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Preface

Ask any production engineer, control or instrumentation specialist to define
his objectives and his reply will probably include increasing efficiency without
compromising on quality or reliability. Ask him what his most pressing prob-
lems are and lack of suitably trained personnel will almost certainly be high
on the list. Happily, both of these perennial problems can be solved with the
aid of a PC (or PC-compatible) acting as an intelligent controller. All that is
required is sufficient peripheral hardware and the necessary software to provide
an interface with the production/test environment.

As an example, consider the procedure used for testing and calibrating an
item of electronic equipment. Traditional methods involve the use of a num-
ber of items of stand-alone test equipment (each with its own peculiarities and
set-up requirements). A number of adjustments may then be required and each
will require judgment and expertise on the part of the calibration technician or
test engineer. The process is thus not only time consuming but also demands the
attention of experienced personnel. Furthermore, in today’s calibration labora-
tory and production test environment, the need is for a cluster of test equipment
rather than for a number of stand-alone instruments. Such an arrangement is an
ideal candidate for computer control.

The computer (an ordinary PC or PC-compatible) controls each item of exter-
nal instrumentation and automates the test and calibration procedure, increasing
throughput, consistency, and reliability, freeing the test engineer for higher
level tasks. A PC-based arrangement thus provides a flexible and highly cost-
effective alternative to traditional methods. Furthermore, systems can be easily
configured to cope with the changing requirements of the user.

In general, PC-based instrumentation and control systems offer the following
advantages:

• Flexible and adaptable: the system can be easily extended or reconfigured
for a different application.

• The technology of the PC; is well known and understood, and most companies
already have such equipment installed in a variety of locations.

• Low-cost PC-based systems can be put together at a faction of the cost
associated with dedicated controllers.

• Rugged embedded PC controllers are available for use in more demanding
applications. Such systems can be configured for a wide range of instrumen-
tation and control applications with the added advantage that they use the
same familiar operating system environment and programming software that
runs on a conventional PC.

• Availability of an extensive range of PC-compatible expansion cards from
an increasingly wide range of suppliers.

• Ability to interface with standard bus systems (including the immensely
popular IEEE-488 General Purpose Instrument Bus).
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• Support for a variety of popular network and asynchronous data commu-
nications standards (allowing PC-based systems to become fully integrated
within larger manufacturing and process control systems).

• Internationally accepted standards, including ISA, PCI, PC/104, and USB
bus systems.

Typical applications for PC-based instrumentation and control systems
include:

• Data acquisition and data logging.
• Automatic component and QA acceptance testing.
• Signal monitoring.
• Production monitoring and control.
• Environmental control.
• Access control.
• Security and alarm systems.
• Control of test and calibration clusters.
• Process control systems.
• Factory automation systems.
• Automated monitoring and performance measurement.
• Simple machine-vision systems.
• Small-scale production management systems.
• A ‘virtual’ replacement for conventional laboratory test equipment.

The book aims to provide readers with sufficient information to be able to selectAims
the necessary hardware and software to implement a wide range of practical
PC-based instrumentation and control systems. Wherever possible the book
contains examples of practical configurations and working circuits (all of which
have been rigorously tested). Representative software is also included in a var-
iety of languages including x86 assembly language, BASIC, Visual BASIC,
C, and C++. In addition, a number of popular software packages for control,
instrumentation and data analysis have been described in some detail.

Information has been included so that circuits and software routines can
be readily modified and extended by readers to meet their own particular
needs. Overall, the aim has been that of providing the reader with sufficient
information so that he or she can solve a wide variety of control and instrumen-
tation problems in the shortest possible time and without recourse to any other
texts.

This book is aimed primarily at the professional control and instrumentationReadership
specialist. It does not assume any previous knowledge of microprocessors or
microcomputer systems and thus should appeal to a wide audience (including
mechanical and production engineers looking for new solutions to control and
instrumentation problems). The book is also ideal for students at undergradu-
ate and post-graduate level who need a ‘source book’ of practical ideas and
solutions.

Chapter 1 This chapter provides an introduction to microcomputer systems
and the IBM PC compatible equipment. The Intel range of microprocessors is
introduced as the ‘legacy’ chipsets and VLSI support devices found in the
generic PC.
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Chapter 2 This chapter describes various expansion systems which can be
used to extend the I/O capability of the PC. These systems include the original
Industry Standard Architecture 8- and 16-bit PC expansion bus, the Peripheral
Component Interconnect (PCI), and the PC/104 architecture. Representative
expansion cards and bus configurations are discussed in some detail. The chapter
concludes with a detailed examination of the Universal Serial Bus (USB).

Chapter 3 This chapter is devoted to the facilities offered by the PC’s oper-
ating system whether it be a basic DOS-based system or one operating under
Windows 9x, NT, or XP. Each of the most popular MS-DOS commands is
described and details are provided which should assist readers in creating batch
files (which can be important in unattended systems which must be capable of
initializing themselves and automatically executing an appropriate control pro-
gram in the event of power failure) as well as executing and debugging programs
using the MS-DOS debugger, DEBUG. The chapter also describes the facilities
offered by the Windows operating system as a platform for the development
and execution of control, instrumentation and data acquisition software.

Chapter 4 Programming techniques are introduced in this chapter. This
chapter is intended for those who may be developing programs for their own
specialized applications and for whom no ‘off-the-shelf-’ software is available.
The virtues of- modular and structured programming are stressed and vari-
ous control structures are discussed in some detail. Some useful pointers are
included for those who need to select a language for control, instrumentation
and data acquisition applications.

Chapter 5 This chapter deals with assembly language programming. The
x86 instruction set is briefly explained and several representative assembly lan-
guage routines written using the original Microsoft Macro Assembler (MASM)
and its 32-bit reincarnation (MASM32) are included.

Chapter 6 The BASIC programming language is introduced in this chapter.
Generic BASIC programming techniques and control structures are introduced,
and sample routines are provided in QBASIC, PowerBASIC, and the ever-
popular MS Visual BASIC.

Chapter 7 This chapter is devoted to C and C++ programming. As with
the two preceding chapters, this chapter aims to provide readers with a brief
introduction to programming techniques and numerous examples are included
taken from applications within the general field of control, instrumentation, and
data acquisition.

Chapter 8 The ever-popular IEEE-488 instrument bus is introduced in this
chapter. A representative PC adapter card is described which allows a PC to be
used as an IEEE-488 bus controller.

Chapter 9 This chapter deals with the general principles of interfacing ana-
logue and digital signals to PC expansion bus modules, analogue-to-digital and
digital-to-analogue conversion. A variety of sensors, transducers, and practical
interface circuits have been included.

Chapter 10 Virtual instruments can provide a flexible low-cost alternative
to the need to have a variety of dedicated test instruments available. This chapter
provides an introduction to virtual test instruments and describes, in detail, the
use of a high-performance digital storage oscilloscope.

Chapter 11 Commercial software packages are frequently used in industry
to deal with specific data acquisition and instrumentation requirements. This
chapter provides details of several of the most popular packages and has been
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designed to assist the newcomer in the selection of a package which will satisfy
his or her needs.

Chapter 12 The general procedure for selection and specification of system
hardware and software is described in this chapter. Eight practical applications
of PC-based data acquisition, instrumentation, and control are described in
detail complete with specifications, circuit diagrams, screen shots and code
where appropriate.

Chapter 13 This chapter deals with reliability and fault tolerance. Basic
quality procedures are described together with diagnostic and benchmarking
software, and detailed fault-location charts.

A glossary is included in Appendix A while Appendices B and C deal with
fundamental SI units, multiples, and sub-multiples. A binary, hexadecimal,
and ASCII conversion table appears in Appendix D. A further nine appen-
dices provide additional reference information including an extensive list of
manufacturers, suppliers and distributors, useful web sites and a bibliography.

The third edition includes:

• Updated information on PC hardware and bus systems (including PCI,
PC/104 and USB).

• A new chapter on PC instruments complete with examples of measurement
and data logging applications.

• An introduction to software development in a modern 32-bit environment
with the latest software tools that make it possible for applications running
in a Windows NT or Windows XP environment to access system I/O.

• New sections on MASM32, C++, and Visual BASIC including examples
of the use of visual programming languages and integrated development
environments (IDE) for BASIC, assembly language and Visual Studio
applications.

• New sections on LabVIEW, DASYLab, Matlab with an updated section on
DADiSP.

• An expanded chapter with eight diverse PC applications described in detail.
• A revised and expanded chapter on reliability and fault-finding including

detailed fault-location charts, diagnostic and benchmarking software.
• Considerably extended and updated reference information.
• A companion web site with downloadable executables, source code, links to

manufacturers and suppliers, and additional reference material.

The companion website, www.key2control.com, has a variety of additionalCompanion website
resources including downloadable source code and executable programs. A visit
to the site is highly recommended!

This book is the end result of several thousand hours of research and devel-
opment and I should like to extend my thanks and gratitude to all those, too
numerous to mention, who have helped and assisted in its production. May it
now be of benefit to many!

Mike Tooley
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1 The PC

Ever since IBM entered the personal computer scene, it was clear that its ‘PC’
(first announced in 1981) would gain an immense following. In a specification
that now seems totally inadequate, the original PC had an 8088 processor, 64–
256 kilobyte (KB) of system board RAM (expandable to 640 KB with 384 KB
fitted in expansion slots). It supported two 360 KB floppy disk drives, an 80
columns × 25 lines display, and 16 colours with an IBM colour graphics adapter.

The original PC was quickly followed by the PC-XT. This machine, an
improved PC, with a single 5¼ in. 360 KB floppy disk drive and a 10 megabyte
(MB) hard disk, was introduced in 1983. In 1984, the PC-XT was followed
by a yet further enhanced machine, the PC-AT (where XT and AT stood for
eXtended and Advanced Technology, respectively). The PC-AT used an 80286
microprocessor and catered for a 5¼ in. 1.2 MB floppy drive together with a
20 MB hard disk.

While IBM were blazing a trail, many other manufacturers were close behind.
The standards set by IBM attracted much interest from other manufacturers,
notable among whom were Compaq and Olivetti. These companies were not
merely content to produce machines with an identical specification but went on
to make further significant improvements. Other manufacturers were happy to
simply ‘clone’ the PC; indeed, one could be excused for thinking that the highest

Photo 1.1 Setting up a PC requires access to both hardware and software
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Table 1.1 Typical PC specifications from 1981 to the present day

Approximate
year of Parallel Serial

Standard introduction Processor RAM Cache Floppy disk Hard disk Graphics port(s) port(s) Clock speed Bus

PC 1981 8088 16–256 KB Nil 1 or 2 5¼ in. None Text or 1 or 2 1 or 2 8 MHz ISA
360 KB CGA

XT 1982 8088 or 640 KB Nil 1 or 2 5¼ in. 10 MB Text or 1 or 2 1 or 2 8 or ISA
80286 360 KB CGA 10 MHz

AT 1984 80286 1 MB Nil 1 5¼ in. 20 MB Text, CGA, 1 or 2 1 or 2 12 or EISA
1.2 MB or EGA 16 MHz

386SX 1986 80386SX 1–8 MB 64 KB 1 3½ in. 80 MB Text, VGA, 1 or 2 1 or 2 16 or EISA
based 1.44 MB or SVGA 20 MHz

386DX 1986 80386DX 1–16 MB 128 KB 1 3½ in. 120 MB Text, VGA, 1 or 2 1 or 2 25 or EISA
based 1.44 MB or SVGA 33 MHz

486SX 1991 80486SX 4–16 MB 256 KB 1 3½ In. 230 MB Text, VGA, 1 or 2 1 or 2 25 or ISA
based 1.44 MB or SVGA 33 MHz and VL

486DX 1991 80486DX 4–64 MB 256 KB 1 3½ in. 340 MB Text, VGA, 1 or 2 1 or 2 33, 50, or ISA
based 1.44 MB or SVGA 66 MHz and VL

PS/2 80286 or 1–16 MB Nil 1 3½ in. 44, 70, or Text, EGA, 1 or 2 1 or 2 8, 10, 16, MCA
80386 1.44 MB 117 MB or VGA or 20 MHz

PS/1 1986 80286 or 1–16 MB Nil 1 3½ in. 85 or Text, VGA, 1 or 2 1 or 2 8, 10, 16, MCA
80386 1.44 MB 130 MB or SVGA or 20 MHz

Early 1993 Pentium 8–64 MB 512 KB 1 3½ in. 640 MB Text, VGA, 1 or 2 1 or 2 66 or EISA
Pentium 1.44 MB or 1.2 GB or SVGA 133 MHz and VL

Current 2004 Pentium 4, 256 MB 512 KB 1 3½ in. 60, 80, or Text, VGA, 1 or 2 1 or 2 2.1, 2.8, PCI
Celeron, to 1 GB 1.44 MB 120 GB SVGA, or or 3.2 GHz and USB
Athlon, etc. XGA
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Photo 1.2 A modern high-specification dual-BIOS PC motherboard

accolade that could be offered by the computer press was that a machine was
‘IBM compatible’.

This chapter sets out to introduce the PC and provide an insight into the
architecture, construction, and operation of a ‘generic PC’. It should, perhaps,
be stated that the term ‘PC’ now applies to such a wide range of equipment that
it is difficult to pin down the essential ingredients of such a machine. However,
at the risk of oversimplifying matters, a ‘PC’ need only satisfy two essential
criteria:

• Be based upon an Intel 16-, 32-, or 64-bit processor, such as a ’x86, Pentium,
or a compatible device (such as a Celeron, Athlon, or Duron processor).

• Be able to support the Microsoft MS-DOS operating system, Microsoft
Windows, or a compatible operating system.

Other factors, such as available memory size, disk capacity, and display
technology remain secondary.

To illustrate the progress in technology over the last 20 or so years, Table
1.1 shows typical specifications for various types of PC. However, before con-
sidering PC architecture in more detail, we shall begin by briefly describing the
basic elements of a microcomputer system.

The principal elements within a microcomputer system consist of a centralMicrocomputer
systems processing unit (CPU), read/write memory (RAM), read-only memory (ROM),

together with one (or more) input/output (I/O) devices. These elements are
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Figure 1.1 Elements of a microcomputer system

connected together by a bus system along which data, address, and control
signals are passed, as shown in Figure 1.1.

The CPU is the microprocessor itself (e.g. a x86 or Pentium device), whilst
the read/write and read-only memory are implemented using a number of semi-
conductor memory devices (RAM and ROM, respectively).The semiconductor
ROM provides non-volatile storage for part of the operating system code (the
code remains intact when the power supply is disconnected, whereas the semi-
conductor RAM provides storage for the remainder of the operating system
code, applications programs, and transient data. It is important to note that this
memory is volatile, and any program or data stored within it will be lost when
the power supply is disconnected.

The operating system is a collection of programs and software utilities that
provide an environment in which applications software can easily interact with
system hardware. The operating system also provides the user with a means of
carrying out general housekeeping tasks, such as disk formatting, disk copying,
etc. In order to provide a means of interaction with the user (via keyboard
entered commands and onscreen prompts and messages), the operating system
incorporates a shell program (e.g. the COMMAND.COM program provided
within MSDOS).

Part of the semiconductor RAM is reserved for operating system use and
for storage of a graphic/text display (as appropriate). In order to optimize the
use of the available memory, most modern operating systems employ memory
management techniques which allocate memory to transient programs and then
release the memory when the program is terminated. A special type of pro-
gram (known as a ‘terminate and stay resident’ program) can, however, remain
resident in memory for immediate execution at some later stage (e.g. when
another application program is running).

I/O devices provide a means of connecting external hardware, such as key-
boards, displays, and disk controllers. I/O is usually handled by a number of
specialized VLSI devices, each dedicated to a particular I/O function (such as
disk control, graphics control, etc.). Such I/O devices are, in themselves, very
complex and are generally programmable (requiring software configuration
during system initialization).
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Photo 1.3 Arcom’s Pegasus embedded PC controller (photo courtesy of
Arcom)

The elements within the microcomputer system shown in Figure 1.1 (CPU,
ROM, RAM, and I/O) are connected together by three distinct bus systems:

1 The address bus along which address information is passed.
2 The data bus along which data is passed.
3 The control bus along which control signals are passed.

Data representation

The information present on the bus lines is digital and is represented by the two
binary logic states: logic 1 (or high) and logic 0 (or low). All addresses and data
values must therefore be coded in binary format with the most significant bit
(MSB) present on the uppermost address or data line and the least significant bit
(LSB) on the lowermost address or data line (labelled A0 and D0, respectively).

The bus lines (whether they be address, data, or control) are common to all
four elements of the system. Data is passed via the data bus line in parallel
groups of either 8, 16, 32, or 64 bits. An 8-bit group of data is commonly
known as a byte whereas a 16-bit group is usually referred to as a word.

As an example, assume that the state of the eight data bus lines in a system
at a particular instant of time is as shown in Figure 1.2.

The binary value (MSB first, LSB last) is 10100111 and its decimal value
(found by adding together the decimal equivalents wherever a ‘1’ is present in
the corresponding bit position) is 167.

It is often more convenient to express values in hexadecimal (base 16) format
(see Appendix D). The value of the byte (found by grouping the binary digits into
two 4-bit nibbles and then converting each to its corresponding hexadecimal
character, is A7 (variously shown as A7h, A7H, HA7, or A716 in order to
indicate that the base is 16).

The data bus invariably comprises 8, 16, or 32 separate lines labelled D0 to
D7 (or D0 to D16, etc.), whilst the address bus may have as few as 20 lines in
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Figure 1.2 Data representation in a microcomputer system

Table 1.2 Relationship between data bus size and largest data value

Number of data lines Number of bytes Largest data value

8 1 255
16 2 65 535
32 4 4 294 967 295
64 8 Approximately 1.84 × 1019

Table 1.3 Relationship between address bus lines and
linear addressable memory

Number of address lines Linear addressable memory

16 64 KB
20 1 MB
22 4 MB
24 16 MB
32 4 GB

early PC, XT, and AT models (labelled A0 to A19) and as many as 32 bits in
modern equipment (where the address lines are labelled A0 to A31).

The relationship between data bus lines and the largest data value possible
that can be conveyed at any particular instant is shown in Table 1.2.

Similarly, with more address lines it is possible to address a larger memory.
The relationship between address bus lines and linear addressable memory is
shown in Table 1.3.

Bus expansion

The system shown in Figure 1.1 can be expanded by making the three bus
systems accessible to a number of expansion modules, as shown in Figure 1.3.
These modules (which invariably take the form of plug-in printed circuit cards)
provide additional functionality associated with input/output (I/O), graphics, or
disk control. Expansion cards are often referred to as ‘option cards’ or ‘adapter
cards’, and they provide a means of extending a basic microcomputer system
for a particular application.



H4716-Ch01 5/2/2005 12: 31 page 7

The PC 7

Figure 1.3 Microcomputer system with bus expansion capability

Photo 1.4 A typical ISA expansion card which provides two serial and two
parallel ports

Microprocessor operation

The majority of operations performed by a microprocessor involve the move-
ment of data. Indeed, the program code (a set of instructions stored in
ROM or RAM) must itself be fetched from memory prior to execution. The
microprocessor thus performs a continuous sequence of instruction fetch and
execute cycles. The act of fetching an instruction code or operand or data value
from memory involves a read operation whilst the act of moving data from the
microprocessor to a memory location involves a write operation.
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Microprocessors determine the source of data when it is being read (and the
destination of data when it is being written) by placing a unique address on
the address bus. The address at which the data is to be placed (during a write
operation) or from which it is to be fetched (during a read operation) can either
constitute part of the memory of the system (in which case it may be within
ROM or RAM) or it can be considered to be associated with an input/output
(I/O) port.

Since the data bus is connected to a number of VLSI devices, an essential
requirement of such chips (e.g. ROM or RAM) is that their data outputs should
be capable of being isolated from the bus whenever necessary. These VLSI
devices are fitted with select or enable inputs which are driven by address
decoding logic (not shown in Figures 1.1 and 1.3). This logic ensures that
several ROM, RAM, and I/O devices never simultaneously attempt to place
data on the bus!

The inputs of the address decoding logic are derived from one, or more, of the
address bus lines. The address decoder effectively divides the available memory
into blocks, each of which correspond to one (or more VLSI device). Hence,
where the processor is reading and writing to RAM, for example, the address
decoding logic will ensure that only the RAM is selected whilst the ROM and
I/O remain isolated from the data bus.

Data transfer and control

The transfer of data to and from I/O devices (such as hard drives) can be arranged
in several ways. The simplest method (known as programmed I/O, involves
moving all data through the CPU. Effectively, each item of data is first read into
a CPU register and then written from the CPU register to its destination. This
form of data transfer is straightforward but relatively slow, particularly where
a large volume of data has to be transferred. The method is also somewhat
inflexible as the transfer of data has to be incorporated specifically within the
main program flow.

An alternative method allows data to be transferred ‘on demand’ in response
to an interrupt request. Essentially, an interrupt request (IRQ) is a signal that
is sent to the CPU when a peripheral device requires attention (this topic is
described in greater detail later in this chapter). The advantage of this method
is that CPU intervention is only required when data is actually ready to be
transferred or is ready to be accepted (the CPU can thus be left to perform more
useful tasks until data transfer is necessary).

The final method, direct memory access (DMA), provides a means of trans-
ferring data between I/O and memory devices without the need for direct CPU
intervention. Direct memory access provides a means of achieving the high-
est possible data transfer rates, and it is instrumental in minimizing the time
taken to transfer data to and from the hard disk or another mass storage device.
Additional DMA request (DRQ) and DMA acknowledge (DACK) signals are
necessary so that the CPU is made aware that other devices require access to
the bus. Furthermore, as with IRQ signals, several different DMA channels
must be provided in order to cater for the needs of several devices that may be
present within a system. This topic is dealt with in greater detail later in this
chapter.
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Photo 1.5 Serial (RS-232 and USB) and parallel port I/O on a modern
motherboard. The DIP switch is used for setting various I/O options

Parallel versus serial I/O

Most microcomputer systems (including the PC) have provision for both par-
allel (e.g. a parallel printer) and serial (e.g. an RS-232 port) I/O. Parallel I/O
involves transferring data one (or more) bytes at a time between the micro-
computer and peripheral along multiple wires; usually eight plus a common
ground connection). Serial I/O, on the other hand, involves transferring 1-bit
after another along a pair of lines (one of which is usually a ground connection).

In order to transmit a byte (or group of bytes) the serial method of I/O must
comprise a sequence or stream of bits. The stream of bits will continue until
all of the bytes concerned have been transmitted and additional bits may be
added to the stream in order to facilitate decoding and provide a means of error
detection.

Since data present on a microprocessor data bus exists in parallel form,
it should be apparent that a means of parallel-to-serial and serial-to-parallel
conversion will be required in order to implement a serial data link between
microcomputers and peripherals (see Figure 1.4).

Serial data may be transferred in either synchronous or asynchronous mode.
In the former case, all transfers are carried out in accordance with a com-
mon clock signal (the clock must be available at both ends of the transmission
path). Asynchronous operation involves transmission of data in packets: each
packet containing the necessary information required to decode the data which
it contains. Clearly this technique is more complex, but it has the considerable
advantage that a separate clock signal is not required.

As with parallel I/O, signals from serial I/O devices are invariably TTL com-
patible. It should be noted that, in general, such signals are unsuitable for
anything other than the shortest of transmission paths (e.g. between a keyboard
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Figure 1.4 Data conversion: (a) serial-to-parallel and (b) parallel-to-serial

and a computer system enclosure). Serial data transmission over any appre-
ciable distance requires additional line drivers to provide buffering and level
shifting between the serial I/O device and the physical medium. In addition,
line receivers are required to condition and modify the incoming signal to TTL
levels.

The processor, or central processing unit (CPU), is crucial in determining theThe processor
performance of a PC and processors (see Table 1.4) have been consistently
upgraded since the first PC arrived on the scene in 1981. Not surprisingly given
the advances in semiconductor technology, the latest processors offer vastly
improved performance when compared with their predecessors. Despite this, it
is important to remember that a core of common features has been retained in
order to preserve compatibility. Hence all current CPU devices are based on a
superset of the basic 8088/8086 registers. For this reason it is worth spending a
little time looking at the development of processor technology over the last two
decades.

The x86 processor family

The original member of the x86 family was Intel’s first true 16-bit processor
which had 20 address lines that could directly address up to 1 MB of RAM.
The chip was available in 5, 6, 8, and 10 MHz versions. The 8086 was designed
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Table 1.4 Common processors used in modern PC equipment (see Appendix G for more detailed information)

Effective front Internal
Socket (see Speeds side bus bus Year of

CPU type Manufacturer Appendix F) (MHz) (FSB) – MHz L2 Cache (bit) introduction

Pentium Intel Socket 4 60–66 60–66 64 March 1993
Pentium Intel Socket 5 75–120 60–66 64 March 1994
Pentium Intel Socket 7 120–200 60–66 64 March 1995
6x86 Cyrix/IBM Socket 7 PR90–PR200 40–75 64 October 1995
K5 AMD Socket 7 PR75–PR166 60–66 64 June 1996
6x86L Cyrix/IBM Socket 7 PR120–PR200 50–75 64 January 1997
Pentium Intel Socket 7 133–233 60–66 64 January 1997
MMX
K6 AMD Socket 7 166–233 66 64 April 1997
6x86MX/ Cyrix/IBM Socket 7 PR166–PR366 66–83 64 May 1997
MII
K6-III AMD Socket 7 400–450 100 256 KB 64 February

4-way 1999
K6-2+ AMD Socket 7 450–550 100 128 KB 64 April 2000
K6-III+ AMD Socket 7 450–500 95–100 256 KB 64 April 2000

4-way
Pentium Intel Socket 8 150–200 60/66 256, 64 November
Pro 512, and 1995

1024 KB
Pentium II Intel Slot 1 233–300 66 512 KB 64 May 1997
Celeron Intel Slot 1 266–300 66 64 April 1998
Pentium II Intel Slot 2 400–450 100 512, 64 June 1998
Xeon 1024, and

2048 KB
Celeron Intel Slot 1/ 300–533 66 128 KB 64 August 1998

Socket 370
Pentium III Intel Slot 1 450–600 100/133 512 KB 64 February

1999
Pentium III Intel Slot 2 500–550 100 512, 64 March 1999
Xeon 1024, and

2048 KB
Pentium III Intel Slot 2 600–1000 100/133 256, 256 October 1999
Xeon 1024, and

2048 KB
Celeron II Intel Socket 370 533–1100 66/100 128 KB 256 March 2000
Athlon AMD Slot A 500–700 200 512 KB 64 August 1999
Duron AMD Socket A 600–950 200 64 KB 64 June 2000
Athlon AMD Slot A/ 650–1400 200/266 256 KB 64 June 2000

Socket A
Athlon XP AMD Socket A 1333–1733 266 256 KB 64 October 2001

(XP1500+
to XP2100+)

Pentium 4 Intel Socket 423/ 1300–2000 400 256 KB 256 November
Socket 478 2000

Pentium 4 Intel Socket 478 1600–2533 400–533 512 KB 256 January 2002
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Table 1.5 8088/8086 signal lines

Signal Function Notes

AD0–AD7 (8088) Address/data bus Multiplexed 8-bit address/data lines
A8–A19 (8088) Address bus Non-multiplexed address lines
AD0–AD15 (8086) Address/data bus Multiplexed 16-bit address/data bus
A16–A19 (8086) Address bus Non-multiplexed address lines
S0–S7 Status lines S0–S2 are only available in Maximum Mode and are connected to

the 8288 Bus Controller. Note that status lines S3–S7 all share
pins with other signals.

INTR Interrupt line Level-triggered, active high interrupt request input
NMI Non-maskable Positive edge-triggered non-maskable interrupt input

interrupt line
RESET Reset line Active high reset input
READY Ready line Active high ready input
TEST Test Input used to provide synchronization with external processors.

When a WAIT instruction is encountered in the instruction stream,
the CPU examines the state of the TEST line. If this line is found
the to be high, processor waits in an ‘idle’ state until the
signal goes low.

QS0, QS1 Queue status Outputs from the processor which may be used to keep track of the
lines internal instruction queue.

LOCK Bus lock Output from the processor which is taken low to indicate that the
bus is not currently available to other potential bus masters.

RQ/GT0–RQ/GT1 Request/grant Used for signalling bus requests and grants placed in the
CL register.

with modular internal architecture. This approach to microprocessor design has
allowed Intel to produce a similar microprocessor with identical internal archi-
tecture but employing an 8-bit external bus. This device, the 8088, shares the
same 16-bit internal architecture as its 16-bit bus counterpart. Both devices were
packaged in 40-pin DIL encapsulations. The CPU signal lines are described in
Table 1.5 while the pin connections for the legacy processor family will be
found later in this chapter in Figure 1.12.

The 8086/8088 can be divided internally into two functional blocks com-
prising an Execution Unit (EU) and a Bus Interface Unit (BIU), as shown in
Figure 1.5. The EU is responsible for decoding and executing instructions,
whilst the BIU pre-fetches instructions from memory and places them in an
instruction queue where they await decoding and execution by the EU.

The EU comprises a general and special purpose register block, temporary
registers, arithmetic logic unit (ALU), a Flag (Status) Register, and control logic.
It is important to note that the principal elements of the 8086 EU remain com-
mon to each of the subsequent members of the x86 family, but with additional
registers with the more modern processors.

The BIU architecture varies according to the size of the external bus. The
BIU comprises four Segment Registers and an Instruction Pointer, temporary
storage for instructions held in the instruction queue, and bus control logic.
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Figure 1.5 Internal architecture of the 8086

Addressing

The 8086 has 20 address lines and thus provides for a physical 1 MB mem-
ory address range (memory address locations 00000 to FFFFF hex.). The I/O
address range is 64 KB (I/O address locations 0000 to FFFF hex.).

The actual 20-bit physical memory address is formed by shifting the seg-
ment address four 0-bits to the left (adding four least significant bits), which
effectively multiplies the Segment Register contents by 16. The contents of the
Instruction Pointer (IP), Stack Pointer (SP), or other 16-bit memory reference
are then added to the result. This process is illustrated in Figure 1.6.

As an example of the process of forming a physical address reference,
Table 1.6 shows the state of the 8086 registers after the RESET signal is applied.
The instruction referenced (i.e. the first instruction to be executed after the
RESET signal is applied) will be found by combining the Instruction Pointer
(offset address) with the Code Segment Register (paragraph address). The loca-
tion of the instruction referenced is FFFF0 (i.e. F0000 + FFF0). Note that the
PC’s ROM physically occupies addresses F0000 to FFFFF and that, following
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Figure 1.6 Process of forming a 20-bit physical address

Table 1.6 Contents of the 8086 registers after a reset

Register Contents (hex.)

Flag 0002
Instruction Pointer FFF0
Code Segment F000
Data Segment 0000
Extra Segment 0000
Stack Segment 0000

a power-on or hardware reset, execution commences from address FFFF0 with
a jump to the initial program loader.

80286, 80386, and 80486 processors

Intel’s 80286 CPU was first employed in the PC-AT and PS/2 Models 50 and 60.
The 80286 offers a 16 MB physical addressing range but incorporates memory
management capabilities that can map up to a gigabyte of virtual memory.
Depending upon the application, the 80286 is up to six times faster than the
standard 5 MHz 8086 while providing upward software compatibility with the
8086 and 8088 processors.

The 80286 had 15 16-bit registers, of which 14 are identical to those of the
8086. The additional machine status word (MSW) register controls the operating
mode of the processor and also records when a task switch takes place.

The bit functions within the MSW are summarized in Table 1.7. The MSW
is initialized with a value of FFF0H upon reset, the remainder of the 80286
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Table 1.7 Bit functions in the 80286 machine status word

Bit Name Function

0 Protected mode (PE) Enables protected mode and can only be
cleared by asserting the RESET signal.

1 Monitor processor (MP) Allows WAIT instructions to cause a ‘processor extension not present’
exception (Exception 7).

2 Emulate processor (EP) Causes a ‘processor extension not present’ exception (Exception 7) on ESC
instructions to allow emulation of a processor extension.

3 Task switched (TS) Indicates that the next instruction using a processor extension will cause
Exception 7 (allowing software to test whether the current processor
extension context belongs to the current task).

registers being initialized as shown in Table 1.6. The 80286 is packaged in a
68-pin JEDEC type-A plastic leadless chip carrier (PLCC), see Figure 1.12.

The 80386 (or ’386) was designed as a full 32-bit device capable of manipu-
lating data 32 bits at a time and communicating with the outside world through
a 32-bit address bus. The 80386 offers a ‘virtual 8086’ mode of operation
in which memory can be divided into 1 MB chunks with a different program
allocated to each partition.

The 80386 was available in two basic versions. The 80386SX operates intern-
ally as a 32-bit device but presents itself to the outside world through only 16 data
lines. This has made the CPU extremely popular for use in low-cost systems
which could still boast the processing power of a 386 (despite the obvious
limitation imposed by the reduced number of data lines, the ‘SX’ version of the
80386 runs at approximately 80% of the speed of its fully fledged counterpart).

The 80386 comprises a Bus Interface Unit (BIU), a Code Pre-fetch Unit,
an Instruction Decode Unit, an Execution Unit (EU), a Segmentation Unit,
and a Paging Unit. The Code Pre-fetch Unit performs the program ‘look-
ahead’ function. When the BIU is not performing bus cycles in the execution
of an instruction, the Code Pre-fetch Unit uses the BIU to fetch sequentially
the instruction stream. The pre-fetched instructions are stored in a 16-byte
‘code queue’ where they await processing by the Instruction Decode Unit.
The pre-fetch queue is fed to the Instruction Decode Unit which translates the
instructions into micro-code. These micro-coded instructions are then stored in
a three-deep instruction queue on a first-in first-out (FIFO) basis. This queue of
instructions awaits acceptance by the EU. Immediate data and op-code offsets
are also taken from the pre-fetch queue.

The 80486 processor was not merely an upgraded 80386 processor; its
redesigned architecture offers significantly faster processing speeds when run-
ning at the same clock speed as its predecessor. Enhancements include a built-in
maths coprocessor, internal cache memory, and cache memory control. The
internal cache is responsible for a significant increase in processing speed. As
a result, a ’486 operating at 25 MHz can achieve a faster processing speed than
a ’386 operating at 33 MHz.

The ’486 uses a large number of additional signals associated with parity
checking (PCHK) and cache operation (AHOLD, FLUSH, etc.). The cache
comprises a set of four 2-KB blocks (128 × 16 bytes) of high-speed internal
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memory. Each 16-byte line of memory has a matching 21-bit ‘tag’. This tag
comprises a 17-bit linear address together with four protection bits. The cache
control block contains 128 sets of 7 bits. Three of the bits are used to implement
the least recently used (LRU) system for replacement and the remaining 4 bits
are used to indicate valid data.

Interrupt handling

Interrupt service routines are subprograms stored away from the main body of
code that are available for execution whenever the relevant interrupt occurs.
However, since interrupts may occur at virtually any point in the execution of a
main program, the response must be automatic; the processor must suspend its
current task and save the return address so that the program can be resumed at the
point at which it was left. Note that the programmer must assume responsibility
for preserving the state of any registers which may have their contents altered
during execution of the interrupt service routine.

Figure 1.7 Internal architecture of the original Pentium processor
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The Intel processor family uses a table of 256 4-byte pointers stored in the
bottom 1 KB of memory (addresses 0000H to 03FFH). Each of the locations in
the Interrupt Pointer Table can be loaded with a pointer to a different interrupt
service routine. Each pointer contains 2 bytes for loading into the Instruction
Pointer (IP). This allows the programmer to place his/her interrupt service
routines in any appropriate place within the 1 MB physical address space.

The Pentium family of processors

Initially running at 60 MHz, the Pentium could achieve 100 MIPS. The original
Pentium had an architecture based on 3.2 million transistors and a 32-bit address
bus like the 486 but a 64-bit external data bus. The chip was capable of operation
at twice the speed of its predecessor, the ’486 (Figure 1.7).

The first generation Pentium was eventually to become available in 60, 66,
75, 90, 100, 120, 133, 150, 166, and 200 MHz versions. The first ones fitted
Socket 4 boards whilst the rest fitted Socket 7 boards (see Photo 1.6). The
Pentium was super-scalar and could execute two instructions per clock cycle.
With two separate 8 KB caches it was much faster than a ’486 with the same
clock speed.

The Pentium Pro incorporated a number of changes over the Pentium which
made the chip run faster for the same clock speeds. Three instead of two instruc-
tions can be decoded in each clock cycle and instruction decoding and execution
are decoupled, meaning that instructions can still be executed if one pipeline
stops. Instructions could also be executed out of strict order. The Pentium Pro
had an 8 KB level 1 cache for data and a separate cache for instructions. The
chip was available with up to 1 MB of onboard level 2 cache which further

Photo 1.6 Socket 7 (with lever raised ready to accept a processor)
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Photo 1.7 A modern Slot 1 Pentium processor

increased data throughput. The architecture of the Pentium Pro was optimized
for 32-bit code, but the chip would only run 16-bit code at the same speed as
its predecessor.

Originally released in 1997, the Pentium MMX was intended to improve
multimedia performance although software had to be specially written for it to
have an effect. This software had to make use of the new MMX instruction set
that was an extension off the normal 8086 instruction set. Other improvements
produced a chip that could run faster than previous Pentiums.

Optimized for 32-bit applications, the Pentium 2 had 32 KB of level 1 cache
(16 KB each for data and instructions) and had a 512 KB of level 2 cache on
package. To discourage competitors from making direct replacement chips, this
was the first Intel chip to make use of its patented ‘Slot 1’. The Intel Celeron
was a cut down version of Pentium II aimed primarily at the laptop market.
The chip was slower as the level 2 cache had been removed. Later versions
were supplied with 128 KB of level 2 cache.

The Pentium III was released in February 1999 and first made available in a
450 MHz version supporting 100 MHz bus. As a means of further improving
the multimedia performance of the processor (particularly for 3D graphics), the
Pentium III supports extensions to the MMX instruction set.

The latest Pentium 4 architecture is based on new ‘NetBurst’ architecture
that combines four technologies: Hyper Pipelined Technology, Rapid Execution
Engine, Execution Trace Cache, and a 400 MHz system bus. The Pentium 4
processor (see Photo 1.7) is available at speeds ranging from 1.70 to 2.80 GHz
with system bus speeds of 400 and 533 MHz (the latter delivering a staggering
4.2 GB of data-per-second into and out of the processor). This performance is
accomplished through a physical signalling scheme of quad pumping the data
transfers over a 133-MHz clocked system bus and a buffering scheme allowing
for sustained 533 MHz data transfers.
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Figure 1.8 Development of the ’x86 Intel processor family

Figure 1.8 shows the development of x86 processor technology into the
modern Pentium family of processors whilst Figure 1.9 shows how the relative
power of PC processors has increased over the last two decades.

The generic PC, whether a ‘desktop’ or ‘tower’ system, comprises three units:PC architecture
system unit, keyboard, and display. The system unit itself comprises three items:
system board, power supply, and floppy/hard disk drives.

The original IBM PC System Board employed approximately 100 IC devices
including an 8088 CPU, an 8259A Interrupt Controller, an optional 8087 Maths
Coprocessor, an 8288 Bus Controller, an 8284A Clock Generator, an 8253
Timer/Counter, an 8237A DMA Controller, and an 8255A Parallel Interface
together with a host of discrete logic (including bus buffers, latches, and
transceivers). Figure 1.10 shows the simplified bus architecture of the system.

Much of this architecture was carried forward to the PC-XT and the PC-
AT. This latter machine employed an 80286 CPU, 80287 Maths Coprocessor,
two 8237A DMA Controllers, 8254-2 Programmable Timer, 8284A Clock
Generator, two 8259A Interrupt Controllers, and a 74LS612N Memory Mapper.

In order to significantly reduce manufacturing costs as well as to save on
space and increase reliability, more recent AT-compatible microcomputers are
based on a significantly smaller number of devices (many of which may be
surface mounted types). This trend has been continued with today’s powerful
386- and 486-based systems. However, the functions provided by the highly
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Figure 1.9 Relative power of Intel processors over the last two decades

integrated chipsets are usually a superset of those provided by the much larger
number of devices found in their predecessors.

There is more to Figure 1.10 than mere historical interest might indicate as
modern PCs can still trace their origins to this particular arrangement. It is,
therefore, worth spending a few moments developing an understanding of the
configuration before moving on to modern systems that employ a much faster
multiple bus structure.

The ‘CPU bus’ (comprising lines A8 to A19 and AD0 to AD7 on the left
side of Figure 1.10) is separated from the ‘system bus’ which links the support
devices and expansion cards.

The eight least significant address and all eight of the data bus lines share
a common set of eight CPU pins. These lines are labelled AD0 to AD7. The
term used to describe this form of bus (where data and address information take
turns to be present on a shared set of bus lines) is known as ‘multiplexing’. This
saves pins on the CPU package and it allowed Intel to make use of standard
40-pin packages for the 8088 and 8086 processors.
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Figure 1.10 Internal architecture of the original IBM PC

The system address bus (available on each of the expansion connectors)
comprises 20 address lines, A0 to A19. The system data bus comprises eight
lines, D0 to D7. Address and data information are alternately latched onto the
appropriate set of bus lines by means of the four 74LS373 8-bit data latches.
The control signals, ALE (address latch enable), and DIR (direction) derived
from the 8288 bus controller are used to activate the two pairs of data latches.

The CPU bus is extended to the 8087 numeric data processor (maths copro-
cessor). This device is physically located in close proximity to the CPU in order
to simplify the PCB layout.

The original PC required a CPU clock signal of 4.773 MHz from a dedi-
cated Intel clock generator chip. The basic timing element for this device is a
quartz crystal which oscillates at a fundamental frequency of 14.318 MHz. This
frequency is internally divided by three in order to produce the CPU clock.

The CPU clock frequency is also further divided by two internally and again
by two externally in order to produce a clock signal for the 8253 Programmable
Interrupt Timer. This device provides three important timing signals used by the
system. One (known appropriately as TIME) controls the 8259 Programmable
Interrupt Controller, another (known as REFRESH) provides a timing input for
the 8237 DMA Controller, whilst the third is used (in conjunction with some
extra logic) to produce an audible signal at the loudspeaker.
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74LS244 8-bit bus drivers and 74LS245 8-bit bus transceivers link each of
the major support devices with the ‘system address bus’ and ‘system data bus’,
respectively. Address decoding logic (with input signals derived from the system
address bus) generates the chip enable lines which activate the respective ROM,
RAM, and I/O chip select lines.

