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Biostatistical applications in molecular biology have increased tremendously
in recent years. For example, a search of the Current Index to Statistics
indicates that there were 62 articles published during 1995–1999 that had
“marker” in the title of the article or as a keyword. In contrast, there were 29
such articles in 1990–1994, 17 in 1980–1989, and only 5 in 1970–1979.  As the
number of publications has increased, so has the sophistication of the statisti-
cal methods that have been applied in this area of research.

In Biostatistical Methods, we have attempted to provide a representative
sample of applications of biostatistics to commonly occurring problems in
molecular biology, broadly defined. It has been our intent to provide sufficient
background information and detail that readers might carry out similar analy-
ses themselves, given sufficient experience in both biostatistics and the basic
sciences. Not every chapter could be written at an introductory level, since, by
their nature, many statistical methods presented in this book are at a more
advanced level and require knowledge and experience beyond an introductory
course in statistics. Similarly, the proper application of many of these statisti-
cal methods to problems in molecular biology also requires that the statistical
analyst have extensive knowledge about the particular area of scientific
inquiry. Nevertheless, we feel that these chapters at least provide a good start-
ing point, both for statisticians who want to begin work on problems in
molecular biology, and for molecular biologists who want to increase their
working knowledge of biostatistics as it relates to their field.

The chapters in this volume cover a wide variety of topics, both in terms of
biostatistics and in terms of molecular biology.  The first two chapters are very
general in nature:  In Chapter 1, Emmanuel Lazaridis and Gregory Bloom pro-
vide an historical overview of developments in molecular biology, computa-
tional biology, and statistical genetics, and describe how biostatistics has
contributed to developments in these areas. In Chapter 2, Gregory Bloom and
his colleagues describe a new paradigm linking image quantitation and data
analysis that should provide valuable insight to anyone working in image-based
biological experimentation.

The remaining chapters in Biostatistical Methods are arranged in approxi-
mately the order in which the corresponding topic or methods of analysis would

Preface



viii

be utilized in developing a new marker for exposure to a risk factor or for a
disease outcome. The development of such a marker would most likely begin
with an examination of the genetic basis for one or more phenotypes. Chapters
3 and 4 deal with two of the most fundamental aspects of research in this area:
microarray analysis, which deals with gene expression, and proteomics, which
deals with the identification and quantitation of gene products, namely, pro-
teins.  Research in either or both of these areas could produce a biomarker
candidate that would then be scrutinized for its clinical utility.

Chapters 5 and 6 deal with issues that arise very early in studies attempting
to link the results of experimentation in molecular biology with exposure or
disease in human populations. In Chapter 5, I discuss many of the issues asso-
ciated with determining whether a new biomarker will be suitable for studying
a particular E-D association. Jane Goldsmith, in Chapter 6, discusses the
importance of designing studies with sufficient numbers of subjects in order to
attain adequate levels of statistical power.

Chapters 7 and 8 are concerned with genetic effects as they relate to
human populations. In Chapter 7, Peter Jones and his colleagues describe sta-
tistical models that have proven useful in studying the associations between
disease and the inheritance of particular genetic variants.  In Chapter 8, Stan
Young and his colleagues describe sophisticated statistical methods that can be
used to control the overall false-positive rate of the perhaps thousands of statis-
tical tests that might be performed when attempting to link the presence or
absence of particular alleles to the occurrence of disease.

Jim Dignam and his colleagues, in Chapter 9, describe the statistical issues
that one should consider when evaluating the clinical utility of molecular char-
acteristics of tumors, as they relate to cancer prognosis and treatment efficacy.
Finally, in Chapter 10, Greg Rempala and I describe methods that might be
used to validate statistical methods that have been developed for analyzing the
E-D association in specific situations, such as when the exposure has been
characterized poorly.

I would like to express my sincere appreciation to the reviewers of the vari-
ous chapters in this volume: Rich Evans of Iowa State University, Mario Cleves
of the University of Arkansas for Medical Sciences, Stephen George of the
Duke University Medical Center, Ralph O’Brien of the Cleveland Clinic Foun-
dation, and Martin Weinrich of the University of Louisville School of Medi-
cine. I am also indebted to John Walker, Series Editor for Methods in Molecular
Biology, and to Thomas Lanigan, President, Craig Adams, Developmental
Editor, Diana Mezzina, Production Editor, and Mary Jo Casey, Manager, Com-
position Services, Humana Press.

  Stephen W. Looney
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Statistical Contributions to Molecular Biology

Emmanuel N. Lazaridis and Gregory C. Bloom

1. Introduction
Developments in the field of statistics often parallel or follow technological

developments in the sciences to which statistical methods may be fruitfully
applied. Because practitioners of the statistical arts often address particular
applied problems, methods development is consequently motivated by the
search for an answer to an applied question of interest. The field of molecular
biology is one area in which this relationship holds true. Even so, growth in
application of statistical methods for addressing molecular biology problems
has not kept pace with technological developments in the laboratory. Although
the story of statistical contributions to the field of molecular biology is still
unfolding, a consideration of its history can bring valuable insight into the
hurdles—both technical and cultural—still to be overcome in interfacing the
two fields. This is especially important given that recent technological advances
have created a need for closer interaction among biologists and statisticians.
Such considerations also motivated the selection of chapters for this text on
statistical methods in molecular biology.

One important question to resolve at the start of such an exploration concerns
the name of the field at the intersection of statistics and molecular biology. The
term most widely employed by biologists, bioinformatics, seems quite inap-
propriate. The term informatics and its derivatives are commonly employed to
describe studies of data acquisition and management practices. Evidence of
this is the fact that until recently the bioinformatics literature was dominated
primarily by computer science applications. Recently its literature has
expanded to include areas of what has historically been called computational
biology. In additional to computer applications, computational biology has
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historically focused on the interface of applied mathematics and molecular
biology. As described in the following paragraphs, there are substantive reasons
to differentiate statistical applications from these, as increased attention is paid
to the stochastic nature of data. We considered the adjectival terms statistical
bioinformatics and statistical biology, but discarded these as unsatisfactory
owing to their ambiguity. Statistical genetics commonly refers to the appli-
cation of statistical methods to the analysis of allelic data, by which genes
directly related to an inherited condition are sought. We discarded this term as
being too narrow. Although it includes a biological prefix, the term biostatis-
tics has come to refer primarily to applications of statistics to medical research,
and more specifically, to the conduct of medical studies. While many studies
in molecular biology have eventual medical goals, only a minority have active
clinical components. The term biometry, which for years has included statisti-
cal applications to the biological sciences in its definition, seems much supe-
rior. Because an argument can be made that biometry implies an emphasis on
the measurement of biological phenomena, we slightly prefer the term
biometric modeling, which explicitly recognizes the use of inferential models.

Our preference of the term biometry or a derivative such as biometric modeling
is vindicated by the clear parallel between the use of images in molecular biol-
ogy experiments and standard biometric applications such as aerial photographic
surveys of wildlife populations. It is further supported by Stephen Stigler, the
eminent statistical historian, who points out that by biometry Francis Galton and
Karl Pearson meant “the application to biology of the modern methods of statis-
tics” (see [1] for a more developed background concerning the field of biom-
etry). Chapters 2 by Bloom et al., and 4 by Sieller-Moiseiwitsch et al.,
demonstrate especially well the substantive dependence of statistical models on
processes of image analysis and quantitation as employed by molecular biolo-
gists in laboratory settings. Additional chapters relate biometric applications to
biostatistical endeavors in the context of medical studies and clinical trials.

In this chapter we discuss biometric contributions to molecular biology
research, and explore factors that have impeded the acceptance of these contri-
butions by the field. We precede this discussion with a historical overview of
the growth of molecular biology and of computational methods used therein.

2. Developments in Molecular Biology
Molecular biology encompasses the study of the structure and function of

biological macromolecules and the relationship of their functioning to the
structure of a cell and its internal components, as well as the biochemical study
of the genetic basis for phenotypes at both cellular and systemic levels. Over the
last half-century, such research has moved to the forefront of biology and medi-
cine, so much so that molecular biology is sometimes called the “science of life.”
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Two major classes of questions have been posed by molecular biologists.
These concern (1) evolutionary relationships within and across species of
organisms and (2) issues of biological functioning in single cells and multicel-
lular systems. Both sets of questions rely on describing and quantifying
molecules that serve to characterize types of cells, cellular collections, or
organisms, with regard to phenotypes or natural history. Molecules related to
interesting phenotypes are called biomarkers. This book focuses on measure-
ment and analysis of biomarker quantities because of their importance to our
understanding of human disease. The process of identifying important and use-
ful molecular markers is sometimes called molecular fingerprinting,
phenotyping, or profiling, particularly when more than one marker is being
considered simultaneously.

The idea that molecular fingerprints could be derived for use in characteriz-
ing cells and cellular collections has been around for quite some time. In 1958,
2 yr after the sequencing of insulin, Francis Crick recognized that “before long
we shall have a subject which might be called ‘protein taxonomy’—the study
of the amino acid sequences of the proteins of an organism and the comparison
of them between species. It can be argued that these sequences are the most
delicate expression possible of the phenotype of an organism...” (2). Techno-
logical advances over the latter part of the 20th century continuing through the
present day have substantially enlarged the availability of molecular data for
phenotyping at a number of levels.

Even prior to Crick’s remark, peptide fingerprinting techniques, whereby
proteins were partially digested into amino acids and peptides and separated by
chromatography or electrophoresis, had already been popularized as a means
to seek evolutionary similarities across species. The sequencing of insulin, and
soon thereafter, of ribonuclease and cytochrome c, opened the door to the large-
scale characterization of organisms based on protein families. In 1967, the first
computer algorithms were developed to seek phylogenetic relationships among
a diverse assortment of organisms using a sizable database of protein sequence
information. The programs generated binary trees based on a distance metric
involving the mutational steps required to move from one protein to another (3).
A “residue exchange matrix” was formed from distances between all pairs of
measured organisms, and this was employed to represent the overall likelihood
of mutations during evolution. In contrast to previous work on molecular data,
this approach was very computationally intensive, requiring the use of a digital
computer to seek the best binary tree to represent the calculated matrix. Thus
was born the field of computational biology.

When Frederick Sanger published the basic chemistry for DNA sequencing
in 1975, it became even more apparent that sophisticated database and analytic
tools to work with sequence information would be needed. Sanger’s approach
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is still the primary sequencing technology in use today. In this approach, nested
sets of progressively longer DNA fragments are produced. These are then
tagged with fluorescent dyes, separated by gel electrophoresis and scanned for
identification of basepair sequences (4). Applied Biosystems introduced the
first automated sequencing system in 1986. With the addition of robotics to
perform the preseparation reaction chemistry, the molecular biology labora-
tory would become increasingly automated, resulting in corresponding needs
for database and analytic tools.

Development of the Southern blot in 1965 and of the Northern blot shortly
thereafter marked the passage of another milestone in molecular biology.
Biologists use the latter technique to measure the relative amount of RNA
message being produced by any specific known gene for which a complemen-
tary target has been cloned. By the early 1970s, the basic techniques for study-
ing cellular functioning at the molecular level had been established, so that this
functioning could be investigated at each of the levels in the central dogma of
molecular function and information flow, diagrammed in Fig. 1. This states
that the direction of cellular information flow is primarily unidirectional,
proceeding from DNA to RNA to protein. The genetic program, stored in the
DNA, leads to the formation of biological macromolecules—RNAs and
proteins—which through their biochemical function result in observable cellu-
lar behavior or phenotypes.

Of particular interest to molecular biologists is the manner in which groups
of molecules interact to perform a specific function. A set of interacting
molecules is said to form a biological pathway. Figure 2 illustrates a particular
pathway describing the signaling and functioning of signal transducers and

Fig. 1. Central dogma of molecular function and information flow.
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activators of transcription (STATs). In brief, STATs are latent cytoplasmic
transcription factors that are activated by cytokines, growth factors, and onco-
genic tyrosine kinases. They are critical signaling molecules and have been
linked to various cellular processes including proliferation, differentiation, and
apoptosis. STAT proteins become activated by phosphorylation and dimeriza-
tion, which allows them to translocate to the nucleus where they bind to specific
DNA sequences and in conjunction with other factors control gene transcrip-
tion. As a result of STAT activation, specific genes are known to be induced
that contribute to regulation of cell cycle progression and survival of tumor
cells. Experiments and methods that can identify and describe biological
pathways such as the one shown in Fig. 2 are very important to biologists.

The science of genomics—the study of the complete set of an organism’s
genes—was declared when the entire sequence of the bacterium Haemophilus

Fig. 2. Biological pathway describing the signaling and functioning of signal
transducers and activators of transcription (STATs, see ref. 5).
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influenzae was deduced in 1995. The sequence of baker’s yeast, Saccharomy-
ces cerevisiae, was completed in 1997. In 1998, a soil-dwelling nematode
worm, Caenorhabditis elegans, was the first complex animal to have its
genome sequenced. The Human Genome Project, with the ambitious goal of
mapping the entire human genome in a matter of years, is ongoing.

In spite of this, studies employing one-gene-at-a-time technologies such as
the Northern blot form the vast majority of the published investigations up
through the present day. In part this is due to the expense and complexity asso-
ciated with technologies for conducting multigene studies. A more fundamen-
tal barrier to the use of comprehensive profiling methods lies in molecular
biology training, which emphasizes the full characterization of small networks
of interrelated molecules. Recent initiatives by the NIH, such as the NCI
Director’s Challenge to discover molecular profiles important to cancer biol-
ogy, seek to change this reticence.

Comprehensive methods for profiling at the levels of RNA and protein
matured throughout the 1990s. Chapter 3 presents a history of the development
of microarray technology, an extension of Northern blotting whereby an inves-
tigator can simultaneously measure the expression of thousands of genes whose
complementary sequence has been arrayed on a glass slide or chip. Briefly, the
spotted microarray was pioneered at Stanford University in the early 1990s
(6). In this implementation, full-length cDNA corresponding to a known gene
or an expressed sequence tag (EST) is layered onto a solid surface, usually a
treated glass slide, using a robotic arrayer. Total RNA or mRNA is isolated
from the sample of interest and labeled cDNA is constructed. The labeled
cDNA is hybridized to the cDNA on the surface of the slide and visualized via
the incorporated fluorescence tag. Currently, up to 30,000 genes and ESTs can
be arrayed on a small glass slide using this technique. A second technology
was pioneered by Steven Foder and colleagues in 1991 and has been further
developed by Affymetrix (7). The Affymetrix approach uses photolithography
and light-activated chemistry to array probes corresponding to different regions
of a known mRNA transcript on a solid surface. By combining the signal inten-
sity of the probe sets that query specific transcripts, values for gene expression
are obtained. The study of molecular profiles at the level of RNA is sometimes
called transcriptomics, to parallel the corresponding term at the level of the
genome. Chapter 3 by Gieser et al. discusses methods for the design and analy-
sis of microarray studies.

Similarly, proteomics is the science that deals with gene end-products, namely,
proteins, concerning itself with the set of proteins (the proteome) produced by a
particular cell, a cellular collection, or an organism. Important information can
be derived from experiments seeking to establish whether specific proteins are
made in higher or lower concentrations in response to disease, drug treatment, or
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exposure to toxicants. The most commonly used approach for studying a
proteome is two-dimensional (2-D) gel electrophoresis, which combines a first
dimension separation of proteins by isoelectric focusing with a second dimen-
sion separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE). The first separation is according to charge (different proteins are
focused at their respective isoelectric points) and the second by size (molecular
weight). The orthogonal combination of two separations results in a distribution
of proteins from a biological sample across the 2-D gel. One or more images of
the 2-D gel are collected and analyzed. Chapter 4 by Seillier-Moiseiwitsch et al.
covers techniques for finding proteins in 2-D gel images.

To illustrate the potential power of comprehensive measures of gene
functioning, consider measurements of mRNA in cancerous and noncancerous
tumors or cell lines. Such measurements can elucidate which genes are rela-
tively more or less active in one expression profile as compared to the other,
giving an investigator the means to suggest which genes or groups of genes
may be important in carcinogenesis. This approach can also be used to under-
stand the effect of drug treatment on a particular tumor, whereby a researcher
can investigate which genes change in expression and to what degree as a result
of the drug (see Chapters 7 by Jones et al. and 9 by Dignam et al.).

3. Developments in Computational Biology
The rapid growth in availability of sequence data at the level of DNA

particularly motivated the growth of computational biology. In this context,
two basic sets of computational problems were addressed in the late 20th
century, both of which were needed to derive possible biological functioning
of molecular componentry using computers and mathematics. Each set of prob-
lems had implications at every level of molecular phenotyping: genomic,
transcriptomic, and proteomic.

The first set of problems depended on the hypothesis that one could predict
the functioning of a biological macromolecule if one could only predict its
molecular structure. Work in the 1950s and early 1960s had demonstrated that
the requisite three-dimensional (3-D) modeling of macromolecules was not
feasible using physical, brass-wire models. Cyrus Levinthal demonstrated in
1965 that virtual, computer models of 3-D structures were substantially more
amenable to exploration. For two reasons, the elegant theory that the information
for the 3-D folding and structure of a protein is uniquely contained in its sequence
of amino acids has proven unwieldy in practice. The first impediment has been
that various computational complexities arise from its mathematics, whereby
solutions require a long series of high-dimensional minimizations often
surpassing available computer resources. Although the impact of this impedi-
ment could be reduced by providing sufficient correlative information derived
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from protein crystallographic studies, the cost and difficulty of these studies has
been a second major hurdle. To illustrate the early state of this science, consider
that the Biological Macromolecule Crystallization Database of the Protein Data
Bank (a resource established in 1971 to collect, standardize, and distribute atomic
coordinates and other data from crystallographic studies) contained only 12,000
verified protein entries at the time of this writing.

In contrast, perhaps 10 million basepairs are sequenced every day. The wide
availability of primary sequence information suggested that tools for rapidly
and confidently identifying homologous sequences among those contained in
the increasingly large sequence databases could lead to substantive informa-
tion concerning functioning, without relying on molecular structure. Various
search and scoring procedures were developed and applied. For example, in
the protein arena, the residue exchange matrix approach referred to previously
was modified for use as a scoring matrix in sequence alignment procedures. In
this case the matrix is used to determine the likelihood that two residues occur
at equivalenced positions in a sequence alignment. Another example relates to
the BLAST programs for fast database sequence searching. The name stands
for Basic Local Alignment Search Tool. BLAST-style programs use a heuris-
tic search algorithm, seeking to quickly search databases while making a small
sacrifice in sensitivity for distantly related sequences (8,9). Databases are
compressed into a special format, and the program compares a query sequence
to each sequence in the database in the following manner. Sequences are first
abstracted by listing exact and similar words within them. BLAST uses these
abstracted words to find regions of similarity between the query and each data-
base sequence, after which the words are extended to obtain high-scoring
sequence pairs (HSPs). This approach was extended to include gaps in the
alignments (GAPPED BLAST), and combined with the scoring matrix
approach to increase the sensitivity of hits (PSI-BLAST).

The two approaches to predicting biological function of a molecule—based
on its molecular structure or on its primary sequence—could also be combined.
For example, it was noted that evolutionary mutations are not equally likely to
occur at different positions in a protein, and that a single scoring matrix for all
positions in the sequences to be aligned may be inadequate. Overington et al. (10)
extended Dayhof’s idea by using multiple matrices to reflect different mutation
probabilities in different regions of a sequence. Similarly, Bowie et al. (11)
created an exchange matrix for each position in the sequence. Inhomogeneous
scoring approaches such as these require reference to a three-dimensional protein
structure for at least one of the family members, in order to estimate the param-
eters of the exchange matrix. The discovery process could also be reversed.
Sander and Schneider (12) described a procedure to estimate protein structure
based on sequence profiles derived from multiple sequence alignments.
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Toward the end of this chapter we mention several statistical approaches to
sequence alignment and search problems as well as to problems of structural
modeling; however, these approaches have had relatively little impact on
molecular biology practices to date. In the next section we explore one barrier
to the integration of statistical thinking into molecular biology practice.

4. Statistical Content of Academic Programs
in Computational Biology

The growth of research in the field of computational biology was
accompanied by the initiation of corresponding academic programs. As of
October, 2000, the International Society for Computational Biology listed 44
university programs in bioinformatics and computational biology, 29 of these
at 23 universities in the United States and Canada. Of these, 13 offer degree
programs at the undergraduate or graduate level with required curricula in
bioinformatics or computational biology.

To understand the curricular content of these training programs we created
an ad hoc scoring system, which we used to rate the focus of the programs on
a standardized, multidimensional scale. Curricula were obtained from eight
graduate programs in the United States. Explicitly required upper-level prereq-
uisite courses were included in this analysis. Each course from each curricu-
lum was categorized according to whether its primary focus was most closely
aligned with statistics, nonstochastic mathematics, physics/imaging sciences,
biology, medicine, computer science, medical informatics, or bioinformatics.
Bioinformatics courses were those that evidenced a multifaceted syllabus
including biological databases, sequence searching and alignment technolo-
gies, and general techniques for genomics, transcriptomics, or proteomics. In
the “other” category we included general seminars and courses on such topics
as law and ethics. We based our assignments primarily on course syllabus,
course title, the listing department or its code, and lastly on the training and
interests of the primary faculty instructor when available over the web. Elective
courses were valued at half the weight assigned to required courses in a
curriculum, to reflect their relatively lower impact on training. Required upper-
level prerequisite courses were given the same weight as required courses.

Although our scoring system is admittedly arbitrary, the results of our analy-
sis are interesting in that they demonstrate that the statistical training offered to
students in these programs is secondary to the trinity of required and recom-
mended biology, mathematics, and computer science coursework. On average,
statistics coursework accounted for about 10% of the curriculum of these train-
ing programs (range: 5–25%). The bulk of required statistics courses were either
introductory or focused exclusively on probability theory. Table 1 summarizes
our analysis of the average curricular focus for these graduate programs.
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The fact that, to date, the field of statistics has had relatively little impact on the
practice of molecular biology is not unrelated to its relative underemphasis in
computational biology coursework. Not only do regular biology programs provide
even less quantitative training, but the most quantitative, modeling-oriented subset
of biology is infused with a constructionist philosophy that contrasts sharply with
the reductionist training that is the hallmark of statistics programs. Construction-
ists prefer the creation of reasonable models from consideration of the underlying
science to immediate consideration of data, while reductionists prefer to generate a
model from observed data, perhaps illumined by a small subset of scientific con-
siderations, than to deal with the full-scale intricacies of the underlying science.
The constructionist approach largely informs both mathematics and computer sci-
ence training. Although it is true that computer scientists also perform “data min-
ing” tasks, typical computer science approaches to data-driven analysis tend toward
“black box” methods. Neural networks are prime examples of black box methods,
as they typically result in little or no acquisition of generalizable, structural knowl-
edge. It has been noted that there are benefits to be derived from the integration of
both philosophies into applied work (13). Without the stochastic component,
however, quantitation of uncertainty in inferential results is not possible. We
believe it is essential that more statisticians be encouraged to support molecular
biology studies, another key reason for providing this book as an introductory
reference. As we describe in the next section, such statisticians will be rewarded by
rediscovering the roots of their field.

5. A Brief History of Statistical Genetics
Having suggested that computer science and constructionist modeling

approaches inform computational biology in practice, it is worthwhile to note

Table 1
Average Percentage of Computational Biology
Curricula Devoted to Various Subject Areas

Primary course focus Percentage of curriculum

Biology 37.4%
Mathematics 14.0%
Computer Science 13.6%
Biostatistics/statistics 10.5%
Bioinformatics 9.8%
Physics/imaging sciences 3.4%
Medical 2.5%
Medical informatics 2.1%
Other 6.7%
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that the history of statistics in evolutionary biology is a long one. The term
statistical genetics has come to refer to the application of statistical methods to
the analysis of allelic data, by which genes directly related to an inherited
condition are sought.

Starting in the early 1870s, Francis Galton became widely known for his cham-
pioning of eugenics, the science of increasing human happiness through the
improvement of inherited characteristics. The creation of a science of eugenics
required of Galton that he attempt to solve a number of complex problems,
including that of how hereditary traits were transmitted by reproductive
processes. Galton’s energies gradually focused on statistical reasoning about
hereditary processes. This work informed the so-called “Biometrical” school of
thought, which believed that continuously varying traits exhibited bleeding
inheritance. With the rediscovery of Mendel’s work on the genetics of dichoto-
mous traits in the early 20th century, fierce debates between Mendelians and
biometricians focused on whether discrete and continuous traits shared the same
hereditary and evolutionary properties. It is well known that this clash was influ-
enced more by personalities than by facts, but it did serve to motivate further
development in the statistical thinking needed to address genomics questions.

By the 1920s, the basic ideas of statistical genetics were developed by Fisher
and Wright. These ideas formed a synthesis of the statistics, Mendelian prin-
ciples and evolutionary biology needed to extend genomic modeling to
continuously varying characteristics, which may or may not also exhibit
polygenic (multilocus) etiology. These ideas were almost immediately embraced
by plant and animal breeders. Extension into human models was developed theo-
retically, but its rewards would await later developments in computer science
and molecular biology. The study of statistical genetics laid the foundation for
many advances in theoretical and applied statistics, such as regression and corre-
lation analyses, analysis of variance (ANOVA), and likelihood inference.

An excellent survey article by Elston and Thompson (14) breaks the study
of statistical genetics into four major areas—population genetic models, famil-
ial correlations, segregation analysis, and gene mapping. Chapters 6–9 discuss
some of these approaches. We note the availability of a software package called
SAGE (Statistical Analysis for Genetic Epidemiology), a collection of more
than 20 programs for use in genetic analysis of family and pedigree data. SAGE
is available through the Human Genetic Analysis Resource of the National
Center for Research Resources.

6. Biometric Modeling: Interfacing Molecular Biology and Statistics
There are three general areas in which molecular biology and statistics are

interfacing at the present time. The first is in the context of clinical trials using
molecular biomarkers. Most standard methodologies for the design and
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execution of clinical trials apply in this context. Chapter 9 by Dignam et al. in
particular illustrates the use of a biomarker in a clinical trials setting. This
setting is somewhat complicated by the fact that many such clinical trials
involve multiple biomarker studies, resulting in little conclusive power for
individual tests. An additional complication arises from the fact that many
molecular biomarkers are quantitative summaries derived from images. Inter-
and intraobserver variability associated with biomarkers is frequently studied
prior to the initiation of a clinical trial, with methods such as those described in
Chapter 5 by Looney; however, variability and bias resulting from image analysis
is frequently ignored once a biomarker has entered the clinical trials situation.
Chapter 2 by Bloom, et al. suggests a means whereby such information could be
incorporated into these studies, increasing their generalizability.

The second area in which molecular biology and statistics are interfacing is in
the context of the standard questions of computational biology, described previ-
ously, related to the functioning of biological macromolecules. Various statisti-
cal models have been proposed to perform sequence alignment (15–20). The
work of Charles Lawrence and his colleagues is particularly interesting, in that
they have employed Bayesian methods to address these problems. For example,
the Bayesian solution to a product multinomial model has been proposed to
perform multiple alignment, detecting subtle sequence motifs shared in common
by a given set of amino acid or nucleotide sequences. One such model employs a
Bernoulli motif sampler which assumes that each sequence could contain zero or
more motif elements of each of a set of motif types. Starting with an alignment of
motifs, the site sampler proceeds to follow two Gibbs sampling steps. First is a
predictive update step that chooses one of the N sequences in order from first to
last. The motif element for each motif type in the chosen sequence is added to the
background and counts of discovered motifs are updated. Second is a sampling
step, in which the probability associated with each possible motif starting posi-
tion is estimated according to a model. Weighted sampling of a single motif
element is then conducted for each motif type. This two-step process is repeated
until a local maximum alignment has been obtained. Bayesian models have also
been employed in the context of protein folding (21,22) and RNA structure (23).
Although formal statistical modeling in problem areas in the traditional domain
of computational biology has had little impact on molecular biology practice
thus far, the fact that statistical model-based search methods are found to provide
substantial improvement over current non-model-based methods (20) bodes well
for the future.

A third area of interaction between statistics and molecular biology is slowly
emerging because of recent advances in comprehensive, high-throughput
laboratory methods for studies of gene expression at the levels of RNAs and
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proteins. Chapter 3 discusses methodological issues and approaches related to
studies employing microarray technology, and Chapter 4 discusses approaches
for 2-D protein gel analysis.

7. Conclusions

The infusion of statistical methods into the field of molecular biology promises
to substantially enhance current scientific practices. Improved tools resulting in
superior inference may be required to ensure important scientific breakthroughs.
In this chapter we summarized statistical work in relation to the fields of molecular
and computational biology, and explored some of the barriers still to be overcome.
This book seeks to assist in the fusion of statistics and molecular biology practice
by focusing on methods related to biomarker studies and molecular fingerprinting.
We hope that it will prove useful to statisticians and biologists alike.
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Linking Image Quantitation and Data Analysis

Gregory C. Bloom, Peter Gieser, and Emmanuel N. Lazaridis

1. A Shifting Paradigm
Until recently, image-based experimentation in molecular biology has been

primarily concerned with qualitative results produced as a result of such
experiments as Northern blots, immunoblotting, and gel electrophoresis. These
experiments result in a relatively small number of bands on an autorad or other
imaging medium. These bands or spots would be visually inspected to deter-
mine their “presence” or “absence,” or visually compared with other spots on
the medium to determine their relative intensities. Sometimes, comparisons
would be enhanced using quantities derived from densitometry analysis. Such
comparisons were often performed to provide a numerical summary of a clearly
visible difference. This summary may have been required for publication of
the experimental results. This approach seemed to serve the investigator well
because there existed no real need for accurate image quantitation or data
analysis and a simple qualitative result would suffice.

However, many recent advances in molecular biology, coupled with the
increasing knowledge of the human genome, have made possible the ability
to simultaneously test the expression level of several thousand individual
genes, as in the case of microarray analysis (see Chapter 3 by Gieser, et al.),
or hundreds of expressed proteins, as with two-dimensional (2-D) gel elec-
trophoresis (see Chapter 4 by Seillier-Moiseiwitsch, et al.). While this ability
is essential to further molecular biology research and is a giant leap forward
from more traditional approaches, it has raised several questions about the use
of the “old” paradigm of image quantitation and data analysis and whether
that paradigm can be successfully applied to these new image types. Several
characteristics of modern molecular biology experiments—including the need
to investigate and understand subtle changes in molecular quantities and the
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increasing sensitivity of quantitation to the imaging process—suggest that the
old paradigm must be modified. In this chapter, we suggest a new approach
that allows investigators to better handle the needs of image-based
experimentation.

To demonstrate why a new paradigm linking image quantitation and data
analysis is needed, and to better understand the scope of the problems faced
when analyzing a laboratory image, we briefly describe some of the new tech-
nologies and the image types they produce.

Microarray analysis (see Chapter 3 Gieser, et al.) is a procedure that allows
an investigator to simultaneously visualize the expression levels of thousands
of genes whose complementary sequence or a portion thereof has been arrayed
on a class slide or chip. The measurement of mRNA levels in, for instance, a
normal tissue or cell line to its paired experimental sample can elucidate which
genes and, indirectly, which proteins are present or absent, and their relative
expression levels in one condition as compared to another. This gives the
investigator a starting point to determine which genes or groups of genes are
important in a particular experimental context. Regardless of the type of
question(s) being asked, this experiment invariably results in a large image or
set of images with thousands of features, each of which needs to be geometri-
cally defined into a region of interest (ROI) and subsequently quantitated. The
microscopic scale on which this kind of experiment is performed plays an
important role in determining the sensitivity of analytic results to the imaging
process. Ratios of quantities across images are frequently needed to compare
the relative expression across conditions.

The second type of modern biological image-based experimentation is
termed proteomics. This is the science that deals with gene products, namely,
proteins, and concerns itself with the collection of proteins (the “proteome”)
produced by a particular cell or organism. Important information can be derived
from experiments seeking to establish whether specific proteins are made in
higher or lower concentrations in response to disease, drug treatment, or expo-
sure to toxicants. The most commonly used approach to protein identification
and quantitation is 2-D gel electrophoresis, which combines a first dimension
separation by isoelectric focusing (IEF) with a second dimension separation by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
Whereas microarray experiments result in images with features whose
geometry is determined by the physical assembly of samples on a substrate,
proteomics 2-D gel images consist of many spots whose location and shape
cannot be prespecified easily. As with the microarray, the 2-D gel image
consists of several hundred to several thousand features of varying intensity
that need to be characterized. Each feature may or may not be important in the
context of a given experiment.
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In both microarray and proteomics 2-D gel contexts, effects due to image
background, signal-to-noise ratio, feature imaging response and saturation, and
experimental design and execution must be accounted for and factored into the
overall image quantitation procedure. Any and all of these factors can have far-
reaching effects on the subsequent data analysis. Under the old paradigm,
determination of the effects of variation in these factors on subsequent data
analysis is impossible, if for no other reason than that image quantitation would
typically proceed under a single set of conditions, in a step that would never be
revisited. If subtle differences in the performance of image quantitation may
substantially affect the subsequent data analysis, then the old paradigm simply
no longer serves, as it allows only a single best “guess” at what imaging
parameters are optimal and allows for no testing to see if the guess was correct.

A key point of the discussion of our new paradigm for treating images from
biological experimentation is that image quantitation can have a potentially
large effect on the data that are being obtained and these effects would feed
through the subsequent data analysis. In any imaging experiment there exists
an infinitely large number of ways in which an image can be quantitated, all of
which may be “correct” in that they all lie in some reasonable envelope of
imaging procedures. Among these methods, and even across subtle variations
of a single method, substantial variability in quantitation may result. This is
particularly important when one considers searching for subtle trends or effects
in a data set. For the newer types of image-based biological experimentation,
such subtle differences in how image quantitation is performed can completely
alter the data analysis outcome. A method is needed for linking the imaging
and data analysis processes so that the one can feed into the other, enabling the
investigator to understand the effect of choices made in image quantitation on
the resulting data analysis. The reverse situation is also important, as the results
of data analysis can drive the choice of procedures for image quantitation. For
example, an analysis of data derived from a particular procedure for image
quantitation using a specific background cutoff value in a given image may
demonstrate that the imaging procedure eliminated too many features of the
image from consideration, necessitating that the image quantitation process be
revisited. The idea of using the results of one of the two steps in this process to
drive the other process is central to the new paradigm.

Such an approach is important for the analysis of the newer types of biological
images produced today because of their sheer complexity and the large number
of features contained within each image. In hindsight it seems that the traditional
segregation of image analysis from the data analytic process may have been sub-
optimal for analysis of more traditional types of biological experiments as well.

In this chapter, we introduce a new paradigm with an accompanying schema
for the treatment of experimentation involving images and their subsequent
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data analysis, and point out the benefits of this new approach. The new
approach encourages cooperation between image quantitation and data analy-
sis. Ideally, this implies that the two processes should be performed by a single
software application. While not necessary, integration of imaging and statisti-
cal software tools can make application of the new paradigm easier, as we will
describe and illustrate in detail later in the chapter.

2. Conceptualization of the New Paradigm
The first action with any imaging experiment is to produce the medium with

the features or items to be imaged. The medium can be a microarray chip or
slide, a proteomics 2-D gel, or any number of other experimental media. The
second step is image acquisition. This can be as simple as scanning a piece of
exposed film or as complex as scanning a 2-D SDS-PAGE gel in a proteomics
experiment. To illustrate the use of our novel paradigm for the image
quantitation and data analysis step of an imaging experiment, a workflow
diagram is shown in Fig. 1.

The first step in this process is image quantitation. Image quantitation
consists of translating the underlying pixel information in the image into useful
data through the use of imaging methods. The set of imaging methods and their
associated parameters constitute an imaging envelope. Methods in the imaging
envelope may differ in how they treat background signal information, identify
signal in the presence of noise, characterize feature geometry, and identify
features with labels. The parameters that are required by a particular method to
perform quantitation can include numerical summaries of background signal,
expected signal-to-noise ratios, or signal thresholds for the image. The methods
and parameter values defining the imaging envelope are what determine the
values of the resulting data sets (shown below the imaging envelope in Fig. 1).
It is important to note here that even subtle changes in the imaging envelope
can lead to large changes in the acquired data set(s). These changes will, in
turn, alter the inferences obtained by application of the statistical algorithm. It
is therefore very important to incorporate a reality check after data analysis
and a subsequent feedback mechanism for improving specification of the
imaging envelope. Modifying the envelope in turn will necessarily alter the
inferences. Note that in some situations, particularly when formal analytic
protocols must be consistent over multiple analyses, feedback may be undesir-
able beyond an exploratory stage.

After the data sets are obtained, a single statistical algorithm is applied to
each individually. The type of statistical algorithm used is not critical to the
paradigm and may be anything from a t-test to linear regression. In one possible
path of workflow, the inferences are grouped into a inference set, representing
the individual values obtained from application of the statistical algorithm. At
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this point a meta-analysis of the inference set, using analysis of variance
(ANOVA), for example, is performed to arrive at a summary description or
meta-inference. This summary result incorporates not only the final outcome
of the data analysis, but also a measure of the variability or potential error
introduced by the imaging process.

The other possible path through the work flow diagram summarizes the data
sets obtained as a result of image quantitation into a single meta-data set before
application of a statistical algorithm. This treatment leads to a single inference
at this point in the flow and no further analysis is necessary. This approach has
an advantage in that it is more amenable to specification of distributions for
parameters characterizing the imaging envelope. For example, when one is
interested in integrating out the effect of a particular parameter from a specific
imaging algorithm, one can place a prior distribution on that parameter and
calculate an inferential posterior distribution using a Bayesian approach. In

Fig. 1. Work flow for an imaging experiment using the new paradigm.
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addition, the loss of information resulting from the application of the statistical
algorithm occurs at only one point in the flow, making it easier to evaluate
goodness-of-fit. Disadvantages of this approach include the fact that the image
quantitation procedures must be “compatible” across the imaging envelope so
they can be combined in the context of conducting a single statistical opera-
tion. In the alternative approach, only the intermediate inferences, and not their
underlying data sets, need be combined for the subsequent statistical analysis
leading to the meta-inference. Therefore, different statistical algorithms may
be applied to each individual data set as long as the inferences can be meta-
analyzed, making this approach more flexible.

When the process illustrated in Fig. 1 is integrated in a single software
platform, models of the experiment that account for use of different imaging
parameters and quantitation procedures can be more readily explored, reducing
the potential for imaging-related biases in the analytic results. The sensitivity
of any given analysis to changes in quantitation procedure can also be rapidly
investigated, thereby increasing the quality of information derived even from
simple statistical models. The next section describes a novel application that
allows this conceptual solution to be practiced in a real-world environment.

3. Application of the Paradigm: The Midas Key Project
While it is easy to conceptually cycle through several rounds of quantitation

and data analysis using the approach described in Subheading 2., it is much
more difficult to perform this task in a real-world environment. This is especially
true if the processes of image quantitation and data analysis are physically sepa-
rated. In fact, this is the situation that currently exists. Many systems are avail-
able for image analysis, including home-grown and commercial, general and
special-purpose packages such as Optimas (Media Cybernetics, Inc.; general
purpose imaging), SpotFinder (TIGR; microarray slide imaging), and CAROL
(Free University of Berlin; proteomics 2-D gel imaging). Indeed, many vendors
of biological equipment produce and distribute their own software, which they
bundle with their equipment. While some of the available packages may provide
sophisticated image-analysis tools, little sophistication is available in the included
mathematical and statistical methods for analysis of the resulting data. Con-
versely, popular analysis packages such as SAS, SPSS, and S-Plus, while pro-
viding sophisticated models for data analysis, lack any facility for image
quantitation. Thus, the typical scientific segregation of the analytic role from
the process by which image-related data are obtained is also reflected in avail-
able software. While such software may suffice to conduct the kinds of  tradi-
tional biological experimentation that relied primarily on qualitative examination
of images, it was recognized that use of such software in the context of the new
biological experimentation would be suboptimal.
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The paradigm of marrying imaging and mathematical modeling and statisti-
cal tools to analyze the results of modern biological experimentation could be
implemented using the disparate software applications described previously.
This approach has several limitations, however, foremost of which is the abil-
ity to quickly incorporate the results derived from either of the two analytic
domains into the other. One would need to go back and forth between the
imaging and data analysis exercises hundreds or thousands of times. A plat-
form that would allow imaging and data analyses to proceed in tandem would
substantially enhance the analytic exercise. Thus, we have been developing an
application that incorporates all aspects of image and data analysis along with
data storage into a single unit. We describe the design and merits of this appli-
cation in the paragraphs that follow.

The goal of the MIDAS Key Project is to build an integrated imaging
and modeling analytic environment over a sophisticated database backbone.
By borrowing and uniting technologies from multiple fields, we seek to
empower researchers in basic and clinical imaging studies with a sophisti-
cated analytic toolbox.

Figure 2 illustrates the three major components that constitute the MIDAS
Key Project. A description of each of the elements contained in each of the
components is also given. The top-level box is the Java application. This is the
central component of the key project and ties the other components together.
The Problem Domain of the application contains the objects that define the
underlying data structures used for the project. The Java application also
controls interactions with the database; this is done in the Database area. The
third area is the User Interface. This package is responsible for all aspects of
interaction with the application, including the menu-driven frame-based inter-
face and image display. The use of Java allows us to maintain cross-platform
independence; to integrate tools existing in multiple, otherwise unrelated,
applications; and to easily deploy a client-server multithreaded model system.

Fig. 2. Diagram of the three components constituting the MIDAS Key Project and
their elements.
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We are currently using Java 2 as the basis for our code, supplemented by the
Java Advanced Imaging (JAI) Application Programming Interface (API). The
JAI API is the extensible, network-aware programming interface for creating
advanced image-processing applications and applets in the Java programming
language. It offers a rich set of image processing features such as tiling,
deferred execution, and multiprocessor scalability. Fully compatible with the
Java 2D API, developers can easily extend the image-processing capabilities
and performance of standard Java 2D applications.

The current Java Development Kit (JDK) fully incorporates Swing compo-
nents (which are used for windowing functions) and the 2D API, both of which
are employed throughout our code. The Java Database Connectivity (JDBC) API
allows developers to take advantage of the Java platform’s capabilities for indus-
trial-strength, cross-platform applications that require access to enterprise data.

The database component of the MIDAS Key Project contains the table
spaces that hold all long-term storage needed in the application. The tables
contained here include those for storing project, experiment, and image meta-
data; tables to store the images and their associated geometries; and mapping
tables to tie the data together. For our work we chose to employ Oracle for all
data storage and management. Oracle provides many unique technical features
that we leverage in the Key Project including Java integration, extensibility
and scalability, and support for multimedia data types that allow for efficient
integration of imaging and meta-data information.

The most important characteristic of an analytical engine in the Key Project
is its amenability to integration with other software, including novel statistical
methods. A second characteristic is the ease with which it interacts with Java
applications. We chose to employ the S-Plus statistical processing system for
our work in spite of the fact that it is not fully Java aware. A fully Java-aware
analytic engine would allow dynamic statistical methods to be incorporated
into our Java interfaces, allowing application of real-time graphical data
exploration methods and interactive statistical diagnostics. In addition, we can
conveniently employ the S-Plus system on desktop computers separately from
our Java interfaces, assisting in rapid methods development and evaluation.

