peri-phosphete 19 interesting opportunities arise for the preparation of unusual substances, e.g., $\mathbf{2 0}$ and 21, by uncommon reactions.

C. Naphth $[1,8-b C]$ oxete

A 1933 patent claimed the preparation of naphth[1,8-bc]oxete (23) along two routes: α-naphthol oxidation by iron(III) chloride, and 1,8 -dihydroxynaphthalene dehydration $(33 \mathrm{BRP} 394,511)$ at $300^{\circ} \mathrm{C}$ under a carbon dioxide atmosphere.

Structure 23 (Figure 6) was assigned based on the elemental analysis, the cryoscopic measurement of the molecular weight, and its behavior in the chemical reactions. The compound formed in a good yield, was quite stable, and high melting (about $300^{\circ} \mathrm{C}$). These characteristics and its chemical behavior according to some chemists (66CRV593, 70JOC4261) hardly fit the assigned structure. A. Gordon (70JOC4261) in 1970 checked the results of the patent (33BRP394,511) carefully executing the oxidation of α-naphthol with iron(III) chloride precisely under the conditions described and thoroughly separating the products and succeeded in isolating and identifying only the initial α-naphthol (24) and the previously described (28CB362, 31JCS1265) product of its oxidative dimerization 25. In another experiment, the dark glassy residue obtained after a 15 min heating of 1,8-dihydroxynaphthalene (26) under a CO_{2} atmosphere was subjected to a number of procedures for reaction mixture separation (extraction, sublimation, chromatography, etc.). Some of initial dihydroxynaphthalene (26) was isolated, and the residue was an intractable tar. It was concluded (70JOC4261) based on these test experiments that the information in the patent $(33 \mathrm{BRP} 394,511)$ on the synthesis of naphth $[1,8-b c]$ oxete (23) was erroneous (Scheme 3).

Interesting results were obtained by pyrolysis of naphtho[1,8-bc]-1,2-oxathiol S, S-dioxide (26) with sulfur dioxide elimination. Depending on the addition to the pyrolyzed mixture of either methanol or carbon monoxide, two pairs of isomeric compounds, $\mathbf{2 8}$ and $\mathbf{2 9}$ or $\mathbf{3 0}$ and 31, respectively, were formed in high yield and in an $\sim 1: 1$ ratio (71TL4093) (Scheme 4).
At first glance it would seem that the formation of isomer pairs provides conclusive evidence of naphth [1,8-bc]oxete intermediate (27) involvement. However, taking into consideration the drastic pyrolysis conditions $\left(680^{\circ} \mathrm{C}\right)$ and the predicted instability of the naphth $[1,8-b c]$ oxete (23) structure, it is more likely that not a four-membered oxetane heterocycle, but a pair of interconverting biradical intermediates \mathbf{A} and \mathbf{B} takes part in the reaction where the formation of the new $\mathrm{C}^{1}-\mathrm{O}$ covalent bond occurs simultaneously with the rupture of the existing $\mathrm{C}^{8}-\mathrm{O}$ bond $(\mathbf{A} \rightleftharpoons \mathbf{B})$.

23
Figure 6. General formula, bond angles in the hetero ring, and other calculated parameters of naphth $[1,8-b c]$ oxete

Scheme 3

Scheme 4

The stabilization of ortho-fused benzoxete (32) occurred by valence isomerization into a quinoid isomer (33) (84MI1363). Such benzoid-quinoid processes are impossible for naphth $[1,8-b c]$ oxete because of structural reasons. Therefore, the biradicals isomerization $(\mathbf{A} \rightleftarrows \mathbf{B})$ seems likely (Scheme 5).

Apart from the above attempts, the failed efforts to prepare naphth[1,8-bc]azete and naphth[1,8-bc]oxete were mentioned in (74JA6532) but the experiments were not published

Scheme 5

D. Naphtho $[1,8-B C]$ thiete and Its S-Oxides

34

$r=1.26 ; p=1.3^{\circ}$
35

$r=1.24 ; p=0^{\circ}$
36

Figure 7. General formulas, bond angles in the hetero ring, and other calculated parameters of naphtho $[1,8-d c]$ thiete and its S-oxides

The calculated r and p values (01JST287) predict that all three representatives of this heterocyclic system shown in Figure 7 [parent naphtho $1,8-b c$]thiete (34) and its two S-oxides ($\mathbf{3 5}$ and $\mathbf{3 6}$)] should be sufficiently stable to exist in a free state. Experimental data are consistent with theory. All the three compounds have been prepared by several teams.

The first to be obtained was S, S-dioxide 36 ($65 \mathrm{AG}(\mathrm{E}) 786,67 \mathrm{LA} 96)$. The parent naphtho[1,8-bc]thiete (34) and its sulfoxide $\mathbf{3 5}$ were prepared 10 years later (74JA6532, 76JA6643, 79JA7684, 81JCS(P1)413, 83TL821).

The design strategy for this system is based either on the decomposition of other peri-annulated heterocycles with a five- or six-membered hetero ring capable of eliminating an atom or a group of X atoms under photolysis or thermolysis $(\mathbf{3 7} \rightarrow \mathbf{3 8} \rightarrow \mathbf{3 9})$, or on generating a 1,8 -dehydronaphthalene intermediate 40 followed by its reaction with certain sulfur-containing reagents $(\mathbf{4 0} \rightarrow \mathbf{3 9})$ (Scheme 6).

Scheme 6

Naphtho $[1,8-b c]$ thiete (34) or (39 $n=0$) can be prepared by the photolysis of naphtho[1,8-bc]-1,2-dithiol 1,1-dioxide (41), (74JA6532, 76JA6643), and also by the photolysis or thermolysis of naphtho [1,8-de]-1,2,3-thiadiazine (42) (79JA7684).

The irradiation of dithiol 1,1-dioxide 41 for 9.5 h in dilute, dry, and oxygen-free benzene under a nitrogen atmosphere furnished naphtho $[1,8-b c]$ thiete (34) after evaporation and chromatography on silica gel in a 97% yield. A more feasible preparative synthesis of this compound avoiding some of the special conditions of the above procedure is the photolysis of naphthothiadiazine $\mathbf{4 2}$ that is carried out by irradiating 1 mmol of $\mathbf{4 2} \mathrm{in} 120 \mathrm{ml}$ of a solvent (acetone, acetonitrile, benzene, or methanol) with a 120 W high-pressure mercury lamp in a Pyrex glass reactor at room temperature. This photolysis proceeds strikingly easily. After just 5 min irradiation the initial red solution turns light yellow with vigorous nitrogen liberation. After $15-20$ min the irradiation is complete, and 34 is quantitatively isolated as in the previously described procedure.

The formation of naphthothiete (34) from dithiol 41 and naphthothiadiazine (42) is preceded by biradical intermediate 43 as proven by the photolysis of naphthothiadiazine (42) in carbon disulfide. After 15 min irradiation alongside naphthothiete (34) obtained in a 52% yield there also formed in a 22% yield naphtho [1,8-de]-2,4-dihydro-1,3-dithiin-2-thione (44) resulting from the reaction of biradical 43 with carbon disulfide (Scheme 7).

The behavior of naphthothiadiazine (42) on thermolysis was investigated. The compound when dissolved in 2-ethoxyethyl ether at $155^{\circ} \mathrm{C}$ under a nitrogen atmosphere led to the formation of the expected naphthothiete (34) in 30% yield and three minor products whose structures were not rigorously determined; 12% of the initial unreacted compound was also recovered.

A reactive specie of an outstanding interest, 1,8 -dehydronaphthalene (40), can be generated by oxidation of 1-aminonaphtho[1,8-de]-1,2,3-triazine (45) (69JCS(C)756, $69 \mathrm{JCS}(\mathrm{C}) 760,69 \mathrm{JCS}(\mathrm{C}) 765)$. The behavior of 1,8 -dehydronaphthalene is essentially different from that of dehydrobenzene (benzyne), presumably because of the singlet diradical structure of the former, although it is also prone to cycloaddition to olefins and to radical reactions (69JCS(C)756, 69JCS(C)760, 69JCS(C)765, 71JA3802, 75JA681, 75BCJ932). The transformations of 1,8-dehydronaphthalene (40) in carbon disulfide studied by J. Nakayama et al. provided a complex mixture of products. From the mixture naphthothiete (34) was isolated in a $6-8 \%$ yield, and also in still lower yields ($3-5 \%$) the other peri-fused heterocycles (44, 47, and 48) were separated. The routes of formation are shown in Scheme 7. Usually the reactions of

Scheme 7

1,8-dehydronaphthalene with organic compounds give a large number of intractable tars.

In a still lower yield (1\%) naphthothiete (34) was present in the mixture with the other products when 1,8-dehydronaphthalene (40) reacted with diphenyl disulfide (83TL821).

Thus, the best laboratory procedure for preparation of naphtho[1,8-bc]thiete (34) is the photolysis of naphthothiadiazine (42).

Inasmuch as naphtho $1,8-b c]$ thiete (34) was successively prepared by photolysis and thermolysis of naphthothiadiazine (42), Nakayama et al. (79JA7684) hoped to obtain in the same fashion naphtho $1,8-b c]$ thiete S-oxide (35) from naphtho $[1,8-d e]$ -1,2,3-thiadiazine S-oxide ($\mathbf{5 0}$, Scheme 8). They attempted to synthesize sulfoxide $\mathbf{5 0}$ by oxidation of thiadiazine (42) with m-chloroperbenzoic acid (m-CPBA). However, this reaction carried out at room temperature with an equivalent amount of m-CPBA occurred with nitrogen liberation and with the formation of naphtho $[1,8-b c]$ thiete S-oxide (35) in 71% yield instead of the expected sulfoxide (50).

Therefore, the preparation of naphtho[1,8-bc]thiete S-oxide (35) proved to be easier than expected due to the instability of sulfoxide $\mathbf{5 0}$ with S-oxide 35

Scheme 8
naphtho $1,8-b c]$ thiete sulfone (36) was isolated in a 4% yield. However, 3 equiv of (m-CPBA) afforded naphtho[1,8-bc]thiete S, S-dioxide (36) in a 93% yield. Nakayama et al. (79JA7684) believed that under the mild conditions used sulfone 36 was the product of sulfoxide $\mathbf{3 5}$ oxidation and does not originate from thiadiazine (42) oxidation into sulfone 51 with its subsequent transformation into naphtho[1, 8 -bc]thiete S, S-dioxide (36). Actually, naphthothiadiazine sulfone (51) is well known to be stable on heating and decomposes with nitrogen liberation only at harsh irradiation. Just the irradiation of naphthothiadiazine S, S-dioxide (51) furnished sulfone 36 as the first representative of peri-annulated heterocyclic naphthalene derivatives with a four-membered hetero ring (65AG(E)786, 67LA96).

1. Physical Properties and Spectral Characteristics of Naphtho[1,8-bc]thiete and Its S-Oxides (34-36)
(65AG(E)786), (67LA966), (74JA6532), (76JA6643), (79JA7684), (81JCS(P1)413), (83TL821), (84MI3403). The main published sources containing the majority of information on their physical properties are printed in bold type.

The parent naphtho $[1,8-b c]$ thiete crystallized from hexane as a colorless substance, mp. $40-42^{\circ} \mathrm{C}$. Its two S-oxides $\mathbf{3 5}$ and $\mathbf{3 6}$ are also colorless crystalline compounds, $\mathrm{mp} .105-106^{\circ} \mathrm{C}$ (from hexane) and $183-184^{\circ} \mathrm{C}$ (from methanol), respectively. All compounds are stable on melting and sublimation under reduced pressure. Being colorless, all compounds have no absorption band in their electronic spectra higher than 320 nm . In the IR spectrum of naphtho[1,8-bc]thiete (34) taken in CCl_{4} appeared an unexpected series of high-frequency bands at 3050, 1922, 1780, 1657, and $1615 \mathrm{~cm}^{-1}$ that totally disagreed with the structure of 34 and was not discussed in (76JA6643). These bands are apparently due to the presence of phosgene that readily formed from carbon tetrachloride on irradiation. At least in the IR spectrum of sulfoxide 35 recorded as a KBr pellet the band with the highest wave number was observed at $1467 \mathrm{~cm}^{-1}$. In each ${ }^{1} \mathrm{H}$ NMR spectrum of compounds $\mathbf{3 4 - 3 6}$ appear two two-proton doublets and one two-proton triplet showing the presence of six aromatic protons and the symmetry of the structure. In the proton-decoupled ${ }^{13} \mathrm{C}$ NMR
spectra six signals of carbon atoms are observed excluding the possibility of dimer formation.

The X-ray diffraction analysis of naphtho[1,8-bc]thiete S, S-dioxide (36) (76JA6643) revealed the coplanar position of the four-membered hetero ring and the naphthalene skeleton, and the r value [the ratio of bond angles $\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 5 /$ C1-C9-C8 (132.5/106 $)$] equaled 1.25 in good agreement with the calculated data as were also many other parameters.

2. Reactions of Naphtho[1,8-bc]thiete (34) and Its S-Oxides (35, 36)

The known transformations of naphtho[1,8-bc]thiete (34) and its S-oxides 35, $\mathbf{3 6}$ in the majority of instances consist of hetero ring opening due to irradiation, heating or to the action of chemical reagents. However, two types of reactions are known that are directed to the sulfur atom and do not cause ring opening: oxidation to S - oxides, and S-alkylation giving sulfonium salts.
a. Photolysis and Thermolysis (67LA96, 79JA7684, 81MI2682). The photolysis or thermolysis of naphtho[1,8-bc]thiete (34) and its S-oxides 35 and 36 induces a homolytic cleavage of one or both sulfur bonds with the naphthalene core generating the corresponding biradical species 43, Scheme 7 and 52, Scheme 9. Further reactions of these biradicals depend on the presence or absence of other reagents. For instance, on heating or irradiating naphtho[1,8-bc]thiete (34) in a carbon disulfide environment the latter reacts with biradical 43 leading to naphtho[1,8-de]-2,4-dihydro-1,3-ditiin-2thione (44, Scheme 7), whereas on irradiating sulfone 36 in the absence of other reagents biradical $\mathbf{5 2}$ combines to a dimer (53, Scheme 9). Interestingly, if in place of

Scheme 9
irradiation sulfone 36 is transferred into a gas phase on thermolysis biradical 52 instead of dimerizing is transformed into a five-membered hetero ring ($\mathbf{5 2} \boldsymbol{\rightarrow 5 5}$). Inasmuch as homolytic cleavage of the hetero ring is reversible, the final products 44 and $\mathbf{5 3}$ are present in the mixture with the initial compounds $\mathbf{3 4}$ and 36.

Under severe thermolysis conditions both sulfur bonds to the naphthalene skeleton in sulfone 36 can suffer homolytic cleavage with SO_{2} liberation and formation of 1,8-dehydronaphthalene (40) capable of electrocyclic capture with dimethyl acetylenedicarboxylate ($\mathbf{4 0} \boldsymbol{\rightarrow 5 4}$).
b. Reactions with Nucleophilic Reagents. The calculation of electron density distribution in 34 that we performed by the PM3 method for publication in this review showed that the largest negative charge is localized on the 1,8 -atoms of the naphthalene skeleton (-0.156), and the largest positive charge (0.197), on the sulfur atom. These results should permit prediction of the direction of attack by the positive and negative fragments of chemical reagents.

Reactions were studied between naphtho[1,8-bc]thiete (34, Scheme 10) and nucleophiles including metal hydrides and organometallic compounds (76JA6643).

Scheme 10

Scheme 11

The nucleophilic reagent attacks the sulfur atom and the $\mathrm{S}-\mathrm{C}^{1}$ bond is ruptured. The exact mechanism is unknown.

The reaction of naphthothiete (34) with the lithium aluminum hydride first gives 1,8 -lithionaphthalenethiol (56) and then dilithium derivative (57), which on treating with water or deuterium oxide transformed into thiol or its deutero analog (58), respectively. The latter when alkylated with methyl iodide afforded a stable methyl naphthyl sulfide 59 whose structure was unambiguously proved. Thus, J. Meinwald et al. confirmed the assumed sequence of transformations.

Naphthothiete (34) with methyllithium ($\mathrm{MeM}=\mathrm{MeLi}$, Scheme 10) formed 8 -lithio-1-naphthyl methyl sulfide $(\mathbf{6 0}, \mathrm{M}=\mathrm{Li})$ that on taking up 1 or 2 equiv of additional 34 was converted into dimer 63 or trimer 64. Sulfide 60 at treating with water formed methyl 1-naphthyl sulfide (62). Dimer 63 was also prepared by an independent synthesis between $60(\mathrm{M}=\mathrm{MgCl})$ and 1-naphthyl thiochloride (61).

The reaction of naphthosulfone (36, Scheme 11) with the lithium aluminum hydride takes two directions. The first route consists in reduction to naphthothiete (34) with subsequent transformations represented in Scheme 10: ($\mathbf{3 4} \boldsymbol{\rightarrow 5 6} \boldsymbol{\mathbf { 5 7 }} \boldsymbol{\rightarrow 5 8} \rightarrow$ 59) on quenching dilithium intermediate 57 with water $(\mathrm{R}=\mathrm{H})$. The second path involves opening the hetero ring with the nucleophile without reduction ($\mathbf{3 6} \rightarrow \mathbf{6 5} \rightarrow$ 67) also analogous to ($\mathbf{3 4} \rightarrow \boldsymbol{\rightarrow} \mathbf{~ 5 9}$) for naphtho $[1,8-b c]$ thiete proper (cf. Schemes 10 and 11). Methyl naphthyl sulfone (67) thus obtained was also prepared by an independent synthesis by treating naphtho $[1,8-b c]$ sulfone (36) with methyllithium followed by quenching with water ($\mathbf{3 6} \rightarrow \mathbf{6 6} \rightarrow \mathbf{6 7}$).

The reaction of naphtho[1,8-bc]thiete S-oxide (35) with lithium aluminum hydride is more complex, and its main product is dinaphthyl disulfide ($\mathbf{6 8}$, Scheme 12) arising as a result of a series of successive transformations where disproportionation of one

Scheme 12

Scheme 13
of the intermediates plays a key role. The disproportionation and other reactions of the sulfur derivatives are treated in more detail in (73MI2). Thus, the reactions of naphtho $[1,8-b c]$ thiete S-oxide (35) and S, S-dioxide (36) with the lithium aluminum hydride followed by methylation catalyzed by bases results in the formation of the same compounds but in different proportions (Scheme 12).

Meinwald et al. (76JA6643) described reactions with sodium hydroxide and lithium phenylamide leading to the formation of sodium 1-naphthalenesulfonate (69) and 1-naphthalenesulfonamide (70), respectively. Again, the negatively charged fragment of the reagent attacks the sulfur atom, followed by protonation of the C^{1} atom of the naphthalene core (Scheme 13).
c. Reactions at the Sulfur Atom Without Hetero Ring Opening. The known reactions of this type are rare; they include oxidation and alkylation (Scheme 14). Oxidation, already mentioned, is affected by peracids. Reaction of naphtho[1, $8-b c]$ thiete (34) with one equiv of a peracid affords sulfoxide $\mathbf{3 5}$, and with two equiv

Scheme 14
sulfone 36. The latter also can be obtained by oxidation of sulfoxide 35 with a peracid.

Naphtho[1,8-bc]thiete with trimethyloxonium tetrafluoroborate in dichloromethane led to the formation of sulfonium salt 71, as white needle crystals with $\mathrm{mp} 146-147^{\circ} \mathrm{C}$, stable on recrystallization from 2-propanol. The methyl group gives a sharp singlet at 3.82 ppm .

Sulfonium salt 71 in boiling pyridine suffers demethylation to give naphthothiete (34), and alkali converts it into methyl naphthyl sulfoxide (73). Reductive opening of the hetero ring occurs in reaction with 71 and LiAlH_{4} leading to methyl naphthyl sulfide $(\mathbf{5 9}, \mathrm{R}=\mathrm{H})$ and a dimeric sulfide $\mathbf{7 4}$. Dimer 74 presumably forms from dilithium derivative (57, Scheme 10) (originating from naphthothiete (34) and LiAlH_{4}) and methylsulfonium cation of 71.

E. Naphtho [1,8-BC]borete

The simplest naphtho $[1,8-b c]$ borete (75) is unknown. However, the results of semiempirical calculations that we have performed by the AM1 method (Figure 8) and are first published in the present review suggest the compound to be stable.

The first specimen in this series, N, N-di-iso-propylamino-naphtho[1,8-bc]borete (76), was obtained in 1994 ($94 \mathrm{AG}(\mathrm{E}) 1247$) by a reaction of 1,8 -dilithionaphthalene (18) with di-iso-propylaminoboron dichloride (Scheme 15).

75
Figure 8. General formula, bond angles and the other parameters of the simplest naphtho[1, $8-b c]$ borete calculated by the AM1 method

$\mathrm{R}=\mathrm{i}-\mathrm{Pr} ; 78, \mathrm{X}=\mathrm{Cl}(\mathrm{a}), \mathrm{Br}(\mathrm{b}), \operatorname{OEt}(\mathrm{c}) ; 79, \mathrm{X}=\mathrm{H}(\mathrm{a}), \mathrm{Et}(\mathrm{b})$
Scheme 15

The reaction was carried out under mild conditions (hexane, $-20^{\circ} \mathrm{C}$), and the product was purified by sublimation under reduced pressure. The yield of 76 was 89%, mp. $84{ }^{\circ} \mathrm{C}$. The structure was confirmed by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{11} \mathrm{~B}$ NMR spectra, by its mass spectrum and X-ray diffraction. The X-ray data show that the values of the bond and torsion angles indicating the molecule's viability are close to the calculated values (Figure 8) neglecting the difference between the substituents at the boron atom (H or $i-\operatorname{Pr}_{2} \mathrm{~N}$). The hetero ring and the naphthalene framework are virtually coplanar, and the r is also about 1.3.

Compound (76, Scheme 15) reacted under mild conditions (hexane, $-20^{\circ} \mathrm{C}$) with boron trichloride or tribromide to form naphtho[1,8-cd][1,2,6]azadiborinine (78).

Mes $=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} ; \mathrm{S}=\mathrm{THF}$ or $\mathrm{Py} ; 81, \mathrm{R}=\mathrm{Me}(\mathrm{a}), \mathrm{Ph}(\mathrm{b})$
Scheme 16

This ring-expansion of the four-membered hetero ring into a six-membered one is preceded by rupture of the $\mathrm{B}-\mathrm{C}$ bond and formation of nonisolable intermediate 77 followed by elimination of the iso-propyl chloride or bromide.

Naphthoborete (76) with diborane and diethylborane ($\left.\mathrm{HBX}_{2}, \mathrm{X}=\mathrm{H}, \mathrm{Et}\right)$ yielded μ-di-iso-propylaminodiboranes (79a and 79b). In this case a $\mathrm{B}-\mathrm{H}-\mathrm{B}$ bridge forms preceding further processes. Compound (79a) was regarded by A. Hergel et al. as a stabilized isomer $(77, \mathrm{X}=\mathrm{H})$. They believed that this assumption was proved by the replacement of three hydrogen atoms attached to boron in compound (79a) by ethoxy groups at treatment with ethanol ($\mathbf{7 9} \mathbf{a} \rightarrow \mathbf{7 7}, \mathrm{X}=\mathrm{OEt}$). Intermediate (77, $\mathrm{X}=\mathrm{OEt}$) eliminates a molecule of ethyl isopropyl ether transforming into peri-annulated borodiazine (78c).

The treatment of 1,8 -dilithionaphthalene (18) with dimesitylboron fluoride gave heterocyclic anion $\mathbf{8 0}$ with counterion $\left[\mathrm{Li}(\mathrm{THF})_{4}\right]^{+}$or $\left[\mathrm{Li}(\mathrm{Py})_{4}\right]^{+}(02 \mathrm{MI} 1982)$. The counterion character depends on the solvent used for recrystallization of the primary product. Salts $\mathbf{8 0}$ were characterized by their NMR spectra proving the presence of a symmetrically substituted naphthalene core. While 80 with the $\left[\operatorname{Li}(\mathrm{THF})_{4}\right]^{+}$ counterion is unstable and quickly looses THF at room temperature, crystals with the $\left[\mathrm{Li}(\mathrm{Py})_{4}\right]^{+}$counterion are sufficiently stable to be subjected to the X-ray diffraction analysis (Scheme 16).

The treatment of $\mathbf{8 0}$ with dimethyl- or diphenylboron bromide induced hetero ring opening yielding 1,8 -diboron-substituted naphthalenes (81). J. D. Hoefelmeyer et al. recently ($04 \mathrm{JCS}(\mathrm{D} 1254)$) studied more complex transformations of salts $\mathbf{8 0}$.

F. Naphtho $[1,8-B C]$ silete

The simplest naphtho $[1,8-b c]$ silete (82) is unknown (Figure 9). Yet the results $(r=1.19, p=0.1)$ of the semiempirical calculations that we have performed by the AM1 method for publication in the present review suggest the compound to be planar and capable of existence under common conditions.

The first two specimens of these structures were Si, Si-dimethyl- and Si, Si diethylnaphtho $[1,8-b c]$ siletes (84a and 84b) (76CC775), (83CC866), and later (00MI15582), were more complex $S i, S i$-dialkyl derivatives $\mathbf{8 4 c}-\mathbf{8 4 e}$.

1,8-Dilithionaphthalene (18) and dichlorodialkylsilanes reacted cleanly at $0^{\circ} \mathrm{C}$ and at room temperature without needing oxygen removal and exclusion of atmospheric moisture. Yang and Shechter (76CC775) believed that the reaction proceeded

82
Figure 9. General formula and some calculated parameters of naphtho $[1,8-b c]$ silete

$84, \mathrm{R}=\mathrm{Me}(\mathrm{a}), \mathrm{Et}(\mathrm{b}), \mathrm{CH}_{2} \mathrm{CHMe}_{2}(\mathrm{c}), \mathrm{EtCMe}_{2}(\mathrm{~d}), \mathrm{CH}_{2} \mathrm{SiMe}_{3}(\mathrm{e})$.
Scheme 17
stepwise as shown in Scheme 17. The products were purified by high vacuum distillation and more thoroughly by preparative gas chromatography. The yields were in the range $25-70 \%$. All the compounds exception ($\mathbf{8 4 e}$) were colorless oils. The structures of the compounds were unambiguously proved by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, and mass spectra, and by elemental analyses.

1. Chemical Properties

According to semiempirical calculations by the AM1 method the 1,8 -atoms of the naphthalene skeleton linked to silicon are the most electron-rich. An electrophilic attack should take this direction and is well demonstrated by the reaction of silete (84a) in air that suffers a fast deliquescence due to reaction with water vapor resulting in dimer $\mathbf{8 5}$ (Scheme 18).

Dimethyl derivative 84a is the most hygroscopic whereas naphthosiletes (84) with ethyl and larger alkyl substituents are stable in air.

The reactions of Si, Si-dialkylnaphthosiletes (84) with various nucleophiles are shown on Scheme 19.

A peri-bridged naphthalene compound was described (94JOM137) where the 1,8-positions of the naphthalene skeleton were connected to a germanium atom (94). This compound was obtained from dialkylgermanium dichloride and

Scheme 18

Scheme 19

1,8-dilithionaphthalene $(\mathbf{9 2}, \mathrm{X}=\mathrm{Li})$ or 1,8-naphthalenediylmagnesium (93). Organomagnesium compound 93 formed on treating with THF a 1,8-dimagnesium naphthalene derivative $\left(\mathbf{9 2}, \mathrm{X}=\mathrm{MgBr}_{2}, \mathrm{MgI}_{2}\right.$) and $\mathbf{9 3}$ with dimethylgermanium dichloride furnished $G e, G e$-dimethyl(1,8-naphthalenediyl)germete as an only product. By contrast, with 1,8 -dilithionaphthalene the product always contained as impurity dimers such as compound 90 , (Scheme 19) with Ge atoms instead of Si.

The freshly prepared $G e, G e$-dimethyl(1,8-naphthalenediyl)germete (94) is an oily fluid that on standing in a deuterobenzene solution forms a solid precipitate of polymer (95) with various units of number n (Scheme 20).

A considerable number of naphtho $[1,8-b c]$ cyclobutanes was synthesized where the bridging atom between the 1,8 -positions of the naphthalene structure was carbon

$\mathrm{X}=\mathrm{Li}(\mathrm{a}), \mathrm{MgBr}(\mathrm{b}), \mathrm{MgI}$ (c)

Scheme 20
(Figure 3, $\mathrm{X}=\mathrm{CR}_{2}$). Inasmuch as these compounds are hydrocarbons and not heterocycles they are outside the scope of this review. The interested reader should consult the following publications: (74JA8116), (77JA2371), (80CC190), (82TL2715), (83JA6096), (83JA6104), (83CC866) (83JA7786), (85JA7597), (91JOC1663).

References

28CB362	R. Willstater and L. Schuler, Chem. Ber., 61, 362 (1928).
31JCS1265	G. Clemo, J. Cocburn, and R. Spence, J. Chem. Soc., 1265 (1931).
33BRP394,511	E. Ayers, Brit. Pat., 394, 511 (1933), [CA, 28, 181 (1934)].
57JOC36	P. D. Gardner and R. J. Thomson, J. Org. Chem., 22, 36 (1957).
64HCA1172	F. Gerson, E. Heilbronner, and V. Boekelheide, Helv. Chim. Acta, 47, 1172 (1964).
65AG(E)786	R. W. Hoffman and W. Sieber, Angew. Chem., Int. Ed. Engl., 4, 786 (1965).
66CRV593	V. Balasubramaniyan, Chem. Rev., 66, 593 (1966).
67LA96	R. W. Hoffman and W. Sieber, Justus Liebigs Ann. Chem., 703, 96 (1967).
$68 \mathrm{CC1026}$	W. D. Crow and C. Wentrup, J. Chem. Soc., Chem. Commun., 1026 (1968).
$69 \mathrm{JCS}(\mathrm{C}) 756$	C. W. Rees and R. C. Storr, J. Chem. Soc. (C), 756 (1969).
$69 \mathrm{JCS}(\mathrm{C}) 760$	C. W. Rees and R. C. Storr, J. Chem. Soc. (C), 760 (1969).
$69 \mathrm{JCS}(\mathrm{C}) 765$	C. W. Rees and R. C. Storr, J. Chem. Soc (C), 765 (1969).
69JA1035	P. Flowerday and M. J. Perkins, J. Am. Chem. Soc., 91, 1035 (1969).
$70 \mathrm{JCS}(\mathrm{C}) 298$	P. Flowerday and M. J. Perkins, J. Chem. Soc. (C), 298 (1970).
70JOC4261	A. J. Gordon, J. Org. Chem., 35, 4261 (1970).
71 TL4093	D. C. De Jongh and G. N. Evenson, Tetrahedron Lett., 4093 (1971).
71JA3802	J. Meinwald and G. W. Gruber, J. Am. Chem. Soc., 93, 3802 (1971).
72JOC2152	D. C. De Jong and G. N. Evenson, J. Org. Chem., 37, 2152 (1972).
73MI1240	O. E. Schelepin, Chemistry of Pericyclic Compound. (in Russia), RSU Press, Rostov-on-Don (1973).

73MI2

74JA6532
74JA8116
75JA681
75TL3845
75BCJ932

76JA6643
76CC775
77TL943
77JA2371
79JA7684
80CC499
80 CC 190
81MI1281

81MI2682
81JCS(P1)413
82TL2715
83JA6096
83JA6104
83CC866
83JA7786
83TL821
84MI1363
84MI2237

84MI3403

85MI280
85JA7597
90AHC(51)1
E. Kuhle, The Chemistry of Sulfenic Acids, Georg Thieme Verlag, Stuttgart (1973).
J. Meinwald and S. Knapp, J. Am. Chem. Soc., 96, 6532 (1974).
R. J. Bailey and H. Shechter, J. Am. Chem. Soc., 96, 8116 (1974).
J. Meinwald, L. V. Dunkerton, and G. W. Gruber, J. Am. Chem. Soc., 97, 681 (1975).
J. Rigaudy, C. Igier, and J. Barcelo, Tetrahedron Lett., 3845 (1975).
M. Kato, S. Takaoka, and T. Miwa, Bull. Chem. Soc. Japan, 48, 932 (1975).
J. Meinwald, S. Knapp, S. K. Obendorf, and R. E. Hughes, J. Am. Chem. Soc., 98, 6643 (1976).
L. S. Yang, H. Shechter, and J. Chem. Soc., Chem. Commun., 775 (1976).
S. E. Carrol, B. Nay, E. F. V. Scriven, and J. Suschitzky, Tetrahedron Lett., 943 (1977).
M. Gessner, P. Card, H. Shechter, and G. Christoph, J. Am. Chem. Soc., 99, 2371 (1977).
J. Nakayama, T. Fukushima, E. Seki, and M. Hoshino, J. Am. Chem. Soc., 101, 7684 (1979).
I. R. Dunkin and P. C. P. Thomson, J. Chem. Soc., Chem. Commun., 499 (1980).
J. Becker and C. Wentrup, J. Chem. Soc., Chem. Commun., 190 (1980).
"The Common Organic Chemistry" (N. K. Kochetkov, ed.) (in Russia). Khimia, Moscov (1983).
J. Nakayama, J. Synth. Org. Chem. Tokyo, 39(8), 682 (1981), [CA 95, 168589 (1981)].
J. Nakayama, S. Dan, and M. Hoshino, J. Chem. Soc. Perkin I, 413 (1981).
T. A. Engler and H. Shechter, Tetrahedron Lett., 2715 (1982).
R. J. Bailey, P. J. Card, and H. Shechter, J. Am. Chem. Soc., 105, 6096 (1983).
P. J. Card, F. E. Friedli, and H. Shechter, J. Am. Chem. Soc., 105, 6104 (1983).
L. S. Yang, T. A. Engler, and H. Shechter, J. Chem. Soc. Chem. Comтип., 866 (1983).
R. A. Hayes, T. C. Hess, R. J. McMahon, and O. L. Chapman, J. Am. Chem. Soc., 105, 7786 (1983).
G. De Luca, A. Pizzabiocca, and G. Renzi, Tetrahedron Lett., 24, 821 (1983).
S. Searles "Oxetanes and Oxetenes" in Comprehensive Heterocyclic Chemistry Vol. 7, p. 363, Pergamon Press (1984).
D. E. Davies and R. S. Storr, "Azetidines, Azetines and Azetes" in Comprehensive Heterocyclic Chemistry Vol. 7, p. 237, Pergamon Press (1984).
E. Block "Thietanes, Thietes and Fused-Ring Derivatives" in Comprehensive Heterocyclic Chemistry Vol. 7, p. 403, Pergamon Press (1984).
A. F. Pozharskii "The Theoretical Bases of Chemistry of Heterocycles" (in Russia). Khimia, Moscov, 1985.
R. J. McMahon, O. L. Chapman, R. A. Hayes, T. C. Hess, and H. P. Krimmer, J. Am. Chem. Soc., 107, 7597 (1985).
V. V. Mezheritskii and V. V. Tkachenko, Adv. Heterocycl. Chem., 51, 1 (1990).

91JOC1663

94AG(E) 1247
95MI1696

00MI15582
01JST287
02AG(E)3897
02MI1982
04JCS(D1254)

94JOM137 M. A. G. M. Tinga, G. J. H. Buisman, G. Schat, O. S. Akkerman,
M. A. G. M. Tinga, G. J. H. Buisman, G. Schat, O. S. Akkerman,
F. Bickhelhaupt, W. J. J. Smeets, and A. L. Spek, J. Organomet. Chem., 484, 137 (1994).
A. Kumar, F. E. Friedli, L. Hau, P. J. Card, N. Mathur, and H. Shechter, J. Org. Chem., 56, 1663 (1991).
A. Hergel, H. Pritzkow, and W. Siebert, Angew. Chem., Int. Ed. Engl., 33, 1247 (1994).
I. Yavari and D. Nori-Shargh, J. Phys. Org. Chem., 8, 696 (1995), [CA 124, 116(1996)].
J. Ohshita, K. Matsushige, A. Kunai, A. Adachi, K. Sakamaki, and K. Okita, Organometallics, 19, 5582 (2000).
H. Roohi, F. Deyhimi, and A. Ebrahimi, J. Mol. Struct. (THEOCHEM), 540, 287 (2001), [CA 135, 92216 (2001)].
M. Tsutomu, N. Tooru, and M. Katsuhiko, Angew. Chem., Int. Ed. Engl., 41, 3897 (2002).
J. D. Hoefelmeyer and F. P. Gabbai, Organometallics, 21, 982 (2002).
J. D. Hoefelmeyer, S. Sole, and F. P. Gabbai, Dalton Transaction, 1254 (2004).

Pyrazol-3-ones. Part III: Reactivity of the Ring Substituents

George Varvounis, Yiannis Fiamegos, and George Pilidis
University of Ioannina, Department of Chemistry, GR-451 10 Ioannina, Greece

I. Introduction 29
II. Alkylation 29
A. By Reaction with Alkyl Halides 29
B. With Esters of Sulfonic and Carbonic Acids 31
C. With Diazomethane 33
III. Acylation 34
A. With Acid Chlorides or Anhydrides 34
B. With Activated Carboxylic Acids 41
C. With Esters or Haloformates 42
D. By the Vilsmeier Formylation 43
IV. Halogenation 43
A. With Bromine 43
B. With N-bromosuccinimide 44
C. With Hydrogen Bromide 44
V. Sulfonation 45
A. Of 5-Aminopyrazol-3-ones 45
VI. Diazonium Salt Coupling 46
A. Diazopyrazol-3-one Coupling 46
VII. Condensation 46
A. Of 4- or 5-Formylpyrazol-3-ones 47
B. Of 4-Acylpyrazol-3-ones 49
C. Of 4- or 5-Aminopyrazol-3-ones 57
D. Of 4-Hydrazonoethylpyrazol-3-ones 62
E. Of 4-(2-amino-1,3-thiazol-4-yl)pyrazol-3-one 63
F. Of 4-Nitrosopyrazol-3-ones 63
G. Of 4-(substituted acryloyl)pyrazol-3-ones 63
H. Of 2-(3-oxopyrazol-4-ylazo)ketones or Esters 64
I. Of 2-[(3-oxopyrazol-4-yl)hydrazono]malonic Acid Esters or Substituted Acetonitriles 64
J. Of 3-(3-oxopyrazol-4yl)-3-oxopropionitriles 66
K. Of Miscellaneous Side Chains 67
VIII. Nucleophilic Addition 69
A. To Isocyanates, Isothiocyanates, or Carbon Disulfide 70
B. To Methyl- N, N-diethylaminoacetylenes 72
C. By Addition-Elimination to α, β-Unsaturated Compounds 73
D. By Michael Addition 74
IX. Nucleophilic Substitution 76
A. Of 4-Bromo(or 4-hydroxy)pyrazol-3-ones 76
B. Of 4- or 5-Substituted Methylpyrazol-3-ones 77
C. Of 4-(2-chloroacetyl)pyrazol-3-ones or 3-Chloro- N-(3-oxopyrazol-4-yl)pro- panamides. 80
D. Of 2-(arylhalo)pyrazol-3-ones 81
E. With 4- or 5-Amino- or 4-(3-aminopropyl)pyrazol-3-ones 81
F. With 4- or 5-Hydroxypyrazol-3-ones 87
G. Of Acyl or Imine Substituted Pyrazol-3-ones 90
H. With 1-(3-oxopyrazol-4-yl)-3-substituted Thioureas 92
X. Solvolysis 93
A. Of Carbonyl and Arylsulfonylpyrazol-3-ones 93
B. Of 4-(iminophenylmethyl or phenylaminomethylene)pyrazol-3-ones 95
C. Of (5-oxopyrazol-3-yl)acetamide or 4,4-(dimorpholin-4-yl)pyrazol-3-one 95
D. Of 4-(ethoxycarbonylmethyl)pyrazol-3-ones 97
XI. Rearrangement 98
A. 4-[(2-Nitrophenyl)thio]pyrazol-3-ones. 98
B. 3-(1,5-Dimethyl-3-oxo-2-phenylpyrazol-4-yl)-3-oxopropionitrile 99
C. [5-Oxo-1-arylpyrazol-3-yl]carbamic Acid 4-Nitrophenyl Ester. 100
D. 5-Hydroxy-1,2-diphenylpyrazol-3-one 101
E. 5-Methyl-4,4-dinitro-2-(4-nitrophenyl)pyrazol-3-one 101
XII. Elimination 101
A. Deamination via Diazotization 101
B. Deformylation 102
C. Deprotection and Decarboxylation 102
D. By Ring Formation 103
XIII. Michael-Type Additions 105
A. By Activated Carbon Compounds 106
B. By Grignard Reagents 112
C. By Secondary Amines and Phenols 113
XIV. Oxidation 114
A. With Molecular Oxygen 115
B. With Bromine or Iodine-Potassium Iodide 116
C. With Ozone. 116
D. With Hydrogen Peroxide or 3-Chloroperbenzoic Acid 118
E. By Electrooxidation 121
F. With Potassium and Copper Complexes 122
G. With Sodium Metaperiodate 124
H. With Lead Tetraacetate 124
I. With Potassium Permanganate or Pyridinium Chromate 124
XV. Reduction 125
A. By Catalytic Hydrogenation 125
B. With Iron, Zinc or Stannous Chloride 126
C. With Sodium Borohydride 128
D. With Trialkyl Phosphites 130
XVI. Cycloaddition 132
A. Of Enolate of 1,5-Dimethyl-3-oxo-2-phenylpyrazole-4-Carbaldehyde 132
B. C-Bromo- N-phenylnitrile Imide to Arylidenepyrazo-3-ones 133
XVII. Miscellaneous Reactions 133
A. Transformation of Functional Groups 133
References 134

I. Introduction

The present article is Part III of a three part series. In Part I (01AHC(80)73) the synthesis and applications of pyrazol-3-ones I and II are described. In Part II ($04 \mathrm{AHC}(87) 141)$ the reactions of the ring atoms of pyrazol-3-ones I and II are given. Both of these articles cover the literature since January 1964. As in Part I and II, the present work is a follow up of the major work on pyrazolones published by Wiley and Wiley in the "Chemistry of Heterocyclic Compounds" series of monographs (64MI1). The literature of this chapter has been searched up to August 2005.

(I)

(II)

1,2-dihydro-3H-pyrazol-3-one
Following the trend of Parts I and II, throughout Part III all pyrazolones have been named according to the IUPAC recommendations as pyrazol-3-ones and not as pyrazol-5-ones. The IUPAC nomenclature numbers the ring clockwise whereas most organic chemists are used to an anti-clockwise numbering.

II. Alkylation

Alkylation of pyrazol-3-ones usually occurs not only on side-chain substituents such as primary amino groups but also on the nitrogen atom of the unsubstituted lactam group. Alkylation can also occur on a stabilized carbanion generated from a methyl group by a strong base.

A. By Reaction with Alkyl Halides

4-Amino-2,4-dihydropyrazol-3-one $\mathbf{1}$ was smoothly methylated at $\mathrm{N}-2$ and dimethylated at the 4-amino group in a sodium alkoxide solution containing methyl iodide to give pyrazol-3-one 2 ($72 \mathrm{JHC1219}$) (Scheme 1). In a Japanese patent Naito (70JAP(K)6534), claims that $N 1$-(3-oxopyrazol-4-yl)sulfonamides 3a,b could be mono- or dialkylated by treatment with methyl- or ethyl iodide in the presence of ethanolic sodium ethoxide to give alkylated pyrazol-3-one derivatives $\mathbf{4 c}-\mathbf{f}$. On the other hand, methanolic 4-amino-1,3-dihydropyrazol-3-one 5 containing methyl iodide required heating in an autoclave at $100^{\circ} \mathrm{C}$ in order to give 4-dimethyl derivative 6 in only 44% yield (79AP853).

(1)

(3)

(a) $R^{1}=H, R^{2}=N H_{2}$, (b) $R^{1}=\mathrm{Me}, R^{2}=\mathrm{CH}_{2} \mathrm{NH}_{2}$, (c) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me} \mathrm{C}_{2} \mathrm{~N}$, (d) $\mathrm{R}^{1}=\mathrm{Me}$, $R^{3}=\mathrm{CH}_{2} \mathrm{NHMe}$, (e) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{NMe}_{2}$, (f) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{NEt}_{2}$

(5)

(6)

Scheme 1

Methylation of the 5-methyl group of pyrazol-3-one 7 was achieved by treating 7 with lithium diisopropylamine at $-78^{\circ} \mathrm{C}$ followed by the addition of methyl iodide to the stabilized lithium salt $\mathbf{8} / \mathbf{9}$. 5-Ethylpyrazol-3-one $\mathbf{1 0}$ was obtained in 82% yield (95T10941) (Scheme 2). Ito and Ueda (69CPB1309) alkylated 5-mercaptomethylpyr-azol-3-one 11a,b with ethyl chloroacetate, ethyl bromide or allyl bromide in ethanolic sodium ethoxide and obtained the corresponding S-alkylated pyrazol-3-ones 12c,d, in very good yields.

In a search for new anti-cancer agents Abdel-Rahman (92FA319) (Scheme 3) obtained dipyrazol-3-one derivative 15 by heating two equivalents of 5 -aminopyr-azol-3-one 13 with 2-chloro-1-(piperazin-1-yl)ethanone derivative $\mathbf{1 4}$ in DMF.

The amino group of 2-aminopyrazol-3-one 16 was even more difficult to alkylate with methyl iodide (81JHC957) (Scheme 4). The reaction proceeded slowly under a variety of conditions and it was necessary to operate at higher temperatures, which lead to deamination of starting material. Thus, reaction of 5-aminopyrazol-3-one $\mathbf{1 6}$ with methyl iodide in ethanol at $100^{\circ} \mathrm{C}$ in a sealed tube gave a mixture containing pyrazol-3-ones 17a,b, 18a,b and 19a,b.

(a) $\mathrm{R}^{1}=\mathrm{Me}$, (b) $\mathrm{R}^{1}=\mathrm{Br}$, (c) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, Et or $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
(d) $\mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, Et or $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$

Scheme 2

B. With Esters of Sulfonic and Carbonic Acids

Although dimethyl sulfate was used as a methylating agent for the ring nitrogen and carbonyl oxygen atoms of pyrazol-3-ones, its use for methylating substituents on the pyrazol-3-one ring is limited. Thus in one case, the secondary amino and mercapto groups of 4-[(2-mercapto-phenyl)amino]pyrazol-3-one $\mathbf{2 0}$ were methylated at room temperature with an alkaline solution containing excess dimethyl sulfate to give pyrazol-3-one 21 (76CJC993) (Scheme 5). The secondary amino group of 4-(hydroxyaminophenylmethylene)pyrazol-3-one 22 was selectively methylated with one equivalent of methyl 4-toluenesulfonate (TosOMe) to give the N-hydroxy- N methylenaminone 23. The methylation of $\mathbf{2 3}$ with a further equivalent of methyl 4-toluenesulfonate led to the formation of 4-[(methoxymethylamino)phenylmethylene] pyrazol-3-one 24 (03EJOC1209).

(13)

(14)

(15)

Scheme 3

(a) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$, (b) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}$

Scheme 4

Scheme 5

Scheme 6

Monomethylation of the 4 -amino group of pyrazol-3-one 25 was achieved with methyl carbonate (89JCR(S)312) (Scheme 6) in two steps by treatment of $\mathbf{2 5}$ first with dimethyl carbonate and potassium carbonate to obtain the ester $\mathbf{2 6}$ which was then hydrolyzed to 4-methylaminopyrazol-3-one 27.

C. With Diazomethane

The carboxylic acid group of the α, β-unsaturated side chain and amide nitrogen atom of pyrazol-3-one $\mathbf{2 8}$ were methylated with an ethereal solution of diazomethane to give the pyrazol-3-one ester 29 (80JA4983) (Scheme 7).

(28)

(29)

Scheme 7

III. Acylation

Most of these reactions were carried out with 4-amino-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one (4-aminoantipyrine). The acid chlorides were prepared separately or generated in situ from the corresponding carboxylic acid in the presence of the aminopyrazol-3-ones.

A. With Acid Chlorides or Anhydrides

Acylation of 4-aminoantipyrine $\mathbf{3 0}$ with chloro(1-methyl-4-phenylpiperidin-4-yl) methanone 31a tert-butoxycarbonyl chloride 31b, 4-nitrobenzoyl chloride 31c, ethyl 4-(chlorocarbonyl)phenylcarbamate 31d or chloro(pyridine-3-yl)methanone 31e in pyridine afforded the corresponding N-(3-oxopyrazol-4-yl)-4-amides 32a-e in moderate to excellent yields (71PHA439, 72JDR89, 91S309) (Scheme 8). Treatment of 4 -aminoantipyrine $\mathbf{3 0}$ or 4 -substituted aminopyrazol-3-ones $\mathbf{3 3 g}$,h with β-chloropropionyl chloride 34 in acetone containing triethylamine afforded the N -(3-oxopyrazol-4-yl)propenamides $\mathbf{3 5 f}-\mathbf{h}$ (68AF850). Acyl substitution of 4-(N, N -diphenylhydrazino)-3,5-dinitrobenzoyl chloride 31i by 4-aminopyrazol-3-one 33i in boiling 1,2-dichloroethane containing pyridine, and chloroacetyl chloride 31j by 4-methylaminopyrazol-3-one 33j in dichloromethane, gave the corresponding pyrazol-3-ones 36i,j (01RRC363, 02PHA829).

In a German patent (70GEP1930337) (Scheme 9) 4-aminopyrazol-3-ones 37a-c were acylated with acid chlorides $\mathbf{3 8 a} \mathbf{a} \mathbf{c}$ in pyridine to give the corresponding amides 39a-c. The amide 39d was prepared by reacting 5 -aminopyrazol-3-one 37d with acetic anhydride.

Earlier in this section it was mentioned that 1,2-dihydro- and 2,4-dihydropyrazol3 -ones are not acylated on the pyrazol-3-one ring atoms when mild acylating conditions prevail. It is noteworthy that 1,2-dihydropyrazol-3-one ring atoms are not acylated with acetic anhydride in acetic acid even after heating to reflux. However, Coutts et al. (75CJC3637) (Scheme 10) demonstrated that this was not always the case with 2,4-dihydropyrazol-3-ones. When 4-(2-amino or nitrobenzyl)pyrazol-3-ones $40 a, b$ or $40 \mathbf{c}, \mathbf{d}$ were heated to reflux in acetic anhydride for $1-3 \mathrm{~h}$, the corresponding triacetyl- and monoacetylpyrazoles 41a,b or 42c,d were obtained. At ambient temperature 4-(2-aminobenzyl)pyrazol-3-one 40a reacted with benzoyl chloride in dilute sodium hydroxide to give dibenzoylpyrazol-3-one 43. Surprisingly, heating

(a)

(b) $R=$

(c) $\mathrm{R}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$,

(e) $\mathrm{R}=$ pyridin-3-yl

(33)
(f) $\mathrm{R}^{1}=\mathrm{H}$
(g) $R^{1}=\mathrm{Me}$
(h) $\mathrm{R}^{1}=\mathrm{CHMe}_{2}$

(36)

Scheme 8

4-(2-aminobenzyl)pyrazol-3-ones 40a,b in acetic anhydride for 1 h under reflux afforded pyrazol-4-yl(methyl)(phenyl)acetamides 44a,b.

The acylation of 4 -aminoantipyrine $\mathbf{3 0}$ took place with acid chlorides $\mathbf{4 5 d}, \mathbf{f}$ and the respective acid chlorides prepared in situ from the carboxylic acids 45a-c,e. Thus, 2-cyanoarylacrylic acids 45a-c,e, triethylamine and 4-aminopyrazol-3-one 30 at $0^{\circ} \mathrm{C}$ were treated with phosphorus oxychloride while acid chlorides $\mathbf{4 5 d}, \mathbf{f}$ were treated with triethylamine and pyrazol-3-one 30 at $0^{\circ} \mathrm{C}$ to afford the corresponding N-(3-oxopyrazol-4-yl)acrylamides 46a-f in moderate yields (91JIC612) (Scheme 11).

(a) $\mathrm{R}^{1}=2-\left(n-\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{~S}\right) \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{Ph}$, (b) $\mathrm{R}^{1}=2-\left(\mathrm{CHFClF}_{2} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=4-\left(n-\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{4}$,
(c) $\mathrm{R}^{1}=2-\left(\mathrm{CHFClF}_{2} \mathrm{O}\right) \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=4-n-\mathrm{C}_{19} \mathrm{H}_{38}$, (d) $\mathrm{R}^{1}=4-\left(n-\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{SO}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{Me}$

Scheme 9

(a) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{X}=\mathrm{H}$, (b) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{X}=\mathrm{H}$, (c) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{X}=\mathrm{O}$, (d) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{X}=\mathrm{O}$

Scheme 10
(30) +

(45)

(46)
(a) $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
(b) $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
(c) $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=$

(d) $\mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
(e) $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$
(f) $R^{1}=\mathrm{Cl}, \mathrm{R}^{2}=$

Scheme 11

(a) $\mathrm{R}=\mathrm{Me}$, (b) $\mathrm{R}=\mathrm{Et}$, (c) $\mathrm{R}=\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{2}$,

Scheme 12

(49)
$\mathrm{ClCOCH}_{2} \mathrm{Cl} / \mathrm{THF} / \mathrm{Na}_{2} \mathrm{CO}_{3}$
 or $(\mathrm{MeCO})_{2} \mathrm{O}$ or $(\mathrm{MeCO})_{2} \mathrm{O} / \mathrm{MeCO}_{2} \mathrm{H} / \Delta$

(50)
(a) $R^{1}=H, R^{2}=P h, R^{3}=\mathrm{Me}$, (b) $R^{1}=H, R^{2}=M e, R^{3}=P h$, (c) $R^{1}=M e, R^{2}=C l, R^{3}=P h$
(d) $R=B r, R^{1}=H, R^{2}=P h, R^{3}=M e$, (e) $R=H, R^{1}=H, R^{2}=P h, R^{3}=M e$, (f) $R=H, R^{1}=H$, $R^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Ph},(\mathbf{g}) \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}$, (h) $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Ph}$ (i) $\mathrm{R}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}$, (j) $\mathrm{R}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Ph}$

Scheme 13

The second example of an acylation during which the acid chloride is generated in situ (67BCF88) (Scheme 12) involves the reaction of 4-aminopyrazol-3-one $\mathbf{3 0}$ with 2-hydroxy-5-(methoxycarbonyl)benzoic acids 47a-c where phosphorus trichloride is used and gives methyl 3-\{[(3-oxopyrazol-4-yl)amino]carbonyl\}-4-hydroxybenzoates 48a-c.

The strongly nucleophilic primary amino group of pyrazol-3-ones 49a,b (Scheme 13) reacted under mild conditions with chloroacetyl chloride or bromide,

(54)

(51)

(52)

(55)

(60)

Scheme 14
or with acetic anhydride to give 2-(3-oxopyrazol-2-yl) amides 50c-f. However, 2-amino-1,4,5-trisubstituted pyrazol-3-ones 49j,h were acetylated by heating at $100^{\circ} \mathrm{C}$ with a mixture of acetic anhydride and acetic acid to give 2-(3-oxopyrazol-2-yl) acetamides 50i,j (81JHC957).

Fu and Shuttleworth (03TL3843) (Scheme 14) set out to develop conditions for N-acylating 5-aminopyrazol-3-ones used in previous years as building blocks in the construction of 6,5 -fused heterocycles. The simple reaction of 5 -aminopyrazol-3-one 51 with 2-thiophenecarbonyl chloride 52 in DMF in the presence of polymersupported Hunig's base 53, however, turn out to be extremely capricious. Under
varying conditions of temperature, solvents, substrate/reactant ratios, organic bases and use of carboxylic acid esters instead of acid chlorides, LC-MS analysis of the reaction mixture indicated the presence of starting amine 51, and acid chloride 52, the desired 4 - N -acylpyrazol-3-one 54, and bis-acylated product $5 \mathbf{5 5}$. This problem was circumvented by utilizing a sequence of functionalized polymers serving both as stoichiometric reagents and purification media. The method developed involved initially treating pyrazol-3-one $\mathbf{5 1}$ with acid chloride $\mathbf{3 1}$ in tetrahydrofuran in the presence of polymer-supported Hunig's base. After removal of the resin the filtrate that contained a mixture of amine 51, acid chloride 31, bis-acylated derivative 56 and the desired product 57 , was treated with polymer-supported sulfonic acid resin 59. The amine 51 was found to be bound to the resin to give resin-bound amine $\mathbf{6 0}$, that was removed from the mixture and the filtrate treated with N-(2-aminoethyl) aminomethylpolystyrene $\mathbf{5 8}$, which efficiently reacted with the bis-acylated derivative 56 to furnish the desired product 57 in high levels of purity. The remaining supportedamine 58 also served to sequester any remaining acid chloride in the reaction mixture. The method was applied to acid chlorides 31a-i, however the yields of products 57 varied from excellent (81%) for $\mathbf{5 7}$ a and moderate ($25-44 \%$) for $\mathbf{5 7 b} \mathbf{- i}$.

Acetylation of 5-hydroxypyrazol-3-one 61 with acetic anhydride in pyridine at room temperature afforded 5-acetyloxypyrazol-3-one 62a (68JCS(C)2251) (Scheme 15). The hydroxy group of 4-[(2-hydroxyphenyl)amino]pyrazol-3-one 63 was acetylated in the same way to give the acetate derivative $\mathbf{6 4}$ (74CJC2932).

Similar reaction conditions were used for both acetylation and benzoylation of 5-(1,2,3-trihydroxy)pyrazol-3-ones 65a-e and 3-(1,2,3-trihydroxy)pyrazole-4,5-dione-4-(phenylhydrazone) 67a,c that gave the corresponding triacetyl derivatives 66a-j and 68a-d (68JCS(C)2248, 88PHA77) (Scheme 16).

(61)

(63)

(62)

(64)

Scheme 15

(65)

(a) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ac}$
(b) $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ac}$
(c) $\mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Ac}$
(d) $R^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{Ac}$
(e) $R^{1}=I, R^{2}=A c$
(f) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{PhCO}$
(g) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{PhCO}$
(h) $\mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{PhCO}$
(i) $\mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{PhCO}$
(j) $R^{1}=I, R^{2}=\mathrm{PhCO}$

(67)

(68)
(a) $\mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{Ac}$
(b) $\mathrm{R}^{1}=\mathrm{NO}_{2}, \mathrm{R}^{2}=\mathrm{Ac}$
(c) $\mathrm{R}^{1}=\mathrm{Cl}, \mathrm{R}^{2}=\mathrm{PhCO}$
(d) $\mathrm{R}^{1}=\mathrm{NO}_{2}, \mathrm{R}^{2}=\mathrm{PhCO}$

Scheme 16

(69)

(a) $\mathrm{R}=n-\mathrm{C}_{7} \mathrm{H}_{3}$
(b) $\mathrm{R}=\mathrm{PhCH}_{2}$

Scheme 17

Lanovaya et al. (87JOU1773) (Scheme 17) presented the only example of a benzoylation of an oxime group of a pyrazol-3-one. Thus, pyrazol-4,5-dione 4-oximes 69a,b were treated with benzoyl chloride in pyridine to give the benzoyloxy derivatives 70a,b in good yields.

B. With Activated Carboxylic Acids

Smooth esterification of 5-hydroxymethylpyrazol-3-one 71 was possible with N-tert-butoxycarbonyl glycine 72 in 1,2-dichloromethane in the presence of DMAP and DCC to yield pyrazol-3-one ester 73 (02EJP121) (Scheme 18). Compound 71 was also esterified with 2-(6-methoxy-2-naphthyl)propionic acid 74 in DMF and in the presence of CDI to give pyrazol-3-one ester 75. Coupling of 5-aminomethylpyrazol-3-one hydrochloride 76 with trityloxyacetic acid 77 in DMF containing triethylamine and (benzotriazol-1-yloxy)tris(dimethylamino) phosphonium hexafluorophosphate (BOP) afforded pyrazol-3-one amide 78.

(72)

(71)

(73)

(75)

Scheme 18

C. With Esters or Haloformates

A reaction that leads to an interesting cyclohexadiene-bridged bispyrazol-3-one $\mathbf{8 0}$ was reported by Metwally and Afsah (84PHA95) (Scheme 19). Diethyl-2,5-diaminocyclohexa-1,4-diene-1,4-dicarboxylate 79 was heated with pyrazol-3-one 30 at $160-180^{\circ} \mathrm{C}$ to give, after ipso substitution of the amino groups of 79, diethyl-2,5-bis(3-oxopyrazol-4-yl)amino derivative $\mathbf{8 0}$.

In the presence of triethylamine the amide group of pyrazol-3-ones 81a-c was first acylated with ethyl chloroacetate and the resulting intermediate carbamate $\mathbf{8 2}$ cyclized by nucleophilic acyl substitution initiated by the phenolic hydroxyl group. The 4 -benzoxazinepyrazol-3-ones 83a-c were obtained in 60-75\% yield (67BCF88) (Scheme 20).

Scheme 19

(81)
(82)

(83)

Scheme 20

(a) $\mathrm{Ar}=\mathrm{Ph}$, (b) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$

Scheme 21

Scheme 22

D. By the Vilsmeier Formylation

The application of the Vilsmeier reaction to (E / Z)-arylmethylidenepyrazol-3ones 84a,b by Awad and Hassan (89CCC706) (Scheme 21) caused diformylation of the methyl group to give (E / Z)-aminoacrolein derivatives $\mathbf{8 5 a} \mathbf{a}, \mathbf{b}$ in good yields.

Under low temperature Vilsmeier conditions 4,4'-bipyrazol-3,3'-dione $\mathbf{8 6}$ was diformylated at the methyl group of one of the pyrazol-3-one rings that was converted into 3 -chloropyrazole. The product 87 remained with one pyrazol-3-one ring intact. When the temperature was increased to $75^{\circ} \mathrm{C}$ a furo[2,3-c:5,4$c]$ dipyrazole derivative was obtained (92BCJ1652) (Scheme 22).

IV. Halogenation

The only halogenation reactions of the ring substituents of pyrazol-3-ones known are those with bromine, N -bromosuccinimide and hydrogen bromide.

A. With Bromine

5-Bromomethylpyrazol-3-one $\mathbf{8 9}$ was prepared by treating 5-methylpyrazol-3-one 88 with bromine in 1,4-dioxane (02EJP121) (Scheme 23).

Scheme 23

Scheme 24

(a) $\mathrm{R}=\mathrm{Cl}$, (b) $\mathrm{R}=\mathrm{NO}_{2}$

Scheme 25

B. With N-bromosuccinimide

Selective bromination of the methyl group at position 5 of 4,4,5-trimethylpyrazol-3-one 90 (69JOC1717) (Scheme 24) took place when a solution of the compound and N-bromosuccinimide in carbon tetrachloride was irradiated with a 275 W sun lamp. The deacetylated 5-bromomethylpyrazol-3-one 91 was obtained in 53\% yield.

C. With Hydrogen Bromide

The 1,2,3-trihydroxypropyl side chain of pyrazol-3-ones 92a,b was efficiently brominated at positions 2 and 3 by reaction with hydrogen bromide acetic acid. The products, 2,3-dibromopropyl acetates 93a,b were obtained in 71% and 70% yield, respectively (88PHA77) (Scheme 25).

(a) $R=H$, (b) $R=M e$

Scheme 26

(51)

(97)
(a) $\mathrm{R}=\mathrm{Me}$, (b) $\mathrm{R}=\mathrm{Ph}$, (c) $\mathrm{R}=3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (d) $\mathrm{R}=4-\mathrm{AcNHC}_{6} \mathrm{H}_{4}$

Scheme 27

4-(2-Hydroxyethyl)pyrazol-3-ones $\mathbf{9 4 a}, \mathbf{b}$ were converted into the corresponding 4-(2-bromoethyl)pyrazol-3-one 95a,b by heating at $80^{\circ} \mathrm{C}$ with 62% aqueous hydrobromic acid (99EJMC967) (Scheme 26).

V. Sulfonation

A. Of 5-Aminopyrazol-3-ones

In a German patent (70GEP1930337) (Scheme 27) 2,4-dihydro-5-sulfonylamino-pyrazol-3-ones such as compounds $\mathbf{9 7 a} \mathbf{a}$-d, were characterized as useful color formers for purple dyes in silver halide color photography. They were prepared by heating 5-aminopyrazol-3-one $\mathbf{5 1}$ with sulfonyl chlorides $96 \mathbf{9}-\mathbf{d}$ in pyridine containing aluminum trichloride catalyst.

In a second German patent (70GEP1935272) (Scheme 28) the preparation of 5-methylsulfonyl-aminopyrazol-3-one 99 took place simply by reacting 5-amino-1,2-dihydropyrazol-3-one $\mathbf{9 8}$ with methylsulfonyl chloride at room temperature.

(98)

(99)

Scheme 28

VI. Diazonium Salt Coupling

4-Diazopyrazol-3-one salts have been prepared in situ and kept for a short period at low temperature by either diazotization of 4 -aminopyrazol-3-ones or by diazo group transfer onto 4-unsubstituted 2,4-dihydropyrazol-3-ones from 4-toluenesulfonylazide or aziridinium salts. Coupling these diazonium salts with carbon nucleophiles is the most common reaction (04AHC(87)141).

A. Diazopyrazol-3-one Coupling

The mesomeric diazo compound $\mathbf{1 0 0 a} / \mathbf{1 0 0 b}$, derived from diazo group transfer to the appropriate pyrazol-3-one, was irradiated for 10 h in tetrahydrofuran to give the hydrazone chelated adduct 101 as the only product (78 H 199) (Scheme 29). Mesomeric 100a/100b reacts also with triphenylphosphine to give intermediate (E / Z)-phosphazine $\mathbf{1 0 2}$ which is extremely sensitive to water and hydrolyzes to (E / Z) hydrazone 103. 3-Hydroxy-5,5-dimethyl-cyclohex-2-enone 104 and 3-hydroxy-inden1 -one $\mathbf{1 0 6}$ readily couple with $\mathbf{1 0 0 a} / \mathbf{1 0 0 b}$ in the presence of sodium acetate to give hydrazono derivatives 105 and 107, respectively.

Ravindran (04IJC(A)1245) (Scheme 30) reported that diazotization of 4-aminopyrazol-3-one $\mathbf{3 0}$ followed by coupling with pentane-2,4-dione gave, via diazonium salt 108, 3-[(3-oxopyrazol-4-yl)hydrazono]pentane-2,4-dione $\mathbf{1 0 9 .}$

VII. Condensation

Condensation reactions can be grouped into two categories. The first category involves pyrazol-3-ones with formyl, acyl, nitroso, α, β-unsaturated oxo, 3-oxo-2azobutyric acid ethyl ester or acetonitrile substituents at position 4 or formyl substituents at position 5 and their reaction with carbanions, heterocyclic methylcarbenium salts, primary and secondary amines, diamines, heterocyclic perchlorates, hydroxylamine, hydrazines, urea or thiosemicarbazide. The second category involves pyrazol-3-ones with amino, hydrazino, heteroaromatic amino, acetyl or acetonitrilo groups at position 4 and their reaction with aryl or heteroaromatic aldehydes or cyclic ketones.

(107)

(101)

(106)

(100a)

(104)

(105)

(103)

(100b)

Scheme 30

(112)

Scheme 31
salts, aniline and thiosemicarbazides. On the other hand, 2,4-dihydro-4-(or 5-) formylpyrazol-3-ones have been condensed only with primary amines.

Massarani et al. (69AF2020) (Scheme 31) studied the reactions of 1,2-dihydro-4-formylpyrazol-3-ones 110a-j with acetophenones 111a-j. The reactions worked best in acetic acid containing a catalytic amount of concentrated sulfuric acid and afforded 4-[3-oxo-3-phenyl(or 4-methylphenyl)prop-1-enyl]pyrazol-3-ones 112a-j, in very good yields. The reactions could also take place under basic conditions for 4-formylpyrazol-3-ones $\mathbf{1 1 0} \mathbf{c}, \mathbf{h}-\mathbf{j}$. Thus, reaction of the latter with acetophenones 111c,h-j in ethanol containing 10% aqueous sodium hydroxide, afforded the corresponding pyrazol-3-ones $\mathbf{1 1 2 c}, \mathbf{h}-\mathbf{j}$, where with the exception of compound $\mathbf{1 1 2 c}$, the yields on average were higher than those obtained in an acidic medium.

Kokkinos and Markopoulos (80JPR543) (Scheme 32) condensed 1,2-dihydro-4-formylpyrazol-3-one (antipyrine aldehyde) $\mathbf{1 1 3}$ with benz(imida, oxa, thia or selena)zolium perchlorates $\mathbf{1 1 4 a - d}$ in methanol containing piperazine and obtained $4-\{(E)$-2-[benz(imida, oxa, thia or selena)zol-2-yl]ethenyl\}pyrazol-3-one perchlorates

(a) $\mathrm{X}=\mathrm{NMe}$, (b) $\mathrm{X}=\mathrm{O}$, (c) $\mathrm{X}=\mathrm{S}$, (d) $\mathrm{X}=\mathrm{Se}$

Scheme 32

115a-d. The color change of these compounds as potential dyes was investigated as a function of the heteroatoms. Similar perchlorates were synthesized with the following heterocyclic rings: pyridinium, pyrylium, acridinium, xanthylium, thioxanthylium and chinolinium.

Although condensation of 3-oxopyrazole-4-carbaldehyde 113 with aniline to give 4-phenyliminomethylpyrazol-3-one 116 in 75% yield required heating at $120^{\circ} \mathrm{C}$, condensation between $\mathbf{1 1 3}$ and piperidine-1-carbothioic acid hydrazide 117a or 4,4-dimethylthiosemicarbazide 117b took place in boiling ethanol with a catalytic amount of concentrated sulfuric acid to yield (3-oxopyrazol-4-ylmethylene)hydrazide (\boldsymbol{E})-118a,b in good yield (81AJC1117, 03JCC105) (Scheme 33).

Masarani and co-workers (69AF1721) (Scheme 34) studied the condensation of 2,4-dihydro-4-formyl-5-methyl(or phenyl)pyrazol-3-one 119 with a large number of aliphatic and aromatic primary amines 120a,b and aliphatic secondary amines 123c,d using refluxing ethanol. The primary amines $\mathbf{1 2 0 a}, \mathbf{b}$ afforded the corresponding 4-aminomethylenepyrazol-3-ones $\mathbf{1 2 2 a}, \mathbf{b}$ derived after tautomeric rearrangement of the initial condensation product, intermediate 121. The first step of the reaction between 119 and secondary amines $\mathbf{1 2 3 c} \mathbf{c}$, is addition to give intermediate 124. Loss of water from the latter provided cyclic aminomethylenepyrazol-3-ones $\mathbf{1 2 5 c}$,d. The yields of both reactions are on average very good.

