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Basic Differentiation Rules

Basic Integration Formulas

 1. 
d
dx

[cu] = cu′

 4. 
d
dx[

u
v] =

vu′ − uv′
v2

 7. 
d
dx

[x] = 1

10. 
d
dx

[eu] = euu′

13. 
d
dx

[sin u] = (cos u)u′

16. 
d
dx

[cot u] = −(csc2 u)u′

19. 
d
dx

[arcsin u] =
u′

√1 − u2

22. 
d
dx

[arccot u] =
−u′

1 + u2

25. 
d
dx

[sinh u] = (cosh u)u′

28. 
d
dx

[coth u] = −(csch2 u)u′

31. 
d
dx

[sinh−1 u] =
u′

√u2 + 1

34. 
d
dx

[coth−1 u] =
u′

1 − u2

 2. 
d
dx

[u ± v] = u′ ± v′

 5. 
d
dx

[c] = 0

 8. 
d
dx

[∣u∣] =
u

∣u∣(u′), u ≠ 0

11. 
d
dx

[loga u] =
u′

(ln a)u

14. 
d
dx

[cos u] = −(sin u)u′

17. 
d
dx

[sec u] = (sec u tan u)u′

20. 
d
dx

[arccos u] =
−u′

√1 − u2

23. 
d
dx

[arcsec u] =
u′

∣u∣√u2 − 1

26. 
d
dx

[cosh u] = (sinh u)u′

29. 
d
dx

[sech u] = −(sech u tanh u)u′

32. 
d
dx

[cosh−1 u] =
u′

√u2 − 1

35. 
d
dx

[sech−1 u] =
−u′

u√1 − u2

 3. 
d
dx

[uv] = uv′ + vu′

 6. 
d
dx

[un] = nun−1u′

 9. 
d
dx

[ln u] =
u′
u

12. 
d
dx

[au] = (ln a)auu′

15. 
d
dx

[tan u] = (sec2 u)u′

18. 
d
dx

[csc u] = −(csc u cot u)u′

21. 
d
dx

[arctan u] =
u′

1 + u2

24. 
d
dx

[arccsc u] =
−u′

∣u∣√u2 − 1

27. 
d
dx

[tanh u] = (sech2 u)u′

30. 
d
dx

[csch u] = −(csch u coth u)u′

33. 
d
dx

[tanh−1 u] =
u′

1 − u2

36. 
d
dx

[csch−1 u] =
−u′

∣u∣√1 + u2

 1. ∫kf(u) du = k∫f(u) du

 3. ∫du = u + C

 5. ∫du
u

= ln∣u∣ + C

 7. ∫au du = ( 1
ln a)au + C

 9. ∫cos u du = sin u + C

11. ∫cot u du = ln∣sin u∣ + C

13. ∫csc u du = −ln∣csc u + cot u∣ + C

15. ∫csc2 u du = −cot u + C

17. ∫csc u cot u du = −csc u + C

19. ∫ du
a2 + u2 =

1
a

 arctan 
u
a

+ C

 2. ∫[ f(u) ± g(u)] du = ∫f(u) du ± ∫g(u) du

 4. ∫un du =
un+1

n + 1
+ C, n ≠ −1

 6. ∫eu du = eu + C

 8. ∫sin u du = −cos u + C

10. ∫tan u du = −ln∣cos u∣ + C

12. ∫sec u du = ln∣sec u + tan u∣ + C

14. ∫sec2 u du = tan u + C

16. ∫sec u tan u du = sec u + C

18. ∫ du

√a2 − u2
= arcsin 

u
a

+ C

20. ∫ du

u√u2 − a2
=

1
a

 arcsec 
∣u∣
a

+ C
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TRIGONOMETRY

Definition of the Six Trigonometric Functions
Right triangle definitions, where 0 < θ < π�2. 
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Adjacent

θ
Hypotenuse

O
pp

os
ite

    sin θ =
opp
hyp

 csc θ =
hyp
opp

    cos θ =
adj
hyp

 sec θ =
hyp
adj

    tan θ =
opp
adj

 cot θ =
adj
opp

Circular function definitions, where θ is any angle.

θ
x

y

x

r

(x, y)
r = x2 + y2

y
    sin θ =

y
r
   csc θ =

r
y

    cos θ =
x
r
   sec θ =

r
x

    tan θ =
y
x
   cot θ =

x
y

Reciprocal Identities

sin x =
1

csc x
 sec x =

1
cos x

 tan x =
1

cot x

csc x =
1

sin x
 cos x =

1
sec x

 cot x =
1

tan x

Quotient Identities

tan x =
sin x
cos x

 cot x =
cos x
sin x

Pythagorean Identities
sin2 x + cos2 x = 1

1 + tan2 x = sec2 x    1 + cot2 x = csc2 x

Cofunction Identities

sin(π2 − x) = cos x  cos(π2 − x) = sin x

csc(π2 − x) = sec x  tan(π2 − x) = cot x

sec(π2 − x) = csc x  cot(π2 − x) = tan x

Even/Odd Identities
sin(−x) = −sin x cos(−x) = cos x

csc(−x) = −csc x tan(−x) = −tan x

sec(−x) = sec x cot(−x) = −cot x

Sum and Difference Formulas
sin(u ± v) = sin u cos v ± cos u sin v

cos(u ± v) = cos u cos v ∓ sin u sin v

tan(u ± v) =
tan u ± tan v

1 ∓ tan u tan v

Double-Angle Formulas
sin 2u = 2 sin u cos u
cos 2u = cos2 u − sin2 u = 2 cos2 u − 1 = 1 − 2 sin2 u

tan 2u =
2 tan u

1 − tan2 u

Power-Reducing Formulas

sin2 u =
1 − cos 2u

2

cos2 u =
1 + cos 2u

2

tan2 u =
1 − cos 2u
1 + cos 2u

Sum-to-Product Formulas

sin u + sin v = 2 sin(u + v
2 ) cos(u − v

2 )
sin u − sin v = 2 cos(u + v

2 ) sin(u − v
2 )

cos u + cos v = 2 cos(u + v
2 ) cos(u − v

2 )
cos u − cos v = −2 sin(u + v

2 ) sin(u − v
2 )

Product-to-Sum Formulas

sin u sin v =
1
2

[cos(u − v) − cos(u + v)]

cos u cos v =
1
2

[cos(u − v) + cos(u + v)]

sin u cos v =
1
2

[sin(u + v) + sin(u − v)]

cos u sin v =
1
2

[sin(u + v) − sin(u − v)]
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Welcome to Calculus: Early Transcendental Functions, Seventh Edition. We are excited to offer you a new edition 
with even more resources that will help you understand and master calculus. This textbook includes features and resources 
that continue to make Calculus: Early Transcendental Functions, Seventh Edition, a valuable learning tool for students 
and a trustworthy teaching tool for instructors.

Calculus: Early Transcendental Functions, Seventh Edition, provides the clear instruction, precise mathematics, and 
thorough coverage that you expect for your course. Additionally, this new edition provides you with free access 
to three companion websites:

•  CalcView.com––video solutions to selected exercises

•  CalcChat.com––worked-out solutions to odd-numbered exercises and access to online tutors

•  LarsonCalculus.com––companion website with resources to supplement your learning

These websites will help enhance and reinforce your understanding of the material presented in
this text and prepare you for future mathematics courses. CalcView® and CalcChat® are also
available as free mobile apps.

Features

NEW ®

The website CalcView.com contains video
solutions of selected exercises. Watch 
instructors progress step-by-step through 
solutions, providing guidance to help you 
solve the exercises. The CalcView mobile app 
is available for free at the Apple® App Store® 

or Google Play™ store. The app features an 
embedded QR Code® reader that can be used 
to scan the on-page codes  and go directly 
to the videos. You can also access the videos
at CalcView.com.

UPDATED ®

In each exercise set, be sure to notice the reference to 
CalcChat.com. This website provides free step-by-step 
solutions to all odd-numbered exercises in many of 
our textbooks. Additionally, you can chat with a tutor, 
at no charge, during the hours posted at the site. 
For over 15 years, millions of students have visited 
this site for help. The CalcChat mobile app is 
also available as a free download at the Apple® 
App Store® or Google Play™ store and features 
an embedded QR Code® reader.

viii

Preface

App Store is a service mark of Apple Inc. Google Play is a trademark of Google Inc. 
QR Code is a registered trademark of Denso Wave Incorporated.
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Preface ix

REVISED LarsonCalculus.com
All companion website features have been updated based on this revision. Watch videos explaining 
concepts or proofs from the book, explore examples, view three-dimensional graphs, download articles 
from math journals, and much more.

NEW Conceptual Exercises
The Concept Check exercises and Exploring Concepts exercises appear in each section. These
exercises will help you develop a deeper and clearer knowledge of calculus. Work through these
exercises to build and strengthen your understanding of the calculus concepts and to prepare you for 
the rest of the section exercises.

REVISED Exercise Sets
The exercise sets have been carefully and extensively examined to ensure they are rigorous and 
relevant and to include topics our users have suggested. The exercises are organized and titled 
so you can better see the connections between examples and exercises. Multi-step, real-life exercises 
reinforce problem-solving skills and mastery of concepts by giving you the opportunity to apply the 
concepts in real-life situations.

REVISED Section Projects
Projects appear in selected sections and encourage you to explore applications related to the topics 
you are studying. We have added new projects, revised others, and kept some of our favorites. 
All of these projects provide an interesting and engaging way for you and other students to work 
and investigate ideas collaboratively.

Table of Contents Changes
Based on market research and feedback from users, we have made several changes to the table 
of contents.

•   We added a review of trigonometric functions (Section 1.4) to Chapter 1.

•   To cut back on the length of the text, we moved previous Section 1.4 Fitting Models to Data
(now Appendix G in the Seventh Edition) to the text-specific website at CengageBrain.com.

•   To provide more flexibility to the order of coverage of calculus topics, Section 4.5 Limits at 
Infinity was revised so that it can be covered after Section 2.5 Infinite Limits. As a result of this 
revision, some exercises moved from Section 4.5 to Section 4.6 A Summary of Curve Sketching.

•   We moved Section 5.6 Numerical Integration to Section 8.6.

•   We moved Section 8.7 Indeterminate Forms and L’Hôpital’s Rule to Section 5.6.

Chapter Opener
Each Chapter Opener highlights real-life applications used in the examples and exercises.
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x Preface

Section Objectives
A bulleted list of learning objectives provides 
you with the opportunity to preview what will 
be presented in the upcoming section.

Theorems
Theorems provide the conceptual framework 
for calculus. Theorems are clearly stated and 
separated from the rest of the text by boxes 
for quick visual reference. Key proofs often 
follow the theorem and can be found at 
LarsonCalculus.com.

Definitions
As with theorems, definitions are clearly stated 
using precise, formal wording and are separated 
from the text by boxes for quick visual reference.

Explorations
Explorations provide unique challenges to
study concepts that have not yet been formally 
covered in the text. They allow you to learn by 
discovery and introduce topics related to ones 
presently being studied. Exploring topics in this 
way encourages you to think outside the box.

Remarks
These hints and tips reinforce or expand upon 
concepts, help you learn how to study 
mathematics, caution you about common errors, 
address special cases, or show alternative or
additional steps to a solution of an example. 

How Do You See It? Exercise
The How Do You See It? exercise in each section presents a problem that you will solve
by visual inspection using the concepts learned in the lesson. This exercise is excellent for
classroom discussion or test preparation.

Applications
Carefully chosen applied exercises and examples are included throughout to address the
question, “When will I use this?” These applications are pulled from diverse sources, such
as current events, world data, industry trends, and more, and relate to a wide range of interests.
Understanding where calculus is (or can be) used promotes fuller understanding of the material.

Historical Notes and Biographies
Historical Notes provide you with background information on the foundations of calculus. 
The Biographies introduce you to the people who created and contributed to calculus.

Technology
Throughout the book, technology boxes show you how to use technology to solve problems 
and explore concepts of calculus. These tips also point out some pitfalls of using technology.

Putnam Exam Challenges
Putnam Exam questions appear in selected sections. These actual Putnam Exam questions will
challenge you and push the limits of your understanding of calculus.

206 Chapter 4 Applications of Differentiation

4.1 Extrema on an Interval

 Understand the definition of extrema of a function on an interval.
 Understand the definition of relative extrema of a function on an open interval.
 Find extrema on a closed interval.

Extrema of a Function
In calculus, much effort is devoted to determining the behavior of a function f  on an 
interval I. Does f  have a maximum value on I? Does it have a minimum value? Where 
is the function increasing? Where is it decreasing? In this chapter, you will learn 
how derivatives can be used to answer these questions. You will also see why these 
questions are important in real-life applications.

Definition of Extrema

Let f  be defined on an interval I containing c.

1. f (c) is the minimum of f  on I when f (c) ≤ f (x) for all x in I.

2. f (c) is the maximum of f  on I when f (c) ≥ f (x) for all x in I.

The minimum and maximum of a function on an interval are the extreme 
values, or extrema (the singular form of extrema is extremum), of the function 
on the interval. The minimum and maximum of a function on an interval are 
also called the absolute minimum and absolute maximum, or the global 
minimum and global maximum, on the interval. Extrema can occur at interior 
points or endpoints of an interval (see Figure 4.1). Extrema that occur at the 
endpoints are called endpoint extrema.

A function need not have a minimum or a maximum on an interval. For instance, in 
Figures 4.1(a) and (b), you can see that the function f (x) = x2 + 1 has both a minimum 
and a maximum on the closed interval [−1, 2] but does not have a maximum on the 
open interval (−1, 2). Moreover, in Figure 4.1(c), you can see that continuity (or the 
lack of it) can affect the existence of an extremum on the interval. This suggests the 
theorem below. (Although the Extreme Value Theorem is   intuitively plausible, a proof 
of this theorem is not within the scope of this text.)

ThEorEm 4.1 The Extreme Value Theorem

If f  is continuous on a closed interval [a, b], then f  has both a minimum and a 
maximum on the interval.

Exploration
Finding Minimum and Maximum Values The Extreme Value Theorem (like 
the Intermediate Value Theorem) is an existence theorem because it tells of the 
existence of minimum and maximum values but does not show how to find 
these values. Use the minimum and maximum features of a graphing utility to 
find the extrema of each function. In each case, do you think the x-values are 
exact or approximate? Explain your reasoning.

a. f (x) = x2 − 4x + 5 on the closed interval [−1, 3]
b. f (x) = x3 − 2x2 − 3x − 2 on the closed interval [−1, 3]

x

1−1 2

2

3

3

4

5 (2, 5)

(0, 1)

Maximum

Minimum

y

f(x) = x2 + 1

(a) f  is continuous, [−1, 2] is closed.

x

1−1 2

2

3

3

4

5

(0, 1)

Not a
maximum

Minimum

y

f(x) = x2 + 1

(b) f  is continuous, (−1, 2) is open.

x

1−1 2

2

3

3

4

5 (2, 5)

Not a
minimum

Maximum

g(x) = x2 + 1,  x ≠ 0
2,          x = 0

y

(c) g is not continuous, [−1, 2] is closed.

Figure 4.1
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Student Solutions Manual for Multivariable Calculus 
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Need a leg up on your homework or help to prepare for an exam? The Student 
Solutions Manuals contain worked-out solutions for all odd-numbered exercises  
in Calculus of a Single Variable: Early Transcendental Functions (Chapters 1–10  
of Calculus: Early Transcendental Functions, Seventh Edition) and Multivariable 
Calculus (Chapters 11–16 of Calculus, Eleventh Edition and Calculus: Early 
Transcendental Functions, Seventh Edition). These manuals are great resources  
to help you understand how to solve those tough problems.

CengageBrain.com 
To access additional course materials, please visit www.cengagebrain.com. At the 
CengageBrain.com home page, search for the ISBN of your title (from the back cover 
of your book) using the search box at the top of the page. This will take you to the 
product page where these resources can be found.

 www.webassign.com

Prepare for class with confidence using WebAssign from Cengage Calculus: Early 
Transcendental Functions, Seventh Edition. This online learning platform fuels  
practice, so you truly absorb what you learn—and are better prepared come test time. 
Videos and tutorials walk you through concepts and deliver instant feedback and 
grading, so you always know where you stand in class. Focus your study time and  
get extra practice where you need it most. Study smarter with WebAssign!

Ask your instructor today how you can get access to WebAssign, or learn about  
self-study options at www.webassign.com.
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The Complete Solutions Manuals contain worked-out solutions to all exercises  
in the text. They are posted on the instructor companion website.

Instructor’s Resource Guide (on instructor companion site) 
This robust manual contains an abundance of instructor resources keyed to the 
textbook at the section and chapter level, including section objectives, teaching 
tips, and chapter projects.

Cengage Learning Testing Powered by Cognero 
CLT is a flexible online system that allows you to author, edit, and manage test  
bank content; create multiple test versions in an instant; and deliver tests from your 
LMS, your classroom, or wherever you want. This is available online via  
www.cengage.com/login.

Instructor Companion Site 
Everything you need for your course in one place! This collection of book-specific 
lecture and class tools is available online via www.cengage.com/login. Access and 
download PowerPoint® presentations, images, instructor’s manual, and more.

Test Bank (on instructor companion site) 
The Test Bank contains text-specific multiple-choice and free-response test forms.

 www.webassign.com

WebAssign from Cengage Calculus: Early Transcendental Functions, Seventh 
Edition, is a fully customizable online solution for STEM disciplines that empowers 
you to help your students learn, not just do homework. Insightful tools save you time 
and highlight exactly where your students are struggling. Decide when and what  
type of help students can access while working on assignments—and incentivize 
independent work so help features are not abused. Meanwhile, your students get  
an engaging experience, instant feedback, and better outcomes. A total win-win!

To try a sample assignment, learn about LMS integration, or connect with our digital 
course support, visit www.webassign.com/cengage.
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2 Chapter 1 Preparation for Calculus

1.1 graphs and models

 Sketch the graph of an equation.
 Find the intercepts of a graph.
 Test a graph for symmetry with respect to an axis and the origin.
 Find the points of intersection of two graphs.
 Interpret mathematical models for real-life data.

The Graph of an Equation
In 1637, the French mathematician René Descartes revolutionized the study of 
mathematics by combining its two major fields—algebra and geometry. With 
Descartes’s coordinate  plane, geometric concepts could be formulated analytically and 
algebraic concepts could be viewed graphically. The power of this approach was such 
that within a century of its introduction, much of calculus had been developed.

The same approach can be followed in your study of calculus. That is, by  viewing 
calculus from multiple perspectives—graphically, analytically, and numerically—you 
will increase your understanding of core concepts.

Consider the equation 3x + y = 7. The point (2, 1) is a solution point of the 
 equation because the equation is satisfied (is true) when 2 is substituted for x and 1 is 
 substituted for y. This equation has many other solutions, such as (1, 4) and (0, 7). To  
find other solutions systematically, solve the original equation for y.

y = 7 − 3x Analytic approach

Then construct a table of values by substituting several values of x.

 Numerical approach

From the table, you can see that (0, 7), (1, 4), (2, 1),  

Graphical approach: 3x + y = 7
Figure 1.1

864

8

6

4

2

−4

−6

−2
2

x

(3, −2)

(4, −5)

(2, 1)

(1, 4)

(0, 7)

3x + y = 7

y

(3, −2), and (4, −5) are solutions of the original 
equation 3x + y = 7. Like many equations, this 
equation has an infinite number of solutions. The set 
of all solution points is the graph of the equation, as 
shown in Figure 1.1. Note that the sketch shown in 
Figure 1.1 is referred to as the graph of 3x + y = 7,
even though it really represents only a portion of the 
graph. The entire graph would extend beyond the page.

In this course, you will study many sketching 
techniques. The simplest is point plotting—that is, 
you plot points until the basic shape of the graph 
seems apparent.

 Sketching a graph by Point Plotting

To sketch the graph of y = x2 − 2, first construct a table of values. Next, plot the 
points shown in the table. Then connect the points with a smooth curve, as shown in 
Figure 1.2. This graph is a parabola. It is one of the conics you will study in Chapter 10.

 
x −2 −1 0 1 2 3

y 2 −1 −2 −1 2 7

 

x 0 1 2 3 4

y 7 4 1 −2 −5

The parabola y = x2 − 2
Figure 1.2

x
−4 −3 −2 2 3 4
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y

y = x2 − 2

RENÉ DESCARTES (1596–1650)

Descartes made many 
contributions to  philosophy, 
science, and mathematics. The 
idea of representing points in the 
plane by pairs of real numbers 
and representing curves in the 
plane by equations was described 
by Descartes in his book La 
Géométrie, published in 1637.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NYC
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1.1 Graphs and Models 3

One disadvantage of point plotting is that to get a good idea about the shape of 
a graph, you may need to plot many points. With only a few points, you could badly 
misrepresent the graph. For instance, to sketch the graph of

y =
1
30

x(39 − 10x2 + x4)

you plot five points: 

(−3, −3), (−1, −1), (0, 0), (1, 1), and (3, 3)

as shown in Figure 1.3(a). From these five points, you might conclude that the graph is 
a line. This, however, is not correct. By plotting several more points, you can see that 
the graph is more complicated, as shown in Figure 1.3(b).

x
−3 −2 −1 1 2 3

3

2

1

−1

−2

−3

(0, 0)
(1, 1)

(3, 3)

(−3, −3)

(−1, −1) Plotting only a
few points can
misrepresent a
graph.

y   
y

x
−3 −2 −1 1 2 3

3

2

1

−1

−2

−3

y = x (39 − 10x2 + x4)1
30

 (a) (b)

 Figure 1.3

teChnology Graphing an equation has been made easier by technology. Even 
with technology, however, it is possible to misrepresent a graph badly. For instance, 
each of the graphing utility* screens in Figure 1.4 shows a portion of the graph of

y = x3 − x2 − 25.

From the screen on the left, you might assume that the graph is a line. From the 
screen on the right, however, you can see that the graph is not a line. So, whether 
you are sketching a graph by hand or using a graphing utility, you must realize that 
different “viewing windows” can produce very different views of a graph. In choosing 
a viewing window, your goal is to show a view of the graph that fits well in the 
context of the problem.

10

−10

−10

10   

5

−35

−5

5

 Graphing utility screens of y = x3 − x2 − 25
 Figure 1.4

*In this text, the term graphing utility means either a graphing calculator, such as the 
TI-Nspire, or computer graphing software, such as Maple or Mathematica.

exploration
Comparing Graphical and 
Analytic Approaches
Use a graphing utility to 
graph each equation. In each 
case, find a viewing window 
that shows the important 
characteristics of the graph.

a. y = x3 − 3x2 + 2x + 5

b. y = x3 − 3x2 + 2x + 25

c. y = −x3 − 3x2 + 20x + 5

d. y = 3x3 − 40x2 + 50x − 45

e. y = −(x + 12)3

f. y = (x − 2)(x − 4)(x − 6)

A purely graphical approach 
to this problem would involve 
a simple “guess, check, and 
revise” strategy. What types of 
things do you think an analytic 
approach might involve? For 
instance, does the graph have 
symmetry? Does the graph 
have turns? If so, where are 
they? As you proceed through 
Chapters 2, 3, and 4 of this 
text, you will study many new 
analytic tools that will help you 
analyze graphs of equations 
such as these.
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4 Chapter 1 Preparation for Calculus

Intercepts of a Graph
Two types of solution points that are especially useful in graphing an equation are 
those having zero as their x- or y-coordinate. Such points are called intercepts because 
they are the points at which the graph intersects the x- or y-axis. The point (a, 0) is an 
x-intercept of the graph of an equation when it is a solution point of the equation. To 
find the x-intercepts of a graph, let y be zero and solve the equation for x. The point 
(0, b) is a y-intercept of the graph of an equation when it is a solution point of the 
equation. To find the y-intercepts of a graph, let x be zero and solve the equation for y.

It is possible for a graph to have no intercepts, or it might have several. For 
instance, consider the four graphs shown in Figure 1.5.

 Finding x- and y-Intercepts

Find the x- and y-intercepts of the graph of y = x3 − 4x.

Solution To find the x-intercepts, let y be zero and solve for x.

 x3 − 4x = 0 Let y be zero.

 x(x − 2)(x + 2) = 0 Factor.

 x = 0, 2, or −2 Solve for x.

Because this equation has three solutions, you can conclude that the graph has three  
x-intercepts:

(0, 0), (2, 0), and (−2, 0). x-intercepts

To find the y-intercepts, let x be zero. Doing this produces y = 0. So, the y-intercept is

(0, 0). y-intercept

(See Figure 1.6.)

−4 −3 −1 1 3 4

−4

−3

−2

−1

3

4

x
(2, 0)(0, 0)(−2, 0)

y

y = x3 − 4x

 Intercepts of a graph
 Figure 1.6 

remark Some texts  
denote the x-intercept as the  
x-coordinate of the point (a, 0) 
rather than the point itself. 
Unless it is necessary to make  
a distinction, when the term 
intercept is used in this text, it 
will mean either the point or  
the coordinate.

teChnology Example 2 
uses an analytic approach 
to finding intercepts. When 
an analytic approach is not 
possible, you can use a graphical 
approach by finding the points 
at which the graph intersects the 
axes. Use the trace feature of a 
graphing utility to approximate 
the intercepts of the graph of 
the equation in Example 2. Note 
that your utility may have a 
built-in program that can find 
the x-intercepts of a graph. 
(Your utility may call this the 
root or zero feature.) If so, use 
the program to find the  
x-intercepts of the graph of the 
equation in Example 2.

No x-intercepts 
One y-intercept
Figure 1.5

Three x-intercepts 
One y-intercept

One x-intercept 
Two y-intercepts

No intercepts

x

y

x

y

x

y

x

y
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1.1 Graphs and Models 5

Symmetry of a Graph
Knowing the symmetry of a graph before attempting to sketch it is useful because you 
need only half as many points to sketch the graph. The three types of symmetry listed 
below can be used to help sketch the graphs of equations (see Figure 1.7).

1.  A graph is symmetric with respect to the y-axis if, whenever (x, y) is a point on the 
graph, then (−x, y) is also a point on the graph. This means that the portion of the 
graph to the left of the y-axis is a mirror image of the portion to the right of the y-axis.

2.  A graph is symmetric with respect to the x-axis if, whenever (x, y) is a point on the 
graph, then (x, −y) is also a point on the graph. This means that the portion of the 
graph below the x-axis is a mirror image of the portion above the x-axis.

3.  A graph is symmetric with respect to the origin if, whenever (x, y) is a point on 
the graph, then (−x, −y) is also a point on the graph. This means that the graph is 
unchanged by a rotation of 180° about the origin.

tests for Symmetry

1.  The graph of an equation in x and y is symmetric with respect to the y-axis 
when replacing x by −x yields an equivalent equation.

2.  The graph of an equation in x and y is symmetric with respect to the x-axis 
when replacing y by −y yields an equivalent equation.

3.  The graph of an equation in x and y is symmetric with respect to the origin 
when replacing x by −x and y by −y yields an equivalent equation.

The graph of a polynomial has symmetry with respect to the y-axis when each term 
has an even exponent (or is a constant). For instance, the graph of

y = 2x4 − x2 + 2

has symmetry with respect to the y-axis. Similarly, the graph of a polynomial has 
 symmetry with respect to the origin when each term has an odd exponent, as illustrated 
in Example 3.

 testing for Symmetry

Test the graph of y = 2x3 − x for symmetry with respect to (a) the y-axis and (b) the 
origin.

Solution

a. y = 2x3 − x Write original equation.

 y = 2(−x)3 − (−x) Replace x by −x.

 y = −2x3 + x Simplify. The result is not an equivalent equation.

  Because replacing x by −x does not yield an equivalent equation, you can conclude 
that the graph of y = 2x3 − x is not symmetric with respect to the y-axis.

b.  y = 2x3 − x Write original equation.

  −y = 2(−x)3 − (−x) Replace x by −x and y by −y.

  −y = −2x3 + x Simplify.

  y = 2x3 − x Equivalent equation

  Because replacing x by −x and y by −y yields an equivalent equation, you can 
conclude that the graph of y = 2x3 − x is symmetric with respect to the origin, as 
shown in Figure 1.8. 

Figure 1.7

x

(x, y)(−x, y)

y-axis
symmetry

y

x

(x, y)

(x, −y)x-axis
symmetry

y

x

(−x, −y)

(x, y)

Origin
symmetry

y

Origin symmetry
Figure 1.8

x
−2 −1 1 2

−2

−1

1

2

(1, 1)

(−1, −1)

y = 2x3 − xy
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6 Chapter 1 Preparation for Calculus

 Using Intercepts and Symmetry to Sketch a graph

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the graph of x − y2 = 1.

Solution The graph is symmetric with respect to the x-axis because replacing y by 
−y yields an equivalent equation.

 x − y2 = 1 Write original equation.

 x − (−y)2 = 1 Replace y by −y.

 x − y2 = 1 Equivalent equation

This means that the portion of the graph below the x-axis is a mirror image of the 
portion above the x-axis. To sketch the graph, first plot the x-intercept and the points  
above the x-axis. Then reflect in the x-axis to obtain the entire graph, as shown in 
Figure 1.9. 

Points of Intersection
A point of intersection of the graphs of two equations is a point that satisfies both 
equations. You can find the point(s) of intersection of two graphs by solving their 
 equations simultaneously.

 Finding Points of Intersection

Find all points of intersection of the graphs of

x2 − y = 3 and x − y = 1.

Solution Begin by sketching the graphs of both equations in the same rectangular 
coordinate system, as shown in Figure 1.10. From the figure, it appears that the graphs 
have two points of intersection. You can find these two points as follows.

 y = x2 − 3 Solve first equation for y.

 y = x − 1 Solve second equation for y.

 x2 − 3 = x − 1 Equate y-values.

 x2 − x − 2 = 0 Write in general form.

 (x − 2)(x + 1) = 0 Factor.

 x = 2 or −1 Solve for x.

The corresponding values of y are obtained by substituting x = 2 and x = −1 into 
either of the original equations. Doing this produces two points of intersection:

(2, 1) and (−1, −2). Points of intersection 

You can check the points of intersection in Example 5 by substituting into both of 
the original equations or by using the intersect  feature of a graphing utility.

teChnology Graphing utilities are designed so that they most easily graph 
equations in which y is a function of x (see Section 1.3 for a definition of function). 
To graph other types of equations, you need to split the graph into two or more parts 
or you need to use a different graphing mode. For instance, to graph the equation in 
Example 4, you can split it into two parts.

y1 = √x − 1 Top portion of graph

y2 = −√x − 1 Bottom portion of graph

Figure 1.9

5432

2

1

−1

−2

x
(1, 0)

(2, 1)

(5, 2)x − y2 = 1

x-intercept

y

Two points of intersection
Figure 1.10

x − y = 1

x
−2 −1 1 2

2

1

−1

−2(−1, −2)

(2, 1)

x2 − y = 3

y
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1.1 Graphs and Models 7

Mathematical Models
Real-life applications of mathematics often use equations as mathematical models. In 
developing a mathematical model to represent actual data, you should strive for two 
(often conflicting) goals––accuracy and simplicity. That is, you want the model to be 
simple enough to be workable, yet accurate enough to produce meaningful results. 
Appendix G explores these goals more completely.

 Comparing two mathematical models

The Mauna Loa Observatory in Hawaii records the carbon dioxide concentration y (in 
parts per million) in Earth’s atmosphere. The January readings for various years are 
shown in Figure 1.11. In the July 1990 issue of Scientific American, these data were 
used to predict the carbon dioxide level in Earth’s atmosphere in the year 2035, using 
the quadratic model

y = 0.018t2 + 0.70t + 316.2 Quadratic model for 1960–1990 data

where t = 0 represents 1960, as shown in Figure 1.11(a). The data shown in 
Figure 1.11(b) represent the years 1980 through 2014 and can be modeled by

y = 0.014t2 + 0.66t + 320.3 Quadratic model for 1980–2014 data

where t = 0 represents 1960. What was the prediction given in the Scientific American 
article in 1990? Given the second model for 1980 through 2014, does this prediction  
for the year 2035 seem accurate?
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 Figure 1.11

Solution To answer the first question, substitute t = 75 (for 2035) into the first 
model.

y = 0.018(75)2 + 0.70(75) + 316.2 = 469.95 Model for 1960–1990 data

So, the prediction in the Scientific American article was that the carbon dioxide 
concentration in Earth’s atmosphere would reach about 470 parts per million in the year 
2035. Using the model for the 1980–2014 data, the prediction for the year 2035 is

y = 0.014(75)2 + 0.66(75) + 320.3 = 448.55. Model for 1980–2014 data

So, based on the model for 1980–2014, it appears that the 1990 prediction was too high.
 

The models in Example 6 were developed using a procedure called least squares 
regression (see Section 13.9). The older model has a correlation of r2 ≈ 0.997, and for 
the newer model it is r2 ≈ 0.999. The closer r2 is to 1, the “better” the model.

The Mauna Loa Observatory 
in Hawaii has been measuring 
the increasing  concentration 
of carbon dioxide in Earth’s 
atmosphere since 1958.

Gavriel Jecan/Terra/Corbis
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8 Chapter 1 Preparation for Calculus

1.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Finding Intercepts Describe how to find the x- and 

y-intercepts of the graph of an equation.

2.  Verifying Points of Intersection How can you 
check that an ordered pair is a point of intersection of 
two graphs?

matching In Exercises 3–6, match the equation with its 
graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) 

x
−1 1−1

1

2

y  (b) 

x

y

−1 1 2 3
−1

1

2

3

(c) 

21

2

1

−1

−2

−2
x

y  (d) 

x
2−2

−2

2

4

y

 3. y = −3
2 x + 3  4. y = √9 − x2

 5. y = 3 − x2  6. y = x3 − x

 Sketching a graph by Point Plotting In 
Exercises 7–16, sketch the graph of the equation 
by point plotting.

 7. y = 1
2 x + 2  8. y = 5 − 2x

 9. y = 4 − x2 10. y = (x − 3)2

11. y = ∣x + 1∣ 12. y = ∣x∣ − 1

13. y = √x − 6 14. y = √x + 2

15. y =
3
x
 16. y =

1
x + 2

approximating Solution Points Using technology In 
Exercises 17 and 18, use a graphing utility to graph the 
equation. Move the cursor along the curve to approximate the 
unknown coordinate of each solution point accurate to two 
decimal places.

17. y = √5 − x 18. y = x5 − 5x

 (a) (2, y)  (a) (−0.5, y)
 (b) (x, 3)  (b) (x, −4)

 Finding Intercepts In Exercises 19–28, find 
any intercepts.

19. y = 2x − 5 20. y = 4x2 + 3

21. y = x2 + x − 2 22. y2 = x3 − 4x

23. y = x√16 − x2 24. y = (x − 1)√x2 + 1

25. y =
2 − √x
5x + 1

 26. y =
x2 + 3x

(3x + 1)2

27. x2y − x2 + 4y = 0 28. y = 2x − √x2 + 1

 testing for Symmetry In Exercises 29–40, 
test for symmetry with respect to each axis and to 
the origin.

29. y = x2 − 6 30. y = 9x − x2

31. y2 = x3 − 8x 32. y = x3 + x

33. xy = 4 34. xy2 = −10

35. y = 4 − √x + 3 36. xy − √4 − x2 = 0

37. y =
x

x2 + 1
 38. y =

x5

4 − x2

39. y = ∣x3 + x∣ 40. ∣y∣ − x = 3

 Using Intercepts and Symmetry to Sketch 
a graph In Exercises 41–56, find any intercepts 
and test for symmetry. Then sketch the graph of 
the equation. 

41. y = 2 − 3x 42. y = 2
3 x + 1

43. y = 9 − x2 44. y = 2x2 + x

45. y = x3 + 2 46. y = x3 − 4x

47. y = x√x + 5 48. y = √25 − x2

49. x = y3 50. x = y4 − 16

51. y =
8
x
 52. y =

10
x2 + 1

53. y = 6 − ∣x∣ 54. y = ∣6 − x∣
55. 3y2 − x = 9 56. x2 + 4y2 = 4

 Finding Points of Intersection In Exercises 
57–62, find the points of intersection of the graphs 
of the equations. 

57.  x + y = 8 58.  3x − 2y =  −4

  4x − y = 7   4x + 2y =  −10

59.  x2 + y = 15 60. x = 3 − y2

  −3x + y = 11  y = x − 1

The symbol  indicates an exercise in which you are instructed to use graphing 
technology or a symbolic computer algebra system. The solutions of other exercises may 
also be facilitated by the use of appropriate technology.

The symbol  and a red exercise number indicate that a video solution can be seen at 
CalcView.com.
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1.1 Graphs and Models 9

61.  x2 + y2 = 5 62.  x2 + y2 = 16

  x − y = 1   x + 2y = 4

Finding Points of Intersection Using technology In 
Exercises 63–66, use a graphing utility to find the points of 
intersection of the graphs of the equations. Check your results 
analytically.

63. y = x3 − 2x2 + x − 1 64. y = x4 − 2x2 + 1

 y = −x2 + 3x − 1  y = 1 − x2

65. y = √x + 6 66. y = −∣2x − 3∣ + 6

 y = √−x2 − 4x  y = 6 − x

67.  modeling Data The table shows the Gross Domestic 
Product, or GDP (in trillions of dollars), for 2009 through 
2014. (Source: U.S. Bureau of Economic Analysis)

 
Year 2009 2010 2011 2012 2013 2014

GDP 14.4 15.0 15.5 16.2 16.7 17.3

  (a)  Use the regression capabilities of a graphing utility to find 
a mathematical model of the form y = at + b for the data. 
In the model, y represents the GDP (in trillions of dollars) 
and t represents the year, with t = 9 corresponding to 2009.

 (b)  Use a graphing utility to plot the data and graph the model. 
Compare the data with the model.

 (c) Use the model to predict the GDP in the year 2024.

69.  Break-even Point Find the sales necessary to break 
even (R = C) when the cost C of producing x units is 
C = 2.04x + 5600 and the revenue R from selling x units is 
R = 3.29x.

70.  Using Solution Points For what values of k does the 
graph of y2 = 4kx pass through the point?

 (a) (1, 1) (b) (2, 4)
 (c) (0, 0) (d) (3, 3)

eXpLoRInG ConCeptS
71.  Using Intercepts Write an equation whose graph 

has intercepts at x = −3
2, x = 4, and x = 5

2. (There is 
more than one correct answer.)

72.  Symmetry A graph is symmetric with respect to the 
x-axis and to the y-axis. Is the graph also symmetric with 
respect to the origin? Explain.

73.  Symmetry A graph is symmetric with respect to one 
axis and to the origin. Is the graph also symmetric with 
respect to the other axis? Explain.

 74.  hoW Do yoU See It? Use the graphs of 
the two equations to answer the questions below.

−2 2 4
x

−4

2

4

6

y

y = x3 − x2

4

y = x2 + 2

(a) What are the intercepts for each equation?

(b) Determine the symmetry for each equation.

(c)  Determine the point of intersection of the two 
equations.

 74.  

true or False? In Exercises 75–78, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

75.  If (−4, −5) is a point on a graph that is symmetric with 
respect to the x-axis, then (4, −5) is also a point on the graph.

76.  If (−4, −5) is a point on a graph that is symmetric with 
respect to the y-axis, then (4, −5) is also a point on the graph.

77.  If b2 − 4ac > 0 and a ≠ 0, then the graph of

 y = ax2 + bx + c

 has two x-intercepts.

78.   If b2 − 4ac = 0 and a ≠ 0, then the graph of 

 y = ax2 + bx + c

 has only one x-intercept.

 The table shows the numbers of cell phone subscribers 
(in millions) in the United States for selected years. 
(Source: CTIA-The Wireless Association)

 
Year 2000 2002 2004 2006

Number 109 141 182 233

 
Year 2008 2010 2012 2014

Number 270 296 326 355

(a)  Use the regression capabilities of a graphing utility to 
find a mathematical model of the form y = at2 + bt + c 
for the data. In the model, y represents the number of 
subscribers (in millions) and t represents the year, with 
t = 0 corresponding to 2000.

(b)  Use a graphing 
utility to plot the 
data and graph the 
model. Compare 
the data with the 
model.

(c)  Use the model to 
predict the number 
of cell phone 
subscribers in the United States in the year 2024.

68. modeling Data

ChrisMilesPhoto/Shutterstock.com
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10 Chapter 1 Preparation for Calculus

1.2 Linear Models and Rates of Change

 Find the slope of a line passing through two points.
 Write the equation of a line with a given point and slope.
 Interpret slope as a ratio or as a rate in a real-life application.
 Sketch the graph of a linear equation in slope-intercept form.
 Write equations of lines that are parallel or perpendicular to a given line.

The Slope of a Line
The slope of a nonvertical line is a measure of the number of units the line rises (or 
falls) vertically for each unit of horizontal change from left to right. Consider the two 
points (x1, y1) and (x2, y2) on the line in Figure 1.12. As you move from left to right 
along this line, a vertical change of

∆y = y2 − y1 Change in y

units corresponds to a horizontal change of

∆x = x2 − x1 Change in x

units. (The symbol ∆ is the uppercase Greek letter delta, and the symbols ∆y and ∆x 
are read “delta y” and “delta x.”)

Definition of the Slope of a Line

The slope m of the nonvertical line passing through (x1, y1) and (x2, y2) is

m =
∆y
∆x

=
y2 − y1

x2 − x1
, x1 ≠ x2.

Slope is not defined for vertical lines.

When using the formula for slope, note that

y2 − y1

x2 − x1
=

−(y1 − y2)
−(x1 − x2)

=
y1 − y2

x1 − x2
.

So, it does not matter in which order you subtract as long as you are consistent and both 
“subtracted coordinates” come from the same point.

Figure 1.13 shows four lines: one has a positive slope, one has a slope of zero, 
one has a negative slope, and one has an “undefined” slope. In general, the greater the 
absolute value of the slope of a line, the steeper the line. For instance, in Figure 1.13, 
the line with a slope of −5 is steeper than the line with a slope of 15.

∆y = y2 − y1 = change in y
∆x = x2 − x1 = change in x
Figure 1.12

x
x2

y2

x1

y1

Δx = x2 − x1

Δy = y2 − y1

(x2, y2)

(x1, y1)

y

If m is positive, then the line 
rises from left to right.
Figure 1.13

If m is zero, then the line 
is horizontal.

If m is negative, then the line 
falls from left to right.

If m is undefined, then the 
line is vertical.

x
−2 −1

−1
1 2 3

4

3

2

1
(−2, 0)

(3, 1)

m1 = 1
5

y

x
−2 −1

−1
1 2 3

4

3

1

m2 = 0

(2, 2)(−1, 2)

y

x
−1

−1
2 3 4

4

3

2

1

(1, −1)

(0, 4)
m3 = −5

y

x
−1

−1
21 4

4

3

2

1 (3, 1)

(3, 4)

y

m4 is 
unde�ned.
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1.2 Linear Models and Rates of Change 11

Equations of Lines
Any two points on a nonvertical line can be used to calculate its slope. This can be 
 verified from the similar triangles shown in Figure 1.14. (Recall that the ratios of 
 corresponding sides of similar triangles are equal.)

x

m = =
y2* − y1*
x2* − x1*

y2 − y1
x2 − x1

(x1*, y1*)

(x2*, y2*)

(x1, y1)

(x2, y2)

y

  Any two points on a nonvertical line 
can be used to determine its slope.

 Figure 1.14

If (x1, y1) is a point on a nonvertical line that has a slope of m and (x, y) is any other 
point on the line, then

y − y1

x − x1
= m.

This equation in the variables x and y can be rewritten in the form 

y − y1 = m(x − x1)

which is the point-slope form of the equation of a line.

Point-Slope Form of the equation of a Line

The point-slope form of the equation of the line that passes through the point 
(x1, y1) and has a slope of m is

y − y1 = m(x − x1).

ReMaRK Remember that only nonvertical lines have a slope. Consequently, 
vertical lines cannot be written in point-slope form. For instance, the equation of the 
vertical line passing through the point (1, −2) is x = 1.

 Finding an equation of a Line

Find an equation of the line that has a slope of 3 and passes through the point (1, −2). 
Then sketch the line.

Solution

 y − y1 = m(x − x1) Point-slope form

 y − (−2) = 3(x − 1) Substitute −2 for y1, 1 for x1, and 3 for m.

 y + 2 = 3x − 3 Simplify.

 y = 3x − 5 Solve for y.

To sketch the line, first plot the point (1, −2). Then, because the slope is m = 3, you 
can locate a second point on the line by moving one unit to the right and three units 
upward, as shown in Figure 1.15. 

The line with a slope of 3 passing 
through the point (1, −2)
Figure 1.15

y = 3x − 5

x

1

−1

−2

−3

−4

−5

1 3 4

(1, −2)

Δy = 3

Δx = 1

y

exploration
Investigating Equations of 
Lines Use a graphing utility 
to graph each of the linear 
equations. Which point is 
common  to all seven lines? 
Which value in the equation 
determines the slope of each 
line?

a. y − 4 = −2(x + 1)
b. y − 4 = −1(x + 1)
c. y − 4 = −1

2 (x + 1)
d. y − 4 = 0(x + 1)
e. y − 4 = 1

2(x + 1)
f. y − 4 = 1(x + 1)
g. y − 4 = 2(x + 1)

Use your results to write an 
equation of a line passing 
through (−1, 4) with a slope 
of m.
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12 Chapter 1 Preparation for Calculus

Ratios and Rates of Change
The slope of a line can be interpreted as either a ratio or a rate. If the x- and y-axes have 
the same unit of measure, then the slope has no units and is a ratio. If the x- and y-axes 
have different units of measure, then the slope is a rate or rate of change. In your study 
of calculus, you will encounter applications involving both interpretations of slope.

 Using Slope as a Ratio

The maximum recommended slope of a wheelchair ramp is 1
12. A business installs a 

wheelchair ramp that rises to a height of 22 inches over a length of 24 feet, as shown 
in Figure 1.16. Is the ramp steeper than recommended? (Source: ADA Standards for 
Accessible Design)

y

22 in.

24 ft

x

 Figure 1.16

Solution The length of the ramp is 24 feet or 12(24) = 288 inches. The slope of the 
ramp is the ratio of its height (the rise) to its length (the run).

 Slope of ramp =
rise
run

 =
22 in.
288 in.

 ≈ 0.076

Because the slope of the ramp is less than 1
12 ≈ 0.083, the ramp is not steeper than  

recommended. Note that the slope is a ratio and has no units.

 Using Slope as a Rate of Change

The population of Oregon was about 3,831,000 in 2010 and about 3,970,000 in 2014. 
Find the average rate of change of the population over this four-year period. What will 
the population of Oregon be in 2024? (Source: U.S. Census Bureau)

Solution Over this four-year period, the average rate of change of the population of 
Oregon was

 Rate of change =
change in population

change in years

 =
3,970,000 − 3,831,000

2014 − 2010

 = 34,750 people per year.

Assuming that Oregon’s population continues to increase at this same rate for the next 
10 years, it will have a 2024 population of about 4,318,000. (See Figure 1.17.) 

The rate of change found in Example 3 is an average rate of change. An 
 average rate of change is always calculated over an interval. In this case, the interval 
is [2010, 2014]. In Chapter 3, you will study another type of rate of change called an 
instantaneous rate of change.

Population of Oregon
Figure 1.17

Po
pu

la
tio

n 
(i

n 
m

ill
io

ns
)

3.4

3.6

3.8

4.0

4.2

4.4

4.6

139,000

Year

4

2010 2014 2018 2022

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



1.2 Linear Models and Rates of Change 13

Graphing Linear Models
Many problems in coordinate geometry can be classified into two basic categories.

1. Given a graph (or parts of it), find its equation.

2. Given an equation, sketch its graph.

For lines, problems in the first category can be solved by using the point-slope form. 
The point-slope form, however, is not especially useful for solving problems in the 
second category. The form that is better suited to sketching the graph of a line is the 
slope-intercept form of the equation of a line.

the Slope-intercept Form of the equation of a Line

The graph of the linear equation

y = mx + b Slope-intercept form

is a line whose slope is m and whose y-intercept is (0, b).

 Sketching Lines in the Plane

Sketch the graph of each equation.

a. y = 2x + 1

b. y = 2

c. 3y + x − 6 = 0

Solution

a.  Because b = 1, the y-intercept is (0, 1). Because the slope is m = 2, you know that 
the line rises two units for each unit it moves to the right, as shown in Figure 1.18(a).

b. By writing the equation y = 2 in slope-intercept form

y = (0)x + 2

  you can see that the slope is m = 0 and the y-intercept is (0, 2). Because the slope 
is zero, you know that the line is horizontal, as shown in Figure 1.18(b).

c. Begin by writing the equation in slope-intercept form.

 3y + x − 6 = 0 Write original equation.

 3y = −x + 6 Isolate y-term on the left.

 y = −1
3 x + 2 Slope-intercept form

  In this form, you can see that the y-intercept is (0, 2) and the slope is m = −1
3. This 

means that the line falls one unit for every three units it moves to the right, as shown 
in Figure 1.18(c).

(a) m = 2; line rises

Figure 1.18
(b) m = 0; line is horizontal (c) m = −1

3; line falls

x
321

2

3

(0, 1)

Δx = 1

Δy = 2

y = 2x + 1

y

x

y = 2

321

1

3

(0, 2)

y

x
3 4 5 621

1

3

(0, 2)

Δx = 3

Δy = −1

x + 2y = − 1
3

y
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14 Chapter 1 Preparation for Calculus

Because the slope of a vertical line is not defined, its equation cannot be written in 
slope-intercept form. However, the equation of any line can be written in the general 
form

Ax + By + C = 0    General form of the equation of a line

where A and B are not both zero. For instance, the vertical line

x = a Vertical line

can be represented by the general form

x − a = 0. General form

SUMMARY OF EQUATIONS OF LINES

1. General form: Ax + By + C = 0

2. Vertical line: x = a

3. Horizontal line: y = b

4. Slope-intercept form: y = mx + b

5. Point-slope form: y − y1 = m(x − x1)

Parallel and Perpendicular Lines
The slope of a line is a convenient tool for determining whether two lines are parallel 
or perpendicular, as shown in Figure 1.19. Specifically, nonvertical lines with the 
same slope are parallel, and nonvertical lines whose slopes are negative reciprocals are 
perpendicular.

x

m1

m2

m1 = m2

y   

x

m1

m2

m1 = − 1
m2

y

 Parallel lines Perpendicular lines
 Figure 1.19

Parallel and Perpendicular Lines

1.  Two distinct nonvertical lines are parallel if and only if their slopes are 
equal—that is, if and only if 

m1 = m2. Parallel  Slopes are equal.

2.  Two nonvertical lines are perpendicular if and only if their slopes are 
negative reciprocals of each other—that is, if and only if

m1 = −
1

m2
. Perpendicular  Slopes are negative reciprocals.

ReMaRK In mathematics, 
the phrase “if and only if” is a 
way of stating two implications 
in one statement. For instance, 
the first statement at the right 
could be rewritten as the 
following two implications.

a.  If two distinct nonvertical 
lines are parallel, then their 
slopes are equal.

b.  If two distinct nonvertical 
lines have equal slopes, 
then they are parallel.
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 1.2 Linear Models and Rates of Change 15

 Finding Parallel and Perpendicular Lines

See LarsonCalculus.com for an interactive version of this type of example.

Find the general forms of the equations of the lines that pass through the point (2, −1) 
and are (a) parallel to and (b) perpendicular to the line 2x − 3y = 5.

Solution Begin by writing the linear equation 2x − 3y = 5 in slope-intercept form. 

 2x − 3y = 5 Write original equation.

 y = 2
3 x − 5

3 Slope-intercept form

So, the given line has a slope of m = 2
3. (See Figure 1.20.)

a. The line through (2, −1) that is parallel to the given line also has a slope of 23.

 y − y1 = m(x − x1) Point-slope form

 y − (−1) = 2
3(x − 2) Substitute.

 3( y + 1) = 2(x − 2) Simplify.

 3y + 3 = 2x − 4 Distributive Property

 2x − 3y − 7 = 0 General form

 Note the similarity to the equation of the given line, 2x − 3y = 5.

b.  Using the negative reciprocal of the slope of the given line, you can determine that 
the slope of a line perpendicular to the given line is −3

2. 

 y − y1 = m(x − x1) Point-slope form

 y − (−1) = −3
2(x − 2) Substitute.

 2(y + 1) = −3(x − 2) Simplify.

 2y + 2 = −3x + 6 Distributive Property

 3x + 2y − 4 = 0 General form 

teChnoLogy PitFaLL The slope of a line will appear distorted if you use 
different tick-mark spacing on the x- and y-axes. For instance, the graphing utility 
screens in Figures 1.21(a) and 1.21(b) both show the lines

y = 2x and y = −1
2x + 3.

Because these lines have slopes that are negative reciprocals, they must be 
perpendicular. In Figure 1.21(a), however, the lines do not appear to be perpendicular 
because the tick-mark spacing on the x-axis is not the same as that on the y-axis. In 
Figure 1.21(b), the lines appear perpendicular because the  tick-mark spacing on the 
x-axis is the same as on the y-axis. This type of viewing window is said to have a 
square setting.

10

−10

−10

10    

9

−6

−9

6

 (a) Tick-mark spacing on the x-axis is not the (b) Tick-mark spacing on the x-axis is the 
  same as tick-mark spacing on the y-axis.  same as tick-mark spacing on the y-axis.

 Figure 1.21

Lines parallel and perpendicular to 
2x − 3y = 5
Figure 1.20

x

−1

2

1

1 4

(2, −1)

2x − 3y = 7

3x + 2y = 4
2x − 3y = 5

y
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16 Chapter 1 Preparation for Calculus

1.2 exercises see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCEpt CHECK
1.  Slope-intercept Form In the form y = mx + b,

what does m represent? What does b represent?

2.  Perpendicular Lines Is it possible for two lines with 
positive slopes to be perpendicular? Why or why not?

estimating Slope In Exercises 3–6, estimate the slope of 
the line from its graph. To print an enlarged copy of the graph, 
go to MathGraphs.com.

 3. 

x
1 2 3 4 5 6 7

7
6
5
4
3
2
1

y   4. 

x
1 2 3 4 5 6 7

7
6
5

3
2
1

y

 5. 

x
1 2 3 4 5 6

6
5
4
3
2
1

y   6. 

x
1 2 3 5 6 7

24
28

20
16
12
8
4

y

 Finding the Slope of a Line In Exercises 
7–12, plot the pair of points and find the slope of 
the line passing through them.

 7. (3, −4), (5, 2)  8. (0, 0), (−2, 3)
 9. (4, 6), (4, 1) 10. (3, −5), (5, −5)
11. (−1

2, 23), (−3
4, 16) 12. (7

8, 34), (5
4, −1

4)

 Sketching Lines In Exercises 13 and 14, sketch 
the lines through the point with the indicated 
slopes. Make the sketches on the same set of 
coordinate axes.

 Point Slopes

13. (3, 4) (a) 1  (b) −2  (c) −3
2  (d) Undefined

14. (−2, 5) (a) 3  (b) −3  (c) 1
3   (d) 0

 Finding Points on a Line In Exercises 15–18, 
use the point on the line and the slope of the line 
to find three additional points that the line passes 
through. (There is more than one correct answer.)

 Point Slope Point Slope

15. (6, 2)  m = 0 16. (−4, 3) m is undefined.

17. (1, 7)  m = −3 18. (−2, −2) m = 2

 Finding an equation of a Line In Exercises 
19–24, find an equation of the line that passes 
through the point and has the indicated slope. 
Then sketch the line.

 Point Slope

19. (0, 3) m = 3
4

20. (−5, −2) m = 6
5

21. (1, 2) m is undefined.

22. (0, 4) m = 0

23. (3, −2) m = 3

24. (−2, 4) m = −3
5

25.  Road grade You are driving on a road that has a 6% 
uphill grade. This means that the slope of the road is 6

100. 
Approximate the amount of vertical change in your position 
when you drive 200 feet.

27.  Modeling Data The table shows the populations y (in 
millions) of the United States for 2009 through 2014. The 
variable t represents the time in years, with t = 9 corresponding 
to 2009. (Source: U.S. Census Bureau)

t 9 10 11 12 13 14

y 307.0 309.3 311.7 314.1 316.5 318.9

 (a)  Plot the data by hand and connect adjacent points with 
a line segment. Use the slope of each line segment to 
determine the year when the population increased least 
rapidly.

 (b)  Find the average rate of change of the population of the 
United States from 2009 through 2014.

 (c)  Use the average rate of change of the population to predict 
the population of the United States in 2025.

A moving conveyor is built to rise 1 meter for each
3 meters of horizontal change.

(a)  Find the slope of 
the conveyor.

(b)  Suppose the 
conveyor runs 
between two floors 
in a factory. Find 
the length of the 
conveyor when the 
vertical distance 
between floors is 10 feet.

26. Conveyor Design

wandee007/Shutterstock.com
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 1.2 Linear Models and Rates of Change 17

28.  Biodiesel Production The table shows the biodiesel 
productions y (in thousands of barrels per day) for the United 
States for 2007 through 2012. The variable t represents the time 
in years, with t = 7 corresponding to 2007. (Source: U.S. 
Energy Information Administration)

t 7 8 9 10 11 12

y 32 44 34 22 63 64

 (a)  Plot the data by hand and connect adjacent points with 
a line segment. Use the slope of each line segment to 
determine the year when biodiesel production increased 
most rapidly.

 (b)  Find the average rate of change of biodiesel production for 
the United States from 2007 through 2012.

 (c)  Should the average rate of change be used to predict future 
biodiesel production? Explain.

  Finding the Slope and y -intercept In 
Exercises 29–34, find the slope and the y-intercept 
(if possible) of the line.

29. y = 4x − 3 30. −x + y = 1

31. 5x + y = 20 32. 6x − 5y = 15

33. x = 4 34. y = −1

 Sketching a Line in the Plane In Exercises 
35–42, sketch the graph of the equation.

35. y = −3 36. x = 4

37. y = −2x + 1 38. y = 1
3x − 1

39. y − 2 = 3
2 (x − 1) 40. y − 1 = 3(x + 4)

41. 3x − 3y + 1 = 0 42. x + 2y + 6 = 0

 Finding an equation of a Line In Exercises 
43–50, find an equation of the line that passes 
through the points. Then sketch the line.

43. (4, 3), (0, −5) 44. (−2, −2), (1, 7)
45. (2, 8), (5, 0) 46. (−3, 6), (1, 2)
47. (6, 3), (6, 8) 48. (1, −2), (3, −2)
49. (3, 1), (5, 1) 50. (2, 5), (2, 7)

51.  Writing an equation Write an equation for the line that 
passes through the points (0, b) and (3, 1).

52.  Using intercepts Show that the line with intercepts (a, 0) 
and (0, b) has the following equation.

 
x
a

+
y
b

= 1, a ≠ 0, b ≠ 0

Writing an equation in general Form In Exercises 
53–56, use the result of Exercise 52 to write an equation of the 
line with the given characteristics in general form.

53. x-intercept: (2, 0) 54. x-intercept: (−2
3, 0)

 y-intercept: (0, 3)  y-intercept: (0, −2)

55. Point on line: (9, −2) 56. Point on line: (−2
3, −2)

 x-intercept: (2a, 0)  x-intercept: (a, 0)
 y-intercept: (0, a)  y-intercept: (0, −a)
 (a ≠ 0)  (a ≠ 0)

 Finding Parallel and Perpendicular Lines  
In Exercises 57–62, write the general forms of 
the equations of the lines that pass through the 
point and are (a) parallel to the given line and (b) 
perpendicular to the given line.

 Point Line

57. (−7, −2) x = 1

58. (−1, 0) y = −3

59. (−3, 2) x + y = 7

60. (2, 5) x − y = −2

61. (3
4, 78) 5x − 3y = 0

62. (5
6, −1

2) 7x + 4y = 8

Rate of Change In Exercises 63 and 64, you are given the 
dollar value of a product in 2016 and the rate at which the 
value of the product is expected to change during the next  
5 years. Write a linear equation that gives the dollar value V of 
the product in terms of the year t. (Let t = 0 represent 2010.)

 2016 Value Rate

63. $1850 $250 increase per year

64. $17,200 $1600 decrease per year

Collinear Points In Exercises 65 and 66, determine whether 
the points are collinear. (Three points are collinear if they lie 
on the same line.)

65. (−2, 1), (−1, 0), (2, −2)
66. (0, 4), (7, −6), (−5, 11)

Exploring ConCEpts
67.  Square Show that the points (−1, 0), (3, 0), (1, 2), 

and (1, −2) are vertices of a square.

68.  analyzing a Line A line is represented by the 
equation ax + by = 4.

 (a) When is the line parallel to the x-axis?

 (b) When is the line parallel to the y-axis?

 (c)  Give values for a and b such that the line has a slope 
of 58.

 (d)  Give values for a and b such that the line is 
perpendicular to y = 2

5x + 3.

 (e)  Give values for a and b such that the line coincides 
with the graph of 5x + 6y = 8.

69.  tangent Line Find an equation of the line tangent to the 
circle x2 + y2 = 169 at the point (5, 12).

70.  tangent Line Find an equation of the line tangent to the 
circle (x − 1)2 + ( y − 1)2 = 25 at the point (4, −3).
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18 Chapter 1 Preparation for Calculus

71.  Finding Points of intersection Find the coordinates of 
the point of intersection of the given segments. Explain your 
reasoning.

 (a) Perpendicular bisectors  (b) Medians

  

(−a, 0) (a, 0)

(b, c)  

(−a, 0) (a, 0)

(b, c)

72.  hoW Do yoU See it? Several lines are 
shown in the figure below. (The lines are labeled 
a–f.)

(a)  Which lines have a 

x

a

c

d

e

f

b

−3 1 3

−4
−5

−7
−8

1

3

5
6
7
8

y

positive slope?

(b)  Which lines have a
 negative slope?

(c)  Which lines appear
parallel?

(d)  Which lines appear
perpendicular?

72.  

73.  temperature Conversion Find a linear equation that 
expresses the relationship between the temperature in degrees 
Celsius C and degrees Fahrenheit F. Use the fact that water 
freezes at 0°C (32°F) and boils at 100°C (212°F). Use the 
equation to convert 72°F to degrees Celsius.

74.  Choosing a Job As a salesperson, you receive a monthly 
salary of $2000, plus a commission of 7% of sales. You are 
offered a new job at $2300 per month, plus a commission of 
5% of sales.

 (a)  Write linear equations for your monthly wage W in terms of 
your monthly sales s for your current job and your job offer.

 (b)  Use a graphing utility to graph each equation and find the 
point of intersection. What does it signify?

 (c)  You think you can sell $20,000 worth of a product per 
month. Should you change jobs? Explain.

75.  apartment Rental A real estate office manages an 
apartment complex with 50 units. When the rent is $780 per 
month, all 50 units are occupied. However, when the rent 
is $825, the average number of occupied units drops to 47. 
Assume that the relationship between the monthly rent p and 
the demand x is linear. (Note: The term demand refers to the 
number of occupied units.)

 (a)  Write a linear equation giving the demand x in terms of the 
rent p.

 (b)  Linear extrapolation Use a graphing utility to graph the 
demand equation and use the trace feature to predict the 
number of units occupied when the rent is raised to $855.

 (c)  Linear interpolation Predict the number of units occupied 
when the rent is lowered to $795. Verify graphically.

76.  Modeling Data An instructor gives regular 20-point 
quizzes and 100-point exams in a mathematics course. Average 
scores for six students, given as ordered pairs (x, y), where x 
is the average quiz score and y is the average exam score, are 
(18, 87), (10, 55), (19, 96), (16, 79), (13, 76), and (15, 82).

 (a)  Use the regression capabilities of a graphing utility to find 
the least squares regression line for the data.

 (b)  Use a graphing utility to plot the points and graph the 
regression line in the same viewing window.

 (c)  Use the regression line to predict the average exam score 
for a student with an average quiz score of 17.

 (d) Interpret the meaning of the slope of the regression line.

 (e)  The instructor adds 4 points to the average exam score of 
everyone in the class. Describe the changes in the positions 
of the plotted points and the change in the equation of the 
line.

77.  Distance Show that the distance between the point (x1, y1) 
and the line  Ax + By + C = 0 is

 Distance = ∣Ax1 + By1 + C∣
√A2 + B2

.

78.  Distance Write the distance d between the point (3, 1) and 
the line y = mx + 4 in terms of m. Use a graphing utility to 
graph the equation. When is the distance 0? Explain the result 
geometrically.

Distance In Exercises 79 and 80, use the result of Exercise 77
to find the distance between the point and the line.

79. Point: (−2, 1) 80. Point: (2, 3)
 Line: x − y − 2 = 0  Line: 4x + 3y = 10

81.  Proof Prove that the diagonals of a rhombus intersect at 
right angles. (A rhombus is a quadrilateral with sides of equal 
lengths.)

82.  Proof Prove that the figure formed by connecting consecutive 
midpoints of the sides of any quadrilateral is a parallelogram.

83.  Proof Prove that if the points (x1, y1) and (x2, y2) lie on the 
same line as (x ∗

1 , y ∗
1 ) and (x ∗

2 , y ∗
2 ), then

 
y2

∗ − y1
∗

x2
∗ − x1

∗
=

y2 − y1

x2 − x1
.

 Assume x1 ≠ x2 and x1
∗ ≠ x2

∗.

84.  Proof Prove that if the slopes of two nonvertical lines 
are negative reciprocals  of each other, then the lines are 
perpendicular.

true or False? In Exercises 85 and 86, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

85.  The lines represented by 

 ax + by = c1 and bx − ay = c2

 are perpendicular. Assume a ≠ 0 and b ≠ 0.

86.  If a line contains points in both the first and third quadrants, 
then its slope must be positive.
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1.3 Functions and Their Graphs

 Use function notation to represent and evaluate a function.
 Find the domain and range of a function.
 Sketch the graph of a function.
 Identify different types of transformations of functions.
 Classify functions and recognize combinations of functions.

Functions and Function Notation
A relation between two sets X and Y  is a set of ordered pairs, each of the form (x, y), 
where x is a member of X and y is a member of Y. A function from X to Y  is a relation 
between X and Y  that has the property that any two ordered pairs with the same 
x-value also have the same y-value. The variable x is the independent variable, and 
the variable y is the dependent variable.

Many real-life situations can be modeled by functions. For instance, the area A of 
a circle is a function of the circle’s radius r.

A = πr2 A is a function of r.

In this case, r is the independent variable and A is the dependent variable.

Definition of a Real-Valued Function of a Real Variable

Let X and Y  be sets of real numbers. A real-valued function f  of a real 
variable x from X to Y  is a correspondence that assigns to each number x in 
X exactly one number y in Y.

The domain of f  is the set X. The number y is the image of x under f  
and is denoted by f (x), which is called the value of f  at x. The range of f  is 
a subset of Y  and consists of all images of  numbers in X. (See Figure 1.22.)

Functions can be specified in a variety of ways. In this text, however, you will 
concentrate primarily on functions that are given by equations involving the dependent 
and independent variables. For instance, the equation

x2 + 2y = 1 Equation in implicit form

defines y, the dependent variable, as a function of x, the independent variable. To 
 evaluate this function (that is, to find the y-value that corresponds to a given x-value), 
it is convenient to isolate y on the left side of the equation.

y = 1
2 (1 − x2) Equation in explicit form

Using f  as the name of the function, you can write this equation as

f (x) = 1
2(1 − x2). Function notation

The original equation

x2 + 2y = 1

implicitly defines y as a function of x. When you solve the equation for y, you are 
writing the equation in explicit form.

Function notation has the advantage of clearly identifying the dependent variable 
as f (x) while at the same time telling you that x is the independent variable and that the 
function itself is “ f.” The symbol f (x) is read “ f  of x.” Function notation allows you to 
be less wordy. Instead of asking “What is the value of y that corresponds to x = 3?” you 
can ask “What is f (3)?”

A real-valued function f  of a real 
variable
Figure 1.22

Range

x

f

Domain

y = f (x)

Y

X

FuNCTIoN NoTaTIoN

The word function was first 
used by Gottfried Wilhelm 
Leibniz in 1694 as a term to 
denote any quantity connected 
with a curve, such as the 
coordinates of a point on a 
curve or the slope of a curve. 
Forty years later, Leonhard 
Euler used the word “function” 
to describe any expression 
made up of a variable and some 
constants. He introduced the 
notation y = f (x). (To read 
more about Euler, see the 
biography on the next page.)
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20 Chapter 1 Preparation for Calculus

In an equation that defines a function of x, the role of the variable x is simply that 
of a placeholder. For instance, the function

f (x) = 2x2 − 4x + 1

can be described by the form

f (■) = 2(■)2 − 4(■) + 1

where rectangles are used instead of x. To evaluate f (−2), replace each rectangle 
with −2.

 f (−2) = 2(−2)2 − 4(−2) + 1 Substitute −2 for x.

 = 2(4) + 8 + 1 Simplify.

 = 17 Simplify.

Although f  is often used as a convenient function name with x as the independent 
 variable, you can use other symbols. For instance, these three equations all define the 
same function.

 f (x) = x2 − 4x + 7 Function name is f, independent variable is x.

 f (t) = t2 − 4t + 7  Function name is f, independent variable is t.

 g(s) = s2 − 4s + 7 Function name is g, independent variable is s.

 Evaluating a Function

For the function f  defined by f (x) = x2 + 7, evaluate each expression.

a. f (3a)  b. f (b − 1)  c. 
f (x + ∆x) − f (x)

∆x

Solution

a.  f (3a) = (3a)2 + 7 Substitute 3a for x.

  = 9a2 + 7 Simplify.

b.  f (b − 1) = (b − 1)2 + 7 Substitute b − 1 for x.

  = b2 − 2b + 1 + 7 Expand binomial.

  = b2 − 2b + 8 Simplify.

c.  
f (x + ∆x) − f (x)

∆x
=

[(x + ∆x)2 + 7] − (x2 + 7)
∆x

  =
x2 + 2x∆x + (∆x)2 + 7 − x2 − 7

∆x

  =
2x∆x + (∆x)2

∆x

  =
∆x(2x + ∆x)

∆x

  = 2x + ∆x, ∆x ≠ 0 

In calculus, it is important to specify the domain of a function or expression clearly. 
For instance, in Example 1(c), the two expressions

f (x + ∆x) − f (x)
∆x

 and 2x + ∆x, ∆x ≠ 0

are equivalent because ∆x = 0 is excluded from the domain of each expression. 
Without a stated domain restriction, the two expressions would not be equivalent.

leoNharD euler (1707–1783)

In addition to making major 
contributions to almost every 
branch of mathematics, Euler 
was one of the first to apply 
calculus to real-life problems in 
physics. His extensive published 
writings include such topics as 
 shipbuilding, acoustics, optics, 
astronomy, mechanics, and 
magnetism.
See LarsonCalculus.com to read 
more of this biography.

REMARK The expression 
in Example 1(c) is called a 
difference quotient and has a 
special significance in calculus. 
You will learn more about this 
in Chapter 3.

North Wind Picture Archives / Alamy Stock Photo
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 1.3 Functions and Their Graphs 21

The Domain and Range of a Function
The domain of a function can be described explicitly, or it may be described implicitly 
by an equation used to define the function. The implied domain is the set of all real 
numbers for which the equation is defined, whereas an explicitly defined domain is one 
that is given along with the function. For example, the function

f (x) =
1

x2 − 4
, 4 ≤ x ≤ 5

has an explicitly defined domain given by {x: 4 ≤ x ≤ 5}. On the other hand, the 
function

g(x) =
1

x2 − 4

has an implied domain that is the set {x: x ≠ ±2}.

 Finding the Domain and Range of a Function

Find the domain and range of each function.

a. f (x) = √x − 1   b. g(x) = √4 − x2

Solution

a. The domain of the function

f (x) = √x − 1

  is the set of all x-values for which x − 1 ≥ 0, which is the interval [1, ∞). To 
find the range, observe that f (x) = √x − 1 is never negative. So, the range is the 
interval [0, ∞), as shown in Figure 1.23(a).

b. The domain of the function

g(x) = √4 − x2

  is the set of all values for which 4 − x2 ≥ 0, or x2 ≤ 4. So, the domain of g is the 
interval [−2, 2]. To find the range, observe that g(x) = √4 − x2 is never negative 
and is at most 2. So, the range is the interval [0, 2], as shown in Figure 1.23(b). Note 
that the graph of g is a semicircle of radius 2.

 A Function Defined by More than One Equation

For the piecewise-defined function

f (x) = {1 − x,
√x − 1,

   x < 1
   x ≥ 1

f  is defined for x < 1 and x ≥ 1. So, the  
domain is the set of all real numbers. On the  
portion of the domain for which x ≥ 1, the  
function behaves as in Example 2(a). For  
x < 1, the values of 1 − x are positive. So,  
the range of the function is the interval  
[0, ∞). (See Figure 1.24.)

  

A function from X to Y  is one-to-one when to each y-value in the range there 
corresponds exactly one x-value in the domain. For instance, the function in Example 2(a) 
is one-to-one, whereas the functions in Examples 2(b) and 3 are not one-to-one.  
A function from X to Y  is onto when its range consists of all of Y.

The domain of f  is (−∞, ∞), and 
the range is [0, ∞).
Figure 1.24
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 ≥
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Domain: all real x

x − 1, x ≥ 1
f (x) =

1 − x, x < 1

The Square rooT Symbol

The first use of a symbol to 
denote the square root can 
be traced to the sixteenth 
century. Mathematicians first 
used the symbol √ , which 
had only two strokes. The 
symbol was chosen because it 
resembled a lowercase r, to 
stand for the Latin word radix, 
meaning root.

(a)  The domain of f  is [1, ∞), and the 
range is [0, ∞).

(b)  The domain of g is [−2, 2], and the 
range is [0, 2].

Figure 1.23
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Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



22 Chapter 1 Preparation for Calculus

The Graph of a Function
The graph of the function y = f (x) consists of all points (x, f (x)), where x is in the 
domain of f. In Figure 1.25, note that

x = the directed distance from the y-axis

and

f (x) = the directed distance from the x-axis.

A vertical line can intersect the graph of a function of x at most once. This 
observation provides a convenient visual test, called the Vertical Line Test, for 
functions of x. That is, a graph in the coordinate plane is the graph of a function of x if 
and only if no vertical line intersects the graph at more than one point. For example, in 
Figure 1.26(a), you can see that the graph does not define y as a function of x because 
a vertical line intersects the graph twice, whereas in Figures 1.26(b) and (c), the graphs 
do define y as a function of x.

x
−3 −2 1

4

2

y    

x

3

2

1

−2

1 2 4

y    

x
−1 1 2 3

4

1

3

y

 (a) Not a function of x (b) A function of x (c) A function of x

 Figure 1.26

Figure 1.27 shows the graphs of six basic functions. You should be able to 
recognize these graphs. (The graphs of the six basic trigonometric functions are shown 
in Section 1.4.)

The graph of a function
Figure 1.25

x

x

f (x)

(x, f (x))
y = f (x)y

Identity function Squaring function Cubing function

Square root function

The graphs of six basic functions
Figure 1.27

Absolute value function Rational function
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Transformations of Functions
Some families of graphs have the same basic shape. For example, compare the graph 
of y = x2 with the graphs of the four other quadratic functions shown in Figure 1.28.
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 (a) Vertical shift upward (b) Horizontal shift to the left
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1
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y = 1 − (x + 3)2

y

y = x2

 (c) Reflection (d) Shift left, reflect, and shift upward

 Figure 1.28

Each of the graphs in Figure 1.28 is a transformation of the graph of y = x2. 
The three basic types of transformations illustrated by these graphs are vertical shifts, 
horizontal shifts, and reflections. Function notation lends itself well to describing 
transformations of graphs in the plane. For instance, using

f (x) = x2 Original function

as the original function, the transformations shown in Figure 1.28 can be represented 
by these equations.

a. y = f (x) + 2 Vertical shift up two units

b. y = f (x + 2) Horizontal shift to the left two units

c. y = −f (x) Reflection about the x-axis

d. y = −f (x + 3) + 1 Shift left three units, reflect about the x-axis, and shift up one unit

Basic Types of Transformations (c > 0)
Original graph: y = f (x)
Horizontal shift c units to the right: y = f (x − c)
Horizontal shift c units to the left: y = f (x + c)
Vertical shift c units downward: y = f (x) − c

Vertical shift c units upward: y = f (x) + c

reflection (about the x-axis): y = −f (x)
reflection (about the y-axis): y = f (−x)
reflection (about the origin): y = −f (−x)
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24 Chapter 1 Preparation for Calculus

Classifications and Combinations of Functions
The modern notion of a function is derived from the efforts of many seventeenth- 
and eighteenth-century mathematicians. Of particular note was Leonhard Euler, who 
introduced the function notation y = f (x). By the end of the eighteenth century, 
mathematicians and scientists had concluded that many real-world phenom ena could 
be represented by mathematical models taken from a collection of functions called 
elementary functions. Elementary functions fall into three categories.

1. Algebraic functions (polynomial, radical, rational)

2. Trigonometric functions (sine, cosine, tangent, and so on)

3. Exponential and logarithmic functions

You will review the trigonometric functions in the next section. The other nonalgebraic 
functions, such as the inverse trigonometric functions and the exponential and logarithmic 
functions, are introduced in Sections 1.5 and 1.6.

The most common type of algebraic function is a polynomial function

f (x) = anx
n + an−1x

n−1 + .  .  . + a2x
2 + a1x + a0

where n is a nonnegative integer. The numbers ai are coefficients, with an the leading 
coefficient and a0 the constant term of the  polynomial function. If an ≠ 0, then n is 
the degree of the polynomial function. The zero polynomial f (x) = 0 is not assigned 
a degree. It is common practice to use subscript notation for coefficients of general 
polynomial functions, but for polynomial functions of low degree, these simpler forms 
are often used. (Note that a ≠ 0.)

Zeroth degree: f (x) = a Constant function

First degree: f (x) = ax + b Linear function

Second degree: f (x) = ax2 + bx + c Quadratic function

Third degree: f (x) = ax3 + bx2 + cx + d Cubic function

Although the graph of a nonconstant polynomial function can have several turns, 
eventually the graph will rise or fall without bound as x moves to the right or left. 
Whether the graph of

f (x) = anx
n + an−1x

n−1 + .  .  . + a2x
2 + a1x + a0

eventually rises or falls can be determined by the function’s degree (odd or even) and 
by the leading coefficient an, as indicated in Figure 1.29. Note that the dashed portions 
of the graphs indicate that the Leading Coefficient Test determines only the right and 
left behavior of the graph.

 For FurTher InFormaTIon
For more on the history of the 
concept of a function, see the 
article “Evolution of the Function 
Concept: A Brief Survey” by 
Israel Kleiner in The College 
Mathematics Journal. To view this 
article, go to MathArticles.com.

Graphs of polynomial functions of even degree

The Leading Coefficient Test for polynomial functions
Figure 1.29
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Just as a rational number can be written as the quotient of two integers, a rational 
function can be written as the quotient of two polynomials. Specifically, a function f  
is rational when it has the form

f (x) =
p(x)
q(x),   q(x) ≠ 0

where p(x) and q(x) are polynomials.
Polynomial functions and rational functions are examples of algebraic functions. 

An algebraic function of x is one that can be expressed as a finite number of 
sums, differences, multiples, quotients, and radicals involving xn. For example, 
f (x) = √x + 1 is algebraic. Functions that are not algebraic are transcendental. For 
instance, the trigonometric functions (see Section 1.4) are transcendental.

Two functions can be combined in various ways to create new functions. For 
example, given f (x) = 2x − 3 and g(x) = x2 + 1, you can form the  functions shown.

( f + g)(x) = f (x) + g(x) = (2x − 3) + (x2 + 1) Sum

( f − g)(x) = f (x) − g(x) = (2x − 3) − (x2 + 1) Difference

( fg)(x) = f (x)g(x) = (2x − 3)(x2 + 1) Product

( f�g)(x) =
f (x)
g(x) =

2x − 3
x2 + 1

 Quotient

You can combine two functions in yet another way, called composition. The 
resulting function is called a composite function.

Definition of Composite Function

Let f  and g be functions. The function ( f ∘ g)(x) = f (g(x)) is the composite 
of f  with g. The domain of f ∘ g is the set of all x in the domain of g such that 
g(x) is in the domain of f  (see Figure 1.30).

The composite of f  with g is generally not the same as the composite of g with f. 
This is shown in the next example.

 Finding Composite Functions

See LarsonCalculus.com for an interactive version of this type of example.

For f (x) = 2x − 3 and g(x) = x2 + 1, find each composite function.

a. f ∘ g  b. g ∘ f

Solution

a.  ( f ∘ g)(x) = f (g(x)) Definition of f ∘ g

  = f (x2 + 1) Substitute x2 + 1 for g(x).

  = 2(x2 + 1) − 3 Definition of f (x)

  = 2x2 − 1 Simplify.

b.  (g ∘ f )x = g( f (x))  Definition of g ∘ f

  = g(2x − 3)  Substitute 2x − 3 for f (x).

  = (2x − 3)2 + 1  Definition of g(x)

  = 4x2 − 12x + 10 Simplify.

Note that ( f ∘ g)(x) ≠ (g ∘ f )(x). 

The domain of the composite function 
f ∘ g
Figure 1.30

Domain of g

Domain of f

f
g

x

f (g(x))

g(x)

f   g
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In Section 1.1, an x-intercept of a graph was defined to be a point (a, 0) at which 
the graph crosses the x-axis. If the graph represents a function f, then the number a is 
a zero of f. In other words, the zeros of a function f  are the solutions of the equation 
f (x) = 0. For example, the function

f (x) = x − 4

has a zero at x = 4 because f (4) = 0.
In Section 1.1, you also studied different types of symmetry. In the terminology of 

functions, a function y = f (x) is even when its graph is symmetric with respect to the 
y-axis, and is odd when its graph is symmetric with respect to the origin. The symmetry 
tests in Section 1.1 yield the following test for even and odd functions.

Test for Even and Odd Functions

The function y = f (x) is even when

f (−x) = f (x).

The function y = f (x) is odd when

f (−x) = −f (x).

 Even and Odd Functions and Zeros of Functions

Determine whether each function is even, odd, or neither. Then find the zeros of the 
function.

a. f (x) = x3 − x  b. g(x) =
1
x2  c. h(x) = −x2 − x − 1

Solution

a. This function is odd because

f (−x) = (−x)3 − (−x) = −x3 + x = −(x3 − x) = −f (x).
 The zeros of f  are

 x3 − x = 0 Let f (x) = 0.

 x(x2 − 1) = 0 Factor.

 x(x − 1)(x + 1) = 0 Factor.

 x = 0, 1, −1. Zeros of f

 See Figure 1.31(a).

b. This function is even because

g(−x) =
1

(−x)2 =
1
x2 = g(x).

  This function does not have zeros because 1�x2 is positive for all x in the domain, 
as shown in Figure 1.31(b).

c. Substituting −x for x produces

h(−x) = −(−x)2 − (−x) − 1 = −x2 + x − 1.

 Because h(x) = −x2 − x − 1 and −h(x) = x2 + x + 1, you can conclude that

h(−x) ≠ h(x) Function is not even.

 and

h(−x) ≠ −h(x). Function is not odd.

  So, the function is neither even nor odd. This function does not have zeros because 
−x2 − x − 1 is negative for all x, as shown in Figure 1.31(c). 

(a) Odd function

x
−2 1 2

−2

−1

1

2

(1, 0)

(0, 0)

(−1, 0)
f (x) = x3 − x

y

(b) Even function

x

1
x2g(x) =

y

−1−2−3 1 2 3

1

2

3

(c) Neither even nor odd

Figure 1.31

x

y

−1−2−3 1 2

−1

−2

−3

−4

−5

h(x) = −x2 − x − 1
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 1.3 Functions and Their Graphs 27

1.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Writing Describe how a relation and a function are 

different.

2.  Domain and Range In your own words, explain the 
meanings of domain and range.

3.  Transformations What are the three basic types of 
function transformations?

4.  Right and Left Behavior Describe the four cases of 
the Leading Coefficient Test.

 Evaluating a Function In exercises 5–12, 
evaluate the function at the given value(s) of the 
independent variable. Simplify the results.

 5. f (x) = 3x − 2

 (a) f (0) (b) f (5) (c) f (b) (d) f (x − 1)
 6. f (x) = 7x − 4

 (a) f (0) (b) f (−3) (c) f (b) (d) f (x + 2)
 7. f (x) = √x2 + 4

 (a) f (−2)   (b) f (3) (c) f (2) (d) f (x + bx)
 8. f (x) = √x + 5

 (a) f (−4) (b) f (11) (c) f (4) (d) f (x + ∆x)
 9. g(x) = 5 − x2

 (a) g(0) (b) g(√5)   (c) g(−2)   (d) g(t − 1)
10. g(x) = x2(x − 4)
 (a) g(4) (b) g(3

2) (c) g(c) (d) g(t + 4)
11. f (x) = x3 12. f (x) = 3x − 1

 
f (x + ∆x) − f (x)

∆x
  

f (x) − f (1)
x − 1

 Finding the Domain and Range of a 
Function In exercises 13–22, find the domain 
and range of the function.

13. f (x) = 4x2 14. g(x) = x2 − 5

15. f (x) = x3 16. h(x) = 4 − x2

17. g(x) = √6x 18. h(x) = −√x + 3

19. f (x) = √16 − x2 20. f (x) = ∣x − 3∣
21. f (x) =

3
x
 22. f (x) =

x − 2
x + 4

Finding the Domain of a Function In exercises 23–26, 
find the domain of the function.

23. f (x) = √x + √1 − x 24. f (x) = √x2 − 3x + 2

25. f (x) =
1

∣x + 3∣ 26. g(x) =
1

∣x2 − 4∣

 Finding the Domain and Range of a 
Piecewise Function In exercises 27–30, 
evaluate the function at the given value(s) of the 
independent variable. Then find the domain and 
range.

27. f (x) = {2x + 1,
2x + 2,

   x < 0
   x ≥ 0

 (a) f (−1)  (b) f (0)  (c) f (2)  (d) f (t2 + 1)

28. f (x) = {x2 + 2,
2x2 + 2,

   x ≤ 1
   x > 1

 (a) f (−2)  (b) f (0)  (c) f (1)  (d) f (s2 + 2)

29. f (x) = { ∣x∣ + 1,
−x + 1,

x < 1
x ≥ 1

 (a) f (−3)  (b) f (1)  (c) f (3)  (d) f (b2 + 1)

30. f (x) = {√x + 4,
(x − 5)2,

x ≤ 5
x > 5

 (a) f (−3)  (b) f (0)  (c) f (5)  (d) f (10)

Sketching a Graph of a Function In exercises 31–38, 
sketch a graph of the function and find its domain and range. 
use a graphing utility to verify your graph.

31. f (x) = 4 − x 32. f (x) = x2 + 5

33. g(x) =
1

x2 + 2
 34. f (t) =

2
7 + t

35. h(x) = √x − 6 36. f (x) = 1
4 x3 + 3

37. f (x) = √9 − x2 38. f (x) = x + √4 − x2

Using the Vertical Line Test In exercises 39–42, use the 
Vertical Line Test to determine whether y is a function of x. 
To print an enlarged copy of the graph, go to MathGraphs.com.

39. x − y2 = 0 40. √x2 − 4 − y = 0

 

3 4

2

1 2

1

−1

−2

x

y   

x
−1

−2

−2−3

1

1

2

2

3

3

4

y

41. y = { x + 1,
−x + 2,

x ≤ 0
x > 0

 42. x2 + y2 = 4

 

2

1 2

1

−1

−2

−2
x

y   

1

1

−1
−1

x

y
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28 Chapter 1 Preparation for Calculus

 Deciding Whether an Equation Is a 
Function In exercises 43–46, determine 
whether y is a function of x.

43. x2 + y2 = 16 44. x2 + y = 16

45. y2 = x2 − 1 46. x2y − x2 + 4y = 0

 Transformation of a Function In exercises 
47–50, the graph shows one of the six basic 
functions on page 22 and a transformation of 
the function. Describe the transformation. Then 
use your description to write an equation for the 
transformation.

47. 

1 2
x

3 4 5−1

1

2

3

4

5

y  48. 

x

y

−2−3 1 2 3−1

2

4

5

49. 

x

y

−1−2 1 3 4

−2

1

2

3

4

 50. 

x

y

−3 1 2 3

1

3

4

5

Matching In exercises 51–56, use the graph of y = f (x) to 
match the function with its graph.

y

x
1 2−1

−2

2
3

5
6

−3

−5

3−3 −2 4 5 7 9 10−4−6 −5

y = f(x)

g
e

d

c

b a

51. y = f (x + 5) 52. y = f (x) − 5

53. y = −f (−x) − 2 54. y = −f (x − 4)
55. y = f (x + 6) + 2 56. y = f (x − 1) + 3

57.  Sketching Transformations Use the graph of f  shown 
in the figure to sketch the graph of each function. To print an 
enlarged copy of the graph, go to MathGraphs.com.

 (a) f (x + 3) (b) f (x − 1)
 (c) f (x) + 2 (d) f (x) − 4

 (e) 3f (x) (f ) 1
4 f (x)

 (g) −f (x) (h) −f (−x)

 

x

y

−2−4 4
−2

−4

2

f

 

x

y

f
−2−4 2

−2

−4

2 (2, 1)

(−4, −3)

 Figure for 57 Figure for 58

58.  Sketching Transformations Use the graph of f  shown 
in the figure to sketch the graph of each function. To print an 
enlarged copy of the graph, go to MathGraphs.com.

 (a) f (x − 4) (b) f (x + 2)
 (c) f (x) + 4 (d) f (x) − 1

 (e) 2f (x) (f ) 1
2 f (x)

 (g) f (−x) (h) −f (x)

 Combinations of Functions In exercises 
59 and 60, find (a) f (x) + g(x), (b) f (x) − g(x),  
(c) f (x) ∙ g(x), and (d) f (x)�g(x).

59. f (x) = 2x − 5 60. f (x) = x2 + 5x + 4

 g(x) = 4 − 3x  g(x) = x + 1

61.  Evaluating Composite Functions Given f (x) = √x 
and g(x) = x2 − 1, evaluate each expression.

 (a) f (g(1)) (b) g( f (1)) (c) g( f (0))
 (d) f (g(−4)) (e) f (g(x)) (f ) g( f (x))

62.  Evaluating Composite Functions Given f (x) = 2x3 
and g(x) = 4x + 3, evaluate each expression.

 (a) f (g(0)) (b) f (g(1
2)) (c) g( f (0))

 (d) g( f (−1
4)) (e) f (g(x)) (f ) g( f (x))

 Finding Composite Functions In exercises 
63–66, find the composite functions f ∘ g and g ∘ f. 
Find the domain of each composite function. are 
the two composite functions equal?

63. f (x) = x2  64. f (x) = x2 − 1 

 g(x) = √x  g(x) = −x

65. f (x) =
3
x
  66. f (x) =

1
x

 g(x) = x2 − 1  g(x) = √x + 2

67.  Evaluating Composite Functions Use the graphs of 
f  and g to evaluate each expression. If the result is undefined, 
explain why.

 (a) ( f ∘ g)(3) y

x
2

−2

2

4−2

g
f

 (b) g( f (2))
 (c) g( f (5))
 (d) ( f ∘ g)(−3)
 (e) (g ∘ f )(−1)
 (f ) f (g(−1))
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 1.3 Functions and Their Graphs 29

68.  Ripples A pebble is dropped into a calm pond, causing 
ripples in the form of concentric circles. The radius (in feet) 
of the outer ripple is given by r(t) = 0.6t, where t is the time 
in seconds after the pebble strikes the water. The area of the 
circle is given by the function A(r) = πr2. Find and interpret 
(A ∘ r)(t).

Think About It In exercises 69 and 70, F(x) = f ∘ g ∘ h. 
Identify functions for f, g, and h. (There are many correct 
answers.)

69. F(x) = √2x − 2 70. F(x) =
1

4x6

Think About It In exercises 71 and 72, find the coordinates 
of a second point on the graph of a function f  when the given 
point is on the graph and the function is (a) even and (b) odd.

71. (−3
2, 4) 72. (4, 9)

73.  Even and Odd Functions The graphs of f, g, and h are 
shown in the figure. Decide whether each function is even, 
odd, or neither.

g
h

f

y

x

2

4

4−4

  

f

y

x
2

−4

−6

2

4

6

4 6−2−4−6

 Figure for 73 Figure for 74

74.  Even and Odd Functions The domain of the function f  
shown in the figure is −6 ≤ x ≤ 6.

 (a) Complete the graph of f  given that f  is even.

 (b) Complete the graph of f  given that f  is odd.

 Even and Odd Functions and Zeros of 
Functions In exercises 75–78, determine 
whether the function is even, odd, or neither. 
Then find the zeros of the function. use a graphing 
utility to verify your result.

75. f (x) = x2(4 − x2) 76. f (x) = 3√x

77. f (x) = 2 6√x 78. f (x) = 4x4 − 3x2

Writing Functions In exercises 79–82, write an equation 
for a function that has the given graph.

79. Line segment connecting (−2, 4) and (0, −6)
80. Line segment connecting (3, 1) and (5, 8)
81. The bottom half of the parabola x + y2 = 0

82. The bottom half of the circle x2 + y2 = 36

Sketching a Graph In exercises 83–86, sketch a possible 
graph of the situation.

83.  The speed of an airplane as a function of time during a 5-hour 
flight

84.  The height of a baseball as a function of horizontal distance 
during a home run

85.  A student commutes 15 miles to attend college. After driving 
for a few minutes, she remembers that a term paper that is 
due has been forgotten. Driving faster than usual, she returns 
home, picks up the paper, and once again starts toward school. 
Consider the student’s distance from home as a function of 
time.

86.  A person buys a new car and keeps it for 6 years. During year 4, 
he buys several expensive upgrades. Consider the value of the 
car as a function of time.

87.  Domain Find the value of c such that the domain of

 f (x) = √c − x2

 is [−5, 5].
88. Domain Find all values of c such that the domain of

 f (x) =
x + 3

x2 + 3cx + 6

 is the set of all real numbers.

exploring ConCepts
89.  One-to-One Functions Can the graph of a  

one-to-one function intersect a horizontal line more than 
once? Explain.

90.  Composite Functions Give an example of 
functions f  and g such that f ∘ g = g ∘ f  and f (x) ≠ g(x).

91.  Polynomial Functions Does the degree of a 
polynomial function determine whether the function is 
even or odd? Explain.

92.  Think About It Determine whether the function 
f (x) = 0 is even, odd, both, or neither. Explain.

93.  Graphical Reasoning An electronically controlled 
thermostat is programmed to lower the temperature during the 
night automatically (see figure). The temperature T in degrees 
Celsius is given in terms of t, the time in hours on a 24-hour 
clock.

t
3 6 9 12 15 18 21 24

12

16

20

24

T

 (a) Approximate T(4) and T(15).
 (b)  The thermostat is reprogrammed to produce a temperature 

H(t) = T(t − 1). How does this change the temperature? 
Explain.

 (c)  The thermostat is reprogrammed to produce a temperature 
H(t) = T(t) − 1. How does this change the temperature? 
Explain.
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30 Chapter 1 Preparation for Calculus

 94.  HOW DO YOU SEE IT? Water runs into 
a vase of height 30 centimeters at a constant 
rate. The vase is full after 5 seconds. Use this 
information and the shape of the vase shown to 
answer the questions when d is the depth of the 
water in centimeters and t is the time in seconds 
(see figure).

30 cm

d

(a) Explain why d is a function of t.

(b) Determine the domain and range of the function.

(c) Sketch a possible graph of the function.

(d)  Use the graph in part (c) to approximate d(4). What 
does this represent?

 94.  

 96.  Writing Use a graphing utility to graph the polynomial 
functions

  p1(x) = x3 − x + 1 and p2(x) = x3 − x.

   How many zeros does each function have? Is there a cubic 
polynomial that has no zeros? Explain.

 97. Proof Prove that the function is odd.

  f (x) = a2n+1x
2n+1 + .  .  . + a3x

3 + a1x

 98. Proof Prove that the function is even.

  f (x) = a2nx
2n + a2n−2x

2n−2 + .  .  . + a2x
2 + a0

 99.  Proof Prove that the product of two even (or two odd) 
functions is even.

100.  Proof Prove that the product of an odd function and an 
even function is odd.

101.  Length A right triangle is formed in the first quadrant 
by the x- and y-axes and a line through the point (3, 2) (see 
figure). Write the length L of the hypotenuse as a function of x.

 

1 2 3 5 6 74

1

2

3

4

(3, 2)

x
(x, 0)

(0, y)

y

102.  Volume An open box of maximum volume is to be made 
from a square piece of material 24 centimeters on a side by 
cutting equal squares from the corners and turning up the 
sides (see figure).

 

24 − 2x xx

x

24 − 2x

 (a)  Write the volume V as a function of x, the length of the 
 corner squares. What is the domain of the function?

 (b)  Use a graphing utility to graph the volume function 
and approximate the dimensions of the box that yield a 
maximum volume.

True or False? In exercises 103–108, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

103. If f (a) = f (b), then a = b.

104.  A vertical line can intersect the graph of a function at most 
once.

105.  If f (x) = f (−x) for all x in the domain of f, then the graph 
of f  is symmetric with respect to the y-axis.

106. If f  is a function, then f (ax) = af (x).
107.  The graph of a function of x cannot have symmetry with 

respect to the x-axis.

108.  If the domain of a function consists of a single number, then 
its range must also consist of only one number.

pUtnAM exAM ChAllenge
109.  Let R be the region consisting of the points (x, y) of 

the Cartesian plane satisfying both ∣x∣ − ∣y∣ ≤ 1 and 

∣y∣ ≤ 1. Sketch the region R and find its area.

110.  Consider a polynomial f (x) with real coefficients 
having the property f (g(x)) = g( f (x)) for every 
polynomial g(x) with real coefficients. Determine and 
prove the nature of f (x).

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

The horsepower H required to overcome wind drag on a 
certain automobile is

H(x) = 0.00004636x3

where x is the speed 
of the car in miles 
per hour.

(a)  Use a graphing 
utility to graph H.

(b)  Rewrite H so that x
represents the speed
in kilometers 
per hour. [Hint: 
Find H(x�1.6).]

95. Automobile Aerodynamics

iStockphoto.com/EdStock
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1.4 Review of Trigonometric Functions

 1.4 Review of Trigonometric Functions 31

 Describe angles and use degree measure.
 Use radian measure.
 Understand the definitions of the six trigonometric functions.
 Evaluate trigonometric functions.
 Solve trigonometric equations.
 Graph trigonometric functions.

Angles and Degree Measure
An angle has three parts: an initial ray (or side), a terminal ray, and a vertex (the 
point of intersection of the two rays), as shown in Figure 1.32(a). An angle is in 
standard position when its initial ray coincides with the positive x-axis and its vertex 
is at the origin, as shown in Figure 1.32(b).

Vertex

Initial ray

Terminal ra
y

θ

    

x
Initial ray

Term
inal ray

y

θ

 (a) Angle (b) Angle in standard position
 Figure 1.32

It is assumed that you are familiar with the degree measure of an angle.* It is common 
practice to use θ (the lowercase Greek letter theta) to represent both an angle and its measure. 
Angles between 0° and 90° are acute, and angles between 90° and 180° are obtuse.

Positive angles are measured counterclockwise, and negative angles are measured 
clockwise. For instance, Figure 1.33 shows an angle whose measure is −45°. You 
cannot assign a measure to an angle by simply knowing where its initial and terminal 
rays are located. To measure an angle, you must also know how the terminal ray was 
revolved. For example, Figure 1.33 shows that the angle measuring −45° has the same 
terminal ray as the angle measuring 315°. Such angles are coterminal. In general, if θ 
is any angle, then θ + n(360), n is a nonzero integer, is coterminal with θ.

An angle that is larger than 360° is one whose terminal ray has been revolved more 
than one full revolution counterclockwise, as shown in Figure 1.34(a). You can form 
an angle whose measure is less than −360° by revolving a terminal ray more than one 
full revolution clockwise, as shown in Figure 1.34(b).

θ = 720°

    θ = −405°

 (a) An angle whose measure (b) An angle whose measure
  is greater than 360° is less than −360°
 Figure 1.34

* For a more complete review of trigonometry, see Precalculus, 10th edition, or Precalculus: Real Mathematics, 
Real People, 7th edition, both by Ron Larson (Boston, Massachusetts: Brooks/Cole, Cengage Learning, 2018 
and 2016, respectively).

Coterminal angles
Figure 1.33

θ

θ

= −45°

= 315°
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32 Chapter 1 Preparation for Calculus

Radian Measure
To assign a radian measure to an angle θ, consider θ to be a central angle of a circle of 
radius 1, as shown in Figure 1.35. The radian measure of θ is then defined to be the length 
of the arc of the sector. Because the circumference of a circle is 2πr, the circumference 
of a unit circle (of radius 1) is 2π. This implies that the radian measure of an angle 
measuring 360° is 2π. In other words, 360° = 2π  radians.

Using radian measure for θ, the length s of a circular arc of radius r is s = rθ, as 
shown in Figure 1.36.

r = 1
θ

θ

The arc
length of the
sector is the
radian measure
of   .

    

θ
r

θArc length is = .s r

 Unit circle Circle of radius r
 Figure 1.35 Figure 1.36

You should know the conversions of the common angles shown in Figure 1.37. For 
other angles, use the fact that 180° is equal to π  radians.

 Conversions Between Degrees and Radians

a. 40° = (40 deg)( π rad
180 deg) =

2π
9

 radian

b. 540° = (540 deg)( π rad
180 deg) = 3π radians

c. −270° = (−270 deg)( π rad
180 deg) = −

3π
2

 radians

d. −
π
2

 radians = (−
π
2

 rad)(180 deg
π rad ) = −90°

e. 2 radians = (2 rad)(180 deg
π rad ) = (360

π )°
≈ 114.59°

f. 
9π
2

 radians = (9π
2

 rad)(180 deg
π rad ) = 810° 

Radian and degree measures for several common angles
Figure 1.37

45° = π
4

60° = π
3

90° = π
2

180° = π

360 = 2° π

30° = π
6

teChnology Most graphing utilities have both degree and radian modes. 
You should learn how to use your graphing utility to convert from degrees to radians, 
and vice versa. Use a graphing utility to verify the results of Example 1.
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The Trigonometric Functions
There are two common approaches to the study of trigonometry. In one, the trigonometric 
functions are defined as ratios of two sides of a right triangle. In the other, these 
functions are defined in terms of a point on the terminal ray of an angle in standard 
position. The six trigonometric functions, sine, cosine, tangent, cotangent, secant, 
and cosecant (abbreviated as sin, cos, tan, cot, sec, and csc, respectively), are defined 
below from both viewpoints.

Definition of the Six trigonometric Functions

Right triangle definitions, where 0 < θ <
π
2

 (see Figure 1.38)

sin θ =
opposite

hypotenuse
   cos θ =

adjacent
hypotenuse

   tan θ =
opposite
adjacent

csc θ =
hypotenuse

opposite
   sec θ =

hypotenuse
adjacent

   cot θ =
adjacent
opposite

Circular function definitions, where θ is any angle (see Figure 1.39)

sin θ =
y
r
 cos θ =

x
r
 tan θ =

y
x
, x ≠ 0

csc θ =
r
y
, y ≠ 0 sec θ =

r
x
, x ≠ 0 cot θ =

x
y
, y ≠ 0

The trigonometric identities listed below are direct consequences of the definitions.  
[Note that ϕ is the lowercase Greek letter phi and sin2 θ is used to represent (sin θ)2.]

TRIGONOMETRIC IDENTITIES

Pythagorean Identities Even/Odd Identities

sin2 θ + cos2 θ = 1 sin(−θ) = −sin θ csc(−θ) = −csc θ
1 + tan2 θ = sec2 θ cos(−θ) = cos θ sec(−θ) = sec θ
1 + cot2 θ = csc2 θ tan(−θ) = −tan θ cot(−θ) = −cot θ

Sum and Difference Formulas Power-Reducing Formulas Double-Angle Formulas

sin(θ ± ϕ) = sin θ cos ϕ ± cos θ sin ϕ sin2 θ =
1 − cos 2θ

2
 sin 2θ = 2 sin θ cos θ

cos(θ ± ϕ) = cos θ cos ϕ ∓ sin θ sin ϕ cos2 θ =
1 + cos 2θ

2
 

 cos 2θ = 2 cos2 θ − 1
 = 1 − 2 sin2 θ
 = cos2 θ − sin2 θ

tan(θ ± ϕ) =
tan θ ± tan ϕ

1 ∓ tan θ tan ϕ tan2 θ =
1 − cos 2θ
1 + cos 2θ  tan 2θ =

2 tan θ
1 − tan2 θ

Law of Cosines Reciprocal Identities Quotient Identities

a2 = b2 + c2 − 2bc cos A csc θ =
1

sin θ  tan θ =
sin θ
cos θ

ab

c

A
 sec θ =

1
cos θ  cot θ =

cos θ
sin θ

cot θ =
1

tan θ

Sides of a right triangle
Figure 1.38

Adjacent

O
pp

os
ite

Hypoten
use

θ

An angle in standard position
Figure 1.39

x

( , )x  y

x

y
r

θ

r x y= +2        2

y

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



34 Chapter 1 Preparation for Calculus

Evaluating Trigonometric Functions
There are two ways to evaluate trigonometric functions: (1) decimal approximations 
with a graphing utility and (2) exact evaluations using trigonometric identities and 
formulas from geometry. When using a graphing utility to evaluate a trigonometric 
function, remember to set the graphing utility to the appropriate mode—degree mode 
or radian mode.

 exact evaluation of trigonometric Functions

Evaluate the sine, cosine, and tangent of π�3.

Solution Because 60° = π�3 radians, you can draw an equilateral triangle with 
sides of length 1 and θ as one of its angles, as shown in Figure 1.40. Because the 
altitude of this triangle bisects its base, you know that x = 1

2. Using the Pythagorean 
Theorem, you obtain

y = √r2 − x2 =√1 − (1
2)

2

=√3
4

=
√3
2

.

Now, knowing the values of x, y, and r, you can write the following.

sin 
π
3

=
y
r

=
√3�2

1
=

√3
2

cos 
π
3

=
x
r

=
1�2
1

=
1
2

tan 
π
3

=
y
x

=
√3�2
1�2

= √3 

Note that all angles in this text are measured in radians unless stated otherwise. 
For example, when sin 3 is written, the sine of 3 radians is meant, and when sin 3° is 
written, the sine of 3 degrees is meant.

The degree and radian measures of several common angles are shown in the 
table below, along with the corresponding values of the sine, cosine, and tangent (see  
Figure 1.41).

 Trigonometric Values of Common Angles

θ (degrees) 0° 30° 45° 60° 90° 180° 270°

θ (radians) 0
π
6

π
4

π
3

π
2

π 3π
2

sin θ 0
1
2

√2
2

√3
2

1 0 −1

cos θ 1
√3
2

√2
2

1
2

0 −1 0

tan θ 0
√3
3

1 √3 Undefined 0 Undefined

 Using trigonometric Identities

a. sin(−
π
3) = −sin 

π
3

= −
√3
2

 sin(−θ) = −sin θ

b. sec 60° =
1

cos 60°
=

1
1�2

= 2 sec θ =
1

cos θ  

Figure 1.40

r = 1

x

( , )x  y

y

θ

r = 1 y

x = 1
2

60°

Common angles
Figure 1.41

45°

45°

1

12

60°

30° 2

1

3
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 1.4 Review of Trigonometric Functions 35

The quadrant signs for the sine, cosine, and tangent functions are shown in Figure 
1.42. To extend the use of the table on the preceding page to angles in quadrants other 
than the first quadrant, you can use the concept of a reference angle (see Figure 1.43), 
with the appropriate quadrant sign. For instance, the reference angle for 3π�4 is π�4, 
and because the sine is positive in Quadrant II, you can write

sin 
3π
4

= sin 
π
4

=
√2
2

.

Similarly, because the reference angle for 330° is 30°, and the tangent is negative in 
Quadrant IV, you can write

tan 330° = −tan 30° = −
√3
3

.

θ ′
Reference
angle:

θ

Quadrant II
= −θ

θ θ
θ′

′
(radians)

= 180° (degrees)−
π

  

θ

θ ′
Reference
angle:

Quadrant III
= −θ

θ θ
π′

′
(radians)

= − 180° (degrees) 
θ

  

θ

θ ′
Reference
angle:

Quadrant IV
= 2 −θ

θ θ
θ′

′
(radians)

= 360° (degrees)−
π

 Figure 1.43

Solving Trigonometric Equations
How would you solve the equation sin θ = 0? You know that θ = 0 is one solution, 
but this is not the only solution. Any one of the following values of θ is also a solution.

.  .  . , −3π, −2π, −π, 0, π, 2π, 3π, .  .  .

You can write this infinite solution set as {nπ: n is an integer}.

 Solving a trigonometric equation

Solve the equation sin θ = −
√3
2

.

Solution To solve the equation, you should consider that the sine function is 
negative in Quadrants III and IV and that

sin 
π
3

=
√3
2

.

So, you are seeking values of θ in the third and fourth quadrants that have a reference 
angle of π�3. In the interval [0, 2π], the two angles fitting these criteria are

θ = π +
π
3

=
4π
3

 and θ = 2π −
π
3

=
5π
3

.

By adding integer multiples of 2π  to each of these solutions, you obtain the following 
general solution.

θ =
4π
3

+ 2nπ  or θ =
5π
3

+ 2nπ, where n is an integer.

See Figure 1.44.

Quadrant signs for trigonometric  
functions
Figure 1.42

x

Quadrant IQuadrant II

Quadrant III Quadrant IV

θ
θ
θ

sin   : +
cos   : +
tan   : +

θ
θ
θ

sin   : +
cos   : −
tan   : −

θ
θ
θ

sin   : −
cos   : −
tan   : +

θ
θ
θ

sin   : −
cos   : +
tan   : −

y

Solution points of sin θ = −
√3
2

Figure 1.44

x

y = sin θ

y =
2
3−

π

1

−
3

−

π
2

− π3
2

π
2

2π

π

3
π

4
3
π2

3
π5

y
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 Solving a trigonometric equation

Solve

cos 2θ = 2 − 3 sin θ

where 0 ≤ θ ≤ 2π.

Solution Using the double-angle formula cos 2θ = 1 − 2 sin2 θ, you can rewrite 
the equation as follows.

 cos 2θ = 2 − 3 sin θ  Write original equation.

 1 − 2 sin2 θ = 2 − 3 sin θ  Double-angle formula

 0 = 2 sin2 θ − 3 sin θ + 1  Quadratic form

 0 = (2 sin θ − 1)(sin θ − 1) Factor.

If 2 sin θ − 1 = 0, then sin θ = 1�2 and θ = π�6 or θ = 5π�6. If sin θ − 1 = 0, 
then sin θ = 1 and θ = π�2. So, for 0 ≤ θ ≤ 2π, the solutions are

θ =
π
6

, 
5π
6

, or 
π
2

. 

Graphs of Trigonometric Functions
A function f  is periodic when there exists a positive real number p such that 
f (x + p) = f (x) for all x in the domain of f. The least such positive value of p is the 
period of f. The sine, cosine, secant, and cosecant functions each have a period of 2π, 
and the other two trigonometric functions, tangent and cotangent, have a period of π, 
as shown in Figure 1.45.

The graphs of the six trigonometric functions
Figure 1.45

x

y

y = sin x

Domain: (−∞, ∞)
Range: [−1, 1]
Period: 2π

−1

−2

−3

1

2

3

2
π π

x

y

y = cos x

Domain: (−∞, ∞)
Range: [−1, 1]
Period: 2π

−1
−

−2

−3

2

3

2
π

2
π

2
3ππ

x

Domain: all x ≠     + n

π π2

1

2

3

4

5

−3

Range: (−∞, ∞) 
Period:

y = tan x
π

π
2
πy

1

2

3

4

2

x

y

y x= csc = 1
sin x

π

Domain: all x ≠ n
Range: (−∞, −1] and [1, ∞)
Period: 2π

π

−1

2

3

4

x

y

y x= sec =
1

cos x

π π2

−2

−3

Domain: all x ≠     + n
Range: (−∞, −1] and [1, ∞)
Period: 2π

π
2
π

x

1

2

3

4

5

y x= cot = 1
tan x

π 2π

Range: (−∞, ∞)
Period: π

Domain: all x ≠ nπ
y

RemaRk Be sure you 
understand the mathematical 
conventions regarding 
parentheses and trigonometric 
functions. For instance, in 
Example 5, cos 2θ means 
cos(2θ).
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 1.4 Review of Trigonometric Functions 37

Note in Figure 1.45 that the maximum value of sin x and cos x is 1 and the  
minimum value is −1. The graphs of the functions y = a sin bx and y = a cos bx 
oscillate between −a and a, and so have an amplitude of ∣a∣. Furthermore, because 
bx = 0 when x = 0 and bx = 2π  when x = 2π�b, it follows that the functions 
y = a sin bx and y = a cos bx each have a period of 2π�∣b∣. The table below 
summarizes the amplitudes and periods of some types of trigonometric functions.

Function Period Amplitude

y = a sin bx or y = a cos bx
2π
∣b∣ ∣a∣

y = a tan bx or y = a cot bx
π
∣b∣ Not applicable

y = a sec bx or y = a csc bx
2π
∣b∣ Not applicable

 Sketching the graph of a trigonometric Function

Sketch the graph of f (x) = 3 cos 2x.

Solution The graph of f (x) = 3 cos 2x has an amplitude of 3 and a period of 
2π�2 = π. Using the basic shape of the graph of the cosine function, sketch one period 
of the function on the interval [0, π], using the following pattern.

Maximum: (0, 3)

Minimum: (π2, −3)
Maximum: (π, 3)

By continuing this pattern, you can sketch several cycles of the graph, as shown in 
Figure 1.46.

 Shifts of graphs of trigonometric Functions

a.  To sketch the graph of f (x) = sin(x + π�2), shift the graph of y = sin x to the left 
π�2 units, as shown in Figure 1.47(a).

b.  To sketch the graph of f (x) = 2 + sin x, shift the graph of y = sin x upward two 
units, as shown in Figure 1.47(b).

c.  To sketch the graph of f (x) = 2 + sin(x − π�4), shift the graph of y = sin x 
upward two units and to the right π�4 units, as shown in Figure 1.47(c).

x

f (x) = sin  x +

−2

2
3
4
5
6

2
π

2
π

π

()

y

y = sin x

  

x
π

2

f (x) = 2 + sin x

−2

2

4
5
6

3

y

y = sin x

  

x

−2

2

4
5
6

π

2
3

y

4
π

f (x) = 2 + sin  x −
4
π ()

y = sin x

 (a) Horizontal shift to the left (b) Vertical shift upward (c) Horizontal and vertical shifts

 Transformations of the graph of y = sin x
 Figure 1.47 

Figure 1.46

x

y

−1

−2

−3

3

f (x) = 3 cos 2x

(0, 3)

Amplitude = 3

Period = π

π3 π2
2

π π
2

teChnology To 
produce the graphs shown in 
Figure 1.45 with a graphing 
utility, make sure you set the 
graphing utility to radian mode.
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1.4 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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ConCept CheCk
1.  Coterminal angles Explain how to find coterminal 

angles in degrees.

2.  Degrees to Radians Explain how to convert from 
degrees to radians.

3.  trigonometric Functions 

24

25
7

θ

 
Find sin θ, cos θ, and tan θ.

4.  Characteristics of a graph In your own words, 
describe the meaning of amplitude and period.

 Coterminal angles in Degrees In Exercises 
5 and 6, determine two coterminal angles in degree 
measure (one positive and one negative) for each 
angle.

 5. (a) 

= 36°θ

 (b) 

= −120°θ

 6. (a) = 300°θ  (b) = −420°θ

 Coterminal angles in Radians In Exercises 
7 and 8, determine two coterminal angles in radian 
measure (one positive and one negative) for each 
angle.

 7. (a) =θ
9
π  (b) =θ

3
π4

 8. (a) = −θ
4
π9  (b) 

=θ
9
π8

 Degrees to Radians In Exercises 9 and 10, 
convert the degree measure to radian measure as 
a multiple of π and as a decimal accurate to three 
decimal places.

 9. (a) 30° (b) 150° (c) 315° (d) 120°

10. (a) −20° (b) −240° (c) −270° (d) 144°

 Radians to Degrees In Exercises 11 and 12, 
convert the radian measure to degree measure.

11. (a) 
3π
2

 (b) 
7π
6

 (c) −
7π
12

 (d) −2.367

12. (a) 
7π
3

 (b) −
11π
30

 (c) 
11π

6
 (d) 0.438

13.  Completing a table Let r represent the radius of a 
circle, θ the central angle (measured in radians), and s the 
length of the arc subtended by the angle. Use the relationship 
s = rθ to complete the table.

r 8 ft 15 in. 85 cm

s 12 ft 96 in. 8642 mi

θ 1.6
3π
4

4
2π
3

14.  angular Speed A car is moving at the rate of 50 miles per 
hour, and the diameter of its wheels is 2.5 feet.

 (a)  Find the number of revolutions per minute that the wheels 
are rotating.

 (b) Find the angular speed of the wheels in radians per minute.

 evaluating trigonometric Functions In 
Exercises 15 and 16, evaluate the six trigonometric 
functions of the angle θ.

15. (a) y

x

(3, 4)

θ

  (b) y

x

(−12, −5)

θ

16. (a) y

x

(8, −15)

θ

  (b) y

x

(1, −1)

θ

evaluating trigonometric Functions In Exercises 17–20, 
sketch a right triangle corresponding to the trigonometric 
function of the acute angle θ. Then evaluate the other five 
trigonometric functions of θ.

17. sin θ = 1
2 18. sin θ = 1

3

19. cos θ = 4
5 20. sec θ = 13

5
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 evaluating trigonometric Functions In 
Exercises 21–24, evaluate the sine, cosine, and 
tangent of each angle. Do not use a calculator.

21. (a) 60° (b) 120° (c) 
π
4

 (d) 
5π
4

22. (a) −30° (b) 150° (c) −
π
6

 (d) 
π
2

23. (a) 225° (b) −225° (c) 
5π
3

 (d) 
11π

6

24. (a) 750° (b) 510° (c) 
10π

3
 (d) 

17π
3

evaluating trigonometric Functions Using technology  
In Exercises 25–28, use a calculator to evaluate each 
trigonometric function. Round your answers to four decimal 
places.

25. (a) sin 10° 26. (a) sec 225°

 (b) csc 10°  (b) sec 135°

27. (a) tan 
π
9

 28. (a) cot(1.35)

 (b) tan 
10π

9
  (b) tan(1.35)

Determining a Quadrant In Exercises 29 and 30, 
determine the quadrant in which θ lies.

29. (a) sin θ < 0 and cos θ < 0

 (b) sec θ > 0 and cot θ < 0

30. (a) sin θ > 0 and cos θ < 0

 (b) csc θ < 0 and tan θ > 0

Solving a trigonometric equation In Exercises 31–34, 
find two solutions of each equation. Give your answers in  
radians (0 ≤ θ ≤ 2π). Do not use a calculator.

31. (a) cos θ =
√2
2

 32. (a) sec θ = 2

 (b) cos θ = −
√2
2

  (b) sec θ = −2

33. (a) tan θ = 1 34. (a) sin θ =
√3
2

 (b) cot θ = −√3  (b) sin θ = −
√3
2

 Solving a trigonometric equation In 
Exercises 35–42, solve the equation for θ, where 
0 ≤ θ ≤ 2π.

35. 2 sin2 θ = 1 36. tan2 θ = 3

37. tan2 θ − tan θ = 0 38. 2 cos2 θ − cos θ = 1

39. sec θ csc θ = 2 csc θ 40. sin θ = cos θ

41. cos2 θ + sin θ = 1

42. cos 
θ
2

− cos θ = 1

43.  airplane ascent An airplane leaves the runway climbing 
at an angle of 18° with a speed of 275 feet per second (see 
figure). Find the altitude a of the plane after 1 minute.

18°

a

44.  height of a mountain While traveling across flat land, 
you notice a mountain directly in front of you. Its angle of 
elevation (to the peak) is 3.5°. After you drive 13 miles closer 
to the mountain, the angle of elevation is 9°. Approximate the 
height of the mountain.

3.5° 9°

Not drawn to scale
13 mi

Period and amplitude In Exercises 45–48, determine the 
period and amplitude of each function.

45. y = 2 sin 2x 46. y =
3
2

 cos 
x
2

 y

x

−3

3

2

1

π3
4

π5
4

π
4

π π
2

 

x

3

2

−1

−2

−3

ππ 3π
2

y

47. y = −3 sin 4πx 48. y =
2
3

 cos 
πx
10

Period In Exercises 49–52, find the period of the function.

49. y = 5 tan 2x

50. y = 7 tan 2πx

51. y = sec 5x

52. y = csc 4x

Writing In Exercises 53 and 54, use a graphing utility to 
graph each function f  in the same viewing window for c = −2, 
c = −1, c = 1, and c = 2. Give a written description of the 
change in the graph caused by changing c.

53. (a) f (x) = c sin x

 (b) f (x) = cos(cx)
 (c) f (x) = cos(πx − c)
54. (a) f (x) = sin x + c

 (b) f (x) = −sin(2πx − c)
 (c) f (x) = c cos x
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 Sketching the graph of a trigonometric 
Function In Exercises 55–66, sketch the graph 
of the function.

55. y = sin 
x
2

 56. y = 2 cos 2x

57. y = −sin 
2πx

3
 58. y = 2 tan x

59. y = csc 
x
2

 60. y = tan 2x

61. y = 2 sec 2x 62. y = csc 2πx

63. y = sin(x + π) 64. y = cos(x −
π
3)

65. y = 1 + cos(x −
π
2) 66. y = 1 + sin(x +

π
2)

graphical Reasoning In Exercises 67 and 68, find a, b,
and c such that the graph of the function matches the graph 
in the figure.

67. y = a cos(bx − c) 68. y = a sin(bx − c)

x
π π3

4

2

−4

y   

x

1

−1

1
2

−
π π3
4

π
2

y

eXpLoRInG ConCeptS
69.  think about It You are given the value of tan θ. 

Is it possible to find the value of sec θ without finding 
the measure of θ? Explain.

70.  Restricted Domain Explain how to restrict the 
domain of the sine function so that it becomes a 
one-to-one function.

71.  think about It How do the ranges of the cosine 
function and the secant function compare?

 72.  hoW Do yoU See It? Consider an angle 
in standard position with r = 12 centimeters, 
as shown in the figure. Describe the changes in 
the values of x, y, sin θ, cos θ, and tan θ as θ 
increases continually from 0° to 90°.

12 cm

θ

y

x

(x, y)

 72.  

73.  think about It Sketch the graphs of

f (x) = sin x, g(x) = ∣sin x∣, and h(x) = sin(∣x∣). 
  In general, how are the graphs of ∣ f (x)∣ and f (∣x∣) related to 

the graph of f ?

75.  Sales The monthly sales S (in thousands of units) of a 
seasonal product are modeled by

S = 58.3 + 32.5 cos 
πt
6

  where t is the time (in months), with t = 1 corresponding to 
January. Use a graphing utility to graph the model for S and 
determine the months when sales exceed 75,000 units.

76.  Pattern Recognition Use a graphing utility to compare 
the graph of

f (x) =
4
π (sin πx +

1
3

 sin 3πx)
  with the given graph. Try to improve the approximation by 

adding a term to f (x). Use a graphing utility to verify that 
your new approximation is better than the original. Can you 
find other terms to add to make the approximation even better? 
What is the pattern? (Hint: Use sine terms.)

x
3

2

1

−2

y

true or False? In Exercises 77–80, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

77.  A measurement of 4 radians corresponds to two complete 
revolutions from the initial side to the terminal side of an angle.

78.  Amplitude is always positive.

79.  The function y = 1
2 sin 2x has an amplitude that is twice that of 

the function y = sin x.

80.  The function y = 3 cos(x�3) has a period that is three times 
that of the function y = cos x.

The model for the height h of a Ferris wheel car is

h = 51 + 50 sin 8πt

 where t is measured in
minutes. (The Ferris 
wheel has a radius of
50 feet.) This model
yields a height of 
51 feet when t = 0. 
Alter the model so that
the height of the car 
is 1 foot when t = 0.

74. Ferris Wheel

Denis Rozhnovsky/Shutterstock.com
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1.5 Inverse Functions

 Verify that one function is the inverse function of another function.
 Determine whether a function has an inverse function.
 Develop properties of the six inverse trigonometric functions.

Inverse Functions
Recall from Section 1.3 that a function can be represented by a set of ordered pairs. 
For instance, the function f (x) = x + 3 from A = {1, 2, 3, 4} to B = {4, 5, 6, 7} can 
be written as

f : {(1, 4), (2, 5), (3, 6), (4, 7)}.

By interchanging the first and second 

f B

A

f −1

Domain of f = range of f −1

Domain of f −1 = range of f
Figure 1.48

coordinates of each ordered pair, you can form 
the inverse function of f. This function is 
denoted by f −1, which is read as “ f  inverse.” 
It is a function from B to A, and can be written 
as f −1: {(4, 1), (5, 2), (6, 3), (7, 4)}. Note that 
the domain of f  is equal to the range of f −1, 
and vice versa, as shown in Figure 1.48. 
The functions f  and f −1 have the effect of 
“undoing” each other. That is, when you 
form the composition of f  with f −1 or the 
composition of f −1 with f, you obtain the 
identity function.

f ( f −1(x)) = x and f −1( f (x)) = x

Definition of Inverse Function

A function g is the inverse function of the function f  when

f (g(x)) = x for each x in the domain of g

and

g( f (x)) = x for each x in the domain of f.

The function g is denoted by f −1.

Here are some important observations about inverse functions.

1. If g is the inverse function of f, then f  is the inverse function of g.

2.  The domain of f −1 is equal to the range of f, and the range of f −1 is equal to the 
domain of f.

3.  A function need not have an inverse function, but when it does, the inverse function 
is unique (see Exercise 148).

You can think of f −1 as undoing what has been done by f. For example, subtraction 
can be used to undo addition, and division can be used to undo multiplication. So,

f (x) = x + c and f −1(x) = x − c Subtraction can be
used to undo addition.

are inverse functions of each other and

f (x) = cx and f −1(x) =
x
c
, c ≠ 0 Division can be used 

to undo multiplication.

are inverse functions of each other.

REMARK Although the 
notation used to denote an 
inverse function resembles 
exponential notation, it is 
a different use of −1 as a 
superscript. That is, in general,

f −1(x) ≠
1

f (x).

Exploration
Finding Inverse Functions
Explain how to “undo” each 
of the functions below. Then 
use your explanation to write 
the inverse function of f.

a. f (x) = x − 5

b. f (x) = 6x

c. f (x) =
x
2

d. f (x) = 3x + 2

e. f (x) = x3

f. f (x) = 4(x − 2)

Use a graphing utility to 
graph each function and its 
inverse function in the same 
“square” viewing window. 
What observation can you 
make about each pair of 
graphs?
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 Verifying Inverse Functions

Show that the functions are inverse functions of each other.

f (x) = 2x3 − 1  and  g(x) = 3√x + 1
2

Solution Because the domains and ranges of both f  and g consist of all real  numbers, 
you can conclude that both composite functions exist for all x. The  composition of f  
with g is 

 f (g(x)) = 2( 3√x + 1
2 )

3

− 1

 = 2(x + 1
2 ) − 1

 = x + 1 − 1

 = x.

The composition of g with f  is 

g( f (x)) = 3√(2x3 − 1) + 1
2

= 3√2x3

2
= 3√x3 = x.

Because f (g(x)) = x and g( f (x)) = x, you can conclude that f  and g are inverse 
functions of each other (see Figure 1.49).

x

−2

−2

1

1

2

2

y = x

f(x) = 2x3 − 1

g(x) = 3
x + 1

2

y

 f  and g are inverse functions of each other.
 Figure 1.49 

In Figure 1.49, the graphs of f  and g = f −1 appear to be mirror images of each 
other with respect to the line y = x. The graph of f −1 is a reflection of the graph of f  
in the line y = x. This idea is generalized in the next definition.

Reflective Property of Inverse Functions

The graph of f  contains the point (a, b) if and only if the graph of f −1 contains 
the point (b, a).

To see the validity of the Reflective Property of Inverse Functions, consider the 
point (a, b) on the graph of f. This implies f (a) = b and you can write

f −1(b) = f −1( f (a)) = a.

So, (b, a) is on the graph of f −1, as shown in Figure 1.50. A similar argument will 
verify this result in the other direction.

x

(b, a)

(a, b)

y = f(x)

y = x
y

y = f −1(x)

The graph of f −1 is a reflection of the 
graph of f  in the line y = x.
Figure 1.50

REMARK In Example 1, try 
comparing the functions f  and g 
verbally.
 For f :  First cube x, then 

multiply by 2, then 
subtract 1.

 For g:  First add 1, then 
divide by 2, then take 
the cube root.

Do you see the “undoing 
pattern?”
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Existence of an Inverse Function
Not every function has an inverse function, and the Reflective Property of Inverse 
Functions suggests a graphical test for those that do—the Horizontal Line Test for an 
inverse function. This test states that a function f  has an inverse function if and only 
if every horizontal line intersects the graph of f  at most once (see Figure 1.51). The next 
definition formally states why the Horizontal Line Test is valid.

The Existence of an Inverse Function

A function has an inverse function if and only if it is one-to-one.

 The Existence of an Inverse Function

Which of the functions has an inverse function?

a. f (x) = x3 − 1

b. f (x) = x3 − x + 1

Solution

a.  From the graph of f  shown in Figure 1.52(a), it appears that f  is one-to-one over its 
entire domain. To verify this, suppose that there exist x1 and x2 such that f (x1) = f (x2). 
By showing that x1 = x2, it follows that f  is one-to-one.

  f (x1) = f (x2)
  x1

3 − 1 = x2
3 − 1

  x1
3 = x2

3

  3√x1
3 = 3√x2

3

  x1 = x2

 Because f  is one-to-one, you can conclude that f  must have an inverse function.

b.  From the graph of f  shown in Figure 1.52(b), you can see that the function does not 
pass the Horizontal Line Test. In other words, it is not one-to-one. For instance, f  
has the same value when x = −1, 0, and 1.

f (−1) = f (1) = f (0) = 1 Not one-to-one

 Therefore, f  does not have an inverse function. 

Often it is easier to prove that a function has an inverse function than to find the 
inverse function. For instance, by sketching the graph of 

f (x) = x3 + x − 1

you can see that it is one-to-one. Yet it would be difficult to determine the inverse of 
this function algebraically.

GUIDELINES FOR FINDING AN INVERSE OF A FUNCTION

1.  Determine whether the function given by y = f (x) has an inverse function.

2. Solve for x as a function of y: x = g(y) = f −1(y).
3. Interchange x and y. The resulting equation is y = f −1(x).
4. Define the domain of f −1 as the range of f.

5. Verify that f ( f −1(x)) = x and f −1( f (x)) = x.

y = f(x)

x
a b

f(a) = f(b)

y

If a horizontal line intersects the graph 
of f  twice, then f  is not one-to-one.
Figure 1.51

x

−3

−2

−1−2

1

2

2

3

y

f (x) = x3 − 1

(a)  Because f  is one-to-one over its 
entire domain, it has an inverse 
function.

x
−2 −1

−1

1 2

3

f(x) = x3 − x + 1

(0, 1)(−1, 1)

(1, 1)

y

(b)  Because f  is not one-to-one, it does 
not have an inverse function.

Figure 1.52
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 Finding an Inverse Function

Find the inverse function of

f (x) = √2x − 3.

Solution The function has an inverse function because it is one-to-one on its entire 
domain, [3

2, ∞), as shown in Figure 1.53. To find an equation for the inverse function, 
let y = f (x) and solve for x in terms of y.

 √2x − 3 = y Let y = f (x).

 2x − 3 = y2 Square each side.

 x =
y2 + 3

2
 Solve for x.

 y =
x2 + 3

2
 Interchange x and y.

 f −1(x) =
x2 + 3

2
 Replace y by f −1(x).

The domain of f −1 is the range of f, which is [0, ∞). You can verify this result by showing 
that f ( f −1(x)) = x and f −1( f (x)) = x.

f ( f −1(x)) =√2(x2 + 3
2 ) − 3 = √x2 = x, x ≥ 0

f −1( f (x)) = (√2x − 3)2 + 3
2

=
2x − 3 + 3

2
= x, x ≥ 3

2
 

Consider a function that is not one-to-one on its entire domain. By restricting the 
domain to an interval on which the function is one-to-one, you can conclude that the 
new function has an inverse function on the restricted domain.

 Testing Whether a Function Is One-to-One

See LarsonCalculus.com for an interactive version of this type of example.

Show that the sine function f (x) = sin x is not one-to-one on the entire real number 
line. Then show that f  is one-to-one on the closed interval [−π�2, π�2].

Solution It is clear that f  is not one-to-one, because many different x-values yield 
the same y-value. For instance,

sin 0 = 0 = sin π.

Moreover, from the graph of f (x) = sin x in Figure 1.54, you can see that when f  is 
restricted to the interval [−π�2, π�2], the restricted function is one-to-one.

x

1

−1

π π

( (, 1
2

−

f(x) = sin x

y

π

( (−   , −1
2
π

 f  is one-to-one on the interval [−π�2, π�2].
 Figure 1.54 

x
1

1

2

2

3

3

4

4

y = x

f(x) =     2x − 3

f −1(x) =
2

x2 + 3

(2, 1)

(1, 2)

0,( (3
2

, 0( (3
2

y

The domain of f −1, [0, ∞), is the 
range of f.
Figure 1.53
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Inverse Trigonometric Functions
From the graphs of the six basic trigonometric functions (see Section 1.4), you can 
see that they do not have inverse functions. The functions that are called “inverse 
trigonometric functions” are actually inverses of trigonometric functions whose domains 
have been restricted.

For instance, in Example 4, you saw that the sine function is one-to-one on the 
interval [−π�2, π�2], as shown in Figure 1.55. On this  interval, you can define the 
inverse of the restricted sine function as

y = arcsin x  if and only if  sin y = x

where 

−1 ≤ x ≤ 1  and  −
π
2

≤ arcsin x ≤ π
2

.

From Figures 1.55 (a) and (b), you can see that you can obtain the graph of y = arcsin x 
by reflecting the graph of y = sin x in the line y = x on the interval [−π�2, π�2].

1

−1

− π π
2 2

x

yy x, −= sin
Domain:   [ /2,    /2]
Range: [ 1, 1]

−
−

π
π π

π
/2 ≤ x ≤ /2  

π
2

−1

− π
2

x
1

y

Domain:   
Range:

[ 1, 1]−
y x, −1          1= arcsin ≤ x ≤

/2,    /2]− π π[

 (a) (b)

 Figure 1.55

Under suitable restrictions, each of the six trigonometric functions is one-to-one 
and so has an inverse function, as indicated in the next definition. (The term “iff” is 
used to represent the phrase “if and only if.”)

Definitions of Inverse Trigonometric Functions

Function                                Domain            Range                      

y = arcsin x iff sin y = x −1 ≤ x ≤ 1 −
π
2

≤ y ≤ π
2

y = arccos x iff cos y = x −1 ≤ x ≤ 1 0 ≤ y ≤ π

y = arctan x iff tan y = x −∞ < x < ∞ −
π
2

< y <
π
2

y = arccot x iff cot y = x −∞ < x < ∞ 0 < y < π

y = arcsec x iff sec y = x ∣x∣ ≥ 1 0 ≤ y ≤ π, y ≠
π
2

y = arccsc x iff csc y = x ∣x∣ ≥ 1 −
π
2

≤ y ≤ π
2

, y ≠ 0

The term arcsin x is read as “the arcsine of x” or sometimes “the angle whose sine 
is x.” An alternative notation for the inverse sine function is sin−1 x, which is consistent 
with the inverse function notation f −1(x).

Exploration
Inverse Secant Function
In the definition at the right, 
the inverse secant function 
is defined by restricting 
the domain of the secant 
function to the intervals

[0, 
π
2) ∪ (π2, π].

Most other texts and reference 
books agree with this, but 
some disagree. What other 
domains might make sense? 
Explain your reasoning 
graphically. Most calculators 
do not have a key for the 
inverse secant function. How 
can you use a calculator to 
evaluate the inverse secant 
function?
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The graphs of the six inverse trigonometric functions are shown in Figure 1.56.

 

x
−2 −1 1 2

y = arccos x

y

π

π

2

 

x
−2 −1 1 2

−

y = arctan x

y

π
2

π
2

 Domain: [−1, 1] Domain: (−∞, ∞)
 Range: [0, π] Range: (−π�2, π�2)

 

x
−2 −1 1 2

y = arcsec x

y

π

π

2

 

x
−2 −1 1 2

y = arccot x

π

y

π
2

 Domain: (−∞, −1] ∪ [1, ∞) Domain: (−∞, ∞)
 Range: [0, π�2) ∪ (π�2, π] Range: (0, π)

When evaluating inverse trigonometric functions, remember that they denote angles 
in radian measure.

 Evaluating Inverse Trigonometric Functions

Evaluate each expression.

a. arcsin(−
1
2)  b. arccos 0  c. arctan √3  d. arcsin(0.3)

Solution

a.  By definition, y = arcsin(−1
2) implies that sin y = −1

2. In the interval [−π�2, π�2], 
the correct value of y is −π�6.

 arcsin(−
1
2) = −

π
6

b.  By definition, y = arccos 0 implies that cos y = 0. In the interval [0, π], you have 
y = π�2.

 arccos 0 =
π
2

c.  By definition, y = arctan √3 implies that tan y = √3. In the interval (−π�2, π�2), 
you have y = π�3.

 arctan √3 =
π
3

d. Using a calculator set in radian mode produces

 arcsin(0.3) ≈ 0.3047. 

x
−2 −1 1 2

−

y

π
2

π
2

y = arcsin x

Domain: [−1, 1]
Range: [−π�2, π�2]

x
−1 1 2

−

y = arccsc x

y

π
2

π
2

Domain: (−∞, −1] ∪ [1, ∞)
Range: [−π�2, 0) ∪ (0, π�2]
Figure 1.56
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Inverse functions have the properties

f ( f −1(x)) = x and f −1( f (x)) = x.

When applying these properties to inverse trigonometric functions, remember that the 
trigonometric functions have inverse functions only in restricted domains. For x-values 
outside these domains, these two properties do not hold. For example, arcsin(sin π) is 
equal to 0, not π.

Properties of Inverse Trigonometric Functions

1. If −1 ≤ x ≤ 1 and −π�2 ≤ y ≤ π�2, then

sin(arcsin x) = x and arcsin(sin y) = y.

2. If −π�2 < y < π�2, then

tan(arctan x) = x and arctan(tan y) = y.

3. If ∣x∣ ≥ 1 and 0 ≤ y < π�2 or π�2 < y ≤ π, then

sec(arcsec x) = x and arcsec(sec y) = y.

Similar properties hold for the other inverse trigonometric functions.

 Solving an Equation

Solve arctan(2x − 3) =
π
4

 for x.

Solution

 arctan(2x − 3) =
π
4

 Write original equation.

 tan[arctan(2x − 3)] = tan 
π
4

 Take tangent of each side.

 2x − 3 = 1 tan(arctan x) = x

 x = 2 Solve for x. 

Some problems in calculus require that you evaluate expressions such as 
cos(arcsin x), as shown in Example 7.

 Using Right Triangles

a. Given y = arcsin x, where 0 < y < π�2, find cos y.

b. Given y = arcsec(√5�2), find tan y.

Solution

a.  Because y = arcsin x, you know that sin y = x. This relationship between x and y 
can be represented by a right triangle, as shown in Figure 1.57(a).

 cos y = cos(arcsin x) =
adj.
hyp.

= √1 − x2

 (This result is also valid for −π�2 < y < 0.)
b. Use the right triangle shown in Figure 1.57(b).

 tan y = tan(arcsec 
√5
2 ) =

opp.
adj.

=
1
2

 

1

y

2

5

(b) y = arcsec 
√5
2

Figure 1.57

1 x

y

1 − x2

(a) y = arcsin x
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1.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Reflective Property of Inverse Functions  

Describe the relationship between the graph of a function 
and the graph of its inverse function.

2.  Domain of an Inverse Function The function f  
has an inverse function f −1. Is the domain of f  the same 
as the domain of f −1? Explain.

3.  Inverse Trigonometric Function Describe the 
meaning of arccos x in your own words.

4.  Restricted Domain What is a restricted domain? 
Why are restricted domains necessary to define inverse 
trigonometric functions?

Matching In Exercises 5–8, match the graph of the function 
with the graph of its inverse function. [The graphs of the 
inverse functions are labeled (a), (b), (c), and (d).]

(a) 

1

2

3

4

5

1

2 3−2 −1−3
x

y  (b) 

2

4

4

6

6

8

−4

x
−2−4

y

(c) 

x

2

3

4

21−1

−2

−2−4

y  (d) 

1

2

3

1

2 3−2−3

−3

x

−2

y

 5. 

1

2

2 3 4−1

−2

−2

−4

x

y   6. 

42

4

6

6

8

8

−4

x
−2−4

y

 7. 

1

2

3

1

2 3−2 −1−3

−3

x

−2

y   8. 

1

2

3

1

2 3−2−3
x

y

 Verifying Inverse Functions In Exercises 
9–16, show that f  and g are inverse functions (a) 
analytically and (b) graphically.

 9. f (x) = 5x + 1, g(x) =
x − 1

5

10. f (x) = 3 − 4x, g(x) =
3 − x

4

11. f (x) = x3, g(x) = 3√x

12. f (x) = 3√x − 3, g(x) = 3 + x3

13. f (x) = √x − 4, g(x) = x2 + 4, x ≥ 0

14. f (x) = 16 − x2, x ≥ 0, g(x) = √16 − x

15. f (x) =
1
x
, g(x) =

1
x

16. f (x) =
1

1 + x
, x ≥ 0, g(x) =

1 − x
x

, 0 < x ≤ 1

Using the Horizontal Line Test In Exercises 17 and 
18, use the Horizontal Line Test to determine whether the 
function is one-to-one on its entire domain and therefore has 
an inverse function. To print an enlarged copy of the graph, go 
to MathGraphs.com.

17. f (θ) = sin θ 18. f (x) = 5x − 3

 

1

π
2

π
2

3
θ

y   

−2

−1

−3

−1−2

1

1 2
x

y

 The Existence of an Inverse Function In 
Exercises 19–24, determine whether the function 
is one-to-one on its entire domain and therefore 
has an inverse function.

19. f (x) = 2 − x − x3 20. f (x) =
x4

4
− 2x2

21. f (x) =
1

3x + 1
 22. f (x) = 3√x + 1

23. f (x) = tan 2πx 24. f (x) = sin 
3x
2

The Existence of an Inverse Function In Exercises 
25–30, use a graphing utility to graph the function. Determine 
whether the function is one-to-one on its entire domain and 
therefore has an inverse function.

25. h(s) =
1

s − 2
− 3 26. f (x) =

6x
x2 + 4

27. g(t) =
1

√t2 + 1
 28. f (x) = 5x√x − 1

29. g(x) = (x + 5)3 30. h(x) = ∣x + 4∣ − ∣x − 4∣
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 Finding an Inverse Function In Exercises 
31–38, (a) find the inverse function of f, (b) graph 
f  and f −1 on the same set of coordinate axes, (c) 
describe the relationship between the graphs, and 
(d) state the domains and ranges of f  and f −1.

31. f (x) = 2x − 3 32. f (x) = 9 − 5x

33. f (x) = x5 34. f (x) = x3 − 1

35. f (x) = √x 36. f (x) = x4, x ≥ 0

37. f (x) = √4 − x2, 0 ≤ x ≤ 2

38. f (x) = √x2 − 4, x ≥ 2

Finding an Inverse Function In Exercises 39–44, (a) 
find the inverse function of f, (b) use a graphing utility to 
graph f  and f −1 in the same viewing window, (c) describe the 
relationship between the graphs, and (d) state the domains and 
ranges of f  and f −1.

39. f (x) = 3√x − 1 40. f (x) = 3 5√2x − 1

41. f (x) = x2�3, x ≥ 0 42. f (x) = x3�5

43. f (x) =
x

√x2 + 7
 44. f (x) =

x + 2
x

Finding an Inverse Function In Exercises 45 and 46, use 
the graph of the function f  to make a table of values for the 
given points. Then make a second table that can be used to find 
f −1, and sketch the graph of f −1. To print an enlarged copy of 
the graph, go to MathGraphs.com.

45. 

x
1

1

4

4

3

3

2

2

y

f

 46. 

x
1

1

4 5 6

6

4

3

3

2

2

y

f

47.  Cost You need a total of 50 pounds of two commodities 
costing $1.25 and $2.75 per pound.

 (a)  Verify that the total cost is y = 1.25x + 2.75(50 − x), 
where x is the number of pounds of the less expensive 
 commodity.

 (b)  Find the inverse function of the cost function. What does 
each  variable represent in the inverse function?

 (c)  What is the domain of the inverse function? Validate or 
explain your answer using the context of the problem.

 (d)  Determine the number of pounds of the less expensive 
commodity purchased when the total cost is $73.

48.  Temperature The formula C = 5
9 (F − 32), where 

F ≥ −459.6, represents the Celsius temperature C as a 
function of the Fahrenheit temperature F.

 (a) Find the inverse function of C.

 (b) What does the inverse function represent?

 (c)  What is the domain of the inverse function? Validate or 
explain your answer using the context of the problem.

 (d)  The temperature is 22°C. What is the corresponding 
temperature in degrees Fahrenheit?

 Testing Whether a Function Is One-to-One  
In Exercises 49–54, determine whether the function 
is one-to-one. If it is, find its inverse function.

49. f (x) = √x − 2 50. f (x) = √9 − x2

51. f (x) = −3 52. f (x) = ∣x − 2∣, x ≤ 2

53. f (x) = ax + b, a ≠ 0 54. f (x) = (x + a)3 + b

Showing a Function Is One-to-One In Exercises 55–60, 
show that f  is one-to-one on the given interval and therefore 
has an inverse function on that interval.

55. f (x) = (x − 4)2, [4, ∞) 56. f (x) = ∣x + 2∣, [−2, ∞)

57. f (x) =
4
x2, (0, ∞) 58. f (x) = cot x, (0, π)

59. f (x) = cos x, [0, π] 60. f (x) = sec x, [0, 
π
2)

Making a Function One-to-One In Exercises 61 and 62, 
the function is not one-to-one. Delete part of the domain so 
that the  function that remains is one-to-one. Find the inverse 
function of the remaining function and give the domain of 
the inverse function. (Note: There is more than one correct 
answer.)

61. f (x) = (x − 3)2 62. f (x) = ∣x − 3∣
 

x
1

1

2

2

3

3

4

4

5

5

y   

x
1

1

2

2

3

3

4

4

5

5

y

Finding an Inverse Function In Exercises 63–68, (a) 
sketch a graph of the function f, (b) determine an interval 
on which f  is one-to-one, (c) find the inverse function of f  
on the interval found in part (b), and (d) give the domain of 
the inverse function. (Note: There is more than one correct 
answer.)

63. f (x) = (x + 5)2 64. f (x) = (7 − x)2

65. f (x) = √x2 − 4x 66. f (x) = −√25 − x2

67. f (x) = 3 cos x 68. f (x) = sin 3x

Finding Values In Exercises 69–74, find f −1(a) for the 
function f  and real number a.

 Function Real Number

69. f (x) = x3 + 2x − 1 a = 2

70. f (x) = 2x5 + x3 + 1 a = −2

71. f (x) = 5 sin x, −
π
2

≤ x ≤ π
2

 a = −
5
2

72. f (x) = cos 2x, 0 ≤ x ≤ π
2

 a = 1

73. f (x) = x3 −
4
x
, x > 0 a = 6

74. f (x) = √x + 4 a = 3
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Using Composite and Inverse Functions In Exercises 
75–78, use the functions f (x) = 1

8x − 3 and g(x) = x3 to find 
the indicated value.

75. ( f −1 ∘ g−1)(1) 76. (g−1 ∘ f −1)(−3)
77. ( f −1 ∘ f −1)(−2) 78. (g−1 ∘ g−1)(8)

Using Composite and Inverse Functions In Exercises 
79–82, use the functions f (x) = x + 4 and g(x) = 2 − x3 to 
find the indicated function.

79. g−1 ∘ f −1 80. f −1 ∘ g−1

81. ( f ∘ g)−1 82. (g ∘ f )−1

Graphical Reasoning In Exercises 83 and 84, (a) use the 
graph of the function f  to determine whether f  is one-to-one, 
(b) state the domain of f −1,  and (c) estimate the value of f −1(2).

83. 

−1−2−3 1 4

−2
−3
−4

1
2
3
4

x

y  84. 

x

y

−2−3 1 432

−2
−3
−4

1
2
3
4

Graphical Reasoning In Exercises 85 and 86, use the 
graph of the function f  to sketch the graph of f −1. To print an 
enlarged copy of the graph, go to MathGraphs.com.

85. 

x

y

−1−2−3 1 2 3 4

−2
−3
−4

1
2
3
4

 86. 

x

y

−2−3 1 2 3 4

−2
−3
−4

1
2
3
4

Numerical and Graphical Analysis In Exercises 87 and 
88, (a) use a graphing utility to complete the table, (b) plot the 
points in the table and graph the function by hand, (c) use a 
graphing utility to graph the function and compare the result 
with your hand-drawn graph in part (b), and (d) determine 
any intercepts and symmetry of the graph.

x −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

y

87. y = arcsin x 88. y = arccos x

89.  Missing Coordinates  
Determine the missing
coordinates of the points 
on the graph of the 
function.

 90.  HOW DO YOU SEE IT? You use a graphing
utility to graph f (x) = sin x and then use the draw 
inverse feature to graph g (see figure). Is g the 
inverse function of f ? Why or why not?

 4

−4

2π−2π

f

g

 90.  

Sketching a Graph In Exercises 91–94, sketch the graph of 
the function. Use a graphing utility to verify your graph.

 91. f (x) = arcsin(x − 1)  92. f (x) = arcsec 2x

 93. f (x) = arctan x +
π
2

  94. f (x) = arccos 
x
4

 Evaluating Inverse Trigonometric Functions
In Exercises 95–102, evaluate the expression without 
using a calculator.

 95. arcsin 12  96. arcsin 0

 97. arccos 12  98. arccos(−1)

 99. arctan 
√3
3

 100. arccot(−√3)

101. arccsc(−√2) 102. arcsec 2

Approximating Inverse Trigonometric Functions In 
Exercises 103–106, use a calculator to approximate the value. 
Round your answer to two decimal places.

103. arccos(0.051) 104. arcsin(−0.39)
105. arcsec 1.269 106. arccsc(−4.487)

Using Properties In Exercises 107 and 108, use the properties 
of inverse trigonometric functions to evaluate the expression.

107. cos[arccos(−0.1)] 108. arcsin(sin 
π
3)

eXpLoRInG ConCeptS
109.  Think About It Does adding a constant term to a 

function affect the existence of an inverse function? 
Explain.

110.  Inverse Trigonometric Functions Determine 
whether

  
arcsin x
arccos x

= arctan x.

111.  Inverse Trigonometric Functions Explain 
why tan π = 0 does not imply that arctan 0 = π.

112.  Think About It Use a graphing utility to graph 
f (x) = sin x and g(x) = arcsin(sin x). Is the graph of g
the line y = x? Explain.1

0
−1

π

       ,

       ,

π3

1
2

4

3
2

       ,

)
))

)

) )
y = arccos x
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 1.5 Inverse Functions 51

 Solving an Equation In Exercises 113–116, 
solve the equation for x.

113. arcsin(3x − π) = 1
2 114. arctan(2x − 5) = −1

115. arcsin √2x = arccos √x

116. arccos x = arcsec x

 Using a Right Triangle In Exercises 117–122, 
use the figure to write the expression in algebraic 
form given y = arccos x, where 0 < y < π�2.

117. cos y 

x

1

y

118. sin y

119. tan y

120. cot y

121. sec y

122. csc y

 Evaluating an Expression In Exercises 
123–126, evaluate each expression without using 
a calculator. [Hint: Sketch a right triangle, as 
demonstrated in Example 7.]

123. (a) sin(arctan 
3
4) 124. (a) tan(arccos 

√2
2 )

  (b) sec(arcsin 
4
5)   (b) cos(arcsin 

5
13)

125. (a) cot[arcsin(−1
2)] 126. (a) sec[arctan(−3

5)]
  (b) csc[arctan(− 5

12)]   (b) tan[arcsin(−5
6)]

Simplifying an Expression In Exercises 127–132, write 
the expression in algebraic form. [Hint: Sketch a right triangle, 
as demonstrated in Example 7.]

127. cos(arcsin 2x) 128. sec(arctan 6x)
129. sin(arcsec x) 130. sec[arcsin(x − 1)]

131. tan(arcsec 
x
3) 132. csc(arctan 

x

√2)
Fill in the Blank In Exercises 133 and 134, fill in the blank.

133. arctan 
9
x

= arcsin(■), x > 0

134. arcsin 
√36 − x2

6
= arccos(■)

Verifying an Identity In Exercises 135 and 136, verify 
each identity.

135. (a) arccsc x = arcsin 
1
x
, ∣x∣ ≥ 1

  (b) arctan x + arctan 
1
x

=
π
2

, x > 0

136. (a) arcsin(−x) = −arcsin x, ∣x∣ ≤ 1

  (b) arccos(−x) = π − arccos x, ∣x∣ ≤ 1

137. Verifying an Identity Verify each identity.

  (a) arccot x = {π + arctan(1�x),
π�2,
arctan(1�x),

    x < 0
    x = 0
    x > 0

  (b) arcsec x = arccos(1�x), ∣x∣ ≥ 1

  (c) arccsc x = arcsin(1�x), ∣x∣ ≥ 1

138.  Using an Identity Use the results of Exercise 137 and a 
graphing utility to evaluate each expression.

  (a) arccot 0.5 (b) arcsec 2.7

  (c) arccsc(−3.9) (d) arccot(−1.4)

True or False? In Exercises 139–144, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

139. If f  is an even function, then f −1 exists.

140.  If the inverse function of f  exists, then the y-intercept of f  is 
an x-intercept of f −1.

141. arcsin2 x + arccos2 x = 1

142. The range of y = arcsin x is [0, π].
143. If f (x) = xn where n is odd, then f −1 exists.

144. There exists no function f  such that f = f −1.

145.  Proof Prove that if f  and g are one-to-one functions, then 
( f ∘ g)−1(x) = (g−1 ∘ f −1)(x).

146.  Proof Prove that if f  has an inverse function, then 
( f −1)−1 = f.

147. Proof Prove that cos(sin−1 x) = √1 − x2.

148.  Proof Prove that if a function has an inverse function, then 
the inverse function is unique.

149. Proof Prove that

  arctan x + arctan y = arctan 
x + y
1 − xy

, xy ≠ 1.

  Use this formula to show that

  arctan 
1
2

+ arctan 
1
3

=
π
4

.

150.  Think About It The function f (x) = k(2 − x − x3) is 
one-to-one and f −1(3) = −2. Find k.

151.  Existence of an Inverse Determine the values of k such 
that the function f (x) = kx + sin x has an inverse function.

152.   Determining Conditions Determine conditions on the

   constants a, b, and c such that the graph of f (x) =
ax + b
cx − a

 is 

symmetric about the line y = x.

153.  Determining Conditions Determine conditions on the

   constants a, b, c, and d such that f (x) =
ax + b
cx + d

 has an 

inverse function. Then find f −1.

154.  Determining Conditions Let f (x) = ax2 + bx + c,
where a > 0 and the domain is all real numbers such that

 x ≤ −
b
2a

. Find f −1.
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52 Chapter 1 Preparation for Calculus

1.6 Exponential and Logarithmic Functions

 Develop and use properties of exponential functions.
 Understand the definition of the number e.
  Understand the definition of the natural logarithmic function, and develop and use 

properties of the natural logarithmic function.

Exponential Functions
An exponential function involves a constant raised to a power, such as f (x) = 2x. You 
already know how to evaluate 2x for rational values of x. For instance,

20 = 1, 22 = 4, 2−1 =
1
2

, and 21�2 = √2 ≈ 1.4142136.

For irrational values of x, you can define 2x by considering a sequence of rational 
numbers that approach x. A full discussion of this process would not be appropriate 
now, but here is the general idea. To define the number 2√2, note that

√2 = 1.414213 .  .  .

and consider the numbers below (which are of the form 2r, where r is rational).

 21 = 2 < 2√2 < 4 = 22

 21.4 = 2.639015 .  .  . < 2√2 < 2.828427 .  .  . = 21.5

 21.41 = 2.657371 .  .  . < 2√2 < 2.675855 .  .  . = 21.42

 21.414 = 2.664749 .  .  . < 2√2 < 2.666597 .  .  . = 21.415

 21.4142 = 2.665119 .  .  . < 2√2 < 2.665303 .  .  . = 21.4143

 21.41421 = 2.665137 .  .  . < 2√2 < 2.665156 .  .  . = 21.41422

 21.414213 = 2.665143 .  .  . < 2√2 < 2.665144 .  .  . = 21.414214

From these calculations, it seems reasonable to conclude that

2√2 ≈ 2.66514.

In practice, you can use a calculator to approximate numbers such as 2√2.
In general, you can use any positive base a, a ≠ 1, to define an exponential 

function. So, the exponential function with base a is written as f (x) = ax. Exponential 
functions, even those with irrational values of x, obey the familiar properties of exponents.

Properties of Exponents

Let a and b be positive real numbers, and let x and y be any real numbers.

1. a0 = 1 2. axay = ax+y  3. (ax)y = axy  4. (ab)x = axbx

5. 
ax

ay = ax−y  6. (a
b)

x

=
ax

bx 7. a−x =
1
ax

 Using Properties of Exponents

a. (22)(23) = 22+3 = 25  b. 
22

23 = 22−3 = 2−1 =
1
2

c. (3x)3 = 33x d. (1
3)

−x

= (3−1)−x = 3x 

REMARK Note that the 
base a = 1 is excluded because 
it yields f (x) = 1x = 1. This 
is a constant function, not an 
exponential function.
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1.6 Exponential and Logarithmic Functions 53

 Sketching Graphs of Exponential Functions

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the graphs of the functions

f (x) = 2x, g(x) = (1
2)

x

= 2−x, and h(x) = 3x.

Solution To sketch the graphs of these functions by hand, you can complete a table 
of values, plot the corresponding points, and connect the points with smooth curves.

x −3 −2 −1 0 1 2 3 4

2x 1
8

1
4

1
2 1 2 4 8 16

2−x 8 4 2 1 1
2

1
4

1
8

1
16

3x 1
27

1
9

1
3 1 3 9 27 81

Another way to graph these functions is to use a graphing utility. In either case, you 
should obtain graphs similar to those shown in Figure 1.58. Note that the graphs of f  
and h are increasing, and the graph of g is decreasing. Also, the graph of h is increasing 
more rapidly than the graph of f. 

The shapes of the graphs in Figure 1.58 are typical of the exponential functions 
f (x) = ax and g(x) = a−x where a > 1, as shown in Figure 1.59.

y

x
(0, 1)

f(x) = ax

   y

x
(0, 1)

g(x) = a−x

 Figure 1.59

Properties of Exponential Functions

Let a be a real number that is greater than 1.

1. The domain of f (x) = ax and g(x) = a−x is (−∞, ∞).
2. The range of f (x) = ax and g(x) = a−x is (0, ∞).
3. The y-intercept of f (x) = ax and g(x) = a−x is (0, 1).
4. The functions f (x) = ax and g(x) = a−x are one-to-one.

TECHNOLOGY Functions of the form h(x) = bcx have the same types of 
properties and graphs as functions of the form f (x) = ax and g(x) = a−x. To see 
why this is true, notice that

bcx = (bc)x.

For instance, f (x) = 23x can be written as 

f (x) = (23)x  or  f (x) = 8x.

Try confirming this by graphing f (x) = 23x and g(x) = 8x in the same viewing window.

y

x

f x( ) = 2x
h x( ) = 3x

g(x) =         = 2−x1
2 () x

2

3

4

5

6

−3 −2 −1 1 2 3

Figure 1.58

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



54 Chapter 1 Preparation for Calculus

The Number e
In calculus, the natural (or convenient) choice for a base of an exponential number is 
the irrational number e, whose decimal approximation is

e ≈ 2.71828182846.

This choice may seem anything but natural. The convenience of this particular base, 
however, will become apparent as you continue in this course.

 Investigating the Number e

Describe the behavior of the function f (x) = (1 + x)1�x at values of x that are close to 0.

Solution One way to examine the values of f (x) near 0 is to construct a table.

x −0.01 −0.001 −0.0001 0.0001 0.001 0.01

(1 + x)1�x 2.7320 2.7196 2.7184 2.7181 2.7169 2.7048

From the table, it appears that the closer x gets to 0, the closer (1 + x)1�x gets to e. The 
graph of f  shown in Figure 1.60 supports this conclusion. Try using a graphing calculator 
to obtain this graph. Then zoom in closer and closer to x = 0. Although f  is not defined 
when x = 0, it is defined for x-values that are arbitrarily close to zero. By zooming in, you 
can see that the value of f (x) gets closer and closer to e ≈ 2.71828182846 as x gets closer 
and closer to 0. Later, when you study limits, you will learn that this result can be written as

lim
x→0

 (1 + x)1�x = e

which is read as “the limit of (1 + x)1�x as x approaches 0 is e.”

 The Graph of the Natural Exponential Function 

Sketch the graph of f (x) = ex.

Solution To sketch the graph of f  by hand, you can complete a table of values, plot 
the corresponding points, and connect the points with a smooth curve (see Figure 1.61).

x −2 −1 0 1 2

ex 1
e2 ≈ 0.135

1
e

≈ 0.368 1 e ≈ 2.718 e2 ≈ 7.389

x

y

−1−2−3−4 1 2 3 4
−1

1

2

3

4

5

6

7

8

f(x) = ex

−2,
(0, 1)

(1, e)

(2, e2)

1
e2( )
−1, 1

e( )

 Figure 1.61 

y

x
1 2 3

4

2

1

f(x) = (1 + x)1/x

Figure 1.60
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1.6 Exponential and Logarithmic Functions 55

The Natural Logarithmic Function
Because the natural exponential function 

f (x) = ex

is one-to-one, it must have an inverse function. This inverse function is called the natural 
logarithmic function. The domain of the natural logarithmic function is the set of 
positive real numbers.

Definition of the Natural Logarithmic Function

Let x be a positive real number. The natural logarithmic function, denoted 
by ln x, is defined as

ln x = b if and only if eb = x.

The definition of the natural logarithmic function tells you that a logarithmic equation 
can be written in an equivalent exponential form, and vice versa. Here are some examples.

Logarithmic Form Exponential Form

ln 1 = 0 e0 = 1

ln e = 1 e1 = e

ln e−1 = −1 e−1 =
1
e

Because the function g(x) = ln x is defined to be the inverse function of f (x) = ex, 
it follows that the graph of the natural logarithmic function is a reflection of the graph 
of the natural exponential function in the line y = x, as shown in Figure 1.62. Several 
other properties of the natural logarithmic function also follow directly from its 
definition as the inverse of the natural exponential function.

Properties of the Natural Logarithmic Function

1. The domain of g(x) = ln x is (0, ∞).
2. The range of g(x) = ln x is (−∞, ∞).
3. The x-intercept of g(x) = ln x is (1, 0).
4. The function g(x) = ln x is one-to-one.

Because f (x) = ex and g(x) = ln x are inverse functions of each other, you can 
conclude that

ln ex = x     and     eln x = x.

One of the properties of exponents states that when you multiply two exponential 
functions (having the same base), you add their exponents. For instance,

exey = ex+y.

The logarithmic version of this property states that the natural logarithm of the product 
of two numbers is equal to the sum of the natural logs of the numbers. That is,

ln xy = ln x + ln y.

This property and the properties dealing with the natural log of a quotient and the 
natural log of a power are listed on the next page.
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Figure 1.62

REMARK The notation ln x 
is read as “el en of x” or “the 
natural log of x.”
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56 Chapter 1 Preparation for Calculus

Properties of Logarithms

Let x, y, and z be real numbers such that x > 0 and y > 0.

1. ln xy = ln x + ln y

2. ln 
x
y

= ln x − ln y

3. ln xz = z ln x

 Expanding Logarithmic Expressions

a. ln 
10
9

= ln 10 − ln 9 Property 2

b. ln√3x + 2 = ln(3x + 2)1�2 Rewrite with rational exponent.

  =
1
2

 ln(3x + 2) Property 3

c.  ln 
6x
5

= ln(6x) − ln 5 Property 2

= ln 6 + ln x − ln 5 Property 1

d.  ln 
(x2 + 3)2

x 3√x2 + 1
= ln(x2 + 3)2 − ln(x 3√x2 + 1)
= 2 ln(x2 + 3) − [ln x + ln(x2 + 1)1�3]
= 2 ln(x2 + 3) − ln x − ln(x2 + 1)1�3

  = 2 ln(x2 + 3) − ln x −
1
3

 ln(x2 + 1) 

When using the properties of logarithms to rewrite logarithmic functions, you must 
check to see whether the domain of the rewritten function is the same as the domain of 
the original function. For instance, the domain of f (x) = ln x2 is all real numbers except 
x = 0, and the domain of g(x) = 2 ln x is all positive real numbers.

 Solving Exponential and Logarithmic Equations

Solve for x.

a. 7 = ex+1 b. ln(2x − 3) = 5

Solution

a.  7 = ex+1 Write original equation.

 ln 7 = ln(ex+1) Take natural log of each side.

ln 7 = x + 1 Apply inverse property.

 −1 + ln 7 = x Solve for x.

 0.946 ≈ x Use a calculator.

b.  ln(2x − 3) = 5 Write original equation.

eln(2x−3) = e5 Exponentiate each side.

 2x − 3 = e5 Apply inverse property.

  x =
1
2

(e5 + 3) Solve for x.

 x ≈ 75.707 Use a calculator.

Exploration
A graphing utility is used 
to graph f (x) = ln x2 and 
g(x) = 2 ln x. Which of the 
graphs below is the graph of 
f ? Which is the graph of g?

5

−5

−5

5

5

−5

−5

5
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 1.6 Exponential and Logarithmic Functions 57

1.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Stating Properties In your own words, state the 

properties of the natural exponential function.

2.  Stating Properties In your own words, state the 
properties of the natural logarithmic function.

3.  Think About It Explain why ln ex = x.

4.  Logarithmic Properties What is the value of n?

 ln 4 + ln(n−1) = ln 4 − ln 7

Evaluating an Expression In Exercises 5 and 6, evaluate 
the expressions.

 5. (a) 253�2 (b) 811�2 (c) 3−2 (d) 27−1�3

 6. (a) 641�3 (b) 5−4 (c) (1
8)

1�3

 (d) (1
4)

3

 Using Properties of Exponents In Exercises 
7–10, use the properties of exponents to simplify 
the expressions.

 7. (a) (52)(53)   (b) (52)(5−3)   (c) 
53

252 (d) (1
4)

2

26

 8. (a) (22)3 (b) (54)1�2

 (c) [(27−1)(272�3)]3 (d) (253�2)(32)

 9. (a) e2(e4)   (b) (e3)4 (c) (e3)−2   (d) (e−6

e−2)
2

10. (a) (1
e)

−2

   (b) (e5

e2)
−1

 (c) e0 (d) 
1

e−3

 Solving an Equation In Exercises 11–26, 
solve for x.

11. 3x = 81 12. 4x = 64

13. 6x−2 = 36 14. 5x+1 = 125

15. (1
2)

x

= 32 16. (1
4)

x

= 16

17. (1
3)

x−1

= 27 18. (1
5)

2x+1

= 25

19. 43 = (x + 2)3 20. 343 = (5x − 7)3

21. x3�4 = 8 22. (x + 3)4�3 = 16

23. ex = e2x+1 24. ex = 1

25. e−2x = e5 26. e3x+1 = e7

 Sketching the Graph of an Exponential 
Function In Exercises 27–40, sketch the graph 
of the function.

27. y = 4x 28. y = 3x−1

29. y = (1
3)

x

 30. y = 2−x2

31. f (x) = 3−x2
 32. f (x) = 3∣x∣

33. y = e−x 34. y = 1
2ex

35. y = ex + 2 36. y = ex−1

37. h(x) = ex−2 38. g(x) = −ex�2

39. y = e−x2
 40. y = e−x�4

 Finding the Domain In Exercises 41–46, find 
the domain of the function.

41. f (x) =
1

3 + ex 42. f (x) =
1

2 − ex

43. f (x) = √1 − 4x

44. f (x) = √1 + 3−x

45. f (x) = sin e−x

46. f (x) = cos(21−x)

Matching In Exercises 47–50, match the equation with the 
correct graph. Assume that a and C are positive real numbers. 
[The graphs are labeled (a), (b), (c), and (d).]

(a) 

x

1

1

2

2
−1

−1−2

y  (b) 

x

1

1

2

2
−1

−1−2

−2

y

(c) 

x
1

2

−1

−1−2

y  (d) 

x
1

1

2

2

−1

−1

y

47. y = Ceax 48. y = Ce−ax

49. y = C(1 − e−ax) 50. y =
C

1 + e−ax

Finding an Exponential Function In Exercises 51 and 
52, find the exponential function y = Cax that fits the graph.

51. 

x

y

(0, 2)

(3, 54)

−1−2 1 2 3 4

9

18

27

36

45

54

 52. 

x

y

(1, 2)
(2, 1)

1 2 3 4 5 6−1

1
2
3
4
5
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58 Chapter 1 Preparation for Calculus

Writing Exponential or Logarithmic Equations In 
Exercises 53–56, write the exponential equation as a logarithmic 
equation, or vice versa.

53. e0 = 1 54. e−2 = 0.1353 .  .  .

55. ln 4.15 = 1.4231 .  .  . 56. ln 0.5 = −0.6931 .  .  .

Matching In Exercises 57–60, match the function with its 
graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) 

x

1

2

−1

−3

−2

2 3 4 5

y  (b) 

x

1

2

3

4

y

1 2 3 4 5

(c) 

x

2

−1
−1−3−4

−2

y  (d) 

x

1

2

−1

−3

−2

31 4 5

y

57. f (x) = ln x + 1 58. f (x) = −ln x

59. f (x) = ln(x − 1) 60. f (x) = −ln(−x)

 Sketching the Graph of a Logarithmic 
Function In Exercises 61–68, sketch the graph 
of the function and state its domain.

61. f (x) = 3 ln x 62. f (x) = −2 ln x

63. f (x) = ln 2x 64. f (x) = ln∣x∣
65. f (x) = ln(x − 3) 66. f (x) = ln x − 4

67. f (x) = −ln(x + 2) 68. f (x) = 4 ln(x − 2) + 1

Writing an Equation In Exercises 69–72, write an equation 
for the function having the given characteristics.

69.  The shape of f (x) = ex, but shifted eight units upward and 
reflected in the x-axis

70.  The shape of f (x) = ex, but shifted two units to the left and  
six units downward

71.  The shape of f (x) = ln x, but shifted five units to the right and 
one unit downward

72.  The shape of f (x) = ln x, but shifted three units upward and 
reflected in the y-axis

Inverse Functions In Exercises 73–76, illustrate that the 
functions f  and g are inverse functions of each other by using 
a graphing utility to graph them in the same viewing window.

73. f (x) = e2x, g(x) = ln√x

74. f (x) = ex�3, g(x) = ln x3

75. f (x) = ex − 1, g(x) = ln(x + 1)
76. f (x) = ex−1, g(x) = 1 + ln x

Finding Inverse Functions In Exercises 77–80, (a) find 
the inverse of the function, (b) use a graphing utility to graph 
f  and f −1 in the same viewing window, and (c) verify that 
f −1( f (x)) = x and f ( f −1(x)) = x.

 77. f (x) = e4x−1

 78. f (x) = 3e−x

 79. f (x) = 2 ln(x − 1)
 80. f (x) = 3 + ln 2x

Applying Inverse Properties In Exercises 81–86, apply 
the inverse properties of ln x and ex to simplify the given 
expression.

 81. ln ex2
  82. −4 ln e2x−1

 83. eln(5x+2)  84. eln√x

 85. −1 + ln e2x  86. −8 + eln x3

 Using Properties of Logarithms In Exercises 
87 and 88, use the properties of logarithms to 
approximate the indicated logarithms, given that 
ln 2 ≈ 0.6931 and ln 3 ≈ 1.0986.

 87. (a) ln 6 (b) ln 23 (c) ln 81 (d) ln √3

 88. (a) ln 0.25  (b) ln 24  (c) ln  3√12  (d) ln 1
72

 Expanding a Logarithmic Expression In 
Exercises 89–98, use the properties of logarithms to 
expand the logarithmic expression.

 89. ln 
x
4

  90. ln √x5

 91. ln 
xy
z

  92. ln(xyz)

 93. ln(x√x2 + 5)
 94. ln 3√z + 1

 95. ln √x − 1
x

 96. ln z(z − 1)2

 97. ln(3e2)

 98. ln 
1
e

 Condensing a Logarithmic Expression 
In Exercises 99–106, write the expression as the 
logarithm of a single quantity.

 99. ln x + ln 7

100. ln y + ln x2

101. ln(x − 2) − ln(x + 2)
102. 3 ln x + 2 ln y − 4 ln z

103. 1
3 [2 ln(x + 3) + ln x − ln(x2 − 1)]

104. 2 [ln x − ln(x + 1) − ln(x − 1)]
105. 2 ln 3 − 1

2 ln(x2 + 1)
106. ln(x2 − 4) − ln(x + 2) + ln 4
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1.6 Exponential and Logarithmic Functions 59

 Solving an Exponential or Logarithmic 
Equation In Exercises 107–118, solve for x
accurate to three decimal places.

107. ex = 12

108. 5ex = 36

109. 9 − 2ex = 7

110. 8ex − 12 = 7

111. 50e−x = 30

112. 100e−2x = 35

113. ln x = 2

114. ln x2 = −8

115. ln(x − 3) = 2

116. ln 4x = 1

117. ln√x + 2 = 1

118. ln(x − 2)2 = 12

Solving an Inequality In Exercises 119–122, solve the 
inequality for x.

119. e2x+1 > 3 120. e1−x < 6

121. −2 < ln x < 0 122. 1 < ln(x2 + 1) < 100

Verifying Properties of Logarithms In Exercises 123 
and 124, (a) verify that f(x) = g(x) by using a graphing utility 
to graph f  and g in the same viewing window and (b) verify 
that f(x) = g(x) algebraically.

123. f (x) = ln 
x2

4
, x > 0

  g(x) = 2 ln x − ln 4

124. f (x) = ln√x(x2 + 1)
  g(x) = 1

2 [ln x + ln(x2 + 1)]

eXpLoRInG ConCeptS
125.  Think About It Is it always true that ln(ab) = b ln a? 

Explain.

126.  Think About It Is ln xy = ln x ln y a valid property 
of logarithms, where x > 0 and y > 0? Explain.

127.  Analyze a Statement The table of values below 
was obtained by evaluating a function. Determine 
which of the statements may be true and which must be 
false. Explain your reasoning.

  (a) y is an exponential function of x.

  (b) x is an exponential function of y.

  (c) y is a logarithmic function of x.

  (d) y is a linear function of x.

 
x 1 2 8

y 0 1 3

 128.   HOW DO YOU SEE IT? The figure 
below shows the graph of y1 = ln ex or 
y2 = eln x. Which graph is it? What are the 
domains of y1 and y2? Does ln ex = eln x for 
all real values of x? Explain.

3

−2

−3

2

 128.   

Sound Intensity In Exercises 129 and 130, use the following 
information. The relationship between the number of decibels β
and the intensity I of a sound in watts per square centimeter is 

β =
10

ln 10
 ln( I

10−16).

129.  Use the properties of logarithms to write the formula in simpler 
form.

130.  Determine the number of decibels of a sound with an intensity 
of 10−5 watt per square centimeter.

131.  Comparing Functions Use a graphing utility to graph 
the functions f (x) = 6x and g(x) = x6 in the same viewing 
window. Where do these graphs intersect? As x increases, 
which function grows more rapidly?

132.  Comparing Functions Use a graphing utility to graph 
the functions f (x) = ln x and g(x) = x1�4 in the same viewing 
window. Where do these graphs intersect? As x increases, 
which function grows more rapidly?

133. Analyzing a Function Let f (x) = ln(x + √x2 + 1).
  (a) Use a graphing utility to graph f  and determine its domain.

  (b) Show that f  is an odd function.

  (c) Find the inverse function of f.

134.  Think About It Consider f (x) = ln x. Show that 
f (en+1) − f (en) = 1 for any value of n.

Stirling’s Formula For large values of n,

n! = 1 ∙ 2 ∙ 3 ∙ 4 .  .  . (n − 1) ∙ n

can be approximated by Stirling’s Formula,

n! ≈ (n
e)

n

√2πn.

In Exercises 135 and 136, find the exact value of n!, and then 
approximate n! using Stirling’s Formula.

135. n = 12 136. n = 15

137. Proof Prove that ln(x�y) = ln x − ln y, x > 0, y > 0.

138. Proof Prove that ln xy = y ln x.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding Intercepts In Exercises 1–4, find any intercepts.

 1. y = 5x − 8  2. y = x2 − 8x + 12

 3. y =
x − 3
x − 4

  4. y = (x − 3)√x + 4

Testing for Symmetry In Exercises 5–8, test for symmetry 
with respect to each axis and to the origin.

 5. y = x2 + 4x  6. y = x4 − x2 + 3

 7. y2 = x2 − 5  8. xy = −2

Using Intercepts and Symmetry to Sketch a Graph In 
Exercises 9–14, find any intercepts and test for symmetry. 
Then sketch the graph of the equation.

 9. y = −1
2x + 3 10. y = −x2 + 4

11. y = 9x − x3 12. y2 = 9 − x

13. y = 2√4 − x 14. y = ∣x − 4∣ − 4

Finding Points of Intersection In Exercises 15–18, find 
the points of intersection of the graphs of the equations.

15.  5x + 3y = −1 16.  2x + 4y = 9

  x − y = −5   6x − 4y = 7

17.  x − y = −5 18.  x2 + y2 = 1

  x2 − y = 1   −x + y = 1

Finding the Slope of a Line In Exercises 19 and 20, plot 
the pair of points and find the slope of the line passing through 
them.

19. (3
2, 1), (5, 52) 20. (−7, 8), (−1, 8)

Finding an Equation of a Line In Exercises 21–24, find 
an equation of the line that passes through the point and has 
the indicated slope. Then sketch the line.

 Point Slope Point Slope

21. (3, −5) m = 7
4 22. (−8, 1) m is undefined.

23. (−3, 0) m = −2
3 24. (5, 4) m = 0

Finding the Slope and y-Intercept In Exercises 25 and 
26, find the slope and the y-intercept (if possible) of the line.

25. y − 3x = 5 26. 9 − y = x

Sketching a Line in the Plane In Exercises 27–30, sketch 
the graph of the equation.

27. y = 6 28. x = −3

29. y = 4x − 2 30. 3x + 2y = 12

Finding an Equation of a Line In Exercises 31 and 32, 
find an equation of the line that passes through the points. 
Then sketch the line.

31. (0, 0), (8, 2) 32. (−5, 5), (10, −1)

33.  Finding Equations of Lines Find equations of the lines 
passing through (−3, 5) and having the following characteristics.

 (a) Slope of 7
16

 (b) Parallel to the line 5x − 3y = 3

 (c) Perpendicular to the line 3x + 4y = 8

 (d) Parallel to the y-axis

34.  Finding Equations of Lines Find equations of the lines 
passing through (2, 4) and  having the following characteristics.

 (a) Slope of −2
3

 (b) Perpendicular to the line x + y = 0

 (c) Parallel to the line 3x − y = 0

 (d) Parallel to the x-axis

35.  Rate of Change The purchase price of a new machine is 
$12,500, and its value will decrease by $850 per year. Use this 
information to write a linear equation that gives the value V of 
the machine t years after it is purchased. Find its value at the 
end of 3 years.

36.  Break-Even Analysis A contractor purchases a piece 
of equipment for $36,500 that costs an average of $9.25 per 
hour for fuel and maintenance. The equipment operator is paid 
$13.50 per hour, and customers are charged $30 per hour.

 (a)  Write a linear equation for the cost C of operating this 
equipment for t hours.

 (b)  Write a linear equation for the revenue R derived from t 
hours of use.

 (c)  Find the break-even point for this equipment by finding 
the time at which R = C.

Evaluating a Function In Exercises 37–40, evaluate the 
function at the given value(s) of the independent variable. 
Simplify the results.

37. f (x) = 5x + 4 

 (a) f (0)   (b) f (5)   (c) f (−3)   (d) f (t + 1)
38. f (x) = x3 − 2x

 (a) f (−3)   (b) f (2)   (c) f (−1)   (d) f (c − 1)
39. f (x) = 4x2 40. f (x) = 2x − 6

 
f (x + ∆x) − f (x)

∆x
  

f (x) − f (1)
x − 1

Finding the Domain and Range of a Function In 
Exercises 41 and 42, find the domain and range of the function.

41. f (x) = x2 + 3 42. f (x) = −∣x + 1∣
Sketching a Graph of a Function In Exercises 43 and 
44, sketch a graph of the function and find its domain and 
range. Use a graphing utility to verify your graph.

43. f (x) =
4

2x − 1
 44. g(x) = √x + 1
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  Review Exercises 61

Using the Vertical Line Test In Exercises 45 and 46, use 
the Vertical Line Test to determine whether y is a function of x.  
To print an enlarged copy of the graph, go to MathGraphs.com.

45. x + y2 = 2 46. x2 − y = 0

 

x

y

−1−2−3 2 3

−3

1

3

  

x

y

−1−2−3 1 2 3

2
3
4
5

Deciding Whether an Equation Is a Function In 
Exercises 47 and 48, determine whether y is a function of x.

47. xy + x3 − 2y = 0 48. x = 9 − y2

49.  Transformations of Functions Use a graphing utility 
to graph f (x) = x3 − 3x2. Use the graph to write a formula for 
the function g shown in the figure.

 (a)

4−2

−1

(2, 5)

(0, 1)

g

6  (b)

6−1

−4

(2, 1)

(4, −3)

g

2

50.  Think About It What is the minimum degree of the 
polynomial function whose graph approximates the given 
graph? What sign must the leading coefficient have?

 (a) 

x
−4 −2 2 4

4

−2

−4

y  (b) 

x
−4 2

2

4

−6

y

 (c) 

x
−2 2

2

4

−4

−2

y  (d) 

x
−4 2 4

4

2

−4

y

Finding Composite Functions In Exercises 51 and 52, 
find the composite functions f ∘ g and g ∘ f. Find the domain of 
each composite function. Are the two composite functions equal?

51. f (x) = 3x + 1 52. f (x) = √x − 2

 g(x) = −x  g(x) = x2

Even and Odd Functions and Zeros of Functions In 
Exercises 53 and 54, determine whether the function is even, 
odd, or neither. Then find the zeros of the function. Use a 
graphing utility to verify your result.

53. f (x) = x4 − x2 54. f (x) = √x3 + 1

Degrees to Radians In Exercises 55–58, convert the 
degree measure to radian measure as a multiple of π and as a 
decimal accurate to three decimal places.

55. 340° 56. 300°

57. −480° 58. −900°

Radians to Degrees In Exercises 59–62, convert the 
radian measure to degree measure.

59. 
π
6

 60. 
11π

4

61. −
2π
3

 62. −
13π

6

Evaluating Trigonometric Functions In Exercises 
63–68, evaluate the sine, cosine, and tangent of the angle. Do 
not use a calculator.

63. −45° 64. 240°

65. 
13π

6
 66. −

4π
3

67. 405° 68. 180°

Evaluating Trigonometric Functions Using Technology  
In Exercises 69–74, use a calculator to evaluate the trigonometric 
function. Round your answers to four decimal places.

69. tan 33° 70. cot 401°

71. sec 
12π

5
 72. csc 

2π
9

73. sin(−
π
9) 74. cos(−

3π
7 )

Solving a Trigonometric Equation In Exercises 75–80, 
solve the equation for θ, where 0 ≤ θ ≤ 2π.

75. 2 cos θ + 1 = 0 76. 2 cos2 θ = 1

77. 2 sin2 θ + 3 sin θ + 1 = 0

78. cos3 θ = cos θ

79. sec2 θ − sec θ − 2 = 0

80. 2 sec2 θ + tan2 θ − 5 = 0

Sketching the Graph of a Trigonometric Function In 
Exercises 81–88, sketch the graph of the function.

81. y = 9 cos x 82. y = sin πx

83. y = 3 sin 
2x
5

 84. y = 8 cos 
x
4

85. y =
1
3

 tan x 86. y = cot 
x
2

87. y = −sec 2πx 88. y = −4 csc 3x

Verifying Inverse Functions In Exercises 89 and 90, 
show that f  and g are inverse functions (a) analytically and 
(b) graphically.

89. f (x) = 4x − 1, g(x) =
x + 1

4

90. f (x) = √x + 3, g(x) = x2 − 3, x ≥ 0
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The Existence of an Inverse Function In Exercises 
91–94, determine whether the function is one-to-one on its 
entire domain and therefore has an inverse function.

 91. f (x) = x2 + 2x − 1  92. f (x) = 2 − x3

 93. f (x) = csc 3πx  94. f (x) = 2x + cos x

Finding an Inverse Function In Exercises 95–100, (a) 
find the inverse function of f, (b) graph f  and f −1 on the 
same set of coordinate axes, (c) verify that f −1( f (x)) = x and 
f ( f −1(x)) = x, and (d) state the domains and ranges of f  and 
f −1.

 95. f (x) = 1
2x − 3  96. f (x) = 5x − 7

 97. f (x) = √x + 1  98. f (x) = x3 + 2

 99. f (x) = 3√x + 1 100. f (x) = x2 − 5, x ≥ 0

Testing Whether a Function Is One-to-One In 
Exercises 101 and 102, determine whether the function is  
one-to-one. If it is, find its inverse function.

101. f (x) = sin 3πx 102. f (x) = ∣x + 3∣, x ≥ −3

Showing a Function Is One-to-One In Exercises 103 
and 104, show that f  is one-to-one on the given interval and 
therefore has an inverse function on that interval.

103. f (x) = x4 + 2x2 + 2, [0, ∞)

104. f (x) = sin 
x
2

, [−π, π]

Sketching a Graph In Exercises 105 and 106, sketch the 
graph of the function. Use a graphing utility to verify your 
graph.

105. f (x) = 2 arctan(x + 3)
106. h(x) = −3 arcsin 2x

Evaluating Inverse Trigonometric Functions In 
Exercises 107 and 108, evaluate the expression without using 
a calculator.

107. arctan 1 108. arccsc(−
2√3

3 )
Solving an Equation In Exercises 109 and 110, solve the 
equation for x.

109. arccos(2x + 1) = 2 110. arcsec 2x = arctan x

Evaluating an Expression In Exercises 111 and 
112, evaluate each expression without using a calculator. 
(Hint: Make a sketch of a right triangle.)

111. (a) sin(arcsin 12) 112. (a) tan(arccot 2)
  (b) cos(arcsin 12)   (b) cos(arcsec √5)

Simplifying an Expression In Exercises 113 and 114, 
write the expression in algebraic form.

113. sin(arctan 2x) 114. cos(arccsc 
x
4)

Using Properties of Exponents In Exercises 115 and 
116, use the properties of exponents to simplify the expressions.

115. (a) (33)(3−1)   (b) (32)4 (c) 
34

3−2   (d) (1
3)

2

92

116. (a) (e2)−2 (b) (e6)1�3   (c) 
e−1

e−2 (d) (e
4)

−2

Solving an Equation In Exercises 117 and 118, solve for x.

117. 3x�2 = 81 118. (1
7)

x+1

= 49

Sketching the Graph of an Exponential Function In 
Exercises 119 and 120, sketch the graph of the function.

119. y = e−x�2 120. y = 4e−x2

Matching In Exercises 121–124, match the function with its 
graph. [The graphs are labeled (a), (b), (c), and (d).]

 (a) 

x

y

1

1

−2

3

4

−1−2−3 2 3

 (b) 

x

y

1

1

4

−2−3 2

 (c) 

x

y

1

1

2

3

4

−2−3 2 3

 (d) 

x

y

1

1

−2

3

4

−1−2−3 2 3

121. f (x) = ex 122. f (x) = e−x

123. f (x) = ln(x + 1) + 1 124. f (x) = −ln(x + 1) + 1

Sketching the Graph of a Logarithmic Function In 
Exercises 125 and 126, sketch the graph of the function and 
state its domain.

125. f (x) = ln x + 3 126. f (x) = ln(x − 1)

Expanding a Logarithmic Expression In Exercises 
127 and 128, use the properties of logarithms to expand the 
logarithmic expression.

127. ln  5√4x2 − 1
4x2 + 1

 128. ln [(x2 + 1)(x − 1)]

Condensing a Logarithmic Expression In Exercises 129 
and 130, write the expression as the logarithm of a single quantity.

129. ln 3 + 1
3 ln(4 − x2) − ln x

130. 3[ln x − 2 ln(x2 + 1)] + 2 ln 5

Solving an Exponential or Logarithmic Equation In 
Exercises 131 and 132, solve for x accurate to three decimal places.

131. −4 + 3e−2x = 6 132. ln x + ln(x − 3) = 0
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  P.S. Problem Solving 63

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1. Finding Tangent Lines Consider the circle 

 x2 + y2 − 6x − 8y = 0

 as shown in the figure.

 (a) Find the center and radius of the circle.

 (b)  Find an equation of the tangent line to the circle at the point 
(0, 0).

 (c)  Find an equation of the tangent line to the circle at the point 
(6, 0).

 (d) Where do the two tangent lines intersect?

x
86

−2
−2

2

4

6

8

y   

x
32−3

−3

−2

−4

1

2

y

 Figure for 1 Figure for 2

2.  Finding Tangent Lines There are two tangent lines from 
the point (0, 1) to the circle x2 + ( y + 1)2 = 1 (see figure). 
Find equations of these two lines by using the fact that each 
tangent line intersects the circle at exactly one point.

3.  Heaviside Function The Heaviside function H(x) is widely 
used in engineering applications.

 H(x) = {1,
0,

   x ≥ 0
   x < 0

  Sketch the graph of the Heaviside function and the graphs of the 
following functions by hand.

 (a) H(x) − 2  (b) H(x − 2)  (c) −H(x)
 (d) H(−x) (e) 1

2H(x) (f ) −H(x − 2) + 2

Oliver Heaviside (1850–1925)

Heaviside was a British mathematician and physicist who contributed 
to the field of applied mathematics, especially applications of 
mathematics to electrical engineering. The Heaviside function is a 
classic type of “on-off” function that has applications to electricity 
and computer science.

4.  Sketching Transformations Consider the graph of the 
function f  shown below. Use this graph to sketch the graphs of 
the following functions. To print an enlarged copy of the graph, 
go to MathGraphs.com.

 (a) f (x + 1)  (b) f (x) + 1 

x

y

f

2 4

−2

−4

2

4 (c) 2 f (x) (d) f (−x)
 (e) −f (x) (f ) ∣ f (x)∣
 (g) f (∣x∣)

5.  Maximum Area A rancher plans to fence a rectangular 
pasture adjacent to a river. The rancher has 100 meters of 
fencing, and no fencing is needed along the river (see figure).

 (a)  Write the area A of the pasture as a function of x, the length 
of the side parallel to the river. What is the domain of A?

 (b)  Graph the area function and estimate the dimensions that 
yield the maximum amount of area for the pasture.

 (c)  Find the dimensions that yield the maximum amount of area 
for the pasture by completing the square.

y

x

y

  

xxx

yy

 Figure for 5 Figure for 6

6.  Maximum Area A rancher has 300 feet of fencing to 
enclose two adjacent pastures (see figure).

 (a)  Write the total area A of the two pastures as a function of x. 
What is the domain of A?

 (b)  Graph the area function and estimate the dimensions that 
yield the maximum amount of area for the pastures.

 (c)  Find the dimensions that yield the maximum amount of area 
for the pastures by completing the square.

7.  Writing a Function You are in a boat 2 miles from the 
nearest point on the coast. You will travel to a point Q located 
3 miles down the coast and 1 mile inland (see figure). You can 
row at 2 miles per hour and walk at 4 miles per hour. Write the 
total time T of the trip as a function of x.

Q

2 mi

x

3 mi

1 mi

Science and Society/SuperStock
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64 Chapter 1 Preparation for Calculus

 8. Analyzing a Function Graph the function

 f (x) = ex − e−x.

  From the graph, the function appears to be one-to-one. 
Assuming that the function has an inverse, find f −1(x).

 9.  Slope of a Tangent Line One of the fundamental 
themes of calculus is to find the slope of the tangent line to 
a curve at a point. To see how this can be done, consider the 
point (2, 4) on the graph of f (x) = x2 (see figure).

x
62 4−6 −2−4

4

6

8

10

(2, 4)

y

 (a)  Find the slope of the line joining (2, 4) and (3, 9). Is the 
slope of the tangent line at (2, 4) greater than or less than 
this number?

 (b)  Find the slope of the line joining (2, 4) and (1, 1). Is the 
slope of the tangent line at (2, 4) greater than or less than 
this number?

 (c)  Find the slope of the line joining (2, 4) and (2.1, 4.41). Is 
the slope of the tangent line at (2, 4) greater than or less 
than this number?

 (d)  Find the slope of the line joining (2, 4) and (2 + h, f (2 + h)) 
in terms of the nonzero number h. Verify that h = 1, −1, 
and 0.1 yield the solutions to parts (a)–(c) above.

 (e)  What is the slope of the tangent line at (2, 4)? Explain how 
you arrived at your answer.

10.  Slope of a Tangent Line Sketch the graph of the 
function f (x) = √x and label the point (4, 2) on the graph.

 (a)  Find the slope of the line joining (4, 2) and (9, 3). Is the 
slope of the tangent line at (4, 2) greater than or less than 
this number?

 (b)  Find the slope of the line joining (4, 2) and (1, 1). Is the 
slope of the tangent line at (4, 2) greater than or less than 
this number?

 (c)  Find the slope of the line joining (4, 2) and (4.41, 2.1). Is 
the slope of the tangent line at (4, 2) greater than or less 
than this number?

 (d)   Find the slope of the line joining (4, 2) and (4 + h, f (4 + h)) 
in terms of the nonzero number h.

 (e)  What is the slope of the tangent line at (4, 2)? Explain how 
you arrived at your answer.

11. Composite Functions Let f (x) =
1

1 − x
.

 (a)  What are the domain and range of f ?

 (b)  Find the composition f ( f (x)). What is the domain of this 
function?

 (c) Find f ( f ( f (x))). What is the domain of this function?

 (d) Graph f ( f ( f (x))). Is the graph a line? Why or why not?

12.  Graphing an Equation Explain how you would graph 
the equation

 y + ∣y∣ = x + ∣x∣.
 Then sketch the graph.

13.  Sound Intensity A large room contains two speakers 
that are 3 meters apart. The sound intensity I of one speaker 
is twice that of the other, as shown in the figure. (To print 
an enlarged copy of the graph, go to MathGraphs.com.) 
Suppose the listener is free to move about the room to find 
those positions that receive equal amounts of sound from both 
speakers. Such a location satisfies two conditions: (1) the sound 
intensity at the listener’s position is directly proportional to the 
sound level of a source, and (2) the sound intensity is inversely 
proportional to the square of the distance from the source.

 (a)  Find the points on the x-axis that receive equal amounts of 
sound from both speakers.

 (b)  Find and graph the equation of all locations (x, y) where 
one could stand and receive equal amounts of sound from 
both speakers.

 

x
31 2

I 2I

1

2

3

y  

x
431 2

I kI
1

2

3

4

y

 Figure for 13 Figure for 14

14.  Sound Intensity Suppose the speakers in Exercise 13 are 
4 meters apart and the sound intensity of one speaker is k times 
that of the other, as shown in the figure. To print an enlarged 
copy of the graph, go to MathGraphs.com.

 (a)  Find the equation of all locations (x, y) where one could 
stand and receive equal amounts of sound from both 
speakers.

 (b) Graph the equation for the case k = 3.

 (c)  Describe the set of locations of equal sound as k becomes 
very large.

15.  Lemniscate Let d1 and d2 be the distances from the point 
(x, y) to the points (−1, 0) and (1, 0), respectively, as shown 
in the figure. Show that the equation of the graph of all points 
(x, y) satisfying d1d2 = 1 is

 (x2 + y2)2 = 2(x2 − y2).

  This curve is called a lemniscate. Graph the lemniscate and 
identify three points on the graph.

1

1

−1

−1
x

d2
d1

(x, y)

y
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 2.1 A Preview of Calculus
 2.2 Finding Limits Graphically and Numerically
 2.3 Evaluating Limits Analytically
 2.4 Continuity and One-Sided Limits
 2.5 Infinite Limits

Average Speed (Exercise 64, p. 113)

65

 2

Sports (Exercise 70, p. 81)

Charles’s Law and Absolute Zero (Example 5, p. 98)

Free-Falling Object (Exercises 105 and 106, p. 93)

Bicyclist (Exercise 5, p. 71)

Limits and Their Properties
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66 Chapter 2 Limits and Their Properties

2.1 A Preview of Calculus
 Understand what calculus is and how it compares with precalculus.
 Understand that the tangent line problem is basic to calculus.
 Understand that the area problem is also basic to calculus.

What Is Calculus?
Calculus is the mathematics of change. For instance, calculus is the mathematics of 
velocities, accelerations, tangent lines, slopes, areas, volumes, arc lengths, centroids, 
curvatures,  and a variety of other concepts that have enabled scientists, engineers, and 
economists to model real-life situations.

Although precalculus mathematics also deals with velocities, accelerations, 
tangent lines, slopes, and so on, there is a fundamental difference between precalculus 
mathematics and calculus. Precalculus mathematics is more static, whereas calculus is 
more dynamic. Here are some examples.

•   An  object  traveling  at  a  constant  velocity  can  be  analyzed  with  precalculus 
 mathematics. To analyze the velocity of an accelerating object, you need calculus.

•   The slope of a  line can be analyzed with precalculus mathematics. To analyze  the 
slope of a curve, you need calculus.

•   The curvature of a circle is constant and can be analyzed with precalculus mathematics. 
To analyze the variable curvature of a general curve, you need calculus.

•   The area of a rectangle can be analyzed with precalculus mathematics. To analyze the 
area under a general curve, you need calculus.

Each of these situations involves the same general strategy—the reformulation of 
 precalculus mathematics through the use of a limit process. So, one way to answer the 
question “What is calculus?” is to say that calculus is a “limit machine” that involves 
three stages. The first stage is precalculus mathematics, such as the slope of a line or 
the area of a rectangle. The second stage is the limit process, and the third stage is a 
new calculus formulation, such as a derivative or integral.

Precalculus
mathematics

  
Limit

process   Calculus

Some students try to learn calculus as if it were simply a collection of new 
formulas.  This  is  unfortunate.  If  you  reduce  calculus  to  the  memorization  of 
differentiation and integration formulas, you will miss a great deal of understanding,  
self- confidence, and satisfaction.

On the next two pages are listed some familiar precalculus concepts coupled with 
their calculus counterparts. Throughout the text, your goal should be to learn how 
precalculus formulas and techniques are used as building blocks to produce the more 
general calculus formulas and techniques. Do not worry if you are unfamiliar with some 
of the “old formulas” listed on the next two pages—you will be reviewing all of them.

As you proceed through this text, come back to this discussion repeatedly. Try to 
keep track of where you are relative to the three stages involved in the study of calculus. 
For instance, note how these chapters relate to the three stages.

Chapter 1: Preparation for Calculus Precalculus

Chapter 2: Limits and Their Properties Limit process

Chapter 3: Differentiation Calculus

This cycle is repeated many times on a smaller scale throughout the text.

remark As you progress 
through this course, remember 
that learning calculus is just 
one of your goals. Your most 
important goal is to learn how to 
use calculus to model and solve 
real-life problems. Here are a 
few problem-solving strategies 
that may help you.

•  Be sure you understand the 
question. What is given? What 
are you asked to find?

•  Outline a plan. There are 
many approaches you could 
use: look for a pattern, solve 
a simpler problem, work 
backwards, draw a diagram, 
use technology, or any of 
many other approaches.

•  Complete your plan. Be 
sure to answer the question. 
Verbalize your answer. For 
example, rather than writing 
the answer as x = 4.6, it 
would be better to write the 
answer as, “The area of the 
region is 4.6 square meters.”

•  Look back at your work.  
Does your answer make  
sense? Is there a way you can 
check the reasonableness of 
your answer?
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 2.1 A Preview of Calculus 67

Without Calculus With Differential Calculus

Value of f (x)
when x = c 

x

y = f (x)

c

y

Limit of f (x) as 
x approaches c 

y = f (x)

xc

y

Slope of a line 

Δx

Δy Slope of a curve 

dx

dy

Secant line to 
a curve 

Tangent line to 
a curve 

Average rate of 
change between 
t = a and t = b t = a t = b

Instantaneous 
rate of change 
at t = c t = c

Curvature 
of a circle 

Curvature 
of a curve 

Height of a 
curve when 
x = c xc

y

Maximum height 
of a curve on 
an interval x

a b

y

Tangent plane 
to a sphere 

Tangent plane 
to a surface 

Direction of 
motion along 
a line 

Direction of 
motion along 
a curve 
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Without Calculus With Integral Calculus

Area of 
a rectangle 

Area under 
a curve 

x

y

Work done by a  
constant force

 

Work done by a
variable force

Center of a 
rectangle 

Centroid of 
a region 

Length of a 
line segment

Length of 
an arc

Surface area 
of a cylinder

Surface area of a 
solid of revolution

Mass of a solid 
of constant 
density 

Mass of a solid 
of variable 
density

Volume of a  
rectangular 
solid

Volume of a 
region under 
a surface

Sum of a 
finite number a1 + a2 + .  .  . + an = S 
of terms

Sum of an 
infinite number a1 + a2 + a3 + .  .  . = S 
of terms

x

y
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The Tangent Line Problem
The notion of a limit is fundamental to the study of calculus. The following brief 
descriptions of two classic problems in calculus—the tangent line problem and the area 
problem—should give you some idea of the way limits are used in calculus.

In the tangent line problem, you are given a function f  and a point P on its graph 
and are asked to find an equation of the tangent line to the graph at point P, as shown 
in Figure 2.1.

Except for cases involving a vertical tangent line, the problem of finding the 
tangent line at a point P is equivalent to finding the slope of the tangent line at P. You 
can approximate this slope by using a line through the point of tangency and a  second 
point on the curve, as shown in Figure 2.2(a). Such a line is called a secant line. If 
P(c, f (c)) is the point of tangency and 

Q(c + ∆x, f(c + ∆x))

is a second point on the graph of f, then the slope of the secant line through these two 
points can be found using precalculus and is

 msec =
f (c + ∆x) − f (c)

c + ∆x − c
=

f (c + ∆x) − f (c)
∆x

.

x

Δx

f (c + Δx) − f (c)

Q (c + Δx,  f (c + Δx))

P(c, f (c))

y   

x

P

Q

Tangent line

Secant
lines

y

(a)  The secant line through (c, f (c)) and  (b) As Q approaches P, the secant lines
(c + ∆x, f (c + ∆x))  approach the tangent line.

 Figure 2.2

As point Q approaches point P, the slopes of the secant lines approach the slope of 
the tangent line, as shown in Figure 2.2(b). When such a “limiting position” exists, the 
slope of the tangent line is said to be the limit of the slopes of the secant lines. (Much 
more will be said about this important calculus concept in Chapter 3.)

exploration
The following points lie on the graph of f (x) = x2.

Q1(1.5, f(1.5)), Q2(1.1, f(1.1)), Q3(1.01, f (1.01)),
Q4(1.001, f(1.001)), Q5(1.0001, f(1.0001))

Each successive point gets closer to the point P(1, 1). Find the slopes of the 
secant lines through Q1 and P, Q2 and P, and so on. Graph these secant lines 
on a graphing utility. Then use your results to estimate the slope of the tangent 
line to the graph of f  at the point P.

The tangent line to the graph of f  at P
Figure 2.1

x

Tangent line
P

y = f(x)

y

GRACE CHISHOLM YOUNG
(1868–1944)

Grace Chisholm Young 
received her degree in 
mathematics from Girton 
College in Cambridge, England. 
Her early work was published 
under the name of William 
Young, her husband. Between 
1914 and 1916, Grace Young 
published work on the 
foundations of calculus that 
won her the Gamble Prize 
from Girton College.

The Mistress and Fellows, Girton College, Cambridge
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70 Chapter 2 Limits and Their Properties

The Area Problem
In the tangent line problem, you saw how the limit process can be applied to the slope 
of a line to find the slope of a general curve. A second classic problem in calculus 
is finding the area of a plane region that is bounded by the graphs of functions. This 
problem can also be solved with a limit process. In this case, the limit process is applied 
to the area of a rectangle to find the area of a general region.

As a simple example, consider the region bounded by the graph of the function 
y = f(x), the x-axis, and the vertical lines x = a and x = b, as shown in Figure 2.3. 
You can approximate the area of the region with several rectangular regions, as shown 
in Figure 2.4. As you increase the number of rectangles, the approximation tends
to become better and better because the amount of area missed by the rectangles 
decreases. Your goal is to determine the limit of the sum of the areas of the  rectangles 
as the number of rectangles increases without bound.

x
a b

y

y = f (x)

  
y = f (x)

x
a b

y

 Approximation using four rectangles Approximation using eight rectangles
 Figure 2.4

Area under a curve
Figure 2.3

x
a b

y

y = f (x)

HISTORICAL NOTE

In one of the most astounding 
events ever to occur in 
mathematics, it was discovered 
that the tangent line problem 
and the area problem are 
closely related. This discovery 
led to the birth of calculus. 
You will learn about the 
relationship between these 
two problems when you study 
the Fundamental Theorem of 
Calculus in Chapter 5.

exploration
Consider the region bounded by the graphs of

f(x) = x2, y = 0, and x = 1

as shown in part (a) of the figure. The area of the region can be approximated 
by two sets of rectangles—one set inscribed within the region and the other 
set circumscribed over the region, as shown in parts (b) and (c). Find the sum 
of the areas of each set of rectangles. Then use your results to approximate the 
area of the region.

f (x) = x2

x
1

1

y  

f (x) = x2

x
1

1

y  

f (x) = x2

x
1

1

y

 (a)  Bounded region  (b) Inscribed rectangles (c) Circumscribed rectangles
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2.1 A Preview of Calculus 71

2.1 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Precalculus and Calculus Describe the relationship 

between precalculus and calculus. List three precalculus 
concepts and their corresponding calculus counterparts.

2.  Secant and Tangent Lines Discuss the 
relationship between secant lines through a fixed point 
and a corresponding tangent line at that fixed point.

 Precalculus or Calculus In Exercises 3–6, 
decide whether the problem can be solved using 
precalculus or whether calculus is required. If the 
problem can be solved using precalculus, solve it. 
If the problem seems to require calculus, explain 
your reasoning and use a graphical or numerical 
approach to estimate the solution.

3.   Find the distance traveled in 15 seconds by an object traveling 
at a constant velocity of 20 feet per second.

4.   Find  the distance  traveled  in 15 seconds by an object moving 
with a velocity of v(t) = 20 + 7 cos t  feet per second.

6.  A bicyclist is riding on a  

x
1 2 3 4 5 6

1

−1

2

3

y

f (x) = 0.08x

path modeled by the function 
f (x) = 0.08x, where x and f (x) 
are measured in miles (see 
figure). Find the rate of change 
of elevation at x = 2.

7.  Secant Lines Consider the function  f (x) = √x and the 
point P(4, 2) on the graph of f.

 (a)  Graph f  and the secant lines passing through P(4, 2) and 
Q (x, f (x)) for x-values of 1, 3, and 5.

 (b) Find the slope of each secant line.

 (c)  Use the results of part (b) to estimate the slope of the 
tangent line to the graph of f  at P(4, 2). Describe how to 
improve your approximation of the slope.

8.  Secant Lines Consider the function f (x) = 6x − x2 and 
the point P(2, 8) on the graph of f.

 (a)  Graph f  and the secant lines passing through P(2, 8) and 
Q(x, f (x)) for x-values of 3, 2.5, and 1.5.

 (b) Find the slope of each secant line.

 (c)  Use the results of part (b) to estimate the slope of the 
tangent line to the graph of f  at P(2, 8). Describe how to 
improve your approximation of the slope.

9.  approximating area Use the rectangles in each graph to 
approximate the area of the region bounded by y = 5�x, y = 0,
x = 1, and x = 5. Describe how you could continue this process 
to obtain a more accurate approximation of the area.

1

1

2

2

3

3

4

4

5

5

x

y   

x
1

1

2

2

3

3

4

4

5

5

y

 10.  HOW DO YOU See IT? How would you 
describe the instantaneous rate of change of an 
automobile’s position on a highway?

 10.  

EXPLORING CONCEPTS
11.  Length of a Curve Consider the length of the graph 

of f (x) = 5�x from (1, 5) to (5, 1).

x
1

1

2

2

3

3

4

4

5

5
(1, 5)

(5, 1)

y  

x

(1, 5)

(5, 1)

y

1

1

2

2

3

3

4

4

5

5

 (a)   Approximate the length of the curve by finding the 
 distance between its two endpoints, as shown in the 
first figure.

 (b)  Approximate the length of the curve by finding the 
sum of the lengths of four line segments, as shown 
in the second figure.

 (c)  Describe how you could continue this process to 
obtain a more accurate approximation of the length 
of the curve.

A bicyclist is riding on a path modeled by the function 
f (x) = 0.04(8x − x2), where x and f (x) are measured in 
miles (see figure). Find the rate of change of elevation 
at x = 2.

x
1 2 3 4 5 6

1

−1

2

3

f (x) = 0.04 8x − x2

y

(            )

5. rate of Change

The symbol  and a red exercise number indicate that a video solution can be
seen at CalcView.com.

Raphael Christinat/Shutterstock.com
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72 Chapter 2 Limits and Their Properties

2.2 Finding Limits Graphically and Numerically

 Estimate a limit using a numerical or graphical approach.
 Learn different ways that a limit can fail to exist.
 Study and use a formal definition of limit.

An Introduction to Limits
To sketch the graph of the function

f(x) =
x3 − 1
x − 1

for values other than x = 1, you can use standard curve-sketching techniques. At 
x = 1, however, it is not clear what to expect. To get an idea of the behavior of the 
graph of f  near x = 1, you can use two sets of x-values—one set that approaches 1 
from the left and one set that approaches 1 from the right, as shown in the table. 

 

x approaches 1 from the left. x approaches 1 from the right.

x 0.75 0.9 0.99 0.999 1 1.001 1.01 1.1 1.25

f(x) 2.313 2.710 2.970 2.997 ? 3.003 3.030 3.310 3.813

 
f (x) approaches 3. f (x) approaches 3.

The graph of f  is a parabola that has a hole at the point (1, 3), as shown in 
Figure 2.5. Although x cannot equal 1, you can move arbitrarily close to 1, and as a 
result f(x) moves arbitrarily close to 3. Using limit notation, you can write

lim
x→1

 f(x) = 3. This is read as “the limit of f (x) as x approaches 1 is 3.”

This discussion leads to an informal definition of limit. If f(x) becomes arbitrarily 
close to a single number L as x approaches c from either side, then the limit of f(x) as 
x approaches c is L. This limit is written as

lim
x→c

 f(x) = L.

Exploration
The discussion above gives an example of how you can estimate a limit 
numerically by constructing a table and graphically by drawing a graph. 
Estimate the following limit numerically by completing the table.

lim
x→2

 
x2 − 3x + 2

x − 2

x 1.75 1.9 1.99 1.999 2 2.001 2.01 2.1 2.25

f(x) ? ? ? ? ? ? ? ? ?

Then use a graphing utility to estimate the limit graphically.

The limit of f (x) as x approaches 1 is 3.
Figure 2.5

x

y

−2 −1 1

2

3

f (x) = x3 − 1
x  − 1

lim f (x) = 3
x→1 (1, 3)
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 2.2 Finding Limits Graphically and Numerically 73

 Estimating a Limit Numerically

Evaluate the function f(x) = x�(√x + 1 − 1) at several x-values near 0 and use the 
results to estimate the limit

lim
x→0

 
x

√x + 1 − 1
.

Solution The table lists the values of f (x) for several x-values near 0.

 

x approaches 0 from the left. x approaches 0 from the right.

x −0.01 −0.001 −0.0001 0 0.0001 0.001 0.01

f(x) 1.99499 1.99950 1.99995 ? 2.00005 2.00050 2.00499

 
f (x) approaches 2. f (x) approaches 2.

From the results shown in the table, you can estimate the limit to be 2. This limit is 
reinforced by the graph of f  shown in Figure 2.6. 

In Example 1, note that the function is undefined at x = 0, and yet f (x) appears 
to be approaching a limit as x approaches 0. This often happens, and it is important 
to realize that the existence or nonexistence of f (x) at x = c has no bearing on the 
existence of the limit of f (x) as x approaches c.

 Finding a Limit

Find the limit of f(x) as x approaches 2, where

f (x) = {1,

0,

    x ≠ 2

    x = 2
.

Solution Because f(x) = 1 for all x other than x = 2, you can estimate that the limit 
is 1, as shown in Figure 2.7. So, you can write

lim
x→2

 f(x) = 1.

The fact that f (2) = 0 has no bearing on the existence or value of the limit as x 
approaches 2. For instance, as x approaches 2, the function

g(x) = {1,

2,

    x ≠ 2

    x = 2

has the same limit as f. 

So far in this section, you have been estimating limits numerically and graphically. 
Each of these approaches produces an estimate of the limit. In Section 2.3, you will 
study analytic techniques for evaluating limits. Throughout the course, try to develop a 
habit of using this three-pronged approach to problem solving.

1. Numerical approach Construct a table of values.

2. Graphical approach Draw a graph by hand or using technology.

3. Analytic approach Use algebra or calculus.

The limit of f (x) as x approaches 0 is 2.
Figure 2.6

−1 1

1

x

x

f is unde�ned
at x = 0.

f (x) = 
x + 1 − 1

y

The limit of f (x) as x approaches 2 is 1.
Figure 2.7

32

2

1

 

x

1, x ≠ 2

0, x = 2
f (x) =

y
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74 Chapter 2 Limits and Their Properties

Limits That Fail to Exist
In the next three examples, you will examine some limits that fail to exist.

 Different Right and Left Behavior

Show that the limit lim
x→0

 
∣x∣
x  does not exist.

Solution Consider the graph of the function

 f(x) = ∣x∣
x

.

In Figure 2.8 and from the definition of absolute value,

∣x∣ = { x,
−x,

 x ≥ 0
    x < 0

 Definition of absolute value

you can see that 

∣x∣
x

= { 1,
−1,

 x > 0
   x < 0

.

So, no matter how close x gets to 0, there will be both positive and negative x-values 
that yield f (x) = 1 or f (x) = −1. Specifically, if δ (the lowercase Greek letter delta) 
is a positive number, then for x-values satisfying the inequality 0 < ∣x∣ < δ, you can 
classify the values of ∣x∣�x as −1 or 1 on the intervals

 (−δ, 0) or (0, δ).

Because ∣x∣�x approaches a different number from the right side of 0 than it approaches 
from the left side, the limit lim

x→0
 (∣x∣�x) does not exist.

 Unbounded Behavior

Discuss the existence of the limit lim
x→0

 
1
x2.

Solution Consider the graph of the function

 f(x) =
1
x2.

In Figure 2.9, you can see that as x approaches 0 from either the right or the left, f (x) 
increases without bound. This means that by choosing x close enough to 0, you can 
force f (x) to be as large as you want. For instance, f (x) will be greater than 100 when 
you choose x within 1

10 of 0. That is,

0 < ∣x∣ <
1

10
  f (x) =

1

x2
> 100.

Similarly, you can force f (x) to be greater than 1,000,000, as shown.

0 < ∣x∣ <
1

1000
  f (x) =

1
x2 > 1,000,000

Because f (x) does not become arbitrarily close to a single number L as x approaches 0, 
you can conclude that the limit does not exist. 

Negative x-values 
yield ∣x∣�x = −1.

Positive x-values  
yield ∣x∣�x = 1.

lim
x→0

 f (x) does not exist.

Figure 2.8

x

| x |
x

−1 1

1

δδ−

f (x) = −1

f (x) = 1

f (x) = 
y

lim
x→0

 f (x) does not exist.

Figure 2.9

x2

1

21−1−2

2

3

4

x

1
f (x) = 

y
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2.2 Finding Limits Graphically and Numerically 75

 Oscillating Behavior

See LarsonCalculus.com for an interactive version of this type of example.

Discuss the existence of the limit lim
x→0

 sin 
1
x
.

Solution Let f (x) = sin(1�x). In Figure 2.10, you can see that as x approaches 0,
f (x) oscillates between −1 and 1. So, the limit does not exist because no matter how 
small you choose δ, it is possible to choose x1 and x2 within δ units of 0 such that 
sin(1�x1) = 1 and sin(1�x2) = −1, as shown in the table.

x
2
π

2
3π

2
5π

2
7π

2
9π

2
11π x → 0

sin 
1
x

1 −1 1 −1 1 −1 Limit does not exist.

 

Common Types of Behavior associated with Nonexistence 
of a Limit

1.  f(x) approaches a different number from the right side of c than it 
approaches from the left side.

2. f(x) increases or decreases without bound as x approaches c.

3. f(x) oscillates between two fixed values as x approaches c.

In addition to f (x) = sin(1�x), there are many other interesting functions that have 
unusual limit behavior. An often cited one is the Dirichlet function

f (x) = {0,

1,

 if x is rational

 if x is irrational
.

Because this function has no limit at any real number c, it is not continuous at any real 
number c. You will study continuity more closely in Section 2.4.

TECHNOLOGY PITFaLL When you use a graphing utility to investigate 
the behavior of a function near the x-value at which you are trying to evaluate a 
limit, remember that you cannot always trust the graphs that graphing utilities draw. 
When you use a graphing utility to graph the function in Example 5 over an interval 
containing 0, you will most likely obtain an incorrect graph such as that shown in 
Figure 2.11. The reason that a graphing utility cannot show the correct graph is that 
the graph has infinitely many oscillations over any interval that contains 0.

0.25

−1.2

−0.25

1.2

 Incorrect graph of f (x) = sin(1�x)
 Figure 2.11

INTERFOTO/Alamy Stock Photo

lim
x→0

 f (x) does not exist.

Figure 2.10

−1

1

1−1
x

f (x) = sin 1
x

y

PETER GUSTAV DIRICHLET
(1805–1859)

In the early development 
of calculus, the definition of 
a function was much more 
restricted than it is today, 
and “functions” such as the 
Dirichlet function would not 
have been considered . The 
modern definition of function  
is attributed to the German 
mathematician  Peter Gustav 
Dirichlet. 
See LarsonCalculus.com to read 
more of this biography.
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A Formal Definition of Limit
Consider again the informal definition of limit. If f (x) becomes  arbitrarily close to a 
single number L as x approaches c from either side, then the limit of f (x) as x approaches c
is L, written as

lim
x→c

 f(x) = L.

At first glance, this definition looks fairly technical. Even so, it is informal because 
exact meanings have not yet been given to the two phrases

“ f (x) becomes arbitrarily close to L”

and

“x approaches c.”

The first person to assign mathematically rigorous meanings to these two phrases was 
Augustin-Louis Cauchy. His ε-δ definition of limit is the standard used today.

In Figure 2.12, let ε (the lowercase Greek letter epsilon) represent a (small) 
positive number. Then the phrase “f (x) becomes arbitrarily close to L” means that f (x) 
lies in the interval (L − ε, L + ε). Using absolute value, you can write this as

∣ f(x) − L∣ < ε.

Similarly, the phrase “x approaches c” means that there exists a positive number δ such 
that x lies in either the interval (c − δ, c) or the interval (c, c + δ). This fact can be 
concisely expressed by the double inequality

0 < ∣x − c∣ < δ.

The first inequality

0 < ∣x − c∣ The distance between x and c is more than 0.

expresses the fact that x ≠ c. The second inequality

∣x − c∣ < δ x is within δ units of c.

says that x is within a distance δ of c.

Definition of Limit

Let f  be a function defined on an open interval containing c (except possibly 
at c), and let L be a real number. The statement

lim
x→c

 f(x) = L

means that for each ε > 0 there exists a δ > 0 such that if

0 < ∣x − c∣ < δ

then

∣ f(x) − L∣ < ε.

Some functions do not have limits as x approaches c, but those that do cannot have 
two different limits as x approaches c. That is, if the limit of a function exists, then the 
limit is unique (see Exercise 83).

 FOR FURTHER INFORMATION
For more on the introduction of 
rigor to  calculus, see “Who Gave 
You the Epsilon? Cauchy and the 
Origins of Rigorous Calculus” 
by Judith V. Grabiner in The 
American Mathematical Monthly. 
To view this article, go to 
MathArticles.com.

REmaRk Throughout this text, the expression

lim
x→c

 f(x) = L

implies two statements—the limit exists and the limit is L.

The ε-δ definition of the limit of f (x) 
as x approaches c
Figure 2.12

c + 

c − 
c

L

L + 

L − 

(c, L)

ε

ε

δ

δ
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 2.2 Finding Limits Graphically and Numerically 77

The next three examples should help you develop a better understanding of the  
ε-δ definition of limit.

 Finding a δ for a Given ε

Given the limit

lim
x→3

 (2x − 5) = 1

find δ such that

∣(2x − 5) − 1∣ < 0.01

whenever

0 < ∣x − 3∣ < δ.

Solution In this problem, you are working with a given value of ε—namely, 
ε = 0.01. To find an appropriate δ, try to establish a connection between the absolute 
values

∣(2x − 5) − 1∣ and ∣x − 3∣.
Notice that

∣(2x − 5) − 1∣ = ∣2x − 6∣ = 2∣x − 3∣.
Because the inequality ∣(2x − 5) − 1∣ < 0.01 is equivalent to 2∣x − 3∣ < 0.01,
you can choose

δ = 1
2(0.01) = 0.005.

This choice works because

0 < ∣x − 3∣ < 0.005

implies that

∣(2x − 5) − 1∣ = 2∣x − 3∣ < 2(0.005) = 0.01.

As you can see in Figure 2.13, for x-values within 0.005 of 3 (x ≠ 3), the values of 
f (x) are within 0.01 of 1.

x

y

2

1

−1

−2

1 2 3 4

f (x) = 2x − 5

2.995

3.005
3

1.01

0.99
1

 The limit of f(x) as x approaches 3 is 1.
 Figure 2.13 

REmaRk In Example 6, 
note that 0.005 is the largest 
value of δ that will guarantee

∣(2x − 5) − 1∣ < 0.01

whenever

0 < ∣x − 3∣ < δ.

Any smaller positive value  
of δ would also work.
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In Example 6, you found a δ-value for a given ε. This does not prove the existence 
of the limit. To do that, you must prove that you can find a δ for any ε, as shown in 
the next example.

 Using the ε-δ Definition of Limit 

Use the ε-δ definition of limit to prove that

lim
x→2

 (3x − 2) = 4.

Solution You must show that for each ε > 0, there exists a δ > 0 such that

∣(3x − 2) − 4∣ < ε

whenever

0 < ∣x − 2∣ < δ.

Because your choice of δ depends on ε, you need to establish a connection between the 
absolute values ∣(3x − 2) − 4∣ and ∣x − 2∣.

∣(3x − 2) − 4∣ = ∣3x − 6∣ = 3∣x − 2∣
So, for a given ε > 0, you can choose δ = ε�3. This choice works because

0 < ∣x − 2∣ < δ =
ε
3

implies that

∣(3x − 2) − 4∣ = 3∣x − 2∣ < 3(ε
3) = ε.

As you can see in Figure 2.14, for x-values within δ of 2 (x ≠ 2), the values of  f(x) are 
within ε of 4.

 Using the ε-δ Definition of Limit

Use the ε-δ definition of limit to prove that lim
x→2

 x2 = 4.

Solution You must show that for each ε > 0, there exists a δ > 0 such that

∣x2 − 4∣ < ε

whenever

0 < ∣x − 2∣ < δ.

To find an appropriate δ, begin by writing ∣x2 − 4∣ = ∣x − 2∣∣x + 2∣. You are 
interested in values of x close to 2, so choose x in the interval (1, 3). To satisfy this 
restriction, let δ < 1. Furthermore, for all x in the interval (1, 3), x + 2 < 5 and thus 

∣x + 2∣ < 5. So, letting δ be the minimum of ε�5 and 1, it follows that, whenever 
0 < ∣x − 2∣ < δ, you have

∣x2 − 4∣ = ∣x − 2∣∣x + 2∣ < (ε
5)(5) = ε.

As you can see in Figure 2.15, for x-values within δ of 2 (x ≠ 2), the values of  f(x) are
within ε of 4. 

Throughout this chapter, you will use the ε-δ definition of limit primarily to prove 
theorems about limits and to establish the existence or nonexistence of particular types 
of limits. For finding limits, you will learn techniques that are easier to use than the ε-δ 
definition of limit.

The limit of f (x) as x approaches 2 is 4.
Figure 2.14

x

y

2

3

4

1

1 2 3 4

δ

δ

ε

ε

f (x) = 3x − 2

2 + 
2
2 − 

4 + 

4

4 − 

The limit of f (x) as x approaches 2 is 4.
Figure 2.15

f (x) = x2

(2 +   )2

(2 −   )2

2 +

2 −

4 −

4 +

2

4

δ

δ

δ

δ

ε

ε
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 2.2 Finding Limits Graphically and Numerically 79

2.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Describing Notation Write a brief description of 

the meaning of the notation lim
x→8

 f (x) = 25.

2.  Limits That Fail to Exist Identify three types of 
behavior associated with the nonexistence of a limit. 
Illustrate each type with a graph of a function.

3.  Formal Definition of Limit Given the limit

 lim
x→2

 (2x + 1) = 5

  use a sketch to show the meaning of the phrase  
“ 0 < ∣x − 2∣ < 0.25 implies ∣(2x + 1) − 5∣ < 0.5.”

4.  Functions and Limits Is the limit of f (x) as x 
approaches c always equal to f (c)? Why or why not?

 Estimating a Limit Numerically In Exercises 
5–10, complete the table and use the result to 
estimate the limit. Use a graphing utility to graph 
the function to confirm your result.

5. lim
x→4

 
x − 4

x 2 − 5x + 4

 x 3.9 3.99 3.999 4 4.001 4.01 4.1

f (x) ?

6. lim
x→0

 
√x + 1 − 1

x

 x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

7. lim
x→0

 
sin x

x

 x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

8. lim
x→0

 
cos x − 1

x

 x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

9. lim
x→0

 
ex − 1

x

 x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

10. lim
x→0

 
ln(x + 1)

x

 x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

Estimating a Limit Numerically In Exercises 11–20, 
create a table of values for the function and use the result to 
estimate the limit. Use a graphing utility to graph the function 
to confirm your result.

11. lim
x→1

 
x − 2

x2 + x − 6
 12. lim

x→−4
 

x + 4
x2 + 9x + 20

13. lim
x→1

 
x4 − 1
x6 − 1

 14. lim
x→−3

 
x3 + 27
x + 3

15. lim
x→−6

 
√10 − x − 4

x + 6
 16. lim

x→2
 
[x�(x + 1)] − (2�3)

x − 2

17. lim
x→0

 
sin 2x

x
 18. lim

x→0
 

tan x
tan 2x

19. lim
x→2

 
ln x − ln 2

x − 2
 20. lim

x→1
 
1 − x
e − ex

Limits That Fail to Exist In Exercises 21 and 22, create 
a table of values for the function and use the result to explain 
why the limit does not exist.

21. lim
x→0

 
4

1 + e1�x 22. lim
x→0

 
3∣x∣
x2

 Finding a Limit Graphically In Exercises 
23–30, use the graph to find the limit (if it exists). 
If the limit does not exist, explain why.

23. lim
x→3

 (4 − x) 24. lim
x→0

 sec x

 

x
1 2 3 4

4

3

2

1

y   

x

− π
2

π
2

2

y

25. lim
x→2

 f (x) 26. lim
x→1

 f (x)

 f (x) = {4 − x,
0,

   x ≠ 2
   x = 2

  f (x) = {x2 + 3,
2,

   x ≠ 1
   x = 1

 

x
1 2 3 4

4

3

2

1

y   

−2 2 4

2

6

x

y
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27. lim
x→2

 
∣x − 2∣
x − 2

 28. lim
x→0

 
4

2 + e1�x

 

x

y

3 4 5

−2

−3

1

2

3

  

3

1

−2

y

x
21−2 −1

29. lim
x→0

 cos 
1
x
 30. lim

x→π�2
 tan x

 

x
−1

−1

1

1

y   

x

2

1

π− π
2

3

y

π
2

π
2

 Graphical Reasoning In Exercises 31 and 32, 
use the graph of the function f  to decide whether 
the value of the given quantity exists. If it does, find 
it. If not, explain why.

31. (a) f (1) y

x
1−1 2 3 4 5 6

1
2
3

5
6 (b) lim

x→1
 f (x)

 (c) f (4)
 (d) lim

x→4
 f (x)

32. (a) f (−2) y

x
1−1

−2

2 3 4 5

2

3

4

−2

 (b) lim
x→−2

 f (x)

 (c) f (0)
 (d) lim

x→0
 f (x)

 (e) f (2)
 (f ) lim

x→2
 f (x)

 (g) f (4)
 (h) lim

x→4
 f (x)

 Limits of a Piecewise Function In Exercises 
33 and 34, sketch the graph of f. Then identify the 
values of c for which lim

x→c
 f (x) exists.

33. f (x) = {x2,
8 − 2x,
4,

x ≤ 2
2 < x < 4
x ≥ 4

34. f (x) = {sin x,
1 − cos x,
cos x,

x < 0
0 ≤ x ≤ π
x > π

Sketching a Graph In Exercises 35 and 36, sketch a graph 
of a function f  that satisfies the given values. (There are many 
correct answers.)

35. f (0) is undefined. 36. f (−2) = 0

 lim
x→0

 f (x) = 4  f (2) = 0

 f (2) = 6  lim
x→−2

 f (x) = 0

 lim
x→2

 f (x) = 3  lim
x→2

 f (x) does not exist.

37.  Finding a δ for a Given ε The graph of f (x) = x + 1 is 
shown in the figure. Find δ such that if 0 < ∣x − 2∣ < δ, then 

∣ f (x) − 3∣ < 0.4.

y

x
2.5 3.02.01.51.00.5

5

4

3

2

3.4

2.6

f

38. Finding a δ for a Given ε The graph of

 f (x) =
1

x − 1

  is shown in the figure. Find δ such that if 0 < ∣x − 2∣ < δ, 
then ∣ f (x) − 1∣ < 0.01.

y

x
4321

2.0

1.5

1.0

0.5

1.01

0.99
1.00

2

f

39. Finding a δ for a Given ε The graph of

 f (x) = 2 −
1
x

  is shown in the figure. Find δ such that if 0 < ∣x − 1∣ < δ, 
then ∣ f (x) − 1∣ < 0.1.

x
1 2

1

0.9
1

1.1

2

f

y

40.  Finding a δ for a Given ε Repeat Exercise 39 for 
ε = 0.05, 0.01, and 0.005. What happens to the value of δ as 
the value of ε gets smaller?
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 Finding a δ for a Given ε In Exercises 
41–46, find the limit L. Then find δ such that 

∣ f (x) − L∣ < ε whenever 0 < ∣x − c∣ < δ for (a) 
ε = 0.01 and (b) ε = 0.005.  

41. lim
x→2

 (3x + 2) 42. lim
x→6

 (6 −
x
3)

43. lim
x→2

 (x 2 − 3) 44. lim
x→4

 (x 2 + 6)

45. lim
x→4

 (x2 − x) 46. lim
x→3

 x2

 Using the ε-δ Definition of Limit In Exercises 
47–58, find the limit L. Then use the ε-δ definition 
to prove that the limit is L.

47. lim
x→4

 (x + 2) 48. lim
x→−2

 (4x + 5)

49. lim
x→−4

 (1
2 x − 1) 50. lim

x→3
 (3

4 x + 1)
51. lim

x→6
 3 52. lim

x→2
 (−1)

53. lim
x→0 

 3√x 54. lim
x→4

 √x

55. lim
x→−5

 ∣x − 5∣ 56. lim
x→3

 ∣x − 3∣
57. lim

x→1
 (x 2 + 1) 58. lim

x→−4
 (x 2 + 4x)

59.  Finding a Limit What is the limit of f (x) = 4 as x 
approaches π?

60.  Finding a Limit What is the limit of g(x) = x as x 
approaches π?

Writing In Exercises 61 and 62, use a graphing utility to 
graph the function and estimate the limit (if it exists). What is 
the domain of the function? Can you detect a possible error in 
determining the domain of a function solely by analyzing the 
graph generated by a graphing utility? Write a short paragraph 
about the importance of examining a function analytically as 
well as graphically.

61. f (x) =
√x + 5 − 3

x − 4
 62. f (x) =

ex�2 − 1
x

 lim
x→4

 f (x)  lim
x→0

 f (x)

63.  modeling Data For a long-distance phone call, a hotel 
charges $9.99 for the first minute and $0.79 for each additional 
minute or fraction thereof. A formula for the cost is given by

 C(t) = 9.99 − 0.79⟨1 − t⟩, t > 0

 where t is the time in minutes.

  (Note: ⟨x⟩ = greatest integer n such that n ≤ x. For example, 
⟨3.2⟩ = 3 and ⟨−1.6⟩ = −2.)

 (a) Evaluate C(10.75). What does C(10.75) represent?

 (b)  Use a graphing utility to graph the cost function for 
0 < t ≤ 6. Does the limit of C(t) as t approaches 3 exist? 
Explain.

64. modeling Data Repeat Exercise 63 for

C(t) = 5.79 − 0.99⟨1 − t⟩, t > 0.

eXpLoRInG ConCeptS
65.  Finding δ When using the definition of limit to prove 

that L is the limit of f (x) as x approaches c, you find the 
largest satisfactory value of δ. Why would any smaller 
positive value of δ also work?

66.  Using the Definition of Limit The definition of 
limit on page 76 requires that f  is a function defined on 
an open interval containing c, except  possibly at c. Why 
is this requirement necessary?

67.  Comparing Functions and Limits If f (2) = 4, 
can you conclude anything about the limit of f (x) as x 
approaches 2? Explain your reasoning.

68.  Comparing Functions and Limits If the limit of 
f (x) as x approaches 2 is 4, can you conclude anything 
about f (2)? Explain your reasoning.

69.  Jewelry A jeweler resizes a ring so that its inner 
circumference is 6 centimeters.

 (a) What is the radius of the ring?

 (b)  The inner circumference of the ring varies between 
5.5 centimeters and 6.5 centimeters. How does the radius 
vary?

 (c)  Use the ε-δ definition of limit to describe this situation. 
Identify ε and δ.

71. Estimating a Limit Consider the function

f (x) = (1 + x)1�x.

 Estimate

lim
x→0

 (1 + x)1�x

 by evaluating f  at x-values near 0. Sketch the graph of f.

A sporting goods manufacturer designs a golf ball having a 
volume of 2.48 cubic inches.

(a)  What is the radius 
of the golf ball?

(b)  The volume of the 
golf ball varies 
between 2.45 cubic 
inches and 2.51 cubic 
inches. How does the 
radius vary?

(c)  Use the ε-δ definition of limit to describe this situation. 
Identify ε and δ.

70. Sports

The symbol  indicates an exercise in which you are instructed to use graphing technology or a symbolic 
computer algebra system. The solutions of other exercises may also be facilitated by the use of appropriate 
technology.

rayjunk/Shutterstock.com
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72. Estimating a Limit Consider the function

 f (x) = ∣x + 1∣ − ∣x − 1∣
x

.

 Estimate

 lim
x→0

 
∣x + 1∣ − ∣x − 1∣

x

 by evaluating f  at x-values near 0. Sketch the graph of f.

73. Graphical Reasoning The statement

 lim
x→2

 
x 2 − 4
x − 2

= 4

  means that for each ε > 0 there corresponds a δ > 0 such that 
if 0 < ∣x − 2∣ < δ, then

 ∣x2 − 4

x − 2
− 4∣ < ε.

 If ε = 0.001, then

 ∣x2 − 4

x − 2
− 4∣ < 0.001.

  Use a graphing utility to graph each side of this inequality. Use 
the zoom feature to find an interval (2 − δ, 2 + δ) such that 
the inequality is true.

 74.  HOW DO YOU SEE IT? Use the graph of f
to identify the values of c for which lim

x→c
 f (x) exists.

(a) y

x
2 4−2

−2

4

6

(b) y

x
2−4 4 6

2

4

6

 74.  

True or False? In Exercises 75–78, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

75.  If f  is undefined at x = c, then the limit of f (x) as x approaches 
c does not exist.

76.  If the limit of f (x) as x approaches c is 0, then there must exist 
a number k such that f (k) < 0.001.

77. If f (c) = L, then lim
x→c

 f (x) = L.

78. If lim
x→c

 f (x) = L, then f (c) = L.

Determining a Limit In Exercises 79 and 80, consider the 
function f (x) = √x.

79. Is lim
x→0.25

 √x = 0.5 a true statement? Explain.

80. Is lim
x→0

 √x = 0 a true statement? Explain.

81. Evaluating Limits Use a graphing utility to evaluate

 lim
x→0

 
sin nx

x

 for several values of n. What do you notice?

82. Evaluating Limits Use a graphing utility to evaluate

 lim
x→0

 
tan nx

x

 for several values of n. What do you notice?

83.  Proof Prove that if the limit of f (x) as x approaches c exists, 
then the limit must be unique. [Hint: Let lim

x→c
 f (x) = L1 and 

lim
x→c

 f (x) = L 2 and prove that L1 = L2.]

84.  Proof Consider the line f (x) = mx + b, where m ≠ 0. Use 
the ε-δ definition of limit to prove that lim

x→c
 f (x) = mc + b.

85. Proof Prove that

 lim
x→c

 f (x) = L

 is equivalent to

 lim
x→c

 [ f (x) − L] = 0.

86. Proof

 (a) Given that

  lim
x→0

 (3x + 1)(3x − 1)x2 + 0.01 = 0.01

   prove that there exists an open interval (a, b) containing 0 
such that (3x + 1)(3x − 1)x2 + 0.01 > 0 for all x ≠ 0 in 
(a, b).

 (b)  Given that lim
x→c

 g(x) = L, where L > 0, prove that there

   exists an open interval (a, b) containing c such that 
g(x) > 0 for all x ≠ c in (a, b).

pUtnAM eXAM ChALLenGe
87.  Inscribe a rectangle of base b and height h in a circle of 

radius one, and inscribe an isosceles triangle in a region 
of the circle cut off by one base of the rectangle (with 
that side as the base of the triangle). For what value of h 
do the rectangle and triangle have the same area?

h

b

88.  A right circular cone has base of radius 1 and height 3. 
A cube is inscribed in the cone so that one face of the 
cube is contained in the base of the cone. What is the 
side-length of the cube?

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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2.3 Evaluating Limits Analytically 83

2.3 evaluating limits analytically

 Evaluate a limit using properties of limits.
 Develop and use a strategy for finding limits.
 Evaluate a limit using the dividing out technique.
 Evaluate a limit using the rationalizing technique.
 Evaluate a limit using the Squeeze Theorem.

Properties of Limits
In Section 2.2, you learned that the limit of f(x) as x approaches c does not depend on 
the value of f  at x = c. It may happen, however, that the limit is precisely f(c). In such 
cases, you can evaluate the limit by direct substitution. That is,

lim
x→c

 f(x) = f(c). Substitute c for x.

Such well-behaved functions are continuous at c. You will examine this concept more 
closely in Section 2.4.

TheOrem 2.1 Some Basic limits

Let b and c be real numbers, and let n be a positive integer.

1. lim
x→c

 b = b  2. lim
x→c

 x = c  3. lim
x→c

 xn = cn

proof The proofs of Properties 1 and 3 of Theorem 2.1 are left as exercises (see 
Exercises 111 and 112). To prove Property 2, you need to show that for each ε > 0
there exists a δ > 0 such that ∣x − c∣ < ε whenever 0 < ∣x − c∣ < δ. To do this, 
choose δ = ε. The second inequality then implies the first, as shown in Figure 2.16.
 

 evaluating Basic limits

a. lim
x→2

 3 = 3  b. lim
x→−4

 x = −4  c. lim
x→2

 x2 = 22 = 4 

TheOrem 2.2 properties of limits

Let b and c be real numbers, let n be a positive integer, and let f  and g be 
functions with the limits

lim
x→c

 f (x) = L and lim
x→c

 g(x) = K.

1. Scalar multiple: lim
x→c

 [b f(x)] = bL

2. Sum or difference: lim
x→c

 [ f(x) ± g(x)] = L ± K

3. Product: lim
x→c

 [ f(x)g(x)] = LK

4. Quotient: lim
x→c

 
f(x)
g(x) =

L
K

, K ≠ 0

5. Power: lim
x→c

 [ f(x)]n = Ln

The proof of Property 1 is left as an exercise (see Exercise 113).
The proofs of the other properties are given in Appendix A.

Figure 2.16

f (x) = x

x

=

=

c +

c +

c −

c −

c

ε

ε

δ δ

δ

δ

ε

ε

f (c) = c

y

The symbol  indicates that a video of this proof is available at LarsonCalculus.com.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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 The limit of a polynomial

Find the limit: lim
x→2

 (4x2 + 3).

Solution

 lim
x→2

 (4x2 + 3) = lim
x→2

 4x2 + lim
x→2

 3 Property 2, Theorem 2.2

 = 4 (lim
x→2

 x2) + lim
x→2

 3 Property 1, Theorem 2.2

 = 4(22) + 3 Properties 1 and 3, Theorem 2.1

 = 19 Simplify.

This limit is reinforced by the graph of f (x) = 4x2 + 3 shown in Figure 2.17. 

In Example 2, note that the limit (as x approaches 2) of the polynomial function  
p(x) = 4x2 + 3 is simply the value of p at x = 2.

lim
x→2

 p(x) = p(2) = 4(22) + 3 = 19

This direct substitution property is valid for all polynomial and rational functions with 
nonzero denominators.

TheOrem 2.3 limits of polynomial and rational functions

If p is a polynomial function and c is a real number, then

lim
x→c

 p(x) = p(c).

If r is a rational function given by r(x) = p(x)�q(x) and c is a real number such 
that q(c) ≠ 0, then

lim
x→c

 r(x) = r(c) =
p(c)
q(c).

 The limit of a rational function

Find the limit: lim
x→1

 
x2 + x + 2

x + 1
.

Solution Because the denominator is not 0 when x = 1, you can apply Theorem 2.3
to obtain

lim
x→1

 
x2 + x + 2

x + 1
=

12 + 1 + 2
1 + 1

=
4
2

= 2. See Figure 2.18. 

Polynomial functions and rational functions are two of the three basic types of 
algebraic functions. The next theorem deals with the limit of the third type of algebraic 
function—one that involves a radical.

TheOrem 2.4 The limit of a function involving a radical

Let n be a positive integer. The limit below is valid for all c when n is odd, 
and is valid for c > 0 when n is even.

lim
x→c

 n√x = n√c

A proof of this theorem is given in Appendix A.

The limit of f (x) as x approaches 2 is 19.
Figure 2.17

x

f(x) = 4x2 + 3

y

−2−4−6−8−10 2 4 6 8 10

2

(2, 19)

4

The limit of f (x) as x approaches 1 is 2.
Figure 2.18

x

f(x) = x
2 + x + 2
x + 1

y

(1, 2)

1 2 3 4

1

2

3

4
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The next theorem greatly expands your ability to evaluate limits because it shows 
how to analyze the limit of a composite function.

TheOrem 2.5 The limit of a composite function

If f  and g are functions such that lim
x→c

 g(x) = L and lim
x→L

 f(x) = f(L), then

lim
x→c

 f(g(x)) = f( lim
x→c

 g(x)) = f(L).

A proof of this theorem is given in Appendix A.

 The limit of a composite function

See LarsonCalculus.com for an interactive version of this type of example.

a. Because

lim
x→0

 (x2 + 4) = 02 + 4 = 4 and lim
x→4

 √x = √4 = 2

 you can conclude that

lim
x→0

 √x2 + 4 = √4 = 2.

b. Because

lim
x→3

 (2x2 − 10) = 2(32) − 10 = 8 and lim
x→8

 3√x = 3√8 = 2

 you can conclude that

lim
x→3

 3√2x2 − 10 = 3√8 = 2. 

You have seen that the limits of many algebraic functions can be evaluated by 
direct substitution. The basic transcendental functions (trigonometric, exponential, and 
logarithmic) also possess this desirable quality, as shown in the next theorem (presented 
without proof).

TheOrem 2.6 limits of Transcendental functions

Let c be a real number in the domain of the given transcendental function.

1. lim
x→c

 sin x = sin c 2. lim
x→c

 cos x = cos c 3. lim
x→c

 tan x = tan c

4. lim
x→c

 cot x = cot c 5. lim
x→c

 sec x = sec c 6. lim
x→c

 csc x = csc c

7. lim
x→c

 ax = ac, a > 0 8. lim
x→c

 ln x = ln c

 limits of Transcendental functions

a. lim
x→0

 tan x = tan(0) = 0

b. lim
x→0

 sin2 x = lim
x→0

 (sin x)2 = 02 = 0

c. lim
x→−1

 xex = ( lim
x→−1

 x)( lim
x→−1

 ex) = (−1)(e−1) = −e−1

d. lim
x→e

 ln x3 = lim
x→e

 3 ln x = 3 ln(e) = 3(1) = 3 

exploration
Your goal in this section 
is to become familiar with 
limits that can be evaluated 
by direct substitution. In the 
following list of elementary 
functions, what are the 
values of c for which

lim
x→c

 f (x) = f (c)?

Polynomial function:

f (x) = anxn + .  .  . + a1x + a0

Rational function (p and q 
are polynomials):

f (x) =
p(x)
q(x)

Trigonometric functions:

f (x) = sin x, f (x) = cos x

f (x) = tan x, f (x) = cot x

f (x) = sec x, f (x) = csc x

Exponential functions:

f (x) = ax, f (x) = ex

Natural logarithmic function:

f (x) = ln x
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A Strategy for Finding Limits
On the previous three pages, you studied several types of functions whose limits can be 
evaluated by direct substitution. This knowledge, together with the next theorem, can 
be used to develop a strategy for finding limits.

TheOrem 2.7 functions That agree at all but One point

Let c be a real number, and let f(x) = g(x) for all x ≠ c in an open interval 
containing c. If the limit of g(x) as x approaches c exists, then the limit of f(x) 
also exists and

lim
x→c

 f(x) = lim
x→c

 g(x).

A proof of this theorem is given in Appendix A.

 finding the limit of a function

Find the limit.

lim
x→1

 
x3 − 1
x − 1

Solution Let f(x) = (x3 − 1)�(x − 1). By factoring and dividing out common 
factors, you can rewrite f  as

f(x) =
(x − 1)(x2 + x + 1)

(x − 1) = x2 + x + 1 = g(x), x ≠ 1.

So, for all x-values other than x = 1, the functions f  and g agree, as shown in Figure 2.19. 
Because lim

x→1
 g(x) exists, you can apply Theorem 2.7 to conclude that f  and g have the

same limit at x = 1.

 lim
x→1

 
x3 − 1
x − 1

= lim
x→1

 
(x − 1)(x2 + x + 1)

x − 1
 Factor.

 = lim
x→1

 
(x − 1)(x2 + x + 1)

(x − 1)  Divide out common factor.

 = lim
x→1

(x2 + x + 1) Apply Theorem 2.7.

 = 12 + 1 + 1 Use direct substitution.

 = 3 Simplify. 

a Strategy for finding limits

1.  Learn to recognize which limits can be evaluated by direct substitution.
(These limits are listed in Theorems 2.1 through 2.6.)

2.  When the limit of f (x) as x approaches c cannot be evaluated by direct
substitution, try to find a function g that agrees with f  for all x other than
x = c. [Choose g such that the limit of g(x) can be evaluated by direct
substitution.] Then apply Theorem 2.7 to conclude analytically that

lim
x→c

 f (x) = lim
x→c

 g(x) = g(c).

3.  Use a graph or table to reinforce your conclusion.

remark When applying 
this strategy for finding a limit, 
remember that some functions 
do not have a limit (as x 
approaches c). For instance, 
the limit below does not exist.

lim
x→1

 
x3 + 1
x − 1

f  and g agree at all but one point.
Figure 2.19

x
−2 −1 1

2

3

y
f (x) = x3 − 1

x − 1

x
−2 −1 1

2

3

g(x) = x2 + x + 1

y
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Dividing Out Technique
Another procedure for finding a limit analytically is the dividing out technique. This 
technique involves dividing out common factors, as shown in Example 7.

 Dividing Out Technique

See LarsonCalculus.com for an interactive version of this type of example.

Find the limit: lim
x→−3

 
x2 + x − 6

x + 3
.

Solution Although you are taking the limit of a rational function, you cannot apply 
Theorem 2.3 because the limit of the denominator is 0.

 lim
x→−3

 (x2 + x − 6) = 0

lim
x→−3

 
x2 + x − 6

x + 3
 Direct substitution fails.

 lim
x→−3

 (x + 3) = 0

Because the limit of the numerator is also 0, the numerator and denominator have a 
common factor of (x + 3). So, for all x ≠ −3, you can divide out this factor to obtain 

f(x) =
x2 + x − 6

x + 3
=

(x + 3)(x − 2)
x + 3

= x − 2 = g(x), x ≠ −3.

Using Theorem 2.7, it follows that

 lim
x→−3

 
x2 + x − 6

x + 3
= lim

x→−3
 (x − 2) Apply Theorem 2.7.

 = −5. Use direct substitution.

This result is shown graphically in Figure 2.20. Note that the graph of the function f  
coincides with the graph of the function g(x) = x − 2, except that the graph of f  has
a hole at the point (−3, −5). 

In Example 7, direct substitution produced the meaningless fractional form 0�0. 
An expression such as 0�0 is called an indeterminate form because you cannot (from 
the form alone) determine the limit. When you try to evaluate a limit and encounter this 
form, remember that you must rewrite the fraction so that the new denominator does not 
have 0 as its limit. One way to do this is to divide out common factors. Another way is 
to use the rationalizing technique shown on the next page.

TechnOlOgy piTfall A graphing utility can give misleading information 
about the graph of a function. For instance, try graphing the function from  
Example 7

f(x) =
x2 + x − 6

x + 3

on a graphing utility. On some graphing utilities, 
the graph may appear to be defined at every 
real number, as shown in the figure at the right. 
However, because f  is undefined when x = −3, 
you know that the graph of f  has a hole at 
x = −3. You can verify this on a graphing 
utility using the trace or table feature. Misleading graph of f

6

−9

−12

3

f is unde�ned
when x = −3.

remark In the solution  
to Example 7, be sure you see 
the usefulness of the Factor 
Theorem of Algebra. This 
theorem  states that if c is a  
zero of a polynomial function, 
then (x − c) is a factor of the 
polynomial. So, when you  
apply direct substitution to a 
rational function and obtain

r (c) =
p(c)
q(c) =

0
0

you can conclude that (x − c) 
must be a common factor of 
both p(x) and q(x).

f  is undefined when x = −3. The limit 
of f (x) as x approaches −3 is −5.
Figure 2.20

21

−1

−1 −2

−2

−4

−3

−5

x

(−3, −5)

f (x) = x2 + x − 6
x + 3

y
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Rationalizing Technique
Another way to find a limit analytically is the rationalizing technique, which involves 
rationalizing either the numerator or denominator of a fractional expression. Recall 
that rationalizing the numerator (denominator) means multiplying the numerator 
and denominator by the conjugate of the numerator (denominator). For instance, to 
rationalize the numerator of

√x + 4
x

multiply the numerator and denominator by the conjugate of √x + 4, which is

√x − 4.

 rationalizing Technique

Find the limit: lim
x→0

 
√x + 1 − 1

x
.

Solution By direct substitution, you obtain the indeterminate form 0�0.

 lim
x→0

 (√x + 1 − 1) = 0

lim
x→0

 
√x + 1 − 1

x
 Direct substitution fails.

 lim
x→0

 x = 0

In this case, you can rewrite the fraction by rationalizing the numerator.

 
√x + 1 − 1

x
= (√x + 1 − 1

x )(√x + 1 + 1

√x + 1 + 1)
 =

(x + 1) − 1

x(√x + 1 + 1)
 =

x

x(√x + 1 + 1)
 =

1

√x + 1 + 1
, x ≠ 0

Now, using Theorem 2.7, you can evaluate the limit as shown.

 lim
x→0

 
√x + 1 − 1

x
= lim

x→0
 

1

√x + 1 + 1

 =
1

1 + 1

 =
1
2

A table or a graph can reinforce your conclusion that the limit is 12. (See Figure 2.21.)

 
x approaches 0 from the left. x approaches 0 from the right. 

x −0.25 −0.1 −0.01 −0.001 0 0.001 0.01 0.1 0.25

f (x) 0.5359 0.5132 0.5013 0.5001 ? 0.4999 0.4988 0.4881 0.4721

 f (x) approaches 0.5. f (x) approaches 0.5.

 

remark The rationalizing 
technique for evaluating limits 
is based on multiplication by  
a convenient form of 1. In 
Example 8, the convenient  
form is

1 =
√x + 1 + 1

√x + 1 + 1
.

The limit of f (x) as x approaches 0 is 12.  
Figure 2.21

x
−1

−1

1

1
f (x) = x  + 1 − 1

x

y
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The Squeeze Theorem
The next theorem concerns the limit of a function that is squeezed between two other 
functions, each of which has the same limit at a given x-value, as shown in Figure 2.22.

TheOrem 2.8 The Squeeze Theorem

If h(x) ≤ f(x) ≤ g(x) for all x in an open interval containing c, except possibly 
at c itself, and if

lim
x→c

 h(x) = L = lim
x→c

 g(x)

then lim
x→c

 f(x) exists and is equal to L.

A proof of this theorem is given in Appendix A.

You can see the usefulness of the Squeeze Theorem (also called the Sandwich 
Theorem or the Pinching Theorem) in the proof of Theorem 2.9.

TheOrem 2.9 Three Special limits

1. lim
x→0

 
sin x

x
= 1   2. lim

x→0
 
1 − cos x

x
= 0   3. lim

x→0
 (1 + x)1�x = e

proof The proof of the second limit is left as an exercise (see Exercise 125). Recall 
from Section 1.6 that the third limit is actually the definition of the number e. To avoid 
the confusion of two different uses of x, the proof of the first limit is presented using the 
variable θ, where θ is an acute positive angle measured in radians. Figure 2.23 shows 
a circular sector that is squeezed between two triangles.

θ

θ

tan

1

   

θ

1

   

θ
θ

1

sin

 Area of triangle ≥  Area of sector ≥  Area of triangle

 
tan θ

2
 ≥  

θ
2

 ≥  
sin θ

2

Multiplying each expression by 2�sin θ produces

1
cos θ ≥

θ
sin θ ≥ 1

and taking reciprocals and reversing the inequalities yields

cos θ ≤
sin θ
θ ≤ 1.

Because cos θ = cos(−θ) and (sin θ)�θ = [sin(−θ)]�(−θ), you can conclude that this 
inequality is valid for all nonzero θ in the open interval (−π�2, π�2). Finally, because 
lim
θ→0

 cos θ = 1 and lim
θ→0

 1 = 1, you can apply the Squeeze Theorem to conclude that

lim
θ→0

 
sin θ
θ = 1.  

The Squeeze Theorem
Figure 2.22

y

x

g
g

f

h

c

f

h

f lies in here.

h(x) ≤ f (x) ≤ g(x)

A circular sector is used to prove 
Theorem 2.9.
Figure 2.23

x

1

θ

θ
θ θ

(1, 0)

(1, tan   )

(cos   , sin   )

y

remark The third limit 
of Theorem 2.9 will be used in 
Section 3.2 in the development 
of the formula for the derivative 
of the exponential function 
f (x) = ex.
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 a limit involving a Trigonometric function

Find the limit: lim
x→0

 
tan x

x
.

Solution Direct substitution yields the indeterminate form 0�0. To solve this  
problem, you can write tan x as (sin x)�(cos x) and obtain

lim
x→0

 
tan x

x
= lim

x→0
 (sin x

x )( 1
cos x).

Now, because

lim
x→0

 
sin x

x
= 1

and

lim
x→0

 
1

cos x
= 1

you can obtain

 lim
x→0

 
tan x

x
= (lim

x→0
 
sin x

x )(lim
x→0

 
1

cos x)
 = (1)(1)
 = 1.

(See Figure 2.24.)

 a limit involving a Trigonometric function

Find the limit: lim
x→0

 
sin 4x

x
.

Solution Direct substitution yields the indeterminate form 0�0. To solve this 
problem, you can rewrite the limit as

lim
x→0

 
sin 4x

x
= 4(lim

x→0
 
sin 4x

4x ). Multiply and divide by 4.

Now, by letting y = 4x and observing that x approaches 0 if and only if y approaches 
0, you can write

 lim
x→0

 
sin 4x

x
= 4(lim

x→0
 
sin 4x

4x )
  = 4(lim

y→0
 
sin y

y ) Let y = 4x.  

 = 4(1) Apply Theorem 2.9(1).

 = 4.
(See Figure 2.25.) 

TechnOlOgy Use a graphing utility to confirm the limits in the examples and 
in the exercise set. For instance, Figures 2.24 and 2.25 show the graphs of

f(x) =
tan x

x
 and g(x) =

sin 4x
x

.

Note that the first graph appears to contain the point (0, 1) and the second graph 
appears to contain the point (0, 4), which lends support to the conclusions obtained 
in Examples 9 and 10.

remark Be sure you 
understand the mathematical 
conventions regarding parentheses 
and trigonometric functions. For 
instance, in Example 10, sin 4x 
means sin(4x).

The limit of f (x) as x approaches 0 is 1.
Figure 2.24

−
2
π

2
π

−2

4
f (x) = tan x

x

The limit of g(x) as x approaches 0  
is 4.
Figure 2.25

−
2
π

2
π

−2

6
g(x) = sin 4x

x
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2.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  polynomial function Describe how to find the limit 

of a polynomial function p(x) as x approaches c.

2.  indeterminate form What is meant by an 
indeterminate form?

3.  Squeeze Theorem In your own words, explain the 
Squeeze Theorem.

4.  Special limits List the three special limits.

 finding a limit In Exercises 5–18, find the 
limit.

 5. lim
x→−3

 (2x + 5)  6. lim
x→9

 (4x − 1)

 7. lim
x→−3

 (x2 + 3x)  8. lim
x→1

 (2x3 − 6x + 5)

 9. lim
x→3

 √x + 8 10. lim
x→2

 3√12x + 3

11. lim
x→−4

 (1 − x)3 12. lim
x→0

  (3x − 2)4

13. lim
x→2

 
3

2x + 1
 14. lim

x→−5
 

5
x + 3

15. lim
x→1

 
x

x2 + 4
 16. lim

x→1
 
3x + 5
x + 1

17. lim
x→7

 
3x

√x + 2
 18. lim

x→3
 
√x + 6
x + 2

 finding limits In Exercises 19–22, find the 
limits.

19. f (x) = 5 − x, g(x) = x3

 (a) lim
x→1

 f (x)  (b) lim
x→4

 g(x)  (c) lim
x→1

 g( f (x))

20. f (x) = x + 7, g(x) = x2

 (a) lim
x→−3

 f (x)  (b) lim
x→4

 g(x)  (c) lim
x→−3

  g( f (x))

21. f (x) = 4 − x2, g(x) = √x + 1

 (a) lim
x→1

 f (x)  (b) lim
x→3

 g(x)  (c) lim
x→1

 g( f (x))

22. f (x) = 2x2 − 3x + 1, g(x) = 3√x + 6

 (a) lim
x→4

 f (x)  (b) lim
x→21

 g(x)  (c) lim
x→4

 g( f (x))

 finding a limit of a Transcendental 
function In Exercises 23–36, find the limit of 
the transcendental function.

23. lim
x→π�2

 sin x 24. lim
x→π

 tan x

25. lim
x→1

 cos 
πx
3

 26. lim
x→2

 sin 
π x
12

27. lim
x→0

 sec 2x 28. lim
x→π

 cos 3x

29. lim
x→5π�6

 sin x 30. lim
x→5π�3

 cos x

31. lim
x→3

 tan 
πx
4

 32. lim
x→7

 sec 
πx
6

33. lim
x→0

 ex cos 2x 34. lim
x→0

 e−x sin πx

35. lim
x→1

 (ln 3x + ex) 36. lim
x→1

 ln( x
ex)

 evaluating limits In Exercises 37–40, use the 
information to evaluate the limits.

37. lim
x→c

 f (x) = 2
5 38. lim

x→c
 f (x) = 2

 lim
x→c

 g(x) = 2  lim
x→c

 g(x) = 3
4

 (a) lim
x→c

 [5g(x)]  (a) lim
x→c

 [4 f (x)]

 (b) lim
x→c

 [ f (x) + g(x)]  (b) lim
x→c

 [ f (x) + g(x)]

 (c) lim
x→c

 [ f (x)g(x)]  (c) lim
x→c

 [ f (x)g(x)]

 (d) lim
x→c

 
f (x)
g(x)   (d) lim

x→c
 
f (x)
g(x)

39. lim
x→c

 f (x) = 16 40. lim
x→c

 f (x) = 27

 (a) lim
x→c

 [ f (x)]2  (a) lim
x→c

 3√f (x)

 (b) lim
x→c

 √f (x)  (b) lim
x→c

 
f (x)
18

 (c) lim
x→c

 [3 f (x)]  (c) lim
x→c

 [ f (x)] 2

 (d) lim
x→c

 [ f (x)]3�2  (d) lim
x→c

 [ f (x)] 2�3

 finding a limit In Exercises 41–46, write a 
simpler function that agrees with the given function at 
all but one point. Then find the limit of the function. 
Use a graphing utility to confirm your result.

41. lim
x→−1

 
x 2 − 1
x + 1

 42. lim
x→−2

 
3x2 + 5x − 2

x + 2

43. lim
x→2

 
x3 − 8
x − 2

 44. lim
x→−1

 
x3 + 1
x + 1

45. lim
x→−4

 
(x + 4) ln(x + 6)

x2 − 16
 46. lim

x→0
 
e2x − 1
ex − 1

 finding a limit In Exercises 47–62, find the 
limit.

47. lim
x→0

 
x

x2 − x
 48. lim

x→0
 
7x3 − x2

x

49. lim
x→4

 
x − 4

x2 − 16
 50. lim

x→5
 

5 − x
x2 − 25

51. lim
x→−3

 
x2 + x − 6

x2 − 9
 52. lim

x→2
 
x2 + 2x − 8
x2 − x − 2

53. lim
x→4

 
√x + 5 − 3

x − 4
 54. lim

x→3
 
√x + 1 − 2

x − 3

55. lim
x→0

 
√x + 5 − √5

x
 56. lim

x→0
 
√2 + x − √2

x
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57. lim
x→0

 
[1�(3 + x)] − (1�3)

x
 58. lim

x→0
 
[1�(x + 4)] − (1�4)

x

59. lim
∆x→0

 
2(x + ∆x) − 2x

∆x
 60. lim

∆x→0
 
(x + ∆x)2 − x 2

∆x

61. lim
∆x→0

 
(x + ∆x)2 − 2(x + ∆x) + 1 − (x2 − 2x + 1)

∆x

62. lim
∆x→0

 
(x + ∆x)3 − x3

∆x

 finding a limit of a Transcendental 
function In Exercises 63–76, find the limit of 
the transcendental function.

63. lim
x→0

 
sin x
5x

 64. lim
x→0

 
3(1 − cos x)

x

65. lim
x→0

 
(sin x)(1 − cos x)

x2  66. lim
θ→0

 
cos θ tan θ

θ

67. lim
x→0

 
sin2 x

x
 68. lim

x→0
 
tan2 x

x

69. lim
h→0

 
(1 − cos h)2

h
 70. lim

ϕ→π
 ϕ sec ϕ

71. lim
x→0

 
6 − 6 cos x

3
 72. lim

x→0
 
cos x − sin x − 1

2x

73. lim
x→0

 
1 − e−x

ex − 1
 74. lim

x→0
 
4(e2x − 1)

ex − 1

75. lim
t→0

 
sin 3t

2t

76. lim
x→0

 
sin 2x
sin 3x

  [Hint: Find lim
x→0

 (2 sin 2x
2x )( 3x

3 sin 3x) .]
 graphical, numerical, and analytic 
analysis In Exercises 77–86, use a graphing 
utility to graph the function and estimate the limit. 
Use a table to reinforce your conclusion. Then find 
the limit by analytic methods.

77. lim
x→0

 
√x + 2 − √2

x
 78. lim

x→16
 
4 − √x
x − 16

79. lim
x→0

 
[1�(2 + x)] − (1�2)

x
  80. lim

x→2
  

x5 − 32
x − 2

81. lim
t→0

 
sin 3t

t
 82. lim

x→0
 
cos x − 1

2x2

83. lim
x→0

 
sin x2

x
 84. lim

x→0
 
sin x

3√x

85. lim
x→1

 
ln x

x − 1
 86. lim

x→ln 2
 
e3x − 8
e2x − 4

 finding a limit In Exercises 87–94, find

 lim
Δx→0

 
f (x + Δx) − f (x)

Δx
.

87. f (x) = 3x − 2 88.  f (x) = −6x + 3

89. f (x) = x2 − 4x 90. f (x) = 3x2 + 1

91. f (x) = 2√x 92. f (x) = √x − 5

93. f (x) =
1

x + 3
 94.  f (x) =

1
x2

Using the Squeeze Theorem In Exercises 95 and 96, use 
the Squeeze Theorem to find lim

x→c
 f (x).

 95. c = 0

  4 − x2 ≤ f (x) ≤ 4 + x2

 96. c = a

  b − ∣x − a∣ ≤ f (x) ≤ b + ∣x − a∣
Using the Squeeze Theorem In Exercises 97–100, use a 
graphing utility to graph the given function and the equations 
y = ∣x∣ and y = −∣x∣ in the same viewing window. Using the 
graphs to observe the Squeeze Theorem visually, find lim

x→0
 f(x).

 97. f (x) = ∣x∣ sin x  98. f (x) = ∣x∣ cos x

 99. f (x) = x sin 
1
x
 100. f (x) = x cos 

1
x

eXpLoRInG ConCeptS
101. functions That agree at all but One point

  (a)  In the context of finding limits, discuss what is meant 
by two functions that agree at all but one point.

  (b)  Give an example of two functions that agree at all 
but one point.

102.  Writing functions Write a function of each 
specified type that has a limit of 4 as x approaches 8.

  (a) linear (b) polynomial of degree 2

  (c) rational (d) radical

  (e) cosine (f ) sine

  (g) exponential (h) natural logarithmic

103. Writing Use a graphing utility to graph

   f (x) = x, g(x) = sin x, and h(x) =
sin x

x

   in the same viewing window. Compare the magnitudes of 
f (x) and g(x) when x is close to 0. Use the comparison to 
write a short paragraph explaining why lim

x→0
 h(x) = 1.

x→0

 104.    hOW DO yOU See iT? Would you use 
the dividing out technique or the rationalizing 
technique to find the limit of the function? 
Explain your reasoning.

(a) lim
x→−2

 
x2 + x − 2

x + 2
    (b) lim

x→0
 
√x + 4 − 2

x

 

x

y

−1−2−3 1 2 3

−3

−4

1

2

 

x

y

−2 −1 1−3−4

1.00

0.75

0.50

 104.    
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2.3 Evaluating Limits Analytically 93

free-falling Object In Exercises 107 and 108, use the 
position function s(t) = −4.9t2 + 200, which gives the height 
(in meters) of an object that has fallen for t seconds from a 
height of 200 meters. The velocity at time t = a seconds is 
given by

lim
t→a

 
s(a) − s(t)

a − t
.

107. Find the velocity of the object when t = 3.

108. At what velocity will the object impact the ground?

109.   finding functions Find two functions f  and g such that 
lim
x→0

 f (x) and lim
x→0

 g(x) do not exist, but

  lim
x→0

 [ f (x) + g(x)]

  does exist.

110. proof Prove that if lim
x→c

 f (x) exists and lim
x→c

 [ f (x) + g(x)]
  does not exist, then lim

x→c
 g(x) does not exist.

111. proof Prove Property 1 of Theorem 2.1.

112.  proof Prove Property 3 of Theorem 2.1. (You may use 
Property 3 of Theorem 2.2.)

113. proof Prove Property 1 of Theorem 2.2.

114. proof Prove that if lim
x→c

 f (x) = 0, then lim
x→c

 ∣ f (x)∣ = 0.

115. proof Prove that if lim
x→c

 f (x) = 0 and ∣g(x)∣ ≤ M for a

  fixed number M and all x ≠ c, then lim
x→c

 [ f (x)g(x)] = 0.

116. proof

  (a) Prove that if lim
x→c

 ∣ f (x)∣ = 0, then lim
x→c

 f (x) = 0.

   (Note: This is the converse of Exercise 114.)

  (b) Prove that if lim
x→c

f (x) = L, then lim
x→c

 ∣ f (x)∣ = ∣L∣.
   [Hint: Use the inequality 
 f (x)∣ − ∣L
 ≤ ∣ f (x) − L∣.]

117.  Think about it Find a function f  to show that the 
converse of Exercise 116(b) is not true. [Hint: Find a function f
such that lim

x→c
 ∣ f (x)∣ = ∣L∣ but lim

x→c
 f (x) does not exist.]

118.  Think about it When using a graphing utility to generate 
a table to approximate

  lim
x→0

 
sin x

x

   a student concluded that the limit was 0.01745 rather than 1. 
Determine the probable cause of the error.

True or false? In Exercises 119–124, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

119. lim
x→0

 
∣x∣
x

= 1 120. lim
x→π

 
sin x

x
= 1

121.  If f (x) = g(x) for all real numbers other than x = 0 and 
lim
x→0

 f (x) = L, then lim
x→0

 g(x) = L.

122. If lim
x→c

 f (x) = L, then f (c) = L.

123. lim
x→2

 f (x) = 3, where f (x) = {3,
0,

     x ≤ 2
     x > 2

124. If f (x) < g(x) for all x ≠ a, then lim
x→a

 f (x) < lim
x→a

 g(x).

125. proof Prove the second part of Theorem 2.9.

  lim
x→0

 
1 − cos x

x
= 0

126. piecewise functions Let

  f (x) = {0,
1,

     if x is rational
     if x is irrational

  and

  g(x) = {0,
x,

     if x is rational
     if x is irrational

.

  Find (if possible) lim
x→0

 f (x) and lim
x→0

 g(x).

127. graphical reasoning Consider f (x) =
sec x − 1

x2 .

  (a) Find the domain of f.

  (b)  Use a graphing utility to graph f. Is the domain of f  
 obvious from the graph? If not, explain.

  (c) Use the graph of f  to approximate lim
x→0

 f (x).

  (d) Confirm your answer to part (c) analytically.

128. approximation

  (a) Find lim
x→0

 
1 − cos x

x2 .

  (b)  Use your answer to part (a) to derive the approximation 
cos x ≈ 1 − 1

2x2 for x near 0.

  (c) Use your answer to part (b) to approximate cos(0.1).
  (d)  Use a calculator to approximate cos(0.1) to four decimal 

places. Compare the result with part (c).

Kevin Fleming/Documentary Value/Corbis

In Exercises 105 and 106, use the position function 
s(t) = −16t2 + 500, which gives the height (in feet) of 
an object that has fallen for t seconds from a height of 
500 feet. The velocity at time t = a seconds is given by

lim
t→a

 
s(a) − s(t)

a − t
.

105.  A construction worker drops a full paint can from a 
height of 500 feet. How fast will the paint can be 
falling after 2 seconds?

106.  A construction 
worker drops a 
full paint can 
from a height of
500 feet. When 
will the paint can
hit the ground? 
At what velocity 
will the paint can 
impact the ground?

free-falling Object
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94 Chapter 2 Limits and Their Properties

2.4 Continuity and One-Sided Limits

 Determine continuity at a point and continuity on an open interval.
 Determine one-sided limits and continuity on a closed interval.
 Use properties of continuity.
 Understand and use the Intermediate Value Theorem.

Continuity at a Point and on an Open Interval
In mathematics, the term continuous has much the same meaning as it has in everyday 
usage. Informally, to say that a function f  is continuous at x = c means that there is no 
interruption in the graph of f  at c. That is, its graph is unbroken at c, and there are no 
holes, jumps, or gaps. Figure 2.26 identifies three values of x at which the graph of f  is 
not continuous. At all other points in the interval (a, b), the graph of f  is uninterrupted 
and continuous.

x

a bc

f (c) is
not de�ned.

y  

x

a bc

lim f (x)
x→c
does not exist.

y  

x

a bc

x→c
lim f (x) ≠ f (c)

y

 Three conditions exist for which the graph of f  is not continuous at x = c.
 Figure 2.26

In Figure 2.26, it appears that continuity at x = c can be destroyed by any one of 
three conditions.

1. The function is not defined at x = c.

2. The limit of f(x) does not exist at x = c.

3. The limit of f(x) exists at x = c, but it is not equal to f(c).

If none of the three conditions is true, then the function f  is called continuous at c, as 
indicated in the important definition below.

Definition of Continuity

Continuity at a Point
A function f  is continuous at c when these three conditions are met.

1. f(c) is defined.

2. lim
x→c

 f (x) exists.

3. lim
x→c

 f (x) = f (c)

Continuity on an Open Interval
A function is continuous on an open interval (a, b) when the function is 
continuous at each point in the interval. A function that is continuous on the 
entire real number line (−∞, ∞) is everywhere continuous.

 FOR FURTHER INFORMATION
For more information on the 
concept of continuity, see the 
article “Leibniz and the Spell of 
the Continuous” by Hardy Grant 
in The College Mathematics 
Journal. To view this article, 
go to MathArticles.com.

exploration
Informally, you might say 
that a function is continuous 
on an open interval when 
its graph can be drawn with 
a pencil without lifting the 
pencil from the paper. Use 
a graphing utility to graph 
each function on the given 
interval. From the graphs, 
which functions would 
you say are continuous on 
the interval? Do you think 
you can trust the results 
you obtained graphically? 
Explain your reasoning.

 Function Interval

a. y = x2 + 1 (−3, 3)

b. y =
1

x − 2
 (−3, 3)

c. y =
sin x

x
 (−π, π)

d. y =
x2 − 4
x + 2

 (−3, 3)
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 2.4 Continuity and One-Sided Limits 95

Consider an open interval I that contains a real number c. If a function f  is 
defined on I (except possibly at c), and f  is not continuous at c, then f  is said to 
have a discontinuity at c. Discontinuities fall into two categories: removable and  
nonremovable. A discontinuity at c is called removable when f  can be made 
continuous by appropriately defining (or redefining) f(c). For instance, the functions 
shown in Figures 2.27(a) and (c) have removable discontinuities at c and the function 
shown in Figure 2.27(b) has a nonremovable discontinuity at c.

 Continuity of a Function

Discuss the continuity of each function.

a. f(x) =
1
x
  b. g(x) =

x2 − 1
x − 1

  c. h(x) = {x + 1,
ex,

     x ≤ 0
     x > 0

  d. y = sin x

Solution

a.  The domain of f  is all nonzero real numbers. From Theorem 2.3, you can conclude 
that f  is continuous at every x-value in its domain. At x = 0, f  has a nonremovable 
discontinuity, as shown in Figure 2.28(a). In other words, there is no way to define 
f(0) so as to make the function continuous at x = 0.

b.  The domain of g is all real numbers except x = 1. From Theorem 2.3, you can 
conclude that g is continuous at every x-value in its domain. At x = 1, the function 
has a removable discontinuity, as shown in Figure 2.28(b). By defining g(1) as 2, 
the “redefined” function is continuous for all real numbers.

c.  The domain of h is all real numbers. The function h is continuous on (−∞, 0) and 
(0, ∞), and because

lim
x→0

 h(x) = 1

 h is continuous on the entire real number line, as shown in Figure 2.28(c).

d.  The domain of y is all real numbers. From Theorem 2.6, you can conclude that the 
function is continuous on its entire domain, (−∞, ∞), as shown in Figure 2.28(d).

 

x

1

1

2

2

3

3

−1

−1

y

f (x) = 1
x

 

x

1

1

2

2

3

3

(1, 2)

−1

−1

g(x) = x2 − 1
x  − 1

y

 (a) Nonremovable discontinuity at x = 0 (b) Removable discontinuity at x = 1

 

x

1

1

2

2

3

3

−1

−1

x + 1,  x ≤ 0

ex,       x > 0  
h(x) =

y  

1

−1

x

y = sin x

y

π
2

3π
2

 (c) Continuous on entire real number line (d) Continuous on entire real number line

 Figure 2.28 

remark Some people may 
refer to the function in Example 
1(a) as “discontinuous,” but this 
terminology can be confusing. 
Rather than saying that the 
function is discontinuous, it 
is more precise to say that the 
function has a discontinuity  
at x = 0.

(a) Removable discontinuity

(b) Nonremovable discontinuity

(c) Removable discontinuity

Figure 2.27

x

a bc

y

x

a bc

y

x

a bc

y
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96 Chapter 2 Limits and Their Properties

One-Sided Limits and Continuity on a Closed Interval
To understand continuity on a closed interval, you first need to look at a different type 
of limit called a one-sided limit. For instance, the limit from the right (or right-hand 
limit) means that x approaches c from values greater than c [see Figure 2.29(a)]. This 
limit is denoted as

lim
x→c+

 f(x) = L.    Limit from the right

Similarly, the limit from the left (or left-hand limit) means that x approaches c from 
values less than c [see Figure 2.29(b)]. This limit is denoted as 

 lim
x→c−

 f(x) = L.    Limit from the left

One-sided limits are useful in taking limits of functions involving radicals. For instance, 
if n is an even integer, then

 lim
x→0+

 n√x = 0.

 a One-Sided Limit

Find the limit of f(x) = √4 − x2 as x approaches −2 from the right.

Solution As shown in Figure 2.30, the limit as x approaches −2 from the right is

lim
x→−2+

 √4 − x2 = 0. 

One-sided limits can be used to investigate the behavior of step functions. One 
common type of step function is the greatest integer function ⟨x⟩, defined as

  ⟨x⟩ = greatest integer n such that n ≤ x.     Greatest integer function

For instance, ⟨2.5⟩ = 2 and ⟨−2.5⟩ = −3.

 The Greatest Integer Function

Find the limit of the greatest integer function f(x) = ⟨x⟩ as x approaches 0 from the left 
and from the right.

Solution As shown in Figure 2.31, the limit  
as x approaches 0 from the left is

lim
x→0−

 ⟨x⟩ = −1

and the limit as x approaches 0 from the right is

lim
x→0+

 ⟨x⟩ = 0.

So, f  has a discontinuity at zero because the  
left- and right-hand limits at zero are different. 
By similar reasoning, you can see that the  
greatest integer function has a discontinuity at 
any integer n.

x
1

1

2

2

3−1−2

−2

x[[ ]]f (x) =
y

Greatest integer function
Figure 2.31 

(b) Limit as x approaches c from the left.

Figure 2.29

(a) Limit as x approaches c from the right.

x

y

c < x
xc

f (x)L

x

y

c > x
x c

f (x)
L

The limit of f (x) as x approaches −2 
from the right is 0.
Figure 2.30

x
1

1

2

3

−1−2

−1

f (x) =     4 − x2

y
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2.4 Continuity and One-Sided Limits 97

When the limit from the left is not equal to the limit from the right, the (two-sided) 
limit does not exist. The next theorem makes this more explicit. The proof of this 
theorem follows directly from the definition of a one-sided limit.

TheOrem 2.10 The existence of a Limit

Let f  be a function, and let c and L be real numbers. The limit of f(x) as x 
approaches c is L if and only if

lim
x→c−

 f(x) = L and lim
x→c+

 f(x) = L.

The concept of a one-sided limit allows you to extend the definition of continuity 
to closed intervals. Basically, a function is continuous on a closed interval when it 
is continuous in the interior of the interval and exhibits one-sided continuity at the 
endpoints. This is stated formally in the next definition.

Definition of Continuity on a Closed Interval

A function f  is continuous on the closed interval [a, b] when f  is continuous 
on the open interval (a, b) and

lim
x→a+

 f(x) = f(a)

and

lim
x→b−

 f(x) = f(b).

The function f  is continuous from the right at a and continuous from the 
left at b (see Figure 2.32).

Similar definitions can be made to cover continuity on intervals of the form (a, b] 
and [a, b) that are neither open nor closed, or on infinite intervals. For example,

f(x) = √x

is continuous on the infinite interval [0, ∞), and the function

g(x) = √2 − x

is continuous on the infinite interval (−∞, 2].

 Continuity on a Closed Interval

Discuss the continuity of

f(x) = √1 − x2.

Solution The domain of f  is the closed interval [−1, 1]. At all points in the open 
interval (−1, 1), the continuity of f  follows from Theorems 2.4 and 2.5. Moreover, 
because

lim
x→−1+

 √1 − x2 = 0 = f(−1) Continuous from the right

and

lim
x→1−

 √1 − x2 = 0 = f(1) Continuous from the left

you can conclude that f  is continuous on the closed interval [−1, 1], as shown in 
Figure 2.33. 

Continuous function on a closed interval
Figure 2.32

x

a b

y

f  is continuous on [−1, 1].
Figure 2.33

x

1

1−1

f (x) =     1 − x2

y
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98 Chapter 2 Limits and Their Properties

The next example shows how a one-sided limit can be used to determine the value 
of absolute zero on the Kelvin scale.

 Charles’s Law and absolute Zero

On the Kelvin scale, absolute zero is the temperature 0 K. Although temperatures very 
close to 0 K have been produced in laboratories, absolute zero has never been attained. 
In fact, evidence suggests that absolute zero cannot be attained. How did scientists 
determine that 0 K is the “lower limit” of the temperature of matter? What is absolute 
zero on the Celsius scale?

Solution The determination of absolute zero stems from the work of the French 
physicist Jacques Charles (1746–1823). Charles discovered that the volume of gas at a 
constant pressure increases linearly with the temperature of the gas. The table illustrates 
this relationship between volume and temperature. To generate the values in the table, 
one mole of hydrogen is held at a constant pressure of one atmosphere. The volume V 
is approximated and is measured in liters, and the temperature T  is measured in degrees 
Celsius.

T −40 −20 0 20 40 60 80

V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

The points represented by the table are shown 
in the figure at the right. Moreover, by using the 
points in the table, you can determine that T  and 
V are related by the linear equation

V = 0.08213T + 22.4334.

Solving for T, you get an equation for the 
temperature of the gas.

T =
V − 22.4334

0.08213

By reasoning that the volume of the gas 
can approach 0 (but can never equal or 
go below 0), you can determine that the 
“least possible temperature” is

 lim
V→0+

 T = lim
V→0+

 
V − 22.4334

0.08213

 =
0 − 22.4334

0.08213
 Use direct substitution.

 ≈ −273.15.

So, absolute zero on the Kelvin scale (0 K) is approximately −273.15° on the Celsius 
scale. 

The table below shows the temperatures in Example 5 converted to the Fahrenheit 
scale. Try repeating the solution shown in Example 5 using these temperatures and 
volumes. Use the result to find the value of absolute zero on the Fahrenheit scale.

T −40 −4 32 68 104 140 176

V 19.1482 20.7908 22.4334 24.0760 25.7186 27.3612 29.0038

remark Charles’s Law 
for gases (assuming constant 
pressure) can be stated as

V = kT

where V is volume, k is a 
constant, and T  is temperature. 

T
−100−200−300

5

10

15

25

30

100

V = 0.08213T + 22.4334

(−273.15, 0)

V

The volume of hydrogen gas depends 
on its temperature.

Liquid helium is used to cool 
superconducting magnets, 
such as those used in magnetic 
resonance imaging (MRI) 
machines or in the Large 
Hadron Collider (see above). 
The magnets are made with 
materials that only superconduct 
at temperatures a few degrees 
above absolute zero. These 
temperatures are possible with 
liquid helium because helium 
becomes a liquid at −269°C, or 
4.15 K.

FABRICE COFFRINI/AFP/Getty Images
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Properties of Continuity
In Section 2.3, you studied several properties of limits. Each of those properties yields 
a corresponding property pertaining to the continuity of a function. For instance, 
Theorem 2.11 follows directly from Theorem 2.2.

TheOrem 2.11 Properties of Continuity

If b is a real number and f  and g are continuous at x = c, then the functions 
listed below are also continuous at c.

1. Scalar multiple: bf  2. Sum or difference: f ± g

3. Product: fg 4. Quotient: 
f
g

, g(c) ≠ 0

A proof of this theorem is given in Appendix A. 

It is important for you to be able to recognize functions that are continuous at every 
point in their domains. The list below summarizes the functions you have studied so far 
that are continuous at every point in their domains.

1. Polynomial: p(x) = anxn + an−1x
n−1 + . . . + a1x + a0

2. Rational: r(x) =
p(x)
q(x), q(x) ≠ 0

3. Radical: f(x) = n√x

4. Trigonometric: sin x, cos x, tan x, cot x, sec x, csc x

5. Exponential and logarithmic: f (x) = ax, f (x) = ex, f (x) = ln x

By combining Theorem 2.11 with this list, you can conclude that a wide variety of 
elementary functions are continuous at every point in their domains.

 applying Properties of Continuity

See LarsonCalculus.com for an interactive version of this type of example.

By Theorem 2.11, it follows that each of the functions below is continuous at every 
point in its domain.

f (x) = x + ex, f(x) = 3 tan x, f(x) =
x2 + 1
cos x

 

The next theorem, which is a consequence of Theorem 2.5, allows you to determine 
the continuity of composite functions such as

f(x) = ln 3x, f(x) = √x2 + 1, and f(x) = tan 
1
x
.

TheOrem 2.12 Continuity of a Composite Function

If g is continuous at c and f  is continuous at g(c), then the 
composite function given by ( f ∘ g)(x) = f (g(x)) is continuous at c. 

Proof By the definition of continuity, lim
x→c

 g(x) = g(c) and lim
x→g(c)

 f (x) = f (g(c)).

Apply Theorem 2.5 with L = g(c) to obtain lim
x→c

 f(g(x)) = f (lim
x→c

 g(x)) = f(g(c)). So,

( f ∘ g)(x) = f (g(x)) is continuous at c. 

remark One consequence 
of Theorem 2.12 is that when 
f  and g satisfy the given 
conditions, you can determine 
the limit of f(g(x)) as x 
approaches c to be

lim
x→c

 f(g(x)) = f(g(c)).

AUGUSTIN-LOUIS CAUCHY
(1789–1857)

The concept of a continuous 
function was first introduced 
by Augustin-Louis Cauchy in 
1821. The definition given in 
his text Cours d’Analyse stated 
that indefinite small changes in 
y were the result of indefinite 
small changes in x. “… f (x) will 
be called a continuous function 
if … the numerical values of 
the difference f (x + α) − f (x) 
decrease indefinitely with those 
of α….” 
See LarsonCalculus.com to read 
more of this biography.

AS400 DB/Bettmann/Corbis
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 Testing for Continuity

Describe the interval(s) on which each function is continuous.

a. f(x) = tan x  b. g(x) = { 
sin

 1
x
,

0,

x ≠ 0

x = 0
  c. h(x) = { 

x sin
 1
x
,

0,

x ≠ 0

x = 0

Solution

a. The tangent function f(x) = tan x is undefined at

x =
π
2

+ nπ, n is an integer.

    At all other points, f  is continuous. So, f(x) = tan x is continuous on the open 
intervals

. . . , (−
3π
2

, −
π
2), (−

π
2

, 
π
2), (π2, 

3π
2 ), . . .

 as shown in Figure 2.34(a).

b.  Because y = 1�x is continuous except at x = 0 and the sine function is continuous 
for all real values of x, it follows from Theorem 2.12 that

y = sin 
1
x

  is continuous at all real values except x = 0. At x = 0, the limit of g(x) does not 
exist (see Example 5, Section 2.2). So, g is continuous on the intervals (−∞, 0) and 
(0, ∞), as shown in Figure 2.34(b).

c.  This function is similar to the function in part (b) except that the oscillations are 
damped by the factor x. Using the Squeeze Theorem, you obtain

−∣x∣ ≤ x sin 
1
x

≤ ∣x∣, x ≠ 0

 and you can conclude that

lim
x→0

 h(x) = 0.

 So, h is continuous on the entire real number line, as shown in Figure 2.34(c).

  

(a)  f  is continuous on each open interval in 
its domain.

Figure 2.34

x

4

3

2

1

−3

−4

−π π

f (x) = tan x

y

(b) g is continuous on (−∞, 0) and (0, ∞).

x

1

−1

−1 1

y

g(x) = 
sin    , x ≠ 0

0,

1
x

x = 0

(c) h is continuous on the entire real number line.

x

1

−1

−1 1

y = | x |
y

h(x) = 
x = 00,

x sin    , x ≠ 01
x

y = −| x |
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2.4 Continuity and One-Sided Limits 101

The Intermediate Value Theorem
Theorem 2.13 is an important theorem concerning the behavior of functions that are 
continuous on a closed interval.

TheOrem 2.13 Intermediate Value Theorem

If f  is continuous on the closed interval [a, b], f (a) ≠ f (b), and k is any 
number between f(a) and f(b), then there is at least one number c in [a, b] 
such that

f(c) = k.

As an example of the application of the Intermediate Value Theorem, consider a 
person’s height. A girl is 5 feet tall on her thirteenth birthday and 5 feet 2 inches tall 
on her fourteenth birthday. Then, for any height h between 5 feet and 5 feet 2 inches, 
there must have been a time t when her height was exactly h. This seems reasonable 
because human growth is continuous and a person’s height does not abruptly change 
from one value to another.

The Intermediate Value Theorem guarantees the existence of at least one number c 
in the closed interval [a, b]. There may, of course, be more than one number c such that

f(c) = k

as shown in Figure 2.35. A function that is not continuous does not necessarily exhibit 
the intermediate value property. For example, the graph of the function shown in 
Figure 2.36 jumps over the horizontal line

y = k

and for this function there is no value of c in [a, b] such that f(c) = k.

x

k

b
c3c2a

c1

f (a)

f (b)

y      

x

b

k

a

f (a)

f (b)

y

 f  is continuous on [a, b]. f  is not continuous on [a, b].
 [There exist three c’s such that f (c) = k.] [There are no c’s such that f (c) = k.]
 Figure 2.35 Figure 2.36

The Intermediate Value Theorem often can be used to locate the zeros of a function 
that is continuous on a closed interval. Specifically, if f  is continuous on [a, b] and f(a) 
and f(b) differ in sign, then the Intermediate Value Theorem guarantees the existence 
of at least one zero of f  in the closed interval [a, b].

remark The Intermediate Value Theorem tells you that at least one number c
exists, but it does not provide a method for finding c. Such theorems are called 
existence theorems. By referring to a text on advanced calculus, you will find that a 
proof of this theorem is based on a property of real numbers called completeness. The 
Intermediate Value Theorem states that for a continuous function f, if x takes on all 
values between a and b, then f(x) must take on all values between f(a) and f(b).
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102 Chapter 2 Limits and Their Properties

 an application of the Intermediate Value Theorem

Use the Intermediate Value Theorem to show that the polynomial function

f(x) = x3 + 2x − 1

has a zero in the interval [0, 1].

Solution Note that f  is continuous on the closed interval [0, 1]. Because

f(0) = 03 + 2(0) − 1 = −1 and f(1) = 13 + 2(1) − 1 = 2

it follows that f(0) < 0 and f(1) > 0. You can therefore apply the Intermediate Value 
Theorem to conclude that there must be some c in [0, 1] such that

f(c) = 0 f  has a zero in the closed interval [0, 1].

as shown in Figure 2.37.

x

1

1

2

−1

−1
(c, 0)

(1, 2)

(0, −1)

y f (x) = x3 + 2x − 1

 f  is continuous on [0, 1] with f (0) < 0 and f (1) > 0.
 Figure 2.37 

The bisection method for approximating the real zeros of a continuous function is 
similar to the method used in Example 8. If you know that a zero exists in the closed 
interval [a, b], then the zero must lie in the interval [a, (a + b)�2] or [(a + b)�2, b]. 
From the sign of f([a + b]�2), you can determine which interval contains the zero. By 
repeatedly bisecting the interval, you can “close in” on the zero of the function.

TeChnOLOGy You can use the root or zero feature of a graphing utility to 
approximate the real zeros of a continuous function. Using this feature, the zero of 
the function in Example 8, f(x) = x3 + 2x − 1, is approximately 0.453, as shown 
in the figure.

−3 3

−2

2

Zero
X=.45339765 Y=0

 Zero of f (x) = x3 + 2x − 1
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 2.4 Continuity and One-Sided Limits 103

2.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Continuity In your own words, describe what it 

means for a function to be continuous at a point.

2.  One-Sided Limits What is the value of c?

 lim
x→c+

 2√x + 1 = 0

3.  existence of a Limit Determine whether lim
x→3

 f (x) 
exists. Explain.

 lim
x→3−

 f (x) = 1 and lim
x→3+

 f (x) = 1

4.  Intermediate Value Theorem In your own words, 
explain the Intermediate Value Theorem.

 Limits and Continuity In Exercises 5–10, use 
the graph to determine each limit, and discuss the 
continuity of the function.

(a) lim
x→c+

 f(x)  (b) lim
x→c−

 f(x)  (c) lim
x→c

 f(x)

 5. 

c = 4

(4, 3)

1 2 3 4 5−1

1

2

3

4

5

x

y   6. 

c = −2

(−2, −2)

x

y

−2
−1

−2

1

2

 7. 

x

y

2 4 6

4

c = 3

(3, 1)

(3, 0)

  8. 

x

y

(−3, 4)

(−3, 3)

−1−2−3−4−5

2

3

4

5
c = −3

 9. 

x
1

1

2

2 3 4 5 6−1
−2
−3

(2, 3)

(2, −3)

c = 2

y  10. 

x
1

2

3

4
c = −1

(−1, 2)

(−1, 0)−3

y

 Finding a Limit In Exercises 11–32, find the 
limit (if it exists). If it does not exist, explain why.

11. lim
x→8+

 
1

x + 8
 12. lim

x→3+
 

2
x + 3

13. lim
x→5+

 
x − 5

x2 − 25
 14. lim

x→4+
 

4 − x
x2 − 16

15. lim
x→−3−

 
x

√x2 − 9
 16. lim

x→4−
 
√x − 2
x − 4

17. lim
x→0−

 
∣x∣
x

 18. lim
x→10+

 
∣x − 10∣
x − 10

19. lim
∆x→0−

 

1
x + ∆x

−
1
x

∆x

20. lim
∆x→0+

 
(x + ∆x)2 + x + ∆x − (x2 + x)

∆x

21. lim
x→3−

 f (x), where f (x) = {
x + 2

2
,

12 − 2x
3

,

   x < 3

   x > 3

22. lim
x→3

 f (x), where f (x) = {x2 − 4x + 6,
−x2 + 4x − 2,

   x < 3
   x ≥ 3

23. lim
x→π

 cot x 24. lim
x→π�2

 sec x

25. lim
x→4−

(5⟨x⟩ − 7) 26. lim
x→2+

(2x − ⟨x⟩)

27. lim
x→−1

 (⟨ x
3 ⟩ + 3) 28. lim

x→1 (1 − ⟨−
x
2⟩)

29. lim
x→3+

 ln(x − 3) 30. lim
x→6−

 ln(6 − x)

31. lim
x→2−

 ln[x2(3 − x)] 32. lim
x→5+

 ln 
x

√x − 4

 Continuity of a Function In Exercises 33–36, 
discuss the continuity of the function.

33. f (x) =
1

x2 − 4
 34. f (x) =

x2 − 1
x + 1

 

x

−1

−2

−3

−3

1

1

2

3

3

y   

x
−1−2

−3

−3

1

1

2

2

3

3

y

35. f (x) = 1
2⟨x⟩ + x 36. f (x) = {x,

2,
2x − 1,

    x < 1
    x = 1
    x > 1

 

x
−1−2

−3

−3

1

1

2

2

3

3

y   

x

−2

−2

−3

−3

1

1

2

2

3

3

y
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 Continuity on a Closed Interval In Exercises 
37–40, discuss the continuity of the function on the 
closed interval.

 Function Interval

37. g(x) = √49 − x2 [−7, 7]
38. f (t) = 3 − √9 − t2 [−3, 3]

39. f (x) = {3 − x,

3 + 1
2 x,

 
   x ≤ 0

   x > 0
 [−1, 4]

40. g(x) =
1

x2 − 4
 [−1, 2]

 removable and nonremovable Discontinuities 
In Exercises 41–60, find the x-values (if any)  
at which f  is not continuous. Which of the 
discontinuities are removable?

41. f (x) =
4

x − 6
 42. f (x) =

1
x2 + 1

43. f (x) = 3x − cos x 44. f (x) = sin x − 8x

45. f (x) =
x

x2 − x
 46. f (x) =

x
x2 − 4

47. f (x) =
x + 2

x2 − 3x − 10
 48. f (x) =

x + 2
x2 − x − 6

49. f (x) = ∣x + 7∣
x + 7

 50. f (x) =
2∣x − 3∣

x − 3

51. f (x) = {1
2 x + 1,

3 − x,

x ≤ 2

x > 2

52. f (x) = {−2x,
x2 − 4x + 1,

x ≤ 2
x > 2

53. f (x) = {tan 
πx
4

,

x,

∣x∣ < 1

∣x∣ ≥ 1

54. f (x) = {csc 
πx
6

,

2,

∣x − 3∣ ≤ 2

∣x − 3∣ > 2

55. f (x) = {ln(x + 1),
1 − x2,

    x ≥ 0
    x < 0

56. f (x) = {10 − 3e5−x,
10 − 3

5x,
    x > 5
    x ≤ 5

57. f (x) = csc 2x 58. f (x) = tan 
π x
2

59. f (x) = ⟨x − 8⟩ 60. f (x) = 5 − ⟨x⟩

 making a Function Continuous In Exercises 
61–66, find the constant a such that the function is 
continuous on the entire real number line.

61. f (x) = {x3,
ax2,

x ≤ 2
x > 2

 62. f (x) = {3x2,
ax − 4,

    x ≥ 1
    x < 1

63. g (x) = {x2 − a2

x − a
,

8,

x ≠ a

x = a
 64. g (x) = {4 sin x

x
,

a − 2x,

x < 0

x ≥ 0

65. f (x) = {aex−1 + 3,
arctan(x − 1) + 2,

   x < 1
   x ≥ 1

66. f (x) = {2eax − 2,
ln(x − 3) + x2,

   x ≤ 4
   x > 4

 Continuity of a Composite Function In 
Exercises 67–70, discuss the continuity of the 
composite function h(x) = f (g(x)).

67.  f (x) =
1

x − 6
 68.  f (x) =

1

√x

 g(x) = x2 + 5  g(x) = x − 1

69.  f (x) = tan x 70.  f (x) = sin x

 g(x) =
x
2

  g(x) = x2

Finding Discontinuities Using Technology In Exercises 
71–74, use a graphing utility to graph the function. Use the 
graph to determine any x-values at which the function is not 
continuous.

71. f (x) = ⟨x⟩ − x 72. h(x) =
1

x2 + 2x − 15

73. g(x) = {x2 − 3x,

2x − 5,

x > 4

x ≤ 4
 74. f (x) = {cos x − 1

x
,

5x,

x < 0

x ≥ 0

Testing for Continuity In Exercises 75–82, describe the 
interval(s) on which the function is continuous.

75. f (x) =
x

x2 + x + 2
 76. f (x) =

x + 1

√x

77. f (x) = 3 − √x 78. f (x) = x√x + 3

79. f (x) = sec 
π x
4

 80. f (x) = cos 
1
x

81. f (x) = {x2 − 1
x − 1

,

2,

x ≠ 1

x = 1
 82. f (x) = {2x − 4,

1,

x ≠ 3

x = 3

existence of a Zero In Exercises 83–88, explain why the 
function has at least one zero in the given interval.

 Function Interval

83. f (x) = 1
12 x 4 − x3 + 4 [1, 2]

84. f (x) = x3 + 5x − 3 [0, 1]
85. f (x) = x2 − 2 − cos x [0, π]

86. f (x) = −
5
x

+ tan 
π x
10

 [1, 4]

87. h(x) = −2e−x�2 cos 2x [0, 
π
2]

88. g(t) = (t3 + 2t − 2) ln(t2 + 4) [0, 1]

existence of multiple Zeros In Exercises 89 and 90, 
explain why the function has at least two zeros in the interval 
[1, 5].

89. f (x) = (x − 3)2 − 2 90. f (x) = 2 cos x
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2.4 Continuity and One-Sided Limits 105

Using the Intermediate Value Theorem In Exercises 
91–98, use the Intermediate Value Theorem and a graphing 
utility to approximate the zero of the function in the interval 
[0, 1]. Repeatedly “zoom in” on the graph of the function to 
approximate the zero accurate to two decimal places. Use the 
zero or root feature of the graphing utility to approximate the 
zero accurate to four decimal places.

 91. f (x) = x3 + x − 1

92. f (x) = x4 − x2 + 3x − 1

 93. f (x) = √x2 + 17x + 19 − 6

 94. f (x) = √x4 + 39x + 13 − 4

 95. g(t) = 2 cos t − 3t  96. h(θ) = tan θ + 3θ − 4

97. f (x) = x + ex − 3  98. g(x) = 5 ln(x + 1) − 2

 Using the Intermediate Value Theorem In 
Exercises 99–104, verify that the Intermediate 
Value Theorem applies to the indicated interval 
and find the value of c guaranteed by the theorem.

 99. f (x) = x2 + x − 1, [0, 5], f (c) = 11

100. f (x) = x2 − 6x + 8, [0, 3], f (c) = 0

101. f (x) = √x + 7 − 2, [0, 5], f (c) = 1

102. f (x) = 3√x + 8, [−9, −6], f (c) = 6

103. f (x) =
x − x3

x − 4
, [1, 3], f (c) = 3

104. f (x) =
x2 + x
x − 1

, [5
2

, 4], f (c) = 6

eXpLoRInG ConCeptS
105.  Writing a Function Write a function that is 

continuous on (a, b) but not continuous on [a, b].
106.  Sketching a Graph Sketch the graph of any 

function f  such that

  lim
x→3+

 f (x) = 1 and lim
x→3−

 f (x) = 0.

  Is the function continuous at x = 3? Explain.

107.  Continuity of Combinations of Functions If 
the functions f  and g are continuous for all real x, is 
f + g always continuous for all real x? Is f�g always 
continuous for all real x? If either is not continuous, 
give an example to verify your conclusion.

108.  removable and nonremovable 
Discontinuities Describe the difference between a 
discontinuity that is removable and a discontinuity that 
is nonremovable. Then give an example of a function 
that satisfies each description.

  (a)  A function with a nonremovable discontinuity at 
x = 4

  (b)  A function with a removable discontinuity at 
x = −4

  (c)  A function that has both of the characteristics 
described in parts (a) and (b)

True or False? In Exercises 109–114, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

109. If lim
x→c

 f (x) = L and f (c) = L, then f  is continuous at c.

110.  If f (x) = g(x) for x ≠ c and f (c) ≠ g(c), then either f  or g 
is not continuous at c.

111.  The Intermediate Value Theorem guarantees that f (a) and 
f (b) differ in sign when a continuous function f  has at least 
one zero on [a, b].

112.  The limit of the greatest integer function as x approaches 0 
from the left is −1.

113.  A rational function can have infinitely many x-values at 
which it is not continuous.

114. The function  f (x) = ∣x − 1∣
x − 1

 is continuous on (−∞, ∞).

115.  Think about It Describe how the functions

   f (x) = 3 + ⟨x⟩ and g(x) = 3 − ⟨−x⟩

  differ.

 116.    hOW DO yOU See IT? Every day you 
dissolve 28 ounces of chlorine in a swimming 
pool. The graph shows the amount of chlorine 
f (t) in the pool after t days. Estimate and 
interpret lim

t→4−
 f (t) and lim

t→4+
 f (t).

y

t
6 754321

140

112

84

56

28

 116.    

117.  Data Plan A cell phone service charges $10 for the first 
gigabyte (GB) of data used per month and $7.50 for each 
additional gigabyte or fraction thereof. The cost of the data 
plan is given by

  C(t) = 10 − 7.5 ⟨1 − t⟩, t > 0

   where t is the amount of data used (in GB). Sketch the graph 
of this function and discuss its continuity.

118.  Inventory management The number of units in 
inventory in a small company is given by

 N(t) = 25(2⟨t + 2
2 ⟩ − t)

   where t is the time in months. Sketch the graph of this 
function and discuss its continuity. How often must this 
company replenish its inventory?
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119.  Déjà Vu At 8:00 a.m. on Saturday, a man begins running 
up the side of a mountain to his weekend campsite (see 
figure). On Sunday morning at 8:00 a.m., he runs back down 
the mountain. It takes him 20 minutes to run up but only 
10 minutes to run down. At some point on the way down, 
he realizes that he passed the same place at exactly the same 
time on Saturday. Prove that he is correct. [Hint: Let s(t)
and r(t) be the position functions for the runs up and down, 
and apply the Intermediate Value Theorem to the function 
f (t) = s(t) − r(t).]

Saturday 8:00 A.M. Sunday 8:00 A.M.
Not drawn to scale

120.  Volume Use the Intermediate Value Theorem to show 
that for all spheres with radii in the interval [5, 8], there is 
one with a volume of 1500 cubic centimeters.

121.  Proof Prove that if f  is continuous and has no zeros on 
[a, b], then either

  f (x) > 0 for all x in [a, b] or f (x) < 0 for all x in [a, b].

122. Dirichlet Function Show that the Dirichlet function

f (x) = {0,
1,

    if x is rational
    if x is irrational

  is not continuous at any real number.

123. Continuity of a Function Show that the function

  f (x) = {0,
kx,

    if x is rational
    if x is irrational

   is continuous only at x = 0. (Assume that k is any nonzero 
real number.)

124. Signum Function The signum function is defined by

  sgn(x) = {−1,
0,
1,

x < 0
x = 0
x > 0

.

  Sketch a graph of sgn(x) and find the following (if possible).

  (a) lim
x→0−

 sgn(x)  (b) lim
x→0+

 sgn(x)  (c) lim
x→0

 sgn(x)

125.  modeling Data The table lists the frequency F (in Hertz) 
of a musical note at various times t (in seconds).

  
t 0 1 2 3 4 5

F 436 444 434 446 433 444

  (a) Plot the data and connect the points with a curve.

  (b)  Does there appear to be a limiting frequency of the note? 
Explain.

126.  Creating models A swimmer crosses a pool of width b
by swimming in a straight line from (0, 0) to (2b, b). (See 
figure.)

x
(0, 0)

(2b, b)

b

y

  (a)  Let f  be a function defined as the y-coordinate of the 
point on the long side of the pool that is nearest the 
swimmer at any given time during the swimmer’s 
crossing of the pool. Determine the function f  and sketch 
its graph. Is f  continuous? Explain.

  (b)  Let g be the minimum distance between the swimmer 
and the long sides of the pool. Determine the function g
and sketch its graph. Is g continuous? Explain.

127.  making a Function Continuous Find all values of c
such that f  is continuous on (−∞, ∞).

f (x) = {1 − x2,
x,

x ≤ c
x > c

128.  Proof Prove that for any real number y there exists x in 
(−π�2, π�2) such that tan x = y.

129. making a Function Continuous Let

   f (x) =
√x + c2 − c

x
, c > 0.

   What is the domain of f ? How can you define f  at x = 0 in 
order for f  to be continuous there?

130. Proof Prove that if

  lim
∆x→0

 f (c + ∆x) = f (c)

  then f  is continuous at c.

131.  Continuity of a Function Discuss the continuity of the 
function h(x) = x ⟨x⟩.

132. Proof

  (a)  Let f1(x) and f2(x) be continuous on the closed interval 
[a, b]. If f1(a) <  f2(a) and f1(b) > f2(b), prove that there 
exists c between a and b such that f1(c) = f2(c).

  (b)  Show that there exists c in [0, 
π
2] such that cos x = x.

   Use a graphing utility to approximate c to three decimal 
places.

pUtnAM eXAM ChALLenGe
133.  Prove or disprove: If x and y are real numbers with 

y ≥ 0 and y( y + 1) ≤ (x + 1)2, then y( y − 1) ≤ x2.

134. Determine all polynomials P(x) such that

  P(x2 + 1) = (P(x))2 + 1 and P(0) = 0.

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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2.5 Infinite Limits 107

2.5 Infinite Limits

 Determine infinite limits from the left and from the right.
 Find and sketch the vertical asymptotes of the graph of a function.

Infinite Limits
Consider the function  f(x) = 3�(x − 2). From Figure 2.38 and the table, you can see 
that f(x) decreases without bound as x approaches 2 from the left, and f(x) increases 
without bound as x approaches 2 from the right.

 

x approaches 2 from the left. x approaches 2 from the right.

x 1.5 1.9 1.99 1.999 2 2.001 2.01 2.1 2.5

f(x) −6 −30 −300 −3000 ? 3000 300 30 6

 
f (x) decreases without bound. f (x) increases without bound.

This behavior is denoted as

lim
x→2−

 
3

x − 2
= −∞ f (x) decreases without bound as x approaches 2 from the left.

and

lim
x→2+

 
3

x − 2
= ∞. f (x) increases without bound as x approaches 2 from the right.

The symbols ∞ and −∞ refer to positive infinity and negative infinity, respectively. 
These symbols do not represent real numbers. They are convenient symbols used to 
describe unbounded conditions more concisely. A limit in which f(x) increases or 
decreases without bound as x approaches c is called an infinite limit.

Definition of Infinite Limits

Let f  be a function that is defined at every real number in some open interval 
containing c (except possibly at c itself). The statement

lim
x→c  

f(x) = ∞
means that for each M > 0 there exists a δ > 0 such that  f (x) > M whenever
0 < ∣x − c∣ < δ (see Figure 2.39). Similarly, the statement

lim
x→c  

f(x) = −∞
means that for each N < 0 there exists a δ > 0 such that  f (x) < N whenever

0 < ∣x − c∣ < δ.

To define the infinite limit from the left, replace 0 < ∣x − c∣ < δ by 
c − δ < x < c. To define the infinite limit from the right, replace 
0 < ∣x − c∣ < δ by c < x < c + δ.

Be sure you see that the equal sign in the statement lim f (x) = ∞ does not mean 
that the limit exists! On the contrary, it tells you how the limit fails to exist by  denoting 
the unbounded behavior of f(x) as x approaches c.

f (x) increases and decreases without 
bound as x approaches 2.
Figure 2.38

x

−2

−4

−4

−6

−6

2

4

4

6

6

→ −∞

f (x) = 3
x − 2

3
x − 2
as x → 2−

→ ∞3
x − 2
as x → 2+

y

Infinite limits
Figure 2.39

x

M

lim f (x) = ∞
x→c

δδ

c

y
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108 Chapter 2 Limits and  Their Properties

 Determining Infinite Limits from a graph

Determine the limit of each function shown in Figure 2.40 as x approaches 1 from the 
left and from the right.

x

−1
−1

−2

−2

1

2

2

3

3

y

f (x) = 1
(x − 1)2

    

x

−1
−1

−2

−2

−3

2

2

y

f (x) = −1
x − 1

 (a) (b)
 Each graph has an asymptote at x = 1.
 Figure 2.40

Solution

a.  When x approaches 1 from the left or the right, (x − 1)2 is a small positive number. 
Thus, the quotient 1�(x − 1)2 is a large positive number, and f (x) approaches 
infinity from each side of x = 1. So, you can conclude that

lim
x→1

 
1

(x − 1)2 = ∞. Limit from each side is infinity.

 Figure 2.40(a) confirms this analysis.

b.  When x approaches 1 from the left, x − 1 is a small negative number. Thus, the 
quotient −1�(x − 1) is a large positive number, and f (x) approaches infinity from 
the left of x = 1. So, you can conclude that 

lim
x→1−

 
−1

x − 1
= ∞. Limit from the left side is infinity.

  When x approaches 1 from the right, x − 1 is a small positive number. Thus, the 
quotient −1�(x − 1) is a large negative number, and f (x) approaches negative 
infinity from the right of x = 1. So, you can conclude that 

lim
x→1+

 
−1

x − 1
= −∞. Limit from the right side is negative infinity.

 Figure 2.40(b) confirms this analysis. 

teChnoLogy Remember that you can use a numerical approach to analyze 
a limit. For instance, you can use a graphing utility to create a table of values to 
analyze the limit in Example 1(a), as shown in the figure below.

X Y1

X=1

100
10000
1E6
ERROR
1E6
10000
100

.99

.9

.999

1.001
1.01
1.1

1

As x approaches 1 from the left, f (x)
increases without bound.

Enter x-values using ask mode.

As x approaches 1 from the right, f (x)
increases without bound.

Use a graphing utility to make a table of values to analyze the limit in Example 1(b).

exploration
Use a graphing utility to 
graph each function. For 
each function, analytically 
find the single real number 
c that is not in the domain. 
Then graphically find the 
limit (if it exists) of f(x) as 
x approaches c from the left 
and from the right.

a. f(x) =
3

x − 4

b. f(x) =
1

2 − x

c. f(x) =
2

(x − 3)2

d. f(x) =
−3

(x + 2)2
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Vertical Asymptotes
If it were possible to extend the graphs in Figure 2.40 toward positive and negative 
infinity, you would see that each graph becomes arbitrarily close to the vertical line 
x = 1. This line is a vertical asymptote of the graph of f. (You will study other types 
of asymptotes in Sections 4.5 and 4.6.)

Definition of Vertical Asymptote

If f(x) approaches infinity (or negative infinity) as x approaches c from the right
or the left, then the line x = c is a vertical asymptote of the graph of f.

In Example 1, note that each of the functions is a quotient and that the vertical 
asymptote occurs at a number at which the denominator is 0 (and the numerator is not 
0). The next theorem generalizes this observation.

theoReM 2.14 Vertical Asymptotes

Let f  and g be continuous on an open interval containing c. If f(c) ≠ 0, 
g(c) = 0, and there exists an open interval containing c such that g(x) ≠ 0 for 
all x ≠ c in the interval, then the graph of the function

h(x) =
f (x)
g(x)

has a vertical asymptote at x = c.

A proof of this theorem is given in Appendix A. 

 Finding Vertical Asymptotes

See LarsonCalculus.com for an interactive version of this type of example.

a. When x = −1, the denominator of

h(x) =
1

2(x + 1)

   is 0 and the numerator is not 0. So, by Theorem 2.14, you can conclude that x = −1 
is a vertical asymptote, as shown in Figure 2.41(a).

b. By factoring the denominator as

h(x) =
x2 + 1
x2 − 1

=
x2 + 1

(x − 1)(x + 1)

   you can see that the denominator is 0 at x = −1 and x = 1. Also, because the 
numerator is not 0 at these two points, you can apply Theorem 2.14 to conclude that 
the graph of f  has two vertical asymptotes, as shown in Figure 2.41(b).

c. By writing the cotangent function in the form

h(x) = cot x =
cos x
sin x

   you can apply Theorem 2.14 to conclude that vertical asymptotes occur at all  values 
of x such that sin x = 0 and cos x ≠ 0, as shown in Figure 2.41(c). So, the graph 
of this function has infinitely many vertical asymptotes. These asymptotes occur at
x = nπ, where n is an integer. 

ReMARK If the graph of 
a function f  has a vertical 
asymptote at x = c, then f  is 
not continuous at c.

(a)

(b)

x
1

2

−1

−2

h(x) = 1
2(x + 1)

y

−1

x

2

2

4

4−2−4

h(x) = x2 + 1
x2 − 1

y

(c)
Functions with vertical asymptotes
Figure 2.41

x
ππ−2 π2

2

4

6

−6

−4

y
h(x) = cot x
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110 Chapter 2 Limits and  Their Properties

Theorem 2.14 requires that the value of the numerator at x = c be nonzero. When 
both the numerator and the denominator are 0 at x = c, you obtain the indeterminate 
form 0�0, and you cannot determine the limit behavior at x = c without further 
investigation, as illustrated in Example 3.

 A Rational Function with Common Factors

Determine all vertical asymptotes of the graph of

h(x) =
x2 + 2x − 8

x2 − 4
.

Solution Begin by simplifying the expression, as shown.

 h(x) =
x2 + 2x − 8

x2 − 4

 =
(x + 4)(x − 2)
(x + 2)(x − 2)

 =
x + 4
x + 2

, x ≠ 2

At all x-values other than x = 2, the graph of h coincides with the graph of 
k(x) = (x + 4)�(x + 2). So, you can apply Theorem 2.14 to k to conclude that there 
is a vertical asymptote at x = −2, as shown in Figure 2.42. From the graph, you can 
see that

lim
x→−2−

 
x2 + 2x − 8

x2 − 4
= −∞ and lim

x→−2+
 
x2 + 2x − 8

x2 − 4
= ∞.

Note that x = 2 is not a vertical asymptote.

 Determining Infinite Limits

Find each limit.

lim
x→1−

 
x2 − 3x
x − 1

 and lim
x→1+

 
x2 − 3x
x − 1

Solution Because the denominator is 0 when x = 1 (and the numerator is not 0), 
you know that the graph of

h(x) =
x2 − 3x
x − 1

has a vertical asymptote at x = 1. This means that each of the given limits is either ∞ 
or −∞. You can determine the result by analyzing h at values of x close to 1 or by 
using a graphing utility. From the graph of h shown in Figure 2.43, you can see that 
the graph approaches ∞ from the left of x = 1 and approaches −∞ from the right of 
x = 1. So, you can conclude that

lim
x→1−

 
x2 − 3x
x − 1

= ∞ The limit from the left is infinity.

and

lim
x→1+

 
x2 − 3x
x − 1

= −∞. The limit from the right is negative infinity. 

teChnoLogy pItFALL When using a graphing utility, be careful to 
interpret correctly the graph of a function with a vertical asymptote—some graphing 
utilities have difficulty drawing this type of graph.

h (x) increases and decreases without 
bound as x approaches −2.
Figure 2.42

4

2

−2

2−4

y

x

Unde�ned
when x = 2

Vertical
asymptote
at x = −2

h(x) = x
2 + 2x − 8
x2 − 4

The graph of h has a vertical asymptote 
at x = 1.
Figure 2.43

−4 6

−6

6
h(x) = x2 − 3x

x − 1
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theoReM 2.15 properties of Infinite Limits

Let c and L be real numbers, and let f  and g be functions such that

lim
x→c

 f(x) = ∞ and lim
x→c 

g(x) = L.

1. Sum or difference: lim
x→c

 [ f(x) ± g(x)] = ∞
2. Product: lim

x→c
 [ f(x)g(x)] = ∞, L > 0

  lim
x→c

 [ f(x)g(x)] = −∞, L < 0

3. Quotient: lim
x→c

 
g(x)
f(x)

= 0

Similar properties hold for one-sided limits and for functions
for which the limit of f(x) as x approaches c is −∞ [see
Example 5(d)].

proof Here is a proof of the sum property. (The proofs of the remaining properties 
are left as an exercise [see Exercise 72].) To show that the limit of f(x) + g(x) is 
infinite, choose M > 0. You then need to find δ > 0 such that [ f (x) + g(x)] > M 
whenever 0 < ∣x − c∣ < δ. For simplicity’s sake, you can assume L is positive. Let 
M1 = M + 1. Because the limit of f(x) is infinite, there exists δ1 such that f(x) > M1 
whenever 0 < ∣x − c∣ < δ1. Also, because the limit of g(x) is L, there exists δ2 such 
that ∣g(x) − L∣ < 1 whenever 0 < ∣x − c∣ < δ2. By letting δ be the smaller of δ1 and 
δ2, you can conclude that 0 < ∣x − c∣ < δ implies f(x) > M + 1 and ∣g(x) − L∣ < 1. 
The second of these two inequalities implies that g(x) > L − 1, and adding this to the 
first inequality, you can write

f(x) + g(x) > (M + 1) + (L − 1) = M + L > M.

So, you can conclude that

lim
x→c

 [ f(x) + g(x)] = ∞. 

 Determining Limits

a. Because lim
x→0

 1 = 1 and lim
x→0

 
1
x2 = ∞, you can write

lim
x→0

 (1 +
1
x2) = ∞. Property 1, Theorem 2.15

b. Because lim
x→1−

 (x2 + 1) = 2 and lim
x→1−

 (cot π x) = −∞, you can write

lim
x→1−

   
x2 + 1
cot π x

= 0. Property 3, Theorem 2.15

c. Because lim
x→0+

 3 = 3 and lim
x→0+

 ln x = −∞, you can write

lim
x→0+

 3 ln x = −∞. Property 2, Theorem 2.15 (See Figure 2.44.)

d. Because lim
x→0−

 x2 = 0 and lim
x→0−

 
1
x

= −∞, you can write

lim
x→0−

 (x2 +
1
x) = −∞. Property 1, Theorem 2.15 

ReMARK Note that the 
solution to Example 5(d) uses 
Property 1 from Theorem 2.15 
for which the limit of f(x) as x 
approaches c is −∞.

ReMARK Be sure you 
understand that Property 2 of 
Theorem 2.15 is not valid when 
lim
x→c

 g(x) = 0.

5

−3

−1

1

With a graphing utility, you can confirm 
that the natural logarithmic function 
has a vertical asymptote at x = 0. This 
implies that lim

x→0+
 ln x = −∞.

Figure 2.44
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112 Chapter 2 Limits and  Their Properties

2.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Infinite Limit In your own words, describe the 

meaning of an infinite limit. What does ∞ represent?

2.  Vertical Asymptote In your own words, describe 
what is meant by a vertical asymptote of a graph.

 Determining Infinite Limits from a 
graph In Exercises 3–6, determine whether 
f(x) approaches ∞  or −∞ as x approaches −2 
from the left and from the right.

 3. f (x) = 2∣ x
x2 − 4∣  4. f (x) =

1
x + 2

x
−2 2 4

2

−2

4

6

y  

x
−1 1

3

2

−2

−3

y

 5. f (x) = tan 
πx
4

  6. f (x) = sec 
πx
4

x
−6 −2 2 6

3

2

1

y  

x
−6 −2 2 6

1

y

 Determining Infinite Limits In Exercises 
7–10, determine whether f(x) approaches ∞   
or −∞ as x approaches 4 from the left and from 
the right.

 7. f (x) =
1

x − 4
  8. f (x) =

−1
x − 4

 9. f (x) =
1

(x − 4)2 10. f (x) =
−1

(x − 4)2

numerical and graphical Analysis In Exercises 11–16, 
create a table of values for the function and use the result to 
determine whether f (x) approaches ∞  or −∞ as x approaches 
−3 from the left and from the right. Use a graphing utility to 
graph the function to confirm your answer.

11. f (x) =
1

x2 − 9
 12. f (x) =

x
x2 − 9

13. f (x) =
x2

x2 − 9
 14. f (x) = −

1
3 + x

15. f (x) = cot 
π x
3

 16. f (x) = tan 
πx
6

 Finding Vertical Asymptotes In Exercises 
17–32, find the vertical asymptotes (if any) of the 
graph of the function.

17. f (x) =
x2

x2 − 4
 18. g(t) =

t − 1
t 2 + 1

19. f (x) =
3

x2 + x − 2
 20. g(x) =

x2 − 5x + 25
x3 + 125

21. f (x) =
4x2 + 4x − 24

x4 − 2x3 − 9x2 + 18x

22. h(x) =
x2 − 9

x3 + 3x2 − x − 3

23. f (x) =
e−2x

x − 1
 24. g(x) = xe−2x

25. h(t) =
ln(t2 + 1)

t + 2
 26. f (z) = ln(z2 − 4)

27. f (x) =
1

ex − 1
 28. f (x) = ln(x + 3)

29. f (x) = csc πx 30. f (x) = tan πx

31. s(t) =
t

sin t
 32. g(θ) =

tan θ
θ

 Vertical Asymptote or Removable 
Discontinuity In Exercises 33 –36, determine 
whether the graph of the function has a vertical 
asymptote or a removable discontinuity at x = −1. 
Graph the function using a graphing utility to 
confirm your answer.

33. f (x) =
x2 − 1

x + 1
 34. f (x) =

x2 − 2x − 8
x + 1

35. f (x) =
cos(x2 − 1)

x + 1
 36. f (x) =

ln(x2 + 1)
x + 1

 Finding a one-Sided Limit In Exercises 
37–52, find the one-sided limit (if it exists).

37. lim
x→2+

 
x

x − 2
 38. lim

x→2−
 

x2

x2 + 4

39. lim
x→−3−

 
x + 3

x2 + x − 6
 40. lim

x→(−1�2)+
 

6x2 + x − 1
4x2 − 4x − 3

41. lim
x→0−

 (1 +
1
x) 42. lim

x→0+
 (6 −

1
x3)

43. lim
x→−4−

 (x2 +
2

x + 4) 44. lim
x→0+

 (x −
1
x

+ 3)
45. lim

x→0+
 (sin x +

1
x) 46. lim

x→(π�2)+
 

−2
cos x

 

47. lim
x→8−

 
ex

(x − 8)3 48. lim
x→4+

 ln(x2 − 16)

49. lim
x→(π�2)−

 ln∣cos x∣ 50. lim
x→0+

 e−0.5x sin x

51. lim
x→(1�2)−

 x sec π x 52. lim
x→(1�2)+

 x2 tan π x
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Finding a one-Sided Limit Using technology In 
Exercises 53 and 54, use a graphing utility to graph the 
function and determine the one-sided limit.

53. lim
x→1+

 
x2 + x + 1

x3 − 1
 54. lim

x→1−
 

x3 − 1
x2 + x + 1

 Determining Limits In Exercises 55 and 56, 
use the information to determine the limits.

55. lim
x→c

 f (x) = ∞ 56. lim
x→c

 f (x) = −∞
 lim

x→c
 g(x) = −2  lim

x→c
 g(x) = 3

 (a) lim
x→c

 [ f (x) + g(x)]  (a) lim
x→c

 [ f (x) + g(x)]

 (b) lim
x→c

 [ f (x)g(x)]  (b) lim
x→c

 [ f (x)g(x)]

 (c) lim
x→c

 
g(x)
f (x)  (c) lim

x→c
 
g(x)
f (x)

eXpLoRInG ConCeptS
57.  Writing a Rational Function Write a rational 

function with vertical asymptotes at x = 6 and x = −2,
and with a zero at x = 3.

58.  Rational Function Does the graph of every rational 
function have a vertical asymptote? Explain.

59.   Sketching a graph Use the graph of the function 
f  (see figure) to sketch the graph of g(x) = 1�f (x) on the 
interval [−2, 3]. To print an enlarged copy of the graph, 
go to MathGraphs.com.

321
−1

−1−2

2

x

f

y

60.  Relativity According to the theory of relativity, the 
mass m of a particle depends on its velocity v. That is,

  m =
m0

√1 − (v2�c2)
, where m0 is the mass when the particle is

  at rest and c is the speed of light. Find the limit of the mass as 
v approaches c from the left.

61.  numerical and graphical Reasoning Use a graphing 
utility to complete the table for each function and graph each 
function to estimate the limit. What is the value of the limit 
when the power of x in the denominator is greater than 3?

 
x 1 0.5 0.2 0.1 0.01 0.001 0.0001

f (x)

 (a) lim
x→0+

 
x − sin x

x
 (b) lim

x→0+
 
x − sin x

x2

 (c) lim
x→0+

 
x − sin x

x3  (d) lim
x→0+

 
x − sin x

x4

 62.  hoW Do yoU See It? For a quantity of gas 
at a constant temperature, the pressure P is inversely 
proportional to the volume V. What is the limit of P 
as V approaches 0 from the right? Explain what this 
means in the context of the problem.

Volume

Pr
es

su
re

V

P

 62.  

63.  Rate of Change A 25-foot ladder is leaning against a 
house (see figure). If the base of the ladder is pulled away from 
the house at a rate of 2 feet per second, then the top will move 
down the wall at a rate of

 r =
2x

√625 − x2
 ft�sec

  where x is the distance between the base of the ladder and the 
house, and r is the rate in feet per second.

2

25 ftr
ft

sec

x

 (a) Find the rate r when x is 7 feet.

 (b) Find the rate r when x is 15 feet.

 (c) Find the limit of r as x approaches 25 from the left.

On a trip of d miles to another city, a truck driver’s average 
speed was x miles per hour. On the return trip, 
the average speed was y miles per hour. The average 
speed for the round trip was 50 miles per hour.

(a) Verify that

 y =
25x

x − 25
.

 What is the domain?

(b) Complete the table.

 
x 30 40 50 60

y

  Are the values of y different than you expected? Explain.

(c)  Find the limit of y as x approaches 25 from the right 
and interpret its meaning.

64. Average Speed

iStockphoto.com/WendellandCarolyn
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65.  numerical and graphical Analysis Consider the 
shaded region outside the sector of a circle of radius 10 meters 
and inside a right triangle (see figure).

10 m
θ

 (a)  Write the area A = f (θ ) of the region as a function of θ. 
Determine the domain of the function.

 (b)  Use a graphing utility to complete the table and graph the 
function over the appropriate domain.

  
θ 0.3 0.6 0.9 1.2 1.5

f (θ)

 (c) Find the limit of A as θ approaches π�2 from the left.

66.  numerical and graphical Reasoning A crossed belt 
connects a 20-centimeter pulley (10-cm radius) on an electric 
motor with a 40-centimeter pulley (20-cm radius) on a saw 
arbor (see  figure). The electric motor runs at 1700 revolutions 
per minute.

10 cm 20 cm

ϕ

 (a) Determine the number of revolutions per minute of the saw.

 (b)  How does crossing the belt affect the saw in relation to the 
motor?

 (c)  Let L be the total length of the belt. Write L as a function 
of ϕ, where ϕ is measured in radians. What is the domain of 
the function? (Hint: Add the lengths of the straight sections 
of the belt and the length of the belt around each pulley.)

 (d) Use a graphing utility to complete the table.

  
ϕ 0.3 0.6 0.9 1.2 1.5

L

 (e)  Use a graphing utility to graph the function over the  
appropriate domain.

 (f) Find lim
ϕ→(π�2)− 

 L. 

 (g)  Use a geometric argument as the basis of a second method 
of finding the limit in part (f ).

 (h) Find lim
ϕ→0+

 L.

true or False? In Exercises 67–70, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

67.  The graph of a function cannot cross a vertical asymptote.

68.  The graphs of polynomial functions have no vertical 
asymptotes.

69.  The graphs of trigonometric functions have no vertical  
asymptotes.

70.  If f  has a vertical asymptote at x = 0, then f  is undefined at 
x = 0.

71.  Finding Functions Find functions f  and g such that 
lim
x→c

 f (x) = ∞ and lim
x→c

 g(x) = ∞, but lim
x→c

 [ f (x) − g(x)] ≠ 0.

72.  proof Prove the difference, product, and quotient properties 
in Theorem 2.15.

73. proof Prove that if lim
x→c

 f (x) = ∞, then lim
x→c

 
1

f (x) = 0.

74. proof Prove that if

 lim
x→c

 
1

f (x) = 0

 then lim
x→c

 f (x) does not exist.

Infinite Limits In Exercises 75–78, use the ε–δ definition of 
infinite limits to prove the statement.

75. lim
x→3+

 
1

x − 3
= ∞ 76. lim

x→5−
 

1
x − 5

= −∞

77. lim
x→8+

 
3

8 − x
= −∞ 78. lim

x→9−
 

6
9 − x

= ∞

Recall from Theorem 2.9 that the limit of

f (x) =
sin x

x

as x approaches 0 is 1.

(a)  Use a graphing utility to graph the function f  on the interval 
−π ≤ x ≤ π. Explain how the graph helps confirm this theorem.

(b)  Explain how you could use a table of values to confirm the 
value of this limit numerically.

(c)  Graph g(x) = sin x by hand. Sketch a tangent line at the point 
(0, 0) and visually estimate the slope of this tangent line.

(d)  Let (x, sin x) be a point on the graph of g near (0, 0), and write 
a formula for the slope of the secant line joining (x, sin x) and 
(0, 0). Evaluate this formula at x = 0.1 and x = 0.01. Then 
find the exact slope of the tangent line to g at the point (0, 0).

(e)  Sketch the graph of the cosine function h(x) = cos x. What is 
the slope of the tangent line at the point (0, 1)? Use limits to 
find this slope analytically.

(f )  Find the slope of the tangent line to k(x) = tan x at (0, 0).

graphs and Limits of trigonometric Functions
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Precalculus or Calculus In Exercises 1 and 2, decide 
whether the problem can be solved using precalculus or 
whether calculus is required. If the problem can be solved using 
precalculus, solve it. If the problem seems to require calculus, 
explain your reasoning and use a graphical or numerical 
approach to estimate the solution.

 1.  Find the distance between the points (1, 1) and (3, 9) along the 
curve y = x2.

 2.  Find the distance between the points (1, 1) and (3, 9) along the 
line y = 4x − 3.

Estimating a Limit Numerically In Exercises 3 and 4, 
complete the table and use the result to estimate the limit. Use 
a graphing utility to graph the function to confirm your result.

 3. lim
x→3

 
x − 3

x2 − 7x + 12

 x 2.9 2.99 2.999 3 3.001 3.01 3.1

f (x) ?

 4. lim
x→0

 
√x + 4 − 2

x

 x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

Finding a Limit Graphically In Exercises 5 and 6, use the 
graph to find the limit (if it exists). If the limit does not exist, 
explain why.

 5. h(x) = ⟨−
x
2⟩ + x2  6. f (t) =

ln(t + 2)
t

 

x

y

−1 1 2 3

3

2

1

−1

  

t
−2 −1 21

2

1

y

  (a) lim
x→2

 h(x)  (b) lim
x→1

 h(x)  (a) lim
t→0

 f (t)  (b) lim
t→−1

 f (t)

Using the ε-δ Definition of a Limit In Exercises 7–10, 
find the limit L. Then use the ε-δ definition to prove that the 
limit is L.

 7. lim
x→1

 (x + 4)  8. lim
x→9

 √x

 9. lim
x→2

 (1 − x2) 10. lim
x→5

 9

Finding a Limit In Exercises 11–28, find the limit.

11. lim
x→−6

 x2 12. lim
x→0

 (5x − 3)

13. lim
x→27

 ( 3√x − 1)4 14. lim
x→2

 √x3 + 1

15. lim
x→4

 
4

x − 1
 16. lim

x→2
 

x
x2 + 1

17. lim
x→−3

 
2x2 + 11x + 15

x + 3
 18. lim

t→4
 
t 2 − 16
t − 4

19. lim
x→4

 
√x − 3 − 1

x − 4
 20. lim

x→0
 
√9 + x − 3

x

21. lim
x→0

 
[1�(x + 1)] − 1

x
 22. lim

s→0
 
(1�√1 + s ) − 1

s

23. lim
x→0

 
1 − cos x

sin x
 24. lim

x→π�4
 

4x
tan x

25. lim
x→1

 ex−1 sin 
πx
2

 26. lim
x→2

 
ln(x − 1)2

ln(x − 1)

27. lim
∆x→0

 
sin[(π�6) + ∆x] − (1�2)

∆x

 [Hint: sin(θ + ϕ) = sin θ cos ϕ + cos θ sin ϕ]

28. lim
∆x→0

 
cos(π + ∆x) + 1

∆x

 [Hint: cos(θ + ϕ) = cos θ cos ϕ − sin θ sin ϕ]

Evaluating a Limit In Exercises 29–32, evaluate the limit 
given lim

x→c
 f (x) = −6 and lim

x→c
 g(x) = 1

2.

29. lim
x→c

 [ f (x)g(x)] 30. lim
x→c

 
 f (x)
g(x)

31. lim
x→c

 [ f (x) + 2g(x)] 32. lim
x→c

 [ f (x)]2

Graphical, Numerical, and Analytic Analysis In 
Exercises 33–36, use a graphing utility to graph the function 
and estimate the limit. Use a table to reinforce your conclusion. 
Then find the limit by analytic methods.

33. lim
x→0

 
√2x + 9 − 3

x
 34. lim

x→0
 
[1�(x + 4)] − (1�4)

x

35. lim
x→−9

 
x3 + 729

x + 9
 36. lim

x→0
 
cos x − 1

x

Free-Falling Object In Exercises 37 and 38, use the position 
function s(t) = −4.9t 2 + 250, which gives the height (in 
meters) of an object that has fallen for t seconds from a height 
of 250 meters. The velocity at time t = a seconds is given by

lim
t→a

 
s(a) − s(t)

a − t
.

37. Find the velocity of the object when t = 4.

38.  When will the object hit the ground? At what velocity will the 
object impact the ground?

Finding a Limit In Exercises 39–50, find the limit (if it 
exists). If it does not exist, explain why.

39. lim
x→3+

 
1

x + 3
  40. lim

x→6−
 

x − 6
x2 − 36
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41. lim
x→25+

 
√x − 5
x − 25

 42. lim
x→3−

 
∣x − 3∣
x − 3

 

43. lim
x→2

 f (x), where f (x) = {(x − 2)2,    

2 − x,
 
x ≤ 2

x > 2

44. lim
x→1+

 g(x), where g(x) = {√1 − x,    

x + 1,
 
x ≤ 1

x > 1

45. lim
t→1

 h(t), where h(t) = { t 3 + 1,
1
2(t + 1),    

 
t < 1

t ≥ 1

46. lim
s→−2

 f (s), where f (s) = {−s2 − 4s − 2,    

s2 + 4s + 6,
 
s ≤ −2

s > −2

47. lim
x→2−

 (2⟨x⟩ + 1) 48. lim
x→4

 ⟨x − 1⟩

49. lim
x→2−

 
x2 − 4

∣x − 2∣ 50. lim
x→1+

 √x(x − 1)

Continuity on a Closed Interval In Exercises 51 and 52, 
discuss the continuity of the function on the closed interval.

51. g(x) = √8 − x3, [−2, 2] 52. h(x) =
3

5 − x
, [0, 5]

Removable and Nonremovable Discontinuities In 
Exercises 53–58, find the x-values (if any) at which f  is not  
continuous. Which of the discontinuities are removable?

53. f (x) = x4 − 81x 54. f (x) = x2 − x + 20

55. f (x) =
4

x − 5
 56. f (x) =

1
x2 − 9

57. f (x) =
x

x3 − x
 58. f (x) =

x + 3
x2 − 3x − 18

59.  Making a Function Continuous Find the value of c 
such that the function is continuous on the entire real number 
line.

 f (x) = {x + 3,
cx + 6,   

 x ≤ 2
 x > 2

60.  Making a Function Continuous Find the value of c 
such that the function is  continuous on the entire real number  
line.

 f (x) = {cx2 − 2x,
ex+1 + 3,

     x < −1
     x ≥ −1

Testing for Continuity In Exercises 61–68, describe the 
intervals on which the function is continuous.

61. f (x) = −3x2 + 7 62. f (x) =
4x2 + 7x − 2

x + 2

63. f (x) = √x + cos x 64. f (x) = ⟨x + 3⟩

65. g(x) = 2e⟨x⟩�4 66. h(x) = −2 ln∣5 − x∣
67. f (x) = {3x2 − x − 2

x − 1
,

0,

x ≠ 1

x = 1
 

68. f (x) = {5 − x,
2x − 3,

    x ≤ 2
    x > 2

69.  Using the Intermediate Value Theorem Use the 
Intermediate Value Theorem to show that f (x) = 2x3 − 3 has 
a zero in the interval [1, 2].

70.   Using the Intermediate Value Theorem Use the 
Intermediate Value Theorem to show that f (x) = x2 + x − 2 
has at least two zeros in the interval [−3, 3]. 

Using the Intermediate Value Theorem In Exercises 
71 and 72, verify that the Intermediate Value Theorem applies 
to the indicated interval and find the value of c guaranteed by 
the theorem.

71. f (x) = x2 + 5x − 4, [−1, 2], f (c) = 2

72. f (x) = (x − 6)3 + 4, [4, 7], f (c) = 3

Determining Infinite Limits In Exercises 73 and 74, 
determine whether f (x) approaches ∞  or −∞ as x approaches 
6 from the left and from the right.

73. f (x) =
1

x − 6
 74. f (x) =

−1
(x − 6)2

Finding Vertical Asymptotes In Exercises 75–82, find 
the vertical asymptotes (if any) of the graph of the function.

75. f (x) =
3
x
 76. f (x) =

5
(x − 2)4

77. f (x) =
x3

x 2 − 9
 78. h(x) =

6x
36 − x2

79. f (x) = sec 
πx
2

 80. f (x) = csc πx

81. g(x) = ln(25 − x2) 82. f (x) = 7e−3�x

Finding a One-Sided Limit In Exercises 83–94, find the 
one-sided limit (if it exists).

83. lim
x→1−

 
x2 + 2x + 1

x − 1
 84. lim

x→(1�2)+
 

x
2x − 1

85. lim
x→−1+

 
x + 1
x3 + 1

 86. lim
x→−1−

 
x + 1
x4 − 1

87. lim
x→0+

 (x −
1
x3) 88. lim

x→2−
  

1
3√x2 − 4

89. lim
x→0+

 
sin 4x

5x
 90. lim

x→0−
 
sec x3

2x

91. lim
x→0+

 
csc 2x

x
 92. lim

x→0−
 
cos2 x

x

93. lim
x→0+

 ln(sin x) 94. lim
x→0−

 12e−2�x

95.  Environment A utility company burns coal to generate 
electricity. The cost C in dollars of removing p% of the air 
pollutants in the stack emissions is

 C =
80,000p
100 − p

, 0 ≤ p < 100.

 (a) Find the cost of removing 50% of the pollutants.

 (b) Find the cost of removing 90% of the pollutants.

 (c)  Find the limit of C as p approaches 100 from the left and 
interpret its meaning.
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Perimeter Let P(x, y) be a point on the parabola y = x2 in 
the first quadrant. Consider the triangle △PAO formed by P, 
A(0, 1), and the origin O(0, 0), and the triangle △PBO formed 
by P, B(1, 0), and the origin (see figure).

x

A
P

O
B

1

1

y

 (a) Write the perimeter of each triangle in terms of x.

 (b) Let r(x) be the ratio of the perimeters of the two triangles,

  r(x) =
Perimeter △PAO
Perimeter △PBO

.

  Complete the table. Calculate lim
x→0+

 r(x).
  

x 4 2 1 0.1 0.01

Perimeter △PAO

Perimeter △PBO

r(x)

2.  Area Let P(x, y) be a point on the parabola y = x2 in the first 
quadrant. Consider the triangle △PAO formed by P, A(0, 1), 
and the origin O(0, 0), and the triangle △PBO formed by P, 
B(1, 0), and the origin (see figure).

x

A
P

O
B

1

1

y

 (a) Write the area of each triangle in terms of x.

 (b) Let a(x) be the ratio of the areas of the two triangles, 

  a(x) =
Area △PBO
Area △PAO

.

  Complete the table. Calculate lim
x→0+

 a(x).

  
x 4 2 1 0.1 0.01

Area △PAO

Area △PBO

a(x)

3. Area of a Circle

 (a)  Find the area of a regular hexagon inscribed in a circle of 
radius 1 (see figure). How close is this area to that of the circle?

1

 (b)  Find the area An of an n-sided regular polygon inscribed in 
a circle of radius 1. Write your answer as a function of n.

 (c)  Complete the table. What number does An approach as n 
gets larger and larger?

  
n 6 12 24 48 96

An

4.  Tangent Line Let P(3, 4) be a point on the circle 
x2 + y2 = 25 (see figure).

 (a) What is the slope of the line joining P and O(0, 0)?
 (b) Find an equation of the tangent line to the circle at P.

 (c)  Let Q(x, y) be another point on the circle in the first  
quadrant. Find the slope mx of the line joining P and Q in 
terms of x.

 (d)  Calculate lim
x→3

 mx. How does this number relate to your

  answer in part (b)?

  

2−2

−6

6

2

6−6
x

P(3, 4)

Q

O

y  

5−5

15

5

15−15
x

P(5, −12)

Q
O

y

 Figure for 4 Figure for 5

5.  Tangent Line Let P(5, −12) be a point on the circle 
x2 + y2 = 169 (see figure).

 (a) What is the slope of the line joining P and O(0, 0)?
 (b) Find an equation of the tangent line to the circle at P.

 (c)  Let Q(x, y) be another point on the circle in the fourth  
quadrant. Find the slope mx of the line joining P and Q in 
terms of x.

 (d)  Calculate lim
x→5

 mx. How does this number relate to your

  answer in part (b)?
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 6.  Finding Values Find the values of the constants a and b 
such that

 lim
x→0

 
√a + bx − √3

x
= √3.

 7.  Finding Limits Consider the function 

 f (x) =
√3 + x1�3 − 2

x − 1
.

 (a) Find the domain of f.

 (b) Use a graphing utility to graph the function.

 (c) Find lim
x→−27+

 f (x).

 (d) Find lim
x→1

 f (x).

 8.  Making a Function Continuous Find all values of the 
constant a such that f  is continuous for all real numbers.

 f (x) = { ax
tan x

,

a2 − 2,

x ≥ 0

x < 0

 9.  Choosing Graphs Consider the graphs of the four  
functions g1, g2, g3, and g4.

x
321

1

2

3

g1

y   

321

g2

y

x

1

2

3

321

g3

y

x

1

2

3

  

x
321

g4

y

1

2

3

  For each given condition of the function f, which of the graphs 
could be the graph of f ?

 (a) lim
x→2

  f (x) = 3

 (b) f  is continuous at 2.

 (c) lim
x→2− 

 f (x) = 3

10. Limits and Continuity Sketch the graph of the function

  f (x) = ⟨1
x⟩.

 (a) Evaluate f (1
4), f (3), and f (1).

 (b)  Evaluate the limits lim
x→1−

 f (x), lim
x→1+

 f (x), lim
x→0−

 f (x), and 
lim

x→0+
 f (x).

 (c)  Discuss the continuity of the function.

11.  Limits and Continuity Sketch the graph of the function 
f (x) = ⟨x⟩ + ⟨−x⟩.

 (a) Evaluate f (1), f (0), f (1
2), and f (−2.7).

 (b)  Evaluate the limits lim
x→1−

 f (x), lim
x→1+

 f (x), and lim
x→1�2

 f (x).

 (c)  Discuss the continuity of the function.

12.  Escape Velocity To escape Earth’s gravitational field, 
a rocket must be launched with an initial velocity called the 
escape velocity. A rocket launched from the surface of Earth 
has velocity v (in miles per second) given by

 v =√2GM
r

+ v0
2 −

2GM
R

≈√192,000
r

+ v0
2 − 48

  where v0 is the initial velocity, r is the distance from the rocket 
to the center of Earth, G is the gravitational constant, M is the 
mass of Earth, and R is the radius of Earth (approximately 
4000 miles).

 (a)  Find the value of v0 for which you obtain an infinite limit 
for r as v approaches zero. This value of v0 is the escape 
 velocity for Earth.

 (b)  A rocket launched from the surface of the moon has 
 velocity v (in miles per second) given by

  v =√1920
r

+ v0
2 − 2.17.

  Find the escape velocity for the moon.

 (c)  A rocket launched from the surface of a planet has velocity 
v (in miles per second) given by 

  v =√10,600
r

+ v0
2 − 6.99.

   Find the escape velocity for this planet. Is the mass of 
this planet larger or smaller than that of Earth? (Assume 
that the mean density of this planet is the same as that of 
Earth.)

13.  Pulse Function For positive numbers a < b, the pulse 
function is defined as

 Pa,b(x) = H(x − a) − H(x − b) = {0,
1,
0,

x < a
a ≤ x < b
x ≥ b

 where H(x) = {1,
0,    

 x ≥ 0
 x < 0

 is the Heaviside function.

 (a) Sketch the graph of the pulse function.

 (b) Find the following limits:

  (i) lim
x→a+

 Pa,b(x) (ii) lim
x→a−

 Pa,b(x)

  (iii) lim
x→b+

 Pa,b(x) (iv) lim
x→b−

 Pa,b(x)

 (c) Discuss the continuity of the pulse function.

 (d) Why is U(x) =
1

b − a
 Pa,b(x) called the unit pulse function?

14.  Proof Let a be a nonzero constant. Prove that if lim
x→0

 f (x) = L,

 then lim
x→0

 f (ax) = L. Show by means of an example that a must

 be nonzero.
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3.2 Basic Differentiation Rules and Rates of Change
3.3 Product and Quotient Rules and Higher-Order Derivatives
3.4 The Chain Rule
3.5 Implicit Differentiation
3.6 Derivatives of Inverse Functions
3.7 Related Rates
3.8 Newton’s Method

 3

Bacteria (Exercise 165, p. 168)
Rate of Change

(Example 2, p. 186)

Velocity of a Falling Object
(Example 10, p. 137)

Stopping Distance (Exercise 109, p.142)

Acceleration Due to Gravity (Example 10, p. 149)
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Differentiation

Clockwise from top left, Kateryna Kon/Shutterstock.com; Russ Bishop/Alamy Stock Photo;
Richard Megna/Fundamental Photographs; Tumar/Shutterstock.com; NASA
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120 Chapter 3 Differentiation

3.1 The Derivative and the Tangent Line Problem

 Find the slope of the tangent line to a curve at a point.
 Use the limit definition to find the derivative of a function.
 Understand the relationship between differentiability and continuity.

The Tangent Line Problem
Calculus grew out of four major problems that European mathematicians were working 
on during the seventeenth century.

1. The tangent line problem (Section 2.1 and this section)

2. The velocity and acceleration problem (Sections 3.2 and 3.3)

3. The minimum and maximum problem (Section 4.1)

4. The area problem (Sections 2.1 and 5.2)

Each problem involves the notion of a limit, and calculus can be introduced with any 
of the four problems.

A brief introduction to the tangent line problem is given in Section 2.1. Although 
partial solutions to this problem were given by Pierre de Fermat (1601–1665), 
René Descartes (1596–1650), Christian Huygens (1629–1695), and Isaac Barrow 
(1630–1677), credit for the first general solution is usually given to Isaac Newton 
(1642–1727) and Gottfried Leibniz (1646–1716). Newton’s work on this problem 
stemmed from his interest in optics and light refraction.

What does it mean to say that a line is  

Tangent line to a circle
Figure 3.1

x

P

y

tangent to a curve at a point? For a circle, the 
tangent line at a point P is the line that is 
perpendicular to the radial line at point P, as 
shown in Figure 3.1.

For a general curve, however, the problem 
is more difficult. For instance, how would you 
define the tangent lines shown in Figure 3.2? 
You might say that a line is tangent to a curve 
at a point P when it touches, but does not cross, 
the curve at point P. This definition would work 
for the first curve shown in Figure 3.2 but not 
for the second. Or you might say that a line is 
tangent to a curve when the line touches or 
intersects the curve at exactly one point. This 
definition would work for a circle but not for
more general curves, as the third curve in
Figure 3.2 shows.

y = f (x)

x

P

y   

y = f (x)

x

P

y   

y = f(x)

x

P

y

 Tangent line to a curve at a point
 Figure 3.2

ISAAC NEWTON (1642–1727)

In addition to his work in 
calculus, Newton made 
revolutionary contributions to 
physics, including the Law of 
Universal Gravitation and his 
three laws of motion. 
See LarsonCalculus.com to read 
more of this biography.

exploration
Use a graphing utility to graph 
f (x) = 2x3 − 4x2 + 3x − 5. 
On the same screen, graph 
y = x − 5, y = 2x − 5, and 
y = 3x − 5. Which of these 
lines, if any, appears to be 
tangent to the graph of f  at 
the point (0, −5)? Explain 
your reasoning.

Mary Evans Picture Library/Alamy Stock Photo
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3.1 The Derivative and the Tangent Line Problem 121

Essentially, the problem of finding the tangent line at a point P boils down to the 
problem of finding the slope of the tangent line at point P. You can approximate this 
slope using a secant line* through the point of tangency and a second point on the 
curve, as shown in Figure 3.3. If (c, f (c)) is the point of tangency and

(c + ∆x, f (c + ∆x))

is a second point on the graph of f, then the slope of the secant line through the two 
points is given by substitution into the slope formula

 m =
y2 − y1

x2 − x1

 msec =
f (c + ∆x) − f (c)

(c + ∆x) − c
 Change in y

Change in x

msec =
f (c + ∆x) − f (c)

∆x
.    Slope of secant line

The right-hand side of this equation is a difference quotient. The denominator ∆x is 
the change in x, and the numerator

∆y = f (c + ∆x) − f (c)

is the change in y.
The beauty of this procedure is that you can obtain more and more accurate

approximations of the slope of the tangent line by choosing points closer and closer to 
the point of tangency, as shown in Figure 3.4.

Δx → 0

Δx

Δy

(c, f (c))

Δx
Δy

(c, f (c))

(c, f (c))

Tangent line

Δx

Δy

(c, f (c))

  

Tangent line

Δx

Δx

Δx

Δy

Δy

Δy

(c, f (c))

Δx → 0

(c, f (c))

(c, f (c))

(c, f (c))

 Tangent line approximations
 Figure 3.4

Definition of Tangent Line with Slope m
If f  is defined on an open interval containing c, and if the limit

lim
∆x→0

 
∆y
∆x

= lim
∆x→0

 
f (c + ∆x) − f (c)

∆x
= m

exists, then the line passing through (c, f (c)) with slope m is the tangent line to 
the graph of f  at the point (c, f (c)).

The slope of the tangent line to the graph of f  at the point (c, f (c)) is also called 
the slope of the graph of f  at x = c.

*  This use of the word secant comes from the Latin secare, meaning to cut, and is not a 
reference to the trigonometric function of the same name.

The secant line through (c, f (c)) and 
(c + ∆x, f (c + ∆x))
Figure 3.3

x

(c + Δx, f(c + Δx))

f (c + Δx) − f (c) = Δy

Δx

(c, f (c))

y

THE TANGENT LINE PROBLEM

In 1637, mathematician René 
Descartes stated this about the 
tangent line problem:

“And I dare say that this is 
not only the most useful and 
general problem in geometry 
that I know, but even that I 
ever desire to know.”
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122 Chapter 3 Differentiation

 The Slope of the Graph of a Linear Function

To find the slope of the graph of f (x) = 2x − 3 when c = 2, you can apply the  
definition of the slope of a tangent line, as shown.

 lim
∆x→0

 
f (2 + ∆x) − f (2)

∆x
= lim

∆x→0
 
[2(2 + ∆x) − 3] − [2(2) − 3]

∆x

 = lim
∆x→0

 
4 + 2∆x − 3 − 4 + 3

∆x

 = lim
∆x→0

 
2∆x
∆x

 = lim
∆x→0

 2

 = 2

The slope of f  at (c, f (c)) = (2, 1) is m = 2, as shown in Figure 3.5. Notice that the 
limit definition of the slope of f  agrees with the definition of the slope of a line as 
discussed in Section 1.2. 

The graph of a linear function has the same slope at any point. This is not true of 
nonlinear functions, as shown in the next example.

 Tangent Lines to the Graph of a Nonlinear Function

Find the slopes of the tangent lines to the graph of f (x) = x2 + 1 at the points (0, 1) 
and (−1, 2), as shown in Figure 3.6.

Solution Let (c, f (c)) represent an arbitrary point on the graph of f. Then the slope 
of the tangent line at (c, f (c)) can be found as shown below. [Note in the limit process 
that c is held constant (as ∆x approaches 0).]

 lim
∆x→0

 
f (c + ∆x) − f (c)

∆x
= lim

∆x→0
 
[(c + ∆x)2 + 1] − (c2 + 1)

∆x

 = lim
∆x→0

 
c2 + 2c(∆x) + (∆x)2 + 1 − c2 − 1

∆x

 = lim
∆x→0

 
2c(∆x) + (∆x)2

∆x

 = lim
∆x→0

 (2c + ∆x)

 = 2c

So, the slope at any point (c, f (c)) on the graph of f  is m = 2c. At the point (0, 1), the
slope is m = 2(0) = 0, and at (−1, 2), the slope is m = 2(−1) = −2. 

The definition of a tangent line to a curve does not cover the possibility of a 
vertical tangent line. For vertical tangent lines, you can use the following definition. If 
f  is continuous at c and

lim
∆x→0

 
f (c + ∆x) − f (c)

∆x
= ∞ or lim

∆x→0
 
f (c + ∆x) − f (c)

∆x
= −∞

then the vertical line x = c passing through (c, f (c)) is a vertical tangent line to the 
graph of f. For example, the function shown in Figure 3.7 has a vertical tangent line 
at (c, f (c)).  When the domain of f  is the closed interval [a, b], you can extend the  
definition of a vertical tangent line to include the endpoints by considering continuity 
and limits from the right (for x = a) and from the left (for x = b).

The slope of f  at (2, 1) is m = 2.
Figure 3.5

x
1 2 3

3

2

1 (2, 1)

m = 2

f (x) = 2x − 3

Δx = 1

Δy = 2

y

The slope of f  at any point (c, f (c)) is 
m = 2c.
Figure 3.6

4

21

3

2

−2 −1
x

Tangent line
at (0, 1)

Tangent
line at
(−1, 2)

f (x) = x2 + 1

y

The graph of f  has a vertical tangent 
line at (c, f (c)).
Figure 3.7

x

Vertical
tangent
line

c

(c, f (c))

y
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3.1 The Derivative and the Tangent Line Problem 123

The Derivative of a Function
You have now arrived at a crucial point in the study of calculus. The limit used to 
define the slope of a tangent line is also used to define one of the two fundamental 
operations of calculus—differentiation.

Definition of the Derivative of a Function

The derivative of f  at x is

f′(x) = lim
∆x→0

 
f (x + ∆x) − f (x)

∆x

provided the limit exists. For all x for which this limit exists, f′ is a function of x.

Be sure you see that the derivative of a function of x is also a function of x. This 
“new” function gives the slope of the tangent line to the graph of f  at the point (x, f (x)), 
provided that the graph has a tangent line at this point. The derivative can also be used 
to determine the instantaneous rate of change (or simply the rate of change) of one 
variable with respect to another.

The process of finding the derivative of a function is called differentiation. A 
function is differentiable at x when its derivative exists at x and is differentiable on 
an open interval (a, b) when it is differentiable at every point in the interval.

In addition to f′(x), other notations are used to denote the derivative of y = f (x). 
The most common are

f′(x),   dy
dx

,   y′,   
d
dx

 [ f (x)],   Dx[y].    Notations for derivatives

The notation dy�dx is read as “the derivative of y with respect to x” or simply “dy, 
dx.” Using limit notation, you can write

dy
dx

= lim
∆x→0

 
∆y
∆x

= lim
∆x→0

 
f (x + ∆x) − f (x)

∆x
= f′(x).

 Finding the Derivative by the Limit Process

See LarsonCalculus.com for an interactive version of this type of example.

To find the derivative of f (x) = x3 + 2x, use the definition of the derivative as shown.

 f′(x) = lim
∆x→0

 
f (x + ∆x) − f (x)

∆x
 Definition of derivative

 = lim
∆x→0

 
(x + ∆x)3 + 2(x + ∆x) − (x3 + 2x)

∆x

 = lim
∆x→0

 
x3 + 3x2∆x + 3x(∆x)2 + (∆x)3 + 2x + 2∆x − x3 − 2x

∆x

 = lim
∆x→0

 
3x2∆x + 3x(∆x)2 + (∆x)3 + 2∆x

∆x

 = lim
∆x→0

 
∆x[3x2 + 3x∆x + (∆x)2 + 2]

∆x

 = lim
∆x→0

 [3x2 + 3x∆x + (∆x)2 + 2]

 = 3x2 + 2  

 FOR FURTHER INFORMATION
For more information on the 
crediting of mathematical discoveries 
to the first “discoverers,” see the 
article “Mathematical Firsts—
Who Done It?” by Richard H. 
Williams and Roy D. Mazzagatti in 
Mathematics Teacher. To view this 
article, go to MathArticles.com.

remark The notation f′(x) 
is read as “ f  prime of x.”

remark When using the 
definition to find a derivative of 
a function, the key is to rewrite 
the difference quotient so that 
∆x does not occur as a factor 
of the denominator.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



124 Chapter 3 Differentiation

 Using the Derivative to Find the Slope at a Point

Find f′(x) for f (x) = √x. Then find the slopes of the graph of f  at the points (1, 1) and 
(4, 2). Discuss the behavior of f  at (0, 0).

Solution Use the procedure for rationalizing numerators, as discussed in Section 2.3.

 f′(x) = lim
∆x→0

 
f (x + ∆x) − f (x)

∆x
 Definition of derivative

 = lim
∆x→0

 
√x + ∆x − √x

∆x

 = lim
∆x→0

 (√x + ∆x − √x
∆x )(√x + ∆x + √x

√x + ∆x + √x)
 = lim

∆x→0
 

(x + ∆x) − x

∆x(√x + ∆x + √x)
 = lim

∆x→0
 

∆x

∆x(√x + ∆x + √x)
 = lim

∆x→0
 

1

√x + ∆x + √x

 =
1

2√x

At the point (1, 1), the slope is f′(1) = 1
2. At the point (4, 2), the slope is f′(4) = 1

4. 
See Figure 3.8. The domain of f′ is all x > 0, so the slope of f  is undefined at (0, 0). 
Moreover, the graph of f  has a vertical tangent line at (0, 0).

 Finding the Derivative of a Function

See LarsonCalculus.com for an interactive version of this type of example.

Find the derivative with respect to t for the function y = 2�t.

Solution Considering y = f (t), you obtain

 
dy
dt

= lim
∆t→0

 
f (t + ∆t) − f (t)

∆t
 Definition of derivative

 = lim
∆t→0 

 

2
t + ∆t

−
2
t

∆t
 f (t + ∆t) =

2
t + ∆t

 and f (t) =
2
t

 = lim
∆t→0

 

2t − 2(t + ∆t)
t(t + ∆t)

∆t
 Combine fractions in numerator.

 = lim
∆t→0

 
−2∆t

∆t(t)(t + ∆t) Divide out common factor of ∆t.

 = lim
∆t→0

 
−2

t(t + ∆t) Simplify.

 = −
2
t2

. Evaluate limit as ∆t → 0. 

remark Remember that 
the derivative of a function f  is 
itself a function, which can be 
used to find the slope of the  
tangent line at the point  
(x, f (x)) on the graph of f .

TeChNoLoGy A graphing utility can be used to reinforce the result given  
in Example 5. For instance, using the formula dy�dt = −2�t2, you know that the 
slope of the graph of y = 2�t at the point (1, 2) is m = −2. Using the point-slope 
form, you can find that the equation of the tangent line to the graph at (1, 2) is

y − 2 = −2(t − 1) or y = −2t + 4. See Figure 3.9.

You can also verify the result using the tangent feature of the graphing utility.

remark In many  
applications, it is convenient  
to use a variable other than x  
as the independent variable,  
as shown in Example 5.

For x > 0, the slope of f  at (x, f (x)) is 
m = 1�(2√x).
Figure 3.8

x
1

2

2

3

3 4

At (1, 1), m =   . 

(0, 0)

1
2

At (4, 2), m =   . 1
4

y

f (x) =    x

At the point (1, 2), the line 
y = −2t + 4 is tangent to the graph  
of y = 2�t.
Figure 3.9

6
0

0

4

(1, 2)

y = 2
t

y = −2t + 4
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 3.1 The Derivative and the Tangent Line Problem 125

Differentiability and Continuity
The alternative limit form of the derivative shown below is useful in investigating the 
relationship between differentiability and continuity. The derivative of f  at c is

 f′(c) = lim
x→c

 
f (x) − f (c)

x − c
 Alternative form of derivative

provided this limit exists (see Figure 3.10).

x
c x

x − c

(c, f (c))

(x, f (x))

f (x) − f (c)

y

  As x approaches c, the secant line  
approaches the tangent line.

 Figure 3.10

Note that the existence of the limit in this alternative form requires that the one-sided 
limits

lim
x→c−

 
f (x) − f (c)

x − c

and

lim
x→c+

 
f (x) − f (c)

x − c

exist and are equal. These one-sided limits are called the derivatives from the left and 
from the right, respectively. It follows that f  is differentiable on the closed interval 
[a, b] when it is differentiable on (a, b) and when the derivative from the right at a and 
the derivative from the left at b both exist.

When a function is not continuous at x = c, it is also not differentiable at x = c.
For instance, the greatest integer function

f (x) = ⟨x⟩

is not continuous at x = 0, and so it is not differentiable at x = 0 (see Figure 3.11 and 
Exercise 91). You can verify this by observing that

lim
x→0−

 
f (x) − f (0)

x − 0
= lim

x→0−
 
⟨x⟩ − 0

x
= ∞ Derivative from the left

and

lim
x→0+

 
f (x) − f (0)

x − 0
= lim

x→0+
 
⟨x⟩ − 0

x
= 0. Derivative from the right

Although it is true that differentiability implies continuity (as shown in Theorem 3.1 
on the next page), the converse is not true. That is, it is possible for a function to be  
continuous at x = c and not differentiable at x = c. Examples 6 and 7 illustrate this 
possibility.

The greatest integer function is not  
differentiable at x = 0 because it is  
not continuous at x = 0.
Figure 3.11

x

1

2

1 2 3−1−2

−2

y

x[[ ]]f (x) =

remark A proof of the 
equivalence of the alternative 
form of the derivative is  
given in Appendix A.
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126 Chapter 3 Differentiation

 a Graph with a Sharp Turn

See LarsonCalculus.com for an interactive version of this type of example.

The function f (x) = ∣x − 2∣, shown in Figure 3.12, is continuous at x = 2. The 
one-sided limits, however,

lim
x→2−

 
f (x) − f (2)

x − 2
= lim

x→2−
 
∣x − 2∣ − 0

x − 2
= −1 Derivative from the left

and

lim
x→2+

 
f (x) − f (2)

x − 2
= lim

x→2+
 
∣x − 2∣ − 0

x − 2
= 1 Derivative from the right

are not equal. So, f  is not differentiable at x = 2 and the graph of f  does not have a 
tangent line at the point (2, 0).

 a Graph with a Vertical Tangent Line

The function f (x) = x1�3 is continuous at x = 0, as shown in Figure 3.13. However, 
because the limit

lim
x→0

 
f (x) − f (0)

x − 0
= lim

x→0
 
x1�3 − 0

x
= lim

x→0
 

1
x2�3 = ∞

is infinite, you can conclude that the tangent line is vertical at x = 0. So, f  is not 
differentiable at x = 0. 

From Examples 6 and 7, you can see that a function is not differentiable at a point 
at which its graph has a sharp turn or a vertical tangent line.

Theorem 3.1 Differentiability Implies Continuity

If f  is differentiable at x = c, then f  is continuous at x = c.

Proof You can prove that f  is continuous at x = c by showing that f (x) approaches 
f (c) as x → c. To do this, use the differentiability of f  at x = c and consider the 
following limit.

 lim
x→c

 [ f (x) − f (c)] = lim
x→c

 [(x − c)(f (x) − f (c)
x − c )]

 = [lim
x→c

 (x − c)][lim
x→c

 
f (x) − f (c)

x − c ]
 = (0)[ f′(c)]
 = 0

Because the difference f (x) − f (c) approaches zero as x → c, you can conclude that
lim
x→c

  f (x) = f (c). So, f  is continuous at x = c. 

The relationship between continuity and differentiability is summarized below.

1.  If a function is differentiable at x = c, then it is continuous at x = c. So, 
differentiability implies continuity.

2.  It is possible for a function to be continuous at x = c and not be differentiable at 
x = c. So, continuity does not imply differentiability (see Examples 6 and 7).

TeChNoLoGy Some 
graphing utilities, such as 
Maple, Mathematica, and the 
TI-Nspire, perform symbolic 
differentiation. Some have a 
derivative feature that performs 
numerical differentiation by 
finding values of derivatives 
using the formula

f′(x) ≈
f (x + ∆x) − f (x − ∆x)

2∆x

where ∆x is a small number 
such as 0.001. Can you see any 
problems with this definition? 
For instance, using this 
definition, what is the value 
of the derivative of f (x) = ∣x∣ 
when x = 0?

f  is not differentiable at x = 2 because 
the derivatives from the left and from 
the right are not equal.
Figure 3.12

2

1

3

4321
x

m = −1

m = 1

f (x) = | x − 2 |

y

f  is not differentiable at x = 0 because 
f  has a vertical tangent line at x = 0.
Figure 3.13

x
1

1

2−1

−1

−2

f (x) = x1/3

y
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3.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Tangent Line Describe how to find the slope of the 

tangent line to the graph of a function at a point.

2.  Notation List four notation alternatives to f ′(x).

3.  Derivative Describe how to find the derivative of a 
function using the limit process.

4.  Continuity and Differentiability Describe the 
relationship between continuity and differentiability.

estimating Slope In Exercises 5 and 6, estimate the slope 
of the graph at the points (x1, y1) and (x2, y2).

 5. y

x

(x1, y1)

(x2, y2)

  6. y

x
(x1, y1)

(x2, y2)

Slopes of Secant Lines In Exercises 7 and 8, use the 
graph shown in the figure. To print an enlarged copy of the 
graph, go to MathGraphs.com.

x
1

1

2

2

3

3

5

5

4

4

6

6

(1, 2)

(4, 5)
f

y

 7. Identify or sketch each of the quantities on the figure.

 (a) f (1) and f (4) (b) f (4) − f (1)

 (c) 4 − 1 (d) y − 2 =
f (4) − f (1)

4 − 1
(x − 1)

 8.  Insert the proper inequality symbol (< or >) between the given 
quantities.

 (a) 
f (4) − f (1)

4 − 1
 ■ 

f (4) − f (3)
4 − 3

 (b) 
f (4) − f (1)

4 − 1
 ■ f ′(1)

 Finding the Slope of a Tangent Line In 
Exercises 9–14, find the slope of the tangent line to 
the graph of the function at the given point.

 9. f (x) = 3 − 5x, (−1, 8) 10. g(x) = 3
2 x + 1, (−2, −2)

11. f (x) = 2x2 − 3, (2, 5) 12. f (x) = 5 − x2, (3, −4)
13. f (t) = 3t − t2, (0, 0) 14. h(t) = t2 + 4t, (1, 5)

 Finding the Derivative by the Limit 
Process In Exercises 15–28, find the derivative 
of the function by the limit process.

15. f (x) = 7 16. g(x) = −3

17. f (x) = −5x 18. f (x) = 7x − 3

19. h(s) = 3 + 2
3s 20. f (x) = 5 − 2

3 x

21. f (x) = x2 + x − 3 22. f (x) = x2 − 5

23. f (x) = x3 − 12x 24. g(t) = t3 + 4t

25. f (x) =
1

x − 1
 26. f (x) =

1
x2

27. f (x) = √x + 4 28. h(s) = −2√s

 Finding an equation of a Tangent Line In 
Exercises 29–36, (a) find an equation of the tangent 
line to the graph of f  at the given point, (b) use 
a graphing utility to graph the function and its 
tangent line at the point, and (c) use the tangent 
feature of a graphing utility to confirm your results.

29. f (x) = x2 + 3, (−1, 4) 30. f (x) = x2 + 2x − 1, (1, 2)
31. f (x) = x3, (2, 8) 32. f (x) = x3 + 1, (−1, 0)
33. f (x) = √x, (1, 1) 34. f (x) = √x − 1, (5, 2)

35. f (x) = x +
4
x
, (−4, −5) 36. f (x) = x −

1
x
, (1, 0)

 Finding an equation of a Tangent Line In 
Exercises 37–42, find an equation of the line that is 
tangent to the graph of f  and parallel to the given 
line.

 Function Line

37. f (x) = −
1
4

x2 x + y = 0

38. f (x) = 2x2 4x + y + 3 = 0

39. f (x) = x3 3x − y + 1 = 0

40. f (x) = x3 + 2 3x − y − 4 = 0

41. f (x) =
1

√x
 x + 2y − 6 = 0

42. f (x) =
1

√x − 1
 x + 2y + 7 = 0

Sketching a Derivative In Exercises 43–48, sketch the 
graph of f ′. Explain how you found your answer.

43. 

−3

1

−2

2

3

x
1 2−2 3−3

f

y  44. y

x
2 4−2−4

−2

−6

f
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45. y

x
1 2 3

2
3
4
5
6
7

1

−1 4 5 6 7

f

 46. y

x
1 2 3

2
3
4

6
7

1

4 5 6 7 8

f

47. 

x

y

−4−8 4 8
−2

2

4

6

f

 48. 

x

y

−1−2−3 1 2 3

−2

1

3

4

f

eXpLoRInG ConCeptS
49.  Sketching a Graph Sketch a graph of a function 

whose derivative is always negative. Explain how you 
found the answer.

50.  Sketching a Graph Sketch a graph of a function 
whose derivative is zero at exactly two points. Explain 
how you found the answer.

51.  Domain of the Derivative Do f  and f ′ always 
have the same domain? Explain.

52.  Symmetry of a Graph A function f  is symmetric 
with respect to the origin. Is f ′ necessarily symmetric 
with respect to the origin? Explain.

53.  Using a Tangent Line The tangent line to the graph of 
y = g(x) at the point (4, 5) passes through the point (7, 0). 
Find g(4) and g′(4).

54.  Using a Tangent Line The tangent line to the graph of 
y = h(x) at the point (−1, 4) passes through the point (3, 6). 
Find h(−1) and h′(−1).

 Working Backwards In Exercises 55–58, the 
limit represents f ′(c) for a function f  and a 
number c. Find f  and c.

55. lim
∆x→0

 
[5 − 3(1 + ∆x)] − 2

∆x

56. lim
∆x→0

 
(−2 + ∆x)3 + 8

∆x

57. lim
x→6

 
−x2 + 36

x − 6

58. lim
x→9

 
2√x − 6

x − 9

Writing a Function Using Derivatives In Exercises 59 
and 60, identify a function f  that has the given characteristics. 
Then sketch the function.

59. f (0) = 2; f ′(x) = −3 for −∞ < x < ∞
60. f (0) = 4; f ′(0) = 0; f ′(x) < 0 for x < 0; f ′(x) > 0 for x > 0

Finding an equation of a Tangent Line In Exercises 61 
and 62, find equations of the two tangent lines to the graph of 
f  that pass through the indicated point.

61. f (x) = 4x − x2 62. f (x) = x2

 

1

2

3

4

5

x
1 2 3 5

(2, 5)

y  

x
2 6

6
8

10

4

4

−2−4

−4

−6
(1, −3)

y

63.  Graphical reasoning Use a graphing utility to graph 
each function and its tangent lines at x = −1, x = 0, and 
x = 1. Based on the results, determine whether the slopes of 
tangent lines to the graph of a function at different values of x 
are always distinct.

 (a) f (x) = x2  (b) g(x) = x3

 64.    hoW Do yoU See IT? The figure shows 
the graph of g′.

x

g′

−4−6

−4

−6

6

6

4

4

2

y

(a) g′(0) = ■   (b) g′(3) = ■
(c)  What can you conclude about the graph of g 

knowing that g′(1) = −8
3?

(d)  What can you conclude about the graph of g 
knowing that g′(−4) = 7

3?

(e) Is g(6) − g(4) positive or negative? Explain.

(f)  Is it possible to find g(2) from the graph? Explain.

 64.    

65. Graphical reasoning Consider the function f (x) = 1
2x2.

 (a)  Use a graphing utility to graph the function and estimate 
the values of f ′(0), f ′(1

2), f ′(1), and f ′(2).
 (b)  Use your results from part (a) to determine the values of 

f ′(−1
2), f ′(−1), and f ′(−2).

 (c) Sketch a possible graph of f ′.

 (d) Use the definition of derivative to find f ′(x).
66. Graphical reasoning Consider the function f (x) = 1

3x3.

 (a)  Use a graphing utility to graph the function and estimate 
the values of f ′(0), f ′(1

2), f ′(1), f ′(2), and f ′(3).
 (b)  Use your results from part (a) to determine the values of 

f ′(−1
2), f ′(−1), f ′(−2), and f ′(−3).

 (c) Sketch a possible graph of f ′.

 (d) Use the definition of derivative to find f ′(x).
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 3.1 The Derivative and the Tangent Line Problem 129

approximating a Derivative In Exercises 67 and 68,  
evaluate f (2) and f (2.1) and use the results to approximate f ′(2).

67. f (x) = x(4 − x) 68. f (x) = 1
4 x3

 Using the alternative Form of the 
Derivative In Exercises 69–76, use the 
alternative form of the derivative to find the 
derivative at x = c, if it exists.

69. f (x) = x3 + 2x2 + 1, c = −2

70. g(x) = x2 − x, c = 1

71. g(x) = √∣x∣, c = 0 72. f (x) = 3�x, c = 4

73. f (x) = (x − 6)2�3, c = 6 74. g(x) = (x + 3)1�3, c = −3

75. h(x) = ∣x + 7∣, c = −7 76. f (x) = ∣x − 6∣, c = 6

 Determining Differentiability In Exercises 
77–80, describe the x-values at which f  is 
differentiable.

77. f (x) = (x + 4)2�3 78.  f (x) =
x2

x2 − 4

 

x

y

−2−4−6

−2

4

  

x

2
3

3

4

4

5

−3

−4

y

79. f (x) = √x + 1 + 1 80. f (x) = {x2 − 4,
4 − x2,

    x ≤ 0
    x > 0

 

x

y

−1−2 1 2 3
−1

1

2

3

4

  

x

2

4

4−4

−4

y

Graphical analysis In Exercises 81–84, use a graphing 
utility to graph the function and find the x-values at which f  is  
differentiable.

81. f (x) = ∣x − 5∣ 82. f (x) =
4x

x − 3

83. f (x) = x2�5

84. f (x) = {x3 − 3x2 + 3x,
x2 − 2x,

    x ≤ 1
    x > 1

 Determining Differentiability In Exercises 
85–88, find the derivatives from the left and from 
the right at x = 1 (if they exist). Is the function 
differentiable at x = 1?

85. f (x) = ∣x − 1∣ 86. f (x) = √1 − x2

87. f (x) = {(x − 1)3,
(x − 1)2,

    x ≤ 1
    x > 1

 88. f (x) = (1 − x)2�3

Determining Differentiability In Exercises 89 and 90, 
determine whether the function is  differentiable at x = 2.

89. f (x) = {x2 + 1,
4x − 3,

    x ≤ 2
    x > 2

 90. f (x) = {1
2x + 2,
√2x,

    x < 2
    x ≥ 2

91.  Greatest Integer Function and Differentiability  
Use a graphing utility to graph g(x) = ⟨x⟩�x. Then let 
f (x) = ⟨x⟩ and show that

 lim
x→0−

 
f (x) − f (0)

x − 0
= ∞ and lim

x→0+
 
f (x) − f (0)

x − 0
= 0.

 Is f  differentiable? Explain.

92.  Conjecture Consider the functions f (x) = x2 and 
g(x) = x3.

 (a) Graph f  and f ′ on the same set of axes.

 (b) Graph g and g′ on the same set of axes.

 (c)  Identify a pattern between f  and g and their respective 
derivatives. Use the pattern to make a conjecture about 
h′(x) if h(x) = xn, where n is an integer and n ≥ 2.

 (d)  Find f ′(x) if f (x) = x4. Compare the result with the 
conjecture in part (c). Is this a proof of your conjecture? 
Explain.

True or False? In Exercises 93–96, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

93.  The slope of the tangent line to the differentiable function f  at 
the point (2, f (2)) is

 
f (2 + ∆x) − f (2)

∆x
.

94.  If a function is continuous at a point, then it is differentiable at 
that point.

95.  If a function has derivatives from both the right and the left at 
a point, then it is differentiable at that point.

96.  If a function is differentiable at a point, then it is continuous at 
that point.

97. Differentiability and Continuity Let

 f (x) = {x sin 
1
x
,

0,

    x ≠ 0

    x = 0

 and

 g(x) = {x2 sin 
1
x
,

0,

    x ≠ 0

    x = 0
.

  Show that f  is continuous, but not differentiable, at x = 0. 
Show that g is differentiable at 0 and find g′(0).

98.  Writing Use a graphing utility to graph the two functions 
f (x) = x2 + 1 and g(x) = ∣x∣ + 1 in the same viewing 
window. Use the zoom and trace features to analyze the graphs 
near the point (0, 1). What do you observe? Which function is  
differentiable at this point? Write a short paragraph describing 
the geometric significance of differentiability at a point.
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130 Chapter 3 Differentiation

3.2 Basic Differentiation Rules and Rates of Change

 Find the derivative of a function using the Constant Rule.
 Find the derivative of a function using the Power Rule.
 Find the derivative of a function using the Constant Multiple Rule.
 Find the derivative of a function using the Sum and Difference Rules.
 Find the derivatives of the sine function and of the cosine function.
 Find the derivatives of exponential functions.
 Use derivatives to find rates of change.

The Constant Rule
In Section 3.1, you used the limit definition to find derivatives. In this and the next two 
sections, you will be introduced to several “differentiation rules” that allow you to find 
derivatives without the direct use of the limit definition.

THEOREM 3.2 The Constant Rule

The derivative of a constant function is 0. That is, if c is a real 
number, then

d
dx

 [c] = 0. See Figure 3.14.

Proof Let f (x) = c. Then, by the limit definition of the derivative,

 
d
dx

 [c] = f′(x)

 = lim
∆x→0

 
f (x + ∆x) − f (x)

∆x

 = lim
∆x→0

 
c − c

∆x

 = lim
∆x→0

 0

 = 0. 

 Using the Constant Rule

 Function Derivative
a. y = 7 dy�dx = 0

b. f (x) = 0 f′(x) = 0

c. s(t) = −3 s′(t) = 0

d. y = kπ2, k is constant dy�dx = 0 

Exploration
Writing a Conjecture Use the definition of the derivative given in Section 3.1
to find the derivative of each function. What patterns do you see? Use your 
results to write a conjecture about the derivative of f (x) = xn.

a. f (x) = x1 b. f (x) = x2 c. f (x) = x3

d. f (x) = x4 e. f (x) = x1�2 f. f (x) = x−1

Notice that the Constant Rule is 
equivalent to saying that the slope of a 
horizontal line is 0. This demonstrates 
the relationship between slope and 
derivative.
Figure 3.14

x

The slope of a 
horizontal line
is 0.

The derivative of a
constant function
is 0.

f (x) = c

y
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The Power Rule
Before proving the next rule, it is important to review the procedure for expanding a 
binomial.

(x + ∆x)2 = x2 + 2x∆x + (∆x)2

(x + ∆x)3 = x3 + 3x2∆x + 3x(∆x)2 + (∆x)3

(x + ∆x)4 = x4 + 4x3∆x + 6x2(∆x)2 + 4x(∆x)3 + (∆x)4

(x + ∆x)5 = x5 + 5x4∆x + 10x3(∆x)2 + 10x2(∆x)3 + 5x(∆x)4 + (∆x)5

The general binomial expansion for a positive integer n is

(x + ∆x)n = xn + nxn−1(∆x) +
n(n − 1)xn−2

2
 (∆x)2 + .  .  . + (∆x)n.

 
 (∆x)2 is a factor of these terms.

This binomial expansion is used in proving a special case of the Power Rule.

THEOREM 3.3 The Power Rule

If n is a rational number, then the function f(x) = xn is differentiable and

d
dx

 [xn] = nxn−1.

For f  to be differentiable at x = 0, n must be a number such that
xn−1 is defined on an interval containing 0.

Proof If n is a positive integer greater than 1, then the binomial expansion produces

 
d
dx

 [xn] = lim
∆x→0

 
(x + ∆x)n − xn

∆x

 = lim
∆x→0

 
xn + nxn−1(∆x) +

n(n − 1)xn−2

2
 (∆x)2 + .  .  . + (∆x)n − xn

∆x

 = lim
∆x→0

 [nxn−1 +
n(n − 1)xn−2

2
 (∆x) + .  .  . + (∆x)n−1]

 = nxn−1 + 0 + .  .  . + 0

 = nxn−1.

This proves the case for which n is a positive integer greater than 1. It is left to you to prove 
the case for n = 1. Example 7 in Section 3.3 proves the case for which n is a negative 
integer. The cases for which n is rational and n is irrational are left as an exercise (see 
Section 3.5, Exercise 92). 

When using the Power Rule, the case for which n = 1 is best thought of as a 
 separate differentiation rule. That is,

d
dx

 [x] = 1.    Power Rule when n = 1

This rule is consistent with the fact that the slope of the line y = x is 1, as shown in 
Figure 3.15.

REMARK From Example 7 
in Section 3.1, you know that 
the function f (x) = x1�3 is 
defined at x = 0 but is not 
differentiable at x = 0. This 
is because x−2�3 is not defined 
on an interval containing 0.

The slope of the line y = x is 1.
Figure 3.15

x

y = x

y

1

1

2

3

4

2 3 4
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 Using the Power Rule

 Function Derivative

a. f (x) = x3 f′(x) = 3x2

b. g(x) = 3√x g′(x) =
d
dx

 [x1�3] =
1
3

 x−2�3 =
1

3x2�3

c. y =
1
x2 

dy
dx

=
d
dx

 [x−2] = (−2)x−3 = −
2
x3 

In Example 2(c), note that before differentiating, 1�x2 was rewritten as x−2. 
Rewriting is the first step in many differentiation problems.

Given:

y =
1
x2

 
 Rewrite:

y = x−2

  Differentiate:
dy
dx

= (−2)x−3

  Simplify:
dy
dx

= −
2
x3

 Finding the Slope of a Graph

See LarsonCalculus.com for an interactive version of this type of example.

Find the slope of the graph of f (x) = x4 for each value of x.

a. x = −1  b. x = 0  c. x = 1

Solution The slope of a graph at a point is the value of the derivative at that point. 
The derivative of f  is f′(x) = 4x3.

a. When x = −1, the slope is f′(−1) = 4(−1)3 = −4. Slope is negative.

b. When x = 0, the slope is f′(0) = 4(0)3 = 0. Slope is zero.

c. When x = 1, the slope is f′(1) = 4(1)3 = 4. Slope is positive.

See Figure 3.16.

 Finding an Equation of a Tangent Line

See LarsonCalculus.com for an interactive version of this type of example.

Find an equation of the tangent line to the graph of f (x) = x2 when x = −2.

Solution To find the point on the graph of f, evaluate the original function at 
x = −2.

(−2, f (−2)) = (−2, 4) Point on graph

To find the slope of the graph when x = −2, evaluate the derivative, f′(x) = 2x, at 
x = −2.

m = f′(−2) = −4 Slope of graph at (−2, 4)

Now, using the point-slope form of the equation of a line, you can write

 y − y1 = m(x − x1) Point-slope form

 y − 4 = −4[x − (−2)] Substitute for y1, m, and x1.

 y = −4x − 4. Simplify.

You can check this result using the tangent feature of a graphing utility, as shown in 
Figure 3.17. 

Note that the slope of the graph is 
negative at the point (−1, 1), the 
slope is zero at the point (0, 0), and 
the slope is positive at the point (1, 1).
Figure 3.16

x

2

1

−1 1

(1, 1)

(0, 0)

(−1, 1)

f (x) = x4

y

The line y = −4x − 4 is tangent to the 
graph of f (x) = x2 at the point (−2, 4).
Figure 3.17

−4.5 4.5

−1

5

X=-2
Y=-4X+-4

f (x) = x2
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The Constant Multiple Rule

THEOREM 3.4 The Constant Multiple Rule

If f  is a differentiable function and c is a real number, then cf  is also
differentiable and

d
dx

 [cf (x)] = cf′(x).

Proof

 
d
dx

 [cf (x)] = lim
∆x→0

 
cf (x + ∆x) − cf (x)

∆x
 Definition of derivative

 = lim
∆x→0

 c[f (x + ∆x) − f (x)
∆x ]

 = c[ lim
∆x→0

 
f (x + ∆x) − f (x)

∆x ] Apply Theorem 2.2.

 = cf′(x) 

Informally, the Constant Multiple Rule states that constants can be factored out of 
the differentiation process, even when the constants appear in the denominator.

d
dx

 [cf (x)] = c 
d
dx

 [     f (x)] = cf′(x)

d
dx

 [f (x)
c ] =

d
dx

 [(1
c) f (x)] = (1

c) 
d
dx

 [    f (x)] = (1
c) f′(x)

 Using the Constant Multiple Rule

 Function Derivative

a. y = 5x3 
dy
dx

=
d
dx

 [5x3] = 5 
d
dx

 [x3] = 5(3)x2 = 15x2

b. y =
2
x
 

dy
dx

=
d
dx

 [2x−1] = 2 
d
dx

 [x−1] = 2(−1)x−2 = −
2
x2

c. f (t) =
4t2

5
 f′(t) =

d
dt

 [4
5

 t2] =
4
5

 
d
dt

 [t2] =
4
5

 (2t) =
8
5

 t

d. y = 2√x 
dy
dx

=
d
dx

 [2x1�2] = 2(1
2

 x−1�2) = x−1�2 =
1

√x

e. y =
1

2 3√x2
 

dy
dx

=
d
dx

 [1
2

 x−2�3] =
1
2

 (−
2
3) x−5�3 = −

1
3x5�3

f. y = −
3x
2

 y′ =
d
dx

 [−
3
2

 x] = −
3
2

 (1) = −
3
2

 

The Constant Multiple Rule and the Power Rule can be combined into one rule. 
The combination rule is

d
dx

 [cxn] = cnxn−1.

REMARK Before 
differentiating functions 
involving radicals, rewrite 
the function with rational
exponents.
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134 Chapter 3 Differentiation

 Using Parentheses When Differentiating

 Original Function Rewrite Differentiate Simplify

a. y =
5

2x3 y =
5
2

 (x−3) y′ =
5
2

 (−3x−4) y′ = −
15
2x4

b. y =
5

(2x)3 y =
5
8

 (x−3) y′ =
5
8

 (−3x−4) y′ = −
15
8x4

c. y =
7

3x−2 y =
7
3

 (x2) y′ =
7
3

 (2x) y′ =
14x
3

d. y =
7

(3x)−2 y = 63(x2) y′ = 63(2x) y′ = 126x 

The Sum and Difference Rules

THEOREM 3.5 The Sum and Difference Rules

The sum (or difference) of two differentiable functions f  and g is itself 
differentiable. Moreover, the derivative of f + g (or f − g) is the sum (or 
difference) of the derivatives of f  and g.

d
dx

 [ f (x) + g(x)] = f′(x) + g′(x) Sum Rule

d
dx

 [ f (x) − g(x)] = f′(x) − g′(x) Difference Rule

 Proof A proof of the Sum Rule follows from Theorem 2.2. (The Difference Rule can 
be proved in a similar way.)

 
d
dx

 [ f (x) + g(x)] = lim
∆x→0

 
[f (x + ∆x) + g(x + ∆x)] − [f (x) + g(x)]

∆x

 = lim
∆x→0

 
f (x + ∆x) + g(x + ∆x) − f (x) − g(x)

∆x

 = lim
∆x→0

 [f (x + ∆x) − f (x)
∆x

+
g(x + ∆x) − g(x)

∆x ]
 = lim

∆x→0
 
f (x + ∆x) − f (x)

∆x
+ lim

∆x→0
 
g(x + ∆x) − g(x)

∆x

 = f′(x) + g′(x) 

The Sum and Difference Rules can be extended to any finite number of functions. 
For instance, if F(x) = f (x) + g(x) − h(x), then F′(x) = f′(x) + g′(x) − h′(x).

 Using the Sum and Difference Rules

 Function Derivative

a. f (x) = x3 − 4x + 5 f′(x) = 3x2 − 4

b. g(x) = −
x4

2
+ 3x3 − 2x g′(x) = −2x3 + 9x2 − 2

c. y =
3x2 − x + 1

x
= 3x − 1 +

1
x
 y′ = 3 −

1
x2 =

3x2 − 1
x2  

REMARK In Example 7(c), 
note that before differentiating,

3x2 − x + 1
x

was rewritten as

3x − 1 +
1
x
.
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3.2 Basic Differentiation Rules and Rates of Change 135

Derivatives of the Sine and Cosine Functions
In Section 2.3, you studied the limits

lim
∆x→0

 
sin ∆x

∆x
= 1 and lim

∆x→0
 
1 − cos ∆x

∆x
= 0.

These two limits can be used to prove differentiation rules for the sine and cosine 
functions. (The derivatives of the other four trigonometric functions are discussed in 
Section 3.3.)

THEOREM 3.6 Derivatives of Sine and Cosine Functions

d
dx

 [sin x] = cos x    
d
dx

 [cos x] = −sin x

 Proof Here is a proof of the first rule. (The proof of the second rule is left as an 
exercise [see Exercise 120].) In the proof, note the use of the trigonometric identity 
sin(x + ∆x) = sin x cos ∆x + cos x sin ∆x.

 
d
dx

 [sin x] = lim
∆x→0

 
sin(x + ∆x) − sin x

∆x
 Definition of derivative

 = lim
∆x→0

 
sin x cos ∆x + cos x sin ∆x − sin x

∆x

 = lim
∆x→0

 
cos x sin ∆x − (sin x)(1 − cos ∆x)

∆x

 = lim
∆x→0

 [(cos x)(sin ∆x
∆x ) − (sin x)(1 − cos ∆x

∆x )]
 = (cos x)( lim

∆x→0
 
sin ∆x

∆x ) − (sin x)( lim
∆x→0

 
1 − cos ∆x

∆x )
 = (cos x)(1) − (sin x)(0)
 = cos x

This differentiation rule is shown graphically in Figure 3.18. Note that for each x, the 
slope of the sine curve is equal to the value of the cosine. 

 Derivatives Involving Sines and Cosines

See LarsonCalculus.com for an interactive version of this type of example.

 Function Derivative

a. y = 2 sin x y′ = 2 cos x

b. y =
sin x

2
=

1
2

 sin x y′ =
1
2

 cos x =
cos x

2

c. y = x + cos x y′ = 1 − sin x

d. y = cos x −
π
3

 sin x y′ = −sin x −
π
3

 cos x 

TECHNOLOGY A graphing utility can provide insight into the interpretation 
of a derivative. For instance, Figure 3.19 shows the graphs of

y = a sin x

for a = 1
2, 1, 32, and 2. Estimate the slope of each graph at the point (0, 0). Then verify 

your estimates analytically by evaluating the derivative of each function when x = 0.

 FOR FURTHER INFORMATION
For the outline of a geometric 
proof of the derivatives of the 
sine and cosine functions, see the 
article “The Spider’s Spacewalk 
Derivation of sin′ and cos′” by 
Tim Hesterberg in The College 
Mathematics Journal. To view this 
article, go to MathArticles.com.

x

1

−1

π2π
2

π

y increasing y increasingy decreasing

y ′ = 0

y ′ = −1

y ′ = 0

y ′ = 1

y ′ = 1

y = sin x
y

The derivative of the sine function is 
the cosine function.
Figure 3.18

x

y

−1

π2π
2

π

y ′ = cos x

y ′ positive y ′ positivey ′ negative

d
dx

 [a sin x] = a cos x

Figure 3.19

−2

2

−π π

3
2

y =     sin xy = 2 sin x

y = sin x 1
2

y =     sin x
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Derivatives of Exponential Functions
One of the most intriguing (and useful) characteristics of the natural exponential 
function is that it is its own derivative. Consider the following argument.

Let f (x) = ex.

f′(x) = lim
∆x→0

 
f (x + ∆x) − f (x)

∆x

 = lim
∆x→0

 
ex+∆x − ex

∆x

 = lim
∆x→0

 
ex(e∆x − 1)

∆x

The definition of e

lim
∆x→0

 (1 + ∆x)1�∆x = e

tells you that for small values of ∆x, you have e ≈ (1 + ∆x)1�∆x, which implies that

e∆x ≈ 1 + ∆x.

Replacing e∆x by this approximation produces the following.

 f′(x) = lim
∆x→0

 
ex[e∆x − 1]

∆x

 = lim
∆x→0

 
ex[(1 + ∆x) − 1]

∆x

 = lim
∆x→0

 
ex ∆x

∆x

 = ex

This result is stated in the next theorem.

THEOREM 3.7 Derivative of the Natural Exponential Function
d
dx

[ex] = ex

You can interpret Theorem 3.7 graphically by saying that the slope of the graph 
of f (x) = ex at any point (x, ex) is equal to the y-coordinate of the point, as shown in 
Figure 3.20.

 Derivatives Involving Exponential Functions

Find the derivative of each function.

a. f (x) = 3ex  b. f (x) = x2 + ex  c. f (x) = sin x − ex

Solution

a. f′(x) = 3 
d
dx

[ex] = 3ex

b. f′(x) =
d
dx

[x2] +
d
dx

[ex] = 2x + ex

c. f′(x) =
d
dx

[sin x] −
d
dx

[ex] = cos x − ex 

REMARK The key to the 
formula for the derivative of 
f (x) = ex is the limit

lim
x→0

 (1 + x)1�x = e.

This important limit was 
introduced on page 54 and 
formalized later on page 89. 
It is used to conclude that for 
∆x ≈ 0,

(1 + ∆x)1�∆x ≈ e

y

x
2

4

3

2

f x e( ) = x

At the point (0, 1),
the slope is 1.

),e

1−2

At the point (1,
the slope is 2.72.e ≈

Figure 3.20
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Rates of Change
You have seen how the derivative is used to determine slope. The derivative can also 
be used to determine the rate of change of one variable with respect to another. 
Applications involving rates of change, sometimes referred to as instantaneous rates of 
change, occur in a wide variety of fields. A few examples are population growth rates, 
production rates, water flow rates, velocity, and acceleration.

A common use for rate of change is to describe the motion of an object moving in 
a straight line. In such problems, it is customary to use either a horizontal or a  vertical 
line with a designated origin to represent the line of motion. On such lines, movement 
to the right (or upward) is considered to be in the positive direction, and movement to 
the left (or downward) is considered to be in the negative direction.

The function s that gives the position (relative to the origin) of an object as a 
 function of time t is called a position function. If, over a period of time ∆t, the object 
changes its position by the amount

∆s = s(t + ∆t) − s(t)

then, by the familiar formula

Rate =
distance

time

the average velocity is

Change in distance
Change in time

=
∆s
∆t

.    Average velocity

 Finding Average Velocity of a Falling Object

A billiard ball is dropped from a height of 100 feet. The ball’s height s at time t is the 
position function

s = −16t2 + 100 Position function

where s is measured in feet and t is measured in seconds. Find the average velocity 
over each time interval.

a. [1, 2]  b. [1, 1.5]  c. [1, 1.1]

Solution

a.  For the interval [1, 2], the object falls from a height of s(1) = −16(1)2 + 100 = 84
feet to a height of s(2) = −16(2)2 + 100 = 36 feet. The average velocity is

∆s
∆t

=
36 − 84
2 − 1

=
−48

1
= −48 feet per second.

b.  For the interval [1, 1.5], the object falls from a height of 84 feet to a height of 
s(1.5) = −16(1.5)2 + 100 = 64 feet. The average velocity is

∆s
∆t

=
64 − 84
1.5 − 1

=
−20
0.5

= −40 feet per second.

c.  For the interval [1, 1.1], the object falls from a height of 84 feet to a height of 
s(1.1) = −16(1.1)2 + 100 = 80.64 feet. The average velocity is

∆s
∆t

=
80.64 − 84

1.1 − 1
=

−3.36
0.1

= −33.6 feet per second.

Note that the average velocities are negative, indicating that the object is moving 
downward. 

Time-lapse photograph of a 
free-falling billiard ball

Richard Megna/Fundamental Photographs
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138 Chapter 3 Differentiation

Suppose that in Example 10, you wanted to find the instantaneous velocity (or 
 simply the velocity) of the object when t = 1. Just as you can approximate the slope 
of the tangent line by calculating the slope of the secant line, you can approximate the 
velocity at t = 1 by calculating the average velocity over a small interval [1, 1 + ∆t] 
(see Figure 3.21). By taking the limit as ∆t approaches zero, you obtain the velocity 
when t = 1. Try doing this—you will find that the velocity when t = 1 is −32 feet 
per second.

In general, if s = s(t) is the position function for an object moving along a straight 
line, then the velocity of the object at time t is

v(t) = lim
∆t→0

 
s(t + ∆t) − s(t)

∆t
= s′(t).    Velocity function

In other words, the velocity function is the derivative of the position function. Velocity 
can be negative, zero, or positive. The speed of an object is the absolute value of its 
velocity. Speed cannot be negative.

The position of a free-falling object (neglecting air resistance) under the influence 
of gravity can be represented by the equation

 s(t) = −
1
2

 gt2 + v0t + s0  Position function

where s0 is the initial height of the object, v0 is the initial velocity of the object, and g 
is the acceleration due to gravity. On Earth, the value of g is approximately 32 feet per 
second per second or 9.8 meters per second per second.

 Using the Derivative to Find Velocity

At time t = 0 seconds, a diver jumps from a platform diving board that is 32 feet above 
the water (see Figure 3.22). The initial velocity of the diver is 16 feet per second. When 
does the diver hit the water? What is the diver’s velocity at impact?

Solution

Begin by writing an equation to represent the position of the diver. Using the position 
function given above with g = 32 feet per second per second, v0 = 16 feet per second, 
and s0 = 32 feet, you can write

 s(t) = −
1
2

(32)t2 + 16t + 32

 = −16t2 + 16t + 32. Position function

To find the time t when the diver hits the water, let s = 0 and solve for t.

 −16t2 + 16t + 32 = 0 Set position function equal to 0.

 −16(t + 1)(t − 2) = 0 Factor.

 t = −1 or 2 Solve for t.

Because t ≥ 0, choose the positive value to conclude that the diver hits the water at 
t = 2 seconds. The velocity at time t is given by the derivative

s′(t) = −32t + 16. Velocity function

So, the velocity at time t = 2 is

s′(2) = −32(2) + 16 = −48 feet per second.

Notice that the unit for s′(t) is the unit for s (feet) divided by the unit for t (seconds). In 
general, the unit for f′(x) is the unit for f  divided by the unit for x. 

The average velocity between t1 and t2 
is the slope of the secant line, and the 
instantaneous velocity at t1 is the slope 
of the tangent line.
Figure 3.21

Secant line

Tangent lineP

t1 = 1 t2

s

t

Velocity is positive when an object 
is rising and is negative when an 
object is falling. Notice that the diver 
moves upward for the first half-second 
because the velocity is positive for 
0 < t < 1

2. When the velocity is 0, the 
diver has reached the maximum height 
of the dive.
Figure 3.22

32 ft
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 3.2 Basic Differentiation Rules and Rates of Change 139

3.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Finding a Derivative Explain how to find the 

derivative of the function f (x) = cxn.

2.  Derivatives of Trigonometric Functions What 
are the derivatives of the sine and cosine functions?

3.  Functions Find an infinite number of functions which 
are equal to their derivatives.

4.  Average Velocity and Velocity Describe the 
difference between average velocity and velocity.

 Estimating Slope In Exercises 5 and 6, use 
the graph to estimate the slope of the tangent line 
to y = xn at the point (1, 1). Verify your answer 
 analytically. To print an enlarged copy of the 
graph, go to MathGraphs.com.

 5. (a) y = x1�2  (b) y = x3

  

x
1 2

2

1
(1, 1)

y    

x
1 2

2

1
(1, 1)

y

 6. (a) y = x−1�2  (b) y = x−1

  

x
1 2 3

2

1

y

(1, 1)

   

x
1 2

2

1
(1, 1)

y

 Finding a Derivative In Exercises 7–26, use 
the rules of differentiation to find the derivative of 
the function.

 7. y = 12  8. f (x) = −9

 9. y = x7 10. y = x12

11. y =
1
x5 12. y =

3
x7

13. f (x) = 9√x 14. g(x) = 4√x

15. f (x) = x + 11 16. g(x) = 6x + 3

17. f (t) = −3t2 + 2t − 4 18. y = t2 − 3t + 1

19. s(t) = t3 + 5t2 − 3t + 8 20. y = 2x3 + 6x2 − 1

21. y =
π
2

 sin θ 22. g(t) = π cos t

23. y = x2 − 1
2 cos x 24. y = 7x4 + 2 sin x

25. y = 1
2ex − 3 sin x 26. y = 3

4ex + 2 cos x

 Rewriting a Function Before Differentiating 
In Exercises 27–30, complete the table to find the 
derivative of the function.

 Original Function Rewrite Differentiate Simplify

27. y =
2

7x4   

28. y =
8

5x−5   

29. y =
6

(5x)3   

30. y =
3

(2x)−2   

 Finding the Slope of a Graph In Exercises 
31–40, find the slope of the graph of the function 
at the given point. Use the derivative feature of a 
graphing  utility to confirm your results.

 Function Point

31. f (x) =
8
x2 (2, 2)

32. f (t) = 2 −
4
t
 (4, 1)

33. f (x) = −1
2 + 7

5x3 (0, −1
2)

34. y = 2x4 − 3 (1, −1)
35. y = (4x + 1)2 (0, 1)
36. f (x) = 2(x − 4)2 (2, 8)
37. f (θ) = 4 sin θ − θ (0, 0)
38. g(t) = −2 cos t + 5 (π, 7)
39. f (t) = 3

4et (0, 34)
40. g(x) = −4ex (1, −4e)

 Finding a Derivative In Exercises 41–58, find 
the derivative of the function.

41. f (x) = x2 + 5 − 3x−2 42. f (x) = x3 − 2x + 3x−3

43. g(t) = t2 −
4
t3

 44. f (x) = 8x +
3
x2

45. f (x) =
x3 − 3x2 + 4

x2  46. h(x) =
4x3 + 2x + 5

x

47. g(t) =
3t2 + 4t − 8

t3�2  48. h(s) =
s5 + 2s + 6

s1�3

49. y = x(x2 + 1) 50. y = x2(2x2 − 3x)
51. f (x) = √x − 6 3√x 52. f (t) = t2�3 − t1�3 + 4

53. f (x) = 6√x + 5 cos x 54. f (x) =
2

3√x
+ 3 cos x

55. y =
1

(3x)−2 − 5 cos x 56. y =
3

(2x)3 + 2 sin x

57. f (x) = x−2 − 2ex 58. g(x) = √x − 3ex
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 Finding an Equation of a Tangent Line In 
Exercises 59–62, (a) find an equation of the tangent 
line to the graph of the function at the given point, 
(b) use a graphing utility to graph the function and 
its tangent line at the point, and (c) use the tangent
feature of a graphing utility to confirm your results.

 Function Point

59. f (x) = −2x4 + 5x2 − 3 (1, 0)

60. f (x) =
2

4√x3
 (1, 2)

61. g(x) = x + ex (0, 1)
62. h(t) = sin t + 1

2et (π, 12eπ)
 Horizontal Tangent Line In Exercises 63–70, 
determine the point(s) (if any) at which the graph 
of the function has a horizontal tangent line.

63. y = x4 − 2x2 + 3 64. y = x3 + x

65. y =
1
x2 66. y = x2 + 9

67. y = −4x + ex 68. y = x + 4ex

69. y = x + sin x, 0 ≤ x < 2π

70. y = √3x + 2 cos x, 0 ≤ x < 2π

 Finding a Value In Exercises 71–74, find k
such that the line is tangent to the graph of the 
function.

 Function Line

71. f (x) = k − x2 y = −6x + 1

72. f (x) = kx2 y = −2x + 3

73. f (x) =
k
x
 y = −

3
4

x + 3

74. f (x) = k√x y = x + 4

eXpLoRInG ConCeptS
Exploring a Relationship In Exercises 75 and 76, 
the relationship between f  and g is given. Explain the 
relationship between f ′ and g′.

75. g(x) = f (x) + 6 76. g(x) = 3 f (x) − 1

A Function and Its Derivative In Exercises 77 
and 78, the graphs of a function f  and its derivative f ′ 
are shown on the same set of coordinate axes. Label the 
graphs as f  or f ′ and write a short paragraph  stating the 
criteria you used in making your selection. To print an 
enlarged copy of the graph, go to MathGraphs.com.

77. 

x
−3 −2

−2

−1 1 2 3

3

1

y  78. 

x
−2 −1 1 2 3 4

1
2

y

79.  Sketching a Graph Sketch the graph of a function f
such that f ′ > 0 for all x and the rate of change of the function 
is decreasing.

 80.  HOW DO YOU SEE IT? Use the graph of 
f  to answer each question. To print an enlarged 
copy of the graph, go to MathGraphs.com.

x

f

C
A

B

ED

y

(a)  Between which two consecutive points is the 
average rate of change of the function greatest?

(b)  Is the average rate of change of the function 
between A and B greater than or less than the 
instantaneous rate of change at B?

(c)  Sketch a tangent line to the graph between C and 
D such that the slope of the tangent line is the 
same as the average rate of change of the function 
between C and D.

 80.  

81.  Finding Equations of Tangent Lines Sketch the 
graphs of y = x2 and y = −x2 + 6x − 5, and sketch the two 
lines that are tangent to both graphs. Find  equations of these 
lines.

82. Tangent Lines Show that the graphs of the two equations

y = x and y =
1
x

  have tangent lines that are perpendicular to each other at their 
point of intersection.

83.  Horizontal Tangent Line Show that the graph of the 
function

f (x) = 3x + sin x + 2

 does not have a horizontal tangent line.

84. Tangent Line Show that the graph of the function

f (x) = x5 + 3x3 + 5x

 does not have a tangent line with a slope of 3.

Finding an Equation of a Tangent Line In Exercises 85 
and 86, find an equation of the tangent line to the graph of the 
function f  through the point (x0, y0) not on the graph. To find 
the point of tangency (x, y) on the graph of f, solve the equation

f ′(x) =
y0 − y
x0 − x

.

85. f (x) = √x 86. f (x) =
2
x

(x0, y0) = (−4, 0)  (x0, y0) = (5, 0)
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87.  Linear Approximation Consider the function 
f (x) = x3�2 with the solution point (4, 8).

 (a)  Use a graphing utility to graph f. Use the zoom feature  
to obtain successive magnifications of the graph in the 
neighborhood of the point (4, 8). After zooming in a few 
times, the graph should appear nearly linear. Use the trace 
feature to determine the coordinates of a point near (4, 8). 
Find an equation of the secant line S(x) through the two 
points.

 (b)  Find the equation of the line T(x) = f ′(4)(x − 4) + f (4) 
tangent to the graph of f  passing through the given point. 
Why are the linear functions S and T nearly the same?

 (c)  Use a graphing utility to graph f  and T on the same set of 
coordinate axes. Note that T is a good approximation of f  
when x is close to 4. What happens to the accuracy of the 
approximation as you move farther away from the point of 
tangency?

 (d)  Demonstrate the conclusion in part (c) by completing the 
table.

 
∆x −3 −2 −1 −0.5 −0.1 0

f (4 + ∆x)

T(4 + ∆x)

∆x 0.1 0.5 1 2 3

f (4 + ∆x)

T(4 + ∆x)

88.  Linear Approximation Repeat Exercise 87 for the 
function f (x) = x3, where T(x) is the line tangent to the graph 
at the point (1, 1). Explain why the accuracy of the linear 
approximation decreases more rapidly than in Exercise 87.

True or False? In Exercises 89–94, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

89. If f ′(x) = g′(x), then f (x) = g(x).
90. If y = x a+2 + bx, then dy�dx = (a + 2)x a+1 + b.

91. If y = π2, then dy�dx = 2π.

92. If f (x) = −g(x) + b, then f ′(x) = −g′(x).
93. If f (x) = 0, then f ′(x) is undefined.

94. If f (x) =
1
xn, then f ′(x) =

1
nx n−1.

 Finding Rates of Change In Exercises 95–100, 
find the average rate of change of the function over 
the given interval. Compare this average rate of 
change with the instantaneous rates of change at 
the endpoints of the interval.

95. f (t) = 3t + 5, [1, 2] 96. f (t) = t2 − 7, [3, 3.1]

97. f (x) =
−1
x

, [1, 2] 98. f (x) = sin x, [0, 
π
6]

99. g(x) = x2 + ex, [0, 1] 100. h(x) = x3 − 1
2ex, [0, 2]

Vertical Motion In Exercises 101 and 102, use the position 
function s(t) = −16t2 + v0 t + s0 for free-falling objects.

101.  A silver dollar is dropped from the top of a building that is 
1362 feet tall.

  (a)  Determine the position and velocity functions for the 
coin.

  (b) Determine the average velocity on the interval [1, 2].
  (c) Find the instantaneous velocities when t = 1 and t = 2.

  (d) Find the time required for the coin to reach ground level.

  (e) Find the velocity of the coin at impact.

102.  A ball is thrown straight down from the top of a 220-foot 
 building with an initial velocity of −22 feet per second. 
What is its velocity after 3 seconds? What is its velocity after 
falling 108 feet?

Vertical Motion In Exercises 103 and 104, use the position 
function s(t) = −4.9t2 + v0 t + s0 for free-falling objects.

103.  A projectile is shot upward from the surface of Earth with an 
 initial velocity of 120 meters per second. What is its veloc ity 
after 5 seconds? After 10 seconds?

104.  A rock is dropped from the edge of a cliff that is 214 meters 
above water.

  (a)  Determine the position and velocity functions for the 
rock.

  (b) Determine the average velocity on the interval [2, 5].
  (c) Find the instantaneous velocities when t = 2 and t = 5.

  (d)  Find the time required for the rock to reach the surface of 
the water.

  (e) Find the velocity of the rock at impact.

105.  Think About It The graph of the position function 
(see figure) represents the distance in miles that a person 
drives during a 10-minute trip to work. Make a sketch of the 
corresponding velocity function.
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106.  Think About It The graph of the velocity function (see 
figure) represents the velocity in miles per hour during a 
10-minute trip to work. Make a sketch of the corresponding 
position function.

107.  Volume The volume of a cube with sides of length s is 
given by V = s3. Find the rate of change of the volume with 
respect to s when s = 6 centimeters.

108.  Area The area of a square with sides of length s is given 
by A = s2. Find the rate of change of the area with respect to 
s when s = 6 meters.
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110.  Fuel Cost A car is driven 15,000 miles a year and gets 
x miles per gallon. Assume that the average fuel cost is 
$3.48 per gallon. Find the annual cost of fuel C as a function 
of x and use this function to complete the table.

  
x 10 15 20 25 30 35 40

C

dC�dx

   Who would benefit more from a one-mile-per-gallon increase in 
fuel efficiency—the driver of a car that gets 15 miles per gallon 
or the driver of a car that gets 35 miles per gallon? Explain.

111.  Velocity Verify that the average velocity over the time 
interval [t0 − ∆t, t0 + ∆t] is the same as the instantaneous 
velocity at t = t0 for the position function

s(t) = −
1
2

at2 + c.

112.  Inventory Management The annual inventory cost C
for a manufacturer is

C =
1,008,000

Q
+ 6.3Q

   where Q is the order size when the inventory is replenished. 
Find the change in annual cost when Q is increased from 
350 to 351 and compare this with the instantaneous rate of 
change when Q = 350.

113.  Finding an Equation of a Parabola Find an equation 
of the parabola y = ax2 + bx + c that passes through (0, 1)
and is tangent to the line y = x − 1 at (1, 0).

114.  Proof Let (a, b) be an arbitrary point on the graph of 
y = 1�x, x > 0. Prove that the area of the triangle formed by 
the  tangent line through (a, b) and the coordinate axes is 2.

115.  Tangent Line Find the equation(s) of the tangent line(s) 
to the graph of the curve y = x3 − 9x through the point 
(1, −9) not on the graph.

116.  Tangent Line Find the equation(s) of the tangent line(s) 
to the graph of the parabola y = x2 through the given point 
not on the graph.

  (a) (0, a)  (b) (a, 0)
  Are there any restrictions on the constant a?

Making a Function Differentiable In Exercises 117 and 
118, find a and b such that f  is differentiable everywhere.

117. f (x) = {ax3,
x2 + b,

    x ≤ 2
    x > 2

118. f (x) = {cos x,
ax + b,

    x < 0
    x ≥ 0

119.  Determining Differentiability Where are the 
functions f1(x) = ∣sin x∣ and f2(x) = sin ∣x∣ differentiable?

120. Proof Prove that 
d
dx

 [cos x] = −sin x.

 FOR FURTHER INFORMATION For a geometric 
interpretation of the derivatives of trigonometric functions, see the 
article “Sines and Cosines of the Times” by Victor J. Katz in Math 
Horizons. To view this article, go to MathArticles.com.

pUtnAM eXAM ChALLenGe
121. Find all differentiable functions f : R → R such that

f ′(x) =
f (x + n) − f (x)

n

  for all real numbers x and all positive integers n.
This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

The stopping distance of an automobile, on dry, level 
pavement,  traveling at a speed v (in kilometers per hour) 
is the distance R (in meters) the car travels during the  
reaction time of the driver plus the distance B (in meters) 
the car travels after the brakes are applied (see figure). 
The table shows the results of an  experiment.

Driver sees
obstacle

Driver applies
brakes

Car
stops

R B

Reaction
time

Braking
distance

Speed, v 20 40 60 80 100

Reaction Time
Distance, R 8.3 16.7 25.0 33.3 41.7

Braking Time
Distance, B 2.3 9.0 20.2 35.8 55.9

(a)  Use the regression 
capabilities of a 
graphing utility to 
find a linear model 
for reaction time 
distance R.

(b)  Use the regression 
capabilities of a 
graphing utility to 
find a quadratic model
for braking time distance B.

(c)  Determine the polynomial giving the total stopping 
 distance T.

(d)  Use a graphing utility to graph the functions R, B, and 
T in the same viewing window.

(e)  Find the derivative of T and the rates of change of the 
total stopping distance for v = 40, v = 80, and v = 100.

(f )  Use the results of this exercise to draw conclusions 
about the total stopping distance as speed increases.

109. Modeling Data

Tumar/Shutterstock.com 
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3.3 Product and Quotient Rules and Higher-Order Derivatives

 Find the derivative of a function using the Product Rule.
 Find the derivative of a function using the Quotient Rule.
 Find the derivative of a trigonometric function.
 Find a higher-order derivative of a function.

The Product Rule
In Section 3.2, you learned that the derivative of the sum of two functions is simply the 
sum of their derivatives. The rules for the derivatives of the product and quotient of two 
functions are not as simple.

THeOReM 3.8 The Product Rule

The product of two differentiable functions f  and g is itself differentiable. 
Moreover, the derivative of fg is the first function times the derivative of the 
second, plus the second function times the derivative of the first.

d
dx

[ f (x)g(x)] = f (x)g′(x) + g(x)f′(x)

Proof Some mathematical proofs, such as the proof of the Sum Rule, are 
straightforward. Others involve clever steps that may appear unmotivated to a reader. 
This proof involves such a step—subtracting and adding the same quantity—which is 
shown in color.

Note that lim
∆x→0  

f (x + ∆x) = f (x) because f  is given to be differentiable and therefore

is continuous. 

The Product Rule can be extended to cover products involving more than two 
factors. For example, if f, g, and h are differentiable functions of x, then

d
dx

[ f (x)g(x)h(x)] = f′(x)g(x)h(x) + f (x)g′(x)h(x) + f (x)g(x)h′(x).

So, the derivative of y = x2 sin x cos x is

 
dy
dx

= 2x sin x cos x + x2 cos x cos x + x2(sin x)(−sin x)

 = 2x sin x cos x + x2(cos2 x − sin2 x).

 
d
dx

[ f (x)g(x)] = lim
∆x→0

 
f (x + ∆x)g(x + ∆x) − f (x)g(x)

∆x

 = lim
∆x→0

 
f (x + ∆x)g(x + ∆x) − f (x + ∆x)g(x) + f (x + ∆x)g(x) − f (x)g(x)

∆x

 = lim
∆x→0

 [f (x + ∆x)g(x + ∆x) − g(x)
∆x

+ g(x) f (x + ∆x) − f (x)
∆x ]

 = lim
∆x→0

 [f (x + ∆x)g(x + ∆x) − g(x)
∆x ] + lim

∆x→0
 [g(x) f (x + ∆x) − f (x)

∆x ]
 = lim

∆x→0
 f (x + ∆x) ∙ lim

∆x→0
 
g(x + ∆x) − g(x)

∆x
+ lim

∆x→0
 g(x) ∙ lim

∆x→0
 
f (x + ∆x) − f (x)

∆x

 = f (x)g′(x) + g(x)f′(x)

ReMaRk The proof of the 
Product Rule for products of 
more than two factors is left as 
an exercise (see Exercise 145).

ReMaRk A version of the 
Product Rule that some people 
prefer is

The advantage of this form 
is that it generalizes easily 
to products of three or more 
factors.

d
dx

[ f (x)g(x)] = f′(x)g(x) + f (x)g′(x).
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The derivative of a product of two functions is not (in general) given by the product 
of the derivatives of the two functions. To see this, try comparing the product of the 
derivatives of

f (x) = 3x − 2x2

and

g(x) = 5 + 4x

with the derivative in Example 1.

 Using the Product Rule

Find the derivative of h(x) = (3x − 2x2)(5 + 4x).

Solution

h′(x) = (3x − 2x2) d
dx

 [5 + 4x] + (5 + 4x) d
dx

 [3x − 2x2] Apply Product Rule.

 = (3x − 2x2)(4) + (5 + 4x)(3 − 4x)
 = (12x − 8x2) + (15 − 8x − 16x2)
 = −24x2 + 4x + 15 

In Example 1, you have the option of finding the derivative with or without the 
Product Rule. To find the derivative without the Product Rule, you can write

 Dx[(3x − 2x2)(5 + 4x)] = Dx[−8x3 + 2x2 + 15x]
 = −24x2 + 4x + 15.

In the next example, you must use the Product Rule.

 Using the Product Rule

Find the derivative of y = xex.

Solution

 
d
dx

[xex] = x
d
dx

[ex] + ex d
dx

[x] Apply Product Rule.

 = xex + ex(1)
 = ex(x + 1)

 Using the Product Rule

Find the derivative of y = 2x cos x − 2 sin x.

Solution

 
dy
dx

= (2x)( d
dx

 [cos x]) + (cos x)( d
dx

 [2x]) − 2 
d
dx

 [sin x]

 = (2x)(−sin x) + (cos x)(2) − 2(cos x)
 = −2x sin x 

First
Derivative of 

second
Derivative 

of firstSecond

Product Rule Constant Multiple Rule

ReMaRk In Example 3, 
notice that you use the Product 
Rule when both factors of the 
product are variable, and you 
use the Constant Multiple Rule 
when one of the factors is a 
constant.

THE PRODUCT RULE

When Leibniz originally wrote 
a formula for the Product
Rule, he was motivated by the 
expression

(x + dx)(y + dy) − xy

from which he subtracted 
dx dy (as being negligible) and 
obtained the differential form 
x dy + y dx. This derivation 
resulted in the traditional form 
of the Product Rule. (Source: 
The History of Mathematics by 
David M. Burton) 
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The Quotient Rule

THeOReM 3.9 The Quotient Rule

The quotient f�g of two differentiable functions f  and g is itself differentiable 
at all values of x for which g(x) ≠ 0. Moreover, the derivative of f�g is given 
by the denominator times the derivative of the numerator minus the numerator 
times the derivative of the denominator, all divided by the square of the 
denominator.

d
dx

 [ f (x)
g(x)] =

g(x)f′(x) − f (x)g′(x)
[g(x)]2 , g(x) ≠ 0

Proof As with the proof of Theorem 3.8, the key to this proof is subtracting and 
adding the same quantity––which is shown in color.

 
d
dx

 [ f (x)
g(x)] = lim

∆x→0
 

f(x + ∆x)
g(x + ∆x) −

f (x)
g(x)

∆x
 Definition of derivative

 = lim
∆x→0

 
g(x)f (x + ∆x) − f (x)g(x + ∆x)

∆xg(x)g(x + ∆x)

 = lim
∆x→0

 
g(x)f (x + ∆x) − f (x)g(x) + f (x)g(x) − f (x)g(x + ∆x)

∆xg(x)g(x + ∆x)

 =
lim

∆x→0
 
g(x)[ f (x + ∆x) − f (x)]

∆x
− lim

∆x→0
 
f (x)[g(x + ∆x) − g(x)]

∆x
lim

∆x→0
 [g(x)g(x + ∆x)]

 =
g(x)[ lim

∆x→0
 
f (x + ∆x) − f (x)

∆x ] − f (x)[ lim
∆x→0

g(x + ∆x) − g(x)
∆x ]

lim
∆x→0

 [g(x)g(x + ∆x)]

 =
g(x)f′(x) − f (x)g′(x)

[g(x)]2

Note that lim
∆x→0

 g(x + ∆x) = g(x) because g is given to be differentiable and therefore

is continuous. 

 Using the Quotient Rule

Find the derivative of y =
5x − 2
x2 + 1

.

Solution

 
d
dx

 [5x − 2
x2 + 1] =

(x2 + 1) d
dx

 [5x − 2] − (5x − 2) d
dx

 [x2 + 1]

(x2 + 1)2  Apply Quotient Rule.

 =
(x2 + 1)(5) − (5x − 2)(2x)

(x2 + 1)2

 =
(5x2 + 5) − (10x2 − 4x)

(x2 + 1)2

 =
−5x2 + 4x + 5

(x2 + 1)2  

ReMaRk From the Quotient 
Rule, you can see that the 
derivative of a quotient is not 
(in general) the quotient of 
the derivatives. 

y ′ = −5x2 + 4x + 5
(x2 + 1)2

−4

−7 8

6

y = 5x − 2
x2 + 1

Graphical comparison of a 
function and its derivative

TeCHNOLOGY A graphing 
utility can be used to compare 
the graph of a function with 
the graph of its derivative. For 
instance, in the figure below, 
the graph of the function in 
Example 4 appears to have 
two points that have horizontal 
tangent lines. What are the 
values of y′ at these two points?
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Note the use of parentheses in Example 4. A liberal use of parentheses is 
recommended for all types of differentiation problems. For instance, with the Quotient 
Rule, it is a good idea to enclose all factors and derivatives in parentheses and to pay 
special attention to the subtraction required in the numerator. 

When differentiation rules were introduced in the preceding section, the need for 
rewriting before differentiating was emphasized. The next example illustrates this point 
with the Quotient Rule.

 Rewriting Before Differentiating

Find an equation of the tangent line to the graph of f (x) =
3 − (1�x)

x + 5
 at (−1, 1).

Solution Begin by rewriting the function.

 f (x) =
3 − (1�x)

x + 5
 Write original function.

 =
x(3 −

1
x)

x(x + 5)  Multiply numerator and denominator by x.

 =
3x − 1
x2 + 5x

 Rewrite.

Next, apply the Quotient Rule.

 f′(x) =
(x2 + 5x)(3) − (3x − 1)(2x + 5)

(x2 + 5x)2  Quotient Rule

 =
(3x2 + 15x) − (6x2 + 13x − 5)

(x2 + 5x)2

 =
−3x2 + 2x + 5

(x2 + 5x)2  Simplify.

To find the slope at (−1, 1), evaluate f′(−1).

f′(−1) = 0 Slope of graph at (−1, 1)

Then, using the point-slope form of the equation of a line, you can determine that the 
equation of the tangent line at (−1, 1) is y = 1. See Figure 3.23. 

Not every quotient needs to be differentiated by the Quotient Rule. For instance, 
each quotient in the next example can be considered as the product of a constant times 
a function of x. In such cases, it is more convenient to use the Constant Multiple Rule.

 Using the Constant Multiple Rule

 Original Function Rewrite Differentiate Simplify

a. y =
x2 + 3x

6
 y =

1
6

 (x2 + 3x) y′ =
1
6

 (2x + 3) y′ =
2x + 3

6

b. y =
5x4

8
 y =

5
8

x4 y′ =
5
8

 (4x3) y′ =
5
2

 x3

c. y =
−3(3x − 2x2)

7x
 y = −

3
7

 (3 − 2x) y′ = −
3
7

 (−2) y′ =
6
7

d. y =
9

5x2 y =
9
5

 (x−2) y′ =
9
5

 (−2x−3) y′ = −
18
5x3

  

ReMaRk To see the benefit 
of using the Constant Multiple 
Rule for some quotients, try 
using the Quotient Rule to  
differentiate the functions in 
Example 6. You should  
obtain the same results but  
with more work.

The line y = 1 is tangent to the graph 
of f  at the point (−1, 1).
Figure 3.23

y

x

y = 1

f (x) = 
3 −     1

x + 5
x

−1−2−3−4−5−6−7 1 2 3

−2

−3

−4

−5

3

4

5

(−1, 1)
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In Section 3.2, the Power Rule was proved only for the case in which the exponent 
n is a positive integer greater than 1. The next example extends the proof to include 
negative integer exponents.

 Power Rule: Negative Integer exponents

If n is a negative integer, then there exists a positive integer k such that n = −k. So, by 
the Quotient Rule, you can write

 
d
dx

[xn] =
d
dx[

1
xk]

 =
xk(0) − (1)(kxk−1)

(xk)2  Quotient Rule and Power Rule

 =
0 − kxk−1

x2k

 = −kx−k−1

 = nxn−1. n = −k

So, the Power Rule

d
dx

 [xn] = nxn−1 Power Rule

is valid for any integer n. The cases for which n is rational and n is irrational are left as 
an exercise (see Section 3.5, Exercise 92). 

Derivatives of Trigonometric Functions
Knowing the derivatives of the sine and cosine functions, you can use the Quotient Rule 
to find the derivatives of the four remaining trigonometric functions.

THeOReM 3.10 Derivatives of Trigonometric Functions

d
dx

 [tan x] = sec2 x 
d
dx

 [cot x] = −csc2 x

d
dx

 [sec x] = sec x tan x 
d
dx

 [csc x] = −csc x cot x

Proof Considering tan x = (sin x)�(cos x) and applying the Quotient Rule, you 
obtain

 
d
dx

 [tan x] =
d
dx

 [ sin x
cos x]

 =
(cos x)(cos x) − (sin x)(−sin x)

cos2 x
 Apply Quotient Rule.

 =
cos2 x + sin2 x

cos2 x

 =
1

cos2 x

 = sec2 x.

The proofs of the other three parts of the theorem are left as an exercise (see 
Exercise 93). 

ReMaRk In the proof of 
Theorem 3.10, note the use of 
the trigonometric identities

sin2 x + cos2 x = 1

and

sec x =
1

cos x
.

These trigonometric identities 
and others are listed in Section 
1.4 and on the formula cards
for this text.
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 Differentiating Trigonometric Functions

See LarsonCalculus.com for an interactive version of this type of example.

 Function Derivative

a. y = x − tan x  
dy
dx

= 1 − sec2 x

b. y = x sec x  y′ = x(sec x tan x) + (sec x)(1)
  = (sec x)(1 + x tan x)

 Different Forms of a Derivative

Differentiate both forms of

y =
1 − cos x

sin x
= csc x − cot x.

Solution

First form:  y =
1 − cos x

sin x

  y′ =
(sin x)(sin x) − (1 − cos x)(cos x)

sin2 x

  =
sin2 x − cos x + cos2 x

sin2 x

  =
1 − cos x

sin2 x
 sin2 x + cos2 x = 1

Second form:  y = csc x −  cot x

  y′ = −csc x cot x + csc2 x

To show that the two derivatives are equal, you can write 

 
1 − cos x

sin2 x
=

1
sin2 x

−
cos x
sin2 x

 =
1

sin2 x
− ( 1

sin x)(
cos x
sin x)

 = csc2 x − csc x cot x. 

The summary below shows that much of the work in obtaining a simplified form 
of a derivative occurs after differentiating. Note that two characteristics of a simplified 
form are the absence of negative exponents and the combining of like terms.

f′(x) After Differentiating f′(x) After Simplifying

Example 1 (3x − 2x2)(4) + (5 + 4x)(3 − 4x) −24x2 + 4x + 15

Example 3 (2x)(−sin x) + (cos x)(2) − 2(cos x) −2x sin x

Example 4
(x2 + 1)(5) − (5x − 2)(2x)

(x2 + 1)2

−5x2 + 4x + 5
(x2 + 1)2

Example 5
(x2 + 5x)(3) − (3x − 1)(2x + 5)

(x2 + 5x)2

−3x2 + 2x + 5
(x2 + 5x)2

Example 9
(sin x)(sin x) − (1 − cos x)(cos x)

sin2 x
1 − cos x

sin2 x

ReMaRk Because of 
trigonometric identities, the 
derivative of a trigonometric 
function can take many forms. 
This presents a challenge when 
you are trying to match your 
answers to those given in the 
back of the text.
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Higher-Order Derivatives
Just as you can obtain a velocity function by differentiating a position function, you 
can obtain an acceleration function by differentiating a velocity function. Another way 
of looking at this is that you can obtain an acceleration function by differentiating a 
position function twice.

 s(t) Position function

 v(t) = s′(t) Velocity function

a(t) = v′(t) = s″(t) Acceleration function

The function a(t) is the second derivative of s(t) and is denoted by s″(t).
The second derivative is an example of a higher-order derivative. You can 

define derivatives of any positive integer order. For instance, the third derivative is 
the derivative of the second derivative. Higher-order derivatives are denoted as shown 
below.

First derivative: y′, f′(x), dy
dx

, 
d
dx

 [ f (x)], Dx [y]

Second derivative: y″, f ″(x), d2y
dx2 , 

d2

dx2 [ f (x)], Dx
2[y]

Third derivative: y′″, f′″(x), d3y
dx3 , 

d3

dx3 [ f (x)], Dx
3[y]

Fourth derivative: y(4), f (4)(x), d4y
dx4, 

d4

dx4 [ f (x)], Dx
4[y]

 ⋮
nth derivative: y(n), f (n)(x), dny

dxn, 
dn

dxn [ f (x)], Dx
n[y]

 Finding the acceleration Due to Gravity

Because the moon has no atmosphere, a falling  

1 2 3

1

2

3

t

s

s(t) = −0.81t2 + 2

object on the moon encounters no air resistance. 
In 1971, astronaut David Scott demonstrated that 
a feather and a hammer fall at the same rate on 
the moon. The position function for each of these 
falling objects is

s(t) = −0.81t2 + 2

where s(t) is the height in meters and t is the 
time in seconds, as shown in the figure at the 
right. What is the ratio of Earth’s gravitational 
force to the moon’s?

Solution To find the acceleration, differentiate the position function twice.

 s(t) = −0.81t2 + 2 Position function

 s′(t) = −1.62t Velocity function

 s″(t) = −1.62 Acceleration function

Because s″(t) = −g, the acceleration due to gravity on the moon is g = 1.62 meters per 
second per second. The acceleration due to gravity on Earth is 9.8 meters per second 
per second, so the ratio of Earth’s gravitational force to the moon’s is

 
Earth s gravitational force
Moon s gravitational force

=
9.8
1.62

 ≈ 6.0. 

’
’

The moon’s mass is 7.349 × 1022 
kilograms, and Earth’s mass 
is 5.976 × 1024 kilograms. 
The moon’s radius is 1737 
kilometers, and Earth’s radius 
is 6378 kilometers. Because 
the gravitational force on the 
surface of a planet is directly 
proportional to its mass and 
inversely proportional to the 
square of its radius, the ratio of 
the gravitational force on Earth 
to the gravitational force on the 
moon is

(5.976 × 1024)�63782

(7.349 × 1022)�17372 ≈ 6.0.

exploration
For which of the functions

y = ex,   y =
1
ex

y = sin x,  y = cos x

are the equations below true?

a. y = y′ b. y = y″
c. y = y′″ d. y = y(4)

Without determining the 
actual derivative, is y = y(8) 
for y = sin x true? What 
conclusion can you draw 
from this?

NASA
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3.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Product Rule Describe the Product Rule in your  

own words.

2.  Quotient Rule Describe the Quotient Rule in your 
own words.

3.  Trigonometric Functions What are the derivatives 
of tan x, cot x, sec x, and csc x?

4.  Higher-Order Derivative What is a higher-order 
derivative?

 Using the Product Rule In Exercises 5–10, 
use the Product Rule to find the derivative of the 
function.

 5. g(x) = (2x − 3)(1 − 5x)  6. y = (3x − 4)(x3 + 5)
 7. h(t) = √t(1 − t2)  8. g(s) = √s(s2 + 8)
 9. f (x) = ex cos x 10. g(x) = √x sin x

 Using the Quotient Rule In Exercises 11–16, 
use the Quotient Rule to find the derivative of the 
function.

11. f (x) =
x

x − 5
 12. g(t) =

3t2 − 1
2t + 5

13. h(x) =
√x

x3 + 1
 14. f (x) =

x2

2√x + 1

15. g(x) =
sin x

ex  16. f (t) =
cos t

t3

 Finding and evaluating a Derivative In 
Exercises 17–24, find f ′(x) and f ′(c).

17. f (x) = (x3 + 4x)(3x2 + 2x − 5), c = 0

18. f (x) = (2x2 − 3x)(9x + 4), c = −1

19. f (x) =
x2 − 4
x − 3

, c = 1 20. f (x) =
x − 4
x + 4

, c = 3

21. f (x) = x cos x, c =
π
4

 22. f (x) =
sin x

x
, c =

π
6

23. f (x) = ex sin x, c = 0 24. f (x) =
cos x

ex , c = 0

 Using the Constant Multiple Rule In 
Exercises 25–30, complete the table to find the 
derivative of the function without using the 
Quotient Rule.

 Function Rewrite Differentiate Simplify

25. y =
x3 + 6x

3
   

26. y =
5x2 − 3

4
   

 Function Rewrite Differentiate Simplify

27. y =
6

7x2   

28. y =
10
3x3   

29. y =
4x3�2

x
   

30. y =
2x

x1�3   

Finding a Derivative In Exercises 31–42, find the derivative 
of the algebraic function.

31. f (x) =
4 − 3x − x2

x2 − 1
 32. f (x) =

x2 + 5x + 6
x2 − 4

33. f (x) = x(1 −
4

x + 3) 34. f (x) = x4(1 −
2

x + 1)
35. f (x) =

3x − 1

√x
 36. f (x) = 3√x(√x + 3)

37. f (x) =
2 −

1
x

x − 3
 38. h(x) =

1
x2 + 5x

x + 1

39. g(s) = s3(5 −
s

s + 2) 40. g(x) = x2(2
x

−
1

x + 1)
41. f (x) = (2x3 + 5x)(x − 3)(x + 2)
42. f (x) = (x3 − x)(x2 + 2)(x2 + x − 1)

 Finding a Derivative of a Transcendental 
Function In Exercises 43–60, find the derivative 
of the transcendental function.

43. f (t) = t2 sin t 44. f (θ) = (θ + 1) cos θ

45. f (t) =
cos t

t
 46. f (x) =

sin x
x3

47. f (x) = −ex + tan x 48. y = ex − cot x

49. g(t) = 4√t + 6 csc t 50. h(x) =
1
x

− 12 sec x

51. y =
3(1 − sin x)

2 cos x
 52. y =

sec x
x

53. y = −csc x − sin x 54. y = x sin x + cos x

55. f (x) = x2 tan x 56. f (x) = sin x cos x

57. y = 2x sin x + x2ex 58. h(x) = 2ex cos x

59. y =
ex

4√x
 60. y =

2ex

x2 + 1

Finding a Derivative Using Technology In Exercises 61 
and 62, use a computer algebra system to find the derivative 
of the function.

61. g(x) = (x + 1
x + 2)(2x − 5) 62. f (x) =

cos x
1 − sin x
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Finding the Slope of a Graph In Exercises 63–66, find 
the slope of the graph of the function at the given point. Use the 
derivative feature of a graphing utility to confirm your results.

 Function Point

63. y =
1 + csc x
1 − csc x

 (π6, −3)
64. f (x) = tan x cot x (1, 1)

65. h(t) =
sec t

t
 (π, −

1
π)

66. f (x) = (sin x)(sin x + cos x) (π4, 1)
Finding an equation of a Tangent Line In Exercises 
67–74, (a) find an equation of the tangent line to the graph 
of f  at the given point, (b) use a graphing utility to graph 
the function and its tangent line at the point, and (c) use the 
tangent feature of a graphing utility to confirm your results.

67. f (x) = (x3 + 4x − 1)(x − 2), (1, −4)
68. f (x) = (x − 2)(x2 + 4), (1, −5)

69. f (x) =
x

x + 4
, (−5, 5) 70. f (x) =

x + 3
x − 3

, (4, 7)

71. f (x) = tan x, (π4, 1) 72. f (x) = sec x, (π3, 2)
73. f (x) = (x − 1)ex, (1, 0) 74. f (x) =

ex

x + 4
, (0, 

1
4)

Famous Curves In Exercises 75–78, find an equation of 
the tangent line to the graph at the given point. (The graphs in 
Exercises 75 and 76 are called Witches of Agnesi. The graphs 
in Exercises 77 and 78 are called serpentines.)

75. y

x
2 4−2

−2

−4

4

6

f (x) = 8
x2 + 4

(2, 1)

 76. y

x
2 4−2

−2

−4

4

6 f (x) = 27
x2 + 9

−3, 3
2( (

77. y

x
4 8

−8

4

8 f (x) = 16x
x2 + 16

−2, − 8
5( (

 78. y

x
21 3 4

2
3

1

4

f (x) = 4x
x2 + 6

2, 4
5( (

 Horizontal Tangent Line In Exercises 79–82, 
determine the point(s) at which the graph of the 
function has a horizontal tangent line.

79. f (x) =
x2

x − 1
 80. f (x) =

x − 4
x2 − 7

81. g(x) =
8(x − 2)

ex  82. f (x) = ex sin x, [0, π]

83.  Tangent Lines Find equations of the tangent lines to the 
graph of

 f (x) =
x + 1
x − 1

  that are parallel to the line 2y + x = 6. Then graph the 
function and the tangent lines.

84.  Tangent Lines Find equations of the tangent lines to the 
graph of f (x) = x�(x − 1) that pass through the point (−1, 5).
Then graph the function and the tangent lines.

exploring a Relationship In Exercises 85 and 86, verify 
that f ′(x) = g′(x) and explain the relationship between f  and g.

85. f (x) =
3x

x + 2
, g(x) =

5x + 4
x + 2

86. f (x) =
sin x − 3x

x
, g(x) =

sin x + 2x
x

Finding Derivatives In Exercises 87 and 88, use the graphs 
of f  and g. Let p(x) = f (x)g(x) and q(x) = f (x)�g(x).

87. (a) Find p′(1). 88. (a) Find p′(4).
 (b) Find q′(4).  (b) Find q′(7).
 y

x

f

g

2−2 4 6 8 10

2

6

8

10

  y

x
2−2 4 6 8 10

2

4

8

10

f

g

89.  area The length of a rectangle is given by 6t + 5 and its 
height is √t, where t is time in seconds and the dimensions are 
in centimeters. Find the rate of change of the area with respect 
to time.

90.  Volume The radius of a right circular cylinder is given by 
√t + 2 and its height is 1

2√t, where t is time in seconds and 
the dimensions are in inches. Find the rate of change of the 
volume with respect to time.

91.  Inventory Replenishment The ordering and 
transportation cost C for the components used in manufacturing 
a product is

 C = 100(200
x2 +

x
x + 30), x ≥ 1

  where C is measured in thousands of dollars and x is the order 
size in hundreds. Find the rate of change of C with respect to 
x when (a) x = 10, (b) x = 15, and (c) x = 20. What do these 
rates of change imply about increasing order size?

92.  Population Growth A population of 500 bacteria is 
introduced into a culture and grows in number according to the 
equation 

 P(t) = 500(1 +
4t

50 + t2)
  where t is measured in hours. Find the rate at which the 

population is growing when t = 2.
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93. Proof Prove each differentiation rule.

 (a) 
d
dx

 [sec x] = sec x tan x  (b) 
d
dx

 [csc x] = −csc x cot x

 (c) 
d
dx

 [cot x] = −csc2 x

94.  Rate of Change Determine whether there exist any 
values of x in the interval [0, 2π) such that the rate of change 
of f (x) = sec x and the rate of change of g(x) = csc x are 
equal.

95.  Modeling Data The table shows the national health care 
expenditures h (in billions of dollars) in the United States and 
the population p (in millions) of the United States for the years 
2008 through 2013. The year is represented by t, with t = 8 
corresponding to 2008. (Source: U.S. Centers for Medicare 
& Medicaid Services and U.S. Census Bureau)

Year, t 8 9 10 11 12 13

h 2414 2506 2604 2705 2817 2919

p 304 307 309 311 313 315

 (a)  Use a graphing utility to find linear models for the health 
care expenditures h(t) and the population p(t).

 (b) Use a graphing utility to graph h(t) and p(t).
 (c)  Find A = h(t)�p(t), then graph A using a graphing utility. 

What does this function represent?

 (d) Find and interpret A′(t) in the context of the problem.

96.  Satellites When satellites observe Earth, they can scan 
only part of Earth’s surface. Some satellites have sensors that 
can measure the angle θ shown in the figure. Let h represent 
the satellite’s distance from Earth’s surface, and let r represent 
Earth’s radius.

r

r h
θ

 (a) Show that h = r(csc θ − 1).
 (b)  Find the rate at which h is changing with respect to θ when 

θ = 30°. (Assume r = 4000 miles.)

 Finding a Second Derivative In Exercises 
97–108, find the second derivative of the function.

 97. f (x) = x2 + 7x − 4  98. f (x) = 4x5 − 2x3 + 5x2

 99. f (x) = 4x3�2 100. f (x) = x2 + 3x−3

101. f (x) =
x

x − 1
 102. f (x) =

x2 + 3x
x − 4

103. f (x) = x sin x 104. f (x) = x cos x

105. f (x) = csc x 106. f (x) = sec x

107. g(x) =
ex

x
 108. h(t) = et sin t

 Finding a Higher-Order Derivative In 
Exercises 109–112, find the given higher-order 
derivative.

109. f ′(x) = x3 − x2�5, f (3)(x)
110. f (3)(x) = 5√x4, f (4)(x)
111. f ″(x) = −sin x, f (8)(x)
112. f (4)(t) = t cos t, f (5)(t)

Using Relationships In Exercises 113–116, use the given 
information to find f ′(2).

g(2) = 3 and g′(2) = −2

h(2) = −1 and h′(2) = 4

113. f (x) = 2g(x) + h(x)
114. f (x) = 4 − h(x)

115. f (x) =
g(x)
h(x)

116. f (x) = g(x)h(x)

exploring ConCepts

117.  Higher-Order Derivatives Polynomials of what 
degree satisfy f (n) = 0? Explain your reasoning.

118.   Differentiation of Piecewise Functions 
Describe how you would differentiate a piecewise 
function. Use your approach to find the first and second 
derivatives of f (x) = x∣x∣. Explain why f ″(0) does not 
exist.

Identifying Graphs In Exercises 119 and 120, the 
graphs of f, f ′, and f ″ are shown on the same set 
of coordinate axes. Identify each graph. Explain your 
reasoning. To print an enlarged copy of the graph, go to 
MathGraphs.com.

119.

2

2

−1−2
x

y

Sketching Graphs In Exercises 121 and 122, the graph 
of f  is shown. Sketch the graphs of f ′ and f ″. To print an 
enlarged copy of the graph, go to MathGraphs.com.

121. y

x

f

−2−4 4
−2

2

4

120.

3
−1

−1

−2

x

y

122. y

x

2
3
4

1

−4

f

π
2

π
2

3
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123.  Sketching a Graph Sketch the graph of a differentiable 
function f  such that f (2) = 0, f ′ < 0 for −∞ < x < 2, and 
f ′ > 0 for 2 < x < ∞. Explain how you found your answer.

124.  Sketching a Graph Sketch the graph of a differentiable 
function f  such that f > 0 and f ′ < 0 for all real numbers x.
Explain how you found your answer.

125. acceleration The velocity of an object is

v(t) = 36 − t2, 0 ≤ t ≤ 6

   where v is measured in meters per second and t is the time 
in seconds. Find the velocity and acceleration of the object 
when t = 3. What can be said about the speed of the object 
when the velocity and acceleration have opposite signs?

126.  acceleration The velocity of an automobile starting 
from rest is

v(t) =
100t

2t + 15

   where v is measured in feet per second and t is the 
time in seconds. Find the acceleration at (a) 5 seconds, 
(b) 10 seconds, and (c) 20 seconds.

127.  Stopping Distance A car is traveling at a rate of 66 feet 
per second (45 miles per hour) when the brakes are applied. 
The position function for the car is 

  s(t) = −8.25t2 + 66t

    where s is measured in feet and t is measured in seconds. 
Use this function to complete the table and find the average 
velocity during each time interval.

 
t 0 1 2 3 4

s(t)

v(t)

a(t)

 128.    HOW DO YOU See IT? The figure shows
the graphs of the position, velocity, and 
acceleration functions of a particle.

y

t
1−1 4 5 6 7

8
4

12
16

(a)  Copy the graphs of the functions shown. Identify 
each graph. Explain your reasoning. To print an 
enlarged copy of the graph, go to MathGraphs.com.

(b)  On your sketch, identify when the particle speeds up 
and when it slows down. Explain your reasoning.

 128.    

Finding a Pattern In Exercises 129 and 130, develop a 
general rule for f (n)(x) given f (x).

129. f (x) = xn 130. f (x) =
1
x

131. Finding a Pattern Consider the function f (x) = g(x)h(x).
  (a)  Use the Product Rule to generate rules for finding f ″(x),

f ′″(x), and f (4)(x).
  (b) Use the results of part (a) to write a general rule for f (n)(x).
132.  Finding a Pattern Develop a general rule for the nth 

derivative of xf (x), where f  is a differentiable function of x.

Finding a Pattern In Exercises 133 and 134, find the 
derivatives of the function f  for n = 1, 2, 3, and 4. Use the 
results to write a general rule for f ′(x) in terms of n.

133. f (x) = xn sin x 134. f (x) =
cos x

xn

Differential equations In Exercises 135–138, verify that 
the function satisfies the differential equation. (A differential 
equation in x and y is an equation that involves x, y, and 
derivatives of y.)

 Function Differential Equation

135. y =
1
x
, x > 0 x3y″ + 2x2y′ = 0

136. y = 2x3 − 6x + 10 −y′″ − xy″ − 2y′ = −24x2

137. y = 2 sin x + 3 y″ + y = 3

138. y = 3 cos x + sin x y″ + y = 0

True or False? In Exercises 139–144, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

139. If y = f (x)g(x), then 
dy
dx

= f ′(x)g′(x).

140. If y = (x + 1)(x + 2)(x + 3)(x + 4), then 
d5y
dx5 = 0.

141. If f ′(c) and g′(c) are zero and h(x) = f (x)g(x), then h′(c) = 0.

142.  If the position function of an object is linear, then its 
acceleration is zero.

143.  The second derivative represents the rate of change of the 
first derivative.

144.  The function f (x) = sin x + c satisfies f (n) = f (n+4) for all 
integers n ≥ 1.

145.  Proof Use the Product Rule twice to prove that if f, g, and 
h are differentiable functions of x, then

d
dx

 [ f (x)g(x)h(x)] = f ′(x)g(x)h(x) + f (x)g′(x)h(x) + f (x)g(x)h′(x).

146.  Think about It Let f  and g be functions whose first 
and second derivatives exist on an interval I. Which of the 
following formulas is (are) true?

  (a) fg″ − f ″g = ( fg′ − f ′g)′  (b) fg″ + f ″g = ( fg)″
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3.4 The Chain Rule

 Find the derivative of a composite function using the Chain Rule.
 Find the derivative of a function using the General Power Rule.
 Simplify the derivative of a function using algebra.
 Find the derivative of a transcendental function using the Chain Rule.
 Find the derivative of a function involving the natural logarithmic function.
 Define and differentiate exponential functions that have bases other than e.

The Chain Rule
This text has yet to discuss one of the most powerful differentiation rules—the Chain 
Rule. This rule deals with composite functions and adds a surprising versatility to the 
rules discussed in the two preceding sections. For example, compare the functions 
shown below. Those on the left can be differentiated without the Chain Rule, and those 
on the right are best differentiated with the Chain Rule.

 Without the Chain Rule With the Chain Rule

y = x2 + 1 y = √x2 + 1

y = sin x y = sin 6x

y = 3x + 2 y = (3x + 2)5

y = ex + tan x y = e5x + tan x2

Basically, the Chain Rule states that if y changes dy�du times as fast as u, and u changes 
du�dx times as fast as x, then y changes (dy�du)(du�dx) times as fast as x.

 The Derivative of a Composite Function

A set of gears is constructed so that the second and third gears are on the same axle (see 
Figure 3.24). As the first axle revolves, it drives the second axle, which in turn drives 
the third axle. Let y, u, and x represent the numbers of revolutions per minute of the 
first, second, and third axles, respectively. Find dy�du, du�dx, and dy�dx, and show that

dy
dx

=
dy
du

∙ du
dx

.

Solution Because the circumference of the second gear is three times that of the 
first, the first axle must make three revolutions to turn the second axle once. Similarly, 
the second axle must make two revolutions to turn the third axle once, and you can write

dy
du

= 3 and 
du
dx

= 2.

Combining these two results, you know that the first axle must make six revolutions to 
turn the third axle once. So, you can write

 
dy
dx

= Rate of change of first axle 
with respect to second axle ∙ Rate of change of second axle 

with respect to third axle

 =
dy
du

∙ du
dx

 = 3 ∙ 2

 = 6

 = Rate of change of first axle 
with respect to third axle .

In other words, the rate of change of y with respect to x is the product of the rate of 
change of y with respect to u and the rate of change of u with respect to x. 

Axle 1: y revolutions per minute
Axle 2: u revolutions per minute
Axle 3: x revolutions per minute
Figure 3.24

1

1
2

Axle 1

Axle 2

Axle 3

Gear 1

Gear 2

Gear 3

Gear 4

3
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Example 1 illustrates a simple case of the Chain Rule. The general rule is stated 
in the next theorem.

TheORem 3.11 The Chain Rule

If y = f (u) is a differentiable function of u and u = g(x) is a differentiable 
function of x, then y = f (g(x)) is a differentiable function of x and 

dy
dx

=
dy
du

∙ du
dx

or, equivalently,

d
dx

 [ f (g(x))] = f′(g(x))g′(x).

Proof Let h(x) = f (g(x)). Then, using the alternative form of the derivative, you need 
to show that, for x = c,

h′(c) = f′(g(c))g′(c).

An important consideration in this proof is the behavior of g as x approaches c. A 
problem occurs when there are values of x, other than c, such that

g(x) = g(c).

Appendix A shows how to use the differentiability of f  and g to overcome this  problem. 
For now, assume that g(x) ≠ g(c) for values of x other than c. In the proofs of the 
Product Rule and the Quotient Rule, the same  quantity was added and subtracted to 
obtain the desired form. This proof uses a similar technique— multiplying and dividing 
by the same (nonzero) quantity. Note that because g is  differentiable, it is also continuous, 
and it follows that g(x) approaches g(c) as x approaches c.

 h′(c) = lim
x→c

 
f (g(x)) − f (g(c))

x − c
 Alternative form of derivative

 = lim
x→c

 [f (g(x)) − f (g(c))
x − c

∙ g(x) − g(c)
g(x) − g(c)], g(x) ≠ g(c)

 = lim
x→c

 [f (g(x)) − f (g(c))
g(x) − g(c) ∙ g(x) − g(c)

x − c ]
 = [lim

x→c
 
f (g(x)) − f (g(c))

g(x) − g(c) ][lim
x→c

 
g(x) − g(c)

x − c ]
 = f′(g(c))g′(c) 

When applying the Chain Rule, it is helpful to think of the composite function f ∘ g 
as having two parts—an inner part and an outer part.

 Outer function

y = f (g(x)) = f (u)

 Inner function

The derivative of y = f (u) is the derivative of the outer function (at the inner function u)
times the derivative of the inner function.

y′ = f′(u) ∙ u′

RemARk The alternative 
limit form of the derivative was 
given at the end of Section 3.1.

exploration
Using the Chain Rule Each 
of the following functions 
can be differentiated using 
rules that you studied in 
Sections 3.2 and 3.3. For 
each function, find the 
derivative using those rules. 
Then find the derivative 
using the Chain Rule. 
Compare your results. 
Which method is simpler?

a. y =
2

3x + 1

b. y = (x + 2)3

c. y = sin 2x 
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 Decomposition of a Composite Function

y = f (g(x)) u = g(x) y = f (u)

a. y =
1

x + 1
 u = x + 1 y =

1
u

b. y = sin 2x u = 2x y = sin u

c. y = √3x2 − x + 1 u = 3x2 − x + 1 y = √u

d. y = tan2 x u = tan x y = u2

 Using the Chain Rule

Find dy�dx for

y = (x2 + 1)3.

Solution For this function, you can consider the inside function to be u = x2 + 1 
and the outer function to be y = u3. By the Chain Rule, you obtain

dy
dx

= 3(x2 + 1)2(2x) = 6x(x2 + 1)2.

 
 dy

du
 du

dx
  

The General Power Rule
The function in Example 3 is an example of one of the most common types of 
composite functions, y = [u(x)]n. The rule for differentiating such functions is called 
the General Power Rule, and it is a special case of the Chain Rule.

TheORem 3.12 The General Power Rule

If y = [u(x)]n, where u is a differentiable function of x and n is a rational 
number, then

dy
dx

= n[u(x)]n−1 
du
dx

or, equivalently,

d
dx

 [un] = nun−1u′.

Proof Because y = [u(x)]n = un, you apply the Chain Rule to obtain

 
dy
dx

= (dy
du)(

du
dx)

 =
d
du

 [un] du
dx

.

By the (Simple) Power Rule in Section 3.2, you have Du[un] = nun−1, and it follows 
that

dy
dx

= nun−1 
du
dx

. 

RemARk You could also 
solve the problem in Example 3 
without using the Chain Rule by 
observing that

y = x6 + 3x4 + 3x2 + 1

and

y′ = 6x5 + 12x3 + 6x.

Verify that this is the same as 
the derivative in Example 3. 
Which method would you use 
to find

d
dx

[(x2 + 1)50]?
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 Applying the General Power Rule

Find the derivative of f (x) = (3x − 2x2)3.

Solution Let u = 3x − 2x2. Then

f (x) = (3x − 2x2)3 = u3

and, by the General Power Rule, the derivative is

 n un−1 u′
   

  f′(x) = 3(3x − 2x2)2 
d
dx

 [3x − 2x2] Apply General Power Rule.

 = 3(3x − 2x2)2(3 − 4x). Differentiate 3x − 2x2.

 Differentiating Functions Involving Radicals

Find all points on the graph of 

f (x) = 3√(x2 − 1)2 

for which f′(x) = 0 and those for which f′(x) does not exist.

Solution Begin by rewriting the function as

f (x) = (x2 − 1)2�3.

Then, applying the General Power Rule (with u = x2 − 1) produces

 n un−1 u′
   

  f′(x) =
2
3

 (x2 − 1)−1�3(2x) Apply General Power Rule.

 =
4x

3 3√x2 − 1
. Write in radical form.

So, f′(x) = 0 when x = 0, and f′(x) does not exist when x = ±1, as shown in  
Figure 3.25.

 Differentiating Quotients: Constant Numerators

Differentiate the function

g(t) =
−7

(2t − 3)2 .

Solution Begin by rewriting the function as

g(t) = −7(2t − 3)−2.

Then, applying the General Power Rule (with u = 2t − 3) produces

 n un−1 u′
   

 g′(t) = (−7)(−2)(2t − 3)−3(2) Apply General Power Rule.

 
 Constant
 Multiple Rule

 = 28(2t − 3)−3  Simplify.

 =
28

(2t − 3)3.  Write with positive exponent. 

RemARk Try differentiating 
the function in Example 6 using 
the Quotient Rule. You should 
obtain the same result, but  
using the Quotient Rule is  
less efficient than using the 
General Power Rule.

The derivative of f  is 0 at x = 0 and is 
undefined at x = ±1.
Figure 3.25

−2 2

2

−1

−2

−1 1
x

y

f ′(x) =

f(x) =     (x2 − 1)2

4x

3    x2 − 13

3
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Simplifying Derivatives
The next three examples demonstrate techniques for simplifying the “raw derivatives” 
of functions involving products, quotients, and composites.

 Simplifying by Factoring Out the Least Powers

Find the derivative of  f (x) = x2√1 − x2.

Solution

 f (x) = x2√1 − x2 Write original function.

 = x2(1 − x2)1�2 Rewrite.

  f′(x) = x2 
d
dx

 [(1 − x2)1�2] + (1 − x2)1�2 
d
dx

 [x2] Product Rule

 = x2 [1
2

 (1 − x2)−1�2(−2x)] + (1 − x2)1�2(2x) General Power Rule

 = −x3(1 − x2)−1�2 + 2x(1 − x2)1�2 Simplify.

 = x(1 − x2)−1�2[−x2(1) + 2(1 − x2)] Factor.

 =
x(2 − 3x2)
√1 − x2

 Simplify.

 Simplifying the Derivative of a Quotient

  f (x) =
x

3√x2 + 4
 Original function

 =
x

(x2 + 4)1�3 Rewrite.

  f′(x) =
(x2 + 4)1�3(1) − x(1�3)(x2 + 4)−2�3(2x)

(x2 + 4)2�3  Quotient Rule

 =
1
3

 (x2 + 4)−2�3[3(x2 + 4) − (2x2)(1)
(x2 + 4)2�3 ] Factor.

 =
x2 + 12

3(x2 + 4)4�3 Simplify.

 Simplifying the Derivative of a Power

See LarsonCalculus.com for an interactive version of this type of example.

 y = (3x − 1
x2 + 3)

2

 Original function

 n un−1 u′
   

 y′ = 2(3x − 1
x2 + 3) 

d
dx

 [3x − 1
x2 + 3] General Power Rule

 = [2(3x − 1)
x2 + 3 ][(x2 + 3)(3) − (3x − 1)(2x)

(x2 + 3)2 ] Quotient Rule

 =
2(3x − 1)(3x2 + 9 − 6x2 + 2x)

(x2 + 3)3  Multiply.

 =
2(3x − 1)(−3x2 + 2x + 9)

(x2 + 3)3  Simplify. 

TeChNOLOGy Symbolic 
differ entiation utilities are 
capable of differentiating very 
complicated functions. Often, 
however, the result is given in 
unsimplified form. If you have 
access to such a utility, use it 
to find the derivatives of the 
functions given in Examples 
7, 8, and 9. Then compare the 
results with those given in  
these examples.
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 3.4 The Chain Rule 159

Transcendental Functions and the Chain Rule
The “Chain Rule versions” of the derivatives of the six trigonometric functions and the 
natural exponential function are shown below.

 
d
dx

 [sin u] = (cos u)u′   
d
dx

 [cos u] = −(sin u)u′

 
d
dx

 [tan u] = (sec2 u)u′   
d
dx

 [cot u] = −(csc2 u)u′

 
d
dx

 [sec u] = (sec u tan u)u′  
d
dx

 [csc u] = −(csc u cot u)u′

d
dx

[eu] = euu′

 The Chain Rule and Transcendental Functions

 u cos u u′
   

a. y = sin 2x y′ = cos 2x 
d
dx

 [2x] = (cos 2x)(2) = 2 cos 2x

 u −(sin u) u′
   

b. y = cos(x − 1) y′ = −sin(x − 1) d
dx

 [x − 1] = −sin(x − 1)

 u eu u′
   

c. y = e3x y′ = e3x d
dx

[3x] = 3e3x

 Parentheses and Trigonometric Functions

a. y = cos 3x2 = cos(3x2) y′ = (−sin 3x2)(6x) = −6x sin 3x2

b. y = (cos 3)x2 y′ = (cos 3)(2x) = 2x cos 3

c. y = cos(3x)2 = cos(9x2) y′ = (−sin 9x2)(18x) = −18x sin 9x2

d. y = cos2 x = (cos x)2 y′ = 2(cos x)(−sin x) = −2 cos x sin x

e. y = √cos x = (cos x)1�2 y′ =
1
2

 (cos x)−1�2(−sin x) = −
sin x

2√cos x
 

To find the derivative of a function of the form k(x) = f (g(h(x))), you need to 
apply the Chain Rule twice, as shown in Example 12.

 Repeated Application of the Chain Rule

  f (t) = sin3 4t Original function

 = (sin 4t)3 Rewrite.

  f′(t) = 3(sin 4t)2 
d
dt

 [sin 4t] Apply Chain Rule once.

 = 3(sin 4t)2(cos 4t) d
dt

 [4t] Apply Chain Rule a second time.

 = 3(sin 4t)2(cos 4t)(4)
 = 12 sin2 4t cos 4t Simplify. 

RemARk Be sure you 
understand the mathematical 
conventions regarding 
parentheses and trigonometric 
functions. For instance, in 
Example 10(a), sin 2x is written 
to mean sin(2x).
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The Derivative of the Natural Logarithmic Function
Up to this point in the text, derivatives of algebraic functions have been algebraic and 
derivatives of transcendental functions have been transcendental. The next theorem 
looks at an unusual situation in which the derivative of a transcendental function is 
algebraic. Specifically, the derivative of the natural logarithmic function is the algebraic 
function 1�x.

TheORem 3.13 Derivative of the Natural Logarithmic Function

Let u be a differentiable function of x.

1. 
d
dx

[ln x] =
1
x
, x > 0

2. 
d
dx

[ln u] =
1
u

 
du
dx

=
u′
u

, x > 0

Proof To prove the first part, let y = ln x, which implies that ey = x. Differentiating 
both sides of this equation produces the following.

 y = ln x

 ey = x

 
d
dx

[ey] =
d
dx

[x]

 ey 
dy
dx

= 1  Chain Rule

 
dy
dx

=
1
ey

 
dy
dx

=
1
x

The second part of the theorem can be obtained by applying the Chain Rule to the first 
part. 

 Differentiation of Logarithmic Functions

See LarsonCalculus.com for an interactive version of this type of example.

a. 
d
dx

[ln 2x] =
u′
u

=
2
2x

=
1
x
 u = 2x

b. 
d
dx

[ln(x2 + 1)] =
u′
u

=
2x

x2 + 1
 u = x2 + 1

c.  
d
dx

[x ln x] = x( d
dx

[ln x]) + (ln x)( d
dx

[x]) Product Rule

 = x(1
x) + (ln x)(1)

 = 1 + ln x

d.  
d
dx

[(ln x)3] = 3(ln x)2 
d
dx

[ln x] Chain Rule

 = 3(ln x)2 1
x
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John Napier used logarithmic properties to simplify calculations involving 
products, quotients, and powers. Of course, given the availability of calculators, there 
is now little need for this particular application of logarithms. However, there is great 
value in using logarithmic properties (see Section 1.6) to simplify differentiation
involving products, quotients, and powers.

 Logarithmic Properties as Aids to Differentiation

Differentiate f (x) = ln√x + 1.

Solution Because ln xz = z ln x, you can rewrite the function as

f (x) = ln√x + 1 = ln(x + 1)1�2 =
1
2

 ln(x + 1). Rewrite before differentiating.

So, the first derivative is

f′(x) =
1
2 (

1
x + 1) =

1
2(x + 1). Differentiate.

 Logarithmic Properties as Aids to Differentiation

Differentiate f (x) = ln 
x(x2 + 1)2

√2x3 − 1
.

Solution Notice how the logarithmic properties

ln xy = ln x + ln y, ln 
x
y

= ln x − ln y, and ln xz = z ln x

are used to rewrite the function before differentiating.

 f (x) = ln 
x(x2 + 1)2

√2x3 − 1
 Write original function.

 = ln x + 2 ln(x2 + 1) −
1
2

 ln(2x3 − 1) Rewrite before differentiating.

f′(x) =
1
x

+ 2( 2x
x2 + 1) −

1
2 (

6x2

2x3 − 1) Differentiate.

 =
1
x

+
4x

x2 + 1
−

3x2

2x3 − 1
 Simplify. 

Because the natural logarithm is undefined for negative numbers, you will often 
encounter expressions of the form ln∣u∣. Theorem 3.14 states that you can differentiate 
functions of the form y = ln∣u∣ as though the absolute value notation was not present.

TheORem 3.14 Derivative Involving Absolute Value

If u is a differentiable function of x such that u ≠ 0, then

d
dx

[ln∣u∣] =
u′
u

.

Proof If u > 0, then ∣u∣ = u, and the result follows from Theorem 3.13. If u < 0,
then ∣u∣ = −u, and you have

d
dx

[ln∣u∣] =
d
dx

[ln(−u)] =
−u′
−u

=
u′
u

. 

RemARk In Examples 14 
and 15, be sure that you see the 
benefit of applying logarithmic 
properties before differentiation. 
Consider, for instance, the 
difficulty of direct differentiation 
of the function given in 
Example 15.

The Granger Collection, NYC

 JOHN NAPIER (1550–1617)

Logarithms were invented by 
the Scottish mathematician John 
Napier. Although he did not 
introduce the natural logarithmic 
function, it is sometimes called 
the Napierian logarithm. See 
LarsonCalculus.com to read more 
of this biography.
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Bases Other than e
The base of the natural exponential function is e. This “natural” base can be used to 
assign a meaning to a general base a.

Definition of exponential Function to Base a
If a is a positive real number (a ≠ 1) and x is any real number, then the 
exponential function to the base a is denoted by ax and is defined by

ax = e(ln a)x.

If a = 1, then y = 1x = 1 is a constant function.

Logarithmic functions to bases other than e can be defined in much the same way 
as exponential functions to other bases are defined.

Definition of Logarithmic Function to Base a
If a is a positive real number (a ≠ 1) and x is any positive real number, then 
the logarithmic function to the base a is denoted by loga x and is defined as

loga x =
1

ln a
 ln x.

To differentiate exponential and logarithmic functions to other bases, you have two 
options: (1) use the definitions of ax and loga x and differentiate using the rules for the  
natural exponential and logarithmic functions, or (2) use the differentiation rules for 
bases other than e given in the next theorem.

TheORem 3.15 Derivatives for Bases Other than e
Let a be a positive real number (a ≠ 1) and let u be a differentiable function of x.

1. 
d
dx

[ax] = (ln a)ax 2. 
d
dx

[au] = (ln a)au 
du
dx

3. 
d
dx

[loga x] =
1

(ln a)x  4. 
d
dx

[loga u] =
1

(ln a)u 
du
dx

Proof By definition, ax = e(ln a)x. Therefore, you can prove the first rule by letting

u = (ln a)x

and differentiating with base e to obtain

d
dx

[ax] =
d
dx

[e(ln a)x] = eu 
du
dx

= e(ln a)x(ln a) = (ln a)ax.

To prove the third rule, you can write

d
dx

[loga x] =
d
dx[

1
ln a

 ln x] =
1

ln a (
1
x) =

1
(ln a)x.

The second and fourth rules are simply the Chain Rule versions of the first and third 
rules. 

RemARk These 
differentiation rules are 
similar to those for the natural 
exponential function and the 
natural logarithmic function. 
In fact, they differ only by the 
constant factors ln a and 1�ln a. 
This points out one reason 
why, for calculus, e is the most 
convenient base.
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3.4 The Chain Rule 163

 Differentiating Functions to Other Bases

a. y′ =
d
dx

[2x] = (ln 2)2x

b. y′ =
d
dx

[23x] = (ln 2)23x(3) = (3 ln 2)23x

c. y′ =
d
dx

[log10 cos x] =
−sin x

(ln 10) cos x
= −

1
ln 10

 tan x

d. After rewriting the function below using logarithmic properties

 y = log3 
√x

x + 5
=

1
2

 log3 x − log3(x + 5)

 you can apply Theorem 3.15 to find the derivative of the function.

 y′ =
d
dx[

1
2

 log3 x − log3(x + 5)] =
1

2(ln 3)x −
1

(ln 3)(x + 5) =
5 − x

2(ln 3)x(x + 5)

This section concludes with a summary of the differentiation rules studied so far. 
To become skilled at differentiation, you should memorize each rule in words, not 
symbols. As an aid to memorization, note that the cofunctions (cosine, cotangent, and 
cosecant) require a negative sign as part of their derivatives.

Summary of Differentiation Rules
General Differentiation Rules  Let c be a real number, let n be a rational number, let u and v be differentiable 

functions of x, let f  be a differentiable function of u, and let a be a positive real 
number (a ≠ 1).

 Constant Rule: (Simple) Power Rule:

 
d
dx

[c] = 0 
d
dx

[xn] = nxn−1, 
d
dx

[x] = 1

 Constant Multiple Rule: Sum or Difference Rule:

 
d
dx

[cu] = cu′ 
d
dx

[u ± v] = u′ ± v′

 Product Rule: Quotient Rule:

 
d
dx

[uv] = uv′ + vu′ 
d
dx[

u
v] =

vu′ − uv′
v2

 Chain Rule: General Power Rule:

 
d
dx

[ f (u)] = f′(u)u′ 
d
dx

[un] = nun−1u′

Derivatives of
Trigonometric Functions

 
d
dx

[sin x] = cos x 
d
dx

[tan x] = sec2 x 
d
dx

[sec x] = sec x tan x

 
d
dx

[cos x] = −sin x 
d
dx

[cot x] = −csc2 x 
d
dx

[csc x] = −csc x cot x

Derivatives of Exponential 
and Logarithmic Functions  

d
dx

[ex] = ex 
d
dx

[ln x] =
1
x

 
d
dx

[ax] = (ln a)ax 
d
dx

[loga x] =
1

(ln a)x

RemARk Try writing 23x as 
8x and differentiating to see that 
you obtain the same result.
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3.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Chain Rule Describe the Chain Rule for the 

composition of two differentiable functions in your own 
words.

2.  General Power Rule What is the difference between 
the (Simple) Power Rule and the General Power Rule?

3.  Natural Logarithmic Functions Explain why the 
derivatives of f (x) = ln 2x and g(x) = ln 3x are the same.

4.  Derivatives for Bases Other than e What are the 
values of a and b?

 
d
dx

[64x] = a(ln b)64x

 Decomposition of a Composite Function 
In Exercises 5–12, complete the table.

 y = f (g(x)) u = g(x) y = f (u)
 5. y = (6x − 5)4  

 6. y = 3√4x + 3  

 7. y =
1

3x + 5
  

 8. y =
2

√x2 + 10
  

 9. y = csc3 x  

10. y = sin 
5x
2

  

11. y = e−2x  

12. y = (ln x)3  

 Finding a Derivative In Exercises 13–32, find 
the derivative of the function.