Figure 3 shows a typical application of the Key Project system, focusing on
the Oracle backbone, which is used for object persistence. First, a series of
image-dependent or imageless layers, upon which analysis will be performed,
are loaded into the system (step 1). Memory is carefully managed at this step
and throughout the process, as it is impossible to expect either client or server
to simultaneously manage, say, 40 microarray images, each of which is
upwards of 40 Mb long. A rendered composite image, if available, is displayed
on the client according to user-adjustable preferences. We allow for imageless
layers so that we might work in our analytic environment with data obtained
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through sources whereby the associated images are not available. When images
are available, we proceed to establish one or more geometries for each layer
(step 2). By a geometry we mean a set of closed, possibly overlapping regions-
of-interest (or shapes), each of which is not exclusively contained in any other.
Geometry may be established by hand through a sketchpad interface or by
application of a geometrization algorithm. The use of geometrization algo-
rithms allows us to model in a single system images with formats that are
largely fixed by the investigator, such as, for example, results from microarray
studies, images with semifixed geometries such as from proteomics studies,
and images with free-form geometries such as from cell or tissue microscopy.
Labels are then attached by reference to one or more labeling algorithms (end
of step 2). These may be relatively simple—typically, microarray labels are
established by considering the spot centers—or fairly complex—protein la-
bels on 2-D gels are established by considering the overall geometry and rela-
tive positions of shapes in that geometry. Geometries are calculated and labels
established. Next, quantitation is carried out (step 3) by referencing one or
more quantitation algorithms, which execute looping over shapes in the geom-
etry. Quantitation may result in all kinds of information, including: (1) primary
signal information, such as average or median intensity of the pixels in regions
of interest; (2) signal variability information, such as pixel variance, kurtosis,

Fig. 3. Schematic of the MIDAS Key Project system showing Oracle backbone.
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or direction of one or more principal components; (3) signal location informa-
tion, such as coordinates of the intensity mode within a region of interest; and
(4) cross-image signal comparison information, such as pixel correlation
between two images (used for quality control). The design of our system allows
for substantial extensibility in the application of geometrization, labeling, and
quantitation algorithms. Depending on the algorithm, quantitation may be
performed by server-side Java or C++ code or by the S-Plus Server system.
Note that geometrization algorithms may also be employed within the
quantitation step, without requiring persistent storage of the resulting geom-
etry, as might be needed when one wishes to compare quantitative performance
of two spotfinding algorithms within regions of interest in a specified geom-
etry. External data, for which no images are available, are also retrieved at this
time. Analysis of the quantitation results occurs in step 4. We employ standard
methods such as simple regressions, ANOVA, and principal components analy-
ses by referring to the methods built into the S-Plus analytic engine. Novel
mathematical models are included by incorporating C++ or Fortran compiled
code into the S-Plus engine or by direct reference to external code on the
server. Graphical, tabular, or data-formatted results can be exported for reports
or stored on the Oracle backbone for later use (step 5).

Initial exploration of multiple image-based experiments suggests that the
variability associated with application of reasonable but differing imaging proce-
dures to the same images is nontrivial. The total effect this variability will have on
various statistical models is unknown at present. Without reference to our new
paradigm for imaging and data analysis, it would remain largely unknowable.

4. Midas Center at USF—An Interdisciplinary
Implementation of the New Paradigm

The new paradigm has changed the way researchers at our institution inter-
act to analyze imaging-based experiments. The University of South Florida
(USF) Center for Mathematical-Modeling of Image Data Across the Sciences
(MIDAS) brings together faculty and student investigators from disparate fields
to develop sophisticated mathematical and statistical models of data derived
from images. Under the umbrella of MIDAS, we seek to address pressing
analytic needs related to molecular biology experiments in many areas,
including microarray, microscopy, proteomics, and flow cytometry. In each
kind of experiment, an image or a set of images is typically derived by a primary
investigator—say, a biologist or pathologist—in an experimental context. To
get from the images to informative research conclusions, the steps of
quantitation, analysis, and interpretation must be traversed. In today’s research
environment, the primary investigator usually directs quantitation of the
images, sometimes in conjunction with an imaging scientist. The resulting data
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may then be given to a statistician or other numerical analyst. The basic tenet
of the MIDAS Center is that segregation of the analytic role in this context is
suboptimal. At the present time, the MIDAS Center is integrating researchers
from multiple schools and programs around USF. Investigators from programs
in Biology, Bioengineering, Computer Science, Mathematics, Statistics, Medi-
cine, Medical Imaging, Oncology, Biochemistry, Pathology, and Public Health
are collaborating to address important analytic problems.

5. Example
Synchronous implementation of the new paradigm in both software and the

collaborative environment allows for easy conduct of joint imaging and analy-
sis experiments. In this section we first present a hypothetical experiment
employing the new paradigm, and then illustrate application of the paradigm to
an image using the MIDAS Key Project.

A hypothetical experiment using the new paradigm might be the following.
Suppose we have conducted an experiment using 40 microarray slides that were
assembled on two different days. We are concerned that our data analysis might
be sensitive to problems we suspect with the microarrayer pins, and we have
developed three combined sets of geometrization, labeling, and quantitation
algorithms that we can apply to these data, each of which has some benefits
and some drawbacks in terms of ability to adjust the resulting data for experi-
mental difficulties. Each algorithm additionally has some imaging parameters
that can be specified by the user, such as background pixel intensity cutoffs,
complexity-cost, scale, or tolerance parameters. Suppose there are five such
parameters in each algorithmic set, each having a low, medium, or high value
in a reasonable range. Using the Key Project system, one could analyze the
microarray slide images using each of the algorithm sets and a range of param-
eters to obtain, say, an analysis based on each of 3 × 3 × 5 = 45 combinations of
imaging methods. These analyses could then be averaged and deviant analytic
results investigated using statistical meta-analysis techniques that would also
be built into the system. In addition, we could consider employing Bayesian
statistical methods to average-out the effect of imaging-related variability from
the analysis, thereby obtaining a composite estimate that does not rely on a
specific imaging protocol.

In the following example, we used the MIDAS Key Project to specify an
imaging envelope around a spotted array image, having the usual red and
green channels. For simplicity, rectangular areas were drawn on the image to
identify 100 spots, and only two imaging choices were compared. For each
of the rectangles, quantitation proceeded by setting a background threshold
and computing the average pixel intensity. Two different threshold values
were used, 5 and 25. These background levels are virtually indistinguishable
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when visualized; visual comparison with the TIGR image suggested that either
may be a reasonable choice. Thus the imaging envelope consisted of two
members. The statistical analysis consisted of estimating fold change between
the red and green channel and computing the corresponding rank of each gene.

Figure 4 presents a comparison of the relative ranks of the genes, across this
simple imaging envelope. The height of the curve is the number of genes in the
intersection of the top x ranked using a background value of 25 vs a background
of 5. For example, at the value 10 on the horizontal axis, the height of the curve
is 7, indicating that only 7 of the genes using a background of 25 overlap with
the top 10 using a background of 5. Even in this simple example, inferences
derived using two parameter values in a reasonable neighborhood demonstrate
only 80% consistency. In more complicated situations, 30–60% or more
additional and previously unrecognized variability may be captured in a
reasonable imaging envelope. In this example, the inferences drawn across the
imaging envelope could be meta-analyzed to form a consensus inference
concerning the order of differentially expressed genes.

Fig. 4. Comparison of gene ranking of fold change between background levels of
5 and 25.
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6. Conclusion
In every experimental context in which images are captured in the process

of obtaining information, it is important to realize that the images are the data.
Historically, inadequate attention has been paid to this viewpoint. As a
researcher, one seeks conclusions that are resistant to the peculiarities of any
particular imaging methods used in the process by which inference is obtained.
The main benefit to an investigator is the ability to account for various factors
within the imaging phase of the experiment. As detailed earlier, factors such as
background signal, geometry characterization, and signal thresholding can and
do have an effect on the resulting data, which in turn affects downstream
analysis. Control and awareness of these influences allows an investigator to
conduct inference that better reflects the underlying biology. We suggest that
the MIDAS Key Project described in this chapter and the paradigm on which it
is based provide such an approach, enhancing the completeness of data analy-
sis and leading to better models for inference in image-based experiments.
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Introduction to Microarray
Experimentation and Analysis

Peter Gieser, Gregory C. Bloom, and Emmanuel N. Lazaridis

1. Introduction
Microarray experiments try to measure simultaneously the quantity of many

specific messenger RNA (mRNA) sequences contained in a sample. These
quantities are called gene expression. The sample mRNA can be extracted from
human tissue, plant material, or even yeast. Because thousands of these
sequences can be measured in a single experiment, scientists have a large
window into the workings of a biological system. This is in contrast to use of
more traditional approaches such as Northern blots, which limit research to
one-gene-at-a-time experiments.

There are many ways that microarrays can be used to further scientific
research. One application is in the area of human cancer where, for example, we
seek to identify colon cancer patients who are at risk for metastasis. While surgi-
cal extirpation of colorectal cancer remains the primary modality for cure,
patients who have metastasized to distant sites at the time of surgical interven-
tion frequently die from their disease. Unfortunately, there is no accurate means
of identifying the patients who are at risk for metastasis using current staging
systems, which are based only on clinicopathologic factors. Moreover, attempts
at improving these staging systems, using molecular techniques to assay the
expression of single or a small number of genes, have been relatively unsuccess-
ful. This is likely because the process of metastasis is complex and linked to the
expression of numerous gene families and biological pathways. Because
microarray technology provides a more comprehensive picture of gene expres-
sion, experiments involving colon cancer and metastatic tumor specimens can be
used to derive a molecular fingerprint in primary tumors portending metastasis.
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2. Robotic Spotting vs Photolithographic Technology
The term microarray instance refers to a single image of a particular hybrid-

ized microarray chip, slide, or filter. Currently, there are two major technologies
for generating microarray instances. The older technology uses a robotic arm to
first place specific cDNA probes, representing known genes or expressed
sequence tags (ESTs)1 of interest, onto a substrate. An RNA sample is then
reverse transcribed and tagged with a fluorescent dye. This mixture is washed
over the substrate, where the tagged cDNA hybridizes to the complementary
cDNA probe. When scanned by a laser of the appropriate wavelength, the amount
of fluorescence (as seen by a confocal microscope) is a measure of the quantity
of tagged cDNA that has adhered to each probe. This, in turn, is used to directly
infer the amount of a particular gene present in the original sample. In addition, a
second RNA sample, tagged with a different fluorescent dye, can be mixed with
the first sample. By scanning at two different wavelengths, information from
each sample can be generated using only one slide. A newer, proprietary, tech-
nology by Affymetrix has emerged that also generates microarray instances. The
Affymetrix GeneChip system works by creating a defined array of specific
oligonucleotides, or oligos, on a solid support via appropriate sequencing of
masks and chemicals in a photolithographic process, not unlike the way in which
semiconductors are manufactured. A Biotin-tagged cRNA sample is washed over
the chip and hybridized to the complementary oligo probes. A laser scans the
chip and the fluorescence is measured. In contrast to the spotting technology, a
mathematical model is required to combine the information from multiple oligos
into a single gene expression level.

These two methods are similar in that they both contain probes in an array
on a solid surface and are exposed to a sample for hybridization. Both are
scanned and result in an image representation of the data.

The differences in the methods are key. One difference is the manner in
which the expression level for a gene is established. The Affymetrix system
uses a designed set (typically 40) of 25-mer oligos per gene,2 which must be
combined to quantify gene expression. This is in contrast to the spotting tech-
nology, where each gene is typically represented by only one target sequence.
Another difference is the ability of the spotted array to generate two or more
microarray images from the same slide by scanning it at different frequencies,
corresponding to the fluorescent labels employed.

1 Successive references to genes or gene expression implicitly include ESTs.
2 The 40 features in a gene set are typically composed of 20 perfect match–mismatch oligo

pairs. Each perfect match oligo is a true cDNA probe for its associated gene product. Each
mismatch feature contains a single nucleic acid substitution in the center of the strand relative to
the perfect match. Affymetrix includes mismatch features on chips to provide a means for quality
control prior to and during quantitation.
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There are statistical implications that need to be considered in working with the
different technologies. As spotted arrays have the ability to utilize multiple samples
per slide, they are more flexible than the Affymetrix arrays in accommodating
different types of experimental designs. However, spotted arrays can require human
intervention that is hard to account for in statistical models. Supervision in the
form of discarding malformed spots is common, but what are the implications?
What methods are used to find the spots, and what impact does the choice of a
particular method have on the final analysis? As argued in Chapter 2 by Bloom,
Gieser, and Lazaridis, imaging choices made within a reasonable envelope can
have substantive effects on analytic results. The Affymetrix arrays, although
generally more consistent and well-defined on the substrate, use only one sample
chip, and that limits the choice of experimental design. The additional complexity
of trying to put together the information from the individual oligos also provides a
statistical challenge that is not present with the spotted arrays.

It is an important fact that microarray technologies continue to develop,
resulting in additional complexities for the analyst. For example, it has been
suggested that 60-basepair oligo sequences may improve sensitivity and speci-
ficity for gene expression, relative to the 20-basepair oligos currently used in
Affymetrix chips. It is also of note that fewer oligo probes for each gene set
may be assembled in future versions of Affymetrix chips. Data from spotted
arrays are being impacted by developments in substrate technology seeking to
improve the imaging properties of glass slides. Other ongoing technological
developments include the use of ink-jet spotters as a means to place probes on
a substrate, and increases in the acceptable density of spots or features on a
microarray instance. Changes in technology imply that experiments performed
at one time may need to be treated differently from those performed at a later
date. Because one goal of many microarray projects is to compile gene expres-
sion information over multiple years, there is a need for analytic models that
can handle the complexities resulting from further technological developments.

3. Imaging Analysis of Microarray Images
As mentioned previously, we use the term microarray instance to refer to a

single image of a particular hybridized microarray chip, slide, or filter. Such
terminology heeds the fact that the first (electronic) capture of information
from a physical experiment is in the form of an image, which is typically
obtained using a laser scanning device. Because so many imaging issues can
impact what quantities are derived from a microarray image, we advocate
treating microarray images as “the data.” Although Chapter 2 suggests a new
paradigm for microarray data analysis based on this thinking, the current
approach at most institutions derives only one set of data from any single
microarray instance. Thus, we limit our discussion of imaging analysis of
microarray images to a few, brief remarks.
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The primary elements of imaging analysis that can affect quantitation are
choice of background adjustment and spot characterization methods, along with
choice of their associated parameters. Typical background adjustment algo-
rithms may account for global (image-wide) and/or local (in the vicinity of a
spot or feature) background phenomena. What regions of an image are chosen
to calculate the parameters of these algorithms may vary substantially by tech-
nology and analyst. For example, Affymetrix technology packs oligonucle-
otide probes so densely on the surface of a chip that one must employ minimally
hybridized probe regions to calculate average background intensity. Global
background values can be calculated directly using this scheme; calculation of
local background adjustments requires application of a spatial model that uses
a method such as kriging. Because of the manufacturing and hybridization
processes employed by oligonucleotide chip technology, local background
adjustments may be relatively less important than in the context of spotted
arrays, in which the application of a coating to a glass slide as well as other
technological issues can introduce substantial amounts of local noise. Chapter 2
presents an example wherein use of two, virtually indistinguishable, threshold
values for local background lead to substantially different inference.

Spots may also be characterized differently in different applications. Three
common approaches involve quantitating image intensity in rectangular
regions, in ellipsoids, or even in regions determined by an edge detection scheme
(which will also depend on choice of background threshold). In addition, spot-
ted microarrays may exhibit doughnut spotting, that is, bright spots with a dark
hole in their centers resulting from the process by which probe material was
placed on the substrate by a robotic needle. An algorithm to identify and
discount these dark regions may be appropriate in certain cases.

4. Statistical Analysis of Microarray Data
4.1. General Overview

Having illustrated that quantities derived from microarray instances can be
affected by imaging choices, we proceed to discuss the statistical issues that
are the focus of this chapter, restricting our presentation to cases wherein only
one set of data is derived from any single microarray instance. In such a set,
each arrayed gene is associated with one estimate of its (relative) expression.
We employ the generic term objects to mean a set of genes, microarray
instances, drugs, or so on, to which an analytic method for clustering or classi-
fication can be applied.

Generally, microarray data consist of observations on n-tuples of objects.
A common form for these data gives one observation of estimated gene
expression for each combination of elements of a set of genes and a set of
microarray instances.
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An important analysis characteristic is the degree to which external infor-
mation is employed to assist a method in determining appropriate object clus-
ters or classes. Methods that rely on external information or user interaction
are called supervised. Methods that refer only to the data at hand are called
unsupervised. In a similar manner, some methods may be trained using exter-
nal data (and in that sense are supervised), but may still be applied to new data
in an unsupervised manner.

All methods assume a certain degree of structure in the data to be analyzed.
Whether the underlying model is explicitly recognized or not, some methods
are structurally heavy, leading to a substantial influence on clustering or classi-
fication, while structurally light methods tend to have less influence. Clearly, a
good model will reflect the structure of the data, and the best models will
represent the underlying biology.

4.2. Data Adjustment

Because the data represented by a single microarray instance are a reflection
of the relative amounts of gene expression in a tested sample, an important
question is how to standardize these quantities to allow for comparison across
multiple instances. It is unfortunate that some authors call this process normal-
ization, as that term additionally suggests the transformation of data to satisfy
Gaussian distributional properties. We discuss data transformation for model-
ing purposes toward the end of this chapter. Several methods for standardizing
across microarray instances are available, but each has its disadvantages.

The most basic technique involves standardizing data from each chip
according to the average intensity of the pixels across the whole scan of the
chip, or across all the spots. This approach has the advantage of simplicity, and
requires no special experimental considerations, but is fraught with danger.
For example, the goal of many experiments involves depressing or stimulating
transcription of a large number of gene products, so that different overall aver-
age intensity between images may not be an imaging artifact.

Another basic technique is to standardize data from each chip according to
the average intensities of internal controls, or “housekeeping” genes, that are
not expected to change across a particular experiment (such as cellular gene
products in a viral DNA chip). This method avoids the major problem of
the previous approach, but still relies on the assumption that the internal controls
are unaffected by differences in samples and experimental conditions across
microarray instances. If a large quantity of internal control spots is assembled on
a microarray, then the approach of Amaratunga and Cabrera (1) may be
considered. These authors employed the intensity histograms of pixels associ-
ated with the internal controls to estimate a transformation of each microarray
instance to a standard intensity curve. Alternatively, one can try dividing the
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average intensity measurement of each spot by the average intensity over a small
set of controls. Most published analyses to date employ this approach, but this
can be dangerous because the intensity transformation between two images (and
especially between two fluorescent channels) is frequently nonlinear.

A third technique standardizes data according to the fluorescence of one
or more known elements added to the experimental sample just prior to
hybridization. Required is the assumption that the addition of a “spike” to
the mixture does not change the sample’s other properties. For example,
the Affymetrix procedure is to spike human samples with herring sperm
DNA, relying on the supposition that herring sperm and human DNAs are
sufficiently lacking in homology. One major problem is the likelihood that
the image intensity of a spike will demonstrate substantial variability. To
account for this, the Affymetrix protocol recommends spiking the sample
with a set of staggered concentrations of control cRNAs. These controls are
used to determine the sensitivity of the chip by noting the smallest concen-
tration level that can be detected. We note that they are not used in the
Affymetrix analytic procedure except as a global filter for adequacy of the
microarray instance.

Finally, any of a variety of statistical regression models can be used to
standardize data by looking at pools of experimental samples in an associated
experimental design. As an illustration of how one such approach might work,
suppose there are two biological samples to be analyzed using a one-channel
scan microarray system. Instead of running each sample on each chip sepa-
rately, suppose the first sample is run on the first chip, and a mixture of the two
samples is run on the second chip. Denoting the expression vector of each
sample by Xi and the expression vector from each microarray instance by Yj,
one might (somewhat naively) expect that the above experiment would satisfy
the relationships Xl = Yl, and X2 = 2(Y2) – Xl. Unfortunately, this may not al-
ways be the case, possibly owing to effects of RNA concentration and com-
plexity in the mixture. Experiments suggest a trend correlated with spot average
intensity, whereby mixtures of samples on a single chip tend to underestimate
the average of samples run on different chips. However, because this relation-
ship may be predictable, it is possible that a regression model might be used to
adjust for possible bias.

4.3. Combining Oligonucleotide Information in a Probe Set

A special requirement of oligonucleotide chips is a robust method to
combine the measured average intensities of oligo features in a probe set into a
single value estimating expression of the associated gene product. Typically,
each probe set is composed of 40 features, arranged in 20 perfect match–mis-
match oligo pairs. Each perfect match oligo is a piece of cDNA probe for the



Microarray Experimentation 35

associated gene product. Each mismatch feature contains a single nucleic acid
substitution in the center of the strand relative to the perfect match. Affymetrix
includes mismatch features on chips to provide a means for quality control
prior to and during quantitation. We note that the existence of perfect match
and mismatch oligos in each probe set on an Affymetrix chip is not an impor-
tant component of this problem because there is substantial evidence to suggest
that molecules with high affinity to a mismatch oligo may have low affinity to
the corresponding perfect match. Thus, we advise against the use of algorithms
that combine perfect match and mismatch information to create summary
statistics intended to estimate gene expression, such as pairwise differences in
average feature intensity.

The current software provided by Affymetrix to investigators returns the
average of feature intensities for a subset of features in each probe set. The
subset is chosen in each array by considering the mean and standard deviation
of differences between paired perfect match and mismatch average intensities,
after excluding the maximum and the minimum. Probes whose probe pair
differences deviate by more than three standard deviations from the mean are
excluded in gene expression estimates. If two microarray instances are to be
compared, the intersection of acceptable probes in each instance is employed
to evaluate gene expression difference. Not only does this procedure poten-
tially exclude informative probes with large responses in individual arrays, it
also implicitly assumes that the information provided by each acceptable oligo
is of equal importance. Clearly superior to this approach would be a weighted
sum of oligo-specific values, with parameters chosen to reflect the extent of
information in each oligo.

At least two procedures have been employed to choose such weights. Li and
Wong (2) assume that the average intensity of each probe in a probe set
increases linearly with respect to increases in underlying, unknown gene
expression, but with probe-specific sensitivity. This assumption leads to a
weighted sum conditional least squares estimate of gene expression. In what
follows we ignore their use of mismatch feature intensities. Letting i equal
index array instances, j index probes, and n index genes, their basic model is
yij = θiφj + εij with εij ~ N (0, σ2), and Σ jϕj

2 = J, J being the number of probes in
a given probe set. Least squares estimation may be performed by iteratively
calculating the gene-specific parameters (θi) and the probe-specific weights
(φj), identifying and excluding during the iterative procedure any outlier
microarray instances and probes (outliers relative to the model) as well as
probes with high leverage (which may be untrustworthy because of their influ-
ence on the model estimates). Possible drawbacks to this approach arise from
reliance on the parametric model, on its distributional assumptions, and on the
criteria one employs to exclude outlying or untrustworthy data.
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In our setting we employ a nonparametric approach to weighing oligo
features using a minimum risk criterion, an approach that is easily described
and implemented. We think of oligos in a probe set as players on a team, who
have been selected on evidence that as individuals they are top performers. The
performance of any given player can be gauged according to how well that
player estimates a value of interest, in this case, the expression of the gene
associated with the probe set. Each microarray instance in a particular analysis
corresponds to a single game, resulting in a score for each of the members of
the team. Indexing players by i and games by j, denote the average intensity of
each oligo at each microarray instance by yij. Our main question involves a
coaching decision, whereby the analyst (coach) seeks to obtain a better estimate
of (unobserved) gene expression, θ, for a particular probe set. Using the least
squares criterion, it can be shown that a coach should use ygj to estimate θ in
the situation where all the players perform equally well across games. In the
microarray context, relative performance of players must be estimated by
the coach, who does not know the value of θ that would be needed to calculate
an exact loss function. Instead, we argue that within each game, the rational
coach would evaluate each player against a best estimate of gene expression
derived from the rest of the team. Thus, the problem of minimizing loss over
players and games reduces to calculating a set of parameters, φi, such that

∑
j

∑
i

φ iyij – 

∑φkykj

k:k ≠ i

φg – φ i

2

is minimized. The fact that this procedure is equivalent to minimizing the leave-
one-out cross-validation estimate of variance for the mean of coach-adjusted
player estimates, φi yij, suggests the situations in which this approach may per-
form substantially better than a parametric one, including settings in which
limited information is available about probe weights. Designed laboratory ex-
periments, in particular, typically result in few microarray instances over a
multiplicity of conditions. In addition, situations in which assumptions of a
linear model with constant variance may be violated will often arise in labora-
tory experiments because of the hybridization performance of different mo-
lecular mixtures across samples being compared.

4.4. Differential Gene Expression

After proper standardization, a natural question to ask is which genes are
differentially expressed across two or more samples. For concreteness, consider
a spotted microarray in which two samples have been cohybridized.
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Traditionally, the raw ratio (between the two samples) of standardized spot
average intensities has been used to make inferences about which genes are
significantly differentially expressed. Newton et al. (3) point out that this is
problematic because a given fold change may have a different interpretation
for a gene whose absolute expression is low in both samples as compared to a
gene whose absolute expression is high in both samples. They suggest that
there is room for improvement in the initial signal processing that may have
bearing on downstream tasks such as clustering.

The solution Newton describes is based on hierarchical models of measured
expression levels that account for two sources of variation. One source is
measurement error, the fluctuation of the spot intensity around some mean
value that is a property of the cell type, the particular gene, and other factors.
The second source is gene variation, the fluctuation of the mean intensity value
between the different genes. This formulation allows the computation of proba-
bilistic statements about actual differential expression. The key findings are
that observed ratios are not optimal estimators, focusing on  fold changes alone
is insufficient, and confidence statements about differential expression depend
on transcript abundance.

The specific sampling model used by Newton is based on the Gamma
distribution. Given genes are modeled as independent samples from distinct
Gamma distributions with common coefficient of variation (i.e., constant shape
parameter). Specifically, if R and G are the measured expression levels for
a gene across the two samples, let R ~ Gamma(a,θR) and G ~ Gamma(a,θG).
Then the scale parameters are assumed to follow a common Gamma(a0,υ) dis-
tribution. This model is stated to be reasonably flexible and skewed right, while
exhibiting increasing variation with increasing mean. It turns out that given
these model components, the Bayes estimate of differential expression is
pB = (R + υ)/(G + υ), which has the classic form of a shrinkage estimator. The
implication of this is that for strong signals pB will be close to the naïve estimator
R/G, but there is attenuation of pB when the overall signal intensity is low.
Clearly, pB naturally accounts for decreased variation in differential expression
with increasing signal on the log scale. One problem with this method, how-
ever, is that spots that cannot be distinguished from the background in either
channel are omitted from analysis. It could be argued that these are in fact the
most important cases of all! Another problem is that the restrictive parametric
model may not fit the distribution of actual gene expressions on a given chip.

To determine significant differential expression, an additional layer is added
to the model in the form of a latent variable z that indicates whether or not true
differential expression exists. The Expectation-Maximization (EM) algorithm
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is then used to estimate the parameters and compute the posterior odds of
change at each spot.

An alternative method for exploring differential expression is via robust analy-
sis of variance (ANOVA). This has been described by Amaratunga and Cabrera (1).

4.5. Principal Components

Although principal components analysis (PCA) is not a model-based
method, it still plays an important role in facilitating model-based analyses.
PCA is a technique commonly used for dimension reduction. Generally, PCA
seeks to represent n correlated random variables by a reduced set of d (d < n)
uncorrelated variables, which are obtained by transformation of the original set
onto an appropriate subspace. The uncorrelated variables are chosen to be good
linear combinations of the original variables, in terms of explaining maximal
variance, orthogonal directions in the data. Data modeling and pattern recogni-
tion are often better able to work on the reduced form, which is also more
efficient for storage and transmission. In particular, pairs of principal compo-
nents are often plotted together to assist in visualizing the structure of high-
dimensional data sets, as in the biplot.

Suppose we have a set of microarray data in standard form, X, a matrix with
as many rows as there are genes (M responses) and as many columns as there
are microarray instances (n observations). Standard PCA seeks the eigenvectors
and associated eigenvalues of the covariance matrix for these data. Specifically,
if Σ is the covariance matrix associated with the random vector
Z = (Z1, Z2,..., Zn) and Σ has eigenvalue–eigenvector pairs (λ1,e1), (λ2,e2), …,(λn,en)
where λ1 ≥ λ2≥...≥λn ≥ 0, then the ith principal component is given by
Yi = eliZl + e2iZ2 +...+eniZn. Note that the principal components are uncorrelated
and have variances equal to the eigenvalues of Σ. Furthermore, the total popu-
lation variance is equal to the sum of the eigenvalues, so that λk/(λl +...+λn) is
the proportion of total population variance due to the kth principal component.
Hence if most of the total population variance can be attributed to the first one,
two, or three components, then these components can “replace” the original n
variables without much loss of information. Each component of the coefficient
vector also contains information. The magnitude of eki measures the impor-
tance of the kth variable to the ith principal component, irrespective of the other
variables. In the context of microarrays, the lack of data in the instance direc-
tion deemphasizes the data-reduction aspect of principal components. Instead,
the interest is generally in the interpretation of the components.

The sample principal components are calculated as described earlier,
replacing the (generally unknown) population covariance matrix with the
sample covariance matrix. Hilsenbeck et al. (4) applied this technique to three
microarray instances generated from human breast cell tumors. These instances

v v vv
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correspond to estrogen-stimulated, tamoxifen-sensitive, and tamoxifen-resis-
tant growth periods. Their results yielded three principal components
interpreted as (1) the average level of gene expression, (2) the difference
between estrogen-stimulated gene expression and the average of tamoxifen-
sensitive and tamoxifen-resistant gene expression, and (3) the difference
between tamoxifen-sensitive and tamoxifen-resistant gene expression.

Another use of principal components is as a basis for clustering. The
correlation of each gene with the leading principal component provides a way
of sorting (or clustering) the genes. Raychaudhuri et al. (5) analyzed yeast sporu-
lation data, which measured gene expression at seven time points (6). They
determined that much of the observed variability can be summarized in just two
components: (1) overall induction level and (2) change in induction level over
time. Then they calculated the clusters according to the first principal compo-
nent and compared them to the clusters reported in the original paper.

It is also possible to use PCA to reduce the dimensionality of the analytic
problem with respect to the gene space. A number of ways have been proposed
to do this.

One use of this idea is in gene shaving (7). This method seeks a set of
approximate principal components that are defined to be supergenes. The genes
having lowest correlation with the first supergene are shaved (removed) from
the data and the remaining supergenes are recomputed. Gene blocks are shaved
until a certain cost–benefit ratio is achieved. This process defines a sequence
of blocks with genes that are similar to one another. A major problem with this
approach is the shifting definition of supergenes over the course of the analy-
sis. Although gene shaving incorporates the ideas of principal components, it
is important to recognize that the shaving algorithm itself is ad hoc.

Another application of the gene space reduction idea solves the problem of
using gene expression values as predictors in a regression setting. Because
correlated predictors are known to cause difficulties, principal components
regression (PCR) uses the gene principal components as predictor surrogates.
A second method that uses this idea is partial least squares regression (PLSR).
PLSR is employed to extract only the components (sometimes called factors)
that are directly relevant to both the predictors and the response. These are
chosen in decreasing order of relevance to the prediction problem.

Both PCR and PLSR produce factor scores as linear combinations of the
original predictor variables, so that there is no correlation among the factor
score variables used in the predictive regression model. For example, suppose
we have a data set with response variable Y and a large number of highly
correlated gene expression predictor variables X. A regression using factor
extraction for these types of data computes the factor score matrix T = XW for
an appropriate weight matrix W, and then considers the linear regression model
Y = TQ + ε, where Q is a matrix of regression coefficients (loadings) for T, and
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ε is the error term. Once the loadings, Q, are computed, the preceding
regression model is equivalent to Y = XB + ε, where B = WQ, which can be used
as a predictive regression model for gene expression data on the original scale.

PCR and PLSR differ in the methods used in extracting factor scores. In short,
PCR produces the weight matrix W reflecting the covariance structure between
the predictor variables, while PLSR produces the weight matrix W reflecting the
covariance structure between the predictor and response variables.

Partial least squares regression produces a weight matrix W for X such that
T = XW. Thus, the columns of W are weight vectors for the X columns produc-
ing the corresponding factor score matrix T. The weights are computed so that
each of them maximizes the covariance between the response and the corre-
sponding factor scores. Ordinary least squares procedures for the regression of
Y on T may then be performed to produce Q, the loadings for Y. Thus, X is
broken into two parts, X = TP + F, where the factor loading matrix P gives the
factor model and F represents the unexplained remainder.

Whether centering and scaling of the data (normally done when determining
principal components) makes sense for microarray data is an open question,
and all the caveats that go along with PCA are still in effect (8).

A Bayesian application, using a related idea, models a binary response using a
probit model and decomposes the linear predictor vector using the SVD (9).
Specifically, if zi is the binary variable reflecting status for each patient, then let
Pr(zi = 1| β) = Φ(xi'β). Using the decomposition, obtain X ' β = (F ' D)γ,
where X = ADF from the SVD; A is the SVD loadings matrix; F is the SVD
orthogonal factor score matrix (as before); D is the diagonal matrix of singular
values; and γ = A'β is the vector of parameters on the subspace formed using the
new linear basis. A key part of this method is determining reasonable prior distri-
butions for the vector of parameters on the subspace formed using the new linear
basis. A reasonability criterion is defined in terms of the interpretability of the
priors when back-transformed to the original space.

4.6. Latent Class Models

There are two major types of analyses that fall broadly into this category. A
clustering method entails placing objects that are close together into clusters
according to a specified metric. A classification method is where clustering is
performed by estimating the probability of each object’s membership in a latent
(i.e., unobservable) class. All classification methods can be used to generate
clusters, but clustering methods do not imply a particular class definition. Both
clustering and classification methods can be used to discriminate among esti-
mated differentiated sets of objects. However, because clustering methods do
not explicitly model theoretical class constructs, they provide no basis for
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determining misclassification, the association of an object with a class to
which it does not belong. This is a major disadvantage of such analyses.

Analytic methods can be geared toward clustering or discriminating among
various classes of either genes or microarray instances. These are one-way
analyses. Methods can also be geared toward jointly clustering or discriminat-
ing among both gene and microarray instances. These are two-way analyses.

Generally, clustering methods use similarity measures to associate similar
objects and to disassociate sets of similar objects from each other. Tibshirani et
al. (10) review the various methods of clustering and show how they can be
used to order both the genes and microarray instances from a set of microarray
experiments. They discuss techniques such as hierarchical clustering, K-means
clustering, and block clustering. Dudoit et al. (11) compare the performance of
different discrimination methods for the classification of tumors based on gene
expression data. These methods include nearest-neighbor classifiers, linear dis-
criminant analysis, and classification trees.

Although these ad hoc analyses are still popular owing to the current dearth
of more-sophisticated techniques and software, statisticians are feverishly
working to come up with model-based approaches so that inference will be
possible. It is these model-based approaches that are the focus of this chapter.

Classic multidimensional latent class models specify the form of the class
conditional densities. A common specification associates each class with a
multivariate normal distribution (11). In this case, the maximum likelihood
discriminant rule is

C(x) = argmink {(x – µk)Σk

–1
(x – µk)' + log |Σk|}

Three special cases of interest are (1) when the class densities have the same
covariance matrix, Σk = Σ, the discriminant rule is based on the square of the
Mahalanobis distance and is linear:

C(x) = argmink (x – µ
k
)Σ

k

–1
(x – µk)'

(2) when the class densities have diagonal covariance matrices, ∆k= diag (σ2
k1,...,σ2

kp),
the discriminant rule is given by additive quadratic contributions from each variable:

C(x) = argmink
xj – µkj

σkj
2

– log σkj
2∑

j = 1

p

and (3) when the class densities have the same diagonal covariance matrix, ∆ =
diag (σ 2

1,...,σ 2
p), the discriminant rule is linear:

C(x) = argmink
xj – µkj

σkj
2∑

j = 1

p

For repeated measurement experiments, Skene and White (12) describe a
flexible latent class model that also assumes normality. In the context of
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microarray experiments, let Ymg denote the log-transformed average spot
intensity response of gene g on microarray slide m. Let L represent a discrete latent
variable with levels 1,…, J. Assume that corresponding to each level of L is a
profile of gene expression defined across multiple slides, pL = {p1L,…, pML} which
is defined in terms of deviation from average gene expression. Assume also
that genes in the same biological pathway may have different expression inten-
sities, dg, depending on such factors as gene copy number, transcription
efficiency, and so on. Thus, it makes sense to let µmgj = a + dg + pmj be a model
for the mean response in microarray instance m for gene g in latent class j.
Conditional on latent class membership, the error is assumed normal so that
Ymg | L = j ~ N(µmgj,σ2). The difficulty with this formulation is that estimation
is a problem when the number of parameters is large, which is frequently the
case with microarray data. Research is currently ongoing into techniques that
might overcome this limitation.

Similar latent class model forms can be considered in a Bayesian context by
placing Dirichlet priors on the class membership probabilities and appropriate
conjugate priors elsewhere, then conducting Markov Chain Monte Carlo
(MCMC) to generate samples from the full posterior to estimate class and gene
parameters. The approximate EM solution is used as the starting point for
the MCMC algorithm. An extension of this idea is to simultaneously divide
the genes into classes with substantial internal correlation as well as allocate
microarray instances to latent sample classes. Such models seek to identify
gene classes with high sample class discriminatory power. Typically, we trans-
form data to the log scale prior to application of the model.

For example, consider the following analysis of a time-course experiment
on fibroblasts (13). In this experiment, cells were first serum-deprived and then
stimulated, to investigate growth-related changes in RNA products over time.
Other aliquots were additionally treated with cycloheximide. Samples of
untreated and treated cells were collected at 12 and 4 time points, respectively,
as were samples of unsynchronized cells. Microarrays included 8613 gene
products, but analyses included only 517 of these. In published work, the
authors used a hierarchical clustering algorithm to identify 10 patterns of
gene expression in a subset of 517 genes, which was filtered before application
of the clustering algorithm on the basis of the existence of “significant”
univariate observed variability fold changes in gene expression over time.

Using a Bayesian latent class model of the above form, we analyzed the
complete set of 8613 gene products, over all the time points and experimental
conditions. We employed a normal error model on the log-transformed data
with mean conditional on latent gene class and time (plus experimental condi-
tion), with gene-specific intensity modifiers to represent the degree to which
each gene is a good marker of its associated latent gene class. Because genes
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could be estimated to have decreases in expression (negative intensity
modification parameters) or increases in expression (positive intensity
modification parameters), in Fig. 1 we present both the estimated patterns and
their inverses. In other words, red and green colors represent, respectively,
higher or lower levels of expression relative to untreated cells at time 0. We
use a white background to aid in visualization; brighter colors represent greater
relative deviation from baseline.

This analysis also adjusted for data quality issues. Specifically, we treated
an observation (one spot on one microarray instance) as missing whenever the
interpixel correlation between the two scans was <0.6. Thus, our analysis
accounts for and is unbiased by differential hybridization of samples. A
consequence of this is that pattern VIII is separated from pattern VI because of
insufficient information at samples 1 and samples 9 through 13, as evidenced
by a wide confidence interval ranging from very bright green (2.5th percentile)
to very bright red (97.5th percentile). Probabilities of gene membership in these
latent patterns for every gene in the data are estimated by the model.

Fig. 1. Latent class patterns including median estimates and 95% confidence inter-
vals from the analysis of serum-stimulated fibroblasts. This figure demonstrates both
time-dependent increases and decreases in gene expression, as represented by positive
(mostly red) and negative expression (mostly green) patterns.
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This analysis illustrates some additional advantages of the latent class
approach. First, estimated time-course patterns are smoother than those
originally proposed by hierarchical clustering analysis, even though no smooth-
ness criterion is imposed by the model. Although no assumptions were made
regarding the correlations within treatment group across time, the estimates
show expression patterns that are reasonably correlated with known stages of
cellular growth and mitosis, suggesting that this model is uncovering the
underlying biology. Second, no prefiltering of genes is required by the tech-
nique; prefiltering is often necessary to apply clustering methods. Third, the
model adjusts for data quality issues using Bayesian statistical approaches, to
reduce the potential biases that can be introduced by experimental variability,
especially at low spot intensities.

Standard statistical approaches can also be employed to diagnose lack-of-fit
of this model to the data. For example, residual plots can be employed to iden-
tify deviations from the model fit. Residual distances between the observed
and predicted values, conditioning on the Gaussian model, follow a chi-square
(χ2) distribution in analogous fashion to the residuals from standard multivari-
ate analyses (14). In that context,

 n X – µ
T

∑
–1

X – µ  ~ χ2
(p)

where (X –µ) is the vector of differences between observed and expected mean
values, Σ–1 is the generalized inverse of the covariance matrix, and χ2 (p) refers to
the χ2 distribution on p degrees of freedom, p being functionally related to the

dimensionality of the data. We calculated values of the form X – µ
T

∑
–1

X – µ
and compared their quantiles to those of the appropriate χ2 distribution in Fig. 2.
Points falling on the straight line give evidence that the model fits the signal in
the data, because the residuals seem to follow the appropriate χ2 distribution.
Points deviating to the right of the line signify overdispersion relative to the
residual χ2, meaning that there may be some statistically significant addi-
tional signal in those gene products that is not being described in the current
model. Only 18 outliers (3.4%) from this model were identified. The most
discrepant gene, AA058863, is a Soares retina N2b4HR Homo sapiens cDNA
clone containing ALU sequences, which may account for observed expres-
sion pattern differences. Another set of gene products was identified through
the residual analysis that could be associated with a still unidentified pathway.
Another set of gene products, including WEE1-like protein kinase, were
underexpressed around times 7 and 8 to a much greater degree than would be
expected by the model. Whereas the hierarchical clustering analysis groups
WEE1 with expressed genes such as p57Kip2 and p27Kip1, the latent class
analysis identified differences between the cyclin-dependent kinase inhibi-
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tors and the mitotic inhibitor WEE1, suggesting that WEE1 may have a
slightly different function. Changes based on such observations can be fed
back into the analytic model.

As previously discussed, a key distinction between formal latent class
models and clustering algorithms is that the former provide an inferential
framework while the latter do not. An inferential framework allows one to
make probability statements concerning the uncertainty associated with identi-
fied classes and their members, as well as to estimate the number of classes
needed to describe a particular data set. In the clustering arena, an approach for
determining the validity of a particular clustering has recently been developed
and is described in Bittner et al. (15). The method is based on evaluating clus-
ter membership after introducing random perturbations to the data set. Hierar-
chical clustering is performed on the perturbed data set and compared to the
original tree. Comparisons involve cutting the original and perturbed trees into
k clusters followed by computing the proportion of paired samples clustering
together in the original tree that do not cluster together in the perturbed tree.
The average over multiple perturbed data sets (for a given k) yields the weighted
average discrepant pairs statistic (WADPk), which is then plotted vs k.
Local minima on the WADPk curve indicate reproducible levels of structure.

Fig. 2. QQ-plot of residuals from exploratory latent class model vs χ2 distribution,
showing outlying expressed genes deviating from the line towards upper right.
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4.7. Differential Equations

In this subheading, we discuss what are perhaps the most structural of
microarray data modeling approaches. Various authors are seeking to model
genetic networks using sets of nonlinear differential equations. Examples can
be found in Reinitz and Sharp (16) and Wahde and Hertz (17). Parametric forms
are employed to model the rates of change of expression in certain genes.
Unfortunately, lack of data restricts the estimates to first-order terms in the
differential equations, so that only gene interaction weights can be estimated.
Two assumptions in the Wahde and Hertz (17) model are of note. The first is in
the choice of a particular structure for the combination of gene effects (the
activation function; a genetic algorithm was employed for estimating the param-
eters), which assumes linear transcription. The second is the use of average
trajectories of coarse clusters of genes with similar expression patterns as
nodes. For these authors, this simplification is inspired by the fact that for reli-
able determination of the network parameters, a minimum requirement is that
the number of useful data points exceeds the number of parameters. Gene
expression data series often consist of only a few measurements, and cluster-
ing of genes into sets with similar temporal expression patterns substantially
reduces the number of parameters requiring calculation.

Another example is in Chen et al. (18). These authors also propose a differ-
ential equation model for gene expression, and provide a method to construct
the model from temporal expression data. They make a number of assump-
tions, among which are a linear transcription function for each gene and feed-
back of the gene translation product on the transcription rates. They discern in
their model transcription, translation, and degradation of RNA and proteins.
Parameters can be estimated for these processes using Fourier transforms for
stable systems, an approach that is specific for genes with periodic expression.
These are important in cell cycle studies, for example, and all genes considered
in the model are assumed to show this kind of expression pattern. As before,
reduction of the problem, this time by employing periodicity and requiring
stability in their system, is essential to solving this system with today’s
technology. The reduction in complexity resulting from these assumptions is
substantial enough that many more features of gene expression could be
parametrized and estimated than in the Wahde and Hertz approach.