El Khadem and El Ashry (68JCS(C)2248) (Scheme 35) prepared for further study a large variety of imines of 4-azophenyl-2,4-dihydro-5-formylpyrazol-3-one 126. The nucleophiles were hydroxylamine hydrochloride, urea, phenylhydrazine and a large number of arylamines 120. Heating in ethanol gave the corresponding (E / Z)-5-iminopyrazol-3-ones 127 in good yields.

B. Of 4-Acylpyrazol-3-ones

There are several reports on condensation reactions of 4-acylpyrazol-3-ones with primary amines (70LA75, 81AJC1117, 90M1023, 98JMC4001, 00JCR(M)622, 02IJC(A)554, 03JHC963), two of which describe reactions with thiourea and

(113)
(116)

(a) $R=N$
(b) $\mathrm{R}=\mathrm{NMe}_{2}$
(E)-(118)

Scheme 33

2-cyanothioacetamide (00JCR(M)622, 03JHC963) (Scheme 36). Thus, condensation of $\mathbf{1 2 8}$ with benzylamine 120 a and arylamines $\mathbf{1 2 0 b}-\mathbf{e}$ in hot ethanol afforded the (E / Z)-4-iminopyrazol-3-ones 133a-e. Condensation of the carbanion derived from the acetyl group of $\mathbf{1 2 8}$ with arylaldehydes $\mathbf{1 2 9 f}-\mathbf{j}$ in a basic ethanolic medium afforded 4-(3-arylacryloyl)pyrazol-3-ones $\mathbf{1 3 0 f} \mathbf{-} \mathbf{j}$. The latter were heated in ethanol with arylamines $\mathbf{1 3 1 k}, \mathbf{l}$ to afford (E / Z)-4-[1-(4-arylphenylimino)-3-arylallyl]pyrazol-3-ones 132m-p.

Condensation of 4-aminobenzenesulfonamide 135a and 4-amino- N-(heteroaryl)benzenesulfonamides 135b-f with 4-benzoylpyrazol-3-one 134 was reported by Maurya et al. (04IJC(A)763) (Scheme 37) to take place in boiling ethanol under various conditions. With 135a acetone was a co-solvent; with 135 e glacial acetic acid and sodium acetate were added, and with $\mathbf{1 3 5 f}$ a catalytic amount of 1 N hydrochloric acid was used. The corresponding (E / Z)-imines $\mathbf{1 3 6}$ were obtained in good yields.

The condensation between 4 -acylpyrazol-3-ones 137a,b and n-propylamine to give 4-(phenylpropylaminomethylene or 3-phenyl-1-propylaminopropylidene)-pyrazol-3ones $\mathbf{1 3 9 a}, \mathbf{b}$ may go via the addition products $\mathbf{1 3 8 a}, \mathbf{b}$ which lose water by conjugative elimination of hydroxyl anion and deprotonation from position 1 of the ring (98JMC4001) (Scheme 38). More interesting is the reaction between 4-chloroace-tylpyrazol-3-one 140 with thiourea 140a or 2-cyanothioacetamide $\mathbf{1 4 0 b}$ in boiling ethanol with or without triethylamine or in aqueous sodium carbonate at $70^{\circ} \mathrm{C}$, to

$\mathrm{EtOH} / \Delta \left\lvert\, \begin{aligned} & \mathrm{R}^{3} \mathrm{R}^{4} \mathrm{NH} \\ & \mathbf{(1 2 3)}\end{aligned}\right.$

(a) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, 4-\mathrm{HOC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{EtOC}_{6} \mathrm{H}_{4}, 4-\mathrm{EtO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}$ or $4-\mathrm{AcNHC}_{6} \mathrm{H}_{4}$,
(b) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Ph}, 4-\mathrm{HOC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{EtOC}_{6} \mathrm{H}_{4}, 4-\mathrm{EtO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}$ or $4-\mathrm{AcNHC}_{6} \mathrm{H}_{4}$,
(c) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{R}^{4}=\left(\mathrm{CH}_{2}\right)_{4},\left(\mathrm{CH}_{2}\right)_{5},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}$ or $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMe}\left(\mathrm{CH}_{2}\right)_{2}$,
(d) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{R}^{4}=\left(\mathrm{CH}_{2}\right)_{4},\left(\mathrm{CH}_{2}\right)_{5}$ or $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}$

Scheme 34

$R^{1}=\mathrm{H}$ or $\mathrm{Br}, \mathrm{R}^{2}=\mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{PhNH}, \mathrm{Ph}, 2-\mathrm{MeC}_{6} \mathrm{H}_{4}, 3-\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, $2-\mathrm{ClC}_{6} \mathrm{H}_{4}, 3-\mathrm{ClC}_{6} \mathrm{H}_{4}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4}, 4-\mathrm{BrC}_{6} \mathrm{H}_{4}, 2-\mathrm{IC}_{6} \mathrm{H}_{4}, 3-\mathrm{Cl}, 4-\mathrm{BrC}_{6} \mathrm{H}_{4}, 4-\mathrm{NH}_{2} \mathrm{AcC}_{6} \mathrm{H}_{4}$ or $4-\mathrm{NH}_{2} \mathrm{SO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$

(a) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$, (b) $\mathrm{R}=\mathrm{Ph}$, (c) $\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (d) $\mathrm{R}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
(e) $\mathrm{R}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (f) $\mathrm{Ar}=\mathrm{Ph}$, (g) $\mathrm{Ar}=2-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (h) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$
(i) $\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, (j) $\mathrm{Ar}=2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (k) $\mathrm{R}=\mathrm{H}$, (I) $\mathrm{R}=\mathrm{MeO}$
(m) $\mathrm{R}=\mathrm{H}, \mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (n) $\mathrm{R}=\mathrm{H}, \mathrm{Ar}=2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (o) $\mathrm{R}=\mathrm{MeO}$
$\mathrm{Ar}=\mathrm{Ph},(\mathrm{p}) \mathrm{R}=\mathrm{MeO}, \mathrm{Ar}=2-\mathrm{ClC}_{6} \mathrm{H}_{4}$
(134)

Scheme 36

(a) $\mathrm{R}=\mathrm{H}$, (b) $\mathrm{R}=5$-methylisoxazol-3-yl, (c) $\mathrm{R}=$ pyrimidin-2-yl, (d) R = 4-methylpyrimidin-2-yl, (e) 4,6-dimethyl-pyrimidin-2-yl, (f) 2,4-dimethoxypyrimidin-6-yl

Scheme 37

give 4-(2-amino-thiazol-4-yl)pyrazol-3-one 144a or [4-(3-oxopyrazol-4-yl)-thiazol-2yl]acetonitrile $\mathbf{1 4 4 b}$ ($00 \mathrm{JCR}(\mathrm{M}) 622$).

The condensation of 4-acyl-1,2-dihydropyrazol-3-ones 145a-c with ethylenediamine $\mathbf{1 4 6 d}$ or 1,3 -diaminopropane $146 e$ in refluxing ethanol gave the corresponding bipyrazol-3-ones $\mathbf{1 4 7} \mathbf{f}, \mathbf{i}, \mathbf{l}$ and $\mathbf{1 4 7} \mathbf{g}, \mathbf{j}, \mathbf{m}$. Similar treatment of pyrazol-3-ones $\mathbf{1 4 5 a}, \mathbf{b}$

(a) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}$, (b) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Bn}$

Scheme 38
with 1,4-diaminobutane $\mathbf{1 4 6 n}$ afforded the bipyrazol-3-ones $\mathbf{1 4 7 h}$ and $\mathbf{1 4 7 k}$, respectively (99POL3041) (Scheme 39).

Tang et al. (00JPH23) (Scheme 40) heated pyrazol-3-one 148 and thiosemicarbazide in methanol with glacial acetic acid catalyst and isolated the tautomeric mixture $(E / Z) \mathbf{- 1 4 9} / \mathbf{1 5 0}$ in $\mathbf{7 9 \%}$ yield. From an X-ray crystal structural analysis of compound 149/150 it was shown that its photochromic phenomenon was due to

(a) $\mathrm{R}=\mathrm{Ph}$, (b) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me})_{3}$, (c) $\mathrm{CH}(\mathrm{Ph})_{2}$, (d) $\mathrm{n}=2$, (e) $\mathrm{n}=3$, (f) $\mathrm{R}=\mathrm{Ph}, \mathrm{n}=2$,
(g) $R=P h, n=3$, (h) $R=P h, n=4$, (i) $R=\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me})_{3}, \mathrm{n}=2$, (j) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me})_{3}, \mathrm{n}=3$,
(k) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me})_{3}, \mathrm{n}=4$, (I) $\mathrm{R}=\mathrm{CH}(\mathrm{Ph})_{2}, \mathrm{n}=2$, (m) $\mathrm{R}=\mathrm{CH}(\mathrm{Ph})_{2}, \mathrm{n}=3$, (n) $\mathrm{n}=4$

Scheme 39

(149)

(a) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{NHC}(\mathrm{S}) \mathrm{SMe}$
(b) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{NHCOPh}$
(c) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{NHC}(\mathrm{S}) \mathrm{NH}_{2}$,
(d) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NHC}(\mathrm{S}) \mathrm{SMe}$
(151)

Scheme 40

photoisomerization from the enol to the keto form. From infrared spectra analysis an intramolecular proton transfer mechanism was proposed as shown in Scheme 40. Analogous derivatives 151a-d were synthesized by a similar manner.

Fahmy and co-workers (73IJC1) (Scheme 41) used phenylhydrazine both as a reactant and solvent in the condensation with 4-benzoylpyrazol-3-one 152a, at $100^{\circ} \mathrm{C}$

(a) $R^{1}=R^{2}=R^{3}=P h$, (b) $R^{1}=R^{2}=M e, R^{3}=H$, (c) $R^{1}=R^{2}=M e, R^{3}=P h$

Scheme 41
and the product (E / Z)-4-(hydrazonomethyl)pyrazol-3-one 153a was obtained in 90\% yield. On the other hand, Awad (90M1023) and Stachel and Papenberg (81AP65) reported that 4-acetylpyrazol-3-one 152b condensed with hydrazine and ethyl (pyrazol-4-yl)-3-oxopropanoate $\mathbf{1 5 4}$ condensed with phenylhydrazine by heating to reflux in ethanol to afford (E / Z)-4-(hydrazonomethyl)pyrazol-3-one 153b and (pyrazol-5-yl)pyrazol-3-one 156, in excellent yields, respectively. The initial condensation leads to imine 155, which undergoes intramolecular acyl substitution followed by tautomerization.

Reddy and co-workers (05 HC 235) (Scheme 42) treated 4-[3-(4-oxo-4H-chromen-3-yl)acryloyl]pyrazol-3-one 157 with hydroxylamine hydrochloride in pyridine under microwave irradiation, to obtain, after condensation via intermediate $\mathbf{1 5 8}$ followed by intramolecular conjugate addition, the 4-[5-(4-oxo-4H-chromen-3-yl)isoxazol-3-yl]pyrazol-3-one 159, in 63% yield.

Holzer et al. established (03EJOC1209, 03JOC7943) (Scheme 43) that for 4-acylpyrazol-3-ones and their condensed derivatives the medium used for recrystallization plays a crucial role in determining which tautomeric structure these compounds will adopt in the solid state. Single-crystal X-ray analyses have shown that either hydroxypyrazole or pyrazol-3-one structures can exist. On the other hand, by NMR spectroscopy in DMSO- d_{6} solution, mixtures of the 5-hydroxypyrazole and pyrazol-3-one tautomers are present, whereas in CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$ solutions the 5-hydroxypyrazole tautomeric form predominates. The 4-acylpyrazo-3-ones 160a-i, easily accessible from the corresponding 2,5-disubstituted-2,4-dihydro-pyrazol-3-ones

Scheme 42

(a) $R^{1}=R^{2}=M e, R^{3}=P h$, (b) $R^{1}=R^{2}=M e, R^{3}=$ thien-2-yl, (c) $R^{1}=R^{2}=P h, R^{3}=H$,
(d) $R^{1}=P h, R^{2}=M e, R^{3}=H$, (e) $R^{1}=P h, R^{2}=R^{3}=M e$, (f) $R^{1}=R^{2}=P h, R^{3}=M e$,
(g) $R^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}$, (h) $\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Ph}$, (i) $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$

(a) $R=H$, (b) $R=M e$

(a) $\mathrm{Ar}=\mathrm{Ph}$, (b) $\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, (c) $\mathrm{Ar}=4-\mathrm{CIC}_{6} \mathrm{H}_{4}$, (d) $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$

Scheme 44
by heating with acetyl chloride, phenylacetyl chloride or benzoyl chloride with calcium hydroxide in 1,4-dioxan, were transformed into the corresponding oximes 161/162/163a-i by treatment with hydroxylamine hydrochloride in ethanol containing pyridine. For oximes $\mathbf{1 6 1} / \mathbf{1 6 2} / \mathbf{1 6 3 f}$,i single-crystal X-ray analysis and detailed NMR spectroscopic investigations showed that these compounds are present as (Z)configured enaminopyrazol-3-ones $\mathbf{1 6 1}$ in the solid state and in DMSO- d_{6} solution. From the similarities of the chemical shifts, particularly in the ${ }^{13} \mathrm{C}$ NMR spectra, and the results of NOE-difference experiments, pyrazol-3-ones $\mathbf{1 6 1} / \mathbf{1 6 2} / \mathbf{1 6 3 a}-\mathbf{e}, \mathbf{g}, \mathrm{h}$ also exist mainly in this isomeric form. However, in some of these derivatives a second set of minor signals is seen in their NMR spectra. Since there are no signals due to a C $\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ fragment and (E / Z)-oxime mixtures are excluded on the grounds of ${ }^{13} \mathrm{C}$ chemical shifts, a quick exchange between tautomeric forms in solution cannot be excluded. The authors also describe the synthesis of 4-(methoxyaminophenylmethyl-ene)pyrazol-3-one $\mathbf{1 6 5}$ and 4-[hydroxyl(or methoxy)iminophenylmethyl]-pyrazol-3ones 168a,b by respectively treating 2,4-dihydro-4-benzoyl-3 H-pyrazol-3-one $\mathbf{1 6 4}$ with hydroxylamine hydrochloride and 1,2-dihydro-4-benzoyl-3 H -pyrazol-3-one $\mathbf{1 6 6}$ with hydroxylamine hydrochloride or O-methylhydroxylamine hydrochloride $167 \mathbf{a}, \mathbf{b}$, in ethanol containing pyridine.

In Scheme 44 (83AP76), the enolate anion derived from the 4 -acetyl group of pyrazol-3-one 169 in ethanolic 10% aqueous sodium hydroxide was condensed with aromatic aldehydes 129a-d to give the corresponding (E / Z)-4-cinnamoylpyrazol-3ones 170a-d, in $67-86 \%$ yield.

C. Of 4- or 5-Aminopyrazol-3-ones

Condensation of 4-amino-1,2-dihydropyrazol-3-ones with aryl or heteroaryl aldehydes or cyclic ketones are by far the most frequently described reactions of aminopyrazol-3-ones. The reactions take place in cold ethanol, refluxing ethanol or methanol, refluxing dichloromethane with a catalytic amount of p-toluenesulfonic acid, by heating in neat aldehyde at $100^{\circ} \mathrm{C}$ or by microwave heating on a solid support. Several reports (79AP853, 92IJC(B)366, 92PJC899, 01JIC47) (Scheme 45) describe the condensation of 4-aminopyrazol-3-one (4-aminoantipyrine) $\mathbf{3 0}$ with

(a) $\mathrm{R}=$ thien-2-yl, (b) $\mathrm{R}=\mathrm{Ph}$, (c) $4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (d) $\mathrm{R}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}$ (e) $\mathrm{R}=3-\mathrm{HOC}_{6} \mathrm{H}_{4}$, (f) $\mathrm{R}=4-$ $\mathrm{HOC}_{6} \mathrm{H}_{4}$, (g) $\mathrm{R}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (h) $\mathrm{R}=2-\mathrm{ClC}_{6} \mathrm{H}_{4}$ (i) $\mathrm{R}=5-\mathrm{Br}, 2-\mathrm{HOC}_{6} \mathrm{H}_{3}$, (j) $\mathrm{R}=3,5-(\mathrm{Br})_{2}, 2-$ $\mathrm{HOC}_{6} \mathrm{H}_{2}$, (k) $\mathrm{R}=3-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, (I) $\mathrm{R}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, (m) $\mathrm{R}=$ furan-2-yl, (n) $\mathrm{R}=$ pyridin-3-yl, (o) $R=$ pyridin-2-yl, (p) $R=$ pyridin-4-yl, (q) $R=$ pyrrol-2-yl, (r) $R=$ indol-3-yl, (s) 2-chloro-7-methoxyquinolin-3-yl

(a) $\mathrm{R}=\mathrm{H}$, (b) $\mathrm{R}=\mathrm{OH}$

Scheme 45
a variety of aldehydes such as thiophene-2-carbaldehyde 171a and arylaldehydes 171b-k,s in refluxing ethanol, whereas Abou-Ouf et al. (72JDR89) (Scheme 45) used neat 2-hydroxybenzaldehyde $\mathbf{1 7 1 d}$ and 4-methoxybenzaldehyde $\mathbf{1 7 1 1}$ at $100^{\circ} \mathrm{C}$. The products, $(E / Z)-4-[(2$-thienyl or arylmethylidene)amino]pyrazol-3-ones 172a-l,s were obtained in yields between 50% and 85%. Agarwal (95JICS263) reported that after heating to reflux pyrazol-3-one $\mathbf{3 0}$ and furan-2-carbaldehyde $\mathbf{1 7 1 m}$ for 3 h in ethanol, (E)-4-[(furan-2-ylmethylene)amino]pyrazol-3-one $\mathbf{1 7 2 m}$ was isolated. Interestingly, Radhakrishnan and Indrasenan (89IJC(A)234) heated in methanol pyrazol-3-one 30 and pyridine-3-carbaldehyde 171n and obtained (E)-4-[(pyridin-3-ylmethylene)ami-no]pyrazol-3-one 172n, in 95% yield. However, when the same authors (90IJC(A)243) reacted pyrazol-3-one $\mathbf{3 0}$ with pyridine-2-carbaldehyde $\mathbf{1 7 1 0}$ in ethanol at $5^{\circ} \mathrm{C}$ the condensation product was a diastereomeric mixture of $(E / Z)-4$ -[(pyridin-2-ylmethylene)amino]pyrazol-3-one 1720. Again, single isomers of (E)-4[substituted methylene)-amino]pyrazol-3-ones $\mathbf{1 7 2 b}, \mathbf{m}-\mathbf{p}$ were obtained in good yields
when pyrazol-3-one 30 was heated to boiling with the corresponding aldehydes $\mathbf{1 7 1 b}, \mathbf{m}-\mathbf{p}$ in the presence of a catalytic amount of p-toluenesulfonic acid (03JMS375). Vanden Eynde and Fromont (97BSB393) found that condensation of 4-aminopyr-azol-3-one 87 with heteroaromatic aldehydes 171a,m-r worked well under solvent free conditions, using either basic aluminum oxide or poly-4-vinylpyridine (PVP) solid supports and microwave irradiation. The two solid supports gave comparable results. Average yields for (E / Z)-iminopyrazol-3-ones 172a,m-r ranged from 70% to 95% and reaction times varied from 10 to 20 min , well below the times reported when conventional methods were used. Hayvali and co-workers (01JMS223) (Scheme 29B) condensed pyrazol-3-one $\mathbf{3 0}$ with benzaldehyde derivatives 173a,b in boiling methanol and isolated $(E / Z)-4-[($ substituted methylene) amino]pyrazol-3-ones 174a,b.

Similar conditions were used to condense pyrazol-3-one 30 with 5-[4'-(5-formylfuran-2-yl)biphenyl-4-yl]furan-2-carbaldehydes 175a-c to give $(E / Z)-4-\{[5-$ (4'-substituted biphenyl-4-yl)furan-2-ylmethylene]-amino\}pyrazol-3-ones 176a-c in $45 \%, 52 \%$ and 20% yields, respectively (92JOU431) (Scheme 46).

Condensation of pyrazol-3-one 30 with 4-aryl-2,4-dioxobutyric acids 177a-d in ethanol at -2 to $0{ }^{\circ} \mathrm{C}$ gave a mixture of (E / Z)-4-oxo-4-aryl-2-(3-oxopyrazol-4-ylamino)but-2-enoic acids (E / Z)-179a-d (Scheme 47) (03RJOC869). Perhaps 30 initially condenses with butyric acids 177a-d to give intermediate imines 178a-d which then tautomerize to the products $(E / Z) \mathbf{- 1 7 9 a}-\mathbf{d}$. Heating $(E / Z) \mathbf{- 1 8 0}$ in acetic anhydride at $70^{\circ} \mathrm{C}$ caused intramolecular conjugate acyl substitution and gave 4-[5-(4-bromophenyl)-2-oxo-furan-3-ylideneamino]pyrazol-3-one 181.

4-Aminopyrazol-3-ones react efficiently with cyclic ketones in refluxing ethanol. Petrova et al. (69PHA391) (Scheme 48) obtained 4-(5-oxopyrazolidin-4-ylideneami-no)pyrazol-3-one $\mathbf{1 8 3}$ by heating pyrazol-3-one $\mathbf{3 0}$ with pyrazol-3,4-dione 182,

(175)

(a) $\mathrm{R}=\mathrm{H}$, (b) $\mathrm{R}=\mathrm{NO}_{2}$, (c) $\mathrm{R}=\mathrm{MeO}$
(176)

Scheme 46

(a) $\mathrm{R}=\mathrm{Ph}$, (b) $\mathrm{R}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, (c) $\mathrm{R}=4-\mathrm{CIC}_{6} \mathrm{H}_{4}$, (d) $\mathrm{R}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}$
(E/Z)-179

(E/Z)-180

181

Scheme 47
whereas Sengupta and Gupta (82IJC(B)72), Dandia and co-workers (03OPP401) and Jain and co-workers (03SC563) (Scheme 31B), obtained 3-(3-oxopyrazol-4-ylimino)indol-2-ones 185a,b through condensation of pyrazol-3-one $\mathbf{3 0}$ with indan-1,2-diones 184a-h by heating in ethanol, grinding in an agate mortar or reacting at room temperature in ethanol containing glacial acetic acid. The yields were generally over 90%.

(a) $R^{1}=R^{2}=R^{3}=H$, (b) $R^{1}=R^{3}=H, R^{2}=M e$, (c) $R^{1}=R^{3}=H, R^{2}=E t$, (d) $R^{1}=H, R^{2}=R^{3}=M e$, (e) $R^{1}=R^{2}=H, R^{3}=F$, (f) $R^{1}=H, R^{2}=M e, R^{3}=F$, (g) $R^{1}=H, R^{2}=E t, R^{3}=F$, (h) $R^{1}=R^{3}=H, R^{2}=C l$

Scheme 48

(30)

(186)

Scheme 49

In a multi-component reaction of pyrazol-3-one 30, 2-aminobenzoic acid and formic acid at $190^{\circ} \mathrm{C}$ for 1 h under microwave irradiation, the Niementowski reaction gave 3-(3-oxopyrazol-4-yl)-3 H -quinazolin-4-one 186, in 88% yield (03CCA365) (Scheme 49).

D. Of 4-Hydrazonoethylpyrazol-3-ones

Timtcheva et al. (95DP131) (Scheme 50) studied the IR, NMR and the absorption and fluorescence spectra of 16 unsymmetrical azines $\mathbf{1 8 8}$ derived from the condensation of (E / Z)-4-(1-hydrazonoethyl)pyrazol-3-one $\mathbf{1 8 7}$ with various aldehydes 171. Comparisons with the electronic spectra of these compounds and the results of NMR and IR spectroscopy and also PPP-SCF-CI quantum chemical calculations suggest that the predominant tautomeric form in solution is enol $\mathbf{1 8 8}$. The other tautomeric forms of $\mathbf{1 8 8}$ are keto forms 189-191.

(189)

(187)

(191)
$\mathrm{R}=\mathrm{Ph}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4}, 4-\mathrm{FC}_{6} \mathrm{H}_{4}, 4-\mathrm{CHOC}_{6} \mathrm{H}_{4}, 4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, 4-\mathrm{Et}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$, 4-(1-piperidyl) $\mathrm{C}_{6} \mathrm{H}_{4}$, 4-(4-morpholinyl) $\mathrm{C}_{6} \mathrm{H}_{4}$, 4-(1-pyrrolidinyl) $\mathrm{C}_{6} \mathrm{H}_{4}$, 2-naphthyl, 9-anthracenyl, 9-ethyl-3carbazoyl or $4-\left(\mathrm{Me}_{2} \mathrm{~N}\right)$ styryl.

Scheme 51

Scheme 52
E. Of 4-(2-AMINo-1,3-thiazol-4-yl)PYRazol-3-one

The three-component reaction of pyrazol-3-one 192 with s-triazine and pyrrolidine gave the methylideneamino derivative 193 in 76% yield without affecting the pyrazol-3-one ring (82JHC753) (Scheme 51).

F. Of 4-Nitrosopyrazol-3-ones

Wentrup et al. (78AG731) (Scheme 52) condensed 4-nitrosopyrazol-3-one $\mathbf{1 9 4}$ with 3-phenylisoxazol-5(4H)-one 195 in ethanol at $50^{\circ} \mathrm{C}$ with piperidine as catalyst and obtained 4-(3-oxopyrazol-4-ylimino)isoxazol-5-one 196 in about 60% yield.

G. Of 4-(substituted acryloyl)pyrazol-3-ones

The reaction of 4-(3,3-diethoxyacryloyl)pyrazol-3-one 197 with phenylhydrazine in refluxing ethanol afforded 4-(pyrazol-5-yl)pyrazol-3-one 199 in about 70% yield. In the first step addition of phenylhydrazine to the β-carbon of the α, β-unsaturated side chain occurs followed by elimination of ethanol to give intermediate $\mathbf{1 0 7}$ which then condenses intramolecularly (81AP65) (Scheme 53).

Scheme 53

H. Of 2-(3-oxopyrazol-4-ylazo)ketones or Esters

Farghaly et al. (81PHA93) (Scheme 54) adopted an efficient method of synthesizing 4 -substituted azopyrazol-3-one derivatives where the azo group is connected directly to a pyrazolone ring. 2-(3-Oxopyrazol-4-ylazo)-3-oxobutyric acid ethyl ester $\mathbf{2 0 0}$ reacted with 4-substituted thiosemicarbazides 201a-f in glacial acetic acid to give 4-(3-oxopyrazol-4-ylazo)-5-oxopyrazole-1-carbothioic acid amides 202af in $63-75 \%$ yield. Ester 200 reacted also with hydrazine hydrate 203a or substituted hydrazines 203b-k in refluxing glacial acetic acid to afford 4-(5-oxopyrazol-4-ylazo)pyrazol-3-ones 204a-k in 75-80\% yield. Using similar reaction conditions 3-(3-oxopyrazol-4-ylazo)pentane-2,4-dione 205 was condensed with hydrazine hydrate 203a or substituted hydrazines 203b-j,l to give the corresponding 4-(pyrazol-4ylazo) pyrazol-3-ones 206a-j \mathbf{j}, in $50-60 \%$ yield.

Nine years later Farghaly et al. (90AP833) (Scheme 55) described a similar reaction between 205 with 2-hydrazino-3-aryl-3 H -quinazolin-4-ones 207a-d but also used a catalytic amount of concentrated sulfuric acid and isolated 2-[4-(3-oxopyrazol-4-ylazo)pyrazol-1-yl]quinazolin-4-ones 208a-d, in good yield.

Further work by Farghaly et al. (90AP833) (Scheme 56) included the condensation of ester 200 with 2-hydrazino-3-aryl-3H-quinazolin-4-ones 207a-d in refluxing ethanol that afforded 4-hydrazonopyrazol-3-ones 209a-d in $72-83 \%$ yield. Intramolecular acyl substitution between the hydrazone NH and the ester groups of compounds 209a-d in refluxing glacial acetic acid afforded pyrazol-3-ones 210a-d in high yield. The latter compounds could be prepared in one step from ester 200 and hydrazines 207a-d by heating under reflux in glacial acetic acid. It is worth noting that contrary to the previous reactions (Scheme 54) the products described here do not contain an azo function but instead a hydrazone function.

I. Of 2-[(3-oxopyrazol-4-yl)hydrazono]malonic Acid Esters or Substituted Acetonitriles

Elnagdi et al. (82JCS(P1)989) (Scheme 57) condensed hydrazono derivatives 211a-c with hydrazine hydrate by heating in ethanol and obtained (E / Z)-4-[2-(pyrazol-4-ylidene)hydrazinolpyrazol-3-ones 212a-c. In a similar fashion Farghaly et al. (90AP833)

(a) $\mathrm{R}=n-\mathrm{C}_{4} \mathrm{H}_{9}$, (b) $\mathrm{R}=\mathrm{Ph}$, (c) $\mathrm{R}=3-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (d) $\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (e) $\mathrm{R}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, (f) $\mathrm{R}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$

(204)

(a) $R=H$, (b) $R=P h$, (c) $R=2-M e C_{6} H_{4}$, (d) $R=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (e) $\mathrm{R}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (f) $\mathrm{R}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}$, (g) $\mathrm{R}=$ 2,4-($\left.\mathrm{NO}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, (h) $\mathrm{R}=4-\mathrm{H}_{2} \mathrm{NSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (i) $\mathrm{R}=4-\mathrm{MeCONHSO} \mathrm{C}_{6} \mathrm{H}_{4}$, (j) $\mathrm{R}=4$-(2-pyridyl) $-\mathrm{NHSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (k) $\mathrm{R}=4$ - 2 -(4,6-dimethylpyridyl) $\left.\mathrm{NHSO}_{2}\right] \mathrm{C}_{6} \mathrm{H}_{4}$, (I) $\mathrm{R}=4$-(2-pyrimidyl)- $\mathrm{NHSO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$

Scheme 54

(205)

Scheme 55
(200) $+$

(209)

(210)
(a) $\mathrm{Ar}=\mathrm{Ph}$, (b) $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (c) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (d) $\mathrm{Ar}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}$

Scheme 56
prepared [(3-oxopyrazol-4-yl)hydrazono]-1-(4-oxoquinazolin-2-yl)pyrazolidine-3,5-diones 214a-d directly from 2-[(3-oxopyrazol-4-yl)hydrazono]malonic acid diethyl ester 213 and hydrazines $\mathbf{2 0 7}$ by heating in glacial acetic acid containing a catalytic amount of sulfuric acid.

J. Of 3-(3-oxopyrazol-4yl)-3-oxopropionitriles

Elnagdi and co-workers (84AP289) (Scheme 58) described both nucleophilic and electrophilic reactions of 3-(3-oxopyrazol-4-yl)-3-oxopropionitrile 215. Therefore, 215 was condensed with benzaldehyde or salicylaldehyde in refluxing ethanol containing triethylamine and with hydroxylamine, hydrazine hydrochloride or phenylhydrazine to give the corresponding pyrazol-3-one derivatives 216, 217, 218 and 219a,b in, $60 \%, 25 \%, 72 \%$ and 95% yield, respectively.

(211)

(212)
(a) $\mathrm{R}=\mathrm{Me}$, (b) $\mathrm{R}=\mathrm{NH}_{2}$, (c) $\mathrm{R}=\mathrm{OH}$

(a) $\mathrm{Ar}=\mathrm{Ph}$, (b) $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (c) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (d) $\mathrm{Ar}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}$

Scheme 57

Elmaati and co-workers (03JHC481) (Scheme 59) heated 3-(3-oxopyrazol-4-yl)-3oxopropionitrile $\mathbf{2 2 0}$ with readily available 2-dimethylaminomethylene-3-(phenylhy-drazono)-indan-1-one 221 in ethanol containing a catalytic amount of piperidine and isolated pyrazol-3-one derivative 224. The reaction is postulated to occur via initial Michael addition to give intermediate 222, elimination of dimethylamine to $\mathbf{2 2 3}$ followed by cyclization between the enolic OH and nitrile groups.

K. Of Miscellaneous Side Chains

Appropriate side chains at position 4 of pyrazol-3-ones can either intramolecularly cyclize or react with nucleophiles to form otherwise inaccessibly substituted rings.

Holzer et al. (03JOC7943) (Scheme 60) reacted pyrazol-3-ones 225a-h with trichloroacetyl isocyanate, a mild cyclodehydrating reagent, and potassium carbonate in tetrahydrofuran and obtained the corresponding azirinespiropyrazol-3-ones 229a-h $38-64 \%$ yield. No trace of the expected $6 H$-pyrazolo[4,3- d]isoxazoles, resulting from cyclodehydration, were detected. The structure of compounds 229a-h was based on single-crystal X-ray analyses of derivatives $\mathbf{2 2 9 f}, \mathbf{h}$. A possible reaction mechanism envisages a Lossen-type reaction where compounds 226 as vinylogous

Scheme 58

Scheme 59

$\mathrm{X}=\mathrm{CONHCOCCl}_{3}$
(a) $R^{1}=R^{2}=\mathrm{Me}, R^{3}=\mathrm{Ph}$, (b) $R^{1}=R^{2}=M e, R^{3}=$ thien-2-yl, (c) $R^{1}=R^{2}=P h, R^{3}=H$,
(d) $R^{1}=P h, R^{2}=M e, R^{3}=H$, (e) $R^{1}=P h, R^{2}=R^{3}=M e$, (f) $R^{1}=R^{2}=P h, R^{3}=M e$,
(g) $R^{1}=B n, R^{2}=R^{3}=M e$, (h) $R^{1}=B n, R^{2}=M e, R^{3}=P h$

Scheme 60
hydroxamc acids are attacked by trichoroacetyl isocyanate at the OH function. After base-induced abstraction of the NH proton from 226, elimination of OX^{-}from 227 then leads to nitrene $\mathbf{2 2 8}$ which, in contrast to the Lossen reaction, can be stabilized not by rearrangement but by azirine ring closure to afford spiro compounds 229 .

Sayed and co-workers (03MOL322) (Scheme 61) heated pyrazol-3-one 230 with hydrazine hydrate or phenylhydrazine in butan-1-ol and obtained the (3-oxopyrazol4 -yl)pyridazin-3-ones 231a,b in good yields. The reaction most probably occurs by initial condensation between the keto group of the side chain and the hydrazines followed by intramolecular acyl substitution of the intermediate hydrazone. Shaker (03PS1175) found that pyrazolylcyclohexane-spirothiazolidinone 232 underwent cyclodehydration on heating in methanolic sodium hydroxide to give pyrazolyl-cyclohexane-spirothiazolotriazole 233, in 64% yield.

VIII. Nucleophilic Addition

This category of reactions may involve nucleophilic addition either by or to the pyrazol-3-one side-group. The side-group can be a variety of functionalities such as amino, methyl, hydroxyethyl, hydrazonyl, aminoethylidene, carbothioic acid hydrazide, dialkylaminomethylidene or an α, β-unsaturated unit.

(230)

(231)
(a) $\mathrm{R}=\mathrm{H}$, (b) $\mathrm{R}=\mathrm{Ph}$

(232)

(233)

Scheme 61

A. To Isocyanates, Isothiocyanates, or Carbon Disulfide

The most frequently reported reaction of this kind utilizes 4-aminopyrazol-3-one $\mathbf{3 0}$ as the nucleophile. Both aliphatic and aromatic isocyanates 234a-i have been used and the conditions include heating in benzene or stirring at room temperature in chloroform or dichloromethane. The products, pyrazol-3-one ureas 235, were obtained in yields 70-91\% (81PHA91, 92S1223, 96RCB403, 01JCR(S)470) (Scheme 62). 4-Hydroxyethylpyrazol-3-ones 236a-g have also been reported to add to cyclohexylisocyanate or 4-chlorophenylisocyanate in refluxing benzene to afford the ethylcyclohexyl(or aryl)carbamates 237a-g (84CZ285).

The amino group of 2-aminopyrazol-3-ones 238a,b was forced to add to phenylisocyanate on heating with benzene in a sealed tube at $100^{\circ} \mathrm{C}$ for several hours. The 2-(3-oxopyrazol-1-yl)-3-phenylureas 239a,b were obtained in 70\% and 80% yields, respectively (81JHC957) (Scheme 63).

For the reactions of 4-aminopyrazol-3-one $\mathbf{3 0}$ with alkyl or aryl isothiocyanates 240a-l, the preferred conditions were boiling in methanol containing pyridine, boiling in ethanol (80PHA596, 91SUL151, 03CHE1002, 03IJC(B)2006, 03JCC105)

(a) $R^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Cl}, \mathrm{R}^{3}=\mathrm{C}_{6} \mathrm{H}_{11}$, (b) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Cl}, \mathrm{R}^{3}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (c) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Cl}, \mathrm{R}^{3}=\mathrm{C}_{6} \mathrm{H}_{11}$,
(d) $R^{1}=R^{2}=\mathrm{Cl}, R^{3}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (e) $\mathrm{R}^{1}=\mathrm{H}, R^{2}=\mathrm{NO}_{2}, R^{3}=\mathrm{C}_{6} \mathrm{H}_{11}$, (f) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{NO}_{2}, R^{3}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$
(g) $R^{1}=H, R^{2}=M e, R^{3}=C_{6} H_{11}$,

Scheme 62

(Scheme 64), microwave irradiation at $50^{\circ} \mathrm{C}(01 \mathrm{JCC} 73)$ and, in the case of benzoyl isothiocyanates 2400,p heating in DMF (02PCJ77). The (3-oxopyrazol-4-yl)thioureas 241a-l and the 1-aroyl-3-(3-oxopyrazol-4-yl)thioureas were obtained in yields ranging from 56% to 90%.

Addition of the sulfur atom of 3-oxopyrazole-4-carbothioic acid hydrazide $\mathbf{2 4 2}$ to carbon disulfide followed by an intramolecular acyl-type substitution of unstable intermediate 243 gave 4-(5-thioxo[1,3,4]thiadiazol-2-yl)-pyrazol-3-one 244 in 41% yield (01BPA279) (Scheme 65) when heated in ethanolic potassium hydroxide.

(a) $R^{1}=P h, R^{2}=\mathrm{Me}$, (b) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}$

Scheme 63

(30)
(241)
(a) $\mathrm{R}=\mathrm{Et}$, (b) $\mathrm{R}=n-\mathrm{C}_{6} \mathrm{H}_{4}$, (c) $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}$, (d) $\mathrm{R}=\mathrm{Bz}$, (e) $\mathrm{R}=\mathrm{Ph}$, (f) $\mathrm{R}=2-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (g) $\mathrm{R}=3-\mathrm{MeC}_{6} \mathrm{H}_{4}$,
(h) $\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (i) $\mathrm{R}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, (j) $\mathrm{R}=2-\mathrm{CIC}_{6} \mathrm{H}_{4}$, (k) $\mathrm{R}=2-\mathrm{BrC}_{6} \mathrm{H}_{4}$, (I) $\mathrm{R}=$ (m) $\mathrm{R}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}$, (n) $\mathrm{R}=2-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (o) $\mathrm{R}=4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}$
(p) $\mathrm{R}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}$

Scheme 64

Scheme 65

B. To Methyl- N, N-diethylaminoacetylenes

Pyrazol-3-ones 245a-f with methyl- N, N-diethylaminoacetylene 246 in benzene at $0^{\circ} \mathrm{C}$ gave the addition products $247 \mathbf{a}, \mathbf{b}, \mathbf{d}-\mathbf{f}$ in $80-90 \%$ yield but addition product $\mathbf{2 4 7}$ c in only 27% yield. The authors (79JPR43) propose that hydrogen abstraction of

(a) $\mathrm{R}=\mathrm{H}$
(b) $R=M e$
(c) $\mathrm{R}=\mathrm{OMe}$
(d) $\mathrm{R}=\mathrm{NO}_{2}$
(e) $\mathrm{R}=\mathrm{Cl}$
(f) $\mathrm{R}=\mathrm{Br}$

(247)

Scheme 66
the hydrazonyl NH by the aminoacetylene occurs to give the intermediate salt followed by addition (Scheme 66).

C. By Addition-Elimination to α, β-Unsaturated Compounds

El'tsov and co-workers (85JOU596) (Scheme 67) have proposed a mechanism for the reaction of 4-[(dimethylamino)methylidene]-pyrazol-3-one $\mathbf{2 4 8}$ with cyanide ion in the presence of dimethylacetamide followed by the addition of carbon dioxide and then acidification that gives cyano(3-oxopyrazol-4-ylidene)acetic acid 252. Addition of cyanide ion to the α, β-unsaturated functionality of 248 affords 249 which eliminates dimethylamine to give $\mathbf{2 5 0}$. Proton abstraction from $\mathbf{2 5 0}$ gives the pyrazol-3-one salt 251, which is converted into the acid $\mathbf{2 5 2}$ by bubbling in carbon dioxide and then acidifying. The progress of the reaction up to intermediate 251 was monitored by UV and IR spectroscopy.

Reaction of 2-(4-arylidene-5-oxopyrazol-3-yl)-3-dimethylaminopropenals occurs with secondary amines. The reactivities of the α, β-unsaturated carbonyl and dimethylaminoacrolein functionalities of pyrazol-3-ones 253a,b were compared by reaction with piperazine, morpholine or piperidine in boiling ethanol or in hot 2 N

Scheme 67

NaOH . The products were the corresponding aminoacroleins $\mathbf{2 5 4 c} \mathbf{c} \mathbf{h}$ and acroleins $\mathbf{2 5 5 i}, \mathbf{j}$. The reactions show that addition-elimination occurs faster at the acrolein moiety whereas potential addition to the α, β-unsaturated carbonyl moiety is much slower (89CCC706) (Scheme 68).

Ila and co-workers (02JOC4916) (Scheme 69) demonstrated that 5-[4-(2substituted cyclopropyl)-2-methylsulfanyl-4-oxo-but-2-enyl]pyrazol-3-one 258 can be obtained by conjugate addition-elimination of 5-lithiomethylpyrazol-3-one 256, obtained in situ by the action of n-butyllithium on pyrazol-3-one 7, with 1-(2-substituted cyclopropyl)-3,3-bismethylsulfanylpropenone 257. Compound 258 was not characterized but reacted further with ethereal trifluoroborane in refluxing benzene to afford cyclopenta[e]indazol-3-one 259 in 73% yield.

The addition-elimination reaction between 2-cyano-3,3-isomethylsulfanylthioacrylamide 260a, [bis(methylthio)methylidene]malonitrile 260b, bis(methylthio)methylenecyanoacetamide 260c or ethoxy-methylenemalononitrile 260d by 5-aminopyrazol-3-one 30 in refluxing ethanol with piperidine, caused in the first three reactions loss of methyl sulfide ion and in the last reaction loss of ethoxide anion and yielded the corresponding pyrazol-3-one derivatives 261a-d in 75-85\% yield (02SC3509) (Scheme 70).

D. By Michael Addition

Heating 4-(1-aminoethylidene)pyrazol-3-one 262 and benzylidenemalononitrile in ethanol containing piperidine as catalyst afforded 6-(3-oxopyrazol-4-yl)

2 N NaOH

(a) $\mathrm{Ar}=\mathrm{Ph}$, (b) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (c) $\mathrm{Ar}=\mathrm{Ph}, \mathrm{R}=$ piperazinyl,
(d) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=$ piperazinyl, (e) $\mathrm{Ar}=\mathrm{Ph}, \mathrm{R}=$ morpholinyl,
(f) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=$ morpholinyl, (g) $\mathrm{Ar}=\mathrm{Ph}, \mathrm{R}=$ p piperidinyl,
(h) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=$ piperidinyl, (i) $\mathrm{Ar}=\mathrm{Ph}$, (j) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$
(255)

Scheme 68

$$
\mathrm{R}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}
$$

Scheme 69

(30)

(261)
(a) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{SMe}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Et}$, (b) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{SMe}, \mathrm{R}^{3}=\mathrm{CN}$, (c) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{SMe}$, $R^{3}=\mathrm{CONH}_{2}$, (d) $\mathrm{R}^{1}=\mathrm{OEt}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CN}$

Scheme 70
nicotinonitrile 268 in 40% yield (02 JHC 309) (Scheme 71). The reaction may proceed initially by Michael addition of enamine 264 to 263, intramolecular addition of amino to cyano in $\mathbf{2 6 5}$, tautomerization of $\mathbf{2 6 6}$ to $\mathbf{2 6 7}$ and air oxidation of the latter.

IX. Nucleophilic Substitution

A large variety of substitution reactions are known. The leaving group can be attached directly to the pyrazol-3-one ring or be at the end or inside an aliphatic side chain and less seldom on an aromatic ring. Leaving groups include chloride, bromide, hydroxide and methylthio anions as well as secondary or tertiary amines. The pyrazol-3-one ring may bear nucleophilic groups such as amino, alkyl amino, hydroxy or methyl. Nucleophilic substitution of derivatives of carboxylic acids both directly attached to the pyrazol-3-one ring or at the end of aliphatic side chains is quite common. Ring formation via intramolecular acyl substitution of appropriate side chains has also been reported.

A. Of 4-bromo(or 4-hydroxy)pyrazol-3-ones

Krohn and Stenns (89AP351) (Scheme 72) used a 4% aqueous solution of benzyltrimethylammonium hydroxide containing sodium hydroxide to convert 1,2-dihydro-4-bromopyrazol-3-ones 269a,b into the 4-hydroxypyrazol-3-ones 270a,b while Dorn and Ozegowski (98JPR437) demonstrated the ease of displacement of the bromine atom of 3,4-dihydropyrazol-3-one carboxylic acids 271a-c by thiocyanate and azide anions and by hydroxylamine to afford 4 -substituted derivatives 272a-c.

The hydroxyl group of 4-hydroxypyrazol-3-one $\mathbf{2 7 3}$ becomes a leaving group when protonated by dimethylamine hydrochloride in refluxing ethanol. It is plausible that the reaction occurs via displacement of water aided by the mesomeric effect from N -2. Intermediate 274 is then attacked by dimethylamine to give 4-dimethylamino-pyrazol-3-one 275 (72JHC1219) (Scheme 73).

(262)

(263)

(267)
atmospheric O_{2}

(268)

Scheme 71

B. Of 4- or 5-Substituted Methylpyrazol-3-ones

Bromomethyl- $\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimethylmethanaminium iodide and piperidinomethyl substituents on positions 4 or 5 of pyrazol-3-ones are prone to lose bromide, trimethylamine and piperidine, respectively, by appropriate nucleophiles. Thus, 5-[(2-aminoethylamino)methyl]pyrazol-3-ones 278a-e and pyrazol-3-ones 280a,b were obtained in excellent yield by heating 5-bromomethylpyrazol-3-ones 276a-e with 1,2-diaminoethanes 277a-e or pyrazol-3-one 276b with 2 -aminobenzene 2789a or 2-mercaptobenzoic acid 279b in benzene containing potassium carbonate and copper powder (69CPB490, 70CPB1994, 70CPB2058) (Scheme 74).

(269)
$\mathrm{PhCH}_{2}\left(\mathrm{Me}_{3}\right) \mathrm{N}^{+} \mathrm{OH}^{-}$ $\mathrm{NaOH} / \mathrm{H}_{2} \mathrm{O} / \Delta$

(270)
(a) $\mathrm{R}=\mathrm{H}$, (b) $\mathrm{R}=\mathrm{OMe}$

(271)

(272)
(a) $R^{1}=S C N, R^{2}=H$, (b) $R^{1}=N_{3}, R^{2}=H$, (c) $R^{1}=\mathrm{NHOH}, R^{2}=H$
(d) $R^{1}=S C N, R^{2}=\mathrm{Me}$, (e) $R^{1}=N_{3}, R^{2}=\mathrm{Me}$, (f) $\mathrm{R}^{1}=\mathrm{NHOH}, \mathrm{R}^{2}=\mathrm{Me}$
Scheme 72

Scheme 73

Mustafa et al. (64T531) (Scheme 75) reported that 4-piperidinomethylpyrazol-3one $\mathbf{2 8 1}$ could be converted into 4 -arylthiomethylpyrazol-3-ones 282a-d by heating at $150{ }^{\circ} \mathrm{C}$ with thiols 141a-d. The yield of pyrazol-3-ones 282a-d was $70-77 \%$. On the other hand, Messinger (73AP603) (Scheme 75) described the synthesis of 4-(arylsulfonyl)methylpyrazol-3-ones 284a-c by nucleophilic substitution of Mannich base salts of pyrazol-3-ones $\mathbf{2 8 3}$ with sodium sulfinates $\mathbf{1 4 4 a} \mathbf{c}$ in hot DMF. Pyrazol-3-ones 284a-c were obtained in $82 \%, 67 \%$ and 74% yield, respectively.

(a) $\mathrm{R}=\mathrm{H}, \mathrm{R}^{1}=4-\mathrm{EtOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{Et}$,
(b) $\mathrm{R}=\mathrm{Br}, \mathrm{R}^{1}=4-\mathrm{EtOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{Et}$,
(c) $R=\mathrm{Me}, \mathrm{R}^{1}=2$-pyridyl, $\mathrm{R}^{2}=\mathrm{Me}$,
(d) $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=2$-pyridyl, $\mathrm{R}^{2}=\mathrm{Et}$,
(e) $R=B r, R^{1}=2$-pyridyl, $R^{2}=M e$,

Scheme 74

(a) $\mathrm{Ar}=\mathrm{Ph},(b) \mathrm{Ar}=2-\mathrm{MeC}_{6} \mathrm{H}_{4}$,
(c) $\mathrm{Ar}=3-\mathrm{MeC}_{6} \mathrm{H}_{4}$,
(d) $\mathrm{Ar}=2-\mathrm{MeC}_{6} \mathrm{H}_{4}$

(283)

(284)
(a) $\mathrm{Ar}=\mathrm{Ph}$, (b) $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (c) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$

(a) $R^{1}=R^{2}=H$, (b) $R^{1}=R^{2}=E t$, (c) $R^{1}=R^{2}=P h$

Scheme 76

C. Of 4-(2-chloroacetyl)Pyrazol-3-ones or 3-Chloro- N -(3-OXOPYRAZOL-4-YL)PROPANAMIDES

The chlorine atom of 4-(2-chloroacetyl)pyrazol-3-ones 285a-c was displaced relatively easily by 2 -mercapto- 3 H -quinolin- 4 -ones 286a-c in boiling acetone containing potassium carbonate to afford the 4 -substituted pyrazol-3-ones 287a-c in good yields (90AP623) (Scheme 76).

There was more interest in this type of functionalization by Hassanein (99PS101), Guersoy et al. (00EJMC359) and Hassanein again in a more recent paper (03PS1987) who used 4-(2-chloroacetyl)pyrazol-3-one 286 as a substrate for substitution with various nucleophiles (Scheme 77). Thus, 286 was reacted with (2-mercapto-3H-benzoimidazol-5-yl)phenylmethanone 287a in boiling ethanol, with sodium 3,4-dimethoxybenzoate 287b in DMF at $100{ }^{\circ} \mathrm{C}$ or with 2-(4-amino-5-mercapto-4H-[1,2,4]triazol-3-ylmethyl)-2H-phthalazin-1-one 289 in boiling ethanol containing potassium carbonate to yield the corresponding pyrazol-3-ones 288a-b and 291, in $63-96 \%$ yield. The latter reaction is postulated to occur via intermediate 290 which cyclocondenses.

El-Taweel (04PS1267) (Scheme 78) reported two interesting reactions involving 4-chloro-acetylpyrazol-3-one 286. The first reaction is similar to the previous one but takes place in aqueous DMF. It involves displacement of chloride ion from 286 by thioacetamides 292a-d to give sulfide derivatives 293a-d in good yields. In the second reaction thioacetamides 294a,b displace chloride ion from $\mathbf{2 8 6}$ to produce intermediates 295 that cyclocondense to the corresponding pyrazol-3-ones 296a,b.

When 4-(2-chloroacetylamino)pyrazol-3-one 297 was heated with 4 -substituted-5-furan-2-yl[1,2,4]-triazole-3-thiones 298a-e in acetone containing potassium carbonate, substitution occurred to give the corresponding pyrazol-3-ones 299a-e in $63-96 \%$ yield (03M465) (Scheme 79).

The chlorine atom of 3-chloropropanamides $\mathbf{3 0 0} \mathbf{a}-\mathbf{w}$ was displaced relatively easily by amines 301a-w in boiling ethanol to afford the 4-substituted pyrazol-3-ones 302a-w in good yields (68AF850) (Scheme 80).

(286) $+$

$\mathrm{EtOH} / \mathrm{K}_{2} \mathrm{CO}_{3} / \Delta$
(289)

Scheme 77

D. Of 2-(arylhalo)pyrazol-3-ones

The chloro group of 2-(2-chloro-5-nitrophenyl)pyrazol-3-one $\mathbf{3 0 3}$ was displaced by morpholine which was used both as solvent and nucleophile. The reaction was reported by Ainsworth and Suschitzky (67JCS(C)1003) (Scheme 81) and gave 2-(2-morpholin-4-yl-5-nitrophenyl)pyrazol-3-one 304.

E. With 4- or 5-Amino- or 4-(3-aminopropyl)pyrazol-3-ones

An amino group at position 4 or 5 of the pyrazol-3-one ring is a good nucleophile that can displace halogens from aromatic rings, β-amino groups from α, β unsaturated esters, N-methylaniline from benzaminium iodides and the hydroxyl
(286)

(a) $\mathrm{R}=\mathrm{Ph}$, (b) $\mathrm{R}=\mathrm{CN}$, (c)

(294)
(295)
$\downarrow-\mathrm{H}_{2} \mathrm{O}$
(a) $\mathrm{R}=\mathrm{Me}$, (b) R

(296)

Scheme 78

Scheme 79

(a) $R^{2}=R^{3}=E t$, (b) $R^{1}=H, R^{2}=R^{3}=C H_{2} C H=C_{2}$, (c) $R^{1}=H, R^{2}=H, R^{3}=4-E t O C_{6} H_{4}$, (d) $R^{1}=R^{2}=H$, $R^{3}=E t$, (e) $R^{1}=H, R^{2}=R^{3}=\left(\mathrm{CH}_{2}\right)_{5}$, (f) $R^{1}=H, R^{2}=R^{3}=C H M e\left(\mathrm{CH}_{2}\right)_{4}$, (g) $R^{1}=H, R^{2}=R^{3}=$ $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{3}$, (\mathbf{h}) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}(\mathrm{Me})$, (i) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}(\mathrm{Et})\left(\mathrm{CH}_{2}\right)_{2}$, (j) $\mathrm{R}^{1}=\mathrm{H}$, $R^{2}=R^{3}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}(\mathrm{Et})\left(\mathrm{CH}_{2}\right)_{2}$, (k) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}(\mathrm{CHMe})\left(\mathrm{CH}_{2}\right)_{2}$, (I) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{3}=$ $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\left(\mathrm{CH}_{2}\right)_{2}$, (m) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}(\mathrm{Ph})\left(\mathrm{CH}_{2}\right)_{2}$, (n) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{3}=$ $\mathrm{CH}_{2} \mathrm{CHC}(\mathrm{Ph})\left(\mathrm{CH}_{2}\right)_{2}$, (o) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}$, (p) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{2}$, (q) $R^{1}=H, R^{2}=R^{3}=\left(\mathrm{CH}_{2}\right)_{2} N(P h)\left(\mathrm{CH}_{2}\right)_{2}$, (r) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{5}$, (s) $\mathrm{R}^{1}=M e, \mathrm{R}^{2}=\mathrm{R}^{3}=$ $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}(\mathrm{Ph})\left(\mathrm{CH}_{2}\right)_{2}$, (t) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2},(\mathrm{u}) \mathrm{R}^{1}=\mathrm{CH}(\mathrm{Me})_{2}, \mathrm{R}^{2}=\mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{5}$, (v) $\mathrm{R}^{1}=$ $\mathrm{CH}(\mathrm{Me})_{2}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CH}(\mathrm{Me})\left(\mathrm{CH}_{2}\right)_{2},(\mathrm{w}) \mathrm{R}^{1}=\mathrm{CH}(\mathrm{Me})_{2}, \mathrm{R}^{2}=\mathrm{R}^{3}=\left(\mathrm{CH}_{2}\right)_{6}$

Scheme 80

(303)

(304)

Scheme 81

(a) $R=P h$, (b) $R=2-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (c) $\mathrm{R}=3-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (d) $\mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (e) $\mathrm{R}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}$,
(f) $\mathrm{R}=3-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, (g) $\mathrm{R}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, (h) $\mathrm{R}=4-\mathrm{EtO}_{2} \mathrm{CC}_{6} \mathrm{H}_{4}$, (i) $\mathrm{R}=4-\mathrm{AcC}_{6} \mathrm{H}_{4}$, (j) $\mathrm{R}=2-\mathrm{ClC}_{6} \mathrm{H}_{4}$,
(k) $\mathrm{R}=3-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (I) $\mathrm{R}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (m) $\mathrm{R}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}$, (n) $\mathrm{R}=2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (o) $\mathrm{R}=3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$,
(p) $\mathrm{R}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$,

(a) $\mathrm{R}=\mathrm{Me}_{2} \mathrm{CHCH}_{2}$, (b) $\mathrm{R}=\mathrm{PhCH}=\mathrm{CHCH}_{2}$, (c) $\mathrm{R}=\mathrm{Ph}$, (d) $\mathrm{R}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}$,
(e) $\mathrm{R}=3-\mathrm{HOC}_{6} \mathrm{H}_{4}$, (f) $\mathrm{R}=4-\mathrm{HOC}_{6} \mathrm{H}_{4}$, (g) $\mathrm{R}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, (h) $\mathrm{R}=4-\mathrm{OH}$, $3-\mathrm{MeOC}_{6} \mathrm{H}_{3}$, (i) $\mathrm{R}=3-\mathrm{BrC}_{6} \mathrm{H}_{4}$, (j) $\mathrm{R}=3,5-(\mathrm{Br})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (k) $\mathrm{R}=2-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (I) $R=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (m) $\mathrm{R}=4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$, (n) $\mathrm{R}=3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (o) $\mathrm{R}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (p) $R=2$-furfuryl

Scheme 82

group from $\operatorname{NCCH}(\mathrm{R}) \mathrm{OH}$. Mehta and Parekh (86JIC414) (Scheme 82) synthesized a large number of 4-[(4,6-diarylamino-1,3,5-triazin-2-yl)amino]pyrazol-3-ones 306a-q by heating pyrazol-3-one $\mathbf{3 0}$ and 2-chloro-4,6-diarylamino-1,3,5-triazine $\mathbf{3 0 5 a} \mathbf{- q}$ in 1,4-dioxane. The products $\mathbf{3 0 6 a}-\mathbf{q}$ were obtained in yields ranging from 70% to 91%. In route to the synthesis of (3-oxopyrazol-4-yl)sydnonimine hydrochlorides Kamdar et al. (87JIC420) prepared 4-(α-cyanobenzyl-amino)pyrazol-3-ones 308a-p using $\mathrm{RC}(\mathrm{CN})(\mathrm{OH}) \mathrm{H}$, prepared by adding the appropriate aldehyde to aqueous potassium cyanide and acetic acid, with pyrazol-3-one $\mathbf{3 0}$. The yield of 308a-p ranges from 58% to 82%.

By heating together 3-(5-oxooxazol-4-ylidenemethyl)-1 H -quinolin-2-one 309 and 4-aminopyrazol-3-one $\mathbf{3 0}$ in glacial acetic acid, El-Taweel and co-workers (01BCF287) (Scheme 83) obtained the pyrazol-3-one 311. This is the product of

(309)

(30)

(310)

(311)

Scheme 83
initial attack by the amino group of 30 at position 2 of the oxazolin-5-one, ring opening to give intermediate $\mathbf{3 1 0}$ and then ring closure by acyl substitution.

Ring opening of the anhydride group in the two rings of \{bis[2-(2,6-dioxo-morpholin-4-yl)-ethyl]-amino\}acetic acid 312 by two equivalents of 4-aminopyrazol-3-one 30 required only heating up to $60^{\circ} \mathrm{C}$ in aqueous pyridine to give the bispyrazol-3-one-4-amide derivative 313 (03SC2811) (Scheme 84).

In four reports (86ZC301, 03BMC2285, 04S1655, 04SC805) 4- or 5-amino- or 4-(3-aminopropyl)- pyrazol-3-ones were used in nucleophilic acyl-type substitutions with dibutyl phosphorochloridate, N-cyanodithiocarbonimidic acid dimethyl ester, a (thioxomethanesulfinyl)methanethione derivative and (E / Z)-3,5-dimethylpyrazole-1- N nitrocarboxamidine. Thus, substitution of chloride ion from dibutyl

(312)

(313)

Scheme 84

Scheme 85

Scheme 86
phosphorochloridate $\mathbf{3 1 4}$ by the amino group of 4-aminopyrazol-3-one $\mathbf{3 0}$ in benzene containing triethylamine at $90^{\circ} \mathrm{C}$, afforded pyrazol-3-one 315 in 90% yield (86ZC301) (Scheme 85).

Alqaradawi and Elgemeie (04SC805) (Scheme 86) showed that the methylthiolate ion from N-cyanodithiocarbonimidic acid dimethyl ester $\mathbf{3 1 6}$ can be displaced by the

(a) $\mathrm{R}=\mathrm{Ph}$, (b) $\mathrm{R}=2,4,6-(\mathrm{Cl})_{3} \mathrm{C}_{6} \mathrm{H}_{2}$

Scheme 87

Scheme 88
amino group of 4-aminopyrazol-3-one $\mathbf{3 0}$ by heating in ethanol containing piperidine, to give pyrazol-3-one 317.

An uncommon substitution was described by Matysiak and Niewiadomy (03BMC2285) (Scheme 87) who obtained N-(3-oxopyrazol-4-yl)thiobenzamide 320 by heating in methanol 5-aminopyrazol-3-ones 318 with (2,4-dihydroxyphenyl)-[(2,4dihydroxyphenyl)thioxomethanesulfinyl]methanethione 319.

An example of nucleophilic substitution involving a quaternary ammonium salt such as [N-(1,3-benzodithiol-2-ylidene)]- N-methylbenzaminium iodide 321 and 5 -aminopyr-azol-3-one 51 was described by Sprague and Heikes (79S297) (Scheme 88). The reaction required heating in dry DMF at $120^{\circ} \mathrm{C}$ with anhydrous sodium carbonate but iminobenzothiadiazolepyrazol-3-one $\mathbf{3 2 2}$ was obtained in only 34% yield.

The aliphatic amino group of 4-(3-aminopropyl)pyrazol-3-one 323 was nucleophilic enough to displace 3,5 -dimethyl-1 H-pyrazole from (E / Z)-3,5-dimethylpyr-azole-1- N-nitrocarboxamidine $\mathbf{3 2 4}$ by heating in methanol. The product $\mathbf{3 2 5}$ was then catalytically hydrogenated in methanol and formic acid to give N-[3-(3-oxopyrazol-4yl)propyllguanidine 326 after cleavage of the nitro group (04 S 1655) (Scheme 89).

F. With 4- or 5-Hydroxypyrazol-3-Ones

The hydroxy group in positions 4 and 5 of 1,2-dihydro- and 2,4-dihydropyrazol-3ones, respectively, has been used successfully by Krohn and Stenns (89AP351) and

Scheme 89

(a) $\mathrm{R}=\mathrm{Me}$, (b) $\mathrm{R}=\mathrm{Et}$, (c) $\mathrm{R}=n-\operatorname{Pr}$, (d) $\mathrm{R}=i-\operatorname{Pr}$, (e) $\mathrm{R}=n-\mathrm{Bu}$, (f) $\mathrm{R}=\sec -\mathrm{Bu},(\mathrm{g}) \mathrm{R}=$ allyl

Scheme 90

Molinari and Oliva (96JHC479) in nucleophilic substitutions (Scheme 90). The glycosidation of 4-hydroxypyrazol-3-one 327 by bromosugar 328 required heating in toluene in the presence of cadmium carbonate as catalyst. Pyrazol-3-one sugar 329 was obtained in 69% yield. On the other hand, 5-hydroxypyrazol-3-one 330 displaced water from primary, secondary and allylic alcohols $\mathbf{3 3 1 a - g}$ by heating to reflux under catalytic acidic conditions and in the presence of $3 \AA$ molecular sieves. 5-Alkoxypyrazol-3-ones 332a-g were obtained in $24-90 \%$ yield.

5-Hydroxypyrazol-3-one 333 formed the O - and N -acylated pyrazol-3-ones 335a-e with a slight excess of two equivalents of aroyl chlorides $\mathbf{3 3 4 a}-\mathbf{e}$ and triethylamine in boiling dry toluene (98M871) (Scheme 91).

(a) $\mathrm{Ar}=\mathrm{Ph}$, (b) $\mathrm{Ar}=2-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (c) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (d) $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (e) $\mathrm{Ar}=2,4-(\mathrm{Cl})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

Scheme 91

Scheme 92
Under strongly basic conditions such as lithium diisopropylamide (LDA) in anhydrous tetrahydrofuran at $-78^{\circ} \mathrm{C}$, pyrazol-3-one 7 is lithiated at the methyl group of position 5 to form ionic species 336, which is stabilized by conjugation with the carbonyl group to anionic species 337 . The carbanion intermediate $\mathbf{3 3 6}$ is more stable and reacts with methyl iodide or 4-chlorobenzaldehyde to give the corresponding substitution and addition products 338a,b in 82% and 86% yield, respectively (95T10941) (Scheme 92).

Ito et al. (69CB1309, 70CPB2058) (Scheme 93) published in two consecutive papers substitution reactions by 5-mercaptomethylpyrazol-3-ones 339a,b with ethyl bromide, ethyl chloroacetate, allyl bromide or aryl halides $\mathbf{3 4 1} \mathbf{c}-\mathbf{e}$. The preferred conditions involved heating in DMF at $100^{\circ} \mathrm{C}$ in the presence of sodium ethoxide. The products, 5-alkylsulfanylmethylpyrazol-3-ones 340a,b and 5-arylsulfanylmethyl-pyrazol-3-one 342c-e, were obtained in $80-90 \%$ yield.

(339)

$100^{\circ} \mathrm{C}$

(340)

(a) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ or $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
(b) $\mathrm{R}^{1}=\mathrm{Br}, \mathrm{R}^{2}=\mathrm{Et}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ or $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
(c) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NO}_{2}, \mathrm{R}^{4}=\mathrm{H}$
(d) $R^{1}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{NO}_{2}$
(e) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{NO}_{2}, \mathrm{R}^{4}=\mathrm{H}$
(342)

Scheme 93

G. Of Acyl or Imine Substituted Pyrazol-3-ones

3-Oxopyrazole-4-carboxylic acid 343 was treated with thionyl chloride to give the acid chloride 344 which was not isolated but treated with sulfonamides 345a-e to afford the pyrazol-3-ones 346a-e in good yield (76PHA149) (Scheme 94).

The 5-ethoxycarbonylmethylthiomethylpyrazol-3-ones 347a,b have undergone several useful transformations (69CB1309) (Scheme 95). The ester group of 347a,b were hydrolyzed to the corresponding acids 348a,b by heating in ethanolic potassium hydroxide. The acids $\mathbf{3 4 8} \mathbf{a}, \mathbf{b}$ were converted into the acid chlorides $\mathbf{3 4 9}$ a,b by hot thionyl chloride. The latter were then transformed into the esters 351c by heating with the appropriate alcohols $\mathbf{3 5 0}$ c. On the other hand, esters $\mathbf{3 4 7 a}, \mathbf{b}$ with hydrazine hydrate, afforded the corresponding hydrazides $\mathbf{3 5 2 a}, \mathbf{b}$ in 80% and 75% yield, respectively.

Pyrazol-3-one ethyl esters $\mathbf{3 5 3 a}, \mathbf{b}$ were transesterified to the corresponding methyl esters $\mathbf{3 5 4 a}, \mathbf{b}$ by heating first in 15% aqueous hydrochloride acid to obtain the corresponding acids and then heating the acids in saturated methanolic hydrogen chloride (82JOC214) (Scheme 96).

Replacement of the dimethylamino group of three molecules of dimethyl(3-oxopyrazol-4-ylmethylene)ammonium perchlorate 355 by the three amino groups of one molecule of tris(2-aminomethyl)amine 356 in boiling methanolic sodium methoxide, gave the trispyrazol-3-one amine 357, in 73\% yield (03IJC(A)318) (Scheme 97).

(a) $\mathrm{R}=\mathrm{NH}_{2}$, (b) $\mathrm{R}=\left(\mathrm{NH}_{2}\right)_{2} \mathrm{C}=\mathrm{N}$-, (c)

(d) P

(e) R

Scheme 94

$\downarrow \mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH} / \Delta$

(352)
(a) $R=M e$, (b) $R=\mathrm{Br}$, (c) $\mathrm{R}=\mathrm{Me}$ or $\mathrm{Br}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{CH}(\mathrm{Me})_{2}, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Me})_{2}$, or $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Me}_{2}$

Scheme 96

Scheme 97

H. With 1-(3-oxopyrazol-4-yl)-3-substituted Thioureas

1-(3-Oxopyrazol-4-yl)-3-phenylthiourea 358 with malonic acid in acetyl chloride afforded, after consecutive inter and intra acyl substitutions on in situ generated malonic acid dichloride, 1-(3-oxopyrazol-4-yl)-2-thioxopyrimidine-4,6-dione 359 (03IJC(B)2006) (Scheme 98). On the other hand, treatment of 1-(3-oxopyrazol-4-yl)-3-substituted thioureas 358a-c with oxalyl dichloride in refluxing diethyl ether resulted in a similar type of cyclization and produced 1-(3-oxopyrazol-4-yl)-3-substituted-2-thioxoimidazolidine-4,5-diones 360a-c (03IJC(B)2853).

(360)

Scheme 98

X. Solvolysis

A. Of Carbonyl and Arylsulfonylpyrazol-3-ones

Mild solvolytic cleavage of 2-acetyl, 2-aminocarbonyl, alkoxycarbonyl or 2-arylsulfonylpyrazol-3-ones 361a-c by boiling in methanol or ethanol for several hours affords the corresponding pyrazol-3-ones 362a-c (96T1579, 97T5617, 97TL2329, 01T2031) (Scheme 99).

Removal of the acetyl group from N-(3-oxopyrazol-2-yl)acetamides 363a,b with anhydrous hydrazine yielded the 2-aminopyrazol-3-ones 364a,b (81JHC957) (Scheme 100).

Treatment of pyrazol-3-one 365 with aqueous sodium hydroxide followed by acidification resulted in the acid 366 in 73% yield (88JHC139) (Scheme 101).

Boc-deprotection and hydrolysis of the ester group of pyrazol-3-one 334 in boiling trifluoroacetic acid gave the pyrazol-3-one amino acid 335 in only 27% yield (99EJMC967) (Scheme 102).