13. y = (2x − 7)3 14. y = 5(2 − x3)4

15. g(x) = 3(4 − 9x)5�6 16. f (t) = (9t + 2)2�3

17. h(s) = −2√5s2 + 3 18. y = 3√6x2 + 1

19. y =
1

x − 2
 20. s(t) =

1
4 − 5t − t2

21. g(s) =
6

(s3 − 2)3 22. y = −
3

(t − 2)4

23. y =
1

√3x + 5
 24. g(t) =

1

√t2 − 2

25. f (x) = x(2x − 5)3 26. y = x2√16 − x2

27. y =
x

√x2 + 1
 28. y =

x

√x4 + 4

29. g(x) = ( x + 5
x2 + 2)

2

 30. g(x) = (3x2 − 2
2x + 3 )

−2

31. f (x) = [(x2 + 3)5 + x]2 32. g(x) = [2 + (x2 + 1)4]3

 Finding a Derivative of a Trigonometric 
Function In Exercises 33–50, find the derivative 
of the trigonometric function.

33. y = cos 4x 34. y = sin πx

35. g(x) = 5 tan 3x 36. h(x) = sec 6x

37. y = sin(πx)2 38. y = csc(1 − 2x)2

39. h(x) = sin 2x cos 2x 40. g(θ) = sec(1
2θ) tan(1

2θ)

41. f (x) =
cot x
sin x

 42. g(v) =
cos v
csc v

43. f (θ) = 1
4 sin2 2θ 44. h(t) = 2 cot2(πt + 2)

45. f (t) = 3 sec(πt − 1)2 46. y = 5 cos(πx)2

47. y = sin(3x2 + cos x) 48. y = cos(5x + csc x)
49. y = sin√cot 3πx 50. y = cos√sin(tan πx)

Finding a Derivative Using Technology In Exercises 
51–56, use a computer algebra system to find the derivative 
of the function. Then use the utility to graph the function and 
its derivative on the same set of coordinate axes. Describe the 
behavior of the function that corresponds to any zeros of the 
graph of the derivative.

51. y =
√x + 1
x2 + 1

 52. y =√ 2x
x + 1

53. y =√x + 1
x

 54. g(x) = √x − 1 + √x + 1

55. y =
cos πx + 1

x
 56. y = x2 tan 

1
x

 Finding a Derivative of an exponential 
Function In Exercises 57–72, find the derivative 
of the exponential function.

57. y = e5x 58. y = e−x2

59. y = e√x 60. y = x2e−x

61. g(t) = (e−t + et)3 62. g(t) = e−3�t2

63. y = x2ex − 2xex + 2ex 64. y = xex − ex

65. y =
2

ex + e−x 66. y =
ex − e−x

2

67. y =
ex + 1
ex − 1

 68. y =
e2x

e2x + 1

69. y = ex(sin x + cos x) 70. y = e2x tan 2x

71. g(x) = ecsc x 72. f (x) = ex+sec x

 Finding a Derivative of a Logarithmic 
Function In Exercises 73–94, find the derivative 
of the logarithmic function.

73. f (x) = ln(x2 + 3) 74. h(x) = ln(2x2 + 1)
75. y = (ln x)4 76. y = x2 ln x

77. y = ln(t + 1)2 78. y = ln√x2 − 4
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 79. y = ln(x√x2 − 1 )  80. y = ln[t(t2 + 3)3]

 81. f (x) = ln 
x

x2 + 1
  82. f (x) = ln 

2x
x + 3

 83. g(t) =
ln t
t 2   84. h(t) =

ln t
t3 + 5

 85. y = ln(ln x2)  86. y = ln(ln x)

 87. y = ln√x + 1
x − 1

  88. y = ln 3√x − 1
x + 1

 89. y = ln∣sin x∣  90. y = ln∣csc x∣
 91. y = ln∣ cos x

cos x − 1∣  92. y = ln∣sec x + tan x∣

 93. f (x) = ln(1 + e−3x)  94. y = ln(1 + ex

1 − ex)
Slope of a Tangent Line In Exercises 95 and 96, find 
the slope of the tangent line to the sine function at the origin. 
Compare this value with the number of complete cycles in the 
interval [0, 2π].

 95. 

x

−2

2

1

π π2

y

y = sin 3x

  96. 

x

−2

−1

2

1

π π2

y

y = sin
x
2

π
2

3π
2

Slope of a Tangent Line In Exercises 97–100, find the 
slope of the tangent line to the graph of the function at the 
given point.

 97. y = e3x  98. y = e−3x

  

x
−1

1

1

2

(0, 1)

y   

x
−1

1

1

(0, 1)

y

 99. y = ln x3 100. y = ln x3�2

  

x

−2
−1

1

2

2

3

3

4 5 6

4

(1, 0)

y    

x

−2
−1 1

1

2

2

3

3

4 5 6

4

(1, 0)

y

Finding the Slope of a Graph In Exercises 101–108, find 
the slope of the graph of the function at the given point. Use the 
derivative feature of a graphing utility to confirm your results.

101. y = √x2 + 8x, (1, 3)
102. y = 5√3x3 + 4x, (2, 2)

103. f (x) =
5

x3 − 2
, (−2, −

1
2)

104. f (x) =
1

(x2 − 3x)2, (4, 
1
16)

105. y =
4

(x + 2)2, (0, 1) 106. y =
4

(x2 − 2x)3, (1, −4)

107. y = 26 − sec3 4x, (0, 25)

108. y =
1
x

+ √cos x, (π2, 
2
π)

 Finding an equation of a Tangent Line In 
Exercises 109–116, (a) find an equation of the tangent 
line to the graph of the function at the given point, 
(b) use a graphing utility to graph the function and 
its tangent line at the point, and (c) use the tangent 
feature of a graphing utility to confirm your results.

109. y = (4x3 + 3)2, (−1, 1) 110. f (x) = (9 − x2)2�3, (1, 4)

111. f (x) = sin 8x, (π, 0) 112. y = cos 3x, (π4, −
√2
2 )

113. f (x) = tan2 x, (π4, 1) 114. y = 2 tan3 x, (π4, 2)
115. y = 4 − x2 − ln(1

2x + 1), (0, 4)
116. y = 2e1−x2, (1, 2)

Famous Curves In Exercises 117 and 118, find an equation 
of the tangent line to the graph at the given point. Then use a 
graphing utility to graph the function and its tangent line at the 
point in the same viewing window.

117. Semicircle 118. Bullet-nose curve

  

y

x

f (x) =    25 − x2 

(3, 4)

−2−4−6 2 4 6

−4

2

4

6

8

  

y

x

f (x) =

(1, 1)

−1−2−3 1 2 3

−2

1

2

3

4

2 − x2

| x |

119.  horizontal Tangent Line Determine the point(s) in the 
interval (0, 2π) at which the graph of f (x) = 2 cos x + sin 2x 
has a horizontal tangent.

120.  horizontal Tangent Line Determine the point(s) at 
which the graph of

  f (x) =
−4x

√2x − 1

  has a horizontal tangent.

Finding a Second Derivative In Exercises 121–128, find 
the second derivative of the function.

121. f (x) = 5(2 − 7x)4 122. f (x) = 6(x3 + 4)3

123. f (x) =
1

11x − 6
 124. f (x) =

8
(x − 2)2

125. f (x) = sin x2 126. f (x) = sec2 πx

127. f (x) = (3 + 2x)e−3x 128. g(x) = √x + ex ln x
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166 Chapter 3 Differentiation

evaluating a Second Derivative In Exercises 129–132, 
evaluate the second derivative of the function at the given 
point. Use a computer algebra system to verify your result.

129. h(x) =
1
9

(3x + 1)3, (1, 
64
9 ) 130. f (x) =

1

√x + 4
, (0, 

1
2)

131. f (x) = cos x2, (0, 1) 132. g(t) = tan 2t, (π6, √3)
 Finding a Derivative In Exercises 133–148, 
find the derivative of the function.

133. f (x) = 4x 134. g(x) = 5−x

135. g(t) = t22t 136. y = x(6−2x)

137. f (t) =
−2t2

8t  138. f (t) =
32t

t

139. h(θ) = 2−θ cos πθ 140. g(α) = 5−α�2 sin 2α

141. y = log3 x 142. y = log10 2x

143. y = log5 √x2 − 1 144. f (x) = log2
3√2x + 1

145. f (x) = log2 
x2

x − 1
 146. h(x) = log3 

x√x − 1
2

147. g(t) =
10 log4 t

t
 148. f (t) = t3�2 log2 √t + 1

exploring ConCepts
Identifying Graphs In Exercises 149 and 150, the 
graphs of a function f  and its derivative f ′ are shown. Label 
the graphs as f  or f ′ and write a short paragraph stating 
the criteria you used in making your selection. To print an 
enlarged copy of the graph, go to MathGraphs.com.

149. 

x

−3

−2 3

−2

3
2

y  150. 

x
32 41

3
2

4

y

151.  Describing Relationships Describe the 
relationship between f ′ and g′ when (a) g(x) = f (3x) 
and (b) g(x) = f (x2).

152. Comparing methods Consider the function

  r(x) =
2x − 5

(3ex + 1)2.

  (a) In general, how do you find the derivative of

  h(x) =
f (x)
g(x) using the Product Rule, where g is a

   composite function?

  (b) Find r′(x) using the Product Rule.

  (c) Find r′(x) using the Quotient Rule.

  (d) Which method do you prefer? Explain.

153.  Think About It The table shows some values of the 
derivative of an unknown function f. Complete the table by 
finding the derivative of each transformation of f, if possible.

  (a) g(x) = f (x) − 2   (b) h(x) = 2 f (x)
  (c) r(x) = f (−3x)  (d) s(x) = f (x + 2)
 

x −2 −1 0 1 2 3

f ′(x) 4 2
3 −1

3 −1 −2 −4

g′(x)

h′(x)

r′(x)

s′(x)

154.  Using Relationships Given that g(5) = −3, 
g′(5) = 6, h(5) = 3, and h′(5) = −2, find f ′(5) for each 
of the following, if possible. If it is not possible, state what 
additional information is required.

  (a) f (x) = g(x)h(x) (b) f (x) = g(h(x))

  (c) f (x) =
g(x)
h(x) (d) f (x) = [g(x)]3

Finding Derivatives In Exercises 155 and 156, the graphs 
of f  and g are shown. Let h(x) = f (g(x)) and s(x) = g( f (x)). 
Find each derivative, if it exists. If the derivative does not exist, 
explain why.

155. (a) Find h′(1). 156. (a) Find h′(3).
  (b) Find s′(5).   (b) Find s′(9).
  

x

g

2 4 6 8 10

2

6

8

10

f

y   

x

f

g

2 4 6 8 10

2

4

8

10

y

157.  Pendulum A 15-centimeter pendulum moves according 
to the equation

  θ = 0.2 cos 8t

   where θ is the angular displacement from the vertical in 
radians and t is the time in seconds. Determine the maximum 
angular displacement and the rate of change of θ when t = 3 
seconds.

158.  harmonic motion The displacement from equilibrium 
of an object in harmonic motion on the end of a spring is

  y =
1
3

 cos 12t −
1
4

 sin 12t

   where y is measured in feet and t is the time in seconds. 
Determine the position and velocity of the object when 
t = π�8.
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159.  Doppler effect The frequency F of a fire truck siren 
heard by a stationary observer is 

  F =
132,400
331 ± v

   where ±v represents the velocity of the accelerating fire 
truck in meters per second (see figure). Find the rate of 
change of F with respect to v when

  (a)  the fire truck is approaching at a velocity of 30 meters per 
second (use −v).

  (b)  the fire truck is moving away at a velocity of 30 meters 
per second (use + v).

331 + v
F =

331 − v
F =132,400 132,400

 160.   hOW DO yOU See IT? The cost C (in 
dollars) of producing x units of a product is 
C = 60x + 1350. For one week, management 
determined that the number of units produced x
at the end of t hours can be modeled by 
x = −1.6t3 + 19t2 − 0.5t − 1. The graph 
shows the cost C in terms of the time t.

1 2 3 4 5

Time (in hours)

Cost of Producing a Product

C
os

t (
in

 d
ol

la
rs

)

6 7 8

5,000

10,000

15,000

20,000

25,000

C

t

(a)  Using the graph, which is greater, the rate of 
change of the cost after 1 hour or the rate of 
change of the cost after 4 hours?

(b)  Explain why the cost function is not increasing at 
a constant rate during the eight-hour shift.

 160.   

161.  Inflation When the annual rate of inflation averages 5% 
over the next 10 years, the approximate cost C of goods or 
services during any year in that decade is C(t) = P(1.05)t, 
where t is the time in years and P is the present cost.

  (a)  The price of an oil change for your car is presently 
$29.95. Estimate the price 10 years from now.

  (b)  Find the rates of change of C with respect to t when t = 1 
and t = 8.

  (c)  Verify that the rate of change of C is proportional to C. 
What is the constant of proportionality?

162.  Wave motion A buoy oscillates in simple harmonic 
motion y = A cos ωt as waves move past it. The buoy moves 
a total of 3.5 feet (vertically) from its low point to its high 
point. It returns to its high point every 10 seconds.

  (a)  Write an equation describing the motion of the buoy if it 
is at its high point at t = 0.

  (b) Determine the velocity of the buoy as a function of t.

163.  modeling Data The table shows the temperatures T (in 
degrees Fahrenheit) at which water boils at selected pressures 
p (in pounds per square inch). (Source: Standard Handbook 
of Mechanical Engineers)

p 5 10 14.696 (1 atm) 20

T 162.24 193.21 212.00 227.96

p 30 40 60 80 100

T 250.33 267.25 292.71 312.03 327.81

 A model that approximates the data is

T = 87.97 + 34.96 ln p + 7.91√p.

  (a) Use a graphing utility to plot the data and graph the model.

  (b)  Find the rates of change of T with respect to p when 
p = 10 and p = 70.

  (c) Use a graphing utility to graph T′. Find lim
p→∞

 T′(p) and

  interpret the result in the context of the problem.

164.  modeling Data The normal daily maximum temperatures 
T (in degrees Fahrenheit) for Chicago, Illinois, are shown 
in the table. (Source: National Oceanic and Atmospheric 
Administration)

Month Sep Oct Nov Dec

Temperature 74.8 62.3 48.2 34.8

Month May Jun Jul Aug

Temperature 70.0 79.7 84.1 81.9

Month Jan Feb Mar Apr

Temperature 31.0 35.3 46.6 59.0

  (a)  Use a graphing utility to plot the data and find a model 
for the data of the form 

T(t) = a + b sin(ct − d)

    where T is the temperature and t is the time in months, 
with t = 1 corresponding to January.

  (b)  Use a graphing utility to graph the model. How well does 
the model fit the data?

  (c) Find T′ and use a graphing utility to graph T′.

  (d)  Based on the graph of T′, during what times does the 
temperature change most rapidly? Most slowly? Do your 
answers agree with your observations of the temperature 
changes? Explain.
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168 Chapter 3 Differentiation

166.  Depreciation The value V of a machine t years after it 
is purchased is inversely proportional to the square root of 
t + 1. The initial value of the machine is $10,000.

  (a) Write V as a function of t.

  (b) Find the rate of depreciation when t = 1.

  (c) Find the rate of depreciation when t = 3.

167.  Finding a Pattern Consider the function f (x) = sin βx,
where β is a constant.

  (a)  Find the first-, second-, third-, and fourth-order derivatives 
of the function.

  (b)  Verify that the function and its second derivative satisfy 
the equation f ″(x) + β2 f (x) = 0.

  (c)  Use the results of part (a) to write general rules for the 
even- and odd-order derivatives f (2k)(x) and f (2k−1)(x).

    [Hint: (−1)k is positive if k is even and negative if k is 
odd.]

168. Conjecture Let f  be a differentiable function of period p.

  (a) Is the function f ′ periodic? Verify your answer.

  (b)  Consider the function g(x) = f (2x). Is the function g′(x)
peri odic? Verify your answer.

169.  Think About It Let r(x) = f (g(x)) and s(x) = g( f (x)),
where f  and g are shown in the figure. Find (a) r′(1) and 
(b) s′(4).

x

g

f

1
2
3
4
5
6
7

1 2 3 4 5 6 7

(2, 4)

(6, 6)

(6, 5)

y

170. Using Trigonometric Functions

  (a)  Find the derivative of the function g(x) = sin2 x + cos2 x
in two ways.

  (b) For f (x) = sec2 x and g(x) = tan2 x, show that 

 f ′(x) = g′(x).

171. even and Odd Functions

  (a)  Show that the derivative of an odd function is even. That 
is, if f (−x) = −f (x), then f ′(−x) = f ′(x).

  (b)  Show that the derivative of an even function is odd. That 
is, if f (−x) = f (x), then f ′(−x) = −f ′(x).

172.  Proof Let u be a differentiable function of x. Use the fact 
that ∣u∣ = √u2 to prove that

d
dx

[∣u∣] = u′
u

∣u∣ , u ≠ 0.

Using Absolute Value In Exercises 173–176, use the 
result of Exercise 172 to find the derivative of the function.

173. g(x) = ∣3x − 5∣ 174. f (x) = ∣x2 − 9∣
175. h(x) = ∣x∣ cos x 176. f (x) = ∣sin x∣
Linear and Quadratic Approximations The linear and 
quadratic approximations of a function f  at x = a are

P1(x) = f ′(a)(x − a) + f (a) and

P2(x) = 1
2 f ″(a)(x − a)2 + f ′(a)(x − a) + f (a).

In Exercises 177–180, (a) find the specified linear and quadratic 
approximations of f, (b) use a graphing utility to graph f  and 
the approximations, (c) determine whether P1 or P2 is the 
better approximation, and (d) state how the accuracy changes 
as you move farther from x = a.

177. f (x) = tan x; a =
π
4

 178. f (x) = sec x; a =
π
6

179. f (x) = ex; a = 0 180. f (x) = ln x; a = 1

True or False? In Exercises 181–184, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

181. The slope of the function f (x) = sin ax at the origin is a.

182. The slope of the function f (x) = cos bx at the origin is −b.

183.  If y is a differentiable function of u, and u is a differentiable 
function of x, then y is a differentiable function of x.

184.  If y is a differentiable function of u, u is a differentiable 
function of v, and v is a differentiable function of x, then

  
dy
dx

=
dy
du

 
du
dv

 
dv
dx

.

pUtnAM exAM ChAllenge
185.  Let f (x) = a1 sin x + a2 sin 2x + .  .  . + an sin nx, 

where a1, a2, .  .  ., an are real numbers and where n is a
positive integer. Given that ∣ f (x)∣ ≤ ∣sin x∣ for all real x,
prove that ∣a1 + 2a2 + .  .  . + nan∣ ≤ 1.

186. Let k be a fixed positive integer. The nth derivative 

  of 
1

xk − 1
 has the form 

Pn(x)
(xk − 1)n+1 where Pn(x) is a 

  polynomial. Find Pn(1).
These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

The number N of bacteria in a culture after t days is 
modeled by

 N = 400[1 −
3

(t2 + 2)2].

 Find the rate of 
change of N with 
respect to t when 
(a) t = 0, (b) t = 1, 
(c) t = 2, (d) t = 3, 
and (e) t = 4. (f) What 
can you conclude?

165. Biology

Kateryna Kon/Shutterstock.com
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3.5 Implicit Differentiation

 Distinguish between functions written in implicit form and explicit form.
 Use implicit differentiation to find the derivative of a function.
 Find derivatives of functions using logarithmic differentiation.

Implicit and Explicit Functions
Up to this point in the text, most functions have been expressed in explicit form. For 
example, in the equation y = 3x2 − 5, the variable y is explicitly written as a function 
of x. Some functions, however, are only implied by an equation. For instance, the 
function y = 1�x is defined implicitly by the equation

xy = 1. Implicit form

To find dy�dx for this equation, you can write y explicitly as a function of x and then 
differentiate.

 Implicit Form Explicit Form Derivative

xy = 1 y =
1
x

= x−1 
dy
dx

= −x−2 = −
1
x2

This strategy works whenever you can solve for the function explicitly. You  cannot, 
however, use this procedure when you are unable to solve for y as a function of x. For 
instance, how would you find dy�dx for the equation

x2 − 2y3 + 4y = 2?

For this equation, it is difficult to express y as a function of x explicitly. To find dy�dx, 
you can use implicit differentiation.

To understand how to find dy�dx implicitly, you must realize that the differentiation 
is taking place with respect to x. This means that when you differentiate terms involving 
x alone, you can differentiate as usual. However, when you differentiate terms involving 
y, you must apply the Chain Rule, because you are assuming that y is defined implicitly 
as a differentiable function of x.

 Differentiating with Respect to x

a. 
d
dx

 [x3] = 3x2 Variables agree: use Simple Power Rule.

 Variables agree

b. 
d
dx

 [y3] = 3y2 
dy
dx

 Variables disagree: use Chain Rule.

 Variables disagree

c. 
d
dx

 [x + 3y] = 1 + 3
dy
dx

 Chain Rule: 
d
dx

 [3y] = 3y′

d.  
d
dx

 [xy2] = x 
d
dx

 [y2] + y2 
d
dx

 [x] Product Rule

  = x(2y 
dy
dx) + y2(1) Chain Rule

  = 2xy 
dy
dx

+ y2 Simplify. 

un nun−1 u′
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Implicit Differentiation

GUIDELINES FOR IMPLICIT DIFFERENTIATION

1. Differentiate both sides of the equation with respect to x.

2.  Collect all terms involving dy�dx on the left side of the equation and move 
all other terms to the right side of the equation.

3. Factor dy�dx out of the left side of the equation.

4. Solve for dy�dx.

In Example 2, note that implicit differentiation can produce an expression for 
dy�dx that contains both x and y.

 Implicit Differentiation

Find dy�dx given that y3 + y2 − 5y − x2 = −4.

Solution

1. Differentiate both sides of the equation with respect to x.

 
d
dx

 [y3 + y2 − 5y − x2] =
d
dx

 [−4]

 
d
dx

 [y3] +
d
dx

 [y2] −
d
dx

 [5y] −
d
dx

 [x2] =
d
dx

 [−4]

 3y2 
dy
dx

+ 2y 
dy
dx

− 5 
dy
dx

− 2x = 0

2.  Collect the dy�dx terms on the left side of the equation and move all other terms to 
the right side of the equation.

3y2 dy
dx

+ 2y
dy
dx

− 5
dy
dx

= 2x

3. Factor dy�dx out of the left side of the equation.

dy
dx

(3y2 + 2y − 5) = 2x

4. Solve for dy�dx by dividing by (3y2 + 2y − 5).

dy
dx

=
2x

3y2 + 2y − 5
 

To see how you can use an implicit derivative, consider the graph shown in 
Figure 3.26. From the graph, you can see that y is not a function of x. Even so, the 
derivative found in Example 2 gives a formula for the slope of the tangent line at a point 
on this graph. The slopes at several points on the graph are shown below the graph.

TeCHNOLOGY With most graphing utilities, it is easy to graph an equation 
that explicitly represents y as a function of x. Graphing other equations, however, 
can require some ingenuity. For instance, to graph the equation given in Example 2,
use a graphing utility, set in parametric  mode, to graph the parametric representations 
x = √t3 + t2 − 5t + 4, y = t, and x = −√t3 + t2 − 5t + 4, y = t, for 
−5 ≤ t ≤ 5. How does the result compare with the graph shown in Figure 3.26? 
(You will learn more about this type of representation when you study parametric 
equations in Section 10.2.)

Point on Graph Slope of Graph

(2, 0) −4
5

(1, −3) 1
8

x = 0 0

(1, 1) Undefined

The implicit equation

y3 + y2 − 5y − x2 = −4

has the derivative

dy
dx

=
2x

3y2 + 2y − 5
.

Figure 3.26

x
1 2

2

1

3−1
−1

−2

−2

−3

−4

(1, −3)

(2, 0)
(1, 1)

y3 + y2 − 5y − x2 = −4

y
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 3.5 Implicit Differentiation 171

It is meaningless to solve for dy�dx in an equation that has no solution points. (For 
example, x2 + y2 = −4 has no solution points.) If, however, a segment of a graph can 
be represented by a differentiable function, then dy�dx will have meaning as the slope 
at each point on the segment. Recall that a function is not differentiable at (a) points 
with vertical tangents and (b) points at which the function is not continuous.

 Graphs and Differentiable Functions

If possible, represent y as a differentiable function of x.

a. x2 + y2 = 0  b. x2 + y2 = 1  c. x + y2 = 1

Solution

a.  The graph of this equation is a single point. So, it does not define y as a differentiable 
function of x. See Figure 3.27(a).

b.  The graph of this equation is the unit circle centered at (0, 0). The upper semi  circle 
is given by the differentiable function

y = √1 − x2, −1 < x < 1

 and the lower semicircle is given by the differentiable function

y = −√1 − x2, −1 < x < 1.

  At the points (−1, 0) and (1, 0), the slope of the graph is undefined. See Figure 
3.27(b).

c. The upper half of this parabola is given by the differentiable function

y = √1 − x, x < 1

 and the lower half of this parabola is given by the differentiable function

y = −√1 − x, x < 1.

 At the point (1, 0), the slope of the graph is undefined. See Figure 3.27(c).

 Finding the Slope of a Graph Implicitly

See LarsonCalculus.com for an interactive version of this type of example.

Determine the slope of the tangent line to the graph of x2 + 4y2 = 4 at the point 
(√2, −1�√2). See Figure 3.28.

Solution

 x2 + 4y2 = 4 Write original equation.

 2x + 8y 
dy
dx

= 0 Differentiate with respect to x.

 
dy
dx

=
−2x
8y

 Solve for 
dy
dx

.

 =
−x
4y

 Simplify.

So, at (√2, −1�√2), the slope is

dy
dx

=
−√2

−4�√2
=

1
2

. Evaluate 
dy
dx

 when x = √2 and y = −
1

√2
. 

x

1

1

−1

−1

(0, 0)
x2 + y2 = 0

y

(a)

x

1

1

−1

−1

(−1, 0) (1, 0)

y =     1 − x2

y = −     1 − x2

y

(b)

x

1

1

−1

(1, 0)

−1

y = −    1 − x

y =     1 − x

y

(c)
Some graph segments can be  
represented by differentiable functions.
Figure 3.27

x
1

2

−1

−2
2, − )) 1

x2 + 4y2 = 4

y

2

Figure 3.28

RemaRk To see the benefit of implicit differentiation, try doing Example 4 using 
the explicit function y = −1

2√4 − x2.
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 Finding the Slope of a Graph Implicitly

Determine the slope of the graph of

3(x2 + y2)2 = 100xy

at the point (3, 1).

Solution

 
d
dx

[3(x2 + y2)2] =
d
dx

[100xy]

 3(2)(x2 + y2)(2x + 2y 
dy
dx) = 100[x 

dy
dx

+ y(1)]
 12y(x2 + y2) dy

dx
− 100x 

dy
dx

= 100y − 12x(x2 + y2)

 [12y(x2 + y2) − 100x]dy
dx

= 100y − 12x(x2 + y2)

 
dy
dx

=
100y − 12x(x2 + y2)

−100x + 12y(x2 + y2)

 =
25y − 3x(x2 + y2)

−25x + 3y(x2 + y2)

At the point (3, 1), the slope of the graph is

 
dy
dx

=
25(1) − 3(3)(32 + 12)

−25(3) + 3(1)(32 + 12) =
25 − 90

−75 + 30
=

−65
−45

=
13
9

as shown in Figure 3.29. This graph is called a lemniscate.

 Determining a Differentiable Function

Find dy�dx implicitly for the equation sin y = x. Then find the largest interval of the 
form −a < y < a on which y is a differentiable function of x (see Figure 3.30).

Solution

 
d
dx

[sin y] =
d
dx

[x]

 cos y 
dy
dx

= 1

 
dy
dx

=
1

cos y

The largest interval about the origin for which y is a differentiable function of x is 
−π�2 < y < π�2. To see this, note that cos y is positive for all y in this interval and 
is 0 at the endpoints. When you restrict y to the interval −π�2 < y < π�2, you should 
be able to write dy�dx explicitly as a function of x. To do this, you can use

 cos y = √1 − sin2 y

 = √1 − x2, −
π
2

< y <
π
2

and conclude that

dy
dx

=
1

√1 − x2
.

You will study this example further when derivatives of inverse trigonometric functions 
are defined in Section 3.6. 

x
1

1

2

3

3

4

4

−1−2−4

−4

(3, 1)

y

3(x2 + y2)2 = 100xy

Lemniscate
Figure 3.29

x
1−1

π
2

π
2

−

2
− π3

−1, −π
2))

1, 
π
2))

sin y = x

y

The derivative is 
dy
dx

=
1

√1 − x2
.

Figure 3.30
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With implicit differentiation, the form of the derivative often can be simplified (as 
in Example 6) by an appropriate use of the original equation. A similar technique can 
be used to find and simplify higher-order derivatives obtained implicitly.

 Finding the Second Derivative Implicitly

Given x2 + y2 = 25, find 
d2y
dx2.

Solution Differentiating each term with respect to x produces

 2x + 2y 
dy
dx

= 0

 2y 
dy
dx

= −2x

 
dy
dx

=
−2x
2y

 = −
x
y
.

Differentiating a second time with respect to x yields

d2y
dx2 = −

(y)(1) − (x)(dy�dx)
y2  Quotient Rule

 = −
y − (x)(−x�y)

y2  Substitute −
x
y
 for 

dy
dx

.

 = −
y2 + x2

y3  Simplify.

 = −
25
y3 . Substitute 25 for x2 + y2.

 Finding a Tangent Line to a Graph

Find the tangent line to the graph of x2(x2 + y2) = y2 at the point (√2�2, √2�2), as 
shown in Figure 3.31.

Solution By rewriting and differentiating implicitly, you obtain

 x4 + x2y2 − y2 = 0

4x3 + x2(2y 
dy
dx) + 2xy2 − 2y 

dy
dx

= 0

 2y(x2 − 1) dy
dx

= −2x(2x2 + y2)

 
dy
dx

=
x(2x2 + y2)
y(1 − x2) .

At the point (√2�2, √2�2), the slope is

dy
dx

= (√2�2)[2(1�2) + (1�2)]
(√2�2)[1 − (1�2)]

=
3�2
1�2

= 3

and the equation of the tangent line at this point is

 y −
√2
2

= 3(x −
√2
2 )

 y = 3x − √2. 

The kappa curve
Figure 3.31

x
1

1

−1

−1

,( (

y

2
2

2
2

x2(x2 + y2) = y2

ISAAC BARROW (1630–1677)

The graph in Figure 3.31 
is called the kappa curve 
because it resembles the Greek 
letter kappa, κ. The general 
solution for the tangent line 
to this curve was discovered 
by the English mathematician 
Isaac Barrow. Newton was 
Barrow’s student, and they 
corresponded frequently 
regarding their work in the 
early development of calculus.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NYC
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Logarithmic Differentiation
On occasion, it is convenient to use logarithms as aids in differentiating nonlogarithmic 
functions. This procedure is called logarithmic differentiation.

 Logarithmic Differentiation

Find the derivative of

y =
(x − 2)2

√x2 + 1
, x ≠ 2.

Solution Note that y > 0 for all x ≠ 2. So, ln y is defined. Begin by  taking the 
 natural logarithm of each side of the equation. Then apply logarithmic properties and 
 differentiate implicitly. Finally, solve for y′.

 y =
(x − 2)2

√x2 + 1
, x ≠ 2 Write original equation.

 ln y = ln 
(x − 2)2

√x2 + 1
 Take natural log of each side.

 ln y = 2 ln(x − 2) −
1
2

 ln(x2 + 1) Logarithmic properties

 
y′
y

= 2( 1
x − 2) −

1
2 (

2x
x2 + 1) Differentiate.

 
y′
y

=
x2 + 2x + 2

(x − 2)(x2 + 1) Simplify.

 y′ = y[ x2 + 2x + 2
(x − 2)(x2 + 1)] Solve for y′.

 y′ =
(x − 2)2

√x2 + 1[
x2 + 2x + 2

(x − 2)(x2 + 1)] Substitute for y.

 y′ =
(x − 2)(x2 + 2x + 2)

(x2 + 1)3�2  Simplify.

 Logarithmic Differentiation

Find the derivative of y = x2x, x > 0.

Solution Note that y > 0 for all x > 0. So, ln y is defined.

 y = x2x Write original equation.

 ln y = ln(x2x) Take natural log of each side.

 ln y = (2x)(ln x) Logarithmic property

 
y′
y

= 2x(1
x) + 2 ln x Differentiate.

 
y′
y

= 2(1 + ln x) Simplify.

 y′ = 2y(1 + ln x) Solve for y′.

 y′ = 2x2x(1 + ln x) Substitute for y. 

Here are some guidelines for using logarithmic differentiation. In general, use 
logarithmic differentiation when differentiating (1) a function involving many factors 
or (2) a function having both a variable base and a variable exponent.

RemaRk You could also 
solve the problem in Example 9 
without using logarithmic  
differentiation by using the 
Power and Quotient Rules.  
Use these rules to find the 
derivative and show that the 
result is equivalent to the one  
in Example 9. Which method  
do you prefer?
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3.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  explicit and Implicit Functions Describe the 

difference between the explicit form of a function and an 
implicit equation. Give an example of each.

2.  Implicit Differentiation Explain when you have to 
use implicit differentiation to find a derivative.

3.  Chain Rule How is the Chain Rule applied when 
finding dy�dx implicitly?

4.  Logarithmic Differentiation When is it beneficial 
to use logarithmic differentiation?

 Finding a Derivative In Exercises 5–26, find 
dy�dx by implicit differentiation.

 5. x2 + y2 = 9  6. x2 − y2 = 25

 7. x5 + y5 = 16  8. 2x3 + 3y3 = 64

 9. x3 − xy + y2 = 7 10. x2y + y2x = −2

11. x3y3 − y = x 12. √xy = x2y + 1

13. x3 − 3x2y + 2xy2 = 12 14. x4y − 8xy + 3xy2 = 9

15. xey − 10x + 3y = 0 16. exy + x2 − y2 = 10

17. sin x + 2 cos 2y = 1 18. (sin πx + cos πy)2 = 2

19. csc x = x(1 + tan y) 20. cot y = x − y

21. y = sin xy 22. x = sec 
1
y

23. x2 − 3 ln y + y2 = 10 24. ln xy + 5x = 30

25. 4x3 + ln y2 + 2y = 2x 26. 4xy + ln x2y = 7

 Finding Derivatives Implicitly and 
explicitly In Exercises 27–30, (a) find two 
explicit functions by solving the equation for y in 
terms of x, (b) sketch the graph of the equation and 
label the parts given by the corresponding explicit 
functions, (c) differentiate the explicit functions, 
and (d) find dy�dx implicitly and show that the 
result is equivalent to that of part (c).

27. x2 + y2 = 64 28. 25x2 + 36y2 = 300

29. 16y2 − x2 = 16 30. x2 + y2 − 4x + 6y + 9 = 0

 Finding the Slope of a Graph In Exercises 
31–38, find dy�dx by implicit differentiation. Then 
find the slope of the graph at the given point.

31. xy = 6, (−6, −1) 32. 3x3y = 6, (1, 2)

33. y2 =
x2 − 49
x2 + 49

, (7, 0)  34. 4y3 =
x2 − 36
x3 + 36

, (6, 0)

35. tan(x + y) = x, (0, 0) 36. x cos y = 1, (2, 
π
3)

37. 3exy − x = 0, (3, 0) 38. y2 = ln x, (e, 1)

 Famous Curves In Exercises 39–42, find the 
slope of the tangent line to the graph at the given 
point.

39. Witch of Agnesi: 40. Cissoid:

 (x2 + 4)y = 8  (4 − x)y2 = x3

 

x

1

1

3

2
−1

−1−2

y

(2, 1)

  

x
2 3

1

2

−1

−2

y

(2, 2)

41. Bifolium: 42. Folium of Descartes:

 (x2 + y2)2 = 4x2y  x3 + y3 − 6xy = 0

 

x

1

1

2

2
−1

−1

−2

−2

y

(1, 1)

  

x

1

1

2

2 3

3

4

4

−2

−2

y

 , 8
3

4
3( (

 Famous Curves In Exercises 43–48, find an 
equation of the tangent line to the graph at the 
given point. To print an enlarged copy of the 
graph, go to MathGraphs.com.

43. Parabola 44. Circle

 

y

x
(6, 1)

(y − 3)2 = 4(x − 5)

2 4 6 8 14−2
−4
−6

2
4
6
8

10

  

y

x
−2−4 4 6

−4

2
4
6
8

10

(x + 2)2 + (y − 3)2 = 37

(4, 4)

45. Cruciform 46. Astroid

 

y

x

−4, 2    3

−2−4−6 4 62

−4

4

6

x2y2 − 9x2 − 4y2 = 0

((

  

y

x
(8, 1)

12

−12

12

x2/3 + y2/3 = 5
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47. Lemniscate 48. Kappa curve

 

y

x

(4, 2)

−6 6

−4

−6

2

4

6

3(x2 + y2)2 = 100(x2 − y2)   

y

x

(1, 1)

−3 −2 32

−2

−3

2

3

y2(x2 + y2) = 2x2

Finding an equation of a Tangent Line In Exercises 
49–52, use implicit differentiation to find an equation of the 
tangent line to the graph at the given point.

49. 4xy = 9, (1, 94) 50. x2 + xy + y2 = 4, (2, 0)
51. x + y − 1 = ln(x2 + y2), (1, 0)
52. y2 + ln xy = 2, (e, 1)

eXpLoring ConCepts
53.  Implicit and explicit Forms Write two different 

equations in implicit form that you can write in explicit 
form. Then write two different equations in implicit form 
that you cannot write in explicit form.

54.  Think about It Explain why the derivative of 
x2 + y2 + 2 = 1 does not mean anything.

55. ellipse

 (a) Use implicit differentiation to find an equation of the

  tangent line to the ellipse 
x2

2
+

y2

8
= 1 at (1, 2).

 (b) Show that the equation of the tangent line to the ellipse

  
x2

a2 +
y2

b2 = 1 at (x0, y0) is 
x0x
a2 +

y0y
b2 = 1.

56. Hyperbola

 (a) Use implicit differentiation to find an equation of the

  tangent line to the hyperbola 
x2

6
−

y2

8
= 1 at (3, −2).

 (b) Show that the equation of the tangent line to the hyperbola

  
x2

a2 −
y2

b2 = 1 at (x0, y0) is 
x0x
a2 −

y0y
b2 = 1.

 Determining a Differentiable Function In 
Exercises 57 and 58, find dy�dx implicitly and find 
the largest interval of the form −a < y < a or 
0 < y < a such that y is a differentiable function 
of x. Write dy�dx as a function of x.

57. tan y = x 58. cos y = x

 Finding a Second Derivative In Exercises 
59–62, find d2y�dx2 implicitly in terms of x and y.

59. x2y − 4x = 5 60. xy − 1 = 2x + y2

61. 7xy + sin x = 2 62. 3xy − 4 cos x = −6

Tangent Lines and Normal Lines In Exercises 63 and 64, 
find equations for the tangent line and normal line to the circle 
at each given point. (The normal line at a point is perpendicular 
to the tangent line at the point.) Use a graphing utility to graph 
the circle, the tangent lines, and the normal lines.

63. x2 + y2 = 25 64. x2 + y2 = 36

 (4, 3), (−3, 4)  (6, 0), (5, √11)

65.  Normal Lines Show that the normal line at any point on 
the circle x2 + y2 = r2 passes through the origin.

66.  Circles Two circles of radius 4 are tangent to the graph of 
y2 = 4x at the point (1, 2). Find equations of these two circles.

Vertical and Horizontal Tangent Lines In Exercises 67 
and 68, find the points at which the graph of the equation has 
a vertical or horizontal tangent line.

67. 25x2 + 16y2 + 200x − 160y + 400 = 0

68. 4x2 + y2 − 8x + 4y + 4 = 0

 Logarithmic Differentiation In Exercises 
69–80, use logarithmic differentiation to find dy�dx.

69. y = x√x2 + 1, x > 0 70. y = √x2(x + 2), x > 0

71. y =
x2√3x − 2

(x + 1)2 , x >
2
3

 72. y =√x2 − 1
x2 + 1

, x > 1

73. y =
x(x − 1)3�2

√x + 1
, x > 1 74. y =

(x + 1)(x − 2)
(x − 1)(x + 2), x > 2

75. y = x2�x, x > 0 76. y = xx−1, x > 0

77. y = (x − 2)x+1, x > 2 78. y = (1 + x)1�x, x > 0

79. y = xln x, x > 0 80. y = (ln x)ln x, x > 1

Orthogonal Trajectories In Exercises 81–84, use a 
graphing utility to sketch the intersecting graphs of the 
equations and show that they are orthogonal. [Two graphs are 
orthogonal if at their point(s) of intersection, their tangent lines 
are perpendicular to each other.]

81. 2x2 + y2 = 6 82. y2 = x3

 y2 = 4x  2x2 + 3y2 = 5

83. x + y = 0 84. x3 = 3(y − 1)
 x = sin y  x(3y − 29) = 3

Orthogonal Trajectories In Exercises 85 and 86, verify 
that the two families of curves are orthogonal, where C and 
K are real numbers. Use a graphing utility to graph the two  
families for two values of C and two values of K.

85. xy = C, x2 − y2 = K 86. x2 + y2 = C2, y = Kx

87.  True or False? Determine whether the statement is true. 
If it is false, explain why and correct it. For each statement, 
assume y is a function of x.

 (a) 
d
dx

 [cos(x2)] = −2x sin(x2) (b) 
d
dy

 [cos(y2)] = 2y sin(y2)

 (c) 
d
dx

 [cos(y2)] = −2y sin(y2)
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 88.  HOW DO YOU See IT? Use the graph to 
answer the questions.

x

y

−2 2

2

4

y3 − 9y2 + 27y + 5x2 = 47

(a)  Which is greater, the slope of the tangent line 
at x = −3 or the slope of the tangent line at 
x = −1?

(b)  Estimate the point(s) where the graph has a 
vertical tangent line.

(c)  Estimate the point(s) where the graph has a 
horizontal tangent line.

 88.  

89.  Finding equations of Tangent Lines Consider the 
equation x4 = 4(4x2 − y2).

 (a) Use a graphing utility to graph the equation.

 (b)  Find and graph the four tangent lines to the curve for 
y = 3.

 (c)  Find the exact coordinates of the point of intersection of 
the two tangent lines in the first quadrant.

90.  Tangent Lines and Intercepts Let L be any tangent 
line to the curve

√x + √y = √c.

 Show that the sum of the x- and y-intercepts of L is c.

91.  Slope Find all points on the circle x2 + y2 = 100 where the 
slope is 34.

92. Proof

 (a)  Prove (Theorem 3.3) that d�dx [xn] = nxn−1 for the case 
in which n is a rational number. (Hint: Write y = xp�q in 
the form yq = xp and differentiate implicitly. Assume that 
p and q are integers, where q > 0.)

 (b)  Prove part (a) for the case in which n is an irrational 
number. (Hint: Let y = xr, where r is a real number, and 
use logarithmic differentiation.)

93. Tangent Lines Find equations of both tangent lines to the

 graph of the ellipse 
x2

4
+

y2

9
= 1 that pass through the point

(4, 0) not on the graph.

94.  Normals to a Parabola  The graph shows the normal 
lines from the point (2, 0) to the graph of the parabola x = y2.
How many normal lines are there from the point (x0, 0) to the

  graph of the parabola if (a) x0 = 1
4, (b) x0 = 1

2, and 
(c) x0 = 1? (d) For what value of x0 are two of the normal lines 
perpendicular to each other?

y

x
(2, 0)

x = y2

95. Normal Lines (a) Find an equation of the normal line to

 the ellipse 
x2

32
+

y2

8
= 1 at the point (4, 2). (b) Use a graphing

  utility to graph the ellipse and the normal line. (c) At what 
other point does the normal line intersect the ellipse?

In each graph below, an optical illusion is created by having lines 
intersect a family of curves. In each case, the lines appear to be 
curved. Find the value of dy�dx for the given values.

(a) Circles: x2 + y2 = C 2 (b) Hyperbolas: xy = C

 x = 3, y = 4, C = 5  x = 1, y = 4, C = 4

 

x

y   

x

y

(c) Lines: ax = by (d) Cosine curves: y = C cos x

 
x = √3, y = 3,

  x =
π
3

, y =
1
3

, C =
2
3

 a = √3, b = 1

 

x

y   

x

y

Optical Illusions

 FOR FURTHER INFORMATION For more information on 
the mathematics of optical illusions, see the article “Descriptive 
Models for Perception of Optical Illusions” by David A. Smith in 
The UMAP Journal.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



178 Chapter 3 Differentiation

3.6 Derivatives of Inverse Functions

 Find the derivative of an inverse function.
 Differentiate an inverse trigonometric function.

Derivative of an Inverse Function
The next two theorems discuss the derivative of an inverse function. The reasonableness 
of Theorem 3.16 follows from the reflective property of inverse functions, as shown 
in Figure 3.32. 

THEOREM 3.16  Continuity and Differentiability of Inverse 
Functions

Let f  be a function whose domain is an interval I. If f  has an inverse function, 
then the following statements are true.

1. If f  is continuous on its domain, then f −1 is continuous on its domain.

2.  If f  is differentiable on an interval containing c and f′(c) ≠ 0, then f −1 is 
differentiable at f (c).

A proof of this theorem is given in Appendix A.

THEOREM 3.17 The Derivative of an Inverse Function

Let f  be a function that is differentiable on an interval I. If f  has an inverse 
function g, then g is differentiable at any x for which f′(g(x)) ≠ 0. Moreover,

g′(x) =
1

f′(g(x)), f′(g(x)) ≠ 0.

A proof of this theorem is given in Appendix A.

 Evaluating the Derivative of an Inverse Function

Let f (x) = 1
4x3 + x − 1.

a. What is the value of f −1(x) when x = 3?

b. What is the value of ( f −1)′(x) when x = 3?

Solution Notice that f  is one-to-one and therefore has an inverse function.

a. Because f (2) = 3, you know that f −1(3) = 2.

b.  Because the function f  is differentiable and has an inverse function, you can apply 
Theorem 3.17 (with g = f −1) to write

( f −1)′(3) =
1

f′( f −1(3)) =
1

f′(2).

 Moreover, using f′(x) = 3
4x2 + 1, you can conclude that

( f −1)′(3) =
1

f′(2) =
1

3
4(22) + 1

=
1
4

. See Figure 3.33. 

x

(b, a)

(a, b)

y = f(x)

y = x
y

y = f −1(x)

The graph of f −1 is a reflection of the 
graph of f  in the line y = x.
Figure 3.32

x
−2

−2

−1

−1

1

1

2

2

3

3

m = 4

f

f −1

m = 1
4

(2, 3)

(3, 2)

y

The graphs of the inverse functions 
f  and f −1 have reciprocal slopes at 
points (a, b) and (b, a).
Figure 3.33
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 3.6 Derivatives of Inverse Functions 179

In Example 1, note that at the point (2, 3), the slope of the graph of f  is m = 4 and 
at the point (3, 2), the slope of the graph of f −1 is m = 1

4, as shown in Figure 3.33. This 
reciprocal relationship (which follows from Theorem 3.17) is sometimes written as

dy
dx

=
1

dx�dy
.

 Graphs of Inverse Functions Have Reciprocal Slopes

See LarsonCalculus.com for an interactive version of this type of example.

Let f (x) = x2 (for x ≥ 0) and let f −1(x) = √x. Show that the slopes of the graphs of 
f  and f −1 are reciprocals at each of the following points.

a. (2, 4) and (4, 2)  b. (3, 9) and (9, 3)

Solution The derivatives of f  and f −1 are f′(x) = 2x and ( f −1)′(x) =
1

2√x
.

a.  At (2, 4), the slope of the graph of f  is f′(2) = 2(2) = 4. At (4, 2), the slope of the 
graph of f −1 is

( f −1)′(4) =
1

2√4
=

1
2(2) =

1
4

.

b.  At (3, 9), the slope of the graph of f  is f′(3) = 2(3) = 6. At (9, 3), the slope of the 
graph of f −1 is

( f −1)′(9) =
1

2√9
=

1
2(3) =

1
6

.

So, in both cases, the slopes are reciprocals, as shown in Figure 3.34. 

When determining the derivative of an inverse function, you have two options:  
(1) you can apply Theorem 3.17, or (2) you can use implicit differentiation. The first 
approach is illustrated in Example 3, and the second in the proof of Theorem 3.18.

 Finding the Derivative of an Inverse Function

Find the derivative of the inverse tangent function.

Solution Let f (x) = tan x, −π�2 < x < π�2. Then let g(x) = arctan x be the inverse 
tangent function. To find the derivative of g(x), use the fact that f′(x) = sec2 x = tan2 x + 1, 
and apply Theorem 3.17 as follows.

g′(x) =
1

f′(g(x)) =
1

f′(arctan x) =
1

[tan(arctan x)]2 + 1
=

1
x2 + 1

 

Derivatives of Inverse Trigonometric Functions
In Section 3.4, you saw that the derivative of the transcendental function f (x) = ln x is 
the algebraic function f′(x) = 1�x. You will now see that the derivatives of the inverse 
trigonometric functions also are algebraic (even though the inverse trigonometric 
functions are themselves transcendental).

The next theorem lists the derivatives of the six inverse trigonometric functions. 
Note that the derivatives of arccos u, arccot u, and arccsc u are the negatives of the 
derivatives of arcsin u, arctan u, and arcsec u, respectively.

x
2

2

4

4

(4, 2)

(2, 4)

(3, 9)

6

6

8

8

10

10

(9, 3)

m = 4

m = 6

m =

m =

f −1(x) =    x

f (x) = x2, x ≥ 0 

y

1
6

1
4

At (0, 0), the derivative of f  is 0 and 
the derivative of f −1 does not exist.
Figure 3.34

 For Further InFormatIon
For more on the derivative of  
the arctangent function, see 
the article “Differentiating the 
Arctangent Directly” by Eric  
Key in The College Mathematics 
Journal. To view this article,  
go to MathArticles.com.
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THEOREM 3.18 Derivatives of Inverse Trigonometric Functions

Let u be a differentiable function of x.

d
dx

[arcsin u] =
u′

√1 − u2
 

d
dx

[arccos u] =
−u′

√1 − u2

d
dx

[arctan u] =
u′

1 + u2 
d
dx

[arccot u] =
−u′

1 + u2

d
dx

[arcsec u] =
u′

∣u∣√u2 − 1
 

d
dx

[arccsc u] =
−u′

∣u∣√u2 − 1

Proof Let y = arcsin x, −π�2 ≤ y ≤ π�2 (see Figure 3.35). So, sin y = x, and you 
can use implicit differentiation as follows.

 sin y = x

(cos y)(dy
dx) = 1

 
dy
dx

=
1

cos y

 
dy
dx

=
1

√1 − sin2 y

 
dy
dx

=
1

√1 − x2

Because u is a differentiable function of x, you can use the Chain Rule to write

d
dx

[arcsin u] =
u′

√1 − u2
, where u′ =

du
dx

.

Proofs of the other differentiation rules are left as an exercise (see Exercise 83). 

There is no common agreement on the definition of arcsec x (or arccsc x) for 
negative values of x. For this text, the range of arcsecant was defined to preserve the 
 reciprocal identity arcsec x = arccos(1�x). For example, to evaluate arcsec(−2), you 
can write

arcsec(−2) = arccos(−0.5) ≈ 2.09.

One of the consequences of the definition of the inverse secant function given 
in this text is that its graph has a positive slope at every x-value in its domain. This 
accounts for the absolute value sign in the formula for the derivative of arcsec x.

 Differentiating Inverse Trigonometric Functions

a. 
d
dx

[arcsin(2x)] =
2

√1 − (2x)2
=

2

√1 − 4x2

b. 
d
dx

[arctan(3x)] =
3

1 + (3x)2 =
3

1 + 9x2

c. 
d
dx

[arcsin√x] =
(1�2)x−1�2

√1 − x
=

1

2√x√1 − x
=

1

2√x − x2

d. 
d
dx

[arcsec e2x] =
2e2x

e2x√(e2x)2 − 1
=

2

√e4x − 1

 The absolute value sign is not necessary because e2x > 0. 

1 x

y

1 − x2

y = arcsin x
Figure 3.35
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The Granger Collection, NYC

 A Derivative That Can Be Simplified

 y = arcsin x + x√1 − x2

 y′ =
1

√1 − x2
+ x(1

2)(−2x)(1 − x2)−1�2 + √1 − x2

 =
1

√1 − x2
−

x2

√1 − x2
+ √1 − x2

 = √1 − x2 + √1 − x2

 = 2√1 − x2 

In the 1600s, Europe was ushered into the scientific age by such great thinkers 
as Descartes, Galileo, Huygens, Newton, and Kepler. These men believed that nature 
is governed by basic laws—laws that can, for the most part, be written in terms of 
mathematical equations. One of the most influential publications of this period— 
Dialogue on the Great World Systems, by Galileo Galilei—has become a classic 
description of modern scientific thought.

As mathematics has developed during the past few hundred years, a small number 
of elementary functions has proven sufficient for modeling most* phenomena in 
physics, chemistry, biology, engineering, economics, and a variety of other fields. An
elementary function is a function from the following list or one that can be formed as 
the sum, product, quotient, or composition of functions in the list.

algebraic Functions transcendental Functions

 Polynomial functions Logarithmic functions
 Rational functions Exponential functions
 Functions involving radicals Trigonometric functions
  Inverse trigonometric functions

With the differentiation rules introduced so far in the text, you can differentiate any
elementary function. For convenience, these differentiation rules are summarized below.

BASIC DIFFERENTIATION RULES FOR ELEMENTARY FUNCTIONS

 1.
d
dx

[cu] = cu′  2.
d
dx

[u ± v] = u′ ± v′  3.
d
dx

[uv] = uv′ + vu′

 4.
d
dx[

u
v] =

vu′ − uv′
v2   5.

d
dx

[c] = 0  6.
d
dx

[un] = nun−1u′

 7. 
d
dx

[x] = 1  8. 
d
dx

[∣u∣] =
u

∣u∣ (u′), u ≠ 0  9. 
d
dx

[ln u] =
u′
u

10. 
d
dx

[eu] = euu′ 11. 
d
dx

[loga u] =
u′

(ln a)u 12. 
d
dx

[au] = (ln a)auu′

13. 
d
dx

[sin u] = (cos u)u′ 14. 
d
dx

[cos u] = −(sin u)u′ 15. 
d
dx

[tan u] = (sec2 u)u′

16. 
d
dx

[cot u] = −(csc2 u)u′ 17. 
d
dx

[sec u] = (sec u tan u)u′ 18. 
d
dx

[csc u] = −(csc u cot u)u′

19. 
d
dx

[arcsin u] =
u′

√1 − u2
 20. 

d
dx

[arccos u] =
−u′

√1 − u2
 21. 

d
dx

[arctan u] =
u′

1 + u2

22. 
d
dx

[arccot u] =
−u′

1 + u2 23. 
d
dx

[arcsec u] =
u′

∣u∣√u2 − 1
- 24. 

d
dx

[arccsc u] =
−u′

∣u∣√u2 − 1

*  Some important functions used in engineering and science (such as Bessel functions and gamma functions) are 
not elementary functions.

GALILEO GALILEI (1564–1642)

Galileo’s approach to science 
departed from the accepted 
Aristotelian view that nature 
had describable qualities, such 
as “fluidity” and “potentiality.” 
He chose to describe the 
physical world in terms of 
measurable quantities, such as 
time, distance, force, and mass.
See LarsonCalculus.com to read 
more of this biography.
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3.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Evaluating the Derivative of an Inverse 

Function Given the point (x1, y1) on the graph of 
y = f (x), explain how to find ( f −1)′(y1). (Assume f −1 
exists.)

2.  Inverse Trigonometric Functions Are the 
derivatives of the inverse trigonometric functions 
algebraic or transcendental functions? Explain.

 Evaluating the Derivative of an Inverse 
Function In exercises 3–12, verify that f  has an 
inverse function. then use the function f  and the 
given real number a to find ( f −1)′(a). (Hint: See 
example 1.)

 3. f (x) = 5 − 2x3, a = 7

 4. f (x) = x3 + 3x − 1, a = −5

 5. f (x) = x3 − 1, a = 26

 6. f (x) = 1
27(x5 + 2x3), a = −11

 7. f (x) = sin x, −
π
2

≤ x ≤ π
2

, a =
1
2

 8. f (x) = cos 2x, 0 ≤ x ≤ π
2

, a = 1

 9. f (x) =
x + 6
x − 2

, x > 2, a = 3

10. f (x) =
x + 3
x + 1

, x > −1, a = 2

11. f (x) = x3 −
4
x
, x > 0, a = 6

12. f (x) = √x − 4, a = 2

 Graphs of Inverse Functions Have 
Reciprocal Slopes In exercises 13–16, show 
that the slopes of the graphs of f  and f −1 are 
reciprocals at the given points.

 Function Point

13. f (x) = x3 (1
2, 18)

 f −1(x) = 3√x (1
8, 12)

14. f (x) = 3 − 4x (1, −1)

 f −1(x) =
3 − x

4
 (−1, 1)

15. f (x) = √x − 4 (5, 1)
 f −1(x) = x2 + 4, x ≥ 0 (1, 5)

16. f (x) =
4

1 + x2, x ≥ 0 (1, 2)

 f −1(x) =√4 − x
x

 (2, 1)

 Finding a Derivative In exercises 17–42, find 
the derivative of the function.

17. f (x) = arcsin(x − 1) 18. f (t) = arccsc(−t2)

19. g(x) = 3 arccos 
x
2

 20. f (x) = arcsec 2x

21. f (x) = arctan ex 22. f (x) = arccot√x

23. g(x) =
arcsin 3x

x
 24. g(x) =

arccos x
x + 1

25. g(x) = e2x arcsin x 26. h(x) = x2 arctan 5x

27. h(x) = arccot 6x 28. f (x) = arccsc 3x

29. h(t) = sin(arccos t) 30. f (x) = arcsin x + arccos x

31. y = x arccos x − 2√x 32. y = ln t2 − arctan
t
2

33. y = ln
x + 1
x − 1

+ arctan x 34. y = x√4 − x2 + arcsin
x
3

35. g(t) = tan(arcsin t) 36. f (x) = arcsec x + arccsc x

37. y = x arcsin x + √1 − x2

38. y = x arctan 2x − 1
4 ln(1 + 4x2)

39. y = 8 arcsin 
x
4

−
x√16 − x2

2

40. y = 25 arcsin 
x
5

− x√25 − x2

41. y = arctan x +
x

1 + x2 42. y = arctan 
x
2

−
1

2(x2 + 4)

 Finding an Equation of a Tangent Line In 
exercises 43–48, find an equation of the tangent 
line to the graph of the function at the given point.

43. y = 2 arcsin x 44. y = 1
2 arccos x 

 

(   ,    )

y

x

π
2

π
2

2

2
1 π

3

π

π

y = 2 arcsin x

−1
−

−

11

  

       ,      ))

y

x

π
2

2

2
1

π
8

3

y =     arccos x

−1 −

−

11
2
1

2
2

45. y = arctan 
x
2

 46. y = arcsec 4x

 

(2,    )

y

x

π
4

π
2

π
2

π
4

−4 −2

−

42

2
x

y = arctan
  

(     ,     )

y

x

π
4

π
2

2

π
4

y = arcsec 4x

−1 − 11
2
1

4
2
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3.6 Derivatives of Inverse Functions 183

47. y = 4x arccos(x − 1) 48. y = 3x arcsin x

(1, 2  )

y

x

π

π
π

y = 4x arccos(x − 1)

2

2

1

  y

x

π

π
y = 3x arcsin x

1−1

2

(   ,    )2
1 π

4

Finding an Equation of a Tangent Line In exercises 
49–52, (a) find an equation of the tangent line to the graph of 
the function at the given point, (b) use a graphing utility to 
graph the function and its tangent line at the point, and (c) use 
the tangent feature of a graphing utility to confirm your results.

49. f (x) = arccos x2, (0, 
π
2) 50. f (x) = arctan x, (−1, −

π
4)

51. f (x) = arcsin 3x, (√2
6

, 
π
4) 52. f (x) = arcsec x, (√2, 

π
4)

53.  Tangent Lines Find equations of all tangent lines to the 
graph of f (x) = arccos x that have slope −2.

54.  Tangent Lines Find equations of all tangent lines to the 
graph of f (x) = arctan x that have slope 1�4.

Linear and Quadratic Approximations the linear and 
quadratic approximations of a function f at x = a are

P1(x) = f ′(a)(x − a) + f(a) and

P2(x) = 1
2 f ″(a)(x − a)2 + f′(a)(x − a) + f(a).

In exercises 55–58, (a) find the specified linear and quadratic 
approximations of f , and (b) use a graphing utility to graph f
and the approximations.

55. f (x) = arctan x, a = 0 56. f (x) = arccos x, a = 0

57. f (x) = arcsin x, a = 1
2 58. f (x) = arctan x, a = 1

Finding the Slope of a Graph In exercises 59–62, find 
dy�dx by implicit differentiation. then find the slope of the 
graph at the given point.

59. x = y3 − 7y2 + 2, (−4, 1)
60. x = 2 ln(y2 − 3), (0, 2)

61. x arctan x = ey, (1, ln 
π
4)

62. arcsin xy = 2
3 arctan 2x, (1

2, 1)

Finding the Equation of a Tangent Line In exercises 
63–66, use implicit differentiation to find an equation of the 
tangent line to the graph of the equation at the given point.

63. x2 + x arctan y = y − 1, (−
π
4

, 1)
64. arctan xy = arcsin(x + y), (0, 0)

65. arcsin x + arcsin y =
π
2

, (√2
2

, 
√2
2 )

66. arctan(x + y) = y2 +
π
4

, (1, 0)

eXpLoRInG ConCeptS
67.  Inverse Secant Function Some calculus textbooks 

define the inverse secant function using the range 
[0, π�2) ∪ [π, 3π�2).

 (a) Sketch the graph of y = arcsec x using this range.

 (b) Show that y′ =
1

x√x2 − 1
.

68.  Derivatives of Inverse Trigonometric 
Functions Determine whether the derivative of each 
inverse trigonometric function is odd or even.

69.  Tangent Lines Consider the tangent line j to the 
graph of f  at any point (a, b) and the tangent line k to the 
graph of f −1 at the point (b, a). Identify the line where 
the lines j and k intersect. Explain your reasoning.

 70.  HOW DO YOU SEE IT? Use the 
information in the graph of f  below.

 y

x

m =

m = 2

1
2

−1, −( (1
2

(2, 1)

−2−3 1 2 3

−2

−3

1

2

3 f

(a) What is the slope of the tangent line to the graph of 
f −1 at the point (−1

2, −1)? Explain.

(b)  What is the slope of the tangent line to the graph 
of f −1 at the point (1, 2)? Explain.

 70.  

71.  Think About It The point (1, 3) lies on the graph of f,
and the slope of the tangent line through this point is m = 2.
Assume f −1 exists. What is the slope of the tangent line to the 
graph of f −1 at the point (3, 1)?

72.  Linear Approximation To find a linear approximation 
to the graph of the function in Example 5

y = arcsin x + x√1 − x2

  you decide to use the tangent line at the origin, as shown 
below. Use a graphing utility to describe an interval about the 
origin where the tangent line is within 0.01 unit of the graph 
of the function. What might a person mean by saying that the 
original function is “locally linear”?

3

−2

−3

2
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184 Chapter 3 Differentiation

73.  Angular Rate of Change An airplane flies at an altitude 
of 5 miles toward a point directly over an observer. Consider θ 
and x as shown in the figure. 

x

5 mi

θ

Not drawn to scale

 (a) Write θ as a function of x.

 (b)  The speed of the plane is 400 miles per hour. Find dθ�dt 
when x = 10 miles and x = 3 miles.

74.  Angular Rate of Change Repeat Exercise 73 for an 
altitude of 3 miles and describe how the altitude affects the 
rate of change of θ.

75.  Angular Rate of Change In a free-fall experiment, an 
object is dropped from a height of 256 feet. A camera on the 
ground 500 feet from the point of impact records the fall of the 
object (see figure).

 (a)  Find the position function giving the height of the object 
at time t, assuming the object is released at time t = 0. At 
what time will the object reach ground level?

 (b)  Find the rates of change of the angle of elevation of the 
camera when t = 1 and t = 2.

256 ft

θ
500 ft

Not drawn to scale

76.  Angular Rate of Change A television camera at ground 
level is filming the lift-off of a rocket at a point 800 meters 
from the launch pad. Let θ be the angle of elevation of the 
rocket and let s be the distance between the camera and the 
rocket (see figure). Write θ as a function of s for the period 
of time when the rocket is moving vertically. Differentiate the 
result to find dθ�dt in terms of s and ds�dt.

h
s

θ
800 m

Not drawn to scale

77.  Angular Rate of Change An observer is standing 300 feet 
from the point at which a balloon is released. The balloon rises 
at a rate of 5 feet per second. How fast is the angle of elevation 
of the observer’s line of sight increasing when the balloon is 
100 feet high?

78.  Angular Speed A patrol car is parked 50 feet from a long 
warehouse (see figure). The revolving light on top of the car 
turns at a rate of 30 revolutions per minute. Write θ as a function 
of x. How fast is the light beam moving along the wall when the 
beam makes an angle of θ = 45° with the line perpendicular 
from the light to the wall?

θ

x

50 ft

True or False? In exercises 79–82, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

79.  The derivative of arccsc x is the negative of the derivative of 
arcsec x.

80.  The slope of the graph of the inverse tangent function is positive 
for all x.

81. 
d
dx

[arctan(tan x)] = 1 for all x in the domain.

82. If y = arcsin x, then

 
dy
dx

=
1

dx�dy

 for all x in [−1, 1].

83. Proof Prove each differentiation formula.

 (a) 
d
dx

[arccos u] =
−u′

√1 − u2

 (b) 
d
dx

[arctan u] =
u′

1 + u2

 (c) 
d
dx

[arcsec u] =
u′

∣u∣√u2 − 1

 (d) 
d
dx

[arccot u] =
−u′

1 + u2

 (e) 
d
dx

[arccsc u] =
−u′

∣u∣√u2 − 1

84. Proof Prove that 

 arccos x =
π
2

− arctan( x

√1 − x2), ∣x∣ < 1.

85. Proof Prove that

 arcsin x = arctan( x

√1 − x2), ∣x∣ < 1.

86. Proof Show that the function 

 f (x) = arcsin 
x − 2

2
− 2 arcsin 

√x
2

 is constant for 0 ≤ x ≤ 4.
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3.7 Related Rates 185

3.7 related rates

 Find a related rate.
 Use related rates to solve real-life problems.

Finding Related Rates
You have seen how the Chain Rule can be used to find dy�dx implicitly. Another 
important use of the Chain Rule is to find the rates of change of two or more related 
variables that are changing with respect to time.

For example, when water is drained out of a conical tank (see Figure 3.36), the 
volume V, the radius r, and the height h of the water level are all functions of time t. 
Knowing that these variables are related by the equation

V =
π
3

 r2h Original equation

you can differentiate implicitly with respect to t to obtain the related-rate equation

 
d
dt

[V] =
d
dt[

π
3

r2h]
 
dV
dt

=
π
3

 [r2 
dh
dt

+ h(2r 
dr
dt)] Differentiate with respect to t.

 =
π
3

 (r2 
dh
dt

+ 2rh 
dr
dt).

From this equation, you can see that the rate of change of V is related to the rates of 
change of both h and r.

exploration
Finding a Related Rate In the conical tank shown in Figure 3.36, the height 
of the water level is changing at a rate of −0.2 foot per minute and the radius 
is changing at a rate of −0.1 foot per minute. What is the rate of change of the 
volume when the radius is r = 1 foot and the height is h = 2 feet? Does the 
rate of change of the volume depend on the values of r and h? Explain.

 Two rates That Are related

The variables x and y are both differentiable functions of t and are related by the 
equation y = x2 + 3. Find dy�dt when x = 1, given that dx�dt = 2 when x = 1.

Solution Using the Chain Rule, you can differentiate both sides of the equation with 
respect to t.

 y = x2 + 3  Write original equation.

 
d
dt

[y] =
d
dt

[x2 + 3] Differentiate with respect to t.

 
dy
dt

= 2x 
dx
dt

 Chain Rule

When x = 1 and dx�dt = 2, you have

dy
dt

= 2(1)(2) = 4. 

Volume is related to radius and height.
Figure 3.36

h

r

h

r

h

r
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186 Chapter 3 Differentiation

Problem Solving with Related Rates
In Example 1, you were given an equation that related the variables x and y and were 
asked to find the rate of change of y when x = 1.

Equation: y = x2 + 3

Given rate: 
dx
dt

= 2 when x = 1

Find: 
dy
dt

 when x = 1

In each of the remaining examples in this section, you must create a mathematical 
model from a verbal description.

 ripples in a Pond

A pebble is dropped into a calm pond, causing ripples in the form of concentric circles, 
as shown in Figure 3.37. The radius r of the outer ripple is increasing at a constant rate 
of 1 foot per second. When the radius is 4 feet, at what rate is the total area A of the 
disturbed water changing?

Solution The variables r and A are related by A = πr2. The rate of change of the 
radius r is dr�dt = 1.

Equation: A = πr2

Given rate: 
dr
dt

= 1 foot per second

Find: 
dA
dt

 when r = 4 feet 

With this information, you can proceed as in Example 1.

 
d
dt

[A] =
d
dt

[πr2] Differentiate with respect to t.

 
dA
dt

= 2πr 
dr
dt

 Chain Rule

 = 2π(4)(1) Substitute 4 for r and 1 for 
dr
dt

.

 = 8π square feet per second Simplify.

When the radius is 4 feet, the area is changing at a rate of 8π  square feet per second.
  

GUIDELINES FOR SOLVING RELATED-RATE PROBLEMS

1.  Identify all given quantities and quantities to be determined. Make a sketch 
and label the quantities.

2.  Write an equation involving the variables whose rates of change either are 
given or are to be determined.

3.  Using the Chain Rule, implicitly differentiate both sides of the equation 
with respect to time t.

4.  After completing Step 3, substitute into the resulting equation all known 
values for the variables and their rates of change. Then solve for the 
required rate of change.

Total area increases as the outer radius 
increases.
Figure 3.37

remArk When using 
these guidelines, be sure you 
perform Step 3 before Step 4. 
Substituting the known 
values of the variables before 
differentiating will  produce an 
inappropriate derivative.

Russ Bishop/Alamy Stock Photo
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 3.7 Related Rates 187

The table below lists examples of mathematical models involving rates of change. 
For instance, the rate of change in the first example is the velocity of a car.

Verbal Statement Mathematical Model

The velocity of a car after traveling for  
1 hour is 50 miles per hour.

x = distance traveled

dx
dt

= 50 mi�h when t = 1

Water is being pumped into a swimming  
pool at a rate of 10 cubic meters per hour.

V = volume of water in pool

dV
dt

= 10 m3�h

A gear is revolving at a rate of 25 revolutions 
per minute (1 revolution = 2π rad).

θ = angle of revolution

dθ
dt

= 25(2π) rad�min

A population of bacteria is increasing at a  
rate of 2000 per hour.

x = number in population

dx
dt

= 2000 bacteria per hour

 An Inflating Balloon

Air is being pumped into a spherical balloon at a rate of 4.5 cubic feet per minute. Find 
the rate of change of the radius when the radius is 2 feet.

Solution Let V be the volume of the balloon, and let r be its radius. Because the 
volume is increasing at a rate of 4.5 cubic feet per minute, you know that at time t the 
rate of change of the volume is dV�dt = 9

2. So, the problem can be stated as shown.

Given rate: 
dV
dt

=
9
2

 cubic feet per minute (constant rate)

Find: 
dr
dt

 when r = 2 feet

To find the rate of change of the radius, you must find an equation that relates the radius 
r to the volume V.

Equation: V =
4
3

 πr3 Volume of a sphere

Differentiating both sides of the equation with respect to t produces

dV
dt

= 4 πr2 
dr
dt

 Differentiate with respect to t.

 
dr
dt

=
1

4πr2 (dV
dt ). Solve for 

dr
dt

.

Finally, when r = 2, the rate of change of the radius is

dr
dt

=
1

4π(2)2 (9
2) ≈ 0.09 foot per minute. 

In Example 3, note that the volume is increasing at a constant rate, but the radius is 
increasing at a variable rate. Just because two rates are related does not mean that they 
are proportional. In this particular case, the radius is growing more and more slowly as 
t increases. Do you see why?

 For Further InFormatIon
To learn more about the history of 
related-rate problems, see the article 
“The Lengthening Shadow: The 
Story of Related Rates” by Bill Austin, 
Don Barry, and David Berman in 
Mathematics Magazine. To view this 
article, go to MathArticles.com.

remArk The formula for 
the volume of a sphere and 
other formulas from geometry 
are listed on the formula cards 
for this text.
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188 Chapter 3 Differentiation

 The Speed of an Airplane Tracked by radar

See LarsonCalculus.com for an interactive version of this type of example.

An airplane is flying on a flight path that will take it directly over a radar tracking 
station, as shown in Figure 3.38. The distance s is decreasing at a rate of 400 miles per 
hour when s = 10 miles. What is the speed of the plane?

Solution Let x be the horizontal distance from the station, as shown in Figure 3.38. 
Notice that when s = 10, x = √102 − 62 = 8.

Given rate: ds�dt = −400 miles per hour when s = 10 miles

Find: dx�dt when s = 10 miles and x = 8 miles

You can find the velocity of the plane as shown.

Equation:  x2 + 62 = s2 Pythagorean Theorem

  2x 
dx
dt

= 2s 
ds
dt

 Differentiate with respect to t.

  
dx
dt

=
s
x
 (ds

dt) Solve for 
dx
dt

.

  =
10
8

 (−400) Substitute for s, x, and 
ds
dt

.

  = −500 miles per hour Simplify.

Because the velocity is −500 miles per hour, the speed is 500 miles per hour. 

 A Changing Angle of elevation

Find the rate of change in the angle of elevation of the camera shown in Figure 3.39 at 
10 seconds after lift-off.

Solution Let θ be the angle of elevation, as shown in Figure 3.39. When t = 10, the 
height s of the rocket is s = 50t2 = 50(10)2 = 5000 feet.

Given rate: ds�dt = 100t = velocity of rocket (in feet per second)

Find: dθ�dt when t = 10 seconds and s = 5000 feet

Using Figure 3.39, you can relate s and θ by the equation tan θ = s�2000.

Equation:  tan θ =
s

2000
 See Figure 3.39.

  (sec2 θ) dθ
dt

=
1

2000
 (ds

dt) Differentiate with respect to t.

  
dθ
dt

= cos2 θ 
100t
2000

 Substitute 100t for 
ds
dt

.

  = ( 2000

√s2 + 20002)
2

 
100t
2000

 cos θ =
2000

√s2 + 20002

When t = 10 and s = 5000, you have

dθ
dt

=
2000(100)(10)
50002 + 20002 =

2
29

 radian per second.

So, when t = 10, θ is changing at a rate of 2
29 radian per second. 

remArk The velocity in Example 4 is negative because x represents a distance 
that is decreasing.

An airplane is flying at an altitude of  
6 miles, s miles from the station.
Figure 3.38

s

x

Not drawn to scale

6 mi

A television camera at ground level  
is filming the lift-off of a rocket that  
is rising vertically according to the 
position equation s = 50t2, where s is 
measured in feet and t is measured in 
seconds. The camera is 2000 feet from 
the launch pad.
Figure 3.39

s
θ

θ
2000 ft

tan    = s
2000

Not drawn to scale
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 The Velocity of a Piston

In the engine shown in Figure 3.40, a 7-inch connecting rod is fastened to a crank of radius 
3 inches. The crankshaft rotates counterclockwise at a constant rate of 200 revolutions per 
minute. Find the velocity of the piston when θ = π�3.

θ

Spark plug

Connecting rod

Crankshaft Piston   

θ
3 7

x

 The velocity of a piston is related to the angle of the crankshaft.
 Figure 3.40

Solution Label the distances as shown in Figure 3.40. Because a complete revolution 
corresponds to 2π  radians, it follows that dθ�dt = 200(2π) = 400π  radians per minute.

Given rate: 
dθ
dt

= 400π  radians per minute (constant rate)

Find: 
dx
dt

 when θ =
π
3

You can use the Law of Cosines (see Figure 3.41) to find an equation that relates x and θ.

Equation:  72 = 32 + x2 − 2(3)(x) cos θ

  0 = 2x 
dx
dt

− 6(−x sin θ 
dθ
dt

+ cos θ 
dx
dt)

  (6 cos θ − 2x) dx
dt

= 6x sin θ 
dθ
dt

  
dx
dt

=
6x sin θ

6 cos θ − 2x
 (dθ

dt )
When θ = π�3, you can solve for x as shown.

 72 = 32 + x2 − 2(3)(x) cos 
π
3

 49 = 9 + x2 − 6x(1
2)

 0 = x2 − 3x − 40

 0 = (x − 8)(x + 5)
 x = 8 inches Choose positive solution.

So, when x = 8 and θ = π�3, the velocity of the piston is

 
dx
dt

=
6(8)(√3�2)
6(1�2) − 16

(400π)

 =
9600π√3

−13

 ≈ −4018 inches per minute.  

remArk The velocity in Example 6 is negative because x represents a distance 
that is decreasing.

Law of Cosines: 
b2 = a2 + c2 − 2ac cos θ
Figure 3.41

b

c

θ

a
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190 Chapter 3 Differentiation

3.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  related-rate equation What is a related-rate 

equation?

2.  related rates In your own words, state the guidelines 
for solving related-rate problems.

 Using related rates In exercises 3–6, assume 
that x and y are both differentiable functions of t 
and find the required values of dy�dt and dx�dt.

 equation Find Given

 3. y = √x (a) 
dy
dt

 when x = 4 
dx
dt

= 3

  (b) 
dx
dt

 when x = 25 
dy
dt

= 2

 4. y = 3x2 − 5x (a) 
dy
dt

 when x = 3 
dx
dt

= 2

  (b) 
dx
dt

 when x = 2 
dy
dt

= 4

 5. xy = 4 (a) 
dy
dt

 when x = 8 
dx
dt

= 10

  (b) 
dx
dt

 when x = 1 
dy
dt

= −6

 6. x2 + y2 = 25 (a) 
dy
dt

 when x = 3, y = 4 
dx
dt

= 8

  (b) 
dx
dt

 when x = 4, y = 3 
dy
dt

= −2

 moving Point In exercises 7–10, a point is 
moving along the graph of the given function at 
the rate dx�dt. Find dy�dt for the given values of x.

 7. y = 2x2 + 1; 
dx
dt

= 2 centimeters per second

 (a) x = −1 (b) x = 0 (c) x = 1

 8. y =
1

1 + x2; 
dx
dt

= 6 inches per second

 (a) x = −2 (b) x = 0 (c) x = 2

 9. y = tan x; 
dx
dt

= 3 feet per second

 (a) x = −
π
3

 (b) x = −
π
4

 (c) x = 0

10. y = cos x; 
dx
dt

= 4 centimeters per second

 (a) x =
π
6

 (b) x =
π
4

 (c) x =
π
3

11.  Area The radius r of a circle is increasing at a rate of  
4 centimeters per minute. Find the rate of change of the area 
when r = 37 centimeters.

12.  Area The length s of each side of an equilateral triangle is 
increasing at a rate of 13 feet per hour. Find the rate of change 
of the area when s = 41 feet. (Hint: The formula for the area 
of an equilateral triangle is

 A =
s2√3

4
.)

13.  Volume The radius r of a sphere is increasing at a rate of  
3 inches per minute.

 (a)  Find the rates of change of the volume when r = 9 inches 
and r = 36 inches.

 (b)  Explain why the rate of change of the volume of the sphere 
is not constant even though dr�dt is constant.

14.  radius A spherical balloon is inflated with gas at the rate 
of 800 cubic centimeters per minute. 

 (a)  Find the rates of change of the radius when r = 30 centimeters 
and r = 85 centimeters.

 (b)  Explain why the rate of change of the radius of the sphere is 
not constant even though dV�dt is constant.

15.  Volume All edges of a cube are expanding at a rate of  
6 centimeters per second. How fast is the volume changing 
when each edge is (a) 2 centimeters and (b) 10 centimeters?

16.  Surface Area All edges of a cube are expanding at a 
rate of 6 centimeters per second. How fast is the surface 
area changing when each edge is (a) 2 centimeters and  
(b) 10 centimeters?

17.  Height At a sand and gravel plant, sand is falling off a 
conveyor and onto a conical pile at a rate of 10 cubic feet per 
minute. The diameter of the base of the cone is approximately 
three times the altitude. At what rate is the height of the pile 
changing when the pile is 15 feet high? (Hint: The formula for

 the volume of a cone is V = 1
3πr2h.)

18.  Height The volume of oil in a cylindrical container is 
increasing at a rate of 150 cubic inches per second. The height 
of the cylinder is approximately ten times the radius. At what 
rate is the height of the oil changing when the oil is 35 inches 
high? (Hint: The formula for the volume of a cylinder is 
V = πr2h.)

19.  Depth A swimming pool is 12 meters long, 6 meters wide, 
1 meter deep at the shallow end, and 3 meters deep at the 
deep end (see figure). Water is being pumped into the pool at 
1
4 cubic meter per minute, and there is 1 meter of water at the 
deep end.

4

3 m

12 m

6 m

1 mmin
1 m3

 (a) What percent of the pool is filled?

 (b) At what rate is the water level rising?
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20.  Depth A trough is 12 feet long and 3 feet across the top (see 
figure). Its ends are isosceles triangles with altitudes of 3 feet.

3 ft

3 ft

h

12 ft

2
min
ft3

 (a)  Water is being pumped into the trough at 2 cubic feet per 
minute. How fast is the water level rising when the depth 
h is 1 foot?

 (b)  The water is rising at a rate of 3
8 inch per minute when 

h = 2 feet. Determine the rate at which water is being 
pumped into the trough.

21.  moving Ladder A ladder 25 feet long is leaning against 
the wall of a house (see figure). The base of the ladder is 
pulled away from the wall at a rate of 2 feet per second.

 (a)  How fast is the top of the ladder moving down the wall 
when its base is 7 feet, 15 feet, and 24 feet from the wall?

 (b)  Consider the triangle formed by the side of the house, the 
ladder, and the ground. Find the rate at which the area 
of the triangle is changing when the base of the ladder is  
7 feet from the wall.

 (c)  Find the rate at which the angle between the ladder and the 
wall of the house is changing when the base of the ladder 
is 7 feet from the wall.

2

25 ft

ft
sec

r

  

5 m

0.15 m
sec

 Figure for 21 Figure for 22

22.  Construction A construction worker pulls a five-meter 
plank up the side of a building under construction by means 
of a rope tied to one end of the plank (see figure). Assume the 
opposite end of the plank follows a path perpendicular to the 
wall of the building and the worker pulls the rope at a rate of 
0.15 meter per second. How fast is the end of the plank sliding 
along the ground when it is 2.5 meters from the wall of the 
building?

23.  Construction A winch at the top of a 12-meter building 
pulls a pipe of the same length to a vertical position, as shown 
in the figure. The winch pulls in rope at a rate of −0.2 meter 
per  second. Find the rate of vertical change and the rate of 
horizontal change at the end of the pipe when y = 6 meters.

x

12 m

(x, y)s

= −0.2ds
dt

m
sec

3

6

9

3 6

y   

12 ft
13 ft

Not drawn to scale

 Figure for 23 Figure for 24

24.  Boating A boat is pulled into a dock by means of a winch 
12 feet above the deck of the boat (see figure).

 (a)  The winch pulls in rope at a rate of 4 feet per second. 
Determine the speed of the boat when there is 13 feet of 
rope out. What happens to the speed of the boat as it gets 
closer to the dock?

 (b)  Suppose the boat is moving at a constant rate of 4 feet 
per second. Determine the speed at which the winch pulls 
in rope when there is a total of 13 feet of rope out. What 
 happens to the speed at which the winch pulls in rope as 
the boat gets closer to the dock?

25.  Air Traffic Control An air traffic controller spots two 
planes at the same altitude converging on a point as they fly at 
right angles to each other (see figure). One plane is 225 miles 
from the point, moving at 450 miles per hour. The other plane 
is 300 miles from the point, moving at 600 miles per hour.

 (a)  At what rate is the distance s between the planes decreasing?

 (b)  How much time does the air traffic controller have to get 
one of the planes on a different flight path?

100 200 400

400

300

200

100

Distance (in miles)

x

D
is

ta
nc

e 
(i

n 
m

ile
s)

s

y  

5 mi

x

s

y

x

Not drawn to scale

Figure for 25 Figure for 26

26.  Air Traffic Control An airplane is flying at an altitude of  
5 miles and passes directly over a radar antenna (see figure). 
When the plane is 10 miles away (s = 10), the radar detects 
that the distance s is changing at a rate of 240 miles per hour. 
What is the speed of the plane?

 For Further InFormatIon For more information  
on the mathematics of moving ladders, see the article “The Falling 
Ladder Paradox” by Paul Scholten and Andrew Simoson in  
The College Mathematics Journal. To view this article, go to 
MathArticles.com.
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192 Chapter 3 Differentiation

27.  Sports A baseball diamond has the shape of a square with 
sides 90 feet long (see figure). A player running from second 
base to third base at a speed of 25 feet per second is 20 feet 
from third base. At what rate is the player’s distance from 
home plate changing?

1st3rd

Home

2nd

90 ft

 
16

12

8

4

4 8 12 16 20
x

y

Figure for 27 and 28 Figure for 29

28.  Sports For the baseball diamond in Exercise 27, suppose 
the player is running from first base to second base at a speed 
of 25 feet per second. Find the rate at which the distance from 
home plate is changing when the player is 20 feet from second 
base.

29.  Shadow Length A man 6 feet tall walks at a rate of 5 feet 
per second away from a light that is 15 feet above the ground 
(see figure). 

 (a)  When he is 10 feet from the base of the light, at what rate 
is the tip of his shadow moving?

 (b)  When he is 10 feet from the base of the light, at what rate 
is the length of his shadow changing?

30.  Shadow Length Repeat Exercise 29 for a man 6 feet tall 
walking at a rate of 5 feet per second toward a light that is 
20 feet above the ground (see figure).

20

16

12

8

4

4 8 12 16 20
x

y  
y

x
(x, 0)

(0, y)

1 m

Figure for 30 Figure for 31

31.  machine Design The endpoints of a movable rod of 
length 1 meter have coordinates (x, 0) and (0, y) (see figure). 
The  position of the end on the x-axis is

x(t) =
1
2

 sin 
πt
6

 where t is the time in seconds.

 (a) Find the time of one complete cycle of the rod.

 (b)  What is the lowest point reached by the end of the rod on 
the y-axis?

 (c)  Find the speed of the y-axis endpoint when the x-axis 
endpoint is (1

4, 0).

32.  machine Design Repeat Exercise 31 for a position function 
of x(t) = 3

5 sin πt. Use the point ( 3
10, 0) for part (c).

33.  evaporation As a spherical raindrop falls, it reaches 
a layer of dry air and begins to evaporate at a rate that is 
proportional to its surface area (S = 4πr2). Show that the 
radius of the raindrop decreases at a constant rate.

 34.  HOW DO YOU See IT? Using the graph 
of f, (a) determine whether dy�dt is positive or 
negative given that dx�dt is negative, and (b) 
determine whether dx�dt is positive or  negative 
given that dy�dt is positive. Explain.

(i) 

x
1 2 3 4

4

2

1 f

y (ii) 

x
−3 −2 −1 1 2 3

6
5
4
3
2

f

y

 34.  

eXpLoRInG ConCeptS
35.  Think About It Describe the relationship between 

the rate of change of y and the rate of change of x in 
each expression. Assume all variables and derivatives 
are positive.

 (a) 
dy
dt

= 3
dx
dt

   (b) 
dy
dt

= x(L − x) dx
dt

, 0 ≤ x ≤ L

36.  Volume Let V be the volume of a cube of side 
length s that is changing with respect to time. If ds�dt is 
constant, is dV�dt constant? Explain.

37.  electricity The combined electrical resistance R of two 
resistors R1 and R2, connected in parallel, is given by

 
1
R

=
1
R1

+
1
R2

  where R, R1, and R2 are measured in ohms. R1 and R2 are 
increasing at rates of 1 and 1.5 ohms per second, respectively. At 
what rate is R changing when R1 = 50 ohms and R2 = 75 ohms?

38.  electrical Circuit The voltage V in volts of an electrical 
circuit is V = IR, where R is the resistance in ohms and I is 
the current in amperes. R is increasing at a rate of 2 ohms per 
second, and V is increasing at a rate of 3 volts per second. At 
what rate is I changing when V = 12 volts and R = 4 ohms?

39.  Flight Control An airplane is flying in still air with an 
airspeed of 275 miles per hour. The plane is climbing at 
an angle of 18°. Find the rate at which the plane is gaining 
altitude.

40.  Angle of elevation A balloon rises at a rate of 4 meters 
per second from a point on the ground 50 meters from an 
observer. Find the rate of change of the angle of elevation of 
the balloon from the observer when the balloon is 50 meters 
above the ground.
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3.7 Related Rates 193

41.  Angle of elevation A fish is reeled in at a rate of 1 foot 
per second from a point 10 feet above the water (see figure). 
At what rate is the angle θ between the line and the water 
changing when there is a total of 25 feet of line from the end 
of the rod to the water?

10 ft
x

θ

 

5 mi

θ

Not drawn to scale

 Figure for 41 Figure for 42

42.  Angle of elevation An airplane flies at an altitude of 
5 miles toward a point directly over an observer (see figure). 
The speed of the plane is 600 miles per hour. Find the rates at 
which the angle of elevation θ is changing when the angle is 
(a) θ = 30°, (b) θ = 60°, and (c) θ = 75°.

43.  Linear vs. Angular Speed A patrol car is parked 50 feet 
from a long warehouse (see figure). The revolving light on top 
of the car turns at a rate of 30 revolutions per minute. How fast 
is the light beam moving along the wall when the beam makes 
angles of (a) θ = 30°, (b) θ = 60°, and (c) θ = 70° with the 
perpendicular line from the light to the wall?

θ

x

50 ft

 

xθ
30 cm

x

P

Figure for 43 Figure for 44

44.  Linear vs. Angular Speed A wheel of radius 
30 centimeters revolves at a rate of 10 revolutions per second. A 
dot is painted at a point P on the rim of the wheel (see figure).

 (a) Find dx�dt as a function of θ.

 (b) Use a graphing utility to graph the function in part (a).

 (c)  When is the absolute value of the rate of change of x
 greatest? When is it least?

 (d) Find dx�dt when θ = 30° and θ = 60°.

45. Area Consider the rectangle shown in the figure.

 (a) Find the area of the rectangle as a function of x.

 (b)  Find the rate of the change of the area when x = 4 
centimeters if dx�dt = 4 centimeters per minute.

) )

x

1

−x  e, −x2/2 x  e, −x2/2) )

y

46.  Area The included angle of the two sides of constant equal 
length s of an isosceles triangle is θ.

 (a)  Show that the area of the triangle is given by A = 1
2s2 sin θ.

 (b)  The angle θ is increasing at the rate of 12 radian per minute. 
Find the rates of change of the area when θ = π�6 and 
θ = π�3.

47.  relative Humidity When the dewpoint is 65° Fahrenheit, 
the relative humidity H is

 H =
4347

400,000,000
e369,444�(50t+19,793)

 where t is the temperature in degrees Fahrenheit.

 (a)  Determine the relative humidity when t = 65°F and 
t = 80°F.

 (b)  At 10 a.m., the temperature is 75°F and increasing at the 
rate of 2°F per hour. Find the rate at which the relative 
humidity is changing.

48.  Security Camera A security camera is centered 50 feet 
above a 100-foot hallway (see figure). It is easiest to design the 
camera with a constant angular rate of rotation, but this results 
in recording the images of the surveillance area at a variable 
rate. So, it is desirable to design a system with a variable rate 
of rotation and a constant rate of movement of the scanning 
beam along the hallway. Find a model for the variable rate of 
rotation when ∣dx�dt∣ = 2 feet per second.

 

x

100 ft

θ

(0, 50)

y

Acceleration In exercises 49 and 50, find the acceleration of 
the specified object. (Hint: recall that if a variable is changing 
at a constant rate, then its acceleration is zero.)

49.  Find the acceleration of the top of the ladder described in 
Exercise 21 when the base of the ladder is 7 feet from the wall.

50.  Find the acceleration of the boat in Exercise 24(a) when there 
is a total of 13 feet of rope out.

51.  moving Shadow A ball is dropped from a height 
of 20 meters, 12 meters away from the top of a 20-meter 
lamppost (see figure). The ball’s shadow, caused by the light 
at the top of the lamppost, is moving along the level ground. 
How fast is the shadow moving 1 second after the ball is 
released? (Submitted by Dennis Gittinger, St. Philips College, 
San Antonio, TX)

 

12 m
Shadow

20 m
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3.8 Newton’s Method

 Approximate a zero of a function using Newton’s Method.

Newton’s Method
In this section, you will study a technique for approximating the real zeros of a function. 
The technique is called newton’s method, and it uses tangent lines to approximate the 
graph of the function near its x-intercepts.

To see how Newton’s Method works, consider a function f  that is continuous on 
the interval [a, b] and differentiable on the interval (a, b). If f (a) and f (b) differ in sign, 
then, by the Intermediate Value Theorem, f  must have at least one zero in the interval 
(a, b). To estimate this zero, you choose

x = x1 First estimate

as shown in Figure 3.42(a). Newton’s Method is based on the assumption that the 
graph of f  and the tangent line at (x1, f (x1)) both cross the x-axis at about the same 
point. Because you can easily calculate the x-intercept for this tangent line, you can use 
it as a second (and, usually, better) estimate of the zero of f. The tangent line passes 
through the point (x1, f (x1)) with a slope of f′(x1). In point-slope form, the equation of 
the tangent line is

 y − f (x1) = f′(x1)(x − x1)
 y = f′(x1)(x − x1) + f (x1).

Letting y = 0 and solving for x produces

x = x1 −
f (x1)
f′(x1)

.

So, from the initial estimate x1, you obtain a new estimate

x2 = x1 −
f (x1)
f′(x1)

. Second estimate [See Figure 3.42(b).]

You can improve on x2 and calculate yet a third estimate

x3 = x2 −
f (x2)
f′(x2)

. Third estimate

Repeated application of this process is called Newton’s Method.

Newton’s Method for approximating the Zeros of a Function

Let f (c) = 0, where f  is differentiable on an open interval containing c. 
Then, to approximate c, use these steps.

1. Make an initial estimate x1 that is close to c. (A graph is helpful.)

2. Determine a new approximation

xn+1 = xn −
f (xn)
f′(xn)

.

3.  When ∣xn − xn+1∣ is within the desired accuracy, let xn+1 serve as the 
final approximation. Otherwise, return to Step 2 and calculate a new 
approximation.

Each successive application of this procedure is called an iteration.

(a)

xa c
b

Tangent line

x1 x2

(x1,  f(x1))

y

(b)
The x-intercept of the tangent line 
approximates the zero of f.
Figure 3.42

x
a

c

Tangent line

b
x1 x3

x2

(x1,  f(x1))

y

NEWTON’S METHOD

Isaac Newton first described 
the method for approximating 
the real zeros of a function 
in his text Method of Fluxions. 
Although the book was written 
in 1671, it was not published 
until 1736. Meanwhile, in 1690, 
Joseph Raphson (1648–1715) 
published a paper describing a 
method for approximating the 
real zeros of a function that 
was very similar to Newton’s. 
For this reason, the method 
is often referred to as the 
Newton-Raphson Method.
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 3.8 Newton’s Method 195

 Using Newton’s Method

Calculate three iterations of Newton’s Method to approximate a zero of f (x) = x2 − 2. 
Use x1 = 1 as the initial guess.

Solution Because f (x) = x2 − 2, you have f′(x) = 2x, and the iterative formula is

xn+1 = xn −
f (xn)
f′(xn)

= xn −
xn

2 − 2

2xn

.

The calculations for three iterations are shown in the table.

n xn f (xn) f′(xn)
f (xn)
f′(xn)

xn −
f (xn)
f′(xn)

1 1.000000 −1.000000 2.000000 −0.500000 1.500000

2 1.500000 0.250000 3.000000 0.083333 1.416667

3 1.416667 0.006945 2.833334 0.002451 1.414216

4 1.414216

Of course, in this case you know that the two zeros of the function are ±√2. To six 
decimal places, √2 = 1.414214. So, after only three iterations of Newton’s Method, 
you have obtained an approximation that is within 0.000002 of an actual root. The first 
iteration of this process is shown in Figure 3.43.

 Using Newton’s Method

See LarsonCalculus.com for an interactive version of this type of example.

Use Newton’s Method to approximate the zero(s) of

f(x) = ex + x.

Continue the iterations until two successive approximations differ by less than 0.0001.

Solution Begin by sketching a graph of f, as shown in Figure 3.44. From the graph, 
you can observe that the function has only one zero, which occurs near x = −0.6. 
Next, differentiate f  and form the iterative formula

xn+1 = xn −
f (xn)
f′(xn)

= xn −
exn + xn

exn + 1
.

The calculations are shown in the table.

n xn f (xn) f′(xn)
f(xn)
f′(xn)

xn −
f(xn)
f′(xn)

1 −0.60000 −0.05119 1.54881 −0.03305 −0.56695

2 −0.56695 0.00030 1.56725 0.00019 −0.56714

3 −0.56714 0.00000 1.56714 0.00000 −0.56714

4 −0.56714

Because two successive approximations differ by less than the required 0.0001, you can 
estimate the zero of f  to be −0.56714. 

reMark For many  
functions, just a few iterations 
of Newton’s Method will  
produce approximations having 
very small errors, as shown in 
Example 1.

The first iteration of Newton’s Method
Figure 3.43

−1

x
x2 = 1.5

x1 = 1

f (x) = x2 − 2

y

After three iterations of Newton’s 
Method, the zero of f  is approximated 
to the desired accuracy.
Figure 3.44

x
−2 1−1

2

1

−1

f x e x( ) = +x

y
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196 Chapter 3 Differentiation

When, as in Examples 1 and 2, the approximations approach a limit, the sequence 
of approximations

x1, x2, x3, .  .  ., xn, .  .  .

is said to converge. Moreover, when the limit is c, it can be shown that c must be a 
zero of f.

Newton’s Method does not always yield a  

Newton’s Method fails to converge  
when f ′(xn) = 0.

x
x1

f ′(x1) = 0

y  
convergent sequence. One way it can fail to do  
so is shown in the figure at the right. Because 
Newton’s Method involves division by f′(xn), it is 
clear that the method will fail when the derivative 
is zero for any xn in the sequence. When you 
encounter this problem, you can usually overcome 
it by choosing a different value for x1. Another 
way Newton’s Method can fail is shown in the 
next example.

 an example in Which Newton’s Method Fails

The function f (x) = x1�3 is not differentiable at x = 0. Show that Newton’s Method 
fails to converge using x1 = 0.1.

Solution Because f′(x) = 1
3x−2�3, the iterative formula is

xn+1 = xn −
f (xn)
f′(xn)

= xn −
xn

1�3

1
3xn

−2�3
= xn − 3xn = −2xn.

The calculations are shown in the table. This table and Figure 3.45 indicate that xn  
continues to increase in magnitude as n →∞, and so the limit of the sequence does 
not exist.

n xn f (xn) f′(xn)
f (xn)
f′(xn)

xn −
f (xn)
f′(xn)

1 0.10000 0.46416 1.54720 0.30000 −0.20000

2 −0.20000 −0.58480 0.97467 −0.60000 0.40000

3 0.40000 0.73681 0.61401 1.20000 −0.80000

4 −0.80000 −0.92832 0.38680 −2.40000 1.60000

x

−1

−1

1

x1
x2 x3 x5

x4

f(x) = x1/3

y

  Newton’s Method fails to converge for every  
x-value other than the actual zero of f.

 Figure 3.45 

reMark In Example 3, the 
initial estimate x1 = 0.1 fails to 
produce a convergent sequence. 
Try showing that Newton’s 
Method also fails for every 
other choice of x1 (other than 
the actual zero).

 For Further InFormatIon
For more on when Newton’s 
Method fails, see the article  
“No Fooling! Newton’s Method 
Can Be Fooled” by Peter Horton  
in Mathematics Magazine. To  
view this article, go to 
MathArticles.com.
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It can be shown that a condition sufficient to produce convergence of Newton’s 
Method to a zero of f  is that

 ∣ f (x) f ″(x)
[ f′(x)]2 ∣ < 1  Condition for convergence

on an open interval containing the zero. For instance, in Example 1, this test would 
yield

f (x) = x2 − 2, f′(x) = 2x, f ″(x) = 2,

and

∣ f (x) f ″(x)
[ f′(x)]2 ∣ = ∣(x2 − 2)(2)

4x2 ∣ = ∣12 −
1
x2∣. Example 1

On the interval (1, 3), this quantity is less than 1 and therefore the convergence of 
Newton’s Method is guaranteed. On the other hand, in Example 3, you have 

f (x) = x1�3, f′(x) =
1
3

x−2�3, f ″(x) = −
2
9

x−5�3

and

∣ f (x) f ″(x)
[ f′(x)]2 ∣ = ∣x1�3(−2�9)(x−5�3)

(1�9)(x−4�3) ∣ = 2 Example 3

which is not less than 1 for any value of x, so you cannot conclude that Newton’s 
Method will converge.

You have learned several techniques for finding the zeros of functions. The zeros 
of some functions, such as

f (x) = x3 − 2x2 − x + 2

can be found by simple algebraic techniques, such as factoring. The zeros of other 
functions, such as

f (x) = x3 − x + 1

cannot be found by elementary algebraic methods. This particular function has only 
one real zero, and by using more advanced algebraic techniques, you can determine 
the zero to be

x = − 3√3 − √23�3
6

− 3√3 + √23�3
6

.

Because the exact solution is written in terms of square roots and cube roots, it is called 
a solution by radicals.

The determination of radical solutions of a polynomial equation is one of the 
fundamental problems of algebra. The earliest such result is the Quadratic Formula, 
which dates back at least to Babylonian times. The general formula for the zeros 
of a cubic function was developed much later. In the sixteenth century, an Italian 
mathematician, Jerome Cardan, published a method for finding radical solutions to 
cubic and quartic equations. Then, for 300 years, the problem of finding a general 
quintic formula remained open. Finally, in the nineteenth century, the problem was 
answered independently by two young mathematicians. Niels Henrik Abel, a Norwegian 
mathematician, and Evariste Galois, a French mathematician, proved that it is not 
possible to solve a general fifth- (or higher-) degree polynomial equation by radicals. 
Of course, you can solve particular fifth-degree equations, such as x5 − 1 = 0, but Abel 
and Galois were able to show that no general radical solution exists.

NIELS HENRIK ABEL (1802–1829)

EVARISTE GALOIS (1811–1832)

Although the lives of both 
Abel and Galois were brief, 
their work in the fields of 
analysis and abstract algebra 
was far-reaching.
See LarsonCalculus.com to read 
a biography about each of these 
mathematicians.

The Granger Collection, NYC
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198 Chapter 3 Differentiation

3.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Newton’s Method In your own words and using a 

sketch, describe Newton’s Method for approximating the 
zeros of a function.

2.  Failure of Newton’s Method Why does Newton’s 
Method fail when f ′(xn) = 0? What does this mean 
graphically?

 Using Newton’s Method In exercises 3–6, 
calculate two iterations of newton’s method to 
approximate a zero of the function using the given 
initial guess.

 3. f (x) = x2 − 5, x1 = 2

 4. f (x) = x3 − 3, x1 = 1.4

 5. f (x) = cos x, x1 = 1.6

 6. f (x) = tan x, x1 = 0.1

 Using Newton’s Method In exercises 7–18, 
use newton’s method to approximate the zero(s) 
of the function. Continue the iterations until two 
successive approximations differ by less than 0.001. 
then find the zero(s) using a graphing utility and 
compare the results.

 7. f (x) = x3 + 4  8. f (x) = 2 − x3

 9. f (x) = x3 + x − 1 10. f (x) = x5 + x − 1

11. f (x) = 5√x − 1 − 2x 12. f (x) = x − 2√x + 1

13. f (x) = x − e−x 14. f (x) = x − 3 + ln x

15. f (x) = x3 − 3.9x2 + 4.79x − 1.881

16. f (x) = −x3 + 2.7x2 + 3.55x − 2.422

17. f (x) = 1 − x + sin x 18. f (x) = x3 − cos x

Points of Intersection In exercises 19–22, apply newton’s 
method to approximate the x-value(s) of the indicated point(s) 
of intersection of the two graphs. Continue the iterations 
until two successive approximations differ by less than 0.001. 
[Hint: Let h(x) = f (x) − g(x).]

19. f (x) = 2x + 1 20. f (x) = arccos x

 g(x) = √x + 4  g(x) = arctan x

 

x
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y   
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21. f (x) = x 22. f (x) = 2 − x2

 g(x) = tan x  g(x) = ex�2

 

x
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π
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23.  Using Newton’s Method Consider the function 
f (x) = x3 − 3x2 + 3.

 (a) Use a graphing utility to graph f.

 (b)  Use Newton’s Method to approximate a zero with x1 = 1 
as the initial guess.

 (c)  Repeat part (b) using x1 = 1
4 as the initial guess and 

observe that the result is different.

 (d)  To understand why the results in parts (b) and (c) are 
different, sketch the tangent lines to the graph of f  at the 
points (1, f (1)) and (1

4, f (1
4)). Describe why it is important 

to select the initial guess carefully.

24.  Using Newton’s Method Repeat the steps in 
Exercise 23 for the function f (x) = sin x with initial guesses 
of x1 = 1.8 and x1 = 3.

 Failure of Newton’s Method In exercises 25 
and 26, apply newton’s method using the given 
initial guess, and explain why the method fails.

25. y = 2x3 − 6x2 + 6x − 1, x1 = 1

x

1

x1 2

2

y   y

1−1 2

−2

−3

x

 Figure for 25 Figure for 26

26. y = x3 − 2x − 2, x1 = 0

Fixed Point In exercises 27–30, approximate the fixed 
point of the function to two decimal places. [a fixed point of a 
function f  is a real number c such that f (c) = c.]

27. f (x) = cos x

28. f (x) = cot x, 0 < x < π

29. f (x) = ex�10

30. f (x) = −ln x
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3.8 Newton’s Method 199

31.  advertising Costs A company that produces digital 
audio players estimates that the profit for selling a particular 
model is

 P = −76x3 + 4830x2 − 320,000, 0 ≤ x ≤ 60

  where P is the profit in dollars and x is the advertising expense 
in 10,000s of dollars (see figure). Use Newton’s Method to 
approximate the smaller of two advertising amounts that yield 
a profit of $2,500,000.
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Figure for 31 Figure for 32

32.  engine Power The torque produced by a compact 
automobile engine is approximated by the model

T = 0.808x3 − 17.974x2 + 71.248x + 110.843, 1 ≤ x ≤ 5

  where T is the torque in foot-pounds and x is the engine 
speed in thousands of revolutions per minute (see figure). Use 
Newton’s Method to approximate the two engine speeds that 
yield a torque of 170 foot-pounds.

eXpLoRInG ConCeptS
33.  Newton’s Method  What will be the values of 

future guesses for x if your initial guess is a zero of f ? 
Explain.

34.  Newton’s Method  Does Newton’s Method fail 
when the initial guess is a relative maximum of f ? 
Explain.

35.  Comparing Functions  Determine whether the 
zeros of f (x) = p(x)�q(x) always coincide with the zeros 
of p(x). Explain.

 36.  HOW DO YOU See IT? For what value(s) 
will Newton’s Method fail to converge for the 
function shown in the graph? Explain your 
reasoning.

−2−4−6 2 4

−2

−4

4

x

y

 36.  

37.  Mechanic’s rule The Mechanic’s Rule for approximating 
√a, a > 0, is

xn+1 =
1
2 (xn +

a
xn
), n = 1, 2, 3, .  .  .

 where x1 is an approximation of √a.

 (a)  Use Newton’s Method and the function f (x) = x2 − a to 
derive the Mechanic’s Rule.

 (b)  Use the Mechanic’s Rule to approximate √5 and √7 to 
three decimal places.

38. approximating radicals

 (a)  Use Newton’s Method and the function f (x) = xn − a to 
obtain a general rule for approximating x = n√a.

 (b)  Use the general rule found in part (a) to approximate 4√6
and 3√15  to three decimal places.

39.  approximating reciprocals Use Newton’s Method 
to show that the equation xn+1 = xn(2 − axn) can be used to 
approximate 1�a when x1 is an initial guess of the reciprocal 
of a. Note that this method of approximating reciprocals 
uses only the operations of multiplication and subtraction. 
(Hint: Consider

f (x) =
1
x

− a.)
40.  approximating reciprocals Use the result of Exercise 

39 to approximate (a) 13 and (b) 1
11 to three decimal places.

True or False? In exercises 41–44, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

41. The roots of √f (x) = 0 coincide with the roots of f (x) = 0.

42.  If the coefficients of a polynomial function are all positive, 
then the polynomial has no positive zeros.

43.  If f (x) is a cubic polynomial such that f ′(x) is never zero, then 
any initial guess will force Newton’s Method to converge to 
the zero of f.

44.  Newton’s Method fails when the initial guess x1 corresponds 
to a horizontal tangent line for the graph of f  at x1.

45.  Tangent Lines The graph of f (x) = −sin x has infinitely 
many tangent lines that pass through the origin. Use Newton’s 
Method to approximate to three decimal places the slope of the 
tangent line having the greatest slope.

46.  Point of Tangency The graph of f (x) = cos x and 
a tangent line to f  through the origin are shown. Find the 
coordinates of the point of tangency to three decimal places.

−1

f (x) = cos x

ππ 2
x

y
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200 Chapter 3 Differentiation

Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding the Derivative by the Limit Process In 
Exercises 1–4, find the derivative of the function by the limit 
process.

 1. f (x) = 12  2. f (x) = 5x − 4

 3. f (x) = x3 − 2x + 1  4. f (x) =
6
x

Using the Alternative Form of the Derivative In 
Exercises 5 and 6, use the alternative form of the derivative to 
find the derivative at x = c, if it exists.

 5. g(x) = 2x2 − 3x, c = 2  6. f (x) =
1

x + 4
, c = 3

Determining Differentiability In Exercises 7 and 8, 
describe the x-values at which f  is differentiable.

 7. f (x) = (x − 3)2�5  8. f (x) =
3x

x + 1

 

x

y

−1 1 2 3 4 5−1

1

2

3

4

5

  

x

y

−2−3 1 2

2

4

6

8

−1

Finding a Derivative In Exercises 9–20, use the rules of 
differentiation to find the derivative of the function.

 9. y = 25 10. f (t) = π�6

11. f (x) = x3 − 11x2 12. g(s) = 3s5 − 2s4

13. h(x) = 6√x + 3 3√x 14. f (x) = x1�2 − x−5�6

15. g(t) =
2

3t 2

16. h(x) =
8

5x4

17. f (θ) = 4θ − 5 sin θ

18. g(α) = 4 cos α + 6

19. f (t) = 3 cos t − 4et

20. g(s) = 5
3 sin s − 2es

Finding the Slope of a Graph In Exercises 21–24, find 
the slope of the graph of the function at the given point.

21. f (x) =
27
x3 , (3, 1)

22. f (x) = 3x2 − 4x, (1, −1)
23. f (x) = 4x5 + 3x − sin x, (0, 0)
24. f (x) = 5 cos x − 9x, (0, 5)

25.   Vibrating String When a guitar string is plucked, 
it vibrates with a frequency of F = 200√T, where F 
is measured in vibrations per second and the tension T 
is measured in pounds. Find the rates of change of the 
frequency when (a) T = 4  pounds and (b) T = 9 pounds.

26.  Surface Area The surface area of a cube with sides of 
length x is given by S = 6x2. Find the rate of change of the 
surface area with respect to x when x = 4 inches.

Vertical Motion In Exercises 27 and 28, use the position 
function s(t) = −16t2 + v0 t + s0 for free-falling objects.

27.  A ball is thrown straight down from the top of a 600-foot 
building with an initial velocity of −30 feet per second.

 (a) Determine the position and velocity functions for the ball.

 (b) Determine the average velocity on the interval [1, 3].
 (c) Find the instantaneous velocities when t = 1 and t = 3.

 (d) Find the time required for the ball to reach ground level.

 (e) Find the velocity of the ball at impact.

28.  A block is dropped from the top of a 450-foot platform. What 
is its velocity after 2 seconds? After 5 seconds?

Finding a Derivative In Exercises 29–42, use the Product 
Rule or the Quotient Rule to find the derivative of the function.

29. f (x) = (5x2 + 8)(x2 − 4x − 6)
30. g(x) = (2x3 + 5x)(3x − 4)
31. f (x) = (9x − 1)sin x 32. f (t) = 2t5 cos t

33. f (x) =
x2 + x − 1

x2 − 1
 34. f (x) =

2x + 7
x2 + 4

35. y =
x 4

cos x
 36. y =

sin x
x4

37. y = 3x2 sec x

38. y = −x2 tan x

39. y = x cos x − sin x

40. g(x) = x4 cot x + 3x cos x

41. y = 4xex − cot x

42. y =
8x + 1

ex

Finding an Equation of a Tangent Line In Exercises 
43–46, find an equation of the tangent line to the graph of f  at 
the given point.

43. f (x) = (x + 2)(x2 + 5), (−1, 6)
44. f (x) = (x − 4)(x2 + 6x − 1), (0, 4)

45. f (x) =
x + 1
x − 1

, (1
2

, −3)
46. f (x) =

1 + cos x
1 − cos x

, (π2, 1)
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  Review Exercises 201

Finding a Second Derivative In Exercises 47–54, find the 
second derivative of the function.

47. g(t) = −8t3 − 5t + 12 48. h(x) = 6x−2 + 7x2

49. f (x) = 15x5�2 50. f (x) = 20 5√x

51. f (θ) = 3 tan θ 52. h(t) = 10 cos t − 15 sin t

53. g(x) = 4 cot x

54. h(t) = −12 csc t

55.  Acceleration The velocity of an object is v(t) = 20 − t2, 
0 ≤ t ≤ 6, where v is measured in meters per second and t is 
the time in seconds. Find the velocity and acceleration of the 
object when t = 3.

56.  Acceleration The velocity of an automobile starting from 
rest is

 v(t) =
90t

4t + 10

  where v is measured in feet per second and t is the time in 
seconds. Find the acceleration at (a) 1 second, (b) 5 seconds, 
and (c) 10 seconds.

Finding a Derivative In Exercises 57–82, find the derivative 
of the function.

57. y = (7x + 3)4 58. y = (x2 − 6)3

59. y =
1

(x2 + 5)3 60. f (x) =
1

(5x + 1)2

61. y = 5 cos(9x + 1) 62. y = −6 sin 3x4

63. y =
x
2

−
sin 2x

4
 64. y =

sec7 x
7

−
sec5 x

5

65. y = x(6x + 1)5 66. f (s) = (s2 − 1)5�2(s3 + 5)

67. f (x) = ( x

√x + 5)
3

 68. h(x) = ( x + 5
x2 + 3)

2

69. h(z) = e−z2�2 70. y = 3e−3�t

71. g(t) = t2e1�4 72. g(x) =
x2

e9−x

73. y = √e2x + e−2x 74. f (θ) =
1
2

esin 2θ

75. g(x) = ln √x 76. f (x) = ln(2 − x2)

77. f (x) = x√ln x 78. y =
x + 1
ln x

79. g(x) = ln(x3√4x + 1) 80. f (x) = ln[x(x2 − 2)2�3]

81. f (x) = ln
x + 4

x(x + 5) 82. h(x) = ln 
x(x − 1)

x − 2

Finding the Slope of a Graph In Exercises 83–88, find 
the slope of the graph of the function at the given point.

83. f (x) = √1 − x3, (−2, 3) 84. f (x) = 3√x2 − 1, (3, 2)

85. f (x) =
x + 8

√3x + 1
, (0, 8) 86. f (x) =

3x + 1
(4x − 3)3, (1, 4)

87. y =
1
2

 csc 2x, (π4, 
1
2) 88. y = csc 3x + cot 3x, (π6, 1)

Finding a Second Derivative In Exercises 89–92, find the 
second derivative of the function.

89. y = (8x + 5)3 90. y =
1

5x + 1

91. f (x) = cot x 92. y = x sin2 x

93.  Refrigeration The temperature T (in degrees Fahrenheit) 
of food in a freezer is

 T =
700

t2 + 4t + 10

  where t is the time in hours. Find the rate of change of T with 
respect to t at each of the following times.

 (a) t = 1  (b) t = 3  (c) t = 5  (d) t = 10

94.  Harmonic Motion The displacement from equilibrium of 
an object in harmonic motion on the end of a spring is

 y =
1
4

 cos 8t −
1
4

 sin 8t

  where y is measured in feet and t is the time in seconds. Determine 
the position and velocity of the object when t = π�4.

95.  Modeling Data The atmospheric pressure decreases with 
increasing altitude. At sea level, the average air pressure is 
one atmosphere (1.033227 kilograms per square centimeter). 
The table gives the pressures p (in atmospheres) at various 
altitudes h (in kilometers).

 
h 0 5 10 15 20 25

p 1 0.55 0.25 0.12 0.06 0.02

 (a)  Use a graphing utility to find a model of the form 
p = a + b ln h for the data. Explain why the result is an 
error message.

 (b)  Use a graphing utility to find the logarithmic model 
h = a + b ln p for the data.

 (c)  Use a graphing utility to plot the data and graph the model 
from part (b).

 (d)  Use the model to estimate the altitude at which the pressure 
is 0.75 atmosphere.

 (e)  Use the model to estimate the pressure at an altitude of  
13 kilometers.

 (f )  Use the model to find the rates of change of pressure when 
h = 5 and h = 20. Interpret the results in the context of 
the problem.

96.  Tractrix A person walking along a dock drags a boat by a 
10-meter rope. The boat travels along a path known as a tractrix. 
The equation of this path is

 y = 10 ln(10 + √100 − x2

x ) − √100 − x2.

 (a) Use a graphing utility to graph the function.

 (b) What are the slopes of this path when x = 5 and x = 9?

 (c)  What does the slope of the path approach as x approaches 
10 from the left?
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202 Chapter 3 Differentiation

Finding a Derivative In Exercises 97–102, find dy�dx by 
implicit differentiation.

 97. x2 + y2 = 64  98. x2 + 4xy − y3 = 6

 99. x3y − xy3 = 4 100. √xy = x − 4y

101. x sin y = y cos x 102. cos(x + y) = x

Tangent Lines and Normal Lines In Exercises 103–106, 
find equations for the tangent line and the normal line to the 
graph of the equation at the given point. (The normal line at 
a point is perpendicular to the tangent line at the point.) Use 
a graphing utility to graph the equation, the tangent line, and 
the normal line.

103. x2 + y2 = 10, (3, 1)
104. x2 − y2 = 20, (6, 4)
105. y ln x + y2 = 0, (e, −1)
106. ln(x + y) = x, (0, 1)

Logarithmic Differentiation In Exercises 107 and 108, 
use logarithmic differentiation to find dy�dx.

107. y =
x√x2 + 1

x + 4
 108. y =

(2x + 1)3(x2 − 1)2

x + 3

Evaluating the Derivative of an Inverse Function In 
Exercises 109–112, verify that f  has an inverse function. 
Then use the function f  and the given real number a to find 
( f −1)′(a). (Hint: Use Theorem 3.17.)

109. f (x) = x3 + 2, a = −1

110. f (x) = x√x − 3, a = 4

111. f (x) = tan x, −
π
4

, ≤ x ≤ π
4

, a =
√3
3

112. f (x) = cos x, 0 ≤ x ≤ π, a = 0

Finding a Derivative In Exercises 113–118, find the  
derivative of the function.

113. y = sin(arctan 2x)
114. y = arctan(2x2 − 3)
115. y = x arcsec x

116. y = 1
2 arctan e2x

117. y = x(arcsin x)2 − 2x + 2√1 − x2 arcsin x

118. y = √x2 − 4 − 2 arcsec 
x
2

, 2 < x < 4

119.  Rate of Change A point moves along the curve y = √x 
in such a way that the y-component of the position of the 
point is increasing at a rate of 2 units per second. At what 
rate is the x-component changing for each of the following 
values?

  (a) x = 1
2   (b) x = 1   (c) x = 4

120.  Surface Area All edges of a cube are expanding at a rate 
of 8 centimeters per second. How fast is the surface area 
changing when each edge is 6.5 centimeters?

121.  Linear vs. Angular Speed A rotating beacon is located 
1 kilometer off a straight shoreline (see figure). The beacon 
rotates at a rate of 3 revolutions per minute. How fast (in 
 kilometers per hour) does the beam of light appear to be 
 moving to a viewer who is 12 kilometer down the shoreline?

θ

1
2

km

3 rev
min

Not drawn to scale

1 km

 

30°

60 m

Rays

Shadow’s path

Position:
s (t) = 60 − 4.9t2

 Figure for 121 Figure for 122

122.  Moving Shadow A sandbag is dropped from a balloon 
at a height of 60 meters when the angle of elevation to the sun 
is 30° (see figure). The position of the sandbag is

  s(t) = 60 − 4.9t2.

   Find the rate at which the shadow of the sandbag is traveling 
along the ground when the sandbag is at a height of 35 meters.

Using Newton’s Method In Exercises 123–128, use 
Newton’s Method to approximate the zero(s) of the function. 
Continue the iterations until two successive approximations 
differ by less than 0.001. Then find the zero(s) using a graphing 
utility and compare the results.

123. f (x) = x3 − 3x − 1

124. f (x) = x3 + 2x + 1

125. g(x) = xex − 4

126. f (x) = 3 − x ln x

127. f (x) = x4 + x3 − 3x2 + 2

128. f (x) = 3√x − 1 − x

Points of Intersection In Exercises 129 and 130, apply 
Newton’s Method to approximate the x-value(s) of the point(s) 
of intersection of the two graphs. Continue the iterations until 
two successive approximations differ by less than 0.001. [Hint: 
Let h(x) = f (x) − g(x).]

129. f (x) = −x

  g(x) = ln x

130. f (x) = x4

  g(x) = x + 3

−1 1 2 3
x

f

g

−1

−2

−3

1

y   

x

f g

y

−1−2−3 1 2 3

1

3

4

5

 Figure for 129 Figure for 130
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  P.S. Problem Solving 203

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Finding Equations of Circles Consider the graph of the 
parabola y = x2.

 (a)  Find the radius r of the largest possible circle centered 
on the y-axis that is tangent to the parabola at the origin, 
as shown in the figure. This circle is called the circle of 
curvature (see Section 12.5). Find the equation of this 
circle. Use a graphing utility to graph the circle and parabola 
in the same viewing window to verify your answer.

 (b)  Find the center (0, b) of the circle of radius 1 centered on 
the y-axis that is tangent to the parabola at two points, as 
shown in the figure. Find the equation of this circle. Use a 
graphing utility to graph the circle and parabola in the same 
viewing window to verify your answer.

x
r

y

1

2

−1

  

x
−1 1

1
1

2

(0, b)

y

 Figure for 1(a) Figure for 1(b)

2.   Finding Equations of Tangent Lines Graph the two 
parabolas

 y = x2 and y = −x2 + 2x − 5

  in the same coordinate plane. Find equations of the two lines 
that are simultaneously tangent to both parabolas.

3.  Finding a Polynomial Find a third-degree polynomial 
p(x) that is tangent to the line y = 14x − 13 at the point (1, 1), 
and tangent to the line y = −2x − 5 at the point (−1, −3).

4.  Finding a Function Find a function of the form 
f (x) = a + b cos cx that is tangent to the line y = 1 at the 
point (0, 1), and tangent to the line 

 y = x +
3
2

−
π
4

 at the point (π4, 
3
2).

5. Tangent Lines and Normal Lines

 (a)  Find an equation of the tangent line to the parabola y = x2 
at the point (2, 4).

 (b)  Find an equation of the normal line to y = x2 at the point 
(2, 4). (The normal line at a point is perpendicular to the 
tangent line at the point.) Where does this line intersect the 
parabola a second time?

 (c)  Find equations of the tangent line and normal line to y = x2 
at the point (0, 0).

 (d)  Prove that for any point (a, b) ≠ (0, 0) on the parabola 
y = x2, the normal line intersects the graph a second time.

6. Finding Polynomials

 (a)  Find the polynomial P1(x) = a0 + a1x whose value and 
slope agree with the value and slope of f (x) = cos x at the 
point x = 0.

 (b)  Find the polynomial P2(x) = a0 + a1x + a2 x2 whose value 
and first two derivatives agree with the value and first 
two derivatives of f (x) = cos x at the point x = 0. This 
polynomial is called the second-degree Taylor polynomial 
of f (x) = cos x at x = 0.

 (c)  Complete the table comparing the values of f (x) = cos x 
and P2(x). What do you observe?

 
x −1.0 −0.1 −0.001 0 0.001 0.1 1.0

cos x

P2(x)

 (d)  Find the third-degree Taylor polynomial of f (x) = sin x at 
x = 0.

7. Famous Curve The graph of the eight curve

 x4 = a2(x2 − y2), a ≠ 0

 is shown below.

 (a)  Explain how you could use a graphing utility to graph this 
curve.

 (b)  Use a graphing utility to graph the curve for various values 
of the constant a. Describe how a affects the shape of the 
curve.

 (c)  Determine the points on the curve at which the tangent line 
is horizontal.

x
−a a

y   

x
a

y

 Figure for 7 Figure for 8

8. Famous Curve The graph of the pear-shaped quartic

 b2y2 = x3(a − x), a, b > 0

 is shown above.

 (a)  Explain how you could use a graphing utility to graph this 
curve.

 (b)  Use a graphing utility to graph the curve for various values 
of the constants a and b. Describe how a and b affect the 
shape of the curve.

 (c)  Determine the points on the curve at which the tangent line 
is horizontal.
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204 Chapter 3 Differentiation

 9.  Shadow Length A man 6 feet tall walks at a rate of 5 feet 
per second toward a streetlight that is 30 feet high (see figure). 
The man’s 3-foot-tall child follows at the same speed, but  
10 feet behind the man. At times, the shadow behind the child 
is caused by the man, and at other times, by the child.

 (a)  Suppose the man is 90 feet from the streetlight. Show that 
the man’s shadow extends beyond the child’s shadow.

 (b)  Suppose the man is 60 feet from the streetlight. Show that 
the child’s shadow extends beyond the man’s shadow.

 (c)  Determine the distance d from the man to the streetlight 
at which the tips of the two shadows are exactly the same 
 distance from the streetlight.

 (d)  Determine how fast the tip of the man’s shadow is moving 
as a function of x, the distance between the man and the 
streetlight. Discuss the continuity of this shadow speed 
function.

10 ft

6 ft
3 ft

30 ft

Not drawn to scale

  

3

2

1

2 4 6 8 10

−1

x
θ

(8, 2)

y

 Figure for 9 Figure for 10

10.  Moving Point A particle is moving along the graph of 
y = 3√x (see figure). When x = 8, the y-component of the 
position of the particle is increasing at the rate of 1 centimeter 
per second.

 (a) How fast is the x-component changing at this moment?

 (b)  How fast is the distance from the origin changing at this 
moment?

 (c)  How fast is the angle of inclination θ changing at this 
moment?

11.  Projectile Motion An astronaut standing on the moon 
throws a rock upward. The height of the rock is

 s = −
27
10

t2 + 27t + 6

 where s is measured in feet and t is measured in seconds.

 (a)  Find expressions for the velocity and acceleration of the 
rock.

 (b)  Find the time when the rock is at its highest point by 
 finding the time when the velocity is zero. What is the 
height of the rock at this time?

 (c)  How does the acceleration of the rock compare with the 
acceleration due to gravity on Earth?

12.  Proof Let E be a function satisfying E(0) = E′(0) = 1. 
Prove that if 

 E(a + b) = E(a)E(b)

  for all a and b, then E is differentiable and E′(x) = E(x) for all x. 
Find an example of a function satisfying E(a + b) = E(a)E(b).

13. Padé Approximation To approximate ex, you can use a

 function of the form f (x) =
a + bx
1 + cx

. (This function is known

  as a Padé approximation.) The values of f (0), f ′(0), and 
f ″(0) are equal to the corresponding values of ex. Show that 
these values are equal to 1 and find the values of a, b, and c 
such that f (0) = f ′(0) = f ″(0) = 1. Then use a graphing utility 
to compare the graphs of f  and ex.

14. Radians and Degrees The fundamental limit

 lim
x→0

 
sin x

x
= 1

  assumes that x is measured in radians. Suppose you assume 
that x is measured in degrees instead of radians.

 (a) Set your calculator to degree mode and complete the table.

  
z (in degrees) 0.1 0.01 0.0001

sin z
z

 (b) Use the table to estimate

  lim
z→0

 
sin z

z

   for z in degrees. What is the exact value of this limit? 
(Hint: 180° = π  radians)

 (c)  Use the limit definition of the derivative to find Dz [sin z] 
for z in degrees.

 (d)  Define the new functions S(z) = sin cz and C(z) = cos cz, 
where c = π�180. Find S(90) and C(180). Use the Chain 
Rule to calculate Dz [S(z)].

 (e)  Explain why calculus is made easier by using radians 
instead of degrees.

15.  Acceleration and Jerk If a is the acceleration of an 
object, then the jerk j is defined by j = a′(t).

 (a) Use this definition to give a physical interpretation of j.

 (b)  Find j for the slowing vehicle in Exercise 127 in Section 3.3 
and interpret the result.

 (c)  The figure shows the graphs of the position, velocity, 
acceleration, and jerk functions of a vehicle. Identify each 
graph and explain your reasoning.

y

x

a

d

b

c

   

xa

b

c

L

y

 Figure for 15 Figure for 16

16.  Distance Let L be the tangent line to the graph of the 
function y = ln x at the point (a, b), where c is the y-intercept 
of the tangent line, as shown in the figure. Show that the 
distance between b and c is always equal to 1.
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206 Chapter 4 Applications of Differentiation

4.1 Extrema on an Interval

 Understand the definition of extrema of a function on an interval.
 Understand the definition of relative extrema of a function on an open interval.
 Find extrema on a closed interval.

Extrema of a Function
In calculus, much effort is devoted to determining the behavior of a function f  on an 
interval I. Does f  have a maximum value on I? Does it have a minimum value? Where 
is the function increasing? Where is it decreasing? In this chapter, you will learn 
how derivatives can be used to answer these questions. You will also see why these 
questions are important in real-life applications.

Definition of Extrema

Let f  be defined on an interval I containing c.

1. f (c) is the minimum of f  on I when f (c) ≤ f (x) for all x in I.

2. f (c) is the maximum of f  on I when f (c) ≥ f (x) for all x in I.

The minimum and maximum of a function on an interval are the extreme 
values, or extrema (the singular form of extrema is extremum), of the function 
on the interval. The minimum and maximum of a function on an interval are 
also called the absolute minimum and absolute maximum, or the global 
minimum and global maximum, on the interval. Extrema can occur at interior 
points or endpoints of an interval (see Figure 4.1). Extrema that occur at the 
endpoints are called endpoint extrema.

A function need not have a minimum or a maximum on an interval. For instance, in 
Figures 4.1(a) and (b), you can see that the function f (x) = x2 + 1 has both a minimum 
and a maximum on the closed interval [−1, 2] but does not have a maximum on the 
open interval (−1, 2). Moreover, in Figure 4.1(c), you can see that continuity (or the 
lack of it) can affect the existence of an extremum on the interval. This suggests the 
theorem below. (Although the Extreme Value Theorem is   intuitively plausible, a proof 
of this theorem is not within the scope of this text.)

THEOREM 4.1 The Extreme Value Theorem

If f  is continuous on a closed interval [a, b], then f  has both a minimum and a 
maximum on the interval.

Exploration
Finding Minimum and Maximum Values The Extreme Value Theorem (like 
the Intermediate Value Theorem) is an existence theorem because it tells of the 
existence of minimum and maximum values but does not show how to find 
these values. Use the minimum and maximum features of a graphing utility to 
find the extrema of each function. In each case, do you think the x-values are 
exact or approximate? Explain your reasoning.

a. f (x) = x2 − 4x + 5 on the closed interval [−1, 3]
b. f (x) = x3 − 2x2 − 3x − 2 on the closed interval [−1, 3]

x

1−1 2

2

3

3

4

5 (2, 5)

(0, 1)

Maximum

Minimum

y

f(x) = x2 + 1

(a) f  is continuous, [−1, 2] is closed.

x

1−1 2

2

3

3

4

5

(0, 1)

Not a
maximum

Minimum

y

f(x) = x2 + 1

(b) f  is continuous, (−1, 2) is open.

x

1−1 2

2

3

3

4

5 (2, 5)

Not a
minimum

Maximum

g(x) = x2 + 1,  x ≠ 0
2,          x = 0

y

(c) g is not continuous, [−1, 2] is closed.

Figure 4.1
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4.1 Extrema on an Interval 207

Relative Extrema and Critical Numbers
In Figure 4.2, the graph of f (x) = x3 − 3x2 has a relative maximum at the point (0, 0) 
and a relative minimum at the point (2, −4). Informally, for a continuous function, 
you can think of a relative maximum as occurring on a “hill” on the graph, and a 
relative minimum as occurring in a “valley” on the graph. Such a hill and valley can 
occur in two ways. When the hill (or valley) is smooth and rounded, the graph has a 
horizontal tangent line at the high point (or low point). When the hill (or valley) is sharp 
and peaked, the graph represents a function that is not differentiable at the high point 
(or low point).

Definition of Relative Extrema

1.  If there is an open interval containing c on which f (c) is a maximum, then 
f (c) is called a relative maximum of f, or you can say that f  has a relative 
maximum at (c, f (c)). 

2.  If there is an open interval containing c on which f (c) is a minimum, then 
f (c) is called a relative minimum of f, or you can say that f  has a relative 
minimum at (c, f (c)).

The plural of relative maximum is relative maxima, and the plural of relative 
minimum is relative minima. Relative maximum and relative minimum are 
sometimes called local maximum and local minimum, respectively.

Example 1 examines the derivatives of functions at given relative extrema. (Much 
more is said about finding the relative extrema of a function in Section 4.3.)

 The Value of the Derivative at Relative Extrema

Find the value of the derivative at each relative extremum shown in Figure 4.3.

Solution

a. The derivative of f (x) =
9(x2 − 3)

x3  is

  f′(x) =
x3(18x) − (9)(x2 − 3)(3x2)

(x3)2  Differentiate using Quotient Rule.

  =
9(9 − x2)

x4 . Simplify.

 At the point (3, 2), the value of the derivative is f′(3) = 0. [See Figure 4.3(a).]

b.  At x = 0, the derivative of f (x) = ∣x∣ does not exist because the following
one-sided limits differ. [See Figure 4.3(b).]

 lim
x→0−

 
f (x) − f (0)

x − 0
= lim

x→0−
 ∣x∣

x
= −1 Limit from the left

 lim
x→0+

 
f (x) − f (0)

x − 0
= lim

x→0+
 ∣x∣

x
= 1 Limit from the right

c. The derivative of f (x) = sin x is

 f′(x) = cos x.

  At the point (π�2, 1), the value of the derivative is f′(π�2) = cos(π�2) = 0. At the 
point (3π�2, −1), the value of the derivative is f′(3π�2) = cos(3π�2) = 0. [See 
Figure 4.3(c).] 

x

2

2 4 6

−2

−4

Relative
maximum

(3, 2)

y
f(x) = 

x3

9(x2 − 3)

(a) f ′(3) = 0

x
−1

−1

2

2

1

1

3

−2

Relative
minimum

(0, 0)

f(x) =  | x |

y

(b) f ′(0) does not exist.

x

−1

2

1

−2

Relative
minimum

Relative
maximum

, 1π
2

(

( (

(2
π3

22
ππ 3

, −1

f(x) = sin x

y

(c) f ′(π2) = 0; f ′(3π
2 ) = 0

Figure 4.3

x
1 2−1

−2

−3

−4

Hill
(0, 0)

Valley
(2, −4)

y f(x) = x3 − 3x2

f  has a relative maximum at (0, 0) and 
a relative minimum at (2, −4).
Figure 4.2
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208 Chapter 4 Applications of Differentiation

Note in Example 1 that at each relative extremum, the derivative either is zero or 
does not exist. The x-values at these special points are called critical numbers. Figure 
4.4 illustrates the two types of critical numbers. Notice in the definition that the critical 
number c has to be in the domain of f, but c does not have to be in the domain of f′.

Definition of a Critical Number

Let f  be defined at c. If f′(c) = 0 or if f  is not differentiable at c, then c is a 
critical number of f.

xc

f ′(c) does not exist.

f

y    

xc

Horizontal
tangent

f ′(c) = 0

y

f

 c is a critical number of f.
 Figure 4.4

THEOREM 4.2  Relative Extrema Occur Only 
at Critical Numbers

If f  has a relative minimum or relative maximum at x = c, then
c is a critical number of f.

Proof

Case 1: If f  is not differentiable at x = c, then, by definition, c is a critical number of 
f  and the theorem is valid.

Case 2: If f  is differentiable at x = c, then f′(c) must be positive, negative, or 0. 
Suppose f′(c) is positive. Then

f′(c) = lim
x→c

 
f (x) − f (c)

x − c
> 0

which implies that there exists an interval (a, b) containing c such that

f (x) − f (c)
x − c

> 0, for all x ≠ c in (a, b). See Exercise 86(b), Section 2.2.

Because this quotient is positive, the signs of the denominator and numerator  must 
agree. This produces the following inequalities for x-values in the interval (a, b).

Left of c: x < c and f (x) < f (c)  f (c) is not a relative minimum.

Right of c: x > c and f (x) > f (c)  f (c) is not a relative maximum.

So, the assumption that f′(c) > 0 contradicts the hypothesis that f (c) is a rela tive 
extremum. Assuming that f′(c) < 0 produces a similar contradiction, you are left 
with only one possibility—namely, f′(c) = 0. So, by definition, c is a critical number 
of f  and the theorem is valid. 

PIERRE DE FERMAT (1601–1665)

For Fermat, who was trained 
as a lawyer, mathematics 
was more of a hobby than 
a profession. Nevertheless, 
Fermat made many 
contributions to analytic 
geometry, number theory, 
calculus, and probability. In 
letters to friends, he wrote of 
many of the fundamental ideas 
of calculus, long before Newton 
or Leibniz. For instance, 
Theorem 4.2 is sometimes 
attributed to Fermat.
See LarsonCalculus.com to read 
more of this biography.
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4.1 Extrema on an Interval 209

Finding Extrema on a Closed Interval
Theorem 4.2 states that the relative extrema of a function can occur only at the critical 
numbers of the function. Knowing this, you can use these guidelines to find extrema 
on a closed interval.

GUIDELINES FOR FINDING EXTREMA ON A CLOSED INTERVAL

To find the extrema of a continuous function f  on a closed interval [a, b], use 
these steps.

1. Find the critical numbers of f  in (a, b).
2. Evaluate f  at each critical number in (a, b).
3. Evaluate f  at each endpoint of [a, b].
4. The least of these values is the minimum. The greatest is the maximum.

The next three examples show how to apply these guidelines. Be sure you see that 
finding the critical numbers of the function is only part of the procedure. Evaluating the 
function at the critical numbers and the endpoints is the other part.

 Finding Extrema on a Closed Interval

Find the extrema of

f (x) = 3x4 − 4x3

on the interval [−1, 2].

Solution Begin by differentiating the function.

 f (x) = 3x4 − 4x3 Write original function.

f′(x) = 12x3 − 12x2 Differentiate.

To find the critical numbers of f  in the interval (−1, 2), you must find all x-values for 
which f′(x) = 0 and all x-values for which f′(x) does not exist.

 12x3 − 12x2 = 0 Set f ′(x) equal to 0.

 12x2(x − 1) = 0 Factor.

 x = 0, 1 Critical numbers

Because f′ is defined for all x, you can conclude that these are the only critical  numbers 
of f. By evaluating f  at these two critical numbers and at the endpoints of [−1, 2],
you can determine that the maximum is f (2) = 16 and the minimum is f (1) = −1, as 
shown in the table. The graph of f  is shown in Figure 4.5.

 
Left

Endpoint
Critical
Number

Critical 
Number

Right
Endpoint

f (−1) = 7 f (0) = 0 f (1) = −1 
Minimum

f (2) = 16
Maximum

 

In Figure 4.5, note that the critical number x = 0 does not yield a relative  minimum 
or a relative maximum. This tells you that the converse of Theorem 4.2 is not true. In 
other words, the critical numbers of a function need not produce relative extrema.

x
2

4

8

12

16

−1

−4

(0, 0)

(2, 16)
Maximum

Minimum
(1, −1)

(−1, 7)

y

f (x) = 3x4 − 4x3

On the closed interval [−1, 2], f  has a 
minimum at (1, −1) and a maximum 
at (2, 16).
Figure 4.5
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210 Chapter 4 Applications of Differentiation

 Finding Extrema on a Closed Interval

Find the extrema of f (x) = 2x − 3x2�3 on the interval [−1, 3].

Solution Begin by differentiating the function.

 f (x) = 2x − 3x2�3 Write original function.

 f′(x) = 2 −
2

x1�3 Differentiate.

 = 2(x1�3 − 1
x1�3 ) Simplify.

From this derivative, you can see that the function has two critical numbers in the 
interval (−1, 3). The number 1 is a critical number because f′(1) = 0, and the number 
0 is a critical number because f′(0) does not exist. By evaluating f  at these two 
numbers and at the endpoints of the interval, you can conclude that the minimum is 
f (−1) = −5 and the maximum is f (0) = 0, as shown in the table. The graph of f  is 
shown in Figure 4.6.

Left 
Endpoint

Critical 
Number

Critical 
Number

Right 
Endpoint

f (−1) = −5
Minimum

f (0) = 0 
Maximum f (1) = −1 f (3) = 6 − 3 3√9 ≈ −0.24

 Finding Extrema on a Closed Interval

See LarsonCalculus.com for an interactive version of this type of example.

Find the extrema of

f (x) = 2 sin x − cos 2x

on the interval [0, 2π].

Solution Begin by differentiating the function.

 f (x) = 2 sin x − cos 2x Write original function.

 f′(x) = 2 cos x + 2 sin 2x Differentiate.

 = 2 cos x + 4 cos x sin x sin 2x = 2 cos x sin x

 = 2(cos x)(1 + 2 sin x) Factor.

Because f  is differentiable for all real x, you can find all critical numbers of f  by 
finding the zeros of its derivative. Considering 2(cos x)(1 + 2 sin x) = 0 in the interval 
(0, 2π), the factor cos x is zero when x = π�2 and when x = 3π�2. The factor 
(1 + 2 sin x) is zero when x = 7π�6 and when x = 11π�6. By evaluating f  at these 
four critical numbers and at the endpoints of the interval, you can conclude that the 
maximum is f (π�2) = 3 and the minimum occurs at two points, f (7π�6) = −3�2 and 
f (11π�6) = −3�2, as shown in the table. The graph is shown in Figure 4.7.

 
  

Left 
Endpoint

Critical 
Number

Critical 
Number

Critical 
Number

Critical 
Number

Right 
Endpoint

f (0) = −1
f (π2) = 3

 
Maximum

f (7π
6 ) = −

3
2

Minimum
f (3π

2 ) = −1 f (11π
6 ) = −

3
2

Minimum
f (2π) = −1

Maximum

Minimum

(0, 0)

−1−2

−4

−5

1 2
x

(1, −1)

(−1, −5)

y

93, 6 − 3 3 ))

f(x) = 2x − 3x2/3

On the closed interval [−1, 3], f  has a 
minimum at (−1, −5) and a maximum 
at (0, 0).
Figure 4.6

ππ

Maximum

Minima

(0, −1)
−1

−2

−3

1

2

3

4

x

(2  , −1)

π
6( (, −7

2
3 π

6( (, −11
2
3

π
2( (, −1

π
2 (( , 3

3

2
π

y

f (x) = 2 sin x − cos 2x

On the closed interval [0, 2π], f  has 
two minima at (7π�6, −3�2) and 
(11π�6, −3�2) and a maximum at 
(π�2, 3).
Figure 4.7
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 4.1 Extrema on an Interval 211

4.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Extreme Value Theorem In your own words, 

describe the Extreme Value Theorem.

2.  Maximum What is the difference between a relative 
maximum and an absolute maximum on an interval I?

3.  Critical Numbers Use a graphing utility to graph the 
following four functions. Only one of the functions has 
critical numbers. Which is it? Explain.

 f (x) = ex f (x) = ln x f (x) = sin x f (x) = tan x

4.  Extrema on a Closed Interval Explain how to find 
the extrema of a continuous function on a closed interval 
[a, b].

 The Value of the Derivative at Relative 
Extrema In Exercises 5–10, find the value of the 
derivative (if it exists) at each indicated extremum.

 5. f (x) =
x2

x2 + 4
  6. f (x) = cos 

πx
2

 

x
1

1

2

2

−1
−2

−2

(0, 0)

y   

x
1 2 3

2

−1

−2

(0, 1)

(2, −1)

y

 7. g(x) = x +
4
x2  8. f (x) = −3x√x + 1

 

1 2 3 4 5 6

1

2

3

4

5

6

x

y

(2, 3)

  

x
1

2

−1
−2−3

−2

( (2 2
3 3

3− , 

y

(−1, 0)

 9. f (x) = (x + 2)2�3 10. f (x) = 4 − ∣x∣
 

x

1

2

−1
−1

−2−3−4

−2

(−2, 0)

y   

x

4

4

2

2

6

−4 −2
−2

(0, 4)

y

Approximating Critical Numbers In Exercises 11–14, 
approximate the critical numbers of the function shown in 
the graph. Determine whether the function has a relative 
maximum, a relative minimum, an absolute maximum, an 
absolute minimum, or none of these at each critical number on 
the interval shown.

11. 

x
421 3−1

2

4

5

1

3

y

5

 12. 

x
1−1

−1

1

y

13. 

x
421 3−1

2

4

5

1

3

y

5

 14. 

x
42 6−2

−2

2

4

8

6

y

8

 Finding Critical Numbers In Exercises 15–24, 
find the critical numbers of the function.

15. f (x) = 4x2 − 6x 16. g(x) = x − √x

17. g(t) = t√4 − t, t < 3 18. f (x) =
4x

x2 + 1

19. h(x) = sin2 x + cos x 20. f (θ) = 2 sec θ + tan θ

 0 < x < 2π   0 < θ < 2π

21. f (t) = te−2t 22. g(x) = 4x2(3x)
23. f (x) = x2 log2(x2 + 1) 24. g(t) = 2t ln t

 Finding Extrema on a Closed Interval In 
Exercises 25–46, find the absolute extrema of the 
function on the closed interval.

25. f (x) = 3 − x, [−1, 2] 26. f (x) =
3
4

x + 2, [0, 4]

27. h(x) = 5 − 2x2, [−3, 1] 28. f (x) = 7x2 + 1, [−1, 2]

29. f (x) = x3 −
3
2

x2, [−1, 2] 30. f (x) = 2x3 − 6x, [0, 3]

31. y = 3x2�3 − 2x, [−1, 1] 32. g(x) = 3√x, [−8, 8]

33. g(x) =
6x2

x − 2
, [−2, 1] 34. h(t) =

t
t + 3

, [−1, 6]

35. y = 3 − ∣t − 3∣, [−1, 5] 36. g(x) = ∣x + 4∣, [−7, 1]
37. f (x) = ⟨x⟩, [−2, 2] 38. h(x) = ⟨2 − x⟩, [−2, 2]
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212 Chapter 4 Applications of Differentiation

39. y = 3 cos x, [0, 2π] 40. y = tan 
πx
8

, [0, 2]

41. f (x) = arctan x2, [−2, 1] 42. g(x) =
ln x

x
, [1, 4]

43. h(x) = 5ex − e2x, [−1, 2] 44. y = x2 − 8 ln x, [1, 5]
45. y = ex sin x, [0, π] 46. y = x ln(x + 3), [0, 3]

 Finding Extrema on an Interval In Exercises 
47–50, find the absolute extrema of the function (if 
any exist) on each interval.

47. f (x) = 2x − 3 48. f (x) = 5 − x

 (a) [0, 2]   (b) [0, 2)  (a) [1, 4]   (b) [1, 4)
 (c) (0, 2]   (d) (0, 2)  (c) (1, 4]   (d) (1, 4)
49. f (x) = x2 − 2x 50. f (x) = √4 − x2

 (a) [−1, 2]  (b) (1, 3]  (a) [−2, 2]  (b) [−2, 0)
 (c) (0, 2)   (d) [1, 4)  (c) (−2, 2)  (d) [1, 2)

Finding Extrema Using Technology In Exercises 
51–54, use a graphing utility to graph the function and find 
the absolute extrema of the function on the given interval.

51. f (x) =
3

x − 1
, (1, 4] 52. f (x) =

2
2 − x

, [0, 2)

53. f (x) = √x + 4 ex2�10, [−2, 2]

54. f (x) = −x + cos 3πx, [0, 
π
6]

Finding Extrema Using Technology In Exercises 55–58, 
(a) use a computer algebra system to graph the function and 
approximate any absolute extrema on the given interval. 
(b) Use the utility to find any critical numbers, and use them 
to find any absolute extrema not located at the endpoints. 
Compare the results with those in part (a).

55. f (x) = 3.2x5 + 5x3 − 3.5x, [0, 1]

56. f (x) =
4
3

x√3 − x, [0, 3]

57. f (x) = (x2 − 2x) ln(x + 3), [0, 3]

58. f (x) = (x − 4) arcsin 
x
4

, [−2, 4]

Finding Maximum Values Using Technology In 
Exercises 59–62, use a computer algebra system to find the 
maximum value of ∣f ″(x)∣ on the closed interval. (This value 
is used in the error estimate for the Trapezoidal Rule, as 
discussed in Section 8.6.)

59. f (x) = √1 + x3, [0, 2] 60. f (x) =
1

x2 + 1
, [1

2
, 3]

61. f (x) = e−x2�2, [0, 1] 62. f (x) = x ln(x + 1), [0, 2]

Finding Maximum Values Using Technology In 
Exercises 63 and 64, use a computer algebra system to find the 
maximum value of ∣f (4)(x)∣ on the closed interval. (This value 
is used in the error estimate for Simpson’s Rule, as  discussed 
in Section 8.6.)

63. f (x) = (x + 1)2�3, [0, 2] 64. f (x) =
1

x2 + 1
, [−1, 1]

65.  Think About It Explain why the function f (x) = tan x has 
a maximum on [0, π�4] but not on [0, π].

 66.  HOW DO YOU SEE IT? Determine 
whether each labeled point is an absolute 
maximum or minimum, a relative maximum or 
minimum, or none of these.

x

y

A

B

C

D

E

F

G

 66. 

eXpLoRInG ConCeptS
Using Graphs In Exercises 67 and 68, determine
from the graph whether f  has a minimum in the open 
interval (a, b). Explain your reasoning.

67. (a)   (b)

x
a b

f

y  

x
a b

f

y

68. (a)   (b)

x
a b

f

y   

x
a b

f

y

69. Critical Numbers Consider the function

f (x) =
x − 4
x + 2

.

 Is x = −2 a critical number of f ? Why or why not?

70.  Creating the Graph of a Function Graph a 
function on the interval [−2, 5] having the given 
characteristics.

Relative minimum at x = −1
 Critical number (but no extremum) at x = 0
 Absolute maximum at x = 2
 Absolute minimum at x = 5

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



4.1 Extrema on an Interval 213

71. Power The formula for the power output P of a battery is

 P = VI − RI 2

  where V is the electromotive force in volts, R is the resistance 
in ohms, and I is the current in amperes. Find the current that 
corresponds to a maximum value of P in a battery for which 
V = 12 volts and R = 0.5 ohm. Assume that a 15-ampere fuse 
bounds the output in the interval 0 ≤ I ≤ 15. Could the power 
output be increased by replacing the 15-ampere fuse with a 
20-ampere fuse? Explain.

72.  Lawn Sprinkler A lawn sprinkler is constructed in such 
a way that dθ�dt is constant, where θ ranges between 45° and 
135° (see figure). The distance the water travels horizontally is

x =
v2 sin 2θ

32
, 45° ≤ θ ≤ 135°

  where v is the speed of the water. Find dx�dt and explain why 
this lawn sprinkler does not water evenly. What part of the 
lawn receives the most water?

θ  = 135°

x

32
−

θ θ

θ

Water sprinkler: 45° ≤    ≤ 135°θ

v2

32
v2

64
− v2

64
v2

θ  = 45°

 = 105°  = 75°y

73. Honeycomb The surface area of a cell in a honeycomb is

S = 6hs +
3s2

2 (√3 − cos θ
sin θ )

  where h and s are positive constants and θ is the angle at which 
the upper faces meet the altitude of the cell (see figure). Find the 
angle θ (π�6 ≤ θ ≤ π�2) that minimizes the surface area S.

s

h

θ

74.  Highway Design In order to build a highway, it is 
necessary to fill a section of a valley where the grades (slopes) 
of the sides are 9% and 6% (see figure). The top of the filled 
region will have the shape of a parabolic arc that is tangent to 
the two slopes at the points A and B. The horizontal distances 
from A to the y-axis and from B to the y-axis are both 500 feet.

A
B

Highway

x

y

500 ft 500 ft

Not drawn to scale

6% grade9% grade

 (a) Find the coordinates of A and B.

 (b)  Find a quadratic function y = ax2 + bx + c for 
−500 ≤ x ≤ 500 that describes the top of the filled 
region.

 (c)  Construct a table giving the depths d of the fill for 
x = −500, −400, −300, −200, −100, 0, 100, 200, 300, 
400, and 500.

 (d)  What will be the lowest point on the completed highway? 
Will it be directly over the point where the two hillsides 
come together?

True or False? In Exercises 75–78, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

75. The maximum of y = x2 on the open interval (−3, 3) is 9.

76.  If a function is continuous on a closed interval, then it must 
have a minimum on the interval.

77.  If x = c is a critical number of the function f, then it is also a 
critical number of the function g(x) = f (x) + k, where k is a 
constant.

78.  If x = c is a critical number of the function f, then it is also a 
critical number of the function g(x) = f (x − k), where k is a 
constant.

79.  Functions Let the function f  be differentiable on an 
interval I containing c. If f  has a maximum value at x = c,
show that −f  has a minimum value at x = c.

80.  Critical Numbers Consider the cubic function 
f (x) = ax3 + bx2 + cx + d, where a ≠ 0. Show that f  can 
have zero, one, or two critical numbers and give an example 
of each case.

pUtnAM eXAM ChALLenGe
81.  Determine all real numbers a > 0 for which there exists 

a nonnegative continuous function f (x) defined on [0, a] 
with the property that the region R = {(x, y); 0 ≤ x ≤ a, 
0 ≤ y ≤ f (x)} has perimeter k units and area k square 
units for some real number k.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

 FOR FURTHER INFORMATION For more information 
on the “calculus of lawn sprinklers,” see the article “Design of an 
Oscillating Sprinkler” by Bart Braden in Mathematics Magazine. 
To view this article, go to MathArticles.com.

 FOR FURTHER INFORMATION For more information 
on the geometric structure of a honeycomb cell, see the article 
“The Design of Honeycombs” by Anthony L. Peressini in UMAP 
Module 502, published by COMAP, Inc., Suite 210, 57 Bedford 
Street, Lexington, MA.
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214 chapter 4 Applications of Differentiation

4.2 Rolle’s Theorem and the Mean Value Theorem

 Understand and use Rolle’s Theorem.
 Understand and use the Mean Value Theorem.

Rolle’s Theorem
The Extreme Value Theorem (see Section 4.1) states that a continuous function on a 
closed interval [a, b] must have both a minimum and a maximum on the interval. Both 
of these values, however, can occur at the endpoints. Rolle’s Theorem, named after the 
French mathematician Michel Rolle (1652–1719), gives conditions that guarantee the 
existence of an extreme value in the interior of a closed interval.

TheoReM 4.3 Rolle’s Theorem

Let f  be continuous on the closed interval [a, b] and differentiable
on the open interval (a, b). If f (a) = f (b), then there is at least one
number c in (a, b) such that f′(c) = 0.

proof Let f (a) = d = f (b).
Case 1: If f (x) = d for all x in [a, b], then f  is constant on the interval and, by 
Theorem 3.2, f′(x) = 0 for all x in (a, b).
Case 2: Consider f (x) > d for some x in (a, b). By the Extreme Value Theorem, you 
know that f  has a maximum at some c in the interval. Moreover, because f (c) > d, this 
maximum does not occur at either endpoint. So, f  has a maximum in the open interval 
(a, b). This implies that f (c) is a relative maximum and, by Theorem 4.2, c is a critical 
number of f. Finally, because f  is differentiable at c, you can conclude that f′(c) = 0.

Case 3: When f (x) < d for some x in (a, b), you can use an argument similar to that 
in Case 2 but involving the minimum instead of the maximum. 

From Rolle’s Theorem, you can see that if a function f  is continuous on [a, b] 
and differentiable on (a, b), and if f (a) = f (b), then there must be at least one x-value 
between a and b at which the graph of f  has a horizontal tangent [see Figure 4.8(a)]. 
When the differentiability requirement is dropped from Rolle’s Theorem, f  will still 
have a critical number in (a, b), but it may not yield a horizontal tangent. Such a case 
is shown in Figure 4.8(b).

x

f

d

a bc

Relative
maximum

y
    

x

f

d

a bc

Relative
maximum

y

 (a)    f  is continuous on [a, b] and  (b) f  is continuous on [a, b] but not
differentiable on (a, b).  differentiable on (a, b).

 Figure 4.8

exploration
Extreme Values in a 
Closed Interval Sketch a 
rectangular coordinate plane 
on a piece of paper. Label 
the points (1, 3) and (5, 3). 
Using a pencil or pen, draw 
the graph of a differentiable 
function f  that starts at (1, 3) 
and ends at (5, 3). Is there at 
least one point on the graph 
for which the derivative is 
zero? Would it be possible to 
draw the graph so that there 
is not a point for which the 
derivative is zero? Explain 
your reasoning.

ROLLE’S THEOREM

French mathematician Michel 
Rolle first  published the 
theorem that bears his name 
in 1691. Before this time, 
however, Rolle was one of the 
most vocal critics of calculus, 
stating that it gave erroneous 
results and was based on 
unsound reasoning. Later in 
life, Rolle came to see the 
usefulness of calculus.
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 4.2 Rolle’s Theorem and the Mean Value Theorem 215

 Illustrating Rolle’s Theorem

Find the two x-intercepts of

f (x) = x2 − 3x + 2

and show that f′(x) = 0 at some point between the two x-intercepts.

Solution Note that f  is differentiable on the entire real number line. Setting f (x) 
equal to 0 produces

 x2 − 3x + 2 = 0 Set f (x) equal to 0.

 (x − 1)(x − 2) = 0 Factor.

 x = 1, 2. Solve for x.

So, f (1) = f (2) = 0, and from Rolle’s Theorem you know that there exists at least one 
c in the interval (1, 2) such that f′(c) = 0. To find such a c, differentiate f  to obtain

f′(x) = 2x − 3 Differentiate.

and then determine that f′(x) = 0 when x = 3
2. Note that this x-value lies in the open

interval (1, 2), as shown in Figure 4.9. 

Rolle’s Theorem states that when f  satisfies the conditions of the theorem, there 
must be at least one point between a and b at which the derivative is 0. There may, of 
course, be more than one such point, as shown in the next example.

 Illustrating Rolle’s Theorem

Let f (x) = x4 − 2x2. Find all values of c in the interval (−2, 2) such that f′(c) = 0.

Solution To begin, note that the function satisfies the conditions of Rolle’s 
Theorem. That is, f  is continuous on the interval [−2, 2] and differentiable on the 
interval (−2, 2). Moreover, because f (−2) = f (2) = 8, you can conclude that there 
exists at least one c in (−2, 2) such that f′(c) = 0. Because

f′(x) = 4x3 − 4x Differentiate.

setting the derivative equal to 0 produces

 4x3 − 4x = 0 Set f ′(x) equal to 0.

 4x(x − 1)(x + 1) = 0 Factor.

 x = 0, 1, −1. x-values for which f ′(x) = 0

So, in the interval (−2, 2), the derivative is zero when x = −1, 0, and 1, as shown in 
Figure 4.10. 

3

2

1

−1

x

Horizontal
tangent

(1, 0) (2, 0)

f ′ 3
2( ) = 0

f (x) = x2 − 3x + 2

y

The x-value for which f ′(x) = 0 is 
between the two x-intercepts.
Figure 4.9

x
−2

−2

2

8

6

4

2

f (2) = 8
f (−2) = 8

f ′(−1) = 0 f ′(1) = 0

f ′(0) = 0

f (x) = x4 − 2x2y

f ′(x) = 0 for more than one x-value in 
the interval (−2, 2).
Figure 4.10

6

−3

−3

3

Figure 4.11

Technology pITfall A graphing utility can be used to indicate whether 
the points on the graphs in Examples 1 and 2 are relative minima or relative maxima 
of the functions. When using a graphing utility, however, you should keep in mind 
that it can give  misleading pictures of graphs. For example, use a graphing utility 
to graph

f (x) = 1 − (x − 1)2 −
1

1000(x − 1)1�7 + 1
.

With most viewing windows, it appears that the function has a maximum of 1 when 
x = 1, as shown in Figure 4.11. By evaluating the function at x = 1, however, you 
can see that f (1) = 0. To determine the behavior of this function near x = 1, you 
need to examine the graph analytically to get the complete picture.
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The Mean Value Theorem
Rolle’s Theorem can be used to prove another theorem—the Mean Value Theorem.

TheoReM 4.4 The Mean Value Theorem

If f  is continuous on the closed interval [a, b] and differentiable on the open 
interval (a, b), then there exists a number c in (a, b) such that

f′(c) =
f (b) − f (a)

b − a
.

proof Refer to Figure 4.12. The equation of the secant line that passes through the 
points (a, f (a)) and (b, f (b)) is

y = [f (b) − f (a)
b − a ](x − a) + f (a).

Let g(x) be the difference between f (x) and y. Then

 g(x) = f (x) − y

 = f (x) − [f (b) − f (a)
b − a ](x − a) − f (a).

By evaluating g at a and b, you can see that

g(a) = 0 = g(b).

Because f  is continuous on [a, b], it follows that g is also continuous on [a, b]. 
Furthermore, because f  is differentiable, g is also differentiable, and you can apply 
Rolle’s Theorem to the function g. So, there exists a number c in (a, b) such that 
g′(c) = 0, which implies that

 g′(c) = 0

 f′(c) −
f (b) − f (a)

b − a
= 0.

So, there exists a number c in (a, b) such that

f′(c) =
f (b) − f (a)

b − a
. 

Although the Mean Value Theorem can be used directly in problem solving, it is 
used more often to prove other theorems. In fact, some people consider this to be the 
most important theorem in calculus—it is closely related to the Fundamental Theorem 
of Calculus discussed in Section 5.4. For now, you can get an idea of the versatility 
of the Mean Value Theorem by looking at the results stated in Exercises 87–95 in this 
section.

The Mean Value Theorem has implications for both basic interpretations of the 
derivative. Geometrically, the theorem guarantees the existence of a tangent line that is 
parallel to the secant line through the points

(a, f (a)) and (b, f (b))

as shown in Figure 4.12. Example 3 illustrates this geometric interpretation of the 
Mean Value Theorem. In terms of rates of change, the Mean Value Theorem implies 
that there must be a point in the open interval (a, b) at which the instantaneous rate of 
change is equal to the average rate of change over the interval [a, b]. This is illustrated in 
Example 4.

x

Tangent line

Secant line

Slope of tangent line = f ′(c)

a c b

(b, f (b))

f

(a, f (a))

y

Figure 4.12

ReMaRK The “mean” in the 
Mean Value Theorem refers to 
the mean (or average) rate of 
change of f  on the interval [a, b]. 

JOSEPH-LOUIS LAGRANGE
(1736–1813)

The Mean Value Theorem 
was first proved by the 
famous mathematician Joseph-
Louis Lagrange. Born in Italy, 
Lagrange held a position in the 
court of Frederick the Great in 
Berlin for 20 years.
See LarsonCalculus.com to read 
more of this biography.

Mary Evans Picture Library/The Image Works
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 finding a Tangent line

See LarsonCalculus.com for an interactive version of this type of example.

For f (x) = 5 − (4�x), find all values of c in the open interval (1, 4) such that

f′(c) =
f (4) − f (1)

4 − 1
.

Solution The slope of the secant line through (1, f (1)) and (4, f (4)) is

f (4) − f (1)
4 − 1

=
4 − 1
4 − 1

= 1. Slope of secant line

Note that the function satisfies the conditions of the Mean Value Theorem. That is, f  is 
continuous on the interval [1, 4] and differentiable on the interval (1, 4). So, there exists 
at least one number c in (1, 4) such that f′(c) = 1. Solving the equation f′(x) = 1 yields

4
x2 = 1 Set f ′(x) equal to 1.

which implies that

x = ±2.

So, in the interval (1, 4), you can conclude that c = 2, as shown in Figure 4.13.

 finding an Instantaneous Rate of change

Two stationary patrol cars equipped with radar are 5 miles apart on a highway, as 
shown in Figure 4.14. As a truck passes the first patrol car, its speed is clocked at  
55 miles per hour. Four minutes later, when the truck passes the second patrol car, its 
speed is clocked at 50 miles per hour. Prove that the truck must have exceeded the 
speed limit (of 55 miles per hour) at some time during the 4 minutes.

Solution Let t = 0 be the time (in hours) when the truck passes the first patrol car. 
The time when the truck passes the second patrol car is

t =
4
60

=
1
15

 hour.

By letting s(t) represent the distance (in miles) traveled by the truck, you have s(0) = 0

and s( 1
15) = 5. So, the average velocity of the truck over the five-mile stretch of

highway is

Average velocity =
s(1�15) − s(0)

(1�15) − 0
=

5
1�15

= 75 miles per hour.

Assuming that the position function is differentiable, you can apply the Mean Value 
Theorem to conclude that the truck must have been traveling at a rate of 75 miles per 
hour sometime during the 4 minutes. 

A useful alternative form of the Mean Value Theorem is: If f  is continuous on 
[a, b] and differentiable on (a, b), then there exists a number c in (a, b) such that

f (b) = f (a) + (b − a) f′(c).    Alternative form of Mean Value Theorem

When doing the exercises for this section, keep in mind that polynomial functions, 
rational functions, and transcendental functions are differentiable at all points in their 
domains.

t = 4 minutes t = 0

5 miles

Not drawn to scale

At some time t, the instantaneous 
velocity is equal to the average 
velocity over 4 minutes.
Figure 4.14

Tangent line

Secant line

x
1 2 3 4

4

3

2

1
(1, 1)

(2, 3)

(4, 4)

y

4
xf(x) = 5 − 

The tangent line at (2, 3) is parallel  
to the secant line through (1, 1) and 
(4, 4).
Figure 4.13
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4.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Rolle’s Theorem In your own words, describe 

Rolle’s Theorem.

2.  Mean Value Theorem In your own words, describe 
the Mean Value Theorem.

Writing In Exercises 3–6, explain why Rolle’s Theorem does 
not apply to the function even though there exist a and b such 
that f (a) = f (b).

 3. f (x) = ∣1x∣, [−1, 1]  4. f (x) = cot 
x
2

, [π, 3π]

 5. f (x) = 1 − ∣x − 1∣,   6. f (x) = √(2 − x2�3)3,

 [0, 2]  [−1, 1]

 Using Rolle’s Theorem In Exercises 7–10, 
find the two x-intercepts of the function f  and 
show that f ′(x) = 0 at some point between the two  
x-intercepts.

 7. f (x) = x2 − x − 2  8. f (x) = x2 + 6x

 9. f (x) = x√x + 4 10. f (x) = −3x√x + 1

 Using Rolle’s Theorem In Exercises 11–26, 
determine whether Rolle’s Theorem can be 
applied to f  on the closed interval [a, b]. If Rolle’s 
Theorem can be applied, find all values of c in the 
open interval (a, b) such that f ′(c) = 0. If Rolle’s 
Theorem cannot be applied, explain why not.

11. f (x) = −x2 + 3x, [0, 3]
12. f (x) = x2 − 8x + 5, [2, 6]
13. f (x) = (x − 1)(x − 2)(x − 3), [1, 3]
14. f (x) = (x − 4)(x + 2)2, [−2, 4]
15. f (x) = x2�3 − 1, [−8, 8]
16. f (x) = 3 − ∣x − 3∣, [0, 6]

17. f (x) =
x2 − 2x − 3

x + 2
, 18. f (x) =

x2 − 4
x − 1

,

 [−1, 3]  [−2, 2]
19. f (x) = sin x, [0, 2π] 20. f (x) = cos x, [π, 3π]

21. f (x) = cos πx, [0, 2] 22. f (x) = sin 3x, [π2, 
7π
6 ]

23. f (x) = tan x, [0, π] 24. f (x) = sec x, [π, 2π]
25. f (x) = (x2 − 2x)ex, [0, 2] 26. f (x) = x − 2 ln x, [1, 3]

Using Rolle’s Theorem In Exercises 27–32, use a graphing 
utility to graph the function on the closed interval [a, b]. 
Determine whether Rolle’s Theorem can be applied to f  on the 
interval and, if so, find all values of c in the open interval (a, b) 
such that f ′(c) = 0.

27. f (x) = ∣x∣ − 1, [−1, 1] 28. f (x) = x − x1�3, [0, 1]

29. f (x) =
x
2

− sin 
πx
6

, [−1, 0] 30. f (x) = x − tan πx, [−1
4, 14]

31. f (x) = 2 + (x2 − 4x)(2−x�4), [0, 4]
32. f (x) = 2 + arcsin(x2 − 1), [−1, 1]

33.  Vertical Motion The height of a ball t seconds after it 
is thrown upward from a height of 6 feet and with an initial 
velocity of 48 feet per second is f (t) = −16t2 + 48t + 6.

 (a) Verify that f (1) = f (2).
 (b)  According to Rolle’s Theorem, what must the velocity be 

at some time in the interval (1, 2)? Find that time.

34.  Reorder costs The ordering and transportation cost C  
for components used in a manufacturing process is 
approximated by

 C(x) = 10(1
x

+
x

x + 3)
  where C is measured in thousands of dollars and x is the order 

size in hundreds.

 (a) Verify that C(3) = C(6).
 (b)  According to Rolle’s Theorem, the rate of change of the 

cost must be 0 for some order size in the interval (3, 6). 
Find that order size.

 Mean Value Theorem In Exercises 35 and 
36, copy the graph and sketch the secant line to 
the graph through the points (a, f (a)) and (b, f (b)). 
Then sketch any tangent lines to the graph for each 
value of c guaranteed by the Mean Value Theorem. 
To print an enlarged copy of the graph, go to  
MathGraphs.com.

35. 

x
a b

f

y  36. 

x
a b

f

y

Writing In Exercises 37–40, explain why the Mean Value 
Theorem does not apply to the function f  on the interval [0, 6].

37. y

x

f

1 2 3 4 5 6

1

2

5

6

3

4

 38. y

x
1 2 3 4 5 6

1

2

5

6

3

4

f

39. f (x) =
1

x − 3
 40. f (x) = ∣x − 3∣
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41.  Mean Value Theorem Consider the graph of the function 
f (x) = −x2 + 5 (see figure).

 (a)  Find the equation of the secant line joining the points 
(−1, 4) and (2, 1).

 (b)  Use the Mean Value Theorem to determine a point c in the 
interval (−1, 2) such that the  tangent line at c is parallel to  
the secant line.

 (c) Find the equation of the tangent line through c.

 (d)  Use a graphing utility to graph f, the secant line, and the 
tangent line.

 

−4 2 4

−2

2

6

(−1, 4)

(2, 1)

x

y
f (x) = −x2 + 5  

(−2, −6)

(4, 0)
x

y
f (x) = x2 − x − 12

−4−8 8

−12

 Figure for 41 Figure for 42

42.  Mean Value Theorem Consider the graph of the function 
f (x) = x2 − x − 12 (see figure).

 (a)  Find the equation of the secant line joining the points 
(−2, −6) and (4, 0).

 (b)  Use the Mean Value Theorem to determine a point c in the 
interval (−2, 4) such that the tangent line at c is parallel to 
the secant line. 

 (c) Find the equation of the tangent line through c.

 (d)  Use a graphing utility to graph f, the secant line, and the 
tangent line.

 Using the Mean Value Theorem In 
Exercises 43–56, determine whether the Mean 
Value Theorem can be applied to f  on the closed 
interval [a, b]. If the Mean Value Theorem can be 
applied, find all values of c in the open interval 
(a, b) such that

  f ′(c) =
f (b) − f (a)

b − a
.

   If the Mean Value Theorem cannot be applied, 
explain why not.

43. f (x) = 6x3, [1, 2] 44. f (x) = x6, [−1, 1]
45. f (x) = x3 + 2x, [−1, 1] 46. f (x) = x4 − 8x, [0, 2]

47. f (x) =
x + 2
x − 1

, [−3, 3] 48. f (x) =
x

x − 5
, [1, 4]

49. f (x) = ∣2x + 1∣, [−1, 3] 50. f (x) = √2 − x, [−7, 2]
51. f (x) = sin x, [0, π] 52. f (x) = e−3x, [0, 2]
53. f (x) = cos x + tan x, [0, π]
54. f (x) = (x + 3) ln(x + 3), [−2, −1]
55. f (x) = x log2 x, [1, 2] 56. f (x) = arctan(1 − x), [0, 1]

Using the Mean Value Theorem In Exercises 57–62, 
use a graphing utility to (a) graph the function f  on the given 
interval, (b) find and graph the secant line through points 
on the graph of f  at the endpoints of the given interval, and 
(c) find and graph any tangent lines to the graph of f  that are 
parallel to the secant line.

57. f (x) =
x

x + 1
, [−

1
2

, 2] 58. f (x) = √x, [1, 9]

59. f (x) = x − 2 sin x, [−π, π]
60. f (x) = x4 − 2x3 + x2, [0, 6]

61. f (x) = 2ex�4 cos 
πx
4

, [0, 2] 62. f (x) = ln∣sec πx∣, [0, 
1
4]

63.  Vertical Motion The height of an object t seconds after it is 
dropped from a height of 300 meters is s(t) = −4.9t2 + 300.

 (a)  Find the average velocity of the object during the first  
3 seconds.

 (b)  Use the Mean Value Theorem to verify that at some time 
during the first 3 seconds of fall, the instantaneous velocity 
equals the average velocity. Find that time.

64.  Sales A company introduces a new product for which the 
number of units sold S is

 S(t) = 200(5 −
9

2 + t)
 where t is the time in months.

 (a) Find the average rate of change of S during the first year.

 (b)  During what month of the first year does S′(t) equal the 
average rate of change?

exploring ConCepts
65.  converse of Rolle’s Theorem Let f  be 

continuous on [a, b] and differentiable on (a, b). If there 
exists c in (a, b) such that f ′(c) = 0, does it follow that 
f (a) = f (b)? Explain.

66.  Rolle’s Theorem Let f  be continuous on [a, b] and 
differentiable on (a, b). Also, suppose that f (a) = f (b) 
and that c is a real number in the interval (a, b) such 
that f ′(c) = 0. Find an interval for the function g over 
which Rolle’s Theorem can be applied, and find the 
corresponding critical number of g, where k is a constant.

 (a) g(x) = f (x) + k  (b) g(x) = f (x − k)
 (c) g(x) = f (kx)
67. Rolle’s Theorem The function

 f (x) = {0,
1 − x,

    x = 0
    0 < x ≤ 1

  is differentiable on (0, 1) and satisfies f (0) = f (1). 
However, its derivative is never zero on (0, 1). Does this 
contradict Rolle’s Theorem? Explain.

68.  Mean Value Theorem Can you find a function f  
such that f (−2) = −2, f (2) = 6, and f ′(x) < 1 for  
all x? Why or why not?
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70.  Temperature When an object is removed from a furnace 
and placed in an environment with a constant temperature of 
90°F, its core temperature is 1500°F. Five hours later, the core 
temperature is 390°F. Explain why there must exist a time in 
the interval (0, 5) when the temperature is decreasing at a rate 
of 222°F per hour.

71.  Velocity Two bicyclists begin a race at 8:00 a.m. They 
both finish the race 2 hours and 15 minutes later. Prove that 
at some time during the race, the bicyclists are traveling at the 
same velocity.

72.  acceleration At 9:13 a.m., a sports car is traveling 35 miles 
per hour. Two minutes later, the car is traveling 85 miles per 
hour. Prove that at some time during this two-minute interval, 
the car’s acceleration is exactly 1500 miles per hour squared.

73.  Think about It Sketch the graph of an arbitrary function 
f  that satisfies the given condition but does not satisfy the 
conditions of the Mean Value Theorem on the interval [−5, 5].
(a) f  is continuous. (b) f  is not continuous.

 74. hoW Do yoU See IT? The figure shows 
two parts of the graph of a continuous differentiable 
function f  on [−10, 4]. The derivative f ′ is also 
continuous. To print an enlarged copy of the graph, 
go to MathGraphs.com.

 

x
−8 −4 4

8

4

−4

−8

y

(a) Explain why f  must have at least one zero in [−10, 4].
(b)  Explain why f ′ must also have at least one zero in 

the interval [−10, 4]. What are these zeros called?

(c)  Make a possible sketch of the function, where f ′ 
has one zero on the interval [−10, 4].

 74. 

finding a Solution In Exercises 75–78, use the Intermediate 
Value Theorem and Rolle’s Theorem to prove that the equation 
has exactly one real solution.

75. x5 + x3 + x + 1 = 0 76. 2x5 + 7x − 1 = 0

77. 3x + 1 − sin x = 0 78. 2x − 2 − cos x = 0

Using a Derivative In Exercises 79–82, find a function f
that has the derivative f ′(x) and whose graph passes through 
the given point. Explain your reasoning.

79. f ′(x) = 0, (2, 5) 80. f ′(x) = 4, (0, 1)
81. f ′(x) = 2x, (1, 0) 82. f ′(x) = 6x − 1, (2, 7)

True or false? In Exercises 83–86, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

83. The Mean Value Theorem can be applied to

f (x) =
1
x

 on the interval [−1, 1].
84.  If the graph of a function has three x-intercepts, then it must 

have at least two points at which its tangent line is horizontal.

85.  If the graph of a polynomial function has three x-intercepts, 
then it must have at least two points at which its tangent line is 
horizontal.

86.  The Mean Value Theorem can be applied to f (x) = tan x on 
the interval [0, π�4].

87.  proof Prove that if a > 0 and n is any positive integer, then 
the polynomial function p(x) = x2n+1 + ax + b cannot have 
two real roots.

88.  proof Prove that if f ′(x) = 0 for all x in an interval (a, b),
then f  is constant on (a, b).

89.  proof Let p(x) = Ax2 + Bx + C. Prove that for any 
interval [a, b], the value c guaranteed by the Mean Value 
Theorem is the  midpoint of the interval.

90. Using Rolle’s Theorem

 (a)  Let f (x) = x2 and g(x) = −x3 + x2 + 3x + 2. Then 
f (−1) = g(−1) and f (2) = g(2). Show that there is at 
least one value c in the interval (−1, 2) where the tangent 
line to f  at (c, f (c)) is parallel to the tangent line to g at 
(c, g(c)). Identify c.

 (b)  Let f  and g be differentiable functions on [a, b], where 
f (a) = g(a) and f (b) = g(b). Show that there is at least 
one value c in the interval (a, b) where the tangent line to 
f  at (c, f (c)) is parallel to the tangent line to g at (c, g(c)).

91.  proof Prove that if f  is differentiable on (−∞, ∞) and 
f ′(x) < 1 for all real numbers, then f  has at most one fixed 
point. [A fixed point of a function f  is a real number c such 
that f (c) = c.]

92.  fixed point Use the result of Exercise 91 to show that 
f (x) = 1

2 cos x has at most one fixed point.

93. proof Prove that ∣cos a − cos b∣ ≤ ∣a − b∣ for all a and b.

94. proof Prove that ∣sin a − sin b∣ ≤ ∣a − b∣ for all a and b.

95.  Using the Mean Value Theorem Let 0 < a < b. Use 
the Mean Value Theorem to show that

 √b − √a <
b − a

2√a
.

A plane begins its takeoff
at 2:00 p.m. on a 
2500-mile flight. After 
5.5 hours, the plane 
arrives at its destination. 
Explain why there are 
at least two times during 
the flight when the 
speed of the plane is 
400 miles per hour.

69. Speed

narvikk/E+/Getty Images
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4.3 Increasing and Decreasing Functions and the First Derivative Test 221

4.3 Increasing and Decreasing Functions and the First Derivative Test

 Determine intervals on which a function is increasing or decreasing.
 Apply the First Derivative Test to find relative extrema of a function.

Increasing and Decreasing Functions
In this section, you will learn how derivatives can be used to classify relative extrema 
as either relative minima or relative maxima. First, it is important to define increasing 
and decreasing functions.

Definitions of Increasing and Decreasing Functions

A function f  is increasing on an interval when, for any two numbers x1 
and x2 in the interval, x1 < x2 implies f (x1) < f (x2).
A function f  is decreasing on an interval when, for any two numbers x1 
and x2 in the interval, x1 < x2 implies f (x1) > f (x2).

A function is increasing when, as x  

x

f

In
cr

ea
si

ng

D
ecreasing

Constant

x = a x = b

f ′(x) < 0 f ′(x) > 0f ′(x) = 0

y

The derivative is related to the slope
of a function.
Figure 4.15

moves to the right, its graph moves up, and 
is decreasing when its graph moves down. 
For example, the function in Figure 4.15 is 
decreasing on the interval (−∞, a), is 
constant on the interval (a, b), and is 
increasing on the interval (b, ∞). As shown 
in Theorem 4.5 below, a positive derivative 
implies that the function is increasing, a 
negative derivative implies that the function 
is decreasing, and a zero derivative on an 
entire interval implies that the function is 
constant on that interval.

TheoReM 4.5 Test for Increasing and Decreasing Functions

Let f  be a function that is continuous on the closed interval [a, b] and 
differentiable on the open interval (a, b).

1. If f′(x) > 0 for all x in (a, b), then f  is increasing on [a, b].
2. If f′(x) < 0 for all x in (a, b), then f  is decreasing on [a, b].
3. If f′(x) = 0 for all x in (a, b), then f  is constant on [a, b].

Proof To prove the first case, assume that f′(x) > 0 for all x in the interval (a, b) and 
let x1 < x2 be any two points in the interval. By the Mean Value Theorem, you know 
that there exists a number c such that x1 < c < x2, and

f′(c) =
f (x2) − f (x1)

x2 − x1
.

Because f′(c) > 0 and x2 − x1 > 0, you know that f (x2) − f (x1) > 0, which implies 
that f (x1) < f (x2). So, f  is increasing on the interval. The second case has a similar proof 
(see Exercise 113), and the third case is a consequence of Exercise 88 in Section 4.2. 

ReMARK The conclusions 
in the first two cases of 
Theorem 4.5 are valid even 
when f′(x) = 0 at a finite 
number of x-values in (a, b).
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 Intervals on Which f Is Increasing or Decreasing

Find the open intervals on which f (x) = x3 − 3
2x2 is increasing or decreasing.

Solution Note that f  is differentiable on the entire real number line and the 
derivative of f  is

 f (x) = x3 − 3
2x2 Write original function.

 f ′(x) = 3x2 − 3x. Differentiate.

To determine the  critical numbers of f, set f′(x) equal to zero.

 3x2 − 3x = 0 Set f ′(x) equal to 0.

 3(x)(x − 1) = 0 Factor.

 x = 0, 1 Critical numbers

Because there are no points for which f′ does not exist, you can conclude that x = 0 
and x = 1 are the only critical numbers. The table summarizes the testing of the three 
intervals determined by these two critical numbers.

Interval −∞ < x < 0 0 < x < 1 1 < x < ∞
Test Value x = −1 x = 1

2 x = 2

Sign of f′(x) f′(−1) = 6 > 0 f′(1
2) = −3

4 < 0 f′(2) = 6 > 0

Conclusion Increasing Decreasing Increasing

By Theorem 4.5, f  is increasing on the intervals (−∞, 0) and (1, ∞) and decreasing 
on the interval (0, 1), as shown in Figure 4.16. 

Example 1 gives you one instance of how to find intervals on which a function is 
increasing or decreasing. The guidelines below summarize the steps followed in that 
example.

GUIDELINES FOR FINDING INTERVALS ON WHICH A 
FUNCTION IS INCREASING OR DECREASING

Let f  be continuous on the interval (a, b). To find the open intervals on which 
f  is increasing or decreasing, use the following steps.

1.  Locate the critical numbers of f  in (a, b), and use these numbers to 
determine test intervals.

2. Determine the sign of f′(x) at one test value in each of the intervals.

3.  Use Theorem 4.5 to determine whether f  is increasing or decreasing on 
each interval.

These guidelines are also valid when the interval (a, b) is replaced by an 
interval of the form (−∞, b), (a, ∞), or (−∞, ∞).

A function is strictly monotonic on an interval when it is either increasing on the 
entire interval or decreasing on the entire interval. For instance, the function f (x) = x3 
is strictly monotonic on the entire real number line because it is increasing on the entire 
real number line, as shown in Figure 4.17(a). The function shown in Figure 4.17(b) 
is not strictly monotonic on the entire real number line because it is constant on the 
interval [0, 1].
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4.3 Increasing and Decreasing Functions and the First Derivative Test 223

The First Derivative Test
After you have determined the intervals  3

2
f(x) = x3 −    x2

−1 1 2

−1

2

1

x
(0, 0)

Relative
maximum

Relative
minimum

y

1
2

1, −( )

Relative extrema of f
Figure 4.18

on which a function is increasing or 
decreasing, it is not difficult to locate the 
relative extrema of the function. For instance, 
in Figure 4.18 (from Example 1), the function

f (x) = x3 −
3
2

x2

has a relative maximum at the point (0, 0) 
because f  is increasing immediately to the 
left of x = 0 and decreasing immediately to 
the right of x = 0. Similarly, f  has a relative 
minimum at the point (1, −1

2) because f  is 
decreasing immediately to the left of x = 1 
and increasing immediately to the right of 
x = 1. The next theorem makes this more explicit.

TheoReM 4.6 The First Derivative Test

Let c be a critical number of a function f  that is continuous
on an open interval I containing c. If f  is differentiable on the
interval, except possibly at c, then f (c) can be classified as follows.

1.  If f′(x) changes from negative to positive at c, then f  has a relative 
minimum at (c, f (c)).

2.  If f′(x) changes from positive to negative at c, then f  has a relative 
maximum at (c, f (c)).

3.  If f′(x) is positive on both sides of c or negative on both sides of c, then 
f (c) is neither a relative minimum nor a relative maximum.

a c b

(−) (+)

f ′(x) < 0 f ′(x) > 0

   

a c b

f ′(x) < 0f ′(x) > 0

(−)(+)

 Relative minimum Relative maximum

a c b

(+) (+)

f ′(x) > 0 f ′(x) > 0

  

a c b

(−)
(−)

f ′(x) < 0 f ′(x) < 0

 Neither relative minimum nor relative maximum

Proof Assume that f′(x) changes from negative to positive at c. Then there exist a 
and b in I such that

f′(x) < 0 for all x in (a, c) and f′(x) > 0 for all x in (c, b).

By Theorem 4.5, f  is decreasing on [a, c] and increasing on [c, b]. So, f (c) is a 
minimum of f  on the open interval (a, b) and, consequently, a relative minimum of f. 
This proves the first case of the theorem. The second case can be proved in a similar 
way (see Exercise 114). 
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 Applying the First Derivative Test

Find the relative extrema of f (x) = 1
2x − sin x in the interval (0, 2π).

Solution Note that f  is continuous on the interval (0, 2π). The derivative of f  is 
f′(x) = 1

2 − cos x. To determine the critical numbers of f  in this interval, set f′(x) 
equal to 0.

 
1
2

− cos x = 0 Set f ′(x) equal to 0.

 cos x =
1
2

 x =
π
3

, 
5π
3

 Critical numbers

Because there are no points for which f′ does not exist, you can conclude that x = π�3 
and x = 5π�3 are the only critical numbers. The table summarizes the testing of the 
three intervals determined by these two critical numbers. By applying the First Derivative 
Test, you can conclude that f  has a relative minimum at the point where x = π�3 and a 
relative maximum at the point where x = 5π�3, as shown in Figure 4.19.

Interval 0 < x <
π
3

π
3

< x <
5π
3

5π
3

< x < 2π

Test Value x =
π
4

x = π x =
7π
4

Sign of f′(x) f′(π4) < 0 f′(π) > 0 f′(7π
4 ) < 0

Conclusion Decreasing Increasing Decreasing

 Applying the First Derivative Test

Find the relative extrema of f (x) = (x2 − 4)2�3.

Solution Begin by noting that f  is continuous on the entire real number line. The 
derivative of f

 f′(x) =
2
3

(x2 − 4)−1�3(2x) General Power Rule

 =
4x

3(x2 − 4)1�3 Simplify.

is 0 when x = 0 and does not exist when x = ±2. So, the critical numbers are x = −2, 
x = 0, and x = 2. The table summarizes the testing of the four intervals determined by 
these three critical numbers. By applying the First Derivative Test, you can conclude 
that f has a relative minimum at the point (−2, 0), a relative maximum at the point 
(0, 3√16), and another relative minimum at the point (2, 0), as shown in Figure 4.20.

Interval −∞ < x < −2 −2 < x < 0 0 < x < 2 2 < x < ∞
Test Value x = −3 x = −1 x = 1 x = 3

Sign of f′(x) f′(−3) < 0 f′(−1) > 0 f′(1) < 0 f′(3) > 0

Conclusion Decreasing Increasing Decreasing Increasing  

x
π ππ5

3
π4
3

2

4

3

2

1

−1

Relative
maximum

Relative
minimum

f(x) =    x − sin x

y

1
2

A relative minimum occurs where f  
changes from decreasing to increasing, 
and a relative maximum occurs where f  
changes from increasing to decreasing.
Figure 4.19

(           )0,    16
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Relative
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 4.3 Increasing and Decreasing Functions and the First Derivative Test 225

Note that in Examples 1 and 2, the given functions are differentiable on the entire 
real number line. For such functions, the only critical numbers are those for which 
f′(x) = 0. Example 3 concerns a function that has two types of critical numbers—those 
for which f′(x) = 0 and those for which f  is not differentiable.

When using the First Derivative Test, be sure to consider the domain of the 
function. For instance, in the next example, the function

f (x) =
x4 + 1

x2

is not defined when x = 0. This x-value must be used with the critical numbers to 
determine the test intervals.

 Applying the First Derivative Test

See LarsonCalculus.com for an interactive version of this type of example.

Find the relative extrema of f (x) =
x4 + 1

x2 .

Solution Note that f  is not defined when x = 0.

 f (x) = x2 + x−2 Rewrite original function.

 f′(x) = 2x − 2x−3 Differentiate.

 = 2x −
2
x3 Rewrite with positive exponent.

 =
2(x4 − 1)

x3  Simplify.

 =
2(x2 + 1)(x − 1)(x + 1)

x3  Factor.

So, f′(x) is zero at x = ±1. Moreover, because x = 0 is not in the domain of f, you 
should use this x-value along with the critical numbers to determine the test intervals.

x = ±1 Critical numbers, f ′(±1) = 0

x = 0 0 is not in the domain of f.

The table summarizes the testing of the four intervals determined by these three  
x-values. By applying the First Derivative Test, you can conclude that f  has one relative 
minimum at the point (−1, 2) and another at the point (1, 2), as shown in Figure 4.21.

Interval −∞ < x < −1 −1 < x < 0 0 < x < 1 1 < x < ∞
Test Value x = −2 x = −1

2 x = 1
2 x = 2

Sign of f′(x) f′(−2) < 0 f′(−1
2) > 0 f′(1

2) < 0 f′(2) > 0

Conclusion Decreasing Increasing Decreasing Increasing

  

TeChnology The most difficult step in applying the First Derivative Test is  
finding the values for which the derivative is equal to 0. For instance, the values of 
x for which the derivative of

f (x) =
x4 + 1
x2 + 1

is equal to zero are x = 0 and x = ±√√2 − 1. If you have access to technology 
that can perform symbolic differentiation and solve equations, use it to apply the 
First Derivative Test to this function.

5

4

3

2

1

321−1−2

y

x

Relative
minimum

Relative
minimum

(−1, 2) (1, 2)

f(x) = 
x2

x4 + 1

x-values that are not in the domain 
of f, as well as critical numbers, 
determine test intervals for f ′.
Figure 4.21
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 The Path of a Projectile

Neglecting air resistance, the path of a projectile that is propelled at an angle θ is

y = −
g sec2 θ

2v0
2 x2 + (tan θ)x + h, 0 ≤ θ ≤ π

2

where y is the height, x is the horizontal distance, g is the acceleration due to gravity, 
v0 is the initial velocity, and h is the initial height. (This equation is derived in Section 
12.3.) Let g = 32 feet per second per second, v0 = 24 feet per second, and h = 9 feet. 
What value of θ will produce a maximum horizontal distance?

Solution To find the distance the projectile travels, let y = 0, g = 32, v0 = 24, and 
h = 9. Then substitute these values in the given equation as shown.

 −
g sec2 θ

2v0
2 x2 + (tan θ)x + h = y

 −
32 sec2 θ

2(242) x2 + (tan θ)x + 9 = 0

 −
sec2 θ

36
x2 + (tan θ)x + 9 = 0

Next, solve for x using the Quadratic Formula with a = (−sec2 θ)�36, b = tan θ, and 
c = 9.

 x =
−b ± √b2 − 4ac

2a

 x =
−tan θ ± √(tan θ)2 − 4[(−sec2 θ)�36](9)

2[(−sec2 θ)�36]

 x =
−tan θ ± √tan2 θ + sec2 θ

(−sec2 θ)�18

 x = 18(cos θ)(sin θ + √sin2 θ + 1), x ≥ 0

At this point, you need to find the value of θ that produces a maximum value of x. 
Applying the First Derivative Test by hand would be very tedious. Using technology 
to solve the equation dx�dθ = 0, however, eliminates most of the messy computations. 
The result is that the maximum value of x occurs when

θ ≈ 0.61548 radian, or 35.3°.

This conclusion is reinforced by sketching the path of the projectile for different values 
of θ, as shown in Figure 4.22. Of the three paths shown, note that the distance traveled 
is greatest for θ = 35°.

5 10 15 20 25

15

10

5

x

h = 9
 = 25°θ

 = 35°θ
 = 45°θ

y

 The path of a projectile with initial angle θ
 Figure 4.22 

Neglecting air resistance, the path of a projectile that is propelled at an angle 

where 
v
12.3.) Let 
What value of 

Solution
h

When a projectile is propelled 
from ground level and air 
resistance is neglected, the object 
will travel farthest with an initial 
angle of 45°. When, however, 
the projectile is propelled from 
a point above ground level, the 
angle that yields a maximum 
horizontal distance is not 45° 
(see Example 5).

dotshock/Shutterstock.com
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 4.3 Increasing and Decreasing Functions and the First Derivative Test 227

4.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Increasing and Decreasing Functions Describe 

the Test for Increasing and Decreasing Functions in your 
own words.

2.  First Derivative Test Describe the First Derivative 
Test in your own words.

Using a graph In Exercises 3 and 4, use the graph of f  to 
find (a) the largest open interval on which f  is increasing and 
(b) the largest open interval on which f  is decreasing.

3. y

x
2 4 6 8 10

2

4

6

8

10

f

  4. y

x

6

2

4

−2

−4

2 4−2

f

 Using a graph In Exercises 5–10, use the 
graph to estimate the open intervals on which the 
function is increasing or decreasing. Then find the 
open intervals analytically.

5. y = −(x + 1)2  6. f (x) = x2 − 6x + 8

 

x
−3 −1 1

−1

−2

−3

−4

y   

x

−1 1 2 4 5

4

3

2

1

y

7. y =
x3

4
− 3x  8. f (x) = x4 − 2x2

 

x
−2 2

4

4
−2

−4

y   

x
−2

3

2

1

2

y

9. f (x) =
1

(x + 1)2 10. y =
x2

2x − 1

 

−2 −1−3−4 1 2

1

2

x

y
  

x

y

1 2 3 4−1

−2

1

2

3

4

 Intervals on Which a Function Is Increasing 
or Decreasing In Exercises 11–22, find the 
open intervals on which the function is increasing 
or decreasing.

11. g(x) = x2 − 2x − 8 12. h(x) = 12x − x3

13. y = x√16 − x2

14. y = x +
9
x

15. f (x) = sin x − 1, 0 < x < 2π

16. f (x) = cos 
3x
2

, 0 < x < 2π

17. y = x − 2 cos x, 0 < x < 2π

18. f (x) = sin2 x + sin x, 0 < x < 2π

19. g(x) = e−x + e3x 20. h(x) = √xe−x

21. f (x) = x2 ln 
x
2

 22. f (x) =
ln x

√x

 Applying the First Derivative Test In 
Exercises 23–56, (a) find the critical numbers of 
f, if any, (b) find the open intervals on which the 
function is increasing or decreasing, (c) apply the 
First Derivative Test to identify all relative extrema, 
and (d) use a graphing utility to confirm your 
results.

23. f (x) = x2 − 8x 24. f (x) = x2 + 6x + 10

25. f (x) = −2x2 + 4x + 3 26. f (x) = −3x2 − 4x − 2

27. f (x) = −7x3 + 21x + 3 28. f (x) = x3 − 6x2 + 15

29. f (x) = (x − 1)2(x + 3) 30. f (x) = (8 − x)(x + 1)2

31. f (x) =
x5 − 5x

5
 32. f (x) =

−x6 + 6x
10

33. f (x) = x1�3 + 1 34. f (x) = x2�3 − 4

35. f (x) = (x + 2)2�3 36. f (x) = (x − 3)1�3

37. f (x) = 5 − ∣x − 5∣ 38. f (x) = ∣x + 3∣ − 1

39. f (x) = 2x +
1
x
 40. f (x) =

x
x − 5

41. f (x) =
x2

x2 − 9
 42. f (x) =

x2 − 2x + 1
x + 1

43. f (x) = {4 − x2,
−2x,

   x ≤ 0
   x > 0

 44. f (x) = {2x + 1,
x2 − 2,

   x ≤ −1
   x > −1

45. f (x) = (3 − x)ex−3 46. f (x) = (x − 1)ex

47. f (x) = 4(x − arcsin x) 48. f (x) = x arctan x

49. f (x) = (x)3−x 50. f (x) = 2x2−3

51. f (x) = x − log4 x 52. f (x) =
x3

3
− ln x

53. f (x) =
e2x

e2x + 1
 54. f (x) = ln(2 − ln x)

55. f (x) = e−1�(x−2) 56. f (x) = earctan x
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 Applying the First Derivative Test In 
Exercises 57–62, consider the function on the 
interval (0, 2π). (a) Find the open intervals on 
which the function is increasing or decreasing. 
(b) Apply the First Derivative Test to identify 
all relative extrema. (c) Use a graphing  utility to 
confirm your results.

57. f (x) = x − 2 sin x 58. f (x) = sin x cos x + 5

59. f (x) = sin x + cos x 60. f (x) =
x
2

+ cos x

61. f (x) = cos2(2x) 62. f (x) = sin x − √3 cos x

Finding and Analyzing Derivatives Using Technology
In Exercises 63–70, (a) use a computer algebra system to 
 differentiate the function, (b) sketch the graphs of f  and f ′ on 
the same set of coordinate axes over the given interval, (c) find 
the critical numbers of f  in the open interval, and (d) find the 
interval(s) on which f ′ is positive and the interval(s) on which 
f ′is negative. Compare the behavior of f  and the sign of f ′.

63. f (x) = 2x√9 − x2, [−3, 3]
64. f (x) = 10(5 − √x2 − 3x + 16), [0, 5]
65. f (t) = t2 sin t, [0, 2π]

66. f (x) =
x
2

+ cos 
x
2

, [0, 4π]

67. f (x) = −3 sin 
x
3

, [0, 6π]

68. f (x) = 2 sin 3x + 4 cos 3x, [0, π]
69. f (x) = 1

2(x2 − ln x), (0, 3]
70. f (x) = (4 − x2)ex, [0, 2]

Comparing Functions In Exercises 71 and 72, use 
symmetry, extrema, and zeros to sketch the graph of f. How 
do the functions f  and g differ?

71. f (x) =
x5 − 4x3 + 3x

x2 − 1
 72. f (t) = cos2 t − sin2 t

 g(x) = x(x2 − 3)  g(t) = 1 − 2 sin2 t

Think About It In Exercises 73–78, the graph of f  is shown 
in the figure. Sketch a graph of the derivative of f. To print an 
enlarged copy of the graph, go to MathGraphs.com.

73. 

x
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1

21

y

f

 74. 

x
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y

f

75. 

x
−4 −2 2 6 8

2

−4
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y

f

 76. 

x
−4−6 4 6
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6
8

y

f

77. 

x
−4 −2

−2
2 4

4

6

y

f

 78. 

x
−4 −2

−2
2 4

4

2

6

y

f

eXpLoRInG ConCeptS
Transformations of Functions In Exercises 79–82, 
assume that f  is differentiable for all x, where f ′(x) > 0 
on (−∞, −4), f ′(x) < 0 on (−4, 6), and f ′(x) > 0 on 
(6, ∞). Supply the appropriate inequality sign for the 
indicated value of c.

 Function Sign of g′(c)
79. g(x) = f (x) + 5  g′(0)  ■0

80. g(x) = 3f (x) − 3  g′(−5) ■0

81. g(x) = −f (x)  g′(−6) ■0

82. g(x) = f (x − 10)  g′(0)  ■0

83.  Sketching a graph Sketch the graph of the arbitrary 
function f  such that f ′(x) > 0 on (−∞, 4), f ′(x) < 0 on 
(4, ∞), and f ′(x) is undefined at x = 4.

84.  Think About It Is it possible to find a differentiable 
function f  where f (x) > 0 and f ′(x) < 0? If so, give an 
example. If not, explain why not.

85.  Increasing Functions Consider two increasing 
functions f  and g.

 (a) Is f + g always increasing? Explain.

 (b) Is fg always increasing? Explain.

 86.  hoW Do yoU See IT? Use the graph of 
f ′ to (a) identify the critical numbers of f, 
(b) identify the open intervals on which f  is 
increasing or decreasing, and (c) determine 
whether f  has a relative maximum, a relative 
minimum, or neither at each critical number.

(i) y

x
2 4−2

−2

2

−4

f ′
 (ii) y

x
2 4−2−4

−2

6
f ′

(iii) y

x
2 4−2

−2

−4

−4

2

4

f ′

 (iv)

x

y

f ′

−4−6 2 4 6−2

−4

−6

4

6

 86. 
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87.  Analyzing a Critical number A differentiable function 
f  has one critical number at x = 5. Identify the relative 
extrema of f  at the critical number when f ′(4) = −2.5 and 
f ′(6) = 3.

88.  Analyzing a Critical number A differentiable function 
f  has one critical number at x = 2. Identify the relative 
extrema of f  at the critical number when f ′(1) = 2 and 
f ′(3) = 6.

Think About It In Exercises 89 and 90, the function f  is 
differentiable on the indicated interval. The table shows f ′(x) for 
selected values of x. (a) Sketch the graph of f, (b) approximate 
the critical  numbers, and (c) identify the relative extrema.

89. f  is differentiable on [−1, 1].
 

x −1 −0.75 −0.50 −0.25 0

f ′(x) −10 −3.2 −0.5 0.8 5.6

x 0.25 0.50 0.75 1

f ′(x) 3.6 −0.2 −6.7 −20.1

90. f  is differentiable on [0, π].
 

x 2π�3 3π�4 5π�6 π

f ′(x) 3.00 1.37 −1.14 −2.84

x 0 π�6 π�4 π�3 π�2

f ′(x) 3.14 −0.23 −2.45 −3.11 0.69

91.  Rolling a Ball Bearing A ball bearing is placed on an 
inclined plane and begins to roll. The angle of elevation of the 
plane is θ. The distance (in meters) the ball bearing rolls in t 
seconds is s(t) = 4.9(sin θ)t2.

 (a) Determine the speed of the ball bearing after t seconds.

 (b)  Complete the table and use it to determine the value of θ 
that produces the maximum speed at a particular time.

  
 θ 0 π�4 π�3 π�2 2π�3 3π�4 π

s′(t)

92.  Modeling Data  The end-of-year assets of the Medicare 
Hospital Insurance Trust Fund (in billions of dollars) for the 
years 2006 through 2014 are shown.

  2006: 305.4 2007: 326.0 2008: 321.3 
2009: 304.2 2010: 271.9 2011: 244.2  
2012: 220.4 2013: 205.4 2014: 197.3

 (Source: U.S. Centers for Medicare and Medicaid Services)

 (a)  Use the regression capabilities of a graphing utility to find 
a model of the form M = at3 + bt2 + ct + d for the data. 
Let t = 6 represent 2006.

 (b) Use a graphing utility to plot the data and graph the model.

 (c)  Find the maximum value of the model and compare the 
result with the actual data.

93.  numerical, graphical, and Analytic Analysis The 
concentration C of a chemical in the bloodstream t hours after 
injection into muscle tissue is

 C(t) =
3t

27 + t3, t ≥ 0.

 (a)  Complete the table and use it to approximate the time 
when the concentration is greatest.

  
t 0 0.5 1 1.5 2 2.5 3

C(t)

 (b)  Use a graphing utility to graph the concentration function 
and use the graph to approximate the time when the 
 concentration is greatest.

 (c)  Use calculus to determine analytically the time when the 
concentration is greatest.

94.  numerical, graphical, and Analytic Analysis  
Consider the functions f (x) = x and g(x) = sin x on the 
interval (0, π).

 (a)  Complete the table and make a conjecture about which is 
the greater function on the interval (0, π).

  
x 0.5 1 1.5 2 2.5 3

f (x)

g(x)

 (b)  Use a graphing utility to graph the functions and use the 
graphs to make a conjecture about which is the greater 
function on the interval (0, π).

 (c)  Prove that f (x) > g(x) on the interval (0, π). [Hint: Show 
that h′(x) > 0, where h = f − g.]

95.  Trachea Contraction Coughing forces the trachea 
(windpipe) to contract, which affects the velocity v of the air 
passing through the trachea. The velocity of the air during 
coughing is 

 v = k(R − r)r2, 0 ≤ r < R

  where k is a constant, R is the normal radius of the trachea, and 
r is the radius during coughing. What radius will produce the 
maximum air velocity?

96.  electrical Resistance The resistance R of a certain type 
of resistor is

 R = √0.001T 4 − 4T + 100

  where R is measured in ohms and the temperature T is 
measured in degrees Celsius.

 (a)  Use a computer algebra system to find dR�dT and the 
critical number of the function. Determine the minimum 
resistance for this type of resistor.

 (b)  Use a graphing utility to graph the function R and use the 
graph to approximate the minimum resistance for this type 
of resistor.
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Motion Along a line In Exercises 97–100, the function 
s(t) describes the motion of a particle along a line. (a) Find the 
velocity function of the particle at any time t ≥ 0. (b) Identify 
the time interval(s) on which the particle is moving in a positive 
direction. (c) Identify the time interval(s) on which the particle is 
moving in a negative direction. (d) Identify the time(s) at which 
the particle changes direction.

 97. s(t) = 6t − t2

 98. s(t) = t2 − 10t + 29

 99. s(t) = t3 − 5t2 + 4t

100. s(t) = t3 − 20t2 + 128t − 280

Motion Along a line In Exercises 101 and 102, the graph 
shows the position of a particle moving along a line. Describe 
how the position of the particle changes with respect to time.

101. s

t
1 2 3 4 5 6 8 10

4

−4
−8

−12

8
12
16
20
24
28

 102. s

t
3 6 9 12 15 18

20

40

60

80

100

120

Creating Polynomial Functions In Exercises 103–106, 
find a polynomial function

f (x) = anxn + an−1xn−1 + .  .  . + a2x2 + a1x + a0

that has only the specified extrema. (a) Determine the minimum 
degree of the function and give the criteria you used in 
 determining the degree. (b) Using the fact that the coordinates 
of the extrema are solution points of the function, and that 
the x-coordinates are critical numbers, determine a system of 
linear equations whose solution yields the coefficients of the 
required function. (c) Use a graphing utility to solve the system 
of  equations and determine the function. (d) Use a graphing 
 utility to confirm your result graphically.

103. Relative minimum: (0, 0); Relative maximum: (2, 2)
104. Relative minimum: (0, 0); Relative maximum: (4, 1000)
105. Relative minima: (0, 0), (4, 0); Relative maximum: (2, 4)
106. Relative minimum: (1, 2); Relative maxima: (−1, 4), (3, 4)

True or False? In Exercises 107–112, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

107. There is no function with an infinite number of critical points.

108. The function f (x) = x has no extrema on any open interval.

109. Every nth-degree polynomial has (n − 1) critical numbers.

110. An nth-degree polynomial has at most (n − 1) critical numbers.

111. There is a relative extremum at each critical number.

112.  The relative maxima of the function f  are f (1) = 4 and 
f (3) = 10. Therefore, f  has at least one minimum for some 
x in the interval (1, 3).

113. Proof Prove the second case of Theorem 4.5.

114. Proof Prove the second case of Theorem 4.6.

115.  Proof Let x > 0 and n > 1 be real numbers. Prove that 
(1 + x)n > 1 + nx.

116.  Proof Use the definitions of increasing and decreasing 
functions to prove that f (x) = x3 is increasing on (−∞, ∞).

117.  Proof Use the definitions of increasing and decreasing 
functions to prove that

f (x) =
1
x

  is decreasing on (0, ∞).
118.  Finding Values Consider f (x) = axebx2. Find a and b 

such that the relative maximum of f  is f (4) = 2.

pUtnAM eXAM ChALLenGe
119. Find the minimum value of

  ∣sin x + cos x + tan x + cot x + sec x + csc x∣
  for real numbers x.
This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

(a)  Graph each of the fourth-degree polynomials below. Then find 
the critical numbers, the open intervals on which the function 
is increasing or decreasing, and the relative extrema.

 (i) f (x) = x4 + 1

 (ii) f (x) = x4 + 2x2 + 1

 (iii) f (x) = x4 − 2x2 + 1

(b) Consider the fourth-degree polynomial

f (x) = x4 + ax2 + b.

 (i)  Show that there is one critical number when a = 0. Then 
find the open intervals on which the function is increasing 
or decreasing.

 (ii)  Show that there is one critical number when a > 0. Then 
find the open intervals on which the function is increasing 
or decreasing.

 (iii)  Show that there are three critical numbers when a < 0.
Then find the open intervals on which the function is 
increasing or decreasing.

 (iv) Show that there are no real zeros when

a2 < 4b.

 (v) Determine the possible number of zeros when

a2 ≥ 4b.

   Explain your reasoning.

even Fourth-Degree Polynomials
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4.4 Concavity and the Second Derivative Test 231

4.4 Concavity and the Second Derivative Test

 Determine intervals on which a function is concave upward or concave downward.
 Find any points of inflection of the graph of a function.
 Apply the Second Derivative Test to find relative extrema of a function.

Concavity
You have already seen that locating the intervals on which a function f  increases or 
decreases helps to describe its graph. In this section, you will see how locating the 
intervals on which f′ increases or decreases can be used to determine where the graph 
of f  is curving upward or curving downward.

Definition of Concavity

Let f  be differentiable on an open interval I. The graph of f
is concave upward on I when f′ is increasing on the interval
and concave downward on I when f′ is decreasing on the interval.

The following graphical interpretation of concavity is useful. (See Appendix A for 
a proof of these results.)

1.  Let f  be differentiable on an open interval I. If the graph of f  is concave upward on 
I, then the graph of f  lies above all of its tangent lines on I.

 [See Figure 4.23(a).]

2.  Let f  be differentiable on an open interval I. If the graph of f  is concave downward 
on I, then the graph of f  lies below all of its tangent lines on I.

 [See Figure 4.23(b).]

x

Concave upward,
f ′ is increasing.

y     

x

Concave downward,
f ′ is decreasing.

y

 (a) The graph of f  lies above its tangent lines. (b) The graph of f  lies below its tangent lines.

 Figure 4.23

To find the open intervals on which the graph of a function f  is concave upward 
or concave downward, you need to find the intervals on which f′ is increasing or 
decreasing. For instance, the graph of

f (x) =
1
3

x3 − x

is concave downward on the open interval (−∞, 0) because

f′(x) = x2 − 1

is decreasing there. (See Figure 4.24.) Similarly, the graph of f  is concave upward on 
the interval (0, ∞) because f′ is increasing on (0, ∞).

−2

−2

1

1

1

1

−1

x

x

y

m = 0

m = 0

m = −1

Concave
downward

Concave
upward

−1

−1

(1, 0)

(0, −1)

(−1, 0)

f ′(x) = x2 − 1

f ′ is decreasing. f ′ is increasing.

f(x) =    x3 − x1
3

y

The concavity of f  is related to the 
slope of the derivative.
Figure 4.24
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232 Chapter 4 Applications of Differentiation

The next theorem shows how to use the second derivative of a function f  to 
determine intervals on which the graph of f  is concave upward or concave downward. 
A proof of this theorem follows directly from Theorem 4.5 and the definition of  
concavity.

THEOREM 4.7 Test for Concavity

Let f  be a function whose second derivative exists on an open interval I.

1. If f ″(x) > 0 for all x in I, then the graph of f  is concave upward on I.

2.  If f ″(x) < 0 for all x in I, then the graph of f  is concave 
downward on I.

A proof of this theorem is given in Appendix A.

To apply Theorem 4.7, locate the x-values at which f ″(x) = 0 or f ″(x) does not 
exist. Use these x-values to determine test intervals. Finally, test the sign of f ″(x) in 
each of the test intervals.

 Determining Concavity

Determine the open intervals on which the graph of

f (x) = e−x2�2

is concave upward or concave downward.

Solution Begin by observing that f  is continuous on the entire real number line. 
Next, find the second derivative of f.

 f′(x) = −xe−x2�2  First derivative

 f ″(x) = (−x)(−x)e−x2�2 + e−x2�2(−1) Differentiate.

 = e−x2�2(x2 − 1)  Second derivative

Because f ″(x) = 0 when x = ±1 and f ″ is defined on the entire real number line, you 
should test f ″ in the intervals (−∞, −1), (−1, 1), and (1, ∞). The results are shown 
in the table and in Figure 4.25.

Interval −∞ < x < −1 −1 < x < 1 1 < x < ∞
Test Value x = −2 x = 0 x = 2

Sign of f ″(x) f ″(−2) > 0 f ″(0) < 0 f ″(2) > 0

Conclusion Concave upward Concave downward Concave upward

  

Note that the function in Example 1 is similar to the general form of a normal 
probability density function (whose mean is 0),

f (x) =
1

σ√2π
 e−x2�(2σ2) Normal probability density function

where σ  is the standard deviation (σ  is the lowercase Greek letter sigma). This 
“bell-shaped” curve is concave downward on the interval (−σ, σ).

The function given in Example 1 is continuous on the entire real number line. 
When there are x-values at which a function is not continuous, these values should be 
used, along with the points at which f ″(x) = 0 or f ″(x) does not exist, to form the test 
intervals.

REMARK A third case of 
Theorem 4.7 could be that if 
f ″(x) = 0 for all x in I, then f  
is linear. Note, however, that 
concavity is not defined for a 
line. In other words, a straight 
line is neither concave upward 
nor concave downward.  

x
−2 −1 21

2

f ′′(x) > 0
Concave
upward

f ′′(x) > 0
Concave
upward

f ′′(x) < 0
Concave
downward

y

f x e( ) = −x2/2

From the sign of f ″(x), you can 
determine the concavity of the graph 
of f.
Figure 4.25
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 Determining Concavity

Determine the open intervals on which the graph of

f (x) =
x2 + 1
x2 − 4

is concave upward or concave downward.

Solution Differentiating twice produces the following.

 f (x) =
x2 + 1
x2 − 4

 Write original function.

 f′(x) =
(x2 − 4)(2x) − (x2 + 1)(2x)

(x2 − 4)2  Differentiate.

 =
−10x

(x2 − 4)2 First derivative

f ″(x) =
(x2 − 4)2(−10) − (−10x)(2)(x2 − 4)(2x)

(x2 − 4)4  Differentiate.

 =
10(3x2 + 4)

(x2 − 4)3  Second derivative

There are no points at which f ″(x) = 0, but at x = ±2, the function f  is not continuous. 
So, test for concavity in the intervals (−∞, −2), (−2, 2), and (2, ∞), as shown in the 
table. The graph of f  is shown in Figure 4.26.

Interval −∞ < x < −2 −2 < x < 2 2 < x < ∞
Test Value x = −3 x = 0 x = 3

Sign of f ″(x) f ″(−3) > 0 f ″(0) < 0 f ″(3) > 0

Conclusion Concave upward Concave downward Concave upward

Points of Inflection
The graph in Figure 4.25 has two points at which the concavity changes. If the tangent 
line to the graph exists at such a point, then that point is a point of inflection. Three 
types of points of inflection are shown in Figure 4.27.

Definition of Point of Inflection

Let f  be a function that is continuous on an open interval, and let c be a point 
in the interval. If the graph of f  has a tangent line at the point (c, f (c)), then 
this point is a point of inflection of the graph of f  when the concavity of f  
changes from upward to downward (or downward to upward) at the point.

The definition of point of inflection requires that the tangent line exists at the point 
of inflection. Some calculus texts do not require this. For instance, after applying the 
definition above to the function

f (x) = {x3,
x2 + 2x,

     x < 0
     x ≥ 0

you would conclude that f  does not have a point of inflection at the origin, even though 
the concavity of the graph changes from concave downward to concave upward.

x
−6 −4 4 6−2 2

6

4

2

−2

−4

−6

Concave
upward

Concave
upward

Concave
downward

y

f(x) = 
x2 + 1
x2 − 4

Figure 4.26

x

Concave
upward

Concave
downward

y

x

Concave
upward

Concave
downward

y

x

Concave
upward

Concave
downward

y

The concavity of f  changes at a point 
of inflection. Note that the graph 
crosses its tangent line at a point 
of inflection.
Figure 4.27

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



234 Chapter 4 Applications of Differentiation

To locate possible points of inflection, you can determine the values of x for which 
f ″(x) = 0 or f ″(x) does not exist. This is similar to the procedure for locating relative 
extrema of f.

THEOREM 4.8 Points of Inflection

If (c, f (c)) is a point of inflection of the graph of f, then either f ″(c) = 0 or
f ″(c) does not exist.

 Finding Points of Inflection

Determine the points of inflection and discuss the concavity of the graph of 

f (x) = x4 − 4x3.

Solution Differentiating twice produces the following.

 f (x) = x4 − 4x3 Write original function.

 f′(x) = 4x3 − 12x2 Find first derivative.

 f ″(x) = 12x2 − 24x = 12x(x − 2) Find second derivative.

Setting f ″(x) = 0, you can determine that the possible points of inflection occur at 
x = 0 and x = 2. By testing the intervals  determined by these x-values, you can 
conclude that they both yield points of inflection. A summary of this testing is shown 
in the table, and the graph of f  is shown in Figure 4.28.

Interval −∞ < x < 0 0 < x < 2 2 < x < ∞
Test Value x = −1 x = 1 x = 3

Sign of f ″(x) f ″(−1) > 0 f ″(1) < 0 f ″(3) > 0

Conclusion Concave upward Concave downward Concave upward

  

The converse of Theorem 4.8 is not generally true. That is, it is possible for the 
second derivative to be 0 at a point that is not a point of inflection. For instance, the 
graph of f (x) = x4 is shown in Figure 4.29. The second derivative is 0 when x = 0, but 
the point (0, 0) is not a point of inflection because the graph of f  is concave upward on 
the intervals −∞ < x < 0 and 0 < x < ∞.

x
−1 1

2

1

f(x) = x4

y

 f ″(x) = 0, but (0, 0) is not a point of inflection.
 Figure 4.29

x
−1 2 3

18

9

−9

−18

−27

Points of
in�ection

Concave
upward

Concave
upward

Concave
downward

f(x) = x4 − 4x3
y

Points of inflection can occur where 
f ″(x) = 0 or f ″ does not exist.
Figure 4.28

Exploration
Consider a general cubic 
function of the form

f (x) = ax3 + bx2 + cx + d.

You know that the value 
of d has a bearing on the 
location of the graph but has 
no bearing on the value of 
the first derivative at given 
values of x. Graphically, 
this is true because changes 
in the value of d shift the 
graph up or down but do not 
change its basic shape. Use 
a graphing utility to graph 
several cubics with different 
values of c. Then give a 
graphical explanation of why 
changes in c do not affect 
the values of the second 
derivative.
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The Second Derivative Test
In addition to testing for concavity, the second derivative can be used to perform a 
simple test for relative maxima and minima. The test is based on the fact that if the 
graph of a function f  is concave upward on an open interval containing c, and f′(c) = 0, 
then f (c) must be a relative minimum of f. Similarly, if the graph of a function f  is 
concave downward on an open interval containing c, and f′(c) = 0, then f (c) must be 
a relative maximum of f. (See Figure 4.30.)

THEOREM 4.9 Second Derivative Test

Let f  be a function such that f′(c) = 0 and the second derivative of f  exists on 
an open interval containing c.

1. If f ″(c) > 0, then f  has a relative minimum at (c, f (c)).
2. If f ″(c) < 0, then f  has a relative maximum at (c, f (c)).

If f ″(c) = 0, then the test fails. That is, f  may have a relative
maximum, a relative minimum, or neither. In such cases, you can
use the First Derivative Test.

Proof If f′(c) = 0 and f ″(c) > 0, then there exists an open interval I containing c 
for which

f′(x) − f′(c)
x − c

=
f′(x)

x − c
> 0

for all x ≠ c in I. If x < c, then x − c < 0 and f′(x) < 0. Also, if x > c, then 
x − c > 0 and f′(x) > 0. So, f′(x) changes from negative to positive at c, and the First 
Derivative Test implies that f (c) is a relative minimum. A proof of the second case is 
left to you.  

 Using the Second Derivative Test

See LarsonCalculus.com for an interactive version of this type of example.

Find the relative extrema of

f (x) = −3x5 + 5x3.

Solution Begin by finding the first derivative of f.

f′(x) = −15x4 + 15x2 = 15x2(1 − x2)

From this derivative, you can see that x = −1, 0, and 1 are the only critical numbers 
of f. By finding the second derivative 

f ″(x) = −60x3 + 30x = 30x(1 − 2x2)

you can apply the Second Derivative Test as shown below.

Point (−1, −2) (0, 0) (1, 2)

Sign of f ″(x) f ″(−1) > 0 f ″(0) = 0 f ″(1) < 0

Conclusion Relative minimum Test fails Relative maximum

Because the Second Derivative Test fails at (0, 0), you can use the First Derivative Test 
and observe that f  increases to the left and right of x = 0. So, (0, 0) is neither a relative 
minimum nor a relative maximum (even though the graph has a horizontal tangent line 
at this point). The graph of f  is shown in Figure 4.31. 

x
c

Concave
upward f

f ″(c) > 0

y

If f ′(c) = 0 and f ″(c) > 0, then f (c) is 
a relative minimum.

x
c

f

Concave
downward

f ″(c) < 0
y

If f ′(c) = 0 and f ″(c) < 0, then f (c) is 
a relative maximum.
Figure 4.30

x

y

(1, 2)

(0, 0)

(−1, −2)

Relative
maximum

Relative
minimum

−2 −1 1 2

−2

−1

1

2

f(x) = −3x5 + 5x3

(0, 0) is neither a relative minimum nor 
a relative maximum.
Figure 4.31
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236 Chapter 4 Applications of Differentiation

4.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Test for Concavity Describe the Test for Concavity 

in your own words.

2.  Second Derivative Test Describe the Second 
Derivative Test in your own words.

 Determining Concavity In Exercises 3–14, 
determine the open intervals on which the graph 
of the function is concave upward or concave 
downward.

 3. f (x) = x2 − 4x + 8  4. g(x) = 3x2 − x3

 5. f (x) = x4 − 3x3  6. h(x) = x5 − 5x + 2

 7. f (x) =
24

x2 + 12
  8. f (x) =

2x2

3x2 + 1

 9. f (x) =
x − 2
6x + 1

 10. f (x) =
x + 8
x − 7

11. f (x) =
x2 + 1
x2 − 1

 12. h(x) =
x2 − 1
2x − 1

13. y = 2x − tan x, (−
π
2

, 
π
2) 14. y = x +

2
sin x

, (−π, π)

 Finding Points of Inflection In Exercises 
15–36, find the points of inflection and discuss the 
concavity of the graph of the function.

15. f (x) = x3 − 9x2 + 24x − 18 16. f (x) = −x3 + 6x2 − 5

17. f (x) = 2 − 7x4 18. f (x) = 4 − x − 3x4

19. f (x) = x(x − 4)3 20. f (x) = (x − 2)3(x − 1)
21. f (x) = x√x + 3 22. f (x) = x√9 − x

23. f (x) =
6 − x

√x
 24. f (x) =

x + 3

√x

25. f (x) = sin 
x
2

, [0, 4π] 26. f (x) = 2 csc 
3x
2

, (0, 2π)

27. f (x) = sec(x −
π
2), (0, 4π)

28. f (x) = sin x + cos x, [0, 2π]
29. f (x) = 2 sin x + sin 2x, [0, 2π]
30. f (x) = x + 2 cos x, [0, 2π]
31. y = e−3�x 32. y = 1

2(ex − e−x)
33. y = x − ln x 34. y = ln√x2 + 9

35. f (x) = arcsin x4�5 36. f (x) = arctan x2

 Using the Second Derivative Test In 
Exercises 37–58, find all relative extrema of the 
function. Use the Second Derivative Test where 
applicable.

37. f (x) = 6x − x2 38. f (x) = −x3 + 7x2 − 15x

39. f (x) = x4 − 4x3 + 2 40. f (x) = −x4 + 2x3 + 8x

41. f (x) = x2�3 − 3 42. f (x) = √x2 + 1

43. f (x) = x +
4
x
 44. f (x) =

9x − 1
x + 5

45. f (x) = cos x − x, [0, 4π]
46. f (x) = 2 sin x + cos 2x, [0, 2π]
47. y = 8x2 − ln x 48. y = x ln x

49. y =
x

ln x
 50. y = x2 ln 

x
4

51. f (x) =
ex + e−x

2
 52. g(x) =

1

√2π
e−(x−3)2�2

53. f (x) = x2e−x 54. f (x) = xe−x

55. f (x) = 8x(4−x) 56. y = x2 log3 x

57. f (x) = arcsec x − x 58. f (x) = arcsin x − 2x

Finding Extrema and Points of Inflection Using 
Technology In Exercises 59–62, use a computer algebra 
system to analyze the function over the given interval. (a) Find 
the first and second derivatives of the function. (b) Find any 
relative extrema and points of inflection. (c) Graph f, f ′, and 
f ″ on the same set of coordinate axes and state the relationship 
between the behavior of f  and the signs of f ′ and f ″.

59. f (x) = 0.2x2(x − 3)3, [−1, 4]
60. f (x) = x2√6 − x2, [−√6, √6]
61. f (x) = sin x − 1

3 sin 3x + 1
5 sin 5x, [0, π]

62. f (x) = √2x sin x, [0, 2π]

eXpLoring ConCepts
63.  Sketching a Graph Consider a function f  such that 

f ′ is increasing. Sketch graphs of f  for (a) f ′ < 0 and  
(b) f ′ > 0.

64.  Think About It S represents weekly sales of a 
product. What can be said of S′ and S ″ for each of the 
following statements?

 (a) The rate of change of sales is increasing.

 (b) The rate of change of sales is constant.

 (c) Sales are steady.

 (d) Sales are declining but at a slower rate.

65.  Sketching Graphs In parts (a) and (b), the graph of f  is 
shown. Graph f, f ′, and f ″ on the same set of coordinate axes. 
To print an enlarged copy of the graph, go to MathGraphs.com.

 (a) 

−1 1 2 3
−1

3

2

f

x

y  (b) 

−2 1 2

−4

−2

4

f

x

y
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 66.  HOW DO YOU SEE IT? Using the graph of f, 
state the signs of f ′ and f ″ on the interval (0, 2).

(a)

x

y

1 2

f

 (b)

x

y

f

1 2

 66. 

 Think About It In Exercises 67–70, sketch 
the graph of a function f  having the given 
characteristics.

67. f (0) = f (2) = 0 68. f (0) = f (2) = 0

f ′(x) > 0 for x < 1  f ′(x) < 0 for x < 1

f ′(1) = 0  f ′(1) = 0

f ′(x) < 0 for x > 1  f ′(x) > 0 for x > 1

f ″(x) < 0  f ″(x) > 0

69. f (2) = f (4) = 0 70. f (1) = f (3) = 0

f ′(x) < 0 for x < 3  f ′(x) > 0 for x < 2

f ′(3) does not exist.  f ′(2) does not exist.

f ′(x) > 0 for x > 3  f ′(x) < 0 for x > 2

f ″(x) < 0, x ≠ 3  f ″(x) > 0, x ≠ 2

71.  Think About It The figure shows the graph of f ″. Sketch 
a graph of f. (The answer is not unique.) To print an enlarged 
copy of the graph, go to MathGraphs.com.

6

4

2
3

5

5321−1 4

1

f ″

x

y     

d

 Figure for 71 Figure for 72

72.  Think About It Water is running into the vase shown in 
the figure at a constant rate.

 (a) Graph the depth d of water in the vase as a function of time.

 (b) Does the function have any extrema? Explain.

 (c) Interpret the inflection points of the graph of d.

73. Conjecture Consider the function f (x) = (x − 2)n.

 (a)  Use a graphing utility to graph f  for n = 1, 2, 3, and 4. 
Use the graphs to make a conjecture about the relationship 
between n and any inflection points of the graph of f.

 (b) Verify your conjecture in part (a).

74. Inflection Point Consider the function f (x) = 3√x.

 (a) Graph the function and identify the inflection point.

 (b) Does f ″ exist at the inflection point? Explain.

Finding a Cubic Function In Exercises 75 and 76, find a,
b, c, and d such that the cubic function

f (x) = ax3 + bx2 + cx + d

satisfies the given conditions.

75. Relative maximum: (3, 3)
 Relative minimum: (5, 1)
 Inflection point: (4, 2)
76. Relative maximum: (2, 4)
 Relative minimum: (4, 2)
 Inflection point: (3, 3)

77.  Aircraft Glide Path A small aircraft starts its descent from 
an altitude of 1 mile, 4 miles west of the runway (see figure).

−4 −3 −2 −1

1

x

y

 (a)  Find the cubic function f (x) = ax3 + bx2 + cx + d on 
the interval [−4, 0] that describes a smooth glide path for 
the landing.

 (b)  The function in part (a) models the glide path of the plane. 
When would the plane be descending at the greatest rate?

78.  Highway Design A section of highway connecting two 
 hillsides with grades of 6% and 4% is to be built between 
two points that are separated by a horizontal distance of 2000 
feet (see figure). At the point where the two hillsides come 
together, there is a 50-foot difference in elevation.

Highway

50 ft

y

x

A(−1000, 60)
B(1000, 90)

6% grade
4% grade

Not drawn to scale

 (a) Find the cubic function

f (x) = ax3 + bx2 + cx + d, −1000 ≤ x ≤ 1000

   that describes the section of highway connecting the 
hillsides. At points A and B, the slope of the model must 
match the grade of the hillside.

 (b) Use a graphing utility to graph the model.

 (c) Use a graphing utility to graph the derivative of the model.

 (d)  Determine the grade at the steepest part of the transitional 
section of the highway.

 FOR FURTHER INFORMATION For more information on 
this type of modeling, see the article “How Not to Land at Lake 
Tahoe!” by Richard Barshinger in The American Mathematical 
Monthly. To view this article, go to MathArticles.com.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



238 Chapter 4 Applications of Differentiation

79.  Average Cost A manufacturer has determined that the 
total cost C of operating a factory is

 C = 0.5x2 + 15x + 5000

  where x is the number of units produced. At what level of 
production will the average cost per unit be minimized? (The 
average cost per unit is C�x.)

80.  Specific Gravity A model for the specific gravity of 
water S is

 S =
5.755
108 T 3 −

8.521
106 T 2 +

6.540
105 T + 0.99987, 0 < T < 25

 where T is the water temperature in degrees Celsius.

 (a) Use the second derivative to determine the concavity of S.

 (b)  Use a computer algebra system to find the coordinates of 
the maximum value of the function.

 (c)  Use a graphing utility to graph the function over the specified 
domain. (Use a setting in which 0.996 ≤ S ≤ 1.001.)

 (d) Estimate the specific gravity of water when T = 20°.

81.  Sales Growth The annual sales S of a new product are 
given by

 S =
5000t2

8 + t2, 0 ≤ t ≤ 3

 where t is time in years.

 (a)  Complete the table. Then use it to estimate when the 
annual sales are increasing at the greatest rate.

 t 0.5 1 1.5 2 2.5 3

S

 (b)  Use a graphing utility to graph the function S. Then use the 
graph to estimate when the annual sales are increasing at 
the greatest rate.

 (c)  Find the exact time when the annual sales are increasing at 
the greatest rate.

82.  Modeling Data The average typing speeds S (in words 
per minute) of a typing student after t weeks of lessons are 
shown in the table.

 t 5 10 15 20 25 30

S 28 56 79 90 93 94

 A model for the data is

 S =
100t2

65 + t2, t > 0.

 (a) Use a graphing utility to plot the data and graph the model.

 (b)  Use the second derivative to determine the concavity of S. 
Compare the result with the graph in part (a).

 (c)  What is the sign of the first derivative for t > 0? By 
combining this information with the concavity of the 
model, what inferences can be made about the typing 
speed as t increases?

Linear and Quadratic Approximations In Exercises 
83–86, use a graphing utility to graph the function. Then graph 
the linear and quadratic approximations

P1(x) = f (a) + f ′(a)(x − a)

and

P2(x) = f (a) + f ′(a)(x − a) + 1
2 f ″(a)(x − a)2

in the same viewing window. Compare the values of f, P1, 
and P2 and their first derivatives at x = a. How do the 
approximations change as you move farther away from x = a?

 Function Value of a

83. f (x) = 2(sin x + cos x) a =
π
4

84. f (x) = 2(sin x + cos x) a = 0

85. f (x) = arctan x a = −1

86. f (x) =
√x

x − 1
 a = 2

87. Determining Concavity Use a graphing utility to graph

 y = x sin 
1
x
.

 Show that the graph is concave downward to the right of

 x =
1
π .

88.  Point of Inflection and Extrema Show that the point 
of inflection of

 f (x) = x(x − 6)2

 lies midway between the relative extrema of f.

True or False? In Exercises 89–92, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

89.  The graph of every cubic polynomial has precisely one point 
of inflection.

90. The graph of

 f (x) =
1
x

  is concave downward for x < 0 and concave upward for 
x > 0, and thus it has a point of inflection at x = 0.

91. If f ′(c) > 0, then f  is concave upward at x = c.

92.  If f ″(2) = 0, then the graph of f  must have a point of 
inflection at x = 2.

Proof In Exercises 93 and 94, let f  and g represent 
differentiable functions such that f ″ ≠ 0 and g ″ ≠ 0.

93.  Show that if f  and g are concave upward on the interval (a, b),
then f + g is also concave upward on (a, b).

94.  Prove that if f  and g are positive, increasing, and concave 
upward on the interval (a, b), then fg is also concave upward 
on (a, b).
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4.5 Limits at Infinity 239

4.5 Limits at Infinity

 Determine (finite) limits at infinity.
 Determine the horizontal asymptotes, if any, of the graph of a function.
 Determine infinite limits at infinity.

Limits at Infinity
This section discusses the “end behavior” of a function on an infinite interval.  Consider 
the graph of

f (x) =
3x2

x2 + 1

as shown in Figure 4.32. Graphically, you can see that f (x) appears to approach 3 as 
x increases without bound or decreases without bound. You can come to the same 
conclusions numerically, as shown in the table.

 

x decreases without bound. x increases without bound.

x −∞ → −100 −10 −1 0 1 10 100 →∞
f (x) 3 → 2.9997 2.9703 1.5 0 1.5 2.9703 2.9997 → 3

 
 

f (x) approaches 3. f (x) approaches 3.

The table suggests that f (x) approaches 3 as x increases without bound (x →∞). 
Similarly, f (x) approaches 3 as x decreases without bound (x → −∞). These limits at 
infinity are denoted by

lim
x→−∞

 f (x) = 3 Limit at negative infinity

and

lim
x→∞

 f (x) = 3. Limit at positive infinity

To say that a statement is true as x increases without bound means that for some 
(large) real number M, the statement is true for all x in the interval {x:  x > M}. The 
next definition uses this concept.

Definition of Limits at Infinity

Let L be a real number.

1. The statement lim
x→∞

 f (x) = L means that for each ε > 0 there exists an

 M > 0 such that ∣ f (x) − L∣ < ε whenever x > M.

2. The statement lim
x→−∞

 f (x) = L means that for each ε > 0 there exists an 

 N < 0 such that ∣ f (x) − L∣ < ε whenever x < N.

The definition of a limit at infinity is shown in Figure 4.33. In this figure, note that 
for a given positive number ε, there exists a positive number M such that, for x > M,  
the graph of f  will lie between the horizontal lines

y = L + ε and y = L − ε.

4.5 Limits at Infinity

x

L

M

ε
ε

lim f(x) = L
x→∞

y

f (x) is within ε units of L as x →∞.
Figure 4.33

x
−4 −3 −2 −1 1 2 3 4

4

2
f (x) → 3
as x → −∞

f(x) → 3
as x → ∞

y

f(x) = 3x2

x2 + 1

The limit of f (x) as x approaches −∞ 
or ∞ is 3.
Figure 4.32

remark The statement 
lim

x→−∞
 f (x) = L or lim

x→∞
 f (x) = L

means that the limit exists and 
the limit is equal to L.
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Horizontal Asymptotes
In Figure 4.33, the graph of f  approaches the line y = L as x increases without bound. 
The line y = L is called a horizontal asymptote of the graph of f.

Definition of a horizontal asymptote

The line y = L is a horizontal asymptote of the graph of f  when

lim
x→−∞

 f (x) = L or lim
x→∞

 f (x) = L.

Note that from this definition, it follows that the graph of a function of x can have 
at most two horizontal asymptotes—one to the right and one to the left.

Limits at infinity have many of the same properties of limits discussed in 
Section 2.3. For example, if lim

x→∞
 f (x) and lim

x→∞
 g (x) both exist, then

lim
x→∞

 [ f (x) + g(x)] = lim
x→∞

 f (x) + lim
x→∞

 g(x)

and

lim
x→∞

 [ f (x)g(x)] = [ lim
x→∞

 f (x)] [ lim
x→∞

 g(x)].
Similar properties hold for limits at −∞.

When evaluating limits at infinity, the next theorem is helpful.

theorem 4.10 Limits at Infinity

1. If r is a positive rational number and c is any real number, then

  lim
x→∞

 
c
xr = 0 and lim

x→−∞
 
c
xr = 0.

 The second limit is valid only if xr is defined when x < 0.

2. lim
x→−∞

 ex = 0 and lim
x→∞

 e−x = 0

A proof of the first part of this theorem is given in Appendix A.

 Finding Limits at Infinity

Find each limit.

a. lim
x→∞

 (5 −
2
x2)  b. lim

x→∞
 
3
ex

Solution

a.  lim
x→∞

 (5 −
2
x2) = lim

x→∞
5 − lim

x→∞
 
2
x2 Property of limits

  = 5 − 0  Apply Theorem 4.10.

  = 5

b.  lim
x→∞

 
3
ex = lim

x→∞
 3e−x

  = 3 lim
x→∞

 e−x Property of limits

  = 3(0)  Apply Theorem 4.10.

  = 0  

exploration
Use a graphing utility to graph

f (x) =
2x2 + 4x − 6
3x2 + 2x − 16

.

Describe all the important 
features of the graph. Can 
you find a single viewing 
window that shows all 
of these features clearly? 
Explain your reasoning.

What are the horizontal 
asymptotes of the graph? 
How far to the right do you 
have to move on the graph 
so that the graph is within 
0.001 unit of its horizontal 
asymptote? Explain your 
reasoning.
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 4.5 Limits at Infinity 241

 Finding a Limit at Infinity

Find the limit: lim
x→∞

 
2x − 1
x + 1

.

Solution Note that both the numerator and the denominator approach infinity as x 
approaches infinity.

 lim
x→∞

 (2x − 1) →∞

lim
x→∞

 
2x − 1
x + 1

 lim
x→∞

 (x + 1) →∞

This results in ∞�∞, an indeterminate form. To resolve this problem, you can 
divide both the numerator and the denominator by x. After dividing, the limit may be 
evaluated as shown.

 lim
x→∞

 
2x − 1
x + 1

= lim
x→∞

 

2x − 1
x

x + 1
x

 Divide numerator and denominator by x.

 = lim
x→∞

 
2 −

1
x

1 +
1
x

 Simplify.

 =
lim

x→∞
 2 − lim

x→∞
 
1
x

lim
x→∞

 1 + lim
x→∞

 
1
x

 Take limits of numerator and denominator.

 =
2 − 0
1 + 0

 Apply Theorem 4.10.

 = 2

So, the line y = 2 is a horizontal asymptote to the right. By taking the limit as x → −∞, 
you can see that y = 2 is also a horizontal asymptote to the left. The graph of the 
function is shown in Figure 4.34. 

technoLogy You can test the reasonableness of the limit found in Example 2 
by evaluating f (x) for a few large positive values of x. For instance,

f (100) ≈ 1.9703, f (1000) ≈ 1.9970, 

80
0

0

3

As x increases, the graph of f  moves 
closer and closer to the line y = 2.
Figure 4.35

and f (10,000) ≈ 1.9997.

 Another way to test the reasonableness of the  
limit is to use a graphing utility. For instance,  
in Figure 4.35, the graph of

f (x) =
2x − 1
x + 1

is shown with the horizontal line y = 2. Note  
that as x increases, the graph of f  moves closer  
and closer to its horizontal asymptote.

x
−5 −4 −3 −2

−1
1 2 3

6

5

4

3

1

y

f (x) = 2x − 1
x + 1

y = 2 is a horizontal asymptote.

Figure 4.34

remark When you 
encounter an indeterminate form 
such as the one in Example 2, 
you should divide the numerator 
and denominator by the highest 
power of x in the denominator.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



242 chapter 4 Applications of Differentiation

 a comparison of three rational Functions

See LarsonCalculus.com for an interactive version of this type of example.

Find each limit.

a. lim
x→∞

 
2x + 5
3x2 + 1

  b. lim
x→∞

 
2x2 + 5
3x2 + 1

  c. lim
x→∞

 
2x3 + 5
3x2 + 1

Solution In each case, attempting to evaluate the limit produces the indeterminate 
form ∞�∞.

a. Divide both the numerator and the denominator by x2.

lim
x→∞

 
2x + 5
3x2 + 1

= lim
x→∞

 
(2�x) + (5�x2)

3 + (1�x2) =
0 + 0
3 + 0

=
0
3

= 0

b. Divide both the numerator and the denominator by x2.

lim
x→∞

 
2x2 + 5
3x2 + 1

= lim
x→∞

 
2 + (5�x2)
3 + (1�x2) =

2 + 0
3 + 0

=
2
3

c. Divide both the numerator and the denominator by x2.

lim
x→∞

 
2x3 + 5
3x2 + 1

= lim
x→∞

 
2x + (5�x2)
3 + (1�x2) = ∞

3

  You can conclude that the limit does not exist because the numerator increases 
without bound while the denominator approaches 3. 

Example 3 suggests the guidelines below for finding limits at infinity of rational 
functions. Use these guidelines to check the results in Example 3.

GUIDELINES FOR FINDING LIMITS AT ±∞ OF RATIONAL 
FUNCTIONS

1.  If the degree of the numerator is less than the degree of the denominator, then 
the limit of the rational function is 0.

2.  If the degree of the numerator is equal to the degree of the denominator, then 
the limit of the rational function is the ratio of the leading coefficients.

3.  If the degree of the numerator is greater than the degree of the denominator, 
then the limit of the rational function does not exist.

The guidelines for finding limits at infinity of rational functions seem reasonable 
when you consider that for large values of x, the highest-power term of the rational 
function is the most “influential” in determining the limit. For instance,

lim
x→∞

 
1

x2 + 1

is 0 because the denominator overpowers the numerator as x increases or decreases 
without bound, as shown in Figure 4.36.

The function shown in Figure 4.36 is a special case of a type of curve studied by 
the Italian mathematician Maria Gaetana Agnesi. The general form of this function is 

f (x) =
8a3

x2 + 4a2 Witch of Agnesi

and, through a mistranslation of the Italian word vertéré, the curve has come to be 
known as the Witch of Agnesi. Agnesi’s work with this curve first appeared in a 
 comprehensive text on calculus that was published in 1748.

x

1

−2 −1 1 2

2

lim   f (x) = 0
x→−∞

lim  f (x) = 0
x→∞

f(x) =
x2 + 1

y

f  has a horizontal asymptote at y = 0.
Figure 4.36

MARIA GAETANA AGNESI
(1718–1799)

Agnesi was one of a handful of
women to receive credit for
significant contributions to 
mathematics before the 
twentieth century. In her 
early twenties, she wrote the 
first text that included both 
differential and integral calculus. 
By age 30, she was an honorary 
member of the faculty at the 
University of Bologna.
See LarsonCalculus.com to read 
more of this biography.
For more information on the 
contributions of women to 
mathematics, see the article 
“Why Women Succeed in 
Mathematics” by Mona Fabricant, 
Sylvia Svitak, and Patricia Clark 
Kenschaft in Mathematics 
Teacher. To view this article, 
go to MathArticles.com.

The Granger Collection, NYC
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 4.5 Limits at Infinity 243

In Figure 4.36, you can see that the function

f (x) =
1

x2 + 1

approaches the same horizontal asymptote to the right and to the left. This is always 
true of rational functions. Functions that are not rational, however, may approach 
different horizontal asymptotes to the right and to the left. A common example of such 
a function is the logistic function shown in the next example. (You will learn more 
about the logistic function in Section 6.4.)

 a Function with two horizontal asymptotes

Show that the logistic function

f (x) =
1

1 + e−x

has different horizontal asymptotes to the left and to the right.

Solution Begin by sketching a graph of the function. From Figure 4.37, it appears that

y = 0  and  y = 1

are horizontal asymptotes to the left and to the right, respectively. The table shows the 
same results numerically.

You can obtain the same results analytically, as follows.

 lim
x→∞

 
1

1 + e−x =
lim

x→∞ 1

lim
x→∞

 (1 + e−x)

 =
1

1 + 0

 = 1    y = 1 is a horizontal asymptote to the right.

For the horizontal asymptote to the left, note that as x → −∞ the denominator of

1
1 + e−x

approaches infinity. So, the quotient approaches 0 and thus the limit is 0. You can 
conclude that y = 0 is a horizontal asymptote to the left. 

technoLogy pItFaLL If you use a graphing utility to estimate a limit,  
be sure that you also confirm the estimate analytically—the graphs shown by a 
graphing utility can be misleading. For instance, Figure 4.38 shows one view of the 
graph of

y =
2x3 + 1000x2 + x

x3 + 1000x2 + x + 1000
.

From this view, one could be convinced that the graph has y = 1 as a horizontal 
asymptote. An analytical approach shows that the horizontal asymptote is actually 
y = 2. Confirm this by enlarging the viewing window on the graphing utility.

x
−1 21

2
y = 1,
horizontal
asymptote
to the right

y

y = 0,
horizontal
asymptote
to the left

f x( ) = 1
1 + e−x

Functions that are not rational may 
have different right and left horizontal 
asymptotes.
Figure 4.37

8

−1

−8

2

The horizontal asymptote appears to 
be the line y = 1, but it is actually the 
line y = 2.
Figure 4.38

x −10 −5 −2 −1 1 2 5 10

f (x) 0.000 0.007 0.119 0.269 0.731 0.881 0.993 1.000
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In Section 2.4, Example 7(c), you used the Squeeze Theorem to evaluate a limit 
involving a trigonometric function. The Squeeze Theorem is also valid for limits at 
infinity.

 Limits Involving trigonometric Functions

Find each limit.

a. lim
x→∞

 sin x  b. lim
x→∞

 
sin x

x

Solution

a.  As x approaches infinity, the sine function oscillates between 1 and −1. So, this 
limit does not exist.

b. Because −1 ≤ sin x ≤ 1, it follows that for x > 0,

−
1
x

≤ sin x
x

≤ 1
x

 where

lim
x→∞

 (−
1
x) = 0 and lim

x→∞
 
1
x

= 0.

 So, by the Squeeze Theorem, you obtain

lim
x→∞

 
sin x

x
= 0

 as shown in Figure 4.39.

 oxygen Level in a pond

Let f (t) measure the level of oxygen in a pond, where f (t) = 1 is the normal 
(unpolluted) level and the time t is measured in weeks. When t = 0, organic waste is 
dumped into the pond, and as the waste material oxidizes, the level of oxygen in the 
pond is

f (t) =
t2 − t + 1

t2 + 1
.

What percent of the normal level of oxygen exists in the pond after 1 week? After  
2 weeks? After 10 weeks? What is the limit as t approaches infinity?

Solution When t = 1, 2, and 10, the levels of oxygen are as shown.

 f (1) =
12 − 1 + 1

12 + 1
=

1
2

= 50% 1 week

 f (2) =
22 − 2 + 1

22 + 1
=

3
5

= 60% 2 weeks

 f (10) =
102 − 10 + 1

102 + 1
=

91
101

≈ 90.1% 10 weeks

To find the limit as t approaches infinity, you can use the guidelines on page 242, or 
you can divide the numerator and the denominator by t2 to obtain

lim
t→∞

 
t2 − t + 1

t2 + 1
= lim

t→∞
 
1 − (1�t) + (1�t2)

1 + (1�t2) =
1 − 0 + 0

1 + 0
= 1 = 100%.

See Figure 4.40. 

x

1

−1

π

y =

y = − 1
x

1
x

lim           = 0sin x
xx→∞

y

f(x) = sin x
x

As x increases without bound, f (x) 
approaches 0.
Figure 4.39

t

1.00

0.75

0.50

0.25

O
xy

ge
n 

le
ve

l

2 4 6 8 10

Weeks

(10, 0.9)

(1, 0.5)

(2, 0.6)

f (t)

f(t) = t2 − t + 1
t2 + 1

The level of oxygen in a pond 
approaches the normal level of 1 as  
t approaches ∞.
Figure 4.40
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Infinite Limits at Infinity
Many functions do not approach a finite limit as x increases (or decreases) without 
bound. For instance, no polynomial function has a finite limit at infinity. The next 
definition is used to describe the behavior of polynomial and other functions at infinity.

Definition of Infinite Limits at Infinity

Let f  be a function defined on the interval (a, ∞).

1. The statement lim
x→∞

 f (x) = ∞ means that for each positive number M, there

 is a corresponding number N > 0 such that f (x) > M whenever x > N.

2. The statement lim
x→∞

 f (x) = −∞ means that for each negative number M,

  there is a corresponding number N > 0 such that f (x) < M whenever x > N.

Similar definitions can be given for the statements

lim
x→−∞

 f (x) = ∞ and lim
x→−∞

 f (x) = −∞.

 Finding Infinite Limits at Infinity

Find each limit.

a. lim
x→∞

 x3  b. lim
x→−∞

 x3

Solution

a. As x increases without bound, x3 also increases without bound. So, you can write

lim
x→∞

 x3 = ∞.

b. As x decreases without bound, x3 also decreases without bound. So, you can write

lim
x→−∞

 x3 = −∞.

 The graph of f (x) = x3 in Figure 4.41 illustrates these two results. These results agree 
with the Leading Coefficient Test for polynomial functions as described in Section 1.3.

 Finding Infinite Limits at Infinity

Find each limit.

a. lim
x→∞

 
2x2 − 4x

x + 1
  b. lim

x→−∞
 
2x2 − 4x

x + 1

Solution One way to evaluate each of these limits is to use long division to rewrite 
the improper rational function as the sum of a polynomial and a rational function.

a. lim
x→∞

 
2x2 − 4x

x + 1
= lim

x→∞
 (2x − 6 +

6
x + 1) = ∞

b. lim
x→−∞

 
2x2 − 4x

x + 1
= lim

x→−∞
 (2x − 6 +

6
x + 1) = −∞

The statements above can be interpreted as saying that as x approaches ±∞, the 
function f (x) = (2x2 − 4x)�(x + 1) behaves like the function g(x) = 2x − 6. In 
Section 4.6, you will see that this is graphically described by saying that the line
y = 2x − 6 is a slant asymptote of the graph of f, as shown in Figure 4.42. 

remark Determining 
whether a function has an 
infinite limit at infinity is useful 
in analyzing the “end behavior” 
of its graph. You will see 
examples of this in Section 4.6 
on curve sketching. 

x

f(x) = x3

1−1

−3

−2

−1

1

2

3

2−2 3−3

y

Figure 4.41

x

y = 2x − 6

3−3

−6

−3

3

6

6−6 9 12−9−12

f(x) = 2x2 − 4x
x + 1

y

Figure 4.42
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4.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Writing Describe in your own words what each 

statement means.

 (a) lim
x→∞

 f (x) = −5

 (b) lim
x→−∞

 f (x) = 3

2.  horizontal asymptote What does it mean for the 
graph of a function to have a horizontal asymptote?

3.  horizontal asymptote A graph can have a 
maximum of how many horizontal asymptotes? Explain.

4.  Limits at Infinity In your own words, summarize 
the guidelines for finding limits at infinity of rational 
functions.

matching In Exercises 5–10, match the function with its 
graph using horizontal asymptotes as an aid. [The graphs are 
labeled (a), (b), (c), (d), (e), and (f).]

(a) 

x
−2 −1 1 2

−1

1

3

y  (b) 

x
−3 −1 1 2 3

−3

3

2

1

y

(c) 

x
−3 −2 −1 1 2 3

−3

3

1

y  (d) 

x
1 2 3

3

2

1

−1

−2

−3

y

(e) 

x

y

−2−4 2 4 6
−2

2

4

6

8

 (f ) 

x

y

−1−2−3 1 2 3

−2

1

3

4

2

 5. f (x) =
2x2

x2 + 2
  6. f (x) =

2x

√x2 + 2

 7. f (x) =
x

x2 + 2
  8. f (x) = 2 +

x2

x4 + 1

 9. f (x) =
4 sin x
x2 + 1

 10. f (x) =
4

1 + e−x

 Finding Limits at Infinity In Exercises 11 and 
12, find lim

x→∞
 h(x), if it exists.

11. f (x) = 5x3 − 3 12. f (x) = −4x2 + 2x − 5

 (a) h(x) =
f (x)
x2   (a) h(x) =

f (x)
x

 (b) h(x) =
f (x)
x3   (b) h(x) =

f (x)
x2

 (c) h(x) =
f (x)
x4   (c) h(x) =

f (x)
x3

 Finding Limits at Infinity In Exercises 13–16, 
find each limit, if it exists.

13. (a) lim
x→∞

 
x2 + 2
x3 − 1

 14. (a) lim
x→∞

 
3 − 2x
3x3 − 1

 (b) lim
x→∞

 
x2 + 2
x2 − 1

  (b) lim
x→∞

 
3 − 2x
3x − 1

 (c) lim
x→∞

 
x2 + 2
x − 1

  (c) lim
x→∞

 
3 − 2x2

3x − 1

15. (a) lim
x→∞

 
5 − 2x3�2

3x2 − 4
 16. (a) lim

x→∞
 

5x3�2

4x2 + 1

 (b) lim
x→∞

 
5 − 2x3�2

3x3�2 − 4
  (b) lim

x→∞
 

5x3�2

4x3�2 + 1

 (c) lim
x→∞

 
5 − 2x3�2

3x − 4
  (c) lim

x→∞
 

5x3�2

4√x + 1

 Finding a Limit In Exercises 17–42, find the 
limit, if it exists.

17. lim
x→∞

 (4 +
3
x) 18. lim

x→−∞
 (5

x
−

x
3)

19. lim
x→∞

 
7x + 6
9x − 4

 20. lim
x→−∞

 
4x2 + 5
x2 + 3

21. lim
x→−∞

 
2x2 + x

6x3 + 2x2 + x
 22. lim

x→∞
 

5x3 + 1
10x3 − 3x2 + 7

23. lim
x→−∞

 
−4

3 + 3e−2x 24. lim
x→∞

 
6

5 + 2e−4x

25. lim
x→−∞

 
x

√x2 − x
 26. lim

x→−∞
 

x

√x2 + 1

27. lim
x→−∞

 
2x + 1

√x2 − x
 28. lim

x→∞
 

5x2 + 2

√x2 + 3

29. lim
x→∞

 
√x2 − 1
2x − 1

 30. lim
x→−∞

 
√x4 − 1
x3 − 1

31. lim
x→∞

 
x + 1

(x2 + 1)1�3 32. lim
x→−∞

 
2x

(x6 − 1)1�3

33. lim
x→∞

 
1

2x + sin x
 34. lim

x→∞
 cos 

1
x

35. lim
x→∞

 
sin 2x

x
 36. lim

x→∞
 
x − cos x

x
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4.5 Limits at Infinity 247

37. lim
x→∞

 (2 − 5e−x) 38. lim
x→∞

 
8

4 − 10−x�2

39. lim
x→∞

 log10(1 + 10−x) 40. lim
x→∞

 (5
2

+ ln
x2 + 1

x2 )
41. lim

t→∞
 (8t−1 − arctan t) 42. lim

u→∞
 arcsec(u + 1)

Finding horizontal asymptotes Using technology
In Exercises 43–46, use a graphing utility to graph the function 
and identify any horizontal asymptotes.

43. f (x) = ∣x∣
x + 1

 44. f (x) =
5

3 + 6e−4x

45. f (x) =
3x

√x2 + 2
 46. f (x) =

√9x2 − 2
2x + 1

Finding a Limit In Exercises 47 and 48, find the limit. 
(Hint: Let x = 1�t and find the limit as t → 0+.)

47. lim
x→∞

 x sin 
1
x
 48. lim

x→∞
 x tan 

1
x

Finding a Limit In Exercises 49–52, find the limit. Use 
a graphing utility to verify your result. (Hint: Treat the 
expression as a fraction whose denominator is 1, and rationalize 
the numerator.)

49. lim
x→−∞

 (x + √x2 + 3) 50. lim
x→∞

 (x − √x2 + x)
51. lim

x→−∞
 (3x + √9x2 − x) 52. lim

x→∞
 (4x − √16x2 − x)

numerical, graphical, and analytic analysis In 
Exercises 53–56, use a graphing utility to complete the table 
and estimate the limit as x approaches infinity. Then use a 
graphing utility to graph the function and estimate the limit. 
Finally, find the limit analytically and compare your results 
with the estimates.

x 100 101 102 103 104 105 106

f (x)

53. f (x) = x − √x(x − 1) 54. f (x) = x2 − x√x(x − 1)

55. f (x) = x sin 
1
2x

 56. f (x) =
x + 1

x√x

58.  physics Newton’s First Law of Motion and Einstein’s 
Special Theory of Relativity differ concerning the behavior 
of a particle as its velocity approaches the speed of light c.
In the graph, functions N and E represent the velocity v, with 
respect to time t, of a particle accelerated by a constant force 
as predicted by Newton and Einstein, respectively. Write limit 
statements that describe these two theories.

t

v

N

E
c

eXpLoRInG ConCeptS
59.  Limits Explain the differences between limits at 

infinity and infinite limits.

60.  horizontal asymptote Can the graph of a function 
cross a horizontal asymptote? Explain.

61.   Using Symmetry to Find Limits If f  is a 
continuous function such that lim

x→∞
 f (x) = 5, find, if

 possible, lim
x→−∞

 f (x) for each specified condition.

 (a) The graph of f  is symmetric with respect to the y-axis.

 (b) The graph of f  is symmetric with respect to the origin.

 62.  hoW Do yoU See It? The graph shows 
the temperature T, in degrees Fahrenheit, of molten 
glass t seconds after it is removed from a kiln.

t

T

72

(0, 1700)

(a) Find lim
t→0+

 T. What does this limit represent?

(b) Find lim
t→∞

 T. What does this limit represent?

 62. 

63.  Learning theory In a group project in learning theory, a 
mathematical model for the proportion P of correct responses 
after n trials was found to be

P =
0.83

1 + e−0.2n.

(a) Use a graphing utility to graph P.

 (b)  Find the limiting proportion of correct responses as n
approaches infinity.

The efficiency (in percent) of an internal combustion engine is

Efficiency = 100[1 −
1

(v1�v2)c]
where v1�v2 is the ratio 
of the uncompressed 
gas to the compressed 
gas and c is a positive 
constant dependent on 
the engine design. Find 
the limit of the efficiency 
as the compression ratio 
approaches infinity.

57. engine efficiency

Straight 8 Photography/Shutterstock.com
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248 chapter 4 Applications of Differentiation

64.  modeling Data A heat probe is attached to the heat 
exchanger of a heating system. The temperature T (in degrees 
Celsius) is recorded t seconds after the furnace is started. The 
results for the first 2 minutes are recorded in the table.

 
t 0 15 30 45 60

T 25.2 36.9 45.5 51.4 56.0

t 75 90 105 120

T 59.6 62.0 64.0 65.2

 (a)  Use the regression capabilities of a graphing utility to find 
a model of the form T1 = at2 + bt + c for the data.

 (b) Use a graphing utility to graph T1.

 (c) A rational model for the data is

  T2 =
1451 + 86t

58 + t
.

  Use a graphing utility to graph T2.

 (d) Find lim
t→∞

 T2.

 (e)  Interpret the result in part (d) in the context of the problem. 
Is it possible to do this type of analysis using T1? Explain.

65. Using the Definition of Limits at Infinity The graph of

 f (x) =
2x2

x2 + 2

 is shown (see figure).

 (a) Find L = lim
x→∞

 f (x).
 (b) Determine x1 and x2 in terms of ε.

 (c)  Determine M, where M > 0, such that ∣ f (x) − L∣ < ε for 
x > M.

 (d)  Determine N, where N < 0, such that ∣ f (x) − L∣ < ε for 
x < N.

 

x

y

ε

x2 x1

f

Not drawn to scale

 

x

y

ε

x1x2

fε

Not drawn to scale

 Figure for 65 Figure for 66

66. Using the Definition of Limits at Infinity The graph of

 f (x) =
6x

√x2 + 2
 is shown (see figure).

 (a) Find L = lim
x→∞

 f (x) and K = lim
x→−∞

 f (x).
 (b) Determine x1 and x2 in terms of ε.

 (c)  Determine M, where M > 0, such that ∣ f (x) − L∣ < ε for 
x > M.

 (d)  Determine N, where N < 0, such that ∣ f (x) − K∣ < ε for 
x < N.

67. Using the Definition of Limits at Infinity Consider 

 lim
x→∞

 
3x

√x2 + 3
.

 (a)  Use the definition of limits at infinity to find the value of 
M that corresponds to ε = 0.5.

 (b)  Use the definition of limits at infinity to find the value of 
M that corresponds to ε = 0.1.

68. Using the Definition of Limits at Infinity Consider 

  lim
x→−∞

 
3x

√x2 + 3
.

  (a)  Use the definition of limits at infinity to find the value of 
N that corresponds to ε = 0.5.

  (b)  Use the definition of limits at infinity to find the value of 
N that corresponds to ε = 0.1.

proof In Exercises 69–72, use the definition of limits at  
infinity to prove the limit.

69. lim
x→∞

 
1
x2 = 0 70. lim

x→∞
 

2

√x
= 0

71. lim
x→−∞

 
1
x3 = 0

72. lim
x→−∞

 
1

x − 2
= 0

73.  Distance A line with slope m passes through the point 
(0, 4).

 (a)  Write the distance d between the line and the point (3, 1) 
as a function of m. (Hint: See Section 1.2, Exercise 77.)

 (b) Use a graphing utility to graph the equation in part (a).

 (c) Find lim
m→∞

 d(m) and lim
m→−∞

 d(m). Interpret the results

  geometrically.

74.  Distance A line with slope m passes through the point 
(0, −2).

 (a)  Write the distance d between the line and the point (4, 2) 
as a function of m. (Hint: See Section 1.2, Exercise 77.)

 (b) Use a graphing utility to graph the equation in part (a).

 (c) Find lim
m→∞

 d(m) and lim
m→−∞

 d(m). Interpret the results

  geometrically.

75. proof Prove that if

 p(x) = anxn + .  .  . + a1x + a0

 and

 q(x) = bmxm + .  .  . + b1x + b0

 where an ≠ 0 and bm ≠ 0, then

 lim
x→∞

 
p(x)
q(x) = {

0,
an

bm

,

±∞,

    n < m

    n = m .

    n > m

76.  proof Use the definition of infinite limits at infinity to 
prove that lim

x→∞
 x3 = ∞.
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4.6 a Summary of Curve Sketching

 Analyze and sketch the graph of a function.

Analyzing the Graph of a Function
It would be difficult to overstate the importance of using graphs in mathematics. 
Descartes’s introduction of analytic geometry contributed significantly to the rapid 
advances in calculus that began during the mid-seventeenth century. In the words of 
Lagrange, “As long as algebra and geometry traveled separate paths their advance was 
slow and their applications limited. But when these two sciences joined company, they 
drew from each other fresh vitality and thenceforth marched on at a rapid pace toward 
perfection.”

So far, you have studied several concepts that are useful in analyzing the graph of 
a function.

•	 x-intercepts and y-intercepts (Section 1.1)

•	 Symmetry	 (Section	1.1)

•	 Domain	and	range	 (Section	1.3)

•	 Continuity	 (Section	2.4)

•	 Vertical	asymptotes	 (Section	2.5)

•	 Differentiability	 (Section	3.1)

•	 Relative	extrema	 (Section	4.1)

•	 Increasing	and	decreasing	functions	 (Section	4.3)

•	 Concavity	 (Section	4.4)

•	 Points	of	inflection	 (Section	4.4)

•	 Horizontal	asymptotes	 (Section	4.5)

•	 Infinite	limits	at	infinity	 (Section	4.5)

When you are sketching the graph of a function, either by hand or with a graphing 
utility, remember that normally you cannot show the entire graph. The decision as to 
which part of the graph you choose to show is often crucial. For instance, which of the 
viewing	windows	in	Figure	4.43	better	represents	the	graph	of

f (x) = x3 − 25x2 + 74x − 20?

By seeing both views, it is clear that the second viewing window gives a more  complete 
representation of the graph. But would a third viewing window reveal other interesting 
portions of the graph? To answer this, you need to use calculus to interpret the first 
and second derivatives. To determine a good viewing window for a function, use these 
guidelines to analyze its graph.

GUIDELINES FOR ANALYZING THE GRAPH OF A FUNCTION

1. Determine the domain and range of the function.

2. Determine the intercepts, asymptotes, and symmetry of the graph.

3.  Locate the x-values for which f′(x) and f ″(x)	either	are	zero	or	do	not	exist.	
Use	the	results	to	determine	relative	extrema	and	points	of	inflection.

RemaRk In these guidelines, note the importance of algebra (as well as calculus) 
for solving the equations f (x) = 0, f′(x) = 0, and f ″(x) = 0.

5

−10

−2

40

Different viewing windows for the 
graph of f (x) = x3 − 25x2 + 74x − 20
Figure 4.43
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250 Chapter 4 Applications of Differentiation

 Sketching the Graph of a Rational Function

Analyze and sketch the graph of

f (x) =
2(x2 − 9)

x2 − 4
.

Solution
 Domain:	 All	real	numbers	except	x = ±2

 Range: (−∞, 2) ∪ [ 9
2, ∞)

 x-intercepts: (−3, 0), (3, 0)
 y-intercept: (0, 92)
 Vertical asymptotes: x = −2, x = 2

 Horizontal asymptote: y = 2

 Symmetry: With respect to y-axis

 First derivative: f′(x) =
20x

(x2 − 4)2

 Second derivative: f ″(x) =
−20(3x2 + 4)

(x2 − 4)3

 Critical number: x = 0

Possible points of inflection: None

 Test intervals: (−∞, −2), (−2, 0), (0, 2), (2, ∞)

The table shows how the test intervals are used to determine several characteristics of 
the graph. The graph of f 	is	shown	in	Figure	4.44.

f (x) f′(x) f ″(x) Characteristic	of	Graph

−∞ < x < −2 − − Decreasing, concave downward

x = −2 Undef. Undef. Undef. Vertical	asymptote

−2 < x < 0 − + Decreasing, concave upward

x = 0 9
2 0 + Relative	minimum

0 < x < 2 + + Increasing, concave upward

x = 2 Undef. Undef. Undef. Vertical	asymptote

2 < x < ∞ + − Increasing, concave downward

 

Be sure you understand all of the implications of creating a table such as that 
shown	in	Example	1.	By	using	calculus,	you	can	be sure that the graph has no relative 
extrema	or	points	of	inflection	other	than	those	shown	in	Figure	4.44.

teChnoloGy pitFall Without using the type of analysis outlined in 
Example	1,	it	is	easy	to	obtain	an	incomplete	view	of	the	basic	characteristics	of	a	
graph.	For	instance,	Figure	4.45	shows	a	view	of	the	graph	of

g(x) =
2(x2 − 9)(x − 20)
(x2 − 4)(x − 21) .

From this view, it appears that the graph of g is about the same as the graph of f  shown 
in	Figure	4.44.	The	graphs	of	these	two	functions,	however,	differ	significantly.	Try	
enlarging the viewing window to see the differences.

 For Further InFormatIon
For more information on the use 
of technol ogy to graph rational 
functions,	see	the	article	“Graphs	
of	Rational	Functions	for	Computer	
Assisted	Calculus”	by	Stan	Byrd	
and Terry Walters in The College 
Mathematics Journal. To view this 
article, go to MathArticles.com.

Using calculus, you can be certain that 
you have determined all characteristics 
of the graph of f.
Figure 4.44
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 4.6 A Summary of Curve Sketching 251

 Sketching the Graph of a Rational Function

Analyze and sketch the graph of f (x) =
x2 − 2x + 4

x − 2
.

Solution
 Domain:	 All	real	numbers	except	x = 2

 Range: (−∞, −2] ∪ [6, ∞)
 x-intercepts: None

 y-intercept: (0, −2)
 Vertical asymptote: x = 2

 Horizontal asymptotes: None

 Symmetry: None

 End behavior: lim
x→−∞

 f (x) = −∞, lim
x→∞

 f (x) = ∞

 First derivative: f′(x) =
x(x − 4)
(x − 2)2

 Second derivative: f ″(x) =
8

(x − 2)3

 Critical numbers: x = 0, x = 4

Possible points of inflection: None

 Test intervals: (−∞, 0), (0, 2), (2, 4), (4, ∞)

The analysis of the graph of f  is shown in the table, and the graph is shown in  
Figure	4.46.

f (x) f′(x) f ″(x) Characteristic	of	Graph

−∞ < x < 0 + − Increasing, concave downward

x = 0 −2 0 − Relative	maximum

0 < x < 2 − − Decreasing, concave downward

x = 2 Undef. Undef. Undef. Vertical	asymptote

2 < x < 4 − + Decreasing, concave upward

x = 4 6 0 + Relative	minimum

4 < x < ∞ + + Increasing, concave upward

 

Although	 the	 graph	 of	 the	 function	 in	 Example	 2	 has	 no	 horizontal	 asymptote,	
it does have a slant asymptote. The graph of a rational function (having no common 
 factors and whose denominator is of degree 1 or greater) has a slant asymptote when 
the	degree	of	 the	numerator	exceeds	 the	degree	of	 the	denominator	by	exactly	1.	To	
find the slant asymptote, use long division to rewrite the rational function as the sum of 
a first-degree polynomial (the slant asymptote) and another rational function.

 f (x) =
x2 − 2x + 4

x − 2
 Write original equation.

 = x +
4

x − 2
 Rewrite	using	long	division.

In	 Figure	 4.47,	 note	 that	 the	 graph	 of	 f  approaches the slant asymptote y = x as x 
approaches −∞ or ∞.

Figure 4.46

x
−2−4

−4

2

2

4

4

6

6

8

Relative
maximum

(4, 6)
Relative
minimum

V
er

tic
al

 a
sy

m
pt

ot
e:

 x
 =

 2

(0, −2)

f(x) = x
2 − 2x + 4

x − 2

y

A slant asymptote
Figure 4.47

8

6

4

642−4 −2

−4

2

x

V
er

tic
al

 a
sy

m
pt

ot
e:

 x
 =

 2

Slan
t a

sy
mpto

te:
 y 

= x

y

f(x) = x
2 − 2x + 4

x − 2

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



252 Chapter 4 Applications of Differentiation

 Sketching the Graph of a logistic Function

Analyze and sketch the graph of the logistic function f (x) =
1

1 + e−x.

Solution

 f′(x) =
e−x

(1 + e−x)2  Find first derivative.

  f ″(x) =
e−x(e−x − 1)
(1 + e−x)3  Find second derivative.

The graph has only one intercept, (0, 12). It has no vertical asymptotes, but it has two 
horizontal asymptotes: y = 1 (to the right) and y = 0 (to the left). The function has 
no critical numbers and one possible point of inflection (at x = 0). The domain of the  
function is all real numbers. The analysis of the graph of f  is shown in the table, and 
the	graph	is	shown	in	Figure	4.48.

f (x) f′(x) f ″(x) Characteristic	of	Graph

−∞ < x < 0 + + Increasing, concave upward

x = 0
1
2

+ 0 Point	of	inflection

0 < x < ∞ + − Increasing, concave downward

 Sketching the Graph of a Radical Function

Analyze and sketch the graph of f (x) = 2x5�3 − 5x4�3.

Solution

 f′(x) =
10
3

x1�3(x1�3 − 2) Find first derivative.

 f ″(x) =
20(x1�3 − 1)

9x2�3  Find second derivative.

The function has two intercepts: (0, 0) and (125
8 , 0). There are no horizontal or vertical 

asymptotes. The function has two critical numbers (x = 0 and x = 8) and two possible 
points of inflection (x = 0 and x = 1). The domain is all real numbers. The analysis of 
the graph of f 	is	shown	in	the	table,	and	the	graph	is	shown	in	Figure	4.49.

f (x) f′(x) f ″(x) Characteristic	of	Graph

−∞ < x < 0 + − Increasing, concave downward

x = 0 0 0 Undef. Relative	maximum

0 < x < 1 − − Decreasing, concave downward

x = 1 −3 − 0 Point	of	inflection

1 < x < 8 − + Decreasing, concave upward

x = 8 −16 0 + Relative	minimum

8 < x < ∞ + + Increasing, concave upward

 

Figure 4.49
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 4.6 A Summary of Curve Sketching 253

 Sketching the Graph of a polynomial Function

See LarsonCalculus.com for an interactive version of this type of example.

Analyze and sketch the graph of

f (x) = x4 − 12x3 + 48x2 − 64x.

Solution Begin by factoring to obtain

 f (x) = x4 − 12x3 + 48x2 − 64x

 = x(x − 4)3.

Then, using the factored form of f (x), you can perform the following analysis.

 Domain: All real numbers

 Range: [−27, ∞)
 x-intercepts: (0, 0), (4, 0)
 y-intercept: (0, 0)
 Vertical asymptotes: None

 Horizontal asymptotes: None

 Symmetry: None

 End behavior: lim
x→−∞

 f (x) = ∞, lim
x→∞

 f (x) = ∞
 First derivative: f′(x) = 4(x − 1)(x − 4)2

 Second derivative: f ″(x) = 12(x − 4)(x − 2)
 Critical numbers: x = 1, x = 4

Possible points of inflection: x = 2, x = 4

 Test intervals: (−∞, 1), (1, 2), (2, 4), (4, ∞)

The analysis of the graph of f  is shown in the table, and the graph is shown in Figure 
4.50(a).	Using	a	computer	algebra	system	such	as	Maple	[see	Figure	4.50(b)]	can	help	
you verify your analysis.

f (x) f′(x) f ″(x) Characteristic	of	Graph

−∞ < x < 1 − + Decreasing, concave upward

x = 1 −27 0 + Relative	minimum

1 < x < 2 + + Increasing, concave upward

x = 2 −16 + 0 Point	of	inflection

2 < x < 4 + − Increasing, concave downward

x = 4 0 0 0 Point	of	inflection

4 < x < ∞ + + Increasing, concave upward

 

The	 fourth-degree	polynomial	 function	 in	Example	5	has	one	 relative	minimum	
and	no	relative	maxima.	In	general,	a	polynomial	function	of	degree	n can have at most 
n − 1	relative	extrema	and	at most n − 2 points of inflection. Moreover,  polynomial 
functions of even degree must have at least	one	relative	extremum.

Remember	 from	 the	 Leading	Coefficient	 Test	 described	 in	 Section	 1.3	 that	 the	
“end behavior” of the graph of a polynomial function is determined by its leading 
	coefficient	 and	 its	degree.	For	 instance,	because	 the	polynomial	 in	Example	5	has	a	
positive leading coefficient, the graph rises to the right. Moreover, because the degree 
is even, the graph also rises to the left.
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254 Chapter 4 Applications of Differentiation

 Sketching the Graph of a trigonometric Function

Analyze and sketch the graph of f (x) = (cos x)�(1 + sin x).

Solution Because the function has a period of 2π, you can restrict the analysis of the 
graph to any interval of length 2π. For convenience, choose [−π�2, 3π�2].

 Domain:	 All	real	numbers	except	x =
3 + 4n

2
π

 Range: All real numbers

 Period: 2π

 x-intercept: (π2, 0)
 y-intercept: (0, 1)

 Vertical asymptotes: x = −
π
2

, x =
3π
2

 See	Remark	below.

 Horizontal asymptotes: None

 Symmetry: None

 First derivative: f′(x) = −
1

1 + sin x

 Second derivative: f ″(x) =
cos x

(1 + sin x)2

 Critical numbers: None

Possible points of inflection: x =
π
2

 Test intervals: (−
π
2

, 
π
2), (π2, 

3π
2 )

The analysis of the graph of f  on the interval [−π�2, 3π�2] is shown in the table, and 
the	graph	 is	 shown	 in	Figure	4.51(a).	Compare	 this	with	 the	graph	generated	by	 the	
computer algebra system Maple	in	Figure	4.51(b).

f (x) f′(x) f ″(x) Characteristic	of	Graph

x = −
π
2

Undef. Undef. Undef. Vertical	asymptote

−
π
2

< x <
π
2

− + Decreasing, concave upward

x =
π
2

0 − 0 Point	of	inflection

π
2

< x <
3π
2

− − Decreasing, concave downward

x =
3π
2

Undef. Undef. Undef. Vertical	asymptote

 

RemaRk By substituting −π�2 or 3π�2 into the function, you obtain the 
indeterminate form 0�0,	which	you	will	 study	 in	Section	5.6.	To	determine	 that	 the	
function has vertical asymptotes at these two values, rewrite f  as

f (x) =
cos x

1 + sin x
=

(cos x)(1 − sin x)
(1 + sin x)(1 − sin x) =

(cos x)(1 − sin x)
cos2 x

=
1 − sin x

cos x
.

In this form, it is clear that the graph of f  has vertical asymptotes at x = −π�2 and 3π�2.
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 analyzing an inverse trigonometric Graph

Analyze the graph of y = (arctan x)2.

Solution From the derivative

 y′ = 2 (arctan x)( 1
1 + x2)

 =
2 arctan x

1 + x2

you can see that the only critical number is x = 0. By the First Derivative Test, this 
value corresponds to a relative minimum at (0, 0). You can use the first derivative to 
conclude that the graph is decreasing on the interval (−∞, 0) and increasing on (0, ∞). 
From the second derivative

 y″ =
(1 + x2)( 2

1 + x2) − (2 arctan x)(2x)

(1 + x2)2

 =
2(1 − 2x arctan x)

(1 + x2)2

it follows that points of inflection occur when 

2x arctan x = 1. 

Using Newton’s Method, these points occur when x ≈ ±0.765. Finally, because

lim
x→±∞

 (arctan x)2 =
π2

4

it follows that the graph has a horizontal asymptote at 

y =
π2

4
.

The	graph	is	shown	in	Figure	4.52.

 analyzing a logarithmic Graph

Analyze the graph of f (x) = ln(x2 + 2x + 3).

Solution Note that the domain of f  is all real numbers. The graph of f  has no  
x-intercepts, but it does have a y-intercept at (0, ln 3). From the derivative

f′(x) =
2x + 2

x2 + 2x + 3

you can see that the only critical number is x = −1. By the First Derivative Test, this 
value corresponds to a relative minimum at (−1, ln 2). You can use the first derivative 
to conclude that the graph of f  is decreasing on the interval (−∞, −1) and increasing 
on (−1, ∞). From the second derivative

  f ″(x) =
(x2 + 2x + 3)(2) − (2x + 2)(2x + 2)

(x2 + 2x + 3)2

 =
−2(x2 + 2x − 1)

(x2 + 2x + 3)2

it follows that points of inflection occur when x2 + 2x − 1 = 0. Using the Quadratic 
Formula, these points occur when x = −1 ± √2. Also, the graph of f  is concave
downward  on the intervals (−∞, −1 − √2) and (−1 + √2, ∞), and concave upward
on (−1 − √2, −1 + √2). The graph of f 	is	shown	in	Figure	4.53.	
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256 Chapter 4 Applications of Differentiation

4.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  analyzing the Graph of a Function Name 

several of the concepts you have learned that are useful 
for analyzing the graph of a function.

2.  analyzing a Graph	 Explain	how	to	create	a	table	to	
determine characteristics of a graph. What elements do 
you include?

3.  Slant asymptote Which type of function can have 
a	slant	asymptote?	How	do	you	determine	the	equation	of	
a slant asymptote?

4.  polynomial	 What	 are	 the	 maximum	 numbers	 of	
relative	extrema	and	points	of	inflection	that	a	fifth-degree	
polynomial	can	have?	Explain.

 analyzing the Graph of a Function In 
exercises 5–34, analyze and sketch a graph of the 
function. Label any intercepts, relative extrema, 
points of inflection, and asymptotes. use a graphing 
utility to verify your results.

 5. y =
1

x − 2
− 3  6. y =

x
x2 + 1

 7. y =
x

1 − x
  8. y =

x − 4
x − 3

 9. y =
x + 1
x2 − 4

 10. y =
2x

9 − x2

11. y =
x2

x2 + 3
 12. y =

x2 + 1
x2 − 4

13. y = 3 +
2
x
 14. f (x) =

x − 3
x

15. f (x) = x +
32
x2  16. y =

4
x2

+ 1

17. y =
3x

x2 − 1
 18. f (x) =

x3

x2 − 9

19. y =
x2 − 6x + 12

x − 4
 20. y =

−x2 − 4x − 7
x + 3

21. y =
x3

√x2 − 4
 22. y =

x

√x2 − 4

23. y = x√4 − x 24. g(x) = x√9 − x2

25. y = 3x2�3 − 2x 26. y = (x + 1)2 − 3(x + 1)2�3

27. y = 2 − x − x3 28. y = −1
3 (x3 − 3x + 2)

29. y = 3x4 + 4x3

30. y = −2x4 + 3x2

31. xy2 = 9

32. x2y = 9

33. y = ∣2x − 3∣
34. y = ∣x2 − 6x + 5∣

 analyzing the Graph of a trigonometric 
Function In exercises 35–42, analyze and sketch 
a graph of the function over the given interval. 
Label any intercepts, relative extrema, points of 
inflection, and asymptotes. use a graphing utility 
to verify your results.

 Function Interval

35. f (x) = 2x − 4 sin x 0 ≤ x ≤ 2π

36. f (x) = −x + 2 cos x 0 ≤ x ≤ 2π

37. y = sin x − 1
18 sin 3x 0 ≤ x ≤ 2π

38. y = 2(x − 2) + cot x 0 < x < π

39. y = 2(csc x + sec x) 0 < x <
π
2

40. y = sec2 
πx
8

− 2 tan 
πx
8

− 1 −3 < x < 3

41. g(x) = x tan x −
3π
2

< x <
3π
2

42. g(x) = x cot x −2π < x < 2π

 analyzing the Graph of a transcendental 
Function In exercises 43–54, analyze and sketch 
a graph of the function. Label any intercepts, relative 
extrema, points of inflection, and asymptotes. use 
a graphing utility to verify your results.

43. f (x) = e3x(2 − x) 44. f (x) = −2 + e3x(4 − 2x)

45. g(t) =
10

1 + 4e−t 46. h(x) =
8

2 + 3e−x�2

47. y = (x − 1) ln(x − 1) 48. y = 1
24 x3 − ln x

49. g(x) = 6 arcsin[(x − 2
2 )2

]
50. h(x) = 7 arctan(x + 1) − ln(x2 + 2x + 2)

51. f (x) =
x

3x−3

52. g(t) = (5 − t)5t

53. g(x) = log4(x − x2)
54. f (x) = log2∣x2 − 4x∣
analyzing the Graph of a Function Using technology  
In exercises 55–62, use a computer algebra system to analyze 
and graph the function. Identify any relative extrema, points 
of inflection, and asymptotes.

55. f (x) =
20x

x2 + 1
−

1
x

56. f (x) =
−2x

√x2 + 7

57. y = cos x − 1
4 cos 2x, 0 ≤ x ≤ 2π

58. y = 2x − tan x, −
π
2

< x <
π
2
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59. y =
x
2

+ ln 
x

x + 3
 60. y =

3x
2

(1 + 4e−x�3)

61. f (x) = 2 + (x2 − 3)e−x

62. f (x) =
10 ln x
x2√x

identifying Graphs In exercises 63 and 64, the graphs of 
f, f ′, and f ″ are shown on the same set of coordinate axes. 
Identify each graph. explain your reasoning. to print an 
enlarged copy of the graph, go to MathGraphs.com.

63. 

x
1 2

−1
−1−2

−2

y  64. 

x
2 4−2−4

−4

4

y

 Graphical Reasoning In exercises 65–68, use 
the graph of f ′ to sketch a graph of f  and the 
graph of f ″. to print an enlarged copy of the 
graph, go to MathGraphs.com.

65. 

x
−4 −3 1 3 4

4
3
2
1

y

f ′

 66. 

x
−8 −4 4 8 12 16

20

16

12

8

4

f ′

y

67. 

x
−9 −6 3 6

3

2

1

−2

−3

f ′

y  68. 

x
−3 −2 −1 1 2 3

3

2

1

−3

f ′

y

(Submitted by Bill Fox, Moberly Area Community College, 
Moberly, MO)

69. Graphical Reasoning	 Consider	the	function

 f (x) =
cos2 πx

√x2 + 1
, 0 < x < 4.

 (a)  Use a computer algebra system to graph the function and 
use	the	graph	to	approximate	the	critical	numbers	visually.

 (b)  Use a computer algebra system to find f ′	and	approximate	
the critical numbers. Are the results the same as the visual 
approximation	in	part	(a)?	Explain.

70. Graphical Reasoning	 Consider	the	function

 f (x) = tan(sin πx).

 (a) Use a graphing utility to graph the function.

 (b) Identify any symmetry of the graph.

 (c) Is the function periodic? If so, what is the period?

	 (d)	 Identify	any	extrema	on	(−1, 1).
 (e)  Use a graphing utility to determine the concavity of the 

graph on (0, 1).
71.  Conjecture Use a graphing utility to graph f  and g in the 

same viewing window and determine which is increasing at 
the faster rate for “large” values of x. What can you conclude 
about the rate of growth of the natural logarithmic function?

 (a) f (x) = ln x, g(x) = √x

 (b) f (x) = ln x, g(x) = 4√x

72.  Comparing Functions Let f  be a function that is  
positive and differentiable on the entire real number line and 
let g(x) = ln f (x).

 (a) When g is increasing, must f 	be	increasing?	Explain.

 (b)  When the graph of f  is concave upward, must the graph of 
g	be	concave	upward?	Explain.

eXpLoring ConCepts
73.  Sketching a Graph Sketch a graph of a 

differentiable function f  such that x = 2 is the only 
critical number, f ′(x) < 0 on (−∞, 2), f ′(x) > 0 on 
(2, ∞), lim

x→−∞
 f (x) = 6, and lim

x→∞
 f (x) = 6.

74.  points of inflection Is it possible to sketch a graph 
of	a	function	that	satisfies	the	conditions	of	Exercise	73	
and has no	points	of	inflection?	Explain.

75.  Using a Derivative Let f ′(t) < 0 for all t in the 
interval (2, 8).	Explain	why	 f (3) > f (5).

76.  Using a Derivative Let f (0) = 3 and 2 ≤ f ′(x) ≤ 4 
for all x in the interval [−5, 5]. Determine the greatest 
and least possible values of f (2).

77.  a Function and its Derivative The graph of a 
function f  is shown below. To print an enlarged copy of 
the graph, go to MathGraphs.com.

x
−4 −2 2 4

−2

2

4

6

f

y

 (a) Sketch f ′.

 (b) Use the graph to estimate lim
x→∞

 f (x) and lim
x→∞

 f ′(x).
	 (c)	 Explain	the	answers	you	gave	in	part	(b).
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 78.  hoW Do yoU See it? The graph of f  is 
shown in the figure.

x

6

6

4

42

−4

−2

−6

−6

y

f

(a)  For which values of x is f ′(x)	zero?	Positive?	
Negative? What do these values mean?

(b)  For which values of x is f ″(x)	zero?	Positive?	
Negative? What do these values mean?

(c)  On what open interval is f ′ an increasing 
function?

(d)  For which value of x is f ′(x) minimum? For this 
value of x, how does the rate of change of f  
compare with the rates of change of f  for other 
values of x?	Explain.

 78.  

horizontal and Vertical asymptotes In exercises 
79–82, use a graphing utility to graph the function. use the 
graph to determine whether it is possible for the graph of 
a function to cross its horizontal asymptote. Do you think 
it is possible for the graph of a function to cross its vertical 
asymptote? Why or why not?

79. f (x) =
4(x − 1)2

x2 − 4x + 5
 80. g(x) =

3x4 − 5x + 3
x4 + 1

81. h(x) =
sin 2x

x
 82. f (x) =

cos 3x
4x

examining a Function In exercises 83 and 84, use a 
graphing utility to graph the function. explain why there is 
no vertical asymptote when a superficial examination of the 
function may indicate that there should be one.

83. h(x) =
6 − 2x
3 − x

 84. g(x) =
x2 + x − 2

x − 1

Slant asymptote In exercises 85–90, use a graphing 
utility to graph the function and determine the slant asymptote 
of the graph analytically. Zoom out repeatedly and describe 
how the graph on the display appears to change. Why does 
this occur?

85. f (x) = −
x2 − 3x − 1

x − 2
 86. g(x) =

2x2 − 8x − 15
x − 5

87. f (x) =
2x3

x2 + 1
 88. h(x) =

−x3 + x2 + 4
x2

89. f (x) =
x3 − 3x2 + 2

x(x − 3)  90. f (x) = −
x3 − 2x2 + 2

2x2

91.  investigation Let P(x0, y0) be an arbitrary point on the 
graph of f  that f ′(x0) ≠ 0,	as	shown	in	the	figure.	Verify	each	
statement.

x
O A B C

f

P(x0, y0)

y

 (a) The x-intercept of the tangent line is

(x0 −
f (x0)
f ′(x0)

, 0).

 (b) The y-intercept of the tangent line is

(0, f (x0) − x0 f ′(x0)).

 (c) The x-intercept of the normal line is

(x0 + f (x0) f ′(x0), 0).

   (The normal line at a point is perpendicular to the tangent 
line at the point.)

 (d) The y-intercept of the normal line is

(0, y0 +
x0

f ′(x0)).

 (e) ∣BC∣ = ∣ f (x0)
f ′(x0) ∣

 (f ) ∣PC∣ = ∣ f (x0)√1 + [ f ′(x0)]2

f ′(x0) ∣
 (g) ∣AB∣ = ∣ f (x0) f ′(x0)∣
 (h) ∣AP∣ = ∣ f (x0)∣√1 + [ f ′(x0)]2

92.  Graphical Reasoning Identify the real numbers x0, x1,
x2, x3, and x4 in the figure such that each of the following 
is true.

xx0 x1 x2 x3 x4

f

y

 (a) f ′(x) = 0

 (b) f ″(x) = 0

 (c) f ′(x)	does	not	exist.
 (d) f 	has	a	relative	maximum.

 (e) f  has a point of inflection.
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4.6 A Summary of Curve Sketching 259

think about it In exercises 93–96, create a function whose 
graph has the given characteristics. (there is more than one 
correct answer.)

 93. Vertical	asymptote:	 x = 3

	 	 Horizontal	asymptote:	 y = 0

94. Vertical	asymptote:	 x = −5

	 	 Horizontal	asymptote:	 None

 95. Vertical	asymptote:	 x = 3

  Slant asymptote: y = 3x + 2

 96. Vertical	asymptote:	 x = 2

  Slant asymptote: y = −x

true or False? In exercises 97–100, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

 97.  If f ′(x) > 0 for all real numbers x, then f  increases without 
bound.

 98.  If f ″(x) < 0 for all real numbers x, then f  decreases without 
bound.

 99. Every rational function has a slant asymptote.

100. 	Every	polynomial	function	has	an	absolute	maximum	and	an	
absolute minimum on (−∞, ∞).

101.  Graphical Reasoning The graph of the first derivative 
of a function f  on the interval [−7, 5] is shown. Use the 
graph to answer each question.

  (a) On what interval(s) is f  decreasing?

  (b) On what interval(s) is the graph of f  concave downward?

  (c) At what x-value(s) does f 	have	relative	extrema?

  (d)  At what x-value(s) does the graph of f  have a point of 
inflection?

  

x

y

−4−6−8 2 4 6−2

2

4

6

8

10

f ′

 

x

y

−2−4 2 4
−8

−16

8

16

24

f ′

 Figure for 101 Figure for 102

102.  Graphical Reasoning The graph of the first derivative 
of a function f  on the interval [−4, 2] is shown. Use the 
graph to answer each question.

  (a) On what interval(s) is f  increasing?

  (b) On what interval(s) is the graph of f  concave upward?

  (c) At what x-value(s) does f 	have	relative	extrema?

  (d)  At what x-value(s) does the graph of f  have a point of 
inflection?

103. Graphical Reasoning	 Consider	the	function

f (x) =
ax

(x − b)2.

   Determine the effect on the graph of f  as a and b are changed. 
Consider	 cases	 where	 a and b are both positive or both 
negative and cases where a and b have opposite signs.

104. Graphical Reasoning	 Consider	the	function

  f (x) =
1
2

(ax)2 − ax, a ≠ 0.

	 	 (a)	 	Determine	the	changes	(if	any)	in	the	intercepts,	extrema,	
and concavity of the graph of f  when a is varied.

  (b)  In the same viewing window, use a graphing utility to 
graph the function for four different values of a.

Slant asymptotes In exercises 105 and 106, the graph 
of the function has two slant asymptotes. Identify each slant 
asymptote. then graph the function and its asymptotes.

105. y = √4 + 16x2 106. y = √x2 + 6x

107. investigation	 Consider	the	function

  f (x) =
2xn

x4 + 1

  for nonnegative integer values of n.

  (a)  Discuss the relationship between the value of n and the 
symmetry of the graph.

  (b)  For which values of n will the x-axis	be	 the	horizontal	
asymptote?

  (c)  For which value of n will y = 2 be the horizontal 
asymptote?

  (d) What is the asymptote of the graph when n = 5?

  (e)  Use a graphing utility to graph f  for the indicated values 
of n in the table. Use the graph to determine the number 
of	extrema	M and the number of inflection points N of 
the graph.

n 0 1 2 3 4 5

M

N

pUtnAM eXAM ChALLenge
108.  Let f (x) be defined for a ≤ x ≤ b. Assuming 

appropriate properties of continuity and derivability, 
prove for a < x < b that

  

f (x) − f (a)
x − a

−
f (b) − f (a)

b − a
x − b

=
1
2

f ″(ε),

  where ε is some number between a and b.
This	problem	was	composed	by	the	Committee	on	the	Putnam	Prize	Competition.
© The Mathematical Association of America. All rights reserved.
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260 Chapter 4 Applications of Differentiation

 Solve applied minimum and maximum problems.

Applied Minimum and Maximum Problems
One of the most common applications of calculus involves the determination of 
minimum and maximum values. Consider how frequently you hear or read terms such as 
greatest profit, least cost, least time, greatest voltage, optimum size, least size, greatest 
strength, and greatest distance. Before outlining a general problem-solving strategy for 
such problems, consider the next example.

 Finding Maximum Volume

A manufacturer wants to design an open box having a square base and a surface area 
of 108 square inches, as shown in Figure 4.54. What dimensions will produce a box 
with maximum volume?

Solution Because the box has a square base, its volume is

V = x2h. Primary equation

This equation is called the primary equation because it gives a formula for the  
quantity to be optimized. The surface area of the box is

 S = (area of base) + (area of four sides)
 108 = x2 + 4xh. Secondary equation

Because V is to be maximized, you want to write V as a function of just one variable. 
To do this, you can solve the equation x2 + 4xh = 108 for h in terms of x to obtain 
h = (108 − x2)�(4x). Substituting into the primary equation produces

 V = x2h Function of two variables

 = x2(108 − x2

4x ) Substitute for h.

 = 27x −
x3

4
. Function of one variable

Before finding which x-value will yield a maximum value of V, you should determine 
the feasible domain. That is, what values of x make sense in this problem? You know 
that V ≥ 0. You also know that x must be nonnegative and that the area of the base 
(A = x2) is at most 108. So, the feasible domain is

0 ≤ x ≤ √108. Feasible domain

To maximize V, find its critical numbers on the interval (0, √108).

 
dV
dx

= 27 −
3x2

4
 Differentiate with respect to x.

 27 −
3x2

4
= 0 Set derivative equal to 0.

 3x2 = 108 Simplify.

 x = ±6 Critical numbers

So, the critical numbers are x = ±6. You do not need to consider x = −6 because it 
is outside the domain. Evaluating V at the critical number x = 6 and at the endpoints 
of the domain produces V(0) = 0, V(6) = 108, and V(√108) = 0. So, V is maximum 
when x = 6, and the dimensions of the box are 6 inches by 6 inches by 3 inches. 

teChnology You can  
verify your answer in Example 1 
by using a graphing utility to  
graph the volume function

V = 27x −
x3

4
.

Use a viewing window in which 
0 ≤ x ≤ √108 ≈ 10.4 and 
0 ≤ y ≤ 120, and use the  
maximum or trace feature to  
determine the value of x that 
produces a maximum volume.

Open box with square base: 
S = x2 + 4xh = 108
Figure 4.54

x
x

h
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4.7 Optimization Problems 261

In Example 1, you should realize that there are infinitely many open boxes having 
108 square inches of surface area. To begin solving the problem, you might ask 
yourself which basic shape would seem to yield a maximum volume. Should the box 
be tall, squat, or nearly cubical?

You might even try calculating a few volumes, as shown in Figure 4.55, to 
determine whether you can get a better feeling for what the optimum dimensions should 
be. Remember that you are not ready to begin solving a problem until you have clearly 
identified what the problem is.

1
43 × 3 × 8

Volume = 741
4

   

3
44 × 4 × 5

Volume = 92    

3
205 × 5 × 4

Volume = 1033
4

6 × 6 × 3

Volume = 108    

8 × 8 × 13
8

Volume = 88

 Which box has the greatest volume?
 Figure 4.55

Example 1 illustrates the following guidelines for solving applied minimum and 
maximum problems.

GUIDELINES FOR SOLVING APPLIED MINIMUM AND 
MAXIMUM PROBLEMS

1.  Identify all given quantities and all quantities to be determined. If possible, 
make a sketch.

2.  Write a primary equation for the quantity that is to be maximized 
or minimized. (A review of several useful formulas from geometry is 
presented on the formula card inside the back cover.)

3.  Reduce the primary equation to one having a single independent variable. 
This may involve the use of secondary equations relating the independent 
variables of the primary equation.

4.  Determine the feasible domain of the primary equation. That is, determine 
the values for which the stated problem makes sense.

5.  Determine the desired maximum or minimum value by the calculus 
techniques discussed in Sections 4.1 through 4.4.

ReMARK For Step 5, recall that to determine the maximum or minimum value of 
a continuous function f  on a closed interval, you should compare the values of f  at its 
critical numbers with the values of f  at the endpoints of the interval.
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 Finding Minimum Distance

See LarsonCalculus.com for an interactive version of this type of example.

Which points on the graph of y = 4 − x2 are closest to the point (0, 2)?

Solution Figure 4.56 shows that there are two points at a minimum distance from 
the point (0, 2). The distance between the point (0, 2) and a point (x, y) on the graph of 
y = 4 − x2 is

d = √(x − 0)2 + (y − 2)2. Primary equation

Using the secondary equation y = 4 − x2, you can rewrite the primary equation as

 d = √x2 + (4 − x2 − 2)2

 = √x4 − 3x2 + 4.

Because d is smallest when the expression inside the radical is smallest, you need only 
find the critical numbers of f (x) = x4 − 3x2 + 4. Note that the domain of f  is the 
entire real number line. So, there are no endpoints of the domain to consider. Moreover, 
the derivative of f

 f′(x) = 4x3 − 6x

 = 2x(2x2 − 3)

is zero when

x = 0, √3
2

, −√3
2

.

Testing these critical numbers using the First Derivative Test verifies that x = 0 yields 
a relative maximum, whereas both x = √3�2 and x = −√3�2 yield a minimum 
distance. So, the closest points are (√3�2, 5�2) and (−√3�2, 5�2).

 Finding Minimum Area

A rectangular page is to contain 24 square inches of print. The margins at the top and 
bottom of the page are to be 11

2 inches, and the margins on the left and right are to be 
1 inch (see Figure 4.57). What should the dimensions of the page be so that the least 
amount of paper is used?

Solution Let A be the area to be minimized.

A = (x + 3)(y + 2) Primary equation

The printed area inside the margins is

24 = xy. Secondary equation

Solving this equation for y produces y = 24�x. Substituting into the primary equation 
produces

A = (x + 3)(24
x

+ 2) = 30 + 2x +
72
x

. Function of one variable

Because x must be positive, you are interested only in values of A for x > 0. To find 
the critical numbers, differentiate with respect to x

dA
dx

= 2 −
72
x2

and note that the derivative is zero when x2 = 36, or x = ±6. So, the critical numbers 
are x = ±6. You do not have to consider x = −6 because it is outside the domain. The 
First Derivative Test confirms that A is a minimum when x = 6. So, y = 24

6 = 4 and 
the dimensions of the page should be x + 3 = 9 inches by y + 2 = 6 inches. 

The quantity to be minimized is  
distance: d = √(x − 0)2 + (y − 2)2.
Figure 4.56

3

1

1−1
x

d (x, y)

(0, 2)

y = 4 − x2

y

The quantity to be minimized is area: 
A = (x + 3)( y + 2).
Figure 4.57

Newton, Sir Isaac (1643-1727), English mathematician and physicist, who brought the
scienti�c revolution of the 17th century to its climax and established the principal outlines
of the system of natural science that has since dominated Western thought. In mathematics,
he was the �rst person to develop the calculus. In optics, he established the heterogeneity
of light and the periodicity of certain phenomena. In mechanics, his three laws of motion
became  the  foundation  of  modern  dynamics,  and  from  them  he  derived  the  law  of
universal gravitation.

Newton was born on January 4, 1643, at W oolsthorpe, near Grantham in Lincolnshire.
When he was three years old, his widowed mother remarried, leaving him to be reared by
her mother. Eventually, his mother, by then widowed a second time, was persuaded to
send him to grammar school in Grantham; then, in the summer of 1661, he was sent to
Trinity College, University of Cambridge.

After receiving his bachelor's degree in 1665, and after an intermission of nearly two
years caused by the plague, Newton stayed on at Trinity, which elected him to a
fellowship in 1667; he took his master's degree in 1668. Meanwhile, he had largely
ignored the established curriculum of the university to pursue his own interests:
mathematics and natural philosophy. Proceeding entirely on his own, Newton investigated
the latest developments in 17th-century mathematics and the new natural philosophy that
treated  nature  as  a  complicated  machine.  Almost  immediately, he  made  fundamental
discoveries that laid the foundation of his career in science.
The Fluxional Method

Newton's �rst achievement came in mathematics. He generalized the earlier methods
that were being used to draw tangents to curves (similar to differentiation) and to calculate
areas under curves (similar to integration), recognized that the two procedures were inverse
operations, and—joining them in what he called the �uxional method—developed in the
autumn of 1666 what is now known as the calculus. The calculus was a new and powerful
instrument that carried modern mathematics above the level of Greek geometry. Although
Newton was its inventor, he did not introduce it into European mathematics. Always
morbidly fearful of publication and criticism, he kept his discovery to himself, although
enough was known of his abilities to effect his appointment in 1669 as Lucasian Professor
of Mathematics at the University of Cambridge. In 1675 the German mathematician
Gottfried Wilhelm Leibniz arrived independently at virtually the same method, which he
called the differential calculus.  Leibniz proceeded to publish his method, and the world of
mathematics not only learned it from him but also accepted his name for it and his
notation. Newton himself did not publish any detailed exposition of his �uxional method
until 1704.
Optics

Optics was another of Newton's early interests. In trying to explain how phenomena of
colors arise, he arrived at the idea that sunlight is a heterogeneous mixture of different
rays—each of which provokes the sensation of a different color—and that re�ections and
refractions cause colors to appear by separating the mixture into its components. He
devised an experimental demonstration of this theory, one of the great early exhibitions of
the power of experimental investigation in science. His measurement of the rings re�ected
from  a  thin  �lm  of  air  con�ned  between  a  lens  and  a  sheet  of  glass  was  the  �rst
demonstration of periodicity in optical phenomena. In 1672 Newton sent a brief
exposition of his theory of colors to the Royal Society in London. Its appearance in the
Philosophical  Transactions led  to  a  number  of  criticisms  that  con�rmed  his  fear  of
publication, and he subsequently withdrew as much as possible into the solitude of his
Cambridge study. He did not publish his full Opticks until 1704.

x

y

1 in.1
2

1 in.1
2

1 in. 1 in.
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 Finding Minimum length

Two posts, one 12 feet high and the other 28 feet high, stand 30 feet apart. They are to 
be stayed by two wires, attached to a single stake, running from ground level to the top 
of each post. Where should the stake be placed to use the least amount of wire?

Solution Let W  be the wire length to be 
minimized. Using the figure at the right, you 
can write

W = y + z. Primary equation

In this problem, rather than solving for y in 
terms of z (or vice versa), you can solve for 
both y and z in terms of a third variable x, 
as shown in the figure at the right. From the 
Pythagorean Theorem, you obtain

 x2 + 122 = y2

 (30 − x)2 + 282 = z2

which implies that

y = √x2 + 144

z = √x2 − 60x + 1684.

So, you can rewrite the primary equation as

 W = y + z

 = √x2 + 144 + √x2 − 60x + 1684, 0 ≤ x ≤ 30.

Differentiating W  with respect to x yields

dW
dx

=
x

√x2 + 144
+

x − 30

√x2 − 60x + 1684
.

By letting dW�dx = 0, you obtain

 
x

√x2 + 144
+

x − 30

√x2 − 60x + 1684
= 0

 
x

√x2 + 144
=

30 − x

√x2 − 60x + 1684
 x√x2 − 60x + 1684 = (30 − x)√x2 + 144

 x2(x2 − 60x + 1684) = (30 − x)2(x2 + 144)
 x4 − 60x3 + 1684x2 = x4 − 60x3 + 1044x2 − 8640x + 129,600

 640x2 + 8640x − 129,600 = 0

 320(x − 9)(2x + 45) = 0

 x = 9, −22.5.

Because x = −22.5 is not in the domain and

W(0) ≈ 53.04, W(9) = 50, and W(30) ≈ 60.31

you can conclude that the wires should be staked at 9 feet from the 12-foot pole. 

teChnology From Example 4, you can see that applied optimization 
problems can involve a lot of algebra. If you have access to a graphing utility, you 
can confirm that x = 9 yields a minimum value of W  by graphing

W = √x2 + 144 + √x2 − 60x + 1684

as shown in Figure 4.58.

The quantity to be minimized is length. 
From the diagram, you can see that x 
varies between 0 and 30.

12 ft
y

28 ft
z

30 − xx

W = y + z

You can confirm the minimum value  
of W with a graphing utility.
Figure 4.58

30
45

0

60

Minimum
X=9 Y=50
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264 Chapter 4 Applications of Differentiation

In each of the first four examples, the extreme value occurred at a critical number. 
Although this happens often, remember that an extreme value can also occur at an 
endpoint of an interval, as shown in Example 5.

 An endpoint Maximum

Four feet of wire is to be used to form a square and a circle. How much of the wire 
should be used for the square and how much should be used for the circle to enclose 
the maximum total area?

Solution The total area (see Figure 4.59) is

 A = (area of square) + (area of circle)
A = x2 + πr2. Primary equation

Because the total length of wire is 4 feet, you obtain

4 = (perimeter of square) + (circumference of circle)
 4 = 4x + 2πr. Secondary equation

So, r = 2(1 − x)�π, and by substituting into the primary equation you have

A = x2 + π[2(1 − x)
π ]

2

 = x2 +
4(1 − x)2

π

 =
1
π (πx2 + 4 − 8x + 4x2)

 =
1
π [(π + 4)x2 − 8x + 4].

The feasible domain is 0 ≤ x ≤ 1, restricted by the square’s perimeter. Because

dA
dx

=
2(π + 4)x − 8

π

the only critical number in (0, 1) is x = 4�(π + 4) ≈ 0.56. So, using

A(0) ≈ 1.27, A(0.56) ≈ 0.56, and A(1) = 1

you can conclude that the maximum area occurs when x = 0. That is, all the wire is 
used for the circle. 

Before doing the section exercises, review the primary equations developed in 
Examples 1–5. As applications go, these five examples are fairly simple, and yet the 
resulting primary equations are quite complicated.

 V = 27x −
x3

4
 Example 1

 d = √x4 − 3x2 + 4 Example 2

 A = 30 + 2x +
72
x

 Example 3

 W = √x2 + 144 + √x2 − 60x + 1684 Example 4

 A =
1
π [(π + 4)x2 − 8x + 4] Example 5

You must expect that real-life applications often involve equations that are at least as 
complicated as these five. Remember that one of the main goals of this course is to 
learn to use calculus to analyze equations that initially seem formidable.

The quantity to be maximized is area: 
A = x2 + πr2.
Figure 4.59

4 feet

?
Perimeter: 4x

Area: x2

Area:   r2

x

Circumference: 2  r

r

π

π

x

exploration
What would the answer 
be if Example 5 asked for 
the dimensions needed to 
enclose the minimum total 
area?
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 4.7 Optimization Problems 265

 Maximizing an Angle

See LarsonCalculus.com for an interactive version of this type of example.

A photographer is taking a picture of a 4-foot painting hung in an art gallery. The camera 
lens is 1 foot below the lower edge of the painting, as shown in Figure 4.60. How far 
should the camera be from the painting to maximize the angle subtended by the camera 
lens?

Solution In Figure 4.60, let β be the angle to be maximized.

β = θ − α Primary equation

From Figure 4.60, you can see that cot θ =
x
5

 and cot α =
x
1

. Therefore, θ = arccot 
x
5and α = arccot x. So,

β = arccot 
x
5

− arccot x.

Differentiating β with respect to x produces

 
dβ
dx

=
−1�5

1 + (x2�25) −
−1

1 + x2

 =
−5

25 + x2 +
1

1 + x2

 =
4(5 − x2)

(25 + x2)(1 + x2).

Because dβ�dx = 0 when x = √5, you can conclude from the First Derivative Test 
that this distance yields a maximum value of β. So, the distance is x ≈ 2.236 feet and 
the angle is β ≈ 0.7297 radian ≈ 41.81°.

 Finding a Maximum Revenue

The demand function for a product is modeled by

p = 56e−0.000012x Demand function

where p is the price per unit (in dollars) and x is the number of units. What price will 
yield a maximum revenue?

Solution The revenue function is given by

R = xp. Revenue function

Substituting for p (from the demand function) produces

R = 56xe−0.000012x. Primary equation

The rate of change of revenue R with respect to the number of units sold x is called the 
marginal revenue and is given by

dR
dx

= 56x(e−0.000012x)(−0.000012) + e−0.000012x(56).

Setting the marginal revenue equal to zero, 

56x(e−0.000012x)(−0.000012) + e−0.000012x(56) = 0

and solving for x yields x ≈ 83,333 units. From this, you can conclude that the 
maximum revenue occurs when the price is

p = 56e−0.000012(83,333) = $20.60.

So, a price of $20.60 will yield a maximum revenue (see Figure 4.61). 

α
β θ

1 ft

4 ft

x

Not drawn to scale

The camera should be 2.236 feet from 
the painting to maximize the angle β.
Figure 4.60

500,000
0

2,000,000

0

Maximum
revenue 

Figure 4.61
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266 Chapter 4 Applications of Differentiation

4.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Writing In your own words, describe primary equation, 

secondary equation, and feasible domain.

2.  optimization Problems In your own words, 
describe the guidelines for solving applied minimum and 
maximum problems.

3.  numerical, graphical, and Analytic Analysis Find 
two positive numbers whose sum is 110 and whose product is 
a maximum.

 (a)  Analytically complete six rows of a table such as the one 
below. (The first two rows are shown.) Use the table to 
guess the maximum product.

 First Number, x Second Number Product, P

10 110 − 10 10(110 − 10) = 1000

20 110 − 20 20(110 − 20) = 1800

 (b) Write the product P as a function of x.

 (c)  Use calculus to find the critical number of the function in 
part (b). Then find the two numbers.

 (d)  Use a graphing utility to graph the function in part (b) and 
verify the solution from the graph.

4.  numerical, graphical, and Analytic Analysis An 
open box of maximum volume is to be made from a square 
piece of material, 24 inches on a side, by cutting equal squares 
from the corners and turning up the sides (see figure).

24 − 2x

24
 −

 2
x

xx

x

x

 (a)  Analytically complete six rows of a table such as the one 
below. (The first two rows are shown.) Use the table to 
guess the maximum volume.

 
Height, x Length and Width Volume, V

1 24 − 2(1) 1[24 − 2(1)]2 = 484

2 24 − 2(2) 2[24 − 2(2)]2 = 800

 (b) Write the volume V as a function of x.

 (c)  Use calculus to find the critical number of the function in 
part (b). Then find the maximum volume.

 (d)  Use a graphing utility to graph the function in part (b) and 
verify the maximum volume from the graph.

 Finding numbers In Exercises 5–10, find 
two positive numbers that satisfy the given 
requirements.

 5. The sum is S and the product is a maximum.

 6. The product is 185 and the sum is a minimum.

 7.  The product is 147 and the sum of the first number plus three 
times the second number is a minimum.

 8.  The sum of the first number squared and the second number is 
54 and the product is a maximum.

 9.  The sum of the first number and twice the second number is 
108 and the product is a maximum.

10.  The sum of the first number cubed and the second number is 
500 and the product is a maximum.

 Maximum Area In Exercises 11 and 12, find 
the length and width of a rectangle that has the 
given perimeter and a maximum area.

11. Perimeter: 80 meters 12. Perimeter: P units

 Minimum Perimeter In Exercises 13 and 14, 
find the length and width of a rectangle that has 
the given area and a minimum perimeter.

13. Area: 49 square feet 14. Area: A square centimeters

 Minimum Distance In Exercises 15 and 16, 
find the points on the graph of the function that are 
closest to the given point.

15. y = x2, (0, 3) 16. y = x2 − 2, (0, −1)

17.  Minimum Area A rectangular poster is to contain 
648 square inches of print. The margins at the top and bottom 
of the poster are to be 2 inches, and the margins on the left 
and right are to be 1 inch. What should the dimensions of the 
poster be so that the least amount of poster is used?

18.   Minimum Area A rectangular page is to contain  
36 square inches of print. The margins on each side are to be 
11

2 inches. Find the dimensions of the page such that the least 
amount of paper is used.

19.  Minimum length A farmer plans to fence a rectangular 
pasture adjacent to a river (see figure). The pasture must 
contain 405,000 square meters in order to provide enough 
grass for the herd. No fencing is needed along the river. What 
dimensions will require the least amount of fencing?

y y

x
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 4.7 Optimization Problems 267

20.  Maximum Volume A rectangular solid (with a square 
base) has a surface area of 337.5 square centimeters. Find the 
dimensions that will result in a solid with maximum volume.

21.   Maximum Area A Norman window is constructed by 
adjoining a semicircle to the top of an ordinary rectangular 
window (see figure). Find the dimensions of a Norman 
window of maximum area when the total perimeter is 16 feet.

y

x

22.   Maximum Area A rectangle is bounded by the x- and  
y-axes and the graph of y = (6 − x)�2 (see figure). What 
length and width should the rectangle have so that its area is 
a maximum?

2
y = 6 − x

x

1

−1
1

2

2 3

5

5

4

4 6

(x, y)

y   

x

1

1

2

2

3

3

4

4

(x, 0)

(1, 2)

(0, y)

y

 Figure for 22 Figure for 23

23.  Minimum length and Minimum Area A right 
triangle is formed in the first quadrant by the x- and y-axes and 
a line through the point (1, 2) (see figure).

 (a) Write the length L of the hypotenuse as a function of x.

 (b)  Use a graphing utility to approximate x graphically such 
that the length of the hypotenuse is a minimum.

 (c)  Find the vertices of the triangle such that its area is a 
minimum.

24.   Maximum Area Find the area of the largest isosceles 
triangle that can be inscribed in a circle of radius 6 (see figure).

 (a)  Solve by writing the area as a function of h.

 (b) Solve by writing the area as a function of α.

 (c) Identify the type of triangle of maximum area.

h
6

6
α

  
y =     25 − x2

x
−4 −2 42

6

(x, y)

y

 Figure for 24 Figure for 25

25.   Maximum Area A rectangle is bounded by the x-axis and 
the semicircle

 y = √25 − x2

  (see figure). What length and width should the rectangle have 
so that its area is a maximum?

26.  Maximum Area Find the dimensions of the largest 
rectangle that can be inscribed in a semicircle of radius r (see 
Exercise 25).

27.  numerical, graphical, and Analytic Analysis An 
exercise room consists of a rectangle with a semicircle on each 
end. A 200-meter running track runs around the outside of  
the room.

 (a)  Draw a figure to represent the problem. Let x and y represent 
the length and width of the rectangle, respectively.

 (b)  Analytically complete six rows of a table such as the one 
below. (The first two rows are shown.) Use the table to 
guess the maximum area of the rectangular region.

Length, x Width, y Area, xy

10
2
π (100 − 10) (10) 2

π (100 − 10) ≈ 573

20
2
π (100 − 20) (20) 2

π (100 − 20) ≈ 1019

 (c)  Write the area A of the rectangular region as a function of x.

 (d)  Use calculus to find the critical number of the function in 
part (c). Then find the maximum area and the dimensions 
that yield the maximum area.

 (e)  Use a graphing utility to graph the function in part (c) and 
verify the maximum area from the graph.

28.  numerical, graphical, and Analytic Analysis A 
right circular cylinder is designed to hold 22 cubic inches of a 
soft drink (approximately 12 fluid ounces).

 (a)  Analytically complete six rows of a table such as the one 
below. (The first two rows are shown.)

Radius, r Height Surface Area, S

0.2
22

π(0.2)2 2π(0.2)[0.2 +
22

π(0.2)2] ≈ 220.3

0.4
22

π(0.4)2 2π(0.4)[0.4 +
22

π(0.4)2] ≈ 111.0

 (b)  Use a graphing utility to generate additional rows of the 
table. Use the table to estimate the minimum surface area.

 (c) Write the surface area S as a function of r.

 (d)  Use calculus to find the critical number of the function 
in part (c). Then find the minimum surface area and the 
dimensions that yield the minimum surface area.

 (e)  Use a graphing utility to graph the function in part (c) and 
verify the minimum surface area from the graph.
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268 Chapter 4 Applications of Differentiation

29.  Maximum Volume A rectangular package to be sent by 
a postal service can have a maximum combined length and 
girth (perimeter of a cross section) of 108 inches (see figure). 
Find the dimensions of the package of maximum volume that 
can be sent. (Assume the cross section is square.)

x

y

x

30.   Maximum Volume Rework Exercise 29 for a cylindrical 
package. (The cross section is circular.)

eXpLoRInG ConCeptS
31.  Surface Area and Volume A shampoo bottle is 

a right circular cylinder. Because the surface area of the 
bottle does not change when it is squeezed, is it true that 
the volume remains the same? Explain.

32.  Area and Perimeter The perimeter of a rectangle 
is 20 feet. Of all possible dimensions, the maximum 
area is 25 square feet when its length and width are both 
5 feet. Are there dimensions that yield a minimum area? 
Explain.

33.  Minimum Surface Area A solid is formed by adjoining 
two hemispheres to the ends of a right circular cylinder. The 
total volume of the solid is 14 cubic centimeters. Find the 
radius of the cylinder that produces the minimum surface area.

34.   Minimum Cost An industrial tank of the shape described 
in Exercise 33 must have a volume of 4000 cubic feet. 
The hemispherical ends cost twice as much per square foot 
of surface area as the sides. Find the dimensions that will 
minimize cost.

35.   Minimum Area The sum of the perimeters of an 
equilateral triangle and a square is 10. Find the dimensions of 
the triangle and the square that produce a minimum total area.

36.  Maximum Area Twenty feet of wire is to be used to form 
two figures. In each of the following cases, how much wire 
should be used for each figure so that the total enclosed area is 
maximum?

 (a) Equilateral triangle and square

 (b) Square and regular pentagon

 (c) Regular pentagon and regular hexagon

 (d) Regular hexagon and circle

  What can you conclude from this pattern? {Hint: The 
area of a regular polygon with n sides of length x is 
A = (n�4)[cot(π�n)]x2.}

37.  Beam Strength A wooden beam has a rectangular cross 
section of height h and width w (see figure). The strength S of 
the beam is directly proportional to the width and the square 
of the height. What are the dimensions of the strongest beam 
that can be cut from a round log of diameter 20 inches? (Hint: 
S = kh2w, where k is the proportionality constant.)

20

w

h

  

x

(0, h)

(0, y)

(x, 0)(−x, 0)

y

 Figure for 37 Figure for 38

38.  Minimum length Two factories are located at the 
coordinates (−x, 0) and (x, 0), and their power supply is at 
(0, h), as shown in the figure. Find y such that the total length 
of power line from the power supply to the factories is a 
minimum.

40.  Illumination A light source is located over the center of a 
circular table of diameter 4 feet (see figure). Find the height h
of the light source such that the illumination I at the perimeter 
of the table is maximum when

I =
k sin α

s2

  where s is the slant height, α is the angle at which the light 
strikes the table, and k is a constant.

h
s

4 ft

α α

 

x

1

3 − x

2θ

1θ

Q

2 α

 Figure for 40 Figure for 41

41.  Minimum time A man is in a boat 2 miles from the 
nearest point on the coast. He is traveling to a point Q, located 
3 miles down the coast and 1 mile inland (see figure). (a) The 
man rows at 2 miles per hour and walks at 4 miles per hour. 
Toward what point on the coast should he row in order to 
reach point Q in the least time? (b) The man rows at v1 miles 
per hour and walks at v2 miles per hour. Let θ1 and θ2 be the 
magnitudes of the angles. Show that the man will reach point 
Q in the least time when (sin θ1)�v1 = (sin θ2)�v2.

 An offshore oil well is 
2 kilometers off the 
coast. The refinery is 
4 kilometers down the 
coast. Laying pipe in 
the ocean is twice as 
expensive as laying it 
on land. What path 
should the pipe follow 
in order to minimize 
the cost?

39. Minimum Cost

Kanok Sulaiman/Shutterstock.com
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42.  Population growth Fifty elk are introduced into a game 
preserve. It is estimated that their population will increase 
according to the model p(t) = 250�(1 + 4e−t�3), where t is 
measured in years. At what rate is the population increasing 
when t = 2? After how many years is the population increasing 
most rapidly?

43. Minimum Distance Sketch the graph of

f (x) = 2 − 2 sin x

 on the interval [0, π�2].
 (a)  Find the distance from the origin to the y-intercept and the 

distance from the origin to the x-intercept.

 (b)  Write the distance d from the origin to a point on the graph 
of f  as a function of x.

 (c)  Use calculus to find the value of x that minimizes the 
function d on the interval [0, π�2]. What is the minimum 
distance? Use a graphing utility to verify your results.

   (Submitted by Tim Chapell, Penn Valley Community 
College, Kansas City, MO)

44.  Minimum time When light waves traveling in a 
transparent medium strike the surface of a second transparent 
medium, they change direction. This change of direction is 
called refraction and is defined by Snell’s Law of Refraction,

 
sin θ1

v1
=

sin θ2

v2

  where θ1 and θ2 are the magnitudes of the angles shown in the 
figure and v1 and v2 are the velocities of light in the two media. 
Show that this problem is equivalent to that in Exercise 41(b), 
and that light waves traveling from P to Q follow the path of 
minimum time.

x

d1

a − x

2θ

1θ

Q

d2

Medium 1

Medium 2

P

45.  Maximum Volume A sector with central angle θ is cut 
from a circle of radius 12 inches (see figure), and the edges 
of the sector are brought together to form a cone. Find the 
magnitude of θ such that the volume of the cone is a maximum.

12 in.

12 in.
θ

   

x
1

1

2

3

4

4

5 6c
c + x

y

f (x) = 10xe−x

Figure for 45 Figure for 46

46.  Area Perform the following steps to find the maximum area 
of the rectangle shown in the figure.

 (a) Solve for c in the equation f (c) = f (c + x).
 (b)  Use the result in part (a) to write the area A as a function 

of x. [Hint: A = x f (c)]
 (c)  Use a graphing utility to graph the area function. Use the 

graph to approximate the dimensions of the rectangle of 
maximum area. Determine the required area.

 (d)  Use a graphing utility to graph the expression for c found 
in part (a). Use the graph to approximate

  lim
x→0+

 c  and  lim
x→∞

 c.

   Use this result to describe the changes in the dimensions 
and position of the rectangle for 0 < x < ∞.

47.  Maximum Profit Assume that the amount of money 
deposited in a bank is proportional to the square of the interest 
rate the bank pays on this money. Furthermore, the bank can 
reinvest this money at 8%. Find the interest rate the bank 
should pay to maximize profit. (Use the simple interest formula.)

 48.  hoW Do yoU See It? The graph shows 
the profit P (in thousands of dollars) of a 
company in terms of its advertising cost x (in 
thousands of dollars).
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(a)  Estimate the interval on which the profit is 
increasing.

(b)  Estimate the interval on which the profit is 
decreasing.

(c)  Estimate the amount of money the company 
should spend on advertising in order to yield a 
maximum profit.

(d)  The point of diminishing returns is the point at which 
the rate of growth of the profit function begins to 
decline. Estimate the point of diminishing returns.

 48.  

49. Maximum Rate Verify that the function

 y =
L

1 + ae−x�b,  a > 0, b > 0, L > 0

 increases at the maximum rate when y = L�2.

50.  Area Find the area of the largest rectangle that can be 
inscribed under the curve y = e−x2 in the first and second  
quadrants.
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Minimum Distance In Exercises 51–53, consider a fuel 
distribution center located at the origin of the rectangular 
coordinate system (units in miles; see figures). The center 
supplies three factories with coordinates (4, 1), (5, 6), and 
(10, 3). A trunk line will run from the distribution center along 
the line y = mx, and feeder lines will run to the three factories. 
The objective is to find m such that the lengths of the feeder 
lines are minimized.

51.  Minimize the sum of the squares of the lengths of the vertical 
feeder lines (see figure) given by

 S1 = (4m − 1)2 + (5m − 6)2 + (10m − 3)2.

   Find the equation of the trunk line by this method and then 
determine the sum of the lengths of the feeder lines.

52.  Minimize the sum of the absolute values of the lengths of the 
vertical feeder lines (see figure) given by

 S2 = ∣4m − 1∣ + ∣5m − 6∣ + ∣10m − 3∣.
  Find the equation of the trunk line by this method and 

then determine the sum of the lengths of the feeder lines. 
(Hint: Use a graphing utility to graph the function S2 and 
approximate the required critical number.)

x
(4, 1)

(10, 3)

(5, 6)

(4, 4m)
(5, 5m)

(10, 10m)

y = mx

8

6

4

2

2 4 6 8 10

y  

x
(4, 1)

(10, 3)

(5, 6)
8

6

4

2

2 4 6 8 10

y

y = mx

Figure for 51 and 52 Figure for 53

53.  Minimize the sum of the lengths of the perpendicular feeder 
lines (see figure above and Exercise 77 in Section 1.2) from 
the trunk line to the factories given by

S3 = ∣4m − 1∣
√m2 + 1

+ ∣5m − 6∣
√m2 + 1

+ ∣10m − 3∣
√m2 + 1

.

  Find the equation of the trunk line by this method and then 
determine the sum of the lengths of the feeder lines. (Hint: Use 
a graphing utility to graph the function S3 and approximate the 
required critical number.)

54.  Maximum Area Consider 
a symmetric cross inscribed in a 
circle of radius r (see figure).

 (a)  Write the area A of the 
cross as a function of x 
and find the value of x that 
maximizes the area.

 (b)  Write the area A of the cross 
as a function of θ and find the value of θ that maximizes 
the area.

 (c)  Show that the critical numbers of parts (a) and (b) yield the 
same maximum area. What is that area?

55.  Minimum Distance Find the point on the graph of the 
equation 

16x = y2

 that is closest to the point (6, 0).

56.  Minimum Distance Find the point on the graph of the 
function

x = √10y

  that is closest to the point (0, 4). (Hint: Consider the domain 
of the function.)

pUtnAM eXAM ChALLenGe
57.  Find, with explanation, the maximum value of 

f (x) = x3 − 3x on the set of all real numbers x satisfying 
x4 + 36 ≤ 13x2.

58. Find the minimum value of

(x + 1�x)6 − (x6 + 1�x6) − 2
(x + 1�x)3 + (x3 + 1�x3)  for x > 0.

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

xrx

θ

y

A woman is at point A on the shore of a circular lake of radius 
2 kilometers (see figure). She wants to walk around the lake to 
point B and then swim to point C in the least amount of time. 
Point C lies on the diameter through point A. Assume that she can 
walk at v1 kilometers per hour and swim at v2 kilometers per hour, 
and that 0 ≤ θ ≤ π.

2 km

θ
A

B

C

(a)  Find the distance walked from point A to point B in terms of θ.

(b)  Find the distance swam from point B to point C in terms of θ.

(c)  Write the function f (θ) that represents the total time to move 
from point A to point C.

(d)  Find f ′(θ).
(e)  If v1 = 5 and v2 = 2, approximate the critical number(s) of f.

Does the critical number(s) correspond to a relative maximum 
or a relative minimum? Where should point B be located in 
order to minimize the time for the trip from point A to point C?
Explain.

(f )  Repeat part (e) for v1 = 3 and v2 = 2.

Minimum time
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4.8 Differentials

 Understand the concept of a tangent line approximation.
 Compare the value of the differential, dy, with the actual change in y, Δy.
 Estimate a propagated error using a differential.
 Find the differential of a function using differentiation formulas.

Tangent Line Approximations
Newton’s Method (see Section 3.8) is an example of the use of a tangent line to 
approximate the graph of a function. In this section, you will study other situations in 
which the graph of a function can be approximated by a straight line.

To begin, consider a function f  that is differentiable at c. The equation for the 
 tangent line at the point (c, f (c)) is

 y − f (c) = f′(c)(x − c)

y = f (c) + f ′(c)(x − c)

and is called the tangent line approximation (or linear approximation) of f  at c. 
Because c is a constant, y is a linear function of x. Moreover, by restricting the values 
of x to those sufficiently close to c, the values of y can be used as approximations (to 
any desired degree of accuracy) of the values of the function f. In other words, as x
approaches c, the limit of y is f (c).

 Using a Tangent Line Approximation

See LarsonCalculus.com for an interactive version of this type of example.

Find the tangent line approximation of f (x) = 1 + sin x at the point (0, 1). Then use 
a table to compare the y-values of the linear function with those of f (x) on an open 
interval containing x = 0.

Solution The derivative of f  is

f′(x) = cos x. First derivative

So, the equation of the tangent line to the graph of f  at the point (0, 1) is

 y = f (0) + f′(0)(x − 0)
 y = 1 + (1)(x − 0)
 y = 1 + x. Tangent line approximation

The table compares the values of y given by this linear approximation with the values 
of f (x) near x = 0. Notice that the closer x is to 0, the better the approximation. This 
conclusion is reinforced by the graph shown in Figure 4.62.

x −0.5 −0.1 −0.01 0 0.01 0.1 0.5

f (x) = 1 + sin x 0.521 0.9002 0.9900002 1 1.0099998 1.0998 1.479

y = 1 + x 0.5 0.9 0.99 1 1.01 1.1 1.5

 

remArk Be sure you see that this linear approximation of f (x) = 1 + sin x 
depends on the point of tangency. At a different point on the graph of f, you would 
obtain a different tangent line approximation.

The tangent line approximation of f  at 
the point (0, 1)
Figure 4.62

Tangent line

πππ
244

−

−1

1

2

f(x) = 1 + sin x

x

y

exploration
Tangent Line Approximation
Use a graphing utility to 
graph f (x) = x2. In the same 
viewing window, graph the 
tangent line to the graph 
of f  at the point (1, 1). 
Zoom in twice on the point 
of tangency. Does your 
graphing utility distinguish 
between the two graphs? Use 
the trace feature to compare 
the two graphs. As the
x-values get closer to 1, 
what can you say about the 
y-values? 
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Differentials
When the tangent line to the graph of f  at the point (c, f (c))

y = f (c) + f′(c)(x − c) Tangent line at (c, f (c))

is used as an approximation of the graph of f, the quantity x − c is called the change 
in x, and is denoted by ∆x, as shown in Figure 4.63. When ∆x is small, the change in 
y (denoted by ∆y) can be approximated as shown.

 ∆y = f (c + ∆x) − f (c) Actual change in y

 ≈ f′(c)∆x Approximate change in y

For such an approximation, the quantity ∆x is traditionally denoted by dx and is 
called the differential of x. The expression f′(x) dx is denoted by dy and is called the 
differential of y.

Definition of Differentials

Let y = f (x) represent a function that is differentiable on an open interval 
containing x. The differential of x (denoted by dx) is any nonzero real number. 
The differential of y (denoted by dy) is

dy = f′(x) dx.

In many types of applications, the differential of y can be used as an approximation 
of the change in y. That is,

∆y ≈ dy  or  ∆y ≈ f′(x) dx.

 Comparing Δy and dy

Let y = x2. Find dy when x = 1 and dx = 0.01. Compare this value with ∆y for x = 1
and ∆x = 0.01.

Solution Because y = f (x) = x2, you have f′(x) = 2x, and the differential dy is

dy = f′(x) dx = f′(1)(0.01) = 2(0.01) = 0.02. Differential of y

Now, using ∆x = 0.01, the change in y is

∆y = f (x + ∆x) − f (x) = f (1.01) − f (1) = (1.01)2 − 12 = 0.0201.

Figure 4.64 shows the geometric comparison of dy and ∆y. Try comparing other values 
of dy and ∆y. You will see that the values become closer to each other as dx (or ∆x)
approaches 0. 

In Example 2, the tangent line to the graph of f (x) = x2 at x = 1 is

y = 2x − 1. Tangent line to the graph of f  at x = 1.

For x-values near 1, this line is close to the graph of f, as shown in Figure 4.64 and in 
the table.

x 0.5 0.9 0.99 1 1.01 1.1 1.5

f (x) = x2 0.25 0.81 0.9801 1 1.0201 1.21 2.25

y = 2x − 1 0 0.8 0.98 1 1.02 1.2 2

When ∆x is small, 
∆y = f (c + ∆x) − f (c) is 
approximated by f ′(c)∆x.
Figure 4.63

x

f(c + Δx)

f(c)

f ′(c)Δx(

f

c c + Δx

Δy

Δx

(c, f(c))

(c + Δx, f(c + Δx))

y

The change in y, ∆y, is approximated 
by the differential of y, dy.
Figure 4.64

Δy

dy

(1, 1)

y = x2

y = 2x − 1

Δx = 0.01
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4.8 Differentials 273

Error Propagation
Physicists and engineers tend to make liberal use of the approximation of ∆y by dy.
One way this occurs in practice is in the estimation of errors propagated by physical 
measuring devices. For example, if you let x represent the measured value of a variable 
and let x + ∆x represent the exact value, then ∆x is the error in measurement. Finally, 
if the measured value x is used to compute another value f (x), then the difference 
between f (x + ∆x) and f (x) is the propagated error.

 Measurement Propagated
 error error

 
f (x + ∆x) − f (x) = ∆y

  
 Exact Measured
 value value

 estimation of error

The measured radius of a ball bearing is 0.7 inch, 

Ball bearing with measured radius that 
is correct to within 0.01 inch.

0.7

as shown in the figure. The measurement is 
correct to within 0.01 inch. Estimate the 
propagated error in the volume V of the 
ball bearing.

Solution The formula for the volume of 
a sphere is

V =
4
3
πr3

where r is the radius of the sphere. So, you can write

r = 0.7 Measured radius

and

−0.01 ≤ ∆r ≤ 0.01. Possible error

To approximate the propagated error in the volume, differentiate V  to obtain 
dV�dr = 4πr2 and write

 ∆V ≈ dV Approximate ∆V  by dV.

 = 4πr2 dr

 = 4π(0.7)2(±0.01) Substitute for r and dr.

 ≈ ±0.06158 cubic inch.

So, the volume has a propagated error of about 0.06 cubic inch. 

Would you say that the propagated error in Example 3 is large or small? The 
answer is best given in relative terms by comparing dV with V. The ratio

dV
V

=
4πr2 dr

4
3πr3

 Ratio of dV  to V

 =
3 dr

r
 Simplify.

 ≈
3(±0.01)

0.7
 Substitute for dr and r.

 ≈ ±0.0429

is called the relative error. The corresponding percent error is approximately 4.29%.

The measured radius of a ball bearing is 0.7 inch, 
as shown in the figure. The measurement is 
correct to within 0.01 inch. Estimate the 
propagated error in the volume 
ball bearing.

Solution
a sphere is

where 

and

To approximate the propagated error in the volume, differentiate 
d

Ball bearings are used to reduce 
friction between moving machine 
parts.

Christian Lagerek/Shutterstock.com
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274 Chapter 4 Applications of Differentiation

Calculating Differentials
Each of the differentiation rules that you studied in Chapter 3 can be written in
differential form. For example, let u and v be differentiable functions of x. By the 
definition of differentials, you have

du = u′ dx

and

dv = v′ dx.

So, you can write the differential form of the Product Rule as shown below.

 d[uv] =
d
dx

[uv] dx Differential of uv

 = [uv′ + vu′] dx Product Rule

 = uv′ dx + vu′ dx

 = u dv + v du

Differential Formulas

Let u and v be differentiable functions of x.

Constant multiple: d[cu] = c du

Sum or difference: d[u ± v] = du ± dv

Product: d[uv] = u dv + v du

Quotient: d[u
v] =

v du − u dv
v2

 Finding Differentials

 Function Derivative Differential

a. y = x2 
dy
dx

= 2x dy = 2x dx

b. y = √x 
dy
dx

=
1

2√x
 dy =

dx

2√x

c. y = 2 sin x 
dy
dx

= 2 cos x dy = 2 cos x dx

d. y = xex 
dy
dx

= ex(x + 1) dy = ex(x + 1) dx

e. y =
1
x
 

dy
dx

= −
1
x2 dy = −

dx
x2 

The notation in Example 4 is called the Leibniz notation for derivatives and 
 differentials, named after the German mathematician Gottfried Wilhelm Leibniz. The 
beauty of this notation is that it provides an easy way to remember several important 
calculus formulas by making it seem as though the formulas were derived from algebraic 
manipulations of differentials. For instance, in Leibniz notation, the Chain Rule

dy
dx

=
dy
du

 
du
dx

would appear to be true because the du’s divide out. Even though this reasoning is 
 incorrect, the notation does help one remember the Chain Rule.

GOTTFRIED WILHELM LEIBNIZ 
(1646–1716)

Both Leibniz and Newton are 
credited with creating calculus. 
It was Leibniz, however, who 
tried to broaden calculus by 
developing rules and formal 
notation. He often spent 
days choosing an appropriate 
notation for a new concept.
See LarsonCalculus.com to read 
more of this biography.

Mary Evans Picture Library/The Image Works
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 Finding the Differential of a Composite Function

 y = f (x) = sin 3x Original function

 f′(x) = 3 cos 3x Apply Chain Rule.

 dy = f′(x) dx = 3 cos 3x dx Differential form

 Finding the Differential of a Composite Function

 y = f (x) = (x2 + 1)1�2 Original function

   f′(x) =
1
2

(x2 + 1)−1�2(2x) =
x

√x2 + 1
 Apply Chain Rule.

 dy = f′(x) dx =
x

√x2 + 1
 dx Differential form

 

Differentials can be used to approximate function values. To do this for the 
function given by y = f (x), use the formula

f (x + ∆x) ≈ f (x) + dy = f (x) + f′(x) dx

which is derived from the approximation

∆y = f (x + ∆x) − f (x) ≈ dy.

The key to using this formula is to choose a value for x that makes the calculations 
easier, as shown in Example 7.

 Approximating Function Values

Use differentials to approximate √16.5.

Solution Using f (x) = √x, you can write

f (x + ∆x) ≈ f (x) + f′(x) dx = √x +
1

2√x
 dx.

Now, choosing x = 16 and dx = 0.5, you obtain the following approximation.

f (x + ∆x) = √16.5 ≈ √16 +
1

2√16
(0.5) = 4 + (1

8)(1
2) = 4.0625

So, √16.5 ≈ 4.0625. 

The tangent line approximation to f (x) = √x at x = 16 is the line g(x) = 1
8x + 2. 

For x-values near 16, the graphs of f  and g are close together, as shown in Figure 4.65. 
For instance,

f (16.5) = √16.5 ≈ 4.0620

and

g(16.5) =
1
8

(16.5) + 2 = 4.0625.

In fact, if you use a graphing utility to zoom in near the point of tangency (16, 4), you 
will see that the two graphs appear to coincide. Notice also that as you move farther 
away from the point of tangency, the linear approximation becomes less accurate.

remArk This formula is 
equivalent to the tangent line 
approximation given earlier in 
this section. 

x
4

−2

2

4

6

8 12 16 20

(16, 4)
g(x) =    x + 21

8

f(x) =    x

y

Figure 4.65
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276 Chapter 4 Applications of Differentiation

4.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Tangent Line Approximations What is the 

equation of the tangent line approximation to the graph of 
a function f  at the point (c, f (c))?

2.  Differentials What do the differentials of x and y 
mean?

3.  Describing Terms When using differentials, what is 
meant by the terms propagated error, relative error, and 
percent error?

4.  Finding Differentials Explain how to find a 
differential of a function.

 Using a Tangent Line Approximation In 
Exercises 5–12, find the tangent line approximation 
T to the graph of f  at the given point. Then 
complete the table.

x 1.9 1.99 2 2.01 2.1

f (x)

T(x)

 5. f (x) = x2, (2, 4)  6. f (x) =
6
x2, (2, 

3
2)

 7. f (x) = x5, (2, 32)  8. f (x) = √x, (2, √2)
 9. f (x) = sin x, (2, sin 2) 10. f (x) = csc x, (2, csc 2)
11. f (x) = 3x, (2, 9)
12. f (x) = log2 x, (2, 1)

Verifying a Tangent Line Approximation In Exercises 
13 and 14, verify the tangent line approximation of the function 
at the given point. Then use a graphing utility to graph the 
function and its approximation in the same viewing window.

 Function Approximation Point

13. f (x) = √x + 4 y = 2 +
x
4

 (0, 2)

14. f (x) = tan x y = x (0, 0)

 Comparing ∆y  and dy  In Exercises 15–20, 
use the information to find and compare Δy and dy.

 Function x-Value Differential of x

15. y = 0.5x3 x = 1 ∆x = dx = 0.1

16. y = 6 − 2x2 x = −2 ∆x = dx = 0.1

17. y = x4 + 1 x = −1 ∆x = dx = 0.01

18. y = 2 − x4 x = 2 ∆x = dx = 0.01

19. y = x − 2x3 x = 3 ∆x = dx = 0.001

20. y = 7x2 − 5x x = −4 ∆x = dx = 0.001

 Finding a Differential In Exercises 21–32, find 
the differential dy of the given function.

21. y = 3x2 − 4 22. y = 3x2�3

23. y = x tan x 24. y = 3x − sin2 x

25. y =
x + 1
2x − 1

 26. y = √x +
1

√x

27. y = √9 − x2 28. y = x√1 − x2

29. y = ln√4 − x2 30. y = e−0.5x cos 4x

31. y = x arcsin x 32. y = arctan(x − 2)

Using Differentials In Exercises 33 and 34, use differentials 
and the graph of f  to approximate (a) f (1.9) and (b) f (2.04). 
To print an enlarged copy of the graph, go to MathGraphs.com.

33. 

x
42

4

5

2

3

1

f

3 5

y

(2, 1)

 34. 

x
42

4

5

2

3

1

f

31 5

y

(2, 1)

Using Differentials In Exercises 35 and 36, use differentials 
and the graph of g′ to approximate (a) g(2.93) and (b) g(3.1) 
given that g(3) = 8.

35. 

x
1 2 4 5

4

2

3

1
g ′

y

(         )3, − 1
2

 36. 

x
1 42

4

2

3

1

g ′

3 5

y

(3, 3)

37.  Area The measurement of the side of a square floor tile is 
10 inches, with a possible error of 1

32 inch.

 (a)  Use differentials to approximate the possible propagated 
error in computing the area of the square.

 (b)  Approximate the percent error in computing the area of 
the square.

38.  Area The measurements of the base and altitude of a  
triangle are found to be 36 and 50 centimeters, respectively. 
The possible error in each measurement is 0.25 centimeter.

 (a)  Use differentials to approximate the possible propagated 
error in computing the area of the triangle.

 (b)  Approximate the percent error in computing the area of 
the triangle.
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4.8 Differentials 277

39.  Volume and Surface Area The measurement of the 
edge of a cube is found to be 15 inches, with a possible error 
of 0.03 inch.

 (a)  Use differentials to approximate the possible propagated 
error in computing the volume of the cube.

 (b)  Use differentials to approximate the possible propagated 
error in computing the surface area of the cube.

 (c)  Approximate the percent errors in parts (a) and (b).

40.  Volume and Surface Area The radius of a spherical 
balloon is measured as 8 inches, with a possible error of 
0.02 inch.

 (a)  Use differentials to approximate the possible propagated 
error in computing the volume of the sphere.

 (b)  Use differentials to approximate the possible propagated 
error in computing the surface area of the sphere.

 (c)  Approximate the percent errors in parts (a) and (b).

41.  Stopping Distance The total stopping distance T of a 
vehicle is

 T = 2.5x + 0.5x2

   where T is in feet and x is the speed in miles per hour. 
Approximate the change and percent change in total stopping 
distance as speed changes from x = 25 to x = 26 miles per hour.

 42.  HOW DO YOU See IT? The graph shows 
the profit P (in dollars) from selling x units of an 
item. Use the graph to determine which is greater, 
the change in profit when the production level 
changes from 400 to 401 units or the change in 
profit when the production level changes from 
900 to 901 units. Explain your reasoning.

Number of units

Pr
o�

t (
in

 d
ol

la
rs

)

P

x
100 200 300 400 500 600 700 800 900 1000

1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

 42.  

43. Pendulum The period of a pendulum is given by

T = 2π√L
g

  where L is the length of the pendulum in feet, g is the 
acceleration due to gravity, and T is the time in seconds. The 
pendulum has been subjected to an increase in temperature 
such that the length has increased by 12%.

 (a) Find the approximate percent change in the period.

 (b)  Using the result in part (a), find the approximate error in 
this pendulum clock in 1 day.

44.  Ohm’s Law A current of I amperes passes through a 
resistor of R ohms. Ohm’s Law states that the voltage E
applied to the resistor is

E = IR.

  The voltage is constant. Show that the magnitude of the relative 
error in R caused by a change in I is equal in magnitude to the 
relative error in I.

45.  relative Humidity When the dewpoint is 65° Fahrenheit, 
the relative humidity H is modeled by

H =
4347

400,000,000
 e369,444�(50t+19,793)

  where t is the air temperature in degrees Fahrenheit. Use 
differentials to approximate the change in relative humidity 
when t is changed from 72°F to 73°F.

46.  Surveying A surveyor standing 50 feet from the base of a 
large tree measures the angle of elevation to the top of the tree 
as 71.5°. How accurately must the angle be measured if the 
percent error in estimating the height of the tree is to be less 
than 6%?

 Approximating Function Values In 
Exercises 47–50, use differentials to approximate 
the value of the expression. Compare your answer 
with that of a calculator.

47. √99.4 48. 3√26

49. 4√624  50. (2.99)3

eXpLoRInG ConCeptS
51.  Comparing ∆y  and dy  Describe the change in 

accuracy of dy as an approximation for ∆y when ∆x 
approaches 0. Use a graph to support your answer.

52.  Think About It For what value(s) of a would you 
use y = x to approximate f (x) = sin x near x = a?

Using Differentials In Exercises 53 and 54, give a 
short explanation of why the approximation is valid.

53. √4.02 ≈ 2 + 1
4 (0.02)

54. tan 0.05 ≈ 0 + 1(0.05)

True or False? In Exercises 55–59, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

55. If y = x + c, then dy = dx.

56. If y = ax + b, then 
∆y
∆x

=
dy
dx

.

57. If y is differentiable, then lim
∆x→0

 (∆y − dy) = 0.

58.  If y = f (x), f  is increasing and differentiable, and ∆x > 0, 
then ∆y ≥ dy.

59.  The tangent line approximation at any point for any linear 
equation is the linear equation itself.
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding Extrema on a Closed Interval In Exercises 1–8, 
find the absolute extrema of the function on the closed interval. 

 1. f (x) = x2 + 5x, [−4, 0] 2. f (x) = x3 + 6x2, [−6, 1]
 3. f (x) = √x − 2, [0, 4] 4. h(x) = x − 3√x, [0, 9]

 5. f (x) =
4x

x2 + 9
, [−4, 4] 6. f (x) =

x

√x2 + 1
, [0, 2]

 7. g(x) = 2x + 5 cos x, [0, 2π]
 8. f (x) = sin 2x, [0, 2π]

Using Rolle’s Theorem In Exercises 9–12, determine 
whether Rolle’s Theorem can be applied to f  on the closed 
interval [a, b]. If Rolle’s Theorem can be applied, find all 
values of c in the open interval (a, b) such that f ′(c) = 0. If 
Rolle’s Theorem cannot be applied, explain why not.

 9. f (x) = x3 − 3x − 6, [−1, 2]
10. f (x) = (x − 2)(x + 3)2, [−3, 2]

11. f (x) =
x2

1 − x2, [−2, 2]

12. f (x) = sin 2x, [−π, π]

Using the Mean Value Theorem In Exercises 13–18, 
determine whether the Mean Value Theorem can be applied to 
f  on the closed interval [a, b]. If the Mean Value Theorem can 
be applied, find all values of c in the open interval (a, b) such that

f ′(c) =
f (b) − f (a)

b − a
.

If the Mean Value Theorem cannot be applied, explain why not.

13. f (x) = x2�3, [1, 8]

14. f (x) =
1
x
, [1, 4]

15. f (x) = ∣5 − x∣, [2, 6]
16. f (x) = 2x − 3√x, [−1, 1]

17. f (x) = x − cos x, [−
π
2

, 
π
2]

18. f (x) = ln(2x + 1), [0, 3]

19.  Mean Value Theorem Can the Mean Value Theorem be 
applied to the function

 f (x) =
1
x2

 on the interval [−2, 1]? Explain.

20. Using the Mean Value Theorem

 (a)  For the function f (x) = Ax2 + Bx + C, determine the 
value of c guaranteed by the Mean Value Theorem on the 
interval [x1, x2].

 (b)  Demonstrate the result of part (a) for f (x) = 2x2 − 3x + 1 
on the interval [0, 4].

Intervals on Which a Function Is Increasing or 
Decreasing In Exercises 21–28, find the open intervals on 
which the function is increasing or decreasing.

21. f (x) = x2 + 3x − 12 22. h(x) = (x + 2)1�3 + 8

23. f (x) = (x − 1)2(2x − 5) 24. g(x) = (x + 1)3

25. h(x) = √x(x − 3), x > 0

26. f (x) = sin x + cos x, 0 < x < 2π

27. f (t) = (2 − t)2t 28. g(x) = 2x ln x

Applying the First Derivative Test In Exercises 29–38, 
(a) find the critical numbers of f, if any, (b) find the open 
intervals on which the function is increasing or decreasing,  
(c) apply the First Derivative Test to identify all relative 
extrema, and (d) use a graphing utility to confirm your results.

29. f (x) = x2 − 6x + 5 30. f (x) = 4x3 − 5x

31. f (t) =
1
4

t4 − 8t 32. f (x) =
x3 − 8x

4

33. f (x) =
x + 4

x2  34. f (x) =
x2 − 3x − 4

x − 2

35. f (x) = cos x − sin x, (0, 2π)

36. f (x) =
3
2

 sin(πx
2

− 1), (0, 4)

37. f (x) = ln x − x 2 38. f (x) = 2(x + arccos x)

Motion Along a Line In Exercises 39 and 40, the function 
s(t) describes the motion of a particle along a line. (a) Find the 
velocity function of the particle at any time t ≥ 0. (b) Identify 
the time interval(s) on which the particle is moving in a positive 
direction. (c) Identify the time interval(s) on which the particle 
is moving in a negative direction. (d) Identify the time(s) at 
which the particle changes direction.

39. s(t) = 3t − 2t2 40. s(t) = 6t3 − 8t + 3

Finding Points of Inflection In Exercises 41–48, find the 
points of inflection and discuss the concavity of the graph of 
the function.

41. f (x) = x3 − 9x2 42. f (x) = 6x4 − x2

43. g(x) = x√x + 5 44. f (x) = 3x − 5x3

45. f (x) = x + cos x, [0, 2π]

46. f (x) = tan 
x
4

, (0, 2π)

47. f (x) = e4�x 48. f (x) = 3x(3x)

Using the Second Derivative Test In Exercises 49–56, 
find all relative extrema of the function. Use the Second 
Derivative Test where applicable.

49. f (x) = (x + 9)2

50. f (x) = x4 − 2x2 + 6
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51. g(x) = 2x2(1 − x2) 52. h(t) = t − 4√t + 1

53. f (x) = 2x +
18
x

54. h(x) = x − 2 cos x, [0, 4π]

55. g(x) = x log5 
2
x
 56. f (x) = arctan √5x + 2

Think About It In Exercises 57 and 58, sketch the graph of 
a function f  having the given characteristics.

57. f (0) = f (6) = 0 58. f (0) = 4, f (6) = 0

  f ′(x) < 0 for x < 2 or 
x > 4

 f ′(2) does not exist.

 f ′(4) = 0

 f ′(x) > 0 for 2 < x < 4

 f ″(x) < 0 for x ≠ 2

 f ′(3) = f ′(5) = 0

 f ′(x) > 0 for x < 3

 f ′(x) > 0 for 3 < x < 5

 f ′(x) < 0 for x > 5

 f ″(x) < 0 for x < 3 or x > 4

 f ″(x) > 0 for 3 < x < 4

59.  Writing A newspaper headline states that “The rate of 
growth of the national deficit is decreasing.” What does this 
mean? What does it imply about the graph of the deficit as a 
function of time?

60.  Inventory Cost The cost of inventory C depends on the 
ordering and storage costs according to the inventory model

 C = (Q
x )s + (x

2)r.

  Determine the order size that will minimize the cost, assuming 
that sales occur at a constant rate, Q is the number of units sold 
per year, r is the cost of storing one unit for one year, s is the 
cost of placing an order, and x is the number of units per order.

61.  Modeling Data Outlays for national defense D (in 
billions of dollars) for 2006 through 2014 are shown in the 
table, where t is the time in years, with t = 6 corresponding to 
2006. (Source: U.S. Office of Management and Budget)

t 6 7 8 9 10

D 521.8 551.3 616.1 661.0 693.5

t 11 12 13 14

D 705.6 677.9 633.4 603.5

 (a)  Use the regression capabilities of a graphing utility to find 
a model of the form

  D = at4 + bt3 + ct2 + dt + e

  for the data.

 (b) Use a graphing utility to plot the data and graph the model.

 (c)  For the years shown in the table, when does the model 
indicate that the outlay for national defense was at a  
maximum? When was it at a minimum?

 (d)  For the years shown in the table, when does the model 
indicate that the outlay for national defense was increasing 
at the greatest rate?

62.  Modeling Data The manager of a store recorded the 
annual sales S (in thousands of dollars) of a product over a 
period of 7 years, as shown in the table, where t is the time in 
years, with t = 8 corresponding to 2008.

t 8 9 10 11 12 13 14

S 8.1 7.3 7.8 9.2 11.3 12.8 12.9

 (a)  Use the regression capabilities of a graphing utility to find 
a model of the form

 S = at3 + bt2 + ct + d

  for the data.

 (b) Use a graphing utility to plot the data and graph the model.

 (c)  Use calculus and the model to find the time t when sales 
were increasing at the greatest rate.

 (d)  Do you think the model would be accurate for predicting 
future sales? Explain.

Finding a Limit In Exercises 63–74, find the limit, if it 
exists.

63. lim
x→∞

 (8 +
1
x) 64. lim

x→−∞
 
1 − 4x
x + 1

65. lim
x→∞

 
x2

1 − 8x2 66. lim
x→−∞

 
9x3 + 5

7x4

67. lim
x→−∞

 
3x2

x + 5
 68. lim

x→−∞
 
√x2 + x

−2x

69. lim
x→∞

 
5 cos x

x
 70. lim

x→∞
 

x3

√x2 + 2

71. lim
x→−∞

 
6x

x + cos x
 72. lim

x→−∞
 

x
2 sin x

73. lim
x→∞

 (e−x + 4 ln 
x + 1

x ) 74. lim
x→∞

 
−3

1 + 6−6x

Finding Horizontal Asymptotes Using Technology  
In Exercises 75–78, use a graphing utility to graph the function 
and identify any horizontal asymptotes.

75. f (x) =
3
x

+ 4 76. f (x) =
√4x2 − 1

8x + 1

77. f (x) =
5

3 + 2e−x 78. h(x) = 10 ln 
x

x + 1

79.  Modeling Data The average typing speeds S (in words 
per minute) of a typing student after t weeks of lessons are 
shown in the table.

 
t 5 10 15 20 25 30

S 28 56 79 90 93 94

 A model for the data is S =
100t2

65 + t2
, t > 0.

 (a) Use a graphing utility to plot the data and graph the model.

 (b) Does there appear to be a limiting typing speed? Explain.
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80. Using the Definition of Limits at Infinity Consider

 lim
x→∞

 
2x

√x2 + 5
.

 (a)  Use the definition of limits at infinity to find the value of 
M that corresponds to ε = 0.5.

 (b)  Use the definition of limits at infinity to find the value of 
M that corresponds to ε = 0.1.

Analyzing the Graph of a Function In Exercises 81–92, 
analyze and sketch a graph of the function. Label any intercepts, 
relative extrema, points of inflection, and asymptotes. Use a 
graphing utility to verify your results.

81. f (x) = 4x − x2 82. f (x) = x4 − 2x2 + 6

83. f (x) = x√16 − x2 84. f (x) = x1�3(x + 3)2�3

85. f (x) =
5 − 3x
x − 2

 86. f (x) =
2x

1 + x2

87. f (x) = x3 + x +
4
x
 88. f (x) = x2 +

1
x

89. f (x) =
1

1 + cos x
, (−π, π) 90. f (x) = ln(x2 − 3)

91. f (x) = e1−x3 92. f (x) = arccot x2

93.  Finding Numbers Find two positive numbers such that 
the sum of twice the first number and three times the second 
number is 216 and the product is a maximum.

94.  Minimum Distance Find the point on the graph of 
f (x) = √x that is closest to the point (6, 0).

95.  Maximum Area A rancher has 400 feet of fencing with 
which to enclose two adjacent rectangular corrals (see figure). 
What dimensions should be used so that the enclosed area will 
be a maximum?

x x

y

96.  Maximum Area Find the dimensions of the rectangle of 
maximum area, with sides parallel to the coordinate axes, that 
can be inscribed in the ellipse given by

 
x2

144
+

y2

16
= 1.

97.  Minimum Length A right triangle in the first quadrant 
has the coordinate axes as sides, and the hypotenuse passes 
through the point (1, 8). Find the vertices of the triangle such 
that the length of the hypotenuse is minimum.

98.  Minimum Length The wall of a building is to be braced 
by a beam that must pass over a parallel fence 5 feet high and 
4 feet from the building. Find the length of the shortest beam 
that can be used.

 99.  Maximum Length Find the length of the longest pipe 
that can be carried level around a right-angle corner at the 
intersection of two corridors of widths 4 feet and 6 feet.

100.  Maximum Length A hallway of width 6 feet meets a 
hallway of width 9 feet at right angles. Find the length of 
the longest pipe that can be carried level around this corner. 
[Hint: If L is the length of the pipe, show that

  L = 6 csc θ + 9 csc(π2 − θ)
   where θ is the angle between the pipe and the wall of the 

narrower hallway.]

101.  Maximum Volume Find the volume of the largest right 
circular cone that can be inscribed in a sphere of radius r.

r

r

102.  Maximum Volume Find the volume of the largest right 
circular cylinder that can be inscribed in a sphere of radius r.

Comparing ∆y and dy In Exercises 103 and 104, use the 
information to find and compare Δy and dy.

  Function x-Value Differential of x

103. y = 4x3 x = 2 ∆x = dx = 0.1

104. y = x2 − 5x x = −3 ∆x = dx = 0.01

Finding a Differential In Exercises 105 and 106, find the 
differential dy of the given function.

105. y = x(1 − cos x)
106. y = √36 − x2

107.  Volume and Surface Area The radius of a sphere 
is measured as 9 centimeters, with a possible error of  
0.025 centimeter.

  (a)  Use differentials to approximate the possible propagated 
error in computing the volume of the sphere.

  (b)  Use differentials to approximate the possible propagated 
error in computing the surface area of the sphere.

  (c) Approximate the percent errors in parts (a) and (b).

108.  Demand Function A company finds that the demand 
for its commodity is

  p = 75 −
1
4

x

   where p is the price in dollars and x is the number of units. 
Find and compare the values of ∆p and dp as x changes from 
7 to 8.

109.  Profit The profit P for a company is P = 100xe−x�400, 
where x is the number of units sold. Approximate the change 
and percent change in profit as sales increase from x = 115 
to x = 120 units.
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1. Relative Extrema Graph the fourth-degree polynomial

 p(x) = x4 + ax2 + 1

 for various values of the constant a.

 (a)  Determine the values of a for which p has exactly one 
relative minimum.

 (b)  Determine the values of a for which p has exactly one  
relative maximum.

 (c)  Determine the values of a for which p has exactly two  
relative minima.

 (d)  Show that the graph of p cannot have exactly two relative 
extrema.

2. Relative Extrema

 (a)  Graph the fourth-degree polynomial p(x) = ax4 − 6x2 
for a = −3, −2, −1, 0, 1, 2, and 3. For what values of 
the constant a does p have a relative minimum or relative 
maximum?

 (b)  Show that p has a relative maximum for all values of the 
constant a.

 (c)  Determine analytically the values of a for which p has a 
relative minimum.

 (d)  Let (x, y) = (x, p(x)) be a relative extremum of p. Show 
that (x, y) lies on the graph of y = −3x2. Verify this result 
graphically by graphing y = −3x2 together with the seven 
curves from part (a).

3.  Relative Minimum Let

 f (x) =
c
x

+ x2.

  Determine all values of the constant c such that f  has a relative 
minimum, but no relative maximum.

4. Points of Inflection

 (a)  Let f (x) = ax2 + bx + c, a ≠ 0, be a quadratic polynomial. 
How many points of inflection does the graph of f  have?

 (b)  Let f (x) = ax3 + bx2 + cx + d, a ≠ 0, be a cubic 
polynomial. How many points of inflection does the graph 
of f  have?

 (c)  Suppose the function y = f (x) satisfies the equation

  
dy
dx

= ky(1 −
y
L)

   where k and L are positive constants. Show that the graph of 
f  has a point of inflection at the point where y = L�2. (This 
equation is called the logistic differential equation.)

5.  Extended Mean Value Theorem Prove the Extended 
Mean Value Theorem: If f  and f ′ are continuous on the 
closed interval [a, b], and if f ″ exists in the open interval (a, b), 
then there exists a number c in (a, b) such that

 f (b) = f (a) + f ′(a)(b − a) +
1
2

f ″(c)(b − a)2.

 6.  Illumination The amount of illumination of a surface 
is proportional to the intensity of the light source, inversely 
proportional to the square of the distance from the light source, 
and proportional to sin θ, where θ is the angle at which the 
light strikes the surface. A rectangular room measures 10 feet 
by 24 feet, with a 10-foot ceiling (see figure). Determine the 
height at which the light should be placed to allow the corners 
of the floor to receive as much light as possible.

5 ft
12 ft

d

θ
x

13 ft

10 ft

 7.  Minimum Distance Consider a room in the shape of a 
cube, 4 meters on each side. A bug at point P wants to walk 
to point Q at the opposite corner, as shown in the figure. Use 
calculus to determine the shortest path. Explain how you can 
solve this problem without calculus. (Hint: Consider the two 
walls as one wall.)

 

4 m

4 m4 m

Q

P
  

RP
d

S Q

 Figure for 7 Figure for 8

 8.  Areas of Triangles The line joining P and Q crosses 
the two parallel lines, as shown in the figure. The point R is  
d units from P. How far from Q should the point S be 
positioned so that the sum of the areas of the two shaded 
triangles is a minimum? So that the sum is a maximum?

 9.  Mean Value Theorem Determine the values a, b, and c 
such that the function f  satisfies the hypotheses of the Mean 
Value Theorem on the interval [0, 3].

 f (x) = {1,
ax + b,
x2 + 4x + c,

     x = 0
     0 < x ≤ 1
     1 < x ≤ 3

10.   Mean Value Theorem Determine the values a, b, c, and 
d such that the function f  satisfies the hypotheses of the Mean 
Value Theorem on the interval [−1, 2].

 f (x) = {
a,
2,
bx2 + c,
dx + 4,

     x = −1
     −1 < x ≤ 0
     0 < x ≤ 1
     1 < x ≤ 2

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



282 Chapter 4 Applications of Differentiation

11.  Proof Let f  and g be functions that are continuous on [a, b] 
and differentiable on (a, b). Prove that if f (a) = g(a) and 
g′(x) > f ′(x) for all x in (a, b), then g(b) > f (b).

12. Proof
 (a) Prove that lim

x→∞
 x2 = ∞.

 (b) Prove that lim
x→∞

 
1
x2 = 0.

 (c) Let L be a real number. Prove that if lim
x→∞

 f (x) = L, then

  lim
y→0+

 f (1
y) = L.

13. Tangent Lines Find the point on the graph of

 y =
1

1 + x2

  (see figure) where the tangent line has the greatest slope, and 
the point where the tangent line has the least slope.

x
1 32−3 −1

1

−2

y = 1
1 + x2

y

14.  Stopping Distance The police department must 
determine the speed limit on a bridge such that the flow 
rate of cars is maximum per unit time. The greater the speed 
limit, the farther apart the cars must be in order to keep a safe 
stopping distance. Experimental data on the stopping distances 
d (in meters) for various speeds v (in kilometers per hour) are 
shown in the table.

v 20 40 60 80 100

d 5.1 13.7 27.2 44.2 66.4

 (a)  Convert the speeds v in the table to speeds s in meters 
per second. Use the regression capabilities of a graphing 
utility to find a model of the form d(s) = as2 + bs + c for 
the data.

 (b)  Consider two consecutive vehicles of average length  
5.5 meters, traveling at a safe speed on the bridge. Let T 
be the difference between the times (in seconds) when 
the front bumpers of the vehicles pass a given point on 
the bridge. Verify that this difference in times is given by

 T =
d(s)

s
+

5.5
s

.

 (c)   Use a graphing utility to graph the function T and estimate 
the speed s that minimizes the time between vehicles. 

 (d)  Use calculus to determine the speed that minimizes T. 
What is the minimum value of T? Convert the required 
speed to kilometers per hour.

 (e)  Find the optimal distance between vehicles for the speed 
found in part (d).

15.  Darboux’s Theorem Prove Darboux’s Theorem: Let 
f  be differentiable on the closed interval [a, b] such that 
f ′(a) = y1 and f ′(b) = y2. If d lies between y1 and y2, then 
there exists c in (a, b) such that f ′(c) = d.

16.  Maximum Area The figures show a rectangle, a circle, 
and a semicircle inscribed in a triangle bounded by the 
coordinate axes and the first-quadrant portion of the line 
with intercepts (3, 0) and (0, 4). Find the dimensions of each 
inscribed figure such that its area is maximum. State whether 
calculus was helpful in finding the required dimensions. 
Explain your reasoning.

x
1

1

2

2

3

3

4

4

y  

x
1

1

2

2

3

3

4

4

r r
r

y  

x
1

1

2

2

3

3

4

4

r

y

17.  Point of Inflection Show that the cubic polynomial 
p(x) = ax3 + bx2 + cx + d has exactly one point of inflection 
(x0, y0), where

 x0 =
−b
3a

 and y0 =
2b3

27a2 −
bc
3a

+ d.

  Use these formulas to find the point of inflection of
p(x) = x3 − 3x2 + 2.

18.  Minimum Length A legal-sized sheet of paper (8.5 inches 
by 14 inches) is folded so that corner P touches the opposite 
14-inch edge at R (see figure). (Note: PQ = √C 2 − x2.)

Rx

x

QP

C

8.5 in.

14 in.

 (a) Show that C 2 =
2x3

2x − 8.5
.

 (b) What is the domain of C?

 (c) Determine the x-value that minimizes C.

 (d) Determine the minimum length C.

19. Using a Function Let f (x) = sin(ln x).
 (a) Determine the domain of the function f.

 (b) Find two values of x satisfying f (x) = 1.

 (c) Find two values of x satisfying f (x) = −1.

 (d) What is the range of the function f?

 (e)  Find f ′(x) and use calculus to find the maximum value of 
f  on the interval [1, 10].

 (f)  Use a graphing utility to graph f  in the viewing window 
0 ≤ x ≤ 5, −2 ≤ y ≤ 2. Estimate lim

x→0+
 f (x), if it exists.

 (g) Determine lim
x→0+

 f (x) analytically, if it exists.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



5.1 Antiderivatives and Indefinite Integration
5.2 Area
5.3 Riemann Sums and Definite Integrals
5.4 The Fundamental Theorem of Calculus
5.5 Integration by Substitution
5.6 Indeterminate Forms and L’Hôpital’s Rule
5.7 The Natural Logarithmic Function: Integration
5.8 Inverse Trigonometric Functions: Integration
5.9 Hyperbolic Functions

 5

Electricity (Exercise 106, p. 343)
Heat Transfer

(Exercise 93, p. 364)

Amount of Chemical
Flowing into a Tank
(Example 9, p. 326)

Grand Canyon (Exercise 62, p. 293)

The Speed of Sound (Example 5, p. 322)

283

Integration

Clockwise from top left, iStockphoto.com/Stephan Zabel; Marijus Auruskevicius/Shutterstock.com; 
Christian Lagerek/Shutterstock.com; ronnybas/Shutterstock.com; Anatoliy Lukich/Shutterstock.com

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



284 Chapter 5 Integration

5.1 antiderivatives and Indefinite Integration

  Write the general solution of a differential equation and use indefinite integral 
notation for antiderivatives.

 Use basic integration rules to find antiderivatives.
 Find a particular solution of a differential equation.

Antiderivatives
To find a function F whose derivative is f(x) = 3x2, you might use your knowledge of 
derivatives to conclude that

F(x) = x3 because 
d
dx

[x3] = 3x2.

The function F is an antiderivative of f.

Definition of antiderivative

A function F is an antiderivative of f  on an interval I when F′(x) = f(x) for 
all x in I.

Note that F is called an antiderivative of f  rather than the antiderivative of f. To 
see why, observe that

F1(x) = x3, F2(x) = x3 − 5, and F3(x) = x3 + 97

are all antiderivatives of f(x) = 3x2. In fact, for any constant C, the function 
F(x) = x3 + C is an antiderivative of f.

thEorEm 5.1 representation of antiderivatives

If F is an antiderivative of f  on an interval I, then G is an 
antiderivative of f  on the interval I if and only if G is of the 
form G(x) = F(x) + C for all x in I, where C is a constant.

Proof The proof of Theorem 5.1 in one direction is straightforward. That is, if 
G(x) = F(x) + C, F′(x) = f(x), and C is a constant, then

G′(x) =
d
dx

[F(x) + C] = F′(x) + 0 = f(x).

To prove this theorem in the other direction, assume that G is an antiderivative of f. 
Define a function H such that

H(x) = G(x) − F(x).

For any two points a and b (a < b) in the interval, H is continuous on [a, b] and 
differentiable on (a, b). By the Mean Value Theorem,

H′(c) =
H(b) − H(a)

b − a

for some c in (a, b). However, H′(c) = 0, so H(a) = H(b). Because a and b are 
arbitrary points in the interval, you know that H is a constant function C. So, 
G(x) − F(x) = C and it follows that G(x) = F(x) + C. 

Exploration
Finding Antiderivatives 
For each derivative, describe 
the original function F.

a. F′(x) = 2x

b. F′(x) = x

c. F′(x) = x2

d. F′(x) =
1
x2

e. F′(x) =
1
x3

 f. F′(x) = cos x

What strategy did you use to 
find F?
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 5.1 Antiderivatives and Indefinite Integration 285

Using Theorem 5.1, you can represent the entire family of antiderivatives of a  
function by adding a constant to a known antiderivative. For example, knowing that

Dx[x2] = 2x

you can represent the family of all antiderivatives of f(x) = 2x by

G(x) = x2 + C Family of all antiderivatives of f (x) = 2x

where C is a constant. The constant C is called the constant of integration. The  
 family of functions represented by G is the general antiderivative of f, and 
G(x) = x2 + C is the general solution of the differential equation

G′(x) = 2x. Differential equation

A differential equation in x and y is an equation that involves x, y, and derivatives 
of y. For instance,

y′ = 3x and y′ = x2 + 1

are examples of differential equations.

 Solving a Differential Equation

Find the general solution of the differential equation dy�dx = 2.

Solution To begin, you need to find a function whose derivative is 2. One such 
function is

y = 2x. 2x is an antiderivative of 2.

Now, you can use Theorem 5.1 to conclude that the general solution of the differential 
equation is

y = 2x + C. General solution

The graphs of several functions of the form y = 2x + C are shown in Figure 5.1. 

When solving a differential equation of the form

dy
dx

= f(x)

it is convenient to write it in the equivalent differential form

dy = f(x) dx.

The operation of finding all solutions of this equation is called antidifferentiation (or 
indefinite integration) and is denoted by an integral sign ∫. The general solution is 
denoted by

 
Variable of 
integration

 
Constant of 
integration

y = ∫ f(x) dx = F(x) + C.

 

Integrand

 

An antiderivative 
of f (x)

The expression ∫ f(x) dx is read as the antiderivative of f  with respect to x. So, the 
differential dx serves to identify x as the variable of integration. The term indefinite 
integral is a synonym for antiderivative.

rEmark In this text, the  
notation ∫ f(x) dx = F(x) + C 
means that F is an antiderivative 
of f  on an interval.

x

−1

−2

2

2

1

1

C = 2

C = 0

C = −1

y

Functions of the form y = 2x + C
Figure 5.1
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286 Chapter 5 Integration

Basic Integration Rules
The inverse nature of integration and differentiation can be verified by substituting 
F′(x) for f(x) in the indefinite integration definition to obtain

∫F′(x) dx = F(x) + C.    Integration is the “inverse” of differentiation.

Moreover, if ∫ f(x) dx = F(x) + C, then

d
dx[∫ f(x) dx] = f(x).    Differentiation is the “inverse” of integration.

These two equations allow you to obtain integration formulas directly from 
differentiation formulas, as shown in the following summary.

Basic Integration rules

Differentiation Formula Integration Formula

d
dx

[C] = 0 ∫0 dx = C

d
dx

[kx] = k ∫k dx = kx + C

d
dx

[kf(x)] = kf ′(x) ∫kf(x) dx = k∫f(x) dx

d
dx

[ f(x) ± g(x)] = f′(x) ± g′(x) ∫[ f(x) ± g(x)] dx = ∫ f(x) dx ± ∫g(x) dx

d
dx

[xn] = nxn−1 ∫xn dx =
xn+1

n + 1
+ C, n ≠ −1   Power Rule

d
dx

[sin x] = cos x ∫cos x dx = sin x + C

d
dx

[cos x] = −sin x ∫sin x dx = −cos x + C

d
dx

[tan x] = sec2 x ∫sec2 x dx = tan x + C

d
dx

[sec x] = sec x tan x ∫sec x tan x dx = sec x + C

d
dx

[cot x] = −csc2 x ∫csc2 x dx = −cot x + C

d
dx

[csc x] = −csc x cot x ∫csc x cot x dx = −csc x + C

d
dx

[ex] = ex ∫ex dx = ex + C

d
dx

[ax] = (ln a)ax ∫ax dx = ( 1
ln a)ax + C

d
dx

[ln x] =
1
x
, x > 0 ∫1

x
 dx = ln∣x∣ + C

rEmark The Power Rule for 
Integration has the restriction that 
n ≠ −1. To evaluate ∫ x−1dx, you 
must use the natural log rule. (See 
Exercise 77.)
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 5.1 Antiderivatives and Indefinite Integration 287

 Describing antiderivatives

 ∫3x dx = 3∫x dx Constant Multiple Rule

 = 3∫x1 dx Rewrite x as x1.

 = 3(x2

2 ) + C Power Rule (n = 1)

 =
3
2

x2 + C Simplify.

The antiderivatives of 3x are of the form 32x2 + C, where C is any constant. 

When finding indefinite integrals, a strict application of the basic integration rules 
tends to produce complicated constants of integration. For instance, in Example 2, the 
solution could have been written as

∫3x dx = 3∫x dx = 3(x2

2
+ C) =

3
2

x2 + 3C.

Because C represents any constant, it is both cumbersome and unnecessary to write 
3C as the constant of integration. So, 32x2 + 3C is written in the simpler form 32x2 + C.

 rewriting Before Integrating

See LarsonCalculus.com for an interactive version of this type of example.

 Original Integral Rewrite Integrate Simplify

a. ∫ 1
x3 dx ∫x−3 dx 

x−2

−2
+ C −

1
2x2 + C

b. ∫√x dx ∫x1�2 dx 
x3�2

3�2
+ C 

2
3

x3�2 + C

c. ∫2 sin x dx 2∫sin x dx 2(−cos x) + C −2 cos x + C

d. ∫3
x
 dx 3∫1

x
 dx 3(ln∣x∣) + C 3 ln∣x∣ + C

 Integrating Polynomial Functions

a.  ∫dx = ∫1 dx Integrand is understood to be 1.

  = x + C Integrate.

b.  ∫(x + 2) dx = ∫x dx + ∫2 dx

  =
x2

2
+ C1 + 2x + C2 Integrate.

  =
x2

2
+ 2x + C C = C1 + C2

 The second line in the solution is usually omitted.

c.  ∫(3x4 − 5x2 + x) dx = 3(x5

5 ) − 5(x3

3 ) +
x2

2
+ C =

3
5

x5 −
5
3

x3 +
1
2

x2 + C 

rEmark In Example 2, 
note that the general pattern of 
integration is similar to that of 
differentiation.

Original integral

Rewrite

Integrate

Simplify

rEmark The basic 
integration rules allow you 
to integrate any polynomial 
function.

rEmark The properties  
of logarithms presented on  
page 56 can be used to rewrite 
antiderivatives in different 
forms. For instance, the  
antiderivative in Example 3(d) 
can be rewritten as 

3 ln∣x∣ + C = ln∣x∣3 + C.
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288 Chapter 5 Integration

 rewriting Before Integrating

 ∫x + 1

√x
 dx = ∫( x

√x
+

1

√x) dx Rewrite as two fractions.

 = ∫(x1�2 + x−1�2) dx Rewrite with fractional exponents.

 =
x3�2

3�2
+

x1�2

1�2
+ C Integrate.

 =
2
3

x3�2 + 2x1�2 + C Simplify.

 =
2
3
√x(x + 3) + C 

When integrating quotients, do not integrate the numerator and denominator  
separately. This is no more valid in integration than it is in differentiation. For instance, 
in Example 5, be sure you understand that

∫ 
x + 1

√x
 dx =

2
3
√x(x + 3) + C

is not the same as

∫ (x + 1) dx

∫ √x dx
=

1
2x2 + x + C1

2
3x√x + C2

.

 rewriting Before Integrating

 ∫ sin x
cos2 x

 dx = ∫( 1
cos x)(

sin x
cos x) dx Rewrite as a product.

 = ∫sec x tan x dx Rewrite using trigonometric identities.

 = sec x + C Integrate.

 rewriting Before Integrating

 Original Integral Rewrite Integrate Simplify

a. ∫ 2

√x
 dx 2∫x−1�2 dx 2(x1�2

1�2) + C 4x1�2 + C

b. ∫(t2 + 1)2 dt ∫(t4 + 2t2 + 1) dt 
t5

5
+ 2(t3

3) + t + C 
1
5

t5 +
2
3

t3 + t + C

c. ∫x3 + 3
x2  dx ∫(x + 3x−2) dx 

x2

2
+ 3(x−1

−1) + C 
1
2

x2 −
3
x

+ C

d. ∫ 3√x(x − 4) dx ∫(x4�3 − 4x1�3) dx 
x7�3

7�3
− 4(x4�3

4�3) + C 
3
7

x7�3 − 3x4�3 + C

As you do the exercises, note that you can check your answer to an  
antidifferentiation problem by differentiating. For instance, in Example 7(a), you can 
check that 4x1�2 + C is the correct antiderivative by differentiating the answer to obtain

Dx [4x1�2 + C] = 4(1
2)x−1�2 =

2

√x
. Use differentiation to check antiderivative.

rEmark Before you begin 
the exercise set, be sure you 
realize that one of the most 
important steps in integration  
is rewriting the integrand in  
a form that fits one of the  
basic integration rules.

tEChnology Some 
software programs, such as 
Maple and Mathematica, 
are capable of performing 
integration symbolically. If  
you have access to such a 
symbolic integration utility,  
try using it to evaluate the 
indefinite integrals in Example 7.
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 5.1 Antiderivatives and Indefinite Integration 289

Initial Conditions and Particular Solutions
You have already seen that the equation y = ∫ f(x) dx has many solutions (each differing 
from the others by a constant). This means that the graphs of any two antiderivatives of 
f  are vertical translations of each other. For example, Figure 5.2 shows the graphs of 
several antiderivatives of the form

y = ∫(3x2 − 1) dx = x3 − x + C General solution

for various integer values of C. Each of these antiderivatives is a solution of the 
differential equation

dy
dx

= 3x2 − 1.

In many applications of integration, you are given enough information to  determine 
a particular solution. To do this, you need only know the value of y = F(x) for one 
value of x. This information is called an initial condition. For example, in Figure 5.2, 
only one curve passes through the point (2, 4). To find this curve, you can use the  
general solution

F(x) = x3 − x + C General solution

and the initial condition

F(2) = 4. Initial condition

By using the initial condition in the general solution, you can determine that

F(2) = 8 − 2 + C = 4

which implies that C = −2. So, you obtain

F(x) = x3 − x − 2. Particular solution

 Finding a Particular Solution

Find the general solution of

F′(x) = ex Differential equation

and find the particular solution that satisfies the initial condition 

F(0) = 3. Initial condition

Solution To find the general solution, integrate to obtain

 F(x) = ∫ ex dx

 = ex + C. General solution

Using the initial condition F(0) = 3, you can solve for C as follows.

 F(0) = e0 + C

 3 = 1 + C

 2 = C

So, the particular solution is

F(x) = ex + 2 Particular solution

as shown in Figure 5.3. Note that Figure 5.3 also shows the solution curves that correspond
to C = −3, −2, −1, 0, 1, and 3. 
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2

3

4

2

1

1
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C = 1
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C = −1

C = −2

C = −3

C = −4

(2, 4)

F(x) = x3 − x + C

y

The particular solution that satisfies 
the initial condition F(2) = 4 is 
F(x) = x3 − x − 2.
Figure 5.2
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The particular solution that satisfies  
the initial condition F(0) = 3 is 
F(x) = ex + 2.
Figure 5.3
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290 Chapter 5 Integration

So far in this section, you have been using x as the variable of integration. In 
 applications, it is often convenient to use a different variable. For instance, in the next 
example, involving time, the variable of integration is t.

 Solving a Vertical motion Problem

A ball is thrown upward with an initial velocity of 64 feet per second from an initial 
height of 80 feet. [Assume the acceleration is a(t) = −32 feet per second per second.]

a. Find the position function giving the height s as a function of the time t.

b. When does the ball hit the ground?

Solution

a.  Let t = 0 represent the initial time. The two given initial conditions can be written 
as follows.

 s(0) = 80 Initial height is 80 feet.

 s′(0) = 64 Initial velocity is 64 feet per second.

 Recall that a(t) = s ″(t). So, you can write

 s″(t) = −32

 s′(t) = ∫s″(t) dt = ∫−32 dt = −32t + C1.

  Using the initial velocity, you obtain s′(0) = 64 = −32(0) + C1, which implies 
that C1 = 64. Next, by integrating s′(t), you obtain

s(t) = ∫s′(t) dt = ∫(−32t + 64) dt = −16t2 + 64t + C2.

 Using the initial height, you obtain

s(0) = 80 = −16(02) + 64(0) + C2

 which implies that C2 = 80. So, the position function is

s(t) = −16t2 + 64t + 80. See Figure 5.4.

b.  Using the position function found in part (a), you can find the time at which the ball 
hits the ground by solving the equation s(t) = 0.

 −16t2 + 64t + 80 = 0

 −16(t + 1)(t − 5) = 0

 t = −1, 5

  Because t must be positive, you can conclude that the ball hits the ground 5 seconds 
after it was thrown. 

In Example 9, note that the position function has the form 

s(t) = −
1
2

gt2 + v0t + s0

where g is the acceleration due to gravity, v0 is the initial velocity, and s0 is the initial 
height, as presented in Section 3.2.

Example 9 shows how to use calculus to analyze vertical motion problems in which 
the acceleration is determined by a gravitational force. You can use a similar strategy to 
analyze other linear motion problems (vertical or horizontal) in which the acceleration 
(or deceleration) is the result of some other force, as you will see in Exercises 65–72.
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5.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  antiderivative What does it mean for a function F to 

be an antiderivative of a function f  on an interval I?

2.  antiderivatives Can two different functions both be 
antiderivatives of the same function? Explain.

3.  Particular Solution What is a particular solution of 
a differential equation?

4.  general and Particular Solutions Describe the 
difference between the general solution and a particular 
solution of a differential equation.

Integration and Differentiation In Exercises 5 and 6, 
verify the statement by showing that the derivative of the right 
side equals the integrand on the left side.

 5. ∫(− 6
x4) dx =

2
x3 + C

 6. ∫(8x3 +
1

2x2) dx = 2x4 −
1
2x

+ C

 Solving a Differential Equation In Exercises 
7–10, find the general solution of the differential 
equation and check the result by differentiation.

 7. 
dy
dt

= 9t2  8. 
dy
dt

= 5

 9. 
dy
dx

= x3�2 10. 
dy
dx

= 2x−3

 rewriting Before Integrating In Exercises 
11–14, complete the table to find the indefinite 
integral.

 Original Integral  Rewrite  Integrate  Simplify

11. ∫ 3√x dx   

12. ∫ 1
4x2 dx   

13. ∫ 1

x√x
 dx   

14. ∫ 1
(3x)2 dx   

 Finding an Indefinite Integral In Exercises 
15–36, find the indefinite integral and check the 
result by differentiation.

15. ∫(x + 7) dx 16. ∫(x5 + 1) dx

17. ∫(x3�2 + 2x + 1) dx 18. ∫(√x +
1

2√x) dx

19. ∫(x + 1)(3x − 2) dx 20. ∫(4t2 + 3)2 dt

21. ∫ 1
x5 dx 22. ∫(2 −

3
x10) dx

23. ∫x + 6

√x
 dx 24. ∫x4 − 3x2 + 5

x4  dx

25. ∫(5 cos x + 4 sin x) dx 26. ∫(sin x − 6 cos x) dx

27. ∫(sec2 θ − sin θ) dθ 28. ∫ (sec y)(tan y − sec y) dy

29. ∫(tan2 y + 1) dy 30. ∫(4x − csc2 x) dx

31. ∫(2 sin x − 5ex) dx 32. ∫(ex − x) dx

33. ∫(2x − 4x) dx 34. ∫(cos x + 3x) dx

35. ∫(x −
5
x) dx 36. ∫(4

x
+ sec2 x) dx

 Finding a Particular Solution In Exercises 
37–44, find the particular solution of the differential 
equation that satisfies the initial condition(s).

37. f ′(x) = 6x, f (0) = 8 38. g′(x) = 4x2, g(−1) = 3

39. f ″(x) = 2, f ′(2) = 5, f (2) = 10

40. f ″(x) = 3x2, f ′(−1) = −2, f (2) = 3

41. f ″(x) = x−3�2, f ′(4) = 2, f (0) = 0

42. f ″(x) = sin x, f ′(0) = 1, f (0) = 6

43. f ″(x) = ex, f ′(0) = 2, f (0) = 5

44. f ″(x) =
2
x2, f ′(1) = 4, f (1) = 3

Slope Field In Exercises 45 and 46, a differential equation, a 
point, and a slope field are given. A slope field (or direction field) 
consists of line segments with slopes given by the differential 
equation. These line segments give a visual perspective of the 
slopes of the solutions of the differential equation. (a) Sketch two 
approximate solutions of the differential equation on the slope 
field, one of which passes through the indicated point. (To print 
an enlarged copy of the graph, go to MathGraphs.com.) (b) Use 
integration and the given point to find the particular solution 
of the differential equation and use a graphing utility to graph 
the solution. Compare the result with the sketch in part (a) that 
passes through the given point. 

45. dy�dx = x2 − 1, (−1, 3) 46. dy�dx = −1�x2, (1, 3)
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292 Chapter 5 Integration

Slope Field In Exercises 47 and 48, (a) use a graphing 
utility to graph a slope field for the differential equation, 
(b) use integration and the given point to find the particular 
solution of the differential equation, and (c) graph the particular 
solution and the slope field in the same viewing window.

47. 
dy
dx

= 2x, (−2, −2)

48. 
dy
dx

= 2√x, (4, 12)

eXpLoRInG ConCeptS
Sketching a graph In Exercises 49 and 50, the graph 
of the derivative of a function is given. Sketch the graphs 
of two functions that have the given derivative. (There is 
more than one correct answer.) To print an enlarged copy 
of the graph, go to MathGraphs.com.

49. 

x

2

6

2 4
−2

−4 −2

f ′

y  50. 

x

1

1 2

2

−2

−2 −1

f ′

y

51.  Comparing Functions Consider f (x) = tan2 x and 
g(x) = sec2 x. What do you notice about the derivatives 
of f  and g? What can you conclude about the relationship 
between f  and g?

 52.   hoW Do yoU SEE It? Use the graph of 
f ′ shown in the figure to answer the following.

x

2
3

3 5 721

4
5

8−2

f ′

y

(a) Approximate the slope of f  at x = 4. Explain.

(b) Is f (5) − f (4) > 0? Explain.

(c)  Approximate the value of x where f  is maximum. 
Explain.

(d)  Approximate any open intervals on which the 
graph of f  is  concave upward and any open 
intervals on which it is  concave downward. 
Approximate the x-coordinates of any points 
of inflection.

 52.   

53.  horizontal tangent Find a function f  such that the 
graph of f  has a horizontal tangent at (2, 0) and f ″(x) = 2x.

54.  Sketching graphs The graphs of f  and f ′ each pass 
through the origin. Use the graph of f ″ shown in the figure to 
sketch the graphs of f  and f ′. To print an enlarged copy of the 
graph, go to MathGraphs.com.

x

2

2

4

4−2−4

−4

−2

f ″

y

55.  tree growth An evergreen nursery usually sells a certain 
type of shrub after 6 years of growth and shaping. The growth 
rate during those 6 years is approximated by dh�dt = 1.5t + 5,
where t is the time in years and h is the height in centimeters. 
The seedlings are 12 centimeters tall when planted (t = 0).

 (a) Find the height after t years.

 (b) How tall are the shrubs when they are sold?

56.  Population growth The rate of growth dP�dt of a 
population of bacteria is proportional to the square root of 
t, where P is the population size and t is the time in days 
(0 ≤ t ≤ 10). That is,

dP
dt

= k√t.

  The initial size of the population is 500. After 1 day, the 
population has grown to 600. Estimate the population after 
7 days.

Vertical motion In Exercises 57–59, assume the 
acceleration of the object is a(t) = −32 feet per second per 
second. (Neglect air resistance.)

57.  A ball is thrown vertically upward from a height of 6 feet with an 
initial velocity of 60 feet per second. How high will the ball go?

58.   With what initial velocity must an object be thrown upward 
(from ground level) to reach the top of the Washington 
Monument (approximately 550 feet)?

59.  A balloon, rising vertically with a velocity of 16 feet per 
second, releases a sandbag at the instant it is 64 feet above the 
ground.

 (a)  How many seconds after its release will the bag strike the 
ground?

 (b) At what velocity will the bag hit the ground?

Vertical motion In Exercises 60–62, assume the 
acceleration of the object is a(t) = −9.8 meters per second per 
second. (Neglect air resistance.)

60.  A baseball is thrown upward from a height of 2 meters with 
an initial velocity of 10 meters per second. Determine its 
maximum height.

61.  With what initial velocity must an object be thrown upward 
(from a height of 2 meters) to reach a maximum height of 
200 meters?
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5.1 Antiderivatives and Indefinite Integration 293

63.  lunar gravity On the moon, the acceleration of a
free-falling object is a(t) = −1.6 meters per second per 
second. A stone is dropped from a cliff on the moon and hits 
the surface of the moon 20 seconds later. How far did it fall? 
What was its velocity at impact?

64.  Escape Velocity The minimum velocity required for an 
object to escape Earth’s gravitational pull is obtained from the 
solution of the equation

 ∫v dv = −GM∫ 1
y2 dy

  where v is the velocity of the object projected from Earth, y
is the distance from the center of Earth, G is the gravitational 
constant, and M is the mass of Earth. Show that v and y are 
related by the equation

v2 = v0
2 + 2GM(1

y
−

1
R)

  where v0 is the initial velocity of the object and R is the radius 
of Earth.

rectilinear motion In Exercises 65–68, consider a particle 
moving along the x-axis, where x(t) is the position of the 
particle at time t, x′(t) is its velocity, and x″(t) is its acceleration.

65. x(t) = t3 − 6t2 + 9t − 2, 0 ≤ t ≤ 5

 (a) Find the velocity and acceleration of the particle.

 (b)  Find the open t-intervals on which the particle is moving 
to the right.

 (c) Find the velocity of the particle when the acceleration is 0.

66.  Repeat Exercise 65 for the position function 
x(t) = (t − 1)(t − 3)2, 0 ≤ t ≤ 5.

67.  A particle moves along the x-axis at a velocity of v(t) = 1�√t,
t > 0. At time t = 1, its position is x = 4. Find the acceleration 
and position functions for the particle.

68.  A particle, initially at rest, moves along the x-axis such that 
its acceleration at time t > 0 is given by a(t) = cos t. At time 
t = 0, its position is x = 3.

 (a) Find the velocity and position functions for the particle.

 (b) Find the values of t for which the particle is at rest.

69.  acceleration The maker of an automobile advertises that 
it takes 13 seconds to accelerate from 25 kilometers per hour 
to 80 kilometers per hour. Assume the acceleration is constant.

 (a) Find the acceleration in meters per second per second.

 (b) Find the distance the car travels during the 13 seconds.

70.  Deceleration A car traveling at 45 miles per hour is 
brought to a stop, at constant deceleration, 132 feet from 
where the brakes are applied.

 (a)  How far has the car moved when its speed has been 
reduced to 30 miles per hour?

 (b)  How far has the car moved when its speed has been 
reduced to 15 miles per hour?

 (c)  Draw the real number line from 0 to 132. Plot the points 
found in parts (a) and (b). What can you conclude?

71.  acceleration At the instant the traffic light turns green, 
a car that has been waiting at an intersection starts with a 
constant acceleration of 6 feet per second per second. At the 
same instant, a truck traveling with a constant velocity of 
30 feet per second passes the car.

 (a)  How far beyond its starting point will the car pass the 
truck?

 (b) How fast will the car be traveling when it passes the truck?

72.  acceleration Assume that a fully loaded plane starting 
from rest has a constant acceleration while moving down a 
runway. The plane requires 0.7 mile of runway and a speed 
of 160 miles per hour in order to lift off. What is the plane’s 
acceleration?

true or False? In Exercises 73 and 74, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

73. The antiderivative of f (x) is unique.

74.  Each antiderivative of an nth-degree polynomial function is an 
(n + 1)th-degree polynomial function.

75.  Proof Let s(x) and c(x) be two functions satisfying 
s′(x) = c(x) and c′(x) = −s(x) for all x. If s(0) = 0 and 
c(0) = 1, prove that [s(x)]2 + [c(x)]2 = 1.

76. think about It Find the general solution of

f ′(x) = −2x sin x2.

77. Verification Verify the natural log rule ∫ 
1
x
 dx = ln∣x∣ + C

 by showing that the derivative of ln∣x∣ + C is 1�x.

78. Verification Verify the natural log rule ∫ 
1
x
 dx = ln∣Cx∣,

C ≠ 0, by showing that the derivative of ln∣Cx∣ is 1�x.

pUtnAM eXAM ChALLenGe
79.  Suppose f  and g are non-constant, differentiable, real-

valued functions defined on (−∞, ∞). Furthermore, 
suppose that for each pair of real numbers x and y,

f (x + y) = f (x) f (y) − g(x)g(y) and
g(x + y) = f (x)g(y) + g(x) f (y).

 If f ′(0) = 0, prove that ( f (x))2 + (g(x))2 = 1 for all x.
This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

The Grand Canyon is 
1800 meters deep at 
its deepest point. A 
rock is dropped from 
the rim above this 
point. How long will it 
take the rock to hit the 
canyon floor?

62. grand Canyon

ronnybas/Shutterstock.com
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5.2 Area

 Use sigma notation to write and evaluate a sum.
 Understand the concept of area.
 Approximate the area of a plane region.
 Find the area of a plane region using limits.

Sigma Notation
In the preceding section, you studied antidifferentiation. In this section, you will look 
further into a problem introduced in Section 2.1—that of finding the area of a region in 
the plane. At first glance, these two ideas may seem unrelated, but you will discover in 
Section 5.4 that they are closely related by an extremely important theorem called the 
Fundamental Theorem of Calculus.

This section begins by introducing a concise notation for sums. This notation is 
called sigma notation because it uses the uppercase Greek letter sigma, written as ∑.

Sigma Notation

The sum of n terms a1, a2, a3, .  .  . , an is written as

∑
n

i=1
ai = a1 + a2 + a3 + .  .  . + an

where i is the index of summation, ai is the ith term of the sum, and the 
upper and lower bounds of summation are n and 1.

 examples of Sigma Notation

a. ∑
6

i=1
i = 1 + 2 + 3 + 4 + 5 + 6

b. ∑
5

i=0
(i + 1) = 1 + 2 + 3 + 4 + 5 + 6

c. ∑
7

j=3
j2 = 32 + 42 + 52 + 62 + 72

d. ∑
5

j=1

1

√j 
=

1

√1
+

1

√2
+

1

√3
+

1

√4
+

1

√5

e. ∑
n

k=1

1
n

(k2 + 1) =
1
n

(12 + 1) +
1
n

(22 + 1) + .  .  . +
1
n

(n2 + 1)

f . ∑
n

i=1
f(xi) ∆x = f(x1) ∆x + f(x2) ∆x + .  .  . + f(xn) ∆x

From parts (a) and (b), notice that the same sum can be represented in different ways 
using sigma notation. 

Although any variable can be used as the index of summation, i, j, and k are often 
used. Notice in Example 1 that the index of summation does not appear in the terms of 
the expanded sum.

ReMARk The upper and lower bounds must be constant with respect to the index 
of summation. However, the lower bound does not have to be 1. Any integer less than 
or equal to the upper bound is legitimate.
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5.2 Area 295

The properties of summation shown below can be derived using the Associative 
and Commutative Properties of Addition and the Distributive Property of Addition over 
Multiplication. (In the first property, k is a constant.)

1. ∑
n

i=1
kai = k∑

n

i=1
ai 2. ∑

n

i=1
(ai ± bi) = ∑

n

i=1
ai ± ∑

n

i=1
bi

The next theorem lists some useful formulas for sums of powers.

THeOReM 5.2 Summation Formulas

1. ∑
n

i=1
c = cn, c is a constant 2. ∑

n

i=1
 i =

n(n + 1)
2

3. ∑
n

i=1
i2 =

n(n + 1)(2n + 1)
6

 4. ∑
n

i=1
i3 =

n2(n + 1)2

4

A proof of this theorem is given in Appendix A.

 evaluating a Sum

Evaluate ∑
n

i=1

i + 1
n2  for n = 10, 100, 1000, and 10,000.

Solution

 ∑
n

i=1

i + 1
n2 =

1
n2 ∑

n

i=1
(i + 1) Factor the constant 1�n2 out of sum.

 =
1
n2 (∑

n

i=1
i + ∑

n

i=1
1) Write as two sums.

 =
1
n2[n(n + 1)

2
+ n] Apply Theorem 5.2.

 =
1
n2[n2 + 3n

2 ] Simplify.

 =
n + 3

2n
 Simplify.

Now you can evaluate the sum by substituting the appropriate values of n, as shown in 
the table below.

 
n 10 100 1000 10,000

∑
n

i=1

i + 1
n2 =

n + 3
2n

0.65000 0.51500 0.50150 0.50015

 

In the table, note that the sum appears to approach a limit as n increases. Although 
the discussion of limits at infinity in Section 4.5 applies to a variable x, where x can be 
any real number, many of the same results hold true for limits involving the variable n, 
where n is restricted to positive integer values. So, to find the limit of (n + 3)�2n as n 
approaches infinity, you can write

lim
n→∞

 
n + 3

2n
= lim

n→∞
 ( n

2n
+

3
2n) = lim

n→∞
 (1

2
+

3
2n) =

1
2

+ 0 =
1
2

.

 FOR FURTHER INFORMATION

For a geometric interpretation 
of summation formulas, see the 

article “Looking at ∑
n

k=1
k and ∑

n

k=1
k2

Geometrically” by Eric Hegblom 
in Mathematics Teacher. To view 
this article, go to MathArticles.com.

THE SUM OF THE FIRST 
100 INTEGERS

A teacher of Carl Friedrich 
Gauss (1777–1855) asked him 
to add all the integers from 1 
to 100. When Gauss returned 
with the correct answer after 
only a few moments, the 
teacher could only look at him 
in astounded silence. This is 
what Gauss did.

1 + 2 + 3 + . . . + 100
100 + 99 + 98 + . . . + 1
101 + 101 + 101 + . . . + 101

100 × 101
2

= 5050

This is generalized by Theorem 
5.2, Property 2, where

∑
100

i=1
i =

100(101)
2

= 5050.
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296 Chapter 5 Integration

Area
In Euclidean geometry, the simplest type of plane region is a rectangle. 
Although people often say that the formula for the area of a rectangle is

A = bh

it is actually more proper to say that this is the definition  

b

h

Triangle: A = 1
2bh

Figure 5.5

of the area of a rectangle.
From this definition, you can develop formulas for 

the areas of many other plane regions. For example, to 
determine the area of a triangle, you can form a rectangle 
whose area is twice that of the triangle, as shown in 
Figure 5.5. Once you know how to find the area of a 
triangle, you can determine the area of any polygon by 
subdividing the polygon into triangular regions, as 
shown in Figure 5.6.

      

 Parallelogram Hexagon Polygon
 Figure 5.6

Finding the areas of regions other than polygons is more difficult. The ancient 
Greeks were able to determine formulas for the areas of some general regions 
(principally those bounded by conics) by the exhaustion method. The clearest 
description of this method was given by Archimedes. Essentially, the method is a 
limiting process in which the area is squeezed between two polygons—one inscribed 
in the region and one circumscribed about the region.

For instance, in Figure 5.7, the area of a circular region is approximated by an 
n-sided inscribed polygon and an n-sided circumscribed polygon. For each value of n, 
the area of the inscribed polygon is less than the area of the circle, and the area of the 
circumscribed polygon is greater than the area of the circle. Moreover, as n increases, 
the areas of both polygons become better and better approximations of the area of 
the circle.

n = 6

   

n = 12

 The exhaustion method for finding the area of a circular region
 Figure 5.7

A process that is similar to that used by Archimedes to determine the area of a 
plane region is used in the remaining examples in this section.

 FOR FURTHER INFORMATION

For an alternative development of 
the formula for the area of a circle, 
see the article “Proof Without 
Words: Area of a Disk is πR2” by 
Russell Jay Hendel in Mathematics 
Magazine. To view this article, go 
to MathArticles.com.

ARCHIMEDES (287–212 B.C.)

Archimedes used the method 
of exhaustion to derive 
formulas for the areas of 
ellipses, parabolic segments, 
and sectors of a spiral. He is 
considered to have been the 
greatest applied mathematician 
of antiquity.
See LarsonCalculus.com to read 
more of this biography.

Mary Evans Picture Library/Alamy Stock Photo
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 5.2 Area 297

The Area of a Plane Region
Recall from Section 2.1 that the origins of calculus are connected to two classic 
 problems: the tangent line problem and the area problem. Example 3 begins the 
 investigation of the area problem.

 Approximating the Area of a Plane Region

Use the five rectangles in Figures 5.8(a) and (b) to find two approximations of the area 
of the region lying between the graph of

f(x) = −x2 + 5

and the x-axis between x = 0 and x = 2.

Solution

a. The right endpoints of the five intervals are

2
5

i Right endpoints

  where i = 1, 2, 3, 4, 5. The width of each rectangle is 2
5, and the height of each  

rectangle can be obtained by evaluating f  at the right endpoint of each interval.

[0, 
2
5], [2

5
, 

4
5], [4

5
, 

6
5], [6

5
, 

8
5], [8

5
, 

10
5 ]

 
 Evaluate f  at the right endpoints of these intervals.

 The sum of the areas of the five rectangles is

 Height Width

 

∑
5

i=1
f (2i

5 )(
2
5) = ∑

5

i=1
[−(2i

5 )
2

+ 5](2
5) =

162
25

= 6.48.

  Because each of the five rectangles lies inside the parabolic region, you can conclude 
that the area of the parabolic region is greater than 6.48.

b. The left endpoints of the five intervals are

2
5

(i − 1) Left endpoints

  where i = 1, 2, 3, 4, 5. The width of each rectangle is 25, and the height of each rectangle 
can be obtained by evaluating f  at the left endpoint of each interval. So, the sum is

 Height Width

 

∑
5

i=1
f (2i − 2

5 )(2
5) = ∑

5

i=1
[−(2i − 2

5 )
2

+ 5](2
5) =

202
25

= 8.08.

  Because the parabolic region lies within the union of the five rectangular regions,  
you can conclude that the area of the parabolic region is less than 8.08.

By combining the results in parts (a) and (b), you can conclude that

6.48 < (Area of region) < 8.08. 

By increasing the number of rectangles used in Example 3, you can obtain closer 
and closer approximations of the area of the region. For instance, using 25 rectangles 
of width 2

25 each, you can conclude that

7.1712 < (Area of region) < 7.4912.

x

1

2

3

4

5

5 5 5 5 5
2 4 6 8 10

f(x) = −x2 + 5

y

(a)  The area of the parabolic region is 
greater than the area of the rectangles.

f(x) = −x2 + 5

x

1

2

3

4

5

5 5 5 5 5
2 4 6 8 10

y

(b)  The area of the parabolic region is less 
than the area of the rectangles.

Figure 5.8
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Finding Area by the Limit Definition
The procedure used in Example 3 can be generalized as follows. Consider a plane 
region bounded above by the graph of a nonnegative, continuous function

y = f(x)

as shown in Figure 5.9. The region is bounded below by the x-axis, and the left and 
right boundaries of the region are the vertical lines x = a and x = b.

To approximate the area of the region, begin by subdividing the interval [a, b] into 
n subintervals, each of width

∆x =
b − a

n

as shown in Figure 5.10. The endpoints of the intervals are

 a = x0 x1 x2 xn = b

a + 0(∆x) < a + 1(∆x) < a + 2(∆x) < .  .  . < a + n(∆x).

Because f  is continuous, the Extreme Value Theorem guarantees the existence of a  
minimum and a maximum value of f(x) in each subinterval.

 f(mi) = Minimum value of f(x) in ith subinterval

 f(Mi) = Maximum value of f(x) in ith subinterval

Next, define an inscribed rectangle lying inside the ith subregion and a  circumscribed 
rectangle extending outside the ith subregion. The height of the ith inscribed rectangle 
is f(mi) and the height of the ith circumscribed rectangle is f(Mi). For each i, the area 
of the inscribed rectangle is less than or equal to the area of the circumscribed rectangle.

(Area of inscribed
rectangle ) = f(mi) ∆x ≤ f(Mi) ∆x = (Area of circumscribed

rectangle )
The sum of the areas of the inscribed rectangles is called a lower sum, and the sum of 
the areas of the circumscribed rectangles is called an upper sum.

Lower sum = s(n) = ∑
n

i=1
f(mi) ∆x Area of inscribed rectangles

Upper sum = S(n) = ∑
n

i=1
f(Mi) ∆x Area of circumscribed rectangles

From Figure 5.11, you can see that the lower sum s(n) is less than or equal to the upper 
sum S(n). Moreover, the actual area of the region lies between these two sums.

s(n) ≤ (Area of region) ≤ S(n)

s(n)

a b
x

y = f(x)
y   

a b
x

y

y = f (x)

  y = f (x)

S(n)

a b
x

y

 Area of inscribed rectangles Area of region Area of circumscribed 
 is less than area of region.  rectangles is greater than 
   area of region.
 Figure 5.11

a b
x

f

y

The region under a curve
Figure 5.9

a b
x

f

Δx

f (mi)
f (Mi)

y

The interval [a, b] is divided into n

subintervals of width ∆x =
b − a

n
.

Figure 5.10
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 5.2 Area 299

 Finding Upper and Lower Sums for a Region

Find the upper and lower sums for the region bounded by the graph of f(x) = x2 and 
the x-axis between x = 0 and x = 2.

Solution To begin, partition the interval [0, 2] into n subintervals, each of width

∆x =
b − a

n
=

2 − 0
n

=
2
n

.

Figure 5.12 shows the endpoints of the subintervals and several inscribed and 
 circumscribed rectangles. Because f  is increasing on the interval [0, 2], the minimum 
value on each subinterval occurs at the left endpoint, and the maximum value occurs 
at the right endpoint.

 Left Endpoints Right Endpoints

mi = 0 + (i − 1)(2
n) =

2(i − 1)
n

 Mi = 0 + i(2
n) =

2i
n

Using the left endpoints, the lower sum is

 s(n) = ∑
n

i=1
f(mi) ∆x

 = ∑
n

i=1
f [2(i − 1)

n ](2
n)

 = ∑
n

i=1
[2(i − 1)

n ]
2

(2
n)

 = ∑
n

i=1
( 8

n3)(i2 − 2i + 1)

 =
8
n3 (∑

n

i=1
i2 − 2∑

n

i=1
i + ∑

n

i=1
1)

 =
8
n3{n(n + 1)(2n + 1)

6
− 2[n(n + 1)

2 ] + n}
 =

4
3n3(2n3 − 3n2 + n)

 =
8
3

−
4
n

+
4

3n2. Lower sum

Using the right endpoints, the upper sum is

 S(n) = ∑
n

i=1
f(Mi) ∆x

 = ∑
n

i=1
f(2i

n )(
2
n)

 = ∑
n

i=1
(2i

n )
2(2

n)
 = ∑

n

i=1
( 8

n3)i2

 =
8
n3[n(n + 1)(2n + 1)

6 ]
 =

4
3n3 (2n3 + 3n2 + n)

 =
8
3

+
4
n

+
4

3n2. Upper sum 

x

1

1

2

2 3

3

4

−1

f (x) = x2

y

Inscribed rectangles

1 2 3
x

1

2

3

4

−1

y

f (x) = x2

Circumscribed rectangles
Figure 5.12
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Example 4 illustrates some important things about lower and upper sums. First, 
notice that for any value of n, the lower sum is less than (or equal to) the upper sum.

s(n) =
8
3

−
4
n

+
4

3n2 <
8
3

+
4
n

+
4

3n2 = S(n)

Second, the difference between these two sums lessens as n increases. In fact, when you 
take the limits as n →∞, both the lower sum and the upper sum approach 83.

lim
n→∞

 s(n) = lim
n→∞

 (8
3

−
4
n

+
4

3n2) =
8
3

 Lower sum limit

and

lim
n→∞

 S(n) = lim
n→∞

 (8
3

+
4
n

+
4

3n2) =
8
3

 Upper sum limit

The next theorem shows that the equivalence of the limits (as n →∞) of the upper 
and lower sums is not mere coincidence. It is true for all functions that are continuous 
and nonnegative on the closed interval [a, b]. The proof of this theorem is best left to 
a course in advanced calculus.

THeOReM 5.3 Limits of the Lower and Upper Sums

Let f  be continuous and nonnegative on the interval [a, b]. The limits as 
n →∞ of both the lower and upper sums exist and are equal to each other. 
That is,

lim
n→∞

 s(n) = lim
n→∞

 ∑
n

i=1
f(mi) ∆x

 = lim
n→∞

 ∑
n

i=1
f(Mi) ∆x

 = lim
n→∞

 S(n)

where ∆x = (b − a)�n and f(mi) and f(Mi) are the minimum and maximum 
values of f  on the ith subinterval.

In Theorem 5.3, the same limit is attained for both the minimum value f(mi) and 
the  maximum value f(Mi). So, it follows from the Squeeze Theorem (Theorem 2.8) that 
the choice of x in the ith subinterval does not affect the limit. This means that you are 
free to choose an arbitrary x-value in the ith subinterval, as shown in the definition of 
the area of a region in the plane.

Definition of the Area of a Region in the Plane

Let f  be continuous and nonnegative on the  

x

f

a b
xixi−1

ci

f (ci)

y

The width of the ith subinterval 
is ∆x = xi − xi−1.
Figure 5.13

interval [a, b]. (See Figure 5.13.) The area 
of the region bounded by the graph of f, 
the x-axis, and the vertical lines x = a and 
x = b is

Area = lim
n→∞

 ∑
n

i=1
f(ci) ∆x

where xi−1 ≤ ci ≤ xi and

∆x =
b − a

n
.

exploration
For the region given in 
Example 4, evaluate the 
lower sum

s(n) =
8
3

−
4
n

+
4

3n2

and the upper sum

S(n) =
8
3

+
4
n

+
4

3n2

for n = 10, 100, and 1000.
Use your results to determine 
the area of the region.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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 Finding Area by the Limit Definition

Find the area of the region bounded by the graph of f(x) = x3, the x-axis, and the 
vertical lines x = 0 and x = 1, as shown in Figure 5.14.

Solution Begin by noting that f  is continuous and nonnegative on the interval 
[0, 1]. Next, partition the interval [0, 1] into n subintervals, each of width ∆x = 1�n. 
According to the definition of area, you can choose any x-value in the ith subinterval. 
For this example, the right endpoints ci = i�n are convenient.

 Area = lim
n→∞

 ∑
n

i=1
f(ci) ∆x

 = lim
n→∞

 ∑
n

i=1
( i

n)
3(1

n) Right endpoints: ci =
i
n

 = lim
n→∞

1
n4 ∑

n

i=1
i3

 = lim
n→∞

 
1
n4[n2(n + 1)2

4 ]
 = lim

n→∞
 (1

4
+

1
2n

+
1

4n2)
 =

1
4

The area of the region is 14.

 Finding Area by the Limit Definition

See LarsonCalculus.com for an interactive version of this type of example.

Find the area of the region bounded by the graph of f(x) = 4 − x2, the x-axis, and the 
vertical lines x = 1 and x = 2, as shown in Figure 5.15.

Solution Note that the function f  is continuous and nonnegative on the interval 
[1, 2]. So, begin by partitioning the interval into n subintervals, each of width 
∆x = 1�n. Choosing the right endpoint

ci = a + i∆x = 1 +
i
n

 Right endpoints

of each subinterval, you obtain

 Area = lim
n→∞

 ∑
n

i=1
f(ci) ∆x

 = lim
n→∞

 ∑
n

i=1
[4 − (1 +

i
n)

2

](1
n)

 = lim
n→∞

 ∑
n

i=1
(3 −

2i
n

−
i2

n2)(1
n)

 = lim
n→∞(

1
n

 ∑
n

i=1
3 −

2
n2 ∑

n

i=1
i −

1
n3 ∑

n

i=1
i2)

 = lim
n→∞[3 − (1 +

1
n) − (1

3
+

1
2n

+
1

6n2)]
 = 3 − 1 −

1
3

 =
5
3

.

The area of the region is 53. 

x
1

1

(0, 0)

(1, 1)

f (x) = x3

y

The area of the region bounded by  
the graph of f, the x-axis, x = 0, and 
x = 1 is 14.
Figure 5.14

x

1

1

2

2

3

4
f (x) = 4 − x2

y

The area of the region bounded by  
the graph of f, the x-axis, x = 1, and 
x = 2 is 53.
Figure 5.15
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The next example looks at a region that is bounded by the y-axis (rather than by 
the x-axis).

 A Region Bounded by the y-axis

Find the area of the region bounded by the graph of f(y) = y2 and the y-axis for 
0 ≤ y ≤ 1, as shown in Figure 5.16.

Solution When f  is a continuous, nonnegative function of y, you can still use the 
same basic procedure shown in Examples 5 and 6. Begin by partitioning the interval 
[0, 1] into n subintervals, each of width ∆y = 1�n. Then, using the upper endpoints 
ci = i�n, you obtain

 Area = lim
n→∞

 ∑
n

i=1
f(ci) ∆y

 = lim
n→∞

 ∑
n

i=1
( i

n)
2(1

n) Upper endpoints: ci =
i
n

 = lim
n→∞

 
1
n3 ∑

n

i=1
i2

 = lim
n→∞

 
1
n3[n(n + 1)(2n + 1)

6 ]
 = lim

n→∞
 (1

3
+

1
2n

+
1

6n2)
 =

1
3

.

The area of the region is 13. 

In Examples 5, 6, and 7, ci is chosen to be a value that is convenient for calculating 
the limit. Because each limit gives the exact area for any ci, there is no need to find  
values that give good approximations when n is small. For an approximation, however, 
you should try to find a value of ci that gives a good approximation of the area of the  
ith subregion. In general, a good value to choose is the midpoint of the interval, 
ci = (xi−1 + xi)�2, and apply the Midpoint Rule.

Area ≈ ∑
n

i=1
 f (xi−1 + xi

2 ) ∆x. Midpoint Rule

 Approximating Area with the Midpoint Rule

Use the Midpoint Rule with n = 4 to approximate the area of the region bounded by the 
graph of f(x) = sin x and the x-axis for 0 ≤ x ≤ π, as shown in Figure 5.17.

Solution For n = 4, ∆x = π�4. The midpoints of the subregions are shown below.

c1 =
0 + (π�4)

2
=

π
8

 c2 =
(π�4) + (π�2)

2
=

3π
8

c3 =
(π�2) + (3π�4)

2
=

5π
8

 c4 =
(3π�4) + π

2
=

7π
8

So, the area is approximated by

Area ≈ ∑
n

i=1
f(ci) ∆x = ∑

4

i=1
(sin ci)(π4) =

π
4(sin

π
8

+ sin
3π
8

+ sin
5π
8

+ sin
7π
8 )

which is about 2.052. 

1

1

x

(1, 1)

(0, 0)

y

f(y) = y2

The area of the region bounded by 
the graph of f  and the y-axis for 
0 ≤ y ≤ 1 is 13.
Figure 5.16

ReMARk You will study 
other approximation methods 
in Section 8.6. One of the 
methods, the Trapezoidal  
Rule, is similar to the  
Midpoint Rule.

c1 c2 c3 c4

f(x) = sin x

x

y

π
4

1

π3
4
π

2
π

The area of the region bounded by the 
graph of f (x) = sin x and the x-axis for 
0 ≤ x ≤ π  is about 2.052.
Figure 5.17
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 5.2 Area 303

5.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Sigma Notation What are the index of summation, 

the upper bound of summation, and the lower bound of

 summation for ∑
8

i=3
 (i − 4)?

2.  Sums What is the value of n?

 (a)  ∑
n

i=1
i =

5(5 + 1)
2

 (b) ∑
n

i=1
i2 =

20(20 + 1)[2(20) + 1]
6

3.  Upper and Lower Sums In your own words and 
using appropriate figures, describe the methods of upper 
sums and lower sums in approximating the area of a region.

4.  Finding Area by the Limit Definition Explain 
how to find the area of a plane region using limits.

 Finding a Sum In Exercises 5–10, find the sum 
by adding each term together. Use the summation 
capabilities of a graphing utility to verify your result.

 5. ∑
6

i=1
(3i + 2)  6. ∑

9

k=3
(k2 + 1)

 7. ∑
4

k=0
 

1
k2 + 1

  8. ∑
5

j=2
 
1
2j

 9. ∑
7

k=0
 c 10. ∑

4

i=1
[(i − 1)2 + (i + 1)3]

Using Sigma Notation In Exercises 11–16, use sigma 
notation to write the sum.

11. 
1

5(1) +
1

5(2) +
1

5(3) + .  .  . +
1

5(11)

12. 
6

2 + 1
+

6
2 + 2

+
6

2 + 3
+ .  .  . +

6
2 + 11

13. [7(1
6) + 5] + [7(2

6) + 5] + .  .  . + [7(6
6) + 5]

14. [1 − (1
4)

2

] + [1 − (2
4)

2

] + .  .  . + [1 − (4
4)

2

]
15. [(2

n)
3

−
2
n](

2
n) + .  .  . + [(2n

n )
3

−
2n
n ](2

n)
16. [2(1 +

3
n)

2

](3
n) + .  .  . + [2(1 +

3n
n )

2

](3
n)

 evaluating a Sum In Exercises 17–24, use 
the properties of summation and Theorem 5.2 to 
evaluate the sum. Use the summation capabilities 
of a graphing utility to verify your result.

17. ∑
12

i=1
7 18. ∑

20

i=1
−8

19. ∑
24

i=1
4i 20. ∑

16

i=1
(5i − 4)

21. ∑
20

i=1
(i − 1)2 22. ∑

10

i=1
(i2 − 1)

23. ∑
7

i=1
 i(i + 3)2 24. ∑

25

i=1
(i3 − 2i)

 evaluating a Sum In Exercises 25–28, use 
the summation formulas to rewrite the expression 
without the summation notation. Use the result to 
find the sums for n = 10, 100, 1000, and 10,000.

25. ∑
n

i=1

2i + 1
n2  26. ∑

n

j=1

7j + 4
n2

27. ∑
n

k=1

6k(k − 1)
n3  28. ∑

n

i=1

2i3 − 3i
n4

 Approximating the Area of a Plane 
Region In Exercises 29–34, use left and right 
endpoints and the given number of rectangles to 
find two approximations of the area of the region 
between the graph of the function and the x-axis 
over the given interval.

29. f (x) = 2x + 5, [0, 2], 4 rectangles

30. f (x) = 9 − x, [2, 4], 6 rectangles

31. g(x) = 2x2 − x − 1, [2, 5], 6 rectangles

32. g(x) = x2 + 1, [1, 3], 8 rectangles

33. f (x) = cos x, [0, 
π
2], 4 rectangles

34. g(x) = sin x, [0, π], 6 rectangles

Using Upper and Lower Sums In Exercises 35 and 36, 
bound the area of the shaded region by approximating the 
upper and lower sums. Use rectangles of width 1.

35. 

x
1 2 3 4 5

1

2

3

4

5
f

y  36. 

x
1 2 3 4 5

1

2

3

4

5
f

y

 Finding Upper and Lower Sums for a 
Region In Exercises 37–40, use upper and lower 
sums to approximate the area of the region using 
the given number of subintervals (of equal width).

37. y = √x 38. y = 4e−x

 

x

1

1

y   

x
1 2

4

3

2

1

y
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39. y =
1
x
 40. y = √1 − x2

 

x
1 2

1

y   

x

1

1

y

 Finding Upper and Lower Sums for a 
Region In Exercises 41–44, find the upper and 
lower sums for the region bounded by the graph of 
the function and the x-axis on the given interval. 
Leave your answer in terms of n, the number of 
subintervals.

 Function Interval

41. f (x) = 3x [0, 4]
42. f (x) = 6 − 2x [1, 2]
43. f (x) = 5x2 [0, 1]

44. f (x) = 9 − x2 [0, 2] 

45.  Numerical Reasoning Consider a triangle of area 2 
bounded by the graphs of y = x, y = 0, and x = 2.

 (a) Sketch the region.

 (b)  Divide the interval [0, 2] into n subintervals of equal width 
and show that the endpoints are

  0 < 1(2
n) < .  .  . < (n − 1)(2

n) < n(2
n).

 (c) Show that s(n) = ∑
n

i=1
[(i − 1)(2

n)](
2
n).

 (d) Show that S(n) = ∑
n

i=1
[i(2

n)](
2
n).

 (e) Find s(n) and S(n) for n = 5, 10, 50, and 100.

 (f ) Show that lim
n→∞ 

s(n) = lim
n→∞

 S(n) = 2.

46.  Numerical Reasoning Consider a trapezoid of area 4 
bounded by the graphs of y = x, y = 0, x = 1, and x = 3.

 (a) Sketch the region.

 (b)  Divide the interval [1, 3] into n subintervals of equal width 
and show that the endpoints are

 1 < 1 + 1(2
n) < .  .  . < 1 + (n − 1)(2

n) < 1 + n(2
n).

 (c) Show that s(n) = ∑
n

i=1
[1 + (i − 1)(2

n)](
2
n).

 (d) Show that S(n) = ∑
n

i=1
[1 + i(2

n)](
2
n).

 (e) Find s(n) and S(n) for n = 5, 10, 50, and 100.

 (f ) Show that lim
n→∞

 s(n) = lim
n→∞

 S(n) = 4.

 Finding Area by the Limit Definition In 
Exercises 47–56, use the limit process to find the 
area of the region bounded by the graph of the 
function and the x-axis over the given interval. 
Sketch the region.

47. y = −4x + 5, [0, 1] 48. y = 3x − 2, [2, 5]
49. y = x2 + 2, [0, 1] 50. y = 5x2 + 1, [0, 2]
51. y = 25 − x2, [1, 4] 52. y = 4 − x2, [−2, 2]
53. y = 27 − x3, [1, 3] 54. y = 2x − x3, [0, 1]
55. y = x2 − x3, [−1, 1] 56. y = 2x3 − x2, [1, 2]

 Finding Area by the Limit Definition In 
Exercises 57–62, use the limit process to find the 
area of the region bounded by the graph of the 
function and the y-axis over the given y-interval. 
Sketch the region.

57. f (y) = 4y, 0 ≤ y ≤ 2

58. g(y) = 1
2y, 2 ≤ y ≤ 4

59. f (y) = y2, 0 ≤ y ≤ 5

60. y = 3y − y2, 2 ≤ y ≤ 3

61. g(y) = 4y2 − y3, 1 ≤ y ≤ 3

62. h(y) = y3 + 1, 1 ≤ y ≤ 2

 Approximating Area with the Midpoint 
Rule In Exercises 63–68, use the Midpoint Rule 
with n = 4 to approximate the area of the region 
bounded by the graph of the function and the 
x-axis over the given interval.

63. f (x) = x2 + 3, [0, 2] 64. f (x) = x2 + 4x, [0, 4]

65. f (x) = tan x, [0, 
π
4] 66. f (x) = cos x, [0, 

π
2]

67. f (x) = ln x, [1, 5] 68. f (x) = xex, [0, 2]

eXpLoring ConCepts
69.  Approximation Determine which value best 

approximates the area of the region bounded by the 
graph of f (x) = 4 − x2 and the x-axis over the interval 
[0, 2]. Make your selection on the basis of a sketch of the 
region, not by performing calculations.

 (a) −2  (b) 6  (c) 10  (d) 3  (e) 8

70.  Approximation A function is continuous, 
nonnegative, concave upward, and decreasing on the 
interval [0, a]. Does using the right endpoints of the 
subintervals produce an overestimate or an underestimate 
of the area of the region bounded by the function and the 
x-axis?

71.  Midpoint Rule Explain why the Midpoint Rule 
almost always results in a better area approximation in 
comparison to the endpoint method.

72.  Midpoint Rule Does the Midpoint Rule ever give 
the exact area between a function and the x-axis? Explain.
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73.  Graphical Reasoning Consider the region bounded by 
the graphs of f (x) = 8x�(x + 1), x = 0, x = 4, and y = 0, as 
shown in the figure. To print an enlarged copy of the graph, go 
to MathGraphs.com.

 (a)  Redraw the figure, and  

x
1

2

2 3

4

4

6

8

y

f

complete and shade the 
rectangles representing the 
lower sum when n = 4. 
Find this lower sum.

 (b)  Redraw the figure, and 
complete and shade the 
rectangles representing the 
upper sum when n = 4. 
Find this upper sum.

 (c)  Redraw the figure, and complete and shade the rectangles 
whose heights are determined by the function values at the 
midpoint of each subinterval when n = 4. Find this sum 
using the Midpoint Rule.

 (d)  Verify the following formulas for approximating the area 
of the region using n subintervals of equal width.

  Lower sum: s(n) = ∑
n

i=1
f [(i − 1)4

n](
4
n)

  Upper sum: S(n) = ∑
n

i=1
f [(i) 4

n](
4
n)

  Midpoint Rule: M(n) = ∑
n

i=1
f [(i −

1
2)

4
n](

4
n)

 (e)  Use a graphing utility to create a table of values of s(n), 
S(n), and M(n) for n = 4, 8, 20, 100, and 200.

 (f )  Explain why s(n) increases and S(n) decreases for 
increasing values of n, as shown in the table in part (e).

 74.  HOW DO YOU See IT? The function 
shown in the graph below is increasing on the 
interval [1, 4]. The interval will be divided into 
12 subintervals.

1 2 3 4 5

2

3

4

5

x

y

(a)  What are the left endpoints of the first and last 
subintervals?

(b)  What are the right endpoints of the first two 
subintervals?

(c)  When using the right endpoints, do the rectangles 
lie above or below the graph of the function?

(d)  What can you conclude about the heights of the 
rectangles when the function is constant on the 
given interval?

 74.  

True or False? In Exercises 75 and 76, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

75. The sum of the first n positive integers is n(n + 1)�2.

76.  If f  is continuous and nonnegative on [a, b], then the limits as 
n →∞ of its lower sum s(n) and upper sum S(n) both exist and 
are equal.

77.  Writing Use the figure to write a short paragraph explaining 
why the formula 

 1 + 2 + .  .  . + n =
1
2

n(n + 1)

 is valid for all positive integers n.

78.  Graphical Reasoning Consider an n-sided regular 
polygon inscribed in a circle of radius r. Join the vertices of 
the polygon to the center of the circle, forming n congruent 
triangles (see figure).

θ

 (a) Determine the central angle θ in terms of n.

 (b) Show that the area of each triangle is 12r2 sin θ.

 (c)  Let An be the sum of the areas of the n triangles. Find 
lim

n→∞
 An.

79.  Seating Capacity A teacher places n seats to form the 
back row of a classroom layout. Each successive row contains 
two fewer seats than the preceding row. Find a formula for the 
number of seats used in the layout. (Hint: The number of seats 
in the layout depends on whether n is odd or even.)

80.  Proof Prove each formula by mathematical induction. (You 
may need to review the method of proof by induction from a 
precalculus text.)

 (a) ∑
n

i=1
2i = n(n + 1)  (b) ∑

n

i=1
i3 =

n2(n + 1)2

4

pUtnAM eXAM ChALLenge
81.  A dart, thrown at random, hits a square target. Assuming 

that any two parts of the target of equal area are equally 
likely to be hit, find the probability that the point hit is 
nearer to the center than to any edge. Write your answer in 
the form (a√b + c)�d, where a, b, c, and d are integers.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.
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5.3 Riemann Sums and Definite Integrals

 Understand the definition of a Riemann sum.
 Evaluate a definite integral using limits and geometric formulas.
 Evaluate a definite integral using properties of definite integrals.

Riemann Sums
In the definition of area given in Section 5.2, the partitions have subintervals of equal 
width. This was done only for computational convenience. The next example shows 
that it is not necessary to have subintervals of equal width.

 A Partition with Subintervals of Unequal Widths

Consider the region bounded by the graph of f(x) = √x and the x-axis for 0 ≤ x ≤ 1, 
as shown in Figure 5.18. Evaluate the limit

lim
n→∞

 ∑
n

i=1
f(ci) ∆xi

where ci is the right endpoint of the partition given by ci = i2�n2 and ∆xi is the width 
of the ith interval.

Solution The width of the ith interval is

 ∆xi =
i2

n2 −
(i − 1)2

n2

 =
i2 − i2 + 2i − 1

n2

 =
2i − 1

n2 .

So, the limit is

 lim
n→∞

 ∑
n

i=1
f(ci) ∆xi = lim

n→∞
 ∑

n

i=1
 √ i2

n2 (2i − 1
n2 )

 = lim
n→∞

 
1
n3 ∑

n

i=1
 (2i2 − i)

 = lim
n→∞

 
1
n3 [2(n(n + 1)(2n + 1)

6 ) −
n(n + 1)

2 ]
 = lim

n→∞
 
4n3 + 3n2 − n

6n3

 = lim
n→∞

 (2
3

+
1
2n

−
1

6n2)
 =

2
3

. 

From Example 7 in Section 5.2, you know that the region shown in Figure 5.19 has 
an area of 13. Because the square bounded by 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 has an area of 1, 
you can conclude that the area of the region shown in Figure 5.18 has an area of 23. This 
agrees with the limit found in Example 1, even though that example used a partition 
having subintervals of unequal widths. The reason this particular partition gave the 
proper area is that as n increases, the width of the largest subinterval approaches zero. 
This is a key feature of the development of definite integrals.

x

n2 n2 n2

n

n

n

1

1

1

2

22
. . .

. .
 .

1
(n − 1)2

n − 1

y f (x) =    x

The subintervals do not have equal 
widths.
Figure 5.18

x
1

1 (1, 1)

(0, 0)

Area = 1
3

y

x = y2

The area of the region bounded by  
the graph of x = y2 and the y-axis  
for 0 ≤ y ≤ 1 is 13.
Figure 5.19
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In Section 5.2, the limit of a sum was used to define the area of a region in the 
plane. Finding area by this method is only one of many applications involving the limit of 
a sum. A similar approach can be used to determine quantities as diverse as arc lengths, 
average values, centroids, volumes, work, and surface areas. The next definition is 
named after Georg Friedrich Bernhard Riemann. Although the definite integral had been 
defined and used long before Riemann’s time, he generalized the concept to cover a 
broader category of functions.

In the definition of a Riemann sum below, note that the function f  has no restrictions 
other than being defined on the interval [a, b]. (In Section 5.2, the function f  was assumed 
to be continuous and nonnegative because you were finding the area under a curve.)

Definition of Riemann Sum

Let f  be defined on the closed interval [a, b], and let ∆ be a partition of [a, b] 
given by

a = x0 < x1 < x2 < .  .  . < xn−1 < xn = b

where ∆xi is the width of the ith subinterval

[xi−1, xi]. ith subinterval

If ci is any point in the ith subinterval, then the sum

∑
n

i=1
f(ci) ∆xi , xi−1 ≤ ci ≤ xi

is called a Riemann sum of f  for the partition ∆. (The sums in Section 5.2 are 
examples of Riemann sums, but there are more general Riemann sums than 
those covered there.)

The width of the largest subinterval of a partition ∆ is the norm of the partition and 
is denoted by �∆�. If every subinterval is of equal width, then the partition is regular 
and the norm is denoted by

�∆� = ∆x =
b − a

n
.    Regular partition

For a general partition, the norm is related to the number of subintervals of [a, b] in 
the following way.

b − a
�∆� ≤ n General partition

So, the number of subintervals in a partition approaches infinity as the norm of the 
partition approaches 0. That is, �∆� → 0 implies that n →∞.

The converse of this statement is not true. For example, let ∆n be the partition of 
the interval [0, 1] given by

0 <
1
2n <

1
2n−1 < .  .  . <

1
8

<
1
4

<
1
2

< 1.

As shown in Figure 5.20, for any positive value of n, the norm of the partition ∆n is 12. 
So, letting n approach infinity does not force �∆� to approach 0. In a regular partition, 
however, the statements

�∆� → 0 and n →∞
are equivalent.

10

1
2n

1
8

1
4

1
2

1
2⏐⏐Δ⏐⏐ =

n →∞ does not imply that �∆� → 0.
Figure 5.20

GEORG FRIEDRICH BERNHARD 
RIEMANN (1826-1866)

German mathematician 
Riemann did his most famous 
work in the areas of 
non-Euclidean geometry, 
differential equations, and 
number theory. It was 
Riemann’s results in physics 
and mathematics that formed 
the structure on which 
Einstein’s General Theory of 
Relativity is based.
See LarsonCalculus.com to read 
more of this biography.
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308 Chapter 5 Integration

Definite Integrals
To define the definite integral, consider the limit

lim
�∆�→0

 ∑
n

i=1
f(ci) ∆xi = L.

 To say that this limit exists means there exists a real number L such that for each ε > 0,
there exists a δ > 0 such that for every partition with �∆� < δ, it follows that

∣L − ∑
n

i=1
f(ci) ∆xi∣ < ε

regardless of the choice of ci in the ith subinterval of each partition ∆.

Definition of Definite Integral

If f  is defined on the closed interval [a, b] and the limit of Riemann sums over 
partitions ∆

lim
�∆�→0

 ∑
n

i=1
f(ci) ∆xi

exists (as described above), then f  is said to be integrable on [a, b] and the 
limit is denoted by

lim
�∆�→0

 ∑
n

i=1
f(ci) ∆xi = ∫b

a

f(x) dx.

The limit is called the definite integral of f  from a to b. The number a is the 
lower limit of integration, and the number b is the upper limit of integration.

It is not a coincidence that the notation for definite integrals is similar to that used 
for indefinite integrals. You will see why in the next section when the Fundamental 
Theorem of Calculus is introduced. For now, it is important to see that definite  integrals 
and indefinite integrals are different concepts. A definite integral is a number, whereas 
an indefinite integral is a family of functions.

Though Riemann sums were defined for functions with very few restrictions, a 
sufficient condition for a function f  to be integrable on [a, b] is that it is continuous on 
[a, b]. A proof of this theorem is beyond the scope of this text.

THEOREM 5.4 Continuity Implies Integrability

If a function f  is continuous on the closed interval [a, b], then f  is integrable 
on [a, b]. That is, ∫b

a f(x) dx exists.

Exploration
The Converse of Theorem 5.4 Is the converse of Theorem 5.4 true? That 
is, when a function is integrable, does it have to be continuous? Explain your 
reasoning and give examples.

Describe the relationships among continuity, differentiability, and 
integrability. Which is the strongest condition? Which is the weakest? Which 
conditions imply other conditions?

REMARK Later in this 
chapter, you will learn 
convenient methods for 
calculating ∫b

a f(x) dx for 
continuous functions. For now, 
you must use the limit definition.

 FOR FURTHER INFORMATION
For insight into the history of the 
definite integral, see the article 
“The Evolution of Integration” by 
A. Shenitzer and J. Steprans in 
The American Mathematical 
Monthly. To view this article, 
go to MathArticles.com.
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 Evaluating a Definite Integral as a Limit

Evaluate the definite integral ∫1

−2
 2x dx.

Solution The function f(x) = 2x is integrable on the interval [−2, 1] because it 
is continuous on [−2, 1]. Moreover, the definition of integrability implies that any 
partition whose norm approaches 0 can be used to determine the limit. For computational 
convenience, define ∆ by subdividing [−2, 1] into n subintervals of equal width

∆xi = ∆x =
b − a

n
=

3
n

.

Choosing ci as the right endpoint of each subinterval produces

ci = a + i(∆x) = −2 +
3i
n

.

So, the definite integral is

 ∫1

−2
2x dx = lim

�∆�→0
 ∑

n

i=1
f(ci) ∆xi

 = lim
n→∞

  ∑
n

i=1
f(ci) ∆x

 = lim
n→∞ ∑

n

i=1
2(−2 +

3i
n )(

3
n)

 = lim
n→∞

  
6
n

 ∑
n

i=1
(−2 +

3i
n )

 = lim
n→∞

 
6
n

 (−2∑
n

i=1
1 +

3
n ∑

n

i=1
i)

 = lim
n→∞

 
6
n

 {−2n +
3
n [

n(n + 1)
2 ]}

 = lim
n→∞(−12 + 9 +

9
n)

 = −3. 

Because the definite integral in Example 2 is negative, it does not represent the 
area of the region shown in Figure 5.21. Definite integrals can be positive, negative, or 
zero. For a definite integral to be interpreted as an area (as defined in Section 5.2), the 
function f  must be continuous and nonnegative on [a, b], as stated in the next theorem. 
The proof of this theorem is straightforward—you simply use the definition of area 
given in Section 5.2, because it is a Riemann sum.

THEOREM 5.5 The Definite Integral as the Area of a Region

If f  is continuous and nonnegative on the closed interval [a, b], then the area 
of the region bounded by the graph of f, the x-axis, and the vertical lines x = a 
and x = b is

Area = ∫b

a

f(x) dx.

(See Figure 5.22.)

x
1

2

1

−2

−3

−4

f (x) = 2x

y

Because the definite integral is 
negative, it does not represent the 
area of the region.
Figure 5.21

a b

f

x

y

You can use a definite integral to find 
the area of the region bounded by 
the graph of f, the x-axis, x = a, and 
x = b.
Figure 5.22
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310 Chapter 5 Integration

As an example of Theorem 5.5, consider the region bounded by the graph of

f(x) = 4x − x2

and the x-axis, as shown in Figure 5.23. Because f  is continuous and nonnegative on 
the closed interval [0, 4], the area of the region is

Area = ∫4

0
(4x − x2) dx.

A straightforward technique for evaluating a definite integral such as this will be 
 discussed in Section 5.4. For now, however, you can evaluate a definite integral in two 
ways—you can use the limit definition or you can check to see whether the definite 
integral represents the area of a common geometric region, such as a rectangle, triangle, 
or semicircle.

 Areas of Common Geometric Figures

Sketch the region corresponding to each definite integral. Then evaluate each integral 
using a geometric formula.

a. ∫3

1
 4 dx  b. ∫3

0
 (x + 2) dx  c. ∫2

−2
 √4 − x2 dx

Solution A sketch of each region is shown in Figure 5.24.

a. This region is a rectangle of height 4 and width 2.

∫3

1
 4 dx = (Area of rectangle) = 4(2) = 8

b.  This region is a trapezoid with an altitude of 3 and parallel bases of lengths 2 and 
5. The formula for the area of a trapezoid is 12h(b1 + b2).

∫3

0
 (x + 2) dx = (Area of trapezoid) =

1
2

(3)(2 + 5) =
21
2

c.  This region is a semicircle of radius 2. The formula for the area of a semicircle is 
1
2πr2.

∫2

−2
 √4 − x2 dx = (Area of semicircle) =

1
2
π(22) = 2π

x

4

3

2

1

1 2 3 4

f(x) = 4
y   

x

4

3

5

2

1

1 2 3 4 5

f(x) = x + 2
y   

x

f (x) =     4 − x2
4

3

1

−2 −1 1 2

y

 (a) (b) (c)

 Figure 5.24 

The variable of integration in a definite integral is sometimes called a dummy 
variable because it can be replaced by any other variable without changing the value of 
the integral. For instance, the definite integrals

∫3

0
 (x + 2) dx and ∫3

0
 (t + 2) dt

have the same value.

x

4

3

2

1

1 2 3 4

y
f (x) = 4x − x2

Area = ∫4

0
 (4x − x2) dx

Figure 5.23
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Properties of Definite Integrals
The definition of the definite integral of f  on the interval [a, b] specifies that a < b.
Now, however, it is convenient to extend the definition to cover cases in which a = b
or a > b. Geometrically, the next two definitions seem reasonable. For instance, it 
makes sense to define the area of a region of zero width and finite height to be 0.

Definitions of Two Special Definite Integrals

1. If f  is defined at x = a, then ∫a

a
 f(x) dx = 0.

2. If f  is integrable on [a, b], then ∫a

b

 f(x) dx = −∫b

a

 f(x) dx.

 Evaluating Definite Integrals

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate each definite integral.

a. ∫π

π
 sin x dx  b. ∫0

3
 (x + 2) dx

Solution

a.  Because the sine function is defined at x = π, and the upper and lower limits of 
integration are equal, you can write

∫π

π
 sin x dx = 0.

b.  The integral ∫0
3 (x + 2) dx is the same as that given in Example 3(b) except that the 

upper and lower limits are interchanged. Because the integral in Example 3(b) has 
a value of 21

2 , you can write

∫0

3
 (x + 2) dx = −∫3

0
 (x + 2) dx = −

21
2

. 

In Figure 5.25, the larger region can be divided at x = c into two subregions whose 
intersection is a line segment. Because the line segment has zero area, it  follows that 
the area of the larger region is equal to the sum of the areas of the two smaller regions.

THEOREM 5.6 Additive Interval Property

If f  is integrable on the three closed intervals determined by a, b, and c, then

∫b

a

 f(x) dx = ∫c

a

 f(x) dx + ∫b

c

 f(x) dx. See Figure 5.25.

 Using the Additive Interval Property

 ∫1

−1
∣x∣ dx = ∫0

−1
−x dx + ∫1

0
 x dx Theorem 5.6

 =
1
2

+
1
2

 Area of a triangle

 = 1 

∫

∫

∫c

b

b

a

a

c
+

f (x) dx

x
a c b

f

f (x) dx f (x) dx

y

Figure 5.25
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312 Chapter 5 Integration

Because the definite integral is defined as the limit of a sum, it inherits the 
properties of summation given at the top of page 295.

THEOREM 5.7 Properties of Definite Integrals

If f  and g are integrable on [a, b] and k is a constant, then the functions kf  and 
f ± g are integrable on [a, b], and

1. ∫b

a

 kf(x) dx = k∫b

a

 f(x) dx

2. ∫b

a

 [ f(x) ± g(x)] dx = ∫b

a

 f(x) dx ± ∫b

a

 g(x) dx.

 Evaluation of a Definite Integral

Evaluate ∫3

1
 (−x2 + 4x − 3) dx using each of the following values.

∫3

1
 x2 dx =

26
3

,  ∫3

1
 x dx = 4,  ∫3

1
 dx = 2

Solution

 ∫3

1
 (−x2 + 4x − 3) dx = ∫3

1
 (−x2) dx + ∫3

1
 4x dx + ∫3

1
 (−3) dx

 = −∫3

1
 x2 dx + 4∫3

1
 x dx − 3∫3

1
 dx

 = −(26
3 ) + 4(4) − 3(2)

 =
4
3

 

If f  and g are continuous on the closed interval [a, b] and 0 ≤ f(x) ≤ g(x) for 
a ≤ x ≤ b, then the following properties are true. First, the area of the region bounded 
by the graph of f  and the x-axis (between a and b) must be nonnegative. Second, this 
area must be less than or equal to the area of the region bounded by the graph of g 
and the x-axis (between a and b), as shown in Figure 5.26. These two properties are 
generalized in Theorem 5.8.

THEOREM 5.8 Preservation of Inequality

1. If f  is integrable and nonnegative on the closed interval [a, b], then

0 ≤ ∫b

a

 f (x) dx.

2.  If f  and g are integrable on the closed interval [a, b] and f(x) ≤ g(x) for 
every x in [a, b], then

∫b

a

 f (x) dx ≤ ∫b

a

 g(x) dx.

A proof of this theorem is given in Appendix A.

REMARK Property 2 of 
Theorem 5.7 can be extended 
to cover any finite number of 
functions (see Example 6). 

x

g

a b

f

y

∫b

a

 f (x) dx ≤ ∫b

a

 g(x) dx

Figure 5.26
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5.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1. Riemann Sum What does a Riemann sum represent?

2.  Definite Integral Explain how to find the area of a 
region using a definite integral in your own words.

 Evaluating a Limit In Exercises 3 and 4, use 
Example 1 as a model to evaluate the limit

 lim
n→∞

 ∑
n

i=1
f (ci) Δxi

  over the region bounded by the graphs of the 
equations.

 3. f (x) = √x, y = 0, x = 0, x = 3 (Hint: Let ci =
3i2

n2 .)
 4. f (x) = 3√x, y = 0, x = 0, x = 1 (Hint: Let ci =

i3

n3.)
 Evaluating a Definite Integral as a Limit In 
Exercises 5–10, evaluate the definite integral by 
the limit definition.

 5. ∫6

2
 8 dx  6. ∫3

−2
 x dx

 7. ∫1

−1
 x3 dx  8. ∫4

1
 4x2 dx

 9. ∫2

1
 (x2 + 1) dx 10. ∫1

−2
 (2x2 + 3) dx

Writing a Limit as a Definite Integral In Exercises 
11–14, write the limit as a definite integral on the given 
interval, where ci is any point in the ith subinterval.

11. lim
�∆�→0

 ∑
n

i=1
 (3ci + 10) ∆xi, [−1, 5]

12. lim
�∆�→0

 ∑
n

i=1
 √ci

2 + 4 ∆xi, [0, 3]

13. lim
�∆�→0

 ∑
n

i=1
(1 +

3
ci
) ∆xi, [1, 5]

14. lim
�∆�→0

 ∑
n

i=1
(2−ci sin ci) ∆xi, [0, π]

Writing a Definite Integral In Exercises 15–26, write a 
definite integral that represents the area of the region. (Do not 
evaluate the integral.)

15. f (x) = 5 16. f (x) = 6 − 3x

 

x
1 2 3 4 5

5

4

3

2

1

y   

1 2 3 4 5−1−2

1

2

3

4

5

6

x

y

17. f (x) = 4 − ∣x∣ 18. f (x) = x2

 

x

8

6

4

2

−2−4 2 4

y   

x

4

3

2

1

−1 1 2 3

y

19. f (x) = 25 − x2 20. f (x) =
4

x2 + 2

 

x

y

−2−4−6 2 4 6

5

10

15

  

x

y

−1 1

1

21. f (x) = cos x 22. f (x) = tan x

 

x

1

π π
4 2

y   

x

1

π π
4 2

y

23. g(y) = y3 24. f (y) = (y − 2)2

 

x

4

3

2

1

42 6 8

y   

x

4

3

2

1

21 3 4

y

25. f (x) =
2
x
 26. f (x) = 2e−x

x
1 2 3 4 5

5

4

3

2

1

y  

x
1 2 3−1

4

2

1

y
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314 Chapter 5 Integration

 Evaluating a Definite Integral Using a 
Geometric Formula In Exercises 27–36, 
sketch the region whose area is given by the 
definite integral. Then use a geometric formula to 
evaluate the integral (a > 0, r > 0).

27. ∫3

0
 4 dx 28. ∫4

−3
 9 dx

29. ∫4

0
 x dx 30. ∫8

0
 
x
4

 dx

31. ∫2

0
 (3x + 4) dx 32. ∫3

0
 (8 − 2x) dx

33. ∫1

−1
 (1 − ∣x∣) dx 34. ∫a

−a

 (a − ∣x∣) dx

35. ∫7

−7
 √49 − x2 dx 36. ∫r

−r

 √r2 − x2 dx

 Using Properties of Definite Integrals In 
Exercises 37–44, evaluate the definite integral 
using the values below.

 ∫6

2
 x3 dx = 320,  ∫6

2
 x dx = 16,  ∫6

2
 dx = 4

37. ∫2

6
x3 dx 38. ∫2

2
 x dx

39. ∫6

2
 
1
4

x3 dx 40. ∫6

2
 −3x dx

41. ∫6

2
 (x − 14) dx 42. ∫6

2
 (6x −

1
8

x3) dx

43. ∫6

2
 (2x3 − 10x + 7) dx 44. ∫6

2
 (21 − 5x − x3) dx

45. Using Properties of Definite Integrals Given

 ∫5

0
 f (x) dx = 10 and ∫7

5
 f (x) dx = 3, evaluate

 (a) ∫7

0
 f (x) dx. (b) ∫0

5
 f (x) dx.

 (c) ∫5

5
 f (x) dx. (d) ∫5

0
 3f (x) dx.

46. Using Properties of Definite Integrals Given

 ∫3

0
 f (x) dx = 4 and ∫6

3
 f (x) dx = −1, evaluate

 (a) ∫6

0
 f (x) dx. (b) ∫3

6
 f (x) dx.

 (c) ∫3

3
 f (x) dx. (d) ∫6

3
 −5f (x) dx.

47. Using Properties of Definite Integrals Given

 ∫6

2
 f (x) dx = 10 and ∫6

2
 g(x) dx = −2, evaluate

 (a) ∫6

2
 [ f (x) + g(x)] dx. (b) ∫6

2
 [g(x) − f (x)] dx.

 (c) ∫6

2
 2g(x) dx. (d) ∫6

2
 3f (x) dx.

48. Using Properties of Definite Integrals Given

 ∫1

−1
 f (x) dx = 0 and ∫1

0
 f (x) dx = 5, evaluate

 (a) ∫0

−1
 f (x) dx. (b) ∫1

0
 f (x) dx − ∫0

−1
 f (x) dx.

 (c) ∫1

−1
 3f (x) dx. (d) ∫1

0
 3f (x) dx.

49.  Estimating a Definite Integral Use the table of values 
to find lower and upper estimates of

 ∫10

0
 f (x) dx.

 Assume that f  is a decreasing function.

 
x 0 2 4 6 8 10

f (x) 32 24 12 −4 −20 −36

50.  Estimating a Definite Integral Use the table of values 
to estimate

 ∫6

0
 f (x) dx.

  Use three equal subintervals and the (a) left endpoints,  
(b) right endpoints, and (c) midpoints. When f  is an increasing 
function, how does each estimate compare with the actual 
value? Explain your reasoning.

 
x 0 1 2 3 4 5 6

f (x) −6 0 8 18 30 50 80

51.  Think About It The graph of f  consists of line  segments 
and a semicircle, as shown in the figure. Evaluate each definite 
integral by using geometric formulas.

x

(4, 2)

−4 −1 1 3 4 5 6

2

1

−1
(−4, −1)

y

f

 (a) ∫2

0
 f (x) dx (b) ∫6

2
 f (x) dx

 (c) ∫2

−4
 f (x) dx

 (d) ∫6

−4
 f (x) dx

 (e) ∫6

−4
 ∣ f (x)∣ dx

 (f ) ∫6

−4
 [ f (x) + 2] dx
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5.3 Riemann Sums and Definite Integrals 315

52.  Think About It The graph of f  consists of line segments, 
as shown in the figure. Evaluate each definite integral by using 
geometric formulas.

x

(4, 2)
(11, 1)

(8, −2)

(3, 2)

−1 1 2 3 4 5 6 8 10 11

−2

1

y

−3
−4

2
3
4

f

 (a) ∫1

0
−f (x) dx (b) ∫4

3
 3 f (x) dx

 (c) ∫7

0
 f (x) dx (d) ∫11

5
 f (x) dx

 (e) ∫11

0
 f (x) dx (f ) ∫10

4
 f (x) dx

53.  Think About It Consider a function f  that is continuous 
on the interval [−5, 5] and for which 

∫5

0
 f (x) dx = 4.

 Evaluate each integral.

 (a) ∫5

0
 [ f (x) + 2] dx (b) ∫3

−2
 f (x + 2) dx

 (c) ∫5

−5
 f (x) dx, f  is even (d) ∫5

−5
 f (x) dx, f  is odd

54.  HOW DO YOU SEE IT? Use the figure to 
fill in the blank with the symbol <, >, or =. 
Explain your reasoning.

x
1 2 3 4 5 6

6

5

4

3

2

1

y

(a)  The interval [1, 5] is partitioned into n 
subintervals of equal width ∆x, and xi is the left 
endpoint of the ith subinterval.

 ∑
n

i=1
 f (xi) ∆x ■ ∫5

1
 f (x) dx

(b)  The interval [1, 5] is partitioned into n 
subintervals of equal width ∆x, and xi is the right 
endpoint of the ith subinterval.

 ∑
n

i=1
 f (xi) ∆x ■ ∫5

1
 f (x) dx

54. 

55.  Think About It A function f  is defined below. Use 
geometric formulas to find ∫8

0  f (x) dx.

f (x) = {4,
x,

x < 4
x ≥ 4

56.  Think About It A function f  is defined below. Use 
geometric formulas to find ∫12

0  f (x) dx.

f (x) = {6,
−1

2x + 9,
x > 6
x ≤ 6

eXpLoRInG ConCeptS
Approximation In Exercises 57–60, determine which 
value best approximates the definite integral. Make your 
selection on the basis of a sketch.

57. ∫4

0
 √x dx

 (a) 5 (b) −3 (c) 10 (d) 2 (e) 8

58. ∫1�2

0
 4 cos πx dx

 (a) 4 (b) 4
3 (c) 16 (d) 2π  (e) −6

59. ∫2

0
2e−x2 dx

 (a) 1
3 (b) 6 (c) 2 (d) 4

60. ∫2

1
ln x dx

 (a) 1
3 (b) 1 (c) 4 (d) 3

61. Verifying a Rule Use a graph to explain why

∫a

a

 f (x) dx = 0 if f  is defined at x = a.

62.  Verifying a Property Use a graph to explain why

∫b

a

 kf (x) dx = k∫b

a

 f (x) dx

  if f  is integrable on [a, b] and k is a constant.

63. Using Different Methods Describe two ways to

 evaluate ∫3

−1
 (x + 2) dx. Verify that each method gives

 the same result.

64.  Finding a Function Give an example of a function 
that is integrable on the interval [−1, 1] but not 
continuous on [−1, 1].

Finding Values In Exercises 65–68, find possible values of 
a and b that make the statement true. If possible, use a graph 
to support your answer. (There may be more than one correct 
answer.)

65. ∫1

−2
 f (x) dx + ∫5

1
 f (x) dx = ∫b

a

 f (x) dx

66. ∫3

−3
 f (x) dx + ∫6

3
 f (x) dx − ∫b

a

 f (x) dx = ∫6

−1
 f (x) dx

67. ∫b

a

 sin x dx < 0 68. ∫b

a

 cos x dx = 0
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True or False? In Exercises 69–74, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

69. ∫b

a

 [ f (x) + g(x)] dx = ∫b

a

 f (x) dx + ∫b

a

 g(x) dx

70. ∫b

a

 f (x)g(x) dx = [∫b

a

 f (x) dx][∫b

a

 g(x) dx]
71.  If the norm of a partition approaches zero, then the number of 

subintervals approaches infinity.

72.  If f  is increasing on [a, b], then the minimum value of f  on 
[a, b] is f (a).

73. The value of

 ∫b

a
 f (x) dx

 must be positive.

74. The value of

 ∫2

2
 sin x2 dx

 is 0.

75.  Finding a Riemann Sum Find the Riemann sum for 
f (x) = x2 + 3x over the interval [0, 8], where

 x0 = 0, x1 = 1, x2 = 3, x3 = 7, and x4 = 8

 and where

 c1 = 1, c2 = 2, c3 = 5, and c4 = 8.

−2 2 4 6 8 10

20

40

60

80

100

x

y

76.  Finding a Riemann Sum Find the Riemann sum for 
f (x) = sin x over the interval [0, 2π], where

 x0 = 0, x1 =
π
4

, x2 =
π
3

, x3 = π, and x4 = 2π

 and where

 c1 =
π
6

, c2 =
π
3

, c3 =
2π
3

, and c4 =
3π
2

.

−1.5

0.5

1.0

1.5

π
2

π
2

3

y

x

77. Proof Prove that ∫b

a

 x dx =
b2 − a2

2
.

78. Proof Prove that ∫b

a

 x2 dx =
b3 − a3

3
.

79. Think About It Determine whether the Dirichlet function

 f (x) = {1,
0,

x is rational
x is irrational

 is integrable on the interval [0, 1]. Explain.

80. Finding a Definite Integral The function

 f (x) = {0,
1
x,

x = 0

0 < x ≤ 1

 is defined on [0, 1], as shown in the figure. Show that

 ∫1

0
 f (x) dx

  does not exist. Does this contradict Theorem 5.4? Why or 
why not?

−0.5 0.5 1.0 1.5 2.0

1.0

2.0

3.0

4.0

5.0

y

x

81.  Finding Values Find the constants a and b that maximize 
the value of

 ∫b

a

 (1 − x2) dx.

 Explain your reasoning.

82.  Finding Values Find the constants a and b, where 
a < 4 < b, such that

 ∣∫b

a

 (x − 4) dx∣ = 16 and ∫b

a

 ∣x − 4∣ dx = 20.

83.  Think About It When is

 ∫b

a

 f (x) dx = ∫b

a

 ∣ f (x)∣ dx?

 Explain.

84. Step Function Evaluate, if possible, the integral

 ∫2

0
 ⟨x⟩ dx.

85. Using a Riemann Sum Determine

 lim
n→∞

 
1
n3 (12 + 22 + 32 + .  .  . + n2)

 by using an appropriate Riemann sum.
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5.4 The Fundamental Theorem of Calculus 317

5.4 The Fundamental Theorem of Calculus

 Evaluate a definite integral using the Fundamental Theorem of Calculus.
 Understand and use the Mean Value Theorem for Integrals.
 Find the average value of a function over a closed interval.
 Understand and use the Second Fundamental Theorem of Calculus.
 Understand and use the Net Change Theorem.

The Fundamental Theorem of Calculus
You have now been introduced to the two major branches of calculus: differential 
 calculus (introduced with the tangent line problem) and integral calculus (introduced 
with the area problem). So far, these two problems might seem unrelated—but there is a 
very close connection. The connection was discovered independently by Isaac Newton 
and Gottfried Leibniz and is stated in the Fundamental Theorem of Calculus.

Informally, the theorem states that differentiation and (definite) integration are 
inverse operations, in the same sense that division and multiplication are inverse 
 operations. To see how Newton and Leibniz might have anticipated this relationship, 
consider the approximations shown in Figure 5.27. The slope of the tangent line was 
defined using the quotient ∆y�∆x (the slope of the secant line). Similarly, the area of a 
region under a curve was defined using the product ∆y∆x (the area of a rectangle). So, 
at least in the primitive approximation stage, the operations of differentiation and definite 
integration appear to have an inverse relationship in the same sense that  division and 
multiplication are inverse operations. The Fundamental Theorem of Calculus states 
that the limit processes (used to define the derivative and definite  integral) preserve 
this inverse relationship.

Δx Δx

Δy

Δy Δy

Secant
line

Tangent
line

Slope = Slope ≈

Δx   

Δy

Area = ΔyΔx Area ≈ ΔyΔx

Area of
rectangle

Area of
region
under
curve

Δx

(a) Differentiation (b) Definite integration
 Differentiation and definite integration have an “inverse” relationship.
 Figure 5.27

ANTIDIFFERENTIATION AND DEFINITE INTEGRATION

Throughout this chapter, you have been using the integral sign to denote an 
antiderivative (a family of functions) and a definite integral (a number).

Antidifferentiation: ∫ f (x) dx   Definite integration: ∫b

a
 f (x) dx

The use of the same symbol for both operations makes it appear that they are related. 
In the early work with calculus, however, it was not known that the two operations 
were related. The symbol ∫ was first applied to the definite integral by Leibniz and was 
derived from the letter S. (Leibniz calculated area as an infinite sum, thus, the letter S.)
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318 Chapter 5 Integration

THEOREM 5.9 The Fundamental Theorem of Calculus

If a function f  is continuous on the closed interval [a, b] and F is an 
antiderivative of f  on the interval [a, b], then

∫b

a

 f(x) dx = F(b) − F(a).

Proof The key to the proof is writing the difference F(b) − F(a) in a convenient 
form. Let ∆ be any partition of [a, b].

a = x0 < x1 < x2 < .  .  . < xn−1 < xn = b

By pairwise subtraction and addition of like terms, you can write

 F(b) − F(a) = F(xn) − F(xn−1) + F(xn−1) − .  .  . − F(x1) + F(x1) − F(x0)

 = ∑
n

i=1
 [F(xi) − F(xi−1)].

By the Mean Value Theorem, you know that there exists a number ci in the ith 
subinterval such that

F′(ci) =
F(xi) − F(xi−1)

xi − xi−1
.

Because F′(ci) = f(ci), you can let ∆xi = xi − xi−1 and obtain

F(b) − F(a) = ∑
n

i=1
f(ci) ∆xi.

This important equation tells you that by repeatedly applying the Mean Value Theorem, 
you can always find a collection of ci’s such that the constant F(b) − F(a) is a Riemann 
sum of f  on [a, b] for any partition. Theorem 5.4 guarantees that the limit of Riemann 
sums over the partition with �∆� → 0 exists. So, taking the limit (as �∆� → 0) produces

F(b) − F(a) = ∫b

a

 f(x) dx. 

GUIDELINES FOR USING THE FUNDAMENTAL THEOREM OF 
CALCULUS

1.  Provided you can find an antiderivative of f, you now have a way to 
evaluate a definite integral without having to use the limit of a sum.

2.  When applying the Fundamental Theorem of Calculus, the notation shown 
below is convenient.

∫b

a

 f(x) dx = F(x)]
b

a
= F(b) − F(a)

 For instance, to evaluate ∫3
1  x3 dx, you can write

∫3

1
 x3 dx =

x4

4 ]
3

1
=

34

4
−

14

4
=

81
4

−
1
4

= 20.

3. It is not necessary to include a constant of integration C in the antiderivative.

∫b

a

 f(x) dx = [F(x) + C]
b

a
= [F(b) + C] − [F(a) + C] = F(b) − F(a)
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 5.4 The Fundamental Theorem of Calculus 319

 Evaluating a Definite Integral

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate each definite integral.

a. ∫2

1
 (x2 − 3) dx  b. ∫4

1
 3√x dx  c. ∫π�4

0
 sec2x dx

Solution

a. ∫2

1
 (x2 − 3) dx = [x3

3
− 3x]

2

1
= (8

3
− 6) − (1

3
− 3) = −

2
3

b. ∫4

1
 3√x dx = 3∫4

1
 x1�2 dx = 3[x3�2

3�2]
4

1
= 2(4)3�2 − 2(1)3�2 = 14

c. ∫π�4

0
 sec2 x dx = tan x]

π�4

0
= 1 − 0 = 1 

 A Definite Integral Involving Absolute Value

Evaluate ∫2

0
 ∣2x − 1∣ dx.

Solution Using Figure 5.28 and the definition of absolute value, you can rewrite the 
integrand as shown.

∣2x − 1∣ = {−(2x − 1),

2x − 1,

x < 1
2

x ≥ 1
2

From this, you can rewrite the integral in two parts.

 ∫2

0
 ∣2x − 1∣ dx = ∫1�2

0
 −(2x − 1) dx + ∫2

1�2
 (2x − 1) dx

 = [−x2 + x]
1�2

0
+ [x2 − x]

2

1�2

 = (−1
4

+
1
2) − (0 + 0) + (4 − 2) − (1

4
−

1
2)

 =
5
2

 Using the Fundamental Theorem to Find Area

Find the area of the region bounded by the graph of

y =
1
x

the x-axis, and the vertical lines x = 1 and x = e, as shown in Figure 5.29.

Solution Note that y > 0 on the interval [1, e].

 Area = ∫e

1

1
x
 dx Integrate between x = 1 and x = e.

 = [ln x]
e

1
 Find antiderivative.

 = ln e − ln 1 Apply Fundamental Theorem of Calculus.

 = 1 Simplify. 

x
−1 1 2

3

2

1

y = 2x − 1y = − (2x − 1)

y = |2x − 1 |y

The definite integral of y on [0, 2] is 52.
Figure 5.28

x
1 2 3

2

1

y

y = 1
x

The area of the region bounded by the 
graph of y = 1�x, the x-axis, x = 1, 
and x = e is 1.
Figure 5.29
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The Mean Value Theorem for Integrals
In Section 5.2, you saw that the area of a region under a curve is greater than the area 
of an inscribed rectangle and less than the area of a circumscribed rectangle. The 
Mean Value Theorem for Integrals states that somewhere “between” the inscribed and 
circumscribed rectangles, there is a rectangle whose area is precisely equal to the area 
of the region under the curve, as shown in Figure 5.30.

THEOREM 5.10 Mean Value Theorem for Integrals

If f  is continuous on the closed interval [a, b], then there exists a number c in 
the closed interval [a, b] such that

∫b

a

 f(x) dx = f(c)(b − a).

Proof

Case 1: If f  is constant on the interval [a, b], then the theorem is clearly valid because 
c can be any point in [a, b].
Case 2: If f  is not constant on [a, b], then, by the Extreme Value Theorem, you can 
choose f(m) and f(M) to be the minimum and maximum values of f  on [a, b]. Because

f(m) ≤ f(x) ≤ f(M)

for all x in [a, b], you can apply Theorem 5.8 to write the following.

 ∫b

a

 f(m) dx ≤  ∫b

a

 f(x) dx ≤ ∫b

a

 f (M) dx See Figure 5.31.

 f(m)(b − a) ≤  ∫b

a

 f(x) dx ≤ f(M)(b − a) Apply Fundamental Theorem.

 f(m) ≤
1

b − a∫
b

a

 f(x) dx ≤ f(M) Divide by b − a.

From the third inequality, you can apply the Intermediate Value Theorem to conclude 
that there exists some c in [a, b] such that

f(c) =
1

b − a∫
b

a

 f(x) dx or f(c)(b − a) = ∫b

a

 f(x) dx.

f

a b

f (m)

  

f

a b

  

f

a b

f (M)

 Inscribed rectangle Mean value rectangle Circumscribed rectangle
 (less than actual area) (equal to actual area) (greater than actual area)

 ∫b

a

 f (m) dx = f (m)(b − a) ∫b

a

 f (x) dx ∫b

a

 f (M) dx = f (M)(b − a)

 Figure 5.31 

Notice that Theorem 5.10 does not specify how to determine c. It merely guarantees 
the existence of at least one number c in the interval.

x

f (c)
f

a c b

y

Mean value rectangle:

f (c)(b − a) = ∫b

a

 f (x) dx

Figure 5.30
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Average Value of a Function
The value of f(c) given in the Mean Value Theorem for Integrals is called the average 
value of f  on the interval [a, b].

Definition of the Average Value of a Function on an Interval

If f  is integrable on the closed interval [a, b], then the average value of f  on 
the interval is

1
b − a∫

b

a

 f(x) dx. See Figure 5.32.

To see why the average value of f  is defined in this way, partition [a, b] into n 
subintervals of equal width ∆x = (b − a)�n. If ci is any point in the ith subinterval, 
then the arithmetic average (or mean) of the function values at the ci’s is 

an =
1
n

[ f(c1) + f(c2) + .  .  . + f(cn)]. Average of f (c1), .  .  . , f (cn)

By writing the sum using summation notation and then multiplying and dividing by 
(b − a), you can write the average as

 an =
1
n

 ∑
n

i=1
 f (ci)  Rewrite using summation notation.

 =
1
n

 ∑
n

i=1
f(ci)(b − a

b − a)  Multiply and divide by (b − a).

 =
1

b − a
 ∑

n

i=1
f(ci)(b − a

n ) Rewrite.

 =
1

b − a
 ∑

n

i=1
f(ci) ∆x.  ∆x =

b − a
n

Finally, taking the limit as n →∞ produces the average value of f  on the interval [a, b], 
as given in the definition above. In Figure 5.32, notice that the area of the region under 
the graph of f  is equal to the area of the rectangle whose height is the average value.

This development of the average value of a function on an interval is only one
of many practical uses of definite integrals to represent summation processes. In 
Chapter 7, you will study other applications, such as volume, arc length, centers of 
mass, and work.

 Finding the Average Value of a Function

Find the average value of f(x) = 3x2 − 2x on the interval [1, 4].

Solution The average value is

 
1

b − a∫
b

a

 f(x) dx =
1

4 − 1
 ∫4

1
 (3x2 − 2x) dx

 =
1
3[x3 − x2]

4

1

 =
1
3

[64 − 16 − (1 − 1)]

 =
48
3

 = 16. See Figure 5.33. 

x
1 2 3 4

40

30

20

10 Average
value = 16

(4, 40)

(1, 1)

f(x) = 3x2 − 2x

y

Figure 5.33

x

f

a b

Average value

y

Average value =
1

b − a∫
b

a

 f (x) dx

Figure 5.32
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322 Chapter 5 Integration

 The Speed of Sound

At different altitudes in Earth’s atmosphere, sound travels at different speeds. The 
speed of sound s(x), in meters per second, can be modeled by

s(x) = {
−4x + 341,

295,
3
4x + 278.5,
3
2x + 254.5,

−3
2x + 404.5,

0 ≤ x < 11.5

11.5 ≤ x < 22

22 ≤ x < 32

32 ≤ x < 50

50 ≤ x ≤ 80

where x is the altitude in kilometers (see Figure 5.34). What is the average speed of 
sound over the interval [0, 80]?

Sp
ee

d 
of

 s
ou

nd
 (

in
 m

/s
ec

)

Altitude (in km)

x
10 20 30 40 50 60 70 80 90

350

340

330

320

310

300

290

280

s

 Speed of sound depends on altitude.
 Figure 5.34

Solution Begin by integrating s(x) over the interval [0, 80]. To do this, you can 
break the integral into five parts.

∫11.5

0
 s(x) dx = ∫11.5

0
 (−4x + 341) dx = [−2x2 + 341x]

11.5

0
= 3657

∫22

11.5
 s(x) dx = ∫22

11.5
 295 dx = [295x]

22

11.5
= 3097.5

∫32

22
 s(x) dx = ∫32

22
 (3

4x + 278.5) dx = [3
8x2 + 278.5x]

32

22
= 2987.5

∫50

32
 s(x) dx = ∫50

32
 (3

2x + 254.5) dx = [3
4x2 + 254.5x]

50

32
= 5688

∫80

50
 s(x) dx = ∫80

50
 (−3

2x + 404.5) dx = [−3
4x2 + 404.5x]

80

50
= 9210

By adding the values of the five integrals, you have

∫80

0
 s(x) dx = 24,640.