D’Haeseleer et al. (19) provide a third example. These authors begin analysis
by calculating cubic spline smoothers, fitting the curves of the gene expression
time-series data. Of note is the fact that they use data from three different
experiments that employed different time scales. Using a first-order interac-
tion matrix as in Wahde and Hertz (17), they estimate the interaction param-
eters using a least squares fit to the smooths. Limitations of this approach
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include a lack of reducibility in the gene interaction structure and restriction to
the primary linear components of the system.

Clearly, this kind of approach is promising, but must undergo substantial
development before it can become widely applicable in data analysis. Signifi-
cant research is needed on the interface of applied mathematics and statistics,
so that known physical functioning of biological pathways can be appropri-
ately reflected in otherwise data-driven statistical models.

4.8. Additional Issues

In this subheading we address three questions frequently raised regarding
microarray data analysis. We consider these issues after describing the bulk of
methods in the preceding subheadings, primarily because answers to them de-
pend on what downstream analytic techniques one seeks to apply.

The first concerns whether microarray data should be transformed to a scale
other than the one in which they were collected. The answer is simple: it
depends on what analysis one seeks to perform. Although there are good
biological reasons to consider transforming data to a log10 scale, we have found
no situations in which distributional assumptions in a statistical model could
be guaranteed through data transformation. In part this is a reflection of
Kolmogorov’s lament concerning the perpetual lack of fit one observes in
employing simple forms to model large data sets. Our advice to end-user
analysts is to pick methods that are relatively robust to a reasonable set of data
transformations. We have had better luck with latent class models in this regard
than with principal components and related dimension reduction techniques,
which are widely known to be sensitive to choice of scale.

A second question concerns whether it matters which microarray instance is
used as a reference in standardizing several for analysis. Again the answer
depends on what downstream analysis one seeks to do. In our work, we prefer
that standardization occur synchronously with the actual data analysis, by the
same model that will answer a biological question of interest. A consequence of
this preference is that we find ourselves restandardizing sets of data multiple
times in multiple ways over the course of an analysis. Of course, methods that
are more inferentially robust in the context of data transformations are also
more robust to peculiarities of standardization.

Finally, we are often asked how one should visualize microarray data. The
answer to this question has two parts. First, there is no biological question of
interest that can be answered by looking at a microarray image, unless of course
the array was specifically designed to do so. Usually, consideration of colorful
array images is worthwhile only if one suspects quality control issues resulting
from biological experimentation or imaging analysis. Second, there are at least
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as many reasonable ways to visualize these data as there are inferential meth-
ods. Some methods (such as principal components and its relatives such as
multidimensional scaling) are designed to reduce data to a small number of
reasonably informative 2- or 3-D scatterplots. Other methods (clustering and
latent class analysis) suggest graphical methods to visualize pattern sets. We
also employ the full standard statistical repertoire of diagnostic plots in our
work. In summary, there is nothing particularly special about microarray data
that requires a different treatment from other large data problems with respect
to visual presentation.

5. Conclusion
The vast amount of data generated by microarray technology tests statis-

ticians’ abilities to extract meaningful information from any given experimen-
tal context. The intense interest in and great potential of high-throughput,
comprehensive molecular biology technologies is fueling a corresponding
surge in statistical research on analytic methods for large, complex data sets. In
addition to statisticians, molecular biologists, computer scientists, and imag-
ing scientists all have roles to play in this development. Because of the
multidisciplinary nature of this field, one of the greatest challenges to statisti-
cians is in making sophisticated statistical methods accessible to their collabo-
rators. This chapter has sought to give an overview of the most promising
approaches for analyzing microarray data.
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Statistical Methods for Proteomics

Françoise Seillier-Moiseiwitsch, Donald C. Trost,
and Julian Moiseiwitsch

1. Introduction
What is Proteomics? The term proteome denotes the PROTEin complement

expressed by a genOME or tissue. While the genome is an invariant feature of
an organism, the proteome depends on its developmental stage, the tissue
considered, and environmental/experimental conditions. There are more
proteins in a proteome than genes in genome (which is particularly true for
eukaryotes). For instance, there are several ways to splice a gene to generate
messenger ribonucleic acid (mRNA). Furthermore, proteins can undergo
posttranslational alterations such as truncation at the amino- (N)- and carboxy
(C)-terminus and addition of saccharide or phosphate groups.

Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) is
currently the only method able to separate thousands of proteins. Mammalian
cell samples, for example, exhibit more than 2000 proteins (Fig. 1). Two coor-
dinates characterize each protein: its isoelectric point and its molecular mass.

For the first dimension, proteins are focused electrophoretically along a pH
gradient. Their movement stops when they reach a position at which they have
no net charge (i.e., their isoelectric point). For the second dimension, proteins
are soaked in sodium dodecyl sulfate (SDS) so that all proteins acquire the
same charge density. They are then separated orthogonally by electrophoresis
on a polyacrylamide gel according to their molecular weight. Under carefully
controlled experimental conditions, these two dimensions, the isoelectric point
and molecular mass, are independent. The separated proteins are then stained
with fluorescent dyes so that they are readily detectable. The image of the
displayed proteins defines the proteome. This image is digitally scanned into a
database for storage (1–4).
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This technology still presents many challenges to the experimenter. Gel
quality must remain constant from day to day. Gel reproducibility from labora-
tory to laboratory cannot always be guaranteed. Membrane proteins necessi-
tate a special protocol, otherwise they are underrepresented: losses are due to
hydrophobic interactions between these proteins and the gel. The experimental
procedure must ensure the removal of nucleic acids as these can cause streaks
and artifactual migration of some proteins. Finally, the abundance threshold
for detection on a gel is still to be determined.

2D-PAGE allows the systematic analysis of proteins for any disease and in
any biological system. As proteins are responsible for phenotypes, they are the
direct targets for therapeutic agents. Therefore, this technology has great
potential for aiding in the drug-discovery process (5) and in medical diagnosis.
The specific areas of applications are:

1. Treatment monitoring. 2D-PAGE has been used to assess treatment effects on
tumors and to study overall protein expression following hormone therapy.

2. Identification of disease-specific proteins. In cancer studies, 2D-PAGE is utilized
to compare protein expression in normal and cancerous tissues, therefore iden-
tifying candidate targets for drugs. It thus serves a purpose similar to that of

Fig. 1. 2D-PAGE image of kidney tissue sample.
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genomic microarray analysis where the goal is to identify clusters of disease-
specific mRNAs. The disadvantage of the latter approach is that levels of a
specific mRNA and the corresponding protein may not be correlated.

3. Target validation and signal transduction studies.
4. Drug mode-of-action studies.
5. Drug toxicology studies.

2. Technology Background

2.1. Electrophoresis

Electrophoresis is the process of separating a mixture of electrically charged
molecules by applying an electric field. This charge is either due to charged
groups on the molecules themselves (see Subheading 2.1.1.) or associated with
a coating of charged molecules (see Subheading 2.1.2.). Electrophoresis is
commonly used in clinical chemistry to separate macromolecules, such as
proteins, in tissue samples and bodily fluids for identification or quantifica-
tion. A brief overview of the physics of electrophoresis (6) is presented here to
link the technology with the analytical methods.

Molecules can be separated via electrophoresis according to either their
innate charge or their molecular weight, or both as in two-dimensional gels.
Migration is also influenced by the shape of the molecule, the strength of the
electric field, the ionic properties and pH of the electrophoresis buffer, and the
temperature of the system. The electric field acts on the molecule according to
Coulomb’s law: the force on the object is proportional to its net charge (z) and
the strength of the field (E). The velocity (v) of the molecule is equal to the
force divided by the strength of the electric field. The potential for movement
within the gel, or electrophoretic mobility (M), is then defined as v/E. With the
assumption that the molecule is spherical,

where e is the electrostatic constant, η the medium viscosity, and r the macro-
molecular radius.

Several types of electrophoresis have been utilized since Tiselius (7)
developed the first method, moving-boundary electrophoresis, to study pro-
teins. Moving-boundary electrophoresis has largely been replaced by zonal
electrophoresis (8). This method uses a thin band, or zone, of macromolecule
solution placed in a semisolid matrix such as a gel. After exposure to the
electric field, the sample separates into bands of molecules with similar
electrophoretic mobility. Usually gels are composed of agarose or polyacry-
lamide in varying percentages. However, starch and cellulose acetate have
also been used and continue to have their applications. Some gels also act as
a molecular sieve that separates molecules based on size.
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When the electrophoresis medium comes into contact with water, hydroxyl
ions adsorb to the surface, creating a stationary layer of negative charge. This
layer attracts a cloud of positive ions. When the current is applied, the flow of
positive ions can slow protein movement or reverse its direction. This unwanted
change in mobility is called endosmosis. This effect tends to be strong in
cellulose paper, cellulose acetate, and agarose gel, but is minimal in starch gel
and polyacrylamide gel. For this reason, polyacrylamide provides better
resolution, and is used when proteins of similar molecular weight need to be
differentiated.

2.1.1. Isoelectric Focusing

Separating molecules by their inherent charge using electrophoresis is
termed isoelectric focusing. In isoelectric focusing, the electrophoresis medium
is constructed so that a pH gradient exists between the electrodes. Proteins
have many ionization sites that are pH dependent. Such a molecule, that can be
either positively or negatively charged, is called a zwitterion. The gel buffer
must have the ability to both donate and accept hydrogen ions, which allows
the charge of a zwitterion to change as it moves through the pH gradient (such
a buffer is called an ampholyte). For each protein, there is a pH at which the
number of positively charged sites is equal to the number of negatively charged
sites, giving a net charge of zero. At this point in the pH gradient, the electro-
phoretic mobility is zero as the protein has no net pull to move. This is called
the isoelectric point (pI).

2.1.2. SDS-PAGE

A protein can be denatured by heating it in the presence of SDS, an ionized
detergent. The heat causes the protein to unfold into a long strand, and allows
the detergent to form a micelle (molecular cage) around it. This micelle behaves
like a long rod with a surface charge proportional to its length, which is propor-
tional to the protein’s molecular weight and much larger than any net charge
inherent in the macromolecule itself. As the charge is now proportional to the
molecular weight, the amino-acid sequence loses its importance in determin-
ing migration, and mobility is then inversely proportional to the radius of
the molecule. This is the basis for SDS-gel electrophoresis. By equating
the volume of a sphere of radius r with the volume of a rod of length L and
radius b, the spherical frictional coefficient of the rod can be derived (6), and
the electrophoretic mobility of a rod-shaped molecule is
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where c is a proportionality constant relating micellar charge to molecular
length. This implies that very long molecules have similar mobilities because
of the flatness of the logarithm function.

The electrophoresis buffer carries the current and determines the pH of the
medium. A buffer is an ionic solution of a weak acid (or a weak base) plus its
salt, and functions to maintain a constant pH. The relationship is described by
the Henderson–Hasselbalch equation:

where pKa is a constant that depends on the acid (or base). When pH is near
pKa, the curve is relatively flat over a considerable range of the ratio. A constant
pH is important because the conformation of the macromolecules can be
drastically affected by a change in pH: proteins return to their folded configu-
ration. As a result, the molecule is no longer a rod and moves more slowly
through the gel than would be expected based on its molecular weight alone.
As various proteins return to their natural configuration at different pH values,
a stable buffer is important for reliable SDS-PAGE.

The ionic strength of the buffer impacts mobility. At high ionic concentra-
tion, the ions hinder the movement of the protein by forming a cloud around
the macromolecule. Different buffers (e.g., with varying concentration of Tris)
are appropriate depending on the size of the molecule. If smaller molecules are
to be separated, higher buffer concentrations are used to improve resolution,
while with larger molecules the buffer concentration is lowered to reduce the
time required to run the gel.

2.1.3. 2D-PAGE

Kenrick and Margolis (9) did the initial work on two-dimensional electrophore-
sis by combining isoelectric focusing with SDS-gel electrophoresis. Subsequently,
Klose (10), O’Farrel (11), and Scheele (12) each published applications of this
method which form the basis for current techniques of 2D-PAGE. Isoelectric
focusing is applied in one direction to separate proteins based on their pI. The gel is
then soaked in SDS, and the resultant bands are exposed to an electric field,
perpendicular to the first one. With this technique, several thousand proteins can be
isolated on a single gel. Considerable effort has been invested to improve the
resolution and reproducibility of these gels to maximize the number of proteins
detected and to reduce the within- and between-laboratory variability.

2.2. Gel Preparation

In polyacrylamide gels, the acrylamide monomer and a crosslinking agent
such as bisacrylamide are mixed and react in the presence of other reagents to
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form an acrylamide polymer (13). The rate at which molecules pass through a
gel is determined by the pore size of the gel. For a given pore size, larger
molecules will travel more slowly. The pore size of the gel is determined by
the percentage of crosslinker it contains. Gels are characterized by the total
percentage of acrylamides (linear and crosslinker) and the percentage of
crosslinker. In addition to a separating gel, a stacking gel is used to concentrate
the proteins into a stack of very thin bands before they reach the separating gel.
The proteins are loaded onto a gel by placing them in a well that is several
millimeters deep. If they are immediately placed onto the separating gel,
proteins at the top of the well have significantly further to travel before they
enter the gel than those at the bottom of the well. To account for this, the stack-
ing gel concentrates all proteins into a very thin band (<1 mm thick). A spacer
gel is sometimes used between the stacking and the separating gels when large
concentrations of proteins are to be separated.

An early method for isoelectric focusing used carrier ampholytes (8,14).
These small molecules, polyaminocarboxylic acids, rapidly migrate to a loca-
tion in the gel that corresponds to the isoelectric point of the ampholyte. The
mixture of ampholytes with varying pI sets up a pH gradient before the proteins
have migrated very far. The proteins then move to their respective isoelectric
point. This method has several drawbacks. After stabilization, the ampholytes
tend to drift toward the cathode, causing the gradient to vary. These gradients
are also distorted by high salt or high protein concentrations. Furthermore, the
gels become stretched when extruded from the glass tubes used to hold the gel.
An alternative method, the immobilized pH gradient (IPG) method, was devel-
oped by Bjellqvist et al. (15). For this method, the pH gradient is created by
covalently binding molecules to the acrylamide gel, allowing this gradient to
be tailored to the problem. The gradient is typically a linear, step, or sigmoidal
function of location. These gels are now commercially available, thereby
reducing much of the variability in the gradients.

SDS-PAGE can be run either vertically or horizontally. Neither method
offers an advantage with respect to reproducibility and both require stacking
gels. By convention, PAGE is usually performed vertically and agarose gel
electrophoresis horizontally. With precast gels, this is purely for historical
reasons. However, acrylamide does not polymerize completely in contact with
air. Consequently, when these gels are poured in the laboratory (as opposed to
utilizing precast commercial gels), air needs to be excluded from the surface,
usually by placing a layer of water or mineral oil over the unset acrylamide. As
it is convenient to have as small an amount of this liquid as possible, the gel is
poured vertically and a layer of water is gently instilled on top. By contrast,
agarose gels set by cooling at room temperature; the molten gel is poured into
a horizontal mold so the entire surface can cool rapidly by heat radiating into
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the air. As commercial gels are usually poured in an inert atmosphere and are
ordered set, it is unimportant whether they are run vertically or horizontally.

2.3. Sample Preparation

Protein samples can be obtained from any cell, tissue, or protein-containing
fluid. Special preparations may be required to break open cells (lysis) or to
extract proteins from membrane structures. Most preparations include a buffer
(to control pH and provide electrolytes for the current), detergents and
chaotropic agents (to denature the protein and separate monomeric subunits),
reducing agents (to break disulfide bonds), and a tracking dye (so that the
progress of the electrophoresis can be monitored). If the sample is contami-
nated with nucleic acids, enzymes called endonucleases may be necessary to
digest them, as nucleic-acid contamination can alter the electrophoretic
characteristics of certain proteins.

2.4. 2D Gel Electrophoresis Procedure

In the first dimension, the proteins are separated by charge. For example, a
gel strip, a few millimeters thick and containing a nonlinear (sigmoidal) immo-
bilized pH gradient (3.5–10.0), can be made in the laboratory or purchased
commercially for this purpose (16). The gel is connected to an electric current
via the appropriate electrophoresis apparatus. After the sample is placed at the
cathode end, the electric field is applied. The voltage is linearly increased from
300 to 3500 V over 3 h, then left at 3500 V for 3 h, and then at 5000 V for up to
100 kVh. After the run, the disulfide bonds are reduced chemically to prevent
them holding the protein in a folded structure.

A vertical slab gel is typically used for the second dimension (17). The IPG
strip is trimmed at the ends and placed in a solution at the top of the gel where
they fuse. The gel is run at 40 mA with 100–400 V at 8–12°C for 5 h. A
horizontal apparatus may be less efficient in transferring the protein from the
first gel to the second gel, especially if the fusion is incomplete. Low-concen-
tration proteins can be lost in the transfer.

2.5. Gel Staining and Scanning

Radiolabeling is the most sensitive method for localizing proteins on gels
(14). This involves the binding of radioactive isotopes to the macromolecules
and detecting, usually with film or phosphorescent screen, the radiation pro-
duced. With this method proteins can be detected at 20 parts per million.
Chemoilluminescence and chemoilluminescence silver staining are alternative
nonradioactive methods that are 100 times more sensitive than an organic dye
such as Coomassie brilliant blue. Other stains include amido black, Ponceau S,
and bromophenol blue. The silver staining method is started immediately after
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the second run. The gel is washed, bathed in a soaking solution for several
hours, and chemically treated. Then the staining solution is applied for 30 min,
washed, and developed. Fluorescent stains can also be used and require a much
shorter processing time because the fluorescence peaks after a relatively short time.

A laser densitometer is used to detect the concentration of staining. Each
stain has a specific wavelength at which it emits the maximum signal. Improp-
erly adjusted densitometers may produce peaks that are off the scale or elimi-
nate short peaks when the background is improperly subtracted. This creates
right and left censoring, respectively. The integral of each peak gives a quantity
proportional to the abundance of the protein. Unfortunately, because the rela-
tionship between the intensity of staining and the protein concentration depends
on the interaction between the protein and staining agent, in general, absolute
concentrations cannot be calculated.

2.6. Spot Identification

Proteins can be identified by a number of methods (8,14). These include the
determination of amino-acid composition and peptide mass fingerprinting.
With several methods the individual proteins need to be transferred from the
gel to another medium. Electroblotting to polyvinyldifluoride (PVDF) mem-
branes is frequently used. Blotting can also be performed by semidry electro-
phoresis, vacuum, or capillary action. The advantage of semidry blotting is
that it takes less than half an hour compared to other transfers that take several
hours. The PVDF membranes are stained to locate the proteins, which are re-
moved with a razor blade for identification. A minimum of 250 ng of protein
per spot is required for identification. When analysis is performed using high-
performance liquid chromatography (HPLC), the distribution of the amino ac-
ids, the pI, and the molecular weight are used to identify the protein from
databases using a least-squares distance metric. An automated sequencer can
only identify one protein per day while the HPLC method is 5–10 times faster.
For peptide mass fingerprinting, the proteins are digested in the PVDF mem-
brane using enzymes and analyzed using mass spectroscopy. The mass spec-
trum is then matched with a library of peptides. The ultimate goal for protein
identification is to use standard maps overlaid on 2D-PAGE images, but these
images require resource-intensive methods and sophisticated computer algo-
rithms to develop the maps.

2.7. Other Sources of Variation

Protein separation and identification require many technical steps such as
those described previously. Every step leads to (possibly high) variation in the
output if not properly performed. A few additional sources of variation are
described here:
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1. Buffers are good growth media for microorganisms, which contain abundant pro-
tein. These buffers need to be stored in tight containers and refrigerated to inhibit
growth. Periodically, they need to be replaced.

2. Care must be taken in sample collection, handling, and storage to avoid sample
contamination. For instance, cells must be removed immediately from fluid
samples. Proteins should not be left at room temperature and can be stored at
2–8°C for up to 3 d but at –20°C for longer periods. Thawing and refreezing
should be minimized to avoid damaging the proteins. Vibration and pressure
changes during transportation can also damage the proteins.

3. Consistency in the experimental protocol is of paramount importance. For
instance, if too little sample is used, the small peaks will be below the limit of
detection. Likewise, if too much sample is used, the peaks will be blunted, creat-
ing the same censoring problem as densitometer maladjustment.

3. State-of-the-Art Analytical Methods
We now review the analytical methods implemented in software packages

such as MELANIE (18–20) and HERMeS (21–25). Let I (x,y) denote the two-
dimensional image, and, by convention, the larger I (x,y) is, the darker the pixel is.

3.1. Filtering Gel Images

To reduce the high-frequency background noise, the signal is extracted by
applying a smoothing filter. The most popular filters are

1. Gaussian smoothing, which convolves the image with the operator

 ,

2. diffusion smoothing, that is,

3. polynomial smoothing, where the pixel intensities in a small area (e.g., 3 × 3, 7 × 7)
are approximated by a second-degree polynomial function in x and y

,
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4. adaptive smoothing, that is,

with

where Gx and Gy are the gradients along the x- and y-axis, respectively (20).
Gaussian deconvolution is an alternative approach to remove noise and blur

(2). Each spot is modeled as

where m is the integer part of 3σ and e(x, y) represents random noise. Estimates
are obtained via the constrained least-squares procedure. This approach tends
to be overly sensitive to noise and to oversplit spots (26).

3.2. Spot Detection

For automatic spot detection, nonparametric procedures, based either on sec-
ond derivatives (19,20) or on mathematical morphology (2), are utilized.

Let p = (x, y) be a point on the image, Si a spot, and T the saturation threshold

where 0 ≤ saturation ≤ 100 (saturation = 100 when no pixel is saturated), and
∆I(p) the Laplacian

.

Is p part of the spot Si? Select thresholds l, r, c (i.e., small positive constants).
If I(p) < T,

when – ∆I(p) – l ≥ 0. If I(p) > T,

.
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Small values of l allow the detection of as many spots as possible, while high
values only yield dark spots with flat spots being ignored. High values of r and c
help separate spots that are in close proximity of each other and to eliminate
streaks. The algorithm identifies the spots by searching for the most negative
values of the Laplacian and the two second derivatives (19,20). The Laplacian is
indeed most negative at local peaks, while at the inflection points between unre-
solved spots the minimum value of the two second derivatives is negative.

With mathematical morphology, one can study characteristics of objects by
investigating whether a standard shape fits into them. In this context, one
searches for elevations relative to the local background brightness, and
constructs an image based on the heights of these elevations. This is achieved
by subtracting the closing of the image from the original image. This is the
so-called top-hat transform, which in essence assesses whether a cylinder of a
chosen radius fits into the elevations. To obtain the closing of the image, one
first replaces each pixel value I(x, y) with the local minimum intensity in a disk
around each pixel, and then one replaces the resulting pixel value I'(x, y) with a
local maximum intensity, that is,

where .

In this closing, only pixels within elevations narrower than the chosen disc size
have changed their values from the original image, and thus will show when
the two images are subtracted. The radius R is selected to be the smallest value
so that the disk is larger than the smallest spot (2). Shapes (or structuring ele-
ments) other than disks can be considered (e.g., spheres [27]).

Alternatively, instead of a fixed structuring element, one can look for all
h-domes (21,28,29). An h-dome is a connected region of pixels with inten-
sity above h and greater than any pixel bordering the h-dome. These h-domes
are not constrained by size. Algorithms for searching for these regions are
more complex than the top-hat transform. The choice of h is crucial: if it is
too small, background streaks will be recovered rather than spots, and, if it is
too large, narrow peaks due to high-amplitude noise will be selected. Raising
h stepwise allows the resolution of overlapping spots (28).

3.3. Background Filtering

The smooth background noise, which consists of vertical and horizontal
streaks, is removed, either by subtracting the global minimum pixel value
from all pixels or by estimating the background outside the spots with a third-
order polynomial function (20). Because the background varies significantly
across the image, a single threshold tends to work poorly: when it is set too
high, faint spots are lost and, when it is set too low, high background is
regarded as signal (28).

k,l
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Mathematical morphology has also been utilized to remove the streaks
(21,27). One subtracts from the original image its closing with respect to two
structuring elements, one vertical and one horizontal bar of one-pixel width,
the lengths of which are slightly greater than those of the vertical and horizon-
tal extents of the largest spots.

3.4. Spot Quantification

Spot characteristics are estimated by fitting two-dimensional Gaussian
curves via the least-squares method:

with A representing the amplitude, (xc ,yc) the center, the σ’s the spread along
the principal axes and B the background level (20,30,31). Spot models based
on two half-Gaussian curves have also been utilized (21). However, many spots
are not Gaussian in nature because of several factors: local inhomogeneity
within the acrylamide, overloading of the sample within the gel, adsorption of
some proteins onto the acrylamide matrix, failure of some polypeptides to focus
in the first dimension, and tendency for chemically distinct but barely resolved
proteins to displace each other (26).

Spot characteristics are thus better estimated directly:

where ODs and VOLs are, respectively, the optical density and the volume of
spot s in a gel containing n spots.

3.5. Image Alignment

Gels are aligned via polynomial image warping. Identify landmarks (or control
points) on each image and choose one gel as the reference gel. The alignment
algorithm attempts to superimpose these landmarks by stretching and shrinking
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the images. Let (x,y) be the pixel coordinates in the original image and [u(x),
v(y)] those in the warped image. The latter are first-, second- or third-order
univariable polynomials or their inverses. Estimate the parameters of these poly-
nomial functions via the least-squares criterion by summing over the landmarks.
Specifically, let there be M landmarks on each gel. The parameters are obtained
by minimizing, for instance, if M ≥ 4,

where (ui,vi) refers to landmark i on the reference gel and (xi,yi) to its position
on another gel. The value M determines the order of the polynomial: a polyno-
mial of degree n requires at least n + 1 landmarks.

3.6. Spot Matching
Local gel-to-gel variations make it impossible to utilize a single transforma-

tion to map the spots from one gel to another. One approach is to divide the
image into a number of small rectangular regions and to select, in each segment,
3 or more evenly spaced spots as reference points (28). These reference points
serve to compute a transformation that maps spot centers from one film to
another. Spots are considered matched if the transformed spot center from one
gel and the corresponding spot center on the other gel are within 0.8 mm [a
slightly more stringent criterion of 0.7 mm has also been utilized (32)]. This
procedure works best for the area defined by the reference points: spots located
at the edges of the rectangular regions can be poorly matched. As a remedy, the
following steps are added to the procedure: triangles of nearby matched spots
are considered on both images, and the above algorithm is applied to the yet
unmatched spots within these triangles.

Alternatively, for each spot on a gel, consider a cluster of neighboring spots
(20). The central spot is regarded as the primary spot, and the surrounding
spots as secondary spots. A spot belongs to a cluster if its centroid is inside a
circle of fixed radius. This radius depends on the image dimension, number of
spots on a gel, and minimum number of spots in the cluster. The clusters are
characterized by polar coordinates centered at the primary spot. First, match
the clusters with highest-intensity primary spots. Compare clusters via a proba-
bilistic similarity measure. The probability that the next random hit falls within
a cluster where m – 1 spots have been matched is given by

where As is the sum of the secondary areas in the cluster, Ac the total area
within the boundary of the cluster, and Am – 1 the total area of matched spots. If
N stands for the number of spots in one cluster,
Prob(at least m spots are matched in N trials)
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.

That spots be reliably matched is of paramount importance in the creation of
representative images and in subsequent pattern-recognition analyses. Proceed
with a consistency check for possible mismatching:

by ensuring that L = AD – BC ≈1 (rotation). For each primary cluster, estimate
parameters from each set of 3 matched spots. When L = 1.0 ± 0.25 and the
rotation angle is ±10 degrees, the pairing is declared suitable. To project the
remaining spots in the clusters, estimate the rotation parameters A, ... , D by
the least-squares method from good matchings in the two clusters.

Artificial-intelligence methodology has also been used to match spot lists
(23). Because they are not based on geometrical considerations, they should be
able to cope better with discontinuous gel distortions. Spot clusters are
described via the angles and distances between any two spots in the cluster.
Distances are divided into 3 classes and angles into 16 classes. Measurements
are coded via their class identifiers. Spots are then matched via syntactic
pattern-recognition techniques. Heuristic rules are imposed to limit the number
of searches. Isolated spots tend to be problematic for this approach.

3.7. Creating Synthetic Gels

To obtain a master image from at least 3 pairwise matched gels, first select a
reference gel (20). Check that the spots on the reference gel are well matched
to spots on two other gels. These form triangles of matched spots, that is, the
starting groups. Extend the starting groups by adding spots using the connec-
tivity test: a spot must be matched with at least one other spot in the initial group.
When all spots on the reference gel have been considered, create additional
groups with the spots on the second gel that are not part of a group. Repeat with
the other gels.

The synthetic gel contains the same number of spots as there are determined
groups (these are the representative spots). The position of a spot on the synthetic
gel is taken from the reference gel if the group has a spot on the reference gel.
Otherwise, one translates the coordinates of the closest spot by considering a set
of neighbors that have representatives on the reference gel. The intensity of the
master spot is the average over the spots in the group. Its shape is the shape of the
spot in the group that is closest in area to the average of the group (20).

To ensure the reliability of the master gel, some investigators compute
an overlap measure between each master spot and the corresponding spots
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(considered one at a time) on the aligned gels (1). This in effect assesses the
quality of the matches on which the master gel relies. The overlap measure is
simply the value of a Gaussian function evaluated at the physical distance of the
spot centers. This Gaussian function is chosen to have height of 1.0 and width
depending on the matching criterion: for instance, 0.7 mm if spots on different
aligned gels are considered matched when they are within 0.7 mm (32).

3.8. Pattern Recognition

For pattern-recognition purposes, only spots that yield highly reliable
features on the master image are considered in the analyses. For instance, the
overlap measure between the master spot and a corresponding object on one of
the aligned gels (cf. Subheading 3.7.) needs to be above a specific threshold
(typically 0.5) and to exceed 90% of the largest overlap of the master spot with
the original spots or of the overlap of the gel spot with all the master spots (1).

To find significant protein patterns associated with a specific disease, inves-
tigators have first recourse to principal-component analysis (1,25) or corre-
spondence analysis and factor analysis to reduce dimensionality (18–20). This
requires the computation of the normalized observation table so that the col-
umns have mean 0 and variance 1. In factor analysis, the eigenvalues and eigen-
vectors of the covariance matrix are extracted to determine a factorial space
(usually of dimension between 1 and 3). The gels are projected as points onto
the factorial space. Spots can also be mapped onto this space so that character-
istic spots can be identified: spots fall within the cluster of gels they typify.

These authors then apply clustering algorithms to the transformed data. The
difficulty here is to define a meaningful distance metric. With principal-compo-
nent analysis, one candidate is the Euclidean distance in the transformed space
after weighing each coordinate by the percentage of the total variance repre-
sented by the corresponding principal component (1). The usual hierarchical clus-
tering procedures, based on complete or single or average linkage, are utilized
(1,18–20,33). A heuristic clustering algorithm has also been proposed (18,19).
Suppose that n gels are to be classified into k classes. Select k gels by maximiz-
ing the Euclidean distance between them. These define k classes. A heuristic
search is then performed: each of the remaining n – k gels is included into one
class and class descriptions are formulated. Iterate this process by choosing one
gel per class, excluding the first k gels, to form new classes and repeating the
previous step. This process continues until the classification converges.

One is in effect searching for protein patterns that best distinguish two
groups of images (one from a “disease” group and one from a “control” group).
Classification procedures would be best suited for this purpose. In actuality,
patterns are identified, ignoring the associated outcomes, and then the inferred
patterns are reconciled to the known groups.
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4. Brief Introduction to Wavelets
Wavelets are building-block functions like sine and cosine functions in the

Fourier transform (34). They oscillate about 0 and dampen to 0. This localiza-
tion in time or space renders them highly versatile to model signals with
nonsmooth features or that vary over time or space. The father wavelet or scal-
ing function φ represents smooth, low-frequency components while the mother
wavelet ψ represents detail, high-frequency components:

A number of orthogonal wavelet families have been constructed; for instance,
Haar wavelets (symmetric square waves with compact support), daublets (con-
tinuous waves with compact support, d2 to d20 in S-plus [35]), symmlets (nearly
symmetric waves with compact support, s4 to s20 in S-plus [35]).

Through a multiresolution analysis, one obtains fine to coarse resolution
(scale) components of the signal, that is, for a one-dimensional signal,

where J is the number of multiresolution components considered. The functions
φj,k(t) and ψ j,k(t) are generated from φ and ψ by scaling and translation, that is,

The scale/dilation factor 2j affects the width of φ j,k(t) and ψ j,k(t). The
translation/location parameter 2jk is coupled to the scale factor: as the support
of φ j,k(t) and ψ j,k(t) gets wider the translation steps become larger. As 2j

increases, φ j,k(t) and ψ j,k(t) become shorter and more spread out. Finally, sJ,k ,
dJ,k , … , d1,k are the wavelet-transform coefficients:

scaling function coefficients

wavelet coefficients

The φ j,k(t)’s and ψ j,k(t)’s form an orthogonal basis:

where δi,j = 1 if i = j and 0 if i ≠ j.
The discrete wavelet transform W for the discrete signal f = (f1, f2, …, fn)' is

defined as

.

.
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with

Each of the so-called crystals sJ, dJ, dJ-1, ... , d1 contains the coefficients corre-
sponding to a set of translated wavelet functions. In the multiresolution analysis,

,

the smooth and detail signals are represented, respectively, by

To compress an image, one utilizes a two-dimensional wavelet family

The father wavelet Φ deals with the smooth aspect and the mother wavelets
Y deal with the details in the vertical (Ψv), horizontal (Ψh), and diagonal (Ψd)
dimensions. (Figure 2 shows the diagonal s8 wavelet.)

The two-dimensional wavelet approximation is then

with

The two-dimensional discrete wavelet transform maps an m × n discrete image
to m × n matrix of wavelet coefficients wm,n. In S-plus (35), wm,n is decomposed
into submatrices with coefficients for different multiresolution levels:

sJ – sJ with coefficients sJ,m,n for the smooth part
d1 – s1,..., dJ – sJ with coefficients vj,m,n for the vertical detail

.
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s1 – d1,..., sJ – dJ with coefficients hj,m,n for the horizontal detail
d1 – d1,..., dJ – dJ with coefficients dj,m,n for the diagonal detail.

Hence, in the multiresolution analysis,

where

5. Wavelets for Two-Dimensional Electrophoretic Data
Few statistical techniques can cope with the high dimensionality of 2D-

PAGE data. Hence, for analytical reasons, the information is often reduced to
the volumes of a manageable set of selected spots. This prohibits exploratory
investigations of the data for the purpose of formulating testable hypotheses.
We explored the possibility of fitting Gaussian curves. We selected a number
of spots from the gel depicted in Fig. 1 and assessed via statistical tests that we
would not be justified in assuming that their shape is Gaussian (as is clearly
evidenced by Fig. 3). We turned to wavelets for their versatility in representing
irregular signals.

With this methodology, much effort is needed to identify the most suitable
representation. Once the coefficients are selected, mainstream techniques can

Fig. 2. s8 diagonal mother wavelet.
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Fig. 3. Detail from kidney gel.

be applied to investigate the scientific questions of interest. We now review a
few of these issues.

5.1. What Is the Most Suitable Wavelet Family to Represent Gels?

We considered Haar wavelets, daublets, and symmlets. All seemed suitable
with the Haar family giving slightly worse results (Figs. 4 – 7). Even with an
image corrupted by noise (Gaussian or Poisson), the reconstruction was highly
successful (Figs. 8 – 10).

5.2. What Multiresolution Level Should One Select?

A high multiresolution level is not neccessary: most of the information is
contained in the smoother crystals. The percentage of coefficients one wishes
to retain is the more pertinent issue and depends on one’s threshold for the
volume of significant spots (Figs. 11 – 14).

5.3. How Does One Remove the Noise?

In the WaveShrink algorithm of S-plus (35), one applies the wavelet trans-
form with J levels then shrinks the detail coefficients
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Fig. 4. Cropped image of kidney gel (512 × 512).

Fig. 5. Reconstruction of the cropped image of a kidney gel with daublets d4 at
multiresolution level 4 and the largest 5% of the coefficients.
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Fig. 6. Reconstruction of the cropped image of a kidney gel with symmlets s8 at
multiresolution level 4 and the largest 5% of the coefficients.

Fig. 7. Reconstruction of the cropped image of a kidney gel with Haar wavelets at
multiresolution level 4 and the largest 5% of the coefficients.
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Fig. 9. Reconstruction of noisy gel with symmlets s8 at multiresolution level 1 and
the largest 1% of the coefficients.

Fig. 8. Cropped gel image with added Gaussian noise (with variance 100).
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Fig. 10. Reconstruction of cropped image of kidney gel with symmlets s8 at
multiresolution level 1 and the largest 5% of the coefficients.

Fig. 11. Reconstruction of cropped image of kidney gel with daublets d4 at
multiresolution level 3 and the largest 5% of the coefficients.
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Fig. 13. Reconstruction of cropped image of kidney gel with daublets d4 at
multiresolution level 3 and the largest 1% of the coefficients.

Fig. 12. Reconstruction of cropped image of kidney gel with daublets d4 at
multiresolution level 5 and the largest 5% of the coefficients.
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Fig. 14. Reconstruction of cropped image of kidney gel with daublets d4 at
multiresolution level 5 and the largest 1% of the coefficients.

and reconstructs the image using dl,...,dJ,sJ. Shrinkage is performed using the
so-called soft or hard shrinkage functions

For the thresholds λj , one can select the so-called universal value

where n is the sample size. Alternatively, the value which minimizes the upper
bound of the asymptotic risk (minimax) will result in less smoothing as it is
always smaller than the universal threshold (36). Finally, we also considered
Stein’s unbiased risk estimator (SURE) which is adapted to each
multiresolution level; the threshold for dj with K coefficients is

  where 

~~
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(37,38). To estimate the scale of the noise, that is, σj , one can rely either on the
crystal corresponding to the finest detail or on all the detail crystals, or one can
consider each crystal in turn, that is,

These algorithms yield rather poor results with the 2D-PAGE data (Figs. 15 –
17). Indeed, they are really smoothing techniques that are suitable to reduce
highly localized and peaked noise. Here, the noise takes the form of streaks.
All combinations we have tried result in the removal of important features.

We devised a hybrid procedure that seems to work well: hardshrinkage is
utilized on the level 1 coefficients (these all tend to be very small) and the sJ - sJ
crystal is multiplied by a constant between 0 and 1 (Fig. 18). This constant
depends on the level of detail to be retained.

This routine is currently being optimized with respect to a biologically
relevant objective criterion that involves the size of the spots being ignored.

5.4. How Does One Create a Master Gel?

Assume that the gels have been aligned. Wavelet coefficients are obtained
for each of them. The synthetic gel is constructed by averaging the coefficients
or by taking their median values. Variability in this construct can easily be
computed.

5.5. How Does One Find Specific Protein Patterns for a Disease?

An analysis of the wavelet coefficients, for gels from diseased and control
samples, based on classification and regression trees (CART), will highlight
relevant clusters that best discriminate between the two groups. This has the
advantage of considering both the location and the intensity of the spots
simultaneously.

6. Conclusion
Electrophoresis has developed over the past 60 yr from a crude method able

only to distinguish between very specific one-dimensional changes in experi-
mental protocols to a highly complex technique. It is now possible not only to
separate the genomic fingerprint of samples but also their proteome. While the
technology has developed at an ever-increasing rate, the statistical techniques
necessary to analyze such complex data structures has been left wanting. We
have outlined some of the new methodologies that are currently available to
take full advantage of the technology that is now in common usage in molecu-
lar biology laboratories.
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Fig. 15. Vertical slice of cropped image of kidney gel.

Fig. 16. Slice after hard shrinkage with universal threshold, estimating the scale of
the noise separately for each crystal (multiresolution level 4).

Fig. 17. Slice after soft shrinkage of the sJ - sJ crystal with universal threshold,
estimating the scale of the noise from the sJ - sJ crystal (multiresolution level 4).
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Statistical Methods for Assessing Biomarkers

Stephen W. Looney

1. Introduction
According to the Dictionary of Epidemiology, a biomarker is “a cellular or

molecular indicator of exposure, health effects, or susceptibility” (1, p. 17). In
this chapter, the primary focus is on markers of exposure, although the
techniques described here can be applied to any type of biomarker. The process
of assessing the quality of a biomarker consists of determining if the biomarker
has adequate reliability and adequate validity. Reliability refers to “the degree
to which the results obtained by a measurement procedure can be replicated”
(1, p. 145). (Reliability is often used interchangeably with the terms repeat-
ability and reproducibility.) The reliability of a measurement process is most
often described in terms of intrarater and interrater reliability. Intrarater reli-
ability (sometimes called intraobserver agreement) refers to the agreement
between two different determinations made by the same individual and
interrater reliability (sometimes called interobserver agreement) refers to the
agreement between the determinations made by two different individuals. A
reliable biomarker must exhibit adequate levels of both types of reliability.
Also of concern in the assessment of the reliability of a biomarker are
intersubject, intrasubject, and analytical measurement variability (2). The
reliability of a biomarker must be established before validity can be examined;
if the biomarker cannot be assumed to provide an equivalent result upon
repeated determinations on the same biological material, it will not be useful
for practical application.

The validity of a biomarker is defined to be the extent to which it measures
what it is intended to measure. For example, Qiao et al. (3) proposed that the
expression of a tumor-associated antigen by exfoliated sputum epithelial cells
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could be used as a biomarker in the detection of preclinical, localized lung cancer.
For their biomarker to be valid, there must be close agreement between the clas-
sification of a patient (cancer/no cancer) using the biomarker and the diagnosis
of lung cancer using the gold standard (in this case, consensus diagnosis using
“best information”). As another example, body-fluid levels of cotinine have been
proposed for use as biomarkers of environmental tobacco smoke exposure (4).
For cotinine level to be a valid biomarker of tobacco exposure, it must be the
case that high levels of cotinine correspond to high levels of tobacco exposure
and low levels of cotinine correspond to low levels of exposure.

Both reliability and validity have to do with interchangeability. Adequate
intrarater reliability means that there is minimal within-rater variability so that
regardless of when the analyst performs the biomarker determination, we can safely
assume that he or she will produce an equivalent result. Adequate interrater reli-
ability means that there is minimal between-rater variability so that regardless of
which analyst performs the biomarker determination, we can safely assume that
equivalent results will obtain. Adequate validity means that the biomarker determi-
nation can be substituted for the gold standard result (assuming that there is a gold
standard) or for the standard test result if there is no gold standard.

The appropriate statistical methods for assessing the reliability and validity of a
biomarker depend upon the level of measurement of the biomarker. In this chapter,
we offer separate recommendations for dichotomous and continuous biomarkers.

2. Dichotomous Biomarkers
2.1. Assessing Reliability of a Dichotomous Biomarker

The same statistical methodology is applied when examining the intra- and
interrater reliability of a dichotomous biomarker. Both involve measuring the
agreement between two different determinations of the biomarker status of an
individual. To assess intrarater reliability, the same analyst would make the
determination using the same specimen of material under “identical” conditions.
This determination must be blinded, of course, so that the analyst is unaware on
the second occasion that he or she is examining the same experimental material
that he or she examined on the first occasion. To assess interrater reliability, two
different analysts would make the determination using the same specimen of
material under “identical” conditions. This determination should also be blinded
so that Analyst A is unaware of the result of Analyst B and vice versa. For both
intra- and interrater reliability, a 2 × 2 table is used to show the agreement (and
disagreement) between the two determinations.

To assess intrarater reliability, the 2 × 2 table given in Table 1 is constructed.
To assess interrater reliability, a similar 2 × 2 table is constructed to show
the agreement (and disagreement) between the two determinations made by
different individuals on the same biological specimen.
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 For example, Tockman et al. (5) examined the use of murine monoclonal anti-
bodies to a glycolipid antigen of human lung cancer as a biomarker in the detection
of early lung cancer. As part of their assessment of the interrater reliability of scoring
stained specimens, they compared the results obtained on 123 slides read by both a
pathologist and a cytotechnologist. They obtained the results given in Table 2.