Figure 1.11 Typical motherboard layout for a Socket 7 Pentium-based PC
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The basic system board incorporates a CPU, provides a connector for the
addition of a maths coprocessor, incorporates bus and DMA control, and pro-
vides the system clock and timing signals. The system board also houses the
BIOS ROM, main system RAM, and offers some limited parallel I/O. It does
not, however, provide a number of other essential facilities including a video
interface, disk, and serial I/O. These important functions must normally be
provided by means of adapter cards (note that some systems which offer only
limited expansion may have some or all of these facilities integrated into the
system board).

Adapter cards are connected to the expansion bus by means of a number of
expansion slots (see Chapter 2). The expansion cards are physically placed so
that any external connections required are available at the rear (or side) of the
unit. Connections to internal subsystems (such as hard and floppy disk drives)
are usually made using lengths of ribbon cables and PCB connectors (see later).

A typical Pentium system motherboard layout is shown in Figure 1.11. This
system board provides five and a single AGP card slot. Two three-terminal inte-
grated circuit voltage regulators provide the low-voltage 3.3 V supply required
by the faster Pentium processors. The 296-pin ZIF socket (‘Socket 7’) is suitable
for a wide variety of devices, including all 6x86 and Pentium chips (including
MMX) as well as the AMD K5 and K6. 512 KB of surface mounted cache
memory is fitted. Two 168-pin sockets accept up to two dual-inline memory
modules (DIMM) carrying fast (6–7 ns) synchronous DRAM or EDO DIMMs.
Once again, standard ‘primary’ and ‘secondary’ IDE hard disk drive and/or
CD-ROM ports are provided by means of two 40-way connectors.

Various combinations of DRAM can be fitted, with 128, 256 and 512 MB
being the most popular. Standard IDE hard disk drive and/or CD-ROM ports
are provided by means of two 40-way connectors (these are the ‘primary’ and
‘secondary’ IDE ports). Note that the floppy disk interface is provided as part

Photo 1.8 AMD Athlon processor fitted with a CPU fan
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of the ‘multi-function I/O’ adapter card. The ‘bare’ system has provision for
the following I/O facilities for:

• one or two floppy disk drives (via a 34-way ribbon cable header);
• six USB ports (two on the front panel and four on the rear panel);
• a first serial port (with its 9-way D-connector fitted to the rear bracket);
• an optional second serial port connector (via an 8-way header);
• a parallel port (with its 25-way D-connector fitted to the rear bracket);
• a game/joystick port (via a 16-way ribbon cable header);
• an optional IDE device (via a 40-way ribbon cable header which is not

normally used if IDE facilities are available on the motherboard);
• firewire (a high-speed serial bus).

Cooling

All PC systems produce heat and some systems produce more heat than others.
Adequate ventilation is thus an essential consideration and fans are included
within the system unit to ensure that there is adequate air flow. Furthermore,
internal air flow must be arranged so that it is unrestricted as modern processors
and support chips run at high temperatures. These devices are much more prone
to failure when they run excessively hot than when they run cool or merely warm.

Each of the major support devices present within a PC has a key role toLegacy support devices
play in off-loading a number of routine tasks that would otherwise have to
be performed by the CPU. This section provides a brief introduction to each
generic device together with internal architecture and, where appropriate, pin
connecting details (Table 1.8).

Maths coprocessors

Maths coprocessors, ‘numeric data processors’ (NDP) or ‘floating point units’
(FPU) as they are variously called, provide a means of carrying out mathematical

Table 1.8 Intel legacy support chips originally used with original x86 processors

Processor type 8086 8088 80186 80286 80386
Clock generator 8284A 8284A On-chip 82284 82384
Bus controller 8288 8288 On-chip 82288 82288
Integrated 82230/82231, 82335 82230/82231, 82335

support chips
Interrupt 8259A 8259A On-chip 8259A 8259A

controller
DMA controller 8089/82258 8089/8237/82258 On-chip/82258 8089/82258 8237/82258
Timer/counter 8253/8254 8253/8254 On-chip 8253/8254 8253/8254
Maths 8087 8087 8087 80287 80287/80387

coprocessor
Chip select/ TTL TTL On-chip TTL TTL

wait state logic
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operations on large, ‘floating point’ numbers. A floating point number com-
prises three parts: the sign which may be positive or negative, the significant
digits (or mantissa), and an exponent (which effectively fixes the position of the
decimal point within the number). Hence, floating point numbers are essentially
numbers in which the decimal point ‘floats’ rather than occupies a fixed pos-
ition. The manipulation of floating point numbers is exclusively the province of
the maths coprocessor – the ALU of a normal CPU is not equipped to operate
with such numbers.

The 8087 was the original maths coprocessor which was designed to be active
when mathematics related instructions were encountered in the instruction
stream of an 8086 or 8088 CPU. The 8087, which is effectively wired in parallel
with the 8086 or 8088 CPU, adds eight 80-bit floating point registers to the CPU
register set. The 8087 maintains its own instruction queue and executes only
those instructions which are specifically intended for it. The 8087 is supplied in
a 40-pin DIL package, the pin connections for which are shown in Figure 1.12.

The active low TEST input of the 8086/8088 CPU is driven from the BUSY
output of the 8087 NDP. This allows the CPU to respond to the WAIT instruction
(inserted by the assembler/compiler) which occurs before each coprocessor
instruction. An FWAIT instruction follows each coprocessor instruction which
deposits data in memory for immediate use by the CPU. The instruction is then
translated to the requisite 8087 operation (with the preceding WAIT) and the
FWAIT instruction is translated as a CPU WAIT instruction.

During coprocessor execution, the BUSY line is taken high and the CPU
(responding to the WAIT instruction) halts its activity until the line goes low. The
two Queue Status (QS0 and QS1) signals are used to synchronize the instruction
queues of the two processing devices. 80287 and 80387 chips provide maths
co-processing facilities within AT and ’386-based PC’s, respectively. In ’486DX
(and later systems) there is no need for a maths coprocessor as these facilities
have been incorporated within the CPU itself.

The 80287 and 80387 Maths Coprocessors operate in conjunction with 80286
and 80386 CPU, respectively. The ’287 coprocessor was introduced in 1985
whilst the ’387 made its debut in 1987. Each device represented a signifi-
cant upgrade on its predecessor – the most notable factor being an increase in
speed from 5 MHz (the original 8087) to 33 MHz (the fastest version of the
80387).

With the advent of the 80486, Intel placed the floating point unit inside the
CPU (the floating point units was actually based on the 33 MHz version of the
80387). Since not all applications demand the power of a maths coprocessor,
Intel developed a ‘cut down’ version of the ’486 CPU without the internal
floating point unit. This processor was designated the ’486SX (to upgrade a
system based on such a device so that it can take advantage of maths coprocessor
instructions it is merely necessary to add a ’487 coprocessor). The logic behind
Intel’s approach was apparent that users could later upgrade their systems if they
found that the addition of a maths coprocessor was necessary for the software
that they intended to run.

This approach could hardly be described as cost effective since the falling
cost of CPUs meant that a full ’486DX soon cost less than the two chips it
could replace (i.e. a ’486SX plus a ’487SX). Happily, all modern processors
incorporate internal floating point units and there is thus no further need for
separate coprocessors.



H4716-Ch01 5/2/2005 12: 31 page 26

26 PC Based Instrumentation and Control

Figure 1.12 Pin connections for legacy processors



H4716-Ch01 5/2/2005 12: 31 page 27

The PC 27

8237A Direct Memory Access Controller

The 8237A DMA Controller (DMAC) can provide service for up to four inde-
pendent DMA channels, each with separate registers for Mode Control, Current
Address, Base Address, Current Word Count, and Base Word Count. The
DMAC is designed to improve system performance by allowing external devices
to directly transfer information to and from the system memory. The 8237A
offers a variety of programmable control features to enhance data throughput
and allow dynamic reconfiguration under software control.

The 8237A provides four basic modes of transfer: Block, Demand, Single
Word, and Cascade. These modes may be programmed as required, however,
channels may be auto-initialize to their original condition following an End Of
Process (EOP) signal.

The 8237A is designed for use with an external octal address latch such as the
74LS373. A system’s DMA capability may be extended by cascading further
8237A DMAC chips and this feature is exploited in the PC-AT which has two
such devices.

The least significant four address lines of the 8237A are bi-directional: when
functioning as inputs, they are used to select one of the DMA controllers’ 16
internal registers. When functioning as outputs, on the other hand, a 16-bit
address is formed by taking the eight address lines (A0 to A7) to form the least
significant address byte whilst the most significant address byte (A8 to A15)
is multiplexed onto the data bus lines (D0 to D7). The requisite address latch
enable signal (ADSTB) is available from pin-8. The upper four address bits (A16
to A19) are typically supplied by a 74LS670 4 × 4 register file. The requisite
bits are placed in this device (effectively a static RAM) by the processor before
the DMA transfer is completed.

DMA channel 0 (highest priority) is used in conjunction with the 8253 Pro-
grammable Interval Timer (PIT) in order to provide a memory refresh facility
for the PC’s dynamic RAM. DMA channels 1–3 are connected to the expansion
slots for use by option cards.

The refresh process involves channel 1 of the PIT producing a negative going
pulse with a period of approximately 15 µs. This pulse sets a bistable which,
in turn, generates a DMA request at the channel-0 input of the DMAC (pin-
19). The processor is then forced into a wait state, and the address and data
bus buffers assume a tri-state (high impedance) condition. The DMAC then
outputs a row refresh address and the row address strobe (RAS) is asserted.
The 8237 increments its refresh count register and control is then returned to
the processor. The process then continues such that all 256 rows are refreshed
within a time interval of 4 ms. The pin connections for the 8237A are shown in
Figure 1.13.

8253 Programmable Interval Timer

The 8253 is a Programmable Interval Timer (PIT) which has three independent
presettable 16-bit counters each offering a count rate of up to 2.6 MHz. The pin
connections for the 8253 are shown in Figure 1.13. Each counter consists of a
single 16-bit presettable down counter. The counter can function in binary or
BCD and its input, gate, and output are configured by the data held in the Control
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Figure 1.13 Pin connections for legacy support chips

Word Register. The down counters are negative edge triggered such that, on a
falling clock edge, the contents of the respective counter is decremented.

The three counters are fully independent and each can have separate mode
configuration and counting operation, binary or BCD. The contents of each
16-bit count register can be loaded or read using simple software referencing
the relevant port addresses shown in Table 1.10. The truth table for the chip’s
active low chip select (CS), read (RD), write (WR) and address lines (A1 and
A0) is shown in Table 1.9.
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Table 1.9 Truth table for the 8253

CS RD WR A1 A0 Function

0 1 0 0 0 Load counter 0
0 1 0 0 1 Load counter 1
0 1 0 1 0 Load counter 2
0 1 0 1 1 Write mode word
0 0 1 0 0 Read counter 0
0 0 1 0 1 Read counter 1
0 0 1 1 0 Read counter 2
0 0 1 1 1 No-operation (tri-state)
1 x x x x Disable tri-state
0 1 1 x x No-operation (tri-state)

8255A Programmable Peripheral Interface

The 8255A Programmable Peripheral Interface (PPI) is a general purpose I/O
device which provides no less than 24 I/O lines arranged as three 8-bit I/O
ports. The pin connections and internal architecture of the 8255A are shown in
Figures 1.13 and 1.14, respectively. The Read/Write and Control Logic block
manages all internal and external data transfers. The port addresses used by the
8255A are given in Table 1.10.

The functional configuration of each of the 8255’s three I/O ports is fully pro-
grammable. Each of the control groups accepts commands from the Read/Write
Control Logic, receives Control Words via the internal data bus, and issues the
requisite commands to each of the ports. At this point, it is important to note
that the 24 I/O lines are, for control purposes, divided into two logical groups
(A and B). Group A comprises the entire eight lines of Port A together with the
four upper (most significant) lines of Port B. Group B, on the other hand, takes
in all eight lines from Port B together with the four lower (least significant)
lines of Port C. The upshot of all this is simply that Port C can be split into two
in order to allow its lines to be used for status and control (handshaking) when
data is transferred to or from Ports A or B.

8259A Programmable Interrupt Controller

The 8259A Programmable Interrupt Controller (PIC) was designed specifically
for use in real-time interrupt driven microcomputer systems. The device man-
ages eight levels of request and can be expanded using further 8259A devices.

The sequence of events which occurs when an 8259A device is used in
conjunction with an 8086 or 8088 processor is as follows:

(a) One or more of the interrupt request lines (IR0–IR7) are asserted (note that
these lines are active high) by the interrupting device(s).

(b) The corresponding bits in the IRR register become set.
(c) The 8259A evaluates the requests on the following basis:

(i) If more than one request is currently present, determine which of the
requests has the highest priority.
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Figure 1.14 Internal architecture of the 8255A

(ii) Ascertain whether the successful request has a higher priority than the
level currently being serviced.

(iii) If the condition in (ii) is satisfied, issue an interrupt to the processor
by asserting the active high INT line.

(d) The processor acknowledges the interrupt signal and responds by pulsing
the interrupt acknowledge (INTA) line.

(e) Upon receiving the INTA pulse from the processor, the highest priority ISR
bit is set and the corresponding IRR bit is reset.

(f) The processor then initiates a second interrupt acknowledge (INTA) pulse.
During this second period for which the INTA line is taken low, the 8259
outputs a pointer on the data bus which is then read by the processor.

The pin connections for the 8259A are shown in Figure 1.13.

8284A Clock generator

The 8284A is a single chip clock generator/driver designed specifically for use
by the 8086 family of devices. The chip contains a crystal oscillator, divide-by-3
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Table 1.10 Port addresses (hexadecimal) used in the PC family

Device PC-XT PC-AT

8237A DMA Controller 000-00F 000-01F
8259A Interrupt Controller 020-021 020-03F
8253/8254 timer 040-043 040-05F
8255 Parallel Interface 060-063 n.a.
8042 keyboard controller n.a. 060-06F
DMA page register 080-083 080-09F
NMI mask register 0A0-0A7 070-07F
Second 8259A Interrupt Controller n.a. 0A0-0BF
Second 8237A DMA Controller n.a. 0C0-0DF
Maths Coprocessor (8087, 80287) n.a. 0F0-0FF
Games controller 200-20F 200-207
Expansion unit 210-217 n.a.
Second parallel port n.a. 278-27F
Second serial port 2F8-2FF 2F8-2FF
Prototype card 300-31F 300-31F
Fixed (hard) disk 320-32F 1F0-1F8
First parallel printer 378-37F 378-37F
SDLC adapter 380-38F 380-38F
BSC adapter n.a. 3A0-3AF
Monochrome adapter 3B0-3BF 3B0-3BF
Enhanced graphics adapter n.a. 3C0-3CF
Colour graphics adapter 3D0-3DF 3D0-3DF
Floppy disk controller 3F0-3F7 3F0-3F7
First serial port 3F8-3FF 3F8-3FF

counter, ready, and reset logic. On the original PC, the quartz crystal is a series
mode fundamental device which operates at a frequency of 14.312818 MHz.
The output of the divide-by-3 counter takes the form of a 33% duty cycle square
wave at precisely one-third of the fundamental frequency (i.e. 4.77 MHz). This
signal is then applied to the processor’s clock (CLK) input. The clock generator
also produces a signal at 2.38 MHz which is externally divided to provide a
5.193 MHz 50% duty cycle clock signal for the 8253 Programmable Interval
Timer (PIT).

8288 Bus Controller

The 8288 Bus Controller decodes the status outputs from the CPU (S0 and
S1) in order to generate the requisite bus command and control signals. These
signals are used as shown in Table 1.11. The 8288 issues signals to the sys-
tem to strobe addresses into the address latches, to enable data onto the
buses, and to determine the direction of data flow through the data buffers.
The internal architecture and pin connections for the 8288 are shown in
Figure 1.13.
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Table 1.11 8288 Bus Controller status inputs

Processor status line

S2 S1 S0 Condition

0 0 0 Interrupt acknowledge
0 0 1 I/O read
0 1 0 I/O write
0 1 1 Halt
1 0 0 Memory read
1 0 1 Memory read
1 1 0 Memory write
1 1 1 Inactive

Chipsets

In modern PCs, the overall device count has been significantly reduced by
integrating several of the functions associated with the original PC chipset
within one or two VLSI devices or within the CPU itself.

Early examples of integrated chipsets include the Chips and Technology
82C100 XT Controller found in older ‘XT-compatible systems’, provides the
functionality associated with no less than six of the original XT chipset and
effectively replaces the following devices: one 8237 DMA Controller, one 8253
Counter/ Timer, one 8255 Parallel Interface, one 8259 Interrupt Controller,
one 8284 Clock Generator, and one 8288 Bus Controller. In order to ensure
software compatibility with the original PC, the 82C100 contains a superset of
the registers associated with each of the devices which it is designed to replace.
The use of the chip is thus completely transparent as far as applications software
is concerned.

Another example is OPTi’s 82C206 and 82C495XLC ‘AT controller’ chipset
found in many early ’486 and Pentium-based systems. The 82C206 provides
the functions of two 82437 DMA Controllers, two 8259 Interrupt Con-
trollers, one 8254 Counter/Timer, one 146818-compatible Real-Time Clock,
and one 74LS612 Memory Mapper. In addition, the chip provides 114 bytes of
CMOS RAM (used for storing the BIOS configuration settings). The matching
82C495XLC device provides cache memory control and shadow RAM sup-
port for system, video, and adapter card BIOS. The chip also contains on-chip
hardware that provides direct support for up to two VL-bus master devices.

Modern PCs use chipsets supplied by a number of different manufacturers.
The chipsets provide an interface between the processor, memory and graphics
controllers (which must all operate at this highest possible speed), and the
various expansion buses (PCI, ISA, etc.). One of the functions of the chipset is
to act as a bridge between the various bus systems, managing the data flow and
ensuring the efficient transfer of data Table 1.12. Figure 1.15 shows the typical
architecture of a system that supports both PCI and ISA expansion bus systems.
The front side bus (FSB) allows data to be transferred at high speed between
the processor, memory controller, and graphics controller whilst the back side
bus (BSB) allows the processor to be fed with an instruction stream from the
level 2 cache memory (see page 39).
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Table 1.12 Representative chipset data

Supported Supported Maximum Bus
Typical DRAM DRAM density memory size ECC/ speeds PCI clock

Chipsets CPUs types (Mbit) supported parity AGP (MHz) dividers

Intel 850 Pentium 4 RDR DC 128 2 GB ECC 1x 100 1/3
(Tehama) PC800 256 2x (×4) 1/4
[82850] 4x PCI 2.2
(MCH) 1.5v
[82801BA]
(ICH2)
[82802]
(FWH)

SiS 645 Pentium 4 SDRAM 16 3 GB No 1x 100 1/3
[645] PC133 64 2x (×4) PCI 2.2
[961] DDR PC2700 128 4x

Mem = 4/3 256
Bus 512
Mem = 5/3
Bus

ALi MAGiK 1 Athlon SDRAM 16 3 GB ? 1x 100 1/3
[M1647] Duron PC133 64 2x (×2) 1/4
[M1535D+] DDR PC2100 128 4x 133 Asynchronous

Asynch Mem 256 (×2) PCI 2.2
512

AMD 750 Athlon SDRAM 16 768 MB ECC 1x 100 1/3
[751] Duron PC100 64 2x (×2) PCI 2.2
(Irongate) 128
[756] (Viper)

AMD 760 Athlon DDR PC2100 64 2 GB ECC 1x 100 1/3
[761] Duron Reg DDR 128 4 GB Reg. 2x (×2) 1/4
(Irongate-4) 256 4x 133 PCI 2.2
[766] 512 (×2)

VIA KT-266 Athlon SDRAM 64 3 GB S Both 1x 100 1/3
[VT8366] Duron PC133 128 4 GB Reg. 2x (×2) 1/4
[VT8233] Reg. SDRAM 256 4x 133 Pseudosynchronous

VC SDRAM 512 (×2) PCI 2.2
DDR PC2100
Reg. DDR
Mem = 3/4
Bus
Mem = 4/3
Bus
Mem = AGP

Another arrangement is shown in Figure 1.16. This architecture uses a North
Bridge and South Bridge (both separate chips within the chipset). The North
Bridge provides the processor with an interface to the memory bus, advanced
graphics port bus (AGP) – see Chapter 2 – and the PCI expansion bus. The South
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Figure 1.15 Architecture of a modern PC supporting several bus standards
(AGP, PCI, and ISA).

Bridge handles all of the system I/O, including an interface to the IDE/ATA bus
(see page 53).

Figure 1.17 shows the typical layout of a modern PC motherboard. This sys-
tem employs an architecture which is based on a bus controller (North Bridge)
and an I/O controller (South Bridge), and an AMD Socket 7 processor. Four
ISA and three PCI expansion slots are provided. By contrast, an example of an
embedded PC controller is shown in Figure 1.18. This system is based on an
AMD processor (designed specifically for embedded controller applications)
and uses the PC/104 expansion architecture (see Chapter 2).

The PC system board’s read/write memory provides storage for the memoryPC memory
resident parts of the operating system (e.g. Windows, Linux, or DOS) as well
as user applications programs and transient data. Read/write memory is also
used to store data that is displayed on the screen. On some systems this mem-
ory is separate from the system board’s read/write memory (and usually fitted
to a specialized graphics card) whilst on others it is ‘mapped’ into the main



H4716-Ch01 5/2/2005 12: 31 page 35

The PC 35

Figure 1.16 Modern system architecture based on a North Bridge/South
Bridge chipset

read/write memory of the system. What makes all this possible is the availabil-
ity of fast semiconductor random access memory (RAM) devices. This section
explains what these devices are and how they are incorporated into a PC system.

Modern PCs require large amounts of RAM in order to run increasingly
powerful software applications. Today, memory capacities of 64 MB or 128 MB
are commonplace. Early PCs, on the other hand, were designed to operate with
a mere 640 KB or 1 MB of memory.

Memory operation

Unfortunately, it takes a finite time in order to access data stored in a memory
device. Since program execution involves constantly reading and writing data
from/to memory the amount of time taken to transfer data has an important
bearing on the time that it takes to execute a program. Access time is the average
time (usually specified in nanoseconds) for a RAM device to complete one data
access. Access time itself is comprises the initial address setup time and the time
it takes to initiate a request for data and prepare access (this is known as latency).
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Figure 1.17 Motherboard layout for a modern PC supporting multiple bus
standards

Most memory device consist of a matrix of cells arranged on the basis of
rows and columns. A row address strobe (RAS) signal is used to latch the row
address of a particular memory location whilst a column address strobe (CAS)
signal is used to latch the column address of a particular memory location into
the row–column matrix of a RAM device. CAS latency is the ratio of column
access time to clock cycle time.

In addition, modern large-scale memories are based on dynamic RAM
(DRAM) technology in which the data is stored as a tiny electric charge which
will leak away if it is not periodically refreshed. The process of reading and
then writing back the data stored in a DRAM device is known as refreshing,
and this process must operate continuously otherwise data will be lost.

Memory organization

The memory in a PC is usually arranged in banks. Many modern PCs have
two or more memory banks (i.e. Bank A, Bank B, and so on) and each bank
comprises a group of adjacent sockets or modules. The banks are usually easily
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Figure 1.18 Layout of an embedded PC controller

identified on the system board but are also described in the system board manual.
Furthermore, because memory bank configurations can vary from system to
system, it is important to refer to manufacturers’ data before attempting to fit
memory modules. Some PCs require all the sockets in one bank to be filled
with the same capacity module, some computers require the first bank to house
the highest capacity modules, and others require the banks to be filled in a
particular order!

Most of today’s PCs use 168-pin DIMMs, which support 64-bit data paths.
Earlier 72-pin SIMMs supported 32-bit data paths, and were originally used
with 32-bit CPUs. It is important to note that, when 32-bit SIMMs were used
with 64-bit processors, they had to be installed in pairs, with each pair of
modules making up one memory bank.

Data integrity

With early PCs, data integrity checking was based on the use of a simple parity
check of each byte of data. The parity bit (stored separately) is used to detect
errors in the other 8 bits. Parity checking may be either odd or even. In the
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Photo 1.9 Various PC memory devices with capacities varying from 1 to
256 MB

Photo 1.10 DIMM memory module with heatsinks fitted to each memory
device

former case, the parity bit is set when there is an odd number of 1’s in the byte
of data. In the latter case, the parity bit is set when there is an even number of
1’s in the byte of data. Other, more powerful, data integrity checking methods
are now available, such as error correction code (ECC) methods. ECC provides
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more elaborate error detection than simple parity checking. Note that ECC can
detect multiple-bit errors and can locate and correct single-bit errors.

Memory terminology

The following terminology is commonly used to describe the various types of
memory present within a PC or PC-compatible system.

Buffered memory

A buffered memory module contains buffers that are used to interface the mod-
ule to the external memory bus. So that more memory devices can be included
in the module itself, the built-in buffers provide additional drive capability and
also regularize the logic levels employed. It is important to note that buffered
and un-buffered memory cannot be mixed. See also Registered memory.

BEDO RAM

BEDO (burst extended data output) RAM can process four memory addresses
in one burst. BEDO bus speeds range from 50 to 66 MHz compared with up to
33 MHz for EDO RAM and 25 MHz for FPM RAM.

Cache memory

Cache memory comprises a limited amount (often 256 or 512 KB) of high-
speed read/write memory in close physical and electrical proximity to the CPU.
Instead of having to fetch instructions and data from the relatively slow main
system board RAM, the cache memory provides the CPU with rapid access to
the most recent and frequently requested instructions. The primary cache or
level 1 cache is the cache memory closest to the processor core. Secondary
cache (level 2 cache) may also be provided. This cache is normally fitted to the
system board.

CMOS memory

See page 44.

Double data rate (DDR) memory

The latest generation of synchronous dynamic random access memory
(SDRAM) operates at double the data rate (DDR). With DDR SDRAM, data is
read on both the rising and the falling edge of the PC clock, thereby delivering
twice the bandwidth of standard SDRAM. With DDR SDRAM, memory speed
doubles without increasing the clock frequency.

Dual-inline memory module (DIMM)

Dual-inline memory modules (DIMM) are similar to single inline memory mod-
ules but the contacts on each side of the DIMM are differently connected (unlike
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the SIMM in which the contacts on each side of the module are electrically
connected). See also SIMM.

Direct Rambus

Direct Rambus is the name of a third generation memory technology that offers
a completely new DRAM architecture for high-performance PCs. With Direct
Rambus data transfers are made at speeds of up to 800 MHz over a relatively
narrow 16-bit data bus compared with current SDRAM technology that operates
at 100 MHz on a relatively wide 64-bit data bus.

DIP memory

Early PCs were fitted with DRAM devices supplied in conventional dual-inline
packages (DIP). These chips were either fitted in sockets (16-or 18-pin DIL)
or permanently soldered into the system board. This type of memory is now
obsolete.

Dynamic random access memory (DRAM)

Dynamic random access memory is the most commonly used form of PC RAM.
Because of its cell architecture (in which charge is stored in a semiconductor
junction capacitance) data can only be stored for a very short time. In order to
retain the data, DRAM devices must be refreshed (i.e. read and then written
back) on a regular basis.

Dual-ported memory

See VRAM.

Extended data-output (EDO) memory

Extended data-output is a DRAM technology that shortens the read cycle
between the memory and the CPU. EDO memory allows a CPU to access
memory up to 20% faster than comparable fast-page mode (FPM) memory.
Note that EDO RAM can only be fitted to a system board that supports its use.

Enhanced synchronous dynamic random access memory (ESDRAM)

Enhanced synchronous DRAM is a type of memory that replaces expensive
SRAM in embedded systems and offers comparable speed with less power
consumption and lower cost.

Fast-page mode (FPM) RAM

Fast-page mode RAM is a technology that was used to improve the performance
of early DRAM devices. Compared with conventional page mode technology,
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FPM provides faster access to data that is stored in the same row of a memory
matrix.

Non-volatile random access memory (NVRAM)

See CMOS memory on page 44.

Registered memory

Registered memory is SDRAM memory that contains registers directly on the
module. The registers re-drive the signals through the memory chips and allow
the module to be built with more memory chips. Registered (buffered) and
un-buffered memory cannot be mixed. The design of the computer memory
controller dictates which type of memory the computer requires.

Synchronous dynamic random access memory (SDRAM)

Synchronous DRAM (SDRAM) is a DRAM technology that uses a memory
clock to synchronize signal input and output on a memory chip. The memory
clock is synchronized with the CPU clock so the timing of the memory chips
and the timing of the CPU are locked together. Synchronous DRAM saves time
in executing commands and transmitting data, thereby increasing the overall
performance of the computer. SDRAM allows the CPU to access memory
approximately 25% faster than EDO memory.

Self-refreshing RAM

Self-refreshing is a memory technology that enables DRAM to refresh itself
independently of the CPU or external refresh circuitry. Self-refresh technology
is built into the DRAM chip itself and reduces power consumption dramatically.
Notebook and laptop computers use this technology.

Synchronous graphics random access memory (SGRAM)

Synchronous graphics RAM is video memory that includes graphics-specific
read/write features. SGRAM allows data to be retrieved and modified in blocks
instead of individually. Blocking reduces the number of reads and writes the
memory must perform and increases the performance of the graphics controller.

Single inline memory module (SIMM)

Single inline memory modules are small printed circuit boards populated by
semiconductor memory devices and fitted with gold or lead/tin contacts. A
SIMM plugs into a memory expansion connector on the system board. SIMMs
offer various advantages over DIP packaged RAM including ease of installation
and minimal footprint. See also DIMM.
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Small-outline dual-inline memory module (SODIMM)

Small-outline dual-inline memory modules are enhanced versions of standard
DIMM devices. A 72-pin small-outline DIMM is about half the length of a
72-pin SIMM.

Small-outline J-lead (SOJ) packaged memory

Small-outline J-lead packages are commonly used for surface-mounted DRAM
devices. The package is rectangular with J-shaped connecting pins on the two
long sides.

Static random access memory (SRAM)

Static RAM (SRAM) is a type of RAM that requires no refreshing and retains
its data as long as power is applied. Provided that the data is not changing (i.e.
remains static), SRAM devices require very little power. SRAM is frequently
used to provide cache memory.

Thin small-outline packaged (SOP) memory

Thin small-outline packages are an alternative to SOJ packages for surface-
mounting DRAM devices. TSOP packages are approximately one-third of the
thickness of an SOJ. TSOP components are often found in small-outline DIMMs
and credit card memory.

Un-buffered memory

An un-buffered memory device does not have internal buffers or registers. See
Buffered memory and Registered memory.

Video random access memory (VRAM)

Video RAM is special dual-ported memory (two separate data ports are
provided) fitted to a video or graphics card.

Zero wait state memory

Zero wait state memory offers fast access times because older and slower mem-
ory devices may require between one and five wait states (i.e. do-nothing cycles)
to slow a CPU down to match the access time of the RAM.

Memory size

The amount of memory required by a PC depends not only on the software
applications that are installed but also on the operating system that is used.
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The following are minimum memory sizes recommended for use with the most
common PC operating systems over the last 20 years:

Recommended
Operating system Minimum RAM RAM (MB)

MS-DOS 3.3 640 KB 4
MS-DOS 5 1 MB 16
Windows 3.1 3 MB 32
Windows 95 8 MB 64
Windows 98 24 MB 128
Windows ME 32 MB 128
Windows 2000 Professional 64 MB 128
Windows 2000 Server 128 MB 256
Windows 2000 Advanced Server 256 MB 512
Windows XP 256 MB 512

It is worth mentioning that adding more memory to a PC can have a very
significant effect on its performance, particularly if the memory is at, or near,
the minimum recommended for the type of operating system. The reason for
this is that, when insufficient RAM is available the PC’s operating system will
create virtual memory on the hard disk which will replace the physical memory
which would otherwise be needed. Unfortunately, writing to and reading from
the hard disk takes significantly longer than performing the same operation to
a semiconductor memory. Frequent accesses to the hard disk impose will cause
a program to run much slower than if the hard disk was not in regular use. To
put this into context, it takes typically less than 200 ns to access physical RAM
and around 10 ms to access a reasonably hard disk drive!

Memory speed

The speed of memory is one of the most important factors in defining the
performance of a system. Furthermore, memory speed forms (or the speed
of memory components) forms an essential part of specification of every PC.
Memory fitted to the PC must comply with this specification and failure to
observe this prerequisite may cause a wide variety of problems including
lock-ups, re-booting, and failure to boot. Some of the most significant
milestones in the development of memory devices are listed below:

Year first introduced Memory technology Access time/speed

1981 DIL RAM 100 ns
1987 FPM RAM 70 ns
1995 EDO RAM 50 ns
1997 SDRAM (PC66) 66 MHz
1998 SDRAM (PC100) 100 MHz
1999 RDRAM 800 MHz
1999/2000 SRAM (PC133) 133 MHz (VCM)
2000 DDR SDRAM 266 MHz
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In many cases you can fit a memory module rated at the same speed or faster
than that at which a PC’s memory system is rated. This means that you should
be able to replace a 70 ns module with one rated at either 70 or 60 ns but not one
rated at 80 ns. It is, however, worth noting that some older systems check the
module speed at boot-up and will only accept a module that has the same speed
rating as that of the system to which it is fitted. This explains why some systems
will refuse to accept faster memory modules than those being replaced!

CMOS memory

The PC-AT and later machine’s CMOS memory is 64 byte of battery-backed
memory contained within the real-time clock chip (a Motorola MC146818).

Table 1.13 CMOS memory organization

Offset (hex.) Contents

00 Seconds
01 Seconds alarm
02 Minutes
03 Minutes alarm
04 Hours
05 Hours alarm
06 Day of week
07 Day of the month
08 Month
09 Year
0A Status Register A
0B Status Register B
0C Status Register C
0D Status Register D
0E Diagnostic status byte
0F Shutdown status byte
10 Floppy disk type (drives A and B)
11 Reserved
12 Fixed disk type (drives 0 and 1)
13 Reserved
14 Equipment byte
15 Base memory (low byte)
16 Base memory (high byte)
17 Extended memory (low byte)
18 Extended memory (high byte)
19 Hard disk 0 extended type
1A Hard disk 1 extended type
1B-2D Reserved
2E-2F Check-sum for bytes 10 to 1F
30 Actual extended memory (low byte)
31 Actual extended memory (high byte)
32 Date century byte (in BCD format)
33-3F Reserved
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Sixteen byte of this memory are used to retain the real-time clock settings (date
and time information), whilst the remainder contains important information on
the configuration of the system. When the CMOS battery fails or when power is
inadvertently removed from the real-time clock chip, all data becomes invalid
and the set-up program has to be used to restore the settings of the system. This
can be a real problem unless you know what the settings should be! The organi-
zation of the CMOS memory is shown in Table 1.13 (note that locations marked
‘reserved’ may have different functions in different systems). CMOS memory is
also sometimes referred to as non-volatile random access memory (NVRAM).

BIOS ROM

The BIOS ROM is programmed during manufacture. The programming data
is supplied to the semiconductor manufacturer by the BIOS originator. This
process is cost-effective for large-scale production. However, programming
of the ROM is irreversible; once programmed, devices cannot be erased in
preparation for fresh programming. Hence, the only way of upgrading the BIOS
is to remove and discard the existing chips, and replace them with new ones.
This procedure is fraught with problems, not least of which is compatibility
of the BIOS upgrade with existing DOS software (see page 398 for further
information relating to BIOS upgrading).

The BIOS ROM invariably occupies the last 64 or 128 KB of memory (from
F0000 to FFFFF or E0000 to FFFFF, respectively) within the first megabyte
of physical memory. Additional BIOS extensions are provided for other I/O
functions (see Figure 1.19).

Photo 1.11 CMOS battery. The link adjacent to the battery can be used to
clear the memory
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Photo 1.12 Award BIOS ROM (note the real-time clock crystal adjacent to
the chip)

PC memory allocation

The allocation of memory space within a PC can he usefully illustrated by
means of a memory map. An 8086 microprocessor can address any one of 048
576 different memory locations with its 20 address lines. It thus has a memory
which ranges from 00000 (the lowest address) to FFFFF (the highest address).
We can illustrate the use of memory using a diagram known as a ‘memory map’.
Figure 1.19 shows a memory map for the first megabyte of PC memory.

BIOS data area

The memory region starting at address 0400H (see Figure 1.19) contains data
that is maintained by the BIOS. A number of memory locations within this space
can provide useful information about the current state of a PC. You can easily
display the contents of these memory locations (summarized in Table 1.13)
using the MS-DOS DEBUG utility (see page 136) or using a short routine
written in QuickBASIC.

As an example of the first method, the following DEBUG command can be
used to display the contents of 10 bytes of RAM starting at memory location
0410:

D0:0410 L 0A

A rather more user-friendly method of displaying the contents of RAM is shown
in the following QuickBASIC code fragment:

DEF SEG = 0
CLS
INPUT "Start address (in hex) "; address$
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Figure 1.19 Memory map for the first 1 MB of a PC memory

address$ = "&H" +address$
address = VAL(address$)
INPUT "Number of bytes to display "; number
PRINT
PRINT "Address", "Byte"
PRINT " (hex) " , " (hex) "
PRINT
FOR 1% = 0 TO number - 1
v = PEEK(address + i%)
PRINTHEX$(address+ i%), HEX$(v)

NEXT i%
PRINT
END

This simple QuickBASIC program prompts the user for a start address
(expressed in hexadecimal) and the number of bytes to display. A typical
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example of running the program is shown below. The program has been used
to display the contents of 10 bytes of RAM from address 0410 onwards:

Start address (in hex.)? 410
Number of bytes to display? 10

Address (hex.) Byte (hex.)

410 63
411 44
412 BF
413 80
414 2
415 0
416 18
417 20
418 0
419 0

Unfortunately, the above information is not particularly useful unless you
know how each of the bytes is constructed and what the data actually represents!
Despite this, it is possible to interrogate the BIOS data area with simple software
in order, for example, to display the port addresses used on a system Table 1.14.
The PowerBASIC 3.5 program (available for downloading from the companion
web site) shows how the BIOS data area can be accessed and useful information
extracted from it. The result of running the program is shown in Figure 1.20.