So, the average speed of sound from an altitude of 0 kilometers to an altitude of
80 kilometers is

Average speed =
1
80

 ∫80

0
 s(x) dx =

24,640
80

= 308 meters per second. 

The first person to fly at a speed 
greater than the speed of sound 
was Charles Yeager. On October 
14, 1947, Yeager was clocked 
at 295.9 meters per second at 
an altitude of 12.2 kilometers. If 
Yeager had been flying at an 
altitude below 11.275 kilometers, 
this speed would not have 
“broken the sound barrier.” The 
photo shows an F/A-18F Super 
Hornet, a supersonic twin-engine 
strike fighter. A “green Hornet” 
using a 50/50 mixture of biofuel 
made from camelina oil became 
the first U.S. naval tactical 
aircraft to exceed 1 mach (the 
speed of sound).

Anatoliy Lukich/Shutterstock.com
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5.4 The Fundamental Theorem of Calculus 323

The Second Fundamental Theorem of Calculus
Earlier you saw that the definite integral of f  on the interval [a, b] was defined using the 
constant b as the upper limit of integration and x as the variable of integration. However, 
a slightly different situation may arise in which the variable x is used in the upper limit 
of integration. To avoid the confusion of using x in two different ways, t is temporarily 
used as the variable of integration. (Remember that the definite integral is not a 
function of its variable of integration.)

The Definite Integral as a Number The Definite Integral as a Function of x

∫b

a

 f(x) dx F(x) = ∫x

a

 f(t) dt

 The Definite Integral as a Function

Evaluate the function

F(x) = ∫x

0
 cos t dt

at x = 0, 
π
6

, 
π
4

, 
π
3

, and 
π
2

.

Solution You could evaluate five different definite integrals, one for each of the 
given upper limits. However, it is much simpler to fix x (as a constant) temporarily
to obtain

 ∫x

0
 cos t dt = sin t]

x

0

 = sin x − sin 0

 = sin x.

Now, using F(x) = sin x, you can obtain the results shown in Figure 5.35.

You can think of the function F(x) as accumulating the area under the curve 
f(t) = cos t from t = 0 to t = x. For x = 0, the area is 0 and F(0) = 0. For x = π�2, 
F(π�2) = 1 gives the accumulated area under the cosine curve on the entire interval 
[0, π�2]. This interpretation of an integral as an accumulation function is used often 
in applications of integration.

Constant

Constant
f is a 

function of x.

F is a function of x.

Constant
f is a 

function of t.

t

F(0) = 0

x = 0

y

F(x) = ∫x

0
 cos t dt is the area under the curve f (t) = cos t from 0 to x.

Figure 5.35 

t

F =

x =

π

π

6 2
1

6

( )

y

t

F =

x =

π

π

4 2
2

4

( )

y

t

F =

x =

π

π

3 2
3

3

( )

y

t

F = 1

x =

π

π

2

2

( )

y

Exploration
Use a graphing utility to graph
the function

F(x) = ∫x

0
 cos t dt

for 0 ≤ x ≤ 2π. Do you 
recognize this graph? Explain.
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324 Chapter 5 Integration

In Example 6, note that the derivative of F is the original integrand (with only the 
variable changed). That is,

d
dx

[F(x)] =
d
dx

[sin x] =
d
dx[∫

x

0
 cos t dt] = cos x.

This result is generalized in the next theorem, called the Second Fundamental 
Theorem of Calculus.

THEOREM 5.11 The Second Fundamental Theorem of Calculus

If f  is continuous on an open interval I containing a, then, for every x in the 
interval,

d
dx[∫

x

a

 f(t) dt] = f(x).

Proof Begin by defining F as

F(x) = ∫x

a

 f(t) dt.

Then, by the definition of the derivative, you can write

 F′(x) = lim
∆x→0

 
F(x + ∆x) − F(x)

∆x

 = lim
∆x→0

 
1

∆x [∫
x+∆x

a

 f(t) dt − ∫x

a

 f(t) dt]
 = lim

∆x→0
 

1
∆x [∫

x+∆x

a

 f(t) dt + ∫a

x

 f(t) dt]
 = lim

∆x→0
 

1
∆x[∫

x+∆x

x

 f(t) dt].

From the Mean Value Theorem for Integrals (assuming ∆x > 0), you know there exists 
a number c in the interval [x, x + ∆x] such that the integral in the expression above is 
equal to f(c) ∆x. Moreover, because x ≤ c ≤ x + ∆x, it follows that c → x as ∆x → 0.
So, you obtain

F′(x) = lim
∆x→0

 [ 1
∆x

 f(c) ∆x] = lim
∆x→0

 f(c) = f(x).

A similar argument can be made for ∆x < 0. 

Using the area model for definite integrals,  

t
x x + Δx

f (x)

Δx

f (t)

f (x) ∆x ≈ ∫x+∆x

x

 f (t) dt

the approximation

f(x) ∆x ≈ ∫x+∆x

x

 f(t) dt

can be viewed as saying that the area of the 
rectangle of height f(x) and width ∆x is 
approximately equal to the area of the region 
lying between the graph of f  and the x-axis 
on the interval

[x, x + ∆x]

as shown in the figure at the right.
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 5.4 The Fundamental Theorem of Calculus 325

Note that the Second Fundamental Theorem of Calculus tells you that when a 
function is continuous, you can be sure that it has an antiderivative. This antiderivative 
need not, however, be an elementary function. (Recall the discussion of elementary 
functions in Section 1.3.)

 The Second Fundamental Theorem of Calculus

Evaluate 
d
dx[∫

x

0
 √t2 + 1 dt].

Solution Note that f(t) = √t2 + 1 is continuous on the entire real number line. So, 
using the Second Fundamental Theorem of Calculus, you can write

d
dx[∫

x

0
√t2 + 1 dt] = √x2 + 1. 

The differentiation shown in Example 7 is a straightforward application of the 
Second Fundamental Theorem of Calculus. The next example shows how this theorem 
can be combined with the Chain Rule to find the derivative of a function.

 The Second Fundamental Theorem of Calculus

Find the derivative of F(x) = ∫x3

π�2
 cos t dt.

Solution Using u = x3, you can apply the Second Fundamental Theorem of 
Calculus with the Chain Rule as shown.

 F′(x) =
dF
du

du
dx

 Chain Rule

 =
d
du

[F(x)]du
dx

 Definition of dF
du

 =
d
du[∫

x3

π�2
 cos t dt]du

dx
 Substitute ∫x3

π�2
 cos t dt for F(x).

 =
d
du[∫

u

π�2
 cos t dt]du

dx
 Substitute u for x3.

 = (cos u)(3x2) Apply Second Fundamental Theorem of Calculus.

 = (cos x3)(3x2) Rewrite as function of x. 

Because the integrand in Example 8 is easily integrated, you can verify the 
 derivative as follows.

 F(x) = ∫x3

π�2
 cos t dt

 = sin t]
x3

π�2

 = sin x3 − sin 
π
2

 = sin x3 − 1

In this form, you can apply the Chain Rule to verify that the derivative of F is the same 
as that obtained in Example 8.

d
dx

[sin x3 − 1] = (cos x3)(3x2) Derivative of F
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Net Change Theorem
The Fundamental Theorem of Calculus (Theorem 5.9) states that if f  is continuous on 
the closed interval [a, b] and F is an antiderivative of f  on [a, b], then

∫b

a

 f(x) dx = F(b) − F(a).

But because F′(x) = f(x), this statement can be rewritten as

∫b

a

 F′(x) dx = F(b) − F(a)

where the quantity F(b) − F(a) represents the net change of F(x) on the interval [a, b].

THEOREM 5.12 The Net Change Theorem

If F′(x) is the rate of change of a quantity F(x), then the definite integral of 
F′(x) from a to b gives the total change, or net change, of F(x) on the 
interval [a, b].

∫b

a

 F′(x) dx = F(b) − F(a) Net change of F(x)

 Using the Net Change Theorem

A chemical flows into a storage tank at a rate  
of (180 + 3t) liters per minute, where t is the 
time in minutes and  0 ≤ t ≤ 60. Find the 
amount of the chemical that flows into the 
tank during the first 20 minutes.

Solution Let c(t) be the amount of the 
chemical in the tank at time t. Then c′(t) 
represents the rate at which the chemical 
flows into the tank at time t. During the 
first 20 minutes, the amount that flows 
into the tank is

 ∫20

0
 c′(t) dt = ∫20

0
 (180 + 3t) dt

 = [180t +
3
2

t2]
20

0

 = 3600 + 600

 = 4200.

So, the amount of the chemical that flows 
into the tank during the first 20 minutes is 4200 liters. 

Another way to illustrate the Net Change Theorem is to examine the velocity of 
a particle moving along a straight line, where s(t) is the position at time t. Then its 
velocity is v(t) = s′(t) and 

∫b

a

 v(t) dt = s(b) − s(a).

This definite integral represents the net change in position, or displacement, of the 
particle.

Christian Lagerek/Shutterstock.com
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 5.4 The Fundamental Theorem of Calculus 327

When calculating the total distance traveled by the particle, you must consider 
the intervals where v(t) ≤ 0 and the intervals where v(t) ≥ 0. When v(t) ≤ 0, the  
particle moves to the left, and when v(t) ≥ 0, the particle moves to the right. To  
calculate the total distance traveled, integrate the absolute value of velocity ∣v(t)∣. So, 
the displacement of the particle on the interval [a, b] is 

Displacement on [a, b] = ∫b

a

 v(t) dt = A1 − A2 + A3

and the total distance traveled by the particle on [a, b] is

Total distance traveled on [a, b] = ∫b

a

 ∣v(t)∣ dt = A1 + A2 + A3.

(See Figure 5.36.)

 Solving a Particle Motion Problem

The velocity (in feet per second) of a particle moving along a line is

v(t) = t3 − 10t2 + 29t − 20

where t is the time in seconds. 

a. What is the displacement of the particle on the time interval 1 ≤ t ≤ 5?

b. What is the total distance traveled by the particle on the time interval 1 ≤ t ≤ 5?

Solution

a. By definition, you know that the displacement is

 ∫5

1
 v(t) dt = ∫5

1
 (t3 − 10t2 + 29t − 20) dt

 = [t4

4
−

10
3

t3 +
29
2

t2 − 20t]
5

1

 =
25
12

− (−103
12 )

 =
128
12

 =
32
3

.

 So, the particle moves 32
3  feet to the right.

b.  To find the total distance traveled, calculate ∫5
1 ∣v(t)∣ dt. Using Figure 5.37  

and the fact that v(t) can be factored as (t − 1)(t − 4)(t − 5), you can determine 
that v(t) ≥ 0 on [1, 4] and v(t) ≤ 0 on [4, 5]. So, the total distance traveled is

 ∫5

1
 ∣v(t)∣ dt = ∫4

1
 v(t) dt − ∫5

4
 v(t) dt

 = ∫4

1
 (t3 − 10t2 + 29t − 20) dt − ∫5

4
 (t3 − 10t2 + 29t − 20) dt

 = [t4

4
−

10
3

t3 +
29
2

t2 − 20t]
4

1
− [t4

4
−

10
3

t3 +
29
2

t2 − 20t]
5

4

 =
45
4

− (− 7
12)

 =
71
6

 feet. 

t

A1

A2

A3

a

v

b

v(t)

A1, A2, and A3 are the areas of the  
shaded regions.
Figure 5.36

t

v

1 2 3 4 5

2

−2

4

6

8

v(t)

Figure 5.37

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



328 Chapter 5 Integration

5.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Fundamental Theorem of Calculus Explain how 

to evaluate a definite integral using the Fundamental 
Theorem of Calculus.

2.  Mean Value Theorem Describe the Mean Value 
Theorem for Integrals in your own words.

3.  Average Value of a Function Describe the average 
value of a function on an interval in your own words.

4.  Accumulation Function Why is

 F(x) = ∫x

0
 f (t) dt

 considered an accumulation function?

Graphical Reasoning In Exercises 5–8, use a graphing 
utility to graph the integrand. Use the graph to determine 
whether the definite integral is positive, negative, or zero.

 5. ∫π

0
 

4
x2 + 1

 dx  6. ∫π

0
 cos x dx

 7. ∫2

−2
 x√x2 + 1 dx  8. ∫2

−2
 x√2 − x dx

 Evaluating a Definite Integral In Exercises 
9–34, evaluate the definite integral. Use a graphing 
utility to verify your result.

 9. ∫0

−1
 (2x − 1) dx 10. ∫2

1
 (6x2 − 3x) dx

11. ∫1

0
 (2t − 1)2 dt 12. ∫4

1
 (8x3 − x) dx

13. ∫2

1
 ( 3

x2 − 1) dx 14. ∫−1

−2
 (u −

1
u2) du

15. ∫4

1
 
u − 2

√u
 du 16. ∫8

−8
 x1�3 dx

17. ∫1

−1
 ( 3√t − 2) dt 18. ∫8

1
 √2

x
  dx

19. ∫0

−1
 (t1�3 − t2�3) dt 20. ∫−1

−8
 
x − x2

2 3√x
 dx

21. ∫5

0
 ∣2x − 5∣ dx 22. ∫4

0
 ∣x2 − 4x + 3∣ dx

23. ∫π

0
 (sin x − 7) dx 24. ∫π

0
 (2 + cos x) dx

25. ∫π�4

0
 
1 − sin2 θ

cos2 θ  dθ 26. ∫π�4

0
 

sec2 θ
tan2 θ + 1

 dθ

27. ∫π�6

−π�6
 sec2 x dx 28. ∫π�2

π�4
 (2 − csc2 x) dx

29. ∫π�3

−π�3
 4 sec θ tan θ dθ 30. ∫π�2

−π�2
 (2t + cos t) dt

31. ∫2

0
 (2x + 6) dx 32. ∫3

0
 (t − 5t) dt

33. ∫1

−1
 (eθ + sin θ) dθ 34. ∫2e

e

 (cos x −
1
x) dx

 Finding the Area of a Region In Exercises 
35–38, find the area of the given region.

35. y = x − x2 36. y =
1
x2

 

x
1

1
4

y   

x
1 2

1

y

37. y = cos x 38. y = x + sin x

 

x
ππ
24

1

y   

x
π

2

3

4

1

y

π
2

 Finding the Area of a Region  In Exercises 
39–44, find the area of the region bounded by the 
graphs of the equations.

39. y = 5x2 + 2, x = 0, x = 2, y = 0

40. y = x3 + 6x, x = 2, y = 0

41. y = 1 + 3√x, x = 0, x = 8, y = 0

42. y = −x2 + 4x, y = 0

43. y =
4
x
, x = 1, x = e, y = 0

44. y = ex, x = 0, x = 2, y = 0

 Using the Mean Value Theorem for 
Integrals  In Exercises 45–50, find the value(s) 
of c guaranteed by the Mean Value Theorem for 
Integrals for the function over the given interval.

45. f (x) = x3, [0, 3] 46. f (x) = √x, [4, 9]

47. f (x) = 5 −
1
x
, [1, 4] 48. f (x) = 10 − 2x, [0, 3]

49. f (x) = 2 sec2 x, [−π
4

, 
π
4] 50. f (x) = cos x, [−π

3
, 
π
3]
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5.4 The Fundamental Theorem of Calculus 329

 Finding the Average Value of a Function
In Exercises 51–56, find the average value of the 
function over the given interval and all values of 
x in the interval for which the  function equals its 
average value.

51. f (x) = 4 − x2, [−2, 2] 52. f (x) =
4(x2 + 1)

x2 , [1, 3]

53. f (x) = 2ex, [−1, 1] 54. f (x) =
1
2x

, [1, 4]

55. f (x) = sin x, [0, π] 56. f (x) = cos x, [0, π]

57.  Force The force F (in newtons) of a hydraulic cylinder in 
a press is proportional to the square of sec x, where x is the 
 distance (in meters) that the cylinder is extended in its cycle. 
The domain of F is [0, π�3], and F(0) = 500.

 (a) Find F as a function of x.

 (b)  Find the average force exerted by the press over the 
interval [0, π�3].

58.  Respiratory Cycle The volume V, in liters, of air in the 
lungs during a five-second respiratory cycle is approximated 
by the model V = 0.1729t + 0.1522t2 − 0.0374t3, where t is 
the time in seconds. Approximate the average volume of air in 
the lungs during one cycle.

59.  Buffon’s Needle Experiment A horizontal plane is 
ruled with parallel lines 2 inches apart. A two-inch needle 
is tossed randomly onto the plane. The probability that the 
needle will touch a line is

P =
2
π  ∫π�2

0
 sin θ dθ

   where θ is the acute angle between the needle and any one of 
the parallel lines. Find this probability.

θ

60.  HOW DO YOU SEE IT? The graph of f  is 
shown in the figure. The shaded region A has 
an area of 1.5, and ∫6

0  f (x) dx = 3.5. Use this 
information to fill in the blanks.

(a) ∫2

0
 f (x) dx = ■ 

x
2 3 4 5 6

A
B

y

f

(b) ∫6

2
 f (x) dx = ■

(c) ∫6

0
 ∣ f (x)∣ dx = ■

(d) ∫2

0
 −2 f (x) dx = ■

(e) ∫6

0
 [2 + f (x)] dx = ■

(f) The average value of f  over the interval [0, 6] is ■.

60.  

 Evaluating a Definite Integral  In Exercises 61 
and 62, find F as a function of x and evaluate it at 
x = 2, x = 5, and x = 8.

61. F(x) = ∫x

1
 
20
v2  dv 62. F(x) = ∫x

2
 (t3 + 2t − 2) dt

Evaluating a Definite Integral In Exercises 63 and 64, 
find F as a function of x and evaluate it at x = 0, x = π�4, and 
x = π�2.

63. F(x) = ∫x

0
 cos θ dθ 64. F(x) = ∫x

−π
 sin θ dθ

65. Analyzing a Function Let g(x) = ∫x

0
 f (t) dt, where f  is

 the function whose graph is shown in the figure.

 (a) Estimate g(0), g(2), g(4), g(6), and g(8).
 (b)  Find the largest open interval on which g is increasing. 

Find the largest open interval on which g is decreasing.

 (c) Identify any extrema of g.

 (d) Sketch a rough graph of g.
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 Figure for 65 Figure for 66

66. Analyzing a Function Let g(x) = ∫x

0
 f (t) dt, where f  is

 the function whose graph is shown in the figure.

 (a) Estimate g(0), g(2), g(4), g(6), and g(8).
 (b)  Find the largest open interval on which g is increasing. 

Find the largest open interval on which g is decreasing.

 (c) Identify any extrema of g.

 (d) Sketch a rough graph of g.

 Finding and Checking an Integral In 
Exercises 67–74, (a) integrate to find F as a function 
of x, and (b) demonstrate the Second Fundamental 
Theorem of Calculus by differentiating the result 
in part (a).

67. F(x) = ∫x

0
 (t + 2) dt 68. F(x) = ∫x

0
 t(t2 + 1) dt

69. F(x) = ∫x

8
 3√t dt 70. F(x) = ∫x

4
 t3�2 dt

71. F(x) = ∫x

π�4
 sec2 t dt 72. F(x) = ∫x

π�3
 sec t tan t dt

73. F(x) = ∫x

−1
 et dt 74. F(x) = ∫x

1
 
1
t
 dt
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330 Chapter 5 Integration

 Using the Second Fundamental Theorem 
of Calculus  In Exercises 75–80, use the Second 
Fundamental Theorem of Calculus to find F′(x).

75. F(x) = ∫x

−2
 (t2 − 2t) dt 76. F(x) = ∫x

1
 

t2

t2 + 1
 dt

77. F(x) = ∫x

−1
 √t 4 + 1 dt 78. F(x) = ∫x

1
 4√t dt

79. F(x) = ∫x

1
 √t csc t dt 80. F(x) = ∫x

0
 sec3 t dt

Finding a Derivative In Exercises 81–86, find F′(x).

81. F(x) = ∫x+2

x

 (4t + 1) dt 82. F(x) = ∫x

−x

 t3 dt

83. F(x) = ∫sin x

0
 √t dt 84. F(x) = ∫x2

2
 
1
t3 dt

85. F(x) = ∫x3

0
 sin t2 dt 86. F(x) = ∫2x

0
 cos t 4 dt

87.  Graphical Analysis Sketch an approximate graph of g on 
the  interval 0 ≤ x ≤ 4, where 

 g(x) = ∫x

0
 f (t) dt.

  Identify the x-coordinate of an extremum of g. To print an 
enlarged copy of the graph, go to MathGraphs.com.

t

f

42

2

1

−2

−1

y

88. Area The area A between the graph of the function

 g(t) = 4 −
4
t2

 and the t-axis over the interval [1, x] is

 A(x) = ∫x

1
 (4 −

4
t2) dt.

 (a) Find the horizontal asymptote of the graph of g.

 (b)  Integrate to find A as a function of x. Does the graph of A 
have a horizontal asymptote? Explain.

89.  Water Flow Water flows from a storage tank at a rate of 
(500 − 5t) liters per minute. Find the amount of water that 
flows out of the tank during the first 18 minutes.

90.  Oil Leak At 1:00 p.m., oil begins leaking from a tank at a 
rate of (4 + 0.75t) gallons per hour.

 (a) How much oil is lost from 1:00 p.m. to 4:00 p.m.?

 (b) How much oil is lost from 4:00 p.m. to 7:00 p.m.?

 (c)  Compare your answers to parts (a) and (b). What do you 
notice?

 91.  Velocity The graph shows the velocity, in feet per second, 
of a car accelerating from rest. Use the graph to estimate the 
distance the car travels in 8 seconds.
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 92.  Velocity The graph shows the velocity, in feet per second, 
of a decelerating car after the driver applies the brakes. Use 
the graph to estimate how far the car travels before it comes 
to a stop.
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 Particle Motion In Exercises 93–98, the 
velocity function, in feet per second, is given for 
a particle moving along a straight line, where t is 
the time in seconds. Find (a) the displacement and  
(b) the total distance that the particle travels over 
the given interval.

 93. v(t) = 5t − 7, 0 ≤ t ≤ 3

 94. v(t) = t2 − t − 12, 1 ≤ t ≤ 5

 95. v(t) = t3 − 10t2 + 27t − 18, 1 ≤ t ≤ 7

 96. v(t) = t3 − 8t2 + 15t, 0 ≤ t ≤ 5

 97. v(t) =
1

√t
, 1 ≤ t ≤ 4 98. v(t) = cos t, 0 ≤ t ≤ 3π

eXpLoring ConCepts
 99.  Particle Motion Describe a situation where the 

displacement and the total distance traveled for a 
particle are equal.

100.  Rate of Growth Let r′(t) represent the rate of 
growth of a dog, in pounds per year. What does r(t) 
represent? What does ∫6

2  r′(t) dt represent about the dog?

101.  Fundamental Theorem of Calculus Explain 
why the Fundamental Theorem of Calculus cannot be 
used to integrate

  f (x) =
1

x − c

  on any interval containing c.
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5.4 The Fundamental Theorem of Calculus 331

102.  Modeling Data An experimental vehicle is tested on 
a straight track. It starts from rest, and its velocity v (in 
meters per second) is recorded every 10 seconds for 1 minute 
(see table).

t 0 10 20 30 40 50 60

v 0 5 21 40 62 78 83

 (a)  Use a graphing utility to find a model of the form 
v = at3 + bt2 + ct + d for the data.

 (b) Use a graphing utility to plot the data and graph the model.

 (c)  Approximate the distance traveled by the vehicle during 
the test.

103.  Particle Motion A particle is moving along the x-axis. 
The position of the particle at time t is given by

  x(t) = t3 − 6t2 + 9t − 2, 0 ≤ t ≤ 5.

  Find the total distance the particle travels in 5 units of time.

104.  Particle Motion Repeat Exercise 103 for the position 
function given by 

  x(t) = (t − 1)(t − 3)2, 0 ≤ t ≤ 5.

Error Analysis In Exercises 105–108, describe why the 
statement is incorrect.

105. ∫1

−1
 x−2 dx = [−x−1]1

−1 = (−1) − 1 = −2

106. ∫1

−2
 
2
x3 dx = [− 1

x2]
1

−2
= −

3
4

107. ∫3π�4

π�4
 sec2 x dx = [tan x]3π�4

π�4 = −2

108. ∫3π�2

π�2
 csc x cot x dx = [−csc x]3π�2

π�2 = 2

True or False? In Exercises 109 and 110, determine 
whether the statement is true or false. If it is false, explain why 
or give an example that shows it is false.

109. If F′(x) = G′(x) on the interval [a, b], then

  F(b) − F(a) = G(b) − G(a).

110.  If F(b) − F(a) = G(b) − G(a), then F′(x) = G′(x) on the 
interval [a, b].

111. Analyzing a Function Show that the function

  f (x) = ∫1�x

0
 

1
t2 + 1

 dt + ∫x

0
 

1
t2 + 1

 dt

  is constant for x > 0.

112.  Finding a Function Find the function f (x) and all 
values of c such that

  ∫x

c

 f (t) dt = x2 + x − 2.

113. Finding Values Let

G(x) = ∫x

0
[s∫s

0
 f (t) dt] ds

   where f  is continuous for all real t. Find (a) G(0), (b) G′(0),
(c) G″(x), and (d) G″(0).

114. Proof Prove that

d
dx[∫

v(x)

u(x)
 f (t) dt] = f (v(x))v′(x) − f (u(x))u′(x).

pUtnAM eXAM ChALLenge
115.  For each continuous function f : [0, 1] → R, let

  I( f ) = ∫1

0
 x2f (x) dx

  and

  J(x) = ∫1

0
 x( f (x))2 dx.

   Find the maximum value of I( f ) − J( f ) over all such 
functions f.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

Use a graphing utility to graph the function

y1 = sin2 t

on the interval 0 ≤ t ≤ π. Let F be the following function of x.

F(x) = ∫x

0
 sin2 t dt

(a) Complete the table. Explain why the values of F are increasing.

x 0
π
6

π
3

π
2

2π
3

5π
6 π

F(x)

(b) Use the integration capabilities of a graphing utility to graph F.

(c)  Use the differentiation capabilities of a graphing utility to 
graph F′. How is this graph related to the graph in part (b)?

(d) Verify that the derivative of

 y =
1
2

t −
1
4

 sin 2t

  is sin2 t. Graph y and write a short paragraph about how this 
graph is related to those in parts (b) and (c).

Demonstrating the Fundamental Theorem
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332 Chapter 5 Integration

5.5 Integration by Substitution

 Use pattern recognition to find an indefinite integral.
 Use a change of variables to find an indefinite integral.
 Use the General Power Rule for Integration to find an indefinite integral.
 Use a change of variables to evaluate a definite integral.
 Evaluate a definite integral involving an even or odd function.

Pattern Recognition
In this section, you will study techniques for integrating composite functions. The 
 discussion is split into two parts—pattern recognition and change of variables.
Both techniques involve a u-substitution. With pattern recognition, you perform the 
 substitution mentally, and with change of variables, you write the substitution steps.

The role of substitution in integration is comparable to the role of the Chain Rule 
in differentiation. Recall that for the differentiable functions

y = F(u) and u = g(x)

the Chain Rule states that

d
dx

[F(g(x))] = F′(g(x))g′(x).

From the definition of an antiderivative, it follows that

∫F′(g(x))g′(x) dx = F(g(x)) + C.

These results are summarized in the next theorem.

THeOreM 5.13 antidifferentiation of a Composite Function

Let g be a function whose range is an interval I, and let f  be a function that is 
continuous on I. If g is differentiable on its domain and F is an antiderivative 
of f  on I, then

∫ f(g(x))g′(x) dx = F(g(x)) + C.

Letting u = g(x) gives du = g′(x) dx and

∫ f(u) du = F(u) + C.

Examples 1 and 2 show how to apply Theorem 5.13 directly, by recognizing the 
presence of f(g(x)) and g′(x). Note that the composite function in the integrand has an 
outside function f  and an inside function g. Moreover, the derivative g′(x) is present as 
a factor of the integrand.

∫ f(g(x))g′(x) dx = F(g(x)) + C

reMark The statement of 
Theorem 5.13 does not tell how 
to distinguish between f(g(x)) 
and g′(x) in the integrand. As 
you become more experienced 
at integration, your skill in 
doing this will increase. Of 
course, part of the key is 
familiarity with derivatives.

Outside function

Inside function
Derivative of 

inside function
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5.5 Integration by Substitution 333

 recognizing the f(g(x))g′(x) Pattern

Find ∫(x2 + 1)2(2x) dx.

Solution Letting g(x) = x2 + 1, you obtain

g′(x) = 2x

and

f(g(x)) = f(x2 + 1) = (x2 + 1)2.

From this, you can recognize that the integrand follows the f(g(x))g′(x) pattern. Using 
the Power Rule for Integration and Theorem 5.13, you can write

 f (g(x)) g′(x)

∫(x2 + 1)2(2x) dx =
1
3

(x2 + 1)3 + C.

Try using the Chain Rule to check that the derivative of 13(x2 + 1)3 + C is the integrand 
of the original integral.

 recognizing the f(g(x))g′(x) Pattern

Find ∫ 5e5x dx.

Solution Letting g(x) = 5x, you obtain

g′(x) = 5

and

f (g(x)) = f (5x) = e5x.

From this, you can recognize that the integrand follows the f (g(x))g′(x) pattern. Using 
the Exponential Rule for Integration and Theorem 5.13, you can write

f (g(x)) g′(x)

∫ e5x(5) dx = e5x + C.

You can check this by differentiating e5x + C to obtain the original integrand. 

ii
exploration
Recognizing Patterns The integrand in each of the integrals labeled (a)–(c) 
fits the pattern f(g(x))g′(x). Identify the pattern and use the result to find the 
integral.

a. ∫2x(x2 + 1)4 dx  b. ∫3x2√x3 + 1 dx  c. ∫(sec2 x)(tan x + 3) dx

The integrals labeled (d)–(f) are similar to (a)–(c). Show how you can multiply 
and divide by a constant to find these integrals.

d. ∫x(x2 + 1)4 dx e. ∫x2√x3 + 1 dx f. ∫(2 sec2 x)(tan x + 3) dx

TeCHNOLOGY Try using 
a computer algebra system, 
such as Maple, Mathematica, 
or the TI-Nspire, to find the 
integrals given in Examples 1 
and 2. Do you obtain the same 
antiderivatives that are listed in 
the examples?
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334 Chapter 5 Integration

The integrands in Examples 1 and 2 fit the f(g(x))g′(x) pattern exactly—you only 
had to recognize the pattern. You can extend this technique considerably with the 
Constant Multiple Rule

∫kf(x) dx = k∫f(x) dx.

Many integrands contain the essential part (the variable part) of g′(x) but are missing a 
constant multiple. In such cases, you can multiply and divide by the necessary  constant 
multiple, as shown in Example 3.

 Multiplying and Dividing by a Constant

Find the indefinite integral.

∫x(x2 + 1)2 dx

Solution This is similar to the integral given in Example 1, except that the integrand 
is missing a factor of 2. Recognizing that 2x is the derivative of x2 + 1, you can let

g(x) = x2 + 1

and supply the 2x as shown.

 ∫x(x2 + 1)2 dx = ∫(x2 + 1)2 (1
2)(2x) dx Multiply and divide by 2.

 f (g(x)) g′(x)
  

 =
1
2

 ∫(x2 + 1)2(2x) dx Constant Multiple Rule

 =
1
2[

(x2 + 1)3

3 ] + C Integrate.

 =
1
6

(x2 + 1)3 + C Simplify.  

In practice, most people would not write as many steps as are shown in Example 3.  
For instance, you could evaluate the integral by simply writing

 ∫x(x2 + 1)2 dx =
1
2∫(x2 + 1)2 (2x) dx

 =
1
2[

(x2 + 1)3

3 ] + C

 =
1
6

(x2 + 1)3 + C.

Be sure you see that the Constant Multiple Rule applies only to constants. You 
cannot multiply and divide by a variable and then move the variable outside the integral 
sign. For instance,

∫(x2 + 1)2 dx ≠
1
2x∫(x2 + 1)2 (2x) dx.

After all, if it were legitimate to move variable quantities outside the integral sign, 
you could move the entire integrand out and simplify the whole process. But the result 
would be incorrect.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 5.5 Integration by Substitution 335

Change of Variables for Indefinite Integrals
With a formal change of variables, you completely rewrite the integral in terms of u 
and du (or any other convenient variable). Although this procedure can involve more 
written steps than the pattern recognition illustrated in Examples 1 through 3, it is 
useful for complicated integrands. The change of variables technique uses the Leibniz 
notation for the differential. That is, if u = g(x), then du = g′(x) dx, and the integral in 
Theorem 5.13 takes the form

∫ f(g(x))g′(x) dx = ∫f(u) du = F(u) + C.

 Change of Variables

Find ∫√2x − 1 dx.

Solution First, let u be the inner function, u = 2x − 1. Then calculate the differential 
du to be du = 2 dx. Now, using √2x − 1 = √u and dx = du�2, substitute to obtain

 ∫√2x − 1 dx = ∫√u (du
2 ) Integral in terms of u

 =
1
2∫u1�2 du Constant Multiple Rule

 =
1
2(

u3�2

3�2) + C Antiderivative in terms of u

 =
1
3

u3�2 + C Simplify.

 =
1
3

(2x − 1)3�2 + C. Antiderivative in terms of x

 Change of Variables

See LarsonCalculus.com for an interactive version of this type of example.

Find ∫x√2x − 1 dx.

Solution As in the previous example, let u = 2x − 1 and obtain dx = du�2. 
Because the integrand contains a factor of x, you must also solve for x in terms of u, 
as shown.

u = 2x − 1  x =
u + 1

2
 Solve for x in terms of u.

Now, using substitution, you obtain

 ∫x√2x − 1 dx = ∫(u + 1
2 )u1�2 (du

2 )
 =

1
4∫(u3�2 + u1�2) du

 =
1
4 (

u5�2

5�2
+

u3�2

3�2) + C

 =
1
10

 (2x − 1)5�2 +
1
6

 (2x − 1)3�2 + C. 

reMark Because  
integration is usually more  
difficult than differentiation,  
you should always check your 
answer to an integration  
problem by differentiating.  
For instance, in Example 4,  
you should differentiate
1
3(2x − 1)3�2 + C to verify that 
you obtain the original integrand.
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336 Chapter 5 Integration

To complete the change of variables in Example 5, you solved for x in terms of u.
Sometimes this is very difficult. Fortunately, it is not always necessary, as shown in 
the next example.

 Change of Variables

Find ∫sin2 3x cos 3x dx.

Solution Because sin2 3x = (sin 3x)2, you can let u = sin 3x. Then

du = (cos 3x)(3) dx.

Now, because cos 3x dx is part of the original integral, you can write

du
3

= cos 3x dx.

Substituting u and du�3 in the original integral yields

 ∫sin2 3x cos 3x dx = ∫u2 
du
3

 =
1
3∫u2 du

 =
1
3(

u3

3 ) + C

 =
1
9

 sin3 3x + C.

You can check this by differentiating.

d
dx[

1
9

 sin3 3x + C] = (1
9)(3)(sin 3x)2(cos 3x)(3)

 = sin2 3x cos 3x

Because differentiation produces the original integrand, you know that you have 
obtained the correct antiderivative. 

The steps used for integration by substitution are summarized in the following 
guidelines.

GUIDELINES FOR MAKING A CHANGE OF VARIABLES

1.  Choose a substitution u = g(x). Usually, it is best to choose the inner part 
of a composite function, such as a quantity raised to a power.

2. Compute du = g′(x) dx.

3. Rewrite the integral in terms of the variable u.

4. Find the resulting integral in terms of u.

5. Replace u by g(x) to obtain an antiderivative in terms of x.

6. Check your answer by differentiating.

So far, you have seen two techniques for applying substitution, and you will 
see more techniques in the remainder of this section. Each technique differs slightly 
from the others. You should remember, however, that the goal is the same with each 
technique—you are trying to find an antiderivative of the integrand.

reMark When making a 
change of variables, be sure that 
your answer is written using 
the same variables as in the 
original integrand. For instance, 
in Example 6, you should not 
leave your answer as

1
9

u3 + C

but rather, you should replace u 
by sin 3x.
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The General Power Rule for Integration
One of the most common u-substitutions involves quantities in the integrand that are 
raised to a power. Because of the importance of this type of substitution, it is given a 
special name—the General Power Rule for Integration. A proof of this rule follows 
directly from the (simple) Power Rule for Integration, together with Theorem 5.13.

THeOreM 5.14 The General Power rule for Integration

If g is a differentiable function of x, then

∫[g(x)]n g′(x) dx =
[g(x)]n+1

n + 1
+ C, n ≠ −1.

Equivalently, if u = g(x), then

∫un du =
un+1

n + 1
+ C, n ≠ −1.

 Substitution and the General Power rule

u4 du u5�5

a. ∫3(3x − 1)4 dx = ∫(3x − 1)4(3) dx =
(3x − 1)5

5
+ C

 u1 du u2�2

b. ∫(ex + 1)(ex + x) dx = ∫(ex + x)(ex + 1) dx =
(ex + x)2

2
+ C

 u1�2 du u3�2�(3�2)

c. ∫3x2√x3 − 2 dx = ∫(x3 − 2)1�2(3x2) dx =
(x3 − 2)3�2

3�2
+ C =

2
3

(x3 − 2)3�2 + C

 u−2 du u−1�(−1)

d. ∫ −4x
(1 − 2x2)2 dx = ∫(1 − 2x2)−2(−4x) dx =

(1 − 2x2)−1

−1
+ C = −

1
1 − 2x2 + C

u2 du u3�3

e. ∫cos2 x sin x dx = −∫(cos x)2(−sin x) dx = −
(cos x)3

3
+ C 

Some integrals whose integrands involve quantities raised to powers cannot be 
found by the General Power Rule. Consider the two integrals

∫x(x2 + 1)2 dx and ∫(x2 + 1)2 dx.

The substitution

u = x2 + 1

works in the first integral but not in the second. In the second, the substitution fails 
because the integrand lacks the factor x needed for du. Fortunately, for this particular 
integral, you can expand the integrand as

(x2 + 1)2 = x4 + 2x2 + 1

and use the (simple) Power Rule to integrate each term.
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Change of Variables for Definite Integrals
When using u-substitution with a definite integral, it is often convenient to determine 
the limits of integration for the variable u rather than to convert the antiderivative back 
to the variable x and evaluate at the original limits. This change of variables is stated 
explicitly in the next theorem. The proof follows from Theorem 5.13 combined with 
the Fundamental Theorem of Calculus.

THeOreM 5.15 Change of Variables for Definite Integrals

If the function u = g(x) has a continuous derivative on the closed interval 
[a, b] and f  is continuous on the range of g, then

∫b

a

 f (g(x))g′(x) dx = ∫g(b)

g(a)
 f (u) du.

 Change of Variables

Evaluate ∫1

0
 x(x2 + 1)3 dx.

Solution To evaluate this integral, let u = x2 + 1. Then, you obtain

du = 2x dx.

Before substituting, determine the new upper and lower limits of integration.

 Lower Limit Upper Limit

When x = 0, u = 02 + 1 = 1. When x = 1, u = 12 + 1 = 2.

Now, you can substitute to obtain

 ∫1

0
x(x2 + 1)3 dx =

1
2∫

1

0
(x2 + 1)3(2x) dx Integration limits for x

 =
1
2∫

2

1
 u3 du Integration limits for u

 =
1
2[

u4

4 ]
2

1

 =
1
2(4 −

1
4)

 =
15
8

.

Notice that you obtain the same result when you rewrite the antiderivative 1
2(u4�4)

in terms of the variable x and evaluate the  definite integral at the original limits of 
integration, as shown below.

1
2[

u4

4 ]
2

1
=

1
2[

(x2 + 1)4

4 ]
1

0

 =
1
2 (4 −

1
4)

 =
15
8
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 Change of Variables

Evaluate the definite integral.

∫5

1

x

√2x − 1
 dx

Solution To evaluate this integral, let u = √2x − 1. Then, you obtain

 u2 = 2x − 1

 u2 + 1 = 2x

 
u2 + 1

2
= x

 u du = dx. Differentiate each side.

Before substituting, determine the new upper and lower limits of integration.

 Lower Limit Upper Limit

When x = 1, u = √2 − 1 = 1. When x = 5, u = √10 − 1 = 3.

Now, substitute to obtain

 ∫5

1
 

x

√2x − 1
 dx = ∫3

1
 
1
u (

u2 + 1
2 )u du

 =
1
2

 ∫3

1
 (u2 + 1) du

 =
1
2[

u3

3
+ u]

3

1

 =
1
2 (9 + 3 −

1
3

− 1)
 =

16
3

. 

Geometrically, you can interpret the equation

∫5

1
 

x

√2x − 1
 dx = ∫3

1
 
u2 + 1

2
 du

to mean that the two different regions shown in Figures 5.38 and 5.39 have the same 
area.

When evaluating definite integrals by substitution, it is possible for the upper 
limit of integration of the u-variable form to be smaller than the lower limit. When 
this happens, do not rearrange the limits. Simply evaluate as usual. For example, after 
substituting u = √1 − x in the integral

∫1

0
 x2(1 − x)1�2 dx

you obtain u = √1 − 0 = 1 when x = 0, and u = √1 − 1 = 0 when x = 1. So, the 
correct u-variable form of this integral is

−2∫0

1
 (1 − u2)2u2 du.

Expanding the integrand, you can evaluate this integral as shown.

−2∫0

1
(u2 − 2u4 + u6) du = −2[u3

3
−

2u5

5
+

u7

7 ]
0

1
= −2(−1

3
+

2
5

−
1
7) =

16
105

x

5, 5
3( )(1, 1)

−1 1 2 3 4 5

5

4

3

2

1

y

y = x
2x − 1

The region before substitution has an 
area of 16

3 .
Figure 5.38

u

f(u)

(1, 1)

(3, 5)

−1

−1

1 2 3 4 5

5

4

3

2

1

f(u) =
2

u2 + 1

The region after substitution has an 
area of 16

3 .
Figure 5.39
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Integration of Even and Odd Functions
Even with a change of variables, integration can be difficult. Occasionally, you can 
simplify the evaluation of a definite integral over an interval that is symmetric about 
the y-axis or about the origin by recognizing the integrand to be an even or odd function 
(see Figure 5.40).

THeOreM 5.16 Integration of even and Odd Functions

Let f  be integrable on the closed interval [−a, a].

1. If f  is an even function, then ∫a

−a

 f(x) dx = 2∫a

0
 f(x) dx.

2. If f  is an odd function, then ∫a

−a

 f(x) dx = 0.

Proof Here is the proof of the first property. (The proof of the second property is left 
to you [see Exercise 121].) Because f  is even, you know that

f(x) = f(−x).

Using Theorem 5.13 with the substitution u = −x produces

∫0

−a

 f(x) dx = ∫0

a

 f(−u)(−du) = −∫0

a

 f(u) du = ∫a

0
 f(u) du = ∫a

0
 f(x) dx.

Finally, using Theorem 5.6, you obtain

 ∫a

−a

 f(x) dx = ∫0

−a

 f(x) dx + ∫a

0
 f(x) dx

 = ∫a

0
 f(x) dx + ∫a

0
 f(x) dx

 = 2∫a

0
 f(x) dx. 

 Integration of an Odd Function

Evaluate the definite integral.

∫π�2

−π�2
 (sin3 x cos x + sin x cos x) dx

Solution Letting f(x) = sin3 x cos x + sin x cos x produces

f(−x) = sin3(−x) cos(−x) + sin(−x) cos(−x)
 = −sin3 x cos x − sin x cos x

 = −f(x).

So, f  is an odd function, and because f  is symmetric about the origin over [−π�2, π�2],
you can apply Theorem 5.16 to conclude that

∫π�2

−π�2
 (sin3 x cos x + sin x cos x) dx = 0.

From Figure 5.41, you can see that the two regions on either side of the y-axis have the 
same area. However, because one lies below the x-axis and one lies above it, integration 
produces a cancellation effect. (More will be said about areas below the x-axis in 
Section 7.1.) 

−a a
x

y

Even function

−a a
x

y

Odd function
Figure 5.40

x

y

1

−1

π
4

−

f (x) = sin3 x  cos x + sin x cos x

π
4

π
2

Because f  is an odd function,

∫π�2

−π�2
 f (x) dx = 0.

Figure 5.41
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 5.5 Integration by Substitution 341

5.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Constant Multiple rule Explain how to use the 

Constant Multiple Rule when finding an indefinite integral.

2.  Change of Variables In your own words, summarize 
the guidelines for making a change of variables when 
finding an indefinite integral.

3.  The General Power rule for Integration  
Describe the General Power Rule for Integration in your 
own words.

4.  analyzing the Integrand Without integrating, 
explain why

 ∫2

−2
 x(x2 + 1)2 dx = 0.

 recognizing Patterns In Exercises 5–8, 
complete the table by identifying u and du for the 
integral.

 ∫ f (g(x))g′(x) dx u = g(x) du = g′(x) dx

 5. ∫ (5x2 + 1)2 (10x) dx ■  ■

 6. ∫x2√x3 + 1 dx ■  ■

 7. ∫ tan2 x sec2 x dx ■  ■

 8. ∫cos x
sin2 x

 dx ■  ■

 Finding an Indefinite Integral In Exercises 
9–28, find the indefinite integral and check the 
result by differentiation.

 9. ∫(1 + 6x)4(6) dx 10. ∫(x2 − 9)3(2x) dx

11. ∫√25 − x2 (−2x) dx 12. ∫ 3√3 − 4x2(−8x) dx

13. ∫x3(x4 + 3)2 dx 14. ∫x2(6 − x3)5 dx

15. ∫ x2(2x3 − 1)4 dx 16. ∫x(5x2 + 4)3 dx

17. ∫ t√t2 + 2 dt 18. ∫5x 3√1 − x2 dx

19. ∫ 
7x

(1 − x2)3 dx 20. ∫ x3

(1 + x4)2 dx

21. ∫ x2

(1 + x3)2 dx 22. ∫ 6x2

(4x3 − 9)3 dx

23. ∫ x

√1 − x2
 dx 24. ∫ x3

√1 + x4
 dx

25. ∫(1 +
1
t )

3

(1
t2) dt 26. ∫ (8 −

1
t 4)

2

(1
t5) dt

27. ∫ 1

√2x
 dx 28. ∫ x

3√5x2
 dx

 Differential equation In Exercises 29–32, find 
the general solution of the differential equation.

29. 
dy
dx

= 4x +
4x

√16 − x2
 30. 

dy
dx

=
10x2

√1 + x3

31. 
dy
dx

=
x + 1

(x2 + 2x − 3)2 32. 
dy
dx

=
18 − 6x2

√x3 − 9x + 7

Slope Field In Exercises 33 and 34, a differential equation, a 
point, and a slope field are given. A slope field (or direction field)
consists of line  segments with slopes given by the differential 
equation. These line segments give a visual perspective of the 
slopes of the  solutions of the differential equation. (a) Sketch 
two approximate solutions of the differential equation on the 
slope field, one of which passes through the given point. (To 
print an enlarged copy of the graph, go to MathGraphs.com.) 
(b) Use integration and the given point to find the particular 
solution of the differential equation and use a graphing utility 
to graph the solution. Compare the result with the sketch in 
part (a) that passes through the given point.

33. 
dy
dx

= x√4 − x2, (2, 2) 34. 
dy
dx

= esin x cos x, (π, 2)

 

x

y

3

−1

2−2

 

x
10

−2

6

4

2

y

 Finding an Indefinite Integral In Exercises 
35– 56, find the indefinite integral.

35. ∫π sin πx dx 36. ∫sin 4x dx

37. ∫ cos 6x dx 38. ∫csc2(x
2) dx

39. ∫ 1
θ2 cos 

1
θ  dθ 40. ∫x sin x2 dx

41. ∫sin 2x cos 2x dx 42. ∫  3√tan x sec2 x dx

43. ∫ csc2 x
cot3 x

 dx 44. ∫ sin x
cos3 x

 dx
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342 Chapter 5 Integration

45. ∫ e7x(7) dx 46. ∫ (x + 1)ex2+2x dx

47. ∫ ex(ex + 1)2 dx 48. ∫ 
2ex − 2e−x

(ex + e−x)2 dx

49. ∫ 
5 − ex

e2x  dx 50. ∫ 
e2x + 2ex + 1

ex  dx

51. ∫ esin πx cos πx dx 52. ∫ etan 2x sec2 2x dx

53. ∫ e−x sec2(e−x) dx 54. ∫ ln(e2x−1) dx

55. ∫ 3x�2 dx 56. ∫ (3 − x)7(3−x)2
 dx

 Finding an equation In Exercises 57–64, find 
an equation for the function f  that has the given 
derivative and whose graph passes through the 
given point.

57. f ′(x) = 2x(4x2 − 10)2, (2, 10)
58. f ′(x) = −2x√8 − x2, (2, 7)

59. f ′(x) = −sin 
x
2

, (0, 6)

60. f ′(x) = sec2 2x, (π2, 2)
61. f ′(x) = 2e−x�4, (0, 1) 62. f ′(x) = x2e−0.2x3

, (0, 32)
63. f ′(x) = 0.4x�3, (0, 12) 64. f ′(x) = 1.252x, (1, 25

16)

 Change of Variables In Exercises 65–72, find 
the indefinite integral by making a change of 
variables.

65. ∫x√x + 6 dx 66. ∫x√3x − 4 dx

67. ∫x2√1 − x dx 68. ∫(x + 1)√2 − x dx

69. ∫ x2 − 1

√2x − 1
 dx 70. ∫ 2x + 1

√x + 4
 dx

71. ∫ cos3 2x sin 2x dx 72. ∫ sec5 7x tan 7x dx

 evaluating a Definite Integral In Exercises 
73–84, evaluate the definite integral. Use a 
graphing utility to verify your result.

73. ∫1

−1
 x(x2 + 1)3 dx 74. ∫1

0
 x

3(2x4 + 1)2 dx

75. ∫2

1
 2x2√x3 + 1 dx 76. ∫0

−1
 x√1 − x2 dx

77. ∫4

0
 

1

√2x + 1
 dx 78. ∫2

0
 

x

√1 + 2x2
 dx

79. ∫9

1
 

1

√x(1 + √x)2 dx 80. ∫5

4
 

x

√2x − 6
 dx

81. ∫4

3
 4xex2 dx 82. ∫2

1
 e1−x dx

83. ∫3

1
 
e3�x

x2  dx 84. ∫√2

0
 xe−(x2�2) dx

 Finding the area of a region In Exercises 
85–88, find the area of the region. Use a graphing 
utility to verify your result.

85. ∫7

0
 x

3√x + 1 dx 86. ∫6

−2
 x

2 3√x + 2 dx

 

2 4 6 8

16

12

8

4

x

y   

x
−2 2 4 6

80

60

40

20

y

87. ∫2π�3

π�2
 sec2(x

2) dx 88. ∫π�4

π�12
 csc 2x cot 2x dx

area In Exercises 89–92, find the area of the region bounded 
by the graphs of the equations. Use a graphing utility to graph 
the region and verify your result.

89. y = ex, y = 0, x = 0, x = 5

90. y = e−x, y = 0, x = a, x = b

91. y = xe−x2�4, y = 0, x = 0, x = √6

92. y = e−2x + 2, y = 0, x = 0, x = 2

 even and Odd Functions In Exercises 93–96, 
evaluate the integral using the properties of even 
and odd functions as an aid.

93. ∫2

−2
 x2(x2 + 1) dx 94. ∫2

−2
 x(x2 + 1)3 dx

95. ∫π�2

−π�2
 sin x cos x dx 96. ∫π�2

−π�2
 sin2 x cos x dx

97.  Using an even Function Use ∫6
0  x2 dx = 72 to evaluate 

each definite integral without using the Fundamental Theorem 
of Calculus.

 (a) ∫6

−6
 x2 dx (b) ∫0

−6
 x2 dx

 (c) ∫6

0
 −2x2 dx (d) ∫6

−6
 3x2 dx

98.  Using Symmetry Use the symmetry of the graphs of the 
sine and cosine functions as an aid in evaluating each definite 
integral.

 (a) ∫π�4

−π�4
 sin x dx (b) ∫π�4

−π�4
 cos x dx

 (c) ∫π�2

−π�2
 cos x dx (d) ∫π�2

−π�2
 sin x cos x dx
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even and Odd Functions In Exercises 99 and 100, write 
the integral as the sum of the integral of an odd function and 
the integral of an even function. Use this simplification to 
evaluate the integral.

 99. ∫3

−3
 (x3 + 4x2 − 3x − 6) dx

100. ∫π�2

−π�2
 (sin 4x + cos 4x) dx

eXpLoRInG ConCeptS
101.  Choosing an Integral You are asked to find one 

of the integrals. Which one would you choose? Explain. 

  (a) ∫√x3 + 1 dx or ∫x2√x3 + 1 dx

  (b) ∫ cot 2x dx or ∫ cot3 2x csc2 2x dx

  (c) ∫e4x−3 dx or ∫xex+4 dx

102.  Comparing Methods Find the indefinite integral 
in two ways. Explain any difference in the forms of the 
answers.

  (a) ∫(2x − 1)2 dx (b) ∫ sin x cos x dx

103.  Depreciation The rate of depreciation dV�dt of a machine 
is inversely proportional to the square of (t + 1), where V is 
the value of the machine t years after it was purchased. The 
initial value of the machine was $500,000, and its value 
decreased $100,000 in the first year. Estimate its value after
4 years.

 104.   HOW DO YOU See IT? The graph shows 
the flow rate of water at a pumping station for 
one day.

Fl
ow

 r
at

e 
(i

n 
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ou
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s
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ou
r)
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t
2 4 6 8 10 12 14 16 18 20 22 24

10

20

30

40

50

60

70

R

(a)  Approximate the maximum flow rate at the 
pumping station. At what time does this occur?

(b)  Explain how you can find the amount of water 
used during the day.

(c)  Approximate the two-hour period when the least 
amount of water is used. Explain your reasoning.

 104.   

105.  Sales The sales S (in thousands of units) of a seasonal 
product are given by the model

S = 74.50 + 43.75 sin 
πt
6

   where t is the time in months, with t = 1 corresponding to 
January. Find the  average sales for each time period.

  (a) The first quarter (0 ≤ t ≤ 3)
  (b) The second quarter (3 ≤ t ≤ 6)
  (c) The entire year (0 ≤ t ≤ 12)

107. Graphical analysis Consider the functions f  and g, where

  f (x) = 6 sin x cos2 x and g(t) = ∫t

0
 f (x) dx.

  (a)  Use a graphing utility to graph f  and g in the same 
 viewing window.

  (b) Explain why g is nonnegative.

  (c)  Identify the points on the graph of g that correspond to 
the extrema of f.

  (d)  Does each of the zeros of f  correspond to an extremum 
of g? Explain.

  (e) Consider the function

  h(t) = ∫t

π�2
 f (x) dx.

    Use a graphing utility to graph h. What is the relationship 
between g and h? Verify your conjecture.

108. Finding a Limit Using a Definite Integral Find

  lim
n→∞

 ∑
n

i=1
 
sin(iπ�n)

n

   by evaluating an appropriate definite integral over the 
interval [0, 1].

109. rewriting Integrals

  (a) Show that ∫1

0
 x3(1 − x)8 dx = ∫1

0
 x8(1 − x)3 dx.

  (b) Show that ∫1

0
 xa(1 − x)b dx = ∫1

0
 xb(1 − x)a dx.

The oscillating current in an electrical circuit is

I = 2 sin(60πt) + cos(120πt)
 where I is measured in amperes and t is measured in seconds. 
Find the average current for each time interval.

(a) 0 ≤ t ≤
1
60

(b) 0 ≤ t ≤
1

240

(c) 0 ≤ t ≤
1
30

106. electricity

iStockphoto.com/Stephan Zabel
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110. rewriting Integrals

  (a) Show that ∫π�2

0
sin2 x dx = ∫π�2

0
cos2 x dx.

  (b) Show that

∫π�2

0
sinn x dx = ∫π�2

0
cosn x dx

   where n is a positive integer.

Probability In Exercises 111 and 112, the function

f (x) = kxn(1 − x)m, 0 ≤ x ≤ 1

where n > 0, m > 0, and k is a constant, can be used to 
represent various probability distributions. If k is chosen such 
that

∫1

0
 f (x) dx = 1

then the probability that x will fall between a and b
(0 ≤ a ≤ b ≤ 1) is

Pa, b = ∫b

a
 f (x) dx.

111.  The probability that a person will remember between 100a%
and 100b% of material learned in an experiment is

  Pa, b = ∫b

a

15
4

x√1 − x dx

  where x represents the proportion remembered. (See figure.)

  (a)  For a randomly chosen individual, what is the probability 
that he or she will recall between 50% and 75% of the 
material?

  (b)  What is the median percent recall? That is, for what value 
of b is it true that the probability of recalling 0 to b is 0.5?

x
0.5 1.5

0.5

1.5

1.0

1.0

a b

y

Pa, b

 

x

2

1 2

1

a b

y

Pa, b

Figure for 111 Figure for 112

112.  The probability that ore samples taken from a region contain 
between 100a% and 100b% iron is

  Pa, b = ∫b

a

1155
32

x3(1 − x)3�2 dx

  where x represents the proportion of iron. (See figure.) 

  (a)  What is the probability that a sample will contain 
between 0% and 25% iron?

  (b)  What is the probability that a sample will contain 
between 50% and 100% iron?

True or False? In Exercises 113–118, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

113. ∫ 3x2(x3 + 5)−2 dx = −(x3 + 5)−1 + C

114. ∫x(x2 + 1) dx = 1
2x2(1

3x3 + x) + C

115. ∫10

−10
(ax3 + bx2 + cx + d) dx = 2∫10

0
(bx2 + d) dx

116. ∫b

a

 sin x dx = ∫b+2π

a

sin x dx

117. 4∫sin x cos x dx = −cos 2x + C

118. ∫sin2 2x cos 2x dx = 1
3 sin3 2x + C

119.  rewriting Integrals Assume that f  is continuous 
everywhere and that c is a  constant. Show that

∫cb

ca

 f (x) dx = c∫b

a

 f (cx) dx.

120. Integration and Differentiation

  (a) Verify that sin u − u cos u + C = ∫u sin u du.

  (b) Use part (a) to show that ∫π2

0
 sin√x dx = 2π.

121. Proof Prove the second property of Theorem 5.16.

122.  rewriting Integrals Show that if f  is continuous on the 
entire real number line, then

∫b

a

 f (x + h) dx = ∫b+h

a+h

 f (x) dx.

pUtnAM eXAM ChALLenGe
123. If a0, a1, .  .  ., an are real numbers satisfying

a0

1
+

a1

2
+ .  .  . +

an

n + 1
= 0,

  show that the equation

a0 + a1x + a2x2 + .  .  . + anxn = 0

  has at least one real root.

124.  Find all the continuous positive functions f (x), for 
0 ≤ x ≤ 1, such that

∫1

0
 f (x) dx = 1

∫1

0
 f (x)x dx = α

∫1

0
 f (x)x2 dx = α2

  where α is a given real number.
These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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5.6 Indeterminate Forms and L’Hôpital’s Rule

 Recognize limits that produce indeterminate forms.
 Apply L’Hôpital’s Rule to evaluate a limit.

Indeterminate Forms
Recall from Chapters 2 and 4 that the forms 0�0 and ∞�∞ are called indeterminate 
because they do not guarantee that a limit exists, nor do they indicate what the limit is, 
if one does exist. When you encountered one of these indeterminate forms earlier in 
the text, you attempted to rewrite the expression by using various algebraic techniques.

 Indeterminate
 Form Limit Algebraic Technique

0
0

  lim
x→−1

 
2x2 − 2
x + 1

= lim
x→−1

 2(x − 1) Divide numerator and
denominator by (x + 1).

  = −4

∞
∞  lim

x→∞
 
3x2 − 1
2x2 + 1

= lim
x→∞

 
3 − (1�x2)
2 + (1�x2) 

Divide numerator and
denominator by x2.

  =
3
2

Occasionally, you can extend these algebraic techniques to find limits of 
transcendental functions. For instance, the limit

lim
x→0

 
e2x − 1
ex − 1

produces the indeterminate form 0�0. Factoring and then dividing produces

 lim
x→0

 
e2x − 1
ex − 1

= lim
x→0

 
(ex + 1)(ex − 1)

ex − 1

 = lim
x→0

 (ex + 1)

 = 2.

Not all indeterminate forms, however, can be evaluated by algebraic manipulation. 
This is often true when both algebraic and transcendental functions are involved. For 
instance, the limit

lim
x→0

 
e2x − 1

x

produces the indeterminate form 0�0. Rewriting the expression to obtain

lim
x→0

 (e2x

x
−

1
x)

merely produces another indeterminate form, ∞ − ∞. Of course, you could use 
technology to estimate the limit, as shown in the table and in Figure 5.42. From the 
table and the graph, the limit appears to be 2. (This limit will be verified in Example 1.)

x −1 −0.1 −0.01 −0.001 0 0.001 0.01 0.1 1

e2x − 1
x

0.865 1.813 1.980 1.998 ? 2.002 2.020 2.214 6.389

x

e2x − 1
x

y =

y

−1−2−3−4 1 2 3 4

2

3

4

5

6

7

8

The limit as x approaches 0 appears to 
be 2.
Figure 5.42
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L’Hôpital’s Rule
To find the limit illustrated in Figure 5.42, you can use a theorem called L’hôpital’s 
rule. This theorem states that under certain conditions, the limit of the quotient 
f (x)�g(x) is determined by the limit of the quotient of the derivatives

f ′(x)
g′(x).

To prove this theorem, you can use a more general result called the extended mean 
Value Theorem.

tHeOReM 5.17 the extended Mean Value theorem

If f  and g are differentiable on an open interval (a, b) and continuous on [a, b] 
such that g′(x) ≠ 0 for any x in (a, b), then there exists a point c in (a, b) such 
that

f ′(c)
g′(c) =

f (b) − f (a)
g(b) − g(a).

A proof of this theorem is given in Appendix A.

To see why Theorem 5.17 is called the Extended Mean Value Theorem, consider 
the special case in which g(x) = x. For this case, you obtain the “standard” Mean Value 
Theorem as presented in Section 4.2.

tHeOReM 5.18 L’Hôpital’s Rule

Let f  and g be functions that are differentiable on an open interval (a, b) 
containing c, except possibly at c itself. Assume that g′(x) ≠ 0 for all x in 
(a, b), except possibly at c itself. If the limit of f (x)�g(x) as x approaches c 
produces the indeterminate form 0�0, then

lim
x→c

 
f (x)
g(x) = lim

x→c
 
f ′(x)
g′(x)

provided the limit on the right exists (or is infinite). This result also applies 
when the limit of f (x)�g(x) as x approaches c produces any one 
of the indeterminate forms ∞�∞, (−∞)�∞, ∞�(−∞), 
or (−∞)�(−∞).
A proof of this theorem is given in Appendix A.

People occasionally use L’Hôpital’s Rule incorrectly by applying the Quotient 
Rule to f (x)�g(x). Be sure you see that the rule involves

f ′(x)
g′(x)

not the derivative of f (x)�g(x).
L’Hôpital’s Rule can also be applied to one-sided limits. For instance, if the 

limit of f (x)�g(x) as x approaches c from the right produces the indeterminate form 
0�0, then

lim
x→c+

 
f (x)
g(x) = lim

x→c+
 
f ′(x)
g′(x)

provided the limit exists (or is infinite).

 For FurTher InFormATIon
To enhance your understanding of 
the necessity of the restriction that 
g′(x) be nonzero for all x in (a, b), 
except possibly at c, see the article 
“Counterexamples to L’Hôpital’s 
Rule” by R. P. Boas in The 
American Mathematical Monthly. 
To view this article, go to 
MathArticles.com.

GUILLAUME L’HÔPITAL
(1661–1704)

L’Hôpital’s Rule is named after 
the French mathematician 
Guillaume François Antoine de 
L’Hôpital. L’Hôpital is credited 
with writing the first text on 
differential calculus (in 1696) 
in which the rule publicly 
appeared. It was recently 
discovered that the rule and 
its proof were written in a 
letter from John Bernoulli to 
L’Hôpital. “… I acknowledge 
that I owe very much to the 
bright minds of the Bernoulli 
brothers. … I have made free 
use of their discoveries …,” 
said L’Hôpital. 
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NYC
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 Indeterminate Form 0�0

Evaluate lim
x→0

 
e2x − 1

x
.

Solution Because direct substitution results in the indeterminate form 0�0,

lim
x→0

 (e2x − 1) = 0

lim
x→0

 
e2x − 1

x
lim
x→0

 x = 0

you can apply L’Hôpital’s Rule, as shown below.

lim
x→0

 
e2x − 1

x
= lim

x→0
 

d
dx

[e2x − 1]

d
dx

[x]
 Apply L’Hôpital’s Rule.

 = lim
x→0

 
2e2x

1
 Differentiate numerator and denominator.

 = 2 Evaluate the limit. 

In the solution to Example 1, note that you actually do not know that the first limit 
is equal to the second limit until you have shown that the second limit exists. In other 
words, if the second limit had not existed, then it would not have been permissible to 
apply L’Hôpital’s Rule.

Another form of L’Hôpital’s Rule states that if the limit of f (x)�g(x) as x approaches 
∞ (or −∞) produces the indeterminate form 0�0 or ∞�∞, then

lim
x→∞

 
f (x)
g(x) = lim

x→∞
 
f ′(x)
g′(x)

provided the limit on the right exists.

 Indeterminate Form ∞�∞

Evaluate lim
x→∞

 
ln x

x
.

Solution Because direct substitution results in the indeterminate form ∞�∞, you 
can apply L’Hôpital’s Rule to obtain

 lim
x→∞

 
ln x

x
= lim

x→∞
 

d
dx

[ln x]

d
dx

[x]
 Apply L’Hôpital’s Rule.

 = lim
x→∞

 
1
x
 Differentiate numerator and denominator.

 = 0. Evaluate the limit. 

teCHnOLOgy Use a graphing utility to graph y1 = ln x and y2 = x in the 
same viewing window. Which function grows faster as x approaches ∞? How is this 
observation related to Example 2?

exploration
Numerical and Graphical 
Approaches Use a 
numerical or a graphical 
approach to approximate 
each limit.

a. lim
x→0

 
22x − 1

x

b. lim
x→0

 
32x − 1

x

c. lim
x→0

 
42x − 1

x

d. lim
x→0

 
52x − 1

x

What pattern do you observe?
Does an analytic approach 
have an advantage for 
determining these limits? If 
so, explain your reasoning.
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Occasionally it is necessary to apply L’Hôpital’s Rule more than once to remove 
an indeterminate form, as shown in Example 3.

 Applying L’Hôpital’s Rule More than Once

Evaluate lim
x→−∞

 
x2

e−x.

Solution Because direct substitution results in the indeterminate form ∞�∞, you 
can apply L’Hôpital’s Rule.

lim
x→−∞

 
x2

e−x = lim
x→−∞

 

d
dx

[x2]

d
dx

[e−x]
= lim

x→−∞
 

2x
−e−x

This limit yields the indeterminate form (−∞)�(−∞), so you can apply L’Hôpital’s 
Rule again to obtain

lim
x→−∞

 
2x

−e−x = lim
x→−∞

 

d
dx

[2x]

d
dx

[−e−x]
= lim

x→−∞
 

2
e−x = 0. 

In addition to the forms 0�0 and ∞�∞, there are other indeterminate forms such as 
0 ∙ ∞, 1∞, ∞0, 00, and ∞ − ∞. For example, consider the following four limits that 
lead to the indeterminate form 0 ∙ ∞.

lim
x→0

 (1
x)(x),  lim

x→0
 (2

x)(x),  lim
x→∞

 ( 1
ex)(x),  lim

x→∞
 (1

x)(ex)

 Limit is 1. Limit is 2. Limit is 0. Limit is ∞.

Because each limit is different, it is clear that the form 0 ∙ ∞ is indeterminate in the 
sense that it does not determine the value (or even the existence) of the limit. The 
remaining examples in this section show methods for evaluating these forms. Basically, 
you attempt to convert each of these forms to 0�0 or ∞�∞ so that L’Hôpital’s Rule 
can be applied.

 Indeterminate Form 0 ∙ ∞
Evaluate lim

x→∞
 e−x√x.

Solution Because direct substitution produces the indeterminate form 0 ∙ ∞, you 
should try to rewrite the limit to fit the form 0�0 or ∞�∞. In this case, you can rewrite 
the limit to fit the second form.

lim
x→∞

 e−x√x = lim
x→∞

 
√x
ex

Now, by L’Hôpital’s Rule, you have

 lim
x→∞

 
√x
ex = lim

x→∞
 
1�(2√x)

ex  Differentiate numerator and denominator.

 = lim
x→∞

 
1

2√xex
 Simplify.

 = 0. Evaluate the limit. 

 For FurTher InFormATIon
To read about the connection 
between Leonhard Euler and 
Guillaume L’Hôpital, see the  
article “When Euler Met 
l’Hôpital” by William Dunham in 
Mathematics Magazine. To  
view this article, go to 
MathArticles.com.
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When rewriting a limit in one of the forms 0�0 or ∞�∞ does not seem to work, 
try the other form. For instance, in Example 4, you can write the limit as

lim
x→∞

 e−x√x = lim
x→∞

 
e−x

x−1�2

which yields the indeterminate form 0�0. As it happens, applying L’Hôpital’s Rule to 
this limit produces

lim
x→∞

 
e−x

x−1�2 = lim
x→∞

 
−e−x

−1�(2x3�2)

which also yields the indeterminate form 0�0.
The indeterminate forms 1∞, ∞0, and 00 arise from limits of functions that have 

variable bases and variable exponents. When you previously encountered this type of 
function, you used logarithmic differentiation to find the derivative. You can use a 
similar procedure when taking limits, as shown in the next example.

 Indeterminate Form 1∞

Evaluate lim
x→∞

 (1 +
1
x)

x

.

Solution Because direct substitution yields the indeterminate form 1∞, you can  
proceed as follows. To begin, assume that the limit exists and is equal to y.

y = lim
x→∞

 (1 +
1
x)

x

Taking the natural logarithm of each side produces

ln y = ln[ lim
x→∞

 (1 +
1
x)

x

].

Because the natural logarithmic function is continuous, you can write

 ln y = lim
x→∞

 [x ln(1 +
1
x)] Indeterminate form ∞ ∙ 0

 = lim
x→∞

 (ln[1 + (1�x)]
1�x ) Indeterminate form 0�0

 = lim
x→∞

 ((−1�x2){1�[1 + (1�x)]}
−1�x2 ) L’Hôpital’s Rule

 = lim
x→∞

 
1

1 + (1�x)
 = 1.

Now, because you have shown that 

8

−1

−1

5

1
x

y =   1 +
x( (

The limit of [1 + (1�x)]x as x 
approaches infinity is e.

ln y = 1

you can conclude that

y = e

and obtain

lim
x→∞

 (1 +
1
x)

x

= e.

You can use a graphing utility to confirm this  
result, as shown in the figure at the right. 
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350 Chapter 5 Integration

L’Hôpital’s Rule can also be applied to one-sided limits, as demonstrated in 
Examples 6 and 7.

 Indeterminate Form 00

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate lim
x→0+

 (sin x)x.

Solution Because direct substitution produces the indeterminate form 00, you can 
proceed as shown below. To begin, assume that the limit exists and is equal to y.

 y = lim
x→0+

 (sin x)x Indeterminate form 00

 ln y = ln[ lim
x→0+

 (sin x)x] Take natural log of each side.

 = lim
x→0+

 [ln(sin x)x] Continuity

 = lim
x→0+

 [x ln(sin x)] Indeterminate form 0 ∙ (−∞)

 = lim
x→0+

 
ln(sin x)

1�x
 Indeterminate form −∞�∞

 = lim
x→0+

 
cot x

−1�x2 L’Hôpital’s Rule

 = lim
x→0+

 
−x2

tan x
 Indeterminate form 0�0

 = lim
x→0+

 
−2x
sec2 x

 L’Hôpital’s Rule

 = 0

Now, because ln y = 0, you can conclude that y = e0 = 1, and it follows that

lim
x→0+

 (sin x)x = 1. 

teCHnOLOgy When evaluating complicated limits such as the one in 
Example 6, it is helpful to check the reasonableness of the solution with a graphing 
utility. For instance, the calculations in the table and the graph in the figure (see 
below) are consistent with the conclusion that (sin x)x approaches 1 as x approaches 
0 from the right.

x 1 0.1 0.01 0.001 0.0001 0.00001

(sin x)x 0.8415 0.7942 0.9550 0.9931 0.9991 0.9999

2

−1

−1

2
y = (sin x)x

  The limit of (sin x)x is 1 as x  
approaches 0 from the right.

Use a graphing utility to estimate the limits lim
x→0

 (1 − cos x)x and lim
x→0+

 (tan x)x. Then 
try to verify your estimates analytically.
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 Indeterminate Form ∞ − ∞

Evaluate lim
x→1+

 ( 1
ln x

−
1

x − 1).

Solution Because direct substitution yields the indeterminate form ∞ − ∞, 
you should try to rewrite the expression to produce a form to which you can apply 
L’Hôpital’s Rule. In this case, you can combine the two fractions to obtain

lim
x→1+

 ( 1
ln x

−
1

x − 1) = lim
x→1+ 

 
x − 1 − ln x
(x − 1) ln x

.

Now, because direct substitution produces the indeterminate form 0�0, you can apply 
L’Hôpital’s Rule to obtain

 lim
x→1+

 
x − 1 − ln x
(x − 1) ln x

= lim
x→1+ 

d
dx

[x − 1 − ln x]

d
dx

[(x − 1) ln x]

 = lim
x→1+

 
1 − (1�x)

(x − 1)(1�x) + ln x

 = lim
x→1+

 
x − 1

x − 1 + x ln x
.

This limit also yields the indeterminate form 0�0, so you can apply L’Hôpital’s Rule 
again to obtain

lim
x→1+

 
x − 1

x − 1 + x ln x
= lim

x→1+
 

1
1 + x(1�x) + ln x

=
1
2

.

You can check the reasonableness of this solution using a table, as shown at the left.
 

The forms 0�0, ∞�∞, ∞ − ∞, 0 ∙ ∞, 00, 1∞, and ∞0 have been identified as 
indeterminate. There are similar forms that you should recognize as “determinate.”

 ∞ + ∞ →  ∞ Limit is positive infinity.

 −∞ − ∞ →  −∞ Limit is negative infinity.

 0∞ →  0 Limit is zero.

 0−∞ →  ∞ Limit is positive infinity.

As a final comment, remember that L’Hôpital’s Rule can be applied only 
to quotients leading to the indeterminate forms 0�0 and ∞�∞. For instance, the 
application of L’Hôpital’s Rule shown below is incorrect.

lim
x→0

 
ex

x
= lim

x→0
 
ex

1
= 1 Incorrect use of L’Hôpital’s Rule

The reason this application is incorrect is that, even though the limit of the denominator 
is 0, the limit of the numerator is 1, which means that the hypotheses of L’Hôpital’s 
Rule have not been satisfied.

exploration
In each of the examples presented in this section, L’Hôpital’s Rule is used to 
find a limit that exists. It can also be used to conclude that a limit is infinite. 
For instance, try using L’Hôpital’s Rule to show that lim

x→∞
 ex�x = ∞.

x
1

ln x
−

1
x − 1

2 0.44270

1.5 0.46630

1.1 0.49206

1.01 0.49917

1.001 0.49992

1.0001 0.49999

1.00001 0.50000

ReMARK You are asked 
to verify the last two forms in 
Exercises 110 and 111.
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5.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  L’Hôpital’s Rule Explain the benefit of L’Hôpital’s 

Rule.

2.  Indeterminate Forms For each limit, use direct 
substitution. Then identify the form of the limit as either 
indeterminate or not.

 (a) lim
x→0

 
x2

sin 2x
 (b) lim

x→∞
 (ex + x2)

 (c) lim
x→∞

 (ln x − ex) (d) lim
x→0+

 (ln x2 −
1
x)

numerical and graphical Analysis In exercises 3–6, 
complete the table and use the result to estimate the limit. use 
a graphing utility to graph the function to confirm your result.

 3. lim
x→0

 
sin 4x
sin 3x

 
x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

 4. lim
x→0

 
1 − ex

x

 
x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) ?

 5. lim
x→∞

 x5e−x�100

 
x 1 10 102 103 104 105

f (x)

 6. lim
x→∞

 
6x

√3x2 − 2x

 
x 1 10 102 103 104 105

f (x)

 Using two Methods In exercises 7–14, 
evaluate the limit (a) using techniques from 
Chapters 2 and 4 and (b) using L’hôpital’s rule.

 7. lim
x→4

 
3(x − 4)
x2 − 16

  8. lim
x→−4

 
2x2 + 13x + 20

x + 4

 9. lim
x→6

 
√x + 10 − 4

x − 6
 10. lim

x→−1
 (1 − √x + 2

x + 1 )
11. lim

x→0
 (2 − 2 cos x

6x ) 12. lim
x→0

 
sin 6x

4x

13. lim
x→∞

 
5x2 − 3x + 1

3x2 − 5
 14. lim

x→∞
 
x3 + 2x
4 − x

 evaluating a Limit In exercises 15–42, evaluate 
the limit, using L’hôpital’s rule if necessary. 

15. lim
x→3

 
x2 − 2x − 3

x − 3
 16. lim

x→−2
 
x2 − 3x − 10

x + 2

17. lim
x→0

 
√25 − x2 − 5

x
 18. lim

x→5−
 
√25 − x2

x − 5

19. lim
x→0+

 
ex − (1 + x)

x3  20. lim
x→1

 
ln x3

x2 − 1

21. lim
x→1

 
x11 − 1
x4 − 1

 22. lim
x→1

 
xa − 1
x b − 1

, where a, b ≠ 0

23. lim
x→0

 
sin 3x
sin 5x

 24. lim
x→0

 
sin ax
sin bx

, where a, b ≠ 0

25. lim
x→∞

 
7x3 − 2x + 1

6x3 + 1
 26. lim

x→∞
 
8 − x

x3

27. lim
x→∞

 
x2 + 4x + 7

x − 6
 28. lim

x→∞
 

x3

x + 2

29. lim
x→∞

 
x3

ex�2 30. lim
x→∞

 
ex2

1 − x3

31. lim
x→∞

 
x

√x2 + 1
 32. lim

x→∞
 

x2

√x2 + 1

33. lim
x→∞

 
cos x

x
 34. lim

x→∞
 

sin x
x − π

35. lim
x→∞

 
ln x
x2  36. lim

x→∞
 
ln x4

x3

37. lim
x→∞

 
ex

x4 38. lim
x→∞

 
e2x−9

3x

39. lim
x→0

 
sin 5x
tan 9x

 40. lim
x→1

 
ln x

sin πx

41. lim
x→−3−

 
∫−3

x  sin θ dθ
x + 3

 42. lim
x→1+

 
∫x

1 cos θ dθ
x − 1

 evaluating a Limit In exercises 43–62,  
(a) describe the type of indeterminate form (if any) 
that is obtained by direct substitution. (b) evaluate 
the limit, using L’hôpital’s rule if necessary.  
(c) use a graphing utility to graph the function and 
verify the result in part (b).

43. lim
x→∞

 x ln x 44. lim
x→0+

 x3 cot x

45. lim
x→∞

 x sin 
1
x
 46. lim

x→∞
 x tan 

1
x

47. lim
x→0+

 (ex + x)2�x 48. lim
x→0+

 (1 +
1
x)

x

49. lim
x→∞

 x1�x 50. lim
x→0+

 x1�x

51. lim
x→0+

 (1 + x)1�x 52. lim
x→∞

 (1 + x)1�x

53. lim
x→0+

 3xx�2 54. lim
x→4+

 [3(x − 4)]x−4
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55. lim
x→1+

 (ln x)x−1 56. lim
x→0+

 [cos(π2 − x)]
x

57. lim
x→2+

 ( 8
x2 − 4

−
x

x − 2) 58. lim
x→2+

 ( 1
x2 − 4

−
√x − 1
x2 − 4 )

59. lim
x→1+

 ( 3
ln x

−
2

x − 1) 60. lim
x→0+

 (10
x

−
3
x2)

61. lim
x→∞

 (ex − x) 62. lim
x→∞

 (x − √x2 + 1)

eXpLoRInG ConCeptS
63.  Finding Functions Find differentiable functions f  

and g that satisfy the specified condition such that

lim
x→5

 f (x) = 0 and lim
x→5

 g(x) = 0.

  Explain how you obtained your answers. (Note: There 
are many correct answers.)

 (a) lim
x→5

 
f (x)
g(x) = 10

 (b) lim
x→5

 
f (x)
g(x) = 0

 (c) lim
x→5

 
f (x)
g(x) = ∞

64.  Finding Functions Find differentiable functions f  
and g such that

lim
x→∞

 f (x) = lim
x→∞

 g(x) = ∞ and lim
x→∞

 [ f (x) − g(x)] = 25.

  Explain how you obtained your answers. (Note: There 
are many correct answers.)

65.  L’Hôpital’s Rule Determine which of the following 
limits can be evaluated using L’Hôpital’s Rule. Explain 
your reasoning. Do not evaluate the limit.

 (a) lim
x→2

 
x − 2

x3 − x − 6
 (b) lim

x→0
 
x2 − 4x
2x − 1

 (c) lim
x→∞

 
x3

ex (d) lim
x→3

 
ex2 − e9

x − 3

 (e) lim
x→1

 
cos πx

ln x
 (f ) lim

x→1
 
1 + x(ln x − 1)

(x − 1) ln x

 66.  HOW DO yOU See It? Use the graph of 
f  to find each limit.

x

y

2

2

4

6

4 6 8

3
ln x

4
x − 1

f(x) = −

(a) lim
x→1−

 f (x)  (b) lim
x→1+

 f (x)  (c) lim
x→1

 f (x)

 66.  

67.  numerical Analysis Complete the table to show that x
eventually “overpowers” (ln x)4.

x 10 102 104 106 108 1010

(ln x)4

x

68.  numerical Analysis Complete the table to show that ex 
eventually “overpowers” x5.

 
x 1 5 10 20 30 40 50 100

ex

x5

Comparing Functions In exercises 69–74, use L’hôpital’s 
rule to determine the comparative rates of increase of the 
functions f (x) = xm, g(x) = enx, and h(x) = (ln x)n, where 
n > 0, m > 0, and x →∞.

69. lim
x→∞

 
x2

e5x 70. lim
x→∞

 
x3

e2x

71. lim
x→∞

 
(ln x)3

x
 72. lim

x→∞
 
(ln x)2

x3

73. lim
x→∞

 
(ln x)n

xm  74. lim
x→∞

 
xm

enx

Asymptotes and Relative extrema In exercises 75–78, 
find any asymptotes and relative extrema that may exist and 
use a graphing utility to graph the function. 

75. y = x1�x, x > 0 76. y = xx, x > 0

77. y = 2xe−x 78. y =
ln x

x

think About It In exercises 79–82, L’hôpital’s rule is 
used incorrectly. Describe the error.

79. lim
x→2

 
3x2 + 4x + 1
x2 − x − 2

= lim
x→2

 
6x + 4
2x − 1

= lim
x→2

 
6
2

= 3

80.  lim
x→0

 
e2x − 1

ex = lim
x→0

 
2e2x

ex

  = lim
x→0

 2ex

  = 2

81.  lim
x→∞

 
e−x

1 + e−x = lim
x→∞

 
−e−x

−e−x

  = lim
x→∞

 1

  = 1

82.  lim
x→∞

 x cos 
1
x

= lim
x→∞

 
cos(1�x)

1�x

  = lim
x→∞

 
[−sin(1�x)](1�x2)

−1�x2

  = lim
x→∞

 sin 
1
x

  = 0
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Analytic and graphical Analysis In exercises 83 and 
84, (a) explain why L’hôpital’s rule cannot be used to find 
the limit, (b) find the limit analytically, and (c) use a graphing 
utility to graph the function and approximate the limit from 
the graph. Compare the result with that in part (b).

83. lim
x→∞

 
x

√x2 + 1
 84. lim

x→π�2−
 
tan x
sec x

graphical Analysis In exercises 85 and 86, graph f (x)�g(x) 
and f ′(x)�g′(x) near x = 0. What do you notice about these 
ratios as x → 0? how does this illustrate L’hôpital’s rule?

85. f (x) = sin 3x, g(x) = sin 4x 86. f (x) = e3x − 1, g(x) = x

87.  electric Circuit The diagram shows a simple electric 
circuit consisting of a power source, a resistor, and an 
inductor. If voltage V is first applied at time t = 0, then the 
current I flowing through the circuit at time t is given by 

 I =
V
R

(1 − e−Rt�L)

  where L is the inductance and R is the resistance. Use 
L’Hôpital’s Rule to find the formula for the current by fixing 
V and L and letting R approach 0 from the right.

 

V

R

L

88.  Velocity in a Resisting Medium The velocity v of an 
object falling through a resisting medium such as air or water 
is given by

 v =
32
k (1 − e−kt +

v0 ke−kt

32 )
  where v0 is the initial velocity, t is the time in seconds, and k is 

the resistance constant of the medium. Use L’Hôpital’s Rule to 
find the formula for the velocity of a falling body in a vacuum 
by fixing v0 and t and letting k approach zero. (Assume that the 
downward direction is positive.)

89.  the gamma Function The Gamma Function Γ(n) 
is defined in terms of the integral of the function given by 
f (x) = xn−1e−x, n > 0. Show that for any fixed value of n, 
the limit of f (x) as x approaches infinity is zero.

90.  Compound Interest The formula for the amount A in a 
savings account compounded n times per year for t years at an 
interest rate r and an initial deposit of P is given by

  A = P(1 +
r
n)

nt

.

   Use L’Hôpital’s Rule to show that the limiting formula as 
the number of compoundings per year approaches infinity is 
given by A = Pert.

extended Mean Value theorem In exercises 91–94, 
verify that the extended mean Value Theorem can be applied 
to the functions f  and g on the closed interval [a, b]. Then find 
all values c in the open interval (a, b) such that

f ′(c)
g′(c) =

f (b) − f (a)
g(b) − g(a).

  Functions Interval

 91. f (x) = x3, g(x) = x2 + 1 [0, 1]

 92. f (x) =
1
x
, g(x) = x2 − 4 [1, 2]

 93. f (x) = sin x, g(x) = cos x [0, 
π
2]

 94. f (x) = ln x, g(x) = x3 [1, 4]

true or False? In exercises 95–100, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

 95. A limit of the form ∞�0 is indeterminate.

 96. A limit of the form ∞ ∙ ∞ is indeterminate.

 97.  An indeterminate form does not guarantee the existence of 
a limit.

 98. lim
x→0

 
x2 + x + 1

x
= lim

x→0
 
2x + 1

1
= 1

 99. If p(x) is a polynomial, then lim
x→∞

 
p(x)
ex = 0.

100. If lim
x→∞

 
f (x)
g(x) = 1, then lim

x→∞
 [ f (x) − g(x)] = 0.

101.  Area Find the limit, as x approaches 0, of the ratio of the 
area of the triangle to the total shaded area in the figure.

x
− −

1

2

(−x, 1 − cos x) (x, 1 − cos x)

f(x) = 1 − cos x
y

2
ππ

2
π π

102.  Finding a Limit In Section 2.3, a geometric argument 
(see figure) was used to prove that

  lim
θ→0

 
sin θ
θ = 1. 

x

1

O AD

B

C

θ

y

  (a)  Write the area of △ABD in 
terms of θ.

  (b)  Write the area of the shaded 
region in terms of θ.

  (c)  Write the ratio R of the area  
of △ABD to that of the  
shaded region.

  (d) Find lim
θ→0

 R.
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Continuous Function In exercises 103 and 104, find the 
value of c that makes the function continuous at x = 0.

103. 
 
f (x) = {4x − 2 sin 2x

2x3 ,

c,

x ≠ 0

x = 0

104. f (x) = {(ex + x)1�x,
c,

x ≠ 0
x = 0

105. Finding Values Find the values of a and b such that

  lim
x→0

 
a − cos bx

x2 = 2.

106. evaluating a Limit Use a graphing utility to graph

  f (x) =
xk − 1

k

  for k = 1, 0.1, and 0.01. Then evaluate the limit

  lim
k→0+

 
xk − 1

k
.

107. Finding a Derivative

  (a) Let f ′(x) be continuous. Show that

  lim
h→0

 
f (x + h) − f (x − h)

2h
= f ′(x).

  (b) Explain the result of part (a) graphically.

y

x
x − h x + hx

f

108.  Finding a Second Derivative Let f ″(x) be continuous. 
Show that

  lim
h→0

 
f (x + h) − 2f (x) + f (x − h)

h2 = f ″(x).

109.  evaluating a Limit Consider the limit 

  lim
x→0+

 (−x ln x).

  (a)  Describe the type of indeterminate form that is obtained 
by direct substitution.

  (b)  Evaluate the limit. Use a graphing utility to verify the 
result.

110.  Proof Prove that if f (x) ≥ 0, lim
x→a

 f (x) = 0, and 
lim
x→a

 g(x) = ∞, then lim
x→a

 f (x)g(x) = 0.

111. Proof Prove that if f (x) ≥ 0, lim
x→a

 f (x) = 0, and

lim
x→a

 g(x) = −∞, then lim
x→a

 f (x)g(x) = ∞.

112.  think About It Use two different methods to find the 
limit

lim
x→∞

 
ln xm

ln xn

  where m > 0, n > 0, and x > 0.

113.  Indeterminate Forms Show that the indeterminate 
forms 00, ∞0, and 1∞ do not always have a value of 1 by 
evaluating each limit.

  (a) lim
x→0+

 x(ln 2)�(1+ ln x)

  (b) lim
x→∞

 x(ln 2)�(1+ ln x)

  (c) lim
x→0

 (x + 1)(ln 2)�x

114.  Calculus History In L’Hôpital’s 1696 calculus textbook, 
he illustrated his rule using the limit of the function

f (x) =
√2a3x − x4 − a 3√a2x

a − 4√ax3

  as x approaches a, a > 0. Find this limit.

115. Finding a Limit Consider the function

h(x) =
x + sin x

x
.

  (a)  Use a graphing utility to graph the function. Then use the 
zoom and trace features to investigate lim

x→∞
 h(x).

  (b) Find lim
x→∞

 h(x) analytically by writing

h(x) =
x
x

+
sin x

x
.

  (c)  Can you use L’Hôpital’s Rule to find lim
x→∞

 h(x)? Explain 
your reasoning.

116.  evaluating a Limit Let f (x) = x + x sin x and 
g(x) = x2 − 4.

  (a) Show that lim
x→∞

 
f (x)
g(x) = 0.

  (b) Show that lim
x→∞

 f (x) = ∞ and lim
x→∞

 g(x) = ∞.

  (c) Evaluate the limit

lim
x→∞

 
f ′(x)
g′(x).

 What do you notice?

  (d)  Do your answers to parts (a) through (c) contradict 
L’Hôpital’s Rule? Explain your reasoning.

pUtnAM eXAM ChALLenGe

117. Evaluate lim
x→∞

 [1
x

∙ ax − 1
a − 1 ]

1�x

 where a > 0, a ≠ 1.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

 For FurTher InFormATIon For a geometric 
approach to this exercise, see the article “A Geometric Proof 
of lim

d→0+
 (−d ln d) = 0” by John H. Mathews in The College

Mathematics Journal. To view this article, go to MathArticles.com.
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356 Chapter 5 Integration

5.7 the natural Logarithmic Function: Integration

 Use the Log Rule for Integration to integrate a rational function.
 Integrate trigonometric functions.

Log Rule for Integration
In Chapter 3, you studied two differentiation rules for logarithms. The differentiation 
rule d�dx[ln x] = 1�x produces the Log Rule for Integration that you learned in 
Section 5.1. The differentiation rule d�dx[ln u] = u′�u produces the integration rule 
∫ 1�u = ln∣u∣ + C. These rules are summarized below. (See Exercise 101.)

theoReM 5.19 Log Rule for Integration

Let u be a differentiable function of x.

1. ∫1
x
 dx = ln∣x∣ + C 2. ∫1

u
 du = ln∣u∣ + C

Because du = u′ dx, the second formula can also be written as

∫u′
u

 dx = ln∣u∣ + C.    Alternative form of Log Rule

 Using the Log Rule for Integration

∫2
x
 dx = 2∫1

x
 dx  Constant Multiple Rule

 = 2 ln∣x∣ + C Log Rule for Integration

 = ln x2 + C  Property of logarithms

Because x2 cannot be negative, the absolute value notation is unnecessary in the final 
form of the antiderivative.

 Using the Log Rule with a Change of Variables

Find ∫ 1
4x − 1

 dx.

Solution If you let u = 4x − 1, then du = 4 dx.

∫ 1
4x − 1

 dx =
1
4∫( 1

4x − 1)4 dx Multiply and divide by 4.

 =
1
4∫1

u
 du Substitute: u = 4x − 1.  

 =
1
4

 ln∣u∣ + C Apply Log Rule.

 =
1
4

 ln∣4x − 1∣ + C Back-substitute. 

exploration
Integrating Rational 
Functions
Earlier in this chapter, you 
learned rules that allowed 
you to integrate any 
polynomial function. The 
Log Rule presented in this 
section goes a long way 
toward enabling you to 
integrate rational functions. 
For instance, each of the 
following functions can be 
integrated with the
Log Rule.

2
x
 Example 1

1
4x − 1

 Example 2

x
x2 + 1

 Example 3

3x2 + 1
x3 + x

 Example 4(a)

x + 1
x2 + 2x

 Example 4(c)

1
3x + 2

 Example 4(d)

x2 + x + 1
x2 + 1

 Example 5

2x
(x + 1)2 Example 6

There are still some rational 
functions that cannot be 
integrated using the 
Log Rule. Give examples 
of these functions and 
explain your reasoning.
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 5.7 The Natural Logarithmic Function: Integration 357

Example 3 uses the alternative form of the Log Rule. To apply this rule, look for 
quotients in which the numerator is the derivative of the denominator.

 Finding Area with the Log Rule

Find the area of the region bounded by the graph of 

y =
x

x2 + 1

the x-axis, and the line x = 3.

Solution In Figure 5.43, you can see that the area of the region is given by the  
definite integral

∫3

0

x
x2 + 1

 dx.

If you let u = x2 + 1, then u′ = 2x. To apply the Log Rule, multiply and divide by 2 
as shown.

 ∫3

0

x
x2 + 1

 dx =
1
2∫

3

0

2x
x2 + 1

 dx  Multiply and divide by 2.

 =
1
2[ln(x2 + 1)]

3

0
 ∫u′

u
 dx = ln∣u∣ + C

 =
1
2

(ln 10 − ln 1)

 =
1
2

 ln 10  ln 1 = 0

 ≈ 1.151

 Recognizing Quotient Forms of the Log Rule

a. ∫3x2 + 1
x3 + x

 dx = ln∣x3 + x∣ + C u = x3 + x

b. ∫sec2 x
tan x

 dx = ln∣tan x∣ + C u = tan x

c.  ∫ x + 1
x2 + 2x

 dx =
1
2∫ 2x + 2

x2 + 2x
 dx u = x2 + 2x

  =
1
2

 ln∣x2 + 2x∣ + C

d.  ∫ 1
3x + 2

 dx =
1
3∫ 3

3x + 2
 dx u = 3x + 2

  =
1
3

 ln∣3x + 2∣ + C 

With antiderivatives involving logarithms, it is easy to obtain forms that look quite 
different but are still equivalent. For instance, both 

ln∣(3x + 2)1�3∣ + C

and

ln∣3x + 2∣1�3 + C

are equivalent to the antiderivative listed in Example 4(d).

x

0.1

0.2

0.3

0.4

0.5

1 2 3

xy = 
x2 + 1

y

Area = ∫3

0

x
x2 + 1

 dx

The area of the region bounded by the 
graph of y, the x-axis, and x = 3 is 
1
2 ln 10.
Figure 5.43
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358 Chapter 5 Integration

Integrals to which the Log Rule can be applied often appear in disguised form. For 
instance, when a rational function has a numerator of degree greater than or equal to 
that of the denominator, division may reveal a form to which you can apply the Log 
Rule. This is shown in Example 5.

 Using Long Division Before Integrating

See LarsonCalculus.com for an interactive version of this type of example.

Find the indefinite integral.

∫x2 + x + 1
x2 + 1

 dx

Solution Begin by using long division to rewrite the integrand.

x2 + x + 1
x2 + 1

   1 +
x

x2 + 1

Now, you can integrate to obtain

 ∫x2 + x + 1
x2 + 1

 dx = ∫(1 +
x

x2 + 1) dx Rewrite using long division.

 = ∫dx +
1
2∫ 2x

x2 + 1
 dx Rewrite as two integrals.

 = x +
1
2

 ln(x2 + 1) + C. Integrate.

Check this result by differentiating to obtain the original integrand. 

The next example presents another instance in which the use of the Log Rule is 
disguised. In this case, a change of variables helps you recognize the Log Rule.

 Change of Variables with the Log Rule

Find the indefinite integral.

∫ 2x
(x + 1)2 dx

Solution If you let u = x + 1, then du = dx and x = u − 1.

 ∫ 2x
(x + 1)2 dx = ∫2(u − 1)

u2  du Substitute.

 = 2∫( u
u2 −

1
u2) du Rewrite as two fractions.

 = 2∫du
u

− 2∫u−2 du Rewrite as two integrals.

 = 2 ln∣u∣ − 2(u−1

−1) + C Integrate.

 = 2 ln∣u∣ +
2
u

+ C Simplify.

 = 2 ln∣x + 1∣ +
2

x + 1
+ C Back-substitute.

Check this result by differentiating to obtain the original integrand. 

teChnoLogy If you  
have access to a computer  
algebra system, use it to find  
the indefinite integrals in 
Examples 5 and 6. How does 
the form of the antiderivative 
that it gives you compare with 
that given in Examples 5 and 6?

 1
x2 + 1 )  x2 + x + 1
 x2           + 1
 x
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As you study the methods shown in Examples 5 and 6, be aware that both 
methods involve rewriting a disguised integrand so that it fits one or more of the basic 
integration formulas. Throughout the remaining sections of Chapter 5 and in Chapter 8, 
much time will be devoted to integration techniques. To master these techniques, you 
must recognize the “form-fitting” nature of integration. In this sense, integration is not 
nearly as straightforward as differentiation. Differentiation takes the form

“Here is the question; what is the answer?”

Integration is more like

“Here is the answer; what is the question?”

Here are some guidelines you can use for integration.

GUIDELINES FOR INTEGRATION

1.  Learn a basic list of integration formulas. 

2.  Find an integration formula that resembles all or part of the integrand and, 
by trial and error, find a choice of u that will make the integrand conform to 
the formula.

3.  When you cannot find a u-substitution that works, try altering the integrand. 
You might try a trigonometric identity, multiplication and division by the 
same quantity, addition and subtraction of the same quantity, or long division. 
Be creative.

4.  If you have access to computer software that will find antiderivatives 
symbolically, use it.

5.  Check your result by differentiating to obtain the original integrand.

 u-Substitution and the Log Rule

Solve the differential equation

dy
dx

=
1

x ln x
.

Solution The solution can be written as an indefinite integral.

y = ∫ 1
x ln x

 dx

Because the integrand is a quotient whose denominator is raised to the first power, you 
should try the Log Rule. There are three basic choices for u. The choices

u = x and u = x ln x

fail to fit the u′�u form of the Log Rule. However, the third choice does fit. Letting 
u = ln x produces u′ = 1�x, and you obtain the following.

 ∫ 1
x ln x

 dx = ∫1�x
ln x

 dx Divide numerator and denominator by x.

 = ∫u′
u

 dx Substitute: u = ln x.

 = ln∣u∣ + C Apply Log Rule.

 = ln∣ln x∣ + C Back-substitute.

So, the solution is y = ln∣ln x∣ + C. 

ReMARK Keep in mind 
that you can check your answer 
to an integration problem by 
differentiating the answer. For 
instance, in Example 7, the 
derivative of y = ln∣ln x∣ + C 
is y′ = 1�(x ln x).
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360 Chapter 5 Integration

Integrals of Trigonometric Functions
In Section 5.1, you looked at six trigonometric integration rules—the six that correspond 
directly to differentiation rules. With the Log Rule, you can now complete the set of 
basic trigonometric integration formulas.

 Using a trigonometric Identity

Find ∫tan x dx.

Solution This integral does not seem to fit any formulas on our basic list. However, 
by using a trigonometric identity, you obtain

∫tan x dx = ∫sin x
cos x

 dx.

Knowing that Dx [cos x] = −sin x, you can let u = cos x and write

 ∫tan x dx = −∫−sin x
cos x

 dx 
Apply trigonometric identity and 
multiply and divide by −1.

 = −∫u′
u

 dx Substitute: u = cos x.

 = −ln∣u∣ + C Apply Log Rule.

 = −ln∣cos x∣ + C. Back-substitute. 

Example 8 used a trigonometric identity to derive an integration rule for the tangent 
function. The next example takes a rather unusual step (multiplying and dividing by the 
same quantity) to derive an integration rule for the secant function.

 Derivation of the Secant Formula

Find ∫sec x dx.

Solution Consider the following procedure.

 ∫sec x dx = ∫ (sec x)(sec x + tan x
sec x + tan x) dx Multiply and divide by sec x + tan x.

 = ∫sec2 x + sec x tan x
sec x + tan x

 dx

Letting u be the denominator of this quotient produces

u = sec x + tan x

and

u′ = sec x tan x + sec2 x.

So, you can conclude that

 ∫sec x dx = ∫sec2 x + sec x tan x
sec x + tan x

 dx Rewrite integrand.

 = ∫u′
u

 dx Substitute: u = sec x + tan x.

 = ln∣u∣ + C Apply Log Rule.

 = ln∣sec x + tan x∣ + C.  Back-substitute. 
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5.7 The Natural Logarithmic Function: Integration 361

With the results of Examples 8 and 9, you now have integration formulas for 
sin x, cos x, tan x, and sec x. The integrals of the six basic trigonometric functions are 
summarized below. (For proofs of cot u and csc u, see Exercises 85 and 86.)

INTEGRALS OF THE SIX BASIC TRIGONOMETRIC FUNCTIONS

∫sin u du = −cos u + C ∫cos u du = sin u + C

∫tan u du = −ln∣cos u∣ + C ∫cot u du = ln∣sin u∣ + C

∫sec u du = ln∣sec u + tan u∣ + C ∫csc u du = −ln∣csc u + cot u∣ + C

 Integrating trigonometric Functions

Evaluate ∫π�4

0
√1 + tan2 x dx.

Solution Using 1 + tan2 x = sec2 x, you can write

 ∫π�4

0
√1 + tan2 x dx = ∫π�4

0
√sec2 x dx

 = ∫π�4

0
sec x dx sec x ≥ 0 for 0 ≤ x ≤

π
4

.

 = ln∣sec x + tan x∣]
π�4

0

 = ln(√2 + 1) − ln 1

 ≈ 0.881.

 Finding an Average Value

Find the average value of

f (x) = tan x

on the interval [0, π�4].

Solution

 Average value =
1

(π�4) − 0
 ∫π�4

0
tan x dx Average value =

1
b − a∫

b

a

 f (x) dx

 =
4
π∫

π�4

0
tan x dx Simplify.

 =
4
π[−ln∣cos x∣]

π�4

0
 Integrate.

 = −
4
π [ln 

√2
2

− ln 1]
 = −

4
π  ln 

√2
2

 ≈ 0.441

The average value is about 0.441, as shown in Figure 5.44. 

ReMARK Using 
trigonometric identities and 
properties of logarithms, 
you could rewrite these six 
integration rules in other forms. 
For instance, you could write

∫csc u du

= ln∣csc u − cot u∣ + C.

(See Exercises 87–90.)

x

1

2

π
4

Average value ≈ 0.441

y

f (x) = tan x

Figure 5.44
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362 Chapter 5 Integration

5.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Log Rule for Integration Can you use the Log Rule 

to find the integral below? Explain.

 ∫ 
x

(x2 − 4)3 dx

2.  Long Division Explain when to use long division 
before applying the Log Rule.

3.  guidelines for Integration Describe two ways to 
alter an integrand so that it fits an integration formula.

4.  trigonometric Functions Integrating which 
trigonometric function results in ln∣sin x∣ + C?

 Finding an Indefinite Integral  In Exercises 
5–28, find the indefinite integral.

 5. ∫5
x
 dx  6. ∫ 1

x − 5
 dx

 7. ∫ 
1

2x + 5
 dx  8. ∫ 9

5 − 4x
 dx

 9. ∫ x
x2 − 3

 dx 10. ∫ x2

5 − x3 dx

11. ∫4x3 + 3
x4 + 3x

 dx 12. ∫ 
x2 − 2x
x3 − 3x2 dx

13. ∫ 
x2 − 7

7x
 dx 14. ∫x3 − 8x

x2  dx

15. ∫ x2 + 2x + 3
x3 + 3x2 + 9x

 dx 16. ∫ x2 + 4x
x3 + 6x2 + 5

 dx

17. ∫x2 − 3x + 2
x + 1

 dx 18. ∫2x2 + 7x − 3
x − 2

 dx

19. ∫x3 − 3x2 + 5
x − 3

 dx 20. ∫x3 − 6x − 20
x + 5

 dx

21. ∫x 4 + x − 4
x2 + 2

 dx 22. ∫x3 − 4x2 − 4x + 20
x2 − 5

 dx

23. ∫(ln x)2

x
 dx 24. ∫ 

dx
x(ln x2)3

25. ∫ 1

√x(1 − 3√x)
 dx 26. ∫ 1

x2�3(1 + x1�3) dx

27. ∫ 
6x

(x − 5)2 dx 28. ∫x(x − 2)
(x − 1)3 dx

 Change of Variables In Exercises 29–32, find 
the indefinite integral by making a change of 
variables (Hint: Let u be the denominator of the 
integrand.)

29. ∫ 1

1 + √2x
 dx 30. ∫ 

4

1 + √5x
 dx

31. ∫ √x

√x − 3
 dx 32. ∫ 3√x

3√x − 1
 dx

 Finding an Indefinite Integral of a 
trigonometric Function In Exercises 33–42, 
find the indefinite integral.

33. ∫ cot 
θ
3

 dθ 34. ∫sec 
x
2

 dx

35. ∫csc 2x dx 36. ∫(2 − tan 
θ
4) dθ

37. ∫ cos t
1 + sin t

 dt 38. ∫csc2 t
cot t

 dt

39. ∫sec x tan x
sec x − 1

 dx 40. ∫sec(2 ln t) + tan(2 ln t)
t

dt

41. ∫ e−x tan(e−x) dx 42. ∫ sec t(sec t + tan t) dt

Differential equation In Exercises 43–46, find the general 
solution of the differential equation. Use a graphing utility 
to graph three solutions, one of which passes through the 
given point.

43. 
dy
dx

=
3

2 − x
, (1, 0) 44. 

dy
dx

=
x − 2

x
, (−1, 0)

45. 
dy
dx

=
2x

x2 − 9
, (0, 4) 46. 

dr
dt

=
sec2 t

tan t + 1
,  (π, 4)

Finding a Particular Solution In Exercises 47 and 48, 
find the particular solution of the differential equation that 
satisfies the initial conditions.

47. f ″(x) =
2
x2, f ′(1) = 1, f (1) = 1, x > 0

48. f ″(x) = −
4

(x − 1)2 − 2, f ′(2) = 0, f (2) = 3, x > 1

Slope Field In Exercises 49 and 50, a differential equation, 
a point, and a slope field are given. (a) Sketch two approximate 
solutions of the differential equation on the slope field, one of 
which passes through the given point. (To print an enlarged 
copy of the graph, go to MathGraphs.com.) (b) Use integration 
and the given point to find the particular solution of the 
differential equation and use a graphing utility to graph the 
solution. Compare the result with the sketch in part (a) that 
passes through the given point. 

49. 
dy
dx

=
1

x + 2
, (0, 1) 50. 

dy
dx

=
ln x

x
, (1, −2)

 

x

3

4−2

−3

y  

x

1

2

3

−1

−2

−1

−3

y

5
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 5.7 The Natural Logarithmic Function: Integration 363

 evaluating a Definite Integral  In Exercises 
51–58, evaluate the definite integral. Use a 
graphing utility to verify your result.

51. ∫4

0
 

5
3x + 1

 dx 52. ∫1

−1
 

1
2x + 3

 dx

53. ∫e

1
 
(1 + ln x)2

x
 dx 54. ∫e2

e

 
1

x ln x
 dx

55. ∫2

0
 
x2 − 2
x + 1

 dx 56. ∫1

0
 
x − 1
x + 1

 dx

57. ∫2

1
 
1 − cos θ
θ − sin θ  dθ 58. ∫π�4

π�8
(csc 2θ − cot 2θ) dθ

Finding an Integral Using technology In Exercises 59 
and 60, use a computer algebra system to find or evaluate the 
integral.

59. ∫ 
1 − √x

1 + √x
 dx 60. ∫π�4

−π�4
 
sin2 x − cos2 x

cos x
 dx

Finding a Derivative In Exercises 61–64, find F′(x).

61. F(x) = ∫x

1
 
1
t
 dt 62. F(x) = ∫x

0
 tan t dt

63. F(x) = ∫4x

1
 cot t dt 64. F(x) = ∫x2

0
 

3
t + 1

 dt

 Area In Exercises 65–68, find the area of the 
given region. Use a graphing utility to verify your 
result.

65. y =
6
x
 66. y =

1 + ln x3

x

 y

x
−2 2 4 6

−2

2

4

6

  y

x
1 2 3 4

1

−1

−2

2

67. y = csc(x + 1) 68. y =
sin x

1 + cos x

 y

x
−1 1 2

1

3

  y

x

−1

1

2

π− π
2

π

 Area In Exercises 69–72, find the area of the 
region bounded by the graphs of the equations. Use 
a graphing utility to verify your result.

69. y =
x2 + 4

x
, x = 1, x = 4, y = 0

70. y =
5x

x2 + 2
, x = 1, x = 5, y = 0

71. y = 2 sec 
πx
6

, x = 0, x = 2, y = 0

72. y = 2x − tan 0.3x, x = 1, x = 4, y = 0

 Finding the Average Value of a Function  
In Exercises 73–76, find the average value of the 
function over the given interval.

73. f (x) =
8
x2, [2, 4] 74. f (x) =

4(x + 1)
x2 , [2, 4]

75. f (x) =
2 ln x

x
, [1, e]

76. f (x) = sec 
πx
6

, [0, 2]

Midpoint Rule In Exercises 77 and 78, use the Midpoint 
Rule with n = 4 to approximate the value of the definite 
integral. Use a graphing utility to verify your result.

77. ∫3

1
 
12
x

 dx 78. ∫π�4

0
 sec x dx

eXpLoring ConCepts
Approximation In Exercises 79 and 80, determine 
which value best approximates the area of the region 
between the x-axis and the graph of the function over the 
given interval. Make your selection on the basis of a sketch 
of the region, not by performing calculations.

79. f (x) = sec x, [0, 1]
 (a) 6 (b) −6 (c) 1

2 (d) 1.25 (e) 3

80. f (x) =
2x

x2 + 1
, [0, 4]

 (a) 3 (b) 7 (c) −2 (d) 5 (e) 1

81.  napier’s Inequality For 0 < x < y, use the Mean Value 
Theorem to show that

 
1
y

<
ln y − ln x

y − x
<

1
x
.

82. think About It Is the function

 F(x) = ∫2x

x

 
1
t
 dt

  constant, increasing, or decreasing on the interval (0, ∞)? 
Explain.

83. Finding a Value Find a value of x such that 

 ∫x

1
 
3
t
 dt = ∫x

1�4
 
1
t
 dt.

84. Finding a Value Find a value of x such that 

 ∫x

1
 
1
t
 dt

 is equal to (a) ln 5 and (b) 1.
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364 Chapter 5 Integration

85. Proof Prove that

∫ cot u du = ln∣sin u∣ + C.

86. Proof Prove that

 ∫ csc u du = −ln∣csc u + cot u∣ + C.

Using Properties of Logarithms and trigonometric 
Identities In Exercises 87–90, show that the two formulas 
are equivalent.

87. ∫tan x dx = −ln∣cos x∣ + C

 ∫tan x dx = ln∣sec x∣ + C

88. ∫cot x dx = ln∣sin x∣ + C

 ∫cot x dx = −ln∣csc x∣ + C

89. ∫sec x dx = ln∣sec x + tan x∣ + C

 ∫sec x dx = −ln∣sec x − tan x∣ + C

90. ∫csc x dx = −ln∣csc x + cot x∣ + C

 ∫csc x dx = ln∣csc x − cot x∣ + C

91.  Population growth A population of bacteria P is 
changing at a rate of 

 
dP
dt

=
3000

1 + 0.25t

  where t is the time in days. The initial population (when t = 0)
is 1000.

 (a) Write an equation that gives the population at any time t.

 (b)  Find the population when t = 3 days.

92.  Sales The rate of change in sales S is inversely proportional 
to time t (t > 1), measured in weeks. Find S as a function of t
when the sales after 2 and 4 weeks are 200 units and 300 units, 
respectively.

 94. Average Price The demand equation for a product is 

p =
90,000

400 + 3x

   where p is the price (in dollars) and x is the number of units 
(in thousands). Find the average price p on the interval 
40 ≤ x ≤ 50.

 95.  Area and Slope Graph the function f (x) = x�(1 + x2)
on the interval [0, ∞).

  (a)  Find the area bounded by the graph of f  and the line 
y = 1

2x.

  (b)  Determine the values of the slope m such that the line 
y = mx and the graph of f  enclose a finite region. 

  (c) Calculate the area of this region as a function of m.

 96.  hoW Do yoU See It? Use the graph of 
f ′ shown in the figure to answer the following.

y

x
−1−4−5 1

−2

−3

1

2

3f ′

(a) Approximate the slope of f  at x = −1. Explain.

(b)  Approximate any open intervals on which the 
graph of f  is increasing and any open intervals on 
which it is decreasing. Explain. 

 96.  

true or False? In Exercises 97–100, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

 97. ln∣x4∣ = ln x4

98. ln∣cos θ2∣ = ln(cos θ2)

 99. ∫ 
1
x
 dx = ln∣cx∣, c ≠ 0

100. ∫2

−1
 
1
x
 dx = [ln∣x∣]

2

−1
= ln 2 − ln 1 = ln 2

101. Proof Prove Theorem 5.19.

pUtnAM eXAM ChALLenge
102. Suppose that f  is a function on the interval [1, 3] such 

  that −1 ≤ f (x) ≤ 1 for all x and ∫3

1
 f (x) dx = 0. How

  large can ∫3

1
  

f (x)
x

 dx be?

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

Find the time required 
for an object to cool 
from 300°F to 250°F 
by evaluating

 t =
10
ln 2∫

300

250
 

1
T − 100

 dT

where t is time in 
minutes.

93. heat transfer

Marijus Auruskevicius/Shutterstock.com
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5.8 Inverse Trigonometric Functions: Integration 365

5.8 Inverse Trigonometric functions: Integration

 Integrate functions whose antiderivatives involve inverse trigonometric functions.
 Use the method of completing the square to integrate a function.
 Review the basic integration rules involving elementary functions.

Integrals Involving Inverse Trigonometric Functions
The derivatives of the six inverse trigonometric functions fall into three pairs. In each 
pair, the derivative of one function is the negative of the other. For example,

d
dx

[arcsin x] =
1

√1 − x2

and

d
dx

 [arccos x] = −
1

√1 − x2
.

When listing the antiderivative that corresponds to each of the inverse trigonometric 
functions, you need to use only one member from each pair. It is conventional to use 
arcsin x as the antiderivative of 1�√1 − x2, rather than −arccos x. The next theorem 
gives one antiderivative formula for each of the three pairs. The proofs of these 
integration rules are left to you (see Exercises 73–75).

TheoRem 5.20  Integrals Involving Inverse Trigonometric 
functions

Let u be a differentiable function of x, and let a > 0.

1. ∫ du

√a2 − u2
= arcsin 

u
a

+ C

2. ∫ du
a2 + u2 =

1
a

 arctan 
u
a

+ C

3. ∫ du

u√u2 − a2
=

1
a

 arcsec 
∣u∣
a

+ C

 Integration with Inverse Trigonometric functions

a. ∫ dx

√4 − x2
= arcsin 

x
2

+ C u = x, a = 2

b.  ∫ 
dx

2 + 9x2 =
1
3∫ 

3 dx

(√2)2 + (3x)2
 u = 3x, a = √2

  =
1

3√2
 arctan 

3x

√2
+ C

c.  ∫ dx

x√4x2 − 9
= ∫ 2 dx

2x√(2x)2 − 32
 u = 2x, a = 3

  =
1
3

 arcsec 
∣2x∣

3
+ C 

The integrals in Example 1 are fairly straightforward applications of integration 
formulas. Unfortunately, this is not typical. The integration formulas for inverse 
trigonometric functions can be disguised in many ways.

 For FurthEr InFormatIon
For a detailed proof of rule 2 of 
Theorem 5.20, see the article 
“A Direct Proof of the Integral 
Formula for Arctangent” by 
Arnold J. Insel in The College 
Mathematics Journal. To view this 
article, go to MathArticles.com.
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366 Chapter 5 Integration

 Integration by Substitution

Find ∫ dx

√e2x − 1
.

Solution As it stands, this integral does not fit any of the three inverse trigonometric 
formulas. Using the substitution u = ex, however, produces

u = ex  du = ex dx  dx =
du
ex =

du
u

.

With this substitution, you can integrate as shown.

 ∫ dx

√e2x − 1
= ∫ dx

√(ex)2 − 1
 Write e2x as (e x)2.

 = ∫ du�u

√u2 − 1
 Substitute.

 = ∫ du

u√u2 − 1
 Rewrite to fit Arcsecant Rule.

 = arcsec 
∣u∣
1

+ C Apply Arcsecant Rule.

 = arcsec ex + C Back-substitute. 

 Rewriting as the Sum of Two Quotients

Find ∫ x + 2

√4 − x2
 dx.

Solution This integral does not appear to fit any of the basic integration formulas. 
By splitting the integrand into two parts, however, you can see that the first part can be 
found with the Power Rule and the second part yields an inverse sine function.

 ∫ x + 2

√4 − x2
 dx = ∫ x

√4 − x2
 dx + ∫ 2

√4 − x2
 dx

 = −
1
2

 ∫(4 − x2)−1�2(−2x) dx + 2 ∫ 1

√4 − x2
 dx

 = −
1
2

 [(4 − x2)1�2

1�2 ] + 2 arcsin 
x
2

+ C

 = −√4 − x2 + 2 arcsin 
x
2

+ C 

TeChnology pITfall A symbolic integration utility can be useful for 
integrating functions such as the one in Example 2. In some cases, however, the  
utility may fail to find an antiderivative for two reasons. First, some elementary  
functions do not have antiderivatives that are elementary functions. Second, every 
utility has limitations—you might have entered a function that the utility was not  
programmed to handle. You should also remember that antiderivatives involving 
trigonometric functions or logarithmic functions can be written in many different 
forms. For instance, one utility found the integral in Example 2 to be

∫ dx

√e2x − 1
= arctan √e2x − 1 + C.

Try showing that this antiderivative is equivalent to the one found in Example 2.
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 5.8 Inverse Trigonometric Functions: Integration 367

Completing the Square
Completing the square helps when quadratic functions are involved in the integrand. 
For example, the quadratic x2 + bx + c can be written as the difference of two squares 
by adding and subtracting (b�2)2.

x2 + bx + c = x2 + bx + (b
2)

2
− (b

2)
2

+ c = (x +
b
2)

2
− (b

2)
2

+ c

 Completing the Square

See LarsonCalculus.com for an interactive version of this type of example.

Find ∫ dx
x2 − 4x + 7

.

Solution You can write the denominator as the sum of two squares, as shown.

x2 − 4x + 7 = (x2 − 4x + 4) − 4 + 7 = (x − 2)2 + 3 = u2 + a2

Now, in this completed square form, let u = x − 2 and a = √3.

∫ dx
x2 − 4x + 7

= ∫ dx
(x − 2)2 + 3

=
1

√3
 arctan 

x − 2

√3
 + C 

When the leading coefficient is not 1, it helps to factor before completing the 
square. For instance, you can complete the square of 2x2 − 8x + 10 by factoring first.

 2x2 − 8x + 10 = 2(x2 − 4x + 5)
 = 2(x2 − 4x + 4 − 4 + 5)
 = 2 [(x − 2)2 + 1]

To complete the square when the coefficient of x2 is negative, use the same factoring 
process shown above. For instance, you can complete the square for 3x − x2 as shown.

3x − x2 = −(x2 − 3x) = −[x2 − 3x + (3
2)2 − (3

2)2] = (3
2)2 − (x − 3

2)2

 Completing the Square

Find the area of the region bounded by the graph of 

f(x) =
1

√3x − x2

the x-axis, and the lines x = 3
2 and x = 9

4.

Solution In Figure 5.45, you can see that the area is

 Area = ∫9�4

3�2
 

1

√3x − x2
 dx

 = ∫9�4

3�2
 

dx

√(3�2)2 − [x − (3�2)]2
 Use completed square form derived above.

 = arcsin 
x − (3�2)

3�2 ]
9�4

3�2

 = arcsin 
1
2

 − arcsin 0

 =
π
6

 ≈ 0.524. 

x
1

1

2 3

2

3

x = 3
2

x = 9
4

f(x) = 1
3x − x2

y

The area of the region bounded by the 
graph of f, the x-axis, x = 3

2, and x = 9
4 

is π�6.
Figure 5.45
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368 Chapter 5 Integration

Review of Basic Integration Rules
You have now completed the introduction of the basic integration rules. To be 
efficient at applying these rules, you should have practiced enough so that each rule is 
committed to memory.

You can learn a lot about the nature of integration by comparing this list with the 
summary of differentiation rules given in Section 3.6. For differentiation, you now 
have rules that allow you to differentiate any elementary function. For integration, this 
is far from true.

The integration rules listed above are primarily those that were happened on 
during the development of differentiation rules. So far, you have not learned any rules 
or techniques for finding the antiderivative of a general product or quotient, the natural 
logarithmic function, or the inverse trigonometric functions. More important, you 
cannot apply any of the rules in this list unless you can create the proper du
corresponding to the u in the formula. The point is that you need to work more on 
integration techniques, which you will do in Chapter 8. The next two examples should 
give you a better  feeling for the integration problems that you can and cannot solve 
with the techniques and rules you now know.

BASIC INTEGRATION RULES (a > 0)

 1. ∫k f(u) du = k∫f(u) du  2. ∫[ f(u) ± g(u)] du = ∫f(u) du ± ∫g(u) du

 3. ∫du = u + C  4. ∫un du =
un+1

n + 1
+ C, n ≠ −1

 5. ∫du
u

= ln∣u∣ + C  6. ∫eu du = eu + C

 7. ∫au du = ( 1
ln a)au + C  8. ∫sin u du = −cos u + C

 9. ∫cos u du = sin u + C 10. ∫tan u du = −ln∣cos u∣ + C

11. ∫cot u du = ln∣sin u∣ + C 12. ∫sec u du = ln∣sec u + tan u∣ + C

13. ∫csc u du = −ln∣csc u + cot u∣ + C 14. ∫sec2 u du = tan u + C

15. ∫csc2 u du = −cot u + C 16. ∫sec u tan u du = sec u + C

17. ∫csc u cot u du = −csc u + C 18. ∫ du

√a2 − u2
= arcsin 

u
a

+ C

19. ∫ du
a2 + u2 =

1
a

 arctan 
u
a

+ C 20. ∫ du

u√u2 − a2
=

1
a

 arcsec 
∣u∣
a

+ C
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 5.8 Inverse Trigonometric Functions: Integration 369

 Comparing Integration problems

Find as many of the following integrals as you can using the formulas and techniques 
you have studied so far in the text.

a. ∫ dx

x√x2 − 1

b. ∫ x dx

√x2 − 1

c. ∫ dx

√x2 − 1

Solution

a. You can find this integral (it fits the Arcsecant Rule).

∫ dx

x√x2 − 1
= arcsec∣x∣ + C

b. You can find this integral (it fits the Power Rule).

 ∫ x dx

√x2 − 1
=

1
2∫(x2 − 1)−1�2(2x) dx

 =
1
2

 [(x2 − 1)1�2

1�2 ] + C

 = √x2 − 1 + C

c.  You cannot find this integral using the techniques you have studied so far. (You 
should scan the list of basic integration rules to verify this conclusion.)

 Comparing Integration problems

Find as many of the following integrals as you can using the formulas and techniques 
you have studied so far in the text.

a. ∫ dx
x ln x

b. ∫ln x dx
x

c. ∫ln x dx

Solution

a. You can find this integral (it fits the Log Rule).

 ∫ dx
x ln x

= ∫1�x
ln x

 dx

 = ln∣ln x∣ + C

b. You can find this integral (it fits the Power Rule).

 ∫ln x dx
x

= ∫(1
x)(ln x)1 dx

 =
(ln x)2

2
+ C

c. You cannot find this integral using the techniques you have studied so far. 

RemaRk Note in  
Examples 6 and 7 that the  
simplest functions are the ones 
that you cannot yet integrate.
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370 Chapter 5 Integration

5.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Integration Rules Decide whether you can find 

each integral using the formulas and techniques you have 
studied so far. Explain.

 (a) ∫ 2 dx

√x2 + 4
 (b) ∫ dx

x√x2 − 9

2.  Completing the Square In your own words, 
describe the process of completing the square of a 
quadratic function. Explain when completing the square 
is useful for finding an integral.

 finding an Indefinite Integral In Exercises 
3–22, find the indefinite integral.

 3. ∫ dx

√9 − x2
  4. ∫ dx

√1 − 4x2
 

 5. ∫ 1

x√4x2 − 1
 dx  6. ∫ 12

1 + 9x2 dx

 7. ∫ 1

√1 − (x + 1)2
 dx  8. ∫ 7

4 + (3 − x)2 dx

 9. ∫ t

√1 − t4
 dt 10. ∫ 1

x√x 4 − 4
 dx

11. ∫ t
t 4 + 25

 dt 12. ∫ 1

x√1 − (ln x)2
 dx

13. ∫ e2x

4 + e4x dx 14. ∫ 5

x√9x2 − 11
 dx

15. ∫ −csc x cot x

√25 − csc2x
 dx 16. ∫ sin x

7 + cos2 x
 dx

17. ∫ 1

√x√1 − x
 dx 18. ∫ 3

2√x(1 + x)
 dx

19. ∫ x − 3
x2 + 1

 dx 20. ∫ x2 + 8

x√x2 − 4
 dx

21. ∫ x + 5

√9 − (x − 3)2
 dx 22. ∫ x − 2

(x + 1)2 + 4
 dx

 evaluating a Definite Integral In Exercises  
23–34, evaluate the definite integral.

23. ∫1�6

0
 

3

√1 − 9x2
 dx 24. ∫√2

0

1

√4 − x2
 dx

25. ∫√3�2

0

1
1 + 4x2 dx 26. ∫3

√3
 

1

x√4x2 − 9
 dx

27. ∫7

1

1
9 + (x + 2)2 dx 28. ∫4

1

1

x√16x2 − 5
 dx

29. ∫ln 5

0

ex

1 + e2x dx 30. ∫ln 4

ln 2

e−x

√1 − e−2x
 dx

31. ∫π

π�2
 

sin x
1 + cos2 x

 dx 32. ∫π�2

0

cos x
1 + sin2 x

 dx

33. ∫1�√2

0

arcsin x

√1 − x2
 dx 34. ∫1�√2

0

arccos x

√1 − x2
 dx

 Completing the Square In Exercises 35–42, 
find or evaluate the integral by completing the 
square. 

35. ∫2

0
 

dx
x2 − 2x + 2

 36. ∫3

−2
 

dx
x2 + 4x + 8

37. ∫ dx

√−2x2 + 8x + 4
 38. ∫ dx

3x2 − 6x + 12

39. ∫ 1

√−x2 − 4x
 dx 40. ∫ 2

√−x2 + 4x
 dx

41. ∫3

2
 

2x − 3

√4x − x2
 dx 42. ∫4

3
 

1

(x − 1)√x2 − 2x
 dx

 Integration by Substitution In Exercises 
43–46, use the specified substitution to find or 
 evaluate the integral.

43. ∫√et − 3 dt 44. ∫ 
√x − 2
x + 1

 dx

 u = √et − 3  u = √x − 2

45. ∫3

1
 

dx

√x(1 + x)
 46. ∫1

0
 

dx

2√3 − x√x + 1

 u = √x  u = √x + 1 

 Comparing Integration problems In 
Exercises 47–50, find the indefinite integrals, if 
possible, using the formulas and techniques you 
have studied so far in the text.

47. (a) ∫ 1

√1 − x2
 dx 48. (a) ∫ex2

 dx

 (b) ∫ x

√1 − x2
 dx  (b) ∫xex2

 dx

 (c) ∫ 1

x√1 − x2
 dx  (c) ∫ 1

x2 e1�x dx

49. (a) ∫√x − 1 dx 50. (a) ∫ 1
1 + x4 dx

 (b) ∫x√x − 1 dx  (b) ∫ x
1 + x 4 dx

 (c) ∫ x

√x − 1
 dx  (c) ∫ x3

1 + x 4 dx
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5.8 Inverse Trigonometric Functions: Integration 371

eXpLoRInG ConCeptS
Comparing antiderivatives In Exercises 51 and 52, 
show that the antiderivatives are equivalent.

51. ∫ 3x2

√1 − x6
 dx = arcsin x3 + C or arccos √1 − x6 + C

52. ∫ 6
4 + 9x2 dx = arctan 

3x
2

+ C or arccsc 
√4 + 9x2

3x
+ C

53.  Inverse Trigonometric functions The 
antiderivative of

∫ 1

√1 − x2
 dx

  can be either arcsin x + C or −arccos x + C. Does this 
mean that arcsin x = −arccos x? Explain.

 54.  hoW Do yoU See IT? Using the graph, 
which value best approximates the area of the 
region between the x-axis and the function over 
the interval [−1

2, 12 ]? Explain.

y

x
−1 − 1

2

3
2

1
2

1
2

1
2

f(x) = 1
1 − x2

(a) −3  (b) 12  (c) 1  (d) 2  (e) 4

 54.  

Slope field In Exercises 55 and 56, a differential equation, 
a point, and a slope field are given. (a) Sketch two approximate 
solutions of the differential equation on the slope field, one of 
which passes through the given point. (to print an enlarged 
copy of the graph, go to MathGraphs.com.) (b) use integration 
and the given point to find the particular solution of the 
differential equation and use a graphing utility to graph the 
solution. Compare the result with the sketch in part (a) that 
passes through the given point.

55. 
dy
dx

=
2

9 + x2, (0, 2) 56. 
dy
dx

=
2

√25 − x2
, (5, π)

x

y

4−4

5

−3

 

x

y

5

−5

−5 5

Slope field In Exercises 57–60, use a graphing utility to 
graph the slope field for the differential equation and graph 
the particular solution satisfying the specified initial condition.

57. 
dy
dx

=
10

x√x2 − 1
 58. 

dy
dx

=
1

12 + x2

y (3) = 0  y (4) = 2

59. 
dy
dx

=
2y

√16 − x2
 60. 

dy
dx

=
√y

1 + x2

y(0) = 2  y(0) = 4

Differential equation In Exercises 61 and 62, find the 
particular solution of the differential equation that satisfies the 
initial condition.

61. 
dy

dx
=

1

√4 − x2

y(0) = π

62. 
dy
dx

=
1

4 + x2

y(2) = π

 area In Exercises 63–66, find the area of the 
given region. use a graphing utility to verify your 
result.

63. y =
2

√4 − x2
 64. y =

1

x√x2 − 1
y

x

2

3

−1

−1−2 1 2

  
y

x
1 2

1

2

x =    2

65. y =
3 cos x

1 + sin2 x
 66. y =

4ex

1 + e2x

 y

x
π
2

π
4

π
4

−

−2

−3

1

3

  y

x

x = ln    3

−1−2 1 2

−1

1

3

67. area

 (a) Sketch the region whose area is represented by

 ∫1

0
 arcsin x dx.

 (b)  Use the integration capabilities of a graphing utility to 
approximate the area.

 (c) Find the exact area analytically.
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372 Chapter 5 Integration

68. approximating pi

 (a) Show that

 ∫1

0

4
1 + x2 dx = π.

 (b)  Approximate the number π  by using the integration  
capabilities of a graphing utility.

69. Investigation Consider the function

 F(x) =
1
2∫

x+2

x

 
2

t2 + 1
 dt.

 (a)  Write a short paragraph giving a geometric interpretation 
of the function F(x) relative to the function

   f (x) =
2

x2 + 1
.

    Use what you have written to guess the value of x that will 
make F maximum.

 (b)  Perform the specified integration to find an alternative 
form of F(x). Use calculus to locate the value of x that will 
make F maximum and compare the result with your guess 
in part (a).

70. Comparing Integrals Consider the integral

 ∫ 1

√6x − x2
 dx.

 (a)  Find the integral by completing the square of the radicand.

 (b) Find the integral by making the substitution u = √x.

 (c)  The antiderivatives in parts (a) and (b) appear to be  
significantly different. Use a graphing utility to graph each 
antiderivative in the same viewing window and determine 
the relationship between them. Find the domain of each.

True or false? In Exercises 71 and 72, determine whether 
the  statement is true or false. If it is false, explain why or give 
an example that shows it is false.

71. ∫ 
dx

3x√9x2 − 16
=

1
4

 arcsec 
3x
4

+ C

72. ∫ 
dx

25 + x2 =
1
25

 arctan 
x

25
+ C

Verifying an Integration Rule In Exercises 73–75, verify 
the rule by differentiating. Let a > 0.

73. ∫ 
du

√a2 − u2
= arcsin 

u

a
+ C

74. ∫ du
a2 + u2 =

1
a

 arctan 
u
a

+ C

75. ∫ du

u√u2 − a2
=

1
a

 arcsec 
∣u∣
a

+ C

76.  proof Graph y1 =
x

1 + x2, y2 = arctan x, and y3 = x on

 [0, 10]. Prove that 
x

1 + x2 < arctan x < x for x > 0.

77. numerical Integration

 (a)  Write an integral that represents the area of the region in 
the figure. 

 (b)  Use the Midpoint Rule with n = 8 to estimate the area of 
the region.

 (c)  Explain how you can use the results of parts (a) and (b) to 
estimate π.

y

x
−1−2 1 2

2

3
2

1
2

y = 1
1 + x2

78.  Vertical motion An object is projected upward from 
ground level with an initial velocity of 500 feet per second. 
In this exercise, the goal is to analyze the motion of the object 
during its upward flight.

 (a)  If air resistance is neglected, find the velocity of the object 
as a function of time. Use a graphing utility to graph this 
function.

 (b)  Use the result of part (a) to find the position function and 
determine the maximum height attained by the object.

 (c)  If the air resistance is proportional to the square of the 
velocity, you obtain the equation

  
dv
dt

= −(32 + kv2)

   where 32 feet per second per second is the acceleration 
due to gravity and k is a constant. Find the velocity as a 
function of time by solving the equation

  ∫ dv
32 + kv2 = −∫dt.

 (d)  Use a graphing utility to graph the velocity function v(t) in 
part (c) for k = 0.001. Use the graph to approximate the 
time t0 at which the object reaches its maximum height.

 (e)  Use the integration capabilities of a graphing utility to 
approximate the integral

  ∫t0

0
 v(t) dt

   where v(t) and t0 are those found in part (d). This is the 
approximation of the maximum height of the object.

 (f )  Explain the difference between the results in parts (b)  
and (e).

 For FurthEr InFormatIon For more information  
on this topic, see the article “What Goes Up Must Come Down; 
Will Air Resistance Make It Return Sooner, or Later?” by John 
Lekner in Mathematics Magazine. To view this article, go to 
MathArticles.com.
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5.9 Hyperbolic Functions 373

5.9 Hyperbolic Functions

 Develop properties of hyperbolic functions.
 Differentiate and integrate hyperbolic functions.
 Develop properties of inverse hyperbolic functions.
 Differentiate and integrate functions involving inverse hyperbolic functions.

Hyperbolic Functions
In this section, you will look briefly at a special class of exponential functions called 
hyperbolic functions. The name hyperbolic function arose from comparison of the 
area of a semicircular region, as shown in Figure 5.46, with the area of a region under 
a hyperbola, as shown in Figure 5.47.

x
−1 1

2

y =    1 − x2

y   

x
−1 1

2

y

y =    1 + x2

 Circle: x2 + y2 = 1 Hyperbola: −x2 + y2 = 1
 Figure 5.46 Figure 5.47

The integral for the semicircular region involves an inverse trigonometric (circular) 
function:

∫1

−1
√1 − x2 dx =

1
2[x√1 − x2 + arcsin x ]

1

−1
=

π
2

≈ 1.571.

The integral for the hyperbolic region involves an inverse hyperbolic function:

∫1

−1
√1 + x2 dx =

1
2[x√1 + x2 + sinh−1 x ]

1

−1
≈ 2.296.

This is only one of many ways in which the hyperbolic functions are similar to the 
trigonometric functions.

Definitions of the Hyperbolic Functions

sinh x =  
ex − e−x

2
 csch x =

1
sinh x

, x ≠ 0

cosh x =  
ex + e−x

2
 sech x =

1
cosh x

tanh x =  
sinh x
cosh x

 coth x =
1

tanh x
, x ≠ 0

 For Further InFormatIon For more information on the development of 
hyperbolic functions, see the article “An Introduction to Hyperbolic Functions in Elementary 
Calculus” by Jerome Rosenthal in Mathematics Teacher. To view this article, go to MathArticles.com.

REMARK The notation 
sinh x is read as “the hyperbolic 
sine of x,” cosh x as “the 
hyperbolic cosine of x,” and 
so on.

JOHANN HEINRICH LAMBERT 
(1728–1777)

The first person to publish 
a comprehensive study on 
hyperbolic functions was Johann 
Heinrich Lambert, a Swiss-
German mathematician and 
colleague of Euler.
See LarsonCalculus.com to read 
more of this biography.

AIP Emilio Segre Visual Archives, Physics Today
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374 Chapter 5 Integration

The graphs of the six hyperbolic functions and their domains and ranges are shown 
in Figure 5.48. Note that the graph of sinh x can be obtained by adding the corresponding
y-coordinates of the exponential functions f(x) = 1

2ex and g(x) = −1
2e−x. Likewise, 

the graph of cosh x can be obtained by adding the corresponding y-coordinates of the 
exponential  functions f (x) = 1

2ex and h(x) = 1
2e−x.

Many of the trigonometric identities have corresponding hyperbolic identities. For 
instance,

 cosh2 x − sinh2 x = (ex + e−x

2 )
2

− (ex − e−x

2 )
2

 =
e2x + 2 + e−2x

4
−

e2x − 2 + e−2x

4

 =
4
4

 = 1.

HYPERBOLIC IDENTITIES

cosh2 x − sinh2 x = 1 sinh(x + y) = sinh x cosh y + cosh x sinh y

tanh2 x + sech2 x = 1 sinh(x − y) = sinh x cosh y − cosh x sinh y

coth2 x − csch2 x = 1 cosh(x + y) = cosh x cosh y + sinh x sinh y

 cosh(x − y) = cosh x cosh y − sinh x sinh y

sinh2 x =
−1 + cosh 2x

2
 cosh2 x =

1 + cosh 2x
2

sinh 2x = 2 sinh x cosh x cosh 2x = cosh2 x + sinh2 x

2

2−1−2

−2

−1

1

1

x

y

y = tanh x

Domain: (−∞, ∞)
Range: (−1, 1)

f(x) = ex

2h(x) = e−x

2

2

2−2

−2

−1

−1 1
x

y y = cosh x

Domain: (−∞, ∞)
Range: [1, ∞)

f(x) = ex

2

g(x) = −e−x

2

2

2

1

−1−2

−2

−1

1
x

y

y = sinh x

Domain: (−∞, ∞)
Range: (−∞, ∞)

2−1−2

−1

1

1

x

y

y = coth x = 1
tanh x

Domain: (−∞, 0) ∪ (0, ∞)
Range: (−∞, −1) ∪ (1, ∞)

2

2−1

−1

−2

−2 1
x

y = sech x = 1
cosh x

y

Domain: (−∞, ∞)
Range: (0, 1]

y = csch x = 1
sinh x2

2

1

−1

−1 1
x

y

Domain: (−∞, 0) ∪ (0, ∞)
Range: (−∞, 0) ∪ (0, ∞)
Figure 5.48

 For Further InFormatIon
To understand geometrically 
the relationship between the 
hyperbolic and exponential 
functions, see the article “A Short 
Proof Linking the Hyperbolic 
and Exponential Functions” by 
Michael J. Seery in The AMATYC 
Review.
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Differentiation and Integration of Hyperbolic Functions
Because the hyperbolic functions are written in terms of ex and e−x, you can easily 
derive rules for their derivatives. The next theorem lists these derivatives with the 
corresponding integration rules.

THEOREM 5.21 Derivatives and Integrals of Hyperbolic Functions

Let u be a differentiable function of x.

d
dx

 [sinh u] = (cosh u)u′ ∫cosh u du = sinh u + C

d
dx

 [cosh u] = (sinh u)u′ ∫sinh u du = cosh u + C

d
dx

 [tanh u] = (sech2 u)u′ ∫sech2 u du = tanh u + C

d
dx

 [coth u] = −(csch2 u)u′ ∫csch2 u du = −coth u + C

d
dx

 [sech u] = −(sech u tanh u)u′ ∫sech u tanh u du = −sech u + C

d
dx

 [csch u] = −(csch u coth u)u′ ∫csch u coth u du = −csch u + C

Proof Here is a proof of two of the differentiation rules. (You are asked to prove 
some of the other differentiation rules in Exercises 99–101.)

d
dx

[sinh x] =
d
dx[

ex − e−x

2 ]
 =

ex + e−x

2

 = cosh x

 
d
dx

[tanh x] =
d
dx[

sinh x
cosh x]

 =
(cosh x)(cosh x) − (sinh x) (sinh x)

cosh2 x

 =
1

cosh2 x

 = sech2 x 

 Differentiation of Hyperbolic Functions

a. 
d
dx

 [sinh(x2 − 3)] = 2x cosh(x2 − 3)

b. 
d
dx

 [ln(cosh x)] =
sinh x
cosh x

= tanh x

c. 
d
dx

 [x sinh x − cosh x] = x cosh x + sinh x − sinh x = x cosh x

d. 
d
dx

[(x − 1) cosh x − sinh x] = (x − 1) sinh x + cosh x − cosh x = (x − 1) sinh x 
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376 Chapter 5 Integration

 Finding Relative Extrema

Find the relative extrema of

 f(x) = (x − 1) cosh x − sinh x.

Solution Using the result of Example 1(d), set the first derivative of f  equal to 0.

(x − 1) sinh x = 0

So, the critical numbers are x = 1 and x = 0. Using the Second Derivative Test, you 
can verify that the point (0, −1) yields a relative maximum and the point (1, −sinh 1) 
yields a relative minimum, as shown in Figure 5.49. Try using a graphing utility to  
confirm this result. If your graphing utility does not have hyperbolic functions, you can 
use exponential functions, as shown.

  f(x) = (x − 1)(1
2)(ex + e−x) −

1
2

(ex − e−x)

 =
1
2

(xex + xe−x − ex − e−x − ex + e−x)

 =
1
2

(xex + xe−x − 2ex) 

When a uniform flexible cable, such as a telephone wire, is suspended from two 
points, it takes the shape of a catenary, as discussed in Example 3.

 Hanging Power Cables

See LarsonCalculus.com for an interactive version of this type of example.

Power cables are suspended between two towers, forming the catenary shown in  
Figure 5.50. The equation for this catenary is

y = a cosh 
x
a

.

The distance between the two towers is 2b. Find the slope of the catenary at the point 
where the cable meets the right-hand tower.

Solution Differentiating produces

y′ = a(1
a) sinh 

x
a

= sinh 
x
a

.

At the point (b, a cosh(b�a)), the slope (from the left) is m = sinh 
b
a

.

 Integrating a Hyperbolic Function

Find ∫cosh 2x sinh2 2x dx.

Solution

∫cosh 2x sinh2 2x dx =
1
2∫(sinh 2x)2(2 cosh 2x) dx u = sinh 2x

 =
1
2[

(sinh 2x)3

3 ] + C

 =
sinh3 2x

6
+ C 

1

31

−2

−1−2

−3

y

x

(0, −1)

(1, −sinh 1)

f (x) = (x − 1) cosh x − sinh x

f ″(0) < 0, so (0, −1) is a relative  
maximum. f ″(1) > 0, so (1, −sinh 1) 
is a relative minimum.
Figure 5.49

x

y

b−b

a

y = a cosh x
a

Catenary
Figure 5.50

 For Further InFormatIon
In Example 3, the cable is a  
catenary between two supports at 
the same height. To learn about the 
shape of a cable hanging between 
supports of different heights,  
see the article “Reexamining  
the Catenary” by Paul Cella in  
The College Mathematics Journal.  
To view this article, go to 
MathArticles.com.
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Inverse Hyperbolic Functions
Unlike trigonometric functions, hyperbolic functions are not periodic. In fact, by 
looking back at Figure 5.48, you can see that four of the six hyperbolic functions are 
actually one-to-one (the hyperbolic sine, tangent, cosecant, and cotangent). So, you can 
conclude that these four functions have inverse functions. The other two (the hyperbolic 
cosine and secant) are one-to-one when their domains are restricted to the positive real 
numbers, and for this restricted domain they also have inverse functions. Because the 
hyperbolic functions are defined in terms of exponential functions, it is not surprising 
to find that the inverse hyperbolic functions can be written in terms of logarithmic 
functions, as shown in the next theorem.

THEOREM 5.22 Inverse Hyperbolic Functions

 Function Domain

sinh−1 x = ln(x + √x2 + 1 ) (−∞, ∞)
cosh−1 x = ln(x + √x2 − 1 ) [1, ∞)

tanh−1 x =
1
2

 ln 
1 + x
1 − x

 (−1, 1)

coth−1 x =
1
2

 ln 
x + 1
x − 1

 (−∞, −1) ∪ (1, ∞)

sech−1 x = ln 
1 + √1 − x2

x
 (0, 1]

csch−1 x = ln(1
x

+
√1 + x2

∣x∣  ) (−∞, 0) ∪ (0, ∞)

Proof The proof of this theorem is a straightforward application of the properties of 
the exponential and logarithmic functions. For example, for

f(x) = sinh x =
ex − e−x

2

and

g(x) = ln(x + √x2 + 1)
you can show that

f (g(x)) = x and g( f (x)) = x

which implies that g is the inverse function of f. 

TECHNOLOGY You can use a graphing utility to confirm graphically the 
results of Theorem 5.22. For instance, graph the following functions.

y1 = tanh x Hyperbolic tangent

y2 =
ex − e−x

ex + e−x Definition of hyperbolic tangent

y3 = tanh−1 x Inverse hyperbolic tangent

y4 =
1
2

 ln 
1 + x
1 − x

 Definition of inverse hyperbolic tangent

The resulting display is shown in Figure 5.51. As you watch the graphs being traced 
out, notice that y1 = y2 and y3 = y4. Also notice that the graph of y1 is the reflection 
of the graph of y3 in the line y = x.

3

−2

−3

2

y1 = y2

y3 = y4

Graphs of the hyperbolic tangent 
function and the inverse hyperbolic 
tangent function
Figure 5.51

REMARK Recall from 
Section 1.5 that a function has 
an inverse function if and only 
if it is one-to-one.
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378 Chapter 5 Integration

The graphs of the inverse hyperbolic functions are shown in Figure 5.52.

The inverse hyperbolic secant can be used to define a curve called a tractrix or  
pursuit curve, as discussed in Example 5.

 A Tractrix

A person is holding a rope that is tied to a boat, as shown in Figure 5.53. As the person 
walks along the dock, the boat travels along a tractrix, given by the equation

y = a sech−1 
x
a

− √a2 − x2

where a is the length of the rope. For a = 20 feet, find the distance the person must 
walk to bring the boat to a position 5 feet from the dock.

Solution In Figure 5.53, notice that the distance the person has walked is 

 y1 = y + √202 − x2

 = (20 sech−1 
x

20
− √202 − x2) + √202 − x2

 = 20 sech−1 
x

20
.

When x = 5, this distance is

y1 = 20 sech−1 
5
20

= 20 ln 
1 + √1 − (1�4)2

1�4
 = 20 ln(4 + √15) ≈ 41.27 feet.

So, the person must walk about 41.27 feet to bring the boat to a position 5 feet from the 
dock. 

x

(0, y1)

(x, y)

10 20

x

20

20
2 

− 
x2

Pe
rs

on

y

y = 20 sech−1 −      202 − x2x
20

A person must walk about 41.27 feet to 
bring the boat to a position 5 feet from 
the dock.
Figure 5.53

1

1

2

2

3

3

−1−2

−2

−3

−3

y = tanh−1 x

x

y

Domain: (−1, 1)
Range: (−∞, ∞)

1

1

2

2

3

3

−1
−1

−2

−2

−3

−3

y = cosh−1 x

x

y

Domain: [1, ∞)
Range: [0, ∞)

1

1

2

2

3

3

−1
−2

−2

−3

−3

y = sinh−1 x

x

y

Domain: (−∞, ∞)
Range: (−∞, ∞)

1

1

2

2

3

3

−1

−2

−3

y = coth−1 x

x

y

Domain: (−∞, −1) ∪ (1, ∞)
Range: (−∞, 0) ∪ (0, ∞)

1

1

2

2

3

3

−1
−2 −1

−2

−3

−3

y = sech−1 x

x

y

Domain: (0, 1]
Range: [0, ∞)

1

1

2

2

3

3

−1

−3

y = csch−1 x

x

y

Domain: (−∞, 0) ∪ (0, ∞)
Range: (−∞, 0) ∪ (0, ∞)
Figure 5.52
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Inverse Hyperbolic Functions: Differentiation and 
Integration
The derivatives of the inverse hyperbolic functions, which resemble the derivatives of 
the inverse trigonometric functions, are listed in Theorem 5.23 with the corresponding 
integration formulas (in logarithmic form). You can verify each of these formulas by 
applying the logarithmic definitions of the inverse hyperbolic functions. (See Exercises 
102–104.)

 Differentiation of Inverse Hyperbolic Functions

a.  
d
dx

 [sinh−1(2x)] =
2

√(2x)2 + 1

 =
2

√4x2 + 1

b.  
d

dx
[tanh−1(x3)] =

3x2

1 − (x3)2

  =
3x2

1 − x6

 Integration Using Inverse Hyperbolic Functions

a.  ∫ dx

x√4 − 9x2
= ∫ 3 dx

(3x)√22 − (3x)2
 ∫ du

u√a2 − u2

  = −
1
2

 ln 
2 + √4 − 9x2

∣3x∣ + C −
1
a

 ln 
a + √a2 − u2

∣u∣ + C

b.  ∫ dx
5 − 4x2 =

1
2∫ 2 dx

(√5 )2 − (2x)2
 ∫ du

a2 − u2

  =
1
2 (

1
2√5

 ln∣√5 + 2x

√5 − 2x∣) + C 1
2a

 ln∣a + u
a − u∣ + C

  =  
1

4√5
 ln∣√5 + 2x

√5 − 2x∣ + C 

REMARK Let a = 2 and 
u = 3x.

REMARK Let a = √5 
and u = 2x.

THEOREM 5.23  Differentiation and Integration Involving 
Inverse Hyperbolic Functions

Let u be a differentiable function of x.

d
dx

[sinh−1  u] =
u′

√u2 + 1
 

d
dx

[cosh−1  u] =
u′

√u2 − 1

d
dx

[tanh−1  u] =
u′

1 − u2 
d
dx

[coth−1  u] =
u′

1 − u2

d
dx

[sech−1  u] =
−u′

u√1 − u2
 

d
dx

[csch−1  u] =
−u′

∣u∣√1 + u2

∫ du

√u2 ± a2
= ln(u + √u2 ± a2) + C

∫ du
a2 − u2 =

1
2a

 ln∣a + u
a − u∣ + C

∫ du

u√a2 ± u2
= −

1
a

 ln 
a + √a2 ± u2

∣u∣ + C
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5.9 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Hyperbolic Functions Describe how the name 

hyperbolic function arose.

2.  Domains of Hyperbolic Functions Which 
hyperbolic functions have domains that are not all real 
numbers?

3.  Hyperbolic Identities Which hyperbolic identity 
corresponds to the trigonometric identity

 sin2 x =
1 − cos 2x

2
? 

4.  Derivatives of Inverse Hyperbolic Functions 
What is the missing value?

 
d
dx

 [sech−1(3x)] = ■
3x√1 − 9x2

Evaluating a Function In exercises 5–10, evaluate the  
function. If the value is not a rational number, round your 
answer to three decimal places.

 5. (a) sinh 3  6. (a) cosh 0

 (b) tanh(−2)  (b) sech 1

 7. (a) csch(ln 2)  8. (a) sinh−1 0

 (b) coth(ln 5)  (b) tanh−1 0

 9. (a) cosh−1 2 10. (a) csch−1 2

 (b) sech−1 23  (b) coth−1 3

Verifying an Identity In exercises 11–18, verify the identity.

11. sinh x + cosh x = ex 12. cosh x − sinh x = e−x

13. tanh2 x + sech2 x = 1 14. coth2 x − csch2 x = 1

15. cosh2 x =
1 + cosh 2x

2

16. sinh2 x =
−1 + cosh 2x

2

17. sinh 2x = 2 sinh x cosh x

18. sinh(x + y) = sinh x cosh y + cosh x sinh y

Finding Values of Hyperbolic Functions In exercises 
19 and 20, use the value of the given hyperbolic function to find 
the values of the other hyperbolic functions.

19. sinh x =
3
2

 20. tanh x =
1
2

Finding a Limit In exercises 21–24, find the limit.

21. lim
x→∞

 sinh x 22. lim
x→−∞

 tanh x

23. lim
x→0

 
sinh x

x
 24. lim

x→0−
 coth x

 Finding a Derivative In exercises 25–34, find 
the derivative of the function.

25. f (x) = sinh 9x 26. f (x) = cosh(8x + 1)
27. y = sech 5x2 28. f (x) = tanh(4x2 + 3x)

29. f (x) = ln(sinh x) 30. y = ln(tanh 
x
2)

31. h(t) =
t
6

 sinh(−3t) 32. y = (x2 + 1) coth 
x
3

33. f (t) = arctan(sinh t) 34. g(x) = sech2 3x

Finding an Equation of a Tangent Line In exercises 
35–38, find an equation of the tangent line to the graph of the 
function at the given point.

35. y = sinh(1 − x2), (1, 0)

36. y = xcosh x, (1, 1)

37. y = (cosh x − sinh x)2, (0, 1)

38. y = esinh x, (0, 1)

 Finding Relative Extrema In exercises 
39–42, find the relative extrema of the function. 
use a graphing utility to confirm your result.

39. g(x) = x sech x

40. h(x) = 2 tanh x − x

41. f (x) = sin x sinh x − cos x cosh x, −4 ≤ x ≤ 4

42. f (x) = x sinh(x − 1) − cosh(x − 1)

 Catenary In exercises 43 and 44, a model for 
a power cable  suspended between two towers is 
given. (a) Graph the model. (b) Find the heights of 
the cable at the towers and at the midpoint between 
the towers. (c) Find the slope of the cable at the 
point where the cable meets the right-hand tower.

43. y = 10 + 15 cosh 
x

15
,  −15 ≤ x ≤ 15

44. y = 18 + 25 cosh 
x

25
,  −25 ≤ x ≤ 25

 Finding an Indefinite Integral In exercises 
45–54, find the indefinite integral.

45. ∫ cosh 4x dx 46. ∫sech2 3x dx

47. ∫sinh(1 − 2x) dx 48. ∫cosh √x

√x
 dx

49. ∫cosh2(x − 1) sinh(x − 1) dx 50. ∫ sinh x
1 + sinh2 x

 dx
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5.9 Hyperbolic Functions 381

51. ∫cosh x
sinh x

 dx 52. ∫csch(1�x) coth(1�x)
x2  dx

53. ∫x csch2 
x2

2
 dx 54. ∫sech3 x tanh x dx

Evaluating a Definite Integral In exercises 55–60, 
evaluate the definite integral.

55. ∫ln 2

0
 tanh x dx 56. ∫1

0
 cosh2 x dx

57. ∫4

3
 csch2 (x − 2) dx 58. ∫1

1�2
 sech2 (2x − 1) dx

59. ∫2

5�3
 csch(3x − 4) coth(3x − 4) dx 

60. ∫ln 2

0
 2e−x cosh x dx

eXpLoRInG ConCeptS
61.  Using a Graph Explain graphically why there is no 

solution to cosh x = sinh x.

62.  Hyperbolic Functions Use the graphs on page 374 
to determine whether each hyperbolic function is even, 
odd, or neither.

63.  Think About It Verify the results of Exercise 62 
algebraically.

 64.  HOW DO YOU SEE IT? Use the graphs 
of f  and g shown in the figures to answer the 
following.

x

y

−1−2 1 2
−1

2

3

x

f (x) = cosh x

  

x

y

−1−2 1 2

−2

−1

2

1

g(x) = tanh x

(a)  Identify the open interval(s) on which the graphs 
of f  and g are increasing or decreasing.

(b)  Identify the open interval(s) on which the graphs 
of f  and g are concave upward or concave 
downward.

 64.  

 Finding a Derivative In exercises 65–74, find 
the derivative of the function.

65. y = cosh−1(3x) 66. y = csch−1 (1 − x)
67. y = tanh−1√x 68. f (x) = coth−1(x2)
69. y = sinh−1(tan x) 70. y = tanh−1(sin 2x)

71. y = sech−1 (sin x), 0 < x < π�2

72. y = coth−1 (e2x)
73. y = 2x sinh−1(2x) − √1 + 4x2

74. y = x tanh−1 x + ln√1 − x2

 Finding an Indefinite Integral In exercises 
75–82, find the indefinite integral using the 
 formulas from theorem 5.23.

75. ∫ 1
3 − 9x2 dx 76. ∫ 1

2x√1 − 4x2
 dx

77. ∫ 1

√1 + e2x
 dx 78. ∫ x

9 − x 4 dx

79. ∫ 1

√x√1 + x
 dx 80. ∫ √x

√1 + x3
 dx

81. ∫ −1
4x − x2 dx 82. ∫ dx

(x + 2)√x2 + 4x + 8

Evaluating a Definite Integral In exercises 83–86, 
evaluate the definite integral using the formulas from 
theorem 5.23.

83. ∫7

3

1

√x2 − 4
 dx 84. ∫3

1

1

x√4 + x2
 dx

85. ∫1

−1

1
16 − 9x2 dx 86. ∫1

0

1

√25x2 + 1
 dx

Differential Equation In exercises 87 and 88, find the 
general solution of the differential equation.

87. 
dy
dx

=
x3 − 21x

5 + 4x − x2 88. 
dy
dx

=
1 − 2x
4x − x2

Area In exercises 89–92, find the area of the given region.

89. y = sech 
x
2

 90. y = tanh 2x

−1−2−3−4 1 2 3 4

0.2
0.4
0.6

1.2
1.4

x

y   

−2 −1−3 1 2 3

−2

−3

2

1

3

x

y

91. y =
5x

√x 4 + 1
 92. y =

6

x√9 − x2

x

y

−1−2−3−4 1 2 3 4

−4

1
2
3
4

 

x

y

1 2 3 4

1

2

3

4
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382 Chapter 5 Integration

 93. Tractrix Consider the equation of a tractrix

y = a sech−1(x
a) − √a2 − x2, a > 0.

  (a) Find dy�dx.

  (b)  Let L be the tangent line to the tractrix at the point P.
When L intersects the y-axis at the point Q, show that the 
distance between P and Q is a.

 94.  Tractrix Show that the boat in Example 5 is always 
pointing toward the person. 

 95. Proof Prove that

tanh−1 x =
1
2

 ln(1 + x
1 − x), −1 < x < 1.

 96. Proof Prove that

sinh−1 t = ln(t + √t2 + 1 ).
 97. Using a Right Triangle Show that

arctan(sinh x) = arcsin(tanh x).

 98. Integration Let x > 0 and b > 0. Show that

  ∫b

−b

 ext dt =
2 sinh bx

x
.

Proof In exercises 99–101, prove the differentiation formula. 

 99. 
d
dx

[cosh x] = sinh x

100. 
d
dx

[coth x] = −csch2 x

101. 
d
dx

[sech x] = −sech x tanh x

Verifying a Differentiation Formula In exercises 
102–104, verify the differentiation formula.

102. 
d
dx

[cosh−1 x] =
1

√x2 − 1

103. 
d
dx

[sinh−1 x] =
1

√x2 + 1

104. 
d
dx

[sech−1 x] =
−1

x√1 − x2

Mercator Map

When flying or sailing, pilots expect to be given a steady compass 
course to follow. On a standard flat map, this is difficult because 
a steady compass course results in a curved line, as shown below.

Globe: f light with
constant 45° bearing 

  

Standard �at map: f light with
constant 45° bearing

For curved lines to appear as straight 

Mercator map: f light with
constant 45° bearing

lines on a flat map, Flemish
geographer Gerardus Mercator
(1512-1594) realized that latitude lines
must be stretched horizontally by a 
scaling factor of sec ϕ, where ϕ is the
angle (in radians) of the latitude line.
The Mercator map has latitude lines
that are not equidistant, as shown at
the right.

To calculate these vertical lengths, imagine a globe with radius 
R and latitude lines marked at angles of every ∆ϕ radians, with 
∆ϕ = ϕi − ϕi−1, as shown in the figure on the left below. The arc 
length of consecutive latitude lines is R∆ϕ. On the corresponding 
Mercator map, the vertical distance between the ith and (i − 1)st
latitude lines is R∆ϕ sec ϕi, and the total vertical distance from the

equator to the nth latitude line is approximately ∑
n

i=1
 R∆ϕ sec ϕi, as 

shown in the figure on the right below.

1

1

2

2

3

3

ϕ

ϕ

ϕ

ϕ
ϕ

ϕ

ϕ

Δ

R

Center

Lat

Lat

Lat

Equator
Globe

ϕRΔ

  

Mercator map

Equator

ϕϕRΔ sec 1

1ϕLat

ϕ2Lat
ϕϕRΔ sec 2

ϕ3Lat

ϕϕRΔ sec 3

Mercator maps are still used by websites to display the world.

(a)  Explain how to calculate the total vertical distance on a 
Mercator map from the equator to the nth latitude line using 
calculus.

(b)  Using a globe radius of R = 6 inches, find the total vertical 
distances on a Mercator map from the equator to the latitude 
lines whose angles are 30°, 45°, and 60°.

(c)  Explain what happens when you attempt to find the total 
vertical distance on a Mercator map from the equator to the 
North Pole.

(d)  The Gudermannian function gd(y) = ∫y

0
 

dt
cosh t

 expresses the

  latitude ϕ(y) = gd(y) in terms of the vertical position y on a 
Mercator map. Show that gd(y) = arctan(sinh y).

pUtnAM eXAM ChALLenGe
105.  From the vertex (0, c) of the catenary y = c cosh(x�c) 

a line L is drawn perpendicular to the tangent to the 
catenary at point P. Prove that the length of L intercepted 
by the axes is equal to the ordinate y of the point P.

106.  Prove or disprove: there is at least one straight line 
normal to the graph of y = cosh x at a point (a, cosh a) and 
also normal to the graph of y = sinh x at a point (c, sinh c).

   [At a point on a graph, the normal line is the perpendicular 
to the tangent at that point. Also, cosh x = (ex + e−x)�2 
and sinh x = (ex − e−x)�2.]

These problems were composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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  Review Exercises 383

Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding an Indefinite Integral In Exercises 1–6, find the 
indefinite integral.

 1. ∫ (4x2 + x + 3) dx  2. ∫ 
6

3√x
 dx

 3. ∫ 
x4 + 8

x3  dx  4. ∫ (5 cos x − 2 sec2 x) dx

 5. ∫ (5 − ex) dx  6. ∫ 
10
x

 dx

Finding a Particular Solution In Exercises 7–10, find the 
particular solution that satisfies the differential equation and 
the initial condition.

 7. f ′(x) = −6x, f (1) = −2  8. f ′(x) = 9x2 + 1, f (0) = 7

 9. f ″(x) = 24x, f ′(−1) = 7, f (1) = −4

10. f ″(x) = 2 cos x, f ′(0) = 4, f (0) = −5

11.  Vertical Motion A ball is thrown vertically upward from 
ground level with an initial velocity of 96 feet per second. 
Assume the acceleration of the ball is a(t) = −32 feet per 
second per second. (Neglect air resistance.)

 (a)  How long will it take the ball to rise to its maximum 
height? What is the maximum height?

 (b)  After how many seconds is the velocity of the ball one-half 
the initial velocity?

 (c)  What is the height of the ball when its velocity is one-half 
the initial velocity?

12.  Vertical Motion With what initial velocity must an 
object be thrown upward (from a height of 3 meters) to reach 
a maximum height of 150 meters? Assume the acceleration 
of the object is a(t) = −9.8 meters per second per second. 
(Neglect air resistance.)

Finding a Sum In Exercises 13 and 14, find the sum. Use 
the summation capabilities of a graphing utility to verify your 
result.

13. ∑
5

i=1
 (5i − 3) 14. ∑

3

k=0
 (k2 + 1)

Using Sigma Notation  In Exercises 15 and 16, use sigma 
notation to write the sum.

15. 
1

5(3) +
2

5(4) +
3

5(5) + .  .  . +
10

5(12)

16. (3
n)(

1 + 1
n )

2

+ (3
n)(

2 + 1
n )

2

+ .  .  . + (3
n)(

n + 1
n )

2

Evaluating a Sum  In Exercises 17–20, use the properties 
of summation and Theorem 5.2 to evaluate the sum. Use the 
summation capabilities of a graphing utility to verify your result.

17. ∑
20

i=1
 2i 18. ∑

30

i=1
 (3i − 4)

19. ∑
20

i=1
 (i + 1)2 20. ∑

12

i=1
 i(i2 − 1)

Finding Upper and Lower Sums for a Region In 
Exercises 21 and 22, find the upper and lower sums for the 
region bounded by the graph of the function and the x-axis 
on the given interval. Leave your answer in terms of n, the 
number of subintervals.

 Function Interval

21. f (x) = 4x + 1 [2, 3]

22. f (x) = 7x2 [0, 3]

Finding Area by the Limit Definition In Exercises 23–26, 
use the limit process to find the area of the region bounded by 
the graph of the function and the x-axis over the given interval. 
Sketch the region.

23. y = 8 − 2x, [0, 3] 24. y = x2 + 3, [0, 2]
25. y = 5 − x2, [−2, 1] 26. y = 1

4x3, [2, 4]

Approximating Area with the Midpoint Rule In 
Exercises 27 and 28, use the Midpoint Rule with n = 4 to 
approximate the area of the region bounded by the graph of 
the function and the x-axis over the given interval.

27. f (x) = 16 − x2, [0, 4] 28. f (x) = sin πx, [0, 1]

Evaluating a Definite Integral as a Limit In Exercises 
29 and 30, evaluate the definite integral by the limit definition.

29. ∫5

−3
 6x dx 30. ∫3

0
 (1 − 2x2) dx

Evaluating a Definite Integral Using a Geometric 
Formula In Exercises 31 and 32, sketch the region whose 
area is given by the definite integral. Then use a geometric 
formula to evaluate the integral.

31. ∫5

0
 (5 − ∣x − 5∣) dx 32. ∫6

−6
 √36 − x2 dx

33. Using Properties of Definite Integrals Given

 ∫8

4
 f (x) dx = 12 and ∫8

4
 g(x) dx = 5, evaluate

 (a) ∫8

4
 [ f (x) − g(x)] dx. (b) ∫8

4
 [2 f (x) − 3g(x)] dx.

34. Using Properties of Definite Integrals Given

 ∫2

0
 f (x) dx = 2 and ∫5

2
 f (x) dx = −5, evaluate

 (a) ∫5

0
 f (x) dx. (b) ∫5

2
 f (x) dx.

Evaluating a Definite Integral In Exercises 35–40, use 
the Fundamental Theorem of Calculus to evaluate the definite 
integral.

35. ∫8

0
 (3 + x) dx 36. ∫3

2
 (x4 + 4x − 6) dx
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384 Chapter 5 Integration

37. ∫9

4
 x√x dx 38. ∫π�4

−π�4
 sec2 t dt

39. ∫2

0
 (x + ex) dx 40. ∫6

1
 
3
x
 dx

Finding the Area of a Region In Exercises 41–44, find 
the area of the region bounded by the graphs of the equations.

41. y = 8 − x, x = 0, x = 6, y = 0

42. y = √x (1 − x), y = 0

43. y =
2
x
, y = 0, x = 1, x = 3

44. y = 1 + ex, y = 0, x = 0, x = 2

Using the Mean Value Theorem for Integrals In 
Exercises 45 and 46, find the value(s) of c guaranteed by the 
Mean Value Theorem for Integrals for the function over the 
given interval.

45. f (x) = 3x2, [1, 3]
46. f (x) = sin x, [0, π]

Finding the Average Value of a Function In Exercises 
47 and 48, find the average value of the function over the given 
interval and all values of x in the interval for which the function 
equals its average value. 

47. f (x) =
1

√x
, [4, 9] 48. f (x) = x3, [0, 2]

Using the Second Fundamental Theorem of Calculus  
In Exercises 49–52, use the Second Fundamental Theorem of 
Calculus to find F′(x).

49. F(x) = ∫x

0
 t2√1 + t3 dt 50. F(x) = ∫x

1
 
1
t 2 dt

51. F(x) = ∫x

−3
 (t2 + 3t + 2) dt 52. F(x) = ∫x

0
 csc2 t dt

Finding an Indefinite Integral In Exercises 53–62, find 
the indefinite integral.

53. ∫ 
x2

√x3 + 3
 dx 54. ∫ 6x3√3x4 + 2 dx

55. ∫ x(1 − 3x2)4 dx 56. ∫ 
x + 4

(x2 + 8x − 7)2 dx

57. ∫ 
cos θ

√1 − sin θ
 dθ 58. ∫ sec 2x tan 2x dx

59. ∫ xe−3x2
 dx 60. ∫ 

e1�x

x2  dx

61. ∫ (x + 1)5(x+1)2
 dx 62. ∫ 

1
t2 (2−1�t) dt

Evaluating a Definite Integral  In Exercises 63–70,  
evaluate the definite integral. Use a graphing utility to verify 
your result.

63. ∫1

0
 (3x + 1)5 dx 64. ∫1

0
 x2(x3 − 2)3 dx

65. ∫3

0
 

1

√1 + x
 dx 66. ∫6

3
 

x

3√x2 − 8
 dx

67. 2π∫1

0
 (y + 1)√1 − y dy 68. 2π∫0

−1
 x2√x + 1 dx

69. ∫π

0
 cos 

x
2

 dx 70. ∫π�4

−π�4
 sin 2x dx

Evaluating a Limit In Exercises 71–78, use L’Hôpital’s 
Rule to evaluate the limit.

 71. lim
x→1

 
(ln x)2

x − 1
  72. lim

x→0
 

sin πx
sin 5πx

 73. lim
x→∞

 
e2x

x2   74. lim
x→∞

 xe−x2

 75. lim
x→∞

 (ln x)2�x  76. lim
x→1+

 (x − 1)ln x

 77. lim
n→∞

 1000(1 +
0.09

n )
n

  78. lim
x→∞

 (1 +
4
x)

x

Finding an Indefinite Integral In Exercises 79–84, find 
the indefinite integral.

 79. ∫ 
1

7x − 2
 dx  80. ∫ 

x2

x3 + 1
 dx

 81. ∫ 
sin x

1 + cos x
 dx  82. ∫ 

ln√x
x

 dx

 83. ∫ 
e2x − e−2x

e2x + e−2x dx  84. ∫ 
e2x

e2x + 1
 dx

Evaluating a Definite Integral In Exercises 85–88, evaluate 
the definite integral.

 85. ∫4

1
 
2x + 1

2x
 dx 86. ∫e

1
 
ln x

x
 dx

 87. ∫π�3

0
 sec θ dθ 88. ∫π

0
 tan 

θ
3

 dθ

Finding an Indefinite Integral In Exercises 89–94, find 
the indefinite integral.

 89. ∫ 
1

e2x + e−2x dx 90. ∫ 
1

3 + 25x2 dx

 91. ∫ 
x

√1 − x4
 dx 92. ∫ 

1

x√9x2 − 49
 dx

 93. ∫ 
arctan(x�2)

4 + x2  dx 94. ∫ 
arcsin 2x

√1 − 4x2
 x2

Finding a Derivative In Exercises 95–98, find the derivative 
of the function.

 95. y = sech(4x − 1) 96. y = 2x − cosh√x

 97. y = sinh−1(4x) 98. y = x tanh−1 2x

Finding an Indefinite Integral In Exercises 99–102, find 
the indefinite integral.

 99. ∫ x2 sech2 x3 dx 100. ∫ sinh 6x dx

101. ∫ 
1

9 − 4x2 dx 102. ∫ 
x

√x4 − 1
 dx
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 P.S. Problem Solving 385

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1. Using a Function Let L(x) = ∫x

1
 
1
t
 dt, x > 0.

 (a) Find L(1).
 (b) Find L′(x) and L′(1).
 (c)  Use a graphing utility to approximate the value of x (to three 

decimal places) for which L(x) = 1.

 (d)  Prove that L(x1x2) = L(x1) + L(x2) for all positive values of 
x1 and x2.

2.  Parabolic Arch Archimedes showed that the area of a 
parabolic arch is equal to 2

3 the product of the base and the 
height (see figure).

b

h

 (a)  Graph the parabolic arch bounded by y = 9 − x2 and the 
x-axis. Use an appropriate integral to find the area A.

 (b)  Find the base and height of the arch and verify Archimedes’ 
formula.

 (c)  Prove Archimedes’ formula for a general parabola.

3.  Using a Continuous Function Let f  be continuous on 
the interval [0, b], where f (x) + f (b − x) ≠ 0 on [0, b].

 (a) Show that ∫b

0
 

f (x)
f (x) + f (b − x) dx =

b
2

.

 (b) Use the result in part (a) to evaluate

  ∫1

0
 

sin x
sin(1 − x) + sin x

 dx.

 (c) Use the result in part (a) to evaluate

  ∫3

0
 

√x

√x + √3 − x
 dx.

4.  Fresnel Function The Fresnel function S is defined by 
the integral

 S(x) = ∫x

0
 sin(πt2

2 ) dt.

 (a) Graph the function y = sin(πx2

2 ) on the interval [0, 3].

 (b)  Use the graph in part (a) to sketch the graph of S on the 
interval [0, 3].

 (c) Locate all relative extrema of S on the interval (0, 3).
 (d) Locate all points of inflection of S on the interval (0, 3).

 5.  Approximation The Two-Point Gaussian Quadrature 
Approximation for f  is

 ∫1

−1
 f (x) dx ≈ f (−

1

√3) + f ( 1

√3).

 (a) Use this formula to approximate 

  ∫1

−1
 cos x dx.

  Find the error of the approximation.

 (b) Use this formula to approximate 

 ∫1

−1
 

1
1 + x2 dx.

 (c)  Prove that the Two-Point Gaussian Quadrature  
Approximation is exact for all polynomials of degree 3 
or less.

 6.  Extrema and Points of Inflection  The graph of the 
function f  consists of the three line segments joining the 
points (0, 0), (2, −2), (6, 2), and (8, 3). The function F is 
defined by the integral 

 F(x) = ∫x

0
 f (t) dt.

 (a) Sketch the graph of f.

 (b) Complete the table.

  
x 0 1 2 3 4 5 6 7 8

F(x)

 (c)  Find the extrema of F on the interval [0, 8].
 (d)  Determine all points of inflection of F on the interval 

(0, 8).
 7.  Falling Objects  Galileo Galilei (1564–1642) stated the  

following proposition concerning falling objects: 

 The time in which any space is traversed by a uniformly  
accelerating body is equal to the time in which that same 
space would be traversed by the same body moving at 
a uniform speed whose value is the mean of the highest 
speed of the accelerating body and the speed just before 
acceleration began.

 Use the techniques of this chapter to verify this proposition.

 8. Proof Prove ∫x

0
 f (t)(x − t) dt = ∫x

0
(∫t

0
 f (v) dv) dt.

 9. Proof Prove ∫b

a

 f (x)f ′(x) dx = 1
2 ([ f (b)]2 − [ f (a)]2).

10.  Riemann Sum Use an appropriate Riemann sum to evaluate 
the limit

 lim
n→∞

 
√1 + √2 + √3 + .  .  . + √n

n3�2 .
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386 Chapter 5 Integration

11.  Riemann Sum Use an appropriate Riemann sum to 
evaluate the limit

 lim
n→∞

 
15 + 25 + 35 + .  .  . + n5

n6 .

12.  Proof Let f  be integrable on [a, b] and

 0 < m ≤ f (x) ≤ M

 for all x in the interval [a, b]. Prove that

 m(a − b) ≤ ∫b

a

 f (x) dx ≤ M(b − a).

 Use this result to estimate ∫1

0
 √1 + x4 dx.

13.  Velocity and Acceleration A car travels in a straight 
line for 1 hour. Its velocity v in miles per hour at six-minute 
intervals is shown in the table.

t (hours) 0.6 0.7 0.8 0.9 1.0

v (mi/h) 40 35 40 50 65

t (hours) 0 0.1 0.2 0.3 0.4 0.5

v (mi/h) 0 10 20 40 60 50

 (a)  Produce a reasonable graph of the velocity function v by 
graphing these points and connecting them with a smooth 
curve.

 (b)  Find the open intervals over which the acceleration a is 
positive.

 (c)  Find the average acceleration of the car (in miles per hour 
per hour) over the interval [0, 0.4].

 (d) What does the integral

 ∫1

0
 v(t) dt

   signify? Approximate this integral using the Midpoint 
Rule with five subintervals.

 (e) Approximate the acceleration at t = 0.8.

14.  Proof Prove that if f  is a continuous function on a closed 
interval [a, b], then

 ∣∫b

a

 f (x) dx∣ ≤ ∫b

a

 ∣ f (x)∣ dx.

15. Verifying a Sum Verify that

 ∑
n

i=1
 i2 =

n(n + 1)(2n + 1)
6

 by showing the following.

 (a) (1 + i)3 − i3 = 3i2 + 3i + 1

 (b) (n + 1)3 = ∑
n

i=1
 (3i2 + 3i + 1) + 1

 (c) ∑
n

i=1
 i2 =

n(n + 1)(2n + 1)
6

16.  Area Consider the three regions A, B, and C determined by 
the graph of f (x) = arcsin x, as shown in the figure.

x

A

CB

y

1
π
4

11
2

2
2

π
6

  (a) Calculate the areas of regions A and B.

  (b) Use your answers in part (a) to evaluate the integral

  ∫√2�2

1�2
 arcsin x dx.

  (c) Use the methods in part (a) to evaluate the integral

  ∫3

1
 ln x dx.

  (d) Use the methods in part (a) to evaluate the integral

  ∫√3

1
 arctan x dx.

17.  Area Use integration by substitution to find the area under 
the curve

 y =
1

√x + x

 between x = 1 and x = 4.

18.  Area Use integration by substitution to find the area under 
the curve 

 y =
1

sin2 x + 4 cos2 x

 between x = 0 and x =
π
4

.

19. Approximating a Function

 (a)  Use a graphing utility to compare the graph of the function 
y = ex with the graph of each given function.

  (i) y1 = 1 +
x
1!

  (ii)  y2 = 1 +
x
1!

+
x2

2!

  (iii) y3 = 1 +
x
1!

+
x2

2!
+

x3

3!

 (b)  Identify the pattern of successive polynomials in part (a), 
extend the pattern one more term, and compare the graph 
of the resulting polynomial function with the graph of 
y = ex.

 (c) What do you think this pattern implies?
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388 Chapter 6 Differential Equations

6.1 Slope Fields and Euler’s Method

 Use initial conditions to find particular solutions of differential equations.
 Use slope fields to approximate solutions of differential equations.
 Use Euler’s Method to approximate solutions of differential equations.

General and Particular Solutions
In this text, you will learn that physical phenomena can be described by differential 
equations. Recall that a differential equation in x and y is an equation that involves x, 
y, and derivatives of y. For example,

2xy′ − 3y = 0 Differential equation

is a differential equation. In Section 6.2, you will see that  problems involving radioactive 
decay, population growth, and Newton’s Law of Cooling can be formulated in terms 
of differential equations.

A function y = f (x) is called a solution of a differential equation if the equation 
is satisfied when y and its derivatives are replaced by f (x) and its derivatives. For 
example, differentiation and substitution would show that y = e−2x is a solution of the 
differential equation y′ + 2y = 0. It can be shown that every solution of this differential 
equation is of the form

y = Ce−2x General solution of y′ + 2y = 0

where C is any real number. This solution is called the general solution. Some 
differential equations have singular solutions that cannot be written as special cases of 
the general solution. Such solutions, however, are not considered in this text. The order 
of a differential equation is determined by the highest-order derivative in the equation. 
For instance, y′ = 4y is a first-order differential equation. 

In Section 5.1, Example 9, you saw that the second-order differential equation 
s″(t) = −32 has the general solution

s(t) = −16t2 + C1t + C2 General solution of s″(t) = −32

which contains two arbitrary constants. It can be shown that a differential equation of 
order n has a general solution with n arbitrary constants.

 Determining Solutions

Determine whether each function is a solution of the differential equation y″ − y = 0.

a. y = sin x  b. y = 4e−x  c. y = Cex

Solution

a. Because y = sin x, y′ = cos x, and y″ = −sin x, it follows that

y″ − y = −sin x − sin x = −2 sin x ≠ 0.

 So, y = sin x is not a solution.

b. Because y = 4e−x, y′ = −4e−x, and y″ = 4e−x, it follows that

y″ − y = 4e−x − 4e−x = 0.

 So, y = 4e−x is a solution.

c. Because y = Cex, y′ = Cex, and y″ = Cex, it follows that

y″ − y = Cex − Cex = 0.

 So, y = Cex is a solution for any value of C. 
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 6.1 Slope Fields and Euler’s Method 389

Geometrically, the general solution of a first-order differential equation represents 
a family of curves known as solution curves, one for each value assigned to the 
arbitrary constant. For instance, you can verify that every function of the form

y = Ce−2x General solution of y′ + 2y = 0

is a solution of the differential equation

y′ + 2y = 0.

Figure 6.1 shows four of the solution curves corresponding to different values of C.
As discussed in Section 5.1, particular solutions of a differential equation are 

obtained from initial conditions that give the values of the dependent variable or one 
of its derivatives for particular values of the independent variable. The term “initial 
condition” stems from the fact that, often in problems involving time, the value of 
the dependent variable or one of its derivatives is known at the initial time t = 0. For 
instance, the second-order differential equation

s″(t) = −32

having the general solution

s(t) = −16t2 + C1t + C2 General solution of s″(t) = −32

might have the following initial conditions.

s(0) = 80, s′(0) = 64 Initial conditions

In this case, the initial conditions yield the particular solution

s(t) = −16t2 + 64t + 80. Particular solution

 Finding a Particular Solution

See LarsonCalculus.com for an interactive version of this type of example.

For the differential equation

xy′ − 3y = 0

verify that y = Cx3 is a solution. (Assume x > 0.) Then find the particular solution 
determined by the initial condition y = 2 when x = 3.

Solution You know that y = Cx3 is a solution because y′ = 3Cx2 and

xy′ − 3y = x(3Cx2) − 3(Cx3) = 0.

Furthermore, the initial condition y = 2 when x = 3 yields

 y = Cx3 General solution

 2 = C(3)3 Substitute initial condition.

 
2
27

= C Solve for C.

and you can conclude that the particular solution is 

y =
2x3

27
, x > 0 Particular solution

as shown in Figure 6.2. Try checking this solution by substituting for y and y′ in the 
original differential equation. 

Note that to determine a particular solution, the number of initial conditions must 
match the number of constants in the general solution.

x

C = −1

C = 1

C = −2

C = 2

General
solution:
y = Ce−2x

y

−1−2 2 3 4

−1

1

Several solution curves for y′ + 2y = 0
Figure 6.1

x

(3, 2)

y = , x > 02x3

27

y

1 2 3 4 5

1

2

3

4

5

For the initial condition y = 2 when 
x = 3, the particular solution of the 
differential equation xy′ − 3y = 0, 
x > 0, is y = (2x3)�27.
Figure 6.2
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Slope Fields
Solving a differential equation analytically can be difficult or even impossible. 
However, there is a graphical approach you can use to learn a lot about the solution of 
a differential equation. Consider a differential equation of the form

y′ = F(x, y) Differential equation

where F(x, y) is some expression in x and y. At each point (x, y) in the xy-plane where F 
is defined, the differential equation  determines the slope y′ = F(x, y) of the solution at 
that point. If you draw short line segments with slope F(x, y) at selected points (x, y) in 
the domain of F, then these line segments form a slope field, or a direction field, for the 
differential equation y′ = F(x, y). Each line segment has the same slope as the solution 
curve through that point. A slope field shows the general shape of all the solutions 
and can be helpful in getting a visual perspective of the directions of the solutions of a 
differential equation.

 Sketching a Slope Field

Sketch a slope field for the differential equation y′ = x − y for the points (−1, 1), 
(0, 1), and (1, 1).

Solution The slope of the solution curve at any point (x, y) is

F(x, y) = x − y. Slope at (x, y)

So, the slope at each point can be found as shown.

Slope at (−1, 1): y′ = −1 − 1 = −2

Slope at (0, 1): y′ = 0 − 1 = −1

Slope at (1, 1): y′ = 1 − 1 = 0

Draw short line segments at the three points with their respective slopes, as shown in 
Figure 6.3.

 Identifying Slope Fields for Differential Equations

Match each slope field with its differential equation.

a.

x

y

2

−2

2−2

  b.

x

y

2

−2

2−2

  c.

x

y

2

−2

2−2

i. y′ = x + y ii. y′ = x iii. y′ = y

Solution

a.  You can see that the slope at any point along the y-axis is 0. The only equation that 
satisfies this condition is y′ = x. So, the graph matches equation (ii).

b.  You can see that the slope at the point (1, −1) is 0. The only  equation that satisfies 
this condition is y′ = x + y. So, the graph matches equation (i).

c.  You can see that the slope at any point along the x-axis is 0. The only equation that 
satisfies this condition is y′ = y. So, the graph matches equation (iii). 

y

x
−1−2 1 2

1

2

Figure 6.3
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 6.1 Slope Fields and Euler’s Method 391

A solution curve of a differential equation y′ = F(x, y) is simply a curve in the 
xy-plane whose tangent line at each point (x, y) has slope equal to F(x, y). This is 
illustrated in Example 5.

 Sketching a Solution Using a Slope Field

Sketch a slope field for the differential equation

y′ = 2x + y.

Use the slope field to sketch the solution that passes through the point (1, 1).

Solution Make a table showing the slopes at several points. The table shown is a 
small sample. The slopes at many other points should be calculated to get a representative 
slope field.

x −2 −2 −1 −1 0 0 1 1 2 2

y −1 1 −1 1 −1 1 −1 1 −1 1

y′ = 2x + y −5 −3 −3 −1 −1 1 1 3 3 5

Next, draw line segments at the points with their respective slopes, as shown in 
Figure 6.4.

x

2

2−2

−2

y     

x

2

2−2

−2

y

 Slope field for y′ = 2x + y Particular solution for y′ = 2x + y 
 Figure 6.4 passing through (1, 1)
 Figure 6.5

After the slope field is drawn, start at the initial point (1, 1) and move to the right in the 
direction of the line segment. Continue to draw the solution curve so that it moves 
parallel to the nearby line segments. Do the same to the left of (1, 1). The resulting 
solution is shown in Figure 6.5. 

In Example 5, note that the slope field shows that y′ increases to infinity as x 
increases.

TECHNOLOGY Drawing a slope field by 

2

−2

−2

2  
hand is tedious. In practice, slope fields are  
usually drawn using a graphing utility. If you 
have access to a graphing utility that can graph 
slope fields, try graphing the slope field for the 
differential equation in Example 5. One 
example of a slope field drawn by a graphing 
utility is shown at the right.
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Euler’s Method
Euler’s Method is a numerical approach to approximating the particular solution of 
the differential equation

y′ = F(x, y)

that passes through the point (x0, y0). From the given information, you know that the 
graph of the solution passes through the point (x0, y0) and has a slope of F(x0, y0) at this 
point. This gives you a “starting point” for approximating the solution.

From this starting point, you can proceed in the direction indicated by the slope. 
Using a small step h, move along the tangent line until you arrive at the point (x1, y1), 
where

x1 = x0 + h and y1 = y0 + hF(x0, y0)

as shown in Figure 6.6. Then, using (x1, y1) as a new starting point, you can repeat the 
process to obtain a second point (x2, y2). The values of xi and yi are shown below.

 x1 = x0 + h  y1 = y0 + hF(x0, y0)
 x2 = x1 + h  y2 = y1 + hF(x1, y1)

 ⋮  ⋮
 xn = xn−1 + h  yn = yn−1 + hF(xn−1, yn−1)

When using this method, note that you can obtain better approximations of the exact 
solution by choosing smaller and smaller step sizes.

 Approximating a Solution Using Euler’s Method

Use Euler’s Method to approximate the particular solution of the differential equation 

y′ = x − y

passing through the point (0, 1). Use a step of h = 0.1.

Solution Using h = 0.1, x0 = 0, y0 = 1, and F(x, y) = x − y, you have

x0 = 0, x1 = 0.1, x2 = 0.2, x3 = 0.3

and the first three approximations are

y1 = y0 + hF(x0, y0) = 1 + (0.1)(0 − 1) = 0.9

y2 = y1 + hF(x1, y1) = 0.9 + (0.1)(0.1 − 0.9) = 0.82

y3 = y2 + hF(x2, y2) = 0.82 + (0.1)(0.2 − 0.82) = 0.758.

The first ten approximations are shown in the table. You can plot these values to see a 
graph of the approximate solution, as shown in Figure 6.7.

 

For the differential equation in Example 6, you can verify the exact solution to be 
the equation

y = x − 1 + 2e−x.

Figure 6.7 compares this exact solution with the approximate solution obtained in 
Example 6.

n 0 1 2 3 4 5 6 7 8 9 10

xn 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

yn 1 0.9 0.82 0.758 0.712 0.681 0.663 0.657 0.661 0.675 0.697

x

y

Exact solution
curve

Euler
approximation

(x1, y1)

(x2, y2)

hF(x0, y0)

x0

y0

x0 + h

Slope F(x0, y0)
h

Figure 6.6

y

x
1.00.80.60.40.2

1.0

0.8

0.6

0.4

0.2

Exact
solution

Approximate
solution

Figure 6.7
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 6.1 Slope Fields and Euler’s Method 393

6.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Verifying a Solution Describe how to determine 

whether a function y = f (x) is a solution of a differential 
equation. 

2.  General Solution What does the general solution of 
a first-order differential equation represent geometrically?

3.  Slope Field What do the line segments on a slope field 
represent?

4.  Euler’s Method What does Euler’s Method allow 
you to do?

 Verifying a Solution In Exercises 5–10, verify 
that the function is a solution of the differential 
equation.

 Function Differential Equation

 5. y = Ce5x y′ = 5y

 6. y = e−2x 3y′ + 5y = −e−2x

 7. y = C1 sin x − C2 cos x y″ + y = 0

 8. y = C1e
−x cos x + C2e

−x sin x y″ + 2y′ + 2y = 0

 9. y = (−cos x) ln∣sec x + tan x∣ y″ + y = tan x

10. y = 2
5 (e−4x + ex) y″ + 4y′ = 2ex

 Verifying a Particular Solution In Exercises 
11–14, verify that the function is a particular 
solution of the differential equation.

 Differential Equation
 Function and Initial Condition

11. y = sin x cos x − cos2 x 2y + y′ = 2 sin 2x − 1

  y(π4) = 0

12. y = 6x − 4 sin x + 1 y′ = 6 − 4 cos x

   y(0) = 1

13. y = 4e−6x2
 y′ = −12xy

   y(0) = 4

14. y = e−cos x y′ = y sin x

  y(π2) = 1

 Determining a Solution In Exercises 15–22, 
determine whether the function is a solution of the 
differential equation y(4) − 16y = 0.

15. y = 3 cos 2x 16. y = 3 sin 2x

17. y = 3 cos x 18. y = 2 sin x

19. y = e−2x 20. y = 5 ln x

21. y = ln x + e2x + Cx4 22. y = 3e2x − 4 sin 2x

Determining a Solution In Exercises 23–30, determine 
whether the function is a solution of the differential equation 
xy′ − 2y = x3ex, x > 0.

23. y = x2 + ex

24. y = x3 − e−x

25. y = x2ex

26. y = x2(2 + ex)
27. y = ex − sin x

28. y = x2ex + sin x + cos x

29. y = 2ex ln x

30. y = x2ex − 5x2

 Finding a Particular Solution In Exercises 
31–34, some of the curves corresponding to 
different values of C in the general solution of the 
differential equation are shown in the graph. Find 
the particular solution that passes through the 
point shown on the graph.

31. y = Ce−x�2 32. y(x2 + y) = C

 2y′ + y = 0  2xy + (x2 + 2y)y′ = 0

 

x
1−1−2

2

(0, 3)

y

2 3

  

x

(0, 2)4

2 4−2−4

y

33. y2 = Cx3 34. 2x2 − y2 = C

 2xy′ − 3y = 0, x > 0  yy′ − 2x = 0

 

x
3 4 5 6 7−1

4

3

2

1

−2

−3

−4

(4, 4)

y

x
3 4−3−4

4

3

2

−2

−3

−4

(3, 4)

y

Graphing Particular Solutions Using Technology In 
Exercises 35 and 36, the general solution of the differential 
equation is given. Use a graphing utility to graph the particular 
solutions for the given values of C.

35. 4yy′ − x = 0 36. yy′ + x = 0

 4y2 − x2 = C  x2 + y2 = C

 C = 0, C = ±1, C = ±4  C = 0, C = 1, C = 4
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394 Chapter 6 Differential Equations

 Finding a Particular Solution In Exercises 
37–42, verify that the general solution satisfies 
the differential equation. Then find the particular 
solution that satisfies the initial condition(s).

37. y = Ce−6x 38. 3x2 + 2y2 = C

 y′ + 6y = 0  3x + 2yy′ = 0

 y = 3 when x = 0  y = 3 when x = 1

39. y = C1 sin 3x + C2 cos 3x 40. y = C1 + C2 ln x

 y″ + 9y = 0  xy″ + y′ = 0, x > 0

 y = 2 when x =
π
6

  y = 0 when x = 2

 y′ = 1 when x =
π
6

  y′ =
1
2

 when x = 2

41. y = C1x + C2x3 42. y = e2x�3(C1 + C2x)
 x2y″ − 3xy′ + 3y = 0, x > 0 9y″ − 12y′ + 4y = 0

 y = 0 when x = 2  y = 4 when x = 0

 y′ = 4 when x = 2  y = 0 when x = 3

 Finding a General Solution In Exercises 
43–52, use integration to find a general solution of 
the differential equation.

43. 
dy
dx

= 12x2 44. 
dy
dx

= 3x8 − 2x

45. 
dy
dx

=
x

1 + x2 46. 
dy
dx

=
ex

4 + ex

47. 
dy
dx

= sin 2x 48. 
dy
dx

= tan2 x

49. 
dy
dx

= x√x − 6 50. 
dy
dx

= 2x√4x2 + 1

51. 
dy
dx

= xex2
 52. 

dy
dx

= 5(sin x)ecos x

Slope Field In Exercises 53–56, a differential equation and 
its slope field are given. Complete the table by determining the 
slopes (if possible) in the slope field at the given points.

x −4 −2 0 2 4 8

y 2 0 4 4 6 8

dy�dx

53. 
dy
dx

=
2x
y

 54. 
dy
dx

= y − x

 

x
10

−6

14

y

−10

 

x

y

8−8

10

−6

55. 
dy
dx

= x cos 
πy
8

 56. 
dy
dx

= tan 
πy
6

 

x
−10 10

−6

14

y  y

8

8

−8

x
−8

 Matching In Exercises 57–60, match the 
differential equation with its slope field. [The slope 
fields are labeled (a), (b), (c), and (d).]

(a)

−3 3

−3

3

x

y  (b)

x

y

3

−3

3−3

(c)

x

y

3

−3

3−3

 (d)

x

y

2

−1

− 3
2

3
2

57. 
dy
dx

= sin 2x 58. 
dy
dx

=
1
2

 cos x

59. 
dy
dx

= e−2x

60. 
dy
dx

=
x

x2 + 1

 Slope Field In Exercises 61–64, (a) sketch the 
slope field for the differential equation, (b) use 
the slope field to sketch the solution that  passes 
through the given point, and (c) discuss the graph 
of the  solution as x →∞ and x → −∞. Use a 
graphing utility to verify your results. To print a 
blank coordinate plane, go to MathGraphs.com.

61. y′ = 3 − x, (4, 2)
62. y′ = 1

3x2 − 1
2x, (1, 1)

63. y′ = y − 4x, (2, 2)
64. y′ = y + xy, (0, −4)
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 6.1 Slope Fields and Euler’s Method 395

65.  Slope Field Use the slope field for the differential equation 
y′ = 1�x, where x > 0, to sketch the graph of the solution that 
satisfies each given initial condition. Then make a conjecture 
about the behavior of a particular solution of y′ = 1�x 
as x →∞. To print an enlarged copy of the graph, go to 
MathGraphs.com.

x

y

3

2

1

−3

−2

−1
6

 (a) (1, 0)
 (b) (2, −1)
66.  Slope Field Use the slope field for the differential equation

y′ = 1�y, where y > 0, to sketch the graph of the solution that 
satisfies each given initial condition. Then make a conjecture 
about the behavior of a particular solution of y′ = 1�y 
as x →∞. To print an enlarged copy of the graph, go to 
MathGraphs.com.

x

y

6

31 2−3 −2 −1

 (a) (0, 1)
 (b) (1, 1)

Slope Field In Exercises 67–72, use a computer algebra  
system to (a) graph the slope field for the differential equation 
and (b) graph the solution satisfying the specified initial 
condition.

67. 
dy
dx

= 0.25y, y(0) = 4

68. 
dy
dx

= 4 − y, y(0) = 6

69. 
dy
dx

= 0.02y(10 − y), y(0) = 2

70. 
dy
dx

= 0.2x(2 − y), y(0) = 9

71. 
dy
dx

= 0.4y(3 − x), y(0) = 1

72. 
dy
dx

=
1
2

e−x�8 sin 
πy
4

, y(0) = 2

 Euler’s Method In Exercises 73–78, use 
Euler’s Method to make a table of values for the 
approximate solution of the  differential equation 
with the specified initial value. Use n steps of size h.

73. y′ = x + y, y(0) = 2, n = 10, h = 0.1

74. y′ = x + y, y(0) = 2, n = 20, h = 0.05

75. y′ = 3x − 2y, y(0) = 3, n = 10, h = 0.05

76. y′ = 0.5x(3 − y), y(0) = 1, n = 5, h = 0.4

77. y′ = exy, y(0) = 1, n = 10, h = 0.1

78. y′ = cos x + sin y, y(0) = 5, n = 10, h = 0.1

Euler’s Method In Exercises 79–81, complete the table 
using the exact solution of the differential equation and two 
approximations obtained using Euler’s Method to approximate 
the particular solution of the differential equation. Use h = 0.2 
and h = 0.1, and compute each approximation to four decimal 
places.

x 0 0.2 0.4 0.6 0.8 1

y(x)
(exact)

y(x)
(h = 0.2)

y(x)
(h = 0.1)

 Differential Initial Exact
 Equation Condition Solution

79. 
dy
dx

= y (0, 3) y = 3ex

80. 
dy
dx

=
2x
y

 (0, 2) y = √2x2 + 4

81. 
dy
dx

= y + cos x (0, 0) y =
1
2

(sin x − cos x + ex)

82.  Euler’s Method Compare the values of the approximations 
in Exercises 79–81 with the values given by the exact solution. 
How does the error change as h increases?

83.  Temperature At time t = 0 minutes, the temperature of 
an object is 140°F. The temperature of the object is changing 
at the rate given by the differential equation

 
dy
dt

= −
1
2

( y − 72).

 (a)  Use a graphing utility and Euler’s Method to approximate 
the particular solutions of this differential equation at 
t = 1, 2, and 3. Use a step size of h = 0.1. (A graphing 
utility program for Euler’s Method is available at 
LarsonCalculus.com.)

 (b) Compare your results with the exact solution

 y = 72 + 68e−t�2.

 (c)  Repeat parts (a) and (b) using a step size of h = 0.05. 
Compare the results.
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396 Chapter 6 Differential Equations

 84.  HOW DO YOU SEE IT? The graph shows 
a solution of one of the following differential 
equations. Which differential equation was 
used? Explain your reasoning.

(a) y′ = xy 

x

y

(b) y′ =
4x
y

(c) y′ = −4xy

(d) y′ = 4 − xy

 84.  

eXpLoRInG ConCeptS
85.  Euler’s Method Explain when Euler’s Method 

produces an exact particular solution of a differential 
equation.

86.   Finding Values It is known that y = Cekx is a 
solution of the differential equation y′ = 0.07y. Is it 
possible to determine C or k from the information given? 
Explain.

True or False? In Exercises 87 and 88, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

87.  If y = f (x) is a solution of a first-order differential equation, 
then y = f (x) + C is also a solution.

88.  A slope field shows one particular solution of a differential 
equation.

89.  Errors and Euler’s Method  The exact solution of the 
differential equation y′ = −2y, where y(0) = 4, is y = 4e−2x.

(a)  Use a graphing utility to complete the table, where y is the 
exact value of the solution, y1 is the approximate  solution 
using Euler’s Method with h = 0.1, y2 is the approximate 
solution using Euler’s Method with h = 0.2, e1 is the 
absolute error ∣y − y1∣, e2 is the absolute error ∣y − y2∣,
and r is the ratio e1�e2.

x 0 0.2 0.4 0.6 0.8 1

y

y1

y2

e1

e2

r

 (b) What can you conclude about the ratio r as h changes?

 (c) Predict the absolute error when h = 0.05.

90.  Errors and Euler’s Method Repeat Exercise 89 for 
which the exact solution of the differential equation

dy
dx

= x − y

 where y(0) = 1, is y = x − 1 + 2e−x.

91.  Electric Circuit The diagram shows a simple electric 
circuit consisting of a power source, a resistor, and an inductor.

E

R

L

  A model of the current I, in amperes (A), at time t is given by 
the first-order differential equation

L
dI
dt

+ RI = E(t)

  where E(t) is the voltage (V) produced by the power source, 
R is the resistance, in ohms (Ω), and L is the inductance, in 
henrys (H). Suppose the electric circuit consists of a 24-V 
power source, a 12-Ω resistor, and a 4-H inductor.

 (a) Sketch a slope field for the differential equation.

 (b) What is the limiting value of the current? Explain.

92.  Slope Field A slope field shows that the slope at the 
point (1, 1) is 6. Does this slope field represent the family of 
solutions for the differential equation y′ = 4x + 2y? Explain.

93.  Think About It It is known that y = A sin ωt is a solution 
of the differential equation y″ + 16y = 0. Find the value(s) of ω.

94.  Think About It It is known that y = ekt is a solution of the 
differential equation y″ − 16y = 0. Find the value(s) of k.

pUtnAM eXAM ChALLenGe
95.  Let f  be a twice-differentiable real-valued function 

satisfying f (x) + f ″(x) = −xg(x)f ′(x), where g(x) ≥ 0 
for all real x. Prove that ∣ f (x)∣ is bounded.

96.  Prove that if the family of integral curves of the 
differential equation

dy
dx

+ p(x)y = q(x), p(x) ∙ q(x) ≠ 0

  is cut by the line x = k, the tangents at the points of 
intersection are concurrent.

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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6.2 Growth and Decay 397

6.2 Growth and Decay

 Use separation of variables to solve a simple differential equation.
 Use exponential functions to model growth and decay in applied problems.

Differential Equations
In Section 6.1, you learned to analyze the solutions of differential equations visually 
using slope fields and to approximate solutions numerically using Euler’s Method. 
Analytically, you have learned to solve only two types of differential  equations—those 
of the forms y′ = f (x) and y″ = f (x). In this section, you will learn how to solve a more 
general type of differential  equation. The strategy is to rewrite the equation so that each 
variable occurs on only one side of the equation. This strategy is called separation of 
variables. (You will study this strategy in detail in Section 6.3.)

 Solving a Differential Equation

 y′ =
2x
y

 Original equation

 yy′ = 2x Multiply each side by y.

 ∫yy′ dx = ∫2x dx Integrate each side with respect to x.

 ∫y dy = ∫2x dx dy = y′ dx

 
1
2

y2 = x2 + C1 Apply Power Rule.

 y2 − 2x2 = C Rewrite, letting C = 2C1.

So, the general solution is y2 − 2x2 = C. 

When you integrate each side of the equation in Example 1, you do not need to add 
a constant of integration to each side. When you do, you still obtain the same result.

 ∫y dy = ∫2x dx

 
1
2

y2 + C2 = x2 + C3

 
1
2

y2 = x2 + (C3 − C2)

 
1
2

y2 = x2 + C1 Rewrite, letting C1 = C3 − C2.

Some people prefer to use Leibniz notation and differentials when applying 
separation of variables. The solution to Example 1 is shown below using this notation.

 
dy
dx

=
2x
y

 y dy = 2x dx

 ∫y dy = ∫2x dx

 
1
2

y2 = x2 + C1

 y2 − 2x2 = C

REMARK You can use 
implicit differentiation to check 
the solution to Example 1.

Exploration
In Example 1, the general 
solution of the differential 
equation is

y2 − 2x2 = C.

Use a graphing utility 
to sketch the particular 
solutions for C = ±2, 
C = ±1, and C = 0. 
Describe the solutions 
graphically. Is the following 
statement true of each 
solution?

The slope of the graph at 
the point (x, y) is equal to 
twice the ratio of x and y.

Explain your reasoning. Are 
all curves for which this 
statement is true represented 
by the general solution?
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398 Chapter 6 Differential Equations

Growth and Decay Models
In many applications, the rate of change of a variable y is proportional to the value of 
y. When y is a function of time t, the proportion can be written as shown.

Rate of change of y  is  proportional to y.

 
dy
dt

= ky

The general solution of this differential equation is given in the next theorem.

THEOREM 6.1 Exponential Growth and Decay

If y is a differentiable function of t such that y > 0 and dy�dt = ky for some 
constant k, then

y = Cekt

where C is the initial value of y, and k is the proportionality
constant. Exponential growth occurs when k > 0, and 
exponential decay occurs when k < 0.

Proof

 
dy
dt

= ky Write original equation.

 
dy
y

= k dt Separate variables.

 ∫ 
dy
y

= ∫ k dt Integrate each side.

 ln y = kt + C1 Find antiderivative of each side.

 y = ekt+C1 Exponentiate each side.

 y = ekteC1 Property of exponents

 y = Cekt Let C = eC1.

So, all solutions of y′ = ky are of the form y = Cekt. Remember that you can differentiate 
the function y = Cekt with respect to t to verify that y′ = ky. 

 Using an Exponential Growth Model

The rate of change of y is proportional to y. When t = 0, y = 2, and when t = 2, y = 4. 
What is the value of y when t = 3?

Solution Because y′ = ky, you know that y and t are related by the equation 
y = Cekt. You can find the values of the constants C and k by applying the initial 
 conditions.

2 = Ce0  C = 2 When t = 0, y = 2.

4 = 2e2k  k =
1
2

ln 2 ≈ 0.3466 When t = 2, y = 4.

So, the model is y = 2e0.3466t. When t = 3, the value of y is 2e0.3466(3) ≈ 5.657. See 
Figure 6.8. 

Using logarithmic properties, the value of k in Example 2 can also be written as 
ln√2. So, the model becomes y = 2e(ln√2)t, which can be rewritten as y = 2(√2)t

.

t
1

1

2

2

3

3

4

4

5

6

7

(0, 2)

(2, 4)

(3, 5.657)

y = 2e0.3466t

y

If the rate of change of y is proportional 
to y, then y follows an exponential 
model.
Figure 6.8

REMARK Notice that you 
do not need to write ln∣y∣ 
because y > 0.
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Radioactive decay is measured in terms of half-life—the number of years required 
for half of the atoms in a sample of radioactive material to decay. The rate of decay 
is proportional to the amount present. The half-lives of some common radioactive 
isotopes are listed below.

Uranium (238U) 4,470,000,000 years

Plutonium (239Pu) 24,100 years

Carbon (14C) 5715 years

Radium (226Ra) 1599 years

Einsteinium (254Es) 276 days

Radon (222Rn) 3.82 days

Nobelium (257No) 25 seconds

 Radioactive Decay

Ten grams of the plutonium isotope 239Pu were released in a nuclear accident. How 
long will it take for the 10 grams to decay to 1 gram?

Solution Let y represent the mass (in grams) of the plutonium. Because the rate of 
decay is proportional to y, you know that

y = Cekt

where t is the time in years. To find the values of the constants C and k, apply the initial 
conditions. Using the fact that y = 10 when t = 0, you can write

10 = Cek(0)  10 = Ce0

which implies that C = 10. Next, using the fact that the half-life of 239Pu is 24,100 years, 
you have y = 10�2 = 5 when t = 24,100. So, you can write

 5 = 10ek(24,100)

 
1
2

= e24,100k

 
1

24,100
 ln 

1
2

= k

 −0.000028761 ≈ k.

So, the model is

y = 10e−0.000028761t. Half-life model

To find the time it would take for 10 grams to decay to 1 gram, you can solve for t in 
the equation

1 = 10e−0.000028761t.

The solution is approximately 80,059 years. 

From Example 3, notice that in an exponential growth or decay problem, it is 
easy to solve for C when you are given the value of y at t = 0. The next example 
 demonstrates a procedure for solving for C and k when you do not know the value of 
y at t = 0.

TECHNOLOGY Most graphing utilities have curve-fitting capabilities that can 
be used to find models that represent data. Use the exponential regression feature 
of a graphing utility and the information in Example 2 to find a model for the data. 
How does your model compare with the given model?

 Radioactive Decay

Ten grams of the plutonium isotope 
long will it take for the 10 grams to decay to 1 gram?

Solution Let y represent the mass (in grams) of the plutonium. Because the rate of 
decay is proportional to 

y = Cekt

where t is the time in years. To find the values of the constants 
conditions. Using the fact that 

10 = Cek(0)

which implies that C =
you have y = 10�2 =

In a conventional nuclear 
reactor, 1 kilogram of 239Pu can 
generate enough electricity to 
power about 900 homes for a 
year. (Source: World Nuclear 
Association, U.S. Energy 
Information Administration)

REMARK The exponential 
decay model in Example 3
could also be written as
y = 10(1

2)t�24,100
. This model is 

much easier to derive, but for 
some applications it is not as 
convenient to use. 

iurii/Shutterstock.com
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400 Chapter 6 Differential Equations

 Population Growth

See LarsonCalculus.com for an interactive version of this type of example.

An experimental population of fruit flies increases according to the law of exponential 
growth. There were 100 flies after the second day of the experiment and 300 flies after 
the fourth day. Approximately how many flies were in the original population?

Solution Let y = Cekt be the number of flies at time t, where t is measured in days. 
Note that y is continuous, whereas the number of flies is discrete. Because y = 100 
when t = 2 and y = 300 when t = 4, you can write

100 = Ce2k and 300 = Ce4k.

From the first equation, you know that

C = 100e−2k.

Substituting this value into the second equation produces the following.

 300 = 100e−2ke4k

 300 = 100e2k

 3 = e2k

 ln 3 = 2k

 
1
2

 ln 3 = k

 0.5493 ≈ k

So, the exponential growth model is

y = Ce0.5493t.

To solve for C, reapply the condition y = 100 when t = 2 and obtain

 100 = Ce0.5493(2)

 C = 100e−1.0986

 C ≈ 33.

So, the original population (when t = 0) consisted of approximately y = C = 33 flies, 
as shown in Figure 6.9.

 Declining Sales

Four months after it stops advertising, a manufacturing company notices that its sales 
have dropped from 100,000 units per month to 80,000 units per month. The sales follow 
an exponential pattern of decline. What will the sales be after another 2 months?

Solution Use the exponential decay model y = Cekt, where t is measured in months. 
From the initial condition (t = 0), you know that C = 100,000. Moreover, because 
y = 80,000 when t = 4, you have

 80,000 = 100,000e4k

 0.8 = e4k

 ln(0.8) = 4k

 −0.0558 ≈ k.

So, after 2 more months (t = 6), you can expect the monthly sales to be

 y = 100,000e−0.0558(6)

 ≈ 71,500 units.

See Figure 6.10. 
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 6.2 Growth and Decay 401

In Examples 2 through 5, you did not actually have to solve the differential 
equation dy�dt = ky. (This was done once in the proof of Theorem 6.1.) The next 
example demonstrates a problem whose solution involves the separation of variables 
technique. The example concerns Newton’s Law of Cooling, which states that the rate 
of change of the temperature of an object is proportional to the difference between the 
object’s temperature and the temperature of the surrounding medium.

 Newton’s Law of Cooling

Let y represent the temperature (in °F) of an object in a room whose temperature is 
kept at a constant 60°F. The object cools from 100°F to 90°F in 10 minutes. How much 
longer will it take for the temperature of the object to decrease to 80°F?

Solution From Newton’s Law of Cooling, you know that the rate of change of y is 
proportional to the difference between y and 60. This can be written as 

dy
dt

= k(y − 60), 80 ≤ y ≤ 100.

To solve this differential equation, use separation of variables, as shown.

 
dy
dt

= k(y − 60) Differential equation

 ( 1
y − 60) dy = k dt Separate variables.

 ∫ 
1

y − 60
 dy = ∫ k dt Integrate each side.

 ln∣y − 60∣ = kt + C1 Find antiderivative of each side.

Because y > 60, ∣y − 60∣ = y − 60, and you can omit the absolute value signs. Using 
exponential notation, you have

 y − 60 = ekt+C1

 y = 60 + Cekt. C = eC1

Using y = 100 when t = 0, you obtain

100 = 60 + Cek(0) = 60 + C

which implies that C = 40. Because y = 90 when t = 10,

 90 = 60 + 40ek(10)

 30 = 40e10k

 k =
1
10

 ln 
3
4

.

So, k ≈ −0.02877 and the model is

y = 60 + 40e−0.02877t. Cooling model

When y = 80, you obtain

 80 = 60 + 40e−0.02877t

 20 = 40e−0.02877t

 
1
2

= e−0.02877t

 ln 
1
2

= −0.02877t

 t ≈ 24.09 minutes.

So, it will require about 14.09 more minutes for the object to cool to a temperature of 
80°F. See Figure 6.11. 
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402 Chapter 6 Differential Equations

6.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Describing Values Describe what the values of C 

and k represent in the exponential growth and decay model 
y = Cekt. 

2.  Growth and Decay For y = Cekt, explain why 
exponential growth occurs when k > 0 and exponential 
decay occurs when k < 0.

 Solving a Differential Equation In Exercises 
3–12, find the general solution of the differential 
equation.

 3. 
dy
dx

= x + 3  4. 
dy
dx

= 5 − 8x

 5. 
dy
dx

= y + 3  6. 
dy
dx

= 6 − y

 7. y′ =
5x
y

  8. y′ = −
√x
4y

 9. y′ = √x y 10. y′ = x(1 + y)
11. (1 + x2)y′ − 2xy = 0 12. xy + y′ = 100x

Writing and Solving a Differential Equation In 
Exercises 13 and 14, write and find the general solution of the 
differential equation that models the verbal statement.

13.  The rate of change of Q with respect to t is inversely 
proportional to the square of t.

14.  The rate of change of P with respect to t is proportional to 
25 − t.

 Slope Field In Exercises 15 and 16, a differential 
equation, a point, and a slope field are given. 
(a) Sketch two approximate solutions of the 
differential equation on the slope field, one of 
which passes through the given point. (To print an 
enlarged copy of the graph, go to MathGraphs.com.)  
(b) Use integration and the given point to find 
the particular solution of the differential equation 
and use a graphing utility to graph the solution. 
Compare the result with the sketch in part (a) that 
passes through the given point.

15. 
dy
dx

= x(6 − y), (0, 0) 16. 
dy
dx

= xy, (0, 
1
2)

 

x
−5 −1

9

5

y  

x

4

−4

−4 4

y

 Finding a Particular Solution In Exercises 
17–20, find the function y = f (t) passing through 
the point (0, 10) with the given differential equation. 
Use a graphing utility to graph the solution.

17. 
dy
dt

=
1
2

t 18. 
dy
dt

= −9√t

19. 
dy
dt

= −
1
2

y 20. 
dy
dt

=
3
4

y

 Writing and Solving a Differential 
Equation In Exercises 21 and 22, write and find 
the general solution of the differential equation 
that models the verbal statement. Evaluate the 
solution at the specified value of the independent 
variable.

21.  The rate of change of N is proportional to N. When t = 0, 
N = 250, and when t = 1, N = 400. What is the value of N 
when t = 4?

22.  The rate of change of P is proportional to P. When t = 0, 
P = 5000, and when t = 1, P = 4750. What is the value of P 
when t = 5?

 Finding an Exponential Function In 
Exercises 23–26, find the exponential function 
y = Cekt that passes through the two given points.

23. 

t

y
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t
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t
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 26. 
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y

t

3, 1
2))

eXpLoring ConCepts
Increasing Function In Exercises 27 and 28, 
determine the quadrants in which the solution of the 
differential equation is an increasing function. Explain. 
(Do not solve the differential equation.)

27. 
dy
dx

=
1
2

xy 28. 
dy
dx

=
1
2

x2y
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 Radioactive Decay In Exercises 29–36, 
complete the table for the radioactive isotope.

    Amount Amount
  Half-life Initial After After
 Isotope (in years) Quantity 1000 Years 10,000 Years

29. 226Ra 1599 20 g  

30. 226Ra 1599  1.5 g 

31. 226Ra 1599   0.1 g

32. 14C 5715   3 g

33. 14C 5715 5 g  

34. 14C 5715  1.6 g 

35. 239Pu 24,100  2.1 g 

36. 239Pu 24,100   0.4 g

37.  Radioactive Decay Radioactive radium has a half-life 
of approximately 1599 years. What percent of a given amount 
remains after 100 years?

38.  Carbon Dating Carbon-14 dating assumes that the carbon 
dioxide on Earth today has the same radioactive content as it 
did centuries ago. If this is true, the amount of 14C absorbed by 
a tree that grew several centuries ago should be the same as the 
amount of 14C absorbed by a tree growing today. A piece of 
ancient charcoal contains only 15% as much of the radioactive 
carbon as a piece of modern charcoal. How long ago was the 
tree burned to make the ancient charcoal? (The half-life of 14C 
is 5715 years.)

 Compound Interest In Exercises 39– 44, 
complete the table for a savings account in which 
interest is compounded continuously.

 Initial Annual Time to Amount After
 Investment Rate Double 10 Years

39. $1000 12%  

40. $28,000 2.5%  

41. $150  15 yr 

42. $31,000  8 yr 

43. $900   $1845.25

44. $6000   $6840

Compound Interest In Exercises 45–48, find the principal 
P that must be invested at rate r, compounded monthly, so that 
$1,000,000 will be available for retirement in t years.

45. r = 7 1
2%, t = 20 46. r = 6%, t = 40

47. r = 8%, t = 35 48. r = 9%, t = 25

Compound Interest In Exercises 49 and 50, find the time 
necessary for $1000 to double when it is invested at rate r 
and compounded (a) annually, (b) monthly, (c) daily, and  
(d) continuously.

49. r = 7%

50. r = 5.5%

 Population In Exercises 51–54, the population 
(in millions) of a country in 2015 and the 
expected continuous annual rate of change k of 
the population are given. (Source: U.S. Census 
Bureau, International Data Base)

(a) Find the exponential growth model

 P = Cekt

 for the population by letting t = 5 correspond to 2015.

(b)  Use the model to predict the population of the country in 
2030.

(c)  Discuss the relationship between the sign of k and the 
change in population for the country.

 Country 2015 Population k

51. Latvia 2.0 −0.011

52. Canada 35.1 0.008

53. Paraguay 6.8 0.012

54. Ukraine 44.4 −0.006

55.  Modeling Data One hundred bacteria are started in a 
culture and the number N of bacteria is counted each hour for 
5 hours. The results are shown in the table, where t is the time 
in hours.

t 0 1 2 3 4 5

N 100 126 151 198 243 297

 (a)  Use the regression capabilities of a graphing utility to find 
an exponential model for the data.

 (b)  Use the model to estimate the time required for the  
population to quadruple in size.

56.  Bacteria Growth The number of bacteria in a culture is 
increasing according to the law of exponential growth. There 
are 125 bacteria in the culture after 2 hours and 350 bacteria 
after 4 hours.

 (a) Find the initial population.

 (b)  Write an exponential growth model for the bacteria  
population. Let t represent the time in hours.

 (c)  Use the model to determine the number of bacteria after 
8 hours.

 (d) After how many hours will the bacteria count be 25,000?

57.  Learning Curve The management at a certain factory has 
found that a worker can produce at most 30 units in a day. The 
learning curve for the number of units N produced per day 
after a new employee has worked t days is 

 N = 30(1 − ekt).

 After 20 days on the job, a particular worker produces 19 units.

 (a) Find the learning curve for this worker.

 (b)  How many days should pass before this worker is 
producing 25 units per day?

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



404 Chapter 6 Differential Equations

58.  Learning Curve Suppose the management in Exercise 57 
requires a new employee to produce at least 20 units per day 
after 30 days on the job.

 (a)  Find the learning curve that describes this minimum 
requirement.

 (b)  Find the number of days before a minimal achiever is 
producing 25 units per day.

59. Insect Population

 (a)  Suppose an insect population increases by a constant 
number each month. Explain why the number of insects 
can be represented by a linear function.

 (b)  Suppose an insect population increases by a constant 
percentage each month. Explain why the number of 
insects can be represented by an exponential function.

 60.  HOW DO YOU SEE IT? The functions f  
and g are both of the form y = Cekt.

 

t

y

1 2 3 4 5 6

1

2

3

4

5

6

f

g

(a)  Do the functions f  and g represent exponential 
growth or exponential decay? Explain.

(b)  Assume both functions have the same value of C. 
Which function has a greater value of k? Explain.

 60.  

61.  Modeling Data The table shows the cost of tuition and 
fees M (in dollars) at public four-year universities for selected 
years. (Source: The College Board)

Year 1980 1985 1990 1995

Cost, M 2320 2918 3492 4399

Year 2000 2005 2010 2015

Cost, M 4845 6708 8351 9410

 (a)  Use a graphing utility to find an exponential model M1 for 
the data. Let t = 0 represent 1980.

 (b)  Use a graphing utility to find a linear model M2 for the 
data. Let t = 0 represent 1980.

 (c)  Which model fits the data better? Explain.

 (d)  Use the exponential model to predict when the cost of 
tuition and fees will be $15,000. Does the result seem 
reasonable? Explain.

63.  Sound Intensity The level of sound β (in decibels) 
with an intensity of I is β(I) = 10 log10(I�I0), where I0 is an 
intensity of 10−16 watt per square centimeter, corresponding 
roughly to the faintest sound that can be heard. Determine β(I)
for the following.

 (a) I = 10−14 watt per square centimeter (whisper)

 (b) I = 10−9 watt per square centimeter (busy street corner)

 (c) I = 10−4 watt per square centimeter (threshold of pain)

64.  Noise Level With the installation of noise suppression 
materials, the noise level in an auditorium was reduced from 
93 to 80 decibels. Use the function in Exercise 63 to find the 
percent decrease in the intensity level of the noise as a result 
of the installation of these materials.

65.  Newton’s Law of Cooling When an object is removed 
from a furnace and placed in an environment with a constant 
temperature of 80°F, its core temperature is 1500°F. One hour 
after it is removed, the core temperature is 1120°F. 

 (a)  Write an equation for the core temperature y of the object 
t hours after it is removed from the furnace.

 (b)  What is the core temperature of the object 6 hours after it 
is removed from the furnace?

66.  Newton’s Law of Cooling A container of hot liquid 
is placed in a freezer that is kept at a constant temperature 
of 20°F. The initial temperature of the liquid is 160°F. After 
5 minutes, the liquid’s temperature is 60°F. 

 (a)  Write an equation for the temperature y of the liquid 
t minutes after it is placed in the freezer.

 (b)  How much longer will it take for the temperature of the 
liquid to decrease to 25°F?

True or False? In Exercises 67 and 68, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

67.  Half of the atoms in a sample of radioactive radium decay in 
799.5 years.

68.  If prices are rising at a rate of 0.5% per month, then they are 
rising at a rate of 6% per year.

The value of a tract of timber is

V(t) = 100,000e0.8√t

where t is the time in 
years, with t = 0 
corresponding to 2010. 
If money earns interest 
continuously at 10%, 
then the present value of 
the timber at any time t is

A(t) = V(t)e−0.10t.

Find the year in which the timber should be harvested to 
maximize the present value function.

62. Forestry

Stephen Rees/Shutterstock.com
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 6.3 Separation of Variables 405

6.3 Separation of Variables

  Recognize and solve differential equations that can be solved by separation of  
variables.

 Use differential equations to model and solve applied problems.

Separation of Variables
Consider a differential equation that can be written in the form

M(x) + N(y) dy
dx

= 0

where M is a continuous function of x alone and N is a continuous function of y alone. 
As you saw in Section 6.2, for this type of equation, all x-terms can be collected with dx 
and all y-terms with dy, and a solution can be obtained by integration. Such equations 
are said to be separable, and the solution procedure is called separation of variables. 
Below are some examples of differential equations that are separable.

Original Differential Equation Rewritten with Variables Separated

x2 + 3y 
dy
dx

= 0 3y dy = −x2 dx

(sin x)y′ = cos x dy = cot x dx

xy′
ey + 1

= 2 
1

ey + 1
 dy =

2
x
 dx

 Separation of Variables

See LarsonCalculus.com for an interactive version of this type of example.

Find the general solution of

(x2 + 4) dy
dx

= xy.

Solution To begin, note that y = 0 is a solution. To find other solutions, assume that 
y ≠ 0 and separate variables as shown.

 (x2 + 4) dy = xy dx Differential form

 
dy
y

=
x

x2 + 4
 dx Separate variables.

Now, integrate to obtain

 ∫ 
dy
y

= ∫ 
x

x2 + 4
 dx  Integrate.

 ln∣y∣ =
1
2

 ln(x2 + 4) + C1

 ln∣y∣ = ln√x2 + 4 + C1

 ∣y∣ = eln√x2+4+C1  Exponentiate each side.

 ∣y∣ = eC1√x2 + 4  Property of exponents

 y = ±eC1√x2 + 4.

Because y = 0 is also a solution, you can write the general solution as

y = C√x2 + 4. General solution 

remark Be sure to check 
your solutions throughout this 
chapter. In Example 1, you  
can check the solution

y = C√x2 + 4

by differentiating and  
substituting into the original 
equation.

So, the solution checks.

 (x2 + 4) dy
dx

= xy

 (x2 + 4) Cx

√x2 + 4
=? x(C√x2 + 4)

 Cx√x2 + 4 = Cx√x2 + 4
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406 Chapter 6 Differential Equations

In some cases, it is not feasible to write the general solution in the explicit form 
y = f (x). The next example illustrates such a solution. Implicit differentiation can be 
used to verify this solution.

 Finding a Particular Solution

Given the initial condition y(0) = 1, find the particular solution of the equation

xy dx + e−x2(y2 − 1) dy = 0.

Solution Note that y = 0 is a solution of the differential equation—but this solution 
does not satisfy the initial condition. So, you can assume that y ≠ 0. To separate 
 variables, you must rid the first term of y and the second term of e−x2. So, you should 
multiply by ex2�y and obtain the following.

 xy dx + e−x2(y2 − 1) dy = 0

 e−x2(y2 − 1) dy = −xy dx

 ∫ (y −
1
y) dy = ∫ −xex2

 dx

 
y2

2
− ln∣y∣ = −

1
2

ex2 + C

From the initial condition y(0) = 1, you have

1
2

− 0 = −
1
2

+ C

which implies that C = 1. So, the particular solution has the implicit form

 
y2

2
− ln∣y∣ = −

1
2

ex2 + 1

 y2 − ln y2 + ex2 = 2.

You can check this by differentiating and rewriting to get the original equation.

 Finding a Particular Solution Curve

Find the equation of the curve that passes through the point (1, 3) and has a slope of 
y�x2 at any point (x, y).

Solution Because the slope of the curve is y�x2, you have

dy
dx

=
y
x2

with the initial condition y(1) = 3. Because the initial condition occurs in Quadrant I, 
assume x > 0. Then, separating variables and integrating produce

 ∫ 
dy
y

= ∫ 
dx
x2 , y ≠ 0, x > 0

 ln∣y∣ = −
1
x

+ C1

 y = e−(1�x)+C1

 y = Ce−1�x.

Because y = 3 when x = 1, it follows that 3 = Ce−1 and C = 3e. So, the equation of 
the specified curve is

y = (3e)e−1�x  y = 3e(x−1)�x, x > 0.

See Figure 6.12. 

 FOR FuRthER InFORmatIOn
For an example (from engineering) 
of a differential equation that 
is separable, see the article 
“Designing a Rose Cutter” by 
J. S. Hartzler in The College 
Mathematics Journal. To view this 
 article, go to MathArticles.com.

−2 2 4 6 8 10
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6

4

2

x

y = 3e(x − 1)/x

y = 3e

(1, 3)

y

Figure 6.12
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Applications

 Wildlife Population

The rate of change of the number of coyotes N(t) in a population is directly proportional 
to 650 − N(t), where t is the time in years. When t = 0, the population is 300, and 
when t = 2, the population has increased to 500. Find the population when t = 3.

Solution Because the rate of change of the population is proportional to 650 − N(t),
or 650 − N, you can write the differential equation

dN
dt

= k(650 − N).

You can solve this equation using separation of variables.

 dN = k(650 − N) dt Differential form

 
dN

650 − N
= k dt  Separate variables.

 −ln∣650 − N∣ = kt + C1  Integrate.

 ln∣650 − N∣ = −kt − C1  

 650 − N = e−kt−C1  Exponentiate each side. (Assume N < 650.)

 650 − N = e−C1e−kt  Property of exponents

 N = 650 − Ce−kt  General solution

Using N = 300 when t = 0, you can conclude that C = 350, which produces

N = 650 − 350e−kt.

Then, using N = 500 when t = 2, it follows that

500 = 650 − 350e−2k  e−2k =
3
7

  k ≈ 0.4236.

So, the model for the coyote population is 

N = 650 − 350e−0.4236t. Model for population

When t = 3, you can approximate the population to be

 N = 650 − 350e−0.4236(3)

 ≈ 552 coyotes.

The model for the population is shown in Figure 6.13. Note that N = 650 is the 
horizontal asymptote of the graph and is the carrying capacity of the model. You will 
learn more about carrying capacity in the next section.

t
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N

(3, 552)

N = 650 − 350e−0.4236t

 Figure 6.13 

The rate of change of the number of coyotes 
to 650 − N(t),
when t = 2, the population has increased to 500. Find the population when 

Solution Because the rate of change of the population is proportional to 
or 650 − N,N,N  you can write the differential equation

dNdNd
dt

= k(6

You can solve this equation using separation of variables.

d
650

Derek R. Audette/Shutterstock.com
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408 Chapter 6 Differential Equations

A common problem in electrostatics,  

x

y

Each line y = Kx is an orthogonal  
trajectory of the family of circles 
x2 + y2 = C.

 
thermodynamics, and hydrodynamics involves 
finding a family of curves, each of which is 
orthogonal to all members of a given family of 
curves. For example, the figure at the right 
shows a family of circles

x2 + y2 = C Family of circles

each of which intersects the lines in the family

y = Kx Family of lines

at right angles. Two such families of curves are 
said to be mutually orthogonal, and each curve  
in one of the families is called an orthogonal  
trajectory of the other family. In electrostatics, 
lines of force are orthogonal to the equipotential 
curves. In thermodynamics, the flow of heat across a plane surface is orthogonal to the 
isothermal curves. In hydrodynamics, the flow (stream) lines are orthogonal trajectories 
of the velocity potential curves.

 Finding Orthogonal Trajectories

Describe the orthogonal trajectories for the family of curves given by

y =
C
x

for C ≠ 0. Sketch several members of each family.

Solution First, solve the given equation for C and write xy = C. Then, by 
differentiating implicitly with respect to x, you obtain the differential equation

 x 
dy
dx

+ y = 0 Differential equation

 x 
dy
dx

= −y

 
dy
dx

= −
y
x
. Slope of given family

Because dy�dx represents the slope of the given family of curves at (x, y), it follows that 
the orthogonal family has the negative reciprocal slope x�y. So,

dy
dx

=
x
y
. Slope of orthogonal family

Now you can find the orthogonal family by separating variables and integrating.

 ∫ y dy = ∫ x dx

 
y2

2
=

x2

2
+ C1

 y2 − x2 = K

So, the orthogonal trajectories for the family of curves given by y = C�x is the family 
of curves given by y2 − x2 = K. When K ≠ 0, the orthogonal trajectories are 
hyperbolas with centers at the origin, and the transverse axes are vertical for K > 0 and 
horizontal  for K < 0. When K = 0, the orthogonal trajectories are the lines y = ±x.  
Several trajectories are shown in Figure 6.14. 

y

x

Given family:
xy = C

Orthogonal
family:
y2 − x2 = K

Orthogonal trajectories
Figure 6.14
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 6.3 Separation of Variables 409

 modeling advertising awareness

A new cereal product is introduced through an advertising campaign to a population of 
1 million potential customers. The rate at which the population hears about the product 
is assumed to be proportional to the number of people who are not yet aware of the 
product. By the end of 1 year, half of the population has heard of the product. How 
many will have heard of it by the end of 2 years?

Solution Let y be the number of people (in millions) at time t who have heard of 
the product. This means that (1 − y) is the number of people who have not heard of it, 
and dy�dt is the rate at which the population hears about the product. From the given 
assumption, you can write the differential equation as shown.

 
dy
dt

= k(1 − y)

You can solve this equation using separation of variables.

 dy = k(1 − y) dt Differential form

 
dy

1 − y
= k dt Separate variables.

 −ln∣1 − y∣ = kt + C1 Integrate.

 ln∣1 − y∣ = −kt − C1 Multiply each side by −1.

 1 − y = e−kt−C1 Assume y < 1.

 y = 1 − Ce−kt General solution

To solve for the constants C and k, use the initial conditions. That is, because y = 0 
when t = 0, you can determine that C = 1. Similarly, because y = 0.5 when t = 1, it 
follows that 0.5 = 1 − e−k, which implies that

k = ln 2 ≈ 0.693.

So, the particular solution is

y = 1 − e−0.693t. Particular solution

This model is shown in Figure 6.15. Using the model, you can determine that the 
 number of people who have heard of the product after 2 years is

 y = 1 − e−0.693(2)

 ≈ 0.75 or 750,000 people.
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410 Chapter 6 Differential Equations

 modeling a Chemical reaction

During a chemical reaction, substance A is converted into substance B at a rate that is 
proportional to the square of the amount of A. When t = 0, 60 grams of A is present, 
and after 1 hour (t = 1), only 10 grams of A remains unconverted. How much of A is 
present after 2 hours?

Solution Let Y  be the amount of unconverted substance A at any time t. From the 
given assumption about the conversion rate, you can write the differential equation as 
shown.

 
dy
dt

= ky2

You can solve this equation using separation of variables.

 dy = ky2 dt Differential form

 
dy
y2 = k dt Separate variables.

 −
1
y

= kt + C Integrate.

 y =
−1

kt + C
 General solution

To solve for the constants C and k, use the initial conditions. That is, because y = 60 
when t = 0, you can determine that C = − 1

60. Similarly, because y = 10 when t = 1, 
it follows that

10 =
−1

k − (1�60)

which implies that k = − 1
12. So, the particular solution is

 y =
−1

(−1�12)t − (1�60) Substitute for k and C.

 =
60

5t + 1
. Particular solution

Using the model, you can determine that the unconverted amount of substance A after 
2 hours is

 y =
60

5(2) + 1

 ≈ 5.45 grams.

In Figure 6.16, note that the chemical conversion is occurring rapidly during the first 
hour. Then, as more and more of substance A is converted, the  conversion rate slows 
down. 

exploration
In Example 7, the rate of conversion was assumed to be proportional to the 
square of the unconverted amount. How would the result change if the rate of 
conversion were assumed to be proportional to the unconverted amount?

is propor-
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of y.
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 6.3 Separation of Variables 411

The next example describes a growth model called a Gompertz growth model. 
This model assumes that the rate of change of y is proportional to the product of y and 
the natural log of L�y, where L is the population limit.

 modeling Population Growth

A population of 20 wolves has been introduced into a national park. The forest service 
estimates that the maximum population the park can sustain is 200 wolves. After 3 years, 
the population is estimated to be 40 wolves. According to a Gompertz growth model, 
how many wolves will there be 10 years after their introduction?

Solution Let y be the number of wolves at any time t. From the given assumption 
about the rate of growth of the population, you can write the differential equation as 
shown.

 
dy
dt

= ky ln 
200

y

Using separation of variables or a computer algebra system, you can find the general 
solution to be

y = 200e−Ce−kt
. General solution

To solve for the constants C and k, use the initial conditions. That is, because y = 20 
when t = 0, you can determine that

 C = ln 10

 ≈ 2.3026.

Similarly, because y = 40 when t = 3, it follows that

40 = 200e−2.3026e−3k

which implies that k ≈ 0.1194. So, the particular solution is

y = 200e−2.3026e−0.1194t
. Particular solution

Using the model, you can estimate the wolf population after 10 years to be

 y = 200e−2.3026e−0.1194(10)

 ≈ 100 wolves.

In Figure 6.17, note that after 10 years the population has reached about half of the 
estimated maximum population. Try checking the growth model to see that it yields 
y = 20 when t = 0 and y = 40 when t = 3.

y

t

200
180
160
140
120
100
80
60
40
20

(3, 40)

(10, 100)

N
um

be
r 

of
 w

ol
ve

s

2 4 6 8 10 12 14

Time (in years)

(0, 20)

y e= 200 −2.3026e−0.1194t

 Figure 6.17 

Rate of 
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tional to

the product 
of y and 

the natural log 
of the ratio of 

200 and y.

TeChnOlOGy If you have 
access to a computer algebra 
system, try using it to find the 
general solution and the particular 
solution to Example 8.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



412 Chapter 6 Differential Equations

In genetics, a commonly used hybrid selection model is based on the differential 
equation

dy
dt

= ky(1 − y)(a − by).

In this model, y represents the portion of the population that has a certain characteristic 
and t represents the time (measured in generations). The numbers a, b, and k are constants 
that depend on the genetic characteristic that is being studied.

 modeling hybrid Selection

You are studying a population of beetles to determine how quickly characteristic D 
will pass from one generation to the next. At the beginning of your study (t = 0), 
you find that half the population has characteristic D. After four generations (t = 4), you  
find that 80% of the population has characteristic D. Use the hybrid selection model above 
with a = 2 and b = 1 to find the percent of the population that will have  characteristic D 
after 10 generations.

Solution Using a = 2 and b = 1, the differential equation for the hybrid selection 
model is

dy
dt

= ky(1 − y)(2 − y).

Using separation of variables or a computer algebra system, you can find the general 
solution to be

y(2 − y)
(1 − y)2 = Ce2kt. General solution

To solve for the constants C and k, use the initial conditions. That is, because y = 0.5 
when t = 0, you can determine that C = 3. Similarly, because y = 0.8 when t = 4, it 
follows that

0.8(1.2)
(0.2)2 = 3e8k

which implies that

k =
1
8

 ln 8 ≈ 0.2599.

So, the particular solution is

y(2 − y)
(1 − y)2 = 3e0.5199t. Particular solution

Using the model, you can estimate the percent of y
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the population that will have characteristic D after  
10 generations to be given by

y(2 − y)
(1 − y)2 = 3e0.5199(10).

Using a computer algebra system, you can solve  
this equation for y to obtain 

y ≈ 0.96

or 96% of the population. The graph of the model  
is shown in Figure 6.18.
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ConCept CheCk
1.  Separation of Variables Determine whether each 

differential equation is separable.

 (a) y = 2x5 y′ − y′ (b) 
y′
x

= x2 y + 1

2.  mutually Orthogonal What does it mean for two 
families of curves to be mutually orthogonal?

 Finding a General Solution Using  
Separation of Variables In Exercises 3–16, 
find the general solution of the differential equation.

 3. 
dy
dx

=
x
y
  4. 

dy
dx

=
3x2

y2

 5. 
dy
dx

=
x − 1

y3   6. 
dy
dx

=
6 − x2

2y3

 7. 
dr
ds

=
4
9

r  8. 
dr
ds

=
9
4

s

 9. (2 + x)y′ = 3y 10. xy′ = y

11. y2y′ = sin 9x 12. yy′ = −8 cos(πx)
13. √1 − 4x2 y′ = x 14. √x3 − 5 y′ = x2

15. y ln x − xy′ = 0 16. 12yy′ − 7ex = 0

 Finding a Particular Solution Using 
Separation of Variables In Exercises 17–26, 
find the particular solution of the differential 
equation that satisfies the initial condition.

 Differential Equation Initial Condition

17. yy′ − 2ex = 0 y(0) = 3

18. √x + √y y′ = 0 y(1) = 9

19. y(x + 1) + y′ = 0 y(−2) = 1

20. 2xy′ − ln x2 = 0 y(1) = 2

21. y(1 + x2)y′ − x(1 + y2) = 0 y(0) = √3

22. y√1 − x2 y′ − x√1 − y2 = 0 y(1
2) = 1

2

23. 
du
dv

= uv sin v2 u(0) = e2

24. 
dr
ds

= er−2s r(0) = 0

25. dP − kP dt = 0 P(0) = P0

26. dT + k(T − 70) dt = 0 T(0) = 140

 Finding a Particular Solution Curve In 
Exercises 27–30, find an equation of the curve that 
passes through the point and has the given slope.

27. (0, 2), y′ =
x
4y

 28. (1, 1), y′ = −
9x
16y

29. (9, 1), y′ =
y
2x

 30. (8, 2), y′ =
2y
3x

Using Slope In Exercises 31 and 32, find all functions f  
having the indicated property.

31.  The tangent to the graph of f  at the point (x, y) intersects the  
x-axis at (x + 2, 0).

32. All tangents to the graph of f  pass through the origin.

Slope Field In Exercises 33–36, sketch a few solutions of 
the differential equation on the slope field and then find the 
 general solution analytically. to print an enlarged copy of the 
graph, go to MathGraphs.com.

33. 
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dx

= x 34. 
dy
dx

= −
x
y
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2

−2

  

x
4

−4

4

y

−4

35. 
dy
dx

= 4 − y 36. 
dy
dx

= 0.25x(4 − y)

 

x
3 41 2−3 −1−2

y

8

  

x
−4 −2−3 −1 2 31 4

y

8

euler’s method In Exercises 37 and 38, (a) use Euler’s 
method with a step size of h = 0.1 to approximate the particular 
solution of the initial value problem at the given x-value, (b) find 
the exact solution of the differential equation analytically, and  
(c) compare the solutions at the given x-value.

 Differential Equation Initial Condition x-value

37. 
dy
dx

= −6xy (0, 5) x = 1

38. 
dy
dx

=
2x + 12
3y2 − 4

 (1, 2) x = 2

39.  radioactive Decay The rate of decomposition of 
radioactive radium is proportional to the amount present at 
any time. The half-life of radioactive radium is 1599 years. 
What percent of a present amount will remain after 50 years?

40.  Chemical reaction In a chemical reaction, a certain  
compound changes into another compound at a rate proportional 
to the unchanged amount. There is 40 grams of the original 
compound initially and 35 grams after 1 hour. When will  
75 percent of the compound be changed?

6.3 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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414 Chapter 6 Differential Equations

Slope Field In Exercises 41– 44, (a) write a differential 
equation for the statement, (b) match the differential equation 
with a possible slope field, and (c) verify your result by using 
a graphing utility to graph a slope field for the differential  
equation. [the slope fields are labeled (i), (ii), (iii), and (iv).]

(i) 

x
−5 −1

9

5

y   (ii) 

x
−1

−5

5

9

y

(iii) 

x
−5 −1

9

5

y   (iv) 

x
−5 5

y

−2.5

2.5

41.  The rate of change of y with respect to x is proportional to the 
difference between y and 4.

42.  The rate of change of y with respect to x is proportional to the 
difference between x and 4.

43.  The rate of change of y with respect to x is proportional to the 
product of y and the difference between y and 4.

44. The rate of change of y with respect to x is proportional to y2.

45.  Weight Gain A calf that weighs 60 pounds at birth gains 
weight at the rate dw�dt = k(1200 − w), where w is the 
weight in pounds and t is the time in years.

 (a) Find the general solution of the differential equation.

 (b)  Use a graphing utility to graph the particular solutions for 
k = 0.8, 0.9, and 1.

 (c)  The animal is sold when its weight reaches 800 pounds. 
Find the time of sale for each of the models in part (b).

 (d)  What is the maximum weight of the animal for each of the 
models in part (b)?

46.  Weight Gain A goat that weighs 7 pounds at birth gains 
weight at the rate dw�dt = k(250 − w), where w is the weight 
in pounds and t is the time in years. Repeat Exercise 45 assuming 
that the goat is sold when its weight reaches 175 pounds.

 Finding Orthogonal Trajectories In 
Exercises 47–52, find the orthogonal trajectories of 
the family. use a graphing utility to graph several 
members of each family.

47. 3x2 − y2 = C 48. x2 − 2y2 = C

49. x2 = Cy 50. y2 = 2Cx

51. y2 = Cx3

52. y = Cex

53.  Biology At any time t, the rate of growth of the population 
N of deer in a state park is proportional to the product of N 
and L − N, where L = 500 is the maximum number of deer 
the park can sustain. When t = 0, N = 100, and when t = 4, 
N = 200. Write N as a function of t.

54.  Sales Growth The rate of change in sales S (in thousands 
of units) of a new product is proportional to the product of S 
and L − S, where L (in thousands of units) is the estimated 
maximum level of sales. When t = 0, S = 10. Write and solve 
the  differential equation for this sales model.

advertising awareness In Exercises 55 and 56, use the 
advertising awareness model described in Example 6 to find 
the number of people y (in millions) aware of the product as a 
function of time t (in years).

55. y = 0 when t = 0; y = 0.75 when t = 1

56. y = 0 when t = 0; y = 0.9 when t = 2

Chemical reaction In Exercises 57 and 58, use the chemical 
reaction model given in Example 7 to find the amount y as a 
function of t, and use a graphing utility to graph the function.

57. y = 45 grams when t = 0; y = 4 grams when t = 2

58. y = 75 grams when t = 0; y = 12 grams when t = 1

Using a Gompertz Growth model In Exercises 59 and 
60, use the Gompertz growth model described on page 411 to 
find the growth function, and sketch its graph.

59. L = 500; y = 100 when t = 0; y = 150 when t = 2

60. L = 5000; y = 500 when t = 0; y = 625 when t = 1

61.  Biology A population of eight beavers has been introduced 
into a new wetlands area. Biologists estimate that the maximum 
population the wetlands can sustain is 60 beavers. After  
3 years, the population is 15 beavers. According to a Gompertz 
growth model, how many beavers will be present in the 
wetlands after 10 years?

62.  Biology A population of 30 rabbits has been introduced into 
a new region. It is estimated that the maximum population the 
region can sustain is 400 rabbits. After 1 year, the population 
is estimated to be 90 rabbits. According to a Gompertz growth 
model, how many rabbits will be present after 3 years?

Biology In Exercises 63 and 64, use the hybrid selection model 
described on page 412 to find the percent of the population that 
has the given characteristic. (assume a = 2 and b = 1.)

63.  You are studying a population of mayflies to determine how 
quickly characteristic A will pass from one generation to 
the next. At the start of the study, half the population has 
characteristic A. After four generations, 75% of the population 
has characteristic A. Find the percent of the population that 
will have characteristic A after 10 generations. 

64.  A research team is studying a population of snails to determine 
how quickly characteristic B will pass from one  generation 
to the next. At the start of the study, 40% of the snails have 
characteristic B. After five generations, 80% of the population 
has characteristic B. Find the percent of the  population that 
will have characteristic B after eight generations. 
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65.  Chemical mixture A 100-gallon tank is full of a solution 
con taining 25 pounds of a concentrate. Starting at time t = 0, 
distilled water is admitted to the tank at the rate of 5 gallons 
per minute, and the well-stirred solution is withdrawn at the 
same rate, as shown in the figure.

 

5 gal/min

5 gal/min

 (a)  Find the amount Q of the concentrate in the solution as a 
function of t. (Hint: Q′ + Q�20 = 0)

 (b)  Find the time when the amount of concentrate in the tank 
reaches 15 pounds.

66.  Chemical mixture A 200-gallon tank is half full of  
distilled water. At time t = 0, a solution containing 0.5 pound 
of  concentrate per gallon enters the tank at the rate of 5 gallons 
per minute, and the well-stirred mixture is withdrawn at the 
same rate. Find the amount Q of concentrate in the tank after 
30  minutes. (Hint: Q′ + Q�20 = 5�2)

67.  Chemical reaction In a chemical reaction, a compound 
changes into another compound at a rate proportional to the 
unchanged amount, according to the model

 
dy
dt

= ky.

 (a) Solve the differential equation.

 (b)  The initial amount of the original compound is 20 grams, 
and the amount remaining after 1 hour is 16 grams. When 
will 75% of the compound have been changed?

68.  Snow removal The rate of change in the number of 
miles s of road cleared per hour by a snowplow is inversely 
proportional to the depth h of snow. That is,

 
ds
dh

=
k
h

.

  Find s as a function of h given that s = 25 miles when h = 2 
inches and s = 12 miles when h = 6 inches (2 ≤ h ≤ 15).

69.  Chemistry A wet towel hung from a clothesline to dry 
loses moisture through evaporation at a rate proportional to 
its moisture content. After 1 hour, the towel has lost 40% of 
its original moisture content. After how long will it have lost 
80%?

70.  Biology Let x and y be the sizes of two internal organs of 
a particular mammal at time t. Empirical data indicate that the 
relative growth rates of these two organs are equal, and can be 
modeled by

 
1
x
 
dx
dt

=
1
y
 
dy
dt

.

 Use this differential equation to write y as a function of x.

71.  Population Growth When predicting population growth, 
demographers must consider birth and death rates as well as 
the net change caused by the difference between the rates of 
immigration and emigration. Let P be the population at time t 
and let N be the net increase per unit time due to the difference 
between immigration and emigration. The rate of growth of 
the population is given by

 
dP
dt

= kP + N, N is constant.

 Solve this differential equation to find P as a function of time.

72.  meteorology The barometric pressure y (in inches of 
mercury) at an altitude of x miles above sea level decreases at 
a rate proportional to the current pressure according to the model

 
dy
dx

= −0.2y

  where y = 29.92 inches when x = 0. Find the barometric 
pressure (a) at the top of Mount St. Helens (8364 feet) and (b) 
at the top of Mount Denali (20,310 feet).

73.   Investment A large corporation starts at time t = 0 to 
invest part of its receipts at a rate of P dollars per year in a 
fund for future corporate expansion. The fund earns r percent 
interest per year compounded continuously. The rate of 
growth of the amount A in the fund is given by

 
dA
dt

= rA + P

  where A = 0 when t = 0. Solve this differential equation for 
A as a function of t.

Investment In Exercises 74–76, use the result of Exercise 73.

74. Find A for P = $275,000, r = 8%, and t = 10 years.

75.  The corporation needs $260,000,000 in 8 years and the fund 
earns 71

4% interest compounded continuously. Find P.

76.  The corporation needs $1,000,000 and it can invest $125,000 per 
year in a fund earning 8% interest compounded continuously. 
Find t.

Using a Gompertz Growth model In Exercises 77 and 
78, use the Gompertz growth model described in Example 8.

77. (a)  Use a graphing utility to graph the slope field for the 
growth model when k = 0.02 and L = 5000.

 (b) Describe the behavior of the graph as t →∞.

 (c)  Solve the growth model for L = 5000, y0 = 500, and 
k = 0.02.

 (d)  Graph the equation you found in part (c). Determine the 
concavity of the graph.

78. (a)  Use a graphing utility to graph the slope field for the  
growth model when k = 0.05 and L = 1000.

 (b) Describe the behavior of the graph as t →∞.

 (c)  Solve the growth model for L = 1000, y0 = 100, and 
k = 0.05.

 (d)  Graph the equation you found in part (c). Determine the 
concavity of the graph.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



416 Chapter 6 Differential Equations

iStockphoto.com/Travenian

eXpLoRInG ConCeptS
79.  Separation of Variables Is an equation of the 

form

dy
dx

= f (x)g(y) − f (x)h(y), g(y) ≠ h(y)

 separable? Explain.

80. Finding a General Solution Find the general

 solution of 
dy
dx

=
ay + b
cy + d

, where a, b, c, and d are

 nonzero constants.

Separation of Variables In Exercises 81–84, determine 
whether the differential equation is separable. If the equation 
is separable, rewrite it in the form N( y) dy = M(x) dx. (Do not 
solve the differential equation.)

81. y(1 + x) dx + x dy = 0 82. y′ = y1�2

83. y′ + xy = 5 84. y′ = x − xy − y + 1

iStockphoto.com/Travenian

 86.  hOW DO yOU See IT? Recall from Example 1
that the general solution of

 (x2 + 4) dy
dx

= xy

  is y = C√x2 + 4. The graphs below show the 
particular solutions for C = 0.5, 1, 2, and 3. 
Match the value of C with each graph. Explain 
your reasoning.

x

y

−1−2−3−4−5 1 2 3 4 5

3

a b

c

d

5

7
8
9

 86.  

Determining If a Function Is homogeneous In Exercises 
87–94, determine whether the function is homogeneous, and if 
it is, determine its degree. a function f (x, y) is homogeneous of 
degree n if f (tx, ty) = tnf (x, y).

 87. f (x, y) = x3 − 4xy2 + y3

 88. f (x, y) = x4 + 2x2y2 + x + y

 89. f (x, y) = ex�y

 90. f (x, y) = x2ey�x + y2

 91. f (x, y) = 2 ln xy

 92. f (x, y) = tan(x + y)

 93. f (x, y) = 2 ln 
x
y

 94. f (x, y) = tan 
y
x

Solving a homogeneous Differential equation In 
Exercises 95–100, solve the homogeneous differential equation 
in terms of x and y. a homogeneous differential equation is an 
equation of the form 

M(x, y) dx + N(x, y) dy = 0

where M and N are homogeneous functions of the same degree. 
to solve an equation of this form by the method of separation 
of variables, use the substitutions y = vx and dy = x dv + v dx.

 95. (x + y) dx − 2x dy = 0

 96. (x3 + y3) dx − xy2 dy = 0

 97. (x − y) dx − (x + y) dy = 0

 98. (x2 + y2) dx − 2xy dy = 0

 99. xy dx + (y2 − x2) dy = 0

100. (2x + 3y) dx − x dy = 0

True or False? In Exercises 101–103, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

101.  The function y = 0 is always a solution of a differential 
equation that can be solved by separation of variables.

102. The differential equation y′ = xy − 2y + x − 2 is separable.

103.  The families x2 + y2 = 2Cy and x2 + y2 = 2Kx are mutually 
orthogonal.

pUtnAM eXAM ChALLenGe
104.  A not uncommon calculus mistake is to believe that 

the product rule for derivatives says that ( fg)′ = f ′g′. If 

f (x) = ex2

   determine, with proof, whether there exists an open 
interval (a, b) and a nonzero function g defined on (a, b) 
such that this wrong product rule is true for x in (a, b).

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

 Ignoring resistance, a 
sailboat starting from 
rest accelerates (dv�dt) 
at a rate proportional 
to the difference between 
the velocities of the wind 
and the boat.

(a)  The wind is blowing 
at 20 knots, and after 
1 half-hour, the boat is moving at 10 knots. Write the 
velocity v as a function of time t.

(b)  Use the result of part (a) to write the distance traveled 
by the boat as a function of time.

85. Sailing
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 6.4 The Logistic Equation 417

6.4 The Logistic Equation

 Solve and analyze logistic differential equations.
 Use logistic differential equations to model and solve applied problems.

Logistic Differential Equation
In Section 6.2, the exponential growth model was derived from the fact that the rate of 
change of a variable y is proportional to the value of y. You observed that the differential 
equation dy�dt = ky has the general solution y = Cekt. Exponential growth is unlimited, 
but when describing a population, there often exists some upper limit L past which 
growth cannot occur. This upper limit L is called the carrying capacity, which is the 
maximum population y(t) that can be sustained or supported as time t increases. A model 
that is often used to describe this type of growth is the logistic differential equation

dy
dt

= ky(1 −
y
L) Logistic differential equation

where k and L are positive constants. A population that satisfies this equation does not 
grow without bound, but approaches the carrying capacity L as t increases.

From the equation, you can see that if y is between 0 and the carrying capacity L, 
then dy�dt > 0, and the population increases. If y is greater than L, then dy�dt < 0, 
and the population decreases. The general solution of the logistic differential equation 
is derived in the next example.

 Deriving the General Solution

Solve the logistic differential equation 
dy
dt

= ky(1 −
y
L).

Solution Begin by separating variables.

 
dy
dt

= ky(1 −
y
L) Write differential equation.

 
1

y(1 − y�L) dy = k dt  Separate variables.

 ∫ 
1

y(1 − y�L) dy = ∫ k dt  Integrate each side.

 ∫ (1
y

+
1

L − y) dy = ∫ k dt  Rewrite left side using partial fractions.

 ln∣y∣ − ln∣L − y∣ = kt + C  Find antiderivative of each side.

 ln∣L − y
y ∣ = −kt − C  Multiply each side by −1  and simplify.

 ∣L − y
y ∣ = e−kt−C  Exponentiate each side.

 ∣L − y
y ∣ = e−Ce−kt  Property of exponents

 
L − y

y
= be−kt  Let ±e−C = b.

Solving this equation for y produces the general solution y =
L

1 + be−kt. 

remark A review of the 
method of partial fractions is 
given in Section 8.5.
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418 Chapter 6 Differential Equations

From Example 1, you can conclude that all solutions of the logistic differential 
equation are of the general form

y =
L

1 + be−kt.

The graph of the function y is called the logistic curve, as shown in Figure 6.19. In the 
next example, you will verify a particular solution of a logistic differential equation and 
find the initial condition.

t

y

L

Logistic
curve

y = L

 Note that as t →∞, y → L.
 Figure 6.19

 Verifying a Particular Solution

Verify that the equation

y =
4

1 + 2e−3t

satisfies the logistic differential equation, and find the initial condition.

Solution Comparing the given equation with the general form derived in Example 1, 
you know that L = 4, b = 2, and k = 3. You can verify that y satisfies the logistic 
differential equation as follows.

 y = 4(1 + 2e−3t)−1 Rewrite using negative exponent.

 y′ = 4(−1)(1 + 2e−3t)−2(−6e−3t) Apply Power Rule.

 = 3( 4
1 + 2e−3t)( 2e−3t

1 + 2e−3t) Rewrite.

 = 3y( 2e−3t

1 + 2e−3t) Rewrite using y =
4

1 + 2e−3t.

 = 3y(1 −
1

1 + 2e−3t) Rewrite fraction using long division.

 = 3y(1 −
4

4(1 + 2e−3t)) Multiply fraction by 
4
4

.

 = 3y(1 −
y
4) Rewrite using y =

4
1 + 2e−3t.

So, y satisfies the logistic differential equation

y′ = 3y(1 −
y
4).

The initial condition can be found by letting t = 0 in the given equation.

y =
4

1 + 2e−3(0) =
4
3

 Let t = 0 and simplify.

So, the initial condition is y(0) = 4
3. 

exploration
Use a graphing utility to 
investigate the effects of the 
values of L, b, and k on the 
graph of

y =
L

1 + be−kt.

Include some examples to 
support your results.
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 Verifying the Upper Limit

Verify that the upper limit of 

y =
4

1 + 2e−3t

is 4.

Solution In Figure 6.20, you can see that the values of y appear to approach 4 as t 
increases without bound. You can come to this conclusion numerically, as shown in 
the table.

t 0 1 2 5 10 100

y 1.3333 3.6378 3.9803 4.0000 4.0000 4.0000

You can obtain the same results analytically, as follows.

lim
t→∞

 y = lim
t→∞

 
4

1 + 2e−3t =
lim
t→∞

 4

lim
t→∞

 (1 + 2e−3t) =
4

1 + 0
= 4

The upper limit of y is 4, which is also the carrying capacity L = 4.

 Determining the Point of Inflection

Sketch a graph of 

y =
4

1 + 2−3t.

Calculate y″ in terms of y and y′. Then determine the point of inflection.

Solution From Example 2, you know that

y′ = 3y(1 −
y
4).

Now calculate y″ in terms of y and y′.

 y″ = 3y(−
y′
4) + (1 −

y
4)3y′ Differentiate using Product Rule.

 y″ = 3y′(1 −
y
2) Factor and simplify.

When 2 < y < 4, y″ < 0 and the graph of y is concave downward. When 0 < y < 2, 
y″ > 0 and the graph of y is concave upward. So, a point of inflection must occur at 
y = 2. The corresponding t-value is 

2 =
4

1 + 2e−3t  1 + 2e−3t = 2  e−3t =
1
2

  t =
1
3

 ln 2.

The point of inflection is (1
3 ln 2, 2), as shown in Figure 6.21. 

In Example 4, the point of inflection occurs at y = L�2. This is true for any 
logistic growth curve for which the solution starts below the carrying capacity L (see  
Exercise 31).

t

y

−1−2−3−4 1 2 3 4
−1

−2

1

2

3

5

6

Figure 6.20

t

y

−1−2−3−4 1 2 3 4
−1

−2

1

2

3

5

6

1
3

ln 2, 2 Point of
in�ection(          )

y ′′ < 0

y ′′ > 0
Concave
upward

Concave
downward

4

Figure 6.21

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



420 Chapter 6 Differential Equations

 Graphing a Slope Field and Solution Curves

Graph a slope field for the logistic differential equation 

y′ = 0.05y(1 −
y

800).

Then graph solution curves for the initial conditions y(0) = 200, y(0) = 1200, and 
y(0) = 800.

Solution You can use a graphing utility to graph the slope field shown in Figure 
6.22. The solution curves for the initial conditions 

y(0) = 200, y(0) = 1200, and y(0) = 800

are shown in Figures 6.23–6.25.

 

20 40 60 80 100

200

400

600

800

1000

1200

t

y  

20 40 60 80 100

200

400

600

800

1000

1200

t

y

(0, 200)

 Slope field for Particular solution for

 y′ = 0.05y(1 −
y

800) y′ = 0.05y(1 −
y

800)
  and initial condition y(0) = 200
 Figure 6.22 Figure 6.23
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t

y

(0, 1200)
  

20 40 60 80 100

200

400

600

800

1000

1200

t

y

(0, 800)

 Particular solution for Particular solution for

 y′ = 0.05y(1 −
y

800) y′ = 0.05y(1 −
y

800)
 and initial condition y(0) = 1200 and initial condition y(0) = 800
 Figure 6.24 Figure 6.25

Note that as t increases without bound, the solution curves in Figures 6.23–6.25 all tend 
to the same limit, which is the carrying capacity of 800. 
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Application

 Solving a Logistic Differential equation

A state game commission releases 40 elk into a game refuge. After 5 years, the elk 
population is 104. The commission believes that the environment can support no more 
than 4000 elk. The growth rate of the elk population p is

dp
dt

= kp(1 −
p

4000), 40 ≤ p ≤ 4000

where t is the number of years.

a. Write a model for the elk population in terms of t.

b.  Graph the slope field for the differential equation and the solution that passes 
through the point (0, 40).

c. Use the model to estimate the elk population after 15 years.

d. Find the limit of the model as t →∞.

Solution

a. You know that L = 4000. So, the solution of the equation is of the form

p =
4000

1 + be−kt .

 Because p(0) = 40, you can solve for b as follows.

40 =
4000

1 + be−k(0)  40 =
4000
1 + b

  b = 99

 Then, because p = 104 when t = 5, you can solve for k.

104 =
4000

1 + 99e−k(5)  k ≈ 0.194

 So, a model for the elk population is 

p =
4000

1 + 99e−0.194t .

b. Using a graphing utility, you can graph the slope field of

dp
dt

= 0.194p(1 −
p

4000)
 and the solution that passes through (0, 40), as shown in Figure 6.26.

c. To estimate the elk population after 15 years, substitute 15 for t in the model.

 p =
4000

1 + 99e−0.194(15) Substitute 15 for t.

 =
4000

1 + 99e−2.91 Simplify.

 ≈ 626 Simplify.

d. As t increases without bound, the denominator of 

4000
1 + 99e−0.194t 

 gets closer and closer to 1. So,

lim
t→∞

 
4000

1 + 99e−0.194t = 4000. 

80
0

0

5000

Slope field for 
dp
dt

= 0.194p(1 −
p

4000)
and the solution passing through (0, 40)
Figure 6.26
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422 Chapter 6 Differential Equations

6.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Carrying Capacity Describe carrying capacity in 

your own words.

2.  Logistic Curve Write an equation that represents a 
logistic curve with a horizontal asymptote at y = 3. Explain.

matching In Exercises 3–6, match the logistic equation with 
its graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) y

t
−2−4−6 108642

10
8
6
4

12
14

 (b) y

t
−2−4−6 108642

10
8

2

12
14

(c) y

t
−2−4−6 108642

10
8
6
4

12
14

 (d) y

t
−2−4−6 108642

10
8
6
4

12
14

 3. y =
12

1 + e−t  4. y =
12

1 + 3e−t

 5. y =
12

1 + 1
2e−t

  6. y =
12

1 + e−2t

 Verifying a Particular Solution In Exercises 
7–10, verify that the equation satisfies the logistic

differential equation 
dy
dt

= ky(1 −
y
L). Then find the  

initial condition.

 7. y =
8

1 + e−2t  8. y =
12

1 + 3e−t

 9. y =
12

1 + 6e−t 10. y =
12

1 + e−2t

 Using a Logistic equation In Exercises 11–14, 
the logistic equation models the growth of a 
population. Use the equation to (a) find the value of 
k, (b) find the carrying capacity, (c) find the initial 
population, (d) determine when the population will 
reach 50% of its carrying capacity, and (e) write a 
logistic differential equation that has the solution P(t).

11. P(t) =
2100

1 + 29e−0.75t 12. P(t) =
5000

1 + 39e−0.2t

13. P(t) =
6000

1 + 4999e−0.8t 14. P(t) =
1000

1 + 8e−0.2t

Using a Logistic Differential equation In Exercises 
15–18, the logistic differential equation models the growth rate 
of a population. Use the equation to (a) find the value of k,  
(b) find the carrying capacity, (c) use a computer algebra  
system to graph a slope field, and (d) determine the value of P 
at which the population growth rate is the greatest.

15. 
dP
dt

= 3P(1 −
P

100) 16. 
dP
dt

= 0.5P(1 −
P

250)
17. 

dP
dt

= 0.1P − 0.0004P2 18. 
dP
dt

= 0.4P − 0.00025P2

 Solving a Logistic Differential equation In 
Exercises 19–22, find the logistic equation that 
satisfies the initial condition. Then use the logistic 
equation to find y when t = 5 and t = 100.

19. 
dy
dt

= y(1 −
y

36), (0, 4)

20. 
dy
dt

= 2.8y(1 −
y

10), (0, 7)

21. 
dy
dt

=
4y
5

−
y2

150
, (0, 8)

22. 
dy
dt

=
3y
20

−
y2

1600
, (0, 15)

matching In Exercises 23–26, match the logistic differential 
equation and initial condition with the graph of its solution. 
[The graphs are labeled (a), (b), (c), and (d).]

(a) 

t

y

1 2 3 4 5 6 7 8 9 10

20
40
60
80

100
120
140
160
180

 (b) 

t

y

1 2 3 4 5 6 7 8 9 10

100

200

300

400

(c) 

t

y

1 2 3 4 5 6 7 8 9 10

100

200

300

400

 (d) 

t

y

1 2 3 4 5 6 7 8 9 10

20
40
60
80

100
120
140
160
180

23. 
dy
dt

= 0.5y(1 −
y

250), 24. 
dy
dt

= 0.9y(1 −
y

100),

 (0, 350)  (0, 100)

25. 
dy
dt

= 0.5y(1 −
y

250), 26. 
dy
dt

= 0.9y(1 −
y

100),

 (0, 50)  (0, 50)
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6.4 The Logistic Equation 423

Slope Field In Exercises 27 and 28, a logistic differential 
equation, a point, and a slope field are given. (a) Sketch two 
approximate solutions of the differential equation on the slope 
field, one of which passes through the given point. (b) Find 
the particular solution of the differential equation and use a 
graphing utility to graph the solution. Compare the result with 
the sketch in part (a). To print an enlarged copy of the graph, 
go to MathGraphs.com.

27. 
dy
dt

= 0.2y(1 −
y

1000), 28. 
dy
dt

= 0.9y(1 −
y

200),

(0, 105)  (0, 240)

t

y

10 20 30 40 50

200

400

600

800

1000

 

t

y

2 4 6 8 10

50

100

150

200

250

300

eXpLoRInG ConCeptS

29.  Determining Values It is known that y =
L

1 + be−kt

 is a solution of the logistic differential equation 

dy
dt

= 0.75y(1 −
y

2500).

  Is it possible to determine L, k, and b from the information 
given? If so, find their values. If not, which value(s) 
cannot be determined and what information do you need 
to determine the value(s)?

30.  Concavity Describe the concavity of the logistic curve
represented by y = 4�(5 + 3e−6t). Explain your reasoning.

31.  Point of Inflection For any logistic growth curve, show 
that the point of inflection occurs at y = L�2 when the 
solution starts below the carrying capacity L.

 32.  HOW DO YOU See IT? The growth of a 
population is modeled by a logistic equation, 
as shown in the graph below. What happens to 
the rate of growth as the population increases? 
What do you think causes this to occur in 
real-life situations, such as animal or human 
populations?

t

y

 32.  

33.  endangered Species A conservation organization 
releases 25 Florida panthers into a game preserve. After 
2 years, there are 39 panthers in the preserve. The Florida 
preserve has a carrying capacity of 200 panthers.

 (a)  Write a logistic equation that models the population of 
panthers in the preserve.

 (b) Find the population after 5 years.

 (c) When will the population reach 100?

 (d)  Write a logistic differential equation that models the 
growth rate of the panther population. Then repeat part (b) 
using Euler’s Method with a step size of h = 1. Compare 
the approximation with the exact answer.

 (e)  After how many years is the panther population growing 
most rapidly? Explain.

34.  Bacteria Growth At time t = 0, a bacterial culture 
weighs 1 gram. Two hours later, the culture weighs 4 grams. 
The maximum weight of the culture is 20 grams.

 (a)  Write a logistic equation that models the weight of the 
bacterial culture.

 (b) Find the culture’s weight after 5 hours.

 (c) When will the culture’s weight reach 18 grams?

 (d)  Write a logistic differential equation that models the 
growth rate of the culture’s weight. Then repeat part (b) 
using Euler’s Method with a step size of h = 1. Compare 
the approximation with the exact answer.

 (e)  After how many hours is the culture’s weight increasing 
most rapidly? Explain.

True or False? In Exercises 35 and 36, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

35. For the logistic differential equation 

dy
dt

= ky(1 −
y
L)

 if y > L, then dy�dt > 0 and the population increases.

36. For the logistic differential equation 

dy
dt

= ky(1 −
y
L)

 if 0 < y < L, then dy�dt > 0 and the population increases.

37.  Logistic Differential equation Identify two constant 
functions which are solutions to

dy
dt

= ky(1 −
y
L).

  Assuming that the equation models a population, interpret 
your solutions.

38. Finding a Derivative Show that if y =
1

1 + be−kt, then

 
dy
dt

= ky(1 − y).
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424 Chapter 6 Differential Equations

6.5 First-Order Linear Differential Equations6.5 First-Order Linear Differential Equations

  Solve a first-order linear differential equation, and use linear differential equations to 
solve applied problems.

First-Order Linear Differential Equations
In this section, you will see how to solve a very important class of first-order differential 
equations—first-order linear differential equations.

Definition of First-Order Linear Differential Equation

A first-order linear differential equation is an equation of the form

dy
dx

+ P(x)y = Q(x)

where P and Q are continuous functions of x. This first-order linear differential 
equation is said to be in standard form.

To solve a linear differential equation, write it in standard form to identify the 
functions P(x) and Q(x). Then integrate P(x) and form the expression

u(x) = e∫P(x) dx Integrating factor

which is called an integrating factor. The general solution of the equation is

y =
1

u(x)∫ Q(x)u(x) dx. General solution

It is instructive to see why the integrating factor helps solve a linear differential equation 
of the form y′ + P(x)y = Q(x). When both sides of the equation are multiplied by the 
 integrating factor u(x) = e∫P(x) dx, the left side becomes the derivative of a product.

 y′e∫P(x) dx + P(x)ye∫P(x) dx = Q(x)e∫P(x) dx

 [ ye∫P(x) dx]′ = Q(x)e∫P(x) dx

Integrating both sides of this second equation and dividing by u(x) produce the general 
solution.

 Solving a Linear Differential Equation

Find the general solution of

y′ + y = ex.

Solution For this equation, P(x) = 1 and Q(x) = ex. So, the integrating factor is

u(x) = e∫P(x) dx = e∫dx = ex.

This implies that the general solution is

 y =
1

u(x) ∫ Q(x)u(x) dx

 =
1
ex ∫ex(ex) dx

 = e−x(1
2

e2x + C)
 =

1
2

ex + Ce−x. 

ANNA JOHNSON PELL WHEELER 
(1883–1966)

Anna Johnson Pell Wheeler 
was awarded a master’s degree 
in 1904 from the University 
of Iowa for her thesis The 
Extension of Galois Theory to 
Linear Differential Equations.
Influenced by David Hilbert, 
she worked on integral 
equations while studying infinite 
linear spaces.

Mathematical Association of America
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6.5 First-Order Linear Differential Equations 425

 Solving a First-Order Linear Differential Equation

See LarsonCalculus.com for an interactive version of this type of example.

Find the general solution of xy′ − 2y = x2, x > 0.

Solution The standard form of the equation is

y′ + (−
2
x)y = x, x > 0. Standard form

So, P(x) = −2�x, and you have

∫P(x) dx = −∫ 
2
x
 dx = −ln x2

which implies that the integrating factor is

e∫P(x) dx = e−ln x2 =
1

eln x2 =
1
x2. Integrating factor

So, multiplying each side of the standard form by 1�x2 yields

 
y′
x2 −

2y
x3 =

1
x

 
d
dx

 [ y
x2] =

1
x

 
y
x2 = ∫ 

1
x
 dx

 
y
x2 = ln x + C

 y = x2(ln x + C). General solution

Several solution curves (for C = −2, −1, 0, 1, 2, 3, and 4) are shown in Figure 6.27.
  

In most falling-body problems discussed so far in the text, air resistance has been 
neglected. The next example includes this factor. In the example, the air resistance on the 
falling object is assumed to be proportional to its velocity v. If g is the acceleration due 
to gravity, the downward force F on a falling object of mass m is given by −mg − kv. 
If a is the acceleration of the object, then by Newton’s Second Law of Motion,

F = ma = m 
dv
dt

which yields the following differential equation.

m 
dv
dt

= −mg − kv  
dv
dt

+
kv
m

= −g

REmARk Rather than 
memorizing the formula in 
Theorem 6.2, just remember 
that multiplication by the 
integrating factor e∫P(x) dx 
converts the left side of the 
differential equation into 
the derivative of the product 
ye∫P(x) dx.

THEOREm 6.2  Solution of a First-Order Linear Differential 
Equation

An integrating factor for the first-order linear differential equation

y′ + P(x)y = Q(x)

is u(x) = e∫P(x) dx. The solution of the differential equation is

ye∫P(x) dx = ∫Q(x)e∫P(x) dx dx + C.

x

C = 4
C = 3

C = 2
C = 1

C = 0

C = −1

C = −2

y

1 2 3 4

−1

−2

1

2

Figure 6.27
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426 Chapter 6 Differential Equations

 A Falling Object with Air Resistance

An object of mass m is dropped from a hovering helicopter. The air resistance is 
proportional to the velocity of the object. Find the velocity of the object as a function 
of time t.

Solution The velocity v satisfies the equation

dv
dt

+
kv
m

= −g.  g = acceleration due to gravity, 
k = constant of proportionality

Letting b = k�m, you can separate variables to obtain

 dv = −(g + bv) dt

 ∫ 
dv

g + bv
= −∫dt

 
1
b

 ln∣g + bv∣ = −t + C1

 ln∣g + bv∣ = −bt + bC1

 g + bv = Ce−bt.  C = ebC1

Because the object was dropped, v = 0 when t = 0; so g = C, and it follows that

bv = −g + ge−bt  v =
−g(1 − e−bt)

b
= −

mg
k

(1 − e−kt�m). 

A simple electric circuit consists of an electric current I (in amperes), a resistance 
R (in ohms), an inductance L (in henrys), and a constant electromotive force E (in 
volts), as shown in Figure 6.28. According to Kirchhoff’s Second Law, if the switch S 
is closed when t = 0, then the applied electromotive force (voltage) is equal to the sum 
of the  voltage drops in the rest of the circuit. This, in turn, means that the current I 
satisfies the differential equation

L 
dI
dt

+ RI = E.

 An Electric Circuit Problem

Find the current I as a function of time t (in seconds), given that I satisfies the 
differential equation L(dI�dt) + RI = sin 2t, where R and L are nonzero constants.

Solution In standard form, the given linear equation is

dI
dt

+
R
L

I =
1
L

 sin 2t.

Let P(t) = R�L, so that e∫P(t) dt = e(R�L)t, and by Theorem 6.2,

 Ie(R�L)t =
1
L

 ∫e(R�L)t sin 2t dt

 =
1

4L2 + R2 e(R�L)t(R sin 2t − 2L cos 2t) + C.

So, the general solution is

 I = e−(R�L)t[ 1
4L2 + R2 e(R�L)t(R sin 2t − 2L cos 2t) + C]

 =
1

4L2 + R2 (R sin 2t − 2L cos 2t) + Ce−(R�L)t. 

REmARk Notice in 
Example 3 that the velocity 
approaches a limit of −mg�k  
as a result of the air resistance.  
For falling-body problems  
in which air resistance is  
neglected, the velocity  
increases without bound.

E
S

R I

L

Figure 6.28

REmARk The integral in 
Example 4 was found using a 
computer algebra system. In 
Chapter 8, you will learn how to 
integrate functions of this type 
using integration by parts.
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 6.5 First-Order Linear Differential Equations 427

One type of problem that can be described in terms of a differential equation 
involves chemical mixtures, as illustrated in the next example.

 A mixture Problem

A tank contains 50 gallons of a solution composed of 90% water and 10% alcohol. A 
second solution containing 50% water and 50% alcohol is added to the tank at a rate of 
4 gallons per minute. As the second solution is being added, the tank is being drained 
at a rate of 5 gallons per minute, as shown in Figure 6.29. The solution in the tank is 
stirred constantly. How much alcohol is in the tank after 10 minutes?

Solution Let y be the number of gallons of alcohol in the tank at any time t. You 
know that y = 5 when t = 0. Because the number of gallons of solution in the tank 
at any time is 50 − t, and the tank loses 5 gallons of solution per minute, it must lose

( 5
50 − t)y

gallons of alcohol per minute. Furthermore, because the tank is gaining 2 gallons of 
alcohol per minute, the rate of change of alcohol in the tank is

dy
dt

= 2 − ( 5
50 − t)y  

dy
dt

+ ( 5
50 − t)y = 2.

To solve this linear differential equation, let

P(t) =
5

50 − t

and obtain

∫P(t) dt = ∫ 
5

50 − t
 dt = −5 ln∣50 − t∣.

Because t < 50, you can drop the absolute value signs and conclude that

e∫P(t) dt = e−5 ln(50− t) =
1

(50 − t)5.

So, the general solution is

 
y

(50 − t)5 = ∫ 
2

(50 − t)5 dt

 
y

(50 − t)5 =
1

2(50 − t)4 + C

 y =
50 − t

2
+ C(50 − t)5.

Because y = 5 when t = 0, you have

5 =
50
2

+ C(50)5  −
20
505 = C

which means that the particular solution is

y =
50 − t

2
− 20(50 − t

50 )
5

.

Finally, when t = 10, the amount of alcohol in the tank is

y =
50 − 10

2
− 20(50 − 10

50 )
5

≈ 13.45 gal

which represents a solution containing 33.6% alcohol. 

5 gal/min

4 gal/min

Figure 6.29
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428 Chapter 6 Differential Equations

6.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  First-Order What does the term “first-order” refer to 

in a first-order linear differential equation?

2.  First-Order Linear Differential Equations 
Describe how to solve a first-order linear differential 
equation.

Determining Whether a Differential Equation Is 
Linear In Exercises 3–6, determine whether the differential 
equation is linear. Explain your reasoning.

 3. x3y′ + xy = ex + 1  4. 2xy − y′ ln x = y

 5. y′ − y sin x = xy2  6. 
2 − y′

y
= 5x

 Solving a First-Order Linear Differential 
Equation In Exercises 7–14, find the general 
solution of the first-order linear differential 
equation for x > 0.

 7. 
dy
dx

+ (1
x)y = 6x + 2  8. 

dy
dx

+ (2
x)y = 3x − 5

 9. y′ + 2xy = 10x 10. y′ + 3x2y = 6x2

11. (y + 1) cos x dx − dy = 0 12. (y − 1) sin x dx − dy = 0

13. y′ + 3y = e3x 14. xy′ + y = x2 ln x

Slope Field In Exercises 15 and 16, (a) sketch an approximate 
solution of the differential equation satisfying the given initial 
condition on the slope field, (b) find the particular solution 
that satisfies the given initial condition, and (c) use a graphing 
utility to graph the particular solution. Compare the graph 
with the sketch in part (a). To print an enlarged copy of the 
graph, go to MathGraphs.com.

15. 
dy
dx

= ex − y, 16. y′ + (1
x)y = sin x2,

 (0, 1)  (√π, 0)
 

x
−4 4

−3

5

y   

−4

x

y

4

−4 4

 Finding a Particular Solution In Exercises 
17–24, find the particular solution of the  
first-order linear differential equation for x > 0 
that satisfies the initial condition.

 Differential Equation Initial Condition

17. y′ + y = 6ex y(0) = 3

18. x3y′ + 2y = e1�x2 y(1) = e

 Differential Equation Initial Condition

19. y′ + y tan x = sec x + cos x y(0) = 1

20. y′ + y sec x = sec x y(0) = 4

21. y′ + (1
x)y = 0 y(2) = 2

22. y′ + (2x − 1)y = 0 y(1) = 2

23. x dy = (x + y + 2) dx y(1) = 10

24. 2xy′ − y = x3 − x y(4) = 2

25.  Population Growth When predicting population  
growth, demographers must consider birth and death rates as 
well as the net change caused by the difference between the  
rates of immigration and emigration. Let P be the population 
at time t and let N be the net increase per unit time resulting  
from the difference between immigration and emigration.  
So, the rate of growth of the population is given by

 
dP
dt

= kP + N

  where N is constant. Solve this differential equation to find 
P as a function of time, when at time t = 0 the size of the 
population is P0.

26.  Investment Growth A large corporation starts at time 
t = 0 to invest part of its receipts continuously at a rate of 
P dollars per year in a fund for future corporate expansion. 
Assume that the fund earns r percent interest per year 
compounded continuously. So, the rate of growth of the 
amount A in the fund is given by dA�dt = rA + P, where 
A = 0 when t = 0. Solve this differential equation for A as a 
function of t.

Investment Growth In Exercises 27 and 28, use the result 
of Exercise 26.

27. Find A for the following.

 (a) P = $275,000, r = 8%, t = 10 years

 (b) P = $550,000, r = 5.9%, t = 25 years

28.  Find t if the corporation needs $1,000,000 and it can invest 
$125,000 per year in a fund earning 8% interest compounded 
continuously.

29.  Learning Curve The management at a certain factory 
has found that the maximum number of units a worker can 
produce in a day is 75. The rate of increase in the number 
of units N produced with respect to time t in days by a new 
employee is proportional to 75 − N.

 (a)  Determine the differential equation describing the rate of 
change of performance with respect to time.

 (b) Solve the differential equation from part (a).

 (c)  Find the particular solution for a new employee who 
produced 20 units on the first day at the factory and  
35 units on the twentieth day.

6.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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6.5 First-Order Linear Differential Equations 429

Falling Object In Exercises 31 and 32, consider an 
object with a mass of 4 kilograms dropped from a height of 
1500 meters, where the air  resistance is proportional to the 
velocity.

31.  Write the velocity of the object as a function of time t when 
the velocity after 5 seconds is approximately −31 meters per 
second. What is the limiting value of the velocity function?

32.  Use the result of Exercise 31 to write the position of the object 
as a function of time t. Approximate the velocity of the object 
when it reaches ground level.

Electric Circuits In Exercises 33 and 34, use the differential 
equation for electric circuits given by

L 
dI
dt

+ RI + E.

In this equation, I is the current, R is the resistance, L is the 
inductance, and E is the electromotive force (voltage).

33.  Solve the differential equation for the current given a constant 
voltage E0.

34.  Use the result of Exercise 33 to find the equation for the current 
when I(0) = 0, E0 = 120 volts, R = 600 ohms, and L = 4 
henrys. When does the current reach 90% of its limiting value?

mixture In Exercises 35–38, consider a tank that at time 
t = 0 contains v0 gallons of a solution of which, by weight, q0 
pounds is soluble concentrate. another solution containing q1 
pounds of the concentrate per gallon is running into the tank 
at the rate of r1 gallons per minute. The solution in the tank is 
kept well stirred and is withdrawn at the rate of r2 gallons per 
minute.

35.  Let Q be the amount of concentrate (in pounds) in the solution 
at any time t. Show that

 
dQ
dt

+
r2Q

v0 + (r1 − r2)t
= q1r1.

36.  Let Q be the amount of concentrate (in pounds) in the solution 
at any time t. Write the differential equation for the rate of 
change of Q with respect to t when r1 = r2 = r.

37.  A 200-gallon tank is full of a solution containing 25 pounds 
of concentrate. Starting at time t = 0, distilled water is 
admitted to the tank at a rate of 10 gallons per minute, and the 
well-stirred solution is withdrawn at the same rate.

 (a)  Find the amount of concentrate Q (in pounds) in the 
solution as a function of t.

 (b)  Find the time at which the amount of concentrate in the 
tank reaches 15 pounds.

 (c)  Find the amount of concentrate (in pounds) in the solution 
as t →∞.

38.  A 200-gallon tank is half full of distilled water. Starting at 
time t = 0, a solution containing 0.5 pound of concentrate per 
gallon is admitted to the tank at a rate of 5 gallons per minute, 
and the well-stirred mixture is withdrawn at a rate of 3 gallons 
per minute.

 (a) At what time will the tank be full?

 (b)  At the time the tank is full, how many pounds of 
concentrate will it contain?

 (c)  Repeat parts (a) and (b), assuming that the solution 
entering the tank contains 1 pound of concentrate 
per gallon.

39.  Using an Integrating Factor The expression u(x) is 
an integrating factor for y′ + P(x)y = Q(x). Which of the 
following is equal to u′(x)? Verify your answer.

 (a) P(x)u(x) (b) P′(x)u(x)
 (c) Q(x)u(x) (d) Q′(x)u(x)

 40.  HOW DO YOU SEE IT? The graph shows 
the amount of concentrate Q (in pounds) in a 
solution in a tank at time t (in minutes) as a 
solution with concentrate enters the tank, is 
well stirred, and is withdrawn from the tank.
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(a)  How much concentrate is in the tank at time t = 0?

(b)  Which is greater, the rate of solution into the tank 
or the rate of solution withdrawn from the tank? 
Explain.

(c)  At what time is there no concentrate in the tank? 
What does this mean?

 40.  

Glucose is added 
intravenously to the 
bloodstream at the 
rate of q units per 
minute, and the body 
removes glucose from 
the bloodstream at a 
rate proportional to the 
amount present. Assume 
that Q(t) is the amount 
of glucose in the bloodstream at time t.

(a)  Determine the differential equation describing the rate 
of change of glucose in the bloodstream with respect 
to time.

(b)  Solve the differential equation from part (a), letting 
Q = Q0 when t = 0.

(c) Find the limit of Q(t) as t →∞.

30. Intravenous Feeding

wavebreakmedia/Shutterstock.com
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430 Chapter 6 Differential Equations

eXpLoring ConCeptS
41.  Using Different methods Describe two ways to 

find the general solution of

 
dy
dx

+ 3xy = x.

  Verify that each method gives the same result.

42.  Integrating Factor Explain why you can omit 
the constant of integration when finding an integrating 
factor.

matching In Exercises 43–46, match the differential 
equation with its solution.

 Differential Equation Solution

43. y′ − 2x = 0 (a) y = Cex2

44. y′ − 2y = 0 (b) y = −1
2 + Cex2

45. y′ − 2xy = 0 (c) y = x2 + C

46. y′ − 2xy = x (d) y = Ce2x

Slope Field In Exercises 47 and 48, (a) use a graphing 
utility to graph the slope field for the differential equation, 
(b) find the particular solutions of the differential equation 
passing through the given points, and (c) use a graphing utility 
to graph the particular solutions on the slope field in part (a).

 Differential Equation Points

47. 
dy
dx

−
1
x

y = x2, x > 0 (−2, 4), (2, 8)

48. 
dy
dx

+ 4x3y = x3 (0, 
7
2), (0, −

1
2)

Solving a First-Order Differential Equation In Exercises 
49–56, find the general solution of the first-order differential 
equation for x > 0 by any appropriate method.

49. 
dy
dx

=
e2x+y

ex−y

50. y′ cos x2 +
y cos x2

x
= sec x2

51. y cos x − cos x +
dy
dx

= 0

52. y′ = 2x√1 − y2

53. (2y − ex) dx + x dy = 0

54. (x + y) dx − x dy = 0

55. 3( y − 4x2) dx + x dy = 0

56. x dx + ( y + ey)(x2 + 1) dy = 0

Solving a Bernoulli Differential Equation In Exercises 
57–64, solve the Bernoulli differential equation. The Bernoulli 
equation is a well-known nonlinear equation of the form

y′ + P(x)y = Q(x)yn

that can be reduced to a linear form by a substitution. The  
general solution of a Bernoulli equation is

y1−ne∫(1−n)P(x) dx = ∫(1 − n)Q(x)e∫(1−n)P(x) dx dx + C.

57. y′ + 3x2y = x2y3

58. y′ + xy = xy−1

59. y′ + (1
x)y = xy2, x > 0

60. y′ + (1
x)y = x√y, x > 0

61. xy′ + y = xy3, x > 0

62. y′ − y = y3

63. y′ − y = ex 3√y

64. yy′ − 2y2 = ex

True or False? In Exercises 65 and 66, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

65. y′ + x√y = x2 is a first-order linear differential equation.

66. y′ + xy = exy is a first-order linear differential equation.

A person’s weight depends on both the number of calories 
 consumed and the energy used. Moreover, the amount of energy 
used depends on a person’s weight—the average amount of energy 
used by a person is 17.5 calories per pound per day. So, the more 
weight a person loses, the less energy a person uses (assuming that 
the person maintains a constant level of activity). An equation that 
can be used to model weight loss is

dw
dt

=
C

3500
−

17.5
3500

w

where w is the person’s weight (in pounds), t is the time in days, 
and C is the constant daily calorie consumption.

(a) Find the general solution of the differential equation.

(b)  Consider a person who weighs 180 pounds and begins a diet of 
2500 calories per day. How long will it take the person to lose  
10 pounds? How long will it take the person to lose 35 pounds?

(c)  Use a graphing utility to graph the particular solution from  
part (b). What is the “limiting” weight of the person?

(d)  Repeat parts (b) and (c) for a person who weighs 200 pounds 
when the diet is started.

Weight Loss

 For FurThEr InFormaTIon For more information on 
modeling weight loss, see the article “A Linear Diet Model” by 
Arthur C. Segal in The College Mathematics Journal.
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6.6 Predator-Prey Differential Equations 431

6.6 Predator-Prey Differential Equations

 Analyze predator-prey differential equations.
 Analyze competing-species differential equations.

Predator-Prey Differential Equations
In the 1920s, mathematicians Alfred Lotka (1880–1949) and Vito Volterra (1860–1940) 
independently developed mathematical models to represent many of the different ways 
in which two species can interact with each other. Two common ways in which species 
interact with each other are as predator and prey, and as competing species.

Consider a predator-prey relationship involving foxes (predators) and rabbits (prey). 
Assume that the rabbits are the primary food source for the foxes, the rabbits have an 
unlimited food supply, and there is no threat to the rabbits other than from the foxes. 
Let x represent the number of rabbits, let y represent the number of foxes, and let t
represent time. When there are no foxes, the rabbit population grows according to the 
exponential growth model

dx
dt

= ax, a > 0.

When there are foxes but no rabbits, the foxes have no food and their population decays 
according to the exponential decay model 

dy
dt

= −my, m > 0.

When both foxes and rabbits are present, there is an interaction rate of decline for 
the rabbit population given by −bxy, and an interaction rate of increase in the fox 
 population given by nxy, where b, n > 0. So, the rates of change of each population can 
be modeled by the following predator-prey system of differential equations.

dx
dt

= ax − bxy Rate of change of prey

dy
dt

= −my + nxy Rate of change of predators

These equations are called predator-prey equations or Lotka-Volterra equations. The 
equations are autonomous because the rates of change do not depend explicitly on time t.

In general, it is not possible to solve the predator-prey equations explicitly for 
x and y. However, you can use techniques such as Euler’s Method to approximate 
solutions. Also, you can discover properties of the solutions by analyzing the  differential 
equations.

 Analyzing Predator-Prey Equations

Write the predator-prey equations for a = 0.04, b = 0.002, m = 0.08, and n = 0.0004. 
Then find the values of x and y for which dx�dt = dy�dt = 0.

Solution For a = 0.04, b = 0.002, m = 0.08, and n = 0.0004, the predator-prey 
equations are shown below.

 
dx
dt

= 0.04x − 0.002xy Rate of change of prey

 
dy
dt

= −0.08y + 0.0004xy Rate of change of predators

Solving dx�dt = x(0.04 − 0.002y) = 0 and dy�dt = y(−0.08 + 0.0004x) = 0, you 
can see that dx�dt = dy�dt = 0 when (x, y) = (0, 0) and when (x, y) = (200, 20). 

ALFRED LOTKA (1880–1949)

VITO VOLTERRA (1860–1940)

Although Alfred Lotka and 
Vito Volterra both worked 
on other problems, they are 
most known for their work 
on predator-prey equations. 
Lotka was also a statistician, 
and Volterra did work in 
the development of integral 
equations and functional 
analysis.
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432 Chapter 6 Differential Equations

There are two points of interest you should consider when analyzing predator-prey 
equations. Consider the predator-prey equations

dx
dt

= ax − bxy  and  
dy
dt

= −my + nxy.

dx
dt

= 0 when x = 0 or y =
a
b

, and 
dy
dt

= 0 when y = 0 or x =
m
n

. So, at the points (0, 0)

and (m
n

, 
a
b), the prey and predator populations are constant. These points are called 

critical points or equilibrium points of the predator-prey equations.

 Analyzing Predator-Prey Equations Graphically

Let the predator-prey equations from Example 1

dx
dt

= 0.04x − 0.002xy Rate of change of rabbit population

and

dy
dt

= −0.08y + 0.0004xy Rate of change of fox population

model a predator-prey relationship involving foxes and rabbits, where x is the number 
of rabbits and y is the number of foxes after t months. Use a graphing utility to graph 
the functions x and y when 0 ≤ t ≤ 240 and the initial conditions are 200 rabbits and 
10 foxes. What do you observe?

Solution The graphs of x and y are shown in Figure 6.30. Here are some observations.

•   The rabbit and fox populations oscillate periodically between their respective minimum 
and maximum values.

•  The rabbit population oscillates from about 125 rabbits to about 300 rabbits.

•  The fox population oscillates from about 10 foxes to about 35 foxes.

•  About 20 months after the rabbit population peaks, the fox population peaks.

•  The period of each population appears to be about 115 months. 

In Example 2, the graph shows the curves plotted together with time t along the 
horizontal axis. You can also use the predator-prey equations dy�dt and dx�dt to graph 
a slope field. The slope field is graphed using the x-axis to represent the prey and the  
y-axis to represent the predators.

 Predator-Prey Equations and Slope Fields

Use a graphing utility to graph the slope field of the predator-prey equations given in 
Example 2.

Solution The slope field is shown in Figure 6.31. The x-axis represents the rabbit 
population, and the y-axis represents the fox population. 

tEChnoloGy If you are using a graphing utility, you may need to rewrite the 
equations as a function of x:

dy
dx

=
dy�dt
dx�dt

=
−my + nxy

ax − bxy
.
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 6.6 Predator-Prey Differential Equations 433

 Graphing a Solution Curve

Use the predator-prey equations

dx
dt

= 0.04x − 0.002xy  and  
dy
dt

= −0.08y + 0.0004xy

and the slope field from Example 3 to graph the solution curve using the initial conditions 
of 200 rabbits and 10 foxes. Describe the changes in the populations as you trace the 
solution curve.

Solution The graph of the solution is a closed curve, as shown in Figures 6.32 and 6.33.
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(200, 35)

(300, 20)

(200, 10)

(125, 20)

 Figure 6.32 Figure 6.33

At (200, 10), dy�dt = 0 and dx�dt = 4. So, the rabbit population is increasing at 
(200, 10). This means that you should trace the curve counterclockwise as t increases. 
As you trace the curve, note the changes listed in Figure 6.34.

(200, 35)

(300, 20)

(200, 10)

(125, 20)

Both populations
are decreasing.

Both populations
are increasing.

Rabbit population
is decreasing, fox
population is
increasing.

Rabbit population
is increasing, fox
population is
decreasing.

 Figure 6.34 

Although it is generally not possible to solve predator-prey equations explicitly for 
x and y, you can separate variables to derive an implicit solution. Begin by  writing the 
equations dy�dt and dx�dt as a function of x.

 
dy
dx

=
y(−m + nx)

x(a − by)  
Factor numerator 
and denominator.

 x(a − by) dy = y(−m + nx) dx Differential form

 
a − by

y
 dy =

−m + nx
x

 dx Separate variables.

 ∫ 
a − by

y
 dy = ∫ 

−m + nx
x

 dx Integrate.

 a ln y − by = −m ln x + nx + C Assume x and y are positive.

 a ln y + m ln x − by − nx = C General solution

The constant C is determined by the initial conditions.

rEmArk The general  
solution

a ln y + m ln x − by − nx = C

can be rewritten as 

ln(yaxm) = C + by + nx 

or as yaxm = C1e
by+nx.
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434 Chapter 6 Differential Equations

Competing Species
Consider two species that compete with each other for the food available in their 
 common environment. Assume that their populations are given by x and y at time t. 
When there is no interaction or competition between the species, the populations x and 
y each experience logistic growth. So, the populations of the first species x and the second 
species y can be modeled by the following differential equations.

dx
dt

= ax − bx2 Rate of change of first species without interaction

dy
dt

= my − ny2 Rate of change of second species without interaction

When the species interact, their competition for resources causes a rate of decline 
in each population proportional to the product xy. Using a negative interaction factor 
leads to the following competing-species equations (where a, b, c, m, n, and p are 
positive constants).

dx
dt

= ax − bx2 − cxy Rate of change of first species with interaction

dy
dt

= my − ny2 − pxy Rate of change of second species with interaction

In this text, it is assumed that competing-species equations have four critical 
points, as shown in Example 5.

 Deriving the Critical Points

Show that the critical points of the competing-species equations

dx
dt

= ax − bx2 − cxy  and  
dy
dt

= my − ny2 − pxy

are (0, 0), (0, 
m
n ), (a

b
, 0), and (an − mc

bn − cp
, 

bm − ap
bn − cp ).

Solution Set dx�dt and dy�dt equal to 0 and then factor to obtain the following 
system of equations.

x(a − bx − cy) = 0 Set dx�dt equal to 0 and factor out x.

y(m − ny − px) = 0 Set dy�dt equal to 0 and factor out y.

If x = 0, then y = 0 or y = m�n. If y = 0, then x = 0 or x = a�b. So, three of the 
critical points are (0, 0), (0, m�n), and (a�b, 0). At each of these critical points, one 
of the populations is 0. These points represent the possibility that both species cannot 
coexist.

The fourth critical point is obtained by solving the system

 a − bx − cy = 0

 m − ny − px = 0.

The solution of this system is

(x, y) = (an − mc
bn − cp

, 
bm − ap
bn − cp ).

Assuming this point exists and lies in Quadrant I of the xy-plane, the point represents 
the possibility that both species can coexist. 
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 Competing Species: one Species Survives

Consider the competing-species equations given by

dx
dt

= 10x − x2 − 2xy  and  
dy
dt

= 10y − y2 − 2xy.

a. Find the critical points.

b.  Use a graphing utility to graph the solution of the equations when 0 ≤ t ≤ 3 and the 
initial conditions are x(0) = 10 and y(0) = 15. What do you observe?

Solution

a. Note that a = 10, b = 1, c = 2, m = 10, n = 1, and p = 2. So, the critical points

 are (0, 0), (0, 10), (10, 0), and (10 − 20
1 − 4

, 
10 − 20
1 − 4 ) = (10

3
, 

10
3 ).

b.   The solution of the competing-species equations is shown in Figure 6.35. From the 
graph, it appears that one species survives. The population of the surviving species, 
represented by the graph of y, appears to remain constant at 10.

 Competing Species: Both Species Survive

Consider the competing-species equations given by

dx
dt

= 10x − 3x2 − xy  and  
dy
dt

= 14y − 3y2 − xy.

a. Find the critical points.

b.  Use a graphing utility to graph the solution of the equations when 0 ≤ t ≤ 15 and 
the initial conditions are x(0) = 10 and y(0) = 15. What do you observe?

Solution

a.  Note that a = 10, b = 3, c = 1, m = 14, n = 3, and p = 1. So, the critical points

 are (0, 0), (0, 
14
3 ), (10

3
, 0), and (30 − 14

9 − 1
, 

42 − 10
9 − 1 ) = (2, 4).

b.  The solution of the competing-species equations is shown in Figure 6.36. From the 
graph, it appears that both species survive. The population represented by y appears 
to remain constant at 4. The population represented by x appears to remain  constant 
at 2. 

Examples 6 and 7 imply general conclusions about competing-species equations 
that have precisely four critical points. In general, it can be shown that when bn > cp, 
both species survive. When bn < cp, one species will survive and the other will not.

You can also use slope fields to analyze solutions of competing-species equations, 
as shown in Figures 6.37 (Example 6) and 6.38 (Example 7).
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436 Chapter 6 Differential Equations

6.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Autonomous Differential Equation What is an 

autonomous differential equation?

2.  Competing Species Equations Which terms of 
the competing-species equations represent interaction 
between species? Explain.

 Analyzing Predator-Prey Equations In 
Exercises 3 and 4, use the given values to write 
the predator-prey equations dx�dt = ax − bxy and 
dy�dt = −my + nxy. Then find the values of x and 
y for which dx�dt = dy�dt = 0.

3. a = 0.9, b = 0.05, m = 0.6, n = 0.008

4. a = 1.2, b = 0.04, m = 1.2, n = 0.02

Predator-Prey Equations and Slope Fields In Exercises 
5 and 6, predator-prey equations, a point, and a slope field are 
given. (a) Sketch a solution of the predator-prey equations on 
the slope field that passes through the given point. (b) Use a 
graphing utility to graph the solution. Compare the result with 
the sketch in part (a). To print an enlarged copy of the graph, 
go to MathGraphs.com.

5. 
dx
dt

= 0.04x − 0.002xy  6. 
dx
dt

= 0.03x − 0.006xy

 
dy
dt

= −0.08y + 0.0004xy  
dy
dt

= −0.04y + 0.004xy
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 Predator-Prey Equations and Slope 
Fields In Exercises 7 and 8, two graphs are given. 
The first is a graph of the functions x and y of a set 
of predator-prey equations, where x is the number 
of prey and y is the number of predators at time 
t. The second graph is the corresponding slope 
field of the predator-prey equations. (a) Identify 
the initial conditions. (b) Sketch a solution of the 
predator-prey equations on the slope field that 
passes through the initial conditions. To print an 
enlarged copy of the graph, go to MathGraphs.com.
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rabbits and Foxes In Exercises 9–12, consider a predator-
prey relationship involving foxes (predators) and rabbits 
(prey). Let x represent the number of rabbits, let y represent 
the number of foxes, and let t represent the time in months. 
Assume that the following predator-prey equations model the 
rates of change of each population.

dx�dt = 0.8x − 0.04xy Rate of change of prey population

dy�dt = −0.3y + 0.006xy Rate of change of predator population

When t = 0, x = 55 and y = 10.

 9. Find the critical points of the predator-prey equations.

10.  Use a graphing utility to graph the functions x and y when 
0 ≤ t ≤ 36. Describe the behavior of each solution as t 
increases.

11.  Use a graphing utility to graph a slope field of the predator-
prey equations when 0 ≤ x ≤ 150 and 0 ≤ y ≤ 50.

12.  Use the predator-prey equations and the slope field in Exercise 
11 to graph the solution curve using the initial conditions. 
Describe the changes in the rabbit and fox populations as you 
trace the solution curve.

Prairie Dogs and Black-Footed Ferrets In Exercises 
13–16, consider a predator-prey relationship involving black-
footed ferrets (predators) and prairie dogs (prey). Let x represent 
the number of prairie dogs, let y represent the number of 
black-footed ferrets, and let t represent the time in months. 
Assume that the following predator-prey equations model the 
rates of change of each population.

dx
dt

= 0.1x − 0.00008xy Rate of change of prey population

dy
dt

= −0.4y + 0.00004xy Rate of change of predator population

When t = 0, x = 4000 and y = 1000.

13. Find the critical points of the predator-prey equations.

14.  Use a graphing utility to graph the functions x and y when 
0 ≤ t ≤ 240. Describe the behavior of each solution as t 
increases.

15.  Use a graphing utility to graph a slope field of the predator-
prey equations when 0 ≤ x ≤ 25,000 and 0 ≤ y ≤ 5000.

16.  Use the predator-prey equations and the slope field in Exercise 
15  to  graph  the  solution  curve  using  the  initial  conditions. 
Describe the changes in the prairie dog and black-footed ferret 
populations as you trace the solution curve.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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17.  Critical Point as the Initial Condition In Exercise 9, 
you found the critical points of the predator-prey system. 
Assume that the critical point given by (m�n, a�b) is the initial 
condition and repeat Exercises 10–12. Compare the results.

18.  Critical Point as the Initial Condition In Exercise 
13, you found the critical points of the predator-prey system. 
Assume that the critical point given by (m�n, a�b) is the initial 
 condition and repeat Exercises 14–16. Compare the results.

 Analyzing Competing-Species Equations
In Exercises 19–22, use the given 
values to write the competing-species 
equations dx�dt = ax − bx2 − cxy and 
dy�dt = my − ny2 − pxy. Then find the values of 
x and y for which dx�dt = dy�dt = 0.

19. a = 2, b = 3, c = 2, m = 2, n = 3, p = 2

20. a = 1, b = 0.5, c = 0.5, m = 2.5, n = 2, p = 0.5

21. a = 0.15, b = 0.6, c = 0.75, m = 0.15, n = 1.2, p = 0.45

22. a = 0.025, b = 0.1, c = 0.2, m = 0.3, n = 0.45, p = 0.1

Bass and trout In Exercises 23 and 24, consider a competing-
species relationship involving bass and trout. Assume the bass 
and trout compete for the same resources. Let x represent the 
number of bass (in thousands), let y represent the number of 
trout (in thousands), and let t represent the time in months. 
Assume that the following competing-species equations model 
the rates of change of the two populations.

dx
dt

= 0.8x − 0.4x2 − 0.1xy Rate of change of bass population

dy
dt

= 0.3y − 0.6y2 − 0.1xy Rate of change of trout population

When t = 0, x = 9 and y = 5.

23. Find the critical points of the competing-species equations.

24.  Use a graphing utility to graph the functions x and y when 
0 ≤ t ≤ 36. Describe the behavior of each solution as t 
increases.

Bass and trout In Exercises 25 and 26, consider a competing- 
species relationship involving bass and trout. Assume the bass 
and trout compete for the same resources. Let x represent the 
number of bass (in thousands), let y represent the number of 
trout (in thousands), and let t represent the time in months. 
Assume that the following competing-species equations model 
the rates of change of the two populations.

dx
dt

= 0.8x − 0.4x2 − xy Rate of change of bass population

dy
dt

= 0.3y − 0.6y2 − xy Rate of change of trout population

When t = 0, x = 7 and y = 6.

25. Find the critical points of the competing-species equations.

26.  Use a graphing utility to graph the functions x and y when 
0 ≤ t ≤ 36. Describe the behavior of each solution as t 
increases.

27.  Critical Point as the Initial Condition In Exercise 23, 
you found the critical points of the competing-species system.

 Assume that the critical point given by (an − mc
bn − cp

, 
bm − ap
bn − cp ) 

  is the initial condition and repeat Exercise 24. Compare the 
results.

28.  Critical Point as the Initial Condition  In Exercise 25, 
you found the critical points of the competing-species system. 
Assume that the critical point given by (0, m�n) is the initial 
condition and repeat Exercise 26. Compare the results.

eXpLoRInG ConCeptS
29.  Determining Initial Values Given a set of predator-

prey equations, describe how to determine initial values 
so that both populations remain constant for all t ≥ 0.

 30.  hoW Do yoU SEE It? The populations 
of two species x and y are shown in the figure. 
Sketch the graph of the solution curve by hand 
for 0 ≤ t ≤ 20.
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y

 30.  

31.  revising the Predator-Prey Equations Consider a 
predator-prey relationship with x prey and y predators at time 
t. Assume both predator and prey are present. Then the rates of 
change of the two populations can be modeled by the following 
revised predator-prey system of differential equations.

 
dx
dt

= ax(1 −
x
L) − bxy Rate of change of prey population

 
dy
dt

= −my + nxy Rate of change of predator population

 (a)  When there are no predators, the prey population will 
grow according to what model?

 (b)  Write the revised predator-prey equations for a = 0.4,
L = 100, b = 0.01, m = 0.3, and n = 0.005. Find the 
 critical numbers.

 (c)  Use a graphing utility to graph the functions x and y of the 
revised predator-prey equations when 0 ≤ t ≤ 72 and the 
initial conditions are x(0) = 40 and y(0) = 80. Describe 
the behavior of each solution as t increases.

 (d)  Use a graphing utility to graph a slope field of the 
revised predator-prey equations when 0 ≤ x ≤ 100 and  
0 ≤ y ≤ 80.

 (e)  Use the predator-prey equations and the slope field in part 
(d) to graph the solution curve using the initial conditions 
in part (c). Describe the changes in the prey and predator 
populations as you trace the solution curve.
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

 1.  Determining a Solution Determine whether the 
function y = x3 is a solution of the  differential equation 
2xy′ + 4y = 10x3.

 2.  Determining a Solution Determine whether the 
function y = 2 sin 2x is a solution of the differential equation 
y′″ − 8y = 0.

Finding a General Solution In Exercises 3–8, use 
integration to find a general solution of the differential equation.

 3. 
dy
dx

= 4x2 + 7  4. 
dy
dx

=
6 − x

3x
, x > 0

 5. 
dy
dx

= cos 2x  6. 
dy
dx

= 8 csc x cot x

 7. 
dy
dx

= e2−x  8. 
dy
dx

= 2e3x

Slope Field In Exercises 9 and 10, a differential equation 
and its slope field are given. Complete the table by determining 
the slopes (if possible) in the slope field at the given points.

x −4 −2 0 2 4 8

y 2 0 4 4 6 8

dy�dx

 9. 
dy
dx

= 2x − y 10. 
dy
dx

= x sin 
πy
4

 

x

y

8

−4

−4

8

  

x

y

−4
−2

8

10

Slope Field In Exercises 11 and 12, (a) sketch the slope 
field for the differential equation, and (b) use the slope field 
to sketch the solution that passes through the given point. 
Use a graphing utility to verify your results. To print a blank 
coordinate plane, go to MathGraphs.com.

11. y′ = 2x2 − x, (0, 2)
12. y′ = y + 4x, (−1, 1)

Euler’s Method In Exercises 13 and 14, use Euler’s 
Method to make a table of values for the approximate solution 
of the differential equation with the specified initial value. Use 
n steps of size h.

13. y′ = x − y, y(0) = 4, n = 10, h = 0.05

14. y′ = 5x − 2y, y(0) = 2, n = 10, h = 0.1

Solving a Differential Equation In Exercises 15–22, find 
the general solution of the differential equation.

15. 
dy
dx

= 6x − x3 16. 
dy
dx

= 3y + 5

17. 
dy
dx

= ( y − 1)2 18. 
dy
dx

=
x

x2 + 2

19. (2 + x)y′ − xy = 0 20. xy′ − (x + 1)y = 0

21. √x + 1y′ − y = 0 22. y′ + √xy = 9√x

Writing and Solving a Differential Equation In 
Exercises 23 and 24, write and find the general solution of the 
differential equation that models the verbal statement.

23.  The rate of change of y with respect to t is inversely 
proportional to the cube of t.

24.  The rate of change of y with respect to t is proportional to 
50 − t.

Finding an Exponential Function In Exercises 25–28, 
find the exponential function y = Cekt that passes through the 
two given points.

25. 
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3
40, ))

y

t
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1
65, ))

y

t

27. 
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y
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2))
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t

 28. 
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1

2
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4

5
(1, 4)
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y

t

29.  Air Pressure Under ideal conditions, air pressure 
decreases continuously with the height above sea level at a 
rate proportional to the pressure at that height. The barometer 
reads 30 inches at sea level and 15 inches at 18,000 feet. Find 
the barometric pressure at 35,000 feet.

30.  Radioactive Decay Radioactive radium has a half-life 
of approximately 1599 years. The initial quantity is 15 grams. 
How much remains after 750 years?

31.  Population A population grows exponentially at a rate of 
1.85%. How long will it take the population to double?

32.  Compound Interest Find the balance in an account 
when $400 is deposited for 11 years at an interest rate of 2% 
compounded continuously.
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 Review Exercises 439

33.  Sales The sales S (in thousands of units) of a new product 
after it has been on the market for t years is given by S = Cek�t. 
(a) Find S as a function of t when 5000 units have been sold 
after 1 year and the saturation point for the market is 30,000 
units (that is, lim

t→∞
 S = 30). (b) How many units will have been

 sold after 5 years?

34.  Sales The sales S (in thousands of units) of a new product 
after it has been on the market for t years is given by 
S = 25(1 − ekt). (a) Find S as a function of t when 4000 units 
have been sold after 1 year. (b) How many units will saturate 
this market?

Finding a General Solution Using Separation of 
Variables In Exercises 35–38, find the general solution of 
the differential equation.

35. 
dy
dx

=
5x
y

 36. 
dy
dx

=
x3

2y2

37. y′ey−3x = ex+2y 38. y′ − ey sin x = 0

Finding a Particular Solution Using Separation of 
Variables In Exercises 39– 42, find the particular solution 
of the differential equation that satisfies the initial condition.

 Differential Equation Initial Condition

39. y3y′ − 3x = 0 y(2) = 2

40. yy′ − 5e2x = 0 y(0) = −3

41. y3(x4 + 1)y′ − x3(y4 + 1) = 0 y(0) = 1

42. y′ + sin x cos x = 0 y(π) = −2

Slope Field In Exercises 43 and 44, sketch a few solutions 
of the differential equation on the slope field and then find the  
general solution analytically. To print an enlarged copy of the 
graph, go to MathGraphs.com.

43. 
dy
dx

= −
4x
y

 44. 
dy
dx

= 3 − 2y

 

4

−4

4

x

y

−4

  y

x
−4 4

−4

4

Finding a Particular Solution Curve In Exercises 45 and 
46, find an equation of the curve that passes through the point 
and has the given slope.

45. (1, 3), y′ =
2x
y

 46. (1, −2), y′ =
y
8x

Finding Orthogonal Trajectories In Exercises 47 and 48, 
find the orthogonal trajectories for the family of curves. Use a 
graphing utility to graph several members of each family.

47. 5x2 − 4y2 = C 48. x3 = Cy

Using a Logistic Equation In Exercises 49 and 50, 
the logistic equation models the growth of a population. Use 
the equation to (a) find the value of k, (b) find the carrying 
capacity, (c) find the initial population, (d) determine when 
the population will reach 50% of its carrying capacity, and 
(e) write a logistic differential equation that has the solution P(t).

49. P(t) =
5250

1 + 34e−0.55t 50. P(t) =
4800

1 + 14e−0.15t

Solving a Logistic Differential Equation In Exercises 
51 and 52, find the logistic equation that passes through the 
given point.

51. 
dy
dt

= y(1 −
y

80), (0, 8) 52. 
dy
dt

= 1.76y(1 −
y
8), (0, 3)

53.  Wildlife Population The rate of change of the number 
of raccoons N(t) in a population is directly proportional 
to 380 − N(t), where t is the time in years. When t = 0, 
the population is 110, and when t = 4, the population has 
increased to 150. Find the population when t = 8.

54.  Environment A conservation department releases  
1200 brook trout into a lake. It is estimated that the carrying 
capacity of the lake for the species is 20,400. After the first 
year, there are 2000 brook trout in the lake.

 (a)  Write a logistic equation that models the number of brook 
trout in the lake.

 (b) Find the number of brook trout in the lake after 8 years.

 (c) When will the number of brook trout reach 10,000?

 (d)  Write a logistic differential equation that models the 
growth rate of the brook trout population. Then repeat 
part (b) using Euler’s method with a step size of h = 1. 
Compare the approximation with the exact answer.

 (e)  At what time is the brook trout population growing most 
rapidly? Explain.

55.  Sales Growth The rate of change in sales S (in thousands 
of units) of a new product is proportional to L − S. L (in  
thousands of units) is the estimated maximum level of sales, 
and S = 0 when t = 0. Write and solve the differential equation 
for this sales model.

56.  Sales Growth Use the result of Exercise 55 to write S  
as a function of t for (a) L = 100, S = 25 when t = 2, and  
(b) L = 500, S = 50 when t = 1.

Learning Theory In Exercises 57 and 58, assume that the 
rate of change in the proportion P of correct responses after n 
trials is proportional to the product of P and L − P, where L is 
the limiting proportion of correct responses.

57.  Write and solve the differential equation for this learning  
theory model.

58.  Use the solution of Exercise 57 to write P as a function of n, 
and then use a graphing utility to graph the solution.

 (a) L = 1.00 (b) L = 0.80

  P = 0.50 when n = 0  P = 0.25 when n = 0

  P = 0.85 when n = 4  P = 0.60 when n = 10
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Solving a First-Order Linear Differential Equation In 
Exercises 59–66, find the general solution of the first-order 
linear differential equation.

59. y′ − y = 10 60. exy′ + 4exy = 1

61. 4y′ = ex�4 + y 62. 
dy
dx

−
5y
x2 =

1
x2, x > 0

63. (x − 2)y′ + y = 1, x > 2

64. (x + 3)y′ + 2y = 2(x + 3)2, x > −3

65. y′ + 5y = e5x

66. xy′ − ay = bx4

Slope Field In Exercises 67–70, (a) sketch an approximate 
solution of the differential equation satisfying the initial condition 
by hand on the slope field, (b) find the particular solution that 
satisfies the initial condition, and (c) use a graphing utility to 
graph the particular solution. Compare the graph with the 
hand-drawn graph in part (a). To print an enlarged copy of the 
graph, go to MathGraphs.com.

 Differential Equation Initial Condition

67. 
dy
dx

= ex�2 − y (0, −1)

68. y′ + 2y = sin x (0, 4)
69. y′ = csc x + y cot x (1, 1)
70. y′ = csc x − y cot x (1, 2)

x

y

4

4−4

−4

 

x
−4 4

−4

4

y

 Figure for 67 Figure for 68

x
−3 3

−3

3

y
 

x
−3 3

−2

4

y

 Figure for 69 Figure for 70

Finding a Particular Solution In Exercises 71–74, find 
the particular solution of the first-order linear differential 
equation that satisfies the initial condition.

 Differential Equation Initial Condition

71. y′ + 5y = e5x y(0) = 3

72. y′ − (3
x)y = 2x3 y(1) = 1

73. (3y + 5) cos x dx = dy y(π) = 0

74. y′ − 8x3y = e2x4 y(0) = 2

75.  Investment Let A(t) be the amount in a fund earning 
interest at an annual rate r compounded continuously. When a 
continuous cash flow of P dollars per year is withdrawn from 
the fund, the rate of change of A is given by the differential 
equation 

 
dA
dt

= rA − P

  where A = A0 when t = 0. Solve this differential equation for 
A as a function of t.

76.  Investment A retired couple plans to withdraw P dollars 
per year from a retirement account of $500,000 earning 10% 
interest compounded continuously. Use the result of Exercise 
75 and a graphing utility to graph the function A for each of 
the following continuous annual cash flows. Use the graphs to 
describe what happens to the balance in the fund for each case.

 (a) P = $40,000

 (b) P = $50,000

 (c) P = $60,000

77.  Falling Object A 12-pound object is dropped from an 
airplane. The air resistance is proportional to the velocity of 
the object. Write the velocity of the object as a function of time 
t when the velocity after 6 seconds is approximately 114 feet 
per second. What is the limiting value of the velocity function?

78.  Mixture A tank contains 100 gallons of a solution 
composed of 70% water and 30% alcohol. A second solution 
containing 75% alcohol and 25% water is added to the tank 
at a rate of 12 gallons per minute. As the second solution is 
being added, the tank is being drained at a rate of 15 gallons 
per minute. The solution in the tank is stirred constantly. How 
much alcohol is in the tank after 15 minutes?

Analyzing Predator-Prey Equations In Exercises 79 and  
80, (a) use the given values to write a set of predator-prey  
equations, (b) find the values of x and y for which x′ = y′ = 0, 
and (c) use a graphing utility to graph the solutions x and y of 
the predator-prey equations for the given time frame. Describe 
the behavior of each solution as t increases.

79.  Constants: a = 0.3, b = 0.02, m = 0.4, n = 0.01 
Initial condition: (20, 20) 
Time frame: 0 ≤ t ≤ 36

80.  Constants: a = 0.4, b = 0.04, m = 0.6, n = 0.02 
Initial condition: (30, 15) 
Time frame: 0 ≤ t ≤ 24

Analyzing Competing-Species Equations In Exercises 
81 and 82, (a) use the given values to write a set of competing-
species equations, (b) find the values of x and y for which 
x′ = y′ = 0, and (c) use a graphing utility to graph the solutions 
x and y of the competing-species equations for the given time 
frame. Describe the behavior of each solution as t increases.

81.  Constants: a = 3, b = 1, c = 1, m = 2, n = 1, p = 0.5 
Initial condition: (3, 2) 
Time frame: 0 ≤ t ≤ 6

82.  Constants: a = 15, b = 2, c = 4, m = 17, n = 2, p = 4 
Initial condition: (9, 10) 
Time frame: 0 ≤ t ≤ 4
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1. Doomsday Equation The differential equation

 
dy
dt

= ky1+ε

  where k and ε are positive constants, is called the doomsday  
equation.

 (a) Solve the doomsday equation

 
dy
dt

= y1.01

 given that y(0) = 1. Find the time T at which

 lim
t→T−

 y(t) = ∞.

 (b) Solve the doomsday equation

 
dy
dt

= ky1+ε

  given that y(0) = y0. Explain why this equation is called the 
doomsday equation.

2.  Sales Let S represent sales of a new product (in thousands of 
units), let L represent the maximum level of sales (in thousands 
of units), and let t represent time (in months). The rate of 
change of S with respect to t is proportional to the product of 
S and L − S.

 (a)  Write the differential equation for the sales model using 
these conditions.

  When t = 0: L = 100, S = 10

  When t = 1: S = 20

  Verify that

 S =
L

1 + Ce−kt.

 (b) At what time is the growth in sales increasing most  rapidly?

 (c) Use a graphing utility to graph the sales function.

 (d)  Sketch the solution from part (a) on the slope field below. To 
print an enlarged copy of the graph, go to MathGraphs.com.

t
1 2 3 4

140
120
100
80
60
40
20

S

 (e)  Assume the estimated maximum level of sales is correct. 
Use the slope field to describe the shape of the solution 
curves for sales when, at some period of time, sales exceed L.

3.  Modified Euler’s Method Another numerical approach 
to approximating the particular solution of the differential 
equation y′ = F(x, y) is shown below.

 xn = xn−1 + h

  yn = yn−1 + hf (xn−1 +
h
2

, yn−1 +
h
2

f (xn−1, yn−1))
 This approach is called modified Euler’s Method.

 (a)  Use this method to approximate the solution of the differential 
equation y′ = x − y passing through the point (0, 1). Use a 
step size of h = 0.1.

 (b)  Use a graphing utility to graph the exact solution and the 
approximations found using Euler’s Method and modified 
Euler’s Method (see Example 6, page 392). Compare the 
first 10 approximations found using modified Euler’s 
Method to those found using Euler’s Method and to the 
exact solution y = x − 1 + 2e−x. Which approximation 
appears to be more accurate?

4.  Error Using the Product Rule Although it is true for 
some functions f  and g, a common mistake in calculus is to 
believe that the Product Rule for derivatives is ( fg)′ = f ′g′.

 (a) Given g(x) = x, find f  such that ( fg)′ = f ′g′.

 (b)  Given an arbitrary function g, find a function f  such that 
( fg)′ = f ′g′.

 (c) Describe what happens when g(x) = ex.

5.  Torricelli’s Law Torricelli’s Law states that water will 
flow from an opening at the bottom of a tank with the same 
speed that it would attain falling from the surface of the water 
to the opening. One of the forms of Torricelli’s Law is

 A(h)dh
dt

= −k√2gh

  where h is the height of the water in the tank, k is the area of 
the opening at the bottom of the tank, A(h) is the horizontal  
cross-sectional area at height h, and g is the acceleration due to 
gravity (g ≈ 32 feet per second per second). A hemispherical 
water tank has a radius of 6 feet. When the tank is full, a 
circular valve with a radius of 1 inch is opened at the bottom, 
as shown in the figure. How long will it take for the tank to 
drain completely?

6 ft

h

6 − h

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



442 Chapter 6 Differential Equations

 6.  Torricelli’s Law The cylindrical water tank shown in the 
figure has a height of 18 feet. When the tank is full, a circular 
valve is opened at the bottom of the tank. After 30 minutes, the 
depth of the water is 12 feet.

h

r

18 ft

 (a)  Using Torricelli’s Law, how long will it take for the tank 
to drain completely?

 (b) What is the depth of the water in the tank after 1 hour?

 7.  Torricelli’s Law A tank similar to the one in Exercise 6 
has a height of 20 feet and a radius of 8 feet, and the valve is 
circular with a radius of 2 inches. The tank is full when the 
valve is opened. How long will it take for the tank to drain 
completely?

 8.  Rewriting the Logistic Equation Show that the 
logistic equation

 y =
L

1 + be−kt

 can be written as

 y =
1
2

L[1 + tanh(1
2

k(t −
ln b

k ))].

 What can you conclude about the graph of the logistic equation?

 9.  Biomass Biomass is a measure of the amount of living 
matter in an ecosystem. The biomass s(t) in a given ecosystem 
increases at a rate of about 3.5 tons per year and decreases 
by about 1.9% per year. This situation can be modeled by the 
 differential equation

 
ds
dt

= 3.5 − 0.019s.

 (a) Find the general solution of the differential equation.

 (b)  Use a graphing utility to graph the slope field for the 
differential equation. What do you notice?

 (c) Explain what happens to the biomass as t →∞.

10. Finding a Function Consider a function f  such that

 f (0) = 1, f ′(0) = 1, and f (a + b) = f (a)(b)

  where a and b are real numbers. For all values of x, show that 
f ′(x) = f (x) and conclude that f (x) = ex.

Medical Science In Exercises 11–13, a medical researcher 
wants to determine the concentration C (in moles per liter) of a 
tracer drug injected into a moving fluid. Solve this problem by 
considering a single-compartment dilution model (see figure). 
Assume that the fluid is continuously mixed and that the 
volume of the fluid in the compartment is constant.

Flow R (pure)

Flow R
(concentration C)

Tracer
injected

Volume V

11.  If the tracer is injected instantaneously at time t = 0, then the 
concentration of the fluid in the compartment begins diluting 
according to the differential equation

 
dC
dt

= (−
R
V)C

 where C = C0 when t = 0.

 (a)  Solve this differential equation to find the concentration  C
as a function of time t.

 (b) Find the limit of C as t →∞.

12.  Use the solution of the differential equation in Exercise 11 and 
the given values to find the concentration C as a function of 
time t, and use a graphing utility to graph the function.

 (a)  V = 2 liters

  R = 0.5 liter per minute

  C0 = 0.6 mole per liter

 (b)  V = 2 liters

  R = 1.5 liters per minute

  C0 = 0.6 mole per liter

13.  In Exercises 11 and 12, it was assumed that there was a single 
initial injection of the tracer drug into the compartment. Now 
consider the case in which the tracer is continuously injected  
(beginning at t = 0) at the rate of Q moles per minute. 
Considering Q to be negligible compared with R, use the 
 differential equation

 
dC
dt

=
Q
V

− (R
V)C

 where C = 0 when t = 0.

 (a)  Solve this differential equation to find the concentration C 
as a function of time t.

 (b) Find the limit of C as t →∞.
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Moving a Space Module into Orbit (Example 3, p. 488)
Pyramid of Khufu

(Section Project, p. 493)

3D Printing
(Exercise 68, p. 463)

Building Design (Exercise 79, p. 453)

Saturn (Section Project, p. 473)
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444 Chapter 7 Applications of Integration

7.1 Area of a Region Between Two Curves

 Find the area of a region between two curves using integration.
 Find the area of a region between intersecting curves using integration.
 Describe integration as an accumulation process.

Area of a Region Between Two Curves
With a few modifications, you can extend the application of definite integrals from the 
area of a region under a curve to the area of a region between two curves. Consider two 
functions f  and g that are continuous on the interval [a, b]. Also, the graphs of both 
f  and g lie above the x-axis, and the graph of g lies below the graph of f, as shown in 
Figure 7.1. You can geometrically interpret the area of the region between the graphs as 
the area of the region under the graph of g subtracted from the area of the region under 
the graph of f, as shown in Figure 7.2.

x
a b

f

g

y   

x
a b

f

g

y   

x
a b

f

g

y

 
Area of region
between f and g

 =  
Area of region
under f

 −  
Area of region
under g

 ∫b

a

 [ f (x) − g(x)] dx =  ∫b

a

 f (x) dx −  ∫b

a

 g(x) dx

 Figure 7.2

To verify the reasonableness of the result  

x
a bxi

f

g
y

f (xi)

g(xi)

Δx

Representative rectangle
Height: f (xi) − g(xi)
Width: Δx

Figure 7.3

 
shown in Figure 7.2, you can partition the interval 
[a, b] into n subintervals, each of width ∆x. Then, 
as shown in Figure 7.3, sketch a representative 
rectangle of width ∆x and height f (xi) − g(xi), 
where xi is in the ith subinterval. The area of this 
representative rectangle is

∆Ai = (height)(width) = [ f (xi) − g(xi)]∆x.

By adding the areas of the n rectangles and taking 
the limit as �∆� → 0 (n →∞), you obtain

lim
n→∞

 ∑
n

i=1
 [ f (xi) − g(xi)]∆x.

Because f  and g are continuous on [a, b], f − g is also continuous on [a, b] and the 
limit exists. So, the area of the region is

 Area = lim
n→∞

 ∑
n

i=1
 [ f (xi) − g(xi)]∆x

 = ∫b

a

 [ f (x) − g(x)] dx.

x

g

f

Region
between
two
curves

x = bx = a

y

Figure 7.1

remark Recall from 
Section 5.3 that �∆� is the norm 
of the partition. In a regular  
partition, the statements �∆� → 0 
and n →∞ are equivalent. 
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7.1 Area of a Region Between Two Curves 445

area of a region Between Two Curves

If f  and g are continuous on [a, b] and g(x) ≤ f (x) for all x in [a, b], then 
the area of the region bounded by the graphs of f  and g and the vertical lines 
x = a and x = b is

A = ∫b

a

 [ f (x) − g(x)] dx.

In Figure 7.1, the graphs of f  and g are shown above the x-axis. This, however, 
is not necessary. The same integrand [ f (x) − g(x)] can be used as long as f  and g 
are continuous and g(x) ≤ f (x) for all x in the interval [a, b]. This is summarized 
graphically in Figure 7.4. Notice in Figure 7.4 that the height of a representative 
rectangle is f (x) − g(x) regardless of the relative position of the x-axis.

x

f(x) − g(x)

(x, g(x))

(x, f(x))

a b

f

g

y   

x

f(x) − g(x)

(x, g(x))

(x, f(x))

a b

f

g

y

 Figure 7.4

Representative rectangles are used throughout this chapter in various applications 
of integration. A vertical rectangle (of width ∆x) implies integration with respect to x, 
whereas a horizontal rectangle (of width ∆y) implies integration with respect to y.

 Finding the area of a region Between Two Curves

Find the area of the region bounded by the graphs of y = x2 + 2, y = −x, x = 0, and 
x = 1.

Solution Let g(x) = −x and f (x) = x2 + 2. Then g(x) ≤ f (x) for all x in [0, 1], as 
shown in Figure 7.5. So, the area of the representative rectangle is

 ∆A = [ f (x) − g(x)]∆x

 = [(x2 + 2) − (−x)]∆x

and the area of the region is

 A = ∫b

a

 [ f (x) − g(x)] dx

 = ∫1

0
 [(x2 + 2) − (−x)] dx

 = [x3

3
+

x2

2
+ 2x]

1

0

 =
1
3

+
1
2

+ 2

 =
17
6

. 

x

3

3

1

1

−1

−1 2

(x, f(x))

(x, g(x))

f(x) = x2 + 2

g(x) = −x

y

Region bounded by the graph of f, the 
graph of g, x = 0, and x = 1
Figure 7.5
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446 Chapter 7 Applications of Integration

Area of a Region Between Intersecting Curves
In Example 1, the graphs of f (x) = x2 + 2 and g(x) = −x do not intersect, and the values 
of a and b are given explicitly. A more common problem involves the area of a region 
bounded by two intersecting graphs, where the values of a and b must be calculated.

 a region Lying Between Two Intersecting Graphs

Find the area of the region bounded by the graphs of f (x) = 2 − x2 and g(x) = x.

Solution In Figure 7.6, notice that the graphs of f  and g have two points of 
 intersection. To find the x-coordinates of these points, set f (x) and g(x) equal to each 
other and solve for x.

 2 − x2 = x Set f (x) equal to g(x).

 −x2 − x + 2 = 0 Write in general form.

 −(x + 2)(x − 1) = 0 Factor.

 x = −2 or 1 Solve for x.

So, a = −2 and b = 1. Because g(x) ≤ f (x) for all x in the interval [−2, 1], the 
representative rectangle has an area of

∆A = [ f (x) − g(x)]∆x = [(2 − x2) − x]∆x

and the area of the region is

 A = ∫1

−2
 [(2 − x2) − x] dx

 = [−
x3

3
−

x2

2
+ 2x]

1

−2

 =
9
2

.

 a region Lying Between Two Intersecting Graphs

The sine and cosine curves intersect infinitely many times, bounding regions of equal 
areas, as shown in Figure 7.7. Find the area of one of these regions.

Solution Let g(x) = cos x and f (x) = sin x. Then g(x) ≤ f (x) for all x in the interval 
corresponding to the shaded region in Figure 7.7. To find the two points of intersection 
on this interval, set f (x) and g(x) equal to each other and solve for x.

 sin x = cos x Set f (x) equal to g(x).

 
sin x
cos x

= 1 Divide each side by cos x.

 tan x = 1 Trigonometric identity

 x =
π
4

 or 
5π
4

, 0 ≤ x ≤ 2π  Solve for x.

So, a = π�4 and b = 5π�4. Because sin x ≥ cos x for all x in the interval [π�4, 5π�4], 
the area of the region is

 A = ∫5π�4

π�4
 [sin x − cos x] dx

 = [−cos x − sin x]
5π�4

π�4

 = 2√2. 

x

−1

−1

−2

−2

1

1

(x, g(x))

(x, f(x))
g(x) = x

f(x) = 2 − x2

y

Region bounded by the graph of f  and 
the graph of g
Figure 7.6

x

1

−1

ππ
2

π
2

3

(x, g(x))

(x, f(x))

g(x) = cos x

f(x) = sin x

y

One of the regions bounded by the 
graphs of the sine and cosine functions
Figure 7.7
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 7.1 Area of a Region Between Two Curves 447

To find the area of the region between two curves that intersect at more than two 
points, first determine all points of intersection. Then check to see which curve is above 
the other in each interval determined by these points, as shown in Example 4.

 Curves That Intersect at more than Two Points

See LarsonCalculus.com for an interactive version of this type of example.

Find the area of the region between the graphs of

f (x) = 3x3 − x2 − 10x and g(x) = −x2 + 2x.

Solution Begin by setting f (x) and g(x) equal to each other and solving for x. This 
yields the x-values at all points of intersection of the two graphs.

 3x3 − x2 − 10x = −x2 + 2x Set f (x) equal to g(x).

 3x3 − 12x = 0 Write in general form.

 3x(x − 2)(x + 2) = 0 Factor.

 x = −2, 0, 2 Solve for x.

So, the two graphs intersect when x = −2, 0, and 2. In Figure 7.8, notice that 
g(x) ≤ f (x) on the interval [−2, 0]. The two graphs switch at the origin, however, and 
f (x) ≤ g(x) on the interval [0, 2]. So, you need two integrals—one for the  interval 
[−2, 0] and one for the interval [0, 2].

 A = ∫0

−2
 [ f (x) − g(x)] dx + ∫2

0
 [g(x) − f (x)] dx

 = ∫0

−2
 (3x3 − 12x) dx + ∫2

0
 (−3x3 + 12x) dx

 = [3x4

4
− 6x2]

0

−2
+ [−3x4

4
+ 6x2]

2

0

 = −(12 − 24) + (−12 + 24)
 = 24 

When the graph of a function of y is a boundary of a region, it is often convenient 
to use representative rectangles that are horizontal and find the area by integrating with 
respect to y. In general, to determine the area between two curves, you can use

A = ∫x2

x1

 [(top curve) − (bottom curve)] dx Vertical rectangles

 in variable x

or

A = ∫y2

y1

 [(right curve) − (left curve)] dy Horizontal rectangles

 in variable y

where (x1, y1) and (x2, y2) are either adjacent points of intersection of the two curves 
involved or points on the specified boundary lines.

x

y

4

6

−4

−1

−6

−8

−10

1

(0, 0)
(2, 0)

(−2, −8)

g(x) = −x2 + 2x

f(x) = 3x3 − x2 − 10x

f(x) ≤ g(x)g(x) ≤ f(x)

On [−2, 0], g(x) ≤ f (x), and on [0, 2],
f (x) ≤ g(x).
Figure 7.8

remark In Example 4, notice that you obtain an incorrect result when you  
integrate from −2 to 2. Such integration produces

 ∫2

−2
 [ f (x) − g(x)] dx = ∫2

−2
 (3x3 − 12x) dx.

 = 0.
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448 Chapter 7 Applications of Integration

 Horizontal representative rectangles

Find the area of the region bounded by the graphs of x = 3 − y2 and x = y + 1.

Solution Consider

g( y) = 3 − y2 and f (y) = y + 1.

These two curves intersect when y = −2 and y = 1, as shown in Figure 7.9. Because 
f (y) ≤ g(y) on this interval, you have

∆A = [g( y) − f (y)]∆y = [(3 − y2) − (y + 1)]∆y.

So, the area is 

 A = ∫1

−2
 [(3 − y2) − (y + 1)] dy

 = ∫1

−2
 (−y2 − y + 2) dy

 = [−y3

3
−

y2

2
+ 2y]

1

−2

 = (−
1
3

−
1
2

+ 2) − (8
3

− 2 − 4)
 =

9
2

. 

x
−1

−1

−2

1

1

2

(2, 1)

(−1, −2)

f(y) = y + 1

g(y) = 3 − y2

Δy

y    

x

y

−1

−1

−2

1

1

(2, 1)

(−1, −2)

y = x − 1

Δx

Δx

y = −    3 − x

y =     3 − x

 Horizontal rectangles (integration Vertical rectangles (integration with 
 with respect to y) respect to x)
 Figure 7.9 Figure 7.10

In Example 5, notice that by integrating with respect to y, you need only one 
 integral. To integrate with respect to x, you would need two integrals because the upper 
boundary changes at x = 2, as shown in Figure 7.10.

 A = ∫2

−1
 [(x − 1) + √3 − x] dx + ∫3

2
 (√3 − x + √3 − x) dx

 = ∫2

−1
 [x − 1 + (3 − x)1�2] dx + 2∫3

2
 (3 − x)1�2 dx

 = [x2

2
− x −

(3 − x)3�2

3�2 ]
2

−1
− 2[(3 − x)3�2

3�2 ]
3

2

 = (2 − 2 −
2
3) − (1

2
+ 1 −

16
3 ) − 2(0) + 2(2

3)
 =

9
2
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 7.1 Area of a Region Between Two Curves 449

Integration as an Accumulation Process
In this section, the integration formula for the area between two curves was developed 
by using a rectangle as the representative element. For each new application of integration 
in the remaining sections of this chapter, an appropriate representative element will be 
constructed using precalculus formulas you already know. Each integration formula 
will then be obtained by summing or accumulating these representative elements.

Known precalculus
formula

  
Representative

element
  

New integration
formula

For example, the area formula in this section was developed as follows.

 Integration as an accumulation Process

Find the area of the region bounded by the graph of y = 4 − x2 and the x-axis. Describe 
the integration as an accumulation process.

Solution The area of the region is

A = ∫2

−2
 (4 − x2) dx.

You can think of the integration as an accumulation of the areas of the rectangles formed 
as the representative rectangle slides from x = −2 to x = 2, as shown in Figure 7.11.

x
1 2 3−3 −2 −1

−1

1

2

3

5

y   

x
1 2 3−3 −2 −1

−1

1

2

3

5

y   

x
1 2 3−3 −2 −1

−1

1

2

3

5

y

 A = ∫−2

−2
 (4 − x2) dx = 0 A = ∫−1

−2
 (4 − x2) dx =

5
3

 A = ∫0

−2
 (4 − x2) dx =

16
3

 

x
1 2 3−3 −2 −1

−1

1

2

3

5

y   

x
1 2 3−3 −2 −1

−1

1

2

3

5

y

 A = ∫1

−2
 (4 − x2) dx = 9 A = ∫2

−2
 (4 − x2) dx =

32
3

 Figure 7.11 

A = (height)(width)   ∆A = [ f (x) − g(x)]∆x   A = ∫b

a

 [ f (x) − g(x)] dx
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450 Chapter 7 Applications of Integration

7.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  area What is the geometric interpretation of the area of 

the region between two curves?

2.  area Describe how to find the area of the region bounded 
by the graphs of f (x) and g(x) and the vertical lines x = a 
and x = b, where f  and g do not intersect on [a, b].

3.  area Between Intersecting Curves Explain why 
it is important to determine all points of intersection of 
two curves when finding the area of the region between 
the curves.

4.  Sketching a region Sketch a region for which 
integration with respect to y is easier than integration with 
respect to x.

 Writing a Definite Integral In Exercises 5–10, 
write a definite integral that represents the area of 
the region. (Do not evaluate the integral.)

 5. y1 = x2 − 6x  6. y1 = x2 + 2x + 1

 y2 = 0  y2 = 2x + 5

 

x

−2

−4

−6

−8

2 4 8

y1

y2

y   

x
−2−4 2

2

4

6

8

y

y1

y2

 7. y1 = x2 − 4x + 3  8. y1 = x2

 y2 = −x2 + 2x + 3  y2 = x3

 

x
2

1

−1
1 4

4

5

3

y

y1
y2

  

x

1

1

y

y1
y2

 9. y1 = 3(x3 − x) 10. y1 = (x − 1)3

 y2 = 0  y2 = x − 1

 

x

1

−1

−1 1

y

y1

y2

  

x

1

−1

1 2

y

y1
y2

 Finding a region In Exercises 11–14, the 
integrand of the definite integral is a  difference of 
two functions. Sketch the graph of each function 
and shade the region whose area is represented by 
the integral.

11. ∫4

0
 [(x + 1) −

x
2] dx 12. ∫3

2
 [(x3

3
− x) −

x
3] dx

13. ∫1

−2
 [(2 − y) − y2] dy 14. ∫4

0
 (2√y − y) dy

 Finding the area of a region In Exercises 
15–28, sketch the region bounded by the graphs of 
the equations and find the area of the region.

15. y = x2 − 1, y = −x + 2, x = 0, x = 1

16. y = −x3 + 2, y = x − 3, x = −1, x = 1

17. f (x) = x2 + 2x, g(x) = x + 2

18. y = −x2 + 3x + 1, y = −x + 1

19. f (x) =
1

9x2, y = 1, x = 1, x = 2

20. f (x) = −
4
x3, y = 0, x = −3, x = −1

21. f (x) = x5 + 2, g(x) = x + 2

22. f (x) = 3√x − 1, g(x) = x − 1

23. f (y) = y2, g(y) = y + 2

24. f (y) = y(2 − y), g(y) = −y

25. f ( y) = y2 + 1, g(y) = 0, y = −1, y = 2

26. f (y) =
y

√16 − y2
, g(y) = 0, y = 3

27. f (x) =
10
x

, x = 0, y = 2, y = 10

28. g(x) =
4

2 − x
, y = 4, x = 0

 Comparing methods In Exercises 29 and 30, 
find the area of the region by integrating (a) with 
respect to x and (b) with respect to y. (c) Compare 
your results. Which method is simpler? In general, 
will this method always be simpler than the other 
one? Why or why not?

29. x = 4 − y2 30. y = x2

 x = y − 2  y = 6 − x
 

x

y

−2−4−6 4 6

−4

−6

4

6

  

−2−4−6 2 4 6
−2

4

6

8

10

x

y

7.1 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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 7.1 Area of a Region Between Two Curves 451

Finding the area of a region In Exercises 31–36, (a) use 
a graphing utility to graph the region bounded by the graphs 
of the functions, (b) find the area of the region analytically, 
and (c) use the integration capabilities of the graphing utility to  
verify your results.

31. f (x) = x(x2 − 3x + 3), g(x) = x2

32. y = x4 − 2x2, y = 2x2

33. f (x) = x4 − 4x2, g(x) = x2 − 4

34. f (x) = x4 − 9x2, g(x) = x3 − 9x

35. f (x) =
1

1 + x2, g(x) =
1
2

x2

36. f (x) =
6x

x2 + 1
, y = 0, 0 ≤ x ≤ 3

 Finding the area of a region In Exercises 
37–42, sketch the region bounded by the graphs of 
the equations and find the area of the region.

37. f (x) = cos x, g(x) = 2 − cos x, 0 ≤ x ≤ 2π

38. f (x) = sin x, g(x) = cos 2x, −
π
2

≤ x ≤ π
6

39. f (x) = 2 sin x, g(x) = tan x, −
π
3

≤ x ≤ π
3

40. f (x) = sec 
πx
4

 tan 
πx
4

, g(x) = (√2 − 4)x + 4, x = 0

41. f (x) = xe−x2
, y = 0, 0 ≤ x ≤ 1

42. f (x) = −2x, g(x) = 1 − 3x

Finding the area of a region In Exercises 43–46, (a) use 
a graphing utility to graph the region bounded by the graphs 
of the equations, (b) find the area of the region analytically, 
and (c) use the integration capabilities of the graphing utility 
to verify your results.

43. f (x) = 2 sin x + sin 2x, y = 0, 0 ≤ x ≤ π

44. f (x) = 2 sin x + cos 2x, y = 0, 0 < x ≤ π

45. f (x) =
1
x2e1�x, y = 0, 1 ≤ x ≤ 3

46. g(x) =
4 ln x

x
, y = 0, x = 5

Finding the area of a region In Exercises 47–50, (a) use 
a graphing utility to graph the region bounded by the graphs of 
the equations, (b) explain why the area of the region is difficult 
to find analytically, and (c) use the integration capabilities of 
the graphing utility to approximate the area of the region to 
four decimal places.

47. y =√ x3

4 − x
, y = 0, x = 3

48. y = √x ex, y = 0, x = 0, x = 1

49. y = x2, y = 4 cos x

50. y = x2, y = √3 + x

51.  Finding the area of a region Find the area of the 
given region bounded by the graphs of y1, y2, and y3, as shown 
in the figure.

 y1 = x2 + 2, y2 = 4 − x2, y3 = 2 − x

 

x

y

−1 1 3

1

3

y1

y2

y3

  

x

y

y3 y2

y1

2

4
π

2
π

 Figure for 51  Figure for 52

52.  Finding the area of a region Find the area of the 
given region bounded by the graphs of y1, y2, and y3, as shown 
in the figure.

 y1 = sin x, y2 = cos x, y3 = sin x + cos x

 Integration as an accumulation Process In 
Exercises 53–56, find the accumulation function F. 
Then evaluate F at each value of the independent 
variable and graphically show the area given by 
each value of the independent variable.

53. F(x) = ∫x

0
 (1

2
t + 1) dt (a) F(0) (b) F(2) (c) F(6)

54. F(x) = ∫x

0
 (1

2
t2 + 2) dt (a) F(0) (b) F(4) (c) F(6)

55. F(α) = ∫α

−1
 cos 

πθ
2

 dθ (a) F(−1)   (b) F(0)   (c) F(1
2)

56. F( y) = ∫y

−1
 4ex�2 dx (a) F(−1) (b) F(0) (c) F(4)

Finding the area of a Figure In Exercises 57–60, use 
integration to find the area of the figure having the given 
vertices.

57. (−1, −1), (1, 1), (2, −1)
58. (0, 0), (6, 0), (4, 3)
59. (0, 2), (4, 2), (0, −2), (−4, −2)
60. (0, 0), (1, 2), (3, −2), (1, −3)

Using a Tangent Line In Exercises 61–64, write and 
evaluate the definite integral that represents the area of the 
region bounded by the graph of the function and the tangent 
line to the graph at the given point.

61. f (x) = 2x3 − 1, (1, 1)
62. f (x) = x − x3, (−1, 0)

63. f (x) =
1

x2 + 1
, (1, 

1
2)

64. y =
2

1 + 4x2, (1
2

, 1)
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452 Chapter 7 Applications of Integration

eXpLoRInG ConCeptS
65.  area Between Curves The graphs of y = 1 − x2

and y = x4 − 2x2 + 1 intersect at three points. However, 
the area between the curves can be found by a single 
integral. Explain why this is so, and write an integral that 
represents this area.

66.  Using Symmetry The area of the region bounded 
by the graphs of y = x3 and y = x cannot be found by 
the single integral ∫1

−1 (x3 − x) dx. Explain why this is 
so. Use symmetry to write a single integral that does 
represent the area.

67.  Interpreting Integrals Two cars with velocities 
v1(t) and v2(t) (in meters per second) are tested on a 
straight track. Consider the following integrals.

 ∫5

0
 [v1(t) − v2(t)] dt = 10 ∫10

0
 [v1(t) − v2(t)] dt = 30

 ∫30

20
 [v1(t) − v2(t)] dt = −5

 (a) Write a verbal interpretation of each integral.

 (b)  Is it possible to determine the distance between the 
two cars when t = 5 seconds? Why or why not?

 (c)  Assume both cars start at the same time and place. 
Which car is ahead when t = 10 seconds? How far 
ahead is the car?

 (d)  Suppose Car 1 has velocity v1 and is ahead of Car 2 
by 13 meters when t = 20 seconds. How far ahead 
or behind is Car 1 when t = 30 seconds?

68.  HOW DO YOU See IT? A state legislature 
is debating two proposals for eliminating the 
annual budget deficits after 10 years. The rate 
of decrease of the deficits for each proposal is 
shown in the figure.

60

50

40

30

20

10

2 4 6 8 10

Proposal 1

Proposal 2

D
e�

ci
t

(i
n 

bi
lli

on
s 

of
 d

ol
la

rs
)

Year

t

D

(a)  What does the area between the two curves 
represent?

(b)  From the viewpoint of minimizing the cumulative 
state deficit, which is the better proposal? Explain.

68.  

Dividing a region In Exercises 69 and 70, find b such that 
the line y = b divides the region bounded by the graphs of the 
equations into two regions of equal area.

69. y = 9 − x2, y = 0 70. y = 9 − ∣x∣, y = 0

Dividing a region In Exercises 71 and 72, find a such that 
the line x = a divides the region bounded by the graphs of the 
equations into two regions of equal area.

71. y = x, y = 4, x = 0 72. y2 = 4 − x, x = 0

Limits and Integrals In Exercises 73 and 74, evaluate 
the limit and sketch the graph of the region whose area is 
represented by the limit.

73. lim
�∆�→0

 ∑
n

i=1
 (xi − xi

2)∆x, where xi =
i
n

 and ∆x =
1
n

74. lim
�∆�→0

 ∑
n

i=1
 (4 − xi

2)∆x, where xi = −2 +
4i
n

 and ∆x =
4
n

revenue In Exercises 75 and 76, two models R1 and R2 are 
given for revenue (in millions of dollars) for a corporation. 
Both models are estimates of revenues from 2020 through 
2025, with t = 0 corresponding to 2020. Which model projects 
the greater revenue? How much more total revenue does that 
model project over the six-year period?

75. R1 = 7.21 + 0.58t

 R2 = 7.21 + 0.45t

76. R1 = 7.21 + 0.26t + 0.02t2

 R2 = 7.21 + 0.1t + 0.01t2

77.  Lorenz Curve Economists use Lorenz curves to illustrate 
the distribution of income in a country. A Lorenz curve, 
y = f (x), represents the actual income distribution in the 
country. In this model, x represents percents of families in the 
country from the poorest to the wealthiest and y represents 
percents of total income. The model y = x represents a 
country in which each family has the same income. The area 
between these two models, where 0 ≤ x ≤ 100, indicates 
a country’s “income inequality.” The table lists percents of 
income y for selected percents of families x in a country.

x 60 70 80 90

y 28.03 39.77 55.28 75.12

x 10 20 30 40 50

y 3.35 6.07 9.17 13.39 19.45

 (a)  Use a graphing utility to find a quadratic model for the 
Lorenz curve.

 (b) Plot the data and graph the model.

 (c)  Graph the model y = x. How does this model compare 
with the model in part (a)?

 (d)  Use the integration capabilities of a graphing utility to 
approximate the “income inequality.”

78.  Profit The chief financial officer of a company reports 
that profits for the past fiscal year were $15.9 million. The 
officer predicts that profits for the next 5 years will grow at 
a continuous annual rate somewhere between 3 1

2% and 5%. 
Estimate the cumulative difference in total profit over the 
5 years based on the predicted range of growth rates.
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7.1 Area of a Region Between Two Curves 453

80.  mechanical Design The surface of a machine part is the 
region between the graphs of y1 = ∣x∣ and y2 = 0.08x2 + k 
(see figure).

x
y1

y2

y

 (a) Find k such that the parabola is tangent to the graph of y1.

 (b) Find the area of the surface of the machine part.

81. area Find the area between the graph of y = sin x and the

  line segment joining the points (0, 0) and (7π
6

, −
1
2), as shown

 in the figure.

1

6
π

3
π

π7
6

1
2

, −

(0, 0)

4
x

y

1
2

))

82.  area Let a > 0 and b > 0. Show that the area of the ellipse

 
x2

a2 +
y2

b2 = 1 is πab (see figure).

ab

= 1+
x2

a2

y2

b2

x

y

True or False? In Exercises 83–86, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

83.  If the area of the region bounded by the graphs of f  and g 
is 1, then the area of the region bounded by the graphs of 
h(x) = f (x) + C and k(x) = g(x) + C is also 1.

84. If

 ∫b

a

 [ f (x) − g(x)] dx = A

 then

 ∫b

a

 [g(x) − f (x)] dx = −A.

85.  If the graphs of f  and g intersect midway between x = a and 
x = b, then

 ∫b

a

 [ f (x) − g(x)] dx = 0.

86. The line

 y = (1 − 3√0.5)x
 divides the region under the curve

 f (x) = x(1 − x)

 on [0, 1] into two regions of equal area.

pUtnAM eXAM ChALLenGe
87.  The horizontal line y = c intersects the curve

y = 2x − 3x3 in the first quadrant as shown in the figure. 
Find c so that the areas of the two shaded regions are equal.

x

y

y = 2x − 3x3

y = c

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

Concrete sections for a new building have the dimensions 
(in meters) and shape shown in the figure.

x

(−5.5, 0)
2 m

(5.5, 0)

2

1

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

y

1
3

y = 5 − x1
3

y = 5 + x

(a)  Find the area of the 
face of the section 
superimposed on 
the rectangular 
coordinate system.

(b)  Find the volume of 
concrete in one of 
the sections by 
multiplying the area 
in part (a) by 2 meters.

(c)  One cubic meter of concrete weighs 5000 pounds. Find 
the weight of the section.

79. Building Design

jl661227/Shutterstock.com
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454 Chapter 7 Applications of Integration

7.2 Volume: The Disk Method

 Find the volume of a solid of revolution using the disk method.
 Find the volume of a solid of revolution using the washer method.
 Find the volume of a solid with known cross sections.

The Disk Method
You have already learned that area is only one of the many applications of the definite 
integral. Another important application is its use in finding the volume of a three-
dimensional solid. In this section, you will study a particular type of three-dimensional 
solid—one whose cross sections are similar. Solids of revolution are used commonly 
in engineering and manufacturing. Some examples are axles, funnels, pills, bottles, and 
pistons, as shown in Figure 7.12.

        

 Solids of revolution
 Figure 7.12

When a region in the plane is revolved about a line, the resulting solid is a solid of 
revolution, and the line is called the axis of revolution. The simplest such solid is a 
right circular cylinder or disk, which is formed by revolving a rectangle about an axis 
adjacent to one side of the rectangle, as shown in Figure 7.13. The volume of such a 
disk is

 Volume of disk = (area of disk)(width of disk)
 = πR2w

where R is the radius of the disk and w is the width.
To see how to use the volume of a disk to find the volume of a general solid of 

revolution, consider a solid of revolution formed by revolving the plane region in 
Figure 7.14 (see next page) about the indicated axis. To determine the volume of this 
solid, consider a representative rectangle in the plane region. When this rectangle is 
revolved about the axis of revolution, it generates a representative disk whose volume is 

∆V = πR2 ∆x.

Approximating the volume of the solid by n such disks of width ∆x and radius R(xi) 
produces

 Volume of solid ≈ ∑
n

i=1
 π[R(xi)]2 ∆x

 = π∑
n

i=1
 [R(xi)]2∆x.

R

Rectangle

Axis of revolution

w

R

Disk

w

Volume of a disk: πR2w
Figure 7.13
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R

Δx
x = bx = a

Plane region

Representative
rectangle    

Solid of
revolution

veAxis of
revolution

Δx

Approximation
by n disks

Representati
disk

Disk method
Figure 7.14

This approximation appears to become better and better as �∆� → 0 (n →∞). So, you 
can define the volume of the solid as

Volume of solid = lim
�∆�→0

 π∑
n

i=1
 [R(xi)]2 ∆x = π∫b

a

 [R(x)]2 dx.

Schematically, the disk method looks like this.

Known Precalculus representative new Integration
Formula Element Formula

Volume of disk
V = πR2w   ∆V = π[R(xi)]2∆x   

Solid of revolution

V = π∫b

a

 [R(x)]2 dx

A similar formula can be derived when the axis of revolution is vertical.

THE DISK METHOD

To find the volume of a solid of revolution with the disk method, use one of 
the formulas below. (See Figure 7.15.)

horizontal axis of revolution Vertical axis of revolution

Volume = V = π∫b

a

 [R(x)]2 dx Volume = V = π∫d

c

 [R(y)]2 dy

R(x)

a b

Δx

a
V = π ∫ [R(x)]2 dx

b   

R(y)

c

d

Δy

c

d
V = π ∫ [R(y)]2 dy

 Horizontal axis of revolution Vertical axis of revolution
 Figure 7.15

ReMARK In Figure 7.15, 
note that you can determine 
the variable of integration 
by placing a representative  
rectangle in the plane region 
“perpendicular” to the axis of 
revolution. When the width 
of the rectangle is ∆x, integrate 
with respect to x, and when the 
width of the rectangle is ∆y, 
integrate with respect to y.
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456 Chapter 7 Applications of Integration

The simplest application of the disk method involves a plane region bounded by 
the graph of f  and the x-axis. When the axis of revolution is the x-axis, the radius R(x) 
is simply f (x).

 Using the Disk Method

Find the volume of the solid formed by revolving the region bounded by the graph of

f (x) = √sin x

and the x-axis (0 ≤ x ≤ π) about the x-axis, as shown in Figure 7.16.

Solution From the representative rectangle in the upper graph in Figure 7.16, you 
can see that the radius of this solid is

 R(x) = f (x)
 = √sin x.

So, the volume of the solid of revolution is

 V = π∫b

a

 [R(x)]2 dx Apply disk method.

 = π∫π

0
 (√sin x)2

 dx Substitute √sin x for R(x).

 = π∫π

0
 sin x dx Simplify.

 = π[−cos x]
π

0
 Integrate.

 = π(1 + 1)
 = 2π.

 Using a Line That Is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by the graphs of 

f (x) = 2 − x2

and g(x) = 1 about the line y = 1, as shown in Figure 7.17.

Solution By equating f (x) and g(x), you can determine that the two graphs intersect 
when x = ±1. To find the radius, subtract g(x) from f (x).

 R(x) = f (x) − g(x)
 = (2 − x2) − 1

 = 1 − x2

To find the volume, integrate between −1 and 1.

 V = π∫b

a

 [R(x)]2 dx Apply disk method.

 = π∫1

−1
 (1 − x2)2 dx Substitute 1 − x2 for R(x).

 = π∫1

−1
 (1 − 2x2 + x4) dx Simplify.

 = π[x −
2x3

3
+

x5

5 ]
1

−1
 Integrate.

 =
16π
15

 

x

1

−1

ππ
2

Δx

R(x)

f(x) =     sin x

Plane region

y

x

1

−1

π

Solid of revolution

y

Figure 7.16

x

R(x)

g(x)

f(x) = 2 − x2

2

−1 1

Axis of
revolution

Plane region

Δx f(x)

y

g(x) = 1

x
−1 1

2

Solid of
revolution

y

Figure 7.17
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 7.2 Volume: The Disk Method 457

The Washer Method
The disk method can be extended to cover solids of revolution with holes by replacing 
the representative disk with a representative washer. The washer is formed by revolving 
a rectangle about an axis, as shown in Figure 7.18. If r and R are the inner and outer 
radii of the washer, respectively, and w is the width of the washer, then the volume is

Volume of washer = π(R2 − r2)w.

To see how this concept can be used to find the volume of a solid of revolution, 
consider a region bounded by an outer radius R(x) and an inner radius r(x), as shown 
in Figure 7.19. If the region is revolved about its axis of revolution, then the volume 
of the resulting solid is

V = π∫b

a

 ([R(x)]2 − [r(x)]2) dx.    Washer method

Note that the integral involving the inner radius represents the volume of the hole and 
is subtracted from the integral involving the outer radius.

R(x) r(x)

Plane region

a b

  Solid of revolution
with hole

 Figure 7.19

 Using the Washer Method

Find the volume of the solid formed by revolving the region bounded by the graphs of

y = √x and y = x2

about the x-axis, as shown in Figure 7.20.

Solution In Figure 7.20, you can see that the outer and inner radii are as follows.

 R(x) = √x Outer radius

 r(x) = x2 Inner radius

Integrating between 0 and 1 produces

 V = π∫b

a

 ([R(x)]2 − [r(x)]2) dx Apply washer method.

 = π∫1

0
 [(√x)2 − (x2)2] dx Substitute √x for R(x) and x2 for r(x).

 = π∫1

0
 (x − x4) dx Simplify.

 = π[x2

2
−

x5

5 ]
1

0
 Integrate.

 =
3π
10

. 

Axis of revolution

R

r

w

r

R

Disk

Solid of revolution

w

Figure 7.18

y = x2

y =    x

r = x2

R =    x

x

1

1

Δx

(0, 0)

(1, 1)

Plane region

y

−1

1

1

Solid of
revolution

x

y

Solid of revolution
Figure 7.20
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458 Chapter 7 Applications of Integration

In each example so far, the axis of revolution has been horizontal and you have 
integrated with respect to x. In the next example, the axis of revolution is vertical and 
you integrate with respect to y. In this example, you need two separate integrals to 
compute the volume.

 Integrating with Respect to y: Two-Integral Case

Find the volume of the solid formed by revolving the region bounded by the graphs of

y = x2 + 1, y = 0, x = 0, and x = 1

about the y-axis, as shown in Figure 7.21.

Δy

Δy

(1, 2)

r

1

2

1

x

For 1 ≤ y ≤ 2:
R = 1
r =     y − 1

For 0 ≤ y ≤ 1:
R = 1
r = 0

Plane region

R
y    

x
1−1

2

Solid of
revolution

y

 Figure 7.21

Solution For the region shown in Figure 7.21, the outer radius is simply R = 1. 
There is, however, no convenient formula that represents the inner radius. When 
0 ≤ y ≤ 1, r = 0, but when 1 ≤ y ≤ 2, r is determined by the equation y = x2 + 1, 
which implies that r = √y − 1.

r(y) = {0,
√y − 1,

   0 ≤ y ≤ 1
   1 ≤ y ≤ 2

Using this definition of the inner radius, you can use two integrals to find the volume.

 V = π∫1

0
 (12 − 02) dy + π∫2

1
 [12 − (√y − 1)2 ] dy Apply washer method.

 = π∫1

0
 1 dy + π∫2

1
 (2 − y) dy Simplify.

 = π[y]
1

0
+ π[2y −

y2

2 ]
2

1
 Integrate.

 = π + π(4 − 2 − 2 +
1
2)

 =
3π
2

Note that the first integral π∫1
0  1 dy represents the volume of a right circular cylinder of 

radius 1 and height 1. This portion of the volume could have been determined without 
using calculus. 

TeChNoLogy Some graphing utilities have the capability of generating 
(or have built-in software capable of generating) a solid of revolution. If you have 
access to such a utility, use it to graph some of the solids of revolution described in 
this section. For instance, the solid in Example 4 might appear like that shown in  
Figure 7.22.

Generated by Mathematica

Figure 7.22
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7.2 Volume: The Disk Method 459

 Manufacturing

See LarsonCalculus.com for an interactive version of this type of example.

A manufacturer drills a hole through the center of a metal sphere of radius 5 inches, as 
shown in Figure 7.23(a). The hole has a radius of 3 inches. What is the volume of the 
resulting metal ring?

Solution You can imagine the ring to be generated by a segment of the circle whose 
equation is x2 + y2 = 25, as shown in Figure 7.23(b). Because the radius of the hole 
is 3 inches, you can let y = 3 and solve the equation x2 + y2 = 25 to determine that 
the limits of integration are x = ±4. So, the inner and outer radii are r(x) = 3 and 
R(x) = √25 − x2, and the volume is

 V = π∫b

a

 ([R(x)]2 − [r(x)]2) dx

 = π∫4

−4
 [(√25 − x2)2 − (3)2] dx

 = π∫4

−4
 (16 − x2) dx

 = π[16x −
x3

3 ]
4

−4

 =
256π

3
 cubic inches. 

Solids with Known Cross Sections
With the disk method, you can find the volume of a solid having a circular cross section  
whose area is A = πR2. This method can be generalized to solids of any shape, as long 
as you know a for mula for the area of an arbitrary cross section. Some common cross 
sections are squares, rectangles, triangles, semicircles, and trapezoids.

VOLUMES OF SOLIDS WITH KNOWN CROSS SECTIONS

1. For cross sections of area A(x) taken perpendicular to the x-axis,

Volume = ∫b

a

 A(x) dx. See Figure 7.24(a).

2. For cross sections of area A(y) taken perpendicular to the y-axis,

Volume = ∫d

c

 A(y) dy. See Figure 7.24(b).

x

y

x = a

x = b

Δx    

y

y = c

y = d

x

Δy

 (a) Cross sections perpendicular to x-axis (b) Cross sections perpendicular to y-axis

 Figure 7.24

x

y

−5 −4 −3 −2 −1

r(x) = 3

R(x) =     25 − x2 y =     25 − x2

y = 3

Plane region

1 2 3 4 5

(b)

Figure 7.23

3 in.

5 in.

x

Solid of revolution

4 5

y

(a)
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 Triangular Cross Sections

Find the volume of the solid shown in Figure 7.25. The base of the solid is the region 
bounded by the lines

f (x) = 1 −
x
2

, g(x) = −1 +
x
2

, and x = 0.

The cross sections perpendicular to the x-axis are equilateral triangles.

Solution The base and area of each triangular cross section are as follows.

 Base = (1 −
x
2) − (−1 +

x
2) = 2 − x Length of base

 Area =
√3
4

(base)2 Area of equilateral triangle

 A(x) =
√3
4

(2 − x)2 Area of cross section

Because x ranges from 0 to 2, the volume of the solid is

V = ∫b

a

 A(x) dx = ∫2

0
 
√3
4

(2 − x)2 dx = −
√3
4 [(2 − x)3

3 ]
2

0
=

2√3
3

.

 An Application to geometry

Prove that the volume of a pyramid with a square base is

V =
1
3

hB

where h is the height of the pyramid and B is the area of the base.

Solution As shown in Figure 7.26, you can intersect the pyramid with a plane 
parallel to the base at height y to form a square cross section whose sides are of length 
b′. Using similar triangles, you can show that

b′
b

=
h − y

h
 or b′ =

b
h

(h − y)

where b is the length of the sides of the base of the pyramid. So,

A(y) = (b′)2 =
b2

h2 (h − y)2.

Integrating between 0 and h produces

 V = ∫h

0
 A(y) dy

 = ∫h

0
 
b2

h2 (h − y)2 dy

 =
b2

h2∫h

0
 (h − y)2 dy

 = −(b2

h2)[(h − y)3

3 ]
h

0

 =
b2

h2 (h3

3 )
 =

1
3

hB. B = b2 

x

−1

1

1

2

f(x) = 1 − x
2

Δx

y

g(x) = −1 + x
2

Triangular base in xy-plane
Figure 7.25

x

y

1

−1

2

1

y = f(x)

y = g(x)

Cross sections are equilateral triangles.

Area = A(y)

Area of base = B = b2

=

x

b2

h2 (h − y)2

y

b ′

b

x

y

h − y

h

b ′1
2

b
1
2

y

Figure 7.26
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 7.2 Volume: The Disk Method 461

7.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Disk Method Explain how to use the disk method to 

find the volume of a solid of revolution.

2.  Comparing Methods What is the relationship 
between the disk method and the washer method?

3.  Finding the Volume of a Solid In your own 
words, describe when it is necessary to use more than one 
integral to find the volume of a solid of revolution.

4.  Finding the Volume of a Solid Explain how to 
find the volume of a solid with a known cross section.

 Finding the Volume of a Solid In Exercises 
5–8, write and evaluate the definite integral that 
represents the volume of the solid formed by 
revolving the region about the x-axis.

 5. y = √x  6. y = −x + 1

  

x

1

2

2

3

3

4

41

y
  

x

1

1

y

 7. y = x2, y = x5  8. y = 2, y = 4 −
x2

4

  

x

1

1

y   

x

1

2 3

3

5

1−1−2−3

y

 Finding the Volume of a Solid In Exercises 
9–12, write and evaluate the definite integral that 
represents the volume of the solid formed by 
revolving the region about the y-axis.

 9. y = x2 10. y = √16 − x2

  

x

1

2

2

3

3

4

41

y   

x

1

2

2

3

3

4

41

y

11. y = x2�3 12. x = −y2 + 4y

 

x

1

1

y   

x

1

2

2

3

3

4

41

y

 Finding the Volume of a Solid In Exercises 
13–16, find the volumes of the solids generated by 
revolving the region bounded by the graphs of the 
equations about the given lines.

13. y = √x, y = 0, x = 3

 (a) the x-axis (b) the y-axis

 (c) the line x = 3 (d) the line x = 6

14. y = 2x2, y = 0, x = 2

 (a) the y-axis (b) the x-axis

 (c) the line y = 8 (d) the line x = 2

15. y = x2, y = 4x − x2

 (a) the x-axis

 (b) the line y = 6

16. y = 4 + 2x − x2, y = 4 − x

 (a) the x-axis

 (b) the line y = 1

 Finding the Volume of a Solid In Exercises 
17–20, find the volume of the solid generated by 
revolving the region bounded by the graphs of the 
equations about the line y = 4.

17. y = x, y = 3, x = 0

18. y = 1
2x3, y = 4, x = 0

19. y =
2

1 + x
, y = 0, x = 0, x = 4

20. y = √1 − x, x = 0, y = 0

 Finding the Volume of a Solid In Exercises 
21–24, find the volume of the solid generated by 
revolving the region bounded by the graphs of the 
equations about the line x = 5.

21. y = x, y = 0, y = 4, x = 5

22. y = 2 −
x
2

, y = 0, y = 1, x = 0

23. x = y2, x = 4

24. xy = 3, y = 1, y = 4, x = 5

7.2 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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462 Chapter 7 Applications of Integration

Finding the Volume of a Solid In Exercises 25–32, find 
the volume of the solid generated by revolving the region 
bounded by the graphs of the equations about the x-axis.

25. y =
1

√3x + 5
, y = 0, x = 0, x = 2

26. y = x√4 − x2, y = 0

27. y =
6
x
, y = 0, x = 1, x = 3

28. y =
2

x + 1
, y = 0, x = 0, x = 6

29. y = e−3x, y = 0, x = 0, x = 2

30. y = ex�4, y = 0, x = 0, x = 6

31. y = x2 + 1, y = −x2 + 2x + 5, x = 0, x = 3

32. y = √x, y = −1
2x + 4, x = 0, x = 8

Finding the Volume of a Solid In Exercises 33–36, find 
the volume of the solid generated by revolving the region 
bounded by the graphs of the equations about the y-axis.

33. y = 3(2 − x), y = 0, x = 0

34. y = √3x − 2, x = 0, y = 0, y = 1

35. y = 9 − x2, y = 0, x = 2, x = 3

36. y =
x3

8
, y = 0, x = 4

 Finding the Volume of a Solid In Exercises 
37–40, find the volume of the solid generated by 
revolving the region bounded by the graphs of 
the equations about the x-axis. Verify your results 
using the integration  capabilities of a graphing 
utility.

37. y = sin x, y = 0, x = 0, x = π

38. y = cos 2x, y = 0, x = 0, x =
π
4

39. y = ex−1, y = 0, x = 1, x = 2

40. y = ex�2 + e−x�2, y = 0, x = −1, x = 2

Finding the Volume of a Solid In Exercises 41–48, find 
the volume of the solid generated by revolving the specified 
region about the given line.

R2
R3

R1

0.5 1

0.5

1

x

y

y = x

y = x2

41. R1 about y = 0 42. R1 about x = 1

43. R1 about x = 0 44. R2 about y = 1

45. R2 about y = 0 46. R3 about x = 1

47. R3 about x = 0 48. R3 about y = 1

Finding the Volume of a Solid Using Technology In 
Exercises 49–52, use the integration capabilities of a graphing 
utility to approximate the volume of the solid generated by 
revolving the region bounded by the graphs of the equations 
about the x-axis.

49. y = e−x2
, y = 0, x = 0, x = 2

50. y = ln x, y = 0, x = 1, x = 3

51. y = 2 arctan(0.2x), y = 0, x = 0, x = 5

52. y = √2x, y = x2

eXpLoRInG ConCeptS
53.  Describing a Solid Each integral represents the 

volume of a solid. Describe each solid.

 (a) π∫π�2

0
 sin2 x dx (b) π∫4

2
 y4 dy

54.  Comparing Volumes A region bounded by the 
parabola y = 4x − x2 and the x-axis is revolved about 
the x-axis. A second region bounded by the parabola 
y = 4 − x2 and the x-axis is revolved about the x-axis. 
Without integrating, how do the volumes of the two 
solids compare? Explain.

55.  Comparing Volumes The 

1 2 3 4

2

4

6

8

10

y = x2

x

y

region in the figure is revolved 
about the indicated axes and line. 
Order the volumes of the resulting 
solids from least to greatest. Explain 
your reasoning.

 (a) x-axis

 (b) y-axis

 (c) x = 3

 56.  hoW Do yoU See IT? Use the graph to 
match the integral for the volume with the axis 
of rotation.

a

b

x

y

y = f(x)

x = f(y)

(a) V = π∫b

0
 (a2 − [ f (y)]2) dy (i) x-axis

(b) V = π∫a

0
 (b2 − [b − f (x)]2) dx (ii) y-axis

(c) V = π∫a

0
 [ f (x)]2 dx (iii) x = a

(d) V = π∫b

0
 [a − f ( y)]2 dy (iv) y = b

 56.  
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7.2 Volume: The Disk Method 463

Dividing a Solid In Exercises 57 and 58, consider the solid 
formed by revolving the region bounded by y = √x, y = 0, 
x = 1, and x = 3 about the x-axis.

57.  Find the value of x in the interval [1, 3] that divides the solid 
into two parts of equal volume.

58.  Find the values of x in the interval [1, 3] that divide the solid 
into three parts of equal volume.

59.  Manufacturing A manufacturer drills a hole through the 
center of a metal sphere of radius R. The hole has a radius r. 
Find the volume of the resulting ring.

60.  Manufacturing For the metal sphere in Exercise 59, let 
R = 6. What value of r will produce a ring whose volume is 
exactly half the volume of the sphere?

61.  Volume of a Cone Use the disk method to verify that the 
volume of a right circular cone is 1

3πr2h, where r is the radius 
of the base and h is the height.

62.  Volume of a Sphere Use the disk method to verify that 
the volume of a sphere is 43πr3, where r is the radius.

63.  Using a Cone A cone of height H with a base of radius r 
is cut by a plane  parallel to and h units above the base, where 
h < H. Find the volume of the solid (frustum of a cone) below 
the plane.

64.  Using a Sphere A sphere of radius r is cut by a plane h 
units above the equator, where h < r. Find the volume of the 
solid (spherical segment) above the plane.

65.  Volume of a Fuel Tank A tank on the wing of a jet 
aircraft is formed by revolving the region bounded by the 
graph of y = 1

8x2√2 − x and the x-axis (0 ≤ x ≤ 2) about the 
x-axis, where x and y are measured in meters. Use a graphing 
utility to graph the function. Find the volume of the tank 
analytically.

66.  Volume of a Container A container can be modeled by 
revolving the graph of

 y = {√0.1x3 − 2.2x2 + 10.9x + 22.2,
2.95,

   0 ≤ x ≤ 11.5
   11.5 < x ≤ 15

  about the x-axis, where x and y are measured in centimeters. 
Use a graphing utility to graph the function. Find the volume 
of the container analytically.

67.  Finding Volumes of Solids Find the volumes of the 
solids (see figures) generated if the upper half of the ellipse 
9x2 + 25y2 = 225 is revolved about (a) the x-axis to form a 
prolate spheroid (shaped like a football) and (b) the y-axis to 
form an oblate spheroid (shaped like half of a candy).

x6

4

−4

y   
4

−4
6

x

y

 Figure for 67(a) Figure for 67(b)

69.  Minimum Volume The function y = 4 − (x2�4) on the 
interval [0, 4] is revolved about the line y = b (see figure).

 (a) Find the volume of the resulting solid as a function of b.

 (b)  Use a graphing utility to graph the function in part (a), and 
use the graph to approximate the value of b that minimizes 
the volume of the solid.

 (c)  Use calculus to find the value of b that minimizes the 
volume of the solid, and compare the result with the 
answer to part (b).

3−1 4
x

4

−2

y

y = b

 

x
11

3

−3

y

 Figure for 69 Figure for 70

70.  Modeling Data A draftsman is asked to determine the 
amount of material required to produce a machine part (see 
figure). The diameters d of the part at equally spaced points 
x are listed in the table. The measurements are listed in 
centimeters.

x 6 7 8 9 10

d 5.8 5.4 4.9 4.4 4.6

x 0 1 2 3 4 5

d 4.2 3.8 4.2 4.7 5.2 5.7

 (a)  Use the regression capabilities of a graphing utility to find 
a fourth-degree polynomial through the points representing 
the radius of the machine part. Plot the data and graph the 
model.

 (b)  Use the integration capabilities of a graphing utility to 
approximate the volume of the machine part.

A 3D printer is used to create a plastic drinking glass. The 
equations given to the printer for the inside of the glass are

x = (y
4)

1�32

 and y = 5

where x and y are 
measured in inches. 
What is the total volume 
that the drinking glass 
can hold when the region 
bounded by the graphs of 
the equations is revolved 
about the y-axis?

68. 3D Printing

Sergi Lopez Roig/Shutterstock.com
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71.  Think About It Match each integral with the solid whose 
volume it represents, and give the dimensions of each solid.

 (a) Right circular cylinder  (b) Ellipsoid

 (c) Sphere  (d) Right circular cone  (e) Torus

 (i) π∫h

0
 (rx

h )
2

 dx (ii) π∫h

0
 r2 dx

 (iii) π∫r

−r

 (√r2 − x2)2
 dx

 (iv) π∫b

−b

 (a√1 −
x2

b2)
2

 dx

 (v)  π∫r

−r

 [(R + √r2 − x2)2 − (R − √r2 − x2)2] dx

72.  Cavalieri’s Theorem Prove that if two solids have equal 
altitudes and all cross sections parallel to their bases and at 
equal distances from their bases have equal areas, then the 
solids have the same volume (see figure).

h

R1

R2

 Area of R1 = area of R2

73.  Using Cross Sections Find the volumes of the solids 
whose bases are bounded by the graphs of y = x + 1 
and y = x2 − 1, with the indicated cross sections taken 
perpendicular to the x-axis.

 (a) Squares (b) Rectangles of height 1

  
y

x

−1
1

2

  

x

y

2
1

−1

74.  Using Cross Sections Find the volumes of the solids 
whose bases are bounded by the circle x2 + y2 = 4, with the 
indicated cross sections taken perpendicular to the x-axis.

 (a) Squares (b) Equilateral triangles

  

y
x

22

  

y
x

22

 (c) Semicircles (d) Isosceles right triangles

  

y
x 2 2

 

x
y

2 2

75.  Using Cross Sections Find the volume of the solid 
of intersection (the solid common to both) of the two right 
circular cylinders of radius r whose axes meet at right angles 
(see figure).

y

x

  

 Two intersecting cylinders Solid of intersection

76.  Using Cross Sections The solid shown in the figure has 
cross sections bounded by the graph of ∣x∣a + ∣y∣a = 1, where 
1 ≤ a ≤ 2.

 (a) Describe the cross section when a = 1 and a = 2.

 (b)  Describe a procedure for approximating the volume of the 
solid.

77.  Volume of a Wedge Two planes cut a right circular 
cylinder to form a wedge. One plane is perpendicular to 
the axis of the cylinder and the second makes an angle of 
θ degrees with the first (see figure).

 (a) Find the volume of the wedge if θ = 45°.

 (b)  Find the volume of the wedge for an arbitrary angle θ. 
Assuming that the cylinder has sufficient length, how does 
the volume of the wedge change as θ increases from 0° to 
90°?

y

x θ

   

x

y

R r

 Figure for 77 Figure for 78

78. Volume of a Torus

 (a)  Show that the volume of the torus shown in the figure 
is given by the integral 8πR∫r

0 √r2 − y2 dy, where 
R > r > 0.

 (b) Find the volume of the torus.

11 y

x

y

x

y

x

⎪ ⎪ ⎪ ⎪x 2 +  y 2 = 1⎪ ⎪ ⎪ ⎪x a +  y a = 1⎪ ⎪ ⎪ ⎪x 1 +  y 1 = 1

 For FurthEr InFormatIon For more information 
on this problem, see the article “Estimating the Volumes of Solid 
Figures with Curved Surfaces” by Donald Cohen in Mathematics 
Teacher. To view this article, go to MathArticles.com.
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 7.3 Volume: The Shell Method 465

7.3 Volume: The Shell Method

 Find the volume of a solid of revolution using the shell method.
 Compare the uses of the disk method and the shell method.

The Shell Method
In this section, you will study an alternative method for finding the volume of a solid 
of revolution. This method is called the shell method because it uses cylindrical shells.  
A comparison of the advantages of the disk and shell methods is given later in 
this section.

To begin, consider a representative rectangle as shown in Figure 7.27, where w is 
the width of the rectangle, h is the height of the rectangle, and p is the distance between 
the axis of revolution and the center of the rectangle. When this rectangle is revolved 
about its axis of revolution, it forms a cylindrical shell (or tube) of thickness w. To 
find the volume of this shell, consider two cylinders. The radius of the larger cylinder 
corresponds to the outer radius of the shell, and the radius of the smaller cylinder 
corresponds to the inner radius of the shell. Because p is the average radius of the shell, 
you know the outer radius is

p +
w
2

 Outer radius

and the inner radius is

p −
w
2

. Inner radius

So, the volume of the shell is

 Volume of shell = (volume of cylinder) − (volume of hole)

 = π(p +
w
2)

2

h − π(p −
w
2)

2

h

 = 2πphw

 = 2π(average radius)(height)(thickness).

You can use this formula to find the volume of a solid of revolution. For instance, 
the plane region in Figure 7.28 is revolved about a line to form the indicated solid. 
Consider a horizontal rectangle of width ∆y. As the plane region is revolved about a 
line parallel to the x-axis, the rectangle generates a representative shell whose volume  is

∆V = 2π[ p(y)h(y)]∆y.

You can approximate the volume of the solid by n such shells of thickness ∆y, height 
h(yi), and average radius p(yi).

Volume of solid ≈ ∑
n

i=1
 2π[p(yi)h(yi)]∆y = 2π∑

n

i=1
 [ p(yi)h(yi)]∆y

This approximation appears to become better and better as �∆� → 0 (n →∞). So, the 
volume of the solid is

 Volume of solid = lim
�∆�→0

 2π∑
n

i=1
 [ p(yi)h(yi)]∆y

 = 2π∫d

c

 [p(y)h(y)] dy.

p

w

Axis of revolution

p −
p + w

2w
2

h

Figure 7.27

d

cp(y)

Δy

Plane region

h(y)

Solid of revolution

Axis of
revolution

Figure 7.28
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466 Chapter 7 Applications of Integration

THE SHELL METHOD

To find the volume of a solid of revolution with the shell method, use one of 
the formulas below. (See Figure 7.29.)

horizontal axis of revolution Vertical axis of revolution

Volume = V = 2π∫d

c

 p(y)h(y) dy Volume = V = 2π∫b

a

 p (x)h(x) dx

d

c

Δy

p(y)

h(y)  

ba

Δx

h(x)

p(x)

 Horizontal axis of revolution Vertical axis of revolution
 Figure 7.29

 Using the Shell Method to Find Volume

Find the volume of the solid formed by revolving the region bounded by 

y = x − x3

and the x-axis (0 ≤ x ≤ 1) about the y-axis.

Solution Because the axis of revolution is  

x

h(x) = x − x3

p(x) = x

Δx

(1, 0)

Axis of
revolution

y = x − x3

y

Figure 7.30

vertical, use a vertical representative rectangle, 
as shown in Figure 7.30. The width ∆x indicates
that x is the variable of integration. The distance
from the center of the rectangle to the axis of 
revolution is p(x) = x, and the height of the 
rectangle is 

h(x) = x − x3.

Because x ranges from 0 to 1, apply the shell
method to find the volume of the solid.

 V = 2π∫b

a

 p(x)h(x) dx

 = 2π∫1

0
 x(x − x3) dx

 = 2π∫1

0
 (−x4 + x2) dx Simplify.

 = 2π[−
x5

5
+

x3

3 ]
1

0
 Integrate.

 = 2π(−
1
5

+
1
3)

 =
4π
15
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7.3 Volume: The Shell Method 467

 Using the Shell Method to Find Volume

Find the volume of the solid formed by revolving the region bounded by the graph of

x = e−y2

and the y-axis (0 ≤ y ≤ 1) about the x-axis.

Solution Because the axis of revolution is horizontal, use a horizontal representative 
rectangle, as shown in Figure 7.31. The width ∆y indicates that y is the variable of 
integration. The distance from the center of the rectangle to the axis of revolution is 
p(y) = y, and the height of the rectangle is h(y) = e−y2

. Because y ranges from 0 to 1, 
the volume of the solid is

 V = 2π∫d

c

 p(y)h(y) dy Apply shell method.

 = 2π∫1

0
 ye−y2

 dy

 = −π[e−y2]
1

0
 Integrate.

 = π(1 −
1
e)

 ≈ 1.986. 

Exploration
To see the advantage of using the shell method in Example 2, solve the 
equation x = e−y2 for y.

y = {1,
√−ln x,

   0 ≤ x ≤ 1�e
   1�e < x ≤ 1

Then use this equation to find the volume using the disk method.

Comparison of Disk and Shell Methods
The disk and shell methods can be distinguished as follows. For the disk method, the 
representative rectangle is always perpendicular to the axis of revolution, whereas 
for the shell method, the representative rectangle is always parallel to the axis of 
revolution, as shown in Figure 7.32.

x

h(y) = e−y2
p(y) = y

Δy

Axis of
revolution

x = e−y2
1

y

Figure 7.31

c

d

Δy

c

d
V = 2π ∫ ph dy

xh

p

y

a b

a

b
V = 2π ∫ ph dx

x

h

p

y

Δx

Horizontal axis of revolutionVertical axis of revolution
Shell method: Representative rectangle is 
parallel to the axis of revolution.

c

d

Δy

c

d
V = π ∫ (R2 − r2) dy

xR

r

y

a b

Δx
a

b
V = π ∫ (R2 − r2) dx

x

R

r

y

Vertical axis of revolution Horizontal axis of revolution
Disk method: Representative rectangle is 
perpendicular to the axis of revolution.

Figure 7.32
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468 Chapter 7 Applications of Integration

Often, one method is more convenient to use than the other. The next  example  
illustrates a case in which the shell method is preferable.

 Shell Method Preferable

See LarsonCalculus.com for an interactive version of this type of example.

Find the volume of the solid formed by revolving the region bounded by the graphs of 

y = x2 + 1, y = 0, x = 0, and x = 1

about the y-axis.

Solution In Example 4 in Section 7.2, you saw that the washer method requires two 
integrals to determine the volume of this solid. See Figure 7.33(a).

 V = π∫1

0
 (12 − 02) dy + π∫2

1
 [12 − (√y − 1)2] dy Apply washer method.

 = π∫1

0
 1 dy + π∫2

1
 (2 − y) dy Simplify.

 = π[y]
1

0
+ π[2y −

y2

2 ]
2

1
 Integrate.

 = π + π(4 − 2 − 2 +
1
2)

 =
3π
2

In Figure 7.33(b), you can see that the shell method requires only one integral to find  
the volume.

 V = 2π∫b

a

 p(x)h(x) dx Apply shell method.

 = 2π∫1

0
 x(x2 + 1) dx

 = 2π [x4

4
+

x2

2 ]
1

0
 Integrate.

 = 2π(3
4)

 =
3π
2

 

Consider the solid formed by revolving the region in Example 3 about the vertical 
line x = 1. Would the resulting solid of revolution have a greater volume or a smaller 
volume than the solid in Example 3? Without integrating, you should be able to reason 
that the resulting solid would have a smaller volume because “more” of the revolved 
region would be closer to the axis of revolution. To confirm this, try solving the integral

V = 2π∫1

0
 (1 − x)(x2 + 1) dx p(x) = 1 − x

which gives the volume of the solid.

 For Further InFormatIon To learn more about the disk and shell methods, 
see the article “The Disk and Shell Method” by Charles A. Cable in The American 
Mathematical Monthly. To view this article, go to MathArticles.com.

x

Axis of
revolution

1

1

2

r

(1, 2)

Δy

Δy

For 0 ≤ y ≤ 1:
R = 1
r = 0

For 1 ≤ y ≤ 2:
R = 1
r =     y − 1

y

(a) Disk method

Axis of
revolution

h(x) = x2 + 1

1

1

2

p(x) = x

(1, 2)

Δx

y

x

(b) Shell method

Figure 7.33
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 7.3 Volume: The Shell Method 469

 Volume of a Pontoon

A pontoon is to be made in the shape shown in Figure 7.34. The pontoon is designed 
by rotating the graph of

y = 1 −
x2

16
, −4 ≤ x ≤ 4

about the x-axis, where x and y are measured in feet. Find the volume of the pontoon.

Solution Refer to Figure 7.35 and use the disk method as shown.

 V = π∫4

−4
 (1 −

x2

16)
2

 dx Apply disk method.

 = π∫4

−4
 (1 −

x2

8
+

x4

256) dx Simplify.

 = π[x −
x3

24
+

x5

1280]
4

−4
 Integrate.

 =
64π
15

 ≈ 13.4 cubic feet 

To use the shell method in Example 4, you would have to solve for x in terms of 
y in the equation 

y = 1 −
x2

16

and then evaluate an integral that requires a u-substitution.
Sometimes, solving for x is very difficult (or even impossible). In such cases, you 

must use a vertical rectangle (of width ∆x), thus making x the variable of integration. 
The position (horizontal or vertical) of the axis of revolution then determines the 
method to be used. This is shown in Example 5.

 Shell Method Necessary

Find the volume of the solid formed by revolving the region bounded by the graphs 
of y = x3 + x + 1, y = 1, and x = 1 about the line x = 2, as shown in Figure 7.36.

Solution In the equation y = x3 + x + 1, you cannot easily solve for x in terms of 
y. (See the discussion at the end of Section 3.8.) Therefore, the variable of integration 
must be x, and you should choose a vertical representative rectangle. Because the 
rectangle is parallel to the axis of revolution, use the shell method.

 V = 2π∫b

a

 p(x)h(x) dx Apply shell method.

 = 2π∫1

0
 (2 − x)(x3 + x + 1 − 1) dx

 = 2π∫1

0
 (−x4 + 2x3 − x2 + 2x) dx Simplify.

 = 2π[−
x5

5
+

x4

2
−

x3

3
+ x2]

1

0
 Integrate.

 = 2π(−
1
5

+
1
2

−
1
3

+ 1)
 =

29π
15

 

8 ft

2 ft

Figure 7.34

−1−2−3−4 1

2

2

3

3 4

R(x) = 1 −
r (x) = 0

x2

16

Δx

y

x

Disk method
Figure 7.35

Axis of
revolution

1

2

2

3

p(x) = 2 − x

Δx

(1, 3)

x

y

h(x) = x3 + x + 1 − 1

Figure 7.36
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470 Chapter 7 Applications of Integration

7.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Shell Method Explain how to use the shell method to 

find the volume of a solid of revolution.

2.  Representative Rectangles Compare the 
representative rectangles for the disk and shell methods.

 Finding the Volume of a Solid In exercises 
3–12, use the shell method to write and evaluate 
the definite integral that represents the volume of 
the solid generated by revolving the plane region 
about the y-axis.

 3. y = x  4. y = 1 − x

 

x
1

1

2

2

y   

x
1

1

y

 5. y = √x  6. y =
1
2

x2 + 1

 

x
4

2

4

2

y
  

−1−2 1 2

1

2

3

4

x

y

 7. y =
1
4

x2, y = 0, x = 4  8. y =
1
2

x3, y = 0, x = 3

 9. y = x2, y = 4x − x2 10. y = x3, y = 8, x = 0

11. y = √2x − 5, y = 0, x = 4

12. y = x3�2, y = 8, x = 0

 Finding the Volume of a Solid In exercises 
13–22, use the shell method to write and evaluate 
the definite integral that represents the volume of 
the solid generated by revolving the plane region 
about the x-axis.

13. y = x 14. y = 1 − x

 

x
1

1

2

2

y   

x
1

1

2

4

−2

−1

y

15. y =
1
x
 16. x + y2 = 4

 

1 2

1

1
4

1
2

1
2

3
2

3
4

x

y
  

x

y

1 2 3 4
−1

1

3

2

4

17. y = x3, x = 0, y = 8 18. y = 4x2, x = 0, y = 4

19. x + y = 4, y = x, y = 0 20. y = 3 − x, y = 0, x = 6

21. y = 1 − √x, y = x + 1, y = 0

22. y = √x + 2, y = x, y = 0

 Finding the Volume of a Solid In exercises 
23–26, use the shell method to find the volume 
of the solid generated by revolving the region 
bounded by the graphs of the equations about the 
given line.

23. y = 2x − x2, y = 0, about the line x = 4

24. y = √x, y = 0, x = 4, about the line x = 6

25. y = 3x − x2, y = x2, about the line x = 2

26. y =
1
3

x3, y = 6x − x2, about the line x = 3

 Choosing a Method In exercises 27 and 28, 
decide whether it is more convenient to use the disk 
method or the shell method to find the volume of 
the solid of revolution. explain your reasoning. (Do 
not find the volume.)

27. (y − 2)2 = 4 − x 28. y = 4 − ex

 

−1 1 2 3 4−1

1

2

3

5

x

y   

−1−2−3 1 2 3

2

1

3

4

5

x

y

Choosing a Method In exercises 29–32, use the disk 
method or the shell method to find the volumes of the solids 
generated by revolving the region bounded by the graphs of 
the equations about the given lines.

29. y = x3, y = 0, x = 2

 (a) the x-axis  (b) the y-axis  (c) the line x = 4

7.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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7.3 Volume: The Shell Method 471

30. y =
10
x2 , y = 0, x = 1, x = 5

 (a) the x-axis  (b) the y-axis  (c) the line y = 10

31. x1�2 + y1�2 = a1�2, x = 0, y = 0

 (a) the x-axis  (b) the y-axis  (c) the line x = a

32. x2�3 + y2�3 = a2�3, a > 0 (hypocycloid)

 (a) the x-axis  (b) the y-axis

Finding the Volume of a Solid Using Technology In 
exercises 33–36, (a) use a graphing utility to graph the region 
bounded by the graphs of the equations, and (b) use the 
integration capabilities of the graphing utility to approximate 
the volume of the solid generated by revolving the region about 
the y-axis.

33. x4�3 + y4�3 = 1, x = 0, y = 0, first quadrant

34. y = √1 − x3, y = 0, x = 0

35. y = 3√(x − 2)2(x − 6)2, y = 0, x = 2, x = 6

36. y =
2

1 + e1�x, y = 0, x = 1, x = 3

eXpLoRInG ConCeptS
37.  Describing Cylindrical Shells Consider the plane 

region bounded by the graphs of y = k, y = 0, x = 0, 
and x = b, where k > 0 and b > 0. What are the heights 
and radii of the cylinders generated when this region is 
revolved about (a) the x-axis and (b) the y-axis?

38.  Think About It A solid is generated by revolving 
the region bounded by y = 9 − x2 and x = 0 about the 
y-axis. Explain why you can use the shell method with 
limits of integration x = 0 and x = 3 to find the volume 
of the solid.

Comparing Integrals In exercises 39 and 40, give a 
geometric argument that explains why the integrals have 
equal values.

39. π∫5

1
 (x − 1) dx = 2π∫2

0
 y[5 − (y2 + 1)] dy

40. π∫2

0
 [16 − (2y)2] dy = 2π∫4

0
 x(x

2) dx

41.  Comparing Volumes The region in the figure is 
revolved about the indicated axes and line. Order the volumes 
of the resulting solids from least to greatest. Explain your 
reasoning.

 (a) x-axis  (b) y-axis  (c) x = 4

y = x2/5

1 2 3 4

1

2

3

4

x

y

 42.  HOW DO YOU SEE IT? Use the graph to 
answer the following.

y = f (x)

x = g(y)

x

y

2.45C

B

3

A

(a)  Describe the figure generated by revolving 
segment AB about the y-axis.

(b)  Describe the figure generated by revolving 
segment BC about the y-axis.

(c)  Assume the curve in the figure can be described 
as y = f (x) or x = g(y). A solid is generated by 
revolving the region bounded by the curve, y = 0, 
and x = 0 about the y-axis. Set up integrals to find 
the volume of this solid using the disk method and 
the shell method. (Do not integrate.)

 42.  

Analyzing an Integral In exercises 43–46, the integral 
represents the volume of a solid of revolution. Identify (a) the 
plane region that is revolved and (b) the axis of revolution.

43. 2π∫2

0
 x3 dx 44. 2π∫1

0
 (y − y3�2) dy

45. 2π∫6

0
 (y + 2)√6 − y dy

46. 2π∫1

0
 (4 − x)ex dx

47.  Machine Part A solid is generated by revolving the region 
bounded by y = 1

2x2 and y = 2 about the y-axis. A hole, 
centered  along the axis of revolution, is drilled through this 
solid so that one-fourth of the volume is removed. Find the 
diameter of the hole.

48.  Machine Part A solid is generated by revolving the region 
bounded by y = √9 − x2 and y = 0 about the y-axis. A hole, 
centered along the axis of revolution, is drilled through this 
solid so that one-third of the volume is removed. Find the 
 diameter of the hole.

49.  Volume of a Torus A torus is formed by revolving the 
region bounded by the circle x2 + y2 = 1 about the line x = 2 
(see figure). Find the volume of this “doughnut-shaped” solid. 
(Hint: The integral ∫1

−1 √1 − x2 dx represents the area of a 
semicircle.)

x

1

1 2

−1

−1

y
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472 Chapter 7 Applications of Integration

50.  Volume of a Torus Repeat Exercise 49 for a torus formed 
by revolving the region bounded by the circle x2 + y2 = r2 
about the line x = R, where r < R.

51. Finding Volumes of Solids

 (a) Use differentiation to verify that

  ∫x sin x dx = sin x − x cos x + C.

 (b)  Use the result of part (a) to find the volume of the solid 
generated by revolving each plane region about the y-axis.

(i)

0.5

1.0

x

y

π π3
4

π
2

−

y = sin x

π
4

π
4

 (ii)

x

y

π

1

2

y = 2 sin x

y = −sin x

52. Finding Volumes of Solids

 (a) Use differentiation to verify that

  ∫x cos x dx = cos x + x sin x + C.

 (b)  Use the result of part (a) to find the volume of the solid 
 generated by revolving each plane region about the y-axis. 
(Hint: Begin by approximating the points of intersection.)

(i)

y = cos x

y = x2

x

y

−0.5
−1 0.5 1 1.5

0.5

1.5

2

 (ii)
y = 4 cos x

y = (x − 2)2

x

y

−1−2 1 2 3

1

2

3

53.  Volume of a Segment of a Sphere Let a sphere of 
radius r be cut by a plane, thereby forming a segment of height 
h. Show that the volume of this segment is 

 
1
3
πh2(3r − h).

54.  Volume of an Ellipsoid Consider the plane region 
bounded by the graph of the ellipse

 (x
a)

2

+ (y
b)

2

= 1

  where a > 0 and b > 0. Show that the volume of the ellipsoid  
formed when this region is revolved about the y-axis is

 
4
3
πa2b.

  What is the volume when the region is revolved about the  
x-axis?

55.  Exploration Consider the region bounded by the graphs of 
y = axn, y = abn, and x = 0, as shown in the figure.

x

abn

b

y

y = axn

 (a)  Find the ratio R1(n) of the area of the region to the area of 
the circumscribed rectangle.

 (b)  Find lim
n→∞

 R1(n) and compare the result with the area of the

  circumscribed rectangle.

 (c)  Find the volume of the solid of revolution formed by 
revolving the region about the y-axis. Find the ratio R2(n) 
of this volume to the volume of the circumscribed right 
 circular cylinder.

 (d)  Find lim
n→∞

 R2(n) and compare the result with the volume of

  the circumscribed cylinder.

 (e)  Use the results of parts (b) and (d) to make a conjecture 
about the shape of the graph of y = axn, 0 ≤ x ≤ b, as 
n →∞.

56.  Think About It Match each integral with the solid whose 
volume it represents and give the dimensions of each solid.

 (a) Right circular cone    (b) Torus    (c) Sphere

 (d) Right circular cylinder  (e) Ellipsoid  

 (i)  2π∫r

0
 hx dx

 (ii) 2π∫r

0
 hx(1 −

x
r) dx

 (iii) 2π∫r

0
 2x√r2 − x2 dx

 (iv) 2π∫b

0
 2ax√1 −

x2

b2 dx

 (v)  2π∫r

−r

 (R − x)(2√r2 − x2) dx

57.  Volume of a Storage Shed A storage shed has a 
circular base of diameter 80 feet. Starting at the center, the 
interior height is measured every 10 feet and recorded in the 
table (see figure). Find the volume of the shed. 

 

H
ei

gh
t (

in
 f

ee
t)

Distance from center
(in feet)

10

10

20

20

30

30

40

40

50

50

x

y
x Height

0 50

10 45

20 40

30 20

40 0
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7.3 Volume: The Shell Method 473

58.  Modeling Data A pond is approximately circular, with 
a diameter of 400 feet. Starting at the center, the depth of the 
water is measured every 25 feet and recorded in the table (see 
figure).

 

D
ep

th
 (

in
 f

ee
t)

Distance from center
(in feet)

10
8
6
4
2

20
18
16
14
12

50 100 150 200
x

y

 (a)  Use the regression capabilities of a graphing utility to find 
a quadratic model for the depths recorded in the table. Use 
the graphing utility to plot the depths and graph the model.

 (b)  Use the integration capabilities of a graphing utility and 
the model in part (a) to approximate the volume of water 
in the pond.

 (c)  Use the result of part (b) to approximate the number of 
gallons of water in the pond. (Hint: 1 cubic foot of water 
is approximately 7.48 gallons.)

59.  Equal Volumes Let V1 and V2 be the volumes of the 
solids that result when the plane region bounded by

 y =
1
x
, y = 0, x =

1
4

, and x = c, c >
1
4

  is revolved about the x-axis and the y-axis, respectively. Find 
the value of c for which V1 = V2.

60.  Volume of a Segment of a Paraboloid The region 
bounded by y = r2 − x2, y = 0, and x = 0 is revolved about 
the y-axis to form a paraboloid. A hole, centered along the 
axis of revolution, is drilled through this solid. The hole has 
a radius k, 0 < k < r. Find the volume of the resulting ring 
(a) by integrating with respect to x and (b) by integrating with 
respect to y.

61.  Finding Volumes of Solids Consider the graph of 
y2 = x(4 − x)2, as shown in the figure. Find the  volumes of 
the solids that are generated when the loop of this graph is 
revolved about (a) the x-axis, (b) the y-axis, and (c) the line 
x = 4.

1 2 3 4 5 6 7

−2
−1

−3
−4

1
2
3
4

x

y
y2 = x(4 − x)2

x 0 25 50

Depth 20 19 19

x 75 100 125

Depth 17 15 14

x 150 175 200

Depth 10 6 0

The Oblateness of Saturn Saturn is the most oblate of the 
planets in our solar system. Its equatorial radius is 60,268 kilometers 
and its polar radius is 54,364 kilometers. The color-enhanced 
photograph of Saturn was taken by Voyager 1. In the photograph, 
the oblateness of Saturn is clearly visible.

(a)  Find the ratio of the volumes of the sphere and the oblate 
ellipsoid shown below.

(b)  If a planet were spherical and had the same volume as Saturn, 
what would its radius be?

 Computer model of  
“spherical Saturn,” whose 
equatorial radius is equal 
to its polar radius. The 
equation of the cross 
section passing through 
the pole is 

x2 + y2 = 60,2682.

 Computer model of  
“oblate Saturn,” whose 
equatorial radius is greater 
than its polar radius. 
The equation of the 
cross section passing 
through the pole is

x2

60,2682 +
y2

54,3642 = 1.

Saturn

NASA
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474 Chapter 7 Applications of Integration

7.4 Arc Length and Surfaces of Revolution

 Find the arc length of a smooth curve.
 Find the area of a surface of revolution.

Arc Length
In this section, definite integrals are used to find the arc lengths of curves and the areas 
of surfaces of revolution. In either case, an arc (a segment of a curve) is  approximated 
by straight line segments whose lengths are given by the familiar Distance Formula

d = √(x2 − x1)2 + (y2 − y1)2.

A rectifiable curve is one that has a finite arc length. You will see that a sufficient 
 condition for the graph of a function f  to be rectifiable between (a, f (a)) and (b, f (b)) 
is that f′ be continuous on [a, b]. Such a function is continuously differentiable on 
[a, b], and its graph on the interval [a, b] is a smooth curve.

Consider a function y = f (x) that is continuously differentiable on the interval 
[a, b]. You can approximate the graph of f  by n line segments whose endpoints are 
determined by the partition

a = x0 < x1 < x2 < .  .  . < xn = b

as shown in Figure 7.37. By letting ∆xi = xi − xi−1 and ∆yi = yi − yi−1, you can 
approximate the length of the graph by

 s ≈ ∑
n

i=1
 √(xi − xi−1)2 + (yi − yi−1)2

 = ∑
n

i=1
 √(∆xi)2 + (∆yi)2

 = ∑
n

i=1
 √(∆xi)2 + (∆yi

∆xi
)

2

(∆xi)2

 = ∑
n

i=1
 √1 + (∆yi

∆xi
)

2

(∆xi).

This approximation appears to become better and better as �∆� → 0 (n →∞). So, the 
length of the graph is

s = lim
�∆�→0

 ∑
n

i=1
 √1 + (∆yi

∆xi
)

2

 (∆xi).

Because f′(x) exists for each x in (xi−1, xi), the Mean Value Theorem guarantees the 
existence of ci in (xi−1, xi) such that

 
f (xi) − f (xi−1)

xi − xi−1
= f′(ci)

 
∆yi

∆xi

= f′(ci).

Because f′ is continuous on [a, b], it follows that √1 + [ f′(x)]2 is also continuous (and 
therefore integrable) on [a, b], which implies that

 s = lim
�∆�→0

 ∑
n

i=1
 √1 + [ f′(ci)]2 (∆xi)

 = ∫b

a

 √1 + [ f′(x)]2 dx

where s is called the arc length of f  between a and b.

x
a b

s = length of

s
y = f(x)

curve from
a to b

y

Figure 7.37

x
a = x0 b = xnx1 x2

(xn, yn)
(x0, y0)

(x1, y1)
(x2, y2)

Δy = y2 − y1

Δx = x2 − x1

y
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7.4 Arc Length and Surfaces of Revolution 475

Because the definition of arc length can be applied to a linear function, you can 
check to see that this new definition agrees with the standard Distance Formula for the 
length of a line segment. This is shown in Example 1.

 The Length of a Line Segment

Find the arc length from (x1, y1) to (x2, y2) on the graph of

f (x) = mx + b.

Solution Because

f′(x) = m =
y2 − y1

x2 − x1

it follows that

 s = ∫x2

x1

 √1 + [ f′(x)]2 dx Formula for arc length

 = ∫x2

x1

 √1 + (y2 − y1

x2 − x1
)

2

 dx

 =√(x2 − x1)2 + (y2 − y1)2

(x2 − x1)2 (x)]
x2

x1

 Integrate and simplify.

 =√(x2 − x1)2 + (y2 − y1)2

(x2 − x1)2 (x2 − x1)

 = √(x2 − x1)2 + (y2 − y1)2

which is the formula for the distance between two points in the plane, as shown in
Figure 7.38. 

 FOR FURTHER INFORMATION To see how arc length can be used to define 
trigonometric functions, see the article “Trigonometry Requires Calculus, Not Vice 
Versa” by Yves Nievergelt in UMAP Modules.

Definition of Arc Length

Let the function y = f (x) represent a smooth curve on the interval [a, b]. The 
arc length of f  between a and b is

s = ∫b

a

 √1 + [ f′(x)]2 dx.

Similarly, for a smooth curve x = g(y), the arc length of g between c and d is

s = ∫d

c

 √1 + [g′(y)]2 dy.

x

x2 − x1

y2 − y1

f(x) = mx + b

(x1, y1)

(x2, y2)

y

The formula for the arc length of the 
graph of f  from (x1, y1) to (x2, y2) is the 
same as the standard Distance Formula.
Figure 7.38

TECHNOLOGY Definite integrals representing arc length often are very 
difficult to evaluate. In this section, a few examples are presented. In the next 
chapter, with more advanced integration techniques, you will be able to tackle more 
difficult arc length problems. In the meantime, remember that you can always use 
a numerical integration program to approximate an arc length. For instance, use the 
numerical integration feature of a graphing utility to approximate the arc lengths in 
Examples 2 and 3.

CHRISTIAN HUYGENS 
(1629–1695)

The Dutch mathematician 
Christian Huygens, who 
invented the pendulum clock, 
and James Gregory (1638–1675),
a Scottish mathematician, both 
made early contributions to the 
problem of finding the length of 
a rectifiable curve.
See LarsonCalculus.com to read 
more of this biography.

Bettmann/Corbis
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476 Chapter 7 Applications of Integration

 Finding Arc Length

Find the arc length of the graph of y =
x3

6
+

1
2x

 on the interval [1
2

, 2], as shown in 
Figure 7.39.

Solution Using

dy
dx

=
3x2

6
−

1
2x2 =

1
2 (x2 −

1
x2)

yields an arc length of

 s = ∫b

a

 √1 + (dy
dx)

2

 dx Formula for arc length

 = ∫2

1�2
 √1 + [1

2 (x2 −
1
x2)]

2

 dx

 = ∫2

1�2
 √1

4 (x4 + 2 +
1
x4) dx

 =
1
2

 ∫2

1�2
 (x2 +

1
x2) dx Simplify.

 =
1
2[

x3

3
−

1
x]

2

1�2
 Integrate.

 =
1
2 (

13
6

+
47
24)

 =
33
16

.

 Finding Arc Length

Find the arc length of the graph of (y − 1)3 = x2 on the interval [0, 8], as shown in 
Figure 7.40.

Solution Solving for y yields y = x2�3 + 1 and dy�dx = 2�(3x1�3). Because dy�dx 
is undefined when x = 0, the arc length formula with respect to x cannot be used. 
Solving for x in terms of y yields x = ±(y − 1)3�2. Choosing the positive value of x 
produces 

dx
dy

=
3
2

( y − 1)1�2.

The x-interval [0, 8] corresponds to the y-interval [1, 5], and the arc length is

 s = ∫d

c

 √1 + (dx
dy)

2

 dy Formula for arc length

 = ∫5

1
 √1 + [3

2
(y − 1)1�2]

2

 dy

 = ∫5

1
 √9

4
y −

5
4

 dy

 =
1
2∫

5

1
 √9y − 5 dy Simplify.

 =
1
18[

(9y − 5)3�2

3�2 ]
5

1
 Integrate.

 =
1
27

(403�2 − 43�2)

 ≈ 9.073. 

321

2

1

x

1
2x6

x3
y = +

y

The arc length of the graph of y on 
[1
2, 2]

Figure 7.39

1 2 3 4 5 6 7 8

1

2

3

4

5

x

(y − 1)3 = x2

(0, 1)

(8, 5)
y

The arc length of the graph of y on 
[0, 8]
Figure 7.40
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 7.4 Arc Length and Surfaces of Revolution 477

 Finding Arc Length

See LarsonCalculus.com for an interactive version of this type of example.

Find the arc length of the graph of

y = ln(cos x)

from x = 0 to x = π�4, as shown in Figure 7.41.

Solution Using

dy
dx

= −
sin x
cos x

= −tan x

yields an arc length of

 s = ∫b

a

 √1 + (dy
dx)

2

 dx Formula for arc length

 = ∫π�4

0
 √1 + tan2 x dx

 = ∫π�4

0
 √sec2 x dx Trigonometric identity

 = ∫π�4

0
 sec x dx Simplify.

 = [ln∣sec x + tan x∣]
π�4

0
 Integrate.

 = ln(√2 + 1) − ln 1

 ≈ 0.881.

 Length of a Cable

An electric cable is hung between two towers that are 200 feet apart, as shown in  
Figure 7.42. The cable takes the shape of a catenary whose equation is

y = 75(ex�150 + e−x�150) = 150 cosh 
x

150
.

Find the arc length of the cable between the two towers.

Solution Because y′ = 1
2 (ex�150 − e−x�150), you can write

(y′)2 =
1
4

(ex�75 − 2 + e−x�75)

and

1 + (y′)2 =
1
4

(ex�75 + 2 + e−x�75) = [1
2

(ex�150 + e−x�150)]
2

.

Therefore, the arc length of the cable is

 s = ∫b

a

 √1 + (y′)2 dx Formula for arc length

 =
1
2∫

100

−100
 (ex�150 + e−x�150) dx

 = 75[ex�150 − e−x�150]
100

−100
 Integrate.

 = 150(e2�3 − e−2�3)
 ≈ 215 feet. 

x

−1

y = ln(cos x)

π
2

π
2

−

y

The arc length of the graph of y on

[0, 
π
4]

Figure 7.41

x

y

x
150

Catenary:
y = 150 cosh

150

−100 100

Figure 7.42
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478 Chapter 7 Applications of Integration

Area of a Surface of Revolution
In Sections 7.2 and 7.3, integration was used to calculate the volume of a solid 
of revolution. You will now look at a procedure for finding the area of a surface 
of revolution.

Definition of Surface of Revolution

When the graph of a continuous function is revolved about a line, the resulting 
surface is a surface of revolution.

The area of a surface of revolution is  

Axis of
revolution

L

r1

r2

derived from the formula for the lateral surface
area of the frustum of a right circular cone.
Consider the line segment in the figure at the 
right, where L is the length of the line segment, 
r1 is the radius at the left end of the line segment,
and r2 is the radius at the right end of the line 
segment. When the line  segment is revolved 
about its axis of revolution, it forms a frustum 
of a right  circular cone, with

S = 2πrL Lateral surface area of frustum

where

r =
1
2

(r1 + r2). Average radius of frustum

(In Exercise 56, you are asked to verify the formula for S.)
Consider a function f  that has a continuous derivative on the interval [a, b]. The 

graph of f  is revolved about the x-axis to form a surface of revolution, as shown in 
Figure 7.43. Let ∆ be a partition of [a, b], with subintervals of width ∆xi. Then the line 
segment of length

∆Li = √(∆xi)2 + (∆yi)2

generates a frustum of a cone. Let ri be the average radius of this frustum. By the 
Intermediate Value Theorem, a point di exists (in the ith subinterval) such that

ri = f (di).

The lateral surface area ∆Si of the frustum is

 ∆Si = 2πri∆Li

 = 2πf (di)√(∆xi)2 + (∆yi)2

 = 2πf (di)√1 + (∆yi

∆xi
)

2

∆xi.

y = f(x)
Δyi

Δxi

a = x0 xi

ΔLi

xi − 1 b = xn

  

Axis of
revolution

 Figure 7.43
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7.4 Arc Length and Surfaces of Revolution 479

By the Mean Value Theorem, a number ci exists in (xi−1, xi) such that

 f′(ci) =
f (xi) − f (xi−1)

xi − xi−1

 =
∆yi

∆xi

.

So, ∆Si = 2πf (di)√1 + [ f′(ci)]2 ∆xi, and the total surface area can be  approximated 
by

S ≈ 2π∑
n

i=1
 f (di)√1 + [ f′(ci)]2 ∆xi.

It can be shown that the limit of the right side as �∆� → 0 (n →∞) is

S = 2π∫b

a

 f (x)√1 + [ f′(x)]2 dx.

In a similar manner, if the graph of f  is revolved about the y-axis, then S is

S = 2π∫b

a

 x√1 + [ f′(x)]2 dx.

In these two formulas for S, you can regard the products 2πf (x) and 2πx as the 
circumferences of the circles traced by a point (x, y) on the graph of f  as it is revolved 
about the x-axis and the y-axis (Figure 7.44). In one case, the radius is r = f (x), and 
in the other case, the radius is r = x. Moreover, by appropriately adjusting r, you 
can generalize the formula for surface area to cover any horizontal or vertical axis of 
revolution, as indicated in the next definition.

Definition of the Area of a Surface of Revolution

Let y = f (x) have a continuous derivative on the interval [a, b]. The area S of 
the surface of revolution formed by revolving the graph of f  about a horizontal 
or vertical axis is

S = 2π∫b

a

 r(x)√1 + [ f′(x)]2 dx y is a function of x.

where r(x) is the distance between the graph of f  and the axis of revolution. If 
x = g(y) on the interval [c, d], then the surface area is

S = 2π∫d

c

 r(y)√1 + [g′(y)]2 dy x is a function of y.

where r(y) is the distance between the graph of g and the axis of revolution.

The formulas in this definition are sometimes written as

S = 2π∫b

a

 r(x) ds y is a function of x.

and

S = 2π∫d

c

 r(y) ds x is a function of y.

where

ds = √1 + [ f′(x)]2 dx and ds = √1 + [g′(y)]2 dy

respectively.

x

(x, f(x))

r = f(x)

y = f(x)

a bAxis of
revolution

y

x

A
xi

s 
of

 r
ev

ol
ut

io
n

r = x

(x, f(x))

a b

y

y = f(x)

Figure 7.44
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480 Chapter 7 Applications of Integration

 The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of f (x) = x3 on the interval 
[0, 1] about the x-axis, as shown in Figure 7.45.

Solution The distance between the x-axis and the graph of f  is r(x) = f (x), and 
because f′(x) = 3x2, the surface area is

 S = 2π∫b

a

 r(x)√1 + [ f′(x)]2 dx Formula for surface area

 = 2π∫1

0
 x3√1 + (3x2)2 dx

 =
2π
36∫

1

0
 (36x3)(1 + 9x4)1�2 dx Simplify.

 =
π
18[

(1 + 9x4)3�2

3�2 ]
1

0
 Integrate.

 =
π
27

(103�2 − 1)

 ≈ 3.563.

 The Area of a Surface of Revolution

Find the area of the surface formed by revolving the graph of f (x) = x2 on the interval 
[0, √2] about the y-axis, as shown in the figure below.

x

(    2, 2)

r (x) = x

f(x) = x2 

Axis of revolution

−2
2

2

3

−1 1

y

Solution In this case, the distance between the graph of f  and the y-axis is r(x) = x. 
Using f′(x) = 2x and the formula for surface area, you can determine that

 S = 2π∫b

a

 r(x)√1 + [ f′(x)]2 dx Formula for surface area

 = 2π∫√2

0
 x√1 + (2x)2 dx

 =
2π
8 ∫

√2

0
 (1 + 4x2)1�2(8x) dx Simplify.

 =
π
4 [

(1 + 4x2)3�2

3�2 ]
√2

0
 Integrate.

 =
π
6

[(1 + 8)3�2 − 1]

 =
13π

3

 ≈ 13.614. 

Axis of
revolution

1

1

−1

f(x) = x3

r (x) = f (x)

x

(1, 1)

y

Figure 7.45

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 7.4 Arc Length and Surfaces of Revolution 481

7.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Rectifiable Curve Describe the condition for a curve 

to be rectifiable between two points.

2.  Arc Length Explain how to find the arc length of a 
function that is a smooth curve on the interval [a, b].

3.  Arc Length Name a function for which the integral 
below represents the arc length of the function on the 
interval [0, 2].

 ∫2

0
 √1 + (4x)2 dx

4.  Surface of Revolution Describe a surface of 
revolution in your own words.

Finding Distance Using Two Methods In Exercises 
5 and 6, find the distance between the points using (a) the 
Distance Formula and (b) integration.

 5. (2, 1), (5, 3)  6. (−2, 2), (4, −6)

 Finding Arc Length In Exercises 7–20, find 
the arc length of the graph of the  function over the 
indicated interval.

 7. y =
2
3

(x2 + 1)3�2  8. y =
x4

8
+

1
4x2, [2, 3]

 

y =   (x2 + 1)3/2 

x

y

−1 1 2 3 4
−1

1

2

3

4

2
3

  
y = + 

x

y

1 2 3 4

4

8

12

16

x4

8
1

4x2

 9. y =
2
3

x3�2 + 1 10. y = 2x3�2 + 3

 

−1 1 2 3 4
−1

1

2

3

4

y = x3/2 + 12
3

x

y
  

2 4 6 8 10 12

10

20

30

40

50

60

y = 2x3/2 + 3

x

y

11. y =
3
2

x2�3, [1, 8] 12. y =
3
2

x2�3 + 4, [1, 27]

13. y =
x5

10
+

1
6x3, [2, 5] 14. y =

x7

14
+

1
10x5, [1, 2]

15. y = ln(sin x), [π4, 
3π
4 ] 16. y = ln(cos x), [0, 

π
3]

17. y = 1
2 (ex + e−x), [0, 2]

18. y = ln(ex + 1
ex − 1), [ln 6, ln 8]

19. x = 1
3 (y2 + 2)3�2, 0 ≤ y ≤ 4

20. x = 1
3√y (y − 3), 1 ≤ y ≤ 4

Finding Arc Length In Exercises 21–30, (a) sketch the 
graph of the function, highlighting the part indicated by the 
given interval, (b) write a definite integral that represents the 
arc length of the curve over the indicated interval and observe 
that the integral cannot be evaluated with the techniques 
studied so far, and (c) use the integration capabilities of a 
graphing utility to approximate the arc length.

21. y = 4 − x2, [0, 2] 22. y = x2 + x − 2, [−2, 1]

23. y =
1
x
, [1, 3]

24. y =
1

x + 1
, [0, 1]

25. y = sin x, [0, π]

26. y = cos x, [−
π
2

, 
π
2]

27. y = 2 arctan x, [0, 1]
28. y = ln x, [1, 5] 
29. x = e−y, 0 ≤ y ≤ 2

30. x = √36 − y2, 0 ≤ y ≤ 3

Approximation In Exercises 31 and 32, approximate the 
arc length of the graph of the function over the interval [0, 4] 
in three ways. (a) Use the Distance Formula to find the distance 
between the endpoints of the arc. (b) Use the Distance Formula 
to find the lengths of the four line segments connecting the 
points on the arc when x = 0, x = 1, x = 2, x = 3, and x = 4. 
Find the sum of the four lengths. (c) Use the integration 
capabilities of a graphing utility to approximate the integral 
yielding the indicated arc length.

31. f (x) = x3 32. f (x) = (x2 − 4)2

33.  Length of a Cable An electric cable is hung between two 
towers that are 40 meters apart (see figure). The cable takes the 
shape of a catenary whose equation is

 y = 10(ex�20 + e−x�20), −20 ≤ x ≤ 20

  where x and y are measured in meters. Find the arc length of 
the cable between the two towers.

x
−20 −10 10 20

10

30

y
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482 Chapter 7 Applications of Integration

34.  Roof Area A barn is 100 feet long and 40 feet wide (see 
figure). A cross section of the roof is the inverted catenary 
y = 31 − 10(ex�20 + e−x�20). Find the number of square feet 
of roofing on the barn.

20

20

−20
x

100 ft

y
y = 31 − 10(ex/20 + e−x/20)

35.  Length of Gateway Arch The Gateway Arch in St. 
Louis, Missouri, is closely approximated by the inverted 
catenary

 y = 693.8597 − 68.7672 cosh 0.0100333x,

 −299.2239 ≤ x ≤ 299.2239.

  Use the integration capabilities of a graphing utility to 
approximate the length of this curve (see figure).

x
−200−400 200 400

(−299.2, 0) (299.2, 0)

(0, 625.1)

400

200

y  

−2−6 2 6 8

−6
−8

2

6
8

x2/3 + y2/3 = 4

x

y

 Figure for 35 Figure for 36

36.  Astroid Find the total length of the graph of the astroid 
x2�3 + y2�3 = 4.

37.  Arc Length of a Sector of a Circle Find the arc length 
from (0, 3) clockwise to (2, √5) along the circle x2 + y2 = 9.

38.  Arc Length of a Sector of a Circle Find the arc length 
from (−3, 4) clockwise to (4, 3) along the circle x2 + y2 = 25. 
Show that the result is one-fourth the  circumference of the circle.

 Finding the Area of a Surface of 
Revolution In Exercises 39–44, write and 
evaluate the definite integral that represents the 
area of the surface generated by revolving the 
curve on the indicated interval about the x-axis.

39. y =
1
3

x3 40. y = 2√x

 y

x

−4

−1

2

1 3

8
10

−6
−8

−10

y =   x31
3

  y

x
2 4 6 8

−6

−4

−2

2

4

6
y = 2   x

41. y =
x3

6
+

1
2x

, 1 ≤ x ≤ 2 42. y = 3x, 0 ≤ x ≤ 3

43. y = √4 − x2, −1 ≤ x ≤ 1

44. y = √9 − x2, −2 ≤ x ≤ 2

 Finding the Area of a Surface of 
Revolution In Exercises 45–48, write and 
evaluate the definite integral that represents the 
area of the surface generated by revolving the 
curve on the indicated interval about the y-axis.

45. y = 3√x + 2, 1 ≤ x ≤ 8 46. y = 9 − x2, 0 ≤ x ≤ 3

47. y = 1 −
x2

4
, 0 ≤ x ≤ 2 48. y =

x
2

+ 3, 1 ≤ x ≤ 5

Finding the Area of a Surface of Revolution Using 
Technology In Exercises 49 and 50, use the integration 
capabilities of a graphing utility to approximate the area of the 
surface of revolution.

 Function Interval Axis of Revolution

49. y = sin x [0, π] x-axis

50. y = ln x [1, e] y-axis

eXpLoRInG ConCeptS
Approximation In Exercises 51 and 52, determine 
which value best approximates the length of the arc 
represented by the integral. Make your selection on the 
basis of a sketch of the arc, not by performing calculations.

51. ∫2

0
 √1 + [ d

dx (
5

x2 + 1)]
2

 dx

 (a) 25   (b) 5   (c) 2   (d) −4   (e) 3

52. ∫π�4

0
 √1 + [ d

dx
(tan x)]

2

 dx

 (a) 3   (b) −2   (c) 4   (d) 
4π
3

   (e) 1

53.  Exploring Relationships Consider the function

 f (x) =
1
4

ex + e−x.

  Compare the definite integral of f  on the interval [a, b] 
with the arc length of f  over the interval [a, b].

 54.  HOW DO YOU SEE IT? The graphs of 
the functions f1 and f2 on the interval [a, b] are 
shown in the figure. The graph of each function 
is revolved about the x-axis. Which surface of
revolution has the greater surface area? Explain.

x
a b

f1

f2

y

 54.  
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 7.4 Arc Length and Surfaces of Revolution 483

55.  Think About It The figure shows the graphs of the

  functions y1 = x, y2 = 1
2x3�2, y3 = 1

4x2, and y4 = 1
8x5�2 on the 

interval [0, 4]. To print an enlarged copy of the graph, go to 
MathGraphs.com.

x
1 2 3 4

4

3

2

1

y

 (a) Label the functions.

 (b)  Without calculating, list the functions in order of increasing 
arc length.

 (c)  Verify your answer in part (b) by using the integration 
capabilities of a graphing utility to approximate each arc 
length accurate to three decimal places.

56. Verifying a Formula

 (a)  Given a circular sector with radius L and central angle θ 
(see figure), show that the area of the sector is given by

  S =
1
2

L2θ.

 (b)  By joining the straight-line edges of the sector in part (a), 
a right circular cone is formed (see figure) and the lateral 
surface area of the cone is the same as the area of the 
sector. Show that the area is S = πrL, where r is the radius 
of the base of the cone. (Hint: The arc length of the sector 
equals the circumference of the base of the cone.)

L

θ

  
L

r

 Figure for 56(a) Figure for 56(b)

 (c)  Use the result of part (b) to verify that the formula for 
the lateral surface area of the frustum of a cone with slant 
height L and radii r1 and r2 (see figure) is S = π(r1 + r2)L. 
(Note: This formula was used to develop the integral for 
finding the surface area of a surface of revolution.)

Axis of
revolution

L

r1

r2

57.  Lateral Surface Area of a Cone A right circular cone 
is generated by revolving the region bounded by y = 3x�4, 
y = 3, and x = 0 about the y-axis. Find the lateral surface area 
of the cone.

58.  Lateral Surface Area of a Cone A right circular cone 
is generated by revolving the region bounded by y = hx�r, 
y = h, and x = 0 about the y-axis. Verify that the lateral 
surface area of the cone is S = πr√r2 + h2.

59.  Using a Sphere Find the area of the segment of a sphere 
formed by revolving the graph of y = √9 − x2, 0 ≤ x ≤ 2, 
about the y-axis.

60.  Using a Sphere Find the area of the segment of a sphere 
formed by revolving the graph of y = √r2 − x2, 0 ≤ x ≤ a, 
about the y-axis. Assume that a < r.

61.  Modeling Data The circumference C (in inches) of a vase 
is measured at three-inch intervals starting at its base. The 
 measurements are shown in the table, where y is the vertical 
distance in inches from the base.

y 0 3 6 9 12 15 18

C 50 65.5 70 66 58 51 48

 (a)  Use the data to approximate the volume of the vase by 
summing the volumes of approximating disks.

 (b)  Use the data to approximate the outside surface area 
(excluding the base) of the vase by summing the outside 
surface areas of approximating frustums of right circular 
cones.

 (c)  Use the regression capabilities of a graphing utility to find 
a cubic model for the points (y, r), where r = C�(2π). Use 
the graphing utility to plot the points and graph the model.

 (d)  Use the model in part (c) and the integration capabilities of 
a graphing utility to approximate the volume and outside 
surface area of the vase. Compare the results with your 
answers in parts (a) and (b).

62.  Modeling Data Property bounded by two perpendicular 
roads and a stream is shown in the figure. All distances are 
measured in feet.

x

200

200

400

400

600

600

y

(0, 540)

(50, 390)
(150, 430)

(200,425)
(250, 360)

(300, 275)

(350, 125)

(400, 0)

(100, 390)

 (a)  Use the regression capabilities of a graphing utility to fit a 
fourth-degree polynomial to the path of the stream.

 (b)  Use the model in part (a) to approximate the area of the 
property in acres.

 (c)  Use the integration capabilities of a graphing utility to find 
the length of the stream that bounds the property.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



484 Chapter 7 Applications of Integration

63.  Volume and Surface Area Let R be the region bounded 
by y = 1�x, the x-axis, x = 1, and x = b, where b > 1. Let D 
be the solid formed when R is revolved about the x-axis.

 (a) Find the volume V of D.

 (b)  Write a definite integral that represents the surface area S 
of D.

 (c) Show that V approaches a finite limit as b →∞.

 (d) Show that S →∞ as b →∞.

64. Think About It Consider the equation

 
x2

9
+

y2

4
= 1.

 (a) Use a graphing utility to graph the equation.

 (b)  Write the definite integral for finding the first-quadrant arc 
length of the graph in part (a).

 (c)  Compare the interval of integration in part (b) and the 
domain of the integrand. Is it possible to evaluate the 
 definite integral? Explain. (You will learn how to evaluate 
this type of integral in Section 8.8.)

Approximating Arc Length or Surface Area In 
Exercises 65–68, write the definite integral for finding the 
indicated arc length or surface area. Then use the integration 
capabilities of a graphing utility to approximate the arc length 
or surface area. (You will learn how to evaluate this type of 
integral in Section 8.8.)

65.  Length of Pursuit A fleeing object leaves the origin and 
moves up the y-axis (see figure). At the same time, a pursuer 
leaves the point (1, 0) and always moves toward the fleeing 
object. The pursuer’s speed is twice that of the fleeing object. 
The equation of the path is modeled by

 y =
1
3

(x3�2 − 3x1�2 + 2).

  How far has the fleeing object traveled when it is caught? 
Show that the pursuer has traveled twice as far.

 

x
1

1

y

y =   (x3/2 − 3x1/2 + 2)1
3

 
y

x

y = x1/2 − x3/21
3

 Figure for 65 Figure for 66

66.  Bulb Design An ornamental light bulb is designed by 
revolving the graph of

 y =
1
3

x1�2 − x3�2, 0 ≤ x ≤ 1
3

  about the x-axis, where x and y are measured in feet (see 
figure). Find the surface area of the bulb and use the result 
to approximate the amount of glass needed to make the bulb. 
Assume that the thickness of the glass is 0.015 inch.

67.  Astroid Find the area of the surface formed by revolving 
the portion in the first quadrant of the graph of x2�3 + y2�3 = 4, 
0 ≤ y ≤ 8, about the y-axis.

y

x

8

4 8−4−8

  

x

y

−1 1 2 3 4 5 6

−1

1

x(4 − x)21
12

y2 =

 Figure for 67 Figure for 68

68. Using a Loop Consider the graph of

 y2 =
1
12

x(4 − x)2

  shown in the figure. Find the area of the surface formed when 
the loop of this graph is revolved about the x-axis.

69.  Suspension Bridge A cable for a suspension bridge has 
the shape of a parabola with equation y = kx2. Let h represent 
the height of the cable from its lowest point to its highest point 
and let 2w represent the total span of the bridge (see figure). 
Show that the length C of the cable is given by

 C = 2∫w

0
 √1 + (4h2

w2 )x2 dx

x

y

h

2w

70.  Suspension Bridge The Humber Bridge, located in the 
United Kingdom and opened in 1981, has a main span of 
about 1400 meters. Each of its towers has a height of about 
155 meters. Use these dimensions, the integral in Exercise 
69, and the integration capabilities of a graphing utility to 
approximate the length of a parabolic cable along the main span.

71.  Arc Length and Area Let C be the curve given by 
f (x) = cosh x for 0 ≤ x ≤ t, where t > 0. Show that the arc 
length of C is equal to the area bounded by C and the x-axis. 
Identify another curve on the interval 0 ≤ x ≤ t with this 
property.

pUtnAM eXAM ChALLenGe
72.  Find the length of the curve y2 = x3 from the origin to the 

point where the tangent makes an angle of 45° with the 
x-axis.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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7.5 Work 485

7.5 Work

 Find the work done by a constant force.
 Find the work done by a variable force.

Work Done by a Constant Force
The concept of work is important to scientists and engineers for determining the energy 
needed to perform various jobs. For instance, it is useful to know the amount of work 
done when a crane lifts a steel girder, when a spring is compressed, when a rocket is 
propelled into the air, or when a truck pulls a load along a highway.

In general, work is done by a force when it moves an object. If the force applied 
to the object is constant, then the definition of work is as follows.

Definition of Work Done by a Constant Force

If an object is moved a distance D in the direction of an applied constant force F,
then the work W  done by the force is defined as W = FD.

There are four fundamental types of forces—gravitational, electromagnetic, strong 
nuclear, and weak nuclear. A force can be thought of as a push or a pull; a force 
changes the state of rest or state of motion of a body. For gravitational forces on Earth, 
it is common to use units of measure corresponding to the weight of an object.

 Lifting an Object

Determine the work done in lifting a 50-pound object 4 feet.

Solution The magnitude of the required force F is the weight of the object, as shown 
in Figure 7.46. So, the work done in lifting the object 4 feet is

W = FD = 50(4) = 200 foot-pounds. 

In the U.S. measurement system, work is typically expressed in foot-pounds
(ft-lb), inch-pounds, or foot-tons. In the International System of Units (SI), the basic 
unit of force is the newton—the force required to produce an acceleration of 1 meter per 
second per second on a mass of 1 kilogram. In this system, work is typically expressed 
in newton-meters, also called joules. In another system, the centimeter-gram-second 
(C-G-S) system, the basic unit of force is the dyne—the force required to produce an 
acceleration of 1 centimeter per second per second on a mass of 1 gram. In this system, 
work is typically expressed in dyne-centimeters, also called ergs, or in joules. The table 
below summarizes the units of measure that are commonly used to express the work 
done and lists several conversion factors.

System of 
Measurement Measure of Work Measure of Force Measure of Distance

U.S. foot-pound (ft-lb) pound (lb) foot (ft)

International joule (J) newton (N) meter (m)

C-G-S erg dyne (dyn) centimeter (cm)

Conversions:
1 ft-lb ≈ 1.35582 J = 1.35582 × 107 ergs 1 N = 105 dyn ≈ 0.22481 lb
1 J = 107 ergs ≈ 0.73756 ft-lb 1 lb ≈ 4.44822 N

y

x

4 ft

1

2

3

4
50 lb

50 lb

The work done in lifting a 50-pound 
object 4 feet is 200 foot-pounds.
Figure 7.46
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486 Chapter 7 Applications of Integration

Work Done by a Variable Force
In Example 1, the force involved was constant. When a variable force is applied to an 
object, calculus is needed to determine the work done, because the amount of force 
changes as the object changes position. For instance, the force required to compress a 
spring increases as the spring is compressed.

Consider an object that is moved along a straight line from x = a to x = b by a 
continuously varying force F(x). Let ∆ be a partition that divides the interval [a, b] into 
n subintervals determined by

a = x0 < x1 < x2 < .  .  . < xn = b

and let ∆xi = xi − xi−1. For each i, choose ci such that

xi−1 ≤ ci ≤ xi.

Then at ci, the force is F(ci). Because F is continuous, you can approximate the work 
done in moving the object through the ith subinterval by the increment

∆Wi = F(ci)∆xi

as shown in Figure 7.47. So, the total work  

F(x)

Δx

The amount of force changes as an 
object changes position (∆x).
Figure 7.47

done as the object moves from x = a to x = b
is approximated by

 W ≈ ∑
n

i=1
 ∆Wi

 = ∑
n

i=1
 F(ci)∆xi.

This approximation appears to become better 
and better as �∆� → 0 (n →∞). So, the work 
done is

 W = lim
�∆�→0

 ∑
n

i=1
 F(ci)∆xi

 = ∫b

a

 F(x) dx.

Definition of Work Done by a Variable Force

If an object is moved along a straight line by a continuously varying force F(x), 
then the work W  done by the force as the object is moved from

x = a to x = b

is given by

 W = lim
�∆�→0

 ∑
n

i=1
 ∆Wi

 = ∫b

a

 F(x) dx.

The remaining examples in this section use some well-known physical laws. The 
 discoveries of many of these laws occurred during the same period in which calculus 
was being developed. In fact, during the seventeenth and eighteenth centuries, there 
was little difference between physicists and mathematicians. One such physicist-
mathematician was Emilie de Breteuil. Breteuil was instrumental in synthesizing 
the work of many other scientists, including Newton, Leibniz, Huygens, Kepler, and 
Descartes. Her physics text Institutions was widely used for many years.

EMILIE DE BRETEUIL 
(1706–1749) 

A major work by Breteuil was 
the translation of Newton’s 
“Philosophiae Naturalis 
Principia Mathematica” into 
French. Her translation 
and commentary greatly 
contributed to the acceptance 
of Newtonian science in 
Europe.
See LarsonCalculus.com to read 
more of this biography.

Bettmann/Corbis
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 7.5 Work 487

The three laws of physics listed below were developed by Robert Hooke (1635–1703), 
Isaac Newton (1642–1727), and Charles Coulomb (1736–1806).

1.  Hooke’s Law: The force F required to compress or stretch a spring (within its 
elastic limits) is proportional to the distance d that the spring is compressed or 
stretched from its original length. That is,

F = kd

   where the constant of proportionality k (the spring constant) depends on the specific 
nature of the spring.

2.  Newton’s Law of Universal Gravitation: The force F of attraction between two 
particles of masses m1 and m2 is proportional to the product of the masses and 
inversely  proportional to the square of the distance d between the two particles. That is,

F = G
m1m2

d2 .

   When m1 and m2 are in kilograms and d in meters, F will be in newtons for a value 
of G = 6.67 × 10−11 cubic meter per kilogram-second squared, where G is the 
gravitational constant.

3.  Coulomb’s Law: The force F between two charges q1 and q2 in a vacuum is 
proportional to the product of the charges and inversely proportional to the square 
of the distance d between the two charges. That is,

F = k
q1q2

d2 .

   When q1 and q2 are given in electrostatic units and d in centimeters, F will be in 
dynes for a value of k = 1.

 Compressing a Spring

See LarsonCalculus.com for an interactive version of this type of example.

A force of 30 newtons compresses a spring 0.3 meter from its natural length of  
1.5 meters. Find the work done in compressing the spring an additional 0.3 meter.

Solution By Hooke’s Law, the force F(x) required to compress the spring x units 
(from its natural length) is F(x) = kx. Because F(0.3) = 30, it follows that

F(0.3) = (k)(0.3)  30 = 0.3k  100 = k.

So, F(x) = 100x, as shown in Figure 7.48. To find the increment of work, assume that 
the force required to compress the spring over a small increment ∆x is nearly constant. 
So, the increment of work is

∆W = (force)(distance increment) = (100x)∆x.

Because the spring is compressed from x = 0.3 to x = 0.6 meter less than its natural 
length, the work required is

W = ∫b

a

 F(x) dx = ∫0.6

0.3
 100x dx = 50x2]

0.6

0.3
= 18 − 4.5 = 13.5 joules.

Note that you do not integrate from x = 0 to x = 0.6 because you were asked to 
 determine the work done in compressing the spring an additional 0.3 meter (not
including the first 0.3 meter). 

x
0 1.5

Natural length: F(0) = 0

0.3

Compressed 0.3 meter: F(0.3) = 30

x
0 1.5

x

Compressed x meters: F(x) = 100x

x
0 1.5

Figure 7.48
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488 Chapter 7 Applications of Integration

 Moving a Space Module into Orbit

A space module weighs 15 metric tons on the  

Δx

x
x

4000 4800

4000
mi

Not drawn to scale

800
mi

Figure 7.49

surface of Earth. How much work is done in 
propelling the module to a height of 800 miles 
above Earth, as shown in Figure 7.49? (Use 
4000 miles as the radius of Earth. Do not consider 
the effect of air resistance or the weight of the 
propellant.)

Solution Because the weight of a body varies
inversely as the square of its distance from the 
center of Earth, the force F(x) exerted by 
gravity is

F(x) =
C
x2

where C is the constant of proportionality. Because the module weighs 15 metric tons 
on the surface of Earth and the radius of Earth is approximately 4000 miles, you have

15 =
C

(4000)2  240,000,000 = C.

So, the increment of work is

∆W = (force)(distance increment) =
240,000,000

x2  ∆x.

Finally, because the module is propelled from x = 4000 to x = 4800 miles, the total 
work done is

 W = ∫b

a

 F(x) dx Formula for work

 = ∫4800

4000
  

240,000,000
x2  dx

 =
−240,000,000

x ]
4800

4000
 Integrate.

 = −50,000 + 60,000

 = 10,000 mile-tons

 ≈ 1.164 × 1011 foot-pounds. 1 mile = 5280 feet; 1 metric ton ≈ 2205 pounds

In SI units, using a conversion factor of 1 foot-pound ≈ 1.35582 joules, the work done is

W ≈ 1.578 × 1011 joules. 

The solutions to Examples 2 and 3 conform to our development of work as the 
 summation of increments in the form

∆W = (force)(distance increment) = (F)(∆x).

Another way to formulate the increment of work is

∆W = (force increment)(distance) = (∆F)(x).

This second interpretation of ∆W  is useful in problems involving the movement of 
nonrigid substances such as fluids and chains.

 Moving a Space Module into Orbit

A space module weighs 15 metric tons on the  
surface of Earth. How much work is done in 
propelling the module to a height of 800 miles 
above Earth, as shown in Figure 7.49? (Use 
4000 miles as the radius of Earth. Do not consider 
the effect of air resistance or the weight of the 
propellant.)

Solution Because the weight of a body varies
inversely as the square of its distance from the 
center of Earth, the force 
gravity is

F(x) =
C
x2

where C is the constant of proportionality. Because the module weighs 15 metric tons NASA’s Space Launch System, 
or SLS, is a launch vehicle for 
exploration beyond Earth’s 
orbit. NASA plans to use the 
SLS on missions to an asteroid 
and eventually to Mars. 
(Source: NASA)

NASA
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 7.5 Work 489

 Emptying a Tank of Oil

A spherical tank of radius 8 feet is half full of oil  

x

16 − y

18

4
8

−8

x

Δyy

16

y

Figure 7.50

that weighs 50 pounds per cubic foot. Find the  
work required to pump all of the oil out through 
a hole in the top of the tank.

Solution Consider the oil to be subdivided  
into disks of thickness ∆y and radius x, as shown  
in Figure 7.50. Because the increment of force  
for each disk is given by its weight, you have

 ∆F = weight

 = (50 pounds
cubic root)(volume)

 = 50(πx2∆y) pounds.

For a circle of radius 8 and center at (0, 8),  
you have

 x2 + (y − 8)2 = 82

 x2 = 16y − y2

and you can write the force increment as

 ∆F = 50(πx2∆y)
 = 50π(16y − y2)∆y.

In Figure 7.50, note that a disk y feet from the bottom of the tank must be moved a 
distance of (16 − y) feet. So, the increment of work is

 ∆W = (∆F)(16 − y)
 = [50π(16y − y2)∆y](16 − y)
 = 50π(256y − 32y2 + y3)∆y.

Because the tank is half full, y ranges from 0 to 8 feet, and the work required to empty 
the tank is

 W = ∫8

0
 50π(256y − 32y2 + y3) dy

 = 50π[128y2 −
32
3

y3 +
y4

4 ]
8

0

 = 50π(11,264
3 )

 ≈ 589,782 foot-pounds. 

To estimate the reasonableness of the result in Example 4, consider that the weight 
of the oil in the tank is

(1
2)(volume)(density) =

1
2 (

4
3
π83)(50) ≈ 53,616.5 pounds.

Lifting the entire half-tank of oil 8 feet would involve work of

 W = FD Formula for work done by a constant force

 ≈ (53,616.5)(8)
 = 428,932 foot-pounds.

Because the oil is actually lifted between 8 and 16 feet, it seems reasonable that the 
work done is about 589,782 foot-pounds.
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490 Chapter 7 Applications of Integration

 Lifting a Chain

A 20-foot chain weighing 5 pounds per foot is lying coiled on the ground. How much 
work is required to raise one end of the chain to a height of 20 feet so that it is fully 
extended, as shown in Figure 7.51?

Solution Imagine that the chain is divided into small sections, each of length ∆y. 
Then the weight of each section is the increment of force

∆F = (weight) = (5 pounds
foot )(length) = 5 ∆y.

Because a typical section (initially on the ground) is raised to a height of y, the 
increment of work is

∆W = (force increment)(distance) = (5 ∆y)y = 5y ∆y.

Because y ranges from 0 to 20 feet, the total work required to raise the chain is

W = ∫20

0
 5y dy =

5y2

2 ]
20

0
=

5(400)
2

= 1000 foot-pounds. 

In the next example, you will consider a piston of radius r in a cylindrical casing, 
as shown in Figure 7.52. As the gas in the cylinder expands, the piston moves, and 
work is done. If p represents the pressure of the gas (in pounds per square foot) against 
the piston head and V represents the volume of the gas (in cubic feet), then the work 
increment involved in moving the piston ∆x feet is

∆W = (force)(distance increment) = F ∆x = p(πr2)∆x = p ∆V.

So, as the volume of the gas expands from V0 to V1, the work done in moving the   
piston is

W = ∫V1

V0

 p dV.

Assuming the pressure of the gas to be inversely proportional to its volume, you have 
p = k�V and the integral for work becomes

W = ∫V1

V0

 
k
V

 dV.

 Work Done by an Expanding Gas

A quantity of gas with an initial volume of 1 cubic foot and a pressure of 500 pounds 
per square foot expands to a volume of 2 cubic feet. Find the work done by the gas. 
(Assume that the pressure is inversely proportional to the volume.)

Solution Because p = k�V and p = 500 when V = 1, you have k = 500. So, the 
work done by the gas is

 W = ∫V1

V0

 
k
V

 dV

 = ∫2

1
 
500
V

 dV

 = 500 ln∣V∣]
2

1

 ≈ 346.6 foot-pounds. 

y

Work required to raise one end of the 
chain
Figure 7.51

x

r
Gas

Work done by expanding gas
Figure 7.52
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 7.5 Work 491

7.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Work How do you know when work is done by a force?

2.  Comparing Methods Describe the difference 
between finding the work done by a constant force and 
finding the work done by a variable force.

3.  Hooke’s Law Describe Hooke’s Law in your own 
words.

4.  Work What are two ways to write the increment of 
work?

 Constant Force In Exercises 5–8, determine 
the work done by the constant force.

 5. A 1200-pound steel beam is lifted 40 feet.

 6. An electric hoist lifts a 3000-pound car 6 feet.

 7.  A force of 112 newtons is required to slide a cement block  
8 meters in a construction project.

 8.  The locomotive of a freight train pulls its cars with a constant 
force of 7 tons for a distance of one-quarter mile.

 Hooke’s Law In Exercises 9–14, use Hooke’s 
Law to determine the work done by the variable 
force in the spring problem.

 9.  A force of 5 pounds compresses a 15-inch spring a total of  
3 inches. How much work is done in compressing the spring  
7 inches?

10.  A force of 250 newtons stretches a spring 30 centimeters. How 
much work is done in stretching the spring from 20 centimeters 
to 50 centimeters?

11.  A force of 20 pounds stretches a spring 9 inches in an exercise 
machine. Find the work done in stretching the spring 1 foot 
from its natural position.

12.  An overhead garage door has two springs, one on each side 
of the door. A force of 15 pounds is required to stretch each 
spring 1 foot. Because of the pulley system, the springs stretch 
only one-half the distance the door travels. The door moves a 
total of 8 feet, and the springs are at their natural length when 
the door is open. Find the work done by the pair of springs.

13.  Eighteen foot-pounds of work is required to stretch a spring 
4 inches from its natural length. Find the work required to 
stretch the spring an additional 3 inches.

14.  Six joules of work is required to stretch a spring 0.5 meter 
from its natural length. Find the work required to stretch the 
spring an additional 0.25 meter.

15.  Propulsion Neglecting air resistance and the weight of 
the propellant, determine the work done in propelling a  
five-metric-ton satellite to a height of (a) 100 miles above 
Earth and (b) 300 miles above Earth.

16.  Propulsion Use the information in Exercise 15 to write the 
work W of the propulsion system as a function of the height h 
of the satellite above Earth. Find the limit (if it exists) of W as 
h approaches infinity.

17.  Propulsion Neglecting air resistance and the weight of  
the propellant, determine the work done in propelling a 
10-metric-ton satellite to a height of (a) 11,000 miles above 
Earth and (b) 22,000 miles above Earth.

18.  Propulsion A lunar module weighs 12 metric tons on the 
surface of Earth. How much work is done in propelling the 
module from the surface of the moon to a height of 50 miles? 
Consider the radius of the moon to be 1100 miles and its force 
of gravity to be one-sixth that of Earth.

19.  Pumping Water A rectangular tank with a base 4 feet by  
5 feet and a height of 4 feet is full of water (see figure). The 
water weighs 62.4 pounds per cubic foot. How much work is 
done in pumping water out over the top edge in order to empty 
(a) half of the tank and (b) all of the tank?

5 ft

4 ft

4 ft

20.  Think About It Explain why the answer in part (b) of 
Exercise 19 is not twice the answer in part (a).

21.  Pumping Water A cylindrical water tank 4 meters high 
with a radius of 2 meters is buried so that the top of the tank 
is 1 meter below ground level (see figure). How much work is 
done in pumping a full tank of water up to ground level? The 
water weighs 9800 newtons per cubic meter.

 

x
2

5

−2

5 − y

Ground level

Δy

y  

Δy

10 m

x

y

y

 Figure for 21 Figure for 22

22.  Pumping Water Suppose the tank in Exercise 21 is 
located on a tower so that the bottom of the tank is 10 meters 
above a stream (see figure). How much work is done in filling 
the tank half full of water through a hole in the bottom, using 
water from the stream?
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492 Chapter 7 Applications of Integration

23.  Pumping Water An open tank has the shape of a right 
circular cone (see figure). The tank is 8 feet across the top and 
6 feet high. How much work is done in emptying the tank by 
pumping the water over the top edge?

x

6 −  y

Δy

2

6

−2−4

4

y

24.  Pumping Water Water is pumped in through the bottom of 
the tank in Exercise 23. How much work is done to fill the tank

 (a) to a depth of 2 feet?

 (b) from a depth of 4 feet to a depth of 6 feet?

25.  Pumping Water A hemispherical tank of radius 6 feet 
is  positioned so that its base is circular. How much work is 
required to fill the tank with water through a hole in the base 
when the water source is at the base?

26.  Pumping Diesel Fuel The fuel tank on a truck has 
trapezoidal cross sections with the dimensions (in feet) shown 
in the figure. Assume that the engine is approximately 3 feet 
above the top of the fuel tank and that diesel fuel weighs 
approximately 53.1 pounds per cubic foot. Find the work done 
by the fuel pump in raising a full tank of fuel to the level of the 
engine.

4

3

2

1

x3
2

1

3

3 2

1

y

Pumping Gasoline In Exercises 27 and 28, find the work 
done in pumping gasoline that weighs 42 pounds per cubic foot. 

27.  A cylindrical gasoline tank 3 feet in diameter and 4 feet long is 
carried on the back of a truck and is used to fuel tractors. The 
axis of the tank is horizontal. The opening on the tractor tank 
is 5 feet above the top of the tank in the truck. Find the work 
done in pumping the entire contents of the fuel tank into the 
tractor.

28.  The top of a cylindrical gasoline storage tank at a service 
station is 4 feet below ground level. The axis of the tank 
is horizontal and its diameter and length are 5 feet and 
12 feet, respectively. Find the work done in pumping the entire 
contents of the full tank to a height of 3 feet above ground level.

 Winding a Chain In Exercises 29–32, consider 
a 20-foot chain that weighs 3 pounds per foot 
hanging from a winch 20 feet above ground level. 
Find the work done by the winch in  winding up the 
specified amount of chain.

29. Wind up the entire chain.

30. Wind up one-third of the chain.

31.  Run the winch until the bottom of the chain is at the 10-foot 
level.

32. Wind up the entire chain with a 500-pound load attached to it.

Lifting a Chain In Exercises 33 and 34, consider a 15-foot 
hanging chain that weighs 3 pounds per foot. Find the work 
done in lifting the chain vertically to the indicated position.

33.  Take the bottom of the chain and raise it to the 15-foot level, 
leaving the chain doubled and still hanging vertically (see 
figure).

x

y

y

15 − 2y

15

12

9

6

3

y

34.  Repeat Exercise 33 raising the bottom of the chain to the  
12-foot level.

eXpLoring ConCepts
35.  Think About It Does it take any work to push an 

object that does not move? Explain.

36.  Think About It In Example 1, 200 foot-pounds 
of work was needed to lift the 50-pound object 4 feet 
vertically off the ground. Does it take an additional  
200 foot-pounds of work to lift the object another 4 feet 
vertically? Explain your reasoning.

37.  Newton’s Law of Universal Gravitation Consider 
two particles of masses m1 and m2. The position of the first 
particle is fixed, and the distance between the particles is a 
units. Using Newton’s Law of Universal Gravitation, find the 
work needed to move the second particle so that the distance 
between the particles increases to b units.

38.  Conjecture Use Newton’s Law of Universal Gravitation 
to make a conjecture about what happens to the force of 
attraction between two particles when the distance between 
them is multiplied by a positive number n.

39.  Electric Force Two electrons repel each other with a force 
that varies inversely as the square of the distance between 
them. One electron is fixed at the point (2, 4). Find the work 
done in moving the second electron from (−2, 4) to (1, 4).
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 40.  HOW DO YOU SEE IT? The graphs show 
the force Fi (in pounds) required to move an 
object 9 feet along the x-axis. Order the force 
functions from the one that yields the least 
work to the one that yields the most work 
without doing any calculations. Explain your 
reasoning.

(a) 

x
2 4 6 8

8

6

4

2

F1

F  (b) 

x
2 4 6 8

16

20

12

8

4

F2

F

(c) 

F3 = 1
27

x2

x

F

2 4 6 8

1

2

3

4

 (d) 

x
2 4 6 8

4

3

2

1

F4 =    x

F

 40.  

41.  Ordering Forces Verify your answer to Exercise 40 by 
calculating the work for each force function.

42.  Comparing Work Order the following from least to 
greatest in terms of total work done.

 (a) A 60-pound box of books is lifted 3 feet.

 (b)  An 80-pound box of books is lifted 1 foot, and then a 
40-pound box of books is lifted 1 foot.

 (c)  A 60-pound box is held 3 feet in the air for 3 minutes.

 Boyle’s Law In Exercises 43 and 44, find the 
work done by the gas for the given volume and 
pressure. Assume that the pressure is inversely 
proportional to the volume. (See Example 6.)

43.  A quantity of gas with an initial volume of 2 cubic feet and a 
pressure of 1000 pounds per square foot expands to a volume 
of 3 cubic feet.

44.  A quantity of gas with an initial volume of 1 cubic foot and a 
pressure of 2500 pounds per square foot expands to a volume 
of 3 cubic feet.

Hydraulic Press In Exercises 45–48, use the integration 
 capabilities of a graphing utility to approximate the work 
done by a press in a manufacturing process. A model for the 
variable force F (in pounds) and the distance x (in feet) the 
press moves is given.

 Force Interval

45. F(x) = 1000[1.8 − ln(x + 1)] 0 ≤ x ≤ 5

46. F(x) =
ex2 − 1

100
 0 ≤ x ≤ 4

Force Interval

47. F(x) = 100x√125 − x3 0 ≤ x ≤ 5

48. F(x) = 1000 sinh x 0 ≤ x ≤ 2

49.  Modeling Data The hydraulic cylinder on a woodsplitter 
has a 4-inch bore (diameter) and a stroke of 2 feet. The 
hydraulic pump creates a maximum pressure of 2000 pounds 
per square inch. Therefore, the maximum force created by the 
cylinder is 2000(π ∙ 22) = 8000π  pounds.

 (a)  Find the work done through one extension of the cylinder, 
given that the maximum force is required.

 (b)  The force exerted in splitting a piece of wood is variable. 
Measurements of the force obtained in splitting a piece 
of wood are shown in the table. The variable x measures 
the extension of the cylinder in feet, and F is the force 
in pounds. Use the regression capabilities of a graphing 
utility to find a fourth-degree polynomial model for the 
data. Plot the data and graph the model.

 
x 0 1

3
2
3 1 4

3
5
3 2

F(x) 0 20,000 22,000 15,000 10,000 5000 0

 (c)   Use the model in part (b) to approximate the extension of 
the cylinder when the force is maximum.

 (d)  Use the model in part (b) to approximate the work done in 
splitting the piece of wood.

The Pyramid of Khufu (also known as the Great Pyramid of Giza) 
is the oldest of the Seven Wonders of the Ancient World. It is also 
the tallest of the three Giza pyramids in Egypt. The pyramid took 
20 years to construct, ending around 2560 b.c. When it was built, it 
had a height of 481 feet and a square base with side lengths of 756 
feet. Assume that the stone used to build it weighed 150 pounds 
per cubic foot.

(a)  How much work was required to build the pyramid? Consider 
only vertical distance.

(b)  Suppose that the pyramid builders worked 12 hours each day 
for 330 days a year for 20 years and that each worker did 
200 foot-pounds of work per hour. Approximately how many 
workers were needed to build the pyramid?

Pyramid of Khufu

vikau/Shutterstock.com
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494 Chapter 7 Applications of Integration

7.6 Moments, Centers of Mass, and Centroids

 Understand the definition of mass.
 Find the center of mass in a one-dimensional system.
 Find the center of mass in a two-dimensional system.
 Find the center of mass of a planar lamina.
 Use the Theorem of Pappus to find the volume of a solid of revolution.

Mass
In this section, you will study several important applications of integration that are 
related to mass. Mass is a measure of a body’s resistance to changes in motion, and is 
independent of the particular gravitational system in which the body is located. However, 
because so many applications involving mass occur on Earth’s surface, an object’s mass 
is sometimes equated with its weight. This is not technically correct. Weight is a type 
of force and as such is dependent on gravity. Force and mass are related by the equation

Force = (mass)(acceleration).

The table below lists some commonly used measures of mass and force, together with 
their conversion factors.

System of 
Measurement

Measure  
of Mass Measure of Force

U.S. Slug Pound = (slug)(ft�sec2)

International Kilogram Newton = (kilogram)(m�sec2)

C-G-S Gram Dyne = (gram)(cm�sec2)

Conversions:

1 pound ≈ 4.44822 newtons 1 slug ≈ 14.59390 kilogram

1 newton ≈ 0.22481 pound 1 kilogram ≈ 0.0685218 slug

1 dyne ≈ 0.0000022481 pound 1 gram ≈ 0.0000685218 slug

1 dyne = 0.00001 newton 1 foot ≈ 0.30480 meter

 Mass on the Surface of Earth

Find the mass (in slugs) of an object whose weight at sea level is 1 pound.

Solution Use 32 feet per second per second as the acceleration due to gravity.

 Mass =
force

acceleration
 Force = (mass)(acceleration)

 =
1 pound

32 feet per second per second

 = 0.03125 
pound

foot per second per second

 = 0.03125 slug

Because many applications involving mass occur on Earth’s surface, this amount of
mass is called a pound mass. 
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 7.6 Moments, Centers of Mass, and Centroids 495

Center of Mass in a One-Dimensional System
You will now consider two types of moments of a mass—the moment about a point 
and the moment about a line. To define these two moments, consider an idealized 
 situation in which a mass m is concentrated at a point. If x is the distance between this 
point mass and another point P, then the moment of m about the point P is

Moment = mx

and x is the length of the moment arm.
The concept of moment can be demonstrated simply by a seesaw, as shown in 

Figure 7.53. A child of mass 20 kilograms sits 2 meters to the left of fulcrum P, and 
an older child of mass 30 kilograms sits 2 meters to the right of P. From experience, 
you know that the seesaw will begin to rotate clockwise, moving the larger child down. 
This rotation occurs because the moment produced by the child on the left is less than 
the moment produced by the child on the right.

 Left moment = (20)(2) = 40 kilogram-meters

 Right moment = (30)(2) = 60 kilogram-meters

To balance the seesaw, the two moments must be equal. For example, if the larger child 
moved to a position 43 meters from the fulcrum, then the seesaw would balance, because 
each child would produce a moment of 40 kilogram-meters.

To generalize this, you can introduce a coordinate line on which the origin 
 corresponds to the fulcrum, as shown in Figure 7.54. Several point masses are located 
on the x-axis. The measure of the tendency of this system to rotate about the origin is 
the moment about the origin, and it is defined as the sum of the n products mixi. The 
moment about the origin is denoted by M0 and can be written as

M0 = m1x1 + m2x2 + .  .  . + mnxn.

If M0 is 0, then the system is said to be in equilibrium.

m1
x

x1

m2

x2

mn − 1

xn − 1

mn

xn

m3

x30

 If m1x1 + m2x2 + .  .  . + mnxn = 0, then the system is in equilibrium.
 Figure 7.54

For a system that is not in equilibrium, the center of mass is defined as the point 
x at which the fulcrum could be relocated to attain equilibrium. If the system were 
translated x units, then each coordinate xi would become

(xi − x)

and because the moment of the translated system is 0, you have

∑
n

i=1
 mi(xi − x) = ∑

n

i=1
 mixi − ∑

n

i=1
 mix = 0.

Solving for x produces

x =
∑
n

i=1
 mixi

∑
n

i=1
 mi

=
moment of system about origin

total mass of system
.

When m1x1 + m2x2 + .  .  . + mnxn = 0, the system is in equilibrium.

2 m2 m

20 kg 30 kg

P

The seesaw will balance when the left 
and the right moments are equal.
Figure 7.53
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496 Chapter 7 Applications of Integration

Moment and Center of Mass: One-Dimensional System

Let the point masses m1, m2, .  .  . , mn be located at x1, x2, .  .  . , xn.

1. The moment about the origin is 

M0 = m1x1 + m2x2 + .  .  . + mnxn.

2. The center of mass is

x =
M0

m

 where m = m1 + m2 + .  .  . + mn is the total mass of the system.

 The Center of Mass of a Linear System

Find the center of mass of the linear system shown in Figure 7.55.

0 1 2 3 4 5 6 7 8 9−5 −4 −3 −2 −1

x1010 515

m4m3m2m1

 Figure 7.55

Solution The moment about the origin is

 M0 = m1x1 + m2x2 + m3x3 + m4x4

 = 10(−5) + 15(0) + 5(4) + 10(7)
 = −50 + 0 + 20 + 70

 = 40. Moment about origin

Because the total mass of the system is 

m = 10 + 15 + 5 + 10 = 40 Total mass

the center of mass is

x =
M0

m
=

40
40

= 1. Center of mass

Note that the point masses will be in equilibrium when the fulcrum is located at x = 1. 
 

Rather than defining the moment of a mass, you could define the moment of a 
force. In this context, the center of mass is called the center of gravity. Consider a 
 system of point masses m1, m2, .  .  . , mn that is located at x1, x2, .  .  . , xn. Then, because

 force = (mass)(acceleration)

the total force of the system is

F = m1a + m2a + .  .  . + mna = ma.

The torque (moment) about the origin is

T0 = (m1a)x1 + (m2a)x2 + .  .  . + (mna)xn = M0a

and the center of gravity is

T0

F
=

M0a

ma
=

M0

m
= x.

So, the center of gravity and the center of mass have the same location.
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Center of Mass in a Two-Dimensional System
You can extend the concept of moment to two dimensions by considering a system of 
masses located in the xy-plane at the points (x1, y1), (x2, y2), .  .  . , (xn, yn), as shown 
in Figure 7.56. Rather than defining a single moment (with respect to the origin), two 
moments are defined—one with respect to the x-axis and one with respect to the y-axis.

Moments and Center of Mass: Two-Dimensional System

Let the point masses m1, m2, .  .  . , mn be located at (x1, y1), (x2, y2), .  .  . ,
(xn, yn).

1. The moment about the y-axis is

My = m1x1 + m2x2 + .  .  . + mnxn.

2. The moment about the x-axis is

Mx = m1y1 + m2y2 + .  .  . + mnyn.

3. The center of mass (x, y) (or center of gravity) is

x =
My

m
 and y =

Mx

m

 where

m = m1 + m2 + .  .  . + mn

 is the total mass of the system.

The moment of a system of masses in the plane can be taken about any horizontal 
or vertical line. In general, the moment about a line is the sum of the product of the 
 masses and the directed distances from the points to the line.

 Moment = m1(y1 − b) + m2(y2 − b) + .  .  . + mn(yn − b) Horizontal line y = b

 Moment = m1(x1 − a) + m2(x2 − a) + .  .  . + mn(xn − a) Vertical line x = a

 The Center of Mass of a Two-Dimensional System

Find the center of mass of a system of point masses m1 = 6, m2 = 3, m3 = 2, and 
m4 = 9, located at

(3, −2), (0, 0), (−5, 3), and (4, 2)

as shown in Figure 7.57.

Solution

 M = 6  + 3  + 2  + 9  = 20 Mass

 My = 6(3)  + 3(0) + 2(−5) + 9(4) = 44 Moment about y-axis

 Mx = 6(−2) + 3(0) + 2(3)  + 9(2) = 12 Moment about x-axis

So,

x =
My

m
=

44
20

=
11
5

and

y =
Mx

m
=

12
20

=
3
5

.

The center of mass is (11
5 , 35). 

m2

mn

m1

x

(x2, y2)

(x1, y1)

(xn, yn)

y

In a two-dimensional system, there is 
a moment about the y-axis My and a 
moment about the x-axis Mx.
Figure 7.56

m2 = 3

m1 = 6

m3 = 2
m4 = 9

4321

3

2

1

−1−2−3−4−5

−3

−2

−1

x
(0, 0)

(−5, 3)

(4, 2)

(3, −2)

y

Figure 7.57
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498 Chapter 7 Applications of Integration

Center of Mass of a Planar Lamina
So far in this section, you have assumed the total mass of a system to be distributed 
at discrete points in a plane or on a line. Now consider a thin, flat plate of material 
of constant density called a planar lamina (see Figure 7.58). Density is a measure 
of mass per unit of volume, such as grams per cubic centimeter. For planar laminas, 
however, density is considered to be a measure of mass per unit of area. Density is 
denoted by ρ, the lowercase Greek letter rho.

Consider an irregularly shaped planar lamina  

x
a xi b

(xi, g(xi))

(xi, f(xi))

(xi, yi)yi

f

g

Δx

y

Planar lamina of uniform density ρ
Figure 7.59

of uniform density ρ, bounded by the graphs of
y = f (x), y = g(x), and a ≤ x ≤ b, as shown 
in Figure 7.59. The mass of this region is

 m = (density)(area)

 = ρ∫b

a

 [ f (x) − g(x)] dx

 = ρA

where A is the area of the region. To find the 
center of mass of this lamina, partition the 
interval [a, b] into n subintervals of equal width 
∆x. Let xi be the center of the ith subinterval. 
You can approximate the portion of the lamina 
lying in the ith subinterval by a rectangle whose 
height is h = f (xi) − g(xi). Because the density 
of the rectangle is ρ, its mass is

mi = (density)(area) = ρ[ f (xi) − g(xi)] ∆x.

 Density Height Width

Now, considering this mass to be located at the center (xi, yi) of the rectangle, the directed 
distance from the x-axis to (xi, yi) is yi = [ f (xi) + g(xi)]�2. So, the moment of mi about 
the x-axis is

 Moment = (mass)(distance)
 = miyi

 = ρ[ f (xi) − g(xi)]∆x[f (xi) + g(xi)
2 ].

Summing the moments and taking the limit as n →∞ suggest the definitions below.

Moments and Center of Mass of a Planar Lamina

Let f  and g be continuous functions such that f (x) ≥ g(x) on [a, b], and 
consider the planar lamina of uniform density ρ bounded by the graphs of 
y = f (x), y = g(x), and a ≤ x ≤ b.

1. The moments about the x- and y-axes are

 Mx = ρ∫b

a
 [f (x) + g(x)

2 ][ f (x) − g(x)] dx

 My = ρ∫b

a

 x[ f (x) − g(x)] dx.