Once the appropriate 2 × 2 table has been constructed, it is desirable to
calculate a single numerical quantity as a measure of the reliability of the
biomarker. The two most commonly used measures of agreement between two
dichotomous variables are the Index of Crude Agreement, given by

p0 = (a + d) /n, (1.1)

and Cohen’s kappa, given by

κ = (p0 – pe) / (1 – pe),

where pe = the percentage agreement between methods A and B that “can be
attributed to chance” (6). The estimated percentage agreement between meth-
ods A and B that can be attributed to chance is given by

pe = p1p2 + q1q2,

Table 1
2 × 2 Table Showing Agreement Between
Two Determinations by the Same Analyst of the
Same Biological Specimen (Intrarater Reliability)

Determination 2

Determination 1 Positive Negative Total

 Positive a b f1
 Negative c d f2
 Total g1 g2 n

Table 2
2 × 2 Table Showing Agreement
Between a Pathologist and a Cytotechnologist
When Scoring the Same Stained Specimen

Cytotechnologist

 Pathologist Positive Negative Total

 Positive 31 1 32
 Negative 0 91 91
 Total 31 92 123

Adapted, with permission, from Table 4 of Tockman et al. (5).
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where p1 = (a+b)/n, p2 = (a+c)/n, q1 = 1– p1, and q2 = 1– p2. The formula for
Cohen’s kappa now becomes

κ = 2(ad –  bc)

n2 (p1q2 + p2q1)
  . (1.2)

For the data given in Table 2, we obtain κ = 0.979 using Eq. (1.2). This
indicates excellent interrater reliability.

Kappa has the value 1 if there is perfect agreement (b=c=0), the value–1 if
there is perfect disagreement (a = d = 0 ), and the value 0 if p0 = pe. Landis and
Koch (7, p. 165) provide the following guidelines for interpreting the
magnitude of kappa:

Value of κ Interpretation

< 0.00 Poor
   0.00 – 0.20 Slight
   0.21 – 0.40 Fair
   0.41 – 0.60 Moderate
   0.61 – 0.80 Substantial
   0.81 – 1.00 Almost perfect

Cohen’s kappa is the generally accepted method for assessing agreement
between two dichotomous variables, neither of which can be assumed to be the
gold standard (8), but several deficiencies have been noted [(9, p. 545), (10,
p. 425)]. These deficiencies include: (1) If either method classifies no subjects
into one of the two categories, κ = 0. (2) If there are no agreements for one of
the two categories, κ < 0. (3) The value of κ is affected by the difference in the
relative frequency of “disease” and “no disease” in the sample. The higher
the discrepancy, the larger the value of pe and the smaller the value of κ. (4)
The value of κ is affected by any discrepancy between the relative frequency
of “disease” for method A and the relative frequency of “disease” for method
B. The greater the discrepancy, the smaller the expected agreement, and the
larger the value of κ.

To adjust for these deficiencies, Byrt et al. (10) propose that, in addition to κ,
one also report the prevalence-adjusted and bias-adjusted kappa (PABAK),

PABAK = (a + d ) – (b + c)
n

 = 2p0 – 1

where p0 is the index of crude agreement given in Eq. (1.1). (Note that PABAK
is equivalent to the proportion of “agreements” between the two variables
minus the proportion of “disagreements.”)

As an illustration of some of the deficiencies of κ, consider the hypothetical
data on the agreement between two observers given in Table 3.
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Even though the two observers agree on 80% of the specimens, the value of
κ is –0.08, indicating poor agreement (7). Two of the previously mentioned
deficiencies are at work here. First, because the two “observers” did not agree
on any of the subjects who were classified as “negative,” κ < 0. Second, the
value of κ is adversely affected by the difference in the average relative fre-
quencies of “disease” (90%) and “no disease” (10%) in the sample. The PABAK
coefficient, which adjusts for both of these shortcomings, has the value 2p0 –
1 = 2(0.80) – 1 = 0.60. This is considered “moderate” agreement by the Landis
and Koch criteria (7) and is a much more accurate representation than κ of the
agreement between the two observers suggested by Table 3.

In additional to using κ and the PABAK coefficient to measure overall
agreement, it is also advisable to describe the agreement separately in terms of
those specimens that appear to be positive and those that appear to be negative.
Using measures of positive agreement and negative agreement in assessing
reliability is analogous to using sensitivity and specificity in assessing validity
in the presence of a gold standard (see Subheading 2.2.1.). Such measures can
be used to help diagnose the type(s) of disagreement that may be present.

Cicchetti and Feinstein (11) proposed indices of average positive agreement
( ppos) and average negative agreement ( pneg) for this purpose:

ppos = a
(f1 + g1)/2

(1.3)

pneg = d
(f2 + g2)/2

 .

Note that the denominators of ppos and pneg are the average number of subjects
that the two methods classify as positive and negative, respectively. For the data
in Table 3, ppos = 2(80)/(95 + 85) = 88.9% and pneg = 2(0)/(5 + 15) = 0.0%. Thus,
there is moderate overall agreement between the two observers (as measured by
the PABAK coefficient of 0.60), “almost perfect agreement” on specimens

Table 3
Hypothetical 2 ××××× 2 Table Showing
Agreement Between Two Observers

Observer B

 Observer A Positive Negative Total

 Positive 80 15 95
 Negative 5 0 5
 Total 85 15 100
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that appear to be positive, and no agreement on specimens that appear to be
negative. Thus, efforts to improve the biomarker determination process should
be targeted toward those specimens that are negative. (Several computationally
intensive methods for estimating sensitivity and specificity in the absence of a
gold standard have been proposed [e.g., 12–14]; however, these are beyond
the scope of this chapter.)

2.2. Assessing Validity of a Dichotomous Biomarker
2.2.1. Gold Standard Is Available

Just as in the assessment of reliability described in the preceding, the assess-
ment of the validity of a dichotomous biomarker involves the use of a 2 × 2
table. If a gold standard is available for the exposure or outcome that the
biomarker is intended to represent (the “event”), then the term conformity is
used to describe the agreement between the biomarker and the occurrence of
the event and the term truth table is used to describe the 2 × 2 table.

For example, Qiao et al. (3) examined the agreement between the biomarker
proposed by Tockman et al. (5) and the gold standard method for diagnosing
lung cancer. The truth table for their data is given in Table 4.

The three measures of conformity obtained from this table are (1) sensitivity
= a /(a + c) = 42/57 = 73.7%, the percentage of those that experienced the event
that the biomarker correctly identified; (2) specificity = d/(b + d) = 53/76 =
69.7%, the percentage of those that did not experience the event that the
biomarker correctly identified; and (3) accuracy = (a + d)/n = (42 + 53)/133 =
71.4%, the percentage of all subjects that the biomarker correctly identified.
Qiao et al. (3) compared these results with the “standard methods” of chest
X-ray and sputum cytology and found that the biomarker proposed by Tochman
et al. (5) had higher sensitivity, lower specificity, and slightly higher accuracy
than both of the standard methods.

Table 4
“Truth Table” for Tumor-Associated
Antigen as a Biomarker for Lung Cancer

Gold standard

 Biomarker Positive Negative Total

 Positive 42 23 65
 Negative 15 53 68
 Total 57 76 133

Adapted, with permission, from Table 3 of Qiao et al. (3).
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2.2.2. Gold Standard Is Not Available

If a gold standard is not available for the exposure or outcome that the
biomarker is intended to represent (the “event”), then the term consistency is
used to describe the agreement between the biomarker and some other method
used to determine if the event has occurred. This “other method” may be the
“standard method” or a competing biomarker. The methods used for assessing
intra- and interrater reliability described in Subheading 2.1. can be used to
assess validity in this situation.

For example, suppose that no gold standard had been available in the study
by Qiao et al. (3) referred to earlier. Then the investigators could have
compared their biomarker based on immunocytochemistry with two “standard”
methods of detecting preclinical, localized lung cancer (chest X-ray and sputum
cytology). A hypothetical 2 × 2 table for the comparison of their biomarker
with sputum cytology based on the assumption that their biomarker agreed
with the sputum cytology result on all positive cases of the disease is given
in Table 5.

Even though the two methods agree on 60% of the specimens, the value of κ
is only 0.188, indicating slight agreement (7). Using the PABAK coefficient
provides little improvement: PABAK=2p0–1=2(0.602)–1=0.203. The indices
of positive and negative agreement are ppos = 2(12)/(12 + 65) = 31.2% and
pneg = 2(68)/(121 + 68) = 72.0%, respectively. Thus, the disagreement between
the two methods can be attributed primarily to those specimens that are thought
to be positive. A similar analysis for the comparison of the biomarker based on
immunocytochemistry with chest X-ray yields κ = 0.483 and PABAK = 0.489,
indicating only moderate agreement (data not shown). The indices of positive
and negative agreement are ppos = 64.6% and pneg = 80.0%, indicating once
again that the disagreement between the two methods can be attributed prima-
rily to those specimens that are thought to be positive.

Table 5
Hypothetical 2 ××××× 2 Table for
Comparison of Two Biomarkers for Lung Cancer

Sputum cytology

 Immunocytochemistry Positive Negative Total

 Positive 12 53 65
 Negative 0 68 68
 Total 12 121 133
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3. Continuous Biomarkers
3.1. Use of Pearson’s Correlation Coefficient

The most commonly used method for measuring agreement between two
continuous variables X and Y is Pearson’s correlation coefficient (PCC),
denoted by r. However, at least as far back as 1973, it was recognized that the
PCC is not appropriate for this purpose (15). The PCC measures strength of
linear association between two variables, not agreement. We have perfect
agreement between X and Y if and only if all points in a scatterplot of Y vs X lie
along the line Y = X; however, we have perfect correlation between Y and X if
all points in the scatterplot lie along any straight line. There are several other
shortcomings of the PCC as a measurement of agreement; for example, it is
dependent on the heterogeneity of the sample measurements and it is not related
to the scale of measurement or to the size of error that might be clinically
allowable (see [15,16] for further discussion).

To illustrate how the PCC can be misleading as a measure of agreement,
consider the hypothetical data presented in Table 6. A useful first step in
assessing agreement between X and Y is to construct the scatterplot and then
superimpose the line Y = X to get an idea of the deviation of the agreement
between X and Y from 1.0. The data in Table 6 are displayed in this manner in
Fig. 1. The PCC between measurements A and B is almost perfect, r = 0.989,
yet there is an obvious deviation from perfect agreement, with the value for
measurement A being consistently less than the corresponding value for

Table 6
Hypothetical Data on the Agreement
Between Measurements A and B

Specimen number Measurement A Measurement B

1 31 206
2 4 28
3 17 112
4 14 98
5 16 104
6 7 47
7 11 73
8 4 43
9 14 93

10 7 57
11 10 87
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measurement B. In the subheadings that follow, we describe alternatives to
the PCC for measuring agreement and make recommendations for their appropri-
ate use.

3.1.1. Assessing Intra- and Interrater Reliability

An alternative to the PCC that has been recommended for use in measuring
agreement between two continuous measurements, neither of which is the gold
standard, is the intraclass correlation coefficient (ICC), denoted by rI (17). To
assess both intra- and interrater reliability, a biomarker determination will
be made repeatedly for each of n specimens. For intrarater reliability, the same
specimen will typically be analyzed on two separate occasions by the same
observer. For interrater reliability, the same specimen will typically be analyzed
by two different observers. The ICC measures the size of the within-specimen
variability relative to the between-specimen variability. It ranges between a
value of 0, with rI = 0 indicating no reproducibility at all (large within-speci-

Fig. 1. Scatterplot of hypothetical data on agreement between biomarkers A and B
with the line of perfect agreement (Y = X) superimposed.
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men variability and zero between-specimen variability), and a value of 1, with
rI = 1 indicating perfect reproducibility (large between-specimen variability
and zero within-specimen variability). Fleiss (18) provided guidelines for
interpreting the magnitude of rI:

Value of rI Interpretation

<0.40 Poor
  0.40 – 0.75 Fair to good
  0.75 – 1.00 Excellent

Suppose that n specimens are each repeatedly analyzed m times (replicates).
(Typically, m = 2 for both intra- and interrater reliability.) We will assume that
the n specimens constitute a random sample. We will also assume that the m
replicates (the occasions at which the biomarker determinations are made in
the case of intrarater reliability and the observers in the case of interrater reli-
ability) also constitute a random sample. The simplest method for calculating
the appropriate ICC under these assumptions is to use the two-way random
effects model without interaction:

Yij = µ + αi + βj + εij; 1 ≤ i ≤ n; 1 ≤ j ≤ m

where
Yij = biomarker value for specimen i and replicate j
µ = population mean response
αi = offset in mean response for specimen i
βj = offset in mean response for replicate j
εij = biomarker measurement error

The assumptions that underlie this model are as follows: αi ~ N (0, σα
2), βj ~ N

(0, σβ
2), εij ~ N (0, σε

2), where N (θ, δ2) denotes the normal (Gaussian) distribu-
tion with mean θ and variance δ2. All of these assumptions taken together imply
that Yij ~N(µ, σ2), where σ2 = σα

2 + σβ
2 + σε

2. The population value of the ICC is
defined to be ρI = σα

2/σ2 and the sample value rI is obtained by

rI = max 0, σα
  2

 / σ
  2

where σα
2 and σ 2 are the sample estimates of the variance components from the

two-way random effects model. After some simplification,

rI = MSS – MSE

MSS + ( m – 1) MSE + m(MSR – MSE) / n
(3.1)

where MSE denotes the mean square due to error, MSS denotes the mean square
due to specimens, MSR denotes the mean square due to replicates, m denotes
the number of replicates for each specimen, and n denotes the number of speci-
mens. The formulas for calculating these mean squares are as follows:
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MSS = m yi. – y
2∑

i = 1

n

 / (n – 1)

MSR = n y.j – y
2∑

j = 1

m

 / (m – 1)

MSE = ∑
i = 1

n

yij – y
2∑

j = 1

m

– (n – 1) MSB – (m – 1) MSR  / (nm – n – m + 1)

(3.2)

where

yi. = yij∑
j = 1

m

 / m, y.j = yij∑
i = 1

n

 / n, y = yi.∑
i = 1

n

 / n .

As an example, consider the data in Table 7, taken from a study of a bile-
acid- induced apoptosis assay for colon cancer risk (19). This is an example of
evaluating interrater reliability with n = 15 and m = 2. Applying the formulas in
Eqs. (3.1) and (3.2), we obtain MSS = 698.919, MSR = 246.533, and MSE =
43.176 and

rI = 698.919 – 43.176

698.919 = (2 – 1) (43.176) + 2(246.533 – 43.176) /15
 = 0.8525 ,

which indicates excellent interrater reliability (18).
An alternative to the ICC that is useful in evaluating the intra- and interrater

reliability of biomarkers is Lin’s coefficient of concordance (20), defined in
the population to be

ρ c = 1 –
E (X1 – X2)

2

σ1
  2

 + σ2
  2

 + (µ1 – µ2)
2
 ,

where

µ1 = mean of X1
µ2 = mean of X2
σl

2 = variance of X1

σ2
2 = variance of X2

or, in the case σl
2 = σ2

2

ρc = ρ

1 + µ2 – µ2

σ 2

2  .

The corresponding sample quantity, rc , is

rc = 2s12

s1
  2

 + s2
  2

 + (x1 – x2)
2

,

,
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where

s12 = sample covariance of X1 and X2

x1 = sample mean of X1

x 2 = sample mean of X2

s1
2 = sample variance of X1

s2
2 = sample variance of X2.

It can be shown that rc = 1 if there is perfect agreement between the sample
values of X1 and X2, rc = –1 if there is perfect negative agreement, and
–1 < rc < 1 otherwise. The interpretation of the value of Lin’s coefficient is the
same as that for the ICC given earlier. The calculation of rc for the data given
in Table 7 proceeds as follows:

x1 = 37.40, x2 = 43.13, s1
  2

 = 368.543, s2
  2

 = 373.552, s12 = 327.9990 .

Therefore,

rc = 2s12

s1
  2

 + s2
  2

 + (x2 – x2)
2
 = 2(327.999)

368.544 +373.5523 + (37.4 – 43.13)
2
 = 8.847  ,

an almost identical result to the ICC of 0.853. The PCC for these data is 0.884.

Table 7
Interrater Reliability Data from a Study of a
Bile-Induced Apoptosis Assay for Colon Cancer Risk (19)

Specimen Observer 1 Observer 2

1 11 27
2 9 15
3 54 72
4 55 63
5 50 65
6 44 49
7 58 51
8 5 8
9 21 30

10 58 43
11 41 40
12 59 62
13 39 52
14 34 49
15 23 21

Data courtesy of Carol Bernstein, personal communication, October 17, 2000.
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For an example of data that exhibit strong correlation, but poor agreement,
again consider the data in Table 6. The PCC between X and Y is almost per-
fect, r = 0.989; however, the intraclass correlation is zero, and Lin’s coeffi-
cient is only 0.102. The PCC indicates near-perfect linear association, but
both of the latter coefficients indicate extremely poor agreement, a much
more accurate representation of what is indicated by the plot in Fig. 1. In
Subheading 3.2.2.2., we present a method for the detailed analysis of the
disagreement between two measurements.

3.1.2. Assessing Intersubject, Intrasubject,
and Analytical Measurement Variability

The approach described in this subheading very closely follows the scheme
proposed by Taioli et al. (2) for evaluating the reliability of a biomarker. In
addition to intra- and interrater reliability, there are three major components of
biomarker variability that must be considered when evaluating reliability.
These are: intersubject variability, sources of which might include genetics,
race, gender, diet; intrasubject variability, sources of which include random
biologic variation, change in diet, change in exposure; and analytical or labo-
ratory variability, sources of which include variation between analytical
batches, variation within analytical batches, and random variation within the
measurement process itself. As Taioli et al. (2, p. 308) point out, even if a
biomarker has acceptable validity, an excess of intraindividual and/or labora-
tory variability might render it unusable for research purposes.

To examine each of the sources of variability mentioned previously,
biological specimens from each of n subjects are analyzed on m occasions
(e.g., weeks), and the biomarker determination is repeated for each of r repli-
cate samples (e.g., aliquots) from each specimen on each occasion. Replicate
samples must be used for all aspects of a proper assessment of biomarker reli-
ability to be examined.

The data from these biomarker determinations are used to estimate the
components of biomarker variability mentioned previously. The data from
multiple subjects are used to assess intersubject variability, data from multiple
occasions are used to assess intrasubject variability, and data from replicate
samples are used to assess analytical variability. Once an estimate of analytical
variability (or “error variance”) is available, it can be used in method compari-
son studies (see Subheading 3.2.2.2.). The estimates of intersubject variabil-
ity, intrasubject variability, and analytical variability can also be combined to
form an estimate of the total variance of the biomarker determination, which is
useful in calculating the appropriate sample size for future studies in which the
biomarker will be used (2).
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The statistical model that underlies the approach of Taioli et al. (2) is very
similar to the one used in assessing inter- and intrarater reliability for continu-
ous biomarkers (see Subheading 3.1.1.), except that now the replicate obser-
vations must be accounted for:

Yijk = µ + αi + βj + (αβ)ij + εijk ; 1 ≤ i ≤ n; 1 ≤ j ≤ m; 1 ≤ k ≤ r (3.3)

where

Yijk = biomarker value for subject i on occasion j and replicate k
µ = population mean response
αi = offset in mean response for subject i
βj = offset in mean response for occasion j
(αβ)ij = offset in mean response for the interaction between subject i and occasion j
εijk = biomarker measurement error

(A nonzero interaction term indicates that the differences among subjects vary
from occasion to occasion.)

The assumptions that underlie model (3.3) are as follows:

αi ~ N(0,σα
2), βi ~ N(0,σβ

2), (αβ)ij ~ N(0,σαβ
2), and εijk ~ N(0,σε

2) .

All of these assumptions taken together imply that

Yijk ~ N (µ,σ2) , where σ2 = σα
2 + σβ

2 + σαβ
2 + σε

2 .

As in Subheading 3.1.1., the appropriate statistical method for analyzing
biomarker data of this type is two-way random-effects analysis of variance
(ANOVA). This analysis will yield tests of significance for each main effect
(subjects and occasions) and a test of the interaction between subjects and
occasions. It will also provide estimates of each variance component (intersub-
ject variability, intrasubject variability, and analytical variability).

Taioli et al. (2) provide an example of the application of their approach to
assessing the reliability of four different biomarkers for exposure to carcino-
genic metals. The biomarkers they examined are (1) DNA–protein crosslink
(DNA–PC), (2) DNA–amino acid crosslink (DNA–AA), (3) metallothionein
gene expression (MT), and (4) autoantibodies to oxidized DNA bases
(DNAox). We consider the results of only one of their studies here (DNA–PC).
In this study, weekly blood samples were drawn three times (m = 3) from each
of five healthy, unexposed subjects (n = 5) and each blood sample was divided
into either three or four aliquots (r = 3 or 4) for analysis. The blood samples
were analyzed during the week in which they were drawn. The results of the
random-effects ANOVA are given in Table 8. The error variance for the DNA–
PC determination is estimated to be 0.0317 and the estimated total variance is
(0.0545 + 0.0176 + 0.0110 + 0.0317) = 0.1148.
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From Table 8, one can see that there is a significant “week” effect (i.e.,
intrasubject variability), and that the “subject” effect (i.e., intersubject vari-
ability) does not quite reach statistical significance. There is also a significant
interaction between “week” and “subjects”; this suggests that the “week” effect
varies across subjects. The authors point out that, by analyzing the blood
samples in the week in which they were drawn, they introduced a possible
batch effect that is confounded with the “week” effect. Therefore, the
significant intrasubject variability could be a result of the batch effect and not
of true week-to-week variation. To prevent this batch effect in the future, the
authors modified their assay so that the DNA–PC determination could be
performed for all samples at one time.

3.2. Assessment of the Validity of a Continuous Biomarker
3.2.1. Gold Standard Is Available

The assessment of the validity of a continuous biomarker in the presence of
a gold standard is equivalent to the calibration of the biomarker (21) and is
beyond the scope of this chapter. Numerous detailed accounts of methods for
calibrating a biomarker are already available (e.g., [22]).

3.2.2. Gold Standard Is Not Available

This is equivalent to what is commonly referred to as a “method comparison
study” (15,16,23). We have already noted the problems with using the PCC for
measuring agreement between continuous variables and Westgard and Hunt
(15, p. 53) go so far as to state that “the correlation coefficient … is of no
practical use in the statistical analysis of comparison data.” The ICC, which
has been proposed as an alternative to the PCC for measuring agreement
between two continuous variables (24), is also not appropriate as a measure of
consistency between two different biomarkers, primarily because to use the
version of the ICC recommended in (24) requires the assumption that the two
biomarkers being considered are a random sample from the population of all

Table 8
Random-Effects ANOVA for DNA–Protein Cross-link Data

Variance component Variance estimate F (d.f.) p-value

Week 0.0545 13.68 (2,7) < 0.010
Between subject 0.0176 3.45 (4,7)  0.073
Week x subjects 0.0110 2.33 (7,40)  0.045
Error 0.0317 — —

Adapted, with permission, from Table 2 of Taioli et al. (2).
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biomarkers (25, p. 338). There are other disadvantages of using the ICC for
measuring agreement between two biomarkers, including some of the same
disadvantages involved in using the PCC namely, that it is dependent on the
heterogeneity of the sample measurements, and it is not related to the scale of
measurement or to the size of error that might be clinically allowable (25,26).
(Lin’s coefficient of concordance is also affected by the heterogeneity of the
sample [27], but see also [28].) In the next three subheadings, we present alter-
native methods that have none of the disadvantages of the ICC.

3.2.2.1. THE BLAND–ALTMAN METHOD

An alternative method for measuring consistency between two biomarkers
X1 and X2 in which both biomarker determinations are in the same units is to
apply the methodology proposed by Altman and Bland (16,21). The steps
involved in this approach are as follows:

1. Construct a scatterplot and superimpose the line X2 = X1.
2. Plot the difference between X1 and X2 (denoted by d) vs the mean of X1 and X2 for

each subject.
3. Perform a visual check to make sure that the within-subject repeatability is not

associated with the size of the measurement, that is, that the bias (as measured by
[X1 – X2]) does not increase (or decrease) systematically as (X1 + X2)/2 increases.

4. Perform a formal test to confirm the visual check in step 3 by testing the hypoth-
esis H0: ρ = 0, where ρ = the true correlation between (X1 – X2 ) and (X1 + X2)/2.

5. If there is no association between the size of the measurement and the bias, then
proceed to step 6 below. If there does appear to be significant association, then
an attempt should be made to find a transformation of X1, X2, or both so that the
transformed data do not exhibit any association. This can be accomplished by
repeating steps 2–4 for the transformed data. The logarithmic transformation
has been found to be most useful for this purpose. (If no transformation can be
found, Altman and Bland [16] recommend describing the differences between
the methods by regressing [X1 – X2 ] on [X1 + X2]/2.)

6. Calculate the “limits of agreement”; d – 2sd to d + 2sd, where d  is the mean
difference between X1 and X2 and sd is the standard deviation of the differences.

7. Approximately 95% of the differences should fall within the limits in step 6
(assuming a normal distribution). If the differences within these limits are not
clinically relevant, then the two methods can be used interchangeably. However,
it is important to note that this method is applicable only if both measurements
are made in the same units.

For example, Bartczak et al. (29) compared a high-pressure liquid chromatog-
raphy (HPLC)-based assay and a gas chromatography (GC)-based assay for
urinary muconic acid, both of which have been used as biomarkers of exposure
to benzene. Their data, after omitting an outlier due to an unresolved chro-
matogram peak, are given in Table 9.
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Fig. 2. Scatterplot of data on agreement between (HPLC)-based assay and
(GC)-based assay for urinary muconic acid with the line of perfect agreement
(X2 = X1) superimposed.

Table 9
Data on Comparison of Determinations of Muconic Acid
in Human Urine by HPLC–Diode Array and GC–MS Analysis

Specimen number HPLC (X1) GC–MS (X2) X1 – X2 (X1 + X2)/2

1 139 151 –12.00 145.00
2 120 93 27.00 106.50
3 143 145 –2.00 144.00
4 496 443 53.00 469.50
5 149 153 –4.00 151.00
6 52 58 –6.00 55.00
7 184 239 –55.00 211.50
8 190 256 –66.00 223.00
9 32 69 –37.00 50.50

10 312 321 –9.00 316.50
11 19 8 11.00 13.50
12 321 364 –43.00 342.50

Adapted, with permission, from Table 2 of Bartczak et al. (29).
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Fig. 3. Plot of difference vs mean for data on agreement between (HPLC)-based
assay and (GC)-based assay for urinary muconic acid.

Figure 2 shows the scatterplot of X2 vs X1 with the line X2 = X1 superim-
posed. This plot indicates fairly good agreement except that 9 of the 12 data
points are below the line of agreement. Figure 3 shows the plot of the differ-
ence (HPLC – GC) vs the mean of HPLC and GC for each subject. A visual
inspection of Fig. 3 suggests that the within-subject repeatability is not associ-
ated with the size of the measurement, that is, that (HPLC – GC) does not
increase (or decrease) systematically as (HPLC + GC)/2 increases. The sample
correlation between (HPLC – GC) and (HPLC + GC)/2 is r = 0.113 and the
p-value for the test of H0: r = 0 is 0.728. Therefore, the assumption of the
independence between the difference and the average is not contradicted by
the data. The “limits of agreement” are d – 2sd = –11.9 – 2(34.2) = –80.3 to
d + 2sd = –11.9 + 2(34.2) = 56.5 and these are represented (along with d) by
dotted lines in Fig. 3. (Note that all of the differences fall within the limits
d – 2sd to d + 2sd.) If differences as large as 80.3 are not clinically relevant,
then the two methods can be used interchangeably. Given the order of magni-
tude of the measurements in Table 9, it would appear that a difference of 80
would be clinically important, so there appears to be inadequate agreement
between the two methods. This was not obvious from the plot in Fig. 2.
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3.2.2.2. DEMING REGRESSION

Strike (23) describes an approach for determining the type of disagreement
that may be present when comparing two biomarkers. These methods are most
likely to be applicable when one of the methods (method X) is a reference method,
perhaps a biomarker that is already in routine use, and the other method (method
Y) is a test method, usually a new biomarker that is being evaluated. Any system-
atic difference (or bias) between the two biomarkers is relative in nature, as nei-
ther method can be thought of as representing the true exposure.

As in the Bland–Altman method described in Subheading 3.2.2.1., the first
step is to construct a scatterplot of Y vs X and superimpose the line Y = X. Any
systematic discrepancy between the two biomarkers will be represented on this
plot by a general shift in the location of the points away from the line Y = X.
Strike assumes that systematic differences between the two biomarkers can be
attributed to either constant bias, proportional bias, or both, and assumes the
following models for each biomarker result:

Xi = ξi + δi , 1 ≤ i ≤ n (3.4)
Yi = ηi + εi , 1 ≤ i ≤ n

where Xi = observed value for biomarker X,
ξi = true value of biomarker X,
δi = random error for biomarker X,
Yi = observed value for biomarker Y,
ηi = true value of biomarker Y,
εi = random error for biomarker Y.

Strike further assumes that the errors δi and εi are stochastically independent
of each other and normally distributed with constant variance (σδ

2 and σε
2,

respectively) throughout the range of biomarker determinations in the study
sample. (Strike points out that constant variance assumptions are usually
unrealistic in practice and recommends a computationally intensive method
for accounting for this lack of homogeneity. This method is incorporated into
the MINISNAP software provided with Strike [23]).

Strike assumes that any systematic discrepancy between methods X and Y
can be represented by

ηi = β0 + β1 ξi (3.5)

In this model, constant bias is represented by deviations of β0 from 0 and
proportional bias by deviations of β1 from 1. (This is the same terminology
used by Westgard and Hunt [15]). If we now incorporate Eq. (3.5) into the
equation for Yi in Eq. (3.4), we have

Yi = β0 + β1Xi + (εi – β1δi). (3.6)
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Model (3.6) is sometimes called a functional errors-in-variables model
and assessing agreement between biomarkers X and Y requires the estimation
of the parameters β0 and β1. Strike proposes a method that requires an esti-
mate of the ratio of the error variances given by λ = σε

2/σδ
2. This method is

generally referred to in the clinical laboratory literature as “Deming regres-
sion”; however, this is somewhat of a misnomer as Deming was concerned
with generalizing the errors-in-variables model to nonlinear relationships.
Strike points out that the method he advocates for obtaining estimates of β0 and
β1 is actually due to Kummel (30).

The equations for estimating β0 and β1 are as follows:

β1 =
Syy – λSxx + Syy – λSxx

2

+ 4λSxy

2

2Sxy

, (3.7)

β 0 = Y – β1X ,

λ = σε
2

/ σδ
2

 ,

where

Syy = (yi – y)
2
,∑

i = 1

n

Sxx = (xi – x)
2
,∑

i = 1

n

Sxy = (xi – x)(yi – y)∑
i = 1

n

 .

The estimate λ can be obtained either from error variance estimates for each
biomarker provided by the laboratory or by estimating each error variance using

σ
2

= d i
2

/ (2n)∑
i = 1

n

where di = difference between the two determinations of the biomarker (repli-
cates) for specimen i. (The error variance can also be estimated from the
assessment of reliability recommended by Taioli et al. [2] that is described in
Subheading 3.1.2.) The methodology proposed by Strike cannot be applied
without an estimate of the ratio of error variances of the two biomarkers.

To perform significance tests for β0 and β1, we need formulas for the stan-

dard errors (SEs) of β0 and β1. The approximations that Strike recommends for

routine use are given by

SE(β1) =
β1

2

(1 – r
2
)/r

2

n – 2

1/2

SE(β0) =
SE β1

2

∑ X
 2

n

1/2

(3.8)
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where r 2 = [Sxy /(S xxS yy)1/2]2

is the usual “R2” value for the regression of Y on X. Tests of H0 : β1 = 1 and

H0 : β0 = 0 can be performed by referring (β1 – 1)/SE(β1) and (β0)/SE(β0),
respectively, to the t(n – 2) distribution.

As mentioned earlier, the approach described previously is based on the
assumption that the error variances σδ

2 and σε
2 are constant throughout the

range of biomarker determinations in the study sample. However, as Strike
points out, this assumption is usually unrealistic in practice and recommends
the “weighted Deming regression” methods of Linnet (31,32) for accounting
for this lack of homogeneity. These methods are incorporated into the
MINISNAP software provided with Strike (23); however, replicate measure-
ments are required for each test specimen using both biomarkers in order to
apply these methods.

For example, consider the data in Table 6 that were discussed in Subhead-
ing 3.1. The scatterplot of Y vs X in Fig. 1 indicated substantial lack of agree-
ment between X and Y and this was borne out by the intraclass correlation
coefficient and Lin’s coefficient, both of which indicated substantial disagree-
ment. We can apply Strike’s method to gain a better understanding of this dis-
agreement.

Using the formulas in Eqs. (3.7) and (3.8), we obtain β1 = 0.158, SE(β1) =

0.007, β0 = –1.342, SE(β0) = 0.614. For the test of H0 :β1 = 1, this yields

tcal = (β1 –1)/SE(β1) = (0.158–1)/0.007 = –129.54 ,

and using a t-distribution with n – 2 = 9 degrees of freedom we find p < 0.0001.
Therefore, there is significant proportional bias (which in this case is negative

since β1 < 1.0). For the test of H0 :β0 = 0, we have

tcal = β0/SE(β0) = –1.342/0.614 = –2.19,

and, again using a t-distribution with 9 degrees of freedom, we have p = 0.056.
Thus, the constant bias is not statistically significant, but just misses the usual cut-
off of 0.05.

3.2.2.3. SPEARMAN CORRELATION

A method that can be used to measure consistency between measurements
that are in different units is Spearman’s rank correlation coefficient (SCC),
denoted by rs. This method is useful, and to be preferred over Pearson’s corre-
lation, when examining the agreement between two biomarkers whose deter-
minations are in different units, or between a biomarker and some other
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measure of exposure such as environmental monitoring. For example, Coultas
et al. (33) used the SCC to measure the consistency between various measures
of exposure to environmental tobacco smoke at work (e.g., nicotine exposure
measured with a personal monitoring pump vs. post-shift urinary cotinine).

The SCC measures the agreement between two sets of measurements, after
the measurements have been ordered (“ranked”) from smallest to largest. Like
other correlation coefficients, the SCC ranges between 1 (perfect agreement)
and –1 (perfect negative agreement). As an example, suppose n = 9 and that
the values obtained from Biomarker A for the nine specimens have been
arranged in order from smallest to largest, with the smallest receiving rank 1
and the largest receiving rank 9. The same ordering is repeated for the nine
specimens for each of biomarkers B and C. The specimens are arranged in
order of their rankings according to biomarker A and then the ranks for
biomarkers B and C are also noted:

Rank by biomarker A 1 2 3 4 5 6 7 8 9
Rank by biomarker B 1 2 3 4 5 6 7 8 9
Rank by biomarker C 9 8 7 6 5 4 3 2 1

According to the SCC, biomarkers A and B have perfect agreement (rs = 1),
whereas biomarkers A and C have perfect negative agreement (rs = –1).

If rs is close to 1, then we can assume that a subject with high levels of
exposure, according to biomarker A, will also tend to have high levels of
exposure, according to biomarker B (and similarly for low levels). Therefore,
regardless of which biomarker we use, we can feel confident that subjects will
be assigned to a high (or low) exposure group in a consistent manner. However,
the PCC is not recommended for this purpose because r may be low even
though high levels of exposure, according to biomarker A, are associated with
high levels of exposure, according to biomarker B. This can occur, for example,
if the relationship between the two biomarkers is nonlinear. Spearman’s corre-
lation will have a large value if the two biomarker determinations are strongly
related according to any monotonic relationship.

The SCC is calculated using the following formula:

rs=1 –
(ri – si)

2
6∑
i = 1

n

n(n
2
– 1)

 , (3.9)

where ri = the rank of subject i according to biomarker A, si = the rank of sub-
ject i according to biomarker B, and n = the number of subjects. Morton et al.
(34) provide guidelines that can be used to interpret the value of rs:
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Value of |rs| Interpretation

0.00 – 0.20 Negligible
0.21 – 0.50 Weak
0.51 – 0.80 Moderate
0.81 – 1.00 Strong

To illustrate the calculation of the SCC, consider the data in Table 10 on
concentrations of ortho-cresol and hippuric acid in urine samples of work-
ers exposed to toluene (35), which have been ranked according to the
magnitude of the o-cresol value. Applying the formula in Eq. (3.9), we
obtain rs = 0.632, which indicates a moderate degree of consistency between
the two measurements.

3.2.2.4. CRITERION AND CONSTRUCT VALIDITY

There are two types of validity that should be examined when evaluating a
biomarker in the absence of a gold standard. Criterion validity is examined by
correlating the biomarker with measures of some other phenomenon that is

Table 10
Data on Concentrations of o-Cresol and Hippuric Acid Concentrations
in Urine Samples

Rank of
Specimen o-Cresol Rank of Hippuric Hippuric
number (µg/mL) o-cresol acid (mg/mL) acid

1 0.21 1.5 0.30 2.0
2 0.21 1.5 0.80 5.0
3 0.25 3.0 0.40 3.0
4 0.28 4.0 0.50 4.0
5 0.32 5.0 1.10 7.5
6 0.34 6.0 1.19 9.0
7 0.41 7.0 1.30 12.0
8 0.44 8.5 1.08 6.0
9 0.44 8.5 1.10 7.5
10 0.51 10.0 1.20 10.5
11 0.59 11.0 1.20 10.5
12 0.76 12.0 1.33 13.0
13 1.25 13.0 0.20 1.0
14 1.36 14.0 2.10 14.0
15 2.80 15.0 3.02 15.0

Adapted, with permission, from Tables 1–3 of Amorim and Alvarez-Leite (35).
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expected to be correlated with the exposure or outcome that the biomarker
represents. There are two types of criterion validity, concurrent and predictive.
Concurrent refers to other phenomena that are contemporaneous with the
biomarker, whereas predictive refers to phenomena that occur at some future
time point.

For example, to assess concurrent validity in a study of the usefulness of
post-shift urinary and salivary cotinine as a biomarker for workplace exposure
to environmental tobacco smoke, urinary and salivary cotinine levels of
nonsmoking workers were correlated with the total number of smokers and the
total number of hours exposed to cigarette smoke in the workplace (33). As an
example of predictive validity, in a study of the usefulness of plasma cotinine
as a biomarker for environmental tobacco smoke, the authors examined the
correlation between plasma cotinine and the metabolic clearance of theophyl-
line, a drug whose metabolism is known to be increased in nonsmokers by the
presence of cigarette smoke (36). The PCC is typically used to measure criterion
validity; however, we recommend that the SCC be used instead, as the PCC
measures only the degree of linear relationship, whereas the SCC is sensitive to
any monotonic relationship between the biomarker and the criterion.

The other type of validity that should be evaluated in the absence of a gold
standard is construct validity, which is examined in light of hypotheses formu-
lated by the investigator about the characteristics of those who should have
high levels of the exposure represented by the biomarker vs those who should
have low levels. For example, Hüttner et al. (37) evaluated chromosomal
aberrations in human peripheral blood lymphocytes as a biomarker of chronic
exposure to heavy metals and dioxins/furans over a long period of time. As
part of their examination of construct validity, they compared 52 exposed indi-
viduals from a polluted area with 51 matched controls from a distant nonindus-
trialized area and found a statistically significant increase in the frequency of
chromosomal aberrations in human peripheral blood lymphocytes in the
exposed group (p < 0.001). Construct validity is generally assessed by
performing the appropriate statistical test to carry out the comparison of inter-
est. For example, Hüttner et al. (37) used Fisher’s exact test to compare the
exposed and unexposed individuals in terms of the dichotomous outcome
(chromosomal aberration/no chromosomal aberration). For continuous
outcomes, the appropriate normal-theory test should be used if the outcome
appears to follow a normal distribution (t-test for the comparison of two groups,
one-way ANOVA for more than two groups). If the outcome data are highly
skewed or otherwise non-normal, the Mann–Whitney–Wilcoxon test should
be used to compare two groups, and the Kruskal–Wallis test should be used for
more than two groups.
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4. Discussion
In this chapter, we have described methods for assessing the reliability and

validity of biomarkers that we feel are easy to apply and interpret, and whose
results can be easily communicated to nonstatisticians. (Figure 4 summarizes
our recommendations in the form of a decision tree for easy reference.) Some
of the methods we recommend are controversial; for example, there are those
who claim that the adjustment for chance agreement in the calculation of
Cohen’s kappa is inappropriate when measuring the agreement between clini-
cal observers (9) and that the Index of Crude Agreement is the correct measure
to use. However, as the use of Cohen’s kappa is so widespread and no one has
come forward as yet with a convincing argument that kappa should be aban-
doned entirely, we have chosen to recommend its use, along with the PABAK
coefficient and the indices of positive and negative agreement.

Our recommendation against the use of the intraclass correlation coefficient
for assessing consistency between competing biomarkers may surprise some
readers who are experienced with biomarker evaluation; however, we feel that

Fig. 4. Decision tree for determining the appropriate statistical method to use in
assessing reliability or validity of a biomarker.
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the criticisms by Bland and Altman (25) and Atkinson (26) are valid and that
the methods recommended by Bland and Altman (16,21), and Strike (23) are
preferable. Our recommendations are also consistent with the decision tree for
the proper use of ICCs presented in (38).

We may also surprise some experienced readers by not recommending that
significance tests be performed for κ, PABAK, the intraclass correlation ρI,
and Spearman’s rho. As Kraemer (39) and Altman and Bland (16) have
pointed out, testing Ho: κ = 0 or Ho: ρI = 0 is beside the point because it is
unlikely that we would be interested in the agreement between totally unre-
lated quantities in an assessment of reliability or validity. We prefer to use
the guidelines provided by various authors as descriptors of the degree of
agreement. Of course, these guidelines were not intended to be applicable in
every situation and could be modified as necessary for the particular area of
study. If a test of significance or confidence interval is required, the software
used to calculate the coefficient can be used to produce these results as well
(see below for software recommendations).

The coefficient of variation (CV) is commonly used as a measure of variability
within assays, between assays, within samples, within individuals, etc. (see, e.g.,
[35,40]). However, there are difficulties with the interpretation of the CV as it is
usually presented (e.g., “the assay has a CV of 8%”). Strike (23, p. 25) provides a
very lucid discussion of these difficulties and we agree with his recommendation:
“Use the CV if you must, but use it carefully, and with proper qualifications.”

In terms of software requirements for carrying out the procedures we have
recommended, either the KAPPA or PAIRS programs of the software package
PEPI (41) can be used to perform any of the calculations described here, with
the exception of the intraclass correlation coefficient (ICC) in Eq. (3.1) and
Deming Regression. PEPI is very reasonably priced (currently $50) and can be
obtained from USD Inc., 2171-F West Park Ct., Stone Mountain, GA 30087,
telephone (770) 469-4098, website www.usd-inc.com. The ICC in Eq. (3.1)
can be calculated using the SAS code provided in (24), and the MINISNAP
software provided with ref. (23) can be used to perform Deming regression.

Finally, an important issue that we have not addressed in this chapter is the
assessment of surrogate markers that are used in place of a dichotomous event
(death, recurrence of disease, etc.) as outcomes in clinical trials (42–45).
Although many of the methods outlined in this chapter could be used to assess
the reliability and validity of a surrogate marker, there are many other issues
dealing with the use of these markers that are as yet unresolved, as illustrated
by the recent “debate” at a workshop sponsored by the National Institute of
Allergy and Infectious Diseases (45). A discussion of these issues is beyond
the scope of this chapter. However, Chapter 9 of this text Statistical Consider-
ations in Assessing Molecular Markers for Cancer Prognosis and Treatment
Efficacy by Dignam et al. does consider some of the issues in detail.
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Power and Sample Size
Considerations in Molecular Biology

L. Jane Goldsmith

1. Introduction
Sample size is an important interest of researchers in laboratory and clinical

settings. The number of cases to be investigated profoundly affects the cost
and duration of a study. Sample size is estimated to achieve a certain statistical
power and a careful power and sample size analysis can predetermine the
success of a study or experiment.