' Name: biosdata.bas Version: 0.5 Modified: 25/08/04
' Language: PowerBASIC 3.5
' Function: Display BIOS data
'
' Initialise
'
dim high as integer
dim low as integer
division$ = String$(40, Chr$(205))
Color 15, 1
Cls
'
' Get equipment list word at offset &H10
'
Def Seg = &H40
high% = peekl(&H10) \ 256 ' low byte
low% = peekl(&H10) MOD 256 ' high byte
'
' Print title and version number
'
print division$
print "BIOS Data 0.5"
'
' Get BIOS date
'
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Table 1.14 BIOS data area

Offset Offset BIOS Field size
(hex.) (dec.) service (bytes) Function

00h 0 Int 14h 2 Base I/O address for serial port 1 (COM 1)
02h 2 Int 14h 2 Base I/O address for serial port 2 (COM 2)
04h 4 Int 14h 2 Base I/O address for serial port 3 (COM 3)
06h 6 Int 14h 2 Base I/O address for serial port 4 (COM 4)
08h 8 Int 17h 2 Base I/O address for parallel port 1 (LPT 1)
0Ah 10 Int 17h 2 Base I/O address for parallel port 2 (LPT 2)
0Ch 12 Int 17h 2 Base I/O address for parallel port 3 (LPT 3)
0Eh 14 POST 2 Base I/O address for parallel port 4 (LPT 4)
10h 16 Int 11h 2 Equipment Word
12h 18 POST 1 Interrupt flag – Manufacturing test
13h 19 Int 12h 2 Memory size in KB
15h 21 2 Error codes for AT; adapter memory size for PC and XT
17h 22 Int 16h 1 Keyboard shift flag 1
18h 23 Int 16h 1 Keyboard shift flag 2
19h 24 Int 09h 1 Alt Num pad work area
1Ah 26 Int 16h 2 Pointer to the address of the next character in the keyboard buffer
1Ch 28 Int 16h 2 Pointer to the address of the last character in the keyboard buffer
1Eh 60 Int 16h 32 Keyboard buffer
3Eh 61 Int 13h 1 Floppy disk drive calibration status
3Fh 62 Int 13h 1 Floppy disk drive motor status
40h 63 Int 13h 1 Floppy disk drive motor time-out
41h 64 Int 13h 1 Floppy disk drive status
42h 65 Int 13h 1 Hard disk and floppy controller Status Register 0
43h 66 Int 13h 1 Floppy drive controller Status Register 1
44h 67 Int 13h 1 Floppy drive controller Status Register 2
45h 68 Int 13h 1 Floppy disk controller: cylinder number
46h 69 Int 13h 1 Floppy disk controller: head number
47h 70 Int 13h 1 Floppy disk controller: sector number
48h 71 1 Floppy disk controller: number of written
49h 72 Int 10h 1 Active video mode setting
4Ah 74 Int 10h 2 Number of text columns per row for the active video mode
4Ch 76 Int 10h 2 Size of active video in page s
4Eh 78 Int 10h 2 Offset address of the active video page relative to the start of video RAM
50h 80 Int 10h 2 Cursor position for video page 0
52h 82 Int 10h 2 Cursor position for video page 1
54h 84 Int 10h 2 Cursor position for video page 2
56h 86 Int 10h 2 Cursor position for video page 3
58h 88 Int 10h 2 Cursor position for video page 4
5Ah 90 Int 10h 2 Cursor position for video page 5
5Ch 92 Int 10h 2 Cursor position for video page 6
5Eh 94 Int 10h 2 Cursor position for video page 7
60h 96 Int 10h 2 Cursor shape
62h 97 Int 10h 1 Active video page
63h 99 Int 10h 2 I/O port address for the video display adapter
65h 100 Int 10h 1 Video display adapter internal mode register
66h 101 Int 10h 1 Colour palette
67h 103 2 Adapter ROM offset address

(continued)
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Table 1.14 (Continued)

Offset Offset BIOS Field size
(hex.) (dec.) service (bytes) Function

69h 106 2 Adapter ROM segment address
6Bh 107 1 Last interrupt (not PC)
6Ch 111 Int 1Ah 4 Counter for Interrupt 1Ah
70c 112 Int 1Ah 1 Timer 24-h flag
71h 113 Int 16h 1 Keyboard Ctrl-Break flag
72h 115 POST 2 Soft reset flag
74h 116 Int 13h 1 Status of last hard disk operation
75h 117 Int 13h 1 Number of hard disk drives
76h 118 Int 13h 1 Hard disk control
77h 119 Int 13h 1 Offset address of hard disk I/O port (XT)
78h 120 Int 17h 1 Parallel port 1 timeout
79h 121 Int 17h 1 Parallel port 2 timeout
7Ah 122 Int 17h 1 Parallel port 3 timeout
7Bh 123 1 Parallel port 4 timeout support for virtual DMA services
7Ch 124 Int 14h 1 Serial port 1 timeout
7Dh 125 Int 14h 1 Serial port 2 timeout
7Eh 126 Int 14h 1 Serial port 3 timeout
7Fh 127 Int 14h 1 Serial port 4 timeout
80h 129 Int 16h 2 Starting address of keyboard buffer
82h 131 Int 16h 2 Ending address of keyboard buffer
84h 132 Int 10h 1 Number of video rows (minus 1)
85h 134 Int 10h 2 Number of scan lines per character
87h 135 Int 10h 1 Video display adapter options
88h 136 Int 10h 1 Video display adapter switches
89h 137 Int 10h 1 VGA video flag 1
8Ah 138 Int 10h 1 VGA video flag 2
8Bh 139 Int 13h 1 Floppy disk configuration data
8Ch 140 Int 13h 1 Hard disk drive controller status
8Dh 141 Int 13h 1 Hard disk drive error
8Eh 142 Int 13h 1 Hard disk drive task complete flag
8Fh 143 Int 13h 1 Floppy disk drive information
90h 144 Int 13h 1 Disk 0 media state
91h 145 Int 13h 1 Disk 1 media state
92h 146 Int 13h 1 Disk 0 operational starting state
93h 147 Int 13h 1 Disk 1 operational starting state
94h 148 Int 13h 1 Disk 0 current cylinder
95h 149 Int 13h 1 Disk 1 current cylinder
96h 150 Int 16h 1 Keyboard status flag 3
97h 151 Int 16h 1 Keyboard status flag 4
98h 155 4 Address of user wait flag pointer
9Ch 159 4 User wait count
A0h 160 1 User wait flag
A1h 167 7 Local area network (LAN)
A8h 171 4 Address of video parameter control block
ACh 239 68 Reserved
F0h 255 16 Intra-applications communications area
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Figure 1.20 Output of the BIOS data program

print division$
Def Seg=&HF000
Print "Bios Date: " Peek$(&H0FFF5,8)
'
' Retrieve and print the keyboard buffer
'
Def Seg = &H40
c$ = ""
for i% = 0 to 31 step 2
cb? = peek(&H1E + i%)
c$ = c$ + chr$(cb?)
next i%
print division$
print "Keyboard buffer : "; c$
print division$
'
' Get and display COM port addresses
'
num% = val("&B"+left$(right$(bin$(high%),4),3))
print "Serial ports : "num%
print division$
for temp=1 to 4
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' Address of COM1 is at offset &H00
' Address of COM2 is at offset &H02
' Address of COM3 is at offset &H04
' Address of COM4 is at offset &H06
if peeki(&H0+(temp-1)*2)<>0 then

Print "COM"temp" : &H";
print hex$(peeki(&H0+(temp-1)*2))

end if
next temp
'
' Get and display LPT port addresses
'
print division$
for temp=1 to 4

' Address of LPT1 is at offset &H08
' Address of LPT2 is at offset &H0A
' Address of LPT3 is at offset &H0C
' Address of LPT4 is at offset &H0E
if peeki(&H08+(temp-1)*2)<>0 then

print "LPT"temp" : &H";
print hex$(peeki(&H08+(temp-1)*2))

end if
next temp
'
' Determine floppy disk drives installed
'
print division$
high% = peekl(&H10) \ 256
low% = peekl(&H10) MOD 256
if bit(low%,0)=1 then

print "Floppy disk drives : Installed "
else

print "Floppy disk drives : Not Available"
end if
if bit(low%,6)=0 and bit(low%,7)=0 then print"Number of

drives : 1"
if bit(low%,6)=0 and bit(low%,7)=1 then print"Number of

drives : 2"
if bit(low%,6)=1 and bit(low%,7)=0 then print"Number of

drives : 3"
if bit(low%,6)=1 and bit(low%,7)=1 then print"Number of

drives : 4"
print division$
Out &H70,&H10
x=Inp(&H71)
Print "Drive A: : ";
if x\16=0 Then Print "Not Available"
if x\16=1 Then Print "5.25"chr$(34)" 360 KB"
if x\16=2 Then Print "5.25"chr$(34)" 1.2 MB"
if x\16=3 Then Print "3.5"chr$(34)" 720 KB"
if x\16=4 Then Print "3.5"chr$(34)" 1.44 MB"
if x\16=5 Then Print "3.5"chr$(34)" 2.88 KB"
Print "Drive B: : ";
if (x And &H0F)=0 Then Print "Not Available"
if (x And &H0F)=1 Then Print "5.25"chr$(34)" 360 KB"
if (x And &H0F)=2 Then Print "5.25"chr$(34)" 1.2 MB"
if (x And &H0F)=3 Then Print "3.5"chr$(34)" 720 KB"
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if (x And &H0F)=4 Then Print "3.5"chr$(34)" 1.44 MB"
if (x And &H0F)=5 Then Print "3.5"chr$(34)" 2.88 KB"
print division$
end

Disk drives provide low-cost high-capacity storage for data and programs.Disk drives
Standard floppy disk drives operate at 300 rpm and use an 80-track format
with 135 tracks per inch. The standard data transfer rate is around 250 KB/s
while the formatted storage capacity is 1.44 MB.

Like floppy disks, the data stored on a hard disk takes the form of a magnetic
pattern stored in the oxide-coated surface of a disk. Unlike floppy disks, hard
disk drives are sealed in order to prevent the ingress of dust, smoke and dirt
particles. This is important since hard disks work to much finer tolerances (track
spacing, etc.) than do floppy drives. Furthermore, the read/write heads of a hard
disk ‘fly’ above the surface of the disk when the platters arc turning. The speed
of data transfer greatly exceeds that of a floppy disk drive because the hard
disk rotates at speeds of typically between 4200 and 7200 rpm (around 20 times
faster than a floppy drive).

Modern Integrated Drive Electronics (IDE) hard drives are designed to inter-
face very easily with the PC bus by means of one, or more, 40-way IDC
connectors on the motherboard. The 40-way bus extension is sometimes known
as an AT attachment (ATA). This system interface is simply a subset of the
original ISA bus signals and it can support up to two IDE drives in a daisy
chain fashion (i.e. similar to that used originally with floppy disk drives).

IDE drives are low-level formatted with a pattern of tracks and sectors already
in place. This allows drives to be more efficiently formatted than would other-
wise be possible. The actual physical layout of the data on the disk is hidden

Photo 1.13 Interior of a hard disk drive
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from the BIOS which only sees the logical format of tracks and sectors pres-
ented to it by the integrated electronics. This means that the disk can have a
much larger number of sectors on the outer tracks than on the inner tracks.
Consequently, a much greater proportion of the disk space is available for data
storage.

Photo 1.14 DIMM, ATA/IDE, and power connectors on modern motherboard

Photo 1.15 Drive bays in a tower PC (the hard drive has been removed)
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Photo 1.16 Power and data connectors at the rear of two hard drives

The next generation of hard drives are set to use the newly introduced Serial
ATA (SATA) interface which is now becoming widely available. Existing par-
allel ATA drives transfer data concurrently on multiple parallel wires within an
80-wire cable. In contrast, SATA drives transfer data at high speeds over a thin
7-wire cable.

Serial ATA drives offer several advantages over IDE drives, not the least of
which is speed. The maximum data transfer rate (or burst rate) for most parallel
drives is between 100 and 133 MB/s whilst drives using the first generation of
the SATA interface can often reach 150 MBps. SATA drive speeds are expected
to increase significantly over the next few years.
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2 PC expansion bus systems

The availability of a variety of standard expansion bus systems within the PC
environment must surely be the single most crucial factor in harnessing the
power of the machine. Having decided upon the platform for your application,
whether it be a conventional PC, an industrial PC, or some form of embedded
PC controller, there is a need to find an effective means of connecting your
hardware via an appropriate interface.

For many applications the internally available expansion (ISA/EISA, PCI,
or PCI-X) provides a means of connecting a wide range of external hardware
devices. Happily, a large number of manufacturers have recognized this fact
and have developed expansion cards specifically for control, data acquisition,
and instrumentation applications. For other applications it may be necessary
to make use of an interface to an external bus via the USB, serial, or parallel
ports. Alternatively, specialized PC controller/bus standards (such as PC/104)
may be appropriate. This chapter discusses a variety of different solutions to
the problem of connecting a PC to external hardware.

Expansion methods PC expansion can be readily achieved by means of cards connected to the PC
bus by any one or more of the following general methods:

• connectors available on the system motherboard (e.g. ISA/EISA, PCI, or
PCI-X);

• an external backplane bus or a stacking bus system (e.g. PC/104 and PC/104-
Plus);

• a high-speed serial interface to the external hardware (e.g. USB);
• serial and/or parallel ports available on the motherboard.

The first two of these methods provide a more direct route to the system bus
which is based on connection to the motherboard bus signals. The second
two methods are less direct and may require substantial buffering as well as
serial-to-parallel conversion before external data can reach the system bus.

Development of PC
expansion bus
architectures

The signals present on an expansion bus can be divided into the following
general categories:

• Address bus lines
• Data bus lines
• Read and write control signals
• Interrupt request signals
• DMA request and DMA acknowledge signals
• Miscellaneous control signals
• Clock signals
• Power rails.
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Figure 2.1 A typical PC expansion scheme

The most obvious method of expanding the PC bus is simply to provide a
number of access points to the bus on the system motherboard. This approach
was followed by IBM (and countless manufacturers of clones and compatibles)
as a means of connecting essential items of peripheral hardware (such as displays
and disk drives) via controllers fitted to adapter (or option) cards. This same
method of connection can also be employed for more specialized applications
such as analogue data acquisition, IEEE-488 bus control, etc.

Several PC expansion bus schemes have evolved over the past two decades.
The original and most widely used standard is based on Industry Standard
Architecture (ISA). This standard is also referred to as the 8-bit expansion bus
or simply as the PC expansion bus. This original PC expansion scheme was
based on a single 62-way direct edge connector which provided access to the
8-bit data bus and the majority of control bus signals and power rails (Figure 2.1).

In order to provide access to a full 16-bit data path available from the PC/AT
standard a further 36-way direct edge connector was later added. This provided
access to the remaining data bus lines together with some additional control
bus signals. Cards that required only an 8-bit data path and a subset of the
PC’s standard control signals were able to make use of only the first 64-way
connector. Cards that needed the full 16-bit data path (not available on the early
PC and XT machines) required both connectors. This enhanced standard is
often referred to as Extended Industry Standard Architecture (EISA), the 16-bit
expansion bus, or simply the PC/AT expansion bus.

With the advent of PS/2, a more advanced expansion scheme has become
available. This expansion standard was known as Micro Channel Architecture
(MCA) and it provided access to the 16-bit data bus in the IBM PS/2 Models
50 and 60 whereas access to a full 32-bit data bus was made available in the
Model 80 (which was fitted with an 80386 CPU).
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An important advantage of MCA was that it permitted data transfer at sig-
nificantly faster rates than was possible with ISA. In fairness, the increase in
data transfer rate may be unimportant in many applications and also tends to
vary somewhat from machine to machine. As a rough guide, when a standard
AT machine is compared with a PS/2 Model 50, data transfer rates could be
expected to increase by around 25% for conventional memory transfers and by
100% (or more) for DMA transfers.

Since MCA interrupt signals were shared between expansion cards, MCA
interrupt structure tends to differ from that employed within ISA where interrupt
signals tend to remain exclusive to a particular expansion card. More import-
antly, MCA provided a scheme of bus arbitration in order to decide which
of the ‘feature cards’ had rights to exercise control of the MCA bus at any
particular time. The arbitration mechanism provided for up to 15 bus masters,
each one able to exercise control of the bus. As a further bonus, MCA provided
an auxiliary video connector and programmable option configuration to relieve
the tedium of setting DIP switches on system boards and expansion cards.

Despite its advantages over ISA/EISA, MCA was a relatively short-lived
standard and it was never widely adopted by the industry. Instead, a new
(and much enhanced) standard was introduced. This bus expansion standard is
referred to as Peripheral Component Interconnect (PCI) and it quickly became
the dominant standard leading to the rapid obsolescence of the PC and PC/AT
bus standards. That said, many ISA/EISA cards are still in use today and so we
shall begin by describing these standards in some detail before moving on to
more modern bus standards.

PC ISA/EISA
expansion bus

The PC ISA/EISA expansion bus is based upon a number of expansion slots,
each of which is fitted with a 62-way direct edge connector together with an
optional subsidiary 36-way direct edge connector. Expansion or option cards
may be designed to connect only to the 62-way connector or may, alternatively,
mate with both the 62- and 36-way connectors. Since only the 62-way connector
was fitted on early machines (which had an 8-bit data bus), cards designed for
use with this connector are sometimes known as 8-bit expansion cards or PC
expansion cards. The AT standard, however, provides access to a full 16-bit data
bus together with additional control signals and hence requires the additional
36-way connector. Cards that are designed to make use of both connectors are
generally known as 16-bit expansion cards or AT expansion cards.

The original PC was fitted with only five expansion slots (spaced approxi-
mately 25 mm apart). The standard XT provided a further three slots to make
a total of eight (spaced approximately 19 mm apart). Some cards, particularly
those providing hard disk storage, required the width occupied by two expan-
sion slot positions on the PC-XT. This was unfortunate, particularly where the
number of free slots was often at a premium!

All of the XT expansion slots provided identical signals with one notable
exception; the slot nearest to the power supply was employed in a particular
IBM configuration (the IBM 3270 PC) to accept a keyboard/timer adapter.
This particular configuration employed a dedicated card select signal (B8 on
the connector) which was required by the system motherboard. Other cards
which would operate in this position included the IBM 3270 Asynchronous
Communications adapter.
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Photo 2.1 ISA/EISA and PCI expansions slots

Like the PC-XT, the standard PC/AT also provided eight expansion slots.
Six of these slots were fitted with two connectors (62- and 36-way) while two
positions (slots 1 and 7) only had 62-way connectors. Slot positions 1 and 7
were designed to accept earlier 8-bit expansion cards which made use of the
maximum allowable height throughout their length. If a 36-way connector had
been fitted to the system motherboard, this would have fouled the lower edge
of the card, preventing effective insertion of the card!

Finally, it should be noted that boards designed for AT systems (i.e. those
specifically designed to take advantage of the availability of the full 16-bit
data bus) will usually offer a considerable speed advantage over those which
were based upon the 8-bit PC expansion bus. In some applications, this speed
advantage was critical.

PC expansion cards Expansion cards for PC systems tend to vary slightly in their outline and dimen-
sions (see Figure 2.2). However, the maximum allowable dimensions for the
adapter and expansion cards fitted to PC (and PS/2) equipment is usually quoted
as follows:

Height Length Width

Standard System type in. mm in. mm in. mm

ISA 8-bit PC and PC-XT 4.2 107 13.3 335 0.5 12.7
EISA 16-bit PC/AT 4.8 122 13.2 335 0.5 12.7
MCA PS/2 3.8 96 13.2 335 0.5 12.7
PCI PC/AT 4.8 122 7.3 185 0.5 12.7

With the exception of slot 8 in the PC-XT, the position in which an adapter or
expansion card is placed should be unimportant. In most cases, this does hold
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Figure 2.2 Outlines for various types of PC expansion card (component
side view)

true however; in certain circumstances it is worth considering in which slot one
should place a card.

The most important factor that should be taken into account is ventilation.
Where cards are tightly packed together (particularly where ribbon cables may
reduce airflow in the space between expansion cards) it is wise to optimize
arrangements for cooling. Boards that are tightly packed with heat-producing
components should be located in the positions around which airflow can be
expected to be the greatest. This generally applies to the higher numbered slots
in a system. Furthermore, when introducing a new card to a system, it may be
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worth re-arranging those cards that are already fitted in order to promote the
unimpeded flow of air.

Accessibility of ISA/EISA cards (as well as later PCI cards) is also a point
which is well worth considering. This is particularly important when the card
in question is a prototype card that may require adjustment or alignment when
the system is running. The card placed in an end slot is usually very much more

Photo 2.2 An early ISA SCSI interface card (note the use of links along the
upper edge of the card for base address selection)

Photo 2.3 A low-cost ISA parallel interface card
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accessible than any of the others. Furthermore, measurements are often more
easily taken from a board fitted in this slot position without having to resort to
the use of a bus extender. This point is also worth bearing in mind when fault
finding becomes necessary.

To avoid the possibility of induced noise and glitches on the supply rails,
it is usually beneficial to place boards that make large current demands or
switch rapidly, in close proximity to the power supply (e.g. in slots 6, 7, and 8
of an ISA/EISA PC system). This precaution can be instrumental in reducing
supply-borne disturbances (glitches) and can also help to improve overall system
integrity and reliability. If, however, effective decoupling precautions have been
observed, this precaution will be of minor importance.

Photo 2.4 EISA dual serial/parallel port interface card (note the use of
two mounting brackets for the external port connections)

Photo 2.5 A modern ISA card which provides 24 optically-isolated
digital inputs (photo courtesy of Arcom)



H4716-Ch02 5/2/2005 12: 32 page 64

64 PC Based Instrumentation and Control

Figure 2.3 Pin numbering for
PC/PC-AT ISA and EISA
expansion cards (viewed
from above)

Finally, whilst timing is rarely a critical issue, some advantages can accrue
from placing cards in older ISA/EISA-based systems closer to the processor.
A particular case in point is the memory expansion cards that may be fitted to
older ISA/EISA systems. These should ideally be fitted in slot positions 6, 7,
and 8 in preference to positions 1, 2, and 3. In some cases this precaution could
be instrumental in improving overall memory access times and avoiding parity
errors. We continue this chapter by examining the ISA/EISA, PCI, and AGP
bus standards in greater detail.

Industry Standard
Architecture (ISA) bus

The original PC expansion bus supported an 8-bit data path (ISA) but the bus
was soon extended to support the full 16-bit bus (EISA). Despite the emergence
of PCI as an enhanced bus standard, many ISA and EISA cards are still in current
use in control and instrumentation systems, and are still available from a number
of suppliers.

The 62-way ISA (PC expansion bus) connector

The 62-way ISA expansion bus connector was based on a number of direct
edge connectors fitted to the system motherboard. One side of the connector is
referred to as A (lines as numbered Al to A31) while the other is referred to as
B (lines are numbered B1 to B31). The address and data bus lines are grouped
together on the A-side of the connector while the control bus and power rails
occupy the B-side (see Figure 2.3).

It is, however, important to be aware that some early PC expansion bus pin-
numbering systems did not use letters A and B to distinguish the two sides of the
expansion bus connector. In such cases, odd-numbered lines (1 to 61) formed
one side of the connector whilst even-numbered lines (2 to 62) formed the
other. Here we shall, however, adopt the more commonly used pin-numbering
convention described earlier.

Photo 2.6 A PCI 3D graphics adapter card
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The following table describes each of the signals present on the 62-way ISA
expansion bus connector:

Pin number Abbreviation Direction Signal Function

A1 /IOCHK I I/O channel Taken low to indicate a parity error in a memory
check or I/O device

A2 D7 I/O Data 7 Data bus line
A3 D6 I/O Data 6 Data bus line
A4 D5 I/O Data 5 Data bus line
A5 D4 I/O Data 4 Data bus line
A6 D3 I/O Data 3 Data bus line
A7 D2 I/O Data 2 Data bus line
A8 D1 I/O Data 1 Data bus line
A9 D0 I/O Data 0 Data bus line
A10 /IOCHRDY I I/O channel Pulsed low by a slow memory or I/O device

ready to signal that it is not ready for data transfer
A11 AEN O Address Issued by the DMA controller to indicate that a DMA

enable cycle is in progress. Disables port I/O during a DMA
operation in which /IOR and /IOW may be asserted

A12 A19 I/O Address 12 Address bus line
A13 A18 I/O Address 13 Address bus line
A14 A17 I/O Address 14 Address bus line
A15 A16 I/O Address 15 Address bus line
A16 A15 I/O Address 16 Address bus line
A17 A14 I/O Address 17 Address bus line
A18 A13 I/O Address 18 Address bus line
A19 A12 I/O Address 19 Address bus line
A20 A11 I/O Address 20 Address bus line
A21 A10 I/O Address 21 Address bus line
A22 A9 I/O Address 22 Address bus line
A23 A8 I/O Address 23 Address bus line
A24 A7 I/O Address 24 Address bus line
A25 A6 I/O Address 25 Address bus line
A26 A5 I/O Address 26 Address bus line
A27 A4 I/O Address 27 Address bus line
A28 A3 I/O Address 28 Address bus line
A29 A2 I/O Address 29 Address bus line
A30 A1 I/O Address 30 Address bus line
A31 A0 I/O Address 31 Address bus line
B1 GND n.a. Ground Ground/common 0 V
B2 RESET O Reset When taken high this signal resets all expansion cards
B3 +5 V n.a. +5 V DC +5 V supply voltage
B4 IRQ2 I Interrupt request Interrupt

level 2 request (highest priority)
B5 −5 V n.a. −5 V DC supply −5 V supply voltage
B6 DRQ2 I Direct memory Taken high when a DMA transfer is required.

access request The signal remains high until the
level 2 corresponding /DACK line goes low

(continued )
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Pin number Abbreviation Direction Signal Function

B7 −12 V n.a. −12 V DC −12 V supply voltage
B8 0WS I Zero wait state Indicates to the processor that the present bus

cycle can be completed without any
additional wait cycles

B9 +12 V n.a. +12 V DC +12 V supply voltage
B10 GND n.a. Ground Ground/common 0 V
B11 /MEMW O Memory write Taken low to signal a memory write

operation
B12 /MEMR O Memory read Taken low to signal a memory read

operation
B13 /IOW O I/O write Taken low to signal an I/O write operation
B14 /IOR O I/O read Taken low to signal an I/O read operation
B15 /DACK3 O Direct memory Taken low to acknowledge a DMA request

access acknowledge on the corresponding level (see notes)
level 3

B16 DRQ3 I Direct memory Taken high when a DMA transfer is required.
access request The signal remains high until the
level 3 corresponding /DACK line goes low

B17 /DACK1 O Direct memory Taken low to acknowledge a DMA request
access acknowledge on the corresponding level (see notes)
level 1

B18 DRQ1 I Direct memory Taken high when a DMA transfer is
access request required. The signal remains high until the
level 1 corresponding /DACK line goes low

B19 /DACK0 O Direct memory Taken low to acknowledge a DMA request
access acknowledge on the corresponding level (see notes)
level 0

B20 CLK4 O 4.77 MHz clock Processor clock divided by 3 with 210 ns
period and 33% duty cycle

B21 IRQ7 I Interrupt request Asserted by an I/O device when it requires
level 7 service (see notes)

B22 IRQ6 I Interrupt request Asserted by an I/O device when it requires
level 6 service (see notes)

B23 IRQ5 I Interrupt request Asserted by an I/O device when it requires
level 5 service (see notes)

B24 IRQ4 I Interrupt request Asserted by an I/O device when it requires
level 4 service (see notes)

B25 IRQ3 I Interrupt request Asserted by an I/O device when it requires
level 3 service (see notes)

B26 /DACK2 O Direct memory Taken low to acknowledge a DMA request
access acknowledge on the corresponding level (see notes)
level 2

B27 TC O Terminal count Pulse high to indicate that a DMA transfer
terminal count has been reached

B28 ALE O Address latch enable A falling edge indicates that the address
latch is to be enables. The signal is taken
high during DMA transfers

(continued )
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Pin number Abbreviation Direction Signal Function

B20 +5 V n.a. +5 V DC +5 V supply voltage
B30 OSC O 14.31818 MHz clock Fast clock with 70 ns period and 50% duty cycle
B31 GND n.a. Ground Ground/common 0 V

Notes:
1 Signal directions are quoted relative to the system motherboard; I represents input,

O represents output, and I/O represents a bidirectional signal used both for input and
also for output (n.a. indicates ‘not applicable’).

2 IRQ4, IRQ6, and IRQ7 are generated by the motherboard serial, disk, and parallel
interfaces, respectively.

3 DACK0 (sometimes labelled REFRESH) is used to refresh dynamic memory while
DACK1 to DACK3 are used to acknowledge other DMA requests.

4 A / indicates a signal line that is active low (or asserted low).

The 36-way EISA (PC-AT expansion bus) connector

The PC-AT is fitted with an additional expansion bus connector which provides
access to the upper eight data lines, D8 to Dl5, as well as further control bus
lines. The AT-bus employs an additional 36-way direct edge-type connector.
One side of the connector is referred to as C (lines are numbered C1 to C18)
whilst the other is referred to as D (lines are numbered Dl to D18), as shown in
Figure 2.3. The upper eight data bus lines and latched upper address lines are
grouped together on the C-side of the connector (together with memory read
and write lines) while additional interrupt request, DMA request, and DMA
acknowledge lines occupy the D-side.

The following table describes each of the signals present on the 32-way EISA
expansion bus connector:

Pin number Abbreviation Direction Signal Function

C1 SBHE I/O System bus high When asserted this signal indicates
enable that the high byte (D8 to D15) is

present on the data bus
C2 LA23 I/O Latched address 23 Address bus line
C3 LA22 I/O Latched address 22 Address bus line
C4 LA21 I/O Latched address 21 Address bus line
C5 LA20 I/O Latched address 20 Address bus line
C6 LA19 I/O Latched address 19 Address bus line
C7 LA18 I/O Latched address 18 Address bus line
C8 LA17 I/O Latched address 17 Address bus line
C9 /MEMW I/O Memory write Taken low to signal a memory write

operation
C10 /MEMR I/O Memory read Taken low to signal a memory read

operation
C11 D8 I/O Data 8 Data bus line
C12 D9 I/O Data 9 Data bus line
C13 D10 I/O Data 10 Data bus line

(continued )
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Pin number Abbreviation Direction Signal Function

C14 D11 I/O Data 11 Data bus line
C15 D12 I/O Data 12 Data bus line
C16 D13 I/O Data 13 Data bus line
C17 D14 I/O Data 14 Data bus line
C18 D15 I/O Data 15 Data bus line
D1 /MEMCS16 I Memory chip Taken low to indicate that the current data

select 16 transfer is a 16-bit (single wait state)
memory operation

D2 /IOCS16 I I/O chip select 16 Taken low to indicate that the current data
transfer is a 16-bit (single wait state)
I/O operation

D3 IRQ10 I Interrupt request Asserted by an I/O device when it
level 10 requires service

D4 IRQ11 I Interrupt request Asserted by an I/O device when it
level 11 requires service

D5 IRQ12 I Interrupt request Asserted by an I/O device when it
level 12 requires service

D6 IRQ13 I Interrupt request Asserted by an I/O device when it
level 10 requires service

D7 IRQ14 I Interrupt request Asserted by an I/O device when it
level 10 requires service

D8 /DACK0 O Direct memory access Taken low to acknowledge a DMA request
acknowledge level 0 on the corresponding level

D9 DRQO I Direct memory Taken high when a DMA transfer is
access request required. The signal remains high until the
level 0 corresponding DACK line goes low

D10 /DACK5 O Direct memory access Taken low to acknowledge a DMA
acknowledge level 5 request on the corresponding level

D11 DRQ5 I Direct memory Taken high when a DMA transfer is
access request required. The signal remains high until
level 5 the corresponding DACK line goes low

D12 /DACK6 O Direct memory access Taken low to acknowledge a DMA request
acknowledge level 6 on the corresponding level

D13 DRQ6 I Direct memory Taken high when a DMA transfer is
access request required. The signal remains high until the
level 6 corresponding DACK line goes low

D14 /DACK7 O Direct memory Taken low to acknowledge a DMA request
access acknowledge on the corresponding level
level 7

D15 DRQ7 I Direct memory Taken high when a DMA transfer is
access request required. The signal remains high until the
level 7 corresponding DACK line goes low

D16 +5 V n.a. +5 V DC +5 V supply voltage
D17 /MASTER I Master Taken low by the I/O processor when controlling

the system address, data and control bus lines
D18 GND n.a. Ground Ground/common 0 V

n.a. indicates ‘not applicable.’
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Photo 2.7 Motherboard with ISA/EISA bus connectors (note that two out of
the eight slots only provide access to the 8-bit bus)

Photo 2.8 Motherboard with ISA/EISA slots and PCI (CCA) combined slots

Electrical characteristics

All of the signal lines present on the expansion connector(s) are TTL compatible.
In the case of output signals from the system motherboard, the maximum loading
imposed by an expansion card adapter should be limited to no more than two
low-power (LS) TTL devices. The following expansion bus lines are open-
collector: /MEMCSI6, /IOCS16, and 0WS. Note that the ‘/’ indicates that the
signal in question is active low (or asserted low).

The /IOCHRDY line is available for interfacing slow memory or I/O devices.
Normal processor generated read and write cycles use four clock (CLK) cycles
per byte transferred. The standard PC clock frequency of 4.77 MHz results in a
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single clock cycle of 210 ns. Thus each processor read or write cycle requires
840 ns at the standard clock rate. DMA transfers, I/O read and write cycles, on
the other hand, require five clock cycles (1050 µs). When the /IOCHRDY line
is asserted, the processor machine cycle is extended for an integral number of
clock cycles.

Finally, when an I/O processor wishes to take control of the bus, it must assert
the /MASTER line. This signal should not be asserted for more than 15 µs as
it may otherwise impair the refreshing of system memory.

Photo 2.9 Motherboard with four ISA/EISA slots and three PCI slots

Figure 2.4 Generalized block schematic for an ISA/EISA expansion card
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Design of PC expansion cards

Several factors need to be taken into account when designing PC expansion
cards. These include power-supply requirements, power-supply rail distribution
and decoupling, and address decoding (see Figure 2.4). In addition, access to the
more specialized bus control signals (such as /IOCHK, /IOCHRDY, DRQ, and
IRQ) may be required in the case of cards which are fitted with slow I/O devices,
require DMA transfer or need to be interrupt driven. The following pointers are
given for the benefit of those involved with the design and development of PC
expansion cards.

Power rails

The available power for additional expansion cards depends upon the rating of
the system power-supply, the requirements of the motherboard, and the demands
of other adapter cards which may be fitted. When designing ISA/EISA expan-
sion cards, the recommended limit (per card) for each of the four power rails is
as follows:

Voltage rail (V) Connection Maximum current

+5 B3 and B29 1.5 A
−5 B5 100 mA
+12 B9 500 mA
−12 B7 100 mA

Where several adapter cards are fitted, the current demand for each supply rail
should be estimated and the total power requirements calculated. It should go
without saying that the total demand should not exceed the spare capacity rating
of the system power supply. In some cases this may be less than 25 W!

As a guide, the following data refers to the power supplies fitted as ‘standard’
on most PCs with the nominal power ratings shown:

Nominal power rating (W)

250 300 350 400

Maximum current rating (A)
+3.3 V rail 20 28 28 28
+5 V rail 25 30 30 30
−5 V rail 0.5 0.5 0.5 0.5
+12 V rail 13 15 17 18
−12 V rail 0.8 0.8 0.8 0.8
+5 V standby 2 2 2 2

Whenever a system is built from scratch (or when expansion cards are added to
a system) it is worth carrying out a power audit to ensure that the power supply
is adequately rated. For example, assume that a motherboard with unexpanded
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I/O is operated from a 250 W power supply and that the load on the various
supply rails is as follows:

Supply rail (V) Load (max) (A) Power (W)

+3.3 15 50
+5 3 15
−5 0.5 2.5
+12 7 84
−12 0.5 6
+5 standby 1.5 7.5

Total power: 165 W
Remaining power available: 250 − 165 = 85 W

Supply rail distribution

In order to minimize supply-borne noise and glitches, the following recommen-
dations should be observed when considering the design and layout of prototype
expansion cards:

1 Ensure that the ground/common 0 V foil is adequate and that the three ground
connections (B1, B10, and B31) are linked together via a substantial area of
copper foil.

2 Include decoupling capacitors on each of the supply rails as follows:
(a) 100 µF axial lead electrolytic to decouple the +5 V rail (locate close to

pins B1 and B3 or B29 and B31).
(b) 47 µF axial lead electrolytic to decouple the +12 V rail (locate close to

pins B9 and B10).
(c) 47 µF axial lead electrolytic to decouple the −12 V rail (locate close to

pins B7 and B10).
(d) 10 µF axial lead electrolytic to decouple the −5 V rail (locate close to

pins B5 and B10).
(Note: Capacitors can be omitted when the relevant voltage rail is not used
within the expansion card.)

3 Fit 10 µF 16 V radial lead decoupling capacitors to the +5 V rail at the rate of
one capacitor for every eight to ten TTL or CMOS logic devices. Capacitors
should be distributed at regular points along the supply rail.

4 Fit 100 nF 16 V disk ceramic capacitors to the +5 V rail at the rate of one for
every two to four TTL or CMOS logic devices. Capacitors should be placed at
strategic points close to the supply pin connections of the integrated circuits.

5 Fit one 10 µF 16 V and one 100 nF 16 V capacitor to the +5 V rail for each
VLSI device. Capacitors should be placed as close as possible to the supply
pin connections of the devices in question.

6 Repeat (3), (4), and (5) for each of the other supply rails (where used).

Finally, it should go without saying that one should never attempt to insert or
remove an expansion or adapter card when the power is connected and the system
is running. Failure to observe this precaution may result in serious damage not
only to the card in question but also to other cards that may be installed as well
as to components on the system motherboard. If this all sounds rather obvious,
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no apologies are made for repeating it. In the heat of the moment it is all too
easy to forget that a system is ‘live’. You are only likely to make this mistake
once – but the cost and frustration are likely to have a long-lasting effect!

Address decoding

The I/O provided by an expansion card will be mapped into either address or
I/O space (the latter being conventionally used for digital and analogue I/O
cards). The expansion card must, therefore, contain some address decoding
logic which must be configured to avoid conflicts with other system hardware.
Figure 2.5 shows some representative address decoding logic which provides
access to eight base addresses within I/O space. Address lines A0 and A1 may
then be used as optional register select lines for connection to VLSI devices
(e.g. an 8255 Programmable Parallel Interface).

The address decoder shown in Figure 2.5 employs a three-to-eight line
decoder (74LS138) in which the enable lines (G2A, G2B, and G1) are employed
(note that G2A and G2B are active low, whilst G1 is an active-high input).

Figure 2.5 Representative address decoder arrangement
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Outputs (Y0 to Y7) are active low and thus are ideal for use as chip select or
enable signals. The truth table for the address decoder is as follows:

Address line Base Output
address selected

A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 (hex.) (taken low)

0 0 0 1 1 1 0 0 0 0 0 300 Y0
0 0 0 1 1 1 0 0 0 0 1 304 Y1
0 0 0 1 1 1 0 0 0 1 0 308 Y2
0 0 0 1 1 1 0 0 0 1 1 30C Y3
0 0 0 1 1 1 0 0 1 0 0 310 Y4
0 0 0 1 1 1 0 0 1 0 1 314 Y5
0 0 0 1 1 1 0 0 1 1 0 318 Y6
0 0 0 1 1 1 0 0 1 1 1 31C Y7
0 0 1 x x x x x x x x n.a. None
0 1 0 x x x x x x x x n.a. None
0 1 1 x x x x x x x x n.a. None
1 0 0 x x x x x x x x n.a. None
1 0 1 x x x x x x x x n.a. None
1 1 0 x x x x x x x x n.a. None
1 1 1 x x x x x x x x n.a. None

x = don’t care; n.a. = not applicable.

The remaining address lines (Al and A0) provide four address offsets from
the base address, as follows:

Address lines

A1 A0 Offset value

0 0 0
0 1 1
1 0 2
1 1 3

As an example, address 302 (hex.) will be selected when the following
address pattern appears:

A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 Al A0
0 0 0 1 1 1 0 0 0 0 0 1 0

Base address = 300 H Offset = 2H

It is, of course, quite permissible to use the chip select lines without making
use of the register select lines, A1 and A0. In such cases, it is important to
remember that the I/O address will not be unique.
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Photo 2.10 Typical prototype card bus interface logic

Figure 2.6 Basic arrangement of the PC/104 bus

Despite the popularity of the PC and PC/AT bus architectures as a means ofThe PC/104 bus
providing bus expansion for general purpose (desktop) and dedicated (non-
desktop) applications their use on embedded systems has been limited by the
relatively large size of expansion cards as well as the somewhat cumbersome
method of interconnection. The PC/104 bus was developed in order to overcome
these limitations.

The PC/104 bus offers the following advantages over the ISA/EISA
standards:

• reduced card size;
• use of self-stacking system which has a small footprint and also eliminates

the need for a backplane;
• reduced bus drive (and hence reduced power consumption overall).

The PC/104 bus is available in two versions, 8-bit and 16-bit, which corres-
pond to the PC and PC/AT bus standards, respectively (Figure 2.6). To help
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Photo 2.11 Viper ultra-low power PC/104 format single board computer
based on Intel’s 400 MHz PXA255 XScale RISC processor. The board features
a flat panel graphics controller, audio controller, 10/100baseT Ethernet, five
serial ports, dual USB, digital I/O, onboard Flash memory and Compact
Flash expansion (photo courtesy of Arcom)

Photo 2.12 AIM104 I/O card for PC/104 expansion. This card has eight
changeover relays (each rated at 30 V DC, 1A) and eight optically isolated
inputs (photo courtesy of Arcom)
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meet the tight space requirements of embedded systems, each of the two bus
types (8-bit and 16-bit) offers two bus options, according to whether or not
the P1 and P2 bus connectors extend through the module as stack through
connectors.

Peripheral Component
Interconnect/Interface

(PCI) bus

The Peripheral Component Interconnect/Interface ‘PCI’ bus was originally
developed as a local bus expansion for the ISA/EISA (PC/AT) bus. The first
version of the PCI bus ran at 33 MHz with a 32-bit bus (133 MBps) but the
current version runs at 66 MHz with a 64-bit bus. The PCI bus operates either
synchronously or asynchronously with the motherboard bus rate. While oper-
ating asynchronously the bus will operate at any frequency up to the maximum
(66 MHz). Flow control is used to allow the bus to operate with slower devices.
The bus is unterminated and the bus clock operates at 133 MHz.

PCI supports full device bus mastering, and provides bus arbitration facilities
through the system chipset. PCI architecture allows bus mastering of multiple
devices on the bus simultaneously, with the arbitration circuitry working to
ensure that no device on the bus (including the processor) locks out any other
device. However, in the event that no other device requires access to the bus,
PCI will allow a bus master to transfer data at the maximum permissible rate.
Note that, with some early motherboards it might be possible that not all of the
available PCI bus slots will be capable of bus mastering. When in doubt it is
wise to check with the motherboard manual.

The PCI standard forms part of the Plug and Play standard developed by
Intel, Microsoft, and many other companies in which the PCI chipset handles
the identification of cards, working in conjunction with the BIOS and operating
to automatically allocate resources for compatible peripheral cards.

The PCI bus uses its own internal interrupt system for dealing with requests
from the cards on the bus. These interrupts are often called ‘#A’, ‘#B’, ‘#C’,
and ‘#D’ to avoid confusion with the normal numbered system IRQs, though
they are sometimes referred to by number. PCI interrupt levels are not generally
seen by the user except in the PCI BIOS setup screen.

PCI interrupts are mapped to the normal system interrupts (usually IRQ9
to IRQ12). This imposes a limit of four interrupts available for PCI devices.
Where more slots are provided (or where a USB controller is present) several
PCI devices may be configured to share an IRQ.