(a) $\mathrm{R}^{1}=\mathrm{CONHPh}, \mathrm{R}^{2}=\mathrm{SCOPh}$, (b) $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{CO}_{2} \mathrm{Bu}-t, \mathrm{CONH}_{2}$ or CONHPh, $\mathrm{R}^{2}=$ MeO , $\mathrm{EtO}, \mathrm{PhO}, 4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ or $\mathrm{EtCO}_{2} \mathrm{CH}_{2} \mathrm{~S}$, (c) $\mathrm{R}^{1}=\mathrm{CONH}_{2}, \mathrm{R}^{2}=\mathrm{N}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$

Scheme 99

(a) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$, (b) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}$

Scheme 100

Scheme 101

Desulfonation of (E / Z)-2-phenylsulfonylpyrazol-3-ones 369a,b does not occur using the mild conditions described earlier but requires the addition of potassium hydroxide to the methanolic or ethanolic solution. The hydrazone remained unaffected and the products (E / Z)-5-phenyl(or phenylamino)-4-(arylhydrazono)pyr-azol-3-ones $\mathbf{3 7 0 a}, \mathbf{b}$ were obtained in $60-85 \%$ yield (85JIC54) (Scheme 103).

Scheme 102

(a) $\mathrm{R}=\mathrm{Ph}, \mathrm{Ar}=\mathrm{Ph}$, (b) $\mathrm{R}=\mathrm{NHPh}, \mathrm{Ar}=\mathrm{Ph}, 2-\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}$ or $4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$

Scheme 103

B. Of 4-(iminophenylmethyl or phenylaminomethylene)pyrazol-3-

 ONESThe iminophenylmethyl or phenylaminomethylene groups in pyrazol-3-ones 371a or 373b were hydrolyzed by heating in $10-20 \%$ aqueous potassium hydroxide to afford after acidification, the corresponding 4-hydroxy(phenyl)methylidene-, 4-acetyl- or 4-formylpyrazol-3-ones 372a or 374b,c in near quantitative yield (73CB332, 74CPB207, 89JPS239) (Scheme 104).

C. Of (5-OXOPYRAZOL-3-YL)ACETAMIDE OR 4,4-(DIMORPHOLIN-4-YL)PYRAZOL-3-ONE

The hydrolytic removal of the acetamide group from pyrazol-3-ones 375a-c and the morpholino groups from pyrazol-3-one 377 was achieved by heating in aqueous hydrochloric acid and gave 5-hydroxypyrazol-3-ones 376a-c and pyrazol-3,4-dione 378, respectively (65LA134, 68M2157) (Scheme 105).

(371)

(373)
$\xrightarrow[\text { (ii) } \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{KOH} / \mathrm{H}_{2} \mathrm{O}}$
$\xrightarrow[\text { (ii) } \mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{KOH} / \mathrm{H}_{2} \mathrm{O}}$

(374)
(a) $R^{1}=R^{4}=H, R^{2}=R^{3}=\mathrm{Me}$, (b) $R^{1}=P h, 3-\mathrm{MeC}_{6} \mathrm{H}_{4}, 4-$ $\mathrm{ClC}_{6} \mathrm{H}_{4}$, or $4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Ph}$

Scheme 104

(a) $R^{2}=R^{3}=H, R^{1}=M e$, (b) $R^{1}=R^{2}=M e, R^{3}=H$, (c) $R^{1}=R^{2}=R^{3}=M e$

Scheme 105

(379)
(i) $\mathrm{KOH} / \mathrm{MeOH}$
(ii) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$
i) $\mathrm{KOH} / \mathrm{MeOH}$
(ii) $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$

(381)

(380)

(382)
(a) $\mathrm{Ar}=\mathrm{Ph}$, (b) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (c) $\mathrm{Ar}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}$

Scheme 106

Scheme 107

D. Of 4-(ETHOXYCARBONYLMETHYL)PYRAZOL-3-ONES

Singh and co-workers (82IJC(B)869) (Scheme 106) hydrolyzed 2-(thiazol-2-yl)pyrazol-3-one esters 379a-c and 2-(1,3-benzothiazol-2-yl)pyrazol-3-ones 381a-c by heating in methanolic sodium hydroxide and obtained after acidification the respective pyrazol-3-one carboxylic acids 380a-c and 382a-c in near quantitative yield. Some of the compounds exhibited good anti-inflammatory activity.

5-Bromomethylpyrazol-3-one 383 was hydrolyzed to 5-hydroxymethylpyrazol-3one 384 by heating in water (02EJP121) (Scheme 107).

XI. Rearrangement

A. 4-[(2-Nitrophenyl)thio]pyrazol-3-ones

In an attempt to prepare cyclic hydroxylamines Coutts et al. (76CJC993) (Scheme 108) reduced an aqueous alkaline solution of 4-[(2-nitrophenyl)thio]pyrazol-3-ones 385a,b with sodium borohydride in the presence of 10% palladium-on-charcoal. The products were a mixture of spiro[1,3-benzothiazole-2,4'-pyrazol]-3'-ones 390a,b and

4-[(2-mercaptophenyl)amino]pyrazol-3-ones 391a,b. On the other hand, the reduction of pyrazol-3-ones $\mathbf{3 8 5 a}, \mathbf{b}$ in aqueous ethanol with zinc and ammonium chloride resulted in good yields of spiro compounds $\mathbf{3 9 0 a}, \mathbf{b}$. In order to verify the assumption that the spiro compounds 390a,b are obtained first and then further reduced to pyrazol-3-ones 391a,b compound 390a was treated with sodium borohydride in a mixture of 1,4-dioxane and aqueous sodium hydroxide to afford, as expected compound 391a. Thus, the proposed mechanism involves either intramolecular cyclization of carbanion 386 to give addition compound $\mathbf{3 8 7}$ which is further reduced to nitroxide intermediate 389 and then to spiro compound 390 , or reduction of the nitro group in 385 to give nitroso intermediate $\mathbf{3 8 8}$ which then follows similar reductive steps to final product 391.

B. 3-(1,5-DIMETHYL-3-OXO-2-PHENYLPYRAZOL-4-YL)-3-OXOPROPIONITRILE

Pyrazol-3-one 392 reacts with arylidene malononitriles 393a-c in basic ethanolic medium to yield the 6-(3-oxopyrazol-4-yl)-2-oxo-1,2,3,4-tetrahydropyridine/ 2-hydroxy-6-(3-oxopyrazol-4-yl)-3,4-dihydropyridine adducts 397/398a-c in a $1: 1$ ratio (87AP140) (Scheme 109). The mechanism is assumed to proceed via intermediate 396 formed from Michael adduct 394 or possible isomer 395. The pyran derivative 396 rearranges to the pyrid- $2(1 \mathrm{H})$-one/2-hydroxypyridine tautomeric mixture 397/398.

(392)

(393)

(397)

(398)

(394)

(395)

(396)

Scheme 109

Scheme 110

$\left\lvert\, \begin{aligned} & \mathrm{KCN} / \mathrm{Et}_{3} \mathrm{~N} \\ & 18-\mathrm{N} \text {-cown-6 } \\ & \text { toluene } / \Delta\end{aligned}\right.$
(a) $\mathrm{Ar}=\mathrm{Ph}$
(b) $\mathrm{Ar}=2-\mathrm{ClC}_{6} \mathrm{H}_{4}$
(c) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$
(d) $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$
(e) $2,4-(\mathrm{Cl})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

(403)

Scheme 111

C. [5-Oxo-1-arylpyrazol-3-yl]carbamic Acid 4-Nitrophenyl Ester

The carbamic acid aryl ester group of pyrazol-3-one $\mathbf{3 9 9}$ underwent a Smiles rearrangement when heated under reflux in ethanol containing aqueous potassium carbonate and gave 5-(4-nitrophenylamino)pyrazol-3-one 400 in 75% yield (84JOC5247) (Scheme 110).

(a) $\mathrm{R}=\mathrm{H}$, (b) $\mathrm{R}=\mathrm{NO}_{2}$

Scheme 112

D. 5-Hydroxy-1,2-diphenylpyrazol-3-one

5-Hydroxypyrazol-3-ones 401 formed the O - and N -acylatedpyrazol-3-ones 402a-e with a slight excess of two equivalents of aroyl chlorides 31a-e and triethylamine in boiling dry toluene (98 M 871) (Scheme 111). The anionic Fries rearrangement of esters 402b,d was performed by using two equivalents of potassium cyanide, one equivalent of triethylamine and a catalytic amount of 18 -crown- 6 in refluxing toluene. The rearranged pyrazol-3-ones 403b,d were obtained in 55% and 89% yield, respectively.

E. 5-Methyl-4,4-dinitro-2-(4-nitrophenyl)pyrazol-3-one

Thermal decomposition of 4,4-dinitropyrazol-3-ones 404a,b in hot acetic acid or acetonitrile yielded pyrazol-4,5-diones 406a,b (99T10447) (Scheme 112). The reaction is envisaged to occur via a nitro-nitrito rearrangement where intermediate $\mathbf{4 0 5}$ gives off nitrogen oxides.

XII. Elimination

A. Deamination via Diazotization

2-Aminopyrazol-3-ones $\mathbf{4 0 7 a}, \mathbf{b}$ were converted into the 2-unsubstituted derivatives 408a,b by diazotization with nitrous acid (72JHC1219) (Scheme 113).

Selective reductive deamination of one of the morpholino groups of 4,4-dimorpholin-4-ylpyrazol-3-one 409 was achieved by treatment with sodium dithionite in aqueous ethanol. 4-Morpholin-4-ylpyrazol-3-one 410 was obtained in 80% yield (68M2157) (Scheme 114).

Scheme 113

Scheme 114

B. Deformylation

Under acidic conditions, Hantzsch-type intermediates 414a-d prepared by the reaction of pyrazol-3-one 411 with thionyl chloride and pyridine, followed by addition of ethyl-3-amino-2-butenoates 413a-d, undergo an elimination of the 4 -substituent to yield pyrazol-3-one 415 and pyridine 416a-d. The salt 412, which was not isolated, was expected to react with butenoates $\mathbf{4 1 3}$ to yield dihydropyridines 414. Cleavage of the C-4 dihydropyridine/C-4' pyrazol-3-one bond could probably occur at C-4' due to the particular electronic delocalization in the enaminone-like moiety (94H815) (Scheme 115).

C. Deprotection and Decarboxylation

Pyrazolones 417a-d were debenzylated by catalytic hydrogenation to yield the 4-(2-hydroxyphenyl)derivatives 418a-d (89JPS239) (Scheme 116). The tautomeric mixture $\mathbf{4 1 9} / 420$ was decarboxylated over one week by heating the solid sample at $50^{\circ} \mathrm{C}$. The product also existed as a tautomeric mixture of $\mathbf{4 2 1} / \mathbf{4 2 2}$ and was obtained in 90% yield. The coupling constant of the α, β-unsaturated moiety was 9.8 Hz , typical of a (Z)-isomer (91JHC1961).

Debenzylation of N-(3-oxopyrazol-2-yl)-acetamides 423a,b by catalytic hydrogenation in methanol with a catalytic amount of acetic acid afforded the 1-unsubstituted derivative 424a,b (81JHC957) (Scheme 117).

Boc-deprotection of pyrazol-3-one 425 required heating in trifluoroacetic acid and gave the pyrazol-3-one amino acid 426 in 63\% yield (99EJMC967) (Scheme 118).

(a) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}$, (b) $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{Me}$, (c) $\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}$, (d) $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{Ph}$

Scheme 115
The ester group of pyrazol-3-one 427 was hydrolyzed in boiling aqueous 10% sodium hydroxide and the resulting carboxylic acid, without isolation, was decarboxylated by heating in 3 N hydrochloric acid to give pyrazol-3-one 428, in 87\% yield (01JMC3730) (Scheme 119).

Hydrolysis of the ester group of pyrazol-3-one $\mathbf{4 2 9}$ in alkaline solution followed by decarboxylation of the intermediate carboxylic acid $\mathbf{4 3 0}$ under acidic conditions gave the tautomeric pyrazol-3-one/pyrazol-3-ol mixture 431/432 (04H2537) (Scheme 120). In $\mathrm{CDCl}_{3} 431$ existed with its tautomer 1-(4-methoxybenzyl)pyrazol-5-ol 432 in a 1.7:1 ratio. In benzene however 1-(4-methoxybenzyl)pyrazol-3-ol 431 predominated by 90% over the pyrazol-5-ol tautomer. The 4-methoxybenzyl protecting group of 4-acylpyrazol-3-ones 433a-e and (E)-4-dimethylaminomethylidenepyrazol-3-one 436 could be conveniently removed from the pyrazolone nucleus by treatment with trifluoroacetic acid to give 2-unsubstituted adducts 434a-e/435a-e as keto-enol tautomeric mixtures and 1-unsubstituted pyrazol-3-one 437, respectively.

D. By Ring Formation

The exocyclic α, β-unsaturated moiety of 4-arylmethylidenepyrazol-3-ones 438a,b underwent condensation followed by intramolecular substitution with hydrazines or hydroxylamine leading to 5 -membered ring formation. Thus, pyrazol-3-ones 438a,b

(a) $\mathrm{Ar}=\mathrm{H}$, (b) $\mathrm{Ar}=3-\mathrm{MeC}_{6} \mathrm{H}_{4}$, (c) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (d) $\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$

(419)

(420)
$50^{\circ} \mathrm{C}, 1$ week

(421)

(422)

Scheme 116

(a) $\mathrm{R}^{1}=\mathrm{PhCH}_{2}, \mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{Me}$
(b) $\mathrm{R}^{1}=\mathrm{PhCH}_{2}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{Ph}$

Scheme 117

Scheme 118

(427)
(i) 10% aq. NaOH / Δ
(ii) $3 \mathrm{~N} \mathrm{HCl} / \Delta$

(428)

Scheme 119

reacted in ethanol with hydrazine hydrate, phenylhydrazine or hydroxylamine hydrochloride, to afford the pyrazylpyrazol-3-ones $\mathbf{4 3 9 a}, \mathbf{b}$ and 440a,b and the isoxazolylpyrazol-3-ones 441a,b, respectively (89CCC706) (Scheme 121).

Trivedi and Desai (92IJC(B)366) (Scheme 122) reacted 4-arylideneaminopyrazol3 -ones 442 with mercaptoacetic acid or 2-mercaptopropionic acid and obtained the 3 -(pyrazol-4-yl)-2-arylthiazolidin-4-ones 444 in $50-82 \%$ yields. The reaction occurs via the adduct $\mathbf{4 4 3}$ which cyclocondenses to the product.

Pyrazol-3-one 445 was shown to be a versatile precursor by Hamama (01SC1335) (Scheme 123) for the synthesis of binary heterocycles containing a pyrazol-3-one ring. Thus, reaction of pyrazol-3-one 445 with hydrazine hydrate, 1,2-diamino benzene, thiourea or hydroxylamine hydrochloride in refluxing ethanol afforded 4-[(3-oxopyrazol-4-yl)(phenyl)methyl]pyrazol-3-one 446, 3-[(3-oxopyrazol-4-yl)phe-nylmethyl]-benzo[b][1,4]diazepin-2-one 447, 5-[(3-oxopyrazol-4-yl)phenylmethyl]-2-thioxopyrimidin-4-one 448 and 4-[(3-oxopyrazol-4-yl)(phenyl)methyl]isoxazol-5-one 449 , respectively, in moderate to good yields.

XIII. Michael-Type Additions

Conjugate addition readily occurs onto 4-substituted methylenepyrazol-3-ones since the exocyclic double bond and the carbonyl group of these compounds act as a typical α, β-unsaturated group.

Scheme 120

A. By Activated Carbon Compounds

The reaction of (E / Z)-4-arylidenepyrazol-3-ones 450a-c with reactive methylene compounds such as diethyl or dimethylmalonate, ethylcyanoacetate or

$\downarrow_{\mathrm{EtOH} / \Delta}^{\mathrm{PhNHNH}}{ }_{2}$

(a) $\mathrm{R}=\mathrm{Ph}$, (b) $\mathrm{R}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$
(440)

Scheme 121

$R^{1}=\mathrm{Ph}, 4-\mathrm{MeC}_{6} \mathrm{H}_{4}, 2-\mathrm{HOC}_{6} \mathrm{H}_{4}, 3-\mathrm{HOC}_{6} \mathrm{H}_{4}, 4-\mathrm{HOC}_{6} \mathrm{H}_{4}, 4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ or $2-\mathrm{CIC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{H}$ or Me
Scheme 122
cyanoacetamide in alcoholic solution containing sodium hydroxide afforded the corresponding addition products $\mathbf{4 5 1} / \mathbf{4 5 2} \mathbf{c}-\mathbf{j}$. These adducts were almost exclusively enol tautomers 452 (79AP478) (Scheme 124).

Metwally et al. (91LA961) (Scheme 125) reacted 4-(dicyanomethylene)pyrazol-3one 453 with malononitrile 454 a or ethyl cyanoacetate $\mathbf{4 5 4 b}$ in dichloromethane containing triethylamine and obtained stable spiropyrazol-3-ones 457a,b. The formation of these adducts was explained by a 1,2-addition pathway where initial

Scheme 123

(a) $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CN}$, (b) $\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CN}$, (c) $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}$, (d) $\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Me}$, (e) $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Et}$, (f) $\mathrm{Ar}=\mathrm{Ph}, \mathrm{R}^{1}=\mathrm{CN}, \mathrm{R}^{2}=$
CONH_{2}, (g) $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CN}, \mathrm{R}^{2}=\mathrm{CONH}_{2}$, (h) $\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{1}=\mathrm{CN}, \mathrm{R}^{2}=\mathrm{CONH}_{2}$, (i) $\mathrm{Ar}=\mathrm{Ph}$, $R^{1}=C N, R^{2}=\mathrm{CO}_{2} E t$, (j) $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, R^{1}=\mathrm{CN}, \mathrm{R}^{2}=\mathrm{COEt}$

Scheme 124
addition of the carbanion derived from $\mathbf{4 5 4}$ to the exocyclic double bond gives intermediate $\mathbf{4 5 5}$ which intramolecularly cyclizes to $\mathbf{4 5 6}$ and then tautomerizes to the product.

Matsugo and Takamizawa (86JHC1159) (Scheme 126) treated 4-(1-methylethyli-dene)pyrazol-3-ones 458a,b with acetone in refluxing triethylamine and obtained the addition products $\mathbf{4 6 2 a}, \mathbf{b}$ in 80% and 77% yield, respectively. However when

(a) $\mathrm{R}=\mathrm{CN}$
(b) $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$

(457)

(456)

Scheme 125
pyrazol-3-one 458c, with a 4-nitrophenyl substituent at position 4, was reacted under the same conditions, the spiropyrazol-3-one derivative 463 was obtained in 63% yield. The formation of $\mathbf{4 6 3}$ can be explained by initial addition of acetone enolate to the exocyclic double bond to give intermediate 459, enolization to 3-hydroxypyrazol 460, nucleophilic addition of C-4 of the latter to a second molecule of acetone, intramolecular nucleophilic substitution in 461 to give product 463 and elimination of water.

The reaction of 4,4'-bipyrazolylidene-3,3'-dione 464 with diazomethane was investigated by Hennig et al. (89JPR584) (Scheme 127). The mechanism proposed involves initial attack by diazomethane onto position 4 or 4^{\prime} of compound 464 to give intermediate inner salt 465. Intramolecular cyclization of the latter gave dispir-oundeca-3,9-diene-1,7-dione 466 in 47% yield. This compound was found to be unstable upon standing at room temperature. When heated in ethanol it quickly converted to 4-(pyrazol-4-ylmethylene)pyrazol-3-one 467, whose isomeric structure was unambiguously assigned by X-ray crystallography.

The isolation of pyrazolylpyrazol-3-one/bis(pyrazolyl)methane perchlorates 469 / 470b-d was made possible by reaction of the stable benzylidenepyrazol-3-one perchlorate 468b-d with pyrazol-3-one 7. Compound 468a was obtained by the reaction of 7 with 4-dimethylaminobenzaldehyde 171a in methanol containing perchloric acid. When this reaction was performed with benzaldehyde 171b or with arylaldehydes with less cation stabilizing groups such as 4-nitrobenzaldehyde 171c or 4-hydroxy-3-methoxybenzaldehyde 171d, the result was direct isolation of methane perchlorates $\mathbf{4 6 9} / \mathbf{4 7 0 b}-\mathbf{d}$, respectively (83 M 219) (Scheme 128).

The addition of pyrroles $\mathbf{4 7 2 i}-\mathbf{m}$ and indoles $\mathbf{4 7 5} \mathbf{c}-\mathbf{h}$ to 4 -(dicyanomethylene)pyr-azol-3-ones 471a,b gives (pyrazol-4-yl)(pyrrol-3-yl or indol-3-yl)malononitriles

(a) $\mathrm{R}=\mathrm{Cl}$, (b) $\mathrm{R}=\mathrm{Br}$, (c) $\mathrm{R}=\mathrm{NO}_{2}$

Scheme 126
$\mathbf{4 7 3 i}-\mathbf{m}$ and $\mathbf{4 7 6} \mathbf{c}-\mathbf{h}$, respectively (92LA7) (Scheme 129). Malononitriles $\mathbf{4 7 3 i}-\mathbf{m}$ and $476 \mathbf{c}-\mathbf{h}$ were subjected to either photolysis in ethanol or acetone, or thermolysis in DMF at $100^{\circ} \mathrm{C}$ to yield, after elimination of hydrocyanic acid, (E / Z)-4-methylenepyrazol-3-ones $\mathbf{4 7 4 i - m}$ and $477 \mathbf{c}-\mathbf{h}$, respectively. An NMR study of compounds $\mathbf{4 7 4 i}-\mathbf{m}$ and $\mathbf{4 7 7} \mathbf{c}-\mathbf{h}$ showed they exist as $70 / 30 E / Z$ isomeric mixtures. UV-VIS data of several compounds are discussed by means of AM1 and INDO/S-CI calculations. An X-ray crystallographic analysis of compounds 477a is presented.

Junek et al. (92M581) (Scheme 130) demonstrated that the reaction of N, N^{\prime} -diphenyldiaza-18-crown-6 478 with pyrazol-3-one $\mathbf{4 7 9}$ in acetic acid at $40^{\circ} \mathrm{C}$ afforded addition product 480 which could be converted into the (E / Z)-diphenyldiaza-18-crown-6-bispyrazolideneacetonitrile 481 by heating in methanol containing mercury.

Abdel-Rahman and Abdel-Ghany published two papers (89SC1987, 91SC1281) (Scheme 131) concerning the reaction of (E / Z)-arylmethylidenepyrazol-3-ones with

(467)

Scheme 127

Scheme 128

(476)
-HCN $\left\lvert\, \begin{aligned} & \text { hv/EtOH or } \mathrm{Me}_{2} \mathrm{CO} \\ & \text { or DMF } / 100^{\circ} \mathrm{C}\end{aligned}\right.$

(477)

(471)

(473)

(474)
(a) $R^{1}=\mathrm{Me}$, (b) $R^{1}=\mathrm{Ph}$, (c) $R^{1}=\mathrm{Me}, R^{2}=R^{3}=H$, (d) $R^{1}=R^{2}=M e, R^{3}=H,(e) R^{1}=R^{3}=M e, R^{2}=H$, (f) $R^{1}=R^{2}=R^{3}=M e$, (g) $R^{1}=P h, R^{2}=R^{3}=M e$, (h) $R^{1}=M e, R^{2}=R^{3}=R^{4} H$, (i) $R^{1}=R^{2}=M e, R^{3}=R^{4}=H$, (j) $R^{1}=M e, R^{2}=H, R^{3}=R^{4}=M e,(k) R^{1}=R^{2}=R^{3}=R^{4}=M e$, (I) $R^{1}=P h, R^{2}=M e, R^{3}=R^{4} H$

Scheme 129
enamines. In the first paper pyrazol-3-ones 482a-d with 1-piperidinocyclohexane 483 or 1-morpholinocyclohexene 485 in refluxing acetonitrile gave pyrazol-3-ones 484a-d and 486a-d, respectively. In the second paper pyrazol-3-ones 482a-d with enamines 483 or 485 in acetonitrile at room temperature afforded the Diels-Alder type dihydropyran adducts $488 \mathrm{a}-\mathbf{d}\left(\mathrm{X}=\mathrm{CH}_{2}\right.$ or O). Upon heating in acetonitrile, 488a-d ($\mathrm{X}=\mathrm{CH}_{2}$ or O) gave the corresponding Michael-type adducts 484a-d and 486a-d. It was therefore proposed that the reaction of $\mathbf{4 8 2}$ with either $\mathbf{4 8 3}$ or $\mathbf{4 8 5}$ in refluxing acetonitrile proceeds via zwitterionic intermediates 487 that cyclize to products. Further evidence of an intermediate 487 was obtained by the reaction of adducts 488a-d with tetracyanoethylene in refluxing acetonitrile (Scheme 132). It was proposed that products 490 a-d are derived from ring opening of 488 to 487 , nucleophilic addition of the carbanionic form of 487 to tetracyanoethylene and intramolecular cyclization of intermediate 489 to give the final products.

B. By Grignard Reagents

The addition of aliphatic and aromatic Grignard reagents 492a to (E / Z)-4-aryl-idenepyrazol-3-ones 491b was reported by Zimaity et al. (78IJC876) (Scheme 133)

(478)

(479)
$\mathrm{MeCO}_{2} \mathrm{H} / 40^{\circ} \mathrm{C}$

(480)

MeOH/Hg/ Δ
$-2 \mathrm{HCN}$

(481)

Scheme 130
to afford 4-diaryl(or arylalkyl)methylpyrazol-3-ones $493 \mathbf{c}-\mathbf{k}$ in yields ranging from 64% to 73%.

C. By Secondary Amines and Phenols

The additive behavior of the exocyclic double bond in position 4 of $(E / Z)-4-$ arylidenepyrazol-3-ones 494a-c was investigated with secondary amines and thiophenols. Thus, piperidine, morpholine, thiophenol or 4-methylthiophenol gave the corresponding addition products 495d-f, in good yields (72JPR612, 78IJC876) (Scheme 134).

(486)

(482)

(484)

(488)

(487)
(a) $\mathrm{Ar}=\mathrm{Ph}$, (b) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (c) $\mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (d) $\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$

Scheme 131

XIV. Oxidation

Pyrazol-3-ones have been oxidized by a variety of oxidizing agents such as molecular oxygen, bromine, iodine-potassium iodide, ozone in oxygen, hydrogen peroxide, 3-chloroperbenzoic acid, electrooxidation, potassium hexacyanoferrate(III), potassium ferricyanide, aqueous periodic acid, aqueous methanolic sodium
(488)

(487)

Scheme 132
metaperiodate and lead tetraacetate with boron trifluoride etherate, pyridinium chromate and potassium permanganate. Apart from various useful modifications on pyrazol-3-one ring side chains, new rings may be formed, cleavage of side chains have occurred and selective coupling reactions have taken place.

A. With Molecular Oxygen

The oxidation of [(3-oxopyrazolyl)(methyl)amino]methanesulfonate 496 by molecular oxygen, catalyzed by copper sulfate, at pH 5 and $30^{\circ} \mathrm{C}$, conditions that are important for pharmaceutical stability, was studied by Yoshioka et al. (79AP81) (Scheme 135). Three products were isolated, Scheme 135. 4-Formylaminopyrazol-3one 498, 4-aminopyrazol-3-one 30 and N-(3-oxopyrazol-4-yl)formamide 499. Compounds 30 and 499 emerge from a common intermediate 497. 4-Hydroperoxy-pyrazol-3-one 498 is the product of further oxidation of the amino group of compound 30 and N-(3-oxopyrazol-4-yl)formamide 499 is the product of further oxidation of the methyl group of the 4-methylamino substituent of intermediate 497.

(a) $\mathrm{R}^{1}=\mathrm{Me}$, Ph or cyclopentyl,
(b) $\mathrm{R}=\mathrm{Cl}, \mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$,
(c) $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$,
(d) $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$,
(e) $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$,
(f) $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{Ar}=$
(g) $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$,
(h) $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6}$,
(i) $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{Ar}=$

(j) $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{Ar}=4-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$,
(k) $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{1}=$ cyclopentyl, $\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$,

Scheme 133

B. With Bromine or Iodine-Potassium Iodide

The 4-[(5-oxopyrazol-4-yl)arylmethyl]pyrazol-3-ones 500a-s were dissolved in 20% aqueous sodium hydroxide and treated with saturated iodine-potassium iodide to afford the cyclopropane derivatives 501a-s (84JIC640) (Scheme 136).

C. With Ozone

Harnish et al. (69JOC1687) (Scheme 137) introduced a dilute stream of ozone in oxygen into a methylene chloride solution of pyrazol-3-one azomethine $\mathbf{5 0 2}$ and obtained major reaction products 503a-d, and minor products 503g. and 504e,f. Based on the relative rates of disappearance of compounds 502, 503b and 503d $(\mathbf{5 0 2}>\mathbf{5 0 3 b}>\mathbf{5 0 3 d})$ the authors propose (Scheme 138) that ozone adds to the azomethine nitrogen by electrophilic attack, followed by ring closure to form an oxaziridine ring with concomitant loss of an oxygen molecule. An alternative mechanism involves electrophilic π complex formation of the type proposed for

(a) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}=\mathrm{Cl}, \mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, (b) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}=\mathrm{Cl}, \mathrm{Ar}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$,
(c) $\mathrm{R}^{1}=$ pyrid-3-yl, $\mathrm{R}=\mathrm{H}, \mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$, (d) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}=\mathrm{Cl}, \mathrm{R}^{2}=$ piperidino,
(e) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}=\mathrm{NO}_{2}, \mathrm{R}^{2}=$ morpholino, $\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$,
(f) $\mathrm{R}^{1}=$ pyrid-3-yl, $\mathrm{R}=\mathrm{H}, \mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=$ piperidino, morpholino, thiophenolino or 4-methylthiophenolino

Scheme 134

$\downarrow \mathrm{O}_{2} / \mathrm{CuSO}_{4}$

(499)

Scheme 135

ozonation of carbon-carbon double bonds (67JA4473), cationic oxaziridine ring formation and loss of an oxygen molecule to give an oxaziridine derivative.

Demethylation and oxidation of the dimethylamino moiety with ozone was explained by a number of free radical ionic reactions leading to an intermediate hydroxymethylamino derivative. One such sequence was proposed to involve

(a) $R^{1}=R^{2}=P h$, (b) $R^{1}=P h, R^{2}=2-H_{O C} H_{4}$, (c) $R^{1}=P h, R^{2}=3-H O C_{6} H_{4}$, (d) $R^{1}=P h, R^{2}=4-H_{O C} H_{4}$ (e) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (f) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (g) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (h) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=$ $\mathrm{OCH}_{2} \mathrm{Ph}$, (i) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OH}-3$, (j) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}$, (k) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$, (I) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=$ $2-\mathrm{HOC}_{6} \mathrm{H}_{4}$, (m) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=3-\mathrm{HOC}_{6} \mathrm{H}_{4}$, (n) $R^{1}=\mathrm{H}, \mathrm{R}^{2}=4-\mathrm{HOC}_{6} \mathrm{H}_{4}$, (o) $R^{1}=\mathrm{H}, \mathrm{R}=2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (p) $R^{1}=\mathrm{H}$, $R=3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (q) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (r) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OCH}_{2} \mathrm{Ph}$, (s) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OH}-3$

Scheme 136

(a) $R^{1}=R^{2}=\mathrm{Me}$, (b) $R^{1}=H, R^{2}=\mathrm{Me}$, (c) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CHO}$, (d) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{CHO}$,
(e) $R^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}$, (f) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{CHO}$, (g) $\mathrm{R}^{1}=\mathrm{NO}_{2}, R^{2}=\mathrm{NH}_{2}$

Scheme 137

electrophilic attack at the hydrogens α to nitrogen as shown in Scheme 139. The intermediate hydroxylamino derivative may eliminate formaldehyde, leading to demethylated derivatives, or be oxidized by ozone to the formyl derivative and other oxidation products.

D. With Hydrogen Peroxide or 3-Chloroperbenzoic Acid

Oxidation of 4-(substituted methylene)pyrazol-3-ones 505a-k with 30% hydrogen peroxide in methanolic sodium hydroxide afforded 1-oxa-5,6-diazaspiro[2.4]-hept-6-ene-4-ones 506a-k in good yields (83JCS(P1)325) (Scheme 140).

Scheme 138

Scheme 139

The sulfur atoms of 4-(thioxanthen-9-yl)pyrazol-3-one $\mathbf{5 0 7}$ and spiropyrazol-3-one 509 can be oxidized, respectively, with 30% hydrogen peroxide in acetic acid or one equivalent of 4 -chloroperbenzoic acid in dichloromethane to give the corresponding pyrazol-3-one-10,10-dioxide $\mathbf{5 0 8}$ and sulfoxide 510. Treatment of the latter with a

(a) $R^{1}=P h, R^{2}=R^{3}=R^{4}=M e$, (b) $R^{1}=R^{2}=P h, R^{3}=R^{4}=M e$
(c) $R^{1}=4-M e O C 6 H_{4}, R^{2}=R^{3}=R^{4}=M e$, (d) $R^{1}=R^{4}=P h, R^{2}=M e$ $R^{3}=H$, (e) $R^{1}=R^{2}=R^{4}=P h, R^{3}=H$, (f) $R^{1}=4-M e O C 6 H_{4}, R^{2}=M e$, $R^{3}=H, R^{4}=P h,(g) R^{1}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, R^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{Ph}$, (h) $R^{1}=\mathrm{Ph}, R^{2}=\mathrm{Me}, R^{3}=\mathrm{H}, \mathrm{R}^{4}=4-(\mathrm{Cl})_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, (i) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$, $R^{3}=H, R^{4}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, (j) $\mathrm{R}^{1}=\mathrm{Ph}, R^{2}=\mathrm{Me}, R^{3}=\mathrm{H}, \mathrm{R}^{4}=$ 2-naphth-2-yl, (k) $R^{1}=R^{2}=P h, R^{3}=H, R^{4}=$ naphth-2-yl

Scheme 140

$30 \% \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{AcOH}$
(507)

(508)

Scheme 141
further equivalent of 4-chloroperbenzoic acid afforded sulfone 511 (82JHC437, 00CHE152) (Scheme 141).

Oxidative cleavage of pyrazol-4,5-dione-4-[N-(pyrazol-4-yl)]hydrazone 512 occurred with 3-chloro-perbenzoic acid (73G179) (Scheme 142) to give a mixture containing pyrazole diazonium salt 513, oxadiazol-5-one 514, hydrazone derivative

(512)

(515)

(513)

(514)

(516)

(517)

(518)

Scheme 142

515 and the bispyrazole 516 in $72 \%, 0.5 \%, 10 \%$ and 17% yield, respectively. Oxidation of hydrazone $\mathbf{5 1 7}$ under similar conditions gave pyrazol-3-one diazonium salt 518 in 63% yield. The other components were not identified.

E. By Electrooxidation

Electrooxidation of 5-hydroxypyrazol-3-dithiocarboxylate 519 in aqueous ethanol containing lithium chloride took place on a glassy carbon electrode surface at 0.8 V to afford bismethylenedithioacetalpyrazol-3-one 521 in 92% yield (76JCS(P1)1706, 00 SC 4353) (Scheme 143) via the pyrazol-3-one radical 520. Pyrazol-3-one-4dithiocarboxylic acid $\mathbf{5 2 2}$ was oxidized with iodine in DMF to give the 4-[5-(3-oxo-pyrazol-4-ylidine-3-one)-1,2,4-trithioxolan-3-ylidene]pyrazol-3-one 523. The exact mechanism is not known but may involve thio radicals and the elimination of HS^{-}.

(521)

Scheme 143

F. With Potassium and Copper Complexes

Barton et al. (87CJC2082) (Scheme 144) described a standard procedure for the estimation of phenols at low ($\mathrm{ng} / \mathrm{mL}$) concentration in potable water supplies. The method consists in measuring the intensity of the red color formed when the phenol is oxidized with potassium hexacyanoferrate(III) at $\mathrm{pH} 8-10$ in the presence of excess 4 -aminoantipyrine 30. The product of this oxidation using 2 -methylphenol was p-quinonepyrazol-3-one 528a, unequivocally identified by X-ray crystallography. A mechanism was first proposed by Faust and Mikulewicz (67WR509) for phenol itself and more recently modified by Stalikas and co-workers (00ACA315). In the first step the amino group of pyrazol-3-one $\mathbf{3 0}$ is oxidized by hexacyanoferrate(III) anion to cation $\mathbf{5 2 4}$ which couples with the para position of phenol. The resulting adduct $\mathbf{5 2 5}$ is converted into the anionic phenoxide intermediate $\mathbf{5 2 6}$ which is oxidized to intermediate $\mathbf{5 2 7}$ and then converted into the stable p-quinonepyrazol-3-one $\mathbf{5 2 8}$.

(30)

(524)

(525)

(528)
(a) $\mathrm{R}=\mathrm{Me}$, (b) $\mathrm{R}=\mathrm{H}$

Scheme 144
Two other oxidants, potassium peroxomonosulfate and peroxodisulfate, were also tested but proved less efficient than potassium hexacyanoferrate(III).

More recently Tang et al. (02PJC1527) (Scheme 145) coupled 4-aminopyrazol-3one 30 with phenol using hydrogen peroxide catalyzed by the copper complex of 2-hydroxy-1-naphthaldehyde-2-aminothiazole $\left[\mathrm{Cu}^{\mathrm{II}}-(\mathrm{HNATS})_{2}\right]$ in water at pH 6.4 , to yield 4-(4-oxocyclohexa-2,5-dienylideneamino)-pyrazol-3-one 529 and 4-(6-oxo-cyclohexa-2,4-dienylideneamino)pyrazol-3-one 530.

Trihydroxypropyl groups attached to position 5 of pyrazol-3-ones are prone to cleavage during oxidation with aqueous periodic acid and give the aldehyde. This method was used to obtain 5-formylpyrazol-3-ones 532a and 534a,b from the corresponding 5-trihydroxypropylpyrazol-3-ones 531a and 533a,b (68JCS(C)2248, 88PHA77) (Scheme 146).

(30)

(529)

(530)

Scheme 145

G. With Sodium Metaperiodate

Sodium metaperiodate in aqueous methanol oxidatively cleaved pyrazol-3-ones 535a-d into 2-(N^{\prime}-acetyl- N^{\prime}-methyl- N-phenyl-hydrazino)- N-(substituted)-2-oxoacetamides 536a-d, in 64-98\% yield. Under the same reaction conditions pyrazol-3-ones 537a-d were cleaved to give acetic acid N-methyl- N^{\prime}-(2-oxo substituted)- N^{\prime} phenylhydrazide 538f-h and (N^{\prime}-acetyl- N^{\prime}-methyl- N-phenyl-hydrazino)oxoacetic acid 538i, in 49-94\% yield (88AP551) (Scheme 147).

H. With Lead Tetraacetate

Gillmann et al. (94SC2133) (Scheme 148) found a convenient method to prepare methyl 2-bromo-2,3-butadienoate $\mathbf{5 4 0}$ via oxidative ring cleavage of 4 -bromopyr-azol-3-one 539 using lead tetraacetate and boron trifluoride etherate in 59% yield. Compounds such as $\mathbf{5 4 0}$ are valuable building blocks for the synthesis of 2-aryl and 2-alkenyl substituted alka-2,3-dienoates via palladium-catalyzed cross-coupling reactions.

I. With Potassium Permanganate or Pyridinium Chromate

Oxidation of 4-formylpyrazol-3-one $\mathbf{1 1 3}$ with potassium permanganate in aqueous potassium hydroxide gave the pyrazol-3-one-4-carboxylic acid 541 (76PHA149) (Scheme 149), whereas 5-(α-hydroxybenzyl)pyrazol-3-one 542 and 5-benzylpyrazol-3-one $\mathbf{5 4 3}$ were oxidized by pyridinium chromate to 5-benzoylpyrazol-3-one $\mathbf{5 4 4}$ (81JCS(P1)1371).

(531)

$$
\text { (a) } \mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Cl}, \mathrm{Br} \text { or } \mathrm{I}
$$

(532)

(533)
(534)

Scheme 146

XV. Reduction

The reduction of functional groups such as aldehyde, nitro, nitroso, alkene and imino as well as deamination of amines and cleavage of amides has been accomplished by various reducing agents without affecting the pyrazol-3-one ring.

A. By Catalytic Hydrogenation

The best method by far to reduce 4-nitropyrazol-3-ones is by catalytic hydrogenation at three atmospheres in the presence of 5% or 10% palladium on carbon. The reduction can be done in methanol with a few drops of concentrated hydrochloric acid

(a) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$, (b) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}$, (c) $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}$, (d) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=i-\mathrm{Pr}$ (e) $\mathrm{R}=\mathrm{H}$, (f) $\mathrm{R}=\mathrm{Me}$, (g) $\mathrm{R}=\mathrm{Et}$, (h) $\mathrm{R}=i-\mathrm{Pr}$, (i) $\mathrm{R}=\mathrm{OH}$

Scheme 147

Scheme 148
or in methanol alone. Thus, nitro compounds 545a-f were reduced to 4-aminopyrazol3 -ones 546a-f in 49-82\% yield (87EJM239, 01JHC1065) (Scheme 150).

Catalytic hydrogenation of 1,2-dihydropyrazol-3-one 547 with 10% palladium on carbon in ethanol selectively reduced the α, β-unsaturated bond of the 4-hydroxycyclopent-2-en-1-yl substituent and gave 4-(3-hydroxycyclopentyl)pyra-zol-3-one 548 in near quantitative yield (97JHC233) (Scheme 151).

B. With Iron, Zinc or Stannous Chloride

4-Bromo-5-(2-nitrophenylsulfonylmethyl)pyrazol-3-one $\mathbf{5 4 9}$ was both reduced and debrominated by treatment with tin (II) chloride to afford the amino derivative $\mathbf{5 5 0}$ (70CPB2058) (Scheme 152). In a patent by Buckland and Gourley (89EUP347136)

Scheme 149

(545)

(546)
(a) $R^{1}=R^{3}=H, R^{2}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}$, (b) $R^{1}=\mathrm{Me}, R^{2}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}, R^{3}=H$, (c) $R^{1}=H$, $R^{2}=2-\mathrm{HOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{3}=\mathrm{Me}$, (d) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{3}=\mathrm{Me}$, (e) $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=$ $4-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{R}^{3}=\mathrm{Me}$, (f) $\mathrm{R}^{1}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, R^{2}=P h, R^{3}=\mathrm{Me}$,

Scheme 150

(547)

(548)

Scheme 151

(551)

Scheme 152
the reaction of 5-(2-chloro-5-nitroanilino)pyrazol-3-one 551 with iron powder in dichloroacetic acid at $70{ }^{\circ} \mathrm{C}$ was reported to give the corresponding amino derivative 552 in 91% yield.

4-Nitrosopyrazol-3-one $\mathbf{5 5 3}$ has been reduced to the corresponding amine $\mathbf{5 5 4}$ with zinc and acetic acid in ethanol at $5^{\circ} \mathrm{C}$. The amine was not isolated but condensed further with benzaldehyde (79AP853) (Scheme 153). Arkhipova et al. (84EL1123) prepared 4 -aminopyrazol-3-one 30, in $67-92 \%$ yield, by electrochemical reduction of 4-nitrosoantipyrine 555 using a variety of cathodes in $0.15-1.1 \mathrm{M} \mathrm{HCl}$ with Cd $5.6 \AA / \mathrm{dm}^{2}$ at $22^{\circ} \mathrm{C}$. The yield of the amine increased with changing cathodes in the order $\mathrm{Al}<\mathrm{Sn}<\mathrm{Pd}$.

C. With Sodium Borohydride

Treatment of hydrazonotrihydroxypropylpyrazol-3-ones 556a,b with sodium borohydride in ethanol caused reductive cleavage of the dihydroxyethyl chain without affecting the hydrazono group to give hydroxymethylhydrazonopyrazol-3ones 557a,b (88PHA77) (Scheme 154).

The alkene function of 4-[(2-nitrophenyl)methylidene]pyrazol-3-ones 558a-c was selectively reduced with sodium borohydride in 1,4-dioxane to give 4-(2-nitroben-zyl)pyrazol-3-ones 559a-c. Reduction of the nitro group was accomplished by treatment with sodium borohydride in dilute sodium hydroxide containing 10%

Scheme 153

(a) $\mathrm{R}=\mathrm{Cl}$, (b) $\mathrm{R}=\mathrm{NO}_{2}$

Scheme 154
palladium on carbon to afford 4-(2-aminobenzyl)pyrazol-3-ones 560a-c (75CJC3637) (Scheme 155).

The imino group of the 4-methyleneaminobenzene sulfonamide substituent of pyrazol-3-one 561 was selectively reduced by sodium borohydride in methanol to give 4-methylaminopyrazol-3-one 562 in 70% yield (75PHA582) (Scheme 156).

Sodium borohydride in methanol cleaved the tertiary amide bond of the 4-substituent of pyrazol-3-ones 563a-e. 4-Anilinopyrazol-3-one 564a derived from amides 563a-d and 4-(4-methoxyanilino)pyrazol-3-one 564e obtained from amide 563e were isolated in moderate yields (82 H 2309) (Scheme 157).

Coutts et al. (75CJC3637) and Wrzeciono et al. (78PHA264) (Scheme 158) reduced the respective 4-[(2-nitrophenyl)methylidene]pyrazol-3-ones 565a-c and 4-[(2-furfur-yl)methylisene]pyrazol-3-ones 565d-i with sodium borohydride in 1,4-dioxane and obtained the corresponding pyrazol-3-ones 566a-i in moderate to good yields.

Scheme 155

(561)

(562)

Scheme 156

Compounds 566d-i exhibited significant anti-bacterial action against Escherichia coli K12.J5, Salmonella panama Nr. 73 and Staphylococcus aureus 209P strains.

D. With Trialkyl Phosphites

Reduction of 4-arylmethylidenepyrazol-3-ones 567a,b with triethyl phosphite and triisopropyl phosphite, respectively, afforded the corresponding 4-arylmethylidene derivatives 568a,b in 48% and 31% yield as the only products (73JCS(P1)1606) (Scheme 159).

(a) $R^{1}=\mathrm{Me}, R^{2}=H$, (b) $R^{1}=E t, R^{2}=H$, (c) $R^{1}=\mathrm{H}_{2} C=C H C H_{2}, R^{2}=H$
(d) $\mathrm{R}^{1}=n-\mathrm{C}_{4} \mathrm{H}_{9}, \mathrm{R}^{2}=\mathrm{H}$, (e) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{MeO}$

Scheme 157

(a) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, $\mathrm{Ar}=\mathrm{Ph}$, (b) $\mathrm{R}^{1}=\mathrm{Ar}=\mathrm{Ph}, \mathrm{R}^{2}=2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$
(c) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}, \mathrm{R}^{2}=2-\mathrm{NO}_{2}-5-\mathrm{ClC}_{6} \mathrm{H}_{3}$, (d) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=$ furfur- $2-\mathrm{yl}$, $\mathrm{Ar}=2-\mathrm{CIC}_{6} \mathrm{H}_{4}$, (e) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=$ furfur- $2-\mathrm{yl}, \mathrm{Ar}=3-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (f) $\mathrm{R}^{1}=\mathrm{Me}$, $R^{2}=$ furfur-2-yl, $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (g) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=5-\mathrm{NO}_{2}$ furfur-2-yl, $\mathrm{Ar}=2-$ $\mathrm{CIC}_{6} \mathrm{H}_{4}$, (h) $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=5-\mathrm{NO}_{2}$ furfur-2-yl, $\mathrm{Ar}=3-\mathrm{ClC}_{6} \mathrm{H}_{4}$, (i) $\mathrm{R}^{1}=\mathrm{Me}$, $\mathrm{R}^{2}=5-\mathrm{NO}_{2}$ furfur-2-yl, $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$,

Scheme 158

(a) $\mathrm{R}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{Et}$, (b) $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=i-\mathrm{Pr}$

Scheme 159

XVI. Cycloaddition

A. Of Enolate of 1,5-Dimethyl-3-oxo-2-phenylpyrazole-4-
 Carbaldehyde

Substituents on the pyrazol-3-one ring have taken part in both Diels-Alder and 1,3-dipolar cycloaddition reactions. Stabilized dihydropyrazol-3-one enolate 569 generated by deprotonation of pyrazol-3-one $\mathbf{1 1 3}$ with LDA in tetrahydrofuran has undergone facile cycloaddition with 1,1-bismethylsulfanyl-2-nitroethene and yielded directly the indazol-3-one 571 (99JCS(P1)3001) (Scheme 160). It is proposed that the

Scheme 160

(a) $\mathrm{Ar}=\mathrm{Ph}$,
(b) $\mathrm{Ar}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$,
(c) $\mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$,
(d) $\mathrm{Ar}=2-\mathrm{ClC}_{6} \mathrm{H}_{4}$,
(e) $\mathrm{Ar}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$

Scheme 161
initially formed adduct 570 undergoes in situ aromatization via dehydration and elimination of methanethiol anion. Cycloaddition of enolate $\mathbf{5 6 9}$ with dimethyl acetylene dicarboxylate afforded dimethylindazole-5,6-dicarboxylate 572 in 72% yield.

B. C-Bromo- N-phenylnitrile Imide to Arylidenepyrazo-3-ones

1,3-Dipolar cycloaddition of C -bromo- N -phenylnitrile imide $\mathbf{5 7 4}$ to arylidenepyr-azol-3-ones 573a-e in DMF containing triethylamine gave the spiropyrazol-3-ones 575a-e in good yields (01HCA3313) (Scheme 161).

XVII. Miscellaneous Reactions

A. Transformation of Functional Groups

Sakakibara and co-workers (84TL4579) (Scheme 162) reported the facile conversion of the 5-methyl group of pyrazol-3-one $\mathbf{3 0}$ into a cyano group via fused isoselenazole ring formation followed by nitration and reduction. Thus, pyrazol-3one 30 with selenium dioxide in dioxane gave pyrazolo[4,3-c]isoselenazol-6-one 576. Treatment of 576 with nitric acid in the presence of sulfuric acid gave 3-nitro-pyrazolo[4,3-c]isoselenazol-6-one 577. Reduction of the latter with zinc in acetic acid gave the 4 -amino-5-cyanopyrazol-3-one $\mathbf{5 8 0}$. The mechanism of this reaction was

Scheme 162

Scheme 163
envisaged to proceed by reduction of the nitro group of 577 to a nitroso derivative and then ring opening along with reductive deselenation to give 4-imino-5-(nitrosomethylidene)pyrazol-3-one 578, followed by further reduction to 4-amino-3-oxopyrazolecarbaldehyde oxime 579 and finally dehydration to pyrazol-3-one 580.

Pyrazol-3-one 581 was reacted with tosylhydrazide in hot ethanol to give tosylhydrazone derivative 582. The latter was not isolated but after the solvent was removed it was treated with aqueous sodium hydroxide in dichloromethane to afford 5-diazomethylpyrazol-3-one 583, 69\% overall yield (88JHC1681) (Scheme 163).

References

64MI1 R. H. Wiley and P. Wiley, Pyrazolones, Pyrazolidones and Derivatives, in "The Chemistry of Heterocyclic Compounds" (A. Weissberger, ed.), Vol. 20, Interscience Publishers, New York (1964).

64 T 531
65LA134
67BCF88
67JA4473
A. Mustafa, W. Asker, A. H. Harnash, K. M. Foda, H. H. Janine, and N. A. Kassad, Tetrahedron, 20, 531 (1964).
F. Lingens and H. Schneider-Bernlöhr, Liebigs Ann. Chem., 686, 134 (1965).
G. Orzalesi, R. Selleri, O. Caldini, and E. Mura, Boll. Chim. Farm., 106, 88 (1967).

67JCS(C)1003
67WR509
68AF850
68JCS(C)2248
68JCS(C)2251
68M2157
69AF1721 D. Nerdi, E. Masarani, and M. J. Magistretti, Arzneim.-Forsch., 19,
1721 (1969).
69AF2020
69CB1309
P. S. Bailey and A. G. Lane, J. Am. Chem. Soc., 89, 4473 (1967).
D. P. Ainsworth and H. Suschitzky, J. Chem. Soc. (C), 1003 (1967).
S. D. Faust and E. W. Mikulewicz, Water Res., 1, 50 (1967).
H. Müehle, L. Ernst, W. Meier, and H. Renker, Arzneim.-Forsch., 18, 850 (1968).
H. El Khadem and S. H. El Ashry, J. Chem. Soc. (C), 2248 (1968).
H. El Khadem and S. H. El Ashry, J. Chem. Soc. (C), 2251 (1968).
T. Kappe, E. Lender, and E. Ziegler, Monatsh. Chem., 99, 2157 (1968).
A. Massarani, D. Nardi, and M. J. Magistretti, Arzneim.-Forsch., 19, 2020 (1969).
F. Effenberger and W. Hartmann, Chem. Ber., 102, 3260 (1969).

69CPB490
69CPB1309
69JOC1687
$69 \mathrm{JOC1717}$
69PHA391
70CPB1994
70CPB2058
70GEP1930337
70GEP1935272
70JAP(K)6534
70LA75
71PHA439
72JDR89
72JHC1219
72JPR612
73AP603
73CB332
73 G 179

73IJC1
73JCS(P1)1606
74CJC2932
74CPB207
75CJC3637
75PHA582
76CJC993
76JCS(P1)1706
76PHA149
78AG731

78H199
78IJC876
78PHA264
79AP81
79AP478
I. Ito and S. -I. Nagai, Chem. Pharm. Bull., 17, 490 (1969).
I. Ito and T. Ueda, Chem. Pharm. Bull., 17, 1309 (1969).
D. P. Harnish, H. J. Osborn, and B. W. Rossiter, J. Org. Chem., 34, 1687 (1969).
L. A. Caprino and E. G. S. Rundberg, Jr., J. Org. Chem., 34, 1717 (1969).
J. Petrova, M. Jankova, and L. Jankov, Pharmazie, 24, 391 (1969).
I. Ito and T. Ueda, Chem. Pharm. Bull., 18, 1994 (1970).
I. Ito, T. Ueda, and N. Oda, Chem. Pharm. Bull., 18, 2058 (1970).
M. J. Monbaliu and K. R. Van Poucke, German Patent, 1,930,337 (1970), [CA 72, 122953u (1970)].
H. Von Castelmur, German Patent, 1,935,272 (1970), [CA 72, 121524 (1970)].
S. Naito, Jpn. Kokai, 6,534 (1970), [CA 72, 121525 (1974)].
A. Mustafa, A. M. Fleifel, M. I. Ali, and N. M. Hassan, Liebigs Ann. Chem., 739, 75 (1970).
J. Dick, A. Maurer, and P. W. Dick, Pharmazie, 26, 439 (1971).
A. A. Abou-Ouf, W. A. Abdulla, N. L. Selim, and I. A. El-Sakka, J. Drug Res. Egypt, 4, 89 (1972).
G. Adembri, F. Ponticelli, and P. Tedeschi, J. Heterocycl. Chem., 9, 1219 (1972).
A. Sammous, J. Prakt. Chem., 314, 612 (1972).
P. Messinger, Arch. Pharm. (Weinheim, Ger.), 306, 603 (1973).
W. Müller, U. Kraatz, and F. Korte, Chem. Ber., 106, 332 (1973).
M. Crou, A. Frigerio, E. Gremmo, and P. Vita-Finzi, Gazz. Chim. Ital., 103, 179 (1973).
A. H. Harhash, M. H. Elnagdi, N. S. T. Hussein, and S. M. Fahmy, Indian J. Chem., 11, 1 (1973).
T. Nishiwaki, G. Fukuhara, and T. Takahashi, J. Chem. Soc., Perkin Trans. 1, 1606 (1973).
V. Dave, J. B. Stothers, and E. W. Warnhoff, Can. J. Chem., 52, 2932 (1974).
K. Arakawa, T. Miyasaka, and H. Ochi, Chem. Pharm. Bull., 22, 207 (1974).
R. T. Coutts, A.-M. El-Hawari, and D. F. Biggs, Can. J. Chem., 53, 3637 (1975).
U. Wrzeciono and B. Szostak-Rzepiak, Pharmazie, 30, 582 (1975).
R. T. Coutts, A.-M. El-Hawari, N. J. Pound, and R. A. Abramovitch, Can. J. Chem., 54, 993 (1776).
T. Takeshima, N. Fukada, T. Ishii, M. Muraoka, and J. Chem. Soc., J. Chem. Soc., Perkin Trans. 1, 1706 (1976).
U. Wrzeciono and M. Klimczak, Pharmazie, 31, 149 (1976).
C. Wentrup, U. Stutz, and H.-J. Wollweber, Angew. Chem., 90, 731 (1978).
A. Schmitz, U. Kraaz, and F. Korte, Heterocycles, 10, 199 (1978).
T. Zimaity, E. Afsah, and M. Abbas, Indian J. Chem., Sec. B, 16, 876 (1978).
U. Wrzeciono, K. Pietkiewicz, E. Jobke, and W. Michalska, Pharmazie, 33, 264 (1978).
S. Yoshioka, H. Ogata, T. Shibazaki, and A. Ejima, Arch. Pharm. (Weinheim, Ger.), 312, 81 (1979).
H.-H. Otto and H. Schmelz, Arch. Pharm. (Weinheim, Ger.), 312, 478 (1979).

79AP853
79JPR43
79S297
80JA4983
80JPR543
80PHA596
81 AJC1117
81AP65
81JCS(P1)1371
81JHC957
81PHA91
81PHA93
82H2309
82IJC(B) 72
82IJC(B) 869
82JCS(P1)989

82JHC437
82JHC753
82JOC214
83AP76
83JCS(P1)325

83M219
84AP289
84CZ285
84EL1123
84JIC640
84JOC5247
84PHA95
84TL4579
D. Binder, C. R. Noe, and G. Habison, Arch. Pharm. (Weinheim, Ger.), 312, 853 (1979).
G. Desimoni, C. Malaspina, P. P. Righetti, and G. Tacconi, J. Prakt. Chem., 321, 43 (1979).
P. W. Sprague and J. E. Heikes, Synthesis, 297 (1979).
E. M. Kosowar and B. Pazhenchevsky, J. Am. Chem. Soc., 102, 4983 (1980).
K. Kokkinos and C. Markopoulos, J. Prakt. Chem., 322, 543 (1980).
A. M. Farghaly, A. A. B. Hazzaa, and M. S. Abouzeit-har, Pharmazie, 35, 596 (1980).
J. E. Rockley and L. A. Summers, Aust. J. Chem., 34, 1117 (1981).
H.-D. Stachel and G. Papenberg, Arch. Pharm. (Weinheim, Ger.), 314, 65 (1981).
D. Hunter and D. G. Neilson, J. Chem. Soc., Perkin Trans. 1, 1371 (1981).
G. Adembri, A. Camparini, F. Ponticelli, and P. Tedeschi, J. Heterocycl. Chem., 18, 957 (1981).
R. Soliman, Pharmazie, 36, 91 (1981).
A. M. Farghaly, S. M. Khwass, M. A. Khalil, F. M. Sharabi, and T. T. Daabees, Pharmazie, 36, 93 (1981).
K. Hirota, Y. Yamada, J. -I. Haruta, and S. Senda, Heterocycles, 19, 2309 (1982).
A. K. Sengupta and A. A. Gupta, Indian J. Chem., Sec. B, 21, 72 (1982).
S. N. Sawhney, D. R. Kodali, O. M. Prakash, and S. P. Singh, Indian J. Chem., Sec. B, 21, 869 (1982).
M. H. Elnagdi, H. A. Elfahham, M. R. H. Elmoghayar, K. U. Sadek, and G. E. H. Elgemaie, J. Chem. Soc., Perkin Trans. 1, 989 (1982).
I. Okabayashi, J. Heterocycl. Chem., 19, 437 (1982).
A. Kreutzberger, E. Kreutzberger, H. -J. Sattler, H. Amâl, and A. Gürsoy, J. Heterocycl. Chem., 19, 753 (1982).
E. M. Kosower, D. Faust, M. Ben-Shoshan, and I. Goldberg, J. Org. Chem., 47, 214 (1982).
I. A. El-Sakka, A. Kandil, and M. H. El-Moghayar, Arch. Pharm. (Weinheim, Ger.), 316, 76 (1983).
S. N. Eye, A. D. Adams, E. J. Gess, K. S. Ragone, B. J. Kober, M. B. Lamper, P. Umrigar, D. C. Lankin, and G. W. Griffin, J. Chem. Soc., Perkin Trans. 1, 325 (1983).
E. Akgün, T. Kämpchen, and U. Pindur, Monatsh. Chem., 114, 219 (1983).
A.-G. A. El-Agamey, I. El-Sakka, Z. El-Shahat, and M. H. Elnagdi, Arch. Pharm. (Weinheim, Ger.), 317, 289 (1984).
H. Wamhoff and M. S. Atta, Chem.-Ztg., 108, 285 (1984).
T. A. Arkhipova, G. K. Dumbanov, N. A. Nankov, I. A. Avrutskaya, and M. Ya. Fioshin, Elektrokhimiya, 20, 1123 (1984).
S. Devi, A. Nayak, and A. S. Mittra, J. Indian Chem. Soc., 61, 640 (1984).
C.-K. Kim, P. A. Zielinski, and C. A. Maggiulli, J. Org. Chem., 49, 5245 (1984).
M. A. Metwally and E. Afsah, Pharmazie, 39, 95 (1984).
T. Ueda, H. Yoshida, and J. Sakakibara, Tetrahedron Lett., 28, 4579 (1984).

85JIC54
85JOU596
86JHC1159
86JIC414
86ZC301
87AP140
87CJC2082
87EJM239
87JIC420
87JOU1773

88AP551
88JHC139
88JHC1681
88PHA77
89AP351
89CCC706
89EUP347136
89IJC(A)234
89JCR(S)312
89JPR584
89JPS239

89SC1987
90AP623
90AP833
90IJC(A)243
90M1023
91JHC1961
91JIC612
91LA961
M. A. Metwally, M. Y. Yousif, A. M. Ismaiel, and F. A. Amer, J. Indian Chem. Soc., 54 (1985).
N. P. Smirnova, I. Ya. Kvitko, and A. V. El'tsov, J. Org. Chem. USSR (Engl. Transl.), 21, 596 (1985).
S. Matsugo and A. Takamizawa, J. Heterocycl. Chem., 23, 1159 (1986).
L. Mehta and H. Parekh, J. Indian Chem. Soc., 63, 414 (1986).
J. Prihoda, A. Zeman, and E. Herrmann, Z. Chem., 26, 301 (1986).
A.-G. A. Elagamey, E. A. Ghali, A. F. A. Harb, and M. H. Elnagdi, Arch. Pharm. (Weinheim, Ger.), 320, 140 (1987).
R. J. Barton, K. E. Johnson, B. E. Robertson, F. W. Yerhoff, and S. Hu, Can. J. Chem., 65, 2082 (1987).
K. Takayi, M. Tanaka, H. Morita, K. Ogura, K. Ishii, N. Nakata, and M. Ozeki, Eur. J. Med. Chem., 22, 239 (1987).
G. C. Kamdar, H. Parekh, and A. R. Parikh, J. Indian Chem. Soc., 64, 420 (1987).
G. A. Lanovaya, A. S. Mashikhina, V. A. Fedorava, V. P. Mikheeva, and O. D. Bondarenko, J. Org. Chem. USSR (Engl. Transl.), 23, 1773 (1987).
H. Weber and E. Wollenberg, Arch. Pharm. (Weinheim, Ger.), 321, 551 (1988).
K. H. Pilgram and R. D. Skiles, J. Heterocycl. Chem., 25, 139 (1988).
K. Ito and J. Maruyama, J. Heterocycl. Chem., 25, 1681 (1988).
K. Atta, H. Wilde, and S. Hauptmann, Pharmazie, 43, 77 (1988).
K. Krohn and C. Stenns, Arch. Pharm. (Weinheim, Ger.), 322, 351 (1989).
I. M. A. Awad and K. M. Hassan, Collect. Czech. Chem. Commun., 54, 706 (1989).
P. R. Buckland and R. N. Gourley, European Patent, 347,136 (1989), [CA 113, 23905 (1990)].
P. S. Radhakrishnan and P. Indrasenan, Indian J. Chem., Sec. A, 28, 234 (1989).
M. Lissel, A. R. Rohani-Dezhili, and G. Voit, J. Chem. Res. (S), 312 (1989).
L. Hennig, R. Haessner, and K. Rissanen, J. Prakt. Chem., 331, 584 (1989).
V. Colotta, L. Cecchi, F. Melani, G. Palazzino, G. Gilacchioni, C. Martini, G. Giannaccini, and A. Lucacchini, J. Pharm. Sci., 78, 239 (1989).
M. Abdel-Rahman and H. Abdel-Ghany, Synth. Commun., 19, 1987 (1989).
A. Gürsoy, S. Büyüktimkin, S. Demirayak, and A. C. Ekinci, Arch. Pharm. (Weinheim, Ger.), 323, 623 (1990).
A. M. Farghaly, I. Chaaban, M. A. Khalil, and A. A. Bekhit, Arch. Pharm. (Weinheim, Ger.), 323, 833 (1990).
P. S. Radhakrishnan and P. Indrasenan, Indian J. Chem., Sec. A, 67, 243 (1990).
I. M. A. Awad, Monatsh. Chem., 121, 1023 (1990).
B. Stanovnik, L. Golič, P. Kmecl, B. Ornik, J. Svete, and M. Tišler, J. Heterocycl. Chem., 28, 1961 (1991).
S. Sharma and M. S. Bhatia, J. Indian Chem. Soc., 68, 612 (1991).
S. A. M. Metwally, G. M. El-Naggar, and T. I. El-Emary, Liebigs Ann. Chem., 961 (1991).

309	K
91 SC 1281	M. Abdel-Rahman and H. Abdel-Ghany, Synth. Commun., 21, 1281 (1991).
91SUL151	K. A. Al-Rashood and S. M. Bayomi, Sulfur Lett., 13, 151 (1991).
92BCJ1652	I. M. A. Awad, Bull. Chem. Soc. Jpn., 65, 1652 (1992).
92FA319	R. M. Abdel-Rahman, Farmaco, 47, 319 (1992).
92IJC(B)366	G. S. Trivedi and N. C. Desai, Indian J. Chem., Sec. B, 31, 366 (1992).
92JOU431	N. I. Ganushchak, A. I. Lesyuk, N. D. Obushak, L. M. Dzikovskaya, and V. A. Venyrzhanovskii, J. Org. Chem. USSR (Engl. Transl.), 28, 431 (1992).
92LA7	R. Dworczak, W. M. F. Fabian, H. Sterk, C. Kratky, and H. Junek, Liebigs Ann. Chem., 7 (1992).
92M581	H. Junek, P. Biza, and M. Geringer, Monatsh. Chem., 123, 581 (1992).
92PJC899	R. K. Agarwal, P. Dutt, and J. Prakash, Pol. J. Chem., 66, 899 (1992).
92S1223	M. Yu. Balakirev, V. V. Khravutsov, T. A. Berezina., V. V. Martin, and L. B. Volodarsky, Synthesis, 1223 (1992).
94H815	J.-J. Vanden Eynde, A. Mayence, A. Maquestiau, and E. Anders, Heterocycles, 37, 815 (1994).
94SC2133	T. Gillmann, S. Heckhoff, and T. Weeber, Synth. Commun., 24, 2133 (1994).
95DP131	I. Timtcheva, A. Pentchev, St. Metsov, Sn. Bakalova, V. Koleva, and P. Nikolov, Dyes Pigm., 28, 131 (1995).
95JICS263	R. K. Agarwal, J. Ind. Chem. Soc., 72, 263 (1995).
95T10941	K. R. Reddy, A. Roy, I. Hiriyakkanavar, and J. Hiryakkanavar, Tetrahedron, 51, 10941 (1995).
96JHC479	A. Molinari and A. Oliva, J. Heterocycl. Chem., 33, 479 (1996).
96RCB403	N. R. Fedotova, I. A. Litvinov, and O. N. Kataeva, Russ. Chem. Bull., 45, 403 (1996).
96 T 1579	O. A. Attanasi, S. Buratti, P. Filippone, C. Fiorucci, E. Foresti, and D. Giovagnoni, Tetrahedron, 52, 1579 (1996).
97BSB393	J. J. Vanden Eynde and D. Fromont, Bull. Soc. Chim. Belg., 106, 393 (1997).
97JHC233	N. Arnau, J. Cortés, M. Moreno-Mañas, R. Pleixats, and M. Villarroya, J. Heterocycl. Chem., 34, 233 (1997).
97 T 5617	O. A. Attanasi, L. De Crescentini, P. Filippone, E. Foresti, R. Galeazzi, I. Ghiviriga, and A. R. Katritzky, Tetrahedron, 53, 5617 (1997).
97TL2329	O. A. Attanasi, L. De Crescentini, and E. Rossi, Tetrahedron Lett., 38, 2329 (1997).
98JMC4001	P. Chiba, W. Holzer, M. Landau, G. Bechmann, K. Lorenz, B. Plagens, M. Hitzler, E. Richter, and G. Ecker, J. Med. Chem., 41, 4001 (1998).
$98.5 P R 437$	H. Dorn and R. Ozegowski, J. Prakt. Chem., 340, 437 (1998).
98M871	B. Schnell and T. Kappe, Monatsh. Chem., 129, 871 (1998).
99EJMC967	D. Zimmermann, Y. L. Janin, L. Brehm, H. Bräuner-Osborne, B. Ebert, T. N. Johansen, U. Madsen, and P. Krogsgaard-Larsen, Eur. J. Med. Chem., 34, 967 (1999).
99JCS(P1)3001	A. Roy, K. R. Reddy, H. Ila, and H. Junjappa, J. Chem. Soc., Perkin Trans. 1, 3001 (1999).
99POL3041	F. Marchetti, C. Pettinari, R. Pettinari, A. Cingolani, D. Leonesi, and A. Lorenzotti, Polyhedron, 18, 3041 (1999).