1.1. What Is Statistical Power?

In the hypothesis test setting, statistical power is the probability of rejecting
the null hypothesis when it is appropriate to do so, that is, when the null
hypothesis is false. It is clear that it is desirable for statistical power to be high,
representing a probability close to 1, because power is the probability of draw-
ing the correct conclusion when the null hypothesis is false.

Statistical power is related to β, the probability of an error of type II. β is
the probability that the hypothesis test in question will erroneously fail to reject
H0 when H1, the alternative hypothesis, is true. It is easy to see that:

P[ do not reject H0 | H1 is true ] = β Probability of an error
P[ reject H0 | H1 is true ] = statistical power Probability of the correct conclusion

= 1 – β
Statistical power is one of the central concepts in statistics. Many statistical

methods are designed to increase power, and new statistical methods are often
justified by claims that they are the most powerful or at least enhance power
(1, pp. 60–63).
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Indeed, the reduction of the probability of error of type II, or, as outlined
previously, the increase of statistical power, is the primary reason for using
statistical methods and theory. This can be seen directly by observing that if
one wants merely to control α, the probability of rejecting H0 when it is true,
one can merely use a uniform random number generator to generate a random
number between 0 and 1. On occasions when the random number is ≤ α, reject
the null hypothesis. Otherwise, do not reject. The probability of a spurious
result (the type I error probability) is fixed at α. The statistical power is, unfor-
tunately, also α. This method can also be criticized for the property that it is
not based on measurements or data. See Fig. 1 for a prototype random number
generator, a hypothesis test spinner with α = 0.05.

Using statistical theory, one can design a hypothesis test with the required α
and high statistical power to detect whether or not the research hypothesis is true.

1.2. Power and Sample Size

Statistical power and sample size are often discussed in the same breath.
Indeed, power increases with sample size in any “consistent” statistical test
(1, p. 305). The desirable property of consistency in a statistical test is intu-
itively appealing: the more subjects or cases in the experiment or research
study the more likely a correct conclusion. In such a consistent statistical
test, “the more the merrier” slogan applies. That is, the more subjects, the
more likely the statistical conclusion will be correct.

The hypothesis spinner in Fig. 1 is an obvious example of a nonconsistent
statistical test. No matter how many subjects are included in the experiment,
the probability of rejection of the null hypothesis remains constant at α.

Fig. 1. The hypothesis test spinner.
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1.3. Other Uses for Sample Size Calculations

Sample size calculations are important in other areas of statistical inference,
including determination of confidence interval widths and coverage probabili-
ties. These are beyond the scope of the presentation in this chapter.

1.4. Importance in Research

Upon reflection, any scientist or experimenter can see the importance of
correct or sufficient statistical power or sample size in an experiment. If the
sample size is too small, and, consequently, the statistical power is too low,
there is a high probability that the experiment will not detect the effect of
interest. That is, even though the research hypothesis is true, the data
collected under this experiment design will not yield a statistically signifi-
cant test result. The researchers involved in such an experiment will be hard
pressed to prove that the effect is not present, as their research design, because
of its low statistical power, was not sensitive enough to detect an effect. In
many cases journal editors will not accept a negative (not statistically
significant) result for publication if the authors cannot demonstrate adequate
sample size and statistical power.

It is easy to see that failure to plan for an experiment with adequate statisti-
cal power is risking that a negative conclusion will mean a waste of time and
resources, resulting in research that is not meaningful and not publishable.

The convention for planning for statistical power is that an experiment
should be designed to have power of 80% or 90%. A recent article uses Baye-
sian techniques to support different standards for α and β (2).

1.5. Ethics of Power and Sample Size

Many authors have written of the importance of sample size for efficient
research (3–5). In biomedical experiments involving increased pain, discom-
fort, fear, or risk on the part of the subjects, it is apparent that it is entirely
unethical to conduct an experiment with too small a sample size. If this is
done, the subjects, human volunteers’ or helpless animals, have suffered to
no avail. Implicit in informed consent is the notion that the research is con-
ducted efficiently. If the sample size and statistical power are wastefully high,
then extra subjects have suffered needlessly. In studies involving suffering
or sacrifice, the “Goldilocks Principle” applies for sample size: not too big
and not too small, but just right.

Even in research where no suffering is involved, resources, money, and the
valuable time of researchers and human subjects can be wasted with the wrong
sample size.
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2. Data Considerations
2.1. Types of Data

In molecular biology and other types of biological research, different types
of data may be collected for research purposes. These different data types are
summarized below:

1. Categorical data are data indicating group membership. Natural examples are
allele type, race, country of birth, and religion.

An important special class of categorical data arises when there are exactly two
categories. These data, often characterized as “yes/no” data, are called dichotomous
data. Natural examples are presence of a trait (yes/no), presence of an allele (yes/
no), death (yes/no), evidence of infection (yes/no), and cure (yes/no).

Categorical data are often coded as integer values, corresponding to group
numbers that are associated with specific groups. Some statistical software pack-
ages, such as SAS (6), allow character data, or names, to represent categorical
data. It is often advisable to code “yes/no,” or dichotomous data, as the integers
1 or 0, with the value 1 denoting the occurrence of the event of interest (“yes”)
and 0 denoting the absence of the event of interest (“no”). This coding scheme
sets things up for logistic regression, a statistical method sometimes used to
search for predictors of dichotomous events.

2. Ordinal data are data reflecting a natural ordering. Ordinal data, however, do not
have a “distance” measure associated with them. Examples of ordinal data in medi-
cal research include health index measures such as APGAR scores (used to indi-
cate health of neonates), cancer stage (used to indicate the severity or extent of
disease in cancer), and anesthesia class (used to indicate general overall health of a
surgical patient). In each of these examples, subtraction (computing a “distance”
between values) does not make sense. That is, a newborn with an APGAR of 9 is
not “2 better” than an infant with an APGAR of 7. It is just known that the baby
with APGAR 9 appears healthier at birth than the one with a score of 7, and that a
baby with APGAR 8 would rank between them in terms of apparent health.

3. Numerical data reflect ordering and distance. Numerical data can be integer data,
such as parity (number of live births), number of teeth, number of lesions, and so
forth. Medical measurements, such as hematocrit, oxygen saturation, and systolic
blood pressure, are examples of numerical data described as interval-level data.

2.2. Switching Between Data Types

In biomedical research it is common for data collected naturally or initially
as one of the data types described previously to be transformed into data of a
different type. Grouping subjects into age-group categories is an example of
transformation of numerical data (age) into ordinal data (age group). Statistics
programs such as SPSS make this transformation easy (7).

Often data are dichotomized, that is, changed from numerical data into
high–low categories. “Cut-points” provide the boundaries used to change
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numerical data into dichotomous data. Biomedical language recognizes this
ubiquitous transformation with special nomenclature: for example, the terms
premature, hypoglycemic, and anemic all represent dichotomizations of
numerical measurements. The description “natural” dichotomous data was used
above to indicate that those examples do not represent dichotomizations, but
naturally occurring dichotomies of interest.

Another type of transformation involves a progression from dichotomous to
numerical data. For example, a sequence of 1 or 0 (yes or no) answers to ques-
tions from a survey or checklist can be summed into a numerical score.

Categorical data can sometimes be found through experience and statistical
testing to have a natural ordering, thus converting it to ordinal or even numeri-
cal type. An example here is the staging system of cancer. Developed as a
systematic method of describing the extent of disease at diagnosis, the tumor-
node-metastatis (TNM) system has a natural ordering related to the natural
progression of the disease, and the stages have been shown to be negatively
correlated with survival probability (8, pp. 3–5). Ongoing efforts to refine the
staging system ascertain that the addition of new stage definitions explain sur-
vival meaningfully (8, p. 12). Cancer stage at diagnosis is often considered an
ordinal or numerical variable.

2.3. Statistical Power, Data Type, and Strategies for Efficiency

Different kinds of statistical methods are appropriate for each data type.
Contingency tables, chi-square (χ2) tests, log-linear models, and logistic
regression are among the methods used for categorical and dichotomous data.
In many cases, categorical data and associated statistical methods require large
sample sizes.

Ordinal data are often analyzed by nonparametric statistical methods. These
methods can be very efficient in terms of statistical power and sample size.
However, often the most powerful statistical methods are parametric tests on
numerical data.

Numerical data represent the most informative data in biomedical research.
Statistical theory and experience have indicated that, in general, research utiliz-
ing numerical data with parametric statistical methods affords the most efficient
statistical power and sample size. Authors recognizing this relationship between
the information in data and efficient research deplore the practice of dichotomi-
zation or categorization described above as a waste of resources (9–11).

In summary, the current best advice is to eschew dichotomization or catego-
rization in data collection. Record and analyze numerical data when possible.

Further advice is to use strategies converting naturally occurring dichoto-
mous or ordinal data to numerical data whenever large samples are not practi-
cable. One such strategy is to sum dichotomous responses, as mentioned
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previously. Another is to record survival time or time elapsed until the
occurrence of an event of interest rather than the simple, relatively uninforma-
tive outcome of event/no event. An example here is the notation of age of onset
of a disease. Earlier onset may be predicted by a genetic marker, indicating a
genetic link to the disorder.

A recent method involves substituting a numerical outcome or “surrogate
marker” for dichotomous data. An example is monitoring CEA levels to detect
increase in tumor burden rather than monitoring cancer patients for a recur-
rence of their tumor, a yes/no variate. Recent statistical studies grapple with
the problem of determining when surrogate markers are justified (12–14).

3. Experiment Design Considerations
An important concept in understanding statistical power and sample size

calculations is that each statistical method has its own associated sample size
formula or calculation method. In the early part of the 20th century, when
inferential statistics was a new discipline, sample size calculation was rare. In
the days of hand-cranked calculators, large samples were a computational
burden. “Rule of thumb” methods were often used, with 30 as a popular number
(15). As the importance of careful power and sample size determination as part
of the research planning process became more recognized, researchers would
try to use or adapt simple formulas for more complicated analyses. For
example, a sample-size formula for 80% power for a two-sample independent-
group t-test would be simply doubled for a four-group one-way analysis of
variance (ANOVA). For an analysis of covariance (ANCOVA), the effect of
the covariate would be ignored or assumed to increase power (an unwarranted
assumption, in many cases). In a stratified design, the stratification would be
ignored to use simple sample size methods. With the passage of time and the
expansion of the statistical literature, more complicated sample size and power
calculation methods have become known. In recent years, statistical software
has become available that allows calculation for some complex designs.

Appropriate sample size and power methods for complicated analyses allow
more precise accurate estimates of necessary sample size. Sometimes the proposed
sample sizes are larger than those using simpler methods and sometimes they are
smaller. The good news is that they allow for the most efficient research.

4. Effect Size
By definition, statistical power is the probability of rejecting H0, the null

hypothesis, in favor of H1, the alternative hypothesis, when H1 is true. It is
intuitively obvious that if H1 represents a large distance or difference from the
situation under H0, the sample size needed to detect a statistically significant
difference at level α would be small. Conversely, if H1 represents a small dif-
ference from H0, the required sample size would be large.
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For example, if the null hypothesis is that elephants weigh on average the same
as mice, we would not need many specimens of elephants and mice to detect a
statistically significant difference. Elephants and mice are far apart in terms of
weight. However, to detect a difference in mean weight between two strains of
mice, researchers would need a large sample of each type. The tiny difference in
mean weight between two strains of mice would yield a very small effect size.

The term “effect size” has been used to signify the critical difference to be
detected. In more formal usage, effect size defines a formula for the difference
between H0 and H1 that is useful for sample size calculation. For example, for a
two-group independent-sample t-test, the effect size is (µ1 – µ2)/σ, the difference
in means in terms of the common standard deviation. This effect size, often
called d, appears in power and sample size formulas. Obviously, different ver-
sions of sample size formulas for the same method may call for differing effect
size formulas, but if differing effect sizes and their associated formulas are
used correctly, they will yield identical sample sizes. Some common effect
size formulas are given in Table 1.

From the formulas in Table 1, it is apparent that effect size, for each sample
size calculation, represents a “distance” from the null value. The sample size
for fixed power (say, 80%) will be larger for smaller effect sizes and smaller
for larger effect sizes. This relationship is usually not linear, but of course
depends on how effect size is represented in the sample size formula.

Figure 2 contains a graph of the relationship between effect size and sample
size needed for 80% power in a one-sample t-test. As demonstrated in this plot,
sample size varies extremely as the effect size increases from 0.1 to 1.0.

5. Steps in Sample Size Calculations

The following steps are a general guideline for sample size calculations.

1. Determine, in conjunction with other researchers, the research question. This may
be very vague at first, but an attempt should be made to make it specific and
quantitative. For example, the initial research question “Does hunger affect
mood?” might be quantified to “How is blood glucose level related to mood, as
measured by the Beck Depression Inventory?” (16).

2. Reword the research question into a research hypothesis. Our glucose example
hypothesis might be: “Glucose level is negatively correlated with Beck Depres-
sion Score.”

3. Reverse the research hypothesis to form a null hypothesis. For example, in our
glucose study:

H0: ρ = 0

where ρ is the correlation between blood glucose and BDI score. Note that we
have used a two-sided hypothesis, rather than the one-sided hypothesis suggested
by the research hypothesis. Many researchers and journal editors prefer a two-
sided hypothesis, which is considered to be more objective and conservative than
a one-sided hypothesis.
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Fig. 2. Relationship between effect size and sample size needed for 80% power in a
one-sample t-test.

Table 1
Some Effect Size Formulas

Statistical method H0 H1 Effect size

One-group t-test µ = 0 µ = µ1 ≠ 0 µ1/σ
or z-test

Two-group t-test µ1 = µ2 µ1 ≠ µ2 (µ1 – µ2)/σ
or z-test

Linear correlation ρ = 0 ρ =ρ1 ≠ 0 ρ1

K-group ANOVA µ1 = ... = µk = µ some
difference
among µi’s

Contrast in K-group
ANOVA

ci µi∑
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k
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k
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∑
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k
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4. Determine the significance level for the study. In most cases, α = 0.05 will be the
chosen level of significance, although some researchers choose α = 0.01 or α = 0.02
as a more conservative significance level.

5. Determine the statistical power to be used. As mentioned above, 80% or 90% is
considered acceptable for most research studies.
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6. Determine an important difference or distance for detection in the research study. A
correlation of 0.3 or more, say, would be important to recognize in the glucose study.

7. Determine the statistical method to be used. Use the important difference pro-
posed in step 6, and other estimates such as standard deviation, if necessary, to
compute effect size. In the proposed glucose study, a correlation analysis is pro-
posed, so the effect size is ρ = 0.3.

8. Calculate the sample size for the proposed study. The appropriate sample size for
our correlation study is 85. Some methods of calculation are summarized in the
paragraphs that follow.

At this point the initial sample size has been calculated. This critical number
must be scrutinized.

5.1. Is the Calculated Sample Size Too Large to Be Practical?

Can we recruit this many subjects in a reasonable time frame? Can we afford
to make this many expensive measurements?

If the sample size is unsatisfactorily large, an effort can be made to reduce it
by alteration of the experiment plan. Researchers should investigate one or
more of the following modifications, all of which are designed to decrease the
required sample size:

1. Raise the level of significance (from, say, 0.01 to 0.05).
2. Decrease the desired power level (from, say, 90% to 80%).
3. Increase the effect size to be detected. A caveat here is that effect size should not

be made too large to reduce the required sample size. For example, a correlation
of 0.9 is almost never found in nature, although this effect size leads to a very
small calculated sample size in correlation studies. An experiment designed to
detect only unrealistically large differences will not be respected or valued.

4. If feasible, switch to a one-tailed test, which, in most cases, more powerful than its
two-tailed counterpart. It is sometimes possible, on scientific grounds, to justify a
one-sided test, although, as mentioned previously, a two-sided test is preferred by
many.

5. Consider a redesign of the study, using more informative data, as discussed
earlier. Reverting to original measurement data before cut-points are taken or
substituting a research question involving a surrogate variable can lead to a
substantial reduction in the required sample size, cutting the size in half or even
reducing it 10-fold (11, pp. 275–276).

6. Consider a redesign of the experiment, using a different statistical method. For
example, using repeated measures, crossover designs, or incorporating covariates
for variance reduction can sometimes achieve significant savings in the required
sample size (17).

All of these modifications must lead to a recalculation of the required sample
size, which will, it is hoped, be reduced sufficiently for the experiment to be
practicable.



120 Goldsmith

Even if the initial stages of sample size determination yield sample sizes
that are achievable and satisfactory to the researchers, it is often advisable to
calculate sample sizes for several experiment designs. Each design, such as
pre–post, crossover, repeated measures, and so on has advantages and disad-
vantages in research and sample sizes will vary. A careful, thoughtful sample
size calculation will lead to the most efficient, informative research (18).

If all attempts to address the research question with an experiment design
with a practicable sample size fail, then the experiment should be abandoned.
To proceed with an experiment whose sample size is insufficient to achieve a
respectable level of statistical power is wasteful of resources and, in some in-
stances, unethical.

5.2. Is the Calculated Sample Size Too Small?

This may seem an unlikely problem, but sometimes, particularly with
interval measures, repeated measures, and correlation studies, the sample size
from the initial calculation would not impress the peer reviewers or readers of
the scientific literature. If the statistical method is an asymptotic one, such as a
χ2 test based on the normal approximation, it may be that the calculated small
sample size would not be sufficient to provide accurate statistics and provide
accurate approximations. If the sample size is too low, researchers should
consider or discuss sample size recomputation using a smaller effect size, lower
α-level, or higher statistical power. This might seem wasteful, but if correct
research results cannot be published or respected, then the experiment has been
a waste in terms of contributing to the body of knowledge.

Finally, it is advisable to boost the sample size slightly to allow for failed
experiments or loss-to-follow-up. A rule of thumb is to add 10% for loss-to-
follow-up (19, p. 1), but each laboratory or researcher should estimate this
number from past experience in the research setting. Some sample size soft-
ware (for example, Power and Precision, discussed in the following section)
allows for built-in attrition adjustments.

6. Methods for Sample Size Calculations
6.1. Formulas

In some cases, a closed-form formula, usually involving the appropriate
effect size, is available. Lachin (20) presents numerous formulas for sample
size calculations. Biostatistics textbooks, such as those by Zar (21) and
Dawson-Saunders and Trapp (22), as well as clinical trial books (23,24) con-
tain sample size formulas. Friedman et al. (24, pp. 125–129) contains an exten-
sive bibliography of articles with sample size methods.

Matrix-based formulas for power calculations for linear models appear in
(25). These formulas can be implemented using any computer-based matrix
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language that also incorporates functions for the noncentral F-distribution. SAS
IML® is an example of such a language.

If one is faced with a power analysis for a new or complicated method,
sometimes a search through the Current Index to Statistics (26) will yield a
reference to an article detailing the appropriate power analysis. In some cases,
power and sample size tables will be a part of the original article describing a
new method.

6.2. Software

In recent years, several excellent computer packages have been developed
for sample size and power calculations. The early versions of these programs
provided power and sample size calculations mainly for simple models. The
programs are under continuous development, improving user friendliness and
the range of statistical methods covered. Up-to-date descriptions of the
programs, as well as new programs not mentioned here, can be found on the
World Wide Web. Some sample size and power programs and the software
companies are:

nQuery (27), an easy-to-use, versatile system Statistical Solutions
www.statsol.ie/nquery/nquery.htm

PASS (Power and Sample Size) (28), NCSS, Number Cruncher
user-friendly system with good graphics. Statistical System
Includes group sequential clinical trials www.ncss.com/

SamplePower (29) SPSS, Inc.
www.spss.com/spower/

Also marketed as Power and Precision (30) Biostat
User-friendly, especially good for survival www.powerandprecision.com
analysis, survival analysis, excellent graphics

Other specialized programs that have some sample size calculation capabili-
ties are:

EAST (31), group sequential clinical trials Cytel Software Corporation
www.cytel.com

Egret Siz (32), Cox regression and Cytel Software Corporation
epidemiological models www.cytel.com

Epi Info (33), free downloadable Centers for Disease Control
epidemiological software and Prevention

www.cic.gov/epiinfo
For the latest information regarding software capability and availability,

visit the appropriate website or contact the individual or institution distribut-
ing the software.
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Two excellent freeware programs for complicated linear models, multi-
variate linear models including repeated measures, and other sample size
problems are:

UnifyPow.sas Ralph G. O’Brien, Cleveland Clinic Foundation
www.bio.ri.cef.org/power.html

IML Power Program Lynette L. Keyes and Keith E. Muller
University of North Carolina
ftp://ftp.uga.edu/pub/sas/contrib/cntb0014/

These programs, using SAS (6) macros, is are described in ref. 34.
Increasing software development is resulting in more programs for sample

size determination. As of this writing, some sample size calculations are avail-
able on the World Wide Web. Using a search engine, it is possible to find
websites that use Java Applets and other software to perform free sample-size
calculations in real time.

A caveat with any computer program is to test it thoroughly if the methods
and results upon which it is based have not been published. Testing can be
accomplished by checking agreement with hand calculations, other software,
or tables. All programs have disclaimers, absolving the authors and
corporations involved in distribution of the software of any liability in case the
results of the program are erroneous. The cost of an experiment with the wrong
sample size will not be borne by software vendors or creators.

6.3. Tables

Books and journal articles with sample size and power tables are widely
available. A list of books (and authors) with sample size tables appears below:

Statistical Power Analysis for the Behavioral Sciences (5), Jacob Cohen
introduction and basic sample size calculations

How Many Subjects? (9), Helena Chmura
basic sample size tables and explanations Kraemer and Sue Thiemann

CRC: Guide to Clinical Trials (19), Jonathan J. Shuster
concentrating on survival analysis

6.4. Nomograms

The following resources provide useful graphs for sample size determination:

Sample Size Choice (35), for ANOVA models Robert E. Odeh and Martin Fox

“Nomograms for Calculating the Number of David A. Schoenfeld and
Patients Needed for a Clinical Trial with Jane R. Richter
Survival as an Endpoint” (36)
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6.5. Simulation

Simulation is the method of last resort for sample size calculation. This
labor-intensive method involves writing computer programs for empirical,
estimated power calculations. Simulation is sometimes necessary when the
statistical method is very complex or when sample size formulas, software,
tables, or nomograms are not yet available for a particular statistical method.
Statistics is an academic discipline, and academic statisticians who develop
new statistical methods will often publish articles and papers describing the
methods as soon as they are developed and proven. Quick publication is desir-
able to make the method available for use as soon as possible and also to estab-
lish priority and to obtain academic credit for publication. A later article, by
the same author or perhaps by another author, may detail the sample size calcu-
lation. In the absence of formulas or tables, power and sample size estimates
may come from simulation, using a computer package or language. The steps
for simulation are outlined as follows:

1. Decide on the null hypothesis, a statistical method, the levels for α and power,
the alternative hypothesis reflecting the important difference of interest, and an
initial sample size “guestimate” n.

2. Write a computer program to generate data sets of size n according to the distri-
bution described by the alternative hypothesis. A rule of thumb here is to gener-
ate at least 1000 datasets of the appropriate sample size, although more would
mean more accurate estimates, of course. With this simulation we are estimating
a proportion, 1 – β, the statistical power under H1.

3. For each dataset, compute the statistical test of H0. Keep a tally of the number of
tests that reject and the number that fail to reject.

4. Calculate the percentage of the datasets that lead to rejection. This is the power
estimate for sample size n for this distance from the null hypothesis. If power is
too low, adjust n upward and repeat the simulation steps above.

5. Continue this process until a satisfactory sample size and power are achieved. The
Statistical statistical packages SAS and S-Plus have been used for simulation studies,
as well as programming languages such as FORTRAN and BASIC (37, p. 139).

7. Special Topics in Power and Sample Size Analysis
7.1. Achieved Power

Achieved power is a power estimate based on the results of a study. That
is, the data in the study are used to generate an estimate of effect size and
statistical power. Often, achieved power is not very informative. It is usually
very high when the experiment is statistically significant. Indeed, some
researchers opine that achieved power must equal 1 if a study is statistically
significant, observing that power is the probability of rejecting the null
hypothesis and the null hypothesis has already been rejected in the study (38).
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However, an achieved power not equal to 1, but usually quite high, can be
estimated using the data. SPSS (7) prints achieved power for some analyses
on request.

If the null hypothesis is not rejected, the achieved power may be very low
(approaching α) or attain some middle value. This power estimate is a rough
evaluation of the adequacy of the sample size of the study if the difference or
distance from H0 that has been observed is approximately equal to a difference of
research interest. That is, if the data show an important research effect, but it is
not statistically significant, the achieved power will give an indication of how far
from the desirable power of 80% or 90% this sample size is. If the power is low
even when an important effect is demonstrated in the descriptive statistics calcu-
lated from the data, the sample size is probably far from adequate.

Achieved power in general is a biased, inflated power estimate. If a new
experiment is to be planned using the present results, it is best to adjust the
sample size estimates to compute obtain an unbiased estimate of statistical
power and sample size for the new study (39, pp. 405–416).

7.2. Post Hoc Power

Post hoc power is the term used to describe power computed after the
completion of an experiment. Researchers use some of the experiment results
(say, observed standard deviations, correlations, or variances) to compute the
power to detect an important, conjectured difference. Achieved power,
discussed previously, is thus a special case of post hoc power, one in which the
effect size is also estimated from the completed experiment.

When an experiment is not statistically significant and power and sample
size were not calculated carefully before execution of the study, power can
be estimated after the fact to determine if the experiment was sensitive
enough to detect a difference of value to the researchers. Power computed
post hoc is late, at best, and the situation is tantamount to scientific fraud if
researchers report that their experiment was carefully planned when it was
not. Some researchers deplore post hoc power, while some believe it has
value to salvage nonsignificant results for reporting purposes if the sample
size of an unplanned study happens by chance to have been adequate for a
reasonable alternative hypothesis.

Another interpretation is that the nonsignificant experiment now functions
as a pilot study, and the post hoc power calculation is the first step toward
designing a new study of appropriate sample size (9, p. 25).

7.3. Pilot Studies

When estimates needed for power and sample size calculations are not avail-
able from the literature, from existing databases, or from previous experience
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in the laboratory or clinic, a pilot study may be in order to develop information
needed for adequate estimation. The importance of pilot studies has been
recognized in some research institutions by the provision of intramural grants
to help new researchers and by special pilot study grant programs in United
States federal granting agencies. For example, the National Institute of Mental
Health has provided special grant support to develop effect sizes to improve
future research.

These are the hallmarks of a good pilot study:

1. A pilot study should be small. A large pilot study is an oxymoron, as a large,
expensive study should answer the research question, not just help to plan another
study. Careful planning of a pilot study to provide a tight (narrow) confidence
interval for a variance can lead to a larger sample size than would be feasible for
the ultimate research question! Common sense must be the guide.

2. The pilot study should measure various outcomes, as researchers may find that a
surrogate marker, described previously, may be more suitable and economical
for their research question. Time to occurrence of an event of interest is some-
times estimated in pilot studies for planning purposes.

3. The pilot study should obtain all estimates needed for power and sample size
analysis for any feasible research design. These estimates usually include sample
means and standard deviations, but they also should include estimated correla-
tions for repeated measurements if this might be a possible experimental design.
Estimated correlation between measures or repeated measures has a large effect
on sample size (17, p. 41).

7.4. Grant Applications

At the 1997 Joint Statistical Meetings of the American Statistical Associa-
tion, Ralph O’Brien of the Cleveland Clinic led a group of discussants in a
seminar entitled “Statistical Grantsmanship.” Among the suggestions for
applications seeking national funding were the following:

1. Use of sophisticated power and sample size calculations, appropriate for the ulti-
mate planned statistical analysis.

2. Use of appendices in grant applications for long sample size formulas and theory.

Other suggestions for optimal power and sample size calculations for grant
applications include:

1. Use of previous knowledge gained from intramural studies and pilot studies.
Known colloquially as “sweat equity,” the work invested in well-designed pilot
studies can give grant applicants an advantage over others in the selection process.

2. Sensitivity analyses to demonstrate adequate statistical power if the assumptions
in the primary power analysis are not met. For example, it would be valuable to
demonstrate that the planned study affords reasonable power for a range of vari-
ance estimates. It is also wise to investigate several alternative designs to choose
the best one (18, p. 1209).
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3. A summary table at the end of the power analysis section of a grant application
can summarize the value of n chosen, the power and sensitivity for primary
hypotheses, and the estimated power for secondary hypotheses. Sometimes power
for secondary hypotheses will not be high, owing to budget constraints.

7.5. Cost of Power Analysis

The length of this chapter, which merely outlines power and sample size
considerations in planning a study, is an indication of the complexity of this
subject. It is not unusual for the tasks of power and sample size estimation for
complicated research plans or for designs using new statistical methods to
require weeks of work for statisticians and researchers. It is important to allo-
cate adequate time and resources for sample size calculation (18, p. 1224).

8. Examples
8.1. Segregation Analysis for Codominant Loci

This problem is suggested by an example in Statistics in Human Genetics by
Pak Sham (40). In this genetic problem, individuals with heterozygous
inheritance at the locus are phenotypically different from homozygous
individuals. Mendelian inheritance implies that the three phenotypes will
appear as offspring from two heterozygous parents in the proportions 1/4, 1/2,
1/4, where the 1/4 fractions represent homozygous offspring and the 1/2
fraction represents heterozygous inheritance. The research question is, “Do the
proportions in offspring of heterozygous parents differ from those expected in
Mendelian inheritance?” The research hypothesis is, “Proportions of the three
phenotypes differ from Mendelian inheritance.” We have H0: p1= 1/4, p2 = 1/2,
p3 = 1/4. We wish to detect a “difference” reflected by p1= 0.3, p2 = 0.4, p3 =
0.3. We use nQuery (27) and select the program “Chi-square test of specified
proportions in C categories.” We choose α = 0.05 and power = 0.80 and type
these numbers into the input table along with the number of categories, C = 3.
nQuery has an effect size calculator, so we enter the null hypothesis propor-
tions and the alternative hypothesis proportions and obtain the effect size ∆2 =
0.04. The required sample size is n = 241.

8.2. Time to Onset of Disease in a Small Animal Model

In laboratory mice an allele has been identified that is associated with the
onset of cancer. Researchers can induce a certain type of cancer by introduc-
tion of a virus. Animals will be tested for presence of the suspected allele.
Then the virus will be injected into each mouse. Subjects will be observed
daily for onset of cancer. We anticipate that the population of mice without the
suspect allele will have a median age of onset of disease of 60 d. Mice with the
allele are suspected to experience earlier onset, median = 45 d. Animals will



Power and Sample Size 127

be observed for 85 d. Figure 3 presents the hypothesized survival curves and
the median survival values.

The research question is, “Do subjects with the suspect allele tend to experi-
ence earlier onset of disease?” The research hypothesis is, “Animals with the
suspect allele tend to experience earlier onset of disease.” The null hypothesis
is H0: S1 = S2, where S1 represents the survival curve for subjects with the allele
and S2 is the survival curve for subjects without the allele. We have chosen a
two-sided hypothesis using the log-rank test.

We choose first to use nomograms for survival curves (36). We compute R =
ratio of median survival times = 60/45 = 1.33. Using Fig. 1, p. 164, in ref. 36,
for power = 0.8 and α = 0.05, we draw lines according to the instructions for
accrual = 0 (we will follow all animals for 85 d) and follow-up period = 1.6
((85/.5 [(45 + 60])/2]). We obtain 140 per group for R = 1.5, using the dashed
line for two-sided hypotheses. Turning to Fig. 3 of the paper, p. 166, in ref. 36,
we perform an adjustment to obtain a sample size for R = 1.33: 300 per group.
Thus, using the nomograms, we obtain n = 600.

Using the CRC Handbook 19, we must first compute the proportion without
disease at 85 d. We compute λ, the hazard rate for exponential survival,
according to the formula λ = – (ln 0.5)/(median survival). We obtain λ1 = 0.0154
and λ2 = 0.01155. Using the formula e–λt for the proportion not diagnosed at
time t, we obtain 0.27 for the allele group and 0.37 for the controls (no suspect
alleles) at t = 85. On p. 612 of ref. 19 for ALPHA = 0.025 (one-tailed, implying

Fig. 3. Hypothesized survival curves and the median survival values for time until
onset of disease.
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0.05 ALPHA for two-tailed), PCONT = 0.25, DEL = 0.37 – 0.27 = 0.10, using
FACT = 0.00 for up-front accrual, we find n = 579. For PCONT = 0.30, we
find n = 665. Using linear interpolation, we have n = 613.

Finally, using the nQuery (27) program “Log-rank test of survival in two
groups followed for fixed time, constant hazard ratio,” and using the built-in
parameter calculators to compute the λ’s, we obtain 309 per group, or n = 618.

We have obtained similar sample sizes using three methods. All sample size
methods hypothesized exponential survival. The sample size program nQuery
was the easiest to use. An adjustment upward for loss-to-follow-up would be at
the discretion of the researchers. Further refinements should be made if the
proportions with and without the suspect allele are far from 0.50.

8.3. Validation of New Assay Method

Laboratory researchers wish to use a new, simpler assay method. They wish
to establish that the new method affords a satisfactory level of accuracy. They
decide to use Lin’s concordance coefficient, which is preferable to correlation
or t-test comparisons (41). (See also Chapter 5 by Stephen W. Looney for fur-
ther discussion of this issue.) Lin’s original article defining the concordance
coefficient was followed by another paper outlining sample size estimation
and giving tables for sample size (42). Using the guidelines in Lin’s second
paper ref. 42, the researchers determine that they expect, under ideal condi-
tions, that the new assay will explain 98% of the standard assay. They decide
they can tolerate a 1% reduction in precision, a 12.5% location shift, and a 10%
scale shift. Using the tables on p. 602 of (42), they determine the minimum
acceptable concordance, ρc,a, to be 0.972 and that a sample of 41 paired assays
will be required for 95% power.
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1. Introduction
In this chapter, we focus on the study of associations between disease and

inheritance of particular genetic variants, a field described as genetic epidemi-
ology. Genetic variation based on polymorphism is common in human popula-
tions and appears to  be a critical factor in determining susceptibility to disease.
Polymorphism describes the presence of variant forms of genes (alleles) that
are inhherited from parents. Individuals within a population may therefore
inherit none (homozygous wild-type), one (heterozygote), or two (homozy-
gous mutant) copies of the variant allele. These combinations are referred to as
genotypes. Many types of allelic variation have been described, including
deletions and insertions of DNA bases or even whole genes. Recently, genetic
variation derived from single nucleotide polymorphisms (SNPs) — single base
changes thought to occur every 500–1000 nucleotides — have attracted con-
siderable interest in the context of disease susceptibility. For the purpose of
this review, we will use data collected in our laboratories on ploymorphisms in
members of the glutathione S-transferase (GST) supergene family of enzymes
(see Hayes and Strange [1] for a recent review).

The number of genetic epidemiology association studies, and the complex-
ity of statistical analysis of the resulting data, have developed exponentially in
recent years. Many earlier studies were based on standard cross tabulations
(chi-squared analyses) in small numbers of cases and controls, often with case
groups being clinically heterogeneous. In many instances, even basic confound-
ing factors such as age at presentation and gender were ignored, and most
focused on a single gene (2–6). Although this type of study still appears in
journals, more recent work has identified the need for large, well-characterized
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patient cohorts with multivariate modeling to enable consideration of potential
clinical heterogeneity within the total population (7–11). This assessment of
disease susceptibility continues to be plagued by problems of control selection
and, in some cases, recruitment. Furthermore, much of the current success of
this approach has highlighted the importance of examining outcome (e.g.,
disease severity, survival) rather than susceptibility alone (see the following
paragraphs for examples).

2. General Modeling Concepts
In statistical terms, in any association study, we are given a series of candidate

genes and possible confounders such as demographic (e.g., age, gender) and
environmental (e.g., smoking habit, UV exposure) factors. Linear models are
derived for determining whether (1) there are genetic components that affect
susceptibility to disease and (2) within those who have the disease, outcome is
also associated with the presence or absence of genetic risk factors (including
gene–gene or gene–environment interactions) in the presence of the other
nongenetic factors.

In multiple linear regression a dependent variable, outcome or response, y,
is related to a set of independent variables, covariates or factors, x = (x1,x2,…,
xp), where these are considered fixed, through a series of unknown parameters
β1, β2, ... ,βp, such that the probability distribution of the random variable y has
mean given by θ = α + Σ βi xi and usually constant variance. A further
assumption that is commonly made is that the y’s are normally distributed.
Some of the independent variables could be squares or cross-products of a
smaller set of variables, so, for example, a linear regression can be constructed
in which there is only one independent variable, x, and θ=α  +β1x + β2x2 + β3x3.

McCullagh and Nelder (12) have extended this regression model to the
generalized linear model (GLM) to deal with situations where the observa-
tions, y, are not continuous or normal. However, these models do have a
common assumption that their mean, θ, is linear in the unknown parameters.
These ideas are exploited in this chapter to develop three linear models, one for
measuring susceptibility effects and the others for exploring disease outcome.
We have applied these modeling concepts to specific examples taken from a
study of the effects of GST polymorphisms on skin cancer risk in renal trans-
plant patients (Table 1). All models produce estimates of genetic effects that
may be interpreted as assessments of risk associated with genotypes but that
are adjusted for other baseline characteristics.

3. Susceptibility
3.1. Clinical Considerations

Traditionally, case-control studies have compared the proportions of geno-
types in a sample of cases with those in a sample of controls (often laboratory
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Table 1
Study Examining the Association of Two Genes,
GSTM1 and GSTP1, with Risk of Cutaneous Squamous
Cell Carcinoma (SCC) in Renal Transplant Patients

(a) Risk of any SCC (logistic regression)
logistic sccyn sex agetx M1n
Variable OR 95% CI p value
sex 3.8 1.0, 15.1 0.058
agetx 1.063 1.021, 1.106 0.003
M1n 3.2 1.1, 9.5 0.040

(b) Numbers of SCC lesions (negative binomial regression)
nbreg scc_no sex agetx P1AA, exposure (folup) irr
Variable RR 95% CI p value

sex 16.6 2.7, 101.7 0.002
agetx 1.081 1.035, 1.129 < 0.001
P1AA 6.9 2.1, 22.8 0.002

Likelihood ratio test of γ = 0 (overdispersion test): χ
1

= 86.39 , p < 0.001

(c) Time from transplantation to development of the first SCC
(Cox’s proportional hazards regression)
cox time sex agetx scor3 M1n M1nscor3, dead(censor)
Variable HR 95% CI p value
sex 3.7 0.9, 15.3 0.066
agetx 1.140 1.071, 1.213 < 0.001
scor3 0.17 0.03, .99 0.048
M1n 0.1 0.02, 0.9 0.041
M1nscor3 42.6 3.8, 479.7 0.002

Key
logistic Stata command for logistic regression
sccyn 1 = SCC present, 0 = SCC absent
sex 1 = male, 0 = female
agetx age at transplantation in years
M1n 1 = null genotype at GSTM1 gene, 0 = other GSTM1 genotypes
nbreg Stata command for negative binomial regression
scc_no number of SCC tumors
P1AA 1 = AA genotype at GSTP1 gene

0 = other GSTP1 genotypes
exposure Stata command allowing normalization for exposure
folup length of follow-up
irr Stata command indicating display of incidence rate ratio
cox Stata command for Cox’s proportional hazards regression
time time between transplantation and development of SCC (or last follow-up)
scor3 1 = sunbathing score ≥ 3, 0 = sunbathing score < 3
M1nscor3 1 = sunbathing score ≥ 3 and null genotype at GSTM1

0 = other genotype/sunbathing score combinations
dead Stata command that specifies censor variable
censor censor variable; 1 = SCC, 0 = no SCC

131
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volunteers) by using chi-squared (χ2) tests. For example, in an early study,
we examined the frequency of genotypes at the GSTM1 locus in hospital
controls and patients with skin cancer using this approach (13). These data
showed that the proportion of patients with the GSTM1 null genotype was
significantly higher in patients with multiple skin cancers of different histo-
logical types (32/45, 71%) than in controls (79/153, 52%, p = 0.033). From
these data, it is possible to obtain an assessment of the degree of risk imparted
by this genotype by calculation of the odds ratio (OR = 2.3) and its corre-
sponding confidence interval (95% CI = 1.1–4.8). These data can then also
be used to assess the relative importance of the gene in determining suscepti-
bility by attributable risk calculations (14).

The importance of selection of suitable controls is demonstrated by studies of
the sulfotransferase, SULT1A1, gene. A polymorphism in this gene has been
shown to exhibit differences in genotype frequencies with increasing age in
healthy controls (15). It is therefore critical when studying associations between
polymorphisms that cases be age-matched (preferably one-to-one, but at least
overall) to controls, thereby necessitating more advanced statistical approaches
(see Subheading 6.).

More recently, case-control data have been handled using more sophisti-
cated statistical approaches, including examining the interactions between
genetic and environmental factors (discussed in detail in [16]), with correction
for confounding using multivariate models. For example, GST have tradition-
ally been viewed as carcinogen detoxifying enzymes and several studies have
examined the effect of GST genotype on lung cancer risk in smokers compared
with nonsmokers (7,17). In addition, the use of multivariate models to correct
for confounding factors can provide useful information on the potential mech-
anism of the observed genetic association (11,18). This is illustrated in Table 1
(a) in which, using logistic regression analysis, the association of GSTM1
genotype with squamous cell carcinoma (SCC) risk in renal transplant recipi-
ents is corrected for the potential confounding effect of age at transplantation
and gender, both of which are known SCC risk factors (19).

3.2. Modeling Aspects
Models for susceptibility are developed using data from case-control (retro-

spective) studies (see Schlesselman [20] and Breslow and Day [21] for a
comprehensive discussion of this type of study). In these models, the depen-
dent variable is binary, with y = 0 representing the controls and y = 1 represent-
ing the cases in a logistic model.

This model makes the assumption that the probability of being a case, p, is
related to x through the log odds or logit transformation given by

logit(p) = log[p/(1 – p)] = θ = α + Σ βi xi
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Suppose that we wish to estimate the effect on y of a change in a binary variable,
xk from 0 to 1. (In the context of genetic susceptibility, xk represents the presence or
absence of a genotype.) If all other x’s remain the same, the parameter βk is:

βk = log odds (x k = 1) – log odds (xk = 0) = log[odds (x k = 1)/odds (xk = 0)]

or the “log odds ratio.” Rewriting, the odds ratio, which is a measure of the
relative risk of being a case when an individual possesses a genotype, is eβk.
The parameter βk is estimated in the presence of all the other x’s and may
therefore be interpreted as a relative risk corrected for all other x’s, unlike the
uncorrected values in the previous subheading. These x’s will have an effect on
the estimate of risk and will be dealt with by the estimation procedure but may
call into question the make up of the control group. In most disease association
studies, a younger control group could become cases over time. Matching
controls on key independent variables one-to-one with the cases is a possibil-
ity; this would lead to estimation using conditional as opposed to the uncondi-
tional logistic regression described above.

There are problems with applying this logistic model and indeed with the
interpretation of simple odds ratios from 2 × 2 tables in case-control studies.
As pointed out in Breslow and Day (21, Section 6.3.), the subjects are selected
on the basis of whether they are cases or not, hence y cannot be regarded as a
random variable while the x’s, determined retrospectively, are random vari-
ables. This is the opposite of the usual situation. However, Breslow and Day
show that, in most cases, the method of estimation of the logistic parameters
which would be applied under the assumption that y is random or the data are
generated from a cohort, or prospective, study gives similar numerical values
of the parameter estimates and relative risks.

Table 1 illustrates the estimation of odds ratios (OR) for the GSTM1 null
genotype using logistic regression modeling. The value of the odds ratio pro-
vides a quantitative estimate of the relative impact of the genetic effect on
disease susceptibility. Many case-control studies on single genes in complex
disorders such as cancer have often generated only modest odds ratios (e.g.,
2.0–3.0). This suggests that other parameters must be taken into consideration.
These include (1) the interaction of multiple genetic factors with each other
and with environmental factors such as smoking, diet, or UV exposure and (2)
the effect of genetic factors in genetically high risk subgroups diluted by a
large number of cases with low genetic risk.