Other variants and extensions of the basic PCI specification include:

PCI-X The latest version 64 bits at 133 MHz
cPCI Compact PCI is PCI in a VME form factor, using either

3U/6U modules and using 2 mm connectors
PC/104-Plus PCI add-on to the PC/104 specification
PISA PCI add-on for the PC/AT bus standard
P2CI PCI on the VME64 P2 connector
PMC PCI on a Mezzanine Card, ‘PMC’
PXI cPCI for Instrumentation
IPCI Industrial PCI (another version of cPCI)
Serial PCI PCI based on a serial link
Card Bus 32-bit PCI on the PC Card (PCMCIA) format
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The pin connections and signals present on the PCI bus connector are
summarized in the following table:

The PCI expansion bus connector

Pin Name Description Pin Name Description

A1 TRST Test logic reset B1 −12 V −12 V DC
A2 +12 V +12 V DC B2 TCK Test Clock
A3 TMS Test mode select B3 GND Ground
A4 TDI Test data input B4 TDO Test data output
A5 +5 V +5 V DC B5 +5 V +5 V DC
A6 INTA Interrupt A B6 +5 V +5 V DC
A7 INTC Interrupt C B7 INTB Interrupt B
A8 +5 V +5 V DC B8 INTD Interrupt D
A9 —– Reserved B9 PRSNT1 Present
A10 +5 V Power (+5 V or +3.3 V) B10 —– Reserved
A11 —– Reserved B11 PRSNT2 Present
A12 GND03 Ground or keyway for 3.3 V/ B12 GND Ground or keyway for 3.3 V/

universal cards universal cards
A13 GND05 Ground or keyway for 3.3 V/ B13 GND Ground or open (key) for 3.3 V/

universal cards universal cards
A14 3.3 V aux B14 RES Reserved
A15 RESET Reset B15 GND Ground
A16 +5 V Power (+5 V or +3.3 V) B16 CLK Clock
A17 GNT Grant PCI use B17 GND Ground
A18 GND08 Ground B18 REQ Request
A19 PME# Power management event B19 +5 V Power (+5 V or +3.3 V)
A20 AD30 Address/Data 30 B20 AD31 Address/Data 31
A21 +3.3 V01 +3.3 V DC B21 AD29 Address/Data 29
A22 AD28 Address/Data 28 B22 GND Ground
A23 AD26 Address/Data 26 B23 AD27 Address/Data 27
A24 GND10 Ground B24 AD25 Address/Data 25
A25 AD24 Address/Data 24 B25 +3.3 V +3.3 VDC
A26 IDSEL Initialization Device Select B26 C/BE3 Command, Byte enable 3
A27 +3.3 V03 +3.3 V DC B27 AD23 Address/Data 23
A28 AD22 Address/Data 22 B28 GND Ground
A29 AD20 Address/Data 20 B29 AD21 Address/Data 21
A30 GND12 Ground B30 AD19 Address/Data 19
A31 AD18 Address/Data 18 B31 +3.3 V +3.3 V DC
A32 AD16 Address/Data 16 B32 AD17 Address/Data 17
A33 +3.3 V05 +3.3 V DC B33 C/BE2 Command, Byte enable 2
A34 FRAME Address or Data phase B34 GND13 Ground
A35 GND14 Ground B35 IRDY# Initiator ready
A36 TRDY# Target ready B36 +3.3 V06 +3.3 V DC
A37 GND15 Ground B37 DEVSEL Device select
A38 STOP Stop transfer cycle B38 GND16 Ground
A39 +3.3 V07 +3.3 V DC B39 LOCK# Lock bus
A40 —– Reserved B40 PERR# Parity error

(continued )



H4716-Ch02 5/2/2005 12: 32 page 79

PC expansion bus systems 79

Pin Name Description Pin Name Description

A41 —– Reserved B41 +3.3 V08 +3.3 V DC
A42 GND17 Ground B42 SERR# System Error
A43 PAR Parity B43 +3.3 V09 +3.3 V DC
A44 AD15 Address/Data 15 B44 C/BE1 Command, Byte enable 1
A45 +3.3 V10 +3.3 V DC B45 AD14 Address/Data 14
A46 AD13 Address/Data 13 B46 GND18 Ground
A47 AD11 Address/Data 11 B47 AD12 Address/Data 12
A48 GND19 Ground B48 AD10 Address/Data 10
A49 AD9 Address/Data 9 B49 GND20 Ground
A50 Keyway Open or ground for 3.3 V cards B50 Keyway Open or ground for 3.3 V cards
A51 Keyway Open or ground for 3.3 V cards B51 Keyway Open or Ground for 3.3 V cards
A52 C/BE0 Command, Byte Enable 0 B52 AD8 Address/Data 8
A53 +3.3 V11 +3.3 V DC B53 AD7 Address/Data 7
A54 AD6 Address/Data 6 B54 +3.3 V12 +3.3 V DC
A55 AD4 Address/Data 4 B55 AD5 Address/Data 5
A56 GND21 Ground B56 AD3 Address/Data 3
A57 AD2 Address/Data 2 B57 GND22 Ground
A58 AD0 Address/Data 0 B58 AD1 Address/Data 1
A59 +5 V Power (+5 V or +3.3 V) B59 VCC08 Power (+5 V or +3.3 V)
A60 REQ64 Request 64 bit B60 ACK64 Acknowledge 64 bit
A61 VCC11 +5 V DC B61 VCC10 +5 V DC
A62 VCC13 +5 V DC B62 VCC12 +5 V DC

64-bit spacer keyway

A63 GND Ground B63 RES Reserved
A64 C/BE[7]# Command, Byte enable 7 B64 GND Ground
A65 C/BE[5]# Command, Byte enable 5 B65 C/BE[6]# Command, Byte enable 6
A66 +5 V Power (+5 V or +3.3 V) B66 C/BE[4]# Command, Byte enable 4
A67 PAR64 Parity 64 B67 GND Ground
A68 AD62 Address/Data 62 B68 AD63 Address/Data 63
A69 GND Ground B69 AD61 Address/Data 61
A70 AD60 Address/Data 60 B70 +5 V Power (+5 V or +3.3 V)
A71 AD58 Address/Data 58 B71 AD59 Address/Data 59
A72 GND Ground B72 AD57 Address/Data 57
A73 AD56 Address/Data 56 B73 GND Ground
A74 AD54 Address/Data 54 B74 AD55 Address/Data 55
A75 +5 V Power (+5 V or +3.3 V) B75 AD53 Address/Data 53
A76 AD52 Address/Data 52 B76 GND Ground
A77 AD50 Address/Data 50 B77 AD51 Address/Data 51
A78 GND Ground B78 AD49 Address/Data 49
A79 AD48 Address/Data 48 B79 +5 V Power (+5 V or +3.3 V)
A80 AD46 Address/Data 46 B80 AD47 Address/Data 47
A81 GND Ground B81 AD45 Address/Data 45
A82 AD44 Address/Data 44 B82 GND Ground
A83 AD42 Address/Data 42 B83 AD43 Address/Data 43
A84 +5 V Power (+5 V or +3.3 V) B84 AD41 Address/Data 41
A85 AD40 Address/Data 40 B85 GND Ground

(continued )
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Pin Name Description Pin Name Description

A86 AD38 Address/Data 38 B86 AD39 Address/Data 39
A87 GND Ground B87 AD37 Address/Data 37
A88 AD36 Address/Data 36 B88 +5 V Power (+5 V or +3.3 V)
A89 AD34 Address/Data 34 B89 AD35 Address/Data 35
A90 GND Ground B90 AD33 Address/Data 33
A91 AD32 Address/Data 32 B91 GND Ground
A92 RES Reserved B92 RES Reserved
A93 GND Ground B93 RES Reserved
A94 RES Reserved B94 GND Ground

Notes:
1 Signals on pins 63 to 94 are only used on 64-bit PCI bus cards.
2 The copper foil side of the card is side A whilst the component side is side B.
3 A # used after a signal name indicates that the signal in question is active

low (or asserted low).
4 The time-multiplexed address and data bus may exist as either 0 to 31 bits

(32 bits) or 0 to 63 bits (64 bits) using the 64-bit expansion bus. Both address
and data signals use the same bus; addresses followed by data. A 32-bit PCI
may also use 64-bit addressing by using two address cycles, referred to as
Dual Address Cycles (DAC), in which the low order address is sent first.
Additional control bits are used when the bus is used in 64-bit mode.

5 The bus connectors are labelled ‘+5 V or +3.3 V’ in the case of+5 V systems
and ‘+3.3 V’ for 3.3 V systems. Note that the original PCI standard required
that plug-in boards use +5 V supplies provided by the PCs motherboard. As
the PCI standard evolved, the option was added for a + 3.3 V power source.
Furthermore, the newer PCI 2.3 standard has now made the +5 V supply
obsolete. This means that many of the most recent PCs can only accept 3.3 V
or ‘universal’ PCI cards. Contacts on the PCI connector (keyways A12, B12,
etc.) are used to determine the correct power rail voltages (see Figure 2.2).

Photo 2.13 Five PCI expansion connectors in a modern PC
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Introduced in 1997, AGP was designed to provide a cost-effective means ofAccelerated Graphics
Port (AGP) improving the video performance of a PC and of reducing the burden that

would otherwise be imposed on the PCI bus by having to cope with the fast
throughput of video data. AGP enhances the interface between the video chipset
and the processor, and also makes it possible for the video processor to have
access to the main system memory. The AGP slot is physically similar to the
PCI slots that may be fitted to a motherboard. However, the AGP slot is usually
offset further from the edge of the motherboard. The AGP specification is based
on the PCI 2.1 specification which includes a 66 MHz bus speed.

Like the PCI bus, the AGP bus is 32-bit wide however, instead of running
at half of the system (memory) bus speed, AGP runs at the full speed of the
bus (66 MHz). AGP also benefits from the fact that, as only one slot is present,
there is no need to share the available bandwidth with any other devices!

In addition to doubling the speed of the bus, AGP has defined a double speed
(2×) mode that allows twice as much data to be sent over the port at the same
clock speed. In this mode, the hardware places data on the bus on both the rising
and falling edges of the clock signal. In contrast, the PCI bus places data on
only one of these transitions. The theoretical bandwidth is thus increased to a
little over 500 MB/s.

In the context of data acquisition, control and instrumentation, and as a poten-
tial means for interfacing to external hardware the AGP has obvious limitations,
not least of which is that there is only one slot available and this may already
be occupied by a graphics card. Happily, for most applications the PCI bus is
capable of providing sufficiently fast throughput with the added bonus that it is
well supported by a huge range of I/O cards.

The Universal
Serial bus

Offering true plug-and-play capability, the Universal Serial Bus (USB) has
become the de-facto future standard for the interconnection of a host computer
to a wide range of simultaneously accessible peripheral devices that share the
available USB bandwidth through a host-scheduled, token-based protocol. Fur-
thermore, unlike most other forms of computer bus, USB allows peripherals to
be attached, configured, used, and detached while the host and other peripherals
are in operation.

The Universal Serial Bus was originally specified as an industry-standard
extension to the PC architecture with a focus on Computer Telephony Integra-
tion (CTI), consumer, and productivity applications. In framing the original
specification, the following criteria were applied in defining the original USB
specification:

• Ease-of-use for PC peripheral expansion
• Low-cost solution that supports transfer rates up to 12 MB/s
• Full support for real-time data for voice, audio, and compressed video
• Support for various types of data transfer
• Ability to cope with diverse system configurations, form factors, and host

computers.

One of the principal advantages of USB is the speed at which it operates.
USB supports two data transfer rates; 12 MB/s (described as high-speed) and
an alternative (but still quite respectable) 1.5 MB/s (described as low-speed).
Figure 2.7 shows how USB’s two data transfer rates compare with those offered
by other interface types and standards.
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Figure 2.7 Comparison of data rates for several interface standards

USB applications and principal features

The Universal Serial Bus can be used in a very wide variety of applications.
The ability to support data rates of up to 12 MB/s makes USB suitable for
applications that are demanding in terms of data throughput whilst the simplicity
of the USB interface makes it ideal for slower, low-cost peripheral devices
such as keyboards, joysticks, and mice. Finally, the ability of USB to support
multiple hubs and host controllers allows it to support more complex systems
of computers and peripheral devices.

The following table, organized by speed of data transfer, summarizes the
main applications envisaged for USB:

Speed of data transfer Application Examples

Low-speed Input devices Mice (and other pointing devices)
(up to 128 KB/s) Keyboards

Joysticks (and other game peripherals)
Control systems Plant and process control
Communication Low-speed modems

Medium-speed Communication High-speed modems and ISDN adapters
(128 KB/s to 2 MB/s) Input devices Scanners, video screen grabbers

Storage devices Removable disk drives (e.g. ZIP drives)
Multimedia Sound cards
Instrumentation Time, frequency, voltage measurement, etc.
Data acquisition Measurement and recording of

temperature, humidity, stress, etc.
High-speed Communication Network adapters

(greater than 2 MB/s) Storage devices Optical drives
Multimedia Reduced bandwidth video
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Figure 2.8 USB arrangement for connecting a wide variety of peripheral
devices

Photo 2.14 Some typical USB devices; a 256 MB memory stick, a Flash
memory card reader, and a wireless network adapter

Figure 2.8 shows a typical range of peripherals that can be connected to a PC by
means of the Universal Serial Bus. USB connectivity on a device can be easily
recognized by the presence of the USB icon (see Figure 2.9).

Figure 2.9 The USB icon

The main features (and notable advantages compared with serial-port data
transfer) of USB are as follows:

• Easy to set up and configure
• Simple cabling and connecting system
• Devices can be identified and configured automatically
• Peripheral devices can be ‘hot-plugged’ and ‘hot un-plugged’
• Suitable for a wide range of device bandwidths
• Supports various types of data transfer (including isochronous)
• Supports concurrent operation of a large number of up to 127 devices
• Supports transfer of multiple data and message streams between the host and

devices
• Efficient and transparent bus protocol
• Conforms with standard plug-and-play architecture
• Wide bandwidth
• Ability to use entire bus bandwidth in isochronous mode
• Flexible (easy to extend and modify)
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Figure 2.10 A modern PC with motherboard USB ports and host controller
circuitry

• Allows a wide range of device data rates
• Flow control for buffer handling is built into the protocol
• Robust (incorporates error detection and fault recovery mechanisms)
• Relatively low-cost.

USB implementation

Most current desktop and tower PCs as well as Apple iMac computers are
supplied with one or more USB ports. On PCs, these ports are additional to
those that are normally associated with the original PC standard, such as the
two serial ports (COM1: and COM2:) and the parallel port (LPT1:).

On most current PCs, the USB ports are functions provided by the system
motherboard (see Figure 2.10). Older PCs can easily be fitted with USB ports
by simply adding a low-cost adapter card (see Figure 2.11). However, in either
case, the operating system must support the USB standard. This means that PC
owners will have to upgrade to Windows 98 or later in order to have a system
that fully implements the USB standard!
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Figure 2.11 A PC with adapter card USB ports and host controller circuitry

The USB circuitry on the motherboard (or the adapter card) provides the
functions of a USB host controller. This circuitry, in conjunction with buffers
and drivers, provide the basic host interface to the USB.

Connection and disconnection of USB devices

One of the advantages of USB over other bus systems is its ability to support hot-
connection and hot-disconnection from the bus. This important feature requires
that the host’s system software is not only able to recognize the connection and
disconnection of devices but is able to reconfigure the system dynamically.
Modern operating systems, such as Microsoft Windows 98, 2000 and XP have
this facility.

USB devices attach to the USB through ports on hubs that incorporate status
indicators to indicate the attachment or removal of a USB device. The host
queries the hub to retrieve these indicators. In the case of an attachment, the
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host enables the port and addresses the USB device through the device’s control
pipe at the default address.

The host assigns a unique USB address to the device and then determines if
the newly attached USB device is a hub or a function. The host then establishes
its end of the control pipe for the USB device using the assigned USB address
and endpoint number zero.

If the attached USB device is a hub and USB devices are attached to its ports,
then the above procedure is followed for each of the attached USB devices.
Alternatively, if the attached USB device is a function, then attachment notifi-
cations will be handled by host software that is appropriate for the particular
function in question.

When a USB device has been removed from one of a hub’s ports, the hub
disables the port and provides an indication of device removal to the host. The
removal indication is then handled by the appropriate USB system software. If
the removed USB device is a hub, the USB system software must handle the
removal of both the hub and all the USB devices that were previously attached
to the system through the hub in question.

Finally, enumeration is the name given to process of allocating unique
addresses to devices attached to a USB bus. Because the USB allows USB
devices to attach to or detach from the USB at any time, bus enumeration has
to be an on-going activity for the USB system software.

USB bus topology and physical connections

The USB connects USB devices with the USB host. The USB physical intercon-
nect is a star topology that operates at a number of levels, extending downwards
from the host. Hubs or nodes (i.e. peripheral USB devices) may be present at
different levels but note that the nodes connected to any particular hub appear
in the next level down. Each physical connection is a point-to-point connection
between the relevant hub and node or between the relevant hub and another hub.
Figure 2.12 illustrates the topology of the USB.

The USB transfers signal and power over a four-wire cable, shown in
Figure 2.13. The signalling occurs over two wires on each point-to-point
segment. In order to deliver power to devices, the cable also carries VBUS
(nominally +5 V) and GND wires on each segment. Cable segments may be of
variable lengths (up to several metres) and the terminations allow rapid connec-
tion or disconnection at each port with differentiation between full-speed and
low-speed devices.

It is important to note that each USB segment can provide only a limited
amount of power. Furthermore, whilst the host can supply power for use by
USB devices that are directly connected, any USB device may have its own
power supply. USB devices that rely totally on power from the cable are called
bus-powered devices. In contrast, those that have an alternate source of power
are called self-powered devices. USB hubs supply power for any connected
USB devices and this power may be derived from the host controller or may
be externally derived. It is also worth noting that the mechanical specification
for USB cables and connectors ensures that upstream and downstream connec-
tors are not mechanically interchangeable, thus eliminating the possibility of
loopback connections at hubs.
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Figure 2.12 USB topology showing levels or tiers

Figure 2.13 USB cable (high-speed)

As mentioned earlier, USB provides two basic data transfer rates; the full-
speed bit rate of 12 MB/s and the reduced, low-speed, bit rate of 1.5 MB/s.
Dynamic mode switching between transfers allows both modes to be sup-
ported in the same bus. The low-speed mode is defined to support a number
of low-bandwidth devices, such as keyboards and pointing devices. The low-
speed mode is also somewhat less demanding in terms of screening and EMI
protection.

The USB clock signal is effectively encoded along with the differential
data. The clock encoding scheme is NRZI with bit stuffing to ensure adequate
transitions. In order to allow a receiver to synchronize its bit recovery clock, a
SYNC field precedes each packet.

Note also that USB is a polled bus and that the host controller (i.e. the PC)
initiates all of the data transfers. All bus transactions involve the transmission
of up to three packets. Each transaction begins when the host controller, on
a scheduled basis, sends a USB packet describing the type and direction of
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Photo 2.15 A low-cost USB four-port hub

transaction, the USB device address, and endpoint number. This packet is
referred to as the token packet.

Each USB device decodes the appropriate address fields to determine whether
it is being selected. In a given transaction, data is transferred either from the host
to a device or from a device to the host. The direction of data transfer is specified
in the token packet. The source of the transaction then sends a data packet or
indicates it has no data to transfer. The destination, in general, responds with a
handshake packet indicating whether the transfer was successful.

Error detection and handling

The USB standard embodies a number of methods that contribute to the reduc-
tion of noise and data errors, and the overall enhancement of reliability. These
include use of differential drivers, receivers, and shielding to improve sig-
nal integrity, cyclic redundancy character (CRC) checking of control and
data fields, automatic detection of attachment and detachment of devices, and
system-level configuration of resources. To provide protection against glitches
and transients, each packet includes error protection fields. When a high level
of data integrity is required, an error recovery procedure may be invoked in
hardware or software. Hardware error handling includes reporting and retry of
failed transfers, and a host controller will attempt retransmission three times
before informing the client software of the failure. The client software can then
recover in the most appropriate manner (according to the specific application
and the particular device function).

USB data transfers

The USB architecture allows for four basic types of data transfers: control
transfers, bulk data transfers, interrupt data transfers, and isochronous data
transfers. We shall briefly describe each type.
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Control transfers

Control data is used by the USB system software to configure devices when
they are first attached. Other driver software can choose to use control transfers
in implementation-specific ways. Data delivery is lossless.

Bulk data transfers

Bulk data typically consists of larger amounts of data, such as that used for print-
ers or scanners. Bulk data is sequential. Reliable exchange of data is ensured at
the hardware level by using hardware error and invoking a limited number of
retries. Note also that the bandwidth taken up by bulk data can vary, depending
on other bus activities.

Interrupt data transfers

A small, limited-latency transfer to or from a device is referred to as interrupt
data. Such data may be presented for transfer by a device at any time. Interrupt
data typically consists of event notification, characters, or coordinates that are
organized as groups of one or more bytes. An example of interrupt data is the
coordinates from a pointing device.

Isochronous data transfers

Isochronous data is continuous and delivered in real-time. Timing-related infor-
mation is implied by the steady rate at which isochronous data is received and
transferred. In order to maintain timing, isochronous data must be delivered at
the rate that it is received. In addition to delivery rate, isochronous data may also
be sensitive to delivery delays. For isochronous pipes, the bandwidth required is
typically based upon the sampling characteristics of the associated function. The
latency, on the other hand, is related to the buffering available at each endpoint.

A typical example of isochronous data is voice. If the delivery rate of this
type of data stream is not maintained, drop-outs can occur due to buffer or frame
underruns or overruns. Even if data is delivered at the appropriate rate by USB
hardware, delivery delays introduced by software may degrade applications
requiring real-time turn-around. To safeguard the delivery of data at the desired
rate, USB isochronous data streams are allocated a dedicated portion of the
USB bandwidth.

USB devices

As mentioned earlier, USB uses two major types of device: hubs and functions.
The former class of device provides additional USB attachment points whilst
the latter provides the host with additional capabilities. It is important to be
clear about this distinction!

Hubs

Hubs are a key element in the plug-and-play architecture of the USB. Each hub
converts a single upstream port into multiple downstream ports, each of which
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permits connection to another device or hub. Hubs can detect attachment and
detachment at each downstream port and provide power to any downstream
device that require it.

A hub consists of two elements: the hub controller and the hub repeater.
The hub repeater is a protocol-controlled switch between the upstream port and
downstream ports. It also has hardware support for reset and suspend/resume
signalling. The host controller provides the interface registers to allow commu-
nication to/from the host. Hub-specific status and control commands permit the
host to configure a hub and to monitor and control its ports.

Functions

A function is a USB device that is able to transmit or receive data or control
information over the bus. A function is typically implemented as a separate
peripheral device with a cable that plugs into a port on a hub. However, a
physical package may implement multiple functions and an embedded hub
with a single USB cable. This is known as a compound device. Such a device
appears to the host as a hub with one or more non-removable USB devices.

Each function must incorporate configuration information that describes
its capabilities and resource requirements. Before a function can be used, it
must be configured by the host. This configuration includes allocating USB
bandwidth and selecting function-specific configuration options. Examples of
functions include:

• keyboards and keypads
• printers
• cameras
• graphics tablets
• mice
• trackballs.

USB data flow model

The USB host (normally part of the motherboard) interacts with USB devices
and provides facilities for:

• Detecting the attachment and removal of devices
• Managing control flow between the host and devices
• Managing data flow between the host and devices
• Providing power to attached devices
• Collecting status information.

The simple view of communication between a host and a single attached
USB device is shown in Figure 2.14. To account for the different layers, and
the transactions that take place between them, Figure 2.15 provides a view of
the underlying architecture of the interface.

For those who may be unfamiliar with the standard ISO model for Open
System Interconnection, it is worth examining each of the major layers present
within Figure 2.15. The Bus interface layer provides physical/signalling/packet
connectivity between the host and a device whereas the Device layer is the view
the USB system software has for performing generic USB operations with a
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Figure 2.14 Simple view of the USB interface

Figure 2.15 Layers in USB architecture (note the apparent peer–peer
logical interconnection)

device. The Function layer provides additional capabilities to the host via an
appropriate matched client software layer. The USB Device and Function layers
each have a view of logical communication within their layer that actually uses
the USB Bus interface layer to accomplish data transfer. What is important
about this model is the apparent peer-to-peer connectivity that it provides!

Devices on the Universal Serial Bus are physically connected to the host via
a tiered star topology. Figure 2.16 shows the topology of a typical USB arrange-
ment. Note that host effectively incorporates its own embedded hub, called the
Root Hub. The Root Hub, in turn, provides one or more attachment points.

Multiple functions may be packaged together in what appears to be a single
physical device. For example, a keyboard and a trackball might be combined in
a single package. Inside the package, the individual functions are permanently
attached to a hub and it is the internal hub that is connected to the USB. When
multiple functions are combined with a hub in a single package, they are referred
to as a compound device. From the host’s perspective, a compound device is
the same as a separate hub with multiple functions attached.
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Figure 2.16 Host, Hub, and device interconnections

Figure 2.17 USB buffered interface

Client software for USB functions must use USB software programming
interfaces to manipulate their functions instead of directly manipulating their
functions via memory or I/O accesses as with other buses (e.g. PCI, EISA,
PCMCIA, etc.). During operation, client software should be independent of
other devices that may be connected to the USB. This allows the programmer and
software to focus primarily on the interaction between hardware and software.

USB physical interface

The physical interface used in the Universal Serial Bus is quite straightforward.
The interface specification involves electrical characteristics (voltage levels),
cables, and connectors. We shall briefly describe each of these features:

Electrical interface

As mentioned earlier, USB uses just two differential data connections (D+ and
D−) and two power connections. CMOS buffers are used to drive the relatively
low impedance of the cable, as shown in Figure 2.17. The signal voltage present
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Figure 2.18 USB data signal levels

Figure 2.19 Pull-up and pull-down resistors in a USB interface

on the D+ and D− must be within the ranges shown in Figure 2.18. Note also
that the terminating voltage (logic high) should be within the range 3.0–3.5 V.

Detection of device connection is accomplished by means of pull-up and
pull-down resistors placed, respectively at the input or output of a port. USB
pull-down resistors normally have a value of 15 k� whilst pull-up resistors have
a value of 1.5 k�, as shown in Figure 2.19.
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Figure 2.20 USB cable (cross-sectional view)

Cables

USB cables comprise four conductors, two power conductors and two signal
conductors. Full-speed cable consists of a signalling twisted pair, VBUS, GND,
and an overall shield. Full-speed cable must be marked to indicate suitabillity for
USB usage. Full-speed cable may be used with either low- or full-speed devices.
When full-speed cable is used with low-speed devices, the cable must meet all
low-speed requirements. Low-speed cable does not require twisted signalling
conductors or the overall shield (since radiation of EMI is significantly reduced
with low-speed data transmission).

The current USB specification describes three USB cable assemblies;
detachable cable, full-speed captive cable, and low-speed captive cable. The
recommended colours for the cable assembly are white, grey, or black.

A cross-sectional diagram of a full-speed USB cable is shown in Figure 2.20.

USB connectors

To minimize end user termination problems, USB uses a ‘keyed connector’
protocol. The physical difference in the Series ‘A’ and ‘B’ connectors insure
proper end user connectivity. The ‘A’ connector is the principle means of con-
necting USB devices. All USB devices must have an ‘A’ connector. The ‘B’
connector allows device vendors to provide a standard detachable cable. It is
important to note that:

• Series ‘A’ plugs are always oriented upstream towards the host system
• Series ‘B’ plugs are always oriented downstream towards the USB device.

The following list explains how the plugs and receptacles can be mated:

• The Series ‘A’ receptacle mates with a Series ‘A’ plug. Electrically, Series
‘A’ receptacles function as outputs from host systems and/or hubs.

• The Series ‘A’ plug mates with a Series ‘A’ receptacle. The Series ‘A’ plug
always is oriented towards the host system.
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Figure 2.24 USB pin connections

• The Series ‘B’ receptacle mates with a Series ‘B’ plug (male). Electrically,
Series ‘B’ receptacles function as inputs to hubs or devices.

• The Series ‘B’ plug mates with a Series ‘B’ receptacle. The Series ‘B’ plug
is always oriented towards the USB hub or device.

Figure 2.21 USB cable
connector

Figure 2.22 USB connector
(type A)

Figure 2.23 USB connector
(type B)

Full-speed devices can utilize the ‘B’ connector. This allows the device to
have a detachable USB cable. This eliminates the need to build the device with
a hardwired cable and minimizes end user problems if cable replacement is
necessary. Figure 2.21 shows a typical Series ‘A’ connector showing the USB
icon and the top locator (a small ‘pip’ located towards the cable end of the
connector).

Devices utilizing the ‘B’ connector must be designed to work with worst case
maximum length detachable cable. Detachable cable assemblies may be used
only on full-speed devices. Note also that using a full-speed detachable cable
on a low-speed device may exceed the maximum low-speed cable length.

Finally, Figures 2.22 and 2.23, respectively show the pin connections for
connectors ‘A’ and ‘B’ whilst Figure 2.24 shows the pin assignment and
recommended colour coding.

The final part of this chapter describes some representative I/O interface cardsRepresentative I/O
cards and bus connected devices. These details have been included in order to provide

readers with an insight into products that are currently available ‘off-the-
shelf’ and that can be used for a wide variety of control, data acquisition and
instrumentation applications.

Measurement Computing Corporation PDISO-8

The Measurement Computing Corporation PDISO-8 is an inexpensive eight-
channel 500 V isolated input and 8-channel relay output interface card designed
for control and sensing applications. The interface card is intended for use with
a standard PCI bus and is Plug and Play compatible. Where necessary the input
range may be extended by adding an additional fixed resistor in series with the
existing 1.6 k� input resistor.
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Figure 2.25 Simplified block schematic for the PDISO-8
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Figure 2.26 Connector pin
assignment for the PDISO-8

Each of the eight inputs is optically isolated and fed via a bridge recti-
fier arrangement which allows for either AC or DC inputs of between 5 and
28 V. A fixed, current limiting, resistor of 1.6 k� is fitted to each input. The
optoisolators provide electrical isolation of up to 500 V (channel–channel and
channel–ground). A simplified block schematic for the PDISO-8 is shown in
Figure 2.25.

The response time of each input may be individually selected using software
control (the earlier ISA version of this card used dual-in-line switches to select
the input filters). Input response time is typically 20 µs without the filter and
5 ms when the filter is switched in (note that filters are normally required with
AC inputs in order to avoid the digital input pulsing on and off at twice the AC
input frequency!).

The eight relay outputs each have contacts rated at 3 A at 120 V AC or 28 V
DC (resistive loads). The maximum contact resistance is 100 m� and both
SPDT (Channels 0 to 4) and SPST (Channels 5 to 7) contacts are available.
Relay operating time is 20 ms (max.) and release time 10 ms (max.).

The PDISO-8 uses only the +5 V power rail from the PC and requires a
typical supply current of 1 A (all relays energized). The I/O lines from the
board connect via a standard 37-pin D-type male connector fitted to the rear
metal bracket. The I/O connector pin assignment is shown in Figure 2.26.

The board address is selected by means of a dual-in-line switch. The PDISO-8
board occupies four consecutive addresses in the PC I/O address space of which
only two addresses are actually used. The base address is selected by means of
the dual-in-line switch and the two registers are located at (base address) and
(base address +1). The I/O map for the board is as follows:

I/O address Function Mode

Base address Relay outputs Read/write
Base address +1 Isolated inputs Read only

Each bit in the appropriate register corresponds to the equivalent I/O channel
number. Bits are therefore allocated as follows:

Data bit

Address D7 D6 D5 D4 D3 D2 D1 D0

Base OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0
Base +1 IP7 IP6 IP5 IP4 IP3 IP2 IP1 IP0

As an example, assuming that the base address has been set to 300 hexadec-
imal, the relays can be operated by writing data to 0300H while the inputs can
be sensed by reading data from 0301H. In the former case, a set bit (logic 1)
will energize the relay connected to the channel in question while in the latter
case, a set bit (logic 1) will indicate that an input has been asserted.

The state of the output register can be read by appropriate software in order to
ascertain the current state of the relays. In some applications this can be useful
since it avoids the need to preserve the state of the relay port within a variable.
In order to operate a particular relay without disturbing any of the others, it is
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simply necessary to first read the data from (base address), bit-wise or the data
with the bit to be set, and then write it back to (base address). Using the example
addresses quoted earlier, the following single line of DOS BASIC will operate
the relay connected to OP1 without altering the state of any of the other relays:

OUT &H300, INP(&H300) OR 2

Further information concerning programming this type of interface appears in
Chapter 12.

Blue chip technology AIP-24

The Blue chip technology AIP-24 analogue input card provides 24 channels
of single-ended or 12 channels of differential analogue input. The board is a
120 mm short format PC/AT compatible card and its simplified block schematic
is shown in Figure 2.27.

The AIP-24 uses a 12-bit analogue-to-digital converter which provides a
resolution of 0.025%. A sample and hold amplifier is used to capture fast
moving analogue signals and freeze them in order to improve overall accuracy.
The successive approximation ADC can operate in unipolar or bipolar modes

Figure 2.27 Simplified block schematic of the AIP-24
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and handles signals in the range 0–±10 V. In order to cope with low amplitude
input signals, an on-board programmable gain amplifier can be used to provide
input gains of 1, 10, or 100. Conversion time is 25 µs but faster ADC chips
may be fitted where conversion speed is critical.

Input connection is made via a 50-way IDC connector attached to the metal
rear bracket. A ribbon cable or screw terminal may be fitted directly to the
50-way connector. An on-board DC–DC converter provides power for the
analogue circuitry of the ADC.

Four addresses are used to set up and drive the card, and a set of links set the
base address of the port within I/O address space. These provide gain selection
(write), initiate conversion (write), and converted data (read). The base address
of the card is selected by means of PCB links.

Programming the card is reasonably straightforward. The gain of the analogue
input will normally be set by writing appropriate bytes during initialization.
Thereafter, successive analogue-to-digital conversions are initiated by simply
writing to the relevant port and then reading the value of the returned data.

The following BASIC program displays the inputs of the AIP-24 ports on
the screen in decimal format. Note that the base address used for the program
is 300H (768 decimal) which is the default factory setting:

REM Initialise
CLS: KEY OFF: LOCATE 1,1
p = 0
REM Main loop to print data
begin:
FOR y = 1 TO 3
FOR x = 1 TO 80 STEP 10
LOCATE y, x
GOSUB getdata
p = p + 1
IF p > 23 THEN p = 0
PRINT n; ” ”;

NEXT
NEXT
GOTO begin
REM Get data from ports
getdata:
OUT &H300,p
OUT &H301,0
a = INP(&H302)
b = INP(&H303)
c = b AND &HF
n = (256 * c) + a
RETURN

Further examples of programming an analogue-to-digital converter appears in
Chapter 12.

Measurement Computing Corporation Dual-422

The Measurement Computing Corporation Dual-422 is a two-channel RS-422
interface card (Figure 2.28). The half-size ISA/EISA card is compatible with
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Figure 2.28 Simplified block schematic of the Dual-422

the PC/AT bus and permits serial communications at speeds up to 57.6 kilobaud
at distances of up to 1.2 km (the 9.6 kilobaud limitation imposed by most PC
communications routines can be overridden in most cases).

Figure 2.29 I/O connector
pin assignment for the
Dual-422

The simplified block schematic of the Dual-422 is shown in Figure 2.29.
Both ports operate independently and each has its own case address and inter-
rupt selection controls. A VLSI Universal Asynchronous Receiver/Transmitter
(UART) device is used to form the basis of each channel and this device is
augmented by external line drivers and receivers.

The UART employed is the National Semiconductor INS 16450 (an improved
device which is compatible with the original 6250 device employed in the legacy
PC). The INS 16450 is fully programmable and offers a choice of serial data
word length (5, 6, 7, or 8 data bits) with selectable even, odd, or no parity
checking. Baud rates are also selectable in the range 120 baud to 57.6 kilobaud.

Base address selection (for each port) is obtained via a dual-in-line switch
(see Figure 2.30). Links are used to select the desired interrupt level (either
channel can be configured as MS-DOS serial port COM1: or COM2: or any
other interrupt level may be selected) whilst a further link is provided in order
to enable or disable CTS/RTS data transfer control.

Programming the Dual-422 interface is extremely straightforward. Assuming
that the ports have been configured as COM1: and COM2: (and that no other
communication device has been configured to the same interrupt level), the
following BASIC code transmits a test string (T$) output via COM1: for input
via COM2: to the received string, R$:

REM Test string
T$="The quick brown fox jumps over the lazy dog"
REM Open the serial ports using 4800 baud
REM COM1 will be associated with channel 1
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Figure 2.30 Base address selection for the Dual-422

REM COM2 will be associated with channel 2
OPEN "COM1:4800" AS #l
OPEN "COM2:4800" AS #2
REM Enable COM1: RS-485 driver
OUT &H3FF, 2
REM Enab1e COM2: RS-485 receiver
OUT &H2FF,1
REM Transmit data via COM1:
PRINT #1, T$
REM Receive data via COM2:
INPUT #2, R$
REM Close communication channels
CLOSE

Arcom APCI-ADADIO multifunction I/O card

The Arcom APCI-ADADIO is a 32-bit PCI card which provides eight differen-
tial (APCI-ADADIOCD) or 16 single-ended (APCI-ADADIOCS) multiplexed
analogue inputs, two analogue outputs, 16 digital I/O lines, and three counter
timer channels. All I/O signals are routed to a 50-way D-type connector which
conforms to Arcom’s standard signal conditioning system (SCS).

The range of features available from a single PCI card makes the APCI-
ADADIO an excellent and highly versatile choice for use in modern control
and data acquisition applications. The card is Plug and Play compatible and it
uses a single chip PCI bus slave controller which is designed and manufactured
by PLX Technology.

During power-up system initialization the PCI BIOS will detect the card and
assign a unique I/O address and interrupt line. This ensures that there are no
resource conflicts on the PCI bus. Multiple cards are supported by this method
without the need for address decoding links.
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The PLX Technology bus slave controller contains a standard configuration
space header (type 00H). This header contains the following data:

Offset Register name Description Value

00-01H Vendor identification PCI device manufacturer ID 10B5H (PLX Technology)
02-03H Device identification PCI device ID 9050H
18-1BH Base address register I/O base address of card 0000xxxx
2C-2DH Subsystem Vendor ID Board manufacturer ID 12ABH (Arcom)
2E-2FH Subsystem ID Board ID 0605H (APCI-ADADIO)
3CH Interrupt line Interrupt line assigned to device 0x

The above registers are accessed using PCI BIOS functions.
The APCI-ADADIO uses an indexed addressing scheme to access the

on-board devices and special function registers. The addressing scheme is
described in the following table:

I/O address Function Direction

Base Index register Write
Base+1 Control/Status Read/Write
Base+2 ADC/DAC LSB data Read/Write
Base+3 ADC/DAC MSB data Read/Write

The APCI-ADADIO contains a single 12-bit successive approximation
analogue-to-digital converter. The input to this device is connected to an 8-way
multiplexer (APCI-ADADIOCD) or 16-way multiplexer (APCI-ADADIOCS).
Prior to an analogue-to-digital conversion the appropriate channel can be
selected by writing to the multiplexer channel select register. The ADC may be
triggered by three different sources which are selected by links. These sources
can be:

1 Software trigger, initiated by an I/O write sequence.
2 Hardware trigger from an external TTL input (approximately 1–2 µs low

pulse).
3 Periodic timer programmed from the on-board counter/timer Channel 0.

The following sequence can be used to perform an analogue-to-digital
conversion when using the software trigger mode:

1 Write 01H to the Base address
2 Write the appropriate multiplexer channel value to Base+1
3 Wait for approximately 50 µs for the input to settle
4 Write 00H to the Base address
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Photo 2.16 Arcom’s APCI-ADADIO multifunction I/O card (photo courtesy
of Arcom)

5 Write any value to Base+1 in order to initiate conversion
6 Wait for approximately 20 µs for the conversion to complete
7 Read Base+1 and check that bit 0 is at logic 0 (i.e. conversion completed)
8 Read Base+2 ADC data low nibble (bits 0 to 3)
9 Read Base+3 ADC data high byte (bits 4 to 11).

The APCI-ADADIO contains two 12-bit digital-to-analogue converters.
On-board links can be used to select between three possible output voltage
ranges, ±5 V, 0–5 V, and 0–10 V. the DAC values are updated by writing to the
data register at Base+2 (low nibble bits 0 to 3) and Base+3 (high byte bits 4 to
11). Prior to this the DAC channel must be selected by writing a value of 02H
to the index register for DAC A and 03H for DAC B.

The APC-ADADIO provides 16 digital I/O lines grouped in four nibbles.
Each nibble has a power-up/reset state link and can be programmed as either
input or output via the digital I/O configuration register. Access to individ-
ual I/O lines are made possible via index registers 0AH and 0BH. Reading
these provide the status of all I/O lines regardless of whether they are config-
ured as input or output. With some careful programming it is also possible
to use these lines in bi-directional mode. Note that, if a nibble is to be
used as an input the corresponding reset state link must be set to the high
position otherwise the lines will be driven low as outputs which may cause
damage.

The APCI-ADADIO uses an 8254 compatible counter/timer. This provides
three individual 16-bit counter/timers. Channel 0 can be used to trigger an
analogue-to-digital conversion (as mentioned earlier) whilst Channel 1 may be
used to generate an interrupt request sequence.
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Photo 2.17 Measurement Computing Corporation’s PMD-1208LS Personal
Measurement Device

The PMD-1208LS USB device

The PMD-1208LS is an example of a modern and highly versatile USB
device suitable for a wide variety of data acquisition and control applications.
Whilst it was designed for slower USB 1.1 ports, the device is compatible
with USB 2.0 ports and is supported under Microsoft Windows 98SE/ME/
2000 and XP.

The PMD-1208LS features eight analogue inputs, two 10-bit analogue out-
puts, 16 digital I/O connections and one 32-bit event counter. The device is
powered by the +5 V USB supply and does not require any external power
source. The PMD-1208LS’s analogue inputs are software configurable for either
eight 11-bit single-ended inputs, or four 12-bit differential inputs. An on-board
industry standard 82C55 programmable peripheral interface (see page 29) pro-
vides the 16 discrete digital I/O lines. Each digital channel can be configured
for either input or output.

The block schematic diagram of the PMD-1208LS is shown in Figure 2.31.
All I/O connections are made to the screw terminals located along each side of
the device.

The PMD-1208LS is supplied with configuration software as well as Univer-
sal and OEM Software Libraries. Using these libraries it is a relatively simple
matter to program applications using 32-bit Windows development software
such as Microsoft Visual C++ and Microsoft Visual Basic. As an example, the
following Visual basic code is all that is required to produce a simple digital
frequency meter (see Figure 2.32).
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Figure 2.31 Block schematic diagram of the PMD-1208LS USB device

Figure 2.32 Output produced by the USB digital frequency meter

'============================================================
' File: pmdfreqy
' Library Calls: cbCLoad32%()
' cbCIn32%()
' cbErrHandling%()
' Purpose: Simple digital frequency meter
' Interface: PMD-1208LS USB HID
'============================================================
Const BoardNum = 1 ' Board number
Const CounterNum% = 1 ' number of counter used
Const RegName% = LOADREG1 ' register name of counter 1
Private Sub cmdExit_Click()

End
End Sub
Private Sub cmdStart_Click()
tmrReadCount.Enabled = True
End Sub
Private Sub cmdStopHold_Click()
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tmrReadCount.Enabled = False
End Sub
Private Sub Form_Load()

ULStat% = cbErrHandling(PRINTALL, DONTSTOP)
If ULStat% <> 0 Then Stop
LoadValue% = 0
ULStat% = cbCLoad(BoardNum, RegName%, LoadValue%)
If ULStat% <> 0 Then Stop

End Sub
Private Sub tmrReadCount_Timer()

ULStat% = cbCIn32(BoardNum, CounterNum%, CBCount&)
If ULStat% <> 0 Then Stop
lblShowCountRead.Caption = Format$(CBCount&, "0")
' Reset count to zero
LoadValue% = 0
ULStat% = cbCLoad(BoardNum, RegName%, LoadValue%)
If ULStat% <> 0 Then Stop

End Sub
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3 Using the command line
interface

This chapter outlines the facilities provided by the DOS operating system and
the command line interpreter (CLI) in particular. Emphasis has been placed on
those features which are of particular relevance to the engineer and software
developer as well as those who may be unfamiliar with what lies below the
Windows interface. If you are planning to develop applications that will run
on minimal systems (without the overhead imposed and restriction imposed
by Windows) or if you are developing console applications to run inside
the Windows environment time spent in getting to know the CLI (includ-
ing its peculiarities and foibles) can be instrumental in avoiding a variety of
pitfalls.

The need for an
operating system

Anyone who has made passing use of a microcomputer system will be aware of at
least some of the facilities offered by its operating system. Such an awareness is
developed by means of the interface between the operating system and the user;
the system generates prompts and messages, and the user makes an appropriate
response.

Within the familiar ‘drag and drop’ and ‘point and click’ interface provided
by Windows where there is no need to use a command language. This, of
course, is as it should be. As far as most end-users of computer systems are
concerned, the operating system provides an environment from which it is pos-
sible to launch and run applications, and to carry out elementary maintenance
of disk files. In such cases, the operating system is perhaps better described
as a microcomputer resource manager. As such, the operating system provides
an essential bridge between the user’s application programs and the system
hardware.