99PS101
99T10447
00ACA315
00CHE152
00EJMC359
00JCR(M)622
00JPH23
00SC4353
01AHC(80)73
01BCF287
01BPA279
01HCA3313
01JCC73
01JCR(S)470
01JHC1065
01JIC47
01JMC3730

01JMS223
01RRC363
01SC1335
01T2031
02EJP121
02IJC(A) 554
02JHC309
02JOC4916
02PCJ77
A. Z. B. E. B. Hassanein, Phosphorus, Sulphur and Silicon, 155, 101 (1999).
J. Bergman, S. Bergman, and T. Brimert, Tetrahedron, 55, 10447 (1999).
Y. C. Fiamegos, C. D. Stalikas, G. A. Pilidis, and M. I. Karayannis, Anal. Chim. Acta, 403, 315 (2000).
Y. G. Shermolovich and S. V. Emets, Chem. Heterocycl. Compd. (Engl. Transl.), 36, 152 (2000).
A. Guersoy, S. Demiraya, G. Capan, K. Erol, and K. Vural, Eur. J. Med. Chem. Chim. Ther., 35, 359 (2000).
K. M. Dawood, A. M. Farag, E. A. Ragab, and Z. E. Kandeel, J. Chem. Res. (M), 622 (2000).
X.-C. Tang, D.-Z. Jia, K. Liang, X.-G. Zhang, X. Xia, and Z.-Y. Zhou, J. Photochem. Photobiol. A: Chem., 134, 23 (2000).
A. Oliva, A. Molinari, J. Angulo, R. Schrebler, H. Gómez, and R. Córdova, Synth. Commun., 30, 4353 (2000).
G. Varvounis, Y. Fiamegos, and G. Pilidis, Adv. Heterocycl. Chem., 80, 73 (2001).
F. M. A. El-Taweel, D. A. Ibrahim, and M. A. Hanna, Boll. Chim. Farm., 140, 287 (2001).
M. M. Kandeel, M. S. Abbady, and M. S. K. Youssef, Bull. Pol. Acad. Sci. Chem., 49, 279 (2001).
F. Foti, G. Grassi, F. Risitano, F. Nicolo, and A. Rotondo, Helv. Chim. Acta, 84, 3313 (2001).
J.-P. Li, Q.-F. Luo, Y.-L. Wang, and H. Wang, J. Chin. Chem. Soc. (Taipei), 48, 73 (2001).
Z.-G. Li and R.-Q. Huang, J. Chem. Res. Synop., 11, 470 (2001).
Y. C. Fiamegos, G. A. Pilidis, and G. Varvounis, J. Heterocycl. Chem., 38, 1065 (2001).
R. Khunt, N. Datta, F. Bharmal, and A. R. Parikh, J. Ind. Chem. Soc., 78, 47 (2001).
K. J. Duffy, M. G. Darcy, E. Delorme, S. B. Dillon, D. F. Eppley, C. Erickson-Miller, L. Giampa, C. B. Hopson, Y. Huang, R. M. Keenan, P. Lamb, L. Leong, N. Liu, S. G. Miller, A. T. Price, J. Rosen, R. Shah, T. N. Shaw, H. Smith, K. C. Stark, S.-S. Tian, C. Tyree, K. J. Wiggall, L. Zhang, and J. I. Luengo, J. Med. Chem., 44, 3730 (2001).
Z. Hayvali, M. Hayvali, Z. Kilic, and T. Hoekelek, J. Mol. Struct., 597, 223 (2001).
P. Ionita, T. Constantinescu, H. Caldararu, G. Ionita, and T. M. Caproiu, Rev. Roum. Chim., 46, 363 (2001).
W. S. Hamama, Synth. Commun., 31, 1335 (2001).
G. Abbiati, A. Arcadi, O. A. Attanasi, L. De Crescentini, and E. Rossi, Tetrahedron, 57, 2031 (2001).
M. Sheha, A. Khedr, and H. Elsherief, Eur. J. Pharm. Sci., 17, 121 (2002).
R. C. Maurya, B. Shukla, and A. Pandey, Indian J. Chem., Sec. A, 41, 554 (2002).
R. A. Ahmed, M. M. Kandeel, M. S. Abbady, and M. S. K. Youssef, J. Heterocycl. Chem., 39, 309 (2002).
S. Nandi, U. K. S. Kumar, H. Ila, and H. Junjappa, J. Org. Chem., 67, 4916 (2002).
U. A. Baltabaev, A. G. Makhsumov, U. K. Zakirov, I. D. Babaev, and K. Shukurullaev, Pharm. Chem. J. (Engl. Transl.), 36, 77 (2002).

02PHA829
02 PJC 1527
02SC3509
03BMC2285
03CCA365
03CHE1002

03EJOC1209
03IJC(A)318
$03 \mathrm{IJC}(\mathrm{B}) 2006$
03IJC(B)2853
03JCC105
03JHC481
03JHC963
03JMS375
03JOC7943
03M465
03MOL322
03OPP401
03 PS 1175
03PS1987
03RJOC869
03SC563
03SC2811
03 TL3843
04AHC(87)141
04H2537
04IJC(A)1245
04IJC(A) 763
04PS1267
L. Kiep, S. Maderner, and K. Seifert, Pharmazie, 57, 829 (2002).
B. Tang, T. X. Yue, M. Du, Y. Wang, Z. Z. Chen, and H. J. Wang, Pol. J. Chem., 76, 1527 (2002).
H. G. Elgemeie, A. M. Elzanate, A. H. Elghandour, and S. A. Ahmed, Synth. Commun., 32, 3509 (2002).
J. Matysiak and A. Niewiadomy, Bioorg. Med. Chem., 11, 21285 (2003).
M. Kidwai, S. Rastogi, R. Mohan, and T. Ruby, Croat. Chem. Acta, 76, 365 (2003).
L. Yu. Chumakova, A. M. Demchenko, A. N. Krasovsky, T. V. Dolishnyak, and M. O. Lozinskii, Chem. Heterocycl. Compd. (Engl. Transl.), 39, 1002 (2003).
W. Holzer, K. Hahn, T. Brehmer, R. M. Claramunt, and M. PerezTorralba, Eur. J. Org. Chem., 7, 1209 (2003).
M. Ru, L. Shuoliang, Y. Rudong, Y. Lan, and Y. Wenbing, Indian J. Chem., Sec. A, 42, 318 (2003).
M. Kidwai, R. Mohan, B. Dave, and R. Venkataramanan, Indian J. Chem., Sec. B, 42, 2006 (2003).
N. Ulusoy, E. Guersu, S. Oezkirimli, A. C. Ekinci, and I. Dikici, Indian J. Chem., Sec. B, 42, 2853 (2003).
A. K. Al-Sawaf, S. Hernandez-Ortega, J. Valdes-Martinez, J. K. Swearingen, and D. X. West, J. Chem. Crystallogr., 33, 105 (2003).
T. M. A. Elmaati, S. B. Said, N. S. A. Elenein, N. M. Knadeir, and M. M. Sofan, J. Heterocycl. Chem., 40, 481 (2003).
G. Kaupp, F. A. Amer, M. A. Metwally, and E. Abdel-Latif, J. Heterocycl. Chem., 40, 963 (2003).
R. Montalvo-Gonzalez and A. Ariza-Castolo, J. Mol. Struct., 655, 375 (2003).
W. Holzer, R. M. Claramunt, M. Perez-Torralba, D. Guggi, and T. H. Brehmer, J. Org. Chem., 68, 7943 (2003).
N. Ulusoy, O. Ates, O. Kuecuekbasmaci, M. Kiraz, and Y. Yegenoglu, Monatsh Chem., 134, 465 (2003).
G. H. Sayed, A. A. Hamed, G. A. Meligi, W. E. Boraie, and M. Shafik, Molecules, 8, 322 (2003).
A. Dandia, R. Singh, and K. Arya, Org. Prep. Proced. Int., 35, 401 (2003).
R. M. Shaker, Phosphorus, Sulfur and Silicon, 178, 1175 (2003).
A. Z. A. El-B. Hassanein, Phosphorus, Sulfur and Silicon, 178, 1987 (2003).
A. E. Rubstov and V. V. Zalesov, Russ. J. Org. Chem., 39, 869 (2003).
S. C. Jain, J. Sinha, S. Bhagat, W. Errington, and C. E. Olsen, Synth. Соттии., 33, 563 (2003).
H. A. Tang, S. Yang, and R. D. Yang, Synth. Commun., 33, 2811 (2003).
J. Fu and S. J. Shuttleworth, Tetrahedron Lett., 44, 3843 (2003).
G. Varvounis, Y. Fiamegos, and G. Pilidis, Adv. Heterocycl. Chem., 87, 73 (2004).
G. A. Eller and W. Holzer, Heterocycles, 63, 2537 (2004).
R. Ravindran, Indian J. Chem., Sec. A, 43, 1245 (2004).
R. C. Maurya, A. Pandey, and D. Sutradher, Indian. J. Chem., Sec. A, 43, 763 (2004).
F. M. A. El-Taweel, Phosphorus, Sulfur and Silicon, 179, 1267 (2004).
J. A. Castillo-Melendez and B. T. Golding, Synthesis, 1655 (2004).

05 HC 235
S. Y. Alqaradawi and H. G. Elgemeie, Synth. Commun., 34, 805 (2004).
N. P. Reddy, Y. T. Reddy, and V. N. Naveen, Heterocycl. Commun., 11, 235 (2005).

Recent Progress in 1,2,4-Triazolo[1,5-a]pyrimidine Chemistry

Gunther Fischer
Geibelstraße 15, D-04129 Leipzig, Germany

I. Introduction 144
A. General Survey 144
B. Scope and Limitation 144
C. Nomenclature 145
II. Syntheses 145
A. 5-Amino-1,2,4-triazoles and 1,3-Bifunctional Synthons 145
B. Other Pyrimidine Ring Syntheses 155
C. 2-Hydrazinopyrimidines and One-Carbon Synthons 155
D. Other Triazole Ring Syntheses 160
E. Nonheterocyclic Precursors 162
III. Structure 162
A. Theoretical Methods 162
B. Molecular Dimensions. 164
C. Molecular Spectra. 164
D. Thermodynamic Properties 174
E. Tautomerism 174
F. Betain and Mesoionic Structures 176
IV. Reactivity 177
A. Triazolopyrimidines as Bases and Acids 177
B. Ring Alkylation 178
C. Electrophilic Reactions at Carbon Ring Atoms 181
D. Nucleophilic Addition 182
E. Ring Cleavage 185
F. Nucleophilic Substitution of Functional Groups at the Rings 188
G. Introduction and Transformation of Individual Substituents 193
H. Reactivity of Side Chains 196
V. Applications 201
A. Pharmaceutical Uses 201
B. Agrochemical Uses 202
C. Uses in Information Recording 204
D. Other Uses 205
List of Abbreviations 205
References 205

I. Introduction

A. General Survey

1,2,4-Triazolo[1,5-a]pyrimidines (TPs) continue to play an important role in pharmaceutics, agrochemistry, photography, and other fields. They likewise attract attention in synthetic, analytical, and theoretical chemistry.

Since the preceding review ($93 \mathrm{AHC}(57) 81$) about 250 chemical articles were published by the groups of Desenko, Elnagdi, Reiter ($c f$. 98MI1), Rusinov, Stanovnik, and Yang (cf. 03MI6), and by numerous other authors. Several handbook contributions (84CHEC(5)847, 87CH(47), 88MI1, 92CH(47II), 96CHECII(8)417) and a short review (97MI8) dealing with TPs in a wider context deserve mentioning. Further, there is a partially overlapping review treating all four nitrogen-bridgehead triazolopyrimidine structures (98AHC(72)127).

B. Scope and Limitation

This review is based on the present author's earlier compilation (93AHC(57)81) and covers the literature to the end of 2005 together with some 2006 work. The organization of the material follows that of the 1993 review as far as possible. Patents are included provided they reveal important aspects of synthesis or application.

Tricyclic derivatives are dealt with when the additional ring is a carbocyclic one. Isomeric 1,2,4-triazolo[4,3-a]pyrimidines (Section II,C) and partially reduced TPs (Sections II,A,6 and IV,D) are mentioned only when they are precursors, potential intermediates, or reaction products of TPs.

(1a)

(1b)

(1c)

(2)

Scheme 1

C. Nomenclature

1,2,4-Triazolo[1,5-a]pyrimidines are numbered as in formula 1a (Scheme 1). The common name in the photographic literature is 1,3,3a,7-tetraazaindenes with different numbering (1b) (cf. 04MI10, p. 16). A third kind of numbering TPs (the indolizin numbering 1c) is preferred by Reiter's group (93JHC1325 and further articles) and some other authors (93MI4, 06AX(E)o1252).

Among tautomerizable derivatives, 7-hydroxy compounds have been confirmed to exist largely in the 4H-7-oxo form (e.g., 2; cf. Section III,E,1) that, therefore, will be used in this review. For other hydroxy as well as mercapto and amino TPs, when the exact position of tautomeric equilibria is uncertain, the most probable or the respective authors' form will be depicted.

II. Syntheses

A. 5-Amino-1,2,4-triazoles and 1,3-Bifunctional Synthons

1. Principle and Conditions

By far the most TP syntheses are condensations of dinucleophilic 5-amino-1, 2,4triazoles (ATs) with 1,3-bifunctional synthons as shown in the formation of TP 2. A general review covers corresponding reactions of acetoacetic ester with aryl- and heteroarylamines (97CHE499). To the earlier reported list of relevant functionalities described up to 1991 (93AHC(57)81, p. 85) may be added $=\mathrm{CHSO}_{2} \mathrm{R}$ (02S901) and tautomeric $=\mathrm{C}(\mathrm{SH})$ NHR (92JSC165).

New synthetic conditions recently described involve melting under microwave irradiation, a reaction that is environmental friendly and gives higher yields than conventional heating in solvent (04JCR174; cf. 03MI4). Furthermore, certain lithium 1,3-diketonates have proven to be better synthons than the corresponding diketones (03RCB1190).

Previous mechanistic conclusions have been confirmed by isolating stable intermediate AT derivatives such as enamine 3 (Scheme 2) on reacting ATs with 3-ketovinyl ethers (01RJOC570), 3-ketoenamines (03HAC491), 3-ketoaldehydes (03MI4), enamine-2-carboxylic esters (91CPB1099), or ethoxymethylene malonates (93MI2, 99MCR277). That means, the overall reaction starts with the interaction of the AT amino group and the enolic (or analogous) functionality of the three-carbon synthon. In the two-step examples, just mentioned, the first step proceeds under milder conditions (sometimes just in ethanol at room temperature), but the final cyclization (or the one-step reaction, if the intermediate is not trapped) requires stronger means (e.g., PPA or boiling acetic acid). Under extreme conditions, triazolylamide 5 was subject to flash vacuum pyrolysis between 300 and $450^{\circ} \mathrm{C}$ to give about 50\% TP 6 (Scheme 3) (03ARK(is.10)262).

Libraries of fused 3-aminopyrimidin-4-ones (such as TP 7) and other compounds were just recently prepared by the solid-phase and by the solution-phase parallel

Scheme 2

Scheme 3
synthesis (06MI2). The latter method turned out to be advantageous with respect to yield and purity.

2. Use of Modified 5-Amino-1,2,4-triazoles

Scheme 4 shows two parallel paths of pyrimidine ring annulation: the conventional method (A) and a route B using a reactive AT derivative (00JCR(S)13). Amidine 10,

(10)

Scheme 4
formed from AT and DMF dimethylacetal, can be regarded as the result of incorporating one carbon of the three-carbon synthon $\mathbf{8}$ into the AT molecule; condensation with a reactive two-carbon component leads to target TP 9. Path B also serves in confirming the structure of product 9. Similar syntheses of 7-aryl and 7-heterocyclyl TPs have been described (99JCR(S)88, 00SC1985, 03HAC491), for example, that of an antipyrine derivative (02 MI 1).

3. The Diversity of 1,3-Bifunctional Synthons

Examples of TP syntheses published in the relevant period are listed in Table 1, arranged according to the bifunctional synthons used and to the substituents entering the positions 5 and 7 . TPs are included in reviews dealing with heterocyclic synthesis by the use of enamines (98AHC(72)283), enamine-2-carboxylic esters (93PHC34, 99JHC1581), and ketene mercaptals (91MI3).

In recent years, 3-ketoenamines have growing interest as building blocks for 7-aryl TPs (cf. Scheme 4, Path A) (01JHC1119, 04WOP108729). They also serve to synthesize 7-heterocyclyl TPs (04JHC381, 04MI6). In addition to usual N, N dimethyl compounds (8-type) also analogs having a free amino group can be used as in the synthesis of 7-trifluoromethyl derivatives (03RCB1190). Enaminones can be formed in situ, for instance, from dimedone and DMF dimethylacetal (05RCB2903).

In the course of the cyclization of the stable tetrafluorobenzoyl derivative 11a (Scheme 5) fluorine at the o-position is involved in the reaction and is replaced to give trifluorobenzo TP 11b (05RJOC1071). Acetonyl is introduced as substituent into the 7-position by the use of triketone heptan-2,4,6-trione (95JHC407).

The electron acceptor tetracyanoethylene on interaction with AT first forms a charge transfer complex that after loss of hydrocyanic acid is transformed into

Table 1. Syntheses of TPs from 1,3-bifunctional synthons and ATs

Bifunctional synthon ${ }^{\text {a }}$	$\mathrm{R}-5^{\text {b }}$	$\mathrm{R}-7^{\text {b }}$	References
1,3-Dialdehyde	H	H	06WOP18725
2-Formylacetal	H	H	93RCB1921, 94RCB1884
1,3-Diacetal	H	H	99JCS(P1)1527
2-Formylvinyl ether	H	H	02MI6, 06WOP18725
2-Formylvinylchloride	H	R	94T12113, 02MI2
3-Iminiovinylchloride	H	R	94 T 12113
2-Formylenamine	H	R	94T12113, 06S59
3-Iminioenamine	H	R	94T12113, 95H(40)729
3-Ketoaldehyde	R	H	97MI2, 04JHC647
3-Ketoacetal	R	H	92MI3, 96MI1
3-Ketovinyl ether	H	R	01RJOC570, 05T5379
3-Ketovinyl sulfone	R	H	$02 \mathrm{~S} 901{ }^{\text {c }}$
3-Ketoenamine	H	R	04JCR174, 04JHC267, 04WOP108729
1,3-Diketone	R	R^{\prime}	92MI4, 99MI1
3-Ketoalkyne	$\mathrm{R}^{\text {d }}$	H	$05 \mathrm{ZN}(\mathrm{B}) 1175$
2-Formylcarboxylate	R	OH	99CPB928
2-Alkoxycarbonylacetal	OH	H	04MI2
Enamine-2-carboxylate	H	OH	93JHC1253, 97JHC247
Acetylenedicarboxylate	COOMe	OH	99MI2
3-Ketocarboxylate	R	OH	92MI2
3-Alkoxyacrylate	OH	R	99EUP947516
Alkoxyalkylene malonate	R	OH	93MI2
2-Chloroacrylate	OH	R	00CHE1329
Malonic ester	OH	OH	92MI2, 97JST(415)285
Malonyl chloride	OH	OH	93JHC169
2-Acylketene mercaptal	SR	R^{\prime}	92MI4, 05WOP54246
2-Cyanoketene mercaptal	SR	NH_{2}	02WOP40485
Alkoxyalkylene cyanoacetate	R	NH_{2}	97BMCL1087
Alkoxyalkylene malonitrile	R	NH_{2}	95IJC(B)209
2-Formylnitrile	H	NH_{2}	01HEC485
2-Cyanoenamine	H	NH_{2}	02MI7
Malonitrile	NH_{2}	NH_{2}	95JCR(S)290
2-Thiocarbamylcarboxylate	NHR	OH	92JSC165

${ }^{\text {a }}$ Or tautomeric form.
${ }^{\mathrm{b}}$ Substituents on C-5 and C-7, respectively; R and R' mean (possibly substituted) alkyl, aryl, heterocyclyl, and H ; OH means hydroxy or tautomeric oxo form.
${ }^{\mathrm{c}}$ And regioisomeric 7-R compound.
${ }^{\mathrm{d}}$ Deoxyaltrose derivative [relating C-glycosides $c f$. 98AHC(70)163].
dicyano TP 12 (97PHA23). Fusion of 1,4-naphthoquinone or indenone onto TP can in a similar way be performed by the use of 2,3-dicyano-1,4-naphthoquinone or dicyanomethylene indane-1,3-dione, respectively. (Another indeno TP is accessible from triketone 2-acetylindane-1,3-dione (93IJC(B)440).) On the other hand, acetoacetic ester $\mathbf{1 3}$ with AT suffers ester group cleavage to form anilino TP $\mathbf{1 4}$ (92JSC165).

(12)

Scheme 5

4. Regioselectivity

3-Ketocarboxylic esters condense with AT, as a rule, to give exclusively 7-oxo derivatives (see Scheme 1); an exception is that of a side reaction in a special case (93JHC1325). Esters having instead a 3-acetal or 3-enolether functionality, however, are known to tend to reverse reactivity (e.g., 99EUP947516, 04MI2). 2-Chlorocinnamic acid (15a, Scheme 6) or its ester remarkably also behave so (00CHE1329).

Herbicide chemists have continued to report studies on regioselectivity involving the reactions of unsymmetrical 1,3-diketones and AT derivatives (92MI1, 92MI4). Benzoylacetone (16), trifluoroacetylacetone, and 2-acetylcyclopentanone, for example, in an acidic medium combine with ATs (e.g., 17a) to form preferentially 5-methyl TPs ($70-97 \%$) such as $\mathbf{1 8 a}$ and to a minor extent 7 -methyl isomers (e.g., 19a); the

(15a)
(15b)

(17-19a: $R=$ benzyl, $\quad b: R=2$-nitrophenyl)
Scheme 6
ratio of $\mathbf{1 8 a}$ and $\mathbf{1 9 a}$ is $82: 18$. Reiter and coworkers contributed further examples (95JHC407) and concluded from the results that these reactions are more influenced by steric than by electronic factors.

Changing the pH value changes the situation (00 MI 1): Whereas the isomers $\mathbf{1 8 b}$ and $\mathbf{1 9 b}$ in acetic acid are similarly obtained in a ratio of $81: 19$, this ratio is reversed in the presence of sodium ethylate ($26: 74$ at $25^{\circ} \mathrm{C}$). Increasing temperature decreases the regioselectivity (ratio $49: 51$ at $60^{\circ} \mathrm{C}$ in the latter medium). Mixtures of isomers were also obtained from several triketones and 2-methylthio AT (95JHC407).

Reactions of 1-aryl-3-iminioenamines (such as 20) and AT (Scheme 7, Path A) in the presence of sodium hydride ($\mathrm{DMF}, 100^{\circ} \mathrm{C}$) proceed under regiochemical control; only 7 -aryl TPs (e.g., 22) can be isolated (94T12113). The same results are obtained with the corresponding 2-formylvinylchloride (21, Path B), 3-iminiovinylchloride, 2-formylenamine, and 3-ketoenamine.

Other conditions yield admixtures including the isomeric 5-aryl compound (23), thus from enamine $\mathbf{2 0}$ (with NaH) at higher temperatures or from vinylchloride 21 in a neutral medium. In the respective authors' opinion Path A is the better route to pure 7 -aryl TPs while Path B provides better yields of 5 -aryl TPs from the mixtures. Analogous reactions via Path A lead exclusively to 7-heterocyclyl TPs ($98 \mathrm{H}(47) 689$).

Scheme 8 shows the behavior of 2-acylvinylsulfones, for example, $\mathbf{2 4}$ as a hydrate (02 S 901). In water or acetic acid (Path A) mixtures of isomers (e.g., 25 and 26) are formed the composition of which depends on the C-2 substituent of the AT. In boiling acetonitrile, however, the 5 -substituted regioisomer (26) is exclusively obtained. The same reaction at room temperature (Path B) stops at intermediate 27 that can be aromatized in boiling acetic acid to give isomer 26.

Scheme 7

To add a synthesis chosen from the triazoloquinazoline series, the reaction of the activated aryl chloride 2,3-dichloro-6-nitrobenzonitrile and 3-methylthio AT leads to a mixture of isomeric triazolo[5,1-b]- and triazolo[1,5-a]quinazoline derivatives, though both in poor yields (95JHC1359).

One single example of the formation of a TP ring isomer was found among AT reactions during the relevant period: Under the hard conditions of pyrolysis, Meldrum's acid derivative 28 gives a mixture of oxo TP 29 and oxo-triazolo[4,3-a] pyrimidine 30 , the proportions changing from 36:64 to $69: 31$ between 400 and $700^{\circ} \mathrm{C}$ ($97 \mathrm{JCS}(\mathrm{P} 1) 1799)$. They are regarded as thermodynamic and kinetic products, respectively.

5. Direct Introduction of Substituents onto Positions 2, 3, 4, and 6

Triazolopyrimidines substituted at these sites are obtained from accordingly substituted synthons as exemplified by the synthesis of TP $\mathbf{3 1}$ (Scheme 9) (97JCR(M)2378). Further examples for the positions 2, 4, and 6 are listed in Table 2.

Application of AT 3-carboxylic acid under standard conditions of TP synthesis (boiling acetic acid) usually leads to decarboxylation. This can be avoided, in the reaction with sulfon $\mathbf{2 4}$, by boiling the mixture in water (02 S 901).

Condensations of 1,3-dicarbonyl synthons (99JCS(P1)1527) or equivalents (e.g., 33 or 34b) (99CHE708) and 4-substituted ATs provide an approach to quaternary 1,2,4-triazolo[1,5-a]pyrimidinium salts substituted onto $\mathrm{N}-3$, such as $\mathbf{3 2}$ and $\mathbf{3 5}$ (Scheme 10).

6. Syntheses via Dihydro Derivatives

Different from bromide 34b, chalcones unsubstituted onto the double bond (e.g., 36) when condensing with AT yield dihydro TPs (e.g., 37a, Scheme 11)

Scheme 8

Scheme 9

Table 2. TPs substituted onto positions 2, 4, or 6 from direct synthesis

Position	Substituent ${ }^{\text {a }}$	References
2	Aryl	97RJOC1784
	SH	04ARK(is.5)77
	SR	92MI1, 95JHC407
	SR'	00MI1
	$\mathrm{SO}_{2} \mathrm{R}$	00RJGC1458
	$\mathrm{SO}_{2} \mathrm{NHR}^{\prime}$	04MI4, 05MI6
	NH_{2}	97RJOC1784
	NHR ${ }^{\prime}$	99JCS(P1)1527
	NR_{2}	93MI2, 02JHC319
	$\mathrm{NHSO}_{2} \mathrm{R}^{\prime}$	97BMCL1087
	$\mathrm{N}=\mathrm{CHR}^{\text {b }}$	03USP6570014
	NO_{2}	97RJOC1784
	Fluoroalkyl	99JFC(96)51
	$\mathrm{CH}_{2} \mathrm{OH}$	97RJOC1784
	$\mathrm{CH}_{2} \mathrm{COOH}$	97RJOC1784
	$\mathrm{COOH}^{\text {c }}$	02S901
	COOR	97RJOC1784
	Heterocyclyl	95IJC(B)209
4	Alkyl	03USP6570014
6	Aryl ${ }^{\text {d }}$	$95 \mathrm{H}(40) 729$
	$\mathrm{SO}_{2} \mathrm{R}^{\prime \prime}$	$95 \mathrm{H}(40) 729$
	NHCOR	97 JHC 247
	$\mathrm{NHCOOCH}_{2} \mathrm{Ph}$	99CCC177, 05JHC1167
	$\mathrm{N}=\mathrm{N}-\mathrm{R}^{\prime}$	$\begin{aligned} & \text { 95JCR(S)290, 97JCR(M)2378, 98MI2, 04JHC647, } \\ & \text { 04ZN(B)721 } \end{aligned}$
	Fluoroalkyl	05WOP87770
	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}^{\text {e }}$	93RCB1265
	Sugar derivative	02MI6, 05MI5
	$\mathrm{CH}_{2} \mathrm{COCH}_{3}$	97RCB1178
	CN	99JCR(S)88, 02MI8
	COOEt	97BMCL1087, 05WOP54246
	Heterocyclyl	$93 \mathrm{JHC1} 253,95 \mathrm{H}(40) 729^{\text {d }}$, 02MI7, 04T4601

${ }^{\mathrm{a}} \mathrm{R}$: alkyl, R': aryl.
${ }^{\mathrm{b}}$ Protected amino group.
${ }^{\text {c }}$ See text.
${ }^{\mathrm{d}}$ From 2-substituted 3-iminioenamines.
${ }^{\mathrm{e}}$ From 1,1-diacetyl cyclopropane.
(91CHE1242). Desenko's group has continued the work in this field (95CHE125). Dehydrogenation proceeds by means of bromine oxidation (91CHE88) or spontaneously by air (00CHE1329, 04MI1).

5-(2-Hydroxyphenyl)-dihydro TP (38) can merely aromatize in the presence of benzaldehyde in superbase media (KOH/DMF) (96CHE215), but the aldehyde can additionally be involved in the reaction to give tetracyclic pyran derivative 39. The latter substance on heating in similar media undergoes aromatizing isomerization

Scheme 10

Scheme 11
that may occur via reductive opening of the pyran ring and concurrent dehydrogenation to yield TP 40, alternatively hydroxide assisted elimination of phenoxide may be followed by aromatization (01CHE1312).

A three-component condensation of benzaldehyde and ketone (without isolating the chalkone) with AT leads to a mixture of dihydro and aromatic TP (93CHE406).

B. Other Pyrimidine Ring Syntheses

The annulation of pyrimidine onto the triazole ring can be accomplished by the use of heterocyclic precursors that can be regarded as masked 1,3-bifunctional reagents. This way, triacetic acid lactone (41, Scheme 12) reacts as a masked 1,3-diketone and transforms AT to TP $\mathbf{4 2}$ together with ring isomer $\mathbf{4 3}$ and decarboxylation product 44 (02CRC517).

Oxazolones play a similar part $(93 \mathrm{H}(35) 955,94 \mathrm{JCR}(\mathrm{S}) 416,94 \mathrm{MI} 2)$. Thus, enol ether $\mathbf{4 5}$ behaves as a masked 3-ethoxyacrylate and yields, through intermediate 46, benzamido TP 47 that, under harsher conditions, directly forms from compound 45.

Condensation of acetophenone with AT in DMF and catalytic acetic acid (Scheme 13) leads to dihydro TP 49 and byproduct 50 that in the presence of hydrochloric or phosphoric acid becomes the main product (92DOK801). It seems to originate from the hypothetical intermediate $\mathbf{4 8}$ by reaction with the solvent DMF.

Finally, 5,6-benzo TP derivative $\mathbf{5 1}$ can be synthesized from anthranilic acid and the appropriate 1,2,4-triazolinethione derivative (93AQ621).

C. 2-Hydrazinopyrimidines and One-Carbon Synthons

1. Principle

A second common TP synthesis consists in the condensation of a C_{1}-synthon with a 2-hydrazinopyrimidine (HP) derivative (e.g., 52, Scheme 14). A triazolo[4,3-a]pyrimidine (e.g., 53) initially forms that often can be isolated ($98 \mathrm{ZN}(\mathrm{B}) 1203$). Harsher conditions allow it to isomerize to the target TP 54 by Dimroth rearrangement. By contrast, TPs (e.g., 55) can be obtained from HPs in a one-pot reaction (99JFC(96)51).

A review of triazole annulation is available (93CHE1369).

2. The Dimroth Rearrangement

This reaction was reviewed in the context of heterocycle chemistry (73CIM39, $99 \mathrm{AHC}(75) 79)$ as well as in connection with the reactivity of $1,2,4$-triazolo[4,3-a] pyrimidines (90AHC(49)277, 99AHC(73)131). New examples include those of the formation of the above-mentioned 5,7-dimethyl TP (44) by an alkaline rearrangement (94MI1) and of the synthesis of thioether 57 by benzylation of [4,3-a] compound 56 (Scheme 15) in strongly alkaline solution (whereas alkylation in acetone/potassium carbonate is not accompanied by isomerization) (04MI9).

(47)

Scheme 12

Camphor derivative 58 falling into the [4,3-a] series isomerized to yield a mixture of the major endo-isomer 59 and the minor exo-isomer (02TA821). C-Glucosyl derivatives of the same series, in the presence of diazabicycloundecene (DBU), unexpectedly also gave the [1,5-a] ring isomers (94MI3; cf. 98AHC(72)127, pp. 165-168).

$$
\mathrm{H}^{+} \downarrow \mathrm{DMF}
$$

Scheme 13

Nitrile 53 mentioned above, under the influence of more concentrated alkali, suffers a Dimroth-like rearrangement involving the cyano group in the recyclization to form imine 60 (Scheme 16) ($98 \mathrm{ZN}(\mathrm{B}) 1203$). When the pyrimidine NH group in hydrazine 52 is blocked as in methyl derivative $\mathbf{6 1}$ then a primary cyclization involves the pyrimidine $\mathrm{N}-1$ atom (to give 62) and isomerization affords N -methylated 5-oxo TP 63.

(55)

Scheme 14

Scheme 15

3. Use of Modified 2-Hydrazinopyrimidines

In an additional step inserted before cyclization, a C_{1}-synthon can be incorporated in the hydrazinopyrimidine. Examples of frequently used modified HPs are those of hydrazides or (in the presence of oxidants) hydrazones. Thus precursor 53 of TP 54 is easily obtained from the N^{β}-formyl derivative of HP 52 by heating ($98 \mathrm{ZN}(\mathrm{B}) 1203$).

Scheme 16

Scheme 17
On the other hand, hydrazone 64 (derived from hydrazine 52) yields, analogously to phenyl compounds 53 and 54, diphenyl derivatives 65 and 66 (Scheme 17). Its 3-methyl analog (67) reacts in the same way. Similar syntheses starting from the hydrazones of benzaldehyde (93MI4) or 3,3-dimethylbutyraldehyde (96MI1) were described as one-pot reactions skipping the stage of the [4,3-a] isomers.

D. Other Triazole Ring Syntheses

1. From 2,3-Diaminopyrimidines and One-Carbon Synthons

Most cyclizations of 2,3-diaminopyrimidones (e.g., 68) (04JAP(K)107228) or corresponding quinazolones proceed with the participation of carboxylic acids or their derivatives (esters, anhydrides, chlorides, or orthoesters) as shown in Scheme 18.

(70)

Scheme 18

Noncyclized or saturated intermediates $(\mathbf{6 9}, \mathbf{7 0})$ can frequently be found. Cyclizations of quinazolones (e.g., 71a, b) by means of urea (85IJC(B)873) or malonic ester (97BCJ2209) yield triazoloquinazolones 72 and 73, respectively, functionalized at C-2.

Application of aldehydes (Scheme 19, upper part) leads, through intermediate anils, to dihydro compounds (e.g., 74) that can be dehydrogenated, for example, by nitrobenzene (01 M 1063). 2-Hydroxy-1-naphthaldehyde or acetylacetone suffer elimination of 2-naphthol or acetone, respectively, during the reactions; products 75a and \mathbf{b}, respectively, are obtained.

A hypothetical intermediate 2-hydrazinoquinazolone that without doubt forms from 2-mercapto compound $\mathbf{7 6}$ and hydrazine consequently cyclizes to give amine 77 (03JHC973).

Iminophosphorane 78 is easily synthesized from quinazolone 71b (04EJOC3872). It undergoes, in the respective author's words, tandem aza-Wittig/heterocumulenemediated annulations leading to products 79-82 (Scheme 20).

(75a,b) $(R=H, M e)$

Scheme 19

(79)

(78)

Scheme 20

2. From Pyrimidin-2-ylcarbamidoximes

This synthetic route (cf. 86MI1) is illustrated by examples chosen from recent publications (Scheme 21) (00WOP56733, 02WOP36595, 04MI5). Several variants lead to TPs 83 and 84.

E. Nonheterocyclic Precursors

The reaction of 3-carene-derived 3-chlorovinylketone 85 with benzylidene aminoguanidine unexpectedly gave optically active TP 86 (Scheme 22) (02MC226).

III. Structure

A. Theoretical Methods

Quantum-chemical calculations on TPs , particularly oxo compounds, were performed by several groups. In this way, studies could be assisted and results could be corroborated with those fields of NMR spectroscopy (Sections III, C, 1-3), tautomerism (Section III,E), protonation and coordination (Section IV,A), QSAR studies (Section V,B), and reactivity. To give an example, a reaction mechanism for

(84)

Scheme 21

Scheme 22
nucleophilic addition could be proposed on the basis of calculations (see Section IV,D) (93RJOC1582).

A new aromaticity index was calculated for heterocyclic compounds (87T4725). Comparison of the index of 2-ribosyl-5,7-dimethyl TP with that of the isomeric [4,3-a] compound suggests that the driving force for the Dimroth rearrangement of the latter substance ($c f$. Section II,C,2) is the increase in aromatic character.

B. Molecular Dimensions

1. X-ray Diffraction

X-ray structural analysis by single crystal or powder diffraction (Table 3) mainly serves in determining spatial or molecular structures. Thus, hydrogen-bonded chains and double chains in the crystal structures of 5-oxo TP (106, see below) and 7-oxo TP (29), respectively, were detected (00JST(519)165) and ring isomers were distinguished (02MC226, 03HAC607). The former substance was also included in a study on crystal structure prediction by calculations that involved 50 small molecules with rigid geometries (05MI2).

Further, X-ray studies give answers to questions about deprotonation (97JST(415)285), protonation, and coordination (99AX(C)1337); for instance, they enable comparison between a free and a coordinated ligand. In this connection many TP-metal complexes were prepared and investigated (see Section IV,A,2).

Finally, X-ray analysis helps to identify tautomers (93RJOC525) and was made the basis of QSAR investigations in the field of herbicides (97MI3, 98MI12).

2. Microwave Spectroscopy

The microwave spectrum of parent TP was reported (93JSP(161)136). The dipole moment was found to be 4.6 D .

C. Molecular Spectra

1. ${ }^{1} H-N M R$ Spectra

Chemical shifts of selected TPs without and with oxo substituents are listed in Tables 4 and 5, respectively. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data often enable determination of the structures of substituted TPs. Thus, in pairs of isomeric aryl or alkyl TPs (22, 23; 25, 26) 7 - and 5 -substituted compounds can be distinguished by the help of H, H coupling constants (94T12113, 02S901). In other cases the Nuclear Overhauser Effect was used (01JHC1119).

Chemical shifts of H-6 vary over a wider range than those of the other TP protons (see Table 4). Due to neighboring substituents such as phenyl or trifluoromethyl they are shifted downfield. In the spectra of 7 -azolyl TPs remarkable changes of the chemical shifts (H-6 of TP and especially azole protons), compared with the

Table 3. X-ray diffraction of TPs

Substitution	Formula	References
5,7-di-Me	44	06AX(E)o1310
5,7-di-Ph	104b	99AX(C)1337
5,7-di-Me-2-OC66 $\mathrm{H}_{4} \mathrm{COOMe}$ (o)		99MI5
5,7-di-Me-2-OC6 $\mathrm{H}_{4} \mathrm{COOEt}$ (o)		05AX(E)o3842
5,7-di-Me-2-OC6 $\mathrm{H}_{4} \mathrm{COOiPr}(\mathrm{o})$		05AX(E)o2079
$5-\mathrm{Me}-7-\mathrm{CH}_{2} \mathrm{COOEt}$	42	96AX(C)1031, 02CRC517
6-CN-7-Me		06AX(E)o1252
6-(N=NPh)-7-Et		04JHC647
$5-\mathrm{Me}-6-\mathrm{NO}_{2}-7-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}(p)$	134b	92CHE1323
$5-\mathrm{Me}-6-\mathrm{NO}_{2}-7-\mathrm{N}(\mathrm{Me}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}(p)$	155	92CHE1323
5-Me-2-SCH2 ${ }_{2} \mathrm{Ph}$		$99 \mathrm{JHC183}$
$2-\mathrm{SCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{COOMe})=\mathrm{CHOMe}(o)$		05AX(E)o1992
5,7-di-Me-2-S[C6 $\left.\mathrm{H}_{2} \mathrm{CF}_{3}(p)\left(\mathrm{NO}_{2}\right)_{2}\left(o, o^{\prime}\right)\right]$		97MI5
5,7-di-Me-2-SCH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SP}(\mathrm{OiPr})_{2}=\mathrm{S}$		$03 \mathrm{HAC607}$
$5-\mathrm{Me}-2-\mathrm{SO}_{2} \mathrm{NHC}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}\left(o, o^{\prime}\right)^{\mathrm{a}}$	197	05AX(E)o2083
5,7-di-Me-2- $\mathrm{SO}_{2} \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{Cl}$ (o)		98MI9, 02MI9
5,7-di-Me-2-SO ${ }_{2} \mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{Me}(p)$	173a	97MI3
5,7-di-Me-2-SO ${ }_{2} \mathrm{NHC}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}\left(o, o^{\prime}\right)$	173b	97MI3, 98MI12
5,6-(di-Me-bicyclohexeno)-7-Me-2-Ph	86	02MC226
C-2 camphor derivative	59	02TA821
5-oxo	106	00JST(519)165
5-oxo-7-NH2	7	99ZK517
7-oxo	29	00JST(519)165
5,7-dioxo (Na salt)	(6)	97JST(415)285
$5-\mathrm{Me}-6-\mathrm{NO}_{2}-7$-oxo	154	93RJOC525
5-Me-7-oxo-2-CF3 ${ }^{\text {b }}$		04AX(C)o733
5,7-di-Ph-6-oximino		93 K 275
$5-\mathrm{Ph}-7-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}(p)$-2,3-di- $\mathrm{NH}_{2}{ }^{\text {c }}$	35b	99CHE708
5-Ph-6-OH-7-C $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}(p)-2,3-\mathrm{di}-\mathrm{NH}_{2}{ }^{\text {d }}$	99	01CHE338

${ }^{\text {a }}$ Acetonitrile solvate.
${ }^{\mathrm{b}}$ And salt formed with 3-CF 3 -AT (164-type, see below).
${ }^{\text {c }}$ Quaternary salt (bromide), DMF solvate.
${ }^{\mathrm{d}}$ Betain.
single-ring parent substances, can be explained in terms of significant conjugation between both heterocyclic rings (00RJOC866).

In oxo-substituted TPs (Table 5) having no N -alkyl groups the NH signal is identified by deuterium oxide exchange. Their spectra are also used, together with ${ }^{13} \mathrm{C}$-NMR data, to define tautomeric equilibria, for instance, of 5,7-dioxo TP $(\mathbf{6}$, see Section III,E,1) and the partition of isomers in the course of N -alkylation (93RJOC525, 01JHC237). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data of certain benzo derivatives not integrated into Table 5 similarly show an NH signal (95JHC1359).

Table 4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts of TPs without oxo substitution

Substitution	Formula	$\delta(\mathrm{ppm})^{\mathrm{a}}$ in positions				Solvent ${ }^{\text {b }}$	References ${ }^{\text {c }}$
		2	5	6	7		
-	1a	8.70	8.93	7.41	9.45	D	94MRC373
		8.89	9.13	7.70	9.16	T	
$5-\mathrm{CF}_{3}$	26	8.67	-	7.48	9.11	D	02S901
$7-\mathrm{CF}_{3}$	25	8.66	9.01	7.48	-	D	
7-(indol-3-yl)	159	9.12	8.83	7.87	-	D	99MC233
$5,7-\mathrm{di}^{-\mathrm{CF}_{3}}$		9.12	-	8.49	-	D	96MRC725
5,7-di-Ph	104b	8.73	-	8.17	-	D	
		8.49	-	7.61	-	F	02MRC529
$5-\mathrm{Me}-7-\mathrm{Cl}$		8.80	(2.70)	7.80	-	D	00RJOC866
$5-\mathrm{Me}-7-\mathrm{CF}_{3}$		8.58	(2.84)	7.34	-	C	03RCB1190
$5-\mathrm{Me}-7-\mathrm{Ph}$		8.65	(2.70)	7.53	-	D	$95 \mathrm{JHC407}$
$5-\mathrm{Ph}-7-\mathrm{Me}$	37b	8.67	-	7.94	(2.85)	D	
5,6-cyclohexeno		8.45	-	-	9.10	D	97MI2
$5-\mathrm{Me}-7-\mathrm{CH}_{2} \mathrm{COOMe}$		8.15	(2.45)	6.85	-	C	02CRC517
$5-\mathrm{Me}-7-\left(\mathrm{CH}=\mathrm{CHNMe}_{2}\right)$	182	8.26	(2.50)	6.46	-	C	96 JHC 465
$7-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NEtAc}(p)$		8.54	8.87	7.25	-	C	$01 \mathrm{JHC1119}$
$6-\mathrm{CH}_{2} \mathrm{COCH}_{3}$		8.58	8.73	-	9.18	C	94RCB1884
6 -COOEt-7-C6 HF_{4}	4	8.80	9.40	-	-	D	01RJOC570
6-CN-7-Ph	9	8.59	9.05	-	-	C	00 JCR (S) 13
6-piperidino	157	8.46	8.95	-	8.75	D	99MC233
$5-\mathrm{Me}-6-\mathrm{NO}_{2}-7-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}(p)$	134b	8.75	(2.65)	-	-	D	92CHE1323
$6-(\mathrm{N}=\mathrm{NPh})-7-\mathrm{Et}$		8.8	9.2	-	-	D	04JHC647
2-SMe-5-Me	179	-	(2.69)	6.89	8.55	C	99JHC1199
2,5-di-CF3-7-Me		-	-	7.50	(2.96)	C	97JCR(M)2378
2-NHPh-5,7-di-Me		-	(2.57)	6.81	(2.72)	D	99JCS(P1)1527
2-SMe-5,7-di-Me		-	(2.56)	7.01	(2.70)	D	$95 \mathrm{JHC407}$
2-SMe-5-Me-7-Cl	148	-	(2.59)	7.55	-	C	97JHC1519
2-SMe-5-Me-6-Ac		-	(2.65)	-	9.88	D	$95 \mathrm{JHC407}$
2-SMe-6-Ac-7-Me		-	9.22	-	(2.72)	D	
$2-\mathrm{SCH}_{2} \mathrm{COOMe}-5,7$-di-Me		-	(2.57)	6.69	(2.66)	C	01MI6, cf. 01MI1

${ }^{\text {a }}$ Figures in parentheses refer to methyl groups.
${ }^{\mathrm{b}}$ Solvents: C, $\mathrm{CDCl}_{3} ; \mathrm{D}$, DMSO-d $_{6} ; \mathrm{F}, \mathrm{DMF}-\mathrm{d}_{7} ;$ T, TFA.
${ }^{\mathrm{c}}$ Immediately successive identical references are not repeated (in the following tables, too).

2. ${ }^{13} C$-NMR Spectra

Table 6 lists chemical shifts of typical TPs; data of a further 60 various 7-oxo TPs were compiled (95JST(355)273, 97JST(435)65). Several assignments were confirmed by distorsionless enhancement by polarization transfer (DEPT) and two-dimensional ${ }^{1} \mathrm{H}_{-}{ }^{13} \mathrm{C}$ correlation (HETCOR) experiments ($93 \mathrm{MI} 3,01 \mathrm{JHC1119}$). The assignments are used to distinguish TPs and isomeric 1,2,4-triazolo[4,3-a]pyrimidines or 3-alkyl and 4 -alkyl derivatives (Scheme 23). Thus, differentiating pairs of isomeric oxo compounds $\mathbf{8 7}$ and $\mathbf{8 8}$ (93MI3) or $\mathbf{2 9}$ and $\mathbf{3 0}$ (97JCS(P1)1799) is possible.

Table 5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shifts of TPs with oxo substitution

Substitution	Formula	$\delta(\mathrm{ppm})^{\mathrm{a}}$ in positions							Solvent ${ }^{\text {b }}$	References ${ }^{\text {c }}$
		1	2	3	4	5	6	7		
5-oxo	106	-	8.11	-	13.03	-	6.16	8.62	D	00JST(519)165
5-oxo-7-Ph	15b	-	8.26	-	13.0	-	6.47	-	F	00CHE1329
5,7-dioxo	6	-	8.3	-	12.3	-	5.1	-	D	97JST(415)285
2-CF3-5,7-dioxo		-	-	-	12.72	-	6.48	-	D	97JCR(M)2378
7-0xo										
-	29	-	8.25	-	-	8.02	5.96	-	D	$00 \mathrm{JST}(519) 165$
2-morpholino-5-COOMe	109	-	-	-	7.60	-	6.55	-	C	99MI2
2-morpholino-4-Me-5-COOMe	110	-	-	-	(3.40)	-	6.40	-	D	
2-SMe-4-Me-6-COOEt	162	-	-	-	(3.55)	8.60	-	-	D	
$2-\mathrm{CF}_{3}-5-\mathrm{Me}$		-	-	-	6.42	(2.36)	5.98	-	D	97JCR(M)2378
$2-\mathrm{CH}_{2} \mathrm{COOH}-5-\mathrm{Me}$	189a	-	-	-	-	(2.35)	5.90	-	D	97RJOC1784
$2-\mathrm{NO}_{2}-5-\mathrm{Me}$		-	-	-	-	(2.40)	6.15	-	D	
2-($\mathrm{NMe}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$)-5-Me	188	-	-	-	12.8	(2.22)	5.64	-	D	02JHC319
$6-\mathrm{NH}_{2} \cdot 2 \mathrm{HBr}$	174	-	8.25	-	-	8.52	-	-	D	$05 \mathrm{JHC1} 167$
6-NHAc		-	8.28	-	9.48	8.62	-	-	D	97JHC247
6-(tetrazol-5-yl)		-	8.70	-	-	9.52	-	-	C/F	91 CPB 1099
$3-\mathrm{Me}-6-\mathrm{NO}_{2}$		-	9.13	(3.80)	-	9.18	-	-		93RJOC525
$4-\mathrm{Me}-6-\mathrm{NO}_{2}$		-	8.46	-	(3.97)	9.69	-	-		
$3,5-\mathrm{di}-\mathrm{Me}-6-\mathrm{NO}_{2}$	89	-	9.01	(3.71)	-	(2.50)	-	-		
$4,5-\mathrm{di}-\mathrm{Me}-6-\mathrm{NO}_{2}$	90	-	8.41	-	(3.89)	(2.60)	-	-		
1-Me-2-SMe-5,6-cyclohexeno	111	(4.20)	-	-	-	-	-	-	C	01JHC237
2-SBu-3,5-di-Me	112	-	-	(3.57)	-	(2.35)	6.08	-	C	
2-SMe-4,5-di-Me	113	-	-	-	(3.80)	(2.45)	5.85	-	C	

[^0]Table 6. ${ }^{13} \mathrm{C}$-NMR chemical shifts of TPs

Substitution ${ }^{\text {a }}$	Formula	$\delta(\mathrm{ppm})$ in positions ${ }^{\text {b }}$					Solvent ${ }^{\text {c }}$	References
		2	3 a	5	6	7		
-	1a	155.8	154.6	155.5	110.9	137.4	D	94MRC373
		144.8	146.3	161.4	122.1	139.0	T	
5,7-di-t-Bu	104a	154.5	155.3	174.9	103.7	156.9	D	96MRC725
5,7-di-CF3		158.3	154.8	151.0	106.3	136.5	D	
5,7-di-Ph	104b	156.0	155.8	160.7	106.8	147.5	D	
2-SMe-5-Me		169.2	155.6	165.1	110.1	133.7	C	99JHC1199
2-SMe-5,7-di-Me		166.9	155.4	164.0	110.1	146.0	D	$95 \mathrm{JHC407}$
2-SMe-5,7-di-CF3		174.4	155.6	150.9	103.2	135.5	C	03RCB1190
$2-\mathrm{SMe}-5-\mathrm{Me}-7-\mathrm{CF}_{3}$		156.5	148.0	164.8	107.6	133.7	C	
2-SMe-5-Me-6-Ac		169.7	154.6	164.7	120.1	139.0	D	$95 \mathrm{JHC407}$
$6-\mathrm{CH}_{2} \mathrm{COCH}_{3}$		155.6	153.8	157.4	118.4	136.2	D	94RCB1884
$6-\left[\mathrm{N}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CN}(o)\right]-7-\mathrm{Ph}$		147.9	150.1	151.8	144.2	158.2	D	$04 \mathrm{ZN}(\mathrm{B}) 721$
5-Me-7-SH		151.8	147.6	148.7	114.5	177.0	D	95JST(355)273
$5-\mathrm{Me}-7-\mathrm{NH}_{2}$		154.2	$148.4^{\text {d }}$	163.1	89.9	$155.5^{\text {d }}$	D	
2-SMe-5,6-ch-7-OMe	147	167.6	156.2	165.7	106.8	151.5	C	01JHC237
5-oxo	106	152.6	150.0	161.0	108.0	136.9	D	00JST(519)165
5,7-dioxo	6	146.0	148.9	165.0	79.8	156.7	D	97JST(415)285
7-0xo								
-	29	151.8	151.0	141.0	99.1	156.6	D	00JST(519)165
5,6-ch		151.5	149.5	147.4	105.8	156.3	D	99JHC1199
3,5-di-Me-6-NO2	89	145.2	147.9	160.0	130.7	149.3	D	93RJOC525
4,5 -di-Me-6-NO2	90	153.1	151.2	151.5	129.4	148.9	D	
2-pyrrolidino-4-Me-6-COOEt	87	150.0	151.8	144.8	105.1	163.0	C	93MI3
1-Me-2-SMe-5,6-ch	111	163.7	152.9	162.0	111.3	157.2	C	01JHC237
$2-\mathrm{SBu}-3,5-\mathrm{di}-\mathrm{Me}$	112	153.4	149.5	163.7	103.0	156.2	C	
2-SMe-4,5-di-Me	113	164.2	152.2	150.5	100.4	154.2	C	

${ }^{a}$ ch: cyclohexeno.
${ }^{\mathrm{b}}$ Numbering according to formula 1a.
${ }^{\mathrm{c}}$ Solvents: C, $\mathrm{CDCl}_{3} ; \mathrm{D}$, DMSO- $\mathrm{d}_{6} ;$ T, TFA.
${ }^{\text {d }}$ Or reversed.
${ }^{13} \mathrm{C}$-NMR chemical shifts of a large number of 7 -oxo and other TPs were measured and assigned by the use of a whole arsenal of 2D-NMR methods (95JST(355)273, 97JST(435)65) and were calculated as well by various ab initio methods (97MI7). Lactam-lactim tautomers studied in this way may be related to the corresponding N - and O -alkylation products. Thus, the structures of N -methyl compounds such as $\mathbf{8 9}$ and $\mathbf{9 0}$ were assigned and the ratios of isomers were directly determined using spectrometer data (93RJOC525). In another case examples of all four of the possible methyl derivatives (three N-methyl, one O-methyl) could be isolated and identified [cf. Table 6, compounds 111-113 and $\mathbf{1 4 7}$ (formulas see below)] (01JHC237).

In a series of 7-hydroxy TP tetrabutylammonium salts the coupling constants corroborate the conclusion that the 2-morpholino group in salt 91b lacks coplanarity

(89)

(90)

(88)

(91a,b)
($\mathrm{R}=\mathrm{SMe}$, morpholino)

Scheme 23
with the TP moiety, contrary to the smaller 2-methylthio group in salt 91a (01JHC237).

3. ${ }^{15} N-N M R$ Spectra

${ }^{15} \mathrm{~N}$-NMR spectra of TPs were rarely measured before the nineties but have received growing importance during the period under review. Typical examples can be found in Table 7; data of many other 7-oxo TPs were reported (95JST(355)273, 97JST(435)65). In TPs having no tautomerizable substituent in the 7-position generally $\mathrm{N}-3$ is much more shielded than the other pyridine-type nitrogen atoms (00JCS(D)867).

Controversial assignment of ${ }^{15} \mathrm{~N}$ signals in the literature ($c f .82 \mathrm{OMR}$ 87, 89MI1) led to new investigations. By recording the ${ }^{15} \mathrm{~N}^{1} \mathrm{H}$ gradient heteronuclear multiplequantum coherence (GHMQC) spectrum of the TP parent substance (1a) all signals could be unambiguously assigned (00POL965).

In the 7 -oxo TP series ${ }^{15} \mathrm{~N}$-NMR resonances were assigned by the various possible N,H coupling constants. For many compounds two broadened higher-field resonances (N-3, N-4) were observed (95JST(355)273). In other cases of 2-substituted derivatives all four of the nitrogen atoms gave sharp lines (97JST(435)65). These experimental data and assisting quantum-chemical calculations (97MI7) served to elucidate the tautomerism of these compounds (see Section III,E,1).

Table 7. ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ chemical shifts of TPs

Substitution	Formula	$-\delta(\mathrm{ppm})$ in positions ${ }^{\text {a }}$				Solvent ${ }^{\text {b }}$	References
		1	3	4	8		
-	1a	105.2	149.6	102.3	153.6	D	00POL965
		106.0	151.3	103.2	154.3	F	02MRC529
		107.2	154.7	107.2	154.7	S	00JCS(D)867
		106.0	227.2	118.0	159.4	T	94MRC373
5,7-di-Me	44	109.7	151.0	111.7	152.8	C	$00 \mathrm{JCS}(\mathrm{D}) 867$
		110.7	151.6	114.0	154.5	D	96MRC725
5,7-di- t - Bu	104a	106.4	155.1	114.2	157.5	C	$00 \mathrm{JCS}(\mathrm{D}) 867$
5,7-di-CF3		104.5	144.7	98.7	158.8	D	96MRC725
5,7-di-Ph	104b	110.1	150.2	120.3	158.6	D	
		108.3	151.2	120.7	155.3	S	00JCS(D)867
6- $\mathrm{CH}_{2} \mathrm{COCH}_{3}$		105.6	150.1	104.1	154.3	D	94RCB1884
$5-\mathrm{Me}-7-\mathrm{NH}_{2}$		120.4	156.6	173.4	148.6	D	95JST(355)273
5-Me-7-SH		102.4	173.1	230.5	142.6	D	
5-Me-7-охо	2	110.6	165.4	252.3	155.0	D	
$\begin{aligned} & 2-\mathrm{NH}_{2}-5-\mathrm{Me}-7- \\ & \text { oxo } \end{aligned}$		161.1	188.2	254.1	164.8	D	
5-Me-6-Cl-7-oxo		109.4	170.1	242.8	160.3	D	

${ }^{\text {a }}$ Numbering according to formula $1 \mathbf{1 a}$.
${ }^{\mathrm{b}}$ Solvents: C, $\mathrm{CDCl}_{3} ; \mathrm{D}, \mathrm{DMSO}-\mathrm{d}_{6} ; \mathrm{F}, \mathrm{DMF}-\mathrm{d}_{7} ; \mathrm{T}, \mathrm{TFA} ; \mathrm{S}$, solid.

4. ${ }^{19} \mathrm{~F}$-NMR Spectra

${ }^{19}$ F-NMR chemical shifts and coupling constants can be helpful for differentiating positional or ring isomers of fluoroalkyl (03RCB1190) and fluoroaryl triazolopyrimidines (01RJOC570).

5. Electronic Spectra

Some characteristic examples of UV spectroscopic data are compiled in Table 8. Thus, an intense band at $293-300 \mathrm{~nm}$ (as in $\mathbf{3 7 b}$) is typical for 5-aryl TPs (91CHE1242). The introduction of nitro or halo substituents onto position 6 of parent compound 1a leads to a bathochromic shift (00CHE714).

In the 7 -oxo TP series, the spectra of all four possible alkylation types [e.g., 111, 112, 113, 147 (see below), alkylated at $\mathrm{N}-1, \mathrm{~N}-3, \mathrm{~N}-4$, and O , respectively] are distinctly different from each other (01JHC237). Nonalkylated (tautomerizable) compound 188 (see below) fits remarkably well in with the 4-alkyl type.

The longest-wavelength band of 35-type quaternary TP salts (forming yellow or orange crystals) is shifted into the $430-466 \mathrm{~nm}$ region (99CHE708) and in the case of 99-type betains even to $468-477 \mathrm{~nm}(01 \mathrm{CHE} 338)$. Fluorescence of quaternary salts (99CHE708) and of 5,6-fused 7-phenyl TPs (91CHE88), too, was studied.

Table 8. UV Spectra of TPs

Substitution ${ }^{\text {a }}$	Formula		$\lambda_{\text {max }}$ in $\mathrm{nm}\left(\varepsilon \times 10^{-3}\right)$		Solvent ${ }^{\text {b }}$	References
-	1a			272 (3.8)	EtOH	00CHE714
5-Ph-7-Me	37b		247 (22.2)	293 (15.3)	EtOH	91CHE1242
$5-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}(o)-7-\mathrm{Ph}$			261 (23.4)	317 (18.6)	i-PrOH	96CHE215
6-Br	156		218 (31.0)	290 (4.0)	bu.	00CHE714
$6-\mathrm{NO}_{2}$	121		240 (3.8)	345 (4.9)	bu.	
$5-\mathrm{Me}-7-\mathrm{NEt}_{2}$	195	221	271 (5.1)	307 (17.2)	MeOH	90PHA768
2-SPr(i)-5,6-ch-7-NHCH2 $\mathrm{CH}_{2} \mathrm{Cl}$		218 (18.4)	246 (36.0)	307 (13.6)	EtOH	02JHC703
2-SMe-5,6-ch-7-OMe	147	210 (28.0)	239 (33.6)	285 (9.0)	EtOH	01 JHC 237
2-SMe-5,6-ch-7-SH		254 (21.0)	294 (6.0)	336 (23.2)	EtOH	
5,7-dioxo	6	208 (26.9)	261 (15.8)		$\mathrm{H}_{2} \mathrm{O}$	97JST(415)285
7-0xo						
2 - $\mathrm{NMeCH}_{2} \mathrm{CH}_{2} \mathrm{OH}-5-\mathrm{Me}$	188		230 (23.4)	276 (9.1)	EtOH	02JHC319
1-Me-2-SMe-5,6-ch	111	208 (17.4)	241 (20.1)	274 (11.2)		
				293 (9.7)	EtOH	01JHC237
2-SBu-3,5-di-Me	112		223 (24.6)	284 (11.5)	EtOH	
2-SMe-4,5-di-Me	113		233 (26.7)	274 (12.1)	EtOH	

The $S_{1}-S_{0}$ electronic absorption of TP (1a) was assigned as a $\pi^{*}-\pi$ transition by rotational band contour analysis (93JSP(158)399).

6. Infrared Spectra

Important TP bands of some non-oxo derivatives can be found in Table 9. These bands were usually denoted as $\mathrm{C}=\mathrm{N}$ bands. Later the two most characteristic bands, named $v_{\text {tp }}$ (about $1610-1650 \mathrm{~cm}^{-1}$) and $v_{\text {py }}$ (about $1505-1550 \mathrm{~cm}^{-1}$), were assigned to an overall triazolopyrimidine and pyrimidine ring mode vibrations, respectively (00JCS(D)867, 00POL965; cf. 06JOM693).

Table 10 shows IR bands of selected 5 - and 7 -oxo TPs, especially the NH and CO bands.

7. Mass Spectra

Mass spectrometric splitting of substituents and ring fragments from TPs is exemplified in Table 11. In a similar way fragmentation of tetrafluorophenyl TP carboxylic ester 4 mainly proceeds by elimination of fluorine, decomposition of the ester group, cleavage of tetrafluorophenyl, and elimination of hydrocyanic acid (01RJOC570).

Mass spectrometry allows differentiation between substitution onto C-5 and C-7: Thus, signal 103 (benzonitrile ion) can be obtained from thioether 19b (5-phenyl) only and not from isomeric 7-phenyl compound 18b (00MI1). Even prototropic tautomerism of 6-nitro-7-oxo TPs in the gas phase was elucidated (93RJOC525).

An example of practical applications is that of the qualitative and quantitative analysis of TP sulfonanilide herbicides Flumetsulam (197, see below, Scheme 51) and Metosulam (198) by liquid chromatography coupled with tandem mass spectrometry

Table 9. Selected IR-bands of TPs without oxo substitution

Substitution	Formula	Bands ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right)$		References
-	1a	1621	1534, 1515	00JCS(D)867
5,7-di-Me	44	1637	1550	
5,7-di- t-Bu	104a	1615	1530	
5,7-di-Ph	104b	1612	1543	
5,6-cyclohexeno		1628	1522	99JHC1199
5,6-cyclohexeno-7-Cl		1609	1515	
2-SMe-5,6-cyclohexeno		1620	1504	
$2-\mathrm{SMe}-5-\mathrm{Me}$	179	1622	1532	
2,5-bis-CF3-7-Me		1647		97JCR(M)2378
$5-\mathrm{NH}_{2}-6,7-\mathrm{di}-\mathrm{CN}$	12	1635		97PHA23
6-CN-7-Ph	9	1648		00JCR(M)173
$\begin{aligned} & \text { 2,3-di- } \mathrm{NH}_{2}-5-\mathrm{Ph}-6-\mathrm{OH}-7-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}(p), \\ & \text { betain } \end{aligned}$	99	1652	1629	01CHE338

Table 10. Selected IR bands of TPs with oxo substitution

Substitution/fusion ${ }^{\text {a }}$	Formula	TP bands $\left(\mathrm{cm}^{-1}\right)^{\text {b }}$			References
		NH	$\mathrm{C}=\mathrm{O}$	$\mathrm{C}=\mathrm{N}$	
5-oxo	106		1737, $1683^{\text {c }}$		05JOM4773
5-oxo-6-NHCOPh-7-Ph			1650	1635	94MI2
4-Me-5-oxo-6-CN-7-Ph	63		1674	1620	98ZN(B)1203
5,7-dioxo	6		$1715^{\text {c }}$		05JOM4773
2-CF3-5,7-dioxo		3242	1674, 1645		97JCR(M)2378
7-0xo					
$5-\mathrm{Me}$	2		$1702^{\text {c }}$		05JOM4773
2,5-bis-CF3		3309	1698		97JCR(M)2378
5,6-ch			1686		$99 \mathrm{JHC1199}$
1-Me-2-SMe-5,6-ch	111		1673	1582, 1530	01JHC237
2-SBu-3,5-di-Me	112		1693	1599, 1536	
2-SMe-4,5-di-Me	113		1709	1612, 1554	
2-morpholino-5-COOMe	109	3110	1640		99MI2
5-Ph-6-CN	54	3114	1671	1606	98ZN(B)1203
2,5-di-Ph-6-CN	66	3225	1666	1615	
2-oxo-3-Ph-5,6-benzo	81	3448	1735, 1698		04EJOC3872
2-thioxo-3-Ph-5,6-benzo	82	3423	1702		

${ }^{\mathrm{a}}$ ch: cyclohexeno.
${ }^{\mathrm{b}} \mathrm{KBr}$ if not otherwise $\left({ }^{\mathrm{c}}\right)$ stated.
${ }^{\mathrm{c}}$ Nujol and hexachlorobutadiene mulls.

Table 11. MS fragmentation of TPs

Substitution	Formula	Selected assigned fragment ions ($I_{\text {rel }}$ in \%)	References
2-SMe-5-Ph-7-CF3		$\begin{aligned} & \text { M-H (39), M-F (7), M-SMe } \\ & \text { (13) } \end{aligned}$	03RCB1190
2-CF ${ }_{3}-5-\mathrm{Ph}-7-\mathrm{CHF}_{2}$		$\begin{gathered} \mathrm{M}-\mathrm{F}(5), \mathrm{M}_{-}-\mathrm{CHF}_{2}(5), \\ \mathrm{M}-\mathrm{CF}_{3}-\mathrm{CHF}_{2}-\mathrm{Ph}(5) \end{gathered}$	
5-Me-6- $\mathrm{NO}_{2}-7-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}(p)$	134b	$\begin{aligned} & \mathrm{M}-\mathrm{OH}(1), \mathrm{M}-\mathrm{NO}(1), \\ & \mathrm{M}-\mathrm{NO}_{2}(8) \end{aligned}$	92CHE1323
2,7-di-Ph-4-Me-5-oxo-6-CN		$\mathrm{M}-\mathrm{NMe}(9), \mathrm{PhC} \equiv \mathrm{C}-\mathrm{CN}$ (22), PhCN (43)	98ZN(B)1203
2,5-di-Ph-6-CN-7-oxo	66	$\underset{(89)}{\mathrm{M}-\mathrm{CO}(54), \mathrm{PhC} \equiv \mathrm{C}-\mathrm{CN}}$	
5-Ph-7-oxo		$\begin{gathered} \text { M-NH (7), M-CO (37), } \\ \mathrm{PhC} \equiv \mathrm{CH}(87) \end{gathered}$	95PHA33
2-Et-5-Me-6- $\mathrm{NO}_{2}-7$-oxo		$\begin{aligned} & \mathrm{M}-\mathrm{O}(23), \mathrm{M}-\mathrm{OH}(69), \\ & \mathrm{M}-\mathrm{OH}-\mathrm{CO}(19), \mathrm{M}-\mathrm{NO}_{2} \\ & \text { (3), } \mathrm{M}-\mathrm{NO}_{2}-\mathrm{CO}(14) \end{aligned}$	93RJOC525

interfaced via a turbo ion spray (LC-TISP-MS-MS) (00ACA(415)41). Deprotonation of anilic nitrogen is followed by removal of the sulfonylic group.

Investigations of fragmentation reactions of molecular dications did not reveal any evidence for a TP parent compound dication, different from the situation with other aromatic nitrogen heterocycles (92OMS89).

D. Thermodynamic Properties

Density, vapor pressure, heat capacity, and standard molar enthalpies of formation, fusion, vaporization, and combustion of parent TP have been determined (97JCED1037). Calculated enthalpies of formation of TP and some 6 -substituted derivatives have been published (00CHE714). The thermal behavior of 5-oxo TP (106) and 7-oxo TP (29) hemihydrate has been studied in a calorimeter and a thermobalance (00JST(519)165).

E. Tautomerism

1. Prototropic Tautomerism of Oxo Derivatives

Many TP derivatives are subject to tautomerism. Thus substance 92 (Scheme 24) can be drawn in the form of one (vinylogous) lactim structure (92a) and three different (vinylogous) lactams ($\mathbf{9 2 b} \mathbf{- d}$). Several tools have been used to establish the exact tautomeric structures, especially NMR, IR, and mass spectrometry, X-ray diffraction, alkylation reactions, and quantum-chemical calculations (cf. 01AHC(81)1).

(92a)

(92b)

(92c)

(92d = 29)

(93)

(94)

Scheme 24

Such calculations had precisely been the source of a controversy in 1980 (cf. 93AHC(57)81, p. 108). In the meantime, the problem has been solved with the help of NMR spectroscopy in favor of the 4 H - and 3 H -tautomers (92d- and 92ctypes, respectively) by Kleinpeter et al. (95JST(355)273, 97JST(435)65). Experimental and calculated ${ }^{15} \mathrm{~N}-\mathrm{NMR}$ resonances of a large variety of 7-oxo (and 7-thioxo) TPs proved that these substances exist as a quickly established equilibrium of the two tautomers or (in some cases of 2-substituted derivatives) as the 4 H -form only. Further quantum-chemical calculations corroborate the results (97JST(401)1, 97MI7).

5-Oxo (106), 5-oxo-7-amino, and 7-oxo TP (29) exist as 4H-tautomers ($00 \mathrm{JCS}(\mathrm{P} 2) 1675,00 \mathrm{JST}(519) 165)$. Crystal data of 2-trifluoromethyl-5-methyl-7-oxo TP suggest a significant contribution of the polarized form 93 ($04 \mathrm{AX}(\mathrm{C}) \mathrm{o} 733$).