4. Outcome

4.1. Clinical Considerations

Studies in the literature on the same gene in the same disease group often
produce conflicting data. For example, several groups have examined the



136 Jones, et al.

importance of polymorphism in the GSTT1 gene in mediating susceptibility to
colon cancer. Chenevix-Trench et al. (22) found that the frequency of the
GSTT1 null genotype was significantly increased in patients diagnosed before
70 yr of age, while Deakin et al. (23) showed the frequency of this genotype
was increased in cases compared with controls, although no age effect was
observed. In contrast, Gerdig et al. (24) and Katoh and Bell (25) failed to show
any significant association. These studies have highlighted the role of clinical
heterogeneity, as recent data from our laboratory suggest that these discrepan-
cies may result from differences in the proportion of patients with advanced
disease in the different study populations. Thus, it is possible that, for example,
GSTT1 null genotype is associated with poor outcome in these patients and,
consequently, its frequency is increased in patients with advanced tumors (as
reflected in Dukes’ stage, tumor site, or age at onset). Therefore, the relative
proportions of patients with advanced vs early disease in a sample of cases
may determine whether the frequency of the polymorphism differs significantly
between the cases and controls.

These observations have led to many studies examining the effect of so-
called ‘‘modifier genes’’ on disease outcome. In general, these studies have
met with significantly greater success that those examining susceptibility, with
larger odds ratios (or other effect sizes). For example, Table 1 (b),(c) show the
association of GST genotype with both number of tumors and time between
transplantation and appearance of the first SCC in renal transplant recipients.
Number of tumors was examined using negative binomial regression, which,
using the Stata statistical software package, allows simultaneous normaliza-
tion for follow-up time (or degree of exposure) as well as correction for poten-
tial confounding factors. In this case, GSTP1 AA genotype has a rate ratio (RR)
of 6.9. This represents a very large increase in risk, which may have clinical, as
well as statistical, significance.

In the data described in Table 1 (c), time between transplantation and appear-
ance of the first SCC in renal transplant recipients was modeled using Cox’s pro-
portional hazards regression, an approach often used in survival analysis (7,26).
This example illustrates the examination of a gene–environment interaction
between GSTM1 null genotype and a high sunbathing score. This suggests that
individuals who have high UV exposure and are GSTM1 null genotype demon-
strate a markedly reduced time from transplantation to development of their
first SCC. Interestingly, when GSTM1 null and sunbathing score were considered
individually, neither was significant. This illustrates that an interaction cannot be
predicted from the individual effects, a phenomenon referred to as epistasis (27).

Thus, examination of associations between polymorphic variants and
outcome may require the application of other types of statistical modeling.
Indeed, we have used several approaches for the analysis of trends (ordered
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logistic regression) (10), count data (Poisson regression and negative binomial
regression) (28,29), and time until an event (Cox’s proportional hazards
regression) (18,30). We discuss some of the modeling aspects in more detail in
the following subheading.

4.2. Modeling Aspects

In this subheading, we focus on the two modeling approaches illustrated in
Table 1 (b) and (c) (i.e., the accrual rate of tumors over time and the time to the
next tumor) in patients with differing follow-up times. The methods may be
applied to any situation where the dependent variable is a count or the time
between two events.

When the data are in the form of counts and it is required to model associa-
tions with a set of independent predictors, there are a number of alternatives.
Linear regression could be used with the square root of the counts as the depen-
dent variable, or either Poisson or negative binomial regression could be used,
where the means of the probability distributions are again a linear function of
unknown parameters, some of which may be interpreted as measuring risk; we
will concentrate on the latter two methods (see [31] for an application of these
models to tumor counts). In each of these models, the time of exposure or
follow-up will be a determinant of the eventual count and will have to be
controlled for in the final estimation procedure.

In Poisson regression, the rate at which incidents (tumors) occur, usually
termed the incidence rate, is assumed to be

λ= eθ= eα +Sβix

for an individual with independent variable vector x. It follows that the mean
of the number of incidents will be λT, where T is the exposure of the indi-
vidual. To measure the effect of xk changing from 0 to 1 (or a unit increase in
xk) where all other x’s remain the same, the incidence rate ratio (irr) may be
calculated as (incidence rate when x k = 1)/(incidence rate when x k = 0). It follows
that irr = eβ k. This may now be used as a way of evaluating the risk, in the sense
of the effect of a change in the value of xk producing a decrease or increase in
the mean number of incidents, since for the same exposure, T, the irr is the
ratio of the (corrected) number of incidents in the two groups (those with xk =
1 and those with xk = 0). This may be applied directly to the skin cancer study
in Table 1 to evaluate the effect of the presence of a genotype, in the presence
of other covariates, on tumor incidence.

The Poisson distribution has the property that the mean and variance are
equal and so if samples of the number of incidents in a study produce means
and variances which differ, then this suggests that the assumption of a Poisson
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model for the counts is not tenable. More formally, a χ2 goodness of fit test
may be used to determine whether the model is suitable. In the situation where
the variance is larger that the mean (or the process is exhibiting extra Poisson
variation or overdispersion; underdispersion is rare), the negative binomial
regression model can be used. This is a modification of the Poisson where the
mean is multiplied by a random variable, z, whose distribution depends on a
single overdispersion parameter γ (see Table 1 [b]). This leads to a mean of zλT.

If the measure of severity is the time between presentation with the first
tumor and occurrence of the next tumor, then methods in survival analysis are
appropriate. These methods have been developed to use data on all individuals,
including those where the second event has not yet occurred but where a follow-
up time is available. The parameter of interest here is the hazard rate, λ(t),
which measures the risk of an incident occurring at a particular point in time;
another interpretation is that it is the instantaneous incident rate. In many prac-
tical situations this rate will vary with time. A full exposition of survival analy-
sis may be found in Parmar and Machin (32), which includes many clinical
examples. They give an example of a hazard function and its relationship with
time for measuring the risk of infant mortality, which is known to be highest
just after birth but thereafter declines rapidly.

Cox’s proportional hazards regression (Parmar and Machin [32],  Cox [33]),
may be used to assess the impact of genotypes on time to a further event,
adjusted for other x’s. It is assumed that the hazard takes the form

λ(t) = λ0(t)exp (Σβi xi) ,

where λ0(t) is interpreted as an underlying hazard for all individuals that is
adjusted by the x’s to give the hazard for a individual. In the linear form em-
ployed above α = lnλ0(t). The risk associated with a change of x k from 0 to 1,
with all other x’s unchanged, is measured by the hazard ratio (HR) given by
(hazard when xk = 1)/(hazard when xk = 0), which is easily seen to be eβk. In
Table 1 (c), we present HRs for two main effects and an interaction. The main
assumption behind the Cox model is that the hazards are proportional; this is
usually tested by a visual inspection of graphs of the estimated hazard func-
tions in the two groups based on the values of xk. If these are approximately
parallel, then it suggests that the assumption is reasonable.

Because all models in this section depend on a linear function of covariates
then it is possible to use the estimates of these functions to derive prognostic
indices or simple scoring models for outcome. Christiansen (34) gives a
detailed description of using Cox’s regression to derive a prognostic index (PI)
for an individual with a given set of x’s.
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5. Software
Most commercial statistics packages include routines for the analysis of

linear, logistic, and Cox’s proportional hazards regression models. However,
few offer the possibility of fitting Poisson and negative binomial regression
models. Stata (Stata Corporation, College Station, TX) offers a programmable
package that includes these routines; all the analyses presented here were
performed using this package and Table 1 gives the command code necessary
to generate the results.

6. Extensions to the Basic Modeling Approach

Most of the examples given in this chapter and the Stata code in Table 1
refer to only a single genotype. It is straightforward to extend this to large
multivariate models with other genotype main effects and interactions between
genotypes. Furthermore, most packages will allow the user to specify stepwise
selection of predictors. This may be used in cases where it is useful to allow all
predictors to compete to enable a best subset of them to be chosen.

This could be especially useful in obtaining an estimate of the relative
importance of genetic vis à vis environmental factors. However, care should be
exercised in using these routines, especially where there are missing values in
the data, as inferences could be based on only a small percentage of the obser-
vations. In this case, we suggest refitting the model with all the data using the
reduced set of predictors.

We have briefly discussed the difficulty of obtaining suitable controls and
the need to match or control for key variables when looking at susceptibility.
However, this does not address the problem of population stratification in
which the genetic background of the cases may be different from that of the
controls. One method that is used in genetic studies that reduces the impact
of this effect is to use a family-based study design such as that employed in
transmission disequilibrium testing (TDT; see [ref. 35, Section 4.7] for more
details). This approach compares the proportions of transmitted and
nontransmitted alleles in parents and affected offspring, thereby correcting
for the potential effect of non-disease-associated genetic differences between
cases and controls including ethnic, geographical, and in some cases expo-
sure differences.

It is worth noting that the studies described in this chapter are association
studies. Thus, it is possible that a genotype demonstrates a strong association
with risk without directly affecting the disease process at all. Indeed, the genetic
marker may simply be coinherited with a neighboring gene that is critical to
the pathological process.
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Multiple Tests for Genetic Effects
in Association Studies

Peter H. Westfall, Dmitri V. Zaykin, and S. Stanley Young

1. Introduction
Many common human diseases have a genetic component as measured by

familial studies. Metabolic disorders such as diabetes, cardiovascular diseases
such as high blood pressure, psychiatric disorders such as schizophrenia, and
neurodegenerative diseases such as Alzheimer’s disease all are thought to have
a hereditary component. In some diseases the genetic control is through a single
gene, while in others, multiple genes interact in complex ways with environ-
mental factors to produce the disease (1–5).

Data are and will become increasingly available to attempt to link genes to
disease phenotype(s). Linkage studies, although powerful for screening
relatively large chromosomal regions, lack needed precision because of the
constraints imposed by the number of recombination events during genera-
tions contained in the pedigree (6). Recently, researchers have attempted to
develop techniques that exploit possibilities of fine mapping due to linkage
disequilibrium between genetic markers and disease genes. Typing single
nucleotide polymorphism markers (SNPs) inside of candidate regions provides
a potential means for such analysis (7); however, the problem remains in that
the complex diseases are very likely to have multiple etiologies. Consider
control of essential hypertension. It has a measured heritability of 35–45%,
yet the identification of specific genes remains unclear. Many candidate genes
for essential hypertension have been identified and, in a particular individual,
a combination of some few of these genes might lead to disease.

There is a need for a statistical strategy to analyze these complex experiments,
given the multiple testing implied by multiple candidate genes and the risk of
false associations. In this chapter we discuss primarily methods for controlling
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familywise error rate (FWE) with multiple genetic tests, identifying single and
epistatic effects, and discuss readily available software (PROC MULTTEST of
SAS/STAT®) for this purpose. The benefit of the method is sound inference in the
evaluation of case-control genotype–phenotype association studies.

2. Multiple Testing Principles for Disease–Genotype Association
Our focus is primarily on multiple contingency table-type tests described in,

for example, Sasieni (8), and extensions thereof. In the simplest analysis,
subjects are cross-classified in a 2 × 2 table, according to disease status (case or
control) and presence or absence of a particular allele at a given locus.

As an initial screening procedure, one may perform a test for each genetic
locus in a genome scan or dense SNP map. Such tests are associational only,
and further study is needed to establish causation; however, they can be very
useful to identify candidate genes. Follow-up analyses can proceed using, for
example, linkage analysis or haplotype-level tests (9).

When these tests are performed separately over multiple loci, there can be
hundreds, even thousands, of tests, and false-positives are expected, as
discussed throughout the statistics and genetics literature (e.g., 10–12). Vari-
ous methods have been proposed to control this risk in genetic studies, such as
FWE-controlling methods (12); informal, global-based testing methods (13);
and false discovery rate (FDR) controlling methods (14).

We suggest controlling FWE and justify it in two ways. First, control of FWE
has a simple operational interpretation: If the FWE is set at 10% (say), then we
expect that in only one out of every 10 studies will one or more false significant
results be claimed. Therefore, the analyst may gamble upon the occurrence that
the given study was not one of those 10%, and claim that all identified associa-
tions are real and repeatable. The FDR controlling procedure of Benjamini and
Hochberg (15), described in Weller et al. (14) for genetic QTL analysis, while
more powerful than FWE for gene finding, does not allow such a clear opera-
tional definition. In a given study, the number of erroneous significances is a
random variable, and therefore somewhat unpredictable. Furthermore, while
FDR-controlling methods allow only an average of 100α% of the claimed
significances to be in error, the false discovery rate can be substantially larger
than that in studies where one or more genes have been declared significant (16).
Thus, although FDR-controlling methods are indeed more powerful, their opera-
tional interpretation is not as useful as that of FWE-controlling methods.

Second, advances in modern computing have made the powerful FWE-con-
trolling “closed testing” methods accessible for the analysis of genetic tests. In
particular, these methods can accommodate discreteness and genetic correla-
tion structures (including linkage) to improve power. In our examples we will
incorporate such features through exact testing methods.
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For readers unfamiliar with multiple testing methods, closed testing, and/or
PROC MULTTEST, it may be helpful to read Westfall and Wolfinger’s (2000)
article “Closed Multiple Testing Procedures and PROC MULTTEST,” avail-
able on the SAS® website (http://www.sas.com/service/library/periodicals/obs/
obswww23/). The remainder of this chapter is a condensed summary of mate-
rial therein, with special emphasis on genetics applications.

2.1. The Closure Principle

FWE-controlling methods can be made less conservative and more powerful
by using the closure principle of Marcus et al. (17). The procedure is as follows:
one considers all possible combination hypotheses obtained via intersection of
the set of base hypotheses of interest. If the base hypothesis, and all intersections
that contain it as a subcomponent, are all rejected by an appropriate α-level test
(we will use exact tests here), then the closure principle allows that the given
hypothesis can be rejected, at FWE level α. Thus, if there are k base tests, there
are 2k–1 tests to consider. For small studies, this procedure is ideal; however, for
typical genotype/phenotype association studies where thousands of genotypes
are considered, the number of intersection subsets to evaluate seems astronomi-
cal, and uncomputable even by current standards. However, there are simplifica-
tions that make this methodology computationally feasible, as we now discuss.

2.2. Application of Closure to the Min P Statistic

Given the typical genome scan, with each test yielding a p-value for genetic
association, the first impulse is to locate the minimum value (min P). The ques-
tion then becomes, “How unusual is the min P, given the number of genetic
features scanned?” This question can be answered using an hypothesis testing
approach, where one tests the global null hypothesis of no feature effect by
evaluating the probability that the min P can be as low as the observed value,
under the global null. This is similar to the approaches described in (18,19),
except that they do not apply the closure principle to isolate particular loci.
Their analysis at the first step is essentially equivalent, but by applying the
closure principle to their test procedure, one can obtain multiple candidate
(single-level) associations between quantitative trait loci (QTLs) and the trait,
all with familywise error protection, even under the case where there are some
null and some non-null QTL locations.

Fortunately, one need not consider all 2k–1 subsets for the closed procedure.
If each subset is tested using min P from that subset, then one need only evalu-
ate the k subsets that correspond to the ordered p-values, and not the entire set
of 2k–1. Formally, let the observed p-values be p1,...,pk ordered as p(1)≤...≤p(k)
with corresponding hypotheses H(1),...,H(k) with p(j)=pij

. Let the random p-
values prior to observation be denoted by Pj.
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The closed min P-based method collapses (20) to the following sequential
procedure:

Algorithm: Closed min P Testing

reject H(1) if P (minj�{i1,...,ik}
Pj ≤ p(1))≤α

reject H(2) if H(1) was rejected and P (minj�{i2,...,ik}
Pj ≤ p(2))≤α

.

.

.
reject H(k) if H(k-1) was rejected and P (minj�{ik}Pj ≤ p(k)) ≤ α

In accordance with the closure principle, all probabilities are calculated under
the assumption of no genetic effect in the respective subsets of hypotheses.

Using the Bonferroni inequality

P (minl�{ij,...,ik}Pl ≤ p(j)) ≤ (k – j + 1)p(j) ,

the closed min P-based procedure becomes the Holm method (21). However,
this method is needlessly conservative: the upper bound (k – j + 1)p(j) is too
large, implying that 5%-level significance might not be attained. This conser-
vativeness arises because (1) there are correlations, sometimes large, among
the genes due to linkage, and (2) the distributions of the tests are discrete (22).

The correlation structure and discreteness of distributions can be taken into
account by calculating the probabilities

P (minl�{ij,...,ik}
Pl ≤ p(j))

directly and exactly using permutation tests. To do this, one randomly per-
mutes the vectors of genetic indicators over the set of all subjects, so that in a
given resampled data set, the first n1 vectors are assumed to have phenotype 1,
and the remaining n2 are assumed to have phenotype 2. Thus, in this permuta-
tion model, the null hypothesis of no genetic effect holds for all subsets of
hypotheses, as required by both the closure principle and the “subset pivotality”
criterion of Westfall and Young (23), p. 42. The probabilities

P (minl�{ij,...,ik}
Pl ≤ p(j))

are then exactly computed as the proportion of possible permutations for which
the value of minl�{ij,...,ik}

Pl
*, as calculated from the permuted data set, is less

than or equal to the value p(j), as calculated from the original data set. Because
resampled (or permuted) data sets preserve the correlation structure and dis-
creteness characteristics, the resulting probabilities are typically less than the
conservative Bonferroni approximations (k – j + 1)p(j).

As the number of possible permutations can be exceedingly large, a simple
and accurate approximation can be obtained by permutation resampling, that
is, by sampling with replacement from the finite population of possible permu-
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tations. The resulting method is a statistically permutationally exact method
under the case of infinitely many Monte Carlo samples. Monte Carlo error
bounds and detailed algorithms are described by Westfall and Young (23).

Fortunately, software to perform this exact, closed min P-based analysis is
readily available in PROC MULTTEST of SAS/STAT® (24). This software
requires a binary or ordinal phenotype such as (diseased)/(not diseased), or
(severely diseased)/(moderately diseased)/(not diseased). The software runs
more quickly when the phenotype is coded as binary. To take full advantage of
the discreteness, it also requires binary genotype representations, although it
can analyze ordinal genotype representations in exact fashion as well.

2.3. Application of Closure to the
Simes–Hommel Test for Genetic Association

As an alternative to the use of the min P statistic for testing each subset
homogeneity hypothesis, one may use Simes test (25), which considers the
entire distribution of p-values, rather than just the minimum. For a given set of
k genetic association tests with p-values p1,...,pk, the hypothesis of no genetic
effect is rejected if min{kp(j)/j} ≤ α , where the p(j) are the ordered p-values.
Like the case with closed testing and the min P test, closed testing with Simes’
test allows shortcuts so that all 2k– 1 subsets need not be evaluated. The simpli-
fication occurs because, for each subset size (say, s), one need only consider
the combined test that contains the gene of interest, and the s – 1 remaining larg-
est p-values, rather than all k

s
 subsets of size s. Hommel (26), Wright (27), and

Grechanovsky and Hochberg (28) describe such shortcut methods. PROC
MULTTEST of SAS/STAT® (as of Version 8.1) can perform these tests with
O(k2) operations, rather than O(2k), which makes the method feasible for
genetics screening tests.

The Simes test is valid (has type I error rate ≤ α) when the tests are positively
dependent, as shown by Sarkar (29). In negatively dependent cases, the error rate
may exceed α, but the excess is typically slight and not troubling (30).

While it would be preferred to use the discreteness of the distributions
for the Simes test (31), as shown in Subheading 2.2. for the min P test,
such an analysis would greatly increase the computational complexity.
Studies have shown that the Simes-based approach tends to be more pow-
erful than the min P-based approach when there are greater numbers of
affected hypotheses (32,33). In genetics experiments where multiple gene
effects are expected, or with tight linkage, this might indeed be the case. In
such a case, the Simes-based approach might have superior power to the
min P-based approach. Further research is needed to develop computa–
tionally convenient Simes-based closed testing algorithms that incorporate
distributional characteristics.
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2.4. Application of Closure to the Fisher Test for Genetic Association

Yet another possibility is to apply the Fisher combination test (34) for each
subset homogeneity hypothesis. For a given subset, the combination test statis-
tic is T = –2Σ ln pi , which is distributed as χ2

2k when (1) the subset homogene-
ity hypothesis is true, (2) the p-values are uniformly distributed, and (3) the
tests are independent. Assumptions (2) and (3) are rather crucial here, but may
be reasonable for the analysis of candidate genes that are expected to be only
weakly linked, and when sample sizes are large. In gene expression tests, there
is no linkage and the independence assumption might be more reasonable than
in the case of gene–disease association tests.

Like the Simes-based tests, the Fisher combination-based test often allows
several small p-values to reinforce one another to produce a more powerful test
(than the min P-based method). The same O(k2) computational simplification seen
for the closed Simes-based method described above holds for the closed Fisher
combination method, making it also feasible for genetic association tests, and the
method is available in PROC MULTTEST of SAS/STAT® (Version 8.1).

Pesarin (35) avoids the independence and uniformity assumptions, develop-
ing algorithms for exact Fisher combination tests that incorporate relevant
distributional characteristics, including correlations. Further research is needed
to develop computationally convenient closed testing algorithms that incorpo-
rate such tests.

3. Applications to Gene–Disease Associations
While one typically views the phenotype as a response (or penetrance)

resulting from genetic predisposition, it is often reasonable (e.g., in case-
control studies) to turn the problem on its head, and view genotype frequency
as a function of the phenotype. In this section we apply the general closed
testing methods described in Subheading 2. to specific genetic association
tests, with the point of view of multiple comparisons of gene frequencies
between cases and controls.

3.1. Multiple “Serological” Tests with Binary Phenotype

Consider the following 2×2 contingency table, cross-classifying disease sta-
tus with presence of a particular allele at a given locus. The sample size is
deliberately small to illustrate the main ideas.

Allele A Allele A
Group present absent Total

Case 5(100%) 0(0%) 5(100%)
Control 2(40%) 3(60%) 5(100%)
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Sasieni (8) calls this a “serological” test because it “was common when HLA
typing was done by serology, so that it was not possible to distinguish between
[homozygous and heterozygous states].” He also notes that the resulting contin-
gency table test (chi-square, χ2) is completely efficient when allele A is domi-
nant. Our analyses will consider the Fisher exact test instead of the χ2 (36).

Now consider the following arrangement of the contingency table in a “flat
file” representation amenable to computer input.

Subject Group D1

01 Case 1
02 Case 1
03 Case 1
04 Case 1
05 Case 1
06 Control 1
07 Control 0
08 Control 1
09 Control 0
10 Control 0

Here, D1 stands for “dominance coding at locus 1,” and the 0s and 1s denote
presence or absence of allele A at that locus. Now, in genomic scans, for
example, using SNPs (37), we will have multiple such indicators for a large
collection of loci, resulting in a data set like that in Table 1, shown with just
three loci for convenience.

For this data set, the Fisher exact (two-sided) p-values for testing associa-
tions between case-control status and locus are 0.1667, 1.0000, and 0.5238,
respectively, for loci 1, 2, and 3. Nothing is significant, as expected with the
small sample sizes; these values are used for illustration purposes only.

The closure principle described in Subheading 2.1. requires that additional
p-values be computed for intersection hypotheses H12: D1 and D2 are unaf-
fected; H13: D1 and D3 are unaffected; H23: D2 and D3 are unaffected; and
H123: D1, D2, and D3 are unaffected. By “unaffected” we mean that the distri-
butions of the binary vectors are identical between Cases and Controls.

To calculate the exact closed min P-based multiple test procedure described
in Subheading 2.2., there are simplifications, and we require p-values only
for the intersection hypotheses corresponding to the ordered p-values, H123,
H23, and H2. The p-value for H123 using the min P statistic is then p123 =
P(min(P1,P2,P3) ≤ 0.1667 |H123). To calculate this quantity exactly, one can
enumerate all 10! permutations of the three-dimensional vectors, calculate
min(P1,P2,P3) for each permutation and note whether it is smaller than 0.1667,
and take p123 to be the proportion of the 10! permutations (actually, only
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10!/[5!5!] are required) yielding a min P smaller than 0.1667. Alternately,
one can sample from the permutation distribution. The following table shows
one random sample from the multivariate permutation distribution:

Table 1
Input Form for Multiple Dominance Tests

Subject Group D1 D2 D3

01 Case 1 0 1
02 Case 1 0 1
03 Case 1 1 1
04 Case 1 0 0
05 Case 1 1 1
06 Control 1 0 1
07 Control 0 0 0
08 Control 1 1 1
09 Control 0 1 0
10 Control 0 0 0

For this sample, the p-values are, respectively, 1.0000, 0.5238, and 1.0000,
with min P=0.5238. Thus, this is one of the 10! permutations for which min P is
not smaller than 0.1667. Sampling all permutations, 21.43% of the permuta-
tions yield min P smaller than 0.1667, so p123=0.2143 is the exact p-value for
the composite H123 when the min P test is used. According to the closed min P
testing algorithm in Subheading 2.2., the hypothesis H1 (which happens to cor-
respond to the smallest p-value) would not be rejected, and no further inference
could be made. However, if H1 were rejected, then we could proceed to test H3
using the p-value p23=P(min(P2,P3)≤0.5238|H23); H3 would have been rejected
if this probability were less than 0.05 (or whatever FWE level is chosen).

Subject Group D1 D2 D3

07 Case 0 0 0
02 Case 1 0 1
10 Case 0 0 0
01 Case 1 0 0
08 Case 1 1 1
03 Control 1 1 1
09 Control 0 1 0
05 Control 1 1 1
04 Control 1 0 0
06 Control 1 0 1
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This analysis is automated in PROC MULTTEST of SAS/STAT®. The
invoking code and testing portion of the output are as follows:

proc multtest data=table1 stepperm n=1000000 seed=121211;
class group;
test fisher(D1 D2 D3);
contrast “compare” –1 1; run;

p-Values

Stepdown
Variable Contrast Raw Permutation

D1 Compare 0.1667 0.2149
D2 Compare 1.0000 1.0000
D3 Compare 0.5238 0.7855

The results of the closed testing algorithm are conveniently reported as adjusted
p-values in the “Stepdown Permutation” column: if the adjusted p-value is
<0.05, then the corresponding genetic association is significant at the FWE=
0.05 level using the closed min P-based testing algorithm of Subheading 2.2.
Note also that the reported p-value 0.2149 differs slightly from the p-value 0.2143
obtained via direct enumeration of all 10! permutations; this difference reflects
Monte Carlo error. As MULTTEST sampled 1,000,000 times, with replacement,
from the population of permutations, the Monte Carlo standard error is just
{0.2149(1–0.2149) /1000000}1/2 = 0.00041; thus the Monte Carlo estimate is
1.46 standard errors from the exact value, or acceptably close.

We have chosen 1,000,000 samples from the permutation distribution in this
case, and the analysis takes less than a minute on a typical (as of the present date)
PC workstation. In larger problems with more loci, it will take longer. We suggest
at least 1000 samples to estimate the p-values with reasonable precision, although
as large a number of samples as is convenient should ordinarily be chosen.

3.2. Testing Both Dominant and Recessive Modes of Inheritance
We may allow for recessive effects by considering 2 × 2 tables where genetic

effect is coded as either (1) the gene is homozygous for the allele in question or
(2) the gene is not homozygous for the allele in question. There is a high degree
of dependence among such tests; this will be accommodated exactly in the closed
multiple testing procedure. Following from Table 1, Table 2 represents the input
form suggested for such an analysis. Each gene has been coded two ways, with
dominance coding D as shown in Table 1, and recessive coding R.

Note that there is positive correlation between the two codings, as a person
who is “recessive” with respect to one allele is also “dominant” with respect to
the other. There can also be strong positive correlation between closely linked
genes owing to the linkage disequilibrium; nevertheless, these correlations are
properly modeled via vector resampling as described previously.
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Using the binary coding shown in Table 2, the specific hypotheses tested
are H0ij : πlij = π2ij , where πlij denotes prevalence of coding i (i=R,D) for
gene j (j=1,2,3) among controls; and where π2ij denotes the corresponding
quantity among cases. These hypotheses again are testable using the two-
sided Fisher exact test, and the exact closed testing method is applicable as
well. Code and output follow.

proc multtest data=table2 stepperm n=1000000 seed=121211;
class group;
test fisher(D1 R1 D2 R2 D3 R3);
contrast “compare” –1 1; run;

p-Values

Stepdown
Variable Contrast Raw Permutation

D1 Compare 0.1667 0.3258
R1 Compare 0.0079 0.0161
D2 Compare 1.0000 1.0000
R2 Compare 1.0000 1.0000
D3 Compare 0.5238 0.7855
R3 Compare 0.2063 0.3490

There are several points to make about the results. First, the recessive genotype
at locus 1 is considered statistically significant at the FWE = 0.05 level using
the exact min P-based closed testing procedure, as the Stepdown Permutation
p-value is < 0.05. Second, the adjustment of the unadjusted p-value 0.0079 to
the adjusted 0.0161 is substantially less than one might expect with Bonferroni
correction (6 × 0.0079 = 0.0474); this savings comes as a result of using exact
closed testing methods that incorporate discreteness as well as correlations.
Third, it is somewhat unusual to find a more significant result when the family

Table 2
Dominant and Recessive Codings

Subject Group G1 D1 R1 G2 D2 R2 G3 D3 R3

01 Case AA 1 1 aa 0 0 AA 1 1
02 Case AA 1 1 aa 0 0 AA 1 1
03 Case AA 1 1 AA 1 1 AA 1 1
04 Case AA 1 1 aa 0 0 aa 0 0
05 Case AA 1 1 Aa 1 0 AA 1 1
06 Control Aa 1 0 aa 0 0 AA 1 1
07 Control aa 0 0 aa 0 0 aa 0 0
08 Control Aa 1 0 AA 1 1 Aa 1 0
09 Control aa 0 0 AA 1 1 aa 0 0
10 Control aa 0 0 aa 0 0 aa 0 0
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size is expanded, as we see here comparing the “dominance” analysis with
three tests to the “dominance + recessive” analysis with six tests. However,
when the expanded family contains tests that are more powerful, then it is cer-
tainly possible that there will be more significance in the expanded family,
despite the larger multiple testing penalty. This example is suggestive of a situ-
ation where locus 1 has a purely recessive and fully penetrant effect.

This method can be extended to multiallelic genes as well. With multiple alle-
les the number of tests expands considerably: for L > 2 alleles, there will be 2L
tests. (However, when L = 2 there are only two tests as, e.g., the dominant and
recessive tests for allele a are completely determined by the corresponding tests
for allele A.) Caution is recommended here, as large numbers of multiallelic genes
can increase the family size substantially, thereby reducing power (in most cases).

3.3. Multiple Tests for Epistatic Effects

When two or more genes are necessary for the expression of the phenotype,
we have an epistasis. It is thought that many complex traits and diseases are the
result of the interaction of several rather common genotypes.

One possible method for screening gene combinations is to compare
frequencies of the combinations occurring in either the case or the control
populations. Let us revert to the “dominance” coding shown in Table 1, and
consider whether combined effects of genes might signal differences in cases
vs controls. The resulting data look like this:

Subject Group D1 D2 D3 D1D2 D1D3 D2D3

01 Case 1 0 1 0 1 0
02 Case 1 0 1 0 1 0
03 Case 1 1 1 1 1 1
04 Case 1 0 0 0 0 0
05 Case 1 1 1 1 1 1
06 Control 1 0 1 0 1 0
07 Control 0 0 0 0 0 0
08 Control 1 1 1 1 1 1
09 Control 0 1 0 0 0 0
10 Control 0 0 0 0 0 0

There are obviously correlations between the columns; in fact, in these data the
D1D3 column is identical to the D3 column. The exact closed testing proce-
dure automatically accounts for such dependencies, in effect reducing the mul-
tiplicative adjustment by one for each perfect dependency. The SAS code and
output are as follows:

proc multtest data=table3 stepperm n=1000000 seed=121211;
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class group;
test fisher(D1 D2 D3 d1d2 d1d3 d2d3);
contrast “compare” –1 1; run;

p-Values

Stepdown
Variable Contrast Raw Permutation

D1 Compar 0.1667 0.2864
D2 Compar 1.0000 1.0000
D3 Compar 0.5238 0.7855

D1D2 Compar 0.1667 0.2864
D1D3 Compar 0.5238 0.7855
D2D3 Compar 1.0000 1.0000

In this analysis, nothing would be considered significant, as none of the
Stepdown Permutation (or closed exact Min P adjusted) p-values are less than
the FWE 0.05 level. However, had there been a synergistic effect of two of
these genes in dominant form, we might have seen some significant results.

One should be very cautious about using the multiplicative factors as shown here
to discover epistatic effects; indiscriminant selection can greatly increase family size
and thereby reduce power. For example, if there are 1000 genes, one might consider
1000(999)/2 = 499,500 possible combinations. It is preferred to keep the family size
smaller; thus this method is suggested when the number of genes is small, say 100 or
less (assuming reasonable sample sizes in the case and control groups).

3.4. Stratification
One can conceive of several situations in which gene–disease associations should

be analyzed using stratification. Two cases of major importance are as follows:

1. Epistasis involving a known gene. A known gene, say G1, contributes to disease.
However, there are questions of epistasis concerning other genes. In this case, the
epistatic effects should not be modeled as illustrated in Subheading 3.3. as the
prevalence of G1Gi will surely differ between cases and controls, owing simply
to the main effect of G1. In such a case it will be appropriate to compare the
prevalence of genotype Gi among patients who share a common value of G1.

2. Environmental factors. An environmental factor, smoking, for example, might
be a known contributor to disease. In such a case, it would be better to assess
genetic contributions by partialling out the smoking variable, both to improve
sensitivity of the tests and to remove a possible source of confounding.

Stratified analyses can be handled in an exact fashion, using essentially the
same methods as described in Subheadings 3.1.–3.3., but using exact strati-
fied (Mantel–Haenszel) tests instead of Fisher exact tests. Exact p-values for
these tests (analogous to the Fisher exact p-values) are easily obtained using
existing software. The hypotheses differ depending on whether one is using
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stratified or unstratified analysis; with stratified analysis, the composite null
hypothesis states that the distributions of the binary vectors are identical for
both groups within each stratum (although the distributions are allowed to
differ between strata). To test these hypotheses, we permute the observation
vectors as before, but independently within strata.

The following invocation of PROC MULTTEST uses the data in Table 1,
and treats D3 as if it were a known gene contributing to disease (in dominant
form), and performs exact, closed, stratified multiple testing.

proc multtest data=table1 stepperm n=1000000 seed=121211;
class group;
strata d3;
test ca(D1 D2/permutation=20);
contrast “compare” –1 1; run;

p-Values

Stepdown
Variable Contrast Raw Permutation

D1 Compare 0.2500 0.3993
D2 Compare 1.0000 1.0000

In this example we find no significant difference of D1 frequency between
cases and controls when analyzed within groups defined by D3 status. Of
course, this is a very small data set; in practice, we might apply this to hundreds
of candidate genes, after stratifying on one known gene.

The syntax “ca” in the preceding SAS code stands for “Cochran–Armitage
Trend test” (38,39), which is equivalent to the Fisher exact test in the
unstratified case, and which gives an exact stratified Fisher exact test in the
stratified case. The syntax “permutation =20” specifies exact permutation tests
when the total number of observed Gi genotypes is < 20, or in this case, always.
With large numbers of cases and controls, it is reasonable to specify “permuta-
tion =100” or so to calculate exact permutation tests when the totals are < 100,
but otherwise to use the normal approximation.

With sufficient sample size, this could be used as a forward stepwise
procedure: select the most significant gene at step 1 (if significant by adjusted
p-value); select the second major contributing gene (if significant by adjusted
p-value), while partialling out the first as a “stratum” variable; select the third
major contributing gene (if significant by adjusted p-value) while partialling
the first and second selected variables as a combined “stratum” variable. This
procedure has the attractive property that FWE is controlled at each stage, under
the assumption of fixed ordering of variables. However, because the variables
selected at earlier stages are random, it is possible that FWE is uncontrolled;
see ref. 40 for further details in a related application.
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3.5. Ordinal Phenotypes

Some phenotypic traits, for example, mental diseases, are best expressed
ordinally, i.e., not diseased, mildly diseased, diseased, and badly diseased. One
can perform a logistic regression of the binary genotype on the phenotypical
outcome and test for significance of phenotype. The resulting logistic regres-
sion score test is equivalent to the Cochran–Armitage linear trend test that com-
pares proportions of genotypes among the ordinal categories (8).

In our paradigm of conditioning on the phenotype and examining the distri-
bution of the genotypes, such an analysis can easily be accommodated as shown
in Subheadings 3.1.–3.4., with the exception that the tests are based on the
exact permutation distribution of the (possibly stratified) Cochran–Armitage
test instead of the Fisher exact two-sample tests. The null hypothesis for any
given set of genotypes is that the multivariate binary genotype distribution is
identical across all phenotype categories; or equivalently, that all permutations
of the n multivariate binary vectors are equally likely. The trend test statistics
are most sensitive to linear (or at least monotonic) departures from the null.

The exact closed min P-based analysis shown in the previous subheadings
can be performed just as easily in this case. Consider the data in Table 1, but
with the “Case/Control” variable recoded as “Severe,” “Mild,” and “None”
(Table 3). The following SAS code and output show how to perform the exact,
closed multiple testing procedure with these data.

proc multtest data=table4 order=data stepperm n=1000000 seed=121211;
class group;
test ca(D1 D2 D3/permutation=20);
contrast “trend” –1 0 1; run;

Table 3
Ordinal Phenotype

Group D1 D2 D3

Severe 1 0 1
Severe 1 0 1
Severe 1 1 1
Mild 1 0 0
Mild 1 1 1
None 1 0 1
None 0 0 0
None 1 1 1
None 0 1 0
None 0 0 0
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p-Values

Stepdown
Variable Contrast Raw Permutation

D1 Trend 0.1417 0.2349
D2 Trend 1.0000 1.0000
D3 Trend 0.1667 0.3108

Here the “raw” p-values are exact Cochran–Armitage permutation p-values,
and the Stepdown Permutation p-values are obtained by evaluating the distri-
bution of min P over subsets corresponding to the ordered raw p-values, as
described in Subheading 3.1.

Trend tests can be more powerful than Fisher exact tests that collapse the
phenotype into two categories (e.g., here we might classify both “Severe” and
“Mild” into “Case,” and leave “None” as “Control.”) However, one should
limit the number of categories (say, to five or fewer); otherwise, the tables can
become sparse and the tests can lose power. (Note: the MULTTEST procedure
also computes exact stratified Cochran–Armitage trend tests for ordinal
phenotype, as shown in Subheading 3.3. for the case of binary phenotype.)

3.6. Ordinal Genotypes: Cumulative Polygenic Effects
Suppose the disease is associated with allele A on a biallelic gene. In some

disease models, the effect or penetrance of the gene is higher for heterozygotes
than for homozygotes aa, while the effect or penetrance of the gene is still higher
for homozygotes AA than for heterozygotes. This suggests a linear model relating
phenotype Y to the ordinal genotype X, where X=0, 1, or 2 for genotypes aa, Aa,
and AA, respectively. Assuming Y is binary or ordinal as we have done, and again
turning the problem on its head, we can compare the distribution of X for the differ-
ent categories of Y, and test for trend, much as with the Cochran–Armitage test.
Exact nonparametric tests for trend are available in, for example, StatXact (41), so,
in principle, the problem of exact closed multiple tests is solved for this case as
well. However, there is no ready-made software for this purpose. A reasonable
solution is available in PROC MULTTEST where one uses the parametric test for
genotype i to obtain p-values pi , then finds the multiplicity-adjusted p-values
P(minPj ≤ pi ). The final result is obtained by permuting vectors as before, so the
final analysis is exact (modulo Monte Carlo error, which can be reduced to an
arbitrarily low level). Using the parametric unadjusted p-values in the exact min P
test can cause problems of imbalance (42,43); however, this problem is often not a
major issue (44).

Another source of ordinal variables that can be handled similarly is the
cumulative effect of several genes. For example, it may be thought that the
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alleles A1, A2, and A3 (in genes 1, 2, and 3, respectively) contribute cumulatively
to the phenotype Y. In this case the variable X4 = X1 + X2 + X3 is suggested.
Other codings are possible, such as X4 = I(X1 > 0) + I(X2 > 0) + I(X3 > 0), where
I(•) denotes the indicator function, as would be suggested if the disease is
cumulatively related to dominant expressions of the Ai only, with no extra
“bump” for recessivity. Note also that such a combination presupposes that the
directions of allelic associations are known for all genotypes, which might be
rare. Nevertheless, the method is shown below to illustrate the possibility, and
to note that perfect dependencies of the type induced by the X4 variable cause
no problems with the exact min P-based testing method.

The data in Table 4 relate directly to Table 2, with X1 – X4 as just described.
Exact closed multiple testing is accomplished via the following code, and the
results are shown as follows:

proc multtest data=table5 stepperm n=1000000 seed=121211;
class group;
test mean(X1–X4);
contrast “compare” –1 1; run;

p-Values

Stepdown
Variable Contrast Raw Permutation

X1 Compare 0.0002 0.0161
X2 Compare 0.7599 1.0000
X3 Compare 0.1151 0.3490
X4 Compare 0.0497 0.1272

The result here is that the gene G1 ordinal variable has a different mean for the
two phenotypes, as its adjusted p-value is < 0.05.

Table 4
Ordinal Genotypes

Subject Group G1 X1 G2 X2 G3 X3 X4

01 Case AA 2 aa 0 AA 2 4
02 Case AA 2 aa 0 AA 2 4
03 Case AA 2 AA 2 AA 2 6
04 Case AA 2 aa 0 aa 0 2
05 Case AA 2 Aa 1 AA 2 5
06 Control Aa 1 aa 0 AA 2 3
07 Control aa 0 aa 0 aa 0 0
08 Control Aa 1 AA 2 Aa 1 4
09 Control aa 0 AA 2 aa 0 2
10 Control aa 0 aa 0 aa 0 0
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In this analysis the “Raw” p-values are inexact, being based on the normal-
theory t-test, but the Stepdown Permutation p-values are exact modulo Monte
Carlo error. The inexactness of the Raw p is suggested by the fact that it is so
small, relative to the exact multiplicity-adjusted p-value.

4. Application to a Large Simulated Data Set

The data for this study (ftp://statgen.ncsu.edu/pub/zaykin/cand/) were
simulated according to the following model. We simulated a genetic map of
20 candidate regions. Each 100-kb candidate region contained 10 uniformly,
randomly spaced SNPs. Candidate regions themselves were assumed
unlinked; however, the recombination process for SNPs inside candidate
regions was modeled directly, assuming Haldane’s mapping function (no
interference) and Poisson-distributed number of recombination events with
mean equal to the genetic length in Morgans. Three of 10 candidate regions
contained disease genes. Four SNPs in each of first two regions and three SNPs
in the third region were assumed to be contributing to the disease.

We used an additive model with weak interaction to model penetrances.
According to this model, one allele for each of 11 SNPs was assigned a uniform
random genetic effect, additively contributing to the total probability of
developing disease (genetic penetrance), but the final penetrance for each
genotype class was given a 0 – 5% uniform random deviation. Finally,
311=177,147 individual penetrances for individual multilocus genotypes were
scaled between 0 and 1, so that the “typical” penetrance value of a multilocus
genotype was about 50%.

We allowed for separate sexes, with no selfing, and no allowance of sib
matings. Generations were assumed to be discrete. We simulated five originally
homogeneous equilibrium populations of 500 individuals each, and allowed
for 100–200 generations of genetic drift with population growth rate of 1.2,
and a migration rate of 0.2 from each of the four populations into the fifth
during the first 35 generations. The maximum population size was set to 15,000
individuals. We kept only populations with the final disease prevalence in the
range 5–15%. We sampled 500 of affected and 500 of nonaffected individuals
from the admixed population at the final generation.

To illustrate the method we simulated sets of data using two different
models. The first model (model 1) is as described in the preceding. The second
model (model 2) differs in that the chromosome regions are themselves closely
linked, so that the association may extend over all 20 regions.

Table 5 contains part of the resulting analysis of a typical data set (20 smallest
p-values) simulated under the first model, and Table 6 contains part of the analy-
sis for data that were simulated under the second model (200 generations). The
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analysis for both tables was performed using PROC MULTTEST, Version 8.1
(an example of the invoking program code is given in the Appendix).