2. The center of mass (x, y) is given by x =
My

m
 and y =

Mx

m
, where

 m = ρ∫b
a  [ f (x) − g(x)] dx is the mass of the lamina.

You can think of the center of mass 
(x, y) of a lamina as its balancing point. 
For a circular lamina, the center of 
mass is the center of the circle. For a 
rectangular lamina, the center of mass 
is the center of the rectangle.
Figure 7.58

(x, y) (x, y)
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 7.6 Moments, Centers of Mass, and Centroids 499

 The Center of Mass of a Planar Lamina

See LarsonCalculus.com for an interactive version of this type of example.

Find the center of mass of the lamina of uniform density ρ bounded by the graph of 
f (x) = 4 − x2 and the x-axis.

Solution Because the center of mass lies on the axis of symmetry, you know that 
x = 0. Moreover, the mass of the lamina is

 m = ρ∫2

−2
 (4 − x2) dx

 = ρ[4x −
x3

3 ]
2

−2

 =
32ρ

3
.

To find the moment about the x-axis, place a  

x
−2 −1 1 2

1

2

3
Δx

f(x)

f(x)
2

f(x) = 4 − x2

y  
representative rectangle in the region, as shown  
in the figure at the right. The distance from  
the x-axis to the center of this rectangle is

yi =
f (x)

2
=

4 − x2

2
.

Because the mass of the representative 
rectangle is

ρ f (x) ∆x = ρ(4 − x2) ∆x

you have

 Mx = ρ∫2

−2
 
4 − x2

2
(4 − x2) dx

 =
ρ
2∫

2

−2
 (16 − 8x2 + x4) dx

 =
ρ
2[16x −

8x3

3
+

x5

5 ]
2

−2

 =
256ρ

15

and y is

y =
Mx

m
=

256ρ�15
32ρ�3

=
8
5

.

So, the center of mass (the balancing point) of the lamina is (0, 85), as shown in 
Figure 7.60. 

The density ρ in Example 4 is a common factor of both the moments and the mass, 
and as such divides out of the quotients representing the coordinates of the center of 
mass. So, the center of mass of a lamina of uniform density depends only on the shape 
of the lamina and not on its density. For this reason, the point

(x, y) Center of mass or centroid

is sometimes called the center of mass of a region in the plane, or the centroid of the 
region. In other words, to find the centroid of a region in the plane, you can assume that 
the region has a constant density of ρ = 1 and therefore the mass of the region is equal 
to the area A, or m = A. Then you can calculate the corresponding center of mass, as 
shown in the next two examples.

x

y

y = 4 − x2

Center of mass:

0, 8
5

1

2

4

−1

−2

1 2 3

))

The center of mass is the balancing 
point.
Figure 7.60

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



500 Chapter 7 Applications of Integration

 The Centroid of a Plane Region

Find the centroid of the region bounded by the graphs of f (x) = 4 − x2 and g(x) = x + 2.

Solution The two graphs intersect at the points (−2, 0) and (1, 3), as shown in 
Figure 7.61. So, the area of the region is

A = ∫1

−2
 [ f (x) − g(x)] dx = ∫1

−2
 (2 − x − x2) dx =

9
2

.

The centroid (x, y) of the region has the following coordinates.

 x =
1
A∫

1

−2
 x[(4 − x2) − (x + 2)] dx

 =
2
9∫

1

−2
 (−x3 − x2 + 2x) dx

 =
2
9[−

x4

4
−

x3

3
+ x2]

1

−2

 = −
1
2

 y =
1
A∫

1

−2
 [(4 − x2) + (x + 2)

2 ][(4 − x2) − (x + 2)] dx

 =
2
9 (

1
2)∫1

−2
 (−x2 + x + 6)(−x2 − x + 2) dx

 =
1
9∫

1

−2
 (x4 − 9x2 − 4x + 12) dx

 =
1
9[

x5

5
− 3x3 − 2x2 + 12x]

1

−2

 =
12
5

So, the centroid of the region is (x, y) = (−1
2, 12

5 ). 

For simple plane regions, you may be able to find the centroids without resorting 
to integration.

 The Centroid of a Simple Plane Region

Find the centroid of the region shown in Figure 7.62(a).

Solution By superimposing a coordinate system on the region, as shown in Figure 
7.62(b), you can locate the centroids of the three rectangles at

(1
2

, 
3
2), (5

2
, 

1
2), and (5, 1).

Using these three points, you can find the centroid of the region.

 A = area of region = 3 + 3 + 4 = 10

 x =
(1�2)(3) + (5�2)(3) + (5)(4)

10
=

29
10

= 2.9

 y =
(3�2)(3) + (1�2)(3) + (1)(4)

10
=

10
10

= 1

So, the centroid of the region is (2.9, 1). Notice that (2.9, 1) is not the “average” of 
(1

2, 32), (5
2, 12), and (5, 1). 

x
−1

1

1

(1, 3)

(−2, 0)

f(x) + g(x)
2

f(x) − g(x)

x

g(x) = x + 2
y

f(x) = 4 − x2

Figure 7.61

1

2

2

23

1

(a) Original region

x
1

1

2

2

3

3

4 5 6

(5, 1)

y

3
2

1
2 )) , 

1
2

5
2 )) , 

(b) The centroids of the three rectangles

Figure 7.62

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



7.6 Moments, Centers of Mass, and Centroids 501

Theorem of Pappus
The final topic in this section is a useful theorem credited to Pappus of Alexandria 
(ca. 300 a.d.), a Greek mathematician whose eight-volume Mathematical Collection is 
a record of much of classical Greek mathematics. You are asked to prove this theorem 
in Section 14.4.

THEOREM 7.1 The Theorem of Pappus

Let R be a region in a plane and let L be a line in the same plane such that L 
does not intersect the interior of R, as shown in Figure 7.63. If r is the distance 
between the centroid of R and the line, then the volume V of the solid of 
revolution formed by revolving R about the line is

V = 2πrA

where A is the area of R. (Note that 2πr is the distance traveled by the centroid 
as the region is revolved about the line.)

The Theorem of Pappus can be used to find the volume of a torus, as shown in 
the next example. Recall that a torus is a doughnut-shaped solid formed by revolving 
a circular region about a line that lies in the same plane as the circle (but does not 
intersect the circle).

 Finding Volume by the Theorem of Pappus

Find the volume of the torus shown in Figure 7.64(a), which was formed by revolving 
the circular region bounded by 

(x − 2)2 + y2 = 1

about the y-axis, as shown in Figure 7.64(b).

Torus

 

x
−3 −2

−1

−1

1

2

2

Centroid

(2, 0)r = 2

(x − 2)2 + y2 = 1

y

 (a) (b)

 Figure 7.64

Solution In Figure 7.64(b), you can see that the centroid of the circular region is 
(2, 0). So, the distance between the centroid and the axis of revolution is

r = 2.

Because the area of the circular region is A = π, the volume of the torus is

 V = 2πrA

 = 2π(2)(π)
 = 4π2 

 ≈ 39.5. 

R

r

Centroid of R

L

The volume V is 2πrA, where A is the 
area of region R.
Figure 7.63

Exploration
Use the shell method to show 
that the volume of the torus 
in Example 7 is

V = ∫3

1
 4πx√1 − (x − 2)2 dx.

Evaluate this integral using 
a graphing utility. Does your 
answer agree with the one in 
Example 7?

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



502 Chapter 7 Applications of Integration

7.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Mass and Weight How are mass and weight related?

2.  Moment The equation for the moment 
about the origin of a one-dimensional system is 
M0 = 5(−3) + 2(−1) + 1(1) + 5(2) + 1(6). Is the 
system in equilibrium? Explain.

3.  Planar Lamina What is a planar lamina? Describe 
what the center of mass of a lamina represents.

4.  Theorem of Pappus Explain why the Theorem of 
Pappus is useful.

 Center of Mass of a Linear System In 
Exercises 5–8, find the center of mass of the given 
system of point masses lying on the x-axis.

 5. m1 = 7, m2 = 3, m3 = 5

 x1 = −5, x2 = 0, x3 = 3

 6. m1 = 0.1, m2 = 0.2, m3 = 0.2, m4 = 0.5

 x1 = 1, x2 = 2, x3 = 3, x4 = 4

 7. m1 = 1, m2 = 3, m3 = 2, m4 = 9, m5 = 5

 x1 = 6, x2 = 10, x3 = 3, x4 = 2, x5 = 4

 8. m1 = 8, m2 = 5, m3 = 5, m4 = 12, m5 = 2

 x1 = −2, x2 = 6, x3 = 0, x4 = 3, x5 = −5

Equilibrium of a Linear System In Exercises 9 and 10, 
consider a beam of length L with a fulcrum x feet from one end 
(see figure). There are objects with weights W1 and W2 placed 
on opposite ends of the beam, where W1 < W2. Find x such that 
the system is in equilibrium.

x L − x

W1

W2

 9.  Two children weighing 48 pounds and 72 pounds are going to 
play on a seesaw that is 10 feet long.

10.  In order to move a 600-pound rock, a person weighing  
200 pounds wants to balance it on a beam that is 5 feet long.

 Center of Mass of a Two-Dimensional 
System In Exercises 11–14, find the center of 
mass of the given system of point masses.

11. 
mi 5 1 3

(xi, yi) (2, 2) (−3, 1) (1, −4)

12. 
mi 8 1 4

(xi, yi) (−3, −1) (0, 0) (−1, 2)

13. mi 12 6 4.5 15

(xi, yi) (2, 3) (−1, 5) (6, 8) (2, −2)

14. 
mi 3 4 2 1 6

(xi, yi) (−2, −3) (5, 5) (7, 1) (0, 0) (−3, 0)

 Center of Mass of a Planar Lamina In 
Exercises 15–28, find Mx, My, and (x, y) for the 
lamina of uniform density ρ bounded by the 
graphs of the equations.

15. y = 1
2x, y = 0, x = 2 16. y = 6 − x, y = 0, x = 0

17. y = √x, y = 0, x = 4 18. y = 1
3x2, y = 0, x = 2

19. y = x2, y = x3 20. y = √x, y = 1
2x

21. y = −x2 + 4x + 2, y = x + 2

22. y = √x + 1, y = 1
3x + 1

23. y = x2�3, y = 0, x = 8 24. y = x2�3, y = 4

25. x = 4 − y2, x = 0 26. x = 3y − y2, x = 0

27. x = −y, x = 2y − y2 28. x = y + 2, x = y2

Approximating a Centroid Using Technology In 
Exercises 29 and 30, use a graphing utility to graph the region 
bounded by the graphs of the equations. Use the integration 
capabilities of the graphing utility to approximate the centroid 
of the region.

29. y = 5 3√400 − x2, y = 0

30. y =
8

x2 + 4
, y = 0, x = −2, x = 2

 Finding the Center of Mass In Exercises 
31–34, introduce an appropriate coordinate 
system and find the center of mass of the planar 
lamina. (The answer depends on the position of the 
coordinate system.)

31. 

2

2 1

 32. 

2

1
2

2 1

1

33. 

2

4 4

1

1

2
1

1

5

3 3

7  34. 

6

2

7
8

7
8
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7.6 Moments, Centers of Mass, and Centroids 503

35.  Finding the Center of Mass Find the center of mass of 
the lamina in Exercise 31 when the  circular portion of the lamina 
has twice the density of the square portion of the lamina.

36.  Finding the Center of Mass Find the center of mass of 
the lamina in Exercise 31 when the square portion of the lamina 
has twice the density of the  circular portion of the lamina.

 Finding Volume by the Theorem of 
Pappus In Exercises 37–40, use the Theorem of 
Pappus to find the volume of the solid of revolution.

37. The torus formed by revolving the circular region bounded by

 (x − 5)2 + y2 = 16

 about the y-axis

38. The torus formed by revolving the circular region bounded by

 x2 + (y − 3)2 = 4

 about the x-axis

39.  The solid formed by revolving the region bounded by the 
graphs of y = x, y = 4, and x = 0 about the x-axis

40.  The solid formed by revolving the region bounded by the 
graphs of y = 2√x − 2, y = 0, and x = 6 about the y-axis

eXpLoRInG ConCeptS
41.  Center of Mass What happens to the center of mass 

of a linear system when each point mass is translated k 
units horizontally? Explain.

42.  Centroid Explain why the centroid of a rectangle is 
the center of a rectangle.

43.  Center of Mass Use rectangles to create a region 
such that the center of mass lies outside of the region. 
Verify algebraically that the center of mass lies outside 
of the region.

 44.  HOW DO YOU SEE IT? The centroid of the 
plane region bounded by the graphs of y = f (x), 
y = 0, x = 0, and x = 3 is (1.2, 1.4). Without 
integrating, find the centroid of each of the 
regions bounded by the graphs of the following 
sets of equations. Explain your reasoning.

1 2 3 4 5

1

2

3

4

5 y = f(x)

Centroid: (1.2, 1.4)

x

y

(a) y = f (x) + 2, y = 2, x = 0, and x = 3

(b) y = f (x − 2), y = 0, x = 2, and x = 5

(c) y = −f (x), y = 0, x = 0, and x = 3

 44.  

Centroid of a Common Region In Exercises 45–50, 
find and/or verify the centroid of the common region used in 
engineering.

45.  Triangle Show that the centroid of the triangle with 
vertices (−a, 0), (a, 0), and (b, c) is the point of intersection 
of the medians (see figure).

x

(b, c)

(−a, 0) (a, 0)

y   

x

(b, c) (a + b, c)

(a, 0)

y

 Figure for 45 Figure for 46

46.  Parallelogram Show that the centroid of the parallelogram 
with vertices (0, 0), (a, 0), (b, c), and (a + b, c) is the point of 
intersection of the diagonals (see figure).

47.  Trapezoid Find the centroid of the trapezoid with vertices 
(0, 0), (0, a), (c, b), and (c, 0). Show that it is the intersection 
of the line connecting the midpoints of the parallel sides and 
the line connecting the extended parallel sides, as shown in the 
figure.

x

(0, a)

(0, 0)

(c, b)

(c, 0)
b

a

y   

x
−r r

r

y

 Figure for 47 Figure for 48

48.  Semicircle Find the centroid of the region bounded by the 
graphs of y = √r2 − x2 and y = 0 (see figure).

49.  Semiellipse Find the centroid of the region bounded by

 the graphs of y =
b
a
√a2 − x2 and y = 0 (see figure).

x
−a a

b

y   

x

(1, 1)

(0, 0)

Parabolic spandrel

y = 2x − x2

y

 Figure for 49 Figure for 50

50.  Parabolic Spandrel Find the centroid of the parabolic 
spandrel shown in the figure.
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51.  Graphical Reasoning Consider the region bounded by 
the graphs of y = x2 and y = b, where b > 0.

 (a) Sketch a graph of the region.

 (b)  Set up the integral for finding My. Because of the form 
of the integrand, the value of the integral can be obtained 
without integrating. What is the form of the integrand? 
What is the value of the integral and what is the value 
of x?

 (c) Use the graph in part (a) to determine whether y >
b
2

 or

 y <
b
2

. Explain.

 (d) Use integration to verify your answer in part (c).

52.  Graphical and Numerical Reasoning Consider the 
region bounded by the graphs of y = x2n and y = b, where 
b > 0 and n is a positive integer.

 (a) Sketch a graph of the region.

 (b)  Set up the integral for finding My. Because of the form 
of the integrand, the value of the integral can be obtained 
without integrating. What is the form of the integrand? 
What is the value of the integral and what is the value of x?

 (c)  Use the graph in part (a) to determine whether y >
b
2

 or

 y <
b
2

. Explain.

 (d) Use integration to find y as a function of n.

 (e)  Use the result of part (d) to complete the table.

  
n 1 2 3 4

y

 (f ) Find lim
n→∞

 y.

 (g) Give a geometric explanation of the result in part (f).

53.  Modeling Data The manufacturer of glass for a window 
in a conversion van needs to approximate the center of mass of 
the glass. A coordinate system is superimposed on a prototype 
of the glass (see figure). The measurements (in centimeters) 
for the right half of the symmetric piece of glass are listed in 
the table.

x
−40 −20 20

20
10

40

40

y

  
x 0 10 20 30 40

y 30 29 26 20 0

 (a)  Use the regression capabilities of a graphing utility to find 
a fourth-degree polynomial model for the glass.

 (b)  Use the integration capabilities of a graphing utility and 
the model to approximate the center of mass of the glass. 

54.  Modeling Data The manufacturer of a boat needs to 
approximate the center of mass of a section of the hull. A 
coordinate system is superimposed on a prototype (see figure). 
The measurements (in feet) for the right half of the symmetric 
prototype are listed in the table.

x
−2.0 −1.0 1.0

1.0

2.0

h

d

y

x 0 0.5 1.0 1.5 2

h 1.50 1.45 1.30 0.99 0

d 0.50 0.48 0.43 0.33 0

 (a)  Use the regression capabilities of a graphing utility to find 
fourth-degree polynomial models for both curves shown in 
the figure. 

 (b)  Use the integration capabilities of a graphing utility and 
the models to approximate the center of mass of the hull 
section.

Second Theorem of Pappus In Exercises 55 and 56, use 
the Second Theorem of Pappus, which is stated as follows. If a 
segment of a plane curve C is revolved about an axis that does 
not intersect the curve (except possibly at its endpoints), then 
the area S of the resulting surface of revolution is equal to the 
product of the length of C times the distance d traveled by the 
centroid of C.

55.  Find the area of the surface formed by revolving the graph of
y = 3 − x, 0 ≤ x ≤ 3, about the y-axis.

56.  A torus is formed by revolving the graph of (x − 1)2 + y2 = 1 
about the y-axis. Find the surface area of the torus.

57.  Finding a Centroid Let n ≥ 1 be constant, and consider 
the region bounded by f (x) = xn, the x-axis, and x = 1. Find 
the centroid of this region. As n →∞, what does the region 
look like, and where is its centroid?

58.  Finding a Centroid Consider the functions

 f (x) = xn and g(x) = xm

  on the interval [0, 1], where m and n are positive integers and 
n > m. Find the centroid of the region bounded by f  and g.

pUtnAM eXAM ChALLenGe
59.  Let V be the region in the cartesian plane consisting 

of all points (x, y) satisfying the simultaneous conditions 

∣x∣ ≤ y ≤ ∣x∣ + 3 and y ≤ 4. Find the centroid (x, y) 
of V.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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7 .7 Fluid Pressure and Fluid Force 505

7.7 Fluid Pressure and Fluid Force

 Find fluid pressure and fluid force.

Fluid Pressure and Fluid Force
Swimmers know that the deeper an object is submerged in a fluid, the greater the 
 pressure on the object. Pressure is defined as the force per unit of area over the  surface 
of a body. For example, because a column of water that is 10 feet in height and 1 inch 
square weighs 4.3 pounds, the fluid pressure at a depth of 10 feet of water is 4.3 pounds 
per square inch.* At 20 feet, this would increase to 8.6 pounds per square inch, and in 
general the pressure is proportional to the depth of the object in the fluid.

Definition of Fluid Pressure

The pressure P on an object at depth h in a liquid is

P = wh

where w is the weight-density of the liquid per unit of volume.

Below are some common weight-densities of fluids in pounds per cubic foot.

Ethyl alcohol 49.4

Gasoline 41.0 – 43.0

Glycerin 78.6

Kerosene 51.2

Mercury 849.0

Seawater 64.0

Water 62.4

When calculating fluid pressure, you can use an important (and rather surprising) 
physical law called Pascal’s Principle, named after the French mathematician Blaise 
Pascal. Pascal’s Principle states that the pressure exerted by a fluid at a depth h is 
transmitted equally in all directions. For example, in Figure 7.65, the pressure at the 
indicated depth is the same for all three objects. Because fluid pressure is given in terms 
of force per unit area (P = F�A), the fluid force on a submerged horizontal surface of 
area A is

Fluid force = F = PA = (pressure)(area).

h

 The pressure at h is the same for all three objects.
 Figure 7.65

* The total pressure on an object in 10 feet of water would also include the pressure due to Earth’s 
atmosphere. At sea level, atmospheric pressure is approximately 14.7 pounds per square inch.

BLAISE PASCAL (1623–1662)

Pascal is well known for 
his work in many areas of 
mathematics and physics, 
and also for his influence on 
Leibniz. Although much of 
Pascal’s work in calculus was 
intuitive and lacked the rigor 
of modern mathematics, he 
nevertheless anticipated many 
important results.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NYC
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506 Chapter 7 Applications of Integration

 Fluid Force on a Submerged Sheet

Find the fluid force on a rectangular metal sheet measuring 3 feet by 4 feet that is 
submerged in 6 feet of water, as shown in Figure 7.66.

Solution Because the weight-density of water is 62.4 pounds per cubic foot and the 
sheet is submerged in 6 feet of water, the fluid pressure is

 P = (62.4)(6) P = wh

 = 374.4 pounds per square foot.

Because the total area of the sheet is A = (3)(4) = 12 square feet, the fluid force is

 F = PA

 = (374.4 
pounds

square foot)(12 square feet)

 = 4492.8 pounds.

This result is independent of the size of the body of water. The fluid force would be the 
same in a swimming pool or lake. 

In Example 1, the fact that the sheet is rectangular and horizontal means that you 
do not need the methods of calculus to solve the problem. Consider a surface that is 
submerged vertically in a fluid. This problem is more difficult because the pressure is 
not constant over the surface.

Consider a vertical plate that is submerged 

x

L(yi)

h(yi)
Δy

d

c

y

Calculus methods must be used to find 
the fluid force on a vertical metal plate.
Figure 7.67

in a fluid of weight-density w (per unit of 
volume), as shown in Figure 7.67. To determine
the total force against one side of the region 
from depth c to depth d, you can subdivide the
interval [c, d] into n subintervals, each of width
∆y. Next, consider the representative rectangle 
of width ∆y and length L(yi), where yi is in the
ith subinterval. The force against this
representative rectangle is

 ∆Fi = w(depth)(area)
 = wh(yi)L(yi)∆y.

The force against n such rectangles is

∑
n

i=1
 ∆Fi = w∑

n

i=1
 h(yi)L(yi)∆y.

Note that w is considered to be constant and is factored out of the summation. Therefore, 
taking the limit as �∆� → 0 (n →∞) suggests the next definition.

Definition of Force Exerted by a Fluid

The force F exerted by a fluid of constant weight-density w (per unit of 
volume) against a submerged vertical plane region from y = c to y = d is

 F = w lim
�∆�→0

 ∑
n

i=1
 h(yi)L(yi)∆y

 = w∫d

c

 h(y)L(y) dy

where h(y) is the depth of the fluid at y and L(y) is the horizontal length of the 
region at y.

3

6

4

The fluid force on a horizontal metal 
sheet is equal to the fluid pressure 
times the area.
Figure 7.66
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 7 .7 Fluid Pressure and Fluid Force 507

 Fluid Force on a Vertical Surface

See LarsonCalculus.com for an interactive version of this type of example.

A vertical gate in a dam has the shape of an  

8 ft

6 ft

5 ft

4 ft

(a) Water gate in a dam

isosceles trapezoid 8 feet across the top and  
6 feet across the bottom, with a height of  
5 feet, as shown in Figure 7.68(a). What is  
the fluid force on the gate when the top of the 
gate is 4 feet below the surface of the water?

Solution In setting up a mathematical model 
for this problem, you are at liberty to locate the  
x- and y-axes in several different ways. A  
convenient approach is to let the y-axis bisect  
the gate and place the x-axis at the surface of  
the water, as shown in Figure 7.68(b). So, the  
depth of the water at y in feet is 

x

h(y) = −y

Δy
x

−2−6 2 6

2

−2

−10 (3, −9)

(4, −4)

y

(b) The fluid force against the gate

Figure 7.68

Depth = h(y) = −y.

To find the length L(y) of the region at y, find  
the equation of the line forming the right side  
of the gate. Because this line passes through  
the points (3, −9) and (4, −4), its equation is

 y − (−9) =
−4 − (−9)

4 − 3
(x − 3)

 y + 9 = 5(x − 3)
 y = 5x − 24

 x =
y + 24

5
.

In Figure 7.68(b), you can see that the length of the region at y is

Length = 2x =
2
5

(y + 24) = L(y).

Finally, by integrating from y = −9 to y = −4, you can calculate the fluid force to be

 F = w∫d

c

 h(y)L(y) dy

 = 62.4∫−4

−9
 (−y)(2

5)(y + 24) dy

 = −62.4(2
5)∫−4

−9
 (y2 + 24y) dy

 = −62.4(2
5)[

y3

3
+ 12y2]

−4

−9

 = −62.4(2
5)(

−1675
3 )

 = 13,936 pounds. 

In Example 2, the x-axis coincided with the surface of the water. This was convenient 
but arbitrary. In choosing a coordinate system to represent a physical situation, you 
should consider various possibilities. Often you can simplify the calculations in a problem 
by locating the coordinate system to take advantage of special characteristics of the 
problem, such as symmetry.
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 Fluid Force on a Vertical Surface

A circular observation window at a seawater aquarium has a radius of 1 foot, and the 
center of the window is 8 feet below water level, as shown in Figure 7.69. What is the 
fluid force on the window?

x

8 − y

Observation
window

2 3

8

7

6

5

4

3

2

Δy

x

y

The fluid force on the window
Figure 7.69

Solution To take advantage of symmetry, locate a coordinate system such that the 
origin coincides with the center of the window, as shown in Figure 7.69. The depth at 
y is then

Depth = h(y) = 8 − y.

The horizontal length of the window is 2x, and you can use the equation for the circle, 
x2 + y2 = 1, to solve for x as shown.

Length = 2x = 2√1 − y2 = L(y)
Finally, because y ranges from −1 to 1, and using 64 pounds per cubic foot as the 
weight-density of seawater, you have

 F = w∫d

c

 h(y)L(y) dy = 64∫1

−1
 (8 − y)(2)√1 − y2 dy.

Initially it looks as though this integral would be difficult to solve. However, when you 
break the integral into two parts and apply symmetry, the solution is simpler.

F = 64(16)∫1

−1
 √1 − y2 dy − 64(2)∫1

−1
 y√1 − y2 dy

The second integral is 0 (because the integrand is odd and the limits of integration are 
symmetric with respect to the origin). Moreover, by recognizing that the first integral 
represents the area of a semicircle of radius 1, you obtain

 F = 64(16)(π2) − 64(2)(0)

 = 512π
 ≈ 1608.5 pounds.

So, the fluid force on the window is about 1608.5 pounds. 

A circular observation window at a seawater aquarium has a radius of 1 foot, and the 
center of the window is 8 feet below water level, as shown in Figure 7.69. What is the 
fluid force on the window?

Jane Rix/Shutterstock.com
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 7 .7 Fluid Pressure and Fluid Force 509

7.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Fluid Pressure Describe fluid pressure in your own 

words. 

2.  Fluid Pressure Does fluid pressure change with 
depth?

 Force on a Submerged Sheet In Exercises 
3–6, the area of the top side of a piece of sheet 
metal is given. The sheet metal is submerged 
horizontally in 8 feet of water. Find the fluid force 
on the top side.

 3. 3 square feet  4. 8 square feet

 5. 10 square feet  6. 25 square feet

Force on a Submerged Sheet In Exercises 7 and 8, the 
area of the top side of a piece of sheet metal is given. The sheet 
metal is submerged horizontally in 5 feet of ethyl alcohol. Find 
the fluid force on the top side.

 7. 9 square feet  8. 14 square feet

 Fluid Force on a Tank Wall In Exercises 
9–14, find the fluid force on the vertical side of 
the tank, where the dimensions are given in feet. 
Assume that the tank is full of water.

 9. Rectangle 10. Triangle

 

3

4   

3

4

11. Trapezoid 12. Semicircle

 

3

2

4   

2

13. Parabola, y = x2 14. Semiellipse,

    y = −1
2√36 − 9x2

 

4

4   

3

4

 Fluid Force of Water In Exercises 15–18, find 
the fluid force on the vertical plate submerged in 
water, where the dimensions are given in meters 
and the weight-density of water is 9800 newtons 
per cubic meter.

15. Square 16. Rectangle

 

2

2

  

5

1

1

17. Triangle 18. Square

 

9

3

6

  
1

3 3

Force on a Concrete Form In Exercises 19–22, the figure 
is the vertical side of a form for poured concrete that weighs 
140.7 pounds per cubic foot. Determine the force on this part 
of the concrete form.

19. Rectangle 20. Semiellipse,

    y = −3
4√16 − x2

 
2 ft

10 ft

  

3 ft

4 ft

21. Rectangle 22. Triangle

 

6 ft

4 ft

  

3 ft

5 ft

23.  Fluid Force of Gasoline A cylindrical gasoline tank 
is placed so that the axis of the cylinder is horizontal. Find 
the fluid force on a circular end of the tank when the tank is 
half full, where the diameter is 3 feet and the gasoline weighs  
42 pounds per cubic foot.
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510 Chapter 7 Applications of Integration

24.  Fluid Force of Gasoline Repeat Exercise 23 for a tank 
that is full. (Evaluate one integral by a geometric formula and 
the other by observing that the integrand is an odd function.)

eXpLoRInG ConCeptS
25.  Fluid Pressure Explain why fluid pressure on a 

surface is calculated using horizontal representative 
rectangles instead of vertical representative rectangles.

26.  Buoyant Force Buoyant force is the difference 
between the fluid forces on the top and bottom sides of 
a solid. Find an expression for the buoyant force of a 
rectangular solid submerged in a fluid with its top side 
parallel to the surface of the fluid.

27.  Think About It Approximate the depth of the water 
in the tank in Exercise 9 if the fluid force is one-half as 
great as when the tank is full. Explain why the answer is 
not 32.

 28.  HOW DO YOU SEE IT? Two identical 
semicircular windows are placed at the same 
depth in the vertical wall of an aquarium (see 
figure). Which is subjected to the greater fluid 
force? Explain.

d d

 28.  

29.  Fluid Force on a Circular Plate A circular plate of 
radius r feet is submerged vertically in a tank of fluid that 
weighs w pounds per cubic foot. The center of the circle is 
k feet below the surface of the fluid, where k > r. Show that 
the fluid force on the surface of the plate is

 F = wk(πr2).

  (Evaluate one integral by a geometric formula and the other by 
observing that the integrand is an odd function.)

30.  Fluid Force on a Circular Plate Use the result of 
Exercise 29 to find the fluid force on the circular plate shown 
in each figure. Assume that the tank is filled with water and 
the measurements are given in feet.

 (a) 

5

2

  (b) 
2

3

31.  Fluid Force on a Rectangular Plate A rectangular 
plate of height h feet and base b feet is submerged vertically in 
a tank of fluid that weighs w pounds per cubic foot. The center 
of the rectangle is k feet below the surface of the fluid, where 
k > h�2. Show that the fluid force on the surface of the plate is

F = wkhb.

32.  Fluid Force on a Rectangular Plate Use the result 
of Exercise 31 to find the fluid force on the rectangular plate 
shown in each figure. Assume that the tank is filled with water 
and the measurements are given in feet.

 (a)   (b)

4

5

3

  

6

10

5

33.  Submarine Porthole A square porthole on a vertical 
side of a submarine (submerged in seawater) has an area of 
1 square foot. Find the fluid force on the porthole, assuming 
that the center of the square is 15 feet below the surface.

34.  Submarine Porthole Repeat Exercise 33 for a circular 
porthole that has a diameter of 1 foot. The center of the circle 
is 15 feet below the surface.

35.  Modeling Data The vertical stern of a boat partially 
submerged in seawater with a superimposed coordinate system 
is shown in the figure. The table shows the widths w of the 
stern (in feet) at indicated values of y. Use the Midpoint Rule 
with n = 4 to approximate the fluid force against the stern.

y 0 1 2 3 4

w 0 5 9 10.25 10.5

w

Water level
Stern

2

2

4

4

6

6

−2−4−6

y

36.  Irrigation Canal Gate The vertical cross section of an 
irrigation canal is modeled by

 f (x) =
5x2

x2 + 4

  where x is measured in feet and x = 0 corresponds to the 
center of the canal. Use the integration capabilities of a 
graphing utility to approximate the fluid force against a 
vertical gate used to stop the flow of water when the water is 
3 feet deep.
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  Review Exercises 511

Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding the Area of a Region In Exercises 1–10, sketch 
the region bounded by the graphs of the equations and find the 
area of the region.

 1. y = 6 −
1
2

x2, y =
3
4

x, x = −2, x = 2

 2. y =
1
x2, y = 4, x = 5

 3. y =
1

x2 + 1
, y = 0, x = −1, x = 1

 4. x = y2 − 2y, x = −1, y = 0

 5. y = x, y = x3

 6. x = y2 + 1, x = y + 3

 7. y = ex, y = e2, x = 0

 8. y = csc x, y = 2, 
π
6

≤ x ≤ 5π
6

 9. y = sin x, y = cos x, 
π
4

≤ x ≤ 5π
4

10. x = cos y, x =
1
2

, 
π
3

≤ y ≤ 7π
3

Finding the Area of a Region In Exercises 11–14, (a) use 
a graphing utility to graph the region bounded by the graphs 
of the equations and (b) use the integration capabilities of the 
graphing utility to approximate the area of the region to four 
decimal places.

11. y = x2 − 8x + 3, y = 3 + 8x − x2

12. y = x2 − 4x + 3, y = x3, x = 0

13. √x + √y = 1, y = 0, x = 0

14. y = x4 − 2x2, y = 2x2

Integration as an Accumulation Process In Exercises 
15 and 16, find the accumulation function F. Then evaluate F 
at each value of the independent variable and graphically show 
the area given by each value of the independent variable.

15. F(x) = ∫x

0
 (3t + 1) dt

 (a) F(0)   (b) F(2)   (c) F(6)

16. F(x) = ∫x

−π
 (2 + sin t) dt

 (a) F(−π)   (b) F(0)   (c) F(2π)

Revenue In Exercises 17 and 18, two models R1 and R2 are 
given for revenue (in millions of dollars) for a corporation. 
Both models are estimates of revenues from 2020 through 
2025, with t = 0 corresponding to 2020. Which model projects 
the greater revenue? How much more total revenue does that 
model project over the six-year period?

17. R1 = 2.98 + 0.65t 18. R1 = 4.87 + 0.55t + 0.01t2

 R2 = 2.98 + 0.56t  R2 = 4.87 + 0.61t + 0.07t2

Finding the Volume of a Solid In Exercises 19 and 20, 
use the disk method to find the volume of the solid generated 
by revolving the region bounded by the graphs of the equations 
about the x-axis.

19. y =
1

√1 + x2
, y = 0, x = −1, x = 1

20. y = e−x, y = 0, x = 0, x = 1

Finding the Volume of a Solid In Exercises 21 and 22, 
use the shell method to find the volume of the solid generated 
by revolving the region bounded by the graphs of the equations 
about the y-axis.

21. y =
1

x4 + 1
, y = 0, x = 0, x = 1

22. y =
1
x2, y = 0, x = 2, x = 5

Finding the Volume of a Solid In Exercises 23 and 24, 
use the disk method or the shell method to find the volumes of 
the solids generated by revolving the region bounded by the 
graphs of the equations about the given lines.

23. y = x, y = 0, x = 3

 (a) the x-axis

 (b) the y-axis

 (c) the line x = 3

 (d) the line x = 6

24. y = √x, y = 2, x = 0

 (a) the x-axis

 (b) the line y = 2

 (c) the y-axis

 (d) the line x = −1

25.  Gasoline Tank A gasoline tank is an oblate spheroid 
generated by revolving the region bounded by the graph of 

 
x2

16
+

y2

9
= 1

  about the y-axis, where x and y are measured in feet. How 
much gasoline can the tank hold?

26.  Using Cross Sections Find the volume of the solid 
whose base is bounded by the circle x2 + y2 = 9 and whose 
cross sections perpendicular to the x-axis are equilateral 
triangles.

Finding Arc Length In Exercises 27 and 28, find the arc 
length of the graph of the function over the indicated interval.

27. f (x) =
4
5

x5�4, [0, 4]

28. y =
1
3

x3�2 − 1, [2, 6]
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512 Chapter 7 Applications of Integration

Finding the Area of a Surface of Revolution In 
Exercises 29 and 30, write and evaluate the definite integral 
that represents the area of the surface generated by revolving 
the curve on the indicated interval about the x-axis.

29. y =
x3

18
, 3 ≤ x ≤ 6

30. y = √25 − x2, −4 ≤ x ≤ 4

Finding the Area of a Surface of Revolution In 
Exercises 31 and 32, write and evaluate the definite integral 
that represents the area of the surface generated by revolving 
the curve on the indicated interval about the y-axis.

31. y =
x2

2
+ 4, 0 ≤ x ≤ 2

32. y = 3√x, 1 ≤ x ≤ 2

33.  Hooke’s Law  A force of 5 pounds stretches a spring 
1 inch from its natural position. Find the work done in  
stretching the spring from its  natural length of 10 inches to a 
length of 15 inches.

34.  Hooke’s Law A force of 50 pounds stretches a spring  
1 inch from its natural position. Find the work done in 
stretching the spring from its natural length of 10 inches to 
double that length.

35.  Propulsion Neglecting air resistance and the weight of 
the propellant, determine the work done in propelling a  
five-metric-ton satellite to a height of 200 miles above Earth.

36.  Pumping Water A water well has an 8-inch diameter and 
is 190 feet deep. The water is 25 feet from the top of the well. 
Determine the amount of work done in pumping the well dry.

37.  Winding a Chain A chain 10 feet long weighs 4 pounds 
per foot and is hung from a platform 20 feet above the ground. 
How much work is required to raise the entire chain to the 
20-foot level?

38.  Winding a Cable A 200-foot cable weighing 5 pounds 
per foot is hanging from a winch 200 feet above ground level. 
Find the work done in winding up the cable when there is a 
300-pound load attached to the end of the cable.

39.  Boyle’s Law A quantity of gas with an initial volume of 
1 cubic foot and a pressure of 500 pounds per square foot 
expands to a volume of 4 cubic feet. Find the work done by 
the gas. Assume that the pressure is inversely proportional to 
the volume.

40.  Boyle’s Law A quantity of gas with an initial volume 
of 2 cubic feet and a pressure of 800 pounds per square foot 
expands to a volume of 3 cubic feet. Find the work done by 
the gas. Assume that the pressure is inversely proportional to 
the volume.

41.  Center of Mass of a Linear System Find the center of 
mass of the given system of point masses lying on the x-axis.

 m1 = 8, m2 = 12, m3 = 6, m4 = 14

 x1 = −1, x2 = 2, x3 = 5, x4 = 7

42.  Center of Mass of a Two-Dimensional System Find 
the center of mass of the given system of point masses.

 
mi 3 2 6 9

(xi, yi) (2, 1) (−3, 2) (4, −1) (6, 5)

Center of Mass of a Planar Lamina In Exercises 43 and 
44, find Mx, My, and (x, y) for the lamina of uniform density ρ 
bounded by the graphs of the equations.

43. y = x2, y = 2x + 3 44. y = x2�3, y = 1
2x

45.  Finding the Center of Mass Introduce an appropriate 
coordinate system and find the center of mass of the planar 
lamina. (The answer depends on the position of the coordinate 
system.)

2

11

46.  Finding Volume Use the Theorem of Pappus to find the 
volume of the torus formed by revolving the circular region 
bounded by (x − 4)2 + y2 = 4 about the y-axis.

Force on a Submerged Sheet In Exercises 47 and 48, 
the area of the top side of a piece of sheet metal is given. The 
sheet metal is submerged horizontally in 3 feet of water. Find 
the fluid force on the top side.

47. 2 square feet 48. 15 square feet

49.  Fluid Force of Seawater Find the fluid force on the 
vertical plate submerged in seawater (see figure).

3 ft

6 ft

4 ft

   

7 ft

5 ft

 Figure for 49 Figure for 50

50.  Force on a Concrete Form The vertical side of a form 
for poured concrete that weighs 140.7 pounds per cubic foot 
is shown in the figure. Determine the force on this part of the 
concrete form.

51.  Submarine Porthole A circular porthole on a vertical 
side of a submarine (submerged in seawater) has a diameter of 
3 feet. Find the fluid force on the porthole, assuming that the 
center of the circle is 1600 feet below the surface.
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  P.S. Problem Solving 513

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Finding a Limit Let R be the area of the region in the first 
quadrant bounded by the parabola y = x2 and the line y = cx, 
c > 0, as shown in the figure. Let T be the area of the triangle 
AOB. Calculate the limit

 lim
c→0+

 
T
R

.

x

R

T

O

A
B(c, c2)c2

c

y

y = x2

2.  Center of Mass of a Lamina Let L be the lamina of  
uniform density ρ = 1 obtained by removing circle A of radius 
r from circle B of radius 2r (see figure).

 

B A

2r r
x

y

 (a) Show that Mx = 0 for L.

 (b) Show that My for L is equal to (My for B) − (My for A).
 (c)  Find My for B and My for A. Then use part (b) to compute 

My for L.

 (d) What is the center of mass of L?

3.  Dividing a Region Let R be the region bounded by the 
parabola y = x − x2 and the x-axis (see figure). Find the 
equation of the line y = mx that divides this region into two 
regions of equal area.

x
1

y = mx

y = x − x2

y

4. Surface Area Graph the curve

 8y2 = x2(1 − x2).

  Use a computer algebra  system to find the surface area of the 
solid of revolution obtained by revolving the curve about the 
y-axis.

5.  Centroid A blade on an industrial fan has the configuration 
of a semicircle attached to a trapezoid (see figure). Find the 
centroid of the blade.

 

x
1

1

2

2

3

3

4

4

5 7−1

−2

−3

−4

y

6.  Volume A hole is cut through the center of a sphere of 
radius r (see  figure). The height of the remaining spherical ring 
is h. Find the volume of the ring and show that it is independent 
of the radius of the sphere.

r
h

7.  Volume A rectangle R of length ℓ and width w is revolved 
about the line L (see figure). Find the volume of the resulting 
solid of revolution.

d
R

L

w

 

x
2 4

16

32

48

64

A(1, 1)

B
R

S
y = x3

y

C

 Figure for 7 Figure for 8

8. Comparing Areas of Regions

 (a)  The tangent line to the curve y = x3 at the point A(1, 1) 
intersects the curve at another point B. Let R be the area 
of the region bounded by the curve and the tangent line. 
The tangent line at B intersects the curve at another point C 
(see figure). Let S be the area of the region bounded by the 
curve and this  second tangent line. How are the areas R and 
S related?

 (b)  Repeat the construction in part (a) by selecting an arbitrary 
point A on the curve y = x3. Show that the two areas R and 
S are always related in the same way.
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514 Chapter 7 Applications of Integration

 9.  Using Arc Length The graph of y = f (x) passes through 
the origin. The arc length of the curve from (0, 0) to (x, f (x)) 
is given by 

 s(x) = ∫x

0
 √1 + et dt.

 Identify the function f.

10.  Using a Function Let f  be rectifiable on the interval 
[a, b], and let 

 s(x) = ∫x

a

 √1 + [ f ′(t)]2 dt.

 (a) Find 
ds
dx

.

 (b) Find ds and (ds)2.

 (c) Find s(x) on [1, 3] when f (t) = t 3�2.

 (d)  Use the function and interval in part (c) to calculate s(2) 
and describe what it signifies.

11.  Archimedes’ Principle Archimedes’ Principle states 
that the upward or buoyant force on an object within a fluid 
is equal to the weight of the fluid that the object displaces. 
For a partially submerged object, you can obtain information 
about the relative densities of the floating object and the fluid 
by observing how much of the object is above and below the 
surface. You can also determine the size of a floating object if 
you know the amount that is above the surface and the relative 
densities. You can see the top of a floating iceberg (see figure). 
The density of ocean water is 1.03 × 103 kilograms per cubic 
meter, and that of ice is 0.92 × 103 kilograms per cubic meter. 
What percent of the total iceberg is below the surface?

L
h

y = −h

y = 0

y = L − h

12.  Finding a Centroid Sketch the region bounded on the 
left by x = 1, bounded above by y = 1�x3, and bounded 
below by y = −1�x3.

 (a) Find the centroid of the region for 1 ≤ x ≤ 6.

 (b) Find the centroid of the region for 1 ≤ x ≤ b.

 (c) Where is the centroid as b →∞?

13.   Finding a Centroid Sketch the region bounded on the 
left by x = 1, bounded above by y = 1�x4, and bounded 
below by y = −1�x4.

 (a) Find the centroid of the region  for 1 ≤ x ≤ 6.

 (b) Find the centroid of the region for 1 ≤ x ≤ b.

 (c) Where is the centroid as b →∞?

14. Work Find the work done by each force F.

 (a)

x
1 65432

1

2

3

4

F

Feet

Po
un

ds

 (b)

x
1 65432

1

2

3

4

F

Feet

Po
un

ds

Consumer and Producer Surplus In Exercises 15 and 
16, find the consumer surplus and  producer surplus for the 
given demand [ p1(x)] and supply [ p2(x)] curves. The consumer 
 surplus and producer surplus are represented by the areas 
shown in the figure.

xx0

P0
(x0, P0)

Point of
equilibrium

Demand
curve

Supply
curve

Producer
surplus

Consumer
surplus

P

15. p1(x) = 50 − 0.5x, p2(x) = 0.125x

16. p1(x) = 1000 − 0.4x2, p2(x) = 42x

17.  Fluid Force A swimming pool is 20 feet wide, 40 feet 
long, 4 feet deep at one end, and 8 feet deep at the other end 
(see figures). The bottom is an inclined plane. Find the fluid 
force on each vertical wall when the pool is full of water.

40 ft

20 ft

8 ft
4 ft

x
10

8

20 30 40

Δy

(40, 4)

8 − y

y
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Chemical Reaction (Exercise 50, p. 558)

The Wallis Product
(Section Project, p. 540)

Memory Model (Exercise 92, p. 531)

Fluid Force (Exercise 63, p. 549)
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Sending a Space Module into Orbit
(Example 5, p. 575)

Integration Techniques 
and Improper Integrals
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516 Chapter 8 Integration Techniques and Improper Integrals

8.1 Basic Integration Rules

 Review procedures for fitting an integrand to one of the basic integration rules.

Fitting Integrands to Basic Integration Rules
In this chapter, you will study several integration techniques that greatly expand the set 
of integrals to which the basic integration rules can be applied. These rules are reviewed 
at the left. A major step in solving any integration problem is recognizing which basic 
integration rule to use.

 A Comparison of Three Similar Integrals

See LarsonCalculus.com for an interactive version of this type of example.

Find each integral.

a. ∫ 4
x2 + 9

 dx  b. ∫ 
4x

x2 + 9
 dx  c. ∫ 4x2

x2 + 9
 dx

Solution

a. Use the Arctangent Rule and let u = x and a = 3.

 ∫ 4
x2 + 9

 dx = 4∫ 1
x2 + 32 dx Constant Multiple Rule

 = 4(1
3

 arctan 
x
3) + C Arctangent Rule

 =
4
3

 arctan 
x
3

+ C Simplify.

b.  The Arctangent Rule does not apply because the numerator contains a factor of x.
Consider the Log Rule and let u = x2 + 9. Then du = 2x dx, and you have

 ∫ 4x
x2 + 9

 dx = 2∫ 2x dx
x2 + 9

 Constant Multiple Rule

 = 2∫du
u

 Substitute: u = x2 + 9.

 = 2 ln∣u∣ + C Log Rule

 = 2 ln(x2 + 9) + C. Rewrite as a function of x.

c.  Because the degree of the numerator is equal to the degree of the denominator, you 
should first use division to rewrite the improper rational function as the sum of a 
polynomial and a proper rational function.

 ∫ 4x2

x2 + 9
 dx = ∫(4 +

−36
x2 + 9) dx Rewrite using long division.

 = ∫4 dx − 36∫ 1
x2 + 9

 dx Rewrite as two integrals.

 = 4x − 36(1
3

 arctan 
x
3) + C Integrate.

 = 4x − 12 arctan 
x
3

+ C Simplify. 

Note in Example 1(c) that some algebra is required before applying any integration 
rules, and more than one rule is needed to find the resulting integral.

REVIEW OF BASIC 
INTEGRATION RULES 
(a > 0)

 1. ∫kf (u) du = k∫ f (u) du

 2. ∫[ f (u) ± g(u)] du =

 ∫ f (u) du ± ∫g(u) du

 3. ∫du = u + C

 4. ∫un du =
un+1

n + 1
+ C,

  n ≠ −1

 5. ∫du
u

= ln∣u∣ + C

 6. ∫eu du = eu + C

 7. ∫au du = ( 1
ln a)au + C

 8. ∫sin u du = −cos u + C

 9. ∫cos u du = sin u + C

10. ∫ tan u du = −ln∣cos u∣ + C

11. ∫cot u du = ln∣sin u∣ + C

12. ∫sec u du =

 ln∣sec u + tan u∣ + C

13. ∫csc u du =

 −ln∣csc u + cot u∣ + C

14. ∫sec2 u du = tan u + C

15. ∫csc2 u du = −cot u + C

16. ∫sec u tan u du = sec u + C

17. ∫csc u cot u du = −csc u + C

18. ∫ du

√a2 − u2
= arcsin 

u
a

+ C

19. ∫ du
a2 + u2 =

1
a

 arctan 
u
a

+ C

20. ∫ du

u√u2 − a2
=

1
a

arcsec 
∣u∣
a

+ C
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8.1 Basic Integration Rules 517

 Using Two Basic Rules to Solve a Single Integral

Evaluate ∫1

0

x + 3

√4 − x2
 dx.

Solution Begin by writing the integral as the sum of two integrals. Then apply the 
Power Rule and the Arcsine Rule.

 ∫1

0

x + 3

√4 − x2
 dx = ∫1

0

x

√4 − x2
 dx + ∫1

0

3

√4 − x2
 dx

 = −
1
2

 ∫1

0
(4 − x2)−1�2(−2x) dx + 3∫1

0

1

√22 − x2
 dx

 = [−(4 − x2)1�2 + 3 arcsin 
x
2]

1

0

 = (−√3 +
π
2) − (−2 + 0)

 ≈ 1.839 See Figure 8.1. 

Rules 18, 19, and 20 of the basic integration rules on the preceding page all have 
expressions involving the sum or difference of two squares:

a2 − u2, a2 + u2, and u2 − a2.

These expressions are often apparent after a u-substitution, as shown in Example 3.

 A Substitution Involving a2 − u2

Find ∫ x2

√16 − x6
 dx.

Solution Because the radical in the denominator can be written in the form

√a2 − u2 = √42 − (x3)2

you can try the substitution u = x3. Then du = 3x2 dx, and you have

 ∫ x2

√16 − x6
 dx =

1
3∫ 3x2 dx

√42 − (x3)2
 Rewrite integral.

 =
1
3∫ du

√42 − u2
 Substitute: u = x3.

 =
1
3

 arcsin 
u
4

+ C Arcsine Rule

 =
1
3

 arcsin 
x3

4
+ C. Rewrite as a function of x. 

TeCHNOLOGY The Midpoint Rule can be used to give a good approximation 
of the value of the integral in Example 2 (for n = 5, the approximation is 1.837). 
When using numerical integration, however, you should be aware that the Midpoint 
Rule does not always give good approximations when one or both of the limits 
of integration are near a vertical asymptote. For instance, using the Fundamental 
Theorem of Calculus, you can obtain

∫1.99

0

x + 3

√4 − x2
 dx ≈ 6.213.

For n = 5, the Midpoint Rule gives an approximation of 5.667.

2

1

1−1
x

4 − x2
y =

x + 3

y

The area of the region is approximately 
1.839.
Figure 8.1

exploration
A Comparison of Three 
Similar Integrals Which, 
if any, of the integrals listed 
below can be found using 
the 20 basic integration rules? 
For any that can be found, 
do so. For any that cannot, 
explain why not.

a. ∫ 3

√1 − x2
 dx

b. ∫ 3x

√1 − x2
 dx

c. ∫ 3x2

√1 − x2
 dx
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518 Chapter 8 Integration Techniques and Improper Integrals

Two of the most commonly overlooked integration rules are the Log Rule and the 
Power Rule. Notice in the next two examples how these two integration rules can be 
disguised.

 A Disguised Form of the Log Rule

Find ∫ 1
1 + ex dx.

Solution The integral does not appear to fit any of the basic rules. The quotient 
form, however, suggests the Log Rule. If you let u = 1 + ex, then du = ex dx. You can 
obtain the required du by adding and subtracting ex in the numerator.

 ∫ 1
1 + ex dx = ∫1 + ex − ex

1 + ex  dx Add and subtract ex in numerator.

 = ∫(1 + ex

1 + ex −
ex

1 + ex) dx Rewrite as two fractions.

 = ∫dx − ∫ ex dx
1 + ex Rewrite as two integrals.

 = x − ln(1 + ex) + C Integrate. 

There is usually more than one way to solve an integration problem. For instance, 
in Example 4, try integrating by multiplying the numerator and denominator by e−x to 
obtain an integral of the form −∫ du�u. See whether you can get the same answer by 
this procedure. (Be careful: the answer will appear in a different form.)

 A Disguised Form of the Power Rule

Find ∫(cot x)[ln(sin x)] dx.

Solution Again, the integral does not appear to fit any of the basic rules. However, 
considering the two primary choices for u

u = cot x or u = ln(sin x)

you can see that the second choice is the appropriate one because

u = ln(sin x) and du =
cos x
sin x

 dx = cot x dx.

So,

 ∫(cot x)[ln(sin x)] dx = ∫u du Substitute: u = ln(sin x).

 =
u2

2
+ C Integrate.

 =
1
2

[ln(sin x)]2 + C. Rewrite as a function of x. 

In Example 5, try checking that the derivative of

1
2

[ln(sin x)]2 + C

is the integrand of the original integral.

RemARk Remember that 
you can separate numerators but 
not denominators. Watch out for 
this common error when fitting 
integrands to basic rules. For 
instance, you cannot separate 
denominators in Example 4.

1
1 + ex ≠

1
1

+
1
ex
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8.1 Basic Integration Rules 519

Trigonometric identities can often be used to fit integrals to one of the basic 
integration rules.

 Using Trigonometric Identities

Find ∫tan2 2x dx.

Solution Note that tan2 u is not in the list of basic integration rules. However, sec2 u
is in the list. This suggests the trigonometric identity tan2 u = sec2 u − 1. If you let 
u = 2x, then du = 2 dx and

 ∫tan2 2x dx =
1
2∫tan2 u du Substitute: u = 2x.

 =
1
2∫(sec2 u − 1) du Trigonometric identity

 =
1
2∫sec2 u du −

1
2∫du Rewrite as two integrals.

 =
1
2

 tan u −
u
2

+ C Integrate.

 =
1
2

 tan 2x − x + C. Rewrite as a function of x. 

This section concludes with a summary of the common procedures for fitting 
integrands to the basic integration rules.

TeCHNOLOGY If you 
have access to a computer 
algebra system, try using it 
to find the integrals in this 
section. Compare the forms of 
the antiderivatives given by 
the software with the forms 
obtained by hand. Sometimes 
the forms will be the same, 
but often they will differ. For 
instance, why is the antiderivative 
ln 2x + C equivalent to the 
antiderivative ln x + C?

PROCEDURES FOR FITTING INTEGRANDS TO BASIC INTEGRATION RULES

Technique Example

Expand (numerator). (1 + ex)2 = 1 + 2ex + e2x

Separate numerator. 
1 + x
x2 + 1

=
1

x2 + 1
+

x
x2 + 1

Complete the square. 
1

√2x − x2
=

1

√1 − (x − 1)2

Divide improper rational function. 
x2

x2 + 1
= 1 −

1
x2 + 1

Add and subtract terms in numerator.  
2x

x2 + 2x + 1
=

2x + 2 − 2
x2 + 2x + 1

  =
2x + 2

x2 + 2x + 1
−

2
(x + 1)2

Use trigonometric identities. cot2 x = csc2 x − 1

Multiply and divide by Pythagorean conjugate.  
1

1 + sin x
= ( 1

1 + sin x)(
1 − sin x
1 − sin x)

  =
1 − sin x
1 − sin2 x

  =
1 − sin x

cos2 x

  = sec2 x −
sin x

cos2 x
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520 Chapter 8 Integration Techniques and Improper Integrals

8.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Integration Technique Describe how to integrate 

a rational function with a numerator and denominator of 
the same degree.

2.  Fitting Integrands to Basic Integration 
Rules What procedure should you use to fit each 
integrand to the basic integration rules? Do not integrate.

 (a) ∫ 2 + x
x2 + 9

 dx (b) ∫ cot2 x dx

Choosing an Antiderivative In Exercises 3 and 4, select 
the correct antiderivative.

 3. ∫ x

√x2 + 1
 dx

 (a) 2√x2 + 1 + C (b) √x2 + 1 + C

 (c) 1
2√x2 + 1 + C (d) ln(x2 + 1) + C

 4. ∫ 1
x2 + 1

 dx

 (a) ln√x2 + 1 + C (b) 
2x

(x2 + 1)2 + C

 (c) arctan x + C (d) ln(x2 + 1) + C

 Choosing a Formula In Exercises 5–14, select 
the basic integration formula you can use to find 
the indefinite integral, and identify u and a when 
appropriate. Do not integrate.

 5. ∫(5x − 3)4 dx  6. ∫ 2t + 1
t2 + t − 4

 dt

 7. ∫ 1

√x(1 − 2√x)
 dx  8. ∫ 2

(2t − 1)2 + 4
 dt

 9. ∫ 3

√1 − t2
 dt 10. ∫ −2x

√x2 − 4
 dx

11. ∫t sin t2 dt 12. ∫sec 5x tan 5x dx

13. ∫(cos x)esin x dx 14. ∫ 1

x√x2 − 4
 dx

 Finding an Indefinite Integral In Exercises 
15–46, find the indefinite integral.

15. ∫14(x − 5)6 dx 16. ∫ 5
(t + 6)3 dt

17. ∫ 7
(z − 10)7 dz 18. ∫t3√t4 + 1 dt

19. ∫[z2 +
1

(1 − z)6] dz 20. ∫[4x −
2

(2x + 3)2] dx

21. ∫ t2 − 3
−t3 + 9t + 1

 dt 22. ∫ x + 1

√3x2 + 6x
 dx

23. ∫ x2

x − 1
 dx 24. ∫ 3x

x + 4
 dx

25. ∫x + 2
x + 1

 dx 26. ∫( 1
9z − 5

−
1

9z + 5) dz

27. ∫(5 + 4x2)2 dx 28. ∫x(3 +
2
x)

2

 dx

29. ∫x cos 2πx2 dx 30. ∫csc πx cot πx dx

31. ∫ sin x

√cos x
 dx 32. ∫csc2 3t

cot 3t
 dt

33. ∫ 2
e−x + 1

 dx 34. ∫ 4
3 − ex dx

35. ∫ln x2

x
 dx 36. ∫(tan x)[ln(cos x)] dx

37. ∫1 + cos α
sin α  dα 38. ∫ 1

cos θ − 1
 dθ

39. ∫ −1

√1 − (4t + 1)2
 dt 40. ∫ 1

25 + 4x2 dx

41. ∫tan(2�t)
t2  dt 42. ∫e−1�t3

t 4  dt

43. ∫ 6

z√9z2 − 25
 dz

44. ∫ 1

(x − 1)√4x2 − 8x + 3
 dx

45. ∫ 4
4x2 + 4x + 65

 dx

46. ∫ 1
x2 − 4x + 9

 dx

Slope Field In Exercises 47 and 48, a differential equation, 
a point, and a slope field are given. (a) Sketch two approximate 
solutions of the differential equation on the slope field, one of 
which passes through the given point. (To print an enlarged 
copy of the graph, go to MathGraphs.com.) (b) Use integration 
and the given point to find the particular solution of the 
differential equation and use a graphing utility to graph the 
solution. Compare the result with the sketch in part (a) that 
passes through the given point.

47. 
ds
dt

=
t

√1 − t4
, (0, −

1
2) 48. 

dy
dx

=
1

√4x − x2
, (2, 

1
2)

t

s

1−1

1

−1

 

4

−1

−2

1

2

x

y
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 8.1 Basic Integration Rules 521

Slope Field In Exercises 49 and 50, use a computer algebra 
system to graph the slope field for the differential equation 
and graph the solution satisfying the specified initial condition.

49. 
dy
dx

= 0.8y, y(0) = 4

50. 
dy
dx

= 5 − y, y(0) = 1

Differential equation In Exercises 51–56, find the general 
solution of the differential equation.

51. 
dy
dx

= (ex + 5)2 52. 
dy
dx

= (4 − e2x)2

53. 
dr
dt

=
10et

√1 − e2t
 54. 

dr
dt

=
(1 + et)2

e3t

55. (4 + tan2 x)y′ = sec2 x

56. y′ =
1

x√4x2 − 9

 evaluating a Definite Integral In Exercises 
57–72, evaluate the definite integral. Use a 
graphing utility to verify your result.

57. ∫1

2�3
 (2 − 3t)4 dt 58. ∫0

−1
 

5
(t + 2)11 dt

59. ∫π�4

0
cos 2x dx 60. ∫π

0
sin2 t cos t dt

61. ∫1

0
xe−x2

 dx 62. ∫e

1
 
1 − ln x

x
 dx

63. ∫3

2
 
ln(x + 1)3

x + 1
 dx 64. ∫1

−3
 

ex

e2x + 2ex + 1
 dx

65. ∫8

0

2x

√x2 + 36
 dx 66. ∫3

1
 
2x2 + 3x − 2

x
 dx

67. ∫5

3
 

2t
t2 − 4t + 4

 dt 68. ∫4

2
 

4x3

x4 − 6x2 + 9
 dx

69. ∫2�√3

0

1
4 + 9x2 dx 70. ∫7

0

1

√100 − x2
 dx

71. ∫0

−4
 31−x dx 72. ∫1

0
 7x2+2x (x + 1) dx

Area In Exercises 73–76, find the area of the given region.

73. y = (−4x + 6)3�2 74. y =
3x + 2
x2 + 9

 y

x
(1.5, 0)

−1 1 2

5

10

15

 y

x
1 2 3 4 5

0.2

0.4

0.6

0.8

75. y2 = x2(1 − x2) 76. y = sin 2x

 

−2 2

−1

−2

1

2

y

x

  

4
π

0.5

1.0

x

y

Finding an Integral Using Technology In Exercises 
77–80, use a computer algebra system to find the integral. Use 
the computer algebra system to graph two antiderivatives. 
Describe the relationship between the graphs of the two 
antiderivatives.

77. ∫ 1
x2 + 4x + 13

 dx 78. ∫ x − 2
x2 + 4x + 13

 dx

79. ∫ 1
1 + sin θ  dθ 80. ∫(ex + e−x

2 )
3

 dx

eXpLoring ConCepts
81. Think About It When evaluating

 ∫1

−1
x2 dx

 is it appropriate to substitute

 u = x2, x = √u, and dx =
du

2√u

 to obtain

 
1
2

 ∫1

1
√u du = 0?

 Explain.

82. Deriving a Rule Show that

 sec x =
sin x
cos x

+
cos x

1 + sin x
.

 Then use this identity to derive the basic integration rule

 ∫sec x dx = ln∣sec x + tan x∣ + C.

83.  Finding Constants Determine the constants a and b 
such that

 sin x + cos x = a sin(x + b).

 Use this result to integrate

 ∫ dx
sin x + cos x

.

84.  Area The graphs of f (x) = x and g(x) = ax2 intersect at the 
points (0, 0) and (1�a, 1�a). Find a (a > 0) such that the area 
of the region bounded by the graphs of these two functions is 23.
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522 Chapter 8 Integration Techniques and Improper Integrals

85. Comparing Antiderivatives

 (a)  Explain why the antiderivative y1 = ex+C1 is equivalent to 
the antiderivative y2 = Cex.

 (b)  Explain why the antiderivative y1 = sec2 x + C1 is 
equivalent to the antiderivative y2 = tan2 x + C.

 86. HOW DO YOU See IT? Using the graph, is

 ∫5

0
 f (x) dx positive or negative? Explain.

x

y

1 2 3 4 6

1

2

−3

3

1 2 63 4

f(x) =   (x3 − 7x2 + 10x)1
5

 86.

Approximation In Exercises 87 and 88, determine which 
value best approximates the area of the region between the 
x-axis and the graph of the function over the given interval. 
Make your selection on the basis of a sketch of the region, not 
by performing calculations.

87. f (x) =
4x

x2 + 1
, [0, 2]

 (a) 3  (b) 1  (c) −8  (d) 8  (e) 10

88. f (x) =
4

x2 + 1
, [0, 2]

 (a) 3  (b) 1  (c) −4  (d) 4  (e) 10

Interpreting Integrals In Exercises 89 and 90, (a) sketch 
the region whose area is given by the integral, (b) sketch the 
solid whose volume is given by the integral when the disk 
method is used, and (c) sketch the solid whose volume is given 
by the integral when the shell method is used. (There is more 
than one correct answer for each part.)

89. ∫2

0
2πx2 dx 90. ∫4

0
πy dy

91.  Volume The region bounded by y = e−x2
, y = 0, x = 0,

and x = b (b > 0) is revolved about the y-axis.

 (a) Find the volume of the solid generated when b = 1.

 (b)  Find b such that the volume of the solid generated is
4
3 cubic units.

92.  Volume Consider the region bounded by the graphs of
x = 0, y = cos x2, y = sin x2, and x = √x�2. Find the volume 
of the solid generated by revolving the region about the y-axis.

93.  Arc Length Find the arc length of the graph of y = ln(sin x)
from x = π�4 to x = π�2.

94.  Arc Length Find the arc length of the graph of y = ln(cos x)
from x = 0 to x = π�3.

95.  Surface Area Find the area of the surface formed by 
revolving the graph of y = 2√x on the interval [0, 9] about 
the x-axis.

96.  Centroid Find the centroid of the region bounded by the 
graphs of

y =
1

2x + 1
, y = 0, x = 0, and x = 2.

Average Value of a Function In Exercises 97 and 98, find 
the average value of the function over the given interval.

97. f (x) =
1

1 + x2, −3 ≤ x ≤ 3

98. f (x) = sin nx, 0 ≤ x ≤ π�n, n is a positive integer.

Arc Length In Exercises 99 and 100, use the integration 
capabilities of a graphing utility to approximate the arc length 
of the curve over the given interval.

99. y = tan πx, [0, 14] 100. y = x2�3, [1, 8]

101. Finding a Pattern

  (a) Find ∫cos3 x dx.

  (b) Find ∫cos5 x dx.

  (c) Find ∫cos7 x dx.

  (d)  Explain how to find ∫ cos15 x dx without actually 
integrating.

102. Finding a Pattern

  (a)  Write ∫ tan3 x dx in terms of ∫ tan x dx. Then find 
∫ tan3 x dx.

  (b) Write ∫ tan5 x dx in terms of ∫ tan3 x dx.

  (c)  Write ∫ tan2k+1 x dx, where k is a positive integer, in 
terms of ∫ tan2k−1 x dx.

  (d)  Explain how to find ∫ tan15 x dx without actually 
integrating.

103.  methods of Integration Show that the following 
results are equivalent. (You will learn about integration by 
tables in Section 8.7.)

Integration by tables:

∫√x2 + 1 dx =
1
2

(x√x2 + 1 + ln∣x + √x2 + 1∣) + C

  Integration by computer algebra system:

  ∫√x2 + 1 dx =
1
2

[x√x2 + 1 + arcsinh(x)] + C

pUtnAM eXAM ChALLenge

104. Evaluate ∫4

2

√ln(9 − x) dx

√ln(9 − x) + √ln(x + 3)
.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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8.2 Integration by Parts 523

8.2 Integration by Parts8.2 Integration by Parts

 Find an antiderivative using integration by parts.

Integration by Parts
In this section, you will study an important integration technique called integration by 
parts. This technique can be applied to a wide variety of functions and is particularly 
useful for integrands involving products of algebraic and transcendental functions. For 
instance, integration by parts works well with integrals such as

∫x ln x dx, ∫x2 ex dx, and ∫ex sin x dx.

Integration by parts is based on the formula for the derivative of a product

 
d
dx

[uv] = u
dv
dx

+ v
du
dx

 = uv′ + vu′

where both u and v are differentiable functions of x. When u′ and v′ are continuous, you 
can integrate both sides of this equation to obtain

 uv = ∫uv′ dx + ∫vu′ dx

 = ∫u dv + ∫v du.

By rewriting this equation, you obtain the next theorem.

This formula expresses the original integral in terms of another integral. Depending on 
the choices of u and dv, it may be easier to find the second integral than the original 
one. Because the choices of u and dv are critical in the integration by parts process, the 
guidelines below are provided.

When using integration by parts, note that you can first choose dv or first choose 
u. After you choose, however, the choice of the other factor is determined—it must be 
the remaining portion of the integrand. Also note that dv must contain the differential 
dx of the original integral.

exploration
Proof Without Words 
Here is a different approach 
to proving the formula for 
integration by parts. This 
approach is from “Proof 
Without Words: Integration 
by Parts” by Roger B. Nelsen, 
Mathematics Magazine, 64, 
No. 2, April 1991, p. 130, by 
permission of the author.

u

s = g(b)

r = g(a)

u = f(x) v = g(x)

p = f(a) q = f(b)

v

Area■+ Area■= qs − pr

∫s

r

u dv + ∫p

q

v du = [uv]
(q, s)

(p, r)

∫s

r

u dv = [uv]
(q, s)

( p, r)
− ∫p

q

v du

Explain how this graph 
proves the theorem. Which 
notation in this proof is 
unfamiliar? What do you 
think it means?

theorem 8.1 Integration by Parts

If u and v are functions of x and have continuous derivatives, then

∫u dv = uv − ∫v du.

GUIDELINES FOR INTEGRATION BY PARTS

1.  Try letting dv be the most complicated portion of the integrand that fits a basic 
integration rule. Then u will be the remaining factor(s) of the integrand.

2.  Try letting u be the portion of the integrand whose derivative is a function 
simpler than u. Then dv will be the remaining factor(s) of the integrand.

Note that dv always includes the dx of the original integrand.
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524 Chapter 8 Integration Techniques and Improper Integrals

 Integration by Parts

Find ∫xex dx.

Solution To apply integration by parts, you need to write the integral in the form 
∫ u dv. There are several ways to do this.

∫(x)(ex dx), ∫(ex)(x dx), ∫(1)(xex dx), ∫(xex)(dx)

 u dv u dv u dv u dv

The guidelines on the preceding page suggest the first option because the derivative of 
u = x is simpler than x, and dv = ex dx is the most complicated portion of the integrand 
that fits a basic integration formula.

 dv = ex dx   v = ∫dv = ∫ex dx = ex

 u = x    du = dx

Now, integration by parts produces

 ∫u dv = uv − ∫v du Integration by parts formula

 ∫xex dx = xex − ∫ex dx Substitute.

 = xex − ex + C. Integrate.

To check this, differentiate xex − ex + C to see that you obtain the original integrand.

 Integration by Parts

Find ∫x2 ln x dx.

Solution In this case, x2 is more easily integrated than ln x. Furthermore, the 
derivative of ln x is simpler than ln x. So, you should let dv = x2 dx.

 dv = x2 dx   v = ∫x2 dx =
x3

3

 u = ln x    du =
1
x
 dx

Integration by parts produces

 ∫u dv = uv − ∫v du Integration by parts formula

 ∫x2 ln x dx =
x3

3
 ln x − ∫(x3

3 )(
1
x) dx Substitute.

 =
x3

3
 ln x −

1
3

 ∫x2 dx Simplify.

 =
x3

3
 ln x −

x3

9
+ C. Integrate.

You can check this result by differentiating.

d
dx[

x3

3
 ln x −

x3

9
+ C] =

x3

3 (1
x) + (ln x)(x2) −

x2

3
= x2 ln x 

remark In Example 1, 
note that it is not necessary to 
include a constant of integration 
when solving

v = ∫ex dx = ex + C1.

To illustrate this, replace v = ex 
by v = ex + C1 and apply 
integration by parts to see that 
you obtain the same result.

teChnology  
Try graphing

f(x) = ∫x2 ln x dx

and

g(x) =
x3

3
 ln x −

x3

9

on your graphing utility. Do  
you get the same graph?
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 8.2 Integration by Parts 525

One surprising application of integration by parts involves integrands consisting 
of single terms, such as

∫ln x dx or ∫arcsin x dx.

In these cases, try letting dv = dx, as shown in the next example.

 an Integrand with a Single term

Evaluate ∫1

0
arcsin x dx.

Solution Let dv = dx.

 dv = dx   v = ∫dx = x

 u = arcsin x   du =
1

√1 − x2
 dx

Integration by parts produces

 ∫u dv = uv − ∫v du Integration by parts 
formula

 ∫arcsin x dx = x arcsin x − ∫ x

√1 − x2
 dx Substitute.

 = x arcsin x +
1
2

 ∫(1 − x2)−1�2 (−2x) dx Rewrite.

 = x arcsin x + √1 − x2 + C. Integrate.

Using this antiderivative, you can evaluate the definite integral as shown.

 ∫1

0
arcsin x dx = [x arcsin x + √1 − x2]

1

0

 =
π
2

− 1

 ≈ 0.571

The area represented by this definite integral is shown in Figure 8.2. 

teChnology Remember that there are several ways to use technology to 
evaluate a definite integral: (1) use a numerical approximation such as the Midpoint 
Rule, or more advanced methods such as the Trapezoidal Rule and Simpson’s 
Rule (see Section 8.6), (2) use a computer algebra system to find the antiderivative 
and then apply the Fundamental Theorem of Calculus, or (3) use the numerical 
integration feature of a graphing utility. However, these methods have shortcomings. 
For instance, to find the possible error when using Simpson’s Rule, the integrand 
must have a continuous fourth derivative in the interval of integration (the integrand 
in Example 3 fails to meet this requirement). To apply the Fundamental Theorem 
of Calculus, the symbolic integration utility must be able to find the antiderivative. 
Often, for the numerical integration feature of a graphing utility, you are given no 
indication of the degree of accuracy of the approximation.

 For Further InFormatIon To see how integration by parts is used to prove 
Stirling’s approximation ln(n!) = n ln n − n, see the article “The Validity of Stirling’s 
Approximation: A Physical Chemistry Project” by A. S. Wallner and K. A. Brandt in 
Journal of Chemical Education.

y = arcsin x

x

2 ))1, 

1

y

2
π

π

The area of the region is approximately 
0.571.
Figure 8.2
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526 Chapter 8 Integration Techniques and Improper Integrals

Some integrals require repeated use of the integration by parts formula, as shown 
in the next example.

 repeated Use of Integration by Parts

Find ∫x2 sin x dx.

Solution The factors x2 and sin x are equally easy to integrate. However, the 
derivative of x2 becomes simpler, whereas the derivative of sin x does not. So, you 
should let u = x2.

 dv = sin x dx   v = ∫sin x dx = −cos x

 u = x2   du = 2x dx

Now, integration by parts produces

∫x2 sin x dx = −x2 cos x + ∫2x cos x dx. First use of integration by parts

This first use of integration by parts has succeeded in simplifying the original integral, 
but the integral on the right still does not fit a basic integration rule. To find that 
integral, you can apply integration by parts again. This time, let u = 2x.

 dv = cos x dx   v = ∫cos x dx = sin x

 u = 2x   du = 2 dx

Now, integration by parts produces

 ∫2x cos x dx = 2x sin x − ∫2 sin x dx Second use of integration by parts

 = 2x sin x + 2 cos x + C.

Combining these two results, you can write

∫x2 sin x dx = −x2 cos x + 2x sin x + 2 cos x + C. 

When making repeated applications of integration by parts, you need to be careful 
not to interchange the substitutions in successive applications. For instance, in Example 4, 
the first substitution was u = x2 and dv = sin x dx. If, in the second application, you 
had switched the substitution to u = cos x and dv = 2x dx, you would have obtained

 ∫x2 sin x dx = −x2 cos x + ∫2x cos x dx

 = −x2 cos x + x2 cos x + ∫x2 sin x dx

 = ∫x2 sin x dx

thereby undoing the previous integration and returning to the original integral. When 
making repeated applications of integration by parts, you should also watch for the 
appearance of a constant multiple of the original integral. For instance, this occurs 
when you use integration by parts to find ∫ex cos 2x dx, and it also occurs in Example 5  
on the next page.

The integral in Example 5 is an important one. In Section 8.4 (Example 5), you will 
see that it is used to find the arc length of a parabolic segment.
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 8.2 Integration by Parts 527

 Integration by Parts

Find ∫sec3 x dx.

Solution The most complicated portion of the integrand that can be easily integrated is 
sec2 x, so you should let dv = sec2 x dx and u = sec x.

 dv = sec2 x dx   v = ∫sec2 x dx = tan x

 u = sec x   du = sec x tan x dx

Integration by parts produces

 ∫u dv = uv − ∫v du 
Integration by parts 
formula

 ∫sec3 x dx = sec x tan x − ∫sec x tan2 x dx Substitute.

 ∫sec3 x dx = sec x tan x − ∫(sec x)(sec2 x − 1) dx Trigonometric identity

 ∫sec3 x dx = sec x tan x − ∫sec3 x dx + ∫sec x dx Rewrite.

 2∫sec3 x dx = sec x tan x + ∫sec x dx Collect like integrals.

 2∫sec3 x dx = sec x tan x + ln∣sec x + tan x∣ + C Integrate.

 ∫sec3 x dx =
1
2

 sec x tan x +
1
2

 ln∣sec x + tan x∣ + C. Divide by 2.

 Finding a Centroid

A machine part is modeled by the region bounded by the graph of y = sin x and the 
x-axis, 0 ≤ x ≤ π�2, as shown in Figure 8.3. Find the centroid of this region.

Solution Begin by finding the area of the region.

A = ∫π�2

0
sin x dx = [−cos x]

0

π�2

= 1

Now, you can find the coordinates of the centroid. To evaluate the integral for y, first 
rewrite the integrand using the trigonometric identity sin2 x = (1 − cos 2x)�2.

y =
1
A

 ∫π�2

0
 
sin x

2
(sin x) dx =

1
4

 ∫π�2

0
(1 − cos 2x) dx =

1
4[x −

sin 2x
2 ]

0

π�2

=
π
8

You can evaluate the integral for x, (1�A) ∫π�2
0  x sin x dx, with integration by parts. To 

do this, let dv = sin x dx and u = x. This produces v = −cos x and du = dx, and you 
can write

∫x sin x dx = −x cos x + ∫cos x dx = −x cos x + sin x + C.

Finally, you can determine x to be

x =
1
A

 ∫π�2

0
x sin x dx = [−x cos x + sin x]

0

π�2

= 1.

So, the centroid of the region is (1, π�8). 

1

x

x

Δx

sin x
2

y = sin x

y

2 )) , 1 

2
π

π

Figure 8.3
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As you gain experience in using integration by parts, your skill in determining u
and dv will increase. The next summary lists several common integrals with suggestions 
for the choices of u and dv.

In problems involving repeated applications of integration by parts, a tabular 
method, illustrated in Example 7, can help to organize the work. This method works 
well for integrals of the form

∫xn sin ax dx, ∫xn cos ax dx, and ∫xn eax dx.

 Using the tabular method

See LarsonCalculus.com for an interactive version of this type of example.

Find ∫x2 sin 4x dx.

Solution Begin as usual by letting u = x2 and dv = v′ dx = sin 4x dx. Next, create 
a table consisting of three columns, as shown.

alternate u and Its v′ and Its
Signs Derivatives antiderivatives

 +   x2 sin 4x

 −   2x −1
4 cos 4x

 +   2 − 1
16 sin 4x

 −   0 1
64 cos 4x

Differentiate until you obtain 
0 as a derivative.

The solution is obtained by adding the signed products of the diagonal entries.

∫x2 sin 4x dx = −
1
4

x2 cos 4x +
1
8

x sin 4x +
1

32
 cos 4x + C 

remark You can use the 
acronym LIATE as a guideline 
for choosing u in integration by 
parts. In order, check the 
integrand for the following.

Is there a Logarithmic part?

Is there an Inverse trigonometric 
part?

Is there an Algebraic part?

Is there a Trigonometric part?

Is there an Exponential part?

 For Further InFormatIon
For more information on the 
tabular method, see the article 
“Tabular Integration by Parts” 
by David Horowitz in The 
College Mathematics Journal, 
and the article “More on 
Tabular Integration by Parts” 
by Leonard Gillman in The 
College Mathematics Journal. 
To view these articles, go to 
MathArticles.com.

SUMMARY: COMMON INTEGRALS USING INTEGRATION BY 
PARTS

1. For integrals of the form

∫xn eax dx, ∫xn sin ax dx, or ∫xn cos ax dx

 let u = xn and let dv = eax dx, sin ax dx, or cos ax dx.

2. For integrals of the form

∫xn ln x dx, ∫xn arcsin ax dx, or ∫xn arctan ax dx

 let u = ln x, arcsin ax, or arctan ax and let dv = xn dx.

3. For integrals of the form

∫eax sin bx dx or ∫eax cos bx dx

 let u = sin bx or cos bx and let dv = eax dx.
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 8.2 Integration by Parts 529

8.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Integration by Parts Integration by parts is based 

on what formula?

2.  Setting Up Integration by Parts In your own 
words, describe how to choose u and dv when using 
integration by parts.

3.  Using Integration by Parts How can you use 
integration by parts on an integrand with a single term that 
does not fit any of the basic integration rules?

4.  Using the tabular method When is integrating 
using the tabular method useful?

 Setting Up Integration by Parts In exercises 
5–10, identify u and dv for finding the integral 
using integration by parts. Do not integrate.

 5. ∫xe9x dx  6. ∫ x2e2x dx

 7. ∫ (ln x)2 dx  8. ∫ ln 5x dx

 9. ∫ x sec2 x dx 10. ∫ x2 cos x dx

 Using Integration by Parts In exercises 
11–14, find the indefinite integral using integration 
by parts with the given choices of u and dv.

11. ∫x3 ln x dx; u = ln x, dv = x3 dx

12. ∫(7 − x)ex�2 dx; u = 7 − x, dv = ex�2 dx

13. ∫(2x + 1)sin 4x dx; u = 2x + 1, dv = sin 4x dx

14. ∫x cos 4x dx; u = x, dv = cos 4x dx

 Finding an Indefinite Integral In exercises 
15–34, find the indefinite integral. (Note: Solve by 
the simplest method—not all require integration 
by parts.)

15. ∫xe4x dx 16. ∫5x
e2x dx

17. ∫x3ex dx 18. ∫e1�t

t2  dt

19. ∫t ln(t + 1) dt 20. ∫x5 ln 3x dx

21. ∫(ln x)2

x
 dx 22. ∫ln x

x3  dx

23. ∫ xe2x

(2x + 1)2 dx 24. ∫ x3ex2

(x2 + 1)2 dx

25. ∫x√x − 5 dx 26. ∫ 2x

√1 − 6x
 dx

27. ∫x csc2 x dx 28. ∫t csc t cot t dt

29. ∫x3 sin x dx 30. ∫x2 cos x dx

31. ∫arctan x dx 32. ∫4 arccos x dx

33. ∫e−3x sin 5x dx 34. ∫e4x cos 2x dx

Differential equation In exercises 35–38, find the general 
solution of the differential equation.

35. y′ = ln x 36. y′ = arctan 
x
2

37. 
dy
dt

=
t2

√3 + 5t
 38. 

dy
dx

= x2√x − 3

Slope Field In exercises 39 and 40, a differential equation, 
a point, and a slope field are given. (a) Sketch two approximate 
solutions of the differential equation on the slope field, one of 
which passes through the given point. (to print an enlarged 
copy of the graph, go to MathGraphs.com.) (b) use integration 
and the given point to find the particular solution of the 
differential equation and use a graphing utility to graph the 
solution. Compare the result with the sketch in part (a) that 
passes through the given point.

39. 
dy
dx

= x√y cos x, (0, 4) 40. 
dy
dx

= e−x�3 sin 2x, (0, −18
37)

x
42−2

11

y

−4

 

x
4

5

−6

−5

y

Slope Field In exercises 41 and 42, use a computer algebra 
system to graph the slope field for the differential equation 
and graph the solution satisfying the specified initial condition.

41. 
dy
dx

=
x
y

ex�8, y(0) = 2 42. 
dy
dx

=
x
y
 sin x, y(0) = 4

 evaluating a Definite Integral In exercises 
43–52, evaluate the definite integral. use a 
graphing utility to verify your result.

43. ∫3

0
xex�2 dx 44. ∫2

0
x2e−2x dx

45. ∫π�4

0
x cos 2x dx 46. ∫π

0
x sin 2x dx
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530 Chapter 8 Integration Techniques and Improper Integrals

47. ∫1�2

0
arccos x dx 48. ∫1

0
x arcsin x2 dx

49. ∫1

0
ex sin x dx 50. ∫1

0
ln(4 + x2) dx

51. ∫4

2
x arcsec x dx 52. ∫π�8

0
x sec2 2x dx

 Using the tabular method In exercises 
53–58, use the tabular method to find the indefinite 
integral.

53. ∫x2e2x dx 54. ∫(1 − x)(e−x + 1) dx

55. ∫(x + 2)2 sin x dx 56. ∫x3 cos 2x dx

57. ∫(6 + x)√4x + 9 dx

58. ∫x2(x − 2)3�2 dx

eXpLoRInG ConCeptS
59.  Integration by Parts Write an integral that requires 

three applications of integration by parts. Explain why 
three applications are needed.

60.  Integration by Parts When evaluating ∫x sin x dx, 
explain how letting u = sin x and dv = x dx makes the 
solution more difficult to find.

61.  Integration by Parts State whether you would use 
integration by parts to find each integral. If so, identify what 
you would use for u and dv. Explain your reasoning.

 (a) ∫ln x
x

 dx (b) ∫x ln x dx (c) ∫x2e−3x dx

 (d) ∫2xex2
 dx (e) ∫ x

√x + 1
 dx (f ) ∫ x

√x2 + 1
 dx

 62.  hoW Do yoU See It? Use the graph of 
f ′ shown in the figure to answer the following.

x

y

−1 1 2 3 4
−1

1

2

3

4

f ′(x) = x  ln x

(a) Approximate the slope of f  at x = 2. Explain.

(b)  Approximate any open intervals on which the 
graph of f  is increasing and any open intervals 
on which it is decreasing. Explain.

 62.  

Using two methods together In exercises 63–66, 
find the indefinite integral by using substitution followed by 
integration by parts.

63. ∫sin√x dx 64. ∫2x3 cos x2 dx

65. ∫x5ex2
 dx 66. ∫e√2x dx

67. Using two methods Integrate ∫ x3

√4 + x2
 dx

 (a) by parts, letting dv =
x

√4 + x2
 dx.

 (b) by substitution, letting u = 4 + x2.

68. Using two methods Integrate ∫x√4 − x dx

 (a) by parts, letting dv = √4 − x dx.

 (b) by substitution, letting u = 4 − x.

Finding a general rule In exercises 69 and 70, use a 
computer algebra system to find the integrals for n = 0, 1, 2, 
and 3. use the result to obtain a general rule for the integrals 
for any positive integer n and test your results for n = 4.

69. ∫xn ln x dx

70. ∫xnex dx

Proof In exercises 71–76, use integration by parts to prove 
the formula. (For exercises 71–74, assume that n is a positive 
integer.)

71. ∫xn sin x dx = −xn cos x + n ∫xn−1 cos x dx

72. ∫xn cos x dx = xn sin x − n ∫xn−1 sin x dx

73. ∫xn ln x dx =
xn+1

(n + 1)2 [−1 + (n + 1) ln x] + C

74. ∫xneax dx =
xneax

a
−

n
a

 ∫xn−1eax dx

75. ∫eax sin bx dx =
eax(a sin bx + b cos bx)

a2 + b2 + C

76. ∫eax cos bx dx =
eax(a cos bx + b sin bx)

a2 + b2 + C

Using Formulas In exercises 77–82, find the indefinite 
integral by using the appropriate formula from exercises 
71–76.

77. ∫ x2 sin x dx 78. ∫x2 cos x dx

79. ∫ x
5 ln x dx 80. ∫x3e2x dx

81. ∫ e−3x sin 4x dx 82. ∫e2x cos 3x dx
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area In exercises 83–86, use a graphing utility to graph the 
region bounded by the graphs of the equations. then find the 
area of the region analytically.

83. y = 2xe−x, y = 0, x = 3

84. y =
1
10

xe3x, y = 0, x = 0, x = 2

85. y = e−x sin πx, y = 0, x = 1

86. y = x3 ln x, y = 0, x = 1, x = 3

87.  area, Volume, and Centroid Given the region bounded 
by the graphs of y = ln x, y = 0, and x = e, find

 (a) the area of the region.

 (b)  the volume of the solid generated by revolving the region 
about the x-axis.

 (c)  the volume of the solid generated by revolving the region 
about the y-axis.

 (d) the centroid of the region.

88.  area, Volume, and Centroid Given the region bounded 
by the graphs of y = x sin x, y = 0, x = 0, and x = π, find

 (a) the area of the region.

 (b)  the volume of the solid generated by revolving the region 
about the x-axis.

 (c)  the volume of the solid generated by revolving the region 
about the y-axis.

 (d)  the centroid of the region.

89.  Centroid Find the centroid of the region bounded by the 
graphs of y = arcsin x, x = 0, and y = π�2. How is this 
problem related to Example 6 in this section?

90.  Centroid Find the centroid of the region bounded by the 
graphs of f (x) = x2, g(x) = 2x, x = 2, and x = 4.

91.  average Displacement A damping force affects the 
vibration of a spring so that the displacement of the spring is 
given by

 y = e−4t (cos 2t + 5 sin 2t).

 Find the average value of y on the interval from t = 0 to t = π.

Present Value In exercises 93 and 94, find the present 
value P of a continuous income flow of c(t) dollars per year 
using

P = ∫t1

0
c(t)e−rt dt

where t1 is the time in years and r is the annual interest rate 
compounded continuously.

93. c(t) = 100,000 + 4000t, r = 5%, t1 = 10

94. c(t) = 1000 + 120t, r = 2%, t1 = 30

Integrals Used to Find Fourier Coefficients In 
exercises 95 and 96, verify the value of the definite integral, 
where n is a positive integer.

95. ∫π

−π
 x sin nx dx = {

2π
n

,

−
2π
n

,

n is odd

n is even

96. ∫π

−π
 x2 cos nx dx =

(−1)n 4π
n2

97.  Vibrating String A string stretched between the two 
points (0, 0) and (2, 0) is plucked by displacing the string h 
units at its midpoint. The motion of the string is modeled by a 
Fourier Sine Series whose coefficients are given by

 bn = h ∫1

0
x sin 

nπx
2

 dx + h ∫2

1
(−x + 2) sin 

nπx
2

 dx.

 Find bn.

98.  Finding a Pattern Find the area bounded by the graphs 
of y = x sin x and y = 0 over each interval.

 (a) [0, π]  (b) [π, 2π]  (c) [2π, 3π]
  Describe any patterns that you notice. What is the area 

between the graphs of y = x sin x and y = 0 over the interval 
[nπ, (n + 1)π], where n is any nonnegative integer? Explain.

99.  Finding an error Find the fallacy in the following 
argument that 0 = 1.

 dv = dx   v = ∫dx = x

 u =
1
x
   du = −

1
x2 dx

 0 + ∫dx
x

= (1
x)(x) − ∫(−

1
x2)(x) dx

 = 1 + ∫dx
x

 So, 0 = 1.

pUtnAM eXAM ChALLenGe
100. Find a real number c and a positive number L for which

  lim
r→∞

 
rc ∫π�2

0  xr sin x dx

∫π�2
0  xr cos x dx

= L.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

 A model for the ability M of a child to memorize, measured 
on a scale from 0 to 10, is given by

M = 1 + 1.6t ln t, 0 < t ≤ 4

where t is the child’s age in 
years. Find the average 
value of this model

(a)  between the child’s 
first and second 
birthdays.

(b)  between the child’s 
third and fourth 
birthdays.

92. memory model

Juriah Mosin/Shutterstock.com
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532 Chapter 8 Integration Techniques and Improper Integrals

8.3 trigonometric Integrals

 Solve trigonometric integrals involving powers of sine and cosine.
 Solve trigonometric integrals involving powers of secant and tangent.
 Solve trigonometric integrals involving sine-cosine products.

Integrals Involving Powers of Sine and Cosine
In this section, you will study techniques for evaluating integrals of the form

∫sinm x cosn x dx and ∫secm x tann x dx

where either m or n is a positive integer. To find antiderivatives for these forms, try 
to break them into combinations of trigonometric integrals to which you can apply the 
Power Rule.

For instance, you can find 

∫sin5 x cos x dx

with the Power Rule by letting u = sin x. Then, du = cos x dx and you have

∫sin5 x cos x dx = ∫u5 du =
u6

6
+ C =

sin6 x
6

+ C.

To break up ∫ sinm x cosn x dx into forms to which you can apply the Power Rule, 
use these relationships.

sin2 x + cos2 x = 1

sin2 x =
1 − cos 2x

2

cos2 x =
1 + cos 2x

2

Pythagorean identity

Power-reducing formula for sin2 x

Power-reducing formula for  cos2 x

GUIDELINES FOR EVALUATING INTEGRALS INVOLVING POWERS OF SINE AND COSINE

1.  When the power of the sine is odd and positive, save one sine factor and convert the remaining factors to cosines. 
Then expand and integrate.

 Odd Convert to cosines Save for du

∫sin2k+1 x cosn x dx = ∫(sin2 x)k cosn x sin x dx = ∫(1 − cos2 x)k cosn x sin x dx

2.  When the power of the cosine is odd and positive, save one cosine factor and convert the remaining factors to 
sines. Then expand and integrate.

 Odd Convert to sines Save for du

∫sinm x cos2k+1 x dx = ∫ (sinm x)(cos2 x)k cos x dx = ∫ (sinm x)(1 − sin2 x)k cos x dx

3. When the powers of both the sine and cosine are even and nonnegative, make repeated use of the formulas

sin2 x =
1 − cos 2x

2
 and cos2 x =

1 + cos 2x
2

 to convert the integrand to odd powers of the cosine. Then proceed as in the second guideline.

SHEILA SCOTT MACINTYRE 
(1910–1960)

Sheila Scott Macintyre 
published her first paper on 
the asymptotic periods of 
integral functions in 1935. 
She completed her doctorate 
work at Aberdeen University, 
where she taught. In 1958, she 
accepted a visiting research 
fellowship at the University of 
Cincinnati.
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 8.3 Trigonometric Integrals 533

 Power of Sine Is Odd and Positive

Find ∫sin3 x cos4 x dx.

Solution Because you expect to use the Power Rule with u = cos x, save one sine 
factor to form du and convert the remaining sine factors to cosines.

 ∫sin3 x cos4 x dx = ∫(sin2 x cos4 x)(sin x) dx Rewrite.

 = ∫(1 − cos2 x) cos4 x sin x dx Trigonometric identity

 = ∫(cos4 x − cos6 x) sin x dx Multiply.

 = ∫cos4 x sin x dx − ∫cos6 x sin x dx Rewrite.

 = −∫(cos4 x)(−sin x) dx + ∫(cos6 x)(−sin x) dx

 = −
cos5 x

5
+

cos7 x
7

+ C Integrate. 

In Example 1, both of the powers m and n happened to be positive integers. This 
strategy will work as long as either m or n is odd and positive. For instance, in the next 
example, the power of the cosine is 3, but the power of the sine is −1

2.

 Power of Cosine Is Odd and Positive

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate ∫π�3

π�6
 

cos3 x

√sin x
 dx.

Solution Because you expect to use the Power Rule with u = sin x, save one cosine 
factor to form du and convert the remaining cosine factors to sines.

 ∫π�3

π�6
 

cos3 x

√sin x
 dx = ∫π�3

π�6
 
cos2 x cos x

√sin x
 dx Rewrite.

 = ∫π�3

π�6
 
(1 − sin2 x)(cos x)

√sin x
 dx  Trigonometric identity

 = ∫π�3

π�6
 [(sin x)−1�2 − (sin x)3�2] cos x dx Divide.

 = [(sin x)1�2

1�2
−

(sin x)5�2

5�2 ]
π�6

π�3

 Integrate.

 = 2(√3
2 )

1�2

−
2
5 (

√3
2 )

5�2

− √2 +
√32
80

 ≈ 0.239

Figure 8.4 shows the region whose area is represented by this integral. 

teChnOlOgy A computer algebra system used to find the integral in 
Example 1 yielded the following.

∫sin3 x cos4 x dx = (−cos5 x)(1
7

 sin2 x +
2
35) + C

Is this equivalent to the result obtained in Example 1?

1.0

0.8

0.6

0.4

0.2

y = cos3 x
sin x

x

y

6
π

3
π

The area of the region is approximately 
0.239.
Figure 8.4
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534 Chapter 8 Integration Techniques and Improper Integrals

 Power of Cosine Is even and nonnegative

Find ∫cos4 x dx.

Solution Because m and n are both even and nonnegative (m = 0), you can replace 
cos4 x by

(1 + cos 2x
2 )

2

.

So, you can integrate as shown.

 ∫cos4 x dx = ∫(1 + cos 2x
2 )

2

 dx Power-reducing
formula

 = ∫(1
4

+
cos 2x

2
+

cos2 2x
4 ) dx Expand.

 = ∫[1
4

+
cos 2x

2
+

1
4 (

1 + cos 4x
2 )] dx Power-reducing

formula

 =
3
8

 ∫dx +
1
4

 ∫2 cos 2x dx +
1

32∫4 cos 4x dx Rewrite.

 =
3x
8

+
sin 2x

4
+

sin 4x
32

+ C Integrate.

Use a symbolic differentiation utility to verify this. Can you simplify the derivative to 
obtain the original integrand? 

In Example 3, when you evaluate the definite integral from 0 to π�2, you obtain

 ∫π�2

0
cos4 x dx = [3x

8
+

sin 2x
4

+
sin 4x

32 ]
π�2

0

 = (3π
16

+ 0 + 0) − (0 + 0 + 0)

 =
3π
16

.

Note that the only term that contributes to the solution is

3x
8

.

This observation is generalized in the following formulas developed by John Wallis 
(1616–1703).

Wallis’s Formulas

1. If n is odd (n ≥ 3), then

∫π�2

0
cosn x dx = (2

3)(
4
5)(

6
7) .  .  . (n − 1

n ).

2. If n is even (n ≥ 2), then

∫π�2

0
cosn x dx = (1

2)(
3
4)(

5
6) .  .  . (n − 1

n )(π2).

These formulas are also valid when cosn x is replaced by sinn x. (You are asked to 
prove both formulas in Exercise 87.)

JOHN WALLIS (1616–1703)

Wallis did much of his work in 
calculus prior to Newton and 
Leibniz, and he influenced the 
thinking of both of these men. 
Wallis is also credited with 
introducing the present symbol 
(∞) for infinity.
See LarsonCalculus.com to read 
more of this biography.

Bettmann/Corbis
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Integrals Involving Powers of Secant and Tangent
The guidelines below can help you find integrals of the form

∫secm x tann x dx.

 Power of tangent Is Odd and Positive

Find ∫ tan3 x

√sec x
 dx.

Solution Because you expect to use the Power Rule with u = sec x, save a factor of 
(sec x tan x) to form du and convert the remaining tangent factors to secants.

 ∫ tan3 x

√sec x
 dx = ∫(sec x)−1�2 tan3 x dx Rewrite.

 = ∫(sec x)−3�2(tan2 x)(sec x tan x) dx Rewrite.

 = ∫(sec x)−3�2(sec2 x − 1)(sec x tan x) dx Trigonometric identity

 = ∫[(sec x)1�2 − (sec x)−3�2](sec x tan x) dx Multiply.

 =
2
3

(sec x)3�2 + 2(sec x)−1�2 + C Integrate. 

GUIDELINES FOR EVALUATING INTEGRALS INVOLVING POWERS OF SECANT AND TANGENT

1.  When the power of the secant is even and positive, save a secant-squared factor and convert the remaining
factors to tangents. Then expand and integrate.

 Even Convert to tangents Save for du

∫sec2k x tann x dx = ∫(sec2 x)k−1 tann x sec2 x dx = ∫(1 + tan2 x)k−1 tann x sec2 x dx

2.  When the power of the tangent is odd and positive, save a secant-tangent factor and convert the remaining
factors to secants. Then expand and integrate.

 Odd Convert to secants Save for du

∫secm x tan2k+1 x dx = ∫ (secm−1 x)(tan2 x)k sec x tan x dx = ∫ (secm−1 x)(sec2 x − 1)k sec x tan x dx

3.  When there are no secant factors and the power of the tangent is even and positive, convert a tangent-squared 
factor to a secant-squared factor, then expand and repeat if necessary.

 Convert to secants

∫tann x dx = ∫ (tann−2 x)(tan2 x) dx = ∫ (tann−2 x)(sec2 x − 1) dx

4. When the integral is of the form

∫secm x dx

 where m is odd and positive, use integration by parts, as illustrated in Example 5 in Section 8.2.

5. When the first four guidelines do not apply, try converting to sines and cosines.
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536 Chapter 8 Integration Techniques and Improper Integrals

 Power of Secant Is even and Positive

Find ∫sec4 3x tan3 3x dx.

Solution Let u = tan 3x. Then du = 3 sec2 3x dx and you can write

 ∫sec4 3x tan3 3x dx = ∫(sec2 3x tan3 3x)(sec2 3x) dx Rewrite.

 = ∫(1 + tan2 3x)(tan3 3x)(sec2 3x) dx Trigonometric identity

 =
1
3∫(tan3 3x + tan5 3x)(3 sec2 3x) dx Multiply.

 =
1
3 (

tan4 3x
4

+
tan6 3x

6 ) + C Integrate.

 =
tan4 3x

12
+

tan6 3x
18

+ C. 

In Example 5, the power of the tangent is odd and positive. So, you could also find 
the integral using the procedure described in the second guideline on the preceding 
page. In Exercises 67 and 68, you are asked to show that the results obtained by these 
two procedures differ only by a constant.

 Power of tangent Is even

Evaluate ∫π�4

0
tan4 x dx.

Solution Because there are no secant factors, you can begin by converting a tangent-
squared factor to a secant-squared factor.

 ∫tan4 x dx = ∫ (tan2 x)(tan2 x) dx Rewrite.

 = ∫ (tan2 x)(sec2 x − 1) dx Trigonometric identity

 = ∫tan2 x sec2 x dx − ∫tan2 x dx Rewrite.

 = ∫tan2 x sec2 x dx − ∫(sec2 x − 1) dx Trigonometric identity

 =
tan3 x

3
− tan x + x + C Integrate.

Next, evaluate the definite integral.

 ∫π�4

0
tan4 x dx = [tan3 x

3
− tan x + x]

π�4

0

 =
1
3

− 1 +
π
4

 ≈ 0.119

The area represented by the definite integral is shown in Figure 8.5. Try using the 
Midpoint Rule to approximate this integral. With n = 15, you should obtain an 
approximation that is within 0.001 of the actual value. 

x

0.5

1.0

y = tan4 x

y

8
π

4
π

4 )) , 1 
π

The area of the region is approximately 
0.119.
Figure 8.5
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 8.3 Trigonometric Integrals 537

For integrals involving powers of cotangents and cosecants, you can follow a 
strategy similar to that used for powers of tangents and secants. Also, when integrating 
trigonometric functions, remember that it sometimes helps to convert the entire 
integrand to powers of sines and cosines.

 Converting to Sines and Cosines

Find ∫ sec x
tan2 x

 dx.

Solution Because the first four guidelines on page 535 do not apply, try converting 
the integrand to sines and cosines. In this case, you are able to integrate the resulting 
powers of sine and cosine as shown.

 ∫ sec x
tan2 x

 dx = ∫( 1
cos x)(

cos x
sin x)

2

 dx

 = ∫(sin x)−2(cos x) dx

 = −(sin x)−1 + C

 = −csc x + C 

Integrals Involving Sine-Cosine Products
Integrals involving the products of sines and cosines of two angles occur in many 
applications. You can evaluate these integrals using integration by parts. However, you 
may find it simpler to use the following product-to-sum formulas.

sin mx sin nx =
1
2

(cos[(m − n)x] − cos[(m + n)x])

sin mx cos nx =
1
2

(sin[(m − n)x] + sin[(m + n)x])

cos mx cos nx =
1
2

(cos[(m − n)x] + cos[(m + n)x])

 Using a Product-to-Sum Formula

Find ∫sin 5x cos 4x dx.

Solution Considering the second product-to-sum formula above, you can write

 ∫sin 5x cos 4x dx =
1
2∫(sin x + sin 9x) dx

 =
1
2 (−cos x −

cos 9x
9 ) + C

 = −
cos x

2
−

cos 9x
18

+ C. 

 For Further InFormatIon  To learn more about integrals involving  
sine-cosine products with different angles, see the article “Integrals of Products of Sine 
and Cosine with Different Arguments” by Sherrie J. Nicol in The College Mathematics 
Journal. To view this article, go to MathArticles.com.
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538 Chapter 8 Integration Techniques and Improper Integrals

8.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Analyzing Indefinite Integrals Which integral 

requires more steps to find? Explain. Do not integrate.

 ∫ sin8 x dx ∫ sin8 x cos x dx

2.  Analyzing an Indefinite Integral Describe the 
technique for finding ∫ sec5 x tan7 x dx. Do not integrate.

 Finding an Indefinite Integral Involving 
Sine and Cosine In exercises 3–14, find the 
indefinite integral.

 3. ∫cos5 x sin x dx  4. ∫sin7 2x cos 2x dx

 5. ∫cos3 x sin4 x dx  6. ∫sin3 3x dx

 7. ∫sin3 x cos2 x dx  8. ∫cos3 
x
3

 dx

 9. ∫sin3 2θ√cos 2θ dθ 10. ∫ cos5 t

√sin t
 dt

11. ∫cos2 3x dx 12. ∫sin4 6θ dθ

13. ∫ 8x cos2 x dx 14. ∫x2 sin2 x dx

Using Wallis’s Formulas In exercises 15–20, use Wallis’s 
Formulas to evaluate the integral.

15. ∫π�2

0
 cos3 x dx 16. ∫π�2

0
 cos6 x dx

17. ∫π�2

0
 sin2 x dx 18. ∫π�2

0
 sin9 x dx

19. ∫π�2

0
 sin10 x dx 20. ∫π�2

0
 cos11 x dx

 Finding an Indefinite Integral Involving 
Secant and tangent In exercises 21–34, find 
the indefinite integral.

21. ∫sec 4x dx 22. ∫sec4 x dx

23. ∫sec3 πx dx 24. ∫tan6 3x dx

25. ∫tan5 
x
2

 dx 26. ∫tan3 
πx
2

 sec2 
πx
2

 dx

27. ∫tan3 2t sec3 2t dt

28. ∫tan5 x sec4 x dx

29. ∫sec6 4x tan 4x dx 30. ∫sec2 
x
2

 tan 
x
2

 dx

31. ∫sec5 x tan3 x dx 32. ∫tan3 3x dx

33. ∫tan2 x
sec x

 dx 34. ∫tan2 x
sec5 x

 dx

Differential equation In exercises 35–38, find the general 
solution of the differential equation.

35. 
dr
dθ = sin4 πθ 36. 

ds
dα = sin2 

α
2

 cos2 
α
2

37. y′ = tan3 3x sec 3x 38. y′ = √tan x sec4 x

Slope Field In exercises 39 and 40, a differential equation, 
a point, and a slope field are given. (a) Sketch two approximate 
solutions of the differential equation on the slope field, one of 
which passes through the given point. (to print an enlarged 
copy of the graph, go to MathGraphs.com.) (b) use integration  
and the given point to find the particular solution of the 
differential equation and use a graphing utility to graph the 
solution. Compare the result with the sketch in part (a) that 
passes through the given point.

39. 
dy
dx

= sin2 x, (0, 0) 40. 
dy
dx

= sec2 x tan2 x, (0, −
1
4)

x

y

−4 4

4

−4

 

x

y

1.5

1.5

−1.5

−1.5

Slope Field In exercises 41 and 42, use a computer algebra 
system to graph the slope field for the differential equation 
and graph the solution satisfying the specified initial condition.

41. 
dy
dx

=
3 sin x

y
, y(0) = 2 42. 

dy
dx

= 3√y tan2 x, y(0) = 3

 Using a Product-to-Sum Formula In 
exercises 43– 48, find the indefinite integral.

43. ∫cos 2x cos 6x dx 44. ∫cos 5θ cos 3θ dθ

45. ∫ sin 2t cos 9t dt 46. ∫ sin 8x cos 7x dx

47. ∫sin θ sin 3θ dθ 48. ∫sin 5x sin 4x dx
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8.3 Trigonometric Integrals 539

Finding an Indefinite Integral In exercises 49–58, find 
the indefinite integral. use a computer algebra system to 
confirm your result.

49. ∫cot3 2x dx 50. ∫tan5 
x
4

 sec4 
x
4

 dx

51. ∫csc4 3x dx 52. ∫cot3 
x
2

 csc4 
x
2

 dx

53. ∫cot2 t
csc t

 dt 54. ∫cot3 t
csc t

 dt

55. ∫ 1
sec x tan x

 dx 56. ∫sin2 x − cos2 x
cos x

 dx

57. ∫(tan4 t − sec4 t) dt 58. ∫1 − sec t
cos t − 1

 dt

 evaluating a Definite Integral In exercises 
59–66, evaluate the definite integral.

59. ∫π

−π
sin2 x dx 60. ∫π�3

0
tan2 x dx

61. ∫π�4

0
6 tan3 x dx 62. ∫π�3

0
sec3�2 x tan x dx

63. ∫π�2

0

cot t
1 + sin t

 dt 64. ∫π�3

π�6
sin 6x cos 4x dx

65. ∫π�2

−π�2
3 cos3 x dx

66. ∫π

0
 sin5 x dx

eXpLoRInG ConCeptS

Comparing Methods In exercises 67 and 68, (a) find 
the indefinite integral in two different ways, (b) use a 
graphing utility to graph the antiderivative (without the 
constant of integration) obtained by each method to show 
that the results differ only by a constant, and (c) verify 
analytically that the results differ only by a constant.

67. ∫sec4 3x tan3 3x dx

68. ∫sec2 x tan x dx

69.  Comparing Methods Find the indefinite integral

 ∫ sin x cos x dx

  using the given method. Explain how your answers differ 
for each method.

 (a) Substitution where u = sin x

 (b) Substitution where u = cos x

 (c) Integration by parts

 (d) Using the identity sin 2x = 2 sin x cos x

 70.  hOW DO yOU See It? Use the graph of 
f ′ shown in the figure to answer the following.

 

x

y

−1.0

−

0.5

1.0

2
π

2
3π

f ′(x) = 8 sin3 x  cos4 x

(a)  Using the interval shown in the graph, approximate 
the value(s) of x where f  is maximum. Explain.

(b)  Using the interval shown in the graph, approximate 
the value(s) of x where f  is minimum. Explain.

 70.  

Area In exercises 71 and 72, find the area of the given 
region.

71. y = sin x, y = sin3 x 72. y = sin2 πx

0.5

1.0

4
π

2
π

y = sin x

y = sin3 x

x

y

  y = sin2   x

x

y

0.5 1.0

0.5

1.0

π

Area In exercises 73 and 74, find the area of the region 
bounded by the graphs of the equations.

73. y = cos2 x, y = sin2 x, x = −
π
4

, x =
π
4

74. y = cos2 x, y = sin x cos x, x = −
π
2

, x =
π
4

Volume In exercises 75 and 76, find the volume of the solid 
generated by revolving the region bounded by the graphs of 
the equations about the x-axis.

75. y = tan x, y = 0, x = −
π
4

, x =
π
4

76. y = cos 
x
2

, y = sin 
x
2

, x = 0, x =
π
2

Volume and Centroid In exercises 77 and 78, for the 
region bounded by the graphs of the equations, find (a) the 
volume of the solid generated by revolving the region about the 
x-axis and (b) the centroid of the region.

77. y = sin x, y = 0, x = 0, x = π

78. y = cos x, y = 0, x = 0, x =
π
2
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540 Chapter 8 Integration Techniques and Improper Integrals

Verifying a Reduction Formula In exercises 79–82, 
use integration by parts to verify the reduction formula. (a 
reduction formula reduces a given integral to the sum of a 
function and a simpler integral.)

79. ∫sinn x dx = −
sinn−1 x cos x

n
+

n − 1
n

 ∫sinn−2 x dx

80. ∫cosn x dx =
cosn−1 x sin x

n
+

n − 1
n

 ∫cosn−2 x dx

81. ∫cosm x sinn x dx

  = −
cosm+1 x sinn−1 x

m + n
+

n − 1
m + n

 ∫cosm x sinn−2 x dx

82. ∫ secn x dx =
secn−2 x tan x

n − 1
+

n − 2
n − 1

 ∫ secn−2 x dx

Using Formulas In exercises 83–86, find the indefinite 
integral by using the appropriate formula from exercises 
79–82.

83. ∫sin5 x dx 84. ∫cos4 x dx

85. ∫ cos2 x sin4 x dx 86. ∫sec4 
2πx

5
 dx

87.  Wallis’s Formulas Use the result of Exercise 80 to prove 
the following versions of Wallis’s Formulas.

 (a) If n is odd (n ≥ 3), then

  ∫π�2

0
cosn x dx = (2

3)(
4
5)(

6
7) .  .  . (n − 1

n ).

 (b) If n is even (n ≥ 2), then

  ∫π�2

0
cosn x dx = (1

2)(
3
4)(

5
6) .  .  . (n − 1

n )(π2).

88.  Orthogonal Functions The inner product of two 
functions f  and g on [a, b] is given by 

 〈 f, g〉 = ∫b

a

f (x)g(x) dx.

  Two distinct functions f  and g are said to be orthogonal 
if 〈 f, g〉 = 0. Show that the following set of functions is 
orthogonal on [−π, π].

 {sin x, sin 2x, sin 3x, .  .  . , cos x, cos 2x, cos 3x, .  .  .}

89.  Fourier Series The following sum is a finite Fourier 
series.

  f (x) = ∑
N

i=1
 ai sin ix

  = a1 sin x + a2 sin 2x + a3 sin 3x + .  .  . + aN sin Nx

 (a) Use Exercise 88 to show that the nth coefficient an is

given by an =
1
π∫

π

−π
 f (x) sin nx dx.

 (b) Let f (x) = x. Find a1, a2, and a3.

The formula for π  as an infinite product was derived by English 
mathematician John Wallis in 1655. This product, called the 
Wallis Product, appeared in his book Arithmetica Infinitorum.

π
2

= (2 ∙ 2
1 ∙ 3)(

4 ∙ 4
3 ∙ 5)(

6 ∙ 6
5 ∙ 7) .  .  . ( (2n) ∙ (2n)

(2n − 1) ∙ (2n + 1)) .  .  .

In 2015, physicists Carl Hagen and Tamar Friedmann (also a 
mathematician) stumbled upon a connection between quantum 
mechanics and the Wallis Product when they applied the variational 
principle to higher energy states of the hydrogen atom. This 
principle was previously used only on the ground energy state. The 
Wallis Product appeared naturally in the midst of their calculations 
involving gamma functions.

  Quantum mechanics is the study of matter
and light on the atomic and subatomic scale.

Consider Wallis’s method of finding a formula for π. Let

I(n) = ∫π�2

0
 sinn x dx.

From Wallis’s Formulas,

I(n) = (1
2)(

3
4)(

5
6) .  .  . ( 

n − 1
n )(π2), n is even (n ≥ 2)

or 

I(n) = (2
3)(

4
5)(

6
7) .  .  . (n − 1

n ), n is odd (n ≥ 3).

(a)  Find I(n) for n = 2, 3, 4, and 5. What do you observe?

(b)  Show that I(n + 1) ≤ I(n) for n ≥ 2.

(c) Show that 

lim
n→∞

 
I(2n + 1)

I(2n) = 1.

(Hint: Use the Squeeze Theorem.)

(d) Verify the Wallis Product using the limit in part (c).

the Wallis Product

 For Further InFormatIon For an alternative proof 
of the Wallis Product, see the article “An Elementary Proof of 
the Wallis Product Formula for pi” by Johan Wästlund in The 
American Mathematical Monthly. To view this article, go to 
MathArticles.com.

agsandrew/Shutterstock.com

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



8.4 Trigonometric Substitution 541

8.4 Trigonometric Substitution

 Use trigonometric substitution to find an integral.
 Use integrals to model and solve real-life applications.

Trigonometric Substitution
Now that you can find integrals involving powers of trigonometric functions, you can 
use trigonometric substitution to find integrals involving the radicals

√a2 − u2, √a2 + u2, and √u2 − a2.

The objective with trigonometric substitution is to eliminate the radical in the integrand. 
You do this by using the Pythagorean identities.

cos2 θ = 1 − sin2 θ
sec2 θ = 1 + tan2 θ
tan2 θ = sec2 θ − 1

For example, for a > 0, let u = a sin θ, where −π�2 ≤ θ ≤ π�2. Then

 √a2 − u2 = √a2 − a2 sin2 θ
 = √a2(1 − sin2 θ)
 = √a2 cos2 θ
 = a cos θ.

Note that cos θ ≥ 0, because −π�2 ≤ θ ≤ π�2.

Trigonometric Substitution (a > 0)

1. For integrals involving √a2 − u2, let  
a u

θ

a2 − u2

u = a sin θ.

 Then √a2 − u2 = a cos θ, where

−π�2 ≤ θ ≤ π�2.

2. For integrals involving √a2 + u2, let 

a

u

θ

a
2 + u

2

u = a tan θ.

 Then √a2 + u2 = a sec θ, where

−π�2 < θ < π�2.

3. For integrals involving √u2 − a2, let 

a

u

θ

u2 − a2u = a sec θ.

 Then

√u2 − a2 = {a tan θ for u > a, where 0 ≤ θ < π�2
−a tan θ for u < −a, where π�2 < θ ≤ π.

The restrictions on θ ensure that the function that defines the substitution is 
one-to-one. In fact, these are the same intervals over which the arcsine, arctangent, and 
arcsecant are defined.

exploration
Integrating a Radical 
Function Up to this point 
in the text, you have not 
evaluated the integral

∫1

−1
√1 − x2 dx.

From geometry, you should 
be able to find the exact 
value of this integral—what 
is it? Try finding the exact 
value using the substitution

x = sin θ

and

dx = cos θ dθ.

Does your answer agree with 
the value you obtained using 
geometry?
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542 Chapter 8 Integration Techniques and Improper Integrals

 Trigonometric Substitution: u = a sin θ

Find ∫ dx

x2√9 − x2
.

Solution First, note that the basic integration rules do not apply. To use trigonometric 
substitution, you should observe that

√9 − x2

is of the form √a2 − u2. So, you can use the substitution

x = a sin θ = 3 sin θ.

Using differentiation and the triangle shown in Figure 8.6, you obtain 

dx = 3 cos θ dθ, √9 − x2 = 3 cos θ, and x2 = 9 sin2 θ.

So, trigonometric substitution yields

 ∫ dx

x2√9 − x2
= ∫ 3 cos θ dθ

(9 sin2 θ)(3 cos θ)
 Substitute.

 =
1
9∫ dθ

sin2 θ  Simplify.

 =
1
9∫csc2 θ dθ Trigonometric identity

 = −
1
9

 cot θ + C Apply Cosecant Rule.

 = −
1
9 (

√9 − x2

x ) + C Substitute for cot θ.

 = −
√9 − x2

9x
+ C.

Note that the triangle in Figure 8.6 can be used to convert the θ’s back to x’s, as shown.

 cot θ =
adj.
opp.

 =
√9 − x2

x
 

In an earlier chapter, you saw how the inverse hyperbolic functions can be used to 
find the integrals

∫ du

√u2 ± a2
, ∫ du

a2 − u2 , and ∫ du

u√a2 ± u2
.

You can also find these integrals using trigonometric substitution. This is shown in the 
next example.

TeChnology Use a computer algebra system to find each indefinite integral.

∫ dx

√9 − x2
 ∫ dx

x√9 − x2

∫ dx

x2√9 − x2
 ∫ dx

x3√9 − x2

Then use trigonometric substitution to duplicate the results obtained with the 
computer algebra system.

θ

3 x

9 − x2

sin θ =
x
3

, cot θ =
√9 − x2

x
Figure 8.6
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 8.4 Trigonometric Substitution 543

 Trigonometric Substitution: u = a tan θ

Find ∫ dx

√4x2 + 1
.

Solution Let u = 2x, a = 1, and 2x = tan θ, as shown in Figure 8.7. Then,

dx =
1
2

 sec2 θ dθ and √4x2 + 1 = sec θ.

Trigonometric substitution produces

 ∫ 
dx

√4x2 + 1
=

1
2∫ 

sec2 θ dθ
sec θ  Substitute.

 =
1
2∫sec θ dθ Simplify.

 =
1
2

 ln∣sec θ + tan θ∣ + C Apply Secant Rule.

 =
1
2

 ln∣√4x2 + 1 + 2x∣ + C. Back-substitute.

Try checking this result with a computer algebra system. Is the result given in this form 
or in the form of an inverse hyperbolic function? 

You can extend the use of trigonometric substitution to cover integrals involving 
expressions such as (a2 − u2)n�2 by writing the expression as

(a2 − u2)n�2 = (√a2 − u2)n
.

 Trigonometric Substitution: Rational Powers

See LarsonCalculus.com for an interactive version of this type of example.

Find ∫ dx
(x2 + 1)3�2.

Solution Begin by writing (x2 + 1)3�2 as

(√x2 + 1)3
.

Then let a = 1 and u = x = tan θ, as shown in Figure 8.8. Using

dx = sec2 θ dθ and √x2 + 1 = sec θ

you can apply trigonometric substitution, as shown.

 ∫ dx
(x2 + 1)3�2 = ∫ dx

(√x2 + 1)3 Rewrite denominator.

 = ∫sec2 θ dθ
sec3 θ  Substitute.

 = ∫ dθ
sec θ  Simplify.

 = ∫cos θ dθ Trigonometric identity

 = sin θ + C Apply Cosine Rule.

 =
x

√x2 + 1
+ C Back-substitute. 

θ
1

2x4x
2 + 1

tan θ = 2x, sec θ = √4x2 + 1
Figure 8.7

θ
1

xx
2  + 1

tan θ = x, sin θ =
x

√x2 + 1
Figure 8.8
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544 Chapter 8 Integration Techniques and Improper Integrals

For definite integrals, it is often convenient to determine integration limits for θ 
that avoid converting back to x. You might want to review this procedure in Section 5.5, 
Examples 8 and 9.

 Converting the limits of Integration

Evaluate ∫2

√3

√x2 − 3
x

 dx.

Solution Because √x2 − 3 has the form √u2 − a2, you can consider 

u = x, a = √3, and x = √3 sec θ

as shown in Figure 8.9. Then

dx = √3 sec θ tan θ dθ and √x2 − 3 = √3 tan θ.

To determine the upper and lower limits of integration, use the substitution 
x = √3 sec θ, as shown.

Lower Limit Upper Limit

When x = √3, sec θ = 1 When x = 2, sec θ =
2

√3
 and θ = 0.
  and θ =

π
6

.

So, you have

 ∫2

√3

√x2 − 3
x

 dx = ∫π�6

0

(√3 tan θ)(√3 sec θ tan θ)
√3 sec θ

 dθ

 = ∫π�6

0
√3 tan2 θ dθ

 = √3∫π�6

0
(sec2 θ − 1) dθ

 = √3[tan θ − θ]
0

π�6

 = √3( 1

√3
−

π
6)

 = 1 −
√3π

6

 ≈ 0.0931. 

In Example 4, try converting back to the variable x and evaluating the  
antiderivative at the original limits of integration. You should obtain

 ∫2

√3

√x2 − 3
x

 dx = √3[√x2 − 3

√3
− arcsec 

x

√3]√3

2

 = √3( 1

√3
−

π
6)

 ≈ 0.0931.

Integration  
limits for x

Integration  
limits for θ

θ

x
x2 − 3

3

sec θ =
x

√3
, tan θ =

√x2 − 3

√3
Figure 8.9
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8.4 Trigonometric Substitution 545

When using trigonometric substitution to evaluate definite integrals, you must be 
careful to check that the values of θ lie in the intervals discussed at the beginning of this 
section. For instance, if in Example 4 you had been asked to evaluate the definite integral

∫−√3

−2
 
√x2 − 3

x
 dx

then using u = x and a = √3 in the interval [−2, −√3] would imply that u < −a. 
So, when determining the upper and lower limits of integration, you would have to 
choose θ such that π�2 < θ ≤ π. In this case, the integral would be evaluated as shown.

 ∫−√3

−2
 
√x2 − 3

x
 dx = ∫π

5π�6

(−√3 tan θ)(√3 sec θ tan θ) dθ
√3 sec θ

 = ∫π

5π�6
−√3 tan2 θ dθ

 = −√3∫π

5π�6
(sec2 θ − 1) dθ

 = −√3[tan θ − θ]
π

5π�6

 = −√3[(0 − π) − (−
1

√3
−

5π
6 )]

 = −1 +
√3π

6

 ≈ −0.0931

Trigonometric substitution can be used with completing the square. For instance, 
try finding the integral

∫√x2 − 2x dx.

To begin, you could complete the square and write the integral as 

∫√(x − 1)2 − 12 dx.

Because the integrand has the form

√u2 − a2

with u = x − 1 and a = 1, you can now use trigonometric substitution to find the 
integral.

Trigonometric substitution can be used to find the three integrals listed in the next 
theorem. These integrals will be encountered several times in the remainder of the text. 
When this happens, we will simply refer to this theorem. (In Exercise 65, you are asked 
to verify the formulas given in the theorem.)

TheoReM 8.2 Special Integration Formulas (a > 0)

1. ∫√a2 − u2 du =
1
2 (u√a2 − u2 + a2 arcsin 

u
a) + C

2. ∫√u2 − a2 du =
1
2

(u√u2 − a2 − a2 ln∣u + √u2 − a2∣) + C, u > a

3. ∫√u2 + a2 du =
1
2

(u√u2 + a2 + a2 ln∣u + √u2 + a2∣) + C

ReMARK Recall from an 
earlier chapter that you used 
completing the square for 
integrands involving quadratic 
functions.
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546 Chapter 8 Integration Techniques and Improper Integrals

Applications

 Finding Arc length

Find the arc length of the graph of f (x) = 1
2 x2 from x = 0 to x = 1 (see Figure 8.10).

Solution Refer to the arc length formula in Section 7.4.

 s = ∫1

0
√1 + [ f ′(x)]2 dx Formula for arc length

 = ∫1

0
√1 + x2 dx f ′(x) = x

 = ∫π�4

0
sec3 θ dθ Let a = 1 and x = tan θ.

 =
1
2[sec θ tan θ + ln∣sec θ + tan θ∣]

0

π�4

 Example 5, Section 8.2

 =
1
2

[√2 + ln(√2 + 1)]
 ≈ 1.148

 Comparing Two Fluid Forces

A sealed barrel of oil (weighing 48 pounds per cubic foot) is floating in seawater 
(weighing 64 pounds per cubic foot), as shown in Figures 8.11 and 8.12. (The barrel is 
not completely full of oil. With the barrel lying on its side, the top 0.2 foot of the barrel 
is empty.) Compare the fluid forces against one end of the barrel from the inside and 
from the outside. (Assume the radius of the barrel is 1 foot and, with the barrel lying 
on its side, the top 0.6 foot of the barrel is above the water.)

Solution In Figure 8.12, locate the coordinate system with the origin at the center 
of the circle

x2 + y2 = 1.

To find the fluid force against an end of the barrel from the inside, integrate between 
−1 and 0.8 (using a weight of w = 48).

 F = w∫d

c

h(y)L(y) dy General equation (See Section 7.7.)

 Finside = 48∫0.8

−1
(0.8 − y)(2)√1 − y2 dy

 = 76.8∫0.8

−1
√1 − y2 dy − 96∫0.8

−1
y√1 − y2 dy

To find the fluid force from the outside, integrate between −1 and 0.4 (using a weight 
of w = 64).

 Foutside = 64∫0.4

−1
(0.4 − y)(2)√1 − y2 dy

 = 51.2∫0.4

−1
√1 − y2 dy − 128∫0.4

−1
y√1 − y2 dy

The details of integration are left for you to complete in Exercise 64. Intuitively, would 
you say that the force from the oil (the inside) or the force from the seawater (the 
outside) is greater? By evaluating these two integrals, you can determine that 

Finside ≈ 121.3 pounds and Foutside ≈ 93.0 pounds. 

1

1
x

x2

1
2

1
2

1, 

f(x) = 

(0, 0)

y

))

The arc length of the curve from (0, 0) 
to (1, 12)
Figure 8.10

The barrel is not quite full of oil––the 
top 0.2 foot of the barrel is empty.
Figure 8.11

x

1

1

−1

−1

x2 + y2 = 1

0.4 ft
0.8 ft

y

Figure 8.12
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 8.4 Trigonometric Substitution 547

8.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.8.4 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Trigonometric Substitution State the trigonometric 

substitution you would use to find the indefinite integral. 
Do not integrate.

 (a) ∫(9 + x2)−2 dx (b) ∫√4 − x2 dx

 (c) ∫ x2

√25 − x2
 dx (d) ∫x2(x2 − 25)3�2 dx

2.  Trigonometric Substitution Why is completing 
the square useful when you are considering integration by 
trigonometric substitution?

Using Trigonometric Substitution In Exercises 3–6, 
find the indefinite integral using the substitution x = 4 sin θ.

 3. ∫ 1
(16 − x2)3�2 dx  4. ∫ 4

x2√16 − x2
 dx

 5. ∫√16 − x2

x
 dx  6. ∫ x3

√16 − x2
 dx

 Using Trigonometric Substitution In 
Exercises 7–10, find the indefinite integral using 
the substitution x = 5 sec θ.

 7. ∫ 1

√x2 − 25
 dx  8. ∫√x2 − 25

x
 dx

 9. ∫x3√x2 − 25 dx 10. ∫ x3

√x2 − 25
 dx

Using Trigonometric Substitution In Exercises 11–14, 
find the indefinite integral using the substitution x = 2 tan θ.

11. ∫ 
x
2
√4 + x2 dx 12. ∫ 

x3

4√4 + x2
 dx

13. ∫ 
4

(4 + x2)2 dx 14. ∫ 
2x2

(4 + x2)2 dx

Special Integration Formulas In Exercises 15–18, use 
the Special Integration Formulas (Theorem 8.2) to find the 
indefinite integral.

15. ∫ √49 − 16x2 dx 16. ∫√5x2 − 1 dx

17. ∫ √36 − 5x2 dx 18. ∫ √9 + 4x2

 Finding an Indefinite Integral In Exercises 
19–32, find the indefinite integral.

19. ∫√16 − 4x2 dx 20. ∫ 1

√x2 − 4
 dx

21. ∫√1 − x2

x4  dx 22. ∫√25x2 + 4
x4  dx

23. ∫ 1

x√4x2 + 9
 dx 24. ∫ 1

x√9x2 + 1
 dx

25. ∫ −3
(x2 + 3)3�2 dx 26. ∫ 1

(x2 + 5)3�2 dx

27. ∫ex√1 − e2x dx 28. ∫√1 − x

√x
 dx

29. ∫ 1
4 + 4x2 + x4 dx 30. ∫ x3 + x + 1

x4 + 2x2 + 1
 dx

31. ∫arcsec 2x dx, x >
1
2

 32. ∫x arcsin x dx

 Completing the Square In Exercises 33–36, 
complete the square and find the indefinite integral.

33. ∫ x

√4x − x2
 dx 34. ∫ x2

√2x − x2
 dx

35. ∫ x

√x2 + 6x + 12
 dx 36. ∫ x

√x2 − 6x + 5
 dx

 Converting the limits of Integration In 
Exercises 37–42, evaluate the definite integral 
using (a) the given integration limits and (b) the 
limits obtained by trigonometric substitution.

37. ∫√3�2

0

t2

(1 − t2)3�2 dt 38. ∫√3�2

0

1
(1 − t2)5�2 dt

39. ∫3

0

x3

√x2 + 9
 dx 

40. ∫3�5

0
√9 − 25x2 dx

41. ∫6

4

x2

√x2 − 9
 dx

42. ∫8

4

√x2 − 16
x2  dx

eXpLoring ConCeptS
Choosing a Method In Exercises 43 and 44, state the 
method of integration you would use to find each integral. 
Explain why you chose that method. Do not integrate.

43. ∫x√x2 + 1 dx 44. ∫x2√x2 − 1 dx

45. Comparing Methods

 (a) Find the integral ∫ 
x

√1 − x2
 dx using u-substitution.

   Then find the integral using trigonometric 
substitution. Discuss the results.

 (b) Find the integral ∫ x2

x2 + 9
 dx algebraically using

   x2 = (x2 + 9) − 9. Then find the integral using 
trigonometric substitution. Discuss the results.
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548 Chapter 8 Integration Techniques and Improper Integrals

 46.  hoW Do yoU See IT? Use the graph of 
f ′ shown in the figure to answer the following.

x

y

2 4

−4

2

4
f ′(x) =

x2 + 4
2x

(a)  Identify the open interval(s) on which the graph 
of f  is increasing or decreasing. Explain.

(b)  Identify the open interval(s) on which the graph 
of f  is concave upward or concave downward. 
Explain.

 46.  

True or False? In Exercises 47–50, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

47. If x = sin θ, then

∫ dx

√1 − x2
= ∫dθ.

48. If x = sec θ, then

 ∫√x2 − 1
x

 dx = ∫sec θ tan θ dθ.

49. If x = tan θ, then

 ∫√3

0

dx
(1 + x2)3�2 = ∫4π�3

0
 cos θ dθ.

50. If x = sin θ, then

∫1

−1
x2√1 − x2 dx = 2∫π�2

0
sin2 θ cos2 θ dθ.

51.  Area Find the area enclosed by the ellipse 
x2

a2 +
y2

b2 = 1
shown in the figure.

b

a
x

y

y = − b
a

a2 − x2

y =  b
a

a2 − x2
 

x
a

a

−a

−a

h

y

 Figure for 51 Figure for 52

52.  Area Find the area of the shaded region of the circle of 
radius a when the chord is h units (0 < h < a) from the center 
of the circle (see figure).

Arc length In Exercises 53 and 54, find the arc length of 
the graph of the function over the given interval.

53. y = ln x, [1, 5] 54. y =
x2

4
− 2x, [4, 8]

Volume of a Torus In Exercises 55 and 56, find the volume 
of the torus generated by revolving the region bounded by the 
graph of the circle about the y-axis.

55. (x − 3)2 + y2 = 1

56. (x − h)2 + y2 = r2, h > r

Centroid In Exercises 57 and 58, find the centroid of the 
region bounded by the graphs of the inequalities.

57. y ≤ 3

√x2 + 9
, y ≥ 0, x ≥ −4, x ≤ 4

58. y ≤ 1
4 x2, (x − 4)2 + y2 ≤ 16, y ≥ 0

59.  Volume The axis of a storage tank in the form of a right 
circular cylinder is horizontal (see figure). The radius and 
length of the tank are 1 meter and 3 meters, respectively.

3 m

1 m

d

 (a)  Determine the volume of fluid in the tank as a function of 
its depth d.

 (b) Use a graphing utility to graph the function in part (a).

 (c) Design a dip stick for the tank with markings of 14, 12, and 34.

 (d)  Fluid is entering the tank at a rate of 1
4 cubic meter per 

minute. Determine the rate of change of the depth of the 
fluid as a function of its depth d.

 (e)  Use a graphing utility to graph the function in part (d). 
When will the rate of change of the depth be minimum? 
Does this agree with your intuition? Explain.

60.  Field Strength The field strength H of a magnet of length 
2L on a particle r units from the center of the magnet is

H =
2mL

(r2 + L2)3�2

  where ±m are the poles of the magnet (see figure). Find the 
average field strength as the particle moves from 0 to R units 
from the center by evaluating the integral

1
R∫

R

0

2mL
(r2 + L2)3�2 dr. 

−m

2L
r

+m
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8.4 Trigonometric Substitution 549

61.  Tractrix A person moves from the origin along the positive 
y-axis pulling a weight at the end of a 12-meter rope (see 
figure). Initially, the weight is located at the point (12, 0).

 

x

2

2

4

4

6

6

8

8

10

10

12

12

x

12

(x, y)

Weight

y

 (a)  Show that the slope of the tangent line of the path of the 
weight is

  
dy
dx

= −
√144 − x2

x
.

 (b)  Use the result of part (a) to find the equation of the path 
of the weight. Use a graphing utility to graph the path and 
compare it with the figure.

 (c)  Find any vertical asymptotes of the graphs in part (b).

 (d)  When the person has reached the point (0, 12), how far has 
the weight moved?

62. Conjecture

 (a)  Find formulas for the distances between (0, 0) and (a, a2), 
a > 0, along the line between these points and along the 
parabola y = x2.

 (b)  Use the formulas from part (a) to find the distances for 
a = 1, a = 10, and a = 100.

 (c)  Make a conjecture about the difference between the two 
distances as a increases.

64.  Fluid Force Evaluate the following two integrals, which 
yield the fluid forces given in Example 6.

 (a) Finside = 48∫0.8

−1
(0.8 − y)(2)√1 − y2 dy

 (b) Foutside = 64∫0.4

−1
(0.4 − y)(2)√1 − y2 dy

65.  Verifying Formulas Use trigonometric substitution to 
verify the integration formulas given in Theorem 8.2.

66.  Arc length Show that the arc length of the graph of 
y = sin x on the interval [0, 2π] is equal to the circumference 
of the ellipse x2 + 2y2 = 2 (see figure).

y

x
π π2

−

−

2
3π

π

2
π

π

67.  Area of a lune The crescent-shaped region bounded by 
two circles forms a lune (see figure). Find the area of the lune 
given that the radius of the smaller circle is 3 and the radius of 
the larger circle is 5.

3

5

68.  Area Two circles of radius 3, with centers at (−2, 0) and 
(2, 0), intersect as shown in the figure. Find the area of the 
shaded region.

y

x
−2−3−4−6 2 3 4 6

−2

−4

4

pUtnAM eXAM ChALLenge
69. Evaluate

 ∫1

0
 
ln(x + 1)

x2 + 1
 dx.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

Find the fluid force on 
a circular observation 
window of radius 1 foot 
in a vertical wall of a 
large water-filled tank 
at a fish hatchery when 
the center of the window
is (a) 3 feet and (b) d feet 
(d > 1) below the water’s 
surface (see figure). Use 
trigonometric substitution  

x

2

3

2−2

3 − y

y
x2 + y2 = 1to evaluate the one integral. 

Water weighs 62.4 pounds 
per cubic foot. (Recall that 
in Section 7.7 in a similar 
problem, you evaluated one 
integral by a geometric formula 
and the other by observing that
the integrand was odd.)

63. Fluid Force

Andrea Izzotti/Shutterstock.com
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550 Chapter 8 Integration Techniques and Improper Integrals

8.5 Partial Fractions

 Understand the concept of partial fraction decomposition.
 Use partial fraction decomposition with linear factors to integrate rational functions.
 Use partial fraction decomposition with quadratic factors to integrate rational 

 functions.

Partial Fractions
This section examines a procedure for decomposing a rational function into simpler 
rational functions to which you can apply the basic integration formulas. This 
procedure is called the method of partial fractions. To see the benefit of the method 
of partial fractions, consider the integral

∫ 1
x2 − 5x + 6

 dx.

To find this integral without partial fractions, you can complete the square and use 
trigonometric substitution (see Figure 8.13) to obtain

 ∫ 1
x2 − 5x + 6

 dx = ∫ dx
(x − 5�2)2 − (1�2)2 a = 1

2, x − 5
2 = 1

2 sec θ

 = ∫(1�2) sec θ tan θ dθ
(1�4) tan2 θ  dx = 1

2 sec θ tan θ dθ

 = 2∫csc θ dθ

 = 2 ln∣csc θ − cot θ∣ + C

 = 2 ln∣ 2x − 5

2√x2 − 5x + 6
−

1

2√x2 − 5x + 6∣ + C

 = 2 ln∣ x − 3

√x2 − 5x + 6∣ + C

 = ln∣ (x − 3)2

x2 − 5x + 6∣ + C

 = ln∣ (x − 3)2

(x − 2)(x − 3)∣ + C

 = ln∣x − 3
x − 2∣ + C

 = ln∣x − 3∣ − ln∣x − 2∣ + C.

Now, suppose you had observed that

1
x2 − 5x + 6

=
1

x − 3
−

1
x − 2

. Partial fraction decomposition

Then you could find the integral, as shown.

∫ 1
x2 − 5x + 6

 dx = ∫( 1
x − 3

−
1

x − 2) dx = ln∣x − 3∣ − ln∣x − 2∣ + C

This method is clearly preferable to trigonometric substitution. Its use, however,  
depends on the ability to factor the denominator, x2 − 5x + 6, and to find the partial 
fractions

1
x − 3

 and −
1

x − 2
.

In this section, you will study techniques for finding partial fraction decompositions.

θ

2x −
 5

1

x2 − 5x + 62

sec θ = 2x − 5
Figure 8.13

JOHN BERNOULLI (1667–1748)

The method of partial 
fractions was introduced 
by John Bernoulli, a Swiss 
mathematician who was 
instrumental in the early 
development of calculus. John 
Bernoulli was a professor at 
the University of Basel and 
taught many outstanding 
students, the most famous of 
whom was Leonhard Euler.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection
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8.5 Partial Fractions 551

Recall from algebra that every polynomial with real coefficients can be factored 
into linear and irreducible quadratic factors.* For instance, the polynomial 

x5 + x4 − x − 1

can be written as

 x5 + x4 − x − 1 = x4(x + 1) − (x + 1)
 = (x4 − 1)(x + 1)
 = (x2 + 1)(x2 − 1)(x + 1)
 = (x2 + 1)(x + 1)(x − 1)(x + 1)
 = (x − 1)(x + 1)2(x2 + 1)

where (x − 1) is a linear factor, (x + 1)2 is a repeated linear factor, and (x2 + 1) is an 
irreducible quadratic factor. Using this factorization, you can write the partial fraction 
decomposition of the rational expression

N(x)
x5 + x4 − x − 1

where N(x) is a polynomial of degree less than 5, as shown.

N(x)
(x − 1)(x + 1)2(x2 + 1) =

A
x − 1

+
B

x + 1
+

C
(x + 1)2 +

Dx + E
x2 + 1

Decomposition of N (x)�D (x) into Partial Fractions

1.  Divide when improper: When N(x)�D(x) is an improper fraction (that is, 
when the degree of the numerator is greater than or equal to the degree of the 
denominator), divide the denominator into the numerator to obtain

N(x)
D(x) = (a polynomial) +

N1(x)
D(x)

  where the degree of N1(x) is less than the degree of D(x). Then apply 
Steps 2, 3, and 4 to the proper rational expression N1(x)�D(x).

2.  Factor denominator: Completely factor the denominator into factors of 
the form

(px + q)m and (ax2 + bx + c)n

 where ax2 + bx + c is irreducible.

3.  Linear factors: For each factor of the form (px + q)m, the partial fraction 
decomposition must include the following sum of m fractions.

A1

(px + q) +
A2

(px + q)2 + .  .  . +
Am

(px + q)m

4.  Quadratic factors: For each factor of the form (ax2 + bx + c)n, the partial 
fraction decomposition must include the following sum of n fractions. 

B1x + C1

ax2 + bx + c
+

B2x + C2

(ax2 + bx + c)2 + .  .  . +
Bnx + Cn

(ax2 + bx + c)n

* For a review of factorization techniques, see Precalculus, 10th edition, or Precalculus: Real Mathematics, Real 
People, 7th edition, both by Ron Larson (Boston, Massachusetts: Cengage Learning, 2018 and 2016, respectively).

remark In precalculus, 
you learned how to combine 
functions such as

1
x − 2

+
−1

x + 3
=

5
(x − 2)(x + 3).

The method of partial fractions 
shows you how to reverse this 
process.

5
(x − 2)(x + 3) =

?
x − 2

+
?

x + 3
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552 Chapter 8 Integration Techniques and Improper Integrals

Linear Factors
Algebraic techniques for determining the constants in the numerators of a partial fraction 
decomposition with linear or repeated linear factors are shown in Examples 1 and 2.

 Distinct Linear Factors

Write the partial fraction decomposition for 

1
x2 − 5x + 6

.

Solution Because x2 − 5x + 6 = (x − 3)(x − 2), you should include one partial 
fraction for each factor and write

1
x2 − 5x + 6

=
A

x − 3
+

B
x − 2

where A and B are to be determined. Multiplying this equation by the least common 
denominator (x − 3)(x − 2) yields the basic equation

1 = A(x − 2) + B(x − 3). Basic equation

Because this equation is to be true for all x, you can substitute any convenient values 
for x to obtain equations in A and B. The most convenient values are the ones that make 
particular factors equal to 0.

To solve for A, let x = 3.

 1 = A(3 − 2) + B(3 − 3) Let x = 3 in basic equation.

 1 = A(1) + B(0)
 1 = A

To solve for B, let x = 2.

 1 = A(2 − 2) + B(2 − 3) Let x = 2 in basic equation.

 1 = A(0) + B(−1)
 −1 = B

So, the decomposition is

1
x2 − 5x + 6

=
1

x − 3
−

1
x − 2

as shown at the beginning of this section. 

Be sure you see that the method of partial fractions is practical only for integrals 
of rational functions whose denominators factor “nicely.” For instance, when the 
denominator in Example 1 is changed to

x2 − 5x + 5

its factorization as

x2 − 5x + 5 = [x −
5 + √5

2 ][x −
5 − √5

2 ]
would be too cumbersome to use with partial fractions. In such cases, you should use 
completing the square or a computer algebra system to perform the integration. When 
you do this, you should obtain

∫ 1
x2 − 5x + 5

 dx =
√5
5

 ln∣2x − √5 − 5∣ −
√5
5

 ln∣2x + √5 − 5∣ + C.

remark Note that the  
substitutions for x in Example 1 
are chosen for their convenience 
in determining values for A and 
B; x = 3 is chosen to eliminate 
the term B(x − 3), and x = 2 
is chosen to eliminate the term 
A(x − 2). The goal is to make 
convenient substitutions whenever 
possible.

 For Further InFormatIon
To learn a different method for 
finding partial fraction  
decompositions, called the 
Heaviside Method, see the article 
“Calculus to Algebra Connections 
in Partial Fraction Decomposition” 
by Joseph Wiener and Will 
Watkins in The AMATYC Review.
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 repeated Linear Factors

Find ∫5x2 + 20x + 6
x3 + 2x2 + x

 dx.

Solution Because

x3 + 2x2 + x = x(x2 + 2x + 1) = x(x + 1)2

you should include one partial fraction for each power of x and (x + 1) and write

5x2 + 20x + 6
x(x + 1)2 =

A
x

+
B

x + 1
+

C
(x + 1)2.

Multiplying by the least common denominator x(x + 1)2 yields the basic equation

5x2 + 20x + 6 = A(x + 1)2 + Bx(x + 1) + Cx. Basic equation

To solve for A, let x = 0. This eliminates the B and C terms and yields

6 = A(1) + 0 + 0

6 = A.

To solve for C, let x = −1. This eliminates the A and B terms and yields

 5 − 20 + 6 = 0 + 0 − C

 9 = C.

The most convenient choices for x have been used, so to find the value of B, you can 
use any other value of x along with the calculated values of A and C. Using x = 1, 
A = 6, and C = 9 produces

 5 + 20 + 6 = A(4) + B(2) + C

 31 = 6(4) + 2B + 9

 −2 = 2B

 −1 = B.

So, it follows that

 ∫5x2 + 20x + 6
x(x + 1)2  dx = ∫(6

x
−

1
x + 1

+
9

(x + 1)2) dx

 = 6 ln∣x∣ − ln∣x + 1∣ + 9
(x + 1)−1

−1
+ C

 = ln∣ x6

x + 1∣ −
9

x + 1
+ C.

Try checking this result by differentiating. Include algebra in your check, simplifying
the derivative until you have obtained the original integrand. 

It is necessary to make as many substitutions for x as there are unknowns 
(A, B, C, .  .  .) to be determined. For instance, in Example 2, three substitutions 
(x = 0, x = −1, and x = 1) were made to solve for A, B, and C.

teChnoLogy Most computer algebra systems, such as Maple, Mathematica, 
and the TI-Nspire, can be used to convert a rational function to its partial fraction 
decomposition. For instance, using Mathematica, you obtain the following.

Apart [5 ∗ x ⋀ 2 + 20 ∗ x + 6)�(x ∗ (x + 1) ⋀ 2), x]
6
x

+
9

(1 + x)2 −
1

1 + x

 For Further InFormatIon
For an alternative approach to 
using partial fractions, see the  
article “A Shortcut in Partial 
Fractions” by Xun-Cheng Huang  
in The College Mathematics 
Journal.
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Quadratic Factors
When using the method of partial fractions with linear factors, a convenient choice of x 
immediately yields a value for one of the coefficients. With quadratic factors, a system 
of linear equations usually has to be solved, regardless of the choice of x.

 Distinct Linear and Quadratic Factors

See LarsonCalculus.com for an interactive version of this type of example.

Find ∫ 2x3 − 4x − 8
(x2 − x)(x2 + 4) dx.

Solution Because

(x2 − x)(x2 + 4) = x(x − 1)(x2 + 4)

you should include one partial fraction for each factor and write

2x3 − 4x − 8
x(x − 1)(x2 + 4) =

A
x

+
B

x − 1
+

Cx + D
x2 + 4

.

Multiplying by the least common denominator

x(x − 1)(x2 + 4)

yields the basic equation

2x3 − 4x − 8 = A(x − 1)(x2 + 4) + Bx(x2 + 4) + (Cx + D)(x)(x − 1).

To solve for A, let x = 0 and obtain

 −8 = A(−1)(4) + 0 + 0

 2 = A.

To solve for B, let x = 1 and obtain

 −10 = 0 + B(5) + 0

 −2 = B.

At this point, C and D are yet to be determined. You can find these remaining constants 
by choosing two other values for x and solving the resulting system of linear equations. 
Using x = −1, A = 2, and B = −2, you can write

 −6 = (2)(−2)(5) + (−2)(−1)(5) + (−C + D)(−1)(−2)
 2 = −C + D.

For x = 2, you have

 0 = (2)(1)(8) + (−2)(2)(8) + (2C + D)(2)(1)
 8 = 2C + D.

Solving the linear system by subtracting the first equation from the second

 −C + D = 2

 2C + D = 8

yields C = 2. Consequently, D = 4, and it follows that

 ∫ 2x3 − 4x − 8
x(x − 1)(x2 + 4) dx = ∫(2

x
−

2
x − 1

+
2x

x2 + 4
+

4
x2 + 4) dx

 = 2 ln∣x∣ − 2 ln∣x − 1∣ + ln(x2 + 4) + 2 arctan 
x
2

+ C.
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In Examples 1, 2, and 3, the solution of the basic equation began with substituting 
values of x that made the linear factors equal to 0. This method works well when 
the partial fraction decomposition involves linear factors. When the decomposition 
involves only quadratic factors, however, an alternative procedure is often more 
convenient. For instance, try writing the right side of the basic equation in polynomial 
form and equating the coefficients of like terms. This method is shown in Example 4.

 repeated Quadratic Factors

Find ∫8x3 + 13x
(x2 + 2)2  dx.

Solution Include one partial fraction for each power of (x2 + 2) and write

8x3 + 13x
(x2 + 2)2 =

Ax + B
x2 + 2

+
Cx + D
(x2 + 2)2.

Multiplying by the least common denominator (x2 + 2)2 yields the basic equation

8x3 + 13x = (Ax + B)(x2 + 2) + Cx + D.

Expanding the basic equation and collecting like terms produce

8x3 + 13x = Ax3 + 2Ax + Bx2 + 2B + Cx + D

8x3 + 13x = Ax3 + Bx2 + (2A + C)x + (2B + D).

Now, you can equate the coefficients of like terms on opposite sides of the equation.

 8 = A 0 = 2B + D

8x3 + 0x2 + 13x + 0 = Ax3 + Bx2 + (2A + C)x + (2B + D)

 13 = 2A + C

Using the known values A = 8 and B = 0, you can write

13 = 2A + C  13 = 2(8) + C  −3 = C

 0 = 2B + D   0 = 2(0) + D   0 = D.

Finally, you can conclude that

 ∫8x3 + 13x
(x2 + 2)2  dx = ∫( 8x

x2 + 2
+

−3x
(x2 + 2)2) dx

 = 4 ln(x2 + 2) +
3

2(x2 + 2) + C. 

0 = B

teChnoLogy You can use a graphing utility to confirm the decomposition 
found in Example 4. To do this, graph

y1 =
8x3 + 13x
(x2 + 2)2  

10

−6

−10

6

Graphs of y1
and y2 are
identical.and

y2 =
8x

x2 + 2
+

−3x
(x2 + 2)2

in the same viewing window. The graphs  
should be identical, as shown at the right.
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When integrating rational expressions, keep in mind that for improper rational 
expressions such as

N(x)
D(x) =

2x3 + x2 − 7x + 7
x2 + x − 2

you must first divide to obtain

N(x)
D(x) = 2x − 1 +

−2x + 5
x2 + x − 2

.

The proper rational expression is then decomposed into its partial fractions by the usual 
methods. 

Here are some guidelines for solving the basic equation that is obtained in a partial 
fraction decomposition.

GUIDELINES FOR SOLVING THE BASIC EQUATION

Linear Factors

1.  Substitute the roots of the distinct linear factors in the basic equation.

2.  For repeated linear factors, use the coefficients determined in the first 
guideline to rewrite the basic equation. Then substitute other convenient 
values of x and solve for the remaining coefficients.

Quadratic Factors

1.  Expand the basic equation.

2.  Collect terms according to powers of x.

3.  Equate the coefficients of like powers to obtain a system of linear equations 
involving A, B, C, and so on.

4.  Solve the system of linear equations.

Before concluding this section, here are a few things you should remember. First, 
it is not necessary to use the partial fractions technique on all rational functions. For 
instance, the following integral is found more easily by the Log Rule.

 ∫ x2 + 1
x3 + 3x − 4

 dx =
1
3∫ 3x2 + 3

x3 + 3x − 4
 dx

 =
1
3

 ln∣x3 + 3x − 4∣ + C

Second, when the integrand is not in reduced form, reducing it may eliminate the need 
for partial fractions, as shown in the following integral.

 ∫ x2 − x − 2
x3 − 2x − 4

 dx = ∫ (x + 1)(x − 2)
(x − 2)(x2 + 2x + 2) dx

 = ∫ x + 1
x2 + 2x + 2

 dx

 =
1
2

 ln∣x2 + 2x + 2∣ + C

Finally, partial fractions can be used with some quotients involving transcendental 
functions. For instance, the substitution u = sin x allows you to write

∫ cos x
(sin x)(sin x − 1) dx = ∫ du

u(u − 1). u = sin x, du = cos x dx 

 For Further InFormatIon
To read about another method of 
evaluating integrals of rational 
functions, see the article “Alternate 
Approach to Partial Fractions to 
Evaluate Integrals of Rational 
Functions” by N. R. Nandakumar 
and Michael J. Bossé in The Pi 
Mu Epsilon Journal. To view this 
article, go to MathArticles.com.
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8.5 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Partial Fraction Decomposition Write the form 

of the partial fraction decomposition of each rational 
expression. Do not solve for the constants.

 (a) 
4

x2 − 8x
 (b) 

2x2 + 1
(x − 3)3

(c) 
2x − 3

x3 + 10x
 (d) 

2x − 1
x(x2 + 1)2

2.  guidelines for Solving the Basic equation In 
your own words, explain how to solve a basic equation 
obtained in a partial fraction decomposition that involves 
quadratic factors.

 Using Partial Fractions In exercises 3–20, use 
partial fractions to find the indefinite integral.

3. ∫ 1
x2 − 9

 dx  4. ∫ 2
9x2 − 1

 dx

5. ∫ 5
x2 + 3x − 4

 dx  6. ∫ 3 − x
3x2 − 2x − 1

 dx

7. ∫x2 + 12x + 12
x3 − 4x

 dx  8. ∫x3 − x + 3
x2 + x − 2

 dx

 9. ∫2x3 − 4x2 − 15x + 5
x2 − 2x − 8

 dx 10. ∫ x + 2
x2 + 5x

 dx

11. ∫4x2 + 2x − 1
x3 + x2  dx 12. ∫ 5x − 2

(x − 2)2 dx

13. ∫ x2 − 6x + 2
x3 + 2x2 + x

 dx 14. ∫ 8x
x3 + x2 − x − 1

 dx

15. ∫ 9 − x2

7x3 + x
 dx 16. ∫ 6x

x3 − 8
 dx

17. ∫ x2

x4 − 2x2 − 8
 dx 18. ∫ x

16x4 − 1
 dx

19. ∫ x2 + 5
x3 − x2 + x + 3

 dx

20. ∫ x2 + 6x + 4
x4 + 8x2 + 16

 dx

 evaluating a Definite Integral In exercises 
21–24, use partial fractions to evaluate the definite 
integral. use a graphing utility to verify your 
result.

21. ∫2

0

3
4x2 + 5x + 1

 dx 22. ∫5

1

x − 1
x2(x + 1) dx

23. ∫2

1

x + 1
x(x2 + 1) dx 24. ∫1

0

x2 − x
x2 + x + 1

 dx

Finding an Indefinite Integral In exercises 25–32, use 
substitution and partial fractions to find the indefinite integral.

25. ∫ sin x
cos x + cos2 x

 dx 26. ∫ 5 cos x
sin2 x + 3 sin x − 4

 dx

27. ∫ sec2 x
tan2 x + 5 tan x + 6

 dx 28. ∫ sec2 x
(tan x)(tan x + 1) dx

29. ∫ ex

(ex − 1)(ex + 4) dx 30. ∫ ex

(e2x + 1)(ex − 1) dx

31. ∫ √x
x − 4

 dx 32. ∫ 1

x(√3 − √x)
 dx

Verifying a Formula In exercises 33–36, use the method of 
partial fractions to verify the integration formula.

33. ∫ 1
x(a + bx) dx =

1
a

 ln∣ x
a + bx∣ + C

34. ∫ 1
a2 − x2 dx =

1
2a

 ln∣a + x
a − x∣ + C

35. ∫ x
(a + bx)2 dx =

1
b2 ( a

a + bx
+ ln∣a + bx∣) + C

36. ∫ 1
x2(a + bx) dx = −

1
ax

−
b
a2 ln∣ x

a + bx∣ + C

EXPLORING CONCEPTS
Choosing a method In exercises 37–39, state the 
method of integration you would use to find each integral. 
explain why you chose that method. Do not integrate.

37. ∫ x + 1
x2 + 2x − 8

 dx 38. ∫ 7x + 4
x2 + 2x − 8

 dx

39. ∫ 4
x2 + 2x + 5

 dx

 40.  hoW Do yoU See It? Use the graph of 
f ′ shown in the figure to answer the following.

x

y

2−2 4
−2

2

4

f ′(x) = 5x3 + 10x
(x2 + 1)2

(a) Is f (3) − f (2) > 0? Explain.

(b)  Which is greater, the area under the graph of f ′ from 
1 to 2 or the area under the graph of f ′ from 3 to 4?

 40.  
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558 Chapter 8 Integration Techniques and Improper Integrals

area In exercises 41 – 44, use partial fractions to find the 
area of the given region.

41. y =
12

x2 + 5x + 6
 42. y =

15
x2 + 7x + 12

 

x

y

1 2 3 4 5

1

2

4

  

x

y

1 2

1

2

43. y =
15

9 − x2 44. y =
7

16 − x2

 

x

y

−1 1 2 3

1

2

3

4

  

x

y

1 2 3 4

1

2

3

45.  modeling Data The predicted cost C (in hundreds of 
thousands of dollars) for a company to remove p% of a 
chemical from its waste water is shown in the table.

 
P 0 10 20 30 40

C 0 0.7 1.0 1.3 1.7

P 50 60 70 80 90

C 2.0 2.7 3.6 5.5 11.2

 A model for the data is given by

 C =
124p

(10 + p)(100 − p)

  for 0 ≤ p < 100. Use the model to find the average cost of 
removing between 75% and 80% of the chemical.

46.  average Value of a Function Find the average value of

 f (x) =
1

4x2 − 1

 from x = 1 to x = 4.

47.  Volume and Centroid Consider the region bounded by 
the graphs of

 y =
2x

x2 + 1
, y = 0, x = 0, and x = 3.

 (a)  Find the volume of the solid generated by revolving the 
region about the x-axis.

 (b) Find the centroid of the region.

48. Volume Consider the region bounded by the graph of

 y2 =
(2 − x)2

(1 + x)2

  on the interval [0, 1]. Find the volume of the solid generated 
by revolving this region about the x-axis.

49.  epidemic model A single infected individual enters a 
community of n susceptible individuals. Let x be the number 
of newly infected individuals at time t. The common epidemic 
model assumes that the disease spreads at a rate proportional 
to the product of the total number infected and the number 
not yet infected. So, dx�dt = k(x + 1)(n − x) and you obtain

 ∫ 1
(x + 1)(n − x) dx = ∫k dt.

 Solve for x as a function of t.

51. Using two methods Evaluate

 ∫1

0

x
1 + x4 dx

 in two different ways, one of which is partial fractions.

PUTNAM EXAM CHALLENGE

52. Prove 
22
7

− π = ∫1

0
 
x4(1 − x)4

1 + x2  dx.

53.  Let p(x) be a nonzero polynomial of degree less than 
1992 having no nonconstant factor in common with 
x3 − x. Let

 
d1992

dx1992 ( p(x)
x3 − x) =

f (x)
g(x)

  for polynomials f (x) and g(x). Find the smallest possible 
degree of f (x).

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

In a chemical reaction, one unit of compound Y and one unit 
of compound Z are converted into a single unit of compound 
X. Let x be the amount of compound X formed. The rate of 
formation of X is proportional
to the product of the 
amounts of unconverted 
compounds Y and Z. So, 
dx�dt = k(y0 − x)(z0 − x),
where y0 and z0 are 
the initial amounts of 
compounds Y and Z. From 
this equation, you obtain

 ∫ 1
(y0 − x)(z0 − x) dx = ∫k dt.

(a)  Solve for x as a function of t.

(b)  Use the result of part (a) to find x as t →∞ for 
(1) y0 < z0, (2) y0 > z0, and (3) y0 = z0.

50. Chemical reaction

,

Dextroza/Shutterstock.com
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 8.6 Numerical Integration 559

8.6 Numerical Integration

 Approximate a definite integral using the Trapezoidal Rule.
 Approximate a definite integral using Simpson’s Rule.
 Analyze the approximate errors in the Trapezoidal Rule and Simpson’s Rule.

The Trapezoidal Rule
Some elementary functions simply do not have antiderivatives that are elementary 
functions. For example, there is no elementary function that has any of the following 
functions as its derivative.

3√x√1 − x,  √x cos x,  
cos x

x
,  √1 − x3,  sin x2

If you need to evaluate a definite integral involving a function whose antiderivative 
cannot be found, then while the Fundamental Theorem of Calculus is still true, it cannot 
be easily applied. In this case, it is easier to resort to an approximation technique. Two 
such techniques are described in this section.

One way to approximate a definite integral is to use n trapezoids, as shown in 
Figure 8.14. In the development of this method, assume that f  is continuous and  
positive on the interval [a, b]. So, the definite integral

∫b

a

 f(x) dx

represents the area of the region bounded by the graph of f  and the x-axis, from 
x = a to x = b. First, partition the interval [a, b] into n subintervals, each of width 
∆x = (b − a)�n, such that

a = x0 < x1 < x2 < .  .  . < xn = b.

Then form a trapezoid for each subinterval (see Figure 8.15). The area of the ith 
trapezoid is

Area of ith trapezoid = [f(xi−1) + f(xi)
2 ](b − a

n ).

This implies that the sum of the areas of the n trapezoids is

 Area = (b − a
n )[f(x0) + f(x1)

2
+ .  .  . +

f(xn−1) + f(xn)
2 ]

 = (b − a
2n )[ f(x0) + f(x1) + f(x1) + f(x2) + .  .  . + f(xn−1) + f(xn)]

 = (b − a
2n )[ f(x0) + 2f(x1) + 2f(x2) + .  .  . + 2f(xn−1) + f(xn)].

Letting ∆x = (b − a)�n, you can take the limit as n →∞ to obtain

lim
n→∞(

b − a
2n )[ f(x0) + 2f(x1) + .  .  . + 2f(xn−1) + f(xn)]

= lim
n→∞

 [[ f(a) − f(b)] ∆x
2

+ ∑
n

i=1
 f(xi) ∆x]

= lim
n→∞

[ f(a) − f(b)](b − a)
2n

+ lim
n→∞

 ∑
n

i=1
 f(xi) ∆x

= 0 + ∫b

a

 f(x) dx.

The result is summarized in the next theorem.

x

f

x1 x2 x3x0 = a x4 = b

y

The area of the region can be  
approximated using four trapezoids.
Figure 8.14

x
x0 x1

b − a
n

f (x1)

f (x0)

y

The area of the first trapezoid is 

[f (x0) + f (x1)
2 ](b − a

n ).

Figure 8.15
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 Approximation with the Trapezoidal Rule

Use the Trapezoidal Rule to approximate

∫π

0
 sin x dx.

Compare the results for n = 4 and n = 8, as shown in Figure 8.16.

Solution When n = 4, ∆x = π�4, and you obtain

∫π

0
 sin x dx ≈

π
8 (sin 0 + 2 sin 

π
4

+ 2 sin 
π
2

+ 2 sin 
3π
4

+ sin π)
 =

π
8

(0 + √2 + 2 + √2 + 0)

 =
π(1 + √2)

4

 ≈ 1.896.

When n = 8, ∆x = π�8, and you obtain

 ∫π

0
 sin x dx ≈

π
16 (sin 0 + 2 sin 

π
8

+ 2 sin 
π
4

+ 2 sin 
3π
8

+ 2 sin 
π
2

 + 2 sin 
5π
8

+ 2 sin 
3π
4

+ 2 sin 
7π
8

+ sin π)
 =

π
16 (2 + 2√2 + 4 sin 

π
8

+ 4 sin 
3π
8 )

 ≈ 1.974.

For this particular integral, you could have found an antiderivative and determined that 
the exact area of the region is 2. 

REMARK Observe that the coefficients in the Trapezoidal Rule have the 
following pattern.

1 2 2 2 .  .  . 2 2 1

THEOREM 8.3 The Trapezoidal Rule

Let f  be continuous on [a, b]. The Trapezoidal Rule for approximating 
∫b

a  f(x) dx is

∫b

a

 f(x) dx ≈
b − a

2n
[ f(x0) + 2f(x1) + 2f(x2) + .  .  . + 2f(xn−1) + f(xn)].

Moreover, as n →∞, the right-hand side approaches ∫b
a  f(x) dx.

TECHNOLOGY Most graphing utilities have a numerical integration feature 
that can be used to approximate the value of a definite integral. Use this feature to 
approximate the integral in Example 1. How close is your approximation? When 
you use this feature, you need to be aware of its limitations. Often, you are given no 
indication of the degree of accuracy of the approximation. Other times, you may be 
given a result that is incorrect. For instance, use a graphing utility to evaluate

∫2

−1
 
1
x
 dx.

Your graphing utility should give an error message. Does yours?

π ππ π
2 44

3
x

1

Four subintervals

y

y = sin x

y = sin x

ππππ π
2848

3
x

1

Eight subintervals

y

π
8

5 π
8

7π
4

3

Trapezoidal approximations
Figure 8.16
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8.6 Numerical Integration 561

It is interesting to compare the Trapezoidal Rule with the Midpoint Rule given in 
Section 5.2. For the Trapezoidal Rule, you average the function values at the endpoints 
of the subintervals, but for the Midpoint Rule, you take the function values of the 
subinterval midpoints.

∫b

a

f (x) dx ≈ ∑
n

i=1
f (xi−1 + xi

2 ) ∆x Midpoint Rule

∫b

a

 f(x) dx ≈ ∑
n

i=1
(f(xi−1) + f(xi)

2 ) ∆x Trapezoidal Rule

There are two important points that should be made concerning the Trapezoidal 
Rule (or the Midpoint Rule). First, the approximation tends to become more accurate 
as n increases. For instance, in Example 1, when n = 16, the Trapezoidal Rule yields 
an approximation of 1.994. Second, although you could have used the Fundamental 
Theorem to evaluate the integral in Example 1, this theorem cannot be used to evaluate 
an integral as simple as ∫π0  sin x2 dx because sin x2 has no elementary antiderivative. Yet 
the Trapezoidal Rule can be applied to estimate this integral.

Simpson’s Rule
One way to view the trapezoidal approximation of a definite integral is to say that on 
each subinterval, you approximate f  by a first-degree polynomial. In Simpson’s Rule, 
named after the English mathematician Thomas Simpson (1710–1761), you take this 
procedure one step further and approximate f  by second-degree polynomials.

Before presenting Simpson’s Rule, consider the next theorem for evaluating 
integrals of polynomials of degree 2 (or less).

THEOREM 8.4 Integral of p(x) = Ax2 + Bx + C
If p(x) = Ax2 + Bx + C, then

∫b

a

 p(x) dx = (b − a
6 )[p(a) + 4p(a + b

2 ) + p(b)].

Proof

∫b

a

 p(x) dx = ∫b

a

 (Ax2 + Bx + C) dx

 = [Ax3

3
+

Bx2

2
+ Cx]

b

a

 =
A(b3 − a3)

3
+

B(b2 − a2)
2

+ C(b − a)

 = (b − a
6 )[2A(a2 + ab + b2) + 3B(b + a) + 6C]

By expansion and collection of terms, the expression inside the brackets becomes

(Aa2 + Ba + C) + 4[A(b + a
2 )2

+ B(b + a
2 ) + C] + (Ab2 + Bb + C)

p(a) 4p(a + b
2 ) p(b)

and you can write

∫b

a

p(x) dx = (b − a
6 )[p(a) + 4p(a + b

2 ) + p(b)]. 
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562 Chapter 8 Integration Techniques and Improper Integrals

To develop Simpson’s Rule for approximating a definite integral, you again 
partition the interval [a, b] into n subintervals, each of width ∆x = (b − a)�n. This 
time, however, n is required to be even, and the subintervals are grouped in pairs such 
that

a = x0 < x1 < x2 < x3 < x4 < .  .  . < xn−2 < xn−1 < xn = b.

 [x0, x2] [x2, x4] [xn−2, xn]

On each (double) subinterval [xi−2, xi], you can approximate f  by a polynomial p
of degree less than or equal to 2. (See Exercise 47.) For example, on the subinterval 
[x0, x2], choose the polynomial of least degree passing through the points (x0, y0),
(x1, y1), and (x2, y2), as shown in Figure 8.17. Now, using p as an approximation of f
on this subinterval, you have, by Theorem 8.4,

∫x2

x0

 f(x) dx ≈ ∫x2

x0

 p(x) dx

 =
x2 − x0

6 [p(x0) + 4p(x0 + x2

2 ) + p(x2)]
 =

2[(b − a)�n]
6

[ p(x0) + 4p(x1) + p(x2)]

 =
b − a

3n
[ f(x0) + 4 f(x1) + f(x2)].

Repeating this procedure on the entire interval [a, b] produces the next theorem.

THEOREM 8.5 Simpson’s Rule

Let f  be continuous on [a, b] and let n be an even integer. Simpson’s Rule for 
approximating ∫b

a  f(x) dx is

 ∫b

a

 f(x) dx ≈
b − a

3n
[ f(x0) + 4 f(x1) + 2 f(x2) + 4 f(x3) + .  .  .

 + 2 f (xn−2) + 4 f(xn−1) + f(xn)].

Moreover, as n →∞, the right-hand side approaches ∫b
a  f(x) dx.

In Example 1, the Trapezoidal Rule was used to estimate ∫π0  sin x dx. In the next 
example, Simpson’s Rule is applied to the same integral.

 Approximation with Simpson’s Rule

See LarsonCalculus.com for an interactive version of this type of example.

Use Simpson’s Rule to approximate

∫π

0
sin x dx.

Compare the results for n = 4 and n = 8.

Solution When n = 4, you have

∫π

0
 sin x dx ≈

π
12(sin 0 + 4 sin 

π
4

+ 2 sin 
π
2

+ 4 sin 
3π
4

+ sin π) ≈ 2.005.

When n = 8, you have ∫π

0
 sin x dx ≈ 2.0003. 

REMARK In Section 5.2, 
Example 8, the Midpoint Rule 
with n = 4 approximates

∫π

0
 sin x dx as 2.052. In 

Example 1, the Trapezoidal 
Rule with n = 4 gives an 
approximation of 1.896. In 
Example 2, Simpson’s Rule 
with n = 4 gives an 
approximation of 2.005. The 
antiderivative would produce 
the true value of 2.

x

p
f

x0 x1 x2 xn

(x0, y0)

(x2 , y2)

(x1, y1)

y

∫x2

x0

 p(x) dx ≈ ∫x2

x0

 f (x) dx

Figure 8.17

REMARK Observe that the 
coefficients in Simpson’s Rule 
have the following pattern.

1 4 2 4 2 4 .  .  . 4 2 4 1
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Error Analysis
When you use an approximation technique, it is important to know how accurate you 
can expect the approximation to be. The next theorem, which is listed without proof, 
gives the formulas for estimating the errors involved in the use of Simpson’s Rule and 
the Trapezoidal Rule. In general, when using an approximation, you can think of the 
error E as the difference between ∫b

a  f(x) dx and the approximation.

THEOREM 8.6 Errors in the Trapezoidal Rule and Simpson’s Rule

If f  has a continuous second derivative on [a, b], then the error E in 
approximating ∫b

a  f(x) dx by the Trapezoidal Rule is

∣E∣ ≤
(b − a)3

12n2 [max ∣ f ″(x)∣], a ≤ x ≤ b. Trapezoidal Rule

Moreover, if f  has a continuous fourth derivative on [a, b], then the error E 
in approximating ∫b

a  f(x) dx by Simpson’s Rule is

∣E∣ ≤
(b − a)5

180n4 [max ∣ f (4)(x)∣], a ≤ x ≤ b. Simpson’s Rule

Theorem 8.6 states that the errors generated by the Trapezoidal Rule and 
Simpson’s Rule have upper bounds dependent on the extreme values of f ″(x) and 
f (4)(x) in the interval [a, b]. Furthermore, these errors can be made arbitrarily small by 
increasing n, provided that f ″ and f (4) are continuous and therefore bounded in [a, b].

 The Approximate Error in the Trapezoidal Rule

Determine a value of n such that the Trapezoidal Rule will approximate the value of

∫1

0
 √1 + x2 dx

with an error that is less than or equal to 0.01.

Solution Begin by letting f(x) = √1 + x2 and finding the second derivative of f.

f′(x) = x(1 + x2)−1�2 and f ″(x) = (1 + x2)−3�2

The maximum value of ∣ f ″(x)∣ on the interval [0, 1] is ∣ f ″(0)∣ = 1. So, by Theorem 
8.6, you can write

∣E∣ ≤
(b − a)3

12n2  ∣ f ″(0)∣ =
1

12n2 (1) =
1

12n2.

To obtain an error E that is less than or equal to 0.01, you must choose n such that 
1�(12n2) ≤ 1�100.

100 ≤ 12n2  n ≥ √100
12 ≈ 2.89

So, you can choose n = 3 (because n must be greater than or equal to 2.89) and apply 
the Trapezoidal Rule, as shown in Figure 8.18, to obtain

 ∫1

0
√1 + x2 dx ≈ 1

6 [√1 + 02 + 2√1 + (1
3)2 + 2√1 + (2

3)2 + √1 + 12]
 ≈ 1.154.

So, by adding and subtracting the error from this estimate, you know that

1.144 ≤ ∫1

0
√1 + x2 dx ≤ 1.164. 

 FOR FURTHER INFORMATION
For proofs of the formulas used 
for estimating the errors involved 
in the use of the Midpoint Rule 
and Simpson’s Rule, see the article 
“Elementary Proofs of Error 
Estimates for the Midpoint and 
Simpson’s Rules” by Edward C. 
Fazekas, Jr. and Peter R. Mercer in 
Mathematics Magazine. To view 
this article, go to MathArticles.com.

x
1

1

2

2

y

y =    1 + x2

n = 3

1.144 ≤ ∫1

0
√1 + x2 dx ≤ 1.164

Figure 8.18

TECHNOLOGY If you have 
access to a computer algebra 
system, use it to evaluate the 
definite integral in Example 3. 
You should obtain a value of

∫1

0
√1 + x2 dx

=
1
2

[√2 + ln(1 + √2)]
≈ 1.14779.
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564 Chapter 8 Integration Techniques and Improper Integrals

8.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Finding an Interval Would you use numerical 

 integration to evaluate ∫2

0
(ex + 5x) dx? Explain.

2.  Errors in the Trapezoidal Rule and Simpson’s 
Rule Describe how to decrease the error between an 
approximation and the exact value of an integral using the 
Trapezoidal Rule and Simpson’s Rule.

 Using the Trapezoidal Rule and Simpson’s 
Rule  In Exercises 3–14, use the Trapezoidal Rule 
and Simpson’s Rule to approximate the value of 
the definite integral for the given value of n. Round 
your answer to four decimal places and compare 
the results with the exact value of the definite 
integral.

 3. ∫2

0
 x2 dx, n = 4  4. ∫2

1
 (x2

4
+ 1) dx, n = 4

 5. ∫4

3
 

1
x − 2

 dx, n = 4  6. ∫3

2
 
2
x2 dx, n = 4

 7. ∫3

1
 x3 dx, n = 6  8. ∫8

0
 3√x dx, n = 8

 9. ∫9

4
 √x dx, n = 8 10. ∫4

1
 (4 − x2) dx, n = 6

11. ∫1

0
 

2
(x + 2)2 dx, n = 4 12. ∫2

0
 x√x2 + 1 dx, n = 4

13. ∫2

0
xe−x dx, n = 4 14. ∫2

0
x ln(x + 1) dx, n = 4

 Using the Trapezoidal Rule and Simpson’s 
Rule In Exercises 15–24, approximate the definite 
integral using the Trapezoidal Rule and Simpson’s 
Rule with n = 4. Compare these results with the 
approximation of the integral using a graphing utility.

15. ∫2

0
 √1 + x3 dx 16. ∫1

0
 √x √1 − x dx

17. ∫1

0
 

1
1 + x2 dx 18. ∫2

0
 

1

√1 + x3
 dx

19. ∫4

0
 √xex dx 20. ∫3

1
ln x dx

21. ∫√π�2

0
 sin x2 dx 22. ∫π

π�2
 √x sin x dx

23. ∫π�4

0
 x tan x dx

24. ∫π

0
 f (x) dx, f (x) = {sin x

x
,

1,

 x > 0

 x = 0

 Estimating Errors  In Exercises 25–28, use 
the error formulas in Theorem 8.6 to estimate 
the errors in approximating the integral, with 
n = 4, using (a) the Trapezoidal Rule and  
(b) Simpson’s Rule.

25. ∫2

0
(x2 + 2x) dx 26. ∫3

1
 2x3 dx

27. ∫4

2
 

1
(x − 1)2 dx 28. ∫1

0
ex3 dx

 Estimating Errors  In Exercises 29–32, use the 
error formulas in Theorem 8.6 to find n such that 
the error in the approximation of the definite 
integral is less than or equal to 0.00001 using (a) 
the Trapezoidal Rule and (b) Simpson’s Rule.

29. ∫3

1
 
1
x
 dx 30. ∫1

0
 

1
1 + x

 dx

31. ∫2

0
 √x + 2 dx 32. ∫3

1
e2x dx

Estimating Errors Using Technology  In Exercises 33 and 
34, use a computer algebra system and the error formulas to 
find n such that the error in the approximation of the definite  
integral is less than or equal to 0.00001 using (a) the Trapezoidal 
Rule and (b) Simpson’s Rule.

33. ∫1

0
 tan x2 dx

34. ∫2

0
 (x + 1)2�3 dx

35.  Finding the Area of a Region Approximate the area of 
the shaded region using the Trapezoidal Rule and Simpson’s 
Rule with n = 4.

 

x
1 2 3 4 5

2

4

6

8

10

y  

x
2 4 6 8 10

2

4

6

8

10

y

 Figure for 35 Figure for 36

36.  Finding the Area of a Region Approximate the area of 
the shaded region using the Trapezoidal Rule and Simpson’s 
Rule with n = 8.

37.  Area Use Simpson’s Rule with n = 14 to approximate the 
area of the region bounded by the graphs of y = √x cos x,
y = 0, x = 0, and x = π�2.
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8.6 Numerical Integration 565

38.  HOW DO YOU SEE IT? The function f  is 
concave upward on the interval [0, 2] and the 
function g is concave downward on the interval 
[0, 2], as shown in the figure.

1 2

2

3

4

5 f

x

y  

1 2

2

1

3

4

5

g

x

y

(a)  Using the Trapezoidal Rule with n = 4, which 
integral would be overestimated, ∫2

0  f (x) dx
  or ∫2

0  g(x) dx? Which integral would be 
underestimated? Explain your reasoning.

(b)  Which rule would you use for more accurate 
approximations of ∫2

0  f (x) dx and ∫2
0  g(x) dx, the 

Trapezoidal Rule or Simpson’s Rule? Explain 
your reasoning.

38.  

eXpLoRInG ConCeptS
39.  Think About It Explain how the Trapezoidal Rule 

is related to the approximations using left-hand and 
right-hand sums.

40.  Describing an Error Describe the size of the error 
when the Trapezoidal Rule is used to approximate 
∫b

a  f (x) dx when f (x) is a linear function. Use a graph to 
explain your answer.

41.  Surveying Use the Trapezoidal Rule to estimate the 
number of square meters of land, where x and y are measured 
in meters, as shown in the figure. The land is bounded by a 
stream and two straight roads that meet at right angles.

 
x 0 100 200 300 400 500

y 125 125 120 112 90 90

x 600 700 800 900 1000

y 95 88 75 35 0

 

x

150

100

50

200 400 600 800 1000

Road

Road

Stream

y

42. Circumference The elliptic integral

8√3 ∫π�2

0
 √1 − 2

3 sin2 θ dθ

  gives the circumference of an ellipse. Use Simpson’s Rule 
with n = 8 to approximate the circumference.

43.  Work To determine the size of the motor required to 
operate a press, a company must know the amount of work 
done when the press moves an object linearly 5 feet. The 
variable force to move the object is

F(x) = 100x√125 − x3

  where F is given in pounds and x gives the position of the unit 
in feet. Use Simpson’s Rule with n = 12 to approximate the 
work W (in foot-pounds) done through one cycle when 

W = ∫5

0
 F(x) dx.

44.  Approximating a Function  The table lists several 
measurements gathered in an experiment to approximate an 
unknown continuous function y = f (x).

x 0.00 0.25 0.50 0.75 1.00

y 4.32 4.36 4.58 5.79 6.14

x 1.25 1.50 1.75 2.00

y 7.25 7.64 8.08 8.14

 (a) Approximate the integral

∫2

0
 f (x) dx

 using the Trapezoidal Rule and Simpson’s Rule.

 (b)  Use a graphing utility to find a model of the form 
y = ax3 + bx2 + cx + d for the data. Integrate the 
resulting polynomial over [0, 2] and compare the result 
with the integral from part (a).

45.  Using Simpson’s Rule Use Simpson’s Rule with 
n = 10 and a computer algebra system to approximate t in the 
integral equation

∫t

0
 sin √x dx = 2.

46.  Proof Prove that Simpson’s Rule is exact when 
approximating the integral of a cubic polynomial function, 
and demonstrate the result with n = 4 for

∫1

0
 x3 dx.

47. Proof Prove that you can find a polynomial

p(x) = Ax2 + Bx + C

  that passes through any three points (x1, y1), (x2, y2), and 
(x3, y3), where the xi’s are distinct.
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566 Chapter 8 Integration Techniques and Improper Integrals

8.7 Integration by Tables and Other Integration Techniques

 Find an indefinite integral using a table of integrals.
 Find an indefinite integral using reduction formulas.
 Find an indefinite integral involving rational functions of sine and cosine.

Integration by Tables
So far in this chapter, you have studied several integration techniques that can be used 
with the basic integration rules. But merely knowing how to use the various techniques 
is not enough. You also need to know when to use them. Integration is first and 
foremost a problem of recognition. That is, you must recognize which rule or technique 
to apply to obtain an antiderivative. Frequently, a slight alteration of an integrand will 
require a different integration technique (or produce a function whose antiderivative is 
not an elementary function), as shown below.

 ∫x ln x dx =
x2

2
 ln x −

x2

4
+ C Integration by parts

 ∫ln x
x

 dx =
(ln x)2

2
+ C Power Rule

 ∫ 1
x ln x

 dx = ln∣ln x∣ + C Log Rule

 ∫ x
ln x

 dx = ? Not an elementary function

Many people find tables of integrals to be a valuable supplement to the integration 
techniques discussed in this chapter. Tables of common integrals can be found in 
Appendix B. Integration by tables is not a “cure-all” for all of the difficulties that can 
accompany integration—using tables of integrals requires considerable thought and 
insight and often involves substitution.

Each integration formula in Appendix B can be developed using one or more of 
the techniques in this chapter. You should try to verify several of the formulas. For 
instance, Formula 4

∫ u
(a + bu)2 du =

1
b2 ( a

a + bu
+ ln∣a + bu∣) + C Formula 4

can be verified using the method of partial fractions, Formula 19

∫√a + bu
u

 du = 2√a + bu + a∫ du

u√a + bu
 Formula 19

can be verified using integration by parts, and Formula 84

∫ 1
1 + eu du = u − ln(1 + eu) + C Formula 84

can be verified using substitution. Note that the integrals in Appendix B are classified 
according to the form of the integrand. Several of the forms are listed below.

un (a + bu)
(a + bu + cu2) √a + bu

(a2 ± u2) √u2 ± a2

√a2 − u2 Trigonometric functions

Inverse trigonometric functions Exponential functions

Logarithmic functions

teChnology A computer 
algebra system consists, in part, 
of a database of integration  
formulas. The primary  
difference between using a  
computer algebra system and 
using tables of integrals is that 
with a computer algebra system, 
the computer searches through 
the database to find a fit. With 
integration tables, you must do 
the searching.
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8.7 Integration by Tables and Other Integration Techniques 567

 Integration by tables

Find ∫ dx

x√x − 1
.

Solution Because the expression inside the radical is linear, you should consider 
forms involving √a + bu.

∫ du

u√a + bu
=

2

√−a
 arctan √a + bu

−a
+ C Formula 17 (a < 0)

Let a = −1, b = 1, and u = x. Then du = dx, and you can write

∫ dx

x√x − 1
= 2 arctan √x − 1 + C.

 Integration by tables

See LarsonCalculus.com for an interactive version of this type of example.

Find ∫x√x4 − 9 dx.

Solution Because the radical has the form √u2 − a2, you should consider
Formula 26.

∫√u2 − a2 du =
1
2

(u√u2 − a2 − a2 ln∣u + √u2 − a2∣) + C

Let u = x2 and a = 3. Then du = 2x dx, and you have

 ∫x√x4 − 9 dx =
1
2∫√(x2)2 − 32 (2x) dx

 =
1
4

(x2√x4 − 9 − 9 ln∣x2 + √x4 − 9∣) + C.

 Integration by tables

Evaluate ∫2

0
 

x
1 + e−x2 dx.

Solution Of the forms involving eu, consider the formula

∫ du
1 + eu = u − ln(1 + eu) + C. Formula 84

Let u = −x2. Then du = −2x dx, and you have

 ∫ x
1 + e−x2 dx = −

1
2∫ −2x dx

1 + e−x2

 = −
1
2

[−x2 − ln(1 + e−x2)] + C

 =
1
2

[x2 + ln(1 + e−x2)] + C.

So, the value of the definite integral is

∫2

0

x
1 + e−x2 dx =

1
2[x2 + ln(1 + e−x2)]

0

2
=

1
2

[4 + ln(1 + e−4) − ln 2] ≈ 1.66.

Figure 8.19 shows the region whose area is represented by this integral. 

1 2

1

2 y = x

x

y

1 + e−x2

Figure 8.19

exploration
Use the tables of integrals 
in Appendix B and the 
substitution

u = √x − 1

to find the integral in 
Example 1. When you do 
this, you should obtain

∫ dx

x√x − 1
= ∫ 2 du

u2 + 1
.

Does this produce the same 
result as that obtained in 
Example 1?
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Reduction Formulas
Several of the integrals in the integration tables have the form 

∫ f (x) dx = g(x) + ∫ h(x) dx.

Such integration formulas are called reduction formulas because they reduce a given 
integral to the sum of a function and a simpler integral.

 Using a Reduction Formula

Find ∫x3 sin x dx.

Solution Consider the three formulas listed below.

 ∫u sin u du = sin u − u cos u + C Formula 52

 ∫un sin u du = −un cos u + n∫un−1 cos u du Formula 54

 ∫un cos u du = un sin u − n∫un−1 sin u du Formula 55

Using Formula 54, Formula 55, and then Formula 52 produces

 ∫x3 sin x dx = −x3 cos x + 3∫x2 cos x dx

 = −x3 cos x + 3(x2 sin x − 2∫x sin x dx)
 = −x3 cos x + 3x2 sin x + 6x cos x − 6 sin x + C.

 Using a Reduction Formula

Find ∫√3 − 5x
2x

 dx.

Solution Consider the two formulas listed below.

 ∫ du

u√a + bu
=

1

√a
 ln∣√a + bu − √a

√a + bu + √a∣ + C Formula 17 (a > 0)

 ∫√a + bu
u

 du = 2√a + bu + a∫ du

u√a + bu
 Formula 19

Using Formula 19, with a = 3, b = −5, and u = x, produces

 
1
2∫√3 − 5x

x
 dx =

1
2 (2√3 − 5x + 3∫ dx

x√3 − 5x)
 = √3 − 5x +

3
2∫ dx

x√3 − 5x
.

Using Formula 17, with a = 3, b = −5, and u = x, produces

 ∫ 
√3 − 5x

2x
 dx = √3 − 5x +

3
2 (

1

√3
 ln∣√3 − 5x − √3

√3 − 5x + √3∣) + C

 = √3 − 5x +
√3
2

 ln∣√3 − 5x − √3

√3 − 5x + √3∣ + C.  

teChnology Sometimes 
when you use computer algebra 
systems, you obtain results that 
look very different, but are  
actually equivalent. Two 
different systems were used to 
find the integral in Example 5. 
The results are shown below.

Maple

√3 − 5x −
√3 arctanh(1

3√3 − 5x√3)
Mathematica

√3 − 5x −

√3 ArcTanh [√1 −
5x
3 ]

Notice that computer algebra 
systems do not include a  
constant of integration.
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Rational Functions of Sine and Cosine

 Integration by tables

Find ∫ sin 2x
2 + cos x

 dx.

Solution Substituting 2 sin x cos x for sin 2x produces

∫ 
sin 2x

2 + cos x
 dx = 2∫ 

sin x cos x
2 + cos x

 dx.

A check of the forms involving sin u or cos u in Appendix B shows that those listed do 
not apply. So, you can consider forms involving a + bu. For example,

∫ u du
a + bu

=
1
b2 (bu − a ln∣a + bu∣) + C. Formula 3

Let a = 2, b = 1, and u = cos x. Then du = −sin x dx, and you have

 2∫sin x cos x
2 + cos x

 dx = −2∫(cos x)(−sin x dx)
2 + cos x

 = −2(cos x − 2 ln∣2 + cos x∣) + C

 = −2 cos x + 4 ln∣2 + cos x∣ + C. 

Example 6 involves a rational expression of sin x and cos x. When you are unable 
to find an integral of this form in the integration tables, try using the following special 
substitution to convert the trigonometric expression to a standard rational expression.

Substitution for Rational Functions of Sine and Cosine

For integrals involving rational functions of sine and cosine, the substitution

u =
sin x

1 + cos x
= tan 

x
2

yields

cos x =
1 − u2

1 + u2, sin x =
2u

1 + u2, and dx =
2 du

1 + u2.

Proof From the substitution for u, it follows that

u2 =
sin2 x

(1 + cos x)2 =
1 − cos2 x

(1 + cos x)2 =
1 − cos x
1 + cos x

.

Solving for cos x produces

cos x =
1 − u2

1 + u2.

To find sin x, write u = (sin x)�(1 + cos x) as

sin x = u(1 + cos x) = u(1 +
1 − u2

1 + u2) =
2u

1 + u2.

Finally, to find dx, consider u = tan(x�2). Then you have arctan u = x�2 and

dx =
2 du

1 + u2. 
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570 Chapter 8 Integration Techniques and Improper Integrals

8.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Integration by tables Which formula from the 

table of integrals would you use to find the integral below? 
Explain.

 ∫ 
√5 − 9x2

x2  dx

2.  Reduction Formula Describe what is meant by a 
reduction formula. Give an example.

 Integration by tables In Exercises 3 and 4, 
use a table of integrals with forms involving a + bu 
to find the indefinite integral.

 3. ∫ x2

5 + x
 dx  4. ∫ 2

x2(4 + 3x)2 dx

Integration by tables In Exercises 5 and 6, use a table of 
integrals with forms involving √a2 − u2 to find the indefinite 
integral.

 5. ∫ 1

x2√1 − x2
 dx  6. ∫√64 − x4

x
 dx

Integration by tables In Exercises 7–10, use a table of 
integrals with forms involving the trigonometric functions to 
find the indefinite integral.

 7. ∫cos4 3x dx  8. ∫sin4 √x

√x
 dx

 9. ∫ 1

√x (1 − cos √x)
 dx 10. ∫ 1

1 + cot 4x
 dx

Integration by tables In Exercises 11 and 12, use a table 
of integrals with forms involving eu to find the indefinite 
integral.

11. ∫ 1
1 + e2x dx 12. ∫e−4x sin 3x dx

Integration by tables In Exercises 13 and 14, use a 
table of integrals with forms involving ln u to find the indefinite 
integral.

13. ∫x6 ln x dx 14. ∫(ln x)3 dx

 Using two Methods In Exercises 15–18, find 
the indefinite integral (a) using a table of integrals 
and (b) using the given method.

 Integral Method

15. ∫ln 
x
3

 dx Integration by parts

16. ∫sin2 3x dx Power-reducing formula

 Integral Method

17. ∫ 1
x2(x − 1) dx Partial fractions

18. ∫ dx
(4 + x2)3�2 Trigonometric substitution

Finding an Indefinite Integral In Exercises 19– 40, use a 
table of integrals to find the indefinite integral.

19. ∫x arccsc(x2 + 1) dx 20. ∫arccot(4x − 5) dx

21. ∫ 2

x3√x4 − 1
 dx 22. ∫ 1

x2 + 4x + 8
 dx

23. ∫ x
(7 − 6x)2 dx 24. ∫ θ3

1 + sin θ4 dθ

25. ∫ex arccos ex dx 26. ∫ ex

1 − tan ex dx

27. ∫ x
1 − sec x2 dx 28. ∫ 1

t [1 + (ln t)2] dt

29. ∫ cos θ
3 + 2 sin θ + sin2 θ  dθ 30. ∫x2√3 + 25x2 dx

31. ∫ 1

x2√2 + 9x2
 dx 32. ∫√x arctan x3�2 dx

33. ∫ ln x
x(3 + 2 ln x) dx 34. ∫ ex

(1 − e2x)3�2 dx

35. ∫ x
(x2 − 6x + 10)2 dx 36. ∫√5 − x

5 + x
 dx

37. ∫ x

√x4 − 6x2 + 5
 dx 38. ∫ cos x

√sin2 x + 1
 dx

39. ∫ e3x

(1 + ex)3 dx 40. ∫cot4 θ dθ

 evaluating a Definite Integral In Exercises 
41– 48, use a table of integrals to evaluate the 
definite integral.

41. ∫1

0
 

x

√1 + x
 dx 42. ∫1

0
 2x3ex2

 dx

43. ∫2

1
x4 ln x dx 44. ∫π�2

0
x sin 2x dx

45. ∫π�2

−π�2
 

cos x
1 + sin2 x

 dx 46. ∫5

0

x2

(5 + 2x)2 dx

47. ∫π�2

0
t3 cos t dt 48. ∫3

0
√x2 + 16 dx

Verifying a Formula In Exercises 49–54, verify the 
integration formula.

49. ∫ u2

(a + bu)2 du =
1
b3 (bu −

a2

a + bu
− 2a ln∣a + bu∣) + C

50. ∫ un

√a + bu
 du =

2
(2n + 1)b (un√a + bu − na∫ un−1

√a + bu
 du)
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8.7 Integration by Tables and Other Integration Techniques 571

51. ∫ 1
(u2 ± a2)3�2

 du =
±u

a2√u2 ± a2
+ C

52. ∫un cos u du = un sin u − n∫un−1 sin u du

53. ∫arctan u du = u arctan u − ln√1 + u2 + C

54. ∫(ln u)n du = u(ln u)n − n∫(ln u)n−1 du

Finding or evaluating an Integral In Exercises 55–62, 
find or evaluate the integral.

55. ∫ 1
2 − 3 sin θ  dθ 56. ∫ sin θ

1 + cos2 θ  dθ

57. ∫π�2

0

1
1 + sin θ + cos θ  dθ 58. ∫π�2

0

1
3 − 2 cos θ  dθ

59. ∫ sin θ
3 − 2 cos θ  dθ 60. ∫ cos θ

1 + cos θ  dθ

61. ∫sin√θ
√θ

 dθ

62. ∫ 4
csc θ − cot θ  dθ

Area In Exercises 63 and 64, find the area of the region 
bounded by the graphs of the equations.

63. y =
x

√x + 3
, y = 0, x = 6

64. y =
x

1 + ex2, y = 0, x = 2

eXpLoRInG ConCeptS
65. Finding a Pattern

 (a)  Find ∫xn ln x dx for n = 1, 2, and 3. Describe any 
patterns you notice.

 (b)  Write a general rule for evaluating the integral in 
part (a) for an integer n ≥ 1.

 (c)  Verify your rule from part (b) using integration by 
parts.

66.  Choosing a Method State the method or integration 
formula you would use to find the antiderivative. Explain 
why you chose that method or formula. Do not integrate.

 (a) ∫ ex

e2x + 1
 dx   (b) ∫ ex

ex + 1
 dx   (c) ∫xex2

 dx

 (d) ∫xex dx (e) ∫e2x√e2x + 1 dx

67.  Work A hydraulic cylinder on an industrial machine pushes 
a steel block a distance of x feet (0 ≤ x ≤ 5), where the 
variable force required is F(x) = 2000xe−x pounds. Find the 
work done in pushing the block the full 5 feet through the 
machine.

68. Work Repeat Exercise 67, using F(x) =
500x

√26 − x2
 pounds.

69.  Population A population is growing according to the 
logistic model

 N =
5000

1 + e4.8−1.9t

  where t is the time in days. Find the average population over 
the interval [0, 2].

 70.  hoW Do yoU See It? Use the graph of 
f ′ shown in the figure to answer the following.

x

y

x

f ′(x) = −0.15x    x4 + 9

−1−2−3 2 3

−2

−3

1

2

3

(a) Approximate the slope of f  at x = −1. Explain.

(b)  Approximate any open intervals on which the 
graph of f  is increasing and any open intervals on 
which it is decreasing. Explain.

 70.  

71. Volume Consider the region bounded by the graphs of

 y = x√16 − x2, y = 0, x = 0, and x = 4.

  Find the volume of the solid generated by revolving the region 
about the y-axis.

72.  Building Design The cross section of a precast concrete 
beam for a building is bounded by the graphs of the equations

 x =
2

√1 + y2
, x =

−2

√1 + y2
, y = 0, and y = 3

  where x and y are measured in feet. The length of the beam is 
20 feet (see figure).

x
1 2

3

2

1

3−1−2−3

20 ft

y

 (a)  Find the volume V and the weight W of the beam. Assume 
the concrete weighs 148 pounds per cubic foot.

 (b) Find the centroid of a cross section of the beam.

pUtnAM eXAM ChALLenGe

73. Evaluate ∫π�2

0

dx

1 + (tan x)√2
.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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572 Chapter 8 Integration Techniques and Improper Integrals

8.8 Improper Integrals

 Evaluate an improper integral that has an infinite limit of integration.
 Evaluate an improper integral that has an infinite discontinuity.

Improper Integrals with Infinite Limits of Integration
The definition of a definite integral

∫b

a

f (x) dx

requires that the interval [a, b] be finite. Furthermore, the Fundamental Theorem of 
Calculus, by which you have been evaluating definite integrals, requires that f  be 
continuous on [a, b]. In this section, you will study a procedure for evaluating integrals 
that do not satisfy these requirements—usually because either one or both of the limits 
of integration are infinite or because f  has a finite number of infinite discontinuities 
in the interval [a, b]. Integrals that possess either property are improper integrals. 
Note that a function f  is said to have an infinite discontinuity at c when, from the 
right or left,

lim
x→c

 f (x) = ∞ or lim
x→c

 f (x) = −∞.

To get an idea of how to evaluate an improper integral, consider the integral

∫b

1
 
dx
x2 = −

1
x]1

b

= −
1
b

+ 1 = 1 −
1
b

which can be interpreted as the area of the shaded region shown in Figure 8.20. Taking 
the limit as b →∞ produces

∫∞

1
 
dx
x2 = lim

b→∞
 (∫b

1
 
dx
x2) = lim

b→∞
 (1 −

1
b) = 1.

This improper integral can be interpreted as the area of the unbounded region between 
the graph of f (x) = 1�x2 and the x-axis (to the right of x = 1).

Definition of Improper Integrals with Infinite Integration Limits

1. If f  is continuous on the interval [a, ∞), then

∫∞

a

f (x) dx = lim
b→∞

 ∫b

a

f (x) dx.

2. If f  is continuous on the interval (−∞, b], then

∫b

−∞
 f (x) dx = lim

a→−∞∫
b

a

f (x) dx.

3. If f  is continuous on the interval (−∞, ∞), then

∫∞

−∞
  f (x) dx = ∫c

−∞
 f (x) dx + ∫∞

c
 f (x) dx

 where c is any real number (see Exercise 107).

In the first two cases, the improper integral converges when the limit exists—
otherwise, the improper integral diverges. In the third case, the improper integral 
on the left diverges when either of the improper integrals on the right diverges.

432

2

1

1
x

1
dx

x2

b

1 x2

b

1
f(x) =

b → ∞

y

The unbounded region has an area of 1.
Figure 8.20
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 8.8 Improper Integrals 573

 An Improper Integral That Diverges

Evaluate ∫b

1
 
dx
x

.

Solution

 ∫∞

1
 
dx
x

= lim
b→∞

 ∫b

1
 
dx
x

 Take limit as b →∞.

 = lim
b→∞

 [ln x]
1

b

 Apply Log Rule.

 = lim
b→∞

 (ln b − 0) Apply Fundamental Theorem of Calculus.

 = ∞ Evaluate limit.

The limit does not exist. So, you can conclude that the improper integral diverges. See 
Figure 8.21. 

Try comparing the regions shown in Figures 8.20 and 8.21. They look similar, yet 
the region in Figure 8.20 has a finite area of 1 and the region in Figure 8.21 has an  
infinite area.

 Improper Integrals That Converge

Evaluate each improper integral.

a. ∫∞

0
e−x dx

b. ∫∞

0

1
x2 + 1

 dx

Solution

a.  ∫∞

0
e−x dx = lim

b→∞
 ∫b

0
e−x dx b.  ∫∞

0

1
x2 + 1

 dx = lim
b→∞

 ∫b

0
 

1
x2 + 1

 dx

  = lim
b→∞

 [−e−x]
0

b

  = lim
b→∞

 [arctan x]
0

b

  = lim
b→∞

 (−e−b + 1)  = lim
b→∞

 arctan b

  = 1  =
π
2

See Figure 8.22. See Figure 8.23.

2

1

321
x

y

y = e−x

 

2

1

321
x

y

1
x2 + 1

y =

  The area of the unbounded The area of the unbounded 
region is 1. region is π�2.

 Figure 8.22 Figure 8.23 

2

1

321
x

1
x

Diverges
(in�nite area)

y =

y

This unbounded region has an infinite 
area.
Figure 8.21
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574 Chapter 8 Integration Techniques and Improper Integrals

In the next example, note how L’Hôpital’s Rule can be used to evaluate an improper 
integral.

 Using L’Hôpital’s Rule with an Improper Integral

Evaluate ∫∞

1
(1 − x)e−x dx.

Solution Use integration by parts, with dv = e−x dx and u = (1 − x).

 ∫(1 − x)e−x dx = −e−x(1 − x) − ∫e−x dx

 = −e−x + xe−x + e−x + C

 = xe−x + C

Now, apply the definition of an improper integral.

 ∫∞

1
(1 − x)e−x dx = lim

b→∞
 [xe−x]

1

b

 = lim
b→∞

 ( b
eb −

1
e)

 = lim
b→∞

 
b
eb − lim

b→∞
 
1
e

For the first limit, use L’Hôpital’s Rule.

lim
b→∞

 
b
eb = lim

b→∞
 
1
eb = 0

So, you can conclude that

 ∫∞

1
(1 − x)e−x dx = lim

b→∞
 
b
eb − lim

b→∞
 
1
e

 = 0 −
1
e

 = −
1
e
. See Figure 8.24.

 Infinite Upper and Lower Limits of Integration

Evaluate ∫∞

−∞
 

ex

1 + e2x dx.

Solution Note that the integrand is continuous on (−∞, ∞). To evaluate the 
integral, you can break it into two parts, choosing c = 0 as a convenient value.

 ∫∞

−∞
 

ex

1 + e2x dx = ∫0

−∞
 

ex

1 + e2x dx + ∫∞

0

ex

1 + e2x dx

 = lim
a→−∞

 [arctan ex]
a

  0

+ lim
b→∞

 [arctan ex]
b

0

 = lim
a→−∞

 (π4 − arctan ea) + lim
b→∞

 (arctan eb −
π
4)

 =
π
4

− 0 +
π
2

−
π
4

 =
π
2

 See Figure 8.25. 

x

−0.03

−0.06

−0.09

−0.12

−0.15

y = (1 − x)e−x

42 8

y

The area of the unbounded region is 

∣−1�e∣.
Figure 8.24

2−1−2 1
x

ex

1 + e2xy =

y

1
2

The area of the unbounded region is 
π�2.
Figure 8.25
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 Sending a Space Module into Orbit

In Example 3 in Section 7.5, you found that it would require 10,000 mile-tons of work 
to propel a 15-metric-ton space module to a height of 800 miles above Earth. How 
much work is required to propel the module an unlimited distance away from Earth’s 
surface?

Solution At first you might think that an infinite amount of work would be required. 
But if this were the case, it would be impossible to send rockets into outer space. 
Because this has been done, the work required must be finite. You can determine the 
work in the following manner. Using the integral in Example 3, Section 7.5, replace the 
upper bound of 4800 miles by ∞ and write

 W = ∫∞

4000

240,000,000
x2  dx

 = lim
b→∞

 [−
240,000,000

x ]
4000

b

 Integrate.

 = lim
b→∞

 (−
240,000,000

b
+

240,000,000
4000 )

 = 60,000 mile-tons

 = 6.985 × 1011 foot-pounds. 1 mile = 5280 feet;
1 metric ton ≈ 2205 pounds

In SI units, using a conversion factor of

1 foot-pound ≈ 1.35582 joules

the work done is W ≈ 9.47 × 1011 joules. 

Improper Integrals with Infinite Discontinuities
The second basic type of improper integral is one that has an infinite discontinuity at 
or between the limits of integration.

Definition of Improper Integrals with Infinite Discontinuities

1.  If f  is continuous on the interval [a, b) and has an infinite discontinuity at 
b, then

∫b

a

 f (x) dx = lim
c→b−

 ∫c

a

 f (x) dx.

2.  If f  is continuous on the interval (a, b] and has an infinite discontinuity at 
a, then

∫b

a

 f (x) dx = lim
c→a+

 ∫b

c

 f (x) dx.

3.  If f  is continuous on the interval [a, b], except for some c in (a, b) at which 
f  has an infinite discontinuity, then

∫b

a

 f (x) dx = ∫c

a

 f (x) dx + ∫b

c

 f (x) dx.

In the first two cases, the improper integral converges when the limit exists—
otherwise, the improper integral diverges. In the third case, the improper 
integral on the left diverges when either of the improper integrals on the right 
diverges.

The work required to move a 
15-metric-ton space module 
an unlimited distance away 
from Earth is about 6.985 × 1011 
foot-pounds.

Creations/Shutterstock.com
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576 Chapter 8 Integration Techniques and Improper Integrals

 An Improper Integral with an Infinite Discontinuity

Evaluate ∫1

0

dx
3√x

Solution The integrand has an infinite  

21

2

1

x

1
3y =

(1, 1)

x

y

Infinite discontinuity at x = 0

 
discontinuity at x = 0, as shown in the figure 
at the right. You can evaluate this integral 
as shown below.

 ∫1

0
x−1�3 dx = lim

b→0+
 [x2�3

2�3]b

1

 = lim
b→0+

 
3
2

(1 − b2�3)

 =
3
2

 An Improper Integral That Diverges

Evaluate ∫2

0
 
dx
x3 .

Solution Because the integrand has an infinite discontinuity at x = 0, you can write

 ∫2

0
 
dx
x3 = lim

b→0+
 [−

1
2x2]

b

2

 = lim
b→0+

 (−
1
8

+
1

2b2)
 = ∞.

So, you can conclude that the improper integral diverges.

 An Improper Integral with an Interior Discontinuity

Evaluate ∫2

−1
 
dx
x3 .

Solution This integral is improper because the integrand has an infinite discontinuity at 
the interior point x = 0, as shown in Figure 8.26. So, you can write

∫2

−1
 
dx
x3 = ∫0

−1
 
dx
x3 + ∫2

0
 
dx
x3 .

From Example 7, you know that the second integral diverges. So, the original improper 
integral also diverges. 

Remember to check for infinite discontinuities at interior points as well as at 
endpoints when determining whether an integral is improper. For instance, if you had 
not recognized that the integral in Example 8 was improper, you would have obtained 
the incorrect result

∫2

−1
 
dx
x3 =

−1
2x2]

−1

2

= −
1
8

+
1
2

=
3
8

. Incorrect evaluation

1

1

2

2
y =

−1

−1

−2

x

y

x3
1

The improper integral ∫2

−1
 
dx
x3  diverges.

Figure 8.26
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 8.8 Improper Integrals 577

The integral in the next example is improper for two reasons. One limit of 
integration is infinite, and the integrand has an infinite discontinuity at the other limit 
of integration.

 A Doubly Improper Integral

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate ∫∞

0

dx

√x(x + 1)
.

Solution To evaluate this integral, split it at a convenient point (say, x = 1) and write

 ∫∞

0

dx

√x(x + 1)
= ∫1

0

dx

√x(x + 1)
+ ∫∞

1

dx

√x(x + 1)

 = lim
b→0+

 [2 arctan √x]
b

1

+ lim
c→∞

 [2 arctan √x]
1

c

 = lim
b→0+

 (2 arctan 1 − 2 arctan √b) + lim
c→∞

 (2 arctan  √c − 2 arctan 1)

 = 2(π4) − 0 + 2(π2) − 2(π4)
 = π.

See Figure 8.27.

 An Application Involving Arc Length

Use the formula for arc length to show that the circumference of the circle x2 + y2 = 1 
is 2π.

Solution To simplify the work, consider the quarter circle given by y = √1 − x2, 
where 0 ≤ x ≤ 1. The function y is differentiable for any x in this interval except 
x = 1. Therefore, the arc length of the quarter circle is given by the improper integral

 s = ∫1

0
√1 + (y′)2 dx

 = ∫1

0
√1 + ( −x

√1 − x2)
2

 dx

 = ∫1

0

dx

√1 − x2
.

This integral is improper because it has an infinite discontinuity at x = 1. So, you can 
write

 s = ∫1

0

dx

√1 − x2

 = lim
b→1−

 [arcsin x]
0

b

 = lim
b→1−

 (arcsin b − arcsin 0)

 =
π
2

− 0

 =
π
2

.

Finally, multiplying by 4, you can conclude that the circumference of the circle is 
4s = 2π, as shown in Figure 8.28. 

1

1

2

2

x

y = 1
x (x + 1)

y

The area of the unbounded region is π.
Figure 8.27

1

1

−1

−1
x

1 − x2y =
y

, 0 ≤ x ≤ 1

The circumference of the circle is 2π.
Figure 8.28
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578 Chapter 8 Integration Techniques and Improper Integrals

This section concludes with a useful theorem describing the convergence or 
divergence of a common type of improper integral. The proof of this theorem is left as 
an exercise (see Exercise 49).

 An Application Involving a Solid of Revolution

The solid formed by revolving (about the x-axis) the unbounded region lying between 
the graph of f (x) = 1�x and the x-axis (x ≥ 1) is called Gabriel’s Horn. (See 
Figure 8.29.) Show that this solid has a finite volume and an infinite surface area.

Solution Using the disk method and Theorem 8.7, you can determine the volume 
to be

 V = π∫∞

1
(1

x)
2

 dx Theorem 8.7, p = 2 > 1

 = π( 1
2 − 1)

 = π.

The surface area is given by

S = 2π∫∞

1
 f (x)√1 + [ f ′(x)]2 dx = 2π∫∞

1
 
1
x√1 +

1
x4 dx.

Because

√1 +
1
x4 > 1

on the interval [1, ∞), and the improper integral

∫∞

1
 
1
x
 dx

diverges, you can conclude that the improper integral

∫∞

1
 
1
x√1 +

1
x4 dx

also diverges. (See Exercise 52.) So, the surface area is infinite.

x
5 6 7 8 9 10

1

−1

−1

y

f (x) = 1
x

, x ≥ 1

 Gabriel’s Horn has a finite volume and an infinite surface area.
 Figure 8.29 

 FOR FURTHER INFORMATION
For further investigation of solids 
that have finite volumes and 
infinite surface areas, see the article 
“Supersolids: Solids Having Finite 
Volume and Infinite Surfaces” by 
William P. Love in Mathematics 
Teacher. To view this article, go to 
MathArticles.com.

 FOR FURTHER INFORMATION
To learn about another function 
that has a finite volume and an 
infinite surface area, see the article 
“Gabriel’s Wedding Cake” by 
Julian F. Fleron in The College 
Mathematics Journal. To view this 
article, go to MathArticles.com.

THEOREM 8.7 A Special Type of Improper Integral

 ∫∞

1
 
dx
xp = { 1

p − 1
,

diverges,

p > 1

p ≤ 1
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 8.8 Improper Integrals 579

8.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Improper Integrals Describe two ways for an 

integral to be improper.

2.  Improper Integrals What does it mean for an 
improper integral to converge?

3.  Indefinite Integration Limits Explain how to 
evaluate an improper integral that has an infinite limit of 
integration.

4.  Finding Values For what values of a is each integral 
improper? Explain.

 (a) ∫5

a

1
x + 2

 dx (b) ∫4

a

x
3x − 1

 dx

Determining Whether an Integral Is Improper In 
Exercises 5–12, decide whether the integral is improper. 
Explain your reasoning.

 5. ∫1

0

dx
5x − 3

  6. ∫2

1
 
dx
x3

 7. ∫1

0

2x − 5
x2 − 5x + 6

 dx  8. ∫∞

1
ln x2 dx

 9. ∫2

0
e−x dx 10. ∫∞

0
cos x dx

11. ∫∞

−∞
 

sin x
4 + x2 dx 12. ∫π�4

0
csc x dx

 Evaluating an Improper Integral In 
Exercises 13–16, explain why the integral is 
improper and determine whether it diverges or 
converges. Evaluate the integral if it converges.

13. ∫4

0

1

√x
 dx 14. ∫4

3

1
(x − 3)3�2 dx

 

x
1

1

2

2

4

4

3

3

y   

x
1 2 4 5

10

20

40

30

50

y

15. ∫2

0

1
(x − 1)2 dx 16. ∫0

−∞
e3x dx

 

x

1

2

2

y   y

x
−1

1

 Evaluating an Improper Integral In 
Exercises 17–32, determine whether the improper 
integral diverges or converges. Evaluate the 
integral if it converges.

17. ∫∞

2

1
x3 dx 18. ∫∞

3

1
(x − 1)4 dx

19. ∫∞

1

3
3√x

 dx 20. ∫∞

1

4
4√x

 dx

21. ∫∞

0
ex�3 dx 22. ∫0

−∞
 xe−4x dx

23. ∫∞

0
x2e−x dx 24. ∫∞

0
e−x cos x dx

25. ∫∞

4

1
x(ln x)3 dx 26. ∫∞

1
 
ln x

x
 dx

27. ∫∞

−∞
 

4
16 + x2 dx 28. ∫∞

0

x3

(x2 + 1)2 dx

29. ∫∞

0

1
ex + e−x dx 30. ∫∞

0

ex

1 + ex dx

31. ∫∞

0
cos πx dx 32. ∫∞

0
sin 

x
2

 dx

 Evaluating an Improper Integral In Exercises 
33–48, determine whether the improper integral 
diverges or converges. Evaluate the integral if it 
converges, and check your results with the results 
obtained by using the integration capabilities of a 
graphing utility.

33. ∫1

0
 
1
x2 dx 34. ∫5

0
 
10
x

 dx

35. ∫2

0

1
3√x − 1

 dx 36. ∫8

0

3

√8 − x
 dx

37. ∫1

0
x ln x dx 38. ∫e

0
ln x2 dx

39. ∫π�2

0
tan θ dθ 40. ∫π�2

0
sec θ dθ

41. ∫4

2

2

x√x2 − 4
 dx 42. ∫6

3

1

√36 − x2
 dx

43. ∫5

3

1

√x2 − 9
 dx

44. ∫5

0

1
25 − x2 dx

45. ∫∞

3

1

x√x2 − 9
 dx

46. ∫∞

4

√x2 − 16
x2  dx

47. ∫∞

0

4

√x (x + 6)
 dx

48. ∫∞

1

1
x ln x

 dx
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580 Chapter 8 Integration Techniques and Improper Integrals

Finding Values In Exercises 49 and 50, determine all 
values of p for which the improper integral converges.

49. ∫∞

1
 
1
xp dx

50. ∫1

0
 
1
xp dx

51.  Mathematical Induction Use mathematical induction 
to verify that the following integral converges for any positive 
integer n.

 ∫∞

0
xne−x dx

52.  Comparison Test for Improper Integrals In some 
cases, it is impossible to find the exact value of an improper 
integral, but it is important to determine whether the integral 
converges or diverges. Suppose the functions f  and g are 
continuous and 0 ≤ g(x) ≤ f (x) on the interval [a, ∞). It can

  be shown that if ∫∞
a  f (x) dx converges, then ∫∞

a  g(x) dx also
  converges, and if ∫∞

a  g(x) dx diverges, then ∫∞
a  f (x) dx also 

diverges. This is known as the Comparison Test for improper 
integrals.

 (a)  Use the Comparison Test to determine whether ∫∞
1  e−x2

 dx  
converges or diverges. (Hint: Use the fact that e−x2 ≤ e−x 
for x ≥ 1.)

 (b) Use the Comparison Test to determine whether

 ∫∞

1

1
x5 + 1

 dx converges or diverges. (Hint: Use the fact

  that 
1

x5 + 1
≤ 1

x5 for x ≥ 1.)

Convergence or Divergence In Exercises 53–60, use the 
results of Exercises 49–52 to determine whether the improper 
integral converges or diverges.

53. ∫1

0
 

1
6√x

 dx 54. ∫1

0
 
1
x9 dx

55. ∫∞

1
 
1
x5 dx 56. ∫∞

0
x4e−x dx

57. ∫∞

1

1
x2 + 5

 dx 58. ∫∞

2

1

√x − 1
 dx

59. ∫∞

1
 
1 − sin x

x2  dx 60. ∫∞

0

1
ex + x

 dx

eXpLoring ConCepts

61. Improper Integral Explain why ∫1

−1
 
1
x3 dx ≠ 0.

62. Improper Integral Consider the integral

 ∫3

0

10
x2 − 2x

 dx.

  To determine the convergence or divergence of the 
integral, how many improper integrals must be analyzed? 
What must be true of each of these integrals for the given 
integral to converge?

 Area In Exercises 63–66, find the area of the 
unbounded shaded region.

63. y = −
7

(x − 1)3, 64. y = −ln x

 −∞ < x ≤ −1  

1 2 3 4

1

2

3

x

y

 

x

y

−1−2−3−4

1

4

65. Witch of Agnesi: 66. Witch of Agnesi:

 y =
1

x2 + 1
  y =

8
x2 + 4

 

−1−2−3 1 2 3
−1

−2

−3

2

3

y

x

 y

x
−2−4−6 2 4 6

−2

−4

−6

4

6

 Area and Volume In Exercises 67 and 68, 
consider the region satisfying the inequalities.  
(a) Find the area of the region. (b) Find the volume 
of the solid generated by revolving the region 
about the x-axis. (c) Find the volume of the solid 
generated by revolving the region about the y-axis.

67. y ≤ e−x, y ≥ 0, x ≥ 0

68. y ≤ 1
x2, y ≥ 0, x ≥ 1

69.  Arc Length Find the arc length of the graph of 
y = √16 − x2 over the interval [0, 4].

70.  Surface Area  Find the area of the surface formed by 
revolving the graph of y = 2e−x on the interval [0, ∞) about 
the x-axis.

Propulsion In Exercises 71 and 72, use the weight of the 
rocket to answer each question. (Use 4000 miles as the radius of 
Earth and do not consider the effect of air resistance.)

(a)  How much work is required to propel the rocket an 
unlimited distance away from Earth’s surface?

(b)  How far has the rocket traveled when half of the total work 
has occurred?

71. 5-metric-ton rocket 72. 10-metric-ton rocket
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8.8 Improper Integrals 581

Probability A nonnegative function f  is called a probability 
density function if

∫∞

−∞
 f (t) dt = 1.

The probability that x lies between a and b is given by

P(a ≤ x ≤ b) = ∫b

a
 f (t) dt.

In Exercises 73 and 74, (a) show that the nonnegative function 
is a probability density function, and (b) find P(0 ≤ x ≤ 6).

73. f (t) = {1
9e−t�9,

0,

    t ≥ 0

    t < 0
 74. f (t) = {5

6e−5t�6,

0,

    t ≥ 0

    t < 0

75.  Normal Probability The mean height of American men 
between 20 and 29 years old is 69 inches, and the standard 
deviation is 3 inches. A 20- to 29-year-old man is chosen 
at random from the population. The probability that he is 
6 feet tall or taller is

 P(72 ≤ x < ∞) = ∫∞

72

1

3√2π
e−(x−69)2�18 dx.

 (Source: National Center for Health Statistics)

 (a)  Use a graphing utility to graph the integrand. Use the 
graphing utility to convince yourself that the area between 
the x-axis and the integrand is 1.

 (b) Use a graphing utility to approximate P(72 ≤ x < ∞).
 (c)  Approximate 0.5 − P(69 ≤ x ≤ 72) using a graphing 

utility. Use the graph in part (a) to explain why this result 
is the same as the answer in part (b).

 76.  HOW DO YOU SEE IT? The graph shows 
the probability density function for a car brand 
that has a mean fuel efficiency of 26 miles per 
gallon and a standard deviation of 2.4 miles 
per gallon.

16 18 20 22 24 26 28 30 32 34 36

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

x

Miles per gallon

Pr
ob

ab
ili

ty

y

(a)  Which is greater, the probability of choosing a car 
at random that gets between 26 and 28 miles per 
gallon or the probability of choosing a car at random 
that gets between 22 and 24 miles per gallon?

(b)  Which is greater, the probability of choosing a 
car at random that gets between 20 and 22 miles 
per gallon or the probability of choosing a car at 
random that gets at least 30 miles per gallon?

 76.  

Capitalized Cost In Exercises 77 and 78, find the capitalized 
cost C of an asset (a) for n = 5 years, (b) for n = 10 years, and 
(c) forever. The capitalized cost is given by

C = C0 + ∫n

0
c(t)e−rt dt

where C0 is the original investment, t is the time in years, r is 
the annual interest rate compounded continuously, and c(t) is 
the annual cost of maintenance.

77. C0 = $700,000 78. C0 = $700,000

 c(t) = $25,000  c(t) = $25,000(1 + 0.08t)
 r = 0.06  r = 0.06

79.  Electromagnetic Theory The magnetic potential P at a 
point on the axis of a circular coil is given by

 P =
2πNIr

k
 ∫∞

c

1
(r2 + x2)3�2 dx

 where N, I, r, k, and c are constants. Find P.

80.  Gravitational Force A “semi-infinite” uniform rod 
occupies the nonnegative x-axis. The rod has a linear density 
δ, which means that a segment of length dx has a mass of 
δ dx. A particle of mass M is located at the point (−a, 0). The 
gravitational force F that the rod exerts on the mass is given by

 F = ∫∞

0

GMδ
(a + x)2 dx

 where G is the gravitational constant. Find F.

True or False? In Exercises 81–86, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

81.  If f  is continuous on [0, ∞) and lim
x→∞

 f (x) = 0, then ∫∞
0  f (x) dx

converges.

82.  If f  is continuous on [0, ∞) and ∫∞
0  f (x) dx diverges, then 

lim
x→∞

 f (x) ≠ 0.

83. If f ′ is continuous on [0, ∞) and lim
x→∞

 f (x) = 0, then

 ∫∞

0
f ′(x) dx = −f (0).

84.  If the graph of f  is symmetric with respect to the origin or the
  y-axis, then ∫∞

0  f (x) dx converges if and only if ∫∞
−∞ f (x) dx

converges.

85. ∫∞

0
eax dx converges for a < 0.

86. If lim
x→∞

 f (x) = L, then ∫∞

0
f (x) dx converges.

87. Comparing Integrals

 (a) Show that ∫∞
−∞ sin x dx diverges.

 (b) Show that lim
a→∞

 ∫a
−a sin x dx = 0.

 (c)  What do parts (a) and (b) show about the definition of 
improper integrals?
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582 Chapter 8 Integration Techniques and Improper Integrals

88. Exploration Consider the integral

 ∫π�2

0

4
1 + (tan x)n dx

 where n is a positive integer.

 (a) Is the integral improper? Explain.

 (b)  Use a graphing utility to graph the integrand for n = 2, 4, 
8, and 12.

 (c) Use the graphs to approximate the integral as n →∞.

 (d)  Use a computer algebra system to evaluate the integral for 
the values of n in part (b). Make a conjecture about the 
value of the integral for any positive integer n. Compare 
your results with your answer in part (c).

89.  Comparing Integrals Let f  be continuous on the interval 
[a, ∞). Show that if the improper integral ∫∞

a  ∣ f (x)∣ dx 
converges, then the improper integral ∫∞

a  f (x) dx also 
converges.

90.  Writing

 (a) The improper integrals

  ∫∞

1
 
1
x
 dx and ∫∞

1
 
1
x2 dx

   diverge and converge, respectively. Describe the essential 
difference between the integrands that cause one integral 
to converge and the other to diverge.

 (b)  Use a graphing utility to graph the function y = (sin x)�x 
over the interval (1, ∞). Use your knowledge of the 
definite integral to make an inference as to whether the 
integral

  ∫∞

1
 
sin x

x
 dx

  converges. Give reasons for your answer.

 (c)  Use one application of integration by parts and the result 
of Exercise 89 to determine the divergence or convergence 
of the integral in part (b).

Laplace Transforms Let f (t) be a function defined for all 
positive values of t. The Laplace Transform of f (t) is defined by

F(s) = ∫∞

0
e−stf (t) dt

when the improper integral exists. Laplace Transforms are 
used to solve differential equations. In Exercises 91–98, find 
the Laplace Transform of the function.

91. f (t) = 1 92. f (t) = t

93. f (t) = t2

94. f (t) = eat

95. f (t) = cos at

96. f (t) = sin at

97. f (t) = cosh at

98. f (t) = sinh at

 99.  The Gamma Function The Gamma Function Γ(n) is 
defined by

  Γ(n) = ∫∞

0
xn−1e−x dx, n > 0.

  (a) Find Γ(1), Γ(2), and Γ(3).
  (b) Use integration by parts to show that Γ(n + 1) = nΓ(n).
  (c)  Write Γ(n) using factorial notation where n is a positive 

integer.

100. Proof Prove that In = (n − 1
n + 2)In−1, where

  In = ∫∞

0

x2n−1

(x2 + 1)n+3 dx, n ≥ 1.

  Then evaluate each integral.

  (a) ∫∞

0

x
(x2 + 1)4 dx   (b) ∫∞

0

x3

(x2 + 1)5 dx

  (c) ∫∞

0

x5

(x2 + 1)6 dx

101. Finding a Value For what value of c does the integral

  ∫∞

0
( 1

√x2 + 1
−

c
x + 1) dx

  converge? Evaluate the integral for this value of c.

102. Finding a Value For what value of c does the integral

  ∫∞

1
( cx

x2 + 2
−

1
3x) dx

  converge? Evaluate the integral for this value of c.

103.  Volume  Find the volume of the solid generated by revolving 
the region bounded by the graph of f  about the x-axis.

  f (x) = {x ln x,
0,

 0 < x ≤ 2
 x = 0

104.  Volume  Find the volume of the solid generated by  
revolving the unbounded region lying between y = −ln x 
and the y-axis (y ≥ 0) about the x-axis.

u-Substitution In Exercises 105 and 106, rewrite the 
improper integral as a proper integral using the given  
u-substitution. Then use the Trapezoidal Rule with n = 5 to 
approximate the integral.

105. ∫1

0
 
sin x

√x
 dx, u = √x

106. ∫1

0

cos x

√1 − x
 dx, u = √1 − x

107. Rewriting an Integral Let ∫∞

−∞
 f (x) dx be convergent

   and let a and b be real numbers where a ≠ b. Show that

  ∫a

−∞
 f (x) dx + ∫∞

a

 f (x) dx = ∫b

−∞
 f (x) dx + ∫∞

b

 f (x) dx.
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  Review Exercises 583

Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Using Basic Integration Rules In Exercises 1–8, use the 
basic integration rules to find or evaluate the integral.

 1. ∫x2 √x3 − 27 dx  2. ∫xe5−x2 dx

 3. ∫csc2 (x + 8
4 ) dx  4. ∫ x

3√4 − x2
 dx

 5. ∫e

1
 
ln 2x

x
 dx  6. ∫2

3�2
 2x√2x − 3 dx

 7. ∫ 100

√100 − x2
 dx  8. ∫ 2x

x − 3
 dx

Using Integration by Parts In Exercises 9–16, use 
integration by parts to find the indefinite integral.

 9. ∫x e1−x dx 10. ∫x2ex�2 dx

11. ∫e2x sin 3x dx 12. ∫x√x − 1 dx

13. ∫x sec2 x dx 14. ∫ln√x2 − 4 dx

15. ∫x arcsin 2x dx 16. ∫arctan 2x dx

Finding a Trigonometric Integral In Exercises 17–26, 
find the trigonometric integral.

17. ∫sin x cos4 x dx 18. ∫sin2 x cos3 x dx

19. ∫cos3(πx − 1) dx 20. ∫sin2 
πx
2

 dx

21. ∫sec4 
x
2

 dx 22. ∫tan θ sec4 θ dθ

23. ∫x tan4 x2 dx 24. ∫tan2 x
sec3 x

 dx

25. ∫ 1
1 − sin θ  dθ

26. ∫(cos 2θ)(sin θ + cos θ)2 dθ

Area In Exercises 27 and 28, find the area of the given 
region.

27. y = sin4 x 28. y = sin 3x cos 2x

 y

x

4
3π

4
π

2
π

2
π

4
π π

  y

x

6

1

−1

π
3
π

4 )) , 0 
π

Using Trigonometric Substitution In Exercises 29–34, 
use trigonometric substitution to find or evaluate the integral.

29. ∫ −12

x2√4 − x2
 dx 30. ∫√x2 − 9

x
 dx

31. ∫ x3

√4 + x2
 dx 32. ∫√25 − 9x2 dx

33. ∫1

0

6x3

√16 + x2
 dx 34. ∫4

3
x3√x2 − 9 dx

Using Different Methods In Exercises 35 and 36, find the 
indefinite integral using each method.

35. ∫ x3

√4 + x2
 dx

 (a) Trigonometric substitution

 (b) Substitution: u2 = 4 + x2

 (c) Integration by parts: dv =
x

√4 + x2
 dx

36. ∫x√4 + x dx

 (a) Trigonometric substitution

 (b) Substitution: u2 = 4 + x

 (c) Substitution: u = 4 + x

 (d) Integration by parts: dv = √4 + x dx

Using Partial Fractions In Exercises 37– 44, use partial 
fractions to find the indefinite integral.

37. ∫ x − 8
x2 − x − 6

 dx 38. ∫5x − 2
x2 − x

 dx

39. ∫ x2 + 2x
x3 − x2 + x − 1

 dx 40. ∫ 4x − 2
3(x − 1)2 dx

41. ∫ x2

x2 − 2x + 1
 dx 42. ∫ x3 + 4

x2 − 4x
 dx

43. ∫ 4ex

(e2x − 1)(ex + 3) dx 44. ∫ sec2 θ
(tan θ)(tan θ − 1) dθ

Using the Trapezoidal Rule and Simpson’s Rule In 
Exercises 45–48, approximate the definite integral using the 
Trapezoidal Rule and Simpson’s Rule with n = 4. Compare 
these results with the approximation of the integral using a 
graphing utility.

45. ∫3

2

2
1 + x2 dx

46. ∫1

0

x3�2

3 − x2 dx

47. ∫π�2

0
√x cos x dx

48. ∫π

0
√1 + sin2 x dx
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584 Chapter 8 Integration Techniques and Improper Integrals

Integration by Tables In Exercises 49–56, use integration 
tables to find or evaluate the integral.

49. ∫ x
(4 + 5x)2 dx 50. ∫ x

√4 + 5x
 dx

51. ∫√π�2

0
 

x
1 + sin x2 dx 52. ∫1

0

x
1 + ex2 dx

53. ∫ x
x2 + 4x + 8

 dx 54. ∫ 3

2x√9x2 − 1
 dx, x >

1
3

55. ∫ 1
sin πx cos πx

 dx 56. ∫ 1
1 + tan πx

 dx

Finding an Indefinite Integral In Exercises 57–64, find 
the indefinite integral using any method.

57. ∫θ sin θ cos θ dθ 58. ∫csc√2x

√x
 dx

59. ∫ x1�4

1 + x1�2 dx 60. ∫√1 + √x dx

61. ∫√1 + cos x dx 62. ∫3x3 + 4x
(x2 + 1)2 dx

63. ∫cos x ln(sin x) dx 64. ∫(sin θ + cos θ)2 dθ

Differential Equation In Exercises 65–68, find the general 
solution of the differential equation using any method.

65. 
dy
dx

=
25

x2 − 25
 66. 

dy
dx

=
√4 − x2

2x

67. y′ = ln(x2 + x) 68. y′ = √1 − cos θ

Evaluating a Definite Integral In Exercises 69–74, 
evaluate the definite integral using any method. Use a graphing 
utility to verify your result.

69. ∫√5

2
x(x2 − 4)3�2 dx 70. ∫1

0

x
(x − 2)(x − 4) dx

71. ∫4

1
 
ln x

x
 dx 72. ∫2

0
xe3x dx

73. ∫π

2
(x2 − 4) sin x dx 74. ∫5

0

x

√4 + x
 dx

Area In Exercises 75 and 76, find the area of the given region 
using any method.

75. y = x√3 − 2x 76. y =
1

25 − x2

 y

x
1 2

1

2

 

2 4

0.5

1

x

y

Centroid In Exercises 77 and 78, find the centroid of the 
region bounded by the graphs of the equations using any 
method.

77. y = √1 − x2, y = 0

78. (x − 1)2 + y2 = 1, (x − 4)2 + y2 = 4

Evaluating an Improper Integral In Exercises 79–86, 
determine whether the improper integral diverges or converges. 
Evaluate the integral if it converges.

79. ∫16

0
 

1
4√x

 dx 80. ∫2

0
 

7
x − 2

 dx

81. ∫∞

1
x2 ln x dx 82. ∫∞

0
 
e−1�x

x2  dx

83. ∫∞

1
 
ln x
x2  dx 84. ∫∞

1
 

1
4√x

 dx

85. ∫∞

2

1

x√x2 − 4
 dx 86. ∫∞

0

2

√x (x + 4)
 dx

87.  Present Value The board of directors of a corporation is 
calculating the price to pay for a business that is forecast to 
yield a continuous flow of profit of $500,000 per year. The 
money will earn a nominal rate of 5% per year compounded 
continuously. The present value of the business for t0 years is

 Present value = ∫t0

0
500,000e−0.05t dt.

 (a) Find the present value of the business for 20 years.

 (b)  Find the present value of the business in perpetuity 
(forever).

88.  Volume Find the volume of the solid generated by 
revolving the region bounded by the graphs of y ≤ xe−x, 
y ≥ 0, and x ≥ 0 about the x-axis.

89.  Probability The average lengths (from beak to tail) of 
different species of warblers in the eastern United States 
are approximately normally distributed with a mean of 
12.9 centimeters and a standard deviation of 0.95 centimeter 
(see figure). The probability that a randomly selected warbler 
has a length between a and b centimeters is

 P(a ≤ x ≤ b) =
1

0.95√2π
 ∫b

a

e−(x−12.9)2�1.805 dx.

  Use a graphing utility to approximate the probability that a 
randomly selected warbler has a length of (a) 13 centimeters 
or greater and (b) 15 centimeters or greater. (Source: 
Peterson’s Field Guide: Eastern Birds)

x
10 12 14 16

0.25

0.50

9 11 13 15

P
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  P.S. Problem Solving 585

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1. Wallis’s Formulas

 (a) Evaluate the integrals

 ∫1

−1
 (1 − x2) dx and ∫1

−1
 (1 − x2)2 dx.

 (b) Use Wallis’s Formulas to prove that

 ∫1

−1
 (1 − x2)n dx =

22n+1(n!)2

(2n + 1)!

 for all positive integers n.

2. Proof

 (a) Evaluate the integrals

 ∫1

0
 ln x dx and ∫1

0
 (ln x)2 dx.

 (b) Prove that

 ∫1

0
 (ln x)n dx = (−1)n n!

 for all positive integers n.

3.  Comparing Methods Let I = ∫4
0  f (x) dx, where f  is 

shown in the figure. Let L(n) and R(n) represent the Riemann 
sums using the left-hand endpoints and right-hand endpoints of 
n subintervals of equal width. (Assume n is even.) Let T(n) and 
S(n) be the corresponding values of the Trapezoidal Rule and 
Simpson’s Rule.

 

x

4

2 41 3

2

3

1

f

y

 (a) For any n, list L(n), R(n), T(n), and I in increasing order. 

 (b) Approximate S(4).
4.  Area Consider the problem of finding the area of the region 

bounded by the x-axis, the line x = 4, and the curve

 y =
x2

(x2 + 9)3�2.

 (a)  Use a graphing utility to graph the region and approximate 
its area.

 (b)  Use an appropriate trigonometric substitution to find the 
exact area.

 (c)  Use the substitution x = 3 sinh u to find the exact area and 
verify that you obtain the same answer as in part (b).

5.  Area Use the substitution

 u = tan 
x
2

 to find the area of the shaded region under the graph of

 y =
1

2 + cos x

 for 0 ≤ x ≤ π�2 (see figure).

 

x

y

1

2
π π

2
3π 2π

6.  Arc Length Find the arc length of the graph of the function 
y = ln(1 − x2) on the interval 0 ≤ x ≤ 1

2 (see figure).

 

x

y

1
2

1
2

−

7.  Centroid Find the centroid of the region bounded by the 
x-axis and the curve y = e−c2x2

, where c is a positive constant 
(see figure).

 (Hint: Show that ∫∞

0
e−c2x2

 dx =
1
c
 ∫∞

0
e−x2

 dx.)

x

y = e−c2x2

y

8.  Proof Prove the following generalization of the Mean Value 
Theorem. If f  is twice differentiable on the closed interval 
[a, b], then

 f (b) − f (a) = f ′(a)(b − a) − ∫b

a

f ″(t)(t − b) dt.
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586 Chapter 8 Integration Techniques and Improper Integrals

 9. Inverse Function and Area

 (a)  Let y = f −1(x) be the inverse function of f. Use integration 
by parts to derive the formula

 ∫ f −1(x) dx = xf −1(x) − ∫ f (y) dy.

 (b) Use the formula in part (a) to find the integral

 ∫arcsin x dx.

 (c)  Use the formula in part (a) to find the area under the graph 
of y = ln x, 1 ≤ x ≤ e (see figure).

  

x

y

1 2 3

−1

1

2

e

 

x

y

1

1

 Figure for 9 Figure for 10

10.  Area Factor the polynomial p(x) = x4 + 1 and then find 
the area under the graph of

 y =
1

x4 + 1
, 0 ≤ x ≤ 1 (see figure).

11.  Partial Fraction Decomposition Suppose the 
denominator of a rational function can be factored into distinct 
linear factors

 D(x) = (x − c1)(x − c2) .  .  . (x − cn)

  for a positive integer n and distinct real numbers c1,  
c2, .  .  . , cn. If N is a polynomial of degree less than n, show 
that

 
N(x)
D(x) =

P1

x − c1
+

P2

x − c2
+ .  .  . +

Pn

x − cn

  where Pk = N(ck)�D′(ck) for k = 1, 2, .  .  . , n. Note that this 
is the partial fraction decomposition of N(x)�D(x).

12.  Partial Fraction Decomposition Use the result of 
Exercise 11 to find the partial fraction decomposition of 

 
x3 − 3x2 + 1

x4 − 13x2 + 12x
.

13. Evaluating an Integral

 (a) Use the substitution u =
π
2

− x to evaluate the integral

  ∫π�2

0

sin x
cos x + sin x

 dx.

 (b) Let n be a positive integer. Evaluate the integral

  ∫π�2

0

sinn x
cosn x + sinn x

 dx.

14.  Elementary Functions Some elementary functions, 
such as f (x) = sin(x2), do not have antiderivatives that are 
elementary functions. Joseph Liouville proved that

 ∫ex

x
 dx

  does not have an elementary antiderivative. Use this fact to 
prove that

 ∫ 1
ln x

 dx

 does not have an elementary antiderivative.

15.  Rocket The velocity v (in feet per second) of a rocket 
whose initial mass (including fuel) is m is given by

 v = −gt + u ln 
m

m − rt
, t <

m
r

  where u is the expulsion speed of the fuel, r is the rate at which 
the fuel is consumed, and g = 32 feet per second per second is 
the acceleration due to gravity. Find the position equation for 
a rocket for which m = 50,000 pounds, u = 12,000 feet per 
second, and r = 400 pounds per second. What is the height of 
the rocket when t = 100 seconds? (Assume that the rocket was 
fired from ground level and is moving straight upward.)

16.  Proof Suppose that f (a) = f (b) = g(a) = g(b) = 0 and 
the second derivatives of f  and g are continuous on the closed 
interval [a, b]. Prove that

 ∫b

a

 f (x)g″(x) dx = ∫b

a

 f ″(x)g(x) dx.

17.  Proof Suppose that f (a) = f (b) = 0 and the second 
derivatives of f  exist on the closed interval [a, b]. Prove that

 ∫b

a

(x − a)(x − b) f ″(x) dx = 2 ∫b

a

 f (x) dx.

18. Approximating an Integral Using the inequality

 
1
x5 +

1
x10 +

1
x15 <

1
x5 − 1

<
1
x5 +

1
x10 +

2
x15

 for x ≥ 2, approximate ∫∞

2
 

1
x5 − 1

 dx.

19.  Volume Consider the shaded region between the graph 
of y = sin x, where 0 ≤ x ≤ π, and the line y = c, where 
0 ≤ c ≤ 1, as shown in the figure. A solid is formed by 
revolving the region about the line y = c.

 (a) For what value of c does the solid have minimum volume?

 (b) For what value of c does the solid have maximum volume?

y

x
π

y = sin x

y = c
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588 Chapter 9 Infinite Series

9.1 Sequences

 Write the terms of a sequence.
 Determine whether a sequence converges or diverges.
 Write a formula for the nth term of a sequence.
 Use properties of monotonic sequences and bounded sequences.

Sequences
In mathematics, the word “sequence” is used in much the same way as it is in ordinary 
English. Saying that a collection of objects or events is in sequence usually means that 
the collection is ordered in such a way that it has an identified first member, second 
member, third member, and so on.

Mathematically, a sequence is defined as a function whose domain is the set 
of positive integers. Although a sequence is a function, it is common to represent 
sequences by subscript notation rather than by the standard function notation. For 
instance, in the sequence

1, 2, 3, 4, .  .  . , n, .  .  .
        Sequence

a1,  a2,  a3,  a4,  .  .  . ,  an,  .  .  .

1 is mapped onto a1, 2 is mapped onto a2, and so on. The numbers

a1, a2, a3, .  .  . , an, .  .  . 

are the terms of the sequence. The number an is the nth term of the sequence, and the 
entire sequence is denoted by {an}. Occasionally, it is convenient to begin a sequence 
with a0 so that the terms of the sequence become a0, a1, a2, a3, .  .  . , an, .  .  . and the 
domain is the set of nonnegative integers.

 Writing the Terms of a Sequence

a. The terms of the sequence {an} = {3 + (−1)n} are

3 + (−1)1, 3 + (−1)2, 3 + (−1)3, 3 + (−1)4, .  .  .

 2, 4, 2, 4, .  .  . .

b. The terms of the sequence {bn} = { n
1 − 2n} are

1
1 − 2 ∙ 1

, 
2

1 − 2 ∙ 2
, 

3
1 − 2 ∙ 3

, 
4

1 − 2 ∙ 4
, .  .  .

 −1, −
2
3

, −
3
5

, −
4
7

, .  .  . .

c. The terms of the sequence {cn} = { n2

2n − 1} are

12

21 − 1
, 

22

22 − 1
, 

32

23 − 1
, 

42

24 − 1
, .  .  .

 
1
1

, 
4
3

, 
9
7

, 
16
15

, .  .  . .

d.  The terms of the recursively defined sequence {dn}, where d1 = 25 and dn+1 = dn − 5, 
are

25, 25 − 5 = 20, 20 − 5 = 15, 15 − 5 = 10, .  .  . . 

REMARK Some sequences 
are defined recursively. To 
define a sequence recursively, 
you need to be given one or 
more of the first few terms. All 
other terms of the sequence are 
then defined using previous 
terms, as shown in Example 1(d).

Exploration
Finding Patterns Describe 
a pattern for each of the 
sequences listed below. Then 
use your description to write 
a formula for the nth term of 
each sequence. As n increases, 
do the terms appear to be 
approaching a limit? Explain 
your reasoning.

a. 1, 12, 14, 18, 1
16, .  .  .

b. 1, 12, 16, 1
24, 1

120, .  .  .

c. 10, 10
3 , 10

6 , 10
10, 10

15, .  .  .

d. 1
4, 49, 9

16, 16
25, 25

36, .  .  .

e. 3
7, 5

10, 7
13, 9

16, 11
19, .  .  .
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9.1 Sequences 589

Limit of a Sequence
The primary focus of this chapter concerns sequences whose terms approach limiting 
values. Such sequences are said to converge. For instance, the sequence {1�2n}

1
2

, 
1
4

, 
1
8

, 
1
16

, 
1
32

, .  .  .

converges to 0, as indicated in the next definition.

Definition of the Limit of a Sequence

Let L be a real number. The limit of a sequence {an} is L, written as

lim
n→∞

 an = L

if for each ε > 0, there exists M > 0 such that ∣an − L∣ < ε whenever n > M. 
If the limit L of a sequence exists, then the sequence converges to L. If the 
limit of a sequence does not exist, then the sequence diverges.

Graphically, this definition says that eventually (for n > M and ε > 0), the terms 
of a sequence that converges to L will lie within the band between the lines y = L + ε 
and y = L − ε, as shown in Figure 9.1.

If a sequence {an} agrees with a function f  at every positive integer, and if f (x) 
approaches a limit L as x →∞, then the sequence must converge to the same limit L.

THEOREM 9.1 Limit of a Sequence

Let L be a real number. Let f  be a function of a real variable such that

lim
x→∞

 f (x) = L.

If {an} is a sequence such that f (n) = an for every positive integer n, then

lim
n→∞

 an = L.

 Finding the Limit of a Sequence

Find the limit of the sequence whose nth term is an = (1 +
1
n)

n

.

Solution In Example 5, Section 5.6, you learned that

lim
x→∞

 (1 +
1
x)

x

= e.

So, you can apply Theorem 9.1 to conclude that

lim
n→∞

 an = lim
n→∞

 (1 +
1
n)

n

= e. 

There are different ways in which a sequence can fail to have a limit. One way is 
that the terms of the sequence increase without bound or decrease without bound. These 
cases are written symbolically, as shown below.

Terms increase without bound: lim
n→∞

 an = ∞

Terms decrease without bound: lim
n→∞

 an = −∞

REMARK The converse of 
Theorem 9.1 is not true (see 
Exercise 82). 

n
642 31 5

ε

ε
L

M

L + 

L − 

y = an

For n > M, the terms of the sequence 
all lie within ε units of L.
Figure 9.1

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



590 Chapter 9 Infinite Series

The properties of limits of sequences listed in the next theorem parallel those given 
for limits of functions of a real variable in Section 2.3.

THEOREM 9.2 Properties of Limits of Sequences

Let lim
n→∞

 an = L and lim
n→∞

 bn = K.

1. Scalar multiple: lim
n→∞

 (can) = cL, c is any real number.

2. Sum or difference: lim
n→∞

 (an ± bn) = L ± K

3. Product: lim
n→∞

 (anbn) = LK

4. Quotient: lim
n→∞

 
an

bn

=
L
K

, bn ≠ 0 and K ≠ 0

 Determining Convergence or Divergence

See LarsonCalculus.com for an interactive version of this type of example.

a. Because the sequence {an} = {3 + (−1)n} has terms

2, 4, 2, 4, .  .  . See Example 1(a).

 that alternate between 2 and 4, the limit

lim
n→∞

 an

 does not exist. So, the sequence diverges.

b. For {bn} = { n
1 − 2n}, divide the numerator and denominator by n to obtain

lim
n→∞

 
n

1 − 2n
= lim

n→∞
 

1
(1�n) − 2

= −
1
2

 See Example 1(b).

 which implies that the sequence converges to −1
2.

 Using L’Hôpital’s Rule to Determine Convergence

Show that the sequence whose nth term is an =
n2

2n − 1
 converges.

Solution Consider the function of a real variable

f (x) =
x2

2x − 1
.

Applying L’Hôpital’s Rule twice produces

lim
x→∞

 
x2

2x − 1
= lim

x→∞
 

2x
(ln 2)2x = lim

x→∞
 

2
(ln 2)22x = 0.

Because f (n) = an for every positive integer n, you can apply Theorem 9.1 to conclude 
that

lim
n→∞

 
n2

2n − 1
= 0. See Example 1(c).

So, the sequence converges to 0. 

TECHNOLOGY Use a 
graphing utility to graph the 
function in Example 4. Notice 
that as x approaches infinity, 
the value of the function gets 
closer and closer to 0. If you 
have access to a graphing utility 
that can generate terms of 
a sequence, try using it to 
calculate the first 20 terms of 
the sequence in Example 4. 
Then view the terms to observe 
numerically that the sequence 
converges to 0.
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9.1 Sequences 591

The symbol n! (read “n factorial”) is used to simplify some of the formulas 
 developed in this chapter. Let n be a positive integer; then n factorial is defined as

n! = 1 ∙ 2 ∙ 3 ∙ 4 .  .  . (n − 1) ∙ n.

As a special case, zero factorial is defined as 0! = 1. From this definition, you can see 
that 1! = 1, 2! = 1 ∙ 2 = 2, 3! = 1 ∙ 2 ∙ 3 = 6, and so on. Factorials follow the same 
conventions for order of operations as exponents. That is, just as 2x3 and (2x)3 imply 
different orders of operations, 2n! and (2n)! imply the orders

2n! = 2(n!) = 2(1 ∙ 2 ∙ 3 ∙ 4 .  .  . n)

and

(2n)! = 1 ∙ 2 ∙ 3 ∙ 4 .  .  . n ∙ (n + 1) .  .  . 2n

respectively.
Another useful limit theorem that can be rewritten for sequences is the Squeeze 

Theorem from Section 2.3.

THEOREM 9.3 Squeeze Theorem for Sequences

If lim
n→∞

 an = L = lim
n→∞

 bn and there exists an integer N such that an ≤ cn ≤ bn

for all n > N, then lim
n→∞

 cn = L.

 Using the Squeeze Theorem

Show that the sequence {cn} = {(−1)n 
1
n!} converges, and find its limit.

Solution To apply the Squeeze Theorem, you must find two convergent sequences 
that can be related to {cn}. Two possibilities are an = −1�2n and bn = 1�2n, both of 
which converge to 0. By comparing the term n! with 2n, you can see that

n! = 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 .  .  . n = 24 ∙ 5 ∙ 6 .  .  . n (n ≥ 4)
 
 n − 4 factors

and

2n = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 .  .  . 2 = 16 ∙ 2 ∙ 2 .  .  . 2. (n ≥ 4)
 
 n − 4 factors

This implies that for n ≥ 4, 2n < n!, and you have

−1
2n ≤ (−1)n 

1
n!

≤ 1
2n, n ≥ 4

as shown in Figure 9.2. So, by the Squeeze Theorem, it follows that 

lim
n→∞

 (−1)n 
1
n!

= 0. 

Example 5 suggests something about the rate at which n! increases as n →∞. As 
Figure 9.2 suggests, both 1�2n and 1�n! approach 0 as n →∞. Yet 1�n! approaches 0 
so much faster than 1�2n does that

lim
n→∞

 
1�n!
1�2n = lim

n→∞
 
2n

n!
= 0.

In fact, it can be shown that for any fixed number k, lim
n→∞

 (kn�n!) = 0. This means that 

the factorial function grows faster than any exponential function.

n
1

0.5

1.0

−1.5

−1.0

−0.5
1
2n

(−1)n

n!

−

1
2n

an

For n ≥ 4, (−1)n�n! is squeezed 
between −1�2n and 1�2n.
Figure 9.2
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592 Chapter 9 Infinite Series

In Example 5, the sequence {cn} has both positive and negative terms. For this 
sequence, it happens that the sequence of absolute values, {∣cn∣}, also converges to 0. 
You can show this by the Squeeze Theorem using the inequality

0 ≤ 1
n!

≤ 1
2n, n ≥ 4.

In such cases, it is often convenient to consider the sequence of absolute values and 
then apply Theorem 9.4, which states that if the absolute value sequence converges to 
0, then the original signed sequence also converges to 0.

THEOREM 9.4 Absolute Value Theorem

For the sequence {an}, if

lim
n→∞

 ∣an∣ = 0 then lim
n→∞

 an = 0.

Proof Consider the two sequences {∣an∣} and {−∣an∣}. Because both of these 
sequences converge to 0 and

−∣an∣ ≤ an ≤ ∣an∣
you can use the Squeeze Theorem to conclude that {an} converges to 0. 

Pattern Recognition for Sequences
Sometimes the terms of a sequence are generated by some rule that does not explicitly 
identify the nth term of the sequence. In such cases, you may be required to discover 
a pattern in the sequence and to describe the nth term. Once the nth term has been 
specified, you can investigate the convergence or divergence of the sequence.

 Finding the nth Term of a Sequence

Find a sequence {an} whose first five terms are

2
1

, 
4
3

, 
8
5

, 
16
7

, 
32
9

, .  .  .

and then determine whether the sequence you have chosen converges or diverges.

Solution First, note that the numerators are successive powers of 2, and the 
denominators form the sequence of positive odd integers. By comparing an with n, you 
have the following pattern.

21

1
, 

22

3
, 

23

5
, 

24

7
, 

25

9
, .  .  . , 

2n

2n − 1
, .  .  .

Consider the function of a real variable f (x) = 2x�(2x − 1). Applying L’Hôpital’s 
Rule produces

lim
x→∞

 
2x

2x − 1
= lim

x→∞
 
2x(ln 2)

2
= ∞.

Next, apply Theorem 9.1 to conclude that

lim
n→∞

 
2n

2n − 1
= ∞.

So, the sequence diverges. 
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 9.1 Sequences 593

Without a specific rule for generating the terms of a sequence or some knowledge 
of the context in which the terms of the sequence are obtained, it is not possible to  
determine the convergence or divergence of the sequence merely from its first sev eral 
terms. For instance, although the first three terms of the following four sequences are 
identical, the first two sequences converge to 0, the third sequence  converges to 19, and 
the fourth sequence diverges.

{an}: 1
2

, 
1
4

, 
1
8

, 
1
16

, .  .  . , 
1
2n

, .  .  .

{bn}: 1
2

, 
1
4

, 
1
8

, 
1
15

, .  .  . , 
6

(n + 1)(n2 − n + 6), .  .  .

{cn}: 1
2

, 
1
4

, 
1
8

, 
7
62

, .  .  . , 
n2 − 3n + 3

9n2 − 25n + 18
, .  .  . 

{dn}: 1
2

, 
1
4

, 
1
8

, 0, .  .  . , 
−n(n + 1)(n − 4)

6(n2 + 3n − 2) , .  .  .

The process of determining an nth term from the pattern observed in the first several 
terms of a sequence is an example of inductive reasoning.

 Finding the nth Term of a Sequence

Determine the nth term for a sequence whose first five terms are

−
2
1

, 
8
2

, −
26
6

, 
80
24

, −
242
120

, .  .  .

and then decide whether the sequence converges or diverges.

Solution Note that the numerators are 1 less than 3n.

31 − 1 = 2  32 − 1 = 8  33 − 1 = 26  34 − 1 = 80  35 − 1 = 242

So, you can reason that the numerators are given by the rule

3n − 1.

Factoring the denominators produces

 1 = 1

 2 = 1 ∙ 2

 6 = 1 ∙ 2 ∙ 3

 24 = 1 ∙ 2 ∙ 3 ∙ 4

and

 120 = 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5.

This suggests that the denominators are represented by n!. Finally, because the signs 
alternate, you can write the nth term as

an = (−1)n (3n − 1
n! ).

From the discussion about the growth of n! on the bottom of page 591, it follows that

lim
n→∞

 ∣an∣ = lim
n→∞

 
3n − 1

n!
= 0.

Applying Theorem 9.4, you can conclude that

lim
n→∞

 an = 0.

So, the sequence {an} converges to 0. 
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Monotonic Sequences and Bounded Sequences
So far, you have determined the convergence of a sequence by finding its limit. Even 
when you cannot determine the limit of a particular sequence, it still may be useful to 
know whether the sequence converges. Theorem 9.5 (on the next page) provides a test 
for convergence of sequences without determining the limit. First, some preliminary 
definitions are given.

Definition of Monotonic Sequence

A sequence {an} is monotonic when its terms are nondecreasing

a1 ≤ a2 ≤ a3 ≤ .  .  . ≤ an ≤ .  .  .

or when its terms are nonincreasing

a1 ≥ a2 ≥ a3 ≥ .  .  . ≥ an ≥ .  .  . .

 Determining Whether a Sequence Is Monotonic

Determine whether each sequence having the given nth term is monotonic.

a. an = 3 + (−1)n

b. bn =
2n

1 + n

c. cn =
n2

2n − 1

Solution

a. This sequence alternates between 2 and 4. So, it is not monotonic.

b.  This sequence is monotonic because each successive term is greater than its 
predecessor. To see this, compare the terms bn and bn+1. [Note that, because n is
positive, you can multiply each side of the inequality by (1 + n) and (2 + n)
without reversing the inequality sign.]

 bn =
2n

1 + n
<?

2(n + 1)
1 + (n + 1) = bn+1

 2n(2 + n) <? (1 + n)(2n + 2)

 4n + 2n2 <? 2 + 4n + 2n2

 0 < 2

   Starting with the final inequality, which is valid, you can reverse the steps to 
 conclude that the original inequality is also valid.

c.  This sequence is not monotonic because the second term is greater than both the 
first term and the third term. (Note that when you drop the first term, the remaining 
sequence c2, c3, c4, .  .  . is monotonic.)

Figure 9.3 graphically illustrates these three sequences. 

In Example 8(b), another way to see that the sequence is monotonic is to argue that 
the derivative of the corresponding differentiable function

f (x) =
2x

1 + x

is positive for all x. This implies that f  is increasing, which in turn implies that {bn} is 
increasing.

n
1

1

2

2

3

3

4

4

a1

a2

a3

a4

{an} = {3 + (−1)n}

an

(a) Not monotonic

n
1

1

2

2

3

3

4

4

b1

b2
b3

b4

{bn} = { }2n
1 + n

bn

(b) Monotonic

n
1

1

2

2

3

3

4

4

c1

c2 c3 c4

{cn} = n2

2n − 1{ }

cn

(c) Not monotonic

Figure 9.3
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Definition of Bounded Sequence

1.  A sequence {an} is bounded above when there is a real number M such that 
an ≤ M for all n. The number M is called an upper bound of the sequence.

2.  A sequence {an} is bounded below when there is a real number N such that 
N ≤ an for all n. The number N is called a lower bound of the sequence.

3. A sequence {an} is bounded when it is bounded above and bounded below.

Note that all three sequences in Example 8 (and shown in Figure 9.3) are bounded. 
To see this, note that

2 ≤ an ≤ 4, 1 ≤ bn ≤ 2, and 0 ≤ cn ≤ 4
3

.

One important property of the real numbers is that they are complete. Informally, 
this means that there are no holes or gaps on the real number line. (The set of rational 
numbers does not have the completeness property.) The completeness axiom for real 
numbers can be used to conclude that if a sequence has an upper bound, then it must 
have a least upper bound (an upper bound that is less than all other upper bounds for 
the sequence). For example, the least upper bound of the sequence {an} = {n�(n + 1)},

1
2

, 
2
3

, 
3
4

, 
4
5

, .  .  . , 
n

n + 1
, .  .  .

is 1. The completeness axiom is used in the proof of Theorem 9.5.

THEOREM 9.5 Bounded Monotonic Sequences

If a sequence {an} is bounded and monotonic, then it converges.

Proof Assume that the sequence is nondecreasing, as shown in Figure 9.4. For the 
sake of simplicity, also assume that each term in the sequence is positive. Because the 
sequence is bounded, there must exist an upper bound M such that

a1 ≤ a2 ≤ a3 ≤ .  .  . ≤ an ≤ .  .  . ≤ M.

From the completeness axiom, it follows that there is a least upper bound L such that

a1 ≤ a2 ≤ a3 ≤ .  .  . ≤ an ≤ .  .  . ≤ L.

For ε > 0, it follows that L − ε < L, and therefore L − ε cannot be an upper bound 
for the sequence. Consequently, at least one term of {an} is greater than L − ε. That is, 
L − ε < aN for some positive integer N. Because the terms of {an} are nondecreasing, 
it follows that aN ≤ an for n > N. You now know that L − ε < aN ≤ an ≤ L < L + ε, 
for every n > N. It follows that ∣an − L∣ < ε for n > N, which by definition means 
that {an} converges to L. The proof for a nonincreasing sequence is similar (see 
Exercise 89). 

 Bounded and Monotonic Sequences

a.  The sequence {an} = {1�n} is both bounded and monotonic. So, by Theorem 9.5, it 
must converge.

b.  The divergent sequence {bn} = {n2�(n + 1)} is monotonic but not bounded. (It is 
bounded below.)

c. The divergent sequence {cn} = {(−1)n} is bounded but not monotonic. 

n
1

1

2

2

3

3

4 5

4

a1

a2

a3

a4
a5

L

a1 ≤ a2 ≤ a3 ≤ … ≤ L

an

Every bounded, nondecreasing 
sequence converges.
Figure 9.4
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9.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Recursively Defined Sequence What does it 

mean for a sequence to be defined recursively?

2.  Properties of Limits of Sequences What is the 
value of L?

 lim
n→∞

 an = L, lim
n→∞

 bn = 8, and lim
n→∞

 (anbn) = 24

3.  Rate of Increase Which function grows faster as n
approaches infinity? Explain.

 f (n) = 7n g(n) = (n − 1)!

4.  Bounded Monotonic Sequences A sequence {an} 
is bounded below and nonincreasing. Does {an} converge 
or diverge? Use a graph to support your conclusion.

 Writing the Terms of a Sequence In 
Exercises 5–10, write the first five terms of the 
sequence with the given nth term.

 5. an = 3n  6. an = (−
2
5)

n

 7. an = sin 
nπ
2

  8. an =
3n

n + 4

 9. an = (−1)n+1(2
n) 10. an = 2 +

2
n

−
1
n2

Writing the Terms of a Sequence In Exercises 11 and 
12, write the first five terms of the recursively defined sequence.

11. a1 = 3, ak+1 = 2(ak − 1) 12. a1 = 6, ak+1 = 1
3ak

2

Matching In Exercises 13–16, match the sequence with the 
given nth term with its graph. [The graphs are labeled (a), (b), 
(c), and (d).]

(a) an

2 4 6 8 10

2

4

6

8

10

n

 (b) 

−2 2 4 6 8 10

−0.8

−0.4
−0.6

−1.0

0.4
0.2

0.6

n

an

(c) an

2 4 6 8 10

2

4

6

8

10

n

 (d) 

2 4 6 8 10
−1

−2

1

2

n

an

13. an =
10

n + 1
 14. an =

10n
n + 1

15. an = (−1)n 16. an =
(−1)n

n

Simplifying Factorials In Exercises 17–20, simplify the 
ratio of factorials.

17. 
(n + 1)!
(n − 1)! 18. 

(3n + 1)!
(3n)!

19. 
n!

(n − 3)! 20. 
(4n + 1)!
(4n + 3)!

 Finding the Limit of a Sequence In Exercises 
21–24, find the limit of the sequence with the given 
nth term.

21. an =
n + 1

n
 22. an = 6 +

2
n2

23. an =
2n

√n2 + 1
 24. an = cos 

2
n

Finding the Limit of a Sequence In Exercises 25–28, use 
a graphing utility to graph the first 10 terms of the sequence with 
the given nth term. Use the graph to make an inference about the 
convergence or divergence of the sequence. Verify your inference 
analytically and, if the sequence converges, find its limit.

25. an =
4n + 1

n
 26. an =

1
n3�2

27. an = sin 
nπ
2

 28. an = 2 −
1
4n

 Determining Convergence or Divergence 
In Exercises 29– 44, determine the convergence or 
divergence of the sequence with the given nth term. 
If the sequence converges, find its limit.

29. an =
5

n + 2
 30. an = n −

1
n!

31. an = (−1)n( n
n + 1) 32. an =

1 + (−1)n

n2

33. an =
3n + √n

4n
 34. an =

3√n
3√n + 1

35. an =
ln(n3)

2n
 36. an =

en

4n

37. an =
(n + 1)!

n!
 38. an =

(n − 2)!
n!

39. an =
np

en, p > 0 40. an = n sin 
1
n

41. an = 21�n 42. an = −3−n

43. an =
sin n

n
 44. an =

cos 2n
3n

 Finding the nth Term of a Sequence In 
Exercises 45–52, write an expression for the nth 
term of the sequence and then determine whether 
the sequence you have chosen converges or diverges. 
(There is more than one correct answer.)

45. 2, 8, 14, 20, .  .  . 46. 1, 12, 16, 1
24, 1

120, .  .  .

47. −2, 1, 6, 13, 22, .  .  . 48. 1, −1
4, 19, − 1

16, .  .  .
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49. 2
3, 34, 45, 56, .  .  .

50. 2, 24, 720, 40,320, 3,628,800, .  .  .

51. 2, 1 + 1
2, 1 + 1

3, 1 + 1
4, 1 + 1

5, .  .  .

52. 
1

2 ∙ 3
, 

2
3 ∙ 4

, 
3

4 ∙ 5
, 

4
5 ∙ 6

, .  .  .

 Monotonic and Bounded Sequences In 
Exercises 53–60, determine whether the sequence 
with the given nth term is monotonic and whether 
it is bounded. Use a graphing utility to confirm 
your results.

53. an = 4 −
1
n

 54. an =
3n

n + 2

55. an = ne−n�2 56. an = (−
2
3)

n

57. an = (2
3)

n

 58. an = (3
2)

n

59. an = sin 
nπ
6

 60. an =
cos n

n

Using a Theorem In Exercises 61–64, (a) use Theorem 9.5 
to show that the sequence with the given nth term converges 
and (b) use a graphing utility to graph the first 10 terms of the 
sequence and find its limit.

61. an = 7 +
1
n

 62. an = 5 −
2
n

63. an =
1
3 (1 −

1
3n) 64. an = 2 +

1
5n

65.  Compound Interest Consider the sequence {An} whose 
nth term is given by

 An = P(1 +
r

12)
n

  where P is the principal, An is the account balance after 
n months, and r is the interest rate compounded annually.

 (a) Is {An} a convergent sequence? Explain.

 (b)  Find the first 10 terms of the sequence when 
P = $10,000 and r = 0.055.

66.  Compound Interest A deposit of $100 is made in an 
account at the beginning of each month at an annual interest 
rate of 3% compounded monthly. The balance in the account 
after n months is An = 100(401)[(1.0025)n − 1].

 (a) Compute the first six terms of the sequence {An}.
 (b)  Find the balance in the account after 5 years by  computing 

the 60th term of the sequence.

 (c)  Find the balance in the account after 20 years by 
computing the 240th term of the sequence.

67.  Inflation When the rate of inflation is 4 1
2% per year and the 

 average price of a car is currently $25,000, the average price 
after n years is Pn = $25,000(1.045)n. Compute the average 
prices for the next 5 years.

eXpLoRInG ConCeptS
69.  Writing a Sequence Give an example of a sequence 

satisfying the condition. 

 (a)  A monotonically increasing sequence that converges 
to 10

 (b) A sequence that converges to 34

70.  Writing a Sequence Give an example of a bounded 
sequence that has a limit and an example of a bounded 
sequence that does not have a limit.

71.  Monotonic Sequence Let {an} be a monotonic 
sequence such that an ≤ 1. Discuss the convergence of 
{an}. When {an} converges, what can you conclude about 
its limit?

 72.  HOW DO YOU SEE IT? The graphs of 
two sequences are shown in the figures. Which 
graph represents the sequence with alternating 
signs? Explain.

(a)

n
2 6

2

−2

1

−1

an  (b)

n
2 4 6

2

−2

1

−1

an

 72.  

73.  Using a Sequence Compute the first six terms of the 
sequence {an} = {n√n}. If the sequence converges, find its limit.

74.  Using a Sequence Compute the first six terms of the 
sequence

 {an} = {√n ln(1 +
1
n)}.

 If the sequence converges, find its limit. 

A government program that currently costs taxpayers 
$4.5 billion per year is cut back by 6% per year.

(a)  Write an expression
for the amount
budgeted for this
program after 
n years.

(b)  Compute the 
budgets for the
first 4 years.

(c)  Determine the 
convergence or divergence of the sequence of reduced 
budgets. If the sequence converges, find its limit.

68. Government Expenditures

ZRyzner/Shutterstock.com
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598 Chapter 9 Infinite Series

75.  Proof Prove that if {sn} converges to L and L > 0, then 
there exists a number N such that sn > 0 for n > N.

True or False? In Exercises 77–80, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

77.  Sequences that diverge approach either ∞ or −∞.

78. If {an} converges, then lim
n→∞

 (an − an+1) = 0.

79. If {an} converges, then {an�n} converges to 0.

80. If {an} diverges and {bn} diverges, then {an + bn} diverges.

81.  Fibonacci Sequence In a study of the progeny of rabbits, 
Fibonacci (ca. 1170–ca. 1240) encountered the sequence now 
bearing his name. The sequence is defined recur  sively as 
an+2 = an + an+1, where a1 = 1 and a2 = 1.

 (a) Write the first 12 terms of the sequence.

 (b) Write the first 10 terms of the sequence defined by

  bn =
an+1

an

, n ≥ 1.

 (c) Using the definition in part (b), show that bn = 1 +
1

bn−1
.

 (d)  The golden ratio ρ can be defined by lim
n→∞

 bn = ρ. Show

  that ρ = 1 + (1�ρ) and solve this equation for ρ.

82.  Using a Theorem Show that the converse of Theorem 9.1
is not true. [Hint: Find a function f (x) such that f (n) = an 
converges, but lim

x→∞
 f (x) does not exist.]

83. Using a Sequence Consider the sequence

 √2, √2 + √2, √2 + √2 + √2, .  .  . .

 (a) Compute the first five terms of this sequence.

 (b) Write a recursion formula for an, for n ≥ 2.

 (c) Find lim
n→∞

 an.

84.  Using a Sequence Consider the sequence {an}, where 
a1 = √k, an+1 = √k + an, and k > 0.

 (a) Show that {an} is increasing and bounded.

 (b) Prove that lim
n→∞

 an exists.

 (c) Find lim
n→∞

 an.

85. Squeeze Theorem

 (a) Show that ∫n
1  ln x dx < ln(n!) for n ≥ 2.

1 2 3 4 n

0.5

1.0

1.5

2.0

2.5
y = ln x

x

y

 (b) Draw a graph similar to the one above that shows

  ln(n!) < ∫n+1
1  ln x dx.

 (c) Use the results of parts (a) and (b) to show that

  
nn

en−1 < n! <
(n + 1)n+1

en , for n > 1.

 (d)  Use the Squeeze Theorem for Sequences and the result of

   part (c) to show that lim
n→∞

 ( n√n!�n) = 1�e.

 (e) Test the result of part (d) for n = 20, 50, and 100.

86.  Proof Prove, using the definition of the limit of a sequence, 
that

 lim
n→∞

 
1
n3 = 0.

87.  Proof Prove, using the definition of the limit of a sequence, 
that lim

n→∞
 rn = 0 for −1 < r < 1.

88.  Using a Sequence Find a divergent sequence {an} such 
that {a2n} converges.

89. Proof Prove Theorem 9.5 for a nonincreasing sequence.

pUtnAM eXAM ChALLenGe
90.  Let {xn}, n ≥ 0, be a sequence of nonzero real numbers 

such that x 2
n − xn−1 xn+1 = 1 for n = 1, 2, 3, .  .  . . 

Prove there exists a real number a such that 
xn+1 = axn − xn−1 for all n ≥ 1.

91. Let T0 = 2, T1 = 3, T2 = 6, and for n ≥ 3,

 Tn = (n + 4)Tn−1 − 4nTn−2 + (4n − 8)Tn−3.

 The first few terms are

 2, 3, 6, 14, 40, 152, 784, 5168, 40576.

   Find, with proof, a formula for Tn of the form 
Tn = An + Bn, where {An} and {Bn} are well-known 
sequences.

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

The populations an (in millions) of Zimbabwe from 2000 
through 2015 are given below as ordered pairs of the form 
(n, an), where n represents the year, with n = 0
corresponding to 2000. (Source: U.S. Census Bureau)

(0, 11.8), (1, 11.9),
(2, 11.9), (3, 11.8),
(4, 11.7), (5, 11.6),
(6, 11.5), (7, 11.4),
(8, 11.4), (9, 11.4),
(10, 11.7), (11, 12.1),
(12, 12.6), (13, 13.2),
(14, 13.8), (15, 14.2)

(a)  Use the regression capabilities of a graphing utility to
find a model of the form

 an = bn4 + cn3 + dn2 + en + f, n = 0, 1, .  .  . , 15

    for the data. Use the graphing utility to plot the points
and graph the model.

(b)  Use the model to predict the population of Zimbabwe 
in 2020.

  Use the regression capabilities of a graphing utility to

76. Population

Matt Mawson/Getty Images
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9.2 Series and Convergence 599

9.2 Series and Convergence

 Understand the definition of a convergent infinite series.
 Use properties of infinite geometric series.
 Use the nth-Term Test for Divergence of an infinite series.

Infinite Series
One important application of infinite sequences is in representing “infinite  summations.” 
Informally, if {an} is an infinite sequence, then

∑
∞

n=1
 an = a1 + a2 + a3 + .  .  . + an + .  .  .    Infinite series

is an infinite series (or simply a series). The numbers a1, a2, a3, and so on are the terms 
of the series. For some series, it is convenient to begin the index at n = 0 (or some 
other  integer). As a typesetting convention, it is common to represent an infinite series 
as ∑ an. In such cases, the starting value for the index must be taken from the  context 
of the statement.

To find the sum of an infinite series, consider the sequence of partial sums listed 
below.

 S1 = a1

 S2 = a1 + a2

 S3 = a1 + a2 + a3

 S4 = a1 + a2 + a3 + a4

 S5 = a1 + a2 + a3 + a4 + a5

 ⋮
 Sn = a1 + a2 + a3 + a4 + a5 + .  .  . + an

If this sequence of partial sums converges, then the series is said to converge and has 
the sum indicated in the next definition.

Definitions of Convergent and Divergent Series

For the infinite series ∑
∞

n=1
 an, the nth partial sum is

Sn = a1 + a2 + .  .  . + an.

If the sequence of partial sums {Sn} converges to S, then the series ∑
∞

n=1
 an 

 converges. The limit S is called the sum of the series.

S = a1 + a2 + .  .  . + an + .  .  . S = ∑
∞

n=1
 an

If {Sn} diverges, then the series diverges.

As you study this chapter, you will see that there are two basic questions involving 
infinite series.

• Does a series converge or does it diverge?

• When a series converges, what is its sum?

These questions are not always easy to answer, especially the second one.

RemARk As you study 
this chapter, it is important to 
distinguish between an infinite 
series and a sequence. A 
sequence is an ordered 
collection of numbers

a1, a2, a3, .  .  . , an, .  .  .

whereas a series is an infinite 
sum of terms from a sequence

a1 + a2 + a3 + .  .  . + an + .  .  . .

INFINITE SERIES

The study of infinite series was 
considered a novelty in the 
fourteenth century. Logician 
Richard Suiseth, whose 
nickname was Calculator, 
solved this problem.

If throughout the first half of 
a given time interval a variation 
continues at a certain intensity, 
throughout the next quarter 
of the interval at double the 
intensity, throughout the following 
eighth at triple the intensity and 
so ad infinitum, then the average 
intensity for the whole interval will 
be the intensity of the variation 
during the second subinterval 
(or double the intensity). 
This is the same as saying that 
the sum of the infinite series

1
2

+
2
4

+
3
8

+ .  .  . +
n
2n + .  .  .

is 2.
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 Convergent and Divergent Series

a. The series

∑
∞

n=1
 
1
2n =

1
2

+
1
4

+
1
8

+
1
16

+ .  .  .

  has the partial sums listed below. 

 S1 =
1
2

 S2 =
1
2

+
1
4

=
3
4

 S3 =
1
2

+
1
4

+
1
8

=
7
8

 ⋮
 Sn =

1
2

+
1
4

+
1
8

+ .  .  . +
1
2n =

2n − 1
2n

 Because

lim
n→∞

 
2n − 1

2n = 1

  it follows that the series converges and its sum is 1. (You can also determine the 
partial sums of the series geometrically, as shown in Figure 9.5.)

b. The nth partial sum of the series

∑
∞

n=1
 (1

n
−

1
n + 1) = (1 −

1
2) + (1

2
−

1
3) + (1

3
−

1
4) + .  .  .

 is

Sn = 1 −
1

n + 1
.

 Because the limit of Sn is 1, the series converges and its sum is 1.

c. The series

∑
∞

n=1
 1 = 1 + 1 + 1 + 1 + .  .  .

 diverges because Sn = n and the sequence of partial sums diverges. 

The series in Example 1(b) is a telescoping series of the form

(b1 − b2) + (b2 − b3) + (b3 − b4) + (b4 − b5) + .  .  . .    Telescoping series

Note that b2 is canceled by the second term, b3 is canceled by the third term, and so on. 
Because the nth partial sum of this series is

Sn = b1 − bn+1

it follows that a telescoping series will converge if and only if bn approaches a finite 
number as n →∞. Moreover, if the series converges, then its sum is

S = b1 − lim
n→∞

 bn+1.

1

1

1
4

1
2

1
8

1
32

1
64

1
16

You can determine the partial sums of 
the series in Example 1(a) geometrically 
using this figure.
Figure 9.5

 For Further InFormatIon
To learn more about the partial 
sums of infinite series, see the  
article “Six Ways to Sum a Series” 
by Dan Kalman in The College 
Mathematics Journal. To view this 
article, go to MathArticles.com.
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 Writing a Series in telescoping Form

Find the sum of the series ∑
∞

n=1
 

2
4n2 − 1

.

Solution

Using partial fractions, you can write

an =
2

4n2 − 1
=

2
(2n − 1)(2n + 1) =

1
2n − 1

−
1

2n + 1
.

From this telescoping form, you can see that the nth partial sum is

Sn = (1
1

−
1
3) + (1

3
−

1
5) + .  .  . + ( 1

2n − 1
−

1
2n + 1) = 1 −

1
2n + 1

.

So, the series converges and its sum is 1. That is,

∑
∞

n=1
 

2
4n2 − 1

= lim
n→∞

 Sn = lim
n→∞

 (1 −
1

2n + 1) = 1. 

Geometric Series
The series in Example 1(a) is a geometric series. In general, the series

∑
∞

n=0
 arn = a + ar + ar2 + .  .  . + arn + .  .  . ,   a ≠ 0    Geometric series

is a geometric series with ratio r, r ≠ 0.

theoRem 9.6 Convergence of a Geometric Series

A geometric series with ratio r diverges when ∣r∣ ≥ 1. If ∣r∣ < 1, then 
the series converges to the sum

∑
∞

n=0
 arn =

a
1 − r

, ∣r∣ < 1.

Proof It is easy to see that the series diverges when r = ±1. If r ≠ ±1, then

Sn = a + ar + ar2 + .  .  . + arn−1.

Multiplication by r yields

rSn = ar + ar2 + ar3 + .  .  . + arn.

Subtracting the second equation from the first produces Sn − rSn = a − arn. Therefore, 
Sn(1 − r) = a(1 − rn), and the nth partial sum is

Sn =
a

1 − r
(1 − rn).

When ∣r∣ < 1, it follows that rn → 0 as n →∞, and you obtain

lim
n→∞

 Sn = lim
n→∞

 [ a
1 − r

 (1 − rn)] =
a

1 − r
 [ lim

n→∞
 (1 − rn)] =

a
1 − r

which means that the series converges and its sum is a�(1 − r). It is left to you to
show that the series diverges when ∣r∣ > 1. 

exploration
In “Proof Without Words,” 
by Benjamin G. Klein and 
Irl C. Bivens, the authors 
present the diagram below. 
Explain why the second 
statement after the diagram 
is valid. How is this result 
related to Theorem 9.6?

P

Q

R

S1

1 1

1 − r r

r

r2

r2r3
r3

T

∆PQR ~ ∆TSP

1 + r + r2 + r3 + .  .  . =
1

1 − r

Exercise taken from “Proof 
Without Words” by Benjamin 
G. Klein and Irl C. Bivens, 
Mathematics Magazine, 61, 
No. 4, October 1988, p. 219, 
by permission of the authors.
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 Convergent and Divergent Geometric Series

a. The geometric series

∑
∞

n=0
 
3
2n = ∑

∞

n=0
 3(1

2)
n

= 3(1) + 3(1
2) + 3(1

2)
2

+ .  .  .

   has a ratio of r = 1
2 with a = 3. Because ∣r∣ < 1, the series converges and its sum is 

S =
a

1 − r
=

3
1 − (1�2) = 6. See Figure 9.6.

b. The geometric series

∑
∞

n=0
 (3

2)
n

= 1 +
3
2

+
9
4

+
27
8

+ .  .  .

 has a ratio of r = 3
2. Because ∣r∣ ≥ 1, the series diverges. 

The formula for the sum of a geometric series can be used to write a repeating  
decimal as the ratio of two integers, as demonstrated in the next example.

 A Geometric Series for a Repeating Decimal

See LarsonCalculus.com for an interactive version of this type of example.

Use a geometric series to write 0.08 as the ratio of two integers.

Solution For the repeating decimal 0.08, you can write

 0.080808 .  .  . =
8

102 +
8

104 +
8

106 +
8

108 + .  .  .

 = ∑
∞

n=0
 ( 8

102)( 1
102)

n

.

For this series, you have a = 8�102 and r = 1�102. So,

 0.080808 .  .  . =
a

1 − r
=

8�102

1 − (1�102) =
8
99

.

Try dividing 8 by 99 on a calculator to see that it produces 0.08. 

The convergence of a series is not affected by the removal of a finite number of 
terms from the beginning of the series. For instance, the geometric series

∑
∞

n=4
 (1

2)
n

 and ∑
∞

n=0
 (1

2)
n

both converge. Furthermore, because the sum of the second series is 

a
1 − r

=
1

1 − (1�2) = 2 

you can conclude that the sum of the first series is

 S = 2 − [(1
2)

0

+ (1
2)

1

+ (1
2)

2

+ (1
2)

3

]
 = 2 −

15
8

 =
1
8

.

teChnoloGy Figure 9.6 
shows the first 20 partial sums 
of the infinite series in  
Example 3(a). Notice how the 
values appear to approach the 
line y = 6. Using a graphing 
utility to sum the first 20 terms, 
you should obtain a sum of 
about 5.999994.

19
0

0

7

Figure 9.6

RemARk In words, 
Theorem 9.6 states that “the 
sum of a convergent geometric 
series is the first term of the 
series divided by the difference 
of 1 and the ratio r.” For the 
series

∑
∞

n=4
 (1

2)
n

note that the first term is (1�2)4 
and r = 1�2. So, the sum is

S =
(1�2)4

1 − (1�2) =
1
8

.
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The properties in the next theorem are direct consequences of the corresponding 
properties of limits of sequences.

theoRem 9.7 Properties of Infinite Series

Let ∑ an and ∑ bn be convergent series, and let A, B, and c be real numbers. If 
∑ an = A and ∑ bn = B, then the following series converge to the indicated sums.

1. ∑
∞

n=1
 can = cA

2. ∑
∞

n=1
 (an + bn) = A + B

3. ∑
∞

n=1
 (an − bn) = A − B

nth-Term Test for Divergence
The next theorem states that when a series converges, the limit of its nth term must be 0.

theoRem 9.8 limit of the nth term of a Convergent Series

If ∑
∞

n=1
 an converges, then lim

n→∞
 an = 0.

Proof Assume that

∑
∞

n=1
 an = lim

n→∞
 Sn = L.

Then, because Sn = Sn−1 + an and

lim
n→∞

 Sn = lim
n→∞

 Sn−1 = L

it follows that

 L = lim
n→∞

 Sn

 = lim
n→∞

 (Sn−1 + an)

 = lim
n→∞

 Sn−1 + lim
n→∞

 an

 = L + lim
n→∞

 an

which implies that {an} converges to 0. 

The contrapositive of Theorem 9.8 provides a useful test for divergence. This
nth-term test for Divergence states that if the limit of the nth term of a series does 
not converge to 0, then the series must diverge.

theoRem 9.9 nth-term test for Divergence

If lim
n→∞

 an ≠ 0 then ∑
∞

n=1
 an diverges.

RemARk Be sure you see 
that the converse of Theorem 9.8 
is generally not true. That is, 
if the sequence {an} converges 
to 0, then the series ∑ an may 
either converge or diverge. 
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 Using the nth-term test for Divergence

a. For the series ∑
∞

n=0
 2n, you have

lim
n→∞

 2n = ∞.

  So, the limit of the nth term is not 0, and the series diverges.

b. For the series ∑
∞

n=1
 

n!
2n! + 1

, you have

lim
n→∞

 
n!

2n! + 1
=

1
2

.

 So, the limit of the nth term is not 0, and the series diverges.

c. For the series ∑
∞

n=1
 
1
n

, you have

lim
n→∞

 
1
n

= 0.

 Because the limit of the nth term is 0, the nth-Term Test for Divergence does not 
apply and you can draw no conclusions about convergence or divergence. (In the 
next section, you will see that this particular series diverges.)

 Bouncing Ball Problem

A ball is dropped from a height of 6 feet and begins bouncing, as shown in Figure 9.7. 
The height of each bounce is three-fourths the height of the previous bounce. Find the  
total vertical distance traveled by the ball.

Solution When the ball hits the ground for the first time, it has traveled a distance 
of D1 = 6 feet. For subsequent bounces, let Di be the distance traveled up and down. 
For example, D2 and D3 are

D2 = 6(3
4) + 6(3

4) = 12(3
4)

 Up Down

and

D3 = 6(3
4)(

3
4) + 6(3

4)(
3
4) = 12(3

4)
2

.

 Up Down

By continuing this process, it can be determined that the total vertical distance is

 D = 6 + 12(3
4) + 12(3

4)
2

+ 12(3
4)

3

+ .  .  .

 = 6 + 12 ∑
∞

n=0
 (3

4)
n+1

 = 6 + 12(3
4) ∑

∞

n=0
 (3

4)
n

 = 6 + 9[ 1
1 − (3�4)]

 = 6 + 9(4)
 = 42 feet. 

RemARk The series in 
Example 5(c) will play an 
important role in this chapter.

∑
∞

n=1
 
1
n

=

1 +
1
2

+
1
3

+
1
4

+ .  .  .

You will see that this series 
diverges even though the  
nth term approaches 0 as n 
approaches ∞.

i
1 2 3 4 5 6 7

1

2

3

4

5

6

7

D

The height of each bounce is 
three-fourths the height of the 
preceding bounce.
Figure 9.7
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 9.2 Series and Convergence 605

9.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Sequence and Series Describe the difference

 between lim
n→∞

 an = 5 and ∑
∞

n=1
an = 5.

2.  Geometric Series Define a geometric series, state 
when it converges, and give the formula for the sum of a 
convergent geometric series.

3.  limit of the nth term of a Series The limit of the 
nth term of a series converges to 0. What can you conclude 
about the convergence or divergence of the series?

4.  limit of the nth term of a Series The limit of the 
nth term of a series does not converge to 0. What can you 
conclude about the convergence or divergence of the series?

Finding Partial Sums In exercises 5–10, find the sequence 
of partial sums S1, S2, S3, S4, and S5.

 5. 1 + 1
4 + 1

9 + 1
16 + 1

25 + .  .  .

 6. 
1

2 ∙ 3
+

2
3 ∙ 4

+
3

4 ∙ 5
+

4
5 ∙ 6

+
5

6 ∙ 7
+  .  .  .

 7. 3 − 9
2 + 27

4 − 81
8 + 243

16 − .  .  .

 8. 1 + 1
2 + 1

4 + 1
6 + 1

8 + 1
10 + .  .  .

 9. ∑
∞

n=1
 

3
2n−1 10. ∑

∞

n=1
 
(−1)n+1

n!

 Verifying Divergence In exercises 11–18, 
verify that the infinite series diverges.

11. ∑
∞

n=0
 5(5

2)
n

 12. ∑
∞

n=0
 4(−1.05)n

13. ∑
∞

n=1
 

n
n + 1

 14. ∑
∞

n=1
 

n
2n + 3

15. ∑
∞

n=1
 
n3 + 1
n3 + n2 16. ∑

∞

n=1
 

2n

√n2 + 1

17. ∑
∞

n=1
 
4n + 3
4n+1  18. ∑

∞

n=1
 
(n + 1)!

5n!

 Verifying Convergence In exercises 19–24, 
verify that the infinite series converges.

19. ∑
∞

n=0
 (5

6)
n

 20. ∑
∞

n=1
 2 (−

1
2)

n

21. ∑
∞

n=0
 (0.9)n = 1 + 0.9 + 0.81 + 0.729 + .  .  .

22. ∑
∞

n=0
 (−0.2)n = 1 − 0.2 + 0.04 − 0.008 + .  .  .

23. ∑
∞

n=1
 

1
n(n + 1) (Hint: Use partial fractions.)

24. ∑
∞

n=1
 

1
n(n + 2) (Hint: Use partial fractions.)

numerical, Graphical, and Analytic Analysis In 
exercises 25–28, (a) find the sum of the series, (b) use a 
graphing utility to find the indicated partial sum Sn and 
complete the table, (c) use a graphing utility to graph the first 
10 terms of the sequence of partial sums and a horizontal line 
representing the sum, and (d) explain the relationship between 
the magnitudes of the terms of the series and the rate at which 
the sequence of partial sums approaches the sum of the series.

n 5 10 20 50 100

Sn

25. ∑
∞

n=1
 

6
n(n + 3) 26. ∑

∞

n=1
 

4
n(n + 4)

27. ∑
∞

n=1
 2(0.9)n−1 28. ∑

∞

n=1
 10(−

1
4)

n−1

 Finding the Sum of a Convergent Series In 
exercises 29–38, find the sum of the convergent 
series.

29. ∑
∞

n=0
 5(2

3)
n

 30. ∑
∞

n=0
 (−

1
5)

n

31. ∑
∞

n=1
 

4
n(n + 2) 32. ∑

∞

n=1
 

1
(2n + 1)(2n + 3)

33. 8 + 6 + 9
2 + 27

8 + .  .  . 34. 9 − 3 + 1 − 1
3 + .  .  .

35. ∑
∞

n=0
 ( 1

2n −
1
3n) 36. ∑

∞

n=0
 [(0.3)n + (0.8)n]

37. ∑
∞

n=1
 (sin 1)n 38. ∑

∞

n=1
 

1
9n2 + 3n − 2

 Using a Geometric Series In exercises 
39– 44, (a) write the repeating decimal as a 
geometric series and (b) write the sum of the series 
as the ratio of two integers.

39. 0.4  40. 0.63

41. 0.12 42. 0.01

43. 0.075 44. 0.215

 Determining Convergence or Divergence 
In exercises 45–58, determine the convergence or 
divergence of the series.

45. ∑
∞

n=0
 (1.075)n 46. ∑

∞

n=0
 

6n

n + 1

47. ∑
∞

n=1
 

n + 1
2n − 1

 48. ∑
∞

n=1
 
4n + 1
3n − 1

49. ∑
∞

n=1
 (1

n
−

1
n + 2) 50. ∑

∞

n=1
 ( 1

n + 1
−

1
n + 2)

51. ∑
∞

n=1
 
3n

n3 52. ∑
∞

n=0
 
7
5n
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606 Chapter 9 Infinite Series

53. ∑
∞

n=2
 

n
ln n

 54. ∑
∞

n=1
 ln 

1
n

55. ∑
∞

n=1
 (1 +

k
n)

n

 56. ∑
∞

n=1
 e−n

57. ∑
∞

n=1
 arctan n 58. ∑

∞

n=1
 ln(n + 1

n )

eXpLoRInG ConCeptS
59.  Using a Series You delete a finite number of 

terms from a divergent series. Will the new series still 
diverge? Explain your reasoning.

60.  Using a Series You add a finite number of 
terms to a convergent series. Will the new series still 
converge? Explain your reasoning.

making a Series Converge In exercises 61–66, find all 
values of x for which the series converges. For these values of 
x, write the sum of the series as a function of x.

61. ∑
∞

n=1
 (3x)n 62. ∑

∞

n=0
 (2

x)
n

63. ∑
∞

n=1
 (x − 1)n 64. ∑

∞

n=0
 5(x − 2

3 )
n

65. ∑
∞

n=0
 (−1)n xn

66. ∑
∞

n=0
 (−1)n x2n

Using a Geometric Series In exercises 67 and 68, (a) find 
the common ratio of the  geometric series, (b) write the function 
that gives the sum of the series, and (c) use a graphing utility 
to graph the function and the partial sums S3 and S5. What do 
you notice?

67. 1 + x + x2 + x3 + .  .  . 68. 1 −
x
2

+
x2

4
−

x3

8
+ .  .  .

Writing In exercises 69 and 70, use a graphing utility to 
determine the first term that is less than 0.0001 in each of the 
convergent series. note that the answers are very different. 
explain how this will affect the rate at which the series converges.

69. ∑
∞

n=1
 

1
n(n + 1), ∑

∞

n=1
 (1

8)
n

70. ∑
∞

n=1
 
1
2n, ∑

∞

n=1
 (0.01)n

71.  marketing An electronic games manufacturer producing
a new product estimates the annual sales to be 8000 units. 
Each year, 5% of the units that have been sold will become 
inoperative. So, 8000 units will be in use after 1 year, 
[8000 + 0.95(8000)] units will be in use after 2 years, and so 
on. How many units will be in use after n years?

72.  Depreciation A company buys a machine for $475,000 
that depreciates at a rate of 30% per year. Find a formula for 
the value of the machine after n years. What is its value after
5 years?

74.  multiplier effect Repeat Exercise 73 when the percent of 
the  revenue that is spent again in the city decreases to 60%.

75.  Distance A ball is dropped from a height of 16 feet. Each 
time it drops h feet, it rebounds 0.81h feet. Find the total 
 distance traveled by the ball.

76.  time The ball in Exercise 75 takes the following times for 
each fall.

 s1 = −16t2 + 16, s1 = 0 when t = 1

 s2 = −16t2 + 16(0.81), s2 = 0 when t = 0.9

 s3 = −16t2 + 16(0.81)2, s3 = 0 when t = (0.9)2

 s4 = −16t2 + 16(0.81)3, s4 = 0 when t = (0.9)3

 ⋮ ⋮
 sn = −16t2 + 16(0.81)n−1,  sn = 0 when t = (0.9)n−1

  Beginning with s2, the ball takes the same amount of time to 
bounce up as it does to fall, so the total time elapsed before it 
comes to rest is given by

 t = 1 + 2 ∑
∞

n=1
 (0.9)n.

 Find this total time.

Probability In exercises 77 and 78, the random variable n 
 represents the number of units of a product sold per day in a 
store. the probability distribution of n is given by P(n). Find 
the probability that two units are sold in a given day [P(2)] and 
show that P(0) + P(1) + P(2) + P(3) + .  .  . = 1.

77. P(n) =
1
2 (

1
2)

n

 78. P(n) =
1
3 (

2
3)

n

79.  Probability A fair coin is tossed repeatedly. The probability 
that the first head occurs on the nth toss is given by

 P(n) = (1
2)n, where n ≥ 1.

 (a) Show that ∑
∞

n=1
 (1

2)
n

= 1.

 (b)  The expected number of tosses required until the first head 
occurs in the experiment is given by

  ∑
∞

n=1
 n(1

2)
n

.

  Is this series geometric?

 (c) Use a computer algebra system to find the sum in part (b).

The total annual 
spending by tourists
in a resort city is 
$200 million. 
Approximately 75%
of that revenue is again
spent in the resort city,
and of that amount
approximately 75% is
again spent in the same city, and so on. Write the geometric 
series that gives the total amount of spending generated by
the $200 million and find the sum of the series.

73. multiplier effect

Littleny/Dreamstime.com
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9.2 Series and Convergence 607

80.  Probability In an experiment, three people toss a fair coin 
one at a time until one of them tosses a head. Determine, for 
each person, the probability that he or she tosses the first head. 
Verify that the sum of the three probabilities is 1.

81.  Area The sides of a square are 16 inches in length. A new 
square is formed by connecting the midpoints of the sides of 
the original square, and two of the triangles outside the second 
square are shaded (see figure). Determine the area of the shaded 
regions (a) when this process is continued five more times and 
(b) when this pattern of shading is continued infinitely.

16 in.

 

Y Zx1

y1
y2

y3 y4 y5

x2 x3 x4 x5

z

X
θ

Figure for 81 Figure for 82

82.  length A right triangle XYZ is shown above where 

∣XY∣ = z and ∠X = θ. Line segments are continually drawn 
to be perpendicular to the triangle, as shown in the figure.

 (a)  Find the total length of the perpendicular line segments 

∣Yy1∣ + ∣x1y1∣ + ∣x1y2∣ + .  .  . in terms of z and θ.

 (b)  Find the total length of the perpendicular line segments 
when z = 1 and θ = π�6.

Using a Geometric Series In exercises 83– 86, use the 
formula for the nth partial sum of a geometric series

∑
n−1

i=0
 ari =

a(1 − rn)
1 − r

.

83.  Present Value The winner of a $2,000,000 sweepstakes 
will be paid $100,000 per year for 20 years. The money earns 
6% interest per year. The present value of the winnings is 

 ∑
20

n=1
 100,000( 1

1.06)
n

. Compute the present value and interpret

 its meaning.

84.  Annuities When an employee receives a paycheck at the 
end of each month, P dollars is invested in a retirement account. 
These deposits are made each month for t years and the account 
earns interest at the annual percentage rate r. When the interest 
is compounded monthly, the amount A in the account at the end 
of t years is

  A = P + P(1 +
r

12) + .  .  . + P(1 +
r

12)
12t−1

  = P(12
r )[(1 +

r
12)

12t

− 1].

  When the interest is compounded continuously, the amount A 
in the account after t years is

  A = P + Per�12 + Pe2r�12 + .  .  . + Pe(12t−1)r�12

  =
P(ert − 1)
er�12 − 1

.

 Verify the formulas for the sums given above.

85.  Salary You go to work at a company that pays $0.01 for the 
first day, $0.02 for the second day, $0.04 for the third day, and 
so on. If the daily wage keeps doubling, what would your total 
income be for working (a) 29 days, (b) 30 days, and (c) 31 days?

Annuities In exercises 87–90, consider making monthly 
deposits of P dollars in a savings account at an annual interest 
rate r. use the results of exercise 84 to find the balance A in 
the account after t years when the interest is compounded 
(a) monthly and (b) continuously.

87. P = $50, r = 2%, t = 20 years

88. P = $200, r = 5.5%, t = 25 years

89. P = $1050, r = 0.9%, t = 35 years

90. P = $175, r = 4%, t = 50 years

true or False? In exercises 91–96, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

91. If lim
n→∞

 an = 0, then ∑
∞

n=1
 an converges.

92. If ∑
∞

n=1
 an = L, then ∑

∞

n=0
 an = L + a0.

93. If ∣r∣ < 1, then ∑
∞

n=1
 arn =

a
1 − r

.

94. The series ∑
∞

n=1
 

n
1000(n + 1) diverges.

95. 0.75 = 0.749999 .  .  . 

96.  Every decimal with a repeating pattern of digits is a rational 
number.

97.  Using Divergent Series Find two divergent series ∑ an 
and ∑ bn such that ∑(an + bn) converges.

The sphereflake shown below is a computer-generated 
fractal that was created by Eric Haines. The radius of the 
large sphere is 1. To the large sphere, nine spheres of radius 
1
3 are attached. To each of these, nine spheres of radius 19 are 
attached. This process is continued infinitely. Prove that the 
sphereflake has an infinite surface area.

86. Sphereflake

Courtesy of Eric Haines
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608 Chapter 9 Infinite Series

 98.  Proof Given two infinite series ∑ an and ∑ bn such that 
∑ an  converges and ∑ bn diverges, prove that ∑(an + bn) 
diverges.

 99.  Fibonacci Sequence The Fibonacci sequence is defined 
recursively by an+2 = an + an+1, where a1 = 1 and a2 = 1.

  (a) Show that 
1

an+1an+3
=

1
an+1an+2

−
1

an+2an+3
.

  (b) Show that ∑
∞

n=0
 

1
an+1an+3

= 1.

100. Remainder Let ∑ an be a convergent series, and let

  RN = aN+1 + aN+2 + .  .  .

   be the remainder of the series after the first N terms. Prove 
that lim

N→∞
 RN = 0.

101.  Proof Prove that 
1
r

+
1
r2 +

1
r3 + .  .  . =

1
r − 1

, for 

∣r∣ > 1.

 102.  hoW Do yoU See It? The figure below 
represents an informal way of showing that

  ∑
∞

n=1
 
1
n2 < 2. Explain how the figure implies this

  conclusion.

11

1

1
32

1
22

1
42

1
52

1
62

1
72

1
2

1
4

 102.  

 For Further InFormatIon For more on this exercise, 
see the article “Convergence with Pictures” by P. J. Rippon in 
American Mathematical Monthly.

pUtnAM eXAM ChALLenGe

103.  Express ∑
∞

k=1
 

6k

(3k+1 − 2k+1)(3k − 2k) as a rational 

  number.

104.  Let f (n) be the sum of the first n terms of the sequence 
0, 1, 1, 2, 2, 3, 3, 4, . . . , where the nth term is given by

an = {n�2,
(n − 1)�2,

     if n is even
     if n is odd

             .

   Show that if x and y are positive integers and x > y then 
xy = f (x + y) − f (x − y).

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.

The following procedure shows how to make a table disappear by 
removing only half of the table!

(a) Original table has a length of L.

L

(b)  Remove 1
4 of the table centered at the midpoint. Each 

remaining piece has a length that is less than 12L.

(c)  Remove 1
8 of the table by taking sections of length 1

16L from 
the centers of each of the two remaining pieces. Now you have 

 removed 14 + 1
8 of the table. Each remaining piece has a length

 that is less than 14L.

(d)  Remove 1
16 of the table by taking sections of length 1

64L from 
the centers of each of the four remaining pieces. Now you

  have removed 1
4 + 1

8 + 1
16 of the table. Each remaining piece

 has a length that is less than 18L.

Will continuing this process cause the table to disappear, even 
though you have removed only half of the table? Why?

Cantor’s Disappearing table

 For Further InFormatIon Read the article “Cantor’s 
Disappearing Table” by Larry E. Knop in The College Mathematics 
Journal. To view this article, go to MathArticles.com.
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9.3 The Integral Test and p-Series 609

9.3 The Integral Test and p-Series

  Use the Integral Test to determine whether an infinite series converges
or diverges.

 Use properties of p-series and harmonic series.

The Integral Test
In this and the next section, you will study several convergence tests that apply to series 
with positive terms.

THeOrem 9.10 The Integral Test

If f  is positive, continuous, and decreasing for x ≥ 1 and an = f (n), then

∑
∞

n=1
 an and ∫∞

1
f (x) dx

either both converge or both diverge.

Proof Begin by partitioning the interval [1, n] into (n − 1) unit intervals, as shown 
in Figure 9.8. The total areas of the inscribed rectangles and the circumscribed 
rectangles are

∑
n

i=2
 f (i) = f (2) + f (3) + .  .  . + f (n) Inscribed area

and

∑
n−1

i=1
 f (i) = f (1) + f (2) + .  .  . + f (n − 1). Circumscribed area

The exact area under the graph of f  from x = 1 to x = n lies between the inscribed 
and circumscribed areas.

∑
n

i=2
 f (i) ≤ ∫n

1
 f (x) dx ≤ ∑

n−1

i=1
 f (i)

Using the nth partial sum, Sn = f (1) + f (2) + .  .  . + f (n), you can write this 
 inequality as

Sn − f (1) ≤ ∫n

1
f (x) dx ≤ Sn−1.

Now, assuming that ∫∞
1  f (x) dx converges to L, it follows that for n ≥ 1,

Sn − f (1) ≤ L  Sn ≤ L + f (1).

Consequently, {Sn} is bounded and monotonic, and by Theorem 9.5 it converges. 
So, ∑ an converges. For the other direction of the proof, assume that the improper 
integral diverges. Then ∫n

1  f (x) dx approaches infinity as n →∞, and the inequality
Sn−1 ≥ ∫n

1  f (x) dx implies that {Sn} diverges. So, ∑ an diverges. 

Remember that the convergence or divergence of ∑ an is not affected by deleting 
the first N terms. Similarly, when the conditions for the Integral Test are satisfied for 
all x ≥ N > 1, you can simply use the integral ∫∞

N  f (x) dx to test for convergence or 
divergence. (This is illustrated in Example 4.)

x
1 2 3 4 n − 1 n

a

a4 = f (4)
a3 = f (3)

a2 = f (2)

an = f (n)

∑ f (i) = area
n

i = 2

Inscribed rectangles:

y

x
1 2 3 4 n − 1 n

a1 = f (1)
a2 = f (2)

a3 = f (3)

an − 1 = f (n − 1)

∑ f (i) = area
n − 1

i = 1

Circumscribed rectangles:

y

Figure 9.8
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610 Chapter 9 Infinite Series

 Using the Integral Test

Apply the Integral Test to the series ∑
∞

n=1
 

n
n2 + 1

.

Solution The function f (x) = x�(x2 + 1) is positive and continuous for x ≥ 1. To 
determine whether f  is decreasing, find the derivative.

f′(x) =
(x2 + 1)(1) − x(2x)

(x2 + 1)2 =
−x2 + 1
(x2 + 1)2

So, f′(x) < 0 for x > 1 and it follows that f  satisfies the conditions for the Integral 
Test. You can integrate to obtain

 ∫∞

1

x
x2 + 1

 dx =
1
2∫∞

1
 

2x
x2 + 1

 dx

 =
1
2

 lim
b→∞

 ∫b

1
 

2x
x2 + 1

 dx

 =
1
2

 lim
b→∞

 [ln(x2 + 1)]
1

b

 =
1
2

 lim
b→∞

 [ln(b2 + 1) − ln 2]

 = ∞.

So, the series diverges.

 Using the Integral Test

See LarsonCalculus.com for an interactive version of this type of example.

Apply the Integral Test to the series ∑
∞

n=1
 

1
n2 + 1

.

Solution Because f (x) = 1�(x2 + 1) satisfies the conditions for the Integral Test 
(check this), you can integrate to obtain

 ∫∞

1
 

1
x2 + 1

 dx = lim
b→∞

 ∫b

1
 

1
x2 + 1

 dx

 = lim
b→∞

 [arctan x]
1

b

 = lim
b→∞

 (arctan b − arctan 1)

 =
π
2

−
π
4

 =
π
4

.

So, the series converges (see Figure 9.9). 

In Example 2, the fact that the improper integral converges to π�4 does not imply 
that the infinite series converges to π�4. To approximate the sum of the series, you can 
use the inequality

∑
N

n=1
 

1
n2 + 1

≤ ∑
∞

n=1
 

1
n2 + 1

≤ ∑
N

n=1
 

1
n2 + 1

+ ∫∞

N

 
1

x2 + 1
 dx.

(See Exercise 52.) The larger the value of N, the better the approximation. For instance, 
using N = 200 produces 1.072 ≤ ∑ [1�(n2 + 1)] ≤ 1.077.

x
1 2 3 4 5

0.25

0.50

0.75

1.00

1.25

f(x) =
x2 + 1

1

y

Because the improper integral 
converges, the infinite series  
also converges.
Figure 9.9

remark Before applying 
the Integral Test, be sure 
to check that the function 
is positive, continuous, and 
decreasing for x ≥ 1. When the 
function fails to satisfy one or 
more of these conditions, you 
cannot apply the Integral Test.
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9.3 The Integral Test and p-Series 611

p-Series and Harmonic Series
In the remainder of this section, you will investigate a second type of series that has a 
 simple arithmetic test for convergence or divergence. A series of the form

 ∑
∞

n=1
 
1
np =

1
1p +

1
2p +

1
3p + .  .  .    p-series

is a p-series, where p is a positive constant. For p = 1, the series

∑
∞

n=1
 
1
n

= 1 +
1
2

+
1
3

+ .  .  .    Harmonic series

is the harmonic series. A general harmonic series is of the form ∑ [1�(an + b)]. In 
music, strings of the same material, diameter, and tension, and whose lengths form a 
 harmonic series, produce harmonic tones.

The Integral Test is convenient for establishing the convergence or divergence of
p-series. This is shown in the proof of Theorem 9.11.

THeOrem 9.11 Convergence of p-Series

The p-series

∑
∞

n=1
 
1
np =

1
1p +

1
2p +

1
3p +

1
4p + .  .  .

converges for p > 1 and diverges for 0 < p ≤ 1.

Proof The proof follows from the Integral Test and from Theorem 8.7, which states 
that

∫∞

1
 
1
xp dx

converges for p > 1 and diverges for 0 < p ≤ 1.  

 Convergent and Divergent p-Series

Discuss the convergence or divergence of (a) the harmonic series and (b) the p-series 
with p = 2.

Solution

a. From Theorem 9.11, it follows that the harmonic series

∑
∞

n=1
 
1
n

=
1
1

+
1
2

+
1
3

+ .  .  . p = 1

 diverges.

b. From Theorem 9.11, it follows that the p-series

∑
∞

n=1
 
1
n2 =

1
12 +

1
22 +

1
32 + .  .  . p = 2

 converges. 

HARMONIC SERIES

Pythagoras and his students 
paid close attention to the 
development of music as an 
abstract science. This led to the 
discovery of the relationship 
between the tone and the 
length of a vibrating string. It 
was observed that the most 
beautiful musical harmonies 
corresponded to the simplest 
ratios of whole numbers. Later 
mathematicians developed 
this idea into the harmonic 
series, where the terms in the 
harmonic series correspond 
to the nodes on a vibrating 
string that produce multiples 
of the fundamental frequency. 
For example, 12 is twice the 
fundamental frequency, 13 is 
three times the  fundamental 
frequency, and so on.
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612 Chapter 9 Infinite Series

The sum of the series in Example 3(b) can be shown to be π2�6. (This was proved 
by Leonhard Euler, but the proof is too difficult to present here.) Be sure you see that 
the Integral Test does not tell you that the sum of the series is equal to the value of the 
integral. For instance, the sum of the series in Example 3(b) is 

∑
∞

n=1
 
1
n2 =

π2

6
≈ 1.645

whereas the value of the corresponding improper integral is

∫∞

1
 
1
x2 dx = 1.

 Testing a Series for Convergence

Determine whether the series

∑
∞

n=2
 

1
n ln n

converges or diverges.

Solution This series is similar to the divergent harmonic series. If its terms were  
greater than those of the harmonic series, you would expect it to diverge. However, 
because its terms are less than those of the harmonic series, you are not sure what to 
expect. The function

f (x) =
1

x ln x

is positive and continuous for x ≥ 2. To determine whether f  is decreasing, first 
rewrite f  as

f (x) = (x ln x)−1

and then find its derivative.

f′(x) = (−1)(x ln x)−2(1 + ln x) = −
1 + ln x
x2(ln x)2

So, f′(x) < 0 for x > 2 and it follows that f  satisfies the conditions for the Integral 
Test.

 ∫∞

2
 

1
x ln x

 dx = ∫∞

2
 
1�x
ln x

 dx

 = lim
b→∞

 [ln(ln x)]
2

b

 = lim
b→∞

 [ln(ln b) − ln(ln 2)]

 = ∞
The series diverges. 

Note that the infinite series in Example 4 diverges very slowly. For instance, as 
shown in the table, the sum of the first 10 terms is approximately 1.6878196, whereas 
the sum of the first 100 terms is just slightly greater: 2.3250871. In fact, the sum of the 
first 10,000 terms is approximately 3.0150217. You can see that although the infinite 
series “adds up to infinity,” it does so very slowly.

n 11 101 1001 10,001 100,001

Sn 1.6878 2.3251 2.7275 3.0150 3.2382
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 9.3 The Integral Test and p-Series 613

9.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Integral Test What conditions have to be satisfied to 

use the Integral Test?

2.  p-Series Determine whether each series is a p-series.

 (a) ∑
∞

n=1
 

1
n1.4  (b) ∑

∞

n=1
 

1
n−2  (c) ∑

∞

n=1
 
1
n3

 Using the Integral Test In Exercises 3–22, 
confirm that the Integral Test can be applied to the 
series. Then use the Integral Test to determine the 
convergence or divergence of the series.

 3. ∑
∞

n=1
 

1
n + 3

  4. ∑
∞

n=1
 

2
3n + 5

 5. ∑
∞

n=1
 
1
2n  6. ∑

∞

n=1
 3−n

 7. ∑
∞

n=1
 e−n  8. ∑

∞

n=1
 ne−n�2

 9. 
ln 2

2
+

ln 3
3

+
ln 4

4
+

ln 5
5

+
ln 6

6
+ .  .  .

10. 
ln 2

√2
+

ln 3

√3
+

ln 4

√4
+

ln 5

√5
+

ln 6

√6
+ .  .  .

11. 
1
3

+
1
5

+
1
7

+
1
9

+
1
11

+ .  .  .

12. 
1
4

+
2
7

+
3
12

+
4
19

+
5
28

+ .  .  .

13. ∑
∞

n=1
 
arctan n
n2 + 1

 14. ∑
∞

n=2
 
ln n
n3

15. ∑
∞

n=1
 
ln n
n2  16. ∑

∞

n=2
 

1

n√ln n

17. ∑
∞

n=1
 

1
(2n + 3)3 18. ∑

∞

n=1
 
n + 2
n + 1

19. ∑
∞

n=1
 

4n
2n2 + 1

 20. ∑
∞

n=1
 

1
3√n + 9

21. ∑
∞

n=1
 

n
n4 + 1

 22. ∑
∞

n=1
 

n
n4 + 2n2 + 1

Using the Integral Test In Exercises 23 and 24, use the 
Integral Test to determine the convergence or divergence of 
the series, where k is a positive integer.

23. ∑
∞

n=1
 

nk−1

nk + c
 24. ∑

∞

n=1
 nke−n

 Conditions of the Integral Test In Exercises 
25–28, explain why the Integral Test does not 
apply to the series.

25. ∑
∞

n=1
 
(−1)n

n
 26. ∑

∞

n=1
 e−n cos n

27. ∑
∞

n=1
 
2 + sin n

n
 28. ∑

∞

n=1
 (sin n

n )
2

Using the Integral Test In Exercises 29–32, use the 
Integral Test to determine the  convergence or divergence of 
the p-series.

29. ∑
∞

n=1
 
1
n7 30. ∑

∞

n=1
 

1
n1�2

31. ∑
∞

n=1
 

1
n0.9 32. ∑

∞

n=1
 

1
n1.001

 Using a p-Series In Exercises 33–38, use 
Theorem 9.11 to determine the convergence or 
divergence of the p-series.

33. ∑
∞

n=1
 

1
5√n

34. ∑
∞

n=1
 

3
n5�3

35. 1 +
1

2√2
+

1

3√3
+

1

4√4
+

1

5√5
+ .  .  .

36. 1 +
1

3√4
+

1
3√9

+
1

3√16
+

1
3√25

+ .  .  .

37. ∑
∞

n=1
 

1
n1.03

38. ∑
∞

n=1
 
1
nπ

39.  Numerical and Graphical analysis Use a graphing 
 utility to find the indicated partial sum Sn and complete the 
table. Then use a graphing utility to graph the first 10 terms 
of the sequence of partial sums. For each series, compare the 
rate at which the sequence of  partial sums approaches the sum 
of the series.

 
n 5 10 20 50 100

Sn

 (a) ∑
∞

n=1
 3(1

5)
n−1

=
15
4

 (b) ∑
∞

n=1
 
1
n2 =

π2

6

40.  Numerical reasoning Because the harmonic series 
diverges, it follows that for any positive real number M, there 
exists a  positive integer N such that the partial sum

 ∑
N

n=1
 
1
n

> M.

 (a) Use a graphing utility to complete the table.

  
M 2 4 6 8

N

 (b)  As the real number M increases in equal increments, does 
the number N increase in equal increments? Explain.
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614 Chapter 9 Infinite Series

eXpLoRInG ConCeptS
41.  Think about It Without performing any calculations, 

determine whether the following series converges. 
Explain.

1
10,000

+
1

10,001
+

1
10,002

+ .  .  .

42.  Using a Function Let f  be a positive, continuous, 
and decreasing function for x ≥ 1, such that an = f (n). 
Use a graph to rank the following quantities in decreasing 
order. Explain your reasoning.

 (a) ∑
7

n=2
 an  (b) ∫7

1
f (x) dx  (c) ∑

6

n=1
 an

43.  Using a Series Use a graph to show that the inequality 
is true. What can you conclude about the convergence or 
divergence of the series? Explain.

 (a) ∑
∞

n=1
 

1

√n
> ∫∞

1
 

1

√x
 dx

 (b) ∑
∞

n=2
 
1
n2 < ∫∞

1
 
1
x2 dx

 44.  HOW DO YOU See IT? The graphs show 
the sequences of partial sums of the p-series

 ∑
∞

n=1
 

1
n0.4 and ∑

∞

n=1
 

1
n1.5.

  Using Theorem 9.11, the first series diverges 
and the second series converges. Explain how 
the graphs show this.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

n

Sn

1
n0.4∑

∞

n = 1

 

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

n

Sn

1
n1.5∑

∞

n = 1

 44.  

Finding Values In Exercises 45–50, find the positive values 
of p for which the series converges.

45. ∑
∞

n=2
 

1
n(ln n)p 46. ∑

∞

n=2
 
ln n
np

47. ∑
∞

n=1
 

n
(1 + n2)p 48. ∑

∞

n=1
 n(1 + n2)p

49. ∑
∞

n=1
 (3

p)
n

50. ∑
∞

n=3
 

1
n(ln n)[ln(ln n)]p

51.  Proof Let f  be a positive, continuous, and decreasing 
function for x ≥ 1, such that an = f (n). Prove that if the series

∑
∞

n=1
 an

 converges to S, then the remainder RN = S − SN is bounded by

0 ≤ RN ≤ ∫∞

N

 f (x) dx.

52.  Using a remainder Show that the result of Exercise 51 
can be written as

∑
N

n=1
 an ≤ ∑

∞

n=1
 an ≤ ∑

N

n=1
 an + ∫∞

N

 f (x) dx.

approximating a Sum In Exercises 53–58, use the result 
of Exercise 51 to approximate the sum of the convergent series 
using the indicated number of terms. Include an estimate of the 
maximum error for your approximation.

53. ∑
∞

n=1
 
1
n4, three terms 54. ∑

∞

n=1
 

1
(n + 1)3, six terms

55. ∑
∞

n=1
 

1
n2 + 1

, eight terms

56. ∑
∞

n=1
 

1
(n + 1)[ln(n + 1)]3, ten terms

57. ∑
∞

n=1
 ne−n2, four terms

58. ∑
∞

n=1
 e−2n, five terms

Finding a Value In Exercises 59–62, use the result of 
Exercise 51 to find N such that RN ≤ 0.001 for the convergent 
series.

59. ∑
∞

n=1
 
1
n4 60. ∑

∞

n=1
 

1
n3�2

61. ∑
∞

n=1
 e−n�2 62. ∑

∞

n=1
 

1
n2 + 1

63. Comparing Series

 (a) Show that ∑
∞

n=2
 

1
n1.1 converges and ∑

∞

n=2
 

1
n ln n

 diverges.

 (b) Compare the first five terms of each series in part (a).

 (c) Find n > 3 such that 
1

n1.1 <
1

n ln n
.

64.  Using a p-Series Ten terms are used to approximate a 
convergent p-series. Therefore, the remainder is a function of 
p and is

0 ≤ R10(p) ≤ ∫∞

10
 
1
xp dx, p > 1.

 (a) Perform the integration in the inequality.

(b)  Use a graphing utility to represent the inequality graphically.

 (c)  Identify any asymptotes of the remainder function and 
interpret their meaning.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 9.3 The Integral Test and p-Series 615

65. euler’s Constant Let

 Sn = ∑
n

k=1
 
1
k

= 1 +
1
2

+ .  .  . +
1
n

.

 (a) Show that ln(n + 1) ≤ Sn ≤ 1 + ln n.

 (b) Show that the sequence {an} = {Sn − ln n} is bounded.

 (c) Show that the sequence {an} is decreasing.

 (d)  Show that the sequence {an} converges to a limit γ (called 
Euler’s constant).

 (e) Approximate γ using a100.

66. Finding a Sum Find the sum of the series

 ∑
∞

n=2
 ln(1 −

1
n2).

67. Using a Series Consider the series ∑
∞

n=2
 xln n.

 (a)  Determine the convergence or divergence of the series for 
x = 1.

 (b)  Determine the convergence or divergence of the series for 
x = 1�e.

 (c) Find the positive values of x for which the series converges.

68.   riemann Zeta Function The Riemann zeta function 
for real numbers is defined for all x for which the series

 ζ(x) = ∑
∞

n=1
 n−x

 converges. Find the domain of the function.

review In Exercises 69–80, determine the convergence or 
divergence of the series.

69. ∑
∞

n=1
 

1
3n − 2

 70. ∑
∞

n=2
 

1

n√n2 − 1

71. ∑
∞

n=1
 

1

n 4√n
 72. 3 ∑

∞

n=1
 

1
n0.95

73. ∑
∞

n=0
 (2

3)
n

 74. ∑
∞

n=0
 (7

5)
n

75. ∑
∞

n=1
 

n

√3n2 + 3
 76. ∑

∞

n=1
 ( 1

n2 −
1
n3)

77. ∑
∞

n=1
 (1 +

1
n)

n

 78. ∑
∞

n=4
 ln 

n
2

79. ∑
∞

n=2
 

1
n(ln n)3 80. ∑

∞

n=3
 

1
n(ln n)[ln(ln n)]4

The harmonic series

∑
∞

n=1
 
1
n

= 1 +
1
2

+
1
3

+
1
4

+ .  .  . +
1
n

+ .  .  .

is one of the most important series in this chapter. Even though its 
terms tend to zero as n increases,

lim
n→∞

 
1
n

= 0

the harmonic series diverges. In other words, even though the terms 
are getting smaller and smaller, the sum “adds up to infinity.”

(a)  One way to show that the harmonic series diverges is attributed 
to James Bernoulli. He grouped the terms of the harmonic 
series as follows:

 1 +
1
2

+
1
3

+
1
4

+
1
5

+ .  .  . +
1
8

+
1
9

+ .  .  . +
1
16

+

 > 1
2 > 1

2 > 1
2

 
1
17

+ .  .  . +
1
32

+ .  .  .

 > 1
2

  Write a short paragraph explaining how you can use this 
grouping to show that the harmonic series diverges.

(b) Use the proof of the Integral Test, Theorem 9.10, to show that

 ln(n + 1) ≤ 1 +
1
2

+
1
3

+
1
4

+ .  .  . +
1
n

≤ 1 + ln n.

(c)  Use part (b) to determine how many terms M you would need 
so that

 ∑
M

n=1
 
1
n

> 50.

(d)  Show that the sum of the first million terms of the harmonic 
series is less than 15.

(e) Show that the following inequalities are valid.

 ln 
21
10

≤ 1
10

+
1
11

+ .  .  . +
1
20

≤ ln 
20
9

 ln 
201
100

≤ 1
100

+
1

101
+ .  .  . +

1
200

≤ ln 
200
99

(f) Use the inequalities in part (e) to find the limit

 lim
m→∞

 ∑
2m

n=m

 
1
n

.

The Harmonic Series
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616 Chapter 9 Infinite Series

9.4 Comparisons of Series

  Use the Direct Comparison Test to determine whether a series converges
or diverges.

  Use the Limit Comparison Test to determine whether a series converges 
or diverges.

Direct Comparison Test
For the convergence tests developed so far, the terms of the series have to be fairly 
simple and the series must have special characteristics in order for the convergence 
tests to be applied. A slight deviation from these special characteristics can make a test 
inapplicable. For example, in the pairs listed below, the second series cannot be tested 
by the same convergence test as the first series, even though it is similar to the first.

1. ∑
∞

n=0
 
1
2n is geometric, but ∑

∞

n=0
 
n
2n is not.

2. ∑
∞

n=1
 
1
n3 is a p-series, but ∑

∞

n=1
 

1
n3 + 1

 is not.

3. an =
n

(n2 + 3)2 is easily integrated, but bn =
n2

(n2 + 3)2 is not.

In this section, you will study two additional tests for positive-term series. These 
two tests greatly expand the variety of series you are able to test for convergence or 
divergence. They allow you to compare a series having complicated terms with a 
simpler series whose convergence or divergence is known.

THeOrem 9.12 Direct Comparison Test

Let 0 < an ≤ bn for all n.

1. If ∑
∞

n=1
 bn converges, then ∑

∞

n=1
 an converges.

2. If ∑
∞

n=1
 an diverges, then ∑

∞

n=1
 bn diverges.

Proof To prove the first property, let L = ∑
∞

n=1
 bn and let

Sn = a1 + a2 + .  .  . + an.

Because 0 < an ≤ bn, the sequence S1, S2, S3, .  .  . is nondecreasing and bounded 
above by L. So, it must converge. Because

lim
n→∞

 Sn = ∑
∞

n=1
 an

it follows that ∑
∞

n=1
 an converges. The second property is logically equivalent to the first.

 

 FOR FURTHER INFORMATION Is the Direct Comparison Test just for nonnegative 
series? To read about the generalization of this test to real series, see the article “The 
Comparison Test––Not Just for Nonnegative Series” by Michele Longo and Vincenzo 
Valori in Mathematics Magazine. To view this article, go to MathArticles.com.

remark As stated, the 
Direct Comparison Test requires 
that 0 < an ≤ bn for all n. 
Because the convergence of a 
series is not dependent on its 
first several terms, you could 
modify the test to require only 
that 0 < an ≤ bn for all n 
greater than some integer N. 
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9.4 Comparisons of Series 617

 Using the Direct Comparison Test

Determine the convergence or divergence of

∑
∞

n=1
 

1
2 + 3n.

Solution This series resembles

∑
∞

n=1
 
1
3n. Convergent geometric series

Term-by-term comparison yields

an =
1

2 + 3n <
1
3n = bn, n ≥ 1.

So, by the Direct Comparison Test, the given series converges. This conclusion is 
supported by Figure 9.10, which shows that the sequence of partial sums of ∑ an is less 
than the sequence of partial sums of the convergent geometric series ∑ bn.

 Using the Direct Comparison Test

See LarsonCalculus.com for an interactive version of this type of example.

Determine the convergence or divergence of 

∑
∞

n=1
 

1

2 + √n
.

Solution This series resembles

∑
∞

n=1
 

1
n1�2. Divergent p-series

Term-by-term comparison yields

1

2 + √n
≤ 1

√n
, n ≥ 1

which does not meet the requirements for divergence. (Remember that when term-by-term 
comparison reveals a series that is less than a divergent series, the Direct Comparison Test 
tells you nothing.) Still expecting the series to diverge, you can compare the series with

∑
∞

n=1
 
1
n

. Divergent harmonic series

In this case, term-by-term comparison yields

an =
1
n

≤ 1

2 + √n
= bn, n ≥ 4

and, by the Direct Comparison Test, the given series diverges (see Figure 9.11). To 
verify the last inequality, try showing that

2 + √n ≤ n

whenever n ≥ 4. 

Remember that both parts of the Direct Comparison Test require that 0 < an ≤ bn. 
Informally, the test says the following about the two series with nonnegative terms.

1. If the “larger” series converges, then the “smaller” series must also converge.

2. If the “smaller” series diverges, then the “larger” series must also diverge.

20
0

0

0.7

20
0

0

1
2 + 3nSequence of partial sums of ∑

∞

n = 1

1
3nSequence of partial sums of ∑

∞

n = 1

For the given series in Example 1, the 
sequence of partial sums is less than 
the sequence of partial sums of the 
indicated convergent geometric series.
Figure 9.10

20
0

0

44

20

1
n

Sequence of partial sums of ∑
∞

n = 4

1
2 +     n

Sequence of partial sums of ∑
∞

n = 4

For the given series in Example 2, the 
sequence of partial sums is greater than 
the sequence of partial sums of the 
divergent harmonic series.
Figure 9.11
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618 Chapter 9 Infinite Series

Limit Comparison Test
Sometimes a series closely resembles a p-series or a geometric series, yet you cannot 
establish the term-by-term comparison necessary to apply the Direct Comparison Test. 
Under these circumstances, you may be able to apply a second comparison test, called 
the Limit Comparison Test.

THeOrem 9.13 Limit Comparison Test

If an > 0, bn > 0, and

lim
n→∞

 
an

bn

= L

 where L is finite and positive, then

∑
∞

n=1
 an and ∑

∞

n=1
 bn

either both converge or both diverge.

Proof Because an > 0, bn > 0, and 

lim
n→∞

 
an

bn

= L

there exists N > 0 such that

0 <
an

bn

< L + 1, for n ≥ N.

This implies that

0 < an < (L + 1)bn.

So, by the Direct Comparison Test, the convergence of ∑ bn implies the convergence 
of ∑ an. Similarly, the fact that

lim
n→∞

 
bn

an

=
1
L

can be used to show that the convergence of ∑ an implies the convergence of ∑ bn. 
 

 Using the Limit Comparison Test

Show that the general harmonic series below diverges.

∑
∞

n=1
 

1
an + b

, a > 0, b > 0

Solution By comparison with

∑
∞

n=1
 
1
n

 Divergent harmonic series

you have

lim
n→∞

 
1�(an + b)

1�n
= lim

n→∞
 

n
an + b

=
1
a

.

Because this limit is greater than 0, you can conclude from the Limit Comparison Test
that the series diverges. 

remark As with the 
Direct Comparison Test, the 
Limit Comparison Test could 
be modified to require only that 
an and bn be positive for all n 
greater than some integer N.
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 9.4 Comparisons of Series 619

The Limit Comparison Test works well for comparing a “messy” algebraic series 
with a p-series. In choosing an appropriate p-series, you must choose one with an nth 
term of the same magnitude as the nth term of the given series.

Given Series Comparison Series Conclusion

∑
∞

n=1
 

1
3n2 − 4n + 5

 ∑
∞

n=1
 
1
n2 Both series converge.

∑
∞

n=1
 

1

√3n − 2
 ∑

∞

n=1
 

1

√n
 Both series diverge.

∑
∞

n=1
 
n2 − 10
4n5 + n3 ∑

∞

n=1
 
n2

n5 = ∑
∞

n=1
 
1
n3 Both series converge.

In other words, when choosing a series for comparison, you can disregard all but the 
highest powers of n in both the numerator and the denominator.

 Using the Limit Comparison Test

Determine the convergence or divergence of 

∑
∞

n=1
 
√n

n2 + 1
.

Solution Disregarding all but the highest powers of n in the numerator and the 
denominator, you can compare the series with

∑
∞

n=1
 
√n
n2 = ∑

∞

n=1
 

1
n3�2. Convergent p-series

Because

 lim
n→∞

 
an

bn

= lim
n→∞

 ( √n
n2 + 1)(n3�2

1 )
 = lim

n→∞
 

n2

n2 + 1

 = 1

you can conclude by the Limit Comparison Test that the series converges.

 Using the Limit Comparison Test

Determine the convergence or divergence of 

∑
∞

n=1
 

n2n

4n3 + 1
.

Solution A reasonable comparison would be with the series

∑
∞

n=1
 
2n

n2. Divergent series

Note that this series diverges by the nth-Term Test. From the limit

 lim
n→∞

 
an

bn

= lim
n→∞

 ( n2n

4n3 + 1)(
n2

2n)
 = lim

n→∞
 

n3

4n3 + 1

 =
1
4

you can conclude by the Limit Comparison Test that the series diverges. 

remark Recall when 
finding limits at ±∞ of a 
rational function that if the 
degree of the numerator is 
equal to the degree of the 
denominator, then the limit  
of the rational function is the 
ratio of the leading coefficients.
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620 Chapter 9 Infinite Series

9.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Direct Comparison Test You want to compare 

the series ∑ an and ∑ bn, where an > 0, bn > 0, and 
∑ bn converges. For 1 ≤ n ≤ 5, an > bn, and for n ≥ 6, 
an < bn. Explain whether the Direct Comparison Test can 
be used to compare the two series.

2.  Limit Comparison Test When using the Limit 
Comparison Test, describe in your own words how to 
choose a series for comparison.

Graphical analysis In Exercises 3 and 4, the figures show 
the graphs of the first 10 terms, and the graphs of the first  
10 terms of the sequence of partial sums, of each series.

(a)  Identify the series in each figure.

(b)  Which series is a p-series? Does it converge or diverge?

(c)  For the series that are not p-series, how do the magnitudes 
of the terms compare with the magnitudes of the terms 
of the p-series? What conclusion can you draw about the 
convergence or divergence of the series?

(d)  Explain the relationship between the magnitudes of the 
terms of the series and the magnitudes of the terms of the 
partial sums.

3.  ∑
∞

n=1
 

6
n3�2, ∑

∞

n=1
 

6
n3�2 + 3

, and ∑
∞

n=1
 

6

n√n2 + 0.5

 

n

2

1

2

4

3

4

6

5

6 8 10

an  

n

2

4

6

8

10

12

Sn

2 4 6 8 10

 Graphs of terms Graphs of partial sums

4. ∑
∞

n=1
 

2

√n
, ∑

∞

n=1
 

2

√n − 0.5
, and ∑

∞

n=1
 

4

√n + 0.5

 

n

2

4

1

3

an

2 4 6 8 10

 

n

4

8

12

16

20

Sn

2 4 6 8 10

 Graphs of terms Graphs of partial sums

 Using the Direct Comparison Test In 
Exercises 5–16, use the Direct Comparison Test 
to determine the convergence or divergence of the 
series.

 5. ∑
∞

n=1
 

1
2n − 1

  6. ∑
∞

n=1
 

1
3n2 + 2

 7. ∑
∞

n=2
 

1

√n − 1
  8. ∑

∞

n=0
 

4n

5n + 3

 9. ∑
∞

n=2
 

ln n
n + 1

 10. ∑
∞

n=1
 

1

√n3 + 1

11. ∑
∞

n=0
 
1
n!

 12. ∑
∞

n=1
 

1

4 3√n − 1

13. ∑
∞

n=0
 e−n2 14. ∑

∞

n=1
 
6n + n
5n − 1

15. ∑
∞

n=1
 
sin2 n

n3  16. ∑
∞

n=1
 
cos n + 2

√n

 Using the Limit Comparison Test In 
Exercises 17–26, use the Limit Comparison Test 
to determine the convergence or divergence of the 
series.

17. ∑
∞

n=1
 

n
n2 + 1

 18. ∑
∞

n=1
 

5
4n + 1

19. ∑
∞

n=0
 

1

√n2 + 1
 20. ∑

∞

n=1
 
2n + 1
5n + 1

21. ∑
∞

n=1
 

2n2 − 1
3n5 + 2n + 1

 22. ∑
∞

n=1
 

1
n2(n2 + 4)

23. ∑
∞

n=1
 

1

n√n2 + 1
 24. ∑

∞

n=1
 

n
(n + 1)2n−1

25. ∑
∞

n=1
 

nk−1

nk + 1
, k > 2 26. ∑

∞

n=1
 sin 

1
n

Determining Convergence or Divergence In Exercises 
27–34, test for convergence or divergence, using each test at 
least once. Identify which test was used.

(a) nth-Term Test (b) Geometric Series Test

(c) p-Series Test (d) Telescoping Series Test

(e) Integral Test (f ) Direct Comparison Test

(g) Limit Comparison Test

27. ∑
∞

n=1
 

3√n
n

 28. ∑
∞

n=0
 5(−

4
3)

n

29. ∑
∞

n=1
 

1
5n + 1

 30. ∑
∞

n=3
 

1
n3 − 8

31. ∑
∞

n=1
 

2n
3n − 2

 32. ∑
∞

n=1
 ( 1

n + 1
−

1
n + 2)

33. ∑
∞

n=1
 

n
(n2 + 1)2 34. ∑

∞

n=1
 

3
n(n + 3)
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9.4 Comparisons of Series 621

35.  Using the Limit Comparison Test Use the Limit 
Comparison Test with the harmonic series to show that the 
series ∑ an (where 0 < an < an−1) diverges when lim

n→∞
 nan is 

finite and nonzero.

36.  Proof Prove that, if P(n) and Q(n) are polynomials of 
degree j and k, respectively, then the series

 ∑
∞

n=1
 
P(n)
Q(n)

 converges if j < k − 1 and diverges if j ≥ k − 1.

Determining Convergence or Divergence In Exercises 
37–40, use the polynomial test given in Exercise 36 to determine 
whether the series converges or diverges.

37. 1
2 + 2

5 + 3
10 + 4

17 + 5
26 + .  .  .

38. 1
3 + 1

8 + 1
15 + 1

24 + 1
35 + .  .  .

39. ∑
∞

n=1
 

1
n3 + 1

40. ∑
∞

n=1
 
4n5 + n2 + 1

n4

Verifying Divergence In Exercises 41 and 42, use the 
divergence test given in Exercise 35 to show that the series 
diverges.

41. ∑
∞

n=1
 

n3

5n4 + 3
 42. ∑

∞

n=1
 
3n2 + 1
4n3 + 2

Determining Convergence or Divergence In Exercises 
43–46, determine the convergence or divergence of the series.

43. 1
200 + 1

400 + 1
600 + 1

800 + .  .  .

44. 1
200 + 1

208 + 1
216 + 1

224 + .  .  .

45. 1
201 + 1

204 + 1
209 + 1

216 + .  .  .

46. 1
201 + 1

208 + 1
227 + 1

264 + .  .  .

eXpLoRInG ConCeptS
47.  Using Series Review the results of Exercises 43–46. 

Explain why careful analysis is required to determine 
the convergence or divergence of a series and why 
considering only the magnitudes of the terms of a series 
could be misleading.

48.  Comparing Series It appears that the terms of the 
series

 1
1000 + 1

1001 + 1
1002 + 1

1003 + .  .  .

  are less than the corresponding terms of the convergent 
series

 1 + 1
4 + 1

9 + 1
16 + .  .  . .

  If the statement above is correct, then the first series 
converges. Is this correct? Why or why not? Make a 
statement about how the divergence or convergence of a 
series is affected by the inclusion or exclusion of the first 
finite number of terms.

49. Using a Series Consider the series ∑
∞

n=1
 

1
(2n − 1)2.

 (a) Verify that the series converges.

 (b) Use a graphing utility to complete the table.

  
n 5 10 20 50 100

Sn

 (c) The sum of the series is π2�8. Find the sum of the series

 ∑
∞

n=3
 

1
(2n − 1)2.

 (d) Use a graphing utility to find the sum of the series

  ∑
∞

n=10
 

1
(2n − 1)2.

50. Using a Series Consider the series ∑
∞

n=1
 

1
(n + 2)2.

 (a)  Verify that the series converges.

 (b) Use a graphing utility to complete the table.

  
n 5 10 20 50 100

Sn

 (c)  The sum of the series is (π2�6) − (5�4). Find the sum of 
the series

  ∑
∞

n=6
 

1
(n + 2)2.

 (d)  Use a graphing utility to find the sum of the series

  ∑
∞

n=15
 

1
(n + 2)2.

51.  Decimal representation of a Number Show that the 
series

 
x1

10
+

x2

102 +
x3

103 +
x4

104 + .  .  .

 converges, where xi is one of the numbers 0, 1, 2, .  .  ., 9.

 52.  HOW DO YOU See IT? The figure shows 
the first 20 terms of the series ∑ cn using 
squares and the first 20 terms of the series 
∑ dn using circles. If ∑ dn converges, can you 
determine anything about the convergence or 
divergence of ∑ cn? Explain.

 

0.2

0.4

0.6

0.8

1.0

n
4 8 12 16 20

 52.  
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622 Chapter 9 Infinite Series

True or False?  In Exercises 53–58, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

53. If 0 < an ≤ bn and ∑
∞

n=1
 an converges, then ∑

∞

n=1
 bn diverges.

54.  If 0 < an+10 ≤ bn and ∑
∞

n=1
 bn converges, then ∑

∞

n=1
 an

 converges.

55. If an + bn ≤ cn and ∑
∞

n=1
 cn converges, then the series ∑

∞

n=1
 an

  and ∑
∞

n=1
 bn both converge. (Assume that the terms of all three

 series are positive.)

56. If an ≤ bn + cn and ∑
∞

n=1
 an diverges, then the series ∑

∞

n=1
 bn and

  ∑
∞

n=1
 cn both diverge. (Assume that the terms of all three series

 are positive.)

57. If 0 < an ≤ bn and ∑
∞

n=1
 an diverges, then ∑

∞

n=1
 bn diverges.

58. If 0 < an ≤ bn and ∑
∞

n=1
 bn diverges, then ∑

∞

n=1
 an diverges.

59. Proof Prove that if the nonnegative series

 ∑
∞

n=1
 an and ∑

∞

n=1
 bn

 converge, then so does the series ∑
∞

n=1
 anbn.

60.   Proof Use the result of Exercise 59 to prove that if the 
nonnegative series

 ∑
∞

n=1
 an

 converges, then so does the series

 ∑
∞

n=1
 an 

2.

61.  Finding Series Find two series that demonstrate the result 
of Exercise 59.

62.  Finding Series Find two series that demonstrate the result 
of Exercise 60.

63.  Proof Suppose that ∑ an and ∑ bn are series with positive 
terms. Prove that if

 lim
n→∞

 
an

bn

= 0

 and ∑ bn converges, then ∑ an also converges.

64.  Proof Suppose that ∑ an and ∑ bn are series with positive 
terms. Prove that if

 lim
n→∞

 
an

bn

= ∞

 and ∑ bn diverges, then ∑ an also diverges.

65.  Verifying Convergence Use the result of Exercise 63 to 
show that each series converges.

 (a) ∑
∞

n=1
 

1
(n + 1)3

 (b) ∑
∞

n=1
 

1

√nπn

 (c) ∑
∞

n=2
 
ln n
n3

 (d) ∑
∞

n=1
 
n2 + 1

en

66.  Verifying Divergence Use the result of Exercise 64 to 
show that each series diverges.

 (a) ∑
∞

n=1
 (n + 2)2 (b) ∑

∞

n=1
 
ln n

n

 (c) ∑
∞

n=2
 

1
ln n

 (d) ∑
∞

n=1
 

en

√n

67.  Proof Suppose that ∑ an is a series with positive terms. 
Prove that if ∑ an converges, then ∑ sin an also converges.

68. Proof Prove that the series

 ∑
∞

n=1
 

1
1 + 2 + 3 + .  .  . + n

 converges.

69. Comparing Series Show that

 ∑
∞

n=1
 
ln n

n√n

 converges by comparison with

 ∑
∞

n=1
 

1
n5�4.

70.  Determining Convergence or Divergence 
Determine whether the every-other-term harmonic series

 1 +
1
3

+
1
5

+
1
7

+ .  .  .

 converges or diverges.

pUtnAM eXAM ChALLenGe
71. Is the infinite series

 ∑
∞

n=1
 

1
n(n+1)�n 

 convergent? Prove your statement.

72. Prove that if ∑
∞

n=1
 an is a convergent series of positive real

 numbers, then so is

 ∑
∞

n=1
 (an)n�(n+1).

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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9.5 Alternating Series 623

9.5 Alternating Series

 Use the Alternating Series Test to determine whether an infinite series converges.
  Use the Alternating Series Remainder to approximate the sum of an alternating 

series.
 Classify a convergent series as absolutely or conditionally convergent.
 Rearrange an infinite series to obtain a different sum.

Alternating Series
So far, most series you have dealt with have had positive terms. In this section and the 
next section, you will study series that contain both positive and negative terms. The 
simplest such series is an alternating series, whose terms alternate in sign. For example, 
the geometric series

 ∑
∞

n=0
 (−

1
2)

n

= ∑
∞

n=0
 (−1)n 

1
2n

 = 1 −
1
2

+
1
4

−
1
8

+
1
16

− .  .  .

is an alternating geometric series with r = −1
2. Alternating series occur in two ways: 

either the odd terms are negative or the even terms are negative.

THeOrem 9.14 Alternating Series Test

Let an > 0. The alternating series

∑
∞

n=1
 (−1)n an and ∑

∞

n=1
 (−1)n+1 an

converge when these two conditions are met.

1. lim
n→∞

 an = 0

2. an+1 ≤ an, for all n

Proof Consider the alternating series

∑
∞

n=1
 (−1)n+1an.

For this series, the partial sum (where 2n is even)

S2n = (a1 − a2) + (a3 − a4) + (a5 − a6) + .  .  . + (a2n−1 − a2n)

has all nonnegative terms, and therefore {S2n} is a nondecreasing sequence. But you 
can also write

S2n = a1 − (a2 − a3) − (a4 − a5) − .  .  . − (a2n−2 − a2n−1) − a2n

which implies that S2n ≤ a1 for every integer n. So, {S2n} is a bounded,  nondecreasing 
sequence that converges to some value L. Because S2n−1 − a2n = S2n and a2n → 0, you 
have

 lim
n→∞

 S2n−1 = lim
n→∞

 S2n + lim
n→∞

 a2n

 = L + lim
n→∞

 a2n

 = L.

Because both S2n and S2n−1 converge to the same limit L, it follows that {Sn} also 
 converges to L. Consequently, the given alternating series converges. 

remArk The second
condition in the Alternating 
Series Test can be modified to 
require only that 0 < an+1 ≤ an 
for all n greater than some 
integer N.
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624 Chapter 9 Infinite Series

 Using the Alternating Series Test

Determine the convergence or divergence of

∑
∞

n=1
 (−1)n+1 

1
n

.

Solution Note that lim
x→∞

 an = lim
n→∞

(1�n) = 0. So, the first condition of Theorem 9.14

is satisfied. Also note that the second condition of Theorem 9.14 is satisfied because

an+1 =
1

n + 1
≤ 1

n
= an

for all n. So, applying the Alternating Series Test, you can conclude that the series  
converges.

 Using the Alternating Series Test

Determine the convergence or divergence of

∑
∞

n=1
 

n
(−2)n−1.

Solution To apply the Alternating Series Test, note that, for n ≥ 1,

 
1
2

≤ n
n + 1

 
2n−1

2n ≤ n
n + 1

 (n + 1)2n−1 ≤ n2n

 
n + 1

2n ≤ n
2n−1.

So, an+1 = (n + 1)�2n ≤ n�2n−1 = an for all n. Furthermore, by L’Hôpital’s Rule,

lim
x→∞

 
x

2x−1 = lim
x→∞

 
1

2x−1(ln 2) = 0  lim
n→∞

 
n

2n−1 = 0.

Therefore, by the Alternating Series Test, the series converges.

 When the Alternating Series Test Does Not Apply

a. The alternating series

∑
∞

n=1
 
(−1)n+1(n + 1)

n
=

2
1

−
3
2

+
4
3

−
5
4

+
6
5

− .  .  .

   passes the second condition of the Alternating Series Test because an+1 ≤ an for all 
n. You cannot apply the Alternating Series Test, however, because the series does 
not pass the first condition. In fact, the series diverges.

b. The alternating series

2
1

−
1
1

+
2
2

−
1
2

+
2
3

−
1
3

+
2
4

−
1
4

+ .  .  .

   passes the first condition because an approaches 0 as n →∞. You cannot apply the 
Alternating Series Test, however, because the series does not pass the second 
condition. To conclude that the series diverges, you can argue that S2N equals the  
Nth partial sum of the divergent harmonic series. This implies that the sequence of 
partial sums diverges. So, the series diverges. 

remArk The series in 
Example 1 is called the  
alternating harmonic series. 
More is said about this series  
in Example 8.

remArk In Example 3(a), 
remember that whenever a 
series does not pass the first 
condition of the Alternating 
Series Test, you can use the  
nth-Term Test for Divergence 
to conclude that the series 
diverges.
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9.5 Alternating Series 625

Alternating Series Remainder
For a convergent alternating series, the partial sum SN can be a useful approximation 
for the sum S of the series. The error involved in using S ≈ SN is the remainder 
RN = S − SN.

THeOrem 9.15 Alternating Series remainder

If a convergent alternating series satisfies the condition an+1 ≤ an, then the 
absolute value of the remainder RN involved in approximating the sum S by SN 
is less than (or equal to) the first neglected term. That is,

∣S − SN∣ = ∣RN∣ ≤ aN+1.

A proof of this theorem is given in Appendix A.

 Approximating the Sum of an Alternating Series

See LarsonCalculus.com for an interactive version of this type of example.

Approximate the sum of the series by its first six terms.

∑
∞

n=1
 (−1)n+1 ( 1

n!) =
1
1!

−
1
2!

+
1
3!

−
1
4!

+
1
5!

−
1
6!

+ .  .  .

Solution The series converges by the Alternating Series Test because

1
(n + 1)! ≤ 1

n!
 and lim

n→∞
 
1
n!

= 0.

The sum of the first six terms is

S6 = 1 −
1
2

+
1
6

−
1
24

+
1

120
−

1
720

=
91
144

≈ 0.63194

and, by the Alternating Series Remainder, you have

∣S − S6∣ = ∣R6∣ ≤ a7 =
1

5040
≈ 0.0002.

So, the sum S lies between 0.63194 − 0.0002 and 0.63194 + 0.0002, and you have 
0.63174 ≤ S ≤ 0.63214.

 Finding the Number of Terms

Determine the number of terms required to approximate the sum of the series with an 
error of less than 0.001.

∑
∞

n=1
 
(−1)n+1

n4

Solution By Theorem 9.15, you know that 

∣RN∣ ≤ aN+1 =
1

(N + 1)4.

For an error of less than 0.001, N must satisfy the inequality 1�(N + 1)4 < 0.001.

1
(N + 1)4 < 0.001  (N + 1)4 > 1000  N > 4√1000 − 1 ≈ 4.6

So, you will need at least five terms. Using five terms, the sum is S ≈ S5 ≈ 0.94754, 
which has an error of less than 0.001. 

TeCHNOLOGY Later, using 
the techniques in Section 9.10, 
you will be able to show that the 
series in Example 4 converges to 

e − 1
e

≈ 0.63212.

(See Section 9.10, Exercise 58.) 
For now, try using a graphing 
utility to obtain an approximation 
of the sum of the series. How 
many terms do you need to 
obtain an approximation that 
is within 0.00001 of the actual 
sum?
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626 Chapter 9 Infinite Series

Absolute and Conditional Convergence
Occasionally, a series may have both positive and negative terms and not be an 
 alternating series. For instance, the series

∑
∞

n=1
 
sin n

n2 =
sin 1

1
+

sin 2
4

+
sin 3

9
+ .  .  .

has both positive and negative terms, yet it is not an alternating series. One way to 
obtain some information about the convergence of this series is to investigate the 
convergence of the series

∑
∞

n=1
 ∣sin n

n2 ∣.
By direct comparison, you have ∣sin n∣ ≤ 1 for all n, so

∣sin n
n2 ∣ ≤ 1

n2, n ≥ 1.

Therefore, by the Direct Comparison Test, the series ∑ ∣(sin n)�n2∣ converges. The next 
theorem tells you that the original series also converges.

THeOrem 9.16 Absolute Convergence

If the series ∑ ∣an∣ converges, then the series ∑ an also converges.

Proof Because 0 ≤ an + ∣an∣ ≤ 2∣an∣ for all n, the series

∑
∞

n=1
(an + ∣an∣)

converges by comparison with the convergent series

∑
∞

n=1
 2∣an∣.

Furthermore, because an = (an + ∣an∣) − ∣an∣, you can write

∑
∞

n=1
 an = ∑

∞

n=1
 (an + ∣an∣) − ∑

∞

n=1
∣an∣

where both series on the right converge. So, it follows that ∑ an converges. 

The converse of Theorem 9.16 is not true. For instance, the alternating  harmonic 
series

∑
∞

n=1
 
(−1)n+1

n
=

1
1

−
1
2

+
1
3

−
1
4

+ .  .  .

converges by the Alternating Series Test. Yet the harmonic series diverges. This type 
of convergence is called conditional.

Definitions of Absolute and Conditional Convergence

1. The series ∑ an is absolutely convergent when ∑ ∣an∣ converges.

2.  The series ∑ an is conditionally convergent when ∑ an converges but 
∑ ∣an∣ diverges.
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 9.5 Alternating Series 627

 Absolute and Conditional Convergence

Determine whether each of the series is convergent or divergent. Classify any 
convergent series as absolutely or conditionally convergent.

a. ∑
∞

n=0
 
(−1)nn!

2n =
0!
20 −

1!
21 +

2!
22 −

3!
23 + .  .  .

b. ∑
∞

n=1
 
(−1)n

√n
= −

1

√1
+

1

√2
−

1

√3
+

1

√4
− .  .  .

Solution

a.  This is an alternating series, but the Alternating Series Test does not apply because 
the limit of the nth term is not zero. By the nth-Term Test for Divergence, however, 
you can conclude that this series diverges.

b.  This series can be shown to be convergent by the Alternating Series Test. Moreover, 
because the p-series

∑
∞

n=1
 ∣(−1)n

√n ∣ =
1

√1
+

1

√2
+

1

√3
+

1

√4
+ .  .  .

diverges, the given series is conditionally convergent.

 Absolute and Conditional Convergence

Determine whether each of the series is convergent or divergent. Classify any convergent 
series as absolutely or conditionally convergent.

a. ∑
∞

n=1
 
(−1)n(n+1)�2

3n = −
1
3

−
1
9

+
1
27

+
1
81

− .  .  .

b. ∑
∞

n=1
 

(−1)n

ln(n + 1) = −
1

ln 2
+

1
ln 3

−
1

ln 4
+

1
ln 5

− .  .  .

Solution

a. This is not an alternating series (the signs change in pairs). However, note that

∑
∞

n=1
 ∣(−1)n(n+1)�2

3n ∣ = ∑
∞

n=1
 
1
3n

is a convergent geometric series, with

r =
1
3

.

Consequently, by Theorem 9.16, you can conclude that the given series is absolutely  
convergent (and therefore convergent).

b.  In this case, the Alternating Series Test indicates that the series converges. However, 
the series

∑
∞

n=1
 ∣ (−1)n

ln(n + 1)∣ =
1

ln 2
+

1
ln 3

+
1

ln 4
+ .  .  .

  diverges by direct comparison with the terms of the harmonic series. Therefore, the 
given series is conditionally convergent. 

 For Further InFormatIon To read more about the convergence of  
alternating harmonic series, see the article “Almost Alternating Harmonic Series” 
by Curtis Feist and Ramin Naimi in The College Mathematics Journal. To view this 
article, go to MathArticles.com.
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628 Chapter 9 Infinite Series

Rearrangement of Series
A finite sum such as

1 + 3 − 2 + 5 − 4

can be rearranged without changing the value of the sum. This is not necessarily true 
of an infinite series––it depends on whether the series is absolutely convergent or 
conditionally convergent.

1.  If a series is absolutely convergent, then its terms can be rearranged in any order 
without changing the sum of the series.

2.  If a series is conditionally convergent, then its terms can be rearranged to give a 
different sum.

The second case is illustrated in Example 8.

 rearrangement of a Series

The alternating harmonic series converges to ln 2. That is,

∑
∞

n=1
 (−1)n+1 

1
n

=
1
1

−
1
2

+
1
3

−
1
4

+ .  .  . = ln 2. See Exercise 55, Section 9.10.

Rearrange the terms of the series to produce a different sum.

Solution Consider the rearrangement below.

 1 −
1
2

−
1
4

+
1
3

−
1
6

−
1
8

+
1
5

−
1
10

−
1
12

+
1
7

−
1
14

− .  .  .

 = (1 −
1
2) −

1
4

+ (1
3

−
1
6) −

1
8

+ (1
5

−
1
10) −

1
12

+ (1
7

−
1
14) − .  .  .

 =
1
2

−
1
4

+
1
6

−
1
8

+
1
10

−
1
12

+
1
14

− .  .  .

 =
1
2

 (1 −
1
2

+
1
3

−
1
4

+
1
5

−
1
6

+
1
7

− .  .  .)
 =

1
2

 (ln 2)

By rearranging the terms, you obtain a sum that is half the original sum. 

exploration
In Example 8, you learned that the alternating harmonic series

∑
∞

n=1
 (−1)n+1 

1
n

= 1 −
1
2

+
1
3

−
1
4

+
1
5

−
1
6

+ .  .  .

converges to ln 2 ≈ 0.693. Rearrangement of the terms of the series produces a 
different sum, 12 ln 2 ≈ 0.347.

In this exploration, you will rearrange the terms of the alternating harmonic 
series in such a way that two positive terms follow each negative term. That is,

1 −
1
2

+
1
3

+
1
5

−
1
4

+
1
7

+
1
9

−
1
6

+
1
11

+ .  .  . .

Now calculate the partial sums S4, S7, S10, S13, S16, and S19. Then estimate the 
sum of this series to three decimal places.

 For Further InFormatIon
Georg Friedrich Bernhard Riemann 
(1826–1866) proved that if ∑ an 
is conditionally convergent and S 
is any real number, then the terms 
of the series can be rearranged to 
converge to S. For more on this 
topic, see the article “Riemann’s 
Rearrangement Theorem” by 
Stewart Galanor in Mathematics 
Teacher. To view this article, go to 
MathArticles.com.
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 9.5 Alternating Series 629

9.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Alternating Series An alternating series does 

not meet the first condition of the Alternating Series 
Test. What can you conclude about the convergence or 
divergence of the series? Explain.

2.  Alternating Series remainder What is the 
remainder of a convergent alternating series whose sum is 
approximated by the first N terms?

3.  Absolute and Conditional Convergence In 
your own words, describe the difference between absolute 
and conditional convergence of an alternating series.

4.  rearrangement of Series Does rearranging the 
terms of a convergent series change the sum of the series? 
Explain.

Numerical and Graphical Analysis In exercises 5–8, 
explore the alternating Series remainder.

 (a)  use a graphing utility to find the indicated partial sum 
Sn and complete the table. 

 
n 1 2 3 4 5 6 7 8 9 10

Sn

 (b)  use a graphing utility to graph the first 10 terms of 
the sequence of partial sums and a horizontal line 
representing the sum. 

 (c)  What pattern exists between the plot of the successive 
points in part (b) relative to the horizontal line 
representing the sum of the series? Do the distances 
between the successive points and the horizontal line 
increase or decrease? 

 (d)  Discuss the relationship between the answers in part 
(c) and the alternating Series remainder as given in 
theorem 9.15.

 5. ∑
∞

n=1
 
(−1)n−1

2n − 1
=

π
4

  6. ∑
∞

n=1

(−1)n−1

(n − 1)! =
1
e

 7. ∑
∞

n=1
 
(−1)n−1

n2 =
π2

12
  8. ∑

∞

n=1
 

(−1)n−1

(2n − 1)! = sin 1

 Determining Convergence or Divergence 
In exercises 9–30, determine the convergence or 
divergence of the series.

 9. ∑
∞

n=1
 
(−1)n+1

n + 1
 10. ∑

∞

n=1
 
(−1)n+1 n

3n + 2

11. ∑
∞

n=1
 
(−1)n

3n  12. ∑
∞

n=1
 
(−1)n

en

13. ∑
∞

n=1
 
(−1)n(5n − 1)

4n + 1
 14. ∑

∞

n=1
 
(−1)n+1 n

n2 + 5

15. ∑
∞

n=1
 

(−1)n n
ln(n + 1) 16. ∑

∞

n=1
 

(−1)n

ln(n + 1)

17. ∑
∞

n=1
 
(−1)n

√n
 18. ∑

∞

n=1
 
(−1)n+1 n2

n2 + 4

19. ∑
∞

n=1

(−1)n+1(n + 1)
ln(n + 1)  20. ∑

∞

n=1
 
(−1)n+1 ln(n + 1)

n + 1

21. ∑
∞

n=1
 sin 

(2n − 1)π
2

 22. ∑
∞

n=1
 
1
n

 cos nπ

23. ∑
∞

n=0
 
(−1)n

n!
 24. ∑

∞

n=0
 

(−1)n

(2n + 1)!

25. ∑
∞

n=1
 
(−1)n+1 √n

n + 2
 26. ∑

∞

n=1
 
(−1)n+1 √n

3√n

27. ∑
∞

n=1
 

(−1)n+1 n!
1 ∙ 3 ∙ 5 .  .  . (2n − 1)

28. ∑
∞

n=1
 (−1)n+1 

1 ∙ 3 ∙ 5 .  .  . (2n − 1)
1 ∙ 4 ∙ 7 .  .  . (3n − 2)

29. ∑
∞

n=1
 
2(−1)n+1

en − e−n = ∑
∞

n=1
 (−1)n+1 csch n

30. ∑
∞

n=1
 
2(−1)n+1

en + e−n = ∑
∞

n=1
 (−1)n+1 sech n

 Approximating the Sum of an Alternating 
Series In exercises 31–34, approximate the sum 
of the series by using the first six terms. (See 
example 4.)

31. ∑
∞

n=0
 
(−1)n 5

n!
 32. ∑

∞

n=1
 
(−1)n+1 4
ln(n + 1)

33. ∑
∞

n=1
 
(−1)n+1 2

n3  34. ∑
∞

n=1
 
(−1)n+1 n

3n

 Finding the Number of Terms In exercises 
35–40, use theorem 9.15 to determine the number 
of terms required to approximate the sum of the 
series with an error of less than 0.001.

35. ∑
∞

n=1
 
(−1)n+1

n3  36. ∑
∞

n=1
 
(−1)n+1

n2

37. ∑
∞

n=1
 
(−1)n+1

2n3 − 1
 38. ∑

∞

n=1
 
(−1)n+1

n5

39. ∑
∞

n=0
 
(−1)n

n!
 40. ∑

∞

n=0
 
(−1)n

(2n)!

 Determining Absolute and Conditional 
Convergence In exercises 41–58, determine 
whether the series converges absolutely or 
conditionally, or diverges.

41. ∑
∞

n=1
 
(−1)n

2n  42. ∑
∞

n=1
 
(−1)n+1

n2

43. ∑
∞

n=1
 
(−1)n

n!
 44. ∑

∞

n=1
 
(−1)n+1

n + 3
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630 Chapter 9 Infinite Series

45. ∑
∞

n=1
 
(−1)n+1

√n
 46. ∑

∞

n=1
 
(−1)n+1

n√n

47. ∑
∞

n=1
 
(−1)n+1 n2

(n + 1)2  48. ∑
∞

n=1
 
(−1)n+1n

5n + 1

49. ∑
∞

n=2
 
(−1)n

n ln n
 50. ∑

∞

n=0
 (−1)n e−n2

51. ∑
∞

n=2
 
(−1)n n
n3 − 5

 52. ∑
∞

n=1
 
(−1)n+1

n4�3

53. ∑
∞

n=0
 

(−1)n

(2n + 1)! 54. ∑
∞

n=0
 

(−1)n

√n + 4

55. ∑
∞

n=0
 
cos nπ
n + 1

 56. ∑
∞

n=1
 (−1)n+1 arctan n

57. ∑
∞

n=1
 
cos(nπ�3)

n2  58. ∑
∞

n=1
 
sin[(2n − 1)π�2]

n

eXpLoRInG ConCeptS
59.  Alternating Series Determine whether S50 is an 

underestimate or an overestimate of the sum of the 
alternating series below. Explain.

 ∑
∞

n=1
 
(−1)n

n

60.  Alternating Series Give an example of convergent 
alternating series ∑ an and ∑ bn such that ∑ anbn diverges.

61.  Think About It Do you agree with the following 
statements? Why or why not?

 (a)  If both ∑ an and ∑ (−an) converge, then ∑ ∣an∣
converges.

 (b) If ∑ an diverges, then ∑ ∣an∣ diverges.

 62.  HOW DO YOU See IT? The graphs of 
the sequences of partial sums of two series are 
shown in the figures. Which graph represents the 
partial sums of an alternating series? Explain.

(a) 

n

−2

−3

−1

1

2 4 6

Sn  (b) 

n

4

3

2

1

2 4 6

Sn

 62.  

Finding Values In exercises 63 and 64, find the values of p 
for which the series converges.

63. ∑
∞

n=1
 (−1)n( 1

np) 64. ∑
∞

n=1
 (−1)n( 1

n + p)
65.  Proof Prove that if ∑ ∣an∣ converges, then ∑ an

2 converges. Is 
the converse true? If not, give an example that shows it is false.

66.  Finding a Series Use the result of Exercise 63 to give an 
example of an alternating p-series that converges but whose 
corresponding p-series diverges.

67.  Finding a Series Give an example of a series that 
demonstrates the statement you proved in Exercise 65.

68.  Finding Values Find all values of x for which the series 
∑ (xn�n) (a) converges absolutely and (b) converges conditionally.

Using a Series In exercises 69 and 70, use the given series.

(a)  Does the series meet the conditions of theorem 9.14? 
explain why or why not.

(b) Does the series converge? If so, what is the sum?

69. 
1
2

−
1
3

+
1
4

−
1
9

+
1
8

−
1
27

+ .  .  . +
1
2n −

1
3n + .  .  .

70. ∑
∞

n=1
 (−1)n+1an, an = {

1

√n
,

1
n3,

     if n is odd

     if n is even

review In exercises 71–80, determine the convergence or 
divergence of the series and identify the test used.

71. ∑
∞

n=1
 

8
3√n

 72. ∑
∞

n=1
 

3n + 5
n3 + 2n2 + 4

73. ∑
∞

n=1
 
3n

n2 74. ∑
∞

n=1
 

1
6n − 5

75. ∑
∞

n=1
 (9

8)
n

 76. ∑
∞

n=1
 

2n2

(n + 1)2

77. ∑
∞

n=1
 100e−n�2 78. ∑

∞

n=0
 
(−1)n

n + 4

79. ∑
∞

n=1
 
(−1)n+1 4
3n2 − 1

 80. ∑
∞

n=2
 
ln n

n

81.  Describing an error The following argument, that 
0 = 1, is incorrect. Describe the error.

  0 = 0 + 0 + 0 + .  .  .

  = (1 − 1) + (1 − 1) + (1 − 1) + .  .  .

  = 1 + (−1 + 1) + (−1 + 1) + .  .  .

  = 1 + 0 + 0 + .  .  .

  = 1

pUtnAM eXAM ChALLenGe
82.  Assume as known the (true) fact that the alternating 

harmonic series

 (1) 1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + 1

7 − 1
8 + .  .  .

  is convergent, and denote its sum by s. Rearrange the 
series (1) as follows:

 (2) 1 + 1
3 − 1

2 + 1
5 + 1

7 − 1
4 + 1

9 + 1
11 − 1

6 + .  .  . .

  Assume as known the (true) fact that the series (2) is also 
convergent, and denote its sum by S. Denote by sk, Sk the 
kth partial sum of the series (1) and (2), respectively. 
Prove the following statements.

 (i) S3n = s4n + 1
2s2n, (ii) S ≠ s

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.
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9.6 The Ratio and Root Tests 631

9.6 The Ratio and Root Tests

 Use the Ratio Test to determine whether a series converges or diverges.
 Use the Root Test to determine whether a series converges or diverges.
 Review the tests for convergence and divergence of an infinite series.

The Ratio Test
This section begins with a test for absolute convergence—the Ratio Test.

TheoRem 9.17 Ratio Test

Let ∑ an be a series with nonzero terms.

1. The series ∑ an converges absolutely when lim
n→∞

 ∣an+1

an ∣ < 1.

2. The series ∑ an diverges when lim
n→∞

 ∣an+1

an ∣ > 1 or lim
n→∞

 ∣an+1

an ∣ = ∞.

3. The Ratio Test is inconclusive when lim
n→∞

 ∣an+1

an ∣ = 1.

Proof To prove Property 1, assume that

lim
n→∞

 ∣an+1

an ∣ = r < 1

and choose R such that 0 ≤ r < R < 1. By the definition of the limit of a sequence, 
there exists some N > 0 such that ∣an+1�an∣ < R for all n > N. Therefore, you can 
write the following inequalities.

 ∣aN+1∣ < ∣aN∣R
 ∣aN+2∣ < ∣aN+1∣R < ∣aN∣R2

 ∣aN+3∣ < ∣aN+2∣R < ∣aN+1∣R2 < ∣aN∣R3

 ⋮

The geometric series ∑
∞

n=1
 ∣aN∣Rn = ∣aN∣R + ∣aN∣R2 + .  .  . + ∣aN∣Rn + .  .  . converges,

and so, by the Direct Comparison Test, the series

∑
∞

n=1
 ∣aN+n∣ = ∣aN+1∣ + ∣aN+2∣ + .  .  . + ∣aN+n∣ + .  .  .

also converges. This in turn implies that the series ∑ ∣an∣ converges, because  discarding 
a finite number of terms (n = N − 1) does not affect convergence. Consequently, by 
Theorem 9.16, the series ∑ an converges absolutely. The proof of Property 2 is similar 
and is left as an exercise (see Exercise 97). 

The fact that the Ratio Test is inconclusive when ∣an+1�an∣ → 1 can be seen by 
comparing the two series ∑ (1�n) and ∑ (1�n2). The first series diverges and the second 
one converges, but in both cases

lim
n→∞

 ∣an+1

an ∣ = 1.

RemaRk The Ratio Test is 
always inconclusive for any
p-series. 
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632 Chapter 9 Infinite Series

Although the Ratio Test is not a cure for all ills related to testing for convergence, 
it is particularly useful for series that converge rapidly. Series involving factorials or 
exponentials are frequently of this type.

 Using the Ratio Test

Determine the convergence or divergence of 

∑
∞

n=0
 
2n

n!
.

Solution Recall from Section 9.1 that the factorial function grows faster than any 
exponential function. So, you expect this series to converge. Because

an =
2n

n!

you can write the following.

 lim
n→∞

 ∣an+1

an ∣ = lim
n→∞

 [ 2n+1

(n + 1)! ÷
2n

n!]
 = lim

n→∞
 [ 2n+1

(n + 1)! ∙ n!
2n]

 = lim
n→∞

 
2

n + 1

 = 0 < 1

This series converges because the limit of ∣an+1�an∣ is less than 1.

 Using the Ratio Test

Determine whether each series converges or diverges.

a. ∑
∞

n=0
 
n2 2n+1

3n   b. ∑
∞

n=1
 
nn

n!

Solution

a. This series converges because the limit of ∣an+1�an∣ is less than 1.

 lim
n→∞

 ∣an+1

an ∣ = lim
n→∞

 [(n + 1)2(2n+2

3n+1)( 3n

n2 2n+1)]
 = lim

n→∞
 
2(n + 1)2

3n2

 =
2
3

< 1

b. This series diverges because the limit of ∣an+1�an∣ is greater than 1.

 lim
n→∞

 ∣an+1

an ∣ = lim
n→∞

 [(n + 1)n+1

(n + 1)!  (n!
nn)]

 = lim
n→∞

 [(n + 1)n+1

(n + 1)  ( 1
nn)]

 = lim
n→∞

 
(n + 1)n

nn

 = lim
n→∞

 (1 +
1
n)

n

 = e > 1 

RemaRk A step frequently 
used in applications of the Ratio 
Test involves simplifying  
quotients of factorials. In 
Example 1, for instance,  
notice that

n!
(n + 1)! =

n!
(n + 1)n!

=
1

n + 1
.
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 9.6 The Ratio and Root Tests 633

 a Failure of the Ratio Test

See LarsonCalculus.com for an interactive version of this type of example.

Determine the convergence or divergence of

∑
∞

n=1
 (−1)n √n

n + 1
.

Solution The limit of ∣an+1�an∣ is equal to 1.

 lim
n→∞

 ∣an+1

an ∣ = lim
n→∞

 [(√n + 1
n + 2 )(n + 1

√n )]
 = lim

n→∞
 [√n + 1

n
 (n + 1

n + 2)]
 = √1 (1)
 = 1

So, the Ratio Test is inconclusive. To determine whether the series converges, you need 
to try a different test. In this case, you can apply the Alternating Series Test. To show 
that an+1 ≤ an, let

f (x) =
√x

x + 1
.

Then the derivative is

f′(x) =
−x + 1

2√x(x + 1)2
.

Because the derivative is negative for x > 1, you know that f  is a decreasing function. 
Also, by L’Hôpital’s Rule,

 lim
x→∞

 
√x

x + 1
= lim

x→∞
 
1�(2√x)

1

 = lim
x→∞

 
1

2√x
 = 0.

Therefore, by the Alternating Series Test, the series converges. 

The series in Example 3 is conditionally convergent. This follows from the fact 
that the series

∑
∞

n=1
 ∣an∣

diverges (by the Limit Comparison Test with ∑ 1�√n), but the series

∑
∞

n=1
 an

converges.

TeChnology A graphing utility can reinforce the conclusion that the series 
in Example 3 converges conditionally. By adding the first 100 terms of the series, 
you obtain a sum of about −0.2. (The sum of the first 100 terms of the series ∑ ∣an∣ 
is about 17.)
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634 Chapter 9 Infinite Series

The Root Test
The next test for convergence or divergence of series works especially well for series 
involving nth powers. The proof of this theorem is similar to the proof given for the 
Ratio Test and is left as an exercise (see Exercise 98).

TheoRem 9.18 Root Test

1. The series ∑ an converges absolutely when lim
n→∞

 n√∣an∣ < 1.

2. The series ∑ an diverges when lim
n→∞

 n√∣an∣ > 1 or lim
n→∞

 n√∣an∣ = ∞.

3. The Root Test is inconclusive when lim
n→∞

 n√∣an∣ = 1.

 Using the Root Test

Determine the convergence or divergence of

∑
∞

n=1
 
e2n

nn .

Solution You can apply the Root Test as follows.

 lim
n→∞

 n√∣an∣ = lim
n→∞

 n√e2n

nn

 = lim
n→∞

 
e2n�n

nn�n

 = lim
n→∞

 
e2

n

 = 0 < 1

Because this limit is less than 1, you can conclude that the series converges absolutely 
(and therefore converges). 

To see the usefulness of the Root Test for the series in Example 4, try applying the 
Ratio Test to that series. When you do this, you obtain the following.

 lim
n→∞

 ∣an+1

an ∣ = lim
n→∞

 [ e2(n+1)

(n + 1)n+1 ÷
e2n

nn ]
 = lim

n→∞
 [ e2(n+1)

(n + 1)n+1 ∙ nn

e2n]
 = lim

n→∞
 e2 

nn

(n + 1)n+1

 = lim
n→∞

 e2 ( n
n + 1)

n

( 1
n + 1)

 = 0

Note that this limit is not as easily evaluated as the limit obtained by the Root Test in 
Example 4.

 FOR FURTHER INFORMATION For more information on the usefulness of the 
Root Test, see the article “N! and the Root Test” by Charles C. Mumma II in The 
American Mathematical Monthly. To view this article, go to MathArticles.com. 

RemaRk The Root Test is 
always inconclusive for any
p-series.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



9.6 The Ratio and Root Tests 635

Strategies for Testing Series
You have now studied 10 tests for determining the convergence or divergence of an 
infinite series. (See the summary in the table on the next page.) Skill in choosing and 
applying the various tests will come only with practice. Below is a set of guidelines for 
choosing an appropriate test.

GUIDELINES FOR TESTING A SERIES FOR CONVERGENCE OR 
DIVERGENCE

1. Does the nth term approach 0? If not, the series diverges.

2.  Is the series one of the special types—geometric, p-series, telescoping, or 
alternating?

3. Can the Integral Test, the Root Test, or the Ratio Test be applied?

4. Can the series be compared favorably to one of the special types?

In some instances, more than one test is applicable. However, your objective 
should be to learn to choose the most efficient test.

 applying the Strategies for Testing Series

Determine the convergence or divergence of each series.

a. ∑
∞

n=1
 

n + 1
3n + 1

 b. ∑
∞

n=1
 (π6)

n

 c. ∑
∞

n=1
 ne−n2

d. ∑
∞

n=1
 

1
3n + 1

 e. ∑
∞

n=1
 (−1)n 

3
4n + 1

 f. ∑
∞

n=1
 

n!
10n

g. ∑
∞

n=1
 ( n + 1

2n + 1)
n

Solution

a.  For this series, the limit of the nth term is not 0 (an → 1
3 as n →∞). So, by the 

nth-Term Test, the series diverges.

b. This series is geometric. Moreover, because the ratio of the terms

r =
π
6

 is less than 1 in absolute value, you can conclude that the series converges.

c. Because the function

f (x) = xe−x2

  is easily integrated, you can use the Integral Test to conclude that the series converges.

d.  The nth term of this series can be compared to the nth term of the harmonic series. 
After using the Limit Comparison Test, you can conclude that the series diverges.

e.  This is an alternating series whose nth term approaches 0. Because an+1 ≤ an, you 
can use the Alternating Series Test to conclude that the series converges.

f.  The nth term of this series involves a factorial, which indicates that the Ratio Test 
may work well. After applying the Ratio Test, you can conclude that the series 
diverges.

g.  The nth term of this series involves a variable that is raised to the nth power, which 
indicates that the Root Test may work well. After applying the Root Test, you can 
conclude that the series converges. 
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636 Chapter 9 Infinite Series

SUMMARY OF TESTS FOR SERIES

Test Series Condition(s)
of Convergence 

Condition(s)
of Divergence

Comment

nth-Term ∑
∞

n=1
 an lim

n→∞
 an ≠ 0 This test cannot be used 

to show convergence.

Geometric Series
(r ≠ 0) ∑

∞

n=0
 arn ∣r∣ < 1 ∣r∣ ≥ 1 Sum: S =

a
1 − r

Telescoping Series ∑
∞

n=1
 (bn − bn+1) lim

n→∞
 bn = L Sum: S = b1 − L

p-Series ∑
∞

n=1
 
1
np

p > 1 0 < p ≤ 1

Alternating Series
(an > 0) ∑

∞

n=1
 (−1)n−1an

an+1 ≤ an and

lim
n→∞

 an = 0
Remainder:
∣RN∣ ≤ aN+1

Integral
( f  is continuous,
positive, and
decreasing)

∑
∞

n=1
 an,

an = f (n) ≥ 0
∫∞

1
 f (x) dx converges ∫∞

1
f (x) dx diverges

Remainder:

0 < RN < ∫∞

N

f (x) dx

Root ∑
∞

n=1
 an lim

n→∞
 n√∣an∣ < 1

lim
n→∞

 n√∣an∣ > 1 or

= ∞

Test is inconclusive when

lim
n→∞

 n√∣an∣ = 1.

Ratio ∑
∞

n=1
 an lim

n→∞
 ∣an+1

an ∣ < 1
lim

n→∞
 ∣an+1

an ∣ > 1 or

= ∞
Test is inconclusive when

lim
n→∞

 ∣an+1

an ∣ = 1.

Direct Comparison
(an, bn > 0) ∑

∞

n=1
 an

0 < an ≤ bn

and ∑
∞

n=1
 bn converges

0 < bn ≤ an

and ∑
∞

n=1
 bn diverges

Limit Comparison
(an, bn > 0) ∑

∞

n=1
 an

lim
n→∞

  
an

bn

= L > 0

and ∑
∞

n=1
 bn converges

lim
n→∞

  
an

bn

= L > 0

and ∑
∞

n=1
 bn diverges
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 9.6 The Ratio and Root Tests 637

9.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
Ratio and Root Tests In Exercises 1–6, what can you 
conclude about the convergence or divergence of ∑ an?

1. lim
n→∞

 ∣an+1

an ∣ = 0 2. lim
n→∞

 ∣an+1

an ∣ = 1

3. lim
n→∞

 ∣an+1

an ∣ =
3
2

 4. lim
n→∞

 n√∣an∣ = 2

5. lim
n→∞

 n√∣an∣ = 1 6. lim
n→∞

 n√∣an∣ = e

Verifying a Formula In Exercises 7 and 8, verify the 
formula.

 7. 
9n+1(n − 1)!

9n(n − 2)! = 9(n − 1)

 8. 
(2k − 2)!

(2k)! =
1

(2k)(2k − 1)

matching In Exercises 9–14, match the series with the 
graph of its sequence of partial sums. [The graphs are labeled 
(a), (b), (c), (d), (e), and (f).]

(a) Sn

n
1

2

2
3
4
5
6
7

64 8 10

 (b) Sn

n

1

2

2 64 8 10

3
2

1
2

(c) Sn

n

1

2 64 8 10

3
2

1
2

 (d) Sn

n

4

2

2

6

8

10

64 8 10

(e) Sn

n
1

2

2
3
4
5
6
7

64 8 10

 (f) Sn

n

8
6
4
2

−2
−4

2 6 8 10

 9. ∑
∞

n=1
 n(3

4)
n

 10. ∑
∞

n=1
 (3

4)
n

( 1
n!)

11. ∑
∞

n=1
 
(−3)n+1

n!
 12. ∑

∞

n=1
 
(−1)n−1 4

(2n)!

13. ∑
∞

n=1
 ( 4n

5n − 3)
n

 14. ∑
∞

n=0
 4e−n

numerical, graphical, and analytic analysis In 
Exercises 15 and 16, (a) use the Ratio Test to verify that the 
series converges, (b) use a graphing utility to find the indicated 
partial sum Sn and complete the table, (c) use a graphing 
utility to graph the first 10 terms of the sequence of partial 
sums, (d) use the table to estimate the sum of the series, and  
(e) explain the relationship between the  magnitudes of the 
terms of the series and the rate at which the sequence of partial 
sums approaches the sum of the series.

n 5 10 15 20 25

Sn

15. ∑
∞

n=1
 n3(1

2)
n

 16. ∑
∞

n=1
 
n2 + 1

n!

 Using the Ratio Test In Exercises 17–38, 
use the Ratio Test to determine the convergence 
or divergence of the series. If the Ratio Test 
is inconclusive, determine the convergence or 
divergence of the series using other methods.

17. ∑
∞

n=1
 
1
8n 18. ∑

∞

n=1
 
5
n!

19. ∑
∞

n=1
 
(n − 1)!

4n  20. ∑
∞

n=0
 

2n

(n + 2)!

21. ∑
∞

n=0
 (n + 2)(9

7)
n+1

 22. ∑
∞

n=1
 n2(5

6)
n

23. ∑
∞

n=1
 
9n

n5 24. ∑
∞

n=0
 

6n

(n + 1)3

25. ∑
∞

n=1
 
n3

3n 26. ∑
∞

n=1
 
(−1)n+1(n + 2)

n(n + 1)

27. ∑
∞

n=0
 
(−1)n 2n

n!
 28. ∑

∞

n=1
 
(−1)n−1(3�2)n

n2

29. ∑
∞

n=1
 

n2

(n + 1)(n2 + 2) 30. ∑
∞

n=1
 
(2n)!

n5

31. ∑
∞

n=0
 
en

n!

32. ∑
∞

n=1
 
n!
nn

33. ∑
∞

n=0
 

6n

(n + 1)n

34. ∑
∞

n=0
 
(n!)2

(3n)!

35. ∑
∞

n=0
 

5n

2n + 1

36. ∑
∞

n=0
 
(−1)n24n

(2n + 1)!

37. ∑
∞

n=0
 

(−1)n+1n!
1 ∙ 3 ∙ 5 .  .  . (2n + 1)

38. ∑
∞

n=1
 
(−1)n[2 ∙ 4 ∙ 6 .  .  . (2n)]

2 ∙ 5 ∙ 8 .  .  . (3n − 1)
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638 Chapter 9 Infinite Series

 Using the Root Test In Exercises 39–52, use 
the Root Test to determine the convergence or 
divergence of the series.

39. ∑
∞

n=1
 ( n

2n + 1)
n

 40. ∑
∞

n=1
 
1
nn

41. ∑
∞

n=1
 (3n + 2

n + 3 )
n

 42. ∑
∞

n=1
 ( n − 2

5n + 1)
n

43. ∑
∞

n=2
 
(−1)n

(ln n)n 44. ∑
∞

n=1
 ( −3n

2n + 1)
3n

45. ∑
∞

n=1
 (2 n√n + 1)n 46. ∑

∞

n=0
 e−3n

47. ∑
∞

n=1
 
n
3n 48. ∑

∞

n=1
 ( n

500)
n

49. ∑
∞

n=1
 (1

n
−

1
n2)

n

 50. ∑
∞

n=1
 (ln n

n )
n

51. ∑
∞

n=2
 

n
(ln n)n 52. ∑

∞

n=1
 
(n!)n

(nn)2

 Review In Exercises 53–70, determine the 
convergence or divergence of the series using any 
appropriate test from this chapter. Identify the 
test used.

53. ∑
∞

n=1
 
(−1)n+1 5

n
 54. ∑

∞

n=1
 
100
n

55. ∑
∞

n=1
 

3

n√n
 56. ∑

∞

n=1
 (2π

3 )
n

57. ∑
∞

n=1
 

5n
2n − 1

 58. ∑
∞

n=1
 

n
2n2 + 1

59. ∑
∞

n=1
 
(−1)n 3n−2

2n

60. ∑
∞

n=1
 

10

3√n3

61. ∑
∞

n=1
 
10n + 3

n2n

62. ∑
∞

n=1
 

2n

4n2 − 1

63. ∑
∞

n=1
 
cos n

3n

64. ∑
∞

n=2
 
(−1)n

n ln n

65. ∑
∞

n=1
 

n!
n7n

66. ∑
∞

n=1
 
ln n
n2

67. ∑
∞

n=1
 
(−1)n 3n−1

n!

68. ∑
∞

n=1
 
(−1)n 3n

n2n

69. ∑
∞

n=1
 

(−3)n

3 ∙ 5 ∙ 7 .  .  . (2n + 1)

70. ∑
∞

n=1
 
3 ∙ 5 ∙ 7 .  .  . (2n + 1)

18n(2n − 1)n!

Identifying Series In Exercises 71–74, identify the two 
series that are the same.

71. (a) ∑
∞

n=1
 
n5n

n!

 (b) ∑
∞

n=0
 

n5n

(n + 1)!

 (c) ∑
∞

n=0
 
(n + 1)5n+1

(n + 1)!

72. (a) ∑
∞

n=4
 n(3

4)
n

 (b) ∑
∞

n=0
 (n + 1)(3

4)
n

 (c) ∑
∞

n=1
 n(3

4)
n−1

73. (a) ∑
∞

n=0
 

(−1)n

(2n + 1)!

 (b) ∑
∞

n=1
 

(−1)n−1

(2n − 1)!

 (c) ∑
∞

n=1
 

(−1)n−1

(2n + 1)!

74. (a) ∑
∞

n=2
 

(−1)n

(n − 1)2n−1

 (b) ∑
∞

n=1
 
(−1)n+1

n2n

 (c) ∑
∞

n=0
 

(−1)n+1

(n + 1)2n

Writing an equivalent Series In Exercises 75 and 76, 
write an equivalent series with the index of summation 
beginning at n = 0.

75. ∑
∞

n=1
 
n
7n

76. ∑
∞

n=2
 

4n+1

(n − 2)!

Using a Recursively Defined Series In Exercises 77–82,

the terms of a series ∑
∞

n=1
 an are defined recursively. Determine

the convergence or divergence of the series. Explain your  
reasoning.

77. a1 =
1
2

, an+1 =
4n − 1
3n + 2

 an

78. a1 = 2, an+1 =
2n + 1
5n − 4

 an

79. a1 = 1, an+1 =
sin n + 1

√n
 an

80. a1 =
1
5

, an+1 =
cos n + 1

n
 an

81. a1 =
1
3

, an+1 = (1 +
1
n)an

82. a1 =
1
4

, an+1 = n√an
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Using the Ratio Test or Root Test In Exercises 83– 86, 
use the Ratio Test or the Root Test to determine the convergence 
or divergence of the series.

83. 1 +
1 ∙ 2
1 ∙ 3

+
1 ∙ 2 ∙ 3
1 ∙ 3 ∙ 5

+
1 ∙ 2 ∙ 3 ∙ 4
1 ∙ 3 ∙ 5 ∙ 7

+ .  .  .

84. 1 +
2
3

+
3
32 +

4
33 +

5
34 +

6
35 + .  .  .

85. 
1

(ln 3)3 +
1

(ln 4)4 +
1

(ln 5)5 +
1

(ln 6)6 + .  .  .

86.  1 +
1 ∙ 3

1 ∙ 2 ∙ 3
+

1 ∙ 3 ∙ 5
1 ∙ 2 ∙ 3 ∙ 4 ∙ 5

+
1 ∙ 3 ∙ 5 ∙ 7

1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙ 7

  + .  .  .

Finding Values In Exercises 87–92, find the values of x for 
which the series converges.

87. ∑
∞

n=0
 2(x

3)
n

 88. ∑
∞

n=0
 (x − 3

5 )
n

89. ∑
∞

n=1
 
(−1)n(x + 1)n

n
 90. ∑

∞

n=0
 3(x − 4)n

91. ∑
∞

n=0
 n!(x

2)
n

 92. ∑
∞

n=0
 
(x + 1)n

n!

eXpLoRInG ConCeptS
93.  Think about It What can you conclude about the 

convergence or divergence of ∑ an using the Ratio Test
 when an is a rational function of n? Explain.

94.  Using Different methods Describe two ways to

 show that the geometric series ∑
∞

n=0
 arn, r ≠ 0 converges

  when ∣r∣ < 1. Verify that both methods give the same result.

95.  Think about It You are told that the terms of a 
positive series appear to approach zero rapidly as n 
approaches infinity. In fact, a7 ≤ 0.0001. Given no other 
information, does this imply that the series converges? 
Support your conclusion with examples.

 96.  hoW Do yoU See IT? The graphs show 
the sequences of partial sums of the series

  ∑
∞

n=1
 
2n

n
 and ∑

∞

n=1
 
n
3n.

  Using the Ratio Test, the first series diverges 
and the second series converges. Explain how 
the graphs show this.

 96.  

1 2 3 4 5 6 7 8 9 10

0.2
0.1

0.3
0.4

0.6
0.5

0.7
0.8

n

Sn

n
3n∑

∞

n = 1

1 2 3 4 5 6 7 8 9 10

50

100

150

200

250

n

Sn

2n

n∑
∞

n = 1

 97. Proof Prove Property 2 of Theorem 9.17.

 98.  Proof Prove Theorem 9.18. (Hint for Property 1: If 
the limit equals r < 1, choose a real number R such that 
r < R < 1. By the definitions of the limit, there exists some

  N > 0 such that n√∣an∣ < R  for n > N.)

Verifying an Inconclusive Test In Exercises 99–102, 
verify that the Ratio Test is inconclusive for the p-series.

 99. ∑
∞

n=1
 

1
n3�2 100. ∑

∞

n=1
 

1
n0.05

101. ∑
∞

n=1
 
1
n4 102. ∑

∞

n=1
 
1
np

103.  Verifying an Inconclusive Test Show that the Root 
Test is inconclusive for the p-series

  ∑
∞

n=1
 
1
np.

104.  Verifying Inconclusive Tests Show that the Ratio 
Test and the Root Test are both inconclusive for the 
logarithmic p-series

  ∑
∞

n=2
 

1
n(ln n)p.

105.  Using Values Determine the convergence or divergence 
of the series

  ∑
∞

n=1
 
(n!)2

(xn)!

   when (a) x = 1, (b) x = 2, (c) x = 3, and (d) x is a positive 
integer.

106. Using a Series Show that if

  ∑
∞

n=1
 an

  is absolutely convergent, then

  ∣ ∑∞n=1
 an∣ ≤ ∑

∞

n=1
 ∣an∣.

pUtnAM eXAM ChALLenGe
107. Show that if the series

  a1 + a2 + a3 + .  .  . + an + .  .  .

  converges, then the series

  a1 +
a2

2
+

a3

3
+ .  .  . +

an

n
+ .  .  .

  converges also.

108. Is the following series convergent or divergent?

  1 +
1
2

∙ 19
7

+
2!
32(19

7 )
2

+
3!
43 (19

7 )
3

+
4!
54(19

7 )
4

+ .  .  .

These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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640 Chapter 9 Infinite Series

9.7 Taylor Polynomials and Approximations

  Find polynomial approximations of elementary functions and compare them with 
the elementary functions.

 Find Taylor and Maclaurin polynomial approximations of elementary functions.
 Use the remainder of a Taylor polynomial.

Polynomial Approximations of Elementary Functions
The goal of this section is to show how polynomial functions can be used as 
 approximations for other elementary functions. To find a polynomial function P that 
approximates another function f, begin by choosing a number c in the domain of f  at 
which f  and P have the same value. That is,

P(c) = f (c). Graphs of f  and P pass through (c, f (c)).

The approximating polynomial is said to be expanded about c or centered at c. 
Geometrically, the requirement that P(c) = f (c) means that the graph of P passes 
through the point (c, f (c)). Of course, there are many polynomials whose graphs pass 
through the point (c, f (c)). Your task is to find a polynomial whose graph resembles the 
graph of f  near this point. One way to do this is to impose the additional requirement 
that the slope of the polynomial function be the same as the slope of the graph of f  at 
the point (c, f (c)).

P′(c) = f′(c) Graphs of f  and P have the same slope at (c, f (c)).

With these two requirements, you can obtain a simple linear approximation of f, as 
shown in Figure 9.12.

 First-Degree Polynomial Approximation of f (x) = ex

For the function f (x) = ex, find a first-degree polynomial function P1(x) = a0 + a1x 
whose value and slope agree with the value and slope of f  at x = 0.

Solution Because f (x) = ex and f′(x) = ex, the value and the slope of f  at x = 0 are 

f (0) = e0 = 1 Value of f  at x = 0

and

f′(0) = e0 = 1. Slope of f  at x = 0

Because P1(x) = a0 + a1x, you can use the condition that P1(0) = f (0) to conclude that 
a0 = 1. Moreover, because P1′(x) = a1, you can use the condition that P1′(0) = f′(0) 
to conclude that a1 = 1. Therefore, P1(x) = 1 + x. The figure shows the graphs of 
P1(x) = 1 + x and f (x) = ex.

1 2

2

1

y

x

P1(x) = 1 + x

f (x) = ex

  P1 is the first-degree polynomial  
approximation of f (x) = ex. 

x

P(c) = f (c)

P ′(c) = f ′(c)

(c, f (c))f

P

y

Near (c, f (c)), the graph of P can be 
used to approximate the graph of f.
Figure 9.12

remArk Example 1 is not 
the first time you have used a 
linear function to approximate 
another function. The same  
procedure was used as the basis 
for Newton’s Method. 
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 9.7 Taylor Polynomials and Approximations 641

In Figure 9.13, you can see that, at points near (0, 1), the graph of the first-degree 
polynomial function

P1(x) = 1 + x 1st-degree approximation

is reasonably close to the graph of f (x) = ex. As you move away from (0, 1), 
however, the graphs move farther and farther from each other and the accuracy of the  
approximation decreases. To improve the approximation, you can impose yet another 
requirement—that the values of the second derivatives of P and f  agree when x = 0. 
The polyno mial, P2, of least degree that satisfies all three requirements P2(0) = f (0),  
P2′(0) = f′(0), and P2″(0) = f ″(0) can be shown to be

P2(x) = 1 + x +
1
2

x2. 2nd-degree approximation

Moreover, in Figure 9.13, you can see that P2 is a better approximation of f  than P1. 
By requiring that the values of Pn(x) and its first n derivatives match those of f (x) = ex 
at x = 0, you obtain the nth-degree approximation shown below.

 Pn(x) = 1 + x +
1
2

x2 +
1
3!

x3 + .  .  . +
1
n!

xn nth-degree approximation

 ≈ ex

 Third-Degree Polynomial Approximation of f (x) = ex

Construct a table comparing the values of the polynomial

P3(x) = 1 + x +
1
2

x2 +
1
3!

x3 3rd-degree approximation

with f (x) = ex for several values of x near 0.

Solution Using a graphing utility, you can obtain the results shown in the table. 
Note that for x = 0, the two functions have the same value, but that as x moves  farther 
away from 0, the accuracy of the approximating polynomial P3(x) decreases.

x −1 −0.2 −0.1 0 0.1 0.2 1

ex 0.3679 0.81873 0.904837 1 1.105171 1.22140 2.7183

P3(x) 0.3333 0.81867 0.904833 1 1.105167 1.22133 2.6667

 

1 2

2

1

y

x

P1

1
2

P2(x) = 1 + x +   x2

f (x) = ex

P2 is the second-degree polynomial 
approximation of f (x) = ex.
Figure 9.13

3

−1

−3

9
f P3

f P3

P3 is the third-degree polynomial 
approximation of f (x) = ex.
Figure 9.14

TeChnology A graphing utility can be used to compare the graph of  
the approximating polynomial with the graph of the function f. For instance, in 
Figure 9.14, the graph of

P3(x) = 1 + x + 1
2x2 + 1

6x3 3rd-degree approximation

is compared with the graph of f (x) = ex. Use a graphing utility to compare the 
graphs of 

P4(x) = 1 + x + 1
2 x2 + 1

6 x3 + 1
24 x4 4th-degree approximation

P5(x) = 1 + x + 1
2 x2 + 1

6 x3 + 1
24 x4 + 1

120 x5 5th-degree approximation

and

P6(x) = 1 + x + 1
2 x2 + 1

6 x3 + 1
24 x4 + 1

120 x5 + 1
720 x6 6th-degree approximation

with the graph of f. What do you notice?
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642 Chapter 9 Infinite Series

Taylor and Maclaurin Polynomials
The polynomial approximation of

f (x) = ex

in Example 2 is expanded about c = 0. For expansions about an arbitrary value of c, it 
is convenient to write the  polynomial in the form

Pn(x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + .  .  . + an(x − c)n.

In this form, repeated differentiation produces

 Pn′(x) = a1 + 2a2(x − c) + 3a3(x − c)2 + .  .  . + nan(x − c)n−1

 Pn″(x) = 2a2 + 2(3a3)(x − c) + .  .  . + n(n − 1)an(x − c)n−2

 Pn′″(x) = 2(3a3) + .  .  . + n(n − 1)(n − 2)an(x − c)n−3

 ⋮
 Pn

(n)(x) = n(n − 1)(n − 2) .  .  . (2)(1)an.

Letting x = c, you then obtain

Pn(c) = a0, Pn′(c) = a1, Pn″(c) = 2a2,  .  .  . , Pn
(n)(c) = n!an

and because the values of f  and its first n derivatives must agree with the values of Pn 
and its first n derivatives at x = c, it follows that

f (c) = a0, f′(c) = a1, 
f ″(c)

2!
= a2, .  .  . , 

f (n)(c)
n!

= an.

With these coefficients, you can obtain the following definition of Taylor  polynomials, 
named after the English mathematician Brook Taylor, and Maclaurin polynomials, 
named after the Scottish mathematician Colin Maclaurin (1698–1746).

Definitions of nth Taylor Polynomial and nth maclaurin 
Polynomial

If f  has n derivatives at c, then the polynomial

Pn(x) = f (c) + f′(c)(x − c) +
f ″(c)

2!
(x − c)2 + .  .  . +

f (n)(c)
n!

(x − c)n

is called the nth Taylor polynomial for f  at c. If c = 0, then

Pn(x) = f (0) + f′(0)x +
f ″(0)

2!
 x2 +

f′″(0)
3!

 x3 + .  .  . +
f (n)(0)

n!
 xn

is also called the nth Maclaurin polynomial for f.

 A maclaurin Polynomial for f (x) = ex

From the discussion on the preceding page, the nth Maclaurin polynomial for f (x) = ex 
is given by

Pn(x) = 1 + x +
1
2!

 x2 +
1
3!

 x3 + .  .  . +
1
n!

 xn. 

remArk Maclaurin 
polynomials are special types 
of Taylor polynomials for 
which c = 0.

 FOR FURTHER INFORMATION
To see how to use series to obtain other approximations to e, see the article “Novel 
Series-based Approximations to e” by John Knox and Harlan J. Brothers in The College 
Mathematics Journal. To view this article, go to MathArticles.com.

BROOK TAYLOR (1685–1731)

Although Taylor was not
the first to seek polynomial 
approximations of 
transcendental functions, his 
account published in 1715 was 
one of the first comprehensive 
works on the subject. 
See LarsonCalculus.com 
to read more of this biography.

Portrait of Brook Taylor (1685–1731) 1720 (w/c & bodycolour on vellum laid on card), Goupy, Louis (1700–47)/National Portrait Gallery, London, UK/Bridgeman Images
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 9.7 Taylor Polynomials and Approximations 643

 Finding Taylor Polynomials for ln x  

Find the Taylor polynomials P0, P1, P2, P3, and P4 for

f (x) = ln x

centered at c = 1.

Solution Expanding about c = 1 yields the following.

 f (x) = ln x   f (1) = ln 1 = 0

 f′(x) =
1
x

  f′(1) =
1
1

= 1

 f ″(x) = −
1
x2  f ″(1) = −

1
12 = −1

 f′″(x) =
2!
x3   f′″(1) =

2!
13 = 2

 f (4)(x) = −
3!
x4  f (4)(1) = −

3!
14 = −6

Therefore, the Taylor polynomials are as follows.

 P0(x) = f (1) = 0

 P1(x) = f (1) + f′(1)(x − 1) = (x − 1)

 P2(x) = f (1) + f′(1)(x − 1) +
f ″(1)

2!
(x − 1)2

 = (x − 1) −
1
2

(x − 1)2

 P3(x) = f (1) + f′(1)(x − 1) +
f ″(1)

2!
(x − 1)2 +

f′″(1)
3!

(x − 1)3

 = (x − 1) −
1
2

(x − 1)2 +
1
3

(x − 1)3

 P4(x) = f (1) + f′(1)(x − 1) +
f ″(1)

2!
(x − 1)2 +

f′″(1)
3!

(x − 1)3 +
f (4)(1)

4!
(x − 1)4

 = (x − 1) −
1
2

(x − 1)2 +
1
3

(x − 1)3 −
1
4

(x − 1)4

Figure 9.15 compares the graphs of P1, P2, P3, and P4 with the graph of f (x) = ln x. 
Note that near x = 1, the graphs are nearly indistinguishable. For instance,

P4(1.1) ≈ 0.0953083

and

ln(1.1) ≈ 0.0953102.

x

1

2

−1

−2

1 2 3 4

P4

y

f

x

1

2

−1

−2

1 2 3 4

y

f

P3

P2

x

1

2

−1

1 2 3 4

y

f

x

1

2

−1

−2

1 2 3 4

y

P1

f

As n increases, the graph of Pn becomes a better and better approximation of the graph of f (x) = ln x near x = 1.
Figure 9.15  
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644 Chapter 9 Infinite Series

 Finding maclaurin Polynomials for cos x

Find the Maclaurin polynomials P0, P2, P4, and P6 for f (x) = cos x. Use P6(x) to 
approximate the value of cos(0.1).

Solution Expanding about c = 0 yields the following.

 f (x) = cos x   f (0) = cos 0 = 1

 f′(x) = −sin x   f′(0) = −sin 0 = 0

 f ″(x) = −cos x  f ″(0) = −cos 0 = −1

 f′″(x) = sin x   f′″(0) = sin 0 = 0

Through repeated differentiation, you can see that the pattern 1, 0, −1, 0 continues, and 
you obtain the Maclaurin polynomials

P0(x) = 1, P2(x) = 1 −
1
2!

x2, P4(x) = 1 −
1
2!

x2 +
1
4!

x4,

and 

P6(x) = 1 −
1
2!

x2 +
1
4!

x4 −
1
6!

x6.

To nine decimal places, the approximation

P6(0.1) ≈ 0.995004165

is the same as cos(0.1). Figure 9.16 compares the graphs of f (x) = cos x and P6. 

Note in Example 5 that the Maclaurin polynomials for cos x have only even   
powers of x. Similarly, the Maclaurin polynomials for sin x have only odd powers of 
x (see Exercise 19). This is not generally true of the Taylor polynomials for sin x and 
cos x expanded about c ≠ 0, as shown in the next example.

 Finding a Taylor Polynomial for sin x

See LarsonCalculus.com for an interactive version of this type of example.

Find the third Taylor polynomial for f (x) = sin x, expanded about c = π�6.

Solution Expanding about c = π�6 yields the following.

 f (x) = sin x   f (π6) = sin 
π
6

=
1
2

 f′(x) = cos x   f′(π6) = cos 
π
6

=
√3
2

 f ″(x) = −sin x   f ″(π6) = −sin 
π
6

= −
1
2

 f′″(x) = −cos x  f′″(π6) = −cos 
π
6

= −
√3
2

So, the third Taylor polynomial for f (x) = sin x, expanded about c = π�6, is 

 P3(x) = f (π6) + f′(π6)(x −
π
6) +

f ″(π6)
2! (x −

π
6)

2

+
f′″(π6)

3! (x −
π
6)

3

 =
1
2

+
√3
2 (x −

π
6) −

1
2(2!) (x −

π
6)

2

−
√3

2(3!) (x −
π
6)

3

.

Figure 9.17 compares the graphs of f (x) = sin x and P3. 

P6

x

2

2

−2

−1

f (x) = cos x

y

πππ−

Near (0, 1), the graph of P6 can be 
used to approximate the graph of 
f (x) = cos x.
Figure 9.16

x

2

1

−2

−1

P3

f (x) = sin x

y

π− −
2
π

2
ππ

Near (π�6, 1�2), the graph of P3 can 
be used to approximate the graph of 
f (x) = sin x.
Figure 9.17
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 9.7 Taylor Polynomials and Approximations 645

Taylor polynomials and Maclaurin polynomials can be used to approximate the 
value of a function at a specific point. For instance, to approximate the value of ln(1.1), 
you can use Taylor polynomials for f (x) = ln x expanded about c = 1, as shown in 
Example 4, or you can use Maclaurin polynomials, as shown in Example 7.

 Approximation Using maclaurin Polynomials

Use a fourth Maclaurin polynomial to approximate the value of ln(1.1).

Solution Because 1.1 is closer to 1 than to 0, you should consider Maclaurin 
 polynomials for the function g(x) = ln(1 + x).

 g(x) = ln(1 + x)   g(0) = ln(1 + 0) = 0

 g′(x) = (1 + x)−1   g′(0) = (1 + 0)−1 = 1

 g″(x) = −(1 + x)−2   g″(0) = −(1 + 0)−2 = −1

 g″′(x) = 2(1 + x)−3   g″′(0) = 2(1 + 0)−3 = 2

 g(4)(x) = −6(1 + x)−4  g(4)(0) = −6(1 + 0)−4 = −6

Note that you obtain the same coefficients as in Example 4. Therefore, the fourth 
Maclaurin polynomial for g(x) = ln(1 + x) is

 P4(x) = g(0) + g′(0)x +
g″(0)

2!
x2 +

g′″(0)
3!

x3 +
g(4)(0)

 4!
x4

 = x −
1
2

x2 +
1
3

x3 −
1
4

x4.

Consequently,

ln(1.1) = ln(1 + 0.1) ≈ P4(0.1) ≈ 0.0953083. 

The table below illustrates the accuracy of the Maclaurin polynomial approximation 
of the calculator value of ln(1.1). You can see that as n increases, Pn(0.1) approaches 
the value of ln(1.1) ≈  0.0953102.

 Maclaurin Polynomial Approximations of ln(1 + x) at x = 0.1

n 1 2 3 4

Pn(0.1) 0.1000000 0.0950000 0.0953333 0.0953083

On the other hand, the table below illustrates that as you move away from the 
expansion point c = 0, the accuracy of the approximation decreases.

 Fourth Maclaurin Polynomial Approximation of ln(1 + x)

x 0 0.1 0.5 0.75 1.0

ln(1 + x) 0 0.0953102 0.4054651 0.5596158 0.6931472

P4(x) 0 0.0953083 0.4010417 0.5302734 0.5833333

These two tables illustrate two very important points about the accuracy of Taylor 
(or Maclaurin) polynomials for use in approximations.

1.  The approximation is usually better for higher-degree Taylor (or Maclaurin) 
 polynomials than for those of lower degree.

2.  The approximation is usually better at x-values close to c than at x-values far from c.

exploration
Check to see that the fourth 
Taylor polynomial (from 
Example 4), evaluated 
at x = 1.1, yields the 
same result as the fourth 
Maclaurin polynomial in 
Example 7.
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646 Chapter 9 Infinite Series

Remainder of a Taylor Polynomial
An approximation technique is of little value without some idea of its accuracy. To 
measure the accuracy of approximating a function value f (x) by the Taylor  polynomial 
Pn(x), you can use the concept of a remainder Rn(x), defined as follows.

f (x) = Pn(x) + Rn(x)

So, Rn(x) = f (x) − Pn(x). The absolute value of Rn(x) is called the error associated 
with the approximation. That is,

Error = ∣Rn(x)∣ = ∣ f (x) − Pn(x)∣.

The next theorem gives a general procedure for estimating the remainder  associated 
with a Taylor polynomial. This important theorem is called Taylor’s Theorem, and the 
remainder given in the theorem is called the Lagrange form of the remainder.

Theorem 9.19 Taylor’s Theorem

If a function f  is differentiable through order n + 1 in an interval I containing c, 
then, for each x in I, there exists z between x and c such that

f (x) = f (c) + f′(c)(x − c) +
f ″(c)

2!
(x − c)2 + .  .  . +

f (n)(c)
n!

(x − c)n + Rn(x)

where

Rn(x) =
f (n+1)(z)
(n + 1)! (x − c)n+1.

A proof of this theorem is given in Appendix A.

One useful consequence of Taylor’s Theorem is that

∣Rn(x)∣ ≤ ∣x − c∣n+1

(n + 1)! max∣ f (n+1)(z)∣
where max∣f (n+1)(z)∣ is the maximum value of f (n+1)(z) between x and c.

For n = 0, Taylor’s Theorem states that if f  is differentiable in an interval I 
 containing c, then, for each x in I, there exists z between x and c such that

f (x) = f (c) + f′(z)(x − c) or f′(z) =
f (x) − f (c)

x − c
.

Do you recognize this special case of Taylor’s Theorem? (It is the Mean Value 
Theorem.)

When applying Taylor’s Theorem, you should not expect to be able to find the 
exact value of z. (If you could do this, an approximation would not be necessary.) 
Rather, you are trying to find bounds for f (n+1)(z) from which you are able to tell how 
large the remainder Rn(x) is.

Exact
value

Approximate
value

Remainder
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 9.7 Taylor Polynomials and Approximations 647

 Determining the Accuracy of an Approximation

The third Maclaurin polynomial for sin x is

P3(x) = x −
x3

3!
.

Use Taylor’s Theorem to approximate sin(0.1) by P3(0.1) and determine the accuracy 
of the approximation.

Solution Using Taylor’s Theorem, you have

sin x = x −
x3

3!
+ R3(x) = x −

x3

3!
+

f (4)(z)
4!

x4

where 0 < z < 0.1. Therefore,

sin(0.1) ≈ 0.1 −
(0.1)3

3!
≈ 0.1 − 0.000167 = 0.099833.

Because f (4)(z) = sin z, it follows that the error ∣R3(0.1)∣ can be bounded as follows.

 0 < R3(0.1) =
sin z
4!

(0.1)4 <
0.0001

4!
≈ 0.000004

This implies that

0.099833 < sin(0.1) ≈ 0.099833 + R3(0.1) < 0.099833 + 0.000004

or

0.099833 < sin(0.1) < 0.099837.

 Approximating a Value to a Desired Accuracy

Determine the degree of the Taylor polynomial Pn(x) expanded about c = 1 that should 
be used to approximate ln(1.2) so that the error is less than 0.001.

Solution Following the pattern of Example 4, you can see that the (n + 1)st 
 derivative of f (x) = ln x is

f (n+1)(x) = (−1)n n!
xn+1.

Using Taylor’s Theorem, you know that the error ∣Rn(1.2)∣ is 

 ∣Rn(1.2)∣ = ∣ f (n+1)(z)
(n + 1)! (1.2 − 1)n+1∣

 =
n!

zn+1[ 1
(n + 1)!](0.2)n+1

 =
(0.2)n+1

zn+1(n + 1)

where 1 < z < 1.2. In this interval, (0.2)n+1�[zn+1(n + 1)] is less than (0.2)n+1�(n + 1). 
So, you are seeking a value of n such that

(0.2)n+1

(n + 1) < 0.001  1000 < (n + 1)5n+1.

By trial and error, you can determine that the least value of n that satisfies this inequality 
is n = 3. So, you would need the third Taylor polynomial to achieve the desired 
accuracy in approximating ln(1.2). 

remArk Note that when 
you use a calculator,

sin(0.1) ≈ 0.0998334.

remArk Note that when 
you use a calculator,

P3(1.2) ≈ 0.1827

and

ln(1.2) ≈ 0.1823.
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648 Chapter 9 Infinite Series

9.7 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Polynomial Approximation An elementary 

function is approximated by a polynomial. In your 
own words, describe what is meant by saying that the 
polynomial is expanded about c or centered at c.

2.  Taylor and maclaurin Polynomials How are 
Taylor polynomials and Maclaurin polynomials related?

3.  Accuracy of a Taylor Polynomial Describe 
the accuracy of the nth-degree Taylor polynomial of f  
centered at c as the distance between c and x increases.

4.  Accuracy of a Taylor Polynomial In general, 
how does the accuracy of a Taylor polynomial change 
as the degree of the polynomial increases? Explain your 
reasoning.

matching In Exercises 5–8, match the Taylor polynomial 
approximation of the function f (x) = e−x2�2 with its graph. 
[The graphs are labeled (a), (b), (c), and (d).]

(a) 

x
1

2

2
−1

−1

−2

−2

y  (b) 

x
1

2

2
−1

−2

−2

y

(c) 

x
1

2

2
−1

−1

−2

−2

y  (d) 

x
1

2

2
−1

−1

−2

−2

y

 5. g(x) = −1
2 x2 + 1

 6. g(x) = 1
8 x4 − 1

2 x2 + 1

 7. g(x) = e−1�2 [(x + 1) + 1]
 8. g(x) = e−1�2 [1

3 (x − 1)3 − (x − 1) + 1]
 Finding a First-Degree Polynomial 
Approximation In Exercises 9–12, find a first-
degree polynomial function P1 whose value and 
slope agree with the value and slope of f  at x = c. 
Use a graphing utility to graph f  and P1. 

 9. f (x) =
√x
4

, c = 4 10. f (x) =
6

3√x
, c = 8

11. f (x) = sec x, c =
π
6

12. f (x) = tan x, c =
π
4

 graphical and numerical Analysis In 
Exercises 13 and 14, use a graphing utility to graph 
f  and its second-degree polynomial approximation 
P2 at x = c. Complete the table comparing the 
values of f  and P2.

13. f (x) =
4

√x
, c = 1

 P2(x) = 4 − 2(x − 1) + 3
2(x − 1)2

 
x 0 0.8 0.9 1 1.1 1.2 2

f (x)

P2(x)

14. f (x) = sec x, c =
π
4

 P2(x) = √2 + √2(x −
π
4) +

3
2
√2(x −

π
4)

2

 
x −2.15 0.585 0.685

π
4 0.885 0.985 1.785

f (x)

P2(x)

15.  Conjecture Consider the function f (x) = cos x and its 
Maclaurin polynomials P2, P4, and P6 (see Example 5).

 (a)  Use a graphing utility to graph f  and the indicated 
polynomial approximations.

 (b)  Evaluate and compare the values of f (n)(0) and Pn
(n)(0) for 

n = 2, 4, and 6.

 (c)  Use the results in part (b) to make a conjecture about 
f (n)(0) and Pn

(n)(0).
16. Conjecture Consider the function f (x) = x2ex.

 (a) Find the Maclaurin polynomials P2, P3, and P4 for f.

 (b) Use a graphing utility to graph f, P2, P3, and P4.

 (c)  Evaluate and compare the values of f (n)(0) and Pn
(n)(0) for 

n = 2, 3, and 4.

 (d)  Use the results in part (c) to make a conjecture about 
f (n)(0) and Pn

(n)(0).

 Finding a maclaurin Polynomial In 
Exercises 17–26, find the nth Maclaurin polynomial 
for the function.

17. f (x) = e4x, n = 4 18. f (x) = e−x, n = 5

19. f (x) = sin x, n = 5 20. f (x) = cos πx, n = 4

21. f (x) = xex, n = 4 22. f (x) = x2e−x, n = 4

23. f (x) =
1

1 − x
, n = 5 24. f (x) =

x
x + 1

, n = 4

25. f (x) = sec x, n = 2 26. f (x) = tan x, n = 3
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 9.7 Taylor Polynomials and Approximations 649

 Finding a Taylor Polynomial In Exercises 
27–32, find the nth Taylor polynomial for the 
function, centered at c.

27. f (x) =
2
x
, n = 3, c = 1

28. f (x) =
1
x2, n = 4, c = −2

29. f (x) = √x, n = 2, c = 4

30. f (x) = 3√x, n = 3, c = 8

31. f (x) = ln x, n = 4, c = 2

32. f (x) = x2 cos x, n = 2, c = π

Finding Taylor Polynomials Using Technology In 
Exercises 33 and 34, use a computer algebra system to find 
the indicated Taylor polynomials for the function f. Graph the 
function and the Taylor polynomials.

33. f (x) = tan πx 34. f (x) =
1

x2 + 1

 (a) n = 3, c = 0  (a) n = 4, c = 0

 (b) n = 3, c = 1�4  (b) n = 4, c = 1

35. numerical and graphical Approximations

 (a)  Use the Maclaurin polynomials P1(x), P3(x), and P5(x) for 
f (x) = sin x to complete the table.

  
x 0 0.25 0.50 0.75 1

sin x 0 0.2474 0.4794 0.6816 0.8415

P1(x)

P3(x)

P5(x)

 (b)  Use a graphing utility to graph f (x) = sin x and the 
Maclaurin polynomials in part (a).

 (c)  Describe the change in accuracy of a polynomial  
approximation as the distance from the point where the 
 polynomial is centered increases.

36. numerical and graphical Approximations

 (a)  Use the Taylor polynomials P1(x), P2(x), and P4(x) for 
f (x) = ex, centered at c = 1, to complete the table.

  
x 1 1.25 1.50 1.75 2

ex e 3.4903 4.4817 5.7546 7.3891

P1(x)

P2(x)

P4(x)

 (b)  Use a graphing utility to graph f (x) = ex and the Taylor 
polynomials in part (a).

 (c)  Describe the change in accuracy of polynomial  
approximations as the degree increases.

numerical and graphical Approximations In Exercises 
37 and 38, (a) find the Maclaurin polynomial P3(x) for f (x),  
(b) complete the table for f (x) and P3(x), and (c) sketch the 
graphs of f (x) and P3(x), on the same set of coordinate axes.

x −0.75 −0.50 −0.25 0 0.25 0.50 0.75

f (x)

P3(x)

37. f (x) = arcsin x 38. f (x) = arctan x

 Approximating a Function Value In 
Exercises 39–44, approximate the function at the 
given value of x, using the polynomial found in the 
indicated exercise.

39. f (x) = e4x, f (1
4), Exercise 17

40. f (x) = x2e−x, f (1
5), Exercise 22

41. f (x) =
1
x2, f (−2.1), Exercise 28

42. f (x) = 3√x, f (8.05), Exercise 30

43. f (x) = ln x, f (2.1), Exercise 31

44. f (x) = x2 cos x, f (7π
8 ), Exercise 32

 Using Taylor’s Theorem In Exercises 45–50, 
use Taylor’s Theorem to obtain an upper bound 
for the error of the approximation. Then calculate 
the exact value of the error.

45. cos(0.3) ≈ 1 −
(0.3)2

2!
+

(0.3)4

4!

46. arccos(0.15) ≈
π
2

− 0.15

47. sinh(0.2) ≈ 0.2 +
(0.2)3

3!
+

(0.2)5

5!

48. e ≈ 1 + 1 +
12

2!
+

13

3!
+

14

4!
+

15

5!

49. arcsin(0.4) ≈ 0.4 +
(0.4)3

2 ∙ 3

50. arctan(0.4) ≈ 0.4 −
(0.4)3

3

 Finding a Degree In Exercises 51–56, 
determine the degree of the Maclaurin polynomial 
required for the error in the approximation of the 
function at the indicated value of x to be less than 
0.001.

51. f (x) = sin x, approximate f (0.3)
52. f (x) = cos x, approximate f (0.4)
53. f (x) = ex, approximate f (0.6)
54. f (x) = ln(x + 1), approximate f (1.25)

55. f (x) =
1

x − 2
, approximate f (0.15)

56. f (x) =
1

x + 1
, approximate f (0.2)
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650 Chapter 9 Infinite Series

Finding a Degree Using Technology In Exercises 57 
and 58, determine the degree of the Maclaurin polynomial 
required for the error in the approximation of the function at 
the indicated value of x to be less than 0.0001. Use a computer 
algebra system to obtain and evaluate the required derivative.

57. f (x) = ln(x + 1), approximate f (0.5).
58. f (x) = e−πx, approximate f (1.3).

Finding Values In Exercises 59–62, determine the values of 
x for which the function can be replaced by the Taylor polynomial 
if the error cannot exceed 0.001.

59. f (x) = ex ≈ 1 + x +
x2

2!
+

x3

3!
, x < 0

60. f (x) = sin x ≈ x −
x3

3!

61. f (x) = cos x ≈ 1 −
x2

2!
+

x4

4!

62. f (x) = e−2x ≈ 1 − 2x + 2x2 −
4
3

x3

eXpLoRInG ConCeptS
63.  Think About It What is the relationship between the 

equation of a tangent line to a differentiable function at 
a point and the first Taylor polynomial for that function 
centered at the point?

64.  maclaurin Polynomial Without performing any 
calculations, find the second Maclaurin polynomial for

f (x) = a + bx2.

 Explain your reasoning.

65.  maclaurin Polynomials Find the fourth Maclaurin 
polynomials for

 f (x) = ex and g(x) = e2x.

  Explain how you can use the fourth Maclaurin polynomial 
for f  to find the fourth Maclaurin polynomial for g.

 66.  hoW Do yoU See IT? The figure shows 
the graphs of the first-, second-, and third-
degree polynomial approximations P1, P2, and 
P3 of a function f. Label the graphs of P1, P2, 
and P3. To print an enlarged copy of the graph, 
go to MathGraphs.com.

 

x
20−20 10

2

−2

−4

4

6

8

10 f

y

 66.  

67. Comparing maclaurin Polynomials

 (a)  Compare the Maclaurin polynomials of degree 4 and 
degree 5, respectively, for the functions

f (x) = ex and g(x) = xex.

  What is the relationship between them?

 (b)  Use the result in part (a) and the Maclaurin polynomial of 
degree 5 for f (x) = sin x to find a Maclaurin polynomial 
of degree 6 for the function g(x) = x sin x.

 (c)  Use the result in part (a) and the Maclaurin polynomial of 
degree 5 for f (x) = sin x to find a Maclaurin polynomial 
of degree 4 for the function g(x) = (sin x)�x.

68. Differentiating maclaurin Polynomials

 (a)  Differentiate the Maclaurin polynomial of degree 5 for 
f (x) = sin x and compare the result with the Maclaurin 
polynomial of degree 4 for g(x) = cos x.

 (b)  Differentiate the Maclaurin polynomial of degree 6 for 
f (x) = cos x and compare the result with the Maclaurin 
polynomial of degree 5 for g(x) = sin x.

 (c)  Differentiate the Maclaurin polynomial of degree 4 for 
f (x) = ex. Describe the relationship between the two 
series.

69.  graphical reasoning The figure shows the graphs of 
the function f (x) = sin(πx�4) and the second-degree Taylor 
polynomial P2(x) = 1 − (π2�32)(x − 2)2 centered at x = 2.

x

2

4

−4

2 4

y

f(x)

P2(x)

 (a)  Use the symmetry of the graph of f  to write the second-
degree Taylor polynomial Q2(x) for f  centered at x = −2.

 (b)  Use a horizontal translation of the result in part (a) to find 
the second-degree Taylor polynomial R2(x) for f  centered 
at x = 6.

 (c)  Is it possible to use a horizontal translation of the result in 
part (a) to write a second-degree Taylor polynomial for f  
centered at x = 4? Explain.

70.  Proof Prove that if f  is an odd function, then its nth 
Maclaurin polynomial contains only terms with odd powers of x.

71.  Proof Prove that if f  is an even function, then its nth 
Maclaurin polynomial contains only terms with even powers 
of x.

72.  Proof Let Pn(x) be the nth Taylor polynomial for f  at c. 
Prove that Pn(c) = f (c) and P(k)(c) = f (k)(c) for 1 ≤ k ≤ n.

73.  Proof Consider a function f  with continuous first and 
second derivatives at x = c. Prove that if f  has a relative 
maximum at x = c, then the second Taylor polynomial 
centered at x = c also has a relative maximum at x = c.
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9.8 Power Series 651

9.8 Power Series

 Understand the definition of a power series.
 Find the radius and interval of convergence of a power series.
 Determine the endpoint convergence of a power series.
 Differentiate and integrate a power series.

Power Series
In Section 9.7, you were introduced to the concept of approximating functions by 
Taylor polynomials. For instance, the function f (x) = ex can be approximated by its 
third-degree Maclaurin polynomial

ex ≈ 1 + x +
x2

2!
+

x3

3!
.

In that section, you saw that the higher the degree of the approximating polynomial, the 
better the approximation becomes.

In this and the next two sections, you will see that several important types of 
functions, including f (x) = ex, can be represented exactly by an infinite series called a 
power series. For example, the power series representation for ex is

ex = 1 + x +
x2

2!
+

x3

3!
+ .  .  . +

xn

n!
+ .  .  . .

For each real number x, it can be shown that the infinite series on the right converges 
to the number ex. Before doing this, however, some preliminary results dealing with 
power series will be discussed—beginning with the next definition.

Definition of Power Series

If x is a variable, then an infinite series of the form

∑
∞

n=0
 anx

n = a0 + a1x + a2x
2 + a3x

3 + .  .  . + anx
n + .  .  .

is called a power series. More generally, an infinite series of the form

∑
∞

n=0
 an(x − c)n = a0 + a1(x − c) + a2(x − c)2 + .  .  . + an(x − c)n + .  .  .

is called a power series centered at c, where c is a constant.

 Power Series

a. The following power series is centered at 0.

∑
∞

n=0
 
xn

n!
= 1 + x +

x2

2
+

x3

3!
+ .  .  .

b. The following power series is centered at −1.

∑
∞

n=0
 (−1)n(x + 1)n = 1 − (x + 1) + (x + 1)2 − (x + 1)3 + .  .  .

c. The following power series is centered at 1.

∑
∞

n=1
 
1
n

(x − 1)n = (x − 1) +
1
2

(x − 1)2 +
1
3

(x − 1)3 + .  .  . 

RemaRk To simplify 
the notation for power series, 
assume that (x − c)0 = 1, even 
when x = c.

exploration
Graphical Reasoning 
Use a graphing utility to 
approximate the graph of 
each power series near 
x = 0. (Use the first several 
terms of each series.) 
Each series represents a 
well-known function. What 
is the function?

a. ∑
∞

n=0
 
(−1)nxn

n!

b. ∑
∞

n=0
 
(−1)nx2n

(2n)!

c. ∑
∞

n=0
 
(−1)nx2n+1

(2n + 1)!

d. ∑
∞

n=0
 
(−1)nx2n+1

2n + 1

e. ∑
∞

n=0
 
2nxn

n!
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652 Chapter 9 Infinite Series

Radius and Interval of Convergence
A power series in x can be viewed as a function of x

f (x) = ∑
∞

n=0
 an(x − c)n

where the domain of f  is the set of all x for which the power series converges. 
Determination of the domain of a power series is the primary concern in this section. 
Of course, every power series converges at its center c because

  f (c) = ∑
∞

n=0
 an(c − c)n

 = a0(1) + 0 + 0 + .  .  . + 0 + .  .  . 

 = a0.

So, c always lies in the domain of f. Theorem 9.20 (see below) states that the domain 
of a power series can take three basic forms: a single point, an interval centered at c, or 
the entire real number line, as shown in Figure 9.18.

c
x

A single point

c
x

R R

An interval

c
x

The real number line

  The domain of a power series has only three 
basic forms: a single point, an interval centered 
at c, or the entire real number line.

 Figure 9.18

THeORem 9.20 Convergence of a Power Series

For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.

2.  There exists a real number R > 0 such that the series converges 
absolutely for

∣x − c∣ < R

 and diverges for

∣x − c∣ > R.

3. The series converges absolutely for all x.

The number R is the radius of convergence of the power series. If the 
series converges only at c, then the radius of convergence is R = 0. If the 
series converges for all x, then the radius of convergence is R = ∞. The 
set of all values of x for which the power series converges is the 
interval of convergence of the power series.

A proof of this theorem is given in Appendix A.
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 9.8 Power Series 653

To determine the radius of convergence of a power series, use the Ratio Test, as 
demonstrated in Examples 2, 3, and 4.

 Finding the Radius of Convergence

Find the radius of convergence of ∑
∞

n=0
 n!xn.

Solution For x = 0, you obtain

f (0) = ∑
∞

n=0
 n!0n = 1 + 0 + 0 + .  .  . = 1.

For any fixed value of x such that ∣x∣ > 0, let un = n!xn. Then

 lim
n→∞

 ∣un+1

un ∣ = lim
n→∞

 ∣(n + 1)!xn+1

n!xn ∣
 = ∣x∣ lim

n→∞
 (n + 1)

 = ∞.

Therefore, by the Ratio Test, the series diverges for ∣x∣ > 0 and converges only at its 
center, 0. So, the radius of convergence is R = 0.

 Finding the Radius of Convergence

Find the radius of convergence of

∑
∞

n=0
 3(x − 2)n.

Solution For x ≠ 2, let un = 3(x − 2)n. Then

 lim
n→∞

 ∣un+1

un ∣ = lim
n→∞

 ∣3(x − 2)n+1

3(x − 2)n ∣
 = lim

n→∞
 ∣x − 2∣

 = ∣x − 2∣.
By the Ratio Test, the series converges for ∣x − 2∣ < 1 and diverges for ∣x − 2∣ > 1. 
Therefore, the radius of convergence of the series is R = 1.

 Finding the Radius of Convergence

Find the radius of convergence of 

∑
∞

n=0
 
(−1)nx2n+1

(2n + 1)! .

Solution Let un = (−1)n x2n+1�(2n + 1)!. Then

 lim
n→∞

 ∣un+1

un ∣ = lim
n→∞

 ∣ (−1)n+1 x2n+3

(2n + 3)!  

(−1)n x2n+1

(2n + 1)! ∣
 = lim

n→∞
 

x2

(2n + 3)(2n + 2).

For any fixed value of x, this limit is 0. So, by the Ratio Test, the series converges for 
all x. Therefore, the radius of convergence is R = ∞. 
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654 Chapter 9 Infinite Series

Endpoint Convergence
Note that for a power series whose radius of convergence is a finite number R, 
Theorem 9.20 says nothing about the convergence at the endpoints of the interval of 
convergence. Each endpoint must be tested separately for convergence or divergence. 
As a result, the interval of convergence of a power series can take any one of the six 
forms shown in Figure 9.19.

c
x

Radius: 0

  

Radius: ∞

c
x

c
x

R

(c − R, c + R)

RRadius:

  

c
x

(c − R, c + R]

R

  

c
x

[c − R, c + R)

R

  

c
x

[c − R, c + R]

R

 Intervals of convergence
 Figure 9.19

 Finding the Interval of Convergence

See LarsonCalculus.com for an interactive version of this type of example.

Find the interval of convergence of

∑
∞

n=1
 
xn

n
.

Solution Letting un = xn�n produces

 lim
n→∞

 ∣un+1

un ∣ = lim
n→∞

 ∣ xn+1

n + 1
 

xn

n ∣
 = lim

n→∞
 ∣ nx

n + 1∣
 = ∣x∣.

So, by the Ratio Test, the radius of convergence is R = 1. Moreover, because the 
series is centered at 0, it converges in the interval (−1, 1). This interval, however, 
is not necessarily the interval of convergence. To determine this, you must test for 
convergence at each endpoint. When x = 1, you obtain the divergent harmonic series

∑
∞

n=1
 
1
n

=
1
1

+
1
2

+
1
3

+ .  .  . . Diverges when x = 1.

When x = −1, you obtain the convergent alternating harmonic series

∑
∞

n=1
 
(−1)n

n
= −1 +

1
2

−
1
3

+
1
4

− .  .  . . Converges when x = −1.

So, the interval of convergence for the series is [−1, 1), as shown in Figure 9.20.

Radius: R = 1

c = 0
x

−1 1

Interval: [−1, 1)

 Figure 9.20 

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 9.8 Power Series 655

 Finding the Interval of Convergence

Find the interval of convergence of ∑
∞

n=0
 
(−1)n(x + 1)n

2n .

Solution Letting un = (−1)n(x + 1)n�2n produces

 lim
n→∞

 ∣un+1

un ∣ = lim
n→∞

 ∣ (−1)n+1(x + 1)n+1

2n+1  

(−1)n(x + 1)n

2n ∣
 = lim

n→∞
 ∣x + 1

2 ∣
 = ∣x + 1

2 ∣.
By the Ratio Test, the series converges for 

∣x + 1
2 ∣ < 1

or ∣x + 1∣ < 2. So, the radius of convergence is R = 2. Because the series is centered 
at x = −1, it will converge in the interval (−3, 1). Furthermore, at the endpoints, 
you have

∑
∞

n=0
 
(−1)n(−2)n

2n = ∑
∞

n=0
 
2n

2n = ∑
∞

n=0
 1 Diverges when x = −3.

and

∑
∞

n=0
 
(−1)n(2)n

2n = ∑
∞

n=0
 (−1)n Diverges when x = 1.

both of which diverge. So, the interval of convergence is (−3, 1), as shown in Figure 9.21.

 Finding the Interval of Convergence

Find the interval of convergence of

∑
∞

n=1
 
xn

n2.

Solution Letting un = xn�n2 produces

 lim
n→∞

 ∣un+1

un ∣ = lim
n→∞

 ∣xn+1�(n + 1)2

xn�n2 ∣
 = lim

n→∞
 ∣ n2x

(n + 1)2∣
 = ∣x∣.

So, the radius of convergence is R = 1. Because the series is centered at x = 0, it 
converges in the interval (−1, 1). When x = 1, you obtain the convergent p-series

∑
∞

n=1
 
1
n2 =

1
12 +

1
22 +

1
32 +

1
42 + .  .  . . Converges when x = 1.

When x = −1, you obtain the convergent alternating series

∑
∞

n=1
 
(−1)n

n2 = −
1
12 +

1
22 −

1
32 +

1
42 − .  .  . . Converges when x = −1.

Therefore, the interval of convergence is [−1, 1], as shown in Figure 9.22. 

Figure 9.21

Radius: R = 2

c = −1
x

−3 −2 10

Interval: (−3, 1)

Figure 9.22

Radius: R = 1

c = 0
x

−1 1

Interval: [−1, 1]
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656 Chapter 9 Infinite Series

Differentiation and Integration of Power Series
Power series representation of functions has played an important role in the development 
of calculus. In fact, much of Newton’s work with differentiation and integration was 
done in the context of power series—especially his work with complicated algebraic 
functions and transcendental functions. Euler, Lagrange, Leibniz, and the Bernoullis all 
used power series extensively in calculus.

Once you have defined a function with a power series, it is natural to wonder how 
you can determine the characteristics of the function. Is it continuous? Differentiable?  
Theorem 9.21, which is stated without proof, answers these questions.

THeORem 9.21 Properties of Functions Defined by Power Series

If the function

  f (x) = ∑
∞

n=0
 an(x − c)n

 = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + .  .  .

has a radius of convergence of R > 0, then, on the interval 

(c − R, c + R)

f  is differentiable (and therefore continuous). Moreover, the derivative and 
antiderivative of f  are as follows.

1.   f′(x) = ∑
∞

n=1
 nan(x − c)n−1

 = a1 + 2a2(x − c) + 3a3(x − c)2 + .  .  .

2.  ∫f (x) dx = C + ∑
∞

n=0
 an 

(x − c)n+1

n + 1

 = C + a0(x − c) + a1 
(x − c)2

2
+ a2

(x − c)3

3
+ .  .  .

The radius of convergence of the series obtained by differentiating or integrating 
a power series is the same as that of the original power series. The interval of 
convergence, however, may differ as a result of the behavior at the endpoints.

Theorem 9.21 states that, in many ways, a function defined by a power series 
behaves like a polynomial. It is continuous in its interval of convergence, and both its 
derivative and its antiderivative can be determined by differentiating and integrating 
each term of the power series. For instance, the derivative of the power series 

 f (x) = ∑
∞

n=0
 
xn

n!

 = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ .  .  .

is

  f′(x) = 1 + (2) x
2

+ (3) x2

3!
+ (4) x3

4!
+ .  .  .

 = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ .  .  .

 = f (x).

Notice that f′(x) = f (x). Do you recognize this function?

JAMES GREGORY (1638–1675)

One of the earliest 
mathematicians to work 
with power series was a 
Scotsman, James Gregory. He 
developed a power series 
method for interpolating table 
values––a method that was 
later used by Brook Taylor 
in the development of Taylor 
polynomials and Taylor series.

The Granger Collection
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 9.8 Power Series 657

 Intervals of Convergence for f (x), f ′(x), and ∫f (x) dx

Consider the function

f (x) = ∑
∞

n=1
 
xn

n
= x +

x2

2
+

x3

3
+ .  .  . .

Find the interval of convergence for each of the following.

a. ∫ f (x) dx  b. f (x)  c. f′(x)

Solution By Theorem 9.21, you have

  f′(x) = ∑
∞

n=1
 xn−1

 = 1 + x + x2 + x3 + .  .  .

and

 ∫ f (x) dx = C + ∑
∞

n=1
 

xn+1

n(n + 1)

 = C +
x2

1 ∙ 2
+

x3

2 ∙ 3
+

x4

3 ∙ 4
+ .  .  . .

By the Ratio Test, you can show that each series has a radius of convergence of R = 1. 
Considering the interval (−1, 1), you have the following.

a. For ∫ f (x) dx, the series

∑
∞

n=1
 

xn+1

n(n + 1) Interval of convergence: [−1, 1]

 converges for x = ±1, and its interval of convergence is [−1, 1]. See Figure 9.23(a).

b. For f (x), the series

∑
∞

n=1
 
xn

n
 Interval of convergence: [−1, 1)

  converges for x = −1 and diverges for x = 1. So, its interval of convergence is 
[−1, 1). See Figure 9.23(b).

c. For f′(x), the series

∑
∞

n=1
 xn−1 Interval of convergence: (−1, 1)

 diverges for x = ±1, and its interval of convergence is (−1, 1). See Figure 9.23(c).

Radius: R = 1

c = 0

x

−1 1

Interval: [−1, 1]   
Radius: R = 1

c = 0

x

−1 1

Interval: [−1, 1)   
Radius: R = 1

c = 0

x

−1 1

Interval: (−1, 1)

 (a) (b) (c)
 Figure 9.23 

From Example 8, it appears that of the three series, the one for the derivative, f′(x), 
is the least likely to converge at the endpoints. In fact, it can be shown that if the series 
for f′(x) converges at the endpoints 

x = c ± R

then the series for f (x) will also converge there.

RemaRk Notice in 
Example 8 that when 
differentiating the power 
series, differentiation is done 
on a term-by-term basis. 
Likewise, when integrating a 
series, integration is done on a 
term-by-term basis.
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658 Chapter 9 Infinite Series

9.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Representing a Function Explain how a Maclaurin 

polynomial and a power series centered at 0 for a function 
are different.

2.  Domain What does the domain of

 f (x) = ∑
∞

n=0
 an(x − c)n

 represent?

3.  Radius of Convergence Determine the radius of

 convergence for the power series ∑
∞

n=0
 an(x − 2)n given the

 following result of the Ratio Test, where un = an(x − 2)n.

 lim
n→∞

 ∣un+1

un ∣ = ∣x − 2
5 ∣

4.  Properties of Functions Defined by Power 
Series In your own words, describe how a function 
defined by a power series behaves like a polynomial.

 Finding the Center of a Power Series In 
Exercises 5–8, state where the power series is 
centered.

 5. ∑
∞

n=0
 nxn  6. ∑

∞

n=1
 
(−1)n(2n − 1)

2nn!
xn

 7. ∑
∞

n=1
 
(x − 2)n

n3   8. ∑
∞

n=0
 
(−1)n(x − π)2n

(2n)!

 Finding the Radius of Convergence In 
Exercises 9–14, find the radius of convergence of 
the power series.

 9. ∑
∞

n=0
 (−1)n 

xn

n + 1
 10. ∑

∞

n=0
 (3x)n

11. ∑
∞

n=1
 
(4x)n

n2  12. ∑
∞

n=0
 
(−1)n xn

5n

13. ∑
∞

n=0
 

x2n

(2n)! 14. ∑
∞

n=0
 
(2n)!x3n

n!

 Finding the Interval of Convergence In 
Exercises 15–38, find the interval of convergence 
of the power series. (Be sure to include a check for 
convergence at the endpoints of the interval.)

15. ∑
∞

n=0
 (x

4)
n

 16. ∑
∞

n=0
 (2x)n

17. ∑
∞

n=1
 
(−1)n xn

n
 18. ∑

∞

n=0
 (−1)n+1(n + 1)xn

19. ∑
∞

n=0
 
x5n

n!
 20. ∑

∞

n=0
 
(3x)n

(2n)!

21. ∑
∞

n=0
 (2n)! (x

3)
n

 22. ∑
∞

n=0
 

(−1)n xn

(n + 1)(n + 2)

23. ∑
∞

n=1
 
(−1)n+1 xn

6n  24. ∑
∞

n=0
 
(−1)n n!(x − 5)n

3n

25. ∑
∞

n=1
 
(−1)n+1(x − 4)n

n9n  26. ∑
∞

n=0
 

(x − 3)n+1

(n + 1)4n+1

27. ∑
∞

n=0
 
(−1)n+1(x − 1)n+1

n + 1
 28. ∑

∞

n=1
 
(−1)n+1(x − 2)n

n2n

29. ∑
∞

n=1
 
(x − 3)n−1

3n−1  30. ∑
∞

n=0
 
(−1)nx2n+1

2n + 1

31. ∑
∞

n=1
 

n
n + 1

 (−2x)n−1 32. ∑
∞

n=0
 
(−1)n x2n

n!

33. ∑
∞

n=0
 

x3n+1

(3n + 1)! 34. ∑
∞

n=1
 
n!xn

(2n)!

35. ∑
∞

n=1
 
2 ∙ 3 ∙ 4 .  .  . (n + 1)xn

 n!

36. ∑
∞

n=1
 [ 2 ∙ 4 ∙ 6 .  .  . 2n

3 ∙ 5 ∙ 7 .  .  . (2n + 1)] x2n+1

37. ∑
∞

n=1
 
(−1)n+1 3 ∙ 7 ∙ 11 .  .  . (4n − 1)(x − 3)n

4n

38. ∑
∞

n=1
 

n!(x + 1)n

1 ∙ 3 ∙ 5 .  .  . (2n − 1)

Finding the Radius of Convergence In Exercises 39 and 
40, find the radius of convergence of the power series, where 
c > 0 and k is a positive integer.

39. ∑
∞

n=1
 
(x − c)n−1

cn−1  40. ∑
∞

n=0
 
(n!)k xn

(kn)!

Finding the Interval of Convergence In Exercises 
41–44, find the interval of convergence of the power series, 
where c > 0 and k is a positive integer. (Be sure to include a 
check for convergence at the endpoints of the interval.)

41. ∑
∞

n=0
 (x

k)
n

 42. ∑
∞

n=1
 
(−1)n+1(x − c)n

ncn

43. ∑
∞

n=1
 
k(k + 1)(k + 2) .  .  . (k + n − 1)xn

n!

44. ∑
∞

n=1
 

n!(x − c)n

1 ∙ 3 ∙ 5 .  .  . (2n − 1)

Writing an equivalent Series In Exercises 45–48, write 
an equivalent series with the index of summation beginning at 
n = 1.

45. ∑
∞

n=0
 
xn

n!

46. ∑
∞

n=0
 (−1)n+1(n + 1)xn

47. ∑
∞

n=2
 

xn−1

(7n − 1)!

48. ∑
∞

n=2
 

x3n−1

(2n − 1)!
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9.8 Power Series 659

 Finding Intervals of Convergence In 
Exercises 49–52, find the intervals of convergence 
of (a) f (x), (b) f ′(x), (c) f ″(x), and (d) ∫ f (x) dx. 
(Be sure to include a check for convergence at the 
endpoints of the intervals.)

49. f (x) = ∑
∞

n=0
 (x

3)
n

50. f (x) = ∑
∞

n=1
 
(−1)n+1(x − 5)n

n5n

51. f (x) = ∑
∞

n=0
 
(−1)n+1(x − 1)n+1

n + 1

52. f (x) = ∑
∞

n=1
 
(−1)n+1(x − 2)n

n

eXpLoRInG ConCeptS
Writing a Power Series In Exercises 53 and 54, 
write a power series that has the indicated interval of 
convergence. Explain your reasoning.

53. (−3, 3) 54. [−3, 7]

55.  Conditional or absolute Convergence Give 
examples that show that the convergence of a power 
series at an endpoint of its interval of convergence may 
be either conditional or absolute. Explain your reasoning.

 56.  HOW DO YOU See IT? Match the graph 
of the first 10 terms of the sequence of partial 
sums of the series

 g(x) = ∑
∞

n=0
 (x

3)
n

  with the indicated value of the function. [The 
graphs are labeled (i), (ii), (iii), and (iv).] 
Explain how you made your choice.

 (i) Sn

n
2

2

4 6 8

1

3

 (ii) Sn

n
2

2
4
6
8

10
12

4 6 8

(iii) Sn

n
2

2

4 6 8

1

 (iv) Sn

n
2 4 6 8

1
3
4

1
2

1
4

(a) g(1) (b) g(2)
(c) g(3) (d) g(−2)

56.  

57. Using Power Series Let f (x) = ∑
∞

n=0
 
(−1)nx2n+1

(2n + 1)!  and

g(x) = ∑
∞

n=0
 
(−1)n x2n

(2n)! .

 (a) Find the intervals of convergence of f  and g.

 (b) Show that f ′(x) = g(x) and g′(x) = −f (x).
 (c) Identify the functions f  and g.

58. Using a Power Series Let f (x) = ∑
∞

n=0
 

x2n+1

(2n + 1)! and

g(x) = ∑
∞

n=0
 

x2n

(2n)!.

 (a) Find the intervals of convergence of f  and g.

 (b) Show that f ′(x) = g(x) and g′(x) = f (x).
 (c) Identify the functions f  and g.

Differential equation In Exercises 59–64, show that the 
function represented by the power series is a solution of the 
differential equation.

59. y = ∑
∞

n=0
 
(−1)n + x2n+1

(2n + 1)! , y″ + y = 0

60. y = ∑
∞

n=0
 
(−1)n x2n

(2n)! , y″ + y = 0

61. y = ∑
∞

n=0
 

x2n+1

(2n + 1)!, y″ − y = 0

62. y = ∑
∞

n=0
 

x2n

(2n)!, y″ − y = 0

63. y = ∑
∞

n=0
 

x2n

2n n!
, y″ − xy′ − y = 0

64. y = 1 + ∑
∞

n=1
 

(−1)n x4n

22n n! ∙ 3 ∙ 7 ∙ 11 .  .  . (4n − 1),

y″ + x2y = 0

65. Bessel Function The Bessel function of order 0 is

J0(x) = ∑
∞

k=0
 
(−1)k x2k

22k(k!)2 .

 (a) Show that the series converges for all x.

 (b)  Show that the series is a solution of the differential 
equation x2 J0″ + x J0′ + x2 J0 = 0.

(c)  Use a graphing utility to graph the polynomial composed 
of the first four terms of J0.

 (d) Approximate ∫1
0  J0 dx accurate to two decimal places.

66. Bessel Function The Bessel function of order 1 is

J1(x) = x ∑
∞

k=0
 

(−1)kx2k

22k+1 k!(k + 1)!

 (a) Show that the series converges for all x.

 (b)  Show that the series is a solution of the differential equation 
x2 J1″ + x J1′ + (x2 − 1) J1 = 0.

(c)  Use a graphing utility to graph the polynomial composed 
of the first four terms of J1.

 (d) Use J0 from Exercise 65 to show that J0′(x) = −J1(x).
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67.   Investigation The interval of convergence of the geometric

 series ∑
∞

n=0
 (x

4)
n

 is (−4, 4).

 (a)  Find the sum of the series when x = 5
2. Use a graphing 

utility to graph the first six terms of the sequence of partial 
sums and the horizontal line representing the sum of the 
series.

 (b) Repeat part (a) for x = −5
2.

 (c)  Write a short paragraph comparing the rates of convergence 
of the partial sums with the sums of the series in parts (a) 
and (b). How do the plots of the partial sums differ as they 
converge toward the sum of the series?

 (d)  Given any positive real number M, there exists a positive 
integer N such that the partial sum

  ∑
N

n=0
 (5

4)
n

> M.

  Use a graphing utility to complete the table.

M 10 100 1000 10,000

N

68. Investigation The interval of convergence of the series

 ∑
∞

n=0
 (3x)n is (−1

3, 13).

 (a)  Find the sum of the series when x = 1
6. Use a graphing 

utility to graph the first six terms of the sequence of partial 
sums and the horizontal line representing the sum of the 
series.

 (b) Repeat part (a) for x = −1
6.

 (c)  Write a short paragraph comparing the rates of convergence 
of the partial sums with the sums of the series in parts (a) 
and (b). How do the plots of the partial sums differ as they 
converge toward the sum of the series?

 (d)  Given any positive real number M, there exists a positive 
integer N such that the partial sum

  ∑
N

n=0
 (3 ∙ 2

3)
n

> M.

  Use a graphing utility to complete the table.

M 10 100 1000 10,000

N

Identifying a Function In Exercises 69–72, the series 
represents a well-known function. Use a computer algebra 
system to graph the partial sum S10 and identify the function 
from the graph.

69. f (x) = ∑
∞

n=0
(−1)n 

π2nx2n

(2n)!

70. f (x) = ∑
∞

n=0
(−1)n+1 

x2n+1

(2n + 1)!

71. f (x) = ∑
∞

n=0
 (−1)n xn, −1 < x < 1

72. f (x) = ∑
∞

n=0
(3x)n

True or False? In Exercises 73–76, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

73. If the power series ∑
∞

n=1
 anx n converges for x = 2, then it also

 converges for x = −2.

74.  It is possible to find a power series whose interval of 
convergence is [0, ∞).

75. If the interval of convergence for ∑
∞

n=0
 anx n is (−1, 1), then the 

 interval of convergence for ∑
∞

n=0
 an(x − 1)n is (0, 2).

76. If f (x) = ∑
∞

n=0
 anxn converges for ∣x∣ < 2, then

 ∫1

0
 f (x) dx = ∑

∞

n=0
 

an

n + 1
.

77. Proof Prove that the power series

 ∑
∞

n=0
 

(n + p)!
n!(n + q)! x

n

  has a radius of convergence of R = ∞ when p and q are 
positive integers.

78. Using a Power Series Let

 g(x) = 1 + 2x + x2 + 2x3 + x4 + .  .  .

 where the coefficients are c2n = 1 and c2n+1 = 2 for n ≥ 0.

 (a) Find the interval of convergence of the series.

 (b) Find an explicit formula for g(x).

79.  Using a Power Series Let

 f (x) = ∑
∞

n=0
 cnxn

 where cn+3 = cn for n ≥ 0.

 (a) Find the interval of convergence of the series.

 (b) Find an explicit formula for f (x).

80.  Proof Prove that if the power series ∑
∞

n=0
 cnxn has a radius of

 convergence of R, then ∑
∞

n=0
 cnx2n has a radius of convergence

 of √R.

81.  Proof For n > 0, let R > 0 and cn > 0. Prove that if the 
interval of convergence of the series

 ∑
∞

n=0
 cn(x − x0)n

  is [x0 − R, x0 + R], then the series converges conditionally at 
x = x0 − R.
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9.9 Representation of Functions by Power Series 661

9.9 Representation of Functions by Power Series

 Find a geometric power series that represents a function.
 Construct a power series using series operations.

Geometric Power Series
In this section and the next, you will study several techniques for finding a power series 
that represents a function. Consider the function

f (x) =
1

1 − x
.

The form of f  closely resembles the sum of a geometric series

∑
∞

n=0
 arn =

a
1 − r

, ∣r∣ < 1.

In other words, when a = 1 and r = x, a power series representation for 1�(1 − x),
centered at 0, is

1
1 − x

= ∑
∞

n=0
 arn

 = ∑
∞

n=0
 xn

 = 1 + x + x2 + x3 + .  .  . , ∣x∣ < 1.

Of course, this series represents f (x) = 1�(1 − x) only on the interval (−1, 1),
whereas f  is defined for all x ≠ 1, as shown in Figure 9.24. To represent f  in another 
interval, you must develop a different series. For instance, to obtain the power series 
centered at −1, you could write

1
1 − x

=
1

2 − (x + 1) =
1�2

1 − [(x + 1)�2] =
a

1 − r

which implies that a = 1
2 and r = (x + 1)�2. So, for ∣x + 1∣ < 2, you have

1
1 − x

= ∑
∞

n=0
 (1

2)(
x + 1

2 )
n

 =
1
2[1 +

(x + 1)
2

+
(x + 1)2

4
+

(x + 1)3

8
+ .  .  .], ∣x + 1∣ < 2

which converges on the interval (−3, 1).

f (x) = 1
1 − x

, Domain: all x ≠ 1

x

2

1

−1

−2

1 2 3−1

y    

x

2

1

−1

−2

1 2 3−1

f (x) = ∑
∞

n = 0
xn, Domain: −1 < x < 1

y

Figure 9.24

JOSEPH FOURIER (1768–1830)

Some of the early work in 
representing functions by 
power series was done by 
the French mathematician 
Joseph Fourier. Fourier’s work 
is important in the history 
of calculus, partly because it 
forced eighteenth-century 
mathematicians to question the 
then-prevailing narrow concept 
of a function. Both Cauchy and 
Dirichlet were motivated by 
Fourier’s work with series, and 
in 1837, Dirichlet published the 
general definition of a function 
that is used today.

The Granger Collection

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



662 Chapter 9 Infinite Series

 Finding a Geometric Power Series Centered at 0

Find a power series for f (x) =
4

x + 2
, centered at 0.

Solution Writing f (x) in the form a�(1 − r) produces

4
2 + x

=
2

1 − (−x�2) =
a

1 − r

which implies that a = 2 and

r = −
x
2

.

So, the power series for f (x) is

 
4

x + 2
= ∑

∞

n=0
 arn

 = ∑
∞

n=0
 2(−

x
2)

n

 = 2(1 −
x
2

+
x2

4
−

x3

8
+ .  .  .).

This power series converges when

∣−x
2∣ < 1

which implies that the interval of convergence is (−2, 2). 

Another way to determine a power series for a rational function such as the one in 
Example 1 is to use long division. For instance, by dividing 2 + x into 4, you obtain 
the result shown at the left.

 Finding a Geometric Power Series Centered at 1

Find a power series for f(x) =
1
x
, centered at 1.

Solution Writing f (x) in the form a�(1 − r) produces

1
x

=
1

1 − (−x + 1) =
a

1 − r

which implies that a = 1 and r = 1 − x = −(x − 1). So, the power series for f (x) is

 
1
x

= ∑
∞

n=0
 arn

 = ∑
∞

n=0
 [−(x − 1)]n

 = ∑
∞

n=0
 (−1)n(x − 1)n

 = 1 − (x − 1) + (x − 1)2 − (x − 1)3 + .  .  . .

This power series converges when

∣x − 1∣ < 1

which implies that the interval of convergence is (0, 2). 

Long Division

 2 −   x + 1
2x2 − 1

4x3 + .  .  .

 2 + x )  4                                         
 4 + 2x

  −2x
  −2x −   x2

 x2

  x2 + 1
2x3

  −1
2x3

  −1
2x3 − 1

4x4
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9.9 Representation of Functions by Power Series 663

Operations with Power Series
The versatility of geometric power series will be shown later in this section, following 
a discussion of power series operations. These operations, used with differentiation and 
integration, provide a means of developing power series for a variety of elementary 
functions. (For simplicity, the operations are stated for a series centered at 0.)

Operations with Power Series

Let f (x) = ∑
∞

n=0
 anxn and g(x) = ∑

∞

n=0
 bnxn.

1. f (kx) = ∑
∞

n=0
 ank

nxn

2. f (xN) = ∑
∞

n=0
 anx

nN

3. f (x) ± g(x) = ∑
∞

n=0
 (an ± bn)xn

The operations described above can change the interval of convergence for the 
resulting series. For example, in the addition shown below, the interval of convergence 
for the sum is the intersection of the intervals of convergence of the two original series.

∑
∞

n=0
 xn + ∑

∞

n=0
 (x

2)
n

= ∑
∞

n=0
 (1 +

1
2n)xn

   
 (−1, 1) ∩  (−2, 2) =  (−1, 1)

 Adding Two Power Series

Find a power series for

f (x) =
3x − 1
x2 − 1

centered at 0.

Solution Using partial fractions, you can write f (x) as

3x − 1
x2 − 1

=
2

x + 1
+

1
x − 1

.

By adding the two geometric power series

2
x + 1

=
2

1 − (−x) = ∑
∞

n=0
 2(−1)nxn, ∣x∣ < 1

and

1
x − 1

=
−1

1 − x
= − ∑

∞

n=0
 xn, ∣x∣ < 1

you obtain the power series shown below.

3x − 1
x2 − 1

= ∑
∞

n=0
 [2(−1)n − 1] xn

 = 1 − 3x + x2 − 3x3 + x4 − .  .  .

The interval of convergence for this power series is (−1, 1). 
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664 Chapter 9 Infinite Series

 Finding a Power Series by Integration

Find a power series for

f (x) = ln x

centered at 1.

Solution From Example 2, you know that

1
x

= ∑
∞

n=0
 (−1)n(x − 1)n. Interval of convergence: (0, 2)

Integrating this series produces

 ln x = ∫ 
1
x
 dx + C

 = C + ∑
∞

n=0
 (−1)n 

(x − 1)n+1

n + 1
.

By letting x = 1, you can conclude that C = 0. Therefore,

 ln x = ∑
∞

n=0
 (−1)n 

(x − 1)n+1

n + 1

 =
(x − 1)

1
−

(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+ .  .  . . Interval of 

convergence: (0, 2]

Note that the series converges at x = 2. This is consistent with the observation in the 
preceding section that integration of a power series may alter the convergence at the 
endpoints of the interval of convergence. 

 For Further InFormatIon To read about finding a power series using 
integration by parts, see the article “Integration by Parts and Infinite Series” by Shelby 
J. Kilmer in Mathematics Magazine. To view this article, go to MathArticles.com.

In Section 9.7, Example 4, the fourth-degree Taylor polynomial (centered at c = 1)  
for the natural logarithmic function

ln x ≈ (x − 1) −
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4

was used to approximate ln(1.1).

 ln(1.1) ≈ (0.1) −
1
2

(0.1)2 +
1
3

(0.1)3 −
1
4

(0.1)4

 ≈ 0.0953083

You now know from Example 4 in this section that this polynomial represents the 
first four terms of the power series for ln x. Moreover, using the Alternating Series 
Remainder, you can determine that the error in this approximation is less than

 ∣R4∣ ≤ ∣a5∣
 =

1
5

(0.1)5

 = 0.000002.

During the seventeenth and eighteenth centuries, mathematical tables for logarithms 
and values of other transcendental functions were computed in this manner. Such 
numerical techniques are far from outdated, because it is precisely by such means that 
many modern calculating devices are programmed to evaluate transcendental functions.
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9.9 Representation of Functions by Power Series 665

 Finding a Power Series by Integration

See LarsonCalculus.com for an interactive version of this type of example.

Find a power series for

g(x) = arctan x

centered at 0.

Solution Because Dx [arctan x] = 1�(1 + x2), you can use the series

f (x) =
1

1 + x
= ∑

∞

n=0
 (−1)nxn. Interval of convergence: (−1, 1)

Substituting x2 for x produces

f (x2) =
1

1 + x2 = ∑
∞

n=0
 (−1)n x2n.

Finally, by integrating, you obtain

arctan x = ∫ 
1

1 + x2 dx + C

 = C + ∑
∞

n=0
 (−1)n 

x2n+1

2n + 1

 = ∑
∞

n=0
 (−1)n 

x2n+1

2n + 1
 Let x = 0, then C = 0.

 = x −
x3

3
+

x5

5
−

x7

7
+ .  .  . . Interval of convergence: (−1, 1) 

It can be shown that the power series developed for arctan x in Example 5 also 
converges (to arctan x) for x = ±1. For instance, when x = 1, you can write

 arctan 1 = 1 −
1
3

+
1
5

−
1
7

+ .  .  .

 =
π
4

.

However, this series (developed by James Gregory in 1671) is not a practical way of 
approximating π  because it converges so slowly that hundreds of terms would have 
to be used to obtain reasonable accuracy. Example 6 shows how to use two different 
arctangent series to obtain a very good approximation of π  using only a few terms. This 
approximation was developed by John Machin in 1706.

 Approximating p with a Series

Use the trigonometric identity

4 arctan 
1
5

− arctan 
1

239
=

π
4

to approximate the number π. [See Exercise 44(b).]

Solution By using only five terms from each of the series for arctan(1�5) and 
arctan(1�239), you obtain

4(4 arctan 
1
5

− arctan 
1

239) ≈ 3.1415927

which agrees with the exact value of π  with an error of less than 0.0000001. 

 For Further InFormatIon
To read about other methods 
for approximating π, see the 
article “Two Methods for 
Approximating π” by Chien-Lih 
Hwang in Mathematics Magazine. 
To view this article, go to 
MathArticles.com. 

SRINIVASA RAMANUJAN 
(1887–1920)

Series that can be used to 
approximate π  have interested 
mathematicians for the past 
300 years.  An amazing series 
for approximating 1�π  was 
discovered by the Indian 
mathematician Srinivasa 
Ramanujan in 1914 (see 
Exercise 57). Each successive 
term of Ramanujan’s series 
adds roughly eight more 
correct digits to the value of 
1�π . For more information 
about Ramanujan’s work, see 
the article “Ramanujan and Pi” 
by Jonathan M. Borwein and 
Peter B. Borwein in Scientific 
American.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NY
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666 Chapter 9 Infinite Series

9.9 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Using Power Series Explain how to use a 

geometric power series to represent a function of the form

 f (x) =
b

c − x
.

2.  Power Series Operations Consider f (x) = ∑
∞

n=0
 5x2n.

 What are the values of a and b in terms of n?

 f (x3

5 ) = ∑
∞

n=0
 
x a

5b

 Finding a Geometric Power Series In 
exercises 3–6, find a geometric power series for the 
function, centered at 0, (a) by the technique shown 
in examples 1 and 2 and (b) by long division.

 3. f (x) =
1

4 − x
  4. f (x) =

1
2 + x

 5. f (x) =
4

3 + x
  6. f (x) =

2
5 − x

 Finding a Power Series In exercises 7–18, 
find a power series for the function, centered at c, 
and determine the interval of convergence.

 7. f (x) =
1

6 − x
, c = 1  8. f (x) =

2
6 − x

, c = −2

 9. f (x) =
1

1 − 3x
, c = 0 10. h(x) =

1
1 − 4x

, c = 0

11. g(x) =
5

2x − 3
, c = −3 12. f (x) =

3
2x − 1

, c = 2

13. f (x) =
2

5x + 4
, c = −1 14. f (x) =

4
3x + 2

, c = 3

15. g(x) =
4x

x2 + 2x − 3
, c = 0

16. g(x) =
3x − 8

3x2 + 5x − 2
, c = 0

17. f (x) =
2

1 − x2, c = 0 18. f (x) =
5

4 − x2, c = 0

 Using a Power Series In exercises 19–28, use 
the power series

 
1

1 + x
= ∑

∞

n=0
 (−1)n xn, ∣x∣ < 1

  to find a power series for the function, centered 
at 0, and determine the interval of convergence.

19. h(x) =
−2

x2 − 1
=

1
1 + x

+
1

1 − x

20. h(x) =
x

x2 − 1
=

1
2(1 + x) −

1
2(1 − x)

21. f (x) = −
1

(x + 1)2 =
d
dx

 [ 1
x + 1]

22. f (x) =
2

(x + 1)3 =
d2

dx2 [ 1
x + 1]

23. f (x) = ln(x + 1) = ∫ 
1

x + 1
 dx

24. f (x) = ln(1 − x2) = ∫ 
1

1 + x
 dx − ∫ 

1
1 − x

 dx

25. g(x) =
1

x2 + 1

26. f (x) = ln(x2 + 1)

27. h(x) =
1

4x2 + 1
 28. f (x) = arctan 2x

Graphical and Numerical Analysis In exercises 29 
and 30, let

Sn = x −
x2

2
+

x3

3
−

x4

4
+ .  .  . ±

xn

n
.

use a graphing utility to confirm the inequality graphically. 
then complete the table to confirm the inequality numerically.

x 0.0 0.2 0.4 0.6 0.8 1.0

Sn

ln(x + 1)

Sn+1

29. S2 ≤ ln(x + 1) ≤ S3

30. S4 ≤ ln(x + 1) ≤ S5

Approximating a Sum In exercises 31 and 32, (a) use a 
graphing utility to graph several partial sums of the series,  
(b) find the sum of the series and its radius of convergence, 
(c) use a graphing utility and 50 terms of the series to 
approximate the sum when x = 0.5, and (d) determine what the 
approximation represents and how good the approximation is.

31. ∑
∞

n=1
 
(−1)n+1(x − 1)n

n

32. ∑
∞

n=0
 
(−1)nx2n+1

(2n + 1)!

 Approximating a Value In exercises 33–36, 
use the power series for f (x) = arctan x to 
approximate the value, using RN ≤ 0.001.

33. arctan 
1
4

 34. ∫3�4

0
 arctan x2 dx

35. ∫1�2

0
 
arctan x2

x
 dx 36. ∫1�2

0
 x2 arctan x dx
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9.9 Representation of Functions by Power Series 667

Using a Power Series In exercises 37–40, use the power 
series

1
1 − x

= ∑
∞

n=0
 xn, ∣x∣ < 1

to find a power series for the function, centered at 0, and 
determine the interval of convergence.

37. f (x) =
1

(1 − x)2 38. f (x) =
x

(1 − x)2

39. f (x) =
1 + x

(1 − x)2 40. f (x) =
x(1 + x)
(1 − x)2

41.  Probability A fair coin is tossed repeatedly. The probability

  that the first head occurs on the nth toss is P(n) = (1
2)n

. When 
this game is repeated many times, the average number of 
tosses required until the first head occurs is

 E(n) = ∑
∞

n=1
 nP(n).

  (This value is called the expected value of n.) Use the results 
of Exercises 37–40 to find E(n). Is the answer what you 
expected? Why or why not?

42.  Finding the Sum of a Series Use the results of 
Exercises 37–40 to find the sum of each series.

 (a) 
1
3 ∑

∞

n=1
 n(2

3)
n

 (b) 
1
10 ∑

∞

n=1
 n( 9

10)
n

43. Proof Prove that

 arctan x + arctan y = arctan 
x + y
1 − xy

  for xy ≠ 1 provided the value of the left side of the equation is 
between −π�2 and π�2.

44.  Verifying an Identity Use the result of Exercise 43 to 
verify each identity.

 (a) arctan 
120
119

− arctan 
1

239
=

π
4

 (b) 4 arctan 
1
5

− arctan 
1

239
=

π
4

   [Hint: Use Exercise 43 twice to find 4 arctan 15. Then use 
part (a).]

Approximating Pi In exercises 45 and 46, (a) use the 
result of exercise 43 to verify the given identity and (b) use the 
identity and the series for the arctangent to approximate π by 
using four terms of each series.

45. 2 arctan 
1
2

− arctan 
1
7

=
π
4

46. arctan 
1
2

+ arctan 
1
3

=
π
4

Finding the Sum of a Series In exercises 47–52, find the 
sum of the convergent series by using a well-known function. 
Identify the function and explain how you obtained the sum.

47. ∑
∞

n=1
 (−1)n+1 

1
2nn

 48. ∑
∞

n=1
 (−1)n+1 

1
3nn

49. ∑
∞

n=1
 (−1)n+1 

2n

5nn

50. ∑
∞

n=0
 (−1)n 

1
2n + 1

51. ∑
∞

n=0
 (−1)n 

1
22n+1(2n + 1)

52. ∑
∞

n=1
 (−1)n+1 

1
32n−1(2n − 1)

eXpLoRInG ConCeptS
53.  Using Series One of the series in Exercises 47–52 

converges to its sum at a much lower rate than the 
other five series. Which is it? Explain why this series 
converges so slowly. Use a graphing utility to illustrate 
the rate of convergence.

54.  Radius of Convergence The radius of convergence

 of the power series ∑
∞

n=0
 anxn is 3. What is the radius of

 convergence of the series

∑
∞

n=1
 nanxn−1?

 Explain.

55.  Convergence of a Power Series The power series

∑
∞

n=0
 anxn converges for ∣x + 1∣ < 4. What can you

 conclude about the convergence of the series

∑
∞

n=0
 an 

xn+1

n + 1
?

 Explain.

 56.  HOW DO YOU SEE IT? The figure on the 
left shows the graph of a function. The figure 
on the right shows the graph of a power series 
representation of the function.

−2 2 4 6
−2

2

6 (0, 5)
4

x

y  

x

y

1 2 3 4 5

1

2

3

4

5 (0, 5)

(a) Identify the function.

(b)  What are the center and interval of convergence of 
the power series?

56.  

57. Ramanujan and Pi Use a graphing utility to show that

√8
9801

 ∑
∞

n=0
 
(4n)!(1103 + 26,390n)

(n!)3964n =
1
π .
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668 Chapter 9 Infinite Series

9.10 taylor and Maclaurin Series

 Find a Taylor or Maclaurin series for a function.
 Find a binomial series.
 Use a basic list of  Taylor series to find other Taylor series.

Taylor Series and Maclaurin Series
In Section 9.9, you derived power series for several functions using geometric series 
with term-by-term differentiation or integration. In this section, you will study a 
general procedure for deriving the power series for a function that has derivatives of all 
orders. The next theorem gives the form that every convergent power series must take.

theoReM 9.22 the Form of a Convergent Power Series

If f  is represented by a power series f (x) = ∑ an(x − c)n for all x in an open 
interval I containing c, then 

an =
f (n)(c)

n!
 

and

 f (x) = f (c) + f′(c)(x − c) +
f ″(c)

2!
(x − c)2 + .  .  .

 +
f (n)(c)

n!
(x − c)n + .  .  . .

Proof Consider a power series ∑ an(x − c)n that has a radius of convergence R. 
Then, by Theorem 9.21, you know that the nth derivative of f  exists for ∣x − c∣ < R, 
and by successive differentiation you obtain the following.

 f (0)(x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + a4(x − c)4 + .  .  .

 f (1)(x) = a1 + 2a2(x − c) + 3a3(x − c)2 + 4a4(x − c)3 + .  .  .

 f (2)(x) = 2a2 + 3!a3(x − c) + 4 ∙ 3a4(x − c)2 + .  .  .

 f (3)(x) = 3!a3 + 4!a4(x − c) + .  .  .

 ⋮
 f (n)(x) = n!an + (n + 1)!an+1(x − c) + .  .  .

Evaluating each of these derivatives at x = c yields

 f (0)(c) = 0!a0

 f (1)(c) = 1!a1

 f (2)(c) = 2!a2

 f (3)(c) = 3!a3

and, in general, f (n)(c) = n!an. By solving for an, you find that the coefficients of the  
power series representation of f (x) are

an =
f (n)(c)

n!
.  

Notice that the coefficients of the power series in Theorem 9.22 are precisely the 
 coefficients of the Taylor polynomials for f  at c as defined in Section 9.7. For this 
reason, the series is called the Taylor series for f  at c.

ReMARK Be sure you 
understand Theorem 9.22. The 
theorem says that if a power 
series converges to f (x), then the 
series must be a Taylor series. The 
theorem does not say that every 
series formed with the Taylor 
coefficients an = f (n)(c)�n! will 
converge to f (x). 
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9.10 Taylor and Maclaurin Series 669

Definition of taylor and Maclaurin Series

If a function f  has derivatives of all orders at x = c, then the series

∑
∞

n=0
 
f (n)(c)

n!
 (x − c)n = f (c) + f′(c)(x − c) + .  .  . +

f (n)(c)
n!