By contrast 6-nitro compound $\mathbf{9 4}$ and some homologs were shown to be the 3H-tautomers in the solid state (by X-ray crystallography) and in the gas phase (by mass spectrometry) (93RJOC525). Certain 6-amino TP derivatives, too, were drawn by the respective authors in the 3H-forms (99CCC177, 06MI2). Finally, unusual 1 H -tautomers ($93 \mathrm{JHC} 1253,93 \mathrm{PHC} 34,05 \mathrm{JHC1167}$) and 6 H -tautomers (such as 96, see below, Scheme 26) were depicted.

5,7-Dioxo TP seems to exist as a mixture of all five possible pyrimidinedione tautomers ($\mathbf{6 a - e}$, Scheme 25) because the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum shows the signals of two CH_{2} and three CH groups (03ARK(is.10)262). A broad ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signal, integrating for 0.8 H , suggests the predominance of the three enolic forms $\mathbf{6 c}-\mathbf{e}$. According to the MO-calculated heats of formation, the methylene form $\mathbf{6 b}$ is the most stable in the gas phase (97JST(415)285).

(6a)

(6b)

(6c)

(6d)

(6e)

Scheme 25

(95)

(96)

(97)

(98)

Scheme 26

2. Prototropic Tautomerism of Ring Substituents

Triazolopyrimidines containing azo groups in the 6-position are depicted in different forms: Unlike the description of 6-arylazo TPs in the usual 4H-7-oxo form, some authors derive a 6-hydrazono structure 95 (97JCR(M)2378) or 6H-6-arylazo-7-oxo structures, such as 96 (92JSC165, 98MI2), from spectroscopic data (Scheme 26). For the same reason, 7 -hydrazono form 97 is preferred to a possible 7 -hydrazino structure (99JHC1199).

The solvent and temperature dependences of the keto-enol tautomerism of the diacetyl group in TP 98 have been reported (98MI3).

F. Betain and Mesoionic Structures

In the course of the synthesis of quaternary triazolopyrimidinium salts, such as $\mathbf{3 5}$ (Section II,A,5, Scheme 10), betains 99 are formed along with the salts by autoxidation (Scheme 27) (01CHE338). There are contributions of several 6-oxo resonance structures.

The treatment of 2-amino TP quaternary salts (type 100) with Amberlite resin (OH form) or aqueous sodium hydroxide gave triazolopyrimidinylium aminides (type 101) (99JCS(P1)1527). The 7-methyl resonances in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of both species appear as doublets although H-6 exists as a broadened resonance. Mesoionic compound 101 was acylated to yield carbaminate-like ester $\mathbf{1 0 2}$ whereas conjugate

($\mathrm{Ar}=4$-nitrophenyl)

Scheme 27
addition occurred with propiolate (instead of the expected 1,3-dipolar cycloaddition) to give trans-acrylate 103. All of these aminides are stable compounds.

IV. Reactivity

A. Triazolopyrimidines as Bases and Acids

1. Protonation and Dissociation

In the TP parent substance (1a) the $\mathrm{N}-3$ atom has been confirmed as the site of the largest negative atomic charge and of protonation by magnet circular dichroism (MCD) spectra (85JOC302; cf. 00AHC(77)1), NMR spectra (94MRC373), and calculations (99AX(C)1337, 02JST(605)33). Basicity constants for TP and 6 -substituted derivatives were reported (00CHE714).

Oxo TPs are weak acids. The $\mathrm{p} K_{\mathrm{a}}$ values of 5-oxo (106) and 7-oxo TP (29), determined by potentiometric titration $\left(18{ }^{\circ} \mathrm{C}\right.$, water), are 5.9 and 5.7 , respectively (00JST(519)165). The corresponding values of photographically important 7-oxo TPs and some analogs were compiled (04 MI 10 , p. 33). Much interest was taken in TP sulfonanilide herbicides, such as Flumetsulam (197, see below, Scheme 51; p $K_{\mathrm{a}} 4.6$) and Metosulam (198, p $K_{\mathrm{a}} 4.8$) ($\left.00 \mathrm{ACA}(415) 41\right)$ and a number of 5,7-dimethyl TP sulfonanilides ($\mathrm{p} K_{\mathrm{a}}$ between 4.89 and 9.02) (98MI5, 99MI3).

6-Amino-7-oxo TP (7) was isolated as a hydrochloride (06MI2) or as a dihydrobromide (174, see below) (05JHC1167).

5,7-Dioxo TP (6) possesses a strongly acidic active methylene group ($\mathrm{p} K_{\mathrm{a} 1} 2.9$) that loses one proton on forming the monoanion as detected by NMR and X-ray diffraction data of the sodium salt (97JST(415)285). The second ionization concerns $\mathrm{N}-4\left(\mathrm{p} K_{\mathrm{a} 2} 9.9\right)$. The IR spectra of the neutral substance, the mono-, and the di-anion show broad stretching vibration bands at 1715,1679 , and $1644 \mathrm{~cm}^{-1}$, respectively (05JOM4773).

Acidic TP compounds are able to form isolable salts, for instance, with ethanolamine and piperidine (97RJOC1784), with AT and its derivatives (164-type, see below) ($04 \mathrm{AX}(\mathrm{C}) \mathrm{o} 733$) or with tetraalkylammonium and -phosphonium cations (cf. 91) (01JHC237).

2. Coordination

Metal complexes of TPs have been the target of intense research especially by Spanish, Dutch-Italian, and Polish groups. A review covering 1991-1998 was delivered by Salas et al. (99CCR(193-195)1119). It is now briefly updated by Table 12 (cf. Scheme 28).

Quantum-chemical calculations have been used to predict the complex-forming capacity of the ligands (e.g., 97JST(415)285, 00JCS(P2)1675, 00JST(519)165). The complexes have usually been characterized by X-ray diffraction, molecular spectra, magnetic, and thermometric measurements. Generally the ligands bind the metals at N-3.

B. Ring Alkylation

1. Alkylation of Tautomerizing Triazolopyrimidines

N-Alkylation of oxo TPs by alkyl halides (often performed in the presence of t-BuOK or NaH) preferentially leads to 4 -alkyl derivatives, for instance, to pharmaceutically useful products or intermediates 107 (04MI2) and $\mathbf{1 0 8}$ (95BMCL2071; cf. 99CPB928), respectively (Scheme 29). Other selective N-4 alkylations are those of ester $\mathbf{1 0 9}$ to form ester $\mathbf{1 1 0}$ (99MI2), of other esters (99MCR277) or nitriles 54 and 66 ($98 \mathrm{ZN}(\mathrm{B}) 1203)$.

When 4-alkyl-7-oxo TPs are synthesized starting from AT enamines (see Section II,A,1, Scheme 2) by cyclization/alkylation in a one-pot reaction then the reaction is believed to proceed via alkylation of the enamine nitrogen and subsequent cyclization (93MI2). Acylation similarly attacks N-4 (93MI4).

Table 12. TP complexes

Metal M	Ligand L^{a}		M:L relation

${ }^{\text {a }}$ TP ligands: 1a, parent compound; $\mathbf{2 ,}$ 5-Me-7-oxo TP; 6, 5,7-dioxo TP; 29, 7-oxo TP; 44, 5,7-di-Me TP; 104a, 5,7-di- t-Bu TP; 104b, 5,7-di-Ph TP; 105, 2-NH2-5,7-di-Me TP; 106, 5-oxo TP.
${ }^{\mathrm{b}}$ Dealing with the role of these salts and complexes in photographic silver halide emulsions.

(104a,b)

(105)

(106)

$$
(\mathrm{R}=\mathrm{t}-\mathrm{Bu}, \mathrm{Ph})
$$

Scheme 28

(107)

Scheme 29

On methylating 6-nitro-7-oxo TPs, preferably as sodium salts, commonly mixtures of 3- and 4-methyl isomers are obtained, for instance, compounds $\mathbf{8 9}$ and $\mathbf{9 0}$ in the ratio of $70: 30$ from the 5 -methyl homolog (93RJOC525). The direction of the methylation is primarily determined by steric factors of the substituents in the 2- and especially in the 5 -position.

Replacement of oxo TP sodium salts by tetraalkylammonium salts (e.g., 91), particularly in the case of highly insoluble TPs, proved to be advantageous concerning conditions, yield, and accessibility of all possible alkyl (including 1-alkyl) derivatives (01JHC237). In this way 1-, 3-, and 4-alkyl TPs were unambiguously obtained for spectroscopic comparison, for instance N -methylated substances 111, 112, and 113, respectively (Scheme 30).

1-Alkyl TPs, usually minor side products of the alkylation (yield $0.2-5 \%$), are more abundant (yield $10-19 \%$) in the reaction of 2 -morpholino-7-oxo TP ammonium salts (e.g., 91b). The large morpholino group may be twisted out of the TP plain, while the smaller methylthio group (in 91a) is coplanar, and conjugation lowers the nucleophilicity of $\mathrm{N}-1$.

For the sake of completeness, the fourth possibility of alkylating oxo TPs is worth mentioning: In rare cases a direct O -alkylation has been observed. Thus the reaction of 2-oxo TP $\mathbf{1 1 4}$ and difluorocarbene gives 2-alkoxy TP $\mathbf{1 1 5}$ together with a trace of the 1-alkyl derivative (92MI4). O-Alkylation has also been claimed in the reaction

(111)

(112)

(114)

$$
\left(\mathrm{R}=3-\mathrm{CF}_{3}\right. \text {-phenyl) }
$$

(115)

Scheme 30
of TPs and chloroacetate (00MI4) and in the alkylation of TP 2 (in a test mixture together with nine other hydroxyazines and -azoles, polymer-bound to anion exchange resin) for a combinatorial library (96TL5257).

Ring alkylation of 7 -amino TPs (e.g., 116) leads to substitution in the 3-position (to give 117) (05WOP30216) or in 3- and 4-positions (01WOP96341).

2. Quaternization

Alkylation of nontautomerizing TPs usually occurs in the 3-position and yields quaternary salts, for instance, 3-benzyl compound 100 (99JCS(P1)1527) and cephalosporin derivatives (92JAN721).

C. Electrophilic Reactions at Carbon Ring Atoms

Electrophilic substitution of TPs occurs in the 6-position (02JST(605)33). Bromination (cf. 94AHC(59)245) and nitration of 7-oxo TP 2 and 2-substituted

Scheme 31
derivatives were optimized (97RJOC1784). Whereas most of these substances are selectively nitrated at C-6 (see also 93RJOC525), 2-hydroxymethyl (118a), 2-amino (118b), and 2-phenyl derivatives undergo dinitration, both 6-position and 2 -substituent being attacked, unaffected by the conditions. Thus nitrate 119a, nitramine 119b, and a nitrophenyl derivative, respectively, are obtained (Scheme 31).

Azo coupling of aromatic or heteroaromatic diazonium salts with oxo TPs at the 6-position gives azo compounds (92JSC165) or tautomers (e.g., 95) (97JCR(M)2378).

The combination of $\mathrm{C}-\mathrm{H}$ activation and olefin insertion onto $\mathrm{C}-2$ of TP 44, catalyzed by ruthenium carbonyl (cluster catalysis), presents an opportunity for $\mathrm{C}-\mathrm{C}$ bond formation to yield 2-acyl TP 120 (01AG222).

D. Nucleophilic Addition

The field of nucleophilic addition onto TPs has been dominated by Russian work done with TP derivatives that are activated by a nitro group in the 6-position (cf. 91MI2, $95 \mathrm{CHE} 125,95 \mathrm{H}(40) 441)$. The reactivity of these compounds was assessed on the basis of quantum-chemical data (93CHE694). The center of nucleophilicity is C-7.

The addition of acetone onto 6 -nitro TPs (e.g., 121, Scheme 32), according to the same source, requires the presence of base to generate the acetone anion whereas all the other nucleophiles do not. An intermediate σ-adduct on acidification gives dihydro TP 122. 1,3-Diketones such as dimedone or indane-1,3-dione are CH acids stronger than acetone and react without base activation to give, for instance, adduct $\mathbf{1 2 3}$ (93RJOC519).

Known addition reactions were reinvestigated to elucidate the pathway (93RJOC1582). Ethanol, methanol, or water form unstable adducts, such as $\mathbf{1 2 4}$. Catechol adduct $\mathbf{1 2 5}$ (or the analogous adducts of pyrrole, indole, 4-dialkylaminobenzene) can be obtained both from nitro TP 121 (Path A) and from adduct $\mathbf{1 2 4}$ that

(124)

B

(125)

Scheme 32
appears when the reaction with catechol is conducted in ethanol (Path B). The question whether adduct $\mathbf{1 2 5}$ forms directly from TP $\mathbf{1 2 1}$ or through intermediate $\mathbf{1 2 4}$ (when ethanol is present) has been unequivocally decided in favor of direct Path A, on the basis of experimental and calculated results.

Finally, nitro TP $\mathbf{1 2 1}$ does not react with CH -active 2-methylbenzimidazole or methylazines unless these bases have been activated by quaternization (98RJOC263). Thus, picolinium salt 126a gives adduct $\mathbf{1 2 7}$ that can be deprotonated to yield mesoionic compound $\mathbf{1 2 8}$ (Scheme 33). The same product is directly and easier obtained when salt 126a has further been activated by generating the corresponding anhydrobase 126b that can be prepared in situ.

On the other hand, TPs without nitro groups (e.g., parent compound 1a) are able to react with resorcinol under acid conditions, the nonisolable intermediate $\mathbf{1 2 9}$ being cyclized to give oxadiazocine $\mathbf{1 3 0}$ as predicted by theoretical studies (99RCB1553).

Reduction or hydrogenation similarly occurs on the pyrimidine ring to yield 4,7-dihydro and 4,5,6,7-tetrahydro TP derivatives as exemplified by TP herbicide Flumetsulam (197, see Section V,B) (92MI6).

Scheme 33

E. Ring Cleavage

1. Cleavage of the Pyrimidine Ring

A systematic treatise on the reactions of ring cleavage is found in a review dealing with bridging-nitrogen azoloazines (95CHE1251).

TP derivatives strongly vary in their stability toward hydrolytic pyrimidine ring cleavage. Dione 6 in a retrosynthetic reaction decomposes to give triazole 131 (Scheme 34) just in water (97JST(415)285) and still faster in hydrochloric acid. Cupric chloride, when present, captures the final cleavage product AT as complex 132 that is also obtained from TP 2 copper complex on boiling in hydrochloric acid ($04 \mathrm{AX}(\mathrm{E}) \mathrm{m} 370$). However, the TP moiety in tetrazole $\mathbf{1 3 3}$ resists even concentrated sulfuric acid; after some hours at $100^{\circ} \mathrm{C}$ only the tert-butyl group had been lost (91CPB1099).

6-Nitro TP 134a is cleaved in a neutral medium, homolog 134b needs $\mathrm{pH} 11-12$ (Path A) (92CHE1323). Isolated final products AT and 4-dimethylamino-ω-nitroacetophenone are consistent with the proposed mechanism.

Decomposition of 6-nitro TP 134b proceeds quite differently in the presence of the N-nucleophile benzylamine and leads unusually to 1-hydroxyimidazole 135 (Path B) (93MC213).

Cleavage of N-alkyl-6-nitro-7-oxo TPs by N -nucleophiles was thoroughly investigated (01 RCB 682). Pyrimidine-ring opening is controlled by the accessibility of C-5 for nucleophilic attack. Both an unsubstituted C-5 site and (in the case of 5-methyl substitution) the use of primary (sterically unhindered) amines favor this reaction and exclude an alternative cleavage of the triazole ring (see the following Section IV,E,2).

Thus, 5-methyl derivatives (e.g., 136) on reaction with ammonia or primary amines (e.g., allylamine) release 3 -aminocrotonamides (e.g., 137) as the pyrimidine ring fragment (Scheme 35). The intact triazole ring appears in the form of 4-alkyl AT (e.g., 138). 3- or 4 -alkyl derivatives unsubstituted at C-5 similarly react with secondary amines to yield, together with 3-aminoacrylamides, AT $\mathbf{1 3 8}$ or 5-alkylaminotriazole, respectively. TPs such as $\mathbf{1 3 6}$ are degraded by hydrazine to give pyrazolones (e.g., 139) and the corresponding AT derivatives.

A pyrimidine-to-pyridine ring transformation (cf. 03AHC(84)31) is exemplified by the reaction of 6 -nitro TPs (e.g., 121) with cyano C-nucleophiles, for example, cyanoacetates (93RJOC659, 94CHE213). Initial attack of the nucleophile at C-7, ring cleavage of the adduct, and incorporation of the $\mathrm{C}-\mathrm{C}-\mathrm{N}$ fragment into a new pyridine ring, as elucidated by NMR spectroscopy and stable-isotopic labeling (see marked atoms in Scheme 35), give rise to pyridylaminotriazole 140.

Ring cleavage of TP sulfonanilide $\mathbf{1 4 1}$ by oxidation leads to AT derivative $\mathbf{1 4 2}$ (Scheme 36) (92MI2), whereas quaternary salt 35a suffers photodecomposition in sunlight to yield the analogous AT 143 (99CHE708). In both cases an acyl group derived from the pyrimidine fragment remains attached to the exocyclic amino group of AT.

(131)

(133)

$\mathrm{H}_{2} \mathrm{O} \mid A$

Scheme 34

Scheme 35

Scheme 36

Scheme 37

2. Cleavage of the Triazole Ring

This reaction (cf. 95CHE1251), earlier described as being dependent on unusual TP structures or extreme conditions, was now found to be predominant in the series of 3-alkyl-5-methyl-6-nitro-7-oxo TPs unsubstituted in the 2-position (e.g., 136, Scheme 37) (01RCB682). The triazole ring is exclusively cleaved in the presence of strong bases or C-nucleophiles to obtain pyrimidones such as $\mathbf{1 4 5}$. Under the influence of ethanolic alkali, after short reaction times, a mixture of intermediate cyanamide $\mathbf{1 4 4}$ and product $\mathbf{1 4 5}$ was obtained.

The course of reactions with N -nucleophiles depends on the structures of both reactants (see Section IV,E,1). Interaction of 5-methyl species 136 and sterically hindered secondary amines (e.g., piperidine) proceeds through guanidine $\mathbf{1 4 6}$ onto product 145 .

The triazole ring cleavage under the influence of sodium hydride serves to synthesize 2-cyanamido-4-amino-5-arylpyrimidines from TPs, such as imine $\mathbf{1 1 7}$ (05WOP30216).

F. Nucleophilic Substitution of Functional Groups at the Rings

1. Reactivity of Halogen in Positions 5 and 7

The high reactivity of 5 - and especially 7 -halogen TPs make them the keynote substances for derivatization. A number of representative reactions are listed in Table 13.

Table 13. Nucleophilic substitution of chlorine (and bromine)

Position	New substituent ${ }^{\text {a,b }}$	Reagent ${ }^{\text {b }}$	References
5	OR	ROH/NaH	04WOP108136
	OR'	R'ONa	96MI1
	NR_{2}	NHR_{2}	93CPB1100, 04BMCL4831, 04JMC6218
	Alkyl	$\mathrm{R}_{2} \mathrm{Zn} / \mathrm{Ni}$ complex	03WOP4465
	$\mathrm{CH}(\mathrm{COOR})_{2}$	$\mathrm{CH}_{2}(\mathrm{COOR})_{2} / \mathrm{NaH}$	06WOP34848
5 or 7	OR	RONa	92MI2, 99JHC183
	CN	$\mathrm{R}_{4} \mathrm{~N}^{+} \mathrm{CN}^{-}$	05WOP95405, 06WOP34848
7	OH	NaOH	02EUP1249452
	OR	$\mathrm{ROH} / \mathrm{K}_{2} \mathrm{CO}_{3}$	04WOP113341
	SH	$\mathrm{CS}\left(\mathrm{NH}_{2}\right)_{2}$	95PHA33
	SAr	ArSH	95IJC(B)209
	SR	$\mathrm{RSH} / \mathrm{K}_{2} \mathrm{CO}_{3}$	04WOP113341
	SR'	R"SH	92MI5, 95JAP(K)07/309872
	NH_{2}	$\mathrm{NH}_{3} / \mathrm{MeOH}$	05WOP87770
	NHR	RNH_{2}	99USP5986135 ${ }^{\text {c }}$, 02JHC703
	NHR ${ }^{\prime}$	$\mathrm{R}^{\prime} \mathrm{NH}_{2}$	95IJC(B)209
	NR ${ }^{1} \mathrm{R}^{2}$	$\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NH} / \mathrm{KHCO}_{3}$	91EGP294487 ${ }^{\text {d }}$
	NHOH, NHOR	$\mathrm{NH}_{2} \mathrm{OH}, \mathrm{NH}_{2} \mathrm{OR}$	$97 \mathrm{JHC1519}$
	NHOR, $\mathrm{NR}^{1} \mathrm{SR}^{2}$	$\mathrm{NH}_{2} \mathrm{OR}$ etc./ $\mathrm{Et}_{3} \mathrm{~N}$	02GEP10121101
	NHNH_{2}	$\mathrm{NH}_{2} \mathrm{NH}_{2}$	95PHA33
	NHNR_{2}	$\mathrm{NH}_{2} \mathrm{NR}_{2} / \mathrm{Et}_{3} \mathrm{~N}$	02GEP10121101
	NHNHTs	$\mathrm{NH}_{2} \mathrm{NHTs}$	99JHC1199
	Me	MeMgBr	92MI1
	$\mathrm{C}_{14} \mathrm{H}_{29}$	$\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{MgBr}$	02JA13856 ${ }^{\text {e }}$
	Alkyl	$\mathrm{RMgBr} / \mathrm{ZnBr}_{2}$	04WOP58765
		RLi	99WOP41255
	Azolyl	Azole Na salt	00RJOC866
5 and 7	OR	RONa	93JHC169, 03MI3, 03MI7
	SR	RSNa	03MI3

${ }^{\text {a }} \mathrm{SH}, \mathrm{NHOH}, \mathrm{NHNH}_{2}$ or tautomeric thioxo, oxime, hydrazone groups, respectively.
${ }^{\mathrm{b}} \mathrm{R}$: alkyl ($\mathrm{R}^{1}, \mathrm{R}^{2}$); R': alkyl, aryl; R": alkyl, aryl, heterocyclyl.
${ }^{\mathrm{c}}$ Optically pure (S)-amines.
${ }^{\text {d }}$ Chiral aminoalditols.
${ }^{\mathrm{e}} \mathrm{Fe}(\mathrm{acac})_{3}$-catalyzed alkyl-heteroaryl cross-coupling reaction.

On studying oxo TP alkylation (see Sections III,C,5 and IV,B,1) a "fourth alkyl product" (e.g., 147, Scheme 38) having an O-alkyl group can only indirectly be synthesized through the chloro compound (01JHC237). Similarly a direct oximation of 7-oxo TPs is not possible because of their amide character and must be replaced by a path via chlorides (e.g., 148) to yield oxime 149 (97 JHC 1519).

The differentiated reactivity in the two positions of 5,7-dihalo TPs allows selective substitution in the 7-position (99USP5986135, 06WOP27170) or stepwise substitution first in the 7 -, then, under harsher conditions, in the 5-position (04WOP108136).

(147)

(148)

(149)

Scheme 38

Some $\mathrm{C}-\mathrm{C}$ linking reactions in addition to those listed in Table 13, are worth mentioning. 5,7-Dichloro TP $\mathbf{1 5 0}$ reacts selectively with an enamine to give dehydropiperidyl derivative 151 (Scheme 39) (99WOP41255). Palladium-catalyzed coupling of 7-iodo TP $\mathbf{1 5 2}$ to a propynol, accompanied by isomerization, yields chalcone 153 (91SL115). The intended chlorination of 7 -oxo TP $\mathbf{1 5 4}$ in the 7-position by the action of phosphorus oxychloride in the presence of dimethylaniline resulted in the $\mathrm{C}-\mathrm{C}$ coupling to the p-position of the aniline to give $\mathrm{TP} \mathbf{1 3 4 b}$ (92CHE1323). A blocked p-position as in dimethyl-p-anisidine, however, leads to an unusual demethylation yielding anisidine $\mathbf{1 5 5}$.

2. Reactivity of Halogen in Positions 2 and 6

Transformation of 2-halo TP into 2-methoxy TP is an example of a rarely published substitution of 2-position halogen (92MI4). The most reactive chlorine atom in a 2,5,7trichloro TP derivative is that in the 7-position (03WOP80614).

Reactions of 6-bromo TP (156) with N - and C-nucleophiles could be accomplished although Makisumi had regarded bromine in the 6-position as a weak nucleofugal group (cf. 93AHC(57)81, p. 119). Thus, piperidine 157 and, in a cine-substitution through the surprisingly stable intermediate $\mathbf{1 5 8}$, indole 159 were obtained (Scheme 40) (99MC233).

3. Substitution of O -, S-, and N -Containing Functions

Reactions involving these leaving groups (see Table 14) generally follow the same rules as those for the halo compounds (Scheme 41). Thus, exchange of methoxy for methylthio or vice versa can selectively proceed at the 7 -position as shown by the formation of compounds 160 and 161 (03MI3). 2-Alkylthio (e.g., 162) and 2-alkanesulfonyl derivatives, owing to their good accessibility, frequently serve as precursors of otherwise 2 -substituted TPs (e.g., 163) (99MI2).

The replacement of the oxo functionality by chlorine (cf. 94AHC(59)245) has been the subject of many proposals attempting to improve the process of production (Scheme 42). Thus dichloro TP (165a) was claimed to be obtained in high yield when synthesized directly from the intermediate salt $\mathbf{1 6 4}$ (98USP5808066). Sulfonanilides

Scheme 39

165b were reported to form in a one-pot reaction from malonic acid, phosphorus oxychloride, and the appropriate AT derivative (93JHC169, 03MI7). The latter reaction can proceed in a cyclic process (95WOP11246).

7-Amino compounds (such as 167) can be made from oxo TPs (e.g., 166) and amines without phosphorus oxychloride but instead with hexamethyldisilazane in a silylation-amination one-pot reaction (02JHC703).
(158)

(159)

Scheme 40

Table 14. Nucleophilic substitution of O-, S-, and N-containing groups

Group ${ }^{\text {a,b }}$	Position	New substituent ${ }^{\text {a,b }}$	Reagent ${ }^{\text {b }}$	References
OH	5 or 7	Cl	POCl_{3}	96MIL, 03JHC813
	5 and 7	Cl	POCl_{3}	99JHC183
OR ${ }^{1}$	7	SR	RSNa	03MI3
SR ${ }^{1}$	2	NR_{2}	$\mathrm{R}_{2} \mathrm{NH}$	99MI2
	5	OR	RONa	92MI4
		NR_{2}	$\mathrm{R}_{2} \mathrm{NH}$	05WOP54246
	7	NHNH_{2}	$\mathrm{NH}_{2} \mathrm{NH}_{2}$	95 PHA 33
$\mathrm{SO}_{2} \mathrm{R}^{1}$	2	OR	RONa	04WOP58765
		OR'	$\mathrm{R}^{\prime} \mathrm{OH} / \mathrm{NaH}$	03MI2, 05AX(E)o3842
		SH	(NH4)2S or NaSH	04WOP46149
		SR ${ }^{\prime}$	R'SH/NaH	00MI1
		CN	$\mathrm{R}_{4} \mathrm{~N}^{+} \mathrm{CN}^{-}$	04WOP58765
		OCHR'-PO(OR) ${ }_{2}$	HOCHR'-PO(OR)2/ NaH	00HAC313
N_{3}	7	OH	HCl or NaOH	92MI5
		S-SO3 ${ }_{3} \mathrm{Na}$	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	
CN	2	Me	MeMgX	06WOP34848

[^1]
(160)

(161)

Scheme 41

G. Introduction and Transformation of Individual Substituents

1. Carboxylic Acid Derivatives

Along with esterification and ester hydrolysis (97RJOC1784, 02S901, 04JAP(K)107228) or deprotecting (hydrolysis of cephalosporin-analogous benzhydryl ester 168, Scheme 43) (92BCJ3288) further reactions of esters, that is amidation and hydrazidation (99MCR277, 01JHC1119) or formation of hydrazinium salts (97RJOC1784) should be mentioned.

2. Sulfur-Containing Substituents

Reactions not fitting in with Section IV,F are listed in Table 15 ($c f$. Scheme 43). Additionally it should be noted that S-alkylation of 2-mercapto TPs (such as 170) by benzylhalides gives higher yields and purer products when proceeding as a phase transfer reaction in ether-aqueous sodium hydroxide in the presence of benzyltrimethylammonium bromide (04MI9). TP 170 and α, α^{\prime}-dichloroacetone react to yield a symmetrical bis-thioether (04MI3).

(164) $(R=H)$

$\downarrow \mathrm{POCl}_{3}$

Scheme 42

The synthesis of herbicide-type TP 2-sulfonanilides (92MI1, 92MI2, 92MI3) or analogs (98MI8) is exemplified by the reaction of thiol $\mathbf{1 7 0}$ via benzylthioether $\mathbf{1 7 1}$ and sulfochloride $\mathbf{1 7 2}$ to obtain sulfonanilides $\mathbf{1 7 3}$ (97MI3).

3. Amines and Their Derivatives

Reactions not included in Section IV,F are compiled in Table 16. In addition, a Sandmeyer reaction allows 2-chloro or 2-bromo TPs to be obtained from 2-amino compounds (92MI4, 96GEP4434971). 6-Amino TP 174 (Scheme 44), however, on diazotation gives the stable diazo compound $\mathbf{1 7 5}$ that on heating in methanol suffers reduction (dediazonation) to yield 7 -oxo TP (29) (05JHC1167). Desamination in the 3-position is observed when quaternary salts $\mathbf{3 5}$ are diazotized ($\mathbf{3 5 b}$ to give $\mathbf{1 7 6 b}$) or acetylated (to give $\mathbf{1 7 7 a}, \mathbf{b}$). In the case of diphenyl compound $\mathbf{3 5 a}$ just heating in chloroform leads to TP 176a (99CHE708).

Hydrolysis of tosylhydrazone 97 (Scheme 45) provides the 7 -unsubstituted TP 179 (99JHC1199), according to a reaction type that "may be regarded essentially as the thermal decomposition of the hydrazide anion" (Albert, 1949). The reaction sequence starting from chloride $\mathbf{1 7 8}$ through hydrazone $\mathbf{9 7}$ to give TP $\mathbf{1 7 9}$

(168) ($\mathrm{R}=$ cephalosporin building block)
(169)

Scheme 43
represents a noncatalytic dehalogenation method that is also applicable to structures sensitive to hydrogenation. The corresponding deuterolysis provides access to 7 -deutero compounds, active hydrogen on other positions being simultaneously exchanged. Thus, hydrazone 97 yields a 1:1 mixture of polydeutero products 180a and \mathbf{b}.

4. Elimination by Direct Reduction

Different from the indirect reduction just mentioned (Scheme 45, substrate 178), chlorine in 7-position can frequently be eliminated by catalytic hydrogenation (palladium/charcoal) (96 MI 1), by zinc (02 WOP 64211) or by the zinc-copper couple in the presence of acetic acid (03MI3). The latter method even works with sulfurcontaining chlorides when catalytic hydrogenation or zinc reduction failed; for example, the 7-positioned chlorine of dichloride $\mathbf{1 8 1}$ is selectively removed (99JHC183).

Table 15. Sulfur-containing substituents

| New group $^{\mathrm{a}}$ | Position | Precursor $^{\text {a,b }}$ | | Reagent $^{\mathrm{a}}$ |
| :--- | :---: | :--- | :--- | :--- | References

${ }^{\text {a }}$ R: alkyl; R': alkyl, aryl; Het: heterocyclyl; X: halo.
${ }^{\mathrm{b}} \mathrm{SH}$ or tautomeric thioxo.
${ }^{\mathrm{c}}$ Cephalosporin building block.

H. Reactivity of Side Chains

1. Toward Electrophilic Reagents

Side-chain bromination of 5,7-dimethyl-6-aryl TPs (e.g., 187, see below) by pyridinium tribromide can be restricted to the 7-positioned methyl (06WOP34848). The same regioselectivity rule governs the reaction of 5,7-dimethyl TP (44) with DMF dimethylacetal which yields enamine 182, and, through oxime 183 , nitrile $\mathbf{1 8 4}$ (Scheme 46) (96JHC465).

Acylation of hydroxyalkyl TPs by aliphatic acids (93RCB1265) and by aromatic acids (98EUP850902) was described. The latter reaction proceeds as a Mitsunobu reaction (redox condensation) in the presence of azodicarboxylic ester and triphenylphosphine to give, for example, ester 185.

Acetic acid (02CRC517) or malonic acid as TP substituents in 5- or 7-positions are easily decarboxylated. The overall process of introducing a methyl group into the 5-position (e.g., to give 187) is depicted in Scheme 47 (06WOP34848). Partial degradation of the dialkyl malonate substituent in the 5-position yields an alkyl acetate group (05WOP120233).

The mild oxidation of 2-positioned hydroxymethyl to give TP 2-aldehydes was managed by means of DMSO, activated by oxalyl chloride (03WOP93280), or

Table 16. Amines and their derivatives

New group $^{\mathrm{a}}$	Position	Precursor $^{\mathrm{a}}$		Reagent $^{\mathrm{a}}$

${ }^{\text {a }}$ R: alkyl; R': alkyl, aryl.
${ }^{\mathrm{b}}$ Deprotection of Cbo-protected amine.
${ }^{\mathrm{c}}$ dih.: dihydropyran-2,4-dion-3-yl.
${ }^{\mathrm{d}}$ Catalysis by N -arylsulfilimines (e.g., $\mathrm{TP}-\mathrm{N}=\mathrm{SMe}_{2}$) and 3-picoline.
${ }^{\mathrm{e}}$ Hydroxylamine or tautomeric oxime structure.
iodobenzene diacetate, catalyzed by 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) (06MI3) whereas alkaline permanganate directly led to carboxylic acids (04JAP(K)107228).

2. Toward Nucleophilic Reagents

A typical reaction is the etherification of haloalkyl TPs by phenols in the presence of sodium hydride (95WOP10521). Fluorine can be replaced by O- or N-nucleophilic groups in 6-(fluorophenyl) TPs (05USP124635), 7-(fluorophenyl) TPs (e.g., 4)

Scheme 44

Scheme 45
(01RJOC570), and 6,7-(fluorobenzo) TPs (e.g., 11b) (05RJOC1071). 2-(Chloromethyl) TPs condense with lithium benzenesulfinate derivatives to give sulfones (93EUP544166).

7-(Hydroxyalkyl) TPs and phenols react to yield phenol ethers (e.g., 186, Scheme 46) by an application of the Mitsunobu reaction (see Section IV,H,1) (98WOP7724).

44
\downarrow DMF-DMA

Scheme 46

Scheme 47

(188)

Scheme 48

Hydroxyalkylamine 188 (Scheme 48) in an acid medium cyclizes to give two imidazolidino TP isomers (02JHC319). The ether bond of alkoxyalkyl TPs can be cleaved by hydrobromic acid (05WOP87770), that of similar benzyl ethers by catalyzed hydrogenation (04JAP(K)107228).

Aiming at mass spectrometric labeling, a 2-acyl TP derivative was transformed into a special O-substituted oxime (01AG222).

TP 2-acetic acid 189a can be esterified through its acyl chloride or, more conveniently, in one step by reacting in ethanolic suspension with thionyl chloride (97RJOC1784). Nitro compound 189b via its ethyl ester gives the hydrazide. Enantiomerically pure alcohols (e.g., 191) are produced by selective transesterification, for instance by reacting racemic esters (e.g., 190) with alcohols in the presence of an esterase or lipase (98GEP19706336).

Direct amidation of TP 5-acetic acid by aliphatic amines is performed in the presence of dicyclohexyl carbodiimide (98EUP838722). Ester 42 easily forms the respective hydrazide (Scheme 49); both substances each condenses with 1,2-diaminobenzene to give the 7-(benzimidazol-2-yl)-methyl compound $\mathbf{1 9 2}$ (02CRC517).

7-Acyl TPs can be reduced to form enantiomerically pure 7-(α-hydroxyalkyl) TPs, the reaction proceeding in the presence of a microorganism and a carbon source or in the presence of an enzyme and a reducing agent (98GEP19707008). Finally, reductive condensation of 2-formyl TPs (e.g., 193) and dihydropyran-2,4-dione leads to TP derivatives 194 (06MI3).

(42)
DAB

(DAB = 1,2-diaminobenzene)

Scheme 49

V. Applications

A. Pharmaceutical Uses

TPs continue to attract much pharmaceutical interest. They have been the subjects of about 200 relevant patents (cf. 98AHC(72)127, p. 169) and numerous publications dealing with laboratory and clinical tests, analytics, and other topics. The most

(195)

Scheme 50
widely known derivative is the simple molecule of Trapidil ${ }^{1}$ or Rocornal (195, Scheme 50) (94MI6, 01MI3), a clinically used antiischemic and cardiatonic agent which acts as a platelet-derived growth factor (PDGF) antagonist and as a phosphodiesterase inhibitor. Beneficial effects on lipid peroxidation and nitric oxide levels were claimed (05MI1). Chemical studies, to give some examples, deal with improved synthetic routes ($92 \mathrm{MI} 8,05 \mathrm{MI} 9$), with the analytical determination (99MI6), and with the disposal of Trapidil-containing ${ }^{14} \mathrm{C}$-labeled organic waste by mineralization (98MI6).

Experimental work has consequently concentrated on Trapidil analogs, for instance, the antiatherosclerotic drug AR 12463 (196) (91PHA225, 92EGP297061) or similar compounds (91 MI 1) and other 7 -amino TP derivatives acting as neurokinin antagonists (96WOP10568), analgesics and nitric oxide synthase inhibitors (99JAP(K)11/29480) or adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptor antagonists (04JMC6218).

Phenol ether $\mathbf{1 8 6}$ was identified as an anticonvulsant agent (01MI2); herbicide-type 2-arenesulfonamido TPs were tested as leishmanicides (97BMCL1087). (Tetrazolylbiphenylylmethyl) TPs (obtained e.g., from nitrile 108) as angiotensin II receptor antagonists (93USP5231094, 94GEP4305279), antiviral TP glucosides as nucleoside analogs (03WOP93290), and TP-containing cephalosporin antibiotics (92BCJ3288, 93MI1, 95BMCL2777, 00MI6) mark further main foci of pharmaceutical TP research.

B. Agrochemical Uses

TP 2-sulfonanilides have developed into the most important group of TP herbicides, Flumetsulam (197) and Metosulam (198) being the best known examples (Scheme 51) because of their high herbicidal activity and crop selectivity (92MI1, 92MI2, 92MI3, 94MI4, 03MI3). Much effort has been made to optimize the syntheses of these broadleaf post emergent herbicides (e.g., 93JHC169, 94MI4, 03MI3).

[^2]
(197)

(198)

Scheme 51

The mode of their action consists in the acetolactate synthase (ALS) inhibition and, as a result, in the inhibition of the branched-chain amino acid biosynthesis from acetolactate (90MI1, 92MI7, 98MI4). Results of QSAR studies were published (03MI3). Another approach was used to analyze a model of inhibition of photosystem II (96MI1).

Metosulam (198) was ${ }^{14} \mathrm{C}$-radiolabeled in the 2-position or in the benzene ring by modified synthetic routes (97MI6). This way data on the pharmacokinetics in mammals could be provided (97MI4). Flumetsulam (197) was toxicologically examined (03MI5) and included in QSAR studies of herbicide toxicity (06BMC2779).

Metabolic investigations with Flumetsulam revealed the following paths of detoxification (tolerance mechanisms) in nonsensitive plants: mono- or dihydroxylation (to give 5-hydroxymethyl and/or 4'-hydroxy substitution) and glucose conjugation (to form O-glucosides) (92MI3, 93MI5, 03MI3). Other substances additionally undergo O-dealkylation and TP ring cleavage (94MI5).

The anaerobic aquatic degradation of Flumetsulam (197) was studied to elucidate the metabolism in soil (92MI6). The most probable degradation product is reduced Flumetsulam hydrate (201), existing in an equilibrium mixture. The determination of this structure was assisted by chemically reducing Flumetsulam to yield dihydro and tetrahydro products 199 and 200, respectively.

The extensive analytical literature dealing with herbicides such as Flumetsulam and Metosulam includes, for instance, trace and ultra-trace analyzes in soil or foods

(202)

(203)

Scheme 52
using solid-phase extraction combined with chromatographic, spectrometric (UV, MS), and electrophoretic methods (95MI1, 05MI3, 05MI4). Flumetsulam is not sufficient thermally stable for gas chromatography unless N -methylated (99MI7).

Much effort has targeted at discovering new TP herbicides in the groups of 2-thioethers (00MI5), phenyl derivatives (95MI2), 2-arenesulfonamides (type 202, Scheme 52) (94MI4, 96MI2), and especially 2-sulfonanilides (type 173) (97MI3, 98MI5, 98MI9, 98MI11, 98MI12, 99MI3, 99MI4, 99MI9). QSAR analysis has been based on electronic and steric factors, physicochemical properties, X-ray diffraction, quantum-chemical calculations, and (98MI7, 99MI8) comparative molecular field analysis (CoMFA).

The main foci among about 200 patents (cf. 98AHC(72)127, p. 167) have been, together with sulfonamides, 2-(arenesulfonylamino) TPs (e.g., 202) (02WOP36595) and, as fungicides, 6-(halophenyl)-7-amino TPs (e.g., 203) (06WOP27170). The bronchodilator $\mathbf{1 0 7}$ has been proposed as herbicide safener (92EUP467529). Platinum and ruthenium complexes of TPs are active agents against Trypanosoma forms (04MI8). Just recently new synthetic variations of the 5,7-dimethyl TP structure (44) have been published (05MI7, 05MI8, 06MI1).

C. Uses in Information Recording

The photographic application of TPs, centered around substance 2, as stabilizers of photographic silver halide emulsions was recently thoroughly treated (04MI10). Acidity, adsorptivity of the silver salts, and redox properties of these compounds were dealt with as parameters governing the mechanism of stabilization. A neural network could be used to compute QSAR with derivatives of agent 2 on the basis of their stabilizing activity and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shifts (99JPR449).

Photothermographic materials can be stabilized by polyhalomethyl derivatives (e.g., 204, Scheme 53) (97JAP(K)09/319022) whereas TP 5,7-diones (e.g., 6) were claimed as couplers for heat-developable diazo recording material (04JAP(K)142377). Other TPs (e.g., 2) were found to improve lightfastness of ink-jet recorded images (00JAP(K)94829).

(204)

(205)

Scheme 53

D. Other Uses

Owing to their anticorrosive properties TPs (e.g., 205) serve as rust inhibitors in lubricants for magnetic recording materials $(95 \mathrm{JAP}(\mathrm{K}) 07 / 65352$) or in chemicalmechanical polishing systems (02JAP (K)134442).

By making use of the adsorbability of TPs semiconductor particles for photoelectrochemical cells are provided with an adsorbed mixture of dye and TP (e.g., 2) (00JAP(K)228233). Finally, TP carboxylic acids can be contained in compositions for depositing silver layers (plating) (04USP40852).

List of Abbreviations

AT	5-amino-1,2,4-triazole
HP	2-hydrazinopyrimidine
TP	1,2,4-triazolo[1,5-a]pyrimidine

References

73CIM39
73UP1 82OMR87

84CHEC(5)847
85IJC(B) 873
85JOC302
86MI1
$87 \mathrm{CH}(47)$
87 T 4725
88MI1
M. Tišler, Chim. Ind. (Milan), 55, 39 (1973).
D. Rahner, G. Fischer, and K.-W. Junge, unpublished results.
W. W. Paudler, R. M. Sheets, and B. Goodson, Org. Magn. Reson., 18, 87 (1982).
S. W. Schneller, Compr. Heterocycl. Chem., 5, 847 (1984).
S. B. Barnela, S. Padmanabhan, and S. Seshadri, Indian J. Chem. Sect. B, 24, 873 (1985).
J. W. Downing, J. W. Waluk, B. Stanovnik, M. Tišler, B. Vercek, and J. Michl, J. Org. Chem., 50, 302 (1985).
B. Stanovnik, in "Organic Synthesis: Modern Trends" (O. S. Čižov, ed.), (Proc. IUPAC Symp. 6th, 1986, pub. 1987), Blackwell, Oxford, p. 315.
G. P. Ellis, Chem. Heterocycl. Compd., 47, (1987).
C. W. Bird, Tetrahedron, 43, 4725 (1987).
G. Shaw, in "Rodd's Chemistry of Carbon Compounds", Suppl. to the 2nd Edition. (M. F. Ansell, ed.), Vol. IV L, p. 51, Elsevier, Amsterdam (1988).

89MI1
90AHC(49)277
90MI1
90PHA768

91CHE88
91CHE1242

91CPB1099
91EGP294487
91MI1
91MI2
91MI3
91PHA225
91 SL115
92BCJ3288
92CH(47II)
92CHE1323

92DOK 801

92EGP297061

92EUP467529
92JAN721
92JSC165
92MI1
92MI2
92MI3
92MI4
92MI5
92MI6
L. Stefaniak, M. Witanowski, U. Mahmoud, J. D. Roberts, and G. A. Webb, J. Cryst. Spectrosc. Res., 19, 159 (1989).
M. A. E. Shaban and A. Z. Nasr, Adv. Heterocycl. Chem., 49, 277 (1990).
B. C. Gerwick, M. V. Subramanian, and V. I. Loney-Gallant, Pestic. Sci., 29, 357 (1990).
J. Kráčmar, J. Kráčmarová, T. N. Bokovikova, V. E. Čičiro, G. A. Něstěrova, A. V. Suranova, and N. V. Trius, Pharmazie, 44, 768 (1990).
S. M. Desenko, Kh. Estrada, V. D. Orlov, and O. A. Ponomarev, Chem. Heterocycl. Compd. (Engl. Transl.), 88 (1991).
S. M. Desenko, V. D. Orlov, V. V. Lipson, O. V. Shishkin, and S. V. Lindeman, Chem. Heterocycl. Compd. (Engl. Transl.), 1242 (1991).
H. Kanno, H. Yamaguchi, Y. Ichikawa, and S. Isoda, Chem. Pharm. Bull., 39, 1099 (1991).
H. Dorn, B. Henkel, E. Thomas, G. Konetzke, and E. Tenor, German (East) Patent, 294,487 (1991) [CA 11749144 (1992)].
J. Beitz and H. Mest, Cardiovasc. Drug Rev., 9, 385 (1991).
V. L. Rusinov and O. N. Chupakhin, "Nitroazini", Nauka, Sib. Otd., Novosibirsk, 1991.
Y. Tominaga, Trends Heterocycl. Chem., 2, 43 (1991).
F. Fahr, R. Neubert, H. J. Hahn, and M. Kata, Pharmazie, 46, 225 (1991).
K. Minn, Synlett, 115 (1991).
K. Murakami, M. Ohashi, A. Matsunaga, I. Yamamoto, A. Tomiguchi, and H. Nohira, Bull. Chem. Soc. Jpn., 65, 3288 (1992). G. P. Ellis, Chem. Heterocycl. Compd., 47(II), (1992).
V. L. Rusinov, M. N. Kushnir, O. N. Chupakhin, and G. G. Aleksandrov, Chem. Heterocycl. Compd. (Engl. Transl.), 1323 (1992).
S. M. Desenko, V. D. Orlov, N. V. Getmanskii, O. V. Shishkin, S. V. Lindeman, and Yu. T. Struchkov, Dokl. Akad. Nauk., 324, 801 (1992), Dokl. Chemistry (Engl. Transl.) 324 (4), 115 (1992).
W. Fürst, R. Neubert, F. Fahr, H. Mest, K. Pönicke, I. HoffmannHeinroth, and C. Mäder, German (East) Patent, 297,061 (1992) [CA 116201089 (1992)].
J. R. Heylings, European Patent, 467,529 (1992) [CA 116123299 (1992)].
Y. Yoshimura, K. Tomimatsu, T. Nishimura, A. Miyake, and N. Hashimoto, J. Antibiot., 45, 721 (1992).
M. Hammouda, H. E. Etman, and M. A. Metwally, J. Serb. Chem. Soc., 57, 165 (1992).
W. A. Kleschick; et al., ACS Symp. Ser., 504, 10 (1992).
W. A. Kleschick; et al., ACS Symp. Ser., 504, 17 (1992).
M. J. Costales, W. A. Kleschick, and B. C. Gerwick, ACS Symp. Ser., 504, 26 (1992).
Th. P. Selby, T. A. Andrea, L. R. Denes, B. L. Finkelstein, Th. P. Fuesler, and B. K. Smith, ACS Symp. Ser., 504, 91 (1992).
A. Gerlach, Dissertation Universität Leipzig (1992).
J. D. Wolt, J. D. Schwake, F. R. Batzer, S. M. Brown, L. H. McKendry, J. R. Miller, G. A. Roth, M. A. Stanga, D. Portwood, and D. L. Holbrook, J. Agric. Food Chem., 40, 2302 (1992).

92MI7 G. Mourad and J. King, Planta, 188, 491 (1992).
92MI8 Yaoming Qu and Wenwen Zhang, Zhongguo Yiyao Gongye Zazhi, 23, 538 (1992), CA 119117200 (1993).
H. Perreault, L. Ramaley, F. M. Benoit, P. G. Sim, and R. K. Boyd, Org. Mass Spectrom., 27, 89 (1992).
G. Fischer, Adv. Heterocycl. Chem., 57, 81 (1993).
J. M. El-Deen, S. M. Mohamed, M. M. Ismail, and M. AbdelMegid, An. Quim., 89, 621 (1993).
S. M. Desenko, V. D. Orlov, N. V. Getmanskii, O. V. Shishkin, S. V. Lindeman, and Yu. T. Struchkov, Chem. Heterocycl. Compd. (Engl. Transl.), 406 (1993).
A. V. Myasnikov, P. A. Torgashev, T. L. Pilicheva, V. L. Rusinov, S. A. Gromova, M. G. Trofimova, A. V. Velik, and O. N. Chupakhin, Chem. Heterocycl. Compd. (Engl. Transl.), 694 (1993).
E. M. Gizatullina and V. G. Kartsev, Chem. Heterocycl. Compd. (Engl. Transl.), 1369 (1993).
H. Hayashi, J. Ikeda, K. Kubo, T. Moriyama, A. Karasawa, and F. Suzuki, Chem. Pharm. Bull., 41, 1100 (1993).
P. Angehrn, A. Furlenmeier, P. Hebeisen, W. Hofheinz, and H. Link, European Patent, 544,166 (1993) [CA 119203234 (1993)].
V. Kepe, M. Kočevar, and S. Polanc, Heterocycles, 35, 955 (1993).
M. Hammouda, M. A. Metwally, Z. M. Abou-Zeid, and T. Zimaity, Indian J. Chem. Sect. B, 32, 440 (1993).
R. B. Shankar and R. G. Pews, J. Heterocycl. Chem., 30, 169 (1993).
P. Kolar and M. Tišler, J. Heterocycl. Chem., 30, 1253 (1993).
J. Reiter, J. Barkóczy, and I. Pallagi, J. Heterocycl. Chem., 30, 1325 (1993).
E. Cané, A. Trombetti, and B. Velino, J. Mol. Spectosc., 158, 399 (1993).
B. Velino, E. Cané, L. Gagliardi, A. Trombetti, and W. Caminati, J. Mol. Spectrosc., 161, 136 (1993).
O. V. Shishkin, S. V. Lindeman, Yu. T. Struchkov, V. V. Lipson, S. M. Desenko, and V. D. Orlov, Kristallografiya, 38, 275 (1993), CA 119149799 (1993).
93MC213
93MI1
93MI2
93MI3
93MI4
93MI5
93PHC34
93RCB1265
93RCB1921
V. L. Rusinov, M. N. Kushnir, O. N. Chupakhin, and G. G. Aleksandrov, Mendeleev Commun., 213 (1993).
K. Murakami, M. Ohashi, A. Matsunaga, I. Yamamoto, and H. Nohira, Chirality, 5, 41 (1993).
H. A. Al-Khamees, O. A. Al-Deeb, and S. M. Bayomi, Indian J. Heterocycl. Chem., 2, 237 (1993).
O. A. Al-Deeb, H. A. Al-Khamees, and S. M. Bayomi, Indian J. Heterocycl. Chem., 3, 101 (1993).
N. Rashed, A. Mousaad, and A. Saleh, J. Chin. Chem. Soc. (Taipei), 40, 393 (1993).
D. S. Frear, H. R. Swanson, and F. S. Tanaka, Pestic. Biochem. Physiol., 45, 178 (1993).
B. Stanovnik, Progr. Heterocycl. Chem., 5, 34 (1993).
M. M. Vartanyan, T. Yu. Solov'eva, O. L. Eliseev, and M. E. Panina, Russ. Chem. Bull. (Engl. Transl.), 42, 1265 (1993).
M. M. Vartanyan, O. L. Eliseev, T. Yu. Solov'eva, and V. A. Petukhov, Russ. Chem. Bull. (Engl. Transl.), 42, 1921 (1993).

93RJOC519

93RJOC525

93RJOC659

93RJOC1582

93USP5231094
94AHC(59)245
94CHE213

94GEP4305279

94JCR(S)416
94MI1
94MI2

94MI3
94MI4
94MI5
94MI6
94MRC373
94RCB1884

94 T 12113
95BMCL2071
95BMCL2777
95CHE125
95CHE1251
95H(40)441
$95 \mathrm{H}(40) 729$
95IJC(B)209
95JAP(K)07/65352
T. L. Pilicheva, V. L. Rusinov, A. V. Myasnikov, A. B. Denisova, G. G. Aleksandrov, and O. N. Chupakhin, Russ. J. Org. Chem. (Engl. Transl.), 29, 519 (1993).
M. N. Kushnir, V. L. Rusinov, E. N. Ulomskii, N. A. Klyuev, S. V. Shorshnev, G. G. Aleksandrov, and O. N. Chupakhin, Russ. J. Org. Chem. (Engl. Transl.), 29, 525 (1993).
V. L. Rusinov, A. A. Tumashov, E. O. Sidorov, I. V. Karpin, and O. N. Chupakhin, Russ. J. Org. Chem. (Engl. Transl.), 29, 659 (1993).
V. L. Rusinov, A. V. Belik, E. N. Ferapontova, A. V. Myasnikov, and O. N. Chupakhin, Russ. J. Org. Chem. (Engl. Transl.), 29, 1582 (1993).
N. Bru-Magniez, T. Gungor, and J. M. Teulon, US Patent 5,231,094 (1993) [CA 1208611 (1994)].
M. R. Grimmett, Adv. Heterocycl. Chem., 59, 245 (1994).
V. L. Rusinov, T. L. Pilicheva, A. A. Tumashov, L. G. Egorova, and O. N. Chupakhin, Chem. Heterocycl. Compd. (Engl. Transl.), 30, 213 (1994).
W. Mederski, M. Oßwald, D. Dorsch, N. Beier, P. Schelling, I. Lues, and K. Minck, German Patent, 4,305,279 (1994) [CA 121 280661 (1994)].
Z. E. Kandeel, A. M. Farag, A. M. Negm, A. K. Khalafalla, M. A. M. Rassian, and M. H. Elnagdi, J. Chem. Res. (S), 416 (1994).
H. A. Etman, Alexandria J. Pharm. Sci., 8, 150 (1994).
M. H. Elnagdi, A. K. Khalafalla, Z. E. Kandeel, A. M. Farag, A. M. Negm, and M. A. M. Rassian, Aswan Sci. Technol. Bull., 15, 71 (1994).
S. H. Mahmoud, L. Somsák, and I. Farkas, Carbohydr. Res., 254, 91 (1994).
W. A. Kleschick, Chem. Plant Prot., 10, 119 (1994).
B. C. Gerwick, Chem. Plant Prot., 10, 145 (1994).
H. Liekfeld, Pharmazeut. Ztg., 139(31), 34 (1994).
J. W. Wiench, L. Stefaniak, and G. A. Webb, Magn. Reson. Chem., 32, 373 (1994).
M. M. Vartanyan, O. L. Eliseev, T. Yu. Solov'eva, B. I. Ugrak, and H. R. Skov, Russ. Chem. Bull. (Engl. Transl.), 43, 1884 (1994).
S. A. Petrich, Z. Qian, L. M. Santiago, and J. T. Gupton, Tetrahedron, 50, 12113 (1994).
D. Dorsch, W. W. K. R. Mederski, M. Osswald, N. Beier, and P. Schelling, Bioorg. Med. Chem. Lett., 5, 2071 (1995).
K. Obi, A. Kojima, H. Fukuda, and K. Hirai, Bioorg. Med. Chem. Lett., 5, 2777 (1995).
S. M. Desenko, Chem. Heterocycl. Compd. (Engl. Transl.), 31, 125 (1995).
D. A. Maiboroda and E. V. Babaev, Chem. Heterocycl. Compd. (Engl. Transl.), 31, 1251 (1995).
V. L. Rusinov and O. N. Chupakhin, Heterocycles, 40, 441 (1995).
S. A. Petrich, Z. Qian, L. M. Santiago, and J. T. Gupton, Heterocycles, 40, 729 (1995).
R. P. Srivastava, V. V. Kumar, S. Bhatia, and S. Sharma, Indian J. Chem. Sect. B, 34, 209 (1995).
T. Ishida, H. Watanabe, M. Satake, H. Hashimoto, and T. Okita, Jpn. Kokai 07 065,352 (1995) [CA 123216647 (1995)].

95JAP(K)07/309872
95JCR(S)290
95JHC407
95JHC1359
95JST(355)273
95MI1
95MI2
95PHA33
95WOP10521
95WOP11246
96AX(C)1031
96CHE215

96CHECII(8)417
96GEP4434971
96JHC465
96MI1
96MI2
96MRC725
96TL5257
96WOP10568

97AQ(IE) 55
97BCJ2209
97BMCL1087
97CHE499
97ICA(260)145
97JAP(K)09/319022
97JCED1037

97JCR(M)2378
97JCS(P1)1799
M. Inoe, Y. Shoji, T. Okamura, K. Hashimoto, M. Obara, and T. Yasuda, Jpn. Kokai 07 309,872 (1995) [CA 124317190 (1996)].
Z. E. Kandeel, J. Chem. Res. (S), 290 (1995).
J. Reiter, L. Pongó, I. Kövesdi, and I. Pallagi, J. Heterocycl. Chem., 32, 407 (1995).
P. Trinka and J. Reiter, J. Heterocycl. Chem., 32, 1359 (1995).
E. Kleinpeter, S. Thomas, and G. Fischer, J. Mol. Struct., 355, 273 (1995).
R. Maycock, M. Hastings, and D. Portwood, Int. J. Environ. Anal. Chem., 58, 93 (1995).
X. Zhang, J. Zhou, and G. Xie, Jisuanji Yu Yingyong Huaxue, 12, 248 (1995), CA 124193308 (1996).
E. A. Bakhite, Pharmazie, 50, 33 (1995).
D. J. Heal, F. M. I. Fernandez, and B. G. Sargent, WO Patent 95 10,521 (1995) [CA 123313997 (1995)].
J. W. Ringer, J. T. Budd, R. E. Tobey, and M. W. Zettler, WO Patent 95 11,246 (1995) [CA 123256754 (1995)].
M. Fettouhi, A. Boukhari, B. El. Otmani, and El. M. Essassi, Acta Crystallogr. C, 52, 1031 (1996).
S. M. Desenko, V. D. Orlov, N. V. Getmanskii, S. A. Komykhov, B. V. Paponov, A. Yu. Kovalevskii, O. V. Shishkin, and Yu. T. Struchkov, Chem. Heterocycl. Compd. (Engl. Transl.), 32, 215 (1996).
G. Hajós, Compr. Heterocycl. Chem. II, 8, 417 (1996).
H. Öhlschläger, H. Borst, D. Kapitza, and J. Siegel, German Patent, 4,434,971 (1996) [CA 124302476 (1996)].
A. Čopar, B. Stanovnik, and M. Tišler, J. Heterocycl. Chem., 33, 465 (1996).
U. Egner, K. P. Gerbling, G. Hoyer, G. Krüger, and P. Wegner, Pestic. Sci., 47, 145 (1996).
R. Lu, H. Yang, Z. Shang, W. Wang, Y. Pan, and X. Zhao, Sci. China B, 39, 78 (1996).
A. Grodzicki, E. Szłyk, L. Pazderski, and A. Goliński, Magn. Reson. Chem., 34, 725 (1996).
J. J. Parlow, Tetrahedron Lett., 37, 5257 (1996).

Yuanching P. Chiang, P. E. Finke, M. Maccoss, L. C. Meurer, D. J. Miller, S. G. Mills, A. J. Robichaud, and Sh. K. Shah, WO Patent 96 10,568 (1996) [CA 125114694 (1996)].
J. M. Salas, J. A. R. Navarro, M. A. Romero, and M. Quirós, An. Quim. Int. Ed., 93, 55 (1997).
G. A. El-Hiti, Bull. Chem. Soc. Jpn., 70, 2209 (1997).
V. J. Ram, P. Srivastava, S. K. Singh, M. Kandpal, and B. L. Tekwani, Bioorg. Med. Chem. Lett., 7, 1087 (1997).
S. A. Yamashkin, N. Ya. Kucherenko, and M. A. Yurovskaya, Chem. Heterocycl. Compd. (Engl. Transl.), 33, 499 (1997).
E. Szłyk, A. Wojtczak, M. Jaskólski, M. Gilski, J. G. Haasnoot, and J. Reedijk, Inorg. Chim. Acta, 260, 145 (1997).
N. Asanuma, H. Okata, and I. Totani, Jpn. Kokai 09 312,022 (1997) [CA 12895409 (1998)].
W. V. Steele, R. D. Chirico, S. E. Knipmeyer, A. Nguyen, and N. K. Smith, J. Chem. Eng. Data, 42, 1037 (1997).
H. F. Zohdi, J. Chem. Res. (M), 2378 (1997).
D. Clarke, R. W. Mares, and H. McNab, J. Chem. Soc., Perkin Trans. 1, 1799 (1997).

97JHC247

97JHC1519
97JST(401)1
97JST(415)285
97JST(435)65
97MI1
97MI2
97MI3
97MI4

97MI5
97MI6
97MI7
97MI8
97PHA23
97RCB1178
97RJOC1784

98AHC(70) 163
98AHC(72) 127
98AHC(72)283
98EUP838722
98EUP850902

98GEP19706336
98GEP19707008
98H(47)689

98ICA(273)259

98JPC(A)2443
98MI1
L. Kralj, A. Hvala, J. Svete, L. Golič, and B. Stanovnik, J. Heterocycl. Chem., 34, 247 (1997).
J. Reiter, Jr. and J. Reiter, J. Heterocycl. Chem., 34, 1519 (1997).
A. Koch, S. Thomas, and E. Kleinpeter, J. Mol. Struct., 401, 1 (1997).
S. Orihuela, M. P. Sánchez, M. Quirós, J. Molina, and R. Faure, J. Mol. Struct., 415, 285 (1997).
E. Kleinpeter, A. Koch, G. Fischer, and C. Askolin, J. Mol. Struct., 435, 65 (1997).
Fuheng Chen, Tianrui Ren, and Jiaju Zhou, Chinese Patent, 1,156,145 (1997) [CA 131322619 (1999)].
G. H. Elgemeie, N. M. Fathy, and D. A. Farrag, Egypt. J. Pharm. Sci. 38, 351 (1997, pub. 1998).
G. Yang, H. Yang, R. Lu, and H. Wang, Gaodeng Xuexiao Huaxue Xuebao, 18, 1982 (1997), CA 12848185 (1998).
C. Timchalk, M. D. Dryzga, K. A. Johnson, S. L. Eddy, N. L. Freshour, B. E. Kropscott, and R. J. Nolan, J. Appl. Toxicol., 17, 9 (1997).
G. Yang, R. Lu, H. Yang, and H. Wang, Jiegou Hиaxue, 16, 298 (1997), CA 127198032 (1997).
L. H. McKendry, J. Labelled Compd. Radiopharm., 39, 231 (1997).
A. Koch and E. Kleinpeter, J. Mol. Model., 3, 375 (1997).
G. Hajós and Z. Riedl, Magy. Kém. Lapja, 52, 243 (1997).
A. A. Hassan, N. K. Mohamed, A. A. Aly, and A. E. Mourad, Pharmazie, 52, 23 (1997).
M. M. Vartanyan, O. L. Eliseev, Kh. R. Skov, and R. A. Karakhanov, Russ. Chem. Bull. (Engl. Transl.), 46, 1178 (1997).
T. P. Kofman, T. A. Uvarova, G. Yu. Kartseva, and T. L. Uspenskaya, Russ. J. Org. Chem. (Engl. Transl.), 33, 1784 (1997).
M. A. E. Shaban, Adv. Heterocycl. Chem., 70, 163 (1998).
E. S. H. El Ashry and N. Rashed, Adv. Heterocycl. Chem., 72, 127 (1998).
V. G. Granik, V. A. Makarov, and C. Parkanyi, Adv. Heterocycl. Chem., 72, 283 (1998).
H. Okada, R. Suzuki, N. Asanuma, T. Ikeda, and Sh. Hirano, European Patent, 838,722 (1998) [CA 128328814 (1998)].
A. M. Isola, N. J. Holman, G. B. Tometzki, J. P. Watts, S. Koser, R. Klintz, and P. Munster, European Patent, 850,902 (1998) [CA 12995097 (1998)].
F. Balkenhohl, S. Koser, and N. J. Holman, German Patent, 19,706,336 (1998) [CA 129188416 (1998)].
Ch. Dingler and N. J. Holman, German Patent, 19,707,008 (1998) [CA 129202142 (1998)].
J. T. Gupton, S. A. Petrich, F. A. Hicks, D. R. Wilkinson, M. Vargas, K. N. Hosein, and J. A. Sikorski, Heterocycles, 47, 689 (1998).
A. H. Velders, L. Pazderski, F. Ugozzoli, M. Biagini-Cingi, A. M. Manotti-Lanfredi, J. G. Haasnoot, and J. Reedijk, Inorg. Chim. Acta, 273, 259 (1998).
J. El-Bahroui, J. M. Molina, and D. P. Olea, J. Phys. Chem. (A), 102, 2443 (1998).
J. Reiter, in "7th Blue Danube Symposium on Heterocyclic Chemistry" (A. Kotschy, G. Hajós, eds.), Abstract Short Papers, pp. 13/1-13/6, Budapest (1998).

98MI2	H. Y. Afeefy, Boll. Chim. Farm., 137, 480 (1998).
98MI3	M. Wang, J. Liu, T. Ren, F. Chen, and Q. Shen, Bopuxue Zazhi, 15, 169 (1998), CA 12954029 (1998).
98MI4	L. G. Copping and H. G. Hewitt, "Chemistry and Mode of Action of Crow Protecting Agents", Royal Society of Chemistry, Cambridge, UK (1998), p. 5.
98MI5	G. Yang, H. Liu, X. Yang, and H. Yang, Chin. J. Chem., 16, 521 (1998).
98MI6	E. Förster, S. Heller, K. H. Heise, and H. Nitsche, FZ Rossendorf, FZR-218, 46 (1998), CA 129140094 (1998).
98MI7	T. Ren, H. Chen, G. Xie, J. Zhou, and F. Chen, Gaodeng Xuexiao Ниахие Xuebao, 19, 1950 (1998), CA 130248286 (1999).
98MI8	J. Chae, J. Lee, J. Choi, and J. Shin, Han'guk Nonghwa Hakhoechi, 41, 99 (1998), CA 129132476 (1998).
98MI9	G. Yang, H. Liu, H. Yang, and X. Yang, Ниахие Xuebao, 56, 729 (1998), CA 129271844 (1998).
98MII 0	T. Ren, F. Chen, J. Zhou, H. Chen, and Z. Guo, J. Chin. Pharm. Sci., 7, 171 (1998).
98MI11	T. Ren, G. Xie, J. Zhou, and F. Chen, Jisuanji Yu Yingyong Ниахие, 15, 281 (1998), СА 13034432 (1999).
98MI12	G. Yang, G. Zhao, R. Lu, H. Liu, and H. Yang, Sci. China B, 41, 353 (1998).
98PJC55	E. Szłyk, A. Grodzicki, L. Pazderski, and J. Sitkowski, Pol. J. Chem., 72, 55 (1998).
98RJOC263	G. L. Rusinov, P. V. Plekhanov, V. L. Rusinov, O. N. Chupakhin, and G. G. Aleksandrov, Russ. J. Org. Chem. (Engl. Transl.), 34, 263 (1998).
98USP5808066	G. Krummel, K. Stumm, K. Pees, and P. H. R. Liers, US Patent 5,808,066 (1998) [CA 129245161 (1998)].
98WOP7724	N. J. Holman and S. Koser, WO Patent 98 07,724 (1998) [CA 128 204896 (1998)].
98ZN(B)1203	E. S. H. El Ashry, Y. El Kilany, N. Rashed, A. Mousaad, and H. Assafir, Z. Naturforsch. B, 53, 1203 (1998).
99AHC(73)131	M. A. E. Shaban and A. E. A. Morgaan, Adv. Heterocycl. Chem., 73, 131 (1999).
99AHC(75)79	E. S. H. El Ashry, Y. El Kilany, N. Rashed, and H. Assafir, Adv. Heterocycl. Chem., 75, 79 (1999).
99AX(C)1337	A. Surdykowski, E. Szłyk, and S. Larsen, Acta Crystallogr. C, 55, 1337 (1999).
99BBR(258)797	S. K. Namgoong; et al., Biochem. Biophys. Res. Commun., 258, 797 (1999).
$99 \mathrm{CCC177}$	R. Toplak, J. Svete, S. G. Grdadolnik, and B. Stanovnik, Collect. Czech. Chem. Commun., 64, 177 (1999).
99CCR(193-195)1119	J. M. Salas, M. A. Romero, M. P. Sánchez, and M. Quirós, Coord. Chem. Rev., 193-195, 1119 (1999).
99CHE708	N. N. Kolos, V. D. Orlov, B. V. Paponov, O. V. Shishkin, S. V. Baumer, and N. A. Kvashnitskaya, Chem. Heterocycl. Compd. (Engl. Transl.), 35, 708 (1999).
99CPB928	T. Shiota; et al., Chem. Pharm. Bull., 47, 928 (1999).
99EJIC213	A. H. Velders, F. Ugozzoli, M. Biagini-Cingi, A. M. ManottiLanfredi, J. G. Haasnoot, and J. Reedijk, Eur. J. Inorg. Chem., 213 (1999).
99EUP947516	M. Takano, European Patent, 947,516 (1999) [CA 131243284 (1999)].