In order to provide a standardized environment (which will cater for a vari-
ety of different hardware configurations) and ensure a high degree of software
portability, part of the operating system is hardware independent (DOS) whilst
the hardware dependent (BIOS) provides the individual low-level routines
required by the machine in question. Figure 3.1 illustrates this important point.

In the context of developing software for control and instrumentation appli-
cations, the software engineer needs to have a much deeper understanding of
the role of the operating system as a means of accessing, configuring, and
optimizing system resources. In addition, the software developer will need a
variety of tools and utility programs (including items such as editors, assem-
blers, linkers, and debuggers). These development tools work together with the
operating system to provide an environment which facilitates effective software
development.
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Figure 3.1 Relationship between the different layers of the operating system
(DOS and BIOS)

Origins of DOS Most microcomputer operating systems can trace their origins to the original
control program for microprocessors (CP/M) developed by Garv Kildall as a
software development environment for the Intel 8080 microprocessor. In its
original form CP/M was supplied on an 8" IBM format floppy disk. CP/M
was subsequently extensively developed and marketed by Digital Research in a
variety of forms including those for use with Intel and Motorola microprocessor
families.

In the last 1970s, CP/M rapidly became the de facto operating system for most
8080, 8085, and Z80-based 8-bit microcomputer systems. However, with the
advent of 16-bit machines and the appearance of the IBM PC in 1981, a new and
more powerful operating system was required. Digital Research produced an
8086-based version of CP/M (known as CP/M86); however, Microsoft produced
a rival product (PC-DOS) which was adopted by IBM for use with the PC.
Microsoft quickly also developed an operating system (MS-DOS) for use with
PC-compatible machines. This operating system rapidly became the world’s
most popular microcomputer operating system. Windows was later added to
the MS-DOS system in order to provide a more user-friendly graphical user
interface (GUI).

Note that if the system is not configured to boot into Windows on start-up
the user will normally be presented with the command line interface. This
text-based interface permits the entry of DOS commands and the execution
of programs by simply typing the executable filename at the DOS prompt. A
comparison of the way in which similar information is presented DOS and
Windows can be made from Figures 3.2 and 3.3.

The MS-DOS operating system can be configured for operation with a wide
variety of peripheral devices including various types of monitor, serial and
parallel printers, and modems. Each individual hardware configuration requires
its own particular I/O provision and this is achieved by means of a piece of
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Figure 3.2 The familiar Windows interface used to provide a graphical
display of the files produced in the PICO directory of the C: drive

Figure 3.3 The contents of the same directory as shown in Figure 3.2 but
displayed using the DOS CLI

software known as a device driver. A number of device drivers (e.g. those
which deal with the standard serial and parallel ports) are resident within the
BIOS ROM. Others which may be required must be loaded into RAM during
system initialization.
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DOS provides you with various methods for configuring a system: individual
DOS commands entered from the CLI, batch files, hardware device drivers, and
two important configuration files, CONFIG.SYS and AUTOEXEC.BAT. All of
these can be instrumental in helping you to get the best out of a system.

DOS basics Booting the system

The system (DOS or Windows) is automatically loaded from the hard disk (drive
C:) or the floppy disk placed in drive A: whenever the system is booted (i.e.
whenever the power is applied and the processor executes the BIOS code stored
in the ROM). After successful loading, the title and version of the operating
system is displayed on the screen. The message is then followed by a prompt that
gives the currently selected drive (usually C:\> in a system fitted with a hard
disk drive). This prompt shows that the system is ready to receive a command
from the user.

If an AUTOEXEC batch file is present, the commands that it contains are
executed before control is passed to the user. Furthermore, if such a file contains
the name of an executable program (i.e. a file with a COM or EXE extension),
then this program will be loaded from disk and executed. The program may take
one of several forms including a program that simply performs its function and
is then cleared from memory, a terminate and stay-resident (TSR) program, or
a fully-blown control or data acquisition application.

It is important to remember that the currently selected drive remains the
default drive unless explicitly changed by the user. As an example, consider
a system that is booted with a system disk (floppy) placed in drive A:. The
default drive will then be A: (unless an AUTOEXEC file is present that contains
commands to change the current drive). The system prompt will indicate that
A is the current drive. Thereafter, it is implicit that all commands which do
not specify a drive refer, by default, to that drive. The SET PATH command
(see page 118) can, however, be used to specify a directory path which will be
searched if a command or filename does not appear in the current directory.

To return to the root directory from within any level of sub-directory you
need only type CD\ (followed, of course, by the <ENTER> key). To return to just
one level of sub-directory towards the root you can simply type CD. . . To help
you navigate the system use the PROMPT $p$g command (see page 118).

I/O channels

In order to simplify the way in which DOS handles input and output, the system
recognizes the names of its various I/O devices (see Table 3.1). This may, at first,
appear to be unnecessarily cumbersome but it is instrumental in allowing DOS
to redirect data. This feature can be extremely useful when, for example, output
normally destined for the printer is to be redirected to an auxiliary serial port.

The COPY command (see page 115) can be used to transfer data from one
device to another. As an example, the command COPY CON: PRN: copies data
from the keyboard (console input device) to the printer, COPY CON: COM1

copies data from the keyboard to the serial port. In either case, the end-of-file
character, <CTRL-Z> or <F6>, must be entered to terminate input.
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Table 3.1 DOS I/O channels

Channel Meaning Function Notes

COM1:, COM2:, COM3:, Communications Serial I/O Via RS-232 ports
and COM4:

CON: Console Keyboard (input) and This channel combines
screen (output) the functions associated

with the keyboard and the
display (i.e. a ‘terminal’)

LPT1:, LPT2:, and LPT3: Line printer Parallel printer This interface (output)
conforms to the
Centronics standard

PRN: Printer Serial or parallel
printer (output)

NUL: Null device Simulated I/O Provides a means of
simulating a physical I/O
channel without data
transfer taking place

DOS commands DOS responds to command lines typed at the console and terminated with
a <RETURN> or <ENTER> keystroke. A command line is thus composed of a
command keyword, an optional command tail, and <ENTER>. The command
keyword identifies the command (or program) to be executed. The command
tail can contain extra information relevant to the command, such as a filename
or other parameters. Each command line must be terminated using <ENTER> or
<ENTER> (not shown in the examples which follow).

As an example, the following command can be used to display a directory
of all BASIC source code (i.e. those with a BAS extension) within a directory
named TEST in drive C:, indicating the size of each:

DIR C: \TEST\*.BAS

Note that, in this example and the examples that follow, we have omitted the
prompt generated by the system (indicating the current drive).

It should be noted that the command line can be entered in any combination
of upper- or lower-case characters. DOS converts all letters in the command
line to upper-case before interpreting them. Furthermore, whilst a command
line generally immediately follows the system prompt, DOS permits spaces
between the prompt (e.g. C:\>) and the command word.

As characters are typed at the keyboard, the cursor moves to the right in order
to indicate the position of the next character to be typed. Depending upon the
keyboard used, a <BACKSPACE>, or <DELETE> key, can be used to delete the
last entered character and move the cursor backwards one character position.
Alternatively, a combination of the CONTROL and H keys (i.e. <CTRL-H>) may be
used instead. Various other control characters are significant in DOS and these
are shown in Table 3.2.
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Table 3.2 DOS control characters

Control Hex.
character code Function

<CTRL-C> 03 Terminates the current program (if possible) and returns control to the user.
<CTRL-G> 07 Sounds the audible warning device (bell) but can only be used as part

of a program of batch file.
<CTRL-H> 08 Moves the cursor back by one space (i.e. the same as the <BACKSPACE> key)

and deletes the character present at that position.
<CTRL-I> 09 Tabs the cursor right by a fixed number of columns (usually eight). Performs

the same function as the <TAB> key.
<CTRL-J> 10 Issues a line feed and carriage return, effectively moving the cursor to

the start of the next line.
<CTRL-L> 12 Issues a form feed instruction to the printer.
<CTRL-M> 13 Produces a carriage return (i.e. has the same effect as <RETURN>).
<CTRL-P> 16 Toggles screen output to the printer (i.e. after the first <CTRL-P> is issued,

all screen output will be simultaneously echoed to the printer. A subsequent
<CTRL-P> will disable the simultaneous printing of the screen output).
Note that <CTRL-PRT.SC.> has the same effect as <CTRL-P>.

<CTRL-S> 19 Pauses screen output during execution of the TYPE command
(<CTRL-NUM.LOCK> has the same effect).

<CTRL-Z> 26 Indicates the end of a file (can also be entered using <F6>).

Finally, the combination of three keys, <CTRL-ALT-DEL>, can be used to
perform a ‘warm’ system reset. This particular combination should only be
used in the last resort as it will clear system memory. Any unsaved data present
in RAM will then be lost forever!

If it is necessary to repeat or edit the previous command, the <F1> (or right-
arrow) key may be used to reproduce the command line, character by character,
on the screen. The left-arrow key permits backwards movement through the
command line for editing purposes. The <F3> key simply repeats the last
command in its entirety.

File specifications

Many of the DOS commands make explicit reference to files. A file is simply
a collection of related information stored on a disk. Program files comprise a
series of instructions to be executed by the processor whereas data files simply
contain a collection of records. A complete file specification has four distinct
parts: a drive and directory specifier (known as a pathname), a filename, and a
filetype.

The drive specifier is a single letter followed by a colon (e.g. C:). This is
then followed by the directory and sub-directory names (if applicable) and the
filename and filetype.

The filename comprises 1 to 8 characters whilst the filetype takes the form of
a 1 to 3 character extension separated from the filename by means of a full-stop
(‘.’). A complete file specification (or filespec) thus takes the form:

[pathname]:[filename].[filetype]
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As an example, the following file specification refers to a file named MOUSE
and having a COM filetype found in the root directory of the disk in drive A:

A\:MOUSE.COM

DOS allows files to be grouped together within directories and sub-
directories. Directory and sub-directory names are separated by means of the
backslash (\) character. Directories and sub-directories are organized in an
hierarchical (tree) structure and thus complete file specifications must include
directory information.

The root or base directory (i.e. that which exists at the lowest level in the
hierarchical structure) is accessed by default when we simply specify a drive
name without further reference to a directory. Thus:

C:\MOUSE.COM

refers to a file in the root directory whilst:

C:\DOS\MOUSE.COM

refers to a identically named file resident in a sub-directory called ‘DOS’.
Sub-directories can be extended to any practicable level. As an example:

C:\DOS\UTILS\MOUSE\MOUSE.COM

refers to a file named MOUSE.COM present in the MOUSE sub-directory which
itself is contained within the UTILS sub-directory found within a directory
named DOS.

When it is necessary to make explicit reference to the root directory, we can
simply use a single backslash character as follows:

C:\

File extensions

The filetype extension provides a convenient mechanism for distinguishing
different types of file and DOS provides various methods for manipulating
groups of files having the same filetype extension. We could, for example,
delete all of the back-up (BAK) present in the root directory of the hard disk
(drive C:) using a single command of the form:

ERA C:\*.BAK

Alternatively, we could copy all of the executable (EXE) files from the root
directory of the disk in drive A: to the root directory on drive C: using the
command:

COPY A:\*.EXE C:\

Commonly used filetype extensions are shown in Appendix H on page 470.

Wildcard characters

DOS allows the user to employ wildcard characters when specifying files. The
characters, ‘*’ and ‘?’, can be used to replace complete fields and individual
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characters, respectively, within a file specification. DOS will search then carry
out the required operation on all files for which a match is obtained.

The following examples illustrate the use of wildcard characters:

A:\*.COM

refers to all files having a COM extension present in the root directory of
drive A:.

C:\TOOLS\*.*

refers to all files (regardless of name or extension) present in the directory
named TOOLS on drive C:.

B:\TURBO\PROG?.C

refers to all files having a C extension present in the TURBO directory on the
disk in drive B which have PROG as their first three letters and any alphanumeric
character in the fourth character place. A match will occur for each of the
following files:

PROG1.C PROG2.C PROG3.C PROGA.C PROGB.C, etc.

Internal and external commands

It is worth making a distinction between DOS commands which form part
the resident portion of the operating system (internal commands) and those
which involve other utility programs (external commands). Intrinsic commands
are executed immediately whereas extrinsic commands require the loading of
transient utility programs from disk, and hence there is a short delay before the
command is acted upon.

In the case of external commands, DOS checks only the command keyword.
Any parameters which follow are passed to the utility program without checking.

At this point we should perhaps mention that DOS only recognizes command
keywords which are correctly spelled! Even an obvious typing error will result
in the non-acceptance of the command and the system will respond with an
appropriate error message.

As an example, suppose you attempt to format a disk but type FORMATT
instead of FORMAT. Your system will respond with this message:

Bad command or file name

indicating that the command is unknown and that no file of that name (with a
COM, BAT, or EXE extension) is present in the current directory.

To get online help from within DOS you can simple type the command name
followed by /?. Hence DIR /? will bring you help before using the directory
command. With later versions of DOS you can also type HELP followed by the
command name (e.g. HELP DIR).

Internal DOS commands

We shall now briefly examine the function of each of the most commonly used
internal DOS commands. Examples have been included wherever they can help
to clarify the action of a particular command. The examples relate to the most
common versions of DOS.
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BREAK The BREAK command disables the means by which it is possible
to abort a running program. This facility is provided by means
of the <CTRL-C> or <CTRL-BREAK> key combinations, and it
normally only occurs when output is being directed to the screen
or the printer. BREAK accepts two parameters: ON and OFF.

Examples:

BREAK ON

enables full <CTRL-C> or <CTRL-BREAK> key checking (it is
important to note that this will normally produce a dramatic
reduction in the speed of execution of a program).

BREAK OFF

restores normal <CTRL-C> or <CTRL-BREAK> operation (i.e. the
default condition).

Note that BREAK ON will often result in a significant reduction
in the speed of execution of a program. You should only use this
command when strictly necessary!

CD See CHDIR.

CHDIR The CHDIR command allows users to display or change the
current directory. CHDIR may be appreviated to CD.

Examples:

CHDIR A:

displays the current directory path for the disk in drive A:.

CHDIR C:\APPS
changes the directory path to APPS on drive C:.

CD D:\DEV\PROCESS
changes the directory path to the sub-directory PROCESS within
the directory named DEV on drive D:.

CD\
changes the directory path to the root directory of the current
drive.

CD..

changes the directory path one level back towards the root
directory of the current drive.

CLS CLS clears the screen and restores the cursor position to the top
left-hand corner of the screen.

COPY The COPY command can be used to transfer a file from one disk
to another using the same or a different filename. The COPY
command is effective when the user has only a single drive. The
COPY command must be followed by one or two file
specifications. When only a single file specification is given, the
command makes a single-drive copy of a file. The copied file

(continued)



h4716-ch03 5/2/2005 12: 33 page 116

116 PC Based Instrumentation and Control

Command Function

takes the same filename as the original and the user is prompted
to insert the source and destination disks at the appropriate
point. Where both source and destination file specifications are
included, the file is copied to the specified drive and the copy
takes the specified name. Where only a destination drive is
specified (i.e. the destination filename is omitted) the COPY
command copies the file to the specified drive without altering
the filename. COPY may be used with the * and ? wildcard
characters in order to copy all files for which a match is found
(see page 113).

Examples:

COPY A\:ED.COM B:

copies the file ED.COM present in the root directory of the disk in
drive A: to the disk present in drive B:. The copy will be given
the name ED.COM.

On a single-drive system the only available floppy drive can be
used as both the source and destination when the COPY command
is used. The single physical drive will operate as both drive A:
and drive B:, and you will be prompted to insert the source and
destination disks when required.
COPY is unable to make copies files located within

sub-directories. If you need this facility use XCOPY with the /s
switch (see page 127).

DATE The DATE command allows the date to be set or displayed.

Examples:
DATE

displays the date on the screen and also prompts the user to make
any desired changes. The user may press <RETURN> to leave the
settings unchanged.
DATE 12-08-99

sets the date to 27th August 1999.

DEL See ERASE.

DIR The DIR command displays the names of files present within a
directory. Variations of the command allow the user to specify
the drive to be searched and the types of files to be displayed.
Further options govern the format of the directory display.

Examples:

DIR

displays all files in the current default directory.

A:\DIR
changes the default drive to A: (root directory) and then displays
the contents of the root directory of the disk in drive A:.

(continued)
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DIR *.BAS

displays all files with a BAS extension present in the current
default directory drive.
DIR C:\DEV.*
displays all files named DEV (regardless of their type or extension)
present in the root directory of drive C: (the hard disk).

DIR C:\MC\*.BIN
displays all files having a BIN extension present in the
sub-directory named MC on drive C: (the hard disk).

DIR/W

displays a directory listing in ‘wide’ format (excluding size and
creation date/time information) of the current default directory.

To prevent directory listings scrolling off the screen use
DIR /P or DIR | MORE. These commands will pause the listing
at the end of each screen and wait for you to press a key before
continuing.

Later versions of DOS include many options for use with the
DIR command including sorting the directory listing and
displaying hidden system files.

ERASE The ERASE command is used to erase a filename from the
directory and release the storage space occupied by a file. The
ERASE command is identical to the DEL command and the two
may be used interchangeably. ERASE may be used with the
* and ? wildcard characters in order to erase all files for which
a match occurs.

Examples:

ERASE PROG1.ASM

erases the file named PROG1.ASM from the disk placed in the
current (default) directory.

ERASE B:\TEMP.DAT
erases the file named TEMP.DAT from the root directory of the
disk in drive B:.

ERASE C:\*.COM
erases all files having a COM extension present in the root
directory of the hard disk (drive C:).

ERASE A:\PROG1.*
erases all files named PROG1 (regardless of their type extension)
present in the root directory of the disk currently in drive A:.

MD See MKDIR.

MKDIR The MKDIR command is used to make a new directory or
sub-directory. The command may be abbreviated to MD.

(continued)
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Examples:

MKDIR APPS

creates a sub-directory named APPS within the current directory
(note that the CHDIR command is often used after MKDIR – having
created a new directory you will probably want to move to make
it the current directory before doing something with it!).

MD C:\DOS\BACKUP
creates a sub-directory named BACKUP within the DOS directory
of drive C:.

PATH The PATH command may be used to display the current directory
path. Alternatively, a new directory path may be established
using the SET PATH command.

Examples:
PATH

displays the current directory path (a typical response would be
PATH=C:\WINDOWS).
SET PATH=C:\DOS
makes the directory path C:\DOS.

PROMPT The PROMPT command allows the user to change the system
prompt. The PROMPT command is followed by a text string which
replaces the system prompt. Special characters may be inserted
within the string, as follows:
$d current date
$e escape character
$g >

$h backspace and erase
$l <

$n current drive
$p current directory path
$q =
$t current time
$v DOS version number
$$ $
$ newline
Examples:
PROMPT $t$g

changes the prompt to the current time followed by a >.
PROMPT Howard Associates PLC $?

changes the prompt to Howard Associates PLC followed by a
carriage return and newline on which a ? is displayed.
PROMPT

restores the default system prompt (e.g. C:\>).
(continued)
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The most usual version of the PROMPT command is PROMPT
$p$g which displays the current directory/sub-directory and
helps to avoid confusion when navigating within DOS directories.

RD See RMDIR.

RENAME The RENAME command allows the user to rename a disk file.
RENAME may be used with the * and ? wildcard characters in
order to rename all files for which a match occurs. RENAME may
be abbreviated to REN.
Examples:
RENAME PROG2.ASM PROG1.ASM

renames PROG1.ASM to PROG2.ASM on the disk placed in the
current (default) directory.
REN A:\HELP.DOC HELP.TXT

renames the file HELP.DOC to HELP.TXT in the root directory of
the disk in drive A:.

REN B:\CONTROL.* PROG1.*

renames all files with name PROG1 (regardless of type extension)
to CONTROL (with identical extensions) found in the root directory
of the disk in drive B:.

RMDIR The RMDIR command is used to remove a directory. RMDIR may
be abbreviated to RD. The command cannot be used to remove the
current directory and any directory to be removed must be empty
and must not contain further sub-directories.

Examples:

RMDIR ASSEM

removes the directory ASSEM from the current directory (note that
DOS will warn you if the named directory is not empty!)

RD C:\DOS\BACKUP
removes the directory ASSEM from the current directory (once
again, DOS will warn you if the named directory is not empty!)

SET The SET command is use to set the environment variables
(see PATH).

TIME The TIME command allows the time to be set or displayed.

Examples:

TIME

displays the time on the screen and also prompts the user to make
any desired changes. The user may press <RETURN> to leave the
settings unchanged.

TIME 14:30

sets the time to 2.30 p.m.
(continued)



h4716-ch03 5/2/2005 12: 33 page 120

120 PC Based Instrumentation and Control

Command Function

TYPE This useful command allows you to display the contents of an
ASCII (text) file on the console screen. The TYPE command can
be used with options which enable or disable paged mode
displays. The <PAUSE> key or <CTRL-S> combination may be
used to halt the display. You can press any key or use the
<CTRL-Q> combination respectively to restart. <CTRL-C> may be
used to abort the execution of the TYPE command and exit to the
system.

Examples:

TYPE C\:AUTOEXEC.BAT
will display the contents of the AUTOEXEC.BAT file stored in
the root directory of drive C:. The file will be sent to the screen.

TYPE B\:PROG1.ASM
will display the contents of a file called PROG1.ASM stored in
the root directory of the disk in drive B. The file will be sent to
the screen.

TYPE C:\WORK\*.DOC
will display the contents of all the files with a DOC extension
present in the WORK directory of the hard disk (drive C:).

You can use the TYPE command to send the contents of a file
to the printer at the same time as viewing it on the screen. If you
need to do this, press <CTRL-P> before you issue the TYPE
command (but do make sure that the printer is ‘online’ and ready
to go!). To disable the printer output you can use the <CTRL-P>
combination a second time.

The ability to redirect data is an extremely useful facility. DOS
uses the < and > characters in conjunction with certain
commands to redirect files. As an example:

TYPE A:\README.DOC >PRN

will redirect normal screen output produced by the TYPE
command to the printer. This is usually more satisfactory than
using the <PRT.SCREEN> key.

VER The VER command displays the current DOS version.

VERIFY The VERIFY command can be used to enable or disable disk file
verification. VERIFY ON enables verification whilst VERIFY OFF
disables verification. If VERIFY is used without ON or OFF, the
system will display the state of verification (either ‘on’ or ‘off’).

VOL The VOL command may be used to display the volume label of
a disk.

External DOS commands

Unlike internal commands, these commands will not function unless the appro-
priate DOS utility program is resident in the current (default) directory. External
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commands are simply the names of utility programs (normally resident in the
DOS sub-directory). If you need to gain access to these utilities from any
directory or sub-directory, then the following lines should be included in your
AUTOEXEC.BAT file (see page 135):

SET PATH=C:\DOS

The foregoing assumes that you have created a sub-directory called DOS on
the hard disk and that this sub-directory contains the DOS utility programs. As
with the internal DOS commands, the examples given apply to the majority of
DOS versions.

Command Function

APPEND The APPEND command allows the user to specify drives,
directories, and sub-directories which will be searched through
when a reference is made to a particular data file. The APPEND
command follows the same syntax as the PATH command
(see page 118).

ASSIGN The ASSIGN command allows users to redirect files between
drives. ASSIGN is particularly useful when a RAM disk is used to
replace a conventional disk drive.

Examples:

ASSIGN A=E

results in drive E: being searched for a file whenever a reference
is made to drive A:. The command may be subsequently
countermanded by issuing a command of the form:

ASSIGN A=A

Alternatively, all current drive assignments may be overridden
by simply using:

ASSIGN

ASSIGN A=B followed by ASSIGN B=A can be used to swap the
drives over in a system which has two floppy drives. The original
drive assignment can be restored using ASSIGN.

ATTRIB The ATTRIB command allows the user to examine and/or set the
attributes of a single file or a group of files. The ATTRIB
command alters the file attribute byte (which appears within a
disk directory) and which determines the status of the file
(e.g. read-only).

Examples:

ATTRIB A:\PROCESS.DOC
displays the attribute status of copies the file PROCESS.DOC
contained in the root directory of the disk in drive A:.

ATTRIB +R A:\PROCESS.DOC
changes the status of the file PROCESS.DOC contained in the
root directory of the disk in drive A: so that is a read-only file.

(continued)
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This command may be countermanded by issuing a command
of the form:
ATTRIB -R A:\PROCESS.DOC
A crude but effective alternative to password protection is that of
using ATTRIB to make all the files within a sub-directory hidden.
As an example, ATTRIB +H C:\PERSONAL will hide all of the
files in the PERSONAL sub-directory. ATTRIB -H C:\PERSONAL
will make them visible once again.

BACKUP The BACKUP command may be used to copy one or more files
present on a hard disk to a number of floppy disks for security
purposes. It is important to note that the BACKUP command stores
files in a compressed format (i.e. not in the same format as that
used by the COPY command). The BACKUP command may be
used selectively with various options including those which allow
files to be archived by date. The BACKUP command usually
requires that the target disks have been previously formatted;
however, from MS-DOS 3.3 onwards, an option to format disks
was included.
Examples:
BACKUP C:*.* A:

backs up all of the files present on the hard disk. This command
usually requires that a large number of (formatted) disks are
available for use in drive A:. Disks should be numbered so that
the data can later be restored in the correct sequence.
BACKUP C:\DEV\*.C A:

backs up all of the files with a C: extension present within the
DEV sub-directory on drive C:.
BACKUP C:\PROCESS\*.BAS A:/D:01-01-99

backs up all of the files with a BAS extension present within the
PROCESS sub-directory of drive C: that were created or altered
on or after 1 January 1999.
BACKUP C:\COMMS\*.* A:/F

backs up all of the files present in the COMMS sub-directory of
drive C: and formats each disk as it is used.

CHKDSK The CHKDSK command reports on disk utilization and provides
information on total disk space, hidden files, directories, and user
files. CHKDSK also gives the total memory and free memory
available. CHKDSK incorporates options which can be used to
enable reporting and to repair damaged files.
CHKDSK provides two useful switches: /F fixes errors on the

disk and /V displays the name of each file in every directory as
the disk is checked. Note that if you use the /F switch, CHKDSK
will ask you to confirm that you actually wish to make changes
to the disk’s file allocation table (FAT).

(continued)



h4716-ch03 5/2/2005 12: 33 page 123

Using the command line interface 123

Command Function

Examples:
CHKDSK A:

Checks the disk placed in the A: drive and displays a status report
on the screen.
CHKDSK C:\DEV\*.ASM/F/V
checks the specified disk and directory, examining all files with an
ASM extension, reporting errors and attempting to correct them.

If you make use of the /F switch, CHKDSK will ask you to
confirm that you actually wish to correct the errors. If you do go
ahead CHKDSK will usually change the disk’s file allocation table
(FAT). In some cases this may result in loss of data!

COMP The COMP command may be used to compare two files on a line
by line or character by character basis. The following options are
available:
/A use . . . to indicate differences
/B perform comparison on a character basis
/C do not report character differences
/L perform line comparison for program files
/N add line numbers
/T leave tab characters
/W ignore white space at beginning and end of lines
Example:
COMP /B PROC1.ASM PROC2.ASM

carries out a comparison of the files PROC1.ASM and
PROC2.ASM on a character by character basis.

DISKCOMP The DISKCOMP command provides a means of comparing two
(floppy) disks. DISKCOMP accepts drive names as parameters and
the necessary prompts are generated when a single-drive disk
comparison is made.
Example:
DISKCOMP A: B:

compares the disk in drive A: with that placed in drive B:.
EXE2BIN The EXE2BIN utility converts, where possible, an EXE program

file to a COM program file (which loads faster and makes less
demands on memory space).
Example:
EXE2BIN PROCESS

will search for the program PROCESS.EXE and generate a
program PROCESS.COM.
EXE2BIN will not operate on EXE files that require more than

64 KB of memory (including space for the stack and data storage)
and/or those that make reference to other memory segments (CS,
DS, ES, and SS must all remain the same during program
execution).

(continued)
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FASTOPEN The FASTOPEN command provides a means of rapidly accessing
files. The command is only effective when a hard disk is fitted
and should ideally be used when the system is initialized
(e.g. from within the AUTOEXEC.BAT file).

Example:

FASTOPEN C:32

enables fast opening of files and provides for the details of up to
32 files to be retained in RAM.
FASTOPEN retains details of files within RAM and must not be

used concurrently with ASSIGN, JOIN, and SUBST.

FDISK The FDISK utility allows users to format a hard (fixed) disk.
Since the command will render any existing data stored on the
disk inaccessible, FDISK should be used with extreme caution.
Furthermore, improved hard disk partitioning and formatting
utilities are normally be supplied when a hard disk is purchased.
These should be used in preference to FDISK whenever possible.

To ensure that FDISK is not used in error, copy FDISK to a
sub-directory that is not included in the PATH statement then
erase the original version using the following commands:

CD\
MD XDOS

COPY C:\DOS\FDISK.COM C:\XDOS
ERASE C:\DOS\FDISK.COM
Finally, create a batch file, FDISK.BAT, along the following lines
and place it in the DOS directory:
ECHO OFF

CLS

ECHO ***** You are about to format the hard disk! *****

ECHO All data will be lost - if you do wish to continue

ECHO change to the XDOS directory and type FDISK again.

FIND The FIND command can be used to search for a character string
within a file. Options include:

/C display the line number(s) where the search string has been
located

/N number the lines to show the position within the file
/V display all lines which do not contain the search string

Example:

FIND/C "output" C:/DEV/PROCESS.C

searches the file PROCESS.C present in the DEV sub-directory
for occurrences of the word ‘output’. When the search string is
located, the command displays the appropriate line number.

(continued)
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FORMAT The FORMAT command is used to initialize a floppy or hard disk.
The command should be used with caution since it will generally
not be possible to recover any data which was previously present.
Various options are available including:

/1 single-sided format
/8 format with 8 sectors per track
/B leave space for system tracks to be added (using the

SYS command)
/N:8 format with 8 sectors per track
/S write system tracks during formatting (note that this

must be the last option specified when more than one
option is required)

/T:80 format with 80 tracks
/V format and then prompt for a volume label

Examples:

FORMAT A:

formats the disk placed in drive A:.

FORMAT B:/S

formats the disk placed in drive B: as a system disk.

JOIN The JOIN command provides a means of associating a drive with
a particular directory path. The command must be used with
care and must not be used with ASSIGN, BACKUP, DISKCOPY,
FORMAT, etc.

KEYB The KEYB command invokes the DOS keyboard driver. KEYB
replaces earlier utilities (such as KEYBUK) which were provided
with DOS versions prior to MS-DOS 3.3. The command is
usually incorporated in an AUTOEXEC.BAT file and must
specify the country letters required.

Example:

KEYB UK

selects the UK keyboard layout.

LABEL The LABEL command allows a volume label (maximum 11
characters) to be placed in the disk directory.

Example:

LABEL A: TOOLS

will label the disk present in drive A: as TOOLS. This label will
subsequently appear when the directory is displayed.

MODE The MODE command can be used to select a range of screen and
printer options. MODE is an extremely versatile command and
offers a wide variety of options.

(continued)
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Examples:

MODE LPT1: 120,6

initializes the parallel printer LPT1 for printing 120 columns at
6 lines per inch.

MODE LPT2: 60,8

initializes the parallel printer LPT2 for printing 60 columns at
8 lines per inch.

MODE COM1: 1200,N,8,1

initializes the COM1 serial port for 1200 baud operation with no
parity, 8 data bits and 1 stop bit.

MODE COM2: 9600,N,7,2

initializes the COM2 serial port for 9600 baud operation with no
parity, 7 data bits and 2 stop bits.

MODE 40

sets the screen to 40-column text mode.

MODE 80

sets the screen to 80-column mode.

MODE BW80

sets the screen to monochrome 40-column text mode.

MODE CO80

sets the screen to colour 80-column mode.

MODE CON CODEPAGE PREPARE=((850)C:\DOS\EGA.CPI)
loads code page 850 into memory from the file EGA.CPI
located within the DOS directory.

The MODE command can be used to redirect printer output from
the parallel port to the serial port using MODE LPT1:=COM1:.

Normal operation can be restored using MODE LPT1:.

PRINT The PRINT command sends the contents of an ASCII text file to
the printer. Printing is carried out as a background operation and
data is buffered in memory. The default buffer size is 512 bytes;
however, the size of the buffer can be specified using /B:

(followed by required buffer size in bytes). When the utility is
first entered, the user is presented with the opportunity to redirect
printing to the serial port (COM1:). A list of files (held in a
queue) can also be specified.

Examples:

PRINT README.DOC

prints the file README.DOC from the current directory.

PRINT /B:4096 HELP1.TXT HELP2.TXT HELP3.TXT

(continued)
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establishes a print queue with the files HELP1.TXT, HELP2.TXT,
and HELP3.TXT and also sets the print buffer to 4 KB. The files
are sent to the printer in the specified sequence.

RESTORE The RESTORE command is used to replace files on the hard disk
which were previously saved on floppy disk(s) using the BACKUP
command. Various options are provided (including restoration
of files created before or after a specified date).
Examples:
RESTORE C:\DEV\PROCESS.COM
restores the files PROCESS.COM in the sub-directory named
DEV on the hard disk partition, C:. The user is prompted to
insert the appropriate floppy disk (in drive A:).
RESTORE C:\BASIC /M

restores all modified (altered or deleted) files present in the
sub-directory named BASIC on the hard disk partition, C:.

SYS The SYS command creates a new boot disk by copying the hidden
DOS system files. SYS is normally used to transfer system files to
a disk which has been formatted with the /S or /B option. SYS
cannot be used on a disk which has had data written to it after
initial formatting.

TREE The TREE command may be used to display a complete directory
listing for a given drive. The listing starts with the root directory.

XCOPY The XCOPY utility provides a means of selectively copying files.
The utility creates a copy which has the same directory structure
as the original. Various options are provided:

/A only copy files which have their archive bit set (but do not
reset the archive bits)

/D only files which have been created (or that have been
changed) after the specified date

/M copy files which have their archive bit set but reset the archive
bits (to avoid copying files unnecessarily at a later date)

/P prompt for confirmation of each copy
/S copy files from sub-directories
/V verify each copy
/W prompt for disk swaps when using a single-drive machine

Example:

XCOPY C:\DOCS\*.* A:/M

copy all files present in the DOCS sub-directory of drive C:.
Files will be copied to the disk in drive A:. Only those files which
have been modified (i.e. had their archive bits set) will be copied.

Always use XCOPY in preference to COPY when sub-directories
exist. As an example, XCOPY C:\DOS\*.* A:\ /S will copy all
files present in the DOS directory on drive C: together with all files
present in any sub-directories, to the root directory of the disk in A:.
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Batch files provide a means of avoiding the tedium of repeating a sequenceUsing batch files
of operating system commands many times over. Batch files are nothing more
than straightforward ASCII text files which contain the commands which are
to be executed when the name of the batch is entered. Execution of a batch file
is automatic; the commands are executed just as if they had been types in at the
keyboard. Batch files may also contain the names of executable program files
(i.e. those with a COM or EXE extension), in which case the specified program
is executed and, provided the program makes a conventional exit to DOS upon
termination, execution of the batch file will resume upon termination.

Batch file commands

DOS provides a number of commands which are specifically intended for
inclusion within batch files.

Command Function

ECHO The ECHO command may be used to control screen output during
execution of a batch file. ECHO may be followed by ON or OFF,
or by a text string which will be displayed when the command
line is executed.

Examples:

ECHO OFF

disables the echoing (to the screen) of commands contained
within the batch file.

ECHO ON

re-enables the echoing (to the screen) of commands contained
within the batch file. (Note that there is no need to use this
command at the end of a batch file as the reinstatement of screen
echo of keyboard generated commands is automatic.)

ECHO Sorting data - please wait!

displays the message:

Sorting data - please wait!

on the screen.
You can use @ECHO OFF to disable printing of the ECHO

command itself. You will normally want to use this command
instead of ECHO OFF.

FOR FOR is used with IN and DO to implement a series of repeated
commands.
Examples:

FOR %A IN (IN.DOC OUT.DOC MAIN.DOC) DO COPY %A LPT1:

copies the files IN.DOC, OUT.DOC, and MAIN.DOC in the
current directory to the printer.

FOR %A IN (*.DOC) DO COPY %A LPT1:

(continued)
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Command Function

copies all the files having a DOC extension in the current
directory to the printer. The command has the same effect as
COPY *.DOC LPT1:.

IF If is used with GOTO to provide a means of branching within a
batch file. GOTO must be followed by a label (which must begin
with :).

Example:

IF NOT EXIST SYSTEM.INI GOTO :EXIT

transfers control to the label :EXIT if the file SYSTEM.INI
cannot be found in the current directory.

PAUSE the pause command suspends execution of a batch file until the
user presses any key. The message:
Press any key when ready...

is displayed on the screen.

REM The REM command is used to precede lines of text which will
constitute remarks.

Example:

REM Check that the file exists before copying

Creating batch files

Batch files may be created using an ASCII text editor or a word processor
(operating in ASCII mode). Alternatively, if the batch file comprises only a few
lines, the file may be created using the DOS COPY command. As an example,
let us suppose that we wish to create a batch file which will:

1 erase all of the files present on the disk placed in drive B:;
2 copy all of the files in drive A having a TXT extension to produce an

identically named set of files on the disk placed in drive B:;
3 rename all of the files having a TXT extension in drive A: to so that they have

a BAK extension.

The required operating system commands are thus:

ERASE B:\*.*
COPY A:\*.TXT B:\
RENAME A:\*.TXT A:\*.BAK

The following keystrokes may be used to create a batch file named
ARCHIVE.BAT containing the above commands (note that <ENTER> is used to
terminate each line of input):

COPY CON: ARCHIVE.BAT
ERASE B:\*.*
COPY A:\*.TXT B:\
RENAME A:\*.TXT A:\*.BAK
<CTRL-Z>
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If you wish to view the batch file which you have just created simply enter the
command:

TYPE ARCHIVE.BAT

Whenever you wish to execute the batch file simply type:

ARCHIVE

Note that, if necessary, the sequence of commands contained within a batch file
may be interrupted by typing:

<CTRL-C>

(i.e. press and hold down the CTRL key and then press the C key).
The system will respond by asking you to confirm that you wish to terminate

the batch job. Respond with Y to terminate the batch process or N if you wish
to continue with it.

Additional commands can be easily appended to an existing batch file. As
an example, assume that we wish to view the directory of the disk in drive A:
after running the archive batch file. We can simply append the extra commands
to the batch files by entering:

COPY ARCHIVE.BAT + CON:

The system displays the filename followed by the CON prompt. The extra line
of text can now be entered using the following keystrokes (again with each line
terminated by <ENTER>):

DIR A:\
<CTRL-Z>

Passing parameters

Parameters may be passed to batch files by including the % character to act as a
place holder for each parameter passed. The parameters are numbered strictly
in the sequence in which they appear after the name of the batch file. As an
example, suppose that we have created a batch file called REBUILD, and this
file requires two file specifications to be passed as parameters. Within the text
of the batch file, these parameters will be represented by %1 and %2. The first
file specification following the name of the batch file will be %1 and the second
will be %2. Hence, if we enter the command:

REBUILD PROC1.DAT PROC2.DAT

During execution of the batch file, %1will be replaced by PROC1.DAT whilst
%2 will be replaced by PROC2.DAT.

It is also possible to implement simple testing and branching within a batch
file. Labels used for branching should preferably be stated in lower case (to
avoid confusion with operating systems commands) and should be preceded
by a colon when they are the first (or only) statement in a line. The following
example which produces a sorted list of directories illustrates these points:

@ECHO OFF
IF EXIST %1 GOTO valid
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ECHO Missing or invalid parameter
GOTO end
:valid
ECHO Index of Directories in %1
DIR %1 | FIND "<DIR>" | SORT
:end

The first line disables the echoing of subsequent commands contained within
the batch file. The second line determines whether, or not, a valid parameter
has been entered. If the parameter is invalid (or missing) the ECHO command is
used to print an error message on the screen.

Simple menus can be created with batch files. As an example, the following
batch files make a simple ‘front-end’ for four separate DOS applications. In
this example, three of these applications are located in the root directory whilst
the fourth, EDIT, is located in the TOOLS sub-directory:

Batch file Contents

MENU.BAT ECHO OFF

CLS

CD\
ECHO ******** MENU ********

ECHO [1] = CONFIGURE

ECHO [2] = START PROCESS

ECHO [3] = SHUT DOWN

ECHO [4] = TEXT EDITOR

ECHO **********************

1.BAT CONFIG.EXE

2.BAT START.EXE

3.BAT CLOSE.EXE

4.BAT CD TOOLS

EDIT.EXE

In order to display the menu automatically it is necessary to include MENU.BAT
in the AUTOEXEC.BAT file. (see the example on page 135). Note that all
four of the batch files must be present in the root directory and that, when an
application terminates and returns control to DOS, it will be necessary to run
the MENU.BAT file again by simply typing MENU at the command prompt.

Using CONFIG.SYS When DOS starts, but before the commands within the AUTOEXEC.BAT file
are executed, DOS searches the root directory of the boot disk for a file called
CONFIG.SYS. If this file exists, DOS will attempt to carry out the commands
in the file. As with any batch file, the configuration sequence can be aban-
doned by means of <CTRL-C> or <CTRL-BREAK>. CONFIG.SYS is a plain
ASCII text file with commands on separate lines. The file can be created using
any text editor or word processor operating in ASCII mode (CONFIG.SYS
can also be created using COPY CON: as described earlier for the creation of
batch files).
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Only the following subset of DOS commands is valid within the CON-
FIG.SYS file:

Command Function

BREAK Determines the response to a <CTRL-BREAK> sequence. If
you set BREAK ON in CONFIG.SYS, DOS checks to see whether
you have requested a break whenever a DOS call is made. If you
set BREAK OFF, DOS checks for a break only when it is working
with the video display, keyboard, printer, or a serial port.

BUFFERS Sets the number of file buffers which DOS uses. This command can
be used to significantly improve disk performance with early versions
of DOS and when a disk cache (accessed via IBMCACHE.SYS or
SMARTDRV.SYS) is not available. The use of buffers can greatly
reduce the number of disk accesses that DOS performs (DOS only
reads and writes full sectors). Data is held within a buffer until it is
full. Furthermore, by reusing the least-recently used buffers, DOS
retains information more likely to be needed next.