Actual regions contributing to the probability of developing the disease were
typed with markers labeled 1–15, so the algorithm correctly identifies SNPs
typed in all three regions. Originally small p-values corresponding to the false
regions become nonsignificant after proper multiplicity adjustment over the
set of 400 tests. Note that closed permutation p-values are smaller than the
closed Bonferroni and Sidak (independence-assuming) corrections. The effect
is more pronounced when long regions of densely mapped SNPs are consid-
ered (Table 6). For example, the closed Bonferroni-adjusted p-value for R134
is 0.0089834, but corresponding exact (modulo Monte Carlo error) min P
permutation adjustment is 0.002.

5. Application to Gene Expression Data
Gene expression data may be analyzed using similar techniques. Data

given in Golub et al. (45) are available at http://waldo.wi.mit.edu/MPR/
data_set_ALL_AML.html) for relating gene expression from 7129 genes to

Table 5
p-Values for Simulated Data, Model 1

Unadjusted Closed Closed Closed
Genotype p-value Bonferroni Sidak Permutation

D7 0.0000000 0.00000 0.00000 0.000
D9 0.0000000 0.00000 0.00000 0.000
R9 0.0000000 0.00000 0.00000 0.000
D10 0.0000000 0.00000 0.00000 0.000
R10 0.0000000 0.00000 0.00000 0.000
R7 0.0000006 0.00019 0.00019 0.000
R5 0.0000198 0.00695 0.00692 0.005
D5 0.0000723 0.02548 0.02515 0.015
D8 0.0002896 0.10276 0.09767 0.056
R132 0.0004779 0.16953 0.15597 0.091
R17 0.0008843 0.31228 0.26832 0.201
D133 0.0019127 0.67437 0.49084 0.384
R3 0.0023851 0.83925 0.56838 0.452
D127 0.0024807 0.86887 0.58101 0.462
D70 0.0026634 0.92573 0.60423 0.482
D113 0.0034234 1.00000 0.69534 0.572
D136 0.0034387 1.00000 0.69570 0.572
R8 0.0039253 1.00000 0.74653 0.635
R172 0.0046352 1.00000 0.80447 0.693
D129 0.0095221 1.00000 0.96444 0.915
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disease status. (Golub et al. [45] apparently consider only 6817 of the 7129
available on the data set.) There are 11 patients with acute myeloid leukemia
(AML) and 27 with acute lymphoblastic leukemia (ALL).

As discussed in ref. 45, one goal is to discriminate between the known AML
and ALL populations on the basis of the observable gene expressions. Dis-
criminant analysis (DA) is commonly used for this purpose, and a first step in
DA is often to test for differences between the groups using Hotelling’s T2 test
(46). However, the T2 test requires a nonsingular covariance matrix, and in this
case the 7129 × 7129 covariance is quite singular, having rank somewhere near
11+27=38, and the test cannot be applied. Nevertheless, the min P test can be
carried out exactly to test for global differences; in addition, the exact min
P-based closed testing procedure allows one to specify particular genes where
simple associations exist, with full FWE protection.

In the gene expression data the response variable is continuous, and exact,
distribution-free closed testing methods are available, as described in
Subheading 3.5. One may test a global hypothesis using the max T statistic,
where T is calculated as

Table 6
P-Values for Simulated Data, Model 2

Unadjusted Closed Closed Closed
Genotype p-value Bonferroni Sidak Permutation

R138 0.000014178 0.0043713 0.0043618 0.001
D42 0.000014739 0.0045309 0.0045207 0.001
R83 0.000017126 0.0052764 0.0052625 0.002
R115 0.000018588 0.0057627 0.0057462 0.002
R178 0.000022408 0.0068857 0.0068621 0.002
D194 0.000026979 0.0082854 0.0082512 0.002
D100 0.000028380 0.0087390 0.0087011 0.002
R134 0.000029131 0.0089834 0.0089432 0.002
D6 0.00003150 0.009618 0.009572 0.003
R191 0.00003233 0.009875 0.009827 0.004
R149 0.00003882 0.011811 0.011741 0.005
R73 0.00003975 0.012020 0.011949 0.006
D123 0.00004579 0.013792 0.013697 0.007
R100 0.00006178 0.018604 0.018433 0.009
D130 0.00006465 0.019422 0.019236 0.009
D21 0.00006529 0.019568 0.019378 0.009
R22 0.00007886 0.023409 0.023138 0.010
R104 0.00008572 0.025422 0.025102 0.011
D177 0.00008980 0.026545 0.026196 0.013
R173 0.00010426 0.030858 0.030388 0.015
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T =
XALL – XAML

sp 1/11 + 1/27

where XALLand  XAML refer to average expression in the ALL and AMR groups,
and sp is the pooled standard deviation. However, because max T is
monotonically related to min P, where the p-values are calculated using the
t -distribution with df = 11+27–2, this method is exactly equivalent to the min
P testing method described in Subheading 3. PROC MULTTEST accom-
plishes this by resampling the 7129-dimensional vectors of gene expressions
without replacement into like data sets having 27 ALL and 11 AML patients,
then recomputing max T * for the resampled data set. The p-value for the appro-
priate intersection hypothesis is then reported as the proportion of resampled
data sets yielding max T * greater than the original observed max T.

Golub et al. (45) performed a related permutation based-analysis using the
statistic T / = (XALL – XAML)/(s1 + s2). It would be equally possible to perform
the exact closed testing procedure max T / as the base test, if desired. The
benefits of the MULTTEST analysis are that (1) it is easily available and (2) it
is known to control FWE via the closure principle.

Note that, as in the case of gene–disease tests, vector correlations are
incorporated via vector resampling. However, in the case of gene expression
data, there is no linkage, and therefore large correlations are not expected.
Nevertheless, there is sample-specific dependence because the number of
variables far exceeds the number of observations. This dependence is used to
reduce the p-values, legitimately, because the tests are exact. Furthermore, as
noted previously, the sample 7129 × 7129 covariance matrix among the gene
expressions is massively singular, but this poses no difficulties whatsoever;
the exact multiple testing procedure legitimately incorporates such sample-
specific dependencies into the multiplicity adjustments via vector permuta-
tion resampling.

Such a test is an exact permutation test when all 38

27
 distinct resampled data

sets (more than a billion) are enumerated. However, a reasonable approxima-
tion can be obtained by sampling randomly and with replacement from that set
of permutations, and this is the PROC MULTTEST approach for testing global
hypotheses. To make inferences about the specific genes, the closure method is
used, and once again, only the subsets corresponding to the 7129 ordered
p-values need to be evaluated, not the entire set of 27129 subsets. Thus, once
again, the MULTTEST procedure provides a closed testing method that is
computationally feasible.



Multiple Tests in Association Studies 163

Table 7
p-Values for Golub Leukemia Data Set

Unadjusted
Gene p-value Bonferroni–Holm Closed Min P

GENE3320 1.3824E-10 0.000001 0.0001
GENE4847 2.4355E-10 0.000002 0.0001
GENE2020 6.578E-10 0.000005 0.0001
GENE1745 0.000000010 0.000070 0.0004
GENE5039 0.000000010 0.000072 0.0004
GENE1834 0.000000015 0.000108 0.0005
GENE461 0.000000036 0.000257 0.0005
GENE4196 0.000000062 0.000438 0.0009
GENE3847 0.000000072 0.000510 0.0010
GENE2288 0.000000089 0.000635 0.0011
GENE1249 0.000000174 0.001239 0.0017
GENE6201 0.000000176 0.001250 0.0017
GENE2242 0.000000195 0.001386 0.0020
GENE3258 0.000000211 0.001500 0.0021
GENE1882 0.000000319 0.002267 0.0024
GENE2111 0.000000366 0.002606 0.0027
GENE2121 0.000000578 0.004115 0.0041
GENE6200 0.000000623 0.004428 0.0042
GENE6373 0.000000819 0.005823 0.0058
GENE6539 0.000001120 0.007961 0.0082
GENE2043 0.000001260 0.008954 0.0092
GENE2759 0.000001309 0.009304 0.0092
GENE6803 0.000001429 0.010156 0.0101
GENE1674 0.000001480 0.010519 0.0103
GENE2402 0.000001523 0.010821 0.0107
GENE2186 0.000001657 0.011770 0.0111
GENE6376 0.000002092 0.014856 0.0142
GENE3605 0.000002553 0.018133 0.0157
GENE6806 0.000002584 0.018352 0.0159
GENE1829 0.000002727 0.019364 0.0168
GENE6797 0.000003014 0.021399 0.0180
GENE6677 0.000003439 0.024412 0.0196
GENE4052 0.000003701 0.026268 0.0220
GENE1394 0.000004925 0.034948 0.0282
GENE6405 0.000005353 0.037980 0.0300
GENE248 0.000006381 0.045267 0.0346
GENE2267 0.000006488 0.046019 0.0352
GENE6041 0.000007802 0.055335 0.0421
GENE6005 0.000008019 0.056861 0.0428
GENE5772 0.000008994 0.063771 0.0471
GENE6378 0.000009591 0.067993 0.0500
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The results are given in Table 7 and the invoking MULTTEST code is given
in the Appendix. Surprisingly, several results are significant, despite the small
sample sizes and large degree of multiplicity. The association of leukemia sub-
type with the expression phenotype is confirmed; tests with closed permuta-
tion-based adjusted p-values < 0.05 indicate significant associations at the 0.05
FWE level.

Also note that 10,000 samples are generated from the permutation distribu-
tion, and all 7129 ordered tests were processed for each sample. This took only
20 min on a Windows NT workstation.

The effect of incorporating the sample-specific dependencies among the p-
values is not as great as one might hope with such massive singularity in the
covariance matrix. Naively, one might expect (or hope) that the effective
Bonferroni multiplier would be on the order of 38 = 27 + 11, the approximate
rank of the 7129 × 7129 covariance matrix, when the dependence structure is
incorporated correctly. However, this is not so. Dividing the adjusted p-values
by the unadjusted p-values gives the effective multipliers; for example, the
effective multiplier for the test involving “GENE248” is 0.0445267/
0.000006381 = 7094.0 for the Bonferroni–Holm procedure, but only 0.0346/
0.000006381 = 5422.2 for the exact min P-based closed procedure. The savings
from using the correlation structure is to reduce the multipliers some, but not
nearly to the extent suggested by the rank of the covariance matrix.

The Simes–Hommel method described in Subheading 2.3. also was applied
to these data; the results were almost identical to Bonferroni–Holm, but the run
took nearly 24 h because of the large number of tests.

Finally, we note that there are occasionally extreme outliers in the gene
expression data. The negative effects of outliers can be diminished through
log transformation as in ref. 45 or one can use the rank transformation to
avoid taking the logarithm of numbers that are less than or equal to zero. Use
of the rank transformation in conjunction with permutation resampling in
PROC MULTTEST provides an exact permutation-based closed testing
procedure as before. However, this procedure is also attractive because the
marginal tests are approximately valid rank-based permutation tests as well,
being based on the rank transform (47). When the analysis is performed on
the rank-transformed expression data, there are a few changes in Table 7,
mostly additions of variables where a large outlier masked the difference
using the two-sample t-test.

Appendix
The following SAS/STAT® code was used to produce the results shown in

Tables 5 and 6. It is assumed that the input file (in this case “SNP.DAT”) has
the result of each gene test coded as AA = 1 1, Aa = 1 0, aA = 0 1, and aa = 0 0;
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and has the binary phenotype in the first column. The macro “%trans” recodes
these data into “AA vs not AA” and “aa vs not aa” categories.

%macro trans;
%do i = 1 %to 200;
%let i1 = %eval(2*&i-1);
%let i2 = %eval(2*&i);
d&i = (bin&i1+bin&i2)=0;
r&i = (bin&i1+bin&i2)=2;

%end;
%mend;
data snp;

infile “snp.dat” lrecl=10000;
input y bin1-bin400;
%trans;
keep y d1-d200 r1-r200;
run;

proc multtest data=snp stepbon stepsid noprint out=pval stepperm n=10000;
class y;
test ca(d1-d200 r1-r200/permutation=100);
contrast “dis v nondis” 0 1;

run;
proc sort data=pval;

by raw_p;
proc print data=pval;

var _var_ raw_p stpbon_p stpsid_p stppermp;
where raw_p<.05;

run;

The following SAS/STAT® code was used to analyze the data shown in
Table 7. It is assumed that the SAS data set (“gene.express”) has the result of
each gene expression test in variable GENEi, and that the treatment indicators
(AML or ALL) are contained in the variable called “disease.”
proc multtest data = gene.express out=adjp stepperm holm n=10000 noprint;

class disease;
test mean(gene1-gene7129);
contrast “AML vs ALL” –1 1;

run;
proc sort data=adjp(where=(stppermp le .05));

by raw_p;
proc print data=adjp(where=(stppermp le .05)) noobs label;

var _var_ raw_p stpbon_p stppermp;
run;
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Statistical Considerations in Assessing Molecular
Markers for Cancer Prognosis and Treatment Efficacy

James Dignam, John Bryant, and Soonmyung Paik

1. Introduction
The development and growth of molecular biologic technology is leading to

a new appreciation of inherent heterogeneity in cancer. While long appreciated
as morphologically diverse entities, malignancies have increasingly been
explored for molecular characteristics indicative of cellular regulation and
growth, ability to adapt to and change local environments, and susceptibility to
potentially therapeutic agents. These pursuits have led to important advances
in the understanding of cancer biology, and in selected instances, have led to
the development and use of treatments designed to act on molecular targets.

Depending on the technology used to obtain the data, the evaluation of
molecular disease characteristic markers in relation to outcomes may involve
novel statistical analysis problems, as well as familiar design and analysis
issues. The recent introduction of DNA microarray technology, in which
dozens or even hundreds of molecular characteristics of a tumor can be quanti-
fied and compared to normal tissue or to other tumors, is a relevant example.
Researchers are interested in which of these molecular markers may be indica-
tive of poorer outcomes or response to specific therapies. An appropriate evalu-
ation of this extremely large volume of data challenges the limits of current
statistical methodology.

In this chapter, we examine a current research question in breast cancer
biology as an illustrative example to circumscribe methods for the analysis of
new molecular markers in relation to clinical outcome data. Specifically, the
clinical utility of a molecular characteristic of breast cancer tumors is evaluated,
using archived tumor samples combined with clinical follow-up information



170 Dignam, Bryant, and Paik

collected from a randomized clinical trial. This marker, the overexpression of the
erbB-2 (also referred to as HER2/neu) protein on the cell surfaces of breast
tumors, can potentially be used to select which chemotherapy drugs are liable to
be of most benefit, and also has led to the development of new treatment agents
designed to target the growth factor receptor encoded by the erbB-2 oncogene.

2. Prognostic and Predictive Markers In Cancer
To better anticipate outcomes and tailor treatment for individuals with cancer,

factors potentially indicative of prognosis have been investigated and employed
in clinical decision-making. The extent of disease development and spread at
time of diagnosis, usually a composite of features collectively referred to as the
stage, is an important prognostic factor in all cancers. Related characteristics,
such as size of the tumor, as well as the predominant tumor cell type and other
pathologic features, are also well-recognized indicators of prognosis. Additional
specific tumor cell characteristics, including the expression of receptors and
protein complexes on tumor cell surfaces and the presence of genes in mutated
form, may be associated with poor prognosis and/or poor response to treatment.

On this latter note, an important concept popularized in cancer studies but
possibly unknown to statisticians (or known by another name) relates to factors
that predict differential response to therapy in absence of or in addition to any
relationship to prognosis in general. The term prognostic factor is generally
reserved for those factors that identify patients at increased risk of relapse or death,
as in the case of stage mentioned above. Factors that preferentially identify patients
who respond to a given treatment are referred to as predictive factors. For example,
tumors with certain pathologic characteristics may appear insensitive to chemo-
therapy. A characteristic can be both prognostic and predictive, an example being
estrogen receptors found on the surface of breast tumor cells. The absence of such
receptors is indicative of loss of cellular regulation and generally more profound
pathologic aberrations leading to poorer outcomes. Furthermore, those patients with
estrogen-receptor-bearing tumors have been found to be amenable to treatment
with tamoxifen, an estrogen-like compound that blocks receptors and inhibits cell
growth. Thus, estrogen receptors are both a prognostic marker and are predictive of
treatment response with a specific, targeted agent. In this discussion, we will
generally refer to markers under evaluation as prognostic markers, with the under-
standing that such markers will be evaluated for any relationship to treatment effi-
cacy as well. Factors that might segregate patients who do not require
chemotherapy after surgery from among those with early stage breast cancer are of
particular interest, as there remains considerable debate regarding the worth of
such treatment among so-called ‘‘good risk’’ patients (1–3).

Clinical utility of a marker is generally defined as the circumstance whereby
knowledge of the marker value can prompt clinical action, including increased
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diagnostic vigilance or specific treatment administration, which may benefit
the patient. Because there has been a proliferation of potential markers in
cancer, and yet little progress in achieving clinical utility for most, efforts have
been introduced to define guidelines and criteria for new marker evaluation.
The College of American Pathologists (CAP) has recently defined a three-level
category ranking system for prognostic factors (4). Expert panels comprised of
pathologists, cancer biologists, clinicians, statisticians, and others have been
convened periodically to deliberate on the substance and quality of evidence
for prognostic factors in cancer. CAP category I factors have proven value
established in several studies, preferably prospective trials where marker evalu-
ation was a study objective. Category II factors are those with evidence of
utility that require further study and verification. Category III factors are
generally new markers with limited data available thus far. These include
anecdotal and small data observations, usually accompanied by a substantive
underlying biological motivation.

The concept of level of evidence (LOE) has been established for the evalu-
ation of data concerning therapeutic interventions (described at the website
http://cancernet.nci.nih.gov/clinpdq). It has been proposed that a similar
scheme be applied to prognostic marker studies, so that physicians and other
scientists can more uniformly and objectively evaluate the literature and bet-
ter develop a research agenda to address outstanding questions. Table 1
shows the LOE evaluation criteria suggested by Hayes and colleagues as part
of a comprehensive system to evaluate markers for clinical utility (5). Their
TMUGS (Tumor Marker Utility Grading System) was developed in response
to the somewhat haphazard manner in which marker information has
developed over time, contributing to the relatively small improvement in
prospective clinical evaluation of cancer patients. The LOE scale is applied
to available clinical studies and, using this information together with an
assessment of the assay methods, a semiquantitative score is derived reflect-
ing to what extent evaluation of patients for the marker should become part
of routine clinical decision-making.

It should be noted that, while a study satisfying the CAP category I or LOE
I criteria would be ideal for unequivocally establishing the role of a new marker,
such studies are unlikely to be conducted. The financial resources available for
studies focused on markers rather than potentially therapeutic interventions are
limited, and there are ethical implications of increasing sample size for thera-
peutic clinical trials to accommodate adequately powered ancillary studies of
prognostic markers. Despite these barriers to the conduct of optimally designed
marker studies, there is substantial opportunity for improvement of such studies
within practical limitations, as discussed in the remainder of this chapter.
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3. Statistical Issues in Prognostic Marker Studies
Statistical issues to be considered in prognostic marker studies are numer-

ous. First, the method in which the marker is acquired may involve laboratory
assays and procedures in which reproducibility and validity are concerns.
Furthermore, there may be competing laboratory evaluation methods with
different scoring systems for a given marker, and various discrete cut-points
used for classification of assay results into positive or negative findings. An
appropriate evaluation of a new marker must take into account existing prog-
nostic factors, as disease characteristics are often correlated, and a new marker

Table 1
Levels of Evidence for Grading Clinical Utility of Tumor Markers

Level Type of evidence

I Evidence from a single, high-powered, prospective, controlled study
(with therapy and follow-up dictated by protocol) specifically designed to
test marker or evidence from meta-analysis and/or overview of level II or
level III studies. Ideally, study is a prospective, controlled randomized trial
in which diagnostic and/or therapeutic clinical decisions in one arm are
determined at least in part on the basis of marker results, and diagnostic
and/or therapeutic clinical decisions in the control arm are made indepen-
dently of marker results. However, study design may also include prospec-
tive but not randomized trials with marker data and clinical outcomes as
the primary objective.

II Evidence from a study in which marker data are determined in relationship
to prospective trial that is performed to test therapeutic hypothesis but not
specifically designed to test marker utility (i.e., marker study is secondary
objective of protocol). However, specimen collection for marker study and
statistical analysis are prospectively determined in protocol as secondary
objectives.

III Evidence from large but retrospective studies from which variable num-
bers of samples are available or selected. Therapeutic aspects and follow-
up of patient population may or may not have been prospectively dictated.
Statistical analysis for tumor marker was not dictated prospectively at time
of therapeutic trial design.

IV Evidence from small retrospective studies that do not have prospectively
dictated therapy, follow-up, specimen selection, or statistical analysis.
Study design may use matched case controls, etc.

V Evidence from small pilot studies designed to determine or estimate distri-
bution of marker levels in sample populations. Study designs may include
“correlation” with other known or investigational markers or outcome but
is not designed to determine clinical utility.

Adapted from the Tumor Marker Utility Grading System of Hayes et al. (5), with permission
from Oxford University Press.
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may add little additional information over established factors (which may be
easier and more economical to obtain). Thus, modeling with multiple covariates
is required, and statistical power for these models may be inadequate, particu-
larly when evaluating whether there exists any differential treatment response
associated with marker values, represented by interaction terms in the model.
Additional problems include multiplicity issues associated with examining
multiple cut-points for a marker and examining multiple related outcome
measures. Several excellent summaries of statistical problems in prognostic
factor studies have appeared in recent years, and in this chapter we reiterate
much of this work (6–8). Specific issues related to evaluation of erbB-2 in
relation to breast cancer are discussed throughout Subheading 4.

3.1. Assay Evaluation

Any laboratory procedure is subject to measurement error, and modern
molecular biology techniques in particular may involve complex processes that
must be carefully controlled. Validity of results from such assays must be
established through standard sensitivity and specificity evaluation, provided
that a ‘‘gold standard’’ evaluation method and result are available. For new
markers and techniques, such a standard may not be available, and expert
consensus may be required to standardize and score results. (See Chapter 5 for
a discussion of many of these issues.) In addition, inter-laboratory variability
may need to be accounted for, as many studies in cancer involve the enrollment
of patients from multiple institutions where laboratory quality and practice may
differ. Finally, most tumor marker studies are conducted retrospectively on
archived materials that may be sub-optimal, and it is important to address the
validity of findings from such studies in relation to the types of samples that
might be used in prospective evaluation of patients in clinical practice.

3.2. Scoring and Classification of Marker Results

The choice of cut-points for discrete classification of assay results is often
not well motivated. When multiple classification schemes are investigated, and
the grouping that produces the largest difference in outcome subsequently
selected, the result can be a serious inflation of the apparent prognostic value
of the marker, and other studies may then fail to reproduce the observation
(9,10). Consequences of evaluating numerous cut-points were illustrated in a
study by Hilsenbeck and Clark (11). In their study, simulations were conducted
whereby multiple cut-points were applied to a continuous null marker (e.g.,
with no prognostic significance) to create two groups that were then compared
in relation to clinical outcomes. Type I error rates increased from the expected
5% to 20–25% and higher when 5–10 candidate cut-points were tested and the
maximum test statistic obtained was taken as the overall result of the marker
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evaluation. The authors also provided a review and comparison of methods for
adjustment of p-values obtained from testing of prognostic markers. Cut-points
might be avoided altogether by using continuous marker values, the functional
form of which might be obtained by various exploratory methods such as
splines (12–14).

3.3. Statistical Power and Modeling

Statistical power is often inadequate in prognostic factor studies, and
because most such studies are retrospective and observational in nature, the
problem is further exacerbated by lack of a randomization mechanism, missing
or misclassified covariates, and other problems. Several authors have
commented on sample size requirements for adequate detection of main and
interaction effects in prognostic factor studies. For simplicity of the discus-
sion, we assume here that the marker can be partitioned into a dichotomy. The
most common effect measure in prognostic factor studies with survival or
related time-to-event endpoints is the risk ratio, which is usually computed
from the Cox proportional hazards model (15). No definitive rule exists for
effect size, but generally a marker that imparts a risk of twofold or greater
would be considered to have clinically consequential potential. For the multi-
plicative relative risk scale, markers that impart small risks are not likely to be
found statistically significant in small samples. The frequency distribution of
the marker values will also influence statistical power, and in general these
frequencies cannot be manipulated but are subject to the observed prevalence
of the marker. In most cases, prevalence of unfavorable values for the marker
will not be near the optimal value of 50%. Schoenfeld derived the required sample
size for the Cox proportional hazards model, obtaining the same formula as that
for two-sample log-rank test comparison under the proportional hazards assump-
tion (16). For a given two-sided significance level α, power 1–β, and risk ratio
(RR) of interest, the total number of failures required is

n = Z 1-α / 2 + Z 1-β
2

1n(RR)
2ω (1-ω)

 ,

where Z1–α/2 and Z1–β are 100 × (1 – α/2)% and 100 × (1 – β)% standard nor-
mal deviates, respectively, and ω is the proportion of patients with the marker
value of interest.

Schmoor and colleagues have extended Schoenfeld’s results to account for
correlation between the marker of interest and some other covariate, as analy-
sis of new prognostic factors necessitates the consideration of known prognos-
tic markers (17). Their derivation results in a straightforward modification of
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the above equation that incorporates a "variance inflation factor" to account for
correlation between model covariate X1 and another covariate (or composite of
other covariates) X2:

n = Z 1-α / 2 + Z 1-β
2

1n(RR)
2ω (1-ω)

· 1
1-ρ2

 ,

where ρ is the correlation between X1 and X2.
For interaction effects, the situation is more challenging. Petersen and

George (18) addressed sample size requirements for study designs of
interaction effects in 2 × K factorial experiments, where there are two treat-
ments and a marker takes on k = 2, 3,.., K values. Again, a modification of the
usual sample size formula for hazard ratios is obtained. For the case of two
treatment groups (i = 1, 2) and a two level prognostic marker (j = 1, 2), we
define ∆1 = λ11/λ21, the treatment hazard ratio for level 1 of the marker and
∆2 = λ12/λ22, the treatment hazard ratio for level 2 of the marker. We wish to
test Ho: ∆1/∆2 =1.0 using a two-sided α level test with power 1 – β against a
specific interaction effect ∆1/∆2 = θ ≠ 1.0. Under a proportional hazards
assumption, the estimator ln(∆1/∆2) has variance approximately equal to ∑ij l/nij,
where nij is the number of failures observed in treatment i and marker level j. It
follows that the number of failures needed to achieve power 1 – β must approxi-
mately satisfy

1/nij∑
ij

-1

 = Z 1-α / 2 + Z 1-β
2

1n(∆1/∆ 2)
2

 .

Using the fact that the harmonic mean of the nij’s is less than or equal to the
arithmetic mean, this equation shows that the total number of failures required
to detect a treatment by marker interaction with power of 1 – β is at least four
times greater than the number of failures needed to detect a similarly sized
treatment hazard ratio within a population that is homogeneous with respect to
the prognostic marker. In designed experiments where treatment allocation
could be balanced within strata of marker values via prospective sampling (so
that n1j ≈ n2j for j = 1, 2), then the “four times greater” rule holds well; in cases
of unequal frequencies of nij, sample size requirements will be even larger.
Schmoor and colleagues also addressed interaction effects taking other
covariates into consideration for the case of exponential failure times, which
provides an approximate solution for the more general case (17).

In addition to statistical power, there are numerous other statistical consid-
erations in prognostic marker studies specifically related to modeling. These

^ ^
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include verification of the correct model form, variable selection methods (e.g.,
stepwise regression and others), the aforementioned issues concerning defini-
tions of discrete covariates, and model validation on independent data. A
detailed discussion of concerns related to modeling can be found in Simon and
Altman (6) and George (7). Klinger and colleagues discuss some alternatives
to typical survival analysis modeling methods, such as regression trees, in the
context of oncology research (19).

4. Case Study: erbB-2 and Breast Cancer Treatment Response
4.1. Background: erbB-2 and Breast Cancer

The erbB-2 oncogene (also known as c-erbB-2 and HER2/neu), which
encodes a specific transmembrane growth factor receptor of the tyrosine kinase
family, was found to be amplified in a human breast carcinoma cell line by
King and colleagues in 1985 (20). Subsequently, Slamon and colleagues
reported that amplification of the erbB-2 gene was present in 20–30% of breast
cancers and was associated with shorter survival and disease-free survival time
(21,22). It was conjectured that the basis for this association was a greater cell
proliferation rate in tumors with erbB-2 amplification. These and subsequent
analyses showed that erbB-2 (either amplification of the gene or overexpression
of its protein product) was prognostic among both patients with tumors that
had spread to the axillary lymph nodes (node-positive patients) and among
patients with tumors confined to the breast (node-negative patients) (23–25).
Other reports, however, did not confirm the relationship, or did not show a
strong independent prognostic value for erbB-2, and there has been contro-
versy in establishing the role of the marker as a clinically useful prognostic
factor (26–29). Some authors have related this controversy directly to issues
concerning laboratory evaluation of the marker (23,30–32). Nevertheless, the
weight of evidence currently suggests that overexpression of erbB-2 does
impart a less favorable prognosis. A recent meta-analysis of approx 35 studies
appearing between 1996 and 1999 found erbB-2 to be a moderate but not
particularly strong risk factor for breast cancer recurrence and death (33).

Early studies of erbB-2 suggested that it was not only associated with poor
prognosis but also with a differential benefit depending on the chemotherapy
drug or regimen administrated. Several studies suggested that tumors with
overexpression did not respond as well to cyclosphosphamide, methotrexate,
and fluorouracil (CMF, a commonly used chemotherapy regimen) as erbB-2
negative tumors (26,27,34), while others did not confirm this finding (35,36).
Other studies suggested that erbB-2 overexpressing tumors were less sensitive
to tamoxifen (37), again an observation not confirmed by others (38,39).

Overexpression of erbB-2 was more convincingly correlated with response
to regimens containing doxorubicin (commercially, Adriamycin, a member of
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a class of agents known as anthracyclines) in a series of studies appearing in
the middle to late 1990s. Muss and colleagues first reported that a more inten-
sive dose of cyclophosphamide, doxorubicin, and fluorouracil was of greater
benefit among erbB-2 positive patients than among those with tumors that did
not overexpress erbB-2 (40). A subsequent analysis of the same patient cohort
and additional data also supported this conclusion (41). Independent reports,
one of which is discussed in Subheading 4.2., have also supported an associa-
tion between overexpression and response to doxorubicin, and thus suggest
that one might use the marker in clinical practice to choose treatment, as least
for this agent (42,43). Additional investigations have explored whether those
with overexpression would preferentially benefit from taxanes, but little reli-
able information is available thus far. Finally, a targeted agent for the erbB-2
receptor, trastuzumab (Herceptin, commercially), has appeared to show pref-
erential efficacy among tumor cells overexpressing erbB-2 in preclinical stud-
ies (44). Thus far, efficacy trials of trastuzumab in humans have been conducted
exclusively among erbB-2 positive patients. Assuming the mechanism of ac-
tion is correct, it is plausible that little or no benefit would be realized for this
agent among those whose tumors are erbB-2 negative.

4.2. The National Surgical Adjuvant Breast
and Bowel Project B-11 Trial

The National Surgical Adjuvant Breast and Bowel Project (NSABP) is a
federally funded multicenter cooperative clinical trials group that has carried
out studies addressing the treatment and prevention of breast and colorectal
cancers. A spectrum of modalities has been investigated, including surgical
procedures, radiotherapy, chemotherapy, hormonal therapy, and biologic
agents. In parallel with this effort, pathologic materials are collected and
analyzed to investigate ancillary questions in the natural history and treatment
of these cancers. Pathology materials are evaluated concurrently with conduct
of the studies, and are also archived for future use.

In an earlier NSABP study, erbB-2 protein overexpression was found to be
associated with poorer survival prognosis and other unfavorable pathologic
features among patients with either node-negative or node-positive breast can-
cer (45). Subsequently, the potential for differential response to therapy ac-
cording to erbB-2 status was investigated in NSABP protocol B-11, a
randomized clinical trial evaluating the addition of doxorubicin to a two-drug
chemotherapy regimen of L-phenylalanine mustard and fluorouracil (denoted
PF) (43,46). Although PF has been superseded as a treatment option for breast
cancer and other trials were available for erbB-2 evaluation, because the B-11
regimens differed only by the addition of doxorubicin, the trial was selected
for evaluation first as a ‘‘proof of principle’’ study to address the potential
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erbB-2–doxorubicin interaction. What follows is a detailed description of the
analysis.

In protocol B-11, women with lymph node positive operable breast cancer
were treated by either radical or modified radical mastectomy and randomized
to receive either (1) PF or (2) PF and doxorubicin (PAF). Between June 1981
and September 1984, 707 patients were randomized, of whom 682 met study
eligibility requirements. Further details of the study design and primary find-
ings have been published previously (46). Endpoints for evaluation of erbB-2
in relation to response to doxorubicin were the same as those for the primary
analysis of B-11. Disease-free survival (DFS) time was defined as time from
surgery until breast cancer recurrence at any local, regional, or distant anatomic
site, new primary cancer of any site, or death prior to these events. Survival
time was defined as time until death from any cause. Two additional secondary
endpoints, distant disease-free survival (DDFS) and recurrence-free survival
(RFS), were addressed in the study but are not presented here.

4.2.1. Evaluation of erbB-2 in NSABP Protocol B-11 Tumor Samples

While about 200 patients had paraffin-embedded tumor blocks, > 90% (638
patients) had archived precut unstained tumor sections or hematoxylin–eosin
(H&E) stained sections prepared as slides, and, consequently, these materials
were used to perform evaluation for erbB-2. Such material is amenable to
immunohistochemical (IHC) analysis to determine erbB-2 protein overex-
pression. IHC staining was performed using a cocktail of two antibodies
(described in detail in [43]) using both the unstained materials and stained
slides. The determination of whether there was overexpression was based on a
simple dichotomy, whereby the reaction was scored as positive if any cells
showed definitive staining. Two individuals rated the slides together while
blinded as to treatment assignment or outcome of the patient.

In this analysis, one immediate concern was whether the unstained and stained
slides could be similarly stained and interpreted for erbB-2 and thus a simple
sensitivity and specificity analysis was conducted. A comparison of staining
sensitivity was performed whereby the assays of 51 cases were replicated using
both stained and unstained sections available on the same patients. A simple
cross-tabulation of positive and negative findings according to the two methods
indicated 98% agreement (50 of 51 cases). Another quality assessment of mate-
rials involved a comparison of freshly cut sections from the paraffin blocks and
previously cut and prepared slides. Sixty cases for which paraffin blocks and
slides were available were assessed, and a 12% false-negative rate (25 were posi-
tive in fresh section, 22 were positive in slides) was observed. Thus, an analysis
based on slide materials may be biased toward an attenuation of the effect of
erbB-2 positivity, in that erbB-2 positive cases may be classified as negative.
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Scoring methods for IHC and other assays of erbB-2 have been the subject
of considerable controversy (47). For the IHC analysis results in the NSABP
study, the percentage of positive staining for each patient’s specimen was
computed. The distribution was highly bimodal at 0% and 100%, suggesting
that the dichotomous classification was the best approach with the available
material. A further rationale for choosing the dichotomous rating system was
that, in unstained and H&E stained slides rather than fresh material, it was
deemed difficult to ascribe meaning to the quantitative percentage of cells stain-
ing, as has been done by other investigators, because the result could be largely
an artifact of the laboratory procedure. Questions of assay reliability for IHC
methods have led some to suggest that fluorescence in situ hybridization (FISH)
analysis, which measures gene amplification (copy number) rather than protein
expression, would be preferable (24,30,48).

4.2.2. Relationship of erbB-2 to Other Patient and Tumor Characteristics

Because negative and positive prognostic factors are often interrelated, the
joint distribution of erbB-2 overexpression and other patient and tumor char-
acteristics was examined. About 37.5% of patients exhibited erbB-2 positive
tumors. Examining the cross-classification of factors singly with erbB-2, it
was found that a higher number of positive nodes, larger tumor size, and estro-
gen receptor negative tumors were associated with erbB-2 overexpression. To
take factors into account jointly, a logistic regression model relating erbB-2 to
all covariates was employed, yielding similar results.

4.2.3. erbB-2 as a Predictor of Response to Doxorubicin
The explicit hypothesis of this investigation was that the benefit of doxoru-

bicin would be largely confined to those patients with erbB-2 overexpression,
that is, outcomes would differ in favor of PAF among patients with
overexpression, while among those without overexpression, outcomes for PF
and PAF would be similar. Accordingly, comparisons of treatment outcomes
were conducted separately for the cohorts of erbB-2 negative (n =399) and
erbB-2 positive (n = 239) patients. Kaplan–Meier estimates of disease-free
survival (DFS) and survival are shown in Fig. 1. For each erbB-2 cohort, a
PAF/PF relative risk (RR) estimate and corresponding significance test for the
null hypothesis RR = 1.0 were obtained by the Cox proportional hazards model
containing other relevant prognostic covariates (patient age at surgery, clinical
tumor size, lymph node status, and estrogen receptor status). Results suggested
that the benefit of doxorubicin (e.g., the PAF treatment arm) was evident only
for those patients overexpressing erbB-2. This was confirmed by a formal test
of differential benefit for doxorubicin according to erbB-2 status by combining
all patients and testing an interaction term in the proportional hazards model
(Fig. 2). The resulting interaction tests for the various endpoints were statisti-
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cally significant or nearly significant at conventional levels. Similar results
were obtained for the RFS and DDFS endpoints.

In the B-11 study, the DFS and survival endpoints were considered primary and
the other endpoints secondary, and findings for all four endpoints were consistent.
Nevertheless, concern over multiplicity of hypothesis tests prompted the determi-
nation of a p-value for the interaction effect adjusted for the number of tests. A
Bonferroni type adjustment, whereby one multiplies the minimum p-value by 4,
would constitute an overly conservative adjustment here, because test statistics for
the four endpoints are highly correlated. Instead, bootstrap resampling was used to
estimate the correlation among the four tests, and the p-value associated with the
maximum absolute Z value was computed by numerical integration. The adjusted
p-value obtained for the hypothesis of interaction between treatment and erbB-2
status was 0.04.

Fig. 1. Kaplan–Meier plots for PF and PAF treatment arms according to erbB-2
status. Two endpoints, disease-free survival (DFS) (top row) and survival (bottom
row), are shown. Relative risks (RR) and p-values shown on each plot are from the
Cox proportional hazards model with covariates for treatment, age at surgery, clinical
tumor size, pathologic lymph node status, and estrogen receptor expression.
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4.3. A Prospective Study for erbB-2 Targeted Therapy

As a targeted therapeutic strategy, researchers have created a monoclonal
antibody to bind to the extracellular domain of the growth factor receptor
encoded by the erbB-2 oncogene, with the goal of inhibiting growth of tumors
overexpressing the receptor. Through cell line experiments and animal xeno-
graft models, the antibody was demonstrated to have significant antipro-
liferative effects. A genetically engineered successor agent (trastuzumab,
Herceptin, commercially) was subsequently developed and found to be effica-
cious in patients with metastatic breast cancer overexpressing erbB-2 (49,50).
The NSABP as well as other clinical trials groups have recently begun trials
to evaluate Herceptin in the adjuvant setting. The NSABP trial (protocol B-31)
will compare doxorubicin and cyclophosphamide followed by taxol with that
same regimen plus Herceptin, in patients with operable erbB-2 positive tumors

Fig. 2. Relative risk for PAF vs. PF according to erbB-2 status. The p-values for
interaction between treatment and erbB-2 status are from a Wald test of the cross-
product term of these covariates in the Cox proportional hazards model.
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and positive lymph nodes. This study will enroll 2700 patients and require
roughly 8 yr until definitive results are obtained. Several ancillary investiga-
tions concerning erbB-2 are planned, as described in the following paragraphs.

In this multiinstitutional study, participating centers will perform erbB-2
testing using either IHC or FISH and score results as positive or negative
according to a common criterion (only patients testing positive will be
enrolled). Tumor specimens will also be provided to the central pathology labo-
ratory, where a comprehensive reevaluation of erbB-2 will be conducted in
order to address several ancillary study aims. These are: (1) to verify the
reported status of the tumor from the institution; (2) to compare results of the
various assays, with the opportunity for a direct comparison of methods that
measure protein overexpression and those which evaluate gene amplification;
and (3) to evaluate whether the assays can predict response to Herceptin. Six
assay types will be performed: the DAKO HercepTest kit, TAB250, TAB250/
pAb-1 cocktail (used in the B-11 analysis), CB-11, HER-2 FISH assay, and
array-based CGH. Several other important pathologic studies will also be
performed. One of these involves determining whether expression of the phos-
phorylated erbB-2 receptor (an indicator that the receptor is capable of bind-
ing) in the tumor is prognostic for outcomes or predictive of response to
Herceptin, and to evaluate whether this frequency of expression differs in post-
relapse tissue among patients either receiving or not receiving Herceptin.
Another involves evaluating whether shed extracellular domain of erbB-2 or
autoantibodies found in patient serum are associated with outcomes or response
to Herceptin.

Explicit hypotheses and analytic methods for these investigations are
described in the B-31 protocol document. By the addition of these ancillary stud-
ies to this randomized trial designed to evaluate the efficacy of Herceptin in
addition to multidrug chemotherapy among erbB-2 positive patients, the B-31
study will address in a comprehensive and prospective manner many of the out-
standing research questions concerning erbB-2.

5. Summary and Recommendations for Analyzing Molecular
Markers in Clinical Cancer Research

The case study presented here illustrates how previously collected clinical
outcomes data, even with a ‘‘retired’’ treatment regimen, can serve as a vital
resource for advancing the understanding of the natural history of cancer and,
furthermore, can play a role in refining treatment selection for current patients.
The availability of archived tumor samples allowed for the augmentation of
the long-term outcome data under randomized treatment assignment with a
modern molecular marker and yielded an important finding of biologic and
clinical relevance today. This study, combined with the foundational work that
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preceded it and the concurrent results from other large clinical trials groups,
have fostered debate regarding breast cancer clinical practice, with erbB-2
evaluation now being advocated by some experts (but not others) as part of a
routine clinical evaluation prior to treatment (28,51). In a recent review and
consensus statement regarding prognostic factors in breast cancer from the
College of American Pathologists (52), a detailed list of issues, guidelines, and
recommendations related to erbB-2 were provided, many of which were
reviewed in this discussion. It is clear that erbB-2 will remain an important
research area in breast cancer treatment.

Despite the apparent interaction between erbB-2 and response to doxorubi-
cin-containing chemotherapy regimens, it has yet to be established unequivo-
cally which mechanism is at play in this relationship. In the NSABP study, it
can be argued that two factors varied between the PF and PAF groups: the
addition of doxorubicin and a simple increase in total chemotherapy dose via
the use of three agents instead of two. Similarly, in the CALGB study, the
dose of doxorubicin and the other agents varied between treatment groups.
Thus, in either study, it can be conjectured that (1) erbB-2 positive tumors
may be specifically sensitive to doxorubicin or (2) erbB-2 tumors may be
more resistant to chemotherapy and that greater total chemotherapy exposure
is beneficial. There is supporting biological information for both mechanisms.
Statisticians and other researchers should take heed that, particularly in
retrospective studies, observations may be simultaneously consistent with
several hypotheses.

To this end, a follow-up investigation by the NSABP has explored further
the hypothesis that doxorubicin-containing chemotherapy regimens might
specifically be more advantageous in patients with erbB-2 overexpression.
Among 2295 eligible node-positive patients entered onto NSABP Protocol
B-15, a randomized trial comparing AC, CMF, and a regimen of AC followed
by reinduction CMF (53), 2034 (89%) had immunohistochemical analysis of
erbB-2. Statistical analyses were similar to that of B-11, with the primary
study hypothesis being whether there was a differential benefit from the doxo-
rubicin-containing regimen (AC) relative to CMF according to erbB-2 status.
Findings indicated that the superiority of AC over CMF was restricted to
erbB-2 positive patients, although the differences did not reach statistical sig-
nificance (54). These results provide further evidence that a regimen contain-
ing doxorubicin (or other anthracyclines) is preferred for patients with erbB-2
positive tumors, and unlike the B-11 study, directly addresses current treat-
ment guidelines, as AC and CMF remain in wide use.