99JAP(K) 11/29480
99JCR(S)88
99JCS(P1)1527
99JFC(96)51
99JHC183
99JHC1199
99JHC1581
99JPR449
99MC233
99MCR277
99MI1
99MI2
99MI3
99MI4
99MI5
99MI6
99MI7
99MI8
99MI9
99POL519
99RCB1553

99USP5986135

99WOP41255
99ZK517
$00 \mathrm{ACA}(415) 41$
00АНС(77)1
00AX(C)934
Y. Koji, T. Okamura, N. Shibutani, T. Yasuda, and T. Iwamoto, Jpn. Kokai 11 029,480 (1999) [CA 130191897 (1999)].
K. M. Dawood, A. M. Farag, and Z. E. Kandeel, J. Chem. Res. (S), 88 (1999), J. Chem. Res. (M), 537 (1999).
B. C. Bishop, H. Marley, P. N. Preston, and S. H. B. Wright, J. Chem. Soc., Perkin Trans. 1, 1527 (1999).
L. M. Popova, A. U. Trishina, S. V. Vershilov, A. I. Ginak, and B. N. Maksimov, J. Fluorine Chem., 96, 51 (1999).
W. T. Monte, W. A. Kleschick, and J. Bordner, J. Heterocycl. Chem., 36, 183 (1999).
G. Berecz, J. Reiter, and J. Császár, J. Heterocycl. Chem., 36, 1199 (1999).
B. Stanovnik, J. Heterocycl. Chem., 36, 1581 (1999).
R. Meusinger, G. Fischer, and R. Moros, J. Prakt. Chem., 341, 449 (1999).
G. L. Rusinov, P. V. Plekhanov, A. U. Ponomareva, and O. N. Chupakhin, Mendeleev Commun., 233 (1999).
A. M. Abdelal, M. M. Gineinah, and S. M. M. Kheira, Med. Chem. Res., 9, 277 (1999).
A. A. Ikizler, C. B. Johansson, O. Bekircan, and C. Celik, Acta Pol. Pharm., 56, 283 (1999).
S. M. Bayomi, A. M. Abdelal, S. M. El Ashry, and O. A. M. Ghoneim, Boll. Chim. Farm., 138, 227 (1999).
G. Yang, H. Liu, and H. Yang, Gaodeng Xuexiao Huaxue Xuebao, 20, 1883 (1999), CA 132104033 (2000).
G. Yang, H. Liu, X. Yang, and H. Yang, Hиaxue Xuebao, 57, 706 (1999), CA 131224793 (1999).
G. Yang, X. Fei, and H. Yang, Jiegou Ниахие, 18, 352 (1999), CA 131358456 (1999).
A. Beyer, J. Peters, and R. Ludwig, Laborpraxis, 23(10), 70 (1999).
E. Qu, S. Su, and C. Yang, Nongyao, 38(11), 18 (1999), CA 132 147908 (2000).
G. Yang, H. Liu, and H. Yang, Pestic. Sci., 55, 1143 (1999).
G. Yang, H. Liu, X. Yang, and H. Yang, Wuli Huaxue Xuebao, 15, 190 (1999), CA 130263492 (1999).
A. Grodzicki, E. Szłyk, A. Wojtczak, G. Wrzeszcz, L. Pazderski, and T. Muziol, Polyhedron, 18, 519 (1999).
E. V. Bartashevich, P. V. Plekhanov, G. L. Rusinov, V. A. Potemkin, A. V. Belik, and O. N. Chupakhin, Russ. Chem. Bull. (Engl. Transl.), 48, 1553 (1999).
W. Pfrengle, K. Pees, G. Albert, P. Carter, A. Rehnig, and H. van Tuyl Cotter, US Patent 5,986,135 (1999) [CA 131337031 (1999)].
W. Pfrengle, K. Pees, and G. Albert, WO Patent 99 41,255 (1999) [CA 131170358 (1999)].
H. Orgueira, M. Abul-Haj, J. M. Salas, W. P. Jensen, and E. R. T. Tiekink, Z. Kristallogr.-New Cryst. Struct., 214, 517 (1999).
A. Laganà, G. Fago, A. Marino, and V. M. Penazzi, Anal. Chim. Acta, 415, 41 (2000).
I. Shcherbakova, J. Elguero, and A. R. Katritzky, Adv. Heterocycl. Chem., 77, 1 (2000).
M. Abul-Haj, M. Quirós, and J. M. Salas, Acta Crystallogr. C, 56, 934 (2000).

00CHE714

00CHE1329

00HAC313
00JAP(K) 94829
00JAP(K)228233
00JCR(S) 13
00JCS(D) 867

00JCS(P2)1675
00JST(519)165
00MI1
00MI2

00MI3
00MI4
00MI5
00MI6
00POL965
00PS(158)9
00RJGC1458
00RJOC866
00SC1985
00WOP9508
00WOP56733
01AG222
01AHC(81)1
01CHE338
01CHE1312
01EJIC369
A. P. Volovodenko, R. E. Trifonov, P. V. Plekhanov, G. L. Rusinov, D. G. Beresnev, and V. A. Ostrovskii, Chem. Heterocycl. Compd. (Engl. Transl.), 36, 714 (2000).
V. V. Lipson, S. M. Desenko, V. D. Orlov, O. V. Shishkin, M. G. Shirobokova, V. N. Chernenko, and L. I. Zinov'eva, Chem. Heterocycl. Compd. (Engl. Transl.), 36, 1329 (2000).
G. Yang, Z. Liu, J. Liu, and H. Yang, Heteroat. Chem., 11, 313 (2000).
K. Ohbayashi, M. Ushiku, K. Kasahara, and M. Okazaki, Jpn. Kokai 2000 094,829 (2000) [CA 132258184 (2000)].
T. Watanabe, M. Okazaki, and N. Inoue, Jpn. Kokai 2000 228,233 (2000) [CA 133180338 (2000)].
K. M. Al-Zaydi, M. A. A. Al-Shiekh, and E. A. Hafez, J. Chem. Res. (S), 13 (2000), J. Chem. Res. (M), 173 (2000).
E. Szłyk, A. Grodzicki, L. Pazderski, A. Wojtczak, J. Chatłas, G. Wrzeszcz, J. Sitkowski, and B. Kamieński, J. Chem. Soc., Dalton Trans., 867 (2000).
J. A. Dobado, S. Grigoleit, and J. M. Molina, J. Chem. Soc., Perkin Trans. 2, 1675 (2000).
M. Abul-Haj, J. M. Salas, M. Quirós, J. Molina, and R. Faure, J. Mol. Struct., 519, 165 (2000).
G. Yang, R. Lu, X. Fei, and H. Yang, Chin. J. Chem., 18, 435 (2000).
F. Luque, C. Fernández-Ramos, E. Entrala, M. J. Rosales, J. A. Navarro, M. A. Romero, J. M. Salas, and M. Sánchez-Moreno, Comp. Biochem. Physiol. C, 126, 39 (2000).
X. Fei, H. Song, X. Wang, X. Yang, and H. Yang, Gaodeng Xuexiao Huaxue Xuebao, 21, 237 (2000), CA 132279184 (2000).
C. S. Andotra, P. Sharma, M. Saint, A. Sharma, and J. Khajuria, J. Saudi Chem. Soc., 4, 115 (2000).
T. Ren, H. Yang, X. Gao, X. Yang, J. Zhou, and F. Cheng, Pestic. Manage. Sci., 56, 218 (2000).
J. Lim; et al., Yakhak Hoechi, 44, 318 (2000), CA 133350074 (2000).
E. Szłyk, A. Grodzicki, L. Pazderski, E. Bednarek, and B. Kamieński, Polyhedron, 19, 965 (2000).
R. M. Shaker, Phosphorus, Sulfur Silicon, 158, 9 (2000).
V. V. Tolstyakov, M. S. Pevzner, and I. V. Tselinskii, Russ. J. Gen. Chem. (Engl. Transl.), 70, 1458 (2000).
T. P. Kofman and G. Yu. Kartseva, Russ. J. Org. Chem., 36, 866 (2000).
E. I. Al-Afaleq, Synth. Commun., 30, 1985 (2000).
Y. Kitagawa, K. Ishikawa, H. Sawada, and T. Kinbara, WO Patent 2000 009,508 (2000) [CA 132166251 (2000)].
H. J. Barnes, G. Haran, N. J. Holman, and D.Th. Vowles, WO Patent 2000 056,733 (2000) [CA 133252454 (2000)].
J. W. Szewczyk, R. L. Zuckerman, R. G. Bergman, and J. A. Ellman, Angew. Chem., 113, 222 (2001).
G. Rauhut, Adv. Heterocycl. Chem., 81, 1 (2001).
N. N. Kolos, V. D. Orlov, B. V. Paponov, and O. V. Shishkin, Chem. Heterocycl. Compd. (Engl. Transl.), 37, 338 (2001).
S. M. Desenko, V. N. Chernenko, V. D. Orlov, and V. I. Musatov, Chem. Heterocycl. Compd. (Engl. Transl.), 37, 1312 (2001).
A. H. Velders, B. van der Geest, H. Kooijman, A. L. Spek, J. G. Haasnoot, and J. Reedijk, Eur. J. Inorg. Chem., 369 (2001).

01HAC491
01HEC485
01ICC254
01JCS(D) 1798
01 JHC 237
01 JHC 1119
01M1063
01MI1
01MI2
01MI3
01MI4
01MI5

01MI6
01 MI7
01MI8
01RCB682
01RJOC570

01WOP96341
02 CRC 517
02EJIC811

02EUP1249452
02GEP10121101
02ICA(333) 93
02JA13856
02JAP(K)134442

02JCS(D)4740
02JHC319
G. Yang, L. Xu, and A. Lu, Heteroat. Chem., 12, 491 (2001).
F. M. Abd El-Latif, M. A. Khalil, I. Helmy, and H. A. Solieman, Heterocycl. Commun., 7, 485 (2001).
M. Abul-Haj, M. Quirós, J. M. Salas, and R. Faure, Inorg. Chem. Соттип., 4, 254 (2001).
M. Abul-Haj, M. Quirós, J. M. Salas, and R. Faure, J. Chem. Soc., Dalton Trans., 1798 (2001).
G. Berecz and J. Reiter, J. Heterocycl. Chem., 38, 237 (2001).
C. Mustazza, M. R. del Giudice, A. Borioni, and F. Gatta, J. Heterocycl. Chem., 38, 1119 (2001).
N. R. El-Brollosy, M. F. Abdel-Megeed, and A. R. Genady, Monatsh. Chem., 132, 1063 (2001).
G. Yang, Z. Liu, and X. Qing, Chin. Chem. Lett., 12, 877 (2001).

Sh. L. Smith, K. S. J. Thompson, B. J. Sargent, and D. J. Heal, CNS Drug Rev., 7, 146 (2001).
D. Onken and E. Thomas, GDCh-Monogr., 22, 160 (2001).
G. Yang, Z. Liu, A. Lu, and N. Zhuang, Ниахие Xиеbao, 59, 594 (2001), CA 135122461 (2001).
S. Wang, D. Liu, G. Feng, Y. Gong, and Y. Wang, Huazhong Shifan Daxue Xuebao Zirankexueban, 35, 176 (2001), CA 137 279157 (2002).
Z. Liu, G. Yang, H. Xu, and J. Xiang, Huazhong Shifan Daxue Xuebao Zirankexueban, 35, 180 (2001), CA 138122591 (2003).
Z. Liu, G. Yang, and X. Qin, J. Chem. Technol. Biotechnol., 76, 1154 (2001).
J. M. Salas, M. Quirós, M. Abul-Haj, R. Magan, C. Marin, M. Sanchez-Moreno, and R. Faure, Met. Based Drugs, 8, 119 (2001).
E. N. Ulomsky, V. V. Voronin, V. L. Rusinov, and O. N. Chupakhin, Russ. Chem. Bull. (Engl. Transl.), 50, 682 (2001).
G. N. Lipunova, E. V. Nosova, M. I. Kodess, V. N. Charushin, Yu. A. Rozin, and O. M. Chasovskikh, Russ. J. Org. Chem. (Engl. Transl.), 37, 570 (2001).
W. Pfrengle, WO Patent 2001 096,341 (2001) [CA 13637624 (2002)].
B. Elotmani, M. El-Mahi, and E. M. Essassi, C.R. Chim., 5, 517 (2002).
M. Abul-Haj, M. Quirós, J. M. Salas, J. A. Dobado, J. M. Molina, M. G. Basallote, and M. A. Manez, Eur. J. Inorg. Chem., 811 (2002).
J. Tormo i Blasco, E. Ammermann, K. Pees, and W. Pfrengle, European Patent, 1,249,452 (2002) [CA 137294973 (2002)].
O. Gebauer et al., German Patent, 10,121,101 (2002) [CA 137 325435 (2002)].
E. Szłyk, I. Łakomska, A. Surdykowski, T. Glowiak, L. Pazderski, J. Sitkowski, and L. Kozerski, Inorg. Chim. Acta, 333, 93 (2002).
A. Fürstner, A. Leitner, M. Mendez, and H. Krause, J. Am. Chem. Soc., 124, 13856 (2002).
H. Amanokura, K. Masuda, Y. Kurata, T. Uchida, H. Terasaki, and Y. Kamikata, Jpn. Kokai 2002 134,442 (2002) [CA 136 378311 (2002)].
M. Abul-Haj, M. Quirós, and J. M. Salas, J. Chem. Soc., Dalton Trans., 4740 (2002).
G. Berecz, J. Reiter, G. Argay, and A. Kálmán, J. Heterocycl. Chem., 39, 319 (2002).

02JHC703
02JST(605)33
02MC226
02MI1
02MI2
02MI3
02MI4
02MI5

02MI6
02MI7
02MI8
02MI9
02MRC529
02POL343
02S901
02TA821
02WOP36595

02WOP40485

02WOP64211
03AHC(84)31
03ARK(is.10)262
03AX(E)m903
03HAC491
03HAC607
03 JHC 813
03 JHC 973
03MI1
03MI2
G. Berecz, L. Párkányi, A. Kálmán, and J. Reiter, J. Heterocycl. Chem., 39, 703 (2002).
J. W. Wiench, L. Stefaniak, and G. A. Webb, J. Mol. Struct., 605, 33 (2002).
S. A. Popov, T. V. Rybalova, Y. V. Gatilov, and A. V. Tkachev, Mendeleev Commun., 226 (2002).
T. M. Abu Elmaati, Acta Chim. Slovenica, 49, 721 (2002).
I. M. El-Deen, I. A. El-Sayed, and A. G. El-Mawla, Bull. Korean Chem. Soc., 23, 610 (2002).
X. Jiang, Y. Wang, X. Mao, W. Yu, and D. Shen, Huaxue Tongbao, 65(7), w55/1-/4 (2002), CA 1384562 (2003).
Z. Ma, W. Chen, Z. Liu, and G. Yang, Huazhong Shifan Daxue Xuebao Zirankexueban, 36, 52 (2002), CA 138137251 (2003).
W. Chen, Z. Liu, X. Qing, and G. Yang, Huazhong Shifan Daxue Xuebao Zirankexueban, 36, 207 (2002), CA 138271625 (2003).
A. Montero, H. Feist, M. Michalik, J. Quincoces, and K. Peseke, J. Carbohydr. Chem., 21, 305 (2002).
E. I. Al-Afaleq, J. Saudi Chem., 6, 59 (2002).
M. M. Hyssein, Mansoura Sci. Bull., A, 29(2), 1 (2002), CA 141 243471 (2004).
P. Yu, S. Ding, Y. Qiao, X. Yao, H. Zhang, and S. Lin, Powder Diffr., 17, 48 (2002).
E. Szłyk, L. Pazderski, I. Łakomska, L. Kozerski, and J. Sitkowski, Magn. Reson. Chem., 40, 529 (2002).
E. Szłyk, L. Pazderski, I. Łakomska, A. Surdykowski, T. Glowiak, J. Sitkowski, and L. Kozerski, Polyhedron, 21, 343 (2002).
A. L. Krasovsky, A. M. Moiseev, V. G. Nenajdenko, and E. S. Balenkova, Synthesis, 901 (2002).
U. Grošelj, S. Rečnik, J. Svete, A. Meden, and B. Stanovnik, Tetrahedron: Asymmetry, 13, 821 (2002).
T. C. Johnson, J. C. Vanheertum, D. G. Ouse, M. A. Pobanz, K. E. Arndt, and D. K. Walker, WO Patent 2002 036,595 (2002) [CA 136369730 (2002)].
F. Kato, H. Kimura, M. Omatsu, K. Yamamoto, M. Kazuhiro, and R. Miyamoto, WO Patent 2002 040,485 (2002) [CA 136 401776 (2002)].
P. D. Williams, C. Coburn, Ch. Burgey, and M. M. Morrissette, WO Patent 2002 064,211 (2002) [CA 137185499 (2002)].
H. C. van der Plas, Adv. Heterocycl. Chem., 84, 31 (2003).
W. Pelaez, I. T. Gafarova, and G. I. Yranzo, ARKIVOC (10), 262 (2003).
M. Abul-Haj, M. Quirós, and J. M. Salas, Acta Crystallogr. E, 59, m903 (2003).
H. M. Hassaneen, T. A. Abdallah, H. A. Abdelhadi, H. M. E. Hassaneen, and R. M. Pagni, Heteroat. Chem., 14, 491 (2003).
W. Chen and G. Jin, Heteroat. Chem., 14, 607 (2003).
G. Berecz and J. Reiter, J. Heterocycl. Chem., 40, 813 (2003).
M. A. Saleh, Y. A. Hafez, F. E. Abdel-Hay, and W. I. Gad, J. Heterocycl. Chem., 40, 973 (2003).
H. Belisle and Ch. Reber, Can. J. Anal. Sci. Spectrosc., 48, 24 (2003).

Guangfu Yang, Huazheng Yang, and Hui Wang, Chinese Patent, 1,417,210 (2003) [CA 143133379 (2005)].

03MI3

03MI4
03MI5
03MI6
03MI7
03RCB1190

03USP6570014
03WOP4465
03WOP80614
03WOP93280

03WOP93290

04ARK(is.5)77
04AX(C)o733
04AX(E)m370
04BMCL4831
04EJOC3872
04JAP(K)107228
04JAP(K)142377
04JCR 174
04JCX549
04JHC267
04JHC381
04JHC647

04JMC1110

04JMC6218
04MI1
04MI2 Jianyong Su, Chao Ye, and Nanhua Zheng, Chinese Patent, 1,537,853 (2004) [CA 143115552 (2005)].

```
04MI3 D. Long, D. Li, and C. Liu,Hecheng Huaxue, 12, 586 (2004), CA 143440359 (2005).
```

04MI4 G. Sun, Y. Wang and X. Jiang, Huaxue Shijie, 45, 195 (2004), CA 146295853 (2007).
04MI5
04MI6
04MI7

04MI8
04MI9
04MI10
04POL743
04POL2373
04T4601
04USP40852
04WOP46149
04WOP58765
04WOP108136

04WOP108729
04WOP113341
04ZN(B)721
05AX(E)o1992
05AX(E)o2079
05AX(E) 2083
05AX(E)o3842
05JAP(K)139119
05 JHC 1167
05JOM4773
05MI1

Anonymous, IP.com J., 4(6), 11 (2004), CA 146295853 (2007).
K. M. Dawood, A. M. Farag, and E. A. Ragab, J. Chin. Chem. Soc. (Taipei), 51, 853 (2004).
I. Łakomska, E. Szłyk, J. Sitkowski, L. Kozerski, J. Wietrzyk, M. Pełczyńska, A. Nasulewicz, and A. Opolski, J. Inorg. Biochem., 98, 167 (2004).
R. Magán, C. Marín, M. J. Rosales, M. A. Barrera, J. M. Salas, and M. Sánchez-Moreno, Pharmacology, 70, 83 (2004).
X. Zhang, T. Ren, F. Chen, and J. Ren, Shanxi Daxue Xuebao Zirankexueban, 27, 372 (2004), CA 143367260 (2004).
G. Fischer, "Stabilizers for Photographic Silver Halide Emulsions", Kluwer Academic/Plenum Publishers, New York (2004).
M. Abul-Haj, M. Quirós, and J. M. Salas, Polyhedron, 23, 743 (2004).
M. Abul-Haj, M. Quirós, and J. M. Salas, Polyhedron, 23, 2373 (2004).
R. Jakše, J. Svete, B. Stanovnik, and A. Golobič, Tetrahedron, 60, 4601 (2004).
M. A. Rzeznik and D. L. Jacques, US Patent 2004 040,852 (2004) [CA 140201099 (2004)].
J. Tormo i Blasco et al., WO Patent 2004 046,149 (2004) [CA 141 7133 (2004)].
B. Müller et al., WO Patent 2004 058,765 (2004) [CA 141106494 (2004)].
J. F. Bower, A. Cansfield, A. Jordan, M. Parratt, L. Walmsley, and D. Williamson, WO Patent 2004 108,136 (2004) [CA 142 56337 (2005)].
A. Masuda, Y. Satoh, Y. Akiyama, K. Saiga, and E. Toyoda, WO Patent 2004 108,729 (2004) [CA 14256344 (2005)].
O. Gebauer et al., WO Patent 2004 113,341 (2004) [CA 14293844 (2005)].
K. M. Al-Zaydi and M. N. Elnagdi, Z. Naturforsch., B, 59, 721 (2004).
D. Teng, F. Ji, and W. Huang, Acta Crystallogr. E, 61, o1992 (2005).
Q. Chen, Q. Wu, X. Hu, and G. Yang, Acta Crystallogr. E, 61, o2079 (2005).
X. Hu, Q. Chen, Z. Liu, and G. Yang, Acta Crystallogr. E, 61, o2083 (2005).
Q. Chen, Y. Li, X. Hu, and G. Yang, Acta Crystallogr. E, 61, o3842 (2005).
S. Azuma, A. Masuda, K. Yamamoto, and Y. Ichikawa, Jpn. Kokai 2005 139,119 (2005) [CA 1437725 (2005)].
B. Japelj, S. Rečnik, P. Čebašek, B. Stanovnik, and J. Svete, J. Heterocycl. Chem., 42, 1167 (2005).
A. M. Girasolo, D. Schillaci, C. Di Salvo, G. Barone, A. Silvestri, and G. Ruisi, J. Organomet. Chem., 690, 4773 (2005).
G. Polat, D. U. Talas, A. Polat, A. Nayci, S. Atis, O. Bagdatoglu, U. Coemelekoglu, and U. Atik, Cell. Biochem. Funct., 23, 39 (2005).

05MI2
G. M. Day, W. D. S. Motherwell, and W. Jones, Cryst. Growth Design, 5, 1023 (2005).
J. Hernandez-Borges, F. J. Garcia-Montelongo, A. Cifuentes, and M. A. Rodriguez-Delgado, J. Chromatogr. A, 1100, 236 (2005).
J. Hernandez-Borges, M. A. Rodriguez-Delgado, F. J. GarciaMontelongo, and A. Cifuentes, J. Sep. Sci., 28, 948 (2005).
A. Bari, H. Feist, M. Michalik, and K. Peseke, Molecules, 10, 837 (2005).
G. Sun, X. Jiang, Y. Wang, and D. Shen, Xiandai Nongyao, 4(1), 14 (2005), CA 144331372 (2006).
W. Chen, Q. Chen, Q. Wu, and G. Yang, Youji Huaxue, 25, 1477 (2005), CA 145419067 (2006).
D. Long, Y. Wang, D. Li, and F. Wang, Youji Huaxue, 25, 1498 (2005), CA 1453974398 (2006).
X. Hu, Zhangguo Yaowu Huaxue Zazhi, 15, 53 (2005), CA 145 336015 (2006).
Kh. S. Shikhaliev, D. V. Kryl'skii, A. Yu. Potapov, and M. Yu. Krysin, Russ. Chem. Bull. (Int. Ed.), 54, 2903 (2005).
G. N. Lipunova, E. V. Nosova, A. A. Laeva, M. I. Kodess, and V. N. Charushin, Russ. J. Org. Chem. (Engl. Transl.), 41, 1071 (2005).
P. Černuchová, G. Vo-Thanh, V. Milata, A. Loupy, S. Jantová, and M. Theiszová, Tetrahedron, 61, 5379 (2005).
Yanzhong Wu, J. Schmid, J. Th. Afragola, D. Blum, and S. AyralKaloustian, US Patent 2005 124,635 (2005) [CA 14326646 (2005)].

Ch. Th. Hamilton, US Patent 2005 215,570 (2005) [CA 143326391 (2005)].

Nan Zhang, S. Ayral-Kaloustian, and Th. H. Nguyen, WO Patent 2005 030,216 (2005) [CA 142373857 (2005)].
K. Schiemann, G. Hölzemann, and W. Rautenberg, WO Patent 2005 054,246 (2005) [CA 14360006 (2005)].
A. Schwögler et al., WO Patent 2005080,396 (2005) [CA 143 266948 (2005)].
J. Tormo i Blasco et al., WO Patent 2005 087,770 (2005) [CA 143 326383 (2005)].
C. Blettner et al., WO Patent 2005 095,405 (2005) [CA 143387055 (2005)].
C. Blettner et al., WO Patent 2005 120,233 (2005) [CA 14446618 (2006)].
I. Otero, H. Feist, D. Michalik, M. Michalik, J. Quincoces, and K. Peseke, Z. Naturforsch., B, 60, 1175 (2005).
J. Lokaj, V. Kettmann, S. Katuščák, P. Cernuchová, V. Milata, and F. Gregáň, Acta Crystallogr. E, 62, o1252 (2006).
M. Odabaşoğlu and O. Büyükgüngör, Acta Crystallogr. E, 62, ol310 (2006).
A. A. Toropov and E. Benfenati, Bioorg. Med. Chem., 14, 2779 (2006).
M. A. Girasolo, D. Schillaci, C. Di Salvo, G. Barone, A. Silvestri, and G. Ruisi, J. Organomet. Chem., 691, 693 (2006).
Q. Chen, D. Long, J. Cheng, J. Li, Z. Liu, and G. Yang, Gaodeng Xuexiao Ниахие Xuebao, 27, 454 (2006), CA 146251795 (2007).
P. Čebašek, D. Bevk, S. Pirc, B. Stanovnik, and J. Svete, J. Comb. Chem., 8, 95 (2006).

06MI3 D. Camp, Ch. F. Matthews, S. T. Neville, M. Rouns, R. W. Scott, and Y. Truong, Org. Process Res. Dev., 10, 814 (2006).
06S59
B. Al-Saleh, S. Makhseed, H. M. E. Hassaneen, and M. H. Elnagdi, Synthesis, 59 (2006).
06WOP18725
06WOP27170
J. Gonzalez, T. M. Jewell, Hui Li, A. Linton, and J. H. Tatlock, WO Patent 2006 018,725 (2006) [CA 144254144 (2006)].

06WOP34848
C. Blettner et al., WO Patent 2006 027,170 (2006) [CA 144292778 (2006)].
C. Blettner et al., WO Patent 2006 034,848 (2006) [CA 144370116 (2006)].

Organometallic Chemistry of Polypyridine Ligands III

Alexander P. Sadimenko
Department of Chemistry, University of Fort Hare, Alice 5701, Republic of South Africa

I. Introduction 221
II. Organoiron, Organoruthenium, and Organoosmium Complexes 221
A. Mono-polypyridine Complexes 221
B. Bis-polypyridine Complexes 229
C. Cyclometalation 232
D. Dinuclear Complexes 233
E. Polynuclear Complexes and Clusters 235
F. 4,4'-Bipyridine Complexes 237
G. Polypyridylphosphines. 239
H. Catalytic Aspects 241
III. Conclusions. 244
List of Abbreviations 245
References 245

I. Introduction

This chapter constitutes parts 11 and 12 in a series covering the organometallic chemistry of polypyridine ligands with non-transition and early transition metals (07AHC(93)185) and manganese group metals (07AHC(94)109). Organometallic compounds of polypyridine ligands with iron group metals attracted attention due to their unique photochemical and electrochemical properties, ability to form molecular assemblies and nanocrystallites, and to catalyze photo- and electrochemical reduction of carbon dioxide. Herein, we consider organoiron, organoruthenium, and organoosmium complexes of polypyridine ligands. As always in this series of chapters, emphasis will be on the synthetic and coordination aspects, as well as reactivity.

II. Organoiron, Organoruthenium, and Organoosmium Complexes

A. Mono-polypyridine Complexes

Reaction of $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right\}_{n}\right]$ with 2,2'-bipyridine or 4,4'-di(i-propoxycarbonyl)-$2,2^{\prime}$-bipyridine (LL) gives a solution consisting of a mixture of $\left[\mathrm{Ru}{ }^{\mathrm{II}}(\mathrm{LL})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{LL})(\mathrm{CO}) \mathrm{Cl}_{3}\right]$ (91JEAC(319)347, 93JOM(444)191), but not the cis-isomer
of $\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ as indicated earlier (64JCS3466, 66JCS(A)300). A pure $\operatorname{trans}(\mathrm{Cl})$-isomer was claimed to result (82AJC2445, 82ICA(65)L75, 83POL409, 86SRIMC85, 89IS107, 00JEAC(490)62, 01CCC207). Refluxing this mixture of the 2, 2'-bipyridine complex in water-methanol gives pure trans-[$\left.\mathrm{Ru}{ }^{\mathrm{II}}(\mathrm{bpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ (82ICA(64)L75). Selectivity is determined by the conditions of the preparation of the ruthenium(II) polymeric precursor and the pH of the medium (97IC5384). $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{bpy})(\mathrm{CO}) \mathrm{Cl}_{3}\right]$ can be reduced electrochemically to $\left(\mathrm{Me}_{4} \mathrm{~N}\right)\left[\mathrm{Ru}^{\mathrm{II}}(\mathrm{bpy})(\mathrm{CO}) \mathrm{Cl}_{3}\right]$ (91JEAC(319)347). Photolysis of the acetonitrile (AN) solutions of $[\mathrm{Ru}(\mathrm{LL})$ $\left.(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ or $\left(\mathrm{Me}_{4} \mathrm{~N}\right)\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{CO}) \mathrm{Cl}_{3}\right]\left(\mathrm{LL}=2,2^{\prime}\right.$-bipyridine or 4,4'-di(i-propoxycar-bonyl)-2,2'-bipyridine) gives the photosubstitution products $\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{CO})(\mathrm{AN}) \mathrm{Cl}_{2}\right]$, $\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{AN})_{2} \mathrm{Cl}_{2}\right]$, and $\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{AN})_{3} \mathrm{Cl}\right]^{+}(80 \mathrm{IC} 860,81 \mathrm{ICA}(53) \mathrm{L} 3,84 \mathrm{IC} 1440$, 90JA9490, 93JOM(444)191, 93JPC5973). [Ru(bpy)(CO) $\left.)_{2} \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{Ru}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\right)\right.$ $(\mathrm{CO})_{2} \mathrm{Cl}_{2}$] were prepared similarly (86JCS(D)253). Photolysis of $\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ ($\mathrm{LL}=\mathrm{bpy}, 4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}$) in acetonitrile gives various ligand-substitution products, among them are $\left[\mathrm{Ru}(\mathrm{bpy})(\mathrm{CO})(\mathrm{AN}) \mathrm{Cl}_{2}\right],\left[\mathrm{Ru}(\mathrm{bpy})(\mathrm{AN})_{3} \mathrm{Cl}\right]^{+}$, and $\left[\mathrm{Ru}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{~b}-\right.\right.$ py) $\left.(\mathrm{AN})_{3} \mathrm{Cl}\right]^{+}$(00OM163, 01PCCP1992, 03JCP81). Photolysis in methylene chloride gives $\left[\mathrm{Ru}(\mathrm{bpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ dimer. The tetrahydrofuran (THF)-substitution product $\left[\mathrm{Ru}(\mathrm{bpy})(\mathrm{CO})_{2} \mathrm{Cl}(\mathrm{THF})\right]$ is labile functions as a ligand with respect to chromium, manganese, and ruthenium species to yield homo- and heterodinuclear complexes (78JOM(144)175, 80JOM(197)357, 93IC3789). Photolysis of [Ru(bpy) $\left.(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ in methanol yields $\left[\mathrm{Ru}(\mathrm{bpy})(\mathrm{CO})(\mathrm{MeOH}) \mathrm{Cl}_{2}\right]$ (02EJI1169). Prolonged photolysis leads to the binuclear species $\left[(b p y) \mathrm{Cl}(\mathrm{OC}) \mathrm{Ru}(\mu-\mathrm{OMe})_{2} \mathrm{RuCl}_{2}(\mathrm{bpy})\right]$. Extended heating of $2,2^{\prime}$-bipyridine or 1,10 -phenanthroline with $\mathrm{RuCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ in formic acid gives ruthenium(III) complexes $\left[\mathrm{RuCl}_{3}(\mathrm{CO})(\mathrm{LL})\right] \quad(\mathrm{LL}=$ bpy, phen) (99POL2091). $\left[\mathrm{Ru}(\text { bpy })_{2}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ reacts with 2-pyridylcarboxylic acid in aqueous silver nitrate and potassium hexafluorophosphate to yield $\mathbf{1}$ (03JOM (665)107).

1
Interaction of $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{Cl}_{2}\right\}_{2}\right]$ and 2, 2'-bipyridine gives $\left[\mathrm{Ru}(\mathrm{bpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ (95OM825, 95OM5454, 96POL1571). The product reacts with an aqueous mixture of hydrochloric and nitric acids at elevated temperatures to yield nitrosyl or nitrido complexes $\left[\mathrm{Ru}(\right.$ bpy $\left.)(\mathrm{NO}) \mathrm{Cl}_{3}\right], \quad\left[\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{2}(\right.$ bpy $) \mathrm{RuNRu}($ bpy $\left.) \mathrm{Cl}_{3}\right]$, and $\left[\mathrm{Cl}_{3} \text { (bpy)RuNRu(bpy)Cl } 1_{3}\right]^{-}$(95IC2931). With aqueous hydrobromic or hydroiodic acid, the products of halogen exchange follow, $\left[\mathrm{Ru}(\mathrm{bpy})(\mathrm{CO})_{2} \mathrm{X}_{2}\right](\mathrm{X}=\mathrm{Br}, \mathrm{I})$ (96JCS(D) 1927, 04IC7380). When nitric acid was added, in both cases the nitrosyl complexes $\left[\mathrm{Ru}(\mathrm{bpy})(\mathrm{NO}) \mathrm{X}_{3}\right](\mathrm{X}=\mathrm{Br}, \mathrm{I})$ resulted. The reaction of $\left[\mathrm{Ru}(\mathrm{bpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$
with an aqueous mixture of hydrofluoric and nitric acids leads to $[\mathrm{Ru}(\mathrm{bpy})$ $\left.(\mathrm{NO}) \mathrm{Cl}_{2} \mathrm{~F}\right]$. Extended reaction with $\mathrm{HBr}-\mathrm{HNO}_{3}$ gives the binuclear complex $\left[\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Br}_{2}(\right.$ bpy $) \mathrm{RuNRu}($ bpy $\left.) \mathrm{Br}_{3}\right]$. $\quad\left[\mathrm{Ru}(\mathrm{bpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ with aqueous potassium thiocyanate gives the product of substitution of the chloride ligands, $[\mathrm{Ru}(\mathrm{bpy})$ $\left.(\mathrm{CO})_{2}(\mathrm{NCS})_{2}\right](96 \mathrm{OM} 4081)$. [$\left.\left\{\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{Cl}_{2}\right\}_{2}\right]$ on reaction with $6,6^{\prime}$-dimethyl-2,2'bipyridine (LL) in THF gives $\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$. In ethylene glycol, the product is $\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{CO})_{2}(\mathrm{Cl}) \mathrm{H}\right]$. With potassium thiocyanate, the Cl -substitution product, $\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{CO})_{2}(\mathrm{SCN}) \mathrm{H}\right]$, results. Other examples of chemical modification of the coordination sphere of ruthenium(II) and polypyridine ligands are known (80JA5543, 93JA6382, 95JEAC(396)27, 97IC3794, 98JEAC(444)253, 98JOM (552)205, 99JEAC(466)187). [Ru $\left.\mathrm{u}_{3}(\mathrm{CO})_{12}\right]$ reacts with 2.2^{\prime}-bipyridine-4, 4^{\prime}-dicarboxylic acid (LL) in the presence of aqueous hydrochloric acid to yield $[\mathrm{Ru}(\mathrm{LL})$ $\left.(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right](00 \mathrm{JCS}(\mathrm{D}) 2745)$. $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{Cl}_{2}\right\}_{2}\right]$ reacts with a variety of $4,4^{\prime}-\mathrm{R}_{2}-2,2^{\prime}-$ bipyridines ($\mathrm{LL} ; \mathrm{R}=\mathrm{H}, \mathrm{Me}, t-\mathrm{Bu}, \mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{PO}_{3}, \mathrm{Cl}, \mathrm{Br}$) to yield $[\mathrm{Ru}(\mathrm{LL})$ $\left.(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right] \quad$ (01JCS(D)2649). 4,4'-Dimethoxycarbonyl-2,2'-bipyridine and 5,5'-dimethoxycarbonyl-2,2'-bipyridine (LL) react with $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{Cl}_{2}\right\}_{2}\right]$ to yield $\left[\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\left(\mathrm{LL}(02 \mathrm{JOM}(654) 8)\right.\right.$. The reaction of $6,6^{\prime}$-diemthoxycarbonyl-2,2'bipyridine and 6-methoxycarbonyl-6'-carboxylate-2, 2^{\prime}-bipyridine was conducted in methylene chloride.

Complex $2(\mathrm{X}=\mathrm{Cl})$ interacts with aqueous hydrobromic acid to yield the ligandsubstitution complex in the same $\operatorname{cis}(\mathrm{Br})$-isomeric form 2 ($\mathrm{X}=\mathrm{Br}$) (99EJI101, 99IC3182). With aqueous hydroiodic acid, however, the sole product is the $\operatorname{trans}(\mathrm{I})$ isomer $3(\mathrm{X}=\mathrm{I})$. Complex $3(\mathrm{X}=\mathrm{Cl})$ being in the trans (Cl)-configuration reacts with aqueous hydrobromic and hydroiodic acids as well as potassium thiocyanate to yield $\operatorname{trans}(\mathrm{X})$-isomers 3 ($\mathrm{X}=\mathrm{Br}$, I, SCN). Species $\left[\mathrm{M}\left(\mathrm{SnR}_{3}\right)_{2}(\mathrm{CO})_{2}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\right)\right.$] $(\mathrm{M}=\mathrm{Ru}, \mathrm{Os} ; \mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ are known $(00 \mathrm{CCR}(208) 309$, 01JCS(D)2587). Photolysis of $\left[\mathrm{Os}(\mathrm{bpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ in acetonitrile gives $\left[\mathrm{Os}(\mathrm{bpy})(\mathrm{CO})(\mathrm{AN}) \mathrm{Cl}_{2}\right]$ and electrochemical oxidation in acetonitrile gives $\left[\mathrm{Os}(\mathrm{bpy})(\mathrm{CO})(\mathrm{AN}) \mathrm{Cl}_{2}\right]^{+}$(02EJI2850). Reaction of $\left[\mathrm{Ru}(\mathrm{CO})_{2}(\mathrm{AN})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ with $\mathrm{NO}_{2} \mathrm{PF}_{6}$ in acetonitrile followed by 2,2'-bipyridine gives $\left[\mathrm{Ru}(\mathrm{bpy})(\mathrm{CO})_{2}(\mathrm{AN})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}(04 \mathrm{JOM} 484)$.

In trans- $\left[\mathrm{Ru}(\operatorname{trpy})(\mathrm{CO})_{2} \mathrm{X}_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}), 2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine is a bidentate ligand (67JCS(A)1238, 67JINC133, 82AJC2445, 84AJC929, 94JCS(D)111). $\left[\left\{\mathrm{RuCl}_{2}(\mathrm{CO})_{2}\right\}_{n}\right]$ reacts with $\mathrm{LiX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ and then $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine to yield $\left[\mathrm{RuX}_{2}(\mathrm{CO})_{2}(\operatorname{trpy})\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})(94 \mathrm{JCS}(\mathrm{D}) 111)$. Heating the products in tetrachloroethane leads to the decarbonylation products [$\left.\mathrm{RuX}_{2}(\mathrm{CO})(\operatorname{trpy})\right]$. NMR
data are in agreement with the dynamic behavior of complexes in solution described by the equilibrium 4 .

4
Photolysis of $\left[\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{X}_{2}(\mathrm{bpy})\right](\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ in acetonitrile, methanol, or ethanol leads to the substitution of one carbonyl ligand by a solvent molecule ($00 \mathrm{IC} 2777,04 \mathrm{IC} 4380,05 \mathrm{JPC}(\mathrm{B}) 17538$). The same route is observed for the reaction of $\left[\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{Cl}_{2}(\right.$ bpy $\left.)\right]$ in dialkylcyanamide solutions, the products being $\left[\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}_{2}(\mathrm{bpy})\left(\mathrm{R}_{2} \mathrm{NC} \equiv \mathrm{N}\right)\right](\mathrm{R}=\mathrm{Me}, \mathrm{Et})(06 \mathrm{JOM} 2368)$.
$2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-Terpyridine reacts with $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right\}_{n}\right]$ in refluxing ethanol-water in the presence of ammonium hexafluorophosphate to yield $\mathbf{5}$ with tridentate coordination of the ligand (97OM4421). The product reacts with sodium formate in acetonitrile to yield the ligand-substitution product $\left[\mathrm{Ru}(\operatorname{trpy})(\mathrm{CO})_{2}(\mathrm{OCHO})\right]\left(\mathrm{PF}_{6}\right)$. Complex 5 reacts with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{C}_{2}(\mathrm{CN})_{2}$ in methanol. First, $\mathbf{6}$ was obtained and then it transformed gradually into 7 with bidentate coordination of the 2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine ligand (01JCS(D)57). The reaction of $\mathbf{5}$ with 3,4-toluenedithiol occurs to the stage of the analog of 7 with bidentate coordination of the polypyridine ligand. The product with tridentate coordination was not found. The reaction of 5 with $\mathrm{Cs}\{\mathrm{PhC}(\mathrm{S}) \mathrm{C}(\mathrm{S}) \mathrm{Ph}\}$ in methanol proceeds differently and affords $\left[\mathrm{Ru}(\mathrm{CO})(\mathrm{C}(\mathrm{O}) \mathrm{OMe})(\mathrm{SC}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{SC}(\mathrm{O}) \mathrm{OMe})\left(\eta^{3}\right.\right.$-trpy $\left.)\right]$.

5
6

Complexes $\left[\mathrm{M}\left(\mathrm{L}_{1}\right)\left(\mathrm{L}_{2}\right)(\mathrm{CO})_{2}(\mathrm{LL})\right]\left(\mathrm{M}=\mathrm{Ru}\right.$, Os) where L_{1} and L_{2} are various ligands and LL is a polypyridine ligand are interesting in terms of the possibility of tuning the excited-state properties of the polypyridine species (96CEJ1556, $02 \mathrm{CCR}(230) 107$). Syntheses of some representatives are outlined below. $\left[\mathrm{RuI}_{2}(\mathrm{CO})_{2}(\mathrm{AN})_{2}\right]$ reacts with 4,4'-dimethyl-2,2'-bipyridine in diethyl ether under reflux to yield $\left[\mathrm{RuI}_{2}(\mathrm{CO})_{2}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\right)\right]$ (01IC277). Other examples include $\left[\mathrm{Ru}\left(\mathrm{L}_{1}\right)\left(\mathrm{L}_{2}\right)\left((\mathrm{CO})_{2}(\mathrm{bpy})\right]\left(\mathrm{L}_{1}=\mathrm{Cl}, \mathrm{I}\right.\right.$, OTf; $\left.\mathrm{L}_{2}=\mathrm{Me}, \mathrm{Et}\right)$ (92OM3774, 94OM3279). $\left[\mathrm{OsCl}_{2}(\mathrm{CO})_{2}(\mathrm{bpy})\right]$ enters photochemical CO-substitution reactions with acetonitrile (00CCR(200)933). [\{ $\left.\left.\mathrm{OsCl}_{2}(\mathrm{CO})_{2}\right\}_{n}\right]$ reacts with $4,4^{\prime}$-dimethyl-2, 2^{\prime}-bipyridine in n-propanol to yield $\left[\mathrm{OsCl}_{2}(\mathrm{CO})_{2}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\right)\right]$. $\left[\mathrm{RuI}_{2}(\mathrm{CO})_{2}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\right)\right]$ with $\mathrm{LiSnR}_{3}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ in THF gives $\left[\mathrm{Ru}\left(\mathrm{SnR}_{3}\right)_{2}(\mathrm{CO})_{2}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\right)\right](\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$. $\left[\mathrm{OsCl}_{2}(\mathrm{CO})_{2}\left(4,4^{\prime}-\mathrm{Me}_{2}\right.\right.$ bpy $\left.)\right]$ with LiSnPh_{3} in THF gives $\left[\mathrm{Os}\left(\mathrm{SnPh}_{3}\right)_{2}(\mathrm{CO})_{2}\left(4,4^{\prime}-\right.\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{bpy}\right)\right]$. Another representative which can be prepared similarly is $[\mathrm{Ru}(\mathrm{Me})(\mathrm{I})$ (CO) $)_{2}$ (bpy)] (87JOM(328)209, 94IC3212, 95IC3879, 95JA5579).
$\left[\mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{bpy})\right](82 \mathrm{CB} 1070,83 \mathrm{JCR}(\mathrm{S}) 216)$ may be obtained from ferric chloride, sodium 2,2'-bipyridyl, and carbon monoxide (02JOM(662)137). [$\left.\mathrm{Fe}_{3}(\mathrm{CO})_{12}\right]$ with 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 1,10-phenanthroline, 4,7-dimethyl1,10 -phenanthroline, or 2,9 -dimethyl-1,10-phenanthroline (LL) in the presence of trimethylamine oxide in THF gives a mixture of mononuclear complexes $\left[\mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{LL})\right]$ and dinuclear products $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{7}(\mathrm{LL})\right]$, one of which is illustrated as 8 (03JOM(677)101). The same set of products follows from $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ and $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$, while $\left[\mathrm{Fe}(\mathrm{CO})_{3}(\right.$ benzylideneacetone $\left.)\right]$ forms exclusively mononuclear complexes. The reaction of $\left[\mathrm{Fe}_{5} \mathrm{C}(\mathrm{CO})_{5}\right]$ with $2,2^{\prime}$-bipyridine in THF yields $\left[\mathrm{Fe}(\mathrm{bpy})_{3}\right]\left[(\mu-\mathrm{H}) \mathrm{Fe}_{4} \mathrm{C}(\mathrm{CO})_{123}\right]_{2} . \quad\left[\mathrm{Ru}(\mathrm{CO})_{3}(\mathrm{LL})\right] \quad(90 \mathrm{CCR}(104) 39)$ as well as $\left[\mathrm{Ru}(\text { bpy })(\mathrm{CO}) \mathrm{Cl}_{3}\right]^{-}$are known (74JCS(D)1640, 90AX(C)312).

2,2'-Bipyridine with $\left[\mathrm{Ru}(\mathrm{CO})_{5}\right]$ in methylene chloride gives unidentified polymeric insoluble complexes (97JCS(D)2997). 2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine and 6 -(2-thienyl)-2,2'bipyridine (LL) in methylene chloride form $\left[\mathrm{RuCl}_{3}(\mathrm{LL})\right]$ with tridentate N, N, N - and N, N, S-coordination, respectively.

Complexes $\left[\mathrm{OsH}(\mathrm{LL})(\mathrm{CO})\left(\mathrm{PR}_{3}\right)_{2}\right]^{+} \quad(\mathrm{LL}=\mathrm{bpy}$, phen) are known (83OM551, 84OM1241, 98IC127). Complex $\left[\mathrm{OsH}_{2}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)(\mathrm{bpy})\right]^{2+}$ is regarded as a dihydrogen complex (92IC1471). Reaction of $\left[\mathrm{Os}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{Cl}) \mathrm{H}\right]$ with 2,2'bipyridine gives $9(\mathrm{X}=\mathrm{Cl})$, which with ammonium triflate gives 9 ($\mathrm{X}=\mathrm{OTf}$) (96IC4396). The product enters reversible protonation with triflic acid to yield dihydrogen species 10. $\left[\mathrm{Os}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{bpy})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)\right]^{2+}$ reacts with carbon monoxide to yield $\left[\mathrm{Os}(\mathrm{bpy})(\mathrm{CO})\left(\mathrm{P}(\mathrm{OEt})_{3}\right)_{3}\right]^{2+}(04 \mathrm{JOM} 1639)$.

Carbonyl-carboxylato complexes of ruthenium(II) $\quad\left[\mathrm{Ru}(\mathrm{CO})_{2}(\mathrm{RCOO})_{2}(\mathrm{LL})\right]$ $(\mathrm{LL}=\mathrm{bpy}$, phen) catalyze carbonylation and hydrogenation of organic substances (91JMOC(64)257, 97JOM(547)35). Refluxing of $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right\}_{n}\right]$ with 2,2'-bipyridine or 1,10 -phenanthroline in the presence of sodium benzoate in methanol gives the mononuclear complexes containing the cyclometalated benzoate group. The structure of the $2,2^{\prime}$-bipyridine complex is illustrated as $\mathbf{1 1}$ (04IC683).

11
Polymeric complex $\left[\left\{\left(\eta^{4}-n b d\right) \mathrm{RuCl}_{2}\right\}_{n}\right]$ reacts with various polypyridine ligands LL (bpy, phen, $5,6-\mathrm{Me}_{2}$ phen, $4,7-\mathrm{Me}_{2}$ phen, $3,4,7,8-\mathrm{Me}_{4}$ phen) in acetone to yield $\left[\left(\eta^{4}-\mathrm{nbd}\right) \mathrm{Ru}(\mathrm{LL}) \mathrm{Cl}_{2}\right]$ (97POL3847). The reaction of $\left[\left(\eta^{4}-\mathrm{nbd}\right) \mathrm{Ru}(\right.$ phen $\left.) \mathrm{Cl}_{2}\right]$ with triphenylphosphine and silver hexafluorophosphate in methylene chloride gives the cationic complex $\left[\left(\eta^{4}-\mathrm{nbd}\right) \mathrm{Ru}(\mathrm{LL}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{PF}_{6}\right)$. Complexes are active catalysts of the water-gas shift reaction. 2, 2^{\prime}-Biquinoline, $3,3^{\prime}$-dimethylene- $2,2^{\prime}$-biquinoline, or 3, 3^{\prime}-trimethylene-2, 2^{\prime}-biquinoline (LL) with $\left[\left\{\left(\eta^{4}-\mathrm{nbd}\right) \mathrm{RuCl}_{2}\right\}_{x}\right]$ in $\mathrm{THF} /$ water yield complexes $\left[\left(\eta^{4}-\mathrm{nbd}\right) \mathrm{RuCl}_{2}\right.$ (LL)] (06POL9).
$2,2^{\prime}$-Bipyridine reacts with $\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Ru}(\mathrm{NO})(\mathrm{OTf})_{2}\right]$ in THF to yield the dicationic complex 12 (96IC4383). The same ruthenium precursor with dipyrido[3,2-a:2', $\left.3^{\prime}-\mathrm{c}\right]$ phenazine produces 13. $\left[\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{Ru}\left(\eta^{2} \text {-dimethyl maleate }\right)(\mathrm{bpy})\right]^{+}$is also described (92OM456).

13
[($\eta^{6}-1,6$-Cyclooctatriene $) \mathrm{Ru}\left(\eta^{2}\right.$-dimethylfumarate $\left.)\right]$ reacts with $2,2^{\prime}$-bipyridine or 1,10 -phenanthroline in diethyl ether to yield the ruthenium(0) products and the 2,2'-bipyridine complex is illustrated as $\mathbf{1 4}$ (990M3671). Similar cyclooctadiene complexes $\mathbf{1 5}$ (for 2,2'-bipyridine) result from [$\left(\eta^{6}-1,6\right.$-cyclooctadiene) $\mathrm{Ru}\left(\eta^{4}\right.$-cod)], $2,2^{\prime}$-bipyridine or 1,10 -phenanthroline, and dimethylfumarate in methylene chloride.

14

15
$\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuX}\right]_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{I})$ and $1,1^{\prime}$-biisoquinoline in methanol in the presence of ammonium hexafluorophosphate yield $\mathbf{1 6}(\mathrm{M}=\mathrm{Ru}, \mathrm{X}=\mathrm{Cl}, \mathrm{I})(00 \mathrm{OM} 547)$. [($\eta^{6}-$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Os}(\mathrm{AN}) \mathrm{X}_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{I})$ under the same conditions gives $16(\mathrm{M}=\mathrm{Os}, \mathrm{X}=\mathrm{Cl}, \mathrm{I})$. $\left[\left(\eta^{6}-\right.\right.$ Toluene $\left.) \mathrm{Fe}(\mathrm{H})_{2}\left(\mathrm{SiCl}_{3}\right)_{2}\right]$ on interaction with $2,2^{\prime}$-bipyridine forms $\left(\mathrm{bpyH}_{2}\right)^{2+}$ (97IC2119). [\{($\left.\left.\left.\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}_{2}\right\}_{2}\right]$ and 2,2'-bipyridine in acetonitrile give $\left[\left(\eta^{6}\right.\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}($ bpy $\left.) \mathrm{Cl}\right] \mathrm{Cl}(01 \mathrm{IC} 5711) .\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}(\text { bpy })\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ serves as a catalyst precursor in the transfer hydrogenation of ketones in solution (95IC306). If the source of protons is HCOONa , an intermediate could be a formate complex $\left[\left(\eta^{6}\right.\right.$ $\left.\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}($ bpy $\left.)(\mathrm{HCOO})\right]^{+}$, and the catalytic action could be ascribed to $\left[\left(\eta^{6}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}(\mathrm{bpy})(\mathrm{H})\right]^{+}$(01CJC1002). 2, 2^{\prime}-Bipyridine reacts with $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(\mathrm{SO}_{4}\right)$ in aqueous solution to yield $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}(\mathrm{bpy})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{SO}_{4}\right)$ (02OM2964, 04OM3047). The product reacts with sodium formate in an acidic medium to yield $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}(\right.$ bpy $\left.)(\mathrm{HCOO})\right](\mathrm{HCOO})$. In an alkaline medium and in the presence of sodium hexafluorophosphate, the product is $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}\right.$ (bpy)(H)](PF $\left.\mathrm{PF}_{6}\right)$. Similar complexes, $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\right.$ phen $\left.) \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right)$, $\left[\left(\eta^{6}-p\right.\right.$-cymene $)$ $\mathrm{Ru}($ phen $) \mathrm{Cl}]\left(\mathrm{PF}_{6}\right), \quad\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}(5-\mathrm{R}-\mathrm{phen}) \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right) \quad\left(\mathrm{R}=\mathrm{H}, \quad \mathrm{NO}_{2}, \quad \mathrm{NH}_{2}\right)$, $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\right.$ phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{PF}_{6}\right)_{2},\left[\left(\eta^{6}-p\right.\right.$-cymene $) \mathrm{Ru}($ phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$, and $\left[\left(\eta^{6}-\right.\right.$ $\left.\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}(5-\mathrm{R}$-phen $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}\left(\mathrm{R}=\mathrm{H}, \mathrm{NO}_{2}, \mathrm{NH}_{2}\right)$ catalyze transfer hydrogenation of acetophenone (05JOM3202, 06ICA2369).

16
$\left[\left\{\left(\eta^{6}-\text { Cymene }\right) \mathrm{RuCl}\right\}_{2}\right]$ reacts with $1,1^{\prime}$-biisoquinoline in ethanol-benzene and gives $17(\mathrm{X}=\mathrm{Cl})$, which further enters a metathesis reaction with sodium tetraphenylborate to yield $17\left(\mathrm{X}=\mathrm{BPh}_{4}\right)(03 \mathrm{JOM}(667) 197)$. $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}(\mathrm{b}-\right.$ $\mathrm{py}) \mathrm{Cl}] \mathrm{Cl}$ and $\mathbf{1 8}$ are the catalysts in the transfer hydrogenation of bicarbonate (03JMOC(195)95, 04OM1480). Complex [$\left.\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Ru}(\mathrm{bpy}) \mathrm{Cl}\right]$ (89JOM(362)383, 98CRV1439) with interesting catalytic properties (01JMAC267) can be reduced by KC_{8} in THF to yield the potassium salt $\mathrm{K}\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Ru}(\mathrm{bpy})\right]$ (04OM2855). A lithium salt follows from $\mathrm{LiC}_{10} \mathrm{H}_{8}$. The potassium salt reacts with methyl iodide or trimethylstannyl chloride to yield $\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Ru}(\right.$ bpy $\left.) \mathrm{R}\right]\left(\mathrm{R}=\mathrm{Me}, \mathrm{SnMe}_{3}\right)$. With (2,4,6-tri-i-propylphenyl) GaCl_{2} (THF), the product is $\mathbf{1 9}$.

17

18

19
1,10-Phenanthroline with $\left[(\mathrm{OC})_{3} \mathrm{Fe}(\mu-\mathrm{SePh})_{3} \mathrm{Fe}(\mu-\mathrm{SePh})_{3} \mathrm{Fe}(\mathrm{CO})_{3}\right]$ gives $\left[\mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{phen})(\mathrm{SePh})_{2}\right](98 \mathrm{JCS}(\mathrm{D}) 353)$. Amidostannane $\left[\mathrm{MeSi}\left\{\mathrm{SiMe}_{2} \mathrm{~N}(4-\mathrm{Tol})\right\}_{3} \mathrm{Sn}-\right.$ $\left.\mathrm{Li}\left(\mathrm{OEt}_{2}\right)\right]$ reacts with $\left[\mathrm{RuCl}_{2}(\mathrm{bpy})(\mathrm{CO})_{2}\right]$ to yield 20 (01EJI3155).

$\left[\mathrm{Ru}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\right)\left(\mathrm{PPh}_{3}\right)_{2}(-\mathrm{C} \equiv \mathrm{CR}) \mathrm{Cl}\right]\left(\mathrm{R}=t-\mathrm{Bu}, \mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$ are made from the dichloride precursors (04IC3492). In the same manner, $\left[\mathrm{Ru}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{~b}-\right.\right.$ py) $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$] reacts with p-nitrophenylacetylene and thallium hexafluorophosphate in methylene chloride with further addition of potassium carbonate to yield $\left[\mathrm{Ru}\left(4,4^{\prime}-\right.\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{bpy}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p\right) \mathrm{Cl}\right](04 \mathrm{JCS}(\mathrm{D}) 4130)$. In a similar manner, the 4, 4^{\prime}-dibromo- and 4,4'-diiodobipyridine analogs were synthesized. Further substitution of the chloro-ligand in these complexes provided a series of $\left[\mathrm{Ru}\left(4,4^{\prime}-\right.\right.$ R_{2} bpy $\left.)\left(\mathrm{PPh}_{3}\right)_{2}\left(-\mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p\right)_{2}\right](\mathrm{R}=\mathrm{Me}, \mathrm{Br}, \mathrm{I})$. Reaction of $\left[\mathrm{Ru}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{~b}-\right.\right.$ py) $\left.\left(\mathrm{PPh}_{3}\right)_{2}(-\mathrm{C} \equiv \mathrm{CBu}-t) \mathrm{Cl}\right]$ with thallium hexafluorophosphate in nitrogen-saturated THF gives $\left[\mathrm{Ru}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bipy}\right)\left(\mathrm{PPh}_{3}\right)_{2}(-\mathrm{C} \equiv \mathrm{CBu}-t)(\mathrm{N} \equiv \mathrm{N})\right]\left(\mathrm{PF}_{6}\right)$. Another complex is $\left[\mathrm{Ru}(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})\left(-\mathrm{C} \equiv \mathrm{C}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Cl}\right)\right]\left(\mathrm{PF}_{6}\right)(97 \mathrm{OM} 3482)$.
$\left[\mathrm{Ru}(2-\mathrm{Ar}-\mathrm{py})\left(\mathrm{AN}_{4}\right]\left(\mathrm{PF}_{6}\right) \quad(\mathrm{Ar}=\mathrm{Ph}, p-\mathrm{Tol})\right.$ react with 1,10 -phenanthroline in acetonitrile and 2,2'-bipyridine in methylene chloride to yield $[\mathrm{Ru}(2-$ $\left.\operatorname{Arpy})(\mathrm{AN})_{2}(\mathrm{LL})\right]\left(\mathrm{PF}_{6}\right)(\mathrm{Ar}=\mathrm{Ph}, p-\mathrm{Tol} ; \mathrm{LL}=\mathrm{bpy}$, phen $)(05 \mathrm{IC} 1626,06 \mathrm{ICA} 883)$.

B. Bis-polypyridine Complexes

$\left[\mathrm{Fe}(\mathrm{acac})_{3}\right]$ reacts with $\mathrm{AlEt}_{2}(\mathrm{OEt})$ and $2,2^{\prime}$-bipyridine to yield the ethyl complex [FeEt_{2} (bpy) $)_{2}$ (65JA4652, 66JA5198, 66JOM(6)572, 99JCS(D)1027). [Fe(acac) $)_{3}$] with $\mathrm{AlMe}_{2}(\mathrm{OMe})$ in ether gives $\left[\mathrm{FeMe}_{2}(\mathrm{bpy})_{2}\right] .\left[\mathrm{FeCl}_{2}(\mathrm{bpy})_{2}\right]$ reacts with methyl lithium in toluene to yield $\left[\mathrm{FeMe}_{2}(\mathrm{bpy})_{2}\right](02 \mathrm{JOM}(662) 137)$. $\left[\mathrm{FeEt}_{2}(\mathrm{bpy})_{2}\right]$ decomposes with the loss of 2,2'-bipyridine, ethane, and ethylene (68JA1878, 72BCJ1104, 72BCJ1111). $\left[\mathrm{FeR}_{2}(\mathrm{bpy})_{2}\right](\mathrm{R}=\mathrm{Me}, \mathrm{Et})$ reacts with carbon monoxide in THF to yield ketone $\mathrm{R}_{2} \mathrm{CO}$ and diketone $\mathrm{RC}(\mathrm{O}) \mathrm{C}(\mathrm{O}) \mathrm{R}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, n-\mathrm{Pr})$ (82OM155). In toluene, the products are $\left[\mathrm{Fe}(\mathrm{bpy})(\mathrm{CO})_{3}\right], \mathrm{R}_{2} \mathrm{CO} \quad(\mathrm{R}=\mathrm{Me}, \mathrm{Et})$, and free $2,2^{\prime}$-bipyridine $(02 \mathrm{JOM}(662) 137)$. Homoleptic complexes $\left[\mathrm{Fe}(\mathrm{LL})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathrm{LL}=\mathrm{bpy}$, phen) react with isocyanides to yield $\left[\mathrm{Fe}(\mathrm{CNR})_{2}\left(\mathrm{LL}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathrm{LL}=\mathrm{bpy}\right.$, phen; $\mathrm{R}=\mathrm{Me}, i-\mathrm{Pr}$, $t-\mathrm{Bu}, \mathrm{Cy})(76 \mathrm{JCS}(\mathrm{D}) 12)$. Reaction of the products $(\mathrm{LL}=\mathrm{bpy}, \mathrm{R}=\mathrm{Me}, i-\mathrm{Pr} ; \mathrm{L}=\mathrm{phen}$, $\mathrm{R}=i-\mathrm{Pr}$) with methylamine gives dicarbene complexes illustrated as $\mathbf{2 1}$ for the case $\mathrm{LL}=$ bpy and $\mathrm{R}=\mathrm{Me}$.

21

2,2'-Bipyridine on refluxing with RuCl_{3} in dimethylformamide gives $[\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}(\mathrm{b}-$ py $\left.)_{2}\right] \mathrm{Cl}(80 \mathrm{CC} 1213,82 \mathrm{JCS}(\mathrm{D}) 1143)$. Photolysis of this complex produces carbon monoxide (80CC750). Thermolysis gives carbon monoxide and further photolysis
releases hydrogen. $\left[\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}(\mathrm{LL})_{2}\right] \mathrm{Cl}(\mathrm{LL}=$ bpy, phen) reveal catalytic activity in the water-gas shift reaction (82JCS(D)1885).

A range of complexes $\left[\mathrm{M}(\mathrm{LL})_{2}(\mathrm{CO}) \mathrm{R}\right]\left(\mathrm{PF}_{6}\right)\left(\mathrm{M}=\mathrm{Ru}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph} ; \mathrm{Os} ; \mathrm{R}=\mathrm{H}, \mathrm{Me}\right.$, $\mathrm{Ph} ; \mathrm{LL}=\mathrm{bpy}$, phen) is known (84OM1241). [Os(bpy) 2 (CO)(OTf)](OTf) (84OM1241) has interesting photochemical properties (86JPC2182, 88IC1787, 89JPC4511). With methylene chloride in the presence of dimethylaminopyridine, the product is $\left[\mathrm{Os}(\mathrm{bpy})_{2}(\mathrm{CO}) \mathrm{Cl}\right](\mathrm{OTf})$ (05ICA196). With bromoethane and iodomethane, [Os(b$\left.\mathrm{py})_{2}(\mathrm{CO}) \mathrm{X}\right](\mathrm{OTf})(\mathrm{X}=\mathrm{Br}, \mathrm{I})$ are formed. $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO}) \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right)(86 \mathrm{OM} 724)$ on refluxing with sodium nitrite in water-methanol solution gives $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})\right.$ $\left.\left(\mathrm{NO}_{2}\right)\right]\left(\mathrm{PF}_{6}\right)(92 \mathrm{IC1971})$.
$\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ and $\left[\mathrm{Ru}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\right)_{2}(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ were also prepared (86JCS(D)253, $94 \mathrm{ICA}(226) 247)$. $\left[\mathrm{Ru}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\right)(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ reacts with $2,2^{\prime}$-bipyridine and ammonium hexafluorophosphate to yield the mixed-ligand complex $\left[\mathrm{Ru}(\right.$ bpy $\left.)\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bipy}\right)(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \quad(90 \mathrm{JCS}(\mathrm{D}) 2155)$. Refluxing $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ in formic acid followed by the reaction with 1,10-phenanthroline and further with ammonium hexafluorophosphate gives $\left[\mathrm{Ru}(\mathrm{phen})_{2}(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$. Reaction of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$, 1,10-phenanthroline, and lithium chloride in dimethylformamide (DMF), and further dissolution of the crude product in formic acid in the presence of ammonium hexafluorophosphate gives $\left[\mathrm{Ru}(\mathrm{phen})_{2}(\mathrm{CO}) \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right)$. $\quad\left[\mathrm{Ru}(\mathrm{bpy})_{2}\right.$ $\left.(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ reacts with excess NaBH_{4} to yield $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})(\mathrm{CHO})\right]\left(\mathrm{PF}_{6}\right)$ (95IC5399). Thermal decomposition of the product in methanol leads to $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})(\mathrm{COOMe})\right]\left(\mathrm{PF}_{6}\right)$. Thermolysis in acetonitrile saturated with carbon dioxide produces HCOO^{-}and $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$.
$\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})(\mathrm{Me})\right]^{+}$can be prepared through $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\mathrm{OH}_{2}\right)_{2}\right](90 \mathrm{JOM}(388)$ $\mathrm{C} 13)$. The preparation of $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2},\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})_{3}\right]$ is described in $(78 \mathrm{IC} 2211) .\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})_{3}\right]$ with HPF_{6} in the presence of aqueous sodium hydroxide and further with trimethylsilyl acetylene gives $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})\right.$ $(\mathrm{Me})]\left(\mathrm{PF}_{6}\right)$ (01JOM(619)299). $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ reacts with sodium tetrahydroborate in methanol-acetone to yield $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})(\mathrm{C}(\mathrm{O}) \mathrm{H}]\left(\mathrm{PF}_{6}\right)\right.$. $\quad[\mathrm{Ru}(\mathrm{b}-$ py $)_{2}(\mathrm{CO})_{3}$] reacts with aqueous propiolic acid and further with potassium hexafluorophosphate to afford $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})(\mathrm{C}(\mathrm{O}) \mathrm{Me})\right]\left(\mathrm{PF}_{6}\right)$. $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO}) \mathrm{X}\right]^{+}$ $\left(\mathrm{X}=\mathrm{CO}_{2}, \mathrm{COOH}, \mathrm{CO}, \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{Me}, \mathrm{COOMe}, \mathrm{COMe}\right)$ are possible intermediates in the reduction of carbon dioxide (950M5099).

Reaction of $\left[\left\{\mathrm{Ru}(\mathrm{bpy})(\mathrm{CO}) \mathrm{Cl}_{2}\right\}_{2}\right]$ with 1,10 -phenanthroline or $[\{\mathrm{Ru}(\mathrm{phen})$ $\left.(\mathrm{CO}) \mathrm{Cl}_{2}\right\}_{2}$] with $2,2^{\prime}$-bipyridine gives $[\mathrm{Ru}(\text { bpy })(\text { phen })(\mathrm{CO}) \mathrm{Cl}]^{+}(04 \mathrm{IC} 2818)$.

Bubbling carbon monoxide through the ethylene glycol suspensions of cis$\left[(\mathrm{LL})_{2} \mathrm{OsCl}_{2} \cdot x \mathrm{H}_{2} \mathrm{O}\right]\left(\mathrm{LL}=\mathrm{bpy}, 4,4^{\prime}-\mathrm{X}_{2}-5,5^{\prime}-\mathrm{Y}_{2}\right.$ bpy, $\mathrm{X}=\mathrm{OMe}, \mathrm{Me}, \mathrm{Cl}, \mathrm{Y}=\mathrm{H} ; \mathrm{X}=\mathrm{H}$, $\mathrm{Y}=\mathrm{Me} ; \mathrm{X}=\mathrm{Y}=\mathrm{Me}$) in the presence of ammonium hexafluorophosphate gives cis-[Os(LL) $\left.)_{2}(\mathrm{CO}) \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right)$ (90IC2792). The complex with $\mathrm{X}=\mathrm{NMe}_{2}$ and $\mathrm{Y}=\mathrm{H}$ was also prepared in an indirect procedure. 4,4'-Distyryl-2,2'-bipyridine (LL), $\left[(\mathrm{LL})_{2} \mathrm{MCl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=\mathrm{Ru}, \mathrm{Os})$ on refluxing in formic acid and further on addition of ammonium hexafluorophosphate give $\left[(\mathrm{LL})_{2} \mathrm{M}(\mathrm{CO}) \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right) \quad(\mathrm{M}=\mathrm{Ru}$, Os) (87IC882).