It is worth noting that each buffer occupies 512 bytes of RAM
(plus 16 additional bytes overhead). Hence, the number of buffers
may have to be traded-off against the amount of conventional
RAM available (particularly in the case of machines with less
than the standard 640 KB RAM).

In general, BUFFERS=20 will provide adequate for most
applications. BUFFERS=40 (or greater) may be necessary for database
or other applications which make intensive use of disk files.

DOS uses a default value for BUFFERS of between 2 and 15
(depending upon the disk and RAM configuration).

Later versions of DOS (e.g. MS-DOS 4.1) provide a much
improved BUFFERS command which includes support for
expanded memory and look-ahead buffers which can store
sectors ahead of those requested by a DOS read operation. The
number of look-ahead buffers must be specified (in the range
0–8) and each buffer requires 512 bytes of memory and
corresponds exactly to one disk sector. The use of expanded
memory can be enabled by means of a /X switch.
Example:
BUFFERS=100,8 /X

sets the number of buffers to 100 (requiring approximately
52 KB of expanded memory) and also enables 8 look-ahead
buffers (requiring a further 4 KB of expanded memory).

COUNTRY Sets the country-dependent information.
DEVICE Sets the hardware device drivers to be used with DOS.

Examples:
DEVICE=C:\MOUSE\MOUSE.SYS
enables the mouse driver (MOUSE.SYS) which contained in a
sub-directory called MOUSE.

(continued)
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Command Function

DEVICE=C:\DOS\ANSI.SYS
selects the ANSI.SYS screen driver (the ANSI.SYS file must be
present in the DOS directory).

DEVICE=C:\WINDOWS\HIMEM.SYS
selects the Windows extended memory manager HIMEM.SYS (the
HIMEM.SYS file must be present in the WINDOWS directory).

DEVICE=C:\DOS\DISPLAY.SYS CON=(EGA,850,2)

selects the DOS display driver and switches it to multilingual EGA
mode (code page 850) with up to two code pages.

Drivers often provide a number of ‘switches’ which allow you to
optimize them for a particular hardware configuration. Always
consult the hardware supplier’s documentation to ensure that you
have the correct configuration for your system.

You may find it handy to locate all of your drivers in a common
directory called DRIVERS, DEVICE, or SYS. This will keep them
separate from applications and help you to find them at some
later date.

Finally, note that you can load as many device drivers as you need,
but you must use a separate DEVICE line for each driver.

Example:

DEVICE = C:\DRIVERS\ANSI.SYS
DEVICE = C:\DRIVERS\CDROM.SYS

FCBS Sets the number of file control blocks that DOS can have open at
any time (note that this command is now obsolete).

FILES Sets the maximum number of files that DOS can access at any time.

INSTALL Installs memory-resident programs.

Example:

INSTALL = C:\DOS\FASTOPEN.EXE C:=100

installs the DOS FASTOPEN utility and configures it to track the
opening of up to 100 files and directories on drive C:.

Slightly less memory is used when memory-resident programs are
loaded with this command than with AUTOEXEC.BAT. Don’t,
however, use INSTALL to load programs that use environment
variables or shortcut keys or that require COMMAND.COM to be
present to handle critical errors.

LASTDRIVE Specifies the highest disk drive on the computer.

REM Treates a line as a comment/remark.

SHELL Determines the DOS command processor (e.g. COMMAND. COM).

STACKS Sets the number of stacks that DOS uses.

SWITCHES Disables extended keyboard functions.
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DOS provides a number of device drivers and utility programs which, in an ear-Using configuration
files and device drivers lier DOS/Windows environment could be installed from CONFIG.SYS. Typical

of these drivers were:

Function Device driver (generic name)

Disk caches IBMCACHE.SYS, SMARTDRV.SYS
RAM drives RAMDRIVE.SYS, VDISK.SYS
Additional disk drives DRIVER.SYS
Memory management XMAEM.SYS, EMM386.SYS, EMM386.EXE
Display adapter DISPLAY.SYS

configuration
Printer configuration PRINTER.SYS

In a modern Windows NT or XP environment CONFIG.SYS is replaced
by CONFIG.NT. Unless a different start-up file is specified in an application’s
Program Interchange File (PIF), CONFIG.NT is used to initialize the MS-DOS
environment.

By default, no information is displayed when the DOS environment is initial-
ized. If required you can display CONFIG.NT/AUTOEXEC.NT information by
simply adding the command echoconfig to the CONFIG.NT (or other start-up
file). When you return to the command prompt from a TSR or while running
a DOS-based application, Windows runs COMMAND.COM. This allows the
TSR to remain active. To run CMD.EXE, the Windows command prompt,
rather than COMMAND.COM, simply add the command ntcmdprompt to
CONFIG.NT (or other start-up file).

Also by default, it is possible to start any type of application when running
COMMAND.COM. However, if an application other than an MS-DOS-based
application is started, any TSR that is running may be disrupted. To ensure that
only MS-DOS-based applications can be started, you can add the command
dosonly to CONFIG.NT (or other start-up file).

As an example of the use of a DOS driver, the expanded memory manager
(EMM) is configured by means of the following command syntax:

EMM = [A=AltRegSets] [B=BaseSegment] [RAM]

Where: AltRegSets specifies the total Alternative Mapping Register Sets
you want the system to support (in the range 1–255). The default
value of AltRegSets is 8.
BaseSegment specifies the starting segment address in the DOS

conventional memory you want the system to allocate for EMM page
frames. The value must be given in hexadecimal in the range 0 × 1000
to 0 × 4000. Note that the value of BaseSegment is rounded down
to a 16 KB boundary and the default value is 0 × 4000.
RAM specifies that the system should only allocate 64 KB address

space from the upper memory block (UMB) area for EMM page
frames and leave the rest (if available) to be used by DOS to support
the loadhigh and devicehigh commands. By default, the system
will allocate all possible and available upper memory block (UMB)
for page frames.
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The amount of EMM is determined by the Program Interchange File (PIF).
This may either be one that is associated with an application or, if unspecified,
will be _default.pif. If the size specified in the PIF file is 0, EMM will be
disabled and the EMM line will be ignored.

A typical CONFIG.NT file (created using a simple text editor) might be as
follows:

dos=high, umb (load DOS into high memory)
device=%SystemRoot%\system32\himem.sys (use the himem memory manager)
files=40 (allow for 40 open files)

Using
AUTOEXEC.BAT

The AUTOEXEC.BAT file allows you to automatically execute a series of pro-
grams and DOS utilities to add further functionality to a system when the system
is initialized. AUTOEXEC.BAT normally contains a sequence of DOS com-
mands but in addition it can also contain the name of an application or shell
that will be launched automatically when the system is booted. This is a useful
facility if you always use the same shell or application whenever you power-up
your system, or if you wish to protect the end-user from the need to remember
rudimentary DOS commands (such as MD, CD, XCOPY, etc.).

AUTOEXEC.BAT is typically used to:

1 set up the system prompt (see page 118);
2 define the path for directory searches (using SET PATH, see page 118);
3 execute certain DOS utilities (e.g. SHARE);
4 load a mouse driver (e.g. MOUSE.COM);
5 change directories (e.g. from the root directory to a ‘working’

directory);
6 launch an application or menu program (e.g. MENU.BAT).

It is important to note that Windows and some DOS programs have their
own built-in mouse drivers and can thus communicate directly with the mouse.
However, if you regularly use a mouse with DOS applications, you will prob-
ably wish to include reference to your mouse driver within the AUTOEXEC.
BAT file.

If you are operating from within a DOS environment and you do decide to
experiment with your CONFIG.SYS and AUTOEXEC.BAT files, it is essential
to make sure that you keep back-up copies of your original files (CONFIG.BAK,
CONFIG.OLD, etc.). If you are experiencing problems with memory limitations
you can use the MEM command with the PROGRAM, DEBUG, or /CLASSIFY switches
to see the effect of changes made to DOS drivers and memory managers.

A typical AUTOEXEC.BAT file (once again created using nothing more than
a simple text editor) might be as follows:

PROMPT $P$G (prompt with directory path)
LOADHIGH=C:\DOS\SHARE.EXE (permits file sharing and locking)
SET COMSPEC=C:\DOS\COMMAND.COM (specify the location of the command interpreter)
SET PATH=C:\DOS;C:\UTILITY;C:\TOOLS (search DOS, UTILITY, and APPS directories)
MENU.BAT (launch the menu batch file)
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Figure 3.4 A typical Debug session

One of the most powerful (but all too often neglected) tools available withinUsing DEBUG
the DOS environment is the debugger, DEBUG.COM or DEBUG.EXE. This
program provides a variety of facilities including single stepping a program
to permit examination of the processor’s registers and the contents of memory
after execution of each instruction. On most modern Windows installations,
DEBUG.EXE can be found in the System32 folder of the Windows directory.

The Debug command line can accept several arguments. Its syntax is as
follows:

DEBUG [filespec] [parm1] [parm2]

where [filespec] is the specification of the file to be loaded into memory,
[parm1] and [parm2] are optional parameters for the specified file.

As an example, the following MS-DOS command will load debug along with
the file MYPROG.COM (taken from the disk in drive A:) ready for debugging:

DEBUG A:\MYPROG.COM
When debug has been loaded, the familiar MS-DOS prompt is replaced by a

hyphen (-). This indicates that DEBUG is awaiting a command from the user.
Commands comprise single letter (in either upper or lower case). Delimiters
are optional between commands and parameters. They must, however, be used
to separate adjacent hexadecimal values.
<CTRL-BREAK> can be use to abort a DEBUG command whilst

<CTRL-NUM.LOCK> can be used to pause the display (any other keystroke restarts
the output). Commands may be edited using the keys available for normal
MS-DOS command editing.

All Debug commands accept parameters (except the Q command). You can
separate parameters with commas or spaces, but these separators are required
only between two hexadecimal values. Therefore the following commands are
equivalent:
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Figure 3.5 Limited help information available from within Debug

D CS:100 110
DCS:100 110
D,CS:100,110

Hard copy of Debug sessions can sometimes be very useful. If you need this
facility, just type <CTRL-P> before the DEBUG command, and then all your
screen output will be echoed to your printer. Press <CTRL-P> a second time in
order to cancel the printer echo (Figures 3.4 and 3.5).

Debug commands

The following Debug commands are available:

Command Meaning Function

A [addr] Assemble Assemble mnemonics into memory from the specified address. If no address
is specified, the code will be assembled into memory from address CS:0100.
The <ENTER> key is used to terminate assembly and return to the Debug prompt.
Examples:
A 200

starts assembly from address CS:0200.
A 4E0:100

starts assembly from address 04E0:0100 (equivalent to a physical address of 04F00).

C range addr Compare Compare memory in the specified range with memory starting at the specified
address.

D [addr] Dump Dump (display) memory from the given starting address. If no Start address
is specified, the dump will commence at DS:0100.
Examples:
D 400

(continued)
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Command Meaning Function

dumps memory from address DS:0400.

D CS:0

dumps memory from address CS:0000.

D [range] Dump (display) memory within the specified range.

Example:

D DS:200 20F

displays 16 bytes of memory from DS:0200 to DS:0210 inclusive.

E addr [list] Enter Enter (edit) bytes into memory starting at the given address. If no list
of data bytes is specified, byte values are displayed and may be
sequentially overwritten. <SPACE> may be used to advance, and <−> may
be used to reverse the memory pointer.

Example:

E 200,3C,FF,1A,FE

places byte values of 3C, FF, 1A, and FE into four consecutive
memory locations commencing at DS:0200.

F range list Fill Fills memory in the given range with data in the list. The list is repeated
until all memory locations have been filled.

Examples:

F 100,10F,FF

fills 16 bytes of memory with FF commencing at address DS:0100.

F 0,FFFF,AA,FF

fills 65536 bytes of memory with alternate bytes of AA and FF.

G [=addr] Go Executes the code starting at the given address.

If no address is specified, execution commences at address CS:IP.

Example:

G =100

executes the code starting at address CS:0100.

G [=addr] Executes the code starting at the given address with the specified breakpoints.

[addr] Example:

[addr]. . . G =100 104 10B

executes the code starting at address CS:0100 and with breakpoints
at addresses CS:0104 and CS:010B.

H value value Hexadecimal Calculates the sum and difference of two hexadecimal values.

I port Port input Inputs a byte value from the specified I/O port address and display the value.
Example:
I 302

inputs the byte value from I/O port address 302 and displays the
value returned.

(continued)
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Command Meaning Function

L [addr] Load Loads the file previously specified by the Name (N) command. The
file specification is held at address CS:0080. If no load address is specified,
the file is loaded from address CS:0100.

M range addr Move Moves (replicates) memory in the given range so that it is replicated
starting at the specified address.

N filespec Name Names a file to be used for a subsequent Load (L) or Write (W) command.

Example:

N A:\MYPROG.COM
names the file MYPROG.COM stored in the root directory of drive A:
for a subsequent load or write command.

O port Port output Output a given byte value to the specified I/O port address.

byte Example:

O 303 FE

outputs a byte value of FE from I/O port address 303.

P [=addr] [instr] Proceed Executes a subroutine, interrupt loop or string operation and resumes
control at the next instruction. Execution starts at the specified address and
continues for the specified number of instructions. If no address is
specified, execution commences at the address given by CS:IP.

Q Quit Exits debug and return control to the current MS-DOS shell.

R [regname] Register Displays the contents of the specified register and allows the contents
to be modified. If a name is not specified, the contents of all of the CPU
registers (including flags) is displayed together with the next instruction to
be executed (in hexadecimal and in mnemonic format).

S range Search Search memory within the specified range for the listed data bytes.

list Example:

S 0100 0800 20,1B

searches memory between address DS:0100 and DS:0800 for
consecutive data values of 20 and 1B.

T [=addr] [instr] Trace Traces the execution of a program from the specified address and executing
the given number of instructions. If no address is specified, the execution
starts at address CS:IP. If the number of instructions is not specified then
only a single instruction is executed. A register dump (together with a
disassembly of the next instruction to be executed) is displayed at each step.

Examples:

T

traces the execution of the single instruction referenced by CS:IP.

T =200,4

traces the execution of four instructions commencing at address CS:0200.
(continued)
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Command Meaning Function

U [addr] Unassemble Unassemble (disassemble) code into mnemonic instructions starting at the
specified address. If no address is specified, disassembly starts from the
address given by CS:IP.

Examples:

U

disassembles code starting at address CS:IP.

U 200

disassembles code starting at address CS:0200.

U [range] Unassemble (disassemble) code into mnemonic instructions within
the specified range of addresses.

Example:

U 200 400

disassembles the code starting at address CS:0200 and ending at address CS:0400.

W [addr] Write Writes data to disk from the specified address. The file specification is
taken from a previous Name (N) command. If the address is not specified,
the address defaults to that specified by CS:IP. The file specification is
located at CS:0080.

Notes:
(a) Parameters enclosed in square brackets ([and]) are optional.
(b) The equal sign (=) must precede the start address used by the following commands: Go (G), Proceed (P), and Trace (T).
(c) Parameters have the following meanings:

Parameter Meaning

addr Address (which may be quoted as an offset or as the contents of a segment register or
segment address followed by an offset). The following are examples of acceptable addresses:

CS:0100

04C0:0100

0200

byte A byte of data (i.e. a value in the range 0 to FF). The following are examples of acceptable
data bytes:

0

1F

FE

filespec A file specification (which may include a drive letter and sub-directory, etc.). The following
are examples of acceptable file specifications:

MYPROG.COM

A:MYPROG.COM

C:\PROGS\MYPROG.COM
instr The number of instructions to be executed within a Trace (T) or Proceed (P) command.

(continued)
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Parameter Meaning

list A list of data bytes, ASCII characters (which must be enclosed in single quotes), or strings
(which must be enclosed in double quotes). The following examples are all acceptable data lists:

C,2F,C2,00,10

’A’,’:’,’/’

"Insert disk and press ENTER"

port A port address. The following are acceptable examples of port addresses:

E (the DMA controller)
30C (within the prototype range)
378 (the parallel printer)

(see page 31 for more information).

range A range of addresses which may be expressed as an address and offset (e.g. CS:100,100) or
as an address followed by a size (e.g. DS:100 L 20).

regname A register name (see (d)). The following are acceptable examples of register names:

AX

DS

IP

value A hexadecimal value in the range 0 to FFFF.

(d) The following register and flag names are used within debug:

AX, BX, CX, DX 16-bit General-Purpose Registers
CS, DS, ES, SS Code, Data, Extra, and Stack Segment Registers
SP, BP, IP Stack, Base, and Instruction Pointers
SI, DI Source and Destination Index Registers
F Flag Register

(e) The following abbreviations are used to denote the state of the flags in conjunction with the Register (R) and
Trace (T) commands:

Flag Abbreviation Meaning/status

Overflow OV Overflow
NV No overflow

Carry CY Carry
NC No carry

Zero ZR Zero
NZ Non-zero

Direction DN Down
UP Up

Interrupt EI Interrupts enabled
DI Interrupts disabled

Parity PE Parity even
PO Parity odd

(continued)
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Figure 3.6 The Debug Dump (D) command being used to display the contents
of 128 bytes of memory starting at address 0040:0000 (equivalent to a
memory address of 04000H)

Figure 3.7 The Debug Register (r) command being first used to display the
contents of the CPU registers and then to change the contents of the CX
register from 0000 to 0400

Flag Abbreviation Meaning/status

Parity PE Parity even
PO Parity odd

Sign NG Negative
PL Positive

Auxiliary carry AC Auxiliary carry
NC No auxiliary carry

(f ) All numerical values within Debug are in hexadecimal (Figures 3.6 and 3.7).

A Debug walkthrough

The following ‘walkthrough’ has been provided in order to give you an insight
into the range of facilities offered by Debug. We shall assume that a short pro-
gram TEST.EXE has been written to test a printer connected to the parallel port.
The program is designed to generate a single line of upper- and lower-case char-
acters but, since an error is present, the compiled program prints only a single
character. The source code for the program (TEST.ASM) is shown in Figure 3.8.

The first stage in the debugging process is to invoke Debug from MS-DOS
using the command:

DEBUG TEST.EXE
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Figure 3.8 Faulty source code used for the printer test program (ptest.com)

Figure 3.9 Using Debug’s Dump (d ) command to view the printer test
program in memory

The command assumes that TEST.EXE is present in the current directory
and that DEBUG.EXE is accessible either directly or via previous use of the
SET PATH command.

After the Debug hyphen prompt appears, we can check that our code has
loaded, we use the Dump (D) command. Entering the command D100 at the
Debug hyphen prompt produces the display shown in Figure 3.9.

The extreme left-hand column gives the address (in segment register:offset
format). The next 16 columns comprise hexadecimal data showing the bytes
stored at the 16 address locations starting at the address shown in the left-hand
column. The first line in Figure 3.9 shows the hexadecimal contents of 16 bytes



h4716-ch03 5/2/2005 12: 33 page 144

144 PC Based Instrumentation and Control

of memory starting at 1662:0100 (i.e. segment address = 1662, offset = 0100).
The hexadecimal value of the first byte in the 16-byte block is B3 whilst the
second is 05, and so on. The hexadecimal value of the last byte in the 16-byte
block (address 1662:010F) is also 05.

An ASCII representation of the data is shown in the right-hand column of the
screen dump. Byte values that do not correspond to printable ASCII characters
are shown simply as a full-stop. Hence B4 and 05 (which are both non-printable
characters) are shown by full-stops whilst 21 appears as !, and 41 as A.

In the context of executable code, the hexadecimal/ASCII dump shown earlier
is not particularly useful and a more meaningful representation can be achieved
by using the Unassemble (U) command. Entering the command U100 at the
Debug hyphen prompt produces the display shown in Figure 3.10. The exe-
cutable code starts at address 1662:0100 and ends at address 1662:011B. In
total there are 28 (decimal) bytes of code.

The first instruction occupies 2 bytes of memory (addresses 1662:0100 and
1662:0101). The instruction comprises a move of 8 bits of immediate data (05)
into the AH register. The last program instruction is at address 1662:011A and
is a software interrupt relating to address 21 in the interrupt vector table.

At this point it is worth mentioning that the Unassemble command can some-
times produce some rather odd displays. This is simply because the command
is unable to distinguish valid program code from data; Unassemble will quite
happily attempt to disassemble something which is not actually a program!

Having disassembled the program code resident in memory we can check it
against the original source code file. Normally, however, this will not be neces-
sary unless the object code file has become changed or corrupted in some way.

The next stage is that of tracing program execution. The Debug Trace (T)
command could be employed for this function; however, it is better to make use
of the Proceed (P) command to avoid tracing execution of the DOS interrupt
routines in order to keep the amount of traced code manageable.

The Proceed command expects its first parameter to be the address of the first
instruction to be executed. This must then be followed by a second parameter

Figure 3.10 Using Debug’s Unassemble (U) command to disassemble the
program code
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which gives the number of instructions to be traced. In this case, and since
our program terminates normally, we can supply any sufficiently large number
of instructions as the second parameter to the Proceed command. Hence the
required command is P=100,100 (note the use of the equals sign) and the
resulting trace dump is shown in Figure 3.11.

Figure 3.11 Program trace showing incorrect execution of the printer test
program (note that only a single character, A, is sent to the printer)
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The state of the processor registers is displayed as each instruction is executed
together with the next instruction in disassembled format. Taking the results
of executing the first instruction (MOV AH,05) as an example, we see that 05
has appeared in the upper byte of AX (AH) and the Instruction Pointer (IP) has
moved on to offset address 0102. The next instruction to be executed (located
at the address which IP is pointing to) is MOV DL,0A. The state of the processor
flags is also shown within the register dump. In this particular case, none of the
flags has been changed as a result of executing the instruction.

In order to obtain a hard copy of the program trace, a <CTRL-P> command
can be issued immediately before issuing the Proceed (P) command. From
that point onwards, screen output was echoed to the printer. Since the pro-
gram directs is own output to the printer, this also appears amidst the traced
output.

A single character, A, is printed after the eighth instruction (see arrow marked
on Figure 3.11). Thereafter, the program executes the loop formed by the
instructions at offset addresses 0112 and 0114. However, no printing takes
place within this loop even though the DL register is incremented through the
required range of ASCII codes (41 to 7F). Clearly the loop is not returning to
the INT 21 instruction which actually makes the required calls into DOS.

Fortunately, we can easily overcome this problem from within the debugger
without returning to the macro assembler. We simply need to modify the LOOP
instruction at offset address 0114. To do this we can make use of the Assemble
(A) command to overwrite the existing instruction. The required command is:

A 114

The CS:IP prompt is then displayed (in this case it shows 1662:0114) after
which we simply enter:

LOOP 0110

However, the CS:IP prompt is incremented since we need to make no further
changes to the code, we can simply escape from the Debug line assembler by
simply pressing <ENTER>.

Having modified our code, we can again trace the program using the Proceed
(P) command exactly as before. The traced output produced by the modified
program is shown in Figure 3.12. Note that we have now succeeded in producing
a line of printed output showing the full range of characters (see arrow marked
on Figure 3.12).

Since no further errors have been found, we can exit from Debug, load the
macro assembler, make the necessary changes to our source code, assemble
and link to produce a modified EXE program file. The corrected source code is
shown in Figure 3.13.

Using Debug’s line assembler

Debug has an in-built line assembler which can be used to generate simple
programs. The assembler is accessible from within Debug (as described in the
previous section), but can also be accessed by means of a script file that can be
generated by any word processor or text editor capable of producing an ASCII
text file (or even by means of the DOS COPY command).
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Figure 3.12 Program trace showing the correct execution of the printer test
routine (note that the full range of characters is now printed)

During execution, Debug will take its input (redirected from the keyboard)
from the script file. The script file will contain a sequence of Debug commands
(which can include assembly language statements).

The two examples which follow show how Debug’s assembler can be used
to generate programs to, respectively, perform a ‘warm’ and ‘cold’ reboot.
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Figure 3.13 Corrected source code for the printer test program (ptest.com)

Warm reboot

The following script file can be used with Debug to generate a program
(WARM.COM). This program directs the program counter to the start of ROM
BIOS but avoids the power-on memory check routine.

Assuming that the script file is to be produced by means of the DOS COPY
command, the following keyboard entries will be required:

COPY CON WARM.DBG
A
XOR AX,AX
MOV ES,AX
MOV DI,0472
MOV AX,1234
STOSW
JMP FFFF:0000

NWARM.COM
RCX
10
W
Q
ˆZ
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It is important to note that a newline, i.e. <ENTER>, should be used to terminate
each line and the input should be terminated (after the newline which follows
"Q") by means of <CTRL-Z> (shown as ˆZ). The <CTRL-Z> should also be
followed by a newline.

The keystrokes will generate a file (WARM.DBG) which can be used as input
to Debug by means of the following command:

DEBUG < WARM.DBG

Debug will assemble the statements contained in the script file in order to gen-
erate an executable file, WARM.COM. This program can be executed directly
from the DOS prompt by typing WARM followed by enter (Note: this will
reboot your system!).

Cold reboot

If a cold reboot is required, the assembly code should be modified by changing
the MOV AX,1234 to MOV AX,0. The following keyboard entries are required:

COPY CON COLD.DBG
A
XOR AX,AX
MOV ES,AX
MOV DI,0472
MOV AX,0
STOSW
JMP FFFF:0000

NCOLD.COM
RCX
10
W
Q
ˆZ

Again, note that the input should be terminated (after the Enter that follows
"Q") by means of <CTRL-Z> (shown as ˆZ) which is also followed by Enter.

The keystrokes will generate a file (COLD.DBG) which can be used as input
to Debug by means of the following command:

DEBUG < COLD.DBG

Debug will assemble the statements contained in the script file in order to
generate an executable file, COLD.COM. This program can be executed directly
from the DOS prompt by typing COLD followed by enter. This should again
reboot your system but this time the initial memory check routines will be
performed.
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Whilst many users of PC-based instrumentation and control systems will be
able to make use of off-the-shelf software packages, others may have specific
applications for which there is no existing software package available. This
is often the case with dedicated process control systems where a particular
operational configuration is unique to the system concerned or where an existing
software package is limited in some way.

The control engineer should be perfectly capable of developing simple,
robust, and efficient control programs without the assistance of a programmer
or software engineer. However, where the software is complex, sophisticated,
or requires a high degree of optimization, then the services of a software
engineer/programmer will almost certainly be required.

At the outset, it should be stated that there is a great deal more to programming
than simply entering code. Programming benefits from a disciplined approach
and this is absolutely essential when developing software which must operate
reliably and be easy to maintain.

Experience shows that electronic engineers (particularly those involved with
control systems) generally make excellent software engineers. They have usu-
ally developed a high degree of familiarity with hardware (microprocessors
and support devices) and will be only too well aware of the characteristics and
constraints of such devices.

Software engineering should not be confused with programming. A pro-
grammer is not necessarily a software engineer neither is a software engineer
necessarily a programmer. In fairness, a software engineer will normally be
proficient in several computer languages; however, such proficiency will be
relatively unimportant if the software he/she produces behaves erratically or
is impossible to maintain.

This chapter introduces some of the basic concepts associated with the pro-
duction of structured code which is both predictable and reliable and is easy to
maintain. This information should be invaluable to the control or test engineer
who may be increasingly involved with the development of programs to con-
trol PC-based systems. Please note, however, that the code fragments used as
illustrations in this chapter are not complete programs and most will require
additional code (such as appropriate C++ pre-processor directives) before they
can be made into complete course code files from which executable programs
can be built.

Choice of language Sooner or later, the software developer must make some decisions concern-
ing the choice of language used for software development. To some extent
this decision will be crucial to the success of a project. The essential features
to consider when selecting a language for software development in PC-based
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Figure 4.1 It is possible to obtain the same results using different
programming languages. This Visual Basic code produces the simple warning
message shown in Figure 4.2

instrumentation and control applications are as follows:

Figure 4.2 The warning
message produced by the
Visual Basic program shown
in Figure 4.1

● What control flow structures are provided to facilitate the development of
structured code?
Such control structures may take several forms but should ideally include
the ability to handle user-defined functions and procedures (with or without
local variables) and such control structures as IF . . . THEN . . . ELSE . . .

ENDIF, DO WHILE . . . LOOP, SELECT . . . CASE . . . END SELECT, and
WHILE . . . WEND.

• What provision is there for handling I/O?
Most languages provide functions and statements (e.g. BASIC’s PEEK and
POKE) which facilitate direct access to memory. A language for PC-based
instrumentation and control applications should have statements that allow
reading from and writing to I/O port addresses. Taking BASIC as an example,
functions such as:

INP(port)

and statements such as:

OUT port, data

make writing I/O routines extremely easy.
• How easy is it to combine/interface modules written in the same or a different

language?
A facility for combining/interfacing modules written in the same or a differ-
ent language will be essential in any other than the simplest of applications
(Figures 4.1 and 4.2). As an example, it may be convenient to develop
an assembly language routine to handle some critical I/O process and then
interface this to a high-level language program which deals with more mun-
dane processes, such as keyboard input, display output, and disk filing. In
such a case, it will generally be necessary to have some mechanism for
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Figure 4.3 This 32-bit assembly language program (using MASM-32)
produces exactly the same message as that produced by the Visual Basic code
shown in Figure 4.1

passing parameters between the main program and the code generated by the
assembly language module.

Figure 4.4 The warning
message produced by the
MASM-32 program shown
in Figure 4.3

● What, if any, provision is there for handling interrupts?
Some mechanism for allowing the user to incorporate his/her own interrupt
handling routines will be essential in many real-time control applications.

• What provision is there for event/error trapping?
The ability to include specific event/error trapping routines can be important
in making the program robust and suitable for non-technical users. Error
handling routines should permit meaningful error reporting as well as the
ability to retain control of the program with an orderly shutdown when
operation cannot continue.

• Finally, will the language allow multi-tasking for use in event-driven
processes?
In control applications, the ability to support multi-tasking is a highly desir-
able feature. In addition to the main process, the programmer will then be
able to define one, or more, background tasks (sub-processes) to run con-
currently with the main program. These tasks will be switched to repeatedly
during program execution and thus effectively run in parallel with the main
program.

Unfortunately, true multi-tasking can be a problem within an x86 DOS
environment as the Real Mode provided by the x86 processor in the ori-
ginal PC, PC-XT, and PC-AT employed straightforward addressing with
no inter-process protection. The limitation in available memory (640 KB
under PC-DOS or MS-DOS) further mitigated against applications that were
truly multi-tasking. Happily, with modern 32-bit operating systems and
large memory environments this constraint no longer applies (Figure 4.3
and 4.4)!
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If you can answer with an unqualified ‘yes’ to the majority of the foregoing
questions, you can be assured that the language under consideration is an ideal
candidate for software development in the control and instrumentation field.
Coupled with an Integrated Development Environment (editor and debugger)
it should be able to cope with almost anything!

With modern operating systems the Protected Mode environment provides an
environment which can support true multi-tasking and this allows event-driven
programs to be developed. Such programs allow a main process to exist along
with a number of sub-processes, each of which shares some of the processor’s
time. We shall return to this important theme a little later in this chapter.

Software development Software development should normally be a top-down process in which one
moves from the general to the specific. The process can be divided into a
number of identifiable phases which generally include:

1 Problem analysis, leading to
2 a software specification.
3 Development of an algorithm and
4 a program definition.
5 Coding and
6 testing (against the specification) and
7 debugging.
8 Implementation and
9 evaluation.

10 Finally, there will be a need for ongoing maintenance.

In practice, Steps (5), (6), and (7) will invariably be repeated a number of times
in order to refine the software and eliminate errors made during the coding
phase. At this stage, it is perhaps worth examining each of the phases in the
software development cycle in a little more detail.

The first two stages (problem analysis and the production of a software speci-
fication) involve first determining the user’s requirements, and then itemizing
the functions and facilities expected of the software. The specification should,
of course, be agreed with the user. Furthermore the initial stages will normally
require a dialogue with the user in order to establish the parameters within
which the system should operate. Very few users are able to give a precise
definition of their requirements and, since it is important to consider all eventu-
alities, it is important to explore with the user what should happen in abnormal
circumstances as well as in routine situations.

As an example, consider the case of the operator of an aggregate processing
plant that comprises several conveyor belts, processing drums, and a washing
plant. The problem essentially involves delivering various grades of aggregate
at rates which are sufficient to ensure that the capacity of the stockpile is not
exceeded and that a certain minimum amount of each grade of material is
always available. The software specification (agreed with the operator) will
involve delivery rates and volumes. However, the plant operator may forget
to mention that, in the event of an interruption of the water supply, part of
the plant must shutdown with a consequent and drastic change in delivery
rates.
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Figure 4.5 Standard flowchart symbols

In extreme cases, a problem of this type may only come to light when the
system is commissioned. Clearly, this would not have happened if the initial
stages of the development model had been rigorously followed.

Steps (3) and (4) can be considered to be the ‘design’ phases. The first of
these (development of an algorithm) involves conceptualizing the means of
solving the problem. This is often done with the aid of a flowchart or a data
flow diagram and usually involves breaking down the problem into a number
of smaller steps (processes). Figure 4.5 shows the set of standard symbols that
are commonly used in flowcharts.



h4716-ch04 5/2/2005 12: 34 page 156

156 PC Based Instrumentation and Control

The second of the design phases involves defining the various program mod-
ules and procedures. These will often be associated with the individual stages
of the flowchart model (or its equivalent) and may be separately documented.
The action of each module can be summarized using structured English (or
pseudo code). Each line of pseudo code will generally correspond to one, or
more, lines of program code.

As an example, consider the case of a process employed within a grain drying
plant which is responsible for filling a hopper from a conveyor. In structured
English ( pseudo code) the process can be summarized along the following
lines:

Begin
Close hopper outlet
Start conveyor
While hopper not full

Run conveyor
EndWhile
Stop conveyor
End

The equivalent flowchart for the hopper filling process is shown in Figure 4.6
(note the use of a conditional loop).

Steps (5), (6), and (7) of the software development cycle involve routine
program entry, testing, and debugging. All but the simplest of programs should
be developed on a modular basis making it possible to work on a single mod-
ule (procedure) at a time. Modules can also be drawn from a standard library
whenever one is available. Furthermore, whenever a module has been success-
fully developed and tested, it should be added to the appropriate library so that
it is available for future use in other programs. A routine which will read a
remote keypad and return its status to the system might, for example, be useful
in a variety of applications.

Having produced a functional control program, the next stage is implemen-
tation. Since the software will almost certainly have been developed within
a controlled environment removed from the environment in which it is to be
finally imbedded, it will generally be necessary to install the software and carry
out some rigorous testing with real (rather than simulated) inputs and/or out-
puts. This is often the most critical phase in the entire project cycle and it will
sometimes reveal problems which were not foreseen during the earlier stages.
Problems and difficulties are often associated with:

● Speed of response: the real-world system may be too fast or too slow in
comparison with that of the simulated development
environment.

● Noise: signals in the real-world environment are rarely ideal and often
contain a significant amount of noise.

Figure 4.6 Flowchart
for the hopper
filling process

As an example, a system installed to monitor the flow of gas along a pipeline
behaved erratically when an apparently functional (and fully debugged) pro-
gram was installed within its industrial PC-based controller. Sixteen remote
sensors (based on rotating vanes) were used to sample the flow rate at various
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points. Each sensor was connected, via an asynchronous serial data link, to the
controller. Under certain conditions, the PC indicated that the flow rates were
well outside the prescribed limits for the system. However, upon examination
it was found that, not only did the sensors exhibit a reluctance to respond to
very low flow rates but the signals from the furthermost sensors were regularly
erroneous due to power-line induced switching transients and lack of RS-232
parity checking.

The moral, of course, is that one should attempt to anticipate problems at the
earliest stages of hardware/software development. By planning for the unfore-
seen, it is possible to minimize the time taken to imbed the software into the
target system to a bare minimum, reducing both costs and inconvenience.

Finally, it will usually be necessary to evaluate the performance of the
system against the original specification. Such an evaluation will generally
involve both qualitative and quantitative aspects. The qualitative evaluation
will involve questions such as ‘Does the user feel at ease with the system?’ and
‘Are the displays and prompts meaningful?’ while the quantitative evaluation
will be concerned with collecting data on response times, accuracy, repeata-
bility, etc.

Control structures

In anything other than the simplest of applications, programs will involve some
deviation from a straightforward linear sequence of processes. There may, for
example, be a need for conditional forward branching (bypassing a particular
process) depending upon some particular outcome, or for a certain process to
be repeated a number of times until a particular result is obtained.

Several common control structures (available within the majority of today’s
programming languages) are illustrated in Figure 4.7. First, these (Figure 4.7(a))
involve a simple branch forwards depending on the outcome of the condi-
tional test. A typical example of this control structure, expressed in pseudo
code, is:

If tank empty
Open valve
Operate pump

EndIf

It should be noted that, if the test evaluates to ‘false’ (i.e. if the valve is open)
none of the indented statements will be executed. Furthermore, the condition
may take the form of a compound statement, as in the following example:

If temperature high and coolant off
Display warning message
Turn heat off

EndIf

The indented statements will only be executed if both the conditions evaluate
true. If either condition is not satisfied (i.e. one or other evaluates false), the
indented statements will not be executed.
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Figure 4.7 Commonly available control structures: (a) simple branch (If . . .

EndIf); (b) binary branch (If . . . Else . . . EndIf); (c) multiple branch
(Select . . . Case . . . EndSelect)
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A succession of If . . . EndIf statements may be used where a number of
outcomes need to be tested for. As an example, the following pseudo code
describes part of a process employed in a flow soldering plant:

If temperature < 230°C
Stop conveyor
Turn on heater

EndIf

If temperature > 230°C and temperature < 270°C
Start conveyor
Turn on heater

EndIf

If temperature > 270°C
Display warning message
Stop conveyor
Turn off heater

EndIf

Figure 4.7(b) shows a control structure which may be adopted where two
outcomes are required. The pseudo code equivalent of this is known as If . . .

Else . . . EndIf. A typical example of the use of this control structure is found
in the following pseudo code:

If light level low
Lights on

Else
Lights off

EndIf

A further control structure provides for multiple branching (rather than binary
branching, as in the case of If . . . Else . . . EndIf). This structure is illus-
trated in the flowchart of Figure 4.7(c) and a typical application might be in the
selection of a main menu option, as described by the following representative
pseudo code:

Select Case
1, Input new data
2, Get old data
3, Sort data
4, Print data
5, Exit

Else warn user
EndSelect

This (apparently complex) pseudo code can quite easily be implemented in
both BASIC and C. A typical BASIC routine to satisfy the pseudo code would
take the form:

SELECT CASE R$
CASE "1"

CALL NewData
CASE "2"

CALL OldData
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CASE "3"
CALL SortData

CASE "4"
CALL PrintData

CASE "5"
CALL UpdateFile

CASE "6"
EXIT DO

CASE ELSE
BEEP

PRINT "Input not valid!"
END SELECT

while its equivalent in C would be:

switch(c)
{

case '1':
newdata();
break;

case '2':
olddata();
break;

case '3':
sortdata()
break;

case '4':
printdata()
break;

case '5':
exit ()

default
beep()
printf("Input not valid!\n")

}

Loops

A loop structure (backwards branch) may be used in order to avoid the need to
repeat blocks of code several times over whenever a process is to be repeated
more than once. Various types of loops are possible (both conditional and
unconditional) and these are supported by pseudo code statements such as Do
. . . Loop While, Do . . . Loop Until, Do While . . . Loop, and Do Until

. . . Loop.
As an example of a simple loop, the following C++ code fragment prints the

numbers 1 to 10 separated by spaces:

for (count = 1; count <= 10; count++)
cout << cout << "";

This routine uses the C++ increment operator, count++, however we could have
obtained the same result using:

for (count = 1; count <= 10; count = count + 1)
cout << cout << "";
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The fragment of C++ code that follows is an example of the Do . . . Loop

While logical construct:

do
{
print_label(code);
cout << "Label printed\n";
cout << "Enter Y to print another label, any other key to

exit: ";
cin = response;

} while(response = = 'y' || response = = 'Y')
cout << "Shutting down ... please wait!\n";

Loop structures are explained in detail in Chapter 6.

Error checking and input validation

Error checks and input validation routines should be incorporated whenever data
is input and before the system accepts the data for processing. Error handling
routines should be incorporated to warn the user that a fault has occurred and
indicate from which source the error has arisen. This caveat also applies to
operator input; an unacceptable input should be echoed to the user together
with the range of acceptable responses. Care should be exercised when inputs
are defaulted. The default response should result in inactivity rather than any
form of positive action on the part of the system. Furthermore, the program
should demand confirmation where a response or input condition will produce
an irreversible outcome.

Event-driven programs

With an event-driven program the processor must share its time with the main
process and any sub-processes responding, for example, to a user clicking
on a button, an input from a sensor, or a timer signalling the end of a time
period. Since these events may occur at any time and in any sequence this
requires a somewhat different approach than that which would be appropriate
for a strictly sequential process. The important thing to remember is that events
can take different forms and they can occur virtually at any time. This makes it
difficult, or even impossible, to describe the program by means of a conventional
flowchart; the program must be able to make an effective response to an event
whenever it occurs.

As an example of an event-driven process consider the work of a receptionist
in a small but busy office. The main process associated with the job can simply
be described as ‘receptionist’. The sub-processes might then be ‘telephone
answering’, ‘greeting visitors’, ‘dealing with general enquiries’, ‘opening and
sorting incoming mail’, ‘preparing outgoing mail’, and so on. Within the main
process events can occur in any order. For example, the telephone might ring, a
visitor might arrive, the mail might be delivered, and so on. It might be difficult,
or even impossible, to say when these events will occur in any particular working
day. However, they will occur and each of the sub-processes must be handled
correctly for the main process to be satisfied.



h4716-ch04 5/2/2005 12: 34 page 162

162 PC Based Instrumentation and Control

Testing

It is only possible to claim that a program has been validated after exhaustive
testing in conjunction with the target hardware system. In many cases it may
be possible to test individual code modules before they are linked into the final
executable program. This may be instrumental in reducing debugging time at a
later stage.

Testing the completed program requires simulating all conditions that can
possibly arise and measuring the outcome in terms of the program’s response.
A common error is that of only presenting the system with a normal range of
inputs. Comprehensive testing should also involve the simulation of each of the
following:

• Unexpected or nonsensical responses from the operator or user.
• Failure of hardware components (including transducers, signal conditioning

hoards, cables, and connectors).
• Out-of-tolerance supplies (including complete power failure).
• Noise and the effect of RF interference (RFI).
• Environmental changes (temperature, humidity, etc.).

Documentation

Programmers are usually woefully lacking where program documentation is
concerned. Documentation, which is essential to make the program under-
standable, takes various forms, the most obvious of which is the comments
included in the lines of source code text.