In this chapter we have described a retrospective analysis where current
clinical data and archived biologic samples were used to address a current
question in breast cancer. Despite limitations of the materials and the retro-
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spective nature of the investigation, a pragmatic and thoughtful analysis
yielded valuable information. With the proliferation of biotechnology, there
is an ever-greater need to evaluate markers in cancer. In recent years, statis-
ticians have provided extensive comment on the past and current state of
research in marker studies, and have proposed appropriate prospective study
designs to improve the quality of research. For example, Simon and Altman
describe a study classification scheme similar to that used to describe studies
in the evolution of therapeutic agents (6). Phase I studies are those prelimi-
nary studies that establish the potential worth of a given marker. Phase II
studies are small, exploratory studies that often demonstrate the usefulness
of a marker under less than ideal circumstances. Phase III prognostic factor
studies are large, definitive studies that provide a considerable weight of evi-
dence for or against a marker’s clinical utility. Their criteria for phase III
prognostic factor studies are as follows: First, a valid, reproducible assay will
be needed, with documentation of inter- and intra-laboratory variation. Asses-
sors of assay results should be blinded to clinical outcome. The study group
should be a well-defined cohort for whom the study referral pattern and eligi-
bility are described. The number of patients subsequently unevaluable for the
marker should be small (preferably <15%). Treatment should be standardized
for all patients or be randomized. Hypotheses should be stated a priori and
include specification of endpoints, definition of scoring for the marker result,
identification of patient subsets of interest, and other prognostic factors to be
included in the analysis. The number of patients and events should be suffi-
ciently large so that power is adequate for clinically relevant effects. Multiple
regression models or stratification methods should be used to establish that
the marker is prognostic over and above other known prognostic factors.
Confidence limits should be presented for effect measures, with multiplicity
of tests taken into consideration.

Statisticians contributing to the summary statement on prognostic factors
from the College of American Pathologists (4) similarly presented a broad
and comprehensive view of the design needs of future prognostic factor stud-
ies (Table 2). These considerations, as well as the comments and recommen-
dations of authors cited throughout this chapter, should serve as a valuable
guide for the applied statistician engaged in this important research area.
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Table 2
General Statistical Recommendations from
College of American Pathologists Conference XXXV

1. Clinical trials should be specifically designed to test whether a factor has
prognostic value. This question can be included in a therapeutic trial, but careful
attention must be paid that there is sufficient statistical power to answer both the
prognostic and the treatment questions.

2. Prognostic factor question must be prioritized for importance by multidisciplinary
groups of investigators working with each cancer type so that the most important
factors are quickly evaluated.

3. Journals should adopt publication guidelines for reporting results from prognostic
factor studies, including the following elements:

a. Assessment of possible patient selection bias

i. Source of patients for the study
ii. Difference between patients with and without tumor marker in terms of

1. Baseline demographic and tumor characteristics
2. Treatment received
3. Efficacy outcomes

b. Statement about how missing data were handled
c. Cut-point selection for method stated
d. Adjustments for multiple testing
e. Statistical power analysis if conclusion is negative
f. Large validation studies should be given publication preference after initial

exploratory work for a tumor marker.

4. Organization addressing prognostic factor categorization should come to consensus
about the ranking of factors, or at least harmonize their recommendations
relative to each other, so that a clear picture of the relative value of various
factors is developed.

5. Continued research into multivariate analysis techniques for incomplete data and
for evaluation of multiple factors is needed.

Reprinted from ref. 4 with permission from the College of American Pathologists.
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Power of the Rank Test for Multi-Strata
Case-Control Studies with Ordinal Exposure Variables

Grzegorz A. Rempala and Stephen W. Looney

1. Introduction
In epidemiological studies of rare diseases (i.e., rare types of cancer)

researchers often face major difficulty in obtaining enough cases of the disease
to make valid comparisons using odds-ratio estimators. Moreover, they may
wish to adjust for the influence of certain extraneous factors so that the effect
of the variables of interest can be more clearly visible. This is especially so in
case-control studies when it is known that the effects of the risk factor are
confounded with such variables as age, sex, and individual physical character-
istics of the subjects. These confounding variables often make it difficult (or
even impossible) to directly compare the exposed and unexposed groups.
Typically, to evaluate the effect of the risk factor in these situations within the
odds-ratio framework, methods based on data stratification and within-stratum
dichotomization are used. The latter is usually accomplished by classifying
cases and controls within each stratum as either exposed or unexposed to the
risk factor under investigation. Whereas the stratification is often unavoidable,
it may not be practical to dichotomize exposure. Instead, one might wish to
consider multiple levels of the exposure variable, based on some appropriate
ordinal or even continuous scale (cf., e.g., Greenberg and Tamburro [1]).

The statistical problem of testing for the exposure effect in such settings has
been considered by several authors and a variety of approaches have been
discussed. In particular, a test based on the rank of the exposure level of each
case within a group of individually matched controls was proposed (2) and a
study of its large sample properties under the null hypothesis followed (3). The
analysis in ref. 3 indicated that the rank test method is asymptotically efficient
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when compared to the best parametric tests under a logistic shift model and
under most circumstances significantly outperforms tests based on a dichoto-
mized exposure variable, even for fairly small sample sizes. The successful
application of the rank test in several case-control studies when the exposure
variable was ordinal rather then dichotomized (1,4,5) has proved it to be a
valuable alternative to more complicated methods, such as multistrata condi-
tional logistic regression. It appears that the rank approach is especially suit-
able in case-control studies where the exposure variable is poorly characterized
but the rank of the exposure of each case among its matching controls is rela-
tively easily established (cf. Subheading 6.).

The purpose of this chapter is to examine some properties of the rank-based
method within the multistrata case-control study framework. In particular, we
are especially concerned here with methods of approximating the power of the
appropriate tests for small and moderate sample sizes. This issue is particularly
important in the analysis of retrospective/prospective studies of rare diseases
(or common diseases of low frequency) when the number of cases is limited.
Herein we provide a simple bootstrap algorithm for calculating the approxi-
mate power of the appropriate test statistics under translation alternatives.
Further, we compare the obtained results with the formulas for exact power of
the proposed rank tests under the logistic shift model. The latter is obtained by
considering the distributions of appropriate stratum-specific exceedance
statistics under the logistic translation alternative. The bootstrap algorithm
considered here is somewhat similar to the one for the two-sample Wilcoxon
statistic presented by Collings and Hamilton (6), but unlike their algorithm it
appears to be consistent.

2. Testing Against a Shift Alternative with Multiple Strata
Suppose that in our retrospective study we have total of n cases of disease

under investigation. Here and elsewhere we assume that n is a fixed and,
usually, a small number. For instance, in a typical study of rare diseases one
would have n ≤ 10. Corresponding to the ith case i = 1,...,n are ni controls,
usually matched for known or suspected sources of unwanted variation. The
case together with its controls form a stratum, and throughout this chapter we
assume that there is only one case per stratum and no cases or controls belong
to more then one stratum. These assumptions are made mostly for convenience,
and the method presented here can be extended to accommodate more compli-
cated study designs (see, e.g., Cuzick [3]). For each stratum i (i = 1,...,n) let Ri

be the rank of the exposure of the case among all (ni + 1) individuals in this
stratum. There have been at least two tests based on the sum of the Ri’s pro-
posed in the literature (2,3). One is based on the statistic
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W1 = Ri∑
i = 1

N

(2.1)

and is simply a combination of stratum-specific Wilcoxon two-sample statistics
(with respective sample sizes 1 and ni). The second one is a weighted version
of W1,

W2 = Ri

ni + 2
∑
i = 1

N

(2.2)

By considering the marginal likelihood of ranks for all strata combined, it
can be argued that the test based on W2 is locally most powerful for testing
against a logistic shift alternative (cf., e.g., Randles and Wolfe [8, chap. 9]).

Let Fi(x) be the distribution function of the control exposure in the ith
stratum for i = 1,...,n. If we assume that the corresponding case exposure distri-
bution is Fi(x – ∆), where ∆ is the across-strata treatment effect independent of
i, then either Eq. (2.1) or Eq. (2.2) could be used to test

H0 : ∆ = 0 vs H1 : ∆ > 0 (2.3)

rejecting H0 for large values of the statistic. Whereas for small ∆ (local alterna-
tive) the test based on W2 would perhaps be preferred over W1, especially if we
have reason to assume that Fi’s are logistic cumulative distribution functions
(cdf’s), the simpler form of W1 makes it a reasonable competitor for nonlocal
alternatives. Obviously, tests based on W1 and W2 will coincide when all strata
are of equal size.

As in the one-stratum Wilcoxon rank-sum statistic, both W1 and W2 are distri-
bution-free under H0 but depend upon particular forms of the Fi’s under H1.
Thus, without some additional assumptions about the forms of the Fi’s, there is no
closed-form expression for the power of the tests based on Eq. (2.1) or Eq. (2.2).
Often, even if such assumptions about the stratum exposure distribution are
made, the small number of individuals within strata makes their empirical vali-
dation (e.g., by means of a goodness-of-fit test) virtually impossible. This is typi-
cally the case in the studies of rare diseases with which we are concerned here.

It seems to be of interest, therefore, to introduce a procedure that would
allow us to obtain a reasonable approximation of the power of tests based on
Eq. (2.1) or Eq. (2.2) for testing Eq. (2.3) without any reference to the particu-
lar form of the stratum-specific exposure distributions. This can be accom-
plished by implementing a bootstrap method similar to that used for
approximating the power of the one-stratum Wilcoxon rank-sum test. However,
there is one important difference: in our case the bootstrap algorithm will have
to perform in a multistrata setting with only one case exposure value per stratum.



194 Rempala and Looney

3. Bootstrap Algorithm for Estimating Power

Suppose that the amount of the across-strata shift (∆) between cases and
controls is known to be equal either to 0 or some positive constant ∆ and let us
denote the power of an α-level test (0 < α <1) based on either W1 or W2 against
a simple alternative ∆ = d > 0 by Π(d,α). As indicated earlier, Π(·) depends
also on the Fi’s — the exposure distributions for each strata — but for the sake
of simplicity we will not reflect this fact in our notation. It should also be noted
here that owing to the discrete nature of the test statistics, α may take only
finitely many values and thus when performing exact tests we may achieve
only finitely many (“natural”) α levels.

To approximate Π(d, α) we first must obtain estimates of the exposure
distributions Fi for i = 1,...,n. A number of different approaches are possible
here, depending, for instance, on whether we measure exposure on the continu-
ous or ordinal scale. Because in our study of angiosarcoma (cf. Subheading 6.)
we may take the Fi’s to be continuous, we consider the following version of a
stratum-specific empirical cdf.

For the i-th stratum let z(l),... z(ni  + 1) be the ordered values of observed expo-
sure levels for all ni controls belonging to strata i, combined with the translated
i-th case exposure level (i.e., the i-th case exposure value minus the quantity d).We
assume for convenience that there are no ties among the z’s — should that not
be the case the procedure described here applies with minor modifications, as
long as there are at least two distinct z’s. Define z(0) = 2z(1) – z(2) and z(ni +2) =
2z(ni  + 1) –z(ni)

.

Let Fi denote the continuous cdf obtained by assigning probability 1/(ni + 2)
uniformly over each interval (z(k), z(k + 1) ) for k = 0,...,ni + 1. Given the Fi’s we
may estimate Π(d, α) as follows:

1. For each stratum i, draw a computer generated sample of size ni + 1 from Fi. Add
the quantity d to the first observation. This will simulate the shift in the exposure
distributions between the case and the controls.

2. Using the first observation as the case value, the statistic Wi (i = 1, 2) is calcu-
lated from the sample obtained in step 1, yielding Wi

(0). Let τ be the critical value
of the test determined by the condition Π(0, α) = α. If Wi

(0) ≥ τ, a success is
recorded; otherwise a failure is recorded.

3. Repeat steps 1 and 2 B times. The bootstrap approximation Π(d, α) to Π(d, α) is
given by the binomial proportion of successes among B repetitions. (In all the
cases discussed in this chapter, B ≥ 2000.)

As described in Subheading 4., the simulation study appears to indicate that
the above algorithm provides a reasonable estimator of Π(d, α) for n ≥ 6
when the total number of subjects (cases and controls) in all strata combined is
at least 36. Asymptotically, the algorithm is consistent, that is, under the se-
quence of hypotheses ∆N = dN → 0 such that Π(dN, α) → const ≥ a, the differ-

ˆ

ˆ

ˆ
ˆ
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ence between Π(dN, α) and its bootstrap approximation converges in probabil-
ity to 0 as the number of cases and controls increases to infinity. This may
seem somewhat unusual at first glance, as, in general, the distribution of
uncentered U-statistics cannot be approximated consistently by their
bootstrapped versions. However, let us note that in the preceding algorithm we
do not use a simple bootstrap replica of W1 (or W2), but rather its counterpart
based on the correctly shifted exposures of the stratum specific case and match-
ing controls.

If the number of cases and controls is not too small (see Subheading 4.)
the bootstrap CLT provides the following alternative approximation of power.
After completing step 1 as in the preceding, in step 2 we simply calculate
the value of Wi, say Wi

0, and then steps 1 and 2 are repeated B times to
obtain the usual approximations to the mean and variance of the bootstrapped
version of Wi

E*B (Wi) = Wi
0∑

b = 1

B

(b)/B

Var*B (Wi) = 1
B –1

∑
b =1

B

Wi
0

(b) – E *B (Wi)
2

(3.1)

The resulting approximate power formula is then given by

Π(d,α) ≈ 1 – Φ τ – E*B (Wi)

Var*B (Wi)
(3.2)

where Φ(·) stands for the standard normal cdf. The sketch of the mathematical
argument supporting this claim can be found in Rempala et al. (7). In this
chapter, we are mostly interested in the performance of the bootstrap approxi-
mation for a small number of cases (typically about 10) and are less concerned
with its large-sample properties. The results of the computer-simulated study
of its accuracy for small to moderate sample sizes under the logistic shift model
is presented in the next section.

4. Comparison with the Exact Power Under A Logistic Shift Model
Let Xi

0 be the exposure level of the case in stratum i and let Xi
j, j = 1,...,ni be

the levels of the corresponding controls. The Xi
j’s for j = 1,...,ni are therefore

distributed according to Fi. To be able to compare the results of the bootstrap
power approximation with the true power we have to derive the exact power
formula for testing Eq. (2.3) using Eq. (2.1) or Eq. (2.2) and hence impose
at this point some additional assumptions on the exposure distributions Fi for
i = 1,...,n. In what follows we assume the validity of the so called “shift model,”
that is, we suppose that for each individual exposure level Xi

j we have

Xi
j = ∆δ0i + γi + Zj (4.1)
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where δ0i is Kronecker’s function, γi’s are some (unknown) positive constants,
and Zj’s are independent, identically distributed random variables with any
distribution. For the purpose of the computer simulation described in this
subheading we have taken the Zj’s to be logistic L(0,1) random variables. With
this particular choice of the Zj’s, we refer to Eq. (4.1) throughout the paper as
“the logistic shift model” (cf. also Cuzick [3]).

The calculation of the exact power of the location shift test (Eq. [2.3]) based
on (2.1) or (2.2) under Eq. (4.1) with the Zj’s being logistic random variables
can be accomplished by considering the distributions of stratum-specific
exceedance statistics (cf. Katzenbeisser [9,10]) and then combining the results
by multiple convolution. Plots of the distributions of the statistic Eq. (2.1) and
Eq. (2.2) under the logistic shift model with eight cases and number of controls
per stratum as in the angiosarcoma study (see Subheading 6.) for the shift
values ∆ = 0, 1, 2, 3 are presented in Figs. 1 and 2. The general formula for the
distribution of Eqs. (2.1) and (2.2) in terms of exceedance statistics under the
logistic shift model is provided in Rempala et al. (7). As can be seen from the
plots the normal approximation is fairly accurate even for large values of ∆. In
fact, the normal approximation works reasonably well for ∆ between 0 and 3
for statistics W1 and W2 (for W1 we need to apply a continuity correction) as
long as the number of strata is at least 6, the number of controls per stratum is
at least 3, and the total number of controls is at least 36.

Having obtained the exact distribution of statistics (Eqs. [2.1] and [2.2]), for
logistic shifts, we may calculate the true power of tests based on W1 or W2,
which in turn allows us to assess the accuracy of our bootstrap approximation
algorithm. Such a comparison with eight cases and numbers of controls
coinciding with the numbers from the angiosarcoma study described in
Subheading 6. is given in Fig. 3. As can be seen from the plot, for the logistic
shift model, the overall performance of our bootstrap approximation appears to
be quite satisfactory even for a relatively small number of cases (n = 8).

5. Estimation of the Across-Strata Treatment Effect
So far we have assumed that the amount of the across-strata shift between

the exposure distributions of cases and controls (∆) is known. In practical situ-
ations this is obviously rarely the case and we need a way to estimate ∆. One of
the standard nonparametric approaches would be to take

∆  = 1
n

Xi
  0

– Xi∑
i = 1

n
(5.1)

but we do not propose to do so because the above estimator of ∆ is nonrobust
against outliers and for small sample sizes may be quite misleading. More
robust estimators, say ∆1 and ∆2, may be obtained by using the Hodges–

ˆ

ˆ ˆ
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Lehmann method (11) based on the statistics Eqs. (2.1) and (2.2), respec-
tively. The use of the Hodges–Lehmann technique is appropriate here
because, under the null hypothesis, W1 and W2 are symmetric about

Fig. 1. Relative frequencies for statistic W1, under different location shift (∆) values,
with eight cases and the number of controls per case equal to 2, 3, 3, 4, 7, 8, 8, 10,
respectively. The Central Limit Effect is clearly visible even for moderate ∆ ≤ 2.

Fig. 2. Relative frequencies for statistics W2, under different location shift (∆)
values, with eight cases and the number of controls per case equal to 2, 3, 3, 4, 7, 8, 8,
10, respectively. The Central Limit Effect is clearly visible even for moderate ∆ ≤ 2.
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n + ∑i  = 1
n ni / 2 and n + ∑i  = 1

n ni / (2ni + 4), respectively. To find the explicit forms
for the estimators, let us define Dij = Xi

0 – Xi
j for i = 1,...,n and j = 1,...,ni to be

the within-stratum exposure level differences between the case and matched
controls. Then, using the Hodges–Lehmann argument (cf., e.g., Randles and
Wolfe [8, p. 208]), it is easy to show that

(5.2)

the median of the Dij’s. Similar reasoning applies to ∆2 although now we have
to consider a “weighted version” of the Dij’s, due to the weights present in
Eq. (2.2). Namely, let n* = Πi=1

n
 (ni + 2) and let us consider the extended list of

Dij’s in which each Dij is repeated exactly n*/(ni + 2) times. Then

∆1 = med extended list of Dij (5.3)

Obviously, Eqs. (5.2) and (5.3) coincide when all ni are equal. If the
exposure distributions Fi’s are symmetric, then ∆1 and ∆2 are unbiased for ∆.
Otherwise, under most circumstances they are median unbiased (or almost so).
In our setting, Eqs. (5.2) and (5.3) appear to be more appropriate estimators of
the treatment effect than Eq. (5.1). The estimators of the standard errors of

Fig. 3. True power under logistic shift (chain-dot line) and its bootstrap approxima-
tions using binomial proportion (solid line) and bootstrap CLT (dashed line) for test
statistic W1 with eight cases and number of controls per case equal to 2, 3, 3, 4, 7, 8, 8,
10, respectively.

ˆ

ˆ

ˆ ˆ

∆

ˆ

∆1 = med Dij
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Eqs. (5.2) and (5.3) may again be obtained using the bootstrap method in a
fashion similar to Eq. (3.1). Under most circumstances, the standard errors for
∆,∆1, ∆2 and will be of order O(n–1) and hence, for small n, the variability of all
three estimators could be quite high (cf. Subheading 6.). In such cases, in
addition to directly estimating ∆ one might also wish to estimate θi = P(Xi

0 > Xi
j),

the probability that the i-th case exposure exceeds that of its control. This can
be easily done, since the quantity (Ri – 1)/ni is always an unbiased estimator of
θi. Under the shift model (Eq. [4.1]) this parameter, say θ, is the same in all
strata and may be estimated unbiasedly by the statistics (cf. also Cuzick [3]):

θ1 = ∑i  = 1

N
 (Ri – 1)

∑i  = 1

N
 ni

 = W1 – n

∑i  = 1

N
 ni

and

θ2 = ∑i  = 1

N
 (Ri – 1)/(ni + 2)

∑i  = 1

N
ni /(ni + 2)

 = 
W2 – ∑i  = 1

N
1/(ni + 2)

∑i  = 1

N
ni /(ni + 2)

Because θ1 and θ2 are both linear combinations of stratum specific
Wilcoxon–statistics their standard errors will typically be much smaller than
that of Eqs. (5.1)–(5.3). Under Eq. (4.1) the parameter θ can sometimes be
expressed as an explicit function of ∆. For instance, if ∆ is close to zero the
delta method shows that

∆ ≈ θ – 1/2

∫ f 2 (x) dx

provided that ∫ f 2 (x) dx < ∞, where f(x) is the density function of F1. Under the
logistic shift model, for instance, this yields ∆ ≈ 6θ – 3.

6. A Study of Angiosarcoma Occurrences
Among Chemical Industry Workers

In this subheading, we illustrate the method with an example that has in fact
motivated our study of multistrata rank-based methods. The data presented
were collected over the past 20 yr by researchers from the Division of
Occupational Toxicology at the University of Louisville School of Medicine
as part of an effort to examine the relationship between occupational exposure
to suspected carcinogens and the development of disease. In 1974, in
response to the discovery of cases of hepatic angiosarcoma among its
employees, the B. F. Goodrich Louisville Chemical Plant jointly with the
University of Louisville School of Medicine, developed an exposure moni-
toring system utilizing rank ordering of exposures for highly suspected
chemicals. The exposure index combined two components: work history and a

ˆ ˆ
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job exposure category based on a 7-point scale that rated the monthly exposure
of each employee on any particular job from 0 (absent from the environment)
to 6 (very frequent intimate skin contact or high inhalation). The exposure
levels for different jobs performed during the month by a given employee were
then weighted by their duration to give the total monthly exposure index for
that employee. This index was accumulated across months of employment to
give the cumulative exposure rank months (CERM). Obviously, CERM is, by
its design, a very imprecise measure of exposure but was thought to be the best
available, because only a minimal amount of information concerning historical
exposures could be found in the company records. Thus, owing to the nature of
CERM the standard analysis based on the conditional likelihood method and
logistic regression or the hypergeometic distribution (as offered, for instance,
by StatXact) could yield misleading results. The rank method based only on
the relative magnitude of exposures seems to be more appropriate.

In Tables 1 and 2, we present the total stratum-standardized CERM for
the exposure to the chemical vinyl chloride, along with corresponding rank-
statistics, for the eight cases of angiosarcoma identified among B. F. Goodrich
Chemical Plant employees between the time of the first case (diagnosed in Janu-
ary, 1974) and January, 1998, together with the total stratum-standardized
CERM for the controls matched by sex, age, and length of employment. Stan-
dardization of CERM within any given strata is obtained by dividing the raw
CERM values by the stratum-specific CERM standard deviation for the con-
trols. Of course, the underlying assumption here is that, within-strata, exposures
of the case and its corresponding controls are measured on the same scale.

It is easily seen from the values of the statistics reported in Table 2 that the
data show significant association of the exposure to vinyl chloride (as measured
in CERM) with the development of hepatic angiosarcoma. When testing
Eq. (2.3) by means of Eq. (2.1) and Eq. (2.2), we find the normal approxi-
mations of the P-values to be 0.01262 and 0.01252, respectively. The
achieved power of the tests is estimated to be about 0.60 for W1 and about 0.65
for W2 at the 5% significance level.

7. Summary
The rank method of analyzing multistrata case-control studies was consid-

ered. The consistent bootstrap algorithm for approximating the power of the
rank-based test was presented. The computer simulation study presented in
this chapter indicates that, under a logistic shift alternative, the bootstrap algo-
rithm provides a reasonably good approximation of the true power, even for
relatively small sample sizes, provided that the across-strata shift (treatment
effect) is known. For an unknown shift, a consistent and robust estimator of the
Hodges–Lehmann type was proposed.
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Calibration, 95
Cancer, 29, 38

breast, 176–183
Candidate genes, see Genes, candidate
CAP, see College of American

Pathologists
Carcinogenesis, 7
Case-control study, 104, 132, 134–135,

191, 194–196, 198, 200, 201

control selection in, 132
multistrata, 192

Categorical data, 114
CDF, 194
Central Limit Theorem, 195, 197
CERM (Cumulative exposure rank

months), 200, 201
Chi-square distribution, 44
Chi-square test, see Tests, chi-square
Classification, 40, 41, 65, 76
Clinical importance, 96, 98, 174
Clinical trials, 2, 11, 12, 106, 170,

172, 184, 185
Clinical utility, 170–172, 184
Closed testing 144-147
Clustering, 39, 40, 41, 43, 65

algorithm, 45
hierarchical, 42–45

Coefficient of variation, 37, 106
Cohen’s kappa, see kappa
College of American Pathologists

(CAP), 171, 183–185
Computational biology, 1, 2, 3, 7, 9,

10, 12, 13
academic programs in, 9

Computer models, 7
Concordance

coefficient of, 91, 93, 96, 101, 128
Confidence interval, 43, 106
Conformity, 86
Confounding, 95, 191
Conditional likelihood, 200
Consistency (of agreement), 26, 87, 103
Consistency (of estimation), 192, 200
Consistent statistical test, 112
Constructionist philosophy, 10
Continuity correction, 196
Convergence in probability, 195
Convolution, 196
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Correlation, 93, 96, 98, 104
inter-pixel, 43

Correlation coefficient
intraclass, 89, 90, 92, 93, 95, 101,

105, 106
Pearson, 88, 89, 92, 93, 101, 102, 104
problems with, 88, 102
Spearman, 101, 102, 104, 106

Correspondence analysis, 65
Cost-benefit, 39
Cox model, 133, 136, 138, 139, 179

hazard, 138
hazard ratio,  133, 138
prognostic index and, 138
sample size for, 174, 175
survival analysis and, 136

Critical value, 194
Cross-signal comparison, 24
Cross-platform

applications, 22
independence, 21

Cumulative distribution function,
see CDF

Cut-points, 172, 173, 185
problems with, 173–174

CV, see Coefficient of variation

D

Data
analysis, 17–19
categorical, 114
dichotomous, 114
exploration, 22
numerical, 114
ordinal, 114
storage, 21
structure, 21

Database, 21, 22
backbone, 21

Decision tree, 105
Delta method, 199
Deming regression, 99, 100, 106

weighted, 101
Densitometry, 15
Detectable level, 34
DFS, see Disease-free survival
Diagnostics, see Statistical

diagnostics
Dichotomous data, 114
Dichotomization, 191, 192
Differential equations, 46
Disagreement, 82, 84, 85, 93, 99, 101
Discriminant analysis, 41
Disease-free survival, 178, 179
Distribution

binomial, 194
chi-square, 44
gamma, 37
hypergeometric, 200
logistic, 195
multivariate normal, 41
normal, 41, 42, 90, 96, 99, 104
statistical, 19

DNA, 3–7, 29, 33, 34, 44, 94, 169
Dominance, 149–150

E

Effect size, 116–117, 174
Efficiency, 191
Electrophoresis, 3, 4, 7, 12, 15, 16,

53–55, 57
Envelope of imaging, 17, 25, 26
Environmental effects, 154–155
Epistasis, 136, 153–154
Error

measurement, 88
Type I, 173
Type II, 111
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variance, 93, 100, 101
homogeneity of, 99, 101
ratio of, 100

Errors-in-variables model, 100
EST (expressed sequence tag), 30
Eugenics, 11
Evolutionary biology, 3, 11
Exceedance statistics, 196
Exchange matrix, 3, 8
Experimental design, 17, 30, 34
Exponential failure, 175
Exposure, 191

distribution, 193, 194, 198
index, 199, 200
markers of,  81, 82, 96, 102–104
occupational, 199, 200
rank-ordered, 191, 192, 199, 200
stratum-specific, 192, 194, 198, 201

Expression profile, 7
Extensibility, 22

F

Factor
analysis, 65
loadings, 40
scores, 39, 40

Factorial experiment, 175
False discovery rate (FDR), 144
Familywise error rate (FER), 144
FDR, see False discovery rate
Feature

geometry, 18
imaging, 17
intensity, 35
with labels, 18

Feedback
mechanism, 18

FEW, see Familywise error rate
Filtering

background, 61-62
gel images, 59

Fluorescence, 30, 34
Fourier transform, 46

G

Gamma distribution, 37
Gaussian, see Normal
Gel, 62–63, 69

electrophoresis, 57
images of, 70–75
master, 76
preparation, 55–57
staining and scanning, 57–58
synthetic, 64–65

Gel images
filtering, 59–60

Gene
blocks, 39
candidate, 132
classes

discriminatory power of, 42
latent, 42

clustering 40, 41
effects, 46
expression, 6, 12, 15, 16, 26, 29–33,

35–37, 39, 41, 42, 46, 160–164
differential, 37
intensity, 42
pattern, 46
periodic, 46

expression profile, 7
housekeeping, 33
interaction, 46
intensity, 42
modifier 136
networks, 46
prefiltering of, 44
products, 33–35, 42, 44
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rank, 25
sequence, 7
shaving, 39
space, 39
transcription, 5, 46
translation, 46
variation, 37

Generalized linear model (GLM), 132
Genetic epidemiology, 131

association studies in, 131
Genetics, statistical, 2
Genome

human, 15
scan, 144, 149, 159–160

Genomics, 5, 9, 11
modeling, 11

Geometry, 23
characterization, 27
feature, 18
storage, 24

Geometrization,
algorithm, 23-25

Gibbs sampling, 12
Glass slides, 31
Glutathione-S-transferase (GST), 131
Gold standard, 82, 84-87, 89, 104, 173
Golub et al. data set, 160-164
Goodness-of-fit, 20, 193
Graphical methods

data exploration and, 22
GST, see Glutathione-S-transferase

H

Hazard ratio,  133, 138, 175
Hereditary traits, 11
Heterogeneity of sample values, 88, 96
Hierarchical clustering, 42-45
Hierarchical model, 37
Historical data, 200

HLA, 148
Hodges-Lehmann estimator, 196–198,

200
Homogeneity, 36
Human Genome Project, 6
Hybridization, 30-32, 34, 36

differential, 43
Hypergeometric distribution, 200
Hypothesis testing

multiplicity in, 173, 180, 184, 185

I

ICC, see Correlation coefficient,
intraclass

Image
acquisition, 18
alignment, 62-63
analysis, 2, 20
background, 17
composite, 22
data, 24
gel, 59
intensity, 32
master, 64
microarray, 22
processing, 22,
quantitation, 15-20, 23, 24, 35
warping, 62

Imaging, 24, 25
envelope, 17, 18, 20, 25, 26
methods, 27
parameters, 25
variability, 25

Immunoblotting, 15
Independence, 98, 99
Independent variables, 132

confounders, 132
covariates, 132
factors, 132
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predictors, 139
Index of crude agreement, 83, 84, 105
Induction level, 39
Inference set, 18
Inheritance

bleeding, 11
Intensity

gene-specific, 42
Interaction effect, 90, 94, 173–175,

179, 180
Interchangeability, 82, 98
Internal controls, 33, 34
Intraclass correlation coefficient,

see Correlation coefficient,
intraclass

Isoelectric
focusing, 7, 16, 54, 56
point, 51, 54

J

Jacob-Monod central dogma, 4
Java, 22

applets, 22
application, 21
code, 24

K

Kaplan-Meier, 179
Kappa, 83-85, 87, 105, 106

L

Labeling algorithms, 23-25
Lack-of-fit, 44, 47
Large-sample properties, 195
Latent class, 40-45, 47
Latent variable, 37, 41
Least squares, 35, 36, 40, 46

partial, 39, 40
Level of evidence (LOE), 171, 172
Level of measurement, 82

Limits of agreement, see Agreement,
limits of

Linear association, 88, 104
Linear regression, 132, 137
Linkage disequilibrium, 143
Lin’s coefficient, see Concordance,

coefficient of
Local alternative, 193
Locally most powerful test, 193
LOE, see Level of evidence
Logistic distribution, 195
Logistic model, 134

conditional, 135
logit and, 134
log odds ratio and, 135
odds ratio and, 133, 134
unconditional, 135

Logistic regression, 179, 192, 200
ordered, 136–137

Logistic shift, 191–193, 195, 196,
199, 200

Log-rank test, 174

M

Mapping tables, 22
Marginal likelihood, 193
Marker (see also Biomarker)

breast cancer, 176–182
clinical utility of, 170–172
dichotomization of, 178, 179
discretization of, 173
molecular, 169–185
predictive, 170
prognostic, 170, 172, 174, 175
studies, 171, 184

sample size for, 174
surrogate, 160
value of, 173, 185

Markov Chain Monte Carlo (MCMC), 42
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Matching, 192, 198, 200
Match-mismatch, 34, 35
MCMC, see  Markov Chain Monte

Carlo
Mean square, 90, 91
Measurement

error, 37, 88
level of, 82
scale of, 88, 96

Median, 198, 199
Meta-analysis, 19, 20, 22, 25, 26,

172, 176
Metastasis, 29
Method comparison studies, 93, 95
Micelle, 54
Microarray, 6, 13, 24, 25, 29–48, 169

analysis, 15–17
chip, 18, 31
data, 32, 38, 40, 42, 46, 47, 160–164

visualization of, 47
experiment, 42
image, 22, 31
instance, 29, 31, 33–36, 38, 41–43, 47

outliers in, 35
slide, 42
spotted, 36
studies, 23

MIDAS (Mathematical-Modeling of
Image Data Across the
Sciences), 20–22, 24, 25, 27

Minimum risk, 36
Missing data, 185
Model

statistical, 20
Modifier genes, see Genes, modifier
Molecular biology, 1–4, 10–13, 15,

24, 48, 173
training in, 6

Molecular fingerprinting, 3, 13

Molecular function and information
flow, 4

Molecular marker, see Marker
Molecular mass, 51
Monotonic relationship, 102, 104
Monte Carlo, 147
Morphology

mathematical, 61, 62
Motifs

sequence, 12
MULTTEST, PROC, 143–168

closed Fisher combination
method and, 148

closed MinP-based Algorithm and,
146

closed Simes-Hommel method
and, 147

syntax for, 151, 154–156, 158, 165
Multimedia data, 22
Multiple testing, 143–168, 173, 180,

184, 185
Multiplicity, see Multiple testing
Multiplicity-adjusted p-values, 143–168
Multiresolution analysis, 66-68, 69
Mutation, 3, 8

N

National Surgical Adjuvant Breast
and Bowel Project (NSABP),
177-179, 181, 183

Negative agreement, index of (pneg),
85, 87, 105

Negative binomial regression, 133,
136, 137

rate ratio (irr) and, 133, 136, 137
Neural network, 10
Noise

removal, 75-76
Nonlinear association, 102
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Nonparametric analysis, 36, 196
Normal approximation, 195, 196, 200
Normal distribution, 41, 42, 90, 96,

99, 104
multivariate, 41

Normal model, 42, 43
Northern blot, 4, 5, 15, 29
NSABP, see National Surgical

Adjuvant Breast and Bowel
Project

Numerical data, 114

O

Odds ratio, 191
Oligoneucleotide, see oligos
Oligos, 30, 32, 34–36

intensity of, 36
match-mismatch, 34

One-way analysis, 41–42
Oracle, 22, 24
Ordinal data, 114
Ordinal exposure, 191, 192, 194
Outcome, 135–137
Outliers, 35, 96, 164, 196
Overdispersion, 44, 138

P

Pneg, see Negative agreement, index of
Ppos, see Positive agreement, index of
PABAK, see Prevalence-adjusted

and bias-adjusted kappa
Parameters

gene-specific, 35
Pattern recognition, 65
PCA, see Principal components

analysis
PCC, see Correlation coefficient,

Pearson
PCR, see Regression, principal

components

Penetrance, 157–159
Peptide, 3
Permutation test, 146, 147
Phenotype, 2–4
Phenotyping, 3, 7
Photolithography, 30
Pilot studies, 124–125
Pixel, 18, 33

correlation, 24, 43
intensity, 23, 25
kurtosis, 23
principal components of, 24
variance, 23

Plot
diagnostic, 48

PLSR, see Regression, partial least
squares

Poisson regression, see Regression
analysis, Poisson

Polyacrylamide gel electrophoresis,
see 2D-PAGE

Population stratification, see
Stratification, population

Positive agreement, index of (ppos),
85, 87, 105

Power, see Statistical power
Predictive factor, 182

definition of, 170
Prefiltering, 44
Prevalence-adjusted and bias-adjusted

kappa (PABAK), 84, 85, 87,
105, 106

Principal components analysis
(PCA), 24, 38, 39, 47, 48

Probe, 30, 34–36
weights, 35, 36

Problem domain, 21
PROC MULTTEST, see

MULTTEST, PROC
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Profiling, 3
Prognostic factor, 172–174, 176,

179, 182, 184, 185
definition of, 170
phase I-III, 184
ranking of, 171
studies, 184

Prognostic value, 173
Proportional hazards model, see Cox

model
Protein, 4, 6, 8, 13, 16, 51, 54, 56

Data Bank, 8
expression 15
folding, 7, 12
labels, 23
sequence, 4
structure, 7, 8
taxonomy, 3
STAT, 5

Proteome, 6, 16, 51
Proteomics, 6, 9, 16–18, 23, 24, 51–80
Publication guidelines, 185
P-values

adjustment of, 143-168, 174, 180

Q

QTL, see Quantitative trait loci
Quality control, 24, 35, 47
Quantitation, 25

algorithms, 23–25
quality control and, 35,
results, 24

Quantitative trait loci (QTL), 144

R

Random effects model, 90, 94, 95
Random sample, 90, 95
Random variation, 93
Randomization, 174
Ranked data, 101, 102

Rank of exposure, 191, 192, 199
Rare disease, 191–193
Recessivity, 151–152
Recombination, 159
Reductionist philosophy, 10
Reference method, 99
Region of interest (ROI), 16
Regression analysis, 24, 34, 39, 96,

101, 184
negative binomial, 133, 136–138
partial least-squares, 39, 40
Poisson, 137, 138
principal components, 39, 40

Relative frequency, 84, 85
Reliability, 172, 178, 184

assessment of, 82–86, 89–93,
100, 104, 106

definition of, 81
intrarater, 81–83, 90, 91
interrater, 81–86, 90, 91

Repeatability (see also Reliability)
within subject, 96, 98

Repeated measures, 41
Replicates, 90, 93, 94, 101
Reproducibility, see Reliability
Residuals, 44

analysis of, 44
overdispersion of, 44
plot, 44

Residue exchange matrix, 3, 8
Retrospective study, 172–174, 183
Risk, 132, 135-138

factor, 191
RNA, 4, 6, 7, 12, 15, 16, 29, 30, 34,

42, 46
Robustness, 47, 196, 200

S

SAGE (Statistical Analysis for
Genetic Epidemiology), 11
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Sample preparation, 57
Sample size, 93, 111-130, 171, 174,

175, 191, 192, 194, 196, 200
calculation of, 117–119
formulas, 120
grant applications and, 125
interaction effects and, 175
marker studies and, 174, 184
nomograms, 122
simulation and, 123
software, 121
tables, 122
too large, 119
too small, 120

Scalability, 22
Scale of measurement, 191
Scatterplot, 48, 88, 96, 98, 99, 101
SCC, see Correlation coefficient,

Spearman
SDS-PAGE, 7, 16, 18
Selection bias, 185
Sensitivity and specificity, 85, 86,

173, 178
Sequence

alignment, 9, 12
motifs, 12
pairs

high-scoring, 8
searching, 9

Shift, 196, 199, 201 (see also
Logistic shift)

percentile, 199, 201
Shrinkage estimator, 37
Signal

background,  18
comparison, 24
intensity, 37
location, 24
primary, 23

threshold, 18, 27
variability, 23

Signal-to-noise ratio, 17, 18
Significance level, 194
Simulation

computer, 123, 195, 196, 200
Slice, 77–78
SNP, 143, 144, 149, 159
Software, 138

HERMeS, 59
MELANIE, 59
MINISNAP, 99, 101, 106
Oracle, 22, 24
PEPI, 106
sample size, 121
SAS, 106, 143-168
S-Plus, 22, 24
Stata, 133, 136, 139
statistical, 18
stepwise selection of predictors

and, 139
Southern blot, 4
Spatial modeling, 32
Spectroscopy, mass, 58
Spike, 34
Splines, 174
Spline smoother, 46
Spot, 33

characterization, 32
detection, 60
identification, 58
intensity, 34, 37, 42
matching, 63-64
quantification, 62

Spotfinding algorithm, 24
Spotted array, 31, 32
Spotters, ink-jet, 31
Spotting, 30

doughnut, 32
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Standardization, 33, 36, 47, 200
Standard method, 82, 86, 87, 99
STAT (signal transducers and

activators of transcription), 5
Statistical algorithm, 18–20
Statistical diagnostics, 22
Statistical genetics, 2

history of, 10–11
Statistical models, 20
Statistical power, 12, 111–130, 171,

173-175, 184, 185, 192, 194, 195
achieved, 123, 200, 201
conventional values of, 113
ethics and, 113
grant applications and, 125
local, 193
post-hoc, 124

Statistical tests, see Tests
Stratification, 154–156, 175, 184,

191, 199, 200
population, 139

Stratum-specific statistic, 192, 193,
196, 199

Strike’s method, 99–101, 106
Study design, 184–185
Supergenes, 39
Supervised methods, 33
Surrogate marker, 106
Survival analysis

alternatives to, 176
Susceptibility, 132–135
SVD, 40
Symmetry, 198

T

TDT, see Transmission
disequilibrium test

Test method, 99
Tests

chi-square, 131, 134, 149
closed permutation, 160
closed minP method, 145–147
Cochran-Armitage,  155, 157
Fisher combination, 148
Fisher’s exact, 104, 149, 155
Kruskal-Wallis, 104
Mann-Whitney-Wilcoxon test, 104
Mantel-Haenszel, 154
permutation, 146, 149–151
Sidak, 160
significance, 100, 105, 106
Simes-Hommel,  147
stepdown, 151–152, 157, 159
Student’s t, 104

Tests for
epistatic effects, 153-154
gene-disease association, 143-168
microarray data, 160-164

Ties, 194
TMUGS, see Tumor Marker Utility

Grading System
Tolerance parameters, 25
Top-hat transform, 61
Transcriptomics, 6, 9
Transformation, 42, 47, 96
Translation alternatives, 192
Transmission disequilibrium test

(TDT), 139
Treatment effect, 193, 199, 200
Truth table, 86
Tumor Marker Utility Grading

System (TMUGS), 171
Two-way analysis, 42
2×2 Table, 82, 83, 85-87
2D-PAGE, 51, 52, 55
Type I error, see Error, Type I
Type II error, see Error, Type II
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U

Unbiased estimation, 198
User interface, 21
U-statistic, 195

V

Validity, 85, 93, 172, 173, 184
assessment of, 86–88, 95–104, 106
concurrent, 104
construct, 104
criterion, 103
definition of, 81
predictive, 103, 104

Variability, 19, 24
analytical, 81, 93, 94
between rater, 82
between specimen, 89, 90
inter-laboratory, 173, 184
inter-observer, 12
inter-subject, 81, 93–95
intra-laboratory, 184
intra-observer, 12
intra-subject, 81, 93–95
laboratory, see Variability,

analytical
measurement, 81, 93, 94
signal, 23

sources of, 58-59
unrecognized, 26
within rater, 82
within specimen, 89, 90

Variable selection
stepwise, 139

Variance, 93, 99–101
Variance components, 90, 94
Variance-inflation factor, 175
Vinyl chloride, 200, 201

W

WADP, see Weighted average
discrepant pairs statistic

Wavelets, 66–69, 75–76
Weighted average discrepant pairs

statistic (WADP), 45
Weighted statistic, 193
Weighted sum, 35
Weights

oligo-specific, 36
probe-specific, 35, 36

Wilcoxon statistic, 192
stratum specific, 193, 199

Workflow, 18
diagram, 18, 19

Work history, 200
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