Mixed-ligand species that combine two different bidentate ligands or a combination of a bidentate and a tridentate ligand are of interest (89IC3309, 90JCC119, 92IC3004, 95IC6145, 99IC2267). Thus, the synthesis of the series of
complexes $[\mathrm{Ru}(\mathrm{CO})(\mathrm{LL})($ trpy $)]\left(\mathrm{PF}_{6}\right)_{2}\left(\mathrm{LL}=\right.$ bpy, $4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}$, phen, $4-(2-\mathrm{i}-\mathrm{Bu})$ bpy $)$ illustrated as 22 for the 2, 2'-bipyridine complex starts with $\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right.$] according to (94JCS(D)3659). They react with triflic acid in dichloromethane to yield $\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{CO})_{2}(\mathrm{OTf})_{2}\right](98 \mathrm{JCS}(\mathrm{D}) 2293)$. Further refluxing with $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine in ethanol gives species with a bidentately coordinated trpy-ligand obtained as a mixture of two isomers, $\mathbf{2 3}$ and $\mathbf{2 4}$ (the 2,2'-bipyridine complex is illustrated). Finally, addition of $\mathrm{Me}_{3} \mathrm{NO}$ and ammonium hexafluorophosphate produces the series of complexes 22. The reaction of $\left[\mathrm{Ru}(\mathrm{bpy})\left(\eta^{2}\right.\right.$-trpy $\left.)(\mathrm{CO})(\mathrm{CHO})\right]\left(\mathrm{PF}_{6}\right)(01 \mathrm{OM} 4956)$ with triflic acid in methanol gives $\left[\mathrm{Ru}(\mathrm{bpy})\left(\eta^{2}\right.\right.$-trpy $\left.)(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{OMe}\right)\right]\left(\mathrm{PF}_{6}\right)(05 \mathrm{OM} 5067)$. The minor product is $\mathbf{2 5}$ (06OM563).

22

23

24

25

The general scheme for the preparation of the heteroleptic ruthenium(II) complexes of composition $\left[\mathrm{Ru}(\mathrm{L})\left(\mathrm{L}^{1}\right)\left(\mathrm{L}^{2}\right)\right]^{2+}$ where $\mathrm{L}, \mathrm{L}^{1}$, and L^{2} are various polypyridine ligands is based on $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right\}_{n}\right]$ (80TMC317, 94IC3863, 02JCS(D)3820). The first step involves transformation of $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right\}_{n}\right]$ to $\left[\mathrm{Ru}(\mathrm{L})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ and the second a conversion of the product to $\left[\mathrm{Ru}(\mathrm{L})(\mathrm{CO})_{2}(\mathrm{OTf})_{2}\right]$ with further substitution of the triflate groups to yield $\left[\mathrm{Ru}(\mathrm{L})\left(\mathrm{L}^{1}\right)(\mathrm{CO})_{2}\right]^{2+}$. The last step is decarbonylation of the product in the presence of $\mathrm{Me}_{3} \mathrm{NO}$ and the third polypyridine ligand to afford the heteroleptic complex containing three polypyridine ligands. An alternate route may include, after the formation of $\left[\mathrm{Ru}(\mathrm{L})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]$ and then a photochemical transformation of the latter to the dinuclear complex $\left[\left\{\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}_{2}\right\}_{2}\right]$, reaction with the ligand L^{1} in the presence of aqueous potassium hexafluorophosphate which gives $\left[\mathrm{Ru}(\mathrm{L})\left(\mathrm{L}^{1}\right)(\mathrm{CO}) \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right)$, this is followed by
decarbonylation in the presence of the third polypyridine ligand and $\mathrm{Me}_{3} \mathrm{NO}$ to produce the desired heteroleptic ruthenium(II) complex of composition $\left[\mathrm{Ru}(\mathrm{L})\left(\mathrm{L}^{1}\right)\left(\mathrm{L}^{2}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}(04 \mathrm{JCS}(\mathrm{D}) 1766)$. The range of polypyridine ligands includes 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dimethyl-2,2'-bipyridine, 1,10 -phenanthroline, 4,7-dimethyl-1,10-phenanthroline, 5,6-diemthyl-1,10-phenanthroline, di(2-pyridyl)amine, di(2-pyridyl)ketone, and 2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine in various combinations, with the requirement that all three ligands in the coordination sphere of the ruthenium(II) site are different. The products are widely applied for devising supramolecular systems (06CCR1254).
$\left[\mathrm{Ru}(\operatorname{trpy})(\mathrm{CO})_{2} \mathrm{Cl}\right]\left(\mathrm{PF}_{6}\right)$ reacts with silver tetrafluoroborate in acetone, then with acetonitrile followed by $\mathrm{BF}_{4} / \mathrm{PF}_{6}$ anion exchange to yield $[\mathrm{Ru}($ trpy $)$ $\left.(\mathrm{CO})_{2}(\mathrm{AN})\right]\left(\mathrm{PF}_{6}\right)_{2} \quad(01 \mathrm{OM} 4956)$. The product with $2,2^{\prime}$-bipyridine and 4,4'-dimethyl-2, 2^{\prime}-bipyridine (LL) gives the mixed-ligand complex $\left[\mathrm{Ru}(\mathrm{LL})\left(\eta^{2}\right.\right.$-trpy $)$ $\left.(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \quad\left(\mathrm{LL}=\mathrm{bpy}, 4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\right)$. The products when treated with sodium tetrahydroborate in methanol give rise to $\left[\mathrm{Ru}(\mathrm{LL})\left(\eta^{2}\right.\right.$-trpy $\left.)(\mathrm{CO})(\mathrm{CHO})\right]\left(\mathrm{PF}_{6}\right)$ ($\mathrm{LL}=\mathrm{bpy}$, 4,4'- $\mathrm{Me}_{2} \mathrm{bpy}$). Bis-1,10-phenanthroline analogs of these (trpy)(LL)compounds are known (980M5178). [$\mathrm{Ru}(\mathrm{LL})\left(\eta^{2}\right.$-trpy $\left.)(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \quad(\mathrm{LL}=$ bpy, $4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}$) in $\mathrm{AN} / \mathrm{H}_{2} \mathrm{O}$ when treated with sodium tetrahydroborate in diglyme afford hydroxymethyl complexes $\left[\mathrm{Ru}(\mathrm{LL})\left(\eta^{2}\right.\right.$-terpy $\left.)(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right]\left(\mathrm{PF}_{6}\right)(\mathrm{LL}=\mathrm{bpy}$, 4,4'-Me ${ }_{2}$ bipy).

Aqua-complex $\left[\mathrm{Ru}\left(\eta^{3}\right.\right.$-trpy $)\left(\eta^{2}\right.$-bpy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ reacts with acetylenes $\mathrm{HC} \equiv \mathrm{CR}$ $\left(\mathrm{R}=t-\mathrm{Bu}, \mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{X}-4 ; \mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Me}, \mathrm{OMe} ; \mathrm{R}=\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}\right)_{n} \mathrm{Ph} ; n=1,2,\right)$ in the presence of triethylamine in acetone to yield 26 (04OM2263). Products $26(\mathrm{R}=t$ - Bu , $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4\right)$ when treated by triflic acid in methanol yielded the carbene complexes 27. Complex $\left[\mathrm{Ru}(\mathrm{bpy})_{2}\left(\eta^{1}\right.\right.$-naphthyridine) $\left.(\mathrm{CO})\right]\left(\mathrm{BF}_{4}\right)_{2}$ is known (05AGE2229).

C. Cyclometalation

Refluxing of $\left[\mathrm{Ru}\left(\eta^{3}\right.\right.$-trpy $\left.) \mathrm{Cl}_{3}\right]$ with $N^{\prime \prime}$-methyl-4"-methylthio- $2,2^{\prime}: 6^{\prime}, 4^{\prime \prime}$-terpyridinium hexafluorophosphate or $N^{\prime \prime}$-methyl-4'-methylthio-2, $2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-terpyridinium hexafluorophosphate in ethanol gives 28 and 29, respectively, with cyclometalated terpyridinium ligand (03OM970). Another representative is $\left[\mathrm{Ru}\left(\eta^{3}(N, N, C)\right.\right.$ -N-methyl-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridinium) $\left(\eta^{3}\right.$-terpyridine)] ($96 \mathrm{JCS}(\mathrm{D}) 873$).

D. Dinuclear Complexes

Photolysis of $\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{LL}=\right.$ bpy, $4,4^{\prime}-\mathrm{Me}_{2}$ bpy, phen) leads to decarbonylation and formation of the dinuclear complexes $\left[\mathrm{Ru}(\mathrm{LL})(\mathrm{CO}) \mathrm{Cl}(\mu-\mathrm{Cl})_{2} \mathrm{Ru}(\mathrm{LL}\right.$ $(\mathrm{CO}) \mathrm{Cl}]$ not containing the ruthenium-ruthenium bond (99JCS(D)275). $\left[\mathrm{Ru}(\mathrm{CO})_{2}\left(\mathrm{AN}_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}\right.$ with excess 2,2'-bipyridine in acetonitrile gives the binuclear complex 30 (01 OM 1668) containing the ruthenium-ruthenium bond. Under steadystate irradiation such bridges may be cleaved in acetonitrile or methanol (95JPP99).

Reaction of the terdentately coordinated complex $\left[\mathrm{Ru}(\operatorname{trpy})(\mathrm{CO})_{2} \mathrm{Cl}^{2}\left(\mathrm{PF}_{6}\right)\right.$ considered above with sodium carbonate in acetonitrile gives the bimetallic $\mathrm{CO}_{2^{-}}$ bridged dicationic 31 (97OM4421). On bubbling carbon monoxide into a methylene chloride solution, the ligand-substitution product $\left[(\operatorname{trpy})_{2}(\mathrm{OC}) \mathrm{Ru}\left(\mu-\mathrm{CO}_{2}\right) \mathrm{Ru}(\operatorname{trpy})_{2}\right.$ $(\mathrm{CO})]\left(\mathrm{PF}_{6}\right)_{2}$ resulted. Similar complex is $\left[(\mathrm{bpy})_{2}(\mathrm{OC}) \mathrm{Ru}\left(\mu-\mathrm{CO}_{2}\right) \mathrm{Ru}(\text { bpy })_{2}\right.$ (CO)] $\left(\mathrm{PF}_{6}\right)_{2}$ (96CRV2063, 96JA11984). Reaction of $\left[\mathrm{Ru}(\operatorname{trpy})(\mathrm{CO})_{2} \mathrm{Cl}^{2}\left(\mathrm{PF}_{6}\right)\right.$ and $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})(\mathrm{COOH})\right]\left(\mathrm{PF}_{6}\right) \quad(96 \mathrm{CL} 27)$ in acetonitrile gives the mixed-ligand product $\left[(\mathrm{bpy})_{2}(\mathrm{OC}) \mathrm{Ru}\left(\mu-\mathrm{CO}_{2}\right) \mathrm{Ru}(\right.$ trpy $\left.)(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}(97 \mathrm{OM} 4421)$. $\left[\mathrm{Fe}_{2}(\mathrm{bpy})(\mathrm{CO})_{7}\right]$ (74JA1233) and $\left[\mathrm{Fe}_{2}(\mathrm{bpy})\left(\mathrm{PBu}-n_{3}\right)(\mathrm{CO})_{7}\right]$ are known (87OM1665). 2,2'-Bipyridine reacts with $\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{ClRu}(\mu-\mathrm{Cl}) \mathrm{RuCl}\left(\eta^{5}-\mathrm{Cp}^{*}\right)\right]$ in the presence of sodium hexafluorophosphate to give the dinuclear product 32 (06ICA978).

32

2,2'-Bipyridine, 1,10-phenanthroline, 4,7-dimethyl-1,10-phenanthroline, 5,6-dimethyl-1,10-phenanthroline, and 4,4'-dimethyl-2,2'-bipyridine (LL) react with $\left[\left\{\mathrm{Ru}_{2}(\mathrm{CO})_{4}(\mathrm{MeCOO})_{2}\right\}_{n}\right]$ in ethanol and then with sodium tetraphenylborate to yield dinuclear complexes $\quad\left[\mathrm{Ru}_{2}(\mathrm{CO})_{4}(\mathrm{MeCOO})(\mathrm{LL})_{2}\right]\left(\mathrm{BPh}_{4}\right) \quad(88 \mathrm{AX}(\mathrm{C}) 1722$, 93JOM(463)187, 96OM2979). Another approach is based on preliminary conversion of $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{2}(\mathrm{MeCOO})\right\}_{n}\right]$ to $\left[\mathrm{Ru}(\mathrm{CO})_{2}(\mathrm{MeCOO})(\mathrm{AN})\right]_{2}(88 \mathrm{OM} 1663)$. In the absence of NaBPh_{4}, the acetate complexes $\left[\mathrm{Ru}_{2}(\mathrm{CO})_{4}(\mathrm{MeCOO})(\mathrm{LL})_{2}\right](\mathrm{MeCOO})$ were prepared. The structure of the products is shown as $\mathbf{3 3}$, using the $2,2^{\prime}$-bipyridine acetato complex as an example. An identical complex with $1,1^{\prime}$-biisoquinoline can be prepared similarly ($03 \mathrm{JOM}(667) 197$). Such complexes where $2,2^{\prime}$-bipyridine and $1,10-$ phenanthroline are ligands catalyze carbonylation and hydrogenation of organic compounds (91JMOC(64)257, 97JOM(547)35, 03ICA(351)225). Another synthetic approach involves the reaction of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with a mixture $\mathrm{HCOOH} /(\mathrm{HCHO})_{2}$ on heating that yields $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right\}_{n}\right]$. 4, 4'-Dimethyl-2,2'-bipyridine reacts with the mixture of this ruthenium(II) precursor and sodium acetate to yield the dinuclear complex 33, $\left[\mathrm{Ru}_{2}(\mathrm{MeCOO})_{2}(\mathrm{CO})_{4}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\right)_{2}\right]^{+}$isolated as a hexafluorophosphate salt (04IC683). In the case of 5,5'-dimethylpyridine and 5,6-dimethyl-1,10phenanthroline (LL), however, a mixture of the mononuclear ruthenium(II) species, $\left[\mathrm{Ru}(\mathrm{MeCOO})_{2}(\mathrm{CO})_{2}(\mathrm{LL})\right]$ and cationic dinuclear product of type 33 resulted. $\left[\mathrm{Ru}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{OOCR})_{2}(\mathrm{py})_{2}\right](\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ with $2,2^{\prime}$-bipyridine and 1,10 -phenanthroline (LL) yield $\left[(\mathrm{LL})_{2} \mathrm{Ru}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})_{2}(\mu-\mathrm{OOCR})\right]$. Similarly, $\quad\left[\mathrm{Ru}_{2}(\mathrm{CO})_{4}(\mu\right.$, $\left.\left.\eta^{2}-\mathrm{OOCFc}\right)_{2}(\mathrm{py})_{2}\right]$ with $2,2^{\prime}$-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 1,10 -phenanthroline, 5 -nitro-1,10-phenanthroline, or 5 -amino-1,10-phenanthroline (LL) give products similar to $33,\left[(\mathrm{LL})_{2} \mathrm{Ru}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})_{2}(\mu-\mathrm{OOCFc})\right]^{+}$obtained as hexafluorophosphates and tetrafluoroborates (07JOM755).

33

2-(2-Hetaryl)-1,8-naphthyridine (hetaryl=furyl, thiazolyl, pyridyl) with $\left[\mathrm{Ru}_{2}(\mathrm{CO})_{4}(\mathrm{AN})_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}$ give products exemplified by the 2-thiazolyl derivative 34 (06IC4007). Similar reaction of 2-i-propyl-1,8-naphthyridine (LL) in the presence of n - $\mathrm{Bu}_{4} \mathrm{NOTf}$ gives $\left[\mathrm{Ru}_{2}(\mathrm{LL})_{2}(\mathrm{CO})_{4}(\mathrm{OTf})_{2}\right]$ (06JOM4779).

34

E. Polynuclear Complexes and Clusters

Polynuclear ruthenium complexes are interesting because of their photoluminescent and redox properties (96CRV759). Cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{bpy})\right]$ (97JCS(D)2511) has interesting photochemical (95IC6312, 98IC661, 99JOM(572)271, 99OM4380) and redox $(99 \mathrm{JOM}(573) 121)$ properties, and the proximity of the metal-to-ligand charge transfer (MLCT) excited state (98CCR(171)93, 98CCR(177)127) as claimed by theoretical computations (01EJI223). $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(4,4^{\prime}-\mathrm{Me}_{2} \mathrm{bpy}\right)\right]$ is known (02ICA(327)126).

On refluxing in hexane (85CC1348) or cyclohexane (86JOM(314)311), 2, 2'bipyridine and $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ at earlier stages yield cluster 35 (85JOM(294)123). A further reaction route involves consecutive substitution of the carbon monoxide ligands by $2,2^{\prime}$-bipyridine molecules, and the final product can be possibly 36. 2, 2'Bipyridine with $\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}\right]$ gives the substitution product $\left[\mathrm{Ru}_{4}(\mu-\right.$ $\mathrm{H})_{4}(\mathrm{CO})_{10}($ bpy $\left.)\right]$, and the process goes through the stage of the $\eta^{1}(N)$-coordinated 2, 2'-bipyridine $\quad\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\left(\eta^{1}\right.\right.$-bpy $\left.)\right] \quad$ (98JCS(D)2625). 2, 2^{\prime}-Bipyridine,

4,4'-diphenyl-2,2'-bipyridine, 1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10phenanthroline, and dipyrido[3,2-a:2 $\left.2^{\prime}, 3^{\prime}-\mathrm{c}\right]$ phenazine react with $\left[\mathrm{Os}_{4}(\mu\right.$ $\left.\mathrm{H})_{4}(\mathrm{CO})_{11}(\mathrm{AN})\right]$ to yield disubstitution products of type 37 illustrated for the $2,2^{\prime}$ bipyridine complex (99JOM(573)189).

37
Cluster $\left[\mathrm{Ru} \mathrm{u}_{5} \mathrm{C}(\mathrm{CO})_{15}\right]$ reacts with $2,2^{\prime}$-bipyridine and 1,10 -phenanthroline in the presence of $\mathrm{Me}_{3} \mathrm{NO}$ to yield the major monosubstitution products 38 and the orthometalated complexes 39 in minor amount (both structures illustrate the 2,2'bipyridine complexes) (97JCS(D)2705).

38

39

6,6'-Dimethyl-2,2'-bipyridine reacts with $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ in THF under reflux to yield the product of $\mathrm{C}-\mathrm{H}$ activation of one of the methyl groups $\mathbf{4 0}$ (04 AGE 3464). Product 40 further reacts with $\left[R u_{3}(C O)_{12}\right]$ under reflux in chlorobenzene to afford more complicated clusters, $\left[\mathrm{Ru}_{6}\left(\mu_{3}-\mathrm{H}\right)\left(\mu_{5}-\mathrm{CbipyMe}\right)(\mu-\mathrm{CO})_{3}(\mathrm{CO})_{13}\right]$, a hexanuclear cluster with a carbyne-type carbon atom originating from one of the methyl groups of the polypyridine ligand, $\left[\mathrm{Ru}_{7}\left(\mu_{3}-\mathrm{H}\right)\left(\mu_{5}-\mathrm{CbipyMe}\right)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{16}\right]$, a heptanuclear cluster
with a carbyne-type carbon atom, and $\left[\mathrm{Ru}_{5}(\mu-\mathrm{H})\left(\mu_{5}-\mathrm{C}\right)(\mu\right.$-bpyMe $\left.)(\mathrm{CO})_{13}\right]$, a pentanuclear where the carbide ligand is present and arises from one of the methyl groups of the starting ligand. Monomethyl-2,2'-bipyridine ligand constitutes another bridging ligand in this cluster.

40

F. $4,4^{\prime}$-Bipyridine Complexes

4, 4^{\prime}-Bipyridine reacts with $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{3} \mathrm{Cl}_{2}\right\}_{2}\right]$ in ethanol to yield the binuclear product $41(02 \mathrm{JOM}(655) 31)$. 2,4'-Bipyridine under the same conditions forms the mononuclear complex $42(\mathrm{X}=\mathrm{Cl})$ with the monodentate coordination of the ligand, which on ligand exchange with potassium iodide gives $42(\mathrm{X}=\mathrm{I})$.

Complex 43 reacts with 4, 4^{\prime}-bipyridine to yield 44 with monodentate coordination of $4,4^{\prime}$-bipyridine ligand (99IC136). Further interaction of $\mathbf{4 3}$ and $\mathbf{4 4}$ gives $\mathbf{4 5}$ where 4,4'-bipyridine fulfills its bridging role. Reaction of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{O}\right)(\mu-\mathrm{MeCOO})_{6}\right.$ $\left.(\mathrm{CO})(\mathrm{L})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{L}=\right.$ py, $4-\mathrm{NMe}_{2}$ py, $\left.4-\mathrm{CNpy}\right)$ with $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{O}\right)(\mu-\mathrm{MeCOO})_{6}(\mathrm{CO})(\mathrm{L})\right.$ $\left(\eta^{1}-4,4^{\prime}\right.$-bipy $\left.)\right]$ gives clusters with the bridging $4,4^{\prime}$-bipyridine ligand, $\left[R u_{3}\left(\mu_{3}-\mathrm{O}\right)\right.$ $\left.(\mu-\mathrm{MeCOO})_{6}(\mathrm{CO})(\mathrm{L})\left(\mu-4,4^{\prime}-\mathrm{bpy}\right) \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{O}\right)(\mu-\mathrm{MeCOO})_{6}(\mathrm{CO})(\mathrm{L})\right]$ (99JA4625).

4,4'-Bipyridine oxidatively adds to $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{AN})_{2}\right]$ to yield 46 and 47 (02JOM(655)39). Complex 46 reacts with $\left[\mathrm{W}(\mathrm{CO})_{5}(\mathrm{THF})\right]$ in THF to yield 48 and with $\left[\mathrm{ReCl}(\mathrm{CO})_{5}\right]$ in benzene to yield 49 .

46
47

4, 4^{\prime}-Bipyridine reacts with $\left[\left\{\left(\eta^{6} \text {-cymene }\right) \mathrm{Ru}\right\}_{2}(\mu-\mathrm{OH})_{3}\right]\left(\mathrm{BF}_{4}\right)$ to yield the tetranuclear complex 50 (06ICA978). The dinuclear complex with oxalate and $4,4^{\prime}$-bipyridine bridges has the composition $\left[\left\{\left(\eta^{6} \text {-cymene }\right) \mathrm{Ru}\right\}_{2}\left(\mu-\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(4,4^{\prime}\right.\right.$ bpy) $]_{2}(\mathrm{OTf})_{4}(97 \mathrm{JCS}(\mathrm{D}) 4345)$.

50
2,2'-Bis(diphenylphosphino)-4,4'-bipyridine (LL) with $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$ forms $\left[\left\{\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}\right\}(\mathrm{LL})\right]$ and with excess of $\left[\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{17}\right]$ it provides $\left[\left\{\mathrm{Ru}_{6} \mathrm{C}\right.\right.$ $\left.\left.(\mathrm{CO})_{15}\right\}(\mu-\mathrm{LL})\left\{\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}\right\}\right]$ (05OM3516). Coordination involves the pyridine nitrogen atom and phosphine phosphorus atom. [$\left.\left\{\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}\right\}(\mathrm{LL})\right]$ with $\left[\mathrm{Rh}_{6}(\mathrm{CO})_{15}(\mathrm{AN})\right]$ gives the heterodinuclear product $\left[\left\{\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}\right\}(\mu-\mathrm{LL})\right.$ $\left.\left\{\mathrm{Rh}_{6}(\mathrm{CO})_{14}\right\}\right]$. With $\left[\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}\right.$] the heterotetranuclear 51 can be prepared. $\left[\operatorname{Ir}_{4}(\mathrm{CO})_{11} \mathrm{Br}\right]^{-}$in this type of reaction gives heterodinuclear species $\left[\left\{\mathrm{Ru}_{6} \mathrm{C}\right.\right.$ $\left.\left.(\mathrm{CO})_{15}\right\}(\mu-\mathrm{LL})\left\{\mathrm{Ir}_{4}(\mathrm{CO})_{10}\right\}\right]$. If the ruthenium complex $\left[\left\{\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}\right\}(\mathrm{LL})\right]$ is in excess, the resulting cluster is $\left[\left\{\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}\right\}(\mu-\mathrm{LL}) \quad\left\{\mathrm{Ir}_{4}(\mathrm{CO})_{10}\right\}(\mu-\mathrm{LL})\right.$ $\left\{\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}\right\}$], which can be decarbonylated on refluxing. The decarbonylation product may further react with $\left[\left\{\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}\right\}(\mathrm{LL})\right]$ to yield $\left[\left\{\mathrm{Ru}_{6} \mathrm{C}(\mathrm{CO})_{15}(\mathrm{~L}\right.\right.$ $\mathrm{L})\}_{3}\left\{\mathrm{Ir}_{4}(\mathrm{CO})_{8}\right\}$].

51

G. Polypyridylphosphines

Refluxing the polymeric carboxylate precursor $\left[\left\{\mathrm{Ru}_{2}\left(\mu, \eta^{2}-\mathrm{OC}(\mathrm{R}) \mathrm{O}\right)_{2}(\mathrm{CO})_{4}\right\}_{n}\right]$ or $\left[\left\{\mathrm{Ru}_{2}\left(\mu, \eta^{2}-\mathrm{OC}(\mathrm{R}) \mathrm{O}\right)_{2}(\mathrm{CO})_{4}(\mathrm{AN})_{2}\right\}_{n}\right](\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Et})$ with 6-diphenylphosphino-$2,2^{\prime}$-bipyridine in ethanol or toluene gives 52 (97JCS(D)2843). If the reaction is run
under reflux in toluene in the presence of ammonium hexafluorophosphate, the product is 53, where the ligand fulfills its P, N, N-chelate function.

53

Bipyridylphosphines combine chelating properties of the bipyridine unit and coordinating properties of the $\mathrm{P}(\mathrm{IIII})$ center (85 NJC 225 , 89TL463). Three coordination modes may be envisaged for 6-(2-diphenylphosphinoethyl)-2,2'-bipyridine (95CC2033). In mode 54, the ligand fulfills monodentate P-coordination due to the phosphine counterpart. In mode 55, the ligand functions as a bridge between two metal centers. Mode 56 illustrates the formation of fully chelated P, N, N-complex. Reaction of this ligand with an equimolar amount of $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right\}_{n}\right]$ in methanol in the presence of triethylamine gives $56\left(\mathrm{ML}_{n}=\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}_{2}\right)(97 \mathrm{JCS}(\mathrm{D}) 3777)$. If half of the amount of $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right\}_{n}\right]$ is applied in the absence of triethylamine, the product is the P, P-coordinated 57. This complex has ligand properties and on interaction with $\left[\mathrm{Cu}(\mathrm{AN})_{4}\right]\left(\mathrm{ClO}_{4}\right)$ forms the macrocyclic product 58 .

54

55

56

H. Catalytic Aspects

Ruthenium polypyridine complexes have remarkable redox properties and MLCT energies ($88 \mathrm{CCR}(84) 85$). Mononuclear ruthenium polypyridine complexes catalyze electrochemical (87CL597, 87OM901, 91IC86, 92OM3172, 93CIC1, 94JOM(476)7, 95JOM(498)187, 98CCR(168)233) and photochemical (87CL1035, 90JOM(382)157, 92MI1, 93MI1, 95IC1830, 95JPC12797, 96IC303, 96NJC759, 98MI1) reduction of carbon monoxide as well as the water-gas shift reaction (79JA5922, 82AGE628, 82IC1704, 85JA585, 86IC4140, 86OM724, 93JOM(457)121, 98JMOC(136)127, 99AC157), and photoredox water splitting (82CCR(46)159). They serve as sensitizers for photovoltatic solar cells (95CCR(95)49). Complex [Os(CO)Cl(phen) $\left.)_{2}\right]\left(\mathrm{PF}_{6}\right)$ is of interest as a photocatalyst in solar energy conversion schemes (84IC875). One of the catalysts of CO_{2}-reduction is $\left[\mathrm{Ru}(\mathrm{bpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right](94 \mathrm{CC} 189,94 \mathrm{IC} 2961)$. The catalytic system $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]-2,2^{\prime}$-bipyridine is postulated to consist of mononuclear ruthenium units containing one $2,2^{\prime}$-bipyridine molecule ($86 \mathrm{JOM}(314) \mathrm{C} 49$, 91JMOC(64)163, 94JCA(148)722, 94JMOC(91)145). In the electrochemical reduction of $\mathrm{CO}_{2},\left[\mathrm{Ru}(\right.$ bpy $\left.)(\operatorname{trpy})\left(\eta^{1}-(\mathrm{C})-\mathrm{CO}_{2}\right)\right]$ can be readily converted to $[\mathrm{Ru}($ bpy $)$ $(\operatorname{trpy})(\mathrm{CO})]^{2+}$, which is then reduced to $[\mathrm{Ru}(\mathrm{bpy})(\operatorname{trpy})(\mathrm{CHO})]^{+}$and $[\mathrm{Ru}(\mathrm{bpy})(\mathrm{tr}-$ py) $\left.\left(\mathrm{CH}_{2} \mathrm{OH}\right)\right]$ affording the products $\mathrm{HCHO}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{HOOCCHO}$, and HOOC$\mathrm{CH}_{2} \mathrm{OH}$ (93CL955, 94IC3415). The route to the C_{2}-products in the case of $\left[\mathrm{Ru}(\right.$ bpy $)\left(\eta^{3}\right.$-trpy $\left.)(\mathrm{CO})\right]\left(\mathrm{PF}_{6}\right)_{2}$ acting as a catalyst of the electrochemical reduction of carbon dioxide is the generation of $\left[\mathrm{Ru}(\mathrm{bpy})\left(\eta^{2}-\operatorname{trpy}\right)(\mathrm{CO})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ on interaction with CO_{2} (88ADOC139, 00CRV439). $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})\left(\eta^{1}(\mathrm{C})-\mathrm{CO}_{2}\right)\right]$ can be reversibly transformed to $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})_{2}\right]^{2+}$ through the stage of $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})(\mathrm{COOH})\right]^{+}$in aqueous but not organic media (83CL901, 92OM1450, 93IC1508, 96CL27). This compound is amphoteric, which is important in the reversible transformation of carbon monoxide to carbon dioxide (95AIC409, 96TIC145, 98BCJ17). [Ru(bpy) ${ }_{2}$
$(\mathrm{CO})\left(\eta^{1}-\mathrm{C}\left(\mathrm{CO}_{2}\right)\right]$ on protonation forms $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})(\mathrm{C}(\mathrm{O}) \mathrm{OH})\right]^{+}$, the precursor of HCOO^{-}(85CL405, 87OM181, 90IC905, 90JCS(D)2155). Product HCOO^{-}is formed selectively in AN containing dimethylamine hydrochloride or phenol as weak acids (87CC131). Electrochemical reduction of carbon dioxide by $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{qu})\right.$ $(\mathrm{CO})]\left(\mathrm{PF}_{6}\right)_{2}$ using LiBF_{4} as a supporting electrolyte gives $\mathrm{Li}_{2} \mathrm{CO}_{3}$ and CO as the products by the way of reductive disproportionation (85CC1414, 92JCS(D) 1455 , 94IC4723). When $\mathrm{Me}_{4} \mathrm{NBF}_{4}$ is used as a supporting electrolyte in AN/dimethylsulfoxide (DMSO) mixed solvent, a $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2} \mathrm{CO}_{3}$ layer was formed on the electrode, and the products of the reaction are $\mathrm{CO}, \mathrm{HCOO}^{-}, \mathrm{MeCOMe}$, and $\mathrm{MeCOCH}_{2} \mathrm{COO}^{-}$ (950M5093). Acetone is formed as a result of double methylation of carbon monoxide by the $\mathrm{Me}_{4} \mathrm{~N}^{+}$reagent. The ruthenium complex catalyzes further carboxylation of acetone to yield $\mathrm{MeCOCH}_{2} \mathrm{COO}^{-}$and HCOO^{-}. Electrochemical carboxylation of PhCOMe by $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{CO})_{2}\right]^{2+}$ in AN gives $\mathrm{PhCOCH}_{2} \mathrm{COO}^{-}$and HCOO^{-}(88CL2033, 89JA2428). Neutral complex $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{qu})(\mathrm{CO})\right]$ on reaction with methyl iodide produces $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{qu})(\mathrm{COMe})\right]^{+}$(90OM1735, 91JA9524, 93ICA(213)111, 93MI2, 95OM5093). Typically, $\left[\mathrm{Ru}(\mathrm{bpy})_{2}(\mathrm{qu})(\mathrm{CO})\right]^{2+}$ and $[\mathrm{Ru}(\mathrm{b}-$ py $\left.)_{2}(\operatorname{trpy})(\mathrm{CO})\right]^{2+}$ catalyze the formation of CO and CO_{3}^{2-} (85JEAC(189)295, 86EK1196, 89JEAC(260)235, 90CL2047, 96ECA2773, 96ICA(253)7, 97ECA2577). In contrast, the ruthenium(II) naphthyridine complex $\mathbf{5 9}$ on electrochemical reduction forms the metallacyclic species $\mathbf{6 0}$, and this prevents decarbonylation and makes production of acetone selective (95CL891, 99AGE362).

59

60

In the case of $\left[\mathrm{Os}(\mathrm{bpy})_{2}(\mathrm{CO}) \mathrm{H}\right]^{+}$as an electrocatalyst of the reduction of carbon monoxide in AN and in the presence of tetra- n-butylammonium hexafluorophosphate as a supporting electrolyte, the main product is carbon monoxide under anhydrous conditions and formate anion in the presence of water (880M238, 92IC4864). In the catalytic cycle for trans-[Os $\left.(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO}) \mathrm{H}\right]^{+}$reversible protonation to trans-[Os $\left.(\mathrm{bpy})\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})(\mathrm{H})_{2}\right]^{+}$occurs and the product was characterized as the dihydrido cation (87IC1247).

Modification of the electrodes by deposition of polymeric films prepared on the basis of the ruthenium(II) complex $\left[\mathrm{RuCl}_{2}(\mathrm{bpy})(\mathrm{CO})_{2}\right]$, which on electrochemical reduction forms the ruthenium (0) species $\left[\left\{\mathrm{Ru}(\mathrm{bpy})(\mathrm{CO})_{2}\right\}_{n}\right]$, is an achievement in the catalytic reduction of carbon dioxide (93JEAC(350)43, 94CC189, 94IC2961, 94IC4410, 96JCS(D)2581). Electrochemical irreversible one-electron reduction of the isomer 61 of $\left[\mathrm{RuCl}_{2}(\mathrm{bpy})(\mathrm{CO})_{2}\right]$ ends in the isolable ruthenium (I) dimer $\mathbf{6 2}$ and thus polymerization does not occur (96JCS(D)2581). Complex 63 on electrochemical reduction also produces only the dimer $\mathbf{6 4}$, not the desired polymer. Later it was found that in alkaline solution and in the presence of CO as the reducing agent polymerization takes place ($00 \mathrm{CAL} 123,02 \mathrm{ICA}(332) 25$). In contrast, isomer 65 of
$\left[\mathrm{RuCl}_{2}(\mathrm{bpy})(\mathrm{CO})_{2}\right]$ does not stop at the stage of dimer 66, but gradually produces a ruthenium(I)-ruthenium(II) tetramer 67 and then ruthenium(II) polymer 68 as described by X-ray powder diffractometry (02OM4009). The same effects could happen in the preparation of ruthenium(II)-polypyridine catalysts on solid supports (94JMOC $(91) 335,95 \mathrm{JMOC}(102) 79)$. $\left[\left\{\mathrm{Os}(\mathrm{bpy})_{2}(\mathrm{CO})_{2}\right\}_{n}\right]$ can also be prepared by electrochemical methods (01EJI613) from trans(Cl)-[Os(bpy)(CO) $\left.2_{2} \mathrm{Cl}_{2}\right](97 J C S(D) 153)$ prepared from $\left[\left\{\mathrm{Os}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right\}_{n}\right]$ and 2,2'-bipyridine on refluxing in n-propanol. Polymers $\left[\mathrm{M}(\mathrm{bpy})(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]_{n}(\mathrm{M}=\mathrm{Ru}$, Os$)$ are reduced electrochemically to the $\operatorname{metal}(0)$ species $\left[\mathrm{M}(\mathrm{bpy})(\mathrm{CO})_{2}\right]_{n}(01 \mathrm{JEAC}(506) 115,03 \mathrm{ACS} 141,04 \mathrm{IC} 7250)$.

61

63

66

The catalytic system $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right] / 2,2^{\prime}$-bipyridine $/ \mathrm{SiO}_{2}$ is attractive for the watergas shift reaction (90JMOC(59)33, $94 \mathrm{JCA}(148) 722$) and hydroformylation of $1-$ hexene (93JMOC(84)145, 94JCA(148)315). Possibly, one of the surface structures of this catalytic systems is $\mathbf{6 9}$ (96JOM(509)163). However, oligomeric and polymeric formations cannot be excluded.

III. Conclusions

1. Polypyridine complexes of the iron group typically contain chelated $\left(\eta^{2}-\right.$ coordinated) ligands that occur in different variations in the mononuclear complexes with one or two such ligands. Many of the existing complexes are
postulated as active forms in the catalyzed electro- and photochemical reduction of carbon dioxide, water-gas shift, and other reactions. They tend to form dinuclear complexes, and many of them play a significant role in the catalytic reactions. The pyridylphosphine ligand is a versatile ligand combining the $\eta^{2}\left(N_{1}\right.$, N_{1}^{\prime})- and $\eta^{1}(\mathrm{P})$-coordination modes.
2. Organoruthenium and organoosmium compounds of polypyridine ligands offer alternative coordination modes of these ligands. In the cyclometalated complexes the $\eta^{2}\left(N_{1}, C_{2}^{\prime}\right)$ coordination mode occurs. In some clusters the $\eta^{2}\left(N_{1}, C_{2}\right)$ donor function is manifested. The latter becomes possible in clusters of 4,4'-bipyridine ligands, which otherwise play their traditional bridging function.

List of Abbreviations

acac	acetylacetonato
AN	acetonitrile
Ar	aryl
bpy	$2,2^{\prime}$-bipyridine
Bu	butyl
cod	cyclooctadiene-1,4
Cp*	pentamethylcyclopentadienyl
Cy	cyclohexyl
DMF	dimethylformamide
DMSO	dimethylsulfoxide
Et	ethyl
Fc	ferrocenyl
Me	methyl
MLCT	metal-to-ligand charge transfer
nbd	norbornadiene-2,5
OTf	triflate
Ph	phenyl
phen	1,10 -phenanthroline
Pr	propyl
py	pyridine
qu	quinoline
trpy	$2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine
THF	tetrahydrofuran
Tol	tolyl

References

J. Chatt, B. L. Shaw, and A. E. Field, J. Chem. Soc., 3466 (1964).
A. Yamamoto, K. Morifuji, S. Ikeda, T. Saito, Y. Uchida, and A. Misono, J. Am. Chem. Soc., 87, 4652 (1965).

66JA5198
66JCS(A)300
66JOM(6)572
67JCS(A)1238
67JINC133
68JA1878
72BCJ1104
72BCJ1111
74JA1233
74JCS(D) 1640
76JCS(D) 12
78IC2211
78JOM(144)175
79JA5922

80CC750

80 CC 1213
80 IC 860
80JA5543
80JOM(197)357
80TMC317
81ICA(53)L3
82AGE628
82AJC2445
82CB1070
82CCR(46)159
82IC1704
82ICA(64)L75
82ICA(65)L75
82JCS(D) 1143
82JCS(D) 1885
T. Saito, Y. Uchida, A. Misono, A. Yamamoto, K. Morifuji, and S. Ikeda, J. Am. Chem. Soc., 88, 5198 (1966).
S. O. Robinson and G. Wilkinson, J. Chem. Soc., A, 300 (1966).
T. Saito, Y. Uchida, A. Misono, A. Yamamoto, K. Morifuji, and S. Ikeda, J. Organomet. Chem., 6, 572 (1966).
M. I. Bruce and F. G. A. Stone, J. Chem. Soc., Sec. A, 1238 (1967).
J. V. Kingston, J. W. Shamieson, and G. Wilkinson, J. Inorg. Nucl. Chem., 29, 133 (1967).
A. Yamamoto, K. Morifuji, S. Ikeda, T. Saito, Y. Uchida, and A. Misono, J. Am. Chem. Soc., 90, 1878 (1968).
T. Yamamoto, A. Yamamoto, and S. Ikeda, Bull. Chem. Soc. Jpn., 45, 1104 (1972).
T. Yamamoto, A. Yamamoto, and S. Ikeda, Bull. Chem. Soc. Jpn., 45, 1111 (1972).
F. A. Cotton and J. M. Troup, J. Am. Chem. Soc., 96, 1233 (1974).
L. Ruiz-Ramirez and T. A. Stephenson, J. Chem. Soc., Dalton Trans., 1640 (1974).
P. R. Branson, R. A. Cable, M. Green, and M. K. Lloyd, J. Chem. Soc., Dalton Trans., 12 (1976).
E. C. Johnson, B. P. Sullivan, D. J. Salmon, S. A. Adeyemi, and T. J. Meyer, Inorg. Chem., 17, 2211 (1978).
U. Schubert, P. Friedrich, and O. J. Orama, J. Organomet. Chem., 144, 175 (1978).
C. Ungermann, V. Landis, S. A. Moya, H. Cohen, H. Walker, R. G. Pearson, R. G. Rinker, and P. C. Ford, J. Am. Chem. Soc., 101, 5922 (1979).
J. M. Clear, J. M. Kelly, C. M. O’Connel, J. G. Vos, C. J. Cardin, S. R. Costa, and A. J. Edwards, J. Chem. Soc., Chem. Commun., 750 (1980).
D. J. Cole-Hamilton, J. Chem. Soc., Chem. Commun., 1213 (1980).
B. Durham, J. L. Walsh, C. L. Carter, and T. J. Meyer, Inorg. Chem., 19, 860 (1980).
P. K. Ghosh and T. G. Spiro, J. Am. Chem. Soc., 102, 5543 (1980).
M. C. Van Derveer and J. M. Burlitch, J. Organomet. Chem., 197, 357 (1980).
D. S. C. Black, G. B. Deacon, and N. C. Thomas, Transit. Met. Chem., 5, 317 (1980).
R. F. Jones and D. F. Cole-Hamilton, Inorg. Chim. Acta, 53, L3 (1981).
J. M. Kelly and J. G. Vos, Angew. Chem., Int. Ed. Engl., 21, 628 (1982).
D. S. C. Black, G. B. Deacon, and N. C. Thomas, Aust. J. Chem., 35, 2445 (1982).
H. W. Fruhauf and G. Wolmershauser, Chem. Ber., 115, 1070 (1982).
K. Kalyanasundaram, Coord. Chem. Rev., 46, 159 (1982).
D. C. Gross and P. C. Ford, Inorg. Chem., 21, 1704 (1982).
J. M. Kelly, C. M. O'Connell, and J. G. Vos, Inorg. Chim. Acta, 64, L75 (1982).
D. S. C. Black, G. B. Deacon, and N. C. Thomas, Inorg. Chim. Acta, 65, L75 (1982).
D. Choudhury, R. F. Jones, G. Smith, and D. J. Cole-Hamilton, J. Chem. Soc., Dalton Trans., 1143 (1982).
D. Choudhury and D. J. Cole-Hamilton, J. Chem. Soc., Dalton Trans., 1885 (1982).

82OM155
83CL901
83JCR(S)216
83OM551
83POL409
84AJC929
84IC875
84IC1440
84OM1241
85CC1348
85 CC 1414
85CL405
85JA585
85JEAC(189)295
$85 \mathrm{JOM}(294) 123$
85NJC225
86EK1196
86IC4140
86JCS(D)253
86JOM(314)C49
86JOM(314)311
86JPC2182
860M724
86SRIMC85
87CC131
87CL597
87CL1035
87IC882

87IC1247
87JOM(328)209
87OM181
W. Lau, J. C. Huffman, and J. K. Kochi, Organometallics, 1, 155 (1982).
K. Tanaka, M. Morimoto, and T. Tanaka, Chem. Lett., 901 (1983).
H. W. Fruhauf, J. Chem. Res. (S), 216 (1983).
J. V. Caspar, B. P. Sullivan, and T. J. Meyer, Organometallics, 3, 1241 (1984).
D. S. C. Black, G. B. Deacon, and N. C. Thomas, Polyhedron, 2, 409 (1983).
J. B. Deacon, J. M. Patrick, B. W. Skelton, N. C. Thomas, and A. H. White, Aust. J. Chem., 37, 929 (1984).
W. J. Dressick, K. W. Raney, J. N. Demas, and B. A. DeGraff, Inorg. Chem., 23, 875 (1984).
D. V. Pinnick and B. Durham, Inorg. Chem., 23, 1440 (1984).
B. P. Sullivan, J. V. Caspar, S. R. Johnson, and T. J. Meyer, Organometallics, 3, 1241 (1984).
T. Venalainen, J. Pursiainen, and T. A. Pakkanen, J. Chem. Soc., Chem. Commun., 1348 (1985).
B. P. Sullivan, C. M. Bolinger, D. Conrad, W. J. Vining, and T. J. Meyer, J. Chem. Soc., Chem. Commun., 1414 (1985).
H. Ishida, K. Tanaka, and T. Tanaka, Chem. Lett., 405 (1985).
D. C. Gross and P. C. Ford, J. Am. Chem. Soc., 107, 585 (1985).
Y. B. Vasilev, V. S. Bagotskii, O. A. Khazova, and N. A. Maiorova, J. Electroanal. Chem., 189, 295 (1985).
B. F. Johnson, J. Lewis, and G. A. Foulds, J. Organomet. Chem., 294, 123 (1985).
A. A. Bahsoun and R. Ziessel, New J. Chem., 9, 225 (1985).
N. A. Maiorova, O. A. Khazova, and Y. B. Vasilev, Elektrokhimiya, 22, 1196 (1986).
J. G. Haasnoot, W. Hinrichs, O. Weir, and J. Vos, Inorg. Chem., 25, 4140 (1986).
J. M. Kelly and C. M. O'Connell, J. Chem. Soc., Dalton Trans., 253 (1986).
T. Venalainen, T. A. Pakkanen, T. T. Pakkanen, and E. Iiskola, J. Organomet. Chem., 314, C49 (1986).
M. I. Bruce, M. G. Humphrey, M. R. Snow, E. R. T. Tiekink, and R. C. Wallis, J. Organomet. Chem., 314, 311 (1986).
K. S. Schanze, G. A. Neyhart, and J. T. Meyer, J. Phys. Chem., 90, 2182 (1986).
H. Ishida, K. Tanaka, M. Morimoto, and K. Tanaka, Organometallics, 5, 724 (1986).
N. C. Thomas and G. B. Deacon, Synth. React. Inorg. Met.-Org. Chem., 16, 85 (1986).
H. Ishida, H. Tanaka, K. Tanaka, and T. Tanaka, J. Chem. Soc., Chem. Commun., 131 (1987).
H. Ishida, H. Tanaka, K. Tanaka, and T. Tanaka, Chem. Lett., 597 (1987).
H. Ishida, K. Tanaka, and T. Tanaka, Chem. Lett., 1035 (1987).
C. R. Leidner, B. P. Sullivan, R. A. Reed, B. A. White, M. T. Crimmins, R. W. Murray, and T. J. Meyer, Inorg. Chem., 26, 882 (1987).
B. P. Sullivan, R. S. Lumpkin, and T. J. Meyer, Inorg. Chem., 26, 1247 (1987).
W. Rohde and H. tom Dieck, J. Organomet. Chem., 328, 209 (1987).
H. Ishida, K. Tanaka, and T. Tanaka, Organometallics, 6, 181 (1987).

87OM901
87OM1665
88ADOC139
88AX(C)1722
88CCR(84)85
88CL2033
88IC1787
880M238

880M1663
89IC3309
89IS107
89JA2428
89JEAC(260)235
89JOM(362)383
89JPC4511

```
89TL463
90AX(C)312
```

90CCR(104)39
90CL2047
90IC905
90 IC 2792
90JA9490
90JCC119
90JCS(D)2155
90JMOC(59)33
90JOM(382)157
90JOM(388)C13
900M1735
91IC86
91JA9524
91JEAC(319)347
91JMOC(64)163
H. Ishida, K. Tanaka, and T. Tanaka, Organometallics, 6, 901 (1987).
H. K. van Dijk, D. J. Stufkems, A. Oskam, M. Rotteveel, and D. Heijdenrijk, Organometallics, 6, 1665 (1987).
P. C. Ford and A. Rokicki, Adv. Organomet. Chem., 28, 139 (1988).
M. M. V. Steyn and E. Singleton, Acta Crystallogr. C, 44, 1722 (1988).
A. Juris, V. Balzani, F. Barigeletti, S. Campagna, P. Belzer, and A. Zelewski, Coord. Chem. Rev., 84, 85 (1988).
K. Tanaka, H. Miyamoto, and T. Tanaka, Chem. Lett., 2033 (1988).
L. Sacksteder, J. N. Demas, and B. A. DeGraff, Inorg. Chem., 27, 1787 (1988).
M. R. M. Bruce, E. Megehee, B. P. Sullivan, H. H. Thorp, T. R. O’Toole, A. Downard, and T. J. Meyer, Organometallics, 7, 238 (1988).
S. J. Sherlock, M. Cowie, E. Singleton, and M. M. V. Steyn, Organometallics, 7, 1663 (1988).
G. Denti, L. Sabatino, G. De Rosa, A. Bartolotta, G. Di Marco, V. Ricevuto, and S. Campagna, Inorg. Chem., 28, 3309 (1989).
N. C. Thomas and G. B. Deacon, Inorg. Synth., 25, 107 (1989).
K. Tanaka, R. Wakita, and T. Tanaka, J. Am. Chem. Soc., 111, 2428 (1989).
S. Ikeda, Y. Saito, M. Yoshida, N. Noda, M. Maeda, and K. Ito, J. Electroanal. Chem., 260, 235 (1989).
U. Koelle and J. Kossakowski, J. Organomet. Chem., 362, 383 (1989).
T. A. Perkins, D. B. Pourreau, T. L. Netzel, and K. S. Schanze, J. Phys. Chem., 93, 4511 (1989).
R. Ziessel, Tetrahedron Lett., 30, 463 (1989).
B. Durham, D. I. Cox, A. W. Cordes, and S. Barsoum, Acta Crystallogr. C, 46, 312 (1990).
D. J. Stufkens, Coord. Chem. Rev., 104, 39 (1990).
S. Matsuoka, T. Kohzuki, C. Pac, and S. Yanagida, Chem. Lett., 2047 (1990).
H. Ishida, T. Terada, and T. Tanaka, Inorg. Chem., 29, 905 (1990).
L. Della Ciana, W. J. Dressick, D. Sandrini, M. Maestri, and M. Ciano, Inorg. Chem., 29, 2792 (1990).
S. Gould, T. O'Toole, and T. J. Meyer, J. Am. Chem. Soc., 112, 9490 (1990).
N. C. Thomas and J. Fischer, J. Coord. Chem., 21, 119 (1990).
H. Ishida, K. Fujiki, T. Ohba, K. Tanaka, T. Terada, and K. Tanaka, J. Chem. Soc., Dalton Trans., 2155 (1990).
T. Venalainen and T. A. Pakkanen, J. Mol. Catal., 59, 33 (1990).
J. M. Lehn and R. Ziessel, J. Organomet. Chem., 382, 157 (1990).
C. Mountassir, T. B. Hadda, and H. Le Bozec, J. Organomet. Chem., 388, C13 (1990).
J. S. Brumbaugh, R. R. Whittle, M. Parvez, and A. Sen, Organometallics, 9, 1735 (1990).
J. R. Pugh, M. R. M. Bruce, and B. P. Sullivan, Inorg. Chem., 30, 86 (1991).
S. T. Belt, D. W. Ryba, and P. C. Ford, J. Am. Chem. Soc., 113, 9524 (1991).
M. N. Collomb-Dunand-Sauthier, A. Deronzier, and R. Ziessel, J. Electroanal. Chem., 319, 347 (1991).
U. Kiiski, T. Venalainen, T. A. Pakkanen, and O. Krause, J. Mol. Catal., 64, 163 (1991).

91JMOC(64)257
92IC1471
92IC1971
92IC3004
92IC4864

92JCS(D) 1455
92MI1
92OM456
92OM1450
92OM3172

92OM3774
$93 \mathrm{CIC1}$
93CL955
93IC1508
93IC3789
93ICA(213)111
93JA6382

93JEAC(350)43
93JMOC(84)145
93JOM(444)191
93JOM(457)121
93JOM(463)187

93JPC5973

93MI1

93MI2
94CC189
94IC2961
94 IC 3212
U. Matteolli, G. Menchi, M. Bianchi, and F. Piacenti, J. Mol. Catal., 64, 257 (1991).
R. H. Morris, Inorg. Chem., 31, 1471 (1992).
H. Tanaka, H. Nagao, and K. Tanaka, Inorg. Chem., 31, 1971 (1992).
G. F. Strouse, P. A. Anderson, J. R. Schoonover, T. J. Meyer, and F. R. Keene, Inorg. Chem., 31, 3004 (1992).
M. R. M. Bruce, E. Megehee, B. P. Sullivan, H. H. Thorp, T. R. O’Toole, A. Downard, J. R. Pugh, and T. J. Meyer, Inorg. Chem., 31, 4864 (1992).
P. Christensen, A. Hamnett, A. V. G. Muir, and J. A. Timney, J. Chem. Soc., Dalton Trans., 1455 (1992).
K. Kalyanasundaram, Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, London (1992).
G. G. A. Balavoine, T. Boyer, and C. Livage, Organometallics, 11, 456 (1992).
H. Tanaka, H. Nagao, S. M. Peng, and K. Tanaka, Organometallics, 11, 1450 (1992).
H. Tanaka, H. Nagao, and K. Tanaka, Organometallics, 11, 3172 (1992).
M. J. A. Kraakman, B. de Klerk-Engels, P. P. M. de Lange, K. Vrieze, W. J. J. Smeets, and A. L. Spek, Organometallics, 11, 3774 (1992).
A. Vlcek, Chemtracts - Inorg. Chem., 5, 1 (1993).
H. Nagao, T. Mizukawa, and K. Tanaka, Chem. Lett., 955 (1993).
H. Tanaka, B. C. Tzeng, H. Nagao, S. M. Peng, and K. Tanaka, Inorg. Chem., 32, 1508 (1993).
H. Cho and B. R. Whittlesey, Inorg. Chem., 32, 3789 (1993).
P. Shafiq, K. W. Kramarz, and R. Eisenberg, Inorg. Chim. Acta, 213, 111 (1993).
M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993).
M. N. Collomb-Dunand-Sauthier, A. Deronzier, and R. Ziessel, J. Electroanal. Chem., 350, 43 (1993).
L. Alvila, T. A. Pakkanen, and O. Krause, J. Mol. Catal., 84, 145 (1993).
M. N. Collomb-Dunand-Sauthier, A. Deronzier, and R. Ziessel, J. Organomet. Chem., 444, 191 (1993).
M. G. Richmond, J. Organomet. Chem., 457, 121 (1993).
P. Frediani, M. Bianchi, A. Salvini, R. Guarducci, L. C. Carluccio, F. Piacenti, S. Ianelli, and N. Nardelli, J. Organomet. Chem., 463, 187 (1993).
M. N. Collomb-Dunand-Sauthier, A. Deronzier, and R. Ziessel, J. Phys. Chem., 97, 5973 (1993).
K. Kalyanasundaram and M. Gratzel, (eds.), "Photosensitization and Photocatalysis Using Inorganic and Organometallic Compounds" Kluwer, Dodrecht (1993).
B. P. Sullivan, (ed.), "Electrochemical and Electrocatalytic Reduction of Carbon Dioxide" Elsevier, Amsterdam (1993).
M. N. Collomb-Dunnand-Sauthier, A. Deronzier, and R. Ziessel, J. Chem. Soc., Chem. Commun., 189 (1994).
M. N. Collomb-Dunnand-Sauthier, A. Deronzier, and R. Ziessel, Inorg. Chem., 33, 2961 (1994).
H. A. Nieuwenhuis, D. J. Stufkens, and A. Oskam, Inorg. Chem., 33, 3212 (1994).

94IC3415

94IC3863
94IC4410
94IC4723
94ICA(226)247
94JCA(148)315
94JCA(148)722
94JCS(D) 111
94JCS(D)3659
94JMOC(91)145
94JMOC(91)335
94JOM(476)7 P. Frediani, M. Bianchi, A. Salvini, R. Guarducci, L. C. Carluccio, and F. Piacenti, J. Organomet. Chem., 476, 7 (1994).
94OM3279 B. de Klerk-Engels, J. H. Groen, M. J. A. Kraakman, J. M. Ernsting, K. Vrieze, K. Goubitz, and J. Fraanje, Organometallics, 13, 3279 (1994).
K. Tanaka, Adv. Inorg. Chem., 43, 409 (1995).
R. Ziessel, D. Matt, and L. Toupet, J. Chem. Soc., Chem. Commun., 2033 (1995).
A. Hagfeldt and M. Gratzel, Coord. Chem. Rev., 95, 49 (1995).
H. Nakajima and K. Tanaka, Chem. Lett., 891 (1995).
L. Dadci, H. Elias, U. Frey, A. Hornig, U. Koelle, A. E. Merbach, H. Paulus, and J. S. Schneider, Inorg. Chem., 34, 306 (1995).
M. E. Garcia-Posse, N. E. Katz, L. M. Baraldo, D. D. Polonuer, C. G. Colombano, and J. A. Olabe, Inorg. Chem., 34, 1830 (1995).
M. Haukka, T. Venalainen, M. Ahlgren, and T. A. Pakkanen, Inorg. Chem., 34, 2931 (1995).
H. A. Nieuwenhuis, D. J. Stufkens, and A. Vlcek, Inorg. Chem., 34, 3879 (1995).
K. Toyohara, H. Nagao, T. Mizukawa, and K. Tanaka, Inorg. Chem., 34, 5399 (1995).
P. A. Anderson, G. B. Deacon, K. H. Haarmann, F. R. Keene, T. J. Meyer, D. A. Reitsma, B. W. Skelton, G. F. Strouse, N. C. Thomas, J. A. Treadway, and A. H. White, Inorg. Chem., 34, 6145 (1995).

95IC6312
95JA5579

95JEAC(396)27

95JMOC(102)79 M. Haukka, L. Alvila, and T. A. Pakkanen, J. Mol. Catal., 102, 79 (1995).

95JOM(498)187
95JPC12797
95JPP99
950M825
950M5093
950M5099
95OM5454
96CEJ 1556

96CL27
96CRV759
96CRV2063
96ECA2773
96IC303
96IC4383
96IC4396
96ICA(253)7
96JA11984
96JCS(D) 873

96JCS(D) 1927
96JCS(D)2581

96JOM(509)163
96NJC759
96OM2979

96OM4081
96POL1571
96TIC145
97ECA2577
97 IC 2119
P. Frediani, M. Bianchi, A. Salvini, R. Guarducci, L. C. Carluccio, and F. Piacenti, J. Organomet. Chem., 498, 187 (1995).
X. Zhang and M. A. J. Rogers, J. Phys. Chem., 99, 12797 (1995).
N. Veletsky, I. A. Dementiev, A. Y. Ershov, and A. B. Nikolskii, J. Photochem. Photobiol., 89, 99 (1995).
M. Haukka, J. Kiviaho, M. Ahlgren, and T. A. Pakkanen, Organometallics, 14, 825 (1995).
H. Nakajima, Y. Kushi, H. Nagao, and K. Tanaka, Organometallics, 14, 5093 (1995).
K. Toyohara, K. Tsuge, and K. Tanaka, Organometallics, 14, 5099 (1995).
M. Haukka, J. Kiviaho, M. Ahlgren, and T. A. Pakkanen, Organometallics, 14, 5454 (1995).
M. O. Aarnts, D. J. Stufkens, M. P. Wilms, E. J. Baerends, A. Vlcek, I. P. Clark, M. W. George, and J. J. Turner, Chem. Eur. J., 2, 1556 (1996).
K. Toyohara, H. Nagao, T. Adachi, T. Yoshida, and K. Tanaka, Chem. Lett., 27 (1996).
V. Balzani, A. Juris, and M. Venturi, Chem. Rev., 96, 759 (1996).
D. H. Gibson, Chem. Rev., 96, 2063 (1996).
A. G. M. M. Hossain, T. Nagaoka, and K. Ogura, Electrochim. Acta, 41, 2773 (1996).
M. T. Indelli, F. Scandola, J. P. Collin, J. P. Sauvage, and A. Sour, Inorg. Chem., 35, 303 (1996).
T. K. Schoch, J. L. Hubbard, C. R. Zoch, G. B. Yi, and M. Sorlie, Inorg. Chem., 35, 4383 (1996).
D. M. Heinekey and T. L. Luther, Inorg. Chem., 35, 4396 (1996).
G. N. A. Nallas and K. J. Brewer, Inorg. Chim. Acta, 253, 7 (1996).
D. H. Gibson, Y. Ding, B. A. Sleadd, J. O. Franco, J. F. Richardson, and M. S. Mashuta, J. Am. Chem. Soc., 118, 11984 (1996).
D. A. Bardwell, A. M. W. Cargill-Thompson, J. C. Jeffery, J. A. McCleverty, and M. D. Ward, J. Chem. Soc., Dalton Trans., 873 (1996).
M. Haukka, M. Ahlgren, and T. A. Pakkanen, J. Chem. Soc., Dalton Trans., 1927 (1996).
S. Chardon-Noblat, A. Deronzier, D. Zsoldos, R. Ziessel, M. Haukka, T. Pakkanen, and T. Vanalainen, J. Chem. Soc., Dalton Trans., 2581 (1996).
M. Haukka, T. Venalainen, P. Hirva, and T. A. Pakkanen, J. Organomet. Chem., 509, 163 (1996).
E. Muller, M. K. Nazeeruddin, M. Gratzel, and K. Kalyanasundaram, New J. Chem., 20, 759 (1996).
K. B. Shiu, W. M. Lee, C. L. Wang, S. L. Wang, P. L. Liao, J. C. Wang, L. S. Liou, S. M. Peng, G. H. Lee, and M. Y. Chiang, Organometallics, 15, 2979 (1996).
P. Homanen, M. Haukka, T. A. Pakkanen, J. Pursiainen, and R. H. Laitinen, Organometallics, 15, 4081 (1996).
T. B. Hadda, I. Zidane, S. A. Moya, and H. Le Bozec, Polyhedron, 15, 1571 (1996).
K. Tanaka and K. Tsuge, Trends Inorg. Chem., 4, 145 (1996).
A. G. M. M. Hossain, T. Nagaoka, and K. Ogura, Electrochim. Acta, 42, 2577 (1997).
Z. Yao and K. J. Klabunde, Inorg. Chem., 36, 2119 (1997).

97 IC 3794
97IC5384
97JCS(D)153
97JCS(D)2511
97JCS(D)2705
97JCS(D)2843
97JCS(D)2997
97JCS(D)3777
97JCS(D)4345
97JOM(547)35
97OM3482
97OM4421
97POL3847
98BCJ17
98CCR(168)233
98CCR(171)93
98CCR(177)127
98CRV1439
98 IC 127
98IC661
98JCS(D) 353
98JCS(D)2293
98JCS(D)2625
98JEAC(444)253
98JMOC(136)127
98JOM(552)205

98MI1
980M5178

99AC157
P. Homanen, M. Haukka, M. Ahlgren, and T. A. Pakkanen, Inorg. Chem., 36, 3794 (1997).
S. Chardon-Noblat, A. Deronzier, R. Ziessel, and D. Zsoldos, Inorg. Chem., 36, 5384 (1997).
E. Z. Jandrasics and F. R. Keene, J. Chem. Soc., Dalton Trans., 153 (1997).
N. E. Leadbeter, J. Lewis, P. R. Raithby, and G. N. Ward, J. Chem. Soc., Dalton Trans., 2511 (1997).
G. Freeman, S. L. Ingham, B. F. G. Johnson, M. McPartlin, and I. J. Scowen, J. Chem. Soc., Dalton Trans., 2705 (1997).
J. S. Field, R. J. Haines, and C. J. Parry, J. Chem. Soc., Dalton Trans., 2843 (1997).
G. R. Haire, N. E. Leadbeater, J. Lewis, P. R. Raithby, A. J. Edwards, and E. C. Constable, J. Chem. Soc., Dalton Trans., 2997 (1997).
R. Ziessel, L. Toupet, S. Chardon-Noblat, A. Deronzier, and D. Matt, J. Chem. Soc., Dalton Trans., 3777 (1997).
H. Yan, G. Suss-Fink, A. Neels, and H. Stoeckli-Evans, J. Chem. Soc., Dalton Trans., 4345 (1997).
P. Frediani, M. Bianchi, A. Salvini, L. C. Carluccio, and L. Rosi, J. Organomet. Chem., 547, 35 (1997).
A. Santos, J. Lopez, A. Galan, J. J. Gonzalez, P. Tinoco, and A. M. Echavarren, Organometallics, 16, 3482 (1997).
D. H. Gibson, B. A. Sleadd, M. S. Mashuta, and J. F. Richardson, Organometallics, 16, 4421 (1997).
R. Sariego, L. Farias, and S. Moya, Polyhedron, 16, 3847 (1997).
K. Tanaka, Bull. Chem. Soc. Jpn., 71, 17 (1998).
I. Ortmans, C. Moucheron, and A. Kirsch-De Mesmacker, Coord. Chem. Rev., 168, 233 (1998).
D. J. Stufkens, M. P. Aarnts, J. Nijhoff, B. D. Rossenaar, and A. Vlcek, Coord. Chem. Rev., 171, 93 (1998).
D. J. Stufkens and A. Vlcek, Coord. Chem. Rev., 177, 127 (1998).
P. Chen and T. J. Meyer, Chem. Rev., 98, 1439 (1998).
T. A. Luthner and D. M. Heinekey, Inorg. Chem., 37, 127 (1998).
J. Nijhoff, M. J. Bakker, F. Hartl, D. J. Stufkens, W. F. Fu, and R. van Eldik, Inorg. Chem., 37, 661 (1998).
W. F. Liaw, C. H. Chen, C. M. Lee, G. Y. Lin, C. Y. Ching, G. H. Lee, and S. M. Peng, J. Chem. Soc., Dalton Trans., 353 (1998).
N. C. Fletcher and F. R. Keene, J. Chem. Soc., Dalton Trans., 2293 (1998).
J. Nijhoff, M. J. Bakker, F. Hartl, G. Freeman, S. L. Ingham, and B. F. G. Johnson, J. Chem. Soc., Dalton Trans., 2625 (1998).
S. Chardon-Noblat, A. Deronzier, R. Ziessel, and D. Zsoldos, J. Electroanal. Chem., 444, 253 (1998).
M. Haukka, T. Venalainen, M. Kallinen, and T. A. Pakkanen, J. Mol. Catal., 136, 127 (1998).
P. Homanen, M. Haukka, M. Ahlgren, T. A. Pakkanen, P. N. W. Baxter, R. E. Benfield, and J. A. Connor, J. Organomet. Chem., 552, 205 (1998).
R. Ziessel, Stud. Surf. Sci. Catal., 114, 219 (1998).
D. H. Gibson, Y. Ding, J. G. Andino, M. S. Mashuta, and J. F. Richardson, Organometallics, 17, 5178 (1998).
S. Luukkanen, P. Homanen, M. Haukka, T. A. Pakkanen, A. Deronzier, S. Chardon-Noblat, D. Zsoldos, and R. Ziessel, Appl. Catal. A, 185, 157 (1999).

99AGE362

99EJI101
99IC136
99IC2267

99 IC3182

99JA4625

99JCS(D)275

99JCS(D) 1027
99JEAC(466)187

99JOM(572)271
99JOM(573)121
99JOM(573)189
990M3671
990M4380
99POL2091
00CAL123
00CCR(200)933
00CCR(208)309
00CRV439
00IC2777

00JCS(D)2745
00JEAC(490)62
00OM163

000M547
01CCC207
01CJC1002
01EJI223
T. Mizukawa, K. Tsuge, H. Nakajima, and K. Tanaka, Angew. Chem., Int. Ed. Engl., 38, 362 (1999).
P. Homanen, M. Haukka, S. Luukkanen, M. Ahlgren, and T. A. Pakkanen, Eur. J. Inorg. Chem., 101 (1999).
W. H. Leung, E. Y. Y. Chan, and W. T. Wong, Inorg. Chem., 38, 136 (1999).
J. A. Treadway and T. J. Meyer, Inorg. Chem., 38, 2267 (1999).
M. Haukka, P. Hirva, S. Luukkanen, M. Kallinen, M. Ahlgren, and T. A. Pakkanen, Inorg. Chem., 38, 3182 (1999).
T. Ito, T. Hamaguchi, H. Nagino, T. Yamaguchi, H. Kido, I. S. Zavarine, T. Richmond, J. Washington, and C. P. Kubiak, J. Am. Chem. Soc., 121, 4625 (1999).
G. B. Deacon, C. M. Kepert, N. Sahely, B. W. Skelton, L. Spiccia, N. C. Thomas, and A. H. White, J. Chem. Soc., Dalton Trans., 275 (1999).
A. Yamamoto, J. Chem. Soc., Dalton Trans., 1027 (1999).
C. Caix-Cecillon, C. Chardon-Noblat, A. Deronzier, M. Haukka, T. A. Pakkanen, R. Ziessel, and D. Zsoldos, J. Electroanal. Chem., 466, 187 (1999).
J. Nijhoff, M. J. Bakker, F. Hartl, and D. J. Stufkens, J. Organomet. Chem., 572, 271 (1999).
J. Nijhoff, F. Hartl, J. W. M. van Outersterp, D. J. Stufkens, M. J. Calhorda, and L. F. Veiros, J. Organomet. Chem., 573, 121 (1999).
Y. Y. Choi and W. T. Wang, J. Organomet. Chem., 573, 189 (1999).
T. Suzuki, M. Shiotsuki, K. Wada, T. Kondo, and T. Mitsudo, Organometallics, 18, 3671 (1999).
J. Nijhoff, F. Hartl, and D. J. Stufkens, Organometallics, 18, 4380 (1999).
F. P. Pruchnik, E. Galdecka, Z. Galdecki, and A. Kowalski, Polyhedron, 18, 2091 (1999).
S. Luukkanen, M. Haukka, M. Kallinen, and T. A. Pakkanen, Catal. Lett., 70, 123 (2000).
A. Vlcek, Coord. Chem. Rev., 200-202, 933 (2000).
J. van Slageren, F. Hartl, D. J. Stufkens, D. M. Martino, and H. van Willigen, Coord. Chem. Rev., 208, 309 (2000).
M. Torrent, M. Sola, and G. Frenking, Chem. Rev., 100, 439 (2000).
K. Koike, J. Tanabe, S. Toyama, H. Tsubaki, K. Sakamoto, J. R. Westwell, F. P. A. Johnson, H. Hori, H. Saitoh, and O. Ishitani, Inorg. Chem., 39, 2777 (2000).
E. Eskelinen, S. Luukkanen, M. Haukka, M. Ahlgren, and T. A. Pakkanen, J. Chem. Soc., Dalton Trans., 2745 (2000).
S. Chardon-Noblat, P. Da Costa, A. Deronzier, M. Haukka, T. A. Pakkanen, and R. Ziessel, J. Electroanal. Chem., 490, 62 (2000).
E. Eskelinen, M. Haukka, T. Vanalainen, T. A. Pakkanen, M. Wasberg, S. Chardon-Noblat, and A. Deronzier, Organometallics, 19, 163 (2000).
M. T. Ashby, S. S. Alguindigue, and M. A. Khan, Organometallics, 19, 547 (2000).
S. Chardon-Noblat, A. Deronzier, and R. Ziessel, Collect. Czech. Chem. Commип., 66, 207 (2001).
C. P. Casey, S. W. Singer, and D. R. Powell, Can. J. Chem., 79, 1002 (2001).
M. J. Calhorda, E. Hunstock, L. F. Veiros, and F. Hartl, Eur. J. Inorg. Chem., 223 (2001).