Comments

Comments should explain the action of the source code within the program as
a whole and, since the function of the operation code and operand will usually
be obvious (or can be found by referring to the instruction set) there is no point
in expanding on it. Comments should be reasonably brief but not so brief that
they become cryptic. Also, there is no need to attempt to confine a comment
to a single statement line. Comments can be quite effective if they read clearly
and are continued over several statements to which they refer.

Headers

Headers are extended comments which are included at the start of a program
module, macro definition, or subroutine. Headers should include all relevant
information concerning the section of code in question and should follow a
standard format (see Figure 4.8). As a minimum, the following should be
included:

• Name and purpose of the module or subroutine.
• Brief explanation of the action of the code (in terms of parameters passed,

registers involved, etc.).
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Figure 4.8 Example of commented source code showing program header
information. The code is written in Visual Basic and is being edited using the
EditPlus editor

• Names of other modules, subroutines, or macros on which the module
depends and, where applicable, names of relevant macro libraries in which
definitions are held.

• Entry requirements (in terms of register and/or buffer contents before the
module is executed).

• Exit conditions (in terms of register contents, buffers, and flags after the
module has been executed).

• In the case of assembly language modules, a list of registers used during exe-
cution of the code (which may have their contents changed as a consequence).

When producing a program header, it is wise to include any information
which may be required by another programmer who may subsequently need to
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debug or modify the code. Nothing should be taken for granted and all loose
ends should be explained!

During the development phase, it is worth including a brief develop-
ment history within the main program header, as shown in the following
example:

' *******************************************
' * Program: DSM3.BAS *
' * Version: 0.1 *
' * Copyright USET 1999 *
' *******************************************
'
'
' Development history
' 12/01/99 Creation date
' 13/01/99 Structure defined
' 14/01/99 New sub-programs added
' 16/01/99 64K block save and load added
' 18/01/99 Viw sample added
' 20/01/99 Block size increased to 256K
' 28/01/99 Mixed language interface added
' 28/01/99 Interrupt enable/disable added
' 29/01/99 Various flags added
' 29/01/99 Assembly language modules added
' 04/02/99 Block size modified to 128K
' 05/02/99 View sample removed
' 10/02/99 Multiple blocks added
' 15/02/99 Save data file added

Names

Names used for variables, symbols, and labels should be meaningful and any
abbreviations used should be as obvious as possible. In the case of the names
used for constants, where standard abbreviations are in common use (e.g.
ESC for Escape), they should be adopted. In a large program, there may be
a large number of labels and/or constants and it will be necessary to distinguish
between them.

As an example of the use of names, comments, and headers consider the
following examples which, while functionally identical, illustrate the extremes
of programming style:

Case converter subroutine
;
; CASE CONVERTER
;
con: CMP AL,6lH ; Compare A with 6lH

JE exit ; Return if carry set
CMP AL,7BH ; Compare A with7 BH
JNE exit ; Return if carry reset
SUB AL,20H ; Subtract 20H from A

exit: RET ; Return
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Improved case converter subroutine (self-documenting)
; LOWER TO UPPER CASE CHARACTER CONVERSION
; PARAMETERS PASSED:
; ENTRY: AL=ASCII character (upper or lower case)
; EXIT: AL=ASCII character (upper case only)
; REGISTERS: AL, F
;
upcase: CMP AL,'a' ; Is it already upper case?

JL exit ; If so, do nothing
CMP AL, 'z' ; Or is it punctuation?
JG exit ; If so, do nothing
SUB AL, 'a'-'A' ; Otherwise, change case

exit: RET

The second example shows how a program module can be made largely
self-documenting by the inclusion of effective comments and a meaningful
header. Note that the name of the routine has been changed so that it is easier to
remember and is less likely to be confused with others. Finally, the code itself
has been modified so that its action is much easier to understand.

Documentation is particularly important where software development is
being carried out by several members of a team. Each development phase
will rely on the documentation prepared in earlier stages, hence documentation
should be considered an ongoing task and a folder should be prepared to contain
the following items:

• A detailed program specification (including any notes relevant to the
particular hardware configuration required).

• Flowcharts or descriptions of the program written in structured English.
• Lists of all definitions and variable names.
• Details of macro or sub-routine libraries used.
• Details of memory usage (where appropriate).
• A fully commented listing of the program (latest version).
• A diary giving the dates at which noteworthy modifications are made together

with details of the changes incorporated and the name of the programmer
responsible.

• A test specification for the program with descriptions and results of diagnostic
checks performed.

Presentation

Finally, attention should be given to the way in which the program interacts
with the user and the aim should be that of making the software as ‘user-
friendly’ as possible. Prompts and messages should always be meaningful and,
whenever any doubt may exist, the user should be prompted with the range
of acceptable values or valid responses and help screens should be provided
wherever appropriate. Later chapters provide further examples of programs
presented in different formats.
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5 Assembly language
programming

This chapter aims to provide readers with an overview of assembly language
programming techniques, and explores the architecture and instruction set of
the x86 microprocessor family used in the PC and compatible equipment.
Rather than providing a complete guide to assembly language programming
(which, in any event, would require a complete book in its own right!), the
aim has been that of providing readers with sufficient information to decide
whether assembly language is appropriate for a particular application, to out-
line the advantages and disadvantages of assembly language programming,
and to introduce techniques used for the development of assembly language
programs.

Readers wishing to develop their own assembly language programs will not
only require complete documentation for the x86 family of processors (includ-
ing a comprehensive explanation of the microprocessor’s instruction set) but will
also require development software comprising, as minimum, a macro assem-
bler, a linker, and a debugger. Furthermore, despite the fact that one of the
most powerful 32-bit assemblers, MASM32, is currently available as ‘free-
ware’; readers should not underestimate the investment required (in terms of
time) required to successfully follow this route.

Advantages of
assembly language

Assembly language programs offer a number of advantages when compared
with higher-level alternatives. The principal advantages are that the executable
code produced by an assembler (and linker) will:

• invariably be more compact than an equivalent program written in a higher-
level language;

• invariably run faster than an equivalent program written in a higher-level
language;

• not require the services of a resident interpreter or a compiler run-time
system;

• be able to offer the programmer unprecedented control over the hardware in
the system.

It is this last advantage, in particular, that makes assembly language a prime
contender for use in control applications. No other programming language
can hope to compete with assembly language where control of hardware is
concerned. Indeed, an important requirement of high-level languages used in
control applications is that they can be interfaced with machine code modules
designed to cope with problems arising from limitations of the language where
input/output (I/O) control is concerned.
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Disadvantages of
assembly language

Unfortunately, when compared with higher-level languages, assembly language
has a number of drawbacks; most notable of which are the following:

• Programs require considerably more development time (including writing,
assembling, linking or loading, and debugging) than their equivalent written
in a high-level language.

• Programs are not readily transportable between microprocessors from differ-
ent families. Different microprocessors have different internal architectures
and, in particular, the provision of registers accessible to the programmer
will vary from one microprocessor to another. Differences in internal archi-
tecture is reflected in corresponding differences in the type and function of
the software instructions provided for the programmer.

• The situation is further compounded by the fact that microprocessor manu-
facturers frequently adopt different terminology to refer to the same thing.
The variety of names used to describe the register used to indicate the out-
come of the last arithmetic logic unit (ALU) operation (and the internal
status of the microprocessor) is a case in point. This is variously referred to
as a Flag Register, Status Register, Condition Code Register, and Processor
Status Word.

• In practice this means that the system designer is constrained to select one
particular microprocessor type or family, and develop code exclusively for
this particular device. This, of course, is not a particular problem in the case
of the PC and compatible equipment which are all based on the standard x86
and Pentium families.

• Unless liberally commented, the action of an assembly language program is
not obvious from merely reading the source text. Programs written in high-
level language are usually easy to comprehend and their structure is usually
self-evident.

• The production of efficient assembly language programs requires a relatively
high degree of proficiency on the part of the programmer. Such expertise
can usually only be acquired as a result of practical experience aided by
appropriate training.

Developing assembly
language programs

The process of developing an assembly language program depends on a number
of factors including the hardware configuration available for software develop-
ment and the range of software tools available to the developer. As a minimum,
the task normally involves the following steps:

1 Analysing the problem and producing a specification for both hardware and
software (see Chapter 4).

2 Developing the overall structure of the program, defining the individual ele-
ments and modules within it, and identifying those which already exist (or
can be easily modified or extended) within the programmer’s existing library.

3 Coding each new module required using assembly language mnemonics,
entering the text using an editor, and saving each source code module to disk
using an appropriate filename.

4 Assembling each source code module (using an assembler) to produce an
intermediate relocatable object code file.
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5 Linking modules (including those taken from the user’s library) in order to
produce a complete executable program.

6 Testing, debugging, and documenting the final program prior to evaluation
and/or acceptance testing by the end-user (see Chapter 4).

In practice, the development process is largely iterative and there may also
be some considerable overlap between phases. In order to ensure that the tar-
get specification is met within the constraints of time and budget, an ongoing
appraisal is necessary in order to maximize resources in the areas for which
there is much need.

Software tools

The following items of utility software (software tools) are normally required
in the development process:

• an ASCII text editor (e.g. Microsoft’s M);
• a macro assembler (e.g. Microsoft’s MASM);
• a linker (e.g. Microsoft’s LINK).

In addition, three further software tools may be found to be invaluable.
These are:

• a cross-referencing utility (e.g. Microsoft’s CREF);
• a library manager (e.g. Microsoft’s LIB);
• a utility which can help automate the program development cycle (e.g.

Microsoft’s MAKE).

Note that, in order to assist the programmer and to help automate the produc-
tion of executable code, an Integrated Development Environment (IDE) is often
used. This acts as a ‘shell’ which launches the various software tools, passing
any required parameters without requiring the user to be aware of the necessary
command syntax. However, for the benefit of the newcomer to assembly lan-
guage programming, we shall briefly explain the function of each of the basic
tools and their role in the production of assembly language programs.

Editors

Editors allow users to create and manipulate text files. Such files can be thought
of as a sequence of keystrokes saved to disk. An assembly language source
code file is simply a text file written using assembly language mnemonics and
containing appropriate assembler directives.

The Microsoft Editor (M) is invoked using a command line of the form:

M <options><file list>

The options include that of allowing the user to load a previously saved con-
figuration file (TOOLS.INI). This file contains settings which will be used to
initialize the editor and thus the user may easily customize the software to
his/her own particular requirements. The file list is simply a list of files that will
be loaded into the editor. The first file in the list will be the first to be edited.
Then, when the user selects the exit option (F8), the next file in the list, ready
for editing, is loaded.
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The Microsoft editor is extremely powerful. It provides the usual cut
and paste, and search and replace facilities together with macros which
can be invoked from a single keystroke. Furthermore, to reduce the overall
edit/assemble cycle time, it is possible to assemble a program from within the
editor, view, and correct any errors that may have occurred, then re-assemble.
Multiple source files can easily be handled and a split-screen windowing facility
can be used to examine and edit different parts of the same file simultaneously.

When preparing source text using an editor, it is important to bear in mind the
requirements of the assembler concerning the format of source code statements.
In the case of most x86 assemblers (and Microsoft’s MASM in particular), each
line of source code is divided into four fields, as shown in the example below:

Symbol Operation Argument Comments
maxcount DB 16 ; initialize maximum count

The first entry in the line of code is known as a symbol. The symbols used in
a program are subject to certain constraints imposed by the assembler but are
chosen by the individual programmer. Labels are a particular form of symbol
which are referred to by one, or more, statements within a program. Labels are
used to mark the entry point to the start of a particular section of code or the
point at which a branch or loop is to be directed. During the assembly process,
labels (wherever they appear in the program) are replaced by addresses.

Entries in the operation field may comprise an operation code (opcode), a
pseudo-operation code (pseudo-op), an expression, or the name of a macro.
Operation codes are those recognized by the microprocessor as part of its
instruction set (e.g. MOV, ADD, JMP, etc.) whereas pseudo-ops are directives
which are recognized by the assembler and are used to control some aspect
of the assembly process. Typical pseudo-ops are DB (define byte), DW (define
word), ORG (origin or program start address), and INCLUDE. The last-named
directive instructs the assembler to search a named macro library file and to
expand macro definitions using this library.

The argument field may contain constants or expressions, such as 0DH, 42,

64*32, 512/16, ’A’, ’z’-’A’, or the operands required by microprocessor
operation codes (represented by numbers, characters, and symbols, which are
extended opcodes).

The comment field contains a line of text, added by the programmer, which
is designed to clarify the action of the statement within the program as a whole
(see Chapter 4).

In the example shown previously, the variable maxcount has been declared in
the symbol column. The operation field contains a pseudo-op (assembler direct-
ive) which instructs the assembler to reserve a byte of storage and initialize its
value to 16. Thereafter, any references to maxcount will take the value 16 (at
least until the value is next modified by the program). The programmer has
added a comment (following the obligatory semicolon) which reminds him or
her that maxcount is the symbol used to hold the current maximum value of the
counter.

Not all source code lines involve entries in all four fields, as in the next
example:

Symbol Operation Argument Comments
Mov AL,maxcount ; get maximum count
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Here, the symbol field is blank since the instruction does not form part of
the start of a block of code. The operation, MOV, is an opcode that instructs the
microprocessor to perform an operation which will move data from one location
to another. The operand required by the instruction specifies the lower half of
the 16-bit accumulator (AL) as the destination for the data and the contents of the
variable storage location maxcount as the source of the data. The programmer
has again added a brief comment to clarify the action of the line.

It should be noted that any line of source code starting with a semicolon is
ignored by the assembler and treated as a comment. This allows the programmer
to include longer comments as well as program or module headers which provide
lengthy information on the action of the statements that follow. Furthermore,
since the four fields in each source code statement are each separated by white
space it is not essential that they are precisely aligned in columns. However,
whereas the following lines of source text are perfectly legal:

start: MOV AH,05H ; Printer output function code
MOV DL,OAH ; First generate
INT 21H ; a line feed
MOV DL,00H ; Next generate
INT 21H ; a carriage return
MOV DL,41H ; First character to print is A
MOV CL,3EH ; Number of characters to print
MOV AH,05H ; Set up the function code
prch: INT 21H ; and print the character
INC DL ; Get the next character
LOOP prch ; and go round again
MOV AL,00H ; Set up the return code
MOV AH,4CH ; and the function code
INT 21H ; for an exit to DOS

they would be much more readable had they been entered in the strict format
shown below:

start: MOV AH,05H ; Printer output function code
NOV DL,OAH ; First generate a
INT 21H ; line feed
MOV DL,00H ; Next generate a
INT 21H ; carriage return
MOV DL,41H ; First character to print
MOV CL,3EH ; Number of characters to print
NOV AH,05H ; Set up the function code

prch: INT 21H ; and print the character
INC DL ; Get the next character
LOOP prch ; and go round again
MOV AL,00H ; Set up the return code
MOV AH,4CH ; and the function code
INT 21H ; for an exit to DOS

Macro assemblers

A macro facility allows the programmer to write blocks of often-used code and
incorporate these in programs by referring to them by name. The blocks of code
are each defined as a macro. Thereafter, the macro assembler expands the macro
call by automatically assembling the block of instructions that it represents into
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the program. The macro call can also be used to pass parameters (e.g. symbols,
constants, or registers) to the assembler for use during the macro expansion.

As an example of the use of macros, the macro defined in the following code
can be used to exchange the contents of two registers passed to the macro as
parameters reg1 and reg2:

; MACRO TO EXCHANGE 16-BIT REGISTER CONTENTS
; PARAMETERS PASSED: regl, reg2
; REGISTERS AFFECTED: regl, reg2

Swap MACRO regl,reg2 ; Specify registers to swap
PUSH regl ; Stack contents of reg1 first
PUSH reg2 ; then stack contents of reg2
POP regl ; reg1 receives reg2 contents
POP reg2 ; reg2 receives reg1 contents
ENDM

The following line of code shows how the macro call is made:

Swap AX,CX ; Call the macro

The macro assembler expands the call, replacing it with the code given in its def-
inition. The code generated by the macro assembler (i.e. the macro expansion)
will thus be:

PUSH AX
PUSH CX
POP AX
POP CX

A macro facility can be instrumental in making significant reductions in the
size of source code modules. Furthermore, macros can be nested such that a
macro definition can itself contain references to other macros which, in turn,
can contain references to others. A notable disadvantage of using macros is that
the resulting object code may contain a large number of identical sections of
code and will also occupy more memory space than if an equivalent subroutine
had been used. In practice, therefore, programmers should use macros with
care since there may be occasions where subroutines would be more efficient
even though they may not be quite so easy to implement.

As well as macros, most assemblers also support conditional assembly. This
allows the programmer to specify conditions under which portions of the pro-
gram are either assembled or not assembled. Conditional assembly allows the
programmer to test for specific conditions (using statements such as IF . . .

ELSE . . . ENDIF) and use the outcome to control the assembly process.
Assemblers generally make two passes through a source file. During the first

pass, macro calls are expanded and a symbol table is generated. On the second
pass, relocatable code is generated which can be saved in a disk file. Such files
are, however, not directly executable and require the services of a linker in order
to function as self-contained programs.

The Microsoft macro assembler (MASM) provides logical programming syn-
tax which supports the segmented architecture of x86 microprocessors. The
assembler produces relocatable object modules which are linked together using
the Microsoft overlay linker, LINK.
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MASM is invoked by a command line of the form:

M <options><file list>

The options, which may be selected, include the generation of additional
statistics, error information, and data which may be used by the Microsoft’s
CodeView debugger. The file list must contain the name of the assembly lan-
guage source code file. This filename may be followed by the names of the
object code file, the listing file, and the cross-reference file. Where these last
three named files are not specified, MASM will prompt for them.

The default file extension for the object code filename is OBJ, while those
for the source listing and cross-reference files are LST and CRF, respectively.

Linkers

The linker is used to combine one, or more, object code files into a single
executable program file. The output file produced by the linker is not bound by
specific memory addresses (i.e. it is relocatable), and the operating system is
able to load and execute the file at any convenient address.

The linker must resolve address references between modules such that any
module which directs program execution outside itself (by means of a CALL,
an external symbol, or an include directive) will be linked to the module which
contains the corresponding code.

The Microsoft linker (LINK) is invoked by a command of the form:

LINK <options><file list>

The options which may be selected include the display of linker process infor-
mation, the packing of executable files, and the listing of public symbols. The
file list must contain the name of each of the object code files to be linked.
These may be followed by the names of the executable program file, the map
file, and the names of the library files. Where these last three named files are
not specified, LINK will prompt for them.

The default file extension for the executable program file is EXE whilst those
for the map and library files are MPA and LIB, respectively.

Cross-reference utilities

Cross-reference utilities can be invaluable when debugging since they can
greatly speed up the search for symbols within a source code file during a
debugging session. A cross-reference utility can be used to produce a specially
created listing of all of the symbols used in an assembly language program.
The listing is invariably alphabetical and each symbol in the list is followed by
one, or more, line numbers that indicate the lines in the source code file which
contain a reference to the symbol.

The Microsoft cross-reference utility (CREF) is invoked by a command line
of the form:

CREF <file list>
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where the file list consists of the name of the cross-reference file
generated by MASM followed by the name of the readable (ASCII format)
cross-reference file.

Library managers

A library manager allows the programmer to gather a number of object code
files (i.e. those with an OBJ extension) into a single library file (having an
LIB extension). This file will generally be used in the production of several
different programs and the object code modules collected by the library manager
may be special modules created by the programmer or modules taken from an
existing library. An optional library list usually can also be created by the library
manager.

The value of building a library is that the routines needed within a program
can be very easily linked into an executable object code file. Routines taken from
the library can be used to construct further libraries or combined, as necessary,
into executable programs by the linker.

The Microsoft library manager (LIB) is invoked by a command of the form:

LIB <library name><file list>

where the file list contains the names of the object code modules (each preceded
by a ‘±’ and separated by a comma) which are to be added to the library. As an
example, the command line:

LIB graphics +fill, +shape

will add the object code modules fill.obj and shape.obj to the graphics library.

Symbolic debuggers

A symbolic debugger is an item of utility software that is designed to facilitate
interactive testing and debugging of programs. As a minimum, a debugger
should provide the user with commands which can be used to:

• Examine and modify the contents of memory.
• Examine and modify the content of the CPU registers.
• Run a program (starting at a given address) with breakpoints at which

execution may be halted to permit examination of the CPU registers.
• Single-step a program (starting at a given address) with a register dump at

the completion of each instruction.
• Disassemble a block of memory into assembly language mnemonics.
• Relocate a given block of memory.
• Initialize a given block of memory with specified data.
• Load or save blocks of memory from/to disk.

The debugger provided with the MS-DOS operating system (DEBUG) can
be used for simple debugging (see Chapter 3); however, the Microsoft macro
assembler provides a much enhanced debugger which is known as CodeView.
This package is a powerful window-oriented software tool which allows the
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programmer to quickly locate logical errors in programs. The debugger can
display source and object code simultaneously (indicating the line which is
about to be executed), dynamically watch values (local or global), and switch
screens to display program output. Use of the debugger is, to a large extent,
intuitive and it greatly outperforms the DEBUG package supplied with DOS.

A full description of the facilities and use of CodeView (or an equivalent
debugger) is beyond the scope of this book. Familiarity with the use of a
debugger is, however, strongly recommended to all potential assembly lan-
guage programmers as it can be instrumental in quickly and effectively dealing
with the vast majority of bugs and defects in assembly language programs.

A MASM walkthrough

As an example of using assembly language development tools from the CLI
the simple printer test routine that we met earlier in this chapter (see page 171)
and also in Chapter 3 (see page 148) is edited, assembled, linked, and tested
using the following sequence of commands and screen output. Later in this
chapter we provide an example of using a modern 32-bit Integrated Develop-
ment Environment (IDE) which automates the software development process
(see page 183).

Firstly, the source code file is entered using the Microsoft Editor:

C>m ptest.asm<ENTER>

When the editor is left, the source file ptest.asm is written to the hard disk. The
macro assembler is then invoked:

C>masm ptest<ENTER>

The following screen output is generated by the macro assembler:

Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [ptest.OBJ]: <ENTER>
Source listing [NUL.LST]: <ENTER>
Cross-reference [NUL.CRF]: <ENTER>

50144 + 394061 Bytes symbol space free

0 Warning Errors
0 Severe Errors

The Linker is now used to produce an executable program:

C>link ptest<ENTER>

The following screen output is generated by the linker:

Microsoft (R) Overlay Linker Version 3.64
Copyright (C) Microsoft Corp 1983-1988. All rights reserved.

Hun File [PTEST.EXE]: <ENTER>



h4716-ch05 5/2/2005 12: 34 page 176

176 PC Based Instrumentation and Control

List File [NUL.MAP]: <ENTER>
Libraries [.LIB]: <ENTER>
LINK : warning L4021: no stack segment

The warning is ignored and the executable file is then tested:

C>ptest<RETURN>

The following printed output appears when the program is run:

ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂ _’abcdefghijklmnop∼rstuvwxvz{|}∼

8086 assembly
language

Before attempting to provide readers with an introduction to assembly language
programming techniques and the use of a modern 32-bit macro assembler, it is
important that readers have a basic understanding of the internal architecture
and registers available within the 8086 microprocessor. We shall start, however,
by briefly summarizing the 8086 instruction set.

8086 instruction set summary

The following is a brief summary of the 8086 instruction set.

Data transfer instructions
MOV Move byte or word to register or memory
IN, OUT Input byte or word from port, output word to port
LEA Load-effective address
LDS, LES Load pointer using Data Segment, Extra Segment
PUSH, POP Push word onto stack, pop word off stack
XCHG Exchange byte or word
XLAT Translate byte using look-up table

Logical instructions
NOT Logical NOT of byte or word (one’s complement)
AND Logical AND of byte or word
OR Logical OR of byte or word
XOR Logical exclusive-OR of byte or word
TEST Test byte or word (AND without storing)

Shift and rotate instructions
SHL, SHR Logical shift left, right byte or word by 1 or CL
SAL, SAR Arithmetic shift left, right byte or word by 1 or CL
ROL, ROR Rotate left, right byte or word by 1 or CL
RCL, RCR Rotate left, right through carry byte or word by

1 or CL

Arithmetic instructions
ADD, SUB Add, subtract byte or word
ADC, SBB Add, subtract byte or word and carry (borrow)
INC, DEC Increment, decrement byte or word
NEG Negate byte or word (two’s complement)
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CMP Compare byte or word (subtract without
storing)

MUL, DIV Multiply, divide byte or word (unsigned)
IMUL, IDIV Integer multiply, divide byte or word (signed)
CBW, CWD Convert byte to word, word to double word (useful

before multiply or divide)
AAA, AAS, AAM, AAD ASCII adjust for addition, subtraction, multi-

plication, division (ASCII codes 30–39)
DAA, DAS Decimal adjust for addition, subtraction (binary-

coded decimal numbers)

Transfer instructions
JMP Unconditional jump
JA (JNBE) Jump if above (not below nor equal)
JAE (JNB) Jump if above or equal (not below)
JB (JNAE) Jump if below (not above nor equal)
JBE (JNA) Jump if below or equal (not above)
JE (JZ) Jump if equal (zero)
JG (JNLE) Jump if greater (not less nor equal)
JGE (JNL) Jump if greater or equal (not less)
JL (JNGE) Jump if less (not greater nor equal)
JLE (JNG) Jump if less or equal (not greater)
JC, JNC Jump if carry set, carry not set
JO, JNO Jump if overflow, no overflow
JS, JNS Jump if sign, no sign
JNP (JPO) Jump if no parity (parity odd)
JP (JPE) Jump if parity (parity even)
LOOP Loop unconditional, count in CX
LOOPE (LOOPZ) Loop if equal (zero), count in CX
LOOPNE (LOOPNZ) Loop if not equal (not zero), count in CX
JCXZ Jump if CX equals zero

Subroutine and interrupt instructions
CALL, RET Call, return from procedure
INT, INTO Software interrupt, interrupt if overflow
IRET Return from interrupt

String instructions
MOVS Move byte or word string
MOVSB, MOVSW Move byte, word string
CMPS Compare byte or word string
SCAS Scan byte or word string
LODS, STOS Load, store byte, or word string
REP Repeat
REPE, REPZ Repeat while equal, zero
REPNE, REPNZ Repeat while not equal (zero)
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Control instructions
STC, CLC, CMC Set, clear, complement carry flag
STD, CLD Set, clear direction flag
STI, CLI Set, clear interrupt enable flag
LAHF, SAHF Load AH from flags, store AH into flags
PUSHF, POPF Push flags onto stack, pop flags off stack
ESC Escape to external processor interface
LOCK Lock bus during next instruction
NOP No operation (do nothing)
WAIT Wait for signal on TEST input
HLT Halt processor

8086 register model

The register model of the 8086 is shown in Figure 5.1. Of the fourteen 16-bit
registers available, four may be described as general purpose and can be divided
into separate 8-bit registers. As an example, the 16-bit extended accumulator
(AX) can be divided into two 8-bit registers, AH and AL. The high byte of a
16-bit word placed in AX is stored in AH whilst the low byte is stored in AL.
Instructions can be made to refer to various parts of the accumulator so that
operations can be carried out on the word stored in AX, or the individual bytes
stored in AH or AL.

The four Segment Registers are Code Segment (CS), Data Segment (DS),
Stack Segment (SS), and Extra Segment (ES). By making appropriate changes
to the contents of these registers, the programmer can dynamically change the
allocation of workspace.

As briefly mentioned in Chapter 1, the 8086 forms a 20-bit address from
the contents of one of the Segment Registers (either CS, DS, SS, or ES) and

Figure 5.1 8086 register model
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an offset taken from one (or more) of the other registers or from a memory
reference within the program. The four Segment Registers (CS, DS, SS, and
ES) effectively allow the programmer to set up individual 64KB workspace
segments within the total 1MB address range.

We shall now briefly consider each of the 8086 registers in turn:

Accumulator, AX (AH and AL)

The accumulator is the primary source and destination for data used in a large
number of 8086 instructions. The following data movement instructions give
some idea of the range of options available:

MOV AL,data Moves 8-bit immediate data into the least-significant
byte of the accumulator, AL.

MOV AH,data Moves 8-bit immediate data into the most-significant
byte of the accumulator, AH.

MOV AX,register Copies the contents of the specified 16-bit register to
the 16-bit extended accumulator (AX).

MOV AH,register Copies the byte present in the specified 8-bit register to
the 8-bit register, AH.

MOV AX,[address] Copies the 16-bit word at the specified address into the
general-purpose base register, AX.

BX (BH and BL) register

The BX register is normally as a base register (address pointer). The following
data movement instructions give some idea of the range of options that are
available:

MOV BX,data Moves 16-bit immediate data into the general-
purpose base register (BX).

MOV BX, [address] Copies the 16-bit word at the specified address into
the general-purpose base register (BX).

MOV BX,register Copies the contents of the specified register to the
base register (BX).

MOV [BX],AL Copies the contents of the AL register to the memory
address specified by the BX register.

CX (CH and CL) register

The CX register is often employed as a loop counter. The 8086 LOOP instruction
tests the contents of the CX register pair in order to determine whether the 1oop
should be repeated, or not. This makes coding loops extremely simple as the
following code fragment shows:

start: MOV CX,OCOOH ; Number of times round the loop
delay: LOOP delay ; Count down finished?

RET

The CX and CL registers are also used to implement repeated string moves,
shifts, and rotates. The following example shows how the contents of the
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accumulator can be rotated by the value placed in the CL register:

rote4: MOV CL,4 ; Number of bits to shift
ROR AX,CL ; Rotate to the right
RET

DX (DH and DL) register

The DX register is a general-purpose 16-bit register which can also be used as
an extension of the AX register in 16-bit multiplication and division.

Stack Pointer (SP)

The SP register acts as a conventional Stack Pointer and points to the memory
offset (relative to the paragraph address held in the Stack Segment register) of
the current top of the stack. Adjustment of the SP register is automatic and pro-
grammers should avoid modifying the contents of this register if at all possible!

Base Pointer (BP), Destination Index (DI), Source Index (SI)

These registers are used in some of the more sophisticated of the 8086 addressing
modes which permit the programmer to implement advanced data structures
(such as two-dimensional arrays). All three registers are used to form addresses
as shown in the following simple examples:

MOV [BP+20],AX Copies the word present in the AX register to an
address offset by 20 bytes from the Base Pointer (BP).

MOV [DI],space Places 20H (previously defined by an equate of the
form space EQU 20H) at the address pointed to by
the Destination Index (DI).

MOV SI,message Move the start address of message into the Source
Index (SI). Thereafter, SI can be used with an offset
to point to a particular character within the string,
message.

Instruction Pointer (IP)

The Instruction Pointer is a 16-bit register which points to the address of the
next instruction to be executed. The Instruction Pointer is automatically updated
by the CPU and the physical address of the instruction is found by adding the
16-bit value taken from the Instruction Pointer with the 16-bit value taken from
the Code Segment Register shifted 4 bits to the left (see Chapter 1).

Flag Register (F)

The 8086 has a 16-bit Flag Register which contains nine status bits which may
be set (0) or reset (1) depending upon the internal state of the CPU. Flags keep
their status (either set or reset) until an instruction is executed which has an
effect on them. The 8086 flags are shown in Figure 5.2.
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Figure 5.2 8086 flags

Segment Registers (CS, DS, SS, and ES)

We have already briefly mentioned the function of the four Segment Registers.
Each register is associated with a separate workspace. The workspace defined
by the Code Segment Register will contain program instructions, whilst the
space defined by the Data and Extra Segments will generally contain data. In
situations where RAM is limited there is no reason why the several Segment
Registers should not have the same value (as in the case of a COM program).
The code fragment:

MOV AX,CS ; Make Code and Data
MOV DS,AX ; Segments the same

can be used to make the Data Segment equal to the Code Segment (note that
the instruction MOV DS,CS is not a valid 8086 instruction).

As a further example, the code fragment:

MOV AX,vidram ; Make Data Segment point
MOV DS,AX ; to video memory

can be used to make the Data Segment point to the start of a block of video
RAM (vidram will previously have been the subject of an equate).

Interrupt handling

By comparison with earlier 8-bit microprocessors, the 8086 provides somewhat
superior interrupt handling and uses a table of 256 4-byte pointers stored in the
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bottom 1 KB of memory (addresses 0000H to 03FFH). Each of the locations in
the Interrupt Pointer Table can be loaded with a pointer to a different interrupt
service routine. Each pointer contains 2 bytes for loading into the Code Segment
(CS) Register and 2 bytes for loading into the Instruction Pointer (IP). This
allows the programmer to place interrupt service routines in any appropriate
place within the 1 MB physical address space.

Each of the 256 Interrupt Pointers is allocated a different type number. A
Type 0 interrupt has its associated Interrupt Pointer in the lowest 4 bytes of
memory (0000H to 0003H). A Type 1 interrupt will have its pointer located in
the next 4 bytes of memory (0004H to 0007H), and so on.

The structure of the 8086 Interrupt Pointer Table is shown in Figure 5.3.
Interrupt types 0 to 4 have dedicated functions while Types 5 to 31 are reserved.
Hence there are 224 remaining locations in which Interrupt Pointers may be
stored. The interrupting device places a byte on the data bus in response to an

Figure 5.3 8086 Interrupt Pointer table
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interrupt acknowledgement generated by the CPU. This byte gives the interrupt
type and the 8086 loads its Code Segment and Instruction Pointer registers with
the words stored at the appropriate locations in the Interrupt Pointer Table and
then commences execution of the interrupt service routine.

The following code fragment shows how the Interrupt Pointer Table can be
initialized to cope with three interrupt service routines:

; Initialise Interrupt Pointer Table
MOV AX,0 ; Point to start
MOV DS,AX ; of memory.
MOV AX,CS ; Get code segment.

; Type 32
MOV 80H,dev1 ; Offset for device #1 ISR
MOV 82H,AX ; and segment address

; Type 33
MOV 84H,dev2 ; Offset for device #2 ISR
MOV 86H,AX ; and segment address

; Type 255
MOV 3FCH,dev3 ; Offset for device #3 ISR
MOV 3FEH,AX ; and segment address

MASM32 If you plan to make extensive use of assembly language programs it is worth
moving to a modern 32-bit macro assembler and a full Integrated Develop-
ment Environment (IDE). One of the most comprehensive packages is currently
provided by MASM32 which is a complete freeware assembly language
development environment. MASM32 has its roots in the original Microsoft
MASM assembler but it is combined with elements of the Microsoft Win-
dows DDK/SDK and it enjoys the support of an excellent Editor and IDE (see
Figure 5.4).

For anyone contemplating using assembly language as the main vehicle for
software development the current version of MASM32 assembler (together with
its IDE and support tools) can be very highly recommended. Indeed, 32-bit
assembler is both clearer and simpler than the DOS and 16-bit Windows code
and is not cursed with the complexity of segment arithmetic. You no longer
have to deal with using pairs of registers for long integers and there is no 64 KB
boundary imposed by the segmented structure of 16-bit software.

The complexity of writing 32 bit Windows software is related to the structure
of Windows and the sheer range of functions in the Attachment Packet Interface
(API) set. It differs from DOS code only in so far as the parameters are passed
on the stack rather than in registers as in the DOS interrupts. While the sheer
range of functions in Window can be a bit intimidating, it also puts in the hands
of the assembler language programmer, a massive set of capacities that were
never available in DOS.

One of the advantages of writing in assembler is that it comfortably handles
the C-code format of the Windows APIs with no difficulty. Zero-terminated
strings, structures, pointers, data sizes, etc., are all part of writing assembler.

The following code fragment (see also page 153) shows how a simple message
box can be produced using just a few lines of assembly code:
.386
.model flat, stdcall
option casemap:none
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Figure 5.4 The assembly language source code is entered using MASM32’s
integrated editor and Console Assemble and Link is used to automatically
produce an executable program

include \masm32\include\windows.inc
include \masm32\include\kernel32.inc
include \masm32\include\user32.inc
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib

.data
MsgCaption db "Warning",0
MsgBoxText db "Check feed hopper is empty!",0

.code
start:

invoke MessageBox, NULL,addr MsgBoxText, addr MsgCaption,
MB_OK

invoke ExitProcess,NULL
end start

The macro that handles the production of the message box in the previous
example is as follows:

MsgBox MACRO handl, TxtMsg, TxtTitle, styl
LOCAL Msg1
LOCAL Titl
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If @InStr(1,<TxtMsg>,<ADDR>) eq 0
If @InStr(1,<TxtTitle>,<ADDR>) eq 0
.data
Msg1 db TxtMsg,0
Titl db TxtTitle,0

.code
invoke MessageBox,handl,ADDR Msg1,ADDR Titl,styl
EXITM

EndIf
EndIf
If @InStr(1,<TxtMsg>,<ADDR>) gt 0
If @InStr(1,<TxtTitle>,<ADDR>) eq 0
.data
Titl db TxtTitle,0

.code
invoke MessageBox,handl,TxtMsg,ADDR Titl,styl
EXITM

EndIf
EndIf
If @InStr(1,<TxtMsg>,<ADDR>) eq 0
If @InStr(1,<TxtTitle>,<ADDR>) gt 0
.data
Msg1 db TxtMsg,0

.code
invoke MessageBox,handl,ADDR Msg1,TxtTitle,styl
EXITM

EndIf
EndIf
If @InStr(1,<TxtMsg>,<ADDR>) gt 0
If @InStr(1,<TxtTitle>,<ADDR>) gt 0
invoke MessageBox,handl,TxtMsg,TxtTitle,styl
EXITM

EndIf
EndIf

ENDM

Hopefully, this simple example should help to convince you of the advantages
of using macros and the immense time saving that this can potentially offer the
programmer!

The following data types are supported by MASM32.

Register Data Size

al BYTE 8 bit
ax WORD 16 bit
eax DWORD 32 bit
mm(0) QWORD 64 bit

It is worth comparing the above lost with the complexity of the higher-level
programming languages, such as C++ which can have as many more data
types! To assist with the conversion of data types a WINDOWS.INC include
file is supplied with MASM32.
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A MASM32 walkthrough

Finally, to illustrate how MASM32 assemble, disassemble and provide debug-
ging and other information, the following assembly language code is for a
simple number guessing game:

; *************************************************************************
; Source file: compare.asm
; Language: x86 assembler for MASM32
; Function: Program compares an input value with an immediate value (10)
; and prints one of three messages to indicate the result of the comparison
; Project build: use "Console Assemble & Link"
; Executable: runs from command prompt
; *************************************************************************
;

.486 ; create 32 bit code

.model flat, stdcall ; 32 bit memory model
option casemap :none ; case sensitive

include \masm32\include\windows.inc ; always first
include \masm32\macros\macros.asm ; MASM support macros

; -----------------------------------------------------------------
; include files that have MASM format prototypes for function calls
; -----------------------------------------------------------------

include \masm32\include\masm32.inc
include \masm32\include\gdi32.inc
include \masm32\include\user32.inc
include \masm32\include\kernel32.inc

; ------------------------------------------------
; Library files that have definitions for function
; exports and tested reliable prebuilt code.
; ------------------------------------------------

includelib \masm32\lib\masm32.lib
includelib \masm32\lib\gdi32.lib
includelib \masm32\lib\user32.lib
includelib \masm32\lib\kernel32.lib

; ------------------------------------------------
.code ; Tell MASM where the code starts

start: ; The CODE entry point to the program
call main ; branch to the "main" procedure
exit

main proc
LOCAL var1:DWORD ; space for a DWORD variable
LOCAL str1:DWORD ; a string handle for the input data
mov var1, sval(input("Please enter a number between 1 and 20: "))
cmp var1, 10 ; compare the input number with 10
je equal ; Is the input number equal to 10?
jg greater ; Is the input number greater than 10?
jl less ; Is the input number less than 10?

equal:
print chr$("The number you entered is 10",13,10)
jmp over

greater:
print chr$("The number you entered is greater than 10",13,10)
jmp over
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Figure 5.5 Screen messages produced during the Console Assemble and Link
process. The executable file is named compare.exe whilst the object code file is
compare.obj.

less:
print chr$("The number you entered is less than 10",13,10)

over:
ret

main endp
end start ; Tell MASM where the program ends

The code is entered using MASM32’s editor (part of the IDE). After saving
the source code file as compare.asm, Console, Assemble, and Link are used to
automatically produce and execute program Link (see Figures 5.4 and 5.5).

The executable file (compare.exe) can then be tested by entering the name of
the executable file at the command line (see Figure 5.6). Notice that the current
directory has been changed to C:\MASM32 in which the executable file has
been saved.

Finally, if necessary, MASM32’s disassembler can be used to provide infor-
mation about the executable code. The following is a short extract from the
information generated by MASM32’s disassembler:

C:\masm32\compare.exe (hex) (dec)

.EXE size (bytes) 490 1168
Minimum load size (bytes) 450 1104
Overlay number 0 0
Initial CS:IP 0000:0000
Initial SS:SP 0000:00B8 184
Minimum allocation (para) 0 0
Maximum allocation (para) FFFF 65535
Header size (para) 4 4
Relocation table offset 40 64
Relocation entries 0 0
Portable Executable starts at b0
Signature 00004550 (PE)
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Figure 5.6 Results of running compare.exe from the CLI. The program has
been tested with three different input values.

Machine 014C (Intel 386)
Sections 0003
Time Date Stamp 3A50440A Mon Jan 1 08:47:06 2001
Symbol Table 00000000
Number of Symbols 00000000
Optional header size 00E0
Characteristics 010F

Relocation information stripped
Executable Image
Line numbers stripped
Local symbols stripped
32 bit word machine

Magic 010B
Linker Version 5.12
Size of Code 00000200
Size of Initialized Data 00000400
Size of Uninitialized Data 00000000
Address of Entry Point 00001000
Base of Code 00001000
Base of Data 00002000
Image Base 00400000
Section Alignment 00001000
File Alignment 00000200
Operating System Version 4.00
Image Version 0.00
Subsystem Version 4.00
reserved 00000000
Image Size 00004000
Header Size 00000400
Checksum 00000000
Subsystem 0003 (Console)
DLL Characteristics 0000
Size Of Stack Reserve 00100000
Size Of Stack Commit 00001000
Size Of Heap Reserve 00100000
Size Of Heap Commit 00001000
Loader Flags 00000000
Number of Directories 00000010
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Despite increasing competition from other languages such as Pascal/Delphi
and C/C++, BASIC remains extremely popular in the field of instrumentation
and process control; the language is relatively easy to learn and programs can
be quickly developed by those with little previous programming experience.
Furthermore, modern implementations of the language put it on a par with many
of its more powerful competitors. Gone are the days when BASIC programs
were constrained to show a lack of structure by the absence of control structures
such as DO . . . LOOP and WHILE . . . WEND. Furthermore, BASIC procedures,
subprograms, and user-defined functions all aid the programmer since they
promote modularity and aid flexibility.