(x − c)n + .  .  .

is called the Taylor series for f  at c. Moreover, if c = 0, then the series is 
the Maclaurin series for f.

When you know the pattern for the coefficients of the Taylor polynomials for 
a  function, you can extend the pattern to form the corresponding Taylor series. For 
instance, in Example 4 in Section 9.7, you found the fourth Taylor polynomial for ln x,
centered at 1, to be

P4(x) = (x − 1) −
1
2

(x − 1)2 +
1
3

(x − 1)3 −
1
4

(x − 1)4.

From this pattern, you can obtain the Taylor series for ln x centered at c = 1,

(x − 1) −
1
2

(x − 1)2 + .  .  . +
(−1)n+1

n
(x − 1)n + .  .  . .

 Forming a Power Series

Use the function

f (x) = sin x

to form the Maclaurin series

∑
∞

n=0
 
f (n)(0)

n!
 xn = f (0) + f′(0)x +

f ″(0)
 2!

 x2 +
f′″(0)

3!
 x3 +

f (4)(0)
4!

 x4 + .  .  .

and determine the interval of convergence.

Solution Taking successive derivatives of f  yields

 f (x) = sin x   f (0) = sin 0 = 0

 f′(x) = cos x   f′(0) = cos 0 = 1

 f ″(x) = −sin x   f ″(0) = −sin 0 = 0

 f ″′(x) = −cos x  f ″′(0) = −cos 0 = −1

 f (4)(x) = sin x   f (4)(0) = sin 0 = 0

 f (5)(x) = cos x   f (5)(0) = cos 0 = 1

and so on. The pattern repeats after the third derivative. So, the power series is as 
 follows.

By the Ratio Test, you can conclude that this series converges for all x. 

COLIN MACLAURIN (1698–1746)

The development of power 
series to represent functions 
is credited to the combined 
work of many seventeenth- 
and eighteenth-century 
mathematicians. Gregory, 
Newton, John and James 
Bernoulli, Leibniz, Euler, 
Lagrange, Wallis, and Fourier 
all contributed to this work. 
However, the two names that 
are most commonly associated 
with power series are Brook 
Taylor and Colin Maclaurin. 
See LarsonCalculus.com 
to read more of this biography.

 ∑
∞

n=0
 
f (n)(0)

n!
 xn = f (0) + f′(0)x +

f ″(0)
2!

 x2 +
f ″′(0)

3!
 x3 +

f (4)(0)
4!

 x4 + .  .  .

 = 0 + (1)x +
0
2!

 x2 +
(−1)

3!
 x3 +

0
4!

 x4 +
1
5!

 x5 +
0
6!

 x6 +
(−1)

7!
 x7 + .  .  .

 = x −
x3

3!
+

x5

5!
−

x7

7!
+ .  .  .

 = ∑
∞

n=0

(−1)nx2n+1

(2n + 1)!

Bettmann/Corbis
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670 Chapter 9 Infinite Series

Notice that in Example 1, you cannot conclude that the power series converges 
to sin x for all x. You can simply conclude that the power series converges to some 
 function, but you are not sure what function it is. This is a subtle, but important, point 
in dealing with Taylor or Maclaurin series. To persuade yourself that the series

f (c) + f′(c)(x − c) +
f ″(c)

2!
(x − c)2 + .  .  . +

f (n)(c)
n!

(x − c)n + .  .  .

might converge to a function other than f, remember that the derivatives are being 
evaluated at a single point. It can easily happen that another function will agree with 
the values of f (n)(x) when x = c and disagree at other x-values. For instance, the power 
series (centered at 0) for the function f  shown in Figure 9.25 is the same series as in 
Example 1. You know that the series converges for all x, and yet it obviously cannot 
converge to both f (x) and sin x for all x.

Let f  have derivatives of all orders in an open interval I centered at c. The Taylor 
series for f  may fail to converge for some x in I. Even when it is convergent, it may fail 
to have f (x) as its sum. Nevertheless, Theorem 9.19 tells us that for each n,

f (x) = f (c) + f′(c)(x − c) +
f ″(c)

2!
(x − c)2 + .  .  . +

f (n)(c)
n!

(x − c)n + Rn(x)

where

Rn(x) =
f (n+1)(z)
(n + 1)! (x − c)n+1.

Note that in this remainder formula, the particular value of z that makes the remainder 
formula true depends on the values of x and n. If Rn → 0, then the next theorem tells us 
that the Taylor series for f  actually converges to f (x) for all x in I.

theoReM 9.23 Convergence of taylor Series

If lim
n→∞

 Rn = 0 for all x in the interval I, then the Taylor series for f  converges

and equals f (x),

f (x) = ∑
∞

n=0
 
f (n)(c)

n!
(x − c)n.

Proof For a Taylor series, the nth partial sum coincides with the nth Taylor 
polynomial. That is, Sn(x) = Pn(x). Moreover, because

Pn(x) = f (x) − Rn(x)

it follows that

 lim
n→∞

 Sn(x) = lim
n→∞

 Pn(x)

 = lim
n→∞

 [ f (x) − Rn(x)]

 = f (x) − lim
n→∞

 Rn(x).

So, for a given x, the Taylor series (the sequence of partial sums) converges to f (x) if 
and only if Rn(x) → 0 as n →∞. 

Stated another way, Theorem 9.23 says that a power series formed with Taylor 
coefficients 

an =
f (n)(c)

n!

converges to the function from which it was derived at precisely those values for which 
the remainder approaches 0 as n →∞.

ππ
2

f (x) = sin x, ⎪ ⎪ ≤x

1, x >

−1, x < −
2

x

y

−

1

−1

2
π

2
π

π

π
2

Figure 9.25
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 9.10 Taylor and Maclaurin Series 671

In Example 1, you derived the power series from the sine function and you also 
concluded that the series converges to some function on the entire real number line. In 
Example 2, you will see that the series actually converges to sin x. The key observation 
is that although the value of z is not known, it is possible to obtain an upper bound for

∣ f (n+1)(z)∣.

 A Convergent Maclaurin Series

Show that the Maclaurin series for

f (x) = sin x

converges to sin x for all x.

Solution Using the result in Example 1, you need to show that

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ .  .  . +

(−1)n x2n+1

(2n + 1)! + .  .  .

is true for all x. Because

f (n+1)(x) = ±sin x

or

f (n+1)(x) = ±cos x

you know that

∣ f (n+1)(z)∣ ≤ 1

for every real number z. Therefore, for any fixed x, you can apply Taylor’s Theorem 
(Theorem 9.19) to conclude that

0 ≤ ∣Rn(x)∣ = ∣f (n+1)(z)
(n + 1)!x

n+1∣ ≤ ∣x∣n+1

(n + 1)!.

From the discussion in Section 9.1 regarding the relative rates of convergence of 
 exponential and factorial sequences, it follows that for a fixed x,

lim
n→∞

 
∣x∣n+1

(n + 1)! = 0.

Finally, by the Squeeze Theorem, it follows that for all x, Rn(x) → 0 as n →∞. So, by 
Theorem 9.23, the Maclaurin series for sin x converges to sin x for all x. 

Figure 9.26 visually illustrates the convergence of the Maclaurin series for sin x by 
comparing the graphs of the Maclaurin polynomials P1, P3, P5, and P7 with the graph 
of the sine function. Notice that as the degree of the polynomial increases, its graph 
more closely resembles that of the sine function.

x

y = sin x

1
2
3
4

−2
−3

−

−4

y

P7(x) = x −      +      −x3

3!
x5

5!
x7

7!

πππ 2
x

1
2
3
4

−2
−3
−4

y

P5(x) = x −      +  x3

3!
x5

5!

ππ 2

y = sin x

x

y = sin x

P3(x) = x − x
3

3!

−

1
2
3
4

−2
−3
−4

y

ππ 2
x

y = sin x

P1(x) = x

1
2
3
4

−2
−3
−4

πππ 2−

y

As n increases, the graph of Pn more closely resembles the sine function.
Figure 9.26
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672 Chapter 9 Infinite Series

The guidelines for finding a Taylor series for f  at c are summarized below.

GUIDELINES FOR FINDING A TAYLOR SERIES

1.  Differentiate f  with respect to x several times and evaluate each derivative 
at c.

f (c), f′(c), f ″(c), f ′″(c), .  .  . , f (n)(c), .  .  .

 Try to recognize a pattern in these numbers.

2.  Use the sequence developed in the first step to form the Taylor coefficients 
an = f (n)(c)�n! and determine the interval of convergence for the resulting 
power series

f (c) + f′(c)(x − c) +
f ″(c)

2!
(x − c)2 + .  .  . +

f (n)(c)
n!

(x − c)n + .  .  . .

3.  Within this interval of convergence, determine whether the series converges 
to f (x).

The direct determination of Taylor or Maclaurin coefficients using successive 
 differentiation can be difficult, and the next example illustrates a shortcut for finding 
the coefficients indirectly—using the coefficients of a known Taylor or Maclaurin 
series.

 Maclaurin Series for a Composite Function

Find the Maclaurin series for

f (x) = sin x2.

Solution To find the coefficients for this Maclaurin series directly, you must 
 calculate successive derivatives of f (x) = sin x2. By calculating just the first two,

f′(x) = 2x cos x2

and

f ″(x) = −4x2 sin x2 + 2 cos x2

you can see that this task would be quite cumbersome. Fortunately, there is an 
 alternative. First, consider the Maclaurin series for sin x found in Example 1.

 g(x) = sin x

 = x −
x3

3!
+

x5

5!
−

x7

7!
+ .  .  .

Now, because sin x2 = g(x2), you can substitute x2 for x in the series for sin x to obtain

 sin x2 = g(x2)

 = x2 −
x6

3!
+

x10

5!
−

x14

7!
+ .  .  . . 

Be sure to understand the point illustrated in Example 3. Because direct 
 computation of Taylor or Maclaurin coefficients can be tedious, the most practical way 
to find a Taylor or Maclaurin series is to develop power series for a basic list of elementary 
functions. From this list, you can determine power series for other  functions by the 
operations of addition, subtraction, multiplication, division, differentiation, integration, 
and composition with known power series.

ReMARK When you 
have difficulty recognizing a 
pattern, remember that you can 
use Theorem 9.22 to find the 
Taylor series. Also, you can 
try using the coefficients of a 
known Taylor or Maclaurin 
series, as shown in Example 3.
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 9.10 Taylor and Maclaurin Series 673

Binomial Series
Before presenting the basic list for elementary functions, you will develop one more 
series—for a function of the form f (x) = (1 + x)k. This produces the binomial series.

 Binomial Series

Find the Maclaurin series for f (x) = (1 + x)k and determine its radius of convergence. 
Assume that k is not a positive integer and k ≠ 0.

Solution By successive differentiation, you have

 f (x) = (1 + x)k   f (0) = 1

 f′(x) = k(1 + x)k−1   f′(0) = k

 f ″(x) = k(k − 1)(1 + x)k−2   f ″(0) = k(k − 1)
 f′″(x) = k(k − 1)(k − 2)(1 + x)k−3   f ″′(0) = k(k − 1)(k − 2)

 ⋮   ⋮
 f (n)(x) = k .  .  . (k − n + 1)(1 + x)k−n  f (n)(0) = k(k − 1) .  .  . (k − n + 1)

which produces the series

1 + kx +
k(k − 1)x2

2
+ .  .  . +

k(k − 1) .  .  . (k − n + 1)xn

n!
+ .  .  ..

By the Ratio Test, you can conclude that the radius of  convergence is R = 1. So, the 
series converges to some function in the interval (−1, 1). 

Note that Example 4 shows that the Taylor series for (1 + x)k converges to some 
function in the interval (−1, 1). However, the example does not show that the series 
actually converges to (1 + x)k. To do this, you could show that the remainder Rn(x)  
converges to 0, as illustrated in Example 2. You now have enough information to find 
a binomial series for a function, as shown in the next example.

 Finding a Binomial Series

Find the power series for

f (x) = 3√1 + x.

Solution Using the binomial series

(1 + x)k = 1 + kx +
k(k − 1)x2

2!
+

k(k − 1)(k − 2)x3

3!
+ .  .  .

let k = 1
3 and write

(1 + x)1�3 = 1 +
x
3

−
2x2

322!
+

2 ∙ 5x3

333!
−

2 ∙ 5 ∙ 8x4

344!
+ .  .  . . 

teChnology Use a graphing utility to confirm the result in Example 5. 
When you graph the functions

f (x) = (1 + x)1�3

and

P4(x) = 1 +
x
3

−
x2

9
+

5x3

81
−

10x4

243

in the same viewing window, you should obtain the result shown in Figure 9.27.

2−2

−1

2

P4

f(x) =     1 + x3

Figure 9.27
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674 Chapter 9 Infinite Series

Deriving Taylor Series from a Basic List
The list below provides the power series for several elementary functions with the 
corresponding intervals of convergence.

Note that the binomial series is valid for noninteger values of k. Also, when k is a 
positive integer, the binomial series reduces to a simple binomial expansion.

 Deriving a Power Series from a Basic list

Find the power series for

f (x) = cos √x.

Solution Using the power series

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− .  .  .

you can replace x by

√x

to obtain the series

cos√x = 1 −
x
2!

+
x2

4!
−

x3

6!
+

x4

8!
− .  .  . .

This series converges for all x in the domain of cos√x—that is, for x ≥ 0. 

POWER SERIES FOR ELEMENTARY FUNCTIONS

 Interval of
Function Convergence

1
x

= 1 − (x − 1) + (x − 1)2 − (x − 1)3 + (x − 1)4 − .  .  . + (−1)n(x − 1)n + .  .  . 0 < x < 2

1
1 + x

= 1 − x + x2 − x3 + x4 − x5 + .  .  . + (−1)n xn + .  .  . −1 < x < 1

ln x = (x − 1) −
(x − 1)2

2
+

(x − 1)3

3
−

(x − 1)4

4
+ .  .  . +

(−1)n−1(x − 1)n

n
+ .  .  . 0 < x ≤ 2

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ .  .  . +

xn

n!
+ .  .  . −∞ < x < ∞

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+

x9

9!
− .  .  . +

(−1)nx2n+1

(2n + 1)! + .  .  . −∞ < x < ∞

cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− .  .  . +

(−1)n x2n

(2n)! + .  .  . −∞ < x < ∞

arctan x = x −
x3

3
+

x5

5
−

x7

7
+

x9

9
− .  .  . +

(−1)n x2n+1

2n + 1
+ . .  . −1 ≤ x ≤ 1

arcsin x = x +
x3

2 ∙ 3
+

1 ∙ 3x5

2 ∙ 4 ∙ 5
+

1 ∙ 3 ∙ 5x7

2 ∙ 4 ∙ 6 ∙ 7
+ .  .  . +

(2n)!x2n+1

(2nn!)2(2n + 1) + .  .  . −1 ≤ x ≤ 1

(1 + x)k = 1 + kx +
k(k − 1)x2

2!
+

k(k − 1)(k − 2)x3

3!
+ .  .  . +

k(k − 1) .  .  . (k − n + 1)xn

n!
+ .  .  . −1 < x < 1∗

* The convergence at x = ±1 depends on the value of k.
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 9.10 Taylor and Maclaurin Series 675

Power series can be multiplied and divided like polynomials. After finding the first 
few terms of the product (or quotient), you may be able to recognize a pattern.

 Multiplication of Power Series

Find the first three nonzero terms in the Maclaurin series ex arctan x.

Solution Using the Maclaurin series for ex and arctan x in the table, you have

ex arctan x = (1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ .  .  .)(x −

x3

3
+

x5

5
− .  .  .).

Multiply these expressions and collect like terms as you would in multiplying  
polynomials.

 1 + x +
1
2

x2 +
1
6

x3 +
1
24

x4 + .  .  .

 x  −
1
3

x3  +   
1
5

x5 − .  .  .

 x +  x2 +
1
2

x3 +  
1
6

x4 +
1
24

x5 + .  .  .

 −
1
3

x3 −  
1
3

x4 −  
1
6

x5 − .  .  .

 +  
1
5

x5 + .  .  .

 x +  x2 +
1
6

x3 −  
1
6

x4 +  
3
40

x5 + .  .  .

So, ex arctan x = x + x2 + 1
6 x3 + .  .  . .

 Division of Power Series

Find the first three nonzero terms in the Maclaurin series tan x.

Solution Using the Maclaurin series for sin x and cos x in the table, you have

tan x =
sin x
cos x

=
x −

x3

3!
+

x5

5!
− .  .  .

1 −
x2

2!
+

x4

4!
− .  .  .

.

Divide using long division.

 x +
1
3

x3 +  
2
15

x5 + .  .  .

1 −
1
2

x2 +
1
24

x4 − .  .  .) x −
1
6

x3 +
1

120
x5 − .  .  .

 x −
1
2

x3 +  
1
24

x5 − .  .  .

 
1
3

x3 −  
1
30

x5 + .  .  .

 
1
3

x3 −  
1
6

x5 + .  .  .

 
2
15

x5 + .  .  .

So, tan x = x + 1
3 x3 + 2

15 x5 + .  .  . . 
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 A Power Series for sin2 x

Find the power series for

f (x) = sin2 x.

Solution Consider rewriting sin2 x as

sin2 x =
1 − cos 2x

2
=

1
2

−
1
2

 cos 2x.

Now, use the series for cos x.

 cos x = 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
− .  .  .

 cos 2x = 1 −
22

2!
x2 +

24

4!
x4 −

26

6!
x6 +

28

8!
x8 − .  .  .

 −
1
2

 cos 2x = −
1
2

+
2
2!

x2 −
23

4!
x4 +

25

6!
x6 −

27

8!
x8 + .  .  .

 
1
2

−
1
2

 cos 2x =
1
2

−
1
2

+
2
2!

x2 −
23

4!
x4 +

25

6!
x6 −

27

8!
x8 + .  .  .

So, the series for f (x) = sin2 x is

sin2 x =
2
2!

x2 −
23

4!
x4 +

25

6!
x6 −

27

8!
x8 + .  .  . .

This series converges for −∞ < x < ∞. 

As mentioned in the preceding section, power series can be used to obtain tables 
of values of transcendental functions. They are also useful for estimating the values of  
definite integrals for which antiderivatives cannot be found. The next example  
demonstrates this use.

 Power Series Approximation of a Definite Integral

See LarsonCalculus.com for an interactive version of this type of example.

Use a power series to approximate

∫1

0
 e−x2 dx

with an error of less than 0.01.

Solution Replacing x with −x2 in the series for ex produces the following.

 e−x2 = 1 − x2 +
x4

2!
−

x6

3!
+

x8

4!
− .  .  .

 ∫1

0
 e−x2

 dx = [x −
x3

3
+

x5

5 ∙ 2!
−

x7

7 ∙ 3!
+

x9

9 ∙ 4!
− .  .  .]

1

0

 = 1 −
1
3

+
1
10

−
1
42

+
1

216
− .  .  .

Summing the first four terms, you have

∫1

0
 e−x2 dx ≈ 0.74

which, by the Alternating Series Test, has an error of less than 1
216 ≈ 0.005. 
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 9.10 Taylor and Maclaurin Series 677

9.10 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Convergence of a taylor Series Explain how 

to determine whether a Taylor series for a function f  
converges to f.

2.  Binomial Series The binomial series is used to 
represent a function of what form? What is the radius of 
convergence for the binomial series?

3.  Power Series How can you multiply and divide 
power series? 

4.  Finding a taylor Series Explain how to use 

 the series g(x) = ex = ∑
∞

n=0
 
xn

n!
 to find the series for

 f (x) = x2e−3x. Do not find the series.

 Finding a taylor Series In Exercises 5–16, 
use the definition of Taylor series to find the 
Taylor series, centered at c, for the function.

 5. f (x) = e2x, c = 0  6. f (x) = e−4x, c = 0

 7. f (x) = cos x, c =
π
4

  8. f (x) = sin x, c =
π
4

 9. f (x) =
1
x
, c = 1 10. f (x) =

1
1 − x

, c = 2

11. f (x) = ln x, c = 1 12. f (x) = ex, c = 1

13. f (x) = sin 3x, c = 0 14. f (x) = ln(x2 + 1), c = 0

15. f (x) = sec x, c = 0 (first three nonzero terms)

16. f (x) = tan x, c = 0 (first three nonzero terms)

 Proof In Exercises 17–20, prove that the 
Maclaurin series for the  function converges to the 
function for all x.

17. f (x) = cos x 18. f (x) = e−2x

19. f (x) = sinh x 20. f (x) = cosh x

 Using a Binomial Series In Exercises 21–26, 
use the binomial series to find the Maclaurin series 
for the function.

21. f (x) =
1

√1 − x
 22. f (x) =

1
(1 + x)4

23. f (x) =
1

√1 − x2
 24. f (x) =

1
(2 + x)3

25. f (x) = 4√1 + x 26. f (x) = √1 + x3

 Finding a Maclaurin Series In Exercises 
27–40, find the Maclaurin series for the function. 
Use the table of power series for elementary 
functions on page 674.

27. f (x) = ex2�2 28. g(x) = e−x�3

29. f (x) = ln(1 + x) 30. f (x) = ln(1 + x3)

31. f (x) = cos 4x 32. f (x) = sin πx

33. g(x) = arctan 5x 34. f (x) = arcsin πx

35. f (x) = cos x3�2 36. g(x) = 2 sin x3

37. f (x) = 1
2(ex − e−x) = sinh x

38. f (x) = ex + e−x = 2 cosh x

39. f (x) = cos2 x

40. f (x) = sinh−1 x = ln(x + √x2 + 1)

 (Hint: Integrate the series for 
1

√x2 + 1
.)

Verifying a Formula In Exercises 41 and 42, use a power 
series and the fact that i2 = − 1 to verify the formula.

41. g(x) =
1
2i

(eix − e−ix) = sin x

42. g(x) =
1
2

(eix + e−ix) = cos x

 Finding a Maclaurin Series In Exercises 
43–46, find the Maclaurin series for the function.

43. f (x) = x sin x

44. h(x) = x cos x

45. g(x) = {sin x
x

,

1,

    x ≠ 0

    x = 0

46. f (x) = {arcsin x
x

,

1,

    x ≠ 0

    x = 0

 Finding terms of a Maclaurin Series In 
Exercises 47–52, find the first four nonzero 
terms of the Maclaurin series for the function by 
multiplying or dividing the appropriate power 
series. Use the table of power series for  elementary 
functions on page 674. Use a graphing utility 
to graph the function and its corresponding 
polynomial approximation.

47. f (x) = ex sin x 48. g(x) = ex cos x

49. h(x) = (cos x) ln(1 + x) 50. f (x) = ex ln(1 + x)

51. g(x) =
sin x

1 + x

52. f (x) =
ex

1 + x

Finding a Maclaurin Series In Exercises 53 and 54, find 
a Maclaurin series for f (x).

53. f (x) = ∫x

0
 (e−t2 − 1) dt

54. f (x) = ∫x

0
 √1 + t3 dt
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Verifying a Sum In Exercises 55–58, verify the sum. Then 
use a graphing utility to approximate the sum with an error of 
less than 0.0001.

55. ∑
∞

n=1
 (−1)n+1 

1
n

= ln 2

56. ∑
∞

n=0
 (−1)n [ 1

(2n + 1)!] = sin 1

57. ∑
∞

n=0
 
2n

n!
= e2

58. ∑
∞

n=1
 (−1)n−1( 1

n!) =
e − 1

e

Finding a limit In Exercises 59–62, use the series 
representation of the function f  to find lim

x→0
  f (x), if it exists.

59. f (x) =
1 − cos x

x
 60. f (x) =

sin x
x

61. f (x) =
ex − 1

x

62. f (x) =
ln(x + 1)

x

 Approximating an Integral In Exercises 
63–70, use a power series to approximate the value 
of the definite integral with an error of less than 
0.0001. (In Exercises 65 and 67, assume that the 
integrand is defined as 1 when x = 0.)

63. ∫1

0
 e−x3 dx 64. ∫1�4

0
x ln(x + 1) dx

65. ∫1

0
 
sin x

x
 dx 66. ∫1

0
 cos x2 dx

67. ∫1�2

0
 
arctan x

x
 dx

68. ∫1�2

0
arctan x2 dx

69. ∫0.3

0.1
√1 + x3 dx

70. ∫0.2

0
√1 + x2 dx

Area In Exercises 71 and 72, use a power series to 
approximate the area of the region with an error of less than 
0.0001. Use a graphing utility to verify the result.

71. ∫π�2

0
 √x cos x dx 72. ∫1

0.5
cos√x dx

 

5π
8

x

y

1
4

1
2

3
4

3π
8

π
8

π
4

  

0.5 1 1.5

0.5

1.0

1.5

x

y

Probability In Exercises 73 and 74, approximate the 
probability with an error of less than 0.0001, where the 
probability is given by

P(a < x < b) =
1

√2π
 ∫b

a
 e−x2�2 dx.

a b

f(x) =
2π
1 e−x2/2

x

y

73. P(0 < x < 1) 74. P(1 < x < 2)

eXpLoRInG ConCeptS
75.  Comparing Methods Describe three ways to find 

the Maclaurin series for cos2 x. Show that each method 
produces the same first three terms.

76.  Maclaurin Series Explain how to use the power 
series for f (x) = arctan x to find the Maclaurin series for

 g(x) =
1

1 + x2.

   What is another way to find the Maclaurin series for g
using a power series for an elementary function?

77.  Finding a Function Which function has the 
Maclaurin series

 ∑
∞

n=0
 
(−1)n(x + 3)2n+1

22 (2n + 1)!  ?

 Explain your reasoning.

 78.  hoW Do yoU See It? Identify the 
function represented by each power series and 
match the function with its graph. [The graphs 
are labeled (i) and (ii).]

(i) (ii)

−1−2−3 1 2 3

1

3

4

5

x

y  

−1 1
−1

−2

1

2

x

y

(a) ∑
∞

n=0
 
(−1)n x4n+2

(2n + 1)!

(b) ∑
∞

n=0
 
(−1)n xn

n!

 78.  
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79.  Projectile Motion A projectile fired from the ground 
follows the trajectory given by

 y = (tan θ +
g

kv0 cos θ ) x +
g
k2 ln(1 −

kx
v0 cos θ)

  where v0 is the initial speed, θ is the angle of projection, g is 
the acceleration due to gravity, and k is the drag factor caused 
by air resistance. Using the power series representation

 ln(1 + x) = x −
x2

2
+

x3

3
−

x4

4
+ .  .  . , −1 < x < 1

 verify that the trajectory can be rewritten as

 y = (tan θ)x −
gx2

2v 2
0  cos2 θ −

kgx3

3v 3
0  cos3 θ −

k2 gx4

4v 4
0  cos4 θ − .  .  . .

81. Investigation Consider the function f  defined by

 f (x) = {e−1�x2,
0,

    x ≠ 0
    x = 0.

 (a) Sketch a graph of the function.

 (b)  Use the alternative form of the definition of the derivative 
(Section 3.1) and L’Hôpital’s Rule to show that f ′(0) = 0. 
[By continuing this process, it can be shown that f (n)(0) = 0 
for n > 1.]

 (c)  Using the result in part (b), find the Maclaurin series for f. 
Does the series converge to f ?

82. Investigation

 (a) Find the power series centered at 0 for the function

  f (x) =
ln(x2 + 1)

x2 .

 (b)  Use a graphing utility to graph f  and the eighth-degree 
Taylor polynomial P8(x) for f.

 (c) Use a graphing utility to complete the table, where

  F(x) = ∫x

0
 
ln(t2 + 1)

t2
 dt and G(x) = ∫x

0
P8(t) dt.

  x 0.25 0.50 0.75 1.00 1.50 2.00

F(x)

G(x)

 (d)  Describe the relationship between the graphs of f  and P8 
and the results given in the table in part (c).

83. Proof Prove that lim
n→∞

 
xn

n!
= 0 for any real x.

84. Finding a Maclaurin Series Find the Maclaurin series for

 f (x) = ln 
1 + x
1 − x

  and determine its radius of convergence. Use the first four 
terms of the series to approximate ln 3.

evaluating a Binomial Coefficient In Exercises 85–88, 
evaluate the binomial coefficient using the formula

(k
n) =

k(k − 1)(k − 2)(k − 3) .  .  . (k − n + 1)
n!

where k is a real number, n is a positive integer, and (k
0) = 1.

85. (6
3) 86. (0.25

2 )
87. (−0.8

5 ) 88. (−5
6 )

89.  Writing a Power Series Write the power series for 
(1 + x)k in terms of binomial coefficients.

90.  Proof Prove that the Taylor series for ex, centered at x = a, 
is given by

 ea[1 + (x − a) +
(x − a)2

2!
+ .  .  .].

91.  Proof Prove that e is irrational. [Hint: Assume that e = p�q 
is rational ( p and q are integers) and consider

 e = 1 + 1 +
1
2!

+ .  .  . +
1
n!

+ .  .  . .]
92.  Using Fibonacci numbers Show that the Maclaurin 

series for the function

 g(x) =
x

1 − x − x2

 is

 ∑
∞

n=1
 Fnxn

  where Fn is the nth Fibonacci number with F1 = F2 = 1 and 
Fn = Fn−2 + Fn−1, for n ≥ 3.  (Hint: Write

 
x

1 − x − x2 = a0 + a1x + a2x2 + .  .  .

 and multiply each side of this equation by 1 − x − x2.)

pUtnAM eXAM ChALLenGe
93.  Assume that ∣ f (x)∣ ≤ 1 and ∣ f ″(x)∣ ≤ 1 for all x on an 

interval of length at least 2. Show that ∣ f ′(x)∣ ≤ 2 on the 
interval.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

Use the result of Exercise 
79 to determine 
the series for the path
of a projectile launched 
from ground level at an 
angle of θ = 60°, with an 
initial speed of v0 = 64 
feet per second and a 
drag factor of k = 1

16.

80. Projectile Motion

bmcent1/Getty Images
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Writing the Terms of a Sequence In Exercises 1–4, write 
the first five terms of the sequence with the given nth term.

 1. an = 6n − 2  2. an =
5n−1

n!

 3. an = (−
1
4)

n

  4. an =
2n

n + 5

Matching In Exercises 5–8, match the sequence with the 
given nth term with its graph. [The graphs are labeled (a), (b), 
(c), and (d).]

(a) 

n
2

2

1

4

4

3

6

6

5

8 10

an  (b) 

n
2

2

4

4

6

8 10
−2

−4

an

(c) 

n
2

2

1

4

4

3

86 10
−1

an  (d) 

n
2

2

4

4

8

8

6

6

10

10

an

 5. an = 4 +
2
n

  6. an = 4 −
n
2

 7. an = 10(0.3)n−1  8. an = 6(−2
3)n−1

Finding the Limit of a Sequence In Exercises 9 and 10, use 
a graphing utility to graph the first 10 terms of the sequence with 
the given nth term. Use the graph to make an inference about the  
convergence or divergence of the sequence. Verify your inference 
analytically and, if the sequence converges, find its limit.

 9. an =
5n + 2

n
 10. an = cos 

nπ
3

Determining Convergence or Divergence In Exercises 
11–18, determine the convergence or divergence of the 
sequence with the given nth term. If the sequence converges, 
find its limit.

11. an =
1

√n
 12. an =

n
n2 + 1

13. an = (2
5)

n

+ 5 14. an =
2n3 − 1
3n + 4

15. an =
(4n)!

(4n − 1)! 16. an =
n

ln n

17. an =
e2n

ln n
 18. an =

sin √n

√n

Finding the nth Term of a Sequence In Exercises 
19–22, write an expression for the nth term of the sequence 
and then determine whether the sequence you have chosen 
converges or diverges. (There is more than one correct answer.)

19. 3, 8, 13, 18, 23, .  .  . 20. −5, −2, 3, 10, 19, .  .  .

21. 
1
2

, 
1
3

, 
1
7

, 
1
25

, 
1

121
, .  .  . 22. 

1
2

, 
2
5

, 
3
10

, 
4
17

, .  .  .

Monotonic and Bounded Sequences In Exercises 23 
and 24, determine whether the sequence with the given nth 
term is monotonic and whether it is bounded. Use a graphing 
utility to confirm your results.

23. an = 3 −
1
2n

 24. an = (4
3)

n

25.  Compound Interest A deposit of $8000 is made in an 
account that earns 5% interest compounded quarterly. The  
balance in the account after n quarters is

 An = 8000(1.0125)n, n = 1, 2, 3, .  .  . .

 (a) Compute the first eight terms of the sequence {An}.
 (b)  Find the balance in the account after 10 years by 

 computing the 40th term of the sequence.

26.  Depreciation A company buys a machine for $175,000. 
During the next 5 years, the machine will depreciate at a rate 
of 30% per year. (That is, at the end of each year, the depreciated 
value will be 70% of what it was at the beginning of the year.)

 (a)  Write an expression for the value of the machine after 
n years.

 (b)  Compute the depreciated values of the machine for the 
first 5 years.

Finding Partial Sums In Exercises 27 and 28, find the 
sequence of partial sums S1, S2, S3, S4,  and S5.

27. 3 +
3
2

+ 1 +
3
4

+
3
5

+ .  .  .

28. −7 + 1 −
1
7

+
1
49

−
1

343
+ .  .  .

Numerical, Graphical, and Analytic Analysis In 
Exercises 29 and 30, (a) use a graphing utility to find the 
indicated partial sum Sn and complete the table, and (b) use a 
graphing utility to graph the first 10 terms of the sequence of 
partial sums.

29. ∑
∞

n=1
 (3

2)
n−1

 30. ∑
∞

n=1
 

1
n(n + 1)

n 5 10 15 20 25

Sn
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  Review Exercises 681

Finding the Sum of a Convergent Series In Exercises 
31–34, find the sum of the convergent series.

31. ∑
∞

n=0
 (2

5)
n

 32. ∑
∞

n=0
 
3n+2

7n

33. ∑
∞

n=0
 [(0.4)n + (0.9)n]

34. ∑
∞

n=0
 [(3

4)
n

−
1

(n + 1)(n + 2)]
Using a Geometric Series In Exercises 35 and 36,  
(a) write the repeating decimal as a  geometric series and  
(b) write the sum of the series as the ratio of two integers.

35. 0.09 36. 0.64

Using a Geometric Series or the nth-Term Test In 
Exercises 37–40, use a geometric series or the nth-Term Test to 
determine the convergence or divergence of the series.

37. ∑
∞

n=0
 (1.67)n 38. ∑

∞

n=0
 9−n

39. ∑
∞

n=0
 
2n + 1
3n + 2

 40. ∑
∞

n=1
 
5n! + 6
n! + 1

41.  Marketing A manufacturer producing a new product 
estimates the annual sales to be 9600 units. Each year, 8% 
of the units that have been sold will become inoperative. So, 
9600 units will be in use after 1 year, [9600 + 0.92(9600)] 
units will be in use after 2 years, and so on. How many units 
will be in use after n years?

42.  Distance A ball is dropped from a height of 8 meters. Each 
time it drops h meters, it rebounds 0.7h meters. Find the total 
distance traveled by the ball.

Using the Integral Test or a p-Series In Exercises 
43–48, use the Integral Test or a p-series to determine the  
convergence or divergence of the series.

43. ∑
∞

n=1
 

2
6n + 1

 44. ∑
∞

n=1
 

1
4√n3

45. ∑
∞

n=1
 

1
n5�2 46. ∑

∞

n=1
 
1
5n

47. ∑
∞

n=1
 ( 1

n2 −
1
n) 48. ∑

∞

n=1
 
ln n
n4

Using the Direct Comparison Test or the Limit 
Comparison Test In Exercises 49–54, use the Direct 
Comparison Test or the Limit Comparison Test to determine 
the convergence or divergence of the series.

49. ∑
∞

n=2
 

1
3√n − 1

 50. ∑
∞

n=0
 

7n

8n + 5

51. ∑
∞

n=1
 

1

√n3 + 2n
 52. ∑

∞

n=1
 

n + 1
n(n + 2)

53. ∑
∞

n=1
 
1 ∙ 3 ∙ 5 .  .  . (2n − 1)

2 ∙ 4 ∙ 6 .  .  . (2n)

54. ∑
∞

n=1
 

1
3n − 5

Using the Alternating Series Test In Exercises 55–60, 
use the Alternating Series Test, if applicable, to determine the 
convergence or divergence of the series.

55. ∑
∞

n=1
 
(−1)n

n5  56. ∑
∞

n=1
 
(−1)n(n + 1)

n2 + 1

57. ∑
∞

n=2
 
(−1)nn
n2 − 3

 58. ∑
∞

n=4
 
(−1)nn
n − 3

 

59. ∑
∞

n=1
 
(−1)n+1√n

4√n + 2
 60. ∑

∞

n=2
 
(−1)n ln n3

n

Finding the Number of Terms In Exercises 61 and 62, 
use Theorem 9.15 to determine the number of terms required 
to approximate the sum of the series with an error of less than 
0.0001.

61. ∑
∞

n=1
 
(−1)n

n4  62. ∑
∞

n=1
 
(−1)n+1

3n3 − 2

Using the Ratio Test or the Root Test In Exercises 
63–68, use the Ratio Test or the Root Test to determine the  
convergence or divergence of the series.

63. ∑
∞

n=1
 (3n − 1

2n + 5)
n

 64. ∑
∞

n=1
 ( 4n

7n − 1)
n

65. ∑
∞

n=1
 
2n

n3 66. ∑
∞

n=0
 

7n

(2n + 3)n

67. ∑
∞

n=1
 

n
en2 68. ∑

∞

n=1
 
n!
e2n

Numerical, Graphical, and Analytic Analysis In 
Exercises 69 and 70, (a) verify that the series converges,  
(b) use a graphing utility to find the indicated partial sum Sn 
and complete the table, (c) use a graphing utility to graph the 
first 10 terms of the sequence of partial sums, and (d) use the 
table to estimate the sum of the series.

69. ∑
∞

n=1
 n(3

5)
n

 70. ∑
∞

n=1
 
(−1)n−1n

n3 + 5

Review In Exercises 71–76, determine the convergence or 
divergence of the series using any appropriate test from this 
chapter. Identify the test used.

71. ∑
∞

n=1
 

4
n2π 72. ∑

∞

n=0
 
7n+1

8n

73. ∑
∞

n=1
 

5n3 + 6
7n3 + 2n

 74. ∑
∞

n=1
e−n�3

75. ∑
∞

n=1
 

10n

4 + 9n 76. ∑
∞

n=1
 
(n!)n

3n

Finding a Maclaurin Polynomial In Exercises 77 and 78, 
find the nth Maclaurin polynomial for the function.

77. f (x) = e−2x, n = 3

78. f (x) = cos 3x, n = 4

n 5 10 15 20 25

Sn
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682 Chapter 9 Infinite Series

Finding a Taylor Polynomial In Exercises 79 and 80, find 
the third Taylor polynomial for the function, centered at c.

79. f (x) =
1
x3, c = 1

80. f (x) = tan x, c = −
π
4

Finding a Degree In Exercises 81 and 82, determine the 
degree of the Maclaurin polynomial required for the error in 
the approximation of the function at the indicated value of x to 
be less than 0.001.

81. f (x) = cos x, approximate f (0.75)
82. f (x) = ex, approximate f (−0.25)

Finding the Interval of Convergence In Exercises 
83–88, find the interval of convergence of the power series. 
(Be sure to include a check for convergence at the endpoints 
of the interval.)

83. ∑
∞

n=0
 ( x

10)
n

 84. ∑
∞

n=0
 (5x)n

85. ∑
∞

n=0
 
(−1)n(x − 2)n

(n + 1)2  86. ∑
∞

n=1
 
4n(x − 1)n

n

87. ∑
∞

n=0
 n!(x − 2)n 88. ∑

∞

n=0
 
(x − 3)n

3n

Finding Intervals of Convergence In Exercises 89 and 
90, find the intervals of convergence of (a) f (x), (b) f ′(x),  
(c) f ″(x), and (d) ∫ f (x) dx. (Be sure to include a check for 
convergence at the endpoints of the intervals.)

89. f (x) = ∑
∞

n=0
 (x

5)
n

90. f (x) = ∑
∞

n=1
 
(−1)n+1(x − 4)n

n

Differential Equation In Exercises 91 and 92, show that 
the function represented by the power series is a solution of the 
differential equation.

91. y = ∑
∞

n=0
 (−1)n x2n

4n(n!)2, x2y″ + xy′ + x2y = 0

92. y = ∑
∞

n=0
 
(−3)n x2n

2nn!
, y″ + 3xy′ + 3y = 0

Finding a Geometric Power Series In Exercises 93 and 
94, find a geometric power series for the function, centered at 0.

93. g(x) =
2

3 − x
 94. h(x) =

3
2 + x

Finding a Power Series In Exercises 95 and 96, find a 
power series for the function, centered at c, and determine the 
interval of convergence.

95. f (x) =
6

4 − x
, c = 1

96. f (x) =
6x

x2 + 4x − 5
, c = 0

Finding the Sum of a Series In Exercises 97–102, 
find the sum of the convergent series by using a well-known 
function. Identify the function and explain how you obtained 
the sum.

 97. ∑
∞

n=1
 (−1)n+1 

1
4nn

  98. ∑
∞

n=1
 (−1)n+1 

1
5nn

 99. ∑
∞

n=0
 

1
2n n!

 100. ∑
∞

n=0
 

2n

3n n!

101. ∑
∞

n=0
 (−1)n 

22n

32n (2n)!

102. ∑
∞

n=0
 (−1)n 

1
32n+1(2n + 1)!

Finding a Taylor Series In Exercises 103–110, use the  
definition of Taylor series to find the Taylor series, centered  
at c, for the function.

103. f (x) = sin x, c =
3π
4

 104. f (x) = cos x, c = −
π
4

105. f (x) = 3x, c = 0

106. f (x) = csc x, c =
π
2

 (first three nonzero terms)

107. f (x) =
1
x
, c = −1

108. f (x) = √x, c = 4

109. g(x) = 5√1 + x, c = 0

110. h(x) =
1

(1 + x)3, c = 0

111.  Forming Maclaurin Series Determine the first four 
terms of the Maclaurin series for e2x

  (a)  by using the definition of Maclaurin series. 

  (b) by replacing x by 2x in the series for ex.

  (c)  by multiplying the series for ex by itself, because 
e2x = ex ∙ ex.

112.  Forming Maclaurin Series Determine the first four 
terms of the Maclaurin series for sin 2x

  (a)  by using the definition of Maclaurin series.

  (b) by replacing x by 2x in the series for sin 2x.

  (c)  by multiplying 2 by the series for sin x by the series for 
cos x, because sin 2x = 2 sin x cos x.

Finding a Maclaurin Series In Exercises 113–116, find 
the Maclaurin series for the function. Use the table of power 
series for elementary functions on page 674.

113. f (x) = e6x 114. f (x) = ln(x − 1)
115. f (x) = sin 5x 116. f (x) = cos 3x

Approximating an Integral In Exercises 117 and 118, use 
a power series to approximate the value of the definite integral 
with an error of less than 0.01.

117. ∫0.5

0
 cos x3 dx 118. ∫1

0
 e−x4

 dx
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  P.S. Problem Solving 683

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Cantor Set The Cantor set (Georg Cantor, 1845–1918) is 
a subset of the unit interval [0, 1]. To construct the Cantor set,

  first remove the middle third (1
3, 23) of the interval, leaving two 

line segments. For the second step, remove the middle third of 
each of the two remaining  segments, leaving four line segments. 
Continue this procedure indefinitely, as shown in the figure. 
The Cantor set consists of all numbers in the unit interval [0, 1] 
that still remain.

0 1

0 1
3

12
3

0 11
9

2
9

1
3

2
3

7
9

8
9

 (a)  Find the total length of all the line segments that are 
removed.

 (b) Write down three numbers that are in the Cantor set.

 (c)  Let Cn denote the total length of the remaining line  
segments after n steps. Find lim

n→∞
 Cn.

2. Using Sequences

 (a)  Given that lim
n→∞

 a2n = L and lim
n→∞

 a2n+1 = L, show that

  {an} is convergent and lim
n→∞

 an = L.

 (b) Let a1 = 1 and an+1 = 1 +
1

1 + an

. Write out the first 

   eight terms of {an}. Use part (a) to show that lim
n→∞

 an = √2.

  This gives the continued fraction expansion

  √2 = 1 +
1

2 +
1

2 + .  .  .

.

3. Using a Series It can be shown that 

 ∑
∞

n=1
 
1
n2 =

π2

6
 [see Section 9.3, page 612].

 Use this fact to show that ∑
∞

n=1
 

1
(2n − 1)2 =

π2

8
.

4.  Finding a Limit Let T be an equilateral triangle with sides 
of length 1. Let an be the number of circles that can be packed 
tightly in n rows inside the triangle. For example, a1 = 1, 
a2 = 3, and a3 = 6, as shown in the figure. Let An be the  
combined area of the an circles. Find lim

n→∞
 An.

5.  Using Center of Gravity Identical blocks of unit length 
are stacked on top of each other at the edge of a table. The  
center of gravity of the top block must lie over the block below 
it, the center of gravity of the top two blocks must lie over the 
block below them, and so on (see figure).

 (a)  When there are three blocks, show that it is possible to stack 
them so that the left edge of the top block extends 11

12 unit 
beyond the edge of the table.

 (b)  Is it possible to stack the blocks so that the right edge of the 
top block extends beyond the edge of the table?

 (c)  How far beyond the table can the blocks be stacked?

6. Using Power Series

 (a) Consider the power series

  ∑
∞

n=0
 anx

n = 1 + 2x + 3x2 + x3 + 2x4 + 3x5 + x6 + .  .  .

    in which the coefficients an = 1, 2, 3, 1, 2, 3, 1, .  .  . are 
 periodic of period p = 3. Find the radius of convergence 
and the sum of this power series.

 (b) Consider a power series

  ∑
∞

n=0
 an x n

   in which the coefficients are periodic, (an+p = ap), and 
an > 0. Find the radius of convergence and the sum of this 
power series.

7. Finding Sums of Series

 (a) Find a power series for the function 

  f (x) = xex

   centered at 0. Use this representation to find the sum of the 
 infinite series

  ∑
∞

n=1
 

1
n!(n + 2).

 (b)  Differentiate the power series for f (x) = xex. Use the result 
to find the sum of the infinite series

  ∑
∞

n=0
 
n + 1

n!
.
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684 Chapter 9 Infinite Series

 8.  Using the Alternating Series Test The graph of the 
function 

 f (x) = {1,
sin x

x
,

    x = 0

    x > 0
 

   is shown below. Use the Alternating Series Test to show that

 the improper integral ∫∞

1
 f (x) dx converges.

x

−1

1

ππ 2 π3 π4

y

 9.  Conditional and Absolute Convergence For what 
values of the positive constants a and b does the  following 
series converge absolutely? For what values does it converge 
conditionally?

 a −
b
2

+
a
3

−
b
4

+
a
5

−
b
6

+
a
7

−
b
8

+ .  .  .

10. Proof

 (a)  Consider the following sequence of numbers defined 
 recursively.

   a1 = 3

   a2 = √3

   a3 = √3 + √3

   ⋮
   an+1 = √3 + an

   Write the decimal approximations for the first six terms of 
this sequence. Prove that the sequence converges and find 
its limit.

 (b)  Consider the following sequence defined recursively by 
a1 = √a and an+1 = √a + an, where a > 2.

  √a, √a + √a, √a + √a + √a, .  .  .

  Prove that this sequence converges and find its limit.

11. Proof Let {an} be a sequence of positive numbers satisfying

 lim
n→∞

 (an)1�n = L <
1
r
, r > 0. Prove that the series ∑

∞

n=1
 anr

n

  converges.

12. Using a Series Consider the infinite series ∑
∞

n=1
 

1
2n+(−1)n.

 (a) Find the first five terms of the sequence of partial sums.

 (b) Show that the Ratio Test is inconclusive for this series.

 (c)  Use the Root Test to determine the convergence or 
divergence of this series.

13.  Deriving Identities Derive each identity using the  
appropriate geometric series.

 (a) 
1

0.99
= 1.01010101 .  .  .

 (b) 
1

0.98
= 1.0204081632 .  .  .

14.  Population Consider an idealized population with the 
characteristic that each member of the population produces 
one offspring at the end of every time period. Each member 
has a life span of three time periods and the population begins 
with 10 newborn  members. The following table shows the 
population during the first five time periods.

 

 
Age Bracket

Time Period

1 2 3 4 5

0–1 10 10 20 40 70

1–2 10 10 20 40

2–3 10 10 20

Total 10 20 40 70 130

  The sequence for the total population has the property that

 Sn = Sn−1 + Sn−2 + Sn−3, n > 3.

  Find the total population during each of the next five time 
periods.

15.  Spheres Imagine you are stacking an infinite number of 
spheres of decreasing radii on top of each other, as shown in 
the figure. The radii of the spheres are 1 meter, 1�√2 meter, 
1�√3 meter, and so on. The spheres are made of a material 
that weighs 1 newton per cubic meter.

 (a) How high is this infinite stack of spheres?

 (b)  What is the total surface area of all the spheres in the 
stack?

 (c) Show that the weight of the stack is finite.

1 m

2
1 m

3
1 m

. .
 .

16. Determining Convergence or Divergence

 Determine the convergence or divergence of the series

 ∑
∞

n=1
 (sin 

1
2n

− sin 
1

2n + 1).
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Clockwise from top left, hin255/Shutterstock.com; NASA;
NASA; chirajuti/Shutterstock.com; Rob Friedman/E+/Getty Images

Conics, Parametric Equations, 
and Polar Coordinates
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10.1 Conics and Calculus

 Understand the definition of a conic section.
 Analyze and write equations of parabolas using properties of parabolas.
 Analyze and write equations of ellipses using properties of ellipses.
 Analyze and write equations of hyperbolas using properties of hyperbolas.

Conic Sections
Each conic section (or simply conic) can be described as the intersection of a plane and 
a double-napped cone. Notice in Figure 10.1 that for the four basic conics, the intersecting 
plane does not pass through the vertex of the cone. When the plane  passes through the 
vertex, the resulting figure is a degenerate conic, as shown in Figure 10.2.

            

 Circle Parabola Ellipse Hyperbola
 Conic sections
 Figure 10.1

   

 Point Line Two intersecting lines
 Degenerate conics
 Figure 10.2

There are several ways to study conics. You could begin as the Greeks did, by 
defining the conics in terms of the intersections of planes and cones, or you could 
define them algebraically in terms of the general second-degree equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.    General second-degree equation

However, a third approach, in which each of the conics is defined as a locus (collection) 
of points satisfying a certain geometric property, works best. For example, a  circle can 
be defined as the collection of all points (x, y) that are equidistant from a fixed point 
(h, k). This locus definition easily produces the standard equation of a circle

 (x − h)2 + ( y − k)2 = r2.  Standard equation of a circle

For information about rotating second-degree equations in two variables, see Appendix D.

 FOR FURTHER INFORMATION
To learn more about the 
mathematical activities of Hypatia, 
see the article “Hypatia and 
Her Mathematics” by Michael 
A. B. Deakin in The American 
Mathematical Monthly. To view 
this article, go to MathArticles.com.

HYPATIA (370–415 A.D.)

The Greeks discovered conic 
sections sometime between 600 
and 300 B.C. By the beginning of 
the Alexandrian period, enough 
was known about conics for 
Apollonius (262–190 B.C.) to 
produce an eight-volume work 
on the subject. Later, toward 
the end of the Alexandrian 
 period, Hypatia wrote a 
textbook entitled On the Conics 
of Apollonius. Her death marked 
the end of major mathematical 
discoveries in Europe for 
several hundred years.

The early Greeks were 
largely concerned with the 
geometric properties of  conics. 
It was not until 1900 years 
later, in the early  seventeenth 
century, that the  broader 
applicability of conics became 
apparent. Conics then played 
a prominent role in the 
development of calculus. 
See LarsonCalculus.com to read 
more of this biography.

Bettmann/Corbis
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 10.1 Conics and Calculus 687

Parabolas
A parabola is the set of all points (x, y) that are equidistant from a fixed line, the 
directrix, and a fixed point, the focus, not on the line. The midpoint between the focus 
and the directrix is the vertex, and the line passing through the focus and the vertex is 
the axis of the parabola. Note in Figure 10.3 that a parabola is symmetric with respect 
to its axis.

THEOREM 10.1 Standard Equation of a Parabola

The standard form of the equation of a parabola with vertex (h, k) and 
directrix y = k − p is

(x − h)2 = 4p(y − k). Vertical axis

For directrix x = h − p, the equation is

(y − k)2 = 4p(x − h). Horizontal axis

The focus lies on the axis p units (directed distance) from the vertex. The 
coordinates of the focus are as follows.

(h, k + p) Vertical axis

(h + p, k) Horizontal axis

 Finding the Focus of a Parabola

Find the focus of the parabola 

y =
1
2

− x −
1
2

x2.

Solution To find the focus, convert to standard form by completing the square.

 y =
1
2

− x −
1
2

x2  Write original equation.

 2y = 1 − 2x − x2  Multiply each side by 2.

 2y = 1 − (x2 + 2x)  Group terms.

 2y = 2 − (x2 + 2x + 1) Add and subtract 1 on right side.

 x2 + 2x + 1 = −2y + 2

 (x + 1)2 = −2(y − 1)  Write in standard form.

Comparing this equation with

(x − h)2 = 4p( y − k)

you can conclude that

h = −1, k = 1, and p = −
1
2

.

Because p is negative, the parabola opens downward, as shown in Figure 10.4. So, the 
focus of the parabola is p units from the vertex, or

(h, k + p) = (−1, 
1
2). Focus 

A line segment that passes through the focus of a parabola and has endpoints on the 
parabola is called a focal chord. The specific focal chord perpendicular to the axis of 
the parabola is the latus rectum. The next example shows how to determine the length 
of the latus rectum and the length of the corresponding intercepted arc.

Parabola

Directrix

Vertex

Focus

d1

d1
d2

d2

p

Axis

(x, y)

Figure 10.3

x

Focus

−2 −1

−1

1

−1, )) 1
2

1
2

1
2

1
2

y =    − x −   x2

p = −

y

Vertex

Parabola with a vertical axis, p < 0
Figure 10.4
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 Focal Chord Length and Arc Length

See LarsonCalculus.com for an interactive version of this type of example.

Find the length of the latus rectum of the parabola

x2 = 4py.

Then find the length of the parabolic arc intercepted by the latus rectum.

Solution Because the latus rectum passes through the focus (0, p) and is perpendicular 
to the y-axis, the coordinates of its endpoints are 

(−x, p) and (x, p).

Substituting p for y in the equation of the parabola produces

x2 = 4p(p)  x = ±2p.

So, the endpoints of the latus rectum are (−2p, p) and (2p, p), and you can conclude 
that its length is 4p, as shown in Figure 10.5. In contrast, the length of the  intercepted 
arc is

 s = ∫2p

−2p

 √1 + (y′)2 dx Use arc length formula.

 = 2∫2p

0
 √1 + ( x

2p)
2

 dx y =
x2

4p
  y′ =

x
2p

 =
1
p∫

2p

0
 √4p2 + x2 dx Simplify.

 =
1
2p[x√4p2 + x2 + 4p2 ln∣x + √4p2 + x2∣]

2p

0
 Theorem 8.2

 =
1
2p

[2p√8p2 + 4p2 ln(2p + √8p2) − 4p2 ln(2p)]
 = 2p[√2 + ln(1 + √2)]
 ≈ 4.59p. 

One widely used property of a parabola is its reflective property. In physics, a 
surface is called reflective when the tangent line at any point on the surface makes equal 
angles with an incoming ray and the resulting outgoing ray. The angle corresponding to 
the incoming ray is the angle of incidence, and the angle corresponding to the outgoing 
ray is the angle of reflection. One example of a reflective surface is a flat mirror.

Another type of reflective surface is that formed by revolving a parabola about its 
axis. The resulting surface has the property that all incoming rays parallel to the axis 
are directed through the focus of the parabola. This is the principle behind the design 
of the parabolic mirrors used in reflecting telescopes. Conversely, all light rays emanating 
from the focus of a parabolic reflector used in a flashlight are parallel, as shown in 
Figure 10.6.

THEOREM 10.2 Reflective Property of a Parabola

Let P be a point on a parabola. The tangent line to the parabola at point P 
makes equal angles with the following two lines.

1. The line passing through P and the focus

2. The line passing through P parallel to the axis of the parabola

x

Latus rectum

(0, p)

x2 = 4py

(−2p, p) (2  ,   )p  p

y

Length of latus rectum: 4p
Figure 10.5

Light source
at focus

Axis

Parabolic reflector: light is reflected in 
parallel rays.
Figure 10.6
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Ellipses
More than a thousand years after the close of the Alexandrian period of Greek 
mathematics, Western civilization finally began a Renaissance of mathematical 
and scientific discovery. One of the principal figures in this rebirth was the Polish 
astronomer Nicolaus Copernicus (1473–1543). In his work On the Revolutions of the 
Heavenly Spheres, Copernicus claimed that all of the planets, including Earth, revolved 
about the sun in circular orbits. Although some of Copernicus’s claims were invalid, 
the  controversy set off by his heliocentric theory motivated astronomers to search 
for a mathematical model to explain the observed movements of the sun and planets. 
The first to find an accurate model was the German astronomer Johannes Kepler 
(1571–1630). Kepler discovered that the planets move about the sun in elliptical orbits, 
with the sun not as the center but as a focal point of the orbit.

The use of ellipses to explain the movements of the planets is only one of many 
practical and aesthetic uses. As with parabolas, you will begin your study of this second 
type of conic by defining it as a locus of points. Now, however, two focal points are 
used rather than one.

An ellipse is the set of all points (x, y) the sum of whose distances from two 
distinct fixed points called foci is constant. (See Figure 10.7.) The line through the foci 
intersects the ellipse at two points, called the vertices. The chord joining the vertices is 
the major axis, and its midpoint is the center of the ellipse. The chord  perpendicular to 
the major axis at the center is the minor axis of the ellipse. (See Figure 10.8.)

Focus Focus

d1

d1 + d2 is constant.

d2

(x, y)   

CenterFocus Focus

Minor axis

Major axis
Vertex Vertex(h, k)

 Figure 10.7 Figure 10.8

THEOREM 10.3 Standard Equation of an Ellipse

The standard form of the equation of an ellipse with center (h, k) and major 
and minor axes of lengths 2a and 2b, respectively, where a > b, is

(x − h)2

a2 +
(y − k)2

b2 = 1 Major axis is horizontal.

or

(x − h)2

b2 +
(y − k)2

a2 = 1. Major axis is vertical.

The foci lie on the major axis, c units from the center, with

c2 = a2 − b2.

You can visualize the definition of an ellipse by imagining two thumbtacks placed 
at the foci, as shown in Figure 10.9.

 FOR FURTHER INFORMATION To learn about how an ellipse may be “exploded” 
into a parabola, see the article “Exploding the Ellipse” by Arnold Good in Mathematics 
Teacher. To view this article, go to MathArticles.com. 

If the ends of a fixed length of string 
are fastened to the thumbtacks and the 
string is drawn taut with a pencil, then 
the path traced by the pencil will be an 
ellipse.
Figure 10.9

NICOLAUS COPERNICUS 
(1473–1543)

Copernicus began to study 
planetary motion when he was 
asked to revise the calendar. 
At that time, the exact length 
of the year could not be 
accurately predicted using 
the theory that Earth was the 
center of the universe.
See LarsonCalculus.com to read 
more of this biography.

Bettmann/Corbis
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 Analyzing an Ellipse

Find the center, vertices, and foci of the ellipse 

4x2 + y2 − 8x + 4y − 8 = 0. General second-degree equation

Solution Complete the square to write the original equation in standard form.

 4x2 + y2 − 8x + 4y − 8 = 0 Write original equation.

 4x2 − 8x + y2 + 4y = 8

 4(x2 − 2x + 1) + (y2 + 4y + 4) = 8 + 4 + 4

 4(x − 1)2 + (y + 2)2 = 16

 
(x − 1)2

4
+

(y + 2)2

16
= 1 Write in standard form.

So, the major axis is vertical, where h = 1, k = −2, a = 4, b = 2, and 

c = √16 − 4 = 2√3.

So, you obtain the following.

Center: (1, −2) (h, k)

Vertices: (1, −6) and (1, 2) (h, k ± a)

Foci: (1, −2 − 2√3) and (1, −2 + 2√3) (h, k ± c)

The graph of the ellipse is shown in Figure 10.10. 

In Example 3, the constant term in the general second-degree equation is F = −8. 
For a constant term greater than or equal to 8, you would obtain one of these degenerate 
cases.

1. F = 8, single point, (1, −2): (x − 1)2

4
+

(y + 2)2

16
= 0

2. F > 8, no solution points: 
(x − 1)2

4
+

(y + 2)2

16
< 0

 The Orbit of the Moon

The moon orbits Earth in an elliptical path with the center of Earth at one focus, 
as shown in Figure 10.11. The major and minor axes of the orbit have lengths of  
768,800 kilometers and 767,641 kilometers, respectively. Find the greatest and least 
distances (the apogee and perigee) from Earth’s center to the moon’s center.

Solution Begin by solving for a and b.

 2a = 768,800 Length of major axis

 a = 384,400 Solve for a.

 2b = 767,641 Length of minor axis

 b = 383,820.5 Solve for b.

Now, using these values, you can solve for c as follows.

c = √a2 − b2 ≈ 21,099

The greatest distance between the center of Earth and the center of the moon is

a + c ≈ 405,499 kilometers 

and the least distance is

a − c ≈ 363,301 kilometers. 

Vertex

Vertex

Center

Focus

Focus

x

(x − 1)2

4
= 1

(y + 2)2

16
+

y

−2−4

−6

2

2

4

Ellipse with a vertical major axis.
Figure 10.10

Perigee Apogee

Earth

Moon

Not drawn to scale

Figure 10.11
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 10.1 Conics and Calculus 691

Theorem 10.2 presented a reflective property of parabolas. Ellipses have a similar 
reflective property. You are asked to prove the next theorem in Exercise 84.

THEOREM 10.4 Reflective Property of an Ellipse

Let P be a point on an ellipse. The tangent line to the ellipse at point P makes 
equal angles with the lines through P and the foci.

One of the reasons that astronomers had difficulty detecting that the orbits of the 
planets are ellipses is that the foci of the planetary orbits are relatively close to the 
center of the sun, making the orbits nearly circular. To measure the ovalness of an 
ellipse, you can use the concept of eccentricity.

Definition of Eccentricity of an Ellipse

The eccentricity e of an ellipse is given by the ratio

e =
c
a

.

To see how this ratio is used to describe the shape of an ellipse, note that because 
the foci of an ellipse are located along the major axis between the vertices and the 
center, it follows that

0 < c < a.

For an ellipse that is nearly circular, the foci are close to the center and the ratio c�a is 
close to 0, and for an elongated ellipse, the foci are close to the vertices and the ratio 
c�a is close to 1, as shown in Figure 10.12. Note that 

0 < e < 1

for every ellipse.
The orbit of the moon has an eccentricity of e ≈ 0.0549, and the eccentricities of 

the eight planetary orbits are listed below.

Mercury: e ≈ 0.2056 Jupiter: e ≈ 0.0489

Venus: e ≈ 0.0067 Saturn: e ≈ 0.0565

Earth: e ≈ 0.0167 Uranus: e ≈ 0.0457

Mars: e ≈ 0.0935 Neptune: e ≈ 0.0113

You can use integration to show that the area of an ellipse is A = πab. For 
instance, the area of the ellipse

x2

a2 +
y2

b2 = 1

is

 A = 4∫a

0
 
b
a
√a2 − x2 dx

 =
4b
a ∫

π�2

0
 a2 cos2 θ dθ. Trigonometric substitution x = a sin θ

However, it is not so simple to find the circumference of an ellipse. The next example 
shows how to use eccentricity to set up an “elliptic integral” for the circumference of 
an ellipse.

 FOR FURTHER INFORMATION
For more information on some uses 
of the reflective properties of 
conics, see the article “Parabolic 
Mirrors, Elliptic and Hyperbolic 
Lenses” by Mohsen Maesumi 
in The American Mathematical 
Monthly. Also see the article “The 
Geometry of Microwave Antennas” 
by William R. Parzynski in 
Mathematics Teacher.

a

c

Foci

(a) 
c
a

 is small.

a

c

Foci

(b) 
c
a

 is close to 1.

Eccentricity is the ratio 
c
a

.

Figure 10.12
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 Finding the Circumference of an Ellipse

See LarsonCalculus.com for an interactive version of this type of example.

Show that the circumference of the ellipse (x2�a2) + (y2�b2) = 1 is

4a∫π�2

0
 √1 − e2 sin2 θ dθ. e =

c
a

Solution Because the ellipse is symmetric with respect to both the x-axis and the 
y-axis, you know that its circumference C is four times the arc length of 

y =
b
a
√a2 − x2

in the first quadrant. The function y is differentiable for all x in the interval [0, a] except 
at x = a. So, the circumference is given by the improper integral

C = lim
d→a−

 4∫d

0
 √1 + (y′)2 dx = 4∫a

0
 √1 + (y′)2 dx = 4∫a

0
 √1 +

b2x2

a2(a2 − x2) dx.

Using the trigonometric substitution x = a sin θ, you obtain

 C = 4∫π�2

0
 √1 +

b2 sin2 θ
a2 cos2 θ (a cos θ) dθ

 = 4∫π�2

0
 √a2 cos2 θ + b2 sin2 θ dθ

 = 4∫π�2

0
 √a2(1 − sin2 θ) + b2 sin2 θ dθ

 = 4∫π�2

0
 √a2 − (a2 − b2) sin2 θ dθ.

Because e2 = c2�a2 = (a2 − b2)�a2, you can rewrite this integral as

C = 4a∫π�2

0
 √1 − e2 sin2 θ dθ. 

A great deal of time has been devoted to the study of elliptic integrals. Such 
 integrals generally do not have elementary antiderivatives. To find the circumference 
of an ellipse, you must usually resort to an approximation technique.

 Approximating the Value of an Elliptic Integral

Use the elliptic integral in Example 5 to approximate the circumference of the ellipse 

x2

25
+

y2

16
= 1.

Solution Because e2 = c2�a2 = (a2 − b2)�a2 = 9�25, you have

C = (4)(5)∫π�2

0
 √1 −

9 sin2 θ
25

 dθ.

Applying Simpson’s Rule with n = 4 produces

 C ≈ 20[π�2
3(4)][1 + 4(0.9733) + 2(0.9055) + 4(0.8323) + 0.8]

 ≈ 28.36.

So, the ellipse has a circumference of about 28.36 units, as shown in Figure 10.13.
 

x

y

2 4 6−2

−2

2

6

−4−6

−6

x2

25
 = 1+

y2

16

C ≈ 28.36 units

Figure 10.13

AREA AND CIRCUMFERENCE 
OF AN ELLIPSE

In his work with elliptic orbits 
in the early 1600s, Johannes 
Kepler successfully developed 
a formula for the area of an 
ellipse, A = πab. He was 
less successful, however, in 
developing a formula for the 
circumference of an ellipse; 
the best he could do was to 
give the approximate formula 
C = π(a + b).
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 10.1 Conics and Calculus 693

Hyperbolas
The definition of a hyperbola is similar to that of an ellipse. For an ellipse, the sum 
of the distances between the foci and a point on the ellipse is fixed, whereas for a 
hyperbola, the absolute value of the difference between these distances is fixed.

A hyperbola is the set of all points (x, y) for which the absolute value of the 
 difference between the distances from two distinct fixed points called foci is constant. 
(See Figure 10.14.) The line through the two foci intersects a hyperbola at two points 
called the vertices. The line segment connecting the vertices is the transverse axis, and 
the midpoint of the transverse axis is the center of the hyperbola. One  distinguishing 
feature of a hyperbola is that its graph has two separate branches.

THEOREM 10.5 Standard Equation of a Hyperbola

The standard form of the equation of a hyperbola with center at (h, k) is

(x − h)2

a2 −
(y − k)2

b2 = 1 Transverse axis is horizontal.

or

(y − k)2

a2 −
(x − h)2

b2 = 1. Transverse axis is vertical.

The vertices are a units from the center, and the foci are c units from the 
center, where c2 = a2 + b2.

Note that the constants a, b, and c do not have the same relationship for hyperbolas 
as they do for ellipses. For hyperbolas, c2 = a2 + b2, but for ellipses, c2 = a2 − b2.

An important aid in sketching the graph of a hyperbola is the determination of 
its asymptotes, as shown in Figure 10.15. Each hyperbola has two asymptotes that 
intersect at the center of the hyperbola. The asymptotes pass through the vertices of a 
rectangle of dimensions 2a by 2b, with its center at (h, k). The line segment of length 
2b joining

(h, k + b)

and

(h, k − b)

is referred to as the conjugate axis of the hyperbola.

THEOREM 10.6 Asymptotes of a Hyperbola

For a horizontal transverse axis, the equations of the asymptotes are

y = k +
b
a

(x − h) and y = k −
b
a

(x − h).

For a vertical transverse axis, the equations of the asymptotes are

y = k +
a
b

(x − h) and y = k −
a
b

(x − h).

In Figure 10.15, you can see that the asymptotes coincide with the diagonals of 
the rectangle with dimensions 2a and 2b, centered at (h, k). This provides you with a 
quick means of sketching the asymptotes, which in turn aids in sketching the hyperbola.

⎪d2 − d1⎪ = 2a
⎪d2 − d1⎪ is constant.

Focus Focus

d2

(x, y)

d1

Vertex

VertexCenter

Transverse axis

a

c

Figure 10.14

Asymptote

(h, k + b)

(h, k − b)

(h + a, k)(h − a, k) (  , )h  k a
b

Conjugate axis Asymptote

Figure 10.15
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 Using Asymptotes to Sketch a Hyperbola

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the graph of the hyperbola

4x2 − y2 = 16.

Solution Begin by rewriting the equation in standard form.

x2

4
−

y2

16
= 1

The transverse axis is horizontal and the vertices occur at (−2, 0) and (2, 0). The ends 
of the conjugate axis occur at (0, −4) and (0, 4). Using these four points, you can 
sketch the rectangle shown in Figure 10.16(a). By drawing the asymptotes through the 
corners of this rectangle, you can complete the sketch as shown in Figure 10.16(b). 

x

6

4 6

−6

−6 −4

(0, 4)

(2, 0)

(0, −4)

(−2, 0)

y   

x

6

4 6

−6

−6 −4

x2 y2

4 16
− = 1

y

4

−4

 (a)  (b) 

 Figure 10.16 

Definition of Eccentricity of a Hyperbola

The eccentricity e of a hyperbola is given by the ratio

e =
c
a

.

As with an ellipse, the eccentricity of a hyperbola is e = c�a. Because c > a 
for hyperbolas, it follows that e > 1 for hyperbolas. If the eccentricity is large, then 
the branches of the hyperbola are nearly flat. If the eccentricity is close to 1, then the 
branches of the hyperbola are more pointed, as shown in Figure 10.17.

x

VertexVertex

Eccentricity
is large.

FocusFocus

e =
c
a

c

a

y   

x
VertexVertex

Eccentricity
is close to 1.

FocusFocus

c

a

y

e =
c
a

 Figure 10.17

TECHNOLOGY You can 
use a graphing utility to verify 
the graph obtained in Example 7 
by solving the original equation 
for y and graphing the following 
equations.

 y1 = √4x2 − 16

 y2 = −√4x2 − 16

 FOR FURTHER INFORMATION
To read about using a string that 
traces both elliptic and hyperbolic 
arcs having the same foci, see the 
article “Ellipse to Hyperbola: 
‘With This String I Thee Wed’” by
Tom M. Apostol and Mamikon A.
Mnatsakanian in Mathematics 
Magazine. To view this article, 
go to MathArticles.com.
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The application in Example 8 was developed during World War II. It shows how 
the properties of hyperbolas can be used in radar and other detection systems.

 A Hyperbolic Detection System

Two microphones, 1 mile apart, record an explosion. Microphone A receives the sound 
2 seconds before microphone B. Where was the explosion?

Solution Assuming that sound travels at 1100 feet per second, you know that the 
explosion took place 2200 feet farther from B than from A, as shown in Figure 10.18. 
The locus of all points that are 2200 feet closer to A than to B is one branch of the 
hyperbola 

x2

a2 −
y2

b2 = 1

where

c =
1 mile

2
=

5280 ft
2

= 2640 feet

and

a =
2200 ft

2
= 1100 feet.

Because c2 = a2 + b2, it follows that

 b2 = c2 − a2

 = (2640)2 − (1100)2

 = 5,759,600

and you can conclude that the explosion occurred somewhere on the right branch of 
the hyperbola

x2

1,210,000
−

y2

5,759,600
= 1. 

In Example 8, you were able to determine only the hyperbola on which the 
 explosion occurred, but not the exact location of the explosion. If, however, you 
had received the sound at a third position C, then two other hyperbolas would be 
 determined. The exact location of the explosion would be the point at which these three 
hyperbolas intersect.

Another interesting application of conics involves the orbits of comets in our solar 
system. Of the 610 comets identified prior to 1970, 245 have elliptical orbits, 295 have
parabolic orbits, and 70 have hyperbolic orbits. The center of the sun is a focus of 
each orbit, and each orbit has a vertex at the point at which the comet is closest to the 
sun. Undoubtedly, many comets with parabolic or hyperbolic orbits have not been 
identified—such comets pass through our solar system only once. Only comets with 
elliptical orbits, such as Halley’s comet, remain in our solar system.

The type of orbit for a comet can be determined as follows.

1. Ellipse: v < √2GM�p

2. Parabola: v = √2GM�p

3. Hyperbola: v > √2GM�p

In each of the above, p is the distance between one vertex and one focus of the comet’s 
orbit (in meters), v is the velocity of the comet at the vertex (in meters per second), 
M ≈ 1.989 × 1030 kilograms is the mass of the sun, and G ≈ 6.67 × 10−11 cubic meter 
per kilogram-second squared is the gravitational constant.
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Figure 10.18

CAROLINE HERSCHEL 
(1750–1848)

The first woman to be credited 
with detecting a new comet 
was the English astronomer 
Caroline Herschel. During 
her life, Caroline Herschel 
discovered a total of eight 
new comets.
See LarsonCalculus.com to read 
more of this biography.

Caroline Herschel (1750-1848), 1829, Tielemans, Martin Francois (1784-1864)/Private Collection/The Bridgeman Art Library 
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10.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Conic Sections State the definitions of parabola, 

ellipse, and hyperbola in your own words.

2.  Reflective Property Use a sketch to illustrate the 
reflective property of an ellipse.

3.  Eccentricity Consider an ellipse with eccentricity e.

 (a) What are the possible values of e?

 (b)  What happens to the graph of the ellipse as e increases?

4.  Hyperbola Explain how to sketch a hyperbola with a 
vertical transverse axis.

Matching In Exercises 5–10, match the equation with its 
graph. [The graphs are labeled (a), (b), (c), (d), (e), and (f).]

(a) 

x

2

2 4 6

4

−4

−2
−2

y  (b) 

x

2

2 4

4

−4

y

(c) 

2

2 4

4

6

−4

−4−6 −2
x

y  (d) 

x

2

2 4 6

4

−4

−2

y

(e) 

x

y

−4 −2−8 2 4

−8

−6

−4

4

2

 (f ) 

x

y

−1−3 1 3

−2

1

2

 5. y2 = 4x  6. (x + 4)2 = −2(y − 2)

 7. 
y2

16
−

x2

1
= 1  8. 

(x − 2)2

16
+

(y + 1)2

4
= 1

 9. 
x2

4
+

y2

9
= 1 10. 

(x − 2)2

9
−

y2

4
= 1

 Sketching a Parabola In Exercises 11–16, find 
the vertex, focus, and directrix of the parabola, and 
sketch its graph.

11. (x + 5) + (y − 3)2 = 0 12. (x − 6)2 − 2(y + 7) = 0

13. y2 − 4y − 4x = 0 14. y2 + 6y + 8x + 25 = 0

15. x2 + 4x + 4y − 4 = 0 16. x2 − 2x − 4y − 7 = 0

 Finding the Standard Equation of a 
Parabola In Exercises 17–24, find the standard 
form of the equation of the parabola with the given 
characteristics.

17. Vertex: (5, 4) 18. Vertex: (−3, −1)
 Focus: (3, 4)  Focus: (−3, 1)
19. Vertex: (0, 5) 20. Focus: (2, 2)
 Directrix: y = −3  Directrix: x = −2

21. Vertex: (1, −1) 22. Vertex: (2, 4)
 Points on the parabola:  Points on the parabola:

 (−1, −4), (3, −4)  (0, 0), (4, 0)
23.  Axis is parallel to y-axis; graph passes through (0, 3), (3, 4), 

and (4, 11).
24.  Directrix: y = −2; endpoints of latus rectum are (0, 2) and 

(8, 2).

 Sketching an Ellipse In Exercises 25–30, find 
the center, foci, vertices, and eccentricity of the 
ellipse, and sketch its graph.

25. 16x2 + y2 = 16 26. 3x2 + 7y2 = 63

27. 
(x − 3)2

16
+

(y − 1)2

25
= 1 28. (x + 4)2 +

(y + 6)2

1�4
= 1

29. 9x2 + 4y2 + 36x − 24y − 36 = 0

30. x2 + 10y2 − 6x + 20y + 18 = 0

 Finding the Standard Equation of an 
Ellipse In Exercises 31–36, find the standard 
form of the equation of the ellipse with the given 
characteristics.

31. Center: (0, 0) 32. Vertices: (0, 3), (8, 3)
 Focus: (5, 0)  Eccentricity: 3

4

 Vertex: (6, 0)
33. Vertices: (3, 1), (3, 9) 34. Foci: (0, ±9)
 Minor axis length: 6  Major axis length: 22

35. Center: (0, 0) 36. Center: (1, 2)
 Major axis: horizontal  Major axis: vertical

 Points on the ellipse:  Points on the ellipse:
 (3, 1), (4, 0)  (1, 6), (3, 2)

 Sketching a Hyperbola In Exercises 37–40, 
find the center, foci, vertices, and eccentricity 
of the hyperbola, and sketch its graph using 
asymptotes as an aid.

37. 
x2

25
−

y2

16
= 1 38. 

(y + 3)2

225
−

(x − 5)2

64
= 1

39. 9x2 − y2 − 36x − 6y + 18 = 0

40. y2 − 16x2 + 64x − 208 = 0
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 Finding the Standard Equation of a 
Hyperbola In Exercises 41–48, find the 
standard form of the equation of the hyperbola 
with the given characteristics.

41. Vertices: (±1, 0) 42. Vertices: (0, ±4)
 Asymptotes: y = ±5x  Asymptotes: y = ±2x

43. Vertices: (2, ±3) 44. Vertices: (2, ±3)
 Point on graph: (0, 5)  Foci: (2, ±5)
45. Center: (0, 0) 46. Center: (0, 0)
 Vertex: (0, 2)  Vertex: (6, 0)
 Focus: (0, 4)  Focus: (10, 0)
47. Vertices: (0, 2), (6, 2) 48. Focus: (20, 0)
 Asymptotes: y = 2

3x  Asymptotes: y = ±3
4x

   y = 4 − 2
3x

Finding Equations of Tangent Lines and Normal 
Lines In Exercises 49 and 50, find equations for (a) the 
tangent lines and (b) the normal lines to the hyperbola for the 
given value of x. (The normal line at a point is perpendicular 
to the tangent line at the point.)

49. 
x2

9
− y2 = 1, x = 6 50. 

y2

4
−

x2

2
= 1, x = 4

Classifying the Graph of an Equation In Exercises 
51–56, classify the graph of the equation as a circle, a parabola, 
an ellipse, or a hyperbola.

51. 25x2 − 10x − 200y − 119 = 0

52. 4x2 − y2 − 4x − 3 = 0

53. 3(x − 1)2 = 6 + 2(y + 1)2 54. 9(x + 3)2 = 36 − 4(y − 2)2

55. 9x2 + 9y2 − 36x + 6y + 34 = 0

56. y2 − 4y = x + 5

eXpLoRInG ConCeptS
57.  Using an Equation Consider the equation 

9x2 + 4y2 − 36x − 24y − 36 = 0.

 (a)  Classify the graph of the equation as a circle, a 
parabola, an ellipse, or a hyperbola.

 (b)  Change the 4y2-term in the equation to −4y2. 
Classify the graph of the new equation.

 (c)  Change the 9x2-term in the original equation to 4x2. 
Classify the graph of the new equation.

 (d)  Describe one way you could change the original 
equation so that its graph is a parabola.

58.  Investigation Sketch the graphs of x2 = 4py for 
p = 1

4, 12, 1, 32, and 2 on the same coordinate axes. Discuss 
the change in the graphs as p increases.

59.  Ellipse Let C be the circumference of the 
ellipse (x2�a2) + (y2�b2) = 1, b < a. Explain 
why 2πb < C < 2πa. Use a graph to support your 
explanation.

 60.  HOW DO YOU SEE IT? Describe in 
words how a plane could intersect with the 
double-napped cone to form each conic section 
(see figure).

 

(a) Circle (b) Ellipse

(c) Parabola  (d) Hyperbola

 60.  

61.  Solar Collector A solar collector for heating water is 
constructed with a sheet of stainless steel that is formed into 
the shape of a parabola (see figure). The water will flow 
through a pipe that is located at the focus of the parabola. At 
what distance from the vertex is the pipe?

1 m

6 m   

3 cm

16 m

Not drawn to scale

 Figure for 61 Figure for 62

62.  Beam Deflection A simply supported beam that is 
16 meters long has a load concentrated at the center (see 
figure). The deflection of the beam at its center is 3 centimeters. 
Assume that the shape of the deflected beam is parabolic.

 (a)  Find an equation of the parabola. (Assume that the origin 
is at the center of the beam.)

 (b)  How far from the center of the beam is the deflection 
1 centimeter?

63. Proof

 (a)  Prove that any two distinct tangent lines to a parabola 
intersect.

 (b)  Demonstrate the result of part (a) by finding the point 
of intersection of the tangent lines to the parabola 
x2 − 4x − 4y = 0 at the points (0, 0) and (6, 3).

64. Proof

 (a)  Prove that if any two tangent lines to a parabola intersect 
at right angles, then their point of intersection must lie on 
the directrix.

 (b)  Demonstrate the result of part (a) by showing that the 
 tangent lines to the parabola x2 − 4x − 4y + 8 = 0 at the

   points (−2, 5) and (3, 54) intersect at right angles and that 
their point of intersection lies on the directrix.
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65.  Bridge Design A cable of a suspension bridge is suspended 
(in the shape of a parabola) between two towers that are 
120 meters apart and 20 meters above the roadway (see 
figure). The cable touches the roadway midway between the 
towers. Find an equation for the parabolic shape of the cable.

Parabolic
supporting cable

(60, 20)

y

x

66.  Arc Length Find the length of the parabolic cable in 
Exercise 65.

68.  Surface Area A satellite signal receiving dish is formed 
by revolving the parabola given by

 x2 = 20y

  about the y-axis. The radius of the dish is r feet. Verify that the 
surface area of the dish is given by

 2π∫r

0
 x√1 + ( x

10)
2

 dx =
π
15

[(100 + r2)3�2 − 1000].

69.  Orbit of Earth Earth moves in an elliptical orbit with the 
sun at one of the foci. The length of half of the major axis is 
149,598,000 kilometers, and the eccentricity is 0.0167. Find 
the minimum distance ( perihelion) and the maximum distance 
(aphelion) of Earth from the sun.

70.  Satellite Orbit The apogee (the point in orbit farthest 
from Earth) and the perigee (the point in orbit closest to Earth) 
of an elliptical orbit of an Earth satellite are given by A and P, 
respectively. Show that the eccentricity of the orbit is

 e =
A − P
A + P

.

71.  Explorer 1 On January 31, 1958, the United States 
launched the research satellite Explorer 1. Its low and 
high points above the surface of Earth were 220 miles and 
1563 miles. Find the eccentricity of its elliptical orbit. (Use 
4000 miles as the radius of Earth.)

72.  Explorer 55 On November 20, 1975, the United States 
launched the research satellite Explorer 55. Its low and 
high points above the  surface of Earth were 96 miles and 
1865 miles. Find the eccentricity of its elliptical orbit. (Use 
4000 miles as the radius of Earth.)

74.  Particle Motion Consider a particle traveling clockwise 
on the elliptical path

 
x2

100
+

y2

25
= 1.

  The particle leaves the orbit at the point (−8, 3) and travels 
in a straight line tangent to the ellipse. At what point will the 
 particle cross the y-axis?

Area, Volume, and Surface Area In Exercises 75 and 76, 
find (a) the area of the region bounded by the ellipse, (b) the 
volume and surface area of the solid generated by revolving 
the region about its major axis (prolate spheroid), and (c) the 
volume and surface area of the solid generated by revolving the 
region about its minor axis (oblate spheroid).

75. 
x2

4
+

y2

1
= 1 76. 

x2

16
+

y2

9
= 1

77.  Arc Length Use the integration capabilities of a graphing 
utility to approximate to two-decimal-place accuracy the 
elliptical integral representing the circumference of the ellipse

 
x2

25
+

y2

49
= 1.

78. Conjecture

 (a) Show that the equation of an ellipse can be written as

  
(x − h)2

a2 +
(y − k)2

a2(1 − e2) = 1.

 (b) Use a graphing utility to graph the ellipse

  
(x − 2)2

4
+

(y − 3)2

4(1 − e2) = 1

  for e = 0.95, e = 0.75, e = 0.5, e = 0.25,  and e = 0.

 (c)  Use the results of part (b) to make a conjecture about the 
change in the shape of the ellipse as e approaches 0.

A church window is bounded above by a parabola and 
below by the arc of a circle (see figure). Find the 
area of the window.

8 ft

8 ft

4 ft

Circle
radius

67. Architecture

Probably the most famous of all comets, Halley’s comet, 
has an elliptical orbit with the sun at one focus. 
Its maximum distance from the sun is 
approximately 35.29 AU
(1 astronomical unit 
is approximately 
92.956 × 106 miles), 
and its minimum 
distance is approximately 
0.59 AU. Find the 
eccentricity of the orbit.

73. Halley’s Comet

chirajuti/Shutterstock.com; NASA
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79.  Geometry The area of the ellipse in the figure is twice the 
area of the circle. What is the length of the major axis?

x

(0, 10)

(0, −10)

(a, 0)
(−a, 0)

y   

x

x2 y2

a2 b2+ = 1
Tangent
line

P = (x0, y0)

(−c, 0) (c, 0)

β
α

y

 Figure for 79 Figure for 80

80.  Proof Prove Theorem 10.4 by showing that the tangent 
line to an ellipse at a point P makes equal angles with lines 
through P and the foci (see figure). [Hint: (1) Find the slope of 
the tangent line at P, (2) find the slopes of the lines through P 
and each focus, and (3) use the formula for the tangent of the
angle θ between two lines with slopes m1 and m2,

 tan θ = ∣ m1 − m2

1 + m1m2∣.]
81.  Finding an Equation of a Hyperbola Find an equation 

of the hyperbola such that for any point on the hyperbola, the 
difference between its distances from the points (2, 2) and 
(10, 2) is 6.

82.  Hyperbola Consider a hyperbola centered at the origin 
with a horizontal transverse axis. Use the definition of a 
hyperbola to derive its standard form

 
x2

a2 −
y2

b2 = 1.

83.  Navigation LORAN (long distance radio navigation) for 
aircraft and ships uses synchronized pulses transmitted by 
widely separated transmitting stations. These pulses travel at 
the speed of light (186,000 miles per second). The difference 
in the times of arrival of these pulses at an aircraft or ship is 
constant on a hyperbola having the transmitting stations as 
foci. Assume that two stations, 300 miles apart, are positioned 
on a rectangular coordinate system at (−150, 0) and (150, 0) 
and that a ship is traveling on a path with coordinates (x, 75) 
(see figure). Find the x-coordinate of the position of the 
ship when the time difference between the pulses from the 
transmitting stations is 1000 microseconds (0.001 second).

x
75

75

150

150

−75
−150

−150

y   

x
−10 −4

−4
−6
−8

−10

2

4

4

6
8

8

10

10

Mirror
y

 Figure for 83 Figure for 84

84.  Hyperbolic Mirror A hyperbolic mirror (used in some 
telescopes) has the property that a light ray directed at the 
focus will be reflected to the other focus. The mirror in the 
figure has the equation

 
x2

36
−

y2

64
= 1.

  At which point on the mirror will light from the point (0, 10) be 
reflected to the other focus?

85. Tangent Line Show that the equation of the tangent line

 to 
x2

a2 −
y2

b2 = 1 at the point (x0, y0) is (x0

a2)x − (y0

b2)y = 1.

86. Proof Prove that the graph of the equation

 Ax2 + Cy2 + Dx + Ey + F = 0

 is one of the following (except in degenerate cases).

  Conic Condition

 (a) Circle A = C

 (b) Parabola A = 0 or C = 0 (but not both)

 (c) Ellipse AC > 0

 (d) Hyperbola AC < 0

True or False? In Exercises 87–92, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

87. It is possible for a parabola to intersect its directrix.

88. The point on a parabola closest to its focus is its vertex.

89.  The eccentricity of a hyperbola with a horizontal transverse 
axis is e = √1 + m2, where m and −m the slopes of the 
asymptotes.

90.  If D ≠ 0 or E ≠ 0, then the graph of

 y2 − x2 + Dx + Ey = 0

 is a hyperbola.

91.  If the asymptotes of the hyperbola (x2�a2) − (y2�b2) = 1 
intersect at right angles, then a = b.

92.  Every tangent line to a hyperbola intersects the hyperbola only 
at the point of tangency.

pUtnAM eXAM ChALLenGe
93.  For a point P on an ellipse, let d be the distance from the 

center of the ellipse to the line tangent to the ellipse at 
P. Prove that (PF1)(PF2)d 2 is constant as P varies on the 
ellipse, where PF1 and PF2 are the distances from P to 
the foci F1 and F2 of the ellipse.

94. Find the minimum value of 

 (u − v)2 + (√2 − u2 −
9
v
)2

 for 0 < u < √2 and v > 0.
These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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10.2 Plane Curves and Parametric equations

 Sketch the graph of a curve given by a set of parametric equations.
 Eliminate the parameter in a set of parametric equations.
 Find a set of parametric equations to represent a curve.
  Understand two classic calculus problems, the tautochrone and 

brachistochrone problems.

Plane Curves and Parametric Equations
Until now, you have been representing a graph by a single equation involving two 
variables. In this section, you will study situations in which three variables are used to 
represent a curve in the plane.

Consider the path followed by an object  

x
63 7236 45 54

24    2, 24    2 − 16

18 27

9

18

y

9

y = −16t2 + 24    2 t

t = 0

t = 1

Parametric equations:
x = 24    2 t

(0, 0)

Rectangular equation:

y = −      + xx2

72

))

Curvilinear motion: two variables for 
position, one variable for time
Figure 10.19

that is propelled into the air at an angle of 45°. 
For an initial velocity of 48 feet per second, 
the object travels the parabolic path given by
the rectangular equation

y = −
x2

72
+ x

as shown in Figure 10.19. This equation, 
however, does not tell the whole story. 
Although it does tell you where the object 
has been, it does not tell you when the object 
was at a given point (x, y). To determine 
this time, you can introduce a third variable t,
called a parameter. By writing both x and y 
as functions of t, you obtain the  parametric 
equations

x = 24√2t Parametric equation for x

and

y = −16t2 + 24√2t. Parametric equation for y

From this set of equations, you can determine that at time t = 0, the object is at the 
point (0, 0). Similarly, at time t = 1, the object is at the point 

(24√2, 24√2 − 16)
and so on. (You will learn a method for determining this particular set of parametric 
equations—the equations of motion—later, in Section 12.3.)

For this particular motion problem, x and y are continuous functions of t, and the 
resulting path is called a plane curve.

Definition of a Plane Curve

If f  and g are continuous functions of t on an interval I, then the equations

x = f (t) and y = g(t)

are parametric equations and t is the parameter. The set of points (x, y) 
obtained as t varies over the interval I is the graph of the parametric equations. 
Taken together, the parametric equations and the graph are a plane curve, 
denoted by C.

ReMARK At times, it 
is important to distinguish 
between a graph (the set of 
points) and a curve (the points 
together with their defining 
parametric equations). When 
it is important, the distinction 
will be explicit. When it is not 
important, C will be used to 
represent either the graph or
the curve.
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 10.2 Plane Curves and Parametric Equations 701

When sketching a curve represented by a set of parametric equations, you can plot 
points in the xy-plane. Each set of coordinates (x, y) is determined from a value chosen 
for the parameter t. By plotting the resulting points in order of increasing values of t, 
the curve is traced out in a specific direction. This is called the orientation of the curve.

 Sketching a Curve

Sketch the curve described by the parametric equations

x = f (t) = t2 − 4

and

y = g(t) =
t
2

where −2 ≤ t ≤ 3.

Solution For values of t on the given interval, 

4 6

4

2

−2

−4

x

t = 3t = 2

t = −2t = −1

t = 0

t = 1

Parametric equations:
t
2

x = t2 − 4 and y = , −2 ≤ t ≤ 3

y

Figure 10.20

 
the parametric equations yield the points (x, y) 
shown in the table.

 
t −2 −1 0 1 2 3

x 0 −3 −4 −3 0 5

y −1 −1
2 0 1

2 1 3
2

By plotting these points in order of increasing 
values of t and using the continuity of f  and g, 
you obtain the curve C shown in Figure 10.20.  
Note that the arrows on the curve indicate 
its orientation as t increases from −2 to 3. 

According to the Vertical Line Test, the graph shown in Figure 10.20 does not 
define y as a function of x. This points out one benefit of parametric equations––they 
can be used to represent graphs that are more general than graphs of functions.

It often happens that two different sets of parametric equations have the same 
graph. For instance, the set of parametric equations

x = 4t2 − 4 and y = t, −1 ≤ t ≤ 3
2

has the same graph as the set given in Example 1. (See Figure 10.21.) However, 
comparing the values of t in Figures 10.20 and 10.21, you can see that the second 
graph is traced out more rapidly (considering t as time) than the first graph. So, in 
applications, different  parametric representations can be used to represent various 
speeds at which objects travel along a given path.

teChnology Most graphing utilities have a parametric graphing mode. If 
you have access to such a utility, use it to confirm the graphs shown in Figures 10.20 
and 10.21. Does the curve given by the parametric equations

x = 4t2 − 8t and y = 1 − t, −
1
2

≤ t ≤ 2

represent the same graph as that shown in Figures 10.20 and 10.21? What do you 
notice about the orientation of this curve?

4 6

4

2

−2

−4

x

t = 3
2

3
2

1
2

1
2

t = −1

t = 1 t = 

t = −

Parametric equations:

t = 0

x = 4t2 − 4 and y = t, −1 ≤ t ≤

y

Figure 10.21
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Eliminating the Parameter
Finding a rectangular equation that represents the graph of a set of parametric  equations 
is called eliminating the parameter. For instance, you can eliminate the parameter 
from the set of parametric equations in Example 1 as follows.

Parametric 
equations

  
Solve for t in 
one equation.

  
Substitute into 
second equation.

  
Rectangular 
equation

x = t2 − 4 t = 2y x = (2y)2 − 4 x = 4y2 − 4

y = t�2

Once you have eliminated the parameter, you can recognize that the equation  
x = 4y2 − 4 represents a parabola with a horizontal axis and vertex at (−4, 0), as 
shown in Figure 10.20.

The range of x and y implied by the parametric equations may be altered by the 
change to rectangular form. In such instances, the domain of the rectangular equation 
must be adjusted so that its graph matches the graph of the parametric equations. Such 
a situation is demonstrated in the next example.

 Adjusting the Domain

Sketch the curve represented by the equations

x =
1

√t + 1
 and y =

t
t + 1

, t > −1

by eliminating the parameter and adjusting the domain of the resulting rectangular 
equation.

Solution Begin by solving one of the parametric equations for t. For instance, you 
can solve the first equation for t as follows.

 x =
1

√t + 1
 Parametric equation for x

 x2 =
1

t + 1
 Square each side.

 t + 1 =
1
x2

 t =
1
x2 − 1

 t =
1 − x2

x2  Solve for t.

Now, substituting into the parametric equation for y produces

 y =
t

t + 1
 Parametric equation for y

 y =
(1 − x2)�x2

[(1 − x2)�x2] + 1
 Substitute (1 − x2)�x2 for t.

 y = 1 − x2. Simplify.

The rectangular equation, y = 1 − x2, is defined for all values of x, but from the 
parametric equation for x, you can see that the curve is defined only when t > −1. This 
implies that you should restrict the domain of x to positive values, as shown in  
Figure 10.22. 

x
1 2

1

−1

−1

−2

−2

−3

Rectangular equation:

y = 1 − x2, x > 0

y

Figure 10.22

x
1 2

1

−1

−1

−2

−2

−3

t = 3

t = 0

t = −0.75

Parametric equations:

x =            , y =         , t > −1
t + 1 t + 1
1 t

y
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 10.2 Plane Curves and Parametric Equations 703

It is not necessary for the parameter in a set of parametric equations to represent 
time. The next example uses an angle as the parameter.

 Using trigonometry to eliminate a Parameter

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the curve represented by

x = 3 cos θ and y = 4 sin θ, 0 ≤ θ ≤ 2π

by eliminating the parameter and finding the corresponding rectangular equation.

Solution Begin by solving for cos θ and sin θ in the given equations.

cos θ =
x
3

 Solve for cos θ.

and

sin θ =
y
4

 Solve for sin θ.

Next, make use of the identity 

sin2 θ + cos2 θ = 1

to form an equation involving only x and y.

 cos2 θ + sin2 θ = 1 Trigonometric identity

 (x
3)

2

+ (y
4)

2

= 1 Substitute.

 
x2

9
+

y2

16
= 1 Rectangular equation

From this rectangular equation, you can see that the graph is an ellipse centered at 
(0, 0), with vertices at (0, 4) and (0, −4) and minor axis of length 2b = 6, as shown in 
Figure 10.23. Note that the ellipse is traced out counterclockwise as θ varies from  
0 to 2π. 

Using the technique shown in Example 3, you can conclude that the graph of the 
parametric equations

x = h + a cos θ and y = k + b sin θ, 0 ≤ θ ≤ 2π

is the ellipse (traced counterclockwise) given by

(x − h)2

a2 +
(y − k)2

b2 = 1.

The graph of the parametric equations

x = h + a sin θ and y = k + b cos θ, 0 ≤ θ ≤ 2π

is also the ellipse (traced clockwise) given by

(x − h)2

a2 +
(y − k)2

b2 = 1.

In Examples 2 and 3, it is important to realize that eliminating the parameter is 
primarily an aid to curve sketching. When the parametric equations represent the path 
of a moving object, the graph alone is not sufficient to describe the motion of the object. 
You still need the parametric equations to tell you the position, direction, and speed at 
a given time.

teChnology Use a 
graphing utility in parametric 
mode to graph several ellipses.

x
1 2

2

3

4

1

−1
−1

−2

−2

−3

−4

θ = 0θ = π

θ = π
2

θ = π
2

3

Parametric equations:
x = 3 cos   , y = 4 sin

Rectangular equation:

θ θ

x2 y2

9 16
+       = 1

y

Figure 10.23
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Finding Parametric Equations
The first three examples in this section illustrate techniques for sketching the graph 
represented by a set of parametric equations. You will now investigate the reverse 
problem. How can you determine a set of parametric equations for a given graph or a 
given physical description? From the discussion following Example 1, you know that 
such a representation is not unique. This is demonstrated further in the next example, 
which finds two different parametric representations for a given graph.

 Finding Parametric equations for a given graph

Find a set of parametric equations that represents the graph of y = 1 − x2, using each 
of the following parameters.

a. t = x  b. The slope m =
dy
dx

 at the point (x, y)

Solution

a. Letting x = t produces the parametric equations

x = t and y = 1 − x2 = 1 − t2.

b. To write x and y in terms of the parameter m, you can proceed as follows.

 m =
dy
dx

 m = −2x Differentiate y = 1 − x2.

 x = −
m
2

 Solve for x.

  This produces a parametric equation for x. To obtain a parametric equation for y, 
substitute −m�2 for x in the original equation.

 y = 1 − x2 Write original rectangular equation.

 y = 1 − (−
m
2 )

2

 Substitute −m�2 for x.

 y = 1 −
m2

4
 Simplify.

 So, the parametric equations are

x = −
m
2

 and y = 1 −
m2

4
.

  In Figure 10.24, note that the resulting curve has a right-to-left orientation as 
determined by the increasing values of slope m. For part (a), the curve would have 
the opposite orientation. 

teChnology To be efficient at using a graphing utility, it is important that 
you develop skill in representing a graph by a set of parametric equations. The 
reason for this is that many graphing utilities have only three graphing modes–– 
(1) functions, (2) parametric equations, and (3) polar equations. Most graphing 
utilities are not programmed to graph a general equation. For instance, suppose you 
want to graph the hyperbola x2 − y2 = 1. To graph the hyperbola in function mode, 
you need two equations

y = √x2 − 1 and y = −√x2 − 1.

In parametric mode, you can represent the graph by x = sec t and y = tan t.

 For Further InFormatIon
To read about other methods for 
finding parametric equations,  
see the article “Finding Rational 
Parametric Curves of Relative 
Degree One or Two” by Dave 
Boyles in The College Mathematics 
Journal. To view this article,  
go to MathArticles.com.

1

−3

−2

−2

1

−1

−1 2
x

m = −4

m = −2

4
m2

y = 1 − 

m = 4

m = 2

m = 0

x = −

Rectangular equation: y = 1 − x2

Parametric equations:

2
m ,

y

Figure 10.24
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 Parametric equations for a Cycloid

Determine the curve traced by a point P on the circumference of a circle of radius a 
rolling along a straight line in a plane. Such a curve is called a cycloid.

Solution Let the parameter θ be the measure of the circle’s rotation, and let the 
point P = (x, y) begin at the origin. When θ = 0, P is at the origin. When θ = π, P is 
at a maximum point (πa, 2a). When θ = 2π, P is back on the x-axis at (2πa, 0). From 
Figure 10.25, you can see that ∠APC = 180° − θ. So,

 sin θ = sin(180° − θ) = sin(∠APC) =
AC
a

=
BD
a

 cos θ = −cos(180° − θ) = −cos(∠APC) =
AP
−a

which implies that AP = −a cos θ and BD = a sin θ.
Because the circle rolls along the x-axis, you know that OD = PD� = aθ. 

Furthermore, because BA = DC = a, you have 

 x = OD − BD = aθ − a sin θ
 y = BA + AP = a − a cos θ.

So, the parametric equations are

x = a(θ − sin θ) and y = a(1 − cos θ).

2a

a

π π3 aπaO
x

P = (x, y)

θ
A

B

C

D

Cycloid:
x = a(   − sin   )
y = a(1 − cos   )

θ θ
θy

(2  a, 0)

π(3  a, 2a)π(  a, 2a)

π(4  a, 0)

 Figure 10.25 

teChnology Some graphing utilities allow you to simulate the motion of an 
object that is moving in the plane or in space. If you have access to such a utility, use 
it to trace out the path of the cycloid shown in Figure 10.25.

The cycloid in Figure 10.25 has sharp corners called cusps at the values x = 2nπa. 
Notice that the derivatives x′(θ) and y′(θ) are both zero at the points for which θ = 2nπ.

x(θ) = a(θ − sin θ) y(θ) = a(1 − cos θ)
x′(θ) = a − a cos θ y′(θ) = a sin θ
x′(2nπ) = 0 y′(2nπ) = 0

Between these points, the cycloid is called smooth.

Definition of a Smooth Curve

A curve C represented by x = f (t) and y = g(t) on an interval I is called 
smooth when f′ and g′ are continuous on I and not simultaneously 0, except 
possibly at the endpoints of I. The curve C is called piecewise smooth when it 
is smooth on each subinterval of some partition of I.

 For Further InFormatIon
For more information on cycloids, 
see the article “The Geometry of 
Rolling Curves” by John Bloom 
and Lee Whitt in The American 
Mathematical Monthly. To view 
this article, go to MathArticles.com.

CYCLOIDS

Galileo first called attention to 
the cycloid, once recommending 
that it be used for the arches of 
bridges. Pascal once spent 
8 days attempting to solve many 
of the problems of cycloids, such 
as finding the area under one 
arch and finding the volume of 
the solid of revolution formed 
by revolving the curve about a 
line. The cycloid has so many 
interesting properties and has 
caused so many quarrels among 
mathematicians that it has been 
called “the Helen of geometry” 
and “the apple of discord.”
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The Tautochrone and Brachistochrone Problems
The curve described in Example 5 is related to one of the most famous pairs of problems 
in the history of calculus. The first problem (called the tautochrone problem) began 
with Galileo’s discovery that the time required to complete a full swing of a pendulum 
is approximately the same whether it makes a large  movement at high speed or a small 
movement at lower speed (see Figure 10.26). Late in his life, Galileo realized that he 
could use this principle to construct a clock. However, he was not able to conquer 
the mechanics of actual construction. Christian Huygens (1629–1695) was the first to 
design and construct a working model. In his work with pendulums, Huygens realized 
that a pendulum does not take exactly the same time to complete swings of varying 
lengths. (This does not affect a pendulum clock, because the length of the circular arc is 
kept constant by giving the pendulum a slight boost each time it passes its lowest point.) 
But, in studying the problem, Huygens discovered that a ball rolling back and forth on 
an inverted cycloid does complete each cycle in exactly the same time.

The second problem, which was posed by John Bernoulli in 1696, is called the 
 brachistochrone problem—in Greek, brachys means short and chronos means time. 
The problem was to determine the path down which a particle (such as a ball) will 
slide from point A to point B in the shortest time. Several mathematicians took up 
the challenge, and the following year the problem was solved by Newton, Leibniz, 
L’Hôpital, John Bernoulli, and James Bernoulli. As it turns out, the solution is not a 
straight line from A to B, but an inverted cycloid passing through the points A and B, 
as shown in Figure 10.27.

A

B

 An inverted cycloid is the path down which
 a ball will roll in the shortest time.
 Figure 10.27

The amazing part of the solution to the brachistochrone problem is that a particle 
starting at rest at any point C of the cycloid between A and B will take exactly the same 
time to reach B, as shown in Figure 10.28.

A

B

C

 A ball starting at point C takes the same time
 to reach point B as one that starts at point A.
 Figure 10.28

 For Further InFormatIon To see a proof of the famous brachistochrone 
problem, see the article “A New Minimization Proof for the Brachistochrone” by 
Gary Lawlor in The American Mathematical Monthly. To view this article, go to 
MathArticles.com. 

A B

C

The time required to complete a full 
swing of the pendulum when starting 
from point C is only approximately 
the same as the time required when 
starting from point A.
Figure 10.26

JAMES BERNOULLI (1654–1705)

James Bernoulli, also called 
Jacques, was the older brother 
of John. He was one of several 
accomplished mathematicians 
of the Swiss Bernoulli 
family. James’s mathematical 
accomplishments have given 
him a prominent place in the 
early development of calculus.
See LarsonCalculus.com to read 
more of this biography.

INTERFOTO/Alamy Stock Photo
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 10.2 Plane Curves and Parametric Equations 707

10.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Parametric equations What information does a 

set of parametric equations provide that is lacking in a 
rectangular equation for describing the motion of an object?

2.  Plane Curve Explain the process of sketching a plane 
curve given by parametric equations. What is meant by 
the orientation of the curve?

3.  think About It How can two sets of parametric 
equations represent the same graph but different curves?

4.  Adjusting a Domain Consider the parametric 
equations

 x = √t − 2 and y = 1
2t + 1, t ≥ 2.

  What is implied about the domain of the resulting 
rectangular equation?

 Using Parametric equations In exercises 
5–22, sketch the curve represented by the 
parametric equations (indicate the orientation  
of the curve), and write the corresponding 
rectangular equation by eliminating the parameter.

 5. x = 2t − 3, y = 3t + 1  6. x = 5 − 4t, y = 2 + 5t

 7. x = t + 1, y = t2  8. x = 2t2, y = t4 + 1

 9. x = t3, y =
t2

2
 10. x = t2 + t, y = t2 − t

11. x = √t, y = t − 5 12. x = 4√t, y = 8 − t

13. x = t − 3, y =
t

t − 3
 14. x = 1 +

1
t
, y = t − 1

15. x = 2t, y = ∣t − 2∣ 16. x = ∣t − 1∣, y = t + 2

17. x = et, y = e3t + 1 18. x = e−t, y = e2t − 1

19. x = 8 cos θ, y = 8 sin θ

20. x = 3 cos θ, y = 7 sin θ

21. x = sec θ, y = cos θ, 0 ≤ θ < π�2, π�2 < θ ≤ π

22. x = tan2 θ, y = sec2 θ

 Using Parametric equations In exercises 
23–34, use a graphing utility to graph the 
curve represented by the parametric equations 
(indicate the orientation of the curve). eliminate 
the parameter and write the  corresponding 
rectangular equation.

23. x = 6 sin 2θ 24. x = cos θ

 y = 4 cos 2θ  y = 2 sin 2θ

25. x = 4 + 2 cos θ 26. x = −2 + 3 cos θ

 y = −1 + sin θ  y = −5 + 3 sin θ

27. x = −3 + 4 cos θ 28. x = sec θ

 y = 2 + 5 sin θ  y = tan θ

29. x = 4 sec θ 30. x = cos3 θ

 y = 3 tan θ  y = sin3 θ

31. x = t3, y = 3 ln t 32. x = ln 2t, y = t2

33. x = e−t, y = e3t 34. x = e2t, y = et

Comparing Plane Curves In exercises 35–38, determine 
any differences between the curves of the parametric equations. 
are the graphs the same? are the orientations the same? are 
the curves smooth? explain.

35. (a) x = t, y = t2 (b) x = −t, y = t2

36. (a) x = t + 1, y = t3 (b) x = −t + 1, y = (−t)3

37. (a) x = t (b) x = cos θ

  y = 2t + 1  y = 2 cos θ + 1

 (c) x = e−t (d) x = et

  y = 2e−t + 1  y = 2et + 1

38. (a) x = 2 cos θ (b) x = √4t2 − 1�∣t∣
  y = 2 sin θ  y = 1�t

 (c) x = √t (d) x = −√4 − e2t

  y = √4 − t  y = et

eliminating a Parameter In exercises 39–42, eliminate 
the parameter and obtain the standard form of the rectangular 
equation.

39. Line through (x1, y1) and (x2, y2):
 x = x1 + t(x2 − x1), y = y1 + t(y2 − y1)
40. Circle: x = h + r cos θ, y = k + r sin θ

41. Ellipse: x = h + a cos θ, y = k + b sin θ

42. Hyperbola: x = h + a sec θ, y = k + b tan θ

Writing a Set of Parametric equations In exercises 
43–50, use the results of exercises 39–42 to find a set of 
parametric equations for the line or conic.

43. Line: passes through (0, 0) and (4, −7)
44. Line: passes through (−3, 1) and (1, 9)
45. Circle: center: (1, 1); radius: 2

46. Circle: center: (−1
2, −4); radius: 1

2

47. Ellipse: vertices: (−3, 0), (7, 0); foci: (−1, 0), (5, 0)
48. Ellipse: vertices: (−1, 8), (−1, −12); foci: (−1, 4), (−1, −8)
49. Hyperbola: vertices: (0, ±1); foci: (0, ±√5)
50. Hyperbola: vertices: (−2, 1), (0, 1); foci: (−3, 1), (1, 1)

 Finding Parametric equations In exercises 
51–54, find two different sets of parametric 
equations for the rectangular equation.

51. y = 6x − 5 52. y = 4�(x − 1)
53. y = x3 54. y = x2
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 Finding Parametric equations In exercises 
55–58, find a set of parametric equations for 
the rectangular equation that satisfies the given 
condition.

55. y = 2x − 5, t = 0 at the point (3, 1)
56. y = 4x + 1, t = −1 at the point (−2, −7)
57. y = x2, t = 4 at the point (4, 16)
58. y = 4 − x2, t = 1 at the point (1, 3)

graphing a Plane Curve In exercises 59–66, use a graphing 
utility to graph the curve represented by the parametric 
equations. Indicate the orientation of the curve. Identify any 
points at which the curve is not smooth.

59. Cycloid: x = 2(θ − sin θ), y = 2(1 − cos θ)
60. Cycloid: x = θ + sin θ, y = 1 − cos θ

61. Prolate cycloid: x = θ − 3
2 sin θ, y = 1 − 3

2 cos θ

62. Prolate cycloid: x = 2θ − 4 sin θ, y = 2 − 4 cos θ

63. Hypocycloid: x = 3 cos3 θ, y = 3 sin3 θ

64. Curtate cycloid: x = 2θ − sin θ, y = 2 − cos θ

65. Witch of Agnesi: x = 2 cot θ, y = 2 sin2 θ

66. Folium of Descartes: x = 3t�(1 + t3), y = 3t2�(1 + t3)

eXpLoRInG ConCeptS
67.  orientation Describe the orientation of the 

parametric equations x = t2 and y = t4 for −1 ≤ t ≤ 1.

68.  Conjecture Make a conjecture about the change 
in the graph of parametric equations when the sign of 
the parameter is changed. Explain your reasoning using 
examples to support your conjecture.

69.  think About It The following sets of parametric 
equations have the same graph. Does this contradict your 
conjecture from Exercise 68? Explain.

 x = cos θ, y = sin2 θ, 0 < θ < π

 x = cos(−θ), y = sin2(−θ), 0 < θ < π

 70.  hoW Do yoU See It? Which set of 
parametric equations is shown in the graph 
below? Explain your reasoning.

 (a) x = t (b) x = t2

 y = t2 y = t

 

x

y

1 2

1

2

3

4

5

3−1−2−3

 70.  

Matching In exercises 71–74, match the set of parametric 
equations with its graph. [the graphs are labeled (a), (b), (c), 
and (d).] explain your reasoning.

(a) 

x
1

2

2−1−2

−2

y  (b) 

x

y

−2

−4

−1−2−3 1 2 3

1
2

4

(c) 

x
1

1

2

2

3

3−1−2

−3

−3

y  (d) 

x
−2

−2
−3
−4

2

2

3

3

4

y

71. Lissajous curve: x = 4 cos θ, y = 2 sin 2θ

72. Evolute of ellipse: x = cos3 θ, y = 2 sin3 θ

73. Involute of circle: x = cos θ + θ sin θ, y = sin θ − θ cos θ

74. Serpentine curve: x = cot θ,  y = 4 sin θ cos θ

75.  Curtate Cycloid A wheel of radius a rolls along a line 
without slipping. The curve traced by a point P that is b 
units from the center (b < a) is called a curtate cycloid (see 
figure). Use the angle θ to find a set of parametric equations 
for this curve.

2a

(0, a − b)

b

a

P

θ

(  a, a + b)π

x

y  

1

1

3

3

4

4
x

θ
(x, y)

y

 Figure for 75 Figure for 76

76.  epicycloid A circle of radius 1 rolls around the outside 
of a circle of radius 2 without slipping. The curve traced by 
a point on the circumference of the smaller circle is called 
an epicycloid (see figure). Use the angle θ to find a set of 
parametric equations for this curve.

true or False? In exercises 77–79, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

77.  The graph of the parametric equations x = t2 and y = t2 is the 
line y = x.

78.  If y is a function of t and x is a function of t, then y is a function 
of x.

79.  The curve represented by the parametric equations x = t and 
y = cos t can be written as an equation of the form y = f (x).
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80.  translation of a Plane Curve Consider the parametric 
equations x = 8 cos t and y = 8 sin t.

 (a)  Describe the curve represented by the parametric equations.

 (b)  How does the curve represented by the parametric equations

x = 8 cos t + 3 and y = 8 sin t + 6

  compare to the curve described in part (a)?

 (c)  How does the original curve change when cosine and sine 
are interchanged?

Projectile Motion In exercises 81 and 82, consider a 
projectile launched at a height h feet above the ground and 
at an angle θ with the horizontal. When the initial velocity is 
v0 feet per second, the path of the projectile is modeled by the 
parametric equations

x = (v0 cos θ)t

and

y = h + (v0 sin θ)t − 16t2.

82.  A rectangular equation for the path of a projectile is 
y = 5 + x − 0.005x2.

 (a)  Eliminate the parameter t from the position function for 
the motion of a projectile to show that the rectangular 
equation is

  y = −
16 sec2 θ

v0
2 x2 + (tan θ)x + h.

 (b)  Use the result of part (a) to find h, v0, and θ. Find the 
parametric equations of the path.

 (c)  Use a graphing utility to graph the rectangular equation 
for the path of the projectile. Confirm your answer in part 
(b) by sketching the curve represented by the parametric 
equations.

 (d)  Use a graphing utility to approximate the maximum height 
of the projectile and its range.

The center field fence in a ballpark is 10 feet high and 
400 feet from home plate.
The ball is hit 3 feet
above the ground. It
leaves the bat at an 
angle of θ degrees with
the horizontal at a speed
of 100 miles per hour.

(a)  Write a set of
parametric equations
for the path of the ball.

(b)  Use a graphing utility to graph the path of the ball when 
θ = 15°. Is the hit a home run?

(c)  Use a graphing utility to graph the path of the ball when 
θ = 23°. Is the hit a home run?

(d)  Find the minimum angle at which the ball must leave the 
bat in order for the hit to be a home run.

81. Baseball

In Greek, the word cycloid means wheel, the word hypocycloid 
means under the wheel, and the word epicycloid means upon the 
wheel. Match the hypocycloid or epicycloid with its graph. [The 
graphs are labeled (a), (b), (c), (d), (e), and (f).]

Hypocycloid, H(A, B)
The path traced by a fixed point on a circle of radius B as it rolls 
around the inside of a circle of radius A

x = (A − B) cos t + B cos(A − B
B )t

y = (A − B) sin t − B sin(A − B
B )t

Epicycloid, E(A, B)
The path traced by a fixed point on a circle of radius B as it rolls 
around the outside of a circle of radius A

x = (A + B) cos t − B cos(A + B
B )t

y = (A + B) sin t − B sin(A + B
B )t

 I. H(8, 3) II. E(8, 3) III. H(8, 7)
IV. E(24, 3) V. H(24, 7) VI. E(24, 7)
(a) 

x

y  (b) 

x

y

(c) 

x

y  (d) 

x

y

(e) 

x

y  (f ) 

x

y

Exercises based on “Mathematical Discovery via Computer 
Graphics: Hypocycloids and Epicycloids” by Florence S. Gordon 
and Sheldon P. Gordon, College Mathematics Journal, November 
1984, p. 441. Used by permission of the authors.

Cycloids

Rob Friedman/E+/Getty Images
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10.3 Parametric Equations and Calculus

 Find the slope of a tangent line to a curve given by a set of parametric equations.
 Find the arc length of a curve given by a set of parametric equations.
 Find the area of a surface of revolution (parametric form).

Slope and Tangent Lines
Now that you can represent a graph in the plane by a set of parametric equations, it 
is natural to ask how to use calculus to study plane curves. Consider the projectile 
represented by the parametric equations

x = 24√2t and y = −16t2 + 24√2t

as shown in Figure 10.29. From the discussion at the beginning of Section 10.2, you 
know that these equations enable you to locate the position of the projectile at a given 
time. You also know that the object is initially projected at an angle of 45°, or a slope 
of m = tan 45° = 1. But how can you find the slope at some other time t? The next 
theorem answers this question by giving a formula for the slope of the tangent line as 
a function of t.

THEOREM 10.7 Parametric Form of the Derivative

If a smooth curve C is given by the equations

x = f (t) and y = g(t)

then the slope of C at (x, y) is

dy
dx

=
dy�dt
dx�dt

, 
dx
dt

≠ 0.

Proof In Figure 10.30, consider ∆t > 0 and let

∆y = g(t + ∆t) − g(t) and ∆x = f (t + ∆t) − f (t).

Because ∆x → 0 as ∆t → 0, you can write

 
dy
dx

= lim
∆x→0

 
∆y
∆x

 = lim
∆t→0

 
g(t + ∆t) − g(t)
f (t + ∆t) − f (t) .

Dividing both the numerator and denominator by ∆t, you can use the differentiability 
of f  and g to conclude that

 
dy
dx

= lim
∆t→0

 
[g(t + ∆t) − g(t)]�∆t
[ f (t + ∆t) − f (t)]�∆t

 =
 lim
∆t→0

 
g(t + ∆t) − g(t)

∆t
 

lim
∆t→0

 
f (t + ∆t) − f (t)

∆t

 =
g′(t)
f′(t)

 =
dy�dt
dx�dt

. 

30

20

30

10

10

20
x

θ

x = 24   2t
y = −16t2 + 24   2t

y

45°

At time t, the angle of elevation of the 
projectile is θ.
Figure 10.29

x

Δy

Δx

( f(t), g(t))

( f(t + Δt), g(t + Δt))

y

The slope of the secant line 
through the points ( f (t), g(t)) and 
( f (t + ∆t), g(t + ∆t)) is ∆y�∆x.
Figure 10.30
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10.3 Parametric Equations and Calculus 711

 Differentiation and Parametric Form

Find dy�dx for the curve given by x = sin t and y = cos t.

Solution

 
dy
dx

=
dy�dt
dx�dt

 =
−sin t
 cos t

 = −tan t 

Because dy�dx is a function of t, you can use Theorem 10.7 repeatedly to find 
higher-order derivatives. For instance,

 
d2y
dx2 =

d
dx[

dy
dx] =

d
dt[

dy
dx]

dx�dt
 Second derivative

 
d3y
dx3 =

d
dx[

d2y
dx2] =

d
dt[

d2y
dx2]

dx�dt
. Third derivative

 Finding Slope and Concavity

For the curve given by

x = √t and y =
1
4

(t2 − 4), t ≥ 0

find the slope and concavity at the point (2, 3).

Solution Because

dy
dx

=
dy�dt
dx�dt

=
(1�2)t

(1�2)t−1�2 = t3�2 Parametric form of first derivative

you can find the second derivative to be

d2y
dx2 =

d
dt[

dy
dx]

dx�dt
=

d
dt

[t3�2]

dx�dt
=

(3�2)t1�2

(1�2)t−1�2 = 3t. 
Parametric form of second 
derivative

At (x, y) = (2, 3), it follows that t = 4, and the slope is

dy
dx

= (4)3�2 = 8.

Moreover, when t = 4, the second derivative is

d2y
dx2 = 3(4) = 12 > 0

and you can conclude that the graph is concave upward at (2, 3), as shown in 
Figure 10.31. 

Because the parametric equations x = f (t) and y = g(t) need not define y as a 
function of x, it is possible for a plane curve to loop around and cross itself. At such 
points, the curve may have more than one tangent line, as shown in the next example.

x =     t

y = 1
4

(t2 − 4)

x
1

1

2

2

3

−1

−1

(2, 3)
t = 4
m = 8

y

The graph is concave upward at (2, 3) 
when t = 4.
Figure 10.31

Exploration
The curve traced out in 
Example 1 is a circle. Use 
the formula

dy
dx

= −tan t

to find the slopes at the 
points (1, 0) and (0, 1).
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712 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

 A Curve with Two Tangent Lines at a Point

See LarsonCalculus.com for an interactive version of this type of example.

The prolate cycloid given by

x = 2t − π sin t and y = 2 − π cos t

crosses itself at the point (0, 2), as shown in Figure 10.32. Find the equations of both 
tangent lines at this point.

Solution Because x = 0 and y = 2 when t = ±π�2, and

dy
dx

=
dy�dt
dx�dt

=
π sin t

2 − π cos t

you have dy�dx = −π�2 when t = −π�2 and dy�dx = π�2 when t = π�2. So, the 
two tangent lines at (0, 2) are

y − 2 = −
π
2

x Tangent line when t = −
π
2

and

y − 2 =
π
2

x. Tangent line when  t =
π
2
 

If dy�dt = 0 and dx�dt ≠ 0 when t = t0, then the curve represented by x = f (t) 
and y = g(t) has a horizontal tangent at ( f (t0), g(t0)). For instance, in Example 3, the 
given curve has a horizontal tangent at the point (0, 2 − π) (when t = 0). Similarly, 
if dx�dt = 0 and dy�dt ≠ 0 when t = t0, then the curve represented by x = f (t) and 
y = g(t) has a vertical tangent at ( f (t0), g(t0)). If dy�dt and dx�dt are simultaneously 0, 
then no conclusion can be drawn about tangent lines.

Arc Length
You have seen how parametric equations can be used to describe the path of a particle 
moving in the plane. You will now develop a formula for determining the distance 
traveled by the particle along its path.

Recall from Section 7.4 that the formula for the arc length of a curve C given by 
y = h(x) over the interval [x0, x1] is

 s = ∫x1

x0

 √1 + [h′(x)]2 dx

 = ∫x1

x0

 √1 + (dy
dx)

2

 dx.

If C is represented by the parametric equations x = f (t) and y = g(t), a ≤ t ≤ b, and 
if dx�dt = f′(t) > 0, then

 s = ∫x1

x0

 √1 + (dy
dx)

2

 dx

 = ∫x1

x0

 √1 + (dy�dt
dx�dt)

2

 dx

 = ∫b

a

 √(dx�dt)2 + (dy�dt)2

(dx�dt)2  
dx
dt

 dt

 = ∫b

a

 √(dx
dt)

2

+ (dy
dt)

2

 dt

 = ∫b

a

 √[ f′(t)]2 + [g′(t)]2 dt.

y

x = 2t −    sin t
π
π

π

π

x
π

−2

2

4

6

π−

(0, 2)

Tangent line (t =   /2)

Tangent line (t = −   /2)

y = 2 −    cos t

This prolate cycloid has two tangent 
lines at the point (0, 2).
Figure 10.32
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10.3 Parametric Equations and Calculus 713

THEOREM 10.8 Arc Length in Parametric Form

If a smooth curve C is given by x = f (t) and y = g(t) such that C does not 
intersect itself on the interval a ≤ t ≤ b (except possibly at the endpoints), 
then the arc length of C over the interval is given by

s = ∫b

a

 √(dx
dt)

2

+ (dy
dt)

2

 dt = ∫b

a

 √[ f′(t)]2 + [g′(t)]2 dt.

In the preceding section, you saw that if a circle rolls along a line, then a point 
on its circumference will trace a path called a cycloid. If the circle rolls around the 
circumference of another circle, then the path of the point is an epicycloid. The next 
example shows how to find the arc length of an epicycloid.

 Finding Arc Length

A circle of radius 1 rolls around the circumference of a larger circle of radius 4, as 
shown in Figure 10.33. The epicycloid traced by a point on the circumference of the 
smaller circle is given by

x = 5 cos t − cos 5t and y = 5 sin t − sin 5t.

Find the distance traveled by the point in one complete trip about the larger circle.

Solution Before applying Theorem 10.8, note in Figure 10.33 that the curve has 
sharp points when t = 0 and t = π�2. Between these two points, dx�dt and dy�dt are 
not simultaneously 0. So, the portion of the curve generated from t = 0 to t = π�2 is 
smooth. To find the total distance traveled by the point, you can find the arc length of 
that portion lying in the first quadrant and multiply by 4.

 s = 4∫π�2

0
 √(dx

dt)
2

+ (dy
dt)

2

 dt Parametric form for arc length

 = 4∫π�2

0
 √(−5 sin t + 5 sin 5t)2 + (5 cos t − 5 cos 5t)2 dt

 = 20∫π�2

0
 √2 − 2 sin t sin 5t − 2 cos t cos 5t dt

 = 20∫π�2

0
 √2 − 2 cos 4t dt Difference formula for cosine

 = 20∫π�2

0
 √4 sin2 2t dt Double-angle formula

 = 40∫π�2

0
 sin 2t dt

 = −20[cos 2t]
π�2

0

 = 40

For the epicycloid shown in Figure 10.33, an arc length of 40 seems about right because 
the circumference of a circle of radius 6 is 

2πr = 12π ≈ 37.7. 

REMARK When applying the arc length formula to a curve, be sure that the curve 
is traced out only once on the interval of integration. For instance, the circle given by 
x = cos t and y = sin t is traced out once on the interval 0 ≤ t ≤ 2π  but is traced out 
twice on the interval 0 ≤ t ≤ 4π.

2

2

−2
−2−6

−6

x

nit

ea
se

s

cr

x = 5 cos t − cos 5t
y = 5 sin t − sin 5t

y

An epicycloid is traced by a point on 
the smaller circle as it rolls around the 
larger circle.
Figure 10.33

ARCH OF A CYCLOID

The arc length of an arch of a 
cycloid was first calculated in 
1658 by British architect and 
mathematician Christopher 
Wren, famous for rebuilding 
many buildings and churches 
in London, including St. Paul’s 
Cathedral.
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714 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

Area of a Surface of Revolution
You can use the formula for the area of a surface of revolution in rectangular form to 
develop a formula for surface area in parametric form.

THEOREM 10.9 Area of a Surface of Revolution

If a smooth curve C given by x = f (t) and y = g(t) does not cross itself on an 
interval a ≤ t ≤ b, then the area S of the surface of revolution formed by 
revolving C about the coordinate axes is given by the following.

1. S = 2π∫b

a

 g(t)√(dx
dt)

2

+ (dy
dt)

2

 dt Revolution about the x-axis: g(t) ≥ 0

2. S = 2π∫b

a

 f (t)√(dx
dt)

2

+ (dy
dt)

2

 dt Revolution about the y-axis: f (t) ≥ 0

These formulas may be easier to remember if you think of the differential of arc 
length as

ds =√(dx
dt)

2

+ (dy
dt)

2

 dt. Differential of arc length

Then the formulas in Theorem 10.9 can be written as follows.

1. S = 2π∫b

a

 g(t) ds   2. S = 2π∫b

a

 f (t) ds

 Finding the Area of a Surface of Revolution

Let C be the arc of the circle x2 + y2 = 9 from (3, 0) to 

(3
2

, 
3√3

2 )
as shown in Figure 10.34. Find the area of the surface formed by revolving C about 
the x-axis.

Solution You can represent C parametrically by the equations

x = 3 cos t and y = 3 sin t, 0 ≤ t ≤ π�3.

(Note that you can determine the interval for t by observing that t = 0 when x = 3 and 
t = π�3 when x = 3�2.) On this interval, C is smooth and y is nonnegative, and you 
can apply Theorem 10.9 to obtain a surface area of

 S = 2π∫π�3

0
 (3 sin t)√(−3 sin t)2 + (3 cos t)2 dt 

Apply formula for area of 
a surface of revolution.

 = 6π∫π�3

0
 sin t√9(sin2 t + cos2 t) dt

 = 6π∫π�3

0
 3 sin t dt Trigonometric identity

 = −18π[cos t]
π�3

0

 = −18π(1
2

− 1)
 = 9π. 

x

−3

−2

−1

−1

1

2

3

41

C

(3, 0)

3
2

3
2

 , )) 3
y

The surface of revolution has a surface 
area of 9π.
Figure 10.34
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 10.3 Parametric Equations and Calculus 715

10.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Parametric Form of the Derivative What does 

the parametric form of the derivative represent?

2.  Tangent Lines Under what circumstances can a 
graph that represents a set of parametric equations have 
more than one tangent line at a given point?

3.  Tangent Lines Consider a curve represented by the 
parametric equations x = f (t) and y = g(t). When does the 
graph have horizontal tangent lines? Vertical tangent lines?

4.  Arc Length Why does the arc length formula require 
that the curve not intersect itself on an interval, except 
possibly at the endpoints?

 Finding a Derivative In Exercises 5–8, find 
dy�dx.

 5. x = t2, y = 7 − 6t  6. x = 3√t, y = 4 − t

 7. x = sin2 θ, y = cos2 θ  8. x = 2eθ, y = e−θ�2

 Finding Slope and Concavity In Exercises 
9–18, find dy�dx and d2y�dx2, and find the slope 
and concavity (if possible) at the given value of the 
parameter.

 Parametric Equations Parameter

 9. x = 4t, y = 3t − 2 t = 3

10. x = √t, y = 3t − 1 t = 1

11. x = t + 1, y = t2 + 3t t = −2

12. x = t2 + 5t + 4, y = 4t t = 0

13. x = 4 cos θ, y = 4 sin θ θ =
π
4

14. x = cos θ, y = 3 sin θ θ = 0

15. x = 2 + sec θ, y = 1 + 2 tan θ θ = −
π
3

16. x = √t, y = √t − 1 t = 5

17. x = cos3 θ, y = sin3 θ θ =
π
4

18. x = θ − sin θ, y = 1 − cos θ θ = π

 Finding Equations of Tangent Lines In 
Exercises 19–22, find an equation of the tangent 
line to the curve at each given point.

19. x = 2 cot θ, y = 2 sin2 θ, (−
2

√3
, 

3
2), (0, 2), (2√3, 

1
2)

20. x = 2 − 3 cos θ, y = 3 + 2 sin θ,

 (−1, 3), (2, 5), (4 + 3√3
2

, 2)
21. x = t2 − 4, y = t2 − 2t, (0, 0), (−3, −1), (−3, 3)

22. x = t4 + 2, y = t3 + t, (2, 0), (3, −2), (18, 10)

Finding an Equation of a Tangent Line In Exercises 
23–26, (a) use a graphing utility to graph the curve represented 
by the parametric equations, (b) use a graphing utility to find 
dx�dt, dy�dt, and dy�dx at the given value of the parameter,  
(c) find an equation of the tangent line to the curve at the given 
value of the parameter, and (d) use a graphing  utility to graph 
the curve and the tangent line from part (c).

 Parametric Equations Parameter

23. x = 6t,  y = 1 − 4t2 t = −
1
2

24. x = t − 2, y =
1
t

+ 3 t = 1

25. x = t2 − t + 2, y = t3 − 3t t = −1

26. x = 3t − t2, y = 2t3�2 t =
1
4

 Finding Equations of Tangent Lines In 
Exercises 27–30, find the equations of the tangent 
lines at the point where the curve crosses itself.

27. x = 2 sin 2t, y = 3 sin t 

28. x = 2 − π cos t, y = 2t − π sin t

29. x = t2 − t, y = t3 − 3t − 1

30. x = t3 − 6t, y = t2

Horizontal and Vertical Tangency In Exercises 31 and 
32, find all points (if any) of horizontal and vertical tangency 
to the curve on the given interval.

31. x = cos θ + θ sin θ 32. x = 2θ

 y = sin θ − θ cos θ y = 2(1 − cos θ)
 −2π ≤ θ ≤ 2π  0 ≤ θ ≤ 2π

 

x

y

−2−6−8 4 6 8

−4

−8

2
4

8

  y

x
−2 2 4 6 8 10 12 14
−2

2

4

6

 Horizontal and Vertical Tangency In 
Exercises 33–42, find all points (if any) of horizontal 
and vertical tangency to the curve. Use a graphing 
utility to confirm your results.

33. x = 9 − t, y = −t2 34. x = t + 1, y = t2 + 3t

35. x = t + 4, y = t3 − 12t + 6

36. x = t2 − t + 2, y = t3 − 3t

37. x = 7 cos θ, y = 7 sin θ 38. x = cos θ, y = 2 sin 2θ
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716 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

39. x = 5 + 3 cos θ, y = −2 + sin θ

40. x = sec θ, y = tan θ

41. x = 4 cos2 θ, y = 2 sin θ 42. x = cos2 θ, y = cos θ

 Determining Concavity In Exercises 43–48, 
determine the open t-intervals on which the curve 
is concave downward or concave upward.

43. x = 3t 2, y = t3 − t  44. x = 2 + t2, y = t2 + t3

45. x = 2t + ln t, y = 2t − ln t

46. x = t2, y = ln t

47. x = sin t, y = cos t, 0 < t < π

48. x = 4 cos t, y = 2 sin t, 0 < t < 2π

 Arc Length In Exercises 49–54, find the arc 
length of the curve on the given interval.

 Parametric Equations Interval

49. x = 3t + 5, y = 7 − 2t −1 ≤ t ≤ 3

50. x = 6t2, y = 2t3 1 ≤ t ≤ 4

51. x = e−t cos t, y = e−t sin t 0 ≤ t ≤ π
2

52. x = arcsin t, y = ln√1 − t2 0 ≤ t ≤ 1
2

53. x = √t, y = 3t − 1 0 ≤ t ≤ 1

54. x = t, y =
t5

10
+

1
6t3 1 ≤ t ≤ 2

Arc Length In Exercises 55–58, find the arc length of the 
curve on the interval [0, 2π].

55. Hypocycloid perimeter: x = a cos3 θ, y = a sin3 θ

56. Involute of a circle: x = cos θ + θ sin θ

  y = sin θ − θ cos θ

57. Cycloid arch: x = a(θ − sin θ), y = a(1 − cos θ)
58. Nephroid perimeter: x = a(3 cos t − cos 3t)
  y = a(3 sin t − sin 3t)

59.  Path of a Projectile The path of a projectile is modeled 
by the parametric equations

 x = (90 cos 30°)t and y = (90 sin 30°)t − 16t2

  where x and y are measured in feet.

 (a) Use a graphing utility to graph the path of the projectile.

 (b)  Use a graphing utility to approximate the range of the 
projectile.

 (c)  Use the integration capabilities of a graphing utility to 
approximate the arc length of the path. Compare this result 
with the range of the projectile.

60.  Path of a Projectile When the projectile in Exercise 59 
is launched at an angle θ with the  horizontal, its parametric 
equations are x = (90 cos θ)t and y = (90 sin θ)t − 16t2. 
Find the angle that maximizes the range of the projectile. Use a 
graphing utility to find the angle that maximizes the arc length 
of the trajectory.

61.  Folium of Descartes Consider the parametric equations

 x =
4t

1 + t3 and y =
4t2

1 + t3.

 (a)  Use a graphing utility to graph the curve represented by 
the parametric equations.

 (b)  Use a graphing utility to find the points of horizontal 
 tangency to the curve.

 (c)  Use the integration capabilities of a graphing utility to 
approximate the arc length of the closed loop. (Hint: Use 
symmetry and integrate over the interval 0 ≤ t ≤ 1.)

62.  Witch of Agnesi Consider the parametric equations

 x = 4 cot θ and y = 4 sin2 θ, −
π
2

≤ θ ≤ π
2

.

 (a)  Use a graphing utility to graph the curve represented by 
the parametric equations.

 (b)  Use a graphing utility to find the points of horizontal 
 tangency to the curve.

 (c)  Use the integration capabilities of a graphing utility 
to approximate the arc length over the interval 
π�4 ≤ θ ≤ π�2.

 Surface Area In Exercises 63–68, find the area 
of the surface generated by revolving the curve 
about each given axis.

63. x = 2t, y = 3t, 0 ≤ t ≤ 3

 (a) x-axis

 (b) y-axis

64. x = t, y = 4 − 2t, 0 ≤ t ≤ 2

 (a) x-axis

 (b) y-axis

65. x = 5 cos θ, y = 5 sin θ, 0 ≤ θ ≤ π
2

, y-axis

66. x = 1
3t3, y = t + 1, 1 ≤ t ≤ 2, y-axis

67. x = a cos3 θ, y = a sin3 θ, 0 ≤ θ ≤ π, x-axis

68. x = a cos θ, y = b sin θ, 0 ≤ θ ≤ 2π

 (a) x-axis

 (b) y-axis

Surface Area In Exercises 69–72, write an integral that 
represents the area of the surface generated by revolving the 
curve about the x-axis. Use a graphing utility to approximate 
the integral.

 Parametric Equations Interval

69. x = t3, y = t + 2 0 ≤ t ≤ 2

70. x = t2, y = √t 1 ≤ t ≤ 3

71. x = cos2 θ, y = cos θ 0 ≤ θ ≤ π
2

72. x = θ + sin θ, y = θ + cos θ 0 ≤ θ ≤ π
2
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eXpLoRInG ConCeptS
73.  Writing

 (a)  Use a graphing utility to graph each set of parametric 
equations.

  x = t − sin t, y = 1 − cos t, 0 ≤ t ≤ 2π

  x = 2t − sin(2t), y = 1 − cos(2t), 0 ≤ t ≤ π

 (b)  Compare the graphs of the two sets of parametric 
equations in part (a). When the curve represents the 
motion of a particle and t is time, what can you infer 
about the average speeds of the particle on the paths 
represented by the two sets of parametric equations?

 (c)  Without graphing the curve, determine the time 
required for a particle to traverse the same path as in 
parts (a) and (b) when the path is modeled by

  x = 1
2t − sin(1

2t) and y = 1 − cos(1
2t).

74. Writing

 (a)  Each set of parametric equations represents the motion 
of a particle. Use a graphing utility to graph each set.

   First Particle: x = 3 cos t, y = 4 sin t, 0 ≤ t ≤ 2π

  Second Particle:  x = 4 sin t, y = 3 cos t, 
0 ≤ t ≤ 2π

 (b) Determine the number of points of intersection.

 (c)  Will the particles ever be at the same place at the 
same time? If so, identify the point(s).

75.  Sketching a Graph Find a set of parametric 
equations x = f (t) and y = g(t) such that dx�dt < 0 and 
dy�dt < 0 for all real numbers t. Then sketch a graph of 
the curve.

 76.  HOW DO YOU SEE IT? Using the graph 
of f, (a) determine whether dy�dt is positive 
or negative given that dx�dt is negative and 
(b) determine whether dx�dt is positive or 
negative given that dy�dt is positive. Explain 
your reasoning.

(i) 

x
1 2 3 4

4

2

1 f

y  (ii) 

x
−3 −2 −1 1 2 3

6
5
4
3
2

f

y

 76.  

77.  Integration by Substitution Use integration by 
substitution to show that if y is a continuous function of x on 
the interval a ≤ x ≤ b, where x = f (t) and y = g(t), then

 ∫b

a

 y dx = ∫t2

t1

 g(t) f ′(t) dt

  where f (t1) = a, f (t2) = b, and both g and f ′ are continuous 
on [t1, t2].

78.  Surface Area A portion of a sphere of radius r is removed 
by cutting out a circular cone with its vertex at the center of 
the sphere. The vertex of the cone forms an angle of 2θ. Find 
the surface area removed from the sphere.

Area In Exercises 79 and 80, find the area of the region. (Use 
the result of Exercise 77.)

79. x = 2 sin2 θ 80. x = 2 cot θ

 y = 2 sin2 θ tan θ  y = 2 sin2 θ

 0 ≤ θ <
π
2

  0 < θ < π

 

x

1

1 2

2

−1
−1

−2

−2

y   

x
−1

−1
−2

−2

21

1

y

Areas of Simple Closed Curves In Exercises 81–86, 
use a  computer algebra system and the result of Exercise 77 
to match the closed curve with its area. (These exercises were 
based on “The Surveyor’s Area Formula” by Bart Braden, 
College Mathematics Journal, September 1986, pp. 335–337, by 
permission of the author.)

(a) 8
3 ab (b) 3

8πa2

(c) 2πa2 (d) πab

(e) 2πab (f ) 6πa2

81. Ellipse: (0 ≤ t ≤ 2π) 82. Astroid: (0 ≤ t ≤ 2π)
 x = b cos t  x = a cos3 t

 y = a sin t  y = a sin3 t

 

x

a

b

y   

x

a

a

y

83. Cardioid: (0 ≤ t ≤ 2π) 84. Deltoid: (0 ≤ t ≤ 2π)
 x = 2a cos t − a cos 2t  x = 2a cos t + a cos 2t

 y = 2a sin t − a sin 2t  y = 2a sin t − a sin 2t

 

x
a

y   

x

a

y
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718 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

85. Hourglass: (0 ≤ t ≤ 2π) 86. Teardrop: (0 ≤ t ≤ 2π)
 x = a sin 2t  x = 2a cos t − a sin 2t

 y = b sin t  y = b sin t

 

x

b

a

y   

x

b

aa

y

Centroid In Exercises 87 and 88, find the centroid of the 
region bounded by the graph of the parametric equations and 
the coordinate axes. (Use the result of Exercise 77.)

87. x = √t, y = 4 − t

88. x = √4 − t, y = √t

Volume In Exercises 89 and 90, find the volume of the 
solid formed by revolving the region bounded by the graph of 
the parametric equations about the x-axis. (Use the result of 
Exercise 77.)

89. x = 6 cos θ, y = 6 sin θ

90. x = cos θ, y = 3 sin θ, a > 0

91. Cycloid Use the parametric equations

 x = a(θ − sin θ) and y = a(1 − cos θ), a > 0

 to answer the following.

 (a) Find dy�dx and d2y�dx2.

 (b)  Find the equation of the tangent line at the point where 
θ = π�6.

 (c) Find all points of horizontal tangency.

 (d)  Determine where the curve is concave upward or concave 
downward.

 (e) Find the length of one arc of the curve.

92. Using Parametric Equations Use the parametric equations

 x = t2√3 and y = 3t −
1
3

t3

 to answer the following.

 (a)  Use a graphing utility to graph the curve on the interval 
−3 ≤ t ≤ 3.

 (b) Find dy�dx and d2y�dx2.

 (c) Find the equation of the tangent line at the point (√3, 83).
 (d) Find the length of the curve on the interval −3 ≤ t ≤ 3.

 (e)  Find the area of the surface generated by revolving the 
curve about the x-axis.

93.  Involute of a Circle The involute of a circle is described 
by the endpoint P of a string that is held taut as it is unwound 
from a spool that does not turn (see figure). Show that a 
parametric representation of the involute is

 x = r(cos θ + θ sin θ) and y = r(sin θ − θ cos θ).

xr

r

P

θ

y

spool

  

1

 Figure for 93 Figure for 94

 94.  Involute of a Circle The figure shows a piece of string 
tied to a circle with a radius of one unit. The string is just long 
enough to reach the opposite side of the circle. Find the area 
that is covered when the string is unwound counterclockwise.

 95. Using Parametric Equations

  (a) Use a graphing utility to graph the curve given by

   x =
1 − t2

1 + t2 and y =
2t

1 + t2, −20 ≤ t ≤ 20.

  (b) Describe the graph and confirm your result analytically.

  (c)  Discuss the speed at which the curve is traced as t 
in creases from −20 to 20.

 96.  Tractrix A person moves from the origin along the positive  
y-axis pulling a weight at the end of a 12-meter rope. 
Initially, the weight is located at the point (12, 0).

  (a)  In Exercise 61 of Section 8.4, it was shown that the path 
of the weight is modeled by the rectangular equation

   y = −12 ln 
12 − √144 − x2

x
− √144 − x2

    where 0 < x ≤ 12. Use a graphing utility to graph the 
rectangular equation.

  (b) Use a graphing utility to graph the parametric equations

   y = 12 sech 
t

12
 and y = t − 12 tanh 

t
12

    where t ≥ 0. How does this graph compare with the 
graph in part (a)? Which graph (if either) do you think is 
a better representation of the path?

  (c)  Use the parametric equations for the tractrix to verify that 
the distance from the y-intercept of the tangent line to the 
point of tangency is independent of the location of the 
point of tangency.

True or False? In Exercises 97–100, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

 97. If x = f (t) and y = g(t), then 
d2y
dx2 =

g″(t)
f ″(t).

 98.  The curve given by x = t3 and y = t2 has a horizontal 
tangent at the origin because dy�dt = 0 when t = 0.

 99.  The curve given by x = x1 + t(x2 − x1) and 
y = y1 + t(y2 − y1), y1 ≠ y2, has at least one horizontal 
asymptote.

100.  The curve given by x = h + a cos θ and y = k + b sin θ 
has two horizontal asymptotes and two vertical asymptotes.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



10.4 Polar Coordinates and Polar Graphs 719

10.4 Polar coordinates and Polar Graphs

 Understand the polar coordinate system.
 Rewrite rectangular coordinates and equations in polar form and vice versa.
 Sketch the graph of an equation given in polar form.
 Find the slope of a tangent line to a polar graph.
 Identify several types of special polar graphs.

Polar Coordinates
So far, you have been representing graphs as collections of points (x, y) on the 
rectangular coordinate system. The corresponding equations for these graphs have been 
in either rectangular or parametric form. In this section, you will study a coordinate 
 system called the polar coordinate system.

To form the polar coordinate system in the plane, fix a point O, called the pole 
(or origin), and construct from O an initial ray called the polar axis, as shown in 
Figure 10.35. Then each point P in the plane can be assigned polar coordinates (r, θ), 
as follows.

 r = directed distance from O to P

 θ = directed angle, counterclockwise from polar axis to segment OP

Figure 10.36 shows three points on the polar coordinate system. Notice that in this 
system, it is convenient to locate points with respect to a grid of concentric circles 
intersected by radial lines through the pole.

0π

2
π3

=
3

2, ))

1 2 3

π
2

π

3
π

θ  

2 3
0π

2
π3

= −
6

π
2

πθ

3, − )) 6
π

 

2 3
0π

2
π3

= 
6

11

π
2

π

6
11π

θ

3,  ))
 (a) (b) (c)

 Figure 10.36

With rectangular coordinates, each point (x, y) has a unique representation. This is 
not true with polar coordinates. For instance, the coordinates

(r, θ) and (r, 2π + θ)

represent the same point [see parts (b) and (c) in Figure 10.36]. Also, because r is a 
directed distance, the coordinates 

(r, θ) and (−r, θ + π)

represent the same point. In general, the point (r, θ) can be written as

(r, θ) = (r, θ + 2nπ)

or

(r, θ) = (−r, θ + (2n + 1)π)

where n is any integer. Moreover, the pole is represented by (0, θ), where θ is any angle.

O

= directed angle
Polar
axis

P = (r,   )

r =
 dire

cte
d dista

nce

θ

θ

Polar coordinates
Figure 10.35

POLAR COORDINATES

The mathematician credited with 
first using polar coordinates was 
James Bernoulli, who introduced 
them in 1691. However, there is 
some evidence that it may have 
been Isaac Newton who first 
used them.
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720 chapter 10 Conics, Parametric Equations, and Polar Coordinates

Coordinate Conversion
To establish the relationship between polar and rectangular coordinates, let the 
polar axis coincide with the positive x-axis and the pole with the origin, as shown in 
Figure 10.37. Because (x, y) lies on a circle of radius r, it follows that

r2 = x2 + y2.

Moreover, for r > 0, the definitions of the trigonometric functions imply that

tan θ =
y
x
, cos θ =

x
r
, and sin θ =

y
r
.

You can show that the same relationships hold for r < 0.

thEorEm 10.10 coordinate conversion

The polar coordinates (r, θ) of a point are related to the rectangular coordinates 
(x, y) of the point as follows.

Polar-to-rectangular rectangular-to-Polar

x = r cos θ tan θ =
y
x

y = r sin θ r2 = x2 + y2

 Polar-to-rectangular conversion

a. For the point (r, θ) = (2, π),

x = r cos θ = 2 cos π = −2 and y = r sin θ = 2 sin π = 0.

 So, the rectangular coordinates are (x, y) = (−2, 0).
b. For the point (r, θ) = (√3, π�6),

x = √3 cos 
π
6

=
3
2

 and y = √3 sin 
π
6

=
√3
2

.

 So, the rectangular coordinates are (x, y) = (3�2, √3�2).
See Figure 10.38.

 rectangular-to-Polar conversion

a. For the second-quadrant point (x, y) = (−1, 1),

tan θ =
y
x

= −1  θ =
3π
4

.

  Because θ was chosen to be in the same quadrant as (x, y), use a positive value of r.

r = √x2 + y2 = √(−1)2 + (1)2 = √2

 This implies that one set of polar coordinates is (r, θ) = (√2, 3π�4).
b.  Because the point (x, y) = (0, 2) lies on the positive y-axis, choose θ = π�2 and 

r = 2, and one set of polar coordinates is (r, θ) = (2, π�2).

See Figure 10.39. 

Note that you can also use Theorem 10.10 to convert a polar equation to a rectangular 
equation (and vice versa), as shown in Example 3.

y
r

x

x

θPole

Polar axis
(x-axis)(Origin)

(x, y)
(r,   )θy

Relating polar and rectangular 
coordinates
Figure 10.37

x
1

1

2

2

−1

−1

−2
(x, y) = (−2, 0)

(r,   ) = (2,   )πθ

(r,   ) =θ , 

(x, y) = , 3
2

3
2

3

y

6
π

))
) )

To convert from polar to rectangular 
coordinates, let x = r cos θ and 
y = r sin θ.
Figure 10.38

1

2

(x, y) = (−1, 1)

(x, y) = (0, 2)

(r,   ) =θ 2, 

(r,   ) =θ ,

x
1 2−1−2

2

y

2
π ))

)) 4
3π

To convert from rectangular to polar 
coordinates, let tan θ = y�x and 
r = √x2 + y2.
Figure 10.39
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 10.4 Polar Coordinates and Polar Graphs 721

Polar Graphs
One way to sketch the graph of a polar equation is to convert to rectangular coordinates 
and then sketch the graph of the rectangular equation.

 Graphing Polar Equations

Describe the graph of each polar equation. Confirm each description by converting to 
a rectangular equation.

a. r = 2  b. θ =
π
3

  c. r = sec θ

Solution

a.  The graph of the polar equation r = 2 consists of all points that are two units from 
the pole. So, this graph is a circle centered at the origin with a radius of 2. [See 
Figure 10.40(a).] You can confirm this by using the relationship r2 = x2 + y2 to 
obtain the rectangular equation

x2 + y2 = 22. Rectangular equation

b.  The graph of the polar equation θ = π�3 consists of all points on the line that makes 
an angle of π�3 with the positive x-axis. [See Figure 10.40(b).] You can confirm this 
by using the relationship tan θ = y�x to obtain the rectangular  equation

y = √3x. Rectangular equation

c.  The graph of the polar equation r = sec θ is not evident by simple inspection, so 
you can begin by converting to rectangular form using the relationship r cos θ = x.

 r = sec θ Polar equation

 r cos θ = 1

 x = 1 Rectangular equation

  From the rectangular equation, you can see that the graph is a vertical line. [See 
Figure 10.40(c).] 

tEchnoloGy Sketching the graphs of complicated polar equations by hand 
can be tedious. With technology, however, the task is not difficult. Use a graphing 
utility in polar mode to graph the equations in the  exercise set. If your graphing 
utility does not have a polar mode but does have a parametric mode, you can graph 
r = f (θ) by writing the equation as

 x = f (θ) cos θ
 y = f (θ) sin θ.

For instance, the graph of r = 1
2θ shown in  

9

−6

−9

6

Spiral of Archimedes
Figure 10.41

 
Figure 10.41 was produced with a  graphing  
utility in parametric mode. This equation  
was graphed using the  parametric equations

 x =
1
2
θ cos θ

 y =
1
2
θ sin θ

with the values of θ varying from −4π  to 4π.  
This curve is of the form r = aθ and is called  
a spiral of Archimedes.

1 2 3
0π

2
π3

π
2

(a) Circle: r = 2

1 2 3
0π

2
π3

π
2

(b) Radial line: θ =
π
3

1 2 3
0π

2
π3

π
2

(c) Vertical line: r = sec θ
Figure 10.40
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722 chapter 10 Conics, Parametric Equations, and Polar Coordinates

 Sketching a Polar Graph

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the graph of r = 2 cos 3θ.

Solution Begin by writing the polar equation in parametric form.

x = 2 cos 3θ cos θ and y = 2 cos 3θ sin θ

After some experimentation, you will find that the entire curve, which is called a rose 
curve, can be sketched by letting θ vary from 0 to π, as shown in Figure 10.42. If you 
try duplicating this graph with a graphing utility, you will find that by letting θ vary 
from 0 to 2π, you will actually trace the entire curve twice.

 

1 2
0π

2
π3

π
2

 

1 2
0π

2
π3

π
2

 

1 2
0π

2
π3

π
2

 0 ≤ θ ≤ π
6

 0 ≤ θ ≤ π
3

 0 ≤ θ ≤ π
2

 

1 2
0π

2
π3

π
2

 

1 2
0π

2
π3

π
2

 

1 2
0π

2
π3

π
2

 0 ≤ θ ≤ 2π
3

 0 ≤ θ ≤ 5π
6

 0 ≤ θ ≤ π

 Figure 10.42 

Use a graphing utility to experiment with other rose curves. Note that rose curves 
are of the form

r = a cos nθ or r = a sin nθ.

For instance, Figure 10.43 shows the graphs of two other rose curves.

3

−2

−3

2r = 2 sin 5θ    r = 0.5 cos 2θ

Generated by Mathematica

π
2

−0.4 −0.2 0.2 0.4
0

0.2

0.4

 Rose curves
 Figure 10.43

rEmark One way to 
sketch the graph of r = 2 cos 3θ 
by hand is to make a table of  
values.

θ 0
π
6

π
3

π
2

2π
3

r 2 0 −2 0 2

By extending the table and  
plotting the points, you will 
obtain the curve shown in 
Example 4.
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10.4 Polar Coordinates and Polar Graphs 723

Slope and Tangent Lines
To find the slope of a tangent line to a polar graph, consider a differentiable function 
given by r = f (θ). To find the slope in polar form, use the parametric equations

x = r cos θ = f (θ) cos θ and y = r sin θ = f (θ) sin θ.

Using the parametric form of dy�dx given in Theorem 10.7, you have

dy
dx

=
dy�dθ
dx�dθ =

f (θ) cos θ + f′(θ) sin θ
−f (θ) sin θ + f′(θ) cos θ

which establishes the next theorem.

thEorEm 10.11 Slope in Polar Form

If f  is a differentiable function of θ, then the slope of the tangent line to the 
graph of r = f (θ) at the point (r, θ) is

dy
dx

=
dy�dθ
dx�dθ =

f (θ) cos θ + f′(θ) sin θ
−f (θ) sin θ + f′(θ) cos θ

provided that dx�dθ ≠ 0 at (r, θ). (See Figure 10.44.)

From Theorem 10.11, you can make the following observations.

1. Solutions of 
dy
dθ = 0 yield horizontal tangents, provided that 

dx
dθ ≠ 0.

2. Solutions of 
dx
dθ = 0 yield vertical tangents, provided that 

dy
dθ ≠ 0.

If dy�dθ and dx�dθ are simultaneously 0, then no conclusion can be drawn about 
tangent lines.

 Finding horizontal and Vertical tangent lines

Find the horizontal and vertical tangent lines of r = sin θ, where 0 ≤ θ < π.

Solution Begin by writing the equation in parametric form.

x = r cos θ = sin θ cos θ

and

y = r sin θ = sin θ sin θ = sin2 θ

Next, differentiate x and y with respect to θ and set each derivative equal to 0.

dx
dθ = cos2 θ − sin2 θ = cos 2θ = 0  θ =

π
4

, 
3π
4

dy
dθ = 2 sin θ cos θ = sin 2θ = 0  θ = 0, 

π
2

So, the graph has vertical tangent lines at 

(√2
2

, 
π
4) and (√2

2
, 

3π
4 )

and it has horizontal tangent lines at

(0, 0) and (1, 
π
2)

as shown in Figure 10.45. 

θ

0

(r,   )

Tangent line
θr = f(  )

π

2
π3

π
2

Tangent line to polar curve
Figure 10.44

0π
(0, 0) 1

2

, 2
2 4

π )), 2
2 4

3π))

2
π3

1, ))
π
2

2
π

Horizontal and vertical tangent lines of 
r = sin θ
Figure 10.45
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 Finding horizontal and Vertical tangent lines

Find the horizontal and vertical tangent lines to the graph of r = 2(1 − cos θ), where 
0 ≤ θ < 2π.

Solution Let y = r sin θ and then differentiate with respect to θ.

 y = r sin θ Parametric equation for y

 = 2(1 − cos θ) sin θ Substitute for r.

 
dy
dθ = 2[(1 − cos θ)(cos θ) + (sin θ)(sin θ)] Derivative of y with respect to θ

 = 2(cos θ − cos2 θ + sin2 θ) Multiply.

 = 2(cos θ − cos2 θ + 1 − cos2 θ) Pythagorean identity

 = −2(2 cos2 θ − cos θ − 1) Combine like terms; factor out −1

 = −2(2 cos θ + 1)(cos θ − 1) Factor.

Setting dy�dθ equal to 0, you can see that cos θ = −1
2 and cos θ = 1. So, dy�dθ = 0 

when θ = 2π�3, 4π�3, and 0. Similarly, using x = r cos θ, you have

 x = r cos θ Parametric equation for x

 = 2(1 − cos θ) cos θ Substitute for r.

 = 2 cos θ − 2 cos2 θ Multiply.

 
dx
dθ = −2 sin θ + 4 cos θ sin θ Derivative of x with respect to θ

 = (2 sin θ)(2 cos θ − 1). Factor.

Setting dx�dθ equal to 0, you can see that sin θ = 0 and cos θ = 1
2. So, you can 

conclude that dx�dθ = 0 when θ = 0, π, π�3, and 5π�3. From these results and from 
the graph shown in Figure 10.46, you can conclude that the graph has horizontal 
tangents at (3, 2π�3) and (3, 4π�3) and has vertical tangents at (1, π�3), (1, 5π�3), and 
(4, π). This graph is called a cardioid. Note that both derivatives (dy�dθ and dx�dθ) 
are 0 when θ = 0. Using this  information alone, you do not know whether the graph 
has a horizontal or vertical  tangent line at the pole. From Figure 10.46, however, you 
can see that the graph has a cusp at the pole. 

Theorem 10.11 has an important consequence. If the graph of r = f (θ) passes 
through the pole when θ = α and f′(α) ≠ 0, then the formula for dy�dx simplifies as 
follows.

dy
dx

=
f′(α) sin α + f (α) cos α
f′(α) cos α − f (α) sin α =

f′(α) sin α + 0
f′(α) cos α − 0

=
sin α
cos α = tan α

So, the line θ = α is tangent to the graph at the pole, (0, α).

thEorEm 10.12 tangent lines at the Pole

If f (α) = 0 and f′(α) ≠ 0, then the line θ = α is tangent at the pole to the 
graph of r = f (θ).

Theorem 10.12 is useful because it states that the zeros of r = f (θ) can be used 
to find the tangent lines at the pole. Note that because a polar curve can cross the 
pole more than once, it can have more than one tangent line at the pole. For example, 
the rose curve f (θ) = 2 cos 3θ has three tangent lines at the pole, as shown in
Figure 10.47. For this curve, f (θ) = 2 cos 3θ is 0 when θ is π�6, π�2, and 5π�6. 
Moreover, the derivative f′(θ) = −6 sin 3θ is not 0 for these values of θ.

2

f(  ) = 2 cos 3θθ

0π

2
π3

π
2

This rose curve has three tangent lines 
(θ = π�6, θ = π�2, and θ = 5π�6) at 
the pole.
Figure 10.47
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2
π3

π
2
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4π

1, )) 3
5π

1, )) 3
π

Horizontal and vertical tangent lines of 
r = 2(1 − cos θ)
Figure 10.46
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 10.4 Polar Coordinates and Polar Graphs 725

Special Polar Graphs
Several important types of graphs have equations that are simpler in polar form than in 
rectangular form. For example, the polar equation of a circle having a radius of a and 
centered at the origin is simply r = a. Later in the text, you will come to appreciate 
this benefit. For now, several other types of graphs that have simpler equations in polar 
form are shown below. (Conics are considered in Section 10.6.)

tEchnoloGy The rose curves described above are of the form r = a cos nθ 
or r = a sin nθ, where n is a positive integer that is greater than or equal to 2. Use 
a graphing utility to graph

r = a cos nθ or r = a sin nθ

for some noninteger values of n. Are these graphs also rose curves? For example, try 
sketching the graph of 

r = cos 
2
3
θ, 0 ≤ θ ≤ 6π.

 For Further InFormAtIon For more information on rose curves and related 
curves, see the article “A Rose is a Rose .  .  .” by Peter M. Maurer in The American 
Mathematical Monthly. The computer-generated graph at the left is the result of an 
algorithm that Maurer calls “The Rose.” To view this article, go to MathArticles.com.Generated by Maple

0π

2
π3

π
2

a
b

≥ 2

Convex limaçon

0π

2
π3

π
2

1 <
a
b

< 2

Dimpled limaçon

0π

2
π3

π
2

a
b

= 1

Cardioid
(heart-shaped)

0π

2
π3

π
2

a
b

< 1

Limaçon with 
inner loop

Limaçons

r = a ± b cos θ
r = a ± b sin θ
(a > 0, b > 0)

n = 2

a
0π

2
π3

π
2

r = a sin nθ
Rose curve

n = 5

a

0π

2
π3

π
2

r = a sin nθ
Rose curve

0π

n = 4

a
2
π3

π
2

r = a cos nθ
Rose curve

0π

n = 3

a

2
π3

π
2

r = a cos nθ
Rose curve

rose Curves

n petals when n is odd
2n petals when n is 
even 
(n ≥ 2)

a

0π

2
π3

π
2

r2 = a2 cos 2θ
Lemniscate

a
0π

2
π3

π
2

r2 = a2 sin 2θ
Lemniscate

a

0π

2
π3

π
2

r = a sin θ
Circle

a

0π

2
π3

π
2

r = a cos θ
Circle

Circles 
and Lemniscates
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10.4 Exercises see CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCEPt CHECK
1.  Polar coordinates Consider the polar coordinates 

(r, θ). What does r represent? What does θ represent?

2.  Plotting Points Plot the points below on the same set 
of coordinate axes.

 (r, θ) = (2, 
π
2) and (x, y) = (2, 

π
2)

3.  comparing coordinate Systems Describe the 
differences between the rectangular coordinate system 
and the polar coordinate system.

4.  Parametric Form of a Polar Equation Explain 
how to write a polar equation in parametric form.

 Polar-to-rectangular conversion In 
exercises 5–14, the polar coordinates of a point are 
given. Plot the point and find the corresponding 
rectangular coordinates for the point.

 5. (8, 
π
2)  6. (−2, 

5π
3 )

 7. (−4, −
3π
4 )  8. (0, −

7π
6 )

 9. (7, 
5π
4 ) 10. (−2, 

11π
6 )

11. (√2, 2.36) 12. (−3, −1.57)
13. (−8, 0.75) 14. (1.25, −5)

 rectangular-to-Polar conversion In 
exercises 15–24, the rectangular coordinates of a 
point are given. Plot the point and find two sets 
of polar coordinates for the point for 0 ≤ θ < 2π.

15. (1, 0) 16. (0, −9)
17. (−3, 4) 18. (6, −2)
19. (−5, −5√3) 20. (3, −√3)
21. (√7, −√7) 22. (−2√2, −2√2)
23. (4, 5) 24. (1, 8)

 rectangular-to-Polar conversion In 
exercises 25–34, convert the rectangular equation 
to polar form and sketch its graph.

25. x2 + y2 = 9 26. x2 − y2 = 9

27. x2 + y2 = a2 28. x2 + y2 − 2ax = 0

29. y = 8 30. x = 12

31. 3x − y + 2 = 0 32. xy = 4

33. y2 = 9x

34. (x2 + y2)2 − 9(x2 − y2) = 0

 Polar-to-rectangular conversion In 
exercises 35–44, convert the polar equation to 
rectangular form and sketch its graph.

35. r = 4 36. r = −1

37. r = 3 sin θ 38. r = 5 cos θ

39. r = θ 40. θ =
5π
6

41. r = 3 sec θ 42. r = −6 csc θ

43. r = sec θ tan θ 44. r = cot θ csc θ

Graphing a Polar Equation In exercises 45–54, use a 
graphing utility to graph the polar equation. Find an interval 
for θ over which the graph is traced only once.

45. r = 2 − 5 cos θ 46. r = 3(1 − 4 cos θ)
47. r = −1 + sin θ 48. r = 4 + 3 cos θ

49. r =
2

1 + cos θ  50. r =
1

4 − 3 sin θ

51. r = 5 cos 
3θ
2

 52. r = 3 sin 
5θ
2

53. r2 = 4 sin 2θ 54. r2 =
1
θ

55. Verifying a Polar Equation Convert the equation

 r = 2(h cos θ + k sin θ)

  to rectangular form and verify that it is the equation of a circle. 
Find the radius and the rectangular coordinates of the center of 
the circle.

 56.  hoW Do yoU SEE It? Identify each 
special polar graph and write its equation.

(a)

0
21

π
2

(b)

0

π
2

1 2 3

(c)

0
4

π
2

(d)

0

π
2

2

 56.  
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 10.4 Polar Coordinates and Polar Graphs 727

57.  Sketching a Graph Sketch the graph of r = 4 sin θ over 
each interval.

 (a) 0 ≤ θ ≤ π
2

   (b) 
π
2

≤ θ ≤ π    (c) −
π
2

≤ θ ≤ π
2

58. Distance Formula

 (a)  Verify that the Distance Formula for the distance between 
the two points (r1, θ1) and (r2, θ2) in polar coordinates is 

  d = √r1
2 + r2

2 − 2r1r2 cos(θ1 − θ2).

 (b)  Describe the positions of the points relative to each other 
for θ1 = θ2. Simplify the Distance Formula for this case. 
Is the simplification what you expected? Explain.

 (c)  Simplify the Distance Formula for θ1 − θ2 = 90°. Is the 
simplification what you expected? Explain.

 (d)  Choose two points on the polar coordinate system and 
find the distance between them. Then choose different 
polar representations of the same two points and apply the 
Distance Formula again. Discuss the result.

Distance Formula In exercises 59–62, use the result of 
exercise 58 to find the distance between the two points in polar 
coordinates.

59. (1, 
5π
6 ), (4, 

π
3) 60. (8, 

7π
4 ), (5, π)

61. (2, 0.5), (7, 1.2) 62. (4, 2.5), (12, 1)

 Finding Slopes of tangent lines In 
exercises 63 and 64, find dy�dx and the slopes of 
the tangent lines shown on the graph of the polar 
equation.

63. r = 2(1 − sin θ)  64. r = 2 + 3 sin θ

 

(2, 0)

1 2 3
0

π
2

4,  )) 2
3π

3,  )) 6
7π

  

(2,   )π
0

2 3

π
2

3.5,  )) 6
π

−1,  )) 2
3π

Finding Slopes of tangent lines Using technology  
In exercises 65–68, use a graphing utility to (a) graph the polar 
equation, (b) draw the tangent line at the given value of θ, and 
(c) find dy�dx at the given value of θ. (Hint: Let the increment 
between the values of θ equal π�24.)

65. r = 3(1 − cos θ), θ =
π
2

 66. r = 3 − 2 cos θ, θ = 0

67. r = 3 sin θ, θ =
π
3

 68. r = 4, θ =
π
4

 horizontal and Vertical tangency In 
exercises 69 and 70, find the points of horizontal 
and vertical tangency to the polar curve.

69. r = 1 − sin θ 70. r = a sin θ

horizontal tangency In exercises 71 and 72, find the 
points of horizontal tangency to the polar curve.

71. r = 2 csc θ + 3 72. r = a sin θ cos2 θ

 tangent lines at the Pole In exercises 
73–80, sketch a graph of the polar equation and 
find the tangent line(s) at the pole (if any).

73. r = 5 sin θ 74. r = 5 cos θ

75. r = 4(1 − sin θ) 76. r = 2(1 − cos θ)
77. r = 4 cos 3θ 78. r = −sin 5θ

79. r = 3 sin 2θ 80. r = 3 cos 2θ

Sketching a Polar Graph In exercises 81–92, sketch a 
graph of the polar equation.

81. r = 8 82. r = 1

83. r = 4(1 + cos θ) 84. r = 1 + sin θ

85. r = 3 − 2 cos θ 86. r = 5 − 4 sin θ

87. r = −7 csc θ 88. r =
6

2 sin θ − 3 cos θ

89. r = 3θ 90. r =
1
θ

91. r2 = 4 cos 2θ 92. r2 = 4 sin θ

asymptote In exercises 93–96, use a graphing utility 
to graph the equation and show that the given line is an 
asymptote of the graph.

 name of Graph Polar equation Asymptote

93. Conchoid r = 2 − sec θ x = −1

94. Conchoid r = 2 + csc θ y = 1

95. Hyperbolic spiral r = 2�θ y = 2

96. Strophoid r = 2 cos 2θ sec θ x = −2

EXPLoring ConCEPts
transformations of Polar Graphs In exercises 97 
and 98, use the graph of r = f (θ) to sketch a graph of the 
transformation.

97. r = f (−θ) 98. r = −f (θ)
 

1 2

π
2 r = f(   )θ

0

 

1

π
2

0

r = f(   )θ

99.  Symmetry of Polar Graphs Describe how to test 
whether a polar graph is symmetric about (a) the x-axis 
and (b) the y-axis.
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728 chapter 10 Conics, Parametric Equations, and Polar Coordinates

100.  think about It Use a graphing utility to graph the polar 
equation r = 6[1 + cos(θ − ϕ)] for (a) ϕ = 0, (b) ϕ = π�4, 
and (c) ϕ = π�2. Use the graphs to describe the effect of the 
angle ϕ. Write the equation as a function of sin θ for part (c).

101.  rotated curve Verify that if the curve whose polar 
equation is r = f (θ) is rotated about the pole through an angle 
ϕ, then an equation for the rotated curve is r = f (θ − ϕ).

102.  rotated curve The polar form of an equation of a curve 
is r = f (sin θ). Show that the form becomes

  (a)  r = f (−cos θ) if the curve is rotated counterclockwise 
π�2 radians about the pole.

  (b)  r = f (−sin θ) if the curve is rotated counterclockwise π  
radians about the pole.

  (c)  r = f (cos θ) if the curve is rotated counterclockwise 
3π�2 radians about the pole.

rotated curve In exercises 103–105, use the results of 
exercises 101 and 102.

103.  Write an equation for the limaçon r = 2 − sin θ after it has 
been rotated counterclockwise by an angle of (a) θ = π�4, 
(b) θ = π�2, (c) θ = π, and (d) θ = 3π�2. Use a graphing 
utility to graph each rotated limaçon.

104.  Write an equation for the rose curve r = 2 sin 2θ after it has 
been rotated counterclockwise by an angle of (a) θ = π�6, 
(b) θ = π�2, (c) θ = 2π�3, and (d) θ = π. Use a graphing 
utility to graph each rotated rose curve.

105. Sketch the graph of each equation.

  (a) r = 1 − sin θ   (b) r = 1 − sin(θ −
π
4)

106.  Proof Prove that the tangent of the angle ψ (0 ≤ ψ ≤ π�2) 
between the radial line and the tangent line at the point (r, θ) 
on the graph of r = f (θ) (see figure) is given by

  tan ψ = ∣ r
dr�dθ∣.

0
A

θ

P = (r,   )θ

Tangent line

Radial line

θ= (  )r f

Polar axis

O

ψ

Polar curve:

π
2

Finding an angle In exercises 107–112, use the result of 
exercise 106 to find the angle ψ between the radial and tangent 
lines to the graph for the indicated value of θ. use a graphing 
utility to graph the polar equation, the radial line, and the 
tangent line for the  indicated value of θ. Identify the angle ψ.

  Polar equation Value of θ

107. r = 2(1 − cos θ) θ = π

108. r = 3(1 − cos θ) θ =
3π
4

  Polar equation Value of θ

109. r = 2 cos 3θ θ =
π
4

110. r = 4 sin 2θ θ =
π
6

111. r =
6

1 − cos θ  θ =
2π
3

112. r = 5 θ =
π
6

true or False? In exercises 113–116, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

113.  If (r1, θ1) and (r2, θ2) represent the same point on the polar 
coordinate system, then ∣r1∣ = ∣r2∣.

114.  If (r, θ1) and (r, θ2) represent the same point on the polar 
 coordinate system, then θ1 = θ2 + 2nπ  for some integer n.

115.  If x > 0, then the point (x, y) on the rectangular coordinate 
system can be represented by (r, θ) on the polar coordinate 
system, where r = √x2 + y2 and θ = arctan( y�x).

116.  The polar equations r = sin 2θ, r = −sin 2θ, and 
r = sin(−2θ) all have the same graph.

A Cassini oval is defined as the set of all points the product of 
whose distances from two fixed points is constant. These curves 
are named after the astronomer Giovanni Domenico Cassini 
(1625–1712). He suspected that these curves could model planetary 
motion. However, as you saw in Section 10.1, Kepler used ellipses 
to describe planetary motion. You will learn more about Kepler’s 
Laws of planetary motion in Section 10.6.

Let (−c, 0) and (c, 0) be two fixed points in the plane. A point (x, y) 
lies on a Cassini oval when the distance between (x, y) and (−c, 0) 
times the distance between (x, y) and (c, 0) is b2, where b is a constant.

π
2

0
6

 Four different types of Cassini ovals

(a)  Show that (x2 + y2)2 − 2c2(x2 − y2) + c4 = b4

(b) Convert the equation in part (a) to polar coordinates.

(c) Show that if b = c, then the Cassini oval is a lemniscate.

(d)  Use a graphing utility to graph the Cassini oval for c = 1 and 
b = 2.

cassini oval
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10.5 Area and Arc Length in Polar Coordinates

 Find the area of a region bounded by a polar graph.
 Find the points of intersection of two polar graphs.
 Find the arc length of a polar graph.
 Find the area of a surface of revolution (polar form).

Area of a Polar Region
The development of a formula for the area of a polar region 

r

θ

The area of a sector of a 
circle is A = 1

2θr2.
Figure 10.48

parallels that for the area of a region on the rectangular 
coordinate system but uses sectors of a circle instead of 
rectangles as the basic elements of area. In Figure 10.48, 
note that the area of a  circular sector of radius r is 12θr2, 
provided θ is measured in radians.

Consider the function r = f (θ), where f  is continuous 
and nonnegative on the interval α ≤ θ ≤ β. The region 
bounded by the graph of f  and the radial lines θ = α and
θ = β is shown in Figure 10.49(a). To find the area of this 
region, partition the interval [α, β] into n equal subintervals

α = θ0 < θ1 < θ2 < .  .  . < θn−1 < θn = β.

Then approximate the area of the region by the sum of the areas of the n sectors, as 
shown in Figure 10.49(b).

 Radius of ith sector = f (θ i)

 Central angle of ith sector =
β − α

n
= ∆θ

 A ≈ ∑
n

i=1
 (1

2)∆θ [ f (θ i)]2

Taking the limit as n →∞ produces

 A = lim
n→∞

 
1
2

 ∑
n

i=1
 [ f (θ i)]2∆θ

 =
1
2∫

β

α
 [ f (θ)]2 dθ

which leads to the next theorem.

THEOREM 10.13 Area in Polar Coordinates

If f  is continuous and nonnegative on the interval [α, β], 0 < β − α ≤ 2π,
then the area of the region bounded by the graph of r = f (θ) between the 
radial lines θ = α and θ = β is

 A =
1
2∫

β

α
 [ f (θ)]2 dθ

 =
1
2∫

β

α
 r2 dθ. 0 < β − α ≤ 2π

You can use the formula in Theorem 10.13 to find the area of a region bounded 
by the graph of a continuous nonpositive function. The formula is not necessarily valid, 
however, when f  takes on both positive and negative values in the interval [α, β].

r = f(  )
β

α

θ

0

π
2

(a)

β θ

θ

θ

α

n − 1

1

2

0

π
2

r = f(  )θ

(b)

Figure 10.49
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 Finding the Area of a Polar Region

See LarsonCalculus.com for an interactive version of this type of example.

Find the area of one petal of the rose curve r = 3 cos 3θ.

Solution In Figure 10.50, you can see that the petal on the right is traced as θ 
increases from −π�6 to π�6. So, the area is

 A =
1
2∫β

α
 r2 dθ =

1
2∫

π�6

−π�6
 (3 cos 3θ)2 dθ Use formula for area in 

polar coordinates.

 =
9
2∫

π�6

−π�6
 
1 + cos 6θ

2
 dθ Power-reducing 

formula

 =
9
4[θ +

sin 6θ
6 ]

π�6

−π�6

 =
9
4 (

π
6

+
π
6)

 =
3π
4

. 

To find the area of the region lying inside all three petals of the rose curve in 
Example 1, you could not simply integrate between 0 and 2π. By doing this, you would 
obtain 9π�2, which is twice the area of the three petals. The duplication occurs because 
the rose curve is traced twice as θ increases from 0 to 2π.

 Finding the Area Bounded by a Single Curve

Find the area of the region lying between the inner and outer loops of the limaçon 
r = 1 − 2 sin θ.

Solution In Figure 10.51, note that the inner loop is traced as θ increases from π�6 
to 5π�6. So, the area inside the inner loop is

 A1 =
1
2∫

5π�6

π�6
 (1 − 2 sin θ)2 dθ Use formula for area in 

polar coordinates.

 =
1
2∫

5π�6

π�6
 (1 − 4 sin θ + 4 sin2 θ) dθ

 =
1
2∫

5π�6

π�6
 [1 − 4 sin θ + 4(1 − cos 2θ

2 )] dθ Power-reducing 
formula

 =
1
2∫

5π�6

π�6
 (3 − 4 sin θ − 2 cos 2θ) dθ Simplify.

 =
1
2[3θ + 4 cos θ − sin 2θ]

5π�6

π�6

 =
1
2

(2π − 3√3)

 = π −
3√3

2
.

In a similar way, you can integrate from 5π�6 to 13π�6 to find that the area of the 
region lying inside the outer loop is A2 = 2π + (3√3�2). The area of the region lying 
between the two loops is the difference of A2 and A1.

A = A2 − A1 = (2π +
3√3

2 ) − (π −
3√3

2 ) = π + 3√3 ≈ 8.34 

3
0

π
2r = 3 cos 3θ

The area of one petal of the rose 
curve that lies between the radial lines 
θ = −π�6 and θ = π�6 is 3π�4.
Figure 10.50

32
0

=
6
πθ=

6
5πθ

π
2

θr = 1 − 2 sin

The area between the inner and outer 
loops is approximately 8.34.
Figure 10.51
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Points of Intersection of Polar Graphs
Because a point may be represented in different ways in polar coordinates, care must 
be taken in determining the points of intersection of two polar graphs. For example, 
consider the points of intersection of the graphs of

r = 1 − 2 cos θ and r = 1

as shown in Figure 10.52. As with rectangular equations, you can attempt to find the 
points of intersection by solving the two equations simultaneously, as shown.

 r = 1 − 2 cos θ First equation

 1 = 1 − 2 cos θ Substitute r = 1 from second equation into first equation.

 cos θ = 0 Simplify.

 θ =
π
2

, 
3π
2

 Solve for θ.

The corresponding points of intersection are (1, π�2) and (1, 3π�2). From Figure 10.52, 
however, you can see that there is a third point of intersection that did not show up 
when the two polar equations were solved simultaneously. (This is one reason why 
you should sketch a graph when finding the area of a polar region.) The reason the 
third point was not found is that it does not occur with the same coordinates in the 
two graphs. On the graph of r = 1, the point occurs with coordinates (1, π), but on the 
graph of

r = 1 − 2 cos θ

the point occurs with coordinates (−1, 0).
In addition to solving equations simultaneously and sketching a graph, note that 

because the pole can be represented by (0, θ), where θ is any angle, you should check 
separately for the pole when finding points of intersection.

You can compare the problem of finding points of intersection of two polar graphs 
with that of finding collision points of two satellites in intersecting orbits about Earth, 
as shown in Figure 10.53. The satellites will not collide as long as they reach the points 
of intersection at different times (θ-values). Collisions will occur only at the points of 
intersection that are “simultaneous points”—those that are reached at the same time  
(θ-value).

  The paths of satellites can cross without  
causing a collision.

 Figure 10.53

 For Further InFormatIon For more information on using technology 
to find points of intersection, see the article “Finding Points of Intersection of  
Polar-Coordinate Graphs” by Warren W. Esty in Mathematics Teacher. To view this 
article, go to MathArticles.com.

1

Limaçon: r = 1 − 2 cos θ

Circle:
r = 1

0

π
2

Three points of intersection: (1, π�2), 
(−1, 0), and (1, 3π�2)
Figure 10.52
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 Finding the Area of a Region Between Two Curves

Find the area of the region common to the two regions bounded by the curves

r = −6 cos θ Circle

and

r = 2 − 2 cos θ. Cardioid

Solution Because both curves are symmetric with respect to the x-axis, you can 
work with the upper half-plane, as shown in Figure 10.54. The blue shaded region lies 
between the circle and the radial line

θ =
2π
3

.

Because the circle has coordinates (0, π�2) at the pole, you can integrate between π�2 
and 2π�3 to obtain the area of this region. The region that is shaded red is bounded by 
the cardioid and the radial lines θ = 2π�3 and θ = π. So, you can find the area of this 
second region by integrating between 2π�3 and π. The sum of these two integrals gives 
the area of the common region lying above the radial line θ = π.

 Region between circle Region between cardioid and

 and radial line θ = 2π�3 radial lines θ = 2π�3 and θ = π

 
A
2

=
1
2∫

2π�3

π�2
 (−6 cos θ)2 dθ +

1
2∫

π

2π�3
 (2 − 2 cos θ)2 dθ

 = 18∫2π�3

π�2
 cos2 θ dθ +

1
2∫

π

2π�3
 (4 − 8 cos θ + 4 cos2 θ) dθ

 = 9∫2π�3

π�2
 (1 + cos 2θ) dθ + ∫π

2π�3
 (3 − 4 cos θ + cos 2θ) dθ

 = 9[θ +
sin 2θ

2 ]
2π�3

π�2
+ [3θ − 4 sin θ +

sin 2θ
2 ]

π

2π�3

 = 9(2π
3

−
√3
4

−
π
2) + (3π − 2π + 2√3 +

√3
4 )

 =
5π
2

Finally, multiplying by 2, you can conclude that the total area is

5π ≈ 15.7. Area of region inside circle and cardioid

To check the reasonableness of this result, note that the area of the circular region is

πr2 = 9π. Area of circle

So, it seems reasonable that the area of the region lying inside the circle and the 
cardioid is 5π. 

To see the benefit of polar coordinates for finding the area in Example 3, consi der 
the integral below, which gives the comparable area in rectangular coordinates.

A
2

= ∫−3�2

−4
 √2√1 − 2x − x2 − 2x + 2 dx + ∫0

−3�2
 √−x2 − 6x dx

Use the integration capabilities of a graphing utility to show that you obtain the same 
area as that found in Example 3.

Circle:
r = −6 cos θ

Cardioid:
r = 2 − 2 cos θ

C
ar

di
oi

d

Circle

0

π
2

3
4π

3
2π

Figure 10.54
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10.5 Area and Arc Length in Polar Coordinates 733

Arc Length in Polar Form
The formula for the length of a polar arc can be obtained from the arc length formula 
for a curve described by parametric equations. (See Exercise 84.)

THEOREM 10.14 Arc Length of a Polar Curve

Let f  be a function whose derivative is continuous on an interval α ≤ θ ≤ β. 
The length of the graph of r = f (θ) from θ = α to θ = β is

s = ∫β

α
 √[ f (θ)]2 + [ f′(θ)]2 dθ = ∫β

α
 √r2 + (dr

dθ)
2

 dθ.

 Finding the Length of a Polar Curve

Find the length of the arc from θ = 0 to θ = 2π  for the cardioid

r = f (θ) = 2 − 2 cos θ

as shown in Figure 10.55.

Solution Because f′(θ) = 2 sin θ, you can find the arc length as follows.

 s = ∫β

α
 √[ f (θ)]2 + [ f′(θ)]2 dθ Formula for arc length of a polar curve

 = ∫2π

0
 √(2 − 2 cos θ)2 + (2 sin θ)2 dθ

 = 2√2 ∫2π

0
 √1 − cos θ dθ Simplify.

 = 2√2 ∫2π

0
 √2 sin2 

θ
2

 dθ Trigonometric identity

 = 4∫2π

0
 sin 

θ
2

 dθ sin 
θ
2

≥ 0 for 0 ≤ θ ≤ 2π

 = 8[−cos 
θ
2]

2π

0

 = 8(1 + 1)
 = 16

Using Figure 10.55, you can determine the reasonableness of this answer by 
comparing it with the circumference of a circle. For example, a circle of radius 52 has a 
circumference of

5π ≈ 15.7.

Note that in the fifth step of the solution, it is legitimate to write

√2 sin2 
θ
2

= √2 sin 
θ
2

rather than 

√2 sin2 
θ
2

= √2 ∣sin 
θ
2∣

because sin(θ�2) ≥ 0 for 0 ≤ θ ≤ 2π. 

REMARK When applying 
the arc length formula to a polar 
curve, be sure that the curve is 
traced out only once on the 
interval of integration. For 
instance, the rose curve 
r = cos 3θ is traced out once 
on the interval 0 ≤ θ ≤ π  
but is traced out twice on the 
interval 0 ≤ θ ≤ 2π.

r = 2 − 2 cos

1

θ

0

π
2

Figure 10.55
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Area of a Surface of Revolution
The polar coordinate versions of the formulas for the area of a surface of revolution can 
be obtained from the parametric versions given in Theorem 10.9, using the equations 
x = r cos θ and y = r sin θ.

THEOREM 10.15 Area of a Surface of Revolution

Let f  be a function whose derivative is continuous on an interval α ≤ θ ≤ β. 
The area of the surface formed by revolving the graph of r = f (θ) from θ = α 
to θ = β about the indicated line is as follows.

1. S = 2π∫β

α
 f (θ) sin θ√[ f (θ)]2 + [ f′(θ)]2 dθ About the polar axis

2. S = 2π∫β

α
 f (θ) cos θ√[ f (θ)]2 + [ f′(θ)]2 dθ About the line θ =

π
2

 Finding the Area of a Surface of Revolution

Find the area of the surface formed by revolving the circle r = f (θ) = cos θ about the 
line θ = π�2, as shown in Figure 10.56.

r = cos θ

1
0

π
2

  

0

Pinched
torus

π
2

 (a) (b)

 Figure 10.56

Solution Use the second formula in Theorem 10.15 with f′(θ) = −sin θ. Because 
the circle is traced once as θ increases from 0 to π, you have

 S = 2π∫β

α
 f (θ) cos θ√[ f (θ)]2 + [ f′(θ)]2 dθ 

Formula for area of a surface
of revolution

 = 2π∫π

0
 (cos θ)(cos θ)√cos2 θ + sin2 θ dθ

 = 2π∫π

0
 cos2 θ dθ Trigonometric identity

 = π∫π

0
 (1 + cos 2θ) dθ Trigonometric identity

 = π [θ +
sin 2θ

2 ]
π

0

 = π2. 

REMARK When using 
Theorem 10.15, check to see 
that the graph of r = f (θ) is 
traced only once on the interval 
α ≤ θ ≤ β. For example, the 
circle r = cos θ is traced only 
once on the interval 0 ≤ θ ≤ π.
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 10.5 Area and Arc Length in Polar Coordinates 735

10.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Area of a Polar Region What should you check 

before applying Theorem 10.13 to find the area of the 
region bounded by the graph of r = f (θ)?

2.  Points of Intersection Explain why finding points 
of intersection of polar graphs may require further analysis 
beyond solving two equations simultaneously.

 Area of a Polar Region In exercises 3–6, write 
an integral that represents the area of the shaded 
region of the figure. Do not evaluate the integral.

 3. r = 4 sin θ  4. r = cos 2θ

 

0
1 2 3

π
2

  

1
0

π
2

 5. r = 3 − 2 sin θ  6. r = 1 − cos 2θ

 

0

π
2

1 2 3 4

  

1 2
0

π
2

 Finding the Area of a Polar Region In 
exercises 7–18, find the area of the region.

 7. Interior of r = 6 sin θ

 8. Interior of r = 3 cos θ

 9. One petal of r = 2 cos 3θ

10. Two petals of r = 4 sin 3θ

11. Two petals of r = sin 8θ

12. Three petals of r = cos 5θ

13. Interior of r = 6 + 5 sin θ (below the polar axis)

14. Interior of r = 9 − sin θ (above the polar axis)

15. Interior of r = 4 + sin θ

16. Interior of r = 1 − cos θ

17. Interior of r2 = 4 cos 2θ

18. Interior of r2 = 6 sin 2θ

 Finding the Area of a Polar Region In 
exercises 19–26, use a graphing utility to graph the 
polar equation. Find the area of the given region 
analytically.

19. Inner loop of r = 1 + 2 cos θ

20. Inner loop of r = 2 − 4 cos θ

21. Inner loop of r = 1 + 2 sin θ

22. Inner loop of r = 4 − 6 sin θ

23. Between the loops of r = 1 + 2 cos θ

24. Between the loops of r = 2(1 + 2 sin θ)
25. Between the loops of r = 3 − 6 sin θ

26. Between the loops of r = 1
2 + cos θ

 Finding Points of Intersection In exercises 
27–34, find the points of intersection of the graphs 
of the equations.

27. r = 1 + cos θ 28. r = 3(1 + sin θ)
 r = 1 − cos θ  r = 3(1 − sin θ)
 

1
0

π
2

  

3 5
0

π
2

29. r = 1 + cos θ 30. r = 2 − 3 cos θ

 r = 1 − sin θ  r = cos θ
 

1
0

π
2

  

1
0

π
2

31. r = 4 − 5 sin θ 32. r = 3 + sin θ

 r = 3 sin θ  r = 2 csc θ

33. r =
θ
2

 34. θ =
π
4

 r = 2  r = 2

Writing In exercises 35 and 36, use a graphing utility to 
graph the polar equations and approximate the points of 
intersection of the graphs. Watch the graphs as they are traced 
in the viewing window. explain why the pole is not a point of 
intersection obtained by solving the equations simultaneously.

35. r = cos θ 36. r = 4 sin θ

 r = 2 − 3 sin θ  r = 2(1 + sin θ)
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736 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

 Finding the Area of a Polar Region Between 
Two Curves In exercises 37–44, use a graphing 
utility to graph the polar equations. Find the area 
of the given region analytically.

37. Common interior of r = 4 sin 2θ and r = 2

38. Common interior of r = 2(1 + cos θ) and r = 2(1 − cos θ)
39. Common interior of r = 3 − 2 sin θ and r = −3 + 2 sin θ

40. Common interior of r = 5 − 3 sin θ and r = 5 − 3 cos θ

41. Common interior of r = 4 sin θ and r = 2

42. Common interior of r = 2 cos θ and r = 2 sin θ

43. Inside r = 2 cos θ and outside r = 1

44. Inside r = 3 sin θ and outside r = 1 + sin θ

Finding the Area of a Polar Region Between Two 
Curves In exercises 45–48, find the area of the region.

45. Inside r = a(1 + cos θ) and outside r = a cos θ

46. Inside r = 2a cos θ and outside r = a

47. Common interior of r = a(1 + cos θ) and r = a sin θ

48. Common interior of r = a cos θ and r = a sin θ, where a > 0

50.  Area The area inside one or more of the three interlocking 
circles r = 2a cos θ, r = 2a sin θ, and r = a is divided into 
seven regions. Find the area of each region.

51.  Conjecture Find the area of the region enclosed by 

 r = a cos(nθ)

  for n = 1, 2, 3, .  .  . . Use the results to make a conjecture 
about the area enclosed by the function when n is even and 
when n is odd.

52. Area Sketch the strophoid

 r = sec θ − 2 cos θ, −
π
2

< θ <
π
2

.

  Convert this equation to rectangular coordinates. Find the area 
enclosed by the loop.

 Finding the Arc Length of a Polar Curve In 
exercises 53–58, find the length of the curve over 
the given interval.

53. r = 8, [0, 
π
6] 54. r = a, [0, 2π]

55. r = 4 sin θ, [0, π] 56. r = 2a cos θ, [−
π
4

, 
π
4]

57. r = 1 + sin θ, [0, 2π]  58. r = 8(1 + cos θ), [0, 
π
3]

Finding the Arc Length of a Polar Curve In exercises 
59– 64, use a graphing utility to graph the polar equation 
over the given interval. use the integration  capabilities of the 
graphing utility to approximate the length of the curve.

59. r = 2θ, [0, 
π
2] 60. r = sec θ, [0, 

π
3]

61. r =
1
θ , [π, 2π] 62. r = eθ, [0, π]

63. r = sin(3 cos θ), [0, π] 64. r = 2 sin(2 cos θ), [0, π]

 Finding the Area of a Surface of 
Revolution In exercises 65–68, find the area of 
the surface formed by revolving the polar equation 
over the given interval about the given line.

 Polar equation Interval axis of revolution

65. r = 6 cos θ 0 ≤ θ ≤ π
2

 Polar axis

66. r = a cos θ 0 ≤ θ ≤ π
2

 θ =
π
2

67. r = eaθ 0 ≤ θ ≤ π
2

 θ =
π
2

68. r = a(1 + cos θ) 0 ≤ θ ≤ π  Polar axis

Finding the Area of a Surface of Revolution In 
exercises 69 and 70, use the integration capabilities of a graphing 
utility to approximate the area of the surface formed by 
revolving the polar equation over the given interval about the 
polar axis.

69. r = 4 cos 2θ, [0, 
π
4] 70. r = θ, [0, π]

eXpLoRInG ConCeptS
Using Different Methods In exercises 71 and 72, 
(a) sketch the graph of the polar equation, (b) determine 
the interval that traces the graph only once, (c) find 
the area of the region bounded by the graph using a 
geometric formula, and (d) find the area of the region 
bounded by the graph using integration.

71. r = 10 cos θ 72. r = 5 sin θ

73.  Think About It Let f (θ) > 0 for all θ and let 
g(θ) < 0 for all θ. Find polar equations r = f (θ) and 
r = g(θ) such that their graphs intersect.

The radiation from a 
transmitting antenna is 
not uniform in all 
directions. The intensity 
from a particular 
antenna is modeled by 
r = a cos2 θ.

(a)  Convert the polar 
equation to
rectangular form.

(b)  Use a graphing utility to graph the model for a = 4 and 
a = 6.

(c)  Find the area of the geographical region between the two 
curves in part (b).

49. Antenna Radiation

hin255/Shutterstock.com
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10.5 Area and Arc Length in Polar Coordinates 737

 74.  HOW DO YOU SEE IT? Which graph, 
traced out only once, has a larger arc length? 
Explain your reasoning.

(a)

0

π
2

2

 (b)

0

π
2

2

 74.  

75.  Surface Area of a Torus Find the surface area of the 
torus generated by revolving the circle given by r = 2 about 
the line r = 5 sec θ.

76.  Surface Area of a Torus Find the surface area of the 
torus generated by revolving the circle given by r = a about 
the line r = b sec θ, where 0 < a < b.

77. Approximating Area Consider the circle

 r = 8 cos θ.

 (a) Find the area of the circle.

 (b)  Complete the table for the areas A of the sectors of the 
circle between θ = 0 and the values of θ in the table.

  
θ 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A

 (c)  Use the table in part (b) to approximate the values of θ for 
which the sector of the circle composes 1

4, 1
2, and 3

4 of the 
total area of the circle.

 (d)  Use a graphing utility to approximate, to two decimal 
places, the angles θ for which the sector of the circle 
composes 14, 12, and 34 of the total area of the circle.

 (e)  Do the results of part (d) depend on the radius of the 
circle? Explain.

78. Approximating Area Consider the circle

 r = 3 sin θ.

 (a) Find the area of the circle.

 (b)  Complete the table for the areas A of the sectors of the 
circle between θ = 0 and the values of θ in the table.

  
θ 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A

 (c)  Use the table in part (b) to approximate the values of θ for 
which the sector of the circle composes 1

8, 1
4, and 1

2 of the 
total area of the circle.

 (d)  Use a graphing utility to approximate, to two decimal 
places, the angles θ for which the sector of the circle 
 composes 18, 14, and 12 of the total area of the circle.

79.  Spiral of Archimedes The curve represented by the 
equation r = aθ, where a is a constant, is called the spiral of 
archimedes.

 (a)  Use a graphing utility to graph r = θ, where θ ≥ 0. What 
happens to the graph of r = aθ as a increases? What 
happens if θ ≤ 0?

 (b)  Determine the points on the spiral r = aθ (a > 0, θ ≥ 0), 
where the curve crosses the polar axis.

 (c)  Find the length of r = θ over the interval 0 ≤ θ ≤ 2π.

 (d)  Find the area under the curve r = θ for 0 ≤ θ ≤ 2π.

80.  Logarithmic Spiral The curve represented by the 
equation r = aebθ, where a and b are constants, is called a 
logarithmic spiral. The figure shows the graph of r = eθ�6, 
−2π ≤ θ ≤ 2π. Find the area of the shaded region.

1 2 3
0

π
2

81.   Area The larger circle in the figure is the graph of r = 1. 
Find the polar equation of the smaller circle such that the shaded 
regions are equal.

 

0

π
2

82. Area Find the area of the circle given by

 r = sin θ + cos θ.

  Check your result by converting the polar equation to 
rectangular form, then using the formula for the area of a circle.

83.  Folium of Descartes A curve called the folium of 
Descartes can be represented by the parametric equations

 x =
3t

1 + t3 and y =
3t2

1 + t3.

 (a) Convert the parametric equations to polar form.

 (b) Sketch the graph of the polar equation from part (a).

 (c)  Use a graphing utility to approximate the area enclosed by 
the loop of the curve.

84.  Arc Length in Polar Form Use the formula for the arc 
length of a curve in parametric form to derive the formula for 
the arc length of a polar curve.
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738 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

10.6 Polar Equations of Conics and Kepler’s Laws

 Analyze and write polar equations of conics.
 Understand and use Kepler’s Laws of planetary motion.

Polar Equations of Conics
In this chapter, you have seen that the rectangular equations of ellipses and hyperbolas 
take simple forms when the origin lies at their centers. As it happens, there are many 
important applications of conics in which it is more convenient to use one of the foci 
as the reference point (the origin) for the coordinate system. Here are two examples.

1. The sun lies at a focus of Earth’s orbit.

2. The light source of a parabolic reflector lies at its focus.

In this section, you will see that the polar equations of conics take simpler forms when 
one of the foci lies at the pole.

The next theorem uses the concept of eccentricity, as defined in Section 10.1, to 
classify the three basic types of conics.

THEOREM 10.16 Classification of Conics by Eccentricity

Let F be a fixed point ( focus) and let D be a fixed line (directrix) in the plane. 
Let P be another point in the plane and let e (eccentricity) be the ratio of the 
distance between P and F to the distance between P and D. The collection of 
all points P with a given eccentricity is a conic.

1. The conic is an ellipse for 0 < e < 1.

2. The conic is a parabola for e = 1.

3. The conic is a hyperbola for e > 1.

A proof of this theorem is given in Appendix A.

In Figure 10.57, note that for each type of conic, the pole corresponds to the fixed 
point (focus) given in the definition.

Directrix

0

PQ

F = (0, 0)

π
2    

P
Q

F = (0, 0)

Directrix

0

π
2    Directrix

0

P

P ′

Q

Q ′
F = (0, 0)

π
2

 Ellipse: 0 < e < 1 Parabola: e = 1 Hyperbola: e > 1

 
PF
PQ

< 1 PF = PQ 
PF
PQ

=
P′F
P′Q′

> 1

 Figure 10.57

The benefit of locating a focus of a conic at the pole is that the equation of the conic 
becomes simpler, as seen in the proof of the next theorem.

Exploration
Graphing Conics Set a 
graphing utility to polar 
mode and enter polar 
equations of the form

r =
a

1 ± b cos θ

or

r =
a

1 ± b sin θ .

As long as a ≠ 0, the graph 
should be a conic. What 
values of a and b produce 
parabolas? What values 
produce ellipses? What 
values produce hyperbolas?
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THEOREM 10.17 Polar Equations of Conics

The graph of a polar equation of the form

r =
ed

1 ± e cos θ  or r =
ed

1 ± e sin θ

is a conic, where e > 0 is the eccentricity and ∣d∣ is the distance
between the focus at the pole and its corresponding directrix.

Proof This is a proof for r = ed�(1 + e cos θ) with d > 0. In Figure 10.58, consider a 
vertical directrix d units to the right of the focus F = (0, 0). If P = (r, θ) is a point on 
the graph of r = ed�(1 + e cos θ), then the distance between P and the  directrix can 
be shown to be

PQ = ∣d − x∣ = ∣d − r cos θ∣ = ∣r(1 + e cos θ)
e

− r cos θ∣ = ∣re∣.
Because the distance between P and the pole is simply PF = ∣r∣, the ratio of PF to PQ is 

PF
PQ

= ∣r∣
∣r�e∣ = ∣e∣ = e

and, by Theorem 10.16, the graph of the  equation must be a conic. The proofs of the 
other cases are similar.  

The four types of equations indicated in Theorem 10.17 can be classified as 
follows, where d > 0.

a. Horizontal directrix above the pole: r =
ed

1 + e sin θ

b. Horizontal directrix below the pole: r =
ed

1 − e sin θ

c. Vertical directrix to the right of the pole: r =
ed

1 + e cos θ

d. Vertical directrix to the left of the pole: r =
ed

1 − e cos θ

Figure 10.59 illustrates these four possibilities for a parabola. Note that for convenience, 
the equation for the directrix is shown in rectangular form.

Directrix
x = −d

r = ed
1 − e cos θ

0

π
2

(d)

Directrix
x = d

r = ed
1 + e cos θ

0

π
2

(c)

Directrix y = −d 

r = ed
1 − e sin θ

0

π
2

(b)

0

r = ed
1 + e sin θ

Directrix y = d

π
2

(a)
The four types of polar equations for a parabola
Figure 10.59

0

Q
θ

F = (0, 0)

Directrix

θ

r

P = (r,   )

d

Figure 10.58
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 Determining a Conic from Its Equation

Sketch the graph of the conic r =
15

3 − 2 cos θ .

Solution To determine the type of conic, rewrite the equation as

 r =
15

3 − 2 cos θ  Write original equation.

 =
5

1 − (2�3) cos θ . 
Divide numerator and 
denominator by 3.

So, the graph is an ellipse with e = 2
3. You can sketch the upper half of the ellipse by 

plotting points from θ = 0 to θ = π, as shown in Figure 10.60. Then, using  symmetry 
with respect to the polar axis, you can sketch the lower half. 

For the ellipse in Figure 10.60, the major axis is horizontal and the vertices lie at 
(15, 0) and (3, π). So, the length of the major axis is 2a = 18. To find the length of 
the minor axis, you can use the equations e = c�a and b2 = a2 − c2 to conclude that

 b2 = a2 − c2 = a2 − (ea)2 = a2(1 − e2).  Ellipse

Because e = 2
3, you have

b2 = 92[1 − (2
3)2] = 45

which implies that b = √45 = 3√5. So, the length of the minor axis is 2b = 6√5.  
A similar analysis for hyperbolas yields

b2 = c2 − a2 = (ea)2 − a2 = a2(e2 − 1).    Hyperbola

 Sketching a Conic from Its Polar Equation

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the graph of the polar equation r =
32

3 + 5 sin θ .

Solution Dividing the numerator and denominator by 3 produces

r =
32�3

1 + (5�3) sin θ .

Because e = 5
3 > 1, the graph is a hyperbola. Because d = 32

5 , the directrix is the line
y = 32

5 . The transverse axis of the hyperbola lies on the line θ = π�2, and the vertices 
occur at

(r, θ) = (4, 
π
2) and (r, θ) = (−16, 

3π
2 ).

Because the length of the transverse axis is 12, you can see that a = 6. To find b, write

b2 = a2(e2 − 1) = 62[(5
3)

2

− 1] = 64.

Therefore, b = 8. Finally, you can use a and b to determine the asymptotes of the 
hyperbola and obtain the sketch shown in Figure 10.61. 

(3,   )π (15, 0)

D
ir

ec
tr

ix
x 

=
 −

15 2

5 10

15r =
3 − 2 cos θ

0

π
2

The graph of the conic is an ellipse 
with e = 2

3.
Figure 10.60

4 8

a = 6
b = 832

5
y =

Directrix

0

π
2

4, )) 2
π

−16,  )) 2
3π

r = 32
3 + 5 sin θ

The graph of the conic is a hyperbola 
with e = 5

3.
Figure 10.61
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10.6 Polar Equations of Conics and Kepler’s Laws 741

Kepler’s Laws
Kepler’s Laws, named after the German astronomer Johannes Kepler, can be used to 
describe the orbits of the planets about the sun.

1. Each planet moves in an elliptical orbit with the sun as a focus.

2. A ray from the sun to the planet sweeps out equal areas of the ellipse in equal times.

3.  The square of the period is proportional to the cube of the mean distance between 
the planet and the sun.*

Although Kepler derived these laws empirically, they were later validated by 
Newton. In fact, Newton was able to show that each law can be deduced from a set of 
universal laws of motion and gravitation that govern the movement of all heavenly 
bodies, including comets and satellites. This is shown in the next example, 
involving the comet named after the English mathematician and physicist Edmund 
Halley (1656–1742).

 Halley’s Comet

Halley’s comet has an elliptical orbit with the sun at one focus and has an 
eccentricity of e ≈ 0.967. The length of the major axis of the orbit is approximately 
35.88 astronomical units (AU). (An astronomical unit is defined as the mean distance 
between Earth and the sun, which is 93 million miles.) Find a polar equation for the 
orbit. How close does Halley’s comet come to the sun?

Solution Using a vertical axis, you can choose an equation of the form

r =
ed

1 + e sin θ .

Because the vertices of the ellipse occur when θ = π�2 and θ = 3π�2, you can 
 determine the length of the major axis to be the sum of the r-values of the vertices, as 
shown in Figure 10.62. That is,

 2a =
0.967d

1 + 0.967
+

0.967d
1 − 0.967

 35.88 ≈ 29.79d. 2a ≈ 35.88

So, d ≈ 1.204 and

ed ≈ (0.967)(1.204) ≈ 1.164.

Using this value in the equation  produces

r =
1.164

1 + 0.967 sin θ

where r is measured in astronomical units. To find the closest point to the sun (the 
focus), you can write 

c = ea ≈ (0.967)(17.94) ≈ 17.35.

Because c is the distance between the focus and the center, the closest point is

 a − c ≈ 17.94 − 17.35

 = 0.59 AU

 ≈ 55,000,000 miles. 

* If Earth is used as a reference with a period of 1 year and a distance of 1 astronomical unit, then the proportionality 
constant is 1. For example, because Mars has a mean distance to the sun of D ≈ 1.524 AU, its period P is D3 = P2. 
So, the period for Mars is P ≈ 1.88 years.

0π
Earth

Sun

Halley's
comet

2
π3

π
2

Not drawn to scale

Figure 10.62

JOHANNES KEPLER (1571–1630)

Kepler formulated his three 
laws from the extensive 
data recorded by Danish 
astronomer Tycho Brahe and 
from direct observation of the 
orbit of Mars.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NYC — All rights reserved. 
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742 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

Kepler’s Second Law states that as a planet moves about the sun, a ray from the 
sun to the planet sweeps out equal areas in equal times. This law can also be applied to 
comets or asteroids with elliptical orbits. For example, Figure 10.63 shows the orbit of 
the asteroid Apollo about the sun. Applying Kepler’s Second Law to this asteroid, you 
know that the closer it is to the sun, the greater its velocity, because a short ray must be 
moving quickly to sweep out as much area as a long ray.

Sun

  

Sun

  

Sun

 A ray from the sun to the asteroid Apollo sweeps out equal areas in equal times.
 Figure 10.63

 The Asteroid Apollo

The asteroid Apollo has a period of about 661 Earth days, and its orbit is approximated 
by the ellipse

r =
1

1 + (5�9) cos θ =
9

9 + 5 cos θ

where r is measured in astronomical units. How long does it take Apollo to move from 
the position θ = −π�2 to θ = π�2, as shown in Figure 10.64?

Solution Begin by finding the area swept out as θ increases from −π�2 to π�2.

 A =
1
2∫

β

α
 r2 dθ Formula for area of a polar graph

 =
1
2∫

π�2

−π�2
 ( 9

9 + 5 cos θ)
2

 dθ

Using the substitution u = tan(θ�2), as discussed in Section 8.7, you obtain

A =
81
112[

−5 sin θ
9 + 5 cos θ +

18

√56
 arctan 

√56 tan(θ�2)
14 ]

π�2

−π�2
≈ 0.90429.

Because the major axis of the ellipse has length 2a = 81�28 and the eccentricity is 
e = 5�9, you can determine that

b = a√1 − e2 =
9

√56
.

So, the area of the ellipse is

Area of ellipse = πab = π(81
56)(

9

√56) ≈ 5.46507.

Because the time required to complete the orbit is 661 days, you can apply Kepler’s 
Second Law to conclude that the time t required to move from the position θ = −π�2 
to θ = π�2 is

t
661

=
area of elliptical segment

area of ellipse
≈

0.90429
5.46507

which implies that t ≈ 109 days. 

1

Sun

Earth

Apollo

0

π
2

=
2
πθ

= −
2
πθ

Figure 10.64
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 10.6 Polar Equations of Conics and Kepler’s Laws 743

10.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Classification of Conics Identify each conic using 

eccentricity.

 (a) r =
4

1 + 3 sin θ  (b) r =
7

1 − cos θ

 (c) r =
8

6 + 5 cos θ  (d) r =
3

2 − 3 sin θ

2.  Comparing Conics Without graphing, how are the 
graphs of the following conics different? Explain.

 r =
1

1 + sin θ  and r =
1

1 − sin θ

Graphing a Conic In Exercises 3 and 4, use a graphing 
utility to graph the polar equation when (a) e = 1, (b) e = 0.5, 
and (c) e = 1.5. Identify the conic.

3. r =
2e

1 + e cos θ  4. r =
2e

1 − e sin θ

Writing In Exercises 5 and 6, consider the polar equation

 r =
4

1 + e sin θ.

5.  Use a graphing utility to graph the equation for e = 0.1,
e = 0.25, e = 0.5, e = 0.75, and e = 0.9. Identify the conic 
and discuss the change in its shape as e → 1− and e → 0+.

6.  Use a graphing utility to graph the equation for e = 1.1,
e = 1.5, and e = 2. Identify the conic and discuss the change in 
its shape as e → 1+ and e →∞.

Matching In Exercises 7–12, match the polar equation with 
its correct graph. [The graphs are labeled (a), (b), (c), (d), (e), 
and (f ).]

(a) 

0
3

π

2
π3

π
2

 (b) 

0π
4 6

2
π3

π
2

(c) 

0π
2 4 6

2
π3

π
2

 (d) 

0π
1 3 4

2
π3

π
2

(e) 

0π
1 3

2
π3

π
2

 (f ) 

0π
1 2

2
π3

π
2

 7. r =
6

1 − cos θ   8. r =
2

2 − cos θ

 9. r =
3

1 − 2 sin θ  10. r =
2

1 + sin θ

11. r =
6

2 − sin θ  12. r =
2

2 + 3 cos θ

 Identifying and Sketching a Conic In 
Exercises 13–22, find the eccentricity and the 
distance from the pole to the directrix of the conic. 
Then identify the conic and sketch its graph. Use a 
graphing utility to confirm your results.

13. r =
1

1 − cos θ  14. r =
5

5 − 3 cos θ

15. r =
7

4 + 8 sin θ  16. r =
4

1 + cos θ

17. r =
6

−2 + 3 cos θ  18. r =
10

5 + 4 sin θ

19. r =
6

2 + cos θ  20. r =
−6

3 + 7 sin θ

21. r =
300

−12 + 6 sin θ  22. r =
24

25 + 25 cos θ

Identifying a Conic In Exercises 23– 26, use a graphing 
utility to graph the polar equation. Identify the graph and find 
its eccentricity.

23. r =
3

−4 + 2 sin θ  24. r =
−15

2 + 8 sin θ

25. r =
−10

1 − cos θ  26. r =
6

6 + 7 cos θ

Comparing Graphs In Exercises 27–30, use a graphing 
utility to graph the conic. Describe how the graph differs from 
the graph in the indicated exercise.

27. r =
4

1 + cos(θ − π�3) (See Exercise 16.)

28. r =
10

5 + 4 sin(θ − π�4) (See Exercise 18.)

29. r =
6

2 + cos(θ + π�6) (See Exercise 19.)

30. r =
−6

3 + 7 sin(θ + 2π�3) (See Exercise 20.)
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744 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

31.  Rotated Ellipse Write the equation for the ellipse rotated 
π�6 radian clockwise from the ellipse

 r =
8

8 + 5 cos θ .

32.  Rotated Parabola Write the equation for the parabola 
rotated π�4 radian counterclockwise from the parabola

 r =
9

1 + sin θ .

Finding a Polar Equation In Exercises 33–38, find a polar 
equation for the conic with its focus at the pole and the given 
eccentricity and directrix. (For convenience, the equation for 
the directrix is given in rectangular form.)

 Conic Eccentricity Directrix

33. Parabola e = 1 x = −3

34. Parabola e = 1 y = 4

35. Ellipse e = 1
4 y = 1

36. Ellipse e = 5
6 y = −2

37. Hyperbola e = 4
3 x = 2

38. Hyperbola e = 3
2 x = −1

Finding a Polar Equation In Exercises 39– 44, find a polar 
equation for the conic with its focus at the pole and the given 
vertex or vertices.

 Conic Vertex or Vertices

39. Parabola (1, −
π
2)

40. Parabola (5, π)
41. Ellipse (2, 0), (8, π)

42. Ellipse (2, 
π
2), (4, 

3π
2 )

43. Hyperbola (1, 
3π
2 ), (9, 

3π
2 )

44. Hyperbola (2, 0), (10, 0)

eXpLoRInG ConCeptS
45.  Eccentricity Consider two ellipses, where the foci 

of the first ellipse are farther apart than the foci of the 
second ellipse. Is the eccentricity of the first ellipse 
always greater than the eccentricity of the second 
ellipse? Explain.

46.  Distance Describe what happens to the distance 
between the directrix and the center of an ellipse when 
the foci remain fixed and e approaches 0.

47.  Finding a Polar Equation Find a polar equation for the 
ellipse with the following characteristics.

 Focus: (0, 0)
 Eccentricity: e = 1

2

 Directrix: r = 4 sec θ

 48.  HOW DO YOU SEE IT? Identify the conic 
in the graph and give the possible values for the 
eccentricity.

(a)

0

π
2

1 2

 (b)

0

π
2

432

(c)

0

π
2

764321

(d)

0

π
2

431

 48.  

49. Ellipse Show that the polar equation for 
x2

a2 +
y2

b2 = 1 is 

 r2 =
b2

1 − e2 cos2 θ . Ellipse

50. Hyperbola Show that the polar equation for 
x2

a2 −
y2

b2 = 1 is

 r2 =
−b2

1 − e2 cos2 θ . Hyperbola

Finding a Polar Equation In Exercises 51–54, use the 
results of Exercises 49 and 50 to write the polar form of the 
equation of the conic.

51. Ellipse: focus at (4, 0); vertices at (5, 0), (5, π)
52. Hyperbola: focus at (5, 0); vertices at (4, 0), (4, π)

53. 
x2

9
−

y2

16
= 1

54. 
x2

4
+ y2 = 1

Area of a Region In Exercises 55–58, use the integration 
capabilities of a graphing utility to approximate the area of the 
region bounded by the graph of the polar equation.

55. r =
3

2 − cos θ

56. r =
9

4 + cos θ

57. r =
2

7 − 6 sin θ

58. r =
3

6 + 5 sin θ
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10.6 Polar Equations of Conics and Kepler’s Laws 745

59.  Explorer 18 On November 27, 1963, the United States 
launched Explorer 18. Its low and high points above the surface 
of Earth were approximately 119 miles and 123,000 miles (see 
figure). The center of Earth is a focus of the orbit. Find the 
polar equation for the orbit and find the distance between the 
surface of Earth and the satellite when θ = 60°. (Assume that 
the radius of Earth is 4000 miles.)

0

a

60°r

Earth

Explorer 18

Not drawn to scale

90°

60.  Planetary Motion The planets travel in elliptical orbits 
with the sun as a focus, as shown in the figure.

0

a

r

Sun

Planet

θ

Not drawn to scale

π
2

 (a) Show that the polar equation of the orbit is given by

  r =
(1 − e2)a

1 − e cos θ

  where e is the eccentricity.

 (b)  Show that the minimum distance ( perihelion) from the 
sun to the planet is r = a(1 − e) and the maximum 
 distance (aphelion) is r = a(1 + e).

Planetary Motion In Exercises 61–64, use Exercise 60 to 
find the polar equation of the elliptical orbit of the planet and 
the perihelion and aphelion distances.

61. Earth

 a = 1.496 × 108 kilometers

 e = 0.0167

62. Saturn

 a = 1.434 × 109 kilometers

 e = 0.0565

63. Neptune

 a = 4.495 × 109 kilometers

 e = 0.0113

64. Mercury

 a = 5.791 × 107 kilometers

 e = 0.2056

66.  Comet Hale-Bopp The comet Hale-Bopp has an elliptical 
orbit with the sun at one focus and has an eccentricity of 
e ≈ 0.995. The length of the major axis of the orbit is 
approximately 500 astronomical units. (a) Find the length of 
its minor axis. (b) Find a polar equation for the orbit. (c) Find 
the perihelion and aphelion distances.

Eccentricity In Exercises 67 and 68, let r0 represent the 
distance from a focus to the nearest vertex, and let r1 represent 
the distance from the focus to the farthest vertex.

67. Show that the eccentricity of an ellipse can be written as

 e =
r1 − r0

r1 + r0
. 

 Then show that 
r1

r0
=

1 + e
1 − e

.

68. Show that the eccentricity of a hyperbola can be written as

 e =
r1 + r0

r1 − r0
.

 Then show that 
r1

r0
=

e + 1
e − 1

.

 In Exercise 63, the polar 
equation for the elliptical 
orbit of Neptune was 
found. Use the equation 
and a computer algebra 
system to perform each 
of the following.

(a)  Approximate the 
area swept out by a 
ray from the sun to the 
planet as θ increases from 0 to π�9. Use this result to 
determine the number of years required for the planet to 
move through this arc when the period of one revolution 
around the sun is 165 years.

(b)  By trial and error, approximate the angle α such that the 
area swept out by a ray from the sun to the planet as θ 
increases from π  to α equals the area found in part (a) 
(see figure). Does the ray sweep through a larger or 
smaller angle than in part (a) to generate the same area? 
Why is this the case?

−α π

0

π
2

=
9
πθ

(c)  Approximate the distances the planet traveled in parts 
(a) and (b). Use these distances to approximate the 
average number of kilometers per year the planet 
traveled in the two cases.

65. Planetary Motion

NASA
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Matching In Exercises 1–6, match the equation with its 
graph. [The graphs are labeled (a), (b), (c), (d), (e), and (f ).]

(a) 

−2 2 4
−2

−4

2

4

x

y  (b) 

x

−4

−4−8−12

4

y

(c) 

x
−2−4

−4

2

2

4

4

y  (d) 

x
−2−4

−4

2 4

4

y

(e) 

x
−2−4

−4

2 4

4

y  (f ) 

−2 2 4
−2

2

4

6

x

y

 1. 4x2 + y2 = 4 2. 4x2 − y2 = 4

 3. y2 = −4x 4. y2 − 4x2 = 4

 5. x2 + 4y2 = 4 6. x2 = 4y

Identifying a Conic In Exercises 7–14, identify the conic, 
analyze the equation (center, radius, vertices, foci, eccentricity, 
directrix, and asymptotes, if possible), and sketch its graph. 
Use a graphing utility to confirm your results.

 7. x2 + y2 − 2x − 8y − 8 = 0

 8. y2 − 12y − 8x + 20 = 0

 9. 3x2 − 2y2 + 24x + 12y + 24 = 0

10. 5x2 + y2 − 20x + 19 = 0

11. 16x2 + 16y2 − 16x + 24y − 3 = 0

12. −4x2 + 3y2 − 16x − 18y + 10 = 0

13. x2 + 10x − 12y + 13 = 0

14. 9x2 + 25y2 + 18x − 100y − 116 = 0

Finding the Standard Equation of a Parabola In 
Exercises 15 and 16, find the standard form of the equation of 
the parabola with the given characteristics.

15. Vertex: (7, 0) 16. Vertex: (2, 6)
 Directrix: x = 5  Focus: (2, 4)

Finding the Standard Equation of an Ellipse In 
Exercises 17–20, find the standard form of the equation of the 
ellipse with the given characteristics.

17. Center: (0, 1) 18. Center: (0, 0)
 Focus: (4, 1) Major axis: vertical

 Vertex: (6, 1)  Points on the ellipse: 
(1, 2), (2, 0)

19. Vertices: (3, 1), (3, 7)  20. Foci: (0, ±7)
 Eccentricity: 2

3 Major axis length: 20

Finding the Standard Equation of a Hyperbola In 
Exercises 21–24, find the standard form of the equation of the 
hyperbola with the given characteristics.

21. Vertices: (0, ±8)  22. Vertices: (±2, 0)
 Asymptotes: y = ±2x Asymptotes: y = ±32x

23. Vertices: (±7, −1)  24. Center: (0, 0)
 Foci: (±9, −1) Vertex: (0, 3)
   Focus: (0, 6)

25.  Satellite Antenna A cross section of a large 
parabolic antenna is modeled by the graph of y = x2�200, 
−100 ≤ x ≤ 100. The receiving and transmitting equipment 
is positioned at the focus. 

 (a) Find the coordinates of the focus. 

 (b) Find the surface area of the antenna.

26. Using an Ellipse Consider the ellipse 
x2

25
+

y2

9
= 1.

 (a)  Find the area of the region bounded by the ellipse.

 (b)  Find the volume of the solid generated by revolving the 
region about its major axis.

Using Parametric Equations In Exercises 27–34, sketch 
the curve represented by the parametric equations (indicate 
the orientation of the curve), and write the corresponding 
rectangular equation by eliminating the parameter.

27. x = 1 + 8t, y = 3 − 4t  28. x = t − 2, y = t2 − 1

29. x = √t + 1, y = t − 3 30. x = et − 1, y = e3t

31. x = 6 cos θ, y = 6 sin θ

32. x = 2 + 5 cos t, y = 3 + 2 sin t

33. x = 2 + sec θ, y = 3 + tan θ

34. x = 5 sin3 θ, y = 5 cos3 θ

Finding Parametric Equations In Exercises 35 and 
36, find two different sets of parametric equations for the 
rectangular equation.

35. y = 4x + 3 36. y = x2 − 2

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



  Review Exercises 747

37.  Rotary Engine The rotary engine was developed by Felix 
Wankel in the 1950s. It features a rotor that is a modified 
equilateral triangle. The rotor moves in a chamber that, in two 
dimensions, is an epitrochoid. Use a graphing utility to graph 
the chamber modeled by the parametric equations

 x = cos 3θ + 5 cos θ

 and

 y = sin 3θ + 5 sin θ.

38.  Serpentine Curve Consider the parametric equations 
x = 2 cot θ and y = 4 sin θ cos θ, 0 < θ < π.

 (a)  Use a graphing utility to graph the curve.

 (b)  Eliminate the parameter to show that the rectangular 
equation of the serpentine curve is (4 + x2)y = 8x.

Finding Slope and Concavity In Exercises 39– 46, find 
dy�dx and d2y�dx2, and find the slope and concavity (if 
possible) at the given value of the parameter.

 Parametric Equations Parameter

39. x = 1 + 6t, y = 4 − 5t t = 3

40. x = t − 6, y = t2 t = 5

41. x =
1
t
, y = t2 t = −2

42. x =
1

√t
+ 1, y = 3 − 2t t = 4

43. x = et, y = e−t t = 1

44. x = 5 + cos θ, y = 3 + 4 sin θ θ =
π
6

45. x = 10 cos θ, y = 10 sin θ θ =
π
4

46. x = cos4 θ, y = sin4 θ θ = −
π
3

Finding an Equation of a Tangent Line In Exercises 47 
and 48, (a) use a graphing utility to graph the curve represented 
by the parametric equations, (b) use a graphing utility to find 
dx�dθ, dy�dθ, and dy�dx at the given value of the parameter, 
(c) find an equation of the tangent line to the curve at the given 
value of the parameter, and (d) use a graphing utility to graph 
the curve and the tangent line from part (c).

 Parametric Equations Parameter

47. x = cot θ, y = sin 2θ θ =
π
6

48. x =
1
4

 tan θ, y = 6 sin θ θ =
π
3

Horizontal and Vertical Tangency In Exercises 49–52, 
find all points (if any) of horizontal and vertical tangency to the 
curve. Use a graphing utility to confirm your results.

49. x = 5 − t, y = 2t2

50. x = t + 2, y = t3 − 2t

51. x = 2 + 2 sin θ, y = 1 + cos θ

52. x = 2 − 2 cos θ, y = 2 sin 2θ

Arc Length In Exercises 53 and 54, find the arc length of 
the curve on the given interval.

 Parametric Equations Interval

53. x = t2 + 1, y = 4t3 + 3 0 ≤ t ≤ 2

54. x = 7 cos θ, y = 7 sin θ 0 ≤ θ ≤ π

Surface Area In Exercises 55 and 56, find the area of the 
surface generated by revolving the curve about (a) the x-axis 
and (b) the y-axis.

55. x = 4t, y = 3t + 1, 0 ≤ t ≤ 1

56. x = 2 cos θ, y = 2 sin θ, 0 ≤ θ ≤ π
2

Area In Exercises 57 and 58, find the area of the region.

57. x = 3 sin θ 58. x = 2 cos θ

 y = 2 cos θ  y = sin θ

 −
π
2

≤ θ ≤ π
2

  0 ≤ θ ≤ π

 

−1−2−3 1 2 3
−1

−2

1

3

4

x

y   

−1−2−3 1 2 3
−1

−2

−3

2

3

x

y

Polar-to-Rectangular Conversion In Exercises 59–62, 
the polar coordinates of a point are given. Plot the point and 
find the corresponding rectangular coordinates for the point.

59. (5, 
3π
2 ) 60. (−6, 

5π
6 )

61. (√7, 3.25) 62. (−2, −2.45)

Rectangular-to-Polar Conversion In Exercises 63–66, 
the rectangular coordinates of a point are given. Plot the 
point and find two sets of polar coordinates for the point for 
0 ≤ θ < 2π.

63. (4, −4) 64. (0, −7)
65. (−1, 3) 66. (−√3, −√3)

Rectangular-to-Polar Conversion In Exercises 67–72, 
convert the rectangular equation to polar form and sketch its 
graph.

67. x2 + y2 = 25 68. x2 − y2 = 4

69. y = 9 70. x = 6

71. −x + 4y − 3 = 0 72. x2 = 4y
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748 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

Polar-to-Rectangular Conversion In Exercises 73–78, 
convert the polar equation to rectangular form and sketch its 
graph.

 73. r = 6 cos θ  74. r = 10

 75. r = −4 sec θ  76. r = 3 csc θ

 77. θ =
3π
4

  78. r = −2 sec θ tan θ

Graphing a Polar Equation In Exercises 79–82, use a 
graphing utility to graph the polar equation. Find an interval 
for θ over which the graph is traced only once.

 79. r =
3π
2

 sin 3θ  80. r = 2 sin θ cos2 θ

 81. r = 4 cos 2θ sec θ  82. r = 4(sec θ − cos θ)

Horizontal and Vertical Tangency In Exercises 83 and 
84, find the points of horizontal and vertical tangency (if any) 
to the polar curve.

 83. r = 1 − cos θ  84. r = 3 tan θ

Tangent Lines at the Pole In Exercises 85 and 86, sketch a 
graph of the polar equation and find the tangent lines at the pole.

 85. r = 4 sin 3θ  86. r = 3 cos 4θ

Sketching a Polar Graph In Exercises 87–96, sketch a 
graph of the polar equation.

 87. r = 6  88. θ =
π
10

 89. r = −sec θ  90. r = 5 csc θ

 91. r = 4 − 3 cos θ  92. r = 3 + 2 sin θ

 93. r = 4θ  94. r = −3 cos 2θ

 95. r2 = 4 sin 2θ  96. r2 = 9 cos 2θ

Finding the Area of a Polar Region In Exercises 97–100, 
find the area of the region.

 97. One petal of r = 3 cos 5θ

 98. One petal of r = 2 sin 6θ

 99. Interior of r = 2 + cos θ

100. Interior of r = 5(1 − sin θ)

Finding Points of Intersection In Exercises 101 and 102, 
find the points of intersection of the graphs of the equations.

101. r = 1 − cos θ 102. r = 1 + sin θ

  r = 1 + sin θ   r = 3 sin θ

Finding the Area of a Polar Region In Exercises  
103–108, use a graphing utility to graph the polar equation. 
Find the area of the given region analytically.

103. Inner loop of r = 3 − 6 cos θ

104. Inner loop of r = 4 + 8 sin θ

105. Between the loops of r = 3 − 6 cos θ

106. Between the loops of r = 4 + 8 sin θ

107. Common interior of r = 5 − 2 sin θ and r = −5 + 2 sin θ

108. Common interior of r = 4 cos θ and r = 2

Finding the Arc Length of a Polar Curve In Exercises 
109 and 110, find the length of the curve over the given interval.

  Polar Equation Interval

109. r = 5 cos θ [π2, π]
110. r = 3(1 − cos θ) [0, π]

Finding the Area of a Surface of Revolution In 
Exercises 111 and 112, find the area of the surface formed by 
revolving the polar equation over the given interval about the 
given line.

 Polar Equation Interval Axis of Revolution

111. r = 2 sin θ 0 ≤ θ ≤ π  Polar axis

112. r = 2 sin θ 0 ≤ θ ≤ π
2

 θ =
π
2

Identifying and Sketching a Conic In Exercises  
113–118, find the eccentricity and the distance from the pole to 
the directrix of the conic. Then identify the conic and sketch its 
graph. Use a graphing utility to confirm your results.

113. r =
6

1 − sin θ  114. r =
2

1 + cos θ

115. r =
6

3 + 2 cos θ  116. r =
4

5 − 3 sin θ

117. r =
4

2 − 3 sin θ  118. r =
8

2 − 5 cos θ

Finding a Polar Equation In Exercises 119–122, find a 
polar equation for the conic with its focus at the pole and the 
given eccentricity and directrix. (For convenience, the equation 
for the directrix is given in rectangular form.)

 Conic Eccentricity Directrix

119. Parabola e = 1 x = 5

120. Ellipse e =
3
4

 y = −2

121. Hyperbola e = 3 y = 3

122. Hyperbola e =
5
2

 x = −1

Finding a Polar Equation In Exercises 123–126, find a 
polar equation for the conic with its focus at the pole and the 
given vertex or vertices.

 Conic Vertex or Vertices

123. Parabola (2, 
π
2)

124. Parabola (3, π)
125. Ellipse (5, 0), (1, π)
126. Hyperbola (1, 0), (7, 0)
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  P.S. Problem Solving 749

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Using a Parabola Consider the parabola

 x2 = 4y

 and the focal chord

 y = 3
4x + 1.

 (a)  Sketch the graph of the parabola and the focal chord.

 (b)  Show that the tangent lines to the parabola at the endpoints 
of the focal chord intersect at right angles.

 (c)  Show that the tangent lines to the parabola at the endpoints 
of the focal chord intersect on the directrix of the parabola.

2.  Using a Parabola Consider the parabola x2 = 4py and one 
of its focal chords.

 (a)  Show that the tangent lines to the parabola at the endpoints 
of the focal chord intersect at right angles.

 (b)  Show that the tangent lines to the parabola at the endpoints 
of the focal chord intersect on the directrix of the parabola.

3.  Proof Prove Theorem 10.2, Reflective Property of a Parabola, 
as shown in the figure.

x

P

F

y

4.  Flight Paths An air traffic controller spots two planes at the 
same altitude flying toward each other (see figure). Their flight 
paths are 20° and 315°. One plane is 150 miles from point P 
with a speed of 375 miles per hour. The other is 190 miles from 
point P with a speed of 450 miles per hour.

y

x
P

45°

20°

190 mi
150 mi

 (a)  Find parametric equations for the path of each plane where 
t is the time in hours, with t = 0 corresponding to the time 
at which the air traffic controller spots the planes.

 (b)  Use the result of part (a) to write the distance between the 
planes as a function of t.

 (c)  Use a graphing utility to graph the function in part (b). 
When will the distance between the planes be minimum? If 
the planes must keep a separation of at least 3 miles, is the 
requirement met?

5.  Strophoid The curve given by the parametric equations 

 x(t) =
1 − t2

1 + t2 and y(t) =
t(1 − t2)
1 + t2

 is called a strophoid.

 (a) Find a rectangular equation of the strophoid.

 (b) Find a polar equation of the strophoid.

 (c) Sketch a graph of the strophoid.

 (d) Find the equations of the two tangent lines at the origin.

 (e)  Find the points on the graph at which the tangent lines are 
horizontal.

6.  Finding a Rectangular Equation Find a rectangular 
equation of the portion of the cycloid given by the parametric 
equations x = a(θ − sin θ) and y = a(1 − cos θ), 0 ≤ θ ≤ π, 
as shown in the figure.

x
a

2a

πO

y

7. Cornu Spiral Consider the cornu spiral given by

 x(t) = ∫t

0
 cos 

πu2

2
 du and y(t) = ∫t

0
 sin 

πu2

2
 du.

 (a)  Use a graphing utility to graph the spiral over the interval 
−π ≤ t ≤ π.

 (b)  Show that the cornu spiral is symmetric with respect to the 
origin.

 (c)  Find the length of the cornu spiral from t = 0 to t = a. 
What is the length of the spiral from t = −π  to t = π?

8.  Using an Ellipse Consider the region bounded by the ellipse

 
x2

a2 +
y2

b2 = 1

 with eccentricity e = c�a.

 (a)  Show that the solid (oblate spheroid) generated by revolving 
the region about the minor axis of the ellipse has a volume 
of V = 4π2b�3 and a surface area of

  S = 2πa2 + π(b2

e ) ln(1 + e
1 − e).

 (b)  Show that the solid (prolate spheroid) generated by 
revolving the region about the major axis of the ellipse has 
a volume of V = 4πab2�3 and a surface area of

  S = 2πb2 + 2π(ab
e ) arcsin e.
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750 Chapter 10 Conics, Parametric Equations, and Polar Coordinates

 9.  Area Let a and b be positive constants. Find the area of the 
region in the first quadrant bounded by the graph of the polar 
equation 

 r =
ab

(a sin θ + b cos θ), 0 ≤ θ ≤ π
2

.

10.  Arc Length Consider the logarithmic spiral

 r = eaθ

  where a is a constant greater than 0 (see figure). Find the arc 
length from the point (1, 0) to the pole. Notice that the graph 
of the curve makes infinitely many rotations to reach the pole.

π
2

0
(1, 0)

r = eaθ

  

x

−1

1

−1 1

(−1, 0) (1, 0)

y

 Figure for 10 Figure for 11

11.  Finding a Polar Equation Determine the polar equation 
of the set of all points (r, θ), the product of whose distances 
from the points (1, 0) and (−1, 0) is equal to 1, as shown in 
the figure.

12.  Arc Length A particle is moving along the path described 
by the parametric equations

 x =
1
t
 and y =

sin t
t

  for 1 ≤ t < ∞, as shown in the figure. Find the length of this 
path.

x
1

1

−1

y

13.  Finding a Polar Equation Four dogs are located at the 
corners of a square with sides of length d. The dogs all move 
counterclockwise at the same speed directly toward the next 
dog, as shown in the figure. Find the polar equation of a dog’s 
path as it spirals toward the center of the square.

d

d d

d

14. Using a Hyperbola Consider the hyperbola 

 
x2

a2 −
y2

b2 = 1

  with foci F1 and F2, as shown in the figure. Let T be the 
tangent line at a point M on the hyperbola. Show that incoming 
rays of light aimed at one focus are reflected by a hyperbolic 
mirror toward the other focus.

x
F1 F2

M

T ab

y   

xa

x = 2a

cO

PA

B

θ

y

 Figure for 14 Figure for 15

15.  Cissoid of Diocles Consider a circle of radius a tangent 
to the y-axis and the line x = 2a, as shown in the figure. Let A 
be the point where the segment OB intersects the circle, where 
point B lies on the line x = 2a. The cissoid of Diocles consists 
of all points P such that OP = AB.

 (a) Find a polar equation of the cissoid.

 (b)  Find a set of parametric equations for the cissoid that does 
not contain trigonometric functions.

 (c) Find a rectangular equation of the cissoid.

16.  Butterfly Curve Use a graphing utility to graph the curve 
shown in the figure below. The curve is given by

 r = ecos θ − 2 cos 4θ + sin5 
θ
12

.

 Over what interval must θ vary to produce the curve?

17.  Graphing Polar Equations Use a graphing utility to 
graph the polar equation r = cos 5θ + n cos θ for 0 ≤ θ < π  
and for the integers n = −5 to n = 5. What values of n 
produce the “heart” portion of the curve? What values of n 
produce the “bell” portion? (This curve, created by Michael 
W. Chamberlin, appeared in The College Mathematics 
Journal.)

 FoR FURThER InFoRmATIon For more information on 
this curve, see the article “A Study in Step Size” by Temple H. Fay 
in Mathematics Magazine. To view this article, go to  
MathArticles.com.
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752 Chapter 11 Vectors and the Geometry of Space

11.1 Vectors in the Plane

 Write the component form of a vector.
 Perform vector operations and interpret the results geometrically.
 Write a vector as a linear combination of standard unit vectors.

Component Form of a Vector
Many quantities in geometry and physics, such as area, volume, temperature, mass, and 
time, can be characterized by a single real number that is scaled to appropriate units of 
measure. These are called scalar quantities, and the real number associated with each 
is called a scalar.

Other quantities, such as force, velocity, and acceleration, involve both magnitude 
and direction and cannot be characterized completely by a single real number. A directed 
line segment is used to represent such a quantity, as shown in Figure 11.1. The 
directed line segment PQ

\

 has initial point P and terminal point Q, and its length (or 
magnitude) is denoted by �PQ

\

�. Directed line segments that have the same length and 
direction are equivalent, as shown in Figure 11.2. The set of all directed line  segments 
that are equivalent to a given directed line segment PQ

\

 is a vector in the plane and is 
denoted by 

v = PQ
\

.

In typeset material, vectors are  usually denoted by lowercase, boldface letters such as 
u, v, and w. When written by hand, however,  vectors are often denoted by letters with 
arrows above them, such as →u , →v , and →w.

Be sure you understand that a vector represents a set of directed line segments 
(each having the same length and direction). In practice, however, it is common not to 
distinguish between a vector and one of its representatives.

 Vector Representation: Directed Line Segments

Let v be represented by the directed line segment from (0, 0) to (3, 2), and let u be 
represented by the directed line segment from (1, 2) to (4, 4). Show that v and u are 
equivalent.

Solution Let P(0, 0) and Q(3, 2) be the initial and terminal points of v, and let 
R(1, 2) and S(4, 4) be the initial and terminal points of u, as shown in Figure 11.3. You 
can use the Distance Formula to show that PQ

\

 and RS
\

 have the same length.

 �PQ
\

� = √(3 − 0)2 + (2 − 0)2 = √13

 �RS
\

� = √(4 − 1)2 + (4 − 2)2 = √13

Both line segments have the same direction, 

1

1

2

2

3

3

4

4
x

(4, 4)

(1, 2) (3, 2)

(0, 0)P

R
Q

S

u

v

y

The vectors u and v are equivalent.
Figure 11.3

 
because they both are directed toward the  
upper right on lines having the same slope.

Slope of PQ
\

=
2 − 0
3 − 0

=
2
3

and

Slope of RS
\

=
4 − 2
4 − 1

=
2
3

Because PQ
\

 and RS
\

 have the same length  
and direction, you can conclude that the two
vectors are equivalent. That is, v and u are  
equivalent. 

QP

Terminal
point

P

Initial
point

Q

A directed line segment
Figure 11.1

Equivalent directed line segments
Figure 11.2
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11.1 Vectors in the Plane 753

The directed line segment whose initial point is the origin is often the most 
 convenient representative of a set of equivalent directed line segments such as those 
shown in Figure 11.3. This representation of v is said to be in standard position. A 
directed line segment whose initial point is the origin can be uniquely represented by 
the coordinates of its terminal point Q(v1, v2), as shown in Figure 11.4. In the next 
definition, note the difference in the notation between the component form of a vector 
v = 〈v1, v2〉 and the point (v1, v2).

Definition of Component Form of a Vector in the Plane

If v is a vector in the plane whose initial point is the origin and whose terminal 
point is (v1, v2), then the component form of v is v = 〈v1, v2〉. The coordinates 
v1 and v2 are called the components of v. If both the initial point and the 
terminal point lie at the origin, then v is called the zero vector and is denoted 
by 0 = 〈0, 0〉.

This definition implies that two vectors u = 〈u1, u2〉 and v = 〈v1, v2〉 are equal if 
and only if u1 = v1 and u2 = v2.

The procedures listed below can be used to convert directed line segments to 
component form or vice versa.

1.  If P( p1, p2) and Q(q1, q2) are the initial and terminal points of a directed line 
segment, then the component form of the vector v represented by PQ

\

 is 

〈v1, v2〉 = 〈q1 − p1, q2 − p2〉.

  Moreover, from the Distance Formula, you can see that the length (or magnitude) 
of v is

  �v� = √(q1 − p1)2 + (q2 − p2)2   Length of a vector

  = √v1
2 + v2

2.

2.  If v = 〈v1, v2〉, then v can be represented by the directed line segment, in standard 
position, from P(0, 0) to Q(v1, v2).

The length of v is also called the norm of v. If �v� = 1, then v is a unit vector. 
Moreover, �v� = 0 if and only if v is the zero vector 0.

 Component Form and Length of a Vector

Find the component form and length of the vector v that has initial point (3, −7) and 
terminal point (−2, 5).

Solution Let P(3, −7) = ( p1, p2) and Q(−2, 5) = (q1, q2). Then the components 
of v = 〈v1, v2〉 are

v1 = q1 − p1 = −2 − 3 = −5

and

v2 = q2 − p2 = 5 − (−7) = 12.

So, as shown in Figure 11.5, v = 〈−5, 12〉, and the length of v is

 �v� = √(−5)2 + 122

 = √169

 = 13. 

x
1 2 3 4

4

3

2

1

(v1, v2)

(0, 0)

Q

P

v

v = 〈v1, v2〉

y

A vector in standard position
Figure 11.4

x
−6 −4 −2 2 4 6

6

4

−2

−4

−6

−8

Q (−2, 5)

P (3, −7)

v

y

Component form of v: v = 〈−5, 12〉
Figure 11.5
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754 Chapter 11 Vectors and the Geometry of Space

Vector Operations

Definitions of Vector Addition and Scalar Multiplication

Let u = 〈u1, u2〉 and v = 〈v1, v2〉 be vectors and let c be a scalar.

1. The vector sum of u and v is the vector u + v = 〈u1 + v1, u2 + v2〉.
2. The scalar multiple of c and u is the vector

cu = 〈cu1, cu2〉.

3. The negative of v is the vector 

−v = (−1)v = 〈−v1, −v2〉.

4. The difference of u and v is 

u − v = u + (−v) = 〈u1 − v1, u2 − v2〉.

Geometrically, the scalar multiple of a vector v and a scalar c is the vector that is 

∣c∣ times as long as v, as shown in Figure 11.6. If c is positive, then cv has the same 
direction as v. If c is negative, then cv has the opposite direction.

The sum of two vectors can be represented geometrically by positioning the 
vectors (without changing their magnitudes or directions) so that the initial point of 
one coincides with the terminal point of the other, as shown in Figure 11.7. The vector 
u + v, called the resultant vector, is the diagonal of a parallelogram having u and v 
as its adjacent sides.

u

v

  

u

v

u + v

  

u

v

u + v

To find u + v, (1) move the initial point of v (2) move the initial point of u
  to the terminal point of u, or  to the terminal point of v.
Figure 11.7

Figure 11.8 shows the equivalence of the geometric and algebraic definitions 
of vector addition and scalar multiplication and presents (at far right) a geometric 
 interpretation of u − v.

u

v

u + v

(u1 + v1, u2 + v2)

(v1, v2)

(u1, u2)

u1

u2

v1

v2

  

u

ku

(ku1, ku2)

(u1, u2)

u1

ku1

u2

ku2

  

u u − v

v

−v

u + (−v)

Vector addition Scalar multiplication Vector subtraction
Figure 11.8

vvv 2v −v −1
2

3
2

The scalar multiplication of v
Figure 11.6

WILLIAM ROWAN HAMILTON
(1805–1865)

Some of the earliest work with 
vectors was done by the Irish 
mathematician William Rowan 
Hamilton. Hamilton spent many 
years developing a system of 
vector-like quantities called 
quaternions. It was not until the 
latter half of the nineteenth 
century that the Scottish 
physicist James Maxwell 
(1831–1879) restructured 
Hamilton’s quaternions in a 
form useful for representing 
physical quantities such as 
force, velocity, and acceleration.
See LarsonCalculus.com to read 
more of this biography.
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 Vector Operations

For v = 〈−2, 5〉 and w = 〈3, 4〉, find each of the vectors.

a. 1
2v   b. w − v   c. v + 2w

Solution

a. 1
2v = 〈1

2 (−2), 12 (5)〉 = 〈−1, 52〉
b.  w − v = 〈w1 − v1, w2 − v2〉
  = 〈3 − (−2), 4 − 5〉
  = 〈5, −1〉
c. Using 2w = 〈6, 8〉, you have

 v + 2w = 〈−2, 5〉 + 〈6, 8〉
 = 〈−2 + 6, 5 + 8〉
 = 〈4, 13〉. 

Vector addition and scalar multiplication share many properties of ordinary 
arithmetic, as shown in the next theorem.

THEOREM 11.1 Properties of Vector Operations

Let u, v, and w be vectors in the plane, and let c and d be scalars.

1. u + v = v + u Commutative Property

2. (u + v) + w = u + (v + w) Associative Property

3. u + 0 = u Additive Identity Property

4. u + (−u) = 0 Additive Inverse Property

5. c(du) = (cd)u
6. (c + d)u = cu + du Distributive Property

7. c(u + v) = cu + cv Distributive Property

8. 1(u) = u, 0(u) = 0

Proof The proof of the Associative Property of vector addition uses the Associative 
Property of addition of real numbers.

 (u + v) + w = [〈u1, u2〉 + 〈v1, v2〉] + 〈w1, w2〉
 = 〈u1 + v1, u2 + v2〉 + 〈w1, w2〉
 = 〈(u1 + v1) + w1, (u2 + v2) + w2〉
 = 〈u1 + (v1 + w1), u2 + (v2 + w2)〉
 = 〈u1, u2〉 + 〈v1 + w1, v2 + w2〉
 = u + (v + w)

The other properties can be proved in a similar manner.  

Any set of vectors (with an accompanying set of scalars) that satisfies the eight 
properties listed in Theorem 11.1 is a vector space.* The eight properties are the vector 
space axioms. So, this theorem states that the set of vectors in the plane (with the set of 
real numbers) forms a vector space.

* For more information about vector spaces, see Elementary Linear Algebra, Eight Edition, by Ron Larson (Boston, 
Massachusetts: Cengage Learning, 2017).

 FOR FURTHER INFORMATION
For more information on Emmy 
Noether, see the article “Emmy 
Noether, Greatest Woman 
Mathematician” by Clark 
Kimberling in Mathematics 
Teacher. To view this article, 
go to MathArticles.com.

EMMY NOETHER (1882–1935)

One person who contributed 
to our knowledge of axiomatic 
systems was the German 
mathematician Emmy Noether. 
Noether is generally recognized
as the leading woman 
mathematician in recent history.

Granger, NYC — All rights reserved.
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THEOREM 11.2 Length of a Scalar Multiple

Let v be a vector and let c be a scalar. Then

�cv� = ∣c∣�v�. ∣c∣ is the absolute value of c.

Proof Because cv = 〈cv1, cv2〉, it follows that

 �cv� = �〈cv1, cv2〉�

 = √(cv1)2 + (cv2)2

 = √c2v1
2 + c2v2

2

 = √c2(v1
2 + v2

2)

 = ∣c∣√v1
2 + v2

2

 = ∣c∣�v�.  

In many applications of vectors, it is useful to find a unit vector that has the same 
direction as a given vector. The next theorem gives a procedure for doing this.

THEOREM 11.3 Unit Vector in the Direction of v

If v is a nonzero vector in the plane, then the vector

u =
v

�v�
=

1
�v�

v

has length 1 and the same direction as v.

Proof Because 1��v� is positive and u = (1��v�)v, you can conclude that u has the 
same direction as v. To see that �u� = 1, note that

�u� = � ( 1
�v�)v � = ∣ 1

�v�∣�v� =
1

�v�
�v� = 1.

So, u has length 1 and the same direction as v. 

In Theorem 11.3, u is called a unit vector in the direction of v. The process of 
multiplying v by 1��v� to get a unit vector is called normalization of v.

 Finding a Unit Vector

Find a unit vector in the direction of v = 〈−2, 5〉 and verify that it has length 1.

Solution From Theorem 11.3, the unit vector in the direction of v is

 
v

�v�
=

〈−2, 5〉
√(−2)2 + (5)2

 =
1

√29
〈−2, 5〉

 = 〈 −2

√29
, 

5

√29〉.

This vector has length 1, because

√( −2

√29)
2

+ ( 5

√29)
2

=√ 4
29

+
25
29

=√29
29

= 1. 

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 11.1 Vectors in the Plane 757

Generally, the length of the sum of two vectors is not equal to the sum of their 
lengths. To see this, consider the vectors u and v as shown in Figure 11.9. With u and 
v as two sides of a triangle, the length of the third side is �u + v�, and

�u + v� ≤ �u� + �v�.

Equality occurs only when the vectors u and v have the same direction. This result is 
called the triangle inequality for vectors. (You are asked to prove this in Exercise 73, 
Section 11.3.)

Standard Unit Vectors
The unit vectors 〈1, 0〉 and 〈0, 1〉 are called the standard unit vectors in the plane and 
are denoted by

i = 〈1, 0〉   and   j = 〈0, 1〉    Standard unit vectors

as shown in Figure 11.10. These vectors can be used to represent any vector  uniquely, 
as follows.

v = 〈v1, v2〉 = 〈v1, 0〉 + 〈0, v2〉 = v1〈1, 0〉 + v2〈0, 1〉 = v1i + v2 j

The vector v = v1i + v2 j is called a linear combination of i and j. The scalars v1 and 
v2 are called the horizontal and vertical components of v.

 Writing a Linear Combination of Unit Vectors

Let u be the vector with initial point (2, −5) and terminal point (−1, 3), and let 
v = 2i − j. Write each vector as a linear combination of i and j.

a. u

b. w = 2u − 3v

Solution

a. u = 〈q1 − p1, q2 − p2〉 = 〈−1 − 2, 3 − (−5)〉 = 〈−3, 8〉 = −3i + 8j

b. w = 2u − 3v = 2(−3i + 8j) − 3(2i − j) = −6i + 16j − 6i + 3j = −12i + 19j
 

If u is a unit vector and θ is the angle (measured counterclockwise) from the 
 positive x-axis to u, then the terminal point of u lies on the unit circle, and you have

u = 〈cos θ, sin θ〉 = cos θi + sin θj Unit vector

as shown in Figure 11.11. Moreover, it follows that any other nonzero vector v making 
an angle θ with the positive x-axis has the same direction as u, and you can write

v = �v�〈cos θ, sin θ〉 = �v� cos θi + �v� sin θj.

 Writing a Vector of Given Magnitude and Direction

The vector v has a magnitude of 3 and makes an angle of 30° = π�6 with the positive 
x-axis. Write v as a linear combination of the unit vectors i and j.

Solution Because the angle between v and the positive x-axis is θ = π�6, you can 
write

v = �v� cos θi + �v� sin θj = 3 cos 
π
6

i + 3 sin 
π
6

j =
3√3

2
i +

3
2

j. 

x

u

v

u + v

y

Triangle inequality
Figure 11.9

x
1

1

2

2

j = 〈0, 1〉

i = 〈1, 0〉

y

Standard unit vectors i and j
Figure 11.10

(cos   , sin   )

x

u

θ

θ θ

θ

θ

sin

cos−1 1

−1

1

y

The angle θ from the positive x-axis  
to the vector u
Figure 11.11
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758 Chapter 11 Vectors and the Geometry of Space

Vectors have many applications in physics and engineering. One example is 
force. A vector can be used to represent force, because force has both magnitude and 
direction. If two or more forces are acting on an object, then the resultant force on the 
object is the vector sum of the vector forces.

 Finding the Resultant Force

Two tugboats are pushing an ocean liner, as shown in Figure 11.12. Each boat is 
 exerting a force of 400 pounds. What is the resultant force on the ocean liner?

Solution Using Figure 11.12, you can represent the forces exerted by the first and 
second tugboats as

F1 = 400〈cos 20°, sin 20°〉 = 400 cos(20°)i + 400 sin(20°)j
F2 = 400〈cos(−20°), sin(−20°)〉 = 400 cos(20°)i − 400 sin(20°)j.

The resultant force on the ocean liner is

 F = F1 + F2

 = [400 cos(20°)i + 400 sin(20°)j] + [400 cos(20°)i − 400 sin(20°)j]
 = 800 cos(20°)i
 ≈ 752i.

So, the resultant force on the ocean liner is approximately 752 pounds in the direction 
of the positive x-axis. 

In surveying and navigation, a bearing is a direction that measures the acute 
angle that a path or line of sight makes with a fixed north-south line. In air navigation, 
bearings are measured in degrees clockwise from north.

 Finding a Velocity

See LarsonCalculus.com for an interactive version of this type of example.

An airplane is traveling at a fixed altitude with a negligible wind factor. The airplane 
is traveling at a speed of 500 miles per hour with a bearing of 330°, as shown in  
Figure 11.13(a). As the airplane reaches a certain point, it encounters wind with a 
velocity of 70 miles per hour in the direction N 45° E (45° east of north), as shown in 
Figure 11.13(b). What are the resultant speed and direction of the airplane?

Solution Using Figure 11.13(a), represent the velocity of the airplane (alone) as

v1 = 500 cos(120°)i + 500 sin(120°)j.

The velocity of the wind is represented by the vector

v2 = 70 cos(45°)i + 70 sin(45°)j.

The resultant velocity of the airplane (in the wind) is

 v = v1 + v2

 = 500 cos(120°)i + 500 sin(120°)j + 70 cos(45°)i + 70 sin(45°)j
 ≈ −200.5i + 482.5j.

To find the resultant speed and direction, write v = �v�(cos θi + sin θj). Because 
�v� ≈ √(−200.5)2 + (482.5)2 ≈ 522.5, you can write

v ≈ 522.5(−200.5
522.5

i +
482.5
522.5

j) ≈ 522.5[cos(112.6°)i + sin(112.6°)j].

The new speed of the airplane, as altered by the wind, is approximately 522.5 miles per
hour in a path that makes an angle of 112.6° with the positive x-axis. 

x

400 cos(−20°)

400 cos(20°)

−20°

20°

400

400

F2

F1

400 sin(−20°)

400 sin(20°)

y

The resultant force on the ocean liner 
that is exerted by the two tugboats
Figure 11.12

x

120°

v1

y

S

EW

N

(a) Direction without wind

S

EW

N

x

v1

v

v2

Wind

y

θ

(b) Direction with wind

Figure 11.13
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 11.1 Vectors in the Plane 759

11.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Scalar and Vector Describe the difference between 

a scalar and a vector. Give examples of each.

2.  Vector Two points and a vector are given. Determine 
which point is the initial point and which point is the 
terminal point. Explain.

 P(2, −1), Q(−4, 6), and v = 〈6, −7〉

Sketching a Vector In Exercises 3 and 4, (a) find the 
component form of the vector v and (b) sketch the vector with 
its initial point at the origin.

 3. 

x
1

1

−1 2

2

3

3

4

4

5

(1, 2)

(5, 4)
y

v

  4. 

x

−6

−4 −2 2

2

4

(2, −3)(−4, −3)

y

v

 Equivalent Vectors In Exercises 5–8, find the 
vectors u and v whose initial and  terminal points 
are given. Show that u and v are equivalent.

   Terminal    Terminal
 Initial Point Point Initial Point Point

 5. u: (3, 2) (5, 6)  6. u: (−4, 0) (1, 8)
 v: (1, 4) (3, 8)  v: (2, −1) (7, 7)
 7. u: (0, 3) (6, −2)  8. u: (−4, −1) (11, −4)
 v: (3, 10) (9, 5)  v: (10, 13) (25, 10)

 Writing a Vector in Different Forms In 
Exercises 9–16, the initial and terminal points of a 
vector v are given. (a) Sketch the given directed line 
segment. (b) Write the vector in component form. 
(c) Write the vector as the linear combination of the 
standard unit vectors i and j.  (d) Sketch the vector 
with its initial point at the origin.

   Terminal   Terminal
 Initial Point Point Initial Point Point

 9. (2, 0) (5, 5) 10. (4, −6) (3, 6)
11. (8, 3) (6, −1) 12. (0, −4) (−5, −1)
13. (6, 2) (6, 6) 14. (7, −1) (−3, −1)
15. (3

2, 43) (1
2, 3) 16. (0.12, 0.60) (0.84, 1.25)

Finding a Terminal Point In Exercises 17 and 18, the  
vector v and its initial point are given. Find the terminal point.

17. v = 〈−1, 3〉; Initial point: (4, 2)
18. v = 〈4, −9〉; Initial point: (5, 3)

 Finding a Magnitude of a Vector In 
Exercises 19–24, find the magnitude of v.

19. v = 4i 20. v = −9j

21. v = 〈8, 15〉 22. v = 〈−24, 7〉

23. v = −i − 5j 24. v = 3i + 3j

Sketching Scalar Multiples In Exercises 25 and 26, 
sketch each scalar multiple of v.

25. v = 〈3, 5〉 (a) 2v   (b) −3v   (c) 7
2v   (d) 2

3v

26. v = 〈−2, 3〉 (a) 4v   (b) −1
2v   (c) 0v   (d) −6v

 Using Vector Operations In Exercises 
27 and 28, find (a) 2

3u, (b) 3v, (c) v − u, and  
(d) 2u + 5v.

27. u = 〈4, 9〉, v = 〈2, −5〉 28. u = 〈−3, −8〉, v = 〈8, 7〉

Sketching a Vector In Exercises 29–34, use the figure to 
sketch a graph of the vector. To print an enlarged copy of the 
graph, go to MathGraphs.com.

29. −u 

x

u v

y

30. 2u

31. −v

32. 1
2v

33. u − v

34. u + 2v

 Finding a Unit Vector In Exercises 35–38, 
find the unit vector in the direction of v and verify 
that it has length 1.

35. v = 〈3, 12〉 36. v = 〈−5, 15〉

37. v = 〈3
2, 52〉 38. v = 〈−6.2, 3.4〉

Finding Magnitudes In Exercises 39–42, find the following.

(a) �u� (b) �v� (c) �u + v �

(d) � u
�u� �    (e) � v

�v� �    (f ) � u + v
�u + v � �

39. u = 〈1, −1〉, v = 〈−1, 2〉

40. u = 〈0, 1〉, v = 〈3, −3〉

41. u = 〈1, 12〉, v = 〈2, 3〉

42. u = 〈2, −4〉, v = 〈5, 5〉

Using the Triangle Inequality In Exercises 43 and 44, 
sketch a graph of u, v, and u + v. Then demonstrate the 
triangle inequality using the vectors u and v.

43. u = 〈2, 1〉, v = 〈5, 4〉

44. u = 〈−3, 2〉, v = 〈1, −2〉
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 Finding a Vector In Exercises 45–48, find the 
vector v with the given magnitude and the same 
direction as u.

 Magnitude Direction

45. �v � = 6 u = 〈0, 3〉

46. �v � = 4 u = 〈1, 1〉

47. �v � = 5 u = 〈−1, 2〉

48. �v � = 2 u = 〈√3, 3〉

 Finding a Vector In Exercises 49–52, find the 
component form of v given its  magnitude and the 
angle it makes with the positive x-axis.

49. �v � = 3, θ = 0° 50. �v � = 5, θ = 120°

51. �v � = 2, θ = 150° 52. �v � = 4, θ = 3.5°

Finding a Vector In Exercises 53–56, find the component 
form of u + v given the lengths of u and v and the angles that 
u and v make with the positive x-axis.

53. �u � = 1, θu = 0° 54. �u � = 4, θu = 0°

 �v � = 3, θv = 45°  �v � = 2, θv = 60°

55. �u � = 2, θu = 4 56. �u � = 5, θu = −0.5

 �v � = 1, θv = 2  �v � = 5, θv = 0.5

eXpLoRInG ConCeptS
Think About It In Exercises 57 and 58, consider two 
forces of equal magnitude acting on a point.

57.  When the magnitude of the resultant is the sum of the 
magnitudes of the two forces, make a conjecture about 
the angle between the forces.

58.  When the resultant of the forces is 0, make a conjecture 
about the angle between the forces.

59.  Triangle Consider a triangle with vertices X, Y, and 
Z. What is XY

\

+ YZ
\

+ ZX
\

? Explain.

 60.  HOW DO YOU SEE IT? Use the figure 
to determine whether each statement is true or 
false. Justify your answer.

 

a
c s

d w

b

u

t

v

(a) a = −d (b) c = s

(c) a + u = c (d) v + w = −s

(e) a + d = 0 (f ) u − v = −2(b + t)

 60.  

Finding Values In Exercises 61–66, find a and b such that 
v = au + bw, where u = 〈1, 2〉 and w = 〈1, −1〉.

61. v = 〈4, 5〉 62. v = 〈−7, −2〉

63. v = 〈−6, 0〉 64. v = 〈0, 6〉

65. v = 〈1, −3〉 66. v = 〈−1, 8〉

Finding Unit Vectors In Exercises 67–72, find a unit 
vector (a) parallel to and (b) perpendicular to the graph of f  
at the given point. Then sketch the graph of f  and sketch the 
vectors at the given point.

67. f (x) = x2, (3, 9) 68. f (x) = −x2 + 5, (1, 4)
69. f (x) = x3, (1, 1) 70. f (x) = x3, (−2, −8)
71. f (x) = √25 − x2, (3, 4)

72. f (x) = tan x, (π4, 1)
Finding a Vector In Exercises 73 and 74, find the 
component form of v given the magnitudes of u and u + v and 
the angles that u and u + v make with the positive x-axis.

73. �u � = 1, θ = 45° 74. �u � = 4, θ = 30°

 �u + v � = √2, θ = 90°  �u + v � = 6, θ = 120°

75.  Resultant Force Forces with magnitudes of 500 pounds 
and 200 pounds act on a machine part at angles of 30° and 
−45°, respectively, with the x-axis (see figure). Find the 
direction and magnitude of the resultant force.

30°

−45°

500 lb

200 lb

x

  

x
275 N

180 N

θ

y

 Figure for 75 Figure for 76

76.  Numerical and Graphical Analysis Forces with 
magnitudes of 180 newtons and 275 newtons act on a hook 
(see figure). The angle between the two forces is θ degrees.

 (a)  When θ = 30°, find the direction and magnitude of the 
resultant force.

 (b)  Write the magnitude M and direction α of the resultant 
force as functions of θ, where 0° ≤ θ ≤ 180°.

 (c) Use a graphing utility to complete the table.

  
θ 0° 30° 60° 90° 120° 150° 180°

M

α

 (d) Use a graphing utility to graph the two functions M and α.

 (e)  Explain why one of the functions decreases for increasing 
values of θ, whereas the other does not.
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77.  Resultant Force Three forces with magnitudes of 
75 pounds, 100 pounds, and 125 pounds act on an object at 
angles of 30°, 45°, and 120°, respectively, with the positive 
x-axis. Find the direction and magnitude of the resultant force.

78.  Resultant Force Three forces with magnitudes of 
400 newtons, 280 newtons, and 350 newtons act on an object at 
angles of −30°, 45°, and 135°, respectively, with the positive 
x-axis. Find the direction and magnitude of the resultant force.

Cable Tension In Exercises 79 and 80, determine the 
tension in the cable supporting the given load.

79. 
50° 30°A B

C

3000 lb

 80. 

81.  Projectile Motion A gun with a muzzle velocity of 
1200 feet per second is fired at an angle of 6° above the 
horizontal. Find the vertical and horizontal components of the 
velocity.

82.  Shared Load To carry a 100-pound cylindrical weight, 
two workers lift on the ends of short ropes tied to an eyelet 
on the top center of the cylinder. One rope makes a 20° angle 
away from the vertical and the other makes a 30° angle (see 
figure).

 (a) Find each rope’s tension when the resultant force is vertical.

 (b) Find the vertical component of each worker’s force.

100 lb

20° 30°

83.  Navigation A plane is flying with a bearing of 302°. 
Its speed with respect to the air is 900 kilometers per hour. 
The wind at the plane’s altitude is from the southwest at 
100 kilometers per hour (see figure). What is the true direction 
of the plane, and what is its speed with respect to the ground?

 

45°32°
900 km/h

100 km/h

S

EW

N

True or False? In Exercises 85–94, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

85. The weight of a car is a scalar.

86. The mass of a book is a scalar.

87. The temperature of your blood is a scalar.

88. The velocity of a bicycle is a vector.

89.  If u and v have the same magnitude and direction, then u and 
v are equivalent.

90. If u is a unit vector in the direction of v, then v = �v �u.

91. If u = ai + bj is a unit vector, then a2 + b2 = 1.

92. If  v = ai + bj = 0, then a = −b.

93. If a = b, then �ai + bj � = √2a.

94.  If u and v have the same magnitude but opposite directions, 
then u + v = 0.

95. Proof Prove that

 u = (cos θ)i − (sin θ)j and v = (sin θ)i + (cos θ)j

 are unit vectors for any angle θ.

96.  Geometry Using vectors, prove that the line segment 
joining the midpoints of two sides of a triangle is parallel to, 
and one-half the length of, the third side.

97.  Geometry Using vectors, prove that the diagonals of a 
parallelogram bisect each other.

98.  Proof Prove that the vector w = �u �v + �v �u bisects the 
angle between u and v.

99.  Using a Vector Consider the vector u = 〈x, y〉. Describe 
the set of all points (x, y) such that �u � = 5.

pUtnAM eXAM ChALLenGe
100.  A coast artillery gun can fire at any angle of elevation 

between 0° and 90° in a fixed vertical plane. If air 
resistance is neglected and the muzzle velocity is 
constant (= v0), determine the set H of points in the 
plane and above the horizontal which can be hit.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

A B

C

5000 lb

24 in.

10 in. 20 in.

A plane flies at a 
constant groundspeed 
of 400 miles per hour 
due east and encounters 
a 50-mile-per-hour wind 
from the northwest. Find 
the airspeed and compass 
direction that will allow 
the plane to maintain its 
groundspeed and eastward 
direction.

84. Navigation

Mikael Damkier/Shutterstock.com
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11.2 Space Coordinates and Vectors in Space

 Understand the three-dimensional rectangular coordinate system.
 Analyze vectors in space.

Coordinates in Space
Up to this point in the text, you have been primarily concerned with the  two- dimensional 
coordinate system. Much of the remaining part of your study of calculus will involve 
the three-dimensional coordinate system.

Before extending the concept of a vector to three dimensions, you must be able to 
identify points in the three-dimensional coordinate system. You can construct this 
system by passing a z-axis perpendicular to both the x- and y-axes at the origin, as 
shown in Figure 11.14. Taken as pairs, the axes determine three coordinate planes:  
the xy-plane, the xz-plane, and the yz-plane. These three coordinate planes separate 
three-space into eight octants. The first octant is the one for which all three coordinates 
are positive. In this three- dimensional system, a point P in space is determined by an 
ordered triple (x, y, z), where x, y, and z are as follows.

x = directed distance from yz-plane to P

y = directed distance from xz-plane to P

z = directed distance from xy-plane to P

Several points are shown in Figure 11.15.

x

y
8

−2−4
−8

4
3

5
6

−3
−4

−5
−6

1

6

5

4

3

2

(2, −5, 3)

(−2, 5, 4)

(3, 3, −2)

(1, 6, 0)

z

  Points in the three-dimensional coordinate system are  
represented by ordered triples.

 Figure 11.15

A three-dimensional coordinate system  

x

y

z

y

x

z

Right-handed Left-handed
system system
Figure 11.16

 
can have either a right-handed or a  
left-handed orientation. To determine the  
orientation of a system, imagine that you  
are standing at the origin, with your arms  
pointing in the direction of the positive  
x- and y-axes and with the positive z-axis 
pointing up, as shown in Figure 11.16. 
The system is right- handed or left-handed 
depending on which hand points along the 
x-axis. In this text, you will work exclusively 
with the right-handed system.

remark The  
three-dimensional rotatable 
graphs that are available at 
LarsonCalculus.com can help 
you visualize points or objects 
in a three-dimensional  
coordinate system.

y

yz-planexz-plane

xy-planex

z

The three-dimensional coordinate  
system
Figure 11.14
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 11.2 Space Coordinates and Vectors in Space 763

Many of the formulas established for the two-dimensional coordinate system can 
be extended to three dimensions. For example, to find the distance between two points 
in space, you can use the Pythagorean Theorem twice, as shown in Figure 11.17. By 
doing this, you will obtain the formula for the distance between the points (x1, y1, z1) 
and (x2, y2, z2).

d = √(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2    Distance Formula

 Finding the Distance Between Two Points in Space

Find the distance between the points (2, −1, 3) and (1, 0, −2).

Solution

 d = √(1 − 2)2 + (0 + 1)2 + (−2 − 3)2 Distance Formula

 = √1 + 1 + 25

 = √27

 = 3√3 

A sphere with center at (x0, y0, z0) and radius r is defined to be the set of all points 
(x, y, z) such that the distance between (x, y, z) and (x0, y0, z0) is r. You can use the 
Distance Formula to find the standard equation of a sphere of radius r, centered at 
(x0, y0, z0). If (x, y, z) is an arbitrary point on the sphere, then the equation of the sphere is

 (x − x0)2 + (y − y0)2 + (z − z0)2 = r2  Equation of sphere

as shown in Figure 11.18. Moreover, the midpoint of the line segment joining the points 
(x1, y1, z1) and (x2, y2, z2) has coordinates

 (x1 + x2

2
, 

y1 + y2

2
, 

z1 + z2

2 ).  Midpoint Formula

 Finding the equation of a Sphere

Find the standard equation of the sphere that has the points

(5, −2, 3) and (0, 4, −3)

as endpoints of a diameter.

Solution Using the Midpoint Formula, the center of the sphere is

(5 + 0
2

, 
−2 + 4

2
, 

3 − 3
2 ) = (5

2
, 1, 0). Midpoint Formula

By the Distance Formula, the radius is

r =√(0 −
5
2)

2

+ (4 − 1)2 + (−3 − 0)2 =√97
4

=
√97

2
.

Therefore, the standard equation of the sphere is

(x −
5
2)

2

+ (y − 1)2 + z2 =
97
4

. Equation of sphere 

y
x

Q

P

d

(x1, y1, z1) (x2, y2, z1)

(x2, y2, z2)

⏐z2 − z1⏐

(x2 − x1)2 + (y2 − y1)2

z

The distance between two points in 
space
Figure 11.17

(x0, y0, z0)

x

y

(x, y, z)
r

z

Figure 11.18
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764 Chapter 11 Vectors and the Geometry of Space

Vectors in Space
In space, vectors are denoted by ordered triples v = 〈v1, v2, v3〉. The zero vector is 
denoted by 0 = 〈0, 0, 0〉. Using the unit vectors

i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, and k = 〈0, 0, 1〉

the standard unit vector notation for v is

v = v1i + v2 j + v3k

as shown in Figure 11.19. If v is represented by the directed line segment from 
P( p1, p2, p3) to Q(q1, q2, q3), as shown in Figure 11.20, then the component form of v 
is written by subtracting the coordinates of the initial point from the coordinates of the 
terminal point, as follows.

v = 〈v1, v2, v3〉 = 〈q1 − p1, q2 − p2, q3 − p3〉

Vectors in Space

Let u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉 be vectors in space and let c be a 
scalar.

1. Equality of Vectors: u = v if and only if u1 = v1, u2 = v2, and u3 = v3.

2.  Component Form: If v is represented by the directed line segment from 
P( p1, p2, p3) to Q(q1, q2, q3), then

v = 〈v1, v2, v3〉 = 〈q1 − p1, q2 − p2, q3 − p3〉.

3. Length: �v� = √v1
2 + v2

2 + v3
2

4. Unit Vector in the Direction of v: 
v

�v�
= ( 1

�v�) 〈v1, v2, v3〉, v ≠ 0

5. Vector Addition: v + u = 〈v1 + u1, v2 + u2, v3 + u3〉
6. Scalar Multiplication: cv = 〈cv1, cv2, cv3〉

Note that the properties of vector operations listed in Theorem 11.1 (see Section 11.1)
are also valid for vectors in space.

 Finding the Component Form of a Vector in Space

See LarsonCalculus.com for an interactive version of this type of example.

Find the component form and magnitude of the vector v having initial point (−2, 3, 1) 
and terminal point (0, −4, 4). Then find a unit vector in the direction of v.

Solution The component form of v is

v = 〈q1 − p1, q2 − p2, q3 − p3〉 = 〈0 − (−2), −4 − 3, 4 − 1〉 = 〈2, −7, 3〉

which implies that its magnitude is

�v� = √22 + (−7)2 + 32 = √62.

The unit vector in the direction of v is

 u =
v

�v�

 =
1

√62
〈2, −7, 3〉

 = 〈 2

√62
, 

−7

√62
, 

3

√62〉. 

x

y

〈0, 1, 0〉

〈1, 0, 0〉

〈0, 0, 1〉

〈v1, v2, v3〉

i
j

k

v

z

The standard unit vectors in space
Figure 11.19

x

y

Q(q1, q2, q3)

P(p1, p2, p3) v

v = 〈q1 − p1, q2 − p2, q3 − p3〉

z

Figure 11.20
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11.2 Space Coordinates and Vectors in Space 765

Recall from the definition of scalar multiplication that positive scalar multiples of 
a nonzero vector v have the same direction as v, whereas negative multiples have the 
direction opposite of v. In general, two nonzero vectors u and v are parallel when there 
is some scalar c such that u = cv. For example, in Figure 11.21, the vectors u, v, and 
w are parallel because

u = 2v and w = −v.

Definition of Parallel Vectors

Two nonzero vectors u and v are parallel when there is some scalar c such
that u = cv.

 Parallel Vectors

Vector w has initial point (2, −1, 3) and terminal point (−4, 7, 5). Which of the 
following vectors is parallel to w?

a. u = 〈3, −4, −1〉

b. v = 〈12, −16, 4〉

Solution Begin by writing w in component form.

w = 〈−4 − 2, 7 − (−1), 5 − 3〉 = 〈−6, 8, 2〉

a.  Because u = 〈3, −4, −1〉 = −1
2 〈−6, 8, 2〉 = −1

2 w, you can conclude that u is 
parallel to w.

b. In this case, you want to find a scalar c such that

〈12, −16, 4〉 = c〈−6, 8, 2〉.

 To find c, equate the corresponding components and solve as shown.

 12 = − 6c   c = − 2

 −16 =  8c   c = − 2

 4 =  2c   c =  2

  Note that c = −2 for the first two components and c = 2 for the third component. 
This means that the equation 〈12, −16, 4〉 = c〈−6, 8, 2〉 has no solution, and the 
vectors are not parallel.

 Using Vectors to Determine Collinear Points

Determine whether the points

P(1, −2, 3), Q(2, 1, 0), and R(4, 7, −6)

are collinear.

Solution The component forms of PQ
\

 and PR
\

 are

PQ
\

= 〈2 − 1, 1 − (−2), 0 − 3〉 = 〈1, 3, −3〉

and

PR
\

= 〈4 − 1, 7 − (−2), −6 − 3〉 = 〈3, 9, −9〉.

These two vectors have a common initial point. So, P, Q, and R lie on the same line 
if and only if PQ

\

 and PR
\

 are parallel—which they are because PR
\

= 3 PQ
\

, as shown
in Figure 11.22. 

x

u = 2v
w = −v

w

u

v

y

Parallel vectors
Figure 11.21

x y

2
4

6
8

6
8

4

2

(1, −2, 3)

(2, 1, 0)

(4, 7, −6)

P

Q

R

z

The points P, Q, and R lie on the same 
line.
Figure 11.22
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 Standard Unit Vector Notation

a. Write the vector v = 4i − 5k in component form.

b.  Find the terminal point of the vector v = 7i − j + 3k, given that the initial point 
is P(−2, 3, 5).

c.  Find the magnitude of the vector v = −6i + 2j − 3k. Then find a unit vector in 
the direction of v.

Solution 

a. Because j is missing, its component is 0 and

v = 4i − 5k = 〈4, 0, −5〉.

b.  You need to find Q(q1, q2, q3) such that 

v = PQ
\

= 7i − j + 3k.

  This implies that q1 − (−2) = 7, q2 − 3 = −1, and q3 − 5 = 3. The solution of 
these three equations is q1 = 5, q2 = 2, and q3 = 8. Therefore, Q is (5, 2, 8).

c. Note that v1 = −6, v2 = 2, and v3 = −3. So, the magnitude of v is

�v� = √(−6)2 + 22 + (−3)2 = √49 = 7.

 The unit vector in the direction of v is 
1
7 (−6i + 2j − 3k) = −6

7i + 2
7 j − 3

7k.

 measuring Force

A television camera weighing 120 pounds is supported by a tripod, as shown in  
Figure 11.23. Represent the force exerted on each leg of the tripod as a vector. 

Solution Let the vectors F1, F2, and F3 represent the forces exerted on the three legs. 
From Figure 11.23, you can determine the directions of F1, F2, and F3 to be as follows.

F1 =  PQ
\

1 = 〈0 − 0, −1 − 0, 0 − 4〉 = 〈0, −1, −4〉

F2 =  PQ
\

2 = 〈√3
2

− 0, 
1
2

− 0, 0 − 4〉 = 〈√3
2

, 
1
2

, −4〉
F3 =  PQ

\

3 = 〈−
√3
2

− 0, 
1
2

− 0, 0 − 4〉 = 〈−
√3
2

, 
1
2

, −4〉.

Because all three legs have the same length and the total force is distributed equally 
among the three legs, you know that �F1 � = �F2 � = �F3 �. So, there exists a constant c 
such that

F1 = c 〈0, −1, −4〉, F2 = c〈√3
2

, 
1
2

, −4〉, and F3 = c 〈−
√3
2

, 
1
2

, −4〉.

Let the total force exerted by the object be given by F = 〈0, 0, −120〉. Then, using 
the fact that 

F = F1 + F2 + F3

you can conclude that F1, F2, and F3 all have a vertical component of −40. This 
implies that c(−4) = −40 and c = 10. Therefore, the forces exerted on the legs can 
be represented by

 F1 = 〈0, −10, −40〉,
 F2 = 〈5√3, 5, −40〉,

and 

F3 = 〈−5√3, 5, −40〉. 

x

y

P (0, 0, 4)

Q1 (0, −1, 0)

Q2
3

2
1
2

, )) , 0

z

Q3
3

2
1
2

, )) , 0−

Figure 11.23
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 11.2 Space Coordinates and Vectors in Space 767

11.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Describing Coordinates A point in the three-

dimensional coordinate system has coordinates (x0, y0, z0). 
Describe what each coordinate measures.

2.  Coordinates in Space What is the y-coordinate of 
any point in the xz-plane?

3.  Comparing Graphs Describe the graph of x = 4 on 
(a) the number line, (b) the two-dimensional coordinate 
system, and (c) the three-dimensional coordinate system.

4.  Parallel Vectors Explain how to determine whether 
two nonzero vectors u and v are parallel.

Plotting Points In Exercises 5–8, plot the points in the 
same three-dimensional coordinate system.

 5. (a) (2, 1, 3) (b) (−1, 2, 1)
 6. (a) (3, −2, 5) (b) (3

2, 4, −2)
 7. (a) (5, −2, 2) (b) (5, −2, −2)
 8. (a) (0, 4, −5) (b) (4, 0, 5)

 Finding Coordinates of a Point In Exercises 
9–12, find the coordinates of the point.

 9.  The point is located three units behind the yz-plane, four units 
to the right of the xz-plane, and five units above the xy-plane.

10.  The point is located seven units in front of the yz-plane, 
two units to the left of the xz-plane, and one unit below the  
xy-plane.

11.  The point is located on the x-axis, 12 units in front of the 
yz-plane.

12.  The point is located in the yz-plane, three units to the right of 
the xz-plane, and two units above the xy-plane.

Using the Three-Dimensional Coordinate System In 
Exercises 13–24, determine the location of a point (x, y, z) that 
satisfies the condition(s).

13. z = 1 14. y = 6

15. x = −3 16. z = −5

17. y < 0 18. x > 0

19. ∣y∣ ≤ 3 20. ∣x∣ > 4

21. xy > 0, z = −3 22. xy < 0, z = 4

23. xyz < 0 24. xyz > 0

 Finding the Distance Between Two Points 
in Space In Exercises 25–28, find the distance 
between the points.

25. (4, 1, 5), (8, 2, 6) 26. (−1, 1, 1), (−3, 5, −3)
27. (0, 2, 4), (3, 2, 8) 28. (−3, 7, 1), (−5, 8, −4)

Classifying a Triangle In Exercises 29–32, find the lengths 
of the sides of the triangle with the indicated vertices, and 
determine whether the triangle is a right triangle, an isosceles 
triangle, or neither.

29. (0, 0, 4), (2, 6, 7), (6, 4, −8)
30. (3, 4, 1), (0, 6, 2), (3, 5, 6)
31. (−1, 0, −2), (−1, 5, 2), (−3, −1, 1)
32. (4, −1, −1), (2, 0, −4), (3, 5, −1)

 Finding the midpoint In Exercises 33–36, 
find the coordinates of the midpoint of the line 
segment joining the points.

33. (4, 0, −6), (8, 8, 20)
34. (7, 2, 2), (−5, −2, −3)
35. (3, 4, 6), (1, 8, 0)
36. (5, −9, 7), (−2, 3, 3)

 Finding the equation of a Sphere In 
Exercises 37–42, find the standard equation of the 
sphere with the given characteristics.

37. Center: (7, 1, −2); Radius: 1

38. Center: (−1, −5, 8); Radius: 5

39. Endpoints of a diameter: (2, 1, 3), (1, 3, −1)
40. Endpoints of a diameter: (−2, 4, −5), (−4, 0, 3)
41. Center: (−7, 7, 6), tangent to the xy-plane

42. Center: (−4, 0, 0), tangent to the yz-plane

Finding the equation of a Sphere In Exercises 43–46, 
complete the square to write the equation of the sphere in  
standard form. Find the center and radius.

43. x2 + y2 + z2 − 2x + 6y + 8z + 1 = 0

44. x2 + y2 + z2 + 9x − 2y + 10z + 19 = 0

45. 9x2 + 9y2 + 9z2 − 6x + 18y + 1 = 0

46. 4x2 + 4y2 + 4z2 − 24x − 4y + 8z − 23 = 0

Finding the Component Form of a Vector in Space In 
Exercises 47 and 48, (a) find the component form of the vector v, 
(b) write the vector using standard unit vector notation, and  
(c) sketch the vector with its initial point at the origin.

47. 

x

y

(2, 4, 3)

(4, 2, 1)

6

6

6

4

2

z

v

 48. 

x

y

(0, 5, 1)(4, 0, 3)

6
4 642

6

4

2

z

v
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Writing a Vector in Different Forms In Exercises 49 
and 50, the initial and terminal points of a vector v are given. 
(a) Sketch the directed line segment. (b) Find the component 
form of the vector. (c) Write the vector using standard unit 
vector notation. (d) Sketch the vector with its initial point at 
the origin.

49. Initial point: (−1, 2, 3)
 Terminal point: (3, 3, 4)
50. Initial point: (2, −1, −2)
 Terminal point: (−4, 3, 7)

 Finding the Component Form of a Vector in 
Space In Exercises 51–54, find the component 
form and magnitude of the vector v with the given 
initial and terminal points. Then find a unit vector 
in the direction of v.

51. Initial point: (3, 2, 0) 52. Initial point: (1, −2, 4)
 Terminal point: (4, 1, 6)  Terminal point: (2, 4, −2)
53. Initial point: (4, 2, 0) 54. Initial point: (1, −2, 0)
 Terminal point: (0, 5, 2)  Terminal point: (1, −2, −3)

Finding a Terminal Point In Exercises 55 and 56, the 
vector v and its initial point are given. Find the terminal point.

55. v = 〈3, −5, 6〉 

 Initial point: (0, 6, 2)
56. v = 〈1, −2

3, 12〉
 Initial point: (0, 2, 52)

Finding Scalar multiples In Exercises 57 and 58, find 
each scalar multiple of v and sketch its graph.

57. v = 〈1, 2, 2〉

 (a) 2v (b) −v

 (c) 3
2v (d) 0v

58. v = 〈2, −2, 1〉

 (a) −v   (b) 2v

 (c) 1
2v (d) 5

2v

Finding a Vector In Exercises 59–62, find the vector z, 
given that u = 〈1, 2, 3〉, v = 〈2, 2, −1〉, and w = 〈4, 0, −4〉.

59. z = u − v + w 60. z = 5u − 3v − 1
2w

61. 1
3z − 3u = w 62. 2u + v − w + 3z = 0

 Parallel Vectors In Exercises 63–66, determine 
which of the vectors is/are parallel to z. Use a 
graphing utility to confirm your results.

63. z = 〈3, 2, −5〉 64. z = 1
2i − 2

3 j + 3
4k

 (a) 〈−6, −4, 10〉  (a) 6i − 4j + 9k

 (b) 〈2, 43, −10
3 〉  (b) −i + 4

3j − 3
2k

 (c) 〈6, 4, 10〉  (c) 12i + 9k

 (d) 〈1, −4, 2〉  (d) 3
4i − j + 9

8k

65. z has initial point (1, −1, 3) and terminal point (−2, 3, 5).
 (a) −6i + 8j + 4k (b) 4j + 2k

66. z has initial point (5, 4, 1) and terminal point (−2, −4, 4).
 (a) 〈7, 6, 2〉 (b) 〈14, 16, −6〉

 Using Vectors to Determine Collinear 
Points In Exercises 67–70, use vectors to 
determine whether the points are collinear.

67. (0, −2, −5), (3, 4, 4), (2, 2, 1)
68. (4, −2, 7), (−2, 0, 3), (7, −3, 9)
69. (1, 2, 4), (2, 5, 0), (0, 1, 5)
70. (0, 0, 0), (1, 3, −2), (2, −6, 4)

Verifying a Parallelogram In Exercises 71 and 72, 
use vectors to show that the points form the vertices of a 
parallelogram.

71. (2, 9, 1), (3, 11, 4), (0, 10, 2), (1, 12, 5)
72. (1, 1, 3), (9, −1, −2), (11, 2, −9), (3, 4, −4)

Finding the magnitude In Exercises 73–78, find the 
magnitude of v.

73. v = 〈−1, 0, 1〉 74. v = 〈−5, −3, −4〉

75. v = 3j − 5k 76. v = 2i + 5j − k

77. v = i − 2j − 3k 78. v = −4i + 3j + 7k

 Finding Unit Vectors In Exercises 79–82, find 
a unit vector (a) in the direction of v and (b) in the 
direction opposite of v.

79. v = 〈2, −1, 2〉 80. v = 〈6, 0, 8〉

81. v = 4i − 5j + 3k 82. v = 5i + 3j − k

Finding a Vector In Exercises 83–86, find the vector v with 
the given magnitude and the same direction as u.

 Magnitude Direction

83. �v � = 10 u = 〈0, 3, 3〉

84. �v � = 3 u = 〈1, 1, 1〉

85. �v � = 3
2 u = 〈2, −2, 1〉

86. �v � = 7 u = 〈−4, 6, 2〉

Sketching a Vector In Exercises 87 and 88, sketch the 
vector v and write its component form.

87.  v lies in the yz-plane, has magnitude 2, and makes an angle of 
30° with the positive y-axis.

88.  v lies in the xz-plane, has magnitude 5, and makes an angle of 
45° with the positive z-axis.

Finding a Point Using Vectors In Exercises 89 and 90, 
use vectors to find the point that lies two-thirds of the way 
from P to Q.

89. P(4, 3, 0), Q(1, −3, 3)
90. P(1, 2, 5), Q(6, 8, 2)
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11.2 Space Coordinates and Vectors in Space 769

eXpLoRInG ConCeptS
91.  Writing The initial and terminal points of the vector v

are (x1, y1, z1) and (x, y, z). Describe the set of all points 
(x, y, z) such that �v� = 4.

92.  Writing Let r = 〈x, y, z〉 and r0 = 〈1, 1, 1〉. Describe 
the set of all points (x, y, z) such that �r − r0� = 2.

93.  Writing Let r = 〈x, y, z〉. Describe the set of all 
points (x, y, z) such that �r� > 1.

94.  HOW DO YOU See IT? Determine (x, y, z) 
for each figure. Then find the component form 
of the vector from the point on the x-axis to the 
point (x, y, z).

(a) (b)

94.  

x

y
(0, 3, 0)

(0, 3, 3)

(3, 0, 0)

z

(x, y, z)

x

y

z

(0, 4, 0)

(x, y, z)

(4, 0, 0)

(4, 0, 8)

95.  Using Vectors Consider two nonzero vectors u and v, 
and let s and t be real numbers. Describe the geometric figure 
generated by connecting the terminal points of the three 
vectors tv, u + tv, and su + tv.

96.  Using Vectors Let u = i + j, v = j + k, and 
w = au + bv.

 (a)  Sketch u and v.

 (b) If w = 0, show that a and b must both be zero.

 (c) Find a and b such that w = i + 2j + k.

 (d) Show that no choice of a and b yields w = i + 2j + 3k.

97.  Diagonal of a Cube Find the component form of the unit 
vector v in the direction of the diagonal of the cube shown in 
the figure.

 

y

x

v

⏐⏐v⏐⏐= 1

z  

100

z

−50

75
x

y

 Figure for 97 Figure for 98

98.  Tower Guy Wire The guy wire supporting a 100-foot 
tower has a tension of 550 pounds. Using the distance shown 
in the figure, write the component form of the vector F 
representing the tension in the wire.

100.  Think about It Suppose the length of each cable in 
Exercise 99 has a fixed length L = a and the radius of each 
disc is r0 inches. Make a conjecture about the limit lim

r0→a−
 T 

and give a reason for your answer.

101.  Load Supports Find the tension in each of the 
supporting cables in the figure when the weight of the crate 
is 500 newtons.

 

x
y

z

A

B

C

D

60 cm

70 cm45 cm

65 cm

115 cm

 

6 ft

A

C

D

10 ft

B

18 ft

8 ft

 Figure for 101 Figure for 102

102.  Construction A precast concrete wall is temporarily 
kept in its vertical position by ropes (see figure). Find the 
total force exerted on the pin at position A. The tensions in 
AB and AC are 420 pounds and 650 pounds, respectively.

103.  Geometry Write an equation whose graph consists of the 
set of points P(x, y, z) that are twice as far from A(0, −1, 1) 
as from B(1, 2, 0). Describe the geometric figure represented 
by the equation.

The lights in an auditorium are 24-pound discs of radius 
18 inches. Each disc is supported by three equally spaced 
cables that are L inches long (see figure).

18 in.

L

(a)  Write the tension T in each cable as a function of L. 
Determine the domain of the function.

(b)  Use a graphing utility and the function in part (a) to 
 complete the table.

L 20 25 30 35 40 45 50

T

(c)  Use a graphing utility to graph the function in part (a). 
Determine the asymptotes of the graph.

(d)  Confirm the asymptotes of the graph in part (c) 
analyti cally.

(e)  Determine the minimum length of each cable when a 
cable is designed to carry a maximum load of 10 pounds.

99. auditorium Lights

Pavel L Photo and Video/Shutterstock.com
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770 Chapter 11 Vectors and the Geometry of Space

11.3 The Dot Product of Two Vectors

 Use properties of the dot product of two vectors.
 Find the angle between two vectors using the dot product.
 Find the direction cosines of a vector in space.
 Find the projection of a vector onto another vector.
 Use vectors to find the work done by a constant force.

The Dot Product
So far, you have studied two operations with vectors—vector addition and multiplication 
by a scalar—each of which yields another vector. In this section, you will study a third 
vector operation, the dot product. This product yields a scalar, rather than a vector.

Definition of Dot Product

The dot product of u = 〈u1, u2〉 and v = 〈v1, v2〉 is

u ∙ v = u1v1 + u2v2.

The dot product of u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉 is

u ∙ v = u1v1 + u2v2 + u3v3.

THeOrem 11.4 Properties of the Dot Product

Let u, v, and w be vectors in the plane or in space and let c be a scalar.

1. u ∙ v = v ∙ u Commutative Property

2. u ∙ (v + w) = u ∙ v + u ∙ w Distributive Property

3. c(u ∙ v) = cu ∙ v = u ∙ cv Associative Property

4. 0 ∙ v = 0

5. v ∙ v = �v�2

Proof To prove the first property, let u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉. Then

u ∙ v = u1v1 + u2v2 + u3v3 = v1u1 + v2u2 + v3u3 = v ∙ u.

For the fifth property, let v = 〈v1, v2, v3〉. Then

v ∙ v = v1
2 + v2

2 + v3
2 = (√v1

2 + v2
2 + v3

2)2 = �v�2.

Proofs of the other properties are left to you. 

 Finding Dot Products

Let u = 〈2, −2〉, v = 〈5, 8〉, and w = 〈−4, 3〉.

a. u ∙ v = 〈2, −2〉 ∙ 〈5, 8〉 = 2(5) + (−2)(8) = −6

b. (u ∙ v)w = −6〈−4, 3〉 = 〈24, −18〉
c. u ∙ (2v) = 2(u ∙ v) = 2(−6) = −12

d. �w �2 = w ∙ w = 〈−4, 3〉 ∙ 〈−4, 3〉 = (−4)(−4) + (3)(3) = 25

Notice that the result of part (b) is a vector quantity, whereas the results of the other 
three parts are scalar quantities. 

remArk Because the dot 
product of two vectors yields a 
scalar, it is also called the scalar 
product (or inner product) of 
the two vectors.

exploration
Interpreting a Dot Product
Several vectors are shown 
below on the unit circle. 
Find the dot products of 
several pairs of vectors. 
Then find the angle between 
each pair that you used. 
Make a conjecture about 
the relationship between the 
dot product of two vectors 
and the angle between the 
vectors.

0°

30°

60°120°

150°

180°

210°

240°
270°

300°

330°

90°
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11.3 The Dot Product of Two Vectors 771

Angle Between Two Vectors
The angle between two nonzero vectors is the angle θ, 0 ≤ θ ≤ π, between their 
respective standard position vectors, as shown in Figure 11.24. The next theorem shows 
how to find this angle using the dot product. (Note that the angle between the zero 
vector and another vector is not defined here.)

Origin

u
v

θ

v − u

 The angle between two vectors
 Figure 11.24

THeOrem 11.5 Angle Between Two Vectors

If θ is the angle between two nonzero vectors u and v, where
 0 ≤ θ ≤ π, then

cos θ =
u ∙ v

�u � �v�
.

Proof Consider the triangle determined by vectors u, v, and v − u, as shown in 
Figure 11.24. By the Law of Cosines, you can write

�v − u �2 = �u �2 + �v�2 − 2�u � �v� cos θ.

Using the properties of the dot product, the left side can be rewritten as

 �v − u �2 = (v − u) ∙ (v − u)
 = (v − u) ∙ v − (v − u) ∙ u

 = v ∙ v − u ∙ v − v ∙ u + u ∙ u

 = �v�2 − 2u ∙ v + �u �2

and substitution back into the Law of Cosines yields

 �v�2 − 2u ∙ v + �u�2 = �u�2 + �v�2 − 2�u� �v� cos θ
 −2u ∙ v = −2�u � �v� cos θ

 cos θ =
u ∙ v

�u � �v�
. 

Note in Theorem 11.5 that because �u � and �v� are always positive, u ∙ v and 
cos θ will always have the same sign. Figure 11.25 shows the possible orientations of 
two vectors.

θ

u v

Opposite
direction   

θu

v

u   v < 0

  

θ
u

v

u   v = 0

  

θ
u

v

u   v > 0

  

u
v

Same
direction

 θ = π  π�2 < θ < π  θ = π�2 0 < θ < π�2 θ = 0
 cos θ = −1 −1 < cos θ < 0 cos θ = 0 0 < cos θ < 1 cos θ = 1
 Figure 11.25
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772 Chapter 11 Vectors and the Geometry of Space

From Theorem 11.5, you can see that two nonzero vectors meet at a right angle if 
and only if their dot product is zero. Two such vectors are said to be orthogonal.

Definition of Orthogonal Vectors

The vectors u and v are orthogonal when u ∙ v = 0.

From this definition, it follows that the zero vector is orthogonal to every vector u,
because 0 ∙ u = 0. Moreover, for 0 ≤ θ ≤ π, you know that cos θ = 0 if and only 
if θ = π�2. So, you can use Theorem 11.5 to conclude that two nonzero vectors are 
orthogonal if and only if the angle between them is π�2.

 Finding the Angle Between Two Vectors

See LarsonCalculus.com for an interactive version of this type of example.

For u = 〈3, −1, 2〉, v = 〈−4, 0, 2〉, w = 〈1, −1, −2〉, and z = 〈2, 0, −1〉, find the 
angle between each pair of vectors.

a. u and v   b. u and w   c. v and z

Solution 

a. cos θ =
u ∙ v

�u � �v�
=

−12 + 0 + 4

√14√20
=

−8

2√14√5
=

−4

√70

 Because u ∙ v < 0, θ = arccos 
−4

√70
≈ 2.069 radians.

b. cos θ =
u ∙ w

�u � �w �
=

3 + 1 − 4

√14√6
=

0

√84
= 0

 Because u ∙ w = 0, u and w are orthogonal. So, θ = π�2.

c. cos θ =
v ∙ z

�v� �z�
=

−8 + 0 − 2

√20√5
=

−10

√100
= −1

 Consequently, θ = π. Note that v and z are parallel, with v = −2z. 

When the angle between two vectors is known, rewriting Theorem 11.5 in the form

u ∙ v = �u � �v� cos θ    Alternative form of dot product

produces an alternative way to calculate the dot product. 

 Alternative Form of the Dot Product

Given that �u � = 10, �v� = 7, and the angle between u and v is π�4, find u ∙ v.

Solution Use the alternative form of the dot product as shown.

u ∙ v = �u � �v� cos θ = (10)(7) cos 
π
4

= 35√2 

remArk The terms “perpendicular,” “orthogonal,” and “normal” all mean 
essentially the same thing––meeting at right angles. It is common, however, to say 
that two vectors are orthogonal, two lines or planes are perpendicular, and a vector is 
normal to a line or plane.

remArk The angle 
between u and v in 
Example 3(a) can also be 
written as approximately 
118.561°.
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 11.3 The Dot Product of Two Vectors 773

Direction Cosines
For a vector in the plane, you have seen that it  

x

y

v

j

k

i

γ

β
α

z

Direction angles
Figure 11.26

 
is convenient to measure direction in terms of  
the angle, measured counterclockwise, from the 
positive x-axis to the vector. In space, it is more 
convenient to measure direction in terms of the 
angles between the nonzero vector v and the  
three unit vectors i, j, and k, as shown in  
Figure 11.26. The angles α, β, and γ are the 
direction angles of v, and cos α, cos β, and 
cos γ are the direction cosines of v. Because

v ∙ i = �v� � i� cos α = �v� cos α

and

v ∙ i = 〈v1, v2, v3〉 ∙ 〈1, 0, 0〉 = v1

it follows that cos α = v1��v�. By similar reasoning with the unit vectors j and k, you 
have

cos α =
v1

�v�
 α is the angle between v and i.

cos β =
v2

�v�
 β is the angle between v and j.

cos γ =
v3

�v�
. γ is the angle between v and k.

Consequently, any nonzero vector v in space has the normalized form

v
�v�

=
v1

�v�
i +

v2

�v�
j +

v3

�v�
k = cos αi + cos βj + cos γk

and because v��v� is a unit vector, it follows that

cos2 α + cos2 β + cos2 γ = 1.

 Finding Direction Angles

Find the direction cosines and angles for the vector v = 2i + 3j + 4k, and show that 
cos2 α + cos2 β + cos2 γ = 1.

Solution Because �v� = √22 + 32 + 42 = √29, you can write the following.

cos α =
v1

�v�
=

2

√29
  α ≈ 68.2° Angle between v and i

cos β =
v2

�v�
=

3

√29
  β ≈ 56.1° Angle between v and j

cos γ =
v3

�v�
=

4

√29
  γ ≈ 42.0° Angle between v and k

Furthermore, the sum of the squares of the direction cosines is

 cos2 α + cos2 β + cos2 γ =
4
29

+
9
29

+
16
29

 =
29
29

 = 1.

See Figure 11.27. 

z

x y

4
3

2
1

4
3

1
2

4

3

2

1

γ

βα

γ
β = angle between v and j

= angle between v and k

v = 2i + 3j + 4k

α = angle between v and i

The direction angles of v
Figure 11.27

remArk Recall that α, 
β, and γ are the Greek letters 
alpha, beta, and gamma,  
respectively.
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774 Chapter 11 Vectors and the Geometry of Space

Projections and Vector Components
You have already seen applications in which two vectors are added to produce a 
 resultant vector. Many applications in physics and engineering pose the reverse 
 problem—decomposing a vector into the sum of two vector components. The following 
physical example enables you to see the usefulness of this procedure.

Consider a boat on an inclined ramp, as shown in Figure 11.28. The force F due to 
gravity pulls the boat down the ramp and against the ramp. These two forces, w1 and 
w2, are orthogonal—they are called the vector components of F.

F = w1 + w2 Vector components of F

The forces w1 and w2 help you analyze the effect of gravity on the boat. For example, 
w1 indicates the force necessary to keep the boat from rolling down the ramp, whereas 
w2 indicates the force that the tires must withstand.

Definitions of Projection and Vector Components

Let u and v be nonzero vectors. Moreover, let

u = w1 + w2

where w1 is parallel to v and w2 is orthogonal to v, as shown in Figure 11.29.

1.  w1 is called the projection of u onto v or the vector component of u along
v, and is denoted by w1 = projvu.

2. w2 = u − w1 is called the vector component of u orthogonal to v.

θ

w1

w2
u

v

is acute.θ    

θ

w1

w2
u

v

is obtuse.θ

 w1 = projvu = projection of u onto v = vector component of u along v
 w2 = vector component of u orthogonal to v
 Figure 11.29

 Finding a Vector Component of u Orthogonal to v

Find the vector component of u = 〈5, 10〉 that is orthogonal to v = 〈4, 3〉, given that 

w1 = projvu = 〈8, 6〉

and

u = 〈5, 10〉 = w1 + w2.

Solution Because u = w1 + w2, where w1 is parallel to v, it follows that w2 is the 
vector component of u orthogonal to v. So, you have

 w2 = u − w1

 = 〈5, 10〉 − 〈8, 6〉
 = 〈−3, 4〉.

Check to see that w2 is orthogonal to v, as shown in Figure 11.30. 

x

w1w2

u

v

(−3, 4)

(8, 6)

(4, 3)

(5, 10)

−2−4 2 4 6 8

−2

2

4

8

10

y

u = w1 + w2

Figure 11.30

F
w2

w1

The force due to gravity pulls the boat 
against the ramp and down the ramp.
Figure 11.28
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11.3 The Dot Product of Two Vectors 775

From Example 5, you can see that it is easy to find the vector component w2 once 
you have found the projection, w1, of u onto v. To find this projection, use the dot 
product in the next theorem, which you will prove in Exercise 74.

THeOrem 11.6 Projection Using the Dot Product

If u and v are nonzero vectors, then the projection of u onto v is

projvu = (u ∙ v
�v�2 )v.

The projection of u onto v can be written as a scalar multiple of a unit vector in 
the direction of v. That is,

(u ∙ v
�v�2 )v = (u ∙ v

�v� ) v
�v�

= (k) v
�v�

.

The scalar k is called the component of u in the direction of v. So, 

k =
u ∙ v
�v�

= �u � cos θ.

 Decomposing a Vector into Vector Components

Find the projection of u onto v and the vector component of u orthogonal to v for 

u = 3i − 5j + 2k and v = 7i + j − 2k.

Solution The projection of u onto v is

w1 = projvu = (u ∙ v
�v�2 )v = (12

54)(7i + j − 2k) =
14
9

i +
2
9

j −
4
9

k.

The vector component of u orthogonal to v is the vector

w2 = u − w1 = (3i − 5j + 2k) − (14
9

i +
2
9

j −
4
9

k) =
13
9

i −
47
9

j +
22
9

k.

See Figure 11.31.

 Finding a Force

A 600-pound boat sits on a ramp inclined at 30°, as shown in Figure 11.32. What force 
is required to keep the boat from rolling down the ramp?

Solution Because the force due to gravity is vertical and downward, you can 
represent the gravitational force by the vector F = −600j. To find the force required to 
keep the boat from rolling down the ramp, project F onto a unit vector v in the direction 
of the ramp, as follows.

v = cos 30°i + sin 30°j =
√3
2

i +
1
2

j Unit vector along ramp

Therefore, the projection of F onto v is 

w1 = projvF = (F ∙ v
�v�2 )v = (F ∙ v)v = (−600)(1

2)v = −300(√3
2

i +
1
2

j).

The magnitude of this force is 300, so a force of 300 pounds is required to keep the boat 
from rolling down the ramp. 

remArk Note the 
distinction between the terms 
“component” and “vector 
component.” For example, 
using the standard unit vectors 
with u = u1i + u2 j, u1 is the 
component of u in the direction 
of i, and u1i is the vector 
component in the direction of i. 

8

6

2

4

2

−2

−4

y

x

w1

w2

u

v

u = 3i − 5j + 2k
v = 7i + j − 2k

z

u = w1 + w2

Figure 11.31

F

w1 = projv(F)

v

30°

w1

Figure 11.32
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Work
The work W  done by the constant force F acting along the line of motion of an object 
is given by

W = (magnitude of force)(distance) = �F� � PQ
\

�

as shown in Figure 11.33(a). When the constant force F is not directed along the line of 
motion, you can see from Figure 11.33(b) that the work W  done by the force is

W = �projPQ
\F� �PQ

\

� = (cos θ)�F� �PQ
\

� = F ∙ PQ
\

.

Work = ||F ||  ||PQ ||

F

P Q

  

projPQ F

F

P Q

θ

Work = ||projPQ F ||  ||PQ ||

 (a) Force acts along the line of motion. (b) Force acts at angle θ with the line of motion.

 Figure 11.33

This notion of work is summarized in the next definition.

Definition of Work

The work W  done by a constant force F as its point of application moves 
along the vector PQ

\

 is one of the following.

1. W = � projPQ
\F� �PQ

\

� Projection form

2. W = F ∙ PQ
\

 Dot product form

 Finding Work

To close a sliding door, a person pulls on a rope with a constant force of 50 pounds at 
a constant angle of 60°, as shown in Figure 11.34. Find the work done in moving the 
door 12 feet to its closed position.

P Q

12 ft

12 ft

F

60°

projPQF

 Figure 11.34

Solution Using a projection, you can calculate the work as follows.

W = �projPQ
\F� �PQ

\

� = cos(60°)�F� �PQ
\

� =
1
2

(50)(12) = 300 foot-pounds 
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11.3 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Dot Product What can you say about the relative 

position of two nonzero vectors if their dot product is zero?

2.  Direction Cosines Consider the vector

v = 〈v1, v2, v3〉.

 What is the meaning of arccos 
v2

�v�
= 30°?

 Finding Dot Products In Exercises 3–10, find 
(a) u ∙ v, (b) u ∙ u, (c) �v �2, (d) (u ∙ v)v, and 
(e) u ∙ (3v).

 3. u = 〈3, 4〉, v = 〈−1, 5〉  4. u = 〈4, 10〉, v = 〈−2, 3〉

 5. u = 〈6, −4〉, v = 〈−3, 2〉  6. u = 〈−7, −1〉, v = 〈−4, −1〉

 7. u = 〈2, −3, 4〉, v = 〈0, 6, 5〉

 8. u = 〈−5, 0, 5〉, v = 〈−1, 2, 1〉

 9. u = 2i − j + k 10. u = 2i + j − 2k

 v = i − k v = i − 3j + 2k

 Finding the Angle Between Two Vectors
In Exercises 11–18, find the angle θ between the 
vectors (a) in radians and (b) in degrees.

11. u = 〈1, 1〉, v = 〈2, −2〉

12. u = 〈3, 1〉, v = 〈2, −1〉

13. u = 3i + j, v = −2i + 4j

14. u = cos(π6)i + sin(π6) j, v = cos(3π
4 )i + sin(3π

4 ) j

15. u = 〈1, 1, 1〉, v = 〈2, 1, −1〉

16. u = 3i + 2j + k, v = 2i − 3j

17. u = 3i + 4j, v = −2j + 3k

18. u = 2i − 3j + k, v = i − 2j + k

 Alternative Form of Dot Product In 
Exercises 19 and 20, use the alternative form of the 
dot product to find u ∙ v.

19. �u � = 8, �v � = 5, and the angle between u and v is π�3.

20. �u � = 40, �v � = 25, and the angle between u and v is 5π�6.

Comparing Vectors In Exercises 21–26, determine 
whether u and v are orthogonal, parallel, or neither.

21. u = 〈4, 3〉 22.  u = −1
3 (i − 2j)

 v = 〈1
2, −2

3〉  v = 2i − 4j

23. u = j + 6k 24. u = −2i + 3j − k

 v = i − 2j − k  v = 2i + j − k

25. u = 〈2, −3, 1〉 26. u = 〈cos θ, sin θ, −1〉

 v = 〈−1, −1, −1〉 v = 〈sin θ, −cos θ, 0〉

Classifying a Triangle In Exercises 27–30, the vertices 
of a triangle are given. Determine whether the triangle is an 
acute triangle, an obtuse triangle, or a right triangle. Explain 
your reasoning.

27. (1, 2, 0), (0, 0, 0), (−2, 1, 0)
28. (−3, 0, 0), (0, 0, 0), (1, 2, 3)
29. (2, 0, 1), (0, 1, 2), (−0.5, 1.5, 0)
30. (2, −7, 3), (−1, 5, 8), (4, 6, −1)

 Finding Direction Angles In Exercises 31–36, 
find the direction cosines and angles of u and show 
that cos2 α + cos2 β + cos2 γ = 1.

31. u = i + 2j + 2k 32. u = 5i + 3j − k

33. u = 7i + j − k 34. u = −4i + 3j + 5k

35. u = 〈0, 6, −4〉 36. u = 〈−1, 5, 2〉

 Finding the Projection of u onto v In 
Exercises 37–44, (a) find the projection of u onto v 
and (b) find the vector component of u orthogonal 
to v.

37. u = 〈6, 7〉, v = 〈1, 4〉 38. u = 〈9, 7〉, v = 〈1, 3〉

39. u = 2i + 3j, v = 5i + j

40. u = 2i − 3j, v = 3i + 2j

41. u = 〈0, 3, 3〉, v = 〈−1, 1, 1〉

42. u = 〈8, 2, 0〉, v = 〈2, 1, −1〉

43. u = −9i − 2j − 4k, v = 4j + 4k

44. u = 5i − j − k, v = −i + 5j + 8k

EXPLORING CONCEPTS
45.  Using Vectors Explain why u + v ∙ w is not 

defined, where u, v, and w are nonzero vectors.

46.  Projection What can be said about the vectors u and 
v when the projection of u onto v equals u?

47.  Projection When the projection of u onto v has the 
same magnitude as the projection of v onto u, can you 
conclude that �u � = �v �? Explain.

48.  HOW DO YOU See IT? What is known 
about θ, the angle between two nonzero vectors 
u and v, when

(a) u ∙ v = 0?   (b) u ∙ v > 0?   (c) u ∙ v < 0?

 

vu

Origin

θ

48.  

11.3  exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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49.  revenue The vector u = 〈3240, 1450, 2235〉 gives the 
numbers of hamburgers, chicken sandwiches, and cheeseburgers, 
respectively, sold at a fast-food restaurant in one week. The 
vector v = 〈2.25, 2.95, 2.65〉 gives the prices (in dollars) per 
unit for the three food items. Find the dot product u ∙ v and 
explain what information it gives.

50.  revenue Repeat Exercise 49 after decreasing the prices 
by 2%. Identify the vector operation used to decrease the 
prices by 2%.

Orthogonal Vectors In Exercises 51–54, find two vectors 
in opposite directions that are orthogonal to the vector u. (The 
answers are not unique.)

51. u = −1
4i + 3

2 j 52. u = 9i − 4j

53. u = 〈3, 1, −2〉 54. u = 〈4, −3, 6〉

55.  Finding an Angle Find the angle between a cube’s 
diagonal and one of its edges.

56.  Finding an Angle Find the angle between the diagonal of 
a cube and the diagonal of one of its sides.

57.  Braking Load A 48,000-pound truck is parked on a 10° 
slope (see figure). Assume the only force to overcome is that 
due to gravity. Find (a) the force required to keep the truck 
from rolling down the hill and (b) the force perpendicular to 
the hill.

Weight = 48,000 lb

10°

58.  Braking Load A 5400-pound sport utility vehicle is parked 
on an 18° slope. Assume the only force to overcome is that due 
to gravity. Find (a) the force required to keep the vehicle from 
rolling down the hill and (b) the force perpendicular to the hill.

59.  Work An object is pulled 10 feet across a floor using a 
force of 85 pounds. The direction of the force is 60° above the 
 horizontal (see figure). Find the work done.

60°

10 ft

85 lb

Not drawn to scale

   

20°

Figure for 59 Figure for 60

60.  Work A wagon is pulled by exerting a force of 65 pounds 
on a handle that makes a 20° angle with the horizontal (see 
figure). Find the work done in pulling the wagon 50 feet.

61.  Work A car is towed using a force of 1600 newtons. The 
chain used to pull the car makes a 25° angle with the 
horizontal. Find the work done in towing the car 2 kilometers.

True or False? In Exercises 63 and 64, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

63. If u ∙ v = u ∙ w and u ≠ 0, then v = w.

64. If u and v are orthogonal to w, then u + v is orthogonal to w.

Using Points of Intersection In Exercises 65–68, (a) find 
all points of intersection of the graphs of the two equations, 
(b) find the unit tangent vectors to each curve at their points of 
intersection, and (c) find the angles (0° ≤ θ ≤ 90°) between the 
curves at their points of intersection.

65. y = x2, y = x1�3 66. y = x3, y = x1�3

67. y = 1 − x2, y = x2 − 1 68. (y + 1)2 = x, y = x3 − 1

69.  Proof Use vectors to prove that the diagonals of a rhombus 
are  perpendicular.

70.  Proof Use vectors to prove that a parallelogram is a 
rectangle if and only if its diagonals are equal in length.

71.  Bond Angle Consider a regular tetrahedron with vertices 
(0, 0, 0), (k, k, 0), (k, 0, k), and (0, k, k), where k is a positive 
real number.

 (a) Sketch the graph of the tetrahedron.

 (b) Find the length of each edge.

 (c) Find the angle between any two edges.

 (d)  Find the angle between the line segments from the 
centroid (k�2, k�2, k�2) to two vertices. This is the bond 
angle for a molecule, such as CH4 (methane) or PbCl4 
(lead tetrachloride), where the structure of the molecule is 
a tetrahedron.

72.  Proof Consider the vectors u = 〈cos α, sin α, 0〉 and 
v = 〈cos β, sin β, 0〉, where α > β. Find the dot product of 
the  vectors and use the result to prove the identity

 cos(α − β) = cos α cos β + sin α sin β.

73. Proof Prove the triangle inequality �u + v � ≤ �u � + �v �.

74. Proof Prove Theorem 11.6.

75. Proof Prove the Cauchy-Schwarz Inequality,

 ∣u ∙ v∣ ≤ �u � �v �.

A pallet truck is pulled
by exerting a force of 
400 newtons on a handle 
that makes a 60° angle 
with the horizontal. 
Find the work done in 
pulling the truck 
40 meters.

62. Work

Monkey Business Images/Shutterstock.com
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11.4 The Cross Product of Two Vectors in Space 779

11.4 The Cross Product of Two Vectors in Space

 Find the cross product of two vectors in space.
 Use the triple scalar product of three vectors in space.

The Cross Product
Many applications in physics, engineering, and geometry involve finding a vector in 
space that is orthogonal to two given vectors. In this section, you will study a product 
that will yield such a vector. It is called the cross product, and it is most  conveniently 
defined and calculated using the standard unit vector form. Because the cross product 
yields a vector, it is also called the vector product.

Definition of Cross Product of Two Vectors in Space

Let 

u = u1i + u2 j + u3k and v = v1i + v2 j + v3k

be vectors in space. The cross product of u and v is the vector

u × v = (u2v3 − u3v2)i − (u1v3 − u3v1)j + (u1v2 − u2v1)k.

It is important to note that this definition applies only to three-dimensional vectors. 
The cross product is not defined for two-dimensional vectors.

A convenient way to calculate u × v is to use the determinant form with cofactor 
expansion shown below. (This 3 × 3 determinant form is used simply to help remember 
the formula for the cross product. The corresponding array is technically not a matrix 
because its entries are not all numbers.)

u × v = ∣ i
u1

v1

j
u2

v2

k
u3

v3∣
 = ∣ i

u1

v1

j
u2

v2

k
u3

v3 ∣ i − ∣ i
u1

v1

j
u2

v2

k
u3

v3 ∣j + ∣ i
u1

v1

j
u2

v2

k
u3

v3 ∣k
 = ∣u2

v2

u3

v3∣i − ∣u1

v1

u3

v3∣j + ∣u1

v1

u2

v2∣k
 = (u2v3 − u3v2)i − (u1v3 − u3v1)j + (u1v2 − u2v1)k

Note the minus sign in front of the j-component. Each of the three 2 × 2 determinants 
can be evaluated by using the diagonal pattern

∣ac b
d∣ = ad − bc.

Here are a couple of examples.

∣23 4
−1∣ = (2)(−1) − (4)(3) = −2 − 12 = −14

and 

∣ 4
−6

0
3∣ = (4)(3) − (0)(−6) = 12

Put “u” in Row 2.

Put “v” in Row 3.

Exploration
Geometric Property of the 
Cross Product Three pairs 
of vectors are shown below. 
Use the definition to find the 
cross product of each pair. 
Sketch all three vectors in a 
three-dimensional system. 
Describe any relationships 
among the three vectors. Use 
your description to write a 
 conjecture about u, v, and 
u × v.

a. u = 〈3, 0, 3〉 
 v = 〈3, 0, −3〉

x

y
1 2 33

1

−2
−3

3

2

1

−3

−3
u

v

z

b. u = 〈0, 3, 3〉
 v = 〈0, −3, 3〉

x

y
1 2 33

2
1

−2
−3

3

2

−3

−2

−3 −2

v

u

z

c. u = 〈3, 3, 0〉
 v = 〈3, −3, 0〉

x

y
1 2 3

2

−2
−3

3

2

1

−3

−3 −2

u

v

z
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 Finding the Cross Product

For u = i − 2j + k and v = 3i + j − 2k, find each of the following.

a. u × v   b. v × u   c. v × v

Solution 

a.  u × v = ∣ i
1
3

j
−2

1

k
1

−2∣
  = ∣−2

1
1

−2∣i − ∣13 1
−2∣j + ∣13 −2

1∣k
  = (4 − 1)i − (−2 − 3)j + (1 + 6)k
  = 3i + 5j + 7k

b.  v × u = ∣ i
3
1

j
1

−2

k
−2

1∣
  = ∣ 1

−2
−2

1∣i − ∣31 −2
1∣j + ∣31 1

−2∣k
  = (1 − 4)i − (3 + 2)j + (−6 − 1)k
  = −3i − 5j − 7k

c. v × v = ∣ i
3
3

j
1
1

k
−2
−2∣ = 0 

The results obtained in Example 1 suggest some interesting algebraic properties of 
the cross product. For instance, u × v = −(v × u), and v × v = 0. These  properties, 
and several others, are summarized in the next theorem.

THEOREM 11.7 Algebraic Properties of the Cross Product

Let u, v, and w be vectors in space, and let c be a scalar.

1. u × v = −(v × u)
2. u × (v + w) = (u × v) + (u × w)
3. c(u × v) = (cu) × v = u × (cv)
4. u × 0 = 0 × u = 0

5. u × u = 0

6. u ∙ (v × w) = (u × v) ∙ w

Proof To prove Property 1, let u = u1i + u2 j + u3k and v = v1i + v2 j + v3k. 
Then

u × v = (u2v3 − u3v2)i − (u1v3 − u3v1)j + (u1v2 − u2v1)k

and

v × u = (v2u3 − v3u2)i − (v1u3 − v3u1)j + (v1u2 − v2u1)k

which implies that u × v = −(v × u). Proofs of Properties 2, 3, 5, and 6 are left as 
exercises (see Exercises 47–50). 

REMARK Note that this 
result is the negative of that in 
part (a).

NOTATION FOR DOT AND CROSS 
PRODUCTS

The notation for the dot 
product and cross product of 
vectors was first introduced by 
the American physicist Josiah 
Willard Gibbs (1839–1903). In 
the early 1880s, Gibbs built a 
system to represent physical 
quantities called “vector 
analysis.” The system was a 
departure from Hamilton’s 
theory of quaternions.
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Note that Property 1 of Theorem 11.7 indicates that the cross product is not 
 commutative. In particular, this property indicates that the vectors u × v and v × u 
have equal lengths but opposite directions. The next theorem lists some other geometric 
properties of the cross product of two vectors.

THEOREM 11.8 Geometric Properties of the Cross Product

Let u and v be nonzero vectors in space, and let θ be the angle between u and v.

1. u × v is orthogonal to both u and v.

2. �u × v� = �u � �v� sin θ
3.  u × v = 0 if and only if u and v are scalar multiples

of each other.

4.  �u × v� = area of parallelogram having u and v as
adjacent sides.

Proof To prove Property 2, note because cos θ = (u ∙ v)�(�u � �v�), it follows that

 �u � �v�sin θ = �u � �v�√1 − cos2 θ

 = �u � �v�√1 −
(u ∙ v)2

�u �2 �v�2

 = √�u �2 �v�2 − (u ∙ v)2

 = √(u1
2 + u2

2 + u3
2)(v1

2 + v2
2 + v3

2) − (u1v1 + u2v2 + u3v3)2

 = √(u2v3 − u3v2)2 + (u1v3 − u3v1)2 + (u1v2 − u2v1)2

 = �u × v�.

To prove Property 4, refer to Figure 11.35, which is a parallelogram having v and u as 
adjacent sides. Because the height of the parallelogram is �v� sin θ, the area is

 Area = (base)(height)
 = �u � �v� sin θ
 = �u × v�.

Proofs of Properties 1 and 3 are left as exercises (see Exercises 51 and 52). 

Both u × v and v × u are perpendicular to the plane determined by u and v. One 
way to remember the orientations of the vectors u, v, and u × v is to compare them 
with the unit vectors i, j, and k = i × j, as shown in Figure 11.36. The three vectors 
u, v, and u × v form a right-handed system, whereas the three vectors u, v, and v × u  
form a left-handed system.

j

i

k = i × j

xy-plane

   
u × v

v

u
Plane determined
by u and v

 Right-handed systems
 Figure 11.36

REMARK It follows
from Properties 1 and 2 in 
Theorem 11.8 that if n is a unit 
vector orthogonal to both u and 
v, then 

u × v = ±(�u � �v� sin θ)n.

u

v

θ

||v || θsin

The vectors u and v form adjacent 
sides of a parallelogram.
Figure 11.35
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 Using the Cross Product

See LarsonCalculus.com for an interactive version of this type of example.

Find a unit vector that is orthogonal to both

u = i − 4j + k

and

v = 2i + 3j.

Solution The cross product u × v, as shown in Figure 11.37, is orthogonal to both 
u and v.

 u × v = ∣ i
1
2

j
−4

3

k
1
0∣ Cross product

 = −3i + 2j + 11k

Because 

�u × v� = √(−3)2 + 22 + 112 = √134

a unit vector orthogonal to both u and v is

u × v
�u × v�

= −
3

√134
i +

2

√134
j +

11

√134
k. 

In Example 2, note that you could have used the cross product v × u to form a unit 
vector that is orthogonal to both u and v. With that choice, you would have obtained 
the negative of the unit vector found in the example.

 Geometric Application of the Cross Product

The vertices of a quadrilateral are listed below. Show that the quadrilateral is a 
parallelogram and find its area.

A = (5, 2, 0) B = (2, 6, 1)
C = (2, 4, 7) D = (5, 0, 6)

Solution From Figure 11.38, you can see that the sides of the quadrilateral correspond 
to the following four vectors.

AB
\

= −3i + 4j + k CD
\

= 3i − 4j − k = −AB
\

AD
\

= 0i − 2j + 6k CB
\

= 0i + 2j − 6k = −AD
\

So, AB
\

 is parallel to CD
\

 and AD
\

 is parallel to CB
\

, and you can conclude that the 
 quadrilateral is a parallelogram with AB

\

 and AD
\

 as adjacent sides. Moreover, because

 AB
\

× AD
\

= ∣ i
−3

0

j
4

−2

k
1
6∣ Cross product

 = 26i + 18j + 6k

the area of the parallelogram is

�AB
\

× AD
\

� = √1036 ≈ 32.19.

Is the parallelogram a rectangle? You can determine whether it is by finding the angle 
between the vectors AB

\

 and AD
\

. 

x

y

2

4

6

8

10

12

2
4

4

2

−4

(−3, 2, 11)

(2, 3, 0)

(1, −4, 1)
u

v

z

u × v

The vector u × v is orthogonal to both 
u and v.
Figure 11.37

y

x

6

2 4 6

8

6

2

C = (2, 4, 7)

D = (5, 0, 6)

B = (2, 6, 1)

A = (5, 2, 0)

z

The area of the parallelogram is 
approximately 32.19.
Figure 11.38
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In physics, the cross product can be used to measure torque—the moment M of 
a force F about a point P, as shown in Figure 11.39. If the point of application of the 
force is Q, then the moment of F about P is

M = PQ
\

× F. Moment of F about P

The magnitude of the moment M measures the tendency of the vector PQ
\

 to rotate 
counterclockwise (using the right-hand rule) about an axis directed along the vector M.

 An Application of the Cross Product

A vertical force of 50 pounds is applied to the end of a one-foot lever that is attached 
to an axle at point P, as shown in Figure 11.40. Find the moment of this force about 
the point P when θ = 60°.

Solution Represent the 50-pound force as

F = −50k

and the lever as

PQ
\

= cos(60°)j + sin(60°)k =
1
2

j +
√3
2

k.

The moment of F about P is

M = PQ
\

× F = ∣ i

0

0

j
1
2
0

k
√3
2

−50∣ = −25i. Moment of F about P

The magnitude of this moment is 25 foot-pounds. 

In Example 4, note that the moment (the tendency of the lever to rotate about its 
axle) is dependent on the angle θ. When θ = π�2, the moment is 0. The moment is 
greatest when θ = 0.

The Triple Scalar Product
For vectors u, v, and w in space, the dot product of u and v × w

u ∙ (v × w)

is called the triple scalar product, as defined in Theorem 11.9. The proof of this 
theorem is left as an exercise (see Exercise 55).

THEOREM 11.9 The Triple Scalar Product

For u = u1i + u2 j + u3k, v = v1i + v2 j + v3k, and w = w1i + w2 j + w3k, 
the triple scalar product is

u ∙ (v × w) = ∣ u1

v1

w1

u2

v2

w2

u3

v3

w3∣.
Note that the value of a determinant is multiplied by −1 when two rows are 

interchanged. After two such interchanges, the value of the determinant will be 
unchanged. So, the following triple scalar products are equivalent.

u ∙ (v × w) = v ∙ (w × u) = w ∙ (u × v)

F

M

PQ

Q

P

The moment of F about P
Figure 11.39

x

y

F

Q

P
60°

z

A vertical force of 50 pounds is 
applied at point Q.
Figure 11.40
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784 Chapter 11 Vectors and the Geometry of Space

If the vectors u, v, and w do not lie in the same plane, then the triple scalar product 
u ∙ (v × w) can be used to determine the volume of the parallelepiped (a polyhedron, 
all of whose faces are parallelograms) with u, v, and w as adjacent edges, as shown in 
Figure 11.41. This is established in the next theorem.

THEOREM 11.10  Geometric Property of the Triple Scalar Product

The volume V of a parallelepiped with vectors u, v, and w as
adjacent edges is 

V = ∣u ∙ (v × w)∣.

Proof In Figure 11.41, note that the area of the base is �v × w � and the height of the 
parallelepiped is �projv×wu�. Therefore, the volume is

 V = (height)(area of base)
 = �projv×wu � �v × w �

 = ∣u ∙ (v × w)
�v × w � ∣�v × w �

 = ∣u ∙ (v × w)∣. 

 Volume by the Triple Scalar Product

Find the volume of the parallelepiped shown  

y

6

3

2

1
u

w
v

(0, 2, −2)

(3, −5, 1) (3, 1, 1)

x

z

The parallelepiped has a volume of 36.
Figure 11.42

in Figure 11.42 having 

 u = 3i − 5j + k

 v = 2j − 2k

and

w = 3i + j + k

as adjacent edges.

Solution By Theorem 11.10, you have

 V = ∣u ∙ (v × w)∣ Triple scalar product

 = ∣303 −5
2
1

1
−2

1∣
 = 3∣21 −2

1∣ − (−5)∣03 −2
1∣ + (1)∣03 2

1∣
 = 3(4) + 5(6) + 1(−6)
 = 36. 

A natural consequence of Theorem 11.10 is that the volume of the parallelepiped is 
0 if and only if the three vectors are coplanar. That is, when the vectors u = 〈u1, u2, u3〉, 
v = 〈v1, v2, v3〉, and w = 〈w1, w2, w3〉 have the same initial point, they lie in the same 
plane if and only if

u ∙ (v × w) = ∣ u1

v1

w1

u2

v2

w2

u3

v3

w3∣ = 0.

u

w
v

||projv × wu ||

v × w

Area of base = �v × w �
Volume of parallelepiped = ∣u ∙ (v × w)∣
Figure 11.41
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 11.4 The Cross Product of Two Vectors in Space 785

11.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Vectors Explain what u × v represents geometrically.

2.  Area Explain how to find the area of a parallelogram 
using vectors.

Cross Product of Unit Vectors In Exercises 3–6, find the 
cross product of the unit vectors and sketch your result.

 3. j × i  4. j × k

 5. i × k  6. k × i

 Finding Cross Products In Exercises 7–10, 
find (a) u × v, (b) v × u, and (c) v × v.

 7. u = −2i + 4j  8. u = 3i + 5k

 v = 3i + 2j + 5k  v = 2i + 3j − 2k

 9. u = 〈7, 3, 2〉 10. u = 〈2, 1, −9〉

 v = 〈1, −1, 5〉  v = 〈−6, −2, −1〉

Finding a Cross Product In Exercises 11–14, find u × v 
and show that it is orthogonal to both u and v.

11. u = 〈4, −1, 0〉 12. u = 〈−5, 2, 2〉

 v = 〈−6, 3, 0〉  v = 〈0, 1, 8〉

13. u = i + j + k 14. u = i + 6j

 v = 2i + j − k  v = −2i + j + k

 Finding a Unit Vector In Exercises 15–18, find 
a unit vector that is orthogonal to both u and v.

15. u = 〈4, −3, 1〉 16. u = 〈−8, −6, 4〉

 v = 〈2, 5, 3〉  v = 〈10, −12, −2〉

17. u = −3i + 2j − 5k 18. u = 2k

 v = i − j + 4k  v = 4i + 6k

Area In Exercises 19–22, find the area of the parallelogram 
that has the given vectors as adjacent sides. Use a computer 
algebra system or a graphing utility to verify your result.

19. u = j 20. u = i + j + k

 v = j + k  v = j + k

21. u = 〈3, 2, −1〉 22. u = 〈2, −1, 0〉

 v = 〈1, 2, 3〉  v = 〈−1, 2, 0〉

 Area In Exercises 23 and 24, verify that the 
points are the vertices of a parallelogram, and find 
its area.

23. A(0, 3, 2), B(1, 5, 5), C(6, 9, 5), D(5, 7, 2)
24. A(2, −3, 1), B(6, 5, −1), C(7, 2, 2), D(3, −6, 4)

Area In Exercises 25 and 26, find the area of the triangle with 
the given vertices. (Hint: 1

2∣∣u × v∣∣ is the area of the triangle

having u and v as adjacent sides.)
25. A(0, 0, 0), B(1, 0, 3), C(−3, 2, 0)
26. A(2, −3, 4), B(0, 1, 2), C(−1, 2, 0)

27.  Torque The brakes on a bicycle are applied using a 
downward force of 20 pounds on the pedal when the crank 
makes a 40° angle with the horizontal (see figure). The crank 
is 6 inches in length. Find the torque at P.

40°
P

6 in.
F = 20 lb

  

0.1
6 f

t

2000 lb60°

 Figure for 27 Figure for 28

28.  Torque Both the magnitude and the direction of the force 
on a crankshaft change as the crankshaft rotates. Find the 
torque on the crankshaft using the position and data shown in 
the figure.

29.  Optimization A force of 180 pounds acts on the bracket 
shown in the figure.

180 lb

θ

A15 in.

12 in.

B

F

 (a)  Determine the vector AB
\

 and the vector F representing the 
force. (F will be in terms of θ.)

 (b)  Find the magnitude of the moment about A by evaluating 
�AB

\

× F �.

 (c)  Use the result of part (b) to determine the magnitude of the 
moment when θ = 30°.

 (d)  Use the result of part (b) to determine the angle θ when 
the magnitude of the moment is maximum. At that angle, 
what is the relationship between the vectors F and AB

\

? Is 
it what you expected? Why or why not?

 (e)  Use a graphing utility to graph the function for the 
magnitude of the moment about A for 0° ≤ θ ≤ 180°. 
Find the zero of the function in the given domain. Interpret 
the meaning of the zero in the context of the problem.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



786 Chapter 11 Vectors and the Geometry of Space

30.  Optimization A force of 56 pounds acts on the pipe 
wrench shown in the figure.

 

18 in.

30°

θ F

O

A

 (a)  Find the magnitude of the moment about O by evaluating 
�OA

\

× F �. Use a graphing utility to graph the resulting 
function of θ.

 (b)  Use the result of part (a) to determine the magnitude of the 
moment when θ = 45°.

 (c)  Use the result of part (a) to determine the angle θ when the 
magnitude of the moment is maximum. Is the answer what 
you expected? Why or why not?

 Finding a Triple Scalar Product In Exercises 
31–34, find u ∙ (v × w).

31. u = i 32. u = 〈1, 1, 1〉

 v = j  v = 〈2, 1, 0〉

 w = k  w = 〈0, 0, 1〉

33. u = 〈2, 0, 1〉 34. u = 〈2, 0, 0〉

 v = 〈0, 3, 0〉  v = 〈1, 1, 1〉

 w = 〈0, 0, 1〉  w = 〈0, 2, 2〉

 Volume In Exercises 35 and 36, use the 
triple scalar product to find the volume of the 
parallelepiped having adjacent edges u, v, and w.

35. u = i + j 36. u = 〈1, 3, 1〉

 v = j + k  v = 〈0, 6, 6〉

 w = i + k  w = 〈−4, 0, −4〉

 

y

x

2
2

2

1

v
w

u

z   

y

x

v

u

w
4 6 8

6

4

2

z

Volume In Exercises 37 and 38, find the volume of the 
parallelepiped with the given vertices.

37. (0, 0, 0), (3, 0, 0), (0, 5, 1), (2, 0, 5),
 (3, 5, 1), (5, 0, 5), (2, 5, 6), (5, 5, 6)
38. (0, 0, 0), (0, 4, 0), (−3, 0, 0), (−1, 1, 5),
 (−3, 4, 0), (−1, 5, 5), (−4, 1, 5), (−4, 5, 5)

eXpLoRInG ConCeptS
39.  Comparing Dot Products Identify the dot 

products that are equal. Explain your reasoning. (Assume 
u, v, and w are nonzero vectors.)

 (a) u ∙ (v × w) (b) (v × w) ∙ u

 (c) (u × v) ∙ w (d) (u × −w) ∙ v

 (e) u ∙ (w × v) (f ) w ∙ (v × u)
 (g) (−u × v) ∙ w (h) (w × u) ∙ v

40.  Using Dot and Cross Products When u × v = 0
and u ∙ v = 0, what can you conclude about u and v?

41.  Cross Product Two nonzero vectors lie in the 
yz-plane. Where does the cross product of the vectors 
lie? Explain.

 42.  HOW DO YOU SEE IT? The vertices of 
a triangle in space are (x1, y1, z1), (x2, y2, z2), 
and (x3, y3, z3). Explain how to find a vector 
perpendicular to the triangle.

 

x

y
−2

5

4
3

2
1

1

5

4

3

2

z

(x1, y1, z1)
(x2, y2 z2)

(x3, y3, z3)

 42.  

True or False? In Exercises 43–46, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

43.  It is possible to find the cross product of two vectors in a 
two-dimensional coordinate system.

44. The cross product of two nonzero vectors is a nonzero vector.

45. If u ≠ 0 and u × v = u × w, then v = w.

46. If u ≠ 0, u ∙ v = u ∙ w, and u × v = u × w, then v = w.

Proof In Exercises 47–52, prove the property of the cross 
product.

47. u × (v + w) = (u × v) + (u × w)
48. c(u × v) = (cu) × v = u × (cv)
49. u × u = 0 50. u ∙ (v × w) = (u × v) ∙ w

51. u × v is orthogonal to both u and v.

52.  u × v = 0 if and only if u and v are scalar multiples of each 
other.

53. Proof Prove that �u × v � = �u � �v � if u and v are orthogonal.

54. Proof Prove that u × (v × w) = (u ∙ w)v − (u ∙ v)w.

55. Proof Prove Theorem 11.9.
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11.5 Lines and Planes in Space 787

11.5 Lines and Planes in Space

 Write a set of parametric equations for a line in space.
 Write a linear equation to represent a plane in space.
 Sketch the plane given by a linear equation.
 Find the distances between points, planes, and lines in space.

Lines in Space
In the plane, slope is used to determine the equation of a line. In space, it is more 
 convenient to use vectors to determine the equation of a line.

In Figure 11.43, consider the line L through the point P(x1, y1, z1) and parallel to 
the vector v = 〈a, b, c〉. The vector v is a direction vector for the line L, and a, b, and 
c are direction numbers. One way of describing the line L is to say that it consists of 
all points Q(x, y, z) for which the vector PQ

\

 is parallel to v. This means that PQ
\

 is a 
scalar multiple of v and you can write PQ

\

= tv, where t is a scalar (a real number).

PQ
\

= 〈x − x1, y − y1, z − z1〉 = 〈at, bt, ct〉 = tv

By equating corresponding components, you can obtain parametric equations of a 
line in space.

THEOrEm 11.11 Parametric Equations of a Line in Space

A line L parallel to the vector v = 〈a, b, c〉 and passing through the point 
P(x1, y1, z1) is represented by the parametric equations

x = x1 + at, y = y1 + bt, and z = z1 + ct.

If the direction numbers a, b, and c are all nonzero, then you can eliminate the 
 parameter t in the parametric equations to obtain symmetric equations of the line.

x − x1

a
=

y − y1

b
=

z − z1

c
   Symmetric equations

 Finding Parametric and Symmetric Equations

Find parametric and symmetric equations of the line L that passes through the point 
(1, −2, 4) and is parallel to v = 〈2, 4, −4〉, as shown in Figure 11.44.

Solution To find a set of parametric equations of the line, use the coordinates 
x1 = 1, y1 = −2, and z1 = 4 and direction numbers a = 2, b = 4, and c = −4.

x = 1 + 2t, y = −2 + 4t, z = 4 − 4t Parametric equations

Because a, b, and c are all nonzero, a set of symmetric equations is

x − 1
2

=
y + 2

4
=

z − 4
−4

. Symmetric equations 

Neither parametric equations nor symmetric equations of a given line are unique. 
For instance, in Example 1, by letting t = 1 in the parametric equations, you would 
obtain the point (3, 2, 0). Using this point with the direction numbers a = 2, b = 4, and 
c = −4 would produce a different set of parametric equations

x = 3 + 2t, y = 2 + 4t, and z = −4t.

x

y

P(x1, y1, z1)

Q(x, y, z)

PQ = tv

L

v = 〈a, b, c〉

z

Line L and its direction vector v
Figure 11.43

x y
L

v = 〈2, 4, −4〉

(1, −2, 4)

4

2

−2

−4

2

4

−4

4

2

z

The vector v is parallel to the line L.
Figure 11.44
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788 Chapter 11 Vectors and the Geometry of Space

 Parametric Equations of a Line Through Two Points

See LarsonCalculus.com for an interactive version of this type of example.

Find a set of parametric equations of the line that passes through the points

(−2, 1, 0) and (1, 3, 5).

Solution Begin by using the points P(−2, 1, 0) and Q(1, 3, 5) to find a direction 
vector for the line passing through P and Q.

v = PQ
\

= 〈1 − (−2), 3 − 1, 5 − 0〉 = 〈3, 2, 5〉 = 〈a, b, c〉

Using the direction numbers a = 3, b = 2, and c = 5 with the point P(−2, 1, 0), you 
obtain the parametric equations

x = −2 + 3t, y = 1 + 2t, and z = 5t. 

Planes in Space
You have seen how an equation of a line in  z

x

y

n

P

Q

n · PQ = 0

The normal vector n is orthogonal 
to each vector PQ

\

 in the plane.
Figure 11.45

space can be obtained from a point on the line
and a vector parallel to it. You will now see 
that an equation of a plane in space can be 
obtained from a point in the plane and a 
vector normal (perpendicular) to the plane.

Consider the plane containing the point 
P(x1, y1, z1) having a nonzero normal vector

n = 〈a, b, c〉

as shown in Figure 11.45. This plane consists 
of all points Q(x, y, z) for which vector PQ

\

 is 
orthogonal to n. Using the dot product, you 
can write the following.

 n ∙ PQ
\

= 0

 〈a, b, c〉 ∙ 〈x − x1, y − y1, z − z1〉 = 0

 a(x − x1) + b(y − y1) + c(z − z1) = 0

The third equation of the plane is said to be in standard form.

THEOrEm 11.12 Standard Equation of a Plane in Space

The plane containing the point (x1, y1, z1) and having normal vector

n = 〈a, b, c〉

can be represented by the standard form of the equation of a plane

a(x − x1) + b(y − y1) + c(z − z1) = 0.

By regrouping terms in the standard form of the equation of a plane, you obtain 
the general form.

ax + by + cz + d = 0    General form of equation of plane

rEmark As t varies over all real numbers, the parametric equations in Example 2
determine the points (x, y, z) on the line. In particular, note that t = 0 and t = 1 give 
the original points (−2, 1, 0) and (1, 3, 5).
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 11.5 Lines and Planes in Space 789

Given the general form of the equation of a plane, it is easy to find a normal vector 
to the plane. Simply use the coefficients of x, y, and z and write n = 〈a, b, c〉.

 Finding an Equation of a Plane in Three-Space

Find an equation (in standard form and in general form) of the plane containing the points

(2, 1, 1), (1, 4, 1), and (−2, 0, 4).

Solution To apply Theorem 11.12, you need a point in the plane and a vector that 
is normal to the plane. There are three choices for the point, but no normal vector is 
given. To obtain a normal vector, use the cross product of vectors u and v extending 
from the point (2, 1, 1) to the points (1, 4, 1) and (−2, 0, 4), as shown in Figure 11.46. 
The component forms of u and v are

u = 〈1 − 2, 4 − 1, 1 − 1〉 = 〈−1, 3, 0〉

and

v = 〈−2 − 2, 0 − 1, 4 − 1〉 = 〈−4, −1, 3〉.

So, it follows that a vector normal to the given plane is

 n = u × v

 = ∣ i
−1
−4

j
3

−1

k
0
3∣

 = 9i + 3j + 13k

 = 〈a, b, c〉.

Using the direction numbers for n and the point (x1, y1, z1) = (2, 1, 1), you can 
determine an equation of the plane in standard form to be

 a(x − x1) + b(y − y1) + c(z − z1) = 0

 9(x − 2) + 3(y − 1) + 13(z − 1) = 0. Standard form

By regrouping terms, the general form is

 9x − 18 + 3y − 3 + 13z − 13 = 0

 9x + 3y + 13z − 34 = 0. General form 

Two distinct planes in three-space either are parallel or intersect in a line. For 
two planes that intersect, you can determine the angle (0 ≤ θ ≤ π�2) between them 
from the angle between their normal vectors, as shown in Figure 11.47. Specifically, if 
vectors n1 and n2 are normal to two intersecting planes, then the angle θ between the 
normal vectors is equal to the angle between the two planes and is

 cos θ = ∣n1 ∙ n2∣
�n1 � �n2 �

.  Angle between two planes

Consequently, two planes with normal vectors n1 and n2 are

1. perpendicular when n1 ∙ n2 = 0.

2. parallel when n1 is a scalar multiple of n2.

rEmark In Example 3, check to see that each of the three original points satisfies 
the equation 9x + 3y + 13z − 34 = 0.

(−2, 0, 4)

(1, 4, 1)
(2, 1, 1)

3
4

5

5

4

3

2

1

2

−2

−4

x y

u

v

z

A plane determined by u and v
Figure 11.46

n2

n1
θ

θ

The angle θ between two planes
Figure 11.47
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790 Chapter 11 Vectors and the Geometry of Space

 Finding the Line of Intersection of Two Planes

Find the angle between the two planes x − 2y + z = 0 and 2x + 3y − 2z = 0. Then 
find parametric equations of their line of intersection (see Figure 11.48).

x

y

z

θ

Line of
intersection

Plane 1

Plane 2

 Figure 11.48

Solution Normal vectors for the planes are n1 = 〈1, −2, 1〉 and n2 = 〈2, 3, −2〉. 
Consequently, the angle between the two planes is determined as follows.

cos θ = ∣n1 ∙ n2∣
�n1 � �n2 �

= ∣−6∣
√6√17

=
6

√102
≈ 0.59409

This implies that the angle between the two planes is θ ≈ 53.55°. You can find the line 
of intersection of the two planes by simultaneously solving the two linear equations 
representing the planes. One way to do this is to multiply the first equation by −2 and 
add the result to the second equation.

x
2x

−
+

2y
3y

+
−

z
2z

=
=

0
0
  

−2x
    2x

+
+

4y
3y

−
−

2z
2z

=
=

0
0
 

Multiply Equation 1 by −2.

Write Equation 2.

  7y − 4z = 0 Add equations.

  y =
4z
7

 Solve for y.

Substituting y = 4z�7 back into one of the original equations, you can determine that 
x = z�7. Finally, by letting t = z�7, you obtain the parametric equations

x = t, y = 4t, and z = 7t Line of intersection

which indicate that 1, 4, and 7 are direction numbers for the line of intersection. 

Note that the direction numbers in Example 4 can be obtained from the cross  
product of the two normal vectors as follows.

 n1 × n2 = ∣ i
1
2

j
−2

3

k
1

−2∣
 = ∣−2

3
1

−2∣i − ∣12 1
−2∣j + ∣12 −2

3∣k
 = i + 4j + 7k

This means that the line of intersection of the two planes is parallel to the cross product 
of their normal vectors.

rEmark The 
three-dimensional rotatable 
graphs that are available at 
LarsonCalculus.com can help 
you visualize surfaces such as 
those shown in Figure 11.48. 
If you have access to these 
graphs, you should use them to 
help your spatial intuition when 
studying this section and other 
sections in the text that deal 
with vectors, curves, or  
surfaces in space.
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 11.5 Lines and Planes in Space 791

Sketching Planes in Space
If a plane in space intersects one of the coordinate planes, then the line of intersection is 
called the trace of the given plane in the coordinate plane. To sketch a plane in space, 
it is helpful to find its points of intersection with the coordinate axes and its traces in 
the coordinate planes. For example, consider the plane

3x + 2y + 4z = 12. Equation of plane

You can find the xy-trace by letting z = 0 and sketching the line

3x + 2y = 12 xy-trace

in the xy-plane. This line intersects the x-axis at (4, 0, 0) and the y-axis at (0, 6, 0). In 
Figure 11.49, this process is continued by finding the yz-trace and the xz-trace and then 
shading the triangular region lying in the first octant.

y

x

(4, 0, 0)

(0, 6, 0)

z  

y

x

(0, 0, 3)

(4, 0, 0)

(0, 6, 0)

z  

y

x

(0, 0, 3)

(4, 0, 0)

(0, 6, 0)

z

 xy-trace (z = 0): yz-trace (x = 0): xz-trace (y = 0): 
 3x + 2y = 12 2y + 4z = 12 3x + 4z = 12
 Traces of the plane 3x + 2y + 4z = 12
 Figure 11.49

If an equation of a plane has a missing  

y

x

z

1
2
, 0, 0( )

(0, 0, 1)

Plane: 2x + z = 1

Plane 2x + z = 1 is parallel to the  
y-axis.
Figure 11.50

 
variable, such as

2x + z = 1

then the plane must be parallel to the axis  
represented by the missing variable, as shown  
in Figure 11.50. If two variables are missing  
from an equation of a plane, such as

ax + d = 0

then it is parallel to the coordinate plane 
represented by the missing variables, as  
shown in Figure 11.51.

d
a

, 0, 0))x

y

−

z  

x

y

z

d
b

0, −    , 0))

 

x

y

z

d
c

 0, 0, − ))

 Plane ax + d = 0 is parallel Plane by + d = 0 is parallel Plane cz + d = 0 is parallel
 to the yz-plane. to the xz-plane. to the xy-plane.
 Figure 11.51
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Distances Between Points, Planes, and Lines
Consider two types of problems involving distance in space: (1) finding the distance 
between a point and a plane and (2) finding the distance between a point and a line. 
The solutions of these problems illustrate the versatility and usefulness of vectors in 
coordinate geometry: the first problem uses the dot product of two vectors, and the 
second problem uses the cross product.

The distance D between a point Q and a plane is the length of the shortest line 
segment connecting Q to the plane, as shown in Figure 11.52. For any point P in the 
plane, you can find this distance by projecting the vector PQ

\

 onto the normal vector n. 
The length of this projection is the desired distance.

THEOrEm 11.13 Distance Between a Point and a Plane

The distance between a plane and a point Q (not in the plane) is

D = �projnPQ
\

� = ∣PQ
\

∙ n∣
�n �

where P is a point in the plane and n is normal to the plane.

To find a point in the plane ax + by + cz + d = 0, where a ≠ 0, let y = 0 and 
z = 0. Then, from the equation ax + d = 0, you can conclude that the point

(−
d
a

, 0, 0)
lies in the plane.

 Finding the Distance Between a Point and a Plane

Find the distance between the point Q(1, 5, −4) and the plane 3x − y + 2z = 6.

Solution You know that n = 〈3, −1, 2〉 is normal to the plane. To find a point in the 
plane, let y = 0 and z = 0, and obtain the point P(2, 0, 0). The vector from P to Q is 

 PQ
\

= 〈1 − 2, 5 − 0, −4 − 0〉
 = 〈−1, 5, −4〉.

Using the Distance Formula given in Theorem 11.13 produces

D = ∣PQ
\

∙ n∣
�n �

= ∣〈−1, 5, −4〉 ∙ 〈3, −1, 2〉∣
√9 + 1 + 4

= ∣−3 − 5 − 8∣
√14

=
16

√14
≈ 4.28.

 

From Theorem 11.13, you can determine that the distance between the point 
Q(x0, y0, z0) and the plane ax + by + cz + d = 0 is

D = ∣a(x0 − x1) + b(y0 − y1) + c(z0 − z1)∣
√a2 + b2 + c2

or

D = ∣ax0 + by0 + cz0 + d∣
√a2 + b2 + c2

   Distance between a point and a plane

where P(x1, y1, z1) is a point in the plane and d = −(ax1 + by1 + cz1).

rEmark In the solution to 
Example 5, note that the choice 
of the point P is arbitrary. Try 
choosing a different point in the 
plane to verify that you obtain 
the same distance.

D = ||projn PQ ||

projn PQ

P

Q

D

n

The distance between a point and a 
plane
Figure 11.52
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 Finding the Distance Between Two Parallel Planes

Two parallel planes, 3x − y + 2z − 6 = 0 and 6x − 2y + 4z + 4 = 0, are shown in 
Figure 11.53. To find the distance between the planes, choose a point in the first plane, 
such as (x0, y0, z0) = (2, 0, 0). Then, from the  second plane, you can determine that 
a = 6, b = −2, c = 4, and d = 4 and  conclude that the distance is

 D = ∣ax0 + by0 + cz0 + d∣
√a2 + b2 + c2

 = ∣6(2) + (−2)(0) + (4)(0) + 4∣
√62 + (−2)2 + 42

 =
16

√56
=

8

√14
≈ 2.14. 

The formula for the distance between a point and a line in space resembles that 
for the distance between a point and a plane—except that you replace the dot product 
with the length of the cross product and the normal vector n with a direction vector for 
the line.

THEOrEm 11.14 Distance Between a Point and a Line in Space

The distance between a point Q and a line in space is

D =
�PQ

\

× u �
�u �

where u is a direction vector for the line and P is a point
on the line.

Proof In Figure 11.54, let D be the distance between the point Q and the line. Then 
D = �PQ

\

� sin θ, where θ is the angle between u and PQ
\

. By Property 2 of Theorem 11.8,
you have �u � �PQ

\

� sin θ = �u × PQ
\

� = �PQ
\

× u �. Consequently,

D = �PQ
\

� sin θ =
�PQ

\

× u �
�u �

. 

 Finding the Distance Between a Point and a Line

Find the distance between the point Q(3, −1, 4) and the line

x = −2 + 3t, y = −2t, and z = 1 + 4t.

Solution Using the direction numbers 3, −2, and 4, a direction vector for the line 
is u = 〈3, −2, 4〉. To find a point on the line, let t = 0 and obtain P = (−2, 0, 1). So,

PQ
\

= 〈3 − (−2), −1 − 0, 4 − 1〉 = 〈5, −1, 3〉

and you can form the cross product

PQ
\

× u = ∣ i
5
3

j
−1
−2

k
3
4∣ = 2i − 11j − 7k = 〈2, −11, −7〉.

Finally, using Theorem 11.14, you can find the distance to be

D =
�PQ

\

× u �
�u �

=
√174

√29
= √6 ≈ 2.45. See Figure 11.55. 

D

(2, 0, 0)
2

3

−6

yx

z
3x − y + 2z − 6 = 0

6x − 2y + 4z + 4 = 0

The distance between the parallel 
planes is approximately 2.14.
Figure 11.53

θ

D = ||PQ ||sin θ

Point

LineP
u

Q

The distance between a point and a line
Figure 11.54

x

y

D

4
3

2
1

−2

5
4

3
2

1

−2

6

5

3

2

−1

Q = (3, −1, 4)

z

The distance between the point Q and 
the line is √6 ≈ 2.45.
Figure 11.55
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794 Chapter 11 Vectors and the Geometry of Space

11.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Parametric and Symmetric Equations Give the 

parametric equations and the symmetric equations of a line 
in space. Describe what is required to find these equations.

2.  Normal Vector The equation of a plane in space is 
2(x − 1) + 4(y − 3) − (z + 5) = 0. What is the normal 
vector to this plane?

3.  Plane Write an equation of a plane in space that is 
parallel to the x-axis.

4.  Parallel Planes Explain how to find the distance 
between two parallel planes.

Checking Points on a Line In Exercises 5 and 6, determine 
whether each point lies on the line.

 5. x = −2 + t, y = 3t, z = 4 + t

 (a) (0, 6, 6) (b) (2, 3, 5) (c) (−4, −6, 2)

 6. 
x − 3

2
=

y − 7
8

= z + 2

 (a) (7, 23, 0)   (b) (1, −1, −3)   (c) (−7, 47, −7)

 Finding Parametric and Symmetric 
Equations In Exercises 7–12, find sets of  
(a) parametric equations and (b) symmetric 
equations of the line that passes through the given 
point and is parallel to the given vector or line. (For 
each line, write the direction  numbers as integers.)

 Point Parallel to

 7. (0, 0, 0) v = 〈3, 1, 5〉

 8. (0, 0, 0) v = 〈−2, 52, 1〉
 9. (−2, 0, 3) v = 2i + 4j − 2k

10. (−3, 0, 2) v = 6j + 3k

11. (1, 0, 1) x = 3 + 3t, y = 5 − 2t, z = −7 + t

12. (−3, 5, 4) x − 1
3

=
y + 1
−2

= z − 3

 Finding Parametric and Symmetric 
Equations In Exercises 13–16, find sets of  
(a) parametric equations and (b) symmetric 
equations of the line that passes through the two 
points (if possible). (For each line, write the direction 
numbers as integers.)

13. (5, −3, −2), (−2
3, 23, 1) 14. (0, 4, 3), (−1, 2, 5)

15. (7, −2, 6), (−3, 0, 6) 16. (0, 0, 25), (10, 10, 0)

Finding Parametric Equations In Exercises 17–24, find 
a set of parametric equations of the line with the given 
characteristics.

17.  The line passes through the point (2, 3, 4) and is parallel to the  
xz-plane and the yz-plane.

18.  The line passes through the point (−4, 5, 2) and is parallel to 
the xy-plane and the yz-plane.

19.  The line passes through the point (2, 3, 4) and is perpendicular 
to the plane given by 3x + 2y − z = 6.

20.  The line passes through the point (−4, 5, 2) and is perpendicular 
to the plane given by −x + 2y + z = 5.

21.  The line passes through the point (5, −3, −4) and is parallel 
to v = 〈2, −1, 3〉.

22.  The line passes through the point (−1, 4, −3) and is parallel 
to v = 5i − j.

23.  The line passes through the point (2, 1, 2) and is parallel to the 
line x = −t, y = 1 + t, z = −2 + t.

24.  The line passes through the point (−6, 0, 8) and is parallel to 
the line x = 5 − 2t, y = −4 + 2t, z = 0.

Using Parametric and Symmetric Equations In 
Exercises 25–28, find the coordinates of a point P on the line 
and a vector v parallel to the line.

25. x = 3 − t, y = −1 + 2t, z = −2

26. x = 4t, y = 5 − t, z = 4 + 3t

27. 
x − 7

4
=

y + 6
2

= z + 2 28. 
x + 3

5
=

y
8

=
z − 3

6

Determining Parallel Lines In Exercises 29–32, determine 
whether the lines are parallel or identical.

29. x = 6 − 3t, y = −2 + 2t, z = 5 + 4t

 x = 6t, y = 2 − 4t, z = 13 − 8t

30. x = 1 + 2t, y = −1 − t, z = 3t

 x = 5 + 2t, y = 1 − t, z = 8 + 3t

31. 
x − 8

4
=

y + 5
−2

=
z + 9

3

 
x + 4
−8

=
y − 1

4
=

z + 18
−6

32. 
x − 1

4
=

y − 1
2

=
z + 3

4

 
x + 2

1
=

y − 1
0.5

=
z − 3

1

Finding a Point of Intersection In Exercises 33–36, 
determine whether the lines intersect, and if so, find the point 
of intersection and the angle between the lines.

33. x = 4t + 2, y = 3, z = −t + 1

 x = 2s + 2, y = 2s + 3, z = s + 1

34. x = −3t + 1, y = 4t + 1, z = 2t + 4

 x = 3s + 1, y = 2s + 4, z = −s + 1

35. 
x
3

=
y − 2
−1

= z + 1, 
x − 1

4
= y + 2 =

z + 3
−3

36. 
x − 2
−3

=
y − 2

6
= z − 3, 

x − 3
2

= y + 5 =
z + 2

4
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Checking Points in a Plane In Exercises 37 and 38, 
determine whether each point lies in the plane.

37. x + 2y − 4z − 1 = 0

 (a) (−7, 2, −1)   (b) (5, 2, 2) (c) (−6, 1, −1)
38. 2x + y + 3z − 6 = 0

 (a) (3, 6, −2) (b) (−1, 5, −1)   (c) (2, 1, 0)

 Finding an Equation of a Plane In Exercises 
39–44, find an equation of the plane that passes 
through the given point and is perpendicular to the 
given vector or line.

 Point Perpendicular to

39. (1, 3, −7) n = j

40. (0, −1, 4) n = k

41. (3, 2, 2) n = 2i + 3j − k

42. (0, 0, 0) n = −3i + 2k

43. (−1, 4, 0) x = −1 + 2t, y = 5 − t, z = 3 − 2t

44. (3, 2, 2) x − 1
4

= y + 2 =
z + 3
−3

 Finding an Equation of a Plane In Exercises 
45–56, find an equation of the plane with the given 
characteristics.

45. The plane passes through (0, 0, 0), (2, 0, 3), and (−3, −1, 5).
46. The plane passes through (3, −1, 2), (2, 1, 5), and (1, −2, −2).
47. The plane passes through (1, 2, 3), (3, 2, 1), and (−1, −2, 2).
48.  The plane passes through the point (1, 2, 3) and is parallel to 

the yz-plane.

49.  The plane passes through the point (1, 2, 3) and is parallel to 
the xy-plane.

50.  The plane contains the y-axis and makes an angle of π�6 with 
the positive x-axis.

51. The plane contains the lines given by

 
x − 1
−2

= y − 4 = z and 
x − 2
−3

=
y − 1

4
=

z − 2
−1

.

52.  The plane passes through the point (2, 2, 1) and contains the 
line given by

 
x
2

=
y − 4
−1

= z.

53.  The plane passes through the points (2, 2, 1) and (−1, 1, −1) 
and is perpendicular to the plane

 2x − 3y + z = 3.

54.  The plane passes through the points (3, 2, 1) and (3, 1, −5) 
and is perpendicular to the plane

 6x + 7y + 2z = 10.

55.  The plane passes through the points (1, −2, −1) and (2, 5, 6) 
and is parallel to the x-axis.

56.  The plane passes through the points (4, 2, 1) and (−3, 5, 7) 
and is parallel to the z-axis.

Finding an Equation of a Plane In Exercises 57–60, find 
an equation of the plane that contains all the points that are 
equidistant from the given points.

57. (2, 2, 0), (0, 2, 2)
58. (1, 0, 2), (2, 0, 1)
59. (−3, 1, 2), (6, −2, 4)
60. (−5, 1, −3), (2, −1, 6)

Parallel Planes In Exercises 61–64, determine whether the 
planes are  parallel or identical.

61. −5x + 2y − 8z = 6 62. 2x − y + 3z = 8

 15x − 6y + 24z = 17  8x − 4y + 12z = 5

63. 3x − 2y + 5z = 10

 75x − 50y + 125z = 250

64. −x + 4y − z = 6

 −5
2x + 10y − 5

2z = 15

 Intersection of Planes In Exercises 65–68, 
(a) find the angle between the two planes and  
(b) find a set of parametric equations for the line of 
intersection of the planes.

65. 3x + 2y − z = 7 66. −2x + y + z = 2

 x − 4y + 2z = 0  6x − 3y + 2z = 4

67. 3x − y + z = 7 68. 6x − 3y + z = 5

 4x + 6y + 3z = 2  −x + y + 5z = 5

Comparing Planes In Exercises 69–74, determine whether 
the planes are parallel, orthogonal, or neither. If they are neither 
parallel nor  orthogonal, find the angle between the planes.

69. 5x − 3y + z = 4 70. 3x + y − 4z = 3

 x + 4y + 7z = 1  −9x − 3y + 12z = 4

71. x − 3y + 6z = 4 72. 3x + 2y − z = 7

 5x + y − z = 4  x − 4y + 2z = 0

73. x − 5y − z = 1 74. 2x − z = 1

 5x − 25y − 5z = −3  4x + y + 8z = 10

 Sketching a Graph of a Plane In Exercises 
75–82, sketch a graph of the plane and label any 
intercepts.

75. y = −2 76. z = 1

77. x + z = 6 78. 2x + y = 8

79. 4x + 2y + 6z = 12 80. 3x + 6y + 2z = 6

81. 2x − y + 3z = 4 82. 2x − y + z = 4

Intersection of a Plane and a Line In Exercises 83–86, 
find the point(s) of intersection (if any) of the plane and the 
line. Also, determine whether the line lies in the plane.

83. x + 3y − z = 6, 
x + 7

2
= y − 4 =

z + 1
5

84. 2x + 3y = −5, 
x − 1

4
=

y
2

=
z − 3

6
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 85. 2x + 3y = 10, 
x − 1

3
=

y + 1
−2

= z − 3

 86. 5x + 3y = 17, 
x − 4

2
=

y + 1
−3

=
z + 2

5

 Finding the Distance Between a Point and 
a Plane In Exercises 87–90, find the distance 
between the point and the plane.

 87. (0, 0, 0)  88. (0, 0, 0)
  2x + 3y + z = 12   5x + y − z = 9

 89. (2, 8, 4)
  2x + y + z = 5

 90. (1, 3, −1)
  3x − 4y + 5z = 6

 Finding the Distance Between Two Parallel 
Planes In Exercises 91–94, verify that the two 
planes are parallel and find the distance between 
the planes.

 91. x − 3y + 4z = 10  92. 2x + 7y + z = 13

  x − 3y + 4z = 6   2x + 7y + z = 9

 93. −3x + 6y + 7z = 1

  6x − 12y − 14z = 25

 94. −x + 6y + 2z = 3

  −1
2x + 3y + z = 4

 Finding the Distance Between a Point and 
a Line In Exercises 95–98, find the distance 
between the point and the line given by the set of 
parametric equations.

 95. (1, 5, −2); x = 4t − 2, y = 3, z = −t + 1

 96. (1, −2, 4); x = 2t, y = t − 3, z = 2t + 2

 97. (−2, 1, 3); x = 1 − t, y = 2 + t, z = −2t

 98. (4, −1, 5); x = 3, y = 1 + 3t, z = 1 + t

Finding the Distance Between Two Parallel Lines In 
Exercises 99 and 100, verify that the two lines are parallel and 
find the distance between the lines.

 99. L1: x = 2 − t, y = 3 + 2t, z = 4 + t

  L2: x = 3t, y = 1 − 6t, z = 4 − 3t

100. L1: x = 3 + 6t, y = −2 + 9t, z = 1 − 12t

  L2: x = −1 + 4t, y = 3 + 6t, z = −8t

eXpLoRInG ConCeptS
101.  Planes Consider a line and a point not on the line. 

How many planes contain the line and the point? Explain.

102.  Planes How many planes are orthogonal to a given 
plane in space? Explain.

103.  Think about It Do two distinct lines in space 
determine a unique plane? Explain.

 104.  HOW DO YOU SEE IT? Match the general 
equation with its graph. Then state what axis or 
plane the equation is parallel to.

(a) ax + by + d = 0

(b) ax + d = 0

(c) cz + d = 0

(d) ax + cz + d = 0

(i)

x
y

z (ii)

x
y

z

(iii)

x
y

z (iv)

x
y

z

 104.  

Personal consumption expenditures (in billions of dollars) 
for several types of recreation from 2009 through 2014 
are shown in the table, where x is the expenditures on 
amusement parks and campgrounds, y is the expenditures 
on live entertainment (excluding sports), and z is the 
expenditures on spectator sports. (Source: U.S. Bureau of 
Economic Analysis)

Year 2009 2010 2011 2012 2013 2014

x 37.2 38.8 41.3 44.6 47.0 50.3

y 25.2 26.3 28.3 28.5 28.0 30.0

z 18.8 19.2 20.4 20.6 21.6 22.4

A model for the data is given by

0.23x + 0.14y − z = −6.85.

(a)  Complete a fourth
row in the table
using the model to
approximate z for 
the given values of
x and y. Compare
the approximations
with the actual values
of z.

(b)  According to this model, increases in expenditures on 
recreation types x and y would correspond to what kind 
of change in expenditures on recreation type z?

105. modeling Data

Naypong/Shutterstock.com
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 11.5 Lines and Planes in Space 797

106.  mechanical Design The figure shows a chute at the top 
of a grain elevator of a combine that funnels the grain into a 
bin. Find the angle between two adjacent sides.

6 in.
6 in.

8 in.

8 in.

8 in.

107.  Distance Two insects are crawling along different lines 
in three-space. At time t (in minutes), the first insect is at the 
point (x, y, z) on the line x = 6 + t, y = 8 − t, z = 3 + t. 
Also, at time t, the second insect is at the point (x, y, z) on 
the line x = 1 + t, y = 2 + t, z = 2t. Assume that distances 
are given in inches.

  (a)  Find the distance between the two insects at time t = 0.

  (b)  Use a graphing utility to graph the distance between the 
insects from t = 0 to t = 10.

  (c)  Using the graph from part (b), what can you conclude 
about the distance between the insects?

  (d)  How close to each other do the insects get?

108.  Finding an Equation of a Sphere Find the standard 
equation of the sphere with center (−3, 2, 4) that is tangent 
to the plane given by 2x + 4y − 3z = 8.

109.  Finding a Point of Intersection Find the point of 
intersection of the plane 3x − y + 4z = 7 and the line 
through (5, 4, −3) that is perpendicular to this plane.

110.  Finding the Distance Between a Plane and a Line 
Show that the plane 2x − y − 3z = 4 is parallel to the line 
x = −2 + 2t, y = −1 + 4t, z = 4, and find the distance 
between them.

111.  Finding Parametric Equations Find a set of 
parametric equations for the line passing through the 
point (0, 1, 4) that is perpendicular to u = 〈2, −5, 1〉 and 
v = 〈−3, 1, 4〉.

112.  Finding Parametric Equations Find a set of parametric 
equations for the line passing through the point (1, 0, 2) 
that is parallel to the plane given by x + y + z = 5 and 
perpendicular to the line x = t, y = 1 + t, z = 1 + t.

True or False? In Exercises 113–118, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

113.  If v = a1i + b1j + c1k is any vector in the plane given by 
a2x + b2y + c2z + d2 = 0, then a1a2 + b1b2 + c1c2 = 0.

114. Two lines in space are either intersecting or parallel.

115. Two planes in space are either intersecting or parallel.

116.  If two lines L1 and L2 are each parallel to a plane, then L1 and 
L2 are parallel.

117.  If two planes P1 and P2 are each perpendicular to a third plane 
in space, then P1 and P2 are parallel.

118. A plane and a line in space are either intersecting or parallel.

You have learned two distance formulas in this section—one for 
the distance between a point and a plane, and one for the distance 
between a point and a line. In this project, you will study a third 
distance  problem—the distance between two skew lines. Two lines 
in space are skew if they are neither parallel nor intersecting (see 
figure).

(a) Consider the following two lines in space.

 L1: x = 4 + 5t, y = 5 + 5t, z = 1 − 4t

 L2: x = 4 + s, y = −6 + 8s, z = 7 − 3s

 (i) Show that these lines are not parallel.

 (ii)  Show that these lines do not intersect and therefore are 
skew lines.

 (iii) Show that the two lines lie in parallel planes.

 (iv)  Find the distance between the parallel planes from  
part (iii). This is the distance between the original skew 
lines.

(b)  Use the procedure in part (a) to find the distance between the 
lines.

 L1: x = 2t, y = 4t, z = 6t

 L2: x = 1 − s, y = 4 + s, z = −1 + s

(c)  Use the procedure in part (a) to find the distance between the 
lines.

 L1: x = 3t, y = 2 − t, z = −1 + t

 L2: x = 1 + 4s, y = −2 + s, z = −3 − 3s

(d)  Develop a formula for finding the distance between the skew 
lines.

 L1: x = x1 + a1t, y = y1 + b1t, z = z1 + c1t

 L2: x = x2 + a2s, y = y2 + b2s, z = z2 + c2s

L1

L2

Distances in Space
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798 Chapter 11 Vectors and the Geometry of Space

11.6 Surfaces in Space

 Recognize and write equations of cylindrical surfaces.
 Recognize and write equations of quadric surfaces.
 Recognize and write equations of surfaces of revolution.

Cylindrical Surfaces
The first five sections of this chapter contained the vector portion of the preliminary 
work necessary to study vector calculus and the calculus of space. In this and the next 
section, you will study surfaces in space and alternative coordinate systems for space.  
You have already studied two special types of surfaces.

1. Spheres: (x − x0)2 + (y − y0)2 + (z − z0)2 = r2 Section 11.2

2. Planes: ax + by + cz + d = 0 Section 11.5

A third type of surface in space is a cylindrical surface, or simply a cylinder. To 
define a cylinder, consider the familiar right circular cylinder shown in Figure 11.56. 
The cylinder was generated by a vertical line  moving around the circle x2 + y2 = a2 
in the xy-plane. This circle is a generating curve for the cylinder, as indicated in the 
next definition.

Definition of a Cylinder

Let C be a curve in a plane and let L be a line not in a parallel plane. The set
of all lines parallel to L and intersecting C is a cylinder. The curve C is the 
generating curve (or directrix) of the cylinder, and the parallel lines are
rulings.

Without loss of generality, you can  

x

z

y

Rulings intersect C
and are parallel to L.

L intersects C.

Generating
curve C

Right cylinder: A cylinder whose rulings 
are perpendicular to the coordinate plane 
containing C
Figure 11.57

assume that C lies in one of the three 
coordinate planes. Moreover, this text 
restricts the discussion to right cylinders––
cylinders whose rulings are perpendicular 
to the coordinate plane containing C, 
as shown in Figure 11.57. Note that the 
rulings intersect C and are parallel to the 
line L.

For the right circular cylinder shown in 
Figure 11.56, the equation of the generating 
curve in the xy-plane is

x2 + y2 = a2.

To find an equation of the cylinder, note that you can generate any one of the rulings by 
fixing the values of x and y and then allowing z to take on all real values. In this sense, 
the value of z is arbitrary and is, therefore, not included in the equation. In other words, 
the equation of this cylinder is simply the equation of its generating curve.

x2 + y2 = a2 Equation of cylinder in space

equations of Cylinders

The equation of a cylinder whose rulings are parallel to one of the coordinate 
axes contains only the variables corresponding to the other two axes.

y

x

z

Right circular cylinder:
x2 + y2 = a2

Rulings are parallel to z-axis
Figure 11.56
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11.6 Surfaces in Space 799

 Sketching a Cylinder

Sketch the surface represented by each equation.

a. z = y2   b. z = sin x, 0 ≤ x ≤ 2π

Solution

a.  The graph is a cylinder whose generating curve, z = y2, is a parabola in the yz-plane. 
The rulings of the cylinder are parallel to the x-axis, as shown in Figure 11.58(a).

b.  The graph is a cylinder generated by the sine curve in the xz-plane. The rulings are 
parallel to the y-axis, as shown in Figure 11.58(b).

z

x

y

Cylinder: z = y2

Generating curve C
lies in yz-plane

   
z

y

π

1

x

Cylinder: z = sin x

Generating curve C
lies in xz-plane

 (a) Rulings are parallel to x-axis. (b) Rulings are parallel to y-axis.

 Figure 11.58 

Quadric Surfaces
The fourth basic type of surface in space is a quadric surface. Quadric surfaces are the 
three-dimensional analogs of conic sections.

Quadric Surface

The equation of a quadric surface in space is a second-degree equation in 
three variables. The general form of the equation is

Ax2 + By2 + Cz2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0.

There are six basic types of quadric surfaces: ellipsoid, hyperboloid of one 
sheet, hyperboloid of two sheets, elliptic cone, elliptic paraboloid, and 
 hyperbolic paraboloid.

The intersection of a surface with a plane is called the trace of the surface in 
the plane. To visualize a surface in space, it is helpful to determine its traces in some 
well-chosen planes. The traces of quadric surfaces are conics. These traces, together 
with the standard form of the equation of each quadric surface, are shown in the table 
on the next two pages.

In the table on the next two pages, only one of several orientations of each quadric 
surface is shown. When the surface is oriented along a different axis, its standard 
equation will change accordingly, as illustrated in Examples 2 and 3. The fact that 
the two types of paraboloids have one variable raised to the first power can be helpful 
in classifying quadric surfaces. The other four types of basic quadric surfaces have 
equations that are of second degree in all three variables.
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800 Chapter 11 Vectors and the Geometry of Space

y
x

z Ellipsoid

x2

a2 +
y2

b2 +
z2

c2 = 1

Trace Plane

Ellipse Parallel to xy-plane
Ellipse Parallel to xz-plane
Ellipse Parallel to yz-plane

The surface is a sphere when 
a = b = c ≠ 0.

y
x

z

xy-trace

yz-trace xz-trace

y

x

z Hyperboloid of One Sheet

x2

a2 +
y2

b2 −
z2

c2 = 1

Trace Plane

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane
Hyperbola Parallel to yz-plane

The axis of the hyperboloid  
corresponds to the variable whose 
coefficient is negative.

y

x

z

xy-trace

yz-trace
xz-trace

x y

z Hyperboloid of Two Sheets

z2

c2 −
x2

a2 −
y2

b2 = 1

Trace Plane

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane
Hyperbola Parallel to yz-plane

The axis of the hyperboloid  
corresponds to the variable whose 
coefficient is positive. There is no 
trace in the coordinate plane  
perpendicular to this axis.

z

x y

no -tracexy

yz-trace xz-trace

parallel to
xy-plane
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 11.6 Surfaces in Space 801

x

y

z
Elliptic Cone

x2

a2 +
y2

b2 −
z2

c2 = 0

Trace Plane

Ellipse Parallel to xy-plane
Hyperbola Parallel to xz-plane
Hyperbola Parallel to yz-plane

The axis of the cone corresponds to the 
variable whose coefficient is negative. 
The traces in the coordinate planes 
parallel to this axis are intersecting 
lines.

x

z

y

xy-trace
(one point)

yz-trace

parallel to
xy-plane

xz-trace

x
y

z
Elliptic Paraboloid

z =
x2

a2 +
y2

b2

Trace Plane

Ellipse Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane

The axis of the paraboloid corresponds 
to the variable raised to the first power.

x
y

z
xz-traceyz-trace

xy-trace
(one point)

parallel to 
xy-plane

x

y

z
Hyperbolic Paraboloid

z =
y2

b2 −
x2

a2

Trace Plane

Hyperbola Parallel to xy-plane
Parabola Parallel to xz-plane
Parabola Parallel to yz-plane

The axis of the paraboloid  
corresponds to the variable raised to 
the first power.

x

y

z
yz-trace

xz-trace

parallel to
xy-plane
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802 Chapter 11 Vectors and the Geometry of Space

To classify a quadric surface, begin by writing the equation of the surface in 
standard form. Then, determine several traces taken in the coordinate planes or taken 
in planes that are parallel to the coordinate planes.

 Sketching a Quadric Surface

Classify and sketch the surface

4x2 − 3y2 + 12z2 + 12 = 0.

Solution Begin by writing the equation in standard form.

 4x2 − 3y2 + 12z2 + 12 = 0 Write original equation.

 
x2

−3
+

y2

4
− z2 − 1 = 0 Divide by −12.

 
y2

4
−

x2

3
− z2 = 1 Standard form

From the table on pages 800 and 801, you can conclude that the surface is a hyperboloid 
of two sheets with the y-axis as its axis. To sketch the graph of this surface, it helps to 
find the traces in the coordinate planes.

xy-trace (z = 0): y2

4
−

x2

3
= 1 Hyperbola

xz-trace (y = 0): x2

3
+

z2

1
= −1 No trace

yz-trace (x = 0): y2

4
−

z2

1
= 1 Hyperbola

The graph is shown in Figure 11.59.

 Sketching a Quadric Surface

Classify and sketch the surface

x − y2 − 4z2 = 0.

Solution Because x is raised only to the first power, the surface is a paraboloid. The 
axis of the paraboloid is the x-axis. In standard form, the equation is

x = y2 + 4z2. Standard form

Some convenient traces are listed below.

xy-trace (z = 0): x = y2 Parabola

xz-trace (y = 0): x = 4z2 Parabola

parallel to yz-plane (x = 4): y2

4
+

z2

1
= 1 Ellipse

The surface is an elliptic paraboloid, as shown in Figure 11.60. 

Some second-degree equations in x, y, and z do not represent any of the basic types 
of quadric surfaces. For example, the graph of

x2 + y2 + z2 = 0 Single point

is a single point, and the graph of

x2 + y2 = 1 Right circular cylinder

is a right circular cylinder.

y

z

Hyperboloid of two sheets:

y2 x2

4 3
−       − z2 = 1

4
3

2 1 2

1

2

3

x

y2 z2

4 1
−       = 1

y2 x2

4 3
−       = 1

Figure 11.59

y

z

x

10

4
2

2
−4

y2 z2

4 1
+       = 1

Elliptic paraboloid:
x = y2 + 4z2

x = 4z2

x = y2

Figure 11.60
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 11.6 Surfaces in Space 803

For a quadric surface not centered at the origin, you can form the standard   
equation by completing the square, as demonstrated in Example 4.

 A Quadric Surface Not Centered at the Origin

See LarsonCalculus.com for an interactive version of this type of example.

Classify and sketch the surface 

x2 + 2y2 + z2 − 4x + 4y − 2z + 3 = 0.

Solution Begin by grouping terms and factoring where possible.

x2 − 4x + 2(y2 + 2y) + z2 − 2z = −3

Next, complete the square for each variable and write the equation in standard form.

 (x2 − 4x +   ) + 2(y2 + 2y +   ) + (z2 − 2z +   ) = −3

 (x2 − 4x + 4) + 2(y2 + 2y + 1) + (z2 − 2z + 1) = −3 + 4 + 2 + 1

 (x − 2)2 + 2(y + 1)2 + (z − 1)2 = 4

 
(x − 2)2

4
+

(y + 1)2

2
+

(z − 1)2

4
= 1

From this equation, you can see that the quadric surface is an ellipsoid that is centered
at (2, −1, 1). Its graph is shown in Figure 11.61. 

teChNOlOgy A 3-D graphing utility can help you visualize a surface in 
space.* Such a graphing utility may create a three-dimensional graph by sketching 
several traces of the surface and then applying a “hidden-line” routine that blocks out 
 portions of the surface that lie behind other portions of the surface. Two  examples of 
figures that were generated by Mathematica are shown below.

x

y

Generated by Mathematica

z   

y

x

Generated by Mathematica

z

 Elliptic paraboloid Hyperbolic paraboloid

 x =
y2

2
+

z2

2
 z =

y2

16
−

x2

16

Using a graphing utility to graph a surface in space requires  practice. For one 
thing, you must know enough about the surface to be able to  specify a viewing 
 window that gives a representative view of the surface. Also, you can often improve 
the view of a surface by rotating the axes. For instance, note that the elliptic 
 paraboloid in the figure is seen from a line of sight that is “higher” than the line of 
sight used to view the hyperbolic paraboloid.

* Some 3-D graphing utilities require surfaces to be entered with parametric equations. For a discussion of this 
technique, see Section 15.5.

y

x

z

1

5

3

−1

(2, −1, 1)

(x − 2)2 (y + 1)2 (z − 1)2

4 2 4
+ + = 1

An ellipsoid centered at (2, −1, 1)
Figure 11.61
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804 Chapter 11 Vectors and the Geometry of Space

Surfaces of Revolution
The fifth special type of surface you will study is a surface of revolution. In Section 7.4,
you studied a method for finding the area of such a surface. You will now look at a 
procedure for finding its equation. Consider the graph of the radius  function

y = r(z) Generating curve

in the yz-plane. When this graph is revolved about the z-axis, it forms a surface of 
revolution, as shown in Figure 11.62. The trace of the surface in the plane z = z0 is a 
circle whose radius is r(z0) and whose equation is 

x2 + y2 = [r(z0)]2. Circular trace in plane: z = z0

Replacing z0 with z produces an equation that is valid for all values of z. In a similar 
manner, you can obtain equations for surfaces of revolution for the other two axes, and 
the results are summarized as follows.

Surface of Revolution

If the graph of a radius function r is revolved about one of the coordinate 
axes, then the equation of the resulting surface of revolution has one of the 
forms listed below.

1. Revolved about the x-axis: y2 + z2 = [r(x)]2

2. Revolved about the y-axis: x2 + z2 = [r(y)]2

3. Revolved about the z-axis: x2 + y2 = [r(z)]2

 Finding an equation for a Surface of Revolution

Find an equation for the surface of revolution formed by revolving (a) the graph of 
y = 1�z about the z-axis and (b) the graph of 9x2 = y3 about the y-axis.

Solution

a. An equation for the surface of revolution formed by revolving the graph of

y =
1
z
 Radius function

 about the z-axis is

 x2 + y2 = [r(z)]2 Revolved about the z-axis

 x2 + y2 = (1
z)

2

. Substitute 1�z for r(z).

b.  To find an equation for the surface formed by revolving the graph of 9x2 = y3 about 
the y-axis, solve for x in terms of y to obtain

x =
1
3

y3�2 = r(y). Radius function

 So, the equation for this surface is

 x2 + z2 = [r(y)]2 Revolved about the y-axis

 x2 + z2 = (1
3

y3�2)
2

 Substitute 13 y3�2 for r(y).

 x2 + z2 =
1
9

y3. Equation of surface

 The graph is shown in Figure 11.63. 

y

x

(x, y, z)
r z( )

(0, 0, z)

(0, r (z), z)

z Generating curve
y = r (z)

Circular
cross section

Figure 11.62

x
y

z

x2 + z2 = y31
9

Surface:

Generating curve
9x2 = y3

Figure 11.63
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 11.6 Surfaces in Space 805

The generating curve for a surface of revolution is not unique. For instance, the  
surface

x2 + z2 = e−2y

can be formed by revolving either the graph of

x = e−y

about the y-axis or the graph of

z = e−y

about the y-axis, as shown in Figure 11.64.

x

y

z

Surface:
x2 + z2 = e−2y

Generating curve
in xy-plane
x = e−y

  

x

y

z Generating curve
in yz-plane
z = e−y

 Figure 11.64

 Finding a generating Curve

Find a generating curve and the axis of revolution for the surface

x2 + 3y2 + z2 = 9.

Solution The equation has one of the forms listed below.

 x2 + y2 = [r(z)]2 Revolved about z-axis

 y2 + z2 = [r(x)]2 Revolved about x-axis

 x2 + z2 = [r(y)]2 Revolved about y-axis

Because the coefficients of x2 and z2 are equal,  

y

x

z

Surface:
x2 + 3y2 + z2 = 9

Generating curve
in yz-plane
z =     9 − 3y2

Generating curve
in xy-plane
x =     9 − 3y2

Figure 11.65 

you should choose the third form and write

x2 + z2 = 9 − 3y2.

The y-axis is the axis of revolution. You can 
choose a generating curve from either of the 
traces

x2 = 9 − 3y2 Trace in xy-plane

or

z2 = 9 − 3y2. Trace in yz-plane

For instance, using the first trace, the generating 
curve is the semiellipse

x = √9 − 3y2. Generating curve

The graph of this surface is shown in  
Figure 11.65.
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806 Chapter 11 Vectors and the Geometry of Space

11.6 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Quadric Surfaces How are quadric surfaces and 

conic sections related?

2.  Classifying an equation What does the equation 
z = x2 represent in the xz-plane? What does it represent 
in three-space?

3.  trace of a Surface What is meant by the trace of a 
surface? How do you find a trace?

4.  think About It Does every second-degree
equation in x, y, and z represent a quadric surface? Explain.

Matching In Exercises 5–10, match the equation with its 
graph. [The graphs are labeled (a), (b), (c), (d), (e), and (f ).]

(a) 

x
y5 6

4

6

3

z  (b) 

y

x

2
4

2

3

4
−3

z

(c) 

x
y5

−5

4

4

z  (d) 

6

4

2

2
y

x

z

(e) 

y
2

2
1

3

−3

3
4 4

x

z  (f ) 

y
4

5
4

2
3

x

z

 5. 
x2

9
+

y2

16
+

z2

9
= 1  6. 15x2 − 4y2 + 15z2 = −4

 7. 4x2 − y2 + 4z2 = 4  8. y2 = 4x2 + 9z2

 9. 4x2 − 4y + z2 = 0

10. 4x2 − y2 + 4z = 0

 Sketching a Surface in Space In Exercises 
11–14, describe and sketch the surface.

11. y2 + z2 = 9 12. y2 + z = 6

13. 4x2 + y2 = 4 14. y2 − z2 = 25

 Sketching a Quadric Surface In Exercises 
15–26, classify and sketch the quadric surface. Use 
a computer algebra system or a graphing utility to 
confirm your sketch.

15. 4x2 − y2 − z2 = 1 16. 
x2

16
+

y2

25
+

z2

25
= 1

17. 16x2 − y2 + 16z2 = 4 18. z = x2 + 4y2

19. x2 +
y2

4
+ z2 = 1 20. z2 − x2 −

y2

4
= 1

21. z2 = x2 +
y2

9
 22. 3z = −y2 + x2

23. x2 − y2 + z = 0 24. x2 = 2y2 + 2z2

25. x2 − y + z2 = 0 26. −8x2 + 18y2 + 18z2 = 2

EXPLORING CONCEPTS
27.  hyperboloid Explain how to determine whether 

a quadric surface is a hyperboloid of one sheet or a 
hyperboloid of two sheets.

28.  ellipsoid Is every trace of an ellipsoid an ellipse? 
Explain.

29.  Quadric Surface Is there a quadric surface whose 
traces are all parabolas? Explain.

 30.  hOW DO yOU See It? The four figures 
below are graphs of the quadric  surface 
z = x2 + y2. Match each of the four graphs with
the point in space from which the paraboloid is 
viewed.

(a) z

y

 (b)

x y

z

(c)

y

x

 (d)

x

z

 (i) (0, 0, 20) (ii) (0, 20, 0)
(iii) (20, 0, 0) (iv) (10, 10, 20)

 30.  
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11.6 Surfaces in Space 807

 Finding an equation for a Surface of 
Revolution In Exercises 31–36, find an 
equation for the surface of revolution formed by 
revolving the curve in the indicated coordinate 
plane about the given axis.

 Equation Coordinate Axis of
 of Curve Plane Revolution

31. z = 5y yz-plane y-axis

32. z2 = 9y yz-plane y-axis

33. y3 = 8z yz-plane z-axis

34. z = ln x xz-plane z-axis

35. xy = 2 xy-plane x-axis

36. 2z = √4 − x2 xz-plane x-axis

 Finding a generating Curve In Exercises 
37–40, find an equation of a generating curve given 
the equation of its surface of revolution.

37. x2 + y2 − 2z = 0

38. x2 + z2 = cos2 y

39. 8x2 + y2 + z2 = 5

40. 6x2 + 2y2 + 2z2 = 1

Finding the Volume of a Solid In Exercises 41 and 42, 
use the shell method to find the volume of the solid below the 
surface of revolution and above the xy-plane.

41.  The curve z = 4x − x2 in the xz-plane is revolved about the 
z-axis.

42.  The curve

 z = sin y, 0 ≤ y ≤ π

 in the yz-plane is revolved about the z-axis.

Analyzing a trace In Exercises 43 and 44, analyze the 
trace when the surface 

z = 1
2x2 + 1

4 y2

is intersected by the indicated planes.

43.  Find the lengths of the major and minor axes and the 
coordinates of the foci of the ellipse generated when the 
surface is intersected by the planes given by

 (a) z = 2 and (b) z = 8.

44.  Find the coordinates of the focus of the parabola formed when 
the surface is intersected by the planes given by

 (a) y = 4 and (b) x = 2.

Finding an equation of a Surface In Exercises 45 and 
46, find an equation of the surface  satisfying the conditions, 
and identify the surface.

45.  The set of all points equidistant from the point (0, 2, 0) and the 
plane y = −2

46.  The set of all points equidistant from the point (0, 0, 4) and the 
xy-plane

48.  Machine Design The top of a rubber bushing designed to 
absorb vibrations in an automobile is the surface of revolution 
generated by revolving the curve 

 z =
1
2

y2 + 1

 for 0 ≤ y ≤ 2 in the yz-plane about the z-axis.

 (a) Find an equation for the surface of revolution.

 (b)  All measurements are in centimeters and the bushing is set 
on the xy-plane. Use the shell method to find its volume.

 (c)  The bushing has a hole of diameter 1 centimeter through 
its center and parallel to the axis of revolution. Find the 
volume of the rubber bushing.

49.  Using a hyperbolic Paraboloid Determine the 
intersection of the hyperbolic paraboloid 

 z =
y2

b2 −
x2

a2

 with the plane bx + ay − z = 0. (Assume a, b > 0.)
50.  Intersection of Surfaces Explain why the curve of 

intersection of the surfaces x2 + 3y2 − 2z2 + 2y = 4 and 
2x2 + 6y2 − 4z2 − 3x = 2 lies in a plane.

51.  think About It Three types of classic topological surfaces 
are shown below. The sphere and torus have both an “inside” 
and an “outside.” Does the Klein bottle have both an “inside” 
and an “outside?” Explain.

      

 Sphere Torus

   

 Klein bottle Klein bottle

Because of the forces caused by its  rotation, Earth is an 
oblate ellipsoid rather than a sphere. The equatorial radius 
is 3963 miles and the polar 
radius is 3950 miles. 
Find an equation of 
the ellipsoid. (Assume
that the center of Earth 
is at the origin and 
that the trace formed 
by the plane z = 0 
corresponds to the 
equator.)

47. geography

Denis Tabler/Shutterstock.com
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808 Chapter 11 Vectors and the Geometry of Space

11.7 Cylindrical and Spherical Coordinates

 Use cylindrical coordinates to represent surfaces in space.
 Use spherical coordinates to represent surfaces in space.

Cylindrical Coordinates
You have already seen that some two-dimensional graphs are easier to represent in 
polar coordinates than in rectangular coordinates. A similar situation exists for  surfaces 
in space. In this section, you will study two alternative space-coordinate  systems. The 
first, the cylindrical coordinate system, is an extension of polar  coordinates in the 
plane to three-dimensional space.

The Cylindrical Coordinate System

In a cylindrical coordinate system, a point P in space is represented by an 
ordered triple (r, θ, z).

1. (r, θ) is a polar representation of the projection of P in the xy-plane.

2. z is the directed distance from (r, θ) to P.

To convert from rectangular to cylindrical coordinates (or vice versa), use the 
conversion guidelines for polar coordinates listed below and illustrated in Figure 11.66.

Cylindrical to rectangular:

x = r cos θ,      y = r sin θ,      z = z

Rectangular to cylindrical:

r2 = x2 + y2,      tan θ =
y
x
,      z = z

The point (0, 0, 0) is called the pole. Moreover, because the representation of a point 
in the polar coordinate system is not unique, it follows that the representation in the 
cylindrical coordinate system is also not unique.

 Cylindrical-to-Rectangular Conversion

Convert the point (r, θ, z) = (4, 5π�6, 3) to rectangular coordinates.

Solution Using the cylindrical-to-rectangular conversion equations produces

 x = 4 cos 
5π
6

= 4(−
√3
2 ) = −2√3

 y = 4 sin 
5π
6

= 4(1
2) = 2

 z = 3.

So, in rectangular coordinates, the point is

(x, y, z) = (−2√3, 2, 3)
as shown in Figure 11.67. 

x

y

z

(x, y, z)
(r,   , z)θ

θ
θ

θ

θ

P

x

y

Rectangular
coordinates:
x = r cos
y = r sin
z = z

tan    =

r2 = x2 + y2

z = z

y
x

r

Cylindrical coordinates:

Figure 11.66

z

y

x

θ

θ

π
(r,   , z) =   4,      , 3

5
6( (

r

z

P

1

−2

−3

−4

−1
1 2 3 4−1

1

2

3

4

(x, y, z) = (−2    3, 2, 3)

Figure 11.67
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 11.7 Cylindrical and Spherical Coordinates 809

 Rectangular-to-Cylindrical Conversion

Convert the point 

(x, y, z) = (1, √3, 2)
to cylindrical coordinates.

Solution Use the rectangular-to-cylindrical conversion equations.

r = ±√1 + 3 = ±2

tan θ = √3  θ = arctan√3 + nπ =
π
3

+ nπ

z = 2

You have two choices for r and infinitely many choices for θ. As shown in Figure 11.68, 
two convenient representations of the point are

(2, 
π
3

, 2) r > 0 and θ in Quadrant I

and

(−2, 
4π
3

, 2). r < 0 and θ in Quadrant III 

Cylindrical coordinates are especially convenient for representing cylindrical 
 surfaces and surfaces of revolution with the z-axis as the axis of symmetry, as shown 
in Figure 11.69.

y

x

z

r = 3
x2 + y2 = 9   

y
x

z

r = 2    z
x2 + y2 = 4z   

z

y

x

r = z
x2 + y2 = z2   

z

y
x

r2 = z2 + 1
x2 + y2 − z2 = 1

 Cylinder Paraboloid Cone Hyperboloid
 Figure 11.69

Vertical planes containing the z-axis and horizontal planes also have simple cylindrical 
coordinate equations, as shown in Figure 11.70.

y

x

θ = c

z
Vertical
plane:

= cθ

   

y

x

z Horizontal
plane:
z = c

 Figure 11.70

( , , ) = (1, 3, 2)x  y  z

θ
y

x

=

3

2

1 2 3

3

2

1

r = 2

z = 2

z

θ π
(r,   , z) =   2,    , 2   or   −2,      , 2

3

π
3

π4
3( (( (

Figure 11.68
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810 Chapter 11 Vectors and the Geometry of Space

 Rectangular-to-Cylindrical Conversion

Find an equation in cylindrical coordinates for the surface represented by each 
rectangular equation.

a. x2 + y2 = 4z2

b. y2 = x

Solution

a. From Section 11.6, you know that the graph of

x2 + y2 = 4z2

  is an elliptic cone with its axis along the z-axis, as shown in Figure 11.71. When you 
replace x2 + y2 with r2, the equation in cylindrical coordinates is

 x2 + y2 = 4z2 Rectangular equation

 r2 = 4z2. Cylindrical equation

b. The graph of the surface

y2 = x

  is a parabolic cylinder with rulings parallel to the z-axis, as shown in Figure 11.72. 
To obtain the equation in cylindrical coordinates, replace y2 with r2 sin2 θ and x with 
r cos θ, as shown.

 y2 = x  Rectangular equation

 r2 sin2 θ = r cos θ  Substitute r sin θ for y and r cos θ for x.

 r(r sin2 θ − cos θ) = 0  Collect terms and factor.

 r sin2 θ − cos θ = 0  Divide each side by r.

 r =
cos θ
sin2 θ  Solve for r.

 r = csc θ cot θ Cylindrical equation

  Note that this equation includes a point for which r = 0, so nothing was lost 
by dividing each side by the factor r. 

Converting from cylindrical coordinates to rectangular coordinates is less 
straightforward than converting from rectangular coordinates to cylindrical coordinates, 
as demonstrated in Example 4.

 Cylindrical-to-Rectangular Conversion

Find an equation in rectangular coordinates for the surface represented by the 
cylindrical equation

r2 cos 2θ + z2 + 1 = 0.

Solution

 r2 cos 2θ + z2 + 1 = 0 Cylindrical equation

 r2(cos2 θ − sin2 θ) + z2 + 1 = 0 Trigonometric identity

 r2 cos2 θ − r2 sin2 θ + z2 = −1

 x2 − y2 + z2 = −1 Replace r cos θ with x and r sin θ with y.

 y2 − x2 − z2 = 1 Rectangular equation

This is a hyperboloid of two sheets whose axis lies along the y-axis, as shown in  
Figure 11.73. 

y

z

4 6

3

4
6

x

x2 + y2 = 4z2

Rectangular:

r2 = 4z2

Cylindrical:

Figure 11.71

Cylindrical:
r = csc    cotθ θ

y

x

z

2

2

4

1

Rectangular:
y2 = x

Figure 11.72

z

2
3

2
3

3

−3

−2

−1 yx

Cylindrical:
r2 cos 2   + z2 + 1 = 0θ

Rectangular:
y2 − x2 − z2 = 1

Figure 11.73
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11.7 Cylindrical and Spherical Coordinates 811

Spherical Coordinates
In the spherical coordinate system, each point is represented by an ordered triple: the 
first coordinate is a distance, and the second and third coordinates are angles. This 
system is similar to the latitude-longitude system used to identify points on the surface 
of Earth. For example, the point on the surface of Earth whose latitude is 40° North 
(of the equator) and whose longitude is 80° West (of the prime meridian) is shown in 
Figure 11.74. Assuming that Earth is spherical and has a radius of 4000 miles, you 
would label this point as

(4000, −80°, 50°).

 Radius 80° clockwise from 50° down from
 prime meridian North Pole

The Spherical Coordinate System

In a spherical coordinate system, a point P in space is represented by an 
ordered triple (ρ, θ, ϕ), where ρ is the lowercase Greek letter rho and ϕ is
the lowercase Greek letter phi.

1. ρ is the distance between P and the origin, ρ ≥ 0.

2. θ is the same angle used in cylindrical coordinates for r ≥ 0.

3.  ϕ is the angle between the positive z-axis and the line segment OP
\

, 
0 ≤ ϕ ≤ π.

Note that the first and third coordinates, ρ and ϕ, are nonnegative.

The relationship between rectangular and spherical coordinates is illustrated in 
Figure 11.75. To convert from one system to the other, use the conversion guidelines 
listed below.

Spherical to rectangular:

x = ρ sin ϕ cos θ,      y = ρ sin ϕ sin θ,      z = ρ cos ϕ

Rectangular to spherical:

ρ2 = x2 + y2 + z2,      tan θ =
y
x
,      ϕ = arccos 

z

√x2 + y2 + z2

To change coordinates between the cylindrical and spherical systems, use the 
conversion guidelines listed below.

Spherical to cylindrical (r ≥ 0):

r2 = ρ2 sin2 ϕ,      θ = θ,      z = ρ cos ϕ

Cylindrical to spherical (r ≥ 0):

ρ = √r2 + z2,      θ = θ,      ϕ = arccos 
z

√r2 + z2

x

y

80° W
40° N

Equator

Prime
meridian

z

Figure 11.74

x

y

(  ,   ,   )
(x, y, z)

θ ϕρ

θ

ϕ

ρ

P

x

y

r

O

z

z

ϕρr x2 + y2=    sin    =

Spherical coordinates
Figure 11.75
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812 Chapter 11 Vectors and the Geometry of Space

The spherical coordinate system is useful primarily for surfaces in space that have 
a point or center of symmetry. For example, Figure 11.76 shows three surfaces with 
simple spherical equations.

Sphere:
= cρ

y

x

c

z   

y
x θ = c

Vertical half-plane:
= cθ

z   

y

x

Half-cone:
= cϕ 0 < c < π

2 ))

ϕ = c

z

 Figure 11.76

 Rectangular-to-Spherical Conversion

See LarsonCalculus.com for an interactive version of this type of example.

Find an equation in spherical coordinates for the surface represented by each 
rectangular equation.

a. Cone: x2 + y2 = z2  b. Sphere: x2 + y2 + z2 − 4z = 0

Solution

a. Use the spherical-to-rectangular equations

x = ρ sin ϕ cos θ, y = ρ sin ϕ sin θ, and z = ρ cos ϕ

 and substitute in the rectangular equation as shown.

 x2 + y2 = z2

 ρ2 sin2 ϕ cos2 θ + ρ2 sin2 ϕ sin2 θ = ρ2 cos2 ϕ
 ρ2 sin2 ϕ(cos2 θ + sin2 θ) = ρ2 cos2 ϕ

 ρ2 sin2 ϕ = ρ2 cos2 ϕ

 
sin2 ϕ
cos2 ϕ = 1 ρ ≥ 0

 tan2 ϕ = 1

 tan ϕ = ±1

 So, you can conclude that

ϕ =
π
4

 or ϕ =
3π
4

.

  The equation ϕ = π�4 represents the upper half-cone, and the equation ϕ = 3π�4 
represents the lower half-cone.

b.  Because ρ2 = x2 + y2 + z2 and z = ρ cos ϕ, the rectangular equation has the 
following spherical form.

ρ2 − 4ρ cos ϕ = 0  ρ(ρ − 4 cos ϕ) = 0

  Temporarily discarding the possibility that ρ = 0, you have the spherical equation

ρ − 4 cos ϕ = 0 or ρ = 4 cos ϕ.

  Note that the solution set for this equation includes a point for which ρ = 0, so 
nothing is lost by discarding the factor ρ. The sphere represented by the equation
ρ = 4 cos ϕ is shown in Figure 11.77. 

y

x

z

−2

2

4

11

2

ρ ϕ
Spherical:

= 4 cos
Rectangular:
x2 + y2 + z2 − 4z = 0

Figure 11.77

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 11.7 Cylindrical and Spherical Coordinates 813

11.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Cylindrical Coordinates Describe the cylindrical 

coordinate system in your own words.

2.  Spherical Coordinates Describe the position of the 
point (2, 0°, 30°) given in spherical coordinates.

 Cylindrical-to-Rectangular Conversion In 
Exercises 3–8, convert the point from cylindrical 
coordinates to rectangular coordinates.

 3. (−7, 0, 5)  4. (2, −π, −4)

 5. (3, 
π
4

, 1)  6. (6, −
3π
2

, 2)
 7. (4, 

7π
6

, −3)  8. (−
2
3

, 
4π
3

, 8)
 Rectangular-to-Cylindrical Conversion In 
Exercises 9–14, convert the point from rectangular 
coordinates to cylindrical coordinates.

 9. (0, 5, 1) 10. (6, 2√3, −1)
11. (2, −2, −4) 12. (3, −3, 7)
13. (1, √3, 4) 14. (2√3, −2, 6)

 Rectangular-to-Cylindrical Conversion In 
Exercises 15–22, find an equation in cylindrical 
coordinates for the surface represented by the 
rectangular equation.

15. z = 4 16. x = 9

17. x2 + y2 − 2z2 = 5 18. z = x2 + y2 − 11

19. y = x2 20. x2 + y2 = 8x

21. y2 = 10 − z2 22. x2 + y2 + z2 − 3z = 0

 Cylindrical-to-Rectangular Conversion In 
Exercises 23–30, find an equation in rectangular 
coordinates for the surface represented by the 
cylindrical equation, and sketch its graph.

23. r = 3 24. z = −2

25. θ =
π
6

 26. r =
1
2

z

27. r2 + z2 = 5 28. z = r2 cos2 θ

29. r = 4 sin θ 30. r = 2 cos θ

Rectangular-to-Spherical Conversion In Exercises 
31–36, convert the point from rectangular coordinates to 
spherical coordinates.

31. (4, 0, 0) 32. (−4, 0, 0)
33. (−2, 2√3, 4) 34. (−5, −5, √2)
35. (√3, 1, 2√3) 36. (−1, 2, 1)

Spherical- to-Rectangular Conversion In Exercises 
37–42, convert the point from spherical coordinates to 
rectangular coordinates.

37. (4, 
π
6

, 
π
4) 38. (6, π, 

π
2)

39. (12, −
π
4

, 0) 40. (9, 
π
4

, π)
41. (5, 

π
4

, 
π
12) 42. (7, 

3π
4

, 
π
9)

 Rectangular-to-Spherical Conversion In 
Exercises 43– 50, find an equation in spherical 
coordinates for the surface represented by the 
rectangular equation.

43. y = 2 44. z = 6

45. x2 + y2 + z2 = 49 46. x2 + y2 − 3z2 = 0

47. x2 + y2 = 16 48. x = 13

49. x2 + y2 = 2z2 50. x2 + y2 + z2 − 9z = 0

 Spherical-to-Rectangular Conversion In 
Exercises 51–58, find an equation in rectangular 
coordinates for the surface represented by the 
spherical equation, and sketch its graph.

51. ρ = 1 52. θ =
3π
4

53. ϕ =
π
6

 54. ϕ =
π
2

55. ρ = 4 cos ϕ 56. ρ = 2 sec ϕ

57. ρ = csc ϕ 58. ρ = 4 csc ϕ sec θ

Cylindrical-to-Spherical Conversion In Exercises 
59–64, convert the point from cylindrical coordinates to 
spherical coordinates.

59. (4, 
π
4

, 0) 60. (3, −
π
4

, 0)
61. (6, 

π
2

, −6) 62. (−4, 
π
3

, 4)
63. (12, π, 5) 64. (4, 

π
2

, 3)
Spherical-to-Cylindrical Conversion In Exercises 65–70, 
convert the point from spherical coordinates to cylindrical 
coordinates.

65. (10, 
π
6

, 
π
2) 66. (4, 

π
18

, 
π
2)

67. (6, −
π
6

, 
π
3) 68. (5, −

5π
6

, π)
69. (8, 

7π
6

, 
π
6) 70. (7, 

π
4

, 
3π
4 )
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814 Chapter 11 Vectors and the Geometry of Space

Matching In Exercises 71–76, match the equation (written 
in terms of cylindrical or spherical coordinates) with its graph. 
[The graphs are labeled (a), (b), (c), (d), (e), and (f ).]

(a) 

y

x

π
4

1 2 3

3

−3 −2

3 2

z (b) 

y

x

4

−4

4

2

z

(c) 

y

x
55

5

z  (d) 

y
x

55

5

z

(e) 

y

x

2

1

2
−2

2

z

π
4

 (f ) 

y
x

3

2

−2
12

z

71. r = 5 72. θ =
π
4

73. ρ = 5 74. ϕ =
π
4

75. r2 = z

76. ρ = 4 sec ϕ

77.  Spherical Coordinates Explain why in spherical 
coordinates the graph of θ = c is a half-plane and not an entire 
plane.

 78.  HOW DO YOU SEE IT? Identify the 
surface graphed and match the graph with its 
rectangular equation. Then find an equation in 
cylindrical coordinates for the equation given in 
rectangular coordinates.

(a) z

y
x

3

22

 (b) 

44

z

y
x

4

(i) x2 + y2 = 4
9z2

(ii) x2 + y2 − z2 = 2

 78.  

Converting a Rectangular Equation In Exercises 
79–86, convert the rectangular equation to an equation in 
(a) cylindrical coordinates and (b) spherical coordinates.

79. x2 + y2 + z2 = 27  80. 4(x2 + y2) = z2

81. x2 + y2 + z2 − 2z = 0  82. x2 + y2 = z

83. x2 + y2 = 4y  84. x2 + y2 = 45

85. x2 − y2 = 9  86. y = 4

Sketching a Solid In Exercises 87–90, sketch the solid that 
has the given description in cylindrical coordinates.

87. 0 ≤ θ ≤ π�2, 0 ≤ r ≤ 2, 0 ≤ z ≤ 4

88. −π�2 ≤ θ ≤ π�2, 0 ≤ r ≤ 3, 0 ≤ z ≤ r cos θ

89. 0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, r ≤ z ≤ a

90. 0 ≤ θ ≤ 2π, 2 ≤ r ≤ 4, z2 ≤ −r2 + 6r − 8

Sketching a Solid In Exercises 91–94, sketch the solid that 
has the given description in spherical coordinates.

91. 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π�6, 0 ≤ ρ ≤ a sec ϕ

92. 0 ≤ θ ≤ 2π, π�4 ≤ ϕ ≤ π�2, 0 ≤ ρ ≤ 1

93. 0 ≤ θ ≤ π�2, 0 ≤ ϕ ≤ π�2, 0 ≤ ρ ≤ 2

94. 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ π�2, 1 ≤ ρ ≤ 3

eXpLoRInG ConCeptS
Think About It In Exercises 95–100, find inequalities 
that describe the solid and state the coordinate system 
used. Position the solid on the coordinate system such that 
the inequalities are as simple as possible.

95. A cube with each edge 10 centimeters long

 96.  A cylindrical shell 8 meters long with an inside diameter 
of 0.75 meter and an outside diameter of 1.25 meters

 97.  A spherical shell with inside and outside radii of 
4 inches and 6 inches, respectively

 98.  The solid that remains after a hole 1 inch in diameter is 
drilled through the center of a sphere 6 inches in diameter

 99.  The solid inside both x2 + y2 + z2 = 9 and 
(x − 3

2)2 + y2 = 9
4

100.  The solid between the spheres x2 + y2 + z2 = 4 and 
x2 + y2 + z2 = 9, and inside the cone z2 = x2 + y2

True or False? In Exercises 101 and 102, determine 
whether the statement is true or false. If it is false, explain why 
or give an example that shows it is false.

101.  The cylindrical coordinates of a point (x, y, z) are unique.

102. The spherical coordinates of a point (x, y, z) are unique.

103.  Intersection of Surfaces Identify the curve of 
intersection of the surfaces (in cylindrical coordinates) 
z = sin θ and r = 1.

104.  Intersection of Surfaces Identify the curve of 
intersection of the surfaces (in spherical coordinates) 
ρ = 2 sec ϕ and ρ = 4.
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  Review Exercises 815

Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Writing Vectors in Different Forms In Exercises 1 and 
2, let u = PQ

\

 and v = PR
\

 and (a) write u and v in component 
form, (b) write u and v as the linear combination of the 
standard unit vectors i and j, (c) find the magnitudes of u and 
v, and (d) find −3u + v.

 1. P = (1, 2), Q = (4, 1), R = (5, 4)
 2. P = (−2, −1), Q = (5, −1), R = (2, 4)

Finding a Vector In Exercises 3 and 4, find the component 
form of v given its magnitude and the angle it makes with the 
positive x-axis.

 3. �v � = 8, θ = 60°  4. �v � = 1
2, θ = 225°

 5.  Finding Coordinates of a Point Find the coordinates 
of the point located in the xy-plane, four units to the right of 
the xz-plane, and five units behind the yz-plane.

 6.  Using the Three-Dimensional Coordinate System  
Determine the location of a point (x, y, z) that satisfies the 
condition y = 3.

Finding the Distance Between Two Points in Space 
In Exercises 7 and 8, find the distance between the points.

 7. (1, 6, 3), (−2, 3, 5)
 8. (−2, 1, −5), (4, −1, −1)

Finding the Equation of a Sphere In Exercises 9 and 
10, find the standard equation of the sphere with the given 
characteristics.

 9. Center: (3, −2, 6); Radius: 4

10. Endpoints of a diameter: (0, 0, 4), (4, 6, 0)

Finding the Equation of a Sphere In Exercises 11 and 
12, complete the square to write the equation of the sphere in 
standard form. Find the center and radius.

11. x2 + y2 + z2 − 4x − 6y + 4 = 0

12. x2 + y2 + z2 − 10x + 6y − 4z + 34 = 0

Writing a Vector in Different Forms In Exercises 13 
and 14, the initial and terminal points of a vector are given. 
(a) Sketch the directed line segment. (b) Find the component 
form of the vector. (c)  Write the vector using standard unit 
vector notation. (d) Sketch the vector with its initial point at 
the origin.

13. Initial point: (2, −1, 3) 14. Initial point: (6, 2, 0)
 Terminal point: (4, 4, −7)  Terminal point: (3, −3, 8)

Finding a Vector In Exercises 15 and 16, find the vector z, 
given that u = 〈5, −2, 3〉, v = 〈0, 2, 1〉, and w = 〈−6, −6, 2〉.

15. z = −u + 3v + 1
2 w

16. u − v + w − 2z = 0

Using Vectors to Determine Collinear Points In 
Exercises 17 and 18, use vectors to determine whether the 
points are collinear.

17. (3, 4, −1), (−1, 6, 9), (5, 3, −6)
18. (5, −4, 7), (8, −5, 5), (11, 6, 3)

19.  Finding a Unit Vector Find a unit vector in the direction 
of u = 〈2, 3, 5〉.

20.  Finding a Vector Find the vector v of magnitude 8 in the 
direction 〈6, −3, 2〉.

Finding Dot Products In Exercises 21 and 22, let u = PQ
\

 
and v = PR

\

, and find (a) the component forms of u and v,  
(b) u ∙ v, and (c) v ∙ v.

21. P = (5, 0, 0), Q = (4, 4, 0), R = (2, 0, 6)
22. P = (2, −1, 3), Q = (0, 5, 1), R = (5, 5, 0)

Finding the Angle Between Two Vectors In Exercises 
23 and 24, find the angle θ between the vectors (a) in radians 
and (b) in degrees.

23. u = 5[cos(3π�4)i + sin(3π�4)j]
 v = 2[cos(2π�3)i + sin(2π�3)j]
24. u = 〈1, 0, −3〉, v = 〈2, −2, 1〉

Comparing Vectors In Exercises 25 and 26, determine 
whether u and v are orthogonal, parallel, or neither.

25. u = 〈7, −2, 3〉 26. u = 〈−3, 0, 9〉

 v = 〈−1, 4, 5〉  v = 〈1, 0, −3〉

Finding the Projection of u onto v In Exercises 27 and 
28, (a) find the projection of u onto v, and (b) find the vector 
component of u orthogonal to v.

27. u = 4i + 2j, v = 3i + 4j

28. u = 〈1, −1, 1〉, v = 〈2, 0, 2〉

29.  Orthogonal Vectors Find two vectors in opposite 
directions that are orthogonal to the vector u = 〈5, 6, −3〉.

30.  Work An object is pulled 8 feet across a floor using a force 
of 75 pounds. The direction of the force is 30° above the 
horizontal. Find the work done.

Finding Cross Products In Exercises 31 and 32, find  
(a) u × v, (b) v × u, and (c) v × v.

31. u = 4i + 3j + 6k 32. u = 〈0, 2, 1〉

 v = 5i + 2j + k  v = 〈1, −3, 4〉

33.  Finding a Unit Vector Find a unit vector that is 
orthogonal to both u = 〈2, −10, 8〉 and v = 〈4, 6, −8〉.

34.  Area Find the area of the parallelogram that has the vectors 
u = 〈3, −1, 5〉 and v = 〈2, −4, 1〉 as adjacent sides.
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816 Chapter 11 Vectors and the Geometry of Space

35.  Torque A vertical force of 40 pounds acts on a wrench, as 
shown in the figure. Find the torque at P.

P

F = 40 lb
9 in.

60°

36.  Volume Use the triple scalar product to find the volume 
of the parallelepiped having adjacent edges u = 2i + j, 
v = 2j + k, and w = −j + 2k.

Finding Parametric and Symmetric Equations In 
Exercises 37 and 38, find sets of (a) parametric equations and 
(b) symmetric equations of the line that passes through the two 
points. (For each line, write the direction numbers as integers.)

37. (3, 0, 2), (9, 11, 6) 38. (−1, 4, 3), (8, 10, 5)

Finding Parametric Equations In Exercises 39 and 40, 
find a set of parametric equations of the line with the given 
characteristics.

39.  The line passes through the point (−6, −8, 2) and is 
perpendicular to the xz-plane.

40.  The line passes through the point (1, 2, 3) and is parallel to the 
line given by x = y = z.

Finding an Equation of a Plane In Exercises 41–44, find 
an equation of the plane with the given characteristics.

41.  The plane passes through (−3, −4, 2), (−3, 4, 1), and 
(1, 1, −2).

42.  The plane passes through the point (−2, 3, 1) and is 
perpendicular to n = 3i − j + k.

43.  The plane contains the lines given by

 
x − 1
−2

= y = z + 1

 and

 
x + 1
−2

= y − 1 = z − 2.

44.  The plane passes through the points (5, 1, 3) and (2, −2, 1) 
and is perpendicular to the plane 2x + y − z = 4.

45.  Distance Find the distance between the point (1, 0, 2) and 
the plane 2x − 3y + 6z = 6.

46.  Distance Find the distance between the point (3, −2, 4) 
and the plane 2x − 5y + z = 10.

47.  Distance Find the distance between the planes 
5x − 3y + z = 2 and 5x − 3y + z = −3.

48.  Distance Find the distance between the point (−5, 1, 3) 
and the line given by x = 1 + t, y = 3 − 2t, and z = 5 − t.

Sketching a Surface in Space In Exercises 49–58, 
describe and sketch the surface.

49. x + 2y + 3z = 6 50. y = z2

51. y = 1
2z 52. y = cos z

53. 
x2

16
+

y2

9
+ z2 = 1 54. 16x2 + 16y2 − 9z2 = 0

55. 
x2

16
−

y2

9
+ z2 = −1 56. 

x2

25
+

y2

4
−

z2

100
= 1

57. x2 + z2 = 4 58. y2 + z2 = 16

59.  Surface of Revolution Find an equation for the surface 
of revolution formed by revolving the curve z2 = 2y in the  
yz-plane about the y-axis.

60.  Surface of Revolution Find an equation for the surface 
of revolution formed by revolving the curve 2x + 3z = 1 in 
the xz-plane about the x-axis.

Converting Rectangular Coordinates In Exercises 61 
and 62, convert the point from rectangular coordinates to 
(a) cylindrical coordinates and (b) spherical coordinates.

61. (−√3, 3, −5) 62. (8, 8, 1)

Cylindrical-to-Rectangular Conversion In Exercises 
63 and 64, convert the point from cylindrical coordinates to 
rectangular coordinates.

63. (5, π, 1) 64. (−2, 
π
3

, 3)
Spherical-to-Rectangular Conversion In Exercises 65 
and 66, convert the point from spherical coordinates to 
rectangular coordinates.

65. (4, π, 
π
4) 66. (8, −

π
6

, 
π
3)

Converting a Rectangular Equation In Exercises 67 
and 68, convert the rectangular equation to an equation in 
(a) cylindrical coordinates and (b) spherical  coordinates.

67. x2 − y2 = 2z 68. x2 + y2 + z2 = 16

Cylindrical-to-Rectangular Conversion In Exercises 
69 and 70, find an equation in rectangular coordinates for the 
surface represented by the cylindrical equation, and sketch its 
graph.

69. z = r2 sin2 θ + 3r cos θ

70. r = −5z

Spherical-to-Rectangular Conversion In Exercises 71 
and 72, find an equation in rectangular coordinates for the 
surface represented by the spherical equation, and sketch its 
graph.

71. ϕ =
π
4

72. ρ = 9 sec θ
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  P.S. Problem Solving 817

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Proof Using vectors, prove the Law of Sines: If a, b, and c 
are the three sides of the triangle shown in the figure, then

 
sin A
�a �

=
sin B
�b �

=
sin C
�c �

.

a

A

B

C
b

c

2. Using an Equation Consider the function

 f (x) = ∫x

0
 √t4 + 1 dt.

 (a)  Use a graphing utility to graph the function on the interval 
−2 ≤ x ≤ 2.

 (b)  Find a unit vector parallel to the graph of f  at the point 
(0, 0).

 (c)  Find a unit vector perpendicular to the graph of f  at the 
point (0, 0).

 (d)  Find the parametric equations of the tangent line to the 
graph of f  at the point (0, 0).

3.  Proof Using vectors, prove that the line segments joining the 
midpoints of the sides of a parallelogram form a parallelogram 
(see figure).

4.  Proof Using vectors, prove that the diagonals of a rhombus 
are  perpendicular (see figure).

5. Distance

 (a)  Find the shortest distance between the point Q(2, 0, 0) and 
the line determined by the points P1(0, 0, 1) and P2(0, 1, 2).

 (b)  Find the shortest distance between the point Q(2, 0, 0) 
and the line segment joining the points P1(0, 0, 1) and 
P2(0, 1, 2).

 6.  Orthogonal Vectors Let P0 be a point in the plane with 
normal vector n. Describe the set of points P in the plane for 
which (n + PP0

\) is orthogonal to (n − PP0

\).
 7. Volume

 (a)  Find the volume of the solid bounded below by the 
paraboloid

  z = x2 + y2

  and above by the plane z = 1.

 (b)  Find the volume of the solid bounded below by the elliptic 
paraboloid

 z =
x2

a2 +
y2

b2

 and above by the plane z = k, where k > 0.

 (c)  Show that the volume of the solid in part (b) is equal 
to one-half the product of the area of the base times the 
altitude, as shown in the figure.

x

y

Base

Altitude

z

 8. Volume

 (a)  Use the disk method to find the volume of the sphere 
x2 + y2 + z2 = r2.

 (b) Find the volume of the ellipsoid 
x2

a2 +
y2

b2 +
z2

c2 = 1.

 9. Proof Prove the following property of the cross product.

 (u × v) × (w × z) = [(u × v) ∙ z]w − [(u × v) ∙ w]z

10.  Using Parametric Equations Consider the line given 
by the parametric  equations

 x = −t + 3, y = 1
2t + 1, z = 2t − 1

 and the point (4, 3, s) for any real number s.

 (a)  Write the distance between the point and the line as a 
function of s.

 (b)  Use a graphing utility to graph the function in part (a). 
Use the graph to find the value of s such that the distance 
between the point and the line is minimum.

 (c)  Use the zoom feature of a graphing utility to zoom out 
several times on the graph in part (b). Does it appear that 
the graph has slant asymptotes? Explain. If it appears to 
have slant asymptotes, find them.
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818 Chapter 11 Vectors and the Geometry of Space

11.  Sketching Graphs Sketch the graph of each equation 
given in spherical coordinates.

 (a) ρ = 2 sin ϕ (b) ρ = 2 cos ϕ

12.  Sketching Graphs Sketch the graph of each equation 
given in cylindrical coordinates.

 (a) r = 2 cos θ (b) z = r2 cos 2θ

13.  Tetherball A tetherball weighing 1 pound is pulled 
outward from the pole by a horizontal force u until the rope 
makes an angle of θ degrees with the pole (see figure).

 (a)  Determine the resulting tension in the rope and the 
magnitude of u when θ = 30°.

 (b)  Write the tension T in the rope and the magnitude of u as 
functions of θ. Determine the domains of the functions.

 (c) Use a graphing utility to complete the table.

θ 0° 10° 20° 30° 40° 50° 60°

T

�u �

 (d)  Use a graphing utility to graph the two functions for 
0° ≤ θ ≤ 60°.

 (e) Compare T and �u � as θ increases.

 (f )  Find (if possible)

  lim
θ→π�2−

 T and lim
θ→π�2−

 �u �.

 Are the results what you expected? Explain.

 

u

1 lb

θ

 

θ

θ

 Figure for 13 Figure for 14

14.  Towing A loaded barge is being towed by two tugboats, 
and the magnitude of the resultant is 6000 pounds directed 
along the axis of the barge (see figure). Each towline makes 
an angle of θ degrees with the axis of the barge.

 (a) Find the tension in the towlines when θ = 20°.

 (b)  Write the tension T of each line as a function of θ. 
Determine the domain of the function.

 (c) Use a graphing utility to complete the table.

θ 10° 20° 30° 40° 50° 60°

T

 (d) Use a graphing utility to graph the tension function.

 (e) Explain why the tension increases as θ increases.

15.  Proof Consider the vectors

 u = 〈cos α, sin α, 0〉 and v = 〈cos β, sin β, 0〉

  where α > β. Find the cross product of the vectors and use the 
result to prove the identity

 sin(α − β) = sin α cos β − cos α sin β.

16.  Latitude-Longitude System Los Angeles is located at 
34.05° North latitude and 118.24° West longitude, and Rio de 
Janeiro, Brazil, is located at 22.90° South latitude and 43.23° 
West longitude (see figure). Assume that Earth is spherical and 
has a radius of 4000 miles.

Los Angeles

x

y

z

Equator

meridian

Rio de Janeiro

Prime

 (a) Find the spherical coordinates for the location of each city.

 (b) Find the rectangular coordinates for the location of each city.

 (c)  Find the angle (in radians) between the vectors from the 
 center of Earth to the two cities.

 (d)  Find the great-circle distance s between the cities.  
(Hint: s = rθ )

 (e)  Repeat parts (a)–(d) for the cities of Boston, located at 
42.36° North latitude and 71.06° West longitude, and 
Honolulu, located at 21.31° North latitude and 157.86° 
West longitude.

17.  Distance Between a Point and a Plane Consider the 
plane that passes through the points P, R, and S. Show that the 
distance from a point Q to this plane is 

 Distance = ∣u ∙ (v × w)∣
�u × v �

 where u = PR
\

, v = PS
\

, and w = PQ
\

.

18.  Distance Between Parallel Planes Show that the 
distance between the parallel planes 

 ax + by + cz + d1 = 0 and ax + by + cz + d2 = 0

 is

 Distance = ∣d1 − d2∣
√a2 + b2 + c2

.

19.  Intersection of Planes Show that the curve of 
intersection of the plane z = 2y and the cylinder x2 + y2 = 1 
is an ellipse.
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820 Chapter 12 Vector-Valued Functions

12.1 Vector-Valued Functions

 Analyze and sketch a space curve given by a vector-valued function.
 Extend the concepts of limits and continuity to vector-valued functions.

Space Curves and Vector-Valued Functions
In Section 10.2, a plane curve was defined as the set of ordered pairs ( f (t), g(t)) 
together with their defining parametric equations x = f (t) and y = g(t), where f  
and g are continuous functions of t on an interval I. This definition can be extended 
naturally to three-dimensional space. A space curve C is the set of all ordered triples 
( f (t), g(t), h(t)) together with their defining parametric equations

x = f (t), y = g(t), and z = h(t)

where f, g, and h are continuous functions of t on an interval I.
Before looking at examples of space curves, a new type of function, called a 

vector-valued function, is introduced. This type of function maps real numbers to 
vectors.

Definition of Vector -Valued Function

A function of the form

r(t) = f (t)i + g(t)j Plane

or

r(t) = f (t)i + g(t)j + h(t)k Space

is a vector-valued function, where the component functions f, g, and h are 
real-valued functions of the parameter t. Vector-valued functions are sometimes 
denoted as

r(t) = 〈 f (t), g(t)〉 Plane

or 

r(t) = 〈 f (t), g(t), h(t)〉. Space

Technically, a curve in a plane or in space consists of a collection of points and 
the defining parametric equations. Two different curves can have the same graph. For 
instance, each of the curves

r(t) = sin t i + cos tj and r(t) = sin t2i + cos t2j

has the unit circle as its graph, but these equations do not represent the same curve—
because the circle is traced out in different ways on the graphs.

Be sure you see the distinction between the vector-valued function r and the 
real-valued functions f, g, and h. All are functions of the real variable t, but r(t) is 
a vector, whereas f (t), g(t), and h(t) are real numbers (for each specific value of t). 
Real-valued functions are sometimes called scalar functions to distinguish them from 
vector-valued functions.

Vector-valued functions serve dual roles in the representation of curves. By letting 
the parameter t represent time, you can use a vector-valued function to represent motion 
along a curve. Or, in the more general case, you can use a vector-valued function to 
trace the graph of a curve. In either case, the terminal point of the  position vector  
r(t) coincides with the point (x, y) or (x, y, z) on the curve given by the  parametric 
equations, as shown in Figure 12.1. The arrowhead on the curve indicates the curve’s 
orientation by pointing in the direction of increasing values of t.

C

Curve in space

x

y

r(t0)

r(t1)

r(t2)

z

Curve C is traced out by the terminal 
point of position vector r(t).
Figure 12.1

x

r(t0)

r(t1)

r(t2)

Curve in a plane

C

y
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 12.1 Vector-Valued Functions 821

Unless stated otherwise, the domain of a vector-valued function r is considered to 
be the intersection of the domains of the component functions f, g, and h. For instance, 
the domain of r(t) = ln t i + √1 − t j + tk is the interval (0, 1].

 Sketching a Plane Curve

Sketch the plane curve represented by the vector-valued function

r(t) = 2 cos t i − 3 sin tj, 0 ≤ t ≤ 2π. Vector-valued function

Solution From the position vector r(t), you can write the parametric equations 

x = 2 cos t and y = −3 sin t.

Solving for cos t and sin t and using the identity cos2 t + sin2 t = 1, you get the 
rectangular equation

x2

22 +
y2

32 = 1. Rectangular equation

The graph of this rectangular equation is the ellipse shown in Figure 12.2. The curve 
has a clockwise orientation. That is, as t increases from 0 to 2π, the position vector r(t) 
moves clockwise, and its terminal point traces the ellipse.

 Sketching a Space Curve

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the space curve represented by the vector-valued function

r(t) = 4 cos t i + 4 sin tj + tk, 0 ≤ t ≤ 4π. Vector-valued function

Solution From the first two parametric  
equations 

x2 + y2 = 16
Cylinder:(4, 0, 4  )

(4, 0, 0)

4
π

π

x

y4

z

r(t) = 4 cos ti + 4 sin tj + tk

As t increases from 0 to 4π, two  
spirals on the helix are traced out.
Figure 12.3 

x = 4 cos t and y = 4 sin t

you can obtain

x2 + y2 = 16. Rectangular equation

This means that the curve lies on a right circular 
cylinder of radius 4, centered about the z-axis.  
To locate the curve on this cylinder, you can  
use the third parametric equation

z = t.

In Figure 12.3, note that as t increases from 0  
to 4π, the point (x, y, z) spirals up the cylinder  
to produce a helix. A real-life example of a  
helix is shown in the drawing at the left.

In Examples 1 and 2, you were given a vector-valued function and were asked to 
sketch the corresponding curve. The next two examples address the reverse problem—
finding a vector-valued function to represent a given graph. Of course, when the graph 
is described parametrically, representation by a vector-valued function is straightforward. 
For instance, to represent the line in space given by x = 2 + t, y = 3t, and z = 4 − t, 
you can simply use the vector-valued function

r(t) = (2 + t)i + 3tj + (4 − t)k.

When a set of parametric equations for the graph is not given, the problem of representing 
the graph by a vector-valued function boils down to finding a set of parametric  equations.

In 1953, Francis Crick and James D. 
Watson discovered the double helix 
structure of DNA.

x
−3 −1 1 3

2

1

y

r(t) = 2 cos ti − 3 sin tj

The ellipse is traced clockwise as t 
increases from 0 to 2π.
Figure 12.2
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822 Chapter 12 Vector-Valued Functions

 Representing a Graph: Vector-Valued Function

Represent the parabola

y = x2 + 1

by a vector-valued function.

Solution Although there are many ways to choose the parameter t, a natural choice 
is to let x = t. Then y = t2 + 1 and you have

r(t) = t i + (t2 + 1)j. Vector-valued function

Note in Figure 12.4 the orientation produced by this particular choice of parameter. 
Had you chosen x = −t as the parameter, the curve would have been oriented in the 
opposite direction.

 Representing a Graph: Vector-Valued Function

Sketch the space curve C represented by the intersection of the semiellipsoid

x2

12
+

y2

24
+

z2

4
= 1, z ≥ 0

and the parabolic cylinder y = x2. Then find a vector-valued function to represent the 
graph.

Solution The intersection of the two surfaces is shown in Figure 12.5. As in 
Example 3, a natural choice of parameter is x = t. For this choice, you can use the 
given equation y = x2 to obtain y = t2. Then it follows that

z2

4
= 1 −

x2

12
−

y2

24
= 1 −

t2

12
−

t4

24
=

24 − 2t2 − t4

24
=

(6 + t2)(4 − t2)
24

.

Because the curve lies above the xy-plane, you should choose the positive square root 
for z and obtain the parametric equations

x = t, y = t2, and z =√(6 + t2)(4 − t2)
6

.

The resulting vector-valued function is

r(t) = t i + t2j +√(6 + t2)(4 − t2)
6

k, −2 ≤ t ≤ 2. Vector-valued function

(Note that the k-component of r(t) implies −2 ≤ t ≤ 2.) From the points (−2, 4, 0) 
and (2, 4, 0) shown in Figure 12.5, you can see that the curve is traced as t increases 
from −2 to 2.

y
x

4

2

5(2, 4, 0)

(−2, 4, 0)

(0, 0, 2)

z
Parabolic cylinder C: x = t

y = t2

(6 + t2)(4 − t2)
6

z =

Curve in
space

Ellipsoid

 The curve C is the intersection of the semiellipsoid and the parabolic cylinder.
 Figure 12.5 

RemaRk Curves in space 
can be specified in various 
ways. For instance, the curve  
in Example 4 is described as  
the intersection of two surfaces 
in space.

5

4

3

2

2−1−2 1
x

t = 2

t = 1t = −1

t = 0

t = −2

y

y = x2 + 1

There are many ways to parametrize 
this graph. One way is to let x = t.
Figure 12.4
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 12.1 Vector-Valued Functions 823

Limits and Continuity
Many techniques and definitions used in the calculus of real-valued functions can be 
applied to vector-valued functions. For instance, you can add and subtract vector-valued 
functions, multiply a vector-valued function by a scalar, take the limit of a vector-
valued function, differentiate a vector-valued function, and so on. The basic approach 
is to capitalize on the linearity of vector operations by extending the definitions on a 
component-by-component basis. For example, to add two vector-valued functions (in 
the plane), you can write

 r1(t) + r2(t) = [ f1(t)i + g1(t)j] + [ f2(t)i + g2(t)j] Sum

 = [ f1(t) + f2(t)] i + [g1(t) + g2(t)] j.

To subtract two vector-valued functions, you can write

 r1(t) − r2(t) = [ f1(t)i + g1(t)j] − [ f2(t)i + g2(t)j] Difference

 = [ f1(t) − f2(t)]i + [g1(t) − g2(t)]j.

Similarly, to multiply a vector-valued function by a scalar, you can write

 cr(t) = c[ f1(t)i + g1(t)j] Scalar multiplication

 = cf1(t)i + cg1(t)j.

To divide a vector-valued function by a scalar, you can write

 
r(t)
c

=
[ f1(t)i + g1(t)j]

c
, c ≠ 0 Scalar division

 =
f1(t)

c
i +

g1(t)
c

j.

This component-by-component extension of operations with real-valued functions to 
vector-valued functions is further illustrated in the definition of the limit of a vector-valued 
function.

Definition of the Limit of a Vector-Valued Function

1. If r is a vector-valued function such that r(t) = f (t)i + g(t)j, then

lim
t→a

 r(t) = [lim
t→a

 f (t)]i + [ lim
 t→a

 g(t)]j Plane

 provided f  and g have limits as t → a.

2. If r is a vector-valued function such that r(t) = f (t)i + g(t)j + h(t)k, then

lim
t→a

 r(t) = [lim
t→a

 f (t)]i + [lim
t→a

 g(t)]j + [lim
t→a

 h(t)]k Space

 provided f, g, and h have limits as t → a.

If r(t) approaches the vector L as t → a, then the length of the vector r(t) − L 
approaches 0. That is,

�r(t) − L� → 0 as t → a.

This is illustrated graphically in Figure 12.6. With this definition of the limit of a 
 vector-valued function, you can develop vector versions of most of the limit theorems 
given in Chapter 2. For example, the limit of the sum of two vector-valued functions 
is the sum of their individual limits. Also, you can use the orientation of the curve r(t) 
to define one-sided limits of vector-valued functions. The next definition extends the 
notion of continuity to vector-valued functions.

O

L

r(t)

r(
t) 

− 
L

O

L

r(t)

As t approaches a, r(t) approaches the 
limit L. For the limit L to exist, it is 
not necessary that r(a) be defined or 
that r(a) be equal to L.
Figure 12.6
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824 Chapter 12 Vector-Valued Functions

Definition of Continuity of a Vector -Valued Function

A vector-valued function r is continuous at the point given by t = a when the 
limit of r(t) exists as t → a and

lim
t→a

 r(t) = r(a).

A vector-valued function r is continuous on an interval I when it is continuous 
at every point in the interval.

From this definition, it follows that a vector-valued function is continuous at t = a 
if and only if each of its component functions is continuous at t = a.

 Continuity of a Vector-Valued Function

Discuss the continuity of the vector-valued function

r(t) = ti + aj + (a2 − t2)k a is a constant.

at t = 0.

Solution As t approaches 0, the limit is

 lim
t→0

 r(t) = [lim
t→0

 t]i + [lim
t→0

 a]j + [lim
t→0

 (a2 − t2)]k

 = 0i + aj + a2k

 = aj + a2k.

Because

 r(0) = (0)i + (a)j + (a2)k
 = aj + a2k

you can conclude that r is continuous at t = 0. By similar reasoning, you can conclude 
that the vector-valued function r is continuous at all real-number values of t. 

For each value of a, the curve represented by the vector-valued function in 
Example 5

r(t) = t i + aj + (a2 − t2)k a is a constant.

is a parabola. You can think of each parabola as the intersection of the vertical plane 
y = a and the hyperbolic paraboloid

y2 − x2 = z

as shown in Figure 12.7.

 Continuity of a Vector-Valued Function

Determine the interval(s) on which the vector-valued function

r(t) = ti + √t + 1j + (t2 + 1)k

is continuous.

Solution The component functions are

f (t) = t, g(t) = √t + 1, and h(t) = (t2 + 1).

Both f  and h are continuous for all real-number values of t. The function g, however, 
is continuous only for t ≥ −1. So, r is continuous on the interval [−1, ∞). 

y

x

2

4

4
−4

2

4

6

8

10

12

14

16

a = −4

a = −2

a = 4

a = 2
a = 0

z

For each value of a, the curve 
represented by the vector-valued 
function r(t) = t i + aj + (a2 − t2)k
is a parabola.
Figure 12.7

TeCHNOLOGY Almost 
any type of three-dimensional 
sketch is difficult to do by hand, 
but sketching curves in space is 
especially difficult. The problem 
is trying to create the illusion 
of three dimensions. Graphing 
utilities use a variety of techniques 
to add “three-dimensionality” 
to graphs of space curves. One 
way is to show the curve on a 
surface, as in Figure 12.7.
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 12.1 Vector-Valued Functions 825

12.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Vector-Valued Function Describe how you can 

use a vector-valued function to represent a curve.

2.  Continuity of a Vector-Valued Function  
Describe what it means for a vector-valued function r(t) to 
be continuous at a point.

 Finding the Domain In Exercises 3 –10, find 
the domain of the vector-valued function.

 3. r(t) =
1

t + 1
i +

t
2

j − 3tk

 4. r(t) = √4 − t2 i + t2j − 6tk

 5. r(t) = ln t i − etj − tk

 6. r(t) = sin ti + 4 cos tj + tk

 7. r(t) = F(t) + G(t), where

 F(t) = cos ti − sin tj + √tk, G(t) = cos ti + sin tj

 8. r(t) = F(t) − G(t), where

 F(t) = ln ti + 5tj − 3t2k, G(t) = i + 4tj − 3t2k

 9. r(t) = F(t) × G(t), where

 F(t) = sin ti + cos tj, G(t) = sin tj + cos tk

10. r(t) = F(t) × G(t), where

 F(t) = t3i − tj + tk, G(t) = 3√t i +
1

t + 1
j + (t + 2)k

 evaluating a Function In Exercises 11 and 12, 
evaluate the vector-valued  function at each given 
value of t.

11. r(t) = 1
2t2i − (t − 1)j

 (a) r(1)   (b) r(0)   (c) r(s + 1)
 (d) r(2 + ∆t) − r(2)
12. r(t) = cos ti + 2 sin t j

 (a) r(0)   (b) r(π�4)   (c) r(θ − π)
 (d) r(π�6 + ∆t) − r(π�6)

Writing a Vector-Valued Function In Exercises 13–16, 
represent the line segment from P to Q by a vector-valued 
function and by a set of parametric equations.

13. P(0, 0, 0), Q(5, 2, 2) 14. P(0, 2, −1), Q(4, 7, 2)
15. P(−3, −6, −1), Q(−1, −9, −8)
16. P(1, −6, 8), Q(−3, −2, 5)

Think about It In Exercises 17 and 18, find r(t) ∙ u(t). Is the 
result a vector-valued function? Explain.

17. r(t) = (3t − 1)i + 1
4t3j + 4k, u(t) = t2i − 8j + t3k

18. r(t) = 〈3 cos t, 2 sin t, t − 2〉, u(t) = 〈4 sin t, −6 cos t, t2〉

matching In Exercises 19–22, match the equation with its 
graph. [The graphs are labeled (a), (b), (c), and (d).]

(a)

y

x

z

4
−2 2

4

2

  (b)

y
x

z

2−2
2

2

4

(c)

x y

z

1

1

1

 (d)

yx

z

4
2

2

4

19. r(t) = ti + 2tj + t2k, −2 ≤ t ≤ 2

20. r(t) = cos(πt)i + sin(πt)j + t2k, −1 ≤ t ≤ 1

21. r(t) = ti + t2j + e0.75t k, −2 ≤ t ≤ 2

22. r(t) = ti + ln tj +
2t
3

k, 0.1 ≤ t ≤ 5

 Sketching a Plane Curve In Exercises 23–30, 
sketch the plane curve represented by the vector-
valued function and give the orientation of the 
curve.

23. r(t) =
t
4

i + (t − 1)j 24. r(t) = (5 − t)i + √t j

25. r(t) = t3i + t2j

26. r(t) = (t2 + t)i + (t2 − t)j
27. r(θ) = cos θ i + 3 sin θ j

28. r(t) = 2 cos t i + 2 sin tj

29. r(θ) = 3 sec θ i + 2 tan θj

30. r(t) = 2 cos3 ti + 2 sin3 tj

 Sketching a Space Curve In Exercises 31–38, 
sketch the space curve represented by the vector-
valued function and give the orientation of the 
curve.

31. r(t) = (−t + 1)i + (4t + 2)j + (2t + 3)k
32. r(t) = ti + (2t − 5) j + 3tk

33. r(t) = 2 cos t i + 2 sin tj + tk

34. r(t) = ti + 3 cos tj + 3 sin tk

35. r(t) = 2 sin t i + 2 cos tj + e−t k

36. r(t) = t2i + 2tj + 3
2tk

37. r(t) = 〈 t, t2, 23t3〉
38. r(t) = 〈cos t + t sin t, sin t − t cos t, t〉
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826 Chapter 12 Vector-Valued Functions

Identifying a Common Curve In Exercises 39 and 40, use 
a computer algebra system to graph the vector-valued function 
and identify the common curve.

39. r(t) = −
1
2

t2i + tj −
√3
2

t2k

40. r(t) = −√2 sin ti + 2 cos tj + √2 sin tk

Transformations of Vector-Valued Functions In 
Exercises 41 and 42, use a computer  algebra system to 
graph the vector-valued function r(t). For each u(t), make a 
conjecture about the transformation (if any) of the graph of 
r(t). Use a computer algebra system to verify your  conjecture.

41. r(t) = 2 cos ti + 2 sin tj + 1
2tk

 (a) u(t) = 2(cos t − 1)i + 2 sin tj + 1
2tk

 (b) u(t) = 2 cos ti + 2 sin tj + 2tk

 (c) u(t) = 2 cos(−t)i + 2 sin(−t)j + 1
2(−t)k

 (d) u(t) = 6 cos ti + 6 sin tj + 1
2tk

42. r(t) = ti + t2j + 1
2t3k

 (a) u(t) = (−t)i + (−t)2j + 1
2 (−t)3k

 (b) u(t) = t2i + tj + 1
2t3k

 (c) u(t) = ti + t2j + (1
2t3 + 4)k

 (d) u(t) = ti + t2j + 1
8t3k

Writing a Transformation In Exercises 43–46, consider 
the vector-valued function r(t) = 3t 2i + (t − 1)j + tk. Write a 
vector-valued function u(t) that is the specified transformation 
of r.

43. A vertical translation two units upward

44.  A horizontal translation one unit in the direction of the positive 
x-axis

45. The y-value increases by a factor of two

46. The z-value increases by a factor of three

 Representing a Graph by a Vector-Valued 
Function In Exercises 47–54, represent the 
plane curve by a vector-valued function. (There 
are many correct answers.)

47. y = x + 5 48. 2x − 3y + 5 = 0

49. y = (x − 2)2 50. y = 4 − x2

51. x2 + y2 = 25 52. (x − 2)2 + y2 = 4

53. 
x2

16
−

y2

4
= 1 54. 

x2

9
+

y2

16
= 1

 Representing a Graph by a Vector-Valued 
Function In Exercises 55–62, sketch the space 
curve represented by the intersection of the 
surfaces. Then represent the curve by a vector-
valued function using the given parameter.

 Surfaces Parameter

55. z = x2 + y2, x + y = 0 x = t

56. z = x2 + y2, z = 4 x = 2 cos t

 Surfaces Parameter

57. x2 + y2 = 4, z = x2 x = 2 sin t

58. 4x2 + 4y2 + z2 = 16, x = z2 z = t

59. x2 + y2 + z2 = 4, x + z = 2 x = 1 + sin t

60. x2 + y2 + z2 = 10, x + y = 4 x = 2 + sin t

61. x2 + z2 = 4, y2 + z2 = 4 x = t (first octant)
62. x2 + y2 + z2 = 16, xy = 4 x = t (first octant)

63.  Sketching a Curve Show that the vector-valued 
function  r(t) = ti + 2t cos tj + 2t sin tk lies on the cone 
4x2 = y2 + z2. Sketch the curve.

64.  Sketching a Curve Show that the vector-valued 
function r(t) = e−t cos t i + e−t sin tj + e−tk lies on the cone 
z2 = x2 + y2. Sketch the curve.

 Finding a Limit In Exercises 65–70, find the limit 
(if it exists).

65. lim
t→π

 (ti + cos tj + sin tk)

66. lim
t→2

 (3ti +
2

t2 − 1
j +

1
t

k)
67. lim

t→0
 (t2i + 3tj +

1 − cos t
t

k)
68. lim

t→1
 (√t i +

ln t
t2 − 1

j +
1

t − 1
k)

69. lim
t→0

 (et i +
sin t

t
j + e−t k)

70. lim
t→∞

 (e−t i +
1
t

j + t1�t k)
 Continuity of a Vector-Valued Function In 
Exercises 71–76, determine the interval(s) on which 
the vector-valued function is continuous.

71. r(t) =
1

2t + 1
i +

1
t

j

72. r(t) = √t i + √t − 1 j

73. r(t) = t i + arcsin tj + (t − 1)k
74. r(t) = 2e−t i + e−tj + ln(t − 1)k
75. r(t) = 〈e−t, t2, tan t〉

76. r(t) = 〈8, √t, 3√t 〉

eXpLoring ConCepts
77.  Think about It Consider first-degree polynomial 

functions f (t), g(t), and h(t). Determine whether the 
curve represented by r(t) = f (t)i + g(t)j + h(t)k is a 
line. Explain.

78.  Think about It The curve represented by 
r(t) = f (t)i + g(t)j + h(t)k is a line. Are f, g, and h 
first-degree polynomial functions of t? Explain.

79.  Continuity of a Vector-Valued Function Give 
an example of a vector-valued function that is defined 
but not continuous at t = 3.
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 12.1 Vector-Valued Functions 827

80.  Comparing Functions Which of the following vector-
valued functions represent the same graph?

 (a) r(t) = (−3 cos t + 1)i + (5 sin t + 2)j + 4k

 (b) r(t) = 4i + (−3 cos t + 1)j + (5 sin t + 2)k
 (c) r(t) = (3 cos t − 1)i + (−5 sin t − 2)j + 4k

 (d) r(t) = (−3 cos 2t + 1)i + (5 sin 2t + 2)j + 4k

  

 82.  HOW DO YOU See IT? The four figures 
below are graphs of the vector-valued function 

  r(t) = 4 cos t i + 4 sin tj +
t
4

k.

  Match each of the four graphs with the point in 
space from which the helix is viewed. 

(a)

y

Generated by Mathematica

z  (b)

Generated by Mathematica
y

x

z

(c)

y

x
Generated by Mathematica

 (d)

y

Generated by Mathematica

z

 (i) (0, 0, 20)
 (ii) (20, 0, 0)
(iii) (−20, 0, 0)
 (iv) (10, 20, 10)

 82.  

83.  Proof Let r(t) and u(t) be vector-valued functions whose 
limits exist as t → c. Prove that

 lim
t→c

 [r(t) × u(t)] = lim
t→c

 r(t) × lim
t→c

 u(t).

84.  Proof Let r(t) and u(t) be vector-valued functions whose 
limits exist as t → c. Prove that

 lim
t→c

 [r(t) ∙ u(t)] = lim
t→c

 r(t) ∙ lim
t→c

 u(t).

85.  Proof Prove that if r is a vector-valued function that is 
continuous at c, then �r � is continuous at c.

86.  Verifying a Converse Verify that the converse of 
Exercise 85 is not true by finding a vector-valued function r 
such that �r � is continuous at c but r is not continuous at c.

Think about It In Exercises 87 and 88, two particles travel 
along the space curves r(t) and u(t).

87. If r(t) and u(t) intersect, will the particles collide?

88. If the particles collide, do their paths r(t) and u(t) intersect?

Particle motion In Exercises 89 and 90, two particles travel 
along the space curves r(t) and u(t). Do the particles collide? Do 
their paths intersect?

89. r(t) = t2i + (9t − 20)j + t2k

 u(t) = (3t + 4)i + t2j + (5t − 4)k

90. r(t) = ti + t2j + t3k

 u(t) = (−2t + 3)i + 8tj + (12t + 2)k

In Section 4.5, you studied a famous curve called the Witch of 
Agnesi. In this project, you will take a closer look at this function.

 Consider a circle of radius a centered on the y-axis at (0, a). 
Let A be a point on the horizontal line y = 2a, let O be the  origin, 
and let B be the point where the segment OA intersects the circle. 
A point P is on the Witch of Agnesi when P lies on the  horizontal 
line through B and on the vertical line through A.

(a)  Show that the point A is traced out by the vector-valued 
function

 rA(θ) = 2a cot θ i + 2aj, 0 < θ < π

 where θ is the angle that OA makes with the positive x-axis.

(b)   Show that the point B is traced out by the vector-valued 
function rB(θ) = a sin 2θ i + a(1 − cos 2θ)j, 0 < θ < π.

(c)  Combine the results of parts (a) and (b) to find the vector-
valued function r(θ) for the Witch of Agnesi. Use a graphing 
utility to graph this curve for a = 1.

(d)  Describe the limits lim
θ→0+

 r(θ) and lim
θ→π−

 r(θ).
(e)  Eliminate the parameter θ and determine the rectangular 

equation of the Witch of Agnesi. Use a graphing utility to 
graph this function for a = 1 and compare your graph with 
that obtained in part (c).

Witch of agnesi

The outer bottom edge
of a staircase is in 
the shape of a helix of 
radius 1 meter. The 
staircase has a height of 
4 meters and makes two 
complete revolutions 
from top to bottom. 
Find a vector- valued 
function for the staircase. 
Use a computer algebra 
system to graph your function.
(There are many correct answers.)

81. Staircase

leungchopan/Shutterstock.com
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828 Chapter 12 Vector-Valued Functions

12.2 Differentiation and Integration of Vector-Valued Functions

 Differentiate a vector-valued function.
 Integrate a vector-valued function.

Differentiation of Vector-Valued Functions
In Sections 12.3–12.5, you will study several important applications involving the 
calculus of vector-valued functions. In preparation for that study, this section is devoted 
to the mechanics of differentiation and integration of vector-valued functions.

The definition of the derivative of a vector-valued function parallels the definition 
for real-valued functions.

Definition of the Derivative of a Vector -Valued Function

The derivative of a vector-valued function r is

r′(t) = lim
∆t→0

 
r(t + ∆t) − r(t)

∆t

for all t for which the limit exists. If r′(t) exists, then r is differentiable at t.
If r′(t) exists for all t in an open interval I, then r is differentiable on the 
interval I. Differentiability of vector-valued functions can be extended to 
closed intervals by considering one-sided limits.

Differentiation of vector-valued functions can be done on a component-by- 
component basis. To see why this is true, consider the function r(t) = f (t)i + g(t)j. 
Applying the definition of the derivative produces the following.

 r′(t) = lim
∆t→0

 
r(t + ∆t) − r(t)

∆t

 = lim
∆t→0

 
f (t + ∆t)i + g(t + ∆t)j − f (t)i − g(t)j

∆t

 = lim
∆t→0

 {[ f (t + ∆t) − f (t)
∆t ] i + [g(t + ∆t) − g(t)

∆t ]j}
 = { lim

∆t→0
 [f (t + ∆t) − f (t)

∆t ]} i + { lim
∆t→0

 [g(t + ∆t) − g(t)
∆t ]}j

 = f′(t)i + g′(t)j

This important result is listed in the theorem shown below. Note that the derivative of the 
vector-valued function r is itself a vector-valued function. You can see from Figure 12.8
that r′(t) is a vector tangent to the curve given by r(t) and pointing in the  direction of 
increasing t-values.

THEOREM 12.1 Differentiation of Vector-Valued Functions

1. If r(t) = f (t)i + g(t)j, where f  and g are differentiable functions of t, then

r′(t) = f′(t)i + g′(t)j. Plane

2.  If r(t) = f (t)i + g(t)j + h(t)k, where f, g, and h are differentiable functions 
of t, then

r′(t) = f′(t)i + g′(t)j + h′(t)k. Space

x

y

r(t)
r(t + Δt)

r(t + Δt) − r(t)

r ′(t)

z

Figure 12.8

REMARK In addition to 
r′(t), other notations for the 
derivative of a vector-valued 
function are

d
dt

[r(t)], dr
dt

, and Dt[r(t)].
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 12.2 Differentiation and Integration of Vector-Valued Functions 829

 Differentiation of a Vector-Valued Function

See LarsonCalculus.com for an interactive version of this type of example.

For the vector-valued function 

r(t) = ti + (t2 + 2)j

find r′(t). Then sketch the plane curve represented by r(t) and the graphs of r(1) and 
r′(1).

Solution Differentiate on a component-by-component basis to obtain

r′(t) = i + 2tj. Derivative

From the position vector r(t), you can write the parametric equations x = t and 
y = t2 + 2. The corresponding rectangular equation is y = x2 + 2. When t = 1,

r(1) = i + 3j

and

r′(1) = i + 2j.

In Figure 12.9, r(1) is drawn starting at the origin, and r′(1) is drawn starting at the 
terminal point of r(1). Note that at (1, 3), the vector r′(1) is tangent to the curve given 
by r(t) and is pointing in the direction of increasing t-values.  

Higher-order derivatives of vector-valued functions are obtained by successive 
differentiation of each component function.

 Higher-Order Differentiation

For the vector-valued function 

r(t) = cos t i + sin tj + 2tk

find each of the following.

a. r′(t)
b. r″(t)
c. r′(t) ∙ r″(t)
d. r′(t) × r″(t)

Solution

a. r′(t) = −sin t i + cos tj + 2k First derivative

b.  r″(t) = −cos ti − sin tj + 0k

 = −cos ti − sin tj Second derivative

c. r′(t) ∙ r″(t) = sin t cos t − sin t cos t = 0 Dot product

d.  r′(t) × r″(t) = ∣ i
−sin t
−cos t

j
cos t

−sin t

k
2
0∣  Cross product

 = ∣ cos t
−sin t

2
0∣i − ∣ −sin t

−cos t
2
0∣j + ∣ −sin t

−cos t
cos t

−sin t∣k
 = 2 sin ti − 2 cos tj + k 

In Example 2(c), note that the dot product is a real-valued function, not a  
vector-valued function.

r(1)

r ′(1)

r(t) = ti + (t2 + 2)j

−1−2−3 1 2 3
x

1

3

4

5

6

y

(1, 3)

Figure 12.9
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830 Chapter 12 Vector-Valued Functions

The parametrization of the curve represented by the vector-valued function

r(t) = f (t)i + g(t)j + h(t)k

is smooth on an open interval I when f′, g′, and h′ are continuous on I and r′(t) ≠ 0 
for any value of t in the interval I.

 Finding Intervals on Which a Curve Is Smooth

Find the intervals on which the epicycloid C given by

r(t) = (5 cos t − cos 5t)i + (5 sin t − sin 5t)j, 0 ≤ t ≤ 2π

is smooth.

Solution The derivative of r is

r′(t) = (−5 sin t + 5 sin 5t)i + (5 cos t − 5 cos 5t)j.

In the interval [0, 2π], the only values of t for which

r′(t) = 0i + 0j

are t = 0, π�2, π, 3π�2, and 2π. Therefore, you can conclude that C is smooth on the 
intervals

(0, 
π
2), (π2, π), (π, 

3π
2 ), and (3π

2
, 2π)

as shown in Figure 12.10. 

In Figure 12.10, note that the curve is not smooth at points at which the curve 
makes abrupt changes in direction. Such points are called cusps or nodes.

Most of the differentiation rules in Chapter 3 have counterparts for vector-valued 
functions, and several of these are listed in the next theorem. Note that the theorem 
contains three versions of “product rules.” Property 3 gives the derivative of the 
product of a real-valued function w and a vector-valued function r, Property 4 gives the 
derivative of the dot product of two vector-valued functions, and Property 5 gives the 
derivative of the cross product of two vector-valued functions (in space). 

THEOREM 12.2 Properties of the Derivative

Let r and u be differentiable vector-valued functions of t, let w be a 
differentiable real-valued function of t, and let c be a scalar.

1. 
d
dt

[cr(t)] = cr′(t)

2. 
d
dt

[r(t) ± u(t)] = r′(t) ± u′(t)

3. 
d
dt

[w(t)r(t)] = w(t)r′(t) + w′(t)r(t)

4. 
d
dt

[r(t) ∙ u(t)] = r(t) ∙ u′(t) + r′(t) ∙ u(t)

5. 
d
dt

[r(t) × u(t)] = r(t) × u′(t) + r′(t) × u(t)

6. 
d
dt

[r(w(t))] = r′(w(t))w′(t)

7. If r(t) ∙ r(t) = c, then r(t) ∙ r′(t) = 0.

r(t) = (5 cos t − cos 5t)i + (5 sin t − sin 5t)j

x
2

2

4

4

6

6

−2

−2

−4

−4

−6

−6

t = 0t = π

t = 2π

t =

y

π3
2

t = π
2

The epicycloid is not smooth at the 
points where it intersects the axes.
Figure 12.10

REMARK Note that 
Property 5 applies only to 
three-dimensional vector-valued 
functions because the cross 
product is not defined for 
two-dimensional vectors.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 12.2 Differentiation and Integration of Vector-Valued Functions 831

Proof To prove Property 4, let

r(t) = f1(t)i + g1(t)j and u(t) = f2(t)i + g2(t)j

where f1, f2, g1, and g2 are differentiable functions of t. Then

r(t) ∙ u(t) = f1(t) f2(t) + g1(t)g2(t)

and it follows that

 
d
dt

[r(t) ∙ u(t)] = f1(t) f2′(t) + f1′(t) f2(t) + g1(t)g2′(t) + g1′(t)g2(t)

 = [ f1(t) f2′(t) + g1(t)g2′(t)] + [ f1′(t) f2(t) + g1′(t)g2(t)]
 = r(t) ∙ u′(t) + r′(t) ∙ u(t).

Proofs of the other properties are left as exercises (see Exercises 61–65 and Exercise 68).
 

 Using Properties of the Derivative

For r(t) =
1
t

i − j + ln tk and u(t) = t2i − 2tj + k, find each derivative.

a. 
d
dt

[r(t) ∙ u(t)]

b. 
d
dt

[u(t) × u′(t)]

Solution

a. Because r′(t) = −
1
t2 i +

1
t

k and u′(t) = 2ti − 2j, you have

d
dt

[r(t) ∙ u(t)]

  = r(t) ∙ u′(t) + r′(t) ∙ u(t)

  = (1
t

i − j + ln tk) ∙ (2ti − 2j) + (−
1
t2 i +

1
t

k) ∙ (t2i − 2tj + k)

  = 2 + 2 + (−1) +
1
t

  = 3 +
1
t
.

b. Because u′(t) = 2ti − 2j and u″(t) = 2i, you have

 
d
dt

[u(t) × u′(t)] = [u(t) × u″(t)] + [u′(t) × u′(t)]

 = ∣ i
t2

2

j
−2t

0

k
1
0∣ + 0

 = ∣−2t
0

1
0∣i − ∣t22 1

0∣j + ∣t22 −2t
0∣k

 = 0i − (−2)j + 4tk

 = 2j + 4tk. 

Try reworking parts (a) and (b) in Example 4 by first forming the dot and cross
products and then differentiating to see that you obtain the same results.

Exploration
Let r(t) = cos ti + sin tj. 
Sketch the graph of r(t). 
Explain why the graph is a 
circle of radius 1 centered at 
the origin. Calculate r(π�4) 
and r′(π�4). Position the 
vector r′(π�4) so that its 
initial point is at the terminal 
point of r(π�4). What do 
you observe? Show that 
r(t) ∙ r(t) is constant and 
that r(t) ∙ r′(t) = 0 for all t.
How does this example 
relate to Property 7 of 
Theorem 12.2?
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832 Chapter 12 Vector-Valued Functions

Integration of Vector-Valued Functions
The next definition is a consequence of the definition of the derivative of a vector-
valued function.

Definition of Integration of Vector -Valued Functions

1.  If r(t) = f (t)i + g(t)j, where f  and g are continuous on [a, b], then the 
 indefinite integral (antiderivative) of r is

∫r(t) dt = [∫ f (t) dt]i + [∫g(t) dt]j Plane

 and its definite integral over the interval a ≤ t ≤ b is

∫b

a

 r(t) dt = [∫b

a

 f (t) dt]i + [∫b

a

 g(t) dt]j.

2.  If r(t) = f (t)i + g(t)j + h(t)k, where f, g, and h are continuous on [a, b], 
then the indefinite integral (antiderivative) of r is

∫r(t) dt = [∫ f (t) dt]i + [∫g(t) dt]j + [∫h(t) dt]k Space

 and its definite integral over the interval a ≤ t ≤ b is

∫b

a

r(t) dt = [∫b

a

f (t) dt]i + [∫b

a

g(t) dt]j + [∫b

a

h(t) dt]k.

The antiderivative of a vector-valued function is a family of vector-valued 
functions all differing by a constant vector C. For instance, if r(t) is a three-dimensional 
vector-valued function, then for the indefinite integral ∫r(t) dt, you obtain three 
constants of integration

∫ f (t) dt = F(t) + C1, ∫g(t) dt = G(t) + C2, ∫h(t) dt = H(t) + C3

where F′(t) = f (t), G′(t) = g(t), and H′(t) = h(t). These three scalar constants produce 
one vector constant of integration

 ∫r(t) dt = [F(t) + C1] i + [G(t) + C2]j + [H(t) + C3]k

 = [F(t)i + G(t)j + H(t)k] + [C1i + C2 j + C3k]
 = R(t) + C

where R′(t) = r(t).

 Integrating a Vector-Valued Function

Find the indefinite integral

∫(ti + 3j) dt.

Solution Integrating on a component-by-component basis produces

∫(ti + 3j) dt =
t2

2
i + 3tj + C.  
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 12.2 Differentiation and Integration of Vector-Valued Functions 833

Example 6 shows how to evaluate the definite integral of a vector-valued  function.

 Definite Integral of a Vector-Valued Function

Evaluate the integral

∫1

0
r(t) dt = ∫1

0
( 3√t i +

1
t + 1

j + e−tk) dt.

Solution

 ∫1

0
 r(t) dt = (∫1

0
 t1�3 dt)i + (∫1

0
 

1
t + 1

 dt) j + (∫1

0
 e−t dt)k

 = [(3
4)t4�3]

1

0
i + [ln∣t + 1∣]

1

0
j + [−e−t]

1

0
k

 =
3
4

i + (ln 2)j + (1 −
1
e)k  

As with real-valued functions, you can narrow the family of antiderivatives of 
a vector-valued function r′ down to a single antiderivative by imposing an initial 
condition on the vector-valued function r. This is demonstrated in the next example.

 The Antiderivative of a Vector-Valued Function

Find the antiderivative of

r′(t) = cos 2ti − 2 sin tj +
1

1 + t2 k

that satisfies the initial condition

r(0) = 3i − 2j + k.

Solution

 r(t) = ∫r′(t) dt

 = (∫cos 2t dt)i + (∫−2 sin t dt) j + (∫ 1
1 + t2 dt)k

 = (1
2

 sin 2t + C1) i + (2 cos t + C2)j + (arctan t + C3)k

Letting t = 0, you can write

r(0) = (0 + C1)i + (2 + C2)j + (0 + C3)k.

Using the fact that r(0) = 3i − 2j + k, you have

(0 + C1)i + (2 + C2)j + (0 + C3)k = 3i − 2j + k.

Equating corresponding components produces

C1 = 3, 2 + C2 = −2, and C3 = 1.

So, the antiderivative that satisfies the initial condition is

r(t) = (1
2

 sin 2t + 3)i + (2 cos t − 4)j + (arctan t + 1)k. 

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



834 Chapter 12 Vector-Valued Functions

12.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Derivative Describe the relationship between the 

graph of r′(t0) and the curve represented by r(t).

2.  Integration Explain why the family of vector-valued 
functions that are the antiderivatives of a vector-valued 
function differ by a constant vector.

 Differentiation of Vector-Valued Functions  
In Exercises 3 –10, find r′(t), r(t0), and r′(t0) for 
the given value of t0. Then sketch the curve 
represented by the vector-valued function and 
sketch the vectors r(t0) and r′(t0).

 3. r(t) = (1 − t2)i + tj, t0 = 3

 4. r(t) = (1 + t)i + t3j, t0 = 1

 5. r(t) = cos ti + sin tj, t0 =
π
2

 6. r(t) = 3 sin ti + 4 cos tj, t0 =
π
2

 7. r(t) = 〈et, e2t〉, t0 = 0

 8. r(t) = 〈e−t, et〉, t0 = 0

 9. r(t) = 2 cos ti + 2 sin tj + tk, t0 =
3π
2

10. r(t) = ti + t2j + 3
2k, t0 = 2

Finding a Derivative In Exercises 11–18, find r′(t).

11. r(t) = t4i − 5tj

12. r(t) = √t i + (1 − t3) j

13. r(t) = 3 cos3 ti + 2 sin3 tj + k

14. r(t) = 4√t i + t2√t j + ln t2 k

15. r(t) = e−t i + 4j + 5tet k

16. r(t) = 〈t3, cos 3t, sin 3t〉

17. r(t) = 〈t sin t, t cos t, t〉

18. r(t) = 〈arcsin t, arccos t, 0〉

Higher-Order Differentiation In Exercises 19–22, find  
(a) r′(t), (b) r″(t), and (c) r′(t) ∙ r″(t).

19. r(t) = t3i + 1
2t2j 20. r(t) = (t2 + t)i + (t2 − t)j

21. r(t) = 4 cos ti + 4 sin tj 22. r(t) = 8 cos ti + 3 sin tj

 Higher-Order Differentiation In Exercises 
23–26, find (a) r′(t), (b) r″(t), (c) r′(t) ∙ r ″(t), and 
(d) r′(t) × r ″(t).

23. r(t) = 1
2t2i − t j + 1

6t3k

24. r(t) = t3i + (2t2 + 3)j + (3t − 5)k
25. r(t) = 〈cos t + t sin t, sin t − t cos t, t〉

26. r(t) = 〈e−t, t2, tan t〉

 Finding Intervals on Which a Curve Is 
Smooth In Exercises 27–34, find the open 
interval(s) on which the curve given by the vector-
valued function is smooth.

27. r(t) = t2i + t3j 28. r(t) = 5t5i − t4j

29. r(θ) = 2 cos3 θ i + 3 sin3 θ j, 0 ≤ θ ≤ 2π

30. r(θ) = (θ + sin θ)i + (1 − cos θ)j, 0 ≤ θ ≤ 2π

31. r(t) =
2t

8 + t3 i +
2t2

8 + t3 j

32. r(t) = eti − e−tj + 3tk

33. r(t) = ti − 3tj + tan tk

34. r(t) = √t i + (t2 − 1)j + 1
4tk

 Using Properties of the Derivative In 
Exercises 35 and 36, use the properties of the 
derivative to find the following.

(a) r′(t) (b) 
d
dt

 [3r(t) − u(t)]  (c) 
d
dt

 [(5t)u(t)]

(d) 
d
dt

 [r(t) ∙ u(t)]  (e) 
d
dt

 [r(t) × u(t)] (f ) 
d
dt

 [r(2t)]

35. r(t) = ti + 3tj + t2k, u(t) = 4ti + t2j + t3k

36. r(t) = 〈t, 2 sin t, 2 cos t〉, u(t) = 〈1
t
, 2 sin t, 2 cos t〉

Using Two Methods In Exercises 37 and 38, find 

(a) 
d
dt

 [r(t) ∙ u(t)] and (b) 
d
dt

 [r(t) × u(t)] in two different ways.