01EJI613

01EJI3155
01 IC 277
01 IC 5711
01JCS(D) 57
01JCS(D)2587
01JCS(D)2649
01JEAC(506)115
01JMAC267
01JOM(619)299
01OM1668

01OM4956
01PCCP1992
$02 \mathrm{CCR}(230) 107$
02EJI1169
02EJI2850
02ICA(327)126
02ICA(332)25
02JCS(D)3820
02JOM(654)8
02JOM(655)31
02JOM(655)39
02JOM(662)137
02OM2964
02OM4009
03ACS141
03ICA(351)225
S. Chardon-Noblat, A. Deronzier, F. Hartl, J. van Slageren, and T. Mahabiersing, Eur. J. Inorg. Chem., 613 (2001).
M. Lutz, B. Findeis, M. Haukka, T. A. Pakkanen, and L. H. Gade, Eur. J. Inorg. Chem., 3155 (2001).
J. van Slageren and D. J. Stufkens, Inorg. Chem., 40, 277 (2001).
D. A. Freedman, J. K. Evju, M. K. Promije, and K. R. Mann, Inorg. Chem., 40, 5711 (2001).
H. Sugimoto, K. Tsuge, and K. Tanaka, J. Chem. Soc., Dalton Trans., 57 (2001).
J. A. Weinstein, J. van Slageren, D. J. Strufkens, S. Zalis, and M. W. George, J. Chem. Soc., Dalton Trans., 2587 (2001).
T. J. J. Kinnunen, M. Haukka, M. Nousiainen, A. Patrikka, and T. A. Pakkanen, J. Chem. Soc., Dalton Trans., 2649 (2001).
S. Myllynen, M. Wasberg, E. Eskelinen, M. Haukka, and T. Pakkanen, J. Electroanal. Chem., 506, 115 (2001).
S. Uemura, T. Shimakawa, K. Kusobuka, T. Nakahira, and N. Kobayashi, J. Mater. Chem., 11, 267 (2001).
D. Ooyama, T. Tomon, K. Tsuge, and K. Tanaka, J. Organomet. Chem., 619, 299 (2001).
S. Chardon-Noblat, G. H. Cripps, A. Deronzier, J. S. Field, S. Gouws, R. J. Haines, and F. Southway, Organometallics, 20, 1668 (2001).
D. H. Gibson, J. G. Andino, S. Bhamidi, B. A. Sleadd, and M. S. Mashuta, Organometallics, 20, 4956 (2001).
S. Luukkanen, M. Haukka, E. Eskelinen, T. A. Pakkanen, V. Lehtovuori, J. Kallioinen, P. Myllyperkio, and J. KorppiTommola, Phys. Chem. Chem. Phys., 3, 1992 (2001).
F. Hartl, M. P. Aarnts, H. A. Nieuwenhuis, and J. van Slageren, Coord. Chem. Rev., 230, 107 (2002).
E. Eskelinen, T. J. J. Kinnunen, M. Haukka, and T. A. Pakkanen, Eur. J. Inorg. Chem., 1169 (2002).
S. Chardon-Noblat, P. Da Costa, A. Deronzier, T. Mahabiersing, and F. Hartl, Eur. J. Inorg. Chem., 2850 (2002).
F. W. Vergeer, C. J. Kleverlaan, and D. J. Stufkens, Inorg. Chim. Acta, 327, 126 (2002).
S. Luukkanen, M. Haukka, O. Laine, T. Venalainen, P. Vianiotalo, and T. A. Pakkanen, Inorg. Chim. Acta, 332, 25 (2002).
P. A. Anderson, F. R. Keene, T. J. Meyer, J. A. Moss, G. F. Strouse, and J. A. Treadway, J. Chem. Soc., Dalton Trans., 3820 (2002).
T. J. J. Kinnunen, M. Haukka, and T. A. Pakkanen, J. Organomet. Chem., 654, 8 (2002).
T. J. J. Kinnunen, M. Haukka, E. Pesonen, and T. A. Pakkanen, J. Organomet. Chem., 655, 31 (2002).
W. Y. Wong, S. H. Cheung, X. Huang, and Z. Lin, J. Organomet. Chem., 655, 39 (2002).
F. Calderazzo, S. Falaschi, F. Marchetti, and G. Pampaloni, J. Organomet. Chem., 662, 137 (2002).
S. Ogo, T. Abura, and Y. Watanabe, Organometallics, 21, 2964 (2002).
N. Masciocchi, A. Sironi, S. Chardon-Noblat, and A. Deronzier, Organometallics, 21, 4009 (2002).
A. Deronzier, ACS Symp. Ser., 832, 141 (2003).
A. Salvini, P. Frediani, and E. Rivalta, Inorg. Chim. Acta, 351, 225 (2003).

03JCP81
03JMOC(195)95

03JOM(665)107
03JOM(667)197
03JOM(677)101
03OM970
04AGE3464
04IC683
04IC2818
04IC3492
04IC4380
04IC7250
04IC7380
04JCS(D) 1766
04JCS(D)4130

04JOM484
04JOM1639
04OM1480
04OM2263
04OM2855
04OM3047
05AGE2229
05IC1626

05ICA196
05JOM3202
05JPC(B)17538
V. Lehovuori, J. Kallioinen, P. Myllyperkio, M. Haukka, and J. E. I. Korppi-Tommola, J. Chem. Phys., 295, 81 (2003).
Y. Himeda, N. Onozawa-Komatsuzaki, H. Sugihara, H. Arakawa, and K. Kasuga, J. Mol. Catal. A, 195, 95 (2003).
D. Ooyama, T. Kobayashi, K. Shiren, and K. Tanaka, J. Organomet. Chem., 665, 107 (2003).
P. Frediani, C. Gianelli, A. Salvini, and S. Ianelli, J. Organomet. Chem., 667, 197 (2003).
M. D. Varga, R. Costa, R. Reina, A. Nunez, M. A. Maestro, and J. Mahia, J. Organomet. Chem., 677, 101 (2003).
T. Koizumi, T. Tomon, and K. Tanaka, Organometallics, 22, 970 (2003).
J. A. Cabeza, I. da Silva, I. del Rio, L. Martinez-Mendez, D. Miguel, and V. Riera, Angew. Chem., Int. Ed. Engl., 43, 3464 (2004).
P. Pearson, C. M. Kepert, G. B. Deacon, L. Spiccia, A. C. Warden, B. W. Skelton, and A. H. White, Inorg. Chem., 43, 683 (2004).
C. M. Kepert, G. B. Deacon, N. Sahely, L. Spiccia, G. D. Fallon, B. W. Skelton, and A. H. White, Inorg. Chem., 43, 2818 (2004).
C. J. Adams and S. J. A. Pope, Inorg. Chem., 43, 3492 (2004).
A. Gabrielson, S. Zalis, P. Matousek, and A. Vlcek, Inorg. Chem., 43, 4380 (2004).
F. Hartl, T. Mahabiersing, S. Chardon-Noblat, P. Da Costa, and A. Deronzier, Inorg. Chem., 43, 7250 (2004).
A. Gabrielsson, S. Zalis. P. Matousek, M. Towrie, and A. Vlcek, Inorg. Chem., 43, 7380 (2004).
C. M. Kepert, A. M. Bond, G. B. Deacon, L. Spiccia, B. W. Skelton, and A. H. White, J. Chem. Soc., Dalton Trans., 1766 (2004).
C. J. Adams, L. E. Bowen, M. G. Humphrey, J. P. L. Morrall, M. Samoc, and L. J. Yellowlees, J. Chem. Soc., Dalton Trans., 4130 (2004).
G. Cripps, A. Pellissier, S. Chardon-Noblat, A. Deronzier, and R. J. Haines, J. Organomet. Chem., 689, 484 (2004).
G. Albertin, S. Antoniutti, and S. Pizzol, J. Organomet. Chem., 689, 1639 (2004).
Y. Himeda, N. Onozawa-Komatsuzaki, H. Sugihara, H. Arakawa, and K. Kasuga, Organometallics, 23, 1480 (2004).
C. Y. Wong, M. C. W. Chan, N. Zhu, and C. M. Che, Organometallics, 23, 2263 (2004).
B. V. Mork, A. McMillan, H. Yuen, and T. D. Tilley, Organometallics, 23, 2855 (2004).
S. Ogo, K. Uehara, T. Abura. Y. Watanabe, and S. Fukuzumi, Organometallics, 23, 3047 (2004).
T. Tomon, T. Koizumi, and T. Tanaka, Angew. Chem., Int. Ed. Engl., 44, 2229 (2005).
A. D. Ryabov, R. Le Lagadec, H. Estevez, R. A. Toscano, S. Hernandez, L. Alexandrova, V. S. Kurova, A. Fischer, C. Sirlin, and M. Pfeffer, Inorg. Chem., 44, 1626 (2005).
C. Garino, R. Gobetto, C. Nervi, and L. Salassa, Inorg. Chim. Acta, 358, 196 (2005).
J. Canivet, L. Karmazin-Brelot, and G. Suss-Fink, J. Organomet. Chem., 690, 3202 (2005).
V. Lehtovuori, P. Myllyperkio, J. Linnanto, C. Manzoni, D. Polli, G. Cerullo, M. Haukka, and J. Korppi-Tommola, J. Phys. Chem. B, 109, 17538 (2005).

05OM3516
05OM5067
06CCR1254
06IC4007
06ICA883

06ICA2369
06JOM2368

06JOM4779
06OM563
06POL9
07AHC(93)185
07AHC(94)109
07JOM755

06ICA978 Q. F. Zhang, R. D. Adams, and W. H. Leung, Inorg. Chim. Acta, 359, 978 (2006).
I. O. Koshevoy, M. Haukka, T. A. Pakkanen, S. P. Tumik, and P. Vainiotalo, Organometallics, 24, 3516 (2005).
D. H. Gibson, J. G. Andino, and M. S. Mashuta, Organometallics, 24, 5067 (2005).
V. Balzani, G. Bergamini, F. Marchioni, and P. Ceroni, Coord. Chem. Rev., 250, 1254 (2006).
S. K. Patra, N. Sadhukhan, and J. K. Bera, Inorg. Chem., 45, 4007 (2006).
A. D. Ryabov, H. Estevez, L. Alexandrova, M. Pfeffer, and R. Le Lagadec, Inorg. Chim. Acta, 359, 883 (2006).
P. Stepnicka, J. Ludvik, J. Canivet, and G. Suss-Fink, Inorg. Chim. Acta, 359, 2369 (2006).
N. A. Bokach, M. Haukka, P. Hirva, M. FC. G. Da Siva, V. Y. Kukushkin, and A. J. L. Pombeiro, J. Organomet. Chem., 691, 2368 (2006).
S. K. Patra, M. Majumdar, and J. K. Bera, J. Organomet. Chem., 691, 4779 (2006).
D. H. Gibson, J. G. Andino, and M. S. Mashuta, Organometallics, 25, 563 (2006).
J. Guererro, L. Farias, L. Lemus, A. Quintanilla, A. Mena, L. Cortez, R. F. Baggio, and M. T. Garland, Polyhedron, 25, 9 (2006).
A. Sadimenko, Adv. Heterocycl. Chem., 93, 185 (2007).
A. Sadimenko, Adv. Heterocycl. Chem., 94, 109 (2007).
M. Auzias, B. Therrien, G. Suss-Fink, P. Stepnicka, and J. Ludvik, J. Organomet. Chem., 692, 755 (2007).

Subject Index of Volume 95

Aceplyediene, lack of aromaticity, 2
Aceplyedilen, aromaticity, 3
5-Acetamido-2-phenylpyrazol-3-one, formation, 39
3-Acetamidoquinazolin-2-thione, reaction with hydrazine, 161
5-Acetoxy-1-phenyl-4-phenylazopyrazol-3-one, 39
4-Acetyl-2-(4-methoxybenzyl)pyrazol-3-one, debenzylation, 103
2-(N^{\prime}-Acetyl- N^{\prime}-methyl- N-phenyl-hydrazino)- N -(substituted)-2-oxoacetamides, formation, 124
2-Acetylpyrazol-3-ones, solvolysis, 93
4-Acetylpyrazol-3-one, formation and tautomerism, 103
2-Acetyl-4,4,5-trimethylpyrazol-3-one, bromination, 44
4-Acyl-1,2-dihydropyrazol-3-ones, condensation with ethylenediamine or 1,3diaminopropane, 52
4-Acylpyrazol-3-ones, reaction with primary amines, 49
reaction with n-propylamine, 50
formation of oximes, 57
7-Acyl-1,2,4-triazolo[1,5-a]pyrimidine, enantiomeric reduction, 200
2-Alkoxycarbonylpyrazol-3-ones, solvolysis, 93
5-Alkoxypyrazol-3-ones, formation, 88
N-Alkyl-6-nitro-7-oxo-1,2,4-triazolo[1,5-a]pyrimidine, cleavage by N -nucleophiles, 185
4-Alkyl-7-oxo-1,2,4-triazolo[1,5-a]pyrimidines, formation, 178
5-Alkylsulfanylmethylpyrazol-3-ones, 89
4-Aminoantipyrine, acylation, 34
reaction with 2-cyanoarylacrylic acids, 35
reaction with 2-hydroxy-5-(methoxycarbonyl)benzoic acids, 37
reaction with thiophene-2-carbaldehyde, 57 reaction with pyridine-2-carbaldehyde, 57 reaction with 5-[4'-(5-formylfuran-2-yl)-biphenyl-4-yl]furan-2-carbaldehydes, 59
condensation with 4-aryl-2,4-dioxobutyric acids, 59
reaction with pyrazol-3,4-diones, 59
reaction with indan-1,2-diones, 60
reaction with 2 -aminobenzoic acid and formic acid, 61
reaction with aliphatic and aromatic isocyanates and isothiocyanates, 70
reaction with 2-cyano-3,3isomethylsulfanylthioacrylamide, [bis(methylthio)methylidene]malonitrile, bis(methylthio)methylenecyanoacetamide, or ethoxymethylenemalononitrile, 74
reaction with 2-chloro-4,6-diarylamino-1,3,5triazine, 84
reaction with 3-(5-oxooxazol-4-ylidenemethyl)1 H -quinolin-2-one, 84
reaction with \{bis[2-(2,6-dioxomorpholin-4-yl)-ethyl]-amino\}acetic acid, 85
reaction with dibutyl phosphorochloridate, 86
reaction with N -cyanodithiocarbonimidic acid dimethyl ester, 86
oxidative coupling with phenol, 122, 123
by reduction of 4-nitrosoantipyrine, 128
reaction with selenium dioxide, 133
4-Aminobenzenesulfonamide, reaction with 4-benzoylpyrazol-3-one, 50
4-(2-Aminobenzyl)pyrazol-3-one, 129
benzoylation, 34
acetylation, 35
3-Amino-5-benzylthio-1,2,4-triazole, reaction with diketones, 149
2-Aminocarbonylpyrazol-3-ones, solvolysis, 93
5-Amino-6,7-dicyano-1,2,4-triazolo[1,5-a]pyrimidine, 148
4-Amino-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one, see 4-aminoantipyrine
4-Amino-1,2-dihydropyrazol-3-ones, reaction with aryl or heteroaryl aldehydes or cyclic ketones, 57
5-Amino-1,2-dihydropyrazol-3-one, reaction with methylsulfonyl chloride, 45
2-Amino-1,5-dimethyl-4-phenylpyrazol-3-one, diazotisation, 101
4-Amino-1,5-dimethyl-2-phenylpyrazol-3-one, reaction with diethyl-2,5-diaminocyclohexa-1,4-diene-1,4-dicarboxylate, 42
diazotisation and reaction with pentane-2,4dione, 46
2-Amino-4,5-diphenylpyrazol-3-ones, reaction with phenylisocyanate, 70
2-Amino-5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine, formation, 194
5-[(2-Aminoethylamino)methyl]pyrazol-3-ones, formation, 77
4-(1-Aminoethylidene)pyrazol-3-one, reaction with benzylidenemalononitrile, 74
4-Amino- N-(heteroaryl)benzenesulfonamides, reaction with 4-benzoylpyrazol-3-one, 50
2-(4-Amino-5-mercapto-4 H -[1,2,4]triazol-3-ylmethyl)- 2 H -phthalazin-1-one, reaction with 4-(2- chloroacetyl)pyrazol-3-ones, 80
5-Aminomethyl-1-methyl-2-phenyl-4-isopropylpyrazol-3-one, reaction with trityloxyacetic acid, 41
2-Amino-5-methyl-7-oxo-1,2,4-triazolo[1,5-a]pyrimidine, dinitration, 182
1-Aminonaphtho[1,8-de]-1,2,3-triazine, oxidation, 11
4-Amino-3-oxopyrazolecarbaldehyde oxime, 134
6-Amino-7-oxo-1,2,4-triazolo[1,5-a]pyrimidine, protonation, 178
diazotisation, 194
4-Amino-4-phenyl-5-methyl-2,4-dihydropyrazol-3-one, methylation, 29
5-Amino-2-phenylpyrazol-3-one, sulfonation, 45
reaction with [N-(1,3- benzodithiol-2-ylidene)]N -methylbenzaminium iodide, 87
4-(3-Aminopropyl)-pyrazol-3-ones, nucleophilic reactions, 85,87
2-Aminopyrazol-3-one, methylation, 30
4-Aminopyrazol-3-one, acylation, 34
diazotisation, 46
reaction with heteroaromatic aldehydes, 59
reaction with cyclic ketones, 59
nucleophilic reactions, 85
formation, 115, 126
5-Aminopyrazol-3-one, 30
methylation, 30
reaction with 2-thiophenecarbonyl chloride, 38
nucleophilic reactions, 85
reaction with (2,4-dihydroxyphenyl)-[(2,4-dihydroxyphenyl)thioxomethanesulfinyl]methanethione, 87
4-(2-Amino or nitrobenzyl)pyrazol-3-ones, acylation, 34
4-(2-Amino-thiazol-4-yl)pyrazol-3-one, formation, 52
4-Amino-2-(2'-thienyl)-5-methyl-2,4-dihydropyrazol-3-one, methylation, 29
5-Amino-1,2,4-triazoles, reaction with 1,3-bifunctional synthons, 145
reaction with tetracyanoethylene, 147
reaction with dicyano-1,4-naphthoquinone and dicyanomethylene indane-1,3-dione, 148
reaction with benzoylacetone, trifluoroacetylacetone, and 2-acetylcyclopentanone, 149
reaction with 1 -aryl-3-iminioenamines, 150
reaction with benzaldehyde and ketone, 155
reaction with acetophenone, 155
2-Amino-1,2,4-triazolo[1,5-a]pyrimidine, Sandmeyer reactions, 194
7-Amino-1,2,4-triazolo[1,5-a]pyrimidines, biological activities, 202
1-Aminotriazoloquinazolones, 161
2-Amino-3,5,7-trimethyl-1,2,4-triazolo[1,5-a]pyrimidinium salts, 151
2-Anilino-3-aminoquinazolone, reaction with triphenyl phosphine and tandem aza-Wittig/ heterocumulene mediated annulations, 161
5-Anilino-7-oxo-1,2,4-triazolo[1,5-a]pyrimidine, 148
4-Anilinopyrazol-3-one, 129
1-Aroyl-3-(3-oxopyrazol-4-yl)thioureas, 71
4-Arylideneaminopyrazol-3-ones, reaction with mercaptoacetic acid or 2-mercaptopropionic acid, 105
2-(4-Arylidene-5-oxopyrazol-3-yl)-3dimethylaminopropenals, reaction with secondary amines, 73
Arylidenepyrazol-3-ones, 1,3-dipolar cycloaddition with C-bromo- N-phenylnitrile imide, 133
(E/Z)-4-Arylidenepyrazol-3-ones, reaction with reactive methylene compounds, 106
reaction with Grignard reagents, 112
reaction with secondary amines and thiophenols, 113
1-Aryl-3-iminioenamines, reaction with aminotriazoles, 150
4-Arylmethylidenepyrazol-3-ones, reaction with hydrazines, 103
reduction with triethyl phosphite, 130
(E/Z)-Arylmethylidenepyrazol-3-ones, Vilsmeier reactions, 43
reaction with enamines, 110
(E/Z)-4-[1-(4-Arylphenylimino)-3-arylallyl]-pyrazol-3-ones, formation, 50
5-Arylsulfanylmethylpyrazol-3-one, 89
4-(Arylsulfonyl)methylpyrazol-3-ones, 78
2-Arylsulfonylpyrazol-3-ones, solvolysis, 93
4-Arylthiomethylpyrazol-3-ones, formation, 78
5-Aryl-1,2,4-triazolo[1,5-a]pyrimidines, UV spectra, 170
1-Azidonaphthalene, pyrolysis, 5
Azirinespiropyrazol-3-ones, formation, 67

4-Azophenyl-5-formyl-2-phenylpyrazol-3-one, reaction with amines, 49

4-\{(E)-2-[Benz(imid, ox, thi or selen)azol-2-yl]ethenyl $\}$ pyrazol-3-one perchlorates, formation, 48
[N-(1,3-Benzodithiol-2-ylidene)]-N-methylbenzaminium iodide, reaction with 5-aminopyrazol-3-one, 87
Benzonaphtho[1,8-bc]pyridine, 6
2-(1,3-Benzothiazol-2-yl)pyrazol-3-ones, hydrolysis, 97
4-Benzoxazinepyrazol-3-ones, formation, 42
4-Benzoyl-2,5-dimethylpyrazol-3-one, formation, 95
4-Benzoyl-2,5-diphenylpyrazol-3-one, reaction with phenylhydrazine, 54
4-Benzoylpyrazol-3-one, reaction with 4-aminobenzenesulfonamide and 4-aminoN -(heteroaryl)benzenesulfonamides, 50
5-Benzoylpyrazol-3-one, 124
2-Benzyl-4-bromo-4-methylpyrazol-3-one-5oxyacetic acid, reaction with nucleophiles, 76
Benzylidene aminoguanidine, reaction with 3-carene-derived 3-chlorovinylketone. 162
Benzylidenemalononitrile, reaction with 4-(1-aminoethylidene)pyrazol-3-one, 74
5-(2-Benzyloxy)-2-phenylpyrazol-3-one, debenzylation, 102
5-Benzylpyrazol-3-one, oxidation, 124
2-Benzylthio-5,7-dichloro-1,2,4- triazolo[1,5-a]pyrimidine, selective removal of 7-chlorine atom, 195
2-Benzylthio-5(7)-methyl-7(5)-phenyl-1,2,4-triazolo[1,5-a]pyrimidine, 149
differentiation by mass spectra of 5 and 7 isomers, 172
1, 1^{\prime}-Biisoquinoline, in dinuclear complexes, 234
4,4'-Bipyrazol-3, 3^{\prime}-dione, Vilsmeier reactions, 43
Bipyrazol-3-ones, 52, 53
4,4'-Bipyrazolylidene-3,3'-dione, reaction with diazomethane, 109
2,2'-Bipyridine, reaction with ruthenium chloro carbonyls, 222
reaction with ruthenium chlorides, 222
reaction with iron carbonyls, 225
reaction with ruthenium pentacarbonyls, 225
reaction with ruthenium complexes and sodium benzoate, 226
reaction with cyclopenyl nitroso ruthenium complexes, 226
reaction with π-complexed aromatic ruthenium complexes, 227
reaction with iron(III)acetylacetonate and aluminium alkyls, 229
reaction with ruthenium trichloride in DMF, 229
formation of mixed ruthenium complexes with methylbipyridines, 230
formation of dinuclear ruthenium complexes, 233
reaction with trisruthenium dodecacarbonyl, 235
4,4'-Bipyridine, reaction with ruthenium chloro carbonyls, 236
oxidative addition to osmium complexes, 238
formation of tetranuclear complexes, 239
$2,2^{\prime}$-Bipyridine- $4,4^{\prime}$-dicarboxylic acid, reaction with ruthenium carbonyls, 223
Bipyridylphosphines, as complexing agents, 240
2,2'-Biquinoline, formation of ruthenium complexes, 226
\{Bis[2-(2,6-dioxomorpholin-4-yl)-ethyl]-amino \}acetic acid, reaction with two equivalents of 4-aminopyrazol-3-one, 85
$2,2^{\prime}$-Bis(diphenylphosphino)-4,4'-bipyridine, reaction with ruthenium carbonyls, 239
Bismethylenedithioacetalpyrazol-3-one, 121
Bis(methylthio)methylenecyanoacetamide, reaction with 4-aminoantipyrine, 74
[Bis(methylthio)methylidene]malonitrile , reaction with 4-aminoantipyrine, 74
4-(2-Bromoethyl)-5-methylpyrazol-3-one, formation, 45
5-Bromomethyl-4-dimethylpyrazol-3-one, formation, 44
5-Bromomethyl-1-methyl-2-phenyl-4-isopropylpyrazol-3-one, formation, 43
5-Bromomethylpyrazol-3-one, formation, 43 reaction with 1,2-diaminoethanes, 2 -aminobenzene or 2-mercaptobenzoic acid 77 hydrolysis, 97
4-Bromo-5-(2-nitrophenylsulfonylmethyl)-pyrazol-3-one, reduction and debromination, 126
4-[5-(4-Bromophenyl)-2-oxo-furan-3-ylidene-aminolpyrazol-3-one, formation, 59
4-Bromopyrazol-3-one, oxidative ring cleavage, 124
6-Bromo-1,2,4-triazolo[1,5-a]pyrimidine, displacement of bromine atom, 190
cine displacement by indole, 190
Butyl-2-phenyl-5-methyl-3-hydroxypyrazol-3dithiocarboxylate, electrooxidation, 121
2-Butylthio-3,5-dimethyl-7-oxo-1,2,4-triazolo[1,5-a]pyrimidine, 180

Carbon monoxide, reaction with osmium complexes, 230
3-Carene-derived 3-chlorovinylketone, reaction with benzylidene aminoguanidine, 162
4-(2-Chloroacetylamino)pyrazol-3-one, reaction with 4-substituted-5-furan-2-yl[1,2,4]-triazole-3-thiones, 80
4-(2-Chloroacetyl)pyrazol-3-ones, reaction with thiourea or 2-cyanothioacetamide, 50
reaction with 2 -mercapto- 3 H -quinolin-4-ones, (2-mercapto-3H-benzoimidazol-5-yl)phenylmethanone, sodium 3,4-dimethoxybenzoate and 2-(4-amino-5-mercapto$4 H$-[1,2,4]triazol-3-ylmethyl)- $2 H$-phthalazin-1-one 80
2-Chloro-4,6-diarylamino-1,3,5-triazine, reaction with 4-aminoantipyrine, 84
2-Chloromethyl-1,2,4- triazolo[1,5-a]pyrimidine, reaction with lithium benzenesulfinate, 198
5-(2-Chloro-5-nitroanilino)pyrazol-3-one, reduction with iron powder, 128
2-(2-Chloro-5-nitrophenyl)pyrazol-3-one, reaction with morpholine, 81
7-[1'-(4'"-Chlorophenoxy)ethyl]- amino-1,2,4-triazolo[1,5-a]pyrimidine, anticonvulsant activity, 202
2-Chloro-1-(piperazin-1-yl)ethanone, 30
2-Chloro-1,2,4-triazolo[1,5-a]pyrimidine, displacement of chlorine atom, 190
5(7)-Chloro-1,2,4-triazolo[1,5-a]pyrimidine, nucleophilic displacement of chloride, 188 reductive dechlorination, 195
5-Chloro-6-(2,4,6-trifluorophenyl)-7-(1,1,1-trifluoroethylamino)-1,2,4-triazolo[1,5-a]pyrimidine, alkylation on $\mathrm{N}-3,181$
(E/Z)-4-Cinnamoylpyrazol-3-ones, formation, 57
2-Cyanamido-4-amino-5-arylpyrimidines, 188
4-(2-Cyanoacetyl)-1,5-dimethyl-2-phenylpyrazol-3-one, reaction with arylidene malononitriles, 99
2-Cyanoarylacrylic acids, reaction with 4aminoantipyrine, 35
6-Cyano-7-aryl-1,2,4-triazolo[1,5-a]pyrimidines, 147
4-(α-Cyanobenzyl-amino)pyrazol-3-ones, 84
N -Cyanodithiocarbonimidic acid dimethyl ester, reaction with aminopyrazoles, 86
6-Cyano-7-heterocyclyl-1,2,4-triazolo[1,5-a]pyrimidines, 147
1(2)-Cyanoindenes, formation from naphtho-[1,8-bc]triazine, 5
2-Cyano-3,3-isomethylsulfanylthioacrylamide, reaction with 4-aminoantipyrine, 74
Cyano(3-oxopyrazol-4-ylidene)acetic acid, 73

6-Cyano-7-phenyl-1,2,4-triazolo[1,5-a]pyrimidines, 147
2-Cyanothioacetamide, reaction with 4-chloroacetylpyrazol-3-one, 50
$\left[\left(\eta^{6}-1,6\right.\right.$-Cyclooctatriene $)$ ruthenium $\left(\eta^{2}-\right.$ dimethylfumarate)], reaction with $2,2^{\prime}-$ bipyridine or 1,10-phenanthroline, 226
Cyclopenta[e]indazol-3-ones, formation, 74
1,8-Dehydronaphthalene, from oxidation of 1-aminonaphtho[1,8-de]-1,2,3-triazine, 11
reaction with diphenyl disulfide, 12
formation and reaction with dimethyl acetylenedicarboxylate, 15
7-Deutero-1,2,4- triazolo[1,5-a]pyrimidines, synthetic routes, 195
Si,Si-Dialkylnaphtho[1,8-bc]siletes, 20
2,3-Diaminopyrimidones, reaction with one carbon units, 160
4-[(4,6-Diarylamino-1,3,5-triazin-2-yl)-amino]pyrazol-3-ones, formation, 84
4-Diaryl(or arylalkyl)methylpyrazol-3-ones, 113
5-Diazomethylpyrazol-3-one, 134
4-Diazo-2-phenyl-5-carboethoxypyrazol-3-one, formation and irradiation, 46
reaction with triphenylphosphine, 46
reaction with 3-hydroxy-5,5-dimethyl-cyclohex-2-enone and 3-hydroxy-inden-1-one, 46
4-Diazopyrazol-3-one salts, formation, 46
1,8-Diboron-substituted naphthalenes, formation, 20
4,4'-Dibromopyridine, in ruthenium complexes, 229
5,7-Dichloro-6-phenyl-1,2,4-triazolo[1,5-a]pyrimidine, reaction with enamines, 190
5,7-Dichloro-1,2,4-triazolo[1,5-a]pyrimidine, selective displacement of chlorine atoms, 189
formation, 191
Dicyanomethylene indane-1,3-dione, reaction with aminotriazoles, 148
4-(Dicyanomethylene)pyrazol-3-one, 109
reaction with malononitrile or ethyl cyanoacetate, 107
2,3-Dicyano-1,4-naphthoquinone, reaction with aminotriazoles, 148
1,8-Dideuterionaphthalene, 16
4-(3,3-Diethoxyacryloyl)pyrazol-3-one, reaction with phenylhydrazine, 63
Diethyl-2,5-diaminocyclohexa-1,4-diene-1,4dicarboxylate, reaction with 4- amino-1,5-dimethyl-2-phenylpyrazol-3-one, 42
Si,Si-Diethylnaphtho[1,8-bc]silete, 20

2-Difluoromethoxy-5-methyl-7-(3-trifluormethyl-phenyl)-1,2,4-triazolo[1,5-a]pyrimidine, 180
1,2-Dihydro-4-benzoyl-3H-pyrazol-3-one, reaction with hydroxylamine hydrochloride, 57
2,4-Dihydro-4-benzoyl-3H-pyrazol-3-one, reaction with hydroxylamine hydrochloride, 57
1,2-Dihydro-4-bromopyrazol-3-ones, conversion to 4-hydroxypyrazol-3-ones, 76
2,4-Dihydro-4-formyl-5-methylpyrazol-3-one, reaction with aliphatic and aromatic primary amines, 49
2,4-Dihydro-4-formyl-5-phenylpyrazol-3-one, reaction with aliphatic and aromatic primary amines, 49
1,2-Dihydro-4-formylpyrazol-3-one, condensation with carbanions, 47
reaction with acetophenones, 48
condensation with benzimidazolium perchlorates, 48
2,4-Dihydro-4-(or 5-)formylpyrazol-3-ones, condensation with primary amines, 48
1,2-Dihydropyrazol-3-one, reduction, 126
1,8-Dihydroxynaphthalene, dehydration, 8
(2,4-Dihydroxyphenyl)-[(2,4-dihydroxyphenyl)thioxomethanesulfinyl] methanethione, reaction with 5-aminopyrazol-3-ones, 87
4,4'-Diiodobipyridine, in ruthenium complexes, 229
4,4'-Di(iso-propoxycarbonyl)-2,2'-bipyridine, reaction with ruthenium chloro carbonyls, 222
μ-Di-iso-propylaminodiboranes, 20
N, N-Di-iso-propylaminodichlorophosphine, reaction with 1,8 -dilithionaphthalene, 6
N, N-Di-iso-propylaminonaphtho[1,8-bc]borete, 18
1,8-Dilithionaphthalene, 6
reaction with N, N-diisopropylaminodichlorophosphine 6
reaction with phenyl dichlorophosphine, 6
reaction with di-iso-propylaminoboron dichloride, 18
reaction with dimesitylboron fluoride, 20
reaction with dichlorodialkylsilanes, 20
reactions with dialkylgermanium dichloride, 21
4,4'-Dimethoxycarbonyl-2,2'-bipyridine, reaction with ruthenium chloro carbonyls, 223
5, 5^{\prime}-Dimethoxycarbonyl-2,2'-bipyridine, reaction with ruthenium chloro carbonyls, 223
6,6'-Dimethoxycarbonyl-2,2'-bipyridine, reaction of ruthenium carbonyls, 223
4-Dimethylamino-2,5-dimethyl-4-phenylpyrazol-3-one, formation, 76

2-Dimethylaminomethylene-3-(phenyl-hydrazono)-indan-1-one, reaction with 3-(3-oxopyrazol-4-yl)-3-oxopropionitrile, 67
4-[(Dimethylamino)methylidene]-pyrazol-3-one, reaction with cyanide ion, 73
4-Dimethylamino-4-phenyl-5-methyl-2,4-dihydropyrazol-3-one, 29
4-Dimethylamino-2-(2'-thienyl)-5-methyl-2,4-dihydropyrazol-3-one, 29
4,4'-Dimethyl-2,2'-bipyridine, reaction with ruthenium complexes, 224
reaction with osmium complexes, 225
reaction with iron carbonyls, 225
reaction with ruthenium(II) precursors, 234
6,6'-Dimethyl-2,2'-bipyridine, reaction with trisruthenium dodecacarbonyl, 235
$3,3^{\prime}$-Dimethylene- $2,2^{\prime}$-biquinoline, formation of ruthenium complexes, 226
2,5-Dimethyl-4-hydroxy-4-phenylpyrazol-3-one, reaction with diethylamine, 76
2,5-Dimethyl-4-iminophenylmethylpyrazol-3one, hydrolysis, 95
Dimethylindazole-5,6-dicarboxylate, 133
$G e, G e$-Dimethyl(1,8-naphthalenediyl)germete, formation and polymerisation, 22
Si,Si-Dimethylnaphtho[1,8-bc]siletes, 20 reactions, 21
3,5-Dimethyl-6-nitro-triazolo[1,5-a]pyrimidin-5-one, tautomerism by NMR, 168
Dimethyl(3-oxopyrazol-4-ylmethylene)ammonium perchlorate, reaction with tris(2-aminomethyl)amine, 90
2,9-Dimethyl-1,10-phenanthroline, reaction with iron carbonyls, 225
4,7-Dimethyl-1,10-phenanthroline, reaction with iron carbonyls, 225
5,6-Dimethyl-1,10-phenanthroline, formation of ruthenium complexes, 234
1,5-Dimethyl-2-phenyl-4-(4'-dialkylamino-butyramido)pyrazol-3-one, 80
1,5-Dimethyl-2-phenyl-2,4-dihydropyrazol-3-one, alkylation of 5-methyl group, 30
formation of anion, 89
1,5-Dimethyl-2-phenyl-4-isopropylpyrazol-3-one, bromination, 43
1,5-Dimethyl-2-phenyl-4-methylaminopyrazol-3-one, 33
1,5-Dimethyl-2-phenyl-4-(N-methyl- N -(2'-methylthiophenyl)aminopyrazol-3-one, 31
1,5-Dimethyl-2-phenyl-4-nitrosopyrazol-3-one, condensation with 3-phenylisoxazol$5(4 H)$-one, 63
1,5-Dimethyl-2-phenyl-3-oxopyrazole-4carbaldehyde, reaction with aniline, 49

1,5-Dimethyl-2-phenyl-4-phenyliminomethyl-pyrazol-3-one, formation, 49
2-(3,4-Dimethylphenyl)pyrazol-3-one, formation, 103
1,5-Dimethyl-4-phenylpyrazol-3-one, formation, 101
1,5-Dimethyl-5-phenylpyrazol-3-one-4-carboxylic acid, formation, 124
1,4-Dimethyl-2-phenyl-5-thiomethylpyrazol-3-one, nucleophilic reactions, 89
5,7-Dimethyl-6-phenyl-1,2,4-triazolo[1,5-a]pyrimidine, selective bromination of 7-methyl group, 196
(E/Z)-3,5-Dimethylpyrazole-1- N nitrocarboxamidine, reaction with aminopropylpyrazol-3-one, 87
5,5'-Dimethylpyridine, formation of ruthenium complexes, 234
5,7-Dimethyl-1,2,4-triazolo[1,5-a]pyrimidine, 155
reaction with olefins and ruthenium carbonyls, 182
reaction with dimethylformamide diethylacetal, 196
4,4-Dimorpholin-4-yl-2-phenyl-5-methyllpyrazol3 -one, reductive deamination, 101
Dimroth rearrangement, 155
Dinaphthyl disulfide, 16
5,7-Dioxo-1,2,4-triazolo[1,5-a]pyrimidine, tautomerism, 175
deprotonation, 178
cleavage of pyrimidine ring, 185
2,5-Diphenyl-6-cyano-7-oxo-1,2,4-triazolo[1,5-a]pyrimidine, 159
(E/Z)-Diphenyldiaza-18-crown-6bispyrazolideneacetonitrile, 110
1,2-Diphenyl-5-hydroxypyrazol-3-ones, acylation, 101
6-Diphenylphosphino-2,2'-bipyridine, reaction with polymeric ruthenium carboxylates, 239
6-(2-Diphenylphosphinoethyl)-2,2'-bipyridine, as complexing agents, 240
2,5-Diphenyl-pyrazol-3-one diazonium salt, 121
4,4'-Distyryl-2, 2'-bipyridine, formation of osmium and ruthenium complexes, 230
2,5-Disubstituted-2,4-dihydro-pyrazol-3-ones, formation of oximes, 57

5-Ethoxycarbonylmethylthiomethylpyrazol3 -ones, reactions of ester group, 90
Ethoxymethylenemalononitrile, reaction with 4-aminoantipyrine, 74
Ethyl-2-(3,4-dimethylphenyl)-3-oxopyrazol-4carboxylate, hydrolysis and decarboxylation, 103

Ethyl-2-(4-methoxybenzyl)-3-oxopyrazol-4carboxylate, hydrolysis and decarboxylation, 103
3-Ethyl-5-methyl-6-nitro-7-oxo-1,2,4-triazolo[1,5-a]pyrimidine, cleavage by N-nucleophiles, 185
cleavage by C-nucleophiles of triazole ring, 188
2-Ethyl-5-trifluoromethyl-7-oxo-1,2,4-triazolo[1,5-a]pyrimidine, 160

Fluoroalkyl(aryl) triazolopyrimidines, ${ }^{19}$ F NMR spectra, 170
6(7)-(Fluorophenyl)-1,2,4-triazolo[1,5-a]pyrimidine, displacement of fluorine by nucleophiles, 198
4-Formylaminopyrazol-3-one, 115
2-Formylenamine, reaction with aminotriazoles, 150
2-Formyl-1,2,4-triazolo[1,5-a]pyrimidine, formation, 196
2-Formylvinylchloride, reaction with aminotriazoles, 150
(E)-4-[(Furan-2-ylmethylene)amino]pyrazol-3-one, formation, 58
4-[(2-Furfuryl)methylisene]pyrazol-3-ones, 129
Furo[2,3-c:5,4-c]dipyrazoles, formation, 43

Heptanuclear metal clusters, 235
2-(2-Hetaryl)-1,8-naphthyridine, formation of ruthenium complexes, 235
Heteroleptic ruthenium(II) complexes with three different pyridyl ligands, 231
2-Hydrazinopyrimidine, reaction with one carbon units, 155
(E/Z)-4-(1-Hydrazonoethyl)pyrazol-3-one, condensation with aldehydes and tautomerism of products, 62
4-Hydrazonopyrazol-3-ones, 64
Hydrazonotrihydroxypropylpyrazol-3-ones, reduction with sodium borohydride, 128
Hydroformylation of 1-hexene, by ruthenium bipyridyl complexes, 244
4-Hydroperoxypyrazol-3-one, 115
Hydroxyalkyl-1,2,4-triazolo[1,5-a]pyrimidine, etherification, 197
4-(Hydroxyaminophenylmethylene) 2-phenyl-5-methyl-pyrazol-3-one, alkylation, 31
5-(α-Hydroxybenzyl)pyrazol-3-one, oxidation, 124
4-(3-Hydroxycyclopentyl)pyrazol-3-one, 126
3-Hydroxy-5,5-dimethyl-cyclohex-2-enone, reaction with 4- diazo-2-phenyl-5-carboethoxypyrazol-3-one, 46

4-(2-Hydroxyethyl)-5-methylpyrazol-3-ones, bromination, 45
4-Hydroxyethylpyrazol-3-ones, reaction with cyclohexylisocyanate or 4-chlorophenylisocyanate, 70
7-(1-Hydroxyethyl-1,2,4-triazolo[1,5-a]pyrimidine, acylation, 196
3-Hydroxy-inden-1-one, reaction with 4-diazo-2-phenyl-5-carboethoxypyrazol-3-one, 46
4-(Hydroxyliminophenylmethyl)-pyrazol-3-ones, 57
2-Hydroxy-5-(methoxycarbonyl)benzoic acids, reaction with 4 -aminoantipyrine, 37
Hydroxymethylhydrazonopyrazol-3-ones, formation, 128
2-Hydroxymethyl-5-methyl-7-oxo-1,2,4-triazolo[1,5-a]pyrimidine, dinitration, 182
5-Hydroxymethylpyrazol-3-one, 97
2-Hydroxymethyl-1,2,4-triazolo[1,5-a]pyrimidine, mild oxidation, 196
7-Hydroxymethyl-1,2,4-triazolo[1,5-a]pyrimidine, reaction with phenols, 198
4-[(2-Hydroxyphenyl)amino]pyrazol-3-one, O-acetylation, 39
5-(2-Hydroxyphenyl)-6-benzyl-7-phenyl-1,2,4-triazolo[1,5-a]pyrimidine, 155
5-(2-Hydroxyphenyl)-dihydro 1,2,4-triazolo-[1,5-a]pyrimidine, 153
4-Hydroxypyrazol-3-ones, from 1,2-dihydro-4-bromopyrazol-3-ones, 76
glycosidation, 88
5-Hydroxypyrazol-3-one, reaction with alcohols, 88

4-Imino-5-(nitrosomethylidene)pyrazol-3-one, 134
(E/Z)-Iminopyrazol-3-ones, formation, 59
3-Iminovinylchloride, reaction with aminotriazoles, 150
Isoxazolylpyrazol-3-ones, formation 105

3-Ketoenamine, reaction with aminotriazoles, 150

5-Lithiomethylpyrazol-3-one, formation and reaction with 1-(2-substituted cyclopropyl)-3,3-bismethylsulfanylpropenone 74
1,8-Lithionaphthalenethiol, 16
8-Lithio-1-naphthyl methyl sulfide, formation, 16
(2-Mercapto-3H-benzoimidazol-5-yl)phenylmethanone, reaction with 4-(2- chloroacetyl)pyrazol-3-ones, 80
5-Mercaptomethylpyrazol-3-one, alkylation, 30

4-[(2-Mercaptophenyl)amino]pyrazol-3-ones, 99 methylation, 31
2-Mercapto-3H-quinolin-4-ones, reaction with 4-(2- chloroacetyl)pyrazol-3-ones, 80
4-(Methoxyaminophenylmethylene)pyrazol-3-one, 57
4-(4-Methoxyanilino)pyrazol-3-one, 129
2-(4-Methoxybenzyl)pyrazol-3-one, formation and tautomerism, 103
6-Methoxycarbonyl-6'-carboxylate-2,2'bipyridine, reaction with ruthenium carbonyls, 221
4-Methoxyiminophenylmethyl]-pyrazol-3-ones, 57
4-[(Methoxymethylamino)phenylmethylene]-pyrazol-3-one, 31
5-(4-Methoxyphenyl)-1,2,4-triazolo[1,5-a]pyrimidine, 150
1-Methylamine-8-phenylnaphthalene, 6
4-Methylaminopyrazol-3-one, 129
Methyl 2-bromo-2,3-butadienoate, via oxidative ring cleavage of 4-bromopyrazol-3-one, 124
Methyl- N, N-diethylaminoacetylene, reaction with pyrazol-3-ones, 72
6-Methyl-7-diethylamino-1,2,4-triazolo[1,5-a]pyrimidine, antiischemic and cardiatonic agent, 202
(E/Z)-4-Methylenepyrazol-3-ones, 110
4-(1-Methylethylidene)pyrazol-3-ones, reaction with acetone, 108
1-Methyl-5-ethyl-2-phenyl-2,4-dihydropyrazol-3-one, 30
1-Methylideneaminonaphthalene, 6
5-Methyl-7-iodo-1,2,4-triazolo[1,5-a]pyrimidine, palladium catalysed reactions with alkynols, 190
$N^{\prime \prime}$-Methyl-4"-methylthio-2, $2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-terpyridinium hexafluorophosphate, reaction with terpyridyl ruthenium chlorides, 232
$N^{\prime \prime}$-Methyl-4"-methylthio-2, $2^{\prime}: 6^{\prime}, 4^{\prime \prime}$-terpyridinium hexafluorophosphate, reaction with terpyridyl ruthenium chlorides, 232
4-Methylnaphth-1-ol, 8
5-Methylnaphth-1-ol, 8
Methyl naphthyl sulfone, formation, 16
Methyl naphthyl sulfoxide, 18
4-Methyl-5-oxo-6-cyano-7-phenyl-1,2,4-triazolo-[1,5-a]pyrimidine, 157
Methyl 3-\{[(3-oxopyrazol-4-yl)amino]carbonyl\}-4-hydroxybenzoates, formation, 37
6-Methyl-7-oxo-1,2,4-triazolo[1,5-a]pyrimidines, use in photograpy, 204
2-(6'-Methyl-7'-oxo-1,2,4-triazolo[1,5-a]-pyrimidin- 2^{\prime}-yl)acetic acid, esterification, 200

1-Methyl-2-phenyl-4-amino-5-cyanopyrazol-3-one, 133, 134
5-Methyl-6-phenylazo-7-oxo-1,2,4-triazolo-[1,5-a]pyrimidine, tautomerism, 176
1-Methyl-2-phenyl-4-isopropyl-5-bromomethylpyrazol-3-one, hydrolysis, 97
1-Methyl-2-phenyl-4-isopropyl-5-hydroxy-methylpyrazol-3-one, reaction with N-tertbutoxycarbonyl glycine, 41
reaction with 2-(6-methoxy-2-naphthyl) propionic acid, 41
formation, 97
5-Methylsulfonyl-aminopyrazol-3-one, formation, 45
2-Methylthio-4,5-dimethyl-7-oxo-1,2,4-triazolo-[1,5-a]pyrimidine, 180
2-Methylthio-5-methyl-7-chloro-1,2,4-triazolo-[1,5-a]pyrimidine, reaction with hydroxylamine, 189
1-Methylthionaphthalene, formation, 16
1-Methylthio-8-(naphthyl-1-thio)naphthalene, 18
2-(2-Morpholin-4-yl-5-nitrophenyl)pyrazol-3one, formation, 81
4-Morpholin-4-yl-2-phenyl-5-methylpyrazol-3one, formation, 101

1,8-Naphthalenediylmagnesium, reaction with dialkylgermanium dichlorides, 22
1-Naphthalenesulfonamide, formation, 17
Naphtho[1,8-cd][1,2,6]azadiborinine, 19
Naphtho[1,8-bc]azete, failure to synthesise, 5
Naphtho[1,8-bc]azetidine, attempted synthesis, 5
Naphtho[1,8-bc]borete, 18
reaction with diborane and diethylborane, 20
Naphtho[1,8-bc]cyclobutanes, formation, 22
Naphtho[1,8-de]2,4-dihydro-1,3-dithiin-2-thione, formation, 11, 14
Naphtho[1,8-bc]1,2-dithiol 1,1-dioxide, photolysis, 11
α-Naphthol, oxidation by iron(III) chloride, 8
Naphtho[1,8-bc]1,2-oxathiol-S,S-dioxide, pyrolysis with sulfur dioxide elimination, 8
Naphth[1,8-bc]oxete, 8
Naphtho[1,8-bc]silete, 20
Naphthothiadiazine, thermolysis, 11
Naphtho[1,8-de]1,2,3-thiadiazine, photolysis or thermolysis, 11
Naphtho[1,8-de]1,2,3-thiadiazine-S-oxide, 12
Naphthothiadiazine sulfone, 13
Naphtho[1,8-de]thiazole S, S-dioxide, attempts to eliminate sulfur dioxide, 5
Naphtho[1,8-bc]thiete, formation, 10, 11
by photolysis of naphthothiadiazine, 12
physical properties, 13
photolysis or thermolysis, 14
reaction with nucleophiles including metal hydrides and organometallic compounds, 15
reaction with lithium aluminum hydride, 16
reaction with methyllithium, 16
oxidation, 17
reaction with trimethyloxonium tetrafluoroborate, 18
Naphtho[1,8-bc]thiete-S,S-dioxide, formation, 10,13
X-ray diffraction analysis, 14
reaction with methyllithium and water, 16
Naphtho[1,8-bc]thiete-S-oxide, formation, 10, 12
photolysis and thermolysis, 14
reaction with lithium aluminium hydride, 16
Naphtho[1,8-bc]triazine, pyrolysis or photolysis in attempts to remove nitrogen, 5
Naphthylamine, formation from naphtho[1,8-bc]triazine, 5
1-Naphthyl thiochloride, 16
4-(2-Nitrobenzyl)pyrazol-3-ones, 128
6-Nitro-7-(4-dimethylaminophenyl)-1,2,4-triazolo[1,5-a]pyrimidine, cleavage in neutral media, 185
6-Nitro-7-oxo-1,2,4-triazolo[1,5-a]pyrimidine, prototropic tautomerism by mass spectra, 172
tautomerism in solid phase, 175
alkylation, 180
p-Nitrophenylacetylene, reaction with ruthenium bipyridyl complexes and thallium hexafluorophosphate, 229
2-(4-Nitrophenyl)-4,4-dinitro-5-methylpyrazol-3-one, themal decomposition, 101
4-[(2-Nitrophenyl)methylidene]pyrazol-3-one, 129
reduction, 128
2-(4-Nitrophenyl)-5-methylpyrazol-3,4-dione, formation, 101
4-[(2-Nitrophenyl)thio]pyrazol-3-ones, reduction, 98
3-Nitropyrazolo[4,3-c]isoselenazol-6-one, 133
4-Nitropyrazol-3-ones, reduction, 125
Nitroso and nitride complexes of ruthenium carbonyl complexes, 222
4-Nitrosoantipyrine, reduction, 128
4-Nitrosopyrazol-3-one, 128
6-Nitro-1,2,4-triazolo[1,5-a]pyrimidine, addition of acetone, dimedone, 182
reaction with 1,2-dimethylpyridinium perchlorates, 183
reaction with C-nucleophiles, 185

Osmium polypyridine complexes, as photocatalysts, 241
as electrocatalysts for the reduction of carbon monoxide, 243
1-Oxa-5,6-diazaspiro[2.4]-hept-6-ene-4-ones, 118
(E/Z)-4-Oxo-4-aryl-2-(3-oxopyrazol-4-ylamino)-but-2-enoic acid, 59
N-(3-Oxo-1-benzyl-4-methyl-5-phenyl)pyrazol-2-yl)-acetamides, debenzylation, 102
4-[3-(4-Oxo-4H-chromen-3-yl)acryloyl]pyrazol-3-one, reaction with hydroxylamine, 55
4-[5-(4-Oxo-4H-chromen-3-yl)isoxazol-3-yl]-pyrazol-3-one, formation, 55
4-(4-Oxocyclohexa-2,5-dienylideneamino)-pyrazol-3-one, 123
4-(6-Oxocyclohexa-2,4-dienylideneamino)-pyrazol-3-one, 123
N-(3-Oxo-4-methyl-5-phenyl)pyrazol-2-yl)acetamides, 102
2-Oxo-5-methyl-7-(3-trifluoromethylphenyl)-1,2,4-triazolo[1,5-a]pyrimidine, reaction with difluorocarbene, 180
4-[3-Oxo-3-phenyl(or 4-methylphenyl)prop-1-enyl]pyrazol-3-ones, formation, 48
3-Oxopyrazole-4-carbothioic acid hydrazide, reaction with carbon disulfide, 71
3-Oxopyrazole-4-carboxylic acid, reaction with thionyl chloride and sulfonamides, 90
4-(5-Oxopyrazolidin-4-ylideneamino)pyrazol-3-one, 59
2-(3-Oxopyrazol-2-yl)acetamides, formation, 38 hydrolysis, 93
N-(3-Oxopyrazol-4-yl)acrylamides, formation, 35
2-(3-Oxopyrazol-2-yl) amides, formation, 38
N-(3-Oxopyrazol-4-yl)-4-amides, 34
4-[(5-Oxopyrazol-4-yl)arylmethyl]pyrazol-3-ones, oxidation, 116
2-(3-Oxopyrazol-4-ylazo)-3-oxobutyric acid ethyl ester, reaction with 4 -substituted thiosemicarbazides, 64
reaction with hydrazine hydrate, 64
reaction with 2-hydrazino-3-aryl-3 H -quinazolin-4-ones, 64
4-(3-Oxopyrazol-4-ylazo)-5-oxopyrazole-1carbothioic acid amides, formation, 64
3-(3-Oxopyrazol-4-ylazo)pentane-2,4-dione, condensation with hydrazine hydrate, 64
reaction with 2-hydrazino-3-aryl-3 H -quinazolin-4-ones, 64
4-(5-Oxopyrazol-4-ylazo)pyrazol-3-ones, formation, 64
2-[4-(3-Oxopyrazol-4-ylazo)pyrazol-1-yl]-quinazolin-4-ones, formation, 64
N-(3-Oxopyrazol-4-yl)formamide, 115

2-[(3-Oxopyrazol-4-yl)hydrazono]malonic acid diethyl ester, reaction with hydrazines, 66
[3-Oxopyrazol-4-yl)hydrazono]-1-(4-oxoquinazolin-2-yl)pyrazolidine-3,5-diones, formation 66
3-[(3-Oxopyrazol-4-yl)hydrazono]pentane-2,4dione, formation, 46
4-[5-(3-Oxopyrazol-4-ylidine-3-one)-1,2,4-trithioxolan-3-ylidene]pyrazol-3-one, 121
3-(3-Oxopyrazol-4-ylimino)indol-2-ones, 60
4-(3-Oxopyrazol-4-ylimino)isoxazol-5-one, formation, 63
[(3-Oxopyrazolyl)(methyl)amino]methanesulfonate, oxidation by molecular oxygen, 115
(3-Oxopyrazol-4-ylmethylene)hydrazide, formation, 49
6-(3-Oxopyrazol-4-yl) nicotinonitrile, formation, 74
3-(3-Oxopyrazol-4-yl)-3-oxopropionitrile, conversion to pyrazol-3-ones, 66
reaction with 2-dimethylaminomethylene-3-(phenylhydrazono)-indan-1-one, 67
6-(3-Oxopyrazol-4-yl)-2-oxo-1,2,3,4-tetrahydropyridine/2-hydroxy-6-(3-oxopyrazol-4-yl)-3,4-dihydropyridine adducts, 99
3-[(3-Oxopyrazol-4-yl)phenylmethyl]-benzo[b][1,4]diazepin-2-one, 105
4-[(3-Oxopyrazol-4-yl)(phenyl)methyl]isoxazol-5-one, 105
4-[(3-Oxopyrazol-4-yl)(phenyl)methyl]pyrazol-3-one, 105
5-[(3-Oxopyrazol-4-yl)phenylmethyl]-2-thioxopyrimidin-4-one, 105
1-(3-Oxopyrazol-4-yl)-3-phenylthiourea, reaction with malonic acid, 92
2-(3-Oxopyrazol-1-yl)-3-phenylureas, 70
N-(3-Oxopyrazol-4-yl)propenamides, 34
N-[3-(3-Oxopyrazol-4-yl)propyl]guanidine, formation, 87
(3-Oxopyrazol-4-yl)pyridazin-3-ones, formation, 69
3-(3-Oxopyrazol-4-yl)-3H-quinazolin-4-one, formation, 61
1-(Oxopyrazol-4-yl)-3-substituted thioureas, reaction with oxalyl dichloride, 92
1-(3-Oxopyrazol-4-yl)-3-substituted-2-thioxoimidazolidine-4,5-diones, formation, 92
N1-(3-Oxopyrazol-4-yl)sulfonamides, alkylation, 29
(3-Oxopyrazol-4-yl)sydnonimine hydrochlorides, 84
[4-(3-Oxopyrazol-4-yl)thiazol-2-yl]acetonitrile, formation, 52
N-(3-Oxopyrazol-4-yl)thiobenzamide, formation, 87
(3-Oxopyrazol-4-yl)thioureas, 71
1-(3-Oxopyrazol-4-yl)-2-thioxopyrimidine-4,6dione, 92
5-Oxo-substituted-1,2,4-triazolo[1,5-a]pyrimidines, tautomerism, 175
$\mathrm{p} K_{\mathrm{a}}$ values, 177
7-Oxo-substituted-1,2,4-triazolo[1,5-a]pyrimidines, proton spectra, 165
${ }^{13}$ C NMR spectra, 168
${ }^{15} \mathrm{~N}$ NMR spectra, 169
UV spectra, 170
IR spectra, 172
prototropic tautomerism, 174
$\mathrm{p} K_{\mathrm{a}}$ values, 177
N -alkylation, 178
electrophilic substitutions, 182
conversion to amines, 191
4-Oxo-triazolo[4,3-a]pyrimidine, 151
7-Oxo-1,2,4-triazolo[1,5-a]pyrimidine, 151
[5-Oxo-2-(2,4,6-trichlorophenyl)-pyrazol-3-yl]carbamic acid 4-nitrophenyl ester, Smiles rearrangement, 100
3-(5-Oxoxazol-4-ylidenemethyl)-1 H -quinolin-2one, reaction with 4-aminopyrazol-3-one, 84

P-substituted naphtho[1,8-bc]phosphete, formation and reaction with tungsten pentacarbonyl, 6
further reaction with tetratriphenylphosphinate and carbon monoxide, 6
6-(Perfluorohexylcarboxy)-7-oxo-1,2,4- triazolo-[1,5-a]pyrimidines, as rust inhibitors, 205
5-Perfluorohexyl-7-methyl-1,2,4-triazolo[1,5-a]pyrimidine, 155
Peri-annulated borodiazine, formation, 20
Peri-annulated diphosphetol, 7
Peri-annulation, 1
Peri-fused naphthalene derivatives with fourmembered carbon and hetero rings, methods of preparation, 4
semi-empirical and ab initio calculations, 4
1,10-Phenanthroline, reaction with ruthenium chlorides, 222
reaction with iron carbonyls, 225
reaction with ruthenium complexes and sodium benzoate, 226
reaction with π-complexed aromatic ruthenium complexes, 227
reaction with tris-iron complexes, 228
formation of dinuclear ruthenium complexes, 233
(E/Z)-5-Phenyl(or phenylamino)-4-(arylhydra-zono)pyrazol-3-ones, formation, 94
5-Phenyl-6-cyano-7-oxo-1,2,4-triazolo[1,5-a]pyrimidine, 157
1-Phenyl-2,4-dibenzoyl-5-hydroxypyrazol-3-one, acylation, 101
2-Phenyl-4,4-di-(N-morpholino)-5-methylpyrazol-3-one, hydrolysis, 95
(E/Z)-4-(Phenylhydrazonomethyl)-2,5-diphenyl-pyrazol-3-one, formation, 55
1-Phenyl-5-hydroxypyrazol-3-one, reaction with aroyl chlorides, 88
3-Phenylisoxazol-5(4H)-one, reaction with 1,5-dimethyl-2-phenyl-4-nitrosopyrazol-3-one, 63
2-Phenyl-5-methylpyrazol-3,4-dione, formation, 95
5-Phenyl-7-methyl-1,2,4-triazolo[1,5a]pyrimidine, 153
2-Phenyl-4-phenylazo-5-formylpyrazol-3-one, formation, 123
1-Phenyl-4-phenylazo-5-hydroxypyrazol-3-one, acetylation, 39
2-Phenyl-4-phenylhydrazino-5-methylpyrazol3 -one, reaction with methyl- N, N diethylaminoacetylene, 72
4-(Phenylpropylaminomethylene-pyrazol-3-ones, formation, 50
3-Phenyl-1-propylaminopropylidene)-pyrazol-3-ones, formation, 50
2-Phenylsulfonamido-5,7-dimethoxy-1,2,4-triazolo[1,5-a]pyrimidine, reaction with thiomethyl anions, 190
2-Phenyl-5-sulfonamidopyrazol-3-one, formation, 45
(E/Z)-2-Phenylsulfonylpyrazol-3-ones, desulfonation, 94
7-Phenyl-1,2,4-triazolo[1,5-a]pyrimidine, 155
4-Piperidinomethylpyrazol-3-one, reaction with thiols, 78
Plyediene, lack of aromaticity, 2
Polypyridine ligands with non-transition and early transition metals, 221
Potassium thiocyanate, displacement of chloride ions from ruthenium complexes, 223
2-i-Propyl-1,8-naphthyridine, formation of ruthenium complexes, 235
Pyrazol-4,5-dione-4-oximes, benzoylation, 40
Pyrazol-4,5-dione-4-[N-(pyrazol-4-yl)]hydrazone, oxidative cleavage, 120
Pyrazol-3-one-4-dithiocarboxylic acid, oxidization with iodine, 121

Pyrazol-3-one ethyl esters, conversion to methyl esters, 90
3-(Pyrazol-4-yl)-2-arylthiazolidin-4-ones, formation, 105
4-(Pyrazol-4-ylazo)pyrazol-3-ones, formation, 64
Pyrazolylcyclohexane-spirothiazolidinone, cyclodehydration, 69
(E/Z)-4-[2-(Pyrazol-4-ylidene)hydrazino]pyrazol-3-ones, 64
4-Pyrazol-4-ylmethylene)pyrazol-3-one, formation and structure by X-ray crystallography, 109
4-(Pyrazol-5-yl)pyrazol-3-one, formation, 63
Pyrazolylpyrazol-3-one/bis(pyrazolyl)methane perchlorates, 109
(Pyrazol-4-yl)(pyrrol-3-yl or indol-3-yl)malononitriles, 109
Pyrazylpyrazol-3-ones, formation, 105
(E/Z)-4-[(Pyridin-2-ylmethylene)amino]pyrazol-3-one, formation, 58
2-Pyridylcarboxylic acid, reaction with bipyridyl complexes of ruthenium, 222
p-Quinonepyrazol-3-one, 122

Ratio of bond angles C4-C10-C5/C1-C9-C8, r, 4
2-Ribosyl-5,7-dimethyl -1,2,4-triazolo[1,5a]pyrimidine, 164
Ruthenium(II) naphthyridine complex, electrochemical reduction, 241
Ruthenium(II) polymers, structures, 243
Ruthenium polypyridine complexes, as catalysts, 241
electrochemical carboxylation of acetophenone, 242
Ruthenium(I)-ruthenium(II) tetramers, structure, 243

Sodium $2,2^{\prime}$-bipyridyl, reaction with ferric chloride, and carbon monoxide, 223
Sodium 3,4-dimethoxybenzoate, reaction with 4-(2-chloroacetyl)pyrazol-3-ones, 80
Sodium 1-naphthalenesulfonate, formation, 17
Solid-phase and solution-phase parallel syntheses of 1,2,4-triazolo[1,5-a]pyrimidines, 145
Spiro[1,3-benzothiazole-2,4'-pyrazol]-3'-ones, 98 Spiropyrazol-3-ones, 107
(E/Z)-4-\{[5-(4'-Substituted biphenyl-4-yl)-furan-2-ylmethylene]-amino\}pyrazol-3-ones, formation, 59
1-(2-Substituted cyclopropyl)-3,3bismethylsulfanylpropenone, reaction with 5-lithiomethylpyrazol-3-one, 74

5-[4-(2-Substituted cyclopropyl)-2-methyl-sulfanyl-4-oxo-but-2-enyl]pyrazol-3-one, 74
4-Substituted-5-furan-2-yl[1,2,4]-triazole-3thiones, reaction with 4-(2-chloroacetyl-amino)pyrazol-3-one, 80
(E)-[Substituted methyleneamino]pyrazol-3-ones, 58
(E/Z)-4[(Substituted methylene)amino]pyrazol-3-ones, formation, 59
4-(Substituted methylene)pyrazol-3-ones, oxidation, 118
2-Sulfonamido-5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine, formation, 194
2-Sulfonamido-1,2,4-triazolo[1,5-a]pyrimidines, as herbicides, 202
metabolism, 203
$2,2^{\prime}: 6^{\prime} 2^{\prime \prime}$-Terpyridine, as a bidentate ligand in ruthenium complexes, 223
formation of tridentate coordination of the ligand, 224
formation of ruthenium complexes, 225, 231
2,3,4,5-Tetrafluorylbenzoyl chloride, reaction with 5-amino-1,2,4-triazoles, 147
2-(Thiazol-2-yl)pyrazol-3-one esters, hydrolysis, 97
(E/Z)-4-[(2-Thienyl or arylmethylidene)amino]-pyrazol-3-one, 58
6-(2-Thienyl)-2,2'-bipyridine, formation of ruthenium complexes, 225
2-Thio-5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine, S-alkylation, 193
reaction with α, α^{\prime}-dichloroacetone, 193
2-Thiomethyl-6-benzamido-7-oxo-1,2,4-triazolo[1,5-a]pyrimidine, 155
2-Thiomethyl-5-methyl-7-tosylhydrazono-1,2,4-triazolo[1,5-a]pyrimidine, tautomerism, 176 loss of tosyhydrazine group, 194
2-Thiophenecarbonyl chloride, reaction with 5-aminopyrazol-3-one, 38
Thiourea, reaction with 4-chloroacetylpyrazol-3-one, 50
4-Thioxanthen-9-yl-pyrazol-3-one, oxidation, 119
4-Thioxanthen-9-yl-pyrazol-3-one-10,10-dioxide, 119
4-(5-Thioxo[1,3,4]thiadiazol-2-yl)-pyrazol-3-one, formation, 71
3,4-Toluenedithiol, reaction with ruthenium bipyridyl complexes, 224
Torsion angle C1-C9-C10-C5, p, 4
1,2,4-Triazolo[1,5-a]pyrimidines, microwave spectrum, 164
S1-S0 electronic absorption, 172
calculated enthalpies of formation, 174
protonation on $\mathrm{N}-3,177$
reaction with resorcinol, 183
substituted by acetic and malonic acids, decarboxylation, 196
1,2,4-Triazolo[1,5-a]pyrimidin-5-one, X-ray structure analysis, 164
Triazolopyrimidinylium aminides, spectra and structure, 176
Triazoloquinazolones, 161
2-(2,4,6-Trichlorophenyl)-5-(4-nitrophenyl-amino)pyrazol-3-one, formation, 100
2,5,7-Trichloro-1,2,4-triazolo[1,5-a]pyrimidine, selective displacement of 7-chlorine atom, 190
2-Trifluoromethyl-5,7-dimethyl-6-chloro-1,2,4-triazolo[1,5-a]pyrimidine, 151
2-Trifluoromethyl-5-methyl-7-oxo-1,2,4-triazolo-[1,5-a]pyrimidines, crystal structure, 175
5(7)-Trifluoromethyl-1,2,4-triazolo[1,5-a]pyrimidine, 150

3-(1,2,3-Trihydroxy)pyrazole-4,5-dione-4(phenylhydrazone), acetylation and benzoylation, 39
5-(1,2,3-Trihydroxy)pyrazol-3-ones, acetylation and benzoylation, 39
3, 3^{\prime}-Trimethylene-2, 2^{\prime}-biquinoline, formation of ruthenium complexes, 226
1,4,5-Trimethyl-2-phenylpyrazol-3-one, reaction with thionyl chloride and pyridine, followed by addition of ethyl-3-amino-2-butenoates, 102
oxidative cleavage, 124
Tris(2-aminomethyl)amine, 90
Trispyrazol-3-one amine, 90

4-Unsubstituted 2,4-dihydropyrazol-3-ones, reaction with 4-toluenesulfonylazide or aziridinium salts, 46

Water-gas shift reaction, catalysed by ruthenium bipyridyl complexes, 244

[^0]: ${ }^{a-c}$ See Table 4 for footnotes (a-c).

[^1]: ${ }^{\text {a }} \mathrm{OH}, \mathrm{NHNH}_{2}$ or tautomeric oxo, hydrazono group, respectively.
 ${ }^{\mathrm{b}} \mathrm{R}$: alkyl, R^{\prime} : aryl; R^{1} : other R in leaving group.

[^2]: ${ }^{1}$ Not Trapymin as earlier misprinted ($93 \mathrm{AHC}(57) 81$, p. 127).