 (i) Find the product first, then differentiate.
(ii) Apply the properties of Theorem 12.2.

37. r(t) = ti + 2t2j + t3k, u(t) = t4k

38. r(t) = cos ti + sin tj + tk, u(t) = j + tk

 Finding an Indefinite Integral In Exercises 
39– 46, find the indefinite integral.

39. ∫(2ti + j + 9k) dt 40. ∫(4t3i + 6tj − 4√tk) dt

41. ∫(1
t

i + j − t3�2 k) dt 42. ∫(ln ti +
1
t

j + k) dt

43. ∫ (i + 4t3j + 5t k) dt

44. ∫(sec2 ti +
1

1 + t2 j) dt

45. ∫(et i + j + t cos tk) dt

46. ∫(e−t sin ti + cot tj) dt
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 12.2 Differentiation and Integration of Vector-Valued Functions 835

 Evaluating a Definite Integral In Exercises 
47–52, evaluate the definite integral.

47. ∫1

0
(8ti + tj − k) dt

48. ∫1

−1
(t i + t3j + 3√t k) dt

49. ∫π�2

0
 [(5 cos t)i + (6 sin t)j + k] dt

50. ∫π�4

0
 [(sec t tan t)i + (tan t)j + (2 sin t cos t)k] dt

51. ∫2

0
(ti + et j − tet k) dt 52. ∫3

0
 � t i + t2j � dt

 Finding an Antiderivative In Exercises 
53 – 58, find r(t) that satisfies the initial condition(s).

53. r′(t) = 4e2ti + 3etj, r(0) = 2i

54. r′(t) = 3t2j + 6√tk, r(0) = i + 2j

55. r ″(t) = −32j, r′(0) = 600√3 i + 600j, r(0) = 0

56. r ″(t) = −4 cos tj − 3 sin tk, r′(0) = 3k, r(0) = 4j

57. r′(t) = te−t2i − e−t j + k, r(0) = 1
2 i − j + k

58. r′(t) =
1

1 + t2 i +
1
t2 j +

1
t k, r(1) = 2i

eXpLoRInG ConCeptS
59.  Using a Derivative The three components of the 

derivative of the vector-valued function u are positive at 
t = t0. Describe the behavior of u at t = t0.

60.  Think About It Find two vector-valued functions 
f(t) and g(t) such that

 ∫b

a

 [ f(t) ∙ g(t)] dt ≠ [∫b

a

 f(t) dt] ∙ [∫b

a

 g(t) dt].

Proof In Exercises 61–68, prove the property. In each case, 
assume r, u, and v are differentiable vector-valued functions of 
t in space, w is a differentiable real-valued function of t, and c 
is a scalar.

61. 
d
dt

 [cr(t)] = cr′(t)

62. 
d
dt

[r(t) ± u(t)] = r′(t) ± u′(t)

63. 
d
dt

 [w(t)r(t)] = w(t)r′(t) + w′(t)r(t)

64. 
d
dt

 [r(t) × u(t)] = r(t) × u′(t) + r′(t) × u(t)

65. 
d
dt

 [r(w(t))] = r′(w(t))w′(t)

66. 
d
dt

 [r(t) × r′(t)] = r(t) × r ″(t)

67.  
d
dt

 {r(t) ∙ [u(t) × v(t)]} = r′(t) ∙ [u(t) × v(t)] +

  r(t) ∙ [u′(t) × v(t)] +

  r(t) ∙ [u(t) × v′(t)]
68. If r(t) ∙ r(t) is a constant, then r(t) ∙ r′(t) = 0.

69.  Particle Motion A particle moves in the xy-plane 
along the curve represented by the vector-valued function 
r(t) = (t − sin t)i + (1 − cos t)j.

 (a) Use a graphing utility to graph r. Describe the curve.

 (b) Find the minimum and maximum values of �r′� and �r ″� .

70.  Particle Motion A particle moves in the yz-plane 
along the curve represented by the vector-valued function 
r(t) = (2 cos t)j + (3 sin t)k.

 (a) Describe the curve.

 (b) Find the minimum and maximum values of �r′� and �r″ �.

71.  Perpendicular Vectors Consider the vector-valued 
function r(t) = (et sin t)i + (et cos t)j. Show that r(t) and 
r ″(t) are always perpendicular to each other.

 72.  HOW DO YOU SEE IT? The graph shows 
a vector-valued function r(t) for 0 ≤ t ≤ 2π  
and its derivative r′(t) for several values of t.

 

−1−2−5 1 2 3
−1

−2

−4

1

2

3

4

t = π5
6

t = π5
4

t = π
4

x

y

(a)  For each derivative shown in the graph, determine 
whether each component is positive or negative.

(b)  Is the curve smooth on the interval [0, 2π]? 
Explain.

 72.  

True or False? In Exercises 73–76, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

73.  If a particle moves along a sphere centered at the origin, then 
its derivative vector is always tangent to the sphere.

74.  The definite integral of a vector-valued function is a real 
number.

75. 
d
dt

 [�r(t) �] = �r′(t) �

76. If r and u are differentiable vector-valued functions of t, then

 
d
dt

 [r(t) ∙ u(t)] = r′(t) ∙ u′(t).
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836 Chapter 12 Vector-Valued Functions

12.3 Velocity and Acceleration

 Describe the velocity and acceleration associated with a vector-valued function.
 Use a vector-valued function to analyze projectile motion.

Velocity and Acceleration
You are now ready to combine your study of parametric equations, curves, vectors, and 
vector-valued functions to form a model for motion along a curve. You will begin by 
looking at the motion of an object in the plane. (The motion of an object in space can 
be developed similarly.)

As an object moves along a curve in the plane, the coordinates x and y of its center 
of mass are each functions of time t. Rather than using the letters f  and g to represent 
these two functions, it is convenient to write x = x(t) and y = y(t). So, the position 
vector r(t) takes the form

r(t) = x(t)i + y(t)j. Position vector

The beauty of this vector model for representing motion is that you can use the first 
and second derivatives of the vector-valued function r to find the object’s velocity and 
acceleration. (Recall from the preceding chapter that velocity and acceleration are both 
vector quantities having magnitude and direction.) To find the velocity and acceleration 
vectors at a given time t, consider a point Q(x(t + ∆t), y(t + ∆t)) that is approaching 
the point P(x(t), y(t)) along the curve C given by r(t) = x(t)i + y(t)j, as shown in 
Figure 12.11. As ∆t → 0, the direction of the vector PQ

\

 (denoted by ∆r) approaches 
the direction of motion at time t.

 ∆r = r(t + ∆t) − r(t)

 
∆r
∆t

=
r(t + ∆t) − r(t)

∆t

 lim
∆t→0

 
∆r
∆t

= lim
∆t→0

 
r(t + ∆t) − r(t)

∆t

When this limit exists, it is defined as the velocity vector or tangent vector to the 
curve at point P. Note that this is the same limit used to define r′(t). So, the direction of 
r′(t) gives the direction of motion at time t. Moreover, the magnitude of the vector r′(t)

�r′(t)� = �x′(t)i + y′(t)j � = √[x′(t)]2 + [ y′(t)]2

gives the speed of the object at time t. 

x

Velocity vector
at time t

P

C Q

r(t)

r(t + Δt)

Δr

y    

x

y

Velocity vector
at time t

Δ
t →

 0

 As ∆t → 0, 
∆r
∆t

 approaches the velocity vector.

 Figure 12.11

Similar to how r′(t) is used to find velocity, you can use r″(t) to find acceleration, 
as indicated in the definitions at the top of the next page.

Exploration
Exploring Velocity
Consider the circle given by

r(t) = (cos ωt)i + (sin ωt)j.

(The symbol ω is the Greek 
letter omega.) Use a graphing 
utility in parametric mode
to graph this circle for 
several values of ω. How 
does ω affect the velocity of 
the terminal point as it traces 
out the curve? For a given 
value of ω, does the speed 
appear constant? Does the 
acceleration appear constant? 
Explain your reasoning.

3

−2

−3

2
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 12.3 Velocity and Acceleration 837

Definitions of Velocity and Acceleration

If x and y are twice-differentiable functions of t, and r is a vector-valued 
function given by r(t) = x(t)i + y(t)j, then the velocity vector, acceleration 
vector, and speed at time t are as follows.

 Velocity = v(t)  = r′(t)  = x′(t)i + y′(t)j
 Acceleration = a(t)  = r″(t)  = x″(t)i + y″(t)j

 Speed = �v(t)� = �r′(t)� = √[x′(t)]2 + [ y′(t)]2

For motion along a space curve, the definitions are similar. That is, for 

r(t) = x(t)i + y(t)j + z(t)k

you have the following.

 Velocity = v(t)  = r′(t)  = x′(t)i + y′(t)j + z′(t)k
 Acceleration = a(t)  = r″(t)  = x″(t)i + y″(t)j + z″(t)k

 Speed = �v(t)� = �r′(t)� = √[x′(t)]2 + [ y′(t)]2 + [z′(t)]2

 Velocity and Acceleration Along a Plane Curve

Find the (a) velocity vector, (b) speed, and (c) acceleration vector for the particle that 
moves along the plane curve C described by

r(t) = 2 sin 
t
2

i + 2 cos 
t
2

j. Position vector

Solution

a. v(t) = r′(t) = cos 
t
2

i − sin 
t
2

j Velocity vector

b. �r′(t)� =√cos2 
t
2

+ sin2 
t
2

= 1 Speed (at any time)

c. a(t) = r″(t) = −
1
2

 sin 
t
2

i −
1
2

 cos 
t
2

j Acceleration vector 

The parametric equations for the curve in 

21

2

−1

−2

−1

−2

1

x

y

v(t)

Circle: x2 + y2 = 4

a(t)

t
2

t
2

r(t) = 2 sin    i + 2 cos    j

The particle moves around the circle at 
a constant speed.
Figure 12.12

Example 1 are 

x = 2 sin 
t
2

 and y = 2 cos 
t
2

.

By eliminating the parameter t, you obtain the
rectangular  equation

x2 + y2 = 4. Rectangular equation

So, the curve is a circle of radius 2 centered at
the origin, as shown in Figure 12.12. Because
the velocity vector 

v(t) = cos 
t
2

i − sin 
t
2

j

has a constant magnitude but a changing 
direction as t increases, the particle moves
around the circle at a constant speed.

REMARK In Example 1, note 
that the velocity and acceleration 
vectors are orthogonal at any 
point in time (see Figure 12.12). 
This is characteristic of motion 
at a constant speed. (See 
Exercise 59.)
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838 Chapter 12 Vector-Valued Functions

 Velocity and Acceleration Vectors in the Plane

Sketch the path of an object moving along the plane curve given by

r(t) = (t2 − 4)i + tj Position vector

and find the velocity and acceleration vectors when t = 0 and t = 2.

Solution Using the parametric equations x = t2 − 4 and y = t, you can determine 
that the curve is a parabola given by

x = y2 − 4 Rectangular equation

as shown in Figure 12.13. The velocity vector (at any time) is

v(t) = r′(t) = 2ti + j Velocity vector

and the acceleration vector (at any time) is

a(t) = r″(t) = 2i. Acceleration vector

When t = 0, the velocity and acceleration vectors are

v(0) = 2(0)i + j = j and a(0) = 2i.

When t = 2, the velocity and acceleration vectors are

v(2) = 2(2)i + j = 4 i + j and a(2) = 2i. 

For the object moving along the path shown in Figure 12.13, note that the 
acceleration vector is constant (it has a magnitude of 2 and points to the right). This 
implies that the speed of the object is decreasing as the object moves toward the vertex 
of the parabola, and the speed is increasing as the object moves away from the vertex 
of the parabola.

This type of motion is not characteristic of comets that travel on parabolic paths 
through our solar system. For such comets, the acceleration vector always points to the 
origin (the sun), which implies that the comet’s speed increases as it approaches the 
vertex of the path and decreases as it moves away from the vertex. (See Figure 12.14.)

 Velocity and Acceleration Vectors in Space

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the path of an object moving along the space curve C given by

r(t) = ti + t3j + 3tk, t ≥ 0 Position vector

and find the velocity and acceleration vectors when t = 1.

Solution Using the parametric equations x = t and y = t3, you can determine that 
the path of the object lies on the cubic cylinder given by

y = x3. Rectangular equation

Moreover, because z = 3t, the object starts at (0, 0, 0) and moves upward as t increases, 
as shown in Figure 12.15. Because r(t) = ti + t3j + 3tk, you have

v(t) = r′(t) = i + 3t2j + 3k Velocity vector

and

a(t) = r″(t) = 6tj. Acceleration vector

When t = 1, the velocity and acceleration vectors are

v(1) = r′(1) = i + 3j + 3k and a(1) = r″(1) = 6j. 

4

4

3

2

1

−1
−1 1−3 −2

−3

−4

3

y

x

v(2)

a(2)
v(0)

a(0)

x = y2 − 4

r(t) = (t2 − 4)i + tj

At each point on the curve, the  
acceleration vector points to the right.
Figure 12.13

xSun

a

y

At each point in the comet’s orbit,  
the acceleration vector points toward 
the sun.
Figure 12.14

z

(1, 1, 3)

v(1)

a(1)

Curve:
r(t) = ti + t3j + 3tk, t ≥ 0

C

y = x3

10

x
4

2

4

6

2

y

Figure 12.15
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 12.3 Velocity and Acceleration 839

So far in this section, you have concentrated on finding the velocity and 
acceleration by differentiating the position vector. Many practical applications involve 
the reverse problem—finding the position vector for a given velocity or acceleration. 
This is demonstrated in the next example.

 Finding a Position Vector by Integration

An object starts from rest at the point (1, 2, 0) and moves with an acceleration of 

a(t) = j + 2k Acceleration vector

where �a(t)� is measured in feet per second per second. Find the location of the object 
after t = 2 seconds.

Solution From the description of the object’s motion, you can deduce the following 
initial conditions. Because the object starts from rest, you have

v(0) = 0.

Moreover, because the object starts at the point (x, y, z) = (1, 2, 0), you have

r(0) = x(0)i + y(0)j + z(0)k = 1i + 2j + 0k = i + 2j.

To find the position vector, you should integrate twice, each time using one of the initial 
conditions to solve for the constant of integration. The velocity vector is

 v(t) = ∫a(t) dt

 = ∫(j + 2k) dt

 = tj + 2tk + C

where C = C1i + C2 j + C3k. Letting t = 0 and applying the initial condition 
v(0) = 0, you obtain

v(0) = C1i + C2 j + C3k = 0  C1 = C2 = C3 = 0.

So, the velocity at any time t is

v(t) = tj + 2tk. Velocity vector

Integrating once more produces

 r(t) = ∫v(t) dt

 = ∫(tj + 2tk)dt

 =
t2

2
j + t2k + C

where C = C4i + C5 j + C6k. Letting t = 0 and applying the initial condition 
r(0) = i + 2j, you have

r(0) = C4i + C5j + C6k = i + 2j  C4 = 1, C5 = 2, C6 = 0.

So, the position vector is

r(t) = i + (t2

2
+ 2)j + t2k. Position vector

The location of the object after t = 2 seconds is given by

r(2) = i + 4j + 4k

as shown in Figure 12.16. 

y
6

6

4

2

6

4

2

r(t) = i + + 2  j + t2kt2

2( (
Curve:

z

x

(1, 4, 4)

(1, 2, 0)

t = 2

t = 0

r(2)

The object takes 2 seconds to move 
from point (1, 2, 0) to point (1, 4, 4) 
along the curve. 
Figure 12.16
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840 Chapter 12 Vector-Valued Functions

Projectile Motion
To derive the parametric equations for the path of a projectile, assume that gravity is 
the only force acting on the projectile after it is launched. So, the motion occurs in a 
vertical plane, which can be represented by the xy-coordinate system with the origin 
as a point on Earth’s surface, as shown in Figure 12.17. For a projectile of mass m, the 
force due to gravity is

F = −mgj Force due to gravity

where the acceleration due to gravity is g = 32 feet per second per second, or  
9.8 meters per second per second. By Newton’s Second Law of Motion, this same force 
produces an acceleration a = a(t) and satisfies the equation F = ma. Consequently, the 
acceleration of the projectile is given by ma = −mgj, which implies that

a = −gj. Acceleration of projectile

 Derivation of the Position Vector for a Projectile

A projectile of mass m is launched from an initial position r0 with an initial velocity v0. 
Find its position vector as a function of time.

Solution Begin with the acceleration a(t) = −gj and integrate twice.

 v(t) = ∫a(t) dt = ∫−gj dt = −gtj + C1

 r(t) = ∫v(t) dt = ∫(−gtj + C1) dt = −
1
2

gt2j + C1t + C2

You can use the initial conditions v(0) = v0 and r(0) = r0 to solve for the constant 
vectors C1 and C2. Doing this produces

C1 = v0 and C2 = r0.

Therefore, the position vector is

r(t) = −
1
2

gt2j + tv0 + r0. Position vector 

In many projectile problems, the constant vectors r0 and v0 are not given explicitly. 
Often you are given the initial height h, the initial speed v0, and the angle θ at which 
the  projectile is launched, as shown in Figure 12.18. From the given height, you can 
deduce that r0 = hj. Because the speed gives the magnitude of the initial velocity, it 
follows that v0 = �v0 � and you can write

 v0 = xi + yj

 = (�v0 � cos θ) i + (�v0 � sin θ)j
 = v0 cos θi + v0 sin θj.

So, the position vector can be written in the form

 r(t) = −
1
2

gt2j + tv0 + r0    Position vector

  = −
1
2

gt2j + tv0 cos θi + tv0 sin θ j + hj

  = (v0 cos θ)ti + [h + (v0 sin θ)t −
1
2

gt2]j.

x

v(t2)a

v(t1)

v0 = Initial velocity

v0 = v(0)
a

Initial height
a

y

Figure 12.17

y

x

h

θ

yj

xi
r0

v0

||r0 || = h = initial height

x = ||v0 || θcos

y = ||v0 || θsin

||v0 || = v0 = initial speed

Figure 12.18
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 12.3 Velocity and Acceleration 841

THEOREM 12.3 Position Vector for a Projectile

Neglecting air resistance, the path of a projectile launched from an initial 
height h with initial speed v0 and angle of elevation θ is described by the 
vector function

r(t) = (v0 cos θ)ti + [h + (v0 sin θ)t − 1
2gt2] j

where g is the acceleration due to gravity.

 Describing the Path of a Baseball

A baseball is hit 3 feet above ground level at  

300 ft

45°

3 ft

Not drawn to scale

10 ft

Figure 12.19

100 feet per second and at an angle of 45° with 
respect to the ground, as shown in Figure 12.19. 
Find the maximum height reached by the 
baseball. Will it clear a 10-foot-high fence 
located 300 feet from home plate?

Solution You are given

h = 3, v0 = 100, and θ = 45°.

So, using Theorem 12.3 with g = 32 feet per 
second per second produces

 r(t) = (100 cos 
π
4)t i + [3 + (100 sin 

π
4)t − 16t2]j

 = (50√2t)i + (3 + 50√2t − 16t2)j.

The velocity vector is

v(t) = r′(t) = 50√2 i + (50√2 − 32t)j.
The maximum height occurs when

y′(t) = 50√2 − 32t

is equal to 0, which implies that

t =
25√2

16
≈ 2.21 seconds.

So, the maximum height reached by the ball is

 y = 3 + 50√2(25√2
16 ) − 16(25√2

16 )
2

 =
649
8

 ≈ 81 feet. Maximum height when t ≈ 2.21 seconds

The ball is 300 feet from where it was hit when

x(t) = 300  50√2t = 300.

Solving this equation for t produces t = 3√2 ≈ 4.24 seconds. At this time, the height 
of the ball is

 y = 3 + 50√2(3√2) − 16(3√2)2

 = 303 − 288

 = 15 feet. Height when t ≈ 4.24 seconds

Therefore, the ball clears the 10-foot fence for a home run. 
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842 Chapter 12 Vector-Valued Functions

12.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Velocity Vector An object moves along a curve in the 

plane. What information do you gain about the motion of 
the object from the velocity vector to the curve at time t?

2.  Acceleration Vectors For each scenario, describe 
the direction of the acceleration vectors. Explain your 
reasoning.

 (a)  A comet traveling through our solar system in a 
parabolic path

 (b) An object thrown on Earth’s surface

 Finding Velocity and Acceleration Along 
a Plane Curve In Exercises 3–10, the position 
vector r describes the path of an object moving in 
the xy-plane.

 (a)  Find the velocity vector, speed, and acceleration 
vector of the object.

 (b)  Evaluate the velocity vector and acceleration 
vector of the object at the given point.

 (c)  Sketch a graph of the path and sketch the 
velocity and acceleration vectors at the given 
point.

 Position Vector Point

 3. r(t) = 3ti + (t − 1)j (3, 0)
 4. r(t) = ti + (−t2 + 4)j (1, 3)
 5. r(t) = t2i + tj (4, 2)
 6. r(t) = (1

4t3 + 1)i + tj (3, 2)
 7. r(t) = 2 cos ti + 2 sin tj (√2, √2 )
 8. r(t) = 3 cos ti + 2 sin tj (3, 0)
 9. r(t) = 〈t − sin t, 1 − cos t〉 (π, 2)
10. r(t) = 〈e−t, et〉 (1, 1)

 Finding Velocity and Acceleration Vectors 
in Space In Exercises 11–20, the position vector 
r describes the path of an object moving in space.

 (a)  Find the velocity vector, speed, and acceleration 
vector of the object.

 (b)  Evaluate the velocity vector and acceleration 
vector of the object at the given value of t.

 Position Vector Time

11. r(t) = ti + 5tj + 3tk t = 1

12. r(t) = 4ti + 4tj − 2tk t = 3

13. r(t) = ti + t2j + 1
2t2k t = 4

14. r(t) = 3ti + tj + 1
4t2k t = 2

15. r(t) = ti − tj + √9 − t2 k t = 0

16. r(t) = t2i + tj + 2t3�2k t = 4

 Position Vector Time

17. r(t) = 〈4t, 3 cos t, 3 sin t〉 t = π

18. r(t) = 〈2 cos t,  sin 3t, t2〉 t =
π
4

19. r(t) = 〈et cos t, et sin t, et〉 t = 0

20. r(t) = 〈ln t, 
1
t2, t 4〉 t = √3

 Finding a Position Vector by Integration  
In Exercises 21–26, use the given acceleration 
vector and initial conditions to find the velocity 
and position vectors. Then find the position at time 
t = 2.

21. a(t) = i + j + k, v(0) = 0, r(0) = 0

22. a(t) = 2i + 3k, v(0) = 4j, r(0) = 0

23. a(t) = tj + tk, v(1) = 5j, r(1) = 0

24. a(t) = −32k, v(0) = 3i − 2j + k, r(0) = 5j + 2k

25. a(t) = −cos ti − sin tj, v(0) = j + k, r(0) = i

26. a(t) = eti − 8k, v(0) = 2i + 3j + k, r(0) = 0

Projectile Motion In Exercises 27–40, use the model for 
projectile motion, assuming there is no air resistance and 
g = 32 feet per second per second.

27.  A baseball is hit from a height of 2.5 feet above the ground 
with an initial speed of 140 feet per second and at an angle of 
22° above the horizontal. Find the maximum height reached 
by the baseball. Determine whether it will clear a 10-foot-high 
fence located 375 feet from home plate.

28.  Determine the maximum height and range of a projectile 
fired at a height of 3 feet above the ground with an initial 
speed of 900 feet per second and at an angle of 45° above the 
horizontal.

29.  A baseball, hit 3 feet above the ground, leaves the bat at an 
angle of 45° and is caught by an outfielder 3 feet above the 
ground and 300 feet from home plate. What is the initial speed 
of the ball, and how high does it rise?

30.  A baseball player at second base throws a ball 90 feet to the 
player at first base. The ball is released at a point 5 feet above 
the ground with an initial speed of 50 miles per hour and at 
an angle of 15° above the horizontal. At what height does the 
player at first base catch the ball?

31.  Eliminate the parameter t from the position vector for the 
motion of a projectile to show that the rectangular equation is

 y = −
g sec2 θ

2v0
2 x2 + (tan θ)x + h.

32.  The path of a ball is given by the rectangular equation 
y = x − 0.005x2. Use the result of Exercise 31 to find the 
position vector. Then find the speed and direction of the ball 
at the point at which it has traveled 60 feet horizontally.

12.3  Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.
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33.  The Rogers Centre in Toronto, Ontario, has a center field 
fence that is 10 feet high and 400 feet from home plate. A ball 
is hit 3 feet above the ground and leaves the bat at a speed of 
100 miles per hour.

 (a)  The ball leaves the bat at an angle of θ = θ0 with the 
horizontal. Write the vector-valued function for the path 
of the ball.

 (b)  Use a graphing utility to graph the vector-valued function 
for θ0 = 10°, θ0 = 15°, θ0 = 20°, and θ0 = 25°. Use the 
graphs to approximate the minimum angle required for the 
hit to be a home run.

 (c)  Determine analytically the minimum angle required for 
the hit to be a home run.

35.  A bale ejector consists of two variable-speed belts at the end 
of a baler. Its purpose is to toss bales into a trailing wagon.
In loading the back of a wagon, a bale must be thrown to a 
 position 8 feet above and 16 feet behind the ejector. 

 (a)  Find the minimum initial speed of the bale and the 
corresponding angle at which it must be ejected from the 
baler.

 (b)  The ejector has a fixed angle of 45°. Find the initial speed 
required.

36.  A bomber is flying horizontally at an altitude of 30,000 feet 
with a speed of 540 miles per hour (see figure). When should 
the bomb be released for it to hit the target? (Give your answer 
in terms of the angle of depression from the plane to the 
target.) What is the speed of the bomb at the time of impact?

30,000 ft

540 mi/h

37.  A shot fired from a gun with a muzzle speed of 1200 feet 
per second is to hit a target 3000 feet away. Determine the 
 minimum angle of elevation of the gun.

38.  A projectile is fired from ground level at an angle of 12° with 
the horizontal. The projectile is to have a range of 200 feet. 
Find the minimum initial speed necessary. 

39.  Use a graphing utility to graph the paths of a projectile for 
the given values of θ and v0. For each case, use the graph to 
approximate the maximum height and range of the projectile. 
(Assume that the projectile is launched from ground level.)

 (a) θ = 10°, v0 = 66 ft�sec

 (b) θ = 10°, v0 = 146 ft�sec

 (c) θ = 45°, v0 = 66 ft�sec

 (d) θ = 45°, v0 = 146 ft�sec

 (e) θ = 60°, v0 = 66 ft�sec

 (f) θ = 60°, v0 = 146 ft�sec

40.  Find the angles at which an object must be thrown to obtain 
(a) the maximum range and (b) the maximum height.

Projectile Motion In Exercises 41 and 42, use the model 
for projectile motion, assuming there is no air resistance and  
g = 9.8 meters per second per second.

41.  Determine the maximum height and range of a projectile fired 
at a height of 1.5 meters above the ground with an initial speed 
of 100 meters per second and at an angle of 30° above the 
horizontal.

42.  A projectile is fired from ground level at an angle of 8° with 
the horizontal. The projectile is to have a range of 50 meters. 
Find the minimum initial speed necessary.

43. Shot-Put Throw The path of a shot thrown at an angle θ is

 r(t) = (v0 cos θ)ti + [h + (v0 sin θ)t −
1
2

gt2] j

  where v0 is the initial speed, h is the initial height, t is the time 
in seconds, and g is the acceleration due to gravity. Verify that 
the shot will remain in the air for a total of

 t =
v0 sin θ + √v0

2 sin2 θ + 2gh
g

 seconds

 and will travel a horizontal distance of

 
v0

2 cos θ
g (sin θ +√sin2 θ +

2gh
v0

2 ) feet.

The quarterback of a 
football team releases a 
pass at a height of 7 feet 
above the playing field, 
and the football is caught 
by a receiver 30 yards 
directly downfield at a 
height of 4 feet. The pass 
is released at an angle of 
35° with the horizontal.

(a) Find the speed of the football when it is released.

(b) Find the maximum height of the football.

(c)  Find the time the receiver has to reach the proper 
position after the quarterback releases the football.

34. Football

A shot is thrown from a
height of h = 5.75 feet 
with an initial speed 
of v0 = 41 feet per 
second and at an angle of 
θ = 42.5° with the 
horizontal. Use the result 
of Exercise 43 to find 
the total time of travel 
and the total horizontal 
distance traveled.

44. Shot-Put Throw

Aspen Photo/Shutterstock.com; PCN Photography/Alamy stock photo
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844 Chapter 12 Vector-Valued Functions

Cycloidal Motion In Exercises 45 and 46, consider the 
motion of a point (or particle) on the circumference of a rolling 
circle. As the circle rolls, it generates the cycloid

r(t) = b(ωt − sin ωt)i + b(1 − cos ωt) j

where ω is the constant angular speed of the circle and b is the 
radius of the circle.

45.  Find the velocity and acceleration vectors of the particle. Use 
the results to determine the times at which the speed of the 
particle will be (a) zero and (b) maximized.

46.  Find the maximum speed of a point on the circumference of 
an automobile tire of radius 1 foot when the automobile is 
traveling at 60 miles per hour. Compare this speed with the 
speed of the automobile.

Circular Motion In Exercises 47–50, consider a particle 
 moving on a circular path of radius b described by

r(t) = b cos ωti + b sin ωtj

where ω = du�dt is the constant angular speed.

47. Find the velocity vector and show that it is orthogonal to r(t).
48. (a) Show that the speed of the particle is bω.

 (b)  Use a graphing utility in parametric mode to graph the 
circle for b = 6. Try different values of ω. Does the  graphing 
utility draw the circle faster for greater values of ω?

49.  Find the acceleration vector and show that its direction is 
always toward the center of the circle.

50. Show that the magnitude of the acceleration vector is bω2.

Circular Motion In Exercises 51 and 52, use the results of 
Exercises 47–50.

51.  A psychrometer (an instrument used to measure humidity) 
weighing 4 ounces is whirled horizontally using a 6-inch string 
(see figure). The string will break under a force of 2 pounds. 
Find the maximum speed the instrument can attain without 
breaking the string. (Use F = ma, where m = 1�128.)

6 in.

4 oz

 

300 ft

30 mi/h

 Figure for 51 Figure for 52

52.  A 3400-pound automobile is negotiating a circular interchange 
of radius 300 feet at 30 miles per hour (see figure). Assuming 
the roadway is level, find the force between the tires and the 
road such that the car stays on the circular path and does not 
skid. (Use F = ma, where m = 3400�32.) Find the angle 
at which the roadway should be banked so that no lateral 
 frictional force is exerted on the tires of the automobile.

eXpLoRInG ConCeptS
53.  Constant Speed Explain how a particle can be 

accelerating even though its speed is constant. 

54.  Think About It Consider a particle that is moving along 
the space curve given by r1(t) = t3i + (3 − t)j + 2t2k.
Write a vector-valued function r2 for a particle that 
moves four times as fast as the particle represented by 
r1. Explain how you found the function.

55.  Circular Motion Consider a particle that moves 
around a circle. Is the velocity vector of the particle 
always orthogonal to the acceleration vector of the 
particle? Explain.

56.  Particle Motion Consider a particle moving on an 
elliptical path described by r(t) = a cos ωti + b sin ωtj, 
where ω = dθ�dt is the constant angular speed.

 (a)  Find the velocity vector. What is the speed of the particle?

 (b)  Find the acceleration vector and show that its direction is 
always toward the center of the ellipse.

57.  Path of an Object When t = 0, an object is at the point 
(0, 1) and has a velocity vector v(0) = −i. It moves with an 
acceleration of a(t) = sin ti − cos tj. Show that the path of 
the object is a circle.

58.  HOW DO YOU SEE IT? The graph shows 
the path of a projectile and the velocity and 
acceleration vectors at times t1 and t2. Classify 
the angle between the velocity vector and the 
acceleration vector at times t1 and t2. Using the 
vectors, is the speed increasing or decreasing at 
times t1 and t2? Explain your reasoning.

 

x

v(t2)
a(t2)

v(t1)

a(t1)

y

58.  

59.  Proof Prove that when an object is traveling at a constant 
speed, its  velocity and acceleration vectors are orthogonal.

60.  Proof Prove that an object moving in a straight line at a 
constant speed has an acceleration of 0.

True or False? In Exercises 61–63, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

61. The velocity vector points in the direction of motion.

62.  If a particle moves along a straight line, then the velocity and 
acceleration vectors are orthogonal.

63.  A velocity vector of variable magnitude cannot have a 
constant direction.
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 12.4 Tangent Vectors and Normal Vectors 845

12.4 Tangent Vectors and Normal Vectors

  Find a unit tangent vector and a principal unit normal vector 
at a point on a space curve.

 Find the tangential and normal components of acceleration.

Tangent Vectors and Normal Vectors
In the preceding section, you learned that the velocity vector points in the direction 
of motion. This observation leads to the next definition, which applies to any smooth 
curve—not just to those for which the parameter represents time.

Definition of Unit Tangent Vector

Let C be a smooth curve represented by r on an open interval I. The unit 
tangent vector T(t) at t is defined as

T(t) =
r′(t)

�r′(t)�
, r′(t) ≠ 0.

Recall that a curve is smooth on an interval when r′ is continuous and nonzero on 
the interval. So, “smoothness” is sufficient to guarantee that a curve has a unit tangent 
vector.

 Finding the Unit Tangent Vector

Find the unit tangent vector to the curve given by

r(t) = ti + t2j

when t = 1.

Solution The derivative of r(t) is

r′(t) = i + 2tj. Derivative of r(t)

So, the unit tangent vector is

 T(t) =
r′(t)

�r′(t)�
 Definition of T(t)

 =
1

√1 + 4t2
(i + 2tj). Substitute for r′(t).

When t = 1, the unit tangent vector is

T(1) =
1

√5
(i + 2j)

as shown in Figure 12.20. 

In Example 1, note that the direction of the unit tangent vector depends on the 
 orientation of the curve. For the parabola described by

r(t) = −(t − 2)i + (t − 2)2j

T(1) would still represent the unit tangent vector at the point (1, 1), but it would point 
in the opposite direction. Try verifying this.

4

21

3

2

1

−1−2
x

T(1)

y

r(t) = ti + t2j

The direction of the unit tangent vector 
depends on the orientation of the curve.
Figure 12.20
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846 Chapter 12 Vector-Valued Functions

The tangent line to a curve at a point is the line that passes through the point and 
is parallel to the unit tangent vector. In Example 2, the unit tangent vector is used to 
find the tangent line at a point on a helix. 

 Finding the Tangent Line at a Point on a Curve

Find T(t) and then find a set of parametric equations for the tangent line to the helix 
given by

r(t) = 2 cos ti + 2 sin tj + tk

at the point (√2, √2, 
π
4).

Solution The derivative of r(t) is

r′(t) = −2 sin ti + 2 cos tj + k

which implies that �r′(t)� = √4 sin2 t + 4 cos2 t + 1 = √5. Therefore, the unit 
tangent vector is

 T(t) =
r′(t)

�r′(t)�

 =
1

√5
(−2 sin ti + 2 cos tj + k). Unit tangent vector

At the point (√2, √2, π�4), t = π�4 and the unit tangent vector is

 T(π4) =
1

√5 (−2
√2
2

i + 2
√2
2

j + k)
 =

1

√5
(−√2 i + √2j + k).

Using the direction numbers a = −√2, b = √2, and c = 1, and the point 
(x1, y1, z1) = (√2, √2, π�4), you can obtain the parametric equations (given with 
parameter s) listed below.

 x = x1 + as = √2 − √2s

 y = y1 + bs = √2 + √2s

 z = z1 + cs =
π
4

+ s

This tangent line is shown in Figure 12.21. 

In Example 2, there are infinitely many vectors that are orthogonal to the tangent 
vector T(t). One of these is the vector T′(t). This follows from Property 7 of Theorem 12.2.
That is,

T(t) ∙ T(t) = �T(t)�2 = 1  T(t) ∙ T′(t) = 0.

By normalizing the vector T′(t), you obtain a special vector called the principal unit 
normal vector, as indicated in the next definition.

Definition of Principal Unit Normal Vector

Let C be a smooth curve represented by r on an open interval I. If T′(t) ≠ 0, 
then the principal unit normal vector at t is defined as

N(t) =
T′(t)

�T′(t)�
.

y

x

z

3 3

−3

5

6

2,    2,
π
4))

Curve:
r(t) = 2 cos ti + 2 sin tj + tk

C

Tangent
line

The tangent line to a curve at a point is 
determined by the unit tangent vector 
at the point.
Figure 12.21
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 Finding the Principal Unit Normal Vector

Find N(t) and N(1) for the curve represented by r(t) = 3ti + 2t2j.

Solution By differentiating, you obtain

r′(t) = 3i + 4tj

which implies that

�r′(t)� = √9 + 16t2.

So, the unit tangent vector is

 T(t) =
r′(t)

�r′(t)�

 =
1

√9 + 16t2
(3i + 4tj). Unit tangent vector

Using Theorem 12.2, differentiate T(t) with respect to t to obtain

 T′(t) =
1

√9 + 16t2
(4j) −

16t
(9 + 16t2)3�2

(3i + 4tj)

 =
12

(9 + 16t2)3�2 (−4ti + 3j)

which implies that

�T′(t)� = 12√ 9 + 16t2

(9 + 16t2)3 =
12

9 + 16t2.

Therefore, the principal unit normal vector is

 N(t) =
T′(t)

�T′(t)�

 =
1

√9 + 16t2
(−4ti + 3j). Principal unit normal vector

When t = 1, the principal unit normal vector is

N(1) =
1
5

(−4i + 3j)

as shown in Figure 12.22.

 

C

3

1

2

321

y

x

r(t) = 3ti + 2t2j
Curve:

(3i + 4j)1
5

1
5

T(1) =

(−4i + 3j)N(1) =

  The principal unit normal vector points 
toward the concave side of the curve.

 Figure 12.22 
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848 Chapter 12 Vector-Valued Functions

The principal unit normal vector can be difficult to evaluate algebraically. For 
plane curves, you can simplify the algebra by finding

T(t) = x(t)i + y(t)j Unit tangent vector

and observing that N(t) must be either

N1(t) = y(t)i − x(t)j  or N2(t) = −y(t)i + x(t)j.

Because √[x(t)]2 + [y(t)]2 = 1, it follows that both N1(t) and N2(t) are unit normal 
vectors. The principal unit normal vector N is the one that points toward the concave 
side of the curve, as shown in Figure 12.22 (see Exercise 72). This also holds for curves 
in space. That is, for an object moving along a curve C in space, the vector T(t) points 
in the direction the object is moving, whereas the vector N(t) is orthogonal to T(t) and 
points in the direction in which the object is turning, as shown in Figure 12.23.

CC

y
x

T N

z

  At any point on a curve, a unit normal vector 
is orthogonal to the unit tangent vector. The 
principal unit normal vector points in the 
direction in which the curve is turning.

 Figure 12.23

 Finding the Principal Unit Normal Vector

Find the principal unit normal vector for the helix r(t) = 2 cos ti + 2 sin tj + tk.

Solution From Example 2, you know that the unit tangent vector is

T(t) =
1

√5
(−2 sin ti + 2 cos tj + k). Unit tangent vector

So, T′(t) is given by

T′(t) =
1

√5
(−2 cos t i − 2 sin tj).

Because �T′(t)� = 2�√5, it follows that the principal unit normal vector is

 N(t) =
T′(t)

�T′(t)�

 =
1
2

(−2 cos ti − 2 sin tj)

 = −cos ti − sin tj. Principal unit normal vector

Note that this vector is horizontal and points toward the z-axis, as shown in  
Figure 12.24. 

x y

z

1

2

−2

−1

2

1

−1

−2

π

π

π

π

2

2

2

3

Helix:
r(t) = 2 cos ti + 2 sin tj + tk

N(t) is horizontal and points toward the 
z-axis.
Figure 12.24
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 12.4 Tangent Vectors and Normal Vectors 849

Tangential and Normal Components of Acceleration
In the preceding section, you considered the problem of describing the motion of an 
object along a curve. You saw that for an object traveling at a constant speed, the 
velocity and acceleration vectors are perpendicular. This seems reasonable, because the 
speed would not be constant if any acceleration were acting in the direction of motion. 
You can verify this observation by noting that

r″(t) ∙ r′(t) = 0

when �r′(t)� is a constant. (See Property 7 of Theorem 12.2.)
For an object traveling at a variable speed, however, the velocity and acceleration 

vectors are not necessarily perpendicular. For instance, you saw that the acceleration 
vector for a projectile always points down, regardless of the direction of motion.

In general, part of the acceleration (the tangential component) acts in the line of 
motion, and part of it (the normal component) acts perpendicular to the line of motion. 
In order to determine these two components, you can use the unit vectors T(t) and N(t), 
which serve in much the same way as do i and j in representing vectors in the plane. 
The next theorem states that the acceleration vector lies in the plane determined by T(t) 
and N(t).

THEOREM 12.4 Acceleration Vector

If r(t) is the position vector for a smooth curve C and N(t) exists,
then the  acceleration vector a(t) lies in the plane determined by
T(t) and N(t).

Proof To simplify the notation, write T for T(t), T′ for T′(t), and so on. Because 
T = r′��r′� = v��v�, it follows that

v = �v�T.

By differentiating, you obtain

 a = v′

 =
d
dt

 [�v�]T + �v�T′ Product Rule

 =
d
dt

 [�v�]T + �v�T′(�T′�
�T′�)

 =
d
dt

 [�v�]T + �v� �T′�N. N = T′��T′�

Because a is written as a linear combination of T and N, it follows that a lies in the 
plane determined by T and N. 

The coefficients of T and N in the proof of Theorem 12.4 are called the tangential 
and normal components of acceleration and are denoted by

aT =
d
dt

 [�v�] and aN = �v� �T′�.

So, you can write

a(t) = aTT(t) + aNN(t).

The next theorem lists some convenient formulas for aT and aN.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



850 Chapter 12 Vector-Valued Functions

THEOREM 12.5  Tangential and Normal Components 
of Acceleration

If r(t) is the position vector for a smooth curve C [for which N(t) exists], then 
the  tangential and normal components of acceleration are as follows.

 aT =
d
dt

 [�v�] = a ∙ T =
v ∙ a
�v�

 aN = �v� �T′� = a ∙ N =
�v × a�

�v�
= √�a�2 − aT

2

Note that aN ≥ 0. The normal component of acceleration is also
called the  centripetal component of acceleration.

Proof Note that a lies in the plane of T and N. So, you can use Figure 12.25 to 
conclude that, for any time t, the components of the projection of the acceleration vector 
onto T and onto N are given by aT = a ∙ T and aN = a ∙ N, respectively. Moreover, 
because a = v′ and T = v��v�, you have

aT = a ∙ T = T ∙ a =
v

�v� ∙ a =
v ∙ a
�v�

.

In Exercises 74 and 75, you are asked to prove the other parts of the theorem. 

  Tangential and Normal Components of Acceleration

See LarsonCalculus.com for an interactive version of this type of example.

Find the tangential and normal components of acceleration for the position vector given 
by r(t) = 3ti − tj + t2k.

Solution Begin by finding the velocity, speed, and acceleration.

 v(t) = r′(t) = 3i − j + 2tk Velocity vector

 �v(t)� = √9 + 1 + 4t2 = √10 + 4t2 Speed

 a(t) = r″(t) = 2k Acceleration vector

By Theorem 12.5, the tangential component of acceleration is

aT =
v ∙ a
�v�

=
4t

√10 + 4t2
 Tangential component of acceleration

and because

v × a = ∣ i
3
0

j
−1

0

k
2t
2∣ = −2i − 6j

the normal component of acceleration is

aN =
�v × a�

�v�
=

√4 + 36

√10 + 4t2
=

2√10

√10 + 4t2
. Normal component of acceleration

  

In Example 5, you could have used the alternative formula for aN as follows.

aN = √�a�2 − aT
2 =√(2)2 −

16t2

10 + 4t2
=

2√10

√10 + 4t2

a • T < 0

a • T > 0

a • N

N

N

T

T
a

a

a • N

The tangential and normal components 
of acceleration are obtained by 
projecting a onto T and N.
Figure 12.25
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 Finding aT and aN for a Circular Helix

Find the tangential and normal components of acceleration for the helix given by

r(t) = b cos ti + b sin tj + ctk, b > 0.

Solution

 v(t) = r′(t) = −b sin ti + b cos tj + ck Velocity vector

 �v(t)� = √b2 sin2 t + b2 cos2 t + c2 = √b2 + c2 Speed

 a(t) = r″(t) = −b cos ti − b sin tj Acceleration vector

By Theorem 12.5, the tangential component of acceleration is

aT =
v ∙ a
�v�

=
b2 sin t cos t − b2 sin t cos t + 0

√b2 + c2
= 0. Tangential component 

of acceleration

Moreover, because

�a� = √b2 cos2 t + b2 sin2 t = b

you can use the alternative formula for the normal component of acceleration to obtain

aN = √�a�2 − aT
2 = √b2 − 02 = b. 

Normal component  
of acceleration

Note that the normal component of acceleration is equal to the magnitude of the 
acceleration. In other words, because the speed is constant, the acceleration is 
perpendicular to the velocity. See Figure 12.26.

 Projectile Motion

The position vector for the projectile shown in Figure 12.27 is

r(t) = (50√2 t)i + (50√2 t − 16t2)j. Position vector

Find the tangential components of acceleration when t = 0, 1, and 25√2�16.

Solution

 v(t) = 50√2 i + (50√2 − 32t)j Velocity vector

 �v(t)� = 2√502 − 16(50)√2t + 162t2 Speed

 a(t) = −32j Acceleration vector

The tangential component of acceleration is

aT(t) =
v(t) ∙ a(t)

�v(t)�
=

−32(50√2 − 32t)
2√502 − 16(50)√2t + 162t2

. Tangential component 
of acceleration

At the specified times, you have

 aT(0) =
−32(50√2)

100
= −16√2 ≈ −22.6

 aT(1) =
−32(50√2 − 32)

2√502 − 16(50)√2 + 162
≈ −15.4

 aT(25√2
16 ) =

−32(50√2 − 50√2)
50√2

= 0.

You can see from Figure 12.27 that at the maximum height, when t = 25√2�16, the 
tangential component is 0. This is reasonable because the direction of motion is 
horizontal at the point and the tangential component of the acceleration is equal to the 
horizontal component of the acceleration. 

x

y

aN = b

b

z

The normal component of acceleration 
is equal to the radius of the cylinder 
around which the helix is spiraling.
Figure 12.26

100

150100 125

50

25

5025 75

75

x

y

r(t) = (50    2t)i + (50    2t − 16t2)j

25    2
16

t = 
t = 1

t = 0

The path of a projectile
Figure 12.27
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12.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Unit Tangent Vector How is the unit tangent vector 

related to the orientation of a curve? Explain.

2.  Principal Unit Normal Vector In what direction 
does the principal unit normal vector point?

 Finding the Unit Tangent Vector In 
Exercises 3–8, find the unit tangent vector to the 
curve at the specified value of the parameter.

 3. r(t) = t2i + 2tj, t = 1

 4. r(t) = t3i + 2t2j, t = 1

 5. r(t) = 5 cos t i + 5 sin t j, t =
π
3

 6. r(t) = 6 sin t i − 2 cos tj, t =
π
6

 7. r(t) = 3ti − ln tj, t = e

 8. r(t) = et cos ti + etj, t = 0

 Finding a Tangent Line In Exercises 9–14, 
find the unit tangent vector T(t) and a set of 
parametric equations for the tangent line to the 
space curve at point P.

 9. r(t) = ti + t2j + tk, P(0, 0, 0)
10. r(t) = t2i + tj + 4

3k, P(1, 1, 43)
11. r(t) = cos t i + 3 sin t j + (3t − 4)k, P(1, 0, −4)
12. r(t) = 〈 t, t, √4 − t2〉, P(1, 1, √3)
13. r(t) = 〈2 cos t, 2 sin t, 4〉, P(√2, √2, 4)
14. r(t) = 〈2 sin t, 2 cos t, 4 sin2 t〉, P(1, √3, 1)

 Finding the Principal Unit Normal Vector 
In Exercises 15–20, find the principal unit normal 
vector to the curve at the specified value of the 
parameter.

15. r(t) = ti + 1
2t2j, t = 2 16. r(t) = ti +

6
t

j, t = 3

17. r(t) = ti + t2j + ln tk, t = 1

18. r(t) = √2 ti + etj + e−tk, t = 0

19. r(t) = 6 cos ti + 6 sin tj + k, t =
3π
4

20. r(t) = cos 3ti + 2 sin 3tj + k, t = π

Sketching a Graph and Vectors In Exercises 21–24, 
sketch the graph of the plane curve r(t) and sketch the vectors 
T(t) and N(t) at the given value of t.

21. r(t) = t i +
1
t
j, t = 2

22. r(t) = ti − t3j, t = 1

23. r(t) = (2t + 1)i − t2j, t = 2

24. r(t) = 2 cos t i + 2 sin t j, t =
7π
6

 Finding Tangential and Normal Components 
of Acceleration In Exercises 25–30, find the 
tangential and normal components of acceleration 
at the given time t for the plane curve r(t).

25. r(t) = ti +
1
t

j, t = 1

26. r(t) = t2i + 2tj, t = 1

27. r(t) = et i + e−2tj, t = 0

28. r(t) = eti + e−tj, t = 0

29. r(t) = et cos ti + et sin tj, t =
π
2

30. r(t) = 4 cos 3ti + 4 sin 3tj, t = π

Circular Motion In Exercises 31–34, consider an object 
 moving according to the position vector

r(t) = a cos ωti + a sin ωtj.

31. Find T(t), N(t), aT, and aN.

32.  Determine the directions of T and N relative to the position 
vector r.

33.  Determine the speed of the object at any time t and explain its 
value relative to the value of aT.

34.  When the angular speed ω is halved, by what factor is aN 
changed?

 Finding Tangential and Normal Components 
of Acceleration In Exercises 35–40, find the 
tangential and normal components of acceleration 
at the given time t for the space curve r(t). 

35. r(t) = ti + 2tj − 3tk, t = 1

36. r(t) = cos ti + sin tj + 2tk, t =
π
3

37. r(t) = ti + t2j +
t2

2
k, t = 1

38. r(t) = (2t − 1)i + t2j − 4tk, t = 2

39. r(t) = et sin ti + et cos tj + etk, t = 0

40. r(t) = eti + 2tj + e−tk, t = 0

eXpLoring ConCepts
41.  Acceleration Describe the motion of a particle when 

the normal component of acceleration is 0.

42.  Acceleration Describe the motion of a particle when 
the tangential component of acceleration is 0.
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43.  Finding Vectors An object moves along the path given by

 r(t) = 3ti + 4tj.

  Find v(t), a(t), T(t), and N(t) (if it exists). What is the form of 
the path? Is the speed of the object constant or changing?

 44.  HOW DO YOU SEE IT? The figures show 
the paths of two particles.

(i) 

z
t

sy
x

y  (ii) 

s t

z
y

x

y

(a)  Which vector, s or t, represents the unit tangent 
vector? Explain.

(b)  Which vector, y or z, represents the principal unit 
normal vector? Explain.

 44.  

45.  Cycloidal Motion The figure shows the path of a particle 
modeled by the vector-valued function

 r(t) = 〈πt − sin πt, 1 − cos πt〉.

   The figure also shows the vectors v(t)��v(t) � and a(t)��a(t) � at 
the indicated values of t.

 (a) Find aT and aN at t = 1
2, t = 1, and t = 3

2.

 (b)  Determine whether the speed of the particle is increasing 
or decreasing at each of the indicated values of t. Give 
reasons for your answers.

x

t = 1t =

t =

1
2

3
2

y  

x

t = 1

t = 2

y

 Figure for 45 Figure for 46

46.  Motion Along an Involute of a Circle The figure 
shows a particle moving along a path modeled by

 r(t) = 〈cos πt + πt sin πt, sin πt − πt cos πt〉. 

  The figure also shows the vectors v(t) and a(t) for t = 1 and 
t = 2.

 (a) Find aT and aN at t = 1 and t = 2.

 (b)  Determine whether the speed of the particle is increasing 
or decreasing at each of the indicated values of t. Give 
reasons for your answers.

Finding a Binormal Vector In Exercises 47–52, find the 
vectors T and N and the binormal vector B = T × N for the 
vector-valued function r(t) at the given value of t.

47. r(t) = 2 cos ti + 2 sin tj +
t
2

k, t =
π
2

48. r(t) = ti + t2j +
t3

3
k, t = 1

49. r(t) = i + sin tj + cos tk, t =
π
4

50. r(t) = 2eti + et cos tj + et sin tk, t = 0

51. r(t) = 4 sin ti + 4 cos tj + 2tk, t =
π
3

52. r(t) = 3 cos 2ti + 3 sin 2tj + tk, t =
π
4

Alternative Formula for the Principal Unit Normal 
Vector In Exercises 53–56, use the vector-valued function 
r(t) to find the principal unit normal vector N(t) using the 
alternative formula

N =
(v ∙ v)a − (v ∙ a)v

� (v ∙ v)a − (v ∙ a)v �
.

53. r(t) = 3ti + 2t2j

54. r(t) = 3 cos 2ti + 3 sin 2tj

55. r(t) = 2ti + 4tj + t2k

56. r(t) = 5 cos ti + 5 sin tj + 3tk

57.  Projectile Motion Find the tangential and normal 
components of acceleration for a projectile fired at an angle 
θ with the horizontal at an initial speed of v0. What are the 
components when the projectile is at its maximum height?

58.  Projectile Motion Use your results from Exercise 57 to 
find the tangential and normal components of acceleration for 
a projectile fired at an angle of 45° with the horizontal at an
initial speed of 150 feet per second. What are the components 
when the projectile is at its maximum height?

59.  Projectile Motion A projectile is launched with an initial 
speed of 120 feet per second at a height of 5 feet and at an 
angle of 30° with the horizontal.

 (a)  Determine the vector-valued function for the path of the 
projectile.

 (b)  Use a graphing utility to graph the path and approximate 
the maximum height and range of the projectile.

 (c) Find v(t), �v(t)�, and a(t).
 (d) Use a graphing utility to complete the table.

t 0.5 1.0 1.5 2.0 2.5 3.0

Speed

 (e)  Use a graphing utility to graph the scalar functions aT and 
aN. How is the speed of the projectile changing when aT 
and aN have opposite signs?
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60.  Projectile Motion A projectile is launched with an initial 
speed of 220 feet per second at a height of 4 feet and at an 
angle of 45° with the horizontal.

 (a)  Determine the vector-valued function for the path of the 
projectile.

 (b)  Use a graphing utility to graph the path and approximate 
the maximum height and range of the projectile.

 (c) Find v(t), �v(t) �, and a(t).
 (d) Use a graphing utility to complete the table.

t 0.5 1.0 1.5 2.0 2.5 3.0

Speed

62.  Projectile Motion A plane flying at an altitude of 
36,000 feet at a speed of 600 miles per hour releases a bomb. 
Find the  tangential and normal components of acceleration 
acting on the bomb.

63.  Centripetal Acceleration An object is spinning at a 
constant speed on the end of a string, according to the position 
vector r(t) = a cos ωt i + a sin ωt j.

 (a)  When the angular speed ω is doubled, how is the 
centripetal component of acceleration changed?

 (b)  When the angular speed is unchanged but the length of 
the string is halved, how is the centripetal component of 
acceleration changed?

64.  Centripetal Force An object of mass m moves at a 
constant speed v in a circular path of radius r, according to the 
position vector r(t) = r cos ω t i + r sin ωtj.

 (a)  The force required to produce the centripetal component 
of acceleration is called the centripetal force and is given 
by F = mv2�r. Use F = ma to verify the centripetal force.

 (b)  Newton’s Law of Universal Gravitation is given by 
F = GMm�d 2, where d is the distance between the 
centers of the two bodies of masses M and m, and G is the 
gravitational constant. Use this law to show that the speed 
required for circular motion is v = √GM�r.

Orbital Speed In Exercises 65–68, use the result of Exercise 
64 to find the speed necessary for the given circular orbit 
around Earth. Let GM = 9.56 × 104 cubic miles per second per 
second, and assume the radius of Earth is 4000 miles.

65.  The orbit of the International Space Station 255 miles above 
the surface of Earth

66.  The orbit of the Hubble telescope 340 miles above the surface 
of Earth

67.  The orbit of a heat capacity mapping satellite 385 miles above 
the surface of Earth

68.  The orbit of a communications satellite r miles above the 
surface of Earth that is in geosynchronous orbit. [The satellite 
completes one orbit per sidereal day (approximately 23 hours, 
56 minutes) and therefore appears to remain stationary above 
a point on Earth.]

True or False? In Exercises 69 and 70, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

69.  The velocity and acceleration vectors of a moving object are 
always perpendicular.

70.  If aN = 0 for a moving object, then the object is moving in a 
straight line.

71.  Motion of a Particle A particle moves along a path 
modeled by 

 r(t) = cosh(bt)i + sinh(bt)j

 where b is a positive constant.

 (a) Show that the path of the particle is a hyperbola.

 (b) Show that a(t) = b2r(t).
72.  Proof Prove that the principal unit normal vector N points 

toward the concave side of a plane curve.

73.  Proof Prove that the vector T′(t) is 0 for an object moving 
in a straight line.

74. Proof Prove that aN =
�v × a �

�v �
.

75. Proof Prove that aN = √�a �2 − aT
2.

pUtnAM eXAM ChALLenge
76.  A particle of unit mass moves on a straight line under the 

action of a force which is a function f (v) of the velocity v 
of the particle, but the form of this function is not known. 
A motion is observed, and the distance x covered in time 
t is found to be connected with t by the formula 

 x = at + bt2 + ct3

  where a, b, and c have numerical values determined by 
observation of the motion. Find the function f (v) for the 
range of v covered by the experiment.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

Because of a storm, 
ground controllers 
instruct the pilot of a 
plane flying at an 
altitude of 4 miles to 
make a 90° turn and 
climb to an altitude of 
4.2 miles. The model for 
the path of the plane 
during this maneuver is

r(t) = 〈10 cos 10πt, 10 sin 10πt, 4 + 4t〉, 0 ≤ t ≤ 1
20

where t is the time in hours and r is the distance in miles.

(a) Determine the speed of the plane.

(b) Calculate aT and aN. Why is one of these equal to 0?

61. Air Traffic Control

Belish/Shutterstock.com
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 12.5 Arc Length and Curvature 855

12.5 Arc Length and Curvature

 Find the arc length of a space curve.
 Use the arc length parameter to describe a plane curve or space curve.
 Find the curvature of a curve at a point on the curve.
 Use a vector-valued function to find frictional force.

Arc Length
In Section 10.3, you saw that the arc length of a smooth plane curve C given by the 
parametric equations x = x(t) and y = y(t), a ≤ t ≤ b, is

s = ∫b

a

 √[x′(t)]2 + [y′(t)]2 dt.

In vector form, where C is given by r(t) = x(t)i + y(t)j, you can rewrite this equation 
for arc length as

s = ∫b

a

 �r′(t)� dt.

The formula for the arc length of a plane curve has a natural extension to a smooth 
curve in space, as stated in the next theorem.

THEOREM 12.6 Arc Length of a Space Curve

If C is a smooth curve given by r(t) = x(t)i + y(t)j + z(t)k on an interval
[a, b], then the arc length of C on the interval is

s = ∫b

a

 √[x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt = ∫b

a

 �r′(t)� dt.

 Finding the Arc Length of a Curve in Space

See LarsonCalculus.com for an interactive version of this type of example.

Find the arc length of the curve given by

r(t) = ti +
4
3

t3�2j +
1
2

t2k

from t = 0 to t = 2, as shown in Figure 12.28.

Solution Using x(t) = t, y(t) = 4
3t3�2, and z(t) = 1

2t2, you obtain x′(t) = 1, y′(t) = 2t1�2, 
and z′(t) = t. So, the arc length from t = 0 to t = 2 is given by

 s = ∫2

0
 √[x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt Formula for arc length

 = ∫2

0
 √1 + 4t + t2 dt

 = ∫2

0
 √(t + 2)2 − 3 dt 

Integration tables
(Appendix B), Formula 26

 = [t + 2
2

√(t + 2)2 − 3 −
3
2

 ln∣(t + 2) + √(t + 2)2 − 3∣]
2

0

 = 2√13 −
3
2

 ln(4 + √13) − 1 +
3
2

 ln 3

 ≈ 4.816. 

yx

z

3
4

1

1

−1

2

2

t = 2
t = 0 C

r(t) = ti +   t3/2j +   t2k4
3

1
2

As t increases from 0 to 2, the vector 
r(t) traces out a curve.
Figure 12.28

Exploration
Arc Length Formula The 
formula for the arc length 
of a space curve is given 
in terms of the parametric 
equations used to represent 
the curve. Does this mean 
that the arc length of the 
curve depends on the 
parameter being used? 
Would you want this to be 
true? Explain your reasoning.

Here is a different 
parametric representation of 
the curve in Example 1.

r(t) = t2i +
4
3

t3j +
1
2

t4k

Find the arc length from 
t = 0 to t = √2 and 
compare the result with that 
found in Example 1.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



856 Chapter 12 Vector-Valued Functions

 Finding the Arc Length of a Helix

Find the length of one turn of the helix given by

r(t) = b cos ti + b sin tj + √1 − b2 tk

as shown in Figure 12.29.

Solution Begin by finding the derivative. 

r′(t) = −b sin ti + b cos tj + √1 − b2k Derivative

Now, using the formula for arc length, you can find the length of one turn of the helix 
by integrating �r′(t)� from 0 to 2π.

 s = ∫2π

0
 �r′(t)� dt Formula for arc length

 = ∫2π

0
 √b2(sin2 t + cos2 t) + (1 − b2) dt

 = ∫2π

0
 dt

 = t]
2π

0

 = 2π

So, the length is 2π  units. 

Arc Length Parameter
You have seen that curves can be represented by vector-valued functions in different 
ways, depending on the choice of parameter. For motion along a curve, the convenient 
parameter is time t. For studying the geometric properties of a curve, however, the 
convenient parameter is often arc length s.

Definition of Arc Length Function

Let C be a smooth curve given by r(t) defined on the closed interval [a, b]. For 
a ≤ t ≤ b, the arc length function is

s(t) = ∫t

a

 �r′(u)� du = ∫t

a

 √[x′(u)]2 + [y′(u)]2 + [z′(u)]2 du.

The arc length s is called the arc length parameter. (See Figure 12.30.)

Note that the arc length function s is nonnegative. It measures the distance along C 
from the initial point (x(a), y(a), z(a)) to the point (x(t), y(t), z(t)).

Using the definition of the arc length function and the Second Fundamental 
Theorem of Calculus, you can conclude that

ds
dt

= �r′(t)�.    Derivative of arc length function

In differential form, you can write

ds = �r′(t)� dt.

Curve:
r(t) = b cos ti + b sin tj +    1 − b2 tk

t = 2

t = 0

π

x

y

z

b b

C

One turn of a helix
Figure 12.29

C

x

y

z

t = a

t = b

t

s(t) =         [x ′(u)]2 + [y ′(u)]2 + [z ′(u)]2 du∫
t

a

Figure 12.30
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 Finding the Arc Length Function for a Line

Find the arc length function s(t) for the line segment given by

r(t) = (3 − 3t)i + 4tj, 0 ≤ t ≤ 1

and write r as a function of the parameter s. (See Figure 12.31.)

Solution Because r′(t) = −3i + 4j and

�r′(t)� = √(−3)2 + 42 = 5

you have

 s(t) = ∫t

0
 �r′(u)� du

 = ∫t

0
 5 du

 = 5t.

Using s = 5t (or t = s�5), you can rewrite r using the arc length parameter as follows.

r(s) = (3 −
3
5

s)i +
4
5

sj, 0 ≤ s ≤ 5 

One of the advantages of writing a vector-valued function in terms of the arc length 
parameter is that �r′(s)� = 1. For instance, in Example 3, you have

�r′(s)� =√(−
3
5)

2

+ (4
5)

2

= 1.

So, for a smooth curve C represented by r(s), where s is the arc length parameter, the 
arc length between a and b is

 Length of arc = ∫b

a

 �r′(s)� ds

 = ∫b

a

 ds

 = b − a

 = length of interval.

Furthermore, if t is any parameter such that �r′(t)� = 1, then t must be the arc length 
parameter. These results are summarized in the next theorem, which is stated without 
proof.

THEOREM 12.7 Arc Length Parameter

If C is a smooth curve given by

r(s) = x(s)i + y(s)j Plane curve

or

r(s) = x(s)i + y(s)j + z(s)k Space curve

where s is the arc length parameter, then

�r′(s)� = 1.

Moreover, if t is any parameter for the vector-valued function r such that 
�r′(t)� = 1, then t must be the arc length parameter.

3

2

1

321

4

y

x

0 ≤ t ≤ 1
r(t) = (3 − 3t)i + 4tj

The line segment from (3, 0) to (0, 4) 
can be parametrized using the arc 
length parameter s.
Figure 12.31
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Curvature
An important use of the arc length parameter is to find curvature—the measure of how 
sharply a curve bends. For instance, in Figure 12.32, the curve bends more sharply at P 
than at Q, and you can say that the curvature is greater at P than at Q. You can calculate 
curvature by calculating the magnitude of the rate of change of the unit tangent vector 
T with respect to the arc length s, as shown in Figure 12.33.

Definition of Curvature

Let C be a smooth curve (in the plane or in space) given by r(s), where s
is the arc length parameter. The curvature K at s is

K = ∣∣dT
ds ∣∣ = �T′(s)�.

A circle has the same curvature at any point. Moreover, the curvature and the 
radius of the circle are inversely related. That is, a circle with a large radius has a 
small curvature, and a circle with a small radius has a large curvature. This inverse 
relationship is made explicit in the next example.

 Finding the Curvature of a Circle

Show that the curvature of a circle of radius r is 

K =
1
r
.

Solution Without loss of generality, you can consider the circle to be centered at the 
origin. Let (x, y) be any point on the circle and let s be the length of the arc from (r, 0) 
to (x, y), as shown in Figure 12.34. By letting θ be the central angle of the circle, you  
can represent the circle by

r(θ) = r cos θ i + r sin θ j. θ is the parameter.

Using the formula for the length of a circular arc s = rθ, you can rewrite r(θ) in terms 
of the arc length parameter as follows.

r(s) = r cos 
s
r

i + r sin 
s
r

j Arc length s is the parameter.

So, r′(s) = −sin 
s
r

i + cos 
s
r

j, and it follows that �r′(s)� = 1, which implies that the

unit tangent vector is

T(s) =
r′(s)

�r′(s)�
= −sin 

s
r

i + cos 
s
r

j

and the curvature is

K = �T′(s)� = ∣∣−1
r
 cos 

s
r

i −
1
r
 sin 

s
r

j∣∣ =
1
r

at every point on the circle. 

Because a straight line does not curve, you would expect its curvature to be 0. Try 
checking this by finding the curvature of the line given by

r(s) = (3 −
3
5

s)i +
4
5

sj.

C

x

P

Q

y

Curvature at P is greater than at Q.
Figure 12.32

C

x

P

Q

T1

T2 T3

y

The magnitude of the rate of change of 
T with respect to the arc length is the 
curvature of a curve.
Figure 12.33

x

1
r

T

(x, y)

K =

(r, 0)

s
θ

r

y

The curvature of a circle is constant.
Figure 12.34
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 12.5 Arc Length and Curvature 859

In Example 4, the curvature was found by applying the definition directly. This 
requires that the curve be written in terms of the arc length parameter s. The next theorem 
gives two other formulas for finding the curvature of a curve written in terms of an 
arbitrary parameter t. The proof of this theorem is left as an exercise [see Exercise 82,
parts (a) and (b)].

THEOREM 12.8 Formulas for Curvature

If C is a smooth curve given by r(t), then the curvature K of C at t is 

K =
�T′(t)�
�r′(t)�

=
�r′(t) × r″(t)�

�r′(t)�3 .

Because �r′(t)� = ds�dt, the first formula implies that curvature is the ratio of the 
rate of change of the unit tangent vector T to the rate of change of the arc length. To 
see that this is reasonable, let ∆t be a “small number.” Then,

T′(t)
ds�dt

≈
[T(t + ∆t) − T(t)]�∆t
[s(t + ∆t) − s(t)]�∆t

=
T(t + ∆t) − T(t)
s(t + ∆t) − s(t) =

∆T
∆s

.

In other words, for a given ∆s, the greater the length of ∆T, the more the curve bends 
at t, as shown in Figure 12.35.

 Finding the Curvature of a Space Curve

Find the curvature of the curve given by

r(t) = 2ti + t2j −
1
3

t3k.

Solution It is not apparent whether this parameter represents arc length, so you 
should use the formula K = �T′(t)���r′(t)�.

 r′(t) = 2i + 2tj − t2k

 �r′(t)� = √4 + 4t2 + t4 Length of r′(t)

 = t2 + 2

 T(t) =
r′(t)

�r′(t)�

 =
2i + 2tj − t2k

t2 + 2

 T′(t) =
(t2 + 2)(2j − 2tk) − (2t)(2i + 2tj − t2k)

(t2 + 2)2

 =
−4ti + (4 − 2t2)j − 4tk

(t2 + 2)2

 �T′(t)� =
√16t2 + 16 − 16t2 + 4t4 + 16t2

(t2 + 2)2

 =
2(t2 + 2)
(t2 + 2)2

 =
2

t2 + 2
 Length of T′(t)

Therefore,

K =
�T′(t)�
�r′(t)�

=
2

(t2 + 2)2. Curvature 

C

T(t)

T(t)

T(t + Δt)

Δs

ΔT

C

T(t)

ΔT
T(t + Δt)

Δs

T(t)

Figure 12.35
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860 Chapter 12 Vector-Valued Functions

The next theorem presents a formula for calculating the curvature of a plane curve 
given by y = f (x).

THEOREM 12.9 Curvature in Rectangular Coordinates

If C is the graph of a twice-differentiable function given by y = f (x), 
then the curvature K at the point (x, y) is

K = ∣y″∣
[1 + (y′)2]3�2.

Proof By representing the curve C by r(x) = xi + f (x)j + 0k, where x is the 
parameter, you obtain r′(x) = i + f′(x)j,

�r′(x)� = √1 + [ f′(x)]2

and r″(x) = f ″(x)j. Because r′(x) × r″(x) = f ″(x)k, it follows that the curvature is

 K =
�r′(x) × r″(x)�

�r′(x)�3

 = ∣ f ″(x)∣
{1 + [ f′(x)]2}3�2

 = ∣y″∣
[1 + ( y′)2]3�2. 

Let C be a curve with curvature K at point P. The circle passing through point 
P with radius r = 1�K is called the circle of curvature when the circle lies on the 
concave side of the curve and shares a common tangent line with the curve at point P. 
The radius is called the radius of curvature at P, and the center of the circle is called 
the center of curvature.

The circle of curvature gives you a nice way to estimate the curvature K at a point 
P on a curve graphically. Using a compass, you can sketch a circle that lies against the 
concave side of the curve at point P, as shown in Figure 12.36. If the circle has a radius 
of r, then you can estimate the curvature to be K = 1�r.

 Finding Curvature in Rectangular Coordinates

Find the curvature of the parabola given by

y = x −
1
4

x2

at x = 2. Sketch the circle of curvature at (2, 1).

Solution The curvature at x = 2 is as follows.

 y′ = 1 −
x
2

  y′ = 0

 y″ = −
1
2

  y″ = −
1
2

 K = ∣y″∣
[1 + ( y′)2]3�2  K =

1
2

Because the curvature at P(2, 1) is 12, it follows that the radius of the circle of curvature 
at that point is 2. So, the center of curvature is (2, −1), as shown in Figure 12.37. [In 
the figure, note that the curve has the greatest curvature at P. Try showing that the 
curvature at Q(4, 0) is 1�25�2 ≈ 0.177.] 

C

x

r = radius of
     curvature

K = 1
r

Center of
curvature

r

P

y

The circle of curvature
Figure 12.36

x

−4

−3

−2

−1

1

−1 1 2 3

P(2, 1)

Q(4, 0)

(2, −1)

1
4

y = x − x2

r =      = 21
K

y

The circle of curvature
Figure 12.37
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 12.5 Arc Length and Curvature 861

Arc length and curvature are closely related to the tangential and normal components 
of acceleration. The tangential component of acceleration is the rate of change of the 
speed, which in turn is the rate of change of the arc length. This component is negative 
as a moving object slows down and positive as it speeds up—regardless of whether the 
object is turning or traveling in a straight line. So, the tangential component is solely a 
function of the arc length and is independent of the curvature.

On the other hand, the normal component of acceleration is a function of both speed 
and curvature. This component measures the acceleration acting perpendicular to the 
direction of motion. To see why the normal component is affected by both speed and 
curvature, imagine that you are driving a car around a turn, as shown in Figure 12.38.
When your speed is high and the turn is sharp, you feel yourself thrown against the car 
door. By lowering your speed or taking a more gentle turn, you are able to lessen this 
sideways thrust.

The next theorem explicitly states the relationships among speed, curvature, and 
the components of acceleration.

THEOREM 12.10 Acceleration, Speed, and Curvature

If r(t) is the position vector for a smooth curve C, then the acceleration vector 
is given by

a(t) =
d2s
dt2 T + K(ds

dt)
2

N

where K is the curvature of C and ds�dt is the speed.

Proof For the position vector r(t), you have

 a(t) = aTT + aNN

 =
d
dt

 [�v�]T + �v� �T′�N

 =
d2s
dt2 T +

ds
dt

(�v�K)N

 =
d2s
dt2

T + K(ds
dt)

2

N. 

  Tangential and Normal Components of Acceleration

Find aT and aN for the curve given by 

r(t) = 2ti + t2j − 1
3t3k.

Solution From Example 5, you know that

ds
dt

= �r′(t)� = t2 + 2 and K =
2

(t2 + 2)2.

Therefore,

aT =
d2s
dt2

= 2t Tangential component

and

aN = K(ds
dt)

2

=
2

(t2 + 2)2 (t2 + 2)2 = 2. Normal component 

The amount of thrust felt by passengers 
in a car that is turning depends on two 
things––the speed of the car and the 
sharpness of the turn.
Figure 12.38

REMARK Note that 
Theorem 12.10 gives additional 
formulas for aT and aN.
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Application
There are many applications in physics and engineering dynamics that involve the 
relationships among speed, arc length, curvature, and acceleration. One such application 
concerns frictional force.

A moving object with mass m is in contact with a stationary object. The total force 
required to produce an acceleration a along a given path is

 F = ma

 = m(d2s
dt2)T + mK(ds

dt)
2

N

 = maTT + maNN.

The portion of this total force that is supplied by the stationary object is called the force 
of friction. For example, when a car moving with constant speed is rounding a turn, 
the roadway exerts a frictional force that keeps the car from sliding off the road. If the 
car is not sliding, the frictional force is perpendicular to the direction of motion and has 
magnitude equal to the normal component of acceleration, as shown in Figure 12.39. 
The potential frictional force of a road around a turn can be increased by  banking the 
roadway.

Force of
friction

 The force of friction is perpendicular to the direction of motion.
 Figure 12.39

 Frictional Force

A 360-kilogram go-cart is driven at a speed of 60 kilometers per hour around a circular 
racetrack of radius 12 meters, as shown in Figure 12.40. To keep the cart from skidding 
off course, what frictional force must the track surface exert on the tires?

Solution The frictional force must equal the mass times the normal component of 
acceleration. For this circular path, you know that the curvature is

K =
1
12

. Curvature of circular racetrack

Therefore, the frictional force is

 maN = mK(ds
dt)

2

 = (360 kg)( 1
12 m)(60,000 m

3600 sec )
2

 ≈ 8333 (kg)(m)�sec2. 

12 m

60 km/h

Figure 12.40
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 12.5 Arc Length and Curvature 863

SUMMARY OF VELOCITY, ACCELERATION, AND CURVATURE

Unless noted otherwise, let C be a curve (in the plane or in space) given by the 
position vector

r(t) = x(t)i + y(t)j Curve in the plane

or

r(t) = x(t)i + y(t)j + z(t)k Curve in space

where x, y, and z are twice-differentiable functions of t.

Velocity vector, speed, and acceleration vector

v(t) = r′(t) Velocity vector

�v(t)� = �r′(t)� =
ds
dt

 Speed

 a(t) = r″(t) Acceleration vector

 = aTT(t) + aNN(t)

 =
d2s
dt2

T(t) + K(ds
dt)

2

N(t) K is curvature and 
ds
dt

 is speed.

Unit tangent vector and principal unit normal vector

 T(t) =
r′(t)

�r′(t)�
 Unit tangent vector

 N(t) =
T′(t)

�T′(t)�
 Principal unit normal vector

Components of acceleration

aT = a ∙ T =
v ∙ a
�v�

=
d2s
dt2

 Tangential component of acceleration

 aN = a ∙ N Normal component of acceleration

 =
�v × a�

�v�
 = √�a�2 − aT

2

 = K(ds
dt)

2

 K is curvature and 
ds
dt

 is speed.

Formulas for curvature in the plane

K = ∣y″∣
[1 + (y′)2]3�2 C given by y = f (x)

K = ∣x′y″ − y′x″∣
[(x′)2 + (y′)2]3�2 C given by x = x(t), y = y(t)

Formulas for curvature in the plane or in space

K = �T′(s)� = �r″(s)� s is arc length parameter.

K =
�T′(t)�
�r′(t)�

=
�r′(t) × r″(t)�

�r′(t)�3  t is general parameter.

K =
a(t) ∙ N(t)

�v(t)�2

Cross product formulas apply only to curves in space.
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12.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Curvature Consider points P and Q on a curve. What 

does it mean for the curvature at P to be less than the 
curvature at Q?

2.  Arc Length Parameter Let r(t) be a space curve. 
How can you determine whether t is the arc length 
parameter?

Finding the Arc Length of a Plane Curve In Exercises 
3–8, sketch the plane curve and find its length over the given 
interval.

 3. r(t) = 3ti − tj, [0, 3]  4. r(t) = ti + t2j, [0, 4]
 5. r(t) = t3i + t2j, [0, 1]
 6. r(t) = t2i − 4tj, [0, 5]
 7. r(t) = a cos3 ti + a sin3 tj, [0, 2π]
 8. r(t) = a cos ti + a sin tj, [0, 2π]

 9.  Projectile Motion The position of a baseball is 
represented by r(t) = 50√2 ti + (3 + 50√2 t − 16t2)j. Find 
the arc length of the trajectory of the baseball.

10.  Projectile Motion The position of a baseball is 
represented by r(t) = 40√3ti + (4 + 40t − 16t2)j. Find the 
arc length of the trajectory of the baseball.

 Finding the Arc Length of a Curve in 
Space In Exercises 11–16, sketch the space 
curve and find its length over the given interval.

11. r(t) = −ti + 4tj + 3tk, [0, 1]
12. r(t) = i + t2j + t3k, [0, 2]

13. r(t) = 〈4t, −cos t, sin t〉, [0, 
3π
2 ]

14. r(t) = 〈2 sin t, 5t, 2 cos t〉, [0, π]
15. r(t) = a cos ti + a sin tj + btk, [0, 2π]

16. r(t) = 〈cos t + t sin t, sin t − t cos t, t2〉, [0, 
π
2]

17.  Investigation Consider the graph of the vector-valued 
function r(t) = ti + (4 − t2)j + t3k on the interval [0, 2].

 (a)  Approximate the length of the curve by finding the length 
of the line segment connecting its endpoints.

 (b)  Approximate the length of the curve by summing the 
lengths of the line segments connecting the terminal points 
of the vectors r(0), r(0.5), r(1), r(1.5), and r(2).

 (c)  Describe how you could obtain a more accurate 
approximation by continuing the processes in parts (a) and (b).

 (d)  Use the integration capabilities of a graphing utility to 
approximate the length of the curve. Compare this result 
with the answers in parts (a) and (b).

18.  Investigation Consider the helix represented by the 
vector-valued function r(t) = 〈2 cos t, 2 sin t, t〉.

 (a)  Write the length of the arc s on the helix as a function of t 
by evaluating the integral

 s = ∫t

0
 √[x′(u)]2 + [y′(u)]2 + [z′(u)]2 du.

 (b)  Solve for t in the relationship derived in part (a), 
and substitute the result into the original vector-valued 
function. This yields a parametrization of the curve in 
terms of the arc length parameter s.

 (c)  Find the coordinates of the point on the helix for arc 
lengths s = √5 and s = 4.

 (d) Verify that �r′(s) � = 1.

 Finding Curvature In Exercises 19–22, find 
the curvature of the curve, where s is the arc length 
parameter.

19. r(s) = (1 +
√2
2

s)i + (1 −
√2
2

s) j

20. r(s) = (3 + s)i + j

21. r(s) = cos 
1
2

si +
√3
2

sj + sin 
1
2

sk

22. r(s) = cos si + sin sj + 5k

Finding Curvature In Exercises 23–28, find the curvature  
of the plane curve at the given value of the parameter.

23. r(t) = 4ti − 2tj, t = 1 24. r(t) = t2i + j, t = 2

25. r(t) = ti +
1
t

j, t = 1 26. r(t) = ti +
1
9

t3j, t = 2

27. r(t) = 〈t, sin t〉, t =
π
2

28. r(t) = 〈5 cos t, 4 sin t〉, t =
π
3

 Finding Curvature In Exercises 29–36, find the 
curvature of the curve.

29. r(t) = 4 cos 2πti + 4 sin 2πtj

30. r(t) = 2 cos πti + sin πtj

31. r(t) = a cos ωti + a sin ωt j

32. r(t) = a cos ωti + b sin ωtj

33. r(t) = ti + t2j +
t2

2
k

34. r(t) = 2t2i + tj +
1
2

t2k

35. r(t) = 4ti + 3 cos tj + 3 sin tk

36. r(t) = e2ti + e2t cos tj + e2t sin tk

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 12.5 Arc Length and Curvature 865

Finding Curvature In Exercises 37–40, find the curvature 
of the curve at the point P.

37. r(t) = 3ti + 2t2j, P(−3, 2)
38. r(t) = eti + 4tj, P(1, 0)

39. r(t) = ti + t2j +
t3

4
k, P(2, 4, 2)

40. r(t) = et cos ti + et sin tj + etk, P(1, 0, 1)

 Finding Curvature in Rectangular 
Coordinates In Exercises 41–48, find the 
curvature and radius of curvature of the plane 
curve at the given value of x.

41. y = 6x, x = 3 42. y = x −
4
x
, x = 2

43. y = 5x2 + 7, x = −1 44. y = 2√9 − x2, x = 0

45. y = sin 2x, x =
π
4

 46. y = e−x�4, x = 8

47. y = x3, x = 2

48. y = xn, x = 1, n ≥ 2

Maximum Curvature In Exercises 49–54, (a) find the 
point on the curve at which the curvature is a maximum and 
(b) find the limit of the curvature as x →∞.

49. y = (x − 1)2 + 3 50. y = x3

51. y = x2�3 52. y =
1
x

53. y = ln x 54. y = ex

Curvature In Exercises 55–58, find all points on the graph 
of the function such that the curvature is zero.

55. y = 1 − x4 56. y = (x − 2)6 + 3x

57. y = cos 
x
2

 58. y = sin x

eXpLoRInG ConCeptS
59.  Curvature Consider the function f (x) = ecx. What 

value(s) of c produce a maximum curvature at x = 0?

60.  Curvature Given a twice-differentiable function 
y = f (x), determine its curvature at a relative extremum. 
Can the curvature ever be greater than it is at a relative 
extremum? Why or why not?

61. Investigation Consider the function f (x) = x4 − x2.

 (a)  Use a computer algebra system to find the curvature K of 
the curve as a function of x.

 (b)  Use the result of part (a) to find the circles of curvature 
to the graph of f  when x = 0 and x = 1. Use a computer 
algebra system to graph the function and the two circles of 
curvature.

 (c)  Graph the function K(x) and compare it with the graph of 
f (x). For example, do the extrema of f  and K occur at the 
same critical numbers? Explain your reasoning.

62.  Motion of a Particle A particle moves along the plane 
curve C described by r(t) = ti + t2j.

 (a) Find the length of C on the interval 0 ≤ t ≤ 2.

 (b)  Find the curvature of C at t = 0, t = 1, and t = 2.

 (c)  Describe the curvature of C as t changes from t = 0 to 
t = 2.

63.  Investigation Find all a and b such that the two curves 
given by

 y1 = ax(b − x) and y2 =
x

x + 2

  intersect at only one point and have a common tangent line 
and equal curvature at that point. Sketch a graph for each set 
of values of a and b.

 64.  HOW DO YOU SEE IT? Using the graph 
of the ellipse, at what point(s) is the curvature 
the least and the greatest?

 

x2 + 4y2 = 4

x

y

−1 1

−2

2

 64.  

65.  Sphere and Paraboloid A sphere of radius 4 is dropped 
into the paraboloid given by z = x2 + y2.

 (a)  How close will the sphere come to the vertex of the 
paraboloid?

 (b)  What is the radius of the largest sphere that will touch the 
vertex?

67.  Center of Curvature Let C be a curve given by y = f (x). 
Let K be the curvature (K ≠ 0) at the point P(x0, y0) and let

 z =
1 + f ′(x0)2

f ″(x0)
.

  Show that the coordinates (α, β) of the center of curvature at P 
are (α, β) = (x0 − f ′(x0 )z, y0 + z).

The smaller the curvature 
of a bend in a road, 
the faster a car can 
travel. Assume that the 
maximum speed around 
a turn is inversely 
proportional to the square 
root of the curvature. 
A car moving on the path 
y = 1

3x3, where x and y 
are measured in miles, can safely go 30 miles per hour
at (1, 13). How fast can it go at (3

2, 98)?

66. Speed

06photo/Shutterstock.com

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



866 Chapter 12 Vector-Valued Functions

68.  Center of Curvature Use the result of Exercise 67 to 
find the center of curvature for the curve at the given point.

 (a) y = ex, (0, 1)   (b) y =
x2

2
, (1, 

1
2)   (c) y = x2, (0, 0)

69.  Curvature A curve C is given by the polar equation 
r = f (θ). Show that the curvature K at the point (r, θ) is

 K = ∣2(r′)2 − rr ″ + r2∣
[(r′)2 + r2]3�2 .

 [Hint: Represent the curve by r(θ) = r cos θ i + r sin θ j.]
70.  Curvature Use the result of Exercise 69 to find the 

curvature of each polar curve.

 (a) r = 1 + sin θ (b) r = θ

 (c) r = a sin θ (d) r = eθ

71.  Curvature Given the polar curve r = eaθ, a > 0, use the 
result of Exercise 69 to find the curvature K and determine the 
limit of K as (a) θ →∞ and (b) a →∞.

72.  Curvature at the Pole Show that the formula for the 
curvature of a polar curve r = f (θ) given in Exercise 69 
reduces to K = 2�∣r′∣ for the curvature at the pole.

Curvature at the Pole In Exercises 73 and 74, use the 
result of Exercise 72 to find the curvature of the rose curve at 
the pole.

73. r = 4 sin 2θ 74. r = cos 3θ

75.  Proof For a smooth curve given by the parametric equations 
x = f (t) and y = g(t), prove that the curvature is given by

 K = ∣ f ′(t)g″(t) − g′(t)f ″(t)∣
{[ f ′(t)]2 + [g′(t)]2}3�2 .

76.  Horizontal Asymptotes Use the result of Exercise 75 to 
find the curvature K of the curve represented by the parametric 
equations x(t) = t3 and y(t) = 1

2t2. Use a graphing utility to 
graph K and determine any horizontal asymptotes. Interpret 
the asymptotes in the context of the problem.

77.  Curvature of a Cycloid Use the result of Exercise 75 to 
find the curvature K of the cycloid represented by the parametric 
equations

 x(θ) = a(θ − sin θ) and y(θ) = a(1 − cos θ).

 What are the minimum and maximum values of K?

78.  Tangential and Normal Components of 
Acceleration Use Theorem 12.10 to find aT and aN for 
each curve given by the vector-valued function.

 (a) r(t) = 3t2i + (3t − t3)j

 (b) r(t) = ti + t2j + 1
2t2k

79.  Frictional Force A 5500-pound vehicle is driven at a 
speed of 30 miles per hour on a circular interchange of radius 
100 feet. To keep the vehicle from skidding off course, what 
frictional force must the road surface exert on the tires?

80.  Frictional Force A 6400-pound vehicle is driven at a 
speed of 35 miles per hour on a circular interchange of radius 
250 feet. To keep the vehicle from skidding off course, what 
frictional force must the road surface exert on the tires?

81.  Curvature Verify that the curvature at any point (x, y) on 
the graph of y = cosh x is 1�y2.

82.  Formulas for Curvature Use the definition of curvature 
in space, K = �T′(s) � = �r ″(s) �, to verify each formula.

 (a) K =
�T′(t) �
�r′(t) �

 (b) K =
�r′(t) × r ″(t) �

�r′(t) �3

 (c) K =
a(t) ∙ N(t)

�v(t) �2

True or False? In Exercises 83–86, determine whether the 
 statement is true or false. If it is false, explain why or give an 
example that shows it is false.

83. The arc length of a space curve depends on the parametrization.

84. The curvature of a plane curve at an inflection point is zero.

85. The curvature of a parabola is a maximum at its vertex.

86.  The normal component of acceleration is a function of both 
speed and curvature.

Kepler’s Laws In Exercises 87–94, you are asked to verify 
Kepler’s Laws of Planetary Motion. For these exercises, 
assume that each planet moves in an orbit given by the vector-
valued function r. Let r = �r �, let G represent the universal 
gravitational constant, let M represent the mass of the sun, and 
let m represent the mass of the planet.

87. Prove that r ∙ r′ = r 
dr
dt

.

88.  Using Newton’s Second Law of Motion, F = ma, and 
Newton’s Second Law of Gravitation 

 F = −
GmM

r3 r

  show that a and r are parallel, and that r(t) × r′(t) = L is a 
constant vector. So, r(t) moves in a fixed plane, ortho gonal to L.

89. Prove that 
d
dt[

r
r] =

1
r3 [(r × r′) × r].

90. Show that 
r′

GM
× L −

r
r

= e is a constant vector.

91.  Prove Kepler’s First Law: Each planet moves in an elliptical 
orbit with the sun as a focus.

92.  Assume that the elliptical orbit

 r =
ed

1 + e cos θ

  is in the xy-plane, with L along the z-axis. Prove that 

 �L � = r2 
dθ
dt

.

93.  Prove Kepler’s Second Law: Each ray from the sun to a planet 
sweeps out equal areas of the ellipse in equal times.

94.  Prove Kepler’s Third Law: The square of the period of a 
planet’s orbit is proportional to the cube of the mean distance 
between the planet and the sun.
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  Review Exercises 867

Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Domain and Continuity In Exercises 1–4, (a) find the 
domain of r, and (b) determine the interval(s) on which the 
function is continuous.

 1. r(t) = tan ti + j + tk  2. r(t) = √t i +
1

t − 4
j + k

 3. r(t) = √t2 − 9 i − j + ln(t − 1)k
 4. r(t) = (2t + 1)i + t2j + tk

Evaluating a Function In Exercises 5 and 6, evaluate the 
vector-valued function at each given value of t.

 5. r(t) = (2t + 1)i + t2j − √t + 2k

 (a) r(0)   (b) r(−2)   (c) r(c − 1)
 (d) r(1 + ∆t) − r(1)
 6. r(t) = 3 cos ti + (1 − sin t)j − tk

 (a) r(0)   (b) r(π2)   (c) r(s − π)

 (d) r(π + ∆t) − r(π)

Writing a Vector-Valued Function In Exercises 7 and 
8, represent the line segment from P to Q by a vector-valued 
function and by a set of parametric equations.

 7. P(3, 0, 5), Q(2, −2, 3)
 8. P(−2, −3, 8), Q(5, 1, −2)

Sketching a Curve In Exercises 9–12, sketch the curve 
represented by the vector-valued function and give the 
orientation of the curve.

 9. r(t) = 〈π cos t, π sin t〉

10. r(t) = 〈t + 2, t2 − 1〉

11. r(t) = (t + 1)i + (3t − 1)j + 2tk

12. r(t) = 2 cos ti + tj + 2 sin tk

Representing a Graph by a Vector-Valued Function In 
Exercises 13 and 14, represent the plane curve by a 
vector-valued function. (There are many correct answers.)

13. 3x + 4y − 12 = 0 14. y = 9 − x2

Representing a Graph by a Vector-Valued Function In 
Exercises 15 and 16, sketch the space curve represented by the 
intersection of the surfaces. Then use the parameter x = t to 
find a vector-valued function for the space curve.

15. z = x2 + y2, y = 2

16. x2 + z2 = 4, x − y = 0

Finding a Limit In Exercises 17 and 18, find the limit.

17. lim
t→3

 (√3 − t i + ln tj −
1
t

k)
18. lim

t→0
 (sin 2t

t
i + e−tj + 4k)

Higher-Order Differentiation In Exercises 19 and 20, 
find (a) r′(t), (b) r ″(t), and (c) r′(t) ∙ r ″(t).

19. r(t) = (t2 + 4t)i − 3t2j

20. r(t) = 5 cos ti + 2 sin tj

Higher-Order Differentiation In Exercises 21 and 22, 
find (a) r′(t), (b) r ″(t), (c) r′(t) ∙ r ″(t), and (d) r′(t) × r ″(t).

21. r(t) = 2t3i + 4tj − t2k

22. r(t) = (4t + 3)i + t2j + (2t2 + 4)k

Finding Intervals on Which a Curve is Smooth In 
Exercises 23 and 24, find the open interval(s) on which the 
curve given by the vector-valued function is smooth.

23. r(t) = (t − 1)3i + (t − 1)4j

24. r(t) =
t

t − 2
i + tj + √1 + tk

Using Properties of the Derivative In Exercises 25 and 
26, use the properties of the derivative to find the following.

(a) r′(t) (b) 
d
dt

 [u(t) − 2r(t)]  (c) 
d
dt

 [(3t)r(t)]

(d) 
d
dt

 [r(t) ∙ u(t)]  (e) 
d
dt

 [r(t) × u(t)] (f ) 
d
dt

 [u(2t)]

25. r(t) = 3ti + (t − 1)j, u(t) = ti + t2j + 2
3t3k

26. r(t) = sin ti + cos tj + tk, u(t) = sin ti + cos tj +
1
t

k

Finding an Indefinite Integral In Exercises 27–30, find 
the indefinite integral.

27. ∫(t2i + 5tj + 8t3k) dt 28. ∫ (6i − 2t j + ln tk) dt

29. ∫(3√t i +
2
t

j + k) dt 30. ∫(sin ti + j + e2t k) dt

Evaluating a Definite Integral In Exercises 31–34, 
evaluate the definite integral.

31. ∫2

−2
 (3ti + 2t2j − t3k) dt

32. ∫3

0
 (ti + √tj + 4tk) dt

33. ∫2

0
 (et�2 i − 3t2j − k) dt

34. ∫π�3

0
 (2 cos ti + sin tj + 3k) dt

Finding an Antiderivative In Exercises 35 and 36, find 
r(t) that satisfies the initial condition(s).

35. r′(t) = 2ti + etj + e−tk, r(0) = i + 3j − 5k

36. r′(t) = sec ti + tan tj + t2k, r(0) = 3k
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868 Chapter 12 Vector-Valued Functions

Finding Velocity and Acceleration Vectors in Space 
In Exercises 37–40, the position vector r describes the path of 
an object moving in space. (a) Find the velocity vector, speed, 
and acceleration vector of the object. (b) Evaluate the velocity 
vector and acceleration vector of the object at the given value 
of t.
 Position Vector Time

37. r(t) = 4ti + t3j − tk t = 1

38. r(t) = √ti + 5tj + 2t2k t = 4

39. r(t) = 〈cos3 t, sin3 t, 3t〉 t = π

40. r(t) = 〈t, −tan t, et〉 t = 0

Projectile Motion In Exercises 41 and 42, use the model 
for projectile motion, assuming there is no air resistance and 
g = 32 feet per second per second.

41.  A baseball is hit from a height of 3.5 feet above the ground 
with an initial speed of 120 feet per second and at an angle of 
30° above the horizontal. Find the maximum height reached 
by the baseball. Determine whether it will clear an 8-foot-high 
fence located 375 feet from home plate.

42.  Determine the maximum height and range of a projectile fired 
at a height of 6 feet above the ground with an initial speed of 
400 feet per second and an angle of 60° above the horizontal.

Finding the Unit Tangent Vector In Exercises 43 and 
44, find the unit tangent vector to the curve at the specified 
value of the parameter.

43. r(t) = 6ti − t2j, t = 2

44. r(t) = 2 sin ti + 4 cos tj, t =
π
6

Finding a Tangent Line In Exercises 45 and 46, find the 
unit tangent vector T(t) and a set of parametric equations for 
the tangent line to the space curve at point P.

45. r(t) = e2ti + cos tj − sin 3tk, P(1, 1, 0)
46. r(t) = ti + t2j + 2

3t3k, P(2, 4, 16
3 )

Finding the Principal Unit Normal Vector In Exercises 
47–50, find the principal unit normal vector to the curve at the 
specified value of the parameter.

47. r(t) = 2ti + 3t2j, t = 1 48. r(t) = ti + ln tj, t = 2

49. r(t) = 3 cos 2ti + 3 sin 2tj + 3k, t =
π
4

50. r(t) = 4 cos ti + 4 sin tj + k, t =
2π
3

Finding Tangential and Normal Components of 
Acceleration In Exercises 51 and 52, find the tangential 
and normal components of acceleration at the given time t for 
the plane curve r(t).

51. r(t) =
3
t

i − 6tj, t = 3

52. r(t) = 3 cos 2ti + 3 sin 2tj, t =
π
6

Finding Tangential and Normal Components of 
Acceleration In Exercises 53 and 54, find the tangential 
and normal components of acceleration at the given time t for 
the space curve r(t).

53. r(t) = sin ti − 3tj + cos tk, t =
π
6

54. r(t) =
t3

3
i − 6tj + t2k, t = 2

Finding the Arc Length of a Plane Curve In Exercises 
55–58, sketch the plane curve and find its length over the given 
interval.

55. r(t) = 2ti − 3tj, [0, 5]
56. r(t) = t2i + 2tk, [0, 3]

57. r(t) = 2 sin ti + j, [π2, π]
58. r(t) = 10 cos ti + 10 sin tj, [0, 2π]

Finding the Arc Length of a Curve in Space In 
Exercises 59–62, sketch the space curve and find its length over 
the given interval.

59. r(t) = −3ti + 2tj + 4tk, [0, 3]
60. r(t) = ti + t2j + 2tk, [0, 2]

61. r(t) = 〈8 cos t, 8 sin t, t〉, [0, 
π
2]

62. r(t) = 〈2(sin t − t cos t), 2(cos t + t sin t), t〉, [0, 
π
2]

Finding Curvature In Exercises 63–66, find the curvature  
of the curve.

63. r(t) = 3ti + 2tj

64. r(t) = 2√t i + 3tj

65. r(t) = 2ti + 1
2t2j + t2k

66. r(t) = 2ti + 5 cos tj + 5 sin tk

Finding Curvature In Exercises 67 and 68, find the 
curvature of the curve at the point P.

67. r(t) = 1
2t2i + tj + 1

3t3k, P(1
2, 1, 13)

68. r(t) = 4 cos ti + 3 sin tj + tk, P(−4, 0, π)

Finding Curvature in Rectangular Coordinates In 
Exercises 69–72, find the curvature and radius of curvature of 
the plane curve at the given value of x.

69. y = 1
2x2 + x, x = 4 70. y = e−x�2, x = 0

71. y = ln x, x = 1

72. y = tan x, x =
π
4

73.  Frictional Force A 7200-pound vehicle is driven at a 
speed of 25 miles per hour on a circular interchange of radius 
150 feet. To keep the vehicle from skidding off course, what 
frictional force must the road surface exert on the tires?
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  P.S. Problem Solving 869

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1. Cornu Spiral The cornu spiral is given by

 x(t) = ∫t

0
 cos(πu2

2 ) du and y(t) = ∫t

0
 sin(πu2

2 ) du.

   The spiral shown in the figure was plotted over the interval 
−π ≤ t ≤ π.

Generated by Mathematica

 (a) Find the arc length of this curve from t = 0 to t = a.

 (b) Find the curvature of the graph when t = a.

 (c)  The cornu spiral was discovered by James Bernoulli. He 
found that the spiral has an amazing relationship between 
curvature and arc length. What is this relationship?

2.  Radius of Curvature Let T be the tangent line at the point 
P(x, y) on the graph of the curve x2�3 + y2�3 = a2�3, a > 0, as 
shown in the figure. Show that the radius of curvature at P is 
three times the distance from the origin to the tangent line T.

x

−a

a

−a a

P(x, y)

T

y

3.  Projectile Motion A bomber is flying horizontally at an 
altitude of 3200 feet with a speed of 400 feet per second when 
it releases a bomb. A  projectile is launched 5 seconds later from 
a cannon at a site facing the bomber and 5000 feet from the 
point that was directly beneath the bomber when the bomb was 
released, as shown in the figure. The  projectile is to intercept 
the bomb at an altitude of 1600 feet. Determine the required 
initial speed and angle of inclination of the  projectile. (Ignore 
air resistance.)

x
5000

4000

1600

3200

θ

Cannon

Projectile

Bomb

y

4.  Projectile Motion Repeat Exercise 3 for the case in which 
the bomber is facing away from the launch site, as shown in 
the figure.

 

x
5000

4000

1600

3200

θ
Cannon

Projectile

Bomb

y

5.  Cycloid Consider one arch of the cycloid

 r(θ) = (θ − sin θ)i + (1 − cos θ) j, 0 ≤ θ ≤ 2π

  as shown in the figure. Let s(θ) be the arc length from the 
highest point on the arch to the point (x(θ), y(θ)), and let 
ρ(θ) = 1�K be the radius of curvature at the point (x(θ), y(θ)). 
Show that s and ρ are related by the equation s2 + ρ2 = 16. 
(This equation is called a natural equation for the curve.)

x
π π2

1

2

3

4

(x(  ), y(  ))θ θ

y

6.  Cardioid Consider the cardioid 

 r = 1 − cos θ, 0 ≤ θ ≤ 2π

  as shown in the figure. Let s(θ) be the arc length from the point 
(2, π) on the cardioid to the point (r, θ), and let p(θ) = 1�K be 
the radius of curvature at the point (r, θ). Show that s and ρ are 
related by the equation s2 + 9ρ2 = 16. (This equation is called 
a natural equation for the curve.)

π
2

0
(2,   )π

(r,   )θ

1

7.  Proof If r(t) is a nonzero differentiable function of t, prove that 

 
d
dt

[ �r(t)�] =
r(t) ∙ r′(t)

�r(t)�
.
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870 Chapter 12 Vector-Valued Functions

 8.  Satellite A communications satellite moves in a circular 
orbit around Earth at a distance of 42,000 kilometers from the 
center of Earth. The angular speed 

 
dθ
dt

= ω =
π
12

 radian per hour

 is constant.

 (a)  Use polar coordinates to show that the acceleration vector 
is given by

 a =
d2r
dt2 = [d 2r

dt2 − r(dθ
dt )

2

]ur + [r 
d2θ
dt2

+ 2 
dr
dt

 
dθ
dt ]uθ

   where ur = cos θi + sin θ j is the unit vector in the radial 
direction and uθ = −sin θ i + cos θ j.

 (b)  Find the radial and angular components of acceleration for 
the satellite.

Binormal Vector In Exercises 9–11, use the binormal  
vector defined by the equation B = T × N.

 9.  Find the unit tangent, principal unit normal, and binormal 
vectors for the helix 

 r(t) = 4 cos ti + 4 sin tj + 3tk

  at t = π�2. Sketch the helix together with these three mutually 
orthogonal unit  vectors.

10.  Find the unit tangent, principal unit normal, and binormal 
vectors for the curve

 r(t) = cos ti + sin tj − k

  at t = π�4. Sketch the curve together with these three mutually 
orthogonal unit vectors.

11. (a)  Prove that there exists a scalar τ, called the torsion, such 
that dB�ds = −τN.

 (b)  Prove that 
dN
ds

= −KT + τB.

  (The three equations dT�ds = KN, dN�ds = −KT + τB, 
and dB�ds = −τN are called the Frenet-Serret formulas.)

12.  Exit Ramp A highway has an exit ramp that begins at the 
origin of a coordinate system and follows the curve

 y =
1
32

x5�2

  to the point (4, 1) (see figure). Then it follows a circular path 
whose curvature is that given by the curve at (4, 1). What is 
the radius of the circular arc? Explain why the curve and the 
circular arc should have the same curvature at (4, 1).

x
2

2

4

4

6

(4, 1)

y =     x5/21
32

Circular
arc

y

13.  Arc Length and Curvature Consider the vector-valued 
function

 r(t) = 〈t cos πt, t sin πt〉, 0 ≤ t ≤ 2.

 (a) Use a graphing utility to graph the function.

 (b) Find the length of the arc in part (a).

 (c)  Find the curvature K as a function of t. Find the curvature 
at t = 0, t = 1, and t = 2.

 (d) Use a graphing utility to graph the function K.

 (e) Find (if possible) lim
t→∞

 K.

 (f)  Using the result of part (e), make a conjecture about the 
graph of r as t →∞.

14.  Ferris Wheel You want to toss an object to a friend who 
is riding a Ferris wheel (see figure). The following parametric 
equations give the path of the friend r1(t) and the path of 
the object r2(t). Distance is measured in meters, and time is 
measured in seconds.

 r1(t) = 15(sin 
πt
10)i + (16 − 15 cos 

πt
10) j

  r2(t) = [22 − 8.03(t − t0)] i +
  [1 + 11.47(t − t0) − 4.9(t − t0)2] j

 (a)  Locate your friend’s position on the Ferris wheel at time 
t = 0.

 (b)  Determine the number of revolutions per minute of the 
Ferris wheel.

 (c)  What are the speed and angle of inclination (in degrees) at 
which the object is thrown at time t = t0?

 (d)  Use a graphing utility to graph the vector-valued functions 
using a value of t0 that allows your friend to be within 
reach of the object. (Do this by trial and error.) Explain 
the significance of t0.

 (e)  Find the approximate time your friend should be able to 
catch the object. Approximate the speeds of your friend 
and the object at that time.
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872 Chapter 13 Functions of Several Variables

13.1 Introduction to Functions of Several Variables

 Understand the notation for a function of several variables.
 Sketch the graph of a function of two variables.
 Sketch level curves for a function of two variables.
 Sketch level surfaces for a function of three variables.
 Use computer graphics to graph a function of two variables.

Functions of Several Variables
So far in this text, you have dealt only with functions of a single (independent) variable. 
Many familiar quantities, however, are functions of two or more variables. Here are 
three examples.

1. The work done by a force, W = FD, is a function of two variables.

2. The volume of a right circular cylinder, V = πr2h, is a function of two variables.

3. The volume of a rectangular solid, V = lwh, is a function of three variables.

The notation for a function of two or more variables is similar to that for a function of 
a single variable. Here are two examples.

z = f (x, y) = x2 + xy Function of two variables

 2 variables

and

w = f (x, y, z) = x + 2y − 3z Function of three variables

 3 variables

Definition of a Function of Two Variables

Let D be a set of ordered pairs of real numbers. If to each ordered pair (x, y) in 
D there corresponds a unique real number f (x, y), then f  is a function of
x and y. The set D is the domain of f, and the corresponding set of values for 
f (x, y) is the range of f. For the function

z = f (x, y)

x and y are called the independent variables and z is called the dependent 
variable.

Similar definitions can be given for functions of three, four, or n variables, where 
the domains consist of ordered triples (x1, x2, x3), quadruples (x1, x2, x3, x4), and 
n-tuples (x1, x2, .  .  . , xn). In all cases, the range is a set of real numbers. In this chapter, 
you will study only functions of two or three variables.

As with functions of one variable, the most common way to describe a function 
of several variables is with an equation, and unless it is otherwise restricted, you can 
assume that the domain is the set of all points for which the equation is defined. For 
instance, the domain of the function

f (x, y) = x2 + y2

is the entire xy-plane. Similarly, the domain of

f (x, y) = ln xy

is the set of all points (x, y) in the plane for which xy > 0. This consists of all points in 
the first and third quadrants.

MARY FAIRFAX SOMERVILLE 
(1780–1872)

Somerville was interested 
in the problem of creating 
geometric models for functions 
of several variables. Her 
most well-known book, The 
Mechanics of the Heavens, was 
published in 1831.
See LarsonCalculus.com to read 
more of this biography.

Exploration
Without using a graphing 
utility, describe the graph 
of each function of two 
variables.

a. z = x2 + y2

b. z = x + y

c. z = x2 + y

d. z = √x2 + y2

e. z = √1 − x2 + y2

Mary Evans/The Image Works 
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 13.1 Introduction to Functions of Several Variables 873

 Domains of Functions of Several Variables

Find the domain of each function.

a. f (x, y) =
√x2 + y2 − 9

x
  b. g(x, y, z) =

x

√9 − x2 − y2 − z2

Solution

a. The function f  is defined for all points (x, y) such that x ≠ 0 and

x2 + y2 ≥ 9.

  So, the domain is the set of all points lying on or outside the circle x2 + y2 = 9 
except those points on the y-axis, as shown in Figure 13.1.

b. The function g is defined for all points (x, y, z) such that

x2 + y2 + z2 < 9.

 Consequently, the domain is the set of all points (x, y, z) lying inside a sphere of 
radius 3 that is centered at the origin. 

Functions of several variables can be combined in the same ways as functions of 
single variables. For instance, you can form the sum, difference, product, and quotient 
of two functions of two variables as follows.

You cannot form the composite of two functions of several variables. You can, however, 
form the composite function (g ∘ h)(x, y), where g is a function of a single variable and 
h is a function of two variables.

(g ∘ h)(x, y) = g(h(x, y))    Composition

The domain of this composite function consists of all (x, y) in the domain of h such that 
h(x, y) is in the domain of g. For example, the function

f (x, y) = √16 − 4x2 − y2

can be viewed as the composite of the function of two variables given by 

h(x, y) = 16 − 4x2 − y2

and the function of a single variable given by

g(u) = √u.

The domain of this function is the set of all points lying on or inside the ellipse 
4x2 + y2 = 16.

A function that can be written as a sum of functions of the form cxmyn (where c is 
a real number and m and n are nonnegative integers) is called a polynomial function 
of two variables. For instance, the functions

f (x, y) = x2 + y2 − 2xy + x + 2 and g(x, y) = 3xy2 + x − 2

are polynomial functions of two variables. A rational function is the quotient of two 
polynomial functions. Similar terminology is used for functions of more than two variables.

 ( f ± g)(x, y) = f (x, y) ± g(x, y) Sum or difference

 ( fg)(x, y) = f (x, y)g(x, y)  Product

 
f
g

(x, y) =
f (x, y)
g(x, y), g(x, y) ≠ 0 Quotient

y

x2 + y2 − 9
x

f(x, y) =

Domain of

x
1

1

2

2

4

4

−1
−1

−2

−2

−4

−4

Figure 13.1
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874 Chapter 13 Functions of Several Variables

The Graph of a Function of Two Variables
As with functions of a single variable, you can learn a lot about the behavior of a function 
of two variables by sketching its graph. The graph of a function f  of two variables 
is the set of all points (x, y, z) for which z = f (x, y) and (x, y) is in the domain of f. 
This graph can be interpreted geometrically as a surface in space, as discussed in 
Sections 11.5 and 11.6. In Figure 13.2, note that the graph of z = f (x, y) is a surface 
whose projection onto the xy-plane is D, the domain of f. To each point (x, y) in D there 
corresponds a point (x, y, z) on the surface, and, conversely, to each point (x, y, z) on the 
surface there corresponds a point (x, y) in D.

 Describing the Graph of a Function of Two Variables

Consider the function given by

f (x, y) = √16 − 4x2 − y2.

a. Find the domain and range of the function.

b. Describe the graph of f.

Solution

a. The domain D implied by the equation of f  is the set of all points (x, y) such that

16 − 4x2 − y2 ≥ 0.

 So, D is the set of all points lying on or inside the ellipse

x2

4
+

y2

16
= 1. Ellipse in the xy-plane

 The range of f  is all values z = f (x, y) such that 0 ≤ z ≤ √16, or

0 ≤ z ≤ 4. Range of f

b. A point (x, y, z) is on the graph of f  if and only if

 z = √16 − 4x2 − y2

 z2 = 16 − 4x2 − y2

 4x2 + y2 + z2 = 16

 
x2

4
+

y2

16
+

z2

16
= 1, 0 ≤ z ≤ 4.

  From Section 11.6, you know that the graph of f  is the upper half of an ellipsoid, as 
shown in Figure 13.3. 

To sketch a surface in space by hand, it helps to use traces in planes parallel to the 
coordinate planes, as shown in Figure 13.3. For example, to find the trace of the surface 
in the plane z = 2, substitute z = 2 in the equation z = √16 − 4x2 − y2 and obtain

2 = √16 − 4x2 − y2  
x2

3
+

y2

12
= 1.

So, the trace is an ellipse centered at the point (0, 0, 2) with major and minor axes of
lengths 4√3 and 2√3.

Traces are also used with most three-dimensional graphing utilities. For instance, 
Figure 13.4 shows a computer-generated version of the surface given in Example 2. 
For this graph, the computer took 25 traces parallel to the xy-plane and 12 traces in 
vertical planes.

If you have access to a three-dimensional graphing utility, use it to graph several 
surfaces.

z

y

x
Domain: D

f(x, y)

(x, y)

(x, y, z)

Surface: z = f(x, y)

Figure 13.2

y

z

Domain

Range

3

4

4

x

Surface:  z =     16 − 4x2 − y2

Trace in
plane z = 2

The graph of 
f (x, y) = √16 − 4x2 − y2 is the  
upper half of an ellipsoid.
Figure 13.3

z

yx

z =     16 − 4x2 − y2

Figure 13.4
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13.1 Introduction to Functions of Several Variables 875

Level Curves
A second way to visualize a function of two variables is to use a scalar field in which 
the scalar

z = f (x, y)

is assigned to the point (x, y). A scalar field can be characterized by level curves (or 
contour lines) along which the value of f (x, y) is constant. For instance, the weather 
map in Figure 13.5 shows level curves of equal pressure called isobars. In weather 
maps for which the level curves represent points of equal temperature, the level curves 
are called isotherms, as shown in Figure 13.6. Another common use of level curves is 
in representing electric potential fields. In this type of map, the level curves are called 
equipotential lines.
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°

 Level curves show the lines of equal Level curves show the lines of equal
 pressure (isobars), measured in millibars. temperature (isotherms), measured in 
  degrees Fahrenheit.
 Figure 13.5 Figure 13.6

Contour maps are commonly used to show regions on Earth’s surface, with the 
level curves representing the height above sea level. This type of map is called a 
topographic map. For example, the mountain shown in Figure 13.7 is represented by 
the topographic map in Figure 13.8.

 Figure 13.8

A contour map depicts the variation of z with respect to x and y by the spacing 
between level curves. Much space between level curves indicates that z is changing 
slowly, whereas little space indicates a rapid change in z. Furthermore, to produce a 
good three-dimensional illusion in a contour map, it is important to choose c-values
that are evenly spaced.

Figure 13.7

Alfred B. Thomas/Earth Scenes/Animals Animals; USGS
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876 Chapter 13 Functions of Several Variables

 Sketching a Contour Map

The hemisphere

f (x, y) = √64 − x2 − y2

is shown in Figure 13.9. Sketch a contour map of this surface using level curves 
corresponding to c = 0, 1, 2, .  .  . , 8.

Solution For each value of c, the equation f (x, y) = c is a circle (or point) in the 
xy-plane. For example, when c1 = 0, the level curve is

x2 + y2 = 64 Circle of radius 8

which is a circle of radius 8. Figure 13.10 shows the nine level curves for the 
hemisphere.

y

z

f (x, y) = 64 − x2 − y2

Surface:

x

8

8

8

   

x
4

4

8

8

−4

−4

−8

−8

y
c1 = 0
c2 = 1
c3 = 2
c4 = 3 c8 = 7

c7 = 6
c6 = 5
c5 = 4

c9 = 8

 Hemisphere Contour map
 Figure 13.9 Figure 13.10

 Sketching a Contour Map

See LarsonCalculus.com for an interactive version of this type of example.

The hyperbolic paraboloid

z = y2 − x2

is shown in Figure 13.11. Sketch a contour map of this surface.

Solution For each value of c, let f (x, y) = c and sketch the resulting level curve in 
the xy-plane. For this function, each of the level curves (c ≠ 0) is a hyperbola whose 
asymptotes are the lines y = ±x. When c < 0, 

4

4

−4

−4

x

c = −2
c = −4

c = −8
c = −10

c = −6

c = −12

c = 12
c = 2 y

c = 0

Hyperbolic level curves (at 
increments of 2)
Figure 13.12 

 
the transverse axis is horizontal. For instance, the 
level curve for c = −4 is

x2

22 −
y2

22 = 1.

When c > 0, the transverse axis is vertical. For 
instance, the level curve for c = 4 is 

y2

22 −
x2

22 = 1.

When c = 0, the level curve is the degenerate 
conic representing the intersecting asymptotes, 
as shown in Figure 13.12.

x
y

4 4

10

12

8

6

4

2

z

Surface:
z = y2 − x2

Hyperbolic paraboloid
Figure 13.11
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 13.1 Introduction to Functions of Several Variables 877

One example of a function of two variables used in economics is the Cobb-Douglas 
production function. This function is used as a model to represent the numbers of units 
produced by varying amounts of labor and capital. If x measures the units of labor and 
y measures the units of capital, then the number of units produced is

f (x, y) = Cxay1−a

where C and a are constants with 0 < a < 1.

 The Cobb-Douglas Production Function

A manufacturer estimates a production function to be

f (x, y) = 100x0.6y0.4

where x is the number of units of labor and y is the number of units of capital. Compare 
the production level when x = 1000 and y = 500 with the production level when 
x = 2000 and y = 1000.

Solution When x = 1000 and y = 500, the production level is

 f (1000, 500) = 100(10000.6)(5000.4)
 ≈ 75,786.

When x = 2000 and y = 1000, the production level is

 f (2000, 1000) = 100(20000.6)(10000.4)
 ≈ 151,572.

The level curves of z = f (x, y) are shown in Figure 13.13. Note that by doubling both 
x and y, you double the production level (see Exercise 83). 

Level Surfaces
The concept of a level curve can be extended by one dimension to define a level 
surface. If f  is a function of three variables and c is a constant, then the graph of the 
equation

f(x, y, z) = c

is a level surface of f, as shown in Figure 13.14.

y

z

x

f (x, y, z) = c1

f (x, y, z) = c3

f (x, y, z) = c2

 Level surfaces of f  
 Figure 13.14

2000

2000

1500

1500

1000

1000

500

500
x

(1000, 500)

(2000, 1000)

c = 80,000 c = 160,000y
z = 100x0.6y0.4

Level curves (at increments of 10,000)
Figure 13.13
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878 Chapter 13 Functions of Several Variables

 Level Surfaces

Describe the level surfaces of

f (x, y, z) = 4x2 + y2 + z2.

Solution Each level surface has an equation of the form

4x2 + y2 + z2 = c. Equation of level surface

So, the level surfaces are ellipsoids (whose cross sections parallel to the yz-plane are 
circles). As c increases, the radii of the circular cross sections increase according to the 
square root of c. For example, the level surfaces corresponding to the values c = 0, 
c = 4, and c = 16 are as follows.

 4x2 + y2 + z2 = 0 Level surface for c = 0 (single point)

 
x2

1
+

y2

4
+

z2

4
= 1 Level surface for c = 4 (ellipsoid)

 
x2

4
+

y2

16
+

z2

16
= 1 Level surface for c = 16 (ellipsoid)

These level surfaces are shown in Figure 13.15. 

If the function in Example 6 represented the temperature at the point (x, y, z), then 
the level surfaces shown in Figure 13.15 would be called isothermal surfaces.

Computer Graphics
The problem of sketching the graph of a surface in space can be simplified by using 
a computer. Although there are several types of three-dimensional graphing utilities, 
most use some form of trace analysis to give the illusion of three dimensions. To use 
such a graphing utility, you usually need to enter the equation of the surface and the 
region in the xy-plane over which the surface is to be plotted. (You might also need to 
enter the number of traces to be taken.) For instance, to graph the surface

f (x, y) = (x2 + y2)e1−x2−y2

you might choose the following bounds for x, y, and z.

 −3 ≤ x ≤ 3 Bounds for x

 −3 ≤ y ≤ 3 Bounds for y

 0 ≤ z ≤ 3 Bounds for z

Figure 13.16 shows a computer-generated graph 

x y

z

f (x, y) = (x2 + y2)e1 − x2 − y2

Figure 13.16

 
of this surface using 26 traces taken parallel to 
the yz-plane. To heighten the three-dimensional 
effect, the program uses a “hidden line” routine. 
That is, it begins by plotting the traces in the 
foreground (those corresponding to the largest 
x-values), and then, as each new trace is plotted, 
the program determines whether all or only part 
of the next trace should be shown.

The graphs on the next page show a variety 
of surfaces that were plotted by computer. If you 
have access to a computer drawing program, use 
it to reproduce these surfaces. Remember also 
that the three-dimensional graphics in this text 
can be viewed and rotated. These rotatable graphs 
are available at LarsonCalculus.com.

y

c = 16

c = 0

c = 4

x

z Level surfaces:
4x2 + y2 + z2 = c

Figure 13.15
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x

y
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y
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z

Three different views of the graph of f (x, y) = (2 − y2 + x2)e1−x2−(y2�4)

x y
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x y
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x

y

 Single traces Double traces Level curves

Traces and level curves of the graph of f (x, y) =
−4x

x2 + y2 + 1

z

x

y

f (x, y) = sin x sin y

   

x y

f (x, y) = −
x2 + y2

1

z    

x y

f (x, y) =
| 1 − x2 − y2 |
1 − x2 − y2
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880 Chapter 13 Functions of Several Variables

13.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Think About It Explain why z2 = x + 3y is not a 

function of x and y.

2.  Function of Two Variables What is a graph 
of a function of two variables? How is it interpreted 
geometrically?

3.  Determining Whether a Graph Is a Function 
Use the graph to determine whether z is a function of x 
and y. Explain.

 

x

5

5

3

y

z

4.  Contour Map Explain how to sketch a contour map 
of a function of x and y.

Determining Whether an Equation Is a Function In 
Exercises 5–8, determine whether z is a function of x and y.

 5. x2z + 3y2 − xy = 10  6. xz2 + 2xy − y2 = 4

 7. 
x2

4
+

y2

9
+ z2 = 1  8. z + x ln y − 8yz = 0

 Evaluating a Function In Exercises 9–20, 
evaluate the function at the given values of the 
independent variables. Simplify the results.

 9. f (x, y) = 2x − y + 3 10. f (x, y) = 4 − x2 − 4y2

 (a) f (0, 2)   (b) f (−1, 0)  (a) f (0, 0)   (b) f (0, 1)
 (c) f (5, 30) (d) f (3, y)  (c) f (2, 3) (d) f (1, y)

 (e) f (x, 4) (f ) f (5, t)  (e) f (x, 0) (f ) f (t, 1)
11. f (x, y) = xey 12. g(x, y) = ln∣x + y∣
 (a) f (−1, 0) (b) f (0, 2)  (a) g(1, 0)   (b) g(0, −t2)
 (c) f (x, 3) (d) f (t, −y)  (c) g(e, 0) (d) g(e, e)

13. h(x, y, z) =
xy
z

 14. f (x, y, z) = √x + y + z

 (a) h(−1, 3, −1)  (a) f (2, 2, 5)
 (b) h(2, 2, 2)  (b) f (0, 6, −2)
 (c) h(4, 4t, t2)  (c) f (8, −7, 2)
 (d) h(−3, 2, 5)  (d) f (0, 1, −1)
15. f (x, y) = x sin y

 (a) f (2, π�4)  (b) f (3, 1)   (c) f (−3, 0)   (d) f (4, π�2)

16. V(r, h) = πr2h

 (a) V(3, 10) (b) V(5, 2) (c) V(4, 8) (d) V(6, π)

17. g(x, y) = ∫y

x

(2t − 3) dt

 (a) g(4, 0) (b) g(4, 1) (c) g(4, 32) (d) g(3
2, 0)

18. g(x, y) = ∫y

x

 
1
t
 dt

 (a) g(4, 1) (b) g(6, 3) (c) g(2, 5) (d) g(1
2, 7)

19. f (x, y) = 2x + y2

 (a) 
f (x + ∆x, y) − f (x, y)

∆x
 (b) 

f (x, y + ∆y) − f (x, y)
∆y

20. f (x, y) = 3x2 − 2y

 (a) 
f (x + ∆x, y) − f (x, y)

∆x
 (b) 

f (x, y + ∆y) − f (x, y)
∆y

 Finding the Domain and Range of a 
Function In Exercises 21–32, find the domain 
and range of the function.

21. f (x, y) = 3x2 − y 22. f (x, y) = exy

23. g(x, y) = x√y 24. g(x, y) =
y

√x

25. z =
x + y

xy
 26. z =

xy
x + y

27. f (x, y) = √4 − x2 − y2 28. f (x, y) = √9 − 6x2 + y2

29. f (x, y) = arccos(x + y) 30. f (x, y) = arcsin( y�x)
31. f (x, y) = ln(5 − x − y) 32. f (x, y) = ln(xy − 6)

33.  Think About It The graphs labeled (a), (b), (c), and (d) are 
graphs of the function f (x, y) = −4x�(x2 + y2 + 1). Match 
each of the four graphs with the point in space from which the 
surface is viewed. The four points are (20, 15, 25), 
(−15, 10, 20), (20, 20, 0), and (20, 0, 0).
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 13.1 Introduction to Functions of Several Variables 881

34. Think About It Use the function given in Exercise 33.

 (a) Find the domain and range of the function.

 (b)  Identify the points in the xy-plane at which the function 
value is 0.

 (c)  Does the surface pass through all the octants of the rectangular 
coordinate system? Give reasons for your answer.

 Sketching a Surface In Exercises 35–42, 
describe and sketch the surface given by the 
function.

35. f (x, y) = 4 36. f (x, y) = 6 − 2x − 3y

37. f (x, y) = y2 38. g(x, y) = 1
2 y

39. z = −x2 − y2 40. z = 1
2√x2 + y2

41. f (x, y) = e−x

42. f (x, y) = {xy,
0,

 x ≥ 0, y ≥ 0
  x < 0 or y < 0

Graphing a Function Using Technology In Exercises 
43–46, use a computer algebra system to graph the function.

43. z = y2 − x2 + 1 44. z = 1
12√144 − 16x2 − 9y2

45. f (x, y) = x2e(−xy�2) 46. f (x, y) = x sin y

Matching In Exercises 47–50, match the graph of the 
surface with one of the contour maps. [The contour maps are 
labeled (a), (b), (c), and (d).]

(a)

x

y  (b)

x

y

(c)

x

y  (d)

x

y

47. f (x, y) = e1−x2−y2
 48. f (x, y) = e1−x2+y2

 

y

x

3
3

3

z  

y

x

3

6

4
4

z

49. f (x, y) = ln∣y − x2∣ 50. f (x, y) = cos(x2 + 2y2

4 )

4
65

45
3 2

5

−2
x

y

z  

y

x

−6

4

10

z

 Sketching a Contour Map In Exercises 
51–58, describe the level curves of the function. 
Sketch a contour map of the surface using level 
curves for the given c-values.

51. z = x + y, c = −1, 0, 2, 4

52. z = 6 − 2x − 3y, c = 0, 2, 4, 6, 8, 10

53. z = x2 + 4y2, c = 0, 1, 2, 3, 4

54. f (x, y) = √9 − x2 − y2, c = 0, 1, 2, 3

55. f (x, y) = xy, c = ±1, ±2, .  .  . , ±6

56. f (x, y) = exy�2, c = 2, 3, 4, 12, 13, 14

57. f (x, y) = x�(x2 + y2), c = ±1
2, ±1, ±3

2, ±2

58. f (x, y) = ln(x − y), c = 0, ±1
2, ±1, ±3

2, ±2

Graphing Level Curves Using Technology In Exercises 
59–62, use a graphing utility to graph six level curves of the 
function.

59. f (x, y) = x2 − y2 + 2 60. f (x, y) = ∣xy∣
61. g(x, y) =

8
1 + x2 + y2 62. h(x, y) = 3 sin(∣x∣ + ∣y∣)

eXpLoring ConCepts
63.  Vertical Line Test Does the Vertical Line Test apply 

to functions of two variables? Explain your reasoning.

64.  Using Level Curves All of the level curves of the 
surface given by z = f (x, y) are concentric circles. Does 
this imply that the graph of f  is a hemisphere? Illustrate 
your answer with an example.

65.  Creating a Function Construct a function whose 
level curves are lines passing through the origin.

66.  Conjecture Consider the function f (x, y) = xy, for 
x ≥ 0 and y ≥ 0.

 (a) Sketch the graph of the surface given by f.

 (b)  Make a conjecture about the relationship between 
the graphs of f  and g(x, y) = f (x, y) − 3. Explain 
your reasoning.

 (c)  Repeat part (b) for g(x, y) = −f (x, y). 
 (d)  Repeat part (b) for g(x, y) = 1

2 f (x, y). 
 (e)  On the surface in part (a), sketch the graph of 

z = f (x, x).
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882 Chapter 13 Functions of Several Variables

Writing In Exercises 67 and 68, use the graphs of the level 
curves (c-values evenly spaced) of the function f  to write a 
description of a possible graph of f. Is the graph of f  unique? 
Explain.

67. 

x

y  68. 

x

y

69.  Investment In 2016, an investment of $1000 was made 
in a bond earning 6% compounded annually. Assume that the 
buyer pays tax at rate R and the annual rate of inflation is I. In 
the year 2026, the value V of the investment in constant 2016 
dollars is

V(I, R) = 1000[1 + 0.06(1 − R)
1 + I ]

10

.

 Use this function of two variables to complete the table.

Inflation Rate

Tax Rate 0 0.03 0.05

0

0.28

0.35

70.  Investment A principal of $5000 is deposited in a savings 
account that earns interest at a rate of r (written as a decimal), 
compounded continuously. The amount A(r, t) after t years is

A(r, t) = 5000ert.

 Use this function of two variables to complete the table.

Number of Years

Rate 5 10 15 20

0.02

0.03

0.04

0.05

 Sketching a Level Surface In Exercises 
71–76, describe and sketch the graph of the level 
surface f (x, y, z) = c at the given value of c.

71. f (x, y, z) = x − y + z, c = 1

72. f (x, y, z) = 4x + y + 2z, c = 4

73. f (x, y, z) = x2 + y2 + z2, c = 9

74. f (x, y, z) = x2 + 1
4 y2 − z, c = 1

75. f (x, y, z) = 4x2 + 4y2 − z2, c = 0

76. f (x, y, z) = sin x − z, c = 0

78.  Queuing Model The average length of time that a 
customer waits in line for service is

W(x, y) =
1

x − y
, x > y

  where y is the average arrival rate, written as the number of 
customers per unit of time, and x is the average service rate, 
written in the same units. Evaluate each of the following.

 (a) W(15, 9) (b) W(15, 13)
 (c) W(12, 7) (d) W(5, 2)
79.  Temperature Distribution The temperature T  (in 

degrees Celsius) at any point (x, y) on a circular steel plate of 
radius 10 meters is

 T = 600 − 0.75x2 − 0.75y2

  where x and y are measured in meters. Sketch the isothermal 
curves for T = 0, 100, 200, .  .  . , 600.

80.  Electric Potential The electric potential V at any point 
(x, y) is

 V(x, y) =
5

√25 + x2 + y2
.

 Sketch the equipotential curves for V = 1
2, V = 1

3, and V = 1
4.

 Cobb-Douglas Production Function In 
Exercises 81 and 82, use the Cobb-Douglas 
production function to find the production level 
when x = 600 units of labor and y = 350 units of 
capital.

81. f (x, y) = 80x0.5y0.5 82. f (x, y) = 100x0.65y0.35

83.  Cobb-Douglas Production Function Use the 
Cobb-Douglas production function, f (x, y) = Cxay1−a, to 
show that when the number of units of labor and the number 
of units of capital are doubled, the production level is 
also doubled.

The Doyle Log Rule is 
one of several methods 
used to determine the 
lumber yield of a log 
(in board-feet) in terms 
of its diameter d (in 
inches) and its length L 
(in feet). The number 
of board-feet is

N(d, L) = (d − 4
4 )

2

L.

(a)  Find the number of board-feet of lumber in a log 
22 inches in diameter and 12 feet in length.

(b) Find N(30, 12).

77. Forestry

Val Thoermer/Shutterstock.com
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84.  Cobb-Douglas Production Function Show that 
the Cobb-Douglas production function z = Cxay1−a can be 
rewritten as

 ln 
z
y

= ln C + a ln 
x
y
.

85.  Ideal Gas Law According to the Ideal Gas Law, PV = kT,
where P is pressure, V is volume, T is temperature (in 
kelvins), and k is a constant of proportionality. A tank contains 
2000 cubic inches of nitrogen at a pressure of 26 pounds per 
square inch and a temperature of 300 K.

 (a) Determine k.

 (b)  Write P as a function of V and T and describe the level curves.

86.  Modeling Data The table shows the net sales x (in billions 
of dollars), the total assets y (in billions of dollars), and the 
shareholder’s equity z (in billions of dollars) for Walmart for the 
years 2010 through 2015. (Source: Wal-Mart Stores, Inc.)

Year 2010 2011 2012 2013 2014 2015

x 405.0 418.5 443.4 465.6 473.1 482.2

y 170.7 180.8 193.4 203.1 204.8 203.7

z 70.7 68.5 71.3 76.3 76.3 81.4

 A model for the data is z = f (x, y) = 0.428x − 0.653y + 8.172.

 (a)  Complete a fourth row in the table using the model to 
approximate z for the given values of x and y. Compare 
the approximations with the actual values of z.

 (b)  Which of the two variables in this model has more 
influence on shareholder’s equity? Explain.

 (c)  Simplify the expression for f (x, 150) and interpret its 
meaning in the context of the problem.

87.  Meteorology Meteorologists measure the atmospheric 
pressure in millibars. From these observations, they create 
weather maps on which the curves of equal atmospheric 
pressure (isobars) are drawn (see figure). On the map, the 
closer the isobars, the higher the wind speed. Match points A, 
B, and C with (a) highest pressure, (b) lowest pressure, and 
(c) highest wind velocity.

B

AC

  

 Figure for 87 Figure for 88

88.  Acid Rain The acidity of rainwater is measured in units 
called pH. A pH of 7 is neutral, smaller values are increasingly 
acidic, and larger values are increasingly alkaline. The map 
shows curves of equal pH and gives evidence that downwind 
of heavily industrialized areas, the acidity has been increasing. 
Using the level curves on the map, determine the direction of 
the prevailing winds in the northeastern United States.

89.  Construction Cost A rectangular storage box with an 
open top has a length of x feet, a width of y feet, and a height 
of z feet. It costs $4.50 per square foot to build the base and 
$2.50 per square foot to build the sides. Write the cost C of 
constructing the box as a function of x, y, and z.

 90.  HOW DO YOU SEE IT? The contour map 
of the Southern Hemisphere shown in the figure 
was computer generated using data collected 
by satellite instrumentation. Color is used to 
show the “ozone hole” in Earth’s atmosphere. 
The purple and blue areas represent the lowest 
levels of ozone, and the green areas represent 
the highest levels. (Source: NASA)

 

(a)  Do the level curves correspond to equally spaced 
ozone levels? Explain.

(b)  Describe how to obtain a more detailed contour 
map.

 90.  

True or False? In Exercises 91–94, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

91. If f (x0, y0) = f (x1, y1), then x0 = x1 and y0 = y1.

92. If f  is a function, then f (ax, ay) = a2f (x, y).
93. The equation for a sphere is a function of three variables.

94.  Two different level curves of the graph of z = f (x, y) can 
intersect.

pUtnAM eXAM ChALLenge
95. Let f : R2 → R be a function such that

 f (x, y) + f (y, z) + f (z, x) = 0

  for all real numbers x, y, and z. Prove that there exists a 
function g: R → R such that

 f (x, y) = g(x) − g(y)

 for all real numbers x and y.
This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

NASA
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13.2 Limits and Continuity

 Understand the definition of a neighborhood in the plane.
 Understand and use the definition of the limit of a function of two variables.
 Extend the concept of continuity to a function of two variables.
 Extend the concept of continuity to a function of three variables.

Neighborhoods in the Plane
In this section, you will study limits and continuity involving functions of two or three 
variables. The section begins with functions of two variables. At the end of the section, 
the concepts are extended to functions of three variables.

Your study of the limit of a function of two variables begins by defining a 
two-dimensional analog to an interval on the real number line. Using the formula for 
the distance between two points

(x, y) and (x0, y0)

in the plane, you can define the δ-neighborhood about (x0, y0) to be the disk centered 
at (x0, y0) with radius δ > 0

{(x, y):  √(x − x0)2 + (y − y0)2 < δ}    Open disk

as shown in Figure 13.17. When this formula contains the less than inequality sign, 
<, the disk is called open, and when it contains the less than or equal to inequality 
sign, ≤, the disk is called closed. This corresponds to the use of < and ≤ to define open 
and closed intervals.

x

(x0, y0)

δ

y    

x

Boundary
point

Interior
point

R

Boundary of R

y

 An open disk The boundary and interior points of a
  region R
 Figure 13.17 Figure 13.18

Let the region R be a set of points in the plane. A point (x0, y0) in R is an interior 
point of R if there exists a δ-neighborhood about (x0, y0) that lies entirely in R, as 
shown in Figure 13.18. If every point in R is an interior point, then R is an open region. 
A point (x0, y0) is a boundary point of R if every open disk centered at (x0, y0) contains 
points inside R and points outside R. If R contains all its boundary points, then R is a 
closed region.

 FOR FURTHER INFORMATION For more information on Sonya Kovalevsky, see 
the article “S. Kovalevsky: A Mathematical Lesson” by Karen D. Rappaport in The 
American Mathematical Monthly. To view this article, go to MathArticles.com. 

SONYA KOVALEVSKY
(1850–1891)

Much of the terminology used 
to define limits and continuity 
of a function of two or three 
variables was introduced by 
the German mathematician 
Karl Weierstrass (1815–1897). 
Weierstrass’s rigorous 
approach to limits and other 
topics in calculus gained him 
the reputation as the “father of 
modern analysis.” Weierstrass 
was a gifted teacher. One of his 
best-known students was the 
Russian mathematician Sonya 
Kovalevsky, who applied many 
of Weierstrass’s techniques 
to problems in mathematical 
physics and became one of the 
first women to gain acceptance 
as a research mathematician. 

Sarin Images/Granger, NYC — All rights reserved.
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13.2 Limits and Continuity 885

Limit of a Function of Two Variables

Definition of the Limit of a Function of Two Variables

Let f  be a function of two variables defined, except possibly at (x0, y0), on an 
open disk centered at (x0, y0), and let L be a real number. Then

lim
(x, y)→(x0, y0)

 f (x, y) = L

if for each ε > 0 there corresponds a δ > 0 such that

∣ f (x, y) − L∣ < ε whenever 0 < √(x − x0)2 + (y − y0)2 < δ.

Graphically, the definition of the limit  

x (x1, y1) (x0, y0)

y

L + ε

L − ε

L

z

Disk of radius δ

For any (x, y) in the disk of radius δ, the 
value f (x, y) lies between L + ε and 
L − ε.
Figure 13.19

of a function of two variables implies that 
for any point (x, y) ≠ (x0, y0) in the disk of 
radius δ, the value f (x, y) lies between L + ε 
and L − ε, as shown in Figure 13.19.

The definition of the limit of a function 
of two variables is similar to the definition 
of the limit of a function of a single 
variable, yet there is a critical difference. 
To determine whether a function of a single 
variable has a limit, you need only test the 
approach from two directions—from the 
right and from the left. When the function 
approaches the same limit from the right 
and from the left, you can conclude that the 
limit exists. For a function of two variables, 
however, the statement

(x, y) → (x0, y0)

means that the point (x, y) is allowed to approach (x0, y0) from any direction. If the value of

lim
(x, y)→(x0, y0)

 f (x, y)

is not the same for all possible approaches, or paths, to (x0, y0), then the limit does not exist.

 Verifying a Limit by the Definition

Show that lim
(x, y)→(a, b)

 x = a.

Solution Let f (x, y) = x and L = a. You need to show that for each ε > 0, there 
exists a δ-neighborhood about (a, b) such that 

∣ f (x, y) − L∣ = ∣x − a∣ < ε

whenever (x, y) ≠ (a, b) lies in the neighborhood. You can first observe that from

0 < √(x − a)2 + (y − b)2 < δ

it follows that

 ∣ f (x, y) − L∣ = ∣x − a∣
 = √(x − a)2

 ≤ √(x − a)2 + (y − b)2

 < δ.

So, you can choose δ = ε, and the limit is verified. 
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886 Chapter 13 Functions of Several Variables

Limits of functions of several variables have the same properties regarding sums, 
differences, products, and quotients as do limits of functions of single variables. (See 
Theorem 2.2 in Section 2.3.) Some of these properties are used in the next example.

 Finding a Limit

Find the limit.

lim
(x, y)→(1, 2)

 
5x2y

x2 + y2

Solution By using the properties of limits of products and sums, you obtain

lim
(x, y)→(1, 2)

 5x2y = 5(12)(2) = 10

and 

lim
(x, y)→(1, 2)

 (x2 + y2) = (12 + 22) = 5.

Because the limit of a quotient is equal to the quotient of the limits (and the denominator 
is not 0), you have

lim
(x, y)→(1, 2)

 
5x2y

x2 + y2 =
10
5

= 2.

 Finding a Limit

Find the limit: lim
(x, y)→(0, 0)

 
5x2y

x2 + y2.

Solution In this case, the limits of the numerator and of the denominator are both 0, 
so you cannot determine the existence (or nonexistence) of a limit by taking the limits 
of the numerator and denominator separately and then dividing. From the graph of f  in 
Figure 13.20, however, it seems reasonable that the limit might be 0. So, you can try 
applying the definition to L = 0. First, note that

∣y∣ ≤ √x2 + y2

and

x2

x2 + y2 ≤ 1.

Then, in a δ-neighborhood about (0, 0), you have

0 < √x2 + y2 < δ

and it follows that, for (x, y) ≠ (0, 0),

 ∣ f (x, y) − 0∣ = ∣ 5x2y
x2 + y2∣

 = 5∣y∣( x2

x2 + y2)
 ≤ 5∣y∣
 ≤ 5√x2 + y2

 < 5δ.

So, you can choose δ = ε�5 and conclude that

lim
(x, y)→(0, 0)

 
5x2y

x2 + y2 = 0. 

y32
4 5

−5 −4

7

6

5

x
5

z

Surface:

f (x, y) =
x2 + y2

5x2y

Figure 13.20
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 13.2 Limits and Continuity 887

For some functions, it is easy to recognize that a limit does not exist. For instance, 
it is clear that the limit

lim
(x, y)→(0, 0)

 
1

x2 + y2

does not exist because the values of f (x, y) increase without bound as (x, y) approaches 
(0, 0) along any path (see Figure 13.21).

For other functions, it is not so easy to recognize that a limit does not exist. For 
instance, the next example describes a limit that does not exist because the function 
approaches different values along different paths.

 A Limit That Does Not Exist

See LarsonCalculus.com for an interactive version of this type of example.

Show that the limit does not exist.

lim
(x, y)→(0, 0)

 (x2 − y2

x2 + y2)
2

Solution The domain of the function

f (x, y) = (x2 − y2

x2 + y2)
2

consists of all points in the xy-plane except for the point (0, 0). To show that the limit as 
(x, y) approaches (0, 0) does not exist, consider approaching (0, 0) along two different 
“paths,” as shown in Figure 13.22. Along the x-axis, every point is of the form

(x, 0)

and the limit along this approach is

lim
(x, 0)→(0, 0)

 (x2 − 02

x2 + 02)
2

= lim
(x, 0)→(0, 0)

 12 = 1. Limit along x-axis

However, when (x, y) approaches (0, 0) along the line y = x, you obtain

lim
(x, x)→(0, 0)

 (x2 − x2

x2 + x2)
2

= lim
(x, x)→(0, 0)

 ( 0
2x2)

2

= 0. Limit along line y = x

This means that in any open disk 
centered at (0, 0), there are points (x, y) 

3

2

3

Along y = x:  (x, x) → (0, 0)
Limit is 0.

y
x

Along x-axis:  (x, 0) → (0, 0)
Limit is 1.

z

lim
(x, y)→(0, 0)

 (x2 − y2

x2 + y2)
2

 does not exist.

Figure 13.22 

 
at which f  takes on the value 1 and 
other points at which f  takes on the 
value 0. For instance,

f (x, y) = 1

at (1, 0), (0.1, 0), (0.01, 0), and 
(0.001, 0), and

f (x, y) = 0

at (1, 1), (0.1, 0.1), (0.01, 0.01), and 
(0.001, 0.001). So, f  does not have a 
limit as (x, y) approaches (0, 0).

In Example 4, you could conclude that the limit does not exist because you found 
two approaches that produced different limits. Be sure you understand that when two 
approaches produce the same limit, you cannot conclude that the limit exists. To form 
such a conclusion, you must show that the limit is the same along all possible approaches.

y

x

3
3

4

z

lim
(x, y)→(0, 0)

 
1

x2 + y2 does not exist.

Figure 13.21
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888 Chapter 13 Functions of Several Variables

Continuity of a Function of Two Variables
Notice in Example 2 that the limit of f (x, y) = 5x2y�(x2 + y2) as (x, y) → (1, 2) can 
be evaluated by direct substitution. That is, the limit is f (1, 2) = 2. In such cases, the 
function f  is said to be continuous at the point (1, 2).

Definition of Continuity of a Function of Two Variables

A function f  of two variables is continuous at a point (x0, y0) in an open 
region R if f (x0, y0) is defined and is equal to the limit of f (x, y) as (x, y) 
approaches (x0, y0). That is,

lim
(x, y)→(x0, y0)

 f (x, y) = f (x0, y0).

The function f  is continuous in the open region R if it is continuous at every 
point in R.

In Example 3, it was shown that the function

f (x, y) =
5x2y

x2 + y2

is not continuous at (0, 0). Because the limit at this point exists, however, you can 
remove the discontinuity by defining f  at (0, 0) as being equal to its limit there. Such a 
discontinuity is called removable. In Example 4, the function

f (x, y) = (x2 − y2

x2 + y2)
2

was also shown not to be continuous at (0, 0), but this discontinuity is nonremovable.

THEOREM 13.1 Continuous Functions of Two Variables

If k is a real number and f (x, y) and g(x, y) are continuous at (x0, y0), then the 
following functions are also continuous at (x0, y0).

1. Scalar multiple: kf  2. Sum or difference: f ± g

3. Product: fg 4. Quotient: f�g, g(x0, y0) ≠ 0

Theorem 13.1 establishes the continuity of polynomial and rational functions at 
every point in their domains. Furthermore, the continuity of other types of functions 
can be extended naturally from one to two variables. For instance, the functions whose 
graphs are shown in Figures 13.23 and 13.24 are continuous at every point in the plane.

y2

2

2
x

z

f (x, y) = (cos y2)e−     x2 + y2
Surface:

The function f  is continuous at every point in 
the plane.
Figure 13.24

Surface:  f (x, y) =   sin(x2 + y2)1
2

x y

z

The function f  is continuous at every point in the 
plane.
Figure 13.23

REMARK This definition 
of continuity can be extended 
to boundary points of the open 
region R by considering a 
special type of limit in which 
(x, y) is allowed to approach 
(x0, y0) along paths lying in the 
region R. This notion is similar 
to that of one-sided limits, as 
discussed in Chapter 1.
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13.2 Limits and Continuity 889

The next theorem states conditions under which a composite function is continuous.

THEOREM 13.2 Continuity of a Composite Function

If h is continuous at (x0, y0) and g is continuous at h(x0, y0), then the composite 
function given by (g ∘ h)(x, y) = g(h(x, y)) is continuous at (x0, y0). That is,

lim
(x, y)→(x0, y0)

 g(h(x, y)) = g(h(x0, y0)).

Note in Theorem 13.2 that h is a function of two variables and g is a function of 
one variable.

 Testing for Continuity

Discuss the continuity of each function.

a. f (x, y) =
x − 2y
x2 + y2   b. g(x, y) =

2
y − x2

Solution

a.  Because a rational function is continuous at every point in its domain, you can 
conclude that f  is continuous at each point in the xy-plane except at (0, 0), as shown 
in Figure 13.25.

b. The function

g(x, y) =
2

y − x2

  is continuous except at the points at which the denominator is 0. These points are 
given by the equation

y − x2 = 0.

  So, you can conclude that the function is continuous at all points except those lying 
on the parabola y = x2. Inside this parabola, you have y > x2, and the surface 
represented by the function lies above the xy-plane, as shown in Figure 13.26. 
Outside the parabola, y < x2, and the surface lies below the xy-plane.

x
y4

3

5

z

x − 2y
f (x, y) =

x2 + y2

   

y

x

5

5

4

4

3

2

z
g(x, y) =

y − x2
2

y = x2

 The function f  is not continuous at (0, 0).  The function g is not continuous on the
parabola y = x2.

 Figure 13.25 Figure 13.26 
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890 Chapter 13 Functions of Several Variables

Continuity of a Function of Three Variables
The preceding definitions of limits and continuity can be extended to functions of three 
variables by considering points (x, y, z) within the open sphere

(x − x0)2 + ( y − y0)2 + (z − z0)2 < δ2.    Open sphere

The radius of this sphere is δ, and the sphere is centered at (x0, y0, z0), as shown in 
Figure 13.27.

x
y

(x0, y0, z0)

z

δ

 Open sphere in space

 Figure 13.27

A point (x0, y0, z0) in a region R in space is an interior point of R if there exists a 
δ-sphere about (x0, y0, z0) that lies entirely in R. If every point in R is an interior point, 
then R is called open.

Definition of Continuity of a Function of Three Variables

A function f  of three variables is continuous at a point (x0, y0, z0) in an 
open region R if f (x0, y0, z0) is defined and is equal to the limit of f (x, y, z) as 
(x, y, z) approaches (x0, y0, z0). That is,

lim
(x, y, z)→(x0, y0, z0)

 f (x, y, z) = f (x0, y0, z0).

The function f  is continuous in the open region R if it is continuous at every 
point in R.

 Testing Continuity of a Function of Three Variables

Discuss the continuity of

f (x, y, z) =
1

x2 + y2 − z
.

Solution The function f  is continuous except at the points at which the denominator 
is 0, which are given by the equation

x2 + y2 − z = 0.

So, f  is continuous at each point in space except at the points on the paraboloid

z = x2 + y2. 
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13.2 Limits and Continuity 891

13.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Describing Notation Write a brief description of the 

meaning of the notation lim
(x, y)→(−1, 3)

 f (x, y) = 1.

2.  Limits Explain how examining limits along different 
paths might show that a limit does not exist. Does this 
type of examination show that a limit does exist? Explain.

 Verifying a Limit by the Definition In 
Exercises 3–6, use the definition of the limit of a 
function of two variables to verify the limit.

 3. lim
(x, y)→(1, 0)

 x = 1  4. lim
(x, y)→(4, −1)

 x = 4

 5. lim
(x, y)→(1, −3)

 y = −3  6. lim
(x, y)→(a, b)

 y = b

Using Properties of Limits In Exercises 7–10, find the 
indicated limit by using the limits

lim
(x, y)→(a, b)

 f (x, y) = 4 and lim
(x, y)→(a, b)

 g(x, y) = −5.

 7. lim
(x, y)→(a, b)

 [ f (x, y) − g(x, y)]  8. lim
(x, y)→(a, b)

 [3 f (x, y)
g(x, y) ]

 9. lim
(x, y)→(a, b)

 [ f (x, y)g(x, y)] 10. lim
(x, y)→(a, b)

 [f (x, y) + g(x, y)
f (x, y) ]

 Limit and Continuity In Exercises 11–24, find 
the limit and discuss the continuity of the function.

11. lim
(x, y)→(3, 1)

 (x2 − 2y) 12. lim
(x, y)→(−1, 1)

 (x + 4y2 + 5)

13. lim
(x, y)→(1, 2)

 exy 14. lim
(x, y)→(2, 4)

 
x + y
x2 + 1

15. lim
(x, y)→(0, 2)

 
x
y
 16. lim

(x, y)→(−1, 2)
 
x + y
x − y

17. lim
(x, y)→(1, 1)

 
xy

x2 + y2 18. lim
(x, y)→(1, 1)

 
x

√x + y

19. lim
(x, y)→(π�3, 2)

 y cos xy 20. lim
(x, y)→(π, −4)

 sin 
x
y

21. lim
(x, y)→(0, 1)

 
arcsin xy
1 − xy

 22. lim
(x, y)→(0, 1)

 
arccos(x�y)

1 + xy

23. lim
(x, y, z)→(1, 3, 4)

 √x + y + z 24. lim
(x, y, z)→(−2, 1, 0)

 xeyz

 Finding a Limit In Exercises 25–36, find the 
limit (if it exists). If the limit does not exist, explain 
why.

25. lim
(x, y)→(1, 1)

 
xy − 1
1 + xy

 26. lim
(x, y)→(1, −1)

 
x2y

1 + xy2

27. lim
(x, y)→(0, 0)

 
1

x + y
 28. lim

(x, y)→(0, 0)
 

1
x2y2

29. lim
(x, y)→(0, 0)

 
x − y

√x − √y
 30. lim

(x, y)→(2, 1)
 

x − y − 1

√x − y − 1

31. lim
(x, y)→(0, 0)

 
x + y
x2 + y

 32. lim
(x, y)→(0, 0)

 
x

x2 − y2

33. lim
(x, y)→(0, 0)

 
x2

(x2 + 1)(y2 + 1) 34. lim
(x, y)→(0, 0)

 ln(x2 + y2)

35. lim
(x, y, z)→(0, 0, 0)

 
xy + yz + xz
x2 + y2 + z2  36. lim

(x, y, z)→(0, 0, 0)
 
xy + yz2 + xz2

x2 + y2 + z2

EXPLORING CONCEPTS
37.  Limits If f (2, 3) = 4, can you conclude anything 

about lim
(x, y)→(2, 3)

 f (x, y)? Explain.

38.  Limits If lim
(x, y)→(2, 3)

 f (x, y) = 4, can you conclude

 anything about f (2, 3)? Explain.

39.  Think About It Given that lim
(x, y)→(0, 0)

 f (x, y) = 0, does

 lim
(x, 0)→(0, 0)

 f (x, 0) = 0? Explain.

 40.  HOW DO YOU SEE IT? The figure shows the 
graph of f (x, y) = ln(x2 + y2). From the graph, 
does it appear that the limit at each point exists?

y
2 4

−4−6−8

6 8

−5

x

4
6

8

z

(a) (−1, −1)   (b) (0, 3)   (c) (0, 0)   (d) (2, 0)

 40.  

Continuity In Exercises 41 and 42, discuss the continuity 
of the function and evaluate the limit of f (x, y) (if it exists) as 
(x, y) → (0, 0).

41. f (x, y) = exy 

x

1 2 3
3

7

y

z
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892 Chapter 13 Functions of Several Variables

42. f (x, y) = 1 −
cos(x2 + y2)

x2 + y2

 

y43
54

5
x

1

2

z

Limit and Continuity In Exercises 43–46, use a graphing 
utility to make a table showing the values of f (x, y) at the given 
points for each path. Use the result to make a conjecture about 
the limit of f (x, y) as (x, y) → (0, 0). Determine analytically 
whether the limit exists and discuss the continuity of the function.

43. f (x, y) =
xy

x2 + y2 

2

2

2

y

x

z

 Path: y = 0

 Points:  (1, 0), (0.5, 0),  
(0.1, 0), (0.01, 0), 
(0.001, 0)

 Path: y = x

  Points:  (1, 1), (0.5, 0.5), 
(0.1, 0.1), (0.01, 0.01), 
(0.001, 0.001)

44. f (x, y) = −
xy2

x2 + y4 

y

x

4

2

3

z

 Path: x = y2

 Points:  (1, 1), (0.25, 0.5), 
(0.01, 0.1), 
(0.0001, 0.01), 
(0.000001, 0.001)

 Path: x = −y2

 Points:  (−1, 1), (−0.25, 0.5), 
(−0.01, 0.1), 
(−0.0001, 0.01), 
(−0.000001, 0.001)

45. f (x, y) =
y

x2 + y2 

y
3

4

3

2

x 3

z

 Path: y = 0

 Points:  (1, 0), (0.5, 0),  
(0.1, 0), (0.01, 0), 
(0.001, 0)

 Path: y = x

 Points:  (1, 1), (0.5, 0.5), 
(0.1, 0.1),  
(0.01, 0.01), 
(0.001, 0.001)

46. f (x, y) =
2x − y2

2x2 + y
 

y

x

−3

−4

4

−2−3

32

z

 Path: y = 0

 Points:  (1, 0), (0.25, 0), 
(0.01, 0), 
(0.001, 0), 
(0.000001, 0)

 Path: y = x

 Points:  (1, 1), (0.25, 0.25), 
(0.01, 0.01), 
(0.001, 0.001), 
(0.0001, 0.0001)

47. Limit Consider lim
(x, y)→(0, 0)

 
x2 + y2

xy
 (see figure).

 

x

z

y2020

20

 (a)  Determine (if possible) the limit along any line of the 
form y = ax.

 (b)  Determine (if possible) the limit along the parabola 
y = x2.

 (c)  Does the limit exist? Explain.

48. Limit Consider lim
(x, y)→(0, 0)

 
x2y

x4 + y2 (see figure).

 

x

y

1

1

−1

−1

z

Comparing Continuity In Exercises 49 and 50, discuss the 
continuity of the functions f  and g. Explain any differences.

49. f (x, y) = {x4 − y4

x2 + y2,

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)

 g(x, y) = {x4 − y4

x2 + y2,

1,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)
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 13.2 Limits and Continuity 893

50. f (x, y) = {x2 + 2xy2 + y2

x2 + y2 ,

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)

 g(x, y) = {x2 + 2xy2 + y2

x2 + y2 ,

1,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)

Finding a Limit Using Polar Coordinates In Exercises 
51–56, use polar coordinates to find the limit. [Hint: Let 
x = r cos θ and y = r sin θ, and note that (x, y) → (0, 0) implies 
r → 0.]

51. lim
(x, y)→(0, 0)

 
xy2

x2 + y2 52. lim
(x, y)→(0, 0)

 
x3 + y3

x2 + y2

53. lim
(x, y)→(0, 0)

 
x2y2

x2 + y2 54. lim
(x, y)→(0, 0)

 
x2 − y2

√x2 + y2

55. lim
(x, y)→(0, 0)

 cos(x2 + y2) 56. lim
(x, y)→(0, 0)

 sin√x2 + y2

Finding a Limit Using Polar Coordinates In Exercises 
57–60, use polar coordinates and L’Hôpital’s Rule to find the 
limit.

57. lim
(x, y)→(0, 0)

 
sin√x2 + y2

√x2 + y2

58. lim
(x, y)→(0, 0)

 
sin(x2 + y2)

x2 + y2

59. lim
(x, y)→(0, 0)

 
1 − cos(x2 + y2)

x2 + y2

60. lim
(x, y)→(0, 0)

 (x2 + y2) ln(x2 + y2)

 Continuity In Exercises 61–66, discuss the 
continuity of the function.

61. f (x, y, z) =
1

√x2 + y2 + z2
 

62. f (x, y, z) =
z

x2 + y2 − 4

63. f (x, y, z) =
sin z

ex + ey

64. f (x, y, z) = xy sin z

65. f (x, y) = {sin xy
xy

,

1,

xy ≠ 0

xy = 0

66. f (x, y) = {sin(x2 − y2)
x2 − y2 ,

1,

x2 ≠ y2

x2 = y2

Continuity of a Composite Function In Exercises 
67–70, discuss the continuity of the composite function f ∘ g.

67. f (t) = t2 68. f (t) =
1
t

 g(x, y) = 2x − 3y  g(x, y) = x2 + y2

69. f (t) =
1
t
 70. f (t) =

1
1 − t

 g(x, y) = 2x − 3y  g(x, y) = x2 + y2

Finding a Limit In Exercises 71–76, find each limit.

(a) lim
∆x→0

 
f (x + ∆x, y) − f (x, y)

∆x

(b) lim
∆y→0

 
f (x, y + ∆y) − f (x, y)

∆y

71. f (x, y) = x2 − 4y 72. f (x, y) = 3x2 + y2

73. f (x, y) =
x
y

74. f (x, y) =
1

x + y

75. f (x, y) = 3x + xy − 2y

76. f (x, y) = √y (y + 1)

Finding a Limit Using Spherical Coordinates In 
Exercises 77 and 78, use spherical coordinates to find the limit.  
[Hint: Let x = ρ sin f cos θ, y = ρ sin f sin θ, and z = ρ cos f, 
and note that (x, y, z) → (0, 0, 0) implies ρ→ 0+.]

77. lim
(x, y)→(0, 0, 0)

 
xyz

x2 + y2 + z2

78. lim
(x, y)→(0, 0, 0)

 tan−1( 1
x2 + y2 + z2)

True or False? In Exercises 79–82, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

79. A closed region contains all of its boundary points.

80. Every point in an open region is an interior point.

81.  If f  is continuous for all nonzero x and y, and f (0, 0) = 0, then 
lim

(x, y)→(0, 0)
 f (x, y) = 0.

82.  If g is a continuous function of x, h is a continuous function of 
y, and f (x, y) = g(x) + h(y), then f  is continuous.

83. Finding a Limit Find the following limit.

 lim
(x, y)→(0, 1)

 tan−1[ x2 + 1
x2 + (y − 1)2]

84. Continuity For the function

 f (x, y) = xy(x2 − y2

x2 + y2)
 define f (0, 0) such that f  is continuous at the origin.

85. Proof Prove that

 lim
(x, y)→(a, b)

 [ f (x, y) + g(x, y)] = L1 + L2

  where f (x, y) approaches L1 and g(x, y) approaches L2 as 
(x, y) → (a, b).

86.  Proof Prove that if f  is continuous and f (a, b) < 0, 
then there exists a δ-neighborhood about (a, b) such that 
f (x, y) < 0 for every point (x, y) in the neighborhood.
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894 Chapter 13 Functions of Several Variables

13.3 Partial Derivatives

 Find and use partial derivatives of a function of two variables.
 Find and use partial derivatives of a function of three or more variables.
 Find higher-order partial derivatives of a function of two or three variables.

Partial Derivatives of a Function of Two Variables
In applications of functions of several variables, the question often arises, “How will the 
value of a function be affected by a change in one of its independent variables?” You 
can answer this by considering the independent variables one at a time. For example, 
to determine the effect of a catalyst in an experiment, a chemist could conduct the 
experiment several times using varying amounts of the catalyst while keeping constant 
other variables such as temperature and pressure. You can use a similar procedure to 
determine the rate of change of a function f  with respect to one of its several independent 
variables. This process is called partial differentiation, and the result is referred to as 
the partial derivative of f  with respect to the chosen independent variable.

Definition of Partial Derivatives of a Function of Two Variables

If z = f (x, y), then the first partial derivatives of f  with respect to x and y 
are the functions fx and fy defined by

fx(x, y) = lim
∆x→0

 
f (x + ∆x, y) − f (x, y)

∆x
 Partial derivative with respect to x

and

fy(x, y) = lim
∆y→0

 
f (x, y + ∆y) − f (x, y)

∆y
 Partial derivative with respect to y

provided the limits exist.

This definition indicates that if z = f (x, y), then to find fx, you consider y constant 
and differentiate with respect to x. Similarly, to find fy, you consider x constant and 
differentiate with respect to y.

 Finding Partial Derivatives

a.  To find fx for f (x, y) = 3x − x2y2 + 2x3y, consider y to be constant and differentiate 
with respect to x.

fx(x, y) = 3 − 2xy2 + 6x2y Partial derivative with respect to x

 To find fy, consider x to be constant and differentiate with respect to y.

fy(x, y) = −2x2y + 2x3 Partial derivative with respect to y

b.  To find fx for f (x, y) = (ln x)(sin x2y), consider y to be constant and differentiate 
with respect to x.

fx(x, y) = (ln x)(cos x2y)(2xy) +
sin x2y

x
 Partial derivative with respect to x

 To find fy, consider x to be constant and differentiate with respect to y.

fy(x, y) = (ln x)(cos x2y)(x2) Partial derivative with respect to y

 

JEAN LE ROND D’ALEMBERT 
(1717–1783)

The introduction of partial 
derivatives followed Newton’s 
and Leibniz’s work in calculus 
by several years. Between 
1730 and 1760, Leonhard Euler 
and Jean Le Rond d’Alembert 
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papers on dynamics, in which 
they established much of the 
theory of partial derivatives. 
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two or more variables to study 
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fluid motion, and vibrating 
strings. 
See LarsonCalculus.com to read 
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13.3 Partial Derivatives 895

Notation for First Partial Derivatives

For z = f (x, y), the partial derivatives fx and fy are denoted by

∂
∂x

 f (x, y) = fx(x, y) = zx =
∂z
∂x

 Partial derivative with respect to x

and

∂
∂y

 f (x, y) = fy(x, y) = zy =
∂z
∂y

. Partial derivative with respect to y

The first partials evaluated at the point (a, b) are denoted by

∂z
∂x∣(a, b)

= fx(a, b)

and

∂z
∂y∣(a, b)

= fy(a, b).

 Finding and evaluating Partial Derivatives

For f (x, y) = xex2y, find fx and fy, and evaluate each at the point (1, ln 2).

Solution Because

fx(x, y) = xex2y(2xy) + ex2y Partial derivative with respect to x

the partial derivative of f  with respect to x at (1, ln 2) is

 fx(1, ln 2) = eln 2(2 ln 2) + eln 2

 = 4 ln 2 + 2.

Because

 fy(x, y) = xex2y(x2)
 = x3ex2y  Partial derivative with respect to y

the partial derivative of f  with respect to y at (1, ln 2) is

 fy(1, ln 2) = eln 2

 = 2.  

The partial derivatives of a function of two variables, z = f (x, y), have a useful 
geometric interpretation. If y = y0, then z = f (x, y0) represents the curve formed by 
intersecting the surface z = f (x, y) with the plane y = y0, as shown in Figure 13.28. 
Therefore,

fx(x0, y0) = lim
∆x→0

 
f (x0 + ∆x, y0) − f (x0, y0)

∆x

represents the slope of this curve at the point (x0, y0, f (x0, y0)). Note that both the curve 
and the tangent line lie in the plane y = y0. Similarly,

fy(x0, y0) = lim
∆y→0

 
f (x0, y0 + ∆y) − f (x0, y0)

∆y

represents the slope of the curve given by the intersection of z = f (x, y) and the plane 
x = x0 at (x0, y0, f (x0, y0)), as shown in Figure 13.29.

Informally, the values of ∂f�∂x and ∂f�∂y at the point (x0, y0, z0) denote the slopes 
of the surface in the x- and y-directions, respectively.

x

Plane: y = y0

y

(x0, y0, z0)
z

∂f
∂x

= slope in x-direction

Figure 13.28

x y

Plane: x = x0

z
(x0, y0, z0)

∂f
∂y

= slope in y-direction

Figure 13.29

RemaRk The notation 
∂z�∂x is read as “the partial 
derivative of z with respect to 
x,” and ∂z�∂y is read as “the 
partial derivative of z with 
respect to y.”
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896 Chapter 13 Functions of Several Variables

  Finding the Slopes of a Surface

See LarsonCalculus.com for an interactive version of this type of example.

Find the slopes in the x-direction and in the y-direction of the surface

f (x, y) = −
x2

2
− y2 +

25
8

at the point (1
2, 1, 2).

Solution The partial derivatives of f  with respect to x and y are

fx(x, y) = −x and fy(x, y) = −2y. Partial derivatives

So, in the x-direction, the slope is

fx(1
2

, 1) = −
1
2

 Figure 13.30

and in the y-direction, the slope is

fy(1
2

, 1) = −2. Figure 13.31

fx , 1   = −1
2

1
2(

, 1, 21
2( (

(
Slope in x-direction:

y2
3

4

x

z

f (x, y) = −      − y2 + 

Surface:
x2

2 8
25

  

x

y2
3

4

z

fy , 1   = −21
2(

, 1, 21
2( (

(
Slope in y-direction:

 Figure 13.30 Figure 13.31

 Finding the Slopes of a Surface

Find the slopes of the surface

f (x, y) = 1 − (x − 1)2 − (y − 2)2

at the point (1, 2, 1) in the x-direction and in the y-direction.

Solution The partial derivatives of f  with respect to x and y are

fx(x, y) = −2(x − 1) and fy(x, y) = −2(y − 2). Partial derivatives

So, at the point (1, 2, 1), the slope in the x-direction is

fx(1, 2) = −2(1 − 1) = 0

and the slope in the y-direction is

fy(1, 2) = −2(2 − 2) = 0

as shown in Figure 13.32. 

f (x, y) = 1 − (x − 1)2 − (y − 2)2

Surface:

y
x

z

4
3

2
1

1
(1, 2, 1)

fy(x, y)

fx(x, y)

Figure 13.32
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 13.3 Partial Derivatives 897

No matter how many variables are involved, partial derivatives can be interpreted 
as rates of change.

 Using Partial Derivatives to Find Rates of Change

The area of a parallelogram with adjacent sides a and b and included angle θ is given 
by A = ab sin θ, as shown in Figure 13.33.

a. Find the rate of change of A with respect to a for a = 10, b = 20, and θ = π�6.

b. Find the rate of change of A with respect to θ for a = 10, b = 20, and θ = π�6.

Solution

a.  To find the rate of change of the area with respect to a, hold b and θ constant and 
differentiate with respect to a to obtain

∂A
∂a

= b sin θ. Find partial derivative with respect to a.

 For a = 10, b = 20, and θ = π�6, the rate of change of the area with respect to a is

∂A
∂a

= 20 sin 
π
6

= 10. Substitute for b and θ.

b.  To find the rate of change of the area with respect to θ, hold a and b constant and 
differentiate with respect to θ to obtain

∂A
∂θ = ab cos θ. Find partial derivative with respect to θ.

 For a = 10, b = 20, and θ = π�6, the rate of change of the area with respect to θ is

∂A
∂θ = 200 cos 

π
6

= 100√3. Substitute for a, b, and θ. 

Partial Derivatives of a Function of Three or More Variables
The concept of a partial derivative can be extended naturally to functions of three or 
more variables. For instance, if w = f (x, y, z), then there are three partial derivatives, 
each of which is formed by holding two of the variables constant. That is, to define 
the partial derivative of w with respect to x, consider y and z to be constant and 
differentiate with respect to x. A similar process is used to find the derivatives of w 
with respect to y and with respect to z.

∂w
∂x

= fx(x, y, z) = lim
∆x→0

 
f (x + ∆x, y, z) − f (x, y, z)

∆x

∂w
∂y

= fy(x, y, z) = lim
∆y→0

 
f (x, y + ∆y, z) − f (x, y, z)

∆y

∂w
∂z

= fz(x, y, z) = lim
∆z→0

 
f (x, y, z + ∆z) − f (x, y, z)

∆z

In general, if w = f (x1, x2, .  .  . , xn), then there are n partial derivatives denoted by

∂w
∂xk

= fxk
(x1, x2, .  .  . , xn), k = 1, 2, .  .  . , n.

To find the partial derivative with respect to one of the variables, hold the other 
variables constant and differentiate with respect to the given variable.

a sina

b

θ

θA = ab sin θ

The area of the parallelogram is 
ab sin θ.
Figure 13.33
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898 Chapter 13 Functions of Several Variables

 Finding Partial Derivatives

a.  To find the partial derivative of f (x, y, z) = xy + yz2 + xz with respect to z, consider 
x and y to be constant and obtain

∂
∂z

[xy + yz2 + xz] = 2yz + x.

b.  To find the partial derivative of f (x, y, z) = z sin(xy2 + 2z) with respect to z, consider 
x and y to be constant. Then, using the Product Rule, you obtain

 
∂
∂z

[z sin(xy2 + 2z)] = (z) ∂
∂z

[sin(xy2 + 2z)] + sin(xy2 + 2z) ∂
∂z

[z]

 = (z)[cos(xy2 + 2z)](2) + sin(xy2 + 2z)
 = 2z cos(xy2 + 2z) + sin(xy2 + 2z).

c. To find the partial derivative of

f (x, y, z, w) =
x + y + z

w

 with respect to w, consider x, y, and z to be constant and obtain

∂
∂w[x + y + z

w ] = −
x + y + z

w2 . 

Higher-Order Partial Derivatives
As is true for ordinary derivatives, it is possible to take second, third, and higher-order 
partial derivatives of a function of several variables, provided such derivatives exist. 
Higher-order derivatives are denoted by the order in which the differentiation occurs. 
For instance, the function z = f (x, y) has the following second partial derivatives.

1. Differentiate twice with respect to x:

∂
∂x (

∂f
∂x) =

∂2f
∂x2 = fxx.

2. Differentiate twice with respect to y:

∂
∂y (

∂f
∂y) =

∂2f
∂y2 = fyy.

3. Differentiate first with respect to x and then with respect to y:

∂
∂y (

∂f
∂x) =

∂2f
∂y∂x

= fxy.

4. Differentiate first with respect to y and then with respect to x:

∂
∂x (

∂f
∂y) =

∂2f
∂x∂y

= fyx.

The third and fourth cases are called mixed partial derivatives.

RemaRk Note that the 
two types of notation for mixed 
partials have different conventions 
for indicating the order of 
differentiation.

∂
∂y (

∂f
∂x) =

∂2f
∂y∂x

 
Right-to-
left order

 ( fx)y = fxy 
Left-to-
right order

You can remember the order by 
observing that in both notations 
you differentiate first with respect 
to the variable “nearest” f.
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13.3 Partial Derivatives 899

 Finding Second Partial Derivatives

Find the second partial derivatives of

f (x, y) = 3xy2 − 2y + 5x2y2

and determine the value of fxy(−1, 2).

Solution Begin by finding the first partial derivatives with respect to x and y.

fx(x, y) = 3y2 + 10xy2 and fy(x, y) = 6xy − 2 + 10x2y

Then, differentiate each of these with respect to x and y.

fxx(x, y) = 10y2 and fyy(x, y) = 6x + 10x2

fxy(x, y) = 6y + 20xy and fyx(x, y) = 6y + 20xy

At (−1, 2), the value of fxy is

fxy(−1, 2) = 12 − 40 = −28. 

Notice in Example 7 that the two mixed partials are equal. Sufficient conditions for 
this occurrence are given in Theorem 13.3.

THeORem 13.3 equality of mixed Partial Derivatives

If f  is a function of x and y such that fxy and fyx are continuous on an open disk 
R, then, for every (x, y) in R,

fxy(x, y) = fyx(x, y).

Theorem 13.3 also applies to a function f  of three or more variables as long as all 
second partial derivatives are continuous. For example, if

w = f (x, y, z) Function of three variables

and all the second partial derivatives are continuous in an open region R, then at 
each point in R, the order of differentiation in the mixed second partial derivatives is 
irrelevant. If the third partial derivatives of f  are also continuous, then the order of 
differentiation of the mixed third partial derivatives is irrelevant.

 Finding Higher-Order Partial Derivatives

Show that fxz = fzx and fxzz = fzxz = fzzx for the function

f (x, y, z) = yex + x ln z.

Solution

First partials:

fx(x, y, z) = yex + ln z, fz(x, y, z) =
x
z

Second partials (note that the first two are equal):

fxz(x, y, z) =
1
z
, fzx(x, y, z) =

1
z
, fzz(x, y, z) = −

x
z2

Third partials (note that all three are equal):

fxzz(x, y, z) = −
1
z2, fzxz(x, y, z) = −

1
z2, fzzx(x, y, z) = −

1
z2 

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



900 Chapter 13 Functions of Several Variables

13.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  First Partial Derivatives List three ways of writing 

the first partial derivative with respect to x of z = f (x, y).

2.  First Partial Derivatives Sketch a surface 
representing a function f  of two variables x and y. Use the 
sketch to give geometric interpretations of ∂f�∂x and ∂f�∂y.

3.  Higher-Order Partial Derivatives Describe the 
order in which the differentiation of f (x, y, z) occurs for  
(a) fyxz and (b) ∂2f�∂x∂z.

4.  mixed Partial Derivatives If f  is a function of x 
and y such that fxy and fyx are continuous, what is the 
relationship between the mixed partial derivatives?

examining a Partial Derivative In Exercises 5–10, 
explain whether the Quotient Rule should be used to find the 
partial derivative. Do not differentiate.

 5. 
∂
∂x (

x2y
y2 − 3)  6. 

∂
∂y (

x2y
y2 − 3)

 7. 
∂
∂y (

x − y
x2 + 1)  8. 

∂
∂x (

x − y
x2 + 1)

 9. 
∂
∂x (

xy
x2 + 1) 10. 

∂
∂y (

xy
x2 + 1)

 Finding Partial Derivatives In Exercises 
11–40, find both first partial derivatives.

11. f (x, y) = 2x − 5y + 3 12. f (x, y) = x2 − 2y2 + 4

13. z = 6x − x2y + 8y2 14. f (x, y) = 4x3y−2

15. z = x√y 16. z = 2y2√x

17. z = exy 18. z = ex�y

19. z = x2e2y 20. z = 7yey�x

21. z = ln 
x
y
 22. z = ln√xy

23. z = ln(x2 + y2) 24. z = ln 
x + y
x − y

25. z =
x2

2y
+

3y2

x
 26. z =

xy
x2 + y2

27. h(x, y) = e−(x2+y2) 28. g(x, y) = ln√x2 + y2

29. f (x, y) = √x2 + y2 30. f (x, y) = √2x + y3

31. z = cos xy 32. z = sin(x + 2y)
33. z = tan(2x − y) 34. z = sin 5x cos 5y

35. z = ey sin 8xy 36. z = cos(x2 + y2)
37. z = sinh(2x + 3y) 38. z = cosh xy2

39. f (x, y) = ∫y

x

(t2 − 1) dt

40. f (x, y) = ∫y

x

(2t + 1) dt + ∫x

y

(2t − 1) dt

.

 Finding Partial Derivatives In Exercises 
41–44, use the limit definition of partial derivatives 
to find fx(x, y) and fy(x, y).

41. f (x, y) = 3x + 2y 42. f (x, y) = x2 − 2xy + y2

43. f (x, y) = √x + y 44. f (x, y) =
1

x + y

 Finding and evaluating Partial Derivatives 
In Exercises 45–52, find fx and fy, and evaluate 
each at the given point.

45. f (x, y) = exy2, (ln 3, 2) 46. f (x, y) = x3 ln 5y, (1, 1)

47. f (x, y) = cos(2x − y), (π4, 
π
3)

48. f (x, y) = sin xy, (2, 
π
4)

49. f (x, y) = arctan 
y
x
, (2, −2) 50. f (x, y) = arccos xy, (1, 1)

51. f (x, y) =
xy

x − y
, (2, −2) 

52. f (x, y) =
2xy

√4x2 + 5y2
, (1, 1)

 Finding the Slopes of a Surface In Exercises 
53–56, find the slopes of the surface in the x- and  
y-directions at the given point.

53. z = xy 54. z = √25 − x2 − y2

 (1, 2, 2)  (3, 0, 4)
 

y

x

2

4

4
−4

4

z   

y
x

6

6

6

z

55. g(x, y) = 4 − x2 − y2 56. h(x, y) = x2 − y2

 (1, 1, 2)  (−2, 1, 3)
 

y
x

2

4

2

z   

y
x 3 3

7

6

4

3

5

2

z
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 13.3 Partial Derivatives 901

 Finding Partial Derivatives In Exercises 
57–62, find the first partial derivatives with respect 
to x, y, and z.

57. H(x, y, z) = sin(x + 2y + 3z)
58. f (x, y, z) = 3x2y − 5xyz + 10yz2

59. w = √x2 + y2 + z2

60. w =
7xz

x + y

61. F(x, y, z) = ln√x2 + y2 + z2

62. G(x, y, z) =
1

√1 − x2 − y2 − z2

Finding and evaluating Partial Derivatives In Exercises 
63–68, find fx, fy, and fz, and evaluate each at the given point.

63. f (x, y, z) = x3yz2, (1, 1, 1)
64. f (x, y, z) = x2y3 + 2xyz − 3yz, (−2, 1, 2)

65. f (x, y, z) =
ln x
yz

, (1, −1, −1)

66. f (x, y, z) =
xy

x + y + z
, (3, 1, −1)

67. f (x, y, z) = z sin(x + 6y), (0, 
π
2

, −4)
68. f (x, y, z) = √3x2 + y2 − 2z2, (1, −2, 1)

Using First Partial Derivatives In Exercises 69–76, find 
all values of x and y such that fx(x, y) = 0 and fy(x, y) = 0 
simultaneously.

69. f (x, y) = x2 + xy + y2 − 2x + 2y

70. f (x, y) = x2 − xy + y2 − 5x + y

71. f (x, y) = x2 + 4xy + y2 − 4x + 16y + 3

72. f (x, y) = x2 − xy + y2

73. f (x, y) =
1
x

+
1
y

+ xy

74. f (x, y) = 3x3 − 12xy + y3

75. f (x, y) = ex2+xy+y2

76. f (x, y) = ln(x2 + y2 + 1)

 Finding Second Partial Derivatives In 
Exercises 77–86, find the four second partial 
derivatives. Observe that the second mixed partials 
are equal.

77. z = 3xy2 78. z = x2 + 3y2

79. z = x4 − 2xy + 3y3 80. z = x4 − 3x2y2 + y4

81. z = √x2 + y2

82. z = ln(x − y)
83. z = ex tan y

84. z = 2xey − 3ye−x

85. z = cos xy

86. z = arctan 
y
x

Finding Partial Derivatives Using Technology In 
Exercises 87–90, use a computer algebra system to find the 
first and second partial derivatives of the function. Determine 
whether there exist values of x and y such that fx(x, y) = 0 and 
fy(x, y) = 0 simultaneously.

 87. f (x, y) = x sec y  88. f (x, y) = √25 − x2 − y2

 89. f (x, y) = ln 
x

x2 + y2  90. f (x, y) =
xy

x − y

 Finding Higher-Order Partial Derivatives 
In Exercises 91–94, show that the mixed partial 
derivatives fxyy, fyxy, and fyyx are equal.

 91. f (x, y, z) = xyz

 92. f (x, y, z) = x2 − 3xy + 4yz + z3

 93. f (x, y, z) = e−x sin yz

 94. f (x, y, z) =
2z

x + y

Laplace’s equation In Exercises 95–98, show that the 
function satisfies Laplace’s equation �2z��x2 + �2z��y2 = 0.

 95. z = 5xy  96. z = 1
2 (ey − e−y) sin x

 97. z = ex sin y  98. z = arctan 
y
x

Wave equation In Exercises 99–102, show that the function 
satisfies the wave equation �2z��t2 = c2(�2z��x2).

 99. z = sin(x − ct)
100. z = cos(4x + 4ct)
101. z = ln(x + ct)
102. z = sin ωct sin ωx

Heat equation In Exercises 103 and 104, show that the 
function satisfies the heat equation �z��t = c2(�2z��x2).

103. z = e−t cos 
x
c

104. z = e−t sin 
x
c

Cauchy-Riemann equations In Exercises 105 and 106, 
show that the functions u and v satisfy the Cauchy-Riemann 
equations

�u
�x

=
�v
�y

 and 
�u
�y

= −
�v
�x

.

105. u = x2 − y2, v = 2xy

106. u = ex cos y, v = ex sin y

Using First Partial Derivatives In Exercises 107 and 108, 
determine whether there exists a function f (x, y) with the given 
partial derivatives. Explain your reasoning. If such a function 
exists, give an example.

107. fx(x, y) = −3 sin(3x − 2y), fy(x, y) = 2 sin(3x − 2y)
108. fx(x, y) = 2x + y, fy(x, y) = x − 4y
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eXpLoRInG ConCeptS
109.  Think about It Consider z = f (x, y) such that 

zx = zy. Does z = c(x + y)? Explain.

110.  First Partial Derivatives Given z = f (x)g(y), 
find zx + zy.

111.  Sketching a Graph Sketch the graph of a function 
z = f (x, y) whose derivative fx is always negative and 
whose derivative fy is always positive.

112.  Sketching a Graph Sketch the graph of a function 
z = f (x, y) whose derivatives fx and fy are always 
positive.

113.  Think about It The price P (in dollars) of a used 
car is a function of its initial cost C (in dollars) and its 
age A (in years). What are the units of ∂P�∂A? Is ∂P�∂A
positive or negative? Explain.

 114.  HOW DO YOU See IT? Use the graph 
of the surface to determine the sign of each 
partial derivative. Explain your reasoning.

5

2

−5

y

x

z

5

(a) fx(4, 1) (b) fy(4, 1)
(c) fx(−1, −2) (d) fy(−1, −2)

 114.  

115.  area The area of a triangle is represented by A = 1
2ab sin θ, 

where a and b are two of the side lengths and θ is the angle 
between a and b. 

  (a)  Find the rate of change of A with respect to b for a = 4, 
b = 1, and θ = π�4.

  (b)  Find the rate of change of A with respect to θ for a = 2, 
b = 5, and θ = π�3.

116.  Volume The volume of a right-circular cone of radius r 
and height h is represented by V = 1

3πr2h.

  (a)  Find the rate of change of V with respect to r for r = 2 
and h = 2. 

  (b)  Find the rate of change of V with respect to h for r = 2 
and h = 2.

117.  marginal Revenue A pharmaceutical corporation has 
two plants that produce the same over-the-counter medicine. 
If x1 and x2 are the numbers of units produced at plant 1 and 
plant 2, respectively, then the total revenue for the product is 
given by R = 200x1 + 200x2 − 4x 2

1 − 8x1x2 − 4x 2
2 . When 

x1 = 4 and x2 = 12, find (a) the marginal revenue for plant 1,
∂R�∂x1, and (b) the marginal revenue for plant 2, ∂R�∂x2.

119.  Psychology Early in the twentieth century, an intelligence 
test called the Stanford-Binet Test (more commonly known 
as the IQ test) was developed. In this test, an individual’s 
mental age M is divided by the individual’s chronological 
age C and then the quotient is multiplied by 100. The result 
is the individual’s IQ.

  IQ(M, C) =
M
C

× 100

   Find the partial derivatives of IQ with respect to M and with 
respect to C. Evaluate the partial derivatives at the point 
(12, 10) and interpret the result. (Source: Adapted from 
Bernstein/Clark-Stewart/Roy/Wickens, Psychology, Fourth 
Edition)

120.  marginal Productivity Consider the Cobb-Douglas 
production function f (x, y) = 200x0.7y0.3. When x = 1000 
and y = 500, find (a) the marginal productivity of labor, 
∂f�∂x, and (b) the marginal productivity of capital, ∂f�∂y.

121.  Think about It Let N be the number of applicants to a 
university, p the charge for food and housing at the university, 
and t the tuition. Suppose that N is a function of p and t such 
that ∂N�∂p < 0 and ∂N�∂t < 0. What information is gained 
by noticing that both partials are negative?

122.  Investment The value of an investment of $1000 earning 
6% compounded annually is

  V(I, R) = 1000[1 + 0.06(1 − R)
1 + I ]

10

    where I is the annual rate of inflation and R is the tax rate for 
the person making the investment. Calculate VI (0.03, 0.28) 
and VR(0.03, 0.28). Determine whether the tax rate or the rate 
of inflation is the greater “negative” factor in the growth of 
the investment.

123.  Temperature Distribution The temperature at any 
point (x, y) on a steel plate is T = 500 − 0.6x2 − 1.5y2, where 
x and y are measured in meters. At the point (2, 3), find the 
rates of change of the temperature with respect to the distances 
moved along the plate in the directions of the x- and y-axes.

A company manufactures 
two types of wood-
burning stoves: a 
freestanding model and 
a fireplace-insert model. 
The cost function for 
producing x freestanding 
and y fireplace-insert 
stoves is

 C = 32√xy + 175x + 205y + 1050.

(a)  Find the marginal costs (∂C�∂x and ∂C�∂y) when x = 80 
and y = 20.

(b)  When additional production is required, which model of 
stove results in the cost increasing at a higher rate? How 
can this be determined from the cost model?

118. marginal Costs

Amy Walters/Shutterstock.com
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 13.3 Partial Derivatives 903

124.  apparent Temperature A measure of how hot weather 
feels to an average person is the Apparent Temperature 
Index. A model for this index is

  A = 0.885t − 22.4h + 1.20th − 0.544

   where A is the apparent temperature in degrees Celsius, t is 
the air temperature, and h is the relative humidity in decimal 
form. (Source: The UMAP Journal)

  (a) Find 
∂A
∂t

 and 
∂A
∂h

 when t = 30° and h = 0.80.

  (b)  Which has a greater effect on A, air temperature or 
humidity? Explain.

125.  Ideal Gas Law The Ideal Gas Law states that

  PV = nRT

   where P is pressure, V is volume, n is the number of moles of 
gas, R is a fixed constant (the gas constant), and T is absolute 
temperature. Show that

  
∂T
∂P

∙ ∂P
∂V

∙ ∂V
∂T

= −1.

126.  marginal Utility The utility function U = f (x, y) is a 
measure of the utility (or satisfaction) derived by a person 
from the consumption of two products x and y. The utility 
function for two products is

  U = −5x2 + xy − 3y2.

  (a) Determine the marginal utility of product x.

  (b) Determine the marginal utility of product y.

  (c)  When x = 2 and y = 3, should a person consume one 
more unit of product x or one more unit of product y? 
Explain your reasoning.

  (d)  Use a computer algebra system to graph the function. 
Interpret the marginal utilities of products x and y 
graphically.

127.  modeling Data Personal consumption expenditures (in 
billions of dollars) for several types of recreation from 
2009 through 2014 are shown in the table, where x is the 
expenditures on amusement parks and campgrounds, y is the 
expenditures on live entertainment (excluding sports), and 
z is the expenditures on spectator sports. (Source: U.S. 
Bureau of Economic Analysis)

Year 2009 2010 2011 2012 2013 2014

x 37.2 38.8 41.3 44.6 47.0 50.3

y 25.2 26.3 28.3 28.5 28.0 30.0

z 18.8 19.2 20.4 20.6 21.6 22.4

  A model for the data is given by

  z = 0.23x + 0.14y + 6.85.

  (a) Find 
∂z
∂x

 and 
∂z
∂y

.

  (b) Interpret the partial derivatives in the context of the problem.

128.  modeling Data The table shows the national health 
expenditures (in billions of dollars) for the Department of 
Veterans Affairs x, workers’ compensation y, and Medicaid z 
from 2009 through 2014. (Source: Centers for Medicare 
and Medicaid Services)

Year 2009 2010 2011 2012 2013 2014

x 42.5 45.7 48.2 49.8 52.8 57.2

y 36.0 36.1 39.1 41.7 44.1 47.3

z 374.5 397.2 406.4 422.0 446.7 495.8

  A model for the data is given by

  z = −0.120x2 + 0.657y2 + 17.70x − 51.53y + 842.5.

  (a) Find 
∂2z
∂x2 and 

∂2z
∂y2.

  (b)  Determine the concavity of traces parallel to the xz-plane. 
Interpret the result in the context of the problem.

  (c)  Determine the concavity of traces parallel to the yz-plane. 
Interpret the result in the context of the problem.

129. Using a Function Consider the function defined by

  f (x, y) = {xy(x2 − y2)
x2 + y2 ,

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0).

  (a) Find fx(x, y) and fy(x, y) for (x, y) ≠ (0, 0).
  (b)  Use the definition of partial derivatives to find fx(0, 0) 

and fy(0, 0).

  [Hint:  fx(0, 0) = lim
∆x→0

 
f (∆x, 0) − f (0, 0)

∆x ]
  (c)  Use the definition of partial derivatives to find fxy(0, 0) 

and fyx(0, 0).
  (d)  Using Theorem 13.3 and the result of part (c), what can 

be said about fxy or fyx?

130. Using a Function Consider the function

  f (x, y) = (x3 + y3)1�3.

  (a) Find fx(0, 0) and fy(0, 0).
  (b)  Determine the points (if any) at which fx(x, y) or fy(x, y) 

fails to exist.

131. Using a Function Consider the function

  f (x, y) = (x2 + y2)2�3.

  Show that

  fx(x, y) = { 4x
3(x2 + y2)1�3,

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0).

 FOR FuRthER InFORmatIOn For more information 
about this problem, see the article “A Classroom Note on a 
Naturally Occurring Piecewise Defined Function” by Don Cohen 
in Mathematics and Computer Education.
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13.4 Differentials

 Understand the concepts of increments and differentials.
 Extend the concept of differentiability to a function of two variables.
 Use a differential as an approximation.

Increments and Differentials
In this section, the concepts of increments and differentials are generalized to functions 
of two or more variables. Recall from Section 4.8 that for y = f (x), the differential of 
y was defined as

dy = f ′(x) dx.

Similar terminology is used for a function of two variables, z = f (x, y). That is, ∆x and 
∆y are the increments of x and y, and the increment of z is

∆z = f (x + ∆x, y + ∆y) − f (x, y).    Increment of z

Definition of Total Differential

If z = f (x, y) and ∆x and ∆y are increments of x and y, then the differentials 
of the independent variables x and y are

dx = ∆x and dy = ∆y

and the total differential of the dependent variable z is

dz =
∂z
∂x

 dx +
∂z
∂y

 dy = fx(x, y) dx + fy(x, y) dy.

This definition can be extended to a function of three or more variables. For 
instance, if w = f (x, y, z, u), then dx = ∆x, dy = ∆y, dz = ∆z, du = ∆u, and the total 
differential of w is

dw =
∂w
∂x

 dx +
∂w
∂y

 dy +
∂w
∂z

 dz +
∂w
∂u

 du.

 Finding the Total Differential

Find the total differential for each function.

a. z = 2x sin y − 3x2y2  b. w = x2 + y2 + z2

Solution

a. The total differential dz for z = 2x sin y − 3x2y2 is

 dz =
∂z
∂x

 dx +
∂z
∂y

 dy Total differential dz

 = (2 sin y − 6xy2) dx + (2x cos y − 6x2y) dy.

b. The total differential dw for w = x2 + y2 + z2 is

 dw =
∂w
∂x

 dx +
∂w
∂y

 dy +
∂w
∂z

 dz Total differential dw

 = 2x dx + 2y dy + 2z dz. 
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Differentiability
In Section 4.8, you learned that for a differentiable function given by y = f (x), you 
can use the differential dy = f ′(x) dx as an approximation (for small ∆x) of the value 
∆y = f (x + ∆x) − f (x). When a similar approximation is possible for a function of 
two variables, the function is said to be differentiable. This is stated explicitly in the 
next definition.

Definition of Differentiability

A function f  given by z = f (x, y) is differentiable at (x0, y0) if ∆z can be 
written in the form

∆z = fx(x0, y0) ∆x + fy(x0, y0) ∆y + ε1∆x + ε2∆y

where both ε1 and ε2 → 0 as

(∆x, ∆y) → (0, 0).

The function f  is differentiable in a region R if it is differentiable at each 
point in R.

 Showing that a Function Is Differentiable

Show that the function

f (x, y) = x2 + 3y

is differentiable at every point in the plane.

Solution Letting z = f (x, y), the increment of z at an arbitrary point (x, y) in the 
plane is

 ∆z = f (x + ∆x, y + ∆y) − f (x, y) Increment of z

 = (x + ∆x)2 + 3(y + ∆y) − (x2 + 3y)
 = x2 + 2x∆x + (∆x)2 + 3y + 3∆y − x2 − 3y

 = 2x∆x + (∆x)2 + 3∆y

 = 2x(∆x) + 3(∆y) + ∆x(∆x) + 0(∆y)
 = fx(x, y)∆x + fy(x, y)∆y + ε1∆x + ε2∆y

where ε1 = ∆x and ε2 = 0. Because ε1 → 0 and ε2 → 0 as (∆x, ∆y) → (0, 0), it follows 
that f  is differentiable at every point in the plane. The graph of f  is shown in 
Figure 13.34. 

Be sure you see that the term “differentiable” is used differently for functions 
of two variables than for functions of one variable. A function of one variable is 
differentiable at a point when its derivative exists at the point. For a function of two 
variables, however, the existence of the partial derivatives fx and fy does not guarantee 
that the function is differentiable (see Example 5). The next theorem gives a sufficient 
condition for differentiability of a function of two variables. 

TheoReM 13.4 Sufficient Condition for Differentiability

If f  is a function of x and y, where fx and fy are continuous in
an open region R, then f  is differentiable on R.
A proof of this theorem is given in Appendix A.

y

x
4

−4

4

1

z

Figure 13.34
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Approximation by Differentials
Theorem 13.4 tells you that you can choose (x + ∆x, y + ∆y) close enough to (x, y) to 
make ε1∆x and ε2∆y insignificant. In other words, for small ∆x and ∆y, you can use 
the approximation

∆z ≈ dz. Approximate change in z

This approximation is illustrated graphically in Figure 13.35. Recall that the partial 
derivatives ∂z�∂x and ∂z�∂y can be interpreted as the slopes of the surface in the  
x- and y-directions. This means that

dz =
∂z
∂x

 ∆x +
∂z
∂y

 ∆y

represents the change in height of a plane that is tangent to the surface at the point 
(x, y, f (x, y)). Because a plane in space is represented by a linear equation in the 
variables x, y, and z, the approximation of ∆z by dz is called a linear approximation. 
You will learn more about this geometric interpretation in Section 13.7.

 Using a Differential as an Approximation

See LarsonCalculus.com for an interactive version of this type of example.

Use the differential dz to approximate the change in

z = √4 − x2 − y2

as (x, y) moves from the point (1, 1) to the point (1.01, 0.97). Compare this approximation 
with the exact change in z.

Solution Letting (x, y) = (1, 1) and (x + ∆x, y + ∆y) = (1.01, 0.97) produces

dx = ∆x = 0.01 and dy = ∆y = −0.03.

So, the change in z can be approximated by

∆z ≈ dz =
∂z
∂x

 dx +
∂z
∂y

 dy =
−x

√4 − x2 − y2
 ∆x +

−y

√4 − x2 − y2
 ∆y.

When x = 1 and y = 1, you have

∆z ≈ −
1

√2
(0.01) −

1

√2
(−0.03) =

0.02

√2
= √2(0.01) ≈ 0.0141.

In Figure 13.36, you can see that the exact change corresponds to the difference in the 
heights of two points on the surface of a hemisphere. This difference is given by

 ∆z = f (1.01, 0.97) − f (1, 1)
 = √4 − (1.01)2 − (0.97)2 − √4 − 12 − 12

 ≈ 0.0137. 

A function of three variables w = f (x, y, z) is differentiable at (x, y, z) provided that 
∆w = f (x + ∆x, y + ∆y, z + ∆z) − f (x, y, z) can be written in the form

∆w = fx∆x + fy∆y + fz∆z + ε1∆x + ε2∆y + ε3∆z

where ε1, ε2, and ε3 → 0 as (∆x, ∆y, ∆z) → (0, 0, 0). With this definition of 
differentiability, Theorem 13.4 has the following extension for functions of three 
variables: If f  is a function of x, y, and z, where fx, fy, and fz are continuous in an open 
region R, then f  is differentiable on R.

In Section 4.8, you used differentials to approximate the propagated error 
introduced by an error in measurement. This application of differentials is further 
illustrated in Example 4.

x

y

z

(1, 1)
(1.01, 0.97)

22

2

f (x, y)f (x + Δx, y + Δy)

z =     4 − x2 − y2

As (x, y) moves from the point (1, 1) 
to the point (1.01, 0.97), the value of 
f (x, y) changes by about 0.0137.
Figure 13.36

y
x

Δz2

Δz1
Δz

(x, y) (x + Δx, y + Δy)(x + Δx, y)

dz
y
z Δy

x
z Δx

z

∂

∂
∂

∂

The exact change in z is ∆z. This 
change can be approximated by the  
differential dz.
Figure 13.35
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 error Analysis

The possible error involved in measuring each dimension of a rectangular box is 
±0.1 millimeter. The dimensions of the box are x = 50 centimeters, y = 20 centimeters, 
and z = 15 centimeters, as shown in Figure 13.37. Use dV to estimate the propagated 
error and the relative error in the calculated volume of the box.

Solution The volume of the box is V = xyz, so

 dV =
∂V
∂x

 dx +
∂V
∂y

 dy +
∂V
∂z

 dz

 = yz dx + xz dy + xy dz.

Using 0.1 millimeter = 0.01 centimeter, you have

dx = dy = dz = ±0.01

and the propagated error is approximately

 dV = (20)(15)(±0.01) + (50)(15)(±0.01) + (50)(20)(±0.01)
 = 300(±0.01) + 750(±0.01) + 1000(±0.01)
 = 2050(±0.01)
 = ±20.5 cubic centimeters.

Because the measured volume is

V = (50)(20)(15) = 15,000 cubic centimeters

the relative error, ∆V�V, is approximately

∆V
V

≈
dV
V

=
±20.5
15,000

≈ ±0.0014

which is a percent error of about 0.14%. 

As is true for a function of a single variable, when a function in two or more variables 
is differentiable at a point, it is also continuous there.

TheoReM 13.5 Differentiability Implies Continuity

If a function of x and y is differentiable at (x0, y0), then it is
continuous at (x0, y0).

Proof Let f  be differentiable at (x0, y0), where z = f (x, y). Then

∆z = [ fx(x0, y0) + ε1] ∆x + [ fy(x0, y0) + ε2] ∆y

where both ε1 and ε2 → 0 as (∆x, ∆y) → (0, 0). However, by definition, you know that 
∆z is

∆z = f (x0 + ∆x, y0 + ∆y) − f (x0, y0).

Letting x = x0 + ∆x and y = y0 + ∆y produces

 f (x, y) − f (x0, y0) = [ fx(x0, y0) + ε1] ∆x + [ fy(x0, y0) + ε2] ∆y

 = [ fx(x0, y0) + ε1](x − x0) + [ fy(x0, y0) + ε2](y − y0).

Taking the limit as (x, y) → (x0, y0), you have

lim
(x, y)→(x0, y0)

 f (x, y) = f (x0, y0)

which means that f  is continuous at (x0, y0). 

x

y

50

20

20

x = 50

z = 15

y = 20

z

Volume = xyz
Figure 13.37
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Remember that the existence of fx and fy is not sufficient to guarantee differentiability, 
as illustrated in the next example.

 A Function That Is Not Differentiable

For the function

f (x, y) = { −3xy
x2 + y2,

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)

show that fx(0, 0) and fy(0, 0) both exist but that f  is not differentiable at (0, 0).

Solution You can show that f  is not differentiable at (0, 0) by showing that it is not 
continuous at this point. To see that f  is not continuous at (0, 0), look at the values of 
f (x, y) along two different approaches to (0, 0), as shown in Figure 13.38. Along the 
line y = x, the limit is

lim
(x, x)→(0, 0)

 f (x, y) = lim
(x, x)→(0, 0)

 
−3x2

2x2 = −
3
2

whereas along y = −x, you have

lim
(x, −x)→(0, 0)

 f (x, y) = lim
(x, −x)→(0, 0)

 
3x2

2x2 =
3
2

.

So, the limit of f (x, y) as (x, y) → (0, 0) does not exist, and you can conclude that f  is 
not continuous at (0, 0). Therefore, by Theorem 13.5, you know that f  is not differentiable 
at (0, 0). On the other hand, by the definition of the partial derivatives fx and fy, you 
have

fx(0, 0) = lim
∆x→0

 
f (∆x, 0) − f (0, 0)

∆x
= lim

∆x→0
 
0 − 0

∆x
= 0

and

fy(0, 0) = lim
∆y→0

 
f (0, ∆y) − f (0, 0)

∆y
= lim

∆y→0
 
0 − 0

∆y
= 0.

So, the partial derivatives at (0, 0) exist.

f (x, y) =

−3xy

x2 + y2
,  (x, y) ≠ (0, 0)

(x, y) = (0, 0)0,

Along the line y = x,
f(x, y) approaches −3/2.

y

z

(0, 0, 0)

x

Along the line y = −x,
f(x, y) approaches 3/2.

 Figure 13.38 

TeChNology A graphing utility can be used to graph piecewise-defined 
functions like the one given in Example 5. For instance, the graph shown at the left 
was generated by Mathematica.

y

x

Generated by Mathematica

z
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13.4 Differentials 909

13.4 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Approximation Describe the change in accuracy of 

dz as an approximation of ∆z as ∆x and ∆y increase.

2.  linear Approximation What is meant by a linear 
approximation of z = f (x, y) at the point P(x0, y0)?

 Finding a Total Differential In Exercises 3–8, 
find the total differential.

 3. z = 5x3y2  4. z = 2x3y − 8xy4

 5. z = 1
2 (ex2+y2 − e−x2−y2)  6. z = e−x tan y

 7. w = x2yz2 + sin yz  8. w = (x + y)�(z − 3y)

 Using a Differential as an Approximation
In Exercises 9–14, (a) find f (2, 1) and f (2.1, 1.05) 
and calculate ∆z, and (b) use the total differential 
dz to approximate ∆z.

 9. f (x, y) = 2x − 3y 10. f (x, y) = x2 + y2

11. f (x, y) = 16 − x2 − y2 12. f (x, y) = y�x

13. f (x, y) = yex 14. f (x, y) = x cos y

Approximating an expression In Exercises 15–18, find 
z = f (x, y) and use the total differential to approximate the 
quantity.

15. (2.01)2(9.02) − 22 ∙ 9 16. 
1 − (3.05)2

(5.95)2 −
1 − 32

62

17. sin[(1.05)2 + (0.95)2] − sin(12 + 12)
18. √(4.03)2 + (3.1)2 − √42 + 32

EXPLORING CONCEPTS
19.  Continuity If fx and fy are each continuous in an 

open region R, is f (x, y) continuous in R? Explain.

 20.  hoW Do yoU See IT? Which point has a 
 greater differential, (2, 2) or (1

2, 12)? Explain. 
(Assume that dx and dy are the same for both 
points.)

 

3
3

3

z

y

x

 20.  

21.  Area The area of the shaded rectangle in the figure is 
A = lh. The possible errors in the length and height are ∆l 
and ∆h, respectively. Find dA and identify the regions in the 
figure whose areas are given by the terms of dA. What region 
represents the difference between ∆A and dA?

Δh

h

l Δl

  

Δr

Δh

 Figure for 21 Figure for 22

22.  Volume The volume of the red right circular cylinder in the 
figure is V = πr2h. The possible errors in the radius and the 
height are ∆r and ∆h, respectively. Find dV and identify the 
solids in the figure whose volumes are given by the terms of 
dV. What solid represents the difference between ∆V and dV?

23.  Volume The possible error involved in measuring each 
dimension of a rectangular box is ±0.02 inch. The dimensions 
of the box are 8 inches by 5 inches by 12 inches. Approximate 
the propagated error and the relative error in the calculated 
volume of the box.

24.  Volume The possible error involved in measuring each 
dimension of a right circular cylinder is ±0.05 centimeter. 
The radius is 3 centimeters and the height is 10 centimeters. 
Approximate the propagated error and the relative error in the 
calculated volume of the cylinder.

25.  Numerical Analysis A right circular cone of height 
h = 8 meters and radius r = 4 meters is constructed, and 
in the process, errors ∆r and ∆h are made in the radius 
and height, respectively. Let V be the volume of the cone. 
Complete the table to show the relationship between ∆V and 
dV for the indicated errors.

∆r ∆h

dV
or
dS

∆V
or
∆S

∆V − dV
or

∆S − dS

0.1 0.1

0.1 −0.1

0.001 0.002

−0.0001 0.0002

 Table for Exercises 25 and 26

26.  Numerical Analysis A right circular cone of height 
h = 16 meters and radius r = 6 meters is constructed, and 
in the process, errors of ∆r and ∆h are made in the radius 
and height, respectively. Let S be the lateral surface area of 
the cone. Complete the table above to show the relationship 
between ∆S and dS for the indicated errors.
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910 Chapter 13 Functions of Several Variables

28.  Resistance The total resistance R (in ohms) of two resistors 
connected in parallel is given by

1
R

=
1
R1

+
1
R2

.

  Approximate the change in R as R1 is increased from 10 ohms 
to 10.5 ohms and R2 is decreased from 15 ohms to 13 ohms.

29. Power Electrical power P is given by

 P =
E2

R

  where E is voltage and R is resistance. Approximate the 
maximum percent error in calculating power when 120 volts is 
applied to a 2000-ohm resistor and the possible percent errors 
in measuring E and R are 3% and 4%, respectively.

30.  Acceleration The centripetal acceleration of a particle 
moving in a circle is a = v2�r, where v is the velocity and r
is the radius of the circle. Approximate the maximum percent 
error in measuring the acceleration due to errors of 3% in v and 
2% in r.

31.  Volume A trough is 16 feet long (see figure). Its cross 
sections are isosceles triangles with each of the two equal sides 
measuring 18 inches. The angle between the two equal sides is θ.

18 in.

16 ft

θ
18 in.

Not drawn to scale

 (a)  Write the volume of the trough as a function of θ
and determine the value of θ such that the volume is a 
maximum.

 (b)  The maximum error in the linear measurements is one-half 
inch and the maximum error in the angle measure is 2°.
Approximate the change in the maximum volume.

32.  Sports A baseball player in center field is playing 
approximately 330 feet from a television camera that is behind 
home plate. A batter hits a fly ball that goes to the wall 420 feet 
from the camera (see figure).

330 ft

420 ft

9°

 (a)  The camera turns 9° to follow the play. Approximate the 
number of feet that the center fielder has to run to make 
the catch.

 (b)  The position of the center fielder could be in error by as 
much as 6 feet and the maximum error in measuring the 
rotation of the camera is 1°. Approximate the maximum 
possible error in the result of part (a).

33.  Inductance The inductance L (in microhenrys) of a 
straight nonmagnetic wire in free space is

L = 0.00021(ln 
2h
r

− 0.75)
  where h is the length of the wire in millimeters and r is 

the radius of a circular cross section. Approximate L when 
r = 2 ± 1

16 millimeters and h = 100 ± 1
100 millimeters.

34.  Pendulum The period T of a pendulum of length L is 
T = (2π√L )�√g, where g is the acceleration due to gravity. 
A pendulum is moved from the Canal Zone, where g = 32.09
feet per second per second, to Greenland, where g = 32.23 feet 
per second per second. Because of the change in temperature, 
the length of the pendulum changes from 2.5 feet to 2.48 feet. 
Approximate the change in the period of the pendulum.

 Differentiability In Exercises 35– 38, show that 
the function is differentiable by finding values 
of ε1 and ε2 as designated in the definition of 
differentiability, and verify that both ε1 and ε2

approach 0 as (∆x, ∆y) → (0, 0).

35. f (x, y) = x2 − 2x + y 36. f (x, y) = x2 + y2

37. f (x, y) = x2y 38. f (x, y) = 5x − 10y + y3

 Differentiability In Exercises 39 and 40, use the 
function to show that fx(0, 0) and fy(0, 0) both exist 
but that f  is not differentiable at (0, 0).

39. f (x, y) = { 3x2y
x4 + y2,

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)

40. f (x, y) = { 5x2y
x3 + y3,

0,

(x, y) ≠ (0, 0)

(x, y) = (0, 0)

The formula for wind chill C (in degrees Fahrenheit) is given by

C = 35.74 + 0.6215T − 35.75v0.16 + 0.4275Tv0.16

 where v is the wind 
speed in miles per hour 
and T is the temperature 
in degrees Fahrenheit. 
The wind speed is
23 ± 3 miles per hour 
and the temperature 
is 8° ± 1°. Use dC to 
estimate the maximum
possible propagated error and relative error in calculating the 
wind chill. (Source: National Oceanic and Atmospheric 
Administration)

27. Wind Chill

Roberto Caucino/Shutterstock.com
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13.5 Chain Rules for Functions of Several Variables 911

13.5 Chain Rules for Functions of Several Variables

 Use the Chain Rules for functions of several variables.
 Find partial derivatives implicitly.

Chain Rules for Functions of Several Variables
Your work with differentials in the preceding section provides the basis for the extension 
of the Chain Rule to functions of two variables. There are two cases. The first case 
involves w as a function of x and y, where x and y are functions of a single independent 
variable t, as shown in Theorem 13.6.

THEOREM 13.6 Chain Rule: One Independent Variable

Let w = f (x, y), where f  is a differentiable function of x and y. If x = g(t) 
and y = h(t), where g and h are differentiable functions of t, then w is a 
differentiable function of t, and

dw
dt

=
∂w
∂x

 
dx
dt

+
∂w
∂y

 
dy
dt

.

The Chain Rule is shown schematically in Figure 13.39.
A proof of this theorem is given in Appendix A.

 Chain Rule: One Independent Variable

Let w = x2y − y2, where x = sin t and y = et. Find dw�dt when t = 0.

Solution By the Chain Rule for one independent variable, you have

 
dw
dt

=
∂w
∂x

 
dx
dt

+
∂w
∂y

 
dy
dt

 = 2xy(cos t) + (x2 − 2y)et

 = 2(sin t)(et)(cos t) + (sin2 t − 2et)et

 = 2et sin t cos t + et sin2 t − 2e2t.

When t = 0, it follows that

dw
dt

= −2. 

The Chain Rules presented in this section provide alternative techniques for 
solving many problems in single-variable calculus. For instance, in Example 1, you 
could have used single-variable techniques to find dw�dt by first writing w as a function 
of t,

 w = x2y − y2

 = (sin t)2(et) − (et)2

 = et sin2 t − e2t

and then differentiating as usual.

dw
dt

= 2et sin t cos t + et sin2 t − 2e2t

w

x y

t t

dx
dt

w
y

dy
dt

∂
∂

w
x

∂
∂

Chain Rule: one independent variable 
w is a function of x and y, which are 
each functions of t. This diagram 
represents the derivative of w with 
respect to t.
Figure 13.39
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912 Chapter 13 Functions of Several Variables

The Chain Rule in Theorem 13.6 can be extended to any number of variables. For 
example, if each xi is a differentiable function of a single variable t, then for

w = f (x1, x2, .  .  . , xn)

you have

dw
dt

=
∂w
∂x1

 
dx1

dt
+

∂w
∂x2

 
dx2

dt
+ .  .  . +

∂w
∂xn

 
dxn

dt
.

 An Application of a Chain Rule to Related Rates

Two objects are traveling in elliptical paths given by the following parametric equations.

x1 = 4 cos t and y1 = 2 sin t First object

x2 = 2 sin 2t and y2 = 3 cos 2t Second object

At what rate is the distance between the two objects changing when t = π?

Solution From Figure 13.40, you can see that the distance s between the two objects 
is given by

s = √(x2 − x1)2 + (y2 − y1)2

and that when t = π, you have x1 = −4, y1 = 0, x2 = 0, y2 = 3, and

s = √(0 + 4)2 + (3 + 0)2 = 5.

When t = π, the partial derivatives of s are as follows.

∂s
∂x1

=
−(x2 − x1)

√(x2 − x1)2 + (y2 − y1)2
= −

1
5

(0 + 4) = −
4
5

∂s
∂y1

=
−(y2 − y1)

√(x2 − x1)2 + (y2 − y1)2
= −

1
5

(3 − 0) = −
3
5

∂s
∂x2

=
(x2 − x1)

√(x2 − x1)2 + (y2 − y1)2
=

1
5

(0 + 4) =
4
5

∂s
∂y2

=
(y2 − y1)

√(x2 − x1)2 + (y2 − y1)2
=

1
5

(3 − 0) =
3
5

When t = π, the derivatives of x1, y1, x2, and y2 are

dx1

dt
= −4 sin t = 0

dy1

dt
= 2 cos t = −2

dx2

dt
= 4 cos 2t = 4

dy2

dt
= −6 sin 2t = 0.

So, using the appropriate Chain Rule, you know that the distance is changing at a rate of

 
ds
dt

=
∂s
∂x1

 
dx1

dt
+

∂s
∂y1

 
dy1

dt
+

∂s
∂x2

 
dx2

dt
+

∂s
∂y2

 
dy2

dt

 = (−
4
5)(0) + (−

3
5)(−2) + (4

5)(4) + (3
5)(0)

 =
22
5

. 

x

2

4

4

−2

−2

−4

−4

s

t =
3

y

π

x

2

4

4

−2

−2

−4

−4

s

y

t =
2
π

x

4

4

−2

−4

−4

s

t = π

y

Paths of two objects traveling in  
elliptical orbits
Figure 13.40
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13.5 Chain Rules for Functions of Several Variables 913

In Example 2, note that s is the function of four intermediate variables, x1, y1, x2, 
and y2, each of which is a function of a single variable t. Another type of composite 
function is one in which the intermediate variables are themselves functions of more 
than one variable. For instance, for w = f (x, y), where x = g(s, t) and y = h(s, t), it 
follows that w is a function of s and t, and you can consider the partial derivatives of 
w with respect to s and t. One way to find these partial derivatives is to write w as a 
function of s and t explicitly by substituting the equations x = g(s, t) and y = h(s, t) 
into the equation w = f (x, y). Then you can find the partial derivatives in the usual way, 
as demonstrated in the next example.

 Finding Partial Derivatives by Substitution

Find ∂w�∂s and ∂w�∂t for w = 2xy, where x = s2 + t2 and y = s�t.

Solution Begin by substituting x = s2 + t2 and y = s�t into the equation w = 2xy 
to obtain

w = 2xy = 2(s2 + t2)(s
t) = 2(s3

t
+ st).

Then, to find ∂w�∂s, hold t constant and differentiate with respect to s.

 
∂w
∂s

= 2(3s2

t
+ t)

 =
6s2 + 2t2

t

Similarly, to find ∂w�∂t, hold s constant and differentiate with respect to t to obtain

 
∂w
∂t

= 2(−
s3

t2 + s)
 = 2(−s3 + st2

t2 )
 =

2st2 − 2s3

t2 . 

Theorem 13.7 gives an alternative method for finding the partial derivatives in 
Example 3 without explicitly writing w as a function of s and t.

THEOREM 13.7 Chain Rule: Two Independent Variables

Let w = f (x, y), where f  is a differentiable function of x and y. If x = g(s, t) 
and y = h(s, t) such that the first partials ∂x�∂s, ∂x�∂t, ∂y�∂s, and ∂y�∂t all 
exist, then ∂w�∂s and ∂w�∂t exist and are given by

∂w
∂s

=
∂w
∂x

 
∂x
∂s

+
∂w
∂y

 
∂y
∂s

and

∂w
∂t

=
∂w
∂x

 
∂x
∂t

+
∂w
∂y

 
∂y
∂t

.

The Chain Rule is shown schematically in Figure 13.41.

Proof To obtain ∂w�∂s, hold t constant and apply Theorem 13.6 to obtain the desired 
result. Similarly, for ∂w�∂t, hold s constant and apply Theorem 13.6. 

y

w

x

stst

∂ w
∂ x

y

∂

∂
s∂

y∂
t∂

x∂
s∂

x∂
t∂

w
∂ y

Chain Rule: two independent variables
Figure 13.41
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914 Chapter 13 Functions of Several Variables

 The Chain Rule with Two Independent Variables

See LarsonCalculus.com for an interactive version of this type of example.

Use the Chain Rule to find ∂w�∂s and ∂w�∂t for

w = 2xy

where x = s2 + t2 and y = s�t.

Solution Note that these same partials were found in Example 3. This time, using 
Theorem 13.7, you can hold t constant and differentiate with respect to s to obtain

 
∂w
∂s

=
∂w
∂x

 
∂x
∂s

+
∂w
∂y

 
∂y
∂s

 = 2y(2s) + 2x(1
t )

 = 2(s
t)(2s) + 2(s2 + t2)(1

t ) Substitute 
s
t
 for y and s2 + t2 for x.

 =
4s2

t
+

2s2 + 2t2

t

 =
6s2 + 2t2

t
.

Similarly, holding s constant gives

 
∂w
∂t

=
∂w
∂x

 
∂x
∂t

+
∂w
∂y

 
∂y
∂t

 = 2y(2t) + 2x(−s
t2 )

 = 2(s
t)(2t) + 2(s2 + t2)(−s

t2 ) Substitute 
s
t
 for y and s2 + t2 for x.

 = 4s −
2s3 + 2st2

t2

 =
4st2 − 2s3 − 2st2

t2

 =
2st2 − 2s3

t2 . 

The Chain Rule in Theorem 13.7 can also be extended to any number of variables. 
For example, if w is a differentiable function of the n variables

x1, x2, .  .  . , xn

where each xi is a differentiable function of the m variables t1, t2, .  .  . , tm, then for

w = f (x1, x2, .  .  . , xn)

you obtain the following.

 
∂w
∂t1

=
∂w
∂x1

 
∂x1

∂t1
+

∂w
∂x2

 
∂x2

∂t1
+ .  .  . +

∂w
∂xn

 
∂xn

∂t1

 
∂w
∂t2

=
∂w
∂x1

 
∂x1

∂t2
+

∂w
∂x2

 
∂x2

∂t2
+ .  .  . +

∂w
∂xn

 
∂xn

∂t2
 ⋮

 
∂w
∂tm

=
∂w
∂x1

 
∂x1

∂tm
+

∂w
∂x2

 
∂x2

∂tm
+ .  .  . +

∂w
∂xn

 
∂xn

∂tm
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 13.5 Chain Rules for Functions of Several Variables 915

 The Chain Rule for a Function of Three Variables

Find ∂w�∂s and ∂w�∂t when s = 1 and t = 2π  for

w = xy + yz + xz

where x = s cos t, y = s sin t, and z = t.

Solution By extending the result of Theorem 13.7, you have

 
∂w
∂s

=
∂w
∂x

 
∂x
∂s

+
∂w
∂y

 
∂y
∂s

+
∂w
∂z

 
∂z
∂s

 = (y + z)(cos t) + (x + z)(sin t) + (y + x)(0)
 = (y + z)(cos t) + (x + z)(sin t).

When s = 1 and t = 2π, you have x = 1, y = 0, and z = 2π. So,

∂w
∂s

= (0 + 2π)(1) + (1 + 2π)(0) = 2π.

Furthermore,

 
∂w
∂t

=
∂w
∂x

 
∂x
∂t

+
∂w
∂y

 
∂y
∂t

+
∂w
∂z

 
∂z
∂t

 = (y + z)(−s sin t) + (x + z)(s cos t) + (y + x)(1)

and for s = 1 and t = 2π, it follows that

 
∂w
∂t

= (0 + 2π)(0) + (1 + 2π)(1) + (0 + 1)(1)

 = 2 + 2π. 

Implicit Partial Differentiation
This section concludes with an application of the Chain Rule to determine the derivative of 
a function defined implicitly. Let x and y be related by the equation F(x, y) = 0, where 
y = f (x) is a differentiable function of x. To find dy�dx, you could use the techniques 
discussed in Section 3.5. You will see, however, that the Chain Rule provides a 
convenient alternative. Consider the function

w = F(x, y) = F(x, f (x)).

You can apply Theorem 13.6 to obtain

dw
dx

= Fx(x, y)dx
dx

+ Fy(x, y)dy
dx

.

Because w = F(x, y) = 0 for all x in the domain of f, you know that

dw
dx

= 0

and you have

Fx(x, y)dx
dx

+ Fy(x, y)dy
dx

= 0.

Now, if Fy(x, y) ≠ 0, you can use the fact that dx�dx = 1 to conclude that

dy
dx

= −
Fx(x, y)
Fy(x, y).

A similar procedure can be used to find the partial derivatives of functions of several 
variables that are defined implicitly.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



916 Chapter 13 Functions of Several Variables

66
THEOREM 13.8 Chain Rule: Implicit Differentiation

If the equation F(x, y) = 0 defines y implicitly as a differentiable function of
x, then

dy
dx

= −
Fx(x, y)
Fy(x, y), Fy(x, y) ≠ 0.

If the equation F(x, y, z) = 0 defines z implicitly as a differentiable function 
of x and y, then

∂z
∂x

= −
Fx(x, y, z)
Fz(x, y, z) and 

∂z
∂y

= −
Fy(x, y, z)
Fz(x, y, z), Fz(x, y, z) ≠ 0.

This theorem can be extended to differentiable functions defined implicitly with 
any number of variables.

 Finding a Derivative Implicitly

Find dy�dx for

y3 + y2 − 5y − x2 + 4 = 0.

Solution Begin by letting

F(x, y) = y3 + y2 − 5y − x2 + 4.

Then

Fx(x, y) = −2x and Fy(x, y) = 3y2 + 2y − 5.

Using Theorem 13.8, you have

dy
dx

= −
Fx(x, y)
Fy(x, y) =

−(−2x)
3y2 + 2y − 5

=
2x

3y2 + 2y − 5
.

 Finding Partial Derivatives Implicitly

Find ∂z�∂x and ∂z�∂y for

3x2z − x2y2 + 2z3 + 3yz − 5 = 0.

Solution Begin by letting

F(x, y, z) = 3x2z − x2y2 + 2z3 + 3yz − 5.

Then

Fx(x, y, z) = 6xz − 2xy2

Fy(x, y, z) = −2x2y + 3z

and

Fz(x, y, z) = 3x2 + 6z2 + 3y.

Using Theorem 13.8, you have

∂z
∂x

= −
Fx(x, y, z)
Fz(x, y, z) =

2xy2 − 6xz
3x2 + 6z2 + 3y

and

∂z
∂y

= −
Fy(x, y, z)
Fz(x, y, z) =

2x2y − 3z
3x2 + 6z2 + 3y

. 

REMARK Compare the 
solution to Example 6 with 
the solution to Example 2 in 
Section 3.5.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 13.5 Chain Rules for Functions of Several Variables 917

13.5 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Chain Rule Consider w = f (x, y), where x = g(s, t) 

and y = h(s, t). Describe two ways of finding the partial 
derivatives ∂w�∂s and ∂w�∂t.

2.  Implicit Differentiation Why is using the Chain 
Rule to determine the derivative of the equation 
F(x, y) = 0 implicitly easier than using the method you 
learned in Section 3.5?

 Using the Chain Rule In Exercises 3–6, find 
dw�dt using the appropriate Chain Rule. Evaluate 
dw�dt at the given value of t.

 Function Value

 3. w = x2 + 5y t = 2

 x = 2t, y = t

 4. w = √x2 + y2 t = 0

 x = cos t, y = et

 5. w = x sin y t = 0

 x = et, y = π − t

 6. w = ln 
y
x
 t =

π
4

 x = cos t, y = sin t

 Using Different Methods In Exercises 7–12, 
find dw�dt (a) by using the appropriate Chain Rule 
and (b) by converting w to a function of t before 
differentiating.

 7. w = x −
1
y
, x = e2t, y = t3

 8. w = cos(x − y), x = t2, y = 1

 9. w = x2 + y2 + z2, x = cos t, y = sin t, z = et

10. w = xy cos z, x = t, y = t2, z = arccos t

11. w = xy + xz + yz, x = t − 1, y = t2 − 1, z = t

12. w = xy2 + x2z + yz2, x = t2, y = 2t, z = 2

Projectile Motion In Exercises 13 and 14, the parametric 
equations for the paths of two objects are given. At what rate 
is the distance between the two objects changing at the given 
value of t?

13. x1 = 10 cos 2t, y1 = 6 sin 2t First object

 x2 = 7 cos t, y2 = 4 sin t Second object

 t = π�2

14. x1 = 48√2t, y1 = 48√2t − 16t2 First object

 x2 = 48√3t, y2 = 48t − 16t2 Second object

 t = 1

 Finding Partial Derivatives In Exercises 
15–18, find �w��s and �w��t using the appropriate 
Chain Rule. Evaluate each partial derivative at the 
given values of s and t.

 Function Values

15. w = x2 + y2 s = 1, t = 3

 x = s + t, y = s − t

16. w = y3 − 3x2y s = −1, t = 2

 x = es, y = et

17. w = sin(2x + 3y) s = 0, t =
π
2

 x = s + t, y = s − t

18. w = x2 − y2 s = 3, t =
π
4

 x = s cos t, y = s sin t

 Using Different Methods In Exercises 19–22, 
find �w��s and �w��t (a) by using the appropriate 
Chain Rule and (b) by converting w to a function of 
s and t before differentiating.

19. w = xyz, x = s + t, y = s − t, z = st2

20. w = x2 + y2 + z2, x = t sin s, y = t cos s, z = st2

21. w = zexy, x = s − t, y = s + t, z = st

22. w = x cos yz, x = s2, y = t2, z = s − 2t

 Finding a Derivative Implicitly In Exercises 
23–26, differentiate implicitly to find dy�dx.

23. x2 − xy + y2 − x + y = 0 24. sec xy + tan xy + 5 = 0

25. ln√x2 + y2 + x + y = 4 26. 
x

x2 + y2 − y2 = 6

 Finding Partial Derivatives Implicitly In 
Exercises 27–34, differentiate implicitly to find the 
first partial derivatives of z.

27. x2 + y2 + z2 = 1 28. xz + yz + xy = 0

29. x2 + 2yz + z2 = 1 30. x + sin(y + z) = 0

31. tan(x + y) + cos z = 2 32. z = ex sin(y + z)
33. exz + xy = 0

34. x ln y + y2z + z2 = 8

Finding Partial Derivatives Implicitly In Exercises 
35–38, differentiate implicitly to find the first partial  
derivatives of w.

35. 7xy + yz2 − 4wz + w2z + w2x − 6 = 0

36. x2 + y2 + z2 − 5yw + 10w2 = 2

37. cos xy + sin yz + wz = 20

38. w − √x − y − √y − z = 0
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Homogeneous Functions A function f  is homogeneous 
of degree n when f (tx, ty) = tnf (x, y). In Exercises 39– 42, 
(a) show that the function is homogeneous and determine n,
and (b) show that xfx(x, y) + yfy(x, y) = nf (x, y).

39. f (x, y) = 2x2 − 5xy 40. f (x, y) = x3 − 3xy2 + y3

41. f (x, y) = ex�y 42. f (x, y) = x cos 
x + y

y

43.  Using a Table of Values Let w = f (x, y), x = g(t),
and y = h(t), where f, g, and h are differentiable. Use the 
appropriate Chain Rule and the table of values to find dw�dt
when t = 2.

g(2) h(2) g′(2) h′(2) fx(4, 3) fy(4, 3)

4 3 −1 6 −5 7

44.  Using a Table of Values Let w = f (x, y), x = g(s, t),
and y = h(s, t), where f, g, and h are differentiable. Use the 
appropriate Chain Rule and the table of values to find ws(1, 2).

g(1, 2) h(1, 2) gs(1, 2) hs(1, 2) fx(4, 3) fy(4, 3)

4 3 −3 5 −5 7

eXpLoRInG ConCeptS

45. Using the Chain Rule Show that 
∂w
∂u

+
∂w
∂v

= 0 

 for w = f (x, y), x = u − v, and y = v − u.

46.  Using the Chain Rule Demonstrate the result of 
Exercise 45 for w = (x − y) sin(y − x).

47.  Using the Chain Rule Let F(u, v) be a function 
of two variables. Find a formula for f ′(x) when
(a) f (x) = F(4x, 4) and (b) f (x) = F(−2x, x2).

 48.  HOW DO YOU SEE IT? The path of an 
object represented by w = f (x, y) is shown, 
where x and y are functions of t. The point on the 
graph represents the position of the object.

 

x
−2

−2

2

2

y

w

  Determine whether each of the following is 
positive, negative, or zero.

 (a) 
dx
dt

   (b) 
dy
dt

 48.  

49.  Volume and Surface Area The radius of a right 
circular cylinder is increasing at a rate of 6 inches per minute, 
and the height is decreasing at a rate of 4 inches per minute. 
What are the rates of change of the volume and surface area 
when the radius is 12 inches and the height is 36 inches?

50.  Ideal Gas Law The Ideal Gas Law is

PV = mRT

  where P is the pressure, V is the volume, m is the constant 
mass, R is a constant, T is the temperature, and P and V are 
functions of time. Find dT�dt, the rate at which the temperature 
changes with respect to time.

51.  Moment of Inertia An annular cylinder has an inside 
radius of r1 and an outside radius of r2 (see figure). Its moment 
of inertia is

I = 1
2 m(r1

2 + r2
2)

  where m is the mass. The two radii are increasing at a rate of 
2 centimeters per second. Find the rate at which I is changing 
at the instant the radii are 6 centimeters and 8 centimeters. 
(Assume mass is a constant.)

r1

r2

  

R

h

r

 Figure for 51 Figure for 52

52.  Volume and Surface Area The two radii of the frustum 
of a right circular cone are increasing at a rate of 4 centimeters 
per minute, and the height is increasing at a rate of 12 centimeters 
per minute (see figure). Find the rates at which the volume and 
surface area are changing when the two radii are 15 centimeters 
and 25 centimeters and the height is 10 centimeters.

53.  Cauchy-Riemann Equations Given the functions 
u(x, y) and v(x, y), verify that the Cauchy-Riemann equations

∂u
∂x

=
∂v
∂y

 and 
∂u
∂y

= −
∂v
∂x

 can be written in polar coordinate form as

∂u
∂r

=
1
r

∙ ∂v
∂θ  and 

∂v
∂r

= −
1
r

∙ ∂u
∂θ .

54.  Cauchy-Riemann Equations Demonstrate the result of 
Exercise 53 for the functions

u = ln√x2 + y2 and v = arctan 
y
x
.

55.  Homogeneous Function Show that if f (x, y) is 
homogeneous of degree n, then

xfx(x, y) + yfy(x, y) = nf (x, y).

[Hint: Let g(t) = f (tx, ty) = tn f (x, y). Find g′(t) and then let 
t = 1.]
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 13.6 Directional Derivatives and Gradients 919

13.6 Directional Derivatives and Gradients

 Find and use directional derivatives of a function of two variables.
 Find the gradient of a function of two variables.
 Use the gradient of a function of two variables in applications.
 Find directional derivatives and gradients of functions of three variables.

Directional Derivative
You are standing on the hillside represented 

y

x Surface:
z = f (x, y)

z

Figure 13.42

 
by z = f (x, y) in Figure 13.42 and want to 
determine the hill’s incline toward the z-axis. 
You already know how to determine the slopes 
in two different directions—the slope in the 
y-direction is given by the partial derivative 
fy(x, y), and the slope in the x-direction is given 
by the partial derivative fx(x, y). In this section, 
you will see that these two partial derivatives 
can be used to find the slope in any direction.

To determine the slope at a point on 
a surface, you will define a new type of 
derivative called a directional derivative.  
Begin by letting z = f (x, y) be a surface and 
P(x0, y0) be a point in the domain of f, as shown in Figure 13.43. The “direction” of 
the directional derivative is given by a unit vector

u = cos θi + sin θj

where θ is the angle the vector makes with the positive x-axis. To find the desired 
slope, reduce the problem to two dimensions by intersecting the surface with a vertical 
plane passing through the point P and parallel to u, as shown in Figure 13.44. This 
vertical plane intersects the surface to form a curve C. The slope of the surface at 
(x0, y0, f (x0, y0)) in the direction of u is defined as the slope of the curve C at that point.

Informally, you can write the slope of the curve C as a limit that looks much like 
those used in single-variable calculus. The vertical plane used to form C intersects the 
xy-plane in a line L, represented by the parametric equations

x = x0 + t cos θ

and

y = y0 + t sin θ

so that for any value of t, the point Q(x, y) lies on the line L. For each of the points P 
and Q, there is a corresponding point on the surface.

(x0, y0, f (x0, y0)) Point above P

(x, y, f (x, y)) Point above Q

Moreover, because the distance between P and Q is

 √(x − x0)2 + (y − y0)2 = √(t cos θ)2 + (t sin θ)2

 = ∣t∣
you can write the slope of the secant line through (x0, y0, f (x0, y0)) and (x, y, f (x, y)) as 

f (x, y) − f (x0, y0)
t

=
f (x0 + t cos θ, y0 + t sin θ) − f (x0, y0)

t
.

Finally, by letting t approach 0, you arrive at the definition on the next page.

x

P

L

θ y
u

z

z = f (x, y)

Figure 13.43

y

x

t

P Q

Curve: C
(x0, y0, f (x0, y0))

(x, y, f (x, y))

z Surface:
z = f (x, y)

Figure 13.44
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Definition of Directional Derivative

Let f  be a function of two variables x and y and let u = cos θi + sin θj be 
a unit vector. Then the directional derivative of f  in the direction of u, 
denoted by Du f, is

Du f (x, y) = lim
t→0

 
f (x + t cos θ, y + t sin θ) − f (x, y)

t

provided this limit exists.

Calculating directional derivatives by this definition is similar to finding the 
derivative of a function of one variable by the limit process (see Section 3.1). A simpler 
formula for finding directional derivatives involves the partial derivatives fx and fy.

THEOREM 13.9 Directional Derivative

If f  is a differentiable function of x and y, then the directional derivative of f
in the direction of the unit vector u = cos θi + sin θj is

Du f (x, y) = fx(x, y) cos θ + fy(x, y) sin θ.

Proof For a fixed point (x0, y0), let

x = x0 + t cos θ and y = y0 + t sin θ.

Then, let g(t) = f (x, y). Because f  is differentiable, you can apply the Chain Rule given 
in Theorem 13.6 to obtain

 g′(t) = fx(x, y)x′(t) + fy(x, y)y′(t) Apply Chain Rule (Theorem 13.6).

 = f x(x, y) cos θ + fy(x, y) sin θ.

If t = 0, then x = x0 and y = y0, so

g′(0) = fx(x0, y0) cos θ + fy(x0, y0) sin θ.

By the definition of g′(t), it is also true that

 g′(0) = lim
t→0

 
g(t) − g(0)

t

 = lim
t→0

 
f (x0 + t cos θ, y0 + t sin θ) − f (x0, y0)

t
.

Consequently, Du f (x0, y0) = fx(x0, y0) cos θ + fy(x0, y0) sin θ. 

There are infinitely many directional derivatives of a surface at a given point—one 
for each direction specified by u, as shown in Figure 13.45. Two of these are the partial 
derivatives fx and fy.

1. Direction of positive x-axis (θ = 0): u = cos 0i + sin 0j = i

Di f (x, y) = fx(x, y) cos 0 + fy(x, y) sin 0 = fx(x, y)

2. Direction of positive y-axis (θ =
π
2): u = cos 

π
2

i + sin 
π
2

j = j

Dj f (x, y) = fx(x, y) cos 
π
2

+ fy(x, y) sin 
π
2

= fy(x, y)

y

x
(x, y)

The vector u

z

Surface:
z = f (x, y)

Figure 13.45

REMARK Be sure you 
understand that the directional 
derivative represents the 
rate of change of a function 
in the direction of the unit 
vector u = cos θi + sin θj. 
Geometrically, you can interpret 
the directional derivative as 
giving the slope of a surface in 
the direction of u at a point on 
the surface. (See Figure 13.46.)
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 Finding a Directional Derivative

Find the directional derivative of

f (x, y) = 4 − x2 −
1
4

y2 Surface

at (1, 2) in the direction of

u = (cos 
π
3)i + (sin 

π
3)j. Direction

Solution Because fx(x, y) = −2x and fy(x, y) = −y�2 are continuous, f  is 
differentiable, and you can apply Theorem 13.9.

Du f (x, y) = fx(x, y) cos θ + fy(x, y) sin θ = (−2x) cos θ + (−
y
2) sin θ

Evaluating at θ = π�3, x = 1, and y = 2 produces

 Du f (1, 2) = (−2)(1
2) + (−1)(√3

2 )
 = −1 −

√3
2

 ≈ −1.866. See Figure 13.46.

Note in Figure 13.46 that you can interpret the directional derivative as giving the slope 
of the surface at the point (1, 2, 2) in the direction of the unit vector u. 

You have been specifying direction by a unit vector u. When the direction is given 
by a vector whose length is not 1, you must normalize the vector before applying the 
formula in Theorem 13.9.

 Finding a Directional Derivative

See LarsonCalculus.com for an interactive version of this type of example.

Find the directional derivative of

f (x, y) = x2 sin 2y Surface

at (1, π�2) in the direction of

v = 3i − 4j. Direction

Solution Because fx(x, y) = 2x sin 2y and fy(x, y) = 2x2 cos 2y are continuous, f  is 
differentiable, and you can apply Theorem 13.9. Begin by finding a unit vector in the 
direction of v.

u =
v

�v�
=

3
5

i −
4
5

j = cos θi + sin θj

Using this unit vector, you have

 Du f (x, y) = (2x sin 2y)(cos θ) = (2x2 cos 2y)(sin θ)

 Du f (1, 
π
2) = (2 sin π)(3

5) + (2 cos π)(−
4
5)

 = (0)(3
5) + (−2)(−

4
5)

 =
8
5

. See Figure 13.47. 

y

z

(1, 2)

5

4

3 ux

3
π

Surface:

f (x, y) = 4 − x2 −    y21
4

Figure 13.46

y

x
/2π

πu

1, ( (2
π

Surface:
f (x, y) = x2 sin 2y 9

6

3

−9

3

z

Figure 13.47
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The Gradient of a Function of Two Variables
The gradient of a function of two variables is a vector-valued function of two variables. 
This function has many important uses, some of which are described later in this section.

Definition of Gradient of a Function of Two Variables

Let z = f (x, y) be a function of x and y such that fx and fy exist. Then the 
gradient of f, denoted by ∇f (x, y), is the vector

∇f (x, y) = fx(x, y)i + fy(x, y)j.

(The symbol ∇f  is read as “del f .”) Another notation for the gradient is given 
by grad f (x, y). In Figure 13.48, note that for each (x, y), the gradient ∇f (x, y) 
is a vector in the plane (not a vector in space).

Notice that no value is assigned to the symbol ∇ by itself. It is an operator in the 
same sense that d�dx is an operator. When ∇ operates on f (x, y), it produces the vector 
∇f (x, y).

 Finding the Gradient of a Function

Find the gradient of

f (x, y) = y ln x + xy2

at the point (1, 2).

Solution Using

fx(x, y) =
y
x

+ y2 and fy(x, y) = ln x + 2xy

you have

 ∇f (x, y) = fx(x, y)i + fy(x, y)j

 = (y
x

+ y2)i + (ln x + 2xy)j.

At the point (1, 2), the gradient is

 ∇f (1, 2) = (2
1

+ 22)i + [ln 1 + 2(1)(2)]j

 = 6i + 4j. 

Because the gradient of f  is a vector, you can write the directional derivative of f  
in the direction of u as

Du f (x, y) = [ fx(x, y)i + fy(x, y)j] ∙ (cos θi + sin θj).

In other words, the directional derivative is the dot product of the gradient and the 
direction vector. This useful result is summarized in the next theorem.

THEOREM 13.10 Alternative Form of the Directional Derivative

If f  is a differentiable function of x and y, then the directional derivative of f  
in the direction of the unit vector u is

Du f (x, y) = ∇f (x, y) ∙ u.

y

x

(x, y, f(x, y))

(x, y)∇f (x, y)

z

The gradient of f  is a vector in the 
xy-plane.
Figure 13.48
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 Using �f (x, y) to Find a Directional Derivative

Find the directional derivative of f (x, y) = 3x2 − 2y2 at (−3
4, 0) in the direction from

P(−3
4, 0) to Q(0, 1).

Solution Because the partials of f  are continuous, f  is differentiable and you can 
apply Theorem 13.10. A vector in the specified direction is

 PQ
\

= (0 +
3
4)i + (1 − 0)j =

3
4

i + j

and a unit vector in this direction is

u =
PQ

\

�PQ
\

�
=

3
5

i +
4
5

j. Unit vector in direction of PQ
\

Because ∇f (x, y) = fx(x, y)i + fy(x, y)j = 6xi − 4yj, the gradient at (−3
4, 0) is

∇f (−
3
4

, 0) = −
9
2

i + 0j. Gradient at (−3
4, 0)

Consequently, at (−3
4, 0), the directional derivative is

 Du f (−
3
4

, 0) = ∇f (−
3
4

, 0) ∙ u

 = (−
9
2

i + 0j) ∙ (3
5

i +
4
5

j)
 = −

27
10

. Directional derivative at (−3
4, 0)

See Figure 13.49. 

y

x

z

P

Q
2

3

2

1

1

Surface:

f (x, y) = 3x2 − 2y2

 Figure 13.49
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924 Chapter 13 Functions of Several Variables

Applications of the Gradient
You have already seen that there are many directional derivatives at the point (x, y) on a 
surface. In many applications, you may want to know in which direction to move so that 
f (x, y) increases most rapidly. This direction is called the direction of steepest ascent, 
and it is given by the gradient, as stated in the next theorem.

THEOREM 13.11 Properties of the Gradient

Let f  be differentiable at the point (x, y).

1. If ∇f (x, y) = 0, then Du f (x, y) = 0 for all u.

2.  The direction of maximum increase of f  is given by ∇f (x, y). The maximum 
value of Du f (x, y) is

�∇f (x, y)�. Maximum value of Du f (x, y)

3.  The direction of minimum increase of f  is given by −∇f (x, y).
The minimum value of Du f (x, y) is

−�∇f (x, y)�. Minimum value of Du f (x, y) 

Proof If ∇f (x, y) = 0, then for any direction (any u), you have

 Du f (x, y) = ∇f (x, y) ∙ u

 = (0i + 0j) ∙ (cos θi + sin θj)
 = 0.

If ∇f (x, y) ≠ 0, then let ϕ be the angle between ∇f (x, y) and a unit vector u. Using the 
dot product, you can apply Theorem 11.5 to conclude that

 Du f (x, y) = ∇f (x, y) ∙ u

 = �∇f (x, y)� �u� cos ϕ
 = �∇f (x, y)� cos ϕ

and it follows that the maximum value of Du f (x, y) will occur when

cos ϕ = 1.

So, ϕ = 0, and the maximum value of the directional derivative occurs when u has the 
same direction as ∇f (x, y). Moreover, this largest value of Du f (x, y) is precisely

�∇f (x, y)� cos ϕ = �∇f (x, y)�.

Similarly, the minimum value of Du f (x, y) can be obtained by letting

ϕ = π

so that u points in the direction opposite that of ∇f (x, y), as shown in Figure 13.50.
 

To visualize one of the properties of the gradient, imagine a skier coming down a 
mountainside. If f (x, y) denotes the altitude of the skier, then −∇f (x, y) indicates the 
compass direction the skier should take to ski the path of steepest descent. (Remember 
that the gradient indicates direction in the xy-plane and does not itself point up or down 
the mountainside.)

As another illustration of the gradient, consider the temperature T(x, y) at any 
point (x, y) on a flat metal plate. In this case, ∇T(x, y) gives the direction of greatest 
temperature increase at the point (x, y), as illustrated in the next example.

y

x

Maximum
increase

(x, y, f (x, y))

(x, y)

∇f (x, y)

z

The gradient of f  is a vector in the
xy-plane that points in the direction 
of maximum increase on the surface 
given by z = f (x, y).
Figure 13.50

REMARK Property 2 of 
Theorem 13.11 says that at the 
point (x, y), f  increases most 
rapidly in the direction of the 
gradient, ∇f (x, y).
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 13.6 Directional Derivatives and Gradients 925

 Finding the Direction of Maximum Increase

The temperature in degrees Celsius on the surface of a metal plate is

T(x, y) = 20 − 4x2 − y2

where x and y are measured in centimeters. In what direction from (2, −3) does the 
temperature increase most rapidly? What is this rate of increase?

Solution The gradient is

∇T(x, y) = Tx(x, y)i + Ty(x, y)j = −8xi − 2yj.

It follows that the direction of maximum increase is given by

∇T(2, −3) = −16i + 6j

as shown in Figure 13.51, and the rate of increase is

�∇T(2, −3)� = √256 + 36 = √292 ≈ 17.09° per centimeter. 

The solution presented in Example 5 can be misleading. Although the gradient 
points in the direction of maximum temperature increase, it does not necessarily point 
toward the hottest spot on the plate. In other words, the gradient provides a local 
solution to finding an increase relative to the temperature at the point (2, −3). Once you 
leave that position, the direction of maximum increase may change.

 Finding the Path of a Heat-Seeking Particle

A heat-seeking particle is located at the point (2, −3) on a metal plate whose temperature 
at (x, y) is

T(x, y) = 20 − 4x2 − y2.

Find the path of the particle as it continuously moves in the direction of maximum  
temperature increase.

Solution Let the path be represented by the position vector

r(t) = x(t)i + y(t)j.

A tangent vector at each point (x(t), y(t)) is given by

r′(t) =
dx
dt

i +
dy
dt

j.

Because the particle seeks maximum temperature increase, the directions of r′(t) and 
∇T(x, y) = −8xi − 2yj are the same at each point on the path. So,

−8x = k
dx
dt

 and −2y = k
dy
dt

where k depends on t. By solving each equation for dt�k and equating the results, you 
obtain

dx
−8x

=
dy

−2y
.

The solution of this differential equation is x = Cy4. Because the particle starts at 
the point (2, −3), you can determine that C = 2�81. So, the path of the heat-seeking 
particle is

x =
2
81

y4.

The path is shown in Figure 13.52. 

3−3

−5

y

x

T(x, y) = 20 − 4x2 − y2

(2, −3)

Level curves:

5

The direction of most rapid increase  
in temperature at (2, −3) is given by 
−16i + 6j.
Figure 13.51

−3 3

−5

5

x

y

(2, −3)

T(x, y) = 20 − 4x2 − y2
Level curves:

Path followed by a heat-seeking  
particle
Figure 13.52
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926 Chapter 13 Functions of Several Variables

In Figure 13.52, the path of the particle (determined by the gradient at each point) 
appears to be orthogonal to each of the level curves. This becomes clear when you 
consider that the temperature T(x, y) is constant along a given level curve. So, at any 
point (x, y) on the curve, the rate of change of T  in the direction of a unit tangent 
vector u is 0, and you can write

∇f (x, y) ∙ u = DuT(x, y) = 0. u is a unit tangent vector.

Because the dot product of ∇f (x, y) and u is 0, you can conclude that they must be 
orthogonal. This result is stated in the next theorem.

THEOREM 13.12 Gradient Is Normal to Level Curves

If f  is differentiable at (x0, y0) and ∇f (x0, y0) ≠ 0, then ∇f (x0, y0) is normal to 
the level curve through (x0, y0).

 Finding a Normal Vector to a Level Curve

Sketch the level curve corresponding to c = 0 for the function given by

f (x, y) = y − sin x

and find a normal vector at several points on the curve.

Solution The level curve for c = 0 is given by

0 = y − sin x  y = sin x

as shown in Figure 13.53(a). Because the gradient of f  at (x, y) is

 ∇f (x, y) = fx(x, y)i + fy(x, y)j
 = −cos x i + j

you can use Theorem 13.12 to conclude that ∇f (x, y) is normal to the level curve at the 
point (x, y). Some gradients are

∇f (−π, 0) = i + j

∇f (−
2π
3

, −
√3
2 ) =

1
2

i + j

∇f (−
π
2

, −1) = j

∇f (−
π
3

, −
√3
2 ) = −

1
2

i + j

∇f (0, 0) = −i + j

∇f (π3, 
√3
2 ) = −

1
2

i + j

∇f (π2, 1) = j

∇f (2π
3

, 
√3
2 ) =

1
2

i + j

and

∇f (π, 0) = i + j.

These are shown in Figure 13.53(b). 

y

x

z

π
π

−4

−4

4

4

−

(a)  The surface is given by 
f (x, y) = y − sin x.

x

3

2

1

−2

−3

y − sin x = 0

ππ− π
2

Gradient is
normal to the
level curve.

y

(b) The level curve is given by f (x, y) = 0.

Figure 13.53
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13.6 Directional Derivatives and Gradients 927

Functions of Three Variables
The definitions of the directional derivative and the gradient can be extended naturally 
to functions of three or more variables. As often happens, some of the geometric 
interpretation is lost in the generalization from functions of two variables to those 
of three variables. For example, you cannot interpret the directional derivative of a 
function of three variables as representing slope.

The definitions and properties of the directional derivative and the gradient of a 
function of three variables are listed below.

Directional Derivative and Gradient for Three Variables

Let f  be a function of x, y, and z with continuous first partial derivatives. The 
directional derivative of f  in the direction of a unit vector

u = ai + bj + ck

is given by

Du f (x, y, z) = afx(x, y, z) + bfy(x, y, z) + cfz(x, y, z).

The gradient of f  is defined as

∇f (x, y, z) = fx(x, y, z)i + fy(x, y, z)j + fz(x, y, z)k.

Properties of the gradient are as follows.

1. Du f (x, y, z) = ∇f (x, y, z) ∙ u

2. If ∇f (x, y, z) = 0, then Du f (x, y, z) = 0 for all u.

3.  The direction of maximum increase of f  is given by ∇f (x, y, z). The 
maximum value of Du f (x, y, z) is

�∇f (x, y, z)�. Maximum value of Du f (x, y, z)

4.  The direction of minimum increase of f  is given by −∇f (x, y, z). The 
minimum value of Du f (x, y, z) is

−�∇f (x, y, z)�. Minimum value of Du f (x, y, z) 

You can generalize Theorem 13.12 to functions of three variables. Under suitable 
hypotheses,

∇f (x0, y0, z0)

is normal to the level surface through (x0, y0, z0).

 Finding the Gradient of a Function

Find ∇f (x, y, z) for the function

f (x, y, z) = x2 + y2 − 4z

and find the direction of maximum increase of f  at the point (2, −1, 1).

Solution The gradient is

 ∇f (x, y, z) = fx(x, y, z)i + fy(x, y, z)j + fz(x, y, z)k
 = 2xi + 2yj − 4k.

So, it follows that the direction of maximum increase at (2, −1, 1) is

∇f (2, −1, 1) = 4i − 2j − 4k. See Figure 13.54. 

y

x

∇f (2, −1, 1) = 4i − 2j − 4k

(2, −1, 1)

z

2 4 6

−2

2

2

4

6

8

−6

−4

−4

Level surface and gradient at (2, −1, 1) 
for f (x, y, z) = x2 + y2 − 4z
Figure 13.54
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928 Chapter 13 Functions of Several Variables

13.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Directional Derivative For a function f (x, y), when 

does the directional derivative at the point (x0, y0) equal 
the partial derivative with respect to x at the point (x0, y0)? 
What does this mean graphically?

2.  Gradient What is the meaning of the gradient of a 
function f  at a point (x, y)?

 Finding a Directional Derivative In Exercises 
3–6, use Theorem 13.9 to find the directional 
derivative of the function at P in the direction of 
the unit vector u = cos θi + sin θj.

 3. f (x, y) = x2 + y2, P(1, −2), θ =
π
4

 4. f (x, y) =
y

x + y
, P(3, 0), θ = −

π
6

 5. f (x, y) = sin(2x + y), P(0, π), θ = −
5π
6

 6. g(x, y) = xey, P(0, 2), θ =
2π
3

 Finding a Directional Derivative In Exercises 
7–10, use Theorem 13.9 to find the directional 
derivative of the function at P in the direction of v.

 7. f (x, y) = 3x − 4xy + 9y, P(1, 2), v = 3
5 i + 4

5 j

 8. f (x, y) = x3 − y3, P(4, 3), v =
√2
2

(i + j)

 9. g(x, y) = √x2 + y2, P(3, 4), v = 3i − 4j

10. h(x, y) = e−(x2+y2), P(0, 0), v = i + j

Finding a Directional Derivative In Exercises 11–14, use 
Theorem 13.9 to find the directional derivative of the function 
at P in the direction of PQ

\

.

11. f (x, y) = x2 + 3y2, P(1, 1), Q(4, 5)

12. f (x, y) = cos(x + y), P(0, π), Q(π2, 0)
13. f (x, y) = ey sin x, P(0, 0), Q(2, 1)

14. f (x, y) = sin 2x cos y, P(π, 0), Q(π2, π)
 Finding the Gradient of a Function In 
Exercises 15–20, find the gradient of the function 
at the given point.

15. f (x, y) = 3x + 5y2 + 1, (2, 1)
16. g(x, y) = 2xey�x, (2, 0)

17. z =
ln(x2 − y)

x
− 4, (2, 3)

18. z = cos(x2 + y2), (3, −4)

19. w = 6xy − y2 + 2xyz3, (−1, 5, −1)
20. w = x tan(y + z), (4, 3, −1)

Finding a Directional Derivative In Exercises 21–24, use 
the gradient to find the directional derivative of the function at 
P in the direction of v.

21. f (x, y) = xy, P(0, −2), v = 1
2(i + √3j)

22. h(x, y) = e−3x sin y, P(1, 
π
2), v = −i

23. f (x, y, z) = x2 + y2 + z2, P(1, 1, 1), v =
√3
3

(i − j + k)

24. f (x, y, z) = xy + yz + xz, P(1, 2, −1), v = 2i + j − k

 Finding a Directional Derivative In 
Exercises 25–28, use the gradient to find the 
directional derivative of the function at P in the 
direction of PQ

\

.

25. g(x, y) = x2 + y2 + 1, P(1, 2), Q(2, 3)
26. f (x, y) = 3x2 − y2 + 4, P(−1, 4), Q(3, 6)
27. g(x, y, z) = xyez, P(2, 4, 0), Q(0, 0, 0)
28. h(x, y, z) = ln(x + y + z), P(1, 0, 0), Q(4, 3, 1)

 Using Properties of the Gradient In 
Exercises 29–38, find the gradient of the function 
and the maximum value of the directional 
derivative at the given point.

29. f (x, y) = y2 − x√y, (0, 3)

30. f (x, y) =
x + y
y + 1

, (0, 1)

31. h(x, y) = x tan y, (2, 
π
4)

32. h(x, y) = y cos(x − y), (0, 
π
3)

33. f (x, y) = sin x2y3, (1
π , π)

34. g(x, y) = ln 3√x2 + y2, (1, 2)
35. f (x, y, z) = √x2 + y2 + z2, (1, 4, 2)

36. w =
1

√1 − x2 − y2 − z2
, (0, 0, 0)

37. w = xy2z2, (2, 1, 1)
38. f (x, y, z) = xeyz, (2, 0, −4)

 Finding a Normal Vector to a Level 
Curve In Exercises 39–42, find a normal vector 
to the level curve f (x, y) = c at P.

39. f (x, y) = 6 − 2x − 3y 40. f (x, y) = x2 + y2

 c = 6, P(0, 0)  c = 25, P(3, 4)
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 13.6 Directional Derivatives and Gradients 929

41. f (x, y) = xy 42. f (x, y) =
x

x2 + y2

 c = −3, P(−1, 3)  c = 1
2, P(1, 1)

Using a Function In Exercises 43–46, (a) find the gradient 
of the function at P, (b) find a unit normal vector to the level 
curve f (x, y) = c at P, (c) find the tangent line to the level 
curve f (x, y) = c at P, and (d) sketch the level curve, the unit 
normal vector, and the tangent line in the xy-plane.

43. f (x, y) = 4x2 − y 44. f (x, y) = x − y2

 c = 6, P(2, 10)  c = 3, P(4, −1)
45. f (x, y) = 3x2 − 2y2 46. f (x, y) = 9x2 + 4y2

 c = 1, P(1, 1)  c = 40, P(2, −1)

47.  Using a Function Consider the function

 f (x, y) = 3 −
x
3

−
y
2

.

 (a)  Sketch the graph of f  in the first octant and plot the point 
(3, 2, 1) on the surface.

 (b)  Find Du f (3, 2), where u = cos θi + sinθj, using each 
given value of θ.

  (i) θ =
π
4

  (ii) θ =
2π
3

  (iii) θ =
4π
3

  (iv) θ = −
π
6

 (c) Find Du f (3, 2), where u =
v

�v�
, using each given vector v.

  (i) v = i + j (ii) v = −3i − 4j

  (iii) v is the vector from (1, 2) to (−2, 6).
  (iv) v is the vector from (3, 2) to (4, 5).
 (d)  Find ∇ f (x, y).
 (e)  Find the maximum value of the directional derivative at 

(3, 2).
 (f )  Find a unit vector u orthogonal to ∇ f (3, 2) and calculate 

Du f (3, 2). Discuss the geometric meaning of the result.

48.  Using a Function Consider the function

 f (x, y) = 9 − x2 − y2.

 (a)  Sketch the graph of f  in the first octant and plot the point 
(1, 2, 4) on the surface.

 (b)  Find Du f (1, 2), where u = cos θi + sin θj, using each 
given value of θ.

  (i) θ = −
π
4

  (ii) θ =
π
3

  (iii) θ =
3π
4

  (iv) θ = −
π
2

 (c)  Find Du f (1, 2), where u =
v

�v�
, using each given vector v.

  (i) v = 3i + j (ii) v = −8i − 6j

  (iii) v is the vector from (−1, −1) to (3, 5).
  (iv) v is the vector from (−2, 0) to (1, 3).
 (d)  Find ∇ f (1, 2).
 (e)  Find the maximum value of the directional derivative at 

(1, 2).
 (f )  Find a unit vector u orthogonal to ∇ f (1, 2) and calculate 

Du f (1, 2). Discuss the geometric meaning of the result.

49. Investigation Consider the function

 f (x, y) = x2 − y2

 at the point (4, −3, 7).
 (a)  Use a computer algebra system to graph the surface 

represented by the function.

 (b)  Determine the directional derivative Du f (4, −3) as a 
function of θ, where u = cos θi + sin θj. Use a computer 
algebra system to graph the function on the interval 
[0, 2π).

 (c)  Approximate the zeros of the function in part (b) and 
interpret each in the context of the problem.

 (d)  Approximate the critical numbers of the function in part 
(b) and interpret each in the context of the problem.

 (e)  Find �∇f (4, −3)� and explain its relationship to your 
answers in part (d).

 (f )  Use a computer algebra system to graph the level curve 
of the function f  at the level c = 7. On this curve, graph 
the vector in the direction of ∇f (4, −3) and state its 
relationship to the level curve.

50. Investigation Consider the function

 f (x, y) =
8y

1 + x2 + y2.

 (a)  Analytically verify that the level curve of f (x, y) at the 
level c = 2 is a circle.

 (b)  At the point (√3, 2) on the level curve for which c = 2, 
sketch the vector showing the direction of the greatest rate 
of increase of the function. To print a graph of the level 
curve, go to MathGraphs.com.

 (c)  At the point (√3, 2) on the level curve for which c = 2, 
sketch a vector such that the directional derivative is 0.

 (d)  Use a computer algebra system to graph the surface to 
verify your answers in parts (a)–(c).

eXpLoring ConCepts
51.  Think About It Consider v = 3u. Is the directional 

derivative of a differentiable function f (x, y) in the 
direction of v at the point (x0, y0 ) three times the 
directional derivative of f  in the direction of u at the 
point (x0, y0)? Explain.

52.  Sketching a Graph and a Vector Sketch the 
graph of a surface and select a point P on the surface. 
Sketch a vector in the xy-plane giving the direction of 
steepest ascent on the surface at P.

53.  Topography The surface of a mountain is modeled by the 
equation

 h(x, y) = 5000 − 0.001x2 − 0.004y2.

  A mountain climber is at the point (500, 300, 4390). In what 
direction should the climber move in order to ascend at the 
greatest rate?
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930 Chapter 13 Functions of Several Variables

 54.  HOW DO YOU SEE IT? The figure shows 
a topographic map carried by a group of hikers. 
Sketch the paths of steepest descent when 
the hikers start at point A and when they start 
at point B. (To print an enlarged copy of the 
graph, go to MathGraphs.com.)

1800

1800

A

B
1994

1671

 54.  

55.  Temperature The temperature at the point (x, y) on a metal 
plate is T(x, y) = x�(x2 + y2). Find the direction of greatest 
increase in heat from the point (3, 4).

56.  Temperature The temperature at the point (x, y) on a 
metal plate is T(x, y) = 400e−(x2+y)�2, x ≥ 0, y ≥ 0.

 (a)  Use a computer algebra system to graph the temperature 
distribution function.

 (b)  Find the directions of no change in heat on the plate from 
the point (3, 5).

 (c)  Find the direction of greatest increase in heat from the 
point (3, 5).

 Finding the Direction of Maximum 
Increase In Exercises 57 and 58, the temperature 
in degrees Celsius on the surface of a metal plate 
is given by T(x, y), where x and y are measured in 
centimeters. Find the direction from point P where 
the temperature increases most rapidly and this 
rate of increase.

57. T(x, y) = 80 − 3x2 − y2, P(−1, 5)
58. T(x, y) = 50 − x2 − 4y2, P(2, −1)

 Finding the Path of a Heat-Seeking 
Particle In Exercises 59 and 60, find the path of 
a heat-seeking particle placed at point P on a metal 
plate whose temperature at (x, y) is T(x, y).

59. T(x, y) = 400 − 2x2 − y2, P(10, 10)
60. T(x, y) = 100 − x2 − 2y2, P(4, 3)

True or False? In Exercises 61–64, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

61.  If f (x, y) = √1 − x2 − y2, then Du f (0, 0) = 0 for any unit 
vector u.

62. If f (x, y) = x + y, then −1 ≤ Du f (x, y) ≤ 1.

63. If Du f (x, y) exists, then Du f (x, y) = −Du f (x, y).

64. If Du f (x0, y0) = c for any unit vector u, then c = 0.

65. Finding a Function Find a function f  such that

 ∇f = ex cos yi − ex sin yj + zk.

67. Using a Function Consider the function

 f (x, y) = 3√xy.

 (a) Show that f  is continuous at the origin.

 (b)  Show that fx and fy exist at the origin but that the directional 
derivatives at the origin in all other directions do not exist.

 (c)  Use a computer algebra system to graph f  near the origin 
to verify your answers in parts (a) and (b). Explain.

68. Directional Derivative Consider the function

 f (x, y) = { 4xy
x2 + y2,

0,

(x, y) ≠ (0, 0)

(x, y) ≠ (0, 0)

 and the unit vector

 u =
1

√2
(i + j).

  Does the directional derivative of f  at P(0, 0) in the direction 
of u exist? If f (0, 0) were defined as 2 instead of 0, would the 
directional derivative exist? Explain.

A team of oceanographers is mapping the ocean floor to 
assist in the recovery of a sunken ship. Using sonar, they 
develop the model

D = 250 + 30x2 + 50 sin 
πy
2

, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2

 where D is the depth 
in meters, and x and 
y are the distances in 
kilometers.

(a)  Use a computer 
algebra system to 
graph D.

(b)  Because the graph in 
part (a) is showing 
depth, it is not a map of the ocean floor. How could the 
model be changed so that the graph of the ocean floor 
could be obtained?

(c)  What is the depth of the ship if it is located at the 
coordinates x = 1 and y = 0.5?

(d)  Determine the steepness of the ocean floor in the positive 
x-direction from the position of the ship.

(e)  Determine the steepness of the ocean floor in the positive 
y-direction from the position of the ship.

(f)  Determine the direction of the greatest rate of change of 
depth from the position of the ship.

66. Ocean Floor

Andrey_Kuzmin/Shutterstock.com
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13.7 Tangent Planes and Normal Lines 931

13.7 Tangent Planes and normal lines

 Find equations of tangent planes and normal lines to surfaces.
 Find the angle of inclination of a plane in space.
 Compare the gradients �f (x, y) and �F (x, y, z).

Tangent Plane and Normal Line to a Surface
So far, you have represented surfaces in space primarily by equations of the form

z = f (x, y). Equation of a surface S

In the development to follow, however, it is convenient to use the more general 
representation F(x, y, z) = 0. For a surface S given by z = f (x, y), you can convert to 
the general form by defining F as

F(x, y, z) = f (x, y) − z.

Because f (x, y) − z = 0, you can consider S to be the level surface of F given by

F(x, y, z) = 0. Alternative equation of surface S

 Writing an Equation of a Surface

For the function

F(x, y z) = x2 + y2 + z2 − 4

describe the level surface given by

F(x, y, z) = 0.

Solution The level surface given by F(x, y, z) = 0 can be written as

x2 + y2 + z2 = 4

which is a sphere of radius 2 whose center is at the origin. 

You have seen many examples of the usefulness of normal lines in applications 
involving curves. Normal lines are equally important in analyzing surfaces and solids.
For example, consider the collision of two billiard balls. When a stationary ball is 
struck at a point P on its surface, it moves along the line of impact determined by 
P and the center of the ball. The impact can occur in two ways. When the cue ball is 
moving along the line of impact, it stops dead and imparts all of its momentum to the 
stationary ball, as shown in Figure 13.55.

Line of
impact

Line of
impact

   

Line of
impact

 Figure 13.55 Figure 13.56

When the cue ball is not moving along the line of impact, it is deflected to one side or 
the other and retains part of its momentum. The part of the momentum that is transferred 
to the stationary ball occurs along the line of impact, regardless of the direction of the 
cue ball, as shown in Figure 13.56. This line of impact is called the normal line to the 
surface of the ball at the point P.

Exploration
Billiard Balls and Normal 
Lines In each of the three 
figures below, the cue ball is 
about to strike a stationary 
ball at point P. Explain how 
you can use the normal line 
to the stationary ball at point
P to describe the resulting 
motion of each of the two 
balls. Assuming that each 
cue ball has the same speed, 
which stationary ball will 
acquire the greatest speed? 
Which will acquire the least? 
Explain your reasoning.

Normal line
to stationary
ball at point P

Stationary
ball

Moving
cue ball

P

Normal line
to stationary
ball at point P

Stationary
ball

Moving
cue ballP

Normal line
to stationary
ball at point P

Stationary
ball

Moving
cue ball

P
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932 chapter 13 Functions of Several Variables

In the process of finding a normal line to a surface, you are also able to solve the 
problem of finding a tangent plane to the surface. Let S be a surface given by

F(x, y, z) = 0

and let P(x0, y0, z0) be a point on S. Let C be a curve on S through P that is defined by 
the vector-valued function 

r(t) = x(t)i + y(t)j + z(t)k.

Then, for all t,

F(x(t), y(t), z(t)) = 0.

If F is differentiable and x′(t), y′(t), and z′(t) all exist, then it follows from the Chain 
Rule that

 0 = F′(t)
 = Fx(x, y, z)x′(t) + Fy(x, y, z)y′(t) + Fz(x, y, z)z′(t).

At (x0, y0, z0), the equivalent vector form is

0 = ∇F(x0, y0, z0) ∙ r′(t0).

 Gradient Tangent vector

This result means that the gradient at P is orthogonal to the tangent vector of every curve 
on S through P. So, all tangent lines on S lie in a plane that is normal to ∇F(x0, y0, z0) 
and contains P, as shown in Figure 13.57.

Definitions of Tangent Plane and normal line

Let F be differentiable at the point P(x0, y0, z0) on the surface S given by 
F(x, y, z) = 0 such that

∇F(x0, y0, z0) ≠ 0.

1.  The plane through P that is normal to ∇F(x0, y0, z0) is called the tangent 
plane to S at P.

2.  The line through P having the direction of ∇F(x0, y0, z0) is called the 
normal line to S at P.

To find an equation for the tangent plane to S at (x0, y0, z0), let (x, y, z) be an 
arbitrary point in the tangent plane. Then the vector

v = (x − x0)i + (y − y0)j + (z − z0)k

lies in the tangent plane. Because ∇F(x0, y0, z0), is normal to the tangent plane at 
(x0, y0, z0), it must be orthogonal to every vector in the tangent plane, and you have

∇F(x0, y0, z0) ∙ v = 0

which leads to the next theorem.

ThEoREM 13.13 Equation of Tangent Plane

If F is differentiable at (x0, y0, z0), then an equation of the tangent plane to the 
surface given by F(x, y, z) = 0 at (x0, y0, z0) is

Fx(x0, y0, z0)(x − x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0.

∇F

Surface S:
F(x, y, z) = 0

P (x0, y0, z0)

Tangent plane to surface S at P
Figure 13.57

REMARK In the remainder 
of this section, assume 
∇F(x0, y0, z0) to be nonzero 
unless stated otherwise.
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 Finding an Equation of a Tangent Plane

Find an equation of the tangent plane to the hyperboloid

z2 − 2x2 − 2y2 = 12

at the point (1, −1, 4).

Solution Begin by writing the equation of the surface as

z2 − 2x2 − 2y2 − 12 = 0.

Then, considering

F(x, y, z) = z2 − 2x2 − 2y2 − 12

you have

Fx(x, y, z) = −4x, Fy(x, y, z) = −4y, and Fz(x, y, z) = 2z.

At the point (1, −1, 4), the partial derivatives are

Fx(1, −1, 4) = −4, Fy(1, −1, 4) = 4, and Fz(1, −1, 4) = 8.

So, an equation of the tangent plane at (1, −1, 4) is

 −4(x − 1) + 4(y + 1) + 8(z − 4) = 0

 −4x + 4 + 4y + 4 + 8z − 32 = 0

 −4x + 4y + 8z − 24 = 0

 x − y − 2z + 6 = 0.

Figure 13.58 shows a portion of the hyperboloid and the tangent plane.

x

y

z

3

3

6

5

(1, −1, 4)

Surface:
z2 − 2x2 − 2y2 − 12 = 0

 Tangent plane to surface
 Figure 13.58 

To find an equation of the tangent plane at a point on a surface given by 
z = f (x, y), you can define the function F by

F(x, y, z) = f (x, y) − z.

Then S is given by the level surface F(x, y, z) = 0, and by Theorem 13.13, an equation 
of the tangent plane to S at the point (x0, y0, z0) is

fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) − (z − z0) = 0.

TEchnology Some  
three-dimensional graphing  
utilities are capable of graphing 
tangent planes to surfaces. An  
example is shown below.

y

x

Generated by Mathematica

z

Sphere: x2 + y2 + z2 = 1
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934 chapter 13 Functions of Several Variables

 Finding an Equation of the Tangent Plane

Find an equation of the tangent plane to the paraboloid

z = 1 −
1
10

(x2 + 4y2)

at the point (1, 1, 12).
Solution From z = f (x, y) = 1 − 1

10 (x2 + 4y2), you obtain

fx(x, y) = −
x
5

  fx(1, 1) = −
1
5

and

fy(x, y) = −
4y
5

  fy(1, 1) = −
4
5

.

So, an equation of the tangent plane at (1, 1, 12) is

  fx(1, 1)(x − 1) + fy(1, 1)(y − 1) − (z −
1
2) = 0

 −
1
5

(x − 1) −
4
5

(y − 1) − (z −
1
2) = 0

 −
1
5

x −
4
5

y − z +
3
2

= 0.

This tangent plane is shown in Figure 13.59. 

The gradient ∇F(x, y, z) provides a convenient way to find equations of normal 
lines, as shown in Example 4.

 Finding an Equation of a normal line to a Surface

See LarsonCalculus.com for an interactive version of this type of example.

Find a set of symmetric equations for the normal line to the surface

xyz = 12

at the point (2, −2, −3).

Solution Begin by letting

F(x, y, z) = xyz − 12.

Then, the gradient is given by

 ∇F(x, y, z) = Fx(x, y, z)i + Fy(x, y, z)j + Fz(x, y, z)k
 = yzi + xzj + xyk

and at the point (2, −2, −3), you have

 ∇F(2, −2, −3) = (−2)(−3)i + (2)(−3)j + (2)(−2)k
 = 6i − 6j − 4k.

The normal line at (2, −2, −3) has direction numbers 6, −6, and −4, and the 
corresponding set of symmetric equations is

x − 2
6

=
y + 2
−6

=
z + 3
−4

.

See Figure 13.60. 

z

Surface:

1
2

z = 1 − (x2 + 4y2)1
10

y

x

1, 1, 

2

2

3

−3

6

−6

5

))

Figure 13.59

y

x

z

2

2

4

4

−6

−4

−2

−2

−4

∇F(2, −2, −3)

Surface:  xyz = 12

Figure 13.60
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 13.7 Tangent Planes and Normal Lines 935

Knowing that the gradient ∇F(x, y, z) is normal to the surface given by F(x, y, z) = 0 
allows you to solve a variety of problems dealing with surfaces and curves in space.

 Finding the Equation of a Tangent line to a curve

Find a set of parametric equations for the tangent line to the curve of intersection of 
the ellipsoid

x2 + 2y2 + 2z2 = 20 Ellipsoid

and the paraboloid

x2 + y2 + z = 4 Paraboloid

at the point (0, 1, 3), as shown in Figure 13.61.

Solution Begin by finding the gradients to both surfaces at the point (0, 1, 3).

Ellipsoid Paraboloid

 F(x, y, z) = x2 + 2y2 + 2z2 − 20  G(x, y, z) = x2 + y2 + z − 4

 ∇F(x, y, z) = 2xi + 4yj + 4zk  ∇G(x, y, z) = 2xi + 2yj + k

 ∇F(0, 1, 3) = 4j + 12k  ∇G(0, 1, 3) = 2j + k

The cross product of these two gradients is a vector that is tangent to both surfaces at 
the point (0, 1, 3).

∇F(0, 1, 3) × ∇G(0, 1, 3) = ∣ i
0
0

j
4
2

k
12
1∣ = −20i

So, the tangent line to the curve of intersection of the two surfaces at the point (0, 1, 3) 
is a line that is parallel to the x-axis and passes through the point (0, 1, 3). Because 
−20i = −20(i + 0j + 0k), the direction numbers are 1, 0, and 0. So a set of 
parametric equations for the tangent line passing through the point (0, 1, 3) is x = t, 
y = 1, and z = 3. 

The Angle of Inclination of a Plane
Another use of the gradient ∇F(x, y, z) is to determine the angle of inclination of the 
tangent plane to a surface. The angle of inclination of a plane is defined as the angle θ 
(0 ≤ θ ≤ π�2) between the given plane and the xy-plane, as shown in Figure 13.62. 
(The angle of inclination of a horizontal plane is defined as zero.) Because the vector k 
is normal to the xy-plane, you can use the formula for the cosine of the angle between 
two planes (given in Section 11.5) to conclude that the angle of inclination of a plane 
with normal vector n is

cos θ = ∣n ∙ k∣
�n� �k�

= ∣n ∙ k∣
�n�

.    Angle of inclination of a plane

y

x
θ

θ

z

n k

 The angle of inclination
 Figure 13.62

x
y

z

4 5
32

4

5

(0, 1, 3)

Ellipsoid: x2 + 2y2 + 2z2 = 20

Tangent line

Paraboloid: x2 + y2 + z = 4

Figure 13.61
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936 chapter 13 Functions of Several Variables

 Finding the Angle of Inclination of a Tangent Plane

Find the angle of inclination of the tangent plane to the ellipsoid

x2

12
+

y2

12
+

z2

3
= 1

at the point (2, 2, 1).

Solution Begin by letting

F(x, y, z) =
x2

12
+

y2

12
+

z2

3
− 1.

Then, the gradient of F at the point (2, 2, 1) is

∇F(x, y, z) =
x
6

i +
y
6

j +
2z
3

k

∇F(2, 2, 1) =
1
3

i +
1
3

j +
2
3

k.

Because ∇F(2, 2, 1) is normal to the tangent plane and k is normal to the xy-plane, it 
follows that the angle of inclination of the tangent plane is

cos θ = ∣∇F(2, 2, 1) ∙ k∣
�∇F(2, 2, 1)� =

2�3

√(1�3)2 + (1�3)2 + (2�3)2
=√2

3

which implies that

θ = arccos√2
3

≈ 35.3°

as shown in Figure 13.63. 

A special case of the procedure shown in Example 6 is worth noting. The angle of 
inclination θ of the tangent plane to the surface z = f (x, y) at (x0, y0, z0) is

cos θ =
1

√[ fx(x0, y0)]2 + [ fy(x0, y0)]2 + 1
.  Alternative formula for angle of

inclination (See Exercise 63.)

A Comparison of the Gradients ∇f (x, y) and ∇F(x, y, z)
This section concludes with a comparison of the gradients ∇f (x, y) and ∇F(x, y, z).
In the preceding section, you saw that the gradient of a function f  of two variables 
is normal to the level curves of f. Specifically, Theorem 13.12 states that if f  is 
differentiable at (x0, y0) and ∇f (x0, y0) ≠ 0, then ∇f (x0, y0) is normal to the level curve 
through (x0, y0). Having developed normal lines to surfaces, you can now extend this 
result to a function of three variables. The proof of Theorem 13.14 is left as an exercise 
(see Exercise 64).

ThEoREM 13.14 gradient Is normal to level Surfaces

If F is differentiable at (x0, y0, z0) and

∇F(x0, y0, z0) ≠ 0

then ∇F(x0, y0, z0) is normal to the level surface through (x0, y0, z0).

When working with the gradients ∇f (x, y) and ∇F(x, y, z), be sure you remember 
that ∇f (x, y) is a vector in the xy-plane and ∇F(x, y, z) is a vector in space.

+       +       = 1

y

x

θ ∇F(2, 2, 1)k

6
6

3

Ellipsoid:

x2 y2 z2

12 12 3

z

Figure 13.63
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 13.7 Tangent Planes and Normal Lines 937

13.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Tangent Vector Consider a point (x0, y0, z0) on a 

surface given by F(x, y, z) = 0. What is the relationship 
between ∇F(x0, y0, z0) and any tangent vector v at 
(x0, y0, z0)? How do you represent this relationship 
mathematically?

2.  normal line Consider a point (x0, y0, z0) on a surface 
given by F(x, y, z) = 0. What is the relationship between 
∇F(x0, y0, z0) and the normal line through (x0, y0, z0)?

 Describing a Surface In Exercises 3–6, 
describe the level surface F(x, y, z) = 0.

 3. F(x, y, z) = 3x − 5y + 3z − 15

 4. F(x, y, z) = 36 − x2 − y2 − z2

 5. F(x, y, z) = 4x2 + 9y2 − 4z2

 6. F(x, y, z) = 16x2 − 9y2 + 36z

 Finding an Equation of a Tangent Plane In 
Exercises 7–16, find an equation of the tangent 
plane to the surface at the given point.

 7. z = x2 + y2 + 3  8. f (x, y) =
y
x

 (2, 1, 8)  (1, 2, 2)
 

x y

(2, 1, 8)

z

2

2

4

6

10

2

  

x

y

(1, 2, 2)
2

4

6

6
4

2

6

8

10

z

 9. z = √x2 + y2, (3, 4, 5)

10. g(x, y) = arctan 
y
x
, (1, 0, 0)

11. g(x, y) = x2 + y2, (1, −1, 2)
12. f (x, y) = x2 − 2xy + y2, (1, 2, 1)
13. h(x, y) = ln√x2 + y2, (3, 4, ln 5)

14. f (x, y) = sin x cos y, (π3, 
π
6

, 
3
4)

15. x2 + y2 − 5z2 = 15, (−4, −2, 1)
16. x2 + 2z2 = y2, (1, 3, −2)

 Finding an Equation of a Tangent Plane 
and a normal line In Exercises 17–26,  
(a) find an equation of the tangent plane to the 
surface at the given point and (b) find a set of 
symmetric equations for the normal line to the 
surface at the given point.

17. x + y + z = 9, (3, 3, 3)
18. x2 + y2 + z2 = 9, (1, 2, 2)
19. x2 + 2y2 + z2 = 7, (1, −1, 2)
20. z = 16 − x2 − y2, (2, 2, 8)
21. z = x2 − y2, (3, 2, 5)
22. xy − z = 0, (−2, −3, 6)
23. xyz = 10, (1, 2, 5)
24. 6xy = z, (−1, 1, −6)
25. z = ye2xy, (0, 2, 2)
26. y ln xz2 = 2, (e, 2, 1)

 Finding the Equation of a Tangent line 
to a curve In Exercises 27–32, find a set of 
parametric equations for the tangent line to the 
curve of intersection of the surfaces at the given 
point.

27. x2 + y2 = 2, z = x, (1, 1, 1)
28. z = x2 + y2, z = 4 − y, (2, −1, 5)
29. x2 + z2 = 25, y2 + z2 = 25, (3, 3, 4)
30. z = √x2 + y2, 5x − 2y + 3z = 22, (3, 4, 5)
31. x2 + y2 + z2 = 14, x − y − z = 0, (3, 1, 2)
32. z = x2 + y2, x + y + 6z = 33, (1, 2, 5)

 Finding the Angle of Inclination of a 
Tangent Plane In Exercises 33–36, find the 
angle of inclination of the tangent plane to the 
surface at the given point.

33. 3x2 + 2y2 − z = 15, (2, 2, 5)
34. 2xy − z3 = 0, (2, 2, 2)
35. x2 − y2 + z = 0, (1, 2, 3)
36. x2 + y2 = 5, (2, 1, 3)

horizontal Tangent Plane In Exercises 37–42, find the 
point(s) on the surface at which the tangent plane is horizontal. 

37. z = 3 − x2 − y2 + 6y

38. z = 3x2 + 2y2 − 3x + 4y − 5

39. z = x2 − xy + y2 − 2x − 2y

40. z = 4x2 + 4xy − 2y2 + 8x − 5y − 4

41. z = 5xy

42. z = xy +
1
x

+
1
y
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938 chapter 13 Functions of Several Variables

Tangent Surfaces In Exercises 43 and 44, show that the 
surfaces are tangent to each other at the given point by showing 
that the surfaces have the same tangent plane at this point.

43. x2 + 2y2 + 3z2 = 3, x2 + y2 + z2 + 6x − 10y + 14 = 0,

 (−1, 1, 0)
44. x2 + y2 + z2 − 8x − 12y + 4z + 42 = 0,

 x2 + y2 + 2z = 7, (2, 3, −3)

Perpendicular Tangent Planes In Exercises 45 and 46, 
(a) show that the surfaces intersect at the given point and 
(b) show that the surfaces have perpendicular tangent planes 
at this point.

45. z = 2xy2, 8x2 − 5y2 − 8z = −13, (1, 1, 2)
46. x2 + y2 + z2 + 2x − 4y − 4z − 12 = 0,

 4x2 + y2 + 16z2 = 24, (1, −2, 1)

eXpLoRInG ConCeptS
47.  Tangent Plane The tangent plane to the surface 

represented by F(x, y, z) = 0 at a point P is also tangent 
to the surface represented by G(x, y, z) = 0 at P. Is 
∇F(x, y, z) = ∇G(x, y, z) at P? Explain.

48.  normal lines For some surfaces, the normal lines at 
any point pass through the same geometric object. What 
is the common geometric object for a sphere? What is the 
common geometric object for a right circular cylinder? 
Explain.

49.  Using an Ellipsoid Find a point on the ellipsoid 
3x2 + y2 + 3z2 = 1 where the tangent line is parallel to the 
plane −12x + 2y + 6z = 0.

50.  Using a hyperboloid Find a point on the hyperboloid 
x2 + 4y2 − z2 = 1 where the tangent plane is parallel to the 
plane x + 4y − z = 0.

51.  Using an Ellipsoid Find a point on the ellipsoid 
x2 + 4y2 + z2 = 9 where the tangent plane is perpendicular 
to the line with parametric equations

 x = 2 − 4t, y = 1 + 8t, and z = 3 − 2t.

 52.  hoW Do yoU SEE IT? The graph shows 
the ellipsoid x2 + 4y2 + z2 = 16. Use the 
graph to determine the equation of the tangent 
plane at each of the given points.

x

y

z

3

4

4

5
−3

(a) (4, 0, 0)  (b) (0, −2, 0)  (c) (0, 0, −4)

 52.  

53. Investigation Consider the function

f (x, y) =
4xy

(x2 + 1)(y2 + 1)

 on the intervals −2 ≤ x ≤ 2 and 0 ≤ y ≤ 3.

 (a)  Find a set of parametric equations of the normal line and 
an equation of the tangent plane to the surface at the point 
(1, 1, 1).

 (b) Repeat part (a) for the point (−1, 2, −4
5).

 (c)  Use a computer algebra system to graph the surface, the 
normal lines, and the tangent planes found in parts (a) and (b).

54. Investigation Consider the function

f (x, y) =
sin y

x

 on the intervals −3 ≤ x ≤ 3 and 0 ≤ y ≤ 2π.

 (a)  Find a set of parametric equations of the normal line and 
an equation of the tangent plane to the surface at the point

(2, 
π
2

, 
1
2).

 (b) Repeat part (a) for the point (−
2
3

, 
3π
2

, 
3
2).

(c)  Use a computer algebra system to graph the surface, the 
normal lines, and the tangent planes found in parts (a) and (b).

55. Using Functions Consider the functions

f (x, y) = 6 − x2 −
y2

4
 and g(x, y) = 2x + y.

 (a)  Find a set of parametric equations of the tangent line to the 
curve of intersection of the surfaces at the point (1, 2, 4)
and find the angle between the gradients of f  and g.

(b)  Use a computer algebra system to graph the surfaces and 
the tangent line found in part (a).

56. Using Functions Consider the functions

f (x, y) = √16 − x2 − y2 + 2x − 4y

 and

g(x, y) =
√2
2
√1 − 3x2 + y2 + 6x + 4y.

(a)  Use a computer algebra system to graph the first-octant 
portion of the surfaces represented by f  and g.

 (b)  Find one first-octant point on the curve of intersection and 
show that the surfaces are orthogonal at this point.

 (c)  These surfaces are orthogonal along the curve of intersection. 
Does part (b) prove this fact? Explain.

Writing a Tangent Plane In Exercises 57 and 58, show 
that the tangent plane to the quadric surface at the point 
(x0, y0, z0) can be written in the given form.

57. Ellipsoid: 
x2

a2 +
y2

b2 +
z2

c2 = 1

 Tangent plane: 
x0 x
a2 +

y0 y
b2 +

z0z
c2 = 1
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 13.7 Tangent Planes and Normal Lines 939

58. Hyperboloid: 
x2

a2 +
y2

b2 −
z2

c2 = 1

 Tangent plane: 
x0 x

a2 +
y0 y

b2 −
z0z

c2 = 1

59.  Tangent Planes of a cone Show that any tangent plane 
to the cone

 z2 = a2x2 + b2y2

 passes through the origin.

60.  Tangent Planes Let f  be a differentiable function and 
consider the surface

 z = xf (y
x).

  Show that the tangent plane at any point P(x0, y0, z0) on the 
surface passes through the origin.

61.  Approximation Consider the following approximations 
for a function f (x, y) centered at (0, 0).

 Linear Approximation:

 P1(x, y) = f (0, 0) + fx(0, 0)x + fy(0, 0)y

 Quadratic Approximation:

  P2(x, y) = f (0, 0) + fx(0, 0)x + fy(0, 0)y +

  12 fxx(0, 0)x2 + fxy(0, 0)xy + 1
2 fyy(0, 0)y2

  [Note that the linear approximation is the tangent plane to the 
surface at (0, 0, f (0, 0)).]

 (a)  Find the linear approximation of f (x, y) = ex−y centered 
at (0, 0).

 (b)  Find the quadratic approximation of f (x, y) = ex−y 
centered at (0, 0).

 (c)  When x = 0 in the quadratic approximation, you obtain 
the second-degree Taylor polynomial for what function? 
Answer the same question for y = 0.

 (d) Complete the table.

x y f (x, y) P1(x, y) P2(x, y)

0 0

0 0.1

0.2 0.1

0.2 0.5

1 0.5

 (e)  Use a computer algebra system to graph the surfaces 
z = f (x, y), z = P1(x, y), and z = P2(x, y).

62.  Approximation Repeat Exercise 61 for the function 
f (x, y) = cos(x + y).

63.  Proof Prove that the angle of inclination θ of the tangent 
plane to the surface z = f (x, y) at the point (x0, y0, z0) is given by

 cos θ =
1

√[ fx(x0, y0)]2 + [ fy(x0, y0)]2 + 1
.

64. Proof Prove Theorem 13.14.

The diversity of wildflowers in a meadow can be measured by 
counting the numbers of daisies, buttercups, shooting stars, and so 
on. When there are n types of wildflowers, each with a proportion 
pi of the total population, it follows that

p1 + p2 + .  .  . + pn = 1.

The measure of diversity of the population is defined as

H = − ∑
n

i=1
 pi log2 pi.

In this definition, it is understood that pi log2 pi = 0 when pi = 0. 
The tables show proportions of wildflowers in a meadow in May, 
June, August, and September.

May

Flower type 1 2 3 4

Proportion 5
16

5
16

5
16

1
16

June

Flower type 1 2 3 4

Proportion 1
4

1
4

1
4

1
4

August

Flower type 1 2 3 4

Proportion 1
4

0 1
4

1
2

September

Flower type 1 2 3 4

Proportion 0 0 0 1

(a)  Determine the wildflower diversity for each month. How 
would you interpret September’s diversity? Which month had 
the greatest diversity?

(b)  When the meadow contains 10 types of wildflowers in roughly 
equal proportions, is the diversity of the population greater 
than or less than the diversity of a similar distribution of  
4 types of flowers? What type of distribution (of 10 types of 
wildflowers) would produce maximum diversity?

(c)  Let Hn represent the maximum diversity of n types of 
wildflowers. Does Hn approach a limit as n approaches ∞?

Wildflowers

 For FurthEr InForMAtIon Biologists use the concept 
of diversity to measure the proportions of different types of organisms 
within an environment. For more information on this technique, 
see the article “Information Theory and Biological Diversity” by 
Steven Kolmes and Kevin Mitchell in the UMAP Modules.
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940 Chapter 13 Functions of Several Variables

13.8 Extrema of Functions of Two Variables

 Find absolute and relative extrema of a function of two variables.
 Use the Second Partials Test to find relative extrema of a function of two variables.

Absolute Extrema and Relative Extrema
In Chapter 3, you studied techniques for finding the extreme values of a function of 
a single variable. In this section, you will extend these techniques to functions of two 
variables. For example, in Theorem 13.15 below, the Extreme Value Theorem for a 
function of a single variable is extended to a function of two variables.

Consider the continuous function f  of two variables, defined on a closed bounded 
region R in the xy-plane. The values f (a, b) and f (c, d) such that

f (a, b) ≤ f (x, y) ≤ f (c, d) (a, b) and (c, d) are in R.

for all (x, y) in R are called the minimum and maximum of f  in the region R, as shown 
in Figure 13.64. Recall from Section 13.2 that a region in the plane is closed when it 
contains all of its boundary points. The Extreme Value Theorem deals with a region in 
the plane that is both closed and bounded. A region in the plane is bounded when it is 
a subregion of a closed disk in the plane.

THEOREM 13.15 Extreme Value Theorem

Let f  be a continuous function of two variables x and y defined on a closed 
bounded region R in the xy-plane.

1. There is at least one point in R at which f  takes on a minimum value.

2. There is at least one point in R at which f  takes on a maximum value.

A minimum is also called an absolute minimum and a maximum is also called an 
absolute maximum. As in single-variable calculus, there is a distinction made between 
absolute extrema and relative extrema.

Definition of Relative Extrema

Let f  be a function defined on a region R containing (x0, y0).

1. The function f  has a relative minimum at (x0, y0) if

f (x, y) ≥ f (x0, y0)

 for all (x, y) in an open disk containing (x0, y0).
2. The function f  has a relative maximum at (x0, y0) if

f (x, y) ≤ f (x0, y0)

 for all (x, y) in an open disk containing (x0, y0).

To say that f  has a relative maximum at (x0, y0) means that the point (x0, y0, z0) is 
at least as high as all nearby points on the graph of

z = f (x, y).

Similarly, f  has a relative minimum at (x0, y0) when (x0, y0, z0) is at least as low as all 
nearby points on the graph. (See Figure 13.65.)

Surface:
z = f (x, y)

x y

z

Maximum
Minimum

Closed bounded
region R

R contains point(s) at which f (x, y) is a 
minimum and point(s) at which f (x, y) 
is a maximum.
Figure 13.64

y

x

5

5

z

Relative extrema
Figure 13.65
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13.8 Extrema of Functions of Two Variables 941

To locate relative extrema of f, you can investigate the points at which the gradient 
of f  is 0 or the points at which one of the partial derivatives does not exist. Such points 
are called critical points of f.

Definition of Critical Point

Let f  be defined on an open region R containing (x0, y0). The point (x0, y0) is 
a critical point of f  if one of the following is true.

1. fx(x0, y0) = 0 and fy(x0, y0) = 0

2. fx(x0, y0) or fy(x0, y0) does not exist.

Recall from Theorem 13.11 that if f  is differentiable and

∇f (x0, y0) = fx(x0, y0)i + fy(x0, y0)j = 0i + 0j

then every directional derivative at (x0, y0) must be 0. This implies that the function has 
a horizontal tangent plane at the point (x0, y0), as shown in Figure 13.66. It appears that 
such a point is a likely location of a relative extremum. This is confirmed by Theorem 13.16.

(x0, y0, z0)

(x0, y0)

y

x

z Surface:
z = f (x, y)

  z

y

x

(x0, y0, z0)

(x0, y0)

Surface:
z = f (x, y)

 Relative maximum Relative minimum
 Figure 13.66

THEOREM 13.16 Relative Extrema Occur Only at Critical Points

If f  has a relative extremum at (x0, y0) on an open region R, then (x0, y0) is a 
critical point of f.

Exploration
Use a graphing utility to graph z = x3 − 3xy + y3 using the bounds 0 ≤ x ≤ 3,
0 ≤ y ≤ 3, and −3 ≤ z ≤ 3. This view makes it appear as though the surface 
has an absolute minimum. Does the surface have an absolute minimum? Why or 
why not?

3

−3

3

3

z

x

y

KARL WEIERSTRASS
(1815–1897)

Although the Extreme Value 
Theorem had been used by 
earlier mathematicians, the first 
to provide a rigorous proof 
was the German mathematician 
Karl Weierstrass. Weierstrass 
also provided rigorous 
justifications for many other 
mathematical results already in 
common use. We are indebted 
to him for much of the logical 
foundation on which modern 
calculus is built.
See LarsonCalculus.com to read 
more of this biography.

Jacques Boyer/Roger-Viollet/The Image Works

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



942 Chapter 13 Functions of Several Variables

 Finding a Relative Extremum

See LarsonCalculus.com for an interactive version of this type of example.

Determine the relative extrema of

f (x, y) = 2x2 + y2 + 8x − 6y + 20.

Solution Begin by finding the critical points of f. Because

fx(x, y) = 4x + 8 Partial with respect to x

and

fy(x, y) = 2y − 6 Partial with respect to y

are defined for all x and y, the only critical points are those for which both first partial 
derivatives are 0. To locate these points, set fx(x, y) and fy(x, y) equal to 0, and solve 
the equations

4x + 8 = 0 and 2y − 6 = 0

to obtain the critical point (−2, 3). By completing the square for f, you can see that for 
all (x, y) ≠ (−2, 3)

f (x, y) = 2(x + 2)2 + (y − 3)2 + 3 > 3.

So, a relative minimum of f  occurs at (−2, 3). The value of the relative minimum is 
f (−2, 3) = 3, as shown in Figure 13.67. 

Example 1 shows a relative minimum occurring at one type of critical point—the 
type for which both fx(x, y) and fy(x, y) are 0. The next example concerns a relative 
maximum that occurs at the other type of critical point—the type for which either 
fx(x, y) or fy(x, y) does not exist.

 Finding a Relative Extremum

Determine the relative extrema of

f (x, y) = 1 − (x2 + y2)1�3.

Solution Because

fx(x, y) = −
2x

3(x2 + y2)2�3 Partial with respect to x

and

fy(x, y) = −
2y

3(x2 + y2)2�3 Partial with respect to y

it follows that both partial derivatives exist for all points in the xy-plane except for 
(0, 0). Moreover, because the partial derivatives cannot both be 0 unless both x and y 
are 0, you can conclude that (0, 0) is the only critical point. In Figure 13.68, note that 
f (0, 0) is 1. For all other (x, y), it is clear that

f (x, y) = 1 − (x2 + y2)1�3 < 1.

So, f  has a relative maximum at (0, 0). 

In Example 2, fx(x, y) = 0 for every point on the y-axis other than (0, 0). However, 
because fy(x, y) is nonzero, these are not critical points. Remember that one of the 
partials must not exist or both must be 0 in order to yield a critical point.

x
y

z

−2
−3

−4

21
3 4 5

1

2

3

4

5

6

(−2, 3, 3)

Surface:
f(x, y) = 2x2 + y2 + 8x − 6y + 20

The function z = f (x, y) has a relative 
minimum at (−2, 3).
Figure 13.67

Surface:
f(x, y) = 1 − (x2 + y2)1/3

y

x

z

44
3

2

1

(0, 0, 1)

fx(x, y) and fy(x, y) are undefined at 
(0, 0).
Figure 13.68
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13.8 Extrema of Functions of Two Variables 943

The Second Partials Test
Theorem 13.16 tells you that to find relative extrema, you need only examine values of 
f (x, y) at critical points. However, as is true for a function of one variable, the critical 
points of a function of two variables do not always yield relative maxima or minima. 
Some critical points yield saddle points, which are neither relative maxima nor relative 
minima.

As an example of a critical point that does 

y

x

z f (x, y) = y2 − x2

Saddle point at (0, 0, 0): 
fx(0, 0) = fy(0, 0) = 0
Figure 13.69

not yield a relative extremum, consider the 
hyperbolic paraboloid

f (x, y) = y2 − x2

as shown in Figure 13.69. At the point (0, 0), 
both partial derivatives

fx(x, y) = −2x and fy(x, y) = 2y

are 0. The function f  does not, however, have a 
relative extremum at this point because in any 
open disk centered at (0, 0), the function takes 
on both negative values (along the x-axis) and 
positive values (along the y-axis), So, the point 
(0, 0, 0) is a saddle point of the surface. (The
term “saddle point” comes from the fact that 
surfaces such as the one shown in Figure 13.69 
resemble saddles.)

For the functions in Examples 1 and 2, it was relatively easy to determine the relative 
extrema, because each function was either given, or able to be written, in completed 
square form. For more complicated functions, algebraic arguments are less convenient 
and it is better to rely on the analytic means presented in the following Second Partials 
Test. This is the two-variable counterpart of the Second Derivative Test for functions 
of one variable. The proof of this theorem is best left to a course in advanced calculus.

THEOREM 13.17 Second Partials Test

Let f  have continuous second partial derivatives on an open region containing 
a point (a, b) for which

f x(a, b) = 0 and fy(a, b) = 0.

To test for relative extrema of f, consider the quantity

d = fxx(a, b) fyy(a, b) − [ fxy(a, b)]2.

1. If d > 0 and fxx(a, b) > 0, then f  has a relative minimum at (a, b).
2. If d > 0 and fxx(a, b) < 0, then f  has a relative maximum at (a, b).
3. If d < 0, then (a, b, f (a, b)) is a saddle point.

4. The test is inconclusive if d = 0.

A convenient device for remembering the formula for d in the Second Partials Test 
is given by the 2 × 2 determinant

d = ∣ fxx(a, b)
fyx(a, b)

fxy(a, b)
fyy(a, b)∣

where fxy(a, b) = fyx(a, b) by Theorem 13.3.

REMARK If d > 0, then 
fxx(a, b) and fyy(a, b) must 
have the same sign. This 
means that fxx(a, b) can be 
replaced by fyy(a, b) in the 
first two parts of the test.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



944 Chapter 13 Functions of Several Variables

 Using the Second Partials Test

Find the relative extrema of f (x, y) = −x3 + 4xy − 2y2 + 1.

Solution Begin by finding the critical points of f. Because

fx(x, y) = −3x2 + 4y and fy(x, y) = 4x − 4y

exist for all x and y, the only critical points are those for which both first partial 
derivatives are 0. To locate these points, set fx(x, y) and fy(x, y) equal to 0 to obtain

−3x2 + 4y = 0 and 4x − 4y = 0.

From the second equation, you know that x = y, and, by substitution into the first 
equation, you obtain two solutions: y = x = 0 and y = x = 4

3. Because

fxx(x, y) = −6x, fyy(x, y) = −4, and fxy(x, y) = 4

it follows that, for the critical point (0, 0),

d = fxx(0, 0) fyy(0, 0) − [ fxy(0, 0)]2 = 0 − 16 < 0

and, by the Second Partials Test, you can conclude that (0, 0, 1) is a saddle point of f. 
Furthermore, for the critical point (4

3, 43),

 d = fxx(4
3

, 
4
3) fyy(4

3
, 

4
3) − [ fxy(4

3
, 

4
3)]

2

 = −8(−4) − 16

 = 16

 > 0

and because fxx(4
3, 43) = −8 < 0, you can conclude that f  has a relative maximum at 

(4
3, 43), as shown in Figure 13.70. 

The Second Partials Test can fail to find relative extrema in two ways. If either of 
the first partial derivatives does not exist, you cannot use the test. Also, if

d = fxx(a, b) fyy(a, b) − [ fxy(a, b)]2 = 0

the test fails. In such cases, you can try a sketch or some other approach, as demonstrated 
in the next example.

 Failure of the Second Partials Test

Find the relative extrema of f (x, y) = x2y2.

Solution Because fx(x, y) = 2xy2 and fy(x, y) = 2x2y, you know that both partial 
derivatives are 0 when x = 0 or y = 0. That is, every point along the x- or y-axis is a 
critical point. Moreover, because

fxx(x, y) = 2y2, fyy(x, y) = 2x2, and fxy(x, y) = 4xy

you know that

 d = fxx(x, y) fyy(x, y) − [ fxy(x, y)]2

 = 4x2y2 − 16x2y2

 = −12x2y2

which is 0 when either x = 0 or y = 0. So, the Second Partials Test fails. However, 
because f (x, y) = 0 for every point along the x- or y-axis and f (x, y) = x2y2 > 0 for 
all other points, you can conclude that each of these critical points yields an absolute 
minimum, as shown in Figure 13.71. 

x

y

z

2
2

1

If y = 0,
then f (x, y) = 0.

If x = 0,
then f (x, y) = 0.

f(x, y) = x2y2

Figure 13.71

y

x

4
3

4
3

, ( (

23

4

3

4

5

6

7

8

9

Saddle point
(0, 0, 1)Relative

maximum

z

f(x, y) = −x3 + 4xy − 2y2 + 1

Figure 13.70
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 13.8 Extrema of Functions of Two Variables 945

Absolute extrema of a function can occur in two ways. First, some relative extrema 
also happen to be absolute extrema. For instance, in Example 1, f (−2, 3) is an absolute 
minimum of the function. (On the other hand, the relative maximum found in Example 3 
is not an absolute maximum of the function.) Second, absolute extrema can occur at a 
boundary point of the domain. This is illustrated in Example 5.

 Finding Absolute Extrema

Find the absolute extrema of the function

f (x, y) = sin xy

on the closed region given by

0 ≤ x ≤ π  and 0 ≤ y ≤ 1.

Solution From the partial derivatives

fx(x, y) = y cos xy and fy(x, y) = x cos xy

you can see that each point lying on the hyperbola xy = π�2 is a critical point. These 
points each yield the value

f (x, y) = sin 
π
2

= 1

which you know is the absolute maximum, as   
shown in Figure 13.72. The only other critical  

y

x

1

1

3

Absolute
minima

Absolute
minima

Absolute
maxima

(  , 1)π Domain:
0 ≤ x ≤
0 ≤ y ≤ 1

π

z
Surface:
f(x, y) = sin xy

πxy =
2

Figure 13.72 

 
point of f  lying in the given region is (0, 0). It 
yields an absolute minimum of 0, because

0 ≤ xy ≤ π

implies that

0 ≤ sin xy ≤ 1.

To locate other absolute extrema, you should 
consider the four boundaries of the region formed 
by taking traces with the vertical planes x = 0, 
x = π, y = 0, and y = 1. In doing this, you will 
find that sin xy = 0 at all points on the x-axis, at 
all points on the y-axis, and at the point (π, 1). 
Each of these points yields an absolute minimum 
for the surface, as shown in Figure 13.72.

The concepts of relative extrema and critical points can be extended to functions 
of three or more variables. When all first partial derivatives of

w = f (x1, x2, x3, .  .  . , xn)

exist, it can be shown that a relative maximum or minimum can occur at 
(x1, x2, x3, .  .  . , xn) only when every first partial derivative is 0 at that point. This 
means that the critical points are obtained by solving the following system of equations.

  fx1
(x1, x2, x3, .  .  . , xn) = 0

  fx2
(x1, x2, x3, .  .  . , xn) = 0

 ⋮
  fxn

(x1, x2, x3, .  .  . , xn) = 0

The extension of Theorem 13.17 to three or more variables is also possible, although 
you will not study such an extension in this text.
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946 Chapter 13 Functions of Several Variables

13.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Function of Two Variables For a function of two 

variables, describe (a) relative minimum, (b) relative 
maximum, (c) critical point, and (d) saddle point.

2.  Second Partials Test Under what condition does 
the Second Partials Test fail?

 Finding Relative Extrema In Exercises 3–8, 
identify any extrema of the function by recognizing 
its given form or its form after completing the 
square. Verify your results by using the partial 
derivatives to locate any critical points and test for 
relative extrema.

 3. g(x, y) = (x − 1)2 + (y − 3)2

 4. g(x, y) = 5 − (x − 6)2 − (y + 2)2

 5. f (x, y) = √x2 + y2 + 1

 6. f (x, y) = √49 − (x − 2)2 − y2

 7. f (x, y) = x2 + y2 + 2x − 6y + 6

 8. f (x, y) = −x2 − y2 + 10x + 12y − 64

 Using the Second Partials Test In Exercises 
9–24, find all relative extrema and saddle points of 
the function. Use the Second Partials Test where 
applicable.

 9. f (x, y) = x2 + y2 + 8x − 12y − 3

10. g(x, y) = x2 − y2 − x − y

11. f (x, y) = −2x4y4 12. f (x, y) = 1
2xy

13. f (x, y) = −3x2 − 2y2 + 3x − 4y + 5

14. h(x, y) = x2 − 3xy − y2

15. f (x, y) = 7x2 + 2y2 − 7x + 16y − 13

16. f (x, y) = x5 + y5

17. z = x2 + xy + 1
2 y2 − 2x + y

18. z = −5x2 + 4xy − y2 + 16x + 10

19. f (x, y) = −4(x2 + y2 + 81)1�4

20. h(x, y) = (x2 + y2)1�3 + 2

21. f (x, y) = x2 − xy − y2 − 3x − y

 

y

x 3 3

4

z

22. f (x, y) = 2xy − 1
2(x4 + y4) + 1

 

y

x

2

−2

3

z

23. z = e−x sin y 

y

x

3

8

4

2

6

6 π

z

24. z = (1
2

− x2 + y2)e1−x2−y2

 

y

x

4

4

2

z

Finding Relative Extrema and Saddle Points Using 
Technology In Exercises 25–28, use a computer algebra 
system to graph the surface and locate any relative extrema 
and saddle points.

25. z =
−4x

x2 + y2 + 1

26. z = cos x + sin y, −π�2 < x < π�2, −π < y < π

27. z = (x2 + 4y2)e1−x2−y2 28. z = exy

Finding Relative Extrema In Exercises 29 and 30, examine 
the function for extrema without using the derivative tests and 
use a computer algebra system to graph the surface and verify 
your answers. (Hint: By observation, determine whether it is 
possible for z to be negative. When is z equal to 0?)

29. z =
(x − y)4

x2 + y2  30. z =
(x2 − y2)2

x2 + y2
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13.8 Extrema of Functions of Two Variables 947

Think About It In Exercises 31–34, determine whether 
there is a relative maximum, a relative minimum, a saddle 
point, or insufficient information to determine the nature of 
the function f (x, y) at the critical point (x0, y0).

31. fxx(x0, y0) = 9, fyy(x0, y0) = 4, fxy(x0, y0) = 6

32. fxx(x0, y0) = −3, fyy(x0, y0) = −8, fxy(x0, y0) = 2

33. fxx(x0, y0) = −9, fyy(x0, y0) = 6, fxy(x0, y0) = 10

34. fxx(x0, y0) = 25, fyy(x0, y0) = 8, fxy(x0, y0) = 10

Finding Relative Extrema and Saddle Points In 
Exercises 35–38, (a) find the critical points, (b) test for relative 
extrema, (c) list the critical points for which the Second 
Partials Test fails, and (d) use a computer algebra system to 
graph the function, labeling any extrema and saddle points.

35. f (x, y) = x3 + y3

36. f (x, y) = x3 + y3 − 6x2 + 9x2 + 12x + 27y + 19

37. f (x, y) = (x − 1)2(y + 4)2

38. f (x, y) = x2�3 + y2�3

 Finding Absolute Extrema In Exercises 
39– 46, find the absolute extrema of the function 
over the region R. (In each case, R contains the 
boundaries.) Use a computer algebra system to 
confirm your results.

39. f (x, y) = x2 − 4xy + 5

 R = {(x, y): 1 ≤ x ≤ 4, 0 ≤ y ≤ 2}
40. f (x, y) = x2 + xy, R = {(x, y): ∣x∣ ≤ 2, ∣y∣ ≤ 1}
41. f (x, y) = 12 − 3x − 2y

 R:  The triangular region in the xy-plane with vertices (2, 0), 
(0, 1), and (1, 2)

42. f (x, y) = (2x − y)2

 R:  The triangular region in the xy-plane with vertices (2, 0), 
(0, 1), and (1, 2)

43. f (x, y) = 3x2 + 2y2 − 4y

 R:  The region in the xy-plane bounded by the graphs of y = x2 
and y = 4

44. f (x, y) = 2x − 2xy + y2

 R:  The region in the xy-plane bounded by the graphs of y = x2 
and y = 1

45. f (x, y) = x2 + 2xy + y2, R = {(x, y): ∣x∣ ≤ 2, ∣y∣ ≤ 1}

46. f (x, y) =
4xy

(x2 + 1)(y2 + 1)
 R = {(x, y): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

Examining a Function In Exercises 47 and 48, find 
the critical points of the function and, from the form of the 
function, determine whether a relative maximum or a relative 
minimum occurs at each point.

47. f (x, y, z) = x2 + (y − 3)2 + (z + 1)2

48. f (x, y, z) = 9 − [x(y − 1)(z + 2)]2

eXpLoRInG ConCeptS
49.  Using the Second Partials Test A function f  

has continuous second partial derivatives on an open 
region containing the critical point (3, 7). The function 
has a minimum at (3, 7), and d > 0 for the Second 
Partials Test. Determine the interval for fxy(3, 7) when 
fxx(3, 7) = 2 and fyy(3, 7) = 8.

50.  Using the Second Partials Test A function f  
has continuous second partial derivatives on an open 
region containing the critical point (a, b). If fxx(a, b) and 
fyy(a, b) have opposite signs, what is implied? Explain.

Sketching a Graph In Exercises 51 and 52, sketch 
the graph of an arbitrary function f  satisfying the given 
conditions. State whether the function has any extrema or 
saddle points. (There are many correct answers.)

51. All of the first and second partial derivatives of f  are 0.

52. fx(x, y) > 0 and fy(x, y) < 0 for all (x, y).

53. Comparing Functions Consider the functions

 f (x, y) = x2 − y2 and g(x, y) = x2 + y2.

 (a)  Show that both functions have a critical point at (0, 0).
 (b)  Explain how f  and g behave differently at this critical 

point.

 54.  HOW DO YOU SEE IT? Determine 
whether each labeled point is an absolute 
maximum, an absolute minimum, or neither.

y
x

22

2

−2

z

A

C

B

 54.  

True or False? In Exercises 55–58, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

55.  If f  has a relative maximum at (x0, y0, z0), then

 fx(x0, y0) = fy(x0, y0) = 0.

56.  If fx(x0, y0) = fy(x0, y0) = 0, then f  has a relative extremum 
at (x0, y0, z0).

57.  Between any two relative minima of f, there must be at least 
one relative maximum of f.

58.  If f  is continuous for all x and y and has two relative minima, 
then f  must have at least one relative maximum.
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948 Chapter 13 Functions of Several Variables

13.9 Applications of Extrema

 Solve optimization problems involving functions of several variables.
 Use the method of least squares.

Applied Optimization Problems
In this section, you will study a few of the many applications of extrema of functions 
of two (or more) variables.

 Finding Maximum Volume

See LarsonCalculus.com for an interactive version of this type of example.

A rectangular box is resting on the xy-plane with one vertex at the origin. The opposite 
vertex lies in the plane

6x + 4y + 3z = 24

as shown in Figure 13.73. Find the maximum volume of the box.

Solution Let x, y, and z represent the length, width, and height of the box. 
Because one vertex of the box lies in the plane 6x + 4y + 3z = 24, you know that 
z = 1

3 (24 − 6x − 4y). So, you can write the volume xyz of the box as a function of 
two variables.

 V(x, y) = (x)(y)[1
3 (24 − 6x − 4y)]

 = 1
3 (24xy − 6x2y − 4xy2)

Next, find the first partial derivatives of V.

Vx(x, y) =
1
3

(24y − 12xy − 4y2) =
y
3

(24 − 12x − 4y)

Vy(x, y) =
1
3

(24x − 6x2 − 8xy) =
x
3

(24 − 6x − 8y)

Note that the first partial derivatives are defined for all x and y. So, by setting 
Vx(x, y) and Vy(x, y) equal to 0 and solving the equations 1

3 y(24 − 12x − 4y) = 0 and
1
3 x(24 − 6x − 8y) = 0, you obtain the critical points (0, 0), (4, 0), (0, 6), and (4

3, 2). 
At (0, 0), (4, 0), and (0, 6), the volume is 0, so these points do not yield a maximum 
volume. At the point (4

3, 2), you can apply the Second Partials Test.

Vxx(x, y) = −4y

Vyy(x, y) =
−8x

3

Vxy(x, y) =
1
3

(24 − 12x − 8y)

Because

Vxx(4
3, 2)Vyy(4

3, 2) − [Vxy(4
3, 2)]2 = (−8)(−32

9 ) − (−8
3)2 = 64

3 > 0

and

Vxx(4
3, 2) = −8 < 0

you can conclude from the Second Partials Test that the maximum volume is

V(4
3, 2) = 1

3[24(4
3)(2) − 6(4

3)2(2) − 4(4
3)(22)] = 64

9  cubic units.

Note that the volume is 0 at the boundary points of the triangular domain of V. 

reMark In many applied 
problems, the domain of the 
function to be optimized is a 
closed bounded region. To find 
minimum or maximum points, 
you must not only test critical 
points, but also consider the  
values of the function at points 
on the boundary.

y

x (4, 0, 0)
(0, 6, 0)

(0, 0, 8)

z

Plane:
6x + 4y + 3z = 24

Figure 13.73
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 13.9 Applications of Extrema 949

Applications of extrema in economics and business often involve more than one 
independent variable. For instance, a company may produce several models of one type 
of product. The price per unit and profit per unit are usually different for each model. 
Moreover, the demand for each model is often a function of the prices of the other models 
(as well as its own price). The next example illustrates an application involving two 
products.

 Finding the Maximum Profit

A manufacturer determines that the profit P (in dollars) obtained by producing and 
selling x units of Product 1 and y units of Product 2 is approximated by the model

P(x, y) = 8x + 10y − (0.001)(x2 + xy + y2) − 10,000.

Find the production level that produces a maximum profit. What is the maximum profit?

Solution The partial derivatives of the profit function are

Px(x, y) = 8 − (0.001)(2x + y)

and

Py(x, y) = 10 − (0.001)(x + 2y).

By setting these partial derivatives equal to 0, you obtain the following system of equations.

 8 − (0.001)(2x + y) = 0

 10 − (0.001)(x + 2y) = 0

After simplifying, this system of linear equations can be written as

 2x +  y =  8000

 x +  2y =  10,000.

Solving this system produces x = 2000 and y = 4000. The second partial derivatives 
of P are

Pxx(2000, 4000) = −0.002

Pyy(2000, 4000) = −0.002

Pxy(2000, 4000) = −0.001.

Because Pxx < 0 and

Pxx(2000, 4000)Pyy(2000, 4000) − [Pxy(2000, 4000)]2 = (−0.002)2 − (−0.001)2

is greater than 0, you can conclude that the production level of x = 2000 units and 
y = 4000 units yields a maximum profit. The maximum profit is

P(2000, 4000)
= 8(2000) + 10(4000) − (0.001)[20002 + 2000(4000) + 40002] − 10,000

= $18,000. 

In Example 2, it was assumed that the manufacturing plant is able to produce the 
required number of units to yield a maximum profit. In actual practice, the production 
would be bounded by physical constraints. You will study such constrained optimization 
problems in the next section.

 For Further InFormatIon For more information on the use of mathematics 
in economics, see the article “Mathematical Methods of Economics” by Joel Franklin 
in The American Mathematical Monthly. To view this article, go to MathArticles.com.
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950 Chapter 13 Functions of Several Variables

The Method of Least Squares
Many of the examples in this text have involved mathematical models. For instance, 
Example 2 involves a quadratic model for profit. There are several ways to develop 
such models; one is called the method of least squares.

In constructing a model to represent a particular phenomenon, the goals are 
simplicity and accuracy. Of course, these goals often conflict. For instance, a simple 
linear model for the points in Figure 13.74 is

y = 1.9x − 5.

However, Figure 13.75 shows that by choosing the slightly more complicated quadratic 
model

y = 0.20x2 − 0.7x + 1

you can achieve greater accuracy.

5

105

10

15

y

x

y = 1.9x − 5

(11, 17)

(9, 12)

(7, 6)

(5, 2)(2, 1)

   

5

105

10

15

y

x

(11, 17)

(9, 12)

(7, 6)

(5, 2)(2, 1)

y = 0.20x2 − 0.7x + 1

 Figure 13.74 Figure 13.75

As a measure of how well the model y = f (x) fits the collection of points

{(x1, y1), (x2, y2), (x3, y3), .  .  . , (xn, yn)}

you can add the squares of the differences between the actual y-values and the values 
given by the model to obtain the sum of the squared errors

S = ∑
n

i=1
 [ f (xi) − yi]2.    Sum of the squared errors

Graphically, S can be interpreted as the sum of  

x

(x3, y3)

(x2, y2)

(x1, y1)

d1

d2

d3

y = f(x)

y

Sum of the squared errors: 
S = d1

2 + d2
2 + d3

2

Figure 13.76

the squares of the vertical distances between the 
graph of f  and the given points in the plane, as 
shown in Figure 13.76. If the model is perfect, 
then S = 0. However, when perfection is not 
feasible, you can settle for a model that 
minimizes S. For instance, the sum of the squared 
errors for the linear model in Figure 13.74 is

S = 17.6.

Statisticians call the linear model that minimizes  
S the least squares regression line. The proof  
that this line actually minimizes S involves the  
minimizing of a function of two variables.

reMark A method 
for finding the least squares 
regression quadratic for 
a collection of data is 
described in Exercise 31.
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13.9 Applications of Extrema 951

theoreM 13.18 Least Squares regression Line

The least squares regression line for {(x1, y1), (x2, y2), .  .  . , (xn, yn)} is given 
by f (x) = ax + b, where

a =
n∑

n

i=1
 xiyi − ∑

n

i=1
 xi∑

n

i=1
 yi

n∑
n

i=1
 xi

2 − (∑
n

i=1
 xi)

2  and b =
1
n (∑

n

i=1
 yi − a∑

n

i=1
 xi).

Proof Let S(a, b) represent the sum of the squared errors for the model

f (x) = ax + b

and the given set of points. That is,

S(a, b) = ∑
n

i=1
 [ f (xi) − yi]2

 = ∑
n

i=1
 (axi + b − yi)2

where the points (xi, yi) represent constants. Because S is a function of a and b, you 
can use the methods discussed in the preceding section to find the minimum value of S.
Specifically, the first partial derivatives of S are

 Sa(a, b) = ∑
n

i=1
 2xi(axi + b − yi)

 = 2a∑
n

i=1
 xi

2 + 2b∑
n

i=1
 xi − 2∑

n

i=1
 xiyi

and

 Sb(a, b) = ∑
n

i=1
 2(axi + b − yi)

 = 2a∑
n

i=1
 xi + 2nb − 2∑

n

i=1
 yi.

By setting these two partial derivatives equal to 0, you obtain the values of a and b 
that are listed in the theorem. It is left to you to apply the Second Partials Test (see 
Exercise 41) to verify that these values of a and b yield a minimum. 

If the x-values are symmetrically spaced about the y-axis, then ∑ xi = 0 and the 
formulas for a and b simplify to

a =
∑
n

i=1
 xiyi

∑
n

i=1
 xi

2

and

b =
1
n

 ∑
n

i=1
 yi.

This simplification is often possible with a translation of the x-values. For instance, 
given that the x-values in a data collection consist of the values 9, 10, 11, 12, and 13, 
you could let 11 be represented by 0.

ADRIEN-MARIE LEGENDRE
(1752–1833)

The method of least squares 
was introduced by the French 
mathematician Adrien-Marie 
Legendre. Legendre is best known 
for his work in geometry. In fact, 
his text Elements of Geometry 
was so popular in the United 
States that it continued to be 
used for 33 editions, spanning a 
period of more than 100 years.
See LarsonCalculus.com to read 
more of this biography.
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952 Chapter 13 Functions of Several Variables

 Finding the Least Squares regression Line

Find the least squares regression line for the points

(−3, 0), (−1, 1), (0, 2), and (2, 3).

Solution The table shows the calculations involved in finding the least squares 
regression line using n = 4.

x y xy x2

−3 0 0 9

−1 1 −1 1

0 2 0 0

2 3 6 4

∑
n

i=1
 xi = −2 ∑

n

i=1
 yi = 6 ∑

n

i=1
 xiyi = 5 ∑

n

i=1
 xi

2 = 14

Applying Theorem 13.18 produces

 a =
n∑

n

i=1
 xiyi − ∑

n

i=1
 xi ∑

n

i=1
 yi

n∑
n

i=1
 xi

2 − (∑
n

i=1
 xi)

2

 =
4(5) − (−2)(6)
4(14) − (−2)2

 =
8
13

and

 b =
1
n (∑

n

i=1
 yi − a∑

n

i=1
 xi)

 =
1
4[6 −

8
13

(−2)]
 =

47
26

.

The least squares regression line is

f (x) =
8
13

x +
47
26

as shown in Figure 13.77.

3

1

2

21−1−2−3
x

(0, 2)

(2, 3)

(−1, 1)(−3, 0)

y

x + 8
13

f(x) = 47
26

 Least squares regression line
 Figure 13.77 

teChnoLogy Many  
calculators have “built-in” least 
squares regression programs.  
If your calculator has such a  
program, use it to duplicate  
the results of Example 3.
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 13.9 Applications of Extrema 953

13.9 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  applied optimization Problems In your own 

words, state the problem-solving strategy for applied 
minimum and maximum problems.

2.  Method of Least Squares In your own words, 
describe the method of least squares for finding 
mathematical models.

 Finding Minimum Distance In exercises 3 
and 4, find the minimum distance from the point 
to the plane x − y + z = 3. (Hint: to simplify the 
computations, minimize the square of the distance.)

 3. (1, −3, 2)  4. (4, 0, 6)

Finding Minimum Distance In exercises 5 and 6, 
find the minimum distance from the point to the surface 
z = √1 − 2x − 2y. (Hint: to simplify the computations, 
minimize the square of the distance.)

 5. (−2, −2, 0)  6. (−4, 1, 0)

 Finding Positive numbers In exercises 7–10, 
find three positive integers x, y, and z that satisfy 
the given conditions.

 7. The product is 27, and the sum is a minimum.

 8. The sum is 32, and P = xy2z is a maximum.

 9. The sum is 30, and the sum of the squares is a minimum.

10. The product is 1, and the sum of the squares is a minimum.

11.  Cost A home improvement contractor is painting the walls  
and ceiling of a rectangular room. The volume of the room is 
668.25 cubic feet. The cost of wall paint is $0.06 per square 
foot and the cost of ceiling paint is $0.11 per square foot. Find 
the room dimensions that result in a minimum cost for the 
paint. What is the minimum cost for the paint?

12.  Maximum Volume The material for constructing the 
base of an open box costs 1.5 times as much per unit area as 
the material for constructing the sides. For a fixed amount of 
money C, find the dimensions of the box of largest volume 
that can be made.

13.  Volume and Surface area Show that a rectangular box 
of given volume and minimum surface area is a cube.

14.  Maximum Volume Show that the rectangular box of 
maximum volume inscribed in a sphere of radius r is a cube.

15.  Maximum revenue A company manufactures running 
shoes and basketball shoes. The total revenue (in thousands 
of dollars) from x1 units of running shoes and x2 units of 
basketball shoes is

 R = −5x 2
1 − 8x2

2 − 2x1x2 + 42x1 + 102x2

  where x1 and x2 are in thousands of units. Find x1 and x2 so as 
to maximize the revenue. 

16.  Maximum Profit A corporation manufactures candles at 
two locations. The cost of producing x1 units at location 1 is 
C1 = 0.02x1

2 + 4x1 + 500 and the cost of producing x2 units 
at location 2 is C2 = 0.05x 2

2 + 4x2 + 275. The candles sell for 
$15 per unit. Find the quantity that should be produced at each 
location to maximize the profit P = 15(x1 + x2) − C1 − C2.

17.  hardy-Weinberg Law Common blood types are 
determined genetically by three alleles A, B, and O. (An allele 
is any of a group of possible mutational forms of a gene.) A 
person whose blood type is AA, BB, or OO is homozygous. A 
person whose blood type is AB, AO, or BO is heterozygous. 
The Hardy-Weinberg Law states that the proportion P of 
heterozygous individuals in any given population is

 P( p, q, r) = 2pq + 2pr + 2qr

  where p represents the percent of allele A in the population,
q represents the percent of allele B in the population, and r
represents the percent of allele O in the population. Use the 
fact that

 p + q + r = 1

  to show that the maximum proportion of heterozygous 
 individuals in any population is 23.

18.  Shannon Diversity Index One way to measure species 
diversity is to use the Shannon diversity index H. If a habitat 
consists of three species, A, B, and C, then its Shannon diversity 
index is

 H = −x ln x − y ln y − z ln z

  where x is the percent of species A in the habitat, y is the  
percent of species B in the habitat, and z is the percent of 
species C in the habitat. Use the fact that

 x + y + z = 1

  to show that the maximum value of H occurs when 
x = y = z = 1

3. What is the maximum value of H?

19.  Minimum Cost A water line is to be built from point P 
to point S and must pass through regions where construction 
costs differ (see figure). The cost per kilometer (in dollars) is 
3k from P to Q, 2k from Q to R, and k from R to S. Find x and 
y such that the total cost C will be minimized.

1 km

P

Q

R

S

x

y

10 km

2 km

   

30 − 2x

x x

θθ

 Figure for 19 Figure for 20

20.  area A trough with trapezoidal cross sections is formed by 
turning up the edges of a 30-inch-wide sheet of aluminum (see 
figure). Find the cross section of maximum area.
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954 Chapter 13 Functions of Several Variables

 Finding the Least Squares regression 
Line In exercises 21–24, (a) find the least squares 
regression line and (b) calculate S, the sum of the 
squared errors. use the regression capabilities of a 
graphing utility to verify your results.

21. 

x

1

1

2

2

3

−1
−1−2

(0, 1)

(2, 3)

(−2, 0)

y  22. 

x

1

1

2

2

3

4

3

−2

−1−2−3

(1, 1)
(3, 2)

(−1, 1)
(−3, 0)

y

23. 

x

1

1

2

2

3

4

43

(1, 3)

(1, 1)

(0, 4)

(2, 0)

y  24. 

x

1

1

2

2 5 643

(3, 1) (4, 1)

(4, 2)

(5, 2)

(6, 2)

(2, 0)

(3, 0)(1, 0)

y

Finding the Least Squares regression Line In 
exercises 25–28, find the least squares regression line for the 
points. use the regression capabilities of a graphing utility to 
verify your results. use the graphing utility to plot the points 
and graph the regression line.

25. (0, 0), (1, 1), (3, 6), (4, 8), (5, 9)
26. (0, 4), (4, 1), (7, −3)
27. (0, 6), (4, 3), (5, 0), (8, −4), (10, −5)
28. (6, 4), (1, 2), (3, 3), (8, 6), (11, 8), (13, 8)

29.  Modeling Data The table shows the gross income tax 
collections (in billions of dollars) by the Internal Revenue 
Service for individuals x and businesses y for selected years. 
(Source: U.S. Internal Revenue Service)

Year 1980 1985 1990 1995

Individual, x 288 397 540 676

Business, y 72 77 110 174

Year 2000 2005 2010 2015

Individual, x 1137 1108 1164 1760

Business, y 236 307 278 390

 (a)  Use the regression capabilities of a graphing utility to find 
the least squares regression line for the data.

 (b)  Use the model to estimate the business income taxes collected 
when the individual income taxes collected is $1300 billion.

 (c)  In 1975, the individual income taxes collected was 
$156 billion and the business income taxes collected was 
$46 billion. Describe how including this information 
would affect the model.

30.  Modeling Data The ages x (in years) and systolic blood 
pressures y (in mmHg) of seven men are shown in the table.

Age, x 16 25 39 45 49 64 70

Systolic
Blood 
Pressure, y

109 122 150 165 159 183 199

 (a)  Use the regression capabilities of a graphing utility to find 
the least squares regression line for the data.

 (b)  Use a graphing utility to plot the data and graph the model.

 (c)  Use the model to approximate the change in systolic blood 
pressure for each one-year increase in age.

 (d)  A 30-year-old man has a systolic blood pressure of
180 mmHg. Describe how including this information 
would affect the model.

eXpLoRInG ConCeptS
31.  Method of Least Squares Find a system of 

equations whose solution yields the coefficients a, b, and 
c for the least squares regression quadratic

y = ax2 + bx + c

  for the points (x1, y1), (x2, y2), .  .  . , (xn, yn) by 
minimizing the sum

S(a, b, c) = ∑
n

i=1
 (yi − ax2

i − bxi − c)2.

 32.  hoW Do yoU See It? Match the regression 
equation with the appropriate graph. Explain your 
reasoning. (Note that the x- and y-axes are broken.)

(a) y = 0.22x − 7.5

(b) y = −0.35x + 11.5

(c) y = 0.09x + 19.8

(d) y = −1.29x + 89.8

(i)

10 15 20 25

3
4
5
6
7
8
9

x

y  (ii)

20 30 40 50

65

25

35

45

55

x

y

(iii)

1200 1800 2400

120

150

180

210

240

x

y  (iv)

50 55 60 65 70 75

4
5
6
7
8
9

10

x

y

 32.  
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 13.9 Applications of Extrema 955

Finding the Least Squares regression Quadratic In 
exercises 33–36, use the result of exercise 31 to find the least 
squares regression quadratic for the points. use the regression 
capabilities of a graphing utility to verify your results. use the 
graphing utility to plot the points and graph the least squares 
regression quadratic.

33. (−2, 0), (−1, 0), (0, 1), (1, 2), (2, 5)
34. (−4, 5), (−2, 6), (2, 6), (4, 2)
35. (0, 0), (2, 2), (3, 6), (4, 12)
36. (0, 10), (1, 9), (2, 6), (3, 0)

37.  Modeling Data After a new turbocharger for an 
automobile engine was developed, the following experimental 
data were obtained for speed y in miles per hour at two-second 
time intervals x.

Time, x 0 2 4 6 8 10

Speed, y 0 15 30 50 65 70

 (a)  Use the result of Exercise 31 to find the least squares 
regression quadratic for the data.

 (b)  Use a graphing utility to plot the points and graph the model.

38.  Modeling Data The table shows the total numbers 
of enrollees y (in millions) for the Veterans Health 
Administration for 2010 through 2014. Let x = 0 represent the 
year 2010. (Source: U.S. Department of Veterans Affairs)

Year, x 2010 2011 2012 2013 2014

Total Enrollees, y 8.3 8.6 8.8 8.9 9.1

 (a)  Use the regression capabilities of a graphing utility to find 
the least squares regression line for the data.

 (b)  Use the regression capabilities of a graphing utility to find 
the least squares regression quadratic for the data.

 (c)  Use a graphing utility to plot the data and graph the models.

 (d)  Use both models to forecast the total number of enrollees 
for the year 2025. How do the two models differ as you 
extrapolate into the future?

39.  Modeling Data A meteorologist measures the atmospheric 
pressure P (in kilograms per square meter) at altitude h (in 
kilometers). The data are shown below.

Altitude, h 0 5 10 15 20

Pressure, P 10,332 5583 2376 1240 517

 (a)  Use the regression capabilities of a graphing utility to find 
the least squares regression line for the points (h, ln P).

 (b)  The result in part (a) is an equation of the form 
ln P = ah + b. Write this logarithmic form in exponential 
form.

 (c)  Use a graphing utility to plot the original data and graph 
the exponential model in part (b).

40.  Modeling Data The endpoints of the interval over which 
distinct vision is possible are called the near point and far point 
of the eye. With increasing age, these points normally change. 
The table shows the approximate near points y (in inches) 
for various ages x (in years). (Source: Ophthalmology & 
Physiological Optics)

Age, x 16 32 44 50 60

Near Point, y 3.0 4.7 9.8 19.7 39.4

 (a)  Find a rational model for the data by taking the reciprocals 
of the near points to generate the points (x, 1�y). Use the 
regression capabilities of a graphing utility to find the least 
squares regression line for the revised data. The resulting 
line has the form 1�y = ax + b. Solve for y.

 (b) Use a graphing utility to plot the data and graph the model.

 (c)  Do you think the model can be used to predict the near 
point for a person who is 70 years old? Explain.

41.  Using the Second Partials test Use the Second 
Partials Test to verify that the formulas for a and b given in 
Theorem 13.18 yield a minimum.

 [Hint: Use the fact that n∑
n

i=1
 xi

2 ≥ (∑
n

i=1
 xi)

2

.]

An oil company wishes to construct a pipeline from its offshore 
facility A to its refinery B. The offshore facility is 2 miles from 
shore, and the refinery is 1 mile inland. Furthermore, A and B are 
5 miles apart, as shown in the figure.

1 mi

5 mi

P

A

B

x

2 mi

 The cost of building the pipeline is $3 million per mile in the 
water and $4 million per mile on land. So, the cost of the pipeline 
depends on the location of point P, where it meets the shore. What 
would be the most economical route of the pipeline?

 Imagine that you are to write a report to the oil company 
about this problem. Let x be the distance shown in the figure. 
Determine the cost of building the pipeline from A to P and the 
cost of building it from P to B. Analyze some sample pipeline 
routes and their corresponding costs. For instance, what is the cost 
of the most direct route? Then use calculus to determine the route 
of the pipeline that minimizes the cost. Explain all steps of your 
development and include any relevant graphs.

Building a Pipeline
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956 Chapter 13 Functions of Several Variables

13.10 Lagrange Multipliers

 Understand the Method of Lagrange Multipliers.
 Use Lagrange multipliers to solve constrained optimization problems.
 Use the Method of Lagrange Multipliers with two constraints.

Lagrange Multipliers
Many optimization problems have restrictions, or constraints, on the values that can be 
used to produce the optimal solution. Such constraints tend to complicate optimization 
problems because the optimal solution can occur at a boundary point of the domain. 
In this section, you will study an ingenious technique for solving such problems. It is 
called the Method of Lagrange Multipliers.

To see how this technique works, consider the problem of finding the rectangle of 
maximum area that can be inscribed in the ellipse

x2

32 +
y2

42 = 1.

Let (x, y) be the vertex of the rectangle in the first quadrant, as shown in Figure 13.78. 
Because the rectangle has sides of lengths 2x and 2y, its area is given by

f (x, y) = 4xy. Objective function

You want to find x and y such that f (x, y) is a maximum. Your choice of (x, y) is restricted 
to first-quadrant points that lie on the ellipse

x2

32 +
y2

42 = 1. Constraint

Now, consider the constraint equation to be a fixed level curve of

g(x, y) =
x2

32 +
y2

42.

The level curves of f  represent a family of hyperbolas

f (x, y) = 4xy = k.

In this family, the level curves that meet the constraint correspond to the hyperbolas 
that intersect the ellipse. Moreover, to maximize f (x, y), you want to find the hyperbola 
that just barely satisfies the constraint. The level curve that does this is the one that is 
tangent to the ellipse, as shown in Figure 13.79.

Ellipse:
x2 y2

= 1
32 42

+

x

y

2

2 4

1

1

3

−2

−2−4
−1

−1

−3

(x, y)

   

x

y

2

2 4 5 6

5

1

1

3

−2

−2
−1

−1

−3

Level curves of f:
4xy = k

k = 24
k = 40
k = 56
k = 72

 Objective function: f (x, y) = 4xy Constraint: g(x, y) =
x2

32 +
y2

42 = 1

 Figure 13.78 Figure 13.79

LAGRANGE MULTIPLIERS

The Method of Lagrange Multipliers 
is named after the French 
mathematician Joseph-Louis 
Lagrange. Lagrange first introduced 
the method in his famous paper 
on mechanics, written when he 
was just 19 years old.
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13.10 Lagrange Multipliers 957

To find the appropriate hyperbola, use the fact that two curves are tangent at a 
point if and only if their gradients are parallel. This means that ∇f (x, y) must be a scalar 
multiple of ∇g(x, y) at the point of tangency. In the context of constrained optimization 
problems, this scalar is denoted by λ (the lowercase Greek letter lambda).

∇f (x, y) = λ∇g(x, y)

The scalar λ is called a Lagrange multiplier. Theorem 13.19 gives the necessary 
conditions for the existence of such multipliers.

THeOreM 13.19 Lagrange’s Theorem

Let f  and g have continuous first partial derivatives such that f  has 
an extremum at a point (x0, y0) on the smooth constraint curve 
g(x, y) = c. If ∇g(x0, y0) ≠ 0, then there is a real number λ such that

∇f (x0, y0) = λ∇g(x0, y0).

Proof To begin, represent the smooth curve given by g(x, y) = c by the vector-
valued function

r(t) = x(t)i + y(t)j, r′(t) ≠ 0

where x′ and y′ are continuous on an open interval I. Define the function h as 
h(t) = f (x(t), y(t)). Then, because f (x0, y0) is an extreme value of f, you know that

h(t0) = f (x(t0), y(t0)) = f (x0, y0)

is an extreme value of h. This implies that h′(t0) = 0, and, by the Chain Rule,

h′(t0) = fx(x0, y0)x′(t0) + fy(x0, y0)y′(t0) = ∇f (x0, y0) ∙ r′(t0) = 0.

So, ∇f (x0, y0) is orthogonal to r′(t0). Moreover, by Theorem 13.12, ∇g(x0, y0) is also 
orthogonal to r′(t0). Consequently, the gradients ∇f (x0, y0) and ∇g(x0, y0) are parallel, 
and there must exist a scalar λ such that

∇f (x0, y0) = λ∇g(x0, y0). 

The Method of Lagrange Multipliers uses Theorem 13.19 to find the extreme 
values of a function f  subject to a constraint.

reMark Lagrange’s 
Theorem can be shown to 
be true for functions of three 
variables, using a similar 
argument with level surfaces 
and Theorem 13.14.

reMark As you will 
see in Examples 1 and 2, the 
Method of Lagrange Multipliers 
requires solving systems of 
nonlinear equations. This 
often can require some tricky 
algebraic manipulation. 

Method of Lagrange Multipliers

Let f  and g satisfy the hypothesis of Lagrange’s Theorem, and let f  have a 
minimum or maximum subject to the constraint g(x, y) = c. To find the 
minimum or maximum of f, use these steps.

1.  Simultaneously solve the equations ∇f (x, y) = λ∇g(x, y) and g(x, y) = c 
by solving the following system of equations.

  fx(x, y) = λgx(x, y)
  fy(x, y) = λgy(x, y)
 g(x, y) = c

2.  Evaluate f  at each solution point obtained in the first step. The greatest 
value yields the maximum of f  subject to the constraint g(x, y) = c, and the 
least value yields the minimum of f  subject to the constraint g(x, y) = c.
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958 Chapter 13 Functions of Several Variables

Constrained Optimization Problems
In the problem at the beginning of this section, you wanted to maximize the area 
of a rectangle that is inscribed in an ellipse. Example 1 shows how to use Lagrange 
multipliers to solve this problem.

 Using a Lagrange Multiplier with One Constraint

Find the maximum value of f (x, y) = 4xy, where x > 0 and y > 0, subject to the 
constraint (x2�32) + (y2�42) = 1.

Solution To begin, let

g(x, y) =
x2

32 +
y2

42 = 1.

By equating ∇f (x, y) = 4yi + 4xj and λ∇g(x, y) = (2λx�9)i + (λy�8)j, you obtain the 
following system of equations.

 4y =
2
9
λx fx(x, y) = λgx(x, y)

 4x =
1
8
λy fy(x, y) = λgy(x, y)

 
x2

32 +
y2

42 = 1  Constraint

From the first equation, you obtain λ = 18y�x, and substitution into the second equation 
produces

4x =
1
8 (

18y
x )y  x2 =

9
16

y2.

Substituting this value for x2 into the third equation produces

1
9 (

9
16

y2) +
1
16

y2 = 1  y2 = 8  y = ±2√2.

Because y > 0, choose the positive value and find that

 x2 =
9
16

y2

 =
9
16

(8)

 =
9
2

 x = ±
3

√2
.

Because x > 0, choose the positive value. So, the maximum value of f  is

f ( 3

√2
, 2√2) = 4( 3

√2)(2√2) = 24. 

Example 1 can also be solved using the techniques you learned in Chapter 3. To 
see how, try to find the maximum value of A = 4xy given that (x2�32) + (y2�42) = 1. 
To begin, solve the second equation for y to obtain y = 4

3√9 − x2. Then substitute into 
the first equation to obtain A = 4x(4

3√9 − x2). Finally, use the techniques of Chapter 3  
to maximize A.

reMark Note in Example 1 
that writing the constraint as

x2

32 +
y2

42 = 1

or

x2

32 +
y2

42 − 1 = 0

does not affect the solution—the 
constant is eliminated when you 
form ∇g.
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 a Business application

The Cobb-Douglas production function (see Section 13.1) for a manufacturer is given 
by

f (x, y) = 100x3�4y1�4 Objective function

where x represents the units of labor (at $150 per unit) and y represents the units of 
capital (at $250 per unit). The total cost of labor and capital is limited to $50,000. Find 
the maximum production level for this manufacturer.

Solution The gradient of f  is

∇f (x, y) = 75x−1�4y1�4i + 25x3�4y−3�4j.

The limit on the cost of labor and capital produces the constraint

g(x, y) = 150x + 250y = 50,000. Constraint

So, λ∇g(x, y) = 150λi + 250λj. This gives rise to the following system of equations.

 75x−1�4y1�4 = 150λ  fx(x, y) = λgx(x, y)

 25x3�4y−3�4 = 250λ  fy(x, y) = λgy(x, y)

 150x + 250y = 50,000 Constraint

By solving for λ in the first equation

λ =
75x−1�4y1�4

150
=

x−1�4y1�4

2

and substituting into the second equation, you obtain

 25x3�4y−3�4 = 250(x−1�4y1�4

2 )
 25x = 125y  Multiply by x1�4 y3�4.

 x = 5y.

By substituting this value for x in the third equation, you have

 150(5y) + 250y = 50,000

 1000y = 50,000

 y = 50 units of capital.

This means that the value of x is

 x = 5(50)
 = 250 units of labor.

So, the maximum production level is

  f (250, 50) = 100(250)3�4(50)1�4

 ≈ 16,719 units of product. 

Economists call the Lagrange multiplier obtained in a production function the 
marginal productivity of money. For instance, in Example 2, the marginal productivity 
of money at x = 250 and y = 50 is

λ =
x−1�4y1�4

2
=

(250)−1�4(50)1�4

2
≈ 0.334

which means that for each additional dollar spent on production, an additional 0.334 unit 
of the product can be produced.

 FOR FURTHER INFORMATION
For more information on the use of 
Lagrange multipliers in economics, 
see the article “Lagrange Multiplier 
Problems in Economics” by John 
V. Baxley and John C. Moorhouse 
in The American Mathematical 
Monthly. To view this article, 
go to MathArticles.com.

For some industrial applications, 
a robot can cost more than the 
annual wages and benefits for 
one employee. So, manufacturers 
must carefully balance the 
amount of money spent on labor 
and capital.

RicAguiar/Getty Images
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960 Chapter 13 Functions of Several Variables

 Lagrange Multipliers and Three Variables

See LarsonCalculus.com for an interactive version of this type of example.

Find the minimum value of

f (x, y, z) = 2x2 + y2 + 3z2 Objective function

subject to the constraint 2x − 3y − 4z = 49.

Solution Let g(x, y, z) = 2x − 3y − 4z = 49. Then, because

∇f (x, y, z) = 4xi + 2yj + 6zk

and

λ∇g(x, y, z) = 2λi − 3λj − 4λk

you obtain the following system of equations.

 4x = 2λ  fx(x, y, z) = λgx(x, y, z)

 2y = −3λ fy(x, y, z) = λgy(x, y, z)

 6z = −4λ fz(x, y, z) = λgz(x, y, z)

 2x − 3y − 4z = 49  Constraint

The solution of this system is x = 3, y = −9, and z = −4. So, the optimum value of f  is

  f (3, −9, −4) = 2(3)2 + (−9)2 + 3(−4)2

 = 147.

From the original function and constraint, it is clear that f (x, y, z) has no maximum. So, 
the optimum value of f  determined above is a minimum. 

A graphical interpretation of constrained optimization problems in two variables 
was given at the beginning of this section. In three variables, the interpretation is  
similar, except that level surfaces are used instead of level curves. For instance, 
in Example 3, the level surfaces of f  are ellipsoids centered at the origin, and the  
constraint

2x − 3y − 4z = 49

is a plane. The minimum value of f  is represented by the ellipsoid that is tangent to the 
constraint plane, as shown in Figure 13.80.

 Optimization Inside a region

Find the extreme values of

f (x, y) = x2 + 2y2 − 2x + 3 Objective function

subject to the constraint x2 + y2 ≤ 10.

Solution To solve this problem, you can break the constraint into two cases.

a.  For points on the circle x2 + y2 = 10, you can use Lagrange multipliers to find that 
the maximum value of f (x, y) is 24—this value occurs at (−1, 3) and at (−1, −3). 
In a similar way, you can determine that the minimum value of f (x, y) is approximately 
6.675—this value occurs at (√10, 0).

b.  For points inside the circle, you can use the techniques discussed in Section 13.8 to 
conclude that the function has a relative minimum of 2 at the point (1, 0).

By combining these two results, you can conclude that f  has a maximum of 24 at 
(−1, ±3) and a minimum of 2 at (1, 0), as shown in Figure 13.81. 

z

y

x24

16

−16

8

Point of tangency
(3, −9, −4)

Ellipsoid:
2x2 + y2 + 3z2 = 147

Plane:
2x − 3y − 4z = 49

Figure 13.80

x

y
2

3
4 4

8

16

24

32

40
(−1, −3, 24)

(−1, 3, 24)

10, 0, 6.675( (
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maxima

Relative
minimum
(1, 0, 2)

z

Figure 13.81
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 13.10 Lagrange Multipliers 961

The Method of Lagrange Multipliers with Two Constraints
For optimization problems involving two constraint functions g and h, you can introduce 
a second Lagrange multiplier, μ (the lowercase Greek letter mu), and then solve the 
equation

∇f = λ∇g + μ∇h

where the gradients are not parallel, as illustrated in Example 5.

 Optimization with Two Constraints

Let T(x, y, z) = 20 + 2x + 2y + z2 represent the temperature at each point on the 
sphere

x2 + y2 + z2 = 11.

Find the extreme temperatures on the curve formed by the intersection of the plane 
x + y + z = 3 and the sphere.

Solution The two constraints are

g(x, y, z) = x2 + y2 + z2 = 11 and h(x, y, z) = x + y + z = 3.

Using

 ∇T(x, y, z) = 2i + 2j + 2zk

 λ∇g(x, y, z) = 2λxi + 2λyj + 2λzk

and

μ∇h(x, y, z) = μi + μj + μk

you can write the following system of equations.

 2 = 2λx + μ Tx(x, y, z) = λgx(x, y, z) + μhx(x, y, z)

 2 = 2λy + μ Ty(x, y, z) = λgy(x, y, z) + μhy(x, y, z)

 2z = 2λz + μ Tz(x, y, z) = λgz(x, y, z) + μhz(x, y, z)

 x2 + y2 + z2 = 11  Constraint 1

 x + y + z = 3  Constraint 2

By subtracting the second equation from the first, you obtain the following system.

 λ(x − y) = 0

 2z(1 − λ) − μ = 0

 x2 + y2 + z2 = 11

 x + y + z = 3

From the first equation, you can conclude that λ = 0 or x = y. For λ = 0, you can 
show that the critical points are (3, −1, 1) and (−1, 3, 1). (Try doing this—it takes  
a little work.) For λ ≠ 0, then x = y and you can show that the critical points occur 
when x = y = (3 ± 2√3)�3 and z = (3 ∓ 4√3)�3. Finally, to find the optimal 
solutions, compare the temperatures at the four critical points.

T(3, −1, 1) = T(−1, 3, 1) = 25

T(3 − 2√3
3

, 
3 − 2√3

3
, 

3 + 4√3
3 ) =

91
3

≈ 30.33

T(3 + 2√3
3

, 
3 + 2√3

3
, 

3 − 4√3
3 ) =

91
3

≈ 30.33

So, T = 25 is the minimum temperature and T = 91
3  is the maximum temperature on  

the curve. 

reMark The systems of 
equations that arise when the 
Method of Lagrange Multipliers 
is used are not, in general, 
linear systems, and finding the 
solutions often requires ingenuity.
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962 Chapter 13 Functions of Several Variables

13.10 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Constrained Optimization Problems Explain 

what is meant by constrained optimization problems.

2.  Method of Lagrange Multipliers In your own 
words, describe the Method of Lagrange Multipliers for 
solving constrained optimization problems.

 Using Lagrange Multipliers In Exercises 
3–10, use Lagrange multipliers to find the indicated 
extrema, assuming that x and y are positive.

 3. Maximize f (x, y) = xy

 Constraint: x + y = 10

 4. Minimize f (x, y) = 2x + y

 Constraint: xy = 32

 5. Minimize f (x, y) = x2 + y2

 Constraint: x + 2y − 5 = 0

 6. Maximize f (x, y) = x2 − y2

 Constraint: 2y − x2 = 0

 7. Maximize f (x, y) = 2x + 2xy + y

 Constraint: 2x + y = 100

 8. Minimize f (x, y) = 3x + y + 10

 Constraint: x2y = 6

 9. Maximize f (x, y) = √6 − x2 − y2

 Constraint: x + y − 2 = 0

10. Minimize f (x, y) = √x2 + y2

 Constraint: 2x + 4y − 15 = 0

 Using Lagrange Multipliers In Exercises 
11–14, use Lagrange multipliers to find the 
indicated extrema, assuming that x, y, and z are 
positive.

11. Minimize f (x, y, z) = x2 + y2 + z2

 Constraint: x + y + z − 9 = 0

12. Maximize f (x, y, z) = xyz

 Constraint: x + y + z − 3 = 0

13. Minimize f (x, y, z) = x2 + y2 + z2

 Constraint: x + y + z = 1

14. Maximize f (x, y, z) = x + y + z

 Constraint: x2 + y2 + z2 = 1

 Using Lagrange Multipliers In Exercises 
15 and 16, use Lagrange multipliers to find any 
extrema of the function subject to the constraint 
x2 + y2 ≤ 1.

15. f (x, y) = x2 + 3xy + y2 16. f (x, y) = e−xy�4

 Using Lagrange Multipliers In Exercises 
17 and 18, use Lagrange multipliers to find the 
indicated extrema of f  subject to two constraints, 
assuming that x, y, and z are nonnegative.

17. Maximize f (x, y, z) = xyz

 Constraints: x + y + z = 32, x − y + z = 0

18. Minimize f (x, y, z) = x2 + y2 + z2

 Constraints: x + 2z = 6, x + y = 12

 Finding Minimum Distance In Exercises 
19–28, use Lagrange multipliers to find the 
minimum distance from the curve or surface 
to the indicated point. (Hint: To simplify the 
computations, minimize the square of the distance.)

 Curve Point

19. Line: x + y = 1 (0, 0)
20. Line: 2x + 3y = −1 (0, 0)
21. Line: x − y = 4 (0, 2)
22. Line: x + 4y = 3 (1, 0)
23. Parabola: y = x2 (0, 3)
24. Parabola: y = x2 (−3, 0)
25. Circle: x2 + (y − 1)2 = 9 (4, 4)
26. Circle: (x − 4)2 + y2 = 4 (0, 10)
 Surface Point

27. Plane: x + y + z = 1 (2, 1, 1)
28. Cone: z = √x2 + y2 (4, 0, 0)

Intersection of Surfaces In Exercises 29 and 30, use 
Lagrange multipliers to find the highest point on the curve of 
intersection of the surfaces.

29. Cone: x2 + y2 − z2 = 0 30. Sphere: x2 + y2 + z2 = 36

 Plane: x + 2z = 4  Plane: 2x + y − z = 2

Using Lagrange Multipliers In Exercises 31–38, use 
Lagrange multipliers to solve the indicated exercise in  
Section 13.9.

31. Exercise 3 32. Exercise 4

33. Exercise 7 34. Exercise 8

35. Exercise 11 36. Exercise 12

37. Exercise 17 38. Exercise 18

39.  Maximum Volume Use Lagrange multipliers to find the 
dimensions of a rectangular box of maximum volume that can 
be inscribed (with edges parallel to the coordinate axes) in the 
ellipsoid

 
x2

a2 +
y2

b2 +
z2

c2 = 1.
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13.10 Lagrange Multipliers 963

40.  HOW DO YOU See IT? The graphs show 
the constraint and several level curves of the 
objective function. Use the graph to approximate 
the indicated extrema.

(a) Maximize z = xy (b) Minimize z = x2 + y2

 Constraint: 2x + y = 4 Constraint: x + y − 4 = 0

x

2

2

4

4

6

6

c = 2
c = 4

c = 6

y  

x

4

4

c = 2
c = 4
c = 6
c = 8

−4

−4

y

40.  

eXpLoRInG ConCeptS
41.  Method of Lagrange Multipliers Explain why

you cannot use Lagrange multipliers to find the minimum 
of the function f (x, y) = x subject to the constraint 
y2 + x4 − x3 = 0.

42.  Method of Lagrange Multipliers Draw the level 
curves for f (x, y) = x2 + y2 = c for c = 1, 2, 3, and 4, 
and sketch the constraint x + y = 2. Explain analytically 
how you know that the extremum of f (x, y) = x2 + y2 at 
(1, 1) is a minimum instead of a maximum.

43. Minimum Cost A cargo container (in the shape of a 
rectangular solid) must have a volume of 480 cubic feet. The 
bottom will cost $5 per square foot to construct, and the sides 
and the top will cost $3 per square foot to construct. Use 
Lagrange multipliers to find the dimensions of the container 
of this size that has minimum cost.

44. Geometric and arithmetic Means

 (a)  Use Lagrange multipliers to prove that the product of three 
positive numbers x, y, and z, whose sum has the constant 
value S, is a maximum when the three numbers are equal. 
Use this result to prove that 

3√xyz ≤ x + y + z
3

.

 (b)  Generalize the result of part (a) to prove that the product 
x1x2x3 .  .  . xn is a maximum when

x1 = x2 = x3 = .  .  . = xn, ∑
n

i=1
 xi = S, and all xi ≥ 0.

  Then prove that

  n√x1x2x3 .  .  . xn ≤
x1 + x2 + x3 + .  .  . + xn

n
.

   This shows that the geometric mean is never greater than 
the arithmetic mean.

45.  Minimum Surface area Use Lagrange multipliers to 
find the dimensions of a right circular cylinder with volume V0

and minimum surface area.

46.  Temperature Let T(x, y, z) = 100 + x2 + y2 represent 
the temperature at each point on the sphere

x2 + y2 + z2 = 50.

  Use Lagrange multipliers to find the maximum temperature 
on the curve formed by the intersection of the sphere and the 
plane x − z = 0.

47. refraction of Light When light waves traveling in a 
transparent medium strike the surface of a second transparent 
medium, they tend to “bend” in order to follow the path of 
minimum time. This tendency is called refraction and is 
described by Snell’s Law of Refraction,

sin θ1

v1
=

sin θ2

v2

  where θ1 and θ2 are the magnitudes of the angles shown in 
the figure, and v1 and v2 are the velocities of light in the two 
media. Use Lagrange multipliers to derive this law using 
x + y = a.

a

x

d1

y
1θ

2θ
Q

d2

Medium 1

Medium 2

P  

l

h

 Figure for 47 Figure for 48

48.  area and Perimeter A semicircle is on top of a rectangle 
(see figure). When the area is fixed and the perimeter is a 
minimum, or when the perimeter is fixed and the area is a 
maximum, use Lagrange multipliers to verify that the length 
of the rectangle is twice its height.

 Production Level In Exercises 49 and 50, use
Lagrange multipliers to find the maximum 
production level when the total cost of labor (at 
$112 per unit) and capital (at $60 per unit) is 
limited to $250,000, where P is the production 
function, x is the number of units of labor, and y is 
the number of units of capital.

49. P(x, y) = 100x0.25y0.75 50. P(x, y) = 100x0.4y0.6

Cost In Exercises 51 and 52, use Lagrange multipliers to 
find the minimum cost of producing 50,000 units of a product, 
where P is the production function, x is the number of units of 
labor (at $72 per unit), and y is the number of units of capital 
(at $80 per unit).

51. P(x, y) = 100x0.25y0.75 52. P(x, y) = 100x0.6y0.4

pUtnAM eXAM ChALLenGe
53.  A can buoy is to be made of three pieces, namely, a 

cylinder and two equal cones, the altitude of each cone 
being equal to the altitude of the cylinder. For a given area 
of surface, what shape will have the greatest volume?

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Evaluating a Function In Exercises 1 and 2, evaluate 
the function at the given values of the independent variables. 
Simplify the results.

 1. f (x, y) = x2y − 3

 (a) f (0, 4)  (b) f (2, −1) (c) f (−3, 2) (d) f (x, 7)
 2. f (x, y) = 6 − 4x − 2y2

 (a) f (0, 2)  (b) f (5, 0) (c) f (−1, −2) (d) f (−3, y)

Finding the Domain and Range of a Function In 
Exercises 3 and 4, find the domain and range of the function.

 3. f (x, y) =
√x
y

 4. f (x, y) = √36 − x2 − y2

Sketching a Surface In Exercises 5 and 6, describe and 
sketch the surface given by the function.

 5. f (x, y) = −2  6. g(x, y) = x

Sketching a Contour Map In Exercises 7 and 8, describe 
the level curves of the function. Sketch a contour map of the 
surface using level curves for the given c-values.

 7. z = 3 − 2x + y, c = 0, 2, 4, 6, 8

 8. z = 2x2 + y2, c = 1, 2, 3, 4, 5

 9. Conjecture Consider the function f (x, y) = x2 + y2.

 (a) Sketch the graph of the surface given by f.

 (b)  Make a conjecture about the relationship between the 
graphs of f  and g(x, y) = f (x, y) + 2. Explain your 
reasoning.

 (c)  Make a conjecture about the relationship between the 
graphs of f  and g(x, y) = f (x, y − 2). Explain your  
reasoning.

 (d)  On the surface in part (a), sketch the graphs of z = f (1, y) 
and z = f (x, 1).

10.  Cobb-Douglas Production Function A manufacturer 
estimates that its production can be modeled by

 f (x, y) = 100x0.8y0.2

  where x is the number of units of labor and y is the number of 
units of capital.

 (a) Find the production level when x = 100 and y = 200.

 (b) Find the production level when x = 500 and y = 1500.

Sketching a Level Surface In Exercises 11 and 12, 
describe and sketch the graph of the level surface f (x, y, z) = c 
at the given value of c.

11. f (x, y, z) = x2 − y + z2, c = 2

12. f (x, y, z) = 4x2 − y2 + 4z2, c = 0

Limit and Continuity In Exercises 13–18, find the limit (if 
it exists) and discuss the continuity of the function.

13. lim
(x, y)→(1, 1)

 
xy

x2 + y2 14. lim
(x, y)→(1, 1)

 
xy

x2 − y2

15. lim
(x, y)→(0, 0)

 
y + xe−y2

1 + x2  16. lim
(x, y)→(0, 0)

 
x2y

x4 + y2

17. lim
(x, y, z)→(−3, 1, 2)

 
ln z

xy − z
 18. lim

(x, y, z)→(1, 3, π)
 sin 

xz
2y

Finding Partial Derivatives In Exercises 19–26, find all 
first partial derivatives.

19. f (x, y) = 5x3 + 7y − 3 20. f (x, y) = 4x2 − 2xy + y2

21. f (x, y) = ex cos y 22. f (x, y) =
xy

x + y

23. f (x, y) = y3ey�x 24. z = ln(x2 + y2 + 1)
25. f (x, y, z) = 2xz2 + 6xyz 26. w = √x2 − y2 − z2

Finding and Evaluating Partial Derivatives In 
Exercises 27–30, find all first partial derivatives, and evaluate 
each at the given point.

27. f (x, y) = x2 − y, (0, 2) 28. f (x, y) = xe2y, (−1, 1)
29. f (x, y, z) = xy cos xz, (2, 3, −π�3)
30. f (x, y, z) = √x2 + y − z2, (−3, −3, 1)

Finding Second Partial Derivatives In Exercises 31–34, 
find the four second partial derivatives. Observe that the  
second mixed partials are equal.

31. f (x, y) = 3x2 − xy + 2y3 32. h(x, y) =
x

x + y

33. h(x, y) = x sin y + y cos x 34. g(x, y) = cos(x − 2y)

35.  Finding the Slopes of a Surface Find the slopes of 
the surface z = x2 ln(y + 1) in the x- and y-directions at the 
point (2, 0, 0).

36.  Marginal Revenue A company has two plants that  
produce the same lawn mower. If x1 and x2 are the numbers 
of units produced at plant 1 and plant 2, respectively, then the 
total revenue for the product is given by

 R = 300x1 + 300x2 − 5x 2
1 − 10x1x2 − 5x 2

2 .

  When x1 = 5 and x2 = 8, find (a) the marginal revenue for 
plant 1, ∂R�∂x1, and (b) the marginal revenue for plant 2, 
∂R�∂x2.

Finding a Total Differential In Exercises 37–40, find the 
total differential.

37. z = x sin xy 38. z = 5x4y3

39. w = 3xy2 − 2x3yz2 40. w =
3x + 4y
y + 3z
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  Review Exercises 965

Using a Differential as an Approximation In Exercises 
41 and 42, (a) find f (2, 1) and f (2.1, 1.05) and calculate Δz, and 
(b) use the total differential dz to approximate Δz.

41. f (x, y) = 4x + 2y 42. f (x, y) = 36 − x2 − y2

43.  Volume The possible error involved in measuring each 
dimension of a right circular cone is ±1

8 inch. The radius is  
2 inches and the height is 5 inches. Approximate the propagated 
error and the relative error in the calculated volume of  
the cone.

44.  Lateral Surface Area Approximate the propagated error 
and the relative error in the calculated lateral surface area of 
the cone in Exercise 43. (The lateral surface area is given by 
A = πr√r2 + h2.)

Differentiability In Exercises 45 and 46, show that the 
function is differentiable by finding values of ε1 and ε2 as 
designated in the definition of differentiability, and verify that 
both ε1 and ε2 approach 0 as (Δx, Δy) → (0, 0).

45. f (x, y) = 6x − y2

46. f (x, y) = xy2

Using Different Methods In Exercises 47–50, find 
dw�dt (a) by using the appropriate Chain Rule and (b) by  
converting w to a function of t before differentiating.

47. w = ln(x2 + y), x = 2t, y = 4 − t

48. w = y2 − x, x = cos t, y = sin t

49. w = x2z + y + z, x = et, y = t, z = t2

50. w = sin x + y2z + 2z, x = arcsin(t − 1), y = t3, z = 3

Using Different Methods In Exercises 51 and 52, find 
�w��r and �w��t (a) by using the appropriate Chain Rule and 
(b) by converting w to a function of r and t before differentiating.

51. w =
xy
z

, x = 2r + t, y = rt, z = 2r − t

52. w = x2 + y2 + z2, x = r cos t, y = r sin t, z = t

Finding a Derivative Implicitly In Exercises 53 and 54, 
differentiate implicitly to find dy�dx.

53. x3 − xy + 5y = 0

54. 
xy2

x + y
= 3

Finding Partial Derivatives Implicitly In Exercises 
55 and 56, differentiate implicitly to find the first partial  
derivatives of z.

55. x2 + xy + y2 + yz + z2 = 0

56. xz2 − y sin z = 0

Finding a Directional Derivative In Exercises 57 and 
58, use Theorem 13.9 to find the directional derivative of the  
function at P in the direction of v.

57. f (x, y) = x2y, P(−5, 5), v = 3i − 4j

58. f (x, y) = 1
4 y2 − x2, P(1, 4), v = 2i + j

Finding a Directional Derivative In Exercises 59 and 
60, use the gradient to find the directional derivative of the  
function at P in the direction of v.

59. w = y2 + xz, P(1, 2, 2), v = 2i − j + 2k

60. w = 5x2 + 2xy − 3y2z, P(1, 0, 1), v = i + j − k

Using Properties of the Gradient In Exercises 61–66, 
find the gradient of the function and the maximum value of the 
directional derivative at the given point.

61. z = x2y, (2, 1) 62. z = e−x cos y, (0, 
π
4)

63. z =
y

x2 + y2, (1, 1) 64. z =
x2

x − y
, (2, 1)

65. w = x4y − y2z2, (−1, 12, 2)
66. w = e√x+y+z2, (5, 0, 2)

Using a Function In Exercises 67 and 68, (a) find the  
gradient of the function at P, (b) find a unit normal vector to 
the level curve f (x, y) = c at P, (c) find the tangent line to the 
level curve f (x, y) = c at P, and (d) sketch the level curve, the 
unit normal vector, and the tangent line in the xy-plane.

67. f (x, y) = 9x2 − 4y2 68. f (x, y) = 4y sin x − y

 c = 65, P(3, 2)  c = 3, P(π2, 1)
Finding an Equation of a Tangent Plane In Exercises 
69–72, find an equation of the tangent plane to the surface at 
the given point.

69. z = x2 + y2 + 2, (1, 3, 12)
70. 9x2 + y2 + 4z2 = 25, (0, −3, 2)
71. z = −9 + 4x − 6y − x2 − y2, (2, −3, 4)
72. f (x, y) = √25 − y2, (2, 3, 4)

Finding an Equation of a Tangent Plane and a Normal 
Line In Exercises 73 and 74, (a) find an equation of the 
tangent plane to the surface at the given point and (b) find a 
set of symmetric equations for the normal line to the surface 
at the given point.

73. f (x, y) = x2y, (2, 1, 4)
74. z = √9 − x2 − y2, (1, 2, 2)

Finding the Angle of Inclination of a Tangent Plane 
In Exercises 75 and 76, find the angle of inclination of the 
tangent plane to the surface at the given point.

75. x2 + y2 + z2 = 14, (2, 1, 3)
76. xy + yz2 = 32, (−4, 1, 6)

Horizontal Tangent Plane In Exercises 77 and 78, find 
the point(s) on the surface at which the tangent plane is 
horizontal.

77. z = 9 − 2x2 + y3

78. z = 2xy + 3x + 5y
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966 Chapter 13 Functions of Several Variables

Using the Second Partials Test In Exercises 79–84,  
find all relative extrema and saddle points of the function.  
Use the Second Partials Test where applicable.

79. f (x, y) = −x2 − 4y2 + 8x − 8y − 11

80. f (x, y) = x2 − y2 − 16x − 16y

81. f (x, y) = 2x2 + 6xy + 9y2 + 8x + 14

82. f (x, y) = x6y6

83. f (x, y) = xy +
1
x

+
1
y

84. f (x, y) = −8x2 + 4xy − y2 + 12x + 7

85.  Finding Minimum Distance Find the minimum  
distance from the point (2, 1, 4) to the surface x + y + z = 4. 
(Hint: To simplify the computations, minimize the square of 
the distance.)

86.  Finding Positive Numbers Find three positive integers, 
x, y, and z, such that the product is 64 and the sum is a minimum.

87.  Maximum Revenue A company manufactures two 
types of bicycles, a racing bicycle and a mountain bicycle. The 
total revenue (in thousands of dollars) from x1 units of racing 
bicycles and x2 units of mountain bicycles is

 R = −6x 2
1 − 10x 2

2 − 2x1x2 + 32x1 + 84x2

  where x1 and x2 are in thousands of units. Find x1 and x2 so as 
to maximize the revenue.

88.  Maximum Profit A corporation manufactures digital 
cameras at two locations. The cost of producing x1 units at 
location 1 is C1 = 0.05x 2

1 + 15x1 + 5400 and the cost of 
producing x2 units at location 2 is C2 = 0.03x 2

2 + 15x2 + 6100. 
The digital cameras sell for $180 per unit. Find the quantity 
that should be produced at each location to maximize the  
profit P = 180(x1 + x2) − C1 − C2.

Finding the Least Squares Regression Line In 
Exercises 89 and 90, find the least squares regression line for 
the points. Use the regression capabilities of a graphing utility 
to verify your results. Use the graphing utility to plot the points 
and graph the regression line.

89. (0, 4), (1, 5), (3, 6), (6, 8), (8, 10)
90. (0, 10), (2, 8), (4, 7), (7, 5), (9, 3), (12, 0)

91.  Modeling Data An agronomist used four test plots to 
determine the relationship between the wheat yield y (in 
bushels per acre) and the amount of fertilizer x (in pounds per 
acre). The results are shown in the table.

Fertilizer, x 100 150 200 250

Yield, y 35 44 50 56

 (a)  Use the regression capabilities of a graphing utility to find 
the least squares regression line for the data.

 (b)  Use the model to approximate the wheat yield for a  
fertilizer application of 175 pounds per acre.

92.  Modeling Data The table shows the yield y (in milligrams) 
of a chemical reaction after t minutes.

 (a)  Use the regression capabilities of a graphing utility to find 
the least squares regression line for the data. Then use the 
graphing utility to plot the data and graph the model.

 (b)  Use a graphing utility to plot the points (ln t, y). Do these 
points appear to follow a linear pattern more closely than 
the plot of the given data in part (a)?

 (c)  Use the regression capabilities of a graphing utility to find 
the least squares regression line for the points (ln t, y) and 
obtain the logarithmic model y = a + b ln t.

 (d)  Use a graphing utility to plot the original data and graph 
the linear and logarithmic models. Which is a better 
model? Explain.

Using Lagrange Multipliers In Exercises 93–98, use 
Lagrange multipliers to find the indicated extrema, assuming 
that x and y are positive.

93. Minimize f (x, y) = x2 + y2

 Constraint: x + y − 8 = 0

94. Maximize f (x, y) = xy

 Constraint: x + 3y − 6 = 0

95. Maximize f (x, y) = 2x + 3xy + y

 Constraint: x + 2y = 29

96. Minimize f (x, y) = x2 − y2

 Constraint: x − 2y + 6 = 0

97. Maximize f (x, y) = 2xy

 Constraint: 2x + y = 12

98. Minimize f (x, y) = 3x2 − y2

 Constraint: 2x − 2y + 5 = 0

99.  Minimum Cost A water line is to be built from point P 
to point S and must pass through regions where construction 
costs differ (see figure). The cost per kilometer (in dollars) 
is 3k from P to Q, 2k from Q to R, and k from R to S. For 
simplicity, let k = 1. Use Lagrange multipliers to find x, y, and 
z such that the total cost C will be minimized.

1 km

P

Q

R S
x y z

10 km

2 km

Minutes, t 1 2 3 4

Yield, y 1.2 7.1 9.9 13.1

Minutes, t 5 6 7 8

Yield, y 15.5 16.0 17.9 18.0
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  P.S. Problem Solving 967

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Area Heron’s Formula states that the area of a triangle with 
sides of lengths a, b, and c is given by

 A = √s(s − a)(s − b)(s − c)

 where s =
a + b + c

2
, as shown in the figure.

 (a)  Use Heron’s Formula to find the area of the triangle with 
vertices (0, 0), (3, 4), and (6, 0).

 (b)  Show that among all triangles having a fixed perimeter, the 
triangle with the largest area is an equilateral triangle.

 (c)  Show that among all triangles having a fixed area, the 
triangle with the smallest perimeter is an equilateral triangle.

a b

c

  

h

r

 Figure for 1 Figure for 2

2.  Minimizing Material An industrial container is in the 
shape of a cylinder with hemispherical ends, as shown in the 
figure. The container must hold 1000 liters of fluid. Determine 
the radius r and length h that minimize the amount of material 
used in the construction of the tank.

3.  Tangent Plane Let P(x0, y0, z0) be a point in the first octant 
on the surface xyz = 1, as shown in the figure.

 (a)  Find the equation of the tangent plane to the surface at the 
point P.

 (b)  Show that the volume of the tetrahedron formed by the 
three coordinate planes and the tangent plane is constant,  
independent of the point of tangency (see figure).

y

x

3

3

3

z

P

4. Using Functions Use a graphing utility to graph the functions

 f (x) = 3√x3 − 1 and g(x) = x

 in the same viewing window.

 (a) Show that

  lim
x→∞

[ f (x) − g(x)] = 0 and lim
x→−∞

[ f (x) − g(x)] = 0.

 (b)  Find the point on the graph of f  that is farthest from the 
graph of g.

5. Finding Maximum and Minimum Values

 (a)  Let f (x, y) = x − y and g(x, y) = x2 + y2 = 4. Graph various 
level curves of f  and the constraint g in the xy-plane. Use 
the graph to determine the maximum value of f  subject 
to the constraint g = 4. Then verify your answer using 
Lagrange multipliers.

 (b)  Let f (x, y) = x − y and g(x, y) = x2 + y2 = 0. Find 
the maximum and minimum values of f  subject to the 
constraint g = 0. Does the Method of Lagrange Multipliers 
work in this case? Explain.

6.  Minimizing Costs A heated storage room has the shape 
of a rectangular prism and has a volume of 1000 cubic feet, as 
shown in the figure. Because warm air rises, the heat loss per 
unit of area through the ceiling is five times as great as the heat 
loss through the floor. The heat loss through the four walls is 
three times as great as the heat loss through the floor. Determine 
the room dimensions that will minimize heat loss and therefore 
minimize heating costs.

z

x
y

V = xyz = 1000 ft3

7.  Minimizing Costs Repeat Exercise 6 assuming that the 
heat loss through the walls and ceiling remain the same, but the 
floor is insulated so that there is no heat loss through the floor.

8.  Temperature Consider a circular plate of radius 1 given 
by x2 + y2 ≤ 1, as shown in the figure. The temperature at any 
point P(x, y) on the plate is T(x, y) = 2x2 + y2 − y + 10.

x
1−1

−1

1

y

x2 + y2 ≤ 1

 (a)  Sketch the isotherm T(x, y) = 10. To print an enlarged copy 
of the graph, go to MathGraphs.com.

 (b) Find the hottest and coldest points on the plate.

9.  Cobb-Douglas Production Function Consider the 
Cobb-Douglas production function 

 f (x, y) = Cxay1−a, 0 < a < 1.

 (a) Show that f  satisfies the equation x
∂f
∂x

+ y
∂f
∂y

= f.

 (b) Show that f (tx, ty) = tf (x, y).
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968 Chapter 13 Functions of Several Variables

10. Minimizing Area Consider the ellipse

 
x2

a2 +
y2

b2 = 1

  that encloses the circle x2 + y2 = 2x. Find values of a and b 
that minimize the area of the ellipse.

11.  Projectile Motion A projectile is launched at an angle of 
45° with the horizontal and with an initial velocity of 64 feet 
per second. A television camera is located in the plane of the 
path of the projectile 50 feet behind the launch site (see figure).

(−50, 0) 45°

(x, y)

α

y

x

 (a)  Find parametric equations for the path of the projectile in 
terms of the parameter t representing time.

 (b)  Write the angle α that the camera makes with the 
 horizontal in terms of x and y and in terms of t.

 (c) Use the results of part (b) to find 
dα
dt

.

 (d)  Use a graphing utility to graph α in terms of t. Is the 
graph symmetric to the axis of the parabolic arch of the  
projectile? At what time is the rate of change of α greatest?

 (e)  At what time is the angle α maximum? Does this occur 
when the projectile is at its greatest height?

12.  Distance Consider the distance d between the launch site 
and the projectile in Exercise 11.

 (a)  Write the distance d in terms of x and y and in terms of the 
parameter t.

 (b) Use the results of part (a) to find the rate of change of d.

 (c) Find the rate of change of the distance when t = 2.

 (d)  When is the rate of change of d minimum during the flight 
of the projectile? Does this occur at the time when the 
 projectile reaches its maximum height?

13.  Finding Extrema and Saddle Points Using 
Technology Consider the function

 f (x, y) = (αx2 + βy2)e−(x2+y2), 0 < ∣α∣ < β.

 (a)  Use a computer algebra system to graph the function for 
α = 1 and β = 2, and identify any extrema or saddle 
points.

 (b)  Use a computer algebra system to graph the function for 
α = −1 and β = 2, and identify any extrema or saddle 
points.

 (c) Generalize the results in parts (a) and (b) for the function f.

14.  Proof Prove that if f  is a differentiable function such that 
∇f (x0, y0) = 0, then the tangent plane at (x0, y0) is horizontal.

15.  Area The figure shows a rectangle that is approximately 
l = 6 centimeters long and h = 1 centimeter high.

h = 1 cm

l = 6 cm

 (a)  Draw a rectangular strip along the rectangular region 
 showing a small increase in length.

 (b)  Draw a rectangular strip along the rectangular region 
 showing a small increase in height.

 (c)  Use the results in parts (a) and (b) to identify the measurement 
that has more effect on the area A of the rectangle.

 (d)  Verify your answer in part (c) analytically by comparing 
the value of dA when dl = 0.01 and when dh = 0.01.

16.  Tangent Planes Let f  be a differentiable function of 
one variable. Show that all tangent planes to the surface 
z = yf (x�y) intersect in a common point.

17. Wave Equation Show that

 u(x, t) =
1
2

[sin(x − t) + sin(x + t)]

 is a solution to the one-dimensional wave equation

 
∂2u
∂t2

=
∂2u
∂x2.

18. Wave Equation Show that

 u(x, t) =
1
2

[ f (x − ct) + f (x + ct)]

 is a solution to the one-dimensional wave equation

 
∂2u
∂t2

= c2 ∂2u
∂x2.

  (This equation describes the small transverse vibration of an 
elastic string such as those on certain musical instruments.)

19.  Verifying Equations Consider the function w = f (x, y), 
where x = r cos θ and y = r sin θ. Verify each of the following.

 (a) 
∂w
∂x

=
∂w
∂r

 cos θ −
∂w
∂θ  

sin θ
r

  
∂w
∂y

=
∂w
∂r

 sin θ +
∂w
∂θ  

cos θ
r

 (b) (∂w
∂x )

2

+ (∂w
∂y )

2

= (∂w
∂r )

2

+ ( 1
r2)(∂w

∂θ )
2

20.  Using a Function Demonstrate the result of Exercise 
19(b) for

 w = arctan 
y
x
.

21. Laplace’s Equation Rewrite Laplace’s equation

 
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = 0

 in cylindrical coordinates.
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970 Chapter 14 Multiple Integration

14.1 Iterated Integrals and Area in the Plane

 Evaluate an iterated integral.
 Use an iterated integral to find the area of a plane region.

Iterated Integrals
In Chapters 14 and 15, you will study several applications of integration involving functions 
of several variables. Chapter 14 is like Chapter 7 in that it surveys the use of integration 
to find plane areas, volumes, surface areas, moments, and centers of mass.

In Chapter 13, you saw that it is meaningful to differentiate functions of several 
variables with respect to one variable while holding the other variables constant. You can 
integrate functions of several variables by a similar procedure. For example, consider 
the partial derivative fx(x, y) = 2xy. By considering y constant, you can integrate with 
respect to x to obtain

 f (x, y) = ∫ fx(x, y) dx  Integrate with respect to x.

 = ∫2xy dx  Hold y constant.

 = y ∫ 2x dx  Factor out constant y.

 = y(x2) + C(y) Antiderivative of 2x is x2.

 = x2y + C(y).  C( y) is a function of y.

The “constant” of integration, C(y), is a function of y. In other words, by integrating 
with respect to x, you are able to recover f (x, y) only partially. The total recovery of a 
function of x and y from its partial derivatives is a topic you will study in Chapter 15. 
For now, you will focus on extending definite integrals to functions of several variables. 
For instance, by considering y constant, you can apply the Fundamental Theorem of 
Calculus to evaluate

∫2y

1
 2xy dx = x2y]

1

2y

= (2y)2y − (1)2y = 4y3 − y.

 
x is the variable
of integration
and y is fixed.

 
Replace x by
the limits of
integration.

 
The result is
a function 
of y.

Similarly, you can integrate with respect to y by holding x fixed. Both procedures are 
summarized as follows.

Note that the variable of integration cannot appear in either limit of integration. For 
instance, it makes no sense to write 

∫x

0
 y dx.

∫h2(y)

h1( y)
fx(x, y) dx = f (x, y)]

h1( y)

h2( y)
= f (h2(y), y) − f (h1(y), y)  With respect to x

∫g2(x)

g1(x)
fy(x, y) dy = f (x, y)]

g1(x)

g2(x)
= f (x, g2(x)) − f (x, g1(x))  With respect to y
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 14.1 Iterated Integrals and Area in the Plane 971

 Integrating with Respect to y

Evaluate ∫x

1
 (2xy + 3y2) dy.

Solution Considering x to be constant and integrating with respect to y, you have

 ∫x

1
 (2xy + 3y2) dy = [xy2 + y3]

x

1
 Integrate with respect to y.

 = (2x3) − (x + 1)
 = 2x3 − x − 1. 

Notice in Example 1 that the integral defines a function of x and can itself be 
integrated, as shown in the next example.

 The Integral of an Integral

Evaluate ∫2

1
 [∫x

1
 (2xy + 3y2) dy] dx.

Solution Using the result of Example 1, you have

 ∫2

1
 [∫x

1
 (2xy + 3y2) dy] dx = ∫2

1
 (2x3 − x − 1) dx

 = [x4

2
−

x2

2
− x]

2

1
 Integrate with respect to x.

 = 4 − (−1)
 = 5. 

The integral in Example 2 is an iterated integral. The brackets used in Example 2 
are normally not written. Instead, iterated integrals are usually written simply as

∫b

a
∫g2(x)

g1(x)
f (x, y) dy dx and ∫d

c
∫h2(y)

h1(y)
f (x, y) dx dy.

The inside limits of integration can be variable with  

1 2

1

2

x

y y = x

R: 1 ≤ x ≤ 2
1 ≤ y ≤ x

The region of integration for

∫2

1
∫x

1
 f (x, y) dy dx

Figure 14.1

 
respect to the outer variable of integration. However, 
the outside limits of integration must be constant 
with respect to both variables of integration. After 
performing the inside integration, you obtain a 
“standard” definite integral, and the second integration 
produces a real number. The limits of integration for 
an iterated integral identify two sets of boundary 
intervals for the variables. For instance, in Example 2, 
the outside limits indicate that x lies in the interval
1 ≤ x ≤ 2 and the inside limits indicate that y lies in 
the interval 1 ≤ y ≤ x. Together, these two intervals 
determine the region of integration R of the iterated 
integral, as shown in Figure 14.1.

Because an iterated integral is just a special type 
of definite integral—one in which the integrand is also 
an integral—you can use the properties of definite  
integrals to evaluate iterated integrals.

RemaRk Remember that 
you can check an antiderivative 
using differentiation. For 
instance, in Example 1, you can 
verify that 

xy2 + y3

is the correct anitderivative by 
finding 

∂
∂y

[xy2 + y3].
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972 Chapter 14 Multiple Integration

Area of a Plane Region
In the remainder of this section, you will take another look at the problem of finding 
the area of a plane region. Consider the plane region R bounded by a ≤ x ≤ b and 
g1(x) ≤ y ≤ g2(x), as shown in Figure 14.2. The area of R is

∫b

a

 [g2(x) − g1(x)] dx. Area of R

Using the Fundamental Theorem of Calculus, you can rewrite the integrand
g2(x) − g1(x) as a definite integral. Specifically, consider x to be fixed and let y vary 
from g1(x) to g2(x), and you can write

∫g2(x)

g1(x)
dy = y]

g1(x)

g2(x)

= g2(x) − g1(x).

Combining these two integrals, you can write the area of the region R as an iterated integral

 ∫b

a
∫g2(x)

g1(x)
dy dx = ∫b

a

y]
g1(x)

g2(x)

 dx

 = ∫b

a

[g2(x) − g1(x)] dx. Area of R

Placing a representative rectangle in the region R  

y

x

Δy

R

d

dydx

h2

h
2
(y)

h
1
(y)c

d

h1

Area = 

c

h1(y) ≤ x ≤ h2(y)

Region is bounded by
c ≤ y ≤ d and

Horizontally simple region
Figure 14.3

helps determine both the order and the limits of 
integration. A vertical rectangle implies the order 
dy dx, with the inside limits of integration 
corresponding to the upper and lower bounds of 
the rectangle, as shown in Figure 14.2. This type 
of region is vertically simple, because the outside
limits of integration represent the vertical lines

x = a and x = b.

Similarly, a horizontal rectangle implies the 
order dx dy, with the inside limits of integration 
determined by the left and right bounds of 
the rectangle, as shown in Figure 14.3. This 
type of region is horizontally simple, because 
the outside limits of integration represent the 
horizontal lines

y = c and y = d. 

The iterated integrals used for these two types of simple regions are summarized as follows.

area of a Region in the Plane

1.  If R is defined by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x), where g1 and g2 are 
continuous on [a, b], then the area of R is

A = ∫b

a
∫g2(x)

g1(x)
dy dx. Figure 14.2 (vertically simple)

2.  If R is defined by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), where h1 and h2 are 
continuous on [c, d], then the area of R is

A = ∫d

c
∫h2(y)

h1(y)
dx dy. Figure 14.3 (horizontally simple)

y

x

g2

g1

g1(x) ≤ y ≤ g2(x)
a ≤ x ≤ b and

R

b

dxdy

Δx
a

g
2
(x)b

a g
1
(x)

Area = 

Region is bounded by

Vertically simple region
Figure 14.2

RemaRk Be sure you see 
that the orders of integration 
of these two integrals are 
different––the order dy dx 
corresponds to a vertically 
simple region, and the order 
dx dy corresponds to a 
horizontally simple region.
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 14.1 Iterated Integrals and Area in the Plane 973

If all four limits of integration happen to be constants, then the region of integration 
is rectangular, as shown in Example 3.

 The area of a Rectangular Region

Use an iterated integral to represent the area of the rectangle shown in Figure 14.4.

Solution The region shown in Figure 14.4 is both vertically simple and horizontally 
simple, so you can use either order of integration. By choosing the order dy dx, you 
obtain the following.

 ∫b

a
∫d

c

dy dx = ∫b

a

 y]
c

d

 dx Integrate with respect to y.

 = ∫b

a

 (d − c) dx

 = [(d − c)x]
a

b

 Integrate with respect to x.

 = (d − c)(b − a)

Notice that this answer is consistent with what you know from geometry. 

 Finding area by an Iterated Integral

Use an iterated integral to find the area of the region bounded by the graphs of

f (x) = sin x Sine curve forms upper boundary.

and

g(x) = cos x Cosine curve forms lower boundary.

between x = π�4 and x = 5π�4.

Solution Because f  and g are given as functions of x, a vertical representative 
rectangle is convenient, and you can choose dy dx as the order of integration, as shown 
in Figure 14.5. The outside limits of integration are

π
4

≤ x ≤ 5π
4

.

Moreover, because the rectangle is bounded above by f (x) = sin x and below by 
g(x) = cos x, you have

 Area of R = ∫5π�4

π�4
∫sin x

cos x
dy dx

 = ∫5π�4

π�4
y]

sin x

cos x
 dx Integrate with respect to y.

 = ∫5π�4

π�4
 (sin x − cos x) dx

 = [−cos x − sin x]
5π�4

π�4
 Integrate with respect to x.

 = 2√2. 

The region of integration of an iterated integral need not have any straight lines as 
boundaries. For instance, the region of integration shown in Figure 14.5 is vertically 
simple even though it has no vertical lines as left and right boundaries. The quality that 
makes the region vertically simple is that it is bounded above and below by the graphs 
of functions of x.

x

d
Rectangular region

b

b − a

c

a

Rd − c

y

Figure 14.4

Area =
sin x

cos x
dy dx

5π /4

π /4

x

y

−1

π3
2

π
4

y = sin x

y = cos x

Δx

π
4

π
4

5≤ x ≤R:

cos x ≤ y ≤ sin x

π π
2

Figure 14.5
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974 Chapter 14 Multiple Integration

One order of integration will often produce a simpler integration problem than 
the other order. For instance, try reworking Example 4 with the order dx dy. You may 
be surprised to see that the task is formidable. However, if you succeed, you will see 
that the answer is the same. In other words, the order of integration affects the ease of 
integration but not the value of the integral.

 Comparing Different Orders of Integration

See LarsonCalculus.com for an interactive version of this type of example.

Sketch the region whose area is represented by the integral

∫2

0
∫4

y2

 dx dy.

Then find another iterated integral using the order dy dx to represent the same area and 
show that both integrals yield the same value.

Solution From the given limits of integration, you know that

y2 ≤ x ≤ 4 Inner limits of integration

which means that the region R is bounded on the left by the parabola x = y2 and on the 
right by the line x = 4. Furthermore, because

0 ≤ y ≤ 2 Outer limits of integration

you know that R is bounded below by the x-axis, as shown in Figure 14.6(a). The value 
of this integral is

 ∫2

0
∫4

y2

dx dy = ∫2

0
 x]

y2

4

 dy Integrate with respect to x.

 = ∫2

0
 (4 − y2) dy

 = [4y −
y3

3 ]
2

0
 Integrate with respect to y.

 =
16
3

.

To change the order of integration to dy dx, place a vertical rectangle in the region, as 
shown in Figure 14.6(b). From this, you can see that the constant bounds 0 ≤ x ≤ 4 
serve as the outer limits of integration. By solving for y in the equation x = y2, you can 
conclude that the inner bounds are 0 ≤ y ≤ √x. So, the area of the region can also be 
represented by

∫4

0
∫√x

0
 dy dx.

By evaluating this integral, you can see that it has the same value as the original integral.

 ∫4

0
∫√x

0
dy dx = ∫4

0
 y]√x

0
 dx Integrate with respect to y.

 = ∫4

0
 √x dx

 =
2
3

 x3�2]
4

0
 Integrate with respect to x.

 =
16
3

 

y2 ≤ x ≤ 4

Area =
4

y2
dydx

2

0

x

Δy

0 ≤ y ≤ 2R:

1

1

−1

2

2

3

3

4

x = y2 (4, 2)

y

(a)

Area =
x
dy dx

4

0 0

x
Δx

0 ≤ x ≤ 4R:

1

1

−1

2

2

3

3

4

(4, 2)y =    x

0 ≤ y ≤    x

y

(b)

Figure 14.6
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 14.1 Iterated Integrals and Area in the Plane 975

Sometimes it is not possible to calculate the area of a region with a single iterated 
integral. In these cases, you can divide the region into subregions such that the area of 
each subregion can be calculated by an iterated integral. The total area is then the sum 
of the iterated integrals.

 an area Represented by Two Iterated Integrals

Find the area of the region R that lies below the parabola

y = 4x − x2 Parabola forms upper boundary.

above the x-axis, and above the line

y = −3x + 6. Line and x-axis form lower boundary.

Solution Begin by dividing R into the two subregions R1 and R2 shown in Figure 14.7.

x
1

1

2

2

3

4

4

(1, 3)

Δx

R1

R2

y = −3x + 6

Δx

Area =
4x − x2

dy dx
2

1 −3x + 6
+

4x − x2

dy dx
4

2 0

y

y = 4x − x2

 Figure 14.7

In both regions, it is convenient to use vertical rectangles, and you have

 Area = ∫2

1
∫4x−x2

−3x+6
dy dx + ∫4

2
∫4x−x2

0
dy dx

 = ∫2

1
 (4x − x2 + 3x − 6) dx + ∫4

2
 (4x − x2) dx

 = [7x2

2
−

x3

3
− 6x]

1

2

+ [2x2 −
x3

3 ]
4

2

 = (14 −
8
3

− 12 −
7
2

+
1
3

+ 6) + (32 −
64
3

− 8 +
8
3)

 =
15
2

.

The area of the region is 15�2 square units. Try checking this using the procedure for 
finding the area between two curves, as presented in Section 7.1. 

At this point, you may be wondering why you would need iterated integrals. After 
all, you already know how to use conventional integration to find the area of a region 
in the plane. (For instance, compare the solution to Example 4 in this section with that 
given in Example 3 in Section 7.1.) The need for iterated integrals will become clear in 
the next section. In this section, primary attention is given to procedures for finding the 
limits of integration of the region of an iterated integral, and the following exercise set 
is designed to develop skill in this important procedure.

RemaRk In Examples 3 
through 6, be sure you see the 
benefit of sketching the region 
of integration. You should 
develop the habit of making 
sketches to help you determine 
the limits of integration for all 
iterated integrals in this chapter.

TeChnOlOgy Some 
computer software can perform 
symbolic integration for integrals 
such as those in Example 6. 
If you have access to such 
software, use it to evaluate the 
integrals in the exercises and 
examples given in this section.
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976 Chapter 14 Multiple Integration

14.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Iterated Integral Explain what is meant by an 

iterated integral. How is it evaluated?

2.  Region of Integration Sketch the region of 
integration for the iterated integral.

 ∫2

1
∫2−x

0
 f (x, y) dy dx.

 evaluating an Integral In Exercises 3–10, 
evaluate the integral.

 3. ∫x

0
 (2x − y) dy  4. ∫x2

x

 
y
x
 dy

 5. ∫√4−x2

0
 x2y dy  6. ∫√x

x3

 (x2 + 3y2) dy

 7. ∫y

ey

 
y ln x

x
 dx, y > 0  8. ∫√1−y2

−√1−y2

 (x2 + y2) dx

 9. ∫x3

0
ye−y�x dy 10. ∫π�2

y

 sin3 x cos y dx

 evaluating an Iterated Integral In Exercises 
11–28, evaluate the iterated integral.

11. ∫1

0
∫2

0
 (x + y) dy dx 12. ∫1

−1
∫2

−2
(x2 − y2) dy dx

13. ∫π�4

0
∫1

0
y cos x dy dx 14. ∫ln 4

0
∫ln 3

0
ex+y dy dx

15. ∫2

0
∫6x2

0
 x3 dy dx 16. ∫1

0
∫y

0
 (6x + 5y3) dx dy

17. ∫π�2

0
∫ cos x

0
 (1 + sin x) dy dx

18. ∫4

1
∫√x

1
2ye−x dy dx

19. ∫1

0
∫x

0
√1 − x2 dy dx 20. ∫4

−4
∫x2

0
√64 − x3 dy dx

21. ∫1

0
∫√1−y2

0
 (x + y) dx dy 22. ∫2

0
∫2y−y2

3y2−6y

3y dx dy

23. ∫2

0
∫√4−y2

0
 

2

√4 − y2
 dx dy 24. ∫3

1
∫y

0
 

4
x2 + y2 dx dy

25. ∫π�2

0
∫2 cos θ

0
 r dr dθ 26. ∫π�4

0
∫√3 cos θ

√3
 r dr dθ

27. ∫π�2

0
∫sin θ

0
θr dr dθ 28. ∫π�4

0
∫cos θ

0
 3r2 sin θ dr dθ

evaluating an Improper Iterated Integral In Exercises 
29–32, evaluate the improper iterated integral.

29. ∫∞

1
∫1�x

0
y dy dx 30. ∫3

0
∫∞

0
 

x2

1 + y2 dy dx

31. ∫∞

1
∫∞

1
 
1
xy

 dx dy 32. ∫∞

0
∫∞

0
xye−(x2+y2)dx dy

 Finding the area of a Region In Exercises 
33–36, use an iterated integral to find the area of 
the region.

33. 

x
1

1

2

2

3

3

4

4

y

y = x
 34. 

x
1

1

32

2

4 5

4
3

6

6
5

y

y = 6 − 2x

35. 

x
1

1

2

3

3

4

y = 4 − x2

y  36. 

x
1

1

2

32 5

5

3

4

4

2 ≤ x ≤ 5

y = 1
x − 1

y

 Finding the area of a Region In Exercises 
37– 42, use an iterated integral to find the area of 
the region bounded by the graphs of the equations.

37. y = 9 − x2, y = 0

38. 2x − 3y = 0, x + y = 5, y = 0

39. √x + √y = 2, x = 0, y = 0

40. y = x3�2, y = 2x

41. y = 4 − x2, y = x + 2

42. y = x, y = 2x, x = 2

Changing the Order of Integration In Exercises 43–50, 
sketch the region R of integration and change the order of  
integration.

43. ∫4

0
∫y

0
f (x, y) dx dy 44. ∫4

0
∫2

√y

  f (x, y) dx dy

45. ∫2

−2
∫√4−x2

0
 f (x, y) dy dx 46. ∫2

0
∫4−x2

0
 f (x, y) dy dx

47. ∫10

1
∫ln y

0
 f (x, y) dx dy 48. ∫2

−1
∫e−x

0
f (x, y) dy dx

49. ∫1

−1
∫1

x2

 f (x, y) dy dx 50. ∫π�2

−π�2
∫cos x

0
 f (x, y) dy dx
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14.1 Iterated Integrals and Area in the Plane 977

 Changing the Order of Integration In 
Exercises 51–60, sketch the region R whose area 
is given by the iterated integral. Then change the 
order of integration and show that both orders 
yield the same area.

51. ∫1

0
∫2

0
 dy dx 52. ∫2

1
∫4

2
 dx dy

53. ∫1

0
∫2

2y

 dx dy 54. ∫9

0
∫3

√x

 dy dx

55. ∫1

0
∫√1−y2

−√1−y2

 dx dy 56. ∫2

−2
∫√4−x2

−√4−x2

 dy dx

57. ∫2

0
∫x

0
 dy dx + ∫4

2
∫4−x

0
 dy dx

58. ∫4

0
∫x�2

0
 dy dx + ∫6

4
∫6−x

0
 dy dx

59. ∫1

0
∫3√y

y2

 dx dy 60. ∫2

−2
∫4−y2

0
 dx dy

Changing the Order of Integration In Exercises 61–66, 
sketch the region of integration. Then evaluate the iterated 
integral. (Hint: Note that it is necessary to change the order 
of integration.)

61. ∫2

0
∫2

x

x√1 + y3 dy dx 62. ∫4

0
∫2

√x

 
3

2 + y3 dy dx

63. ∫1

0
∫2

2x

 4ey2 dy dx 64. ∫2

0
∫2

x

 e−y2 dy dx

65. ∫1

0
∫1

y

sin x2 dx dy 66. ∫2

0
∫4

y2

√x sin x dx dy

eXpLoRInG ConCeptS
67.  area of a Circle Write an iterated integral that 

represents the area of a circle of radius 5 centered at the 
origin. Verify that your integral produces the correct area.

68.  Using Different methods Express the area of the 
region bounded by x = √4 − 4y2, y = 1, and x = 2 in 
at least two different ways, one of which is an iterated 
integral. Do not find the area of the region.

69.  Think about It Determine whether each expression 
represents the area of the shaded region (see figure).

 (a) ∫5

0
∫√50−y2

y

 dy dx (b) ∫5

0
∫√50−x2

x

 dy dx

 (c) ∫5

0
∫y

0
 dx dy + ∫5√2

5
∫√50−y2

0
 dx dy

x
5

5 (5, 5)

y

y = x

5   20,(            )
y =    50 − x2

 70.  hOW DO yOU See IT? Use each order 
of integration to write an iterated integral that 
represents the area of the region R (see figure).

(a) Area = ∫∫ dx dy

(b) Area = ∫∫ dy dx

 

x

(4, 2)

y = x
2

y

1 2 3 4

1

2

R

y =     x

 70.  

evaluating an Iterated Integral Using Technology In 
Exercises 71–76, use a computer algebra system to evaluate the 
iterated integral.

71. ∫1

0
∫2y

y

 sin(x + y) dx dy

72. ∫2

0
∫4−x2

0
 exy dy dx

73. ∫4

0
∫y

0
 

2
(x + 1)(y + 1) dx dy

74. ∫2

0
∫2

x

√16 − x3 − y3 dy dx

75. ∫2π

0
∫1+cos θ

0
 6r2 cos θ dr dθ

76. ∫π�2

0
∫1+sin θ

0
15θr dr dθ

Comparing Different Orders of Integration Using 
Technology In Exercises 77 and 78, (a) sketch the region 
of integration, (b) change the order of integration, and (c) use 
a computer algebra system to show that both orders yield the 
same value.

77. ∫2

0
∫4√2y

y3

(x2y − xy2) dx dy

78. ∫2

0
∫4−(x2�4)

√4−x2

 
xy

x2 + y2 + 1
 dy dx

True or False? In Exercises 79 and 80, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

79. ∫b

a
∫d

c

f (x, y) dy dx = ∫d

c
∫b

a

f (x, y) dx dy

80. ∫1

0
∫x

0
 f (x, y) dy dx = ∫1

0
∫y

0
f (x, y) dx dy
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978 Chapter 14 Multiple Integration

14.2 Double Integrals and Volume

  Use a double integral to represent the volume of a solid region and use properties 
of double integrals.

 Evaluate a double integral as an iterated integral.
 Find the average value of a function over a region.

Double Integrals and Volume of a Solid Region
You already know that a definite integral over an interval uses a limit process to assign 
measures to quantities such as area, volume, arc length, and mass. In this section, you 
will use a similar process to define the double integral of a function of two variables 
over a region in the plane.

Consider a continuous function f  such that f (x, y) ≥ 0 for all (x, y) in a region R in 
the xy-plane. The goal is to find the volume of the solid region lying between the surface 
given by

z = f (x, y) Surface lying above the xy-plane

and the xy-plane, as shown in Figure 14.8. You can begin by superimposing a rectangular 
grid over the region, as shown in Figure 14.9. The rectangles lying entirely within R 
form an inner partition ∆, whose norm �∆� is defined as the length of the longest 
diagonal of the n rectangles. Next, choose a point (xi, yi) in each rectangle and form the 
rectangular prism whose height is

f (xi, yi) Height of ith prism

as shown in Figure 14.10. Because the area of the ith rectangle is 

∆Ai Area of ith rectangle

it follows that the volume of the ith prism is

f (xi, yi) ∆Ai Volume of ith prism

and you can approximate the volume of the solid region by the Riemann sum of the volumes 
of all n prisms,

∑
n

i=1
 f (xi, yi) ∆Ai Riemann sum

as shown in Figure 14.11. This approximation can be improved by tightening the mesh 
of the grid to form smaller and smaller rectangles, as shown in Example 1.

x

y

z

Volume approximated by rectangular 
prisms
Figure 14.11

x

y

z

f (xi, yi)

Rectangular prism whose base has an 
area of ∆Ai and whose height is f (xi, yi)
Figure 14.10

Rx

y

z

(xi, yi)

Surface:
z = f (x, y)

The rectangles lying within R form an 
inner partition of R.
Figure 14.9

x

y

R

zSurface:
z = f (x, y)

Figure 14.8
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 14.2 Double Integrals and Volume 979

 Approximating the Volume of a Solid

Approximate the volume of the solid lying between the paraboloid

f (x, y) = 1 −
1
2

x2 −
1
2

y2

and the square region R given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.  Use a partition made up of 
squares whose sides have a length of 14.

Solution Begin by forming the specified partition of R. For this partition, it is convenient 
to choose the centers of the subregions as the points at which to evaluate f (x, y).

(1
8, 18) (1

8, 38) (1
8, 58) (1

8, 78)
(3

8, 18) (3
8, 38) (3

8, 58) (3
8, 78)

(5
8, 18) (5

8, 38) (5
8, 58) (5

8, 78)
(7

8, 18) (7
8, 38) (7

8, 58) (7
8, 78)

Because the area of each square is ∆Ai = 1
16, you can approximate the volume by the 

sum

∑
16

i=1
 f (xi, yi) ∆Ai = ∑

16

i=1
 (1 −

1
2

xi
2 −

1
2

yi
2)( 1

16) ≈ 0.672.

This approximation is shown graphically in Figure 14.12. The exact volume of the solid 
is 23 (see Example 2). You can obtain a better approximation by using a finer partition. 
For example, with a partition of squares with sides of length 1

10, the approximation  
is 0.668. 

In Example 1, note that by using finer partitions, you obtain better approximations 
of the volume. This observation suggests that you could obtain the exact volume by 
taking a limit. That is,

Volume =  lim
�∆�→0

 ∑
n

i=1
 f (xi, yi) ∆Ai.

The precise meaning of this limit is that the limit is equal to L if for every ε > 0, there 
exists a δ > 0 such that

∣L − ∑
n

i=1
 f (xi, yi) ∆Ai∣ < ε

for all partitions ∆ of the plane region R (that satisfy �∆� < δ) and for all possible 
choices of xi and yi in the ith region.

Using the limit of a Riemann sum to define volume is a special case of using the 
limit to define a double integral. The general case, however, does not require that the 
function be positive or continuous.

teChnology Some three-dimensional  

x

y

z

graphing utilities are capable of graphing  
figures such as that shown in Figure 14.12.  
For instance, the graph shown at the right was 
drawn with a computer program. In this graph, 
note that each of the rectangular prisms lies 
within the solid region.

x

y

Surface:

f (x, y) = 1 −    x2 −    y21
2

1
2

1

1

1

z

Figure 14.12
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980 Chapter 14 Multiple Integration

Definition of Double Integral

If f  is defined on a closed, bounded region R in the xy-plane, then the double
integral of f  over R is

∫
R
∫f (x, y) dA = lim

�∆�→0
 ∑

n

i=1
 f (xi, yi) ∆Ai

provided the limit exists. If the limit exists, then f  is integrable over R.

Having defined a double integral, you will  

x

R2R1

R = R1 ∪ R2

y

The two regions R1 and R2 are 
nonoverlapping.
Figure 14.13

see that a definite integral is occasionally referred 
to as a single integral.

Sufficient conditions for the double integral 
of f  on the region R to exist are that R can 
be written as a union of a finite number of 
nonoverlapping subregions (see Figure 14.13) that 
are vertically or horizontally simple and that f  is 
continuous on the region R. This means that the 
intersection of two nonoverlapping regions is a set 
that has an area of 0. In Figure 14.13, the area of 
the line segment common to R1 and R2 is 0.

A double integral can be used to find the 
volume of a solid region that lies between the 
xy-plane and the surface given by z = f (x, y).

Volume of a Solid Region

If f  is integrable over a plane region R and f (x, y) ≥ 0 for all (x, y) in R, then 
the volume of the solid region that lies above R and below the graph of f  is 

V = ∫
R
∫f (x, y) dA.

Double integrals share many properties of single integrals.

theoReM 14.1 Properties of Double Integrals

Let f  and g be continuous over a closed, bounded plane region R, and let c be 
a constant.

1. ∫
R
∫ cf (x, y) dA = c∫

R
∫f (x, y) dA

2. ∫
R
∫[ f (x, y) ± g(x, y)] dA = ∫

R
∫f (x, y) dA ± ∫

R
∫g(x, y) dA

3. ∫
R
∫f (x, y) dA ≥ 0, if f (x, y) ≥ 0

4. ∫
R
∫f (x, y) dA ≥ ∫

R
∫g(x, y) dA, if f (x, y) ≥ g(x, y)

5. ∫
R
∫f (x, y) dA = ∫

R1

∫f (x, y) dA + ∫
R2

∫f (x, y) dA, where R is the union

 of two nonoverlapping subregions R1 and R2.

exploration
The entries in the table 
represent the depths (in 
yards) of earth at the centers 
of the squares in the figure 
below.

10 20 30

10 100 90 70

20 70 70 40

30 50 50 40

40 40 50 30

x
y

Approximate the number of 
cubic yards of earth in the 
first octant. (This exploration 
was submitted by Robert 
Vojack.)

z

40

30

200

x

y
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 14.2 Double Integrals and Volume 981

Evaluation of Double Integrals
Normally, the first step in evaluating a double integral is to rewrite it as an iterated integral. 
To show how this is done, a geometric model of a double integral is used as the volume 
of a solid.

Consider the solid region bounded by the plane z = f (x, y) = 2 − x − 2y and the 
three coordinate planes, as shown in Figure 14.14. Each vertical cross section taken 
parallel to the yz-plane is a triangular region whose base has a length of y = (2 − x)�2 
and whose height is z = 2 − x. This implies that for a fixed value of x, the area of the 
triangular cross section is

A(x) =
1
2

(base)(height) =
1
2

 (2 − x
2 )(2 − x) =

(2 − x)2

4
.

By the formula for the volume of a solid with known cross sections (see Section 7.2), 
the volume of the solid is

 Volume = ∫b

a

 A(x) dx Formula for volume

 = ∫2

0
 
(2 − x)2

4
 dx Substitute.

 = −
(2 − x)3

12 ]
2

0
 Integrate with respect to x.

 =
2
3

. Volume of solid region (See Figure 14.14.)

This procedure works no matter how A(x) is obtained. In particular, you can find A(x) 
by integration, as shown in Figure 14.15. That is, you consider x to be constant and 
integrate z = 2 − x − 2y from 0 to (2 − x)�2 to obtain

 A(x) = ∫(2−x)�2

0
(2 − x − 2y) dy Apply formula for area.

 = [(2 − x)y − y2]
(2−x)�2

0
 Integrate with respect to y.

 =
(2 − x)2

4
.  Area of triangular cross section (See Figure 14.15.)

Combining these results, you have the iterated integral

Volume = ∫
R
∫f (x, y) dA = ∫2

0
∫(2−x)�2

0
 (2 − x − 2y) dy dx.

To understand this procedure better, it helps to imagine the integration as two sweeping 
motions. For the inner integration, a vertical line sweeps out the area of a cross section. 
For the outer integration, the triangular cross section sweeps out the volume, as shown 
in Figure 14.16.

x
y

z

Integrate with respect to y to obtain the area of the cross section.
Figure 14.16

x
y

z

x
y

z

x
y

z

Integrate with respect to x to obtain the volume of the solid.

x y22
1

(0, 0, 2)

(2, 0, 0)
(0, 1, 0)

Base: y =

Triangular
cross section

Height:
z = 2 − x

2 − x
2

2

1

z

Plane:
z = 2 − x − 2y

Volume: ∫2

0
A(x) dx

Figure 14.14

2

z = 2 − x − 2y

y = 2 − x
y = 0

Triangular cross section
Figure 14.15
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982 Chapter 14 Multiple Integration

The next theorem was proved by the Italian mathematician Guido Fubini 
(1879–1943). The theorem states that if R is a vertically or horizontally simple region 
and f  is continuous on R, then the double integral of f  on R is equal to an iterated integral.

theoReM 14.2 Fubini’s theorem

Let f  be continuous on a plane region R.

1.  If R is defined by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x), where g1 and g2 are 
continuous on [a, b], then

∫
R
∫f (x, y) dA = ∫b

a
∫g2(x)

g1(x)
f (x, y) dy dx.

2.  If R is defined by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), where h1 and h2 are 
continuous on [c, d], then

∫
R
∫f (x, y) dA = ∫d

c
∫h2( y)

h1( y)
 f (x, y) dx dy.

 evaluating a Double Integral as an Iterated Integral

Evaluate 

x

R: 0 ≤ x ≤ 1
0 ≤ y ≤ 1

1

1

f (x, y) dA = f (x, y) dy dx
1 1

0 0R

Δx

y

∫
R
∫(1 −

1
2

x2 −
1
2

y2) dA

where R is the region given by

0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Solution Because the region R is a square, 
it is both vertically and horizontally simple, and 
you can use either order of integration. Choose 
dy dx by placing a vertical representative 
rectangle in the region (see the figure at the 
right). This produces the following.

 ∫
R
∫(1 −

1
2

x2 −
1
2

y2) dA = ∫1

0
∫1

0
 (1 −

1
2

x2 −
1
2

y2) dy dx

 = ∫1

0
[(1 −

1
2

x2)y −
y3

6 ]
1

0
 dx

 = ∫1

0
 (5

6
−

1
2

x2) dx

 = [5
6

x −
x3

6 ]
1

0

 =
2
3

 

The double integral evaluated in Example 2 represents the volume of the solid 
region approximated in Example 1. Note that the approximation obtained in Example 1
is quite good (0.672 vs. 23), even though you used a partition consisting of only 
16 squares. The error resulted because the centers of the square subregions were 
used as the points in the approximation. This is comparable to the Midpoint Rule 
approximation of a single integral.
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14.2 Double Integrals and Volume 983

The difficulty of evaluating a single integral ∫b
a  f (x) dx usually depends on the 

function f, not on the interval [a, b]. This is a major difference between single and 
double integrals. In the next example, you will integrate a function similar to the one 
in Examples 1 and 2. Notice that a change in the region R produces a much more difficult 
integration problem.

 Finding Volume by a Double Integral

Find the volume of the solid region bounded by the paraboloid z = 4 − x2 − 2y2 and 
the xy-plane, as shown in Figure 14.17(a).

Solution By letting z = 0, you can see that the base of the region in the xy-plane 
is the ellipse x2 + 2y2 = 4, as shown in Figure 14.17(b). This plane region is both 
vertically and horizontally simple, so the order dy dx is appropriate.

Variable bounds for y: −√4 − x2

2
≤ y ≤ √4 − x2

2

Constant bounds for x: −2 ≤ x ≤ 2

The volume is

 V = ∫2

−2
∫√(4−x2)�2

−√(4−x2)�2
(4 − x2 − 2y2) dy dx  See Figure 14.17(b).

 = ∫2

−2
 [(4 − x2)y −

2y3

3 ]√(4−x2)�2

−√(4−x2)�2
 dx

 =
4

3√2
 ∫2

−2
(4 − x2)3�2 dx

 =
4

3√2
 ∫π�2

−π�2
 16 cos4 θ dθ  x = 2 sin θ

 =
64

3√2
 (2) ∫π�2

0
 cos4 θ dθ

 =
128

3√2
 (3π

16)  Wallis’s Formula

 = 4√2π.

x

y

z

3
2

4

Surface:
f (x, y) = 4 − x2 − 2y2

   

x

y

1

1

2

−2

−1

−1

Δx

(4 − x2 − 2y2) dy dx
2

−2 − (4 − x2)/2

(4 − x2)/2

Volume:

Base: −2 ≤ x ≤ 2

− (4 − x2)/2 ≤ y ≤ (4 − x2)/2

 (a) (b)

 Figure 14.17 

ReMARK In Example 3, 
note the usefulness of 
Wallis’s Formula to evaluate 
∫π�2

0  cosn θ dθ. You may want 
to review this formula in 
Section 8.3.

exploration
Volume of a Paraboloid 
Sector The solid in 
Example 3 has an elliptical 
(not a circular) base. 
Consider the region bounded 
by the circular paraboloid

z = a2 − x2 − y2, a > 0

and the xy-plane. How many 
ways of finding the volume 
of this solid do you now 
know? For instance, you 
could use the disk method 
to find the volume as a solid 
of revolution. Does each 
method involve integration?

y

x

a

z

a

−a

a2
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984 Chapter 14 Multiple Integration

In Examples 2 and 3, the problems could be solved with either order of integration 
because the regions were both vertically and horizontally simple. Moreover, had you 
used the order dx dy, you would have obtained integrals of comparable difficulty. There 
are, however, some occasions when one order of integration is much more convenient than 
the other. Example 4 shows such a case.

 Comparing Different orders of Integration

See LarsonCalculus.com for an interactive version of this type of example.

Find the volume of the solid region bounded by the surface

f (x, y) = e−x2 Surface

and the planes z = 0, y = 0, y = x, and x = 1, as shown in Figure 14.18.

Solution The base of the solid region in the xy-plane is bounded by the lines y = 0, 
x = 1, and y = x. The two possible orders of integration are shown in Figure 14.19.

x

0 ≤ x ≤ 1
0 ≤ y ≤ x

1

1

e−x2
dy dx

1 x

0 0

R:

Δx

(1, 1)

(1, 0)

y    

x

0 ≤ y ≤ 1
y ≤ x ≤ 1

1

1

e−x2
dydx

1 1

y0

R:

(1, 1)

(1, 0)

Δy

y

 Figure 14.19

By setting up the corresponding iterated integrals, you can see that the order dx dy 
requires the antiderivative

∫e−x2 dx

which is not an elementary function. On the other hand, the order dy dx produces

 ∫1

0
∫x

0
e−x2 dy dx = ∫1

0
e−x2 y]

0

x

 dx Integrate with respect to y.

 = ∫1

0
xe−x2 dx

 = −
1
2

e−x2]
0

1

 Integrate with respect to x.

 = −
1
2 (

1
e

− 1)
 =

e − 1
2e

 Volume of solid region (See Figure 14.18.)

 ≈ 0.316. 

teChnology Try using a symbolic integration utility to evaluate the iterated 
integral in Example 4.

1

1
1

y
x

z
Surface:
f (x, y) = e−x2

y = 0

z = 0

y = xx = 1

Base is bounded by y = 0, y = x, and 
x = 1.
Figure 14.18
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 14.2 Double Integrals and Volume 985

 Volume of a Region Bounded by two Surfaces

Find the volume of the solid region bounded above by the paraboloid

z = 1 − x2 − y2 Paraboloid

and below by the plane

z = 1 − y Plane

as shown in Figure 14.20.

x

y

z

1 1

1

Plane:
z = 1 − y

araboloid:
z = 1 − x2 − y2
P

 Figure 14.20

Solution Equating z-values, you can determine that the intersection of the two 
surfaces occurs on the right circular cylinder given by

1 − y = 1 − x2 − y2  x2 = y − y2.

So, the region R in the xy-plane is a circle, as shown in Figure 14.21. Because the volume 
of the solid region is the difference between the volume under the paraboloid and the 
volume under the plane, you have

 Volume = (volume under paraboloid) − (volume under plane)

 = ∫1

0
∫√y−y2

−√y−y2

 (1 − x2 − y2) dx dy − ∫1

0
∫√y−y2

−√y−y2

 (1 − y) dx dy

 = ∫1

0
∫√y−y2

−√y−y2

(y − y2 − x2) dx dy

 = ∫1

0
[(y − y2)x −

x3

3 ]−√y−y2

√y−y2

 dy

 =
4
3∫

1

0
(y − y2)3�2 dy

 = (4
3)(

1
8)∫1

0
[1 − (2y − 1)2]3�2 dy

 =
1
6∫

π�2

−π�2
 
cos4 θ

2
 dθ 2y − 1 = sin θ

 =
1
6∫

π�2

0
 cos4 θ dθ

 = (1
6)(

3π
16) Wallis’s Formula

 =
π
32

. 

x
1
2

1
2

1
2

−

y

R:

− ≤ x ≤y − y2 y − y2

0 ≤ y ≤ 1

Figure 14.21
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986 Chapter 14 Multiple Integration

Average Value of a Function
Recall from Section 5.4 that for a function f  in one variable, the average value of f  on 
the interval [a, b] is

1
b − a∫

b

a

 f (x) dx.

Given a function f  in two variables, you can find the average value of f  over the plane 
region R as shown in the following definition.

Definition of the Average Value of a Function over a Region

If f  is integrable over the plane region R, then the average value of f  over R is

Average value =
1
A∫R

∫f (x, y) dA

where A is the area of R.

 Finding the Average Value of a Function

Find the average value of

f (x, y) =
1
2

xy

over the plane region R, where R is a rectangle with vertices

(0, 0), (4, 0), (4, 3), and (0, 3).

Solution The area of the rectangular region R is 

A = (4)(3) = 12

as shown in Figure 14.22. The bounds for x are 

1

1

2

3

4

2

3

4

5

6

y

x

(4, 3)
(4, 0)

(0, 3)

R

z

(0, 0)
1

f (x, y) =   xy1
2

Figure 14.22

0 ≤ x ≤ 4

and the bounds for y are

0 ≤ y ≤ 3.

So, the average value is

 Average value =
1
A∫R

∫f (x, y) dA

 =
1
12∫

4

0
∫3

0
 
1
2

xy dy dx

 =
1
12∫

4

0
 
1
4

xy2]
0

3

 dx

 = ( 1
12)(

9
4)∫

4

0
 x dx

 =
3
16

 [1
2

x2]
4

0

 = ( 3
16)(8)

 =
3
2

. 
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 14.2 Double Integrals and Volume 987

14.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Approximating the Volume of a Solid In your 

own words, describe the process of using an inner partition 
to approximate the volume of a solid region lying above 
the xy-plane. How can the approximation be improved?

2.  Fubini’s theorem What is the benefit of Fubini’s 
Theorem when evaluating a double integral?

 Approximation In Exercises 3–6, approximate 
the integral ∫R∫ f (x, y) dA by dividing the rectangle 
R with vertices (0, 0), (4, 0), (4, 2), and (0, 2) 
into eight equal squares and finding the sum

 ∑
8

i=1
 f (xi, yi) ∆Ai, where (xi, yi) is the center of the ith

  square. Evaluate the iterated integral and compare 
it with the approximation.

 3. ∫4

0
∫2

0
(x + y) dy dx  4. 

1
2∫

4

0
∫2

0
 x2y dy dx

 5. ∫4

0
∫2

0
(x2 + y2) dy dx  6. ∫4

0
∫2

0
 

1
(x + 1)(y + 1) dy dx

evaluating a Double Integral In Exercises 7–12, sketch 
the region R and evaluate the iterated integral ∫R∫ f (x, y) dA.

 7. ∫2

0
∫1

0
 (1 − 4x + 8y) dy dx  8. ∫π

0
∫π�2

0
 sin2 x cos2 y dy dx

 9. ∫6

0
∫3

y�2
 (x + y) dx dy

10. ∫4

0
∫√y

y�2
 x2y2 dx dy

11. ∫3

−3
∫√9−x2

−√9−x2

 (x + y) dy dx

12. ∫1

0
∫0

y−1
 ex+y dx dy + ∫1

0
∫1−y

0
 ex+y dx dy

 evaluating a Double Integral In Exercises 
13–20, set up integrals for both orders of integration. 
Use the more convenient order to evaluate the 
integral over the plane region R.

13. ∫
R
∫ xy dA

 R:  rectangle with vertices (0, 0), (0, 5), (3, 5), (3, 0)

14. ∫
R
∫sin x sin y dA

 R: rectangle with vertices (−π, 0), (π, 0), (π, π�2), (−π, π�2)

15. ∫
R
∫ 

y
x2 + y2 dA

 R: trapezoid bounded by y = x, y = 2x, x = 1, x = 2

16. ∫
R
∫xey dA

 R: triangle bounded by y = 4 − x, y = 0, x = 0

17. ∫
R
∫−2y dA

 R: region bounded by y = 4 − x2, y = 4 − x

18. ∫
R
∫ y

1 + x2 dA

 R: region bounded by y = 0, y = √x, x = 4

19. ∫
R
∫x dA

  R: sector of a circle in the first quadrant bounded by 
y = √25 − x2, 3x − 4y = 0, y = 0

20. ∫
R
∫(x2 + y2) dA

 R: semicircle bounded by y = √4 − x2, y = 0

 Finding Volume In Exercises 21–26, use a 
double integral to find the volume of the indicated 
solid.

21.

y

x

3

1

4

2 2

1

0 ≤ x ≤ 4
0 ≤ y ≤ 2

z
z =

y
2

 22.

0 ≤ x ≤ 4
0 ≤ y ≤ 2

y

x

6

2
4

z

z = 6 − 2y

23.

y

x

3

4

6

2x + 3y + 4z = 12
z

24.

y

x

4

3

2

1

22
1

z

y = 2y = x

z = 4 − x − y

25.   26.

 

y

x

1

11

z

y = x y = 1

z = 1 − xy
 

y

x

4

3

2

1

22
1

z

y = x y = 2

z = 4 − y2
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988 Chapter 14 Multiple Integration

Finding Volume In Exercises 27 and 28, use an improper 
double integral to find the volume of the indicated solid.

27.   28.

y

z

0 ≤ x < ∞
0 ≤ y < ∞

2
2

1

x

z = 1
(x + 1)2(y + 1)2  

y

0 ≤ x < ∞
0 ≤ y < ∞

2 2

1

x

z
z e− (x + y)/2=

Finding Volume In Exercises 29–34, set up and evaluate a 
double integral to find the volume of the solid bounded by the 
graphs of the equations.

29. z = xy, z = 0, y = x3, x = 1, first octant

30. z = 0, z = x2, x = 0, x = 2, y = 0, y = 4

31. z = x + y, x2 + y2 = 4, first octant

32. z =
1

1 + y2, x = 0, x = 2, y ≥ 0

33. y = 4 − x2, z = 4 − x2, first octant

34. x2 + z2 = 1, y2 + z2 = 1, first octant

 Volume of a Region Bounded by two 
Surfaces In Exercises 35–40, set up a double 
integral to find the volume of the solid region 
bounded by the graphs of the equations. Do not 
evaluate the integral.

35. 

y

x

4

22

z z = 4 − 2x

z = 4 − x2 − y2

 36. 

yx

4

2

−2 −2

12 1

z

z = 2x

z = x2 + y2

37. z = x2 + y2, x2 + y2 = 4, z = 0

38. z = sin2 x, z = 0, 0 ≤ x ≤ π, 0 ≤ y ≤ 5

39. z = x2 + 2y2, z = 4y

40. z = x2 + y2, z = 18 − x2 − y2

Finding Volume Using technology In Exercises 41–44, 
use a computer algebra system to find the volume of the solid 
bounded by the graphs of the equations.

41. z = 9 − x2 − y2, z = 0

42. x2 = 9 − y, z2 = 9 − y, first octant

43. z =
2

1 + x2 + y2, z = 0, y = 0, x = 0, y = −0.5x + 1

44. z = ln(1 + x + y), z = 0, y = 0, x = 0, x = 4 − √y

evaluating an Iterated Integral In Exercises 45–50, 
sketch the region of integration. Then evaluate the iterated 
integral, changing the order of integration if necessary.

45. ∫1

0
∫1�2

y�2
 e−x2 dx dy 46.  ∫ln 10

0
∫10

ex

1
ln y

 dy dx

47. ∫2

−2
∫√4−x2

−√4−x2

 √4 − y2 dy dx 48. ∫3

0
∫1

y�3
 

1
1 + x4 dx dy

49. ∫2

0
∫4

2x

 sin y2 dy dx 50. ∫2

0
∫2

x2�2
 √y cos y dy dx

 Average Value In Exercises 51–56, find the 
average value of f (x, y) over the plane region R.

51. f (x, y) = x

 R: rectangle with vertices (0, 0), (4, 0), (4, 2), (0, 2)
52. f (x, y) = 2xy

 R: rectangle with vertices (0, 1), (1, 1), (1, 6), (0, 6)
53. f (x, y) = x2 + y2

 R: square with vertices (0, 0), (2, 0), (2, 2), (0, 2)

54. f (x, y) =
1

x + y
, R: triangle with vertices (0, 0), (1, 0), (1, 1)

55. f (x, y) = ex+y, R: triangle with vertices (0, 0), (0, 1), (1, 1)
56. f (x, y) = sin(x + y)
 R: rectangle with vertices (0, 0), (π, 0), (π, π), (0, π)

58.  Average temperature The temperature in degrees 
Celsius on the surface of a metal plate is T(x, y) = 20 − 4x2 − y2, 
where x and y are measured in centimeters. Estimate the average 
temperature when x varies between 0 and 2 centimeters and y 
varies between 0 and 4 centimeters.

eXpLoRInG ConCeptS
59.  Volume Let R be a region in the xy-plane whose area 

is B. When f (x, y) = k for every point (x, y) in R, what is 
the value of ∫R ∫ f (x, y) dA? Explain.

60.  Volume Let the plane region R be a unit circle and 
let the maximum value of f  on R be 6. Is the greatest 
possible value of ∫R∫ f (x, y) dy dx equal to 6? Why or 
why not? If not, what is the greatest possible value?

The Cobb-Douglas 
production function 
for an automobile 
manufacturer is 
f (x, y) = 100x0.6y0.4, 
where x is the number of 
units of labor and y is 
the number of units of 
capital. Estimate the average 
production level when the 
number of units of labor x varies between 200 and 250 and the 
number of units of capital y varies between 300 and 325.

57. Average Production

studioloco/Shutterstock.com
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14.2 Double Integrals and Volume 989

Probability A joint density function of the continuous random 
variables x and y is a function f (x, y) satisfying the following 
properties.

(a) f (x, y) ≥ 0 for all (x, y)

(b) ∫∞

−∞
∫∞

−∞
 f (x, y) dA = 1

(c) P[(x, y) ∈ R] = ∫
R
∫f (x, y) dA

In Exercises 61–64, show that the function is a joint density 
function and find the required probability.

61. f (x, y) = {1
3,

0,

     0 ≤ x ≤ 1, 1 ≤ y ≤ 4

     elsewhere

 P(0 ≤ x ≤ 1, 1 ≤ y ≤ 3)

62. f (x, y) = {1
5xy,

0,

     0 ≤ x ≤ 2, 0 ≤ y ≤ √5

     elsewhere

 P(0 ≤ x ≤ 1, 0 ≤ y ≤ 2)

63. f (x, y) = { 1
27 (9 − x − y),

0,

    0 ≤ x ≤ 3, 3 ≤ y ≤ 6

    elsewhere

 P(0 ≤ x ≤ 1, 3 ≤ y ≤ 6)

64. f (x, y) = {e−x−y,
0,

    x ≥ 0, y ≥ 0
    elsewhere

 P(0 ≤ x ≤ 1, x ≤ y ≤ 1)

65.  Proof Let f  be a continuous function such that 
0 ≤ f (x, y) ≤ 1 over a region R of area 1. Prove that 
0 ≤ ∫R∫ f (x, y) dA ≤ 1.

66.  Finding Volume Find the volume of the solid in the first 
octant bounded by the coordinate planes and the plane

 
x
a

+
y
b

+
z
c

= 1

 where a > 0, b > 0, and c > 0.

67.  Approximation The table shows values of a function f  
over a square region R. Divide the region into 16 equal squares 
and select (xi, yi) to be the point in the ith square closest to the 
origin. Approximate the value of the integral below. Compare 
this approximation with that obtained by using the point in the 
ith square farthest from the origin.

 ∫4

0
∫4

0
f (x, y) dy dx

 
0 1 2 3 4

0 32 31 28 23 16

1 31 30 27 22 15

2 28 27 24 19 12

3 23 22 19 14 7

4 16 15 12 7 0

x
y

 68.  hoW Do yoU See It? The figure below 
shows Erie County, New York. Let f (x, y) 
represent the total annual snowfall at the point 
(x, y) in the county, where R is the county. 
Interpret each of the following.

 (a) ∫
R
∫f (x, y) dA

 

 (b) 
∫

R
∫ f (x, y) dA

∫
R
∫dA

 68.  

true or False? In Exercises 69 and 70, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

69.  The volume of the sphere x2 + y2 + z2 = 1 is given by the 
integral

 V = 8∫1

0
∫1

0
√1 − x2 − y2 dx dy.

70.  If f (x, y) ≤ g(x, y) for all (x, y) in R, and both f  and g are 
continuous over R, then ∫R∫ f (x, y) dA ≤ ∫R∫ g(x, y) dA.

71.  Maximizing a Double Integral Determine the region R 
in the xy-plane that maximizes the value of

 ∫
R
∫(9 − x2 − y2) dA.

72.  Minimizing a Double Integral Determine the region R 
in the xy-plane that minimizes the value of

 ∫
R
∫(x2 + y2 − 4) dA.

73. Average Value Let

 f (x) = ∫x

1
et2 dt.

 Find the average value of f  on the interval [0, 1].

74. Using geometry Use a geometric argument to show that

 ∫3

0
∫√9−y2

0
√9 − x2 − y2 dx dy =

9π
2

.

pUtnAM eXAM ChALLenGe
75.  Evaluate ∫a

0∫b
0  emax{b2x2, a2y2} dy dx, where a and b are 

positive.

76.  Show that if λ > 1
2 there does not exist a real-valued 

function u such that for all x in the closed interval 
0 ≤ x ≤ 1, u(x) = 1 + λ∫1

x  u(y)u(y − x) dy.
These problems were composed by the Committee on the Putnam Prize 
Competition. © The Mathematical Association of America. All rights reserved.
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990 Chapter 14 Multiple Integration

14.3 Change of Variables: Polar Coordinates

 Write and evaluate double integrals in polar coordinates.

Double Integrals in Polar Coordinates
Some double integrals are much easier to evaluate in polar form than in rectangular 
form. This is especially true for regions such as circles, cardioids, and rose curves, and 
for integrands that involve x2 + y2.

In Section 10.4, you learned that the polar coordinates (r, θ) of a point are related 
to the rectangular coordinates (x, y) of the point as follows.

x = r cos θ and y = r sin θ

r2 = x2 + y2 and tan θ =
y
x

 Using Polar Coordinates to Describe a Region

Use polar coordinates to describe each region shown in Figure 14.23.

Solution

a. The region R is a quarter circle of radius 2. It can be described in polar coordinates as

R = {(r, θ): 0 ≤ r ≤ 2, 0 ≤ θ ≤ π�2}.

b.  The region R consists of all points between concentric circles of radii 1 and 3. It can 
be described in polar coordinates as

R = {(r, θ): 1 ≤ r ≤ 3, 0 ≤ θ ≤ 2π}.

c. The region R is a cardioid with a = b = 3. It can be described in polar coordinates as 

R = {(r, θ): 0 ≤ r ≤ 3 + 3 sin θ, 0 ≤ θ ≤ 2π}. 

 The regions in Example 1 are special cases of polar sectors

R = {(r, θ): r1 ≤ r ≤ r2,   θ1 ≤ θ ≤ θ2}    Polar sector

as shown in Figure 14.24.

x

y

−3−4 3 4
−1

−2

1

2

3

4

5

R

(c)

2

4

x
2 4−2

−2

−4

−4

y

R

(b)

x

1

2

1 2

y

R

(a)

Figure 14.23

0

θ1

θ2

θΔ

Δr

r1

r2

(ri,   i)θ
R

π
2

Polar sector
Figure 14.24
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 14.3 Change of Variables: Polar Coordinates 991

To define a double integral of a continuous function z = f (x, y) in polar coordinates, 
consider a region R bounded by the graphs of

r = g1(θ) and r = g2(θ)

and the lines θ = α and θ = β. Instead of partitioning R into small rectangles, use 
a partition of small polar sectors. On R, superimpose a polar grid made of rays and 
circular arcs, as shown in Figure 14.25. The polar sectors Ri lying entirely within R 
form an inner polar partition ∆, whose norm �∆� is the length of the longest diagonal 
of the n polar sectors.

Consider a specific polar sector Ri, as shown in Figure 14.26. It can be shown (see 
Exercise 68) that the area of Ri is

∆Ai = ri ∆ri ∆θ i Area of Ri

where ∆ri = r2 − r1 and ∆θ i = θ2 − θ1. This implies that the volume of the solid of 
height f (ri cos θ i, ri sin θ i) above Ri is approximately

f (ri cos θ i, ri sin θ i)ri ∆ri ∆θ i

and you have

∫
R
∫f (x, y) dA ≈ ∑

n

i=1
 f (ri cos θ i, ri sin θ i)ri ∆ri ∆θ i.

The sum on the right can be interpreted as a Riemann sum for

f (r cos θ, r sin θ)r.

The region R corresponds to a horizontally simple region S in the rθ-plane, as shown 
in Figure 14.27. The polar sectors Ri correspond to rectangles Si, and the area ∆Ai of 
Si is ∆ri ∆θ i. So, the right-hand side of the equation corresponds to the double integral

∫
S
∫f (r cos θ, r sin θ)r dA.

From this, you can apply Theorem 14.2 to write

 ∫
R
∫f (x, y) dA = ∫

S
∫ f (r cos θ, r sin θ)r dA

 = ∫β

α
∫g2(θ)

g1(θ)
f (r cos θ, r sin θ)r dr dθ.

This suggests the theorem on the next page, the proof of which is discussed in Section 14.8.

Ri

r1

r2

θ

2

(ri,   i)

0

θ

1θ

π
2

   

r

α

β

Si

θ(ri,   i)

θ
r = g1(  )θ r = g2(  )θ

  The polar sector Ri is the set of all points Horizontally simple region S 
(r, θ) such that r1 ≤ r ≤ r2 and  Figure 14.27

 θ1 ≤ θ ≤ θ2.
 Figure 14.26

θΔ

Δri

g2

g1

(ri,   i)θ

i

Ri

α
β

0

π
2

Polar grid superimposed over region R
Figure 14.25
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992 Chapter 14 Multiple Integration

theoRem 14.3 Change of Variables to Polar Form

Let R be a plane region consisting of all points (x, y) = (r cos θ, r sin θ) 
satisfying the conditions 0 ≤ g1(θ) ≤ r ≤ g2(θ), α ≤ θ ≤ β, where 
0 ≤ (β − α) ≤ 2π. If g1 and g2 are continuous on [α, β] and f  is continuous 
on R, then

∫
R
∫f (x, y) dA = ∫β

α
∫g2(θ)

g1(θ)
f (r cos θ, r sin θ)r dr dθ.

If z = f (x, y) is nonnegative on R, then the integral in Theorem 14.3 can be 
interpreted as the volume of the solid region between the graph of f  and the region R. 
When using the integral in Theorem 14.3, be certain not to omit the extra factor of r 
in the integrand.

The region R is restricted to two basic types, r-simple regions and θ-simple 
regions, as shown in Figure 14.28.

g1

g2

Δθ

θ =

αθ =

β

Variable bounds for r:
0 ≤ g1(  ) ≤ r ≤ g2(  )θ θ

α β≤    ≤θ
Fixed bounds for   :θ

0

π
2

   

r = r1

h1

r = r2

h2

Δr

Fixed bounds for r:
r1 ≤ r ≤ r2

0 ≤ h1(r) ≤    ≤ h2(r)θ
Variable bounds for   :θ

0

π
2

 r-Simple region θ-Simple region
 Figure 14.28

 evaluating a Double Polar Integral

Let R be the annular region lying between the two circles x2 + y2 = 1 and x2 + y2 = 5. 
Evaluate the integral

∫
R
∫(x2 + y) dA.

Solution The polar boundaries are 1 ≤ r ≤ √5 and 0 ≤ θ ≤ 2π, as shown in 
Figure 14.29. Furthermore, x2 = (r cos θ)2 and y = r sin θ. So, you have

 ∫
R
∫(x2 + y) dA = ∫2π

0
∫√5

1
(r2 cos2 θ + r sin θ)r dr dθ

 = ∫2π

0
∫√5

1
(r3 cos2 θ + r2 sin θ) dr dθ

 = ∫2π

0
(r4

4
 cos2 θ +  

r3

3
 sin θ)]√5

1
dθ

 = ∫2π

0
(6 cos2 θ +

5√5 − 1
3

 sin θ) dθ

 = ∫2π

0
(3 + 3 cos 2θ +

5√5 − 1
3

 sin θ) dθ

 = (3θ +
3 sin 2θ

2
−

5√5 − 1
3

 cos θ)]
2π

0

 = 6π. 

2 3

R

R: 1 ≤ r ≤    5
0 ≤    ≤ 2π

0

θ

π
2

Figure 14.29

exploration
Volume of a Paraboloid 
Sector In the Exploration 
on page 983, you were asked 
to summarize the different 
ways you know of finding 
the volume of the solid 
bounded by the paraboloid

z = a2 − x2 − y2, a > 0 

and the xy-plane. You now 
know another way. Use it to 
find the volume of the solid.
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 14.3 Change of Variables: Polar Coordinates 993

In Example 2, be sure to notice the factor of r with dr dθ in the integrand. This comes 
from the formula for the area of a polar sector. In differential notation, you can write

dA = r dr dθ

which indicates that the area of a polar sector increases as you move away from the origin.

 Change of Variables to Polar Coordinates

Use polar coordinates to find the volume of the solid region bounded above by the 
hemisphere

z = √16 − x2 − y2 Hemisphere forms upper surface.

and below by the circular region R given by

x2 + y2 ≤ 4 Circular region forms lower surface.

as shown in Figure 14.30.

Solution In Figure 14.30, you can see that R has the bounds

−√4 − y2 ≤ x ≤ √4 − y2, −2 ≤ y ≤ 2

and that 0 ≤ z ≤ √16 − x2 − y2. In polar coordinates, the bounds are

0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π

with height z = √16 − x2 − y2 = √16 − r2. Consequently, the volume V is

 V = ∫
R
∫f (x, y) dA Formula for volume

 = ∫2π

0
∫2

0
√16 − r2 r dr dθ Polar coordinates

 = −
1
3∫

2π

0
(16 − r2)3�2]

2

0
 dθ Integrate with respect to r.

 = −
1
3∫

2π

0
(24√3 − 64) dθ

 = −
8
3

 (3√3 − 8)θ]
2π

0
 Integrate with respect to θ.

 =
16π

3
 (8 − 3√3)

 ≈ 46.979. 

Just as with rectangular coordinates, the double integral

∫
R
∫dA

can be used to find the area of a region in the plane.

teChnology Any computer algebra system that can evaluate double integrals 
in rectangular coordinates can also evaluate double integrals in polar coordinates. 
The reason this is true is that once you have formed the iterated integral, its value is 
not changed by using different variables. In other words, if you use a computer algebra 
system to evaluate

∫2π

0
∫2

0
√16 − x2 x dx dy

you should obtain the same value as that obtained in Example 3.

y

x

z

R: x2 + y2 ≤ 4

Surface: 16 − x2 − y2z =

4

4

4

Figure 14.30

RemaRk To see the  
benefit of polar coordinates  
in Example 3, you should try  
to evaluate the corresponding  
rectangular iterated integral

∫2

−2
∫√4−y2

−√4−y2

√16 − x2 − y2 dx dy.
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 Finding areas of Polar Regions

See LarsonCalculus.com for an interactive version of this type of example.

To use a double integral to find the area enclosed by the graph of r = 3 cos 3θ, let R  
be one petal of the curve shown in Figure 14.31. This region is r-simple, and the  
boundaries are −π�6 ≤ θ ≤ π�6 and 0 ≤ r ≤ 3 cos 3θ. So, the area of one petal is

 
1
3

 A = ∫
R
∫dA = ∫π�6

−π�6
∫3 cos 3θ

0
r dr dθ

 = ∫π�6

−π�6
 
r2

2]
3 cos 3θ

0
 dθ Integrate with respect to r.

 =
9
2∫

π�6

−π�6
 cos2 3θ dθ

 =
9
4∫

π�6

−π�6
(1 + cos 6θ) dθ

 =
9
4

 [θ +
1
6

 sin 6θ]
π�6

−π�6
 Integrate with respect to θ.

 =
3π
4

.

So, the total area is A = 9π�4. 

As illustrated in Example 4, the area of a region in the plane can be represented by

A = ∫β

α
∫g2(θ)

g1(θ)
r dr dθ.

For g1(θ) = 0, you obtain

A = ∫β

α
∫g2(θ)

0
r dr dθ = ∫β

α
 
r2

2]
g2(θ)

0
 dθ =

1
2∫

β

α
 [g2(θ)]2 dθ

which agrees with Theorem 10.13.
So far in this section, all of the examples of iterated integrals in polar form have 

been of the form

∫β

α
∫g2(θ)

g1(θ)
f (r cos θ, r sin θ)r dr dθ

in which the order of integration is with respect to r first. Sometimes you can obtain a 
simpler integration problem by integrating with respect to θ first.

 Integrating with Respect to θ First

Find the area of the region bounded above by the spiral r = π�(3θ) and below by the 
polar axis, between r = 1 and r = 2.

Solution The region is shown in Figure 14.32. The polar boundaries for the region are

1 ≤ r ≤ 2 and 0 ≤ θ ≤ π
3r

.

So, the area of the region can be evaluated as follows.

A = ∫2

1
∫π�(3r)

0
r dθ dr = ∫2

1
rθ]

π�(3r)

0
dr = ∫2

1
 
π
3

 dr =
πr
3 ]

2

1
=

π
3

 

0
3

R:

0 ≤ r ≤ 3 cos 3

≤    ≤θ

θ
θr = 3 cos 3

=θ

6
−

π
2 π

6
π

6
π

= −θ
6
π

Figure 14.31

0
21

R:

1 ≤ r ≤ 2

0 ≤    ≤θ

θ
π
3

r =

=θ

π
2

6
π

=θ
3
π

3r
π

θ-Simple region
Figure 14.32
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 14.3 Change of Variables: Polar Coordinates 995

14.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
Choosing a Coordinate System In Exercises 1 and 
2, the region R for the integral ∫R∫ f (x, y) dA is shown. 
State whether you would use rectangular or polar 
coordinates to evaluate the integral.

1.

x
1

1

−1

2

3

2 3 4

R

y 2.

3.  Describing Regions In your own words, describe 
r-simple regions and θ-simple regions.

4.  Using Polar Coordinates Sketch the region of 
integration represented by the double integral

 ∫2π

0
∫6

3
 f (r, θ)r dr dθ.

x

−2

−2−6

−4

2

4

2

R

y

 Describing a Region In Exercises 5–8, use 
polar coordinates to describe the region shown.

 5. 

x

−4

−4−8

4

12

4 8

y   6. 

x

−2

−2−4

2

6

2 4

y

 7. 

x

y

−2 2 4 6 8 10
−2

2

4

6

8

10

  8. 

x
−2−4

−4

2

4

4

y

 evaluating a Double Integral In Exercises 
9–16, evaluate the double integral ∫R∫ f (r, θ) dA 
and sketch the region R.

 9. ∫π

0
∫2 cos θ

0
 r dr dθ  10. ∫π�2

0
∫sin θ

0
r2 dr dθ

11. ∫2π

0
∫1

0
6r2 sin θ dr dθ

12. ∫π�4

0
∫4

0
 r2 sin θ cos θ dr dθ

13. ∫π�2

0
∫3

1
√9 − r2 r dr dθ

14. ∫π�2

0
∫3

0
re−r2 dr dθ

15. ∫π�2

0
∫1+sin θ

0
θr dr dθ

16. ∫π�2

0
∫1−cos θ

0
(sin θ)r dr dθ

 Converting to Polar Coordinates In 
Exercises 17–26, evaluate the iterated integral by 
converting to polar coordinates.

17. ∫3

0
∫√9−y2

0
 y dx dy

18. ∫2

0
∫√4−x2

0
 x dy dx

19. ∫2

−2
∫√4−x2

0
(x2 + y2) dy dx

20. ∫1

0
∫√x−x2

−√x−x2

(x2 + y2) dy dx

21. ∫1

0
∫√1−x2

0
 (x2 + y2)3�2 dy dx

22. ∫2

0
∫√8−y2

y

√x2 + y2 dx dy

23. ∫2

0
∫√2x−x2

0
xy dy dx

24. ∫4

0
∫√4y−y2

0
x2 dx dy

25. ∫1

−1
∫√1−x2

0
cos(x2 + y2) dy dx

26. ∫√6

0
∫√6−x2

0
 sin√x2 + y2 dy dx

Converting to Polar Coordinates In Exercises 27 and 
28, write the sum of the two iterated integrals as a single 
iterated integral by converting to polar coordinates. Evaluate 
the resulting iterated integral.

27. ∫2

0
∫x

0
√x2 + y2 dy dx + ∫2√2

2
∫√8−x2

0
√x2 + y2 dy dx

28. ∫(5√2)�2

0
∫x

0
xy dy dx + ∫5

(5√2)�2
∫√25−x2

0
xy dy dx
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996 Chapter 14 Multiple Integration

Converting to Polar Coordinates In Exercises 29–32, 
use polar coordinates to set up and evaluate the double integral 
∫R∫ f (x, y) dA.

29. f (x, y) = x + y

 R: x2 + y2 ≤ 36, x ≥ 0, y ≥ 0

30. f (x, y) = e−(x2+y2)�2

 R: x2 + y2 ≤ 25, x ≥ 0

31. f (x, y) = arctan 
y
x

 R: x2 + y2 ≥ 1, x2 + y2 ≤ 4, 0 ≤ y ≤ x

32. f (x, y) = 9 − x2 − y2

 R: x2 + y2 ≤ 9, x ≥ 0, y ≥ 0

 Volume In Exercises 33–38, use a double 
integral in polar coordinates to find the volume of 
the solid bounded by the graphs of the equations.

33. z = xy, x2 + y2 = 1, first octant

34. z = x2 + y2 + 3, z = 0, x2 + y2 = 1

35. z = √x2 + y2, z = 0, x2 + y2 = 25

36. z = ln(x2 + y2), z = 0, x2 + y2 ≥ 1, x2 + y2 ≤ 4

37.  Inside the hemisphere z = √16 − x2 − y2 and inside the 
cylinder x2 + y2 − 4x = 0

38.  Inside the hemisphere z = √16 − x2 − y2 and outside the 
cylinder x2 + y2 = 1

39.  Volume Use a double integral in polar coordinates to find a 
such that the volume inside the hemisphere z = √16 − x2 − y2 
and outside the cylinder x2 + y2 = a2 is one-half the volume 
of the hemisphere.

40.  Volume Use a double integral in polar coordinates to find 
the volume of a sphere of radius a.

 area In Exercises 41–46, use a double integral to 
find the area of the shaded region.

41. 

0
1 2 3 4 75

r = 6 cos θ

π
2

 42. 

0

r = 4

1 3

π
2r = 2

43. 

0
1

π
2 r = 1 + cos θ

 44. 

0
2 43

r = 2 + sin θ

π
2

45. 

0
1 2

r = 2 sin 3θ

π
2

 46. 

0
3

r = 3 cos 2θ
π
2

area In Exercises 47–52, sketch a graph of the region bounded 
by the graphs of the equations. Then use a double integral to 
find the area of the region.

47. Inside the circle r = 2 cos θ and outside the circle r = 1

48.  Inside the cardioid r = 2 + 2 cos θ and outside the circle 
r = 1

49.  Inside the circle r = 3 cos θ  and outside the cardioid 
r = 1 + cos θ

50.  Inside the cardioid r = 1 + cos θ and outside the circle 
r = 3 cos θ

51. Inside the rose curve r = 4 sin 3θ and outside the circle r = 2

52.  Inside the circle r = 2 and outside the cardioid r = 2 − 2 cos θ

eXpLoRInG ConCeptS
53.  area Express the area of the region in the figure using 

the sum of two double polar integrals. Then find the area  
of the region without using integrals.

 
y = 1

1

1

x =    3
x2 + y2 = 1

x

y

54.  Comparing Integrals Let R be the region bounded 
by the circle x2 + y2 = 9.

 (a) Set up the integral ∫
R
∫f (x, y) dA.

 (b) Convert the integral in part (a) to polar coordinates.

 (c) Which integral would you choose to evaluate? Why?

The population density of a city is approximated by the model

f (x, y) = 4000e−0.01(x2+y2)

for the region 
x2 + y2 ≤ 49, where x 
and y are measured in 
miles. Integrate the 
density function over the 
indicated circular region
to approximate the 
population of the city.

55. Population

ValeStock/Shutterstock.com 
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14.3 Change of Variables: Polar Coordinates 997

 56.  hoW Do yoU See It? Each figure shows 
a region of integration for the double integral 
∫R∫ f (x, y) dA. For each region, state whether 
horizontal representative elements, vertical 
representative elements, or polar sectors would 
yield the easiest method for obtaining the limits
of integration. Explain your reasoning.

(a) (b) (c)

x

R

y  

x

R

y  

x

R

y

 56.  

57.  Volume Determine the diameter of a hole that is drilled 
vertically through the center of the solid bounded by the graphs 
of the equations z = 25e−(x2+y2)�4, z = 0, and x2 + y2 = 16 
when one-tenth of the volume of the solid is removed.

approximation In Exercises 59 and 60, use a computer 
algebra system to approximate the iterated integral.

59. ∫π�2

π�4
∫5

0
r√1 + r3 sin √θ dr dθ

60. ∫π�4

0
∫4

0
5re√rθ dr dθ

true or False? In Exercises 61 and 62, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

61. If ∫R∫ f (r, θ) dA > 0, then f (r, θ) > 0 for all (r, θ) in R.

62.  If f (r, θ) is a constant function and the area of the region S is 
twice that of the region R, then

 2 ∫
R
∫ f (r, θ) dA = ∫

S
∫ f (r, θ) dA.

63. Probability The value of the integral

 I = ∫∞

−∞
e−x2�2 dx

  is required in the development of the normal probability 
density function.

 (a) Use polar coordinates to evaluate the improper integral.

   I 2 = (∫∞

−∞
e−x2�2 dx)(∫∞

−∞
e−y2�2 dy)

   = ∫∞

−∞
∫∞

−∞
e−(x2+y2)�2 dA

 (b) Use the result of part (a) to determine I.

64.  evaluating Integrals Use the result of Exercise 63 and a 
change of variables to evaluate each integral. No integration is 
required.

 (a) ∫∞

−∞
e−x2 dx (b) ∫∞

−∞
e−4x2 dx

65.  think about It Consider the region R bounded by the 
graphs of y = 2, y = 4, y = x, and y = √3x and the double 
integral ∫R∫ f (x, y) dA. Determine the limits of integration when 
the region R is divided into (a) horizontal representative elements, 
(b) vertical representative elements, and (c) polar sectors.

66.  think about It Repeat Exercise 65 for a region R bounded 
by the graph of the equation (x − 2)2 + y2 = 4.

67.  Probability Find k such that the function

 f (x, y) = {ke−(x2+y2),
0,

    x ≥ 0, y ≥ 0
   elsewhere

  is a probability density function. (Hint: Show that 
∫R∫ f (x, y) dA = 1.)

68.  area Show that the area A of the polar sector R (see figure) is 
A = r∆r∆θ, where r = (r1 + r2)�2 is the average radius of R.

θΔ

Δr

r1
r2

R

Horizontal cross sections of a piece of ice that broke from a 
glacier are in the shape of a quarter of a circle with a radius of 
approximately 50 feet. The base is divided into 20 subregions,
as shown in the figure. At the center of each subregion, the 
height of the ice is measured, yielding the following points in 
cylindrical coordinates.

(5, π16, 7), (15, π16, 8), (25, π16, 10), (35, π16, 12), (45, π16, 9),
(5, 3π16, 9), (15, 3π16, 10), (25, 3π16, 14), (35, 3π16, 15), (45, 3π16, 10),
(5, 5π16, 9), (15, 5π16, 11), (25, 5π16, 15), (35, 5π16, 18), (45, 5π16, 14),
(5, 7π16, 5), (15, 7π16, 8), (25, 7π16, 11), (35, 7π16, 16), (45, 7π16, 12)
(a)  Approximate the volume of the piece of ice.

(b)  Ice weighs approximately 57 pounds per cubic foot. 
Approximate the weight of the piece of ice.

(c)  There are 7.48 gallons of water per cubic foot. 
Approximate the number of gallons of water in the piece 
of ice.

0
10 20 30 40 50

8
π

8
π

4
π

3
π
2

58. glacier

 FOR FURTHER INFORMATION For more information 
on this problem, see the article “Integrating e−x2 Without Polar 
Coordinates” by William Dunham in Mathematics Teacher. To 
view this article, go to MathArticles.com.

Serjio74/Shutterstock.com
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998 Chapter 14 Multiple Integration

14.4 Center of Mass and Moments of Inertia

 Find the mass of a planar lamina using a double integral.
 Find the center of mass of a planar lamina using double integrals.
 Find moments of inertia using double integrals.

Mass
Section 7.6 discussed several applications of integration involving a lamina of constant 
density ρ. For example, if the lamina corresponding to the region R, as shown in Figure 
14.33, has a constant density ρ, then the mass of the lamina is given by

Mass = ρA = ρ∫
R
∫dA = ∫

R
∫ρ dA. Constant density

If not otherwise stated, a lamina is assumed to have a constant density. In this section, 
however, you will extend the definition of the term lamina to include thin plates of 
variable density. Double integrals can be used to find the mass of a lamina of variable 
density, where the density at (x, y) is given by the density function ρ.

Definition of Mass of a Planar lamina of Variable Density

If ρ is a continuous density function on the lamina corresponding to a plane 
region R, then the mass m of the lamina is given by

m = ∫
R
∫ρ(x, y) dA. Variable density

Density is normally expressed as mass per unit volume. For a planar lamina, however, 
density is mass per unit surface area.

 Finding the Mass of a Planar lamina

Find the mass of the triangular lamina with vertices (0, 0), (0, 3), and (2, 3), given that 
the density at (x, y) is ρ(x, y) = 2x + y.

Solution As shown in Figure 14.34, region R has the boundaries x = 0, y = 3, and 
y = 3x�2 (or x = 2y�3). Therefore, the mass of the lamina is

 m = ∫
R
∫(2x + y) dA

 = ∫3

0
∫2y�3

0
(2x + y) dx dy

 = ∫3

0
 [x2 + xy]

2y�3

0
  dy Integrate with respect to x.

 =
10
9 ∫

3

0
y2 dy

 =
10
9

 [y3

3 ]
3

0
 Integrate with respect to y.

 = 10.

In Figure 14.34, note that the planar lamina is shaded so that the darkest shading  
corresponds to the densest part. 

x
x = a x = b

g1

g2

R

y

Lamina of constant density ρ
Figure 14.33

x

1

1

2

2

3

3

(0, 3)

(0, 0)

(2, 3)

x = 2
3

y

y = 3

R

y

Lamina of variable density 
ρ(x, y) = 2x + y
Figure 14.34
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 14.4 Center of Mass and Moments of Inertia 999

 Finding Mass by Polar Coordinates

Find the mass of the lamina corresponding to the first-quadrant portion of the circle

x2 + y2 = 4

where the density at the point (x, y) is proportional to the distance between the point 
and the origin, as shown in Figure 14.35.

Solution At any point (x, y), the density of the lamina is

 ρ(x, y) = k√(x − 0)2 + (y − 0)2

 = k√x2 + y2

where k is the constant of proportionality. Because 0 ≤ x ≤ 2 and 0 ≤ y ≤ √4 − x2, 
the mass is given by

 m = ∫
R
∫k√x2 + y2 dA

 = ∫2

0
∫√4−x2

0
k√x2 + y2 dy dx.

To simplify the integration, you can convert to polar coordinates, using the bounds

0 ≤ θ ≤ π�2 and 0 ≤ r ≤ 2.

So, the mass is

 m = ∫
R
∫k√x2 + y2 dA

 = ∫π�2

0
∫2

0
k√r2 r dr dθ Polar coordinates

 = ∫π�2

0
∫2

0
kr2 dr dθ Simplify integrand.

 = ∫π�2

0
 
kr3

3 ]
2

0
 dθ Integrate with respect to r.

 =
8k
3 ∫

π�2

0
dθ

 =
8k
3 [θ]

π�2

0
 Integrate with respect θ.

 =
4πk

3
. 

teChnology On many occasions, this text has mentioned the benefits of 
computer programs that perform symbolic integration. Even if you use such a program 
regularly, you should remember that its greatest benefit comes only in the hands of a 
knowledgeable user. For instance, notice how much simpler the integral in Example 2 
becomes when it is converted to polar form.

Rectangular Form Polar Form

∫2

0
∫√4−x2

0
k√x2 + y2 dy dx ∫π�2

0
∫2

0
kr2 dr dθ

If you have access to software that performs symbolic integration, use it to evaluate 
both integrals. Some software programs cannot handle the first integral, but any 
program that can handle double integrals can evaluate the second integral.

x

1

1

2

2

(x, y)

x2 + y2 = 4

R

y

Density at (x, y): ρ(x, y) = k√x2 + y2

Figure 14.35
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1000 Chapter 14 Multiple Integration

Moments and Center of Mass
For a lamina of variable density, moments of mass are defined in a manner similar to 
that used for the uniform density case. For a partition ∆ of a lamina corresponding to a 
plane region R, consider the ith rectangle Ri of one area ∆Ai, as shown in Figure 14.36. 
Assume that the mass of Ri is concentrated at one of its interior points (xi, yi). The 
moment of mass of Ri with respect to the x-axis can be approximated by

(Mass)(yi) ≈ [ρ(xi, yi) ∆Ai](yi).

Similarly, the moment of mass with respect to the y-axis can be approximated by

(Mass)(xi) ≈ [ρ(xi, yi)∆Ai](xi).

By forming the Riemann sum of all such products and taking the limits as the norm of 
∆ approaches 0, you obtain the following definitions of moments of mass with respect 
to the x- and y-axes.

Moments and Center of Mass of a Variable Density Planar lamina

Let ρ be a continuous density function on the planar lamina R. The moments 
of mass with respect to the x- and y-axes are

Mx = ∫
R
∫(y)ρ(x, y) dA

and

My = ∫
R
∫(x)ρ(x, y) dA.

If m is the mass of the lamina, then the center of mass is

(x, y) = (My

m
, 

Mx

m ).

If R represents a simple plane region rather than a lamina, then the point (x, y) 
is called the centroid of the region.

For some planar laminas with a constant density ρ, you can determine the center 
of mass (or one of its coordinates) using symmetry rather than using integration. 
For instance, consider the laminas of constant density shown in Figure 14.37. Using 
symmetry, you can see that y = 0 for the first lamina and x = 0 for the second lamina.

x

y

z

1 1

1

−1

−1

−1

R: 0 ≤ x ≤ 1

−    1 − x2 ≤ y ≤ 1 − x2
     R: 1 − y2 1 − y2− ≤ x ≤

0 ≤ y ≤ 1

x

y

z

1 1

1

−1

−1

−1

  Lamina of constant density that is Lamina of constant density that is
symmetric with respect to the x-axis symmetric with respect to the y-axis

 Figure 14.37

x

Ri

xi

yi

(xi, yi)

y

Mx = (mass)(yi)
My = (mass)(xi)
Figure 14.36
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 14.4 Center of Mass and Moments of Inertia 1001

 Finding the Center of Mass

See LarsonCalculus.com for an interactive version of this type of example.

Find the center of mass of the lamina corresponding to the parabolic region

0 ≤ y ≤ 4 − x2 Parabolic region

where the density at the point (x, y) is proportional to the distance between (x, y) and 
the x-axis, as shown in Figure 14.38.

Solution The lamina is symmetric with respect to the y-axis and ρ(x, y) = ky, where 
k is the constant of proportionality. So, the center of mass lies on the y-axis and x = 0. 
To find y, first find the mass of the lamina.

 m = ∫2

−2
∫4−x2

0
ky dy dx

 =
k
2∫

2

−2
 y2]

4−x2

0
 dx Integrate with respect to y.

 =
k
2∫

2

−2
(16 − 8x2 + x4) dx

 =
k
2

 [16x −
8x3

3
+

x5

5 ]
2

−2
 Integrate with respect to x.

 = k(32 −
64
3

+
32
5 )

 =
256k
15

 Mass of the limina

Next, find the moment of mass about the x-axis.

 Mx = ∫2

−2
∫4−x2

0
(y)(ky) dy dx

 =
k
3∫

2

−2
 y

3]
4−x2

0
dx Integrate with respect to y.

 =
k
3∫

2

−2
(64 − 48x2 + 12x4 − x6) dx

 =
k
3

 [64x − 16x3 +
12x5

5
−

x7

7 ]
2

−2
 Integrate with respect to x.

 =
4096k
105

 Moment of mass about x-axis

So,

y =
Mx

m
=

4096k�105
256k�15

=
16
7

and the center of mass is (0, 16
7 ). 

Although you can think of the moments Mx and My as measuring the tendency 
to rotate about the x- or y-axis, the calculation of moments is usually an intermediate 
step toward a more tangible goal. The use of the moments Mx and My is typical—to 
find the center of mass. Determination of the center of mass is useful in a variety of 
applications that allow you to treat a lamina as if its mass were concentrated at just 
one point. Intuitively, you can think of the center of mass as the balancing point of the 
lamina. For instance, the lamina in Example 3 should balance on the point of a pencil 
placed at (0, 16

7 ), as shown in Figure 14.39.

x

z

y

Center of mass:

0, 16
7 ))

2

1
4

−2

R: −2 ≤ x ≤ 2
0 ≤ y ≤ 4 − x2

Variable
density:

(x, y) = kyρ

Figure 14.39

x

y

1 2−2 −1

3

2

1

y = 4 − x2

(x, y)

Variable density:
(x, y) = kyρ

Parabolic region of variable density
Figure 14.38
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1002 Chapter 14 Multiple Integration

Moments of Inertia
The moments of Mx and My used in determining the center of mass of a lamina are 
sometimes called the first moments about the x- and y-axes. In each case, the moment is 
the product of a mass times a distance.

Mx = ∫
R
∫(y)ρ(x, y) dA My = ∫

R
∫(x)ρ(x, y) dA

 Distance
to x-axis

 Mass 
Distance
to y-axis

 Mass

You will now look at another type of moment—the second moment, or the moment 
of inertia of a lamina about a line. In the same way that mass is a measure of the 
tendency of matter to resist a change in straight-line motion, the moment of inertia 
about a line is a measure of the tendency of matter to resist a change in rotational 
motion. For example, when a particle of mass m is a distance d from a fixed line, its 
moment of inertia about the line is defined as

I = md2 = (mass)(distance)2.

As with moments of mass, you can generalize this concept to obtain the moments of 
inertia about the x- and y-axes of a lamina of variable density. These second moments 
are denoted by Ix and Iy, and in each case the moment is the product of a mass times 
the square of a distance.

Ix = ∫
R
∫(y2)ρ(x, y) dA Iy = ∫

R
∫(x2)ρ(x, y) dA

 
Square of distance
to x-axis

 Mass 
Square of distance
to y-axis

 Mass

The sum of the moments Ix and Iy is called the polar moment of inertia and is denoted  
by I0. For a lamina in the xy-plane, I0 represents the moment of inertia of the lamina 
about the z-axis. The term “polar moment of inertia” stems from the fact that the square 
of the polar distance r is used in the calculation.

I0 = ∫
R
∫(x2 + y2)ρ(x, y) dA = ∫

R
∫ (r2)ρ(x, y) dA

 Finding the Moment of Inertia

Find the moment of inertia about the x-axis of the lamina in Example 3.

Solution From the definition of moment of inertia, you have

 Ix = ∫2

−2
∫4−x2

0
 (y2)(ky) dy dx

 =
k
4∫

2

−2
 y

4]
4−x2

0
dx Integrate with respect to y.

 =
k
4∫

2

−2
(256 − 256x2 + 96x4 − 16x6 + x8) dx

 =
k
4

 [256x −
256x3

3
+

96x5

5
−

16x7

7
+

x9

9 ]
2

−2
 Integrate with respect to x.

 =
32,768k

315
. Moment of inertia about x-axis

 

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 14.4 Center of Mass and Moments of Inertia 1003

The moment of inertia I of a revolving lamina can be used to measure its kinetic 
energy. For example, suppose a planar lamina is revolving about a line with an angular 
speed of ω radians per second, as shown in Figure 14.40. The kinetic energy E of the 
revolving lamina is

E =
1
2

 Iω2. Kinetic energy for rotational motion

On the other hand, the kinetic energy E of a mass m moving in a straight line at a 
velocity v is

E =
1
2

 mv2. Kinetic energy for linear motion

So, the kinetic energy of a mass moving in a straight line is proportional to its mass, 
but the kinetic energy of a mass revolving about an axis is proportional to its moment 
of inertia.

The radius of gyration r of a revolving mass m with moment of inertia I is defined as

r =√ I
m

. Radius of gyration

If the entire mass were located at a distance r from its axis of revolution, it would have 
the same moment of inertia and, consequently, the same kinetic energy. For instance, 
the radius of gyration of the lamina in Example 4 about the x-axis is

y =√Ix

m
=√32,768k�315

256k�15
=√128

21
≈ 2.469.

 Finding the Radius of gyration

Find the radius of gyration about the y-axis for the lamina corresponding to the region 
R: 0 ≤ y ≤ sin x, 0 ≤ x ≤ π, where the density at (x, y) is given by ρ(x, y) = x.

Solution The region R is shown in Figure 14.41. By integrating ρ(x, y) = x over the 
region R, you can determine that the mass of the region is π. The moment of inertia 
about the y-axis is

 Iy = ∫π

0
∫sin x

0
x3 dy dx

 = ∫π

0
 x

3y]
sin x

0
dx Integrate with respect to y.

 = ∫π

0
 x

3 sin x dx

 = [(3x2 − 6)(sin x) − (x3 − 6x)(cos x)]
π

0
 Integrate with respect to x.

 = π3 − 6π. Moment of inertia about y-axis

So, the radius of gyration about the y-axis is

 x =√Iy

m

 =√π3 − 6π
π

 = √π2 − 6

 ≈ 1.967. Radius of gyration about y-axis 

Planar lamina revolving at ω radians 
per second
Figure 14.40

x

1

2

2

Variable
density: R: 0 ≤ x ≤

0 ≤ y ≤ sin x
π

(x, y)

(x, y) = xρ

ππ

y

Figure 14.41
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1004 Chapter 14 Multiple Integration

14.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Mass of a Planar lamina Explain when you should 

use a double integral to find the mass of a planar lamina.

2.  Moment of Inertia Describe what the moment of 
inertia measures.

 Finding the Mass of a lamina In Exercises 
3–6, find the mass of the lamina described by the 
inequalities, given that its density is ρ(x, y) = xy.

 3. 0 ≤ x ≤ 2, 0 ≤ y ≤ 2

 4. 0 ≤ x ≤ 2, 0 ≤ y ≤ 4 − x2

 5. 0 ≤ x ≤ 1, 0 ≤ y ≤ √1 − x2

 6. x ≥ 0, 3 ≤ y ≤ 3 + √9 − x2

Finding the Center of Mass In Exercises 7–10, find the 
mass and center of mass of the lamina corresponding to the 
region R for each density.

 7. R: square with vertices (0, 0), (a, 0), (0, a), (a, a)
 (a) ρ = k (b) ρ = ky (c) ρ = kx

 8. R: rectangle with vertices (0, 0), (a, 0), (0, b), (a, b)
 (a) ρ = kxy (b) ρ = k(x2 + y2)
 9. R: triangle with vertices (0, 0), (0, a), (a, a)
 (a) ρ = k (b) ρ = ky (c) ρ = kx

10. R: triangle with vertices (0, 0), (a�2, a), (a, 0)
 (a) ρ = k (b) ρ = kxy

11.  translations in the Plane Translate the lamina in 
Exercise 7 to the right five units and determine the resulting 
center of mass.

12.  Conjecture Use the result of Exercise 11 to make a 
conjecture about the change in the center of mass when a 
lamina of constant density is translated c units horizontally or 
d units vertically. Is the conjecture true when the density is not  
constant? Explain.

 Finding the Center of Mass In Exercises 
13–24, find the mass and center of mass of the 
lamina bounded by the graphs of the equations for 
the given density.

13. y = √x, y = 0, x = 1, ρ = ky

14. y = x2, y = 0, x = 2, ρ = kxy

15. y = 4�x, y = 0, x = 1, x = 4, ρ = kx2

16. y =
1

1 + x2, y = 0, x = −1, x = 1, ρ = k

17. y = ex, y = 0, x = 0, x = 1, ρ = k

18. y = e−x, y = 0, x = 0, x = 1, ρ = ky2

19. y = 4 − x2, y = 0, ρ = ky

20. x = 9 − y2, x = 0, ρ = kx

21. y = sin 
πx
3

, y = 0, x = 0, x = 3, ρ = k

22. y = cos 
πx
8

, y = 0, x = 0, x = 4, ρ = ky

23. y = √36 − x2, 0 ≤ y ≤ x, ρ = k

24. x2 + y2 = 16, x ≥ 0, y ≥ 0, ρ = k(x2 + y2)

Finding the Center of Mass Using technology In 
Exercises 25–28, use a computer algebra system to find the 
mass and center of mass of the lamina bounded by the graphs 
of the equations for the given density.

25. y = e−x, y = 0, x = 0, x = 2, ρ = kxy

26. y = ln x, y = 0, x = 1, x = e, ρ = k�x

27. r = 2 cos 3θ, −
π
6

≤ θ ≤ π
6

, ρ = k

28. r = 1 + cos θ, ρ = k

Finding the Radius of gyration About each Axis In 
Exercises 29–34, verify the given moment(s) of inertia and find 
x and y. Assume that each lamina has a density of ρ = 1 gram 
per square centimeter. (These regions are common shapes used 
in engineering.)

29. Rectangle 30. Right triangle

 

x

Ix = bh3

Iy = b3h1
3

1
3

h

b

y   

x

Ix = bh31
12

1
12

Iy = b3h

h

b

y

31. Circle 32. Semicircle

 

x

I0 = 1
2

π a4

a

y   

xa

y

I0 = 1
4

π a4

33. Quarter circle 34. Ellipse

 

xa

y

I0 = 1
8

π a4
  

x

I0 =
1
4

π ab(a2 + b2)

a
b

y
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14.4 Center of Mass and Moments of Inertia 1005

 Finding Moments of Inertia and Radii of 
gyration In Exercises 35–38, find Ix, Iy, I0,  x, 
and y for the lamina bounded by the graphs of the 
equations. 

35. y = 4 − x2, y = 0, x > 0, ρ = kx

36. y = x, y = x2, ρ = kxy

37. y = √x, y = 0, x = 4, ρ = kxy

38. y = x2, y2 = x, ρ = kx

Finding a Moment of Inertia Using technology In 
Exercises 39–42, set up the double integral required to find 
the moment of inertia about the given line of the lamina bounded 
by the graphs of the equations for the given density. Use a 
computer algebra system to evaluate the double integral.

39. x2 + y2 = b2, ρ = k, line: x = a (a > b)
40. y = √x, y = 0, x = 4, ρ = kx, line: x = 6

41. y = √a2 − x2, y = 0, ρ = ky, line: y = a

42. y = 4 − x2, y = 0, ρ = k, line: y = 2

hydraulics In Exercises 43–46, determine the location of 
the horizontal axis ya at which a vertical gate in a dam is to be 
hinged so that there is no moment causing rotation under the 
indicated loading (see figure). The model for ya is

ya = y −
Iy

hA

where y is the y-coordinate of the centroid of the gate, Iy is the 
moment of inertia of the gate about the line y = y, h is the depth 
of the centroid below the surface, and A is the area of the gate.

x

h

y L=

y = y

ya = y −
Iy

hA

y

43. 

x

y = L

b

y  44. 

x

y = L

b

a

d

y

45. 

x

y = Lb

y  46. 

x

y = L

a

d

y

eXpLoRInG ConCeptS
47.  Polar Moment of Inertia What does it mean for 

an object to have a greater polar moment of inertia than 
another object?

 48.  hoW Do yoU See It? The center of 
mass of the lamina of constant density shown in 
the figure is (2, 85). Make a conjecture about how 
the center of mass (x, y) changes for each given 
nonconstant density ρ(x, y). Explain. (Make your 
conjecture without performing any calculations.)

 

x

1

1

2

2

3

3

4

4

8
5( (2,

y

(a) ρ(x, y) = ky (b) ρ(x, y) = k∣2 − x∣
(c) ρ(x, y) = kxy   (d) ρ(x, y) = k(4 − x)(4 − y)

 48.  

49.  Proof Prove the following Theorem of Pappus: Let R be a 
region in a plane and let L be a line in the same plane such that 
L does not intersect the interior of R. If r is the distance 
between the centroid of R and the line, then the volume V of 
the solid of revolution formed by revolving R about the line is 
V = 2πrA, where A is the area of R.

The center of pressure on a sail is the point (xp, yp) at which the 
total aerodynamic force may be assumed to act. If the sail is 
represented by a plane region R, then the center of pressure is

xp =
∫R∫ xy dA

∫R∫y dA
 and yp =

∫R∫ y2 dA

∫R∫ y dA
.

Consider a triangular sail with vertices at (0, 0), (2, 1), and (0, 5). 
Verify the value of each integral.

(a) ∫
R
∫ y dA = 10

(b) ∫
R
∫ xy dA =

35
6

(c) ∫
R
∫ y2 dA =

155
6

Calculate the coordinates
(xp, yp) of the center of 
pressure. Sketch a graph of the sail and indicate 
the location of the center of pressure.

Center of Pressure on a Sail

Evannovostro/Shutterstock.com
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1006 Chapter 14 Multiple Integration

14.5 Surface Area

 Use a double integral to find the area of a surface.

Surface Area
At this point, you know a great deal about the 

x

y

Region R in xy-plane

zSurface:
z = f (x, y)

Figure 14.42

 
solid region lying between a surface and a 
closed and bounded region R in the xy-plane,  
as shown in Figure 14.42. For example, you 
know how to find the extrema of f  on R 
(Section 13.8), the area of the base R of the 
solid (Section 14.1), the volume of the solid 
(Section 14.2), and the centroid of the base R 
(Section 14.4).

In this section, you will learn how to find 
the upper surface area of the solid. Later,  
you will learn how to find the centroid of the  
solid (Section 14.6) and the lateral surface  
area (Section 15.2).

To begin, consider a surface S given by

z = f (x, y) Surface defined over a region R

defined over a region R. Assume that R is closed and bounded and that f  has continuous 
first partial derivatives. To find the surface area, construct an inner partition of R 
consisting of n rectangles, where the area of the ith rectangle Ri is ∆Ai = ∆xi∆yi, as 
shown in Figure 14.43. In each Ri, let (xi, yi) be the point that is closest to the origin. At 
the point (xi, yi, zi) = (xi, yi, f (xi, yi)) on the surface S, construct a tangent plane Ti. The 
area of the portion of the tangent plane that lies directly above Ri is approximately equal 
to the area of the surface lying directly above Ri. That is, ∆Ti ≈ ∆Si. So, the surface 
area of S is approximated by

∑
n

i=1
 ∆Si ≈ ∑

n

i=1
 ∆Ti.

To find the area of the parallelogram ∆Ti, note that its sides are given by the vectors

u = ∆xii + fx(xi, yi) ∆xik

and

v = ∆yi j + fy(xi, yi) ∆yik.

From Theorem 11.8, the area of ∆Ti is given by �u × v�, where

 u × v = ∣ i j k
∆xi 0 fx(xi, yi) ∆xi

0 ∆yi fy(xi, yi) ∆yi∣
 = −fx(xi, yi) ∆xi∆yi i − fy(xi, yi) ∆xi∆yij + ∆xi∆yik

 = [−fx(xi, yi)i − fy(xi, yi)j + k] ∆Ai.

So, the area of ∆Ti is �u × v� = √[ fx(xi, yi)]2 + [ fy(xi, yi)]2 + 1 ∆Ai, and

 Surface area of S ≈ ∑
n

i=1
 ∆Si

 ≈ ∑
n

i=1
 √1 + [ fx(xi, yi)]2 + [ fy(xi, yi)]2 ∆Ai.

This suggests the definition of surface area on the next page.

x

y

z

ΔAi

ΔTi

R

ΔSi ≈ ΔTi

Surface:
z = f (x, y)

Figure 14.43
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14.5 Surface Area 1007

Definition of Surface Area

If f  and its first partial derivatives are continuous on the closed region R in the
xy-plane, then the area of the surface S given by z = f (x, y) over R is defined as

 Surface area = ∫
R
∫ dS

 = ∫
R
∫ √1 + [ fx(x, y)]2 + [ fy(x, y)]2 dA.

As an aid to remembering the double integral for surface area, it is helpful to note 
its similarity to the integral for arc length.

Length on x-axis: ∫b

a

 dx

Arc length in xy-plane: ∫b

a

 ds = ∫b

a

 √1 + [ f′(x)]2 dx

Area in xy-plane: ∫
R
∫ dA

Surface area in space: ∫
R
∫ dS = ∫

R
∫ √1 + [ fx(x, y)]2 + [ fy(x, y)]2 dA

Like integrals for arc length, integrals for surface area are often very difficult to 
evaluate. However, one type that is easily evaluated is demonstrated in the next example.

 the Surface Area of a Plane Region

Find the surface area of the portion of the plane

z = 2 − x − y

that lies above the circle x2 + y2 ≤ 1 in the first quadrant, as shown in Figure 14.44.

Solution Note that f (x, y) = 2 − x − y, fx(x, y) = −1, and fy(x, y) = −1 are 
continuous on the region R. So, the surface area is given by

 S = ∫
R
∫ √1 + [ fx(x, y)]2 + [ fy(x, y)]2 dA Formula for surface area

 = ∫
R
∫ √1 + (−1)2 + (−1)2 dA Substitute.

 = ∫
R
∫ √3 dA

 = √3 ∫
R
∫ dA.

Note that the last integral is √3 times the area of the region R. Because R is a quarter 
circle of radius 1, the area of R is 14π(12) or π�4. So, the area of S is

 S = √3 (area of R)

 = √3 (π4)
 =

√3 π
4

.  

x

y2 2

2

R: x2 + y2 ≤ 1

zPlane:
z = 2 − x − y

Figure 14.44

ReMARK Note that the 
differential ds of arc length in 
the xy-plane is

√1 + [ f ′(x)]2 dx

and the differential dS of surface 
area in space is

√1 + [ fx(x, y)]2 + [ fy(x, y)]2 dA.
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1008 Chapter 14 Multiple Integration

 Finding Surface Area

See LarsonCalculus.com for an interactive version of this type of example.

Find the area of the portion of the surface f (x, y) = 1 − x2 + y that lies above the 
triangular region with vertices (1, 0, 0), (0, −1, 0), and (0, 1, 0), as shown in Figure 14.45.

Solution Because fx(x, y) = −2x and fy(x, y) = 1, you have

S = ∫
R
∫ √1 + [ fx(x, y)]2 + [ fy(x, y)]2 dA = ∫

R
∫ √1 + 4x2 + 1 dA.

In Figure 14.46, you can see that the bounds for R are 0 ≤ x ≤ 1 and  
x − 1 ≤ y ≤ 1 − x. So, the integral becomes

 S = ∫1

0
∫1−x

x−1
√2 + 4x2 dy dx Apply formula for surface area.

 = ∫1

0
y√2 + 4x2 ]

1−x

x−1
 dx

 = ∫1

0
 [(1 − x)√2 + 4x2 − (x − 1)√2 + 4x2] dx

 = ∫1

0
 (2√2 + 4x2 − 2x√2 + 4x2) dx 

Integration tables (Appendix B), 
Formula 26 and Power Rule

 = [x√2 + 4x2 + ln(2x + √2 + 4x2) −
(2 + 4x2)3�2

6 ]
1

0

 = √6 + ln(2 + √6) − √6 − ln √2 +
1
3

 √2

 ≈ 1.618.

 Change of Variables to Polar Coordinates

Find the surface area of the paraboloid z = 1 + x2 + y2 that lies above the unit circle, 
as shown in Figure 14.47.

Solution Because fx(x, y) = 2x and fy(x, y) = 2y, you have

S = ∫
R
∫ √1 + [ fx(x, y)]2 + [ fy(x, y)]2 dA = ∫

R
∫ √1 + 4x2 + 4y2 dA.

You can convert to polar coordinates by letting x = r cos θ and y = r sin θ. Then, 
because the region R is bounded by 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π, you have

 S = ∫2π

0
∫1

0
√1 + 4r2 r dr dθ Polar coordinates

 = ∫2π

0
 

1
12

(1 + 4r2)3�2]
1

0
  dθ Integrate with respect to r.

 = ∫2π

0
 
5√5 − 1

12
 dθ

 =
5√5 − 1

12
 θ]

2π

0
 Integrate with respect to θ.

 =
π(5√5 − 1)

6

 ≈ 5.33. 

y

x

z

R: x2 + y2 ≤ 1

R

1 1

2

Paraboloid:
z = 1 + x2 + y2

Figure 14.47

x

y1 1

1

−1

2 (0, 1, 2)

z Surface:
f(x, y) = 1 − x2 + y

Figure 14.45

x

−1

1

1 2

y = 1 − x

y = x − 1

x − 1 ≤ y ≤ 1 − x

y

R: 0 ≤ x ≤ 1

Figure 14.46
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 14.5 Surface Area 1009

 Finding Surface Area

Find the surface area S of the portion of the hemisphere

f (x, y) = √25 − x2 − y2 Hemisphere

that lies above the region R bounded by the circle x2 + y2 ≤ 9, as shown in Figure 14.48.

Solution The first partial derivatives of f  are

fx(x, y) =
−x

√25 − x2 − y2

and

fy(x, y) =
−y

√25 − x2 − y2

and, from the formula for surface area, you have

 dS = √1 + [ fx(x, y)]2 + [ fy(x, y)]2 dA

 =√1 + ( −x

√25 − x2 − y2)
2

+ ( −y

√25 − x2 − y2)
2

 dA

 =
5

√25 − x2 − y2
 dA.

So, the surface area is

S = ∫
R
∫ 

5

√25 − x2 − y2
 dA.

You can convert to polar coordinates by letting x = r cos θ and y = r sin θ. Then, 
because the region R is bounded by 0 ≤ r ≤ 3 and 0 ≤ θ ≤ 2π, you obtain

 S = ∫2π

0
∫3

0
 

5

√25 − r2
 r dr dθ Polar coordinates

 = 5∫2π

0
−√25 − r2 ]

3

0
 dθ Integrate with respect to r.

 = 5∫2π

0
 dθ

 = 10π. Integrate with respect to θ. 

The procedure used in Example 4 can be extended to find the surface area of a 
sphere by using the region R bounded by the circle x2 + y2 ≤ a2, where 0 < a < 5, as 
shown in Figure 14.49. The surface area of the portion of the hemisphere

f (x, y) = √25 − x2 − y2

lying above the circular region can be shown to be

 S = ∫
R
∫ 

5

√25 − x2 − y2
 dA

 = ∫2π

0
∫a

0
 

5

√25 − r2
 r dr dθ

 = 10π(5 − √25 − a2).
By taking the limit as a approaches 5 and doubling the result, you obtain a total area of 
100π. (The surface area of a sphere of radius r is S = 4πr2.)

x

y

z

−2

−4
−6

−4

1

1

2 2

2

3

3

4 4

4

5

5

6
R: x2 + y2 ≤ 9

f(x, y) =     25 − x2 − y2

Hemisphere:

Figure 14.48

x

y

z

5

5

5

R: x2 + y2 ≤ a2

aa

f(x, y) =     25 − x2 − y2

Hemisphere:

Figure 14.49

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



1010 Chapter 14 Multiple Integration

You can use Simpson’s Rule or the Trapezoidal Rule to approximate the value 
of a double integral, provided you can get through the first integration. This is demonstrated 
in the next example.

 Approximating Surface Area by Simpson’s Rule

Find the area of the surface of the paraboloid

f (x, y) = 2 − x2 − y2 Paraboloid

that lies above the square region bounded by 

−1 ≤ x ≤ 1 and −1 ≤ y ≤ 1

as shown in Figure 14.50.

Solution Using the partial derivatives

fx(x, y) = −2x and fy(x, y) = −2y

you have a surface area of

 S = ∫
R
∫√1 + [ fx(x, y)]2 + [ fy(x, y)]2 dA Formula for surface area

 = ∫
R
∫√1 + (−2x)2 + (−2y)2 dA Substitute.

 = ∫
R
∫√1 + 4x2 + 4y2 dA. Simplify.

In polar coordinates, the line x = 1 is given by

r cos θ = 1 or r = sec θ

and you can determine from Figure 14.51 that one-fourth of the region R is bounded by

0 ≤ r ≤ sec θ and −
π
4

≤ θ ≤ π
4

.

Letting x = r cos θ and y = r sin θ produces

 
1
4

 S =
1
4∫R

∫√1 + 4x2 + 4y2 dA One-fourth of surface area

 = ∫π�4

−π�4
∫sec θ

0
√1 + 4r2 r dr dθ Polar coordinates

 = ∫π�4

−π�4
 

1
12

(1 + 4r2)3�2 ]
sec θ

0
 dθ Integrate with respect to r.

 =
1
12∫

π�4

−π�4
[(1 + 4 sec2 θ)3�2 − 1] dθ.

After multiplying each side by 4, you can approximate the integral using Simpson’s 
Rule with n = 10 to find that the area of the surface is

S = 4( 1
12)∫

π�4

−π�4
 [(1 + 4 sec2 θ)3�2 − 1] dθ ≈ 7.450. 

teChnology Most computer programs that are capable of performing  
symbolic integration for multiple integrals are also capable of performing numerical 
approximation techniques. If you have access to such software, use it to approximate 
the value of the integral in Example 5.

y

x

z

R: −1 ≤ x ≤ 1
    −1 ≤ y ≤ 1

2
1

2

Paraboloid:
f (x, y) = 2 − x2 − y2

Figure 14.50

x
1

r = sec θ

4
= 

−1

−1

y

πθ

4
= − πθ

1

One-fourth of the region R is bounded

by 0 ≤ r ≤ sec θ and −
π
4

≤ θ ≤ π
4

.

Figure 14.51
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14.5 Surface Area 1011

14.5 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Surface Area What is the differential of surface area, 

dS, in space?

2.  numerical Integration Write a double integral that 
represents the surface area of the portion of the plane 
z = 3 that lies above the rectangular region with vertices 
(0, 0), (4, 0), (0, 5), and (4, 5). Then find the surface area 
without integrating.

 Finding Surface Area In Exercises 3–16, find 
the area of the surface given by z = f (x, y) that lies 
above the region R. 

 3. f (x, y) = 2x + 2y

 R: triangle with vertices (0, 0), (4, 0), (0, 4)
 4. f (x, y) = 15 + 2x − 3y

 R: square with vertices (0, 0), (3, 0), (0, 3), (3, 3)
 5. f (x, y) = 4 + 5x + 6y, R = {(x, y): x2 + y2 ≤ 4}
 6. f (x, y) = 12 + 2x − 3y, R = {(x, y): x2 + y2 ≤ 9}
 7. f (x, y) = 9 − x2

 R: square with vertices (0, 0), (2, 0), (0, 2), (2, 2)
 8. f (x, y) = y2

 R: square with vertices (0, 0), (3, 0), (0, 3), (3, 3)
 9. f (x, y) = 3 + 2x3�2

 R: rectangle with vertices (0, 0), (0, 4), (1, 4), (1, 0)
10. f (x, y) = 2 + 2

3 y3�2

 R = {(x, y): 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 − x}
11. f (x, y) = ln∣sec x∣
 R = {(x, y): 0 ≤ x ≤ π

4
, 0 ≤ y ≤ tan x} 

12. f (x, y) = 13 + x2 − y2, R = {(x, y): x2 + y2 ≤ 4}
13. f (x, y) = √x2 + y2, R = {(x, y): 0 ≤ f (x, y) ≤ 1}
14. f (x, y) = xy, R = {(x, y): x2 + y2 ≤ 16}
15. f (x, y) = √a2 − x2 − y2

 R = {(x, y): x2 + y2 ≤ b2,  0 < b < a}
16. f (x, y) = √a2 − x2 − y2

 R = {(x, y): x2 + y2 ≤ a2}

 Finding Surface Area In Exercises 17–20, find 
the area of the surface.

17. The portion of the plane z = 12 − 3x − 2y in the first octant

18.  The portion of the paraboloid z = 16 − x2 − y2 in the first 
octant

19.  The portion of the sphere x2 + y2 + z2 = 25 inside the 
cylinder x2 + y2 = 9

20.  The portion of the cone z = 2√x2 + y2 inside the cylinder 
x2 + y2 = 4

Finding Surface Area Using technology In Exercises 
21–26, write a double integral that represents the surface area 
of z = f (x, y) that lies above the region R. Use a computer 
algebra system to evaluate the double integral.

21. f (x, y) = 2y + x2, R: triangle with vertices (0, 0), (1, 0), (1, 1)
22. f (x, y) = 2x + y2, R: triangle with vertices (0, 0), (2, 0), (2, 2)
23. f (x, y) = 9 − x2 − y2, R = {(x, y): 0 ≤ f (x, y)}
24. f (x, y) = x2 + y2, R = {(x, y): 0 ≤ f (x, y) ≤ 16}
25. f (x, y) = 4 − x2 − y2

 R = {(x, y): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
26. f (x, y) = 2

3 x3�2 + cos x

 R = {(x, y): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
Setting Up a Double Integral In Exercises 27–30, set up 
a double integral that represents the area of the surface given 
by z = f (x, y) that lies above the region R.

27. f (x, y) = exy, R = {(x, y): 0 ≤ x ≤ 4, 0 ≤ y ≤ 10}
28. f (x, y) = x2 − 3xy − y2

 R = {(x, y): 0 ≤ x ≤ 4, 0 ≤ y ≤ x}
29. f (x, y) = e−x sin y, R = {(x, y): x2 + y2 ≤ 4} 

30. f (x, y) = cos(x2 + y2), R = {(x, y): x2 + y2 ≤ π
2}

EXPLORING CONCEPTS
31.  Surface Area Will the surface area of the graph of 

a function z = f (x, y) that lies above a region R increase 
when the graph is shifted k units vertically? Explain 
using the partial derivatives of z.

 32.  hoW Do yoU See It? Consider the surface 
f (x, y) = x2 + y2 (see figure) and the surface 
area of f  that lies above each region R. Without 
integrating, order the surface areas from least to 
greatest. Explain.

 

x
y

z

22

4

−2 −2

(a)  R: rectangle with vertices (0, 0), (2, 0), (2, 2), (0, 2)
(b) R: triangle with vertices (0, 0), (2, 0), (0, 2)
(c) R = {(x, y): x2 + y2 ≤ 4, first quadrant only}

 32.  
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1012 Chapter 14 Multiple Integration

33.  Surface Area Answer each question about the surface 
area S on a surface given by a positive function z = f (x, y) that 
lies above a region R in the xy-plane. Explain each answer.

 (a)  Is it possible for S to equal the area of R?

 (b) Can S be greater than the area of R?

 (c) Can S be less than the area of R?

34.  Surface Area Consider the surface f (x, y) = x + y. What 
is the relationship between the area of the surface that lies 
above the region

 R1 = {(x, y): x2 + y2 ≤ 1}

 and the area of the surface that lies above the region

 R2 = {(x, y): x2 + y2 ≤ 4}?

35.  Product Design A company produces a spherical object 
of radius 25 centimeters. A hole of radius 4 centimeters is 
drilled through the center of the object.

 (a) Find the volume of the object.

 (b) Find the outer surface area of the object.

37.  Surface Area Find the surface area of the solid of intersection 
of the cylinders x2 + z2 = 1 and y2 + z2 = 1 (see figure).

x

y3

2

−3

−2

3

z

y2 + z2 = 1

x2 + z2 = 1

38.  Surface Area Show that the surface area of the cone 
z = k√x2 + y2, k > 0, that lies above the circular region 
x2 + y2 ≤ r2 in the xy-plane is πr2√k2 + 1 (see figure).

y

x

r r

z

R: x2 + y2 ≤ r2

z = k    x2 + y2

(a)  Use the formula for surface area in rectangular coordinates to 
derive the following formula for surface area in polar coordinates, 
where z = f (x, y) = f (r cos θ, r sin θ). (Hint: You will need 
to use the Chain Rule for functions of two variables.)

 S = ∫
R
∫ √1 + f 2

r +
1
r2 f 2

θ  r dr dθ

(b)  Use the formula from part (a) to find the surface area of the 
paraboloid z = x2 + y2 that lies above the circular region 
x2 + y2 ≤ 4 in the xy-plane (see figure).

 

x
y

z

2

4

2

z = x2 + y2

R: x2 + y2 ≤ 4

(c)  Use the formula from part (a) to find the surface area of 
z = xy that lies above the circular region x2 + y2 ≤ 16 in the 
xy-plane. Compare your answer with your answer to 
Exercise 14.

Surface Area in Polar Coordinates

A company builds a warehouse with dimensions 30 feet by 
50 feet. The symmetrical shape and selected heights of the 
roof are shown in the figure.

y

x

50

20

25
(0, 0, 25)

(0, 5, 22)

(0, 10, 17)

(0, 15, 0)

z

(a)  Use the regression capabilities of a graphing utility to 
find a model of the form

  z = ay3 + by2 + cy + d

  for the roof line.

(b)  Use the numerical integration capabilities of a graphing 
utility and the model in part (a) to approximate the
volume of storage space in the warehouse.

(c)  Use the numerical
integration
capabilities of a
graphing utility and
the model in part (a)
to approximate the 
surface area of the roof.

(d)  Approximate the arc
length of the roof line
and find the surface area of the roof by multiplying the 
arc length by the length of the warehouse. Compare the 
results and the integrations with those found in part (c).

36. Modeling Data

AlexKZ/Shutterstock.com
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14.6 Triple Integrals and Applications 1013

14.6 Triple Integrals and applications

 Use a triple integral to find the volume of a solid region.
  Find the center of mass and moments of inertia of a solid region.

Triple Integrals
The procedure used to define a triple integral follows that used for double integrals. 
Consider a function f  of three variables that is continuous over a bounded solid region 
Q. Then encompass Q with a network of boxes and form the inner partition consisting 
of all boxes lying entirely within Q, as shown in Figure 14.52. The volume of the ith 
box is

∆Vi = ∆xi∆yi∆zi. Volume of ith box

The norm �∆� of the partition is the length of the longest diagonal of the n boxes in the 
partition. Choose a point (xi, yi, zi) in each box and form the Riemann sum

∑
n

i=1
 f (xi, yi, zi) ∆Vi.

Taking the limit as �∆� → 0 leads to the following definition.

Definition of Triple Integral

If f  is continuous over a bounded solid region Q, then the triple integral of f
over Q is defined as

∫∫
Q

∫ f (x, y, z) dV = lim
�∆�→0

 ∑
n

i=1
 f (xi, yi, zi) ∆Vi

provided the limit exists. The volume of the solid region Q is given by

Volume of Q = ∫∫
Q

∫ dV.

Some of the properties of double integrals in Theorem 14.1 can be restated in terms 
of triple integrals.

1. ∫∫
Q

∫ cf (x, y, z) dV = c ∫∫
Q

∫ f (x, y, z) dV

2. ∫∫
Q

∫ [ f (x, y, z) ± g(x, y, z)] dV = ∫
�

∫
Q

∫ f (x, y, z) dV ± ∫∫
Q

∫ g(x, y, z) dV

3. ∫∫
Q

∫ f (x, y, z) dV = ∫∫
Q1

∫ f (x, y, z) dV + ∫∫
Q2

∫ f (x, y, z) dV

In the properties above, Q is the union of two nonoverlapping solid subregions Q1 
and Q2. If the solid region Q is simple, then the triple integral ∫∫∫ f (x, y, z) dV can be 
evaluated with an iterated integral using one of the six possible orders of integration 
listed below.

dx dy dz dy dx dz dz dx dy

dx dz dy dy dz dx dz dy dx

y

x

z

Solid region Q

y

x

z

Volume of Q ≈ ∑
n

i=1
 ∆Vi

Figure 14.52
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1014 Chapter 14 Multiple Integration

The following version of Fubini’s Theorem describes a region that is considered 
simple with respect to the order dz dy dx. Similar versions of this theorem can be given 
for the other five orders.

THeOrem 14.4 evaluation by Iterated Integrals

Let f  be continuous on a solid region Q defined by

a ≤ x ≤ b,

h1(x) ≤ y ≤ h2(x),
g1(x, y) ≤ z ≤ g2(x, y)

where h1, h2, g1, and g2 are continuous functions. Then,

∫∫
Q

∫ f (x, y, z) dV = ∫b

a
∫h2(x)

h1(x)
∫g2(x, y)

g1(x, y)
 f (x, y, z) dz dy dx.

To evaluate a triple iterated integral in the order dz dy dx, hold both x and y constant 
for the innermost integration. Then hold x constant for the second integration.

 evaluating a Triple Iterated Integral

Evaluate the triple iterated integral

∫2

0
∫x

0
∫x+y

0
 ex(y + 2z) dz dy dx.

Solution For the first integration, hold x and y constant and integrate with respect
to z.

 ∫2

0
∫x

0
∫x+y

0
 ex(y + 2z) dz dy dx = ∫2

0
∫x

0
ex(yz + z2)]

0

x+y

 dy dx

 = ∫2

0
∫x

0
 ex(x2 + 3xy + 2y2) dy dx

For the second integration, hold x constant and integrate with respect to y.

 ∫2

0
∫x

0
 ex(x2 + 3xy + 2y2) dy dx = ∫2

0
 [ex(x2y +

3xy2

2
+

2y3

3 )]
x

0
 dx

 =
19
6

 ∫2

0
 x3ex dx

Finally, integrate with respect to x.

 
19
6 ∫

2

0
 x3ex dx =

19
6 [ex(x3 − 3x2 + 6x − 6)]

2

0

 = 19(e2

3
+ 1)

 ≈ 65.797 

Example 1 demonstrates the integration order dz dy dx. For other orders, you can 
follow a similar procedure. For instance, to evaluate a triple iterated integral in the 
order dx dy dz, hold both y and z constant for the innermost integration and integrate 
with respect to x. Then, for the second integration, hold z constant and integrate with 
respect to y. Finally, for the third integration, integrate with respect to z.

exploration
Volume of a Paraboloid 
Sector In the Explorations 
on pages 983 and 992, you 
were asked to summarize 
the different ways you know 
of finding the volume of 
the solid bounded by the 
paraboloid

z = a2 − x2 − y2, a > 0

and the xy-plane. You now 
know one more way. Use
it to find the volume of 
the solid.

y

x

a

z

−a

a

a2

remark To do the last 
integration in Example 1, use 
integration by parts three times.
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 14.6 Triple Integrals and Applications 1015

To find the limits for a particular order of integration, it is generally advisable first 
to determine the innermost limits, which may be functions of the outer two variables. 
Then, by projecting the solid Q onto the coordinate plane of the outer two variables, 
you can determine their limits of integration by the methods used for double integrals. 
For instance, to evaluate

∫∫
Q

∫ f (x, y, z) dz dy dx

first determine the limits for z; the integral then has the form

∫∫[∫g2(x, y)

g1(x, y)
 f (x, y, z) dz] dy dx.

By projecting the solid Q onto the xy-plane, you can determine the limits for x and y as 
you did for double integrals, as shown in Figure 14.53.

 Using a Triple Integral to Find Volume

Find the volume of the ellipsoid given by 4x2 + 4y2 + z2 = 16.

Solution Because x, y, and z play similar roles in the equation, the order of integration 
is probably immaterial, and you can arbitrarily choose dz dy dx. Moreover, you can  
simplify the calculation by considering only the portion of the ellipsoid lying in the 
first octant, as shown in Figure 14.54. From the order dz dy dx, you first determine the 
bounds for z.

0 ≤ z ≤ 2√4 − x2 − y2 Bounds for z

In Figure 14.55, you can see that the bounds for x and y are 

0 ≤ x ≤ 2 and 0 ≤ y ≤ √4 − x2. Bounds for x and y

So, the volume of the ellipsoid is

 V = ∫∫
Q

∫ dV Formula for volume

 = 8∫2

0
∫√4−x2

0
∫2√4−x2−y2

0
 dz dy dx Convert to iterated integral.

 = 8∫2

0
∫√4−x2

0
z]2√4−x2−y2

0
 dy dx

 = 16∫2

0
∫√4−x2

0
√(4 − x2) − y2 dy dx Integration tables (Appendix B),  

Formula 37

 = 8∫2

0
 [y√4 − x2 − y2 + (4 − x2) arcsin( y

√4 − x2)]
√4−x2

0
 dx

 = 8∫2

0
 [0 + (4 − x2) arcsin(1) − 0 − 0] dx

 = 8∫2

0
 (4 − x2)(π2) dx

 = 4π[4x −
x3

3 ]
2

0

 =
64π

3
. 

x y

Projection onto xy-plane

z

Q

z = g2(x, y)

z = g1(x, y)

Solid region Q lies between two surfaces.
Figure 14.53

2

2

1

4

x

0 ≤ z ≤ 2    4 − x2 − y2

z

y

Ellipsoid: 4x2 + 4y2 + z2 = 16

Figure 14.54

x

0 ≤ y ≤    4 − x2

1

1

2

2

x2 + y2 = 4

0 ≤ x ≤ 2y

Figure 14.55
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1016 Chapter 14 Multiple Integration

Example 2 is unusual in that all six possible orders of integration produce integrals 
of comparable difficulty. Try setting up some other possible orders of integration to find 
the volume of the elipsoid. For instance, the order dx dy dz yields the integral

V = 8∫4

0
∫√16−z2�2

0
∫√16−4y2−z2�2

0
dx dy dz.

The evaluation of this integral yields the same volume obtained in Example 2. This 
is always the case—the order of integration does not affect the value of the integral. 
However, the order of integration often does affect the complexity of the integral. In 
Example 3, the given order of integration is not convenient, so you can change the order 
to simplify the problem.

 Changing the Order of Integration

Evaluate ∫√π�2

0
∫√π�2

x
∫3

1
 sin(y2) dz dy dx.

Solution Note that after one integration  

x

y

z

1

2

3

π )) 2
π
2

, , 3 

π )) 2
π
2

, , 1 

π
2 π

2

Q: 0 ≤ x ≤ 

x ≤ y ≤

1 ≤ z ≤ 3

π
2
π
2

y = x

Figure 14.56

 
in the given order, you would encounter the 
integral 2∫sin(y2) dy, which is not an 
elementary function. To avoid this problem, 
change the order of integration to dz dx dy so 
that y is the outer variable. From Figure 14.56, 
you can see that the solid region Q is

0 ≤ x ≤ √π
2

x ≤ y ≤ √π
2

1 ≤ z ≤ 3

and the projection of Q in the xy-plane yields  
the bounds

0 ≤ y ≤ √π
2

and

0 ≤ x ≤ y.

So, evaluating the triple integral using the  
order dz dx dy produces

 ∫√π�2

0
∫y

0
∫3

1
 sin(y2) dz dx dy = ∫√π�2

0
∫y

0
z sin(y2)]

1

3

 dx dy

 = 2∫√π�2

0
∫y

0
 sin(y2) dx dy

 = 2∫√π�2

0
x sin(y2)]

y

0
 dy

 = 2∫√π�2

0
y sin(y2) dy

 = −cos(y2)]√π�2

0

 = 1.  
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 14.6 Triple Integrals and Applications 1017

 Determining the Limits of Integration

Set up a triple integral for the volume of each solid region.

a.  The region in the first octant bounded above by the cylinder z = 1 − y2 and lying 
between the vertical planes x + y = 1 and x + y = 3

b. The upper hemisphere z = √1 − x2 − y2

c.  The region bounded below by the paraboloid z = x2 + y2 and above by the sphere 
x2 + y2 + z2 = 6

Solution

a.  In Figure 14.57, note that the solid is bounded below by the xy-plane (z = 0) and 
above by the cylinder z = 1 − y2. So,

0 ≤ z ≤ 1 − y2. Bounds for z

   Projecting the region onto the xy-plane produces a parallelogram. Because two sides 
of the parallelogram are parallel to the x-axis, you have the following bounds:

1 − y ≤ x ≤ 3 − y and 0 ≤ y ≤ 1. Bounds for x and y

 So, the volume of the region is given by

V = ∫∫
Q

∫dV = ∫1

0
∫3−y

1−y
∫1−y2

0
dz dx dy.

b. For the upper hemisphere z = √1 − x2 − y2, you have

0 ≤ z ≤ √1 − x2 − y2. Bounds for z

   In Figure 14.58, note that the projection of the hemisphere onto the xy-plane is the 
circle 

x2 + y2 = 1

 and you can use either order dx dy or dy dx. Choosing the first produces

−√1 − y2 ≤ x ≤ √1 − y2 and −1 ≤ y ≤ 1 Bounds for x and y

 which implies that the volume of the region is given by

V = ∫∫
Q

∫dV = ∫1

−1
∫√1−y2

−√1−y2
∫√1−x2−y2

0
dz dx dy.

c.  For the region bounded below by the paraboloid z = x2 + y2 and above by the 
sphere x2 + y2 + z2 = 6, you have

x2 + y2 ≤ z ≤ √6 − x2 − y2. Bounds for z

   The sphere and the paraboloid intersect at z = 2. Moreover, you can see in Figure 14.59 
that the projection of the solid region onto the xy-plane is the circle 

x2 + y2 = 2.

 Using the order dy dx produces

−√2 − x2 ≤ y ≤ √2 − x2 and −√2 ≤ x ≤ √2 Bounds for x and y

 which implies that the volume of the region is given by

V = ∫∫
Q

∫dV = ∫√2

−√2
∫√2−x2

−√2−x2
∫√6−x2−y2

x2+y2

dz dy dx. 

x

y

3

1

1

Δy

Q: 0 ≤ z ≤ 1 − y2

1 − y ≤ x ≤ 3 − y
0 ≤ y ≤ 1

z

z = 1 − y2

x = 1 − y

x = 3 − y

Figure 14.57

x

y
1 1

1

−1 ≤ y ≤ 1

1 − y2 ≤ x ≤     1 − y2−
0 ≤ z ≤     1 − x2 − y2

z

Q:

z = 1 − x2 − y2

Hemisphere:

Circular base:
x2 + y2 = 1

Figure 14.58

y
x

2 2

−2

3

−    2 − x2  ≤ y ≤     2 − x2

−       ≤ x ≤     22

x2 + y2 ≤ z ≤     6 − x2 − y2

z

Q:

Sphere:
x2 + y2 + z2 = 6

Paraboloid:
z = x2 + y2

Figure 14.59
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1018 Chapter 14 Multiple Integration

Center of Mass and Moments of Inertia
In the remainder of this section, two important engineering applications of triple integrals 
are discussed. Consider a solid region Q whose density is given by the density  
function ρ. The center of mass of a solid region Q of mass m is given by (x, y, z), 
where

 m = ∫∫
Q

∫ ρ(x, y, z) dV Mass of the solid

 Myz = ∫∫
Q

∫ xρ(x, y, z) dV First moment about yz-plane

 Mxz = ∫∫
Q

∫ yρ(x, y, z) dV  First moment about xz-plane

 Mxy = ∫∫
Q

∫ zρ(x, y, z) dV  First moment about xy-plane

and

x =
Myz

m
, y =

Mxz

m
, z =

Mxy

m
.

The quantities Myz, Mxz, and Mxy are called the first moments of the region Q about the 
yz-, xz-, and xy-planes, respectively.

The first moments for solid regions are taken about a plane, whereas the second 
moments for solids are taken about a line. The second moments (or moments of inertia) 
about the x-, y-, and z-axes are

 Ix = ∫∫
Q

∫ (y2 + z2)ρ(x, y, z) dV Moment of inertia about x-axis

 Iy = ∫∫
Q

∫ (x2 + z2)ρ(x, y, z) dV Moment of inertia about y-axis

and

 Iz = ∫∫
Q

∫ (x2 + y2)ρ(x, y, z) dV. Moment of inertia about z-axis

For problems requiring the calculation of all three moments, considerable effort can be 
saved by applying the additive property of triple integrals and writing

Ix = Ixz + Ixy, Iy = Iyz + Ixy, and Iz = Iyz + Ixz

where Ixy, Ixz, and Iyz are

 Ixy = ∫∫
Q

∫ z
2ρ(x, y, z) dV

 Ixz = ∫∫
Q

∫ y
2ρ(x, y, z) dV

and

 Iyz = ∫∫
Q

∫ x
2ρ(x, y, z) dV.

x

y

z

Figure 14.60

remark In engineering 
and physics, the moment of 
inertia of a mass is used to 
find the time required for the 
mass to reach a given speed of 
rotation about an axis, as shown 
in Figure 14.60. The greater the 
moment of inertia, the longer  
a force must be applied for the 
mass to reach the given speed.
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 14.6 Triple Integrals and Applications 1019

 Finding the Center of mass of a Solid region

See LarsonCalculus.com for an interactive version of this type of example.

Find the center of mass of the unit cube shown in Figure 14.61, given that the density 
at the point (x, y, z) is proportional to the square of its distance from the origin.

Solution Because the density at (x, y, z) is proportional to the square of the distance 
between (0, 0, 0) and (x, y, z), you have

ρ(x, y, z) = k(x2 + y2 + z2)

where k is the constant of proportionality. You can use this density function to find the 
mass of the cube. Because of the symmetry of the region, any order of integration will 
produce an integral of comparable difficulty.

 m = ∫1

0
∫1

0
∫1

0
 k(x2 + y2 + z2) dz dy dx Apply formula for mass of a solid.

 = k∫1

0
∫1

0
 [(x2 + y2)z +

z3

3]
1

0
  dy dx Integrate with respect to z.

 = k∫1

0
∫1

0
 (x2 + y2 +

1
3) dy dx

 = k∫1

0
 [(x2 +

1
3)y +

y3

3 ]
1

0
  dx Integrate with respect to y.

 = k∫1

0
 (x2 +

2
3) dx

 = k[x3

3
+

2x
3 ]

1

0
 Integrate with respect to x.

 = k

The first moment about the yz-plane is

 Myz = k∫1

0
∫1

0
∫1

0
 x(x2 + y2 + z2) dz dy dx 

Apply formula for first moment 
about yz-plane.

 = k∫1

0
x[∫1

0
 ∫1

0
(x2 + y2 + z2) dz dy] dx. Factor.

Note that x can be factored out of the two inner integrals, because it is constant with 
respect to y and z. After factoring, the two inner integrals are the same as for the  
mass m. Therefore, you have

 Myz = k∫1

0
 x(x2 +

2
3) dx

 = k[x4

4
+

x2

3 ]
1

0
 Integrate with respect to x.

 =
7k
12

. First moment about yz-plane

So,

 x =
Myz

m
=

7k�12
k

=
7
12

.

Finally, from the nature of ρ and the symmetry of x, y, and z in this solid region, you

have x = y = z, and the center of mass is ( 7
12, 7

12, 7
12). 

x

y

1

1
1

(x, y, z)

z

Variable density:
ρ(x, y, z) = k(x2 + y2 + z2)
Figure 14.61
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1020 Chapter 14 Multiple Integration

 moments of Inertia for a Solid region

Find the moments of inertia about the x- and y-axes for the solid region lying between 
the hemisphere

z = √4 − x2 − y2

and the xy-plane, given that the density at (x, y, z) is proportional to the distance 
between (x, y, z) and the xy-plane.

Solution The density of the region is given by

ρ(x, y, z) = kz

where k is the constant of proportionality. Considering the symmetry of this problem, 
you know that Ix = Iy, and you need to find only one moment, such as Ix. From  
Figure 14.62, choose the order dz dy dx and write

 Ix = ∫∫
Q

∫ (y2 + z2)ρ(x, y, z) dV Moment of inertia about x-axis

 = ∫2

−2
∫√4−x2

−√4−x2
∫√4−x2−y2

0
 (y2 + z2)(kz) dz dy dx

 = k∫2

−2
∫√4−x2

−√4−x2
 [y2z2

2
+

z4

4]
√4−x2−y2

0
 dy dx

 = k∫2

−2
∫√4−x2

−√4−x2
 [y2(4 − x2 − y2)

2
+

(4 − x2 − y2)2

4 ] dy dx

 =
k
4∫

2

−2
∫√4−x2

−√4−x2
 [(4 − x2)2 − y4] dy dx

 =
k
4∫

2

−2
 [(4 − x2)2y −

y5

5 ]
√4−x2

−√4−x2
 dx

 =
k
4∫

2

−2
 
8
5

(4 − x2)5�2 dx

 =
4k
5 ∫

2

0
 (4 − x2)5�2 dx

 =
4k
5 ∫

π�2

0
 64 cos6 θ dθ Trigonometric substitution: x = 2 sin θ

 = (256k
5 )(5π

32) Wallis’s Formula

 = 8kπ.

So, Ix = 8kπ = Iy. 

In Example 6, notice that the moments of inertia about the x- and y-axes are equal 
to each other. The moment about the z-axis, however, is different. Does it seem that 
the moment of inertia about the z-axis should be less than or greater than the moments 
calculated in Example 6? By performing the calculations, you can determine that

Iz =
16
3

kπ.

This tells you that the solid shown in Figure 14.62 has a greater resistance to rotation 
about the x- or y-axis than about the z-axis.

x

y

z

2

2

2

−2 ≤ x ≤ 2
−    4 − x2 ≤ y ≤     4 − x2

0 ≤ z ≤     4 − x2 − y2

z =     4 − x2 − y2

Hemisphere:

Circular base:
x2 + y2 = 4

Variable density: ρ(x, y, z) = kz
Figure 14.62
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 14.6 Triple Integrals and Applications 1021

14.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk

1.  Triple Integrals What does Q = ∫∫
Q

∫ dV represent?

2.  Changing the Order of Integration Why is it 
beneficial to be able to change the order of integration for 
a triple integral? Explain.

 evaluating a Triple Iterated Integral In 
Exercises 3–10, evaluate the triple iterated integral.

 3. ∫3

0
∫2

0
∫1

0
 (x + y + z) dx dz dy

 4. ∫2

0
∫1

0
∫2

−1
 xyz3 dx dy dz

 5. ∫1

0
∫x

0
∫√x y

0
 x dz dy dx  6. ∫9

0
∫y�3

0
∫√y2−9x2

0
 z dz dx dy

 7. ∫4

1
∫1

0
∫x

0
 2ze−x2 dy dx dz

 8. ∫4

1
∫e2

1
∫1�xz

0
 ln z dy dz dx

 9. ∫4

−3
∫π�2

0
∫1+3x

0
 x cos y dz dy dx

10. ∫π�2

0
∫y�2

0
∫1�y

0
 sin y dz dx dy

evaluating a Triple Iterated Integral Using 
Technology In Exercises 11 and 12, use a computer algebra 
system to evaluate the triple iterated integral.

11. ∫3

0
∫√9−y2

−√9−y2
∫y2

0
 y dz dx dy

12. ∫3

0
∫2−(2y�3)

0
∫6−2y−3z

0
 ze−x2y2 dx dz dy

Setting Up a Triple Integral In Exercises 13–18, set up a 
triple integral for the volume of the solid. Do not evaluate the 
integral.

13.  The solid in the first octant bounded by the coordinate planes 
and the plane z = 7 − x − 2y

14. The solid bounded by z = 9 − x2, z = 0, y = 0, and y = 2x

15. The solid bounded by z = 6 − x2 − y2 and z = 0

16. The solid bounded by z = √1 − x2 − y2 and z = 0

17.  The solid that is the common interior below the sphere 
x2 + y2 + z2 = 80 and above the paraboloid z = 1

2 (x2 + y2)
18.  The solid bounded above by the cylinder z = 4 − x2 and 

below by the paraboloid z = x2 + 3y2

 Volume In Exercises 19–24, use a triple integral 
to find the volume of the solid bounded by the 
graphs of the equations.

19.

y

x

4

3

2

4

z

z = 0

x = 4 − y2

z = x
 20. 

0 ≤ x ≤ 2
0 ≤ y ≤ 2

y

x

1
2

2

4

6

3

8

z

z = 2xy

21. z = 6x2, y = 3 − 3x, first octant

22. z = 9 − x3, y = −x2 + 2, y = 0, z = 0, x ≥ 0

23. z = 2 − y, z = 4 − y2, x = 0, x = 3, y = 0

24. z = √x, y = x + 2, y = x2, first octant

 Changing the Order of Integration In 
Exercises 25–30, sketch the solid whose volume 
is given by the iterated integral. Then rewrite the 
integral using the indicated order of integration.

25. ∫1

0
∫0

−1
∫y2

0
 dz dy dx

 Rewrite using dy dz dx.

26. ∫1

−1
∫1

y2
∫1−x

0
 dz dx dy

 Rewrite using dx dz dy.

27. ∫4

0
∫(4−x)�2

0
∫(12−3x−6y)�4

0
 dz dy dx

 Rewrite using dy dx dz.

28. ∫3

0
∫√9−x2

0
∫6−x−y

0
 dz dy dx

 Rewrite using dz dx dy.

29. ∫1

0
∫1

y
∫√1−y2

0
dz dx dy 30. ∫2

0
∫4

2x
∫√y2−4x2

0
 dz dy dx

 Rewrite using dz dy dx.  Rewrite using dx dy dz.

Orders of Integration In Exercises 31–34, write a triple 
integral for f (x, y, z) = xyz over the solid region Q for each of 
the six possible orders of integration. Then evaluate one of the 
triple integrals.

31. Q = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 5x, 0 ≤ z ≤ 3}
32. Q = {(x, y, z): 0 ≤ x ≤ 2, x2 ≤ y ≤ 4, 0 ≤ z ≤ 2 − x} 
33. Q = {(x, y, z): x2 + y2 ≤ 9, 0 ≤ z ≤ 4}
34. Q = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x2, 0 ≤ z ≤ 6}
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1022 Chapter 14 Multiple Integration

Orders of Integration In Exercises 35 and 36, the figure 
shows the region of integration for the given integral. Rewrite 
the integral as an equivalent iterated integral in the five other 
orders.

35. ∫1

0
∫1−y2

0
∫1−y

0
 dz dx dy 36. ∫3

0
∫x

0
∫9−x2

0
 dz dy dx

 

y
x

1

1
1

z

x ≥ 0
y ≥ 0
z ≥ 0

z = 1 − y

x = 1 − y2

 

y = x

y

x

9

6

3

3

3

z

x ≥ 0
y ≥ 0
z ≥ 0

y = x

z = 9 − x2

 Center of mass In Exercises 37–40, find the 
mass and the indicated coordinate of the center of 
mass of the solid region Q of density ρ bounded by the 
graphs of the equations.

37. Find x using ρ(x, y, z) = k.

 Q: 2x + 3y + 6z = 12, x = 0, y = 0, z = 0

38. Find y using ρ(x, y, z) = ky.

 Q: 3x + 3y + 5z = 15, x = 0, y = 0, z = 0

39. Find z using ρ(x, y, z) = kx.

 Q: z = 4 − x, z = 0, y = 0, y = 4, x = 0

40. Find y using ρ(x, y, z) = k.

 Q: 
x
a

+
y
b

+
z
c

= 1 (a, b, c > 0), x = 0, y = 0, z = 0

Center of mass In Exercises 41 and 42, set up the triple 
integrals for finding the mass and the center of mass of the 
solid of density ρ bounded by the graphs of the equations. Do not 
evaluate the integrals.

41. x = 0, x = b, y = 0, y = b, z = 0, z = b, ρ(x, y, z) = kxy

42. x = 0, x = a, y = 0, y = b, z = 0, z = c, ρ(x, y, z) = kz

Think about It The center of mass of a solid of constant 
density is shown in the figure. In Exercises 43–46, make a 
conjecture about how the center of mass (x, y, z) will change 
for the nonconstant density ρ(x, y, z). Explain. (Make your 
conjecture without performing any calculations.)

y

x

21

2

3

4

4
3

2

z

2, 0, )) 8
5

43. ρ(x, y, z) = kx 44. ρ(x, y, z) = kz

45. ρ(x, y, z) = k(y + 2) 46. ρ(x, y, z) = kxz2(y + 2)2

Centroid In Exercises 47–52, find the centroid of the solid 
region bounded by the graphs of the equations or described by 
the figure. Use a computer algebra system to evaluate the triple 
integrals. (Assume uniform density and find the center of mass.)

47. z =
h
r
√x2 + y2, z = h

48. y = √9 − x2, z = y, z = 0

49. z = √16 − x2 − y2, z = 0

50. z =
1

y2 + 1
, z = 0, x = −2, x = 2, y = 0, y = 1

51. 

x

y
5 cm20 cm

12 cm

z  52. 

x
y

(0, 0, 4)

(0, 3, 0)
(5, 0, 0)

z

moments of Inertia In Exercises 53–56, find Ix, Iy, and Iz 
for the solid of given density. Use a computer algebra system 
to evaluate the triple integrals.

53. (a) ρ = k 54. (a) ρ(x, y, z) = k

 (b) ρ = kxyz  (b) ρ(x, y, z) = k(x2 + y2)
 

x

y
a

a

a

z   

x

ya
2

a
2

a
2

z

55. (a) ρ(x, y, z) = k 56. (a) ρ = kz

 (b) ρ = ky  (b) ρ = k(4 − z)
 

x

y
4

4

4

z
z = 4 − x   

x

y
2

4

4

z

z = 4 − y2

moments of Inertia In Exercises 57 and 58, verify the 
moments of inertia for the solid of uniform density. Use a 
computer algebra system to evaluate the triple integrals.

57. Ix = 1
12m(3a2 + L2) 

x
y

a

a
L

a
L
2

z

 Iy = 1
2ma2

 Iz = 1
12m(3a2 + L2)
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58. Ix = 1
12m(a2 + b2) 

x y

ac

b

z

a
2

b
2

c
2

 Iy = 1
12m(b2 + c2)

 Iz = 1
12m(a2 + c2)

moments of Inertia In Exercises 59 and 60, set up a triple 
integral for the moment of inertia about the z-axis of the solid 
region Q of density ρ. Do not evaluate the integral.

59. Q = {(x, y, z): −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, 0 ≤ z ≤ 1 − x}
 ρ = √x2 + y2 + z2

60. Q = {(x, y, z): x2 + y2 ≤ 1, 0 ≤ z ≤ 4 − x2 − y2}
 ρ = kx2

Setting Up Triple Integrals In Exercises 61 and 62, use 
the description of the solid region to set up the triple integral 
for (a) the mass, (b) the center of mass, and (c) the moment of 
inertia about the z-axis. Do not evaluate the integrals.

61.  The solid bounded by z = 4 − x2 − y2 and z = 0 with density 
ρ(x, y, z) = kz

62.  The solid in the first octant bounded by the coordinate planes 
and x2 + y2 + z2 = 25 with density ρ(x, y, z) = kxy

average Value In Exercises 63–66, find the average value 
of the function over the given solid region. The average value of 
a continuous function f (x, y, z) over a solid region Q is

Average value =
1
V∫∫

Q

∫ f (x, y, z) dV

where V is the volume of the solid region Q.

63.  f (x, y, z) = z2 + 4 over the cube in the first octant bounded by 
the coordinate planes and the planes x = 1, y = 1, and z = 1

64.  f (x, y, z) = xyz over the cube in the first octant bounded by 
the coordinate planes and the planes x = 4, y = 4, and z = 4

65.  f (x, y, z) = x + y + z over the tetrahedron in the first octant 
with vertices (0, 0, 0), (2, 0, 0), (0, 2, 0), and (0, 0, 2)

66.  f (x, y, z) = x + y over the solid bounded by the sphere 
x2 + y2 + z2 = 3

eXpLoRInG ConCeptS
67.  moment of Inertia Determine whether the moment 

of inertia about the y-axis of the cylinder in Exercise 57 
will increase or decrease for the nonconstant density 
ρ(x, y, z) = √x2 + z2.

68.  Using Different methods Find the volume of 
the sphere x2 + y2 + z2 = 9 using the shell method and 
using a triple integral. Compare your answers.

eXpLoRInG ConCeptS (cont inued)
69.  Think about It Which of the integrals below is equal

 to ∫3

1
∫2

0
∫1

−1
 f (x, y, z) dz dy dx? Explain.

 (a) ∫3

1
∫2

0
∫1

−1
 f (x, y, z) dz dx dy

 (b) ∫1

−1
∫2

0
∫3

1
 f (x, y, z) dx dy dz

 (c) ∫2

0
∫3

1
∫1

−1
 f (x, y, z) dy dx dz

 70.  HOW DO YOU See IT? Consider two 
solids of equal weight, as shown below.

Axis of
revolution

Axis of
revolution

Solid A Solid B

(a)  Because the solids have the same weight, 
which has the greater density? Explain.

(b)  Which solid has the greater moment of inertia? 
Explain.

(c)  The solids are rolled down an inclined plane. 
They are started at the same time and at the 
same height. Which will reach the bottom first? 
Explain.

 70.  

71.  maximizing a Triple Integral Find the solid region Q 
where the triple integral

 ∫∫
Q

∫(1 − 2x2 − y2 − 3z2) dV

  is a maximum. Use a computer algebra system to approximate 
the maximum value. What is the exact maximum value?

72. Finding a Value Solve for a in the triple integral.

 ∫1

0
∫3−a−y2

0
∫4−x−y2

a

 dz dx dy =
14
15

pUtnAM eXAM ChALLenGe
73. Evaluate

lim
n→∞

 ∫1

0
∫1

0
.  .  .∫1

0
cos2{ π2n

(x1 + x2 + .  .  . + xn)} dx1 dx2 .  .  . dxn.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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1024 Chapter 14 Multiple Integration

14.7 Triple Integrals in Other Coordinates

 Write and evaluate a triple integral in cylindrical coordinates.
 Write and evaluate a triple integral in spherical coordinates.

Triple Integrals in Cylindrical Coordinates
Many common solid regions, such as spheres, ellipsoids, cones, and paraboloids, can yield 
difficult triple integrals in rectangular coordinates. In fact, it is precisely this difficulty 
that led to the introduction of nonrectangular coordinate systems. In this section, you will 
learn how to use cylindrical and spherical coordinates to evaluate triple integrals.

Recall from Section 11.7 that the rectangular conversion equations for cylindrical 
coordinates are

x = r cos θ
y = r sin θ 

π

Δri

Δzi

= 0θ

=

riΔ  iθ

2

z

θ

Volume of cylindrical block: 
∆Vi = ri∆ri∆θ i∆zi

Figure 14.63

z = z.

An easy way to remember these conversions 
is to note that the equations for x and y are 
the same as in polar coordinates and z is 
unchanged.

In this coordinate system, the simplest solid 
region is a cylindrical block determined by

r1 ≤ r ≤ r2

θ1 ≤ θ ≤ θ2

and

z1 ≤ z ≤ z2

as shown in Figure 14.63.
To obtain the cylindrical coordinate form of a triple integral, consider a solid region 

Q whose projection R onto the xy-plane can be described in polar coordinates. That is,

Q = {(x, y, z): (x, y) is in R, h1(x, y) ≤ z ≤ h2(x, y)}

and

R = {(r, θ): θ1 ≤ θ ≤ θ2, g1(θ) ≤ r ≤ g2(θ)}.

If f  is a continuous function on the solid Q, then you can write the triple integral of f  
over Q as

∫∫
Q

∫ f (x, y, z) dV = ∫
R
∫[∫h2(x, y)

h1(x, y)
 f (x, y, z) dz] dA

where the double integral over R is evaluated in polar coordinates. That is, R is a plane 
region that is either r-simple or θ-simple (see Section 14.3). If R is r-simple, then the 
iterated form of the triple integral in cylindrical form is

∫∫
Q

∫ f (x, y, z) dV = ∫θ2

θ1

∫g2(θ)

g1(θ)
∫h2(r cos θ, r sin θ)

h1(r cos θ, r sin θ)
f (r cos θ, r sin θ, z)r dz dr dθ.

This is only one of six possible orders of integration. The other five are dz dθ dr,
dr dz dθ, dr dθ dz, dθ dz dr, and dθ dr dz.

PIERRE SIMON DE LAPLACE 
(1749–1827)

One of the first to use a 
cylindrical coordinate system 
was the French mathematician 
Pierre Simon de Laplace. 
Laplace has been called the 
“Newton of France,” and he 
published many important 
works in mechanics, differential 
equations, and probability.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NYC
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14.7 Triple Integrals in Other Coordinates 1025

To visualize a particular order of integration, it helps to view the iterated integral 
in terms of three sweeping motions, each adding another dimension to the solid. For 
instance, in the order dr dθ dz, the first integration occurs in the r-direction as a point 
sweeps out a ray. Then, as θ increases, the line sweeps out a sector. Finally, as z increases, 
the sector sweeps out a solid wedge, as shown in Figure 14.64.

exploration
Volume of a Paraboloid Sector In the 

y

x

a

z

a

a2

−a

y

x

z

Explorations on pages 983, 992, and 1014, you 
were asked to summarize the different ways 
you know of finding the volume of the solid 
bounded by the paraboloid 

z = a2 − x2 − y2, a > 0

and the xy-plane. You now know one more 
way. Use it to find the volume of the solid. 
Compare the different methods. What are the 
advantages and disadvantages of each?

 Finding Volume in Cylindrical Coordinates

Find the volume of the solid region Q cut from the sphere x2 + y2 + z2 = 4 by the 
cylinder r = 2 sin θ, as shown in Figure 14.65.

Solution Because x2 + y2 + z2 = r2 + z2 = 4, the bounds on z are

−√4 − r2 ≤ z ≤ √4 − r2. Bounds for z

Let R be the circular projection of the solid onto the rθ-plane. Then the bounds on R are

0 ≤ r ≤ 2 sin θ and 0 ≤ θ ≤ π. Bounds for R

So, the volume of Q is

 V = ∫π

0
∫2 sin θ

0
∫√4−r2

−√4−r2

 r dz dr dθ Apply formula for volume.

 = 2∫π�2

0
∫2 sin θ

0
∫√4−r2

−√4−r2

 r dz dr dθ Use symmetry to rewrite bounds for θ.

 = 2∫π�2

0
∫2 sin θ

0
 2r√4 − r2 dr dθ Integrate with respect to z.

 = 2∫π�2

0
 −

2
3

 (4 − r2)3�2]
2 sin θ

0
 dθ Integrate with respect to r.

 =
4
3∫

π�2

0
 (8 − 8 cos3 θ) dθ

 =
32
3 ∫

π�2

0
 [1 − (cos θ)(1 − sin2 θ)] dθ 

Factor and use trigonometric
identity cos2 θ = 1 − sin2 θ.

 =
32
3 [θ − sin θ +

sin3 θ
3 ]

π�2

0
 Integrate with respect to θ.

 =
16
9

(3π − 4)

 ≈ 9.644. 

θ = 0

z

π=
2

θ

Integrate with respect to r.

θ = 0

z

π=
2

θ

Integrate with respect to θ.

θ = 0

z

π=
2

θ

Integrate with respect to z.
Figure 14.64

x
y

z

R
3

2

3

Sphere:
x2 + y2 + z2 = 4

Cylinder:
r = 2 sin θ

Figure 14.65
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1026 Chapter 14 Multiple Integration

 Finding Mass in Cylindrical Coordinates

Find the mass of the ellipsoid Q given by 4x2 + 4y2 + z2 = 16, lying above the 
xy-plane. The density at a point in the solid is proportional to the distance between the 
point and the xy-plane.

Solution The density function is ρ(r, θ, z) = kz, where k is the constant of 
proportionality. The bounds on z are

0 ≤ z ≤ √16 − 4x2 − 4y2 = √16 − 4r2

where 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π, as shown in Figure 14.66. The mass of the solid is 

 m = ∫2π

0
∫2

0
∫√16−4r2

0
 kzr dz dr dθ Apply formula for mass of a solid.

 =
k
2∫

2π

0
∫2

0
 z

2r]√16−4r2

0
 dr dθ Integrate with respect to z.

 =
k
2∫

2π

0
∫2

0
 (16r − 4r3) dr dθ

 =
k
2∫

2π

0
 [8r2 − r4]

2

0
 dθ Integrate with respect to r.

 = 8k∫2π

0
 dθ

 = 16πk. Integrate with respect to θ. 

Integration in cylindrical coordinates is useful when factors involving x2 + y2 
appear in the integrand, as illustrated in Example 3.

 Finding a Moment of Inertia

Find the moment of inertia about the axis of symmetry of the solid Q bounded by the 
paraboloid z = x2 + y2 and the plane z = 4, as shown in Figure 14.67. The density at 
each point is proportional to the distance between the point and the z-axis.

Solution Because the z-axis is the axis of symmetry and ρ(x, y, z) = k√x2 + y2, 
where k is the constant of proportionality, it follows that

Iz = ∫∫
Q

∫ k(x2 + y2)√x2 + y2 dV. Moment of inertia about z-axis

In cylindrical coordinates, 0 ≤ r ≤ √x2 + y2 = √z and 0 ≤ θ ≤ 2π. So, you have

 Iz = k∫4

0
∫2π

0
∫√z

0
 r

2(r)r dr dθ dz Cylindrical coordinates

 = k∫4

0
∫2π

0
 
r5

5 ]
√z

0
dθ dz Integrate with respect to r.

 = k∫4

0
∫2π

0
 
z5�2

5
 dθ dz

 =
k
5∫

4

0
 z5�2 (2π) dz Integrate with respect to θ.

 =
2πk

5 [2
7

 z7�2]
4

0
 Integrate with respect to z.

 =
512kπ

35
. 

0 ≤ z ≤    16 − 4r2

x

y

z

2

2

4

Ellipsoid:  4x2 + 4y2 + z2 = 16

Figure 14.66

y

x

2 2

−2

11

5

Q:  Bounded by

z = x2 + y2

and
z = 4

z

Figure 14.67
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 14.7 Triple Integrals in Other Coordinates 1027

Triple Integrals in Spherical Coordinates
Triple integrals involving spheres or cones are often easier to evaluate by converting to 
spherical coordinates. Recall from Section 11.7 that the rectangular conversion equations 
for spherical coordinates are

x = ρ sin ϕ cos θ
y = ρ sin ϕ sin θ
z = ρ cos ϕ.

In this coordinate system, the simplest region is a spherical block determined by

{(ρ, θ, ϕ): ρ1 ≤ ρ ≤ ρ2, θ1 ≤ θ ≤ θ2, ϕ1 ≤ ϕ ≤ ϕ2}

where ρ1 ≥ 0, θ2 − θ1 ≤ 2π, and 

x

y

θϕρi i isin Δ

ρΔ i ϕρi iΔ

z

Spherical block: ∆Vi ≈ ρi
2 sin ϕi ∆ρi ∆ϕi ∆θ i

Figure 14.68

 
0 ≤ ϕ1 ≤ ϕ2 ≤ π, as shown in  
Figure 14.68. If (ρ, θ, ϕ) is a point in the 
interior of such a block, then the volume  
of the block can be approximated by 
∆V ≈ ρ2 sin ϕ∆ρ∆ϕ∆θ. (See Exercise 8 in 
the Problem Solving exercises at the end  
of this chapter.)

Using the usual process involving an 
inner partition, summation, and a limit, you 
can develop a triple integral in spherical 
coordinates for a continuous function f  
defined on the solid region Q. This formula,  
shown below, can be modified for different 
orders of integration and generalized to  
include regions with variable boundaries.

Like triple integrals in cylindrical coordinates, triple integrals in spherical 
coordinates are evaluated with iterated integrals. As with cylindrical coordinates, you 
can visualize a particular order of integration by viewing the iterated integral in terms 
of three sweeping motions, each adding another dimension to the solid. For instance, 
the iterated integral

∫2π

0
∫π�4

0
∫3

0
 ρ2 sin ϕ dρ dϕ dθ

(which is used in Example 4) is illustrated in Figure 14.69.

z

y

x

2 1

1

−2
2

ρ

x2 + y2 + z2 = 9
= 3ρ

Sphere:Cone:
x2 + y2 = z2

 

y

x

ϕ

z

2 1
−2

2

 

y

x

θ
z

2 1
−2

2

 ρ varies from 0 to 3 with ϕ and θ ϕ varies from 0 to π�4 θ varies from 0 to 2π. 
 held constant. with θ held constant.
 Figure 14.69

∫∫
Q

∫ f (x, y, z) dV = ∫θ2

θ1

∫ϕ2

ϕ1

∫ρ2

ρ1

 f (ρ sin ϕ cos θ, ρ sin ϕ sin θ, ρ cos ϕ)ρ2 sin ϕ dρ dϕ dθ

reMark The Greek letter 
ρ used in spherical coordinates 
is not related to density. Rather, 
it is the three-dimensional 
analog of the r used in polar 
coordinates. For problems 
involving spherical coordinates 
and a density function, this 
text uses a different symbol to 
denote density. 
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1028 Chapter 14 Multiple Integration

 Finding Volume in Spherical Coordinates

Find the volume of the solid region Q bounded below by the upper nappe of the cone 
z2 = x2 + y2 and above by the sphere x2 + y2 + z2 = 9, as shown in Figure 14.70.

Solution In spherical coordinates, the equation of the sphere is

ρ2 = x2 + y2 + z2 = 9  ρ = 3.

Furthermore, the sphere and cone intersect when

(x2 + y2) + z2 = (z2) + z2 = 9   z =
3

√2

and, because z = ρ cos ϕ, it follows that

( 3

√2)(
1
3) = cos ϕ  ϕ =

π
4

.

Consequently, you can use the integration order dρ dϕ dθ, where 0 ≤ ρ ≤ 3, 
0 ≤ ϕ ≤ π�4, and 0 ≤ θ ≤ 2π. The volume is

 V = ∫2π

0
∫π�4

0
∫3

0
 ρ2 sin ϕ dρ dϕ dθ Apply formula for volume.

 = ∫2π

0
∫π�4

0
9 sin ϕ dϕ dθ Integrate with respect to ρ.

 = 9∫2π

0
−cos ϕ]

π�4

0
 dθ Integrate with respect to ϕ.

 = 9∫2π

0
(1 −

√2
2 ) dθ

 = 9π(2 − √2) Integrate with respect to θ.

 ≈ 16.563.

 Finding the Center of Mass of a Solid region

See LarsonCalculus.com for an interactive version of this type of example.

Find the center of mass of the solid region Q of uniform density from Example 4.

Solution Because the density is uniform, you can consider the density at the point 
(x, y, z) to be k. By symmetry, the center of mass lies on the z-axis, and you need  
only calculate z = Mxy�m, where m = kV = 9kπ(2 − √2). Because z = ρ cos ϕ, it 
follows that

 Mxy = ∫∫
Q

∫ kz dV = k∫3

0
∫2π

0
∫π�4

0
 (ρ cos ϕ)ρ2 sin ϕ dϕ dθ dρ

 = k∫3

0
∫2π

0
ρ3 

sin2 ϕ
2 ]

π�4

0
 dθ dρ

 =
k
4∫

3

0
∫2π

0
 ρ3 dθ dρ =

kπ
2 ∫

3

0
 ρ3 dρ =

81kπ
8

.

So,

z =
Mxy

m
=

81kπ�8

9kπ(2 − √2)
=

9(2 + √2)
16

≈ 1.920

and the center of mass is approximately (0, 0, 1.920). 

x

y

z

3

3
2

1
3

2

−2−3
1

Upper nappe
of cone:
z2 = x2 + y2

Sphere:

x2 + y2 + z2 = 9

Figure 14.70
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 14.7 Triple Integrals in Other Coordinates 1029

14.7 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Volume Explain why triple integrals that represent 

the volumes of solids are sometimes easier to evaluate in 
cylindrical or spherical coordinates instead of rectangular 
coordinates.

2.  Differential of Volume What is the differential 
of volume, dV, for (a) cylindrical coordinates and 
(b) spherical coordinates? Choose one order of integration 
for each system.

evaluating a Triple Iterated Integral In Exercises 3–8, 
evaluate the triple iterated integral.

 3. ∫5

−1
∫π�2

0
∫3

0
 r cos θ dr dθ dz  4. ∫π�4

0
∫6

0
∫6−r

0
 rz dz dr dθ

 5. ∫π�2

0
∫cos θ

0
∫3+r2

0
 2r sin θ dz dr dθ

 6. ∫π�2

0
∫π

0
∫2

0
 e−ρ3 ρ2 dρ dθ dϕ

 7. ∫2π

0
∫π�2

0
∫sin ϕ

0
 ρ cos ϕ dρ dϕ dθ

 8. ∫π�4

0
∫π�4

0
∫cos θ

0
 ρ2 sin ϕ cos ϕ dρ dθ dϕ

evaluating a Triple Iterated Integral Using 
Technology In Exercises 9 and 10, use a computer algebra 
system to evaluate the triple iterated integral.

 9. ∫4

0
∫z

0
∫π�2

0
 rer dθ dr dz

10. ∫π�2

0
∫π

0
∫sin θ

0
 2ρ2 cos ϕ dρ dθ dϕ

Volume In Exercises 11–14, sketch the solid region whose 
volume is given by the iterated integral and evaluate the iterated 
integral.

11. ∫π�2

0
∫3

0
∫e−r2

0
 r dz dr dθ 12. ∫2π

0
∫2√2

0
∫6

r2−2
 r dz dr dθ

13. ∫2π

0
∫π�2

π�6
∫4

0
 ρ2 sin ϕ dρ dϕ dθ

14. ∫2π

0
∫π

0
∫5

2
 ρ2 sin ϕ dρ dϕ dθ

 Volume In Exercises 15–20, use cylindrical 
coordinates to find the volume of the solid.

15.  Solid inside both x2 + y2 + z2 = 36 

 and (x − 3)2 + y2 = 9

16. Solid inside x2 + y2 + z2 = 16 and outside z = √x2 + y2

17. Solid bounded above by z = 2x and below by z = 2x2 + 2y2

18.  Solid bounded above by z = 2 − x2 − y2 and below by 
z = x2 + y2

19.  Solid bounded by the graphs of the sphere r2 + z2 = 25 and 
the cylinder r = 5 cos θ

20.  Solid inside the sphere x2 + y2 + z2 = 4 and above the upper 
nappe of the cone z2 = x2 + y2

 Mass In Exercises 21 and 22, use cylindrical 
coordinates to find the mass of the solid Q of 
density ρ.

21. Q = {(x, y, z): 0 ≤ z ≤ 9 − x − 2y, x2 + y2 ≤ 4}
 ρ(x, y, z) = k√x2 + y2

22.  Q = {(x, y, z): 0 ≤ z ≤ 12e−(x2+y2), x2 + y2 ≤ 4, x ≥ 0, y ≥ 0} 
ρ(x, y, z) = k

Using Cylindrical Coordinates In Exercises 23–28, use 
cylindrical coordinates to find the indicated characteristic of 
the cone shown in the figure.

x

y

h

r0

z

z = h 1 − r
r0

( (

23. Find the volume of the cone.

24. Find the centroid of the cone.

25.  Find the center of mass of the cone, assuming that its density 
at any point is proportional to the distance between the point 
and the axis of the cone. Use a computer algebra system to 
evaluate the triple integral.

26.  Find the center of mass of the cone, assuming that its density at 
any point is proportional to the distance between the point and 
the base. Use a computer algebra system to evaluate the triple 
integral.

27.  Assume that the cone has uniform density and show that the 
moment of inertia about the z-axis is

 Iz = 3
10mr0

2.

28.  Assume that the density of the cone is ρ(x, y, z) = k√x2 + y2 
and find the moment of inertia about the z-axis.

 Moment of Inertia In Exercises 29 and 30, use 
cylindrical coordinates to verify the given moment 
of inertia of the solid of uniform density.

29. Cylindrical shell: Iz = 1
2m(a2 + b2)

 0 < a ≤ r ≤ b, 0 ≤ z ≤ h
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1030 Chapter 14 Multiple Integration

30. Right circular cylinder: Iz = 3
2ma2

 r = 2a sin θ, 0 ≤ z ≤ h

 (Use a computer algebra system to evaluate the triple integral.)

 Volume In Exercises 31–34, use spherical 
coordinates to find the volume of the solid.

31.  Solid inside x2 + y2 + z2 = 9, outside z = √x2 + y2, and 
above the xy-plane

32.   Solid bounded above by x2 + y2 + z2 = z and below by 
z = √x2 + y2

33.  The torus given by ρ = 4 sin ϕ (Use a computer algebra 
system to evaluate the triple integral.)

34. The solid between the spheres

 x2 + y2 + z2 = a2 and x2 + y2 + z2 = b2, b > a,

 and inside the cone z2 = x2 + y2

Mass In Exercises 35 and 36, use spherical coordinates to find 
the mass of the sphere x2 + y2 + z2 = a2 with the given density.

35.  The density at any point is proportional to the distance 
between the point and the origin.

36.  The density at any point is proportional to the distance 
between the point and the z-axis.

 Center of Mass In Exercises 37 and 38, use 
spherical coordinates to find the center of mass of 
the solid of uniform density.

37. Hemispherical solid of radius r

38.  Solid lying between two concentric hemispheres of radii r and 
R, where r < R

Moment of Inertia In Exercises 39 and 40, use spherical 
coordinates to find the moment of inertia about the z-axis of 
the solid of uniform density.

39. Solid bounded by the hemisphere ρ = cos ϕ, 
π
4

≤ ϕ ≤ π
2

,

 and the cone ϕ =
π
4

40.  Solid lying between two concentric hemispheres of radii r and 
R, where r < R

Converting Coordinates In Exercises 41–44, convert the 
integral from rectangular coordinates to both cylindrical and 
spherical coordinates, and evaluate the simplest iterated integral.

41. ∫2

−2
∫√4−x2

−√4−x2

 ∫4

x2+y2

 x dz dy dx

42.  ∫2

0
∫√4−x2

0
∫√16−x2−y2

0
√x2 + y2 dz dy dx

43. ∫1

−1
∫√1−x2

−√1−x2
∫1+√1−x2−y2

1
 x dz dy dx

44. ∫3

0
∫√9−x2

0
∫√9−x2−y2

0
 √x2 + y2 + z2 dz dy dx

eXpLoRInG ConCeptS
45.  Using Coordinates Describe the surface whose 

equation is a coordinate equal to a constant for each of the 
coordinates in (a) the cylindrical coordinate system and 
(b) the spherical coordinate system.

 46.  HOW DO YOU See IT? The solid is 
bounded below by the upper nappe of a cone 
and above by a sphere (see figure). Would 
it be easier to use cylindrical coordinates or 
spherical coordinates to find the volume of the 
solid? Explain.

z

y

2

22

x

Sphere:Sphere:
x2 + y2 + z2 = 4

Upper nappe of cone:
z2 = x2 + y2

 46.  

pUtnAM eXAM ChALLenGe
47.  Find the volume of the region of points (x, y, z) such that 

(x2 + y2 + z2 + 8)2 ≤ 36(x2 + y2).
This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

In parts (a) and (b), find the volume of the wrinkled sphere or 
bumpy sphere. These solids are used as models for tumors.

(a) Wrinkled sphere (b) Bumpy sphere

 ρ = 1 + 0.2 sin 8θ sin ϕ  ρ = 1 + 0.2 sin 8θ sin 4ϕ

 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π   0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π

 

x

y

Generated by Maple

z  

x

y

Generated by Maple

z

Wrinkled and Bumpy Spheres

 FOR FURTHER INFORMATION For more information on 
these types of spheres, see the article “Heat Therapy for Tumors” 
by Leah Edelstein-Keshet in The UMAP Journal.
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14.8 Change of Variables: Jacobians 1031

14.8 Change of Variables: Jacobians

 Understand the concept of a Jacobian.
 Use a Jacobian to change variables in a double integral.

Jacobians
For the single integral

∫b

a
 f (x) dx

you can change variables by letting x = g(u), so that dx = g′(u) du, and obtain

∫b

a
 f (x) dx = ∫d

c
 f (g(u))g′(u) du

where a = g(c) and b = g(d). Note that the change of variables process introduces an 
additional factor g′(u) into the integrand. This also occurs in the case of double integrals

∫
R
∫ f (x, y) dA = ∫

S
∫ f (g(u, v), h(u, v))∣∂x

∂u
 
∂y
∂v

−
∂y
∂u

 
∂x
∂v∣ du dv

 
 Jacobian

where the change of variables x = g(u, v) and y = h(u, v) introduces a factor called the 
Jacobian of x and y with respect to u and v. In defining the Jacobian, it is convenient to 
use the determinant notation shown below.

Definition of the Jacobian

If x = g(u, v) and y = h(u, v), then the Jacobian of x and y with respect to u 
and v, denoted by ∂(x, y)�∂(u, v), is

∂(x, y)
∂(u, v) = ∣∂x

∂u
∂y
∂u

    
∂x
∂v

    
∂y
∂v∣ =

∂x
∂u

 
∂y
∂v

−
∂y
∂u

 
∂x
∂v

.

 The Jacobian for Rectangular-to-Polar Conversion

Find the Jacobian for the change of variables defined by

x = r cos θ and y = r sin θ.

Solution From the definition of the Jacobian, you obtain

 
∂(x, y)
∂(r, θ) = ∣∂x

∂r
∂y
∂r

     
∂x
∂θ

     
∂y
∂θ ∣  Definition of Jacobian

 = ∣cos θ
sin θ

       −r sin θ
     r cos θ∣  Substitute.

 = r cos2 θ + r sin2 θ Find determinant.

 = r(cos2 θ + sin2 θ)  Factor.

 = r  Trigonometric identity 

CARL GUSTAV JACOBI 
(1804–1851)

The Jacobian is named after the 
German mathematician Carl 
Gustav Jacobi. Jacobi is known 
for his work in many areas of 
mathematics, but his interest 
in integration stemmed from 
the problem of finding the 
circumference of an ellipse.
See LarsonCalculus.com to read 
more of this biography.
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1032 Chapter 14 Multiple Integration

Example 1 points out that the change of variables from rectangular to polar coordinates 
for a double integral can be written as

 ∫
R
∫ f (x, y) dA = ∫

S
∫ f (r cos θ, r sin θ)r dr dθ, r > 0

 = ∫
S
∫ f (r cos θ, r sin θ)∣∂(x, y)

∂(r, θ)∣ dr dθ

where S is the region in the rθ-plane that corresponds to the region R in the xy-plane, 
as shown in Figure 14.71. This formula is similar to that found in Theorem 14.3 on  
page 992.

In general, a change of variables using a one-to-one transformation T  from a 
region S in the uv-plane to a region R in the xy-plane is given by

T(u, v) = (x, y) = (g(u, v), h(u, v))

where g and h have continuous first partial derivatives in the region S. Note that the 
point (u, v) lies in S and the point (x, y) lies in R. In most cases, you are hunting for a 
transformation in which the region S is simpler than the region R.

 Finding a Change of Variables to Simplify a Region

Let R be the region bounded by the lines

x − 2y = 0, x − 2y = −4, x + y = 4, and x + y = 1

as shown in Figure 14.72. Find a transformation T  from a region S to R such that S is 
a rectangular region (with sides parallel to the u- or v-axis).

Solution To begin, let u = x + y and v = x − 2y. Solving this system of equations 
for x and y produces T(u, v) = (x, y), where

x =
1
3

(2u + v) and y =
1
3

(u − v).

The four boundaries for R in the xy-plane give rise to the following bounds for S in the 
uv-plane.

Bounds in the xy-Plane Bounds in the uv-Plane

x + y = 1  u = 1

x + y = 4  u = 4

x − 2y = 0  v = 0

x − 2y = −4  v = −4

The region S is shown in Figure 14.73. Note that the transformation 

T(u, v) = (x, y) = (1
3

[2u + v], 1
3

[u − v])
maps the vertices of the region S onto the vertices of the region R, as shown below.

 T(1, 0) = (1
3

[2(1) + 0], 1
3

[1 − 0]) = (2
3

, 
1
3)

 T(4, 0) = (1
3

[2(4) + 0], 1
3

[4 − 0]) = (8
3

, 
4
3)

 T(4, −4) = (1
3

[2(4) − 4], 1
3

[4 − (−4)]) = (4
3

, 
8
3)

 T(1, −4) = (1
3

[2(1) − 4], 1
3

[1 − (−4)]) = (−
2
3

, 
5
3) 

u
32−1

−1

−3

−2

−5

u = 4u = 1
(4, 0)

S

v = 0

(1, −4) (4, −4)

v = −4

(1 , 0)

v

Region S in the uv-plane
Figure 14.73

321

3

1

−2

−1

−2

x

4
3

8
3

x − 2y = −4

, 
x − 2y = 0

R

x + y = 4
x + y = 1

))
5
3

2
3
, − ))

1
3

2
3
, ))

8
3

4
3
, ))

y

Region R in the xy-plane
Figure 14.72

x

R

αθ

θ

=

β=

r = a

r = b

y

S in the region in the rθ-plane that  
corresponds to R in the xy-plane.
Figure 14.71

r

α

β

a b

S

αθ

θ

=

β=

r = br = a

θθ θT(r,   ) = (r cos   , r sin   )
θ
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14.8 Change of Variables: Jacobians 1033

Change of Variables for Double Integrals

THEOREM 14.5 Change of Variables for Double Integrals

Let R be a vertically or horizontally simple region in the xy-plane, and let S 
be a vertically or horizontally simple region in the uv-plane. Let T  from S 
to R be given by T(u, v) = (x, y) = (g(u, v), h(u, v)), where g and h have 
continuous first partial derivatives. Assume that T  is one-to-one except 
possibly on the boundary of S. If f  is continuous on R, and ∂(x, y)�∂(u, v) 
is nonzero on S, then

∫
R
∫ f (x, y) dx dy = ∫

S
∫ f (g(u, v), h(u, v)) ∣∂(x, y)

∂(u, v)∣ du dv.

Proof Consider the case in which S is a rectangular region in the uv-plane with 
vertices (u, v), (u + ∆u, v), (u + ∆u, v + ∆v), and (u, v + ∆v), as shown in Figure 14.74. 
The images of these vertices in the xy-plane are shown in Figure 14.75. If ∆u and ∆v 
are small, then the continuity of g and h implies that R is approximately a parallelogram 
determined by the vectors MN

\

 and MQ
\

. So, the area of R is

∆A ≈ �MN
\

× MQ
\

�.

Moreover, for small ∆u and ∆v, the partial derivatives of g and h with respect to u can 
be approximated by

gu(u, v) ≈
g(u + ∆u, v) − g(u, v)

∆u
 and hu(u, v) ≈

h(u + ∆u, v) − h(u, v)
∆u

.

Consequently,

MN
\

= [g(u + ∆u, v) − g(u, v)] i + [h(u + ∆u, v) − h(u, v)] j

 ≈ [gu(u, v) ∆u] i + [hu(u, v) ∆u] j

 =
∂x
∂u

 ∆u i +
∂y
∂u

 ∆u j.

Similarly, you can approximate MQ
\

 by 
∂x
∂v

 ∆v i +
∂y
∂v

 ∆vj, which implies that

MN
\

× MQ
\

≈ ∣i
∂x
∂u

 ∆u

∂x
∂v

 ∆v

    j

    
∂y
∂u

 ∆u

    
∂y
∂v

 ∆v

         k

         0

         0∣ = ∣∂x
∂u
∂x
∂v

      
∂y
∂u

      
∂y
∂v

      ∣  ∆u ∆vk.

It follows that, in Jacobian notation,

∆A ≈ � MN
\

× MQ
\

� ≈ ∣∂(x, y)
∂(u, v)∣ ∆u ∆v.

Because this approximation improves as ∆u and ∆v approach 0, the limiting case can 
be written as

dA ≈ �MN
\

× MQ
\

� ≈ ∣∂(x, y)
∂(u, v)∣ du dv.

So,

∫
R
∫f (x, y) dx dy = ∫

S
∫f (g(u, v), h(u, v))∣∂(x, y)

∂(u, v)∣ du dv. 

u

(u, v + Δv) (u + Δu, v + Δv)

(u, v) (u + Δu, v)

S

v

Area of S = ∆u ∆v
∆u > 0, ∆v > 0
Figure 14.74

x

R

x = g(u, v)
y = h(u, v)

M = (x, y)

Q P

N

y

The vertices in the xy-plane are 
M(g(u, v), h(u, v)),
N(g(u + ∆u, v), h(u + ∆u, v)),
P(g(u + ∆u, v + ∆v), 
h(u + ∆u, v + ∆v)), and
Q(g(u, v + ∆v), h(u, v + ∆v)).
Figure 14.75
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1034 Chapter 14 Multiple Integration

The next two examples show how a change of variables can simplify the integration 
process. The simplification can occur in various ways. You can make a change of  
variables to simplify either the region R or the integrand f (x, y), or both.

 Using a Change of Variables to Simplify a Region

See LarsonCalculus.com for an interactive version of this type of example.

Let R be the region bounded by the lines

x − 2y = 0, x − 2y = −4, x + y = 4, and x + y = 1

as shown in Figure 14.76. Evaluate the double integral

∫
R
∫ 3xy dA.

Solution From Example 2, you can use the change of variables

x =
1
3

(2u + v) and y =
1
3

(u − v).

(Note that the region S is shown in Figure 14.77.) The partial derivatives of x and y are

∂x
∂u

=
2
3

, 
∂x
∂v

=
1
3

, 
∂y
∂u

=
1
3

, and 
∂y
∂v

= −
1
3

which implies that the Jacobian is

 
∂(x, y)
∂(u, v) = ∣∂x

∂u
∂y
∂u

     
∂x
∂v

     
∂y
∂v

     ∣
 = ∣2313       

1
3

    −
1
3

      ∣
 = −

2
9

−
1
9

 = −
1
3

.

So, by Theorem 14.5, you obtain

 ∫
R
∫ 3xy dA = ∫

S
∫ 3[1

3
(2u + v) 1

3
(u − v)]∣∂(x, y)

∂(u, v)∣ dv du

 = ∫4

1
∫0

−4
 
1
9

(2u2 − uv − v2) dv du

 =
1
9∫

4

1
 [2u2v −

uv2

2
−

v3

3 ]
0

−4 
du

 =
1
9∫

4

1
 (8u2 + 8u −

64
3 ) du

 =
1
9[

8u3

3
+ 4u2 −

64
3

u]
4

1

 =
164
9

. 

321

3

1

−2

−1

−2

x

x − 2y = −4

x − 2y = 0

R

x + y = 4
x + y = 1

y

Figure 14.76

u
32−1

−1

−3

−2

−5

u = 4u = 1

S

v = 0

v = −4

v

Figure 14.77
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 14.8 Change of Variables: Jacobians 1035

 Change of Variables: Simplifying an Integrand

Let R be the region bounded by the square with vertices (0, 1), (1, 2), (2, 1), and (1, 0). 
Evaluate the integral

∫
R
∫ (x + y)2 sin2(x − y) dA.

Solution Note that the sides of R lie on the lines x + y = 1, x − y = 1, x + y = 3, 
and x − y = −1, as shown in Figure 14.78. Letting u = x + y and v = x − y, you can 
determine the bounds for region S in the uv-plane to be

1 ≤ u ≤ 3 and −1 ≤ v ≤ 1

as shown in Figure 14.79. Solving for x and y in terms of u and v produces

x =
1
2

(u + v) and y =
1
2

(u − v).

The partial derivatives of x and y are

∂x
∂u

=
1
2

, 
∂x
∂v

=
1
2

, 
∂y
∂u

=
1
2

, and 
∂y
∂v

= −
1
2

which implies that the Jacobian is

∂(x, y)
∂(u, v) = ∣∂x

∂u
∂y
∂u

    
∂x
∂v

    
∂y
∂v

    ∣ = ∣1212      
1
2

   −
1
2

     ∣ = −
1
4

−
1
4

= −
1
2

.

By Theorem 14.5, it follows that

 ∫
R
∫ (x + y)2 sin2(x − y) dA = ∫1

−1
∫3

1
 u

2(sin2 v)(1
2) du dv

 =
1
2∫

1

−1
 (sin2 v) u

3

3 ]
3

1
 dv

 =
13
3 ∫

1

−1
 sin2v dv

 =
13
6 ∫

1

−1
 (1 − cos 2v) dv

 =
13
6 [v −

1
2

 sin 2v]
1

−1

 =
13
6 [2 −

1
2

 sin 2 +
1
2

 sin(−2)]
 =

13
6

(2 − sin 2)

 ≈ 2.363.  

In each of the change of variables examples in this section, the region S has been a 
rectangle with sides parallel to the u- or v-axis. Occasionally, a change of variables can
be used for other types of regions. For instance, letting T(u, v) = (x, 12 y) changes the 
circular region u2 + v2 = 1 to the elliptical region 

x2 +
y2

4
= 1.

2

−1

3

3−1
x

(1, 2)

(2, 1)

R

x −
 y 

= −
1

(1, 0)
x + y = 1

(0, 1)

x −
 y 

= 1

x + y = 3

y

Region R in the xy-plane
Figure 14.78

u
321

1

−1

(3, 1)(1, 1)

S

u = 3

v = 1

v = −1

u = 1

(1, −1) (3, −1)

v

Region S in the uv-plane
Figure 14.79
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1036 Chapter 14 Multiple Integration

14.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Jacobian Describe how to find the Jacobian of x and 

y with respect to u and v for x = g(u, v) and y = h(u, v).

2.  Change of Variable When is it beneficial to use the 
Jacobian to change variables in a double integral?

 Finding a Jacobian In Exercises 3–10, find the 
Jacobian �(x, y)��(u, v) for the indicated change of 
variables.

 3. x = −1
2 (u − v), y = 1

2 (u + v)
 4. x = 5u − v, y = 3u + 4v

 5. x = u − v2, y = u + v

 6. x = uv − 2u, y = uv

 7. x = u cos θ − v sin θ, y = u sin θ + v cos θ

 8. x = u + 1, y = 9v

 9. x = eu sin v, y = eu cos v

10. x = u�v, y = u + v

 Using a Transformation In Exercises 11–14, 
sketch the image S in the uv-plane of the region R 
in the xy-plane using the given transformations.

11. x = 3u + 2v 12. x = 1
3 (4u − v)

 y = 3v  y = 1
3 (u − v)

 

x

R

(2, 3)

(3, 0)

(0, 0)

1

2

2

3

3

y   

x

R
(4, 1)

(0, 0)

6

5

4

3

2

1

(2, 2)

(6, 3)

2 63 4 5

y

13. x = 1
2 (u + v) 14. x = 1

3 (v − u)
 y = 1

2 (u − v)  y = 1
3 (2v + u)

 

x

y

1 2

1

2

1
2

1
2
, ))

3
2

3
2
, ))

(1, 2)(0, 1)

R

  

10
3

x

y

2
3

1
3
, ))

4
3

1
3
, − ))

8
3

4
3
, ))

2
3
, ))

R

−1−2 1 2 3
−1

2

3

4

Verifying a Change of Variables In Exercises 15 and 16, 
verify the result of the indicated example by setting up the integral 
using dy dx or dx dy for dA. Then use a computer algebra 
system to evaluate the integral.

15. Example 3 16. Example 4

 Evaluating a Double Integral Using a 
Change of Variables In Exercises 17–22, use 
the indicated change of variables to evaluate the 
double integral.

17. ∫
R
∫ 4(x2 + y2) dA 18. ∫

R
∫(2y − x) dA

 x = 1
2 (u + v)  x = 1

2 (v − u)
 y = 1

2 (u − v)  y = 1
2 (3u − v)

 

x

1

1

−1

−1

(0, 1)

(1, 0)

(0, −1)

(−1, 0)

y

R

  

x

(1, 4)

(2, 3)

R

(2, 1)
(3, 0)

y

1 2 3 4

1

2

3

4

19. ∫
R
∫y(x − y) dA 20. ∫

R
∫ 4(x + y)ex−y dA

 x = u + v  x = 1
2 (u + v)

 y = u  y = 1
2 (u − v)

 

x

4

2

6

6

−2
8

(3, 3) (7, 3)

(4, 0)(0, 0)

y

R

  

x
1

−1

−1 (0, 0)

(1, 1)(−1, 1)

y

R

21. ∫
R
∫e−xy�2 dA 22. ∫

R
∫y sin xy dA

 x =√v
u

, y = √uv  x =
u
v
, y = v

 

R

x

y

3

1

2

3

y = 2x

y = 4
x

y = 1
x

y =     x1
4

  

y = 1

xy = 1

R

x

y

1 2 3 4

2

3 xy = 4

y = 4

Finding Volume Using a Change of Variables In 
Exercises 23–30, use a change of variables to find the volume 
of the solid region lying below the surface z = f (x, y) and above 
the plane region R.

23. f (x, y) = 9xy

  R: region bounded by the square with vertices (1, 0), (0, 1), 
(1, 2), (2, 1)
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14.8 Change of Variables: Jacobians 1037

24. f (x, y) = (3x + 2y)2√2y − x

  R: region bounded by the parallelogram with vertices (0, 0),
(−2, 3), (2, 5), (4, 2)

25. f (x, y) = (x + y)ex−y

  R: region bounded by the square with vertices (4, 0), (6, 2),
(4, 4), (2, 2)

26. f (x, y) = (x + y)2 sin2(x − y)
R: region bounded by the square with vertices (π, 0),
(3π�2, π�2), (π, π), (π�2, π�2)

27. f (x, y) = √(x − y)(x + 4y)
  R: region bounded by the parallelogram with vertices (0, 0),

(1, 1), (5, 0), (4, −1)
28. f (x, y) = (3x + 2y)(2y − x)3�2

R: region bounded by the parallelogram with vertices (0, 0),
(−2, 3), (2, 5), (4, 2)

29. f (x, y) = √x + y

  R: region bounded by the triangle with vertices (0, 0), (a, 0),
(0, a), where a > 0

30. f (x, y) =
xy

1 + x2y2

  R: region bounded by the graphs of xy = 1, xy = 4, x = 1, 
x = 4 (Hint: Let x = u, y = v�u.)

eXpLoRInG ConCeptS
31.  Using a Transformation The substitutions 

u = 2x − y and v = x + y make the region R (see 
figure) into a simpler region S in the uv-plane. Determine 
the total number of sides of S that are parallel to either 
the u-axis or the v-axis.

x

y

2 4 6 8

4

8

2

6

(2, 7)

(6, 3)

(0, 0)

R

 32.  HOW DO YOU SEE IT? The region R is 
transformed into a simpler region S (see figure). 
Which substitution can be used to make the 
transformation?

x

y

(1, 1)

(4, 2)

(6, 4)
(3, 3)

R

1 2 3 4 5 6

1

2

3

4

5

   

u

v

(−2, 6)

(−2, 2) (0, 2)

(0, 6)

S

−1−2−3−4−5 1 2

1

5

3

(a) u = 3y − x, v = y − x  (b) u = y − x, v = 3y − x

 32.  

33.  Using an Ellipse Consider the region R in the xy-plane
bounded by the ellipse (x2�a2) + (y2�b2) = 1 and the 
transformations x = au and y = bv.

 (a)  Sketch the graph of the region R and its image S under the 
given transformation.

 (b) Find 
∂(x, y)
∂(u, v).

 (c)  Find the area of the ellipse using the indicated change of 
variables.

34.  Volume Use the result of Exercise 33 to find the volume 
of each dome-shaped solid lying below the surface z = f (x, y) 
and above the elliptical region R. (Hint: After making the 
change of variables given by the results in Exercise 33, make 
a second change of variables to polar coordinates.)

 (a) f (x, y) = 16 − x2 − y2; R: 
x2

16
+

y2

9
≤ 1

 (b) f (x, y) = A cos(π
2√x2

a2 +
y2

b2); R: 
x2

a2 +
y2

b2 ≤ 1

Finding a Jacobian In Exercises 35–40, find the Jacobian

�(x, y, z)
�(u, v, w)

for the indicated change of variables. If

x = f (u, v, w), y = g(u, v, w), and z = h(u, v, w)

then the Jacobian of x, y, and z with respect to u, v, and w is

�(x, y, z)
�(u, v, w) = ∣�x

�u
�y
�u
�z
�u

     
�x
�v

     
�y
�v

     
�z
�v

           
�x
�w

           
�y
�w

           
�z
�w

            ∣.

35. x = u(1 − v), y = uv(1 − w), z = uvw

36. x = 4u − v, y = 4v − w, z = u + w

37. x = 1
2 (u + v), y = 1

2 (u − v), z = 2uvw

38. x = u − v + w, y = 2uv, z = u + v + w

39. Spherical Coordinates

 x = ρ sin ϕ cos θ, y = ρ sin ϕ sin θ, z = ρ cos ϕ

40. Cylindrical Coordinates

 x = r cos θ, y = r sin θ, z = z

pUtnAM eXAM ChALLenGe
41.  Let A be the area of the region in the first quadrant 

bounded by the line y = 1
2 x, the x-axis, and the ellipse

  19 x2 + y2 = 1. Find the positive number m such that 
A is equal to the area of the region in the first quadrant 
bounded by the line y = mx, the y-axis, and the ellipse 
1
9 x2 + y2 = 1.

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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1038 Chapter 14 Multiple Integration

Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Evaluating an Integral In Exercises 1 and 2, evaluate the 
integral.

 1. ∫3x

0
sin(xy) dy  2. ∫y2

y

x
y + 1

 dx

Evaluating an Iterated Integral In Exercises 3–6, evaluate 
the iterated integral.

 3. ∫1

0
∫1+x

0
(3x + 2y) dy dx

 4. ∫2

0
∫2x

x2

 (x2 + 2y) dy dx

 5. ∫1

0
∫√1−x4

0
x3 dy dx

 6. ∫1

0
∫2y

0
(9 + 3x2 + 3y2) dx dy

Finding the Area of a Region In Exercises 7–10, use an 
iterated integral to find the area of the region bounded by the 
graphs of the equations.

 7. x + 3y = 3, x = 0, y = 0

 8. y = 6x − x2, y = x2 − 2x

 9. y = x, y = 2x + 2, x = 0, x = 4

10.  x = y2 + 1, x = 0, y = 0, y = 2

Changing the Order of Integration In Exercises 11–14, 
sketch the region R whose area is given by the iterated integral. 
Then change the order of integration and show that both 
orders yield the same area.

11. ∫5

1
∫4

0
 dy dx

12. ∫3

−3
∫9−y2

0
dx dy

13. ∫2

0
∫3−y

y�2
 dx dy

14. ∫3

0
∫x

0
dy dx + ∫6

3
∫6−x

0
dy dx

Evaluating a Double Integral In Exercises 15 and 16, 
set up integrals for both orders of integration. Use the more 
convenient order to evaluate the integral over the plane 
region R.

15. ∫
R
∫4xy dA

 R: rectangle with vertices (0, 0), (0, 4), (2, 4), (2, 0)

16. ∫
R
∫6x2 dA

 R: region bounded by y = 0, y = √x, x = 1

Finding Volume In Exercises 17–20, use a double integral 
to find the volume of the indicated solid.

17. z

2

3

5

x

y

z = 5 − x

0 ≤ x ≤ 3
0 ≤ y ≤ 2

 18. 

y

x

4

22

z

y = x

x = 2

z = 4

19. 

y

x

z

22

4

−1 ≤ x ≤ 1
−1 ≤ y ≤ 1

z = 4 − x2 − y2  20. 

y

x

2

2
2

z

x + y + z = 2

Average Value In Exercises 21 and 22, find the average 
value of f (x, y) over the plane region R.

21. f (x) = 16 − x2 − y2

 R: rectangle with vertices (2, 2), (−2, 2), (−2, −2), (2, −2)
22. f (x) = 2x2 + y2

 R: square with vertices (0, 0), (3, 0), (3, 3), (0, 3)

23.  Average Temperature The temperature in degrees 
Celsius on the surface of a metal plate is 

 T(x, y) = 40 − 6x2 − y2

  where x and y are measured in centimeters. Estimate the 
average temperature when x varies between 0 and 3 centimeters 
and y varies between 0 and 5 centimeters.

24.  Average Profit A firm’s profit P (in dollars) from 
marketing two television models is

 P = 192x + 576y − x2 − 5y2 − 2xy − 5000

  where x and y represent the numbers of units of the two 
television models. Estimate the average weekly profit when x 
varies between 40 and 50 units and y varies between 45 and 
60 units.

Converting to Polar Coordinates In Exercises 25 and 26, 
evaluate the iterated integral by converting to polar coordinates.

25. ∫√5

0
∫√5−x2

0
√x2 + y2 dy dx

26. ∫4

0
∫√16−y2

0
(x2 + y2) dx dy
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  Review Exercises 1039

Volume In Exercises 27 and 28, use a double integral in 
polar coordinates to find the volume of the solid bounded by 
the graphs of the equations.

27. z = xy2, x2 + y2 = 9, first octant

28. z = √25 − x2 − y2, z = 0, x2 + y2 = 16

Area In Exercises 29 and 30, use a double integral to find the 
area of the shaded region.

29. π
2

0
2

r = 1 − cos 3θ
 30. π

2

0

r = 2 sin 2θ

2

Area In Exercises 31 and 32, sketch a graph of the region 
bounded by the graphs of the equations. Then use a double 
integral to find the area of the region.

31.  Inside the limaçon r = 3 + 2 cos θ and outside the circle r = 4

32.  Inside the circle r = 3 sin θ  and outside the cardioid 
r = 1 + sin θ

33.   Area and Volume Consider the region R in the xy-plane 
bounded by (x2 + y2)2 = 9(x2 − y2).

 (a)  Convert the equation to polar coordinates. Use a graphing 
utility to graph the equation.

 (b) Use a double integral to find the area of the region R.

 (c)  Use a computer algebra system to find the volume 
of the solid region bounded above by the hemisphere 
z = √9 − x2 − y2 and below by the region R.

34.  Converting to Polar Coordinates Write the sum 
of the two iterated integrals as a single iterated integral by 
converting to polar coordinates. Evaluate the resulting iterated 
integral.

 ∫8�√13

0
∫3x�2

0
xy dy dx + ∫4

8�√13
∫√16−x2

0
xy dy dx

Finding the Mass of a Lamina In Exercises 35 and 36, 
find the mass of the lamina described by the inequalities, given 
that its density is ρ(x, y) = x + 3y.

35. 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

36. x ≥ 0, 0 ≤ y ≤ √4 − x2

Finding the Center of Mass In Exercises 37–40, find the 
mass and center of mass of the lamina bounded by the graphs 
of the equations for the given density.

37. y = x3, y = 0, x = 2, ρ = kx

38. y =
2
x
, y = 0, x = 1, x = 2, ρ = ky

39. y = 2x, y = 2x3, x ≥ 0, y ≥ 0, ρ = kxy

40. y = 6 − x, y = 0, x = 0, ρ = kx2

Finding Moments of Inertia and Radii of Gyration In 
Exercises 41 and 42, find Ix, Iy, I0, x, and y for the lamina 
bounded by the graphs of the equations.

41. y = 0, y = 2, x = 0, x = 3, ρ = kx

42. y = 4 − x2, y = 0, x > 0, ρ = ky

Finding Surface Area In Exercises 43–46, find the area 
of the surface given by z = f (x, y) that lies above the region R. 

43. f (x, y) = 25 − x2 − y2

 R = {(x, y): x2 + y2 ≤ 25}
44. f (x, y) = 8 + 4x − 5y

 R = {(x, y): x2 + y2 ≤ 1}
45. f (x, y) = 9 − y2

  R: triangle with vertices (−3, 3), (0, 0), (3, 3)
46. f (x, y) = 4 − x2

  R: triangle with vertices (−2, 2), (0, 0), (2, 2)

47.  Building Design A new auditorium is built with a 
foundation in the shape of one-fourth of a circle of radius 
50 feet. So, it forms a region R bounded by the graph 
of x2 + y2 = 502 with x ≥ 0 and y ≥ 0. The following 
equations are models for the floor and ceiling.

 Floor: z =
x + y

5

 Ceiling: z = 20 +
xy

100

 (a)  Calculate the volume of the room, which is needed to 
determine the heating and cooling requirements.

 (b) Find the surface area of the ceiling.

48.  Surface Area The roof over the stage of an open air theater 
at a theme park is modeled by

 f (x, y) = 25[1 + e−(x2+y2)�1000 cos2(x2 + y2

1000 )]
  where the stage is a semicircle bounded by the graphs of 

y = √502 − x2 and y = 0.

 (a) Use a computer algebra system to graph the surface.

 (b)  Use a computer algebra system to approximate the number 
of square feet of roofing required to cover the surface.

Evaluating a Triple Iterated Integral In Exercises 
49–52, evaluate the triple iterated integral.

49. ∫4

0
∫1

0
∫2

0
(2x + y + 4z) dy dz dx

50. ∫1

0
∫1+√y

0
∫xy

0
y dz dx dy

51. ∫2

0
∫2

1
∫1

0
(e x + y2 + z2) dx dy dz

52. ∫3

0
∫π

π�2
∫5

2
z sin x dy dx dz
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1040 Chapter 14 Multiple Integration

Evaluating a Triple Iterated Integral Using 
Technology In Exercises 53 and 54, use a computer algebra 
system to evaluate the triple iterated integral.

53. ∫1

−1
∫√1−x2

−√1−x2
∫√1−x2−y2

−√1−x2−y2

 (x2 + y2) dz dy dx

54. ∫2

0
∫√4−x2

0
∫√4−x2−y2

0
xyz dz dy dx

Volume In Exercises 55 and 56, use a triple integral to find 
the volume of the solid bounded by the graphs of the equations.

55. z = xy, z = 0, 0 ≤ x ≤ 3, 0 ≤ y ≤ 4

56. z = 8 − x − y, z = 0, y = x, y = 3, x = 0

Changing the Order of Integration In Exercises 57 
and 58, sketch the solid whose volume is given by the iterated 
integral. Then rewrite the integral using the indicated order of 
integration.

57. ∫1

0
∫y

0
∫√1−x2

0
dz dx dy

 Rewrite using the order dz dy dx.

58. ∫6

0
∫6−x

0
∫6−x−y

0
dz dy dx

 Rewrite using the order dy dx dz.

Center of Mass In Exercises 59 and 60, find the mass 
and the indicated coordinate of the center of mass of the solid 
region Q of density ρ bounded by the graphs of the equations.

59. Find x using ρ(x, y, z) = k.

 Q: x + y + z = 10, x = 0, y = 0, z = 0

60. Find y using ρ(x, y, z) = kx.

 Q: z = 5 − y, z = 0, y = 0, x = 0, x = 5

Evaluating a Triple Iterated Integral In Exercises 61–64, 
evaluate the triple iterated integral.

61. ∫3

0
∫π�3

π�6
∫4

0
 r cos θ dr dθ dz

62. ∫π�2

0
∫3

0
∫4−z

0
 z dr dz dθ

63. ∫π

0
∫π�2

0
∫sin θ

0
 ρ2 sin θ cos θ dρ dθ dϕ

64. ∫π�4

0
∫π�4

0
∫cos ϕ

0
 cos θ dρ dϕ dθ

Evaluating a Triple Iterated Integral Using 
Technology In Exercises 65 and 66, use a computer algebra 
system to evaluate the triple iterated integral.

65. ∫π

0
∫2

0
∫3

0
 √z2 + 4 dz dr dθ

66. ∫π�2

0
∫π�2

0
∫cos ϕ

0
 ρ2 cos θ dρ dθ dϕ

Volume In Exercises 67 and 68, use cylindrical coordinates 
to find the volume of the solid.

67.  Solid bounded above by z = 8 − x2 − y2 and below by 
z = x2 + y2

68.  Solid bounded above by 3x2 + 3y2 + z2 = 45 and below by 
the xy-plane

Volume In Exercises 69 and 70, use spherical coordinates to 
find the volume of the solid.

69.  Solid bounded above by x2 + y2 + z2 = 4 and below by 
z2 = 3x2 + 3y2

70.  Solid bounded above by x2 + y2 + z2 = 36 and below by 
z = √x2 + y2

Finding a Jacobian In Exercises 71–74, find the Jacobian 
�(x, y)��(u, v) for the indicated change of variables.

71. x = 3uv, y = 2(u − v)
72. x = u2 + v2, y = u2 − v2

73. x = u sin θ + v cos θ, y = u cos θ + v sin θ

74. x = uv, y =
v
u

Evaluating a Double Integral Using a Change of 
Variables In Exercises 75–78, use the indicated change of 
variables to evaluate the double integral.

75. ∫
R
∫ ln(x + y) dA 76. ∫

R
∫16xy dA

 x =
1
2

(u + v)  x =
1
4

(u + v)

 y =
1
2

(u − v)  y =
1
2

(v − u)

 

x
1

1

2

2

3

3

4

4

R
(1, 2)

(2, 1)

(3, 2)

(2, 3)

y   

x

R
(0, 2)

(1, 4)

(2, 2)

(1, 0)

y

1−1 2 3 4

1

3

4

5

77. ∫
R
∫(xy + x2) dA 78. ∫

R
∫ x

1 + x2y2 dA

 x = u  x = u

 y =
1
3

(u − v)  y =
v
u

 

x

R

(1, 3)

(1, 1)

(4, 4)

(4, 2)

y

1 2 3 4 5

1

2

3

4

5

  

x = 1

x
1

1

6

3

6

54

5

4

2
R

xy = 5

x = 5

y

xy = 1
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  P.S. Problem Solving 1041

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Volume Find the volume of the solid of intersection of the 
three cylinders x2 + z2 = 1, y2 + z2 = 1, and x2 + y2 = 1 (see 
figure).

y y
x x

z z

3

33

−3

−3

3

33

−3

−3

2.  Surface Area Let a, b, c, and d be positive real numbers. 
The portion of the plane ax + by + cz = d in the first octant is 
shown in the figure. Show that the surface area of this portion 
of the plane is equal to 

 
A(R)

c
√a2 + b2 + c2

  where A(R) is the area of the triangular region R in the xy-plane, 
as shown in the figure.

x
yR

z

3.  Using a Change of Variables The figure shows the 
region R bounded by the curves

 y = √x, y = √2x, y =
x2

3
, and y =

x2

4
.

  Use the change of variables x = u1�3v2�3 and y = u2�3v1�3 to 
find the area of the region R.

x

R
y =    x

y

y =   x21
3

y =   x21
4

y =    2x

4. Proof Prove that lim
n→∞

 ∫1

0
∫1

0
xnyn dx dy = 0.

5.  Deriving a Sum Derive Euler’s famous result that was 
mentioned in Section 9.3,

 ∑
∞

n=1
 
1
n2 =

π2

6

 by completing each step.

 (a) Prove that

  ∫ 
dv

2 − u2 + v2 =
1

√2 − u2
 arctan 

v

√2 − u2
+ C.

 (b) Prove that I1 = ∫√2�2

0
∫u

−u

 
2

2 − u2 + v2 dv du =
π2

18

  by using the substitution u = √2 sin θ.

 (c) Prove that 

   I2 = ∫√2

√2�2
∫−u+√2

u−√2
 

2
2 − u2 + v2 dv du

   = 4∫π�2

π�6
arctan 

1 − sin θ
cos θ  dθ

  by using the substitution u = √2 sin θ.

 (d) Prove the trigonometric identity

  
1 − sin θ

cos θ = tan[(π�2) − θ
2 ].

 (e) Prove that I2 = ∫√2

√2�2
∫−u+√2

u−√2
 

2
2 − u2 + v2 dv du =

π2

9
.

 (f )  Use the formula for the sum of an infinite geometric series 
to verify that

  ∑
∞

n=1
 
1
n2 = ∫1

0
 ∫1

0

1
1 − xy

 dx dy.

 (g) Use the change of variables

  u =
x + y

√2
 and v =

y − x

√2

  to prove that

  ∑
∞

n=1
 
1
n2 = ∫1

0
∫1

0
 

1
1 − xy

 dx dy = I1 + I2 =
π2

6
.

6. Evaluating a Double Integral Evaluate the integral

 ∫∞

0
∫∞

0
 

1
(1 + x2 + y2)2 dx dy.

7. Evaluating Double Integrals Evaluate the integrals

 ∫1

0
∫1

0

x − y
(x + y)3 dx dy and ∫1

0
∫1

0

x − y
(x + y)3 dy dx.

 Are the results the same? Why or why not?

8.  Volume Show that the volume of a spherical block can 
be approximated by ∆V ≈ ρ2 sin ϕ ∆ρ ∆ϕ ∆θ. (Hint: See 
Section 14.7, page 1027.)
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1042 Chapter 14 Multiple Integration

Evaluating an Integral In Exercises 9 and 10, evaluate the 
integral. (Hint: See Exercise 63 in Section 14.3.)

 9. ∫∞

0
x2e−x2 dx

10. ∫1

0
√ln 

1
x
 dx

11. Joint Density Function Consider the function

 f (x, y) = {ke−(x+y)�a,
0,

    x ≥ 0, y ≥ 0
    elsewhere.

  Find the relationship between the positive constants a and k 
such that f  is a joint density function of the continuous random 
variables x and y. (Hint: See Exercises 61–64 in Section 14.2)

12.  Volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by y = e−x2 
about the y-axis. Use this result to find

 ∫∞

−∞
e−x2 dx.

13.  Volume and Surface Area From 1963 to 1986, the 
volume of the Great Salt Lake approximately tripled while 
its top surface area approximately doubled. Read the article 
“Relations between Surface Area and Volume in Lakes” 
by Daniel Cass and Gerald Wildenberg in The College 
Mathematics Journal. Then give examples of solids that 
have “water levels” a and b such that V(b) = 3V(a) and 
A(b) = 2A(a), where V is volume and A is area (see figure).

A(b)

A(a)

V(a)

V(b)

14.  Proof The angle between a plane P and the xy-plane is θ, 
where 0 ≤ θ < π�2. The projection of a rectangular region 
in P onto the xy-plane is a rectangle whose sides have lengths 
∆x and ∆y, as shown in the figure. Prove that the area of the 
rectangular region in P is sec θ ∆x ∆y.

Δx

θ

θArea: sec ΔxΔy

Area in xy-plane: ΔxΔy

Δy

P

15.  Surface Area Use the result of Exercise 14 to order the 
planes in ascending order of their surface areas for a fixed 
region R in the xy-plane. Explain your ordering without doing 
any calculations.

 (a) z1 = 2 + x

 (b) z2 = 5

 (c) z3 = 10 − 5x + 9y

 (d) z4 = 3 + x − 2y

16.  Sprinkler Consider a circular lawn with a radius of 10 feet, 
as shown in the figure. Assume that a sprinkler distributes 
water in a radial fashion according to the formula

 f (r) =
r

16
−

r2

160

  (measured in cubic feet of water per hour per square foot of 
lawn), where r is the distance in feet from the sprinkler. Find 
the amount of water that is distributed in 1 hour in the following 
two annular regions.

 A = {(r, θ): 4 ≤ r ≤ 5, 0 ≤ θ ≤ 2π}

 B = {(r, θ): 9 ≤ r ≤ 10, 0 ≤ θ ≤ 2π}

  Is the distribution of water uniform? Determine the amount of 
water the entire lawn receives in 1 hour.

4 ft

1 ft

AB

17.  Changing the Order of Integration Sketch the solid 
whose volume is given by the sum of the iterated integrals

 ∫6

0
∫3

z�2
∫y

z�2
 dx dy dz + ∫6

0
∫(12−z)�2

3
∫6−y

z�2
 dx dy dz.

  Then write the volume as a single iterated integral in the order 
dy dz dx and find the volume of the solid.

18.  Volume The figure shows a solid bounded below by the 
plane z = 2 and above by the sphere x2 + y2 + z2 = 8.

z

x

y22

4

−2

x2 + y2 + z2 = 8

 (a) Find the volume of the solid using cylindrical coordinates.

 (b) Find the volume of the solid using spherical coordinates.
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1044 Chapter 15 Vector Analysis

15.1 Vector Fields

 Understand the concept of a vector field.
 Determine whether a vector field is conservative.
 Find the curl of a vector field.
 Find the divergence of a vector field.

Vector Fields
In Chapter 12, you studied vector-valued functions—functions that assign a vector to 
a real number. There you saw that vector-valued functions of real numbers are useful 
in representing curves and motion along a curve. In this chapter, you will study two 
other types of vector-valued functions—functions that assign a vector to a point in the 
plane or a point in space. Such functions are called vector fields, and they are useful in 
representing various types of force fields and velocity fields.

Definition of Vector Field

A vector field over a plane region R is a function F that assigns a vector
F(x, y) to each point in R.

A vector field over a solid region Q in space is a function F that assigns a 
vector F(x, y, z) to each point in Q.

Although a vector field consists of infinitely many vectors, you can get a good idea 
of what the vector field looks like by sketching several representative vectors F(x, y)
whose initial points are (x, y).

The gradient is one example of a vector field. For instance, if

f(x, y) = x2y + 3xy3

then the gradient of f

 ∇f(x, y) = fx(x, y)i + fy(x, y)j

 = (2xy + 3y3)i + (x2 + 9xy2)j Vector field in the plane

is a vector field in the plane. From Chapter 13, the graphical interpretation of this field 
is a family of vectors, each of which points in the direction of maximum increase along 
the surface given by z = f(x, y).

Similarly, if

f(x, y, z) = x2 + y2 + z2

then the gradient of f

 ∇f(x, y, z) = fx(x, y, z)i + fy(x, y, z)j + fz(x, y, z)k

 = 2xi + 2yj + 2zk Vector field in space

is a vector field in space. Note that the component functions for this particular vector 
field are 2x, 2y, and 2z.

A vector field

F(x, y, z) = M(x, y, z)i + N(x, y, z)j + P(x, y, z)k

is continuous at a point if and only if each of its component functions M, N, and P is 
continuous at that point.
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15.1 Vector Fields 1045

Some common physical examples of vector fields are velocity fields, gravitational
fields, and electric force fields.

1.  Velocity fields describe the motions of systems of particles in the plane or in space. 
For instance, Figure 15.1 shows the vector field determined by a wheel rotating on 
an axle. Notice that the velocity vectors are determined by the locations of their 
 initial points—the farther a point is from the axle, the greater its velocity. Velocity 
fields are also determined by the flow of liquids through a container or by the flow 
of air currents around a moving object, as shown in Figure 15.2.

2.  Gravitational fields are defined by Newton’s Law of Gravitation, which states 
that the force of attraction exerted on a particle of mass m1 located at (x, y, z) by a 
particle of mass m2 located at (0, 0, 0) is

F(x, y, z) =
−Gm1m2

x2 + y2 + z2 u

  where G is the gravitational constant and u is the unit vector in the direction from 
the origin to (x, y, z). In Figure 15.3, you can see that the gravitational field F has 
the properties that F(x, y, z) always points toward the origin, and that the magnitude 
of F(x, y, z) is the same at all points equidistant from the origin. A vector field with 
these two properties is called a central force field. Using the position vector

r = xi + yj + zk

 for the point (x, y, z), you can write the gravitational field F as

F(x, y, z) =
−Gm1m2

�r�2 ( r
�r�) =

−Gm1m2

�r�2 u.

3.  Electric force fields are defined by Coulomb’s Law, which states that the force 
exerted on a particle with electric charge q1 located at (x, y, z) by a particle with electric 
charge q2 located at (0, 0, 0) is

F(x, y, z) =
cq1q2

�r�2 u

  where r = xi + yj + zk, u = r��r�, and c is a constant that depends on the choice 
of units for �r�, q1, and q2.

Note that an electric force field has the same form as a gravitational field. That is,

F(x, y, z) =
k

�r�2 u.

Such a force field is called an inverse square field.

Definition of Inverse Square Field

Let r(t) = x(t)i + y(t)j + z(t)k be a position vector. The vector field F is an 
inverse square field if

F(x, y, z) =
k

�r�2u

where k is a real number and

u =
r

�r�

is a unit vector in the direction of r.

x

y

m1 is located at (x, y, z).
m2 is located at (0, 0, 0).

(x, y, z)

z

Gravitational force field
Figure 15.3

Air flow vector field
Figure 15.2

Velocity f ield

Rotating wheel
Figure 15.1
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1046 Chapter 15 Vector Analysis

Because vector fields consist of infinitely many vectors, it is not possible to create 
a sketch of the entire field. Instead, when you sketch a vector field, your goal is to 
sketch representative vectors that help you visualize the field.

 Sketching a Vector Field

Sketch some vectors in the vector field

F(x, y) = −yi + xj.

Solution You could plot vectors at several random points in the plane. It is more 
enlightening, however, to plot vectors of equal magnitude. This corresponds to finding 
level curves in scalar fields. In this case, vectors of equal magnitude lie on circles.

 �F� = c  Vectors of length c

 √x2 + y2 = c

 x2 + y2 = c2 Equation of circle

To begin making the sketch, choose a value for c and plot several vectors on the  
resulting circle. For instance, the following vectors occur on the unit circle.

Point Vector

(1, 0) F(1, 0) = j

(0, 1) F(0, 1) = −i

(−1, 0) F(−1, 0) = −j

(0, −1) F(0, −1) = i

These and several other vectors in the vector field are shown in Figure 15.4. Note in the 
figure that this vector field is similar to that given by the rotating wheel shown in Figure 15.1.

 Sketching a Vector Field

Sketch some vectors in the vector field

F(x, y) = 2xi + yj.

Solution For this vector field, vectors of  

Vector f ield:
F(x, y) = 2xi + yj

x
2−2 3−3−4

−4

−3

4

3
c = 2

c = 1

y

Figure 15.5 

equal magnitude lie on ellipses given by

 �F� = c

 √(2x)2 + (y)2 = c

which implies that

4x2 + y2 = c2. Equation of ellipse

For c = 1, sketch several vectors 2xi + yj of 
magnitude 1 at points on the ellipse given by

4x2 + y2 = 1.

For c = 2, sketch several vectors 2xi + yj of 
magnitude 2 at points on the ellipse given by

4x2 + y2 = 4.

These vectors are shown in Figure 15.5.

teChnology A computer algebra system can be used to graph vectors in a 
vector field. If you have access to a computer algebra system, use it to graph several 
representative vectors for the vector field in Example 2.

3

31

2

1

x

F(x, y) = −yi + xj
Vector f ield:

y

Figure 15.4
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15.1 Vector Fields 1047

 Sketching a Velocity Field

Sketch some vectors in the velocity field

v(x, y, z) = (16 − x2 − y2)k

where x2 + y2 ≤ 16.

Solution You can imagine that v describes the velocity of a liquid flowing through a 
tube of radius 4. Vectors near the z-axis are longer than those near the edge of the tube. 
For instance, at the point (0, 0, 0), the velocity vector is v(0, 0, 0) = 16k, whereas at 
the point (0, 3, 0), the velocity vector is v(0, 3, 0) = 7k. Figure 15.6 shows these and 
several other vectors for the velocity field. From the figure, you can see that the speed 
of the liquid is greater near the center of the tube than near the edges of the tube.

Conservative Vector Fields
Notice in Figure 15.5 that all the vectors appear to be normal to the level curve from 
which they emanate. Because this is a property of gradients, it is natural to ask whether 
the vector field

F(x, y) = 2xi + yj

is the gradient of some differentiable function f. The answer is that some vector fields 
can be represented as the gradients of differentiable functions and some cannot—those 
that can are called conservative vector fields.

Definition of Conservative Vector Field

A vector field F is called conservative when there exists a differentiable function
f  such that F = ∇f. The function f  is called the potential function for F.

 Conservative Vector Fields

a.  The vector field given by F(x, y) = 2xi + yj is conservative. To see this, consider 
the potential function f(x, y) = x2 + 1

2y2. Because

∇f = 2xi + yj = F

 it follows that F is conservative.

b. Every inverse square field is conservative. To see this, let

F(x, y, z) =
k

�r�2 u and f(x, y, z) =
−k

√x2 + y2 + z2

 where u = r��r�. Because

 ∇f =
kx

(x2 + y2 + z2)3�2 i +
ky

(x2 + y2 + z2)3�2 j +
kz

(x2 + y2 + z2)3�2 k

 =
k

x2 + y2 + z2 ( x i + yj + zk
√x2 + y2 + z2)

 =
k

�r�2 ( r
�r�)

 =
k

�r�2 u

 it follows that F is conservative. 

x

y

Velocity f ield:
v(x, y, z) = (16 − x2 − y2)k

44

16

z

Figure 15.6
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1048 Chapter 15 Vector Analysis

As can be seen in Example 4(b), many important vector fields, including gravitational 
fields and electric force fields, are conservative. Most of the terminology in this 
chapter comes from physics. For example, the term “conservative” is derived from the 
classic physical law regarding the conservation of energy. This law states that the sum 
of the kinetic energy and the potential energy of a particle moving in a conservative 
force field is constant. (The kinetic energy of a particle is the  energy due to its motion, 
and the potential energy is the energy due to its position in the force field.)

The next theorem gives a necessary and sufficient condition for a vector field in 
the plane to be conservative.

theoReM 15.1 test for Conservative Vector Field in the Plane

Let M and N have continuous first partial derivatives on an open disk R. 
The vector field F(x, y) = Mi + Nj is conservative if and only if

∂N
∂x

=
∂M
∂y

.

Proof To prove that the given condition is necessary for F to be conservative, suppose 
there exists a potential function f  such that

F(x, y) = ∇f(x, y) = Mi + Nj.

Then you have

fx(x, y) = M  fxy(x, y) =
∂M
∂y

fy(x, y) = N  fyx(x, y) =
∂N
∂x

and, by the equivalence of the mixed partials fxy and fyx, you can conclude that 
∂N�∂x = ∂M�∂y for all (x, y) in R. The sufficiency of this condition is proved in 
Section 15.4. 

 testing for Conservative Vector Fields in the Plane

Determine whether the vector field given by F is conservative.

a. F(x, y) = x2yi + xyj

b. F(x, y) = 2xi + yj

Solution

a. The vector field

F(x, y) = x2yi + xyj

 is not conservative because

∂M
∂y

=
∂
∂y

[x2y] = x2 and 
∂N
∂x

=
∂
∂x

[xy] = y.

b. The vector field 

F(x, y) = 2xi + yj

 is conservative because

∂M
∂y

=
∂
∂y

[2x] = 0 and 
∂N
∂x

=
∂
∂x

[ y] = 0. 

ReMARK Theorem 15.1 
is valid on simply connected 
domains. A plane region R is 
simply connected when every 
simple closed curve in R 
encloses only points that are 
in R. (See Figure 15.26 in 
Section 15.4.)
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 15.1 Vector Fields 1049

Theorem 15.1 tells you whether a vector field F is conservative. It does not tell you 
how to find a potential function of F. The problem is comparable to antidifferentiation. 
Sometimes you will be able to find a potential function by simple inspection. For 
instance, in Example 4, you observed that

f(x, y) = x2 +
1
2

y2

has the property that

∇f(x, y) = 2xi + yj.

 Finding a Potential Function for F(x, y)

Find a potential function for

F(x, y) = 2xyi + (x2 − y)j.

Solution From Theorem 15.1, it follows that F is conservative because

∂
∂y

[2xy] = 2x and 
∂
∂x

[x2 − y] = 2x.

If f  is a function whose gradient is equal to F(x, y), then

∇f(x, y) = 2xyi + (x2 − y)j

which implies that

fx(x, y) = 2xy

and

fy(x, y) = x2 − y.

To reconstruct the function f  from these two partial derivatives, integrate fx(x, y) with 
respect to x

f(x, y) = ∫ fx(x, y) dx = ∫ 2xy dx = x2y + g(y)

and integrate fy(x, y) with respect to y

f(x, y) = ∫ fy(x, y) dy = ∫ (x2 − y) dy = x2y −
y2

2
+ h(x).

Notice that g(y) is constant with respect to x and h(x) is constant with respect to y. To 
find a single expression that represents f(x, y), let

g(y) = −
y2

2
+ K1 and h(x) = K2.

Then you can write

f(x, y) = x2y −
y2

2
+ K. K = K1 + K2

You can check this result by forming the gradient of f. You will see that it is equal to
the original function F. 

Notice that the solution to Example 6 is comparable to that given by an indefinite 
integral. That is, the solution represents a family of potential functions, any two of 
which differ by a constant. To find a unique solution, you would have to be given an 
initial condition that is satisfied by the potential function.
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1050 Chapter 15 Vector Analysis

Curl of a Vector Field
Theorem 15.1 has a counterpart for vector fields in space. Before stating that result, the 
definition of the curl of a vector field in space is given.

Definition of Curl of a Vector Field

The curl of F(x, y, z) = Mi + Nj + Pk is

 curl F(x, y, z) = ∇ × F(x, y, z)

 = (∂P
∂y

−
∂N
∂z )i − (∂P

∂x
−

∂M
∂z )j + (∂N

∂x
−

∂M
∂y )k.

If curl F = 0, then F is said to be irrotational.

The cross product notation used for curl comes from viewing the gradient ∇f  as 
the result of the differential operator ∇ acting on the function f. In this context, you 
can use the following determinant form as an aid in remembering the formula for curl.

 curl F(x, y, z) = ∇ × F(x, y, z)

 = ∣ i
∂
∂x
M

j
∂
∂y
N

k
∂
∂z
P ∣

 = (∂P
∂y

−
∂N
∂z )i − (∂P

∂x
−

∂M
∂z )j + (∂N

∂x
−

∂M
∂y )k

 Finding the Curl of a Vector Field

See LarsonCalculus.com for an interactive version of this type of example.

Find curl F of the vector field

F(x, y, z) = 2xyi + (x2 + z2)j + 2yzk.

Is F irrotational?

Solution The curl of F is

curl F(x, y, z) = ∇ × F(x, y, z)

 = ∣ i
∂
∂x

2xy

j
∂
∂y

x2 + z2

k
∂
∂z
2yz ∣

 
= ∣ ∂

∂y
x2 + z2

∂
∂z
2yz∣i − ∣ ∂

∂x
2xy

∂
∂z
2yz∣j + ∣ ∂

∂x
2xy

∂
∂y

x2 + z2∣k
 = (2z − 2z)i − (0 − 0)j + (2x − 2x)k
 = 0.

Because curl F = 0, F is irrotational. 

teChnology Some computer algebra systems have a command that can be 
used to find the curl of a vector field. If you have access to a computer algebra system 
that has such a command, use it to find the curl of the vector field in Example 7.
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15.1 Vector Fields 1051

Later in this chapter, you will assign a physical interpretation to the curl of a 
vector field. But for now, the primary use of curl is shown in the following test for 
 conservative vector fields in space. The test states that for a vector field in space, the 
curl is 0 at every point in its domain if and only if F is conservative. The proof is 
similar to that given for Theorem 15.1.

theoReM 15.2 test for Conservative Vector Field in Space

Suppose that M, N, and P have continuous first partial derivatives in an open 
sphere Q in space. The vector field

F(x, y, z) = Mi + Nj + Pk

is conservative if and only if

curl F(x, y, z) = 0.

That is, F is conservative if and only if

∂P
∂y

=
∂N
∂z

, 
∂P
∂x

=
∂M
∂z

, and 
∂N
∂x

=
∂M
∂y

.

From Theorem 15.2, you can see that the vector field given in Example 7 is 
conservative because curl F(x, y, z) = 0. Try showing that the vector field 

F(x, y, z) = x3y2zi + x2zj + x2yk

is not conservative—you can do this by showing that its curl is 

curl F(x, y, z) = (x3y2 − 2xy)j + (2xz − 2x3yz)k ≠ 0.

For vector fields in space that pass the test for being conservative, you can find a 
potential function by following the same pattern used in the plane (as demonstrated in 
Example 6).

 Finding a Potential Function for F(x, y, z)

Find a potential function for

F(x, y, z) = 2xyi + (x2 + z2)j + 2yzk.

Solution From Example 7, you know that the vector field given by F is conservative. 
If f  is a function such that F(x, y, z) = ∇f(x, y, z), then

fx(x, y, z) = 2xy, fy(x, y, z) = x2 + z2, and fz(x, y, z) = 2yz

and integrating with respect to x, y, and z separately produces

f(x, y, z) = ∫ M dx = ∫ 2xy dx = x2y + g(y, z)

f(x, y, z) = ∫ N dy = ∫ (x2 + z2) dy = x2y + yz2 + h(x, z)

f(x, y, z) = ∫ P dz = ∫ 2yz dz = yz2 + k(x, y).

Comparing these three versions of f(x, y, z), you can conclude that

g(y, z) = yz2 + K1, h(x, z) = K2, and k(x, y) = x2y + K3.

So, f(x, y, z) is given by

f(x, y, z) = x2y + yz2 + K. K = K1 + K2 + K3 

ReMARK Theorem 15.2 
is valid for simply connected 
domains in space. A simply 
connected domain in space is 
a domain D for which every 
simple closed curve in D can be 
shrunk to a point in D without 
leaving D.

ReMARK Examples 6 
and 8 are illustrations of a type 
of problem called recovering 
a function from its gradient. 
If you go on to take a course
in differential equations, you 
will study other methods for 
solving this type of problem. 
One popular method gives an 
interplay between successive 
“partial integrations” and 
partial differentiations.
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1052 Chapter 15 Vector Analysis

Divergence of a Vector Field
You have seen that the curl of a vector field F is itself a vector field. Another important 
function defined on a vector field is divergence, which is a scalar function.

Definition of Divergence of a Vector Field

The divergence of F(x, y) = Mi + Nj is

div F(x, y) = ∇ ∙ F(x, y) =
∂M
∂x

+
∂N
∂y

. Plane

The divergence of F(x, y, z) = Mi + Nj + Pk is

div F(x, y, z) = ∇ ∙ F(x, y, z) =
∂M
∂x

+
∂N
∂y

+
∂P
∂z

. Space

If div F = 0, then F is said to be divergence free.

The dot product notation used for divergence comes from considering ∇ as a 
differential operator, as follows.

 ∇ ∙ F(x, y, z) = [( ∂
∂x)i + ( ∂

∂y)j + ( ∂
∂z)k] ∙ (Mi + Nj + Pk)

 =
∂M
∂x

+
∂N
∂y

+
∂P
∂z

 Finding the Divergence of a Vector Field

Find the divergence at (2, 1, −1) for the vector field

F(x, y, z) = x3y2zi + x2zj + x2yk.

Solution The divergence of F is

div F(x, y, z) =
∂
∂x

[x3y2z] +
∂
∂y

[x2z] +
∂
∂z

[x2y] = 3x2y2z.

At the point (2, 1, −1), the divergence is

div F(2, 1, −1) = 3(22)(12)(−1) = −12. 

Divergence can be viewed as a type of derivative of F in that, for vector fields 
representing velocities of moving particles, the divergence measures the rate of particle 
flow per unit volume at a point. In hydrodynamics (the study of fluid motion), a velocity 
field that is divergence free is called incompressible. In the study of electricity and 
magnetism, a vector field that is divergence free is called solenoidal.

There are many important properties of the divergence and curl of a vector field F 
[see Exercise 77(a)–(g)]. One that is used often is described in Theorem 15.3. You are 
asked to prove this theorem in Exercise 77(h).

theoReM 15.3 Divergence and Curl

If F(x, y, z) = Mi + Nj + Pk is a vector field and M, N, and P have continuous 
second partial derivatives, then

div(curl F) = 0.

teChnology Some 
computer algebra systems have 
a command that can be used to 
find the divergence of a vector 
field. If you have access to a 
computer algebra system that 
has such a command, use 
it to find the divergence of the 
vector field in Example 9.
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 15.1 Vector Fields 1053

15.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Vector Field Define a vector field in the plane and 

in space. Give some physical examples of vector fields.

2.  Conservative Vector Field What is a conservative 
vector field? How do you test whether a vector field is 
conservative in the plane and in space?

3.  Potential Function Describe how to find a potential 
function for a vector field that is conservative.

4.  Vector Field A vector field in space is conservative. 
Is the vector field irrotational? Explain.

Matching In Exercises 5–8, match the vector field with its 
graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) 

x

−5

5

y  (b) 

x

6

6

−6

−6

y

(c) 

x

5

5

y  (d) 

x

5

−5

5

y

 5. F(x, y) = yi  6. F(x, y) = xj

 7. F(x, y) = yi − xj  8. F(x, y) = xi + 3yj

 Sketching a Vector Field In Exercises 9–14, 
find ∣∣F∣∣ and sketch several representative vectors 
in the vector field.

 9. F(x, y) = i + j 10. F(x, y) = yi − 2xj

11. F(x, y) = −i + 3yj 12. F(x, y) = yi + xj

13. F(x, y, z) = i + j + k 14. F(x, y, z) = xi + yj + zk

graphing a Vector Field Using technology In Exercises 
15–18, use a computer algebra system to graph several 
representative vectors in the vector field.

15. F(x, y) = 1
8(2xyi + y2j)

16. F(x, y) = 〈2y − x, 2y + x〉

17. F(x, y, z) =
xi + yj + zk

√x2 + y2 + z2

18. F(x, y, z) = 〈x, −y, z〉

 Finding a Conservative Vector Field In 
Exercises 19–28, find the conservative vector field 
for the potential function by finding its gradient.

19. f (x, y) = x2 + 2y2 20. f (x, y) = x3 − 2xy

21. g(x, y) = 5x2 + 3xy + y2 22. g(x, y) = sin 3x cos 4y

23. f (x, y, z) = 6xyz 24. f (x, y, z) = √x2y + z2

25. g(x, y, z) = z + yex2 26. g(x, y, z) =
y
z

+
z
x

−
xz
y

27. h(x, y, z) = xy ln(x + y) 28. h(x, y, z) = x arcsin yz

 testing for a Conservative Vector Field In 
Exercises 29–36, determine whether the vector 
field is conservative.

29. F(x, y) = xy2i + x2yj 30. F(x, y) =
1
x2(yi − xj)

31. F(x, y) = sin yi + x sin yj 32. F(x, y) = 5y2(yi + 2xj)

33. F(x, y) =
1
xy

(yi − xj) 34. F(x, y) =
2
y2e2x�y(yi − xj)

35. F(x, y) =
i + j

√x2 + y2
 36. F(x, y) =

yi + xj
√1 + xy

 Finding a Potential Function In Exercises 
37– 44, determine whether the vector field is 
conservative. If it is, find a potential function for 
the vector field.

37. F(x, y) = (3y − x2)i + (3x + y)j
38. F(x, y) = (x3 + ey)i + (xey − 6)j

39. F(x, y) = xex2y(2yi + xj) 40. F(x, y) =
1
y2(yi − 2xj)

41. F(x, y) =
2y
x

i −
x2

y2j 42. F(x, y) =
xi + yj
x2 + y2

43. F(x, y) = sin yi + x cos yj 44. F(x, y) = (ln y + 2)i +
x
y

j

 Finding the Curl of a Vector Field In 
Exercises 45–48, find the curl of the vector field at 
the given point.

45. F(x, y, z) = xyzi + xyzj + xyzk; (2, 1, 3)
46. F(x, y, z) = x2zi − 2xz j + yzk; (2, −1, 3)
47. F(x, y, z) = ex sin yi − ex cos yj; (0, 0, 1)
48. F(x, y, z) = e−xyz(i + j + k); (3, 2, 0)

Finding the Curl of a Vector Field Using technology 
In Exercises 49 and 50, use a computer algebra system to find 
the curl of the vector field.

49. F(x, y, z) = arctan(x
y)i + ln√x2 + y2 j + k

50. F(x, y, z) =
yz

y − z
i +

xz
x − z

j +
xy

x − y
k
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1054 Chapter 15 Vector Analysis

 Finding a Potential Function In Exercises 
51–56, determine whether the vector field is 
conservative. If it is, find a potential function for 
the vector field.

51. F(x, y, z) = (3x2 + yz)i + (3y2 + xz)j + (3z2 + xy)k
52. F(x, y, z) = y2z3i + 2xyz3j + 3xy2z2k

53. F(x, y, z) = sin zi + sin xj + sin yk

54. F(x, y, z) = yezi + zexj + xeyk

55. F(x, y, z) =
z
y

i −
xz
y2 j + (x

y
− 1)k

56. F(x, y, z) =
x

x2 + y2 i +
y

x2 + y2j + k

 Finding the Divergence of a Vector Field In 
Exercises 57–60, find the divergence of the vector 
field.

57. F(x, y) = x2i + 2y2j 58. F(x, y) = xexi − x2y2j

59. F(x, y, z) = sin2 xi + z cos zj + z3k

60. F(x, y, z) = ln(x2 + y2)i + xyj + ln(y2 + z2)k

 Finding the Divergence of a Vector Field In 
Exercises 61–64, find the divergence of the vector 
field at the given point.

61. F(x, y, z) = xyzi + xz2j + 3yz2k; (2, 4, 1)
62. F(x, y, z) = x2zi − 2xzj + yzk; (2, −1, 3)
63. F(x, y, z) = ex sin yi − ex cos yj + z2k; (3, 0, 0)
64. F(x, y, z) = ln(xyz)(i + j + k); (3, 2, 1)

eXpLoRInG ConCeptS
think About It In Exercises 65–67, consider a scalar 
function f  and a vector field F in space. Determine 
whether the expression is a vector field, a scalar function, 
or neither. Explain.

65. curl(∇ f ) 66. div[curl(∇f )]
67. curl(div F)

 68.  hoW Do yoU See It? Several representative 
vectors in the vector fields

 F(x, y) =
xi + yj

√x2 + y2
 and G(x, y) =

xi − yj
√x2 + y2

  are shown below. Match each vector field with its 
graph. Explain your reasoning.

(a)

−2−3−4 2 3 4

−2
−3
−4

2
3
4

x

y (b)

−2−4 2 4

−2
−3
−4

2
3
4

x

y

 68.  

Curl of a Cross Product In Exercises 69 and 70, find 
curl(F × G) = 	 × (F × G).

69. F(x, y, z) = i + 3xj + 2yk 70. F(x, y, z) = xi − zk

G(x, y, z) = xi − yj + zk G(x, y, z) = x2i + yj + z2k

Curl of the Curl of a Vector Field In Exercises 71 and 72, 
find curl(curl F) = 	 × (	 × F).

71. F(x, y, z) = xyzi + yj + zk

72. F(x, y, z) = x2zi − 2xz j + yzk

Divergence of a Cross Product In Exercises 73 and 74, 
find div(F × G) = 	 ∙ (F × G).

73. F(x, y, z) = i + 3xj + 2yk

G(x, y, z) = xi − yj + zk

74. F(x, y, z) = xi − zk

G(x, y, z) = x2i + yj + z2k

Divergence of the Curl of a Vector Field In Exercises 
75 and 76, find div(curl F) = 	 ∙ (	 × F).

75. F(x, y, z) = xyzi + yj + zk

76. F(x, y, z) = x2zi − 2xz j + yzk

77.  Proof In parts (a)–(h), prove the property for vector fields F
and G and scalar function f. (Assume that the required partial 
 derivatives are continuous.)

 (a) curl(F + G) = curl F + curl G

 (b) curl(∇f ) = ∇ × (∇f ) = 0

 (c) div(F + G) = div F + div G

 (d) div(F × G) = (curl F) ∙ G − F ∙ (curl G)
 (e) ∇ × [∇f + (∇ × F)] = ∇ × (∇ × F)
 (f ) ∇ × ( f F) = f (∇ × F) + (∇f ) × F

 (g) div( f F) = f div F + ∇f ∙ F

 (h) div(curl F) = 0 (Theorem 15.3)

 A cross section of Earth’s 
magnetic field can be 
represented as a vector 
field in which the center 
of Earth is located at the 
origin and the positive 
y-axis points in the 
direction of the magnetic 
north pole. The equation 
for this field is

  F(x, y) = M(x, y)i + N(x, y)j

  =
m

(x2 + y2)5�2 [3xyi + (2y2 − x2)j]

where m is the magnetic moment of Earth. Show that this 
vector field is conservative.

78. earth’s Magnetic Field

Thufir/Big Stock Photo
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15.2 Line Integrals

x

y

1

1

C1

C2

C3

(0, 0, 0) (1, 2, 1)

(0, 2, 0)

(1, 2, 0)

C = C1 + C2 + C3

z

Figure 15.7

 Understand and use the concept of a piecewise smooth curve.
 Write and evaluate a line integral.
 Write and evaluate a line integral of a vector field.
 Write and evaluate a line integral in differential form.

Piecewise Smooth Curves
A classic property of gravitational fields is that, subject to certain physical  constraints, 
the work done by gravity on an object moving between two points in the field is 
 independent of the path taken by the object. One of the constraints is that the path must 
be a piecewise smooth curve. Recall that a plane curve C given by

r(t) = x(t)i + y(t)j, a ≤ t ≤ b

is smooth when

dx
dt

 and 
dy
dt

are continuous on [a, b] and not simultaneously 0 on (a, b). Similarly, a space curve C 
given by

r(t) = x(t)i + y(t)j + z(t)k, a ≤ t ≤ b

is smooth when

dx
dt

, 
dy
dt

, and 
dz
dt

are continuous on [a, b] and not simultaneously 0 on (a, b). A curve C is piecewise 
smooth when the interval [a, b] can be partitioned into a finite number of subintervals, 
on each of which C is smooth.

 Finding a Piecewise Smooth Parametrization

Find a piecewise smooth parametrization of the graph of C shown in Figure 15.7.

Solution Because C consists of three line segments C1, C2, and C3, you can construct 
a smooth parametrization for each segment and piece them together by making the last 
t-value in Ci correspond to the first t-value in Ci+1.

C1:  x(t) = 0, y(t) = 2t, z(t) = 0, 0 ≤ t ≤ 1

C2:  x(t) = t − 1, y(t) = 2, z(t) = 0, 1 ≤ t ≤ 2

C3:  x(t) = 1, y(t) = 2, z(t) = t − 2, 2 ≤ t ≤ 3

So, C is given by

r(t) = {2tj,
(t − 1)i + 2j,
i + 2j + (t − 2)k,

0 ≤ t ≤ 1
1 ≤ t ≤ 2
2 ≤ t ≤ 3

.

Because C1, C2, and C3 are smooth, it follows that C is piecewise smooth. 

Recall that parametrization of a curve induces an orientation to the curve. For 
instance, in Example 1, the curve is oriented such that the positive direction is from 
(0, 0, 0), following the curve to (1, 2, 1). Try finding a parametrization that induces the 
opposite orientation.
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1056 Chapter 15 Vector Analysis

Line Integrals
Up to this point in the text, you have studied various types of integrals. For a single integral

∫b

a

 f(x) dx Integrate over interval [a, b].

you integrated over the interval [a, b]. Similarly, for a double integral

∫
R
∫ f(x, y) dA Integrate over region R.

you integrated over the region R in the plane. In this section, you will study a new type 
of integral called a line integral

∫
C

 f(x, y) ds Integrate over curve C.

for which you integrate over a piecewise smooth curve C. (The terminology is somewhat 
unfortunate—this type of integral might be better described as a “curve integral.”)

To introduce the concept of a line integral, consider the mass of a wire of finite 
length, given by a curve C in space. The density (mass per unit length) of the wire at 
the point (x, y, z) is given by f(x, y, z). Partition the curve C by the points 

P0, P1, .  .  . , Pn

producing n subarcs, as shown in Figure 15.8.  

x
y

P0

P1
P2

Pi

Pi − 1
Pn − 1

Pn

Δsi

(xi, yi, zi)

C

z

Partitioning of curve C
Figure 15.8

The length of the ith subarc is given by ∆si. 
Next, choose a point (xi, yi, zi) in each subarc.
If the length of each subarc is small, then the 
total mass of the wire can be approximated 
by the sum

Mass of wire ≈ ∑
n

i=1
 f (xi, yi, zi) ∆si.

By letting �∆� denote the length of the
longest subarc and letting �∆� approach 0, it seems reasonable that the limit of this sum 
approaches the mass of the wire. This leads to the next definition.

Definition of Line Integral

If f  is defined in a region containing a smooth curve C of finite length, then 
the line integral of f along C is given by

∫
C

  f(x, y) ds = lim
�∆�→0

 ∑
n

i=1
 f(xi, yi) ∆si Plane

or

∫
C

  f(x, y, z) ds = lim
�∆�→0

 ∑
n

i=1
 f(xi, yi, zi) ∆si Space

provided this limit exists.

As with the integrals discussed in Chapter 14, evaluation of a line integral is 
best accomplished by converting it to a definite integral. It can be shown that if 
f  is continuous, then the limit given above exists and is the same for all smooth 
parametrizations of C.

JOSIAH WILLARD GIBBS
(1839–1903)

Many physicists and 
mathematicians have contributed 
to the theory and applications 
described in this chapter––
Newton, Gauss, Laplace, 
Hamilton, and Maxwell, among 
others. However, the use of 
vector analysis to describe these 
results is attributed primarily 
to the American mathematical 
physicist Josiah Willard Gibbs.
See LarsonCalculus.com to read 
more of this biography.

The Granger Collection, NYC
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15.2 Line Integrals 1057

To evaluate a line integral over a plane curve C given by r(t) = x(t)i + y(t)j, use 
the fact that

ds = �r′(t)� dt = √[x′(t)]2 + [y′(t)]2 dt.

A similar formula holds for a space curve, as indicated in Theorem 15.4.

thEOrEm 15.4 Evaluation of a Line Integral as a Definite Integral

Let f  be continuous in a region containing a smooth curve C. If C is given by 
r(t) = x(t)i + y(t)j, where a ≤ t ≤ b, then

∫
C

  f(x, y) ds = ∫b

a

 f(x(t), y(t))√[x′(t)]2 + [y′(t)]2 dt.

If C is given by r(t) = x(t)i + y(t)j + z(t)k, where a ≤ t ≤ b, then

∫
C

  f(x, y, z) ds = ∫b

a

 f(x(t), y(t), z(t))√[x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt.

Note that if f(x, y, z) = 1, then the line integral gives the arc length of the curve C,
as defined in Section 12.5. That is,

∫
C

 1 ds = ∫b

a
 �r′(t)� dt = length of curve C.

 Evaluating a Line Integral

Evaluate

∫
C

(x2 − y + 3z) ds

where C is the line segment shown in Figure 15.9.

Solution Begin by writing a parametric form of the equation of the line segment:

x = t, y = 2t, and z = t, 0 ≤ t ≤ 1.

Therefore, x′(t) = 1, y′(t) = 2, and z′(t) = 1, which implies that

√[x′(t)]2 + [y′(t)]2 + [z′(t)]2 = √12 + 22 + 12 = √6.

So, the line integral takes the following form.

 ∫
C

 (x2 − y + 3z) ds = ∫1

0
 (t2 − 2t + 3t)√6 dt

 = √6∫1

0
 (t2 + t) dt

 = √6[t3

3
+

t2

2]
1

0

 =
5√6

6
 

The value of the line integral in Example 2 does not depend on the parametrization of 
the line segment C; any smooth parametrization will produce the same value. To convince 
yourself of this, try some other parametrizations, such as x = 1 + 2t, y = 2 + 4t, and 
z = 1 + 2t, −1

2 ≤ t ≤ 0, or x = −t, y = −2t, and z = −t, −1 ≤ t ≤ 0.

x

y

1

1

1

2

C(0, 0, 0) (1, 2, 1)

z

Figure 15.9
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1058 Chapter 15 Vector Analysis

Let C be a path composed of smooth curves C1, C2, .  .  . , Cn. If f  is continuous on 
C, then it can be shown that

∫
C

 f(x, y) ds = ∫
C1

 f(x, y) ds + ∫
C2

 f(x, y) ds + .  .  . + ∫
Cn

 f(x, y) ds.

This property is used in Example 3.

 Evaluating a Line Integral Over a Path

Evaluate

∫
C

 x ds

where C is the piecewise smooth curve shown in Figure 15.10.

Solution Begin by integrating up the line y = x, using the following parametrization.

C1: x = t, y = t, 0 ≤ t ≤ 1

For this curve, r(t) = ti + tj, which implies that x′(t) = 1 and y′(t) = 1. So,

√[x′(t)]2 + [y′(t)]2 = √2

and you have

∫
C1

 x ds = ∫1

0
 t√2 dt =

√2
2

t2]
1

0
=

√2
2

.

Next, integrate down the parabola y = x2, using the parametrization

C2: x = 1 − t, y = (1 − t)2, 0 ≤ t ≤ 1.

For this curve,

r(t) = (1 − t)i + (1 − t)2j

which implies that x′(t) = −1 and y′(t) = −2(1 − t). So,

√[x′(t)]2 + [y′(t)]2 = √1 + 4(1 − t)2

and you have

 ∫
C2

 x ds = ∫1

0
(1 − t)√1 + 4(1 − t)2 dt

 = −
1
8[

2
3

[1 + 4(1 − t)2]3�2]
1

0

 =
1
12

(53�2 − 1).

Consequently,

∫
C

 x ds = ∫
C1

 x ds + ∫
C2

 x ds =
√2
2

+
1

12
(53�2 − 1) ≈ 1.56. 

For parametrizations given by r(t) = x(t)i + y(t)j + z(t)k, it is helpful to remember 
the form of ds as

ds = �r′(t)� dt = √[x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt.

This is demonstrated in Example 4.

y = x2

y = x

1

1

x

(1, 1)

C = C1 + C2

C2

C1

(0, 0)

y

Figure 15.10
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 Evaluating a Line Integral

Evaluate ∫
C

 (x + 2) ds, where C is the curve represented by

r(t) = ti +
4
3

t3�2j +
1
2

t2k, 0 ≤ t ≤ 2.

Solution Because r′(t) = i + 2t1�2j + tk and

�r′(t)� = √[x′(t)2] + [y′(t)]2 + [z′(t)]2 = √1 + 4t + t2

it follows that

 ∫
C

 (x + 2) ds = ∫2

0
 (t + 2)√1 + 4t + t2 dt

 =
1
2∫

2

0
 2(t + 2)(1 + 4t + t2)1�2 dt

 =
1
3[(1 + 4t + t2)3�2]

2

0

 =
1
3

(13√13 − 1)
 ≈ 15.29.  

The next example shows how a line integral can be used to find the mass of 
a spring whose density varies. In Figure 15.11, note that the density of this spring 
increases as the spring spirals up the z-axis.

 Finding the mass of a Spring

Find the mass of a spring in the shape of the 

x

y2 2

Density:
(x, y, z) = 1 + zρ

z

r(t) = 1
2

(cos ti + sin tj + tk)

Figure 15.11

circular helix

r(t) =
1

√2
(cos ti + sin tj + tk)

where 0 ≤ t ≤ 6π  and the density of the spring is

ρ(x, y, z) = 1 + z

as shown in Figure 15.11.

Solution Because

�r′(t)� =
1

√2
√(−sin t)2 + (cos t)2 + (1)2 = 1

it follows that the mass of the spring is

 Mass = ∫
C

 (1 + z) ds

 = ∫6π

0
 (1 +

t

√2) dt

 = [t +
t2

2√2]
6π

0

 = 6π(1 +
3π
√2)

 ≈ 144.47. 

Michelangelus/Shutterstock.com
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1060 Chapter 15 Vector Analysis

Line Integrals of Vector Fields
One of the most important physical applications of line integrals is that of finding the 
work done on an object moving in a force field. For example, Figure 15.12 shows an 
inverse square force field similar to the gravitational field of the sun. Note that the 
magnitude of the force along a circular path about the center is constant, whereas the 
magnitude of the force along a parabolic path varies from point to point.

To see how a line integral can be used to find work done in a force field F, consider 
an object moving along a path C in the field, as shown in Figure 15.13. To determine 
the work done by the force, you need consider only that part of the force that is acting 
in the same direction as that in which the object is moving (or the opposite direction). 
This means that at each point on C, you can consider the projection F ∙ T of the force 
vector F onto the unit tangent vector T. On a small subarc of length ∆si, the increment 
of work is

∆Wi = (force)(distance)
 ≈ [F(xi, yi, zi) ∙ T(xi, yi, zi)] ∆si

where (xi, yi, zi) is a point in the ith subarc. Consequently, the total work done is given 
by the integral

W = ∫
C

 F(x, y, z) ∙ T(x, y, z) ds.

x

y

(F · T)T

F

T

C

z  

x

y

z

(F · T)T

T

C

T has the
direction
of F.

 

x

y

(F · T)T

T
F

z

C

At each point on C, the force in the direction of motion is (F ∙ T)T.
Figure 15.13

This line integral appears in other contexts and is the basis of the definition of the line 
integral of a vector field shown below. Note in the definition that

 F ∙ T ds = F ∙ r′(t)
�r′(t)� �r′(t)� dt

 = F ∙ r′(t) dt

 = F ∙ dr.

Definition of the Line Integral of a Vector Field

Let F be a continuous vector field defined on a smooth curve C given by

r(t), a ≤ t ≤ b.

The line integral of F on C is given by

 ∫
C

 F ∙ dr = ∫
C

 F ∙ T ds

 = ∫b

a

 F(x(t), y(t), z(t)) ∙ r′(t) dt.

Inverse square force field F

Vectors along a parabolic path in the 
force field F
Figure 15.12
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 15.2 Line Integrals 1061

 Work Done by a Force

See LarsonCalculus.com for an interactive version of this type of example.

Find the work done by the force field

F(x, y, z) = −
1
2

xi −
1
2

yj +
1
4

k Force field F

on a particle as it moves along the helix given by

r(t) = cos ti + sin tj + tk Space curve C

from the point (1, 0, 0) to the point (−1, 0, 3π), as shown in Figure 15.14.

Solution Because

 r(t) = x(t)i + y(t)j + z(t)k
 = cos ti + sin tj + tk

it follows that

x(t) = cos t, y(t) = sin t, and z(t) = t.

So, the force field can be  written as

F(x(t), y(t), z(t)) = −
1
2

 cos ti −
1
2

 sin tj +
1
4

k.

To find the work done by the force field in moving a particle along the curve C, use 
the fact that

r′(t) = −sin ti + cos tj + k

and write the following.

 W = ∫
C

 F ∙ dr

 = ∫b

a

 F(x(t), y(t), z(t)) ∙ r′(t) dt

 = ∫3π

0
 (−

1
2

 cos ti −
1
2

 sin tj +
1
4

k) ∙ (−sin ti + cos tj + k) dt

 = ∫3π

0
 (1

2
 sin t cos t −

1
2

 sin t cos t +
1
4) dt

 = ∫3π

0
 
1
4

 dt

 =
1
4

t]
3π

0

 =
3π
4

 

In Example 6, note that the x- and y-components of the force field end up contributing 
nothing to the total work. This occurs because in this particular example, the z-component 
of the force field is the only portion of the force that is acting in the same (or opposite) 
direction in which the particle is moving (see Figure 15.15).

tEChnOLOgy Figure 15.15 shows a computer-generated view of the force 
field in Example 6. The figure indicates that each vector in the force field points 
toward the z-axis.

y

2

−2

−1

1

2

−2

−1

3π

π

x

(−1, 0, 3  )

(1, 0, 0)

πz

Figure 15.14

y

x

Generated by Mathematica

z

Figure 15.15
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1062 Chapter 15 Vector Analysis

For line integrals of vector functions, the orientation of the curve C is important. 
When the orientation of the curve is reversed, the unit tangent vector T(t) is changed 
to −T(t), and you obtain

∫
−C

 F ∙ dr = −∫
C

 F ∙ dr.

 Orientation and Parametrization of a Curve

Let F(x, y) = yi + x2j and evaluate the line integral

∫
C

 F ∙ dr

for each parabolic curve shown in Figure 15.16.

a. C1: r1(t) = (4 − t)i + (4t − t2)j, 0 ≤ t ≤ 3

b. C2: r2(t) = ti + (4t − t2)j, 1 ≤ t ≤ 4

Solution

a. Because r1′(t) = −i + (4 − 2t)j and

F(x(t), y(t)) = (4t − t2)i + (4 − t)2j

 the line integral is

 ∫
C1

 F ∙ dr = ∫3

0
 [(4t − t2)i + (4 − t)2j] ∙ [−i + (4 − 2t)j] dt

 = ∫3

0
 (−4t + t2 + 64 − 64t + 20t2 − 2t3) dt

 = ∫3

0
 (−2t3 + 21t2 − 68t + 64) dt

 = [− t4

2
+ 7t3 − 34t2 + 64t]

3

0

 =
69
2

.

b. Because r2′(t) = i + (4 − 2t)j and

F(x(t), y(t)) = (4t − t2)i + t2j

 the line integral is

 ∫
C2

 F ∙ dr = ∫4

1
 [(4t − t2)i + t2j] ∙ [i + (4 − 2t)j] dt

 = ∫4

1
 (4t − t2 + 4t2 − 2t3) dt

 = ∫4

1
 (−2t3 + 3t2 + 4t) dt

 = [− t4

2
+ t3 + 2t2]

4

1

 = −
69
2

.

The answer in part (b) is the negative of that in part (a) because C1 and C2 represent 
opposite orientations of the same parabolic segment. 

rEmark Although the 
value of the line integral in 
Example 7 depends on the  
orientation of C, it does not 
depend on the parametrization 
of C. To see this, let C3 be  
represented by

r3(t) = (t + 2)i + (4 − t2)j

where −1 ≤ t ≤ 2. The graph 
of this curve is the same  
parabolic segment shown in 
Figure 15.16. Does the value  
of the line integral over C3  
agree with the value over C1  
or C2? Why or why not?

32

4

3

2

1

1

x

y

(4, 0)

C1
C2

(1, 3)

r2(t) = ti + (4t − t2)j

r1(t) = (4 − t)i + (4t − t2)j

C2:

C1:

Figure 15.16

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 15.2 Line Integrals 1063

Line Integrals in Differential Form
A second commonly used form of line integrals is derived from the vector field  
notation used in Section 15.1. If F is a vector field of the form F(x, y) = Mi + Nj and 
C is given by r(t) = x(t)i + y(t)j, then F ∙ dr is often written as M dx + N dy.

 ∫
C

 F ∙ dr = ∫
C

 F ∙ dr
dt

 dt

 = ∫b

a

 (Mi + Nj) ∙ (x′(t)i + y′(t)j) dt

 = ∫b

a

 (M 
dx
dt

+ N 
dy
dt) dt

 = ∫
C

 (M dx + N dy)

This differential form can be extended to three variables.

 Evaluating a Line Integral in Differential Form

Let C be the circle of radius 3 given by

r(t) = 3 cos ti + 3 sin tj, 0 ≤ t ≤ 2π

as shown in Figure 15.17. Evaluate the line integral

∫
C

 y3 dx + (x3 + 3xy2) dy.

Solution Because x = 3 cos t and y = 3 sin t, you have dx = −3 sin t dt and 
dy = 3 cos t dt. So, the line integral is

∫
C

 M dx + N dy

= ∫
C

 y3 dx + (x3 + 3xy2) dy

= ∫2π

0
 [(27 sin3 t)(−3 sin t) + (27 cos3 t + 81 cos t sin2 t)(3 cos t)] dt

= 81∫2π

0
 (cos4 t − sin4 t + 3 cos2 t sin2 t) dt

= 81∫2π

0
 (cos2 t − sin2 t +

3
4

 sin2 2t) dt–

= 81∫2π

0
 [cos 2t +

3
4 (

1 − cos 4t
2 )] dt

= 81[sin 2t
2

+
3
8

t −
3 sin 4t

32 ]
2π

0

=
243π

4
. 

The orientation of C affects the value of the differential form of a line integral. 
Specifically, if −C has the orientation opposite to that of C, then

∫
−C

 M dx + N dy = −∫
C

 M dx + N dy.

So, of the three line integral forms presented in this section, the orientation of C does not 
affect the form ∫C f(x, y) ds, but it does affect the vector form and the differential form.

x

r(t) = 3 cos ti + 3 sin tj

2

2

4

4

−2

−2

−4

−4

y

Figure 15.17

rEmark The parentheses 
are often omitted from this  
differential form, as shown 
below.

∫
C

 M dx + N dy

In three variables, the  
differential form is

∫
C

 M dx + N dy + P dz.
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1064 Chapter 15 Vector Analysis

For curves represented by y = g(x), a ≤ x ≤ b, you can let x = t and obtain the 
parametric form

x = t and y = g(t), a ≤ t ≤ b.

Because dx = dt for this form, you have the option of evaluating the line integral in the 
variable x or the variable t. This is demonstrated in Example 9.

 Evaluating a Line Integral in Differential Form

Evaluate

∫
C

 y dx + x2 dy

where C is the parabolic arc given by y = 4x − x2 from (4, 0) to (1, 3), as shown in 
Figure 15.18.

Solution Rather than converting to the parameter t, you can simply retain the variable x
and write

y = 4x − x2 dy = (4 − 2x) dx.

Then, in the direction from (4, 0) to (1, 3), the line integral is

 ∫
C

 y dx + x2 dy = ∫1

4
[(4x − x2) dx + x2(4 − 2x) dx]

 = ∫1

4
 (4x + 3x2 − 2x3) dx

 = [2x2 + x3 −
x4

2 ]
1

4

 =
69
2

. See Example 7. 

Exploration
Finding Lateral Surface Area The figure below shows a piece of tin that has 
been cut from a circular cylinder. The base of the circular cylinder is modeled 
by x2 + y2 = 9. At any point (x, y) on the base, the height of the object is

f(x, y) = 1 + cos 
πx
4

.

Explain how to use a line integral to find the surface area of the piece of tin.

z

x2 + y2 = 9

x
y

2

1

−2
−1

3

3

1 + cos πx
4

(x, y)

3

2

1

4321

4

x

C: y = 4x − x2

y

(1, 3)

(4, 0)

Figure 15.18
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 15.2 Line Integrals 1065

15.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Line Integral What is the physical interpretation of 

each line integral?

 (a) ∫
C
 1 ds

 (b) ∫
C
  f (x, y, z) ds, where f (x, y, z) is the density of a

  string of finite length

2.  Orientation of a Curve Describe how reversing the

 orientation of a curve C affects ∫
C
 F ∙ dr.

 Finding a Piecewise Smooth 
Parametrization In Exercises 3–8, find a 
piecewise smooth parametrization of the path C. 
(There is more than one correct answer.)

 3. 

x

1

1

C

(1, 1)

y = x

y =    x

y   4. 

y = x2

x

2

4

1

3

2 41 3

C (2, 4)

y

 5. 

x

2

1

3

21 3

C

(3, 3)

y   6. 

2

4

5

1

3

x
2 4 51 3

C

(5, 4)

y

 7. 

x

2

1

21

−2

−2 −1

x2 + y2 = 9

C

y   8. 

x

2

4

2

−2

−4

−2

C

x2

16
+ = 1

y
y2

9

 Evaluating a Line Integral In Exercises 9–12, 
(a) find a parametrization of the path C, and 

 (b) evaluate ∫
C
 (x2 + y2) ds.

 9. C: line segment from (0, 0) to (1, 1)
10. C: line segment from (0, 0) to (2, 4)
11. C:  counterclockwise around the circle x2 + y2 = 1 from 

(1, 0) to (0, 1)
12. C:  counterclockwise around the circle x2 + y2 = 4 from 

(2, 0) to (−2, 0)

 Evaluating a Line Integral In Exercises 
13–16, (a) find a piecewise smooth parametrization

 of the path C, and (b) evaluate ∫
C
 (2x + 3√y) ds.

13. C: line segments from (0, 0) to (1, 0) and (1, 0) to (2, 4)
14. C: line segments from (0, 1) to (0, 4) and (0, 4) to (3, 3)
15. C:  counterclockwise around the triangle with vertices (0, 0), 

(1, 0), and (0, 1)
16. C:  counterclockwise around the square with vertices (0, 0), 

(2, 0), (2, 2), and (0, 2)

Evaluating a Line Integral In Exercises 17 and 18, (a) find 
a piecewise smooth parametrization of the path C shown in the

figure and (b) evaluate ∫
C
 (2x + y2 − z) ds.

17.   18.

 Evaluating a Line Integral In Exercises 19–22, 
evaluate the line integral along the given path.

19. ∫
C

 xy ds 20. ∫
C

 3(x − y) ds

 C: r(t) = 4ti + 3tj  C: r(t) = ti + (2 − t)j

 0 ≤ t ≤ 1  0 ≤ t ≤ 2

21. ∫
C

 (x2 + y2 + z2) ds

 C: r(t) = sin ti + cos tj + 2k

  0 ≤ t ≤
π
2

22. ∫
C

 2xyz ds

 C: r(t) = 12ti + 5tj + 84tk

  0 ≤ t ≤ 1

 mass In Exercises 23 and 24, find the total 
mass of a spring with density ρ in the shape of the 
circular helix

 r(t) = 2 cos ti + 2 sin tj + tk, 0 ≤ t ≤ 4π.

23. ρ(x, y, z) = 1
2(x2 + y2 + z2)

24. ρ(x, y, z) = z

z

(0, 0, 0)

(1, 0, 1)

(1, 0, 0)

(1, 1, 1)

C

1

1
x

y

x

y

z

C
1

1

(0, 0, 0) (0, 1, 0)

(0, 1, 1)
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1066 Chapter 15 Vector Analysis

mass In Exercises 25–28, find the total mass of the wire with 
density ρ whose shape is modeled by r.

25. r(t) = cos ti + sin tj, 0 ≤ t ≤ π, ρ(x, y) = x + y + 2

26. r(t) = t2i + 2tj, 0 ≤ t ≤ 1, ρ(x, y) = 3
4y

27. r(t) = t2i + 2tj + tk, 1 ≤ t ≤ 3, ρ(x, y, z) = kz (k > 0)
28.  r(t) = 2 cos ti + 2 sin tj + 3tk, 0 ≤ t ≤ 2π,

ρ(x, y, z) = k + z (k > 0)

 Evaluating a Line Integral of a Vector Field

  In Exercises 29–34, evaluate ∫
C
 F ∙ dr.

29. F(x, y) = xi + yj

 C: r(t) = (3t + 1)i + t j, 0 ≤ t ≤ 1

30. F(x, y) = xyi + yj

 C: r(t) = 4 cos ti + 4 sin tj, 0 ≤ t ≤ π
2

31. F(x, y) = x2i + 4yj

 C: r(t) = eti + t2j, 0 ≤ t ≤ 2

32. F(x, y) = 3xi + 4yj

 C: r(t) = ti + √4 − t2 j, −2 ≤ t ≤ 2

33. F(x, y, z) = xyi + xz j + yzk

 C: r(t) = ti + t2j + 2tk, 0 ≤ t ≤ 1

34. F(x, y, z) = x2i + y2j + z2k

 C: r(t) = 2 sin ti + 2 cos tj + 1
2t2k, 0 ≤ t ≤ π

Evaluating a Line Integral of a Vector Field Using 
technology In Exercises 35 and 36, use a computer algebra 

system to evaluate ∫
C
 F ∙ dr.

35. F(x, y, z) = x2zi + 6yj + yz2k

 C: r(t) = ti + t2j + ln tk, 1 ≤ t ≤ 3

36. F(x, y, z) =
xi + yj + zk
√x2 + y2 + z2

 C: r(t) = ti + tj + etk, 0 ≤ t ≤ 2

 Work In Exercises 37–42, find the work done 
by the force field F on a particle moving along the 
given path.

37. F(x, y) = xi + 2yj

 C: x = t, y = t3 from (0, 0) to (2, 8)

2 4 6 8

2

4

6

8

x

y

(2, 8)

C

  

1

1

x

y

C

 Figure for 37 Figure for 38

38. F(x, y) = x2i − xyj

 C: x = cos3 t, y = sin3 t from (1, 0) to (0, 1)
39. F(x, y) = xi + yj

 C:  counterclockwise around the triangle with vertices (0, 0), 
(1, 0), and (0, 1)

1

1

x

y

(0, 1)

C

  

−1−2 1 2
−1

1

3

x

y

C

 Figure for 39 Figure for 40

40. F(x, y) = −yi − xj

 C:  counterclockwise around the semicircle y = √4 − x2 
from (2, 0) to (−2, 0)

41. F(x, y, z) = xi + yj − 5zk

 C: r(t) = 2 cos ti + 2 sin tj + tk, 0 ≤ t ≤ 2π

yx

z

π

3

π2

3

−3 −3

C

   

y

x

z

5

3

3

2

1C

 Figure for 41 Figure for 42

42. F(x, y, z) = yzi + xzj + xyk

 C: line from (0, 0, 0) to (5, 3, 2)

Work In Exercises 43–46, determine whether the work done 
along the path C is positive, negative, or zero. Explain.

43. 

x

C

y

44. 

x

C

y
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45. 

x

y

C

46. 

x

y

C

 Evaluating a Line Integral of a Vector 
Field In Exercises 47 and 48, evaluate ∫C F ∙ dr 
for each curve. Discuss the orientation of the curve 
and its effect on the value of the integral.

47. F(x, y) = x2i + xyj

 (a) C1: r1(t) = 2ti + (t − 1)j, 1 ≤ t ≤ 3

 (b) C2: r2(t) = 2(3 − t)i + (2 − t)j, 0 ≤ t ≤ 2

48. F(x, y) = x2yi + xy3�2j

 (a) C1: r1(t) = (t + 1)i + t2j, 0 ≤ t ≤ 2

 (b) C2: r2(t) = (1 + 2 cos t)i + (4 cos2 t)j, 0 ≤ t ≤ π�2

Demonstrating a Property In Exercises 49–52,

demonstrate the property that ∫
C
 F ∙ dr = 0 regardless of the

initial and terminal points of C, where the tangent vector r′(t) 
is orthogonal to the force field F.

49. F(x, y) = yi − xj

 C: r(t) = ti − 2tj

50. F(x, y) = −3yi + xj

 C: r(t) = ti − t3j

51. F(x, y) = (x3 − 2x2)i + (x −
y
2)j

 C: r(t) = ti + t2j

52. F(x, y) = xi + yj

 C: r(t) = 3 sin ti + 3 cos tj

Evaluating a Line Integral in Differential Form In 
Exercises 53–56, evaluate the line integral along the path C 
given by x = 2t, y = 4t, where 0 ≤ t ≤ 1.

53. ∫
C

 (x + 3y2) dy 54. ∫
C

 (x3 + 2y) dx

55. ∫
C

 xy dx + y dy 56. ∫
C

 (y − x) dx + 5x2y2 dy

 Evaluating a Line Integral in Differential 
Form In Exercises 57–64, evaluate 

  ∫
C
 (2x − y) dx + (x + 3y) dy.

57. C: x-axis from x = 0 to x = 5

58. C: y-axis from y = 0 to y = 2

59. C: line segments from (0, 0) to (3, 0) and (3, 0) to (3, 3)
60. C: line segments from (0, 0) to (0, −3) and (0, −3) to (2, −3)
61. C: arc on y = 1 − x2 from (0, 1) to (1, 0)
62. C: arc on y = x3�2 from (0, 0) to (4, 8)
63. C: parabolic path x = t, y = 2t2 from (0, 0) to (2, 8)
64. C: elliptic path x = 4 sin t, y = 3 cos t from (0, 3) to (4, 0)

Lateral Surface area In Exercises 65–72, find the area of 
the lateral surface (see figure) over the curve C in the xy-plane 
and under the surface z = f (x, y), where

Lateral surface area = ∫
C
  f(x, y) ds.

x

y
P

Q

Δsi

(xi, yi)

C: Curve in xy-plane

Surface:
z = f (x, y)

Lateral
surface

z

65. f (x, y) = h, C: line from (0, 0) to (3, 4)
66. f (x, y) = y, C: line from (0, 0) to (4, 4)
67. f (x, y) = xy, C: x2 + y2 = 1 from (1, 0) to (0, 1)
68. f (x, y) = x + y, C: x2 + y2 = 1 from (1, 0) to (0, 1)
69. f (x, y) = h, C: y = 1 − x2 from (1, 0) to (0, 1)
70. f (x, y) = y + 1, C: y = 1 − x2 from (1, 0) to (0, 1)
71. f (x, y) = xy, C: y = 1 − x2 from (1, 0) to (0, 1)
72. f (x, y) = x2 − y2 + 4, C: x2 + y2 = 4

73.  Engine Design A tractor engine has a steel component 
with a circular base modeled by the vector-valued function 

 r(t) = 2 cos ti + 2 sin tj.

  Its height is given by z = 1 + y2. (All measurements of the 
component are in centimeters.)

 (a) Find the lateral surface area of the component.

 (b)  The component is in the form of a shell of thickness  
0.2 centimeter. Use the result of part (a) to approximate 
the amount of steel used to manufacture the component.

 (c) Draw a sketch of the component.
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moments of Inertia Consider a wire of density ρ(x, y) 
given by the space curve

C: r(t) = x(t)i + y(t)j, 0 ≤ t ≤ b.

The moments of inertia about the x- and y-axes are given by

Ix = ∫
C
 y2ρ(x, y) ds and Iy = ∫

C
 x2ρ(x, y) ds.

In Exercises 75 and 76, find the moments of inertia for the wire 
of density ρ.

75.  A wire lies along r(t) = a cos ti + a sin tj, where 0 ≤ t ≤ 2π
and a > 0, with density ρ(x, y) = 1.

76.  A wire lies along r(t) = a cos ti + a sin tj, where 0 ≤ t ≤ 2π
and a > 0, with density ρ(x, y) = y.

77.  Investigation The top outer edge of a solid with 
vertical sides that is resting on the xy-plane is modeled 
by r(t) = 3 cos ti + 3 sin tj + (1 + sin2 2t)k, where all 
measurements are in centimeters. The intersection of the 
plane y = b, where −3 < b < 3, with the top of the solid is a 
horizontal line.

 (a) Use a computer algebra system to graph the solid.

 (b)  Use a computer algebra system to approximate the lateral 
surface area of the solid.

 (c) Find (if possible) the volume of the solid.

78.  Work A particle moves along the path y = x2 from the 
point (0, 0) to the point (1, 1). The force field F is measured 
at five points along the path, and the results are shown in the 
table. Use Simpson’s Rule or a graphing utility to approximate 
the work done by the force field.

(x, y) (0, 0) (1
4, 1

16) (1
2, 14) (3

4, 9
16) (1, 1)

F(x, y) 〈5, 0〉 〈3.5, 1〉 〈2, 2〉 〈1.5, 3〉 〈1, 5〉

79.  Work Find the work done by a person weighing 175 pounds 
walking exactly one revolution up a circular helical staircase 
of radius 3 feet when the person rises 10 feet.

80.  Investigation Determine the value of c such that the 
work done by the force field F(x, y) = 15[(4 − x2y)i − xyj]
on an object moving along the parabolic path y = c(1 − x2)
between the points (−1, 0) and (1, 0) is a minimum. Compare 
the result with the work required to move the object along the 
straight-line path connecting the points.

eXpLoRInG ConCeptS
81.  think about It A path C is given by x = t, y = 2t, 

where 0 ≤ t ≤ 1. Are ∫C (x + y) dx and ∫C (x + y) dy 
equivalent? Explain.

82.  Line Integrals Let F(x, y) = 2xi + xy2j and 
consider the curve y = x2 from (0, 0) to (2, 4) in the
xy-plane. Set up and evaluate line integrals of the forms 
∫C F ∙ dr and ∫C M dx + N dy. Compare your results. 
Which method do you prefer? Explain.

83.  Ordering Surfaces Order the surfaces in ascending 
order of the lateral surface area under the surface and 
over the curve y = √x from (0, 0) to (4, 2) in the 
xy-plane. Explain your ordering without doing any 
calculations.

 (a) z1 = 2 + x (b) z2 = 5 + x

 (c) z3 = 2 (d) z4 = 10 + x + 2y

 84.  hOW DO yOU SEE It? For each of the 
following, determine whether the work done in 
moving an object from the first to the second 
point through the force field shown in the 
figure is positive, negative, or zero. Explain 
your answer. (In the figure, the circles have 
radii 1, 2, 3, 4, 5, and 6.)

x

y

(a) From (−3, −3) to (3, 3)
(b) From (−3, 0) to (0, 3)
(c) From (5, 0) to (0, 3)

 84.  

true or False? In Exercises 85 and 86, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

85. If C is given by x = t, y = t, where 0 ≤ t ≤ 1, then

∫
C

xy ds = ∫1

0
 t2 dt.

86. If C2 = −C1, then ∫
C1

 f (x, y) ds + ∫
C2

  f (x, y) ds = 0.

87.  Work Consider a particle that moves through the force field 

F(x, y) = (y − x)i + xyj

  from the point (0, 0) to the point (0, 1) along the curve 
x = kt(1 − t), y = t. Find the value of k such that the work 
done by the force field is 1.

The ceiling of a building 
has a height above 
the floor given by 
z = 20 + 1

4x. One 
of the walls follows
a path modeled by 
y = x3�2. Find the 
surface area of the wall 
for 0 ≤ x ≤ 40. (All 
measurements are in feet.)

74. Building Design

nui7711/Shutterstock.com
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 15.3 Conservative Vector Fields and Independence of Path 1069

15.3 Conservative Vector Fields and Independence of Path

 Understand and use the Fundamental Theorem of Line Integrals.
 Understand the concept of independence of path.
 Understand the concept of conservation of energy.

Fundamental Theorem of Line Integrals
The discussion at the beginning of Section 15.2 pointed out that in a gravitational 
field, the work done by gravity on an object moving between two points in the field is 
independent of the path taken by the object. In this section, you will study an important 
generalization of this result—it is called the Fundamental Theorem of Line Integrals. 
To begin, an example is presented in which the line integral of a conservative  vector field 
is evaluated over three different paths.

 Line Integral of a Conservative Vector Field

Find the work done by the force field

F(x, y) =
1
2

xyi +
1
4

x2j

on a particle that moves from (0, 0) to (1, 1) along each path, as shown in Figure 15.19.

a. C1: y = x   b. C2: x = y2   c. C3: y = x3

Solution Note that F is conservative because the first partial derivatives are equal.

∂
∂y[

1
2

xy] =
1
2

x and 
∂
∂x[

1
4

x2] =
1
2

x

a. Let r(t) = ti + tj for 0 ≤ t ≤ 1, so that

dr = (i + j) dt and F(x, y) =
1
2

t2i +
1
4

t2j.

 Then the work done is

W = ∫
C1

 F ∙ dr = ∫1

0
 
3
4

t2 dt =
1
4

t3]
1

0
=

1
4

.

b. Let r(t) = ti + √tj for 0 ≤ t ≤ 1, so that

dr = (i +
1

2√t
j) dt and F(x, y) =

1
2

t3�2i +
1
4

t2j.

 Then the work done is

W = ∫
C2

 F ∙ dr = ∫1

0
 
5
8

t3�2 dt =
1
4

t5�2]
1

0
=

1
4

.

c. Let r(t) = 1
2ti + 1

8t3j for 0 ≤ t ≤ 2, so that

dr = (1
2

i +
3
8

t2j) dt and F(x, y) =
1
32

t4i +
1
16

t2j.

 Then the work done is

W = ∫
C3

 F ∙ dr = ∫2

0
 

5
128

t4 dt =
1

128
t5]

2

0
=

1
4

.

So, the work done by the conservative vector field F is the same for each path. 

x
1

1 (1, 1)

(0, 0)

C1

y

C1: y = x

(a)

x
1

1 (1, 1)

(0, 0)

C2

y

C2: x = y2

(b)

x
1

1 (1, 1)

(0, 0)

C3

y

C3: y = x3

(c)

Figure 15.19
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1070 Chapter 15 Vector Analysis

In Example 1, note that the vector field F(x, y) = 1
2xyi + 1

4x2j is conservative
because F(x, y) = ∇f(x, y), where f(x, y) = 1

4x2y. In such cases, the next theorem states 
that the value of ∫C F ∙ dr is given by

∫
C

 F ∙ dr = f(x(1), y(1)) − f(x(0), y(0))

 =
1
4

− 0

 =
1
4

.

THEOREM 15.5 Fundamental Theorem of Line Integrals

Let C be a piecewise smooth curve lying in an open region R and given by

r(t) = x(t)i + y(t)j, a ≤ t ≤ b.

If F(x, y) = Mi + Nj is conservative in R, and M and N are continuous in R, 
then

∫
C

 F ∙ dr = ∫
C

 ∇f ∙ dr = f(x(b), y(b)) − f(x(a), y(a))

where f  is a potential function of F. That is, F(x, y) = ∇f(x, y).

Proof A proof is provided only for a smooth curve. For piecewise smooth curves, the 
procedure is carried out separately on each smooth portion. Because

F(x, y) = ∇f(x, y) = fx(x, y)i + fy(x, y)j

it follows that

 ∫
C

 F ∙ dr = ∫b

a

 F ∙ dr
dt

 dt

 = ∫b

a
 [fx(x, y) dx

dt
+ fy(x, y) dy

dt] dt

and, by the Chain Rule (see Theorem 13.6 in Section 13.5), you have

 ∫
C

 F ∙ dr = ∫b

a

 
d
dt

[ f(x(t), y(t))] dt

 = f(x(b), y(b)) − f(x(a), y(a)).

The last step is an application of the Fundamental Theorem of Calculus. 

In space, the Fundamental Theorem of Line Integrals takes the following form. Let 
C be a piecewise smooth curve lying in an open region Q and given by

r(t) = x(t)i + y(t)j + z(t)k, a ≤ t ≤ b.

If F(x, y, z) = Mi + Nj + Pk is conservative and M, N, and P are continuous, then

∫
C

 F ∙ dr = ∫
C

 ∇f ∙ dr = f(x(b), y(b), z(b)) − f(x(a), y(a), z(a))

where F(x, y, z) = ∇f(x, y, z).
The Fundamental Theorem of Line Integrals states that if the vector field F is 

conservative, then the line integral between any two points is simply the difference in 
the values of the potential function f  at these points.

REMARK Notice how 
the Fundamental Theorem 
of Line Integrals is similar to 
the Fundamental Theorem of 
Calculus (see Section 5.4), 
which states that

∫b

a

 f(x) dx = F(b) − F(a)

where F′(x) = f(x).
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 Using the Fundamental Theorem of Line Integrals

Evaluate ∫
C

 F ∙ dr, where C is a piecewise smooth curve from (−1, 4) to (1, 2) and

F(x, y) = 2xyi + (x2 − y)j

as shown in Figure 15.20.

Solution From Example 6 in Section 15.1, you know that F is the gradient of f,  
where

f(x, y) = x2y −
y2

2
+ K.

Consequently, F is conservative, and by the Fundamental Theorem of Line Integrals, 
it follows that

 ∫
C

 F ∙ dr = f(1, 2) − f(−1, 4)

 = [12(2) −
22

2 ] − [(−1)2(4) −
42

2 ]
 = 4.

Note that it is unnecessary to include a constant K as part of f, because it is canceled 
by subtraction.

 Using the Fundamental Theorem of Line Integrals

Evaluate ∫
C

 F ∙ dr, where C is a piecewise smooth curve from (1, 1, 0) to (0, 2, 3) and

F(x, y, z) = 2xyi + (x2 + z2)j + 2yzk

as shown in Figure 15.21.

Solution From Example 8 in Section 15.1, you know that F is the gradient of f,  
where

f(x, y, z) = x2y + yz2 + K.

Consequently, F is conservative, and by the Fundamental Theorem of Line Integrals, 
it follows that

 ∫
C

 F ∙ dr = f(0, 2, 3) − f(1, 1, 0)

 = [(0)2(2) + (2)(3)2] − [(1)2(1) + (1)(0)2]
 = 17.  

In Examples 2 and 3, be sure you see that the value of the line integral is the same 
for any smooth curve C that has the given initial and terminal points. For instance, in 
Example 3, try evaluating the line integral for the curve given by

r(t) = (1 − t)i + (1 + t)j + 3tk.

You should obtain

 ∫
C

 F ∙ dr = ∫1

0
(30t2 + 16t − 1) dt

 = 17.

x

1

1

2

2

3

4

−1−2

(1, 2)

(−1, 4)

C

y
F(x, y) = 2xyi + (x2 − y)j

Figure 15.20

C

(1, 1, 0)

(0, 2, 3)

x y

2
2

1

1

2

3

z

F(x, y, z) = 2xyi + (x2 + z2)j + 2yzk

Figure 15.21
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1072 Chapter 15 Vector Analysis

Independence of Path
From the Fundamental Theorem of Line Integrals, it is clear that if F is continuous 
and conservative in an open region R, then the value of ∫C F ∙ dr is the same for every 
piecewise smooth curve C from one fixed point in R to another fixed point in R. This 
result is described by saying that the line integral ∫C F ∙ dr is independent of path in 
the region R.

A region in the plane (or in space) is connected when any two points in the region 
can be joined by a piecewise smooth curve lying entirely within the region, as shown 
in Figure 15.22. In open regions that are connected, the path independence of ∫C F ∙ dr 
is equivalent to the condition that F is conservative.

THEOREM 15.6  Independence of Path and Conservative 
Vector Fields

If F is continuous on an open connected region, then the line integral

∫
C

 F ∙ dr

is independent of path if and only if F is conservative.

Proof If F is conservative, then, by the Fundamental Theorem of Line Integrals, the 
line integral is independent of path. Now establish the converse for a plane region R. 
Let F(x, y) = Mi + Nj, and let (x0, y0) be a fixed point in R. For any point (x, y) in 
R, choose a piecewise smooth curve C running from (x0, y0) to (x, y), and define f  by

 f(x, y) = ∫
C

 F ∙ dr

 = ∫
C

 M dx + N dy.

The existence of C in R is guaranteed by the fact that R is connected. You can show that 
f  is a potential function of F by considering two different paths between (x0, y0) and 
(x, y). For the first path, choose (x1, y) in R such that x ≠ x1. This is possible because 
R is open. Then choose C1 and C2, as shown in Figure 15.23. Using the independence 
of path, it follows that

 f(x, y) = ∫
C

 M dx + N dy

 = ∫
C1

 M dx + N dy + ∫
C2

 M dx + N dy.

Because the first integral does not depend on x and because dy = 0 in the second 
 integral, you have

f(x, y) = g(y) + ∫
C2

 M dx

and it follows that the partial derivative of f  with respect to x is fx(x, y) = M. For the 
second path, choose a point (x, y1). Using reasoning similar to that used for the first 
path, you can conclude that fy(x, y) = N. Therefore,

 ∇f(x, y) = fx(x, y)i + fy(x, y)j
 = Mi + Nj

 = F(x, y)

and it follows that F is conservative. 

R1 is connected.

R1

R2 is not
connected.

R2

C
A

B

Figure 15.22

C2

C3

C4C1

(x0, y0)

(x1, y)

(x, y1)

(x, y)

Figure 15.23
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 15.3 Conservative Vector Fields and Independence of Path 1073

 Finding Work in a Conservative Force Field

For the force field given by

F(x, y, z) = ex cos yi − ex sin yj + 2k

show that ∫C F ∙ dr is independent of path, and calculate the work done by F on an 
object moving along a curve C from (0, π�2, 1) to (1, π, 3).

Solution Writing the force field in the form F(x, y, z) = Mi + Nj + Pk, you have 
M = ex cos y, N = −ex sin y, and P = 2, and it follows that

∂P
∂y

= 0 =
∂N
∂z

∂P
∂x

= 0 =
∂M
∂z

and

∂N
∂x

= −ex sin y =
∂M
∂y

.

So, F is conservative. If f  is a potential function of F, then

fx(x, y, z) = ex cos y

fy(x, y, z) = −ex sin y

and

fz(x, y, z) = 2.

By integrating with respect to x, y, and z separately, you obtain

f(x, y, z) = ∫ fx(x, y, z) dx = ∫ ex cos y dx = ex cos y + g(y, z)

f(x, y, z) = ∫ fy(x, y, z) dy = ∫ −ex sin y dy = ex cos y + h(x, z)

and

f(x, y, z) = ∫ fz(x, y, z) dz = ∫ 2 dz = 2z + k(x, y).

By comparing these three versions of f(x, y, z), you can conclude that

f(x, y, z) = ex cos y + 2z + K.

Therefore, the work done by F along any curve C from (0, π�2, 1) to (1, π, 3) is

 W = ∫
C

 F ∙ dr

 = f (1, π, 3) − f (0, 
π
2

, 1)
 = (−e + 6) − (0 + 2)
 = 4 − e.  

For the object in Example 4, how much work is done when the object moves on a 
curve from (0, π�2, 1) to (1, π, 3) and then back to the starting point (0, π�2, 1)? The 
Fundamental Theorem of Line Integrals states that there is zero work done. Remember 
that, by definition, work can be negative. So, by the time the object gets back to its starting 
point, the amount of work that registers positively is canceled out by the amount of 
work that registers negatively.
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1074 Chapter 15 Vector Analysis

A curve C given by r(t) for a ≤ t ≤ b is closed when r(a) = r(b). By the 
Fundamental Theorem of Line Integrals, you can conclude that if F is continuous and 
conservative on an open region R, then the line integral over every closed curve C is 0.

THEOREM 15.7 Equivalent Conditions

Let F(x, y, z) = Mi + Nj + Pk have continuous first partial derivatives in 
an open connected region R, and let C be a piecewise smooth curve in R. The 
conditions listed below are equivalent.

1. F is conservative. That is, F = ∇f  for some function f.

2. ∫
C

 F ∙ dr is independent of path.

3. ∫
C

 F ∙ dr = 0 for every closed curve C in R.

 Evaluating a Line Integral

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate ∫
C1

F ∙ dr, where

F(x, y) = (y3 + 1)i + (3xy2 + 1)j

and C1 is the semicircular path from (0, 0) to (2, 0), as shown in Figure 15.24.

Solution You have the following three options.

a.  You can use the method presented in Section 15.2 to evaluate the line integral along the 
given curve. To do this, you can use the parametrization r(t) = (1 − cos t)i + sin tj,
where 0 ≤ t ≤ π. For this parametrization, it follows that

dr = r′(t) dt = (sin ti + cos tj) dt

 and

∫
C1

 F ∙ dr = ∫π

0
 (sin t + sin4 t + cos t + 3 sin2 t cos t − 3 sin2 t cos2 t) dt.

 This integral should dampen your enthusiasm for this option.

b.  You can try to find a potential function and evaluate the line integral by the 
Fundamental Theorem of Line Integrals. Using the technique demonstrated in 
Example 4, you can find the potential function to be f(x, y) = xy3 + x + y + K, 
and, by the Fundamental Theorem,

W = ∫
C1

 F ∙ dr = f(2, 0) − f(0, 0) = 2.

c.  Knowing that F is conservative, you have a third option. Because the value of the 
line integral is independent of path, you can replace the semicircular path with a 
simpler path. Choose the straight-line path C2 from (0, 0) to (2, 0). Let r(t) = ti for 
0 ≤ t ≤ 2, so that

dr = i dt and F(x, y) = i + j.

 Then the integral is

∫
C1

 F ∙ dr = ∫
C2

 F ∙ dr = ∫2

0
 1 dt = t]

2

0
= 2.

Of the three options, the third one is obviously the easiest. 

C2: r(t) = ti

x
1

1

2(0, 0)

(2, 0)

C1

C2

y

C1: r(t) = (1 − cos t)i + sin tj

Figure 15.24

REMARK Theorem 15.7 
gives you options for evaluating 
a line integral involving a 
conservative vector field. You 
can use a potential function, 
or it might be more convenient 
to choose a particularly simple 
path, such as a straight line.
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Conservation of Energy
In 1840, the English physicist Michael Faraday wrote, “Nowhere is there a pure 
 creation or production of power without a corresponding exhaustion of something to 
supply it.” This statement represents the first formulation of one of the most important 
laws of physics—the Law of Conservation of Energy. In modern terminology, the law 
is stated as follows: In a conservative force field, the sum of the potential and kinetic 
energies of an object remains constant from point to point.

You can use the Fundamental Theorem of Line Integrals to derive this law. From 
physics, the kinetic energy of a particle of mass m and speed v is

k =
1
2

mv2. Kinetic energy

The potential energy p of a particle at point (x, y, z) in a conservative vector field F
is defined as p(x, y, z) = −f(x, y, z), where f  is the potential function for F. 
Consequently, the work done by F along a smooth curve C from A to B is

W = ∫
C

 F ∙ dr = f(x, y, z)]
B

A
= −p(x, y, z)]

B

A
= p(A) − p(B)

as shown in Figure 15.25. In other words, work W is equal to the difference in the potential 
energies of A and B. Now, suppose that r(t) is the position vector for a particle moving 
along C from A = r(a) to B = r(b). At any time t, the particle’s velocity, acceleration, 
and speed are v(t) = r′(t), a(t) = r″(t), and v(t) = �v(t)�, respectively. So, by Newton’s 
Second Law of Motion, F = ma(t) = m(v′(t)), and the work done by F is

W = ∫
C

 F ∙ dr

 = ∫b

a

 F ∙ r′(t) dt

 = ∫b

a

 F ∙ v(t) dt

 = ∫b

a

 [mv′(t)] ∙ v(t) dt

 = ∫b

a

 m[v′(t) ∙ v(t)] dt

 =
m
2

 ∫b

a
 
d
dt

[v(t) ∙ v(t)] dt

 =
m
2

 ∫b

a

 
d
dt

[�v(t)�2] dt

 =
m
2 [�v(t)�2]

b

a

 =
m
2 [[v(t)]2]

b

a

 =
1
2

m[v(b)]2 −
1
2

m[v(a)]2

 = k(B) − k(A).

Equating these two results for W  produces

p(A) − p(B) = k(B) − k(A)
p(A) + k(A) = p(B) + k(B)

which implies that the sum of the potential and kinetic energies remains constant from 
point to point.

x

C

A

B

F

y

The work done by F along C is

W = ∫
C

 F ∙ dr = p(A) − p(B).

Figure 15.25

MICHAEL FARADAY (1791–1867)

Several philosophers of science 
have considered Faraday’s Law 
of Conservation of Energy to be 
the greatest generalization ever 
conceived by humankind. Many 
physicists have contributed to 
our knowledge of this law. 
Two early and influential ones 
were James Prescott Joule 
(1818 –1889) and Hermann 
Ludwig Helmholtz (1821–1894).

The Granger Collection, NYC — All rights reserved. 
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1076 Chapter 15 Vector Analysis

15.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Fundamental Theorem of Line Integrals  

Explain how to evaluate a line integral using the 
Fundamental Theorem of Line Integrals.

2.  Independence of Path What does it mean for a line 
integral to be independent of path? State the method for 
determining whether a line integral is independent of path.

 Line Integral of a Conservative Vector 
Field In Exercises 3–8, (a) show that F is 
conservative and (b) verify that the value of

 ∫
C
 F ∙ dr

  is the same for each parametric representation of C.

 3. F(x, y) = x2i + yj

  (i) C1: r1(t) = ti + t2j, 0 ≤ t ≤ 1

 (ii) C2: r2(θ) = sin θi + sin2 θj, 0 ≤ θ ≤ π�2

 4. F(x, y) = (x2 − y2)i − 2xyj

  (i) C1: r1(t) = ti + √t j, 0 ≤ t ≤ 4

 (ii) C2: r2(w) = w2i + wj, 0 ≤ w ≤ 2

 5. F(x, y) = 3yi + 3xj

  (i) C1: r1(θ) = sec θi + tan θj, 0 ≤ θ ≤ π�3

 (ii) C2: r2(t) = √t + 1i + √t j, 0 ≤ t ≤ 3

 6. F(x, y) = yi + xj

  (i) C1: r1(t) = (2 + t)i + (3 − t)j, 0 ≤ t ≤ 1

 (ii) C2: r2(w) = (2 + ln w)i + (3 − ln w)j, 1 ≤ w ≤ e

 7. F(x, y, z) = y2zi + 2xyzj + xy2k

  (i) C1: r1(t) = ti + 2tj + 4tk, 0 ≤ t ≤ 1

 (ii) C2: r2(θ) = sin θ i + 2 sin θj + 4 sin θk, 0 ≤ θ ≤ π�2

 8. F(x, y, z) = 2yzi + 2xzj + 2xyk

  (i) C1: r1(t) = ti − 4tj + t2k, 0 ≤ t ≤ 3

 (ii) C2: r2(s) = s2i − 4
3s4j + s4k, 0 ≤ s ≤ √3

 Using the Fundamental Theorem of Line 
Integrals In Exercises 9–18, evaluate

 ∫
C
 F ∙ dr

  using the Fundamental Theorem of Line Integrals. 
Use a computer algebra system to verify your 
results.

 9. F(x, y) = 3yi + 3xj

 C: smooth curve from (0, 0) to (3, 8)

10. F(x, y) = 2(x + y)i + 2(x + y)j
 C: smooth curve from (−1, 1) to (3, 2)
11. F(x, y) = cos x sin yi + sin x cos yj

 C: line segment from (0, −π) to (3π
2

, 
π
2)

12. F(x, y) =
y

x2 + y2 i −
x

x2 + y2 j

 C: line segment from (1, 1) to (2√3, 2)
13. F(x, y) = ex sin yi + ex cos yj

 C: cycloid x = θ − sin θ, y = 1 − cos θ from (0, 0) to (2π, 0)

14. F(x, y) =
2x

(x2 + y2)2i +
2y

(x2 + y2)2j

  C:  clockwise around the circle (x − 4)2 + (y − 5)2 = 9 from 
(7, 5) to (1, 5)

15. F(x, y, z) = (z + 2y)i + (2x − z)j + (x − y)k
 (a) C1: line segment from (0, 0, 0) to (1, 1, 1)
 (b) C2:  line segments from (0, 0, 0) to (0, 0, 1) and (0, 0, 1) to 

(1, 1, 1)
 (c)  C3:  line segments from (0, 0, 0) to (1, 0, 0), from (1, 0, 0)

to (1, 1, 0), and from (1, 1, 0) to (1, 1, 1)
16. Repeat Exercise 15 using

 F(x, y, z) = zyi + xzj + xyk.

17. F(x, y, z) = −sin xi + zj + yk

 C: smooth curve from (0, 0, 0) to (π2, 3, 4)
18. F(x, y, z) = 6xi − 4zj − (4y − 20z)k
 C: smooth curve from (0, 0, 0) to (3, 4, 0)

 Finding Work in a Conservative Force 
Field In Exercises 19–22, (a) show that ∫C F ∙ dr 
is independent of path and (b) calculate the work 
done by the force field F on an object moving along 
a curve from P to Q.

19. F(x, y) = 9x2y2i + (6x3y − 1)j
 P(0, 0), Q(5, 9)

20. F(x, y) =
2x
y

i −
x2

y2j

 P(−1, 1), Q(3, 2)

21. F(x, y, z) = 3i + 4yj − sin zk

 P(0, 1, 
π
2), Q(1, 4, π)

22. F(x, y, z) = 8x3i + z2 cos 2yj + z sin 2yk

 P(0, 
π
4

, 1), Q(−2, 0, −1)
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15.3 Conservative Vector Fields and Independence of Path 1077

 Evaluating a Line Integral In Exercises 
23–32, evaluate

 ∫
C
 F ∙ dr

  along each path. (Hint: If F is conservative, the 
integration may be easier on an alternative path.)

23. F(x, y) = 2xyi + x2j

 (a) C1: r1(t) = ti + t2j, 0 ≤ t ≤ 1

 (b) C2: r2(t) = ti + t3j, 0 ≤ t ≤ 1

24. F(x, y) = yexyi + xexyj

 (a) C1: r1(t) = ti − (t − 3)j, 0 ≤ t ≤ 3

 (b) C2:  The closed path consisting of line segments from 
(0, 3) to (0, 0), from (0, 0) to (3, 0), and then from 
(3, 0) to (0, 3)

25. ∫
C

 y2 dx + 2xy dy

 (a) 

x
1

1

2

2

3

3

4

4

(0, 0)

(3, 4)

(4, 4)

C1

y  (b) 

x
1−1

−1

(−1, 0) (1, 0)

C2

y =     1 − x2
y

 (c) 

1 2

1

(−1, −1) (1, −1)

(−1, 2) (2, 2)C3

y

x

 (d) 
y =     1 − x2

x
1−1

−1

(−1, 0) (1, 0)

C4

y

26. ∫
C

 (2x − 3y + 1) dx − (3x + y − 5) dy

 (a) 

x
1

1

2

2

3

3

4

4

(0, 0)

(2, 3)

(4, 1)
C1

y  (b) 
x =     1 − y2

x
−1

1

−1
(0, −1)

(0, 1)

C2

y

 (c) 

x

2

4

6

8

1 2

(2, e2)

(0, 1)

C3

y = ex

y  (d) 
x =     1 − y2

x
−1

1

−1
(0, −1)

(0, 1)

C4

y

27. F(x, y, z) = yzi + xzj + xyk

 (a) C1: r1(t) = ti + 2j + tk, 0 ≤ t ≤ 4

 (b) C2: r2(t) = t2i + tj + t2k, 0 ≤ t ≤ 2

28. F(x, y, z) = i + zj + yk

 (a) C1: r1(t) = cos ti + sin tj + t2k, 0 ≤ t ≤ π

 (b) C2: r2(t) = (1 − 2t)i + π2tk, 0 ≤ t ≤ 1

29. F(x, y, z) = (2y + x)i + (x2 − z)j + (2y − 4z)k
 (a) C1: r1(t) = ti + t2j + k, 0 ≤ t ≤ 1

 (b) C2: r2(t) = ti + tj + (2t − 1)2k, 0 ≤ t ≤ 1

30. F(x, y, z) = −yi + xj + 3xz2k

 (a) C1: r1(t) = cos ti + sin tj + tk, 0 ≤ t ≤ π

 (b) C2: r2(t) = (1 − 2t)i + πtk, 0 ≤ t ≤ 1

31. F(x, y, z) = ez(yi + xj + xyk)
 (a) C1: r1(t) = 4 cos ti + 4 sin tj + 3k, 0 ≤ t ≤ π

 (b) C2: r2(t) = (4 − 8t)i + 3k, 0 ≤ t ≤ 1

32. F(x, y, z) = y sin zi + x sin zj + xy cos xk

 (a) C1: r1(t) = t2i + t2j, 0 ≤ t ≤ 2

 (b) C2: r2(t) = 4ti + 4tj, 0 ≤ t ≤ 1

33.  Work A stone weighing 1 pound is attached to the end of a
two-foot string and is whirled horizontally with one end held 
fixed. It makes 1 revolution per second. Find the work done 
by the force F that keeps the stone moving in a circular path. 
[Hint: Use Force = (mass)(centripetal acceleration).]

34.  Work A grappling hook weighing 1 kilogram is attached 
to the end of a five-meter rope and is whirled horizontally 
with one end held fixed. It makes 0.5 revolution per 
second. Find the work done by the force F that keeps 
the grappling hook moving in a circular path. [Hint: Use
Force = (mass)(centripetal acceleration).]

36.  Work Can you find a path for the zip line in Exercise 35 
such that the work done by the gravitational force field would 
differ from the amounts of work done for the two paths given? 
Explain why or why not.

 A zip line is installed 
50 meters above ground 
level. It runs to a point 
on the ground 50 meters 
away from the base of 
the installation. Show 
that the work done by 
the gravitational force 
field for a 175-pound 
person moving the length 
of the zip line is the same 
for each path.

(a) C1: r1(t) = ti + (50 − t)j

(b) C2: r2(t) = ti + 1
50(50 − t)2j

35. Work

Caroline Warren/Photodisc/Getty Images
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eXpLoRInG ConCeptS
37. Think About It Consider

F(x, y) =
y

x2 + y2 i −
x

x2 + y2j.

  Sketch an open connected region around the smooth 
curve C shown in the figure such that you can use 
Theorem 15.7 to evaluate ∫C F ∙ dr. Explain how you 
created your sketch.

y

x

C

38.  Work Let F(x, y, z) = a1i + a2j + a3k be a constant 
force vector field. Show that the work done in moving 
a particle along any path from P to Q is W = F ∙ PQ

\

.

39.  Using Different Methods Use two different 
methods to evaluate ∫C F ∙ dr along the path

r(t) =
1
t

i + 3tj, 0.5 ≤ t ≤ 2

 where F(x, y) = (x2y2 − 3x)i +
2
3

x3yj.

 40.  HOW DO YOU SEE IT? Consider the force 
field shown in the figure. To print an enlarged 
copy of the graph, go to MathGraphs.com.

x

−5

−5

y

(a)  Give a verbal argument that the force field is not 
conservative because you can identify two paths 
that require different amounts of work to move 
an object from (−4, 0) to (3, 4). Of the two paths, 
which requires the greater amount of work? 

(b)  Give a verbal argument that the force field is not 
conservative because you can find a closed curve C
such that ∫C F ∙ dr ≠ 0.

 40.  

Graphical Reasoning In Exercises 41 and 42, consider the 
force field shown in the figure. Is the force field conservative? 
Explain why or why not.

41. 

x

y  42. 

x

y

True or False? In Exercises 43–46, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

43.  If C1, C2, and C3 have the same initial and terminal points and 
∫C1 

F ∙ dr1 = ∫C2
 F ∙ dr2, then ∫C1 

F ∙ dr1 = ∫C3
 F ∙ dr3.

44.  If F = yi + xj and C is given by r(t) = 4 sin ti + 3 cos tj for 
0 ≤ t ≤ π, then

∫
C

F ∙ dr = 0.

45.  If F is conservative in a region R bounded by a simple closed 
path and C lies within R, then ∫C F ∙ dr is independent of path.

46. If F = Mi + Nj and 
∂M
∂x

=
∂N
∂y

, then F is conservative.

47. Harmonic Function A function f  is called harmonic when

∂2f
∂x2 +

∂2f
∂y2 = 0.

 Prove that if f  is harmonic, then

∫
C
(∂f

∂y
 dx −

∂f
∂x

 dy) = 0

 where C is a smooth closed curve in the plane.

48.  Kinetic and Potential Energy The kinetic energy of an 
object moving through a conservative force field is decreasing 
at a rate of 15 units per minute. At what rate is the potential 
energy changing? Explain.

49. Investigation Let F(x, y) =
y

x2 + y2i −
x

x2 + y2 j.

 (a) Show that 
∂N
∂x

=
∂M
∂y

.

 (b) Let r(t) = cos ti + sin tj for 0 ≤ t ≤ π. Find ∫
C

 F ∙ dr.

 (c) Let r(t) = cos ti − sin tj for 0 ≤ t ≤ π. Find ∫
C

 F ∙ dr.

 (d) Let r(t) = cos ti + sin tj for 0 ≤ t ≤ 2π. Find ∫
C

 F ∙ dr.

 (e)  Do the results of parts (b)–(d) contradict Theorem 15.7? 
Why or why not?

 (f ) Show that ∇(arctan 
x
y) = F.
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15.4 Green’s Theorem 1079

15.4 Green’s Theorem

 Use Green’s Theorem to evaluate a line integral.
 Use alternative forms of Green’s Theorem.

Green’s Theorem
In this section, you will study Green’s Theorem, named after the English mathematician 
George Green (1793–1841). This theorem states that the value of a double integral over 
a simply connected plane region R is determined by the value of a line integral around 
the boundary of R.

A curve C given by r(t) = x(t)i + y(t)j, where a ≤ t ≤ b, is simple when it 
does not cross itself—that is, r(c) ≠ r(d) for all c and d in the open interval (a, b). A 
connected plane region R is simply connected when every simple closed curve in R
encloses only points that are in R (see Figure 15.26). Informally, a simply connected 
region cannot consist of separate parts or holes.

THEOREM 15.8 Green’s Theorem

Let R be a simply connected region with a piecewise smooth boundary C, 
oriented counterclockwise (that is, C is traversed once so that the region R 
always lies to the left). If M and N have continuous first partial derivatives in 
an open region containing R, then

∫
C

 M dx + N dy = ∫
R
∫(∂N

∂x
−

∂M
∂y ) dA.

Proof A proof is given only for a region that is both vertically simple and horizontally 
simple, as shown in Figure 15.27.

 ∫
C

 M dx = ∫
C1

 M dx + ∫
C2

 M dx

 = ∫b

a

 M(x, f1(x)) dx + ∫a

b

 M(x, f2(x)) dx

 = ∫b

a

 [M(x, f1(x)) − M(x, f2(x))] dx

On the other hand,

 ∫
R
∫ 

∂M
∂y

 dA = ∫b

a
∫f2(x)

f1(x)
 
∂M
∂y

 dy dx

 = ∫b

a

 M(x, y)]
f2(x)

f1(x)
 dx

 = ∫b

a

 [M(x, f2(x)) − M(x, f1(x))] dx.

Consequently,

∫
C

 M dx = −∫
R
∫ 

∂M
∂y

 dA.

Similarly, you can use g1(y) and g2(y) to show that ∫C N dy = ∫R∫ (∂N�∂x) dA. By 
adding the integrals ∫C M dx and ∫C N dy, you obtain the conclusion stated in the 
theorem. 

r(a) = r(b)

R1

R2

R3

Simply connected

Not simply connected

Figure 15.26

x
C = C1 + C2

C2:
y = f2(x)

R

a b

y

C1: y = f1(x)

R is vertically simple.

x
C ′ = C1′ + C2′

C2′: x = g2(y)

R

d

c

y C1′:
x = g1(y)

R is horizontally simple.
Figure 15.27
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1080 Chapter 15 Vector Analysis

An integral sign with a circle is sometimes used to indicate a line integral around 
a simple closed curve, as shown below. To indicate the orientation of the boundary, 
an arrow can be used. For instance, in the second integral, the arrow indicates that the 
boundary C is oriented counterclockwise.

1. 
C

 M dx + N dy   2. 
C

 M dx + N dy

 Using Green’s Theorem

Use Green’s Theorem to evaluate the line integral

∫
C

 y3 dx + (x3 + 3xy2) dy

where C is the path from (0, 0) to (1, 1) along the graph of y = x3 and from (1, 1) to 
(0, 0) along the graph of y = x, as shown in Figure 15.28.

Solution Because M = y3 and N = x3 + 3xy2, it follows that

∂N
∂x

= 3x2 + 3y2 and 
∂M
∂y

= 3y2.

Applying Green’s Theorem, you then have

 ∫
C

 y3 dx + (x3 + 3xy2) dy = ∫
R
∫(∂N

∂x
−

∂M
∂y ) dA

 = ∫1

0
∫x

x3

 [(3x2 + 3y2) − 3y2] dy dx

 = ∫1

0
∫x

x3

 3x2 dy dx

 = ∫1

0
 3x2y]

x

x3
 dx

 = ∫1

0
 (3x3 − 3x5) dx

 = [3x4

4
−

x6

2 ]
1

0

 =
1
4

. 

Green’s Theorem cannot be applied to every line integral. Among other restrictions 
stated in Theorem 15.8, the curve C must be simple and closed. When Green’s Theorem 
does apply, however, it can save time. To see this, try using the techniques described 
in Section 15.2 to evaluate the line integral in Example 1. To do this, you would need 
to write the line integral as

∫
C

 y3 dx + (x3 + 3xy2) dy

 = ∫
C1

 y3 dx + (x3 + 3xy2) dy + ∫
C2

 y3 dx + (x3 + 3xy2) dy

where C1 is the cubic path given by

r(t) = ti + t3j

from t = 0 to t = 1, and C2 is the line segment given by

r(t) = (1 − t)i + (1 − t)j

from t = 0 to t = 1.

y = x

x
1

1

C = C1 + C2

C1

C2

(1, 1)

(0, 0)

y = x3

y

C is simple and closed, and the region 
R always lies to the left of C.
Figure 15.28

GEORGE GREEN
(1793–1841)

Green, a self-educated 
miller’s son, first published 
the theorem that bears his 
name in 1828 in an essay on 
electricity and magnetism. At 
that time, there was almost 
no mathematical theory to 
explain electrical phenomena. 
“Considering how desirable it 
was that a power of universal 
agency, like electricity, should, 
as far as possible, be submitted 
to calculation, .  .  . I was 
induced to try whether it 
would be possible to discover 
any general relations existing 
between this function and the 
quantities of electricity in the 
bodies producing it.”

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 15.4 Green’s Theorem 1081

 Using Green’s Theorem to Calculate Work

While subject to the force

F(x, y) = y3i + (x3 + 3xy2)j

a particle travels once around the circle of radius 3 shown in Figure 15.29. Use Green’s 
Theorem to find the work done by F.

Solution From Example 1, you know by Green’s Theorem that

∫
C

 y3 dx + (x3 + 3xy2) dy = ∫
R
∫ 3x2 dA.

In polar coordinates, using x = r cos θ and dA = r dr dθ, the work done is

 W = ∫
R
∫ 3x2 dA

 = ∫2π

0
∫3

0
 3(r cos θ)2r dr dθ

 = 3∫2π

0
∫3

0
 r3 cos2 θ dr dθ

 = 3∫2π

0
 
r4

4
 cos2 θ]

3

0
 dθ

 = 3∫2π

0
 
81
4

 cos2 θ dθ

 =
243
8

 ∫2π

0
 (1 + cos 2θ) dθ

 =
243
8 [θ +

sin 2θ
2 ]

2π

0

 =
243π

4
. 

When evaluating line integrals over closed curves, remember that for conservative 
vector fields (those for which ∂N�∂x = ∂M�∂y), the value of the line integral is 0. This 
is easily seen from the statement of Green’s Theorem:

∫
C

 M dx + N dy = ∫
R
∫ (∂N

∂x
−

∂M
∂y ) dA = 0.

 Green’s Theorem and Conservative Vector Fields

Evaluate the line integral

∫
C

 y3 dx + 3xy2 dy

where C is the path shown in Figure 15.30.

Solution From this line integral, M = y3 and N = 3xy2. So, ∂N�∂x = 3y2 and 
∂M�∂y = 3y2. This implies that the vector field F = Mi + Nj is conservative, and 
because C is closed, you can conclude that

∫
C

 y3 dx + 3xy2 dy = 0. 

x

C

y

C is closed.
Figure 15.30

x

r = 3

C

−2 −1 1 2

2

1

−1

−2

y

F(x, y) = y3i + (x3 + 3xy2)j

Figure 15.29
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 Using Green’s Theorem

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate

∫
C

 (arctan x + y2) dx + (ey − x2) dy

where C is the path enclosing the annular region shown in Figure 15.31.

Solution In polar coordinates, R is given by 1 ≤ r ≤ 3 for 0 ≤ θ ≤ π. Moreover,

∂N
∂x

−
∂M
∂y

= −2x − 2y = −2(r cos θ + r sin θ).

So, by Green’s Theorem,

 ∫
C

 (arctan x + y2) dx + (ey − x2) dy = ∫
R
∫−2(x + y) dA

 = ∫π

0
∫3

1
 −2r(cos θ + sin θ)r dr dθ

 = ∫π

0
 −2(cos θ + sin θ)r

3

3]
3

1
 dθ

 = ∫π

0
 −

52
3

(cos θ + sin θ) dθ

 = −
52
3 [sin θ − cos θ]

π

0

 = −
104
3

. 

In Examples 1, 2, and 4, Green’s Theorem was used to evaluate line integrals as 
double integrals. You can also use the theorem to evaluate double integrals as line 
integrals. One useful application occurs when ∂N�∂x − ∂M�∂y = 1.

∫
C

 M dx + N dy = ∫
R
∫ (∂N

∂x
−

∂M
∂y ) dA

 = ∫
R
∫ 1 dA ∂N

∂x
−

∂M
∂y

= 1

 = area of region R

Among the many choices for M and N satisfying the stated condition, the choice of

M = −
y
2

 and N =
x
2

produces the following line integral for the area of region R.

THEOREM 15.9 Line Integral for Area

If R is a plane region bounded by a piecewise smooth simple closed curve C, 
oriented counterclockwise, then the area of R is given by

A =
1
2∫C

 x dy − y dx.

x

C

(0, 3)

(3, 0)(1, 0)(−1, 0)(−3, 0)

R

y

C is piecewise smooth.
Figure 15.31
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 Finding Area by a Line Integral

Use a line integral to find the area of the ellipse (x2�a2) + (y2�b2) = 1.

Solution Using Figure 15.32, you can induce a counterclockwise orientation to the 
elliptical path by letting x = a cos t and y = b sin t, 0 ≤ t ≤ 2π. So, the area is

 A =
1
2∫C

 x dy − y dx =
1
2∫

2π

0
 [(a cos t)(b cos t) dt − (b sin t)(−a sin t) dt]

 =
ab
2 ∫

2π

0
 (cos2 t + sin2 t) dt

 =
ab
2 [t]

2π

0

 = πab.  

Green’s Theorem can be extended to cover some regions that are not simply 
 connected. This is demonstrated in the next example.

 Green’s Theorem Extended to a Region with a Hole

Let R be the region inside the ellipse (x2�9) + (y2�4) = 1 and outside the circle 
x2 + y2 = 1. Evaluate the line integral

∫
C

 2xy dx + (x2 + 2x) dy

where C = C1 + C2 is the boundary of R, as shown in Figure 15.33.

Solution To begin, introduce the line segments C3 and C4, as shown in Figure 15.33. 
Note that because the curves C3 and C4 have opposite orientations, the line integrals 
over them cancel. Furthermore, apply Green’s Theorem to the region R using the 
boundary C1 + C4 + C2 + C3 to obtain

 ∫
C

 2xy dx + (x2 + 2x) dy = ∫
R
∫ (∂N

∂x
−

∂M
∂y ) dA

 = ∫
R
∫ (2x + 2 − 2x) dA

 = 2∫
R
∫ dA

 = 2(area of R)
 = 2(πab − πr2)
 = 2[π(3)(2) − π(12)]
 = 10π. 

In Section 15.1, a necessary and sufficient condition for conservative vector fields 
was listed. There, only one direction of the proof was shown. You can now outline the 
other direction, using Green’s Theorem. Let F(x, y) = Mi + Nj be defined on an open 
disk R. You want to show that if M and N have continuous first partial derivatives and 
∂M�∂y = ∂N�∂x, then F is conservative. Let C be a closed path forming the boundary 
of a  connected region lying in R. Then, using the fact that ∂M�∂y = ∂N�∂x, apply  
Green’s Theorem to conclude that

∫
C

 F ∙ dr = ∫
C

 M dx + N dy = ∫
R
∫ (∂N

∂x
−

∂M
∂y ) dA = 0.

This, in turn, is equivalent to showing that F is conservative (see Theorem 15.7).

x

b
a

x2 y2

a2 b2 = 1+

R

y

Figure 15.32

x

C1: Ellipse
C2: Circle

C3: y = 0, 1 ≤ x ≤ 3
C4: y = 0, 1 ≤ x ≤ 3

C2

C3

C4

C1 R

3

2

−2

−3

y

Figure 15.33
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1084 Chapter 15 Vector Analysis

Alternative Forms of Green’s Theorem
This section concludes with the derivation of two vector forms of Green’s Theorem 
for regions in the plane. The extension of these vector forms to three dimensions is the 
basis for the discussion in the remaining sections of this chapter. For a vector field F 
in the plane, you can write

F(x, y, z) = Mi + Nj + 0k

so that the curl of F, as described in Section 15.1, is given by

curl F = ∇ × F = ∣ i
∂
∂x
M

j
∂
∂y
N

k
∂
∂z
0 ∣ = −

∂N
∂z

i +
∂M
∂z

j + (∂N
∂x

−
∂M
∂y )k.

Consequently,

(curl F) ∙ k = [−∂N
∂z

i +
∂M
∂z

j + (∂N
∂x

−
∂M
∂y )k] ∙ k =

∂N
∂x

−
∂M
∂y

.

With appropriate conditions on F, C, and R, you can write Green’s Theorem in the 
vector form

 ∫
C

 F ∙ dr = ∫
R
∫ (∂N

∂x
−

∂M
∂y ) dA

 = ∫
R
∫ (curl F) ∙ k dA. First alternative form

The extension of this vector form of Green’s Theorem to surfaces in space produces 
Stokes’s Theorem, discussed in Section 15.8.

For the second vector form of Green’s Theorem, assume the same conditions for F, 
C, and R. Using the arc length parameter s for C, you have r(s) = x(s)i + y(s)j. So, a 
unit tangent vector T to curve C is given by r′(s) = T = x′(s)i + y′(s)j. From Figure 15.34, 
you can see that the outward unit normal vector N can then be written as

N = y′(s)i − x′(s)j.

Consequently, for F(x, y) = Mi + Nj, you can apply Green’s Theorem to obtain

 ∫
C

 F ∙ N ds = ∫b

a

 (Mi + Nj) ∙ (y′(s)i − x′(s)j) ds

 = ∫b

a

 (M 
dy
ds

− N 
dx
ds) ds

 = ∫
C

 M dy − N dx

 = ∫
C

 −N dx + M dy

 = ∫
R
∫ (∂M

∂x
+

∂N
∂y ) dA Green’s Theorem

 = ∫
R
∫ div F dA.

Therefore,

∫
C

 F ∙ N ds = ∫
R
∫ div F dA. Second alternative form

The extension of this form to three dimensions is called the Divergence Theorem and 
will be discussed in Section 15.7. The physical interpretations of divergence and curl 
will be discussed in Sections 15.7 and 15.8.

θ
T

N = −n

n

C

T = cos θi + sin θj

 n = cos(θ +
π
2)i + sin(θ +

π
2)j

 = −sin θi + cos θj
N = sin θi − cos θj
Figure 15.34
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 15.4 Green’s Theorem 1085

15.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Writing What does it mean for a curve to be simple? 

What does it mean for a plane region to be simply connected?

2.  Green’s Theorem Explain the usefulness of Green’s 
Theorem.

3.  Integral Sign What information do you learn from the 

 integral sign 
C

?

4.  Area Describe how to find the area of a plane region 
bounded by a piecewise smooth simple closed curve that 
is oriented counterclockwise.

 Verifying Green’s Theorem In Exercises 
5–8, verify Green’s Theorem by evaluating both 
integrals

 ∫
C
 y2 dx + x2 dy = ∫

R
∫(N

x
−

M
y ) dA

 for the given path.

 5. C:  boundary of the region lying between the graphs of y = x 
and y = x2

 6. C:  boundary of the region lying between the graphs of y = x 
and y = √x

 7. C: square with vertices (0, 0), (1, 0), (1, 1), and (0, 1)
 8. C: rectangle with vertices (0, 0), (3, 0), (3, 4), and (0, 4)

Verifying Green’s Theorem In Exercises 9 and 10, verify 
Green’s Theorem by using a computer algebra system to evaluate

both integrals ∫
C
 xey dx + ex dy = ∫

R
∫(N

x
−

M
y ) dA for the 

given path.

 9. C: circle given by x2 + y2 = 4

10. C:  boundary of the region lying between the graphs of y = x 
and y = x3 in the first quadrant

 Evaluating a Line Integral Using 
Green’s Theorem In Exercises 11–14, use 
Green’s Theorem to evaluate the line integral 

 ∫
C
 ( y − x) dx + (2x − y) dy for the given path.

11. C:  boundary of the region lying between the graphs of y = x 
and y = x2 − 2x

12. C: x = 2 cos θ, y = sin θ

13. C:  boundary of the region lying inside the rectangle with 
vertices (5, 3), (−5, 3), (−5, −3), and (5, −3), and 
outside the square with vertices (1, 1), (−1, 1), (−1, −1), 
and (1, −1)

14. C:  boundary of the region lying inside the semicircle 
y = √25 − x2 and outside the semicircle y = √9 − x2

 Evaluating a Line Integral Using Green’s 
Theorem In Exercises 15–24, use Green’s 
Theorem to evaluate the line integral.

15. ∫
C

 2xy dx + (x + y) dy

 C:  boundary of the region lying between the graphs of y = 0 
and y = 1 − x2

16. ∫
C

 y2 dx + xy dy

 C:  boundary of the region lying between the graphs of y = 0, 
y = √x, and x = 9

17. ∫
C

 (x2 − y2) dx + 2xy dy

 C: x2 + y2 = 16

18. ∫
C

 (x2 − y2) dx + 2xy dy

 C: r = 1 + cos θ

19. ∫
C

 ex cos 2y dx − 2ex sin 2y dy

 C: x2 + y2 = a2

20. ∫
C

 2 arctan 
y
x
 dx + ln(x2 + y2) dy

 C: x = 4 + 2 cos θ, y = 4 + sin θ

21. ∫
C

 cos y dx + (xy − x sin y) dy

 C:  boundary of the region lying between the graphs of y = x 
and y = √x

22. ∫
C

 (e−x2�2 − y) dx + (e−y2�2 + x) dy

 C:  boundary of the region lying between the graphs of the 
circle x = 6 cos θ, y = 6 sin θ and the ellipse x = 3 cos θ,
y = 2 sin θ

23. ∫
C

 (x − 3y) dx + (x + y) dy

 C:  boundary of the region lying between the graphs of 
x2 + y2 = 1 and x2 + y2 = 9

24. ∫
C

 3x2ey dx + ey dy

 C:  boundary of the region lying between the squares with 
vertices (1, 1), (−1, 1), (−1, −1), and (1, −1), and (2, 2), 
(−2, 2), (−2, −2), and (2, −2)

 Work In Exercises 25–28, use Green’s Theorem 
to calculate the work done by the force F on a 
particle that is moving counterclockwise around 
the closed path C.

25. F(x, y) = xyi + (x + y)j
 C: x2 + y2 = 1
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1086 Chapter 15 Vector Analysis

26. F(x, y) = (ex − 3y)i + (ey + 6x)j
C: r = 2 cos θ

27. F(x, y) = (x3�2 − 3y)i + (6x + 5√y)j

C: triangle with vertices (0, 0), (5, 0), and (0, 5)
28. F(x, y) = (3x2 + y)i + 4xy2j

C:  boundary of the region lying between the graphs of 
y = √x, y = 0, and x = 9

 Area In Exercises 29–32, use a line integral to 
find the area of the region R.

29. R: region bounded by the graph of x2 + y2 = 4

30. R:  triangle bounded by the graphs of x = 0, 3x − 2y = 0, and 
x + 2y = 8

31. R:  region bounded by the graphs of y = 5x − 3 and 
y = x2 + 1

32. R:  region inside the loop of the folium of Descartes bounded 
by the graph of

  x =
3t

t3 + 1
, y =

3t2

t3 + 1

Using Green’s Theorem to Verify a Formula In 
Exercises 33 and 34, use Green’s Theorem to verify the line 
integral formula(s).

33.  The centroid of the region having area A bounded by the 
simple closed path C has coordinates

 x =
1

2A∫C

 x2 dy and y = −
1

2A
 ∫

C

 y2 dx.

34.  The area of a plane region bounded by the simple closed 
path C given in polar coordinates is

 A =
1
2∫C

 r
2 dθ.

Centroid In Exercises 35–38, use the results of Exercise 33 
to find the centroid of the region.

35. R: region bounded by the graphs of y = 0 and 4 − x2

36. R: region bounded by the graphs of y = √1 − x2 and y = 0

37. R:  region bounded by the graphs of y = x3 and y = x, 
0 ≤ x ≤ 1

38. R:  triangle with vertices (−a, 0), (a, 0), and (b, c), where 
−a ≤ b ≤ a

Area In Exercises 39–42, use the result of Exercise 34 to find 
the area of the region bounded by the graph of the polar equation.

39. r = 6(1 − cos θ)
40. r = a cos 3θ

41. r = 1 + 2 cos θ (inner loop)

42. r =
3

2 − cos θ

43. Maximum Value

(a)  Evaluate ∫
C1

 y3 dx + (27x − x3) dy, where C1 is the unit

  circle given by r(t) = cos ti + sin tj, for 0 ≤ t ≤ 2π.

 (b)  Find the maximum value of ∫
C
 y3 dx + (27x − x3) dy,

   where C is any circle centered at the origin in the xy-plane, 
oriented counterclockwise.

 44.  HOW DO YOU SEE IT? The figure shows 
a region R bounded by a piecewise smooth 
simple closed path C.

x

C

R

y

(a) Is R simply connected? Explain.

(b)  Explain why ∫
C
  f (x) dx + g(y) dy = 0, where f

 and g are differentiable functions.

 44.  

45.  Green’s Theorem: Region with a Hole Let R be the 
region inside the circle x = 5 cos θ, y = 5 sin θ and outside 
the ellipse x = 2 cos θ, y = sin θ. Evaluate the line integral

∫
C

(e−x2�2 − y) dx + (e−y2�2 + x) dy

  where C = C1 + C2 is the boundary of R, as shown in the 
figure.

C1: Circle
C2: Ellipse

C2

C1
R

y

−2 2 4
−2

−4

2

4

x

 

x

C1: Ellipse
C2: Circle

C2

C1

R

y

−1−3 1 3
−1

1

 Figure for 45 Figure for 46

46.  Green’s Theorem: Region with a Hole Let R be the 
region inside the ellipse x = 4 cos θ, y = 3 sin θ and outside 
the circle x = 2 cos θ, y = 2 sin θ. Evaluate the line integral

∫
C

(3x2y + 1) dx + (x3 + 4x) dy

  where C = C1 + C2 is the boundary of R, as shown in the 
figure.
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15.4 Green’s Theorem 1087

eXpLoRInG ConCeptS
47. Think About It Let

I = ∫
C

 
y dx − x dy

x2 + y2

  where C is a circle oriented counterclockwise.

 (a)  Show that I = 0 when C does not contain the origin. 

 (b) What is I when C does contain the origin?

48.  Think About It For each given path, verify Green’s 
Theorem by showing that

 ∫
C

 y2 dx + x2 dy = ∫
R
∫(∂N

∂x
−

∂M
∂y ) dA.

  For each path, which integral is easier to evaluate? Explain.

 (a) C: triangle with vertices (0, 0), (4, 0), and (4, 4)
 (b) C: circle given by x2 + y2 = 1

49. Proof

 (a)  Let C be the line segment joining (x1, y1) and (x2, y2). 
Show that ∫C −y dx + x dy = x1 y2 − x2 y1.

 (b)  Let (x1, y1), (x2, y2), .  .  . , (xn, yn) be the vertices of a 
polygon. Prove that the area enclosed is

  1
2[(x1y2 − x2y1) + (x2y3 − x3y2) + .  .  . +

  (xn−1yn − xnyn−1) + (xny1 − x1yn)].
50.  Area Use the result of Exercise 49(b) to find the area 

enclosed by the polygon with the given vertices.

 (a) Pentagon: (0, 0), (2, 0), (3, 2), (1, 4), and (−1, 1)
 (b) Hexagon: (0, 0), (2, 0), (3, 2), (2, 4), (0, 3), and (−1, 1)

Proof In Exercises 51 and 52, prove the identity, where R is 
a simply connected region with piecewise smooth boundary C.
Assume that the required partial derivatives of the scalar functions 
f and g are continuous. The expressions DN f  and DN g are the 
derivatives in the direction of the outward normal vector N
of C and are defined by DN f = �f ∙ N and DN g = �g ∙ N.

51. Green’s first identity:

∫
R
∫ ( f ∇2g + ∇f ∙ ∇g) dA = ∫

C
  fDNg ds

  [Hint: Use the second alternative form of Green’s Theorem 
and the property div( fG) = f div G + ∇f ∙ G.]

52. Green’s second identity:

∫
R
∫ ( f ∇2g − g∇2f ) dA = ∫

C

 ( fDNg − gDN f ) ds

 (Hint: Use Green’s first identity from Exercise 51 twice.)

53.  Proof Let F = Mi + Nj, where M and N have continuous 
first partial derivatives in a simply connected region R. Prove 
that if C is simple, smooth, and closed, and Nx = My, then 
∫C F ∙ dr = 0.

pUtnAM eXAM ChALLenGe
54.  Find the least possible area of a convex set in the plane 

that intersects both branches of the hyperbola xy = 1 and 
both branches of the hyperbola xy = −1. (A set S in the 
plane is called convex if for any two points in S the line 
segment connecting them is contained in S.)

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

(a)  Sketch the plane curve represented by the vector-valued 
function r(t) = cosh ti + sinh tj on the interval 0 ≤ t ≤ 5.
Show that the rectangular equation corresponding to r(t) is the 
hyperbola x2 − y2 = 1. Verify your sketch by using a graphing 
utility to graph the hyperbola.

(b)  Let P = (cosh ϕ, sinh ϕ) be the point on the hyperbola 
corresponding to r(ϕ) for ϕ > 0. Use the formula for area

A =
1
2∫C

 x dy − y dx

 to verify that the area of the region shown in the figure is 12ϕ.

(c)  Show that the area of the region shown in the figure is also 
given by the integral

A = ∫sinh ϕ

0
 [√1 + y2 − (coth ϕ)y] dy.

  Confirm your answer in part (b) by evaluating this integral for 
ϕ = 1, 2, 4, and 10.

(d)  Consider the unit circle given by x2 + y2 = 1. Let θ be the 
angle formed by the x-axis and the radius to (x, y). The area 
of the corresponding sector is 1

2θ. That is, the trigonometric 
functions f (θ) = cos θ and g(θ) = sin θ could have been 
defined as the coordinates of the point (cos θ, sin θ) on the 
unit circle that determines a sector of area 1

2θ. Write a short 
paragraph explaining how you could define the hyperbolic 
functions in a similar manner, using the “unit hyperbola” 
x2 − y2 = 1.

x

(cosh   , sinh   )ϕ ϕ

(0, 0) (1, 0)

y

Hyperbolic and Trigonometric Functions

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



1088 Chapter 15 Vector Analysis

15.5 Parametric Surfaces

 Understand the definition of a parametric surface, and sketch the surface.
 Find a set of parametric equations to represent a surface.
 Find a normal vector and a tangent plane to a parametric surface.
 Find the area of a parametric surface.

Parametric Surfaces
You already know how to represent a curve in the plane or in space by a set of parametric 
equations—or, equivalently, by a vector-valued function.

r(t) = x(t)i + y(t)j Plane curve

r(t) = x(t)i + y(t)j + z(t)k Space curve

In this section, you will learn how to represent a surface in space by a set of parametric 
equations—or by a vector-valued function. For curves, note that the vector-valued function r
is a function of a single parameter t. For surfaces, the vector-valued function is a function of 
two parameters u and v.

Definition of Parametric Surface

Let x, y, and z be functions of u and v that are continuous on a domain D in the 
uv-plane. The set of points (x, y, z) given by

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k Parametric surface

is called a parametric surface. The equations

x = x(u, v), y = y(u, v), and z = z(u, v) Parametric equations

are the parametric equations for the surface.

If S is a parametric surface given by the vector-valued function r, then S is traced 
out by the position vector r(u, v) as the point (u, v) moves throughout the domain D, as 
shown in Figure 15.35.

u

D

(u, v)

v

r(u, v)

r

y
x

S

z

  The parametric surface S given by the vector-valued function r, where r is a function of two 
variables u and v defined on a domain D

 Figure 15.35

TECHNOLOGY Some computer algebra systems are capable of graphing 
surfaces that are represented parametrically. If you have access to such software, use 
it to graph some of the surfaces in the examples and exercises in this section.
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 15.5 Parametric Surfaces 1089

 Sketching a Parametric Surface

Identify and sketch the parametric surface S given by

r(u, v) = 3 cos ui + 3 sin uj + vk

where 0 ≤ u ≤ 2π  and 0 ≤ v ≤ 4.

Solution Because x = 3 cos u and 

x
y

3

4

z

Figure 15.36

 
y = 3 sin u, you know that for each point 
(x, y, z) on the surface, x and y are related  
by the equation

x2 + y2 = 32.

In other words, each cross section of S taken 
parallel to the xy-plane is a circle of radius 3, 
centered on the z-axis. Because z = v, where

0 ≤ v ≤ 4

you can see that the surface is a right circular 
cylinder of height 4. The radius of the cylinder 
is 3, and the z-axis forms the axis of the cylinder,  
as shown in Figure 15.36. 

As with parametric representations of curves, parametric representations of 
surfaces are not unique. That is, there are many other sets of parametric equations that 
could be used to represent the surface shown in Figure 15.36.

 Sketching a Parametric Surface

Identify and sketch the parametric surface S given by

r(u, v) = sin u cos vi + sin u sin vj + cos uk

where 0 ≤ u ≤ π  and 0 ≤ v ≤ 2π.

Solution To identify the surface, you can try to use trigonometric identities to 
eliminate the parameters. After some experimentation, you can discover that

 x2 + y2 + z2 = (sin u cos v)2 + (sin u sin v)2 + (cos u)2

 = sin2 u cos2 v + sin2 u sin2 v + cos2 u

 = (sin2 u)(cos2 v + sin2 v) + cos2 u

 = sin2 u + cos2 u

 = 1.

So, each point on S lies on the unit sphere, centered at the origin, as shown in Figure 15.37. 
For fixed u = di, r(u, v) traces out latitude circles

x2 + y2 = sin2 di, 0 ≤ di ≤ π

that are parallel to the xy-plane, and for fixed v = ci, r(u, v) traces out longitude (or 
meridian) half-circles.

To convince yourself further that r(u, v) traces out the entire unit sphere, recall that 
the parametric equations

x = ρ sin ϕ cos θ, y = ρ sin ϕ sin θ, and z = ρ cos ϕ

where 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π, describe the conversion from spherical to rectangular 
coordinates, as discussed in Section 11.7. 

x y

z

c1

c2c3

c4

d1

d2

d3

d4

Figure 15.37
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1090 Chapter 15 Vector Analysis

Finding Parametric Equations for Surfaces
In Examples 1 and 2, you were asked to identify the surface described by a given set of 
parametric equations. The reverse problem—that of writing a set of parametric equations 
for a given surface—is generally more difficult. One type of surface for which this 
problem is straightforward, however, is a surface that is given by z = f(x, y). You can 
parametrize such a surface as

r(x, y) = xi + yj + f(x, y)k.

 Representing a Surface Parametrically

Write a set of parametric equations for the cone given by

z = √x2 + y2

as shown in Figure 15.38.

Solution Because this surface is given in the form z = f(x, y), you can let x and y be 
the parameters. Then the cone is represented by the vector-valued function

r(x, y) = xi + yj + √x2 + y2k

where (x, y) varies over the entire xy-plane. 

A second type of surface that is easily represented parametrically is a surface of 
revolution. For instance, to represent the surface formed by revolving the graph of

y = f(x), a ≤ x ≤ b

about the x-axis, use

x = u, y = f(u) cos v, and z = f(u) sin v

where a ≤ u ≤ b and 0 ≤ v ≤ 2π.

 Representing a Surface of Revolution Parametrically

See LarsonCalculus.com for an interactive version of this type of example.

Write a set of parametric equations for the surface of revolution obtained by revolving

f(x) =
1
x
, 1 ≤ x ≤ 10

about the x-axis.

Solution Use the parameters u and v as described above to write

x = u, y = f(u) cos v =
1
u

 cos v, and z = f(u) sin v =
1
u

 sin v

where

1 ≤ u ≤ 10 and 0 ≤ v ≤ 2π.

The resulting surface is a portion of Gabriel’s Horn, as shown in Figure 15.39. 

The surface of revolution in Example 4 is formed by revolving the graph of y = f(x) 
about the x-axis. For other types of surfaces of revolution, a similar parametrization can be 
used. For instance, to parametrize the surface formed by revolving the graph of x = f(z) 
about the z-axis, you can use

z = u, x = f(u) cos v, and y = f(u) sin v.

x y

3

2

2
12

−2

1

z

Figure 15.38

x

y1

10

1

z

Figure 15.39

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



15.5 Parametric Surfaces 1091

Normal Vectors and Tangent Planes
Let S be a parametric surface given by

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k

over an open region D such that x, y, and z have continuous partial derivatives on D. 
The partial derivatives of r with respect to u and v are defined as

ru =
∂x
∂u

(u, v)i +
∂y
∂u

(u, v)j +
∂z
∂u

(u, v)k

and

rv =
∂x
∂v

(u, v)i +
∂y
∂v

(u, v)j +
∂z
∂v

(u, v)k.

Each of these partial derivatives is a vector-valued function that can be interpreted 
geometrically in terms of tangent vectors. For instance, if v = v0 is held constant, then 
r(u, v0) is a vector-valued function of a single parameter and defines a curve C1 that lies on 
the surface S. The tangent vector to C1 at the point

(x(u0, v0), y(u0, v0), z(u0, v0))

is given by

ru(u0, v0) =
∂x
∂u

(u0, v0)i +
∂y
∂u

(u0, v0)j +
∂z
∂u

(u0, v0)k

as shown in Figure 15.40. In a similar way, if u = u0 is held constant, then r(u0, v) is a 
vector-valued function of a single parameter and defines a curve C2 that lies on the surface S.
The tangent vector to C2 at the point (x(u0, v0), y(u0, v0), z(u0, v0)) is given by

rv(u0, v0) =
∂x
∂v

(u0, v0)i +
∂y
∂v

(u0, v0)j +
∂z
∂v

(u0, v0)k.

If the normal vector ru × rv is not 0 for any (u, v) in D, then the surface S is called 
smooth and will have a tangent plane. Informally, a smooth surface is one that has no 
sharp points or cusps. For instance, spheres, ellipsoids, and paraboloids are smooth, 
whereas the cone given in Example 3 is not smooth.

Normal Vector to a Smooth Parametric Surface

Let S be a smooth parametric surface

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k

defined over an open region D in the uv-plane. Let (u0, v0) be a point in D. 
A normal vector at the point

(x0, y0, z0) = (x(u0, v0), y(u0, v0), z(u0, v0))

is given by

N = ru(u0, v0) × rv(u0, v0) = ∣ i
∂x
∂u
∂x
∂v

j
∂y
∂u
∂y
∂v

k
∂z
∂u
∂z
∂v∣.

Figure 15.40 shows the normal vector ru × rv. The vector rv × ru is also normal to 
S and points in the opposite direction.

x
y

(x0, y0, z0)

C1C2

rv ru

z

S

N = ru × rv

Figure 15.40
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 Finding a Tangent Plane to a Parametric Surface

Find an equation of the tangent plane to the paraboloid

r(u, v) = ui + vj + (u2 + v2)k

at the point (1, 2, 5).

Solution The point in the uv-plane that is mapped to the point (x, y, z) = (1, 2, 5) is 
(u, v) = (1, 2). The partial derivatives of r are

ru = i + 2uk and rv = j + 2vk.

The normal vector is given by

ru × rv = ∣ i
1
0

j
0
1

k
2u
2v∣ = −2ui − 2vj + k

which implies that the normal vector at (1, 2, 5) is

ru × rv = −2i − 4j + k.

So, an equation of the tangent plane at (1, 2, 5) is

−2(x − 1) − 4(y − 2) + (z − 5) = 0

 −2x − 4y + z = −5.

The tangent plane is shown in Figure 15.41. 

Area of a Parametric Surface
To define the area of a parametric surface, you can use a development that is similar 
to that given in Section 14.5. Begin by constructing an inner partition of D consisting 
of n rectangles, where the area of the ith rectangle Di is ∆Ai = ∆ui∆vi, as shown in 
Figure 15.42. In each Di, let (ui, vi) be the point that is closest to the origin. At the point
(xi, yi, zi) = (x(ui, vi), y(ui, vi), z(ui, vi)) on the surface S, construct a tangent plane Ti.
The area of the portion of S that corresponds to Di, ∆Si, can be approximated by a 
parallelogram ∆Ti in the tangent plane. That is, ∆Ti ≈ ∆Si. So, the surface area of S is 
given by ∑ ∆Si ≈ ∑ ∆Ti. The area of the parallelogram in the tangent plane is

Area of ∆Ti = �∆uiru × ∆virv� = �ru × rv� ∆ui∆vi

which leads to the next definition.

Area of a Parametric Surface

Let S be a smooth parametric surface

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k

defined over an open region D in the uv-plane. If each point on the surface S 
corresponds to exactly one point in the domain D, then the surface area of S is 
given by

Surface area = ∫
S
∫

 
 dS = ∫

D
∫ �ru × rv� dA

where

ru =
∂x
∂u

i +
∂y
∂u

j +
∂z
∂u

k and rv =
∂x
∂v

i +
∂y
∂v

j +
∂z
∂v

k.
y

x

Δvirv

Δuiru

S

z

Figure 15.42

Di

u

Δui

Δvi

(ui, vi)

v

y

x

22

6

7

−2 −1

(1, 2, 5)

1 3
3

−3

z

Figure 15.41
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15.5 Parametric Surfaces 1093

For a surface S given by z = f(x, y), this formula for surface area corresponds to 
that given in Section 14.5. To see this, you can parametrize the surface using the vector-
valued function r(x, y) = xi + yj + f(x, y)k defined over the region R in the xy-plane. 
Using rx = i + fx(x, y)k and ry = j + fy(x, y)k, you have

rx × ry = ∣ i
1
0

j
0
1

k
fx(x, y)
fy(x, y)∣ = −fx(x, y)i − fy(x, y)j + k

and

�rx × ry� = √[ fx(x, y)]2 + [ fy(x, y)]2 + 1.

This implies that the surface area of S is

 Surface area = ∫
R
∫ �rx × ry � dA

 = ∫
R
∫√1 + [ fx(x, y)]2 + [ fy(x, y)]2dA.

 Finding Surface Area

Find the surface area of the unit sphere

r(u, v) = sin u cos vi + sin u sin vj + cos uk

where the domain D is 0 ≤ u ≤ π  and 0 ≤ v ≤ 2π.

Solution Begin by calculating ru and rv.

ru = cos u cos vi + cos u sin vj − sin uk

rv = −sin u sin vi + sin u cos vj

The cross product of these two vectors is

 ru × rv = ∣ i
cos u cos v

−sin u sin v

j
cos u sin v
sin u cos v

k
−sin u

0 ∣
 = sin2 u cos vi + sin2 u sin vj + sin u cos uk

which implies that

 �ru × rv� = √(sin2 u cos v)2 + (sin2 u sin v)2 + (sin u cos u)2

 = √sin4 u + sin2 u cos2 u

 = √sin2 u

 = sin u. sin u > 0 for 0 ≤ u ≤ π

Finally, the surface area of the sphere is

 A = ∫
D
∫ �ru × rv� dA

 = ∫2π

0
∫π

0
 sin u du dv

 = ∫2π

0
 2 dv

 = 4π.

The surface in Example 6 does not quite fulfill the hypothesis that each point on 
the surface corresponds to exactly one point in D. For this surface, r(u, 0) = r(u, 2π) 
for any fixed value of u. However, because the overlap consists of only a semicircle 
(which has no area), you can still apply the formula for the area of a parametric surface.

Find the surface area of the unit sphere

where the domain 

Solution

The cross product of these two vectors is

which implies that

Because of high surface gravity, 
the shape of a neutron star is 
almost a perfect sphere. Using 
the surface area along with other 
data, scientists can estimate the 
mass and radius of the star.

Catmando/Shutterstock.com
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1094 Chapter 15 Vector Analysis

 Finding Surface Area

Find the surface area of the torus given by

r(u, v) = (2 + cos u) cos vi + (2 + cos u) sin vj + sin uk

where the domain D is given by 0 ≤ u ≤ 2π  and 0 ≤ v ≤ 2π. (See Figure 15.43.)

Solution Begin by calculating ru and rv.

ru = −sin u cos vi − sin u sin vj + cos uk

rv = −(2 + cos u) sin vi + (2 + cos u) cos vj

The cross product of these two vectors is

 ru × rv = ∣ i
−sin u cos v

−(2 + cos u) sin v

j
−sin u sin v

(2 + cos u) cos v

k
cos u

0 ∣
 = −(2 + cos u)(cos v cos ui + sin v cos uj + sin uk)

which implies that

�ru × rv� = (2 + cos u)√(cos v cos u)2 + (sin v cos u)2 + sin2u 

 = (2 + cos u)√cos2 u(cos2 v + sin2 v) + sin2 u

 = (2 + cos u)√cos2 u + sin2 u

 = 2 + cos u.

Finally, the surface area of the torus is

 A = ∫
D
∫ �ru × rv� dA

 = ∫2π

0
∫2π

0
 (2 + cos u) du dv

 = ∫2π

0
 4π dv

 = 8π2. 

For a surface of revolution, you can show that the formula for surface area given 
in Section 7.4 is equivalent to the formula given in this section. For instance, suppose 
f  is a nonnegative function such that f′ is continuous over the interval [a, b]. Let S be 
the surface of revolution formed by revolving the graph of f, where a ≤ x ≤ b, about 
the x-axis. From Section 7.4, you know that the surface area is given by

Surface area = 2π∫b

a

 f(x)√1 + [ f′(x)]2 dx.

To represent S parametrically, let

x = u, y = f(u) cos v, and z = f(u) sin v

where a ≤ u ≤ b and 0 ≤ v ≤ 2π. Then

r(u, v) = ui + f(u) cos vj + f(u) sin vk.

Try showing that the formula

Surface area = ∫
D
∫ �ru × rv� dA

is equivalent to the formula given above (see Exercise 56).

x

y

z

Figure 15.43

Exploration
For the torus in Example 7, 
describe the function r(u, v) 
for fixed u. Then describe 
the function r(u, v) for fixed v.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



15.5  Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

 15.5 Parametric Surfaces 1095

ConCept CheCk
1.  Parametric Surface Explain how a parametric 

surface is represented by a vector-valued function and 
how the vector-valued function is used to sketch the 
parametric surface.

2.  Surface Area A surface S is represented by 
z = f (x, y). What are the parametric equations for S?

Matching In Exercises 3– 8, match the vector-valued function 
with its graph. [The graphs are labeled (a), (b), (c), (d), (e), and (f).]

(a) 

x

y

2

2

2

−2

−2

1

z  (b) 

2

x

y
2

2

−2 −1

1

1

z

(c) 

x y

2

−2

2
2

z  (d) 

x
y22

2

z

(e) 

x

y4 4

4

−4

z  (f ) 

x
y

2 2

2

z

 3. r(u, v) = ui + vj + uvk

 4. r(u, v) = u cos vi + u sin vj + uk

 5. r(u, v) = ui + 1
2(u + v)j + vk

 6. r(u, v) = vi + cos uj + sin uk

 7. r(u, v) = 2 cos v cos ui + 2 cos v sin uj + 2 sin vk

 8. r(u, v) = ui + 1
4v3j + vk

 Sketching a Parametric Surface In Exercises 
9–12, find the rectangular equation for the surface 
by eliminating the parameters from the vector-
valued function. Identify the surface and sketch its 
graph.

 9. r(u, v) = ui + vj +
v
2

k

10. r(u, v) = 2u cos vi + 2u sin vj + 1
2u2k

11. r(u, v) = 2 cos ui + vj + 2 sin uk

12. r(u, v) = 3 cos v cos ui + 3 cos v sin uj + 5 sin vk

Graphing a Parametric Surface In Exercises 13–16, use 
a computer algebra system to graph the surface represented by 
the vector-valued function.

13. r(u, v) = 2u cos vi + 2u sin vj + u4k

 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π

14. r(u, v) = 2u cos vi + 2u sin vj + vk

 0 ≤ u ≤ 1, 0 ≤ v ≤ 3π

15. r(u, v) = (u − sin u) cos vi + (1 − cos u) sin vj + uk

 0 ≤ u ≤ π, 0 ≤ v ≤ 2π

16. r(u, v) = cos3 u cos vi + sin3 u sin vj + uk

 0 ≤ u ≤
π
2

, 0 ≤ v ≤ 2π

 Representing a Surface Parametrically In 
Exercises 17–26, find a vector-valued function 
whose graph is the indicated surface.

17. The plane z = 3y

18. The plane x + y + z = 6

19. The cone y = √4x2 + 9z2

20. The cone x = √16y2 + z2

21. The cylinder x2 + y2 = 25

22. The cylinder 4x2 + y2 = 16

23. The paraboloid x = y2 + z2 + 7

24. The ellipsoid 
x2

9
+

y2

4
+

z2

1
= 1

25.  The part of the plane z = 4 that lies inside the cylinder 
x2 + y2 = 9

26.  The part of the paraboloid z = x2 + y2 that lies inside the 
cylinder x2 + y2 = 9

 Representing a Surface of Revolution 
Parametrically In Exercises 27–32, write a 
set of parametric equations for the surface of 
revolution obtained by revolving the graph of the 
function about the given axis.

 Function Axis of Revolution

27. y =
x
2

, 0 ≤ x ≤ 6 x-axis

28. y = √x, 0 ≤ x ≤ 4 x-axis

29. x = sin z, 0 ≤ z ≤ π  z-axis

30. x = z − 2, 2 ≤ z ≤ 5 z-axis

31. z = cos2 y, 
π
2

≤ y ≤ π  y-axis

32. z = y2 + 1, 0 ≤ y ≤ 2 y-axis
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1096 Chapter 15 Vector Analysis

 Finding a Tangent Plane In Exercises 33– 36, 
find an equation of the tangent plane to the surface 
represented by the vector-valued function at the 
given point.

33. r(u, v) = 3 cos v cos ui + 2 cos v sin uj + 4 sin vk, (0, √3, 2)

x y

(0,    3, 2)

4

−2

4

2

−4

2
4

z   

x

y

(1, 1, 1)

1

1

2

2

2

z

 Figure for 33 Figure for 34

34. r(u, v) = ui + vj + √uvk, (1, 1, 1)
35. r(u, v) = 2u cos vi + 3u sin vj + u2k, (0, 6, 4)

x

y

(0, 6, 4)

5

6

2
4

6

24

−6

z

36. r(u, v) = 2u cosh vi + 2u sinh vj + 1
2u2k, (−4, 0, 2)

x

(−4, 0, 2)
2

4

4

246 −2 −4 −6

z

y

 Finding Surface Area In Exercises 37–42, find 
the area of the surface over the given region. Use a 
computer algebra system to verify your results.

37.  r(u, v) = 4ui − vj + vk, 0 ≤ u ≤ 2, 0 ≤ v ≤ 1

38.  r(u, v) = 2u cos vi + 2u sin vj +u2k, 0 ≤ u ≤ 2,
0 ≤ v ≤ 2π

39.  r(u, v) = au cos vi + au sin vj + uk, 0 ≤ u ≤ b, 0 ≤ v ≤ 2π

40.  r(u, v) = (a + b cos v) cos ui + (a + b cos v) sin uj + b sin vk,
a > b, 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π

41.  r(u, v) = √u cos vi + √u sin vj + uk, 0 ≤ u ≤ 4,
0 ≤ v ≤ 2π

42.  r(u, v) = sin u cos vi + uj + sin u sin vk, 0 ≤ u ≤ π, 
0 ≤ v ≤ 2π

eXpLoRInG ConCeptS
Think About It In Exercises 43–46, determine how 
the graph of the surface s(u, v) differs from the graph of  
r(u, v) = u cos vi + u sin vj + u2k, where 0 ≤ u ≤ 2 and 
0 ≤ v ≤ 2π, as shown in the figure. (It is not necessary 
to graph s.)

y
x 2

−2 −2

2

4

z

r(u, v)

43. s(u, v) = u cos vi + u sin vj − u2k

0 ≤ u ≤ 2, 0 ≤ v ≤ 2π

44. s(u, v) = u cos vi + u2j + u sin vk

0 ≤ u ≤ 2, 0 ≤ v ≤ 2π

45. s(u, v) = u cos vi + u sin vj + u2k

0 ≤ u ≤ 3, 0 ≤ v ≤ 2π

46. s(u, v) = 4u cos vi + 4u sin vj + u2k

0 ≤ u ≤ 2, 0 ≤ v ≤ 2π

47.  Representing a Cone Parametrically Show that 
the cone in Example 3 can be represented parametrically 
by r(u, v) = u cos vi + u sin vj + uk, where u ≥ 0 and 
0 ≤ v ≤ 2π.

 48.  HOW DO YOU SEE IT? The figures below are 
graphs of r(u, v) = ui + sin u cos vj + sin u sin vk,
where 0 ≤ u ≤ π�2 and 0 ≤ v ≤ 2π. Match each 
of the four graphs with the point in space from 
which the surface is viewed. 

(a) 

y

z   (b) 

y

z

x

(c) 

x

z   (d) z

y

 (i) (10, 0, 0) (ii) (−10, 10, 0)
(iii) (0, 10, 0) (iv) (10, 10, 10)

 48.  
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 15.5 Parametric Surfaces 1097

49.  Astroidal Sphere An equation of an astroidal sphere in 
x, y, and z is

 x2�3 + y2�3 + z2�3 = a2�3.

  A graph of an astroidal sphere is shown below. Show that this 
surface can be represented parametrically by

 r(u, v) = a sin3 u cos3 vi + a sin3 u sin3 vj + a cos3 uk

 where 0 ≤ u ≤ π  and 0 ≤ v ≤ 2π.

x
y

z

50.  Different Views of a Surface Use a computer algebra 
system to graph the vector-valued function

 r(u, v) = u cos vi + u sin vj + vk, 0 ≤ u ≤ π, 0 ≤ v ≤ π

 from each of the points (10, 0, 0), (0, 0, 10), and (10, 10, 10).
51.  Investigation Use a computer algebra system to graph the 

torus

 r(u, v) = (a + b cos v) cos ui + (a + b cos v) sin uj + b sin vk

  for each set of values of a and b, where 0 ≤ u ≤ 2π  and 
0 ≤ v ≤ 2π. Use the results to describe the effects of a and b 
on the shape of the torus.

 (a) a = 4, b = 1

 (b) a = 4, b = 2

 (c) a = 8, b = 1

 (d) a = 8, b = 3

52. Investigation Consider the function in Exercise 14.

 (a)  Sketch a graph of the function where u is held constant at 
u = 1. Identify the graph.

 (b)  Sketch a graph of the function where v is held constant at 
v = 2π�3. Identify the graph.

 (c)  Assume that a surface is represented by the vector-valued 
function r = r(u, v). What generalization can you make 
about the graph of the function when one of the parameters 
is held constant?

53.  Surface Area The surface of the dome on a new museum 
is given by

 r(u, v) = 20 sin u cos vi + 20 sin u sin vj + 20 cos uk

  where 0 ≤ u ≤ π�3, 0 ≤ v ≤ 2π, and r is in meters. Find the 
surface area of the dome.

54.  Hyperboloid Find a vector-valued function for the  
hyperboloid

 x2 + y2 − z2 = 1

 and determine the tangent plane at (1, 0, 0).

55.  Area Use a computer algebra system to graph one turn of 
the spiral ramp r(u, v) = u cos vi + u sin vj + 2vk, where 
0 ≤ u ≤ 3 and 0 ≤ v ≤ 2π. Then analytically find the area 
of one turn of the spiral ramp.

56.  Surface Area Let f  be a nonnegative function such that 
f ′ is continuous over the interval [a, b]. Let S be the surface 
of revolution formed by revolving the graph of f, where 
a ≤ x ≤ b, about the x-axis. Let x = u, y = f (u) cos v, and 
z = f (u) sin v, where a ≤ u ≤ b and 0 ≤ v ≤ 2π. Then S is 
represented parametrically by

 r(u, v) = ui + f (u) cos vj+ f (u) sin vk.

 Show that the following formulas are equivalent.

 Surface area = 2π∫b

a

  f (x)√1 + [ f ′(x)]2 dx

 Surface area = ∫
D
∫ �ru × rv� dA

57. Open-Ended Project The parametric equations

 x = 3 + [7 − cos(3u − 2v) − 2 cos(3u + v)]sin u

 y = 3 + [7 − cos(3u − 2v) − 2 cos(3u + v)]cos u

 z = sin(3u − 2v) + 2 sin(3u + v)

  where −π ≤ u ≤ π  and −π ≤ v ≤ π, represent the surface 
shown below. Try to create your own parametric surface using 
a computer algebra system.

58.  Möbius Strip The surface shown in the figure is called 
a Möbius strip and can be represented by the parametric 
equations

 x = (a + u cos
v
2) cos v, y = (a + u cos

v
2) sin v, z = u sin

v
2

  where −1 ≤ u ≤ 1, 0 ≤ v ≤ 2π, and a = 3. Try to graph 
other Möbius strips for different values of a using a computer 
algebra system.

y

x

z

−1
−4

−3

2

−2

3

12
4
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1098 Chapter 15 Vector Analysis

15.6 Surface Integrals

 Evaluate a surface integral as a double integral.
 Evaluate a surface integral for a parametric surface.
 Determine the orientation of a surface.
 Understand the concept of a flux integral.

Surface Integrals
The remainder of this chapter deals primarily with surface integrals. You will first consider 
surfaces given by z = g(x, y). Later in this section, you will consider more general 
surfaces given in parametric form.

Let S be a surface given by z = g(x, y) and let R be its projection onto the xy-plane, 
as shown in Figure 15.44. Let g, gx, and gy be continuous at all points in R and let f
be a scalar function defined on S. Employing the procedure used to find surface area in 
Section 14.5, evaluate f  at (xi, yi, zi) and form the sum

∑
n

i=1
f(xi, yi, zi) ∆Si

where

∆Si ≈ √1 + [gx(xi, yi)]2 + [gy(xi, yi)]2 ∆Ai.

Provided the limit of this sum as �∆� approaches 0 exists, the surface integral of f  
over S is defined as

∫
S
∫  f(x, y, z) dS = lim

�∆�→0
 ∑

n

i=1
f(xi, yi, zi) ∆Si.

This integral can be evaluated by a double integral.

thEoREM 15.10 Evaluating a Surface Integral

Let S be a surface given by z = g(x, y) and let R be its projection onto the 
xy-plane. If g, gx, and gy are continuous on R and f  is continuous on S, then
the surface integral of f  over S is

∫
S
∫  f(x, y, z) dS = ∫

R
∫ f(x, y, g(x, y))√1 + [gx(x, y)]2 + [gy(x, y)]2 dA.

For surfaces described by functions of x and z (or y and z), you can make the 
following adjustments to Theorem 15.10. If S is the graph of y = g(x, z) and R is its 
projection onto the xz-plane, then

∫
S
∫  f(x, y, z) dS = ∫

R
∫ f(x, g(x, z), z)√1 + [gx(x, z)]2 + [gz(x, z)]2 dA.

If S is the graph of x = g(y, z) and R is its projection onto the yz-plane, then

∫
S
∫  f(x, y, z) dS = ∫

R
∫ f(g(y, z), y, z)√1 + [gy(y, z)]2 + [gz(y, z)]2 dA.

If f(x, y, z) = 1, the surface integral over S yields the surface area of S. For instance, 
suppose the surface S is the plane given by z = x, where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. 
The surface area of S is √2 square units. Try verifying that

∫
S
∫ f(x, y, z) dS = √2.

x

y

(xi, yi, zi)

(xi, yi)
R

z

S: z = g(x, y)

Scalar function f  assigns a number to 
each point of S.
Figure 15.44
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 15.6 Surface Integrals 1099

 Evaluating a Surface Integral

Evaluate the surface integral

∫
S
∫ (y2 + 2yz) dS

where S is the first-octant portion of the plane

2x + y + 2z = 6.

Solution Begin by writing S as

z = g(x, y) =
1
2

(6 − 2x − y).

Using the partial derivatives gx(x, y) = −1 and gy(x, y) = −1
2, you can write

√1 + [gx(x, y)]2 + [gy(x, y)]2 =√1 + 1 +
1
4

=
3
2

.

Using Figure 15.45 and Theorem 15.10, you obtain

 ∫
S
∫ (y2 + 2yz) dS = ∫

R
∫  f(x, y, g(x, y))√1 + [gx(x, y)]2 + [gy(x, y)]2 dA

 = ∫
R
∫ [y2 + 2y(1

2)(6 − 2x − y)](3
2) dA

 = 3∫3

0
∫2(3−x)

0
 y(3 − x) dy dx Convert to iterated integral.

 = 3∫3

0
 
y2

2
(3 − x)]

2(3−x)

0
dx Integrate with respect to y.

 = 6∫3

0
 (3 − x)3 dx

 = −
3
2

(3 − x)4]
3

0
 Integrate with respect to x.

 =
243
2

. 

An alternative solution to Example 1 would be to project S onto the yz-plane, as 
shown in Figure 15.46. Then x = 1

2(6 − y − 2z), and

√1 + [gy(y, z)]2 + [gz(y, z)]2 =√1 +
1
4

+ 1 =
3
2

.

So, the surface integral is

 ∫
S
∫ (y2 + 2yz) dS = ∫

R
∫ f(g(y, z), y, z)√1 + [gy(y, z)]2 + [gz(y, z)]2 dA

 = ∫6

0
∫(6−y)�2

0
 (y2 + 2yz)(3

2) dz dy

 =
3
8∫

6

0
 (36y − y3) dy

 =
243
2

.

Try reworking Example 1 by projecting S onto the xz-plane.

x y

S

(3, 0, 0)

(0, 0, 3)

(0, 6, 0)

z

z = 1
2

(6 − 2x − y)

y = 2(3 − x)

Figure 15.45

x y

S

(3, 0, 0)

(0, 0, 3)

(0, 6, 0)

z

z =
6 − y

2

x = 1
2

(6 − y − 2z)

Figure 15.46
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1100 Chapter 15 Vector Analysis

In Example 1, you could have projected the surface S onto any one of the three 
coordinate planes. In Example 2, S is a portion of a cylinder centered about the x-axis, 
and you can project it onto either the xz-plane or the xy-plane.

 Evaluating a Surface Integral

See LarsonCalculus.com for an interactive version of this type of example.

Evaluate the surface integral

∫
S
∫ (x + z) dS

where S is the first-octant portion of the cylinder

y2 + z2 = 9

between x = 0 and x = 4, as shown in Figure 15.47.

Solution Project S onto the xy-plane so that

z = g(x, y) = √9 − y2

and obtain

 √1 + [gx(x, y)]2 + [gy(x, y)]2 =√1 + ( −y

√9 − y2)
2

 =
3

√9 − y2
.

Theorem 15.10 does not apply directly, because gy is not continuous when y = 3. 
However, you can apply Theorem 15.10 for 0 ≤ b < 3 and then take the limit as b 
approaches 3, as follows.

 ∫
S
∫ (x + z) dS = lim

b→3−∫b

0
∫4

0
 (x + √9 − y2) 3

√9 − y2
 dx dy

 = lim
b→3−

 3∫b

0
∫4

0
 ( x

√9 − y2
+ 1) dx dy

 = lim
b→3−

 3 ∫b

0
 [ x2

2√9 − y2
+ x]

4

0
 dy Integrate with respect to x.

 = lim
b→3−

 3∫b

0
 ( 8

√9 − y2
+ 4) dy

 = lim
b→3−

 3[4y + 8 arcsin 
y
3]

b

0
 Integrate with respect to y.

 = lim
b→3−

 3(4b + 8 arcsin 
b
3)

 = 36 + 24(π2) Evaluate limit.

 = 36 + 12π  

tEChnology Some computer algebra systems are capable of evaluating 
improper integrals. If you have access to such software, use it to evaluate the 
improper integral

∫3

0
∫4

0
 (x + √9 − y2) 3

√9 − y2
 dx dy.

Do you obtain the same result as in Example 2?

x

y

1
2

3 3

3

4

R: 0 ≤ x ≤ 4
0 ≤ y ≤ 3

z

S: y2 + z2 = 9

Figure 15.47
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 15.6 Surface Integrals 1101

You have already seen that when the function f  defined on the surface S is simply 
f(x, y, z) = 1, the surface integral yields the surface area of S.

Area of surface = ∫
S
∫ 1 dS

On the other hand, when S is a lamina of variable density and ρ(x, y, z) is the density at 
the point (x, y, z), then the mass of the lamina is given by

Mass of lamina = ∫
S
∫ ρ(x, y, z) dS.

 Finding the Mass of a Surface lamina

A cone-shaped surface lamina S is given by

z = 4 − 2√x2 + y2, 0 ≤ z ≤ 4

as shown in Figure 15.48. At each point on S, the density is proportional to the distance 
between the point and the z-axis. Find the mass m of the lamina.

Solution Projecting S onto the xy-plane produces

S: z = 4 − 2√x2 + y2 = g(x, y), 0 ≤ z ≤ 4

R: x2 + y2 ≤ 4

with a density of ρ(x, y, z) = k√x2 + y2, where k is the constant of proportionality. 
Using a surface integral, you can find the mass to be

 m = ∫
S
∫ ρ(x, y, z) dS

 = ∫
R
∫ k√x2 + y2√1 + [gx(x, y)]2 + [gy(x, y)]2 dA

 = k∫
R
∫ √x2 + y2√1 +

4x2

x2 + y2 +
4y2

x2 + y2 dA

 = k∫
R
∫ √5√x2 + y2 dA

 = k∫2π

0
∫2

0
 (√5r)r dr dθ Polar coordinates

 =
√5k

3 ∫2π

0
 r

3]
2

0
 dθ Integrate with respect to r.

 =
8√5k

3 ∫2π

0
 dθ

 =
8√5k

3 [θ]
2π

0
 Integrate with respect to θ.

 =
16√5kπ

3
. 

tEChnology Use a computer algebra system to confirm the result shown in 
Example 3. The computer algebra system Mathematica evaluated the integral as follows.

k∫2

−2
∫√4−y2

−√4−y2

 √5√x2 + y2 dx dy = k∫2π

0
∫2

0
 (√5r)r dr dθ =

16√5kπ
3

yx

4

3

2

1

2
1

1
2

z

R: x2 + y2 = 4

z = 4 − 2 x2 + y2
Cone:

Figure 15.48
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1102 Chapter 15 Vector Analysis

Parametric Surfaces and Surface Integrals
For a surface S given by the vector-valued function

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k Parametric surface

defined over a region D in the uv-plane, you can show that the surface integral of 
f(x, y, z) over S is given by

∫
S
∫

 
 f(x, y, z) dS = ∫

D
∫ f(x(u, v), y(u, v), z(u, v))�ru(u, v) × rv(u, v)� dA.

Note the similarity to a line integral over a space curve C.

∫
C

  f(x, y, z) ds = ∫b

a

  f(x(t), y(t), z(t))�r′(t)� dt Line integral

Also, notice that ds and dS can be written as

ds = �r′(t)� dt and dS = �ru(u, v) × rv(u, v)� dA.

 Evaluating a Surface Integral

Example 2 demonstrated an evaluation of the surface integral

∫
S
∫ (x + z) dS

where S is the first-octant portion of the cylinder

y2 + z2 = 9

between x = 0 and x = 4, as shown in Figure 15.49. Reevaluate this integral in 
parametric form.

Solution In parametric form, the surface is given by

r(x, θ) = xi + 3 cos θj + 3 sin θk

where 0 ≤ x ≤ 4 and 0 ≤ θ ≤ π�2. To evaluate the surface integral in parametric 
form, begin by calculating the following.

 rx = i

 rθ = −3 sin θj + 3 cos θk

 rx × rθ = ∣ i
1
0

j
0

−3 sin θ

k
0

3 cos θ ∣ = −3 cos θj − 3 sin θk

 �rx × rθ� = √9 cos2 θ + 9 sin2 θ = 3

So, the surface integral can be evaluated as follows.

 ∫
D
∫ (x + 3 sin θ)3 dA = ∫4

0
∫π�2

0
 (3x + 9 sin θ) dθ dx

 = ∫4

0
 [3xθ − 9 cos θ]

π�2

0
 dx

 = ∫4

0
 (3π

2
x + 9) dx

 = [3π
4

x2 + 9x]
4

0

 = 12π + 36 

y

x

3

3

4
3

2
1

z

Generated by Mathematica

Figure 15.49
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 15.6 Surface Integrals 1103

Orientation of a Surface
Unit normal vectors are used to induce an orientation to a surface S in space. A surface 
is orientable when a unit normal vector N can be defined at every nonboundary point 
of S in such a way that the normal vectors vary continuously over the surface S. The 
surface S is called an oriented surface.

An orientable surface S has two distinct sides. So, when you orient a surface, you 
are selecting one of the two possible unit normal vectors. For a closed surface such as a 
sphere, it is customary to choose the unit normal vector N to be the one that points outward 
from the sphere.

Most common surfaces, such as spheres, paraboloids, ellipses, and planes, are 
orientable. (See Exercise 43 for an example of a surface that is not orientable.) Moreover, for 
an orientable surface, the gradient provides a convenient way to find a unit normal vector. 
That is, for an orientable surface S given by

z = g(x, y) Orientable surface

let

G(x, y, z) = z − g(x, y).

Then, S can be oriented by either the unit normal vector

 N =
∇G(x, y, z)

�∇G(x, y, z)�

 =
−gx(x, y)i − gy(x, y)j + k

√1 + [gx(x, y)]2 + [gy(x, y)]2
 Upward unit normal vector

or the unit normal vector

 N =
−∇G(x, y, z)
�∇G(x, y, z)�

 =
gx(x, y)i + gy(x, y)j − k

√1 + [gx(x, y)]2 + [gy(x, y)]2
 Downward unit normal vector

as shown in Figure 15.50. If the smooth orientable surface S is given in parametric form by

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k Parametric surface

then the unit normal vectors are given by

N =
ru × rv

�ru × rv�
 Upward unit normal vector

and

N =
rv × ru

�rv × ru�
. Downward unit normal vector

For an orientable surface given by

y = g(x, z) or x = g(y, z)

you can use the gradient

∇G(x, y, z) = −gx(x, z)i + j − gz(x, z)k G(x, y, z) = y − g(x, z)

or

∇G(x, y, z) = i − gy(y, z)j − gz(y, z)k G(x, y, z) = x − g( y, z)

to orient the surface.

S: z = g(x, y)

y

Downward direction

S

x

z

−∇G
||∇G ||

N =

S is oriented in a downward direction.
Figure 15.50

x

y

N =

Upward direction

S

z
∇G

||∇G ||

S: z = g(x, y)

S is oriented in an upward direction.
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1104 Chapter 15 Vector Analysis

Flux Integrals
One of the principal applications involving the vector form of a surface integral relates 
to the flow of a fluid through a surface. Consider an oriented surface S submerged in 
a fluid having a continuous velocity field F. Let ∆S be the area of a small patch of the 
surface S over which F is nearly constant. Then the amount of fluid crossing this region 
per unit of time is approximated by the volume of the column of height F ∙ N, as shown 
in Figure 15.51. That is,

 ∆V = (height)(area of base)
 = (F ∙ N) ∆S.

Consequently, the volume of fluid crossing the surface S per unit of time (called the 
flux of F across S) is given by the surface integral in the next definition.

Definition of Flux Integral

Let F(x, y, z) = Mi + Nj + Pk, where M, N, and P have continuous first 
partial derivatives on the surface S oriented by a unit normal vector N. The 
flux integral of F across S is given by

∫
S
∫ F ∙ N dS.

Geometrically, a flux integral is the surface integral over S of the normal 
component of F. If ρ(x, y, z) is the density of the fluid at (x, y, z), then the flux integral

∫
S
∫ ρF ∙ N dS

represents the mass of the fluid flowing across S per unit of time.
To evaluate a flux integral for a surface given by z = g(x, y), let

G(x, y, z) = z − g(x, y).

Then N dS can be written as follows.

 N dS =
∇G(x, y, z)

�∇G(x, y, z)� dS

 =
∇G(x, y, z)

√(gx )2 + (gy)2 + 1
√(gx)2 + (gy)2 + 1 dA

 = ∇G(x, y, z) dA

thEoREM 15.11 Evaluating a Flux Integral

Let S be an oriented surface given by z = g(x, y) and let R be its projection
onto the xy-plane.

∫
S
∫ F ∙ N dS = ∫

R
∫ F ∙ [−gx(x, y)i − gy(x, y)j + k] dA Oriented upward

∫
S
∫ F ∙ N dS = ∫

R
∫ F ∙ [gx(x, y)i + gy(x, y)j − k] dA Oriented downward

For the first integral, the surface is oriented upward, and for the second
integral, the surface is oriented downward.

x

y

ΔS

N F

F · N

z

The velocity field F indicates the
direction of the fluid flow.
Figure 15.51
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 15.6 Surface Integrals 1105

 Using a Flux Integral to Find the Rate of Mass Flow

Let S be the portion of the paraboloid 

x

y44

6

8

−4

z

Figure 15.52

z = g(x, y) = 4 − x2 − y2

lying above the xy-plane, oriented by an 
upward unit normal vector, as shown in 
Figure 15.52. A fluid of constant density ρ  
is flowing through the surface S according to 
the vector field

F(x, y, z) = xi + yj + zk.

Find the rate of mass flow through S.

Solution Note that S is oriented upward and 
the partial derivatives of g are

gx(x, y) = −2x

and

gy(x, y) = −2y.

So, the rate of mass flow through the surface S is

 ∫
S
∫ ρF ∙ N dS = ρ∫

R
∫ F ∙ [−gx(x, y)i − gy(x, y)j + k] dA

 = ρ∫
R
∫ [xi + yj + (4 − x2 − y2)k] ∙ (2xi + 2yj + k) dA

 = ρ∫
R
∫ [2x2 + 2y2 + (4 − x2 − y2)] dA

 = ρ∫
R
∫ (4 + x2 + y2) dA

 = ρ∫2π

0
∫2

0
 (4 + r2)r dr dθ Polar coordinates

 = ρ∫2π

0
 [2r2 +

r4

4 ]
2

0
dθ

 = ρ∫2π

0
 12 dθ

 = 24πρ. 

For an oriented upward surface S given by the vector-valued function

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k Parametric surface

defined over a region D in the uv-plane, you can define the flux integral of F across
S as

∫
S
∫ F ∙ N dS = ∫

D
∫ F ∙ ( ru × rv

�ru × rv�)�ru × rv� dA = ∫
D
∫ F ∙ (ru × rv) dA.

Note the similarity of this integral to the line integral

∫
C

 F ∙ dr = ∫
C

 F ∙ T ds.

A summary of formulas for line and surface integrals is presented on page 1107.
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 Finding the Flux of an Inverse Square Field

Find the flux over the sphere S given by

x2 + y2 + z2 = a2 Sphere S

where F is an inverse square field given by

F(x, y, z) =
kq

�r�2 
r

�r�
=

kqr
�r�3 Inverse square field F

and

r = xi + yj + zk.

Assume S is oriented outward, as shown in Figure 15.53.

Solution The sphere is given by

 r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k
 = a sin u cos vi + a sin u sin vj + a cos uk

where 0 ≤ u ≤ π  and 0 ≤ v ≤ 2π. The partial derivatives of r are

ru(u, v) = a cos u cos vi + a cos u sin vj − a sin uk

and

rv(u, v) = −a sin u sin vi + a sin u cos vj

which implies that the normal vector ru × rv is

 ru × rv = ∣ i
a cos u cos v

−a sin u sin v

j
a cos u sin v
a sin u cos v

k
−a sin u

0 ∣
 = a2(sin2 u cos vi + sin2 u sin vj + sin u cos uk).

Now, using

 F(x, y, z) =
kqr
�r�3

 = kq
xi + yj + zk

�xi + yj + zk�3

 =
kq
a3 (a sin u cos vi + a sin u sin vj + a cos uk)

it follows that

 F ∙ (ru × rv ) =
kq
a3 [(a sin u cos vi + a sin u sin vj + a cos uk) ∙

 a2(sin2 u cos vi + sin2 u sin vj + sin u cos uk)]
 = kq(sin3 u cos2 v + sin3 u sin2 v + sin u cos2 u)
 = kq sin u.

Finally, the flux over the sphere S is given by

 ∫
S
∫ F ∙ N dS = ∫

D
∫ kq sin u dA

 = kq∫2π

0
∫π

0
 sin u du dv

 = kq∫2π

0
 2 dv

 = 4πkq. 

x
y

z

N

N

N

N

aa

a

S: x2 + y2 + z2 = a2

R: x2 + y2 ≤ a2

Figure 15.53
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15.6 Surface Integrals 1107

The result in Example 6 shows that the flux across a sphere S in an inverse square 
field is independent of the radius of S. In particular, if E is an electric field, then the 
result in Example 6, along with Coulomb’s Law (see Section 15.1), yields one of the 
basic laws of electrostatics, known as Gauss’s Law:

∫
S
∫ E ∙ N dS = 4πkq Gauss’s Law

where q is a point charge located at the center of the sphere and k is the Coulomb 
constant. Gauss’s Law is valid for more general closed surfaces that enclose the origin, 
and relates the flux out of the surface to the total charge inside the surface.

Surface integrals are also used in the study of heat flow. Heat flows from areas of 
higher temperature to areas of lower temperature in the direction of greatest change. As 
a result, measuring heat flux involves the gradient of the temperature. The flux depends 
on the area of the surface. It is the normal direction to the surface that is important, 
because heat that flows in directions tangential to the surface will produce no heat 
loss. So, assume that the heat flux across a portion of the surface of area ∆S is given 
by ∆H ≈ −k∇T ∙ N dS, where T is the temperature, N is the unit normal vector to the 
surface in the direction of the heat flow, and k is the thermal diffusivity of the material. 
The heat flux across the surface is given by

H = ∫
S
∫ −k∇T ∙ N dS. Heat flux across S

This section concludes with a summary of different forms of line integrals and 
surface integrals.

SUMMARY OF LINE AND SURFACE INTEGRALS

Line Integrals

 ds = �r′(t)� dt

 = √[x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt

∫
C

  f(x, y, z) ds = ∫b

a
  f(x(t), y(t), z(t))√[x′(t)]2 + [y′(t)]2 + [z′(t)]2 dt Scalar form

 ∫
C

 F ∙ dr = ∫
C

 F ∙ T ds

 = ∫b

a

 F(x(t), y(t), z(t)) ∙ r′(t) dt Vector form

Surface Integrals [z = g(x, y)]
dS = √1 + [gx(x, y)]2 + [gy(x, y)]2 dA

∫
S
∫ f(x, y, z) dS = ∫

R
∫ f(x, y, g(x, y))√1 + [gx(x, y)]2 + [gy(x, y)]2 dA Scalar form

∫
S
∫ F ∙ N dS = ∫

R
∫ F ∙ [−gx(x, y)i − gy(x, y)j + k] dA Vector form (upward normal)

Surface Integrals (parametric form)

dS = �ru(u, v) × rv(u, v)� dA

∫
S
∫ f(x, y, z) dS = ∫

D
∫ f(x(u, v), y(u, v), z(u, v))�ru(u, v) × rv(u, v)� dA Scalar form

∫
S
∫ F ∙ N dS = ∫

D
∫ F ∙ (ru × rv ) dA Vector form (upward normal)
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1108 Chapter 15 Vector Analysis

15.6 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

ConCept CheCk
1.  Surface Integral Explain how to set up a surface 

integral given that you will project the surface onto the 
xz-plane.

2.  Surface Integral For what condition does the surface 
integral over S yield the surface area of S?

3.  orientation of a Surface Describe a physical 
characteristic of an orientable surface.

4.  Flux What is the physical interpretation of the flux of F 
across S? How do you calculate it?

 Evaluating a Surface Integral In Exercises

  5–8, evaluate ∫
S
∫ (x − 2y + z) dS.

 5. S: z = 4 − x, 0 ≤ x ≤ 4, 0 ≤ y ≤ 3

 6. S: z = 15 − 2x + 3y, 0 ≤ x ≤ 2, 0 ≤ y ≤ 4

 7. S: z = 2, x2 + y2 ≤ 1

 8. S: z = 3y, 0 ≤ x ≤ 2, 0 ≤ y ≤ x

Evaluating a Surface Integral In Exercises 9 and 10, 

evaluate ∫
S
∫ xy dS.

 9. S: z = 3 − x − y, first octant

10. S: z = 1
4x4, 0 ≤ x ≤ 1, 0 ≤ y ≤ x2

Evaluating a Surface Integral In Exercises 11 and 12, use

a computer algebra system to evaluate ∫
S
∫ (x2 − 2xy) dS.

11. S: z = 10 − x2 − y2, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2

12. S: z = cos x, 0 ≤ x ≤
π
2

, 0 ≤ y ≤
1
2

x

 Mass In Exercises 13 and 14, find the mass of 
the surface lamina S of density ρ.

13. S: 2x + 3y + 6z = 12, first octant, ρ(x, y, z) = x2 + y2

14. S: z = √a2 − x2 − y2, ρ(x, y, z) = kz

 Evaluating a Surface Integral In Exercises

  15–18, evaluate ∫
S
∫  f(x, y) dS.

15. f (x, y) = y + 5

 S: r(u, v) = ui + vj + 2vk

  0 ≤ u ≤ 1, 0 ≤ v ≤ 2

16. f (x, y) = xy

 S: r(u, v) = 2 cos ui + 2 sin uj + vk

   0 ≤ u ≤
π
2

, 0 ≤ v ≤ 1

17. f (x, y) = 3y − x

 S: r(u, v) = cos ui + sin uj + vk

   0 ≤ u ≤
π
3

, 0 ≤ v ≤ 1

18. f (x, y) = x + y

 S: r(u, v) = 4u cos vi + 4u sin vj + 3uk

   0 ≤ u ≤ 4, 0 ≤ v ≤ π

Evaluating a Surface Integral In Exercises 19–24, evaluate

∫
S
∫ f (x, y, z) dS.

19. f (x, y, z) = x2 + y2 + z2

 S: z = x + y, x2 + y2 ≤ 1

20. f (x, y, z) =
xy
z

 S: z = x2 + y2, 4 ≤ x2 + y2 ≤ 16

21. f (x, y, z) = √x2 + y2 + z2

 S: z = √x2 + y2, x2 + y2 ≤ 4

22. f (x, y, z) = √x2 + y2 + z2

 S: z = √x2 + y2, (x − 1)2 + y2 ≤ 1

23. f (x, y, z) = x2 + y2 + z2

 S: x2 + y2 = 9, 0 ≤ x ≤ 3, 0 ≤ y ≤ 3, 0 ≤ z ≤ 9

24. f (x, y, z) = x2 + y2 + z2

 S: x2 + y2 = 9, 0 ≤ x ≤ 3, 0 ≤ z ≤ x

 Evaluating a Flux Integral In Exercises 
25–30, find the flux of F across S,

 ∫
S
∫ F ∙ N dS

 where N is the upward unit normal vector to S.

25. F(x, y, z) = 3zi − 4j + yk; S: z = 1 − x − y, first octant

26. F(x, y, z) = xi + 2yj; S: z = 6 − 3x − 2y, first octant

27. F(x, y, z) = xi + yj + zk; S: z = 1 − x2 − y2, z ≥ 0

28. F(x, y, z) = xi + yj + zk 

 S: x2 + y2 + z2 = 36, first octant

29. F(x, y, z) = 4i − 3j + 5k

 S: z = x2 + y2, x2 + y2 ≤ 4

30. F(x, y, z) = xi + yj − 2zk

 S: z = √a2 − x2 − y2
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15.6 Surface Integrals 1109

Evaluating a Flux Integral In Exercises 31 and 32, find 
the flux of F over the closed surface. (Let N be the outward unit 
normal vector of the surface.)

31. F(x, y, z) = (x + y)i + yj + zk

S: z = 16 − x2 − y2, z = 0

32. F(x, y, z) = 4xyi + z2j + yzk

 S:  unit cube bounded by the planes x = 0, x = 1, y = 0,
y = 1, z = 0, z = 1

Flow Rate In Exercises 33 and 34, use a computer algebra 
system to find the rate of mass flow of a fluid of density ρ 
through the surface S oriented upward when the velocity field 
is given by F(x, y, z) = 0.5zk.

33. S: z = 16 − x2 − y2, z ≥ 0

34. S: z = √16 − x2 − y2

gauss’s law In Exercises 35 and 36, evaluate ∫
S
∫  E ∙ N dS 

to find the total charge of the electrostatic field E enclosed by the 
closed surface consisting of the hemisphere z = √1 − x2 − y2 
and its circular base in the xy-plane.

35. E = yzi + xzj + xyk 36. E = xi + yj + 2zk

Moments of Inertia In Exercises 37–40, use the following 
formulas for the moments of inertia about the coordinate axes 
of a surface lamina of density ρ.

Ix = ∫
S
∫ ( y2 + z2)ρ(x, y, z) dS Iy = ∫

S
∫ (x2 + z2)ρ(x, y, z) dS

Iz = ∫
S
∫ (x2 + y2)ρ(x, y, z) dS

37.  Verify that the moment of inertia of a conical shell of uniform 
density about its axis is 12ma2, where m is the mass and a is the 
radius and height.

38.  Verify that the moment of inertia of a spherical shell of uniform 
density about its diameter is 2

3ma2, where m is the mass and a 
is the radius.

39.  Find the moment of inertia about the z-axis for the surface 
lamina x2 + y2 = a2, where 0 ≤ z ≤ h, with a uniform 
density of 1.

40.  Find the moment of inertia about the z-axis for the surface 
lamina z = x2 + y2, where 0 ≤ z ≤ h, with a uniform density 
of 1.

eXpLoRInG ConCeptS
41.  Using Different Methods Evaluate

 ∫
S
∫ (x + 2y) dS

 where S is the first-octant portion of the plane

 2x + 2y + z = 4

  by projecting S onto (a) the xy-plane, (b) the xz-plane, 
and (c) the yz-plane. Verify that all answers are the same.

 42.  hoW Do yoU SEE It? Is the surface 
shown in the figure orientable? Explain why or 
why not.

Double twist

 42.  

43. Investigation

 (a)  Use a computer algebra system to graph the vector-valued 
function

r(u, v) = (4 − v sin u) cos(2u)i + (4 − v sin u) sin(2u)j
+ v cos uk

   where 0 ≤ u ≤ π  and −1 ≤ v ≤ 1. This surface is called 
a Möbius strip.

 (b) Is the surface orientable? Explain why or why not.

 (c)  Use a computer algebra system to graph the space curve 
represented by r(u, 0). Identify the curve.

 (d)  Cut a strip of paper and draw a line lengthwise through the 
center. Construct a Möbius strip by making a single twist 
and pasting the ends of the strip of paper together.

 (e)  Cut the Möbius strip along the line you drew in part (c), 
and describe the result.

Consider the parametric surface given by the function

r(u, v) = a cosh u cos vi + a cosh u sin vj + b sinh uk.

(a)  Use a graphing utility to graph r for various values of the 
constants a and b. Describe the effect of the constants on the 
shape of the surface.

(b) Show that the surface is a hyperboloid of one sheet given by

 
x2

a2 +
y2

a2 −
z2

b2 = 1.

(c) For fixed values u = u0, describe the curves given by

 r(u0, v) = a cosh u0 cos vi + a cosh u0 sin vj + b sinh u0k.

(d) For fixed values v = v0, describe the curves given by

 r(u, v0) = a cosh u cos v0 i + a cosh u sin v0 j + b sinh uk.

(e) Find a normal vector to the surface at (u, v) = (0, 0).

hyperboloid of one Sheet
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1110 Chapter 15 Vector Analysis

15.7 Divergence Theorem

 Understand and use the Divergence Theorem.
 Use the Divergence Theorem to calculate flux.

Divergence Theorem
Recall from Section 15.4 that an alternative form of Green’s Theorem is

∫
C

 F ∙ N ds = ∫
R
∫ (∂M

∂x
+

∂N
∂y ) dA

 = ∫
R
∫ div F dA.

In an analogous way, the Divergence Theorem gives the relationship between a triple 
integral over a solid region Q and a surface integral over the surface of Q. In the statement 
of the theorem, the surface S is closed in the sense that it forms the complete boundary of 
the solid Q. Regions bounded by spheres, ellipsoids, cubes, tetrahedrons, or combinations 
of these surfaces are typical examples of closed surfaces. Let Q be a solid region on which 
a triple integral can be evaluated, and let S be a closed surface that is oriented by outward 
unit normal vectors, as shown in Figure 15.54. With these restrictions on S and Q, the 
Divergence Theorem can be stated as shown below the figure.

x

y

S1

S2

N

N

S1: Oriented by
upward unit normal vector

S2: Oriented by
downward unit normal vector

z

 Figure 15.54

THeOrem 15.12 The Divergence Theorem

Let Q be a solid region bounded by a closed surface S oriented by a unit 
normal vector directed outward from Q. If F is a vector field whose component 
functions have continuous first partial derivatives in Q, then

∫
S
∫ F ∙ N dS = ∫∫

Q

∫ div F dV.

remark As noted at the left above, the Divergence Theorem is sometimes called 
Gauss’s Theorem. It is also sometimes called Ostrogradsky’s Theorem, after the Russian 
mathematician Michel Ostrogradsky (1801–1861).

CARL FRIEDRICH GAUSS 
(1777–1855)

The Divergence Theorem is also 
called Gauss’s Theorem, after the 
famous German mathematician 
Carl Friedrich Gauss. Gauss is 
recognized, with Newton and 
Archimedes, as one of the 
three greatest mathematicians 
in history. One of his many 
contributions to mathematics 
was made at the age of 22, 
when, as part of his doctoral 
dissertation, he proved the 
Fundamental Theorem of Algebra.
See LarsonCalculus.com to read 
more of this biography.
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 15.7 Divergence Theorem 1111

Proof For F(x, y, z) = Mi + Nj + Pk, the theorem takes the form

 ∫
S
∫ F ∙ N dS = ∫

S
∫ (Mi ∙ N + Nj ∙ N + Pk ∙ N) dS

 = ∫∫
Q

∫ (∂M
∂x

+
∂N
∂y

+
∂P
∂z ) dV.

You can prove this by verifying that the following three equations are valid.

∫
S
∫ Mi ∙ N dS = ∫∫

Q

∫ 
∂M
∂x

 dV

∫
S
∫ Nj ∙ N dS = ∫∫

Q

∫ 
∂N
∂y

 dV

∫
S
∫ Pk ∙ N dS = ∫∫

Q

∫ 
∂P
∂z

 dV

Because the verifications of the three equations are similar, only the third is discussed. 
Restrict the proof to a simple solid region with upper surface

z = g2(x, y) Upper surface

and lower surface

z = g1(x, y) Lower surface

whose projections onto the xy-plane coincide and form region R. If Q has a lateral 
surface like S3 in Figure 15.55, then a normal vector is horizontal, which implies that 
Pk ∙ N = 0. Consequently, you have

∫
S
∫ Pk ∙ N dS = ∫

S1

∫ Pk ∙ N dS + ∫
S2

∫ Pk ∙ N dS + 0.

On the upper surface S2, the outward normal vector is upward, whereas on the lower 
surface S1, the outward normal vector is downward. So, by Theorem 15.11, you have 

 ∫
S1

∫ Pk ∙ N dS = ∫
R
∫ P(x, y, g1(x, y))k ∙ (∂g1

∂x
i +

∂g1

∂y
j − k) dA

 = −∫
R
∫ P(x, y, g1(x, y)) dA

and

 ∫
S2

∫ Pk ∙ N dS = ∫
R
∫ P(x, y, g2(x, y))k ∙ (−∂g2

∂x
i −

∂g2

∂y
j + k) dA

 = ∫
R
∫ P(x, y, g2(x, y)) dA.

Adding these results, you obtain

 ∫
S
∫ Pk ∙ N dS = ∫

R
∫ [P(x, y, g2(x, y)) − P(x, y, g1(x, y))] dA

 = ∫
R
∫[∫g2(x, y)

g1(x, y)
 
∂P
∂z

 dz] dA

 = ∫∫
Q

∫ 
∂P
∂z

 dV.  

S1: z = g1(x, y)

x
y

S1

S2

S3

N (upward)

N (horizontal)

N (downward)

R

z

S2: z = g2(x, y)

Figure 15.55

remark This proof is 
restricted to a simple solid 
region. The general proof is  
best left to a course in  
advanced calculus.
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1112 Chapter 15 Vector Analysis

Even though the Divergence Theorem was stated for a simple solid region Q 
bounded by a closed surface, the theorem is also valid for regions that are the finite 
unions of simple solid regions. For example, let Q be the solid bounded by the closed 
surfaces S1 and S2, as shown in Figure 15.56. To apply the Divergence Theorem to this 
solid, let S = S1 ∪ S2. The normal vector N to S is given by −N1 on S1 and by N2 on 
S2. So, you can write

 ∫∫
Q

∫ div F dV = ∫
S
∫ F ∙ N dS

 = ∫
S1

∫ F ∙ (−N1) dS + ∫
S2

∫ F ∙ N2 dS

 = −∫
S1

∫ F ∙ N1 dS + ∫
S2

∫ F ∙ N2 dS.

For the remainder of this section, you will apply the Divergence Theorem to simple 
solid regions bounded by closed surfaces.

 Using the Divergence Theorem

Let Q be the solid region bounded by the coordinate planes and the plane

2x + 2y + z = 6

and let F = xi + y2j + zk. Find ∫
S
∫F ∙ N dS, where S is the surface of Q.

Solution From Figure 15.57, you can see that Q is bounded by four subsurfaces. So, 
you would need four surface integrals to evaluate

∫
S
∫ F ∙ N dS.

However, by the Divergence Theorem, you need only one triple integral. Because

div F =
∂M
∂x

+
∂N
∂y

+
∂P
∂z

= 1 + 2y + 1 = 2 + 2y

you have

 ∫
S
∫ F ∙ N dS = ∫∫

Q

∫ div F dV

 = ∫3

0
∫3−y

0
∫6−2x−2y

0
 (2 + 2y) dz dx dy

 = ∫3

0
∫3−y

0
 (2z + 2yz)]

6−2x−2y

0
 dx dy

 = ∫3

0
∫3−y

0
 (12 − 4x + 8y − 4xy − 4y2) dx dy

 = ∫3

0
 [12x − 2x2 + 8xy − 2x2y − 4xy2]

3−y

0
 dy

 = ∫3

0
 (18 + 6y − 10y2 + 2y3) dy

 = [18y + 3y2 −
10y3

3
+

y4

2 ]
3

0

 =
63
2

.  

x

y

4 3

3
4

6

S4

z

S2: yz-plane

S1: xz-plane

S3: xy-plane
S4: 2x + 2y + z = 6

Figure 15.57

x
y

−N1

N2

z

S2

S1

Figure 15.56
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 15.7 Divergence Theorem 1113

 Verifying the Divergence Theorem

Let Q be the solid region between the paraboloid

z = 4 − x2 − y2

and the xy-plane. Verify the Divergence Theorem for

F(x, y, z) = 2zi + xj + y2k.

Solution From Figure 15.58, you can see that the outward normal vector for the 
surface S1 is N1 = −k, whereas the outward normal vector for the surface S2 is

N2 =
2xi + 2yj + k
√4x2 + 4y2 + 1

.

So, by Theorem 15.11, you have

 ∫
S
∫ F ∙ N dS = ∫

S1

∫ F ∙ N1 dS + ∫
S2

∫ F ∙ N2 dS

 = ∫
S1

∫ F ∙ (−k) dS + ∫
S2

∫ F ∙ (2xi + 2yj + k)
√4x2 + 4y2 + 1

 dS

 = ∫
R
∫ −y2 dA + ∫

R
∫ (4xz + 2xy + y2) dA

 = −∫2

−2
∫√4−y2

−√4−y2

 y2 dx dy + ∫2

−2
∫√4−y2

−√4−y2

 (4xz + 2xy + y2) dx dy

 = ∫2

−2
∫√4−y2

−√4−y2

 (4xz + 2xy) dx dy

 = ∫2

−2
∫√4−y2

−√4−y2

 [4x(4 − x2 − y2) + 2xy] dx dy

 = ∫2

−2
∫√4−y2

−√4−y2

 (16x − 4x3 − 4xy2 + 2xy) dx dy

 = ∫2

−2
[8x2 − x4 − 2x2y2 + x2y]

√4−y2

−√4−y2
 dy

  = ∫2

−2
 0 dy

 = 0.

On the other hand, because

 div F =
∂
∂x

[2z] +
∂
∂y

[x] +
∂
∂z

[y2]

 = 0 + 0 + 0

 = 0

you can apply the Divergence Theorem to obtain the equivalent result

 ∫
S
∫ F ∙ N dS = ∫∫

Q

∫ div F dV

 = ∫∫
Q

∫ 0 dV

 = 0.  

y
x

22

4

R: x2 + y2 ≤ 4

N1 = −k

N2

z

S2: z = 4 − x2 − y2

S1: z = 0

Figure 15.58
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1114 Chapter 15 Vector Analysis

 Using the Divergence Theorem

Let Q be the solid bounded by the cylinder x2 + y2 = 4, the plane x + z = 6, and the 
xy-plane, as shown in Figure 15.59. Find

∫
S
∫ F ∙ N dS

where S is the surface of Q and

F(x, y, z) = (x2 + sin z)i + (xy + cos z)j + eyk.

Solution Direct evaluation of this surface integral would be difficult. However, by 
the Divergence Theorem, you can evaluate the integral as follows.

∫
S
∫ F ∙ N dS = ∫∫

Q

∫ div F dV = ∫∫
Q

∫ (2x + x + 0) dV = ∫∫
Q

∫ 3x dV

Next, use cylindrical coordinates with x = r cos θ and dV = r dz dr dθ.

 ∫∫
Q

∫ 3x dV = ∫2π

0
∫2

0
∫6−r cos θ

0
 (3r cos θ)r dz dr dθ  Cylindrical coordinates

 = ∫2π

0
∫2

0
 (18r2 cos θ − 3r3 cos2 θ) dr dθ

 = ∫2π

0
 (48 cos θ − 12 cos2 θ) dθ

 = [48 sin θ − 6(θ +
1
2

 sin 2θ)]
2π

0

 = −12π  

Flux and the Divergence Theorem
To help understand the Divergence Theorem, consider the two sides of the equation

∫
S
∫ F ∙ N dS = ∫∫

Q

∫ div F dV.

You know from Section 15.6 that the flux integral on the left determines the total fluid 
flow across the surface S per unit of time. This can be approximated by summing 
the fluid flow across small patches of the surface. The triple integral on the right  
measures this same fluid flow across S but from a very different perspective—namely, 
by calculating the flow of fluid into (or out of) small cubes of volume ∆Vi. The flux 
of the ith cube is approximately div F(xi, yi, zi) ∆Vi for some point (xi, yi, zi) in the ith 
cube. Note that for a cube in the interior of Q, the gain (or loss) of fluid through any 
one of its six sides is offset by a corresponding loss (or gain) through one of the sides of 
an adjacent cube. After summing over all the cubes in Q, the only fluid flow that is not 
canceled by adjoining cubes is that on the outside edges of the cubes on the boundary. 
So, the sum

∑
n

i=1
 div F(xi, yi, zi) ∆Vi

approximates the total flux into (or out of) Q and therefore through the surface S.
To see what is meant by the divergence of F at a point, consider ∆Vα to be the 

volume of a small sphere Sα of radius α and center (x0, y0, z0) contained in region Q,
as shown in Figure 15.60.

x
y

6

7

8

9

2 2

z

Cylinder:
x2 + y2 = 4

Plane:
x + z = 6

Figure 15.59

x
y

(x0, y0, z0)

S

Solid
region Q

α

z

Figure 15.60
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 15.7 Divergence Theorem 1115

Applying the Divergence Theorem to Sα produces

Flux of F across Sα = ∫∫
Qα

∫ div F dV ≈ div F(x0, y0, z0) ∆Vα

where Qα is the interior of Sα. Consequently, you have

div F(x0, y0, z0) ≈
flux of F across Sα

∆Vα
.

By taking the limit as α→ 0, you obtain the divergence of F at the point (x0, y0, z0).

div F(x0, y0, z0) =  lim
α→0

 
flux of F across Sα

∆Vα
= flux per unit volume at (x0, y0, z0)

The point (x0, y0, z0) in a vector field is classified as a source, a sink, or incompressible, 
as shown in the list below.

1. Source, for div F > 0 See Figure 15.61(a).

2. Sink, for div F < 0 See Figure 15.61(b).

3. Incompressible, for div F = 0 See Figure 15.61(c).

  

(a) Source: div F > 0 (b) Sink: div F < 0 (c) Incompressible: div F = 0

Figure 15.61

 Calculating Flux by the Divergence Theorem

See LarsonCalculus.com for an interactive version of this type of example.

Let Q be the region bounded by the sphere x2 + y2 + z2 = 4. Find the outward flux of 
the vector field F(x, y, z) = 2x3i + 2y3j + 2z3k through the sphere.

Solution By the Divergence Theorem, you have

Flux across S = ∫
S
∫ F ∙ N dS = ∫∫

Q

∫ div F dV = ∫∫
Q

∫ 6(x2 + y2 + z2) dV.

Next, use spherical coordinates with ρ2 = x2 + y2 + z2 and dV = ρ2 sin ϕ dθ dϕ dρ.

 ∫∫
Q

∫ 6(x2 + y2 + z2) dV = 6∫2

0
∫π

0
∫2π

0
 ρ4 sin ϕ dθ dϕ dρ Spherical coordinates

 = 6∫2

0
∫π

0
 2πρ4 sin ϕ dϕ dρ

 = 12π∫2

0
 2ρ4 dρ

 = 24π(32
5 )

 =
768π

5
.  

remark In hydrodynamics, 
a source is a point at which  
additional fluid is considered as 
being introduced to the region 
occupied by the fluid. A sink  
is a point at which fluid is  
considered as being removed.
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1116 Chapter 15 Vector Analysis

15.7 exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Using Different methods Suppose that a solid 

region Q is bounded by z = x2 + y2 and z = 2, as shown 
in the figure. What methods can you use to evaluate 
∫S∫ F ∙ N dS, where F = 2xi + 3yj − z2k? Which 
method do you prefer?

yx

−1
−2

2
2

3

1
1

z

2.  Classifying a Point in a Vector Field How do 
you determine whether a point (x0, y0, z0) in a vector field 
is a source, a sink, or incompressible?

 Verifying the Divergence Theorem In 
Exercises 3–8, verify the Divergence Theorem by 
evaluating

 ∫
S
∫ F ∙ N dS

 as a surface integral and as a triple integral.

3. F(x, y, z) = 2xi − 2yj + z2k

 S:  cube bounded by the planes x = 0, x = 1, y = 0, y = 1, 
z = 0, z = 1

x
y11

1

z  

y
x

2

3

2

z

Figure for 3 Figure for 4

4. F(x, y, z) = 2xi − 2yj + z2k

 S: cylinder x2 + y2 = 4, 0 ≤ z ≤ 3

5. F(x, y, z) = (2x − y)i − (2y − z)j + zk

 S:  surface bounded by the plane 2x + 4y + 2z = 12 and the 
coordinate planes

y

x

3

6

6

z

6. F(x, y, z) = xyi + zj + (x + y)k
 S:  surface bounded by the planes y = 4 and z = 4 − x and the 

coordinate planes

yx
4

4

4

z

7. F(x, y, z) = xzi + zyj + 2z2k

 S: surface bounded by z = 1 − x2 − y2 and z = 0

z

11

1

yx

8. F(x, y, z) = xy2i + yx2j + ek

 S: surface bounded by z = √x2 + y2 and z = 4

z

4
2

−4
−4

2
4

4

yx
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15.7 Divergence Theorem 1117

 Using the Divergence Theorem In Exercises 
9–18, use the Divergence Theorem to evaluate

 ∫
S
∫ F ∙ N dS

  and find the outward flux of F through the 
surface of the solid S bounded by the graphs of 
the equations. Use a computer algebra system to 
verify your results.

 9. F(x, y, z) = x2i + y2j + z2k

 S: x = 0, x = a, y = 0, y = a, z = 0, z = a

10. F(x, y, z) = x2z2i − 2yj + 3xyzk

 S: x = 0, x = a, y = 0, y = a, z = 0, z = a

11. F(x, y, z) = x2i − 2xyj + xyz2k

 S: z = √a2 − x2 − y2, z = 0

12. F(x, y, z) = xyi + yzj − yzk

 S: z = √a2 − x2 − y2, z = 0

13. F(x, y, z) = xi + yj + zk 14. F(x, y, z) = xyzj

S: x2 + y2 + z2 = 9  S: x2 + y2 = 4, z = 0, z = 5

15. F(x, y, z) = xi + y2j − zk

S: x2 + y2 = 25, z = 0, z = 7

16. F(x, y, z) = (xy2 + cos z)i + (x2y + sin z)j + ezk

S: z = 1
2√x2 + y2, z = 8

17. F(x, y, z) = xezi + yezj + ezk

 S: z = 4 − y, z = 0, x = 0, x = 6, y = 0

18. F(x, y, z) = xyi + 4yj + xzk

 S: x2 + y2 + z2 = 16

Classifying a Point In Exercises 19–22, a vector field and a 
point in the vector field are given. Determine whether the point 
is a source, a sink, or incompressible.

19. F(x, y, z) = 2i + yj + k, (2, 2, 1)
20. F(x, y, z) = e−xi − xy2j + ln zk, (0, −3, 1)

21. F(x, y, z) = sin xi + cos yj + z3 sin yk, (π2, π, 4)
22. F(x, y, z) = (4xy + z2)i + (2x2 + 6yz)j + 2xzk, (1, −4, 2)

23. Source Find a point that is a source in the vector field

 F(x, y, z) = x2yzi + xj − zk.

24. Sink Find a point that is a sink in the vector field

 F(x, y, z) = e−xi + 4yj + xyz2k.

EXPLORING CONCEPTS
25. Closed Surface What is the value of

 ∫
S
∫ curl F ∙ N dS

 for any closed surface S? Explain.

 26.  HOW DO YOU See IT? The graph of a vector 
field F is shown. Does the graph suggest that the 
divergence of F at P is positive, negative, or zero?

−2 2 4
x

−2

2

4

P

y

 26.  

27. Volume

 (a)  Use the Divergence Theorem to verify that the volume of 
the solid bounded by a surface S is

∫
S
∫ x dy dz = ∫

S
∫ y dz dx = ∫

S
∫ z dx dy.

 (b)  Verify the result of part (a) for the cube bounded by x = 0,
x = a, y = 0, y = a, z = 0, and z = a.

28.  Constant Vector Field For the constant vector field 
F(x, y, z) = a1i + a2j + a3k, verify the following integral for 
any closed surface S.

∫
S
∫ F ∙ N dS = 0

29.  Volume For the vector field F(x, y, z) = xi + yj + zk,
verify the following integral, where V is the volume of the 
solid bounded by the closed surface S.

∫
S
∫ F ∙ N dS = 3V

30.  Verifying an Identity For the vector field 
F(x, y, z) = xi + yj + zk, verify that

1
�F�∫S

∫ F ∙ N dS =
3

�F�∫∫
Q

∫ dV.

Proof In Exercises 31 and 32, prove the identity, assuming 
that Q, S, and N meet the conditions of the Divergence Theorem 
and that the required partial derivatives of the scalar functions 
f and g are continuous. The expressions DN f  and DN g are the 
derivatives in the direction of the vector N and are defined by
DN f = �f ∙ N and DN g = �g ∙ N.

31. ∫∫
Q

∫ ( f ∇2g + ∇f ∙ ∇g) dV = ∫
S
∫ fDNg dS

[Hint: Use div( fG) = f div G + ∇f ∙ G.]

32. ∫∫
Q

∫ ( f ∇2g − g∇2f ) dV = ∫
S
∫ ( f DNg − gDN f ) dS

(Hint: Use Exercise 31 twice.)
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1118 Chapter 15 Vector Analysis

15.8  Stokes’s Theorem15.8  Stokes’s Theorem

 Understand and use Stokes’s Theorem.
 Use curl to analyze the motion of a rotating liquid.

Stokes’s Theorem
A second higher-dimension analog of Green’s Theorem is called Stokes’s Theorem,
after the English mathematical physicist George Gabriel Stokes. Stokes was part of a 
group of English mathematical physicists referred to as the Cambridge School, which 
included William Thomson (Lord Kelvin) and James Clerk Maxwell. In addition to 
making contributions to physics, Stokes worked with infinite series and differential 
equations, as well as with the integration results presented in this section.

Stokes’s Theorem gives the relationship between a surface integral over an oriented 
surface S and a line integral along a closed space curve C forming the boundary of S,
as shown in Figure 15.62. The positive direction along C is counterclockwise relative 
to the normal vector N. That is, if you imagine grasping the normal vector N with your 
right hand, with your thumb pointing in the direction of N, then your fingers will point 
in the positive direction C, as shown in Figure 15.63.

y

x

C

R

N

Surface S

z   

N

S

C  An oriented surface S bounded by a closed space
curve C

 Figure 15.62  The positive direction along C is 
counterclockwise relative to N.

 Figure 15.63

THEOREM 15.13 Stokes’s Theorem

Let S be an oriented surface with unit normal vector N, bounded by a piecewise 
smooth simple closed curve C with a positive orientation. If F is a vector field 
whose component functions have continuous first partial derivatives on an open 
region containing S and C, then

∫
C

 F ∙ dr = ∫
S
∫ (curl F) ∙ N dS.

In Theorem 15.13, note that the line integral may be written in the differential form 
∫C M dx + N dy + P dz or in the vector form ∫C F ∙ T ds.

GEORGE GABRIEL STOKES
(1819–1903)

Stokes became a Lucasian 
professor of mathematics at 
Cambridge in 1849. Five years 
later, he published the theorem 
that bears his name as a prize 
examination question there.
See LarsonCalculus.com to read 
more of this biography.

Bettmann/Getty Images
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 15.8 Stokes’s Theorem 1119

 Using Stokes’s Theorem

Let C be the oriented triangle lying in the plane

2x + 2y + z = 6

as shown in Figure 15.64. Evaluate

∫
C

 F ∙ dr

where F(x, y, z) = −y2i + zj + xk.

Solution Using Stokes’s Theorem, begin by finding the curl of F.

curl F = ∣ i
∂
∂x

−y2

 j

 
∂
∂y
 z

k
∂
∂z
x ∣ = −i − j + 2yk

Considering

z = g(x, y) = 6 − 2x − 2y

you can use Theorem 15.11 for an upward normal vector to obtain

 ∫
C

 F ∙ dr = ∫
S
∫ (curl F) ∙ N dS

 = ∫
R
∫ (−i − j + 2yk) ∙ [−gx(x, y)i − gy(x, y)j + k] dA

 = ∫
R
∫ (−i − j + 2yk) ∙ (2i + 2j + k) dA

 = ∫3

0
∫3−y

0
 (2y − 4) dx dy

 = ∫3

0
 (−2y2 + 10y − 12) dy

 = [−2y3

3
+ 5y2 − 12y]

3

0

 = −9. 

Try evaluating the line integral in Example 1 directly, without using Stokes’s 
Theorem. One way to do this would be to consider C as the union of C1, C2, and C3, 
as follows.

C1: r1(t) = (3 − t)i + tj, 0 ≤ t ≤ 3

C2: r2(t) = (6 − t)j + (2t − 6)k, 3 ≤ t ≤ 6

C3: r3(t) = (t − 6)i + (18 − 2t)k, 6 ≤ t ≤ 9

The value of the line integral is

 ∫
C

 F ∙ dr = ∫
C1

 F ∙ r1′(t) dt + ∫
C2

 F ∙ r2′(t) dt + ∫
C3

F ∙ r3′(t) dt

 = ∫3

0
 t2 dt + ∫6

3
 (−2t + 6) dt + ∫9

6
 (−2t + 12) dt

 = 9 − 9 − 9

 = −9.

y

x

C1

C2
C3

3 3

6

N (upward)

R

z

S: 2x + 2y + z = 6

x + y = 3

Figure 15.64
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1120 Chapter 15 Vector Analysis

 Verifying Stokes’s Theorem

See LarsonCalculus.com for an interactive version of this type of example.

Let S be the portion of the paraboloid

z = 4 − x2 − y2

lying above the xy-plane, oriented upward (see Figure 15.65). Let C be its boundary 
curve in the xy-plane, oriented counterclockwise. Verify Stokes’s Theorem for

F(x, y, z) = 2zi + xj + y2k

by evaluating the surface integral and the equivalent line integral.

Solution As a surface integral, you have z = g(x, y) = 4 − x2 − y2, gx = −2x, 
gy = −2y, and

curl F = ∣ i
∂
∂x
2z

j
∂
∂y
x

k
∂
∂z
y2∣ = 2yi + 2j + k.

By Theorem 15.11 (for an upward normal vector), you obtain

 ∫
S
∫ (curl F) ∙ N dS = ∫

R
∫ (2yi + 2j + k) ∙ (2xi + 2yj + k) dA

 = ∫2

−2
∫√4−x2

−√4−x2

 (4xy + 4y + 1) dy dx

 = ∫2

−2
[2xy2 + 2y2 + y]

√4−x2

−√4−x2
 dx

 = ∫2

−2
 2√4 − x2 dx

 = Area of circle of radius 2

 = 4π.

As a line integral, you can parametrize C as

r(t) = 2 cos ti + 2 sin tj + 0k, 0 ≤ t ≤ 2π.

For F(x, y, z) = 2zi + xj + y2k, you obtain

 ∫
C

 F ∙ dr = ∫
C

 M dx + N dy + P dz

 = ∫
C

 2z dx + x dy + y2 dz

 = ∫2π

0
 [0 + (2 cos t)(2 cos t) + 0] dt

 = ∫2π

0
 4 cos2 t dt

 = 2∫2π

0
 (1 + cos 2t) dt

 = 2[t +
1
2

 sin 2t]
2π

0

 = 4π. 

y

x

z

3

−3
3

4

R

N (upward)

S

R: x2 + y2 ≤ 4

C

S: z = 4 − x2 − y2

Figure 15.65
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 15.8 Stokes’s Theorem 1121

Physical Interpretation of Curl
Stokes’s Theorem provides insight into a physical interpretation of curl. In a vector 
field F, let Sα be a small circular disk of radius α, centered at (x, y, z) and with boundary Cα, 
as shown in Figure 15.66. At each point on the circle Cα, F has a normal component 
F ∙ N and a tangential component F ∙ T. The more closely F and T are aligned, the 
greater the value of F ∙ T. So, a fluid tends to move along the circle rather than across 
it. Consequently, you say that the line integral around Cα measures the circulation of F 
around Cα. That is,

∫
Cα

 F ∙ T ds = circulation of F around Cα.

Now consider a small disk Sα to be  

( , , )x  y  z

N

curl F

Sα

S

Figure 15.67

centered at some point (x, y, z) on the surface  
S, as shown in Figure 15.67. On such a small 
disk, curl F is nearly constant, because it varies 
little from its value at (x, y, z). Moreover,  
(curl F) ∙ N is also nearly constant on Sα 
because all unit normals to Sα are about the 
same. Consequently, Stokes’s Theorem yields

 ∫
Cα

 F ∙ T ds = ∫
Sα
∫ (curl F) ∙ N dS

 ≈ (curl F) ∙ N∫
Sα
∫ dS

 ≈ (curl F) ∙ N(πα2).

So,

 (curl F) ∙ N ≈
∫

Cα

 F ∙ T ds

πα2

 =
circulation of F around Cα

area of disk Sα
 = rate of circulation.

Assuming conditions are such that the approximation improves for smaller and smaller 
disks (α→ 0), it follows that

(curl F) ∙ N = lim
α→0

 
1

πα2 ∫
Cα

 F ∙ T ds

which is referred to as the rotation of F about N. That is,

curl F(x, y, z) ∙ N = rotation of F about N at (x, y, z).

In this case, the rotation of F is maximum when curl F and N have the same direction. 
Normally, this tendency to rotate will vary from point to point on the surface S, and 
Stokes’s Theorem

∫
S
∫ (curl F) ∙ N dS = ∫

C

 F ∙ dr

 Surface integral Line integral

says that the collective measure of this rotational tendency taken over the entire surface 
S (surface integral) is equal to the tendency of a fluid to circulate around the boundary 
C (line integral).

α

( , , )x  y  z

Disk S

T

F

N

F · T

F · NCα

α

Figure 15.66
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 An Application of Curl

A liquid is swirling around in a cylindrical  

y

x
2

2

z

container of radius 2, so that its motion is 
described by the velocity field

F(x, y, z) = −y√x2 + y2i + x√x2 + y2j

as shown in the figure. Find

∫
S
∫ (curl F) ∙ N dS

where S is the upper surface of the cylindrical 
container.

Solution The curl of F is given by

curl F = ∣ i
∂
∂x

−y√x2 + y2

j
∂
∂y

x√x2 + y2

k
∂
∂z

0 ∣ = 3√x2 + y2k.

Letting N = k, you have

 ∫
S
∫ (curl F) ∙ N dS = ∫

R
∫ 3√x2 + y2 dA

 = ∫2π

0
∫2

0
 (3r)r dr dθ

 = ∫2π

0
 r3]

2

0
 dθ

 = ∫2π

0
 8 dθ

 = 16π. 

If curl F = 0 throughout region Q, then the rotation of F about each unit normal N
is 0. That is, F is irrotational. From Section 15.1, you know that this is a characteristic 
of conservative vector fields.

SUMMARY OF INTEGRATION FORMULAS

Fundamental Theorem of Calculus Fundamental Theorem of Line Integrals

∫b

a

 F′(x) dx = F(b) − F(a) ∫
C

 F ∙ dr = ∫
C

 ∇f ∙ dr = f(x(b), y(b)) − f(x(a), y(a))

Green’s Theorem

∫
C

 M dx + N dy = ∫
R
∫ (∂N

∂x
−

∂M
∂y ) dA = ∫

C

 F ∙ T ds = ∫
C

 F ∙ dr = ∫
R
∫ (curl F) ∙ k dA

∫
C

 F ∙ N ds = ∫
R
∫ div F dA

Divergence Theorem Stokes’s Theorem

∫
S
∫ F ∙ N dS = ∫∫

Q

∫ div F dV ∫
C

 F ∙ dr = ∫
S
∫ (curl F) ∙ N dS
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15.8 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Stokes’s Theorem Explain the benefit of Stokes’s 

Theorem when the boundary of the surface is a piecewise 
curve.

2.  Curl What is the physical interpretation of curl?

 Verifying Stokes’s Theorem In Exercises 
3–6, verify Stokes’s Theorem by evaluating 
∫C F ∙ dr as a line integral and as a double integral.

 3. F(x, y, z) = (−y + z)i + (x − z)j + (x − y)k
 S: z = 9 − x2 − y2, z ≥ 0

 4. F(x, y, z) = (−y + z)i + (x − z)j + (x − y)k
 S: z = √1 − x2 − y2

 5. F(x, y, z) = xyzi + yj + zk

 S: 6x + 6y + z = 12, first octant

 6. F(x, y, z) = z2i + x2j + y2k

 S: z = y2, 0 ≤ x ≤ a, 0 ≤ y ≤ a

 Using Stokes’s Theorem In Exercises 7–16, 
use Stokes’s Theorem to evaluate ∫C F ∙ dr. In 
each case, C is oriented counterclockwise as viewed 
from above.

 7. F(x, y, z) = 2yi + 3zj + xk

 C: triangle with vertices (2, 0, 0), (0, 2, 0), and (0, 0, 2)
 8. F(x, y, z) = 4zi + x2j + eyk

 C: triangle with vertices (4, 0, 0), (0, 2, 0), and (0, 0, 8)
 9. F(x, y, z) = z2i + 2xj + y2k

 S: z = 1 − x2 − y2, z ≥ 0

10. F(x, y, z) = 4xzi + yj + 4xyk

 S: z = 9 − x2 − y2, z ≥ 0

11. F(x, y, z) = z2i + yj + zk

 S: z = √4 − x2 − y2

12. F(x, y, z) = x2i + z2j − xyzk

 S: z = √4 − x2 − y2

13. F(x, y, z) = −ln√x2 + y2 i + arctan
x
y
 j + k

 S: z = 9 − 2x − 3y over r = 2 sin 2θ in the first octant

14. F(x, y, z) = yzi + (2 − 3y)j + (x2 + y2)k, x2 + y2 ≤ 16

 S: the first-octant portion of x2 + z2 = 16 over x2 + y2 = 16

15. F(x, y, z) = xyzi + yj + zk

 S: z = x2, 0 ≤ x ≤ a, 0 ≤ y ≤ a

16. F(x, y, z) = xyzi + yj + zk, x2 + y2 ≤ a2

 S: the first-octant portion of z = x2 over x2 + y2 = a2

 Motion of a Liquid In Exercises 17 and 18, 
the motion of a liquid in a cylindrical container of 
radius 3 is described by the velocity field F(x, y, z).
Find ∫S∫ (curl F) ∙ N dS, where S is the upper 
surface of the cylindrical container.

17. F(x, y, z) = −1
6 y3i + 1

6x3j + 5k

18. F(x, y, z) = −zi + y2k

EXPLORING CONCEPTS
19.  Think About It Let K be a constant vector. Let S be 

an oriented surface with a unit normal vector N, bounded 
by a smooth curve C. Determine whether

∫
S
∫ K ∙ N dS =

1
2∫C

 (K × r) ∙ dr.

 Explain. (Hint: Use r = xi + yj + zk.)

 20.  HOW DO YOU SEE IT? Let S1 be the 
portion of the paraboloid lying above the
xy-plane, and let S2 be the hemisphere, as 
shown in the figures. Both surfaces are oriented 
upward. For a vector field F(x, y, z) with 
continuous partial derivatives, does

∫
S1

∫ (curl F) ∙ N dS1 = ∫
S2

∫ (curl F) ∙ N dS2?

  Explain your reasoning.

y

S1
2a

a

x

aa
−a

z

S2

2a

a

y

x

aa
−a

z

 20.  

PUTNAM EXAM CHALLENGE

21. Let G(x, y) = ( −y
x2 + 4y2, 

x
x2 + 4y2, 0).

  Prove or disprove that there is a vector-valued function 
F(x, y, z) = (M(x, y, z), N(x, y, z), P(x, y, z)) with the 
following properties:

 (i)  M, N, P have continuous partial derivatives for all 
(x, y, z) ≠ (0, 0, 0);

 (ii) Curl F = 0 for all (x, y, z) ≠ (0, 0, 0);
 (iii) F(x, y, 0) = G(x, y).
This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.
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Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Sketching a Vector Field In Exercises 1 and 2, find �F� 
and sketch several representative vectors in the vector field. 
Use a computer algebra system to verify your results.

 1. F(x, y, z) = xi + j + 2k  2. F(x, y) = i − 2yj

Finding a Conservative Vector Field In Exercises 3–6, 
find the conservative vector field for the potential function by 
finding its gradient.

 3. f (x, y) = sin xy − y2

 4. f (x, y) = √xy

 5. f (x, y, z) = 2x2 + xy + z2

 6. f (x, y, z) = x2eyz

Testing for a Conservative Vector Field In Exercises 
7–10, determine whether the vector field is conservative.

 7. F(x, y) = cosh yi + x sinh xj

 8. F(x, y) =
y ln x

x
i + (ln x)2 j

 9. F(x, y, z) = y2i + 2xyj + cos zk

10. F(x, y, z) = 3exyi + 3ex+yj + e3yzk

Finding a Potential Function In Exercises 11–18, determine 
whether the vector field is conservative. If it is, find a potential 
function for the vector field.

11. F(x, y) = −
y
x2 i +

1
x

j 12. F(x, y) =
1
y

i −
y
x2 j

13. F(x, y) = (xy2 − x2)i + (x2y + y2)j
14. F(x, y) = (−2y3 sin 2x)i + 3y2(1 + cos 2x)j
15. F(x, y, z) = 4xy2i + 2x2j + 2zk

16. F(x, y, z) = (4xy + z2)i + (2x2 + 6yz)j + 2xzk

17. F(x, y, z) =
yzi − xzj − xyk

y2z2

18. F(x, y, z) = (sin z)(yi + xj + k)

Divergence and Curl In Exercises 19–26, find (a) the 
divergence of the vector field and (b) the curl of the vector 
field.

19. F(x, y, z) = x2i + xy2j + x2zk

20. F(x, y, z) = y2j − z2k

21. F(x, y, z) = (cos y + y cos x)i + (sin x − x sin y)j + xyzk

22. F(x, y, z) = (3x − y)i + (y − 2z)j + (z − 3x)k
23. F(x, y, z) = arcsin xi + xy2j + yz2k

24. F(x, y, z) = (x2 − y)i − (x + sin2 y)j
25. F(x, y, z) = ln(x2 + y2)i + ln(x2 + y2)j + zk

26. F(x, y, z) =
z
x

i +
z
y

j + z2k

Evaluating a Line Integral In Exercises 27–30, evaluate 
the line integral along the given path(s).

27. ∫
C

 (x2 + y2) ds

 (a) C: line segment from (0, 0) to (3, 4)
 (b) C:  one revolution counterclockwise around the circle 

x2 + y2 = 1, starting at (1, 0)

28. ∫
C

 xy ds

 (a) C: line segment from (0, 0) to (5, 4)
 (b) C:  counterclockwise around the triangle with vertices 

(0, 0), (4, 0), and (0, 2)

29. ∫
C

 (x2 + y2) ds

 C: r(t) = (1 − sin t)i + (1 − cos t)j, 0 ≤ t ≤ 2π

30. ∫
C

 (x2 + y2) ds

 C: r(t) = (cos t + t sin t)i + (sin t − t cos t)j, 0 ≤ t ≤ 2π

Evaluating a Line Integral Using Technology In 
Exercises 31 and 32, use a computer algebra system to evaluate 
the line integral along the given path.

31. ∫
C

 (2x + y) ds

 C: r(t) = a cos3 ti + a sin3 tj, 0 ≤ t ≤
π
2

32. ∫
C

 (x2 + y2 + z2) ds

 C: r(t) = ti + t2j + t3�2k, 0 ≤ t ≤ 4

Mass In Exercises 33 and 34, find the total mass of the wire 
with density ρ whose shape is modeled by r.

33. r(t) = 3 cos ti + 3 sin tj, 0 ≤ t ≤ π, ρ(x, y) = 1 + x

34. r(t) = 3i + t2j + 2tk, 2 ≤ t ≤ 4, ρ(x, y, z) = xz

Evaluating a Line Integral of a Vector Field In Exercises

35–38, evaluate ∫
C
 F ∙ dr.

35. F(x, y) = xyi + 2xyj

 C: r(t) = t2i + t2j, 0 ≤ t ≤ 1

36. F(x, y) = (x − y)i + (x + y)j
 C: r(t) = 4 cos ti + 3 sin tj, 0 ≤ t ≤ 2π

37. F(x, y, z) = xi + yj + zk

 C: r(t) = 2 cos ti + 2 sin tj + tk, 0 ≤ t ≤ 2π

38. F(x, y, z) = (2y − z)i + (z − x)j + (x − y)k
 C:  r(t) = −3ti + (2t + 1)j + 4k, 0 ≤ t ≤ 2
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  Review Exercises 1125

Work In Exercises 39 and 40, find the work done by the 
force field F on a particle moving along the given path.

39. F(x, y) = xi − √yj

 C: x = t, y = t3�2 from (0, 0) to (4, 8)
 

x

y

2 4 6 8

2

4

6

8 (4, 8)

C

  

1 1

−1

2

C

π

π

z

yx

 Figure for 39 Figure for 40

40. F(x, y, z) = 2i + yj + zk

 C: r(t) = cos ti + sin tj + 2tk, 0 ≤ t ≤ π

Evaluating a Line Integral in Differential Form In

Exercises 41 and 42, evaluate ∫
C
 (y − x) dx + (2x + 5y) dy.

41.  C: line segments from (0, 0) to (2, −4) and (2, −4) to (4, −4)
42. C: arc on y = √x from (0, 0) to (9, 3)

Lateral Surface Area In Exercises 43 and 44, find the area 
of the lateral surface over the curve C in the xy-plane and 
under the surface z = f (x, y), where

Lateral surface area = ∫
C
  f (x, y) ds.

43. f (x, y) = 3 + sin(x + y); C: y = 2x from (0, 0) to (2, 4)
44. f (x, y) = 12 − x − y; C: y = x2 from (0, 0) to (2, 4)

Line Integral of a Conservative Vector Field In 
Exercises 45 and 46, (a) show that F is conservative and 

(b) verify that the value of ∫
C
 F ∙ dr is the same for each

parametric representation of C.

45. F(x, y) = (3x + 4)i + y3j

 (i) r(t) = ti + tj, 0 ≤ t ≤ 4

 (ii) r(w) = w2i + w2j, 0 ≤ w ≤ 2

46. F(x, y) = xyi + 1
2x2j

 (i) r(θ) = sin θ i + cos θ j, 0 ≤ θ ≤ π
2

 (ii) r(t) = ti + (1 − t)j, 0 ≤ t ≤ 1

Using the Fundamental Theorem of Line Integrals In

Exercises 47–50, evaluate ∫
C
 F ∙ dr using the Fundamental

Theorem of Line Integrals.

47. F(x, y) = e2xi + e2yj

 C: line segment from (−1, −1) to (0, 0)
48. F(x, y) = −sin yi − x cos yj

 C:  clockwise around the circle (x + 1)2 + y2 = 16 from 
(−1, 4) to (3, 0)

49. F(x, y, z) = 2xyzi + x2zj + x2yk

 C: smooth curve from (0, 0, 0) to (1, 3, 2)

50. F(x, y, z) = yi + xj +
1
z

k

 C: smooth curve from (0, 0, 1) to (4, 4, 4)

Finding Work in a Conservative Force Field In

Exercises 51 and 52, (a) show that ∫
C
 F ∙ dr is independent of

path and (b) calculate the work done by the force field F on an 
object moving along a curve from P to Q.

51. F(x, y) = (1 − 3xy2)i − 3x2yj; P(4, 2), Q(0, 1)
52. F(x, y) = e2yi + 2xe2yj; P(−1, 3), Q(4, 5)

Evaluating a Line Integral Using Green’s Theorem In 
Exercises 53–58, use Green’s Theorem to evaluate the line 
integral.

53. ∫
C

 y dx + 2x dy

 C: square with vertices (0, 0), (0, 1), (1, 0), and (1, 1)

54. ∫
C

 xy dx + (x2 + y2) dy

 C: square with vertices (0, 0), (0, 2), (2, 0), and (2, 2)

55. ∫
C

 xy2 dx + x2y dy

 C: x = 4 cos t, y = 4 sin t

56. ∫
C

 (x2 − y2) dx + 3y2 dy

 C: x2 + y2 = 9

57. ∫
C

 xy dx + x2 dy

 C:  boundary of the region between the graphs of y = x2 and 
y = 1

58. ∫
C

 y2 dx + x4�3 dy

 C: x2�3 + y2�3 = 1

Work In Exercises 59 and 60, use Green’s Theorem to 
calculate the work done by the force F on a particle that is 
moving counterclockwise around the closed path C.

59. F(x, y) = y2i + 2xyj

 C: x2 + y2 = 36

60. F(x, y) = 3i + (x3 + 1)j

 C:  boundary of the region lying between the graphs of y = x2 
and y = 4

Area In Exercises 61 and 62, use a line integral to find the 
area of the region R.

61.  R: triangle bounded by the graphs of y = 1
2x, y = 6 − x, and 

y = x

62. R: region bounded by the graphs of y = 3x and y = 4 − x2
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1126 Chapter 15 Vector Analysis

Sketching a Parametric Surface In Exercises 63 and 64, 
find the rectangular equation for the surface by eliminating 
the parameters from the vector-valued function. Identify the 
surface and sketch its graph.

63. r(u, v) = 3u cos vi + 3u sin vj + 18u2k

64. r(u, v) = 3(u + v)i + uj − 6vk

Graphing a Parametric Surface In Exercises 65 and 
66, use a computer algebra system to graph the surface 
represented by the vector-valued function.

65. r(u, v) = sec u cos vi + (1 + 2 tan u) sin vj + 2uk

 0 ≤ u ≤ π
3

, 0 ≤ v ≤ 2π

66. r(u, v) = e−u�4 cos vi + e−u�4 sin vj +
u
6

k

 0 ≤ u ≤ 4, 0 ≤ v ≤ 2π

Representing a Surface Parametrically In Exercises 
67 and 68, find a vector-valued function whose graph is the 
indicated surface.

67. The ellipsoid 
x2

1
+

y2

8
+

z2

9
= 1

68.  The part of the plane z = 2 that lies inside the cylinder 
x2 + y2 = 25

Representing a Surface of Revolution 
Parametrically In Exercises 69 and 70, write a set of 
parametric equations for the surface of revolution obtained by 
revolving the graph of the function about the given axis.

 Function Axis of Revolution

69. y = 2x3, 0 ≤ x ≤ 2 x-axis

70. z = √y + 1, 0 ≤ y ≤ 3 y-axis

Finding Surface Area In Exercises 71 and 72, find the area 
of the surface over the given region. Use a computer algebra 
system to verify your results.

71. r(u, v) = 4ui + (3u − v)j + vk

 0 ≤ u ≤ 3, 0 ≤ v ≤ 1

72. r(u, v) = 3u cos vi + 3u sin vj + uk

 0 ≤ u ≤ 2, 0 ≤ v ≤ 2π

Evaluating a Surface Integral In Exercises 73 and 74, 
evaluate

∫
S
∫ (5x + y − 2z) dS.

73. S: z = x +
y
2

, 0 ≤ x ≤ 2, 0 ≤ y ≤ 5

74. S: z = e2 − x, 0 ≤ x ≤ 4, 0 ≤ y ≤ √x

Mass In Exercises 75 and 76, find the mass of the surface 
lamina S of density ρ.

75. S: 2y + 6x + z = 18, first octant, ρ(x, y, z) = 2x

76. S: z = 20 − 4x − 5y, first octant, ρ(x, y, z) = ky

Evaluating a Surface Integral In Exercises 77 and 78, 

evaluate ∫
S
∫  f (x, y) dS.

77. f (x, y) = x + y

 S: r(u, v) = ui + vj + 5vk, 0 ≤ u ≤ 1, 0 ≤ v ≤ 3

78. f (x, y) = x2y

 S: r(u, v) = 5 cos ui + 5 sin uj + vk

 0 ≤ u ≤ π
2

, 0 ≤ v ≤ 1

Evaluating a Flux Integral In Exercises 79 and 80, find 
the flux of F across S,

∫
S
∫ F ∙ N dS

where N is the upward unit normal vector to S.

79. F(x, y, z) = −2i − 2j + k

 S: z = 25 − x2 − y2, z ≥ 0

80. F(x, y, z) = xi + 2yj + 2zk

 S: x + y + 3z = 3, first octant

Using the Divergence Theorem In Exercises 81 and 82, 
use the Divergence Theorem to evaluate

∫
S
∫ F ∙ N dS

and find the outward flux of F through the surface of the solid 
bounded by the graphs of the equations.

81. F(x, y, z) = x2i + xyj + zk

 Q:  solid region bounded by the coordinate planes and the 
plane 2x + 3y + 4z = 12

82. F(x, y, z) = xi + yj + zk

  Q:  solid region bounded by the coordinate planes and the 
plane 2x + 3y + 4z = 12

Using Stokes’s Theorem In Exercises 83 and 84, use 
Stokes’s Theorem to evaluate

∫
C
 F ∙ dr.

In each case, C is oriented counterclockwise as viewed from 
above.

83. F(x, y, z) = (cos y + y cos x)i + (sin x − x sin y)j + xyzk

  S:  portion of z = y2 over the square in the xy-plane with 
vertices (0, 0), (a, 0), (a, a), and (0, a)

84. F(x, y, z) = (x − z)i + (y − z)j + x2k

  S: first-octant portion of the plane 3x + y + 2z = 12

Motion of a Liquid In Exercises 85 and 86, the motion of a 
liquid in a cylindrical container of radius 4 is described by the

velocity field F(x, y, z). Find ∫
S
∫ (curl F) ∙ N dS, where S is the

upper surface of the cylindrical container.

85. F(x, y, z) = i + xj − k 86. F(x, y, z) = y2i + 3zj + k
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P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Heat Flux Consider a single heat source located at the origin 
with temperature

 T(x, y, z) =
25

√x2 + y2 + z2
.

 (a) Calculate the heat flux across the surface

 S = {(x, y, z): z = √1 − x2, −
1
2

≤ x ≤
1
2

, 0 ≤ y ≤ 1}
 as shown in the figure.

1

2

1 1

z

y
x

S

N

 (b) Repeat the calculation in part (a) using the parametrization

 x = cos u, y = v, z = sin u

 where

 
π
3

≤ u ≤
2π
3

 and 0 ≤ v ≤ 1.

2.  Heat Flux Consider a single heat source located at the origin 
with temperature

 T(x, y, z) =
25

√x2 + y2 + z2
.

 (a) Calculate the heat flux across the surface

 S = {(x, y, z): z = √1 − x2 − y2, x2 + y2 ≤ 1}
 as shown in the figure.

 

1

1 1

z

y
x

S
N

 (b) Repeat the calculation in part (a) using the parametrization

 x = sin u cos v, y = sin u sin v, z = cos u

 where

 0 ≤ u ≤
π
2

 and 0 ≤ v ≤ 2π.

3.  Moments of Inertia Consider a wire of density ρ(x, y, z) 
given by the space curve

 C: r(t) = x(t)i + y(t)j + z(t)k, a ≤ t ≤ b.

 The moments of inertia about the x-, y-, and z-axes are given by

 Ix = ∫C (y2 + z2)ρ(x, y, z) ds

 Iy = ∫C (x2 + z2)ρ(x, y, z) ds

 Iz = ∫C (x2 + y2)ρ(x, y, z) ds.

  Find the moments of inertia for a wire of uniform density ρ = 1 
in the shape of the helix

 r(t) = 3 cos ti + 3 sin tj + 2tk, 0 ≤ t ≤ 2π  (see figure).

x
y2

2

2

4

6

8

10

12

r(t) = 3 cos t i + 3 sin t j + 2tk
z

  

z

x y1
2

1

1

2

t2
i + t j +r(t) = k

2
2   2t3/2

3

 Figure for 3 Figure for 4

4.  Moments of Inertia Using the formulas from Exercise 3,

  find the moments of inertia for a wire of density ρ =
1

1 + t
 

 given by the curve

 C: r(t) =
t2

2
i + tj +

2√2 t3�2

3
k, 0 ≤ t ≤ 1 (see figure).

5.  Laplace’s Equation Let F(x, y, z) = xi + yj + zk, and 
let f (x, y, z) = �F(x, y, z)�.

 (a) Show that ∇(ln f ) =
F
f 2.

 (b) Show that ∇(1
f ) = −

F
f 3.

 (c) Show that ∇f n = nf n−2F.

 (d) The Laplacian is the differential operator

  ∇2 = ∇ ∙ ∇ =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

  and Laplace’s equation is

  ∇2w =
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2 = 0.

   Any function that satisfies this equation is called harmonic. 
Show that the function w = 1�f  is harmonic.
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1128 Chapter 15 Vector Analysis

6. Green’s Theorem Consider the line integral

 ∫
C

 yn dx + xn dy

  where C is the boundary of the region lying between the graphs 
of y = √a2 − x2, a > 0, and y = 0.

 (a)  Use a computer algebra system to verify Green’s Theorem 
for n, an odd integer from 1 through 7.

 (b)  Use a computer algebra system to verify Green’s Theorem 
for n, an even integer from 2 through 8.

 (c)  For n an odd integer, make a conjecture about the value of 
the integral.

7.  Area Use a line integral to find the area bounded by one  
arch of the cycloid x(θ) = a(θ − sin θ), y(θ) = a(1 − cos θ), 
0 ≤ θ ≤ 2π, as shown in the figure.

x
2  a

2a

π

y   

x
1−1

−1

1

y

 Figure for 7 Figure for 8

8.  Area Use a line integral to find the area bounded by the two 
loops of the eight curve

 x(t) =
1
2

 sin 2t, y(t) = sin t, 0 ≤ t ≤ 2π

 as shown in the figure.

9.  Work The force field F(x, y) = (x + y)i + (x2 + 1)j acts 
on an object moving from the point (0, 0) to the point (0, 1), as 
shown in the figure.

y

x

1

1

 (a)  Find the work done when the object moves along the path 
x = 0, 0 ≤ y ≤ 1.

 (b)  Find the work done when the object moves along the path 
x = y − y2, 0 ≤ y ≤ 1.

 (c)  The object moves along the path x = c(y − y2), 0 ≤ y ≤ 1, 
c > 0. Find the value of the constant c that minimizes the 
work.

10.  Work The force field F(x, y) = 3x2y2 i + 2x3yj is shown in 
the figure below. Three particles move from the point (1, 1) to 
the point (2, 4) along different paths. Explain why the work 
done is the same for each particle and find the value of the 
work.

y

x

6

5

4

3

2

1

1 2 3 4 5 6

11.  Area and Work How does the area of the ellipse

 
x2

a2 +
y2

b2 = 1 

  compare with the magnitude of the work done by the force 
field

 F(x, y) = −
1
2

yi +
1
2

xj

 on a particle that moves once around the ellipse (see figure)?

y

x
1

1

−1

−1

12.  Verifying Identities

 (a)  Let f  and g be scalar functions with continuous partial 
derivatives, and let C and S satisfy the conditions of 
Stokes’s Theorem. Verify each identity.

  (i) ∫
C

 ( f ∇g) ∙ dr = ∫
S
∫(∇f × ∇g) ∙ N dS

  (ii) ∫
C

 ( f ∇f ) ∙ dr = 0

  (iii) ∫
C

 ( f ∇g + g∇f ) ∙ dr = 0

 (b)  Demonstrate the results of part (a) for the functions 

  f (x, y, z) = xyz and g(x, y, z) = z.

  Let S be the hemisphere z = √4 − x2 − y2.
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A2

A Proofs of Selected Theorems

The text version of Appendix A, Proofs of Selected Theorems, is available 
at CengageBrain.com. Also, to enhance your study of calculus, each proof 
is available in video format at LarsonCalculus.com. At this website, you 
can watch videos of Bruce Edwards explaining each proof in the text and in 
Appendix A. To access a video, visit the website at LarsonCalculus.com or 
scan the code near the proof or the proof’s reference.

 3.2 Basic Differentiation Rules and Rates of Change 131

The Power Rule
Before proving the next rule, it is important to review the procedure for expanding a 
binomial.

(x + ∆x)2 = x2 + 2x∆x + (∆x)2

(x + ∆x)3 = x3 + 3x2∆x + 3x(∆x)2 + (∆x)3

(x + ∆x)4 = x4 + 4x3∆x + 6x2(∆x)2 + 4x(∆x)3 + (∆x)4

(x + ∆x)5 = x5 + 5x4∆x + 10x3(∆x)2 + 10x2(∆x)3 + 5x(∆x)4 + (∆x)5

The general binomial expansion for a positive integer n is

(x + ∆x)n = xn + nxn−1(∆x) + n(n − 1)xn−2

2
 (∆x)2 + .  .  . + (∆x)n.

 
 (∆x)2 is a factor of these terms.

This binomial expansion is used in proving a special case of the Power Rule.

Theorem 3.3 The Power rule

If n is a rational number, then the function f(x) = xn is differentiable and

d
dx

 [xn] = nxn−1.

For f  to be differentiable at x = 0, n must be a number such that 
xn−1 is defined on an interval containing 0.

Proof If n is a positive integer greater than 1, then the binomial expansion produces

 
d
dx

 [xn] = lim
∆x→0

 
(x + ∆x)n − xn

∆x

 = lim
∆x→0

 
xn + nxn−1(∆x) + n(n − 1)xn−2

2
 (∆x)2 + .  .  . + (∆x)n − xn

∆x

 = lim
∆x→0

 [nxn−1 +
n(n − 1)xn−2

2
 (∆x) + .  .  . + (∆x)n−1]

 = nxn−1 + 0 + .  .  . + 0

 = nxn−1.

This proves the case for which n is a positive integer greater than 1. It is left to you to prove 
the case for n = 1. Example 7 in Section 3.3 proves the case for which n is a negative 
integer. The cases for which n is rational and n is irrational are left as an exercise (see 
Section 3.5, Exercise 92). 

When using the Power Rule, the case for which n = 1 is best thought of as a 
 separate differentiation rule. That is,

d
dx

 [x] = 1.    Power Rule when n = 1

This rule is consistent with the fact that the slope of the line y = x is 1, as shown in 
Figure 3.15.

remark From Example 7  
in Section 3.1, you know that 
the function f (x) = x1�3 is 
defined at x = 0 but is not  
differentiable at x = 0. This  
is because x−2�3 is not defined 
on an interval containing 0.

The slope of the line y = x is 1.
Figure 3.15

x

y = x

y

1

1

2

3

4

2 3 4

9781337552516_0302.indd   131 9/7/17   8:34 AM

Sample Video: Bruce Edwards’s Proof of the
Power Rule at LarsonCalculus.com

 is a positive integer greater than 1, then the binomial expansion produces
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A3

B Integration Tables

Forms Involving un

 1. ∫ un du =
un+1

n + 1
+ C, n ≠ −1  2. ∫ 

1
u

 du = ln∣u∣ + C

Forms Involving a + bu

 3. ∫ 
u

a + bu
 du =

1
b2 (bu − a ln∣a + bu∣) + C  4. ∫ 

u
(a + bu)2 du =

1
b2 ( a

a + bu
+ ln∣a + bu∣) + C

 5. ∫ 
u

(a + bu)n du =
1
b2[ −1

(n − 2)(a + bu)n−2 +
a

(n − 1)(a + bu)n−1] + C, n ≠ 1, 2

 6. ∫ 
u2

a + bu
 du =

1
b3[−

bu
2

(2a − bu) + a2 ln∣a + bu∣] + C

 7. ∫ 
u2

(a + bu)2 du =
1
b3 (bu −

a2

a + bu
− 2a ln∣a + bu∣) + C

 8. ∫ 
u2

(a + bu)3 du =
1
b3[ 2a

a + bu
−

a2

2(a + bu)2 + ln∣a + bu∣] + C

 9. ∫ 
u2

(a + bu)n du =
1
b3[ −1

(n − 3)(a + bu)n−3 +
2a

(n − 2)(a + bu)n−2 −
a2

(n − 1)(a + bu)n−1] + C, n ≠ 1, 2, 3

10. ∫ 
1

u(a + bu) du =
1
a

 ln∣ u
a + bu∣ + C 11. ∫ 

1
u(a + bu)2 du =

1
a (

1
a + bu

+
1
a

 ln∣ u
a + bu∣) + C

12. ∫ 
1

u2(a + bu) du = −
1
a (

1
u

+
b
a

 ln∣ u
a + bu∣) + C 13. ∫ 

1
u2(a + bu)2 du = −

1
a2[ a + 2bu

u(a + bu) +
2b
a

 ln∣ u
a + bu∣] + C

Forms Involving a + bu + cu2, b2 ≠ 4ac

14. ∫ 
1

a + bu + cu2
 du = { 2

√4ac − b2
 arctan 

2cu + b

√4ac − b2
+ C,

1

√b2 − 4ac
 ln∣2cu + b − √b2 − 4ac

2cu + b + √b2 − 4ac∣ + C,

     b2 < 4ac

     b2 > 4ac

15. ∫ 
u

a + bu + cu2 du =
1
2c (ln∣a + bu + cu2∣ − b∫ 

1
a + bu + cu2 du)

Forms Involving √a + bu

16. ∫ un√a + bu du =
2

b(2n + 3) [un(a + bu)3�2 − na∫ un−1√a + bu du]

17. ∫ 
1

u√a + bu
 du = { 1

√a
 ln∣√a + bu − √a

√a + bu + √a∣ + C,

2

√−a
 arctan √a + bu

−a + C,

     a > 0

     a < 0

18. ∫ 
1

un√a + bu
 du =

−1
a(n − 1)[

√a + bu
un−1 +

(2n − 3)b
2 ∫ 

1

un−1√a + bu
 du], n ≠ 1
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A4 Appendix B Integration Tables

19. ∫ 
√a + bu

u
 du = 2√a + bu + a∫ 

1

u√a + bu
 du

20. ∫ 
√a + bu

un  du =
−1

a(n − 1) [
(a + bu)3�2

un−1 +
(2n − 5)b

2 ∫ 
√a + bu

un−1  du], n ≠ 1

21. ∫ 
u

√a + bu
 du =

−2(2a − bu)
3b2 √a + bu + C

22. ∫ 
un

√a + bu
 du =

2
(2n + 1)b (un√a + bu − na∫ 

un−1

√a + bu
 du)

Forms Involving a2 ± u2, a > 0

23. ∫ 
1

a2 + u2 du =
1
a

 arctan 
u
a

+ C

24. ∫ 
1

u2 − a2 du = −∫ 
1

a2 − u2 du =
1
2a

 ln∣u − a
u + a∣ + C

25. ∫ 
1

(a2 ± u2)n du =
1

2a2(n − 1) [
u

(a2 ± u2)n−1 + (2n − 3)∫ 
1

(a2 ± u2)n−1 du], n ≠ 1

Forms Involving √u2 ± a2, a > 0

26. ∫ √u2 ± a2 du =
1
2

(u√u2 ± a2 ± a2 ln∣u + √u2 ± a2∣) + C

27. ∫ u2√u2 ± a2 du =
1
8

[u(2u2 ± a2)√u2 ± a2 − a4 ln∣u + √u2 ± a2∣] + C

28. ∫ 
√u2 + a2

u
 du = √u2 + a2 − a ln∣a + √u2 + a2

u ∣ + C

29. ∫ 
√u2 − a2

u
 du = √u2 − a2 − a arcsec 

∣u∣
a

+ C

30. ∫ 
√u2 ± a2

u2  du =
−√u2 ± a2

u
+ ln∣u + √u2 ± a2∣ + C

31. ∫ 
1

√u2 ± a2
 du = ln∣u + √u2 ± a2∣ + C

32. ∫ 
1

u√u2 + a2
 du =

−1
a

 ln∣a + √u2 + a2

u ∣ + C 33. ∫ 
1

u√u2 − a2
 du =

1
a

 arcsec 
∣u∣
a

+ C

34. ∫ 
u2

√u2 ± a2
 du =

1
2 (u√u2 ± a2 ∓ a2 ln∣u + √u2 ± a2∣) + C

35. ∫ 
1

u2√u2 ± a2
 du = ∓

√u2 ± a2

a2u
+ C 36. ∫ 

1
(u2 ± a2)3�2 du =

±u

a2√u2 ± a2
+ C

Forms Involving √a2 − u2, a > 0

37. ∫ √a2 − u2 du =
1
2 (u√a2 − u2 + a2 arcsin 

u
a) + C

38. ∫ u2√a2 − u2 du =
1
8[u(2u2 − a2)√a2 − u2 + a4 arcsin 

u
a] + C
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 Appendix B Integration Tables A5

39. ∫ 
√a2 − u2

u
 du = √a2 − u2 − a ln∣a + √a2 − u2

u ∣ + C 40. ∫ 
√a2 − u2

u2  du =
−√a2 − u2

u
− arcsin 

u
a

+ C

41. ∫ 
1

√a2 − u2
 du = arcsin 

u
a

+ C 42. ∫ 
1

u√a2 − u2
 du =

−1
a

 ln∣a + √a2 − u2

u ∣ + C

43. ∫ 
u2

 √a2 − u2
 du =

1
2 (−u√a2 − u2 + a2 arcsin 

u
a) + C 44. ∫ 

1

u2√a2 − u2
 du =

−√a2 − u2

a2u
+ C

45. ∫ 
1

(a2 − u2)3�2 du =
u

a2√a2 − u2
+ C

Forms Involving sin u or cos u

46. ∫ sin u du = −cos u + C 47. ∫ cos u du = sin u + C

48. ∫ sin2 u du =
1
2

(u − sin u cos u) + C 49. ∫ cos2 u du =
1
2

(u + sin u cos u) + C

50. ∫ sinn u du = −
sinn−1 u cos u

n
+

n − 1
n ∫ sinn−2 u du 51. ∫ cosn u du =

cosn−1 u sin u
n

+
n − 1

n ∫ cosn−2 u du

52. ∫ u sin u du = sin u − u cos u + C 53. ∫ u cos u du = cos u + u sin u + C

54. ∫ un sin u du = −un cos u + n∫un−1 cos u du 55. ∫ un cos u du = un sin u − n∫un−1 sin u du

56. ∫ 
1

1 ± sin u
 du = tan u ∓ sec u + C 57. ∫ 

1
1 ± cos u

 du = −cot u ± csc u + C

58. ∫ 
1

sin u cos u
 du = ln∣tan u∣ + C

Forms Involving tan u, cot u, sec u, or csc u

59. ∫ tan u du = −ln∣cos u∣ + C 60. ∫ cot u du = ln∣sin u∣ + C

61. ∫ sec u du = ln∣sec u + tan u∣ + C

62. ∫ csc u du = ln∣csc u − cot u∣ + C or ∫ csc u du = −ln∣csc u + cot u∣ + C

63. ∫ tan2 u du = −u + tan u + C 64. ∫ cot2 u du = −u − cot u + C

65. ∫ sec2 u du = tan u + C 66. ∫ csc2 u du = −cot u + C

67. ∫ tann u du =
tann−1 u
n − 1

− ∫ tann−2 u du, n ≠ 1 68. ∫ cotn u du = −
cotn−1 u
n − 1

− ∫ cotn−2 u du, n ≠ 1

69. ∫ secn u du =
secn−2 u tan u

n − 1
+

n − 2
n − 1∫ secn−2 u du, n ≠ 1

70. ∫ cscn u du = −
cscn−2 u cot u

n − 1
+

n − 2
n − 1∫ cscn−2 u du, n ≠ 1
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A6 Appendix B Integration Tables

 71. ∫ 
1

1 ± tan u
 du =

1
2

(u ± ln∣cos u ± sin u∣) + C 72. ∫ 
1

1 ± cot u
 du =

1
2

(u ∓ ln∣sin u ± cos u∣) + C

 73. ∫ 
1

1 ± sec u
 du = u + cot u ∓ csc u + C 74. ∫ 

1
1 ± csc u

 du = u − tan u ± sec u + C

Forms Involving Inverse Trigonometric Functions

 75. ∫ arcsin u du = u arcsin u + √1 − u2 + C 76. ∫ arccos u du = u arccos u − √1 − u2 + C

 77. ∫ arctan u du = u arctan u − ln√1 + u2 + C 78. ∫ arccot u du = u arccot u + ln√1 + u2 + C

 79. ∫ arcsec u du = u arcsec u − ln∣u + √u2 − 1∣ + C 80. ∫ arccsc u du = u arccsc u + ln∣u + √u2 − 1∣ + C

Forms Involving eu

 81. ∫ eu du = eu + C 82. ∫ ueu du = (u − 1)eu + C

 83. ∫ uneu du = uneu − n∫ un−1eu du 84. ∫ 
1

1 + eu du = u − ln(1 + eu) + C

 85. ∫ eau sin bu du =
eau

a2 + b2 (a sin bu − b cos bu) + C 86. ∫ eau cos bu du =
eau

a2 + b2 (a cos bu + b sin bu) + C

Forms Involving ln u

 87. ∫ ln u du = u(−1 + ln u) + C 88. ∫ u ln u du =
u2

4
(−1 + 2 ln u) + C

 89. ∫ un ln u du =
un+1

(n + 1)2 [−1 + (n + 1) ln u] + C, n ≠ −1

 90. ∫ (ln u)2 du = u[2 − 2 ln u + (ln u)2] + C 91. ∫ (ln u)n du = u(ln u)n − n∫ (ln u)n−1 du

Forms Involving Hyperbolic Functions

 92. ∫ cosh u du = sinh u + C 93. ∫ sinh u du = cosh u + C

 94. ∫ sech2 u du = tanh u + C 95. ∫ csch2 u du = −coth u + C

 96. ∫ sech u tanh u du = −sech u + C 97. ∫ csch u coth u du = −csch u + C

Forms Involving Inverse Hyperbolic Functions (in logarithmic form)

 98. ∫ 
du

√u2 ± a2
= ln(u + √u2 ± a2) + C 99. ∫ 

du
a2 − u2 =

1
2a

 ln∣a + u
a − u∣ + C

100. ∫ 
du

u√a2 ± u2
= −

1
a

 ln 
a + √a2 ± u2

∣u∣ + C
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 C.1 Real Numbers and the Real Number Line A7

 Represent and classify real numbers.
 Order real numbers and use inequalities.
  Find the absolute values of real numbers and find the distance between two real 

numbers.

Real Numbers and the Real Number Line
Real numbers can be represented by a coordinate system called the real number line 
or x-axis (see Figure C.1). The real number corresponding to a point on the real number 
line is the coordinate of the point. As Figure C.1 shows, it is customary to identify those 
points whose coordinates are integers.

x
−4 −3 −2 −1 0 1 2 3 4

 The real number line
 Figure C.1

The point on the real number line corresponding to zero is the origin and is 
 denoted by 0. The positive direction (to the right) is denoted by an arrowhead and is 
the direction of increasing values of x. Numbers to the right of the origin are positive. 
Numbers to the left of the origin are negative. The term nonnegative describes a  
number that is either positive or zero. The term nonpositive describes a number that is 
either negative or zero.

Each point on the real number line corresponds to one and only one real number, 
and each real number corresponds to one and only one point on the real number line. 
This type of relationship is called a one-to-one correspondence.

Each of the four points in Figure C.2 corresponds to a rational number—one 
that can be written as the ratio of two integers. (Note that 4.5 = 9

2 and −2.6 = −13
5 .) 

Rational numbers can be represented either by terminating decimals such as 25 = 0.4 or 
by repeating decimals such as 13 = 0.333 .  .  . = 0.3.

Real numbers that are not rational are irrational. Irrational numbers cannot be  
represented as terminating or repeating decimals. In computations, irrational numbers 
are represented by decimal approximations. Here are three familiar examples.

 √2 ≈ 1.414213562 

x
0 1 2 3 4

e π2

Irrational numbers
Figure C.3

 π ≈ 3.141592654

 e ≈ 2.718281828

(See Figure C.3.)

C.1 Real Numbers and the Real Number Line

C Precalculus Review

x
543210−1−2−3

−2.6 4.5− 5
4

2
3

Rational numbers
Figure C.2
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A8 Appendix C Precalculus Review

Order and Inequalities
One important property of real numbers is that they are ordered. For two real numbers 
a and b, a is less than b when b − a is positive. This order is denoted by the inequality

a < b.

This relationship can also be described by saying that b is greater than a and writing 
b > a. If three real numbers a, b, and c are ordered such that a < b and b < c, then b 
is between a and c and a < b < c.

Geometrically, a < b if and only if a lies to the left of b on the real number line 
(see Figure C.4). For example, 1 < 2 because 1 lies to the left of 2 on the real number 
line.

Several properties used in working with inequalities are listed below. Similar 
properties are obtained when < is replaced by ≤ and > is replaced by ≥. (The symbols 
≤ and ≥ mean less than or equal to and greater than or equal to, respectively.)

Properties of Inequalities

Let a, b, c, d, and k be real numbers.

1. If a < b and b < c, then a < c. Transitive Property

2. If a < b and c < d, then a + c < b + d. Add inequalities.

3. If a < b, then a + k < b + k. Add a constant.

4. If a < b and k > 0, then ak < bk. Multiply by a positive constant.

5. If a < b and k < 0, then ak > bk. Multiply by a negative constant.

Note that you reverse the inequality when you multiply the inequality by a negative 
number. For example, if x < 3, then −4x > −12. This also applies to division by a 
negative number. So, if −2x > 4, then x < −2.

A set is a collection of elements. Two common sets are the set of real numbers and 
the set of points on the real number line. Many problems in calculus involve subsets
of one of these two sets. In such cases, it is convenient to use set notation of the form 
{x: condition on x}, which is read as follows.

 The set of all x such that a certain condition is true.

{  x  :   condition on x}

For example, you can describe the set of positive real numbers as

{x: x > 0} . Set of positive real numbers

Similarly, you can describe the set of nonnegative real numbers as

{x: x ≥ 0} . Set of nonnegative real numbers

The union of two sets A and B, denoted by A ∪ B, is the set of elements that are
members of A or B or both. The intersection of two sets A and B, denoted by A ∩ B, 
is the set of elements that are members of A and B. Two sets are disjoint when they 
have no elements in common.

20−1 1
x

ba

a < b if and only if a lies to the left 
of b.
Figure C.4
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 C.1 Real Numbers and the Real Number Line A9

The most commonly used subsets are intervals on the real number line. For  
example, the open interval

(a, b) = {x: a < x < b} Open interval

is the set of all real numbers greater than a and less than b, where a  and b are the 
endpoints of the interval. Note that the endpoints are not included in an open interval. 
Intervals that include their endpoints are closed and are denoted by

[a, b] = {x: a ≤ x ≤ b}. Closed interval

The nine basic types of intervals on the real number line are shown in the table 
below. The first four are bounded intervals and the remaining five are unbounded 
intervals. Unbounded intervals are also classified as open or closed. The intervals 
(−∞, b) and (a, ∞) are open, the intervals (−∞, b] and [a, ∞) are closed, and the 
interval (−∞, ∞) is considered to be both open and closed.

Note that the symbols ∞ and −∞ refer to positive and negative infinity,  
respectively. These symbols do not denote real numbers. They simply enable you to 
describe unbounded conditions more concisely. For instance, the interval [a, ∞) is 
unbounded to the right because it includes all real numbers that are greater than or 
equal to a.

Interval Notation Set Notation Graph

Bounded open interval (a, b) {x: a < x < b}
x

a b

Bounded closed interval [a, b] {x: a ≤ x ≤ b} x

a b

Bounded intervals 
(neither open nor closed)

[a, b)

(a, b]

{x: a ≤ x < b}

{x: a < x ≤ b}

x

a b

x

a b

Unbounded open intervals
(−∞, b)

(a, ∞)

{x: x < b}

{x: x > a}

x

b

x

a

Unbounded closed intervals
(−∞, b]

[a, ∞)

{x: x ≤ b}

{x: x ≥ a}

x

b

x

a

Entire real line (−∞, ∞) {x: x is a real number} x

Intervals on the Real Number Line
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A10 Appendix C Precalculus Review

 Liquid and Gaseous States of Water

Describe the intervals on the real number line that correspond to the temperatures x (in 
degrees Celsius) of water in

a. a liquid state.  b. a gaseous state.

Solution

a.  Water is in a liquid state at temperatures greater than 0°C and less than 100°C, as 
shown in Figure C.5(a).

(0, 100) = {x: 0 < x < 100}

b.  Water is in a gaseous state (steam) at temperatures greater than or equal to 100°C, 
as shown in Figure C.5(b).

[100, ∞) = {x: x ≥ 100}

x

0 25 50 75 100

  x

0 100 200 300 400

 (a)  Temperature range of water (b) Temperature range of steam 
(in degrees Celsius)  (in degrees Celsius)

 Figure C.5 

If a real number a is a solution of an inequality, then the inequality is satisfied  
(is true) when a is substituted for x. The set of all solutions is the solution set of the 
inequality.

 Solving an Inequality

Solve 2x − 5 < 7.

Solution

 2x − 5 < 7  Write original inequality.

 2x − 5 + 5 < 7 + 5 Add 5 to each side.

 2x < 12  Simplify.

 2x
2

<
12
2

 Divide each side by 2.

 x < 6  Simplify.

The solution set is (−∞, 6). 

In Example 2, all five inequalities listed as steps in the solution are called  
equivalent because they have the same solution set.

Once you have solved an inequality, check some x-values in your solution set 
to verify that they satisfy the original inequality. You should also check some values 
outside your solution set to verify that they do not satisfy the inequality. For example, 
Figure C.6 shows that when x = 0 or x = 5 the inequality 2x − 5 < 7 is satisfied, but 
when x = 7 the inequality 2x − 5 < 7 is not satisfied.

If x = 7, then 2(7) − 5 = 9 > 7.

If x = 0, then 2(0) − 5 = −5 < 7.

If x = 5, then 2(5) − 5 = 5 < 7.

x

82 3 4 5 6 70 1−1

Checking solutions of 2x − 5 < 7
Figure C.6

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 C.1 Real Numbers and the Real Number Line A11

 Solving a Double Inequality

Solve −3 ≤ 2 − 5x ≤ 12.

Solution

 −3 ≤  2 − 5x  ≤  12  Write original inequality.

 −3 − 2 ≤ 2 − 5x − 2 ≤  12 − 2 Subtract 2 from each part.

 −5 ≤     −5x  ≤  10  Simplify.

 
−5
−5

 ≥     
−5x
−5

  ≥ 10
−5

 Divide each part by −5 and  
reverse both inequalities.

 1 ≥       x  ≥ −2  Simplify.

The solution set is [−2, 1], as shown in Figure C.7. 

The inequalities in Examples 2 and 3 are linear inequalities—that is, they involve 
first-degree polynomials. To solve inequalities involving polynomials of higher degree, 
use the fact that a polynomial can change signs only at its real zeros (the x-values that 
make the polynomial equal to zero). Between two consecutive real zeros, a polynomial 
must be either entirely positive or entirely negative. This means that when the real zeros 
of a polynomial are put in order, they divide the real number line into test intervals in 
which the polynomial has no sign changes. So, if a  polynomial has the factored form

(x − r1)(x − r2) .  .  . (x − rn),  r1 < r2 < r3 < .  .  . < rn

then the test intervals are

(−∞, r1), (r1, r2), .  .  .  , (rn−1, rn), and (rn, ∞).

To determine the sign of the polynomial in each test interval, you need to test only one 
value from the interval.

 Solving a Quadratic Inequality

Solve x2 < x + 6.

Solution

 x2 < x + 6 Write original inequality.

 x2 − x − 6 < 0  Write in general form.

 (x − 3)(x + 2) < 0  Factor.

The polynomial x2 − x − 6 has x = −2 and x = 3 as its zeros. So, you can solve the 
inequality by testing the sign of x2 − x − 6 in each of the test intervals (−∞, −2), 
(−2, 3), and (3, ∞). To test an interval, choose any number in the interval and  
determine the sign of x2 − x − 6. After doing this, you will find that the polynomial  
is positive for all real numbers in the first and third intervals and negative for all real 
numbers in the second interval. The solution of the original inequality is therefore
(−2, 3), as shown in Figure C.8. 

[−2, 1]

x

10−1−2

Solution set of −3 ≤ 2 − 5x ≤ 12
Figure C.7

x

3 4210−1−2−3

Choose x = −3.
(x − 3)(x + 2) > 0

Choose x = 4.
(x − 3)(x + 2) > 0

Choose x = 0.
(x − 3)(x + 2) < 0

Testing an interval
Figure C.8
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A12 Appendix C Precalculus Review

Absolute Value and Distance
If a is a real number, then the absolute value of a is

∣a∣ = {a,
−a,

      a
      a

≥
<

0
0

. 

The absolute value of a number cannot be negative. For example, let a = −4. Then, 
because −4 < 0, you have 

∣a∣ = ∣−4∣ = −(−4) = 4.

Remember that the symbol −a does not necessarily mean that −a is negative.

Operations with Absolute Value

Let a and b be real numbers and let n be a positive integer.

1. ∣ab∣ = ∣a∣ ∣b∣  2. ∣ab∣ = ∣a∣
∣b∣, b ≠ 0

3. ∣a∣ = √a2 4. ∣an∣ = ∣a∣n

Properties of Inequalities and Absolute Value

Let a and b be real numbers and let k be a positive real number.

1. −∣a∣ ≤ a ≤ ∣a∣
2. ∣a∣ ≤ k if and only if −k ≤ a ≤ k.

3. ∣a∣ ≥ k if and only if a ≤ −k or a ≥ k.

4. Triangle Inequality: ∣a + b∣ ≤ ∣a∣ + ∣b∣
Properties 2 and 3 are also true when ≤ is replaced by < and ≥ is replaced by >.

 Solving an Absolute Value Inequality

Solve ∣x − 3∣ ≤ 2.

Solution Using the second property of inequalities and absolute value, you can 
rewrite the original inequality as a double inequality.

 −2 ≤     x − 3  ≤ 2  Write as double inequality.

−2 + 3 ≤ x − 3 + 3 ≤ 2 + 3 Add 3 to each part.

 1 ≤        x  ≤ 5  Simplify.

The solution set is [1, 5], as shown in Figure C.9. 

2 units2 units

64 53210

x

Solution set of ∣x − 3∣ ≤ 2
Figure C.9

REMARK You are asked 
to prove these properties in 
Exercises 73, 75, 76, and 77.
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 C.1 Real Numbers and the Real Number Line A13

 A Two-Interval Solution Set

Solve ∣x + 2∣ > 3.

Solution Using the third property of inequalities and absolute value, you can rewrite 
the original inequality as two linear inequalities.

 x + 2 < −3 or  x + 2 > 3

 x < −5  x > 1

The solution set is the union of the disjoint intervals (−∞, −5) and (1, ∞), as shown 
in Figure C.10. 

Examples 5 and 6 illustrate the general results shown in Figure C.11. Note that for 
d > 0, the solution set for the inequality ∣x − a∣ ≤ d is a single interval, whereas the 
solution set for the inequality ∣x − a∣ ≥ d is the union of two disjoint intervals.

The distance between two points a and b on the real number line is given by

d = ∣a − b∣ = ∣b − a∣.

The directed distance from a to b is b − a and the directed distance from b to a is 
a − b, as shown in Figure C.12.

 Distance on the Real Number Line

a. The distance between −3 and 4 is

∣4 − (−3)∣ = ∣7∣ = 7 or ∣−3 − 4∣ = ∣−7∣ = 7.

(See Figure C.13.)

b. The directed distance from −3 to 4 is

4 − (−3) = 7.

c. The directed distance from 4 to −3 is

−3 − 4 = −7. 

The midpoint of an interval with endpoints a and b is the average value of a and 
b. That is,

Midpoint of interval (a, b) =
a + b

2
.

To show that this is the midpoint, you need only show that (a + b)�2 is equidistant 
from a and b.

(−∞, −5)     (1, ∞)     

x

−1−2−3−4−5−6 0 1 2

Solution set of ∣x + 2∣ > 3
Figure C.10

x

d d

a − d a + da

Solution set of ∣x − a∣ ≤ d

x

d d

a − d a + da

Solution set of ∣x − a∣ ≥ d
Figure C.11

Distance = 7

541 2 30−1−2−3−4
x

Figure C.13

a
x

Distance between
anda b

a − b

b

⎪⎪

a
x

Directed distance
from    toa b

b − a
b a

x

Directed distance
from    tob a

a − b
b

Figure C.12
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C.1 Exercises

Rational or Irrational? In Exercises 1–10, determine 
whether the real number is rational or irrational.

 1. 0.7   2. −3678

 3. 
3π
2

  4. 3√2 − 1

 5. 4.3451  6. 22
7

 7. 3√64  8. 0.8177

 9. 45
8  10. (√2 )3

Repeating Decimal In Exercises 11–14, write the repeating 
decimal as a ratio of two integers using the following procedure. 
If x = 0.6363.  .  . ,  then 100x = 63.6363 .  .  . . Subtracting 
the first equation from the second produces 99x = 63 or 
x = 63

99 = 7
11.

11. 0.36 12. 0.318

13. 0.297 14. 0.9900

15.  Using Properties of Inequalities Given a < b,  
determine which of the following are true.

 (a) a + 2 < b + 2 (b) 5b < 5a

 (c) 5 − a > 5 − b (d) 
1
a

<
1
b

 (e) (a − b)(b − a) > 0 (f) a2 < b2

16.  Intervals and Graphs on the Real Number Line 
Complete the table with the appropriate interval notation, set 
notation, and graph on the real number line.

 
Interval 
Notation

Set 
Notation Graph

0−1−2

x

(−∞, −4]

{x: 3 ≤ x ≤ 11
2}

(−1, 7)

Analyzing an Inequality In Exercises 17–20, verbally 
describe the subset of real numbers represented by the  
inequality. Sketch the subset on the real number line, and state 
whether the interval is bounded or unbounded.

17. −3 < x < 3 18. x ≥ 4

19. x ≤ 5 20. 0 ≤ x < 8

Using Inequality and Interval Notation In Exercises 
21–24, use inequality and interval notation to describe the set.

21. y is at least 4.

22. q is nonnegative.

23.  The interest rate r on loans is expected to be greater than 3% 
and no more than 7%.

24. The temperature T is forecast to be above 90°F today.

Solving an Inequality In Exercises 25–44, solve the 
inequality and graph the solution on the real number line.

25. 2x − 1 ≥ 0 26. 3x + 1 ≥ 2x + 2

27. −4 < 2x − 3 < 4 28. 0 ≤ x + 3 < 5

29. 
x
2

+
x
3

> 5 30. x >
1
x

31. ∣x∣ < 1 32. 
x
2

−
x
3

> 5

33. ∣x − 3
2 ∣ ≥ 5 34. ∣x

2∣ > 3

35. ∣x − a∣ < b, b > 0 36. ∣x + 2∣ < 5

37. ∣2x + 1∣ < 5 38. ∣3x + 1∣ ≥ 4

39. ∣1 −
2
3

x∣ < 1 40. ∣9 − 2x∣ < 1

41. x2 ≤ 3 − 2x 42. x4 − x ≤ 0

43. x2 + x − 1 ≤ 5 44. 2x2 + 1 < 9x − 3

Distance on the Real Number Line In Exercises 45–48, 
find the directed distance from a to b, the directed distance 
from b to a, and the distance between a and b.

45. 
x

−2 −1 0 1 2 3 4

a = −1 b = 3

46. 
x

−2−3 −1 0 1 2 3 4

a = − 5
2

b = 13
4

47. (a) a = 126, b = 75 (b) a = −126, b = −75

48. (a) a = 9.34, b = −5.65   (b) a = 16
5 , b = 112

75

Using Absolute Value Notation In Exercises 49–54, 
use absolute value notation to define the interval or pair of  
intervals on the real number line.

49. 
x

−2−3 −1 10 2 3

a = −2 b = 2

50. 
x

−2−3−4 −1 0 1 2 3 4

a = −3 b = 3

51. 
x

−1−2 0 1 2 3 4 5 6

a = 0 b = 4

52. 

x

2018 19 21 22 23 25 2624

a = 20 b = 24

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 C.1 Real Numbers and the Real Number Line A15

53. (a) All numbers that are at most 10 units from 12

 (b) All numbers that are at least 10 units from 12

54. (a) y is at most two units from a.

 (b) y is less than δ units from c.

Finding the Midpoint In Exercises 55–58, find the  
midpoint of the interval.

55. 

x

−2 −1 10 2 3 4

a = −1 b = 3

56. 

x

−6 −5 −4 −3 −2 −1 0

a = −5 b = − 3
2

57. (a) [7, 21]
 (b) [8.6, 11.4]
58. (a) [−6.85, 9.35]
 (b) [−4.6, −1.3]

59. Profit The revenue R from selling x units of a product is

 R = 115.95x

 and the cost C of producing x units is

 C = 95x + 750.

  To make a (positive) profit, R must be greater than C. For what 
values of x will the product return a profit?

60.  Fleet Costs A utility company has a fleet of vans. The 
annual operating cost C (in dollars) of each van is estimated 
to be

 C = 0.32m + 2300

  where m is measured in miles. The company wants the annual 
operating cost of each van to be less than $10,000. To do this, 
m must be less than what value?

61.  Fair Coin To determine whether a coin is fair (has an 
equal probability of landing tails up or heads up), you toss the 
coin 100 times and record the number of heads x. The coin is 
declared unfair when

 ∣x − 50
5 ∣ ≥ 1.645.

 For what values of x will the coin be declared unfair?

62.  Daily Production The estimated daily oil production p 
at a refinery is

 ∣p − 2,250,000∣ < 125,000

  where p is measured in barrels. Determine the high and low 
production levels.

Which Number Is Greater? In Exercises 63 and 64,  
determine which of the two real numbers is greater.

63. (a) π  or 355
113 64. (a) 224

151 or 144
97

 (b) π  or 22
7   (b) 73

81 or 6427
7132

65.  Approximation—Powers of 10 Light travels at the 
speed of 2.998 × 108 meters per second. Which best estimates 
the distance in meters that light travels in a year?

 (a) 9.5 × 105 (b) 9.5 × 1015

 (c) 9.5 × 1012 (d) 9.6 × 1016

66.  Writing The accuracy of an approximation of a number  
is related to how many significant digits there are in the 
approximation. Write a definition of significant digits and 
illustrate the concept with examples.

True or False? In Exercises 67–72, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

67. The reciprocal of a nonzero integer is an integer.

68.  The reciprocal of a nonzero rational number is a rational  
number.

69. Each real number is either rational or irrational.

70. The absolute value of each real number is positive.

71. If x < 0, then √x2 = −x.

72.  If a and b are any two distinct real numbers, then a < b or 
a > b.

Proof In Exercises 73–80, prove the property.

73. ∣ab∣ = ∣a∣∣b∣
74. ∣a − b∣ = ∣b − a∣
 [Hint: (a − b) = (−1)(b − a)]

75. ∣ab∣ = ∣a∣
∣b∣,   b ≠ 0

76. ∣a∣ = √a2

77. ∣an∣ = ∣a∣n, n = 1, 2, 3, .  .  . 

78. −∣a∣ ≤ a ≤ ∣a∣
79. ∣a∣ ≤ k if and only if −k ≤ a ≤ k, k > 0.

80. ∣a∣ ≥ k if and only if a ≤ −k or a ≥ k, k > 0.

81.  Proof Find an example for which ∣a − b∣ > ∣a∣ − ∣b∣, and 
an example for which ∣a − b∣ = ∣a∣ − ∣b∣. Then prove that 

∣a − b∣ ≥ ∣a∣ − ∣b∣ for all a, b.

82.  Maximum and Minimum Show that the maximum of 
two numbers a and b is given by the formula

 max(a, b) = 1
2(a + b + ∣a − b∣).

 Derive a similar formula for min(a, b).
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C.2 The Cartesian PlaneC.2 The Cartesian Plane

 Understand the Cartesian plane.
  Use the Distance Formula to find the distance between two points and use the 

Midpoint Formula to find the midpoint of a line segment.
 Find equations of circles and sketch the graphs of circles.

The Cartesian Plane
Just as you can represent real numbers by points on a real number line, you can represent 
ordered pairs of real numbers by points in a plane called the rectangular coordinate 
system, or the Cartesian plane, after the French mathematician René Descartes.

The Cartesian plane is formed by using two real number lines intersecting at right 
angles, as shown in Figure C.14. The horizontal real number line is usually called 
the x-axis, and the vertical real number line is usually called the y-axis. The point of 
 intersection of these two axes is the origin. The two axes divide the plane into four 
parts called quadrants. 

y

x

si-x ax

siay- x

y,x(
y

x
Origin

Quadrant III

Quadrant II Quadrant I

Quadrant IV

)

  

x

y

−4 −3 −2 −1 1 2 3 4

−4

−1

−2

−3

1

2

3

4

(−2, −3)

(−1, 2)

(3, 4)

(0, 0) (3, 0)

 The Cartesian plane Points represented by ordered pairs
 Figure C.14 Figure C.15

Each point in the plane is identified by an ordered pair (x, y) of real numbers x and 
y, called the coordinates of the point. The number x represents the directed distance 
from the y-axis to the point, and the number y represents the directed distance from 
the x-axis to the point (see Figure C.14). For the point (x, y), the first coordinate is the 
x-coordinate or abscissa, and the second coordinate is the y-coordinate or ordinate. 
For example, Figure C.15 shows the locations of the points (−1, 2), (3, 4), (0, 0), (3, 0), 
and (−2, −3) in the Cartesian plane. The signs of the coordinates of a point determine 
the quadrant in which the point lies. For instance, if x > 0 and y < 0, then the point 
(x, y) lies in Quadrant IV.

Note that an ordered pair (a, b) is used to denote either a point in the plane or an 
open interval on the real number line. This, however, should not be confusing—the 
nature of the problem should clarify whether a point in the plane or an open interval is 
being discussed.
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C.2 The Cartesian Plane A17

The Distance and Midpoint Formulas
Recall from the Pythagorean Theorem that, in a right triangle, the hypotenuse c and 
sides a and b are related by a2 + b2 = c2. Conversely, if a2 + b2 = c2, then the 
triangle is a right triangle (see Figure C.16).

a

b

c

 The Pythagorean Theorem:
 a2 + b2 = c2

 Figure C.16

Now, consider the problem of determining the distance d between the two points 
(x1, y1) and (x2, y2) in the plane. If the points lie on a horizontal line, then y1 = y2 and 
the distance between the points is ∣x2 − x1∣. If the points lie on a vertical line, then 
x1 = x2 and the distance between the points is ∣y2 − y1∣. When the two points do not 
lie on a horizontal or vertical line, they can be used to form a right triangle, as shown in 
Figure C.17. The length of the vertical side of the triangle is ∣y2 − y1∣, and the length of 
the horizontal side is ∣x2 − x1∣. By the Pythagorean Theorem, it follows that

 d2 = ∣x2 − x1∣2 + ∣y2 − y1∣2

 d = √∣x2 − x1∣2 + ∣y2 − y1∣2.

Replacing ∣x2 − x1∣2 and ∣y2 − y1∣2 by the equivalent expressions (x2 − x1)2 and 
(y2 − y1)2 produces the Distance Formula.

Distance Formula

The distance d between the points (x1, y1) and (x2, y2) in the plane is given by

d = √(x2 − x1)2 + (y2 − y1)2.

 Finding the Distance Between Two Points

Find the distance between the points (−2, 1) and (3, 4).

Solution

 d = √(x2 − x1)2 + (y2 − y1)2  Distance Formula

 = √[3 − (−2)]2 + (4 − 1)2 Substitute for x1, y1, x2, and y2.

 = √52 + 32

 = √25 + 9

 = √34

 ≈ 5.83  

x

y

( , )x    y1 1

( , )x    y ( , )x    y1 22 2

y2

y1

21 xx

d

|x2 − x1|

|y2 − y1|

The distance between two points
Figure C.17
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 Verifying a Right Triangle

Verify that the points (2, 1), (4, 0), and (5, 7) form the vertices of a right triangle.

Solution Figure C.18 shows the triangle formed by the three points. The lengths of 
the three sides are as follows.

d1 = √(5 − 2)2 + (7 − 1)2 = √9 + 36 = √45

d2 = √(4 − 2)2 + (0 − 1)2 = √4 + 1 = √5

d3 = √(5 − 4)2 + (7 − 0)2 = √1 + 49 = √50

Because

d1
2 + d2

2 = 45 + 5 = 50 Sum of squares of sides

and

d3
2 = 50 Square of hypotenuse

you can apply the Pythagorean Theorem to conclude that the triangle is a right triangle.

 Using the Distance Formula

Find x such that the distance between (x, 3) and (2, −1) is 5.

Solution Using the Distance Formula, you can write the following.

 5 = √(x − 2)2 + [3 − (−1)]2 Distance Formula

 25 = (x2 − 4x + 4) + 16  Square each side.

 0 = x2 − 4x − 5  Write in general form.

 0 = (x − 5)(x + 1)  Factor.

So, x = 5 or x = −1, and you can conclude that there are two solutions. That is, each 
of the points (5, 3) and (−1, 3) lies five units from the point (2, −1), as shown in 
Figure C.19. 

The coordinates of the midpoint of the line segment joining two points can be  
found by “averaging” the x-coordinates of the two points and “averaging” the y-coordinates 
of the two points. That is, the midpoint of the line segment joining the points (x1, y1) 
and (x2, y2) in the plane is

(x1 + x2

2
, 

y1 + y2

2 ).    Midpoint Formula

For instance, the midpoint of the line segment joining the points (−5, −3) and (9, 3) is

(−5 + 9
2

, 
−3 + 3

2 ) = (2, 0)

as shown in Figure C.20.

x
2 4 6

2

4

6

(5, 7)

(2, 1)
(4, 0)

d1

d3

d2

y

Verifying a right triangle
Figure C.18

Each point of the
form ( , 3) lies on
this horizontal line.

x

d = 5d = 5

(2, −1)

(−1, 3) (5, 3)

x

−1

−2

4−1−2 5 6

y

Figure C.19

x
3−3−6 6 9

−3

−6

3

6

9

(9, 3)

(2, 0)

(−5, −3)

y

Midpoint of a line segment
Figure C.20

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



C.2 The Cartesian Plane A19

Equations of Circles
A circle can be defined as the set of all points in a plane that are equidistant from a 
fixed point. The fixed point is the center of the circle, and the distance between the 
center and a point on the circle is the radius (see Figure C.21).

You can use the Distance Formula to write an equation for the circle with center 
(h, k) and radius r. Let (x, y) be any point on the circle. Then the distance between (x, y)
and the center (h, k) is given by

√(x − h)2 + (y − k)2 = r.

By squaring each side of this equation, you obtain the standard form of the equation 
of a circle.

Standard Form of the Equation of a Circle

The point (x, y) lies on the circle of radius r and center (h, k) if and only if

(x − h)2 + (y − k)2 = r2.

The standard form of the equation of a circle with center at the origin, (h, k) = (0, 0), is

x2 + y2 = r2.

If r = 1, then the circle is called the unit circle.

 Writing the Equation of a Circle

The point (3, 4) lies on a circle whose center is at (−1, 2), as shown in Figure C.22. 
Write the standard form of the equation of this circle.

Solution The radius of the circle is the distance between (−1, 2) and (3, 4).

r = √[3 − (−1)]2 + (4 − 2)2 = √16 + 4 = √20

You can write the standard form of the equation of this circle as

 [x − (−1)]2 + (y − 2)2 = (√20)2

 (x + 1)2 + (y − 2)2 = 20.  Write in standard form. 

By squaring and simplifying, the equation (x − h)2 + (y − k)2 = r2 can be 
written in the following general form of the equation of a circle.

Ax2 + Ay2 + Dx + Ey + F = 0,    A ≠ 0

To convert such an equation to the standard form

(x − h)2 + (y − k)2 = p

you can use a process called completing the square. If p > 0, then the graph of the 
equation is a circle. If p = 0, then the graph is the single point (h, k). If p < 0, then 
the equation has no graph.

x

y

−2−6 4

4

−2

6

8

(−1, 2)

(3, 4)

Figure C.22

x

Center: (h, k)  

Radius: r

Point on
circle: (x, y)

y

Definition of a circle
Figure C.21
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 Completing the Square

Sketch the graph of the circle whose general equation is

4x2 + 4y2 + 20x − 16y + 37 = 0.

Solution To complete the square, first divide by 4 so that the coefficients of x2 and 
y2 are both 1.

 4x2 + 4y2 + 20x − 16y + 37 = 0  Write original equation.

 x2 + y2 + 5x − 4y +
37
4

= 0  Divide by 4.

 (x2 + 5x +   ) + (y2 − 4y +   ) = −
37
4

 Group terms.

 (x2 + 5x +
25
4 ) + (y2 − 4y + 4) = −

37
4

+
25
4

+ 4

  
 (half)2 (half)2

 (x +
5
2)

2

+ (y − 2)2 = 1  Write in standard form.

Note that you complete the square by adding the square of half the coefficient of x and 
the square of half the coefficient of y to each side of the equation. The circle is centered 
at (−5

2, 2) and its radius is 1, as shown in Figure C.23.   

You have now reviewed some fundamental concepts of analytic geometry. Because 
these concepts are in common use today, it is easy to overlook their revolutionary 
nature. At the time analytic geometry was being developed by Pierre de Fermat and 
René Descartes, the two major branches of mathematics—geometry and algebra—
were largely independent of each other. Circles belonged to geometry, and equations 
belonged to algebra. The coordination of the points on a circle and the solutions of an 
equation belongs to what is now called analytic geometry.

It is important to become skilled in analytic geometry so that you can move 
easily between geometry and algebra. For instance, in Example 4, you were given a 
geometric description of a circle and were asked to find an algebraic equation for the 
circle. So, you were moving from geometry to algebra. Similarly, in Example 5, you 
were given an algebraic equation and asked to sketch a geometric picture. In this case, 
you were moving from algebra to geometry. These two examples illustrate the two most 
common problems in analytic geometry.

1. Given a graph, find its equation.

Geometry   Algebra

2. Given an equation, find its graph.

Algebra   Geometry

r = 1
5
2( )−   , 2

x
−1−2−4

1

2

3

)(x +       + (y − 2)2 = 125
2

y

A circle with a radius of 1 and center 
at (−5

2, 2)
Figure C.23

Complete the square by
adding (5

2)2 = 25
4  and

(4
2)2 = 4 to each side.
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 C.2 The Cartesian Plane A21

C.2 Exercises

Using the Distance and Midpoint Formulas In 
Exercises 1–6, (a) plot the points, (b) find the distance between 
the points, and (c) find the midpoint of the line segment  
joining the points.

 1. (2, 1), (4, 5)  2. (−3, 2), (3, −2)
 3. (1

2, 1), (−3
2, −5)  4. (2

3, −1
3), (5

6, 1)
 5. (1, √3), (−1, 1)  6. (−2, 0), (0, √2)

Locating a Point In Exercises 7–10, determine the  
quadrant(s) in which (x, y) is located so that the condition(s) is 
(are) satisfied.

 7. x = −2 and y > 0

 8. y < −2

 9. xy > 0

10. (x, −y) is in Quadrant II.

Vertices of a Polygon In Exercises 11–14, show that  
the points are the vertices of the polygon. (A rhombus is a 
quadrilateral whose sides are all the same length.)

 Vertices  Polygon

11. (4, 0), (2, 1), (−1, −5)  Right triangle

12. (1, −3), (3, 2), (−2, 4)  Isosceles triangle

13. (0, 0), (1, 2), (2, 1), (3, 3)  Rhombus

14. (0, 1), (3, 7), (4, 4), (1, −2)  Parallelogram

15.  Number of Stores The table shows the number y of 
Target stores for each year x from 2006 through 2015. Select 
reasonable scales on the coordinate axes and plot the points 
(x, y). (Source: Target Corp.)

Year, x 2006 2007 2008 2009 2010

Number, y 1488 1591 1682 1740 1750

Year, x 2011 2012 2013 2014 2015

Number, y 1763 1778 1917 1790 1792

16.  Conjecture Plot the points (2, 1), (−3, 5), and (7, −3) in 
a rectangular coordinate system. Then change the sign of the 
x-coordinate of each point and plot the three new points in 
the same rectangular coordinate system. What conjecture can 
you make about the location of a point when the sign of the 
x-coordinate is changed? Repeat the exercise for the case in 
which the signs of the y-coordinates are changed.

Collinear Points? In Exercises 17–20, use the Distance 
Formula to determine whether the points lie on the same line.

17. (0, −4), (2, 0), (3, 2)
18. (0, 4), (7, −6), (−5, 11)

19. (−2, 1), (−1, 0), (2, −2)
20. (−1, 1), (3, 3), (5, 5)

Using the Distance Formula In Exercises 21 and 22, find 
x such that the distance between the points is 5.

21. (0, 0), (x, −4) 22. (2, −1), (x, 2)

Using the Distance Formula In Exercises 23 and 24, find 
y such that the distance between the points is 8.

23. (0, 0), (3, y) 24. (5, 1), (5, y)

25.  Using the Midpoint Formula Use the Midpoint 
Formula to find the three points that divide the line segment 
joining (x1, y1) and (x2, y2) into four equal parts.

26.  Using the Midpoint Formula Use the result of 
Exercise 25 to find the points that divide the line segment  
joining the given points into four equal parts.

 (a) (1, −2), (4, −1)  (b) (−2, −3), (0, 0)

Matching In Exercises 27–30, match the equation with its 
graph. [The graphs are labeled (a), (b), (c), and (d).]

(a) 

x
1 2

1

2

(1, 0)

y   (b) 

x
−2 2 4

6

(1, 3)

y

(c) 

x
1−1

1

−1

(0, 0)

y   (d) 

x
−2 −1

2

y

1
2

3
4( )−   , 

27. x2 + y2 = 1

28. (x − 1)2 + (y − 3)2 = 4

29. (x − 1)2 + y2 = 0

30. (x + 1
2)2 + (y − 3

4)2 = 1
4

Writing the Equation of a Circle In Exercises 31–38, 
write the standard form of the equation of the circle.

31. Center: (0, 0) 32. Center: (0, 0)
 Radius: 3  Radius: 5

33. Center: (2, −1) 34. Center: (−4, 3)
 Radius: 4  Radius: 5

8
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A22 Appendix C Precalculus Review

35. Center: (−1, 2)
 Point on circle: (0, 0)
36. Center: (3, −2)
 Point on circle: (−1, 1)
37. Endpoints of a diameter: (2, 5), (4, −1)
38. Endpoints of a diameter: (1, 1), (−1, −1)

39.  Satellite Communication Write the standard form of 
the equation for the path of a communications satellite in a 
circular orbit 22,000 miles above Earth. (Assume that the 
radius of Earth is 4000 miles.)

40.  Building Design A circular air duct of diameter D is 
fit firmly into the right-angle corner where a basement wall 
meets the floor (see figure). Find the diameter of the largest 
water pipe that can be run in the right-angle corner behind the 
air duct.

D
2

Writing the Equation of a Circle In Exercises 41–48, 
write the standard form of the equation of the circle and sketch 
its graph.

41. x2 + y2 − 2x + 6y + 6 = 0

42. x2 + y2 − 2x + 6y − 15 = 0

43. x2 + y2 − 2x + 6y + 10 = 0

44. 3x2 + 3y2 − 6y − 1 = 0

45. 2x2 + 2y2 − 2x − 2y − 3 = 0

46. 4x2 + 4y2 − 4x + 2y − 1 = 0

47. 16x2 + 16y2 + 16x + 40y − 7 = 0

48. x2 + y2 − 4x + 2y + 3 = 0

Graphing a Circle In Exercises 49 and 50, use a graphing 
utility to graph the equation. Use a square setting. (Hint: It 
may be necessary to solve the equation for y and graph the 
resulting two equations.)

49. 4x2 + 4y2 − 4x + 24y − 63 = 0

50. x2 + y2 − 8x − 6y − 11 = 0

Sketching a Graph of an Inequality In Exercises 51 and 
52, sketch the set of all points satisfying the inequality. Use a 
graphing utility to verify your result.

51. x2 + y2 − 4x + 2y + 1 ≤ 0

52. (x − 1)2 + ( y − 1
2)2 > 1

53. Proof Prove that

 (2x1 + x2

3
, 

2y1 + y2

3 )
  is one of the points of trisection of the line segment joining 

(x1, y1) and (x2, y2). Find the midpoint of the line segment  
joining

 (2x1 + x2

3
, 

2y1 + y2

3 )
 and (x2, y2) to find the second point of trisection.

54.  Finding Points of Trisection Use the results of 
Exercise 53 to find the points of trisection of the line segment 
joining each pair of points.

 (a) (1, −2), (4, 1)
 (b) (−2, −3), (0, 0)

True or False? In Exercises 55–58, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

55.  If ab < 0, then the point (a, b) lies in either Quadrant II or  
Quadrant IV.

56.  The distance between the points (a + b, a) and (a − b, a) is 
2b.

57.  If the distance between two points is zero, then the two points 
must coincide.

58.  If ab = 0, then the point (a, b) lies on the x-axis or on the  
y-axis.

Proof In Exercises 59–62, prove the statement.

59.  The line segments joining the midpoints of the opposite sides 
of a quadrilateral bisect each other.

60.  The perpendicular bisector of a chord of a circle passes through 
the center of the circle.

61. An angle inscribed in a semicircle is a right angle.

62.  The midpoint of the line segment joining the points (x1, y1) 
and (x2, y2) is

 (x1 + x2

2
, 

y1 + y2

2 ).
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 Answers to Odd-Numbered Exercises A23

Answers to Odd-Numbered Exercises

Chapter 1
Section 1.1 (page 8)

 1.  To find the x-intercepts of the graph of an equation, let y be 
zero and solve the equation for x. To find the y-intercepts of 
the graph of an equation, let x be zero and solve the equation 
for y.

 3. b  4. d  5. a  6. c
 7. 

−2−4 2 4

−2

4

6

y

x

(−2, 1)

(−4, 0)

(0, 2)
(2, 3)

(4, 4)

  9. 

x

2

−4

−2

−6

6

−4−6 4 6

(−3, −5) (3, −5)

(−2, 0)

(0, 4)

(2, 0)

y

11. y

x

(−4, 3)
(−3, 2)

(−2, 1)

(−1, 0)

(0, 1)

(1, 2)

(2, 3)

−1−2−3−4−5 1 2 3−1

−2

1

2

3

4

5

6

 13. y

x

(0, −6)
(1, −5)

(4, −4)

(9, −3)
(16, −2)

−4 4 8 12 16

−2

−4

−6

−8

2

15. y

x

(3, 1)

(1, 3)

(−3, −1)

(−1, −3)

−1−2−3 1 2 3
−1

−2

1

2

3

2, 
3
2( (

−2, −  3
2( (

 17. 

−6 6

−3

5

(−4.00, 3)
(2, 1.73)

  (a) y ≈ 1.73   (b) x = −4

19. (0, −5), (5
2, 0)  21. (0, −2), (−2, 0), (1, 0)

23. (0, 0), (4, 0), (−4, 0)  25. (0, 2), (4, 0)  27. (0, 0)
29. Symmetric with respect to the y-axis
31. Symmetric with respect to the x-axis
33. Symmetric with respect to the origin  35. No symmetry
37. Symmetric with respect to the origin
39. Symmetric with respect to the y-axis
41. 

(0, 2)2

1

x
32−1

−1

, 0
2
3

y

( (

 43. y

x
(3, 0)

(0, 9)

(−3, 0)

−2−4−6 2 4 6
−2

2

4

6

10

 Symmetry: none  Symmetry: y-axis

45. y

x

(0, 2)

−2−3 1 2 3
−1

1

3

4

5

3(−     2, 0)

 47. y

x
−1−2−3−4 1 2

−3

−4

2

3

(−5, 0) (0, 0)

 Symmetry: none  Symmetry: none
49. 

x
1

−2

−3

−4

2

3

4

−2 −1−3−4 2 3 4

(0, 0)

y  51. y

x
−2 2 4 6 8

2

4

6

8

 Symmetry: origin  Symmetry: origin
53. 

x
2

2

−4

−2

−6

−8

4

6

8

−4 −2−8 4 6 8

(−6, 0)

(0, 6)

(6, 0)

y  55. y

x

(−9, 0)

−8−10 2 4 6

−4

−6

−8

4

6

8

(             )0, −     3

(          )0,     3

 Symmetry: y-axis  Symmetry: x-axis
57. (3, 5)  59. (−4, −1), (1, 14)  61. (−1, −2), (2, 1)
63. (−1, −5), (0, −1), (2, 1)  65. (−2, 2), (−3, √3)
67. (a) y = 0.58t + 9.2
 (b) 

0
8 15

20     The model is a good fit  
for the data.

 (c) $23.1 trillion
69. 4480 units
71.  Answers will vary. Sample answer: 

y = (2x + 3)(x − 4)(2x − 5)
73.  Yes. Assume that the graph has x-axis and origin symmetry. 

If (x, y) is on the graph, so is (x, −y) by x-axis  
symmetry. Because (x, −y) is on the graph, then so is 
(−x, −(−y)) = (−x, y) by origin symmetry. Therefore, the 
graph is symmetric with respect to the y-axis. The argument 
is similar for y-axis and origin symmetry.

75. False. (4, −5) is not a point on the graph of x = y2 − 29.
77. True

Section 1.2 (page 16)

 1. Slope; y-intercept  3. m = 2  5. m = −1
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A24 Answers to Odd-Numbered Exercises

 7. 

x
1 2 3 5 6 7−1

(3, −4)

(5, 2)

−2

−3

−4

−5

1

2

3

y   9. y

x

(4, 6)

(4, 1)

−1−2 1 2 3 5 6

1

2

3

4

5

6

7

 m = 3  m is undefined.
11. 

x

−1

−2

−3

2

3

−2−3 21 3

y

(          )3
4

1
6

,−(          )1
2

2
3

,−

 13. y

x

m = −2

(3, 4)

m = 1

3
2

m = −

m is unde�ned.

−4−6 2 4 8 10−2

2

4

6

8

 m = 2
15. Answers will vary. Sample answers: (0, 2), (1, 2), (5, 2)
17. Answers will vary. Sample answers: (0, 10), (2, 4), (3, 1)
19. 3x − 4y + 12 = 0 21. x = 1
 

x
1−1−2−3−4

1

2

4

5

(0, 3)

y   y

x

(1, 2)

−1−2−3 2 3
−1

−2

−3

1

2

3

23. 3x − y − 11 = 0
 y

x

(3, −2)

−1
−1

−2 1 2 3 4 5 6

−2

−3

−4

−5

1

2

3

25. 12 ft
27. (a) y

t
9 10 11 12 13 14 15

300

305

310

315

320

Year (9 ↔ 2009)

Po
pu

la
tio

n 
(i

n 
m

ill
io

ns
)

  From 2009 to 2010
 (b) 2.38 million people per year   (c) 345.1 million people
29. m = 4, (0, −3)  31. m = −5, (0, 20)
33. m is undefined, no y-intercept
35. 

x
−1−2−3 1 2 3 4 5

−2

−4

−5

−6

1

2

y  37. 

x
−2 −1 1 2

−1

3

1

y

39. 

x
1

2

1

3

4

−2

−2

−3

−4

−3−4 2 3 4

y  41. y

x
−2−3−4 1 2 3 4−1

−2

−3

−4

1

2

3

4

43. 2x − y − 5 = 0 45. 8x + 3y − 40 = 0
 y

x
−1−2 1 3 4 5 6−2

−4

−8

−10

2 (4, 3)

(0, −5)

4

6

  

1
2
3
4
5

−2

6
7
8
9

x
−1 4 6 7 8 91 2 3

(5, 0)

(2, 8)

y

47. x − 6 = 0 49. y − 1 = 0
 y

x
−2 2 4 8

2

−2

4

6

8

(6, 3)

(6, 8)

  y

x

(3, 1) (5, 1)

−1 1 2 3 4 5 6
−1

−2

−3

2

3

4

51. y = (1 − b
3 )x + b  53. 3x + 2y − 6 = 0

55. x + 2y − 5 = 0  57. (a) x + 7 = 0   (b) y + 2 = 0
59. (a) x + y + 1 = 0   (b) x − y + 5 = 0
61. (a) 40x − 24y − 9 = 0   (b) 24x + 40y − 53 = 0
63. V = 250t + 350  65. Not collinear, because m1 ≠ m2

67.  The adjacent line segments are perpendicular and each line 
segment has a length of √8 = 2√2 units.

69. 12y + 5x − 169 = 0

71. (a) (0, 
−a2 + b2 + c2

2c )   (b) (b
3

, 
c
3)

73. 5F − 9C − 160 = 0; 72°F ≈ 22.2°C
75. (a) x = (1530 − p)�15
 (b) 

0
0

1600

50

  45 units
 (c) 49 units

77. Proof  79. 
5√2

2
  81–83. Proofs  85. True

Section 1.3 (page 27)

 1.  A relation between two sets X and Y is a set of ordered pairs 
of the form (x, y), where x is a member of X and y is a  
member of Y.

  A function from X to Y is a relation between X and Y that 
has the property that any two ordered pairs with the same  
x-value also have the same y-value.

 3. Vertical shifts, horizontal shifts, reflections
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 Answers to Odd-Numbered Exercises A25

 5. (a) −2   (b) 13   (c) 3b − 2   (d) 3x − 5
 7. (a) 2√2   (b) √13   (c) 2√2
 (d) √x2 + 2bx2 + b2x2 + 4
 9. (a) 5   (b) 0   (c) 1   (d) 4 + 2t − t2

11. 3x2 + 3x∆x + (∆x)2, ∆x ≠ 0
13. Domain: (−∞, ∞); Range: [0, ∞)
15. Domain: (−∞, ∞); Range: (−∞, ∞)
17. Domain: [0, ∞); Range: [0, ∞)
19. Domain: [−4, 4]; Range: [0, 4]
21. Domain: (−∞, 0) ∪ (0, ∞); Range: (−∞, 0) ∪ (0, ∞)
23. Domain: [0, 1]
25. Domain: (−∞, −3) ∪ (−3, ∞)
27. (a) −1   (b) 2   (c) 6   (d) 2t2 + 4
 Domain: (−∞, ∞); Range: (−∞, 1) ∪ [2, ∞)
29. (a) 4   (b) 0   (c) −2   (d) −b2

 Domain: (−∞, ∞); Range: (−∞, 0] ∪ [1, ∞)
31. 

−2−4 2 4

2

4

6

8

x

y  33. y

x
−1−2−3 1 2 3

−1

1

 Domain: (−∞, ∞)  Domain: (−∞, ∞)
 Range: (−∞, ∞)  Range: (0, 12 ]
35. y

x
3 6 9 12

1

2

3

 37. 

−1−2−3−4 1 2 3 4

−2

−3

1

2

4

5

x

y

 Domain: [6, ∞)  Domain: [−3, 3]
 Range: [0, ∞)  Range: [0, 3]
39. y is not a function of x.  41. y is a function of x.
43. y is not a function of x.  45. y is not a function of x.
47. Horizontal shift to the right two units
 y = √x − 2
49.  Horizontal shift to the right two units and vertical shift down 

one unit
 y = (x − 2)2 − 1
51. d  52. b  53. c  54. a  55. e  56. g
57. (a) 

x

−6

−2

−4

4

−4−6 −2 2 4

y  (b) 

x

−6

−2

−4

4

2

−2 2 4 6 8

y

 (c) 

x

−2

4

6

2

−4 −2 2 4 6

y   (d) 
x

−2

−8

−6

−4

−4 −2 2 4 6

y

 (e) 
x

−2

−8

−10

−6

−4

−4 −2 4 6

y   (f ) 

x

−6

4

2

−4 −2 2 4 6

y

 (g) y

x

−4

−2

−4 −2 2 4 6

2

  (h) y

x

−4

−2

−4−6 2 4

4

6

59. (a) −x − 1   (b) 5x − 9

 (c) −6x2 + 23x − 20   (d) 
2x − 5
4 − 3x

61. (a) 0   (b) 0   (c) −1   (d) √15
 (e) √x2 − 1   (f) x − 1 (x ≥ 0)
63. ( f ∘ g)(x) = x; Domain: [0, ∞)
 (g ∘ f )(x) = ∣x∣; Domain: (−∞, ∞)
 No, their domains are different.

65. ( f ∘ g)(x) =
3

x2 − 1
; Domain: (−∞, −1) ∪ (−1, 1) ∪ (1, ∞)

 (g ∘ f )(x) =
9
x2 − 1; Domain: (−∞, 0) ∪ (0, ∞)

 No
67. (a) 4   (b) −2
 (c) Undefined. The graph of g does not exist at x = −5.
 (d) 3   (e) 2
 (f) Undefined. The graph of f  does not exist at x = −4.
69. Answers will vary. 
 Sample answer: f (x) = √x, g(x) = x − 2, h(x) = 2x
71. (a) (3

2, 4)   (b) (3
2, −4)

73. f  is even. g is neither even nor odd. h is odd.
75. Even; zeros: x = −2, 0, 2  77. Neither; zeros: x = 0
79. f (x) = −5x − 6, −2 ≤ x ≤ 0  81. y = −√−x
83. Answers will vary.  85. Answers will vary. 
 Sample answer:  Sample answer:
 y

x

Time (in hours)

Sp
ee

d 
(i

n 
m

ile
s 

pe
r 

ho
ur

)

  y

t
4 8 12 16 20 24 28

3

6

9

12

15

Time (in minutes)

D
is

ta
nc

e 
fr

om
 h

om
e

(i
n 

m
ile

s)
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A26 Answers to Odd-Numbered Exercises

 87. c = 25
 89.  No. A graph of a function that is intersected by a horizontal 

line more than once would mean that there is more than one 
x-value corresponding to the same y-value.

 91. No. Consider y = x3 + x + 2.
  f (−x) ≠ −f (x)
  This is an odd-degree function that is not odd.
 93. (a) T(4) = 16°C, T(15) ≈ 23°C
  (b) The changes in temperature occur 1 hour later.
  (c) The temperatures are 1° lower.

 95. (a) 

0
0 100

60    (b) H( x
1.6) = 0.00001132x3

 97–99. Proofs  101. L =√x2 + ( 2x
x − 3)

2

103. False. For example, if f (x) = x2, then f (−1) = f (1).
105. True
107. False. f (x) = 0 is symmetric with respect to the x-axis.
109. Putnam Problem A1, 1988

Section 1.4 (page 38)

  1.  In general, if θ is any angle, then the angle θ + n(360°), n 
is a nonzero integer, is coterminal with θ.

  3. sin θ =
7
25

  cos θ =
24
25

  tan θ =
7
24

  5. (a) 396°, −324°   (b) 240°, −480°

  7. (a) 
19π

9
, −

17π
9

   (b) 
10π

3
, −

2π
3

  9. (a) 
π
6

; 0.524   (b) 
5π
6

; 2.618

  (c) 
7π
4

; 5.498   (d) 
2π
3

; 2.094

 11. (a) 270°   (b) 210°   (c) −105°   (d) −135.62°

 13. 
r 8 ft 15 in. 85 cm 24 in. 12,963

π  mi

s 12 ft 24 in. 63.75π cm 96 in. 8642 mi

θ 1.5 1.6 3π
4

4 2π
3

 15. (a) sin θ = 4
5 csc θ = 5

4 (b) sin θ = − 5
13 csc θ = −13

5

  cos θ = 3
5  sec θ = 5

3  cos θ = −12
13  sec θ = −13

12

  tan θ = 4
3 cot θ = 3

4  tan θ = 5
12 cot θ = 12

5

17. 

2
1

θ

3

 19. 

5

4

3

θ

 cos θ =
√3
2

  sin θ =
3
5

 tan θ =
√3
3

  tan θ =
3
4

 csc θ = 2  csc θ =
5
3

 sec θ =
2√3

3
  sec θ =

5
4

 cot θ = √3  cot θ =
4
3

21. (a) sin 60° =
√3
2

 (b) sin 120° =
√3
2

  cos 60° =
1
2

  cos 120° = −
1
2

  tan 60° = √3  tan 120° = −√3

 (c) sin 
π
4

=
√2
2

 (d) sin 
5π
4

= −
√2
2

  cos 
π
4

=
√2
2

  cos 
5π
4

= −
√2
2

  tan 
π
4

= 1  tan 
5π
4

= 1

23. (a) sin 225° = −
√2
2

 (b) sin(−225°) =
√2
2

  cos 225° = −
√2
2

  cos(−225°) = −
√2
2

  tan 225° = 1  tan(−225°) = −1

 (c) sin 
5π
3

= −
√3
2

 (d) sin 
11π

6
= −

1
2

  cos 
5π
3

=
1
2

  cos 
11π

6
=

√3
2

  tan 
5π
3

= −√3  tan 
11π

6
= −

√3
3

25. (a) 0.1736   (b) 5.7588  27. (a) 0.3640   (b) 0.3640
29. (a) Quadrant III   (b) Quadrant IV

31. (a) θ =
π
4

, 
7π
4

   (b) θ =
3π
4

, 
5π
4

33. (a) θ =
π
4

, 
5π
4

   (b) θ =
5π
6

, 
11π

6

35. θ =
π
4

, 
3π
4

, 
5π
4

, 
7π
4

  37. θ = 0, 
π
4

, π, 
5π
4

, 2π

39. θ =
π
3

, 
5π
3

  41. θ = 0, 
π
2

, π, 2π   43. 5099 ft

45. Period: π  47. Period: 1
2

 Amplitude: 2  Amplitude: 3

49. Period: 
π
2

  51. Period: 
2π
5
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 Answers to Odd-Numbered Exercises A27

53. (a) 

−2.5

−

c = 2

c = 1

c = −2

c = −1
π π

2.5    (b) 

−1

−

c = ±2 c = ±1

π π

1

  Change in amplitude   Change in period
 (c) 

−1.5

−

c = −2

c = −1 c = 1

c = 2

2
π

2
π

1.5

  Horizontal translation
55. 

x
3

1

−1

ππ

y  57. 

x
3
2

3

1

−1

y

59. 
3

x
3

1

2

−1
ππ

y  61. 

x

2
3

2

1

π ππ

y

63. 

x

1

−1

2
π

2
π

y

−

 65. 

x
3
22

2

π
2
π ππ

y

−

67. a = 3, b =
1
2

, c =
π
2

69.  No. You can use 1 + tan2 θ = sec2 θ, but you are unable to 
determine the sign.

71.  The range of the cosine function is −1 ≤ y ≤ 1. The range of 
the secant function is y ≤ −1 or y ≥ 1.

73. 

2

1

2

−2

−
x

f(x) = sin x

πππ

y  

2

−1

2

−2

y

x
πππ−2 −π

g(x) = ⎪sin x⎪

 

2

−1

2

−2

x
ππ

h(x) = sin(⎪x⎪)

y

 The graph of ∣ f (x)∣ will reflect any parts of the graph of f (x)
  below the x-axis about the x-axis. The graph of f (∣x∣) will 

reflect the part of the graph of f (x) right of the y-axis about 
the y-axis.

75. 100

0
0 12

 January, November, December
77.  False. 4π radians (not 4 radians) corresponds to two complete 

revolutions from the initial side to the terminal side of an angle.
79.  False. The amplitude of the function y = 1

2 sin 2x is one-half 
the amplitude of the function y = sin x.

Section 1.5 (page 48)

 1.  The domain of f  is equal to the range of f −1. The domain of 
f −1 is equal to the range of f. The graph of f −1 is a reflection 
of the graph of f  in the line y = x.

 3. arccos x is the angle, 0 ≤ θ ≤ π, whose cosine is x.
 5. c  6. b  7. a  8. d
 9. (a) f (g(x)) = 5[(x − 1)�5] + 1 = x;
  g( f (x)) = [(5x + 1) − 1]�5 = x
 (b) 

x

2

3

1

2 31−3

g

f

y

11. (a) f (g(x)) = ( 3√x)3 = x; g( f (x)) = 3√x3 = x
 (b) 

x

2

1

3

2 3−3

−3

−2

−2

g

f

1

y
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A28 Answers to Odd-Numbered Exercises

13. (a) f (g(x)) = √x2 + 4 − 4 = x;
  g( f (x)) = (√x − 4)2 + 4 = x
 (b) 

x

4

8

10

12

2

6

42 6 8 10 12

g

f

y

15. (a) f (g(x)) =
1

1�x
= x; g( f (x)) =

1
1�x

= x

 (b) 

x

2

1

1

3

2 3−1

f = g

y

17. Not one-to-one, inverse does not exist.
19. One-to-one, inverse exists.
21. One-to-one, inverse exists.
23. Not one-to-one, inverse does not exist.
25. 

−4 8

−7

1  27. 

−3 3

−1

3

 One-to-one, inverse exists.  Not one-to-one, inverse does 
not exist.

29. 

−10 2

−50

200

 One-to-one, inverse exists.
31. (a) f −1(x) = (x + 3)�2
 (b) 

4
x

4

2

2

−2

f −1

f−2

y    (c)  f  and f −1 are symmetric 
about y = x.

      (d)  Domain of f  and f −1: 
(−∞, ∞)

    Range of f  and f −1: 
(−∞, ∞)

33. (a) f −1(x) = x1�5

 (b) 

x

f

1

2

−2

−2 1 2

y

f −1

   (c)  f  and f −1 are symmetric 
about y = x.

  q    (d)  Domain of f  and f −1: 
(−∞, ∞)

    Range of f  and f −1: 
(−∞, ∞)

35. (a) f −1(x) = x2, x ≥ 0
 (b) 

3

2

321

1

f

f −1

x

y    (c)  f  and f −1 are symmetric 
about y = x.

      (d)  Domain of f  and f −1:
[0, ∞)

     Range of f  and f −1:
[0, ∞)

37. (a) f −1(x) = √4 − x2, 0 ≤ x ≤ 2
 (b) 

3

2

321

1

f = f −1

x

y    (c)  f  and f −1 are symmetric 
about y = x.

      (d)  Domain of f  and f −1: 
[0, 2]

     Range of f  and f −1: 
[0, 2]

39. (a) f −1(x) = x3 + 1
 (b) 

−3 3

−2

f −1

f

2    (c)  f  and f −1 are symmetric 
about y = x.

      (d)  Domain of f  and f −1:  
(−∞, ∞)

     Range of f  and f −1:  
(−∞, ∞)

41. (a) f −1(x) = x3�2, x ≥ 0
 (b) 

0 6
0

f

4

f −1
   (c)  f  and f −1 are symmetric 

about y = x.
      (d)  Domain of f  and f −1:  

[0, ∞)
     Range of f  and f −1: 

[0, ∞)
43. (a) f −1(x) = √7x�√1 − x2, −1 < x < 1
 (b) 

−3 3

−2

f
f −1

2    (c)  f  and f −1 are symmetric 
about y = x.

      (d)  Domain of f : (−∞, ∞)
     Range of f : (−1, 1)
    Domain of f −1: (−1, 1)
     Range of f −1: 

(−∞, ∞)
45. 

x 0 1 2 4

f (x) 1 2 3 4

x 1 2 3 4

f −1(x) 0 1 2 4

  

x
1 2 3 4

1

2

3

4 (4, 4)

(3, 2)

(2, 1)

(1, 0)

y

47. (a) Proof
 (b) y = 2

3 (137.5 − x)
  x: total cost
  y: number of pounds of the less expensive commodity
 (c)  [62.5, 137.5]; 50(1.25) = 62.5 gives the total cost when 

purchasing 50 pounds of the less expensive commodity, 
and 50(2.75) = 137.5 gives the total cost when purchasing 
50 pounds of the more expensive commodity.

 (d) 43 lb
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 Answers to Odd-Numbered Exercises A29

49. One-to-one; f −1(x) = x2 + 2, x ≥ 0  51. Not one-to-one

53. One-to-one; f −1(x) =
x − b

a
, a ≠ 0

55.  The function f  passes the Horizontal Line Test on [4, ∞), so 
it is one-to-one on [4, ∞).

57.  The function f  passes the Horizontal Line Test on (0, ∞), so 
it is one-to-one on (0, ∞).

59.  The function f  passes the Horizontal Line Test on [0, π], so it 
is one-to-one on [0, π].

61. Answers will vary. Sample answer: f −1(x) = √x + 3, x ≥ 0
63. (a) 

−2−4−6−8−10−12 2
−2

2

4

6

8

y

x

 65. (a) 

x

y

−2−4 2 4 6 8

−2

4

6

8

 (b) Answers will vary.  (b) Answers will vary. 
  Sample answer: [−5, ∞)  Sample answer: [4, ∞)
 (c) f −1(x) = √x − 5  (c) f −1(x) = 2 + √x2 + 4
 (d) Domain of f −1: [0, ∞)  (d) Domain of f −1: [0, ∞)
67. (a) 

−6 6 10

−3

−4

3

4

y

x

 (b) Answers will vary. Sample answer: [0, π]

 (c) f −1(x) = arccos(x
3)

 (d) Domain of f −1: [−3, 3]

69. 1  71. −0.5236  73. 2  75. 32  77. 88

79. (g−1 ∘ f −1)(x) = 3√6 − x  81. ( f ∘ g)−1(x) = 3√6 − x
83. (a) f  is one-to-one because it passes the Horizontal Line Test.
 (b) [−2, 2]
 (c) −4
85. 

−1−2−3−4 1 2 3 4

−2

−3

−4

2

3

4

x

y

f

f −1

87. (a) 
x −1 −0.8 −0.6 −0.4 −0.2

y −1.57 −0.93 −0.64 −0.41 −0.20

x 0 0.2 0.4 0.6 0.8 1

y 0 0.20 0.41 0.64 0.93 1.57

  (b) 

x
−1 1

−

y

2
π

2
π

   (c) 

1−1

−2

2

  (d) Intercept: (0, 0); Symmetry: origin

 89. (−
√2
2

, 
3π
4 ),(1

2
, 
π
3), (√3

2
, 
π
6)

 91. 

x
21

y

π
2

−

π
2

)) 2
π2, 

)) 2
π0, −

 93. y

x
−4 −2 2 4

2

4
3

π

π

π

 95. 
π
6

  97. 
π
3

  99. 
π
6

  101. −
π
4

  103. 1.52

105. 0.66  107. −0.1
109. No. Graphically, adding a constant shifts the graph vertically.
111.  The trigonometric functions are not one-to-one, so their 

domains must be restricted to define the inverse trigonometric 
functions.

113. x = 1
3 [sin(1

2) + π] ≈ 1.207  115. x = 1
3

117. x  119. 
√1 − x2

x
  121. 

1
x

123. (a) 
3
5

  (b) 
5
3

  125. (a) −√3  (b) −
13
5

127. √1 − 4x2  129. 
√x2 − 1

∣x∣   131. 
√x2 − 9

3

133. arcsin( 9

√x2 + 81)  135. Answers will vary.

137. Answers will vary.  139. False. Let f (x) = x2.

141. False. arcsin2 0 + arccos2 0 = (π2)
2

≠ 1

143. True  145–149. Proofs  151. k ≥ 1 and k ≤ −1

153. ad − bc ≠ 0; f −1(x) =
b − dx
cx − a

Section 1.6 (page 57)

  1. Answers will vary.

  3.  f (x) = ex and g(x) = ln x are inverse functions of each other. 
So, ln ex = g( f (x)) = x.

  5. (a) 125   (b) 9   (c) 1
9   (d) 1

3

  7. (a) 55   (b) 1
5   (c) 1

5   (d) 22

  9. (a) e6   (b) e12   (c) 
1
e6   (d) 

1
e8

 11. x = 4  13. x = 4  15. x = −5  17. x = −2
 19. x = 2  21. x = 16  23. x = −1   25. x = −5

2
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A30 Answers to Odd-Numbered Exercises

27. 

−1−2−3 1 2

1

2

3

x

y  29. 

3

2

21−2 −1

4

x

y

31. 

x

2

−1 1

y  33. 

3

4

31 2−1
x

y

35. y

x
−1−2−3 1 2 3

1

2

3

4

5

6

 37. 

x
1 2 3

3

2

1

y

39. 

2

1−1
x

y  41. Domain: (−∞, ∞)
   43. Domain: (−∞, 0]
   45. Domain: (−∞, ∞)

47. c  48. d  49. a  50. b  51. y = 2(3x)
53. ln 1 = 0  55. e1.4231. . . = 4.15
57. b  58. d  59. a  60. c
61. 

x
5421 3

3

2

1

−2

−3

−1

y  63. 

2

1

x
321

−1

y

 Domain: x > 0  Domain: x > 0
65. y

x
1 2 4 5 6 7−1

−2

−3

−4

1

2

3

4

3

 67. 

x

y

2 4 6

−2

−4

2

4

−2

 Domain: x > 3  Domain: x > −2

 69. g(x) = −ex − 8  71. g(x) = ln(x − 5) − 1
 73. 

−3

−1

6

f

g

5  75. 

−3

−1

6

f

g

5

 77. (a) f −1(x) =
ln x + 1

4
  (b) 

−1.5 1.5

−0.75

1.25

f

f −1

  (c) Answers will vary.
 79. (a) f −1(x) = ex�2 + 1
  (b) 

−3 9

−2

6

f

f −1

  (c) Answers will vary.
 81. x2  83. 5x + 2  85. −1 + 2x
 87. (a) 1.7917   (b) −0.4055   (c) 4.3944   (d) 0.5493
 89. ln x − ln 4  91. ln x + ln y − ln z
 93. ln x + 1

2 ln(x2 + 5)  95. 1
2 [ln(x − 1) − ln x]

 97. 2 + ln 3  99. ln(7x)

101. ln 
x − 2
x + 2

  103. ln 3√x(x + 3)2

x2 − 1
  105. ln 

9

√x2 + 1
107. x ≈ 2.485  109. x = 0  111. x ≈ 0.511
113. x ≈ 7.389  115. x ≈ 10.389  117. x ≈ 5.389

119. x >
ln 3 − 1

2
  121. e−2 < x < 1

123. (a) 

0

−3

9

f = g

3

  (b) Answers will vary.
125.  No; ln(ab) = b ln a is only true when a > 0 because this  

follows the properties of logarithms.
127. (a) False   (b) True. 2y = x
  (c) True. y = log2 x   (d) False
129. β = 10 log10 I + 160
131. 

−3 3

−5

45

g f

   (−0.7899, 0.2429), (1.6242, 18.3615), and (6, 46,656); 
As x increases, f (x) = 6x grows more rapidly.
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 Answers to Odd-Numbered Exercises A31

133. (a) 

−9 9

−6

6  Domain: (−∞, ∞)

  (b) Proof

  (c) f −1(x) =
e2x − 1

2ex

135. 12! = 479,001,600
  Stirling’s Formula: 12! ≈ 475,687,487
137. Proof

Review Exercises for Chapter 1 (page 60)

  1. (8
5, 0), (0, −8)  3. (3, 0), (0, 34)  5. Not symmetric

  7. Symmetric with respect to the x-axis, the y-axis, and the origin
  9. y

x

(0, 3)

(6, 0)

−2 2 4 6

−2

−4

2

4

6

 11. y

x
−4−6−8 2 4 6 8−3

−12

3

6

9

12

(3, 0)

(0, 0)

(−3, 0)

  Symmetry: none  Symmetry: origin
 13. y

x
−1 1 2 3 4 5

−1

1

2

3

5

(4, 0)

(0, 4)

  Symmetry: none
 15. (−2, 3)  17. (−2, 3), (3, 8)
 19. 

x
1 2 3 4 5

1

2

3

4

5

y

(       )5
2

5,

(       )3
2

, 1

 21. 7x − 4y − 41 = 0
  y

x
−2−4−6−8 2 4 6 8

−4

−6

−8

−10

2

(3, −5)

0, − 41
4( (

 m = 3
7

23. 2x + 3y + 6 = 0
 

(−3, 0)

−4 −3 −1 1 2 3

−3

−4

1

2

3

x

y

25. Slope: 3
 y-intercept: (0, 5)

27. y

x
−1−3 −2−4 1 2 3 4

1

3

4

2

5

7

 29. y

x
−1−3 −2−4 1 2 3 4

1

−2

−3

3

4

2

31. x − 4y = 0 33. (a) 7x − 16y + 101 = 0
 y

x
−1−4 1 2 3 4

1

−2

−3

−4

3

4

2

  (b) 5x − 3y + 30 = 0
  (c) 4x − 3y + 27 = 0
  (d) x + 3 = 0

35. V = 12,500 − 850t; $9950
37. (a) 4   (b) 29   (c) −11   (d) 5t + 9
39. 8x + 4∆x, ∆x ≠ 0
41. Domain: (−∞, ∞); Range: [3, ∞)
43. y

x
−1 1 2 3 4

−3

−4

1

2

3

4

 Domain: (−∞, 12) ∪ (1
2, ∞)

 Range: (−∞, 0) ∪ (0, ∞)
45. Not a function  47. Function
49. f (x) = x3 − 3x2

 

−6 6

−6

(0, 0)

6

(2, −4)

 (a) g(x) = −x3 + 3x2 + 1
 (b) g(x) = (x − 2)3 − 3(x − 2)2 + 1
51. f (g(x)) = −3x + 1; Domain: (−∞, ∞)
 g( f (x)) = −3x − 1; Domain: (−∞, ∞)
 No
53. Even; zeros: x = −1, 0, 1

55. 
17π

9
≈ 5.934  57. −

8π
3

≈ −8.378

59. 30°  61. −120°

63. sin(−45°) = −
√2
2

 65. sin 
13π

6
=

1
2

 cos(−45°) =
√2
2

  cos 
13π

6
=

√3
2

 tan(−45°) = −1  tan 
13π

6
=

√3
3
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A32 Answers to Odd-Numbered Exercises

67. sin 405° =
√2
2

 cos 405° =
√2
2

 tan 405° = 1

69. 0.6494  71. 3.2361  73. −0.3420  75. 
2π
3

, 
4π
3

77. 
7π
6

, 
3π
2

, 
11π

6
  79. 

π
3

, π, 
5π
3

81. y

x

−4
−6
−8
−10

10

−2π π π 2π

 83. y

x

1

2

3

4π2πππ−

85. y

x

−1

−

−2

1

2

2
3π

2
π

2
π π

 87. y

x

1

1
2

2

3

4

− 1
2

89. (a)  f (g(x)) = 4[(x + 1)�4] − 1 = x; 
g( f (x)) = [(4x − 1) + 1]�4 = x

 (b) 

x

f

g

y

−1 1 2

−1

1

2

91. Not one-to-one, inverse does not exist
93. Not one-to-one, inverse does not exist
95. (a) f −1(x) = 2x + 6
 (b) y

x
−6 −2−8 6 8

−6

−8

6

2

8

f

f −1

   (c) Proof

 (d)  Domain of f  and f −1: all real numbers 
Range of f  and f −1: all real numbers

97. (a) f −1(x) = x2 − 1, x ≥ 0
 (b) y

x

f

f −1

−1−2 1 2 3 4
−1

−2

1

2

3

4

   (c) Proof

 (d)  Domain of f : x ≥ −1, Domain of f −1: x ≥ 0 

Range of f : y ≥ 0, Range of f −1: y ≥ −1
99. (a) f −1(x) = x3 − 1
 (b) y

x

f

f −1

−2 2 3 4

−2

2

3

4

   (c) Proof

 (d)  Domain of f  and f −1: all real numbers 
Range of f  and f −1: all real numbers

101. Not one-to-one, inverse does not exist
103.  The function f  passes the Horizontal Line Test on [0, ∞), 

so it is one-to-one on [0, ∞).
105. 

x
2−2−4−6

−2

−4

4

y

107. 
π
4

+ nπ   109. x =
cos 2 − 1

2
≈ −0.708

111. (a) 
1
2

   (b) 
√3
2

  113. 
2x

√4x2 + 1
115. (a) 32   (b) 38   (c) 36   (d) 32  117. x = 8
119. 

x

−2

−2

2

2

4

6

4

y

121. d  122. a  123. c  124. b
125. 

x
1 2 3 4 5

1

2

3

4

5

y

  Domain: x > 0
127. 1

5 [ln(2x + 1) + ln(2x − 1) − ln(4x2 + 1)]

129. ln(3 3√4 − x2

x )  131. x ≈ −0.602

P.S. Problem Solving (page 63)

  1. (a) Center: (3, 4); Radius: 5
  (b) y = −3

4x   (c) y = 3
4x − 9

2   (d) (3, −9
4)
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 Answers to Odd-Numbered Exercises A33

 3. 

x
1

2

1

3

4

−2 −1
−1

−3

−2

−4

−3−4 2 3 4

y

 (a) 

x
1

2

1

3

4

−2 −1
−1

−3

−4

−3−4 2 3 4

y    (b) 

x
1

2

1

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y

 (c) 

x
1

2

1

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y   (d) 

x
1

2

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y

 (e) 

x
1

2

1

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y   (f ) 

x
1

1

3

4

−2 −1
−1

−2

−3

−4

−3−4 2 3 4

y

 5. (a) A(x) = x(100 − x
2 ); Domain: (0, 100)

 (b) 

110
0

0

1600     Dimensions 50 m ×  25 m  
yield maximum area of  
1250 m2.

 (c) 50 m × 25 m; Area = 1250 m2

 7. T(x) =
2√4 + x2 + √(3 − x)2 + 1

4
 9. (a) 5; less   (b) 3; greater   (c) 4.1; less
 (d) 4 + h   (e) 4; Answers will vary.
11. (a) Domain: (−∞, 1) ∪ (1, ∞); Range: (−∞, 0) ∪ (0, ∞)

 (b) f ( f (x)) =
x − 1

x
  Domain: (−∞, 0) ∪ (0, 1) ∪ (1, ∞)
 (c) f ( f ( f (x))) = x
  Domain: (−∞, 0) ∪ (0, 1) ∪ (1, ∞)
 (d) y

x
21−2

−2

1

2

    The graph is not a line 
because there are holes at 
x = 0 and x = 1.

13. (a) x ≈ 1.2426, −7.2426 15. Proof
 (b) (x + 3)2 + y2 = 18  

(−     2 , 0) (    2 , 0)

(0, 0)

x

y

−2

−2

−1

1

2

2

  

−2−4−8 2 4
−2

−6

2

6

8

x

y

Chapter 2
Section 2.1  (page 71)

 1.  Calculus is the mathematics of change. Precalculus  
mathematics is more static.

 Answers will vary. Sample answer:
 Precalculus Calculus
 Area of a rectangle Area under a curve
 Work  done by a  Work done by a 

constant force  variable force
 Center of a rectangle Centroid of a region
 3. Precalculus: 300 ft
 5. Calculus: Slope of the tangent line at x = 2 is 0.16.
 7. (a) 

x

y

1 2 3 4 5

2

P(4, 2)

 (b) x = 1: m = 1
3

  x = 3: m =
1

√3 + 2
≈ 0.2679

  x = 5: m =
1

√5 + 2
≈ 0.2361

 (c)  14; You can improve your approximation of the slope at 
x = 4 by considering x-values very close to 4.

 9. Area ≈ 10.417; Area ≈ 9.145; Use more rectangles.
11. (a) About 5.66   (b) About 6.11
 (c) Increase the number of line segments.

Section 2.2  (page 79)

 1.  As the graph of the function approaches 8 on the horizontal 
axis, the graph approaches 25 on the vertical axis.

 3. 

−1 1 2 3 4
−1

1

2

3

4

5

6

x

y

2.25
2
1.75

5.5

5
4.5

f(x) = 2x + 1
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 5. 
x 3.9 3.99 3.999 4

f (x) 0.3448 0.3344 0.3334 ?

x 4.001 4.01 4.1

f (x) 0.3332 0.3322 0.3226

 lim
x→4

 
x − 4

x2 − 5x + 4
≈ 0.3333 (Actual limit is 

1
3

.)
 7. 

x −0.1 −0.01 −0.001 0

f (x) 0.9983 0.99998 1.0000 ?

x 0.001 0.01 0.1

f (x) 1.0000 0.99998 0.9983

 lim
x→0

 
sin x

x
≈ 1.0000 (Actual limit is 1.)

 9. 
x −0.1 −0.01 −0.001 0

f (x) 0.9516 0.9950 0.9995 ?

x 0.001 0.01 0.1

f (x) 1.0005 1.0050 1.0517

 lim
x→0

 
ex − 1

x
≈ 1.0000 (Actual limit is 1.)

11. 
x 0.9 0.99 0.999 1

f (x) 0.2564 0.2506 0.2501 ?

x 1.001 1.01 1.1

f (x) 0.2499 0.2494 0.2439

 lim
x→1

 
x − 2

x2 + x − 6
≈ 0.2500 (Actual limit is 

1
4

.)
13. 

x 0.9 0.99 0.999 1

f (x) 0.7340 0.6733 0.6673 ?

x 1.001 1.01 1.1

f (x) 0.6660 0.6600 0.6015

 lim
x→1

 
x4 − 1
x6 − 1

≈ 0.6666 (Actual limit is 
2
3

.)
15. 

x −6.1 −6.01 −6.001 −6

f (x) −0.1248 −0.1250 −0.1250 ?

x −5.999 −5.99 −5.9

f (x) −0.1250 −0.1250 −0.1252

 lim
x→−6

 
√10 − x − 4

x + 6
≈ −0.1250 (Actual limit is −

1
8

.)

17. 
x −0.1 −0.01 −0.001 0

f (x) 1.9867 1.9999 2.0000 ?

x 0.001 0.01 0.1

f (x) 2.0000 1.9999 1.9867

 lim
x→0

 
sin 2x

x
≈ 2.0000 (Actual limit is 2.)

19. 
x 1.9 1.99 1.999 2

f (x) 0.5129 0.5013 0.5001 ?

x 2.001 2.01 2.1

f (x) 0.4999 0.4988 0.4879

 lim
x→2

 
ln x − ln 2

x − 2
≈ 0.5000 (Actual limit is 

1
2

.)
21. 

x −0.1 −0.01 −0.001 0

f (x) 3.9998 4 4 ?

x 0.001 0.01 0.1

f (x) 0 0 0.0002

  The function approaches 0 from the right side of 0, but it 
approaches 4 from the left side of 0.

23. 1  25. 2
27.  Limit does not exist. The function approaches 1 from the right 

side of 2, but it approaches −1 from the left side of 2.
29.  Limit does not exist. The function oscillates between 1 and −1 

as x approaches 0.
31. (a) 2
 (b)  Limit does not exist. The function approaches 1 from the 

right side of 1, but it approaches 3.5 from the left side of 1.
 (c) Value does not exist. The function is undefined at x = 4.
 (d) 2
33. 

−1−2 1 2 3 4 5−1

−2

1

2

3

4

5

6

y

x

f

 35. y

x
−1−2 1 2 3 4 5

−1

1

2

4

5

6

f

 lim
x→c

 f (x) exists for all points

  on the graph except where  
c = 4.

37. δ = 0.4  39. δ = 1
11 ≈ 0.091

41. L = 8
 Answers will vary. Sample answers:
 (a) δ ≈ 0.0033   (b) δ ≈ 0.00167
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 Answers to Odd-Numbered Exercises A35

43. L = 1 45. L = 12
  Answers will vary.   Answers will vary. 

Sample answers:  Sample answers:
 (a) δ = 0.002  (a) δ = 0.00125
 (b) δ = 0.001  (b) δ = 0.000625
47. 6  49. −3  51. 3  53. 0  55. 10
57. 2  59. 4
61. 

−6 6

−0.1667

0.5    lim
x→4

 f (x) = 1
6

      Domain: [−5, 4) ∪ (4, ∞)
      The graph has a hole at x = 4.

63. (a) $17.89; the cost of a 10-minute, 45-second phone call
 (b) 

0
8

6

16     The limit does not exist because 
the limits from the right and left 
are not equal.

65.  Choosing a smaller positive value of δ will still satisfy the 
inequality ∣ f (x) − L∣ < ε.

67.  No. The fact that f (2) = 4 has no bearing on the existence of 
the limit of f (x) as x approaches 2.

69. (a) r =
3
π ≈ 0.9549 cm

 (b) 
5.5
2π ≤ r ≤ 6.5

2π , or approximately 0.8754 < r < 1.0345

 (c) lim
r→3�π

 2πr = 6; ε = 0.5; δ ≈ 0.0796

71. 
x −0.001 −0.0001 −0.00001

f (x) 2.7196 2.7184 2.7183

x 0.00001 0.0001 0.001

f (x) 2.7183 2.7181 2.7169

 lim
x→0

 f (x) ≈ 2.7183

 

x
2 3 4 5

2

3

7

1−1−2−3

1

−1

(0, 2.7183)

y

73. 

1.998 2.002
0

(1.999, 0.001)

(2.001, 0.001)

0.002   75.  False. The existence or 
nonexistence of f (x) at 
x = c has no bearing on 
the existence of the limit 
of f (x) as x → c.

 δ = 0.001, (1.999, 2.001)
77. False. See Exercise 25.
79.  Yes. As x approaches 0.25 from either side, √x becomes  

arbitrarily close to 0.5.

81. lim
x→0

 
sin nx

x
= n  83–85. Proofs

87. Putnam Problem B1, 1986

Section 2.3  (page 91)

 1. Substitute c for x and simplify.
 3.  If a function f  is squeezed between two functions h and g, 

h(x) ≤ f (x) ≤ g(x), and h and g have the same limit L as 
x → c, then lim

x→c
 f (x) exists and equals L.

 5. −1  7. 0  9. √11  11. 125  13. 3
5

15. 1
5  17. 7  19. (a) 4   (b) 64   (c) 64

21. (a) 3   (b) 2   (c) 2  23. 1  25. 1
2  27. 1

29. 1
2  31. −1  33. 1  35. ln 3 + e

37. (a) 10   (b) 12
5    (c) 4

5   (d) 1
5

39. (a) 256   (b) 4   (c) 48   (d) 64

41. f (x) =
x2 − 1
x + 1

 and g(x) = x − 1 agree except at x = −1.

 lim
x→−1

 f (x) = lim
x→−1

 g(x) = −2

43. f (x) =
x3 − 8
x − 2

 and g(x) = x2 + 2x + 4 agree except at x = 2.

 lim
x→2

 f (x) = lim
x→2

 g(x) = 12

45. −
ln 2

8
≈ −0.0866

 f (x) =
(x + 4) ln(x + 6)

x2 − 16
 and g(x) =

ln(x + 6)
x − 4

 agree except 

 at x = −4.

47. −1  49. 
1
8

  51. 
5
6

  53. 
1
6

  55. 
√5
10

57. −1
9  59. 2  61. 2x − 2  63. 1

5  65. 0
67. 0  69. 0  71. 0  73. 1  75. 3

2

77. 

−3 3

−2

2    The graph has a hole at x = 0.

 Answers will vary. Sample answer:

x −0.1 −0.01 −0.001 0.001 0.01 0.1

f (x) 0.358 0.354 0.354 0.354 0.353 0.349

 lim
x→0

 
√x + 2 − √2

x
≈ 0.354; Actual limit is 

1

2√2
=

√2
4

.

79. 

−5 1

−2

3    The graph has a hole at x = 0.

 Answers will vary. Sample answer:
 

x −0.1 −0.01 −0.001

f (x) −0.263 −0.251 −0.250

x 0.001 0.01 0.1

f (x) −0.250 −0.249 −0.238

 lim
x→0

 
[1�(2 + x)] − (1�2)

x
≈ −0.250; Actual limit is −

1
4

.
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 81. 

−1

π2π−2

4  The graph has a hole at t = 0.

  Answers will vary. Sample answer:
  

t −0.1 −0.01 0 0.01 0.1

f (t) 2.96 2.9996 ? 2.9996 2.96

  lim
t→0

 
sin 3t

t
≈ 3.0000; Actual limit is 3.

 83. 

−1

π2π−2

1   The graph has a hole at x = 0.

  Answers will vary. Sample answer:

x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) −0.1 −0.01 −0.001 ? 0.001 0.01 0.1

  lim
x→0

 
sin x2

x
= 0; Actual limit is 0.

 85. 

−1 6

−1

4  The graph has a hole at x = 1.

  Answers will vary. Sample answer:
  

x 0.5 0.9 0.99 1

f (x) 1.3863 1.0536 1.0050 ?

x 1.01 1.1 1.5

f (x) 0.9950 0.9531 0.8109

  lim
x→1

 
ln x

x − 1
≈ 1; Actual limit is 1.

 87. 3  89. 2x − 4  91. x−1�2

 93. −1�(x + 3)2  95. 4
 97. 

−6

π2π−2

6  99. 

−0.5

0.5−0.5

0.5

  0   0
 The graph has a hole at 
 x = 0.
101. (a)  f  and g agree at all but one point if c is a real number 

such that f (x) = g(x) for all x ≠ c.

  (b)  Sample answer: f (x) =
x2 − 1
x − 1

 and g(x) = x + 1 agree

   at all points except x = 1.

103. 

−3

5−5

f
g h

3     The magnitudes of f (x) and g(x)
are approximately equal when x 
is close to 0. Therefore, their ratio 
is approximately 1.

105. −64 ft�sec (speed = 64 ft�sec)  107. −29.4 m�sec
109. Let f (x) = 1�x and g(x) = −1�x.
  lim

x→0
 f (x) and lim

x→0
 g(x) do not exist. However,

  lim
x→0

 [ f (x) + g(x)] = lim
x→0

 [1
x

+ (−
1
x)] = lim

x→0
 0 = 0

  and therefore does exist.
111–115. Proofs

117. Let f (x) = { 4,
−4,

    x ≥ 0
x < 0

. 

  lim
x→0

 ∣ f (x)∣ = lim
x→0

 4 = 4

  lim
x→0

 f (x) does not exist because for x < 0, f (x) = −4 and

  for x ≥ 0, f (x) = 4.
119.  False. The limit does not exist because the function  

approaches 1 from the right side of 0 and approaches −1 
from the left side of 0.

121. True.
123.  False. The limit does not exist because f (x) approaches 3 

from the left side of 2 and approaches 0 from the right side 
of 2.

125. Proof

127. (a) All x ≠ 0, 
π
2

+ nπ

  (b) 

−2

π
2

3π
2

3−

2     The domain is not obvious. 
The hole at x = 0 is not 
apparent from the graph.

  (c) 1
2  (d) 1

2

Section 2.4  (page 103)

  1.  A function is continuous at a point c if there is no interruption 
of the graph at c.

  3.  The limit exists because the limit from the left and the limit 
from the right are equivalent.

  5. (a) 3   (b) 3   (c) 3; f (x) is continuous on (−∞, ∞).
  7. (a) 0   (b) 0   (c) 0; Discontinuity at x = 3
  9.  (a) −3   (b) 3   (c) Limit does not exist. 
  Discontinuity at x = 2
 11. 1

16  13. 1
10

 15.  Limit does not exist. The function decreases without bound 
as x approaches −3 from the left.

 17. −1  19. −
1
x2  21. 

5
2

 23.  Limit does not exist. The function decreases without bound 
as x approaches π  from the left and increases without bound 
as x approaches π  from the right.

 25. 8  27. 2
 29.  Limit does not exist. The function decreases without bound 

as x approaches 3 from the right.
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 Answers to Odd-Numbered Exercises A37

 31. ln 4
 33. Discontinuities at x = −2 and x = 2
 35. Discontinuities at every integer
 37. Continuous on [−7, 7]  39. Continuous on [−1, 4]
 41. Nonremovable discontinuity at x = 6
 43. Continuous for all real x
 45. Nonremovable discontinuity at x = 1
  Removable discontinuity at x = 0
 47. Removable discontinuity at x = −2
  Nonremovable discontinuity at x = 5
 49. Nonremovable discontinuity at x = −7
 51. Nonremovable discontinuity at x = 2
 53. Continuous for all real x
 55. Nonremovable discontinuity at x = 0

 57. Nonremovable discontinuities at integer multiples of 
π
2

 59. Nonremovable discontinuities at each integer
 61. a = 2  63. a = 4  65. a = −1
 67. Nonremovable discontinuities at x = 1 and x = −1
 69. Continuous on the open intervals 
  .  .  . , (−3π, −π), (−π, π), (π, 3π), .  .  .
 71. 

−3 3

−1.5

0.5  73. 

−2

−2

8

10

  Nonremovable discontinuity Nonremovable discontinuity 
at each integer  at x = 4

 75. Continuous on (−∞, ∞)  77. Continuous on [0, ∞)
 79.  Continuous on the open intervals .  .  . , (−6, −2), (−2, 2),

(2, 6), .  .  .
 81. Continuous on (−∞, ∞)
 83.  Because f (x) is continuous on the interval [1, 2] and f (1) = 37

12 
and f (2) = −8

3, by the Intermediate Value Theorem there 
exists a real number c in [1, 2] such that f (c) = 0.

 85.  Because f (x) is continuous on the interval [0, π]  and 
f (0) = −3 and f (π) ≈ 8.87, by the Intermediate Value 
Theorem there exists a real number c in [0, π] such that 
f (c) = 0.

 87.  Because h(x) is continuous on the interval [0, π�2] and 
h(0) = −2 and h(π�2) ≈ 0.9119, by the Intermediate Value 
Theorem there exists a real number c in [0, π�2] such that 
f (c) = 0.

 89. Consider the intervals [1, 3] and [3, 5].
   f (1) = 2 > 0 and f (3) = −2 < 0. So, there is at least one 

zero in the interval [1, 3].
   f (3) = −2 < 0 and f (5) = 2 > 0. So, there is at least one 

zero in the interval [3, 5].
 91. 0.68, 0.6823  93. 0.95, 0.9472  95. 0.56, 0.5636
 97. 0.79, 0.7921  99. f (3) = 11; c = 3
101. f (0) ≈ 0.6458, f (5) ≈ 1.464; c = 2
103. f (1) = 0, f (3) = 24; c = 2
105. Answers will vary. Sample answer:

  f (x) =
1

(x − a)(x − b)

107.  If f  and g are continuous for all real x, then so is f + g

  (Theorem 2.11, part 2). However, 
f
g

 might not be continuous

   when g(x) = 0. For example, let f (x) = x and g(x) = x2 − 1.

   Then f  and g are continuous for all real x, but 
f
g

 is not  
continuous at x = ±1.

109. True
111.  False. f (x) = cos x has two zeros in [0, 2π]. However, f (0) 

and f (2π) have the same sign.

113.  False. A rational function can be written as 
P(x)
Q(x), where P 

   and Q are polynomials of degree m and n, respectively. It can 
have, at most, n discontinuities.

115. The functions differ by 1 for non-integer values of x.
117. 

1 2 3 4

10

20

30

40

t

C    There is a jump discontinuity every 
gigabyte.

119–121. Proofs  123. Answers will vary.

125. (a) 

1 2 3 4 5

435

430

440

445

450

t

F     (b)  No. The frequency is 
oscillating.

127. c =
−1 ± √5

2

129. Domain: [−c2, 0) ∪ (0, ∞); Let f (0) =
1
2c

.

131.  h(x) has a nonremovable discontinuity at every integer except 
0.

  

3

−3

−3

15

133. Putnam Problem B2, 1988

Section 2.5  (page 112)

  1.  A limit in which f (x) increases or decreases without bound 
as x approaches c is called an infinite limit. ∞ is not a  
number. Rather, the symbol lim

x→c
 f (x) = ∞ says how the limit 

fails to exist.

  3. lim
x→−2+

 2∣ x
x2 − 4∣ = ∞, lim

x→−2−
 2∣ x

x2 − 4∣ = ∞

  5. lim
x→−2+

 tan 
πx
4

= −∞, lim
x→−2−

 tan 
πx
4

= ∞

  7. lim
x→4+

 
1

x − 4
= ∞, lim

x→4−
 

1
x − 4

= −∞
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A38 Answers to Odd-Numbered Exercises

 9. lim
x→4+

 
1

(x − 4)2 = ∞, lim
x→4−

 
1

(x − 4)2 = ∞
11. 

x −2.999 −2.99 −2.9 −2.5

f (x) −167 −16.7 −1.69 −0.36

x −3.5 −3.1 −3.01 −3.001 −3

f (x) 0.31 1.64 16.6 167 ?

 lim
x→−3+

 f (x) = −∞; lim
x→−3−

 f (x) = ∞
13. 

x −3.5 −3.1 −3.01 −3.001 −3

f (x) 3.8 16 151 1501 ?

x −2.999 −2.99 −2.9 −2.5

f (x) −1499 −149 −14 −2.3

 lim
x→−3+

 f (x) = −∞; lim
x→−3−

 f (x) = ∞
15. 

x −2.999 −2.99 −2.9 −2.5

f (x) 954.9 95.49 9.514 1.7321

x −3.5 −3.1 −3.01 −3.001 −3

f (x) −1.7321 −9.514 −95.49 −954.9 ?

 lim
x→−3−

 f (x) = −∞; lim
x→−3+

 f (x) = ∞
17. x = ±2  19. x = −2, x = 1  21. x = 0, x = 3
23. x = 1  25. t = −2  27. x = 0
29. x = n, n is an integer  31. t = nπ, n is a nonzero integer
33. Removable discontinuity at x = −1
35. Vertical asymptote at x = −1  37. ∞
39. −1

5  41. −∞  43. −∞  45. ∞
47. −∞  49. −∞  51. ∞
53. 

5

−3

−4

3    lim
x→1+

 f (x) = ∞

55. (a) ∞   (b) −∞   (c) 0

57. Answers will vary. Sample answer: f (x) =
x − 3

x2 − 4x − 12
59. y

x
1 3−1−2

−1

−2

2

1

3

61. (a) 

x 0.01 0.001 0.0001

f (x) ≈ 0 ≈ 0 ≈ 0

x 1 0.5 0.2 0.1

f (x) 0.1585 0.0411 0.0067 0.0017

  

1.5

−0.25

−1.5

0.5

   lim
x→0+

 
x − sin x

x
= 0

 (b) 

x 0.01 0.001 0.0001

f (x) 0.0017 ≈ 0 ≈ 0

x 1 0.5 0.2 0.1

f (x) 0.1585 0.0823 0.0333 0.0167

  

1.5

−0.25

−1.5

0.25

   lim
x→0+

 
x − sin x

x2 = 0

 (c) 

x 0.01 0.001 0.0001

f (x) 0.1667 0.1667 0.1667

x 1 0.5 0.2 0.1

f (x) 0.1585 0.1646 0.1663 0.1666

  

1.5

−0.25

−1.5

0.25

  lim
x→0+

 
x − sin x

x3 = 0.16 or 
1
6

 (d) 

x 0.01 0.001 0.0001

f (x) 16.67 166.7 1667.0

x 1 0.5 0.2 0.1

f (x) 0.1585 0.3292 0.8317 1.6658

  

1.5

−1.5

−1.5

1.5

  lim
x→0+

 
x − sin x

x4 = ∞

 For n > 3, lim
x→0+

 
x − sin x

xn = ∞.
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 Answers to Odd-Numbered Exercises A39

63. (a) 7
12 ft�sec   (b) 3

2 ft�sec

 (c) lim
x→25−

 
2x

√625 − x2
= ∞

65. (a) A = 50 tan θ − 50θ; Domain: (0, 
π
2)

 (b) 
θ 0.3 0.6 0.9 1.2 1.5

f (θ) 0.47 4.21 18.0 68.6 630.1

  

0
0

1.5

100

 (c) lim
θ→π�2

 A = ∞
67. True  69. False. Let f (x) = tan x.

71. Let f (x) =
1
x2 and g(x) =

1
x4, and let c = 0. lim

x→0
 
1
x2 = ∞ and

 lim
x→0

 
1
x4 = ∞, but lim

x→0
 ( 1

x2 −
1
x4) = lim

x→0
 (x2 − 1

x4 ) = −∞ ≠ 0.

73. Given lim
x→c

 f (x) = ∞, let g(x) = 1. Then lim
x→c

 
g(x)
f (x) = 0 by

 Theorem 2.15.
75–77. Proofs

Review Exercises for Chapter 2  (page 115)

 1. Calculus
 

9

−1

−9

11

 Estimate: 8.3
 3. 

x 2.9 2.99 2.999 3

f (x) −0.9091 −0.9901 −0.9990 ?

x 3.001 3.01 3.1

f (x) −1.0010 −1.0101 −1.1111

 lim
x→0

 
x − 3

x2 − 7x + 12
≈ −1.0000

 5. (a)  Limit does not exist. The function approaches 3 from the 
left side of 2, but it approaches 2 from the right side of 2.

 (b) 0
 7. 5  9. −3  11. 36  13. 16  15. 4

3  17. −1
19. 1

2  21. −1  23. 0  25. 1
27. √3�2  29. −3  31. −5

33. 

−1
0

1

1

   The graph has a hole at x = 0.

 
x −0.1 −0.01 −0.001 0

f (x) 0.3352 0.3335 0.3334 ?

x 0.001 0.01 0.1

f (x) 0.3333 0.3331 0.3315

 lim
x→0

 
√2x + 9 − 3

x
≈ 0.3333; Actual limit is 

1
3

.

35. 

−18 2

800

0

   The graph has a hole at x = −9.

 

x −8.999 −8.99 −8.9

f (x) 242.9730 242.7301 240.3100

x −9.1 −9.01 −9.001 −9

f (x) 245.7100 243.2701 243.0270 ?

 lim
x→−9

 
x3 + 729

x + 9
≈ 243.00; Actual limit is 243.

37. −39.2 m�sec  39. 1
6  41. 1

10  43. 0
45.  Limit does not exist. The function approaches 2 from the left 

side of 1, but it approaches 1 from the right side of 1.
47. 3  49. −4  51. Continuous on [−2, 2]
53. No discontinuities
55. Nonremovable discontinuity at x = 5
57. Nonremovable discontinuities at x = −1 and x = 1
 Removable discontinuity at x = 0
59. c = −1

2  61. Continuous for all real x
63. Continuous on [0, ∞)
65. Continuous on (k, k + 1) for all integers k
67. Removable discontinuity at x = 1
 Continuous on (−∞, 1) ∪ (1, ∞)
69. Proof
71. f (−1) = −8, f (2) = 10; c = 1

73. lim
x→6+

 
1

x − 6
= ∞, lim

x→6−
 

1
x − 6

= −∞
75. x = 0  77. x = ±3
79. x = 2n + 1, where n is an integer
81. x = ±5  83. −∞  85. 1

3  87. −∞  89. 4
5

91. ∞  93. −∞
95.  (a) $80,000.00   (b) $720,000.00
 (c)  ∞; No matter how much the company spends, the company 

will never be able to remove 100% of the pollutants.
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P.S. Problem Solving  (page 117)

 1. (a) Perimeter △PAO = 1 + √(x2 − 1)2 + x2 + √x4 + x2

  Perimeter △PBO = 1 + √x4 + (x − 1)2 + √x4 + x2

 (b) 
x 4 2 1

Perimeter △PAO 33.0166 9.0777 3.4142

Perimeter △PBO 33.7712 9.5952 3.4142

r(x) 0.9777 0.9461 1.0000

x 0.1 0.01

Perimeter △PAO 2.0955 2.0100

Perimeter △PBO 2.0006 2.0000

r(x) 1.0475 1.0050

  1
 3. (a) Area (hexagon) = (3√3)�2 ≈ 2.5981
  Area (circle) = π ≈ 3.1416
  Area (circle) − Area (hexagon) ≈ 0.5435
 (b) An = (n�2) sin(2π�n)
 (c) 

n 6 12 24 48 96

An 2.5981 3.0000 3.1058 3.1326 3.1394

  3.1416 or π
 5. (a) m = −12

5    (b) y = 5
12x − 169

12

 (c) mx =
−√169 − x2 + 12

x − 5
 (d)  512; It is the same as the slope of the tangent line found in  

part (b).
 7. (a) Domain: [−27, 1) ∪ (1, ∞)
 (b) 

12

−0.1

−30

0.5    (c) 1
14   (d) 1

12

  The graph has a hole at x = 1.
 9. (a) g1, g4   (b) g1   (c) g1, g3, g4

11. 

x
1

−2

−3

−4

2

1

3

4

−2 −1−3−4 2 3 4

y    The graph jumps at every integer.

 (a) f (1) = 0, f (0) = 0, f (1
2) = −1, f (−2.7) = −1

 (b) lim
x→1−

 f (x) = −1, lim
x→1+

 f (x) = −1, lim
x→1�2

 f (x) = −1

 (c) There is a discontinuity at each integer.

13. (a) 

x
b

2

a

1

y

 (b) (i) lim
x→a+

 Pa, b(x) = 1

  (ii) lim
x→a−

 Pa, b(x) = 0

  (iii) lim
x→b+

 Pa, b(x) = 0

  (iv) lim
x→b−

 Pa, b(x) = 1

 (c) Continuous for all positive real numbers except a and b
 (d) The area under the graph of U and above the x-axis is 1.

Chapter 3
Section 3.1  (page 127)

 1.  Let (c, f (c)) represent an arbitrary point on the graph of f. 
Then the slope of the tangent line at (c, f (c)) is

 m = lim
∆x→0

 
f (c + ∆x) − f (c)

∆x
.

 3.  The limit used to define the slope of a tangent line is also 
used to define differentiation. The key is to rewrite the  
difference quotient so that ∆x does not occur as a factor of the 
denominator.

 5. m1 = 0, m2 = 5�2

 7. (a)–(d) 

6

5

4

3

2

654321

1

y

x

f (4) − f (1) = 3

4 − 1 = 3

(4, 5)

(1, 2)

f (4) = 5

f (1) = 2

f (4) − f (1)
4 − 1

y = (x − 1) + f (1) = x + 1
  9. m = −5

11. m = 8  13. m = 3  15. f ′(x) = 0
17. f ′(x) = −5  19. h′(s) = 2

3  21. f ′(x) = 2x + 1

23. f ′(x) = 3x2 − 12  25. f ′(x) = −
1

(x − 1)2

27. f ′(x) =
1

2√x + 4
29. (a) Tangent line: 31. (a) Tangent line:
  y = −2x + 2   y = 12x − 16
 (b) 

−3

−1

8

3

(−1, 4)

  (b) 

−5 5

−4

(2, 8)

10

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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33. (a) Tangent line:  35. (a) Tangent line:
  y = 1

2 x + 1
2   y = 3

4x − 2
 (b) 

5

−1

−1

3

(1, 1)

  (b) 

−12

−10

6

12

(−4, −5)

37. y = −x + 1  39. y = 3x − 2, y = 3x + 2
41. y = −1

2x + 3
2

43. 

2

−2

−1

3

4

1 2−2 −1 3−3

f ′

y

x

   The slope of the graph of f  is 1 for 
all x-values.

45. 

−2−4−6 2 4 6
−2

−4

−6

−8

2

4

x

y

f ′    The slope of the graph of f  is  
negative for x < 4, positive for 
x > 4, and 0 at x = 4.

47. y

x
−1−2 1 2 3 4

−2

1

2

f ′

  The slope of the graph of f  is 
negative for x < 0 and positive 
for x > 0. The slope is undefined 
at x = 0.

49. Answers will vary.
 Sample answer: y = −x
 

x

−1

−2

−3

−4

2

1

3

4

−2 −1−3−4 2 3 4

y

51. No. Consider f (x) = √x and its derivative.
53. g(4) = 5, g′(4) = −5

3

55. f (x) = 5 − 3x 57. f (x) = −x2

 c = 1  c = 6
59. f (x) = −3x + 2 61. y = 2x + 1, y = −2x + 9
 

−1−2−3 2 3
−1

−2

−3

x

y

f

1

2

63. (a) 

−1

−3 3

3

(−1, 1) (1, 1)

(0, 0)

   For this function, the slopes of 
the tangent lines are always  
distinct for different values of x.

 (b) 

−3

−3 3

3

(−1, −1)

(1, 1)(0, 0)
   For this function, the slopes of 

the tangent lines are  
sometimes the same.

65. (a) 

−2

−6 6

6

  f ′(0) = 0, f ′(1
2) = 1

2, f ′(1) = 1, f ′(2) = 2

 (b) f ′(−1
2) = −1

2, f ′(−1) = −1, f ′(−2) = −2
 (c) y

x
−2−3−4 1 2 3 4

−2

−3

−4

1

2

3

4

f ′

 (d) f ′(x) = x
67. f (2) = 4, f (2.1) = 3.99, f ′(2) ≈ −0.1  69. 4
71. g(x) is not differentiable at x = 0.
73. f (x) is not differentiable at x = 6.
75. h(x) is not differentiable at x = −7.
77. (−∞, −4) ∪ (−4, ∞)  79. (−1, ∞)
81. 

−1

−1 11

7  83. 

6

−3

−6

5

 (−∞, 5) ∪ (5, ∞)  (−∞, 0) ∪ (0, ∞)
85.  The derivative from the left is −1 and the derivative from the 

right is 1, so f  is not differentiable at x = 1.
87.  The derivatives from both the right and the left are 0, so 

f ′(1) = 0.
89. f  is differentiable at x = 2.
91. 

−3 3

−2

4    Yes, f  is differentiable for all 
x ≠ n, n is an integer.

93. False. The slope is lim
∆x→0

 
f (2 + ∆x) − f (2)

∆x
.

95.  False. For example, f (x) = ∣x∣. The derivative from the left 
and the derivative from the right both exist but are not equal.

97. Proof
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Section 3.2  (page 139)

 1.  Use the Constant Multiple Rule and Power Rule to get 
f ′(x) = cnx n−1.

 3. f (x) = ce x

 5. (a) 1
2   (b) 3  7. 0  9. 7x6  11. −5�x6

13. 1�(9x8�9)  15. 1  17. −6t + 2  19. 3t2 + 10t − 3

21. 
π
2

 cos θ  23. 2x +
1
2

 sin x  25. 
1
2

ex − 3 cos x

 Function Rewrite Differentiate Simplify

27. y =
2

7x4 y =
2
7

x−4 y′ = −
8
7

x−5 y′ = −
8

7x5

29. y =
6

(5x)3 y =
6

125
x−3 y′ = −

18
125

x−4 y′ = −
18

125x4

31. −2  33. 0  35. 8  37. 3  39. 3
4

41. 
2x + 6

x3   43. 
2t + 12

t4   45. 
x3 − 8

x3

47. 
3t2 − 4t + 24

2t5�2   49. 3x2 + 1  51. 
1

2√x
−

2
x2�3

53. 
3

√x
− 5 sin x  55. 18x + 5 sin x  57. 

−2
x3 − 2ex

59. (a) y = 2x − 2 61. (a) 2x − y + 1 = 0
 (b) 

−3

−3 3

1

(1, 0)

 (b) 

−4 4

−4

8

(0, 1)

63. (−1, 2), (0, 3), (1, 2)  65. No horizontal tangents
67. (ln 4, 4 − 4 ln 4)  69. (π, π)  71. k = −8
73. k = 3  75. g′(x) = f ′(x)
77. 

3

3

1

21−1−2−3

−2

x

f

f ′

y

   The rate of change of f  is constant, 
and therefore f ′ is a constant  
function.

79. 

x

y

81. 
5

4

3

1

−1

2

2 3
x

(2, 3)

(1, 1)

y  
5

4

3

1

−1

−2

2

2 3
x

(1, 0)

(2, 4)

y

 y = 2x − 1 y = 4x − 4
83. f ′(x) = 3 + cos x ≠ 0 for all x.  85. x − 4y + 4 = 0

 87. (a) 

−2

−2 12

(4, 8)

20    (3.9, 7.7019), 
S(x) = 2.981x − 3.924

  (b) T(x) = 3(x − 4) + 8 = 3x − 4
    The slope (and equation) of the secant line approaches 

that of the tangent line at (4, 8) as you choose points 
closer and closer to (4, 8).

  (c) 

−2

−2 12
T

f

20  The approximation becomes 
less accurate.

  (d)
 

∆x −3 −2 −1 −0.5 −0.1 0

f (4 + ∆x) 1 2.828 5.196 6.548 7.702 8

T(4 + ∆x) −1 2 5 6.5 7.7 8

∆x 0.1 0.5 1 2 3

f (4 + ∆x) 8.302 9.546 11.180 14.697 18.520

T(4 + ∆x) 8.3 9.5 11 14 17

 89. False. Let f (x) = x and g(x) = x + 1.

 91. False. 
dy
dx

= 0  93. False. f ′(x) = 0

 95. Average rate: 3 97. Average rate: 1
2

  Instantaneous rates:   Instantaneous rates:
  f ′(1) = 3, f ′(2) = 3  f ′(1) = 1, f ′(2) = 1

4

 99. Average rate: e ≈ 2.718
  Instantaneous rates: g′(0) = 1, g′(1) = 2 + e ≈ 4.718
101. (a) s(t) = −16t2 + 1362, v(t) = −32t   (b) −48 ft�sec
  (c) s′(1) = −32 ft�sec, s′(2) = −64 ft�sec

  (d) t =
√1362

4
≈ 9.226 sec   (e) −295.242 ft�sec

103. v(5) = 71 m�sec; v(10) = 22 m�sec
105. 

t

Time (in minutes)
2 4 6 8 10

10

20

30

40

50

60

V
el

oc
ity

 (
in

 m
i/h

)

v  107. V′(6) = 108 cm3�cm

109. (a) R(v) = 0.417v − 0.02
  (b) B(v) = 0.0056v2 + 0.001v + 0.04
  (c) T(v) = 0.0056v2 + 0.418v + 0.02
  (d) 

120
0

0

T
B

R

80  (e) T′(v) = 0.0112v + 0.418
  T′(40) = 0.866
  T′(80) = 1.314
  T′(100) = 1.538

  (f ) Stopping distance increases at an increasing rate.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 Answers to Odd-Numbered Exercises A43

111. Proof  113. y = 2x2 − 3x + 1
115. 9x + y = 0, 9x + 4y + 27 = 0  117. a = 1

3, b = −4
3

119. f1(x) = ∣sin x∣ is differentiable for all x ≠ nπ, n an integer.
  f2(x) = sin∣x∣ is differentiable for all x ≠ 0.
121. Putnam Problem A2, 2010

Section 3.3  (page 150)

  1.  To find the derivative of the product of two differentiable 
functions f  and g, multiply the first function f  by the derivative 
of the second function g, and then add the second function g 
times the derivative of the first function f.

  3. 
d
dx

 tan x = sec2 x

  
d
dx

 cot x = −csc2 x

  
d
dx

 sec x = sec x tan x

  
d
dx

 csc x = −csc x cot x

  5. −20x + 17  7. 
1 − 5t2

2√t
  9. ex(cos x − sin x)

 11. −
5

(x − 5)2  13. 
1 − 5x3

2√x(x3 + 1)2
  15. 

cos x − sin x
ex

 17.   f ′(x) = (x3 + 4x)(6x + 2) + (3x2 + 2x − 5)(3x2 + 4)
   = 15x4 + 8x3 + 21x2 + 16x − 20
  f ′(0) = −20

 19. f ′(x) =
x2 − 6x + 4

(x − 3)2  21. f ′(x) = cos x − x sin x

  f ′(1) = −
1
4

  f ′(π4) =
√2
8

(4 − π)

 23.  f ′(x) = ex(cos x + sin x)
    f ′(0) = 1
 Function Rewrite Differentiate Simplify

 25. y =
x3 + 6x

3
 y =

1
3

x3 + 2x y′ =
1
3

(3x2) + 2 y′ = x2 + 2

 27. y =
6

7x2 y =
6
7

x−2 y′ = −
12
7

x−3 y′ = −
12
7x3

 29. y =
4x3�2

x
 y = 4x1�2, y′ = 2x−1�2 y′ =

2

√x
,

  x > 0  x > 0

 31. 
3

(x + 1)2, x ≠ 1  33. 
x2 + 6x − 3

(x + 3)2   35. 
3x + 1
2x3�2

 37. −
2x2 − 2x + 3

x2(x − 3)2   39. 
4s2(3s2 + 13s + 15)

(s + 2)2

 41. 10x4 − 8x3 − 21x2 − 10x − 30  43. t(t cos t + 2 sin t)

 45. 
−(t sin t + cos t)

t2
  47. −ex + sec2x

 49. 
1

4t3�4 − 6 csc t cot t  51. 
3
2

 sec x(tan x − sec x)

 53. cos x cot2 x  55. x(x sec2 x + 2 tan x)

 57. 2x cos x + 2 sin x + x2ex + 2xex  59. 
ex

(8x3�2)(2x − 1)

 61. 
2x2 + 8x − 1

(x + 2)2   63. −4√3  65. 
1
π2

67. (a) y = −3x − 1 69. (a) y = 4x + 25
 (b) 

−6

−1 3

3

(1, −4)

  (b) 

−6

−8 1

8

(−5, 5)

71. (a) 4x − 2y − π + 2 = 0 73. (a) y = e(x − 1)
 (b) 

−4

4

−

π
4( (, 1

ππ

  (b) 

−33 3

−3

3

(1, 0)

75. 2y + x − 4 = 0  77. 25y − 12x + 16 = 0
79. (0, 0), (2, 4)  81. (3, 8e−3)
83. 2y + x = 7, 2y + x = −1
 

−2 2 4 6

−4

−6

6

(3, 2)
(−1, 0)

2y + x = −1

2y + x = 7
y

x

f (x) =  x + 1
x − 1

−2
−4−6

85. f (x) + 2 = g(x)  87. (a) p′(1) = 1   (b) q′(4) = −1
3

89. 
18t + 5

2√t
 cm2�sec

91. (a) −$38.13 thousand�100 components
 (b) −$10.37 thousand�100 components
 (c) −$3.80 thousand�100 components
 The cost decreases with increasing order size.
93. (a)–(c) Proofs
95. (a) h(t) = 101.7t + 1593
  p(t) = 2.1t + 287
 (b) 

2300
7 14

3000    

300
7 14

320

 (c) A =
101.7t + 1593

2.1t + 287
  

0
7 14

10    A represents the average  
health care expenditures per  
person (in thousands of  
dollars).

 (d) A′(t) =
25,842.6

4.41t2 + 1205.4t + 82,369
   A′(t) represents the rate of change of the average health 

care expenditures per person for the given year t.

97. 2  99. 
3

√x
  101. 

2
(x − 1)3  103. 2 cos x − x sin x
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105. csc3 x + csc x cot2 x  107. (ex�x3)(x2 − 2x + 2)

109. 6x +
6

25x8�5  111. sin x  113. 0  115. −10

117.  n − 1 or lower; Answers will vary. Sample answer: 
f (x) = x3, f ′(x) = 3x2, f ″(x) = 6x, f ′″(x) = 6, f (4)(x) = 0

119. 

2

2

1

1−1−2
x

f

y

f ′

f ″

   It appears that f  is cubic, so f ′ would be quadratic and f ″ 
would be linear.

121. 

−1−2−3 1 2 3 4 5

−3

−4

−5

1

2

3

4

x

y

f ′

f ″

123. Answers will vary.
  Sample answer: f (x) = (x − 2)2

  

x

1

1

2

2

3

3 4

4

y

125. v(3) = 27 m�sec
  a(3) = −6 m�sec2

  The speed of the object is decreasing.
127. 

t 0 1 2 3 4

s(t) 0 57.75 99 123.75 132

v(t) 66 49.5 33 16.5 0

a(t) −16.5 −16.5 −16.5 −16.5 −16.5

   The average velocity on [0, 1] is 57.75, on [1, 2] is 41.25, on 
[2, 3] is 24.75, and on [3, 4] is 8.25.

129. f (n)(x) = n(n − 1)(n − 2) .  .  . (2)(1) = n!
131. (a)   f ″(x) = g(x)h″(x)  + 2g′(x)h′(x) + g″(x)h(x)
     f ″′(x) = g(x)h′″(x)  + 3g′(x)h″(x)
      + 3g″(x)h′(x) + g′″(x)h(x)
     f (4)(x) = g(x)h(4)(x) + 4g′(x)h′″(x) + 6g″(x)h″(x)
      + 4g′″(x)h′(x) + g(4)(x)h(x)

  (b)   f (n)(x) = g(x)h(n)(x) +
n!

1!(n − 1)! g′(x)h(n−1)(x)

    +
n!

2!(n − 2)! g″(x)h(n−2)(x) + .  .  .

    +
n!

(n − 2)!1!
g(n−1)(x)h′(x) + g(n)(x)h(x)

133. n = 1: f ′(x) = x cos x + sin x
  n = 2: f ′(x) = x2 cos x + 2x sin x
  n = 3: f ′(x) = x3 cos x + 3x2 sin x
  n = 4: f ′(x) = x4 cos x + 4x3 sin x
  General rule: f ′(x) = xn cos x + nx(n−1) sin x

135. y′ = −
1
x2, y″ =

2
x3,

   x3y″ + 2x2y′ = x3( 2
x3) + 2x2(−1

x2 )
   = 2 − 2
   = 0
137. y′ = 2 cos x, y″ = −2 sin x,
  y″ + y = −2 sin x + 2 sin x + 3 = 3

139. False. 
dy
dx

= f (x)g′(x) + g(x)f ′(x)  141. True

143. True  145. Proof

Section 3.4  (page 164)

  1.  To find the derivative of the composition of two  
differentiable functions, take the derivative of the outer  
function and keep the inner function the same. Then multiply 
by the derivative of the inner function.

  3.  Because d�dx = u′�u for ln u, you get d�dx = 2�2x for ln 2x 
and d�dx = 3�3x for ln 3x. So, both derivatives simplify to 
1�x.

  y = f (g(x)) u = g(x) y = f (u)
  5. y = (6x − 5)4 u = 6x − 5 y = u4

  7. y =
1

3x + 5
 u = 3x + 5 y =

1
u

  9. y = csc3 x u = csc x y = u3

 11. y = e−2x u = −2x y = eu

 13. 6(2x − 7)2  15. −
45

2(4 − 9x)1�6  17. −
10s

√5s2 + 3

 19. −
1

(x − 2)2  21. −
54s2

(s3 − 2)4  23. −
3

2√(3x + 5)3

 25. (2x − 5)2(8x − 5)  27. 
1

√(x2 + 1)3

 29. 
−2(x + 5)(x2 + 10x − 2)

(x2 + 2)3

 31. 20x(x2 + 3)9 + 2(x2 + 3)5 + 20x2(x2 + 3)4 + 2x
 33. −4 sin 4x  35. 15 sec2 3x  37. 2π2 x cos(πx)2

 39. 2 cos 4x  41. 
−1 − cos2 x

sin3 x
 43. sin 2θ cos 2θ, or 12 sin 4θ
 45. 6π(πt − 1) sec(πt − 1)2 tan(πt − 1)2

 47. (6x − sin x) cos(3x2 + cos x)

 49. −
3π cos√cot 3πx csc2(3πx)

2√cot 3πx

 51. 
1 − 3x2 − 4x3�2

2√x(x2 + 1)2

  

−2

−1 5

y

y ′

2

   The zero of y′ corresponds to the 
point on the graph of the function 
where the tangent line is horizontal.
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 Answers to Odd-Numbered Exercises A45

 53. −
√x + 1

x
2x(x + 1)

  

−2

−5 4

y

y ′

4

  y′ has no zeros.

 55. −
πx sin(πx) + cos(πx) + 1

x2

  

−3

−5 5

y

y ′

3

   The zeros of y′ correspond to  
the points on the graph of the  
function where the tangent lines 
are horizontal.

 57. 5e5x  59. e√x�(2√x)  61. 3(e−t + et)2(et − e−t)

 63. x2ex  65. 
−2(ex − e−x)

(ex + e−x)2   67. −
2ex

(ex − 1)2

 69. 2ex cos x  71. −ecsc x csc x cot x

 73. 
2x

x2 + 3
  75. 

4(ln x)3

x
  77. 

2
t + 1

   79. 
2x2 − 1

x(x2 − 1)

 81. 
1 − x2

x(x2 + 1)  83. 
1 − 2 ln t

t3   85. 
2

x ln x2 =
1

x ln x

 87. 
1

1 − x2  89. cot x  91. −tan x +
sin x

cos x − 1

 93. −
3

e3x + 1
  95. 3; 3 cycles in [0, 2π]  97. 3

 99. 3  101. 5
3  103. −3

5  105. −1  107. 0
109. (a) 24x + y + 23 = 0 111. (a) y = 8x − 8π
  (b)

−2

−2 1

14

(−1, 1)

  (b)

0

2

−2

2

(   , 0)π

π

113. (a) 4x − y + (1 − π) = 0 115. (a) x + 2y − 8 = 0
  (b)

−

−4

π π

4

π
4( (, 1

  (b)

−4 4

−4

8

(0, 4)

117. 3x + 4y − 25 = 0
  

9

−4

−9

8

(3, 4)

119. (π6, 
3√3

2 ), (5π
6

, −
3√3

2 ), (3π
2

, 0)  121. 2940(2 − 7x)2

123. 
242

(11x − 6)3   125. 2(cos x2 − 2x2 sin x2)

127. 3(6x + 5)e−3x  129. h″(x) = 18x + 6, 24
131. f ″(x) = −4x2 cos x2 − 2 sin x2, 0
133. (ln 4)4x  135. t2t(t ln 2 + 2)

137. 
2t2 ln 8 − 4t

8t   139. −2−θ[(ln 2) cos πθ + π sin πθ]

141. 
1

x(ln 3)  143. 
x

(ln 5)(x2 − 1)  145. 
x − 2

(ln 2)x(x − 1)

147. 
5

(ln 2)t2(1 − ln t)

149. 

3

3

2

1

2−2

−2

−3

x

f

y

f ′
   The zeros of f ′ correspond to 

the points where the graph of f  
has horizontal tangents.

151. (a)  The rate of change of g is three times as fast as the rate 
of change of f.

  (b)  The rate of change of g is 2x times as fast as the rate of 
change of f.

153. (a) g′(x) = f ′(x)  (b) h′(x) = 2 f ′(x)
  (c) r′(x) = −3 f ′(−3x)  (d) s′(x) = f ′(x + 2)
  

x −2 −1 0 1 2 3

f ′(x) 4 2
3 −1

3
−1 −2 −4

g′(x) 4 2
3 −1

3
−1 −2 −4

h′(x) 8 4
3 −2

3
−2 −4 −8

r′(x) 12 1

s′(x) −1
3

−1 −2 −4

155. (a) 1
2

  (b) s′(5) does not exist because g is not differentiable at 6.
157. 0.2 rad, 1.45 rad�sec  159. (a) 1.461  (b) −1.016
161. (a) $48.79
  (b) When t = 1, dC�dt ≈ 0.051P.
   When t = 8, dC�dt ≈ 0.072P.
  (c) dC�dt = ln(1.05)C(t); ln 1.05
163. (a) 

0
0

100

350    (c) 

0 100
0

30

  (b) T′(10) ≈ 4.75°�lb�in.2  lim
p→∞

 T′(p) = 0

   T′(70) ≈ 0.97°�lb�in.2  Answers will vary.
165. (a) 0 bacteria per day (b) 177.8 bacteria per day
  (c) 44.4 bacteria per day   (d) 10.8 bacteria per day
  (e) 3.3 bacteria per day
  (f )  The rate of change of the population is decreasing as time 

passes.
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A46 Answers to Odd-Numbered Exercises

167. (a) f ′(x) = β cos βx
   f ″(x) = −β2 sin βx
   f ′″(x) = −β3 cos βx
   f (4)(x) = β4 sin βx
  (b) f ″(x) + β2f (x) = −β2 sin βx + β2(sin βx) = 0
  (c) f (2k)(x) = (−1)k β2k sin βx
   f (2k−1)(x) = (−1)k+1β2k−1 cos βx
169. (a) r′(1) = 0   (b) s′(4) = 5

8

171. (a) and (b) Proofs

173. g′(x) = 3( 3x − 5

∣3x − 5∣), x ≠
5
3

175. h′(x) = −∣x∣sin x +
x

∣x∣ cos x, x ≠ 0

177. (a) P1(x) = 2(x −
π
4) + 1

   P2(x) = 2(x −
π
4)

2

+ 2(x −
π
4) + 1

  (b) 

0 π
2

−1

5

f

P2

P1

   (c) P2

  (d) The accuracy worsens as you move away from x =
π
4

.

179. (a) P1(x) = x + 1
   P2(x) = 1

2x2 + x + 1
  (b) 

−1

−4 4

5

f
P1

P2

  (c) P2

  (d) The accuracy worsens as you move away from x = 0.
181. True.  183. True  185. Putnam Problem A1, 1967

Section 3.5  (page 175)

  1.  Answers will vary. Sample answer: In the explicit form of 
a function, the dependent variable y is explicitly written as 
a function of the independent variable x [ y = f (x)]. In an 
implicit equation, the dependent variable y is not necessarily 
written in the form y = f (x). An example of an implicit  
function is x2 + xy = 5. In explicit form, it would be

  y =
5 − x2

x
.

  3.  If y is an implicit function of x, then to compute y′, you 
differentiate the equation with respect to x. For example, if 
xy2 = 1, then y2 + 2xyy′ = 0. Here, the derivative of y2 is 
2yy′.

  5. −
x
y
  7. −

x4

y4  9. 
y − 3x2

2y − x

 11. 
1 − 3x2y3

3x3y2 − 1
  13. 

6xy − 3x2 − 2y2

4xy − 3x2   15. 
10 − ey

xey + 3

 17. 
cos x

4 sin 2y
  19. −

cot x csc x + tan y + 1
x sec2 y

 21. 
y cos xy

1 − x cos xy
  23. 

2xy
3 − 2y2  25. 

y(1 − 6x2)
1 + y

27. (a) y1 = √64 − x2, y2 = −√64 − x2

 (b) 
y1 =     64 − x2

−12 −4 4 12

12

4

−12 y2 = −    64 − x2

y

x

 (c) y′ = ∓
x

√64 − x2
= −

x
y   (d) y′ = −

x
y

29. (a) y1 =
√x2 + 16

4
, y2 =

−√x2 + 16
4

 (b) 

y1 =        x2 + 161
4

y2 = −       x2 + 161
4

−6 6
−2

−4

−6

2

4

6

y

x

 (c) y′ =
±x

4√x2 + 16
=

x
16y

   (d) y′ =
x

16y

31. −
y
x
; −

1
6

  33. 
98x

y(x2 + 49)2; Undefined

35. −sin2(x + y) or −
x2

x2 + 1
; 0  37. 

1 − 3ye xy

3xexy , 
1
9

39. −1
2   41. 0  43. y = −x + 7

45. y =
√3x

6
+

8√3
3

  47. y = −
2
11

x +
30
11

49. y = −9
4x + 9

2  51. y = x − 1
53. Answers will vary. Sample answers: 
 xy = 2, yx2 + x = 2; x2 + y2 + y = 4, xy + y2 = 2
55. (a) y = −2x + 4   (b) Answers will vary.

57. cos2 y, −
π
2

< y <
π
2

, 
1

1 + x2  59. 
6xy − 16

x3

61. 
x sin x + 2 cos x + 14y

7x2

63. At (4, 3): 

−6

6

−9 9

(4, 3)
 Tangent line: 4x + 3y − 25 = 0
 Normal line: 3x − 4y = 0

 At (−3, 4): 

−6

−9 9

(−3, 4)

6

 Tangent line: 3x − 4y + 25 = 0
 Normal line: 4x + 3y = 0

65.  x2 + y2 = r2 ⇒ y′ = −
x
y

⇒ y
x

= slope of normal line.

  Then for (x0, y0) on the circle, x0 ≠ 0, an equation of the 

 normal line is y = (y0

x0
)x, which passes through the origin. If

 x0 = 0, the  normal line is vertical and passes through the origin.
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 Answers to Odd-Numbered Exercises A47

67.  Horizontal tangents: (−4, 0), (−4, 10)
 Vertical tangents: (0, 5), (−8, 5)

69. 
2x2 + 1

√x2 + 1
  71. 

3x3 + 15x2 − 8x

2(x + 1)3√3x − 2

73. 
(2x2 + 2x − 1)√x − 1

(x + 1)3�2   75. 2(1 − ln x)x(2�x)−2

77. (x − 2)x+1[x + 1
x − 2

+ ln(x − 2)]  79. 
2xln x ln x

x
81. 

−6 6

−4

y2 = 4x4

(1, −2)

(1, 2)

2x2 + y2 = 6  85. 

−6 6

−4

(0, 0)

4

x = sin y

x + y = 0

 At (1, 2):  At (0, 0):
 Slope of ellipse: −1  Slope of line: −1
 Slope of parabola: 1  Slope of sine curve: 1
 At (1, −2):
 Slope of ellipse: 1
 Slope of parabola: −1

85. Derivatives: 
dy
dx

= −
y
x
, 

dy
dx

=
x
y

 

−2

−3 3
C = 1

K = −1

2   

−2

−3 3

C = 4

K = 2

2

87. (a) True

 (b) False. 
d
dy

 cos(y2) = −2y sin(y2)

 (c) False. 
d
dx

 cos(y2) = −2yy′ sin(y2)

89. (a) 

10−10

−10

10  (b) 

10−10

−10

y1
y3 y2

y4

10

  y1 = 1
3 [(√7 + 7)x + (8√7 + 23)]

  y2 = −1
3 [(−√7 + 7)x − (23 − 8√7)]

  y3 = −1
3 [(√7 − 7)x − (23 − 8√7)]

  y4 = −1
3 [(√7 + 7)x − (8√7 + 23)]

 (c) (8√7
7

, 5)
91. (6, −8), (−6, 8)

93. y = −
√3
2

x + 2√3, y =
√3
2

x − 2√3

95. (a) y = 2x − 6
 (b) 4

6

−4

−6

   (c) (28
17, −46

17)

Section 3.6  (page 182)

 1. Because you know that f −1 exists and y1 = f (x1), by Theorem

 3.17 you know that ( f −1)′(y1) =
1

f ′(x1)
, f ′(x1) ≠ 0.

 3. −
1
6

  5. 
1
27

  7. 
2√3

3
  9. −2  11. 

1
13

13. f ′(1
2) = 3

4, ( f −1)′(1
8) = 4

3  15. f ′(5) = 1
2, ( f −1)′(1) = 2

17. 
1

√2x − x2
  19. −

3

√4 − x2
  21. 

ex

1 + e2x

23. 
3x − √1 − 9x2 arcsin 3x

x2√1 − 9x2

25. e2x[2 arcsin x +
1

√1 − x2]  27. −
6

1 + 36x2

29. −
t

√1 − t2
  31. arccos x −

x

√1 − x2
−

1

√x

33. 
x2 + 3
1 − x4  35. 

1
(1 − t2)3�2  37. arcsin x

39. 
x2

√16 − x2
  41. 

2
(1 + x2)2

43. y = 1
3 (4√3x − 2√3 + π)

45. y = 1
4x + (π − 2)�4  47. y = (2π − 4)x + 4

49. (a) y =
π
2

 51. (a) y = 3√2x +
π
4

− 1

 (b) 

0
−1.5 1.5

π
2 ((0, , 

2  (b) 2

1−1

−2

π
6 4 (( 2 , 

53. y = −2x + (π6 + √3)
 y = −2x + (5π

6
− √3)

55. P1(x) = x, P2(x) = x
 

−1.0 0.5 1.0 1.5

−1.0

−1.5

0.5

1.0

1.5

x

y

f

P1 = P2

57. P1(x) =
π
6

+
2√3

3 (x −
1
2)

 P2(x) =
π
6

+
2√3

3 (x −
1
2) +

2√3
9 (x −

1
2)

2

 

−1.0

0.5

1.0

1.5

−1.5

0.5 1.0 1.5

y

x

f

P1

P2
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59. 
dy
dx

=
1

3y2 − 14y
; m = −

1
11

61. 
dy
dx

=
1
ey( x

x2 + 1
+ arctan x); m =

π + 2
π

63. y =
−2πx
π + 8

+ 1 −
π2

2π + 16
  65. y = −x + √2

67. (a) 

x

y

−2−4−6 2 4 6

2
π

2
3π

 (b) Proof

69. y = x; The tangent lines have reciprocal slopes.
71.  Because the slope of f  at (1, 3) is m = 2, the slope of f −1 at 

(3, 1) is 12.

73. (a) θ = arccot(x
5)

 (b) x = 10: 16 rad�h; x = 3: 58.824 rad�h
75. (a) h(t) = −16t2 + 256; t = 4 sec
 (b) t = 1: −0.0520 rad�sec; t = 2: −0.1116 rad�sec
77. 0.015 rad�sec  79. True  81. True  83–85. Proofs

Section 3.7  (page 190)

 1.  A related-rate equation is an equation that relates the rates of 
change of various quantities.

 3. (a) 3
4  (b) 20  5. (a) −5

8   (b) 3
2

 7. (a) −8 cm�sec   (b) 0 cm�sec  (c) 8 cm�sec
 9. (a) 12 ft�sec   (b) 6 ft�sec   (c) 3 ft�sec
11. 296π cm2�min
13. (a) 972π in.3�min, 15,552π in.3�min

 (b) If 
dr
dt

 is constant, 
dV
dt

 is proportional to r2.

15. (a) 72 cm3�sec   (b) 1800 cm3�sec

17. 
8

405π  ft�min  19. (a) 12.5%   (b) 
1

144
 m�min

21. (a) − 7
12 ft�sec, −3

2 ft�sec, −48
7  ft�sec

 (b) 527
24  ft2�sec   (c) 1

12 rad�sec

23. Rate of vertical change: 
1
5

 m�sec

 Rate of horizontal change: −
√3
15

 m�sec

25. (a) −750 mi�h   (b) 30 min

27. −
50

√85
≈ −5.42 ft�sec

29. (a) 25
3  ft�sec   (b) 10

3  ft�sec

31. (a) 12 sec   (b) 
1
2
√3 m   (c) 

√5π
120

 m�sec

33. Evaporation rate proportional to S ⇒ dV
dt

= k(4πr2)

 V = (4
3)πr3 ⇒ dV

dt
= 4πr2 

dr
dt

. So k =
dr
dt

.

35. (a)  
dy
dt

= 3
dx
dt

 means that y changes three times as fast as x

  changes.

 (b)  y changes slowly when x ≈ 0 or x ≈ L. y changes more 
rapidly when x is near the middle of the interval.

37. 0.6 ohm/sec  39. About 84.9797 mi�h

41. 
2√21
525

≈ 0.017 rad�sec

43. (a) 
200π

3
 ft�sec   (b) 200π ft�sec

 (c) About 427.43π ft�sec

45. (a) A = 2xe−x2�2   (b) 
dA
dt

= −3.25 cm2�min

47. (a) t = 65°: H ≈ 99.8%   (b) −4.7%�h
  t = 80°: H ≈ 60.2%
49. −0.1808 ft�sec2  51. −97.96 m�sec

Section 3.8  (page 198)

 1.  Answers will vary. Sample answer: 

x
2

1

−1

−2

−1

y

a
bc

x1
x2

x3

f (x)
 If f  is a function continuous on 
 [a, b] and differentiable on (a, b), 
 where c ∈ [a, b] and f (c) = 0,  
 then Newton’s Method uses  
 tangent lines to approximate c.  
 First, estimate an initial x1 close  
 to c. (See graph.) Then determine 

  x2 using x2 = x1 −
f (x1)
f ′(x1)

. Calculate a third estimate x3 using

  x3 = x2 −
f (x2)
f ′(x2)

. Continue this process until ∣xn − xn+1∣ is

  within the desired accuracy, and let xn+1 be the final  
approximation of c.

In the answers for Exercises 3 and 5, the values in the tables have 
been rounded for convenience. Because a calculator and a computer 
program calculate internally using more digits than they display, 
you may produce slightly different values from those shown in 
the tables.

 3. 
n xn f (xn) f ′(xn)

f (xn)
f ′(xn)

xn −
f (xn)
f ′(xn)

1 2 −1 4 −0.25 2.25

2 2.25 0.0625 4.5 0.0139 2.2361

 5.
 

n xn f (xn) f ′(xn)
f (xn)
f ′(xn)

xn −
f (xn)
f ′(xn)

1 1.6 −0.0292 −0.9996 0.0292 1.5708

2 1.5708 0 −1 0 1.5708

 7. −1.587  9. 0.682  11. 1.250, 5.000
13. 0.567  15. 0.900, 1.100, 1.900  17. 1.935
19. 0.569  21. 4.493
23. (a) 

−4 5

−2

4    (b) 1.347  (c) 2.532
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 Answers to Odd-Numbered Exercises A49

 (d) 

5

3

1−2 4
x

y

f

y = −3x + 4

y = −1.313x + 3.156

    If the initial estimate x = x1 
is not sufficiently close to the 
desired zero of a function, 
then the x-intercept of the  
corresponding tangent line to 
the function may approximate 
a second zero of the function.

25. f ′(x1) = 0  27. 0.74  29. 1.12
31. $384,356  33. The values would be identical.
35. Not always; Let p(x) = x2 − 1 and q(x) = x − 1.
37. (a) Proof   (b) √5 ≈ 2.236, √7 ≈ 2.646  39. Proof
41. True   43. True  45. 0.217

Review Exercises for Chapter 3  (page 200)

 1. 0  3. 3x2 − 2  5. 5
 7. f  is differentiable at all x ≠ 3.  9. 0  11. 3x2 − 22x

13. 
3

√x
+

1
3√x2

  15. −
4

3t3
  17. 4 − 5 cos θ

19. −3 sin t − 4et  21. −1  23. 2
25. (a) 50 vibrations�sec�lb   (b) 33.33 vibrations�sec�lb
27. (a) s(t) = −16t2 − 30t + 600
  v(t) = −32t − 30
 (b) −94 ft�sec
 (c) v′(1) = −62 ft�sec, v′(3) = −126 ft�sec
 (d) About 5.258 sec   (e) About −198.256 ft�sec
29. 4(5x3 − 15x2 − 11x − 8)
31. 9x cos x − cos x + 9 sin x

33. 
−(x2 + 1)
(x2 − 1)2   35. 

4x3 cos x + x 4 sin x
cos2 x 

37. 3x2 sec x tan x + 6x sec x  39. −x sin x
41. 4xex + 4ex + csc2 x
43. y = 4x + 10  45. y = −8x + 1  47. −48t

49. 225
4 √x  51. 6 sec2 θ tan θ  53. 8 cot x csc2 x

55. v(3) = 11 m�sec, a(3) = −6 m�sec2  57. 28(7x + 3)3

59. −
6x

(x2 + 5)4  61. −45 sin(9x + 1)

63. 1
2 (1 − cos 2x), or sin2 x  65. (36x + 1)(6x + 1)4

67. 
3x2(x + 10)
2(x + 5)5�2   69. −ze−z2�2  71. 

1
4

tet�4(t + 8)

73. 
e2x − e−2x

√e2x + e−2x
  75. 

1
2x

  77. 
1 + 2 ln x

2√ln x

79. 
14x + 3
4x2 + x

  81. −
x2 + 8x + 20

x3 + 9x2 + 20x
83. −2  85. −11  87. 0
89. 384(8x + 5)  91. 2 csc2 x cot x
93. (a) −18.667°�h   (b) −7.284°�h
 (c) −3.240°�h  (d) −0.747°�h
95. (a) h = 0 is not in the domain of the function.
 (b) h = 0.8627 − 6.4474 ln p

  (c) 

0 1
0

25    (d) 2.72 km
   (e) 0.15 atm

  (f ) h = 5: 
dp
dh

= −0.0816 atm�km

   h = 20: 
dp
dh

= −0.008 atm�km

   As the altitude increases, the rate of change of pressure 
decreases.

 97. −
x
y
  99. 

y(y2 − 3x2)
x(x2 − 3y2)   101. 

y sin x + sin y
cos x − x cos y

103. Tangent line: 105. Tangent line:
  3x + y − 10 = 0   xe−1 + y = 0
  Normal line:   Normal line:
  x − 3y = 0   xe − y − (e2 + 1) = 0
  

−4

−6 6

4

(3, 1)

   

(e, −1)

−6

−4

6

4

107. 
x3 + 8x2 + 4

(x + 4)2√x2 + 1
  109. 

1

3( 3√−3)2
≈ 0.160  111. 

3
4

113. 
2

(4x2 + 1)3�2  115. 
x

∣x∣√x2 − 1
+ arcsec x

117. (arcsin x)2

119. (a) 2√2 units�sec  (b) 4 units�sec  (c) 8 units�sec
121. 450π km�h  123. −0.347, −1.532, 1.879
125. 1.202  127. −2.182, −0.795  129. 0.567

P.S. Problem Solving   (page 203)
  1. (a) r = 1

2; x2 + (y − 1
2)2 = 1

4

  (b) Center: (0, 54); x2 + (y − 5
4)2 = 1

  3. p(x) = 2x3 + 4x2 − 5
  5. (a) y = 4x − 4   (b) y = −1

4x + 9
2; (−9

4, 81
16)

  (c) Tangent line: y = 0   (d) Proof
   Normal line: x = 0

  7. (a) Graph { y1 =
1

a
√x2(a2 − x2)

y2 = −
1

a
√x2(a2 − x2)

 as separate equations.

  (b) Answers will vary. Sample answer:
   

3

−2

−3

2

a = 1
a = 2

a = 1
2

    The intercepts will always be (0, 0), (a, 0), and (−a, 0), 
and the maximum and minimum y-values appear to be 
±1

2a.

  (c) (a√2
2

, 
a
2), (a√2

2
, −

a
2), (−

a√2
2

, 
a
2), (−

a√2
2

, −
a
2)
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A50 Answers to Odd-Numbered Exercises

 9. (a)  When the man is 90 ft from the light, the tip of his shadow
  is 112 1

2 ft from the light. The tip of the child’s shadow is 
   111 1

9 ft from the light, so the man’s shadow extends 1 7
18 ft 

beyond the child’s shadow.
 (b)  When the man is 60 ft from the light, the tip of his shadow 

is 75 ft from the light. The tip of the child’s shadow is 77 7
9 ft

  from the light, so the child’s shadow extends 2 7
9 ft beyond

  the man’s shadow.
 (c) d = 80 ft
 (d)  Let x be the distance of the man from the light, and let s 

be the distance from the light to the tip of the shadow.

  If 0 < x < 80, then 
ds
dt

= −
50
9

.

  If x > 80, then 
ds
dt

= −
25
4

.

  There is a discontinuity at x = 80.
11. (a) v(t) = −27

5 t + 27 ft�sec   (b) 5 sec; 73.5 ft

  a(t) = −27
5  ft�sec2

 (c)  The acceleration due to gravity on Earth is greater in  
magnitude than that on the moon.

13. a = 1, b = 1
2, c = −1

2 6

−2

−5 2

ex

f

 f (x) =
1 + 1

2x

1 − 1
2x

15. (a) j would be the rate of change of acceleration.
 (b)  j = 0. Acceleration is constant, so there is no change in 

acceleration.
 (c) a: position function, d: velocity function,
  b: acceleration function, c: jerk function

Chapter 4
Section 4.1  (page 211)

 1.  The Extreme Value Theorem states that if f  is continuous 
on a closed interval [a, b], then f  has both a minimum and a 
maximum on the interval.

 3. 

−6 6

8

−1

f(x) = ex

 

−1 8

3

−3

f(x) = ln x

 

−2 2

2

−2

ππ

f(x) = sin x
 

−2 2

2

−2

f(x) = tan x

ππ

  f (x) = sin x; From the graph, you can see that f  is defined 
and f ′(x) = 0 for f (x) = sin x when x = π�2 + nπ  (n is an 
integer).

 5. f ′(0) = 0  7. f ′(2) = 0  9. f ′(−2) is undefined.
11. 2, absolute maximum (and relative maximum)
13.  1, absolute maximum (and relative maximum);  

2, absolute minimum (and relative minimum);  
3, absolute maximum (and relative maximum)

15. x =
3
4

  17. t =
8
3

  19. x =
π
3

, π, 
5π
3

21. t = 1
2  23. x = 0

25. Minimum: (2, 1) 27. Minimum: (−3, −13)
 Maximum: (−1, 4)  Maximum: (0, 5)
29. Minimum: (−1, −5

2) 31. Minimum: (0, 0)
 Maximum: (2, 2)  Maximum: (−1, 5)
33. Minima: (1, −6) and (−2, −6)
 Maximum: (0, 0)
35. Minimum: (−1, −1)
 Maximum: (3, 3)
37. Minimum value is −2 for −2 ≤ x < −1.
 Maximum: (2, 2)
39. Minimum: (π, −3)
 Maxima: (0, 3) and (2π, 3)
41. Minimum: (0, 0) 43. Minimum: (2, 5e2 − e4)
 Maximum: (−2, arctan 4)  Maximum: (ln 52, 25

4 )
45. Minima: (0, 0) and (π, 0)

 Maximum: (3π
4

, 
√2
2

e3π�4)
47. (a) Minimum: (0, −3)  49. (a) Minimum: (1, −1)
  Maximum: (2, 1)   Maximum: (−1, 3)
 (b) Minimum: (0, −3)  (b) Maximum: (3, 3)
 (c) Maximum: (2, 1)  (c) Minimum: (1, −1)
 (d) No extrema  (d) Minimum: (1, −1)
51. 

0
0 4

8

 Minimum: (4, 1)
53. 

−3 3

4

0

(−2, 2.1098)

(−0.7753, 1.9070)

(2, 3.6542)

 Minimum: (−0.7753, 1.9070)
55. (a) 

−2

0 1

(0.4398, −1.0613)

(1, 4.7)

5  (b) Minimum:
  (0.4398, −1.0613)

57. (a) 

−3

−1 4

(3, 5.3753)

(1.0863, −1.3972)

6  (b) Minimum:
  (1.0863, −1.3972)

59. Maximum: ∣ f ″( 3√−10 + √108)∣ = f ″(√3 − 1) ≈ 1.47

61. Maximum: ∣ f ″(0)∣ = 1  63. Maximum: ∣ f (4)(0)∣ = 56
81

65. f  is continuous on [0, 
π
4] but not on [0, π].

67. (a) Yes. The value is defined.
 (b) No. The value is undefined.
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 Answers to Odd-Numbered Exercises A51

69. No. The function is not defined at x = −2.
71. Maximum: P(12) = 72; No. P is decreasing for I > 12.
73. θ = arcsec √3 ≈ 0.9553 rad
75. False. The maximum would be 9 if the interval was closed.
77. True  79. Proof  81. Putnam Problem B3, 2004

Section 4.2  (page 218)

 1.  Rolle’s Theorem gives conditions that guarantee the existence 
of an extreme value in the interior of a closed interval.

 3. f (−1) = f (1) = 1; f  is not continuous on [−1, 1].
 5. f (0) = f (2) = 0; f  is not differentiable on (0, 2).
 7. (2, 0), (−1, 0); f ′(1

2) = 0  9. (0, 0), (−4, 0); f ′(−8
3) = 0

11. f ′(3
2) = 0  13. f ′(6 − √3

3 ) = 0, f ′(6 + √3
3 ) = 0

15. Not differentiable at x = 0 17. f ′(−2 + √5) = 0

19. f ′(π2) = 0, f ′(3π
2 ) = 0  21. f ′(1) = 0

23. Not continuous on [0, π]  25. f ′(√2) = 0
27. 

−1

−1

1

1  29. 

−0.01

−1 0

0.02

 Rolle’s Theorem does not  f ′(−
6
π  arccos 

3
π) = 0

 apply.
31. 

0 4

3

−3

 f ′(1.6633) = 0
33. (a) f (1) = f (2) = 38
 (b) Velocity = 0 for some t in (1, 2); t = 3

2 sec
35. 

x

y

a b

f(a, f (a))

(c1, f (c1))

(c2, f (c2))

(b, f (b))

Tangent line

Tangent line

Secant line

37. The function is not continuous on [0, 6].
39. The function is not continuous on [0, 6].
41. (a) x + y − 3 = 0  (b) c = 1

2

 (c) 4x + 4y − 21 = 0
 (d) 

−1

−6 6

7

Tangent

Secant

f

43. f ′(√21
3 ) = 42  45. f ′( 1

√3) = 3, f ′(− 1

√3) = 3

47. f  is not continuous at x = 1.

49. f  is not differentiable at x = −
1
2

.  51. f ′(π2) = 0

53. f  is not continuous at x =
π
2

.

55. f ′(4e−1) = 2
57. (a)–(c) 59. (a)–(c)
 

−1

−0.5 2

1

fTangent

Secant

  

1
1 9

Tangent

Secantf

3

 (b) y = 2
3(x − 1)  (b) y = 1

4x + 3
4

 (c) y = 1
3 (2x + 5 − 2√6)  (c) y = 1

4x + 1
61. (a)–(c)
 

0
0 2

Tangent

Secant
f

3

 (b) y = −x + 2  (c) y = −x + 2.8161
63. (a) −14.7 m�sec   (b) 1.5 sec
65. No. Let f (x) = x2 on [−1, 2].
67.  No. f (x) is not continuous on [0, 1], so it does not satisfy the 

hypothesis of Rolle’s Theorem.
69.  By the Mean Value Theorem, there is a time when the speed 

of the plane must equal the average speed of 454.5 miles�hour. 
The speed was 400 miles�hour when the plane was accelerating 
to 454.5 miles�hour and decelerating from 454.5 miles�hour.

71. Proof
73. (a) 

8

2

4

6

2−2−4

−2

4
x

(−5, 5) (5, 5)

f (x) = ⎪x⎪

y  (b) 

x
2 4

2

4

−5

( )1
5

−5, −

( )1
5

5, 

f (x) = 1
x

y

75–77. Proofs  79. f (x) = 5; f (x) = c and f (2) = 5.
81. f (x) = x2 − 1; f (x) = x2 + c and f (1) = 0, so c = −1.
83. False. f  is not continuous on [−1, 1].  85. True
87–95. Proofs

Section 4.3  (page 227)

 1.  A positive derivative of a function on an open interval implies 
that the function is increasing on the interval. A negative 
derivative implies that the function is decreasing. A zero 
derivative implies that the function is constant.

 3. (a) (0, 6)   (b) (6, 8)
 5. Increasing on (−∞, −1); Decreasing on (−1, ∞)
 7. Increasing on (−∞, −2) and (2, ∞); Decreasing on (−2, 2)
 9. Increasing on (−∞, −1); Decreasing on (−1, ∞)
11. Increasing on (1, ∞); Decreasing on (−∞, 1)
13. Increasing on (−2√2, 2√2 );
 Decreasing on (−4, −2√2) and (2√2, 4)
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15. Increasing on (0, 
π
2) and (3π

2
, 2π);

 Decreasing on (π2, 
3π
2 )

17. Increasing on (0, 
7π
6 ) and (11π

6
, 2π);

 Decreasing on (7π
6

, 
11π

6 )
19. Increasing on (−1

4 ln 3, ∞); Decreasing on (−∞, −1
4 ln 3)

21. Increasing on ( 2

√e
, ∞); Decreasing on (0, 

2

√e)
23. (a) Critical number: x = 4
 (b) Increasing on (4, ∞); Decreasing on (−∞, 4)
 (c) Relative minimum: (4, −16)
25. (a) Critical number: x = 1
 (b) Increasing on (−∞, 1); Decreasing on (1, ∞)
 (c) Relative maximum: (1, 5)
27. (a) Critical numbers: x = −1, 1
 (b) Increasing on (−1, 1); 
  Decreasing on (−∞, −1) and (1, ∞)
 (c) Relative maximum: (1, 17);
  Relative minimum: (−1, −11)
29. (a) Critical numbers: x = −5

3, 1
 (b) Increasing on (−∞, −5

3), (1, ∞);
  Decreasing on (−5

3, 1)
 (c) Relative maximum: (−5

3, 256
27 );

  Relative minimum: (1, 0)
31. (a) Critical numbers: x = ±1
 (b) Increasing on (−∞, −1) and (1, ∞);  
  Decreasing on (−1, 1)
 (c) Relative maximum: (−1, 45); Relative minimum: (1, −4

5)
33. (a) Critical number: x = 0
 (b) Increasing on (−∞, ∞)
 (c) No relative extrema
35. (a) Critical number: x = −2
 (b) Increasing on (−2, ∞); Decreasing on (−∞, −2)
 (c) Relative minimum: (−2, 0)
37. (a) Critical number: x = 5
 (b) Increasing on (−∞, 5); Decreasing on (5, ∞)
 (c) Relative maximum: (5, 5)

39. (a) Critical numbers: x = ±
√2
2

; Discontinuity: x = 0

 (b) Increasing on (−∞, −
√2
2 ) and (√2

2
, ∞);

  Decreasing on (−
√2
2

, 0) and (0, 
√2
2 )

 (c) Relative maximum: (−
√2
2

, −2√2);

  Relative minimum: (√2
2

, 2√2)
41. (a) Critical number: x = 0; Discontinuities: x = ±3
 (b) Increasing on (−∞, −3) and (−3, 0);
  Decreasing on (0, 3) and (3, ∞)
 (c) Relative maximum: (0, 0)
43. (a) Critical number: x = 0
 (b) Increasing on (−∞, 0); Decreasing on (0, ∞)
 (c) Relative maximum: (0, 4)

45. (a) Critical number: x = 2
 (b) Increasing on (−∞, 2);
  Decreasing on (2, ∞)
 (c) Relative maximum: (2, e−1)
47. (a) Critical number: x = 0
 (b) Decreasing on [−1, 1]
 (c) No relative extrema

49. (a) Critical number: x =
1

ln 3

 (b) Increasing on (−∞, 
1

ln 3);

  Decreasing on ( 1
ln 3

, ∞)
 (c) Relative maximum:  ( 1

ln 3
, 

3−1�ln 3

ln 3 ) or

   ( 1
ln 3

, 
1

e ln 3)
51. (a) Critical number: x =

1
ln 4

 (b) Increasing on ( 1
ln 4

, ∞);

  Decreasing on (0, 
1

ln 4)
 (c) Relative minimum: ( 1

ln 4
, 

ln(ln 4) + 1
ln 4 )

53. (a) No critical numbers
 (b) Increasing on (−∞, ∞)
 (c) No relative extrema
55. (a) No critical numbers
 (b) Increasing on (−∞, 2) and (2, ∞)
 (c) No relative extrema

57. (a) Critical numbers: x =
π
3

, 
5π
3

; Increasing on (π3, 
5π
3 );

  Decreasing on (0, 
π
3) and (5π

3
, 2π)

 (b) Relative maximum: (5π
3

, 
5π
3

+ √3);

  Relative minimum: (π3, 
π
3

− √3)
59. (a) Critical numbers: x =

π
4

, 
5π
4

;

  Increasing on (0, 
π
4), (5π

4
, 2π);

  Decreasing on (π4, 
5π
4 )

 (b) Relative maximum: (π4, √2);

  Relative minimum: (5π
4

, −√2)
61. (a) Critical numbers:

  x =
π
4

, 
π
2

, 
3π
4

, π, 
5π
4

, 
3π
2

, 
7π
4

;

  Increasing on (π4, 
π
2), (3π

4
, π), (5π

4
, 

3π
2 ), (7π

4
, 2π);

  Decreasing on (0, 
π
4), (π2, 

3π
4 ), (π, 

5π
4 ), (3π

2
, 

7π
4 )
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 Answers to Odd-Numbered Exercises A53

 (b) Relative maxima: (π2, 1), (π, 1), (3π
2

, 1);

  Relative minima: (π4, 0), (3π
4

, 0), (5π
4

, 0), (7π
4

, 0)
63. (a) f ′(x) =

2(9 − 2x2)
√9 − x2

 (b) 

x
21−1

f ′

2
4

8
10 f

−10
−8

y    (c) Critical numbers:

  x = ±
3√2

2

 (d) f ′ > 0 on (−
3√2

2
, 

3√2
2 );

  f ′ < 0 on (−3, −
3√2

2 ), (3√2
2

, 3);

   f  is increasing when f ′ is positive and decreasing when f ′ 
is negative.

65. (a) f ′(t) = t(t cos t + 2 sin t)
 (b) 

t

f ′

f

−10

−20

10

20

30

40

2
2

y

π π

  (c)  Critical numbers: 
t = 2.2889, 5.0870

   (d)  f ′ > 0 on (0, 2.2889), 
(5.0870, 2π);

    f ′< 0 on (2.2889, 5.0870);
    f  is increasing when f ′ 

is positive and decreasing 
when f ′ is negative.

67. (a) f ′(x) = −cos 
x
3

 (b) 

−2

−4

2

4

y

x
2

f

f ′

π 4π

 (c) Critical numbers: x =
3π
2

, 
9π
2

 (d) f ′ > 0 on (3π
2

, 
9π
2 ); f ′ < 0 on (0, 

3π
2 ), (9π

2
, 6π);

   f  is increasing when f ′ is positive and decreasing when f ′ 
is negative.

69. (a) f ′(x) =
2x2 − 1

2x
 (b) 

x

f ′

f

−1 41 2 3

4

3

2

1

−1

y (c) Critical number: x =
√2
2

(d) f ′ > 0 on (√2
2

, 3);

 f ′ < 0 on (0, 
√2
2 );

  f  is increasing when f ′ is  
positive and decreasing when 
f ′ is negative.

71.  f (x) is symmetric with  73. 

x
4

4

2

2

−4

−4

−2

−2

f ′

y  
respect to the origin.

 Zeros: (0, 0), (±√3, 0)
 

x
21 3 4 5

3
4
5

−1−3−4

−2
−3
−4
−5

y

(−1, 2)

(1, −2)

 g(x) is continuous on (−∞, ∞),
 and f (x) has holes at x = 1
 and x = −1.
75. 

x
4

4

2

2

−4

−4

−2

−2

f ′

y  77. 

x
4

4

2

2

−4

−4

−2

−2

f ′

y

79. g′(0) < 0  81. g′(−6) < 0
83. Answers will vary. Sample answer:
 

543

1

1
−1

2

−3

x

y

85. (a)  Yes. If h(x) = f (x) + g(x) where f  and g are increasing, 
then h′(x) = f ′(x) + g′(x) > 0. So, h is increasing.

 (b)  No. For example, the product of f (x) = x and g(x) = x 
is f (x) ∙ g(x) = x2, which is decreasing on (−∞, 0) and 
increasing on (0, ∞).

87. (5, f (5)) is a relative minimum.
89. (a) 

1

1

−1

−1
x

y

f

 (b) Critical numbers: x ≈ −0.40 and x ≈ 0.48
 (c) Relative maximum: (0.48, 1.25);
  Relative minimum: (−0.40, 0.75)
91. (a) s′(t) = 9.8(sin θ)t; speed = ∣9.8(sin θ)t∣
 (b)

θ 0
π
4

π
3

π
2

2π
3

3π
4

π

s′(t) 0 4.9√2 t 4.9√3 t 9.8t 4.9√3 t 4.9√2 t 0

  The speed is maximum at θ =
π
2

.
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 93. (a)
 

t 0 0.5 1 1.5 2 2.5 3

C(t) 0 0.055 0.107 0.148 0.171 0.176 0.167

  t = 2.5 h
  (b) 

0
0 3

0.25  t ≈ 2.38 h

  (c) t ≈ 2.38 h

 95. r =
2R
3

 97. (a) v(t) = 6 − 2t   (b) [0, 3)   (c) (3, ∞)   (d) t = 3
 99. (a) v(t) = 3t2 − 10t + 4

  (b) [0, 
5 − √13

3 ) and (5 + √13
3

, ∞)
  (c) (5 − √13

3
, 

5 + √13
3 )   (d) t =

5 ± √13
3

101. Answers will vary.
103. (a) Minimum degree: 3
  (b)  a3(0)3 + a2(0)2 + a1(0) + a0 = 0
    a3(2)3 + a2(2)2 + a1(2) + a0 = 2
    3a3(0)2 + 2a2(0) + a1 = 0
    3a3(2)2 + 2a2(2) + a1 = 0
  (c) f (x) = −1

2x3 + 3
2x2

105. (a) Minimum degree: 4
  (b)  a4(0)4 + a3(0)3 + a2(0)2 + a1(0) + a0 = 0
    a4(2)4 + a3(2)3 + a2(2)2 + a1(2) + a0 = 4
    a4(4)4 + a3(4)3 + a2(4)2 + a1(4) + a0 = 0
    4a4(0)3 + 3a3(0)2 + 2a2(0) + a1 = 0
    4a4(2)3 + 3a3(2)2 + 2a2(2) + a1 = 0
    4a4(4)3 + 3a3(4)2 + 2a2(4) + a1 = 0
  (c) f (x) = 1

4x4 − 2x3 + 4x2

107. False. Let f (x) = sin x.  109. False. Let f (x) = x3.
111.  False. Let f (x) = x3. There is a critical number at x = 0, but 

not a relative extremum.
113–117. Proofs  119. Putnam Problem A3, 2003

Section 4.4  (page 236)

  1.  Find the second derivative of a function and form test intervals 
by using the values for which the second derivative is zero 
or does not exist and the values at which the function is not 
continuous. Determine the sign of the second derivative on 
these test intervals. If the second derivative is positive, then the 
graph is concave upward. If the second derivative is negative, 
then the graph is concave downward.

  3. Concave upward: (−∞, ∞)
  5. Concave upward: (−∞, 0), (3

2, ∞);
  Concave downward: (0, 32)
  7. Concave upward: (−∞, −2), (2, ∞);
  Concave downward: (−2, 2)
  9. Concave upward: (−∞, −1

6); 
  Concave downward: (−1

6, ∞)

11. Concave upward: (−∞, −1), (1, ∞);
 Concave downward: (−1, 1)

13. Concave upward: (−
π
2

, 0); Concave downward: (0, 
π
2)

15. Point of inflection: (3, 0); Concave downward: (−∞, 3);
 Concave upward: (3, ∞)
17. Points of inflection: None; Concave downward: (−∞, ∞)
19. Points of inflection: (2, −16), (4, 0);
 Concave upward: (−∞, 2), (4, ∞);
 Concave downward: (2, 4)
21. Points of inflection: None; Concave upward: (−3, ∞)
23. Points of inflection: None; Concave upward: (0, ∞)
25. Point of inflection: (2π, 0);
 Concave upward: (2π, 4π); Concave downward: (0, 2π)
27. Concave upward: (0, π), (2π, 3π);
 Concave downward: (π, 2π), (3π, 4π)
29. Points of inflection: (π, 0), (1.823, 1.452), (4.46, −1.452);
 Concave upward: (1.823, π), (4.46, 2π);
 Concave downward: (0, 1.823), (π, 4.46)
31. Point of inflection: (3

2, e−2);
 Concave upward: (−∞, 0), (0, 32); 
 Concave downward: (3

2, ∞)
33. Concave upward: (0, ∞)
35. Points of inflection:

 (−(1
5)

5�8

, arcsin
√5
5 ), ((1

5)
5�8

, arcsin
√5
5 );

 Concave upward: (−1, −(1
5)5�8), ((1

5)5�8, 1);
 Concave downward: (−(1

5)5�8, 0), (0, (1
5)5�8)

37. Relative maximum: (3, 9)
39. Relative minimum: (3, −25)
41. Relative minimum: (0, −3)
43. Relative maximum: (−2, −4); Relative minimum: (2, 4)
45. No relative extrema, because f  is nonincreasing.
47. Relative minimum: (1

4, 12 + ln 4)
49. Relative minimum: (e, e)  51. Relative minimum: (0, 1)
53. Relative minimum: (0, 0);
 Relative maximum: (2, 4e−2)

55. Relative maximum: ( 1
ln 4

, 
4e−1

ln 2 )
57. Relative minimum: (−1.272, 3.747);
 Relative maximum: (1.272, −0.606)
59. (a) f ′(x) = 0.2x(x − 3)2(5x − 6);
  f ″(x) = 0.4(x − 3)(10x2 − 24x + 9)
 (b) Relative maximum: (0, 0);
  Relative minimum: (1.2, −1.6796);
  Points of inflection: (0.4652, −0.7048),
  (1.9348, −0.9048), (3, 0)
 (c) 

4

2

1

−1−2
x

f

y

f ′
f ″

   f  is increasing when f ′ is  
positive and decreasing when  
f ′ is negative. f  is concave 
upward when f ″ is positive and 
concave downward when f ″ is 
negative.
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61. (a) f ′(x) = cos x − cos 3x + cos 5x;
  f ″(x) = −sin x + 3 sin 3x − 5 sin 5x

 (b) Relative maximum: (π2, 1.53333);

  Points of inflection: (π6, 0.2667), (1.1731, 0.9637),

   (1.9685, 0.9637), (5π
6

, 0.2667)
 (c) 

x

−2

−4

−6

−8

2

4

f

y

f ′

f ″

4
π π

2
π

    f  is increasing when f ′ is  
positive and decreasing when f ′ 
is negative. f  is concave upward 
when f ″ is positive and concave 
downward when f ″ is negative.

63. (a) 

x
4

4

3

3

2

1

1 2

y  (b) 

x
4

4

3

3

2

1

1 2

y

65. (a) 

x
3

3

−1−2

−1

f ′f

f ″

y  (b) 
f

4

x
2

 

−2

−2

−4

y

f ′ f ″

67. 

(0, 0) (2, 0)
x

1 3−1

1

2

−2

y   69. 

x
64

4

2

2

y

(2, 0) (4, 0)

71. Sample answer:
 

−8

−4 8 12
x

f

y

f ″

73. (a) 

−6

9−9

6

f(x) = x − 2

  

−6

9−9

6

f(x) = (x − 2)2

  

Point of
in�ection

−6

9−9

6

f(x) = (x − 2)3

  

−6

9−9

6

f(x) = (x − 2)4

   f (x) = (x − 2)n has a point of inflection at (2, 0) if n is 
odd and n ≥ 3.

 (b) Proof
75. f (x) = 1

2x3 − 6x2 + 45
2 x − 24

77. (a) f (x) = 1
32x3 + 3

16x2   (b)  Two miles from touchdown
79. x = 100 units
81. (a)
 

t 0.5 1 1.5 2 2.5 3

S 151.5 555.6 1097.6 1666.7 2193.0 2647.1

 1.5 < t < 2
 (b) 

0
0

3

3000    (c) About 1.633 yr

  t ≈ 1.5
83. P1(x) = 2√2   

−2

−4

P2

P1

f

π 2π

4

 P2(x) = 2√2 − √2(x −
π
4)

2

  The values of f, P1, and P2 and  
their first derivatives are equal

 when x =
π
4

. The approximations

 worsen as you move away from x =
π
4

.

85. P1(x) = −
π
4

+
1
2

(x + 1)

 P2(x) = −
π
4

+
1
2

(x + 1) +
1
4

(x + 1)2

  The values of f, P1, and P2 

−6 6

−4

4

P1

P2

f

 
and their first derivatives are 
equal when x = −1. The 
approximations worsen as  
you move away from x = −1.

87. 

1−1

−1

( (, 0π
1

1   89. True

91. False. f  is concave upward at x = c if f ″(c) > 0.
93. Proof
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Section 4.5  (page 246)

 1. (a) As x increases without bound, f (x) approaches −5.
 (b) As x decreases without bound, f (x) approaches 3.
 3. 2; one from the left and one from the right
 5. f  6. c  7. d  8. a  9. b  10. e
11. (a) ∞   (b) 5   (c) 0  13. (a) 0   (b) 1   (c) ∞
15. (a) 0   (b) −2

3   (c) −∞  17. 4  19. 7
9  21. 0

23. 0  25. −1  27. −2  29. 1
2  31. ∞

33. 0  35. 0  37. 2  39. 0  41. −
π
2

43. 

6

−4

−6

4

y = −1
y = 1

 45. 6

−6

−9 9

y = −3

y = 3

47. 1  49. 0  51. 1
6

53.
 

x 100 101 102 103 104 105 106

f (x) 1.000 0.513 0.501 0.500 0.500 0.500 0.500

 

8

−2

−1

2

     lim
x→∞

 [x − √x(x − 1) ] = 1
2

55.
 

x 100 101 102 103 104 105 106

f (x) 0.479 0.500 0.500 0.500 0.500 0.500 0.500

 

2

−1

−2

1

    The graph has a hole at x = 0.

    lim
x→∞

 x sin 
1
2x

=
1
2

57. 100%
59.  An infinite limit is a description of how a limit fails to exist. A 

limit at infinity deals with the end behavior of a function.
61. (a) 5   (b) −5
63. (a) 

0 30

1

0

 (b) 83%

65. (a) lim
x→∞

 f (x) = 2

 (b) x1 =√4 − 2ε
ε

, x2 = −√4 − 2ε
ε

 (c) M =√4 − 2ε
ε

   (d) N = −√4 − 2ε
ε

67. (a) Answers will vary. M =
5√33

11

 (b) Answers will vary. M =
29√177

59
69–71. Proofs

73. (a) d(m) = ∣3m + 3∣
√m2 + 1

 (b) 

12

−2

−12

6   (c) lim
m→∞

 d(m) = 3;

 lim
m→−∞

 d(m) = 3;

  As m approaches ±∞, the 
distance approaches 3.

75. Proof

Section 4.6  (page 256)

 1.  Domain, range, intercepts, asymptotes, symmetry, end behavior, 
differentiability, relative extrema, points of inflection, concavity, 
increasing and decreasing, infinite limits at infinity

 3.  Rational function; Use long division to rewrite the rational 
function as the sum of a first-degree polynomial and another 
rational function.

 5. 

x

y

y = −3

x = 2

−2

−4

4

, 0 7
3( (

0, − 7
2( (

  7. y

x
2 3 4 5

−2

−3

−4

2

3

4

1−1

(0, 0)

x = 1

y = −1

 9. y

x
−1−4 3 4

−2

−3

−4

1

2

3

4

2

y = 0

x = 2x = −2

0, − 

(−1, 0) 

1
4( (

 11. 

x
4

1, 1
4

2−4

y

1

(0, 0)

y = 1

( ((−1, 1
4(

13. 

x
54

5
4

−4

y

6
7
8

3
2

1 2−1−2−3 3

y = 3

x = 0

, 0− 2
3( (

 15. 

x
−6−8 2 4 6 8

−4

−6

2

4

6

8(−2   4, 0)3

y x=

x = 0

(4, 6)

y

17. y

x
−2−3 2 3 4

1

−1 1

x = −1 x = 1

y = 0
(0, 0)

 19. 

108

8

6

6

4

2

x

y

(2, −2)

(0, −3)

(6, 6)

y = x − 2

x = 4
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 Answers to Odd-Numbered Exercises A57

21. 

x
3 4 5

12
8
4

16
20

−1−3−4−5

−12
−16
−20

y

21−2

(−   6, −6    3)

(   6, 6    3)

x = 2

x = −2

 23. 

x
−2 2 4

2

4 , 8 16
3 9

y

(0, 0) (4, 0)

3( (

25. 

x
5321

5

−2

y

27
8

, 0

(0, 0)

(1, 1)
(        )

 27. 
5

x

1

(0, 2)

(1, 0)

4

32−1−2−3

y

29. 

x
−2 1

1

2

(−1, −1)

(0, 0)

2
3

16
27

y

−   , −( (

4
3

−   , 0( (

 31. y

x
3 4 5 6 7−1

−2

−3

−4

1

2

3

4

x = 0

y = 0

33. 

2

3

x
3 4

1

y

(0, 3)

3
2
   , 0( (

 35. y

x

4

8

12

16

3π 2ππ
2

π
2

(0, 0) (1.895, 0)

(  , 2  )

5
3

π

π

π

10
3
π () ,

2
3
π

+ 2   3

3
π () , − 2   3

37. 

x

−1

−2

1

2

3

y

2
π π

2
π

(0, 0) (  , 0)

2

π (2   , 0)π

π 19
18) (,

2
3π 19

18) (, −

 39. 

x

y

−4

4

8

12

16

4 2
ππ

4
π 2

π

() , 4   2
x =

x = 0

41. 

x

6
4
2

8
10

−4
−2

−6
−8

y

3πππ
24

π−

2
πx = − 

2
3πx = − 

2
3πx =  

2
π

π

x =

(0, 0)

(  , 0)

π(−  , 0)

 43. 

x

5 e5

3( (,
3

4 2e4

3( (,
3

1 3 4 5

50

40

30

20

10
(0, 2) (2, 0)

y

45. 

t
−4 −2 2 4 6

8

y = 10

y = 0

6

4

2

(0, 2)

(1.386, 5)

y  47. 

x
2

(1.368, −0.368)
3−1

−1

3

2

1

y

(2, 0)

49. 

1−1−2

−4

2

4

6

8

10

12

−3 2 3 5

y

x

(2, 0)

4

 51. 

y = 0

−1 1 2 3

2

4

6

8

10

x

(0.91, 9.04)

(1.82, 6.65)

(0, 0)

y

53. 

−0.5

−1

1

−2

−3

−4

0.5

y

x

(0.5, −1) x = 1

x = 0

1.0

55. 

15

−10

−15

10  Minimum: (−1.10, −9.05);
  Maximum: (1.10, 9.05);
  Points of inflection:
  (−1.84, −7.86), (1.84, 7.86);
  Vertical asymptote: x = 0;
  Horizontal asymptote: y = 0

57. 

0

−2

2

2π

  Relative minimum: (π, −
5
4);

   Points of inflection:

   (2π
3

, −
3
8), (4π

3
, −

3
8)

59. 

−5

−8 6

5    Vertical asymptotes: 
x = −3, x = 0

   Slant asymptote: y =
x
2

61. 4

−4

−2 6

  Relative minimum: (−1, 2 − 2e)
   Relative maximum: (3, 2 + 6e−3)
   Horizontal asymptote: y = 2

63. 

2

−1

−2

−2
x

f

y

f ′

f ″
  The zeros of f ′ correspond to 

the points where the graph of 
f  has horizontal tangents. The 
zero of f ″ corresponds to the 
point where the graph of f ′ has a  
horizontal tangent.

65. 

x
4

4

2

−4

−4

−2

−2

f

y  

x
4

4

2

−4

−4 −2

2

f ″

y
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67. 

x
8

4

−2

−4

−4

2

y

f

 

x

4

−2

−4

2

4−8

y

f ″

69. (a) 

4

−0.5

0

1.5    The graph has holes at x = 0  
and at x = 4.

     Visually approximated critical  
numbers: 1

2, 1, 32, 2, 52, 3, 72

 (b) f ′(x) =
−x cos2 πx
(x2 + 1)3�2 −

2π sin πx cos πx

√x2 + 1
;

  Approximate critical numbers: 1
2, 0.97, 32, 1.98, 52, 2.98, 72;

   The critical numbers where maxima occur appear to be 
integers in part (a), but by approximating them using f ′, 
you can see that they are not integers.

71. (a) 

0
0

500

g

f

25

  g; f (x) = ln x increases very slowly for “large” values of x.
 (b) 

0 20,000
0

g

f

15

  g; f (x) = ln x increases very slowly for “large” values of x.
73. Answers will vary. Sample answer: Let

 f (x) =
−6

0.1(x − 2)2 + 1
+ 6.

 

4

8

642−2
x

y

75. f  is decreasing on (2, 8), and therefore f (3) > f (5).
77. (a) 

x
4

4

3

2

2 31

−4

−3

−4

f ′

f

y

 (b) lim
x→∞

 f (x) = 3, lim
x→∞

 f ′(x) = 0

 (c) Because lim
x→∞

 f (x) = 3, the graph approaches that of a

  horizontal line, lim
x→∞

 f ′(x) = 0.

 79. 

9

−1

−6

9   The graph crosses the horizontal 
asymptote y = 4. 

   The graph of a function f  does 
not cross its vertical asymptote 
x = c because f (c) does not exist.

 81. 

−1

−2π 2π

3  The graph has a hole at x = 0. 
   The graph crosses the horizontal 

asymptote y = 0.
   The graph of a function f  does not 

cross its vertical asymptote x = c 
because f (c) does not exist.

 83. 

4

−1

−2

3   The graph has a hole at x = 3. 
The rational function is not 
reduced to lowest terms.

 85. 

6

−3

−3

3   The graph appears to approach 
the line y = −x + 1, which is 
the slant asymptote.

 87. 

−4

−6 6

4   The graph appears to approach 
the line y = 2x, which is the slant 
asymptote.

 89. 

8

−2

−4

f g=

8   The graph appears to approach 
the line y = x, which is the slant 
asymptote.

 91. (a)–(h) Proofs

 93. Answers will vary. Sample answer: y =
1

x − 3
 95. Answers will vary. 

  Sample answer: y =
3x2 − 7x − 5

x − 3

 97. False. Let f (x) =
2x

√x2 + 2
, f ′(x) > 0 for all real numbers.

 99. False. For example,

  y =
x3 − 1

x
  does not have a slant asymptote.
101. (a) (−3, 1)   (b) (−7, −1)
  (c) Relative maximum at x = −3, relative minimum at x = 1
  (d) x = −1
103.  Answers will vary. Sample answer: The graph has a  

vertical asymptote at x = b. If a and b are both positive or both  
negative, then the graph of f  approaches ∞ as x approaches 
b, and the graph has a minimum at x = −b. If a and b have 
opposite signs, then the graph of f  approaches −∞ as x 
approaches b, and the graph has a maximum at x = −b.
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105. y = 4x, y = −4x 
  

x

y

−2−4−6−8 2 4 6 8

2

8

10

12

107. (a)  When n is even, f  is symmetric about the y-axis. When n 
is odd, f  is symmetric about the origin.

  (b) n = 0, 1, 2, 3   (c) n = 4   (d) y = 2x
  (e) 

−1.5

−3 3

2.5

n = 2

n = 0

n = 1

   

−1.5

−3 3

2.5

n = 3

n = 4 n = 5

   
n 0 1 2 3 4 5

M 1 2 3 2 1 0

N 2 3 4 5 2 3

Section 4.7  (page 266)

  1.  A primary equation is a formula for the quantity to be  
optimized. A secondary equation can be solved for a variable 
and then substituted into the primary equation to obtain a  
function of just one variable. A feasible domain is the set of 
input values that makes sense in an optimization problem.

  3. (a) First 
Number, x

Second 
Number

Product, P

10 110 − 10 10(110 − 10) = 1000

20 110 − 20 20(110 − 20) = 1800

30 110 − 30 30(110 − 30) = 2400

40 110 − 40 40(110 − 40) = 2800

50 110 − 50 50(110 − 50) = 3000

60 110 − 60 60(110 − 60) = 3000

70 110 − 70 70(110 − 70) = 2800

80 110 − 80 80(110 − 80) = 2400

90 110 − 90 90(110 − 90) = 1800

100 110 − 100 100(110 − 100) = 1000

   The maximum is attained near x = 50 and 60.
  (b) P = x(110 − x)   (c) 55 and 55
  (d) 

120
0

0

3500

(55, 3025)

 5. 
S
2

 and 
S
2

  7. 21 and 7  9. 54 and 27

11. ℓ = w = 20 m  13. ℓ = w = 7 ft

15. (−√5
2

, 
5
2), (√5

2
, 

5
2)  17. 40 in. × 20 in.

19. 900 m × 450 m

21. Rectangular portion: 
16

π + 4
×

32
π + 4

 ft

23. (a) L =√x2 + 4 +
8

x − 1
+

4
(x − 1)2, x > 1

 (b) 

10
0

0

(2.587, 4.162)

10

     Minimum when x ≈ 2.587

 (c) (0, 0), (2, 0), (0, 4)

25. Width: 
5√2

2
; Length: 5√2

27. (a) 
y

y
2

x

 (b)

Length, x Width, y Area, xy

10 (2�π)(100 − 10) (10)(2�π)(100 − 10) ≈ 573

20 (2�π)(100 − 20) (20)(2�π)(100 − 20) ≈ 1019

30 (2�π)(100 − 30) (30)(2�π)(100 − 30) ≈ 1337

40 (2�π)(100 − 40) (40)(2�π)(100 − 40) ≈ 1528

50 (2�π)(100 − 50) (50)(2�π)(100 − 50) ≈ 1592

60 (2�π)(100 − 60) (60)(2�π)(100 − 60) ≈ 1528

 The maximum area of the rectangle is approximately 1592 m2.

 (c) A =
2
π (100x − x2), 0 < x < 100

 (d)  
dA
dx

=
2
π (100 − 2x)    (e) 

0 100
0

2000

(50, 1591.6)

   = 0 when x = 50;
   The maximum value is  

approximately 1592  
when x = 50.

29. 18 in. × 18 in. × 36 in.
31.  No. The volume changes because the shape of the container 

changes when it is squeezed.

33. r = 3√21
2π ≈ 1.50 (h = 0, so the solid is a sphere.)

35. Side of square: 
10√3

9 + 4√3
; Side of triangle: 

30

9 + 4√3

37. w =
20√3

3
 in., h =

20√6
3

 in.
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39. Oil well

Re�nery

4
3

2

2

4 −
3

2
3

  The path of the pipe should go underwater from the oil well to 
the coast following the hypotenuse of a right triangle with leg

 lengths of 2 miles and 
2

√3
 miles for a distance of 

4

√3
 miles.

 Then the pipe should go down the coast to the refinery for a

 distance of (4 −
2

√3) miles.

41. (a) One mile from the nearest point on the coast  (b) Proof
43. 

x

3

1

2

−1

−

y

4
π

4
π

2
π

  (a) Origin to y-intercept: 2;

   Origin to x-intercept: 
π
2

   (b)  d = √x2 + (2 − 2 sin x)2

   (c)  Minimum distance is 0.9795 
when x ≈ 0.7967.

45. About 1.153 radians or 66°  47. 5.3%  49. Proof
51. y = 64

141 x, S ≈ 6.1 mi  53. y = 3
10 x, S3 ≈ 4.50 mi

55. (0, 0)  57. Putnam Problem A1, 1986

Section 4.8  (page 276)

 1. y = f (c) + f ′(c)(x − c)

 3. Propagated error = f (x + ∆x) − f (x), relative error = ∣dy
y ∣,

 percent error = ∣dy
y ∣ ∙ 100

 5. T(x) = 4x − 4
 

x 1.9 1.99 2 2.01 2.1

f (x) 3.610 3.960 4 4.040 4.410

T(x) 3.600 3.960 4 4.040 4.400

 7. T(x) = 80x − 128
 

x 1.9 1.99 2 2.01 2.1

f (x) 24.761 31.208 32 32.808 40.841

T(x) 24.000 31.200 32 32.800 40.000

 9. T(x) = (cos 2)(x − 2) + sin 2
 

x 1.9 1.99 2 2.01 2.1

f (x) 0.946 0.913 0.909 0.905 0.863

T(x) 0.951 0.913 0.909 0.905 0.868

11. T(x) = 9(ln 3)x − 18 ln 3 + 9
 

x 1.9 1.99 2 2.01 2.1

f (x) 8.064 8.902 9 9.099 10.045

T(x) 8.011 8.901 9 9.099 9.989

13.  y − f (0) = f ′(0)(x − 0) 

6

−2

−6

(0, 2)y
f

6

  y − 2 = 1
4x

  y = 2 +
x
4

15. ∆y = 0.1655, dy = 0.15
17. ∆y = −0.039, dy = −0.040
19. ∆y ≈ −0.053018, dy = −0.053
21. 6x dx  23. (x sec2 x + tan x) dx

25. −
3

(2x − 1)2 dx  27. −
x

√9 − x2
 dx

29. 
x

x2 − 4
 dx  31. (arcsin x +

x

√1 − x2) dx

33. (a) 0.9   (b) 1.04  35. (a) 8.035   (b) 7.95
37. (a) ±5

8 in.2   (b) 0.625%
39. (a) ±20.25 in.3   (b) ±5.4 in.2   (c) 0.6%, 0.4%
41. 27.5 mi, about 7.3%  43. (a) 1

4%   (b) 216 sec = 3.6 min
45. About −2.65%

47. f (x) = √x, dy =
1

2√x
 dx

 f (99.4) ≈ √100 +
1

2√100
(−0.6) = 9.97

 Calculator: 9.97

49. f (x) = 4√x, dy =
1

4x3�4
 dx

 f (624) ≈ 4√625 +
1

4(625)3�4 (−1) = 4.998

 Calculator: 4.998
51.  The value of dy becomes closer to the value of ∆y as ∆x 

approaches 0. Graphs will vary.

53. f (x) = √x, dy =
1

2√x
 dx

 f (4 + 0.02) ≈ √4 +
1

2√4
(0.02) = 2 +

1
4

(0.02)

55. True  57. True  59. True

Review Exercises for Chapter 4  (page 278)

 1. Maximum: (0, 0)  3. Maximum: (4, 0)
 Minimum: (−5

2, −25
4 )  Minimum: (0, −2)

 5. Maximum: (3, 23)  7. Maximum: (2π, 17.57)
 Minimum: (−3, −2

3)  Minimum: (2.73, 0.88)
 9. f ′(1) = 0  11. Not continuous on [−2, 2]
13. f ′(2744

729 ) = 3
7  15. f  is not differentiable at x = 5.

17. f ′(0) = 1
19.  No; The function has a discontinuity at x = 0, which is in the 

interval [−2, 1].
21. Increasing on (−3

2, ∞); Decreasing on (−∞, −3
2)

23. Increasing on (−∞, 1), (2, ∞); Decreasing on (1, 2)
25. Increasing on (1, ∞); Decreasing on (0, 1)

27. Increasing on (−∞, 2 −
1

ln 2);

 Decreasing on (2 −
1

ln 2
, ∞)
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 Answers to Odd-Numbered Exercises A61

29. (a) Critical number: x = 3
 (b) Increasing on (3, ∞); Decreasing on (−∞, 3)
 (c) Relative minimum: (3, −4)
31. (a) Critical number: t = 2
 (b) Increasing on (2, ∞); Decreasing on (−∞, 2)
 (c) Relative minimum: (2, −12)
33. (a) Critical number: x = −8; Discontinuity: x = 0
 (b) Increasing on (−8, 0); 
  Decreasing on (−∞, −8) and (0, ∞)
 (c) Relative minimum: (−8, − 1

16)
35. (a) Critical numbers: x =

3π
4

, 
7π
4

 (b) Increasing on (3π
4

, 
7π
4 );

  Decreasing on (0, 
3π
4 ) and (7π

4
, 2π)

 (c) Relative minimum: (3π
4

, −√2);

  Relative maximum: (7π
4

, √2)
37. (a) Critical number: x =

√2
2

 (b) Increasing on (0, 
√2
2 ); Decreasing on (√2

2
, ∞)

 (c) Relative maximum: (√2
2

, ln
√2
2

−
1
2)

39. (a) v(t) = 3 − 4t   (b) [0, 34)   (c) (3
4, ∞)   (d) t = 3

4

41. Point of inflection: (3, −54); Concave upward: (3, ∞);
 Concave downward: (−∞, 3)
43. Points of inflection: None; Concave upward: (−5, ∞)

45. Points of inflection: (π2, 
π
2), (3π

2
, 

3π
2 );

 Concave upward: (π2, 
3π
2 );

 Concave downward: (0, 
π
2), (3π

2
, 2π)

47. Point of inflection: (−2, e−2);
 Concave upward: (−2, 0), (0, ∞);
 Concave downward: (−∞, −2)
49. Relative minimum: (−9, 0)

51. Relative maxima: (√2
2

, 
1
2), (−

√2
2

, 
1
2);

 Relative minimum: (0, 0)
53. Relative maximum: (−3, −12); Relative minimum: (3, 12)

55. Relative maximum: (2
e
, 

2
e ln 5)

57. 

x
2 3 4 5

5

2

6

(0, 0)

(6, 0)

3

7

−1

4

1

y

7

(3, f (3))

(5, f (5))

 59.  The first derivative is positive 
and the second derivative is 
negative. The graph is increasing 
and concave downward.

 61. (a)
 D = 0.41489t4 − 17.1307t3 + 249.888t2 − 1499.45t + 3684.8
  (b) 

500
5 15

725

  (c) 2011; 2006   (d) 2008
 63. 8  65. −1

8  67. −∞  69. 0  71. 6  73. 0
 75. 

−8 7

9

−1

y = 4

 77. 

3−3

−1

y = 

y = 0

5
3

3

 79. (a) 

5
0

30

120

  (b) Yes. lim
t→∞

 S = 100
1 = 100

 81. 

x

(2, 4)

(4, 0)(0, 0)

5

4

2

3

5321

1

y  83. 

8
x

4 62

6

4

−2−6

2

−8

8

−8

y

(−4, 0) (4, 0)

(0, 0)

2, −8−2 ))

2, 82 ))

 85. y

x

x = 2

y = −3
−1−2 1 3 4 5 6

−2

−4

−5

−6

1

2

2

5
3
   , 0( (

5
2

   0, −( (

 87. 

x
21

x = 0

5

10

−1

−5

−2
(−1, −6)

(1, 6)

y

 89. 

1

−1

2

3

4

5

6

7

x

y

2
π

2
π ππ −−

1
2

   0, ( (

x = −π x = π  91. 

x

y

y = 0

(0, e)

−1−2 1 2 3 4
−1

1

2

4

5

, e1/3 
3
18( (3

 93. 54 and 36  95. 50 ft × 200
3  ft

 97. (0, 0), (5, 0), (0, 10)  99. 14.05 ft  101. 
32πr3

81
103. ∆y = 5.044, dy = 4.8  105. (1 − cos x + x sin x) dx
107. (a) ±8.1π cm3   (b) ±1.8π cm2

  (c) About 0.83%, about 0.56%
109. 267.24, 3.1%
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P.S. Problem Solving  (page 281)

 1. Choices of a may vary.

 

x

5
4

y

6
7
8

3
2

−1
−2

2−2

a = −3

a = −2

a = −1

a = 1 a = 3 a = 2 a = 0    (a)  One relative minimum at 
(0, 1) for a ≥ 0

   (b)  One relative maximum at 
(0, 1) for a < 0

   (c)  Two relative minima for

   a < 0 when x = ±√−
a
2

   (d)  If a < 0, then there are three 
critical points. If a ≥ 0, then 
there is only one critical point.

 3. All c, where c is a real number  5. Proof
 7.  The bug should head toward the midpoint of the opposite side. 

Without calculus, imagine opening up the cube. The shortest 
distance is the line PQ, passing through the midpoint as shown.

 

Q

P
x

 9. a = 6, b = 1, c = 2  11. Proof

13. Greatest slope: (−
√3
3

, 
3
4), Least slope: (√3

3
, 

3
4)

15. Proof  17. Proof; Point of inflection: (1, 0)
19. (a) (0, ∞)
 (b)  Answers will vary. Sample answer: x = eπ�2, 

x = e(π�2)+2π

 (c) Answers will vary. Sample answer: x = e−π�2, x = e3π�2

 (d) [−1, 1]   (e) f ′(x) =
cos(ln x)

x
; Maximum = eπ�2

 (f ) 

0

−2

5

2

  lim
x→0+

 f (x) seems to be −1
2. (This is incorrect.)

 (g) The limit does not exist.

Chapter 5
Section 5.1  (page 291)

 1.  A function F is an antiderivative of f  on an interval I when 
F′(x) = f (x) for all x in I.

 3.  The particular solution results from knowing the value of 
y = F(x) for one value of x. Using the initial condition in the 
general solution, you can solve for C to obtain the particular 
solution.

 5. Proof  7. y = 3t3 + C  9. y = 2
5x5�2 + C

 Original 
 Integral Rewrite Integrate Simplify

11. ∫ 3√x dx ∫ x1�3 dx 
x4�3

4�3
+ C 

3
4

x4�3 + C

13. ∫ 
1

x√x
 dx ∫ x−3�2 dx 

x−1�2

−1�2
+ C −

2

√x
+ C

15. 1
2x2 + 7x + C  17. 2

5x5�2 + x2 + x + C
19. x3 + 1

2x2 − 2x + C

21. −
1

4x4 + C  23. 
2
3

x3�2 + 12x1�2 + C

25. 5 sin x − 4 cos x + C  27. tan θ + cos θ + C
29. tan y + C  31. −2 cos x − 5ex + C

33. x2 −
4x

ln 4
+ C  35. 

1
2

x2 − 5 ln∣x∣ + C

37. f (x) = 3x2 + 8  39. f (x) = x2 + x + 4
41. f (x) = −4√x + 3x  43. f (x) = ex + x + 4

45. (a) Answers will vary.    (b) y =
x3

3
− x +

7
3

  Sample answer:
 

x
−4

−5

5

4

y  

−4 4

−5

( 1, 3)−

5

47. (a) 

3

−9

−3

9   (b) y = x2 − 6
  (c) 

15

−8

−15

12

49. Answers will vary. Sample answer:
 

y

x
−1−2−3 1 2 3

2

3

5

f(x) = 4x + 2

f ′

f(x) = 4x

51. f (x) = tan2 x ⇒ f ′(x) = 2 tan x ∙ sec2 x
 g(x) = sec2 x ⇒ g′(x) = 2 sec x ∙ sec x tan x = f ′(x)
 The derivatives are the same, so f  and g differ by a constant.

53. f (x) =
x3

3
− 4x +

16
3

55. (a) h(t) = 3
4t2 + 5t + 12   (b) 69 cm  57. 62.25 ft

59. (a) t ≈ 2.562 sec   (b) v(t) ≈ −65.970 ft�sec
61. v0 ≈ 62.3 m�sec  63. 320 m; −32 m�sec
65. (a) v(t) = 3t2 − 12t + 9, a(t) = 6t − 12
 (b) (0, 1), (3, 5)   (c) −3

67. a(t) = −
1

2t3�2, x(t) = 2√t + 2

69. (a) 1.18 m�sec2   (b) 190 m
71. (a) 300 ft   (b) 60 ft�sec ≈ 41 mi�h
73.  False. f  has an infinite number of antiderivatives, each differing 

by a constant.
75–77. Proofs
79. Putnam Problem B2, 1991
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 Answers to Odd-Numbered Exercises A63

Section 5.2  (page 303)

 1.  The index of summation is i, the upper bound of summation 
is 8, and the lower bound of summation is 3.

 3.  You can use the line  y = x  The sum of the areas of the
 bounded by x = a and x = b. circumscribed rectangles in
 The sum of the areas of the  the  figure below is the 
 inscribed rectangles in the   upper sum.
 figure below is the lower sum. 

x

y

a b

 

x

y

a b

  The rectangles in the first graph do not contain all of the area 
of the region, and the rectangles in the second graph cover 
more than the area of the region. The exact value of the area 
lies between these two sums.

 5. 75  7. 
158
85

  9. 8c  11. ∑
11

i=1
 
1
5i

13. ∑
6

j=1
 [7( j

6) + 5]  15. 
2
n

 ∑
n

i=1
 [(2i

n )
3

− (2i
n )]  17. 84

19. 1200  21. 2470  23. 1876

25. 
n + 2

n
 27. 

2(n + 1)(n − 1)
n2

 n = 10: S = 1.2 n = 10: S = 1.98
 n = 100: S = 1.02 n = 100: S = 1.9998
 n = 1000: S = 1.002 n = 1000: S = 1.999998
 n = 10,000: S = 1.0002 n = 10,000: S = 1.99999998
29. 13 < (Area of region) < 15
31. 55 < (Area of region) < 74.5
33. 0.7908 < (Area of region) < 1.1835
35.  The area of the shaded region falls between 12.5 square units 

and 16.5 square units.
37. A ≈ S ≈ 0.768 39. A ≈ S ≈ 0.746
 A ≈ s ≈ 0.518  A ≈ s ≈ 0.646

41. s(n) = 24 −
24
n

, S(n) = 24 +
24
n

43. s(n) =
5(2n2 − 3n + 1)

6n2 , S(n) =
5(2n2 + 3n + 1)

6n2

45. (a) 

x
31

3

2

1

y    (b) ∆x =
2 − 0

n
=

2
n

 (c) s(n) = ∑
n

i=1
 f (xi−1) ∆x = ∑

n

i=1
 [(i − 1)( 2

n)](
2
n)

 (d) S(n) = ∑
n

i=1
 f (xi) ∆x = ∑

n

i=1
 [i(2

n)](
2
n)

 (e) 
n 5 10 50 100

s(n) 1.6 1.8 1.96 1.98

S(n) 2.4 2.2 2.04 2.02

 (f) lim
n→∞

 ∑
n

i=1
 [(i − 1)(2

n)](
2
n) = 2

  lim
n→∞

 ∑
n

i=1
 [i(2

n)](
2
n) = 2

47. A = 3 49. A = 7
3

 y

x
−1−2 1 2 3

1

2

3

4

5

  

x
2 3

3

1

1

y

51. A = 54 53. A = 34
 y

x
−1 1 2 3 4 5

−5

5

10

15

20

  y

x
−1−2 1 2 4 5

−6

6

12

18

24

30

55. A = 2
3 57. A = 8

 

x
1−1

2

1

y   y

x
2 4 6 8

−1

1

2

3

4

59. A = 125
3  61. A = 44

3

 y

x
−5 5 10 15 20 25

−2

−4

−6

2

4

6

  

x

6

y

8

10

2

−2

−4

−2−4

63. 69
8   65. 0.345  67. 4.0786  69. b

71.  An overestimate on one side of the midpoint compensates for 
an underestimate on the other side of the midpoint.

73. (a) 

x
1

2

2 3

4

4

6

8

y    (b) 

x
1

2

2 3

4

4

6

8

y

  s(4) = 46
3  S(4) = 326

15
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A64 Answers to Odd-Numbered Exercises

 (c) 

x
1

2

2 3

4

4

6

8

y   (d) Proof

  M(4) = 6112
315

 (e) 
n 4 8 20 100 200

s(n) 15.333 17.368 18.459 18.995 19.060

S(n) 21.733 20.568 19.739 19.251 19.188

M(n) 19.403 19.201 19.137 19.125 19.125

 (f)  Because f  is an increasing function, s(n) is always increasing 
and S(n) is always decreasing.

75. True
77.  Suppose there are n rows and n + 1 columns. The stars on the left 

total 1 + 2 + .  .  . + n, as do the stars on the right. There are 
n(n + 1) stars in total. So, 2[1 + 2 + .  .  . + n] = n(n + 1) 

 and 1 + 2 + .  .  . + n =
n(n + 1)

2
.

79. When n is odd, there are (n + 1
2 )

2

 seats. When n is even,

 there are 
n2 + 2n

4
 seats.

81. Putnam Problem B1, 1989

Section 5.3  (page 313)

 1.  A Riemann sum represents the addition of all of the subregions 
for a function f  on an interval [a, b].

 3. 2√3 ≈ 3.464  5. 32  7. 0  9. 10
3

11. ∫5

−1
 (3x + 10) dx  13. ∫5

1
(1 +

3
x) dx  15. ∫4

0
 5 dx

17. ∫4

−4
 (4 − ∣x∣) dx  19. ∫5

−5
 (25 − x2) dx

21. ∫π�2

0
 cos x dx  23. ∫2

0
 y3 dy  25. ∫4

1

2
x
 dx

27. 

x
5

5

3

2

42 31

1

Rectangle

y  29. 

x

Triangle

4

2

42

y

 A = 12 A = 8
31. y

x
−1 1 2 3

−4

4

8

12

Trapezoid

 33. 

1 Triangle

1−1
x

y

 A = 14  A = 1

35. y

x
−2−4−6−8 2 4 6 8

−4

2

4

6

8

10

12

Semicircle

 A =
49π

2
37. −320  39. 80  41. −40  43. 508
45. (a) 13   (b) −10   (c) 0   (d) 30
47. (a) 8   (b) −12   (c) −4   (d) 30  49. −48, 88
51. (a) −π    (b) 4   (c) −(1 + 2π)   (d) 3 − 2π
 (e) 5 + 2π    (f ) 23 − 2π
53. (a) 14  (b) 4  (c) 8  (d) 0   55. 40  57. a  59. c
61. Answers will vary. Sample answer:
 y

x
a

f

 There is no region.
63. Geometric method:

  ∫3

−1
 (x + 2) dx = Area of large triangle − Area of small triangle

  =
25
2

−
1
2

= 12

 Limit definition:

 ∫3

−1
(x + 2) dx = lim

n→∞ ∑
n

i=1
[(−1 +

4i
n

+ 2)(4
n)] = 12

65. a = −2, b = 5
67. Answers will vary. Sample answer: a = π, b = 2π

 ∫2π

π
 sin x dx < 0

 

x

y

1

−1

2
π 3  

2
π

69. True  71. True  73. False. ∫2

0
 (−x) dx = −2

75. 272  77. Proof
79.  No. No matter how small the subintervals, the number of both 

rational and irrational numbers within each subinterval is  
infinite, and f (ci) = 0 or f (ci) = 1.

81.  a = −1 and b = 1; The function is nonnegative between 
x = −1 and x = 1.
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83. Answers will vary. Sample answer:
 y

x
−1 1 2 3

−1

1

2

3

f(x) = x − 1

⎮f(x)⎮ = ⎮x − 1⎮

  The integrals are equal when f  is always greater than or equal 
to 0 on [a, b].

85. 1
3

Section 5.4  (page 328)

 1.  Find an antiderivative of the function and evaluate the  
difference of the antiderivative at the upper limit of integration 
and the lower limit of integration.

 3. The average value of a function on an interval is the integral

 of the function on [a, b] times 
1

b − a
.

 5. 

−2

−5 5

5   7. 

−5

−5 5

5

 Positive  Zero
 9. −2  11. 1

3  13. 1
2  15. 2

3  17. −4

19. −27
20  21. 25

2   23. 2 − 7π

25. 
π
4

  27. 
2√3

3
  29. 0  31. 

3
ln 2

+ 12

33. e − e−1  35. 1
6  37. 1  39. 52

3   41. 20

43. 4  45. 
3 3√2

2
≈ 1.8899  47. 

3
ln 4

≈ 2.1640

49. ±arccos 
√π

2
≈ ±0.4817

51. Average value = 8
3

 x = ±
2√3

3
53. Average value = e − e−1 ≈ 2.3504

 x = ln
e − e−1

2
≈ 0.1614

55. Average value =
2
π

 x ≈ 0.690, x ≈ 2.451

57. (a) F(x) = 500 sec2 x 59. 
2
π ≈ 63.7%

 (b) 
1500√3

π ≈ 827 N

61. F(x) = −
20
x

+ 20 63. F(x) = sin x

 F(2) = 10  F(0) = 0

 F(5) = 16  F(π4) =
√2
2

 F(8) =
35
2

  F(π2) = 1

 65. (a) g(0) = 0, g(2) ≈ 7, g(4) ≈ 9, g(6) ≈ 8, g(8) ≈ 5
  (b) Increasing: (0, 4); Decreasing: (4, 8)
  (c) A maximum occurs at x = 4.
  (d) 

2 4 6 8

2

4

6

8

10

x

y

 67. 1
2x2 + 2x  69. 3

4x4�3 − 12  71. tan x − 1
 73. ex − e−1  75. x2 − 2x  77. √x4 + 1
 79. √x csc x  81. 8   83. cos x√sin x  85. 3x2 sin x6

 87. 

x

y

1

1 2 3 4

2

−2

−1

f g

  89. 8190 L

  An extremum of g occurs at x = 2.
 91. About 540 ft  93. (a) 3

2 ft to the right   (b) 113
10  ft

 95. (a) 0 ft   (b) 63
2  ft  97. (a) 2 ft to the right   (b) 2 ft

 99.  The displacement and total distance traveled are equal when the 
particle is always moving in the same direction on an interval.

101.  The Fundamental Theorem of Calculus requires that f  be 
continuous on [a, b] and that F be an antiderivative for f  on 
the entire interval. On an interval containing c, the function

  f (x) =
1

x − c
 is not continuous at c.

103. 28 units
105. f (x) = x−2 has a nonremovable discontinuity at x = 0.

107. f (x) = sec2 x has a nonremovable discontinuity at x =
π
2

.

109. True

111. f ′(x) =
1

(1�x)2 + 1 (−
1
x2) +

1
x2 + 1

= 0

  Because f ′(x) = 0, f (x) is constant.
113. (a) 0   (b) 0   (c) xf (x) + ∫x

0 f (t) dt   (d) 0
115. Putnam Problem B5, 2006

Section 5.5  (page 341)

  1. You can move constant multiples outside the integral sign.

  ∫ k f (x) dx = k∫ f (x) dx

  3. The integral of [g(x)]ng′(x) is 
[g(x)]n+1

n + 1
+ C, n ≠ −1.

  Recall the power rule for polynomials.

  ∫ f (g(x))g′(x) dx u = g(x) du = g′(x) dx

  5. ∫(5x2 + 1)2(10x) dx 5x2 + 1 10x dx

  7. ∫ tan2 x sec2 x dx tan x  sec2 x dx
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A66 Answers to Odd-Numbered Exercises

 9. 1
5 (1 + 6x)5 + C  11. 2

3 (25 − x2)3�2 + C

13. 1
12 (x4 + 3)3 + C  15. 1

30(2x3 − 1)5 + C

17. 
1
3

(t2 + 2)3�2 + C  19. 
7

4(1 − x2)2 + C

21. −
1

3(1 + x3) + C  23. −√1 − x2 + C

25. −
1
4 (1 +

1
t )

4

+ C  27. √2x + C

29. 2x2 − 4√16 − x2 + C  31. −
1

2(x2 + 2x − 3) + C

33. (a) Answers will vary.    (b) y = −1
3 (4 − x2)3�2 + 2

  Sample answer: 

−2 2

−1

2

  

x

y

−2 2

−1

3

35. −cos πx + C  37. 
1
6

 sin 6x + C  39. −sin 
1
θ + C

41. 1
4 sin2 2x + C or −1

4 cos2 2x + C1 or −1
8 cos 4x + C2

43. 1
2 tan2 x + C or 12 sec2 x + C1   45. e7x + C

47. 1
3 (ex + 1)3 + C  49. −5

2e−2x + e−x + C

51. 
1

πesin πx + C  53. −tan(e−x) + C  55. 
2

ln 3(3x�2) + C

57. f (x) =
1
12

(4x2 − 10)3 − 8  59. f (x) = 2 cos 
x
2

+ 4

61. f (x) = −8e−x�4 + 9

63. f (x) =
3

ln 0.4
0.4x�3 +

1
2

−
3

ln 0.4
65. 2

5 (x + 6)5�2 − 4(x + 6)3�2 + C = 2
5 (x + 6)3�2(x − 4) + C

67. −[2
3(1 − x)3�2 − 4

5(1 − x)5�2 + 2
7(1 − x)7�2] + C =

 − 2
105 (1 − x)3�2(15x2 + 12x + 8) + C

69. 1
8 [ 2

5 (2x − 1)5�2 + 4
3 (2x − 1)3�2 − 6(2x − 1)1�2] + C =

 
√2x − 1

15
(3x2 + 2x − 13) + C

71. −1
8 cos4 2x + C  73. 0  75. 12 − 8

9√2

77. 2  79. 
1
2

  81. 2e9(e7 − 1)  83. 
e

3(e2 − 1)
85. 1209

28   87. 2(√3 − 1)
89. e5 − 1 ≈ 147.413 91. 2(1 − e−3�2) ≈ 1.554
 

0 6
0

150   

−4.5

−3

4.5

3

93. 272
15   95. 0

97. (a) 144   (b) 72   (c) −144   (d) 432

99. 2∫3

0
 (4x2 − 6) dx = 36

101. (a) ∫ x
2√x3 + 1 dx; Use substitution with u = x3 + 1.

  (b) ∫cot3(2x) csc2(2x) dx; Use substitution with u = cot 2x.

  (c) ∫e4x−3 dx; Use substitution with u = 4x − 3.

103. $340,000
105. (a) 102.532 thousand units   (b) 102.352 thousand units
  (c) 74.5 thousand units
107. (a) 

0 9.4

−4

f

g

4

  (b)  g is nonnegative, because the graph of f  is positive at the 
beginning and generally has more positive sections than 
negative ones.

  (c)  The points on g that correspond to the extrema of f  are 
points of inflection of g.

  (d)  No, some zeros of f, such as x =
π
2

, do not correspond

   to extrema of g. The graph of g continues to increase

   after x =
π
2

, because f  remains above the x-axis.

  (e) 

0 9.4

−4

4     The graph of h is that of g 
shifted 2 units downward.

109. (a) and (b) Proofs
111. (a) P0.50, 0.75 ≈ 35.3%   (b) b ≈ 58.6%
113. True  115. True  117. True  119–121. Proofs
123. Putnam Problem A1, 1958

Section 5.6  (page 352)

  1.  L’Hôpital’s Rule allows you to address limits of the form 
0�0 and ∞�∞. 

  3. 
x −0.1 −0.01 −0.001 0

f (x) 1.3177 1.3332 1.3333 ?

x 0.001 0.01 0.1

f (x) 1.3333 1.3332 1.3177

  4
3

  5. 
x 1 10 102

f (x) 0.9900 90,483.7 3.7 × 109

x 103 104 105

f (x) 4.5 × 1010 0 0

  0
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 Answers to Odd-Numbered Exercises A67

 7. 3
8  9. 1

8  11. 0  13. 5
3  15. 4  17. 0

19. ∞  21. 11
4   23. 3

5  25. 7
6  27. ∞  29. 0

31. 1  33. 0  35. 0  37. ∞  39. 5
9  41. sin 3

43. (a) Not indeterminate 45. (a) 0 ∙ ∞
 (b) ∞  (b) 1
 (c) 

4

−1

0

3   (c) 

−1 1

−0.5

1.5

 47. (a) 1∞ 49. (a) ∞0

  (b) e4  (b) 1
  (c) 

0
0

2

60   (c) 

−5 20

−0.5

2

 51. (a) 1∞   (b) e 53. (a) 00   (b) 3
  (c) 

−1

−1

4

6   (c) 

−6 6

−1

7

55. (a) 00   (b) 1 57. (a) ∞ − ∞   (b) −3
2

 (c) 

−4 8

−2

6   (c) 

5−7

−4

4

59. (a) ∞ − ∞   (b) ∞ 61. (a) ∞ − ∞   (b) ∞
 (c) 

−1

−4

4

8   (c) 

−6 6

7

−1

63. Answers will vary. Sample answers:
 (a) f (x) = x2 − 25, g(x) = x − 5
 (b) f (x) = (x − 5)2, g(x) = x2 − 25
 (c) f (x) = x2 − 25, g(x) = (x − 5)3

65. (a) Yes; 
0
0

   (b) No; 
0

−1
   (c) Yes; ∞∞   (d) Yes; 

0
0

 (e) No; 
−1
0

   (f ) Yes; 
0
0

67. 
x 10 102 104 106 108 1010

(ln x)4

x
2.811 4.498 0.720 0.036 0.001 0.000

69. 0  71. 0  73. 0

 75. Horizontal asymptote:  77. Horizontal asymptote:  
  y = 1  y = 0

  Relative maximum: (e, e1�e)  Relative maximum: (1, 
2
e)

  

0
0

6

( , )e  e1/e

4
  

−2

−5

10

2
e

3

1, ( (

 79. Limit is not of the form 
0
0

 or ∞∞.

 81. Limit is not of the form 
0
0

 or ∞∞.

 83. (a) lim
x→∞

 
x

√x2 + 1
= lim

x→∞
 
√x2 + 1

x = lim
x→∞

 
x

√x2 + 1
    Applying L’Hôpital’s Rule twice results in the original 

limit, so L’Hôpital’s Rule fails.
  (b) 1
  (c) 

−1.5

−6 6

1.5

 85. 
1.5

0.5
0.5

−0.5

y =
sin 3x
sin 4x

y =
3 cos 3x
4 cos 4x

   As x → 0, the graphs get closer together (they both approach 
0.75). By L’Hôpital’s Rule,

  lim
x→0

 
sin 3x
sin 4x

= lim
x→0

 
3 cos 3x
4 cos 4x

=
3
4

.

 87. 
Vt
L

  89. Proof  91. c =
2
3

  93. c =
π
4

 95. False. ∞
0

= ±∞  97. True  99. True  101. 
3
4

103. c = 4
3  105. a = 1, b = ±2  107. Proof

109. (a) 0 ∙ ∞   (b) 0  111. Proof  113. (a)–(c) 2
115. (a) 

20
0

−2

3

  (b) lim
x→∞

 h(x) = 1

  (c) No. h(x) is not an indeterminate form.

117. Putnam Problem A1, 1956

Section 5.7  (page 362)

  1.  No. To use the Log Rule, look for quotients in which 
the numerator is the derivative of the denominator, with  
rewriting in mind.
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A68 Answers to Odd-Numbered Exercises

 3.  Ways to alter an integrand are to rewrite using a trigonometric 
identity, multiply and divide by the same quantity, add and 
subtract the same quantity, or use long division.

 5. 5 ln∣x∣ + C  7. 1
2 ln∣2x + 5∣ + C

 9. 1
2 ln∣x2 − 3∣ + C 11. ln∣x4 + 3x∣ + C

13. 
x2

14
− ln∣x∣ + C  15. 

1
3

 ln∣x3 + 3x2 + 9x∣ + C

17. 1
2x2 − 4x + 6 ln∣x + 1∣ + C

19. 1
3x3 + 5 ln∣x − 3∣ + C

21. 1
3x3 − 2x + ln√x2 + 2 + C  23. 1

3 (ln x)3 + C

25. −
2
3

 ln∣1 − 3√x∣ + C  27. 6 ln∣x − 5∣ −
30

x − 5
+ C

29. √2x − ln∣1 + √2x∣ + C

31. x + 6√x + 18 ln∣√x − 3∣ + C  33. 3 ln∣sin 
θ
3∣ + C

35. −1
2 ln∣csc 2x + cot 2x∣ + C  37. ln∣1 + sin t∣ + C

39. ln∣sec x − 1∣ + C  41. ln∣cos(e−x)∣ + C
43. y = −3 ln∣2 − x∣ + C  45. y = ln∣x2 − 9∣ + C
 

−10 10

−10

(1, 0)

10  

−9 9

−4

(0, 4)

8

47. f (x) = −2 ln x + 3x − 2

49. (a) 

x

3

−3

4−2

(0, 1)
y    (b) y = ln(x + 2

2 ) + 1

    

−3 6

−3

3

51. 5
3 ln 13 ≈ 4.275  53. 7

3  55. −ln 3 ≈ 1.099

57. ln∣2 − sin 2
1 − sin 1∣ ≈ 1.929

59. 4√x − x − 4 ln(1 + √x) + C  61. 
1
x

63. 4 cot 4x  65. 6 ln 3 ≈ 6.592
67. ln∣csc 1 + cot 1∣ − ln∣csc 2 + cot 2∣ ≈ 1.048

69. 
15
2

+ 8 ln 2 ≈ 13.045  71. 
12
π  ln(2 + √3) ≈ 5.03

73. 1  75. 
1

e − 1
≈ 0.582  77. About 13.077

79. d  81. Proof  83. x = 2  85. Proof

87. −ln∣cos x∣ + C = ln∣ 1
cos x∣ + C = ln∣sec x∣ + C

89.  ln∣sec x + tan x∣ + C = ln∣sec2 x − tan2 x
sec x − tan x ∣ + C

  = −ln∣sec x − tan x∣ + C
91. (a) P(t) = 1000(12 ln∣1 + 0.25t∣ + 1)
 (b) P(3) ≈ 7715
93. About 4.15 min

95. 

5 10

0.5

1

y

x

   (a) A = 1
2 ln 2 − 1

4

   (b) 0 < m < 1
   (c) A = 1

2 (m − ln m − 1)

97. True  99. True  101. Proof

Section 5.8  (page 370)

 1. (a) No
 (b) Yes. Use the rule involving the arcsecant function.

 3. arcsin 
x
3

+ C  5. arcsec∣2x∣ + C

 7. arcsin(x + 1) + C  9. 1
2 arcsin t2 + C

11. 
1
10

 arctan 
t2

5
+ C  13. 

1
4

 arctan 
e2x

2
+ C

15. arcsin 
csc x

5
+ C  17. 2 arcsin √x + C

19. 1
2 ln(x2 + 1) − 3 arctan x + C

21. 8 arcsin 
x − 3

3
− √6x − x2 + C  23. 

π
6

  25. 
π
6

27. 
1
3 (arctan 3 −

π
4) ≈ 0.155  29. arctan 5 −

π
4

≈ 0.588

31. 
π
4

  33. 
1
32

π 2 ≈ 0.308  35. 
π
2

37. 
√2
2

 arcsin[√6
6

(x − 2)] + C  39. arcsin 
x + 2

2
+ C

41. 4 − 2√3 +
1
6
π ≈ 1.059

43. 2√et − 3 − 2√3 arctan 
√et − 3

√3
+ C  45. 

π
6

47. (a) arcsin x + C   (b) −√1 − x2 + C   (c) Not possible
49. (a) 2

3(x − 1)3�2 + C   (b) 2
15(x − 1)3�2(3x + 2) + C

 (c) 2
3√x − 1(x + 2) + C

51. Proof
53.  No. Graphing f (x) = arcsin x and g(x) = −arccos x, you can 

see that the graph of f  is the graph of g shifted vertically.

55. (a) 

4

−4

4

x

y  (b) y =
2
3

 arctan 
x
3

+ 2

   

4

−1

−4

5

57. 

−6 12

−8

4   59. 

−3

−1

3

3

61. y = arcsin 
x
2

+ π   63. 
π
3

  65. 
3π
2
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 Answers to Odd-Numbered Exercises A69

67. (a) 

1 2

1

2

y

x

   (b) 0.5708

     (c) 
π − 2

2

69. (a)  F(x) represents the average value of f (x) over the interval 
[x, x + 2]; Maximum at x = −1

 (b) Maximum at x = −1

71. False. ∫ 
dx

3x√9x2 − 16
=

1
12

 arcsec ∣3x∣
4

+ C

73–75. Proofs

77. (a) ∫1

0
 

1
1 + x2 dx   (b) About 0.7857

 (c) Because ∫1

0
 

1
1 + x2 dx =

π
4

, you can use the Midpoint

   Rule to approximate 
π
4

. Multiplying the result by 4 gives

  an estimation of π.

Section 5.9  (page 380)

 1.  Hyperbolic function came from the comparison of the area 
of a semicircular region with the area of a region under a 
hyperbola.

 3. sinh2 x =
−1 + cosh 2x

2
  5. (a) 10.018   (b) −0.964

 7. (a) 4
3   (b) 13

12  9. (a) 1.317   (b) 0.962
11–17. Proofs

19. cosh x =
√13

2
, tanh x =

3√13
13

, csch x =
2
3

, 

 sech x =
2√13

13
, coth x =

√13
3

21. ∞  23. 1  25. 9 cosh 9x
27. −10x(sech 5x2 tanh 5x2)  29. coth x

31. −
t
2

 cosh(−3t) +
sinh(−3t)

6
  33. sech t

35. y = −2x + 2  37. y = 1 − 2x
39. Relative maximum: (1.20, 0.66)
 Relative minimum: (−1.20, −0.66)
41. Relative maxima: (±π, cosh π), Relative minimum: (0, −1)
43. (a) 

2010

10

20

30

−10

y

x

   (b) 33.146 units, 25 units
    (c) m = sinh 1 ≈ 1.175

45. 1
4 sinh 4x + C  47. −1

2 cosh(1 − 2x) + C
49. 1

3 cosh3(x − 1) + C  51. ln∣sinh x∣ + C

53. −coth 
x2

2
+ C  55. ln 

5
4

  57. coth 1 − coth 2

59. −1
3 (csch 2 − csch 1)

61. y

x
−1−2−3 1 2 3

−2

−3

2

3

y1 = cosh x y2 = sinh x

   The graphs do not intersect.

63. Proof  65. 
3

√9x2 − 1
  67. 

1

2√x(1 − x)
69. ∣sec x∣  71. −csc x  73. 2 sinh−1(2x)

75. 
√3
18

 ln ∣1 + √3x

1 − √3x∣ + C  77. ln(√e2x + 1 − 1) − x + C

79. 2 sinh−1 √x + C = 2 ln(√x + √1 + x) + C

81. 
1
4

 ln ∣x − 4
4 ∣ + C  83. ln(3 + √5

2 )  85. 
ln 7
12

87. −
x2

2
− 4x −

10
3

 ln∣x − 5
x + 1∣ + C

89. 8 arctan e2 − 2π ≈ 5.207  91. 5
2 ln(√17 + 4) ≈ 5.237

93. (a) −
√a2 − x2

x
   (b) Proof

95–103. Proofs  105. Putnam Problem 8, 1939

Review Exercises for Chapter 5 (page 383)

 1. 
4
3

x3 +
1
2

x2 + 3x + C  3. 
x2

2
−

4
x2 + C

 5. 5x − ex + C  7. f (x) = 1 − 3x2

 9. f (x) = 4x3 − 5x − 3
11. (a) 3 sec; 144 ft  (b) 3

2 sec  (c) 108 ft

13. 60  15. ∑
10

i=1
 

i
5(i + 2)  17. 420  19. 3310

21. s(n) = 11 −
2
n

, S(n) = 11 +
2
n

23. A = 15 25. A = 12
 y

x
−1 1 2 3 4 5

−2

2

4

6

8

  

x
4

1

3

−4

y

4

−2

2

6

1 2−1−3 3

27. 43  29. 48
31. 

x
9

y

6

9

12

3

−3

3−3 6

Triangle

  33. (a) 7  (b) 9

 A = 25
2

35. 56  37. 422
5   39. e2 + 1  41. 30

43. 2 ln 3 ≈ 2.1972  45. √13
3

47. Average value = 2
5; x = 25

4   49. x2√1 + x3
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A70 Answers to Odd-Numbered Exercises

51. x2 + 3x + 2  53. 2
3√x3 + 3 + C

55. − 1
30 (1 − 3x2)5 + C = 1

30 (3x2 − 1)5 + C

57. −2√1 − sin θ + C  59. −
1
6

e−3x2 + C

61. 
1

2 ln 5
(5(x+1)2) + C  63. 

455
2

  65. 2  67. 
28π
15

69. 2  71. 0  73. ∞  75. 1
77. 1000e0.09 ≈ 1094.17  79. 1

7 ln∣7x − 2∣ + C

81. −ln∣1 + cos x∣ + C  83. 1
2 ln(e2x + e−2x) + C

85. 3 + ln 2  87. ln(2 + √3)  89. 1
2 arctan(e2x) + C

91. 
1
2

 arcsin x2 + C  93. 
1
4 (arctan 

x
2)

2

+ C

95. −4 sech(4x − 1) tanh(4x − 1)  97. 
4

√16x2 + 1

99. 
1
3

 tanh x3 + C  101. 
1
12

 ln∣3 + 2x
3 − 2x∣ + C

P.S. Problem Solving (page 385)

 1. (a) L(1) = 0  (b) L′(x) =
1
x
, L′(1) = 1

 (c) x ≈ 2.718  (d) Proof
 3. (a) Proof  (b) 1

2  (c) 3
2

 5. (a) 1.6758; Error of approximation ≈ 0.0071
 (b) 3

2  (c) Proof

 7–9. Proofs  11. lim
n→∞

 ∑
n

t=1
 ( t

n)
5

(1
n) =

1
6

13. (a) 

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

v

t

 (b) (0, 0.4) and (0.7, 1.0)  (c) 150 mi�h2

 (d) Total distance traveled in miles; 37 mi
 (e) Sample answer: 100 mi�h2

15. (a)–(c) Proofs  17. 2 ln 32 ≈ 0.8109
19. (a) (i) 

−2 2

−1

y

y1

4

  (ii) 
y

−2 2

−1

y2

4

  (iii) 
y

−2 2

−1

y3

4

 (b) Pattern: yn = 1 +
x
1!

+
x2

2!
+ .  .  . +

xn

n!
+ .  .  .

  y4 = 1 +
x
1!

+
x2

2!
+

x3

3!
+

x4

4!
  

y
−5 3

−1

y4

4

 (c) The pattern implies that ex = 1 +
x
1!

+
x2

2!
+

x3

3!
+ .  .  . .

Chapter 6
Section 6.1  (page 393)

 1.  Substitute f (x) and its derivatives into the differential  
equation. If the equation is satisfied, then f (x) is a solution.

 3.  The line segments show the general shape of all the solutions 
of a differential equation and give a visual perspective of the 
directions of the solutions of the differential equation.

 5–13. Proofs  15. Solution   17. Not a solution
19. Solution  21. Not a solution  23. Not a solution
25. Solution  27. Not a solution
29. Not a solution  31. y = 3e−x�2  33. 4y2 = x3

35. 

−3 3

−2

C = 0

2   

−3 3

−2

C = 1

2

 

−3 3

−2

C = −1

2
  

−3 3

−2

C = 4

2

 

−3 3

−2

C = −4

2

37. y = 3e−6x  39. y = 2 sin 3x − 1
3 cos 3x

41. y = −2x + 1
2x3  43. 4x3 + C

45. y = 1
2 ln(1 + x2) + C  47. y = −1

2 cos 2x + C
49. y = 2

5 (x − 6)5�2 + 4(x − 6)3�2 + C  51. y = 1
2ex2 + C

53. 
x −4 −2 0 2 4 8

y 2 0 4 4 6 8

dy�dx −4 Undef. 0 1 4
3

2

55. 
x −4 −2 0 2 4 8

y 2 0 4 4 6 8

dy�dx −2√2 −2 0 0 −2√2 −8
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 Answers to Odd-Numbered Exercises A71

57. b  58. c  59. d  60. a
61. (a) and (b) 63. (a) and (b)
 

8

5

y

x

(4, 2)

−2

  

4

−3

5

x

y
(2, 2)

−4

 (c) As x →∞, y → −∞  (c) As x →∞, y → −∞
  As x → −∞, y → −∞  As x → −∞, y → −∞
65. (a) 

6
−1

−2

−3

1

2

3

x

y

(1, 0)
   (b) 

6
−1

−2

−3

1

2

3

x

y

(2, −1)

  As x →∞, y →∞  As x →∞, y →∞
67. (a) and (b) 69. (a) and (b)
 

−6 6

−4

12   

−12 48

−2

12

71. (a) and (b)
 

8

−2

−2

8

73. 

n 7 8 9 10

xn 0.7 0.8 0.9 1.0

yn 4.146 4.631 5.174 5.781

n 0 1 2 3 4 5 6

xn 0 0.1 0.2 0.3 0.4 0.5 0.6

yn 2 2.2 2.43 2.693 2.992 3.332 3.715

75. 

n 7 8 9 10

xn 0.35 0.4 0.45 0.5

yn 1.569 1.464 1.378 1.308

n 0 1 2 3 4 5 6

xn 0 0.05 0.1 0.15 0.2 0.25 0.3

yn 3 2.7 2.438 2.209 2.010 1.839 1.693

77. 
n 0 1 2 3 4 5 6

xn 0 0.1 0.2 0.3 0.4 0.5 0.6

yn 1 1.1 1.212 1.339 1.488 1.670 1.900

n 7 8 9 10

xn 0.7 0.8 0.9 1.0

yn 2.213 2.684 3.540 5.958

79.

x 0 0.2 0.4 0.6 0.8 1

y(x) 
(exact)

3.0000 3.6642 4.4755 5.4664 6.6766 8.1548

y(x) 
(h = 0.2) 3.0000 3.6000 4.3200 5.1840 6.2208 7.4650

y(x) 
(h = 0.1) 3.0000 3.6300 4.3923 5.3147 6.4308 7.7812

81.

x 0 0.2 0.4 0.6 0.8 1

y(x) 
(exact)

0.0000 0.2200 0.4801 0.7807 1.1231 1.5097

y(x) 
(h = 0.2) 0.0000 0.2000 0.4360 0.7074 1.0140 1.3561

y(x) 
(h = 0.1) 0.0000 0.2095 0.4568 0.7418 1.0649 1.4273

83. (a) y(1) = 112.7141°, y(2) = 96.3770°, y(3) = 86.5954°
 (b) y(1) = 113.2441°, y(2) = 97.0158°, y(3) = 87.1729°
 (c)  Euler’s Method:  y(1) = 112.9828°, y(2) = 96.6998°, 

y(3) = 86.8863°
   Exact solution:   y(1) = 113.2441°, y(2) = 97.0158°, 

y(3) = 87.1729°
  The approximations are better using h = 0.05.
85.  Euler’s Method produces an exact solution to an initial value 

problem when the exact solution is a line.
87.  False. y = x3 is a solution of xy′ − 3y = 0, but y = x3 + 1 is 

not a solution.
89. (a)
 

x 0 0.2 0.4 0.6 0.8 1

y 4 2.6813 1.7973 1.2048 0.8076 0.5413

y1 4 2.56 1.6384 1.0486 0.6711 0.4295

y2 4 2.4 1.44 0.864 0.5184 0.3110

e1 0 0.1213 0.1589 0.1562 0.1365 0.1118

e2 0 0.2813 0.3573 0.3408 0.2892 0.2303

r 0.4312 0.4447 0.4583 0.4720 0.4855
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A72 Answers to Odd-Numbered Exercises

 (b)  If h is halved, then the error is approximately halved 
because r is approximately 0.5.

 (c) The error will again be halved.
91. (a) 

−3 3

−3

3

t

I    (b)  lim
t→∞

 I(t) = 2

93. ω = ±4  95. Putnam Problem B2, 1997

Section 6.2  (page 402)

 1. C is the initial value of y, and k is the proportionality constant.
 3. y = 1

2x2 + 3x + C  5. y = Cex − 3
 7. y2 − 5x2 = C  9. y = Ce(2x3�2)�3  11. y = C(1 + x2)

13. 
dQ
dt

=
k
t2

 Q = −
k
t

+ C

15. (a) 

x
−5 −1

9

5

y

(0, 0)

   (b) y = 6 − 6e−x2�2

  

−6 6

−1

7

17. y = 1
4t2 + 10 19. y = 10e−t�2

 

4

−1

−4

(0, 10)

16   

10

−1

−1

(0, 10)

16

21. N = 250eln(8�5)t; N = 8192
5

23. y = 2e [(1�4)ln(3�2)]t ≈ 2e0.1014t

25. y = 5(5
2)1�4e[ln(2�5)�4]t ≈ 6.2872e−0.2291t

27. Quadrants I and III; 
dy
dx

 is positive when both x and y are

  positive (Quadrant I) or when both x and y are negative 
(Quadrant III).

29.  Amount after 1000 yr: 12.96 g  
Amount after 10,000 yr: 0.26 g

31.  Initial quantity: 7.63 g  
Amount after 1000 yr: 4.95 g

33.  Amount after 1000 yr: 4.43 g  
Amount after 10,000 yr: 1.49 g

35.  Initial quantity: 2.16 g  
Amount after 10,000 yr: 1.62 g

37. 95.76%
39. Time to double: 5.78 yr
 Amount after 10 yr: $3320.12
41. Annual rate: 4.62%
 Amount after 10 yr: $238.09

43. Annual rate: 7.18%
 Time to double: 9.65 yr
45. $224,174.18  47. $61,377.75
49. (a) 10.24 yr   (b) 9.93 yr   (c) 9.90 yr   (d) 9.90 yr
51. (a) P = 2.113e−0.011t   (b) 1.70 million people
 (c) Because k < 0, the population is decreasing.
53. (a) P = 6.404e0.012t   (b) 8.14 million people
 (c) Because k > 0, the population is increasing.
55. (a) N = 100.1596(1.2455)t  (b) 6.3 h
57. (a) N ≈ 30(1 − e−0.0502t)  (b) 36 days
59. (a)  Because the population increases by a constant each 

month, the rate of change from month to month will 
always be the same. So, the slope is constant, and the 
model is linear.

 (b)  Although the percentage increase is constant each month, 
the rate of growth is not constant. The rate of change of y

  is 
dy
dt

= ry, which is an exponential model.

61. (a) M1 = 2335.3e0.0407t   (b) M2 = 206.9t + 1685
 (c)  The exponential model fits the data better because the 

graph is closer to the data values than is the graph of the 
linear model.

 (d)  2026 (t ≈ 46); Yes. The exponential model indicates a 
reasonably slow growth rate.

63. (a) 20 dB   (b) 70 dB   (c) 120 dB
65. (a) y = 1420e [ln(52�71)]t + 80 ≈ 1420e−0.3114t + 80
 (b) 299.2°F
67. False. It takes 1599 years.

Section 6.3 (page 413)

 1. (a) Separable   (b) Not separable

 3. y2 − x2 = C  5. y4 − 2x2 + 4x = C

 7. r = Ce(4�9)s  9. y = C(x + 2)3

11. y3 = C − 1
3 cos 9x  13. y = −1

4√1 − 4x2 + C

15. y = Ce(ln x)2�2  17. y2 = 4ex + 5

19. y = e−(x2+2x)�2  21. y2 = 4x2 + 3

23. u = e(5−cos v2)�2  25. P = P0e
kt

27. 4y2 − x2 = 16  29. y = 1
3√x  31. f (x) = Ce−x�2

33. 
2

2

−2

−2
x

y  35. 
8

4321−3−4
x

y

 y = 1
2x2 + C  y = 4 + Ce−x

37. (a) y = 0.1602  (b) y = 5e−3x2
  (c) y = 0.2489

39. 97.9% of the original amount

41. (a) 
dy
dx

= k(y − 4) (b) i (c) Proof

42. (a) 
dy
dx

= k(x − 4) (b) ii (c) Proof

43. (a) 
dy
dx

= ky(y − 4) (b) iii (c) Proof
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 Answers to Odd-Numbered Exercises A73

44. (a) 
dy
dx

= ky2 (b) iv (c) Proof

45. (a) w = 1200 − 1140e−kt

 (b) w = 1200 − 1140e−0.8t w = 1200 − 1140e−0.9t

  

0

1400

100

 

0

1400

100

  w = 1200 − 1140e−t

  

0

1400

100

 (c) 1.31 yr; 1.16 yr; 1.05 yr  (d) 1200 lb
47. Hyperbolas: 3x2 − y2 = C

 Orthogonal trajectory: y =
K
3√x

 Graphs will vary.
 

−6 6

4

−4

49. Parabolas: x2 = Cy 51. Curves: y2 = Cx3

 Ellipses: x2 + 2y2 = K  Ellipses: 2x2 + 3y2 = K
 Graphs will vary.  Graphs will vary.
 

−6 6

−4

4   

−6 6

−4

4

53. N =
500

1 + 4e−0.2452t  55. y = 1 − e−1.386t

57. y =
360

8 + 41t
 59. y = 500e−1.6094e−0.1451t

 

0
0 3

45   

5 10 15 20 25

100

200

300

400

500

600

x

y

61. 34 beavers  63. 92%
65. (a) Q = 25e−(1�20)t  (b) About 10.2 min
67. (a) y = Cekt  (b) About 6.2 h  69. About 3.15 h

71. P = Cekt −
N
k

  73. A =
P
r

(ert − 1)

75. $23,981,015.77

 77. (a) 

0
0 300

5000  (b) As t →∞, y → L.
    (c) y = 5000e−2.303e−0.02t

  (d) 

0 300
0

5000    The graph is concave 
upward on (0, 41.7) and 
concave downward on 
(41.7, ∞).

 79. Yes. Rewrite the equation as 
1

g(y) − h(y) dy = f (x) dx.

 81. Separable; 
1
y
 dy = −

(1 + x)
x

 dx

 83. Not separable
 85. (a) v = 20(1 − e−1.386t)
  (b) s ≈ 20t + 14.43(e−1.386t − 1)
 87. Homogeneous of degree 3
 89. Homogeneous of degree 0  91. Not homogeneous
 93. Homogeneous of degree 0  95. ∣x∣ = C(x − y)2

 97. ∣y2 + 2xy − x2∣ = C  99. y = Ce−x2�(2y2)

101. False. y′ = x�y is separable, but y = 0 is not a solution.
103. True

Section 6.4 (page 422)

  1.  The carrying capacity is the maximum population that can be 
sustained over time.

  3. d  4. a  5. b  6. c
  7. y(0) = 4  9. y(0) = 12

7

 11. (a) 0.75  (b) 2100  (c) 70  (d) 4.49 yr

  (e) 
dP
dt

= 0.75P(1 −
P

2100)
 13. (a) 0.8  (b) 6000  (c) 1.2  (d) 10.65 yr

  (e) 
dP
dt

= 0.8P(1 −
P

6000)
 15. (a) 3  (b) 100 17. (a) 0.1  (b) 250
  (c) 

1 2 3 4 5

20

40

60

80

100

120

t

P  (c) 

10080604020

300

240

180

120

60

t

P

 (d) 50  (d) 125

 19. y =
36

1 + 8e−t; 34.16; 36

 21. y =
120

1 + 14e−0.8t; 95.51; 120

 23. c  24. d  25. b  26. a

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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27. (a) 

(0, 105)

(0, 500)

10 20 30 40 50

200

400

600

800

1000

t

y    (b) y =
1000

1 + (179�21)e−0.2t

    

0
0 60

1000

29.  No, it is not possible to determine b. However, L = 2500 and 
k = 0.75. You need an initial condition to determine b.

31. Proof

33. (a) P =
200

1 + 7e−0.2640t  (b) 70 panthers  (c) 7.37 yr

 (d) 
dP
dt

= 0.2640P(1 −
P

200); 69.25 panthers

 (e) 100 yr

35. False. 
dy
dt

< 0 and the population decreases to approach L.

37.  y = 0, y = L; A population of 0 or the carrying capacity L 
will not change.

Section 6.5  (page 428)

 1. The derivative in the equation is first order.

 3. Linear; can be written in the form 
dy
dx

+ P(x)y = Q(x)

 5. Not linear; cannot be written in the form 
dy
dx

+ P(x)y = Q(x)

 7. y = 2x2 + x +
C
x

  9. y = 5 + Ce−x2

11. y = −1 + Cesin x  13. y = 1
6e3x + Ce−3x

15. (a)  Answers will vary.  (b) y = 1
2 (ex + e−x) 

Sample answer:
  

x
−4

−3

4

5

y

 (c) 

−6

−2

6

6

17. y = 3ex  19. y = sin x + (x + 1) cos x  21. xy = 4

23. y = −2 + x ln∣x∣ + 12x  25. P = −
N
k

+ (N
k

+ P0)ekt

27. (a) $4,212,796.94   (b) $31,424,909.75

29. (a) 
dN
dt

= k(75 − N)   (b) N = 75 + Ce−kt

 (c) N = 75 − 55.9296e−0.0168t

31. v(t) = −49.1(1 − e−0.1996t); −49.1 m�sec

33. I =
E0

R
+ Ce−Rt�L  35. Proof

37. (a) Q = 25e−t�20   (b) −20 ln(3
5) ≈ 10.2 min  (c) 0

39. a  41. Use separation of variables or an integrating factor.
43. c  44. d  45. a  46. b
47. (a) 

−4

−6

10

4

   (c) 

−6

10

−4 4

 (b) (−2, 4): y = 1
2x(x2 − 8)

  (2, 8): y = 1
2x(x2 + 4)

49. 2ex + e−2y = C  51. y = Ce−sin x + 1

53. y =
ex(x − 1) + C

x2   55. y =
12
5

x2 +
C
x3

57. 
1
y2 = Ce2x3 +

1
3

  59. y =
1

Cx − x2

61. 
1
y2 = 2x + Cx2  63. y2�3 = 2ex + Ce2x�3

65. False. y′ + xy = x2 is linear.

Section 6.6 (page 436)

 1.  An autonomous differential equation does not depend  
explicitly on time t.

 3. 
dx
dt

= 0.9x + 0.05xy,

 
dy
dt

= −0.6y + 0.008xy; (0, 0) and (75, 18)

 5. (a) 

80 160 240 320 400

10

20

30

40

x

(150, 30)

y  (b) 

0
4000

40

 7. (a) (40, 20)  9. (0, 0), (50, 20)
 (b) 

(40, 20)

20 40 60 80 100

20

40

60

80

100

x

y

11. 

0
0 150

50   13. (0, 0), (10,000, 1250)

15. 

0
0 25,000

5000
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 Answers to Odd-Numbered Exercises A75

17. 

0
0 36

60

x

y

As t increases, both x and y are constant.

 

0
0 150

50

 

0
0 150

50

(50, 20)

 The solution curve reduces to a single point at (50, 20).

19. 
dx
dt

= 2x − 3x2 − 2xy, 
dy
dt

= 2y − 3y2 − 2xy;

 (0, 0), (2
5

, 
2
5), (0, 

2
3), and (2

3
, 0)

21.  
dx
dt

= 0.15x − 0.6x2 − 0.75xy,

 
dy
dt

= 0.15y − 1.2y2 − 0.45xy;

 (0, 0), (0, 
1
8), (1

4
, 0), and ( 3

17
, 

1
17)

23. (0, 0), (0, 0.5), (2, 0), and (45
23, 4

23)
25. (0, 0), (0, 0.5), (2, 0), and (− 9

38, 17
19)

27. 

0
0 36

3

x

y

 As t increases, both x and y are constant.
29. Use the coordinates of a critical point as the initial values.

31. (a) 
dx
dt

= ax(1 −
x
L). The equation is logistic.

 (b) 
dx
dt

= 0.4x(1 −
x

100) − 0.01xy,

  
dy
dt

= −0.3y + 0.005xy

  Critical points: (0, 0), (60, 16), (100, 0)
 (c) 

0
0 72

100

y

x

 (d) 

0
0 100

80

  Answers will vary.
 (e) 

0
0 100

80

  Answers will vary.

Review Exercises for Chapter 6  (page 438)

 1. Solution  3. y = 4
3x3 + 7x + C  5. y = 1

2 sin 2x + C
 7. y = −e2−x + C
 9. 

x −4 −2 0 2 4 8

y 2 0 4 4 6 8

dy�dx −10 −4 −4 0 2 8

11. (a) and (b)
 y

x

(0, 2)

3−3

5

−1

13. 

n 6 7 8 9 10

xn 0.3 0.35 0.4 0.45 0.5

yn 2.9756 2.8418 2.7172 2.6038 2.4986

n 0 1 2 3 4 5

xn 0 0.05 0.1 0.15 0.2 0.25

yn 4 3.8 3.6125 3.4369 3.2726 3.1190

15. y = 3x2 −
1
4

x4 + C  17. y = 1 −
1

x + C

19. y =
Cex

(2 + x)2  21. y = Ce2√x+1

23. 
dy
dt

=
k
t3, y = −

k
2t2 + C  25. y ≈

3
4

e0.379t

27. y = 9
20e(1�2) ln(10�3)t  29. About 7.79 in.

31. About 37.5 yr
33. (a) S ≈ 30e−1.7918�t   (b) 20,965 units

35. y2 = 5x2 + C  37. y = −ln(C −
e4x

4 )
39. y4 = 6x2 − 8  41. y4 = 2x4 + 1
43. 

x

y

4

−4

−4 4

 4x2 + y2 = C

45. y2 = 2x2 + 7
47. Hyperbolas: 5x2 − 4y2 = C  

−6 6

4

−4

 Orthogonal trajectory: y = Kx−4�5

 Graphs will vary.

49. (a) k = 0.55   (b) 5250   (c) 150   (d) 6.41 yr

 (e) 
dP
dt

= 0.55P(1 −
P

5250)
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51. y =
80

1 + 9e−t  53. 184 racoons

55. 
dS
dt

= k(L − S); S = L(1 − e−kt)

57. 
dP
dn

= kP(L − P); P =
CL

e−Lkn + C

59. y = −10 + Cex  61. y = ex�4(1
4x + C)

63. y =
x + C
x − 2

  65. y =
1
10

e5x + Ce−5x

67. (a) Answers will vary. (b) y = 1
3 (2ex�2 − 5e−x)

  Sample answer: (c) 

−9

−6

9

6

  

1

2

3

4

y

x
−1−2−3−4 1 2 3 4

69. (a) Answers will vary. (b) y = −cos x + 1.8305 sin x
  Sample answer: (c) 

−4.5

−3

4.5

3

  

x
−3 3

−3

3

y

71. y = 1
10e5x + 29

10e−5x

73. y = −
5
3

+
5
3

e3 sin x  75. A =
P
r

+ (A0 −
P
r )ert

77. v(t) = −166.67(1 − e−0.192t); −166.67 ft�sec

79. (a) Prey: 
dx
dt

= 0.3x − 0.02xy

  Predator: 
dy
dt

= −0.4y + 0.01xy

 (b) (0, 0) and (40, 14)
 (c) 

0
0 36

80

x(t)

y(t)

  As t increases, both x and y oscillate.

81. (a) Species 1: 
dx
dt

= 3x − x2 − xy

  Species 2: 
dy
dt

= 2y − y2 − 0.5xy

 (b) (0, 0), (0, 2), (3, 0), and (2, 1)
 (c) 

0
0 6

4

x(t)
y(t)

   As t increases, x remains constant at approximately 2 and 
y remains constant at approximately 1.

P.S. Problem Solving  (page 441)

 1. (a) y =
1

(1 − 0.01t)100; T = 100

 (b) y = 1�[( 1
y0
)

ε
− kεt]

1�ε
; Explanations will vary.

 3. (a)  (0, 1), (0.1, 0.91), (0.2, 0.83805), (0.3, 0.78244), 
(0.4, 0.74160), (0.5, 0.71415), (0.6, 0.69881), 
(0.7, 0.69442), (0.8, 0.69995), (0.9, 0.71446), 
(1, 0.73708)

 (b) 1.0

0.5
0 1.0

  The modified Euler Method is 
more accurate.

 5. 1481.45 sec ≈ 24 min, 41 sec
 7. 2575.95 sec ≈ 42 min, 56 sec
 9. (a) s = 184.21 − Ce−0.019t

 (b) 

0
0 200

400    (c)  As t →∞, Ce−0.019t → 0, 
and s → 184.21.

11. (a) C = C0e
−Rt�V   (b) 0

13. (a) C =
Q
R

(1 − e−Rt�V)   (b) 
Q
R

Chapter 7
Section 7.1  (page 450)

 1.  In variable x, the area of the region between two graphs is 
the area under the graph of the top function minus the area 
under the graph of the bottom function.

 3.  The points of intersection are used to determine the vertical 
lines that bound the region.

 5. −∫6

0
 (x2 − 6x) dx  7. ∫3

0
 (−2x2 + 6x) dx

 9. −6∫1

0
 (x3 − x) dx

11. 

5

4

3

2

1

542 31
x

y  13. 

−1 1 2 3 4 5
−1

−3

2

3

x

y

15. 

x

y

−2−4 2 4

−2

2

4

6

 17. 

x

y

−4 2 4

−2

2

4

6

(−2, 0)

(1, 3)

 32
3    9

2
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 Answers to Odd-Numbered Exercises A77

19. y

x
−1 3 4

−1

3

4

1 2

 21. y

x

(−1, 1)

(1, 3)

(0, 2)

1 2

1

3

4

 17
18   2

3

23. 
3

2

1

542 31
−1

−3

(4, 2)

(1, −1)

x

y  25. 

64 5

3

1

32

−2

x

y

(0, −1)

(0, 2) (5, 2)

(2, −1)

    6

 9
2

27. 
12

8

6

864−4 −2 2

4

x

y

(1, 10)(0, 10)

(5, 2)(0, 2)

 10 ln 5 ≈ 16.094

29. (a) 125
6    (b) 125

6

 (c) Integrating with respect to y; Answers will vary.
31. (a) 

−6 12

−1

(3, 9)

(1, 1)(0, 0)

11  33. (a) 

−4 4

−5

2

(−2, 0) (2, 0)

(−1, −3) (1, −3)

 (b) 37
12  (b) 8

35. (a) 

−3 3

−1

1, 1
2( (−1, 1

2( (
3  37. 

x

y

2

3

−1

ππ

π

π
2

2

g

f

(2  , 1)

(0, 1)

 (b) 
π
2

−
1
3

≈ 1.237

    4π ≈ 12.566
39. 

3

4

1

2

−3

−4

x
(0, 0)

3

g

f

π

2
π

2
π−

−    , −    3( (

3
π    ,     3( (

y  41. 

1

x
1

(0, 0)

1, ))

y

1
e

    
1
2 (1 −

1
e) ≈ 0.316

 2(1 − ln 2) ≈ 0.614

43. (a) 

0
0

3

π

 45. (a) 

0
60

4

(1, e)

(3, 0.155)

 (b) 4  (b) About 1.323

47. (a) 

−1

−1

4

6  49. (a) 

3

−1

−3

5

 (b)  The function is difficult   (b) The intersections are 
to integrate.   difficult to find.

 (c) About 4.7721  (c) About 6.3043
51. 2
53. F(x) = 1

4x2 + x
 (a) F(0) = 0  (b) F(2) = 3
  

t

4

y

5

6

2

3

−1
−1 1 2 3 4 5 6

    

t

4

y

5

6

2

3

−1
−1 1 2 3 4 5 6

 (c) F(6) = 15
  

t

4

y

5

6

2

3

−1
−1 1 2 3 4 5 6

55. F(α) =
2
π (sin 

πα
2

+ 1)
 (a) F(−1) = 0  (b) F(0) =

2
π ≈ 0.6366

  y

1

3
2

1
2

1
2

θ

−

1
2

1
2

−

    y

θ
1

3
2

1
2

1
2

−

1
2

1
2

−

 (c) F(1
2) =

√2 + 2
π ≈ 1.0868

  y

θ
1

3
2

1
2

1
2

−

1
2

1
2

−
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57. 3  59. 16  61. ∫1

−2
 [(2x3 − 1) − (6x − 5)] dx = 27

2

63. ∫1

0
 [ 1

x2 + 1
− (−

1
2

x + 1)] dx ≈ 0.0354

65. Answers will vary.
 Example: x4 − 2x2 + 1 ≤ 1 − x2 on [−1, 1]

 ∫1

−1
 [(1 − x2) − (x4 − 2x2 + 1)] dx =

4
15

67. (a)  The integral ∫5
0  [v1(t) − v2(t)] dt = 10 means that the first 

car traveled 10 more meters than the second car between 
0 and 5 seconds.

   The integral ∫10
0  [v1(t) − v2(t)] dt = 30 means that the first 

car traveled 30 more meters than the second car between 0 
and 10 seconds.

   The integral ∫30
20  [v1(t) − v2(t)] dt = −5 means that the 

second  car traveled 5 more meters than the first car 
between 20 and 30 seconds.

 (b)  No. You do not know when both cars started or the initial 
distance between the cars.

 (c) The car with velocity v1 is ahead by 30 meters.
 (d) Car 1 is ahead by 8 meters.

69. b = 9(1 −
1

3√4) ≈ 3.330  71. a = 4 − 2√2 ≈ 1.172

73. Answers will vary. Sample answer: 1
6

  

x
(1, 0)

f(x) = x − x2

(0, 0)

0.2

0.2

0.4

0.6

0.4 0.6 0.8 1.0

y

75. R1; $1.625 million
77. (a) y = 0.0124x2 − 0.385x + 7.85
 (b) 

Percents of families

Pe
rc

en
ts

 o
f 

to
ta

l i
nc

om
e

x
20 40 60 80 100

20

40

60

80

100

y

 (c) 

Percents of families

Pe
rc

en
ts

 o
f 

to
ta

l i
nc

om
e

x
20 40 60 80 100

20

40

60

80

100

y     For 6 ≤ x ≤ 100, the values 
of y are larger for the model 
y = x.

 (d) About 2006.7 
79. (a) About 6.031 m2   (b) About 12.062 m3   (c) 60,310 lb

81. 
√3
2

+
7π
24

+ 1 ≈ 2.7823  83. True

85.  False. Let f (x) = x and g(x) = 2x − x2. Then f  and g  
intersect at (1, 1), the midpoint of [0, 2], but

 ∫b

a
 [ f (x) − g(x)] dx = ∫2

0
 [x − (2x − x2)] dx = 2

3 ≠ 0.

87. Putnam Problem A1, 1993

Section 7.2  (page 461)

 1.  Find the integral of the square of the radius of the solid over 
the defined interval and then multiply by π.

 3.  When the solid of revolution is formed by two or more  
distinct solids.

 5. π∫4

1
 (√x)2 dx =

15π
2

  7. π∫1

0
 [(x2)2 − (x5)2] dx =

6π
55

 9. π∫4

0
 (√y)2 dy = 8π   11. π∫1

0
 (y3�2)2 dy =

π
4

13. (a) 
9π
2

   (b) 
36π√3

5
   (c) 

24π√3
5

   (d) 
84π√3

5

15. (a) 
32π

3
   (b) 

64π
3

  17. 18π   19. π(16 ln 5 −
16
5 )

21. 
124π

3
  23. 

832π
15

  25. 
π
3

 ln 
11
5

  27. 24π

29. π(1 − e−12

6 )  31. 
277π

3
  33. 8π   35. 

25π
2

37. 
π2

2
≈ 4.935  39. 

π
2

(e2 − 1) ≈ 10.036  41. 
π
3

43. 
π
3

  45. 
2π
15

  47. 
π
2

  49. 1.969  51. 15.4115

53. (a)  A sine curve on [0, 
π
2] revolved about the x-axis

 (b) A polynomial function on [2, 4] revolved about the y-axis
55. b < c < a  57. √5  59. V = 4

3π(R2 − r2)3�2

61. Proof  63. πr2h(1 −
h
H

+
h2

3H2)
65. 

0 2

−0.25

0.5

 
π
30

67. (a) 60π   (b) 50π
69. (a) V = π(4b2 − 64

3 b + 512
15 )

 (b) 

0
0

4

120    (c) b = 8
3 ≈ 2.67

  b ≈ 2.67
71. (a) ii; right circular cylinder of radius r and height h
 (b)  iv; ellipsoid whose underlying ellipse has the equation 

  (x
b)

2

+ (y
a)

2

= 1

 (c) iii; sphere of radius r
 (d) i; right circular cone of radius r and height h
 (e) v; torus of cross-sectional radius r and other radius R
73. (a) 81

10   (b) 9
2  75. 16

3 r3

77. (a) 2
3r3   (b) 2

3r3 tan θ; As θ → 90°, V →∞.
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 Answers to Odd-Numbered Exercises A79

Section 7.3  (page 470)

 1.  Determine the distance from the center of a representative 
rectangle to the axis of revolution, and find the height of the 
rectangle. Then use the formula V = 2π∫d

c  p(y)h(y) dy for a

  horizontal axis of revolution or V = 2π∫b
a  p(x)h(x) dx for a 

vertical axis of revolution. 

 3. 2π∫2

0
 x2 dx =

16π
3

  5. 2π∫4

0
 x√x dx =

128π
5

 7. 2π∫4

0
 
1
4

x3 dx = 32π   9. 2π∫2

0
 x(4x − 2x2) dx =

16π
3

11. 2π∫4

5�2
 x√2x − 5 dx =

34π√3
5

13. 2π∫2

0
 y(2 − y) dy =

8π
3

15. 2π[∫1�2

0
 y dy + ∫1

1�2
 y(1

y
− 1) dy] =

π
2

17. 2π∫8

0
 y 4�3 dy =

768π
7

  19. 2π∫2

0
 y(4 − 2y) dy =

16π
3

21. ∫1

0
 y(y2 − 3y + 2) dy =

π
2

23. 8π   25. 
45π
16

27.  Shell method; It is much easier to put x in terms of y rather 
than vice versa.

29. (a) 
128π

7
   (b) 

64π
5

    (c) 
96π

5

31. (a) 
πa3

15
   (b) 

πa3

15
   (c) 

4πa3

15
33. (a) 

y = (1 − x4/3)3/4

−0.25

−0.25 1.5

1.5    (b) 1.506

35. (a) 

−1

−1

7

(x − 2)2(x − 6)2y = 3

7    (b) 187.25

37. (a) Height: b, radius: k   (b) Height: k, radius: b
39.  Both integrals yield the volume of the solid generated by 

revolving the region bounded by the graphs of y = √x − 1, 
y = 0, and x = 5 about the x-axis.

41. a, c, b

43. (a) Region bounded by y = x2, y = 0, x = 0, x = 2
 (b) Revolved about the y-axis
45. (a) Region bounded by x = √6 − y, y = 0, x = 0
 (b) Revolved about y = −2

47. Diameter = 2√4 − 2√3 ≈ 1.464  49. 4π2

51. (a) Proof   (b) (i) V = 2π    (ii) V = 6π2  53. Proof

55. (a) R1(n) =
n

n + 1
   (b) lim

n→∞
 R1(n) = 1

 (c) V = πabn+2( n
n + 2); R2(n) =

n
n + 2

 (d) lim
n→∞

 R2(n) = 1

 (e) As n →∞, the graph approaches the line x = b.
57. About 121,475 ft3  59. c = 2

61. (a) 
64π

3
   (b) 

2048π
35

   (c) 
8192π

105

Section 7.4  (page 481)

 1.  The graph of a function f  is rectifiable between (a, f (a)) and 
(b, f (b)) if f ′ is continuous on [a, b].

 3. Answers will vary by a constant. Sample answer: f (x) = 2x2

 5. (a) and (b) √13  7. 5
3  9. 2

3 (2√2 − 1) ≈ 1.219
11. 5√5 − 2√2 ≈ 8.352  13. 309.3195

15. ln 
√2 + 1

√2 − 1
≈ 1.763  17. 

1
2(e2 −

1
e2) ≈ 3.627

19. 
76
3

21. (a) 

−1−3 1 3
−1

−2

1

2

3

x

y  23. (a) 

−1 1 2 3 4
−1

1

2

3

x

y

 (b) ∫2

0
 √1 + 4x2 dx  (b) ∫3

1
 √1 +

1
x4 dx

 (c) About 4.647  (c) About 2.147
25. (a) 

−1.5

0.5

1.0

1.5

2
π

2
π3−

x

y

2
π

 27. (a) 

−0.5 0.5 1.0 1.5 2.0

−2.0

−3.0

1.0

2.0

3.0

x

y

 (b) ∫π

0
 √1 + cos2 x dx  (b) ∫1

0
 √1 + ( 2

1 + x2)
2

 dx

 (c) About 3.820  (c) About 1.871

29. (a) 

−1 1 3 4 5
−1

−2

1

2

3

4

x

y    (b) ∫2

0
 √1 + e−2y dy

   = ∫1

e−2

 √1 +
1
x2 dx

   (c) About 2.221

31. (a) 64.125   (b) 64.525   (c) 64.672

33. 
20(e2 − 1)

e
≈ 47.0 m  35. About 1480

37. 3 arcsin 23 ≈ 2.1892

39. 2π∫3

0
 
1
3

x3√1 + x4 dx =
π
9

(82√82 − 1) ≈ 258.85
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41. 2π∫2

1
 (x3

6
+

1
2x)(

x2

2
+

1
2x2) dx =

47π
16

≈ 9.23

43. 2π∫1

−1
 2 dx = 8π ≈ 25.13

45. 2π∫8

1
 x√1 +

1
9x4�3 dx =

π
27

(145√145 − 10√10) ≈ 199.48

47. 2π∫2

0
 x√1 +

x2

4
 dx =

π
3

(16√2 − 8) ≈ 15.318

49. 14.424  51. b  53. They have the same value.
55. (a) 

x
−1 1 2 3 4 5

−1

1

2

3

4

5

y

y1

y2

y3

y4

   (b) y1, y2, y3, y4

      (c)  s1 ≈ 5.657, s2 ≈ 5.759, 
s3 ≈ 5.916, s4 ≈ 6.063

57. 20π   59. 6π(3 − √5) ≈ 14.40
61. (a) Answers will vary. Sample answer: 5207.62 in.3

 (b) Answers will vary. Sample answer: 1168.64 in.2

 (c) r = 0.0040y3 − 0.142y2 + 1.23y + 7.9
  

−1

−1 19

20

 (d) V = 5279.64 in.3, S = 1179.5 in.2

63. (a) π(1 −
1
b)   (b) 2π∫b

1
 
√x4 + 1

x3  dx

 (c) lim
b→∞

 V = lim
b→∞

 π(1 −
1
b) = π

 (d) Because 
√x4 + 1

x3 >
√x4

x3 =
1
x

> 0 on [1, b],

  you have ∫b

1
 
√x4 + 1

x3  dx > ∫b

1
 
1
x
 dx = [ln x]

b

1
= ln b

  and lim
b→∞

 ln b →∞. So, lim
b→∞

 2π∫b

1
 
√x4 + 1

x3  dx = ∞.

65. Fleeing object: 2
3 unit

 Pursuer: 
1
2∫

1

0
 
x + 1

√x
 dx =

4
3

= 2(2
3)

67. 
384π

5
  69. Proof  71. Proof; g(x) = 1

Section 7.5  (page 491)

 1.  Work is done by a force when it moves an object.
 3.  The force needed to extend or compress a spring by some 

distance is proportional to that distance.
 5. 48,000 ft-lb  7. 896 N-m  9. 40.833 in.-lb ≈ 3.403 ft-lb
11. 160 in.-lb ≈ 13.3 ft-lb  13. 37.125 ft-lb
15. (a) 487.8 mile-tons ≈ 5.679 × 109 ft-lb
 (b) 1395.3 mile-tons ≈ 1.624 × 1010 ft-lb
17. (a) 29,333.3 mile-tons ≈ 3.415 × 1011 ft-lb
 (b) 33,846.2 mile-tons ≈ 3.941 × 1011 ft-lb
19. (a) 2496 ft-lb   (b) 9984 ft-lb  21. 470,400π  N-m

23. 2995.2π  ft-lb  25. 20,217.6π  ft-lb  27. 2457π  ft-lb
29. 600 ft-lb  31. 450 ft-lb  33. 168.75 ft-lb
35.  No. Something can require a lot of physical effort but take no 

work. There is no work because there is no change in distance.

37. Gm1m2(1
a

−
1
b)  39. 

3k
4

41. (a) 54 ft-lb   (b) 160 ft-lb   (c) 9 ft-lb   (d) 18 ft-lb
43. 2000 ln 32 ≈ 810.93 ft-lb  45. 3249.4 ft-lb
47. 10,330.3 ft-lb 
49. (a) 16,000π  ft-lb
 (b)  F(x) = −16,261.36x4 + 82,295.45x3 − 157,738.64x2

   + 104,386.36x − 32.4675
  

0 2
0

25,000

 (c) 0.524 ft   (d) 25,180.5 ft-lb

Section 7.6  (page 502)

 1.  Weight is a force that is dependent on gravity. Mass is a 
measure of a body’s resistance to changes in motion and is 
independent of the gravitational system in which the body is 
located. The weight (or force) of an object is its mass times the 
acceleration due to gravity.

 3.  A planar lamina is a flat plate of material of constant density. 
The center of mass of a lamina is its balancing point.

 5. x = −4
3  7. x = 4  9. x = 6 ft

11. (x, y) = (10
9 , −1

9)  13. (x, y) = (2, 48
25)

15. Mx =
ρ
3

, My =
4ρ
3

, (x, y) = (4
3

, 
1
3)

17. Mx = 4ρ, My =
64ρ

5
, (x, y) = (12

5
, 

3
4)

19. Mx =
ρ
35

, My =
ρ
20

, (x, y) = (3
5

, 
12
35)

21. Mx =
99ρ

5
, My =

27ρ
4

, (x, y) = (3
2

, 
22
5 )

23. Mx =
192ρ

7
, My = 96ρ, (x, y) = (5, 

10
7 )

25. Mx = 0, My =
256ρ

15
, (x, y) = (8

5
, 0)

27. Mx =
27ρ

4
, My = −

27ρ
10

, (x, y) = (−
3
5

, 
3
2)

29. 

−25

−5

25

50

 (x, y) = (0, 16.2)
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 Answers to Odd-Numbered Exercises A81

31. 

x
1 3

2

1

−1

−2

y  33. 

x
−4 −3 −2 −1 1 2 3 4

7

6

5

4

3

2

1

y

  (x, y) = (4 + 3π
4 + π , 0)  (x, y) = (0, 

135
34 )

35. (x, y) = (2 + 3π
2 + π , 0)  37. 160π2 ≈ 1579.14

39. 
128π

3
≈ 134.04

41.  The center of mass is translated k units as well.
43.  Answers will vary. Sample answer: Use three rectangles 

with width 1 and length 4 and place them as follows.
 y

x
1 2 3 4 5 6

1

2

3

4

5

 (x, y) = (3, 1.5)

45. (x, y) = (b
3

, 
c
3)  47. (x, y) = ((a + 2b)c

3(a + b) , 
a2 + ab + b2

3(a + b) )
49. (x, y) = (0, 

4b
3π)

51. (a) 

−1−2−3−4−5 1 2 3 4 5
x

y = b

y

 (b)   My = ∫√b

−√b

 x(b − x2) dx = 0 because x(b − x2) is an odd 

  function; x = 0 by symmetry.

 (c) y >
b
2

 because the area is greater for y >
b
2

.

 (d) y = 3
5b

53. (a) y = (−1.02 × 10−5)x4 − 0.0019x2 + 29.28
 (b) (x, y) = (0, 12.85)
55. 9π√2

57.  (x, y) = (n + 1
n + 2

, 
n + 1
4n + 2); As n →∞, the region shrinks

 toward the line segments y = 0 for 0 ≤ x ≤ 1 and x = 1 for 

 0 ≤ y ≤ 1; (x, y) → (1, 
1
4).

59. Putnam Problem A1, 1982

Section 7.7  (page 509)

 1.  Fluid pressure is the force per unit area over the surface of a 
body submerged in a fluid.

 3. 1497.6 lb  5. 4992 lb   7. 2223 lb  9. 1123.2 lb

11. 748.8 lb  13. 1064.96 lb  15. 117,600 N
17. 2,381,400 N  19. 2814 lb  21. 6753.6 lb
23. 94.5 lb
25.  Because you are measuring total force against a region 

between two depths

27.  
3√2

2
≈ 2.12 ft; The pressure increases with increasing depth.

29–31. Proofs  33. 960 lb  35. 2936 lb

Review Exercises for Chapter 7  (page 511)

 1. y

x
−3−4 1 3 4−1

−2

1

2

3

4

5
(−2, 4) (2, 4)

1
22, 1 ))

1
2−2, −1 ))

  3. 

2

1

−1 1

1
2

x

1, 

y

(−1, 0) (1, 0)

))1
2

−1, ))

 
64
3

   
π
2

 5. 

1

1

−1

−1
x

(1, 1)

(0, 0)

(−1, −1)

y   7. 

4

6

321−1
x

(0, 1)

(2, e2)

(0, e2)

y

 1
2   e2 + 1

 9. 

x

−1

y

4
5 2

2
π

2
π π

( (, −

4
2

2
π( (, 

 11. (a) 

−4 10

−16

(0, 3)

(8, 3)
20

    (b) 170.6667

 2√2
13. (a) 

−1

(0, 1)

(1, 0)
2

2

−1

 (b) 0.1667

15. F(x) = 3
2x2 + x

 (a) F(0) = 0 (b) F(2) = 8
  y

t
1 2 3 4 5 6−3

3

6

9

12

15

18

21

  y

t
1 2 3 4 5 6−3

3

6

9

12

15

18

21
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A82 Answers to Odd-Numbered Exercises

 (c) F(6) = 60
  y

t
1 2 3 4 5 6−3

3

6

9

12

15

18

21

17. R1; $1.125 million  19. 
π2

2
  21. 

π2

4
23. (a) 9π    (b) 18π    (c) 9π    (d) 36π
25. 3 ft3  27. 8

15(1 + 6√3) ≈ 6.076

29. 2π∫6

3
 
x3

18√1 +
x4

36
 dx ≈ 459.098

31. 2π∫2

0
 x√1 + x2 dx ≈ 21.322  33. 5.208 ft-lb

35. 952.4 mile-tons ≈ 1.109 × 1010 ft-lb  37. 200 ft-lb
39. 693.15 ft-lb

41. 3.6  43. Mx =
544ρ

15
, My =

32ρ
3

, (x, y) = (1, 
17
5 )

45. Answers will vary. Sample answer:
 y

t
−1 2

−1

−2

1

2

 (x, y) = (1.596, 0)
47. 374.4 lb  49. 3072 lb  51. 723,822.95 lb

P.S. Problem Solving  (page 513)

 1. 3  3. y = 0.2063x  5. (x, y) = (2(9π + 49)
3(π + 9) , 0)

 7. V = 2π (d + 1
2√w2 + l 2)lw

 9. f (x) = 2ex�2 − 2  11. 89.3%

13. 

1

−1
−1 2 3 4 5

−2

−3

2

3

y

x

y = − 1
x4

y = 1
x4

   (a) (x, y) = (63
43

, 0)
      (b) (x, y) = ( 3b(b + 1)

2(b2 + b + 1), 0)
      (c) (3

2
, 0)

15. Consumer surplus: 1600, Producer surplus: 400
17. Wall at shallow end: 9984 lb
 Wall at deep end: 39,936 lb
 Side wall: 19,968 + 26,624 = 46,592 lb

Chapter 8
Section 8.1  (page 520)

 1.  Use long division to rewrite the function as the sum of a 
polynomial and a proper rational function.

 3. b

 5. ∫ un du  7. ∫ 
du
u

  9. ∫ 
du

√a2 − u2

 u = 5x − 3, n = 4  u = 1 − 2√x  u = t, a = 1

11. ∫ sin u du 13. ∫ eu du 15. 2(x − 5)7 + C

 u = t2  u = sin x

17. −
7

6(z − 10)6 + C  19. 
z3

3
−

1
5(z − 1)5 + C

21. −1
3 ln∣−t3 + 9t + 1∣ + C  23. 1

2x2 + x + ln∣x − 1∣ + C

25. x + ln∣x + 1∣ + C  27. 
x

15
(48x4 + 200x2 + 375) + C

29. 
sin 2πx2

4π + C  31. −2√cos x + C

33. 2 ln(1 + ex) + C  35. (ln x)2 + C

37. −ln∣csc α + cot α∣ + ln∣sin α∣ + C

39. −
1
4

 arcsin(4t + 1) + C  41. 
1
2

 ln∣cos 
2
t ∣ + C

43. 
6
5

 arcsec 
∣3z∣

5
+ C  45. 

1
4

 arctan 
2x + 1

8
+ C

47. (a) 

t

s

1

1

−1

−1

   (b) 1
2 arcsin t2 − 1

2

   

1.2−1.2

−0.8

0.8

49. y = 4e0.8x

 

3−5

−1

9

51. y = 1
2e2x + 10ex + 25x + C  53. r = 10 arcsin et + C

55. y =
1
2

 arctan 
tan x

2
+ C  57. 

1
15

  59. 
1
2

61. 
1
2

(1 − e−1) ≈ 0.316  63. 
3
2

[(ln 4)2 − (ln 3)2] ≈ 1.072

65. 8  67. ln 9 +
8
3

≈ 4.864  69. 
π
18

71. 
240
ln 3

≈ 218.457  73. 
18√6

5
≈ 8.82  75. 

4
3

≈ 1.333

77. 1
3 arctan[ 1

3(x + 2)] + C 79. tan θ − sec θ + C
 Graphs will vary.   Graphs will vary.
 Example:   Example:
 

−7 5

−1

1

C = 0

C = −0.2

  

−6

6

− 7π
2

π
2

C = 2

C = 0

 One graph is a vertical   One graph is a vertical 
 translation of the other.  translation of the other.
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 Answers to Odd-Numbered Exercises A83

 81.  No. When u = x2, it does not follow that x = √u because x 
is negative on [−1, 0).

 83. a = √2, b =
π
4

; −
1

√2
 ln∣csc(x +

π
4) + cot(x +

π
4)∣ + C

 85. (a) They are equivalent because
   ex+C1 = ex ∙ eC1 = Cex, C = eC1.
  (b) They differ by a constant.
   sec2 x + C1 = (tan2 x + 1) + C1 = tan2 x + C
 87. a
 89. (a) 

x

y

−1−2−3 1 2 3

5

10

15

20

25

   (b) 

321−1−2−3

−3

−2

−1

1

2

3

x

y
y =    2x

  (c) 

2−2

−1

2

3

x

y

y = x

 91. (a) π(1 − e−1) ≈ 1.986

  (b) b =√ln 
3π

3π − 4
≈ 0.743

 93. ln(√2 + 1) ≈ 0.8814

 95. 
8π
3

(10√10 − 1) ≈ 256.545  97. 
1
3

 arctan 3 ≈ 0.416

 99. About 1.0320
101. (a) 1

3 sin x(cos2 x + 2)
  (b) 1

15 sin x(3 cos4 x + 4 cos2 x + 8)
  (c) 1

35 sin x(5 cos6 x + 6 cos4 x + 8 cos2 x + 16)

  (d) ∫ cos15 x dx = ∫ (1 − sin2 x)7 cos x dx

   You would expand (1 − sin2 x)7.
103. Proof

Section 8.2  (page 529)

  1. The formula for the derivative of a product
  3. Let dv = dx.  5. u = x, dv = e9x dx
  7. u = (ln x)2, dv = dx  9. u = x, dv = sec2 x dx
 11. 1

16x4(4 ln x − 1) + C
 13. −1

4 (2x + 1) cos 4x + 1
8 sin 4x + C

 15. 
e4x

16
(4x − 1) + C  17. ex(x3 − 3x2 + 6x − 6) + C

 19. 1
4 [2(t2 − 1) ln∣t + 1∣ − t2 + 2t] + C  21. 1

3 (ln x)3 + C

 23. 
e2x

4(2x + 1) + C  25. 
2
15

(x − 5)3�2(3x + 10) + C

 27. −x cot x + ln∣sin x∣ + C
 29. (6x − x3)cos x + (3x2 − 6)sin x + C
 31. x arctan x − 1

2 ln(1 + x2) + C
 33. − 3

34e−3x sin 5x − 5
34e−3x cos 5x + C

 35. x ln x − x + C

37.  y =
2
5

t2√3 + 5t −
8t
75

(3 + 5t)3�2 +
16

1875
(3 + 5t)5�2 + C

  =
2

625
√3 + 5t (25t2 − 20t + 24) + C

39. (a) 

x
42−2

8

6

2

y

−4

  (b) 2√y − cos x − x sin x = 3
    

−6 6

−2

6

41. 

−10 10

−2

10

43. 2e3�2 + 4 ≈ 12.963  45. 
π
8

−
1
4

≈ 0.143

47. 
π − 3√3 + 6

6
≈ 0.658

49. 1
2 [e(sin 1 − cos 1) + 1] ≈ 0.909

51. 8 arcsec 4 +
√3
2

−
√15

2
−

2π
3

≈ 7.380

53. 
e2x

4
(2x2 − 2x + 1) + C

55. −cos x(x + 2)2 + 2 sin x(x + 2) + 2 cos x + C

57. 1
20 (4x + 9)3�2(2x + 17) + C

59.  Answers will vary. Sample answer: ∫ x3 sin x dx

  It takes three applications until the algebraic factor becomes 
a constant.

61. (a) No, substitution   (b) Yes, u = ln x, dv = x dx
 (c) Yes, u = x2, dv = e−3x dx   (d) No, substitution

 (e) Yes, u = x and dv =
1

√x + 1
 dx   (f ) No, substitution

63. 2(sin √x − √x cos√x) + C

65. 1
2 (x4ex2 − 2x2ex2 + 2ex2) + C

67. (a) and (b) 1
3√4 + x2 (x2 − 8) + C

69. n = 0: x(ln x − 1) + C
 n = 1: 1

4x2(2 ln x − 1) + C

 n = 2: 1
9x3(3 ln x − 1) + C 

 n = 3: 1
16x4(4 ln x − 1) + C

 n = 4: 1
25x5(5 ln x − 1) + C

 ∫ x
n ln x dx =

xn+1

(n + 1)2 [(n + 1) ln x − 1] + C

71–75. Proofs  77. −x2 cos x + 2x sin x + 2 cos x + C
79. 1

36x6(6 ln x − 1) + C

81. 
e−3x(−3 sin 4x − 4 cos 4x)

25
+ C
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A84 Answers to Odd-Numbered Exercises

83. 

7−1

−1

1   85. 

0 1.5
0

1

 2 −
8
e3 ≈ 1.602  

π
1 + π2 (1

e
+ 1) ≈ 0.395

87. (a) 1   (b) π(e − 2) ≈ 2.257   (c) 1
2π(e2 + 1) ≈ 13.177

 (d) (e2 + 1
4

, 
e − 2

2 ) ≈ (2.097, 0.359)

89.  In Example 6, we showed that the centroid of an equivalent

  region was (1, 
π
8). By symmetry, the centroid of this region

 is (π8, 1).

91. 
7

10π (1 − e−4π) ≈ 0.223  93. $931,265

95. Proof  97. bn =
8h

(nπ)2 sin 
nπ
2

99.  For any integrable function, ∫ f (x) dx = C + ∫ f (x) dx, but 
this cannot be used to imply that C = 0.

Section 8.3  (page 538)

 1. ∫ sin8 x dx; The other integral can be found using u-substitution.
 3. −1

6 cos6 x + C  5. 1
5 sin5 x − 1

7 sin7 x + C
 7. −1

3 cos3 x + 1
5 cos5 x + C

 9. −1
3(cos 2θ)3�2 + 1

7(cos 2θ)7�2 + C
11. 1

12 (6x + sin 6x) + C  13. 2x2 + 2x sin 2x + cos 2x + C

15. 
2
3

  17. 
π
4

  19. 
63π
512

  21. 
1
4

 ln∣sec 4x + tan 4x∣ + C

23. 
sec πx tan πx + ln∣sec πx + tan πx∣

2π + C

25. 
1
2

 tan4 
x
2

− tan2 
x
2

− 2 ln∣cos 
x
2∣ + C

27. 
1
2[

sec5 2t
5

−
sec3 2t

3 ] + C  29. 
1
24

 sec6 4x + C

31. 1
7 sec7 x − 1

5 sec5 x + C
33. ln∣sec x + tan x∣ − sin x + C

35. 
12πθ − 8 sin 2πθ + sin 4πθ

32π + C

37. y = 1
9 sec3 3x − 1

3 sec 3x + C

39. (a) 

x

y

4

4

−4

   (b) y = 1
2x − 1

4 sin 2x
   

−6 6

−4

4

41. 

−9 9

−4

8   43. 1
16 (2 sin 4x + sin 8x) + C

45. 1
14 cos 7t − 1

22 cos 11t + C

47. 1
8 (2 sin 2θ − sin 4θ) + C

49. 1
4 (ln∣csc2 2x∣ − cot2 2x) + C

51. −1
3 cot 3x − 1

9 cot3 3x + C

53. ln∣csc t − cot t∣ + cos t + C
55. ln∣csc x − cot x∣ + cos x + C  57. t − 2 tan t + C
59. π   61. 3(1 − ln 2)  63. ln 2  65. 4
67. (a) 1

18 tan6 3x + 1
12 tan4 3x + C1, 

1
18 sec6 3x − 1

12 sec4 3x + C2

 (b) 

−0.5 0.5

−0.05

0.05    (c) Proof

69. (a) 1
2 sin2 x + C   (b) −1

2 cos2 x + C

 (c) 1
2 sin2 x + C   (d) −1

4 cos 2x + C
  The answers are all the same, but they are written in different 

forms. Using trigonometric identities, you can rewrite each 
answer in the same form.

71. 
1
3

  73. 1  75. 2π(1 −
π
4) ≈ 1.348

77. (a) 
π2

2
   (b) (x, y) = (π2, 

π
8)  79–81. Proofs

83. − 1
15 cos x(3 sin4 x + 4 sin2 x + 8) + C

85. − 1
48 (8 cos3 x sin3 x + 6 cos3 x sin x − 3 cos x sin x − 3x) + C

87. (a) and (b) Proofs
89. (a) Proof   (b) a1 = 2, a2 = −1, a3 = 2

3

Section 8.4  (page 547)

 1. (a) x = 3 tan θ   (b) x = 2 sin θ
 (c) x = 5 sin θ   (d) x = 5 sec θ

 3. 
x

16√16 − x2
+ C

 5. 4 ln∣4 − √16 − x2

x ∣ + √16 − x2 + C

 7. ln∣x + √x2 − 25∣ + C

 9. 1
15 (x2 − 25)3�2(3x2 + 50) + C

11. 
(4 + x2)3�2

6
+ C  13. 

1
4 (arctan 

x
2

+
2x

4 + x2) + C

15. 
1
2

x√49 − 16x2 +
49
8

 arcsin 
4x
7

+ C

17. 
1

2√5 (√5x√36 − 5x2 + 36 arcsin 
√5x

6 ) + C

19. 4 arcsin 
x
2

+ x√4 − x2 + C  21. −
(1 − x2)3�2

3x3 + C

23. −
1
3

 ln∣√4x2 + 9 + 3
2x ∣ + C  25. −

x

√x2 + 3
+ C

27. 
1
2

(arcsin ex + ex√1 − e2x) + C

29. 
1
4 (

x
x2 + 2

+
1

√2
 arctan 

x

√2) + C

31. x arcsec 2x − 1
2 ln∣2x + √4x2 − 1∣ + C

33. 2 arcsin 
x − 2

2
− √4x − x2 + C

35. √x2 + 6x + 12 − 3 ln∣√x2 + 6x + 12 + (x + 3)∣ + C
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 Answers to Odd-Numbered Exercises A85

37. (a) and (b) √3 −
π
3

≈ 0.685

39. (a) and (b) 9(2 − √2) ≈ 5.272

41. (a) and (b) −
9
2

 ln(2√7
3

−
4√3

3
−

√21
3

+
8
3)

 + 9√3 − 2√7 ≈ 12.644
43. Substitution: u = x2 + 1, du = 2x dx
45. (a) −√1 − x2 + C; The answers are equivalent.

 (b) x − 3 arctan 
x
3

+ C; The answers are equivalent.

47. True  49. False. ∫√3

0
 

dx
(1 + x2)3�2 = ∫π�3

0
 cos θ dθ

51. πab

53. ln 
5(√2 + 1)
√26 + 1

+ √26 − √2 ≈ 4.367  55. 6π 2

57. (0, 0.422)

59. (a) V =
3π
2

+ 3 arcsin(d − 1) + 3(d − 1)√2d − d2

 (b) 

0 2
0

10

 (c)  The full tank holds 3π ≈ 9.4248 cubic meters. The  
horizontal lines

  y =
3π
4

, y =
3π
2

, y =
9π
4

   intersect the curve at d = 0.596, 1.0, 1.404. The dipstick 
would have these markings on it.

 (d) d′(t) =
1

24√1 − (d − 1)2

 (e) 

0 2
0

0.3

   The minimum occurs at d = 1, which is the widest part 
of the tank.

61. (a) Proof

 (b) y = −12 ln 
12 − √144 − x2

x
− √144 − x2

  

0
0

12

30

 (c) Vertical asymptote: x = 0   (d) About 5.2 m
63. (a) 187.2π lb   (b) 62.4πd lb  65. Proof

67. 12 +
9π
2

− 25 arcsin 
3
5

≈ 10.050

69. Putnum Problem A5, 2005

Section 8.5  (page 557)

 1. (a) 
A
x

+
B

x − 8
   (b) 

A
x − 3

+
B

(x − 3)2 +
C

(x − 3)3

 (c) 
A
x

+
Bx + C
x2 + 10

   (d) 
A
x

+
Bx + C
x2 + 1

+
Dx + E

(x2 + 1)2

 3. 
1
6

 ln∣x − 3
x + 3∣ + C  5. ln∣x − 1

x + 4∣ + C

 7. 5 ln∣x − 2∣ − ln∣x + 2∣ − 3 ln∣x∣ + C
 9. x2 + 3

2 ln∣x − 4∣ − 1
2 ln∣x + 2∣ + C

11. 
1
x

+ ln∣x4 + x3∣ + C

13. 
9

x + 1
+ 2 ln∣x∣ − ln∣x + 1∣ + C

15. 9 ln∣x∣ −
32
7

 ln(7x2 + 1) + C

17. 
1
6 (ln∣x − 2

x + 2∣ + √2 arctan 
x

√2) + C

19. ln∣x + 1∣ + √2 arctan 
x − 1

√2
+ C  21. ln 3

23. 
1
2

 ln 
8
5

−
π
4

+ arctan 2 ≈ 0.557  25. ln∣1 + sec x∣ + C

27. ln∣tan x + 2
tan x + 3∣ + C  29. 

1
5

 ln∣ex − 1
ex + 4∣ + C

31. 2√x + 2 ln∣√x − 2

√x + 2∣ + C  33–35. Proofs

37. Substitution: u = x2 + 2x − 8
39. Trigonometric substitution (tan) or inverse tangent rule
41. 12 ln 97  43. 5

2 ln 5  45. 4.90, or $490,000
47. (a) V = 2π(arctan 3 − 3

10) ≈ 5.963
 (b) (x, y) ≈ (1.521, 0.412)

49. x =
n[e(n+1)kt − 1]

n + e(n+1)kt   51. 
π
8

53. Putnam Problem B4, 1992

Section 8.6  (page 564)

 1.  No. The integral can be easily evaluated using basic 
integration rules.

 Trapezoidal Simpson’s Exact
 3. 2.7500 2.6667 2.6667
 5. 0.6970 0.6933 0.6931
 7. 20.2222 20.0000 20.0000
 9. 12.6640 12.6667 12.6667
11. 0.3352 0.3334 0.3333
13. 0.5706 0.5930 0.5940
 Trapezoidal Simpson’s Graphing Utility
15. 3.2833 3.2396 3.2413
17. 0.7828 0.7854 0.7854
19. 102.5553 93.3752 92.7437
21. 0.5495 0.5483 0.5493
23. 0.1940 0.1860 0.1858
25. (a) 1

12   (b) 0  27. (a) 1
4   (b) 1

12

29. (a) n = 366   (b) n = 26
31. (a) n = 77   (b) n = 8
33. (a) n = 643   (b) n = 48
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35. Trapezoidal Rule: 24.5
 Simpson’s Rule: 25.67
37. 0.701  39. Tn = 1

2(Ln + Rn)  41. 89,250 m2

43. 10,233.58 ft-lb  45. 2.477  47. Proof

Section 8.7  (page 570)

 1. Formula 40  3. −
1
2

x(10 − x) + 25 ln∣5 + x∣ + C

 5. −
√1 − x2

x
+ C

 7. 1
24 (3x + sin 3x cos 3x + 2 cos3 3x sin 3x) + C

 9. −2(cot√x + csc√x) + C  11. x − 1
2 ln(1 + e2x) + C

13. 
x7

49
(7 ln x − 1) + C  15. (a) and (b) x(ln 

x
3

− 1) + C

17. (a) and (b) ln∣x − 1
x ∣ +

1
x

+ C

19. 1
2 [(x2 + 1) arccsc(x2 + 1) + ln(x2 + 1 + √x4 + 2x2 )] + C

21. 
√x4 − 1

x2 + C  23. 
1
36 (

7
7 − 6x

+ ln∣7 − 6x∣) + C

25. ex arccos(ex) − √1 − e2x + C
27. 1

2 (x2 + cot x2 + csc x2) + C

29. 
√2
2

 arctan 
1 + sin θ

√2
+ C  31. −

√2 + 9x2

2x
+ C

33. 1
4 (2 ln∣x∣ − 3 ln∣3 + 2 ln∣x∣∣) + C

35. 
3x − 10

2(x2 − 6x + 10) +
3
2

 arctan(x − 3) + C

37. 1
2 ln∣x2 − 3 + √x4 − 6x2 + 5∣ + C

39. 
2

1 + ex −
1

2(1 + ex)2 + ln(1 + ex) + C

41. 2
3 (2 − √2) ≈ 0.3905  43. 32

5  ln 2 − 31
25 ≈ 3.1961

45. 
π
2

  47. 
π3

8
− 3π + 6 ≈ 0.4510  49–53. Proofs 

55. 
1

√5
 ln∣2 tan(θ�2) − 3 − √5

2 tan(θ�2) − 3 + √5∣ + C  57. ln 2

59. 1
2 ln(3 − 2 cos θ) + C  61. −2 cos√θ + C

63. 4√3

65. (a) ∫ x ln x dx =
1
2

x2 ln x −
1
4

x2 + C

  ∫ x2 ln x dx =
1
3

x3 ln x −
1
9

x3 + C

  ∫ x3 ln x dx =
1
4

x4 ln x −
1
16

x4 + C

 (b) ∫ x
n ln x dx =

xn+1

n + 1
 ln x −

xn+1

(n + 1)2 + C

 (c) Proof
67. 1919.145 ft-lb  69. About 401.4   71. 32π2

73. Putnam Problem A3, 1980

Section 8.8  (page 579)

 1.  One or both of the limits of integration are infinite, or the 
function has a finite number of infinite discontinuities on the 
interval you are considering.

 3.  To evaluate the improper integral ∫∞
a  f (x) dx, find the limit 

as b →∞ when f  is continuous on [a, ∞) or find the limit as 
a → −∞ when f  is continuous on (−∞, b].

 5. Improper; 0 ≤ 3
5 ≤ 1

  7. Not improper; continuous on [0, 1]
  9. Not improper; continuous on [0, 2]
 11. Improper; infinite limits of integration
 13. Infinite discontinuity at x = 0; 4
 15. Infinite discontinuity at x = 1; diverges
 17. 1

8  19. Diverges  21. Diverges  23. 2

 25. 
1

2(ln 4)2  27. π   29. 
π
4

  31. Diverges

 33. Diverges   35. 0  37. −
1
4

  39. Diverges

 41. 
π
3

  43. ln 3  45. 
π
6

  47. 
2π√6

3
  49. p > 1

 51. Proof  53. Converges  55. Converges
 57. Converges  59. Converges
 61. The improper integral diverges.  63. 7

8  65. π

 67. (a) 1   (b) 
π
2

   (c) 2π   69. 2π

 71. (a) W = 20,000 mile-tons   (b) 4000 mi
 73. (a) Proof   (b) 48.66%
 75. (a) 

50 90

0.15

0

  (b) About 0.1587   (c) 0.1587; same by symmetry
 77. (a) $807,992.41   (b) $887,995.15   (c) $1,116,666.67

 79. P =
2πNI(√r2 + c2 − c)

kr√r2 + c2

 81. False. Let f (x) =
1

x + 1
.  83. True  85. True

 87. (a) and (b) Proofs

  (c)  The definition of the improper integral ∫∞

−∞
 is not lim

a→∞
 ∫a

−a

    but rather that if you rewrite the integral that diverges, you  
can find that the integral converges.

 89. Proof

 91. 
1
s
, s > 0  93. 

2
s3, s > 0  95. 

s
s2 + a2, s > 0

 97. 
s

s2 − a2, s > ∣a∣
 99. (a) Γ(1) = 1, Γ(2) = 1, Γ(3) = 2   (b) Proof
  (c) Γ(n) = (n − 1)!

101. c = 1; ln 2  103. 8π[(ln 2)2

3
−

ln 4
9

+
2
27] ≈ 2.01545

105. ∫1

0
 2 sin u2 du; 0.6278  107. Proof

Review Exercises for Chapter 8 (page 583)

  1. 
2
9

(x3 − 27)3�2 + C  3. −4 cot 
x + 8

4
+ C

  5. 
1
2

+ ln 2 ≈ 1.1931  7. 100 arcsin 
x

10
+ C

  9. −xe1−x − e1−x + C

 11. 1
13e2x(2 sin 3x − 3 cos 3x) + C

 13. x tan x + ln∣cos x∣ + C

 15. 1
16 [(8x2 − 1) arcsin 2x + 2x√1 − 4x2] + C
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17. −
cos5 x

5
+ C  19. 

sin(πx − 1)[cos2(πx − 1) + 2]
3π + C

21. 
2
3 (tan3 

x
2

+ 3 tan 
x
2) + C

23. 
tan3 x2

6
−

tan x2

2
+

x2

2
+ C  25. tan θ + sec θ + C

27. 
3π
16

+
1
2

≈ 1.0890  29. 
3√4 − x2

x
+ C

31. 1
3(x2 + 4)1�2(x2 − 8) + C  33. 256 − 62√17 ≈ 0.3675

35. (a), (b), and (c) 1
3√4 + x2 (x2 − 8) + C

37. 2 ln∣x + 2∣ − ln∣x − 3∣ + C
39. 1

4 [6 ln∣x − 1∣ − ln(x2 + 1) + 6 arctan x] + C

41. x +
1

1 − x
+ 2 ln∣x − 1∣ + C

43. −ln∣ex + 1∣ + 1
2 ln∣ex + 3∣ + 1

2 ln∣ex − 1∣ + C

 Trapezoidal Simpson’s Graphing Utility
45. 0.2848 0.2838 0.2838
47. 0.6366 0.6847 0.7041

49. 
1
25 (

4
4 + 5x

+ ln∣4 + 5x∣) + C  51. 1 −
√2
2

53. 
1
2

 ln∣x2 + 4x + 8∣ − arctan 
x + 2

2
+ C

55. 
ln∣tan πx∣

π + C  57. 1
8 (sin 2θ − 2θ cos 2θ) + C

59. 4
3 (x3�4 − 3x1�4 + 3 arctan x1�4) + C

61. 2√1 − cos x + C  63. sin x ln(sin x) − sin x + C

65. 
5
2

 ln∣x − 5
x + 5∣ + C

67. y = x ln∣x2 + x∣ − 2x + ln∣x + 1∣ + C  69. 1
5

71. 1
2(ln 4)2 ≈ 0.961

73. π2 − 4 sin 2 − 2 cos 2 − 6 ≈ 1.0647  75. 
√27

5
≈ 1.0392

77. (x, y) = (0, 
4

3π)  79. 
32
3

  81. Diverges  83. 1

85. 
π
4

  87. (a) $6,321,205.59   (b) $10,000,000

89. (a) 0.4581   (b) 0.0135

P.S. Problem Solving  (page 585)

 1. (a) 4
3, 16

15   (b) Proof  
 3. (a) R(n), I, T(n), L(n)
 (b) S(4) = 1

3 [ f (0) + 4 f (1) + 2 f (2) + 4 f (3) + f (4)] ≈ 5.42

 5. 
π√3

9
≈ 0.6046  7. (x, y) = (0, 

√2
4 )

 9. (a) Proof   (b) x arcsin x + √1 − x2 + C   (c) 1

11. Proof  13. (a) 
π
4

   (b) 
π
4

15.  s(t) = −16t2 + 12,000t(1 + ln 
50,000

50,000 − 400t)
  + 1,500,000 ln 

50,000 − 400t
50,000

; 557,168.626 ft

17. Proof  19. (a) 
2
π    (b) 0

Chapter 9
Section 9.1  (page 596)

 1.  You need to be given one or more of the first few terms of a 
sequence, and then all other terms are defined using previous 
terms.

 3. g; Factorial functions grow faster than exponential functions.
 5. 3, 9, 27, 81, 243  7. 1, 0, −1, 0, 1  9. 2, −1, 23, −1

2, 25
11. 3, 4, 6, 10, 18  13. c  14. a  15. d  16. b
17. n2 + n  19. n(n − 1)(n − 2)  21. 1  23. 2
25. 

0

7

0 11

 27. 

−2

2

0 11

 Converges to 4  Diverges
29. Converges to 0  31. Diverges  33. Converges to 34
35. Converges to 0  37. Diverges  39. Converges to 0
41. Converges to 1  43. Converges to 0
45. 6n − 4; diverges  47. n2 − 3; diverges

49. 
n + 1
n + 2

; converges  51. 
n + 1

n
; converges

53. Monotonic, bounded  55. Not monotonic, bounded
57. Monotonic, bounded  59. Not monotonic, bounded

61. (a) ∣7 +
1
n∣ ≥ 7 ⇒ bounded

  an > an+1 ⇒ monotonic
  So, {an} converges.
 (b) 

0

10

0 11

   Limit = 7

63. (a) ∣13 (1 −
1
3n)∣ <

1
3

⇒ bounded

  an < an+1 ⇒ monotonic
  So, {an} converges.
 (b) 

−1

−0.1

12

0.4    Limit = 1
3

65. (a) No. lim
n→∞

 An does not exist.

 (b)
 

n 1 2 3 4

An $10,045.83 $10,091.88 $10,138.13 $10,184.60

n 5 6 7

An $10,231.28 $10,278.17 $10,325.28

n 8 9 10

An $10,372.60 $10,420.14 $10,467.90
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67. $26,125.00, $27,300.63, $28,529.15, $29,812.97, $31,154.55
69. Answers will vary. Sample answers:

 (a) an = 10 −
1
n

   (b) an =
3n

4n + 1
71.  The sequence {an} could converge or diverge. If {an} is 

increasing, then it converges to a limit less than or equal to 
1. If {an} is decreasing, then it could converge (example: 
an = 1�n) or diverge (example: an = −n).

73. 1, 1.4142, 1.4422, 1.4142, 1.3797, 1.3480; Converges to 1
75. Proof
77.  False. The sequence could also alternate between two values.
79. True
81. (a) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
 (b)  1, 2, 1.5, 1.6667, 1.6, 1.6250, 1.6154, 1.6190,  

1.6176, 1.6182   (c) Proof

 (d) ρ =
1 + √5

2
≈ 1.6180

83. (a) 1.4142, 1.8478, 1.9616, 1.9904, 1.9976
 (b) an = √2 + an−1   (c) lim

n→∞
 an = 2

85. (a) Proof
 (b) 

x

y

2 3 4

0.5

1.0

1.5

2.0

n + 1...

y = lnx

   (c) and (d) Proofs

      (e) 
20√20!

20
≈ 0.4152

    
50√50!

50
≈ 0.3897

    
100√100!

100
≈ 0.3799

87–89. Proofs  91. Putnam Problem A1, 1990

Section 9.2  (page 605)

 1.  lim
n→∞

 an = 5 means that the limit of the sequence {an} is 5.

 ∑
∞

n=1
 an = a1 + a2 + .  .  . = 5 means that the limit of the

 partial sums is 5.
 3.  You cannot make a conclusion. The series may either  

converge or diverge.
 5. 1, 1.25, 1.361, 1.424, 1.464
 7. 3, −1.5, 5.25, −4.875, 10.3125
 9. 3, 4.5, 5.25, 5.625, 5.8125
11. Geometric series: r = 5

2 > 1  13. lim
n→∞

 an = 1 ≠ 0

15. lim
n→∞

 an = 1 ≠ 0  17. lim
n→∞

 an = 1
4 ≠ 0

19. Geometric series: r = 5
6 < 1

21. Geometric series: r = 0.9 < 1
23. Telescoping series: an = 1�n − 1�(n + 1); Converges to 1.
25. (a) 11

3

 (b) 
n 5 10 20 50 100

Sn 2.7976 3.1643 3.3936 3.5513 3.6078

 (c) 

0
0

5

11

   (d)  The terms of the series 
decrease in magnitude 
relatively slowly, and the 
sequence of partial sums 
approaches the sum of the 
series relatively slowly.

27. (a) 20
 (b) 

n 5 10 20 50 100

Sn 8.1902 13.0264 17.5685 19.8969 19.9995

 (c) 

0
0

11

22    (d)  The terms of the series 
decrease in magnitude  
relatively slowly, and the 
sequence of partial sums 
approaches the sum of the 
series relatively slowly.

29. 15  31. 3  33. 32  35. 
1
2

  37. 
sin 1

1 − sin 1

39. (a) ∑
∞

n=0
 

4
10

(0.1)n  41. (a) ∑
∞

n=0
 

12
100 (

1
100)

n

 (b) 
4
9

 (b) 
4
33

43. (a) ∑
∞

n=0
 

3
40

(0.01)n   (b) 
5
66

45. Diverges  47. Diverges  49. Converges
51. Diverges  53. Diverges  55. Diverges
57. Diverges
59.  Yes. If you remove a finite number of terms, the sum of the 

sequence of partial sums still diverges.

61. ∣x∣ <
1
3

; 
3x

1 − 3x
  63. 0 < x < 2; 

x − 1
2 − x

65. −1 < x < 1; 
1

1 + x

67. (a) x   (b) f (x) =
1

1 − x
, ∣x∣ < 1

 (c) 

1.5−1.5
0

f

S3

S5

3    Answers will vary.

69.  The required terms for the two series are n = 100 and n = 5, 
respectively. The second series converges at a higher rate.

71. 160,000(1 − 0.95n) units

73. ∑
∞

i=0
 200(0.75)i; Sum = $800 million  75. 152.42 ft

77. 
1
8

; ∑
∞

n=0
 
1
2 (

1
2)

n

=
1�2

1 − 1�2
= 1

79. (a) −1 + ∑
∞

n=0
 (1

2)
n

= −1 +
a

1 − r
= −1 +

1
1 − 1�2

= 1

 (b) No   (c) 2
81. (a) 126 in.2   (b) 128 in.2

83.  The $2,000,000 sweepstakes has a present value of 
$1,146,992.12. After accruing interest over the 20-year period, 
it attains its full value.

85. (a) $5,368,709.11   (b) $10,737,418.23   (c) $21,474,836.47
87. (a) $14,739.84   (b) $14,742.45
89. (a) $518,136.56   (b) $518,168.67

91. False. lim
n→∞

 
1
n

= 0, but ∑
∞

n=1
 
1
n

 diverges.
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93. False. ∑
∞

n=1
 arn =

a
1 − r

− a; The formula requires that the

 geometric series begins with n = 0.
95. True

97. Answers will vary. Sample answer: ∑
∞

n=0
 1, ∑

∞

n=0
 (−1)

99–101. Proofs  103. Putnam Problem A2, 1984

Section 9.3  (page 613)

 1.  f  must be positive, continuous, and decreasing for x ≥ 1 and 
an = f (n).

 3. Diverges  5. Converges  7. Converges
 9. Diverges  11. Diverges  13. Converges
15. Converges  17. Converges  19. Diverges
21. Converges  23. Diverges
25. f (x) is not positive for x ≥ 1.
27. f (x) is not always decreasing.  29. Converges
31. Diverges  33. Diverges  35. Converges
37. Converges
39. (a) 

n 5 10 20 50 100

Sn 3.7488 3.75 3.75 3.75 3.75

  

11
0

0

11     The partial sums approach the 
sum 3.75 very quickly.

 (b) 
n 5 10 20 50 100

Sn 1.4636 1.5498 1.5962 1.6251 1.635

  

12
0

0

8     The partial sums approach the

 sum 
π2

6
≈ 1.6449 more slowly

 than the series in part (a).

41. No. Because ∑
∞

n=1
 
1
n

 diverges, ∑
∞

n=10,000
 
1
n

 also diverges. The 

  convergence or divergence of a series is not determined by the 
first finite number of terms of the series.

43. (a) 

1 2 3 4

1

x

y

   The area under the rectangles is greater than the area under

   the curve. Because ∫∞

1
 

1

√x
 dx = [2√x]

∞

1
= ∞ diverges,

  ∑
∞

n=1
 

1

√n
 diverges.

 (b) 

1 2 3 4

1

x

y

  The area under the rectangles is less than the area under 

  the curve. Because ∫∞

1
 
1
x2 dx = [−

1
x]

∞

1
= 1 converges,

  ∑
∞

n=2
 
1
n2 converges (and so does ∑

∞

n=1
 
1
n2).

45. p > 1  47. p > 1  49. p > 3  51. Proof
53. S3 ≈ 1.0748 55. S8 ≈ 0.9597
 R3 ≈ 0.0123  R8 ≈ 0.1244
57. S4 ≈ 0.4049
 R4 ≈ 5.6 × 10−8

59. N ≥ 7  61. N ≥ 16

63. (a) ∑
∞

n=2
 

1
n1.1 converges by the p-Series Test because 1.1 > 1.

  ∑
∞

n=2
 

1
n ln n

 diverges by the Integral Test because

  ∫∞

2
 

1
x ln x

 dx diverges.

 (b)  ∑
∞

n=2
 

1
n1.1 = 0.4665 + 0.2987 + 0.2176 + 0.1703

   + 0.1393 + .  .  .

   ∑
∞

n=2
 

1
n ln n

= 0.7213 + 0.3034 + 0.1803 + 0.1243

   + 0.0930 + .  .  .

 (c) n ≥ 3.431 × 1015

65. (a)  Let f (x) =
1
x
. f  is positive, continuous, and decreasing

  on [1, ∞).

  Sn − 1 ≤ ∫n

1
 
1
x
 dx = ln n

  Sn ≥ ∫n+1

1
 
1
x
 dx ln(n + 1) 

  So, ln(n + 1) ≤ Sn ≤ 1 + ln n.
 (b) ln(n + 1) − ln n ≤ Sn − ln n ≤ 1
   Also, ln(n + 1) − ln n > 0 for n ≥ 1. So, 

0 ≤ Sn − ln n ≤ 1, and the sequence {an} is bounded.
 (c)  an − an+1 = [Sn − ln n] − [Sn+1 − ln(n + 1)]

   = ∫n+1

n

 
1
x
 dx −

1
n + 1

≥ 0

  So, an ≥ an+1.
 (d)  Because the sequence is bounded and monotonic, it  

converges to a limit, γ.
 (e) 0.5822
67. (a) Diverges   (b) Diverges

 (c) ∑
∞

n=2
 xln n converges for x <

1
e
.

69. Diverges  71. Converges  73. Converges
75. Diverges  77. Diverges  79. Converges
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Section 9.4  (page 620)

 1.  Yes. The test requires that 0 ≤ an ≤ bn for all n greater 
than some integer N. The beginning terms do not affect the  
convergence or divergence of a series.

 3. (a)

n

2

1

2

4

3

4

6

5

6 8 10

6
n3/2

6
n2 + 0.5

an =

6
n3/2 + 3

an =

an =
n

an   

n

2

2

4

4

6

6 8

8

10

10

12

∑
k = 1

n

∑
k = 1

n

∑ 6
k2 + 0.5kk = 1

n

Sn
6

k3/2

6
k3/2 + 3

 (b) ∑
∞

n=1
 

6
n3�2; Converges

 (c)  The magnitudes of the terms are less than the magnitudes 
of the terms of the p-series. Therefore, the series converges.

 (d)  The smaller the magnitudes of the terms, the smaller the 
magnitudes of the terms of the sequence of partial sums.

 5. Diverges  7. Diverges  9. Diverges
11. Converges  13. Converges  15. Converges
17. Diverges  19. Diverges  21. Converges
23. Converges  25. Diverges
27. Diverges; p-Series Test

29. Converges; Direct Comparison Test with ∑
∞

n=1
 (1

5)
n

31. Diverges; nth-Term Test  33. Converges; Integral Test

35. lim
n→∞

 
an

1�n
= lim

n→∞
 nan; lim

n→∞
 nan ≠ 0 but is finite.

 The series diverges by the Limit Comparison Test.
37. Diverges  39. Converges

41. lim
n→∞

 n( n3

5n4 + 3) =
1
5

≠ 0

43. Diverges  45. Converges
47.  Convergence or divergence is dependent on the form of 

the general term for the series and not necessarily on the  
magnitudes of the terms.

49. (a) Proof
 (b) 

n 5 10 20 50 100

Sn 1.1839 1.2087 1.2212 1.2287 1.2312

 (c) 0.1226   (d) 0.0277

51. Proof  53. False. Let an =
1
n3 and bn =

1
n2.

55. True  57. True  59. Proof  61. ∑
∞

n=1
 
1
n2, ∑

∞

n=1
 
1
n3

63– 69. Proofs
71. Putnam Problem 1, afternoon session, 1953

Section 9.5  (page 629)

 1.  The series diverges because of the nth-Term Test for 
Divergence.

 3.  ∑an is absolutely convergent if ∑∣an∣ converges. ∑an is 
conditionally convergent if ∑∣an∣ diverges, but ∑an  
converges.

 5. (a) n 1 2 3 4 5

Sn 1.0000 0.6667 0.8667 0.7238 0.8349

n 6 7 8 9 10

Sn 0.7440 0.8209 0.7543 0.8131 0.7605

 (b) 

0.6
0 11

1.1

 (c)  The points alternate sides of the horizontal line y =
π
4

 that

   represents the sum of the series. The distances between the 
successive points and the line decrease.

 (d)  The distance in part (c) is always less than the magnitude 
of the next term of the series.

 7. (a) 
n 1 2 3 4 5

Sn 1.0000 0.7500 0.8611 0.7986 0.8386

n 6 7 8 9 10

Sn 0.8108 0.8312 0.8156 0.8280 0.8180

 (b) 

0.6
0 11

1.1

 (c)  The points alternate sides of the horizontal line y =
π2

12
   that represents the sum of the series. The distances 

between the successive points and the line decrease.
 (d)  The distance in part (c) is always less than the magnitude 

of the next term of the series.
 9. Converges  11. Converges  13. Diverges
15. Diverges  17. Converges  19. Diverges
21. Diverges  23. Converges  25. Converges
27. Converges  29. Converges  31. 1.8264 ≤ S ≤ 1.8403
33. 1.7938 ≤ S ≤ 1.8054  35. 10  37. 7
39. 7 terms (Note that the sum begins with n = 0.)
41. Converges absolutely  43. Converges absolutely
45. Converges conditionally  47. Diverges
49. Converges conditionally  51. Converges absolutely
53. Converges absolutely  55. Converges conditionally
57. Converges absolutely
59. Overestimate; The next term is negative.
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61. (a) False. For example, let an =
(−1)n

n
.

  Then ∑ an = ∑ 
(−1)n

n
 converges

  and ∑ (−an) = ∑ 
(−1)n+1

n
 converges.

  But, ∑ ∣an∣ = ∑ 
1
n

 diverges.

 (b) True. For if ∑ ∣an∣ converged, then so would ∑ an by 

  Theorem 9.16.

63. p > 0

65. Proof; The converse is false. For example: Let an =
1
n

.

67. ∑
∞

n=1
 
1
n2 converges, and so does ∑

∞

n=1
 
1
n4.

69. (a) No; an+1 ≤ an is not satisfied for all n. For example, 19 < 1
8.

 (b) Yes; 0.5
71. Diverges; p-Series Test  73. Diverges; nth-Term Test
75. Diverges; Geometric Series Test
77. Converges; Integral Test
79. Converges; Alternating Series Test
81.  You cannot arbitrarily change 0 to 1 − 1.

Section 9.6  (page 637)

 1. Conveges  3. Diverges  5. Inconclusive  7. Proof

 9. d  10. c  11. f  12. b  13. a  14. e
15. (a) Proof
 (b)
 

n 5 10 15 20 25

Sn 13.7813 24.2363 25.8468 25.9897 25.9994

 (c) 

0

28

0 11

   (d) 26

 (e)  The more rapidly the terms of the series approach 0, the 
more rapidly the sequence of partial sums approaches the 
sum of the series.

17. Converges  19. Diverges  21. Diverges
23. Diverges  25. Converges  27. Converges
29. Diverges  31. Converges  33. Converges
35. Diverges  37. Converges  39. Converges
41. Diverges  43. Converges  45. Diverges
47. Converges  49. Converges  51. Converges
53. Converges; Alternating Series Test
55. Converges; p-Series Test  57. Diverges; nth-Term Test
59. Diverges; Geometric Series Test

61. Converges; Limit Comparison Test with bn =
1
2n

63. Converges; Direct Comparison Test with bn =
1
3n

 65. Diverges; Ratio Test  67. Converges; Ratio Test
 69. Converges; Ratio Test  71. a and c  73. a and b

 75. ∑
∞

n=0
 
n + 1
7n+1   77. Diverges; lim

n→∞
 ∣an+1

an ∣ > 1

 79. Converges; lim
n→∞

 ∣an+1

an ∣ < 1  81. Diverges; lim an ≠ 0

 83. Converges  85. Converges  87. (−3, 3)
 89. (−2, 0]  91. x = 0  93. The test is inconclusive.

 95. No; The series ∑
∞

n=1
 

1
n + 10,000

 diverges.

 97–103. Proofs
105. (a) Diverges   (b) Converges   (c) Converges
  (d) Converges for all integers x ≥ 2
107. Putnam Problem 7, morning session, 1951

Section 9.7  (page 648)

  1.  The graphs of the approximating polynomial P and the 
elementary function f  both pass through the point (c, f (c)), 
and the slope of the graph of P is the same as the slope of 
the graph of f  at the point (c, f (c)). If P is of degree n, then 
the first n derivatives of f  and P agree at c. This allows the 
graph of P to resemble the graph of f  near the point (c, f (c)).

  3.  The accuracy is represented by the remainder of the Taylor

  polynomial. The remainder is Rn(x) =
f (n+1)(z)(x − c)n+1

(n + 1)! .

  5. d  6. c  7. a  8. b

  9. P1 =
1
16

x +
1
4

  11. P1 =
2√3

3
+

2
3 (x −

π
6)

 

−0.5

1

−2 10

4, 1
2( (P1

f

   

p
2

p
2

−

−1

5

 13. 

−2 6

−2

10

P2

f

(1, 4)

 
x 0 0.8 0.9 1 1.1

f (x) Error 4.4721 4.2164 4.0000 3.8139

P2(x) 7.5000 4.4600 4.2150 4.0000 3.8150

x 1.2 2

f (x) 3.6515 2.8284

P2(x) 3.6600 3.5000

15. (a)

3−3

−2

2

P6

P2

P4

f

 (b) f (2)(0) = −1 P2
(2)(0) = −1

  f (4)(0) = 1 P4
(4)(0) = 1

  f (6)(0) = −1 P6
(6)(0) = −1

   (c) f (n)(0) = Pn
(n)(0)
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17. 1 + 4x + 8x2 + 32
3 x3 + 32

3 x4  19. x − 1
6x3 + 1

120x5

21. x + x2 + 1
2x3 + 1

6x4  23. 1 + x + x2 + x3 + x4 + x5

25. 1 + 1
2x2  27. 2 − 2(x − 1) + 2(x − 1)2 − 2(x − 1)3

29. 2 + 1
4 (x − 4) − 1

64 (x − 4)2

31. ln 2 + 1
2(x − 2) − 1

8(x − 2)2 + 1
24(x − 2)3 − 1

64(x − 2)4

33. (a) P3(x) = πx +
π3

3
x3

 (b) Q3(x) = 1 + 2π(x −
1
4) + 2π2(x −

1
4)

2

+
8π3

3 (x −
1
4)

3

 

f

P3
Q3

−0.5 0.5

−4

4

35. (a) 
x 0 0.25 0.50 0.75 1.00

sin x 0 0.2474 0.4794 0.6816 0.8415

P1(x) 0 0.25 0.50 0.75 1.00

P3(x) 0 0.2474 0.4792 0.6797 0.8333

P5(x) 0 0.2474 0.4794 0.6817 0.8417

 (b) 

−3

P5

P3 P1
f

2π−2π

3

 (c)  As the distance increases, the polynomial approximation 
becomes less accurate.

37. (a) P3(x) = x + 1
6 x3

 (b) 
x −0.75 −0.50 −0.25 0 0.25

f (x) −0.848 −0.524 −0.253 0 0.253

P3(x) −0.820 −0.521 −0.253 0 0.253

x 0.50 0.75

f (x) 0.524 0.848

P3(x) 0.521 0.820

 (c) 

1−1

2
f

x

P3

π

2
π

y

−

39. 2.7083  41. 0.227  43. 0.7419
45. R4 ≤ 2.03 × 10−5; 0.000001
47. R5 ≤ 1.8 × 10−8; 2.5 × 10−9

49. R3 ≤ 7.82 × 10−3; 0.00085  51. 3  53. 5  55. 2
57. n = 9; ln(1.5) ≈ 0.4055  59. −0.3936 < x < 0

61. −0.9467 < x < 0.9467
63.  The tangent line to a function at a point is the first Taylor 

polynomial for the function at the point.
65.  Substitute 2x into the polynomial for f (x) = ex to obtain the 

polynomial for g(x) = e2x.
67. (a) f (x) ≈ P4(x) = 1 + x + 1

2x2 + 1
6x3 + 1

24x4

  g(x) ≈ Q5(x) = x + x2 + 1
2x3 + 1

6x4 + 1
24x5

  Q5(x) = xP4(x)

 (b) g(x) ≈ P6(x) = x2 −
x4

3!
+

x6

5!

 (c) g(x) ≈ P4(x) = 1 −
x2

3!
+

x4

5!

69. (a) Q2(x) = −1 + (π
2

32)(x + 2)2

 (b) R2(x) = −1 + (π
2

32)(x − 6)2

 (c)  No. Horizontal translations of the result in part (a) are  
possible only at x = −2 + 8n (where n is an integer) 
because the period of f  is 8.

71–73. Proofs

Section 9.8  (page 658)

 1.  A Maclaurin polynomial approximates a function, whereas 
a power series exactly represents a function. The Maclaurin 
polynomial has a finite number of terms and the power series 
has an infinite number of terms.

 3. R = 5  5. 0  7. 2  9. R = 1  11. R = 1
4

13. R = ∞  15. (−4, 4)  17. (−1, 1]  19. (−∞, ∞)
21. x = 0  23. (−6, 6)  25. (−5, 13]  27. (0, 2]
29. (0, 6)  31. (−1

2, 12)  33. (−∞, ∞)  35. (−1, 1)
37. x = 3  39. R = c  41. (−k, k)  43. (−1, 1)

45. ∑
∞

n=1
 

xn−1

(n − 1)!  47. ∑
∞

n=1
 

xn

(7n + 6)!
49. (a) (−3, 3)   (b) (−3, 3)   (c) (−3, 3)   (d) [−3, 3)
51. (a) (0, 2]   (b) (0, 2)   (c) (0, 2)   (d) [0, 2]

53. ∑
∞

n=1
 (x

3)
n

; Answers will vary.

55. Answers will vary. Sample answer: 

 ∑
∞

n=1
 
xn

n
 converges for −1 ≤ x < 1. At x = −1, the 

 convergence is conditional because ∑ 
1
n

 diverges.

 ∑
∞

n=1
 
xn

n2 converges for −1 ≤ x ≤ 1. At x = ±1, the

 convergence is absolute.
57. (a) For f (x): (−∞, ∞); For g(x): (−∞, ∞)
 (b) Proofs   (c) f (x) = sin x, g(x) = cos x
59– 63. Proofs
65. (a) and (b) Proofs
 (c) 

−6 6

−5

3    (d) 0.92
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67. (a) 8
3  (b) 8

13

  

0 6
0

4     

0 6
0

1

 (c)  The alternating series converges more rapidly. The partial 
sums of the series of positive terms approach the sum from 
below. The partial sums of the alternating series alternate 
sides of the horizontal line representing the sum.

 (d) 
M 10 100 1000 10,000

N 5 14 24 35

69. 

−3 3

2

−2

 71. 

1−1
0

3

 f (x) = cos πx  f (x) =
1

1 + x

73. False. Let an =
(−1)n

n2n .  75. True  77. Proof

79. (a) (−1, 1)   (b) f (x) =
c0 + c1x + c2x2

1 − x3

81. Proof

Section 9.9  (page 666)

 1.  You need to algebraically manipulate 
b

c − x
 so that it resembles

 the form 
a

1 − r
.

 3. ∑
∞

n=0
 

xn

4n+1  5. ∑
∞

n=0
 
4
3 (

−x
3 )

n

 

 7. ∑
∞

n=0
 (1

5)(
x − 1

5 )
n

  9. ∑
∞

n=0
 (3x)n

 (−4, 6) (−1
3, 13)

11. −
5
9

 ∑
∞

n=0
 [2

9
(x + 3)]

n

  13. −2 ∑
∞

n=0
 [5(x + 1)]n

 (−15
2 , 32) (−6

5, −4
5)

15. ∑
∞

n=0
 [ 1

(−3)n − 1]xn  17. ∑
∞

n=0
 xn[1 + (−1)n] = 2 ∑

∞

n=0
 x2n

 (−1, 1) (−1, 1)

19. 2 ∑
∞

n=0
 x2n  21. ∑

∞

n=1
 n(−1)nxn−1  23. ∑

∞

n=0
 
(−1)nxn+1

n + 1
 (−1, 1) (−1, 1) (−1, 1]

25. ∑
∞

n=0
 (−1)n x2n  27. ∑

∞

n=0
 (−1)n(2x)2n

 (−1, 1) (−1
2, 12)

29. 

−4 8

−3

S3
f

S2

5

 
x 0.0 0.2 0.4 0.6 0.8 1.0

S2 0.000 0.180 0.320 0.420 0.480 0.500

ln(x + 1) 0.000 0.182 0.336 0.470 0.588 0.693

S3 0.000 0.183 0.341 0.492 0.651 0.833

31. (a) 

−3

0 4

n = 1
n = 3

n = 6
n = 2

3    (b) ln x, 0 < x ≤ 2, R = 1
   (c) −0.6931
   (d)  ln(0.5); The error is  

approximately 0.

33. 0.245  35. 0.125  37. ∑
∞

n=1
 nxn−1, −1 < x < 1

39. ∑
∞

n=0
 (2n + 1)xn, −1 < x < 1

41.  E(n) = 2; Yes. Because the probability of obtaining a head on a 
single toss is 1

2, it is expected that, on average, a head will be 
obtained in two tosses.

43. Proof  45. (a) Proof   (b) 3.14
47. ln 32 ≈ 0.4055; See Exercise 23.

49. ln 75 ≈ 0.3365; See Exercise 47.

51. arctan 12 ≈ 0.4636; See Exercise 50.
53.  The series in Exercise 50 converges to its sum at a lower rate 

because its terms approach 0 at a much lower rate.
55.  The series converges on the interval (−5, 3) and perhaps also 

at one or both endpoints.

57. S1 = 0.3183098862, 
1
π ≈ 0.3183098862

Section 9.10  (page 677)

 1.  The Taylor series converges to f (x) if and only if Rn(x) → 0 
as n →∞.

 3. Multiply and divide as you would polynomials.

 5. ∑
∞

n=0
 
(2x)n

n!
  7. 

√2
2

 ∑
∞

n=0
 
(−1)n(n+1)�2

n! (x −
π
4)

n

 9. ∑
∞

n=0
 (−1)n(x − 1)n  11. ∑

∞

n=0
 
(−1)n(x − 1)n+1

n + 1

13. ∑
∞

n=0
 
(−1)n(3x)2n+1

(2n + 1)!   15. 1 +
x2

2!
+

5x4

4!
+ .  .  .

17–19. Proofs  21. 1 + ∑
∞

n=1
 
1 ∙ 3 ∙ 5 .  .  . (2n − 1)xn

2nn!

23. 1 + ∑
∞

n=1
 
1 ∙ 3 ∙ 5 .  .  . (2n − 1)x2n

2nn!

25. 1 +
1
4

x + ∑
∞

n=2
 
(−1)n+1 3 ∙ 7 ∙ 11 .  .  . (4n − 5)xn

4nn!

27. ∑
∞

n=0
 

x2n

2nn!
  29. ∑

∞

n=1
 
(−1)n−1 xn

n
  31. ∑

∞

n=0
 
(−1)n 42n x2n

(2n)!

33. ∑
∞

n=0
 
(−1)n (5x)2n+1

2n + 1
  35. ∑

∞

n=0
 
(−1)n x3n

(2n)!
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37. ∑
∞

n=0
 

x2n+1

(2n + 1)!  39. 
1
2[1 + ∑

∞

n=0
 
(−1)n(2x)2n

(2n)! ]
41. Proof  43. ∑

∞

n=0
 
(−1)n x2n+2

(2n + 1)!

45. { ∑
∞

n=0
 
(−1)n x2n

(2n + 1)!,

1,

x ≠ 0

x = 0

47. P5(x) = x + x2 + 1
3x3 − 1

30x5

 

−6 6

−2

P5

f

14

49. P5(x) = x − 1
2x2 − 1

6x3 + 3
40x5

 

−3 9

−4

h

P5

4

51. P4(x) = x − x2 + 5
6x3 − 5

6x4

 

−6 6

−4

g

4

P4

53. ∑
∞

n=0
 

(−1)(n+1)x2n+3

(2n + 3)(n + 1)!  55. 0.6931  57. 7.3891

59. 0  61. 1  63. 0.8075  65. 0.9461  67. 0.4872
69. 0.2010  71. 0.7040  73. 0.3412
75.  Square the series for cos x, use a half-angle identity, or  

compute the coefficients using the definition.

 First three terms: 1, 
x2

2
, 

x4

3

77. f (x) =
sin(x + 3)

4
; Answers will vary.

79.  Proof
81. (a) 

21 3

2

1

−1−2−3
x

y    (b) Proof

      (c) ∑
∞

n=0
 0xn = 0 ≠ f (x); The

    series converges to f  at 
x = 0 only.

83. Proof  85. 20  87. −0.612864  89. ∑
∞

n=0
 (k

n)xn

91. Proof  93. Putnam Problem 4, morning session, 1962

Review Exercises for Chapter 9  (page 680)

 1. 4, 34, 214, 1294, 7774  3. −1
4, 1

16, − 1
64, 1

256, − 1
1024

 5. a   6. c  7. d  8. b
 9. 

120
0

8    Converges to 5

 11. Converges to 0  13. Converges to 5  15. Diverges
 17. Diverges  19. an = 5n − 2; diverges

 21. an =
1

(n! + 1); converges  23. Monotonic, bounded

 25. (a) 
n 1 2 3 4

An $8100.00 $8201.25 $8303.77 $8407.56

n 5 6 7 8

An $8512.66 $8619.07 $8726.80 $8835.89

  (b) $13,148.96
 27. 3, 4.5, 5.5, 6.25, 6.85
 29. (a) 

n 5 10 15 20 25

Sn 13.2 113.3 873.8 6648.5 50,500.3

  (b) 

120

−10

120

 31. 
5
3

  33. 
35
3

  35. (a) ∑
∞

n=0
 (0.09)(0.01)n   (b) 

1
11

 37. Diverges  39. Diverges
 41. 120,000[1 − 0.92n], n > 0  43. Diverges
 45. Converges  47. Diverges  49. Diverges
 51. Converges  53. Diverges  55. Converges
 57. Converges  59. Diverges  61. 10  63. Diverges
 65. Diverges   67. Converges
 69. (a) Proof
  (b) 

n 5 10 15 20 25

Sn 2.8752 3.6366 3.7377 3.7488 3.7499

  (c) 

−1

0 12

4    (d) 3.75

 71. Converges; p-Series Test  73. Diverges; nth-Term Test

 75. Diverges; Limit Comparison Test

 77. P3(x) = 1 − 2x + 2x2 − 4
3x3

 79. P3(x) = 1 − 3(x − 1) + 6(x − 1)2 − 10(x − 1)3

 81. 3   83. (−10, 10)  85. [1, 3]
 87. Converges only at x = 2
 89. (a) (−5, 5)   (b) (−5, 5)   (c) (−5, 5)   (d) [−5, 5)

 91. Proof  93. ∑
∞

n=0
 
2
3 (

x
3)

n

  95. ∑
∞

n=0
 2(x − 1

3 )
n

; (−2, 4)

 97. ln 54 ≈ 0.2231  99. e1�2 ≈ 1.6487

101. cos 23 ≈ 0.7859  103. 
√2
2

 ∑
∞

n=0
 
(−1)n(n+1)�2

n! (x −
3π
4 )

n

105. ∑
∞

n=0
 
(x ln 3)n

n!
  107. − ∑

∞

n=0
 (x + 1)n
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109. 1 +
x
5

−
2x2

25
+

6x3

125
−

21x4

625
+ .  .  .

111. (a)–(c) 1 + 2x + 2x2 +
4
3

x3  113. ∑
∞

n=0
 
(6x)n

n!

115. ∑
∞

n=0
 
(−1)n(5x)2n+1

(2n + 1)!   117. 0.5

P.S. Problem Solving  (page 683)

  1. (a) 1   (b) Answers will vary. Sample answer: 0, 13, 23
  (c) 0
  3. Proof  5. (a) Proof   (b) Yes   (c) Any distance

  7. (a) ∑
∞

n=0
 

xn+2

(n + 2)n!
; 

1
2

  (b) ∑
∞

n=0
 
(n + 1)xn

n!
; 5.4366

  9.  For a = b, the series converges conditionally. For no values 
of a and b does the series converge absolutely.

 11. Proof  13. (a) and (b) Proofs
 15. (a) The height is infinite.   (b) The surface area is infinite.
  (c) Proof

Chapter 10
Section 10.1  (page 696)

  1.  A parabola is the set of all points that are equidistant from a 
fixed line, the directrix, and a fixed point, the focus, not on 
the line. An ellipse is the set of all points the sum of whose 
distances from two distinct fixed points called foci is constant. 
A hyperbola is the set of all points whose absolute value of 
the difference between the distances from two distinct fixed 
points called foci is constant.

  3. (a) 0 < e < 1
  (b) As e gets closer to 1, the graph of the ellipse flattens.
  5. a  6. e  7. c  8. b  9. f  10. d
 11. Vertex: (−5, 3) 13. Vertex: (−1, 2)
  Focus: (−21

4 , 3)  Focus: (0, 2)
  Directrix: x = −19

4   Directrix: x = −2
  

x

y

−2−4−6−8−10−12−14
−1

1

2

3

4

5

6

(−5, 3)

  

6

4

6

42−2

−2

x

(−1, 2)

y

 15. Vertex: (−2, 2)
  Focus: (−2, 1)
  Directrix: y = 3
  

x
2

4

−2

−4

(−2, 2)

−2−4−6

y

 17. (y − 4)2 = 4(−2)(x − 5)  19. (x − 0)2 = 4(8)(y − 5)
 21. (x − 1)2 = 4(−1

3)(y + 1)  23. (x − 7
5)2 = 4( 3

20)(y + 4
15)

25. Center: (0, 0) 27. Center: (3, 1)
 Foci: (0, ±√15)  Foci: (3, 4), (3, −2)
 Vertices: (0, ±4)  Vertices: (3, 6), (3, −4)

 e =
√15

4
  e =

3
5

 

x

y

(0, 0)

2

−4

1

2

4

−2−3−4 3 4

  

x

y

−2 2 4 6 8

−2

−4

4

6

(3, 1)

29. Center: (−2, 3)
 Foci: (−2, 3 ± √5)
 Vertices: (−2, 6), (−2, 0)

 e =
√5
3

 

6

4

2

2−2−4−6
x

(−2, 3)

y

31. 
x2

36
+

y2

11
= 1  33. 

(x − 3)2

9
+

(y − 5)2

16
= 1

35. 
x2

16
+

7y2

16
= 1

37. Center: (0, 0) 

−10−15 10 15
−5

−10

−15

5

10

15

x

y

 Foci: (±√41, 0)
 Vertices: (±5, 0)

 e =
√41

5

 Asymptotes: y = ±
4
5

x

39. Center: (2, −3) 

642−2

−2

−4

−6

x

y

 Foci: (2 ± √10, −3)
 Vertices: (1, −3), (3, −3)
 e = √10
 Asymptotes: y = −3 ± 3(x − 2)

41. 
x2

1
−

y2

25
= 1  43. 

y2

9
−

(x − 2)2

9�4
= 1

45. 
y2

4
−

x2

12
= 1  47. 

(x − 3)2

9
−

(y − 2)2

4
= 1

49. (a) (6, √3): 2x − 3√3y − 3 = 0

  (6, −√3): 2x + 3√3y − 3 = 0

 (b) (6, √3): 9x + 2√3y − 60 = 0

  (6, −√3): 9x − 2√3y − 60 = 0
51. Parabola  53. Hyperbola   55. Circle
57. (a) Ellipse   (b) Hyperbola   (c) Circle
 (d)  Answers will vary. Sample answer: Eliminate the y2-term.
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59.  Recall that 0 ≤ sin2 θ ≤ 1. The circumference is given by

 C = 4∫π�2

0
 √a2 − (a2 − b2) sin2 θ dθ

 

x

y

61. 9
4 m  63. (a) Proof   (b) (3, −3)  65. y = 1

180 x2

67. 
16(4 + 3√3 − 2π)

3
≈ 15.536 ft2

69. Minimum distance: 147,099,713.4 km
 Maximum distance: 152,096,286.6 km
71. e ≈ 0.1373  73. e ≈ 0.9671
75. (a) Area = 2π

 (b) Volume =
8π
3

  Surface area =
2π(9 + 4√3π)

9
≈ 21.48

 (c) Volume =
16π

3

  Surface area =
4π[6 + √3 ln(2 + √3)]

3
≈ 34.69

77. 37.96  79. 40  81. 
(x − 6)2

9
−

(y − 2)2

7
= 1

83. 110.3 mi  85. Proof
87. False. See the definition of a parabola.  89. True
91. True  93. Putnam Problem B4, 1976

Section 10.2  (page 707)

 1. The position, direction, and speed at a given time
 3.  Different parametric representations can be used to represent 

various speeds at which objects travel along a given path.
 5. 

x

y

−1−2−3−5 1 2 3

1

2

3

4

6

7

  7. 

4

42−2
x

y

 3x − 2y + 11 = 0  y = (x − 1)2

 9. 

1

321−1−2−3
x

y  11. 

x

y

−1−2−3−4 1 3 4

−2

−3

−4

−5

−6

1

2

 y = 1
2x2�3

    y = x2 − 5, x ≥ 0

13. 

x

y

−1−3−4 1 2 3 4

2

3

4

5

1

 15. 

4

8

1284−4
x

y

    y =
∣x − 4∣

2
 y =

x + 3
x

17. 

3

2

4

5

−1
3 421−2 −1

1

x

y  19. 

x

y

−6 −4 −2 62 4

−4

−6

2

4

6

 y = x3 + 1, x > 0  x2 + y2 = 64

21. 

2

3

31 2

−2

−3

1

x

y

 y =
1
x
, ∣x∣ ≥ 1

23. 

−9

−6

9

6  25. 

−1

−4

8

2

 
x2

36
+

y2

16
= 1  

(x − 4)2

4
+

(y + 1)2

1
= 1

27. 

−12

−4

6

8  29. 

−9 9

−6

6

 
(x + 3)2

16
+

(y − 2)2

25
= 1  

x2

16
−

y2

9
= 1

31. 

−1

−2

5

2  33. 

−1

−1

5

3

 y = ln x  y =
1
x3, x > 0

35.  Both curves represent the parabola y = x2.
  Domain Orientation Smooth
 (a) −∞ < x < ∞ Left to right Yes
 (b) −∞ < x < ∞ Right to left Yes
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37. Each curve represents a portion of the line y = 2x + 1.
  Domain Orientation Smooth
 (a) −∞ < x < ∞ Up  Yes

 (b) −1 ≤ x ≤ 1 Oscillates No, 
dx
dθ =

dy
dθ = 0

     when 
     θ = 0, ±π, ±2π, .  .  .
 (c) 0 < x < ∞ Down  Yes
 (d) 0 < x < ∞ Up  Yes

39. y − y1 =
y2 − y1

x2 − x1
(x − x1)  41. 

(x − h)2

a2 +
(y − k)2

b2 = 1

43. x = 4t 45. x = 1 + 2 cos θ
 y = −7t  y = 1 + 2 sin θ
 (Solution is not unique.)  (Solution is not unique.)
47. x = 2 + 5 cos θ 49. x = 2 tan θ
 y = 4 sin θ  y = sec θ
 (Solution is not unique.)  (Solution is not unique.)
51. x = t 53. x = t
 y = 6t − 5;  y = t3;
 x = t + 1  x = tan t
 y = 6t + 1  y = tan3 t
 (Solution is not unique.)  (Solution is not unique.)
55. x = t + 3, y = 2t + 1 57. x = t, y = t2

59. 

−2 16

−1

5  61. 

−2 7

−1

5

 Not smooth at θ = 2nπ   Smooth everywhere
63. 

−6 6

−4

4  65. 

−6 6

−4

4

 Not smooth at θ = 1
2nπ   Smooth everywhere

67.  The orientation moves right to left on [−1, 0] and left to right 
on [0, 1], failing to determine a definite direction.

69.  No. In the interval 0 < θ < π, cos θ = cos(−θ) and 
sin2 θ = sin2(−θ). So, the parameter was not changed.

71. d; (4, 0) is on the graph.  73. b; (1, 0) is on the graph.
75. x = aθ − b sin θ, y = a − b cos θ
77.  False. The graph of the parametric equations is the portion of 

the line y = x when x ≥ 0.
79. True
81. (a) x = (440

3  cos θ)t, y = 3 + (440
3  sin θ)t − 16t2

 (b) 

0
0

400

30    (c) 

0
0

400

60

  Not a home run    Home run
 (d) 19.4°

Section 10.3  (page 715)

 1.  The slope of the curve at (x, y)
 3.  Horizontal tangent lines when dy�dt = 0 and dx�dt ≠ 0 for 

some value of t; vertical tangent lines when dx�dt = 0 and 
dy�dt ≠ 0 for some value of t

 5. −
3
t
  7. −1

 9.  
dy
dx

=
3
4

, 
d2y
dx2 = 0;  Neither concave upward nor concave

 downward

11. 
dy
dx

= 2t + 3, 
d 2y
dx2 = 2

 At t = −2, 
dy
dx

= −1, 
d2y
dx2 = 2; Concave upward

13. 
dy
dx

= −cot θ, 
d2y
dx2 = −

(csc θ)3

4

  At θ =
π
4

, 
dy
dx

= −1, 
d2y
dx2 = −

√2
2

; Concave downward

15. 
dy
dx

= 2 csc θ, 
d2y
dx2 = −2 cot3 θ

  At θ = −
π
3

, 
dy
dx

= −
4√3

3
, 

d2y
dx2 =

2√3
9

; 

 Concave upward

17. 
dy
dx

= −tan θ, 
d2y
dx2 = sec4 θ csc 

θ
3

  At θ =
π
4

, 
dy
dx

= −1, 
d2y
dx2 =

4√2
3

; Concave upward

19. (−
2

√3
, 

3
2): 3√3x − 8y + 18 = 0

 (0, 2): y − 2 = 0

 (2√3, 
1
2): √3x + 8y − 10 = 0

21. (0, 0): 2y − x = 0
 (−3, −1): y + 1 = 0
 (−3, 3): 2x − y + 9 = 0
23. (a) and (d) 
 

−8 7

6

−4

(−3, 0)

 (b)  At t = −
1
2

, 
dx
dt

= 6, 
dy
dt

= 4,

 and 
dy
dx

=
2
3

.

   (c) y =
2
3

x + 2

25. (a) and (d)
 

−1

−3

8

(4, 2)

5    (b)  At t = −1, 
dx
dt

= −3,

 
dy
dt

= 0, and 
dy
dx

= 0.

    (c) y = 2

27. y = ±3
4x  29. y = 3x − 5 and y = 1

31. Horizontal: (−1, −π), (−1, π), (1, 2π), (1, −2π)

 Vertical: (π2, 1), (π2, −1), (−
3π
2

, 1), (−
3π
2

, −1)
33. Horizontal: (9, 0) 35. Horizontal: (2, 22), (6, −10)
 Vertical: None  Vertical: None
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37. Horizontal: (0, 7), (0, −7)
 Vertical: (7, 0), (−7, 0)
39. Horizontal: (5, −1), (5, −3) 41. Horizontal: None
 Vertical: (8, −2), (2, −2) Vertical: (4, 0)
43. Concave downward: −∞ < t < 0
 Concave upward: 0 < t < ∞
45. Concave upward: t > 0

47. Concave downward: 0 < t <
π
2

 Concave upward: 
π
2

< t < π

49. 4√13 ≈ 14.422  51. √2 (1 − e−π�2) ≈ 1.12

53. 1
12 [ln(√37 + 6) + 6√37] ≈ 3.249  55. 6a  57. 8a

59. (a) 

0
0

240

35    (b) 219.2 ft   (c) 230.8 ft

61. (a) 

6−6

−4

4    (b) (0, 0), (4 3√2
3

, 
4 3√4

3 )
    (c) About 6.557

63. (a) 27π√13   (b) 18π√13  65. 50π   67. 
12πa2

5

69. S = 2π∫2

0
 (t + 2)√9t4 + 1 dt ≈ 185.78

71.  S = 2π∫π�2

0
 (sin θ cos θ√4 cos2 θ + 1 ) dθ

  =
(5√5 − 1)π

6
  ≈ 5.330
73. (a) 

−1

3

π− π3

 

−1

3

π− π3

 (b)  The average speed of the particle on the second path is 
twice the average speed of the particle on the first path.

 (c) 4π
75. Answers will vary. Sample answer: Let x = −3t, y = −4t.
 

x

y

−1−2−3−4 1 2 3 4

−2

−3

−4

1

2

3

4

77. Proof  79. 
3π
2

  81. d  82. b  83. f  84. c

85. a  86. e  87. (3
4, 85)  89. 288π

91. (a) 
dy
dx

=
sin θ

1 − cos θ , 
d2y
dx2 = −

1
a(cos θ − 1)2

 (b) y = (2 + √3)[x − a(π6 −
1
2)] + a(1 −

√3
2 )

 (c) (a(2n + 1)π, 2a)
 (d) Concave downward on (0, 2π), (2π, 4π), etc.
 (e) s = 8a
93. Proof
95. (a) 

−3

−2

3

2

 (b)  Circle of radius 1 and center at (0, 0) except the point 
(−1, 0)

 (c)  As t increases from −20 to 0, the speed increases, and as 
t increases from 0 to 20, the speed decreases.

97. False. 
d2y
dx2 =

d
dt[

g′(t)
f ′(t)]

f ′(t) =
f ′(t)g″(t) − g′(t)f ″(t)

[ f ′(t)]3 .

99.  False. The resulting rectangular equation is a line.

Section 10.4  (page 726)

 1.  r is the directed distance from the origin to the point in the 
plane. θ is the directed angle, counterclockwise from the polar 
axis to the segment from the origin to the point in the plane.

 3.  The rectangular coordinate system is a collection of points of 
the form (x, y), where x is the directed distance from the y-axis 
to the point and y is the directed distance from the x-axis to the 
point. Every point has a unique representation.

  The polar coordinate system is a collection of points of 
the form (r, θ), where r is the directed distance from the 
origin O to a point P and θ is the directed angle, measured  
counterclockwise, from the polar axis to the segment OP. 
Polar coordinates do not have unique representations.

 5. 

0
2 4 6

π
2

8,  ( (

π
2   7. 

0
21 3 4

π
4

3−4, − ( (

π
2

 (0, 8)  (2√2, 2√2) ≈ (2.828, 2.828)

 9. 

0
1

π
2

π
4

57,  ( (

 11. 

0

2, 2.36( )

1

π
2

 (−4.95, −4.95)  (−1.004, 0.996)
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13. 

0
1

π
2

(−8, 0.75)  

 15. 

x

y

(1, 0)

1 2

−1

1

 (−5.854, −5.453)  (1, 0), (−1, π)
17. 

x
1−1−2−3−4

5

4

3

2

1

(−3, 4)

y  19. 

x

y

−2−4−6−8−10 2 4
−2

−4

−6

−8

−10

−12

2

(−5, −5    3 )

 (5, 2.214), (−5, 5.356)  (10, 
4π
3 ), (−10, 

π
3)

21. 

x

y

(   7, −     7 )

−1 1 2 3 4

−1

−2

−3

−4

1

 23. 

x

y

(4, 5)

−1 1 2 3 4 5 6
−1

1

2

3

4

5

6

 (√14, 
7π
4 ), (−√14, 

3π
4 )  (√41, 0.8961),

    (−√41, 4.0376)
25. r = 3 27. r = a
 

0

π
2

1 2

  

0
a

π
2

29. r = 8 csc θ 31. r =
−2

3 cos θ − sin θ
 

0

π
2

2 4 6

  

0
21

π
2

33. r = 9 csc2 θ cos θ 35. x2 + y2 = 16

 

0
21 3 5 74 6

π
2

  

x

y

−3 −2 −1 31 2

−2

−3

1

2

3

37. x2 + y2 − 3y = 0 39. √x2 + y2 = arctan 
y
x

 

x

y

−1−2 1 2

1

2

4

  

9

−6

−9

−12

3

6

9

12

x

y

41. x − 3 = 0 43. x2 − y = 0

 

2

1

3

21
x

y
  

x

y

−1−2−3−4 1 2 3 4

1

2

3

4

5

6

7

45. 

−9

−4

3

4  47. 

−3 3

3

−1

 0 ≤ θ < 2π   0 ≤ θ < 2π
49. 

−10

−5

5

5  51. 

−7 8

5

−5

 −π < θ < π   0 ≤ θ < 4π
53. 

−3 3

−2

2  

 0 ≤ θ <
π
2

55. (x − h)2 + (y − k)2 = h2 + k2

 Radius: √h2 + k2

 Center: (h, k)
57. (a) 

0
1 2

π
2    (b) 

0
1 2

π
2

 (c) 

0
1 2

π
2
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A100 Answers to Odd-Numbered Exercises

59. √17  61. About 5.6

63. 
dy
dx

=
−2 cos θ sin θ + 2 cos θ(1 − sin θ)
−2 cos θ cos θ − 2 sin θ(1 − sin θ)

 (2, 0): dy
dx

= −1

 (3, 
7π
6 ): 

dy
dx

 is undefined.

 (4, 
3π
2 ): 

dy
dx

= 0

65. (a) and (b) 67. (a) and (b)

 

−8

−4

4

4

  

−4

−1

5

5

 (c) 
dy
dx

= −1  (c) 
dy
dx

= −√3

69. Horizontal: (2, 
3π
2 ), (1

2
, 
π
6), (1

2
, 

5π
6 )

 Vertical: (3
2

, 
7π
6 ), (3

2
, 

11π
6 )

71. (5, 
π
2), (1, 

3π
2 )

73. 

0

π
2

1 2 3

 75. 

0

π
2

2 4 6

 θ = 0
77. 

0

π
2

4

 79. 

0
3

π
2

 θ =
π
6

, 
π
2

, 
5π
6

  θ = 0, 
π
2

81. 

0

π
2

4 12

 83. 

0
642 10

π
2

85. π
2

0
2

 87. 

0

π
2

2 4 6

 89. 

0

π
2

24 32

 91. 

0
1

π
2

 93. 

−6

−4

6

x = −1
4

 95. 

−3 3

−1

y = 2

3

 97. 

0

π
2

1 2

 99. (a)  To test for symmetry about the x-axis, replace (r, θ) 
by (r, −θ) or (−r, π − θ). If the substitution yields an 
equivalent equation, then the graph is symmetric about 
the x-axis.

  (b)  To test for symmetry about the y-axis, replace (r, θ) 
by (r, π − θ) or (−r, −θ). If the substitution yields an 
equivalent equation, then the graph is symmetric about 
the y-axis.

101. Proof

103. (a)  r = 2 − sin(θ −
π
4)  (b) r = 2 + cos θ

    = 2 −
√2(sin θ − cos θ)

2
  

−6 6

−4

4

   

−6 6

−4

4

  (c) r = 2 + sin θ  (d) r = 2 − cos θ
   

−6 6

−4

4   

−6 6

−4

4

105. (a) 

0
21

π
2   (b) π

2

0
21
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 Answers to Odd-Numbered Exercises A101

107. 

−6

−3

3

3  109. 

−3

−2

3

2

θ

ψ

  ψ =
π
2

   ψ = arctan 13 ≈ 18.4°

111. 

−20 22

−12

θ

ψ

16   113. True  115. True

  ψ =
π
3

, 60°

Section 10.5  (page 735)

  1.  Check that f  is continuous and either nonnegative or  
nonpositive on the interval of consideration.

  3. 8∫π�2

0
 sin2 θ dθ  5. 

1
2∫

3π�2

π�2
 (3 − 2 sin θ)2 dθ  7. 9π

  9. 
π
3

  11. 
π
16

  13. 
97π

4
− 60 ≈ 16.184  15. 

33π
2

 17. 4

 19. 

−1 4

−2

2  21. 

−3

−0.5

3

3.5

  
2π − 3√3

2
  

2π − 3√3
2

 23. 

−1 4

−2

2  25. 
−9

−10

9

2

  π + 3√3  9π + 27√3

 27. (1, 
π
2), (1, 

3π
2 ), (0, 0)

 29. (2 − √2
2

, 
3π
4 ), (2 + √2

2
, 

7π
4 ), (0, 0)

 31. (3
2

, 
π
6), (3

2
, 

5π
6 ), (0, 0)  33. (2, 4), (−2, −4)

 35. r = cos

−4 5

−5

θ

θr = 2 − 3 sin

1
 37. 

6−6

−4

4r = 2 θr = 4 sin 2

  (0, 0), (0.935, 0.363),  4
3 (4π − 3√3)

  (0.535, −1.006)
   The graphs reach the pole  

at different times (θ-values).

39. 

9−9

−6

6 r = −3 + 2 sin θ

r = 3 − 2 sinθ

 41. 

−6 6

−3

5

r = 2

r = 4 sin θ

 11π − 24  2
3 (4π − 3√3)

43. 

−2

−1.5

2.5

1.5

r = 1

r = 2 cos θ

 
π
3

+
√3
2

45. 
5πa2

4
  47. 

a2

2
(π − 2)

49. (a) (x2 + y2)3�2 = ax2

 (b) 

−6 6

−4

a = 4 a = 6

4    (c) 
15π

2

51.  The area enclosed by the function is 
πa2

4
 if n is odd and is 

 
πa2

2
 if n is even.

53. 
4π
3

  55. 4π   57. 8

59. 

2−1

−1

4  61. 

−0.5

−0.5

0.5

0.5

 About 4.16  About 0.71
63. 

−1

−1

2

1

 About 4.39

65. 36π   67. 
2π√1 + a2

1 + 4a2 (eπa − 2a)  69. 21.87

71. (a) 

5
0

π
2    (b) 0 ≤ θ < π

      (c) and (d) 25π

73.  Answers will vary. Sample answer: f (θ) = cos2 θ + 1, 
g(θ) = −3

2
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A102 Answers to Odd-Numbered Exercises

75. 40π2

77. (a) 16π
 (b)
 θ 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A 6.32 12.14 17.06 20.80 23.27 24.60 25.08

 (c) and (d) For 
1
4

 of area (4π ≈ 12.57): 0.42

  For 
1
2

 of area (8π ≈ 25.13): 1.57(π2)
  For 

3
4

 of area (12π ≈ 37.70): 2.73

 (e)  No; Answers will vary.
79. (a) 12

14

−12

−10

   The graph becomes larger and more spread out. The graph 
is reflected over the y-axis.

 (b) (anπ, nπ), where n = 1, 2, 3, .  .  .

 (c) About 21.26   (d) 
4

3π3

81. r = √2 cos θ

83. (a) r =
3 cos θ sin θ

cos3 θ + sin3 θ
 (b) 

1 2
0

π
2

 (c) 
3
2

Section 10.6  (page 743)

 1. (a) Hyperbola   (b) Parabola

 (c) Ellipse   (d) Hyperbola
 3. 

−4 8

−4

e = 1.5

e = 1.0

e = 0.5

4   5. 

−40

30−30

e = 0.25

e = 0.1

e = 0.5

e = 0.75

e = 0.9

5

 (a) Parabola  Ellipse
 (b) Ellipse   As e → 1−, the ellipse
 (c) Hyperbola    becomes more elliptical, and 

as e → 0+, it becomes more 
circular.

 7. c  8. f  9. a  10. e  11. b  12. d

13. e = 1 15. e = 2
 Distance = 1  Distance = 7

8

 Parabola  Hyperbola
 

0

π
2

1 2 3 4 5

   

0

π
2

1 2

17. e = 3
2 19. e = 1

2

 Distance = 2  Distance = 6
 Hyperbola  Ellipse

 

0

π
2

2 3 4 5 7 8

  

0
1 3

π
2

 21. e = 1
2 23. 

2−2

−2

1

 Distance = 50
 Ellipse
 

0

π
2

10 20 40

    Ellipse
    e = 1

2

25. 

−8

−15

7

15  27. 

−12 12

−8

8

 Parabola  Rotated 
π
3

 radian

 e = 1  counterclockwise.

29.  

−8 4

−3

5  31. r =
8

8 + 5 cos(θ +
π
6)

 Rotated 
π
6

 radian clockwise.

33. r =
3

1 − cos θ   35. r =
1

4 + sin θ

37. r =
8

3 + 4 cos θ   39. r =
2

1 − sin θ

41. r =
16

5 + 3 cos θ   43. r =
9

4 − 5 sin θ
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 Answers to Odd-Numbered Exercises A103

45.  No. The flatness of the ellipse does not depend on the distance 
between foci.

47. r =
4

2 + cos θ   49. Proof

51. r2 =
9

1 − (16�25) cos2 θ   53. r2 =
−16

1 − (25�9) cos2 θ
55. 10.88  57. 1.88

59. r =
7979.21

1 − 0.9372 cos θ , 11,015 mi

61. r =
149,558,278.0560
1 − 0.0167 cos θ

 Perihelion: 147,101,680 km
 Aphelion: 152,098,320 km

63. r =
4,494,426,033

1 − 0.0113 cos θ
 Perihelion: 4,444,206,500 km
 Aphelion: 4,545,793,500 km
65. Answers will vary. Sample answers:
 (a) 3.591 × 1018 km2; 9.322 yr
 (b)  α ≈ 0.361 + π; Larger angle with the smaller ray to  

generate an equal area
 (c)  Part (a): 1.583 × 109 km; 1.698 × 108 km�yr
  Part (b): 1.610 × 109 km; 1.727 × 108 km�yr
67. Proof

Review Exercises for Chapter 10  (page 746)

 1. e  2. c  3. b  4. d  5. a  6. f
 7. Circle 

x

y

(1, 4)

−2−4−6 4 6 8
−2

2

4

6

10

12 Center: (1, 4)
 Radius: 5

 9. Hyperbola 

6

4

2

−2−4−6
x

y

 Center: (−4, 3)
 Vertices: (−4 ± √2, 3)
 Foci: (−4 ± √5, 3)

 e =√5
2

 Asymptotes:

 y = 3 ±
√3

√2
(x + 4)

11. Circle 

21−1

1

−2

x

1
2

3
4

y

, − ))

 Center: (1
2, −3

4)
 Radius: 1

13. Parabola 

x

y

(−5, −1)−10−15 5

−5

5

10

15 Vertex: (−5, −1)
 Directrix: y = −4
 Focus: (−5, 2)

15. (y − 0)2 = 4(2)(x − 7)  17. 
x2

36
+

(y − 1)2

20
= 1

19. 
(x − 3)2

5
+

(y − 4)2

9
= 1  21. 

y2

64
−

x2

16
= 1

23. 
x2

49
−

(y + 1)2

32
= 1

25. (a) (0, 50)   (b) About 38,294.49
27. 

x

y

−2−4 2 4 6
−2

−4

−6

2

6

 29. 

x

y

−1−2 1 2 3 4 5
−1

−2

−3

−4

1

2

3

 x + 2y − 7 = 0  y = (x − 1)2 − 3, x ≥ 1
31. 

−2

−4

42−2−4

2

4

x

y  33. 

4

8

−2

−4

842−4

2

x

y

 x2 + y2 = 36  (x − 2)2 − (y − 3)2 = 1
35. x = t, y = 4t + 3; x = t + 1, y = 4t + 7
 (Solution is not unique.)
37. 

−7 8

−5

5

39. 
dy
dx

= −
5
6

, 
d2y
dx2 = 0

 At t = 3, 
dy
dx

= −
5
6

, 
d2y
dx2 = 0; Neither concave upward nor

 downward.

41. 
dy
dx

= −2t3, 
d2y
dx2 = 6t4

 At t = −2, 
dy
dx

= 16, 
d2y
dx2 = 96; Concave upward

43. 
dy
dx

= −e−2t, 
d2y
dx2 =

2
e3t

 At t = 1, 
dy
dx

= −
1
e2, 

d2y
dx2 =

2
e3; Concave upward
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A104 Answers to Odd-Numbered Exercises

45. 
dy
dx

= −cot θ, 
d2y
dx2 = −

1
10

 csc3 θ

 At θ =
π
4

, 
dy
dx

= −1, 
d2y
dx2 = −

√2
5

; Concave downward

47. (a) and (d) 
 

−3 3

−2

2

 (b) 
dx
dθ = −4, 

dy
dθ = 1, 

dy
dx

= −
1
4

   (c) y = −
1
4

x +
3√3

4
49. Horizontal: (5, 0)  51. Horizontal: (2, 2), (2, 0)
 Vertical: None Vertical: (4, 1), (0, 1)
53. 1

54 (1453�2 − 1) ≈ 32.315
55. (a) 25π    (b) 20π   57. A = 3π
59. 

0
21 3 4

π
2

35,  ( (

π
2  61. 

0

π
2

1
(   7, 3.25)

 (0, −5)  (−2.6302, −0.2863)
63. 

2 51

1

43

−2

−5

−1

−4

−3

(4, −4)

x

y  65. 
(−1, 3)

2

3

1

1 2 3
x

−1

−2

−3

−3 −2 −1

y

 (4√2, 
7π
4 ), (−4√2, 

3π
4 )  (√10, 1.89), (−√10, 5.03)

67. r = 5 69. r = 9 csc θ
 

0

π
2

2 4 6

  

0

π
2

2 4 6

71. r =
3

4 sin θ − cos θ  73. x2 + y2 − 6x = 0

 

0

π
2

1 2 3

  

x

y

1 2 3 4 5 7−1

−2

−3

−4

1

2

3

4

 75. x = −4 77. y = −x

  

x

y

−1−2−3−5 1
−1

−2

−3

1

2

3

  

x

y

−1−2−3 1 2 3
−1

−2

−3

1

2

3

 79. 

−9 9

6

−6

 81. 

−6 6

−4

4

  0 ≤ θ ≤ π   0 ≤ θ ≤ π

 83. Horizontal: (3
2

, 
2π
3 ), (3

2
, 

4π
3 )

  Vertical: (1
2

, 
π
3), (2, π), (1

2
, 

5π
3 )

 85. 

0

π
2

1 2 3 4

 87. Circle
  

0

π
2

2 4 8

  θ = 0, 
π
3

, 
2π
3

 89. Line 91. Limaçon
  

0
1

π
2

  

0
2 4

π
2

 93. Spiral 95. Lemniscate
  

5 1510
0

π
2   

0

π
2

1 2 3

 97. 
9π
20

  99. 
9π
2

101. (1 +
√2
2

, 
3π
4 ), (1 −

√2
2

, 
7π
4 ), (0, 0)
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 Answers to Odd-Numbered Exercises A105

103. 

−12

−6

6

6   105. 

−12

−6

6

6

  9π −
27√3

2
 9π + 27√3

107. 

−12 12

8

−8

  109. 
5π
2

  111. 4π2

  27π − 40
113. e = 1 115. e = 2

3

  Distance = 6   Distance = 3 
  Parabola   Ellipse
  

0
2 6 8

π
2    

0
2

π
2

117. e = 3
2 

2 3 4

π
2

0

  Distance = 4
3

  Hyperbola

119. r =
5

1 + cos θ   121. r =
9

1 + 3 sin θ

123. r =
4

1 + sin θ   125. r =
5

3 − 2 cos θ

P.S. Problem Solving  (page 749)

  1. (a) 

6

4

8

10

−2
642−4−6 −2

2

x

y

(4, 4)
1
4

−1, ))

  3. Proof

  (b) and (c) Proofs

 5. (a) y2 = x2(1 − x
1 + x)   (b) r = cos 2θ ∙ sec θ

 (c) 

1 2
0

π
2    (d) y = x, y = −x

 (e) (√5 − 1
2

, ±
√5 − 1

2
√−2 + √5)

 7. (a) 

Generated by Mathematica

   (b) Proof   (c) a; 2π

 9. A = 1
2ab  11. r2 = 2 cos 2θ

13. r =
d

√2
e((π�4)−θ), θ ≥ π

4
15. (a) r = 2a tan θ sin θ

 (b) x =
2at2

1 + t2

  y =
2at3

1 + t2

 (c) y2 =
x3

2a − x
17. 

6−6

−4

4

n = −5
 

n = −4

6−6

−4

4

 
n = −3

6−6

−4

4  

n = −2

6−6

−4

4

 

n = −1

6−6

−4

4  

n = 0
6−6

−4

4

 

n = 1

6−6

−4

4  

n = 2

6−6

−4

4

 

n = 3

6−6

−4

4  

n = 4

6−6

−4

4

 

n = 5

6−6

−4

4

  n = −1, −2, −3, −4, −5 produce “hearts”; n = 1, 2, 3, 4, 
5 produce “bells”
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Chapter 11
Section 11.1  (page 759)

 1.  Answers will vary. Sample answer: A scalar is a single real 
number, such as 2. A vector is a line segment having both

  direction and magnitude. The vector 〈√3, 1〉, given in  
component form, has a direction of π�6 and a magnitude of 2.

 3. (a) 〈4, 2〉
 (b) 

5432

1

1

3

2

4

5

x

v

(4, 2)

y

 5. u = v = 〈2, 4〉  7. u = v = 〈6, −5〉
 9. (a) and (d) 11. (a) and (d)
 

x
−1 1 2 3 4 5

−1

1

2

3

4

5 (3, 5)

(2, 0)

(5, 5)

v

y   

x

(8, 3)

(6, −1)

(−2, −4)

v

−2−4 2 4 8

−6

2

4

6

y

 (b) 〈3, 5〉  (b) 〈−2, −4〉
 (c) v = 3i + 5j  (c) v = −2i − 4j
13. (a) and (d) 15. (a) and (d)
 

64

6

4

2

2
x

v

(6, 6)

(0, 4)

(6, 2)

y   

21

3

2

−1−2
x

v

1
2

, 3( (

3
2

4
3

, ( (

5
3

−1, ( (

y

    (b) 〈−1, 53〉
 (b) 〈0, 4〉   (c) v = 4j  (c) v = −i + 5

3 j
17. (3, 5)  19. 4  21. 17  23. √26
25. (a) 〈6, 10〉 (b) 〈−9, −15〉
 

x

(6, 10)

(3, 5)

v 2v

y

−2 2 4 6 8 10
−2

2

4

6

8

10

  

x

(−9, −15)

(3, 5)

v

−3v

y

−3−6−9−12−15 3 6

−6

−9

−12

−15

3

6

 (c) 〈21
2 , 35

2 〉 (d) 〈2, 10
3 〉

 

x

(3, 5)

v

v

y

35
2

21
2

7
2

, ( (

−3 3 6 9 12 15 18
−3

3

6

9

12

15

18

  

x
−1 1 2 3 4 5

−1

1

2

3

4

5 (3, 5)

v
v

y

10
3

2
3

2, ( (

27. (a) 〈8
3, 6〉   (b) 〈6, −15〉

 (c) 〈−2, −14〉   (d) 〈18, −7〉
29. 

x

−u

y  31. 

x

y

−v

33. 

x
−v

u

u − v

y

35. 〈√17
17

, 
4√17

17 〉  37. 〈3√34
34

, 
5√34

34 〉
39. (a) √2   (b) √5  (c) 1   (d) 1   (e) 1   (f) 1

41. (a) 
√5
2

   (b) √13   (c) 
√85

2
   (d) 1   (e) 1   (f ) 1

43. 

x

y

u

u + v

v

−1
1 2 3 4 5 6 7

1

2

3

4

5

6

7

 �u� + �v� = √5 + √41 and �u + v� = √74
 √74 ≤ √5 + √41
45. 〈0, 6〉  47. 〈−√5, 2√5〉  49. 〈3, 0〉

51. 〈−√3, 1〉  53. 〈2 + 3√2
2

, 
3√2

2 〉
55. 〈2 cos 4 + cos 2, 2 sin 4 + sin 2〉
57. θ = 0°
59.  0; Vectors that start and end at the same point have a magnitude 

of 0.
61. a = 3, b = 1  63. a = −2, b = −4
65. a = −2

3, b = 5
3

67. (a) ±
1

√37
〈1, 6〉 69. (a) ±

1

√10
〈1, 3〉

 (b) ±
1

√37
〈6, −1〉  (b) ±

1

√10
〈3, −1〉

  

x

y

−2 2 4 6 8 10

2

4

6

8

10

(3, 9)

(a)

(b)

  

x

y

1 2

1

2
(a)

(b)(1, 1)
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71. (a) ±
1
5

〈−4, 3〉 

x

y

−1 1 2 3 4 5

1

2

3

4
(3, 4)

(a)
(b)

 (b) ±
1
5

〈3, 4〉

73. 〈−
√2
2

, 
√2
2 〉  75. 10.7°, 584.6 lb  77. 71.3°, 228.5 lb

79. Tension in cable CB: 1958.1 lb
 Tension in cable CA: 2638.2 lb
81. Horizontal: 1193.43 ft�sec
 Vertical: 125.43 ft�sec
83. 38.3° north of west, 882.9 km�h
85. False. Weight has direction.  87. True
89. True  91. True  93. False. �ai + bj� = √2∣a∣
95–97. Proofs  99. x2 + y2 = 25

Section 11.2  (page 767)
 1. x0 is directed distance to yz-plane.
 y0 is directed distance to xz-plane.
 z0 is directed distance to xy-plane.
 3. (a) Point   (b) Vertical line   (c) Plane
 5. 

x

y432

4

1
2

3

3

4
5
6

z

(2, 1, 3) (−1, 2, 1)

  7. 

x

y32

−3

1

4

1
2

3

3

2
1

−2

−3

z

(5, −2, 2)

(5, −2, −2)

 9. (−3, 4, 5)  11. (12, 0, 0)
13. One unit above the xy-plane
15. Three units behind the yz-plane
17. To the left of the xz-plane
19. Within three units of the xz-plane
21.  Three units below the xy-plane and below either Quadrant I  

or Quadrant III
23.  Above the xy-plane and above Quadrants II or IV or below the 

xy-plane and below Quadrants I or III
25. 3√2  27. 5  29. 7, 7√5, 14; Right triangle
31. √41, √41, √14; Isosceles triangle  33. (6, 4, 7)
35. (2, 6, 3)
37. (x − 7)2 + (y − 1)2 + (z + 2)2 = 1
39. (x − 3

2)2 + (y − 2)2 + (z − 1)2 = 21
4

41. (x + 7)2 + (y − 7)2 + (z − 6)2 = 36
43. (x − 1)2 + (y + 3)2 + (z + 4)2 = 25
 Center: (1, −3, −4)   Radius: 5
45. (x − 1

3)2 + (y + 1)2 + z2 = 1
 Center: (1

3, −1, 0)   Radius: 1

47. (a) 〈−2, 2, 2〉 49. (a) and (d)
 (b) v = −2i + 2j + 2k  

x

y4
2

−2

2

4

2

3

4

5

z

(−1, 2, 3)
(3, 3, 4)

(0, 0, 0)

(4, 1, 1)
v

 (c) 

x

y43
2

1
1

−3

−2

2
3

2

1

3

4

5

z

〈−2, 2, 2〉

    (b) 〈4, 1, 1〉
    (c) v = 4i + j + k
51. v = 〈1, −1, 6〉 53. v = 〈−4, 3, 2〉
 �v� = √38  �v� = √29

 u =
1

√38
〈1, −1, 6〉  u =

1

√29
〈−4, 3, 2〉

55. (3, 1, 8)
57. (a) 

x

y
21

1
−2

2
3

4

2

3

4

5

z

〈2, 4, 4〉

 (b) 

x

3
2

1

−3
−2

−2
−3

2
3

y

2

−2

−3

3

z

〈−1, −2, −2〉

 (c) 

x

1

−3
−2

−2
−3

2
3

y

2

−2

−3

3

z

3
2〈   , 3, 3〉

 (d) 

x

1
2

3

−3
−2

−2
−3

2
1

3
y

2

1

−2

−1

−3

3

z

〈0, 0, 0〉

59. 〈3, 0, 0〉  61. 〈21, 18, 15〉  63. a and b
65. a  67. Collinear  69. Not collinear

71.  AB
\

= 〈1, 2, 3〉, CD
\

= 〈1, 2, 3〉, BD
\

= 〈−2, 1, 1〉, 
AC

\

= 〈−2, 1, 1〉; Because AB
\

= CD
\

 and BD
\

= AC
\

,  
the given points form the vertices of a parallelogram.

73. √2  75. √34  77. √14
79. (a) 1

3 〈2, −1, 2〉   (b) −1
3 〈2, −1, 2〉

81. (a) 
2√2

5
i −

√2
2

j +
3√2
10

k

 (b) −
2√2

5
i +

√2
2

j −
3√2
10

k

83. 〈0, 
10

√2
, 

10

√2
〉  85. 〈1, −1, 

1
2〉

87. 

x

−2

−2
−1

2

1
y

2

1

−2

−1

z

〈0,     3, 1〉

〈0,     3, −1〉

   〈0, √3, ±1〉  89. (2, −1, 2)

91.  A sphere of radius 4 centered at (x1, y1, z1): 
(x − x1)2 + (y − y1)2 + (z − z1)2 = 16

93.  The set of points outside a sphere of radius 1 centered at the 
origin
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 95.  The terminal points of the vectors tu, u + tv, and su + tv 
are collinear.

  

u

u + tv su

su + tv

v

tv

 97. 
√3
3

〈1, 1, 1〉

 99. (a) T =
8L

√L2 − 182
, L > 18

  (b) 
L 20 25 30 35 40 45 50

T 18.4 11.5 10 9.3 9.0 8.7 8.6

  (c) 

0 100
0

30 L = 18

T = 8

  (d) Proof   (e) 30 in.

101. Tension in cable AB: 202.919 N
  Tension in cable AC: 157.909 N
  Tension in cable AD: 226.521 N
103. (x − 4

3)2 + (y − 3)2 + (z + 1
3)2 = 44

9

  Sphere; center: (4
3

, 3, −
1
3), radius: 

2√11
3

Section 11.3  (page 777)

  1. The vectors are orthogonal.
  3. (a) 17   (b) 25   (c) 26   (d) 〈−17, 85〉   (e) 51
  5. (a) −26   (b) 52   (c) 13   (d) 〈78, −52〉   (e) −78
  7. (a) 2   (b) 29   (c) 61   (d) 〈0, 12, 10〉   (e) 6
  9. (a) 1   (b) 6   (c) 2   (d) i − k   (e) 3

 11. (a) 
π
2

   (b) 90°  13. (a) 1.7127   (b) 98.1°

 15. (a) 1.0799   (b) 61.9°  17. (a) 2.0306   (b) 116.3°
 19. 20  21. Orthogonal  23. Neither  25. Orthogonal

 27. Right triangle; Answers will vary.
 29. Acute triangle; Answers will vary.

 31. cos α =
1
3

, α ≈ 70.5° 33. cos α =
7

√51
, α ≈ 11.4°

  cos β =
2
3

, β ≈ 48.2°  cos β =
1

√51
, β ≈ 82.0°

  cos γ =
2
3

, γ ≈ 48.2°  cos γ = −
1

√51
, γ ≈ 98.0°

 35. cos α = 0, α ≈ 90°

  cos β =
3

√13
, β ≈ 33.7°

  cos γ = −
2

√13
, γ ≈ 123.7°

 37. (a) 〈2, 8〉   (b) 〈4 ,−1〉  39. (a) 〈5
2, 12〉   (b) 〈−1

2, 52〉
 41. (a) 〈−2, 2, 2〉   (b) 〈2, 1, 1〉
 43. (a) 〈0, −3, −3〉   (b) 〈−9, 1, −1〉

45. You cannot add a vector to a scalar.
47. Yes. 49. $17,490.25; Total revenue

  � u ∙ v
�v�2 v � = � v ∙ u

�u�2 u �
  ∣u ∙ v∣ �v�

�v�2 = ∣v ∙ u∣ �u�
�u�2

  
1

�v�
=

1
�u�

  �u� = �v�
51. Answers will vary. Sample answer: 〈12, 2〉 and 〈−12, −2〉
53.  Answers will vary. Sample answer: 〈2, 0, 3〉 and 〈−2, 0, −3〉

55. arccos 
1

√3
≈ 54.7°

57. (a) 8335.1 lb   (b) 47,270.8 lb
59. 425 ft-lb  61. 2900.2 km-N
63.  False. For example, 〈1, 1〉 ∙ 〈2, 3〉 = 5 and 〈1, 1〉 ∙ 〈1, 4〉 = 5, 

but 〈2, 3〉 ≠ 〈1, 4〉.
65. (a) (0, 0), (1, 1)

 (b) To y = x2 at (1, 1): 〈±
√5
5

, ±
2√5

5 〉
  To y = x1�3 at (1, 1): 〈±

3√10
10

, ±
√10
10 〉

  To y = x2 at (0, 0): 〈±1, 0〉
  To y = x1�3 at (0, 0): 〈0, ±1〉
 (c) At (1, 1): θ = 45°
  At (0, 0): θ = 90°
67. (a) (−1, 0), (1, 0)

 (b) To y = 1 − x2 at (1, 0): 〈±
√5
5

, ∓
2√5

5 〉
  To y = x2 − 1 at (1, 0): 〈±

√5
5

, ±
2√5

5 〉
  To y = 1 − x2 at (−1, 0): 〈±

√5
5

, ±
2√5

5 〉
  To y = x2 − 1 at (−1, 0): 〈±

√5
5

, ∓
2√5

5 〉
 (c) At (1, 0): θ = 53.13°
  At (−1, 0): θ = 53.13°
69. Proof
71. (a) 

k

k k yx

z

(k, 0, k)

(k, k, 0)

(0, k, k)

 (b) k√2  (c) 60°  (d) 109.5°
73–75. Proofs

Section 11.4  (page 785)

 1. u × v is a vector that is perpendicular to both u and v.
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 3. −k 

x y

i

j

−k
1

1

1

−1

z
  5. −j 

x y

−1

i

k− j

z

1
1

1

−1

 7. (a) 20i + 10j − 16k   (b) −20i − 10j + 16k   (c) 0
 9. (a) 17i − 33j − 10k   (b) −17i + 33j + 10k   (c) 0
11. 〈0, 0, 6〉  13. 〈−2, 3, −1〉

15. 〈−
7

9√3
, −

5

9√3
,  

13

9√3
〉 or 〈 7

9√3
, 

5

9√3
, −

13

9√3
〉

17. 〈 3

√59
, 

7

√59
, 

1

√59
〉 or 〈−

3

√59
, −

7

√59
, −

1

√59
〉

19. 1  21. 6√5  23. 9√5  25. 11
2

27. 10 cos 40° ≈ 7.66 ft-lb
29. (a) F = −180(cos θ j + sin θk)
 (b) �AB

\

× F � = ∣225 sin θ + 180 cos θ∣
 (c) �AB

\

× F � = 225(1
2) + 180(√3

2 ) ≈ 268.38

 (d) θ = 141.34°
  AB

\

 and F are perpendicular.
 (e) 

0
0

180

400   From part (d), the zero is 
θ ≈ 141.34° when the  
vectors are parallel.

31. 1  33. 6  35. 2  37. 75
39. a = b = c = h and e = f = g
41. On the x-axis; The cross product has the form 〈k, 0, 0〉.
43.  False. The cross product of two vectors is not defined in a  

two-dimensional coordinate system.
45.  False. Let u = 〈1, 0, 0〉, v = 〈1, 0, 0〉, and w = 〈−1, 0, 0〉. 

Then u × v = u × w = 0, but v ≠ w.
47–55. Proofs

Section 11.5  (page 794)

 1.  Parametric equations: x = x1 + at, y = y1 + bt, z = z1 + ct

 Symmetric equations: 
x − x1

a
=

y − y1

b
=

z − z1

c
  You need a vector v = 〈a, b, c〉 parallel to the line and a point 

P(x1, y1, z1) on the line.
 3. Answers will vary. Sample answer: 3y − z = 5
 5. (a) Yes   (b) No   (c) Yes

 Parametric Symmetric Direction
 Equations (a) Equations (b) Numbers

 7. x = 3t 
x
3

= y =
x
5

 3, 1, 5

 y = t
 z = 5t

 9. x = −2 + 2t 
x + 2

2
=

y
4

=
z − 3
−2

 2, 4, −2

 y = 4t
 z = 3 − 2t

  Parametric Symmetric Direction
  Equations (a) Equations (b) Numbers

 11. x = 1 + 3t 
x − 1

3
=

y
−2

=
z − 1

1
 3, −2, 1

  y = −2t
  z = 1 + t

 13. x = 5 + 17t 
x − 5

17
=

y + 3
−11

=
z + 2
−9

 17, −11, −9

  y = −3 − 11t
  z = −2 − 9t
 15. x = 7 − 10t Not possible −10, 2, 0
  y = −2 + 2t
  z = 6
 17. x = 2 19. x = 2 + 3t 21. x = 5 + 2t
  y = 3 y = 3 + 2t y = −3 − t
  z = 4 + t z = 4 − t z = −4 + 3t
 23. x = 2 − t  25. P(3, −1, −2) 27. P(7, −6, −2)
  y = 1 + t  v = 〈−1, 2, 0〉 v = 〈4, 2, 1〉
  z = 2 + t
 29. Identical  31. Identical  33. (2, 3, 1), 55.5°
 35. Not intersecting  37. (a) Yes   (b) Yes   (c) No
 39. y − 3 = 0  41. 2x + 3y − z = 10
 43. 2x − y − 2z + 6 = 0  45. 3x − 19y − 2z = 0
 47. 4x − 3y + 4z = 10  49. z = 3  51. x + y + z = 5
 53. 7x + y − 11z = 5  55. y − z = −1  57. x − z = 0
 59. 9x − 3y + 2z − 21 = 0  61. Parallel  63. Identical
 65. (a) θ ≈ 65.91° 67. (a) θ ≈ 69.67°
  (b) x = 2  (b) x = 2 − 9t
   y = 1 + t  y = −1 − 5t
   z = 1 + 2t  z = 22t
 69. Orthogonal  71. Neither; 83.5°  73. Parallel
 75. 

−2

−2

1

2

(0, −2, 0)

y

x

1

2

1

z  77. 

yx

z

(0, 0, 6)

(6, 0, 0)
8

8

8

 79. 

x
y

6

6

4

6

4

z

(0, 0, 2)

(0, 6, 0)

(3, 0, 0)

 81. 

x

y−1

−4

3

3

2

z

(0, −4, 0)

(2, 0, 0)

4
3 ((0, 0, 

 83. The line lies in the plane.  85. Not intersecting

 87. 
6√14

7
  89. 

11√6
6

  91. 
2√26

13
  93. 

27√94
188

 95. 
√2533

17
  97. 

7√3
3

  99. 
√66

3
  101. Exactly 1

103.  Yes. Consider three points, two on one line and one on the 
second line. A unique plane contains all three points.
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105. (a)

Year 2009 2010 2011 2012 2013 2014

z (approx.) 18.93 19.46 20.31 21.10 21.58 22.62

   The approximations are close to the actual values.
  (b) An increase
107. (a) √70 in.
  (b) 

15
0

0

15   (c)  The distance is never zero.
     (d) 5 in.

109. (77
13, 48

13, −23
13)  111. x = 21t, y = 1 + 11t, z = 4 + 13t

113. True   115. True
117.  False. Plane 7x + y − 11z = 5 and plane 5x + 2y − 4z = 1 

are both perpendicular to plane 2x − 3y + z = 3 but are not 
parallel.

Section 11.6  (page 806)

  1.  Quadric surfaces are the three-dimensional analogs of conic 
sections.

  3.  The trace of a surface is the intersection of the surface with 
a plane. You find a trace by setting one variable equal to a 
constant, such as x = 0 or z = 2.

  5. c  6. e  7. f  8. b  9. d  10. a
 11. Right circular cylinder 13. Elliptic cylinder
  

x y4
7 6

4

z   

x
y

23
3

2

3

z

−3

 15. Hyperboloid of two sheets 17. Hyperboloid of one sheet
  

x

y

3

3
2

−3

z   

x y3

2

−2
−3

3

2

3

−3

−2

z

19. Ellipsoid 21. Elliptic cone
 

x
y2

2

2

−2

z   

x

y

1

1

3

−3

−1

z

23. Hyperbolic paraboloid 25. Elliptic paraboloid
 

x y2 23 3

3

z   

x
y3 4

2
1

−3

3

2

1

3

−3

−2

z

27.  There have to be two minus signs to have a hyperboloid of 
two sheets. The number of sheets is the same as the number of 
minus signs.

29.  No. See table on pages 800 and 801.
31. x2 + z2 = 25y2  33. x2 + y2 = 4z2�3

35. y2 + z2 =
4
x2  37. y = √2z (or x = √2z)

39. y = √5 − 8x2 (or z = √5 − 8x2 )  41. 
128π

3
43. (a) Major axis: 4√2 (b) Major axis: 8√2
  Minor axis: 4  Minor axis: 8
  Foci: (0, ±2, 2)  Foci: (0, ±4, 8)
45. x2 + z2 = 8y, elliptic paraboloid

47. 
x2

39632 +
y2

39632 +
z2

39502 = 1

49. x = at, y = −bt, z = 0;
 x = at, y = bt + ab2, z = 2abt + a2b2

51.  The Klein bottle does not have both an “inside” and an “outside.” 
It is formed by inserting the small open end through the side of 
the bottle and making it contiguous with the top of the bottle.

Section 11.7  (page 813)

 1.  The cylindrical coordinate system is an extension of the 
polar coordinate system. In this system, a point P in space is 
represented by an ordered triple (r, θ, z). (r, θ) is a polar  
representation of the projection of P in the xy-plane, and z is 
the directed distance from (r, θ) to P.

 3. (−7, 0, 5)  5. (3√2
2

, 
3√2

2
, 1)  7. (−2√3, −2, −3)

 9. (5, 
π
2

, 1)  11. (2√2, −
π
4

, −4)  13. (2, 
π
3

, 4)
15. z = 4  17. r2 − 2z2 = 5  19. r = sec θ tan θ
21. r2 sin2 θ = 10 − z2

23. x2 + y2 = 9 25. x − √3y = 0
 

x
y3 44 3

3

−3

2

z   

x

y

2 1

2

1

2

−2

−2

z
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27. x2 + y2 + z2 = 5 29. x2 + (y − 2)2 = 4
 

x y

3
3

3

−3

z   

x

y
4

5

3
2

1
1

2
3

z

−2−3

−3

−2

−1

1

3

31. (4, 0, 
π
2)  33. (4√2, 

2π
3

, 
π
4)  35. (4, 

π
6

, 
π
6)

37. (√6, √2, 2√2)  39. (0, 0, 12)
41. (0.915, 0.915, 4.830)  43. ρ = 2 csc ϕ csc θ
45. ρ = 7  47. ρ = 4 csc ϕ  49. tan2 ϕ = 2
51. x2 + y2 + z2 = 1 53. 3x2 + 3y2 − z2 = 0
 

x

z

y1

−1
−1

1

1

−1

  

x

y

2
1 1

2

2

−2
−1

−1

−1

−2

z

55. x2 + y2 + (z − 2)2 = 4 57. x2 + y2 = 1
 

x
y

3 3
2

1
2

5

4

3

2

−2 −3

z   

x y
1

2
1

2

1

2

−2

−2 −2

−1

z

59. (4, 
π
4

, 
π
2)  61. (6√2, 

π
2

, 
3π
4 )

63. (13, π, arccos 
5
13)  65. (10, 

π
6

, 0)
67. (3√3, −

π
6

, 3)  69. (4, 
7π
6

, 4√3)
71. d  72. e  73. c  74. a  75. f  76. b
77. Because of the restriction r ≥ 0
79. (a) r2 + z2 = 27   (b) ρ = 3√3
81. (a) r2 + (z − 1)2 = 1   (b) ρ = 2 cos ϕ

83. (a) r = 4 sin θ   (b) ρ =
4 sin θ
sin ϕ = 4 sin θ csc ϕ

85. (a) r2 =
9

cos2 θ − sin2 θ

 (b) ρ2 =
9 csc2 ϕ

cos2 θ − sin2 θ
87. 

x

y2
3

1

2 3

5

3

2

z  89. 

x y
a a

−a −a

a

z

 91. 

x

y

30°

z

a

 93. 

x

y

z

2

2

2

 95. Rectangular: 0 ≤ x ≤ 10, 0 ≤ y ≤ 10, 0 ≤ z ≤ 10
 97. Spherical: 4 ≤ ρ ≤ 6
 99. Cylindrical: r2 + z2 ≤ 9, r ≤ 3 cos θ, 0 ≤ θ ≤ π
101. False. See page 809.  103. Ellipse

Review Exercises for Chapter 11  (page 815)

  1. (a) u = 〈3, −1〉, v = 〈4, 2〉   (b) u = 3i − j, v = 4i + 2j
  (c) �u� = √10, �v� = 2√5   (d) 〈−5, 5〉
  3. v = 〈4, 4√3〉  5. (−5, 4, 0)  7. √22

  9. (x − 3)2 + (y + 2)2 + (z − 6)2 = 16
 11. (x − 2)2 + (y − 3)2 + z2 = 9
  Center: (2, 3, 0)   Radius: 3
 13. (a) and (d)

  

x

y
321

54
5

3

1
2
3

−2

−9
−10

−8

z

(2, −1, 3)

(4, 4, −7)
(2, 5, −10)

  (b) u = 〈2, 5, −10〉   (c) u = 2i + 5j − 10k

 15. 〈−8, 5, 1〉  17. Collinear  19. 
1

√38
〈2, 3, 5〉

 21. (a) u = 〈−1, 4, 0〉
   v = 〈−3, 0, 6〉
 (b) 3   (c) 45

 23. (a) 
π
12

   (b) 15°  25. Orthogonal

 27. (a) 〈12
5 , 16

5 〉   (b) 〈8
5, −6

5〉
 29. Answers will vary. Sample answer: 〈−6, 5, 0〉, 〈6, −5, 0〉
 31. (a) −9i + 26j − 7k   (b) 9i − 26j + 7k   (c) 0

 33. 〈 8

√377
, 

12

√377
, 

13

√377
〉 or 〈−

8

√377
, −

12

√377
, −

13

√377
〉

 35. 15 ft-lb
 37. (a) x = 3 + 6t, y = 11t, z = 2 + 4t

  (b) 
x − 3

6
=

y
11

=
z − 2

4
 39. x = −6, y = −8 + t, z = 2
 41. 27x + 4y + 32z + 33 = 0  43. x + 2y = 1  45. 8

7

 47. 
√35

7
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49. Plane 51. Plane
 

x

y

6

3

3
(0, 0, 2)

(6, 0, 0)

(0, 3, 0)

z   

x

y

6

2

2

z

53. Ellipsoid 55. Hyperboloid of two sheets
 

x

y

5
4

2

−2

−4

z   

x

y
5 5

2

−2

z

57. Cylinder 59. x2 + z2 = 2y
 

x y

z

2

2

−2

61. (a) (2√3, −
π
3

, −5)   (b) (√37, −
π
3

, arccos(−
5√37

37 ))
63. (−5, 0, 1)  65. (−2√2, 0, 2√2)
67. (a) r2 cos 2θ = 2z   (b) ρ = 2 sec 2θ cos ϕ csc2 ϕ

69. z = y2 + 3x 71. x2 + y2 − z2 = 0

 

4
yx

z

2
2

4

4

2

−2

−4

−4
−4

  

1
1

1

−1

x

−1

z

y

P.S. Problem Solving  (page 817)

 1–3. Proofs  5. (a) 
3√2

2
≈ 2.12   (b) √5 ≈ 2.24

 7. (a) 
π
2

   (b) 
1
2

(πabk)k

 (c) V = 1
2(πab)k2

  V = 1
2(area of base)height

 9. Proof
11. (a)

x

y

z

3

−3

2

−2

3

  (b)

x

y

z

3
2

1

−2

−2
−3

3
2

1

13. (a) Tension: 
2√3

3
≈ 1.1547 lb

  Magnitude of u: 
√3
3

≈ 0.5774 lb

 (b) T = sec θ, �u� = tan θ; Domain: 0° ≤ θ ≤ 90°

 (c) 
θ 0° 10° 20° 30°

T 1 1.0154 1.0642 1.1547

�u� 0 0.1763 0.3640 0.5774

θ 40° 50° 60°

T 1.3054 1.5557 2

�u� 0.8391 1.1918 1.7321

  (d) 

0 60
0

T

⎪⎪u⎪⎪

2.5

 (e) Both are increasing functions.
 (f ) lim

θ→π�2−
 T = ∞ and lim

θ→π�2−
 �u� = ∞

  Yes. As θ increases, both T and �u� increase.
15. 〈0, 0, cos α sin β − cos β sin α〉; Proof

17.  D = ∣PQ
\

∙ n∣
�n�

  = ∣w ∙ (u × v)∣
�u × v�

= ∣(u × v) ∙ w∣
�u × v�

= ∣u ∙ (v × w)∣
�u × v�

19. Proof

Chapter 12
Section 12.1  (page 825)

 1.  You can use a vector-valued function to trace the graph of a 
curve. Recall that the terminal point of the position vector r(t) 
coincides with a point on the curve.

 3. (−∞, −1) ∪ (−1, ∞)  5. (0, ∞)
 7. [0, ∞)  9. (−∞, ∞)
11. (a) 1

2i   (b) j   (c) 1
2 (s + 1)2i − sj

 (d) 1
2∆t(∆t + 4)i − ∆tj

13. r(t) = 5ti + 2tj + 2tk, 0 ≤ t ≤ 1
 x = 5t, y = 2t, z = 2t, 0 ≤ t ≤ 1
15. r(t) = (−3 + 2t)i + (−6 − 3t)j + (−1 − 7t)k, 0 ≤ t ≤ 1
 x = −3 + 2t, y = −6 − 3t, z = −1 − 7t, 0 ≤ t ≤ 1
17. t2(5t − 1); No, the dot product is a scalar.
19. b  20. c  21. d  22. a
23. 

x

y

−1−2−3−4 1 2 3 4

−2

1

2

3

4

 25. 

x
3 4 5

3
2

4
5

−1−4

−3
−2

y

21−2−5 −3

6
7

27. 

2 3−2−3

1

2

x

y  29. 

x
1296−6

−6

−3

−9

−12

−9−12

12

9

6

3

y
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31. 

x

y

(0, 6, 5)

(1, 2, 3)(2, −2, 1)

43 5 6

4

3

5

1

3

z  33. 

x

y
3

−3
3

7

z

35. 

x

y
3

−3

3

6

z  37. 

x y5

2

6

4

2

−2

−4

−6

2, 4, )) 16
3

−2, 4, − )) 16
3

z

39. 

yx

2
3

−2
−3

−1
−2

−3

−2

−3

−4

−5

1

z

 Parabola
41. 

yx

π2

π

2

−2
−2

2

z    (a)  The helix is translated two units back 
on the x-axis.

    (b)  The height of the helix increases at a 
greater rate.

    (c)  The orientation of the graph is 
reversed.

    (d)  The radius of the helix is increased 
from 2 to 6.

43. u(t) = 3t2i + (t − 1)j + (t + 2)k
45. u(t) = 3t2i + 2(t − 1)j + tk
47–53. Answers will vary.
55. 

(

x

y

5

1 2 3

−3

3
2

2, 2, 4− 2,     2, 4) ( )−

z

 r(t) = ti − tj + 2t2k
57. 

x

y3

−3

3

4

z

 r(t) = 2 sin ti + 2 cos tj + 4 sin2 tk

59. 

x

y3

−3

−3

3

3

z

 r(t) = (1 + sin t)i + √2 cos tj + (1 − sin t)k and
 r(t) = (1 + sin t)i − √2 cos tj + (1 − sin t)k
61. 

x

y

z

4
(2, 2, 0)

(0, 0, 2)

2
3

4

3

   r(t) = ti + tj + √4 − t2k

63. Let x = t, y = 2t cos t, and z = 2t sin t. Then
  y2 + z2 = (2t cos t)2 + (2t sin t)2

  = 4t2 cos2 t + 4t2 sin2 t
  = 4t2(cos2 t + sin2 t)
  = 4t2.
 Because x = t, y2 + z2 = 4x2.
 

x y

4

4

8

12

16

8
12

167 6 5

z

65. πi − j  67. 0  69. i + j + k
71. (−∞, −1

2), (−1
2, 0), (0, ∞)  73. [−1, 1]

75. (−
π
2

+ nπ, 
π
2

+ nπ), n is an integer.

77. It is a line; Answers will vary.

79. r(t) = { i + j,
−i + j,

     t ≥ 3
  t < 3

81. r(t) = cos ti + sin tj +
1
π tk, 0 ≤ t ≤ 4π

 

2

1

z

1

3

4

−1
−2

1
2

x

y

83–85. Proofs  87. Not necessarily  89. Yes; yes

Section 12.2  (page 834)

 1.  r′(t0) represents the vector that is tangent to the curve  
represented by r(t) at the point t0.
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 3. r′(t) = −2ti + j 5. r′(t) = −sin ti + cos tj

 
r(3) = −8i + 3j
r′(3) = −6i + j

  r(π2) = j

 
y

x
−4−8−12−16

−2

−4

2

4
r ′

r

(−8, 3)

  r′(π2) = −i

    

x

r

1

(0, 1)

y

r ′

 7. r′(t) = 〈et, 2e2t〉  

1 2 3

1

2

3

(1, 1)

y

x

r

r ′

 r(0) = i + j
 r′(0) = i + 2j

 9. r′(t) = −2 sin ti + 2 cos tj + k  

x y

)) 3π
2

2
1

2

−2

2π

πr

r′

0, −2, 

z

 r(3π
2 ) = −2j + (3π

2 )k

 r′(3π
2 ) = 2i + k

11. 4t3i − 5j  13. −9 sin t cos2 ti + 6 sin2 t cos tj
15. −e−ti + (5tet + 5et)k
17. 〈sin t + t cos t, cos t − t sin t, 1〉
19. (a) 3t2i + tj   (b) 6ti + j   (c) 18t3 + t
21. (a) −4 sin ti + 4 cos tj   (b) −4 cos ti − 4 sin tj   (c) 0

23. (a) ti − j + 1
2t2k   (b) i + tk   (c) 

t3

2
+ t

 (d) −ti − 1
2t2j + k

25. (a) 〈t cos t, t sin t, 1〉
 (b) 〈cos t − t sin t, sin t + t cos t, 0〉   (c) t
 (d) 〈−sin t − t cos t, cos t − t sin t, t2〉

27. (−∞, 0), (0, ∞)  29. (π2, 2π)
31. (−∞, −2), (−2, ∞)

33. (−
π
2

+ nπ, 
π
2

+ nπ), n is an integer

35. (a) i + 3j + 2tk   (b) −i + (9 − 2t)j + (6t − 3t2)k
 (c) 40ti + 15t2j + 20t3k   (d) 8t + 9t2 + 5t 4

 (e) 8t3i + (12t2 − 4t3)j + (3t2 − 24t)k
 (f ) 2i + 6j + 8tk
37. (a) 7t6   (b) 12t5i − 5t4j  39. t2i + tj + 9tk + C

41. ln∣t∣i + tj − 2
5t5�2k + C  43. ti + t4j +

5t

ln 5
 k + C

45. eti + tj + (t sin t + cos t)k + C

47. 4i +
1
2

j − k  49. 5i + 6j +
π
2

k

51. 2i + (e2 − 1)j − (e2 + 1)k
53. 2e2ti + 3(et − 1)j  55. 600√3ti + (−16t2 + 600t)j

57. 
2 − e−t2

2
i + (e−t − 2)j + (t + 1)k

59.  The three components of u are increasing functions of t at 
t = t0.

61–67. Proofs
69. (a) 

40
0

0

5    The curve is a cycloid.

 (b)  The maximum of �r′� is 2 and the minimum of �r′� is 0. 
The maximum and the minimum of �r′� are 1.

71. Proof  73. True

75.  False. Let r(t) = cos ti + sin tj + k, then 
d
dt

[�r(t)�] = 0, 
but �r′(t)� = 1.

Section 12.3  (page 842)

 1.  The direction of the velocity vector provides the direction 
of motion at time t and the magnitude of the velocity vector  
provides the speed of the object.

 3. (a) v(t) = 3i + j  5. (a) v(t) = 2ti + j
  �v(t)� = √10  �v(t)� = √4t2 + 1
  a(t) = 0 a(t) = 2i
 (b) v(1) = 3i + j  (b) v(2) = 4i + j
  a(1) = 0  a(2) = 2i
 (c) 

64

2

−2

−4

v

x
(3, 0)

y   (c) 

864

4

2

2

−4

−2

v

x

a
(4, 2)

y

 7. (a) v(t) = −2 sin ti + 2 cos tj (c) 

2,    2)(

3

3

−3

−3
x

v

a

y

  �v(t)� = 2
  a(t) = −2 cos ti − 2 sin tj

 (b) v(π4) = −√2 i + √2 j

  a(π4) = −√2 i − √2 j

 9. (a) v(t) = 〈1 − cos t, sin t〉  (c) 

(  , 2)
v

x
2

a

4

2

π

π

π

y

  �v(t)� = √2 − 2 cos t
  a(t) = 〈sin t, cos t〉
 (b) v(π) = 〈2, 0〉
  a(π) = 〈0, −1〉

11. (a) v(t) = i + 5j + 3k 13. (a) v(t) = i + 2tj + tk
  �v(t)� = √35  �v(t)� = √1 + 5t2

  a(t) = 0  a(t) = 2j + k
 (b) v(1) = i + 5j + 3k  (b) v(4) = i + 8j + 4k
  a(1) = 0  a(4) = 2j + k
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15. (a) v(t) = i − j −
t

√9 − t2
k

  �v(t)� =√18 − t2

9 − t2

  a(t) = −
9

(9 − t2)3�2 k

 (b) v(0) = i − j
  a(0) = −1

3k
17. (a) v(t) = 4i − 3 sin tj + 3 cos tk
  �v(t)� = 5
  a(t) = −3 cos tj − 3 sin tk
 (b) v(π) = 〈4, 0, −3〉
  a(π) = 〈0, 3, 0〉
19. (a) v(t) = (et cos t − et sin t)i + (et sin t + et cos t)j + etk
  �v(t)� = et√3
  a(t) = −2et sin ti + 2et cos tj + etk
 (b) v(0) = 〈1, 1, 1〉
  a(0) = 〈0, 2, 1〉
21. v(t) = t(i + j + k)

 r(t) =
t2

2
(i + j + k)

 r(2) = 2(i + j + k)

23. v(t) = (t2

2
+

9
2)j + (t2

2
−

1
2)k

 r(t) = (t3

6
+

9
2

t −
14
3 )j + (t3

6
−

1
2

t +
1
3)k

 r(2) =
17
3

j +
2
3

k

25. v(t) = −sin ti + cos tj + k
 r(t) = cos ti + sin tj + tk
 r(2) = (cos 2)i + (sin 2)j + 2k
27. 45.5 ft; The ball will clear the fence.
29. v0 = 40√6 ft�sec; 78 ft  31. Proof

33. (a) r(t) = (440
3  cos θ0)ti + [3 + (440

3  sin θ0)t − 16t2] j
 (b) 

5000
0

100

θ0 = 10 θ0 = 15

θ0 = 20 θ0 = 25

  The minimum angle appears to be θ0 = 20°.
 (c) θ0 ≈ 19.38°
35. (a) v0 = 28.78 ft�sec, θ = 58.28°   (b) v0 ≈ 32 ft�sec
37. 1.91°
39. (a) 

0
0

50

5   (b) 

0
0

300

15

  Maximum height: 2.1 ft   Maximum height: 10.0 ft
  Range: 46.6 ft   Range: 227.8 ft

 (c) 

0
0

200

40   (d) 

0
0

800

200

  Maximum height: 34.0 ft  Maximum height: 166.5 ft
  Range: 136.1 ft   Range: 666.1 ft
 (e) 

0
0

140

60   (f ) 

0
0

600

300

  Maximum height: 51.0 ft  Maximum height: 249.8 ft
  Range: 117.9 ft   Range: 576.9 ft
41. Maximum height: 129.1 m; Range: 886.3 m  43. Proof
45. v(t) = bω[(1 − cos ωt)i + sin ωtj]
 a(t) = bω2(sin ωti + cos ωtj)
 (a) �v(t)� = 0 when ωt = 0, 2π, 4π, .  .  . .
 (b) �v(t)� is maximum when ωt = π, 3π, .  .  . .
47. v(t) = −bω sin ωt i + bω cos ωtj
 v(t) ∙ r(t) = 0
49.  a(t) = −bω2(cos ωti + sin ωtj) = −ω2r(t); a(t) is a negative 

multiple of a unit vector from (0, 0) to (cos ωt, sin ωt), so a(t) 
is directed toward the origin.

51. 8√2 ft�sec
53.  The particle could be changing direction.
55.  This is true for uniform circular motion but not true for  

non-uniform circular motion.
57–59. Proofs  61. True
63.  False. Consider r(t) = 〈t2, −t2〉. Then v(t) = 〈2t, −2t〉 and 

�v(t)� = √8t2.

Section 12.4  (page 852)

 1.  The unit tangent vector points in the direction of motion.

 3. T(1) =
√2
2

(i + j)  5. T(π3) = −
√3
2

i +
1
2

j

 7. T(e) =
3ei − j

√9e2 + 1
≈ 0.9926i − 0.1217j

 9. T(0) =
√2
2

(i + k) 11. T(0) =
√2
2

( j + k)

 x = t  x = 1
 y = 0  y = 3t
 z = t  z = −4 + 3t

13. T(π4) =
1
2

〈−√2, √2, 0〉
 x = √2 − √2 t
 y = √2 + √2 t
 z = 4

15. N(2) =
√5
5

(−2i + j)

17. N(1) = −
√14
14

(i − 2j + 3k)

19. N(3π
4 ) =

√2
2

(i − j)
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21. r(2) = 2i + 1
2 j 23. r(2) = 5i − 4j

 T(2) =
√17
17

(4i − j)  T(2) =
i − 2j

√5

 N(2) =
√17
17

(i + 4j)   N(2) =
−2i − j

√5
, 

    perpendicular to T(2)
 

N

x
32

T

3

2

1

1

2, 1
2

y

))

  

−2−4−6 2 4 6

−4

−6

−8

2

x

(5, −4)

y

N T

25. aT = −√2  27. aT = −
7√5

5
  29. aT = √2eπ�2

 aN = √2 aN =
6√5

5
 aN = √2eπ�2

31. T(t) = −sin ωti + cos ωtj
 N(t) = −cos ωt i − sin ωt j
 aT = 0
 aN = aω2

33. �v(t)� = aω; The speed is constant because aT = 0.

35. aT is undefined. 37. aT =
5√6

6

 aN is undefined.  aN =
√30

6
39. aT = √3
 aN = √2
41. The particle’s motion is in a straight line.
43. v(t) = r′(t) = 3i + 4j
 �v(t)� = √9 + 16 = 5
 a(t) = v′(t) = 0

 T(t) =
v(t)

�v(t)�
=

3
5

i +
4
5

j

 T′(t) = 0 ⇒ N(t) does not exist.
 The path is a line. The speed is constant (5).

45. (a) t = 1
2: aT =

√2π2

2
, aN =

√2π2

2
  t = 1: aT = 0, aN = π2

  t = 3
2: aT = −

√2π2

2
, aN =

√2π2

2
 (b) t = 1

2: Increasing because aT > 0.

  t = 1: Maximum because aT = 0.

  t = 3
2: Decreasing because aT < 0.

47. T(π2) =
√17
17

(−4i + k) 49. T(π4) =
√2
2

( j − k)

 N(π2) = −j  N(π4) = −
√2
2

( j + k)

 B(π2) =
√17
17

(i + 4k)  B(π4) = −i

51. T(π3) =
√5
5

(i − √3 j + k)

 N(π3) = −
1
2

(√3 i + j)

 B(π3) =
√5
10

(i − √3j − 4k)

53. N(t) =
1

√16t2 + 9
(−4ti + 3j)

55. N(t) =
1

√5t2 + 25
(−ti − 2tj + 5k)

57. aT =
−32(v0 sin θ − 32t)

√v0
2 cos2 θ + (v0 sin θ − 32t)2

 aN =
32v0 cos θ

√v0
2 cos2 θ + (v0 sin θ − 32t)2

 At maximum height, aT = 0 and aN = 32.
59. (a) r(t) = 60√3ti + (5 + 60t − 16t2)j
 (b) 

0
0

400

70

  Maximum height ≈ 61.245 ft
  Range ≈ 398.186 ft
 (c) v(t) = 60√3i + (60 − 32t)j
  �v(t)� = 8√16t2 − 60t + 225
  a(t) = −32j
 (d) 

t 2.0 2.5 3.0

Speed 104 105.83 109.98

t 0.5 1.0 1.5

Speed 112.85 107.63 104.61

 (e) 

0

−20

4

40

aN

aT

    The speed is decreasing when 
aT and aN have opposite signs.

61. (a) 4√625π2 + 1 ≈ 314 mi�h 
 (b) aT = 0, aN = 1000π2

  aT = 0 because the speed is constant.
63. (a) The centripetal component is quadrupled.
 (b) The centripetal component is halved.
65. 4.74 mi�sec  67. 4.67 mi�sec
69.  False. These vectors are perpendicular for an object traveling 

at a constant speed but not for an object traveling at a variable 
speed.

71. (a) and (b) Proofs  73–75. Proofs

Section 12.5  (page 864)

 1. The curve bends more sharply at Q than at P.
 3. y

x
6 9

−3

−6

3

(0, 0)

(9, −3)

  5. y

x
(0, 0)

(1, 1)

1

1

 3√10  
13√13 − 8

27
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 7. 

x
a

a

−a

−a

y    6a

 9. 362.9 ft

11. z

x

y

(0, 0, 0)
(−1, 4, 3)

1
1

2

−2
−3

3 −1

3

2

4

−2

2
3

4
5

 13. 

x

y

(6  , 0, −1)

(0, −1, 0)

π
21

18
15

12
9

6

−12

−9

−6

−3

6

6

−6
−9

−12

9

z

 √26  
3√17π

2
15. 

x
y

(a, 0, 2  b)
2 b

b

(a, 0, 0)

π
π

π

z    2π√a2 + b2

17. (a) 2√21 ≈ 9.165   (b) 9.529
 (c) Increase the number of line segments.   (d) 9.571

19. 0  21. 
1
4

  23. 0  25. 
√2
2

  27. 1  29. 
1
4

31. 
1
a

  33. 
√5

(1 + 5t2)3�2  35. 
3
25

  37. 
12
125

39. 
7√26
676

  41. K = 0, 
1
K

 is undefined.

43. K =
10

1013�2, 
1
K

=
1013�2

10
  45. K = 4, 

1
K

=
1
4

47. K =
12

1453�2, 
1
K

=
1453�2

12
  49. (a) (1, 3)  (b) 0

51. (a) K →∞ as x → 0 (No maximum)   (b) 0

53. (a) ( 1

√2
, −

ln 2
2 )   (b) 0  55. (0, 1)

57. (π + 2nπ, 0)  59. c = ±√2

61. (a) K =
2∣6x2 − 1∣

(16x6 − 16x4 + 4x2 + 1)3�2

 (b) x = 0: x2 + ( y +
1
2)

2

=
1
4

 

−3 3

−2

f

2

  x = 1: x2 + ( y −
1
2)

2

=
5
4

 (c) 

3−3

−2

5

   The curvature tends to be greatest near the extrema of the 
function and decreases as x → ±∞. However, f  and K do 
not have the same critical numbers.

  Critical numbers of f : x = 0, ±
√2
2

≈ ±0.7071

  Critical numbers of K: x = 0, ±0.7647, ±0.4082
63. a = 1

4, b = 2
 

2

4

−4

−2−4 2 4
x

y1 =    x(2 − x) 1
4

P

y

y2 = 
x

x + 2

65. (a) 12.25 units   (b) 1
2  67–69. Proofs

71. (a) 0   (b) 0  73. 1
4  75. Proof

77. K =
1
4a ∣csc 

θ
2 ∣

 Minimum: K =
1
4a

 There is no maximum.
79. 3327.5 lb  81. Proof
83. False. See Exploration on page 855.
85. True  87–93. Proofs

Review Exercises for Chapter 12  (page 867)

 1. (a) All reals except 
π
2

+ nπ, n is an integer.

 (b) Continuous except at t =
π
2

+ nπ, n is an integer.

 3. (a) [3, ∞)   (b) Continuous for all t ≥ 3
 5. (a) i − √2k   (b) −3i + 4j
 (c) (2c − 1)i + (c − 1)2j − √c + 1k
 (d) 2∆t i + ∆t(∆t + 2)j − (√∆t + 3 − √3)k
 7. r(t) = (3 − t)i − 2tj + (5 − 2t)k, 0 ≤ t ≤ 1
 x = 3 − t, y = −2t, z = 5 − 2t, 0 ≤ t ≤ 1
 9. y

x
−1−2−4 1 2 4

−2

−4

1

2

4

 11. 

x

y

(2, 2, 2)

(0, −4, −2)

(1, −1, 0)

43

4

3

−2

−2
−3

−2
−5

−3

−4

2
3

4

z

13. r(t) = ti + (−3
4t + 3)j 15. 

x y

2
3

4

−3
−4 2

4

12

3
4

z

    x = t, y = 2, z = t2 + 4
17. ln 3j − 1

3k
19. (a) (2t + 4)i − 6tj 21. (a) 6t2i + 4j − 2tk
 (b) 2i − 6j  (b) 12ti − 2k
 (c) 40t + 8  (c) 72t3 + 4t
    (d) −8i − 12t2j − 48tk
23. (−∞, 1), (1, ∞)

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A118 Answers to Odd-Numbered Exercises

25. (a) 3i + j   (b) −5i + (2t − 2)j + 2t2k
 (c) 18ti + (6t − 3)j   (d) 4t + 3t2

 (e) (8
3t3 − 2t2)i − 8t3j + (9t2 − 2t + 1)k

 (f) 2i + 8tj + 16t2k

27. 
1
3

t3i +
5
2

t2j + 2t4k + C  29. 2t3�2i + 2 ln∣t∣j + tk + C

31. 32
3 j  33. 2(e − 1)i − 8j − 2k

35. r(t) = (t2 + 1)i + (et + 2)j − (e−t + 4)k
37. (a) v(t) = 4i + 3t2j − k
  �v(t)� = √17 + 9t4

  a(t) = 6tj
 (b) v(1) = 4i + 3j − k
  a(1) = 6j
39. (a) v(t) = 〈−3 cos2 t sin t, 3 sin2 t cos t, 3〉
  �v(t)� = 3√sin2 t cos2 t + 1
  a(t) = 〈3 cos t(2 sin2 t − cos2t), 3 sin t(2 cos2 t − sin2 t), 0〉
 (b) v(π) = 〈0, 0. 3〉
  a(π) = 〈3, 0, 0〉
41. 11.67 ft; The ball will clear the fence.

43. T(2) =
3i − 2j

√13

45. T(0) =
2i − 3k

√13
; x = 1 + 2t, y = 1, z = −3t

47. N(1) = −
3√10

10
i +

√10
10

j  49. N(π4) = −j

51. aT = −
2√13
585

 53. aT = 0

 aN =
4√13

65
  aN = 1

55. 

2−2−4

−4

2

−6

−8

−10

−12

−14

−16

4 6 8 10 12 14
x

y

(0, 0)

(10, −15)

 57. y

x

(0, 1) (2, 1)

−1 1 2 3

−1

1

2

3

 5√13  2
59. 

x
y

6 8

2 4

10

2

2

6

4

8

10

12

z

(0, 0, 0)

(−9, 6, 12)  61. 

x

y

z

π

4

468

6
8

(8, 0, 0)

0, 8, 
2

π
2

))

    
√65π

2
 

3√29

63. 0  65. 
2√5

(4 + 5t2)3�2  67. 
√2
3

69. K =
1

263�2, 
1
K

= 26√26  71. K =
√2
4

, r = 2√2

73. 2016.7 lb

P.S. Problem Solving  (page 869)

 1. (a) a   (b) πa   (c) K = πa
 3. Initial speed: 447.21 ft�sec; θ ≈ 63.43°  5–7. Proofs

 9. Unit tangent: 〈−4
5, 0, 35〉

 Principal unit normal: 〈0, −1, 0〉
 Binormal: 〈3

5, 0, 45〉
 

x

y

z

π3

12
3

4 4

π6 T

T

B

B

N

N

11. (a) and (b) Proofs
13. (a) 

−3 3

−2

2    (b) 6.766

 (c) K =
π(π2t2 + 2)
(π2t2 + 1)3�2

  K(0) = 2π

  K(1) =
π(π2 + 2)
(π2 + 1)3�2 ≈ 1.04

  K(2) ≈ 0.51
 (d) 

0 5
0

5    (e) lim
t→∞

 K = 0

 (f )  As t →∞, the graph spirals outward and the curvature 
decreases.

Chapter 13
Section 13.1  (page 880)

 1. There is not a unique value of z for each ordered pair.
 3. z is a function of x and y.  5. z is a function of x and y.
 7. z is not a function of x and y.
 9. (a) 1   (b) 1   (c) −17 
 (d) 9 − y   (e) 2x − 1   (f ) 13 − t
11. (a) −1   (b) 0   (c) xe3   (d) te−y

13. (a) 3   (b) 2   (c) 
16
t

   (d) −
6
5

15. (a) √2   (b) 3 sin 1   (c) 0   (d) 4
17. (a) −4   (b) −6   (c) −25

4    (d) 9
4

19. (a) 2, ∆x ≠ 0   (b) 2y + ∆y, ∆y ≠ 0
21. Domain: {(x, y): x is any real number, y is any real number}
 Range: all real numbers
23. Domain: {(x, y): y ≥ 0}
 Range: all real numbers
25. Domain: {(x, y): x ≠ 0, y ≠ 0}
 Range: all real numbers
27. Domain: {(x, y): x2 + y2 ≤ 4}
 Range: 0 ≤ z ≤ 2
29. Domain: {(x, y): −1 ≤ x + y ≤ 1}
 Range: 0 ≤ z ≤ π
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31. Domain: {(x, y): y < −x + 5}
 Range: all real numbers
33. (a) (20, 0, 0)   (b) (−15, 10, 20)
 (c) (20, 15, 25)   (d) (20, 20, 0)
35. Plane 37.  Cylinder with rulings parallel 

to the x-axis
 

x

y4
2 3

1
3

5

2
1

2

3

5

z   

x

y2 3
1

4

4

5

z

39. Paraboloid 41.  Cylinder with rulings parallel 
to the y-axis

 

x

y22
−2

1

z   

x

y44

2

4

6

8

z

43. 

x

y

z  45. 

x

y

z

47. c  48. d  49. b  50. a
51. Lines: x + y = c 53. Ellipses: x2 + 4y2 = c
 

4

4

2

2

−2

−2
x

c = −1 c = 0

c = 2

c = 4

y   [except x2 + 4y2 = 0 is the
    point (0, 0)]
    

c = 0
c = 1

c = 2
c = 3

c = 4

x

y

2

−2 2

−2

55. Hyperbolas: xy = c 57. Circles passing through 
 

1

1

−1

−1
x

c = 6
c = 5
c = 4
c = 3
c = 2
c = 1

c = −1
c = −2
c = −3
c = −4
c = −5
c = −6

y   (0, 0)

    Centered at ( 1
2c

, 0)
    

x
2

2
c = 1

c = −1

c = −2

c = 2

y
1
2

−c =

1
2

c =

3
2

c =

3
2

−c =

59. 

−9

−6

9

6  61. 

−6

−4

6

4

63.  Yes; The definition of a function of two variables requires that 
z be unique for each ordered pair (x, y) in the domain.

65. f (x, y) =
x
y
 (The level curves are the lines y =

x
c
.)

67.  The surface may be shaped like a saddle. For example, let 
f (x, y) = xy. The graph is not unique because any vertical 
translation will produce the same level curves.

69. 
Inflation Rate

Tax Rate 0 0.03 0.05

0 $1790.85 $1332.56 $1099.43

0.28 $1526.43 $1135.80 $937.09

0.35 $1466.07 $1090.90 $900.04

71. Plane 73. Sphere
 

x

y2

−1
−2

1

2

1

2

1

z
  

x
y

−4

−4

4

44

z

75. Elliptic cone
 

x
y

−2

−2

2

212

z

77. (a) 243 board-ft   (b) 507 board-ft
79. 

30

30

y

x

−30

c = 600
c = 500
c = 400

c = 300
c = 200
c = 100
c = 0

−30

  81. 36,661 units
   83. Proof

85. (a) k =
520
3

 (b) P =
520T
3V

  The level curves are lines.
87. (a) C   (b) A   (c) B
89. C = 4.50xy + 5.00(xz + yz)  91. False. Let f (x, y) = 4.
93. False. The equation of a sphere is not a function.
95. Putnam Problem A1, 2008
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Section 13.2  (page 891)

 1. As x approaches −1 and y approaches 3, z approaches 1.
 3–5. Proofs  7. 9  9. −20  11. 7, continuous
13. e2, continuous  15. 0, continuous for y ≠ 0
17. 1

2, continuous except at (0, 0)  19. −1, continuous
21. 0, continuous for xy ≠ 1, ∣xy∣ ≤ 1
23. 2√2, continuous for x + y + z ≥ 0  25. 0
27. Limit does not exist.  29. Limit does not exist.
31. Limit does not exist.  33. 0
35. Limit does not exist.
37.  No. The existence of f (2, 3) has no bearing on the existence of 

the limit as (x, y) → (2, 3).
39. lim

x→0
 f (x, 0) = 0 if f (x, 0) exists.  41. Continuous, 1

43. 
(x, y) (1, 0) (0.5, 0) (0.1, 0) (0.01, 0) (0.001, 0)

f (x, y) 0 0 0 0 0

 y = 0: 0
 (x, y) (1, 1) (0.5, 0.5) (0.1, 0.1)

f (x, y) 1
2

1
2

1
2

(x, y) (0.01, 0.01) (0.001, 0.001)

f (x, y) 1
2

1
2

 y = x: 1
2

 Limit does not exist.
 Continuous except at (0, 0)
45. 

(x, y) (1, 0) (0.5, 0) (0.1, 0) (0.01, 0) (0.001, 0)

f (x, y) 0 0 0 0 0

 y = 0: 0
 

(x, y) (0.01, 0.01) (0.001, 0.001)

f (x, y) 50 500

(x, y) (1, 1) (0.5, 0.5) (0.1, 0.1)

f (x, y) 1
2 1 5

 y = x: ∞
 The limit does not exist.
 Continuous except at (0, 0)

47. (a) 
1 + a2

a
, a ≠ 0   (b) Limit does not exist.

 (c) No; Different paths result in different limits.
49.  f  is continuous. g is continuous except at (0, 0). g has a removable 

discontinuity at (0, 0).
51. 0  53. 0  55. 1  57. 1  59. 0
61. Continuous except at (0, 0, 0)  63. Continuous
65. Continuous  67. Continuous

69. Continuous for y ≠
2x
3

  71. (a) 2x   (b) −4

73. (a) 
1
y
   (b) −

x
y2  75. (a) 3 + y   (b) x − 2

77. 0

79.  True

81. False. Let f (x, y) = {ln(x2 + y2),
0,

   x ≠ 0, y ≠ 0
   x = 0, y = 0

        .

83. 
π
2

  85. Proof

Section 13.3  (page 900)

 1. zx, fx(x, y), ∂z
∂x

 3. (a)  Differentiate first with respect to y, then with respect to x, 
and last with respect to z.

 (b)  Differentiate first with respect to z and then with respect to x.
 5.  No. Because you are finding the partial derivative with respect 

to x, you consider y to be constant. So, the denominator is  
considered a constant and does not contain any variables.

 7.  No. Because you are finding the partial derivative with respect 
to y, you consider x to be constant. So, the denominator is  
considered a constant and does not contain any variables.

 9.  Yes. Because you are finding the partial derivative with 
respect to x, you consider y to be constant. So, both the 
numerator and denominator contain variables.

11. fx(x, y) = 2
fy(x, y) = −5

 13. 
∂z
∂x

= 6 − 2xy

    
∂z
∂y

= −x2 + 16y

15. 
∂z
∂x

= √y 17. 
∂z
∂x

= yexy

 
∂z
∂y

=
x

2√y
  

∂z
∂y

= xexy

19. 
∂z
∂x

= 2xe2y 21. 
∂z
∂x

=
1
x

 
∂z
∂y

= 2x2e2y  
∂z
∂y

= −
1
y

23. 
∂z
∂x

=
2x

x2 + y2 25. 
∂z
∂x

=
x3 − 3y3

x2y

 
∂z
∂y

=
2y

x2 + y2  
∂z
∂y

=
−x3 + 12y3

2xy2

27. hx(x, y) = −2xe−(x2+y2) 29. fx(x, y) =
x

√x2 + y2

 hy(x, y) = −2ye−(x2+y2)  fy(x, y) =
y

√x2 + y2

31. 
∂z
∂x

= −y sin xy 33. 
∂z
∂x

= 2 sec2(2x − y)

 
∂z
∂y

= −x sin xy  
∂z
∂y

= −sec2(2x − y)

35. 
∂z
∂x

= 8yey cos 8xy

 
∂z
∂y

= ey(8x cos 8xy + sin 8xy)

37. 
∂z
∂x

= 2 cosh(2x + 3y)

 
∂z
∂y

= 3 cosh(2x + 3y)

39. fx(x, y) = 1 − x2 41. fx(x, y) = 3
 fy(x, y) = y2 − 1  fy(x, y) = 2
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 Answers to Odd-Numbered Exercises A121

43. fx(x, y) =
1

2√x + y
 45. fx = 12

 fy(x, y) =
1

2√x + y
  fy = 12

47. fx = −1 49. fx = 1
4

 fy = 1
2  fy = 1

4

51. fx = −
1
4

 53. 
∂z
∂x

(1, 2) = 2

 fy =
1
4

  
∂z
∂y

(1, 2) = 1

55. gx(1, 1) = −2
 gy(1, 1) = −2
57. Hx(x, y, z) = cos(x + 2y + 3z)
 Hy(x, y, z) = 2 cos(x + 2y + 3z)
 Hz(x, y, z) = 3 cos(x + 2y + 3z)

59. 
∂w
∂x

=
x

√x2 + y2 + z2
 61. Fx(x, y, z) =

x
x2 + y2 + z2

 
∂w
∂y

=
y

√x2 + y2 + z2
  Fy(x, y, z) =

y
x2 + y2 + z2

 
∂w
∂z

=
z

√x2 + y2 + z2
  Fz(x, y, z) =

z
x2 + y2 + z2

63. fx = 3, fy = 1, fz = 2  65. fx = 1, fy = 0, fz = 0
67. fx = 4, fy = 24, fz = 0  69. x = 2, y = −2
71. x = −6, y = 4  73. x = 1, y = 1  75. x = 0, y = 0

77. 
∂2z
∂x2 = 0 79. 

∂2z
∂x2 = 12x2

 
∂2z
∂y2 = 6x  

∂2z
∂y2 = 18y

 
∂2z

∂y∂x
=

∂2z
∂x∂y

= 6y  
∂2z

∂y∂x
=

∂2z
∂x∂y

= −2

81. 
∂2z
∂x2 =

y2

(x2 + y2)3�2  83. 
∂2z
∂x2 = ex tan y

 
∂2z
∂y2 =

x2

(x2 + y2)3�2   
∂2z
∂y2 = 2ex sec2 y tan y

 
∂2z

∂y∂x
=

∂2z
∂x∂y

=
−xy

(x2 + y2)3�2   
∂2z

∂y∂x
=

∂2z
∂x∂y

= ex sec2 y

85. 
∂2z
∂x2 = −y2 cos xy

 
∂2z
∂y2 = −x2 cos xy

 
∂2z

∂y∂x
=

∂2z
∂x∂y

= −xy cos xy − sin xy

87. 
∂z
∂x

= sec y

 
∂z
∂y

= x sec y tan y

 
∂2z
∂x2 = 0

 
∂2z
∂y2 = x sec y(sec2 y + tan2 y)

 
∂2z

∂y∂x
=

∂2z
∂x∂y

= sec y tan y

  No values of x and y exist such that fx(x, y) = fy(x, y) = 0.

 89. 
∂z
∂x

=
y2 − x2

x(x2 + y2)

  
∂z
∂y

=
−2y

x2 + y2

  
∂2z
∂x2 =

x4 − 4x2y2 − y4

x2(x2 + y2)2

  
∂2z
∂y2 =

2(y2 − x2)
(x2 + y2)2

  
∂2z

∂y∂x
=

∂2z
∂x∂y

=
4xy

(x2 + y2)2

  No values of x and y exist such that fx(x, y) = fy(x, y) = 0.
 91. fxyy(x, y, z) = fyxy(x, y, z) = fyyx(x, y, z) = 0
 93. fxyy(x, y, z) = fyxy(x, y, z) = fyyx(x, y, z) = z2e−x sin yz

 95. 
∂2z
∂x2 +

∂2z
∂y2 = 0 + 0 = 0

 97. 
∂2z
∂x2 +

∂2z
∂y2 = ex sin y − ex sin y = 0

 99. 
∂2z
∂t2 = −c2 sin(x − ct) = c2(∂2z

∂x2)
101. 

∂2z
∂t2 =

−c2

(x + ct)2 = c2(∂2z
∂x2)

103. 
∂z
∂t

=
−e−t cos x

c
= c2(∂2z

∂x2)   105. Proof

107. Yes; f (x, y) = cos(3x − 2y)
109. No. Let z = x + y + 1.
111. 

y

x

2

4

4
2

4

z

113.  Dollars�yr; negative; You expect the influence that age has 
on the cost of the car to be negative.

115. (a) √2   (b) 5
2  117. (a) 72   (b) 72

119. IQM =
100
C

, IQM(12, 10) = 10

   IQ increases at a rate of 10 points per year of mental age 
when the mental age is 12 and the chronological age is 10.

  IQC = −
100M

C2 , IQC(12, 10) = −12

   IQ decreases at a rate of 12 points per year of chronological 
age when the mental age is 12 and the chronological age is 10.

121.  An increase in either the charge for food and housing or the 
tuition will cause a decrease in the number of applicants.

123. 
∂T
∂x

= −2.4°�m, 
∂T
∂y

= −9°�m

125. T =
PV
nR

⇒ ∂T
∂P

=
v

nR

  P =
nRT

V
⇒ ∂P

∂V
=

−nRT
V 2

  V =
nRT

P
⇒ ∂V

∂T
=

nR
P

  
∂T
∂P

∙ ∂P
∂V

∙ ∂V
∂T

= −
nRT
VP

= −
nRT
nRT

= −1
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A122 Answers to Odd-Numbered Exercises

127. (a) 
∂z
∂x

= 0.23, 
∂z
∂y

= 0.14

  (b)  As the expenditures on amusement parks and  
campgrounds (x) increase, the expenditures on spectator 
sports (z) increase. As the expenditures on live entertainment 
( y) increase, the expenditures on spectator sports (z) also 
increase.

129. (a) fx(x, y) =
y(x4 + 4x2y2 − y4)

(x2 + y2)2

   fy(x, y) =
x(x4 − 4x2y2 − y4)

(x2 + y2)2

  (b) fx(0, 0) = 0, fy(0, 0) = 0
  (c) fxy(0, 0) = −1, fyx(0, 0) = 1
  (d) fxy or fyx or both are not continuous at (0, 0).
131. Proof

Section 13.4  (page 909)

  1. In general, the accuracy worsens as ∆x and ∆y increase.
  3. dz = 15x2y2 dx + 10x3y dy
  5. dz = (ex2+y2 + e−x2−y2)(x dx + y dy)
  7. dw = 2xyz2 dx + (x2z2 + z cos yz) dy + (2x2yz + y cos yz) dz
  9. (a) f (2, 1) = 1, f (2.1, 1.05) = 1.05, ∆z = 0.05
  (b) dz = 0.05
 11. (a) f (2, 1) = 11, f (2.1, 1.05) = 10.4875, ∆z = −0.5125
  (b) dz = −0.5
 13. (a) f (2, 1) = e2 ≈ 7.3891, f (2.1, 1.05) = 1.05e2.1 ≈ 8.5745,
 ∆z ≈ 1.1854
  (b) dz ≈ 1.1084
 15. 0.44  17. 0
 19.  Yes. Because fx and fy are continuous on R, you know that f  

is differentiable on R. Because f  is differentiable on R, you 
know that f  is continuous on R.

 21. dA = h dl + l dh
  ΔA − dAAd

l Δ l

Ad

Δh

h

  ∆A − dA = dl dh

23. dV = ±3.92 in.3, 
dV
V

= 0.82%

25. ∆r ∆h dV ∆V ∆V − dV

0.1 0.1 8.3776 8.5462 0.1686

0.1 −0.1 5.0265 5.0255 −0.0010

0.001 0.002 0.1005 0.1006 0.0001

−0.0001 0.0002 −0.0034 −0.0034 0.0000

27. dC = ±2.4418, 
dC
C

= 19%  29. 10%

31. (a) V = 18 sin θ ft3, θ =
π
2

   (b) 1.047 ft3

33. L ≈ 8.096 × 10−4 ± 6.6 × 10−6 microhenrys

35. Answers will vary.  37. Answers will vary.
 Sample answer:  Sample answer:
 ε1 = ∆x  ε1 = y ∆x
 ε2 = 0  ε2 = 2x ∆x + (∆x)2

39. Proof

Section 13.5  (page 917)

 1.  You can convert w into a function of s and t, or you can use 
the Chain Rule given in Theorem 13.7.

 3. 8t + 5; 21  5. et(sin t + cos t); 1

 7. (a) and (b) 2e2t +
3
t4  9. (a) and (b) 2e2t

11. (a) and (b) 3(2t2 − 1)  13. 
−11√29

29
≈ −2.04

15. 
∂w
∂s

= 4s, 4 17. 
∂w
∂s

= 5 cos(5s − t), 0

 
∂w
∂t

= 4t, 12  
∂w
∂t

= −cos(5s − t), 0

19. (a) and (b) 21. (a) and (b)

 
∂w
∂s

= t2(3s2 − t2)  
∂w
∂s

= tes2−t2(2s2 + 1)

 
∂w
∂t

= 2st(s2 − 2t2)  
∂w
∂t

= ses2−t2(1 − 2t2)

23. 
y − 2x + 1
2y − x + 1

 25. −
x2 + y2 + x
x2 + y2 + y

27. 
∂z
∂x

= −
x
z
 29. 

∂z
∂x

= −
x

y + z

 
∂z
∂y

= −
y
z
  

∂z
∂y

= −
z

y + z

31. 
∂z
∂x

=
∂z
∂y

=
sec2(x + y)

sin z
 33. 

∂z
∂x

= −
(zexz + y)

xexz

    
∂z
∂y

= −e−xz

35. 
∂w
∂x

=
7y + w2

4z − 2wz − 2wx
 37. 

∂w
∂x

=
y sin xy

z

 
∂w
∂y

=
7x + z2

4z − 2wz − 2wx
  

∂w
∂y

=
x sin xy − z cos yz

z

 
∂w
∂z

=
2yz − 4w + w2

4z − 2wz − 2wx
  

∂w
∂z

= −
y cos yz + w

z
39. (a)  f (tx, ty) = 2(tx)2 − 5(tx)(ty)
   = t2(2x2 − 5xy) = t2f (x, y); n = 2
 (b) xfx(x, y) + yfy(x, y) = 4x2 − 10xy = 2 f (x, y)
41. (a) f (tx, ty) = etx�ty = ex�y = f (x, y); n = 0

 (b) xfx(x, y) + yfy(x, y) =
xex�y

y
−

xex�y

y
= 0

43. 47  45. Proof

47. (a) 
∂F
∂u

 
∂u
dx

+
∂F
∂v

 
∂v
∂x

= 4
∂F
∂u

 (b) 
∂F
∂u

 
∂u
∂x

+
∂F
∂v

 
∂v
∂x

= −2
∂F
∂u

+ 2x 
∂F
∂v

49. 4608π in.3�min, 624π in.2�min  51. 28m cm2�sec
53–55. Proofs

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



 Answers to Odd-Numbered Exercises A123

Section 13.6  (page 928)

 1.  The partial derivative with respect to x is the directional 
derivative in the direction of the positive x-axis. That is, the 
directional derivative for θ = 0.

 3. −√2  5. 1
2 + √3  7. 1  9. − 7

25  11. 6

13. 
2√5

5
  15. 3i + 10j  17. 2i −

1
2

j

19. 20i − 14j − 30k  21. −1  23. 
2√3

3
  25. 3√2

27. −
8

√5
  29. −√y i + (2y −

x

2√y) j; √39

31. tan yi + x sec2 yj; √17

33. cos x2y3(2x i + 3y2 j); 1π√4 + 9π6

35. 
xi + yj + zk

√x2 + y2 + z2
; 1  37. yz(yzi + 2xz j + 2xyk); √33

39. −2i − 3j  41. 3i − j

43. (a) 16i − j   (b) 
√257
257

(16i − j)   (c) y = 16x − 22

 (d) y

x
15105−15 −10 −5

−10

−5

45. (a) 6i − 4j   (b) 
√13
13

(3i − 2j)   (c) y =
3
2

x −
1
2

 (d) y

x
321−3 −2 −1

−3

−2

1

2

3

47. (a) 

x

y

3

6

9

(3, 2, 1)

z

 (b) (i) −
5√2
12

   (ii) 
2 − 3√3

12

  (iii) 
2 + 3√3

12
   (iv) 

3 − 2√3
12

 (c) (i) −
5√2
12

   (ii) 
3
5

   (iii) −
1
5

   (iv) −
11√10

60

 (d) −
1
3

i −
1
2

j   (e) 
√13

6

 (f ) u =
1

√13
(3i − 2j)

  Du f (3, 2) = ∇f ∙ u = 0
   ∇f  is the direction of the greatest rate of change of f. So, 

in a direction orthogonal to ∇f, the rate of change of f  is 0.

49. (a) 

x

y

z

 (b) Du f (4, −3) = 8 cos θ + 6 sin θ
  

4

2
−4

−8

−12

8

12

ππ

Generated by Mathematica

θ

Du f

 (c)  θ ≈ 2.21, θ ≈ 5.36
  Directions in which there is no change in f
 (d)  θ ≈ 0.64, θ ≈ 3.79
  Directions of greatest rate of change in f
 (e) 10; Magnitude of the greatest rate of change
 (f ) 

x

y

2

−2
−4 2 4 6−6

−4

−6

4

6

Generated by Mathematica

  Orthogonal to the level curve
51. No; Answers will vary.  53. 5∇h = −(5i + 12j)
55. 1

625(7i − 24j)  57. 6i − 10j; 11.66°�cm  59. y2 = 10x
61. True  63. True  65. f (x, y, z) = ex cos y + 1

2z2 + C
67. (a) and (b) Proofs
 (c) 

x

y

−2
−1

2

2

z

3

Section 13.7  (page 937)

 1.  ∇F(x0, y0, z0) and any tangent vector v at (x0, y0, z0) are  
orthogonal. So, ∇F(x0, y0, z0) ∙ v = 0.

 3.  The level surface can be written as 3x − 5y + 3z = 15, which 
is an equation of a plane in space.

 5.  The level surface can be written as 4x2 + 9y2 − 4z2 = 0, 
which is an elliptic cone that lies on the z-axis.

 7. 4x + 2y − z = 2  9. 3x + 4y − 5z = 0
11. 2x − 2y − z = 2  13. 3x + 4y − 25z = 25(1 − ln 5)
15. 4x + 2y + 5z = −15
17. (a) x + y + z = 9   (b) x − 3 = y − 3 = z − 3
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19. (a) x − 2y + 2z = 7   (b) x − 1 =
y + 1
−2

=
z − 2

2

21. (a) 6x − 4y − z = 5   (b) 
x − 3

6
=

y − 2
−4

=
z − 5
−1

23. (a) 10x + 5y + 2z = 30   (b) 
x − 1

10
=

y − 2
5

=
z − 5

2

25. (a) 8x + y − z = 0   (b) 
x
8

=
y − 2

1
=

z − 2
−1

27. x = t + 1, y = 1 − t, z = t + 1
29. x = 4t + 3, y = 4t + 3, z = 4 − 3t
31. x = t + 3, y = 5t + 1, z = 2 − 4t
33. 86.0°  35. 77.4°  37. (0, 3, 12)  39. (2, 2, −4)
41. (0, 0, 0)  43. Proof  45. (a) and (b) Proofs
47. Not necessarily; They only need to be parallel.
49. (−1

2, 14, 14) or (1
2, −1

4, −1
4)  51. (−2, 1, −1) or (2, −1, 1)

53. (a) Line: x = 1, y = 1, z = 1 − t
  Plane: z = 1
 (b) Line: x = −1, y = 2 + 6

25t, z = −4
5 − t

  Plane: 6y − 25z − 32 = 0
 (c) 

x
y

−1

32

1

z   

x

y

1

2 2
3

−2

−1

z

55. (a) x = 1 + t (b) 

x
y

6
8

8

(1, 2, 4)

z

  y = 2 − 2t
  z = 4
  θ ≈ 48.2°

57. F(x, y, z) =
x2

a2 +
y2

b2 +
z2

c2 − 1

 Fx(x, y, z) =
2x
a2

 Fy(x, y, z) =
2y
b2

 Fz(x, y, z) =
2z
c2

 Plane: 
2x0

a2 (x − x0) +
2y0

b2 (y − y0) +
2z0

c2 (z − z0) = 0

   
x0x
a2 +

y0y
b2 +

z0z
c2 = 1

59. F(x, y, z) = a2x2 + b2y2 − z2

 Fx(x, y, z) = 2a2x
 Fy(x, y, z) = 2b2y
 Fz(x, y, z) = −2z
 Plane: 2a2x0(x − x0) + 2b2y0(y − y0) − 2z0(z − z0) = 0
   a2x0x + b2y0 y − z0z = 0
 Therefore, the plane passes through the origin.
61. (a) P1(x, y) = 1 + x − y
 (b) P2(x, y) = 1 + x − y + 1

2x2 − xy + 1
2y2

 (c) If x = 0, P2(0, y) = 1 − y + 1
2y2.

   This is the second-degree Taylor polynomial for e−y.  
If y = 0, P2(x, 0) = 1 + x + 1

2x2.
  This is the second-degree Taylor polynomial for ex.

 (d) 
x y f (x, y) P1(x, y) P2(x, y)

0 0 1 1 1

0 0.1 0.9048 0.9000 0.9050

0.2 0.1 1.1052 1.1000 1.1050

0.2 0.5 0.7408 0.7000 0.7450

1 0.5 1.6487 1.5000 1.6250

 (e) 
z

f

P1

P2

y

x

4

2

2

1

−2

−2

−4

−2

63. Proof

Section 13.8  (page 946)

 1. (a)  To say that f  has a relative minimum at (x0, y0) means that 
the point (x0, y0, z0) is at least as low as all nearby points 
on the graph of z = f (x, y).

 (b)  To say that f  has a relative maximum at (x0, y0) means that 
the point (x0, y0, z0) is at least as high as all nearby points 
in the graph of z = f (x, y).

 (c)  Critical points of f  are the points at which the gradient of 
f  is 0 or the points at which one of the partial derivatives 
does not exist.

 (d)  A critical point is a saddle point if it is neither a relative 
minimum nor a relative maximum.

 3. Relative minimum:   5. Relative minimum:
 (1, 3, 0)  (0, 0, 1)
 7. Relative minimum:   9. Relative minimum:
 (−1, 3, −4)  (−4, 6, −55)
11.  Every point along the x- or y-axis is a critical point. Each of 

the critical points yields an absolute maximum.
13. Relative maximum: 15. Relative minimum:
 (1

2, −1, 31
4 )  (1

2, −4, −187
4 )

17. Relative minimum:  19. Relative maximum:
 (3, −4, −5)  (0, 0, −12)
21. Saddle point:  23. No critical numbers
 (1, −1, −1)
25. 

x

y

5

−4

−4

4

4

z  27. 

−4

44

−4

5

6

yx

z

 Relative maximum: (−1, 0, 2) Relative minimum: (0, 0, 0)
  Relative minimum: (1, 0, −2) Relative maxima: (0, ±1, 4)
    Saddle points: (±1, 0, 1)
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29. z is never negative. Minimum: z = 0 when x = y ≠ 0.
 z

yx

3
3

40

60

31. Insufficient information  33. Saddle point
35. (a) (0, 0)   (b) Saddle point: (0, 0, 0)   (c) (0, 0)
 (d) 

x

y

−2

−2

−2

2

2
1

z

2

Saddle point
(0, 0, 0)

37. (a) (1, a), (b, −4)
 (b) Absolute minima: (1, a, 0), (b, −4, 0)
 (c) (1, a), (b, −4)
 (d) 

4
2

6

x

y

−4

−2

4

z

6

Absolute
minimum
(1, a, 0)

Absolute
minimum
(b, −4, 0)

39. Absolute maximum:  41. Absolute maximum:
 (4, 0, 21)  (0, 1, 10)
 Absolute minimum:  Absolute minimum:
 (4, 2, −11)  (1, 2, 5)
43. Absolute maxima: 45. Absolute maxima:
 (±2, 4, 28)  (−2, −1, 9), (2, 1, 9)
 Absolute minimum:  Absolute minima:
 (0, 1, −2)  (x, −x, 0), ∣x∣ ≤ 1
47. Relative minimum: (0, 3, −1)  49. −4 < fxy(3, 7) < 4
51. 

x

y
2

3

3

4

4

4

z

 Extrema at all (x, y)
53. (a) fx = 2x = 0, fy = −2y = 0 ⇒ (0, 0) is a critical point.

  gx = 2x = 0, gy = 2y = 0 ⇒ (0, 0) is a critical point.

 (b) d = 2(−2) − 0 < 0 ⇒ (0, 0) is a saddle point.
  d = 2(2) − 0 > 0 ⇒ (0, 0) is a relative minimum.
55. False. Let f (x, y) = 1 − ∣x∣ − ∣y∣ at the point (0, 0, 1).

57. False. Let f (x, y) = x2y2 (see Example 4 on page 944).

Section 13.9  (page 953)

 1.  Write the equation to be maximized or minimized as a function 
of two variables. Take the  partial derivatives and set them 
equal to zero or undefined to obtain the  critical points. Use the 
Second Partials Test to test for relative extrema using the critical 
points. Check the boundary points.

 3. √3  5. √7  7. x = y = z = 3
 9. x = y = z = 10  11. 9 ft × 9 ft × 8.25 ft; $26.73
13.  Let x, y, and z be the length, width, and height, respectively,

  and let V0 be the given volume. Then V0 = xyz and z =
V0

xy
. 

 The surface area is

 S = 2xy + 2yz + 2xz = 2(xy +
V0

x
+

V0

y ).

 
Sx = 2(y −

V0

x2) = 0

Sy = 2(x −
V0

y2) = 0} 
x2y − V0 = 0

xy2 − V0 = 0

 So, x = 3√V0, y = 3√V0, and z = 3√V0.
15. x1 = 3, x2 = 6  17. Proof

19. x =
√2
2

≈ 0.707 km

 y =
3√2 + 2√3

6
≈ 1.284 km

21. (a) y = 3
4x + 4

3   (b) 1
6  23. (a) y = −2x + 4   (b) 2

25. y = 84
43x − 12

43 27. y = −175
148x + 945

148

 

−2 10

10

−2

(0, 0)

(1, 1)

(3, 6)
(4, 8) (5, 9)

y = x −84
43

12
43

  

−4 18

−6

(0, 6)

(4, 3)

(5, 0)

(8, −4) (10, −5)

y = −      x +175
148

945
148

8

29. (a) y = 0.23x + 2.38   (b) $301.4 billion
 (c)  The new model is y = 0.23x + 5.09, so the constant 

increases.

31. a∑
n

i=1
 xi

4 + b∑
n

i=1
 xi

3 + c∑
n

i=1
 xi

2 = ∑
n

i=1
 xi

2yi

 a∑
n

i=1
 xi

3 + b∑
n

i=1
 xi

2 + c∑
n

i=1
 xi = ∑

n

i=1
 xi yi

 a∑
n

i=1
 xi

2 + b∑
n

i=1
 xi + cn = ∑

n

i=1
 yi

33. y = 3
7x2 + 6

5x + 26
35 35. y = x2 − x

 

−2

6−9
(−2, 0)

(−1, 0)

(0, 1)

(1, 2)

(2, 5)

8   

−5

−2

7
(0, 0)

(2, 2)

(3, 6)

(4, 12)

14

37. (a) y = −0.22x2 + 9.66x − 1.79
 (b) 

−1 14

−20

120

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A126 Answers to Odd-Numbered Exercises

39. (a) ln P = −0.1499h + 9.3018   (b) P = 10,957.7e−0.1499h

 (c) 

−2 24

−2,000

14,000

41. Proof

Section 13.10  (page 962)

 1.  Optimization problems that have restrictions or constraints on 
the values that can be used to produce the optimal solutions are 
called constrained optimization problems.

 3. f (5, 5) = 25  5. f (1, 2) = 5  7. f (25, 50) = 2600
 9. f (1, 1) = 2  11. f (3, 3, 3) = 27  13. f (1

3, 13, 13) = 1
3

15. Maxima: f (√2
2

, 
√2
2 ) =

5
2

   f (−
√2
2

, −
√2
2 ) =

5
2

 Minima: f (−
√2
2

, 
√2
2 ) = −

1
2

   f (√2
2

, −
√2
2 ) = −

1
2

17. f (8, 16, 8) = 1024  19. 
√2
2

  21. 3√2  23. 
√11

2
25. 2  27. √3  29. (−4, 0, 4)  31. √3
33. x = y = z = 3  35. 9 ft × 9 ft × 8.25 ft; $26.73

37. Proof  39. 
2√3a

3
×

2√3b
3

×
2√3c

3
41. At (0, 0), the Lagrange equations are inconsistent.
43. 3√360 × 3√360 × 4

3
3√360 ft

45. r = 3√ v0

2π  and h = 2 3√ v0

2π   47. Proof

49. P(15,625
28

, 3125) ≈ 203,144

51. x ≈ 237.4
 y ≈ 640.9
 Cost ≈ $68,364.80
53. Putnam Problem 2, morning session, 1938

Review Exercises for Chapter 13  (page 964)

 1. (a) −3   (b) −7   (c) 15   (d) 7x2 − 3
 3. Domain: {(x, y): x ≥ 0 and y ≠ 0}
 Range: all real numbers
 5. 

yx 3

2

2
3

1

−2

−2
−1

−3

−3
−2

−1

−3

1
2

z

   

 Plane

 7. Lines: y = 2x − 3 + c
 

y

x
−4−6 2 4 6

6 c = 0

c = 2
c = 4c = 6

c = 8

 9. (a) 

x

y
22 1

−2

4

5

z    (b)  g is a vertical translation of f   
two units upward.

      (c)  g is a horizontal translation of f  
two units to the right.

 (d) 

x

y22

4

5

z

z = f (1, y)

 

x

y
2

2

4

5

z

z = f (x, 1)

11. Elliptic paraboloid
 

x
y3

2

2

−2

−2

z

13. Limit: 1
2 15. Limit: 0

 Continuous except at (0, 0)  Continuous 

17. Limit: −
ln 2

5

 Continuous for x ≠
z
y

19. fx(x, y) = 15x2 21. fx(x, y) = ex cos y
 fy(x, y) = 7  fy(x, y) = −ex sin y

23. fx(x, y) = −
y4

x2 ey�x 25. fx(x, y, z) = 2z2 + 6yz
 fy(x, y, z) = 6xz
 fz(x, y, z) = 4xz + 6xy fy(x, y) =

y3

x
ey�x + 3y2ey�x  

    

27. fx(0, 2) = 0
 fy(0, 2) = −1

 29. fx(2, 3, −
π
3) = −√3π −

3
2

    fy(2, 3, −
π
3) = −1

    fz(2, 3, −
π
3) = 6√3

31. fxx(x, y) = 6
 fyy(x, y) = 12y
 fxy(x, y) = fyx(x, y) = −1
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33. hxx(x, y) = −y cos x
 hyy(x, y) = −x sin y
 hxy(x, y) = hyx(x, y) = cos y − sin x
35. Slope in x-direction: 0
 Slope in y-direction: 4
37. (xy cos xy + sin xy) dx + (x2 cos xy) dy
39. dw = (3y2 − 6x2yz2) dx + (6xy − 2x3z2) dy + (−4x3yz) dz
41. (a) f (2, 1) = 10 (b) dz = 0.5
  f (2.1, 1.05) = 10.5
  ∆z = 0.5

43. dV = ±π in.3, 
dV
V

= 15%  45. Proof

47. (a) and (b) 
dw
dt

=
8t − 1

4t2 − t + 4

49. (a) and (b) 
dw
dt

= 2t2e2t + 2te2t + 2t + 1

51. (a) and (b) 
∂w
∂r

=
4r2t − 4rt2 − t3

(2r − t)2

  
∂w
∂t

=
4r2t − rt2 − 4r3

(2r − t)2

53. 
−3x2 + y
−x + 5

55. 
∂z
∂x

=
−2x − y
y + 2z

 
∂z
∂y

=
−x − 2y − z

y + 2z
57. −50  59. 2

3  61. 〈4, 4〉, 4√2  63. 〈−1
2, 0〉, 12

65. 〈−2, −3, −1〉, √14

67. (a) 54i − 16j   (b) 
27

√793
i −

8

√793
j   (c) y =

27
8

x −
65
8

 (d) y

x
64−6 −4

−6

−4

−2

4

2

6

Tangent line

Unit normal
vector

69. 2x + 6y − z = 8  71. z = 4
73. (a) 4x + 4y − z = 8
 (b) x = 2 + 4t, y = 1 + 4t, z = 4 − t
75. 36.7°  77. (0, 0, 9)
79. Relative maximum: (4, −1, 9)
81. Relative minimum: (−4, 43, −2)
83. Relative minimum: (1, 1, 3)  85. √3
87. x1 = 2, x2 = 4
89. y = 161

226x + 456
113

 

−2 10

12

−2

(0, 4)
(3, 6)

(6, 8)

(8, 10)

(1, 5)

y = x +161
226

456
113

91. (a) y = 0.138x + 22.1   (b) 46.25 bushels�acre
93. f (4, 4) = 32  95. f (15, 7) = 352  97. f (3, 6) = 36

99. x =
√2
2

≈ 0.707 km, y =
√3
3

≈ 0.577 km,

 z = (60 − 3√2 − 2√3)6 ≈ 8.716 km

P.S. Problem Solving  (page 967)

 1. (a) 12 square units   (b) and (c) Proofs
 3. (a) y0z0(x − x0) + x0z0(y − y0) + x0 y0(z − z0) = 0

 (b) x0y0z0 = 1 ⇒ z0 =
1

x0 y0

  Then the tangent plane is

  y0( 1
x0y0

)(x − x0) + x0( 1
x0 y0

)(y − y0) + x0y0(z −
1

x0 y0
) = 0.

  Intercepts: (3x0, 0, 0), (0, 3y0, 0), (0, 0, 
3

x0 y0
)

 5. (a) y

x
3 41−1

−3

−4

−1

1

k = 2k = 1k = 0

k = 3

g(x, y)

 (b) y

x
32 41−1−2

−3

−2

−4

−1

1

2

k = 2k = 1k = 0

k = 3

g(x, y)

  Maximum value: 2√2  Maximum and minimum
    value: 0
     The method of Lagrange 

multipliers does not work 
because ∇g(x0, y0) = 0.

 7. 2 3√150 ft × 2 3√150 ft ×
5 3√150

3
 ft

 9. (a)  x
∂f
∂x

+ y
∂f
∂y

= xCy1−aaxa−1 + yCxa(1 − a)y1−a−1

   = axaCy1−a + (1 − a)xaC(y1−a)
   = Cxay1−a[a + (1 − a)]
   = Cxay1−a

   = f (x, y)
 (b)  f (tx, ty) = C(tx)a(ty)1−a

   = Ctxay1−a

   = tCxay1−a

   = t f (x, y)
11. (a) x = 32√2t
  y = 32√2t − 16t2

 (b) α = arctan( y
x + 50) = arctan(32√2t − 16t2

32√2t + 50 )
 (c) 

dα
dt

=
−16(8√2t 2 + 25t − 25√2)

64t 4 − 256√2t3 + 1024t2 + 800√2t + 625
 (d) 

0 4

−5

30     No; The rate of change of α is 
greatest when the projectile is 
closest to the camera.

 (e) α is maximum when t = 0.98 second.
   No, the projectile is at its maximum height when 

t = √2 ≈ 1.41 seconds.
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13. (a) 

x

y

1

2
2

z  (b) 

x

y1
2

−1

1

z

  Minimum: (0, 0, 0)  Minima: (±1, 0, −e−1)
  Maxima: (0, ±1, 2e−1)  Maxima: (0, ±1, 2e−1)
  Saddle points: (±1, 0, e−1) Saddle point: (0, 0, 0)
 (c) α > 0  α < 0
  Minimum: (0, 0, 0)  Minima: (±1, 0, αe−1)
  Maxima: (0, ±1, βe−1)  Maxima: (0, ±1, βe−1)
  Saddle points:   Saddle point: (0, 0, 0)
  (±1, 0, αe−1)
15. (a) 

1 cm

6 cm

 (b) 

1 cm

6 cm

 (c) Height
 (d) dl = 0.01, dh = 0: dA = 0.01
  dl = 0, dh = 0.01: dA = 0.06
17–21. Proofs

Chapter 14
Section 14.1  (page 976)

 1.  An iterated integral is an integral of a function of several 
variables. Integrate with respect to one variable while holding 
the other variables constant.

 3. 
3x2

2
  5. 

4x2 − x4

2
  7. 

y
2

[(ln y)2 − y2]

 9. x2(1 − e−x2 − x2e−x2)  11. 3  13. 
√2
4

  15. 64

17. 
3
2

  19. 
1
3

  21. 
2
3

  23. 4  25. 
π
2

  27. 
π2

32
+

1
8

29. 1
2  31. Diverges  33. 8  35. 16

3   37. 36

39. 8
3  41. 9

2

43. 

1 2 3 4

1

2

3

x

y  45. 

−2 −1 1 2

−1

3

1

y

x

 ∫4

0
∫4

x

 f (x, y) dy dx  ∫2

0
∫√4−y2

−√4−y2

 f (x, y) dx dy

47. 

1

2

4

6

8

2 3

y

x

 49. 

x
−2 −1 1 2

2

3

4

y

 ∫ln 10

0
∫10

ex

 f (x, y) dy dx  ∫1

0
∫√y

−√y

  f (x, y) dx dy

51. 

31 2

3

2

1

x

y

     ∫1

0
∫2

0
 dy dx = ∫2

0
∫1

0
 dx dy = 2

53. 

21

1

2

x

(2, 1)

y

 ∫1

0
∫2

2y

 dx dy = ∫2

0
∫x�2

0
 dy dx = 1

55. 

x

1

1−1

y

 ∫1

0
∫√1−y2

−√1−y2

 dx dy = ∫1

−1
∫√1−x2

0
 dy dx =

π
2

57. 

x

2

3

1 2 3 4

1

−1

y

 ∫2

0
∫x

0
 dy dx + ∫4

2
∫4−x

0
 dy dx = ∫2

0
∫4−y

y

 dx dy = 4

59. 

2

2

1

1

3

x

(1, 1)

y
x =     y

x = y2   ∫1

0
∫3√y

y2

 dx dy = ∫1

0
∫√x

x3

 dy dx =
5
12
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61. 

321

3

2

1

x

y    ∫2

0
∫2

x

 x√1 + y3 dy dx =
26
9

63. 

321

3

2

1

x

y

 ∫1

0
∫2

2x

 4ey2
 dy dx = e4 − 1 ≈ 53.598

65. 

1

1

x

y

 ∫1

0
∫1

y

 sin x2 dx dy =
1
2

(1 − cos 1) ≈ 0.230

67. 4∫5

0
∫√25−x2

0
 dy dx = 25π square units

69. (a) No   (b) Yes   (c) Yes  71. 
sin 2

2
−

sin 3
3

73. (ln 5)2  75. 
15π

2
77. (a) 

x
2 4 6 8

−2

2

4

(8, 2)x = y3

x = 4    2y

y

 (b) ∫8

0
∫3√x

x2�32
 (x2y − xy2) dy dx   (c) 

67,520
693

79. True

Section 14.2  (page 987)

 1.  Use rectangular prisms to approximate the volume,  
where f (xi, yi) is the height of prism i and ∆Ai is the area 
of the rectangular base of the prism. You can improve the 
approximation by using more rectangular prisms of smaller 
rectangular bases.

 3. 24 (approximation is exact)
 5. Approximation: 52; Exact: 160

3

 7. 

31 2

3

1

2

x

y   9. 

642

6

4

2

x

(3, 6)

y

 2   36

11. 

3

x
3−3

−3

y  13. ∫3

0
∫5

0
 xy dy dx =

225
4

    ∫5

0
∫3

0
 xy dx dy =

225
4

 0

15. ∫2

1
∫2x

x

 
y

x2 + y2 dy dx =
1
2

 ln 
5
2

 ∫2

1
∫y

1
 

y
x2 + y2 dx dy + ∫4

2
∫2

y�2
 

y
x2 + y2 dx dy =

1
2

 ln 
5
2

17. ∫1

0
∫4−x2

4−x

 −2y dy dx = −
6
5

 ∫4

3
∫√4−y

4−y

 −2y dx dy = −
6
5

19. ∫3

0
∫√25−y2

4y�3
 x dx dy = 25

 ∫4

0
∫3x�4

0
 x dy dx + ∫5

4
∫√25−x2

0
 x dy dx = 25

21. 4  23. 12  25. 3
8  27. 1

29. ∫1

0
∫x3

0
 xy dy dx =

1
16

  31. ∫2

0
∫√4−x2

0
 (x + y) dy dx =

16
3

33. ∫2

0
∫4−x2

0
 (4 − x2) dy dx =

256
15

35. 2∫2

0
∫√1−(x−1)2

0
 (2x − x2 + y2) dy dx

37. 4∫2

0
∫√4−x2

0
 (x2 + y2) dy dx

39. ∫2

0
∫√2−2( y−1)2

−√2−2( y−1)2

 (4y − x2 − 2y2) dx dy

41. 
81π

2
  43. 1.2315

45. 

x
1

1

1
2

1
2

y = 2x

y

 ∫1�2

0
∫2x

0
 e−x2 dy dx = 1 − e−1�4 ≈ 0.221
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47. y

x
31−3 −1

−3

−1

1

3 x2 + y2 = 4
   ∫2

−2
∫√4−y2

−√4−y2

 √4 − y2 dx dy =
64
3

49. 

−1 1 2 3 4 5
−1

1

2

3

4

5

y

x

y = 2x

 ∫4

0
∫y�2

0
 sin y2 dx dy =

1 − cos 16
4

≈ 0.489

51. 2  53. 8
3  55. (e − 1)2  57. 25,645.24

59.  kB; Answers will vary.  61. Proof; 23  63. Proof; 49
65. Proof  67. 400; 272

69. False. V = 8∫1

0
∫√1−y2

0
 √1 − x2 − y2 dx dy

71. R: x2 + y2 ≤ 9  73. 1
2(1 − e)

75. Putnam Problem A2, 1989

Section 14.3  (page 995)

 1. Rectangular
 3.  r-simple regions have fixed bounds for θ and variable bounds 

for r. θ-simple regions have variable bounds for θ and fixed 
bounds for r.

 5. R = {(r, θ): 0 ≤ r ≤ 8, 0 ≤ θ ≤ π}

 7. R = {(r, θ): 4 ≤ r ≤ 8, 0 ≤ θ ≤ π
2}

 9. π   11. 0
 

1
0

2
π

  

0

2
π

1

13. 
8√2π

3
 15. 

9
8

+
3π2

32
 

0

2
π

1 2 3 4

  

21
0

2
π

17. 9  19. 4π   21. 
π
10

  23. 
2
3

25. 
π
2

 sin 1  27. ∫π�4

0
∫2√2

0
 r2 dr dθ =

4√2π
3

29. ∫π�2

0
∫6

0
 (cos θ + sin θ)r2 dr dθ = 144

31. ∫π�4

0
∫2

1
 rθ dr dθ =

3π2

64
  33. 

1
8

  35. 
250π

3

37. 64
9 (3π − 4)  39. 2√4 − 2 3√2  41. 9π  

43. 
3π
2

  45. π

47. 

3

r = 2 cos θ

r = 1

0

2
π  49. 

1

r = 3 cos θ

r = 1 + cos θ

0

2
π

 
π
3

+
√3
2

  π

51. 

r = 4 sin 3θ

r = 2

1 3 4
0

2
π   

4π
3

+ 2√3

53. ∫π�6

0
∫√3 sec θ

1
 r dr dθ + ∫π�2

π�6
∫csc θ

1
 r dr dθ = √3 −

π
4

55. 486,788  57. 1.2858  59. 56.051
61.  False. Let f (r, θ) = r − 1 and let R be a sector where  

0 ≤ r ≤ 6 and 0 ≤ θ ≤ π.
63. (a) 2π    (b) √2π

65. (a)∫4

2
∫y

y�√3
 f dx dy

 (b)∫2

2�√3
∫√3x

2
 f dy dx + ∫4�√3

2
∫√3x

x

 f dy dx + ∫4

4�√3
∫4

x

 f dy dx

 (c)∫π�3

π�4
∫4 csc θ

2 csc θ
 fr dr dθ

67. 
4
π

Section 14.4  (page 1004)

 1.  Use a double integral when the density of the lamina is not 
constant.

 3. m = 4  5. m = 1
8

 7. (a) m = ka2, (a
2

, 
a
2)   (b) m =

ka3

2
, (a

2
, 

2a
3 )

 (c) m =
ka3

2
, (2a

3
, 

a
2)

 9. (a) m =
ka2

2
, (a

3
, 

2a
3 )   (b) m =

ka3

3
, (3a

8
, 

3a
4 )

 (c) m =
ka3

6
, (a

2
, 

3a
4 )
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 Answers to Odd-Numbered Exercises A131

11. (a) (a
2

+ 5, 
a
2)   (b) (a

2
+ 5, 

2a
3 )

 (c) (2(a2 + 15a + 75)
3(a + 10) , 

a
2)

13. m =
k
4

, (2
3

, 
8
15)  15. m = 30k, (14

5
, 

4
5)

17. m = k(e − 1), ( 1
e − 1

, 
e + 1

4 )
19. m =

256k
15

, (0, 
16
7 )  21. m =

6k
π , (3

2
, 
π
8)

23. m =
9πk

2
, (8√2

π , 
8(2 − √2)

π )
25. m =

k
8

(1 − 5e−4), (e4 − 13
e4 − 5

, 
8
27[

e6 − 7
e6 − 5e2])

27. m =
kπ
3

, (81√3
40π , 0)

29. x =
√3b

3
  31. x =

a
2

  33. x =
a
2

 y =
√3h

3
 y =

a
2

 y =
a
2

35. Ix =
32k
3

 37. Ix = 16k

 Iy =
16k
3

  Iy =
512k

5

 I0 = 16k  I0 =
592k

5

 x =
2√3

3
  x =

4√15
5

 y =
2√6

3
  y =

√6
2

39. 2k∫b

−b
∫√b2−x2

0
 (x − a)2 dy dx =

kπb2

4
(b2 + 4a2)

41. ∫a

−a
∫√a2−x2

0
 ky(y − a)2 dy dx = ka5(56 − 15π

60 )
43. 

L
3

  45. 
L
2

47.  The object with a greater polar moment of inertia has more 
resistance, so more torque is required to twist the object.

49. Proof

Section 14.5  (page 1011)

 1.  If f  and its first partial derivatives are continuous on 
the closed region R in the xy-plane, then the differential 
of the surface area given by z = f (x, y) over R is 
dS = √1 + [ fx(x, y)]2 + [ fy(x, y)]2 dA.

 3. 24  5. 4π√62  7. 1
2 [4√17 + ln(4 + √17)]

 9. 8
27 (10√10 − 1)  11. √2 − 1  13. √2π

15. 2πa(a − √a2 − b2)  17. 12√14  19. 20π

21. ∫1

0
∫x

0
 √5 + 4x2 dy dx =

27 − 5√5
12

≈ 1.3183

23. ∫3

−3
∫√9−x2

−√9−x2

 √1 + 4x2 + 4y2 dy dx

  =
π
6

(37√37 − 1) ≈ 117.3187

25. ∫1

0
∫1

0
 √1 + 4x2 + 4y2 dy dx ≈ 1.8616

27. ∫4

0
∫10

0
 √1 + e2xy(x2 + y2) dy dx

29. ∫2

−2
∫√4−x2

−√4−x2

 √1 + e−2x dy dx

31.  No. The size and shape of the graph stay the same, just the  
position is changed. So, the surface area does not increase.

33. (a)  Yes. For example, let R be the square given by 0 ≤ x ≤ 1 
and 0 ≤ y ≤ 1, and let S be the square parallel to R given 
by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and z = 1.

 (b)  Yes. Let R be the region in part (a) and let S be the surface 
given by f (x, y) = xy.

 (c) No
35. (a) 812π√609 cm3   (b) 100π√609 cm2  37. 16

Section 14.6  (page 1021)

 1.  The volume of the solid region Q  3. 18  5. 1
9

 7. 
15
2 (1 −

1
e)  9. 

189
2

  11. 
324
5

13. V = ∫7

0
∫(7−x)�2

0
∫7−x−2y

0
dz dy dx

15. V = ∫√6

−√6
 ∫√6−y2

−√6−y2

 ∫6−x2−y2

0
 dz dx dy

17. V = ∫4

−4
 ∫√16−x2

−√16−x2

 ∫√80−x2−y2

(x2+y2)�2
 dz dy dx  19. 

256
15

21. 3
2  23. 10

25. 

x

y

1

1

−1

z

   ∫1

0
∫1

0
∫−√z

−1
 dy dz dx

27. 

x

y2 3

3

4

z

  ∫3

0
∫(12−4z)�3

0
∫(12−4z−3x)�6

0
 dy dx dz

29. 

x

y

1

1

1

z

  ∫1

0
∫x

0
∫√1−y2

0
 dz dy dx
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31. ∫3

0
∫5

0
∫1

y�5
 xyz dx dy dz, ∫3

0
∫1

0
∫5x

0
 xyz dy dx dz,

 ∫5

0
∫3

0
∫1

y�5
 xyz dx dz dy, ∫1

0
∫3

0
∫5x

0
 xyz dy dz dx,

 ∫5

0
∫1

y�5
∫3

0
 xyz dz dx dy, ∫1

0
∫5x

0
∫3

0
 xyz dz dy dx; 

225
16

33. ∫3

−3
∫√9−x2

−√9−x2
∫4

0
 xyz dz dy dx, ∫3

−3
∫√9−y2

−√9−y2
∫4

0
 xyz dz dx dy,

 ∫3

−3
∫4

0
∫√9−x2

−√9−x2

 xyz dy dz dx, ∫4

0
∫3

−3
∫√9−x2

−√9−x2

 xyz dy dx dz,

 ∫4

0
∫3

−3
∫√9−y2

−√9−y2

 xyz dx dy dz, ∫3

−3
∫4

0
∫√9−y2

−√9−y2

 xyz dx dz dy; 0

35. ∫1

0
∫1−z

0
∫1−y2

0
 dx dy dz, ∫1

0
∫1−y

0
∫1−y2

0
 dx dz dy,

 ∫1

0
∫2z−z2

0
∫1−z

0
 1 dy dx dz + ∫1

0
∫1

2z−z2
∫√1−x

0
 1 dy dx dz,

 ∫1

0
∫1

1−√1−x
∫1−z

0
1 dy dz dx + ∫1

0
∫1−√1−x

0
∫√1−x

0
 1 dy dz dx,

 ∫1

0
∫√1−x

0
∫1−y

0
 dz dy dx

37. m = 8k, x =
3
2

  39. m =
128k

3
, z = 1

41. m = k∫b

0
∫b

0
∫b

0
 xy dz dy dx

 Myz = k∫b

0
∫b

0
∫b

0
 x2y dz dy dx

 Mxz = k∫b

0
∫b

0
∫b

0
 xy2 dz dy dx

 Mxy = k∫b

0
∫b

0
∫b

0
 xyz dz dy dx

43. x will be greater than 2, and y and z will be unchanged.
45. x and z will be unchanged, and y will be greater than 0.

47. (0, 0, 
3h
4 )  49. (0, 0, 

3
2)  51. (5, 6, 

5
4)

53. (a) Ix =
2ka5

3
 55. (a) Ix = 256k

  Iy =
2ka5

3
  Iy =

512k
3

  Iz =
2ka5

3
 Iz = 256k

 (b) Ix =
ka8

8
  (b) Ix =

2048k
3

  Iy =
ka8

8
  Iy =

1024k
3

  Iz =
ka8

8
  Iz =

2048k
3

57. Proof

59. ∫1

−1
∫1

−1
∫1−x

0
 (x2 + y2)√x2 + y2 + z2 dz dy dx

61. (a) m = ∫2

−2
∫√4−x2

−√4−x2
∫4−x2−y2

0
 kz dz dy dx

 (b) x = y = 0 by symmetry.

  z =
1
m∫

2

−2
∫√4−x2

−√4−x2
∫4−x2−y2

0
 kz2 dz dy dx

 (c) Iz = ∫2

−2
∫√4−x2

−√4−x2
∫4−x2−y2

0
 kz(x2 + y2) dz dy dx

63. 13
3   65. 3

2  67. Increase

69. b  71. Q: 2x2 + y2 + 3z2 ≤ 1; 0.684; 
4√6π

45
73. Putnam Problem B1, 1965

Section 14.7  (page 1029)

 1.  Some solids are represented by equations involving x2 and y2. 
Often, converting these equations to cylindrical or spherical 
coordinates yields equations you can work with more easily.

 3. 27  5. 
11
10

  7. 
π
3

  9. π(e4 + 3)

11. 

x

y

z

1
2

2

3

3

3

1

 13. 

x

y
4

4

4

z

    
64√3π

3

 
π
4

(1 − e−9)

15. 48(3π − 4)  17. 
π
6

  19. 
250
9

(3π − 4)  21. 48kπ

23. 
πr0

2h

3
  25. (0, 0, 

h
5)

27. Iz = 4k∫π�2

0
∫r0

0
∫h(r0−r)�r0

0
 r3 dz dr dθ =

3mr0
2

10
29. Proof  31. 9π√2  33. 16π2  35. kπa4

37. (0, 0, 
3r
8 )  39. 

kπ
192

41. Cylindrical: ∫2π

0
∫2

0
∫4

r2

 r2 cos θ dz dr dθ = 0

 Spherical: ∫2π

0
∫arctan(1�2)

0
∫4 sec ϕ

0
 ρ3 sin2 ϕ cos θ dρ dϕ dθ

  + ∫2π

0
∫π�2

arctan(1�2)
∫cotϕ csc ϕ

0
 ρ3 sin2 ϕ cos ϕ dρ dϕ dθ = 0

43. Cylindrical: ∫2π

0
∫1

0
∫1+√1−r2

1
 r2 cos θ dz dr dθ = 0

 Spherical: ∫π�4

0
∫2π

0
∫2 cos ϕ

sec ϕ
 ρ3 sin2 ϕ cos θ dρ dθ dϕ = 0

45. (a) r constant: right circular cylinder about z-axis
  θ constant: plane parallel to z-axis
  z constant: plane parallel to xy-plane
 (b) ρ constant: sphere
  θ constant: plane parallel to z-axis
  ϕ constant: cone
47. Putnam Problem A1, 2006
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 Answers to Odd-Numbered Exercises A133

Section 14.8  (page 1036)

 1. 
∂x
∂u

 
∂y
∂v

−
∂y
∂u

 
∂x
∂v

  3. −1
2  5. 1 + 2v

 7. 1  9. −e2u

11. 

u
1

1
(0, 1)

(1, 0)

v  13. 

2

1

(1, 0)

(1, −1)

(3, 0)

(3, −1)
−1

−2

u

v

15. ∫
R
∫ 3xy dA = ∫2�3

−2�3
∫(1�2)x+2

1−x

 3xy dy dx

  + ∫4�3

2�3
∫(1�2)x+2

(1�2)x
 3xy dy dx + ∫8�3

4�3
∫4−x

(1�2)x
 3xy dy dx =

164
9

17. 8
3  19. 36  21. (e−1�2 − e−2)ln 8 ≈ 0.9798  23. 18

25. 12(e4 − 1)  27. 100
9   29. 2

5a5�2  31. One
33. (a) 

x

a

R

b

y   

u
1

S

1

v

 (b) ab   (c) πab
35. u2v  37. −uv  39. −ρ2 sin ϕ
41. Putnam Problem A2, 1994

Review Exercises for Chapter 14  (page 1038)

 1. 
1 − cos 3x2

x
  3. 

29
6

  5. 
1
6

  7. 
3
2

  9. 16

11. 

1 2 3 4 5 6

1

2

3

4

5

6

y

x

 ∫5

1
∫4

0
 dy dx = ∫4

0
∫5

1
 dx dy = 16

13. y

x
1 2 3

1

2

3

 ∫2

0
∫3−y

y�2
 dx dy = ∫1

0
∫2x

0
 dy dx + ∫3

1
∫3−x

0
 dy dx = 3

15. ∫2

0
∫4

0
 4xy dy dx = ∫4

0
∫2

0
 4xy dx dy = 64  17. 21

19. 
40
3

  21. 
40
3

  23. 13.67°C  25. 
5√5π

6

27. 
81
5

  29. 
3π
2

31. 

1 2 3
0

π
2

r = 3 + 2 cos θ
r = 4

 
13√3

2
−

5π
3

33. (a) r = 3√cos 2θ
  

−4

−6 6

4

 (b) 9   (c) 3(3π − 16√2 + 20) ≈ 20.392

35. 7  37. m =
32k
5

, (5
3

, 
5
2)  39. m =

k
4

, (32
45

, 
64
55)

41. Ix = 12k

 Iy =
81k
2

 I0 =
105k

2

 x =
3√2

2

 y =
2√3

3

43. 
π
6

(101√101 − 1)  45. 
1
6

(37√37 − 1)
47. (a) 30,415.74 ft3   (b) 2081.53 ft2  49. 56

51. 
16
3

+ 2e  53. 
8π
5

  55. 36

57. 

y

x

1

1

1

z

 ∫1

0
∫1

x
∫√1−x2

0
 dz dy dx

59. m =
500k

3
, x =

5
2

  61. 12(√3 − 1)  63. 
π
15

65. π(3√13 + 4 ln 
3 + √13

2 ) ≈ 48.995  67. 16π

69. 
8π
3

(2 − √3)  71. −6(v + u)  73. sin2 θ − cos2 θ

75. 5 ln 5 − 3 ln 3 − 2 ≈ 2.751  77. 81
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P.S. Problem Solving  (page 1041)

 1. 8(2 − √2)  3. 1
3  5. (a)–(g) Proofs

 7.  −1
2; 1

2; No; Fubini’s Theorem is not valid because f  is not 
continuous on the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

 9. 
√π

4
  11. If a, k > 0, then 1 = ka2 or a =

1

√k
.

13. Answers will vary.
15.  The greater the angle between the given plane and the 

xy-plane, the greater the surface area. So, z2 < z1 < z4 < z3.
17. 

x

y

(0, 0, 0)

(3, 3, 6)

(3, 3, 0)
(0, 6, 0)

2

4

5

6

6

3

z

 ∫3

0
∫2x

0
∫6−x

x

 dy dz dx = 18

Chapter 15
Section 15.1  (page 1053)

 1.  See “Definition of Vector Field” on page 1044. Some physical 
examples of vector fields include velocity fields, gravitational 
fields, and electric force fields.

 3.  Reconstruct a function from its partial derivatives by integrating 
and comparing versions of the function to determine constants.

 5. d  6. c  7. a  8. b
 9. √2  11. √1 + 9y2

 

1

−4

−4
x

y   
4

−4

−3 −1 1 3
x

y

13. √3  15. 

x
−2 −1 1 2

2

1

−1

−2

y

 

x

y

4

4

4

−4

−4

z

17. 

y

x

2

2

2

1

11

z

19. 2xi + 4yj  21. (10x + 3y)i + (3x + 2y)j

23. 6yzi + 6xzj + 6xyk  25. 2xyex2i + ex2j + k

27. [ xy
x + y

+ y ln(x + y)]i + [ xy
x + y

+ x ln(x + y)] j

29. Conservative  31. Not conservative  33. Conservative
35. Not conservative

37. Conservative; f (x, y) = 3xy −
x3

3
+

y2

2
+ K

39. Conservative; f (x, y) = ex2y + K  41. Not conservative
43. Conservative; f (x, y) = x sin y + K  45. 4i − j − 3k

47. −2k  49. 
2x

x2 + y2 k

51. Conservative; f (x, y, z) = x3 + y3 + z3 + xyz + K
53. Not conservative

55. Conservative; f (x, y, z) =
xz
y

− z + K  57. 2x + 4y

59. 2 sin x cos x + 3z2  61. 28  63. 0
65.  Vector field; The curl of a vector field is a vector field.
67.  Neither; The expression is meaningless because you can only 

take the curl of a vector field.
69. 9xj − 2yk  71. z j + yk  73. 3z + 2x  75. 0
77. (a)–(h) Proofs

Section 15.2  (page 1065)

 1. (a) The arc length of C   (b) The mass of the string

 3. r(t) = {ti + tj,
(2 − t)i + √2 − t j,

     0 ≤ t ≤ 1
     1 ≤ t ≤ 2

 5. r(t) = {
ti,
3i + (t − 3)j,
(9 − t)i + 3j,
(12 − t)j,

     0 ≤ t ≤ 3
     3 ≤ t ≤ 6
     6 ≤ t ≤ 9
     9 ≤ t ≤ 12

 7. r(t) = 3 cos ti + 3 sin tj, 0 ≤ t ≤ 2π

 9. (a) C: r(t) = ti + tj, 0 ≤ t ≤ 1   (b) 
2√2

3

11. (a) C: r(t) = cos ti + sin tj, 0 ≤ t ≤ π
2

   (b) 
π
2

13. (a) C: r(t) = {ti,
ti + (4t − 4)j,

     0 ≤ t ≤ 1
     1 ≤ t ≤ 2

 (b) 1 + 7√17

15. (a) C: r(t) = {ti,
(2 − t)i + (t − 1)j,
(3 − t)j,

     0 ≤ t ≤ 1
     1 ≤ t ≤ 2
     2 ≤ t ≤ 3

 (b) 3 + 3√2

17. (a) C: r(t) = {ti,
i + (t − 1)k,
i + (t − 2)j + k,

     0 ≤ t ≤ 1
     1 ≤ t ≤ 2
     2 ≤ t ≤ 3

   (b) 
23
6

19. 20  21. 
5π
2

  23. 8√5π(1 +
4π2

3 ) ≈ 795.7

25. 2π + 2  27. 
k

12
(41√41 − 27)  29. 8

31. 1
3e6 + 95

3   33. 9
4  35. About 249.49  37. 66

39. 0    41. −10π2

43.  Positive; The vector field determined by F points in the  
general direction of the path C, so F ∙ T > 0.
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 Answers to Odd-Numbered Exercises A135

45.  Zero; The vector field determined by F is perpendicular to 
the path C.

47. (a) 236
3 ; Orientation is from left to right, so the value is positive.

 (b)  −236
3 ; Orientation is from right to left, so the value is  

negative.
49. F(t) = −2ti − tj
 r′(t) = i − 2j
 F(t) ∙ r′(t) = −2t + 2t = 0

 ∫
C

 F ∙ dr = 0

51. F(t) = (t3 − 2t2)i + (t −
t2

2)j

 r′(t) = i + 2tj
 F(t) ∙ r′(t) = t3 − 2t2 + 2t2 − t3 = 0

 ∫
C

 F ∙ dr = 0

53. 68  55. 40
3   57. 25  59. 63

2   61. −11
6

63. 
316
3

  65. 5h  67. 
1
2

  69. 
h
4

[2√5 + ln(2 + √5)]

71. 
1

120
(25√5 − 11)

73. (a) 12π ≈ 37.70 cm2   (b) 
12π

5
≈ 7.54 cm3

 (c) 

x

y33

−3

4

5

z

75. Ix = Iy = a3π
77. (a) 

x

y3
4

3

3

2

1

4

z

 (b) 9π cm2 ≈ 28.274 cm2   (c) 
27π

2
 cm2 ≈ 42.412 cm3

79. 1750 ft-lb  81. No. y = 2x, so dy = 2 dx.
83.  z3, z1, z2, z4; The greater the height of the surface over the 

curve y = √x, the greater the lateral surface area.

85. False. ∫
C

 xy ds = √2∫1

0
 t2 dt  87. −12

Section 15.3  (page 1076)

 1.  Verify that the vector field is conservative. Find a potential 
function. Calculate the difference of the values of the function 
evaluated at the endpoints.

 3. (a) Proof

 (b) ∫
C1

 F ∙ dr = ∫1

0
 (t2 + 2t3) dt =

5
6

  ∫
C2

 F ∙ dr = ∫π�2

0
 (sin2 θ cos θ + 2 sin3 θ cos θ) dθ =

5
6

 5. (a) Proof

 (b)  ∫
C1

 F ∙ dr = ∫π�3

0
 (3 tan2 θ sec θ + 3 sec3 θ) dθ

   ≈ 10.392

  ∫
C2

 F ∙ dr = ∫3

0
 ( 3√t

2√t + 1
+

3√t + 1

2√t ) dt ≈ 10.392

 7. (a) Proof

 (b) ∫
C1

 F ∙ dr = ∫1

0
 64t3 dt = 16

  ∫
C2

 F ∙ dr = ∫π�2

0
 64 sin3 θ cos θ dθ = 16

 9. 72  11. −1  13. 0  15. (a) 2   (b) 2   (c) 2
17. 11  19. (a) Proof   (b) 30,366
21. (a) Proof   (b) 32  23. (a) 1   (b) 1
25. (a) 64   (b) 0   (c) 0   (d) 0
27. (a) 32   (b) 32  29. (a) 2

3   (b) 17
6   31. (a) 0   (b) 0

33. 0

35. (a) dr = (i − j) dt ⇒ ∫50

0
 175 dt = 8750 ft-lb

 (b)  dr = (i −
1
25

(50 − t)j) dt

  7∫50

0
 (50 − t) dt = 8750 ft-lb

37. 

x

C

y     The partial derivatives of F are not 
continuous at (0, 0). Draw an open 
connected region that excludes that 
point.

39. 1.125
41.  Yes, because the work required to get from point to point is  

independent of the path taken.
43. False. It would be true if F were conservative.
45. True  47. Proof
49. (a) Proof   (b) −π    (c) π    (d)  −2π
 (e)  No, because F is not continuous at (0, 0) in R enclosed 

by C.

 (f ) ∇(arctan 
x
y) =

1�y
1 + (x�y)2 i +

−x�y2

1 + (x�y)2 j

Section 15.4  (page 1085)

 1.  A curve is simple when it does not cross itself. A connected 
plane region is simply connected when every simple closed 
curve in the region encloses only points that are in the region. 
For example, a region with a hole is not simply connected.

 3.  You are working with a simple closed curve with a boundary 
whose orientation is counterclockwise.

 5. 1
30  7. 0  9. About 19.99  11. 9

2  13. 56
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A136 Answers to Odd-Numbered Exercises

15. 4
3  17. 0  19. 0  21. 1

12  23. 32π
25. π   27. 225

2   29. 4π   31. 9
2  33. Proof

35. (0, 
8
5)  37. ( 8

15
, 

8
21)  39. 54π   41. π −

3√3
2

43. (a) 
51π

2
   (b) 

243π
2

  45. 46π

47. (a) ∫
C

 F ∙ dr =∫
C

 M dx + N dy = ∫
R
∫ (∂N

∂x
−

∂M
∂y ) dA = 0

 (b) I = −2π  when C is a circle that contains the origin.
49–53. Proofs

Section 15.5  (page 1095)

 1.  S is traced out by the position vector r(u, v) as the point (u, v) 
moves throughout the domain. To sketch the surface, it is 
helpful to relate x, y, and z, where x, y, and z are functions of 
u and v.

 3. e  4. f  5. b  6. c  7. d   8. a
 9. y − 2z = 0 11. x2 + z2 = 4
 Plane  Cylinder
 

x

y43 5
5

−4

3
2

z   

x

y
5

5

−3

3

z

13. 

yx
2

2

3

2

1

z  15. 

x

y3 3

5

2
21

−2

−2

−3

−3

−1

4

3

z

17. r(u, v) = ui + vj + 3vk
19.  r(u, v) = 1

2u cos vi + uj + 1
3u sin vk, u ≥ 0, 0 ≤ v ≤ 2π  or 

r(x, y) = xi + √4x2 + 9y2j + zk
21. r(u, v) = 5 cos ui + 5 sin uj + vk
23.  r(u, v) = ui + √u − 7 cos vj + √u − 7 sin vk or 

r(y, z) = (y2 + z2 + 7)i + yj + zk
25. r(u, v) = v cos ui + v sin uj + 4k, 0 ≤ v ≤ 3

27. x = u, y =
u
2

 cos v, z =
u
2

 sin v, 0 ≤ u ≤ 6, 0 ≤ v ≤ 2π

29. x = sin u cos v, y = sin u sin v, z = u
 0 ≤ u ≤ π, 0 ≤ v ≤ 2π
31. x = cos2 u cos v, y = u, z = cos2 u sin v

 
π
2

≤ u ≤ π, 0 ≤ v ≤ 2π

33. 9y +
3√3

2
z = 12√3  35. 4y − 3z = 12  37. 8√2

39. πab2√a2 + 1  41. 
π
6

(17√17 − 1) ≈ 36.177

43. The paraboloid is reflected (inverted) through the xy-plane.
45. The height of the paraboloid is increased from 4 to 9.
47–49. Proofs

51. (a) 

x y

6
6

4
−6

−4

−6

z    (b) 

x y
66

4

z

 (c) 

yx

3

9

−9

3

z  (d) 

yx 12
12

12

−12

z

  The radius of the generating circle that is revolved about the 
z-axis is b, and its center is a units from the axis of revolution.

53. 400π m2

55. 

4
2

4

2
−2

−4

x

π

π

2

y

z

 2π [ 3
2√13 + 2 ln(3 + √13) − 2 ln 2]

57. Answers will vary. Sample answer: Let
 x = (2 − u)(5 + cos v) cos 3πu
 y = (2 − u)(5 + cos v) sin 3πu
 z = 5u + (2 − u) sin v
 where −π ≤ u ≤ π  and −π ≤ v ≤ π.

Section 15.6  (page 1108)

 1.  Solve for y in the equation of the surface. Then use the integral

 ∫
S
∫ f (x, g(x, z), z)√1 + [gx(x, z)]2 + [gz(x, z)]2 dA.

 3. An orientable surface has two distinct sides.

 5. 12√2  7. 2π   9. 
27√3

8
  11. About −11.47

13. 364
3   15. 12√5  17. 

3 − √3
2

  19. √3π

21. 
32π

3
  23. 486π   25. −

4
3

  27. 
3π
2

  29. 20π

31. 384π   33. 64πρ  35. 0  37. Proof  39. 2πa3h
41. (a) 12   (b) 12   (c) 12
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 Answers to Odd-Numbered Exercises A137

43. (a) 

x
y6

4

6

−6

−4

−6

z

 (b)  No. If a normal vector at a point P on the surface is moved 
around the Möbius strip once, it will point in the opposite 
direction.

 (c) 

y
x

4

−4

2

2

−2

z

  Circle
 (d) Construction
 (e)  You obtain a strip with a double twist that is twice as long 

as the Möbius strip.

Section 15.7  (page 1116)

 1.  Divergence Theorem or two surface integrals; In this case, it 
is easier to use the Divergence Theorem.

 3. 1  5. 18  7. π   9. 3a4  11. 0  13. 108π
15. 0  17. 18(e4 − 5)  19. Source
21. Incompressible  23. Any point that satisfies xyz > 1

2

25. 0; Proof  27–31. Proofs

Section 15.8  (page 1123)

 1.  Stokes’s Theorem allows you to evaluate a line integral using 
a single double integral.

 3. 18π   5. 0  7. −12  9. 2π   11. 0  13. 8
3

15. −
a5

4
  17. 

81π
4

  19. Yes; Proof

21. Putnam Problem A5, 1987

Review Exercises for Chapter 15  (page 1124)

 1. √x2 + 5
 

x
y

3

2

3

4

2

z

 3. y cos xyi + (x cos xy − 2y)j  5. (4x + y)i + xj + 2zk
 7. Not conservative  9. Conservative

11. Conservative; f (x, y) =
y
x

+ K

13. Conservative; f (x, y) = 1
2x2y2 − 1

3x3 + 1
3y3 + K

15. Not conservative  17. Conservative; f (x, y, z) =
x
yz

+ K

19. (a) div F = 2x + 2xy + x2   (b) curl F = −2xzj + y2k
21. (a) div F = −y sin x − x cos y + xy
 (b) curl F = xzi − yzj

23. (a) div F =
1

√1 − x2
+ 2xy + 2yz

 (b) curl F = z2i + y2k

25. (a) div F =
2x + 2y
x2 + y2 + 1   (b) curl F =

2x − 2y
x2 + y2 k

27. (a) 125
3    (b) 2π   29. 6π   31. 

9a2

5
  33. 3π

35. 1  37. 2π2  39. 8
3 (3 − 4√2) ≈ −7.085  41. 12

43. 
√5
3

(19 − cos 6) ≈ 13.446

45. (a) Proof

 (b) (i) ∫
C

 F ∙ dr = ∫4

0
 (3t + 4 + t3) dt = 104

  (ii) ∫
C

 F ∙ dr = ∫2

0
 [(3w2 + 4)(2w) + w6(2w)] dw = 104

47. 1 −
1
e2  49. 6  51. (a) Proof   (b) 92  53. 1

55. 0  57. 0  59. 0  61. 3
63. z = 2(x2 + y2) 65. 

2
2

4

6

4

−4

−2
y

x

z

 Paraboloid
 

x y
1

1

1

2

−1

z

67. r(u, v) = cos v cos ui + 2√2 cos v sin uj + 3 sin vk
69. x = u, y = 2u3 cos v, z = 2u3 sin v, 0 ≤ u ≤ 2, 0 ≤ v ≤ 2π
71. 3√41  73. 45  75. 27√41  77. 6√26

79. 25π   81. 66  83. 
2a6

5
  85. 16π

P.S. Problem Solving   (page 1127)

 1. (a) and (b) 
25√2kπ

6

 3. Ix =
√13π

3
(27 + 32π2)

 Iy =
√13π

3
(27 + 32π2)

 Iz = 18√13π
 5. (a)–(d) Proofs  7. 3a2π   9. (a) 1   (b) 13

15   (c) 5
2

11. The area is the same as the magnitude.
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Appendix C

Appendix C.1 (page A14)

 1. Rational    3. Irrational    5. Rational    7. Rational
 9. Rational    11. 4

11    13. 11
37

15. (a) True   (b) False   (c) True   (d) False
 (e) False   (f) False
17. x is greater than −3 and less than 3.
 x

−4 −3 −2 −1 10 2 3 4

 The interval is bounded.

19. x is no more than 5.
 x

−1 0 1 2 3 4 5 6

 The interval is unbounded.

21. y ≥ 4; [4, ∞)    23. 0.03 < r ≤ 0.07; (0.03, 0.07]
25. x ≥ 1

2 27. −1
2 < x < 7

2

 1

x

2

2

10−1−2

  7

x

2

42

1
2

0−2

−

29. x > 6 31. −1 < x < 1
 x

864

  x

210−1−2

33. x ≥ 13, x ≤ −7 35. a − b < x < a + b
 

x

100

13

−10

−7   x

a + ba − b a

37. −3 < x < 2 39. 0 < x < 3
 

20−2

x

−4

  x

40 2−2

41. −3 ≤ x ≤ 1 43. −3 ≤ x ≤ 2
 x

2−2 0−4

  x

20−2−4

45. 4; −4; 4    47. (a) −51; 51; 51   (b) 51; −51; 51
49. ∣x∣ ≤ 2    51. ∣x − 2∣ > 2
53. (a) ∣x − 12∣ ≤ 10   (b) ∣x − 12∣ ≥ 10
55. 1    57. (a) 14   (b) 10    59. x ≥ 36 units
61. x ≤ 41 or x ≥ 59    63. (a) 355

113 > π    (b) 22
7 > π     65. b

67. False. The reciprocal of 2 is 12. which is not an integer.
69. True    71. True    73–79. Proofs
81. ∣−3 − 1∣ > ∣−3∣ − ∣1∣; ∣3 − 1∣ = ∣3∣ − ∣1∣; Proof

Appendix C.2 (page A21)

 1. (a) 
(4, 5)

(3, 3)

(2, 1)

5
x

4321

5

4

3

2

1

y   3. (a) y

2

42−2
x

−6
3
2

, −5−

1
2

, −2−

1
2

, 1

−4

 (b) 2√5  (b) 2√10
 (c) (3, 3)  (c) (−1

2, −2)
 5. (a) 

x

1 +     3
2

0, ,

2

3

1 2

−1

−1−2

(−1, 1)

(1,     3)

y  (b) √8 − 2√3

 (c) (0, 
1 + √3

2 )

 7. Quadrant II    9. Quadrants I and III
11. Right triangle: y

2

x
2d

(4, 0)

(2, 1)

3

d1−2

−2
d

2

(−1, −5)

 d1 = √45
 d2 = √5
 d3 = √50
 (d1)2 + (d2)2 = (d3)2

13.  Rhombus: the length of 15. 

8 106 12 14 16

1500

1600

1400

1700

1800

1900

2000

x

y

N
um

be
r 

of
 s

to
re

s

Year (6 ↔ 2006)

 
each side is √5.

 y

3

2

1

(1, 2)

(3, 3)

(0, 0)

(2, 1)

x
321

17. d1 = 2√5, d2 = √5, d3 = 3√5
 Collinear, because d1 + d2 = d3.
19. d1 = √2, d2 = √13, d3 = 5
 Not collinear, because d1 + d2 > d3.
21. x = ±3    23. y = ±√55

25. (3x1 + x2

4
, 

3y1 + y2

4 ), (x1 + x2

2
, 

y1 + y2

2 ),

 (x1 + 3x2

4
, 

y1 + 3y2

4 )
27. c    28. b    29. a    30. d    31. x2 + y2 − 9 = 0
33. x2 + y2 − 4x + 2y − 11 = 0
35. x2 + y2 + 2x − 4y = 0
37. x2 + y2 − 6x − 4y + 3 = 0    39. x2 + y2 = 26,0002

41. (x − 1)2 + (y + 3)2 = 4 43. (x − 1)2 + (y + 3)2 = 0
 

x

y

31 2−1

(1, −3)

−5

−2

  

x

y

31 2−1

−2

−4

−5

−3 (1, −3)

−2

45. (x − 1
2)2 + ( y − 1

2)2 = 2 47. (x + 1
2)2 + (y + 5

4)2 = 9
4

 y

1
2,

1
2

x
21

2

−1

1

−2

−1

−2

  y

1
x

−1−2−3

1

−3

−2

1
2

, − 5
4

−

49. 3

−9

−9 9

 51. y

x
531

(2, −1)

−4

−3

−1

−2

1

2

53. Proof    55. True    57. True    59–61. Proofs
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  Index A139

Index

A

Abel, Niels Henrik (1802–1829), 197
Absolute convergence, 626
Absolute maximum of a function, 206
 of two variables, 940
Absolute minimum of a function, 206
 of two variables, 940
Absolute value, 74, A12
 derivative involving, 161
 function, 22
 operations with, A12
 properties of inequalities and, A12
Absolute Value Theorem, 592
Absolute zero, 98
Absolutely convergent series, 626
Acceleration, 149, 837, 861
 centripetal component of, 850
 tangential and normal components of, 

 849, 850, 863
 vector, 849, 861, 863
Accumulation function, 323
Acute angle, 31
Addition of vectors, 754, 764
Additive Identity Property of Vectors, 755
Additive Interval Property, 311
Additive Inverse Property of Vectors, 755
Agnesi, Maria Gaetana (1718–1799), 242 
Algebraic function(s), 24, 25, 181
Algebraic properties of the cross product, 

780
Alternating series, 623
 geometric, 623
 harmonic, 624, 626, 628
Alternating Series Remainder, 625
Alternating Series Test, 623
Alternative form
 of the derivative, 125
 of the directional derivative, 922 
 of dot product, 772
 of Green’s Theorem, 1084
 of L’Hôpital’s Rule, 347
 of Log Rule for Integration, 356
 of Mean Value Theorem, 217
Amplitude of a function, 37
Angle(s), 31
 acute, 31
 between two nonzero vectors, 771
 between two planes, 789
 coterminal, 31
 directed, 719
 of incidence, 688
 of inclination of a plane, 935
 initial ray (or side) of, 31
 obtuse, 31
 radian measure of, 32
 reference, 35
 of reflection, 688
 standard position of, 31
 terminal ray (or side) of, 31

 trigonometric values of common, 34
 vertex of, 31
Angular speed, 1003
Antiderivative, 284
 of f  with respect to x, 285
 finding by integration by parts, 523
 general, 285
 notation for, 285
 representation of, 284
 of a vector-valued function, 832
Antidifferentiation, 285, 317
 of a composite function, 332
Aphelion, 698, 745
Apogee, 698
Approximating zeros
 bisection method, 102
 Intermediate Value Theorem, 101
 Newton’s Method, 194
Approximation 
 linear, 271, 906
 Padé, 204
 polynomial, 640
 Stirling’s, 525
 tangent line, 271
 Two-point Gaussian Quadrature, 385
Arc length, 32, 474, 475, 856
 derivative of, 856
 parameter, 856, 857
 in parametric form, 713
 of a polar curve, 733
 of a space curve, 855
 in the xy-plane, 1007
Arccosecant function, 45
Arccosine function, 45
Arccotangent function, 45
Archimedes (287–212 b.c.), 296
 Principle, 514
 spiral of, 721, 737
Arcsecant function, 45
Arcsine function, 45
 series for, 674
Arctangent function, 45
 series for, 674
Area
 found by exhaustion method, 296
 line integral for, 1082
 of a parametric surface, 1092
 in polar coordinates, 729 
 problem, 69, 70
 of a rectangle, 296
 of a region between two curves, 445
 of a region in the plane, 300
 of a surface of revolution, 479 
  in parametric form, 714
  in polar coordinates, 734 
 of the surface S, 1007
 in the xy-plane, 1007
Associative Property
 of the Dot Product, 770
 of Vector Addition, 755

Astroid, 175
Astroidal sphere, 1097
Asymptote(s)
 horizontal, 240
 of a hyperbola, 693 
 slant, 245, 251
 vertical, 109
Autonomous equations, 431
Average rate of change, 12
Average value of a function 
 on an interval, 321
 over a region R, 986
 over a solid region Q, 1023
Average velocity, 137
Axis
 conjugate, of a hyperbola, 693
 major, of an ellipse, 689
 minor, of an ellipse, 689
 of a parabola, 687
 polar, 719
 of revolution, 454
 transverse, of a hyperbola, 693

B

Barrow, Isaac (1630–1677), 173
Base(s), 162, 174
 of the natural exponential function, 162
 other than e
  derivatives for, 162
  exponential function, 162
  logarithmic function, 162
Basic differentiation rules for elementary 

functions, 181
Basic equation obtained in a partial 

fraction decomposition, 552
 guidelines for solving, 556
Basic integration rules, 286, 368, 516
 procedures for fitting integrands to, 519
Basic limits, 83
Basic types of transformations, 23
Bearing, 758
Bernoulli equation, 430
 general solution of, 430
Bernoulli, James (1654–1705), 706
Bernoulli, John (1667–1748), 550
Bessel function, 659
Between, A8
Bifolium, 175
Binomial coefficient, 679
Binomial series, 673
Binormal vector, 853, 870
Bisection method, 102
Boundary point of a region, 884
Bounded 
 above, 595
 below, 595
 intervals, A9
 monotonic sequence, 595
 region, 940

Index
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 sequence, 595
Brachistochrone problem, 706
Breteuil, Emilie de (1706–1749), 486
Bullet-nose curve, 165

C

Cantor set, 683
Cardioid, 724, 725
Carrying capacity, 407, 417
Cartesian plane, A16
 coordinates, A16
 ordered pair, A16
 origin, A16
 quadrants, A16
 x-axis, A16
 x-coordinate (abscissa), A16
 y-axis, A16
 y-coordinate (ordinate), A16
Cassini, Giovanni Domenico (1625-1712), 

728
Cassini oval, 728
Catenary, 376
Cauchy, Augustin-Louis (1789–1857), 99
Cauchy-Riemann equations, 901, 918
Cauchy-Schwarz Inequality, 778
Cavalieri’s Theorem, 464
Center
 of a circle, A19
 of curvature, 860
 of an ellipse, 689
 of gravity, 496, 497
  of a one-dimensional system, 496
  of a two-dimensional system, 497
 of a hyperbola, 693
 of mass, 495, 496, 497
  of a one-dimensional system, 495, 

  496
  of a planar lamina, 498
   of variable density, 1000
  of a solid region, 1018
  of a two-dimensional system, 497
 of a power series, 651
Centered at c, 640
Central force field, 1045
Centripetal component of acceleration, 850
Centripetal force, 854
Centroid, 499
 of a simple region, 1000
Chain Rule, 154, 155, 159
 implicit differentiation, 916 
 one independent variable, 911
 three or more independent variables, 

 914
 and trigonometric functions, 159
 two independent variables, 913
Change in x, 121
Change in y, 121
Change of variables, 335
 for definite integrals, 338
 for double integrals, 1033
 guidelines for making, 336
 for homogeneous equations, 416

 to polar form, 992
 using a Jacobian, 1031, 1037
Charles, Jacques (1746–1823), 98
Charles’s Law, 98
Circle, 175, 686, 725, A19
 center, A19
 of curvature, 203, 860
 equation of
  general form, A19
  standard form, A19
 radius, A19
 unit, 32, A19
Circular function definitions of  

trigonometric functions, 33
Circulation of F around Cα, 1121
Circumscribed rectangle, 298
Cissoid, 175
 of Diocles, 750
Classification of conics by eccentricity, 

738
Closed
 curve, 1074
 disk, 884
 interval, A9
  continuous on, 97
  differentiable on, 125
  guidelines for finding extrema on,  

  209
 region R, 884
 surface, 1110
Cobb-Douglas production function, 877
Coefficient(s), 24
 binomial, 679
 leading, 24
Collinear, 17
Combinations of functions, 24
Common types of behavior associated 

with nonexistence of a limit, 75
Commutative Property
 of the Dot Product, 770
 of Vector Addition, 755
Comparison Test
 Direct, 616
 for improper integrals, 580
 Limit, 618
Competing-species equations, 434
Completeness, 101, 595
Completing the square, 367, A19
Component of acceleration
 centripetal, 850
 normal, 849, 850, 863
 tangential, 849, 850, 863
Component form of a vector in the plane, 

753
Component functions, 820
Components of a vector, 774
 along v, 774
 in the direction of v, 775
 orthogonal to v, 774
 in the plane, 753
Composite function, 25
 antidifferentiation of, 332
 continuity of, 99

 derivative of, 154
 limit of, 85
 of two variables, 873
  continuity of, 889
Composition of functions, 25, 873
Concave downward, 231
Concave upward, 231
Concavity, 231
 test for, 232
Conditional convergence, 626
Conditionally convergent series, 626
Conic(s), 686 
 circle, 686
 classification by eccentricity, 738
 degenerate, 686
 directrix of, 738
 eccentricity, 738
 ellipse, 686, 689
 focus of, 738
 hyperbola, 686, 693
 parabola, 686, 687
 polar equations of, 739
 section, 686
Conjugate axis of a hyperbola, 693
Connected region, 1072
Conservative vector field, 1047, 1069
 independence of path, 1072
 test for, 1048, 1051
Constant
 Euler’s, 615
 force, 485
 function, 24
 gravitational, 487
 of integration, 285
 Multiple Rule, 133, 163
  differential form, 274
  for integration, 334
 proportionality, 398
 Rule, 130, 163
 term of a polynomial function, 24
Constraint, 956
Continued fraction expansion, 683
Continuity
 on a closed interval, 97
 of a composite function, 99
   of two variables, 889
 differentiability implies, 126
 and differentiability of inverse 

 functions, 178
 implies integrability, 308
 properties of, 99
 of a vector-valued function, 824
Continuous, 94
 at c, 83, 94
 on the closed interval [a, b], 97
 everywhere, 94
 function of two variables, 888
 on an interval, 824
 from the left and from the right, 97
 on an open interval (a, b), 94
 in the open region R, 888, 890
 at a point, 824, 888, 890
 vector field, 1044
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Continuously differentiable, 474
Contour lines, 875
Converge, 196, 589, 599
Convergence
 absolute, 626
 conditional, 626
 endpoint, 654
 of a geometric series, 601
 of improper integral with infinite  

 discontinuities, 575
 interval of, 652, 656
 of Newton’s Method, 196, 197
 of a power series, 652
 of p-series, 611
 radius of, 652, 656
 of a sequence, 589
 of a series, 599
 of Taylor series, 670
 tests for series
  Alternating Series Test, 623
  Direct Comparison Test, 616
  geometric series, 601
  guidelines, 635
  Integral Test, 609
  Limit Comparison Test, 618
  p-series, 611
  Ratio Test, 631
  Root Test, 634
  summary, 636
Convergent power series, form of, 668
Convergent series, limit of nth term of, 603
Conversion factors, 485, 494
Convex limaçon, 725
Coordinate conversion
 cylindrical to rectangular, 808
 cylindrical to spherical, 811
 polar to rectangular, 720
 rectangular to cylindrical, 808
 rectangular to polar, 720
 rectangular to spherical, 811
 spherical to cylindrical, 811
 spherical to rectangular, 811
Coordinate planes, 762
 xy-plane, 762
 xz-plane, 762
 yz-plane, 762
Coordinate of a point on the real number 

line, A7
Coordinate system
 cylindrical, 808
 polar, 719
 rectangular, A16
 spherical, 811
 three-dimensional, 762
Coordinates, A16
 polar, 719 
  area in, 729
  area of a surface of revolution in, 734
  converting to rectangular, 720
  Distance Formula in, 727
  surface area in, 1012
 rectangular
  converting to cylindrical, 808

  converting to polar, 720
  converting to spherical, 811
  curvature in, 860, 863
  x-coordinate (abscissa), A16
  y-coordinate (ordinate), A16
Copernicus, Nicolaus (1473–1543), 689
Cornu spiral, 749, 869
Cosecant function, 33
 derivative of, 147, 159, 163
 integral of, 361
 inverse of, 45
  derivative of, 180
Cosine function, 33
 derivative of, 135, 159, 163
 integral of, 361
 inverse of, 45
  derivative of, 180
 series for, 674
Cotangent function, 33
 derivative of, 147, 159, 163
 integral of, 361
 inverse of, 45
  derivative of, 180
Coterminal angles, 31
Coulomb’s Law, 487, 1045
Critical number(s)
 of a function, 208
 relative extrema occur only at, 208
Critical point(s)
 of a function of two variables, 941
 of predator-prey equations, 432
 relative extrema occur only at, 941
Cross product of two vectors in space, 779
 algebraic properties of, 780
 determinant form, 779
 geometric properties of, 781
 torque, 783
Cruciform, 175
Cubic function, 24
Cubing function, 22
Curl of a vector field, 1050
 and divergence, 1052
Curtate cycloid, 708
Curvature, 858 
 center of, 860
 circle of, 203, 860
 formulas for, 859, 863
 radius of, 860
 in rectangular coordinates, 860, 863
 related to acceleration and speed, 861
Curve(s)
 astroid, 175
 bifolium, 175
 bullet-nose, 165
 cissoid, 175
 closed, 1074
 cruciform, 175
 eight, 203
 equipotential, 426
 folium of Descartes, 175, 737
 isothermal, 408
 kappa, 173, 176
 lateral surface area over, 1067

 lemniscate, 64, 172, 176, 725
 level, 875
 logistic, 417
 natural equation for, 869
 orientation of, 1055
 piecewise smooth, 705, 1055
 plane, 700, 820
 pursuit, 378
 rectifiable, 474
 rose, 722, 725
 simple, 1079
 smooth, 474, 705, 830, 845, 1055
  piecewise, 705, 1055
 space, 820
 tangent line to, 846
 velocity potential, 408
Curve sketching, summary of, 250
Cusps, 705, 830
Cycloid, 705, 709
 curtate, 708
 prolate, 712
Cylinder, 798
 directrix of, 798
 equations of, 798
 generating curve of, 798
 right, 798
 rulings of, 798
Cylindrical coordinate system, 808
 pole of, 808
Cylindrical coordinates
 converting to rectangular, 808
 converting to spherical, 811
Cylindrical surface, 798

D

d’Alembert, Jean Le Rond (1717–1783),  
894

Darboux’s Theorem, 282
Decay model, exponential, 398
Decomposition of N(x)�D(x) into partial 

fractions, 551
Decreasing function, 221
 test for, 221
Definite integral(s), 308
 approximating
  Midpoint Rule, 302, 561
  Simpson’s Rule, 212, 562
  Trapezoidal Rule, 212, 560
 as the area of a region, 309
 change of variables, 338
 evaluation of a line integral as a, 1057
 properties of, 312
 two special, 311
 of a vector-valued function, 832
Degenerate conic, 686
 line, 686
 point, 686
 two intersecting lines, 686
Degree of a polynomial function, 24
Delta-neighborhood, 884
Demand, 18
Density, 498
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Density function ρ, 998, 1018
Dependent variable, 19
 of a function of two variables, 872
Derivative(s)
 of algebraic functions, 160
 alternative form, 125
 of arc length function, 856
 Chain Rule, 154, 155, 163
  implicit differentiation, 916
  one independent variable, 911
  three or more independent  

  variables, 914
  two independent variables, 913
 of a composite function, 154
 Constant Multiple Rule, 133, 163
 Constant Rule, 130, 163
 of cosecant function, 147, 163
 of cosine function, 135, 163
 of cotangent function, 147, 163
 Difference Rule, 134, 163
 directional, 919, 920, 927
 of an exponential function, base a, 162
 of a function, 123
 General Power Rule, 156, 163
 higher-order, 149
 of hyperbolic functions, 375
 implicit, 169
 of an inverse function, 178
 of inverse trigonometric functions, 180
 involving absolute value, 161
 from the left and from the right, 125
 of a logarithmic function, base a, 162
 of the natural exponential function,
   136
 of the natural logarithmic function,
   160
 notation, 123
 parametric form, 710
  higher-order, 711
 partial, 894
 Power Rule, 131, 163
 Product Rule, 143, 163
 Quotient Rule, 145, 163
 of secant function, 147, 163
 second, 149
 Simple Power Rule, 156, 163
 simplifying, 158
 of sine function, 135, 163
 Sum Rule, 134, 163
 of tangent function, 147, 163
 third, 149
 of trigonometric functions, 147, 163
 of a vector-valued function, 828
  higher-order, 829
  properties of, 830
Descartes, René (1596–1650), 2
Determinant form of cross product, 779
Difference quotient, 20, 121
Difference Rule, 134
 differential form, 274
Difference of two functions, 25
Difference of two vectors, 754
Differentiability

 and continuity of inverse functions, 
178

 implies continuity, 126, 907
 sufficient condition for, 905
Differentiable at x, 123
Differentiable, continuously, 474
Differentiable function
 on the closed interval [a, b], 125
 on an open interval (a, b), 123
 in a region R, 905
 of three variables, 906
 of two variables, 905
 vector-valued, 828
Differential, 272
 as an approximation, 906
 function of three or more variables, 904
 function of three variables, 906
 function of two variables, 904
 of x, 272
 of y, 272
Differential equation, 285, 388
 Bernoulli equation, 430
 doomsday, 441
 Euler’s Method, 392
  modified, 441
 first-order linear, 424
 general solution of, 285, 388
 Gompertz, 411
 homogeneous, 416
  change of variables, 416
 initial condition, 289, 389
 integrating factor, 424
 logistic, 281, 417
 order of, 388
 particular solution of, 289
 separable, 405
 separation of variables, 397, 405
 singular solution of, 388
 solution of, 388
Differential form, 274
 of a line integral, 1063
Differential formulas, 274
 constant multiple, 274
 product, 274
 quotient, 274
 sum or difference, 274
Differential operator, 1050, 1052
 Laplacian, 1127
Differentiation, 123
 applied minimum and maximum 

  problems, guidelines for solving, 
261

 basic rules for elementary functions, 
181

 formulas, 286
 implicit, 169
  Chain Rule, 916
  guidelines for, 170
 involving inverse hyperbolic functions, 

 379
 logarithmic, 174
 numerical, 126
 partial, 894

 of power series, 656
 of a vector-valued function, 828
Differentiation rules 
 basic, 181
 Chain, 154, 155, 163
 Constant, 130, 163
 Constant Multiple, 133, 163
 cosecant function, 147, 163
 cosine function, 135, 163
 cotangent function, 147, 163
 Difference, 134, 163
 general, 163
 General Power, 156, 163
 Power, 131, 163
 Product, 143, 163
 Quotient, 145, 163
 secant function, 147, 163
 Simple Power, 156, 163
 sine function, 135, 163
 Sum, 134, 163
 summary of, 163
 tangent function, 147, 163
Diminishing returns, point of, 269
Dimpled limaçon, 725
Direct Comparison Test, 616
Direct substitution, 83, 84
Directed angle, 719
Directed distance, A13
 from points to a line, 497
 polar coordinates, 719
Directed line segment(s), 752
 equivalent, 752
 initial point of, 752
 length of, 752
 magnitude of, 752
 terminal point of, 752
Direction angles of a vector, 773
Direction cosines of a vector, 773
Direction field, 291, 390
Direction of motion, 836
Direction numbers, 787
Direction vector, 787
Directional derivative, 919, 920
 alternative form of, 922
 of f  in the direction of u, 920, 927
 of a function in three variables, 927
Directrix
 of a conic, 738
 of a cylinder, 798
 of a parabola, 687
Dirichlet function, 75
Dirichlet, Peter Gustav (1805–1859), 75
Discontinuity, 95
 infinite, 572
 nonremovable, 95
 removable, 95
Disjoint sets, A8
Disk, 454, 884
 closed, 884
 method, 455
  compared to shell, 467
 open, 884
Displacement of a particle, 326, 327
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Distance
 between a point and a line, 18
  in space, 793
 between a point and a plane, 792
 between two points on the real number 

 line, A13
 directed, 497, A13
 Formula in space, 763
 total, traveled on [a, b], 327
Distance Formula, A17
 in polar coordinates, 727
 in space, 763
Distributive Property
 for the Dot Product, 770
 for vectors, 755
Diverge, 589, 599
Divergence
 of improper integral with infinite 

 discontinuities, 575
 of a sequence, 589
 of a series, 599
 tests for series
  Direct Comparison Test, 616
  geometric series, 601
  guidelines, 635
  Integral Test, 609
  Limit Comparison Test, 618
  nth-Term Test, 603
  p-series, 611
  Ratio Test, 631
  Root Test, 634
  summary, 636
 of a vector field, 1052
  and curl, 1052
Divergence Theorem, 1084, 1110
Divergence-free vector field, 1052
Dividing out technique, 87
Domain
 feasible, 260
 of a function, 19
  explicitly defined, 19
  of two variables, 872
 implied, 21
 of a power series, 652
 of a vector-valued function, 821
Doomsday equation, 441
Dot product
 Alternative form of, 772
 Associative Property of, 770
 Commutative Property of, 770
 Distributive Property for, 770
 form of work, 776
 projection using the, 775
 properties of, 770
 of two vectors, 770
Double integral(s), 978, 979, 980
 change of variables for, 1033
 of f  over R, 980
 properties of, 980
Double-angle formulas, 33
Doyle Log Rule, 882
Dummy variable, 310
Dyne, 485

E

e, the number, 54
Eccentricity, 738
 classification of conics by, 738
 of an ellipse, 691
 of a hyperbola, 694
Eight curve, 203
Electric force field, 1045
Elementary function(s), 24, 181
 basic differentiation rules for, 181
 polynomial approximation of, 640
 power series for, 674
Eliminating the parameter, 702
Ellipse, 686, 689
 center of, 689
 eccentricity of, 691
 foci of, 689
 major axis of, 689
 minor axis of, 689
 reflective property of, 691
 standard equation of, 689
 vertices of, 689
Ellipsoid, 799, 800
Elliptic cone, 799, 801
Elliptic integral, 565
Elliptic paraboloid, 799, 801
Endpoint convergence, 654
Endpoint extrema, 206
Endpoints of an interval, A9
Energy
 kinetic, 1075
 potential, 1075
Epicycloid, 708, 709, 713
Epsilon-delta, ε-δ definition of limit, 76
Equal vectors, 753, 764
Equality of mixed partial derivatives, 899
Equation(s)
 autonomous, 431
 basic, 552
  guidelines for solving, 556
 Bernoulli, 430
 Cauchy-Riemann, 901
 competing-species, 434
 of conics, polar, 739
 of a cylinder, 798
 differential, 285, 388
 doomsday, 441
 of an ellipse, 689
 general second-degree, 686
 Gompertz, 411
 graph of, 2
 harmonic, 1127
 heat, 901
 of a hyperbola, 693
 Laplace’s, 901, 968, 1127
 logistic, 417
 of a line
  general form, 14
  horizontal, 14
  point-slope form, 11, 14
  slope-intercept form, 13, 14
  in space, parametric, 787

  in space, symmetric, 787
  summary, 14
  vertical, 14
 Lotka-Voltera, 431
 of a parabola, 687
 parametric, 700, 1088
  finding, 704
  graph of, 700
 of a plane in space
  general form, 788
  standard form, 788
 predator-prey, 431
 primary, 260, 261
 related-rate, 185
 secondary, 261
 separable, 405
 solution point of, 2
 of tangent plane, 932
 wave, 901, 968
Equilibrium, 495
 points, of predator-prey equations, 432
Equipotential
 curves, 408
 lines, 875
Equivalent 
 conditions, 1074
 directed line segments, 752
 inequalities, A10
Error
 in approximating a Taylor polynomial, 

 646
 in measurement, 273
  percent error, 273
  propagated error, 273
  relative error, 273
 in Simpson’s Rule, 563
 in Trapezoidal Rule, 563
Escape velocity, 118
Euler, Leonhard (1707–1783), 20
Euler’s
 constant, 615
 Method, 392
  modified, 441
Evaluate a function, 19
Evaluating
 a flux integral, 1104
 a surface integral, 1098
Evaluation
 by iterated integrals, 1014
 of a line integral as a definite integral, 

 1057
Even function, 26
 integration of, 340
 test for, 26
Even/odd identities, 33
Everywhere continuous, 94
Existence
 of an inverse function, 43
 of a limit, 97
 theorem, 101, 206
Expanded about c, approximating  

polynomial, 640
Explicit form of a function, 19, 169
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Explicitly defined domain, 21
Exponential decay, 398
Exponential function, 24, 52
 to base a, 162
  derivative of, 163
 natural, derivative of, 136
 notation, 41
 properties of, 53
 series for, 674
Exponential growth and decay model, 398
 initial value, 398
 proportionality constant, 398
Exponents, properties of, 52
Extended Mean Value Theorem, 281, 346
Extrema
 endpoint, 206
 of a function, 206, 940
 guidelines for finding, 209
 relative, 207
Extreme Value Theorem, 206, 940
Extreme values of a function, 206

F

Factorial, 591
Fails to exist, 107
Family of functions, 308
Famous curves
 astroid, 175
 bifolium, 175
 bullet-nose curve, 165
 circle, 175, 686, 725
 cissoid, 175
 cruciform, 175
 eight curve, 203
 folium of Descartes, 175, 737
 kappa curve, 173, 176
 lemniscate, 64, 172, 176, 725
 parabola, 2, 175, 686, 687
 pear-shaped quartic, 203
 semicircle, 21, 165
 serpentine, 151
 witch of Agnesi, 151, 175, 242, 827
Faraday, Michael (1791–1867), 1075
Feasible domain, 260
Fermat, Pierre de (1601–1665), 208
Fibonacci sequence, 598, 608
Field
 central force, 1045
 direction, 291, 341, 390
 electric force, 1045
 force, 1044
 gravitational, 1045
 inverse square, 1045
 slope, 291, 341, 390
 vector, 1044
  over a plane region R, 1044
  over a solid region Q, 1044
 velocity, 1044, 1045
Finite Fourier series, 540
First Derivative Test, 223
First moments, 1002, 1018
First partial derivatives, 894
 notation for, 895

First-order linear differential equations, 424
 solution of, 425
 standard form, 424
Fitting integrands to basic rules, 519
Fixed plane, 866
Fixed point, 198, 220
Fluid(s)
 force, 506
 pressure, 505
 weight-densities of, 505
Flux integral, 1104
 evaluating, 1104
Focal chord of a parabola, 687
Focus
 of a conic, 738
 of an ellipse, 689
 of a hyperbola, 693
 of a parabola, 687
Folium of Descartes, 175, 737
Force, 485
 constant, 485
 exerted by a fluid, 506
 of friction, 862
 resultant, 758
 variable, 486
Force field, 1044
 central, 1045
 electric, 1045
 work, 1060
Form of a convergent power series, 668
Formula(s)
 compound interest, 354
 for curvature, 859, 863
 differential, 274
 differentiation, 286
 Distance, A17
  in space, 763
 double-angle, 33
 Heron’s, 967
 integration, 286
 Midpoint, A18
  in space, 763
 power-reducing, 33
 reduction, 540, 568
 special integration, 545
 Stirling’s, 59
 sum and difference, 33
 summation, 295
 Wallis’s, 534
Fourier, Joseph (1768–1830), 661
Fourier series, finite, 540
Fourier Sine Series, 531
Fraction expansion, continued, 683
Fractions, partial, 550
 decomposition of N(x)�D(x) into, 551
 method of, 550
Frenet-Serret formulas, 870
Fresnel function, 385
Friction, 862
Fubini’s Theorem, 982
 for a triple integral, 1014
Function(s), 19
 absolute maximum of, 206

 absolute minimum of, 206
 absolute value, 22
 acceleration, 149
 accumulation, 323
 addition of, 25
 algebraic, 24, 25, 181
 amplitude of, 37
 antiderivative of, 284
 arc length, 474, 475, 856
 arccosecant, 45
 arccosine, 45
 arccotangent, 45
 arcsecant, 45
 arcsine, 45
 arctangent, 45
 average value of, 321, 986
 Bessel, 659
 Cobb-Douglas production, 877
 combinations of, 24
 component, 820
 composite, 25, 873
 composition of, 25, 873
 concave downward, 231
 concave upward, 231
 constant, 24
 continuous, 94
 continuously differentiable, 474
 cosecant, 33
 cosine, 33
 cotangent, 33
 critical number of, 208
 cubic, 24
 cubing, 22
 decreasing, 221
  test for, 221
 defined by power series, properties of, 

 656
 density, 998, 1018
 derivative of, 123
 difference of, 25
 differentiable, 123
 Dirichlet, 75
 domain of, 19
  implied, 21
 elementary, 24, 181
  algebraic, 24, 25
  exponential, 24
  logarithmic, 24
  trigonometric, 24, 33
 evaluate, 19
 even, 26
 explicit form, 19, 169
 exponential to base a, 52, 162
 extrema of, 206
 extreme values of, 206
 family of, 308
 feasible domain of, 260
 Fresnel, 385
 Gamma, 354, 582
 global maximum of, 206
 global minimum of, 206
 graph of, guidelines for analyzing, 249
 greatest integer, 96

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



  Index A145

 Gudermannian, 382
 Heaviside, 63
 homogeneous, 416, 918
 hyperbolic, 373
 identity, 22
 implicit form, 19
 implicitly defined, 169
 increasing, 221
  test for, 221
 inner product of two, 540
 integrable, 308
 inverse, 41
 inverse hyperbolic, 377
 inverse trigonometric, 45
 involving a radical, limit of, 84
 jerk, 204
 joint density, 989
 limit of, 69,72
 linear, 24
 local extrema of, 207
 local maximum of, 207
 local minimum of, 207
 logarithmic, 24
  to base a, 162
 logistic, 243
 natural logarithmic, 55
 normal probability density, 232
 notation, 19
 odd, 26
 one-to-one, 21
 onto, 21
 orthogonal, 540
 period of, 36
 periodic, 36
 point of inflection, 233, 234
 polynomial, 24, 873
 position, 137, 841
 potential, 1047
 present value of, 531
 product of, 25
 pulse, 118
 quadratic, 24
 quotient of, 25
 radius, 804
 range of, 19
 rational, 22, 25, 873
 real-valued, 19
 relative extrema of, 207, 940
 relative maximum of, 207, 940
 relative minimum of, 207, 940
 representation by power series, 661
 Riemann zeta, 615
 scalar, 820
 secant, 33
 signum, 106
 sine, 33
 square root, 22
 squaring, 22
 step, 96
 strictly monotonic, 222
 sum of, 25
 tangent, 33
 that agree at all but one point, 86

 of three variables
  continuity of, 890
  directional derivative of, 927
  gradient of, 927
 transcendental, 25, 181
 transformation of a graph of, 23
  horizontal shift, 23
  reflection about origin, 23
  reflection about x-axis, 23
  reflection about y-axis, 23
  reflection in the line y = x, 42
  vertical shift, 23
 trigonometric, 24, 33
 of two variables, 872
  absolute maximum of, 940
  absolute minimum of, 940
  continuity of, 888
  critical point of, 941
  dependent variable, 872
  differentiability implies continuity, 

  907
  differentiable, 905
  differential of, 904
  domain of, 872
  gradient of, 922
  graph of, 874
  independent variables, 872
  limit of, 885
  maximum of, 940
  minimum of, 940
  nonremovable discontinuity of, 888
  partial derivative of, 894
  range of, 872
  relative extrema of, 940
  relative maximum of, 940, 943
  relative minimum of, 940, 943
  removable discontinuity of, 888
  total differential of, 904
 unit pulse, 118
 vector-valued, 820
 Vertical Line Test, 22
 of x and y, 872
 zero of, 26
  approximating with Newton’s  

  Method, 194
Fundamental Theorem
 of Algebra, 1110
 of Calculus, 317, 318
  guidelines for using, 318
  Second, 324
 of Line Integrals, 1069, 1070

G

Gabriel’s Horn, 578, 1090
Galilei, Galileo (1564–1642), 181, 385
Galois, Evariste (1811–1832), 197
Gamma Function, 354, 582
Gauss, Carl Friedrich (1777–1855), 295, 

1110
Gaussian Quadrature Approximation, 

two-point, 385
Gauss’s Law, 1107
Gauss’s Theorem, 1110

General antiderivative, 285
General differentiation rules, 163
General form
 of the equation of a circle, A19
 of the equation of a line, 14
 of the equation of a plane in space, 

 788
 of the equation of a quadric surface, 

 799
 of a second-degree equation, 686
General harmonic series, 611
General partition, 307
General Power Rule
 for differentiation, 156, 163
 for Integration, 337
General second-degree equation, 686
General solution
 of the Bernoulli equation, 430
 of a differential equation, 285, 388
Generating curve of a cylinder, 798
Geometric power series, 661
Geometric properties of the cross 

product, 781
Geometric property of triple scalar 

product, 784
Geometric series, 601
 alternating, 623
 convergence of, 601
 divergence of, 601
 nth partial sum of, 601
 sum of, 601
Gibbs, Josiah Willard (1839–1903), 1056
Global maximum of a function, 206
Global minimum of a function, 206
Golden ratio, 598
Gompertz growth model, 411
Grad, 922
Gradient, 1044, 1047
 of a function of three variables, 927
 of a function of two variables, 922
 normal to level curves, 926
 normal to level surfaces, 936
 properties of, 924
 recovering a function from, 1051
Graph(s)
 of absolute value function, 22
 of cubing function, 22
 of an equation, 2
 of a function
  guidelines for analyzing, 249
  transformation of, 23
  of two variables, 874
 of hyperbolic functions, 374
 of identity function, 22
 intercepts of, 4
 of inverse hyperbolic functions, 378
 of inverse trigonometric functions, 46
 orthogonal, 176
 of parametric equations, 700
 point of inflection, 233
 polar, 721
  points of intersection, 731
  special polar graphs, 725
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 of rational function, 22
 of the six trigonometric functions, 36
 of square root function, 22
 of squaring function, 22
 symmetry of, 5
Gravitation
 Newton’s Law of, 1045
 Newton’s Law of Universal, 487, 854
Gravitational
 constant, 487
 field, 1045
Greater than, A8
 or equal to, A8
Greatest integer function, 96
Green, George (1793–1841), 1080
Green’s Theorem, 1079
 alternative forms of, 1084
Gregory, James (1638–1675), 656
Growth Model
 exponential, 398
 Gompertz, 411
Guidelines
 for analyzing the graph of a function, 

 249
 for evaluating integrals involving 

 secant and tangent, 535
 for evaluating integrals involving sine 

 and cosine, 532
 for finding extrema on a closed 

 interval, 209
 for finding intervals on which a  

  function is increasing or 
decreasing, 222

 for finding an inverse function, 43
 for finding limits at infinity of rational  

 functions, 242
 for finding a Taylor series, 672
 for implicit differentiation, 170
 for integration, 359
 for integration by parts, 523
 for making a change of variables, 336
 for solving applied minimum and 

 maximum problems, 261
 for solving the basic equation, 556
 for solving related-rate problems, 186
 for testing a series for convergence or 

 divergence, 635
 for using the Fundamental Theorem of 

 Calculus, 318
Gyration, radius of, 1003

H

Half-life, 399
Hamilton,William Rowan (1805–1865), 

754
Harmonic equation, 1127
Harmonic series, 611, 615
 alternating, 624, 626, 628
Heat equation, 901
Heat flow, 1107
Heat flux, 1107
Heaviside function, 63

Heaviside, Oliver (1850–1925), 63
Helix, 821
Heron’s Formula, 967
Herschel, Caroline (1750–1848), 695
Higher-order derivative, 149
 partial, 898
 of a vector-valued function, 829
Homogeneous of degree n, 416, 918
Homogeneous differential equation, 416
 change of variables for, 416
Homogeneous function, 416, 918
Hooke’s Law, 487
Horizontal asymptote, 240
Horizontal component of a vector, 757
Horizontal line, 14
Horizontal Line Test, 43
Horizontal shift of a graph of a function, 23
Horizontally simple region of integration, 

972
Huygens, Christian (1629–1795), 475
Hypatia (370–415 a.d.), 686
Hyperbola, 686, 693
 asymptotes of, 693
 center of, 693
 conjugate axis of, 693
 eccentricity of, 694
 foci of, 693
 standard equation of, 693
 transverse axis of, 693
 vertices of, 693
Hyperbolic functions, 373
 derivatives of, 375
 graphs of, 374
 identities, 374
 integrals of, 375
 inverse, 377
  differentiation involving, 379
  graphs of, 378
  integration involving, 379
Hyperbolic identities, 374
Hyperbolic paraboloid, 799, 801
Hyperboloid
 of one sheet, 799, 800, 1109
 of two sheets, 799, 800
Hypocycloid, 709

I

Identities
 even/odd, 33
 hyperbolic, 374
 Pythagorean, 33
 quotient, 33
 reciprocal, 33
 trigonometric, 33
Identity function, 22
If and only if, 14
Image of x under f, 19
Implicit derivative, 170
Implicit differentiation, 169, 916
 Chain Rule, 916
 guidelines for, 170

Implicit form of a function, 19
Implicitly defined function, 169
Implied domain, 21
Improper integral(s), 572
 comparison test for, 580
 with infinite discontinuities, 575
  convergence of, 575
  divergence of, 575
 with infinite integration limits, 572
  convergence of, 572
  divergence of, 572
 special type, 578
Incidence, angle of, 688
Inclination of a plane, angle of, 935
Incompressible, 1052, 1115
Increasing function, 221
 test for, 221
Increment of z, 904
Increments of x and y, 904
Indefinite integral, 285
 pattern recognition, 332
 of a vector-valued function, 832
Indefinite integration, 285
Independence of path and conservative 

vector fields, 1072
Independent of path, 1072
Independent variable, 19
 of a function of two variables, 872
Indeterminate form, 87, 110, 241, 345
Index of summation, 294
Inductive reasoning, 593
Inequality, A8
 Cauchy-Schwarz, 778
 equivalent, A10
 linear, A11
 Napier’s, 363
 preservation of, 312
 properties, A8
 reverse the, A8
 satisfied, A10
 solution, A10
  set, A10
 triangle, 757, A12
Inertia, moment of, 1002, 1018, 1109, 1127
 polar, 1002
Infinite discontinuities, 572
 improper integrals with, 575
  convergence of, 575
  divergence of, 575
Infinite integration limits, 572
 improper integrals with, 572
  convergence of, 572 
  divergence of, 572
Infinite interval, 239
Infinite limit(s), 107
 at infinity, 245
 from the left and from the right, 107
 properties of, 111
Infinite series (or series), 599
 absolutely convergent, 626
 alternating, 623
  geometric, 623
  harmonic, 624, 626
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  remainder, 625
 conditionally convergent, 626
 convergence of, 599
 convergent, limit of nth term, 603
 divergence of, 599
  nth-term test for, 603
 geometric, 601
 guidelines for testing for convergence 

 or divergence of, 635
 harmonic, 611
  alternating, 624, 626, 628
 nth partial sum, 599
 properties of, 603
 p-series, 611
 sum of, 599
 telescoping, 600
 terms of, 599
Infinity
 infinite limit at, 245
 limit at, 239, 240
Inflection point, 233, 234
Initial condition(s), 289, 389
Initial point, directed line segment, 752
Initial ray (or side) of an angle, 31
Initial value, 398
Inner partition, 978, 1013
 polar, 991
Inner product
 of two functions, 540
 of two vectors, 770
Inner radius of a solid of revolution, 457
Inscribed rectangle, 298
Inside limits of integration, 971
Instantaneous rate of change, 12, 123
Instantaneous velocity, 138
Integrability and continuity, 308
Integrable function, 308, 980
Integral(s)
 of cosecant function, 361
 of cosine function, 361
 of cotangent function, 361
 definite, 308
  properties of, 312
  two special, 311
 double, 978, 979, 980
 elliptic, 565
 flux, 1104
 of hyperbolic functions, 375
 improper, 572
 indefinite, 285
 involving inverse trigonometric 

 functions, 365
 involving secant and tangent,  

 guidelines for evaluating, 535
 involving sine and cosine, guidelines 

 for evaluating, 532
 involving sine-cosine products, 537
 iterated, 971
 line, 1056
 Mean Value Theorem, 320
 of p(x) = Ax2 + Bx + C, 561
 of secant function, 361
 of sine function, 361

 single, 980
 of the six basic trigonometric 

 functions, 361
 surface, 1098
 of tangent function, 361
 trigonometric, 532
 triple, 1013
Integral Test, 609
Integrand(s), procedures for fitting to 

basic rules, 519
Integrating factor, 424
Integration
 as an accumulation process, 449
 Additive Interval Property, 311
 basic rules of, 286, 368, 516
 change of variables, 335
  guidelines for, 336
 constant of, 285
 Constant Multiple Rule for, 287
 of even and odd functions, 340
 guidelines for, 359
 indefinite, 285
  pattern recognition, 332
 involving inverse hyperbolic function, 

 379
 Log Rule, 356
 lower limit of, 308
 of power series, 656
 preservation of inequality, 312
 region R of, 971
 upper limit of, 308
 of a vector-valued function, 832
Integration by parts, 523
 guidelines for, 523
 summary of common integrals using, 

 528
 tabular method, 528
Integration by tables, 566
Integration formulas, 286
 reduction formulas,  540, 568
 special, 545
 summary of, 1122
Integration rules
 basic, 286, 368, 516
 General Power Rule, 337
 Power Rule, 286
Integration techniques
 basic integration rules, 286, 368, 516
 integration by parts, 523
 method of partial fractions, 550
 substitution for rational functions of 

 sine and cosine, 569
 tables, 566
 trigonometric substitution, 541
Intercept(s), 4
 x-intercept, 4
 y-intercept, 4
Interior point of a region R, 884, 890
Intermediate Value Theorem, 101
Interpretation of concavity, 231
Intersection of two sets, A8
Interval(s), A9
 bounded, A9

 closed, A9
 of convergence, 652
 endpoints of, A9
 infinite, 239
 midpoint of, A13
 open, A9
 on the real number line, A9
 test, A11
 unbounded, A9
Inverse function(s), 41
 continuity and differentiability of, 178
 derivative of, 178
 existence of, 43
 guidelines for finding, 43
 Horizontal Line Test, 43
 properties of, 47
 reciprocal slopes of, 179
 reflective property of, 42
Inverse hyperbolic functions, 377
 differentiation involving, 379
 graphs of, 378
 integration involving, 379
Inverse square field, 1045
Inverse trigonometric functions, 45
 derivatives of, 180
 graphs of, 46
 integrals involving, 361
 properties of, 47
Irrational number, A7
Irrotational vector field, 1050
Isobars, 875
Isothermal curves, 408
Isothermal surfaces, 878
Isotherms, 875
Iterated integral, 971
 evaluation by, 1014
 inside limits of integration, 971
 outside limits of integration, 971
Iteration, 194
ith term of a sum, 294

J

Jacobi, Carl Gustav (1804–1851), 1031
Jacobian, 1031, 1037
Jerk function, 204
Joint density function, 989

K

Kappa curve, 173, 176
Kepler, Johannes, (1571–1630), 689, 741
Kepler’s Laws, 741, 866
Kinetic energy, 1075
Kirchhoff’s Second Law, 426
Kovalevsky, Sonya (1850–1891), 884

L

Lagrange form of the remainder, 646
Lagrange, Joseph-Louis (1736–1813), 

216, 956
Lagrange multiplier, 956, 957
Lagrange’s Theorem, 957
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Lambert, Johann Heinrich (1728–1777), 
373

Lamina, planar, 498
Laplace, Pierre Simon de (1749–1827), 

1024
Laplace Transform, 582
Laplace’s equation, 901, 968, 1127
Laplacian, 1127
Lateral surface area over a curve, 1067
Latus rectum, of a parabola, 687
Law of Conservation of Energy, 1075
Law of Cosines, 33
Leading coefficient
 of a polynomial function, 24
 test, 24
Least squares
 method of, 950
 regression, 7
  line, 950, 951
Least upper bound, 595
Left-hand limit, 96
Left-handed orientation, 762
Legendre, Adrien-Marie (1752–1833), 951
Leibniz, Gottfried Wilhelm (1646–1716), 

274
Leibniz notation, 274
Lemniscate, 64, 172, 176, 725
Length
 of an arc, 32, 474, 475
  parametric form, 713
  polar form, 733
 of a directed line segment, 752
 of the moment arm, 495
 of a scalar multiple, 756
 of a vector in the plane, 753
 of a vector in space, 764
 on x-axis, 1007
Less than, A8
 or equal to, A8
Level curve, 875
 gradient is normal to, 926
Level surface, 877
 gradient is normal to, 936
L’Hôpital, Guillaume (1661–1704), 346
L’Hôpital’s Rule, 346
 alternative form of, 347
Limaçon, 725
 convex, 725
 dimpled, 725
 with inner loop, 725
Limit(s), 69, 72
 basic, 83
 of a composite function, 85
 definition of, 76
 ε-δ definition of, 76
 evaluating
  direct substitution, 83, 84
  divide out common factors, 87
  rationalize the numerator, 88
 existence of, 97
 fails to exist, 107
 of a function involving a radical, 84
 of a function of two variables, 885

 indeterminate form, 87, 110, 241
 infinite, 245
  from the left and from the right, 96
  properties of, 111
 at infinity, 239, 240
  infinite, 245
  of a rational function, guidelines for 

  finding, 242
 of integration
  inside, 971
  lower, 308
  outside, 971
  upper, 308
 from the left and from the right, 96
 of the lower and upper sums, 300
 nonexistence of, common types of 

 behavior, 75
 of nth term of a convergent series, 603
 one-sided, 96
 of polynomial and rational functions, 84
 properties of, 83
 of a sequence, 589
  properties of, 590
 strategy for finding, 86
 of transcendental functions, 85
 of a vector-valued function, 823
Limit Comparison Test, 618
Line(s)
 contour, 875
 as a degenerate conic, 686
 equation of
  general form, 14
  horizontal, 14
  point-slope form, 11, 14
  slope-intercept form, 13, 14
  summary, 14
  vertical, 14
 equipotential, 875
 of impact, 931
 integral, 1056
  for area, 1082
  differential form of, 1063
  evaluation of as a definite integral, 

  1057
  of f  along C, 1056
  independent of path, 1072
  summary of, 1107
  of a vector field, 1060
 least squares regression, 950, 951
 moment about, 495
 normal, 176, 202, 931, 932
 parallel, 14
 perpendicular, 14
 radial, 719
 secant, 69, 121
 segment, directed, 752
 slope of, 10
 in space
  direction number of, 787
  direction vector of, 787
  parametric equations of, 787
  skew, 797
  symmetric equations of, 787

 tangent, 69, 121
  approximation, 271
  at the pole, 724
  with slope m, 121
  vertical, 122
Linear approximation, 271, 906
Linear combination of i and j, 757
Linear function, 24
Linear inequality, A11
Local maximum, 207
Local minimum, 207
Locus, 686
Log Rule for Integration, 356
Logarithmic differentiation, 174
Logarithmic function, 24
 to base a, 162
  derivative of, 163
 natural, 55
  derivative of, 160
  properties of, 55
Logarithmic properties, 56
Logarithmic spiral, 737, 750
Logistic curve, 418
Logistic differential equation, 281
 carrying capacity, 417
Logistic function, 243, 252
Lorenz curves, 452
Lotka, Alfred (1880-1949), 431
Lotka–Voltera equations, 431
Lower bound of a sequence, 595
Lower bound of summation, 294
Lower limit of integration, 308
Lower sum, 298
 limit of, 300
Lune, 549

M
Macintyre, Sheila Scott (1910–1960), 532
Maclaurin, Colin, (1698–1746), 669
Maclaurin polynomial, 642
Maclaurin series, 669
Magnitude
 of a directed line segment, 752
 of a vector in the plane, 753
Major axis of an ellipse, 689
Marginal productivity of money, 959
Mass, 494
 center of, 495, 496, 497
  of a one-dimensional system, 495,  

  496
  of a planar lamina, 498
   of variable density, 1000
  of a solid region Q, 1018
  of a two-dimensional system, 497
 of a fluid flowing across a surface per 

 unit of time, 1104
 moments of, 1000
 of a planar lamina of variable density, 

 998
 pound mass, 494
 total, 496, 497
Mathematical model, 7, 950
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Maximum
 absolute, 206
 of f  on I, 206
 of a function of two variables, 940
 global, 206
 local, 207
 relative, 207
Mean Value Theorem, 216
 alternative form of, 217
 Extended, 281, 346
 for Integrals, 320
Measurement, error in, 273
Mechanic’s Rule, 199
Mercator, Gerardus (1512–1594), 382
Mercator map, 382
Method of
 Lagrange Multipliers, 956, 957
 least squares, 950
 partial fractions, 550
Midpoint
 Formula, 763, A18
 of an interval, A13
 of a line segment, A18
 Rule, 302, 561
Minimum
 absolute, 206
 of f  on I, 206
 of a function of two variables, 940
 global, 206
 local, 207
 relative, 207
Minor axis of an ellipse, 689
Mixed partial derivatives, 898
 equality of, 899
Möbius Strip, 1097, 1109
Model
 exponential growth and decay, 398
 mathematical, 7, 950
Modified Eulers’ Method, 441
Moment(s)
 about a line, 495
 about the origin, 495, 496
 about a point, 495
 about the x-axis
  of a planar lamina, 498
  of a two-dimensional system, 497
 about the y-axis
  of a planar lamina, 498
  of a two-dimensional system, 497
 arm, length of, 495
 first, 1018
 of a force about a point, 783
 of inertia, 1002, 1018, 1109, 1127
  polar, 1002
  for a space curve, 1068
 of mass, 1000
  of a one-dimensional system, 496
  of a planar lamina, 498
 second, 1002, 1018
Monotonic sequence, 594
 bounded, 595
Monotonic, strictly, 222
Mutually orthogonal, 408

N

n factorial, 591
Napier, John (1550–1617), 161
Napier’s inequality, 363
Natural equation for a curve, 869
Natural exponential function
 derivative of, 136
 series for, 674
Natural logarithmic function, 55
 derivative of, 160
 properties of, 55
 series for, 674
Negative number, A7
Negative of a vector, 754
Net change, 326
Net Change Theorem, 326
Newton (unit of force), 485
Newton, Isaac (1642–1727), 120, 194
Newton’s Law of Cooling, 401
Newton’s Law of Gravitation, 1045
Newton’s Law of Universal Gravitation, 

487, 854
Newton’s Method for approximating the 

zeros of a function, 194
 convergence of, 196, 197
 iteration, 194
Newton’s Second Law of Motion, 425, 840
Nodes, 830
Noether, Emmy (1882–1935), 755
Nonexistence of a limit, common types 

of behavior, 75
Nonnegative number, A7
Nonpositive number, A7
Nonremovable discontinuity, 95, 888
Norm
 of a partition, 307, 978, 991, 1013
 polar, 991
 of a vector in the plane, 753
Normal component
 of acceleration, 849, 850, 863
 of a vector field, 1104
Normal line, 176, 202, 931, 932
Normal probability density function, 232
 standard, 232
Normal vector(s), 772
 principal unit, 846, 863
 to a smooth parametric surface, 1091
Normalization of v, 756
Notation
 antiderivative, 285
 derivative, 123
 exponential, 41
 for first partial derivatives, 895
 function, 19
 Leibniz, 274
 sigma, 294
nth Maclaurin polynomial for f, 642
nth partial sum, 599
 of geometric series, 601
nth Taylor polynomial for f  at c, 642
nth term
 of a convergent series, 603

 of a sequence, 588
nth-Term Test for Divergence, 603
Number
 critical, 208
 irrational, A7
 negative, A7
 nonnegative, A7
 nonpositive, A7
 positive, A7
 rational, A7
 real, A7
Number e, 54
Numerical differentiation, 126

O

Obtuse angle, 31
Octants, 762
Odd function, 26
 integration of, 340
 test for, 26
Ohm’s Law, 277
One-dimensional system
 center of gravity of, 496
 center of mass of, 495, 496
 moment of, 495, 496
 total mass of, 496
One-sided limit, 96
One-to-one correspondence, A7
One-to-one function, 21
Onto function, 21
Open disk, 884
Open interval, A9
 continuous on, 94
 differentiable on, 123
Open region R, 884, 890
 continuous in, 888, 890
Open sphere, 890
Operations
 with absolute value, A12
 with power series, 663
Order of a differential equation, 388
Ordered pair, A16
Ordered property of real numbers, A8
Orientable surface, 1103
Orientation
 of a curve, 1055
 of a plane curve, 701
 of a space curve, 820
Oriented surface, 1103
Origin, A16
 moment about, 495, 496
 of a polar coordinate system, 719
 of the real number line, A7
 reflection about, 23
 symmetry, 5
Orthogonal
 functions, 540
 graphs, 176
 mutually, 408
 trajectory, 176, 408
 vectors, 772
Ostrogradsky, Michel (1801–1861), 1110
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Ostrogradsky’s Theorem, 1110
Outer radius of a solid of revolution, 457
Outside limits of integration, 971

P
Padé approximation, 204
Pappus
 Second Theorem of, 504
 Theorem of, 501
Parabola, 2, 175, 686, 687
 axis of, 687
 directrix of, 687
 focal chord of, 687
 focus of, 687
 latus rectum of, 687
 reflective property of, 688
 standard equation of, 687
 vertex of, 687
Parabolic spandrel, 503
Parallel 
 lines, 14
 planes, 789
 vectors, 765
Parameter, 700
 arc length, 856, 857
 eliminating, 702
Parametric equations, 700
 finding, 704
 graph of, 700
 of a line in space, 787
 for a surface, 1088
Parametric form
 of arc length, 713
 of the area of a surface of revolution, 

 714
 of the derivative, 710
  higher-order, 711
Parametric surface, 1088
 area of, 1092
 equations for, 1088
 partial derivatives of, 1091
 smooth, 1091
  normal vector to, 1091
 surface area of, 1092
Partial derivatives, 894
 first, 894
 of a function of three or more 

 variables, 897
 of a function of two variables, 894
 higher-order, 898
 mixed, 898
  equality of, 899
 notation for, 895
 of a parametric surface, 1091
Partial differentiation, 894
Partial fractions, 550
 decomposition of N(x)�D(x) into, 551
 method of, 550
Partial sum(s)
 nth, 599
  of geometric series, 601
 sequence of, 599
Particular solution of a differential 

equation, 289, 389
Partition
 general, 307
 inner, 978, 1013
  polar, 991
 norm of, 307, 978, 1013
  polar, 991
 regular, 307
Pascal, Blaise (1623–1662), 505
Pascal’s Principle, 505
Path, 885, 1055
Pear-shaped quartic, 203
Percent error, 273
Perigee, 698
Perihelion, 698, 745
Period of a function, 36
Periodic function, 36
Perpendicular
 lines, 14
 planes, 789
 vectors, 772
Piecewise smooth curve, 705, 1055
Planar lamina, 498
 center of mass of, 498
 moment of, 498
Plane
 angle of inclination of, 935
 distance between a point and, 792
 region
  area of, 300
  simply connected, 1048, 1079
 tangent, 932
  equation of, 932
 vector in, 752
Plane curve, 700, 820
 orientation of, 701
 smooth, 1055
Plane(s) in space
 angle between two, 789
 equation of
  general form, 788
  standard form, 788
 parallel, 789
  to the axis, 791
  to the coordinate plane, 791
 perpendicular, 789
 trace of, 791
Point(s)
 critical, of predator-prey equations, 432
 as a degenerate conic, 686
 of diminishing returns, 269
 equilibrium, of predator-prey  

 equations, 432
 fixed, 198, 220
 of inflection, 233, 234
 of intersection, 6
  of polar graphs, 731
 moment about, 495
 in a vector field
  incompressible, 1115
  sink, 1115
  source, 1115
Point-slope equation of a line, 11, 14

Polar axis, 719
Polar coordinate system, 719
 polar axis of, 719
 pole (or origin), 719
Polar coordinates, 719
 area in, 729
 area of a surface of revolution in, 734
 converting to rectangular, 720
 Distance Formula in, 727
 surface area in, 1012
Polar curve, arc length of, 733
Polar equations of conics, 739
Polar form of slope, 723
Polar graphs, 721
 cardioid, 724, 725
 circle, 725
 convex limaçon, 725 
 dimpled limaçon, 725
 lemniscate, 725
 limaçon with inner loop, 725
 points of intersection, 731
 rose curve, 722, 725
Polar moment of inertia, 1002
Polar sectors, 990
Pole, 719
 of cylindrical coordinate system, 808
 tangent lines at, 724
Polynomial
 Maclaurin, 642
 Taylor, 203, 642
Polynomial approximation, 640
 centered at c, 640
 expanded about c, 640
Polynomial function, 24
 constant term of, 24
 degree of, 24
 leading coefficient of, 24
 limit of, 84
 of two variables, 873
 zero, 24
Position function, 137
 for a projectile, 841
Position vector for a projectile, 841
Positive number, A7
Potential energy, 1075
Potential function for a vector field, 1047
Pound mass, 494
Power-reducing formulas, 33
Power Rule
 for differentiation, 131
  general, 156
 for integration, 286
  general, 337
Power series, 651
 centered at c, 651
 convergence of, 652
 convergent, form of, 668
 differentiation of, 656
 domain of, 652
 for elementary functions, 674
 endpoint convergence, 654
 geometric, 661
 integration of, 656
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 interval of convergence, 652
 operations with, 663
 properties of functions defined by, 656
  interval of convergence, 656
  radius of convergence, 656
 radius of convergence, 652
 representation of functions by, 661
Predator-prey equations, 431
 critical points, 432
 equilibrium points, 432
Present value of a function, 531
Preservation of inequality, 312
Pressure, fluid, 505
Primary equation, 260, 261
Principal unit normal vector, 846, 863
Probability density function, 581
 normal, 232
Procedures for fitting integrands to basic 

rules, 519
Product
 of two functions, 25
  inner, 540
 of two vectors in space, cross, 779
Product Rule, 143, 163
 differential form, 274
Projectile, position function for, 841
Projection form of work, 776
Projection of u onto v, 774
 using the dot product, 775
Prolate cycloid, 712
Propagated error, 273
Properties
 of continuity, 99
 of the cross product
  algebraic, 780
  geometric, 781
 of definite integrals, 312
 of the derivative of a vector-valued 

 function, 830
 of the dot product, 770
 of double integrals, 980
 of functions defined by power series, 

 656
 of the gradient, 924
 of inequalities, A8
  and absolute value, A12
 of infinite limits, 111
 of infinite series, 603
 of inverse trigonometric functions, 47
 of limits, 83
 of limits of sequences, 590
 logarithmic, 56
 of the natural logarithmic function, 55
 of vector operations, 755
Proportionality constant, 398
p-series, 611
 convergence of, 611
 divergence of, 611
 harmonic, 611
Pulse function, 118
 unit, 118
Pursuit curve, 378
Pythagorean identities, 33, 541

Q

Quadrants, A16
Quadratic function, 24
Quadric surfaces, 799
 ellipsoid, 799, 800
 elliptic cone, 799, 801
 elliptic paraboloid, 799, 801
 general form of the equation of, 799
 hyperbolic paraboloid, 799, 801
 hyperboloid of one sheet, 799, 800, 

 1109
 hyperboloid of two sheets, 799, 800
 standard form of the equations of, 799, 

 800, 801
Quaternions, 754
Quotient, difference, 20, 121
Quotient identities, 33
Quotient Rule, 145, 163
 differential form, 274
Quotient of two functions, 25

R

Radial lines, 719
Radian measure of angles, 32, 46
Radical, limit of a function involving a, 

84
Radicals, solution by, 197
Radioactive isotopes, half-lives of, 399
Radius
 of a circle, A19
 of convergence, 652
 of curvature, 860
 function, 804
 of gyration, 1003
 inner, 457
 outer, 457
Ramanujan, Srinivasa (1887–1920), 665
Range of a function, 19
 of two variables, 872
Raphson, Joseph (1648–1715), 194
Rate of change, 12, 123, 897
 average, 12
 instantaneous, 12, 123
Ratio, 12
 golden, 598
Ratio Test, 631
Rational function(s), 22, 25
 guidelines for finding limits at infinity 

 of, 242
 limit of, 84
 of two variables, 873
Rational number, A7
Rationalize the numerator, 88
Rationalizing technique, 88
Real number, A7
Real number line, A7
 coordinate, A7
 directed distance, A13
 distance between two points on, A13
 intervals, A9
 one-to-one correspondence, A7
 origin, A7

 positive direction, A7
Real numbers, completeness of, 101, 595
Real zeros of a polynomial, A11
Real-valued function f  of a real variable x, 

19
Reasoning, inductive, 593
Reciprocal identities, 33
Recovering a function from its gradient, 

1051
Rectangle
 area of, 296
 circumscribed, 298
 inscribed, 298
 representative, 444
Rectangular coordinate system, A16
 coordinates, A16
 ordered pair, A16
 origin, A16
 quadrants, A16
 x-axis, A16
 x-coordinate (abscissa), A16
 y-axis, A16
 y-coordinate (ordinate), A16
Rectangular coordinates
 converting to cylindrical, 808
 converting to polar, 720
 converting to spherical, 811
 curvature in, 860, 863
Rectifiable curve, 474
Recursively defined sequence, 588
Reduction formulas, 540, 568
Reference angle, 35
Reflection
 about the origin, 23
 about the x-axis, 23
 about the y-axis, 23
 angle of, 688
 in the line y = x, 42
Reflective property
 of an ellipse, 691
 of inverse functions, 42
 of a parabola, 688
Reflective surface, 688
Refraction, 269, 963
Region of integration R, 971
 horizontally simple, 972
 r-simple, 992
 θ-simple, 992
 vertically simple, 972
Region in the plane
 area of, 300, 972
  between two curves, 445
 centroid of, 499
 connected, 1072
Region R
 boundary point of, 884
 bounded, 940
 closed, 884
 differentiable function in, 905
 interior point of, 884, 890
 open, 884, 890
  continuous in, 888, 890
 simply connected, 1048, 1079
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A152 Index

Regression, least squares, 7
 line, 950, 951
Regular partition, 307
Related-rate equation, 185
Related-rate problems, guidelines for 

solving, 186
Relation, 19
Relative error, 273
Relative extrema
 First Derivative Test for, 223
 of a function, 207, 940
 occur only at critical numbers, 208
 occur only at critical points, 941
 Second Derivative Test for, 235
 Second Partials Test for, 943
Relative maximum
 at (c, f (c)), 207
 First Derivative Test for, 223
 of a function, 207, 940, 943
 Second Derivative Test for, 235
 Second Partials Test for, 943
Relative minimum
 at (c, f (c)), 207
 First Derivative Test for, 223
 of a function, 207, 940, 943
 Second Derivative Test for, 235
 Second Partials Test for, 943
Remainder
 alternating series, 625
 of a Taylor polynomial, 646
Removable discontinuity, 95
 of a function of two variables, 888
Representation of antiderivatives, 284
Representative element, 449
 disk, 454
 rectangle, 444
 shell, 465
 washer, 457
Resultant force, 758
Resultant vector, 754
Reverse the inequality, A8
Review
 of basic integration rules, 368, 516
Revolution
 axis of, 454
 solid of, 454
 surface of, 478
  area of, 479, 714, 734
 volume of solid of
  disk method, 454
  shell method, 465, 466
  washer method, 457
Riemann, Georg Friedrich Bernhard 

(1826–1866), 307, 628
Riemann sum, 307
Riemann zeta function, 615
Right cylinder, 798
Right triangle definitions of trigonometric 

functions, 33
Right-hand limit, 96
Right-handed orientation, 762
Rolle, Michel (1652–1719), 214
Rolle’s Theorem, 214

Root Test, 634
Rose curve, 722, 725
Rotation of F about N, 1121
r-simple region of integration, 992
Rulings of a cylinder, 798

S

Saddle point, 943
Satisfied inequality, A10
Scalar, 752
 field, 875
 function, 820
 multiple, 754
 multiplication, 754, 764
 product of two vectors, 770
 quantity, 752
Secant function, 33
 derivative of, 147, 163
 integral of, 361
 inverse of, 45
  derivative of, 180
Secant line, 69, 121
Second derivative, 149
Second Derivative Test, 235
Second Fundamental Theorem of 

Calculus, 324
Second moment, 1002, 1018
Second Partials Test, 943
Second Theorem of Pappus, 504
Secondary equation, 261
Second-degree equation, general, 686
Semicircle, 21, 165
Separable differential equation, 405
Separation of variables, 397, 405
Sequence, 588
 Absolute Value Theorem, 592
 bounded, 595
 bounded above, 595
 bounded below, 595
 bounded monotonic, 595
 convergence of, 589
 divergence of, 589
 Fibonacci, 598, 608
 least upper bound of, 595
 limit of, 589
  properties of, 590
 lower bound of, 595
 monotonic, 594
 nth term of, 588
 of partial sums, 599
 pattern recognition for, 592
 recursively defined, 588
 Squeeze Theorem, 591
 terms of, 588
 upper bound of, 595
Series, 599
 absolutely convergent, 626
 alternating, 623
  geometric, 623
  harmonic, 624, 626, 628
 Alternating Series Test, 623
 binomial, 673

 conditionally convergent, 626
 convergence of, 599
 convergent, limit of nth term, 603
 Direct Comparison Test, 616
 divergence of, 599
  nth-term test for, 603
 finite Fourier, 540
 Fourier Sine, 531 
 geometric, 601
  alternating, 623
  convergence of, 601
  divergence of, 601
 guidelines for testing for convergence 

 or divergence, 635
 harmonic, 611, 615
  alternating, 624, 626, 628
 infinite, 599
  properties of, 603
 Integral Test, 609
 Limit Comparison Test, 618
 Maclaurin, 669
 nth partial sum, 599
 nth term of convergent, 603
 power, 651
 p-series, 611
 Ratio Test, 631
 Root Test, 634
 sum of, 599
 summary of tests for, 636
 Taylor, 668, 669
 telescoping, 600
 terms of, 599
Serpentine, 151
Sets(s), A8
 disjoint, A8
 intersection, A8
 notation, A8
 solution, A10
 subset, A8
 union, A8
Shell method, 465, 466
 and disk method, comparison of, 467
Shift of a graph
 horizontal, 23
 vertical, 23
Sigma notation, 294
 index of summation, 294
 ith term, 294
 lower bound of summation, 294
 upper bound of summation, 294
Signum function, 106
Simple curve, 1079
Simple Power Rule, 156, 163
Simple solid region, 1111
Simply connected plane region, 1079
Simpson’s Rule, 562
 error in, 563
Sine function, 33
 derivative of, 135, 159, 163
 integral of, 361
 inverse of, 45
  derivative of, 180
 series for, 674

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2019 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



  Index A153

Sine Series, Fourier, 531
Single integral, 980
Singular solution, differential equation, 388
Sink, 1115
Skew lines in space, 797
Slant asymptote, 245, 251
Slope(s)
 field, 291, 390
 of the graph of f  at x = c, 121
 of a line, 10
 reciprocal, of inverse functions, 178
 of a surface in x- and y-directions, 895
 of a tangent line, 121
  parametric form, 710
  polar form, 723
Slope-intercept equation of a line, 13, 14
Smooth
 curve, 474, 705, 830, 845
  on an open interval, 830
  piecewise, 705
 parametric surface, 1091
 plane curve, 1055
 space curve, 1055
Snell’s Law of Refraction, 269, 963
Solenoidal, 1052
Solid region, simple, 1111
Solid of revolution, 454
 volume of
  disk method, 454
  shell method, 465, 466
  washer method, 457
Solution
 curves, 389
 of a differential equation, 388
  Bernoulli, 430
  Euler’s Method, 392
  first-order linear, 425
  general, 285, 388
  initial condition, 289, 389
  particular, 289, 389
  singular, 388
 of an inequality, A10
 point of an equation, 2
 by radicals, 197
 set, A10
Solving a polynomial inequality, A11
 test intervals, A11
Some basic limits, 83
Somerville, Mary Fairfax (1780–1872), 

872
Source, 1115
Space curve, 820
 arc length of, 855
 moments of inertia for, 1068
 smooth, 1055
Spandrel, parabolic, 503
Special integration formulas, 545
Special polar graphs, 725
Special type of improper integral, 578
Speed, 138, 836, 837, 861, 863
 angular, 1003
Sphere, 763
 astroidal, 1097

 open, 890
 standard equation of, 763
Spherical coordinate system, 811
Spherical coordinates
 converting to cylindrical, 811
 converting to rectangular, 811
Spiral
 of Archimedes, 721, 737
 cornu, 749, 869
 logarithmic, 737, 750
Square root function, 22
Squared errors, sum of, 950
Squaring function, 22
Squeeze Theorem, 89
 for Sequences, 591
Standard deviation, 232
Standard equation of
 an ellipse, 689
 a hyperbola, 693
 a parabola, 687
 a sphere, 763
Standard form of the equation of
 of a circle, A19
 an ellipse, 689
 a hyperbola, 693
 a parabola, 687
 a plane in space, 788
 a quadric surface, 799, 800, 801
Standard form of a first-order linear 

differential equation, 424
Standard position
 of an angle, 31
 of a vector, 753
Standard unit vector, 757
 notation, 764
Step function, 96
Stirling’s approximation, 525
Stirling’s Formula, 59
Stokes, George Gabriel (1819–1903), 1118
Stokes’s Theorem, 1084, 1118
Strategy for finding limits, 86
Strictly monotonic function, 222
Strophoid, 749
Subset, A8
Substitution for rational functions of sine 

and cosine, 569
Sufficient condition for differentiability, 

905
Sum(s)
 and difference formulas, 33
 of geometric series, 601
 ith term of, 294
 lower, 298
  limit of, 300
 nth partial, 599
  of geometric series, 601
 Riemann, 307
 Rule, 134, 163
  differential form, 274
 of a series, 599
 sequence of partial, 599
 of the squared errors, 950
 of two functions, 25

 of two vectors, 754
 upper, 298
  limit of, 300
Summary
 of common integrals using integration  

 by parts, 528
 of curve sketching, 250
 of differentiation rules, 163
 of equations of lines, 14
 of integration formulas, 1122
 of line and surface integrals, 1107
 of tests for series, 636
 of velocity, acceleration, and  

 curvature, 863
Summation
 formulas, 295
 index of, 294
 lower bound of, 294
 upper bound of, 294
Surface
 closed, 1110
 cylindrical, 798
 isothermal, 878
 level, 877
 orientable, 1103
 oriented, 1103
 parametric, 1088
 parametric equations for, 1088
 quadric, 799
 reflective, 688
 trace of, 799
Surface area
 of a parametric surface, 1092
 in polar coordinates, 1012
 of a solid, 1006, 1007
Surface integral, 1098
 evaluating, 1098
 summary of, 1107
Surface of revolution, 478, 804
 area of, 479
  parametric form, 714
  polar form, 734
Symmetric equations, line in space, 787
Symmetry
 with respect to the origin, 5
 with respect to the x-axis, 5
 with respect to the y-axis, 5
 tests for, 5

T

Table of values, 2
Tables, integration by, 566
Tabular method for integration by parts, 

528
Tangent function, 33
 derivative of, 147, 159, 163
 integral of, 361
 inverse of, 45
  derivative of, 180
Tangent line(s), 69, 121
 approximation of f  at c, 271
 to a curve, 846
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A154 Index

 at the pole, 724
 problem, 69
 slope of, 121
  parametric form, 710
  polar form, 723
 with slope m, 121
 vertical, 122
Tangent plane, 932
 equation of, 932
Tangent vector, 836
Tangential component of acceleration, 

849, 850, 863
Tautochrone problem, 706
Taylor, Brook (1685–1731), 642
Taylor polynomial, 203, 642
 error in approximating, 646
 remainder, Lagrange form of, 646
Taylor series, 668, 669
 convergence of, 670
 guidelines for finding, 672
Taylor’s Theorem, 646
Telescoping series, 600
Terminal point, directed line segment, 752
Terminal ray (or side) of an angle, 31
Terms
 of a sequence, 588
 of a series, 599
Test(s)
 comparison, for improper integrals, 580
 for concavity, 232
 conservative vector field in the plane, 

 1048
 conservative vector field in space, 1051
 for convergence
  Alternating Series, 623
  Direct Comparison, 616
  geometric series, 601
  guidelines, 635
  Integral, 609
  Limit Comparison, 618
  p-series, 611
  Ratio, 631
  Root, 634
  summary, 636
 for even and odd functions, 26
 First Derivative, 223
 Horizontal Line, 43
 for increasing and decreasing functions, 

 221
 intervals, A11
 Leading Coefficient, 24
 Second Derivative, 235
 for symmetry, 5
 Vertical Line, 22
Theorem
 Absolute Value, 592
 of Calculus, Fundamental, 317, 318
  guidelines for using, 318
 of Calculus, Second Fundamental, 324
 Cavalieri’s, 464
 Darboux’s, 282
 existence, 101, 206
 Extended Mean Value, 281, 346

 Extreme Value, 206, 940
 Fubini’s, 982
  for a triple integral, 1014
 Intermediate Value, 101
 Mean Value, 216
  alternative form, 217
  Extended, 281, 346
  for Integrals, 320
 Net Change, 326
 of Pappus, 501
  Second, 504
 Rolle’s, 214
 Squeeze, 89
  for sequences, 591
 Taylor’s, 646
Theta, θ
 simple region of integration, 992
Third derivative, 149
Three-dimensional coordinate system, 762
 left-handed orientation, 762
 right-handed orientation, 762
Three special limits, 89
Topographic map, 875
Topological surfaces, 807
Torque, 496, 783
Torricelli’s Law, 441
Torsion, 870
Total differential, 904
Total distance traveled on [a, b], 327
Total mass, 496, 497
 of a one-dimensional system, 496
 of a two-dimensional system, 497
Trace
 of a plane in space, 791
 of a surface, 799
Tractrix, 201, 378
Trajectories, orthogonal, 408
Transcendental function, 25, 181
 limit of, 85
Transformation, 23, 1032
Transformation of a graph of a function, 23
 basic types, 23
 horizontal shift, 23
 reflection about origin, 23
 reflection about x-axis, 23
 reflection about y-axis, 23
 reflection in the line y = x, 42
 vertical shift, 23
Transverse axis of a hyperbola, 693
Trapezoidal Rule, 560
 error in, 563
Triangle inequality, 757, A12
Trigonometric function(s), 24, 33
 and the Chain Rule, 159
 circular function definitions of, 33
 derivatives of, 147, 163
 integrals of the six basic, 361
 inverse, 45
  derivatives of, 180
  graphs of, 46
  integrals involving, 365
  properties of, 47
 limit of, 85

 right triangle definitions of, 33
Trigonometric identities, 33
Trigonometric integrals, 532
Trigonometric substitution, 541
Trigonometric values of common angles, 34
Triple integral, 1013
 in cylindrical coordinates, 1024
 in spherical coordinates, 1027
Triple scalar product, 783
 geometric property of, 784
Two special definite integrals, 311
Two-dimensional system
 center of gravity of, 497
 center of mass of, 497
 moment of, 497
 total mass of, 497
Two-Point Gaussian Quadrature 

Approximation, 385

U

Unbounded intervals, A9
Union of two sets, A8
Unit circle, 32, A19
Unit pulse function, 118
Unit tangent vector, 845, 863
Unit vector, 753
 in the direction of v, 756, 764
 standard, 757
Universal Gravitation, Newton’s Law 

of, 487
Upper bound
 least, 595
 of a sequence, 595
 of summation, 294
Upper limit of integration, 308
Upper sum, 298
 limit of, 300
u-substitution, 332

V

Value of f  at x, 19
Variable
 dependent, 19
 dummy, 310
 force, 486 
 independent, 19
Vector(s)
 acceleration, 849, 861, 863
 addition, 754, 755
  associative property of, 755
  commutative property of, 755
 Additive Identity Property, 755
 Additive Inverse Property, 755
 angle between two, 771
 binormal, 853, 870
 component
  of u along v, 774
  of u orthogonal to v, 774
 component form of, 753
 components, 753, 774
 cross product of, 779
 difference of two, 754
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 direction, 787
 direction angles of, 773
 direction cosines of, 773
 Distributive Property, 755
 dot product of, 770
 equal, 753, 764
 horizontal component of, 757
 initial point, 752
 inner product of, 770
 length of, 753, 764
 linear combination of, 757
 magnitude of, 753
 negative of, 754
 norm of, 753
 normal, 772
 normalization of, 756
 operations, properties of, 755
 orthogonal, 772
 parallel, 765
 perpendicular, 772
 in the plane, 752
 position, for a projectile, 841
 principal unit normal, 846, 863
 product, 779
 projection of, 774
 resultant, 754
 scalar multiplication, 754, 764
 scalar product of, 770
 in space, 764
 standard position, 753
 standard unit notation, 764
 sum, 754
 tangent, 836
 terminal point, 752
 triple scalar product, 783
 unit, 753
  in the direction of v, 756, 764
  standard, 757
 unit tangent, 845, 863
 velocity, 836, 863
 vertical component of, 757
 zero, 753, 764
Vector field, 1044
 circulation of, 1121
 conservative, 1047, 1069
  test for, 1048, 1051
 continuous, 1044
 curl of, 1050
 divergence of, 1052
 divergence-free, 1052
 incompressible, 1115
 irrotational, 1050
 line integral of, 1060
 normal component of, 1104
 over a plane region R, 1044
 over a solid region Q, 1044
 potential function for, 1047
 rotation of, 1121
 sink, 1115
 solenoidal, 1052
 source, 1115
Vector space, 755
 axioms, 755

Vector-valued function(s), 820
 antiderivative of, 832
 continuity of, 824
 continuous on an interval, 824
 continuous at a point, 824
 definite integral of, 832
 derivative of, 828
  higher-order, 829
  properties of, 830
 differentiation of, 828
 domain of, 821
 indefinite integral of, 832
 integration of, 832
 limit of, 823
Velocity, 138, 837
 average, 137
 escape, 118
 function, 138
 instantaneous, 138
 potential curves, 408
Velocity field, 1044, 1045
 incompressible, 1052
Velocity vector, 836, 863
Vertéré, 242
Vertex
 of an angle, 31
 of an ellipse, 689
 of a hyperbola, 693
 of a parabola, 687
Vertical asymptote, 109
Vertical component of a vector, 757
Vertical line, 14
Vertical Line Test, 22
Vertical shift of a graph of a function, 23
Vertical tangent line, 122
Vertically simple region of integration, 972
Voltera, Vito (1860–1940), 431
Volume of a solid
 disk method, 455
 with known cross sections, 459
 shell method, 465, 466
 washer method, 457
Volume of a solid region, 980, 1013

W

Wallis, John (1616–1703), 534, 540
Wallis Product, 540
Wallis’s Formulas, 534
Washer, 457
Washer method, 457
Wave equation, 901, 968
Weierstrass, Karl (1815–1897), 941
Weight-densities of fluids, 505
Wheeler, Anna Johnson Pell 

(1883–1966), 424
Witch of Agnesi, 151, 175, 242, 827
Work, 485, 776
 done by a constant force, 485
 done by a variable force, 486
 dot product form, 776
 force field, 1060
 projection form, 776

X

x-axis, A16
 moment about, of a planar lamina, 498
 moment about, of a two-dimensional 

 system, 497
 reflection about, 23
 symmetry, 5
x-coordinate (abscissa), A16
x-intercept, 4
xy-plane, 762
xz-plane, 762

Y

y-axis, A16
 moment about, of a planar lamina, 498 
 moment about, of a two-dimensional 

 system, 497
 reflection about, 23
 symmetry, 5
y-coordinate (ordinate), A16
y-intercept, 4
Young, Grace Chisholm (1868–1944), 69
yz-plane, 762

Z

Zero factorial, 591
Zero of a function, 26
 approximating
  bisection method, 102
  Intermediate Value Theorem, 101
  with Newton’s Method, 194
Zero polynomial, 24
Zero vector, 753, 764
Zeros of a polynomial, A11
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Factors and Zeros of Polynomials
Let p(x) = anxn + an−1x

n−1 + .  .  . + a1x + a0 be a polynomial. If p(a) = 0, then a is a zero of the  
polynomial and a solution of the equation p(x) = 0. Furthermore, (x − a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these  
zeros may be imaginary, a real polynomial of odd degree must have at least one real zero.

Quadratic Formula
If p(x) = ax2 + bx + c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b ± √b2 − 4ac)�2a.

Special Factors
x2 − a2 = (x − a)(x + a) x3 − a3 = (x − a)(x2 + ax + a2)

x3 + a3 = (x + a)(x2 − ax + a2) x4 − a4 = (x − a)(x + a)(x2 + a2)

Binomial Theorem
(x + y)2 = x2 + 2xy + y2 (x − y)2 = x2 − 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3 (x − y)3 = x3 − 3x2y + 3xy2 − y3

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 (x − y)4 = x4 − 4x3y + 6x2y2 − 4xy3 + y4

(x + y)n = xn + nxn−1y +
n(n − 1)

2!
xn−2y2 + .  .  . + nxyn−1 + yn

(x − y)n = xn − nxn−1y +
n(n − 1)

2!
xn−2y2 − .  .  . ± nxyn−1 ∓ yn

Rational Zero Theorem
If p(x) = anxn + an−1x

n−1 + .  .  . + a1x + a0 has integer coefficients, then every  
rational zero of p is of the form x = r�s, where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx + bd = ax2(cx + d) + b(cx + d) = (ax2 + b)(cx + d)

Arithmetic Operations

ab + ac = a(b + c) a
b

+
c
d

=
ad + bc

bd
 

a + b
c

=
a
c

+
b
c

(a
b)
(c

d)
= (a

b)(
d
c) =

ad
bc

 
(a

b)
c

=
a
bc

 
a

(b
c)

=
ac
b

a(b
c) =

ab
c

 
a − b
c − d

=
b − a
d − c

 
ab + ac

a
= b + c

Exponents and Radicals

a0 = 1, a ≠ 0 (ab)x = axbx axay = ax+y √a = a1�2 
ax

ay = ax−y n√a = a1�n

(a
b)

x

=
ax

bx 
n√am = am�n a−x =

1
ax 

n√ab = n√a n√b (ax)y = axy n√a
b

=
n√a
n√b
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FORMULAS FROM GEOMETRY

Triangle
h = a sin θ 

a

b

h
c

θArea =
1
2

bh

(Law of Cosines)

c2 = a2 + b2 − 2ab cos θ

Right Triangle
(Pythagorean Theorem) a

b

c

c2 = a2 + b2

Equilateral Triangle

h =
√3s

2
 s

s

h
s

Area =
√3s2

4

Parallelogram
Area = bh 

b

h

Trapezoid

Area =
h
2

(a + b) 

a

h

b

a
b

h

Circle
Area = πr2 r

Circumference = 2πr

Sector of Circle
(θ in radians) 

r

s

θArea =
θr2

2

s = rθ

Circular Ring
( p = average radius, 

R

p w
r

w = width of ring)
 Area = π(R2 − r2)

 = 2πpw

Sector of Circular Ring
( p = average radius, 

w

p

θw = width of ring,

θ in radians)
Area = θpw

Ellipse
Area = πab 

a

b

Circumference ≈ 2π√a2 + b2

2

Cone
(A = area of base) 

h

A
Volume =

Ah
3

Right Circular Cone

Volume =
πr2h

3
 

r

h

Lateral Surface Area = πr√r2 + h2

Frustum of Right Circular Cone

Volume =
π(r2 + rR + R2)h

3
 

h R

r

s

Lateral Surface Area = πs(R + r)

Right Circular Cylinder
Volume = πr2h 

r

hLateral Surface Area = 2πrh

Sphere

Volume =
4
3
πr3 r

Surface Area = 4πr2

Wedge
(A = area of upper face, 

B

A

θ

 B = area of base)
A = B sec θ

T
ear out F

orm
ula C

ards for H
om

ew
ork S

uccess.
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Revolutions of a saw motor, 114
Ripples in a pond, 29, 186
Road grade, 16
Rolling a ball bearing, 229
Rotary engine, 747
Sailing, 416
Satellite antenna, 746
Satellites, 152
Seating capacity, 305
Sending a space module into orbit, 488, 

575
Solar collector, 697
Sound intensity, 59, 64, 404
Specific gravity of water, 238
Speed, 188, 217, 220, 865, 955
Speed of sound, 322
Stopping distance, 142, 153, 277, 282
Surface area, 190, 200, 202, 268, 277, 

280, 483, 578
Surveying, 277, 565
Suspension bridge, 484
Temperature, 18, 49, 167, 220, 247, 248, 

395, 963
Temperature distribution, 882, 902, 925, 

930, 967
Theory of Relativity, 113
Time, 43
Topography, 875, 929, 930
Torque, 783, 785, 816
Torricelli’s Law, 441, 442
Tossing bales, 843
Tractrix, 201, 378, 382, 549, 718
Velocity, 138, 142, 189, 220, 330, 331, 

386, 452, 586
 and acceleration, 386, 416
 in a resisting medium, 354
Vertical motion, 141, 200, 218, 219, 290, 

292, 372, 383
Vibrating string, 200, 531
Volume, 30, 68, 106, 113, 141, 151, 190, 

192, 268, 277, 280, 469, 548, 997
Water running into a vase, 30, 237
Wave equation, 901, 968
Wave motion, 167
Wind chill, 910
Work, 490, 491, 492, 493, 512, 565, 571, 

580, 776, 778, 815, 1066, 1068, 
1077, 1085, 1125, 1128

Business and Economics

Advertising awareness, 409, 414
Annuities, 607
Apartment rental, 18
Average cost, 238
Average price, 364
Average production, 988
Average profit, 1038
Biodiesel production, 17
Break-even analysis, 60

Break-even point, 9
Building a pipeline, 955
Capitalized cost, 581
Choosing a job, 18
Cobb-Douglas production function, 877, 

882, 883, 959, 964, 967
Compound interest, 354, 403, 438, 597, 

680
Consumer and producer surpluses, 514
Cost, 49, 81, 105, 116, 142, 167, 199, 

218, 279, 404, 558, 883
Declining sales, 400
Demand function, 265, 280
Depreciation, 60, 168, 343, 606, 680
Dollar value of a product, 17
Eliminating budget deficits, 452
Government expenditures, 597
Gross Domestic Product (GDP), 9
Gross income tax collections, 954
Health care expenditures, 152, 903
Income distribution in a country, 452
Inflation, 167, 597
Inventory management, 105, 142
Inventory replenishment, 151
Investment, 882, 902
Investment growth, 415, 428, 440
Manufacturing, 459, 463
Marginal costs, 902
Marginal productivity, 902
Marginal productivity of money, 959
Marginal revenue, 902, 964
Marginal utility, 903
Marketing, 606, 681
Maximum profit, 269, 949, 953, 966
Maximum revenue, 265, 953, 966
Medicare Hospital Insurance Trust Fund, 

229
Minimum cost, 268, 953, 963, 966, 967
Multiplier effect, 606
Outlays for national defense, 279 
Personal consumption expenditures, 796, 

903
Present value, 531, 584, 607
Profit, 277, 280, 452
Revenue, 452, 511, 778
Salary, 607
Sales, 40, 219, 236, 343, 364, 439, 441, 883
Sales growth, 238, 279, 414, 439
Telephone charges, 81
Veterans Health Administration  

enrollees, 955

Social and Behavioral 
Sciences

Cell phone subscribers, 9
Learning curve, 403, 404, 428
Learning theory, 247, 439
Memory model, 531
Population, 12, 16, 403, 598, 996

Population growth, 415, 423, 428, 438, 
441, 571, 684 

Psychology, intelligence test, 902
Quiz and exam scores, 18

Life Sciences

Acid rain, 883
Agronomy, 966
Bacterial culture growth, 168, 403, 423
Biomass, 442
Carbon dioxide concentration, 7
Competing species, 434, 435, 437, 440
Concentration of a chemical in the  

bloodstream, 229
Concentration of a tracer drug in a fluid, 

442
Diversity of wildflowers in a meadow, 939
DNA molecule, 821
Endangered species, 423
Epidemic model, 558
Forestry, 404, 882
Growth of a dog, 330
Growth of organs, 415
Hardy-Weinberg Law, 953
Hybrid selection, 412, 414
Intravenous feeding, 429
Near point of the eye, 955
Oxygen level in a pond, 244
Population growth, 151, 269, 292, 364, 

400, 404, 407, 411, 414, 421, 439
Predator-prey, 431, 432, 433, 436, 437, 440
Respiratory cycle, 329
Shannon diversity index, 953
Systolic blood pressure, 954
Trachea contraction, 229
Tree growth, 292
Wheelchair ramp, 12

General

Average typing speed, 238, 279
Cantor set, 683
Cantor’s disappearing table, 608
Déjà vu, 106
Distance traveled by a bouncing ball, 

604, 606, 681
Jewelry, 81
Mercator map, 382
Optical illusions, 177
Probability, 329, 344, 581, 584, 606, 607, 

667, 678, 989, 997
Security camera, 193
Shot put, 843
Snow removal, 415
Sphereflake, 607
Sports, 81, 192, 843, 910
Throwing a dart, 305
Weight gain, 414
Weight loss, 430

Index of Applications  (continued)
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