The availability of compilers adds a further dimension to the language since
compiled BASIC programs can be indistinguishable from those written in other
(supposedly superior) languages. Such programs are compact, execute at high
speed, and are relatively straightforward to develop and maintain. Such factors
conspire to make modern structured and compiled BASICs worthy contenders
for most applications within the field of instrumentation and control.

Since the majority of readers will have at least a passing acquaintance with
the BASIC programming language, we shall deal only with topics which are
directly relevant to the development of efficient programs for instrumentation
and control applications. Readers with no previous knowledge are advised to
consult one of the many tutorial books aimed at newcomers to BASIC program-
ming (see Appendix E). There is no shortage of material to choose from and
most texts will provide a more than adequate introduction to the subject. We
begin this chapter by introducing some of the most popular BASIC compilers
including those that were developed strictly for a DOS environment as well as
more modern variants designed to fully exploit the features offered by the 32-bit
Windows operating system.

Microsoft BASIC for
DOS

To simplify some of the terminology, I’ve coined the phrase ‘Microsoft BASIC
for DOS’ to encompass a number of BASIC compilers and associated devel-
opment tools produced by Microsoft over the last two decades. Such tools
include QuickBASIC, BASIC 6.0, and the BASIC 7.1 Professional Develop-
ment System. Later versions of QuickBASIC are also sometimes referred to as
QuickBASIC Extended (QBX).

Microsoft takes pains to stress that their BASIC for DOS products are only
certified for use with MS-DOS and PC-DOS systems and, because of this
and the advent of Visual programming languages (such as Visual BASIC)
their DOS-based products are no longer actively supported. Nevertheless,
Microsoft BASIC for DOS will work within a Windows environment but with
a few restrictions, the most notable of which is that applications that access
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Figure 6.1 The Microsoft BASIC Professional Development System IDE

hardware directly are unsuitable for deployment in a Windows Protected Mode
environment. In order to overcome the restrictions imposed by later versions of
Windows (i.e. beyond Windows 9x), your applications may have to be prepared
with a view to operation in a pure DOS environment (rather than in a DOS
Window). We will return to this important point later in this chapter.

Many of the BASIC programs that appear in this book were originally
developed using QuickBASIC and Microsoft BASIC 6.0, and most are compat-
ible with modern forms of BASIC (such as QBX and PowerBASIC 3.5). The
early Microsoft DOS BASIC packages provide the user with a simple ‘no-frills’
Integrated Development Environment (IDE) (see Figure 6.1). The IDE allows
program entry, editing, running, and debugging without having to leave the
IDE’s shell. Programs can be tested during development with minimal fuss and
then free-standing executable programs (EXE files) can be produced when the
user is reasonably confident that the program is robust and bug-free.

Microsoft DOS BASIC also offers the user comprehensive context-sensitive
online help. Using the resident BASIC text editor, syntax errors are reported
immediately when the code is entered, and debugging is aided by the availability
of breakpoints and watchpoints which can be freely imbedded within the code.

Modular programming is encouraged and current modules are co-resident
in memory during program development. Multiple editing Windows allow the
programmer to view the main code along with the code for a subprogram (pro-
cedure). The programmer can also exit to DOS, carry out a DOS operation
(such as formatting a disk) and then return to the BASIC environment at the
point at which it was left.

Despite its age, Microsoft DOS BASIC can still provide a useful environment
for developing simple and compact DOS-based applications. So, as long as you



h4716-ch06 5/2/2005 12: 35 page 191

BASIC programming 191

don’t need a full Windows environment for your application these compilers
can make a useful starting point.

Developing Microsoft
BASIC for DOS

programs

Since it is relatively easy to write and enter Microsoft BASIC for DOS programs,
it is unfortunately all too easy to develop bad habits. Furthermore, the end
result produced by an unstructured program (i.e. ‘quick and dirty code’) can
sometimes be indistinguishable from that produced by a program which is highly
structured. The difference only becomes important when the time comes for
extending, modifying, or maintaining the program. With structured code this is
a relatively simple matter. An unstructured program, on the other hand, may be
a tangled nest of haphazard code and a major modification to the program may
well result in the need for a complete rewrite. This can hardly be described as
efficient!

There are a number of techniques that can be used to assist in the production
of efficient structured code. First and foremost, it is vitally important to get into
the habit of being consistent in the layout of your programs and in the names
used for variables. Failure to do this will make it extremely difficult to port
sections of code from one program to another. This is a highly desirable feature
which will save many hours of work. An efficient procedure for, say, accepting
keyboard input and verifying that it is numeric, truncating it to integer, and
confirming that it is within a given range, can be useful in a huge variety of
control applications. There is absolutely no reason why an efficient code module
that performs such a function should not be included in every program that you
write. Once written, you will never do it again!

Variable types Wherever possible, integer numeric variables should be used in order to min-
imize storage space and increase processing speed. Floating point variables,
which have considerable processing and storage overhead, should be avoided.
Integer variables are normally recognized by a trailing %. Thus t represents a
floating point numeric variable while t% represents an integer numeric variable
and t$ represents a string variable.

Integer variables require 2 bytes for storage and values can be whole numbers
(i.e. no decimal points) ranging from −32 768 to +32 767. Microsoft BASIC
for DOS also supports long integers (in which each occupy 4 bytes of storage),
and both single- and double-precision floating point numbers (see Table 6.1).

String variables comprise a sequence of characters (letters, numbers, and
punctuation). Microsoft BASIC for DOS supports both fixed and variable length
strings (the length of the former type must be declared). In either case, the
maximum length permitted is 32 767 characters.

Variable names In order to aid readability, it has become fashionable to use relatively long names
for variables. Happily, where a BASIC program will eventually be compiled, the
overhead associated with long variable names applies only to the source files. It
is thus permissible to use more meaningful variable names in such applications.
Whether or not one is using a compiled BASIC, it is essential to maintain
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Table 6.1 QuickBASIC variable types

Number of
bytes for

Class Type storage Range of values Identifier Examples Notes

Numeric Integer 2 −32 768 to % min% Stored in 16-bit 2’s
+32 767 complement format

Numeric Long integer 4 −2 147 483 648 to & alt& Stored in 16-bit 2’s
+2 147 483 647 complement format

Numeric Single-precision 4 −3.4E+38 to ! val! Stored in IEEE format
floating point +3.4E+38 (approx.) (accurate to seven

decimal places)
Numeric Double-precision 8 −1.797E+308 to # max# Stored in IEEE format

floating point +1.797E+308 (accurate to 15
(approx.) or 16 digits)

String Character Fixed n/a $ input$ Length must be
declared (max. 32 767)

String Character Variable n/a $ file$ Length can be
variable (max. 32 767)

consistency with the choice of variable names and also to ensure that, as far as
possible, they are descriptive. Examples of acceptable variable names are:

chan% channel number (integer)
col% column number (integer)
date$ date (string – typical format mmddyyyy)
day$ day of the week (string)
error$ error message (string)
file$ filename (string)
inp% input port address (integer)
lim% limit value (integer)
outp% output port address (integer)
prompt$ user prompt (string)
r$ general user response (string – usually

a single character)
time$ time (string – typical format hhmmss)
vel& velocity (single precision floating point)
ver$ version number (string)
x% x-axis displacement (integer)
y% y-axis displacement (integer)

BASIC command
summary

The following is a summary of BASIC commands that are found in most modern
versions of BASIC. Note that Windows specific commands have been excluded
from this list and not all of the listed commands may be available in any par-
ticular version of the language. In all cases, readers are advised to familiarize
themselves with the command set and command syntax applicable to the version
of BASIC that they will actually be using!
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Command Function/operation

ABS Return the absolute value of a numeric expression
AND Perform a logical bitwise AND operation
ASC Return the ASCII code of the specified character in a string
ASM Identify an assembly language statement
ATN Return the arctangent of an argument
BEEP Generate a beep using the PC’s internal speaker
BIN$ Return a string that is the binary (base 2) representation of a value
BIT Set/reset the value of a particular bit in an integer-class variable
CALL Invoke a procedure, subroutine or function)
CBYT Convert a value to a Byte data type
CDBL Convert a value to a double-precision data type
CDWD Convert a value to a double-word data type
CHR$ Convert one or more ASCII codes into ASCII character(s)
CINT Convert a value to a integer data type
CLNG Convert a value to a long-integer data type
CLS Clear screen (erases current screen data)
COS Return the cosine of an argument
CSNG Convert a value to a single-precision data type
DATA Declare an array of constants
DATE$ Set or retrieve the system date
DEFBYT Declare the default variable type to be Byte
DEFDBL Declare the default variable type to be double precision
DEFDWD Declare the default variable type to be double word
DEFINT Declare the default variable type to be integer
DEFLNG Declare the default variable type to be long integer
DEFSNG Declare the default variable type to be single precision
DEFSTR Declare the default variable type to be string
DEFWRD Declare the default variable type to be word
DIM Declare and dimension arrays, scalar variables, and pointers
DIR$ Return a filename that matches the given mask
DISKFREE Return the amount of available space on a disk, in bytes
DISKSIZE Return the total amount of space on a disk, in bytes
DO/LOOP Define a group of program statements that are executed

repetitively
END SELECT Closes a SELECT CASE block
EOF Return the end-of-file status of a file
EXIT Transfer program execution out of a block structure
EXP Return a number raised to a power of e (inverse natural

logarithm)
FIX Truncate a floating point number to an integer
FOR/NEXT Define a loop of program statements controlled by a counter
FORMAT$ Format numeric data according to a string mask expression
FUNCTION Define the start of a function block
GET Read a record from a random-access file
GET$ Read a string from a file opened in binary mode
GLOBAL Declare global (shared) variables between subs and functions
GOSUB Invoke a local subroutine

(continued )
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Command Function/operation

GOTO Transfer program execution to the statement identified by a
label

HEX$ Return a hexadecimal (base 16) string representation
of an argument

IF Test a condition and execute one or more program statements
IF/END IF Create a IF/THEN/ELSE block with multiple lines and

conditions
IN Input byte data from a port
INPUT# Load variables with data from a sequential file
INSTR Search a string for the first occurrence of a character or string
INT Convert a numeric expression to an integer-class value
KILL Delete a disk file
LCASE$ Return a lowercase version of a string argument
LEFT$ Return the left-most n characters of a string
LEN Return the logical length of a variable
LET Assign a numeric variable or string
LINE INPUT# Read line(s) from a sequential file into a string variable

or string array
LOC Determine the current seek position in an open disk file
LOCAL Declare local variables in a sub or function
LOCATE Define a point on the screen
LOF Return the length of an open disk file
LOG Return the natural (base e) logarithm of an argument
LSET Left-align a string within the space of another string
LSET$ Return a string containing a left-justified (padded) string
LTRIM$ Return a string with leading characters or strings removed
MID$ Return a portion of a string
NOT Logical bitwise NOT operation
OCT$ Return a string that is a octal (base 8) representation of a value
ON ERROR Specify an error handling routine; enable/disable trapping
ON GOSUB Call one of several subroutines based on a numeric expression
ON GOTO Send program flow to one of several labels based on a value
ON KEY Used for trapping key events
OPEN Prepare a file or device for reading or writing
OR Logical bitwise OR arithmetic operation
OUT Output byte data to a port
PEEK Return the byte at a specific memory location
PEEK$ Return a sequence of bytes starting at a specific memory

location
POKE Store a byte at a specific memory location
POKE$ Store a sequence of bytes starting at a specific memory

location
PRINT# Write a string or a complete array to a sequential file
PUT Write a record to a random-access file or a variable to

a binary file
PUT$ Write a string to a file opened in binary mode
RANDOMIZE Seed the random number generator

(continued )
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Command Function/operation

READ$ Retrieve string data from a local DATA list
REDIM Declare dynamic arrays, allocate, deallocate, or

reallocate memory
REM Indicate the remainder of a line of source code is a

remark or comment
RESET Set a variable, array element or an entire array to zero
RESUME Continue execution after error handling with ON

ERROR GOTO
RETURN Return from a subroutine (GOSUB) to its caller
RIGHT$ Return the rightmost n characters of a string
RND Return a random number
RSET Right justify a string into the space of a string variable
RSET$ Return a string containing a right-justified (padded)

string
RTRIM$ Return a copy of a string with trailing characters or

strings removed
SEEK Set the position in a file for the next input or output

operation
SELECT CASE Control program flow based on the value of an

expression
SGN Return the sign of a numeric expression
SHIFT Shift the bits in an integer-class variable
SIN Return the sine of an argument
SOUND Generate a sound
SPACE$ Return a string consisting of a specified number

of spaces
SQR Return the square root of an argument
STATIC Declare static variables inside of a sub or function
STR$ Return the string representation of a number in

printable form
STRING$ Return a string with multiple copies of the specified

character
SUB/END SUB Define a sub (procedure) block
TAN Return the tangent of an argument
TIME$ Read and/or set the system time
TIMER Return the number of seconds that have elapsed since

midnight
UCASE$ Return an all-uppercase (capitalized) version of a

string
USING$ Format one or more string/numeric expressions using

a mask string
VAL Return the numeric equivalent of a string argument
VARPTR Return the 32-bit address of a variable or string handle
WHILE/WEND Define a block of program statements that are

executed repeatedly
WRITE# Output data to a sequential file in a delimited format
XOR Perform a logical or a bitwise exclusive-OR operation
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Subroutines Subroutines can be instrumental in making very significant reductions in the
size of BASIC programs and they should be employed whenever a section of
code is to be executed more than once. Note, however, that if your version of
BASIC supports the use of subprograms, procedures or user-defined functions,
then these should normally be used instead! A typical example of the use of
a subroutine might involve a delay routine which is required at various points
in a program. Assuming that such a routine was to be used in an early version
of BASIC which employs line numbers and that the subroutine starts at line
10100, it might take the following form:

10100 REM Delay subroutine
10110 FOR c% = 0 TO 10000: NEXT e%
10120 RETURN

The subroutine may be called from several points within the main program as
follows:

340
350 GOSUB 10100
360
...
440
450 GOSUB 10100
460
...
710
720 GOSUB 10100
730

In each case, program execution resumes at the line immediately following the
GOSUB statement. Also note that, on exit from the subroutine, c% will have the
value 10001.

We could make the delay subroutine even more flexible (allowing for variable
length delays) by altering the upper limit of the loop using a variable which is
set immediately prior to the subroutine call. The modified subroutine would
then become:

10100 REM Delay subroutine
10110 FOR c% = 0 TO lim%: NEXT c%
10120 RETURN

As before, the routine may be called from several points in the main program
as follows:

340
350 lim% = 10000: GOSUB 10100
360
...
440
450 lim% = 20000: GOSUB 10100
460
...
710
720 lim% = 15000: GOSUB 10100
730
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On exit from the subroutine, the value of c% will have been modified to 1
greater than the value of lim% immediately prior to the subroutine call.

Since line numbers are not required using QuickBASIC (in common with
later versions of Microsoft BASIC for DOS as well as virtually all modern
BASIC compilers) a label is used (instead of a line number) to mark the start
of the delay subroutine, as shown below:

REM Start of main program
...
...
GOSUB Delay
...
...
GOSUB Delay
...
...
GOSUB Delay
...
...

END
REM Delay subroutine
Delay:
FOR c% = 0 TO 10000: NEXT c%
RETURN

It is important to note that the label (Delay) is immediately followed by a colon
and that the main body of program code must be terminated by an END statement
in order to prevent execution of the subroutine when the end of the code has
been reached. If this should ever happen, an error condition will result as the
RETURN statement does not have a matching GOSUB.

Procedures A user-defined procedure can be thought of as a named subroutine. The pro-
cedure is simply CALLed by name rather than by GOSUB followed by a label.
This can be instrumental in not only making the resulting code more readable
but it also ensures that the structure of the program can be easily understood.
A further advantage of procedures is that parameters may be passed into pro-
cedures and values returned to the main program. Variables which are to be
common with the main program may be declared at the start of the procedure
using the SHARED statement (otherwise all variables internal to the procedure
will be strictly local).

Procedures are defined using statement of the form SUB <name> and are
terminated by END SUB. Procedures may also contain references to other pro-
cedures (i.e. procedures can be ‘nested’). Procedure names should be chosen so
they do not conflict with any variable names nor should they be BASIC reserved
words.

The previous delay subroutine can be easily written as a procedure:

REM Delay procedure
SUB Delay(lim%)
FOR c% = 0 TO lim%: NEXT c%
END SUB
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It should be noted that the QuickBASIC editor will recognize the SUB state-
ment and will treat the procedure as a separate subprogram (with an automatic
declaration inserted at the start of the main program code). Thereafter, the
subprogram can be viewed and edited independently of the main program code.

The method of calling the delay procedure is more elegant than that used
with the equivalent subroutine and takes the following format:

REM Start of main program
DECLARE SUB Delay(lim%)
...
...
CALL Delay(10000)
...
...
CALL Delay(20000)
...
...
CALL Delay(15000)
...
...

The values within parentheses are parameters passed into the procedure as
lim%. Such values are local to the procedure and external references to lim%will
remain unchanged by the action of the procedure. It should also be noted that
an overflow error will occur if values passed into the subprogram should ever
exceed 32 766. Longer delays can be produced using floating point variables,
as follows:

REM Delay procedure
SUB Delay(lim)
FOR c = 0 TO lim: NEXT c
END SUB

while the relevant code in the main program should run along the following lines:

REM Start of main program
DECLARE SUB Delay(lim)
...
...
CALL Delay(10000)
...
...
CALL Delay(20000)
...
...
CALL Delay(15000)
...
...

Since we are using floating point variables, values passed into the subprogram
can now exceed the 32 766 limit imposed on integers (see Table 6.1 for details).

User-defined functions User-defined functions are similar to user-defined procedures but return values
(integer, float, or string) to the main program. As with user-defined procedures,
functions are called by name (or FN name). An example of a user-defined
function (FNConfirm%) appears later in this chapter.
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Logical constructs Modern versions of BASIC provide us with a number of other useful constructs
which can be instrumental in the production of efficient structured code. As an
example, a somewhat more elegant delay procedure can be produced using the
WHILE . . . WEND construct. This routine uses a single variable rather than the
two that were required in the FOR . . . NEXT construct used earlier.

REM Delay procedure
SUB Delay(lim%)
WHILE lim% > 0
lim% = lim% - 1
WEND
END SUB

The condition in the WHILE stated is tested and, as long as it remains true (i.e.
evaluates to non-zero), the code within the loop will be repeated. It should,
perhaps, be stated that there is no particular advantage in using WHILE . . . WEND

in this simple delay subroutine and a straightforward FOR . . . NEXT loop would,
in practice, be perfectly adequate!

The DO . . . LOOP construct offers an even more powerful alternative to FOR . . .

NEXT and WHILE . . . WEND. Several forms of DO . . . LOOP structure are available
with tests for the loop condition at the start of the loop (DO WHILE . . . and DO

UNTIL . . . LOOP) and tests at the end of the loop (DO . . . LOOP WHILE and DO . . .

LOOP UNTIL). The logic of these constructs is contrasted in Figures 6.2 and 6.3,

Figure 6.2 Flowcharts illustrating the logic of DO WHILE . . . LOOP and DO

UNTIL . . . LOOP structures. (a) DO WHILE . . . LOOP; (b) DO UNTIL . . . LOOP
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Figure 6.3 Flowcharts illustrating the logic of DO . . . LOOP WHILE and DO . . .

LOOP UNTIL structures. (a) DO . . . LOOP WHILE; (b) DO LOOP UNTIL

respectively. It is important to note that the main body of loop statements within
a DO . . . LOOP WHILE or DO . . . LOOP UNTIL structure is executed at least once
whilst the main body of loop statements within a DO WHILE . . . LOOP or DO
UNTIL . . . LOOP need never be executed.

Prompts and messages Any program to be used by a person other than the originator should incorp-
orate meaningful prompts and messages to aid the user. Prompts should also
give some indication of the input required from the user in terms of the
acceptable keystrokes, the length of an input string, and the need to include
a RETURN keystroke. The following are examples of typical text prompts that
are acceptable for use in a DOS Window or a total DOS environment:

Do you wish to quit? (Y/N)

Press [SPACE] to continue.

Enter today’s date (MM:DD:YY) followed by [RETURN]

Enter filename (max. 8 characters) followed by [RETURN]

Messages, unlike prompts, demand no immediate input from the user and
should be included at any point in the program at which the user may require
information concerning the state of the system. Messages should be written in
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plain English and should not assume any particular level of technical knowledge
on the part of the user. The following are examples of acceptable messages:

Loading data file from disk . . . please wait!

Printer is not responding - please check paper supply.

Warning! Strain transducer on Channel 4 is not responding.

Keyboard entry Keyboard input from the user will be required in a variety of applications. Such
input may take one of three basic forms summarized below:

1 Single keystrokes. Keystrokes may either be a letter, number, or punctuation
and will generally not require the use of the RETURN or ENTER key.

2 Numerical inputs (comprising one or more keystrokes terminated by
RETURN or ENTER). Each keystroke must be a number (or decimal point
in the case of floats) and the input will normally be assigned to a numeric
variable (either integer or floating point).

3 String inputs (comprising one or more keystrokes terminated by RETURN).
Each keystroke may be a number, letter, or punctuation. The string input by
the user will normally be assigned to a string variable.

Single key inputs

Single key inputs will be required in a wide variety of applications. Such inputs
can take various forms including menu selections or simple ‘yes/no’ confirm-
ations. In either case, it is important to make the user aware of which keys are
valid in each selection and, where the consequences of a user’s input is irrevo-
cable, a warning should be issued and further confirmation should be sought.

A simple typical ‘yes/no’ dialogue would take the following form:

INPUT "Are you sure (Y/N) "; r$
IF r$ = "Y" THEN ... ELSE ...

This piece of code has a number of shortcomings not the least of which is that
it will accept any input from the user including a default (i.e. RETURN or
ENTER used on its own). Other problems are listed below:

• The user may not realize that the input has to be terminated by ENTER or
RETURN.

• A response of ‘N’ is not distinguished from a default (or any input other
than ‘Y’).

• The routine does not allow a lower case input and the user may not realize
that the SHIFT key has to be applied.

• If the user replies with ‘YES’ or ‘yes’, this would be equivalent to ‘N’!
• Finally, since we would probably want to use the routine at several points

within the program, it should be coded as a procedure or user-defined
function.

A much better solution to the problem would take the following form:

REM Confirm function
DEF FNConfirm%
r$ = ""
f% = -1
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PRINT "Are you sure? (Y/N)"
DO
DO
r$ = INKEY$

LOOP WHILE r$ = ""
IF r$ "y" OR r$ = "Y" THEN f% = 1
IF r$ = "n" OR r$ = "N" THEN f% = 0

LOOP WHILE f% <> 1 AND f% <> 0
FNConfirm% = f%
END DEF
...
REM Main program starts here
...
...
IF FNConfirm% = 1 THEN ... ELSE ...
...
...

The function returns a flag, f%, which is true (non-zero) if the user presses
Y or y and is false (zero) if the user presses N or n. The function waits until a
character is available from the keyboard (via the inner DO . . . LOOP) and then
checks to ensure that it is one of four acceptable responses (i.e. upper and lower
case Y and N). Any other keyboard input is invalid and the program continues
to wait for further keyboard input until an acceptable value is returned (during
this time the prompt message remains on the screen and does not scroll).

When a valid input is received, the function returns the appropriate flag in
f%. It is important to note that INKEY$, unlike INPUT, does not require the use
of the RETURN or ENTER key as a terminator and that a function definition must
always precede the main body of code which calls it.

The problem could equally well have been solved by means of a procedure
(rather than a user-defined function). In this case the code would have been as
follows:

REM Main program starts here
DECLARE SUB Confirm(f%)
...
...
CALL Confirm(f%)
IF f% = 1 THEN ... ELSE.
...
...
REM Confirm procedure
SUB Confirm(f%)
r$ = ""
f% = -1
PRINT "Are you sure? (Y/N)"
DO
DO
r$ = INKEY$

LOOP WHILE r$ = ""
IF r$ = "y" OR r$ = "Y" THEN f% = 1
IF r$ = "n" OR r$ = "N" THEN f% = 0

LOOP WHILE f% <> 1 AND f% <> 0
END SUB



h4716-ch06 5/2/2005 12: 35 page 203

BASIC programming 203

Note that, as with all subprograms, the procedure is declared at the beginning
of the main code and defined at the end.

Now, to take a more complex example, let’s consider the case of a main menu
selection. Suppose we are dealing with a control system which has four main
functions (each of which is to be handled by a secondary menu) together with
a function which closes down the system and exits from the program. The five
main functions will be as follows:

1 Set parameters
2 Heater control
3 Pump control
4 Print report
5 Close down

The following code can be used for the main program loop:

DECLARE SUB Setparams()
DECLARE SUB Heatcontrol()
DECLARE SUB Pumpcontrol()
DECLARE SUB Printreport()
DECLARE SUB Closedown()
REM Main menu selection
WHILE 1

CLS
LOCATE 3, 36
PRINT "MAIN MENU"
LOCATE 6, 30
PRINT "[1] Set parameters"
LOCATE 8, 30
PRINT "[2] Heater control"
LOCATE 10, 30
PRINT "[3] Pump control"
LOCATE 12, 30
PRINT "[4] Print report"
LOCATE 14, 30
PRINT "[5] Close down"
LOCATE 16, 30
PRINT "Option required (1-5)?"
DO
r$ = INKEY$
k% = VAL(r$)

LOOP UNTIL k% < 6 AND k% > 0
IF k% = 1 THEN CALL Setparams
IF k% = 2 THEN CALL Heatcontrol
IF k% = 3 THEN CALL Pumpcontrol
IF k% = 4 THEN CALL Printreport
IF k% = 5 THEN CALL Closedown

WEND

Notice that the main program loop consists of an infinite WHILE . . . WEND loop.
The single character string returned by INKEY is converted to an integer and then
tested to see whether it is within range of the valid keyboard responses (note
that depressing the first key returns a value in k% of 1, and so on). The DO . . .

LOOP is only exited when a valid keystroke is detected. Having obtained a valid
keystroke, the program checks the response to see which key was depressed
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using a series of IF . . . THEN statements so that the desired procedure can be
CALLed.

If, for example, the user had pressed the fifth key, the result of the IF . . . THEN

statement would have been found to be true (all others having been false) and
program execution would be diverted to the procedure named Closedown. In
this case, and since the result of the Closedown routine is irrevocable, the user
should be given the option of returning to the main menu. Hence the Closedown
procedure should take the following form:

REM Close down and exit
SUB Closedown
CLS
PRINT "You have selected the CLOSE DOWN option."
CALL Confirm(f%)
IF f% = 1 THEN END
END SUB

As before, the confirmation function returns a flag, f%, which is true (non-zero)
if the user presses Y or y but is false (zero) if the user presses N or n. If the
user decides not to continue with the Closedown procedure, END SUB ensures
that the procedure is abandoned and execution resumes at the statement which
follows the procedure CALL. The WEND statement then diverts the program back
to the beginning of the main menu selection routine.

QuickBASIC offers a more powerful logical construct which is particularly
useful when making menu selections. The construct is based on SELECT CASE

and eliminates the multiple use of IF . . . THEN. The equivalent SELECT CASE

menu selection program is as follows:

DECLARE SUB Setparams()
DECLARE SUB Heatcontrol()
DECLARE SUB Pumpcontrol()
DECLARE SUB Printreport()
DECLARE SUB Closedown()
REM Main menu selection
WHILE 1
CLS
LOCATE 3, 36
PRINT "MAIN MENU"
LOCATE 6,30
PRINT "[1] Set parameters"
LOCATE 8, 30
PRINT "[2] Heater control"
LOCATE 10, 30
PRINT "[3] Pump control"
LOCATE 12, 30
PRINT "[4] Print report"
LOCATE 14, 30
PRINT "[5] Close down"
LOCATE 16, 30
PRINT "Option required (1-5)?"
DO
r$ = INKEY$

LOOP UNTIL r$<>""
SELECT CASE r$



h4716-ch06 5/2/2005 12: 35 page 205

BASIC programming 205

Figure 6.4 Output produced by the simple menu selection routine

CASE "1"
CALL Setparams

CASE "2"
CALL Heatcontrol

CASE "3"
CALL Pumpcontrol

CASE "4"
CALL Printreport

CASE "5"
CALL Closedown

CASE ELSE
SOUND 60, 2

END SELECT
WEND

Since we are no longer testing for a valid key entry (in the form of a figure
in the range 1 to 5) we have included a ‘catchall’ in the form of the CASE

ELSE statement. We have also made the program a little more ‘user-friendly’ by
providing the user with an audible warning if an input keystroke is unacceptable.
The output produced by the program is shown in Figure 6.4.

Whilst on the topic of ‘user-friendly’ programs, it is perhaps worth mention-
ing that good use can be made of QuickBASIC’s ability to trap key events. As
an example, let us assume that the user is to be provided with an online help
facility available from any point in the program when the F1 key is depressed.
The following steps are required:

1 Code the subroutine (in this example we shall name it Help) along the lines
described earlier in this chapter.

2 Inform QuickBASIC that the Help subroutine is to be associated with the
F1 key. The required statement is:

ONKEY(l) GOSUB Help
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Table 6.2 Function and
cursor key numbers for use
in conjunction with the
QuickBASIC KEY(n) statement

Key to be Value
trapped of n

F1 1
F2 2
F3 3
F4 4
F5 5
F6 6
F7 7
F8 8
F9 9
F10 10
F11 30
F12 31
Cursor up 11
Cursor left 12
Cursor right 13
Cursor down 14

3 Enable trapping of the F1 key using the statement:

KEY(l) ON

4 If, at any time (e.g. during some critical process) it is subsequently necessary
to disable F1 key trapping, simply include a statement of the form:

KEY(l) OFF

5 Finally, to temporarily inhibit F1 key trapping but, at the same time remem-
bering whether or not the F1 key has been depressed (so that the event trap
can later be executed when a subsequent KEY ON statement is encountered)
the following statement can be used:

KEY(l) STOP

For readers who may wish to make further use of QuickBASIC’s key event
trapping facility, Table 6.2 gives the requisite numerical values associated
with the other function and cursor keys within the KEY(n) statement.

Numerical inputs

The simple method of dealing with numerical input involves using a BASIC
statement of the form:

INPUT "Value required"; n%

Sadly, this line of code will only work properly if the user realizes that a
numeric value is required. Since BASIC cannot assign a letter to a numeric
variable, the program will either crash or assign a value of zero if the user
inadvertently presses a letter rather than a number. Furthermore, it would be
useful to be able to impose a range of acceptable values on the user. The program
should reject input values outside this range, warn the user that his input is
invalid, and prompt again for further input. Again, such a routine would be
ideally coded as a procedure.

The procedure call could typically take the form:

prompt$ = "Temperature required"
CALLNumberin(prompt$, 60, 90, num%)

while the procedure itself would be coded along the following lines:

REM General purpose integer numerical input
SUB Numberin (prompt$, min%, max%, num%)
DO
PRINT prompt$;
INPUT num$
num% = VAL (num$)
IF n% <= max% AND n% >= min% THEN EXIT SUB
PRINT "Value outside permissible range!"

LOOP
END SUB

The procedure prints the prompt string (prompt$) and assigns the user’s input to
a string variable in order to avoid the program crashing if a letter is inadvertently
pressed. The string is subsequently converted to an equivalent numeric variable
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using the VAL function. The resulting integer is then tested to see whether it
lies within the acceptable range. If the integer is within range, the procedure is
exited (via EXIT SUB) with num% containing a valid integer input. If the integer
is not within range, the user is warned and prompted for further input. A similar
routine can be produced for floating point input and, if desired, the prompt string
can be included in the list of parameters to be passed into the function.

String inputs

The simple method of dealing with string input involves using a BASIC
statement of the form:

INPUT "Filename"; n$

This line of code is fortunately not quite so prone to problems as its equivalent
for numeric input. It is, however, worth considering what action we should take
if the user should default the input (i.e. just presses RETURN or ENTER) or
proceeds to input an unacceptably long string the latter is an important consid-
eration when dealing with filenames). Hence our general-purpose string input
routine should allow for the substitution of a default string and should also
truncate the user’s input to a specified length. The procedure call might take the
following form:

prompt$ = "Filename"
CALL Stringin(prompt$, 8, "MYSAMPLE", inputstr$)

while the procedure itself would be coded along the following lines:

REM General purpose string input
SUB Stringin(prompt$, length%, default$, inputstr$)
PRINT prompt$;"? ";
LINE INPUT r$
IF r$ = "" THEN r$ = default$
inputstr$ = LEFT$(r$, length%)

END SUB

As before, the procedure prints the prompt string (prompt$) and assigns the
user’s input to a string variable. The use of LINE INPUT (rather than just INPUT)
ensures that the user can include punctuation. The user’s response (r$) is then
checked to determine whether it is a null string (i.e. the user has defaulted) and,
ifso, the specified default string is substituted. Lastly, the string is truncated to
the specified length using the LEFT$ string function.

The following gives typical user entries and resulting values returned to the
main program (in inputstr$) by the foregoing code when length% takes the
value 8:

User input Value returned

OLD_DATA OLD_DATA

NEW_SAMPLE NEW_SAMP

CONTROL_DATA CONTROL_

(default) MYSAMPLE
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Figure 6.5 The PowerBASIC 3.5 for DOS IDE

Table 6.3 Summary of PowerBASIC 3.5 for DOS variable types

Variable type Indicator Element size (bytes) DEF type (see Note 1) Type keyword

Pointer @ 4 PTR
Integer % 2 DEFINT INTEGER
Long integer & 4 DEFLNG LONG
Quad integer && 8 DEFQUD QUAD
Byte ? 1 DEFBYT BYTE
Word ?? 2 DEFWRD WORD
Double Word ??? 4 DEFDWD DWORD
Single precision ! 4 DEFSNG SINGLE
Double precision # 8 DEFDBL DOUBLE
Extended precision ## 10 DEFEXT EXT
BCD fixed point @ 8 DEFFIX FIX
BCD floating point @@ 10 DEFBCD BCD
String (see Note 2) $ 2 DEFSTR STRING
Flex string (see Note 2) $$ 2 DEFFLX FLEX
Fixed-length string n/a n/a STRING * x
ASCIIZ string n/a n/a ASCIIZ * x

Notes: 1 DEF type refers to all 13 variable type declaration statements.
2 Only the string handle number is contained in a string array element. The string data itself is stored

elsewhere in memory and it occupies as many bytes as the string has characters.

PowerBASIC for DOS The PowerBASIC package includes two compilers, an Integrated Develop-
ment Environment (IDE) (see Figure 6.5), and a command-line compiler. The
integrated environment provides a text editor, a compiler, a debugger, pull-down
menus, Windows, input boxes, and context-sensitive help.

PowerBASIC represents a significant enhancement to earlier DOS BASIC
compilers. Power BASIC 2.0 was released in May 1990 in the same year
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Table 6.4 Summary of PowerBASIC 3.5 for DOS data types

Data type Size Range

Integer 16 bits (2 bytes) signed −32 768 to 32 767
Long integer 32 bits (4 bytes) signed −2 147 483 648 to 2 147 483 647
Quad integer 64 bits (8 bytes) signed ±9.22 × 1018

Byte 8 bits (1 byte) unsigned 0 to 255
Word 16 bits (2 bytes) unsigned 0 to 65 535
Double Word 32 bits (4 bytes) unsigned 0 to 4 294 967
Single precision 32 bits (4 bytes) ±8.43 × 10−37 to ±3.37 × 1038

Double precision 64 bits (8 bytes) ±4.19 × 10−307 to ±1.67 × 10308

Extended precision 80 bits (10 bytes) ±3.4 × 10−4932 to ±1.2 × 104932

BCD fixed point 64 bits (8 bytes) ±9.99 × 10−63 to ±9.99 × 1063

BCD floating point 80 bits (10 bytes) ±9.99 × 10−63 to ±9.99 × 1063

that Microsoft’s BASIC Professional Development Systems Version 7.1 was
released. However, unlike the latter product, Power BASIC continued to be
developed and supported and the current version (Version 3.5 of Power BASIC
for DOS) represents the ultimate ‘state of the art’ in tools for the development
of BASIC programs in a DOS environment.

PowerBASIC supports direct generation of 80286 and 80386 processor code
and 80287/80387 math coprocessor code. A fast procedure-based math package
performs IEEE standard floating point operations and there is support for a full
complement of variables and data types (see Tables 6.3 and 6.4).

Accessing assembly
language from within

BASIC programs

The ability to include assembly language routines within a BASIC program
can be invaluable when developing code for instrumentation, data acquisition
and control applications. This can be done in two basic ways: the use of inline
assembly language statements or the ability to link to an external assembly
language module. For those who are already developing assembly language
code the latter might be an attractive option but for most of us the ability to
introduce assembly language code within a set of BASIC program statements
will satisfy most, if not all, requirements.

Here is a simple example of using assembly language within PowerBASIC
3.5 to access the PC’s internal speaker:

' Title: assfunc.bas Version: 0.2 Modified: 24/08/04
' Language: PowerBASIC 3.5
' Function: Demonstrates function calls to inline assembly
' language routines. Generates sounds using the speaker
'
' Main loop to obtain input from user
'
division$ = String$(40, Chr$(205))
blank$ = String$(48, Chr$(32))
color 15, 1
cls
print division$
print "Assembly language function call demo."
print division$
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print "Enter frequency in the range 100Hz to 5000HZ"
do

locate 6, 1
print blank$
locate 6, 1
print "Frequency (Hz) or <return> to quit: ";
input freq$
if freq$ = "" then call stopsound: end
freq% = val(freq$)
if freq% > 99 and freq% < 5001 then
call speaker(freq%)
locate 5, 1
print blank$
locate 5, 1
print "Current frequency = ";freq%;"Hz"

end if
loop
'
' Assembly language routines
'
function speaker(BYVAL freq%)
count% = 1190000/freq%
asm in al, &H61
asm or al, &H03
asm out &H61, al
asm mov al, &Hb6
asm out &H43, al
asm mov ax, count%
asm out &H42, al
asm mov al, ah
asm out &H42, al
end function
'
sub stopsound
asm in al, &H61
asm and al, &Hfc
asm out &H61, al
end sub

There are two important things to note from this example. Firstly, each line
of assembly language code is preceded by the asm keyword. Secondly, the
assembly language code has direct access to BASIC variables (such as count%).

Figure 6.6 Output produced by the PowerBASIC 3.5 speaker demonstration
program
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This is an extremely powerful feature and one that helps to make mixed language
programming very straightforward. The output produced by the program is
shown in Figure 6.6.

Accessing the I/O ports
in DOS or Windows 9x

environments

Direct port access from BASIC or assembly language is eminently feasible from
a true DOS environment. It is also possible using the Windows 95 or Windows
98 operating systems. Unfortunately, with modern 32-bit operating systems
this no longer applies (this topic is further developed later in this chapter when
we discuss methods of accessing I/O ports from within the Windows Protected
Mode environment on page 215).

The following PowerBASIC 3.5 program demonstrates alternative methods
of directly accessing the PC’s parallel printer port. This program will operate
from a true DOS prompt or from a DOS Window in a Windows 9x operating
system:

' Title: portio.bas Version: 0.5 Modified: 25/08/04
' Language: PowerBASIC 3.5
' Function: Demonstrates methods of writing to and
' reading from I/O ports. Please see text for information
' about operation in a Windows XP environment
' For test purposes port addresses are currently set to LPT1
' Data data port = &H378 (output) : Status byte = &H379

(input)
'
color 15, 1
division$ = String$(40, Chr$(205))
'
' Display menu and get option from user
'
do
cls
print division$
print "I/O port read/write demonstration"
print division$
print "Select an option..."
print " [A] for in-line assembly language"
print " [B] for BASIC"
print " [Q] to quit"
do
r$ = Ucase$(Inkey$)

loop until r$ <> "" and instr("ABQ", r$)
print division$
if r$ = "Q" then goto shutdown
if r$ = "A" then gosub assem
if r$ = "B" then gosub basic

loop
'
' Demonstration of BASIC access to I/O ports
'
basic:
status% = inp(&H379) ’ read value of status byte
print "Using BASIC: status byte (hex) = "; hex$(status%)
out &H378,&HAA ’ write 10101010 to data port
print "Using BASIC: port data = 10101010"
delay 2
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out &H378, &H55 ’ write 01010101 to data port
print "Using BASIC: port data = 01010101"
delay 2
return
'
' Demonstration of in-line assembler access to I/O ports
'
assem:
' read status byte
asm mov dx, &H379
asm in al, dx
asm mov status%, al
print "Using inline assembler: status byte = "; hex$(status%)
' write 10101010 to data port
asm mov al, &HAA
asm mov dx, &H378
asm out dx, al
print "Using inline assembler: port data = 10101010"
delay 2
' write 01010101 to data port
asm mov al, &H55
asm mov dx, &H378
asm out dx, al
print "Using inline assembler: port data = 01010101"
delay 2
return
'
' Reset all data port bits and shutdown
'
shutdown:
asm mov al, &H00
asm mov dx, &H378
asm out dx, al
print "Shutting down ..."
delay 2
cls
end

The output produced by the program is shown in Figure 6.7.

Figure 6.7 Output produced by the PowerBASIC 3.5 port read/write
demonstration program
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Microsoft Visual Basic Microsoft Visual Basic is an event-driven (see page 161), object-based struc-
tured programming language that has become extremely popular for use in
the development of data acquisition, control, and measurement applications.
Visual Basic supports a wide range of objects starting with the form that con-
tains an application into which further objects (known as controls) are placed.
Command buttons, labels, text boxes, shapes, and timers are all examples of
controls that might be needed in a typical application.

As with virtually all modern programming applications, Visual Basic pro-
vides its own Integrated Development Environment (see Figure 6.8). This is
a multiple Windows-based environment which provides access to a Toolbox
which contains a selection of controls (more specialized controls can be added
to the Toolbox where needed), a Form window onto which the controls are
placed and modified (e.g. re-sized), a Code window where Visual Basic code
is inspected, entered and edited, and a Properties window which provides a
means of viewing and editing the properties of and currently selected object.
Typical object properties are caption, colour, font, and whether the control is
to appear enabled or disabled. The Project window lists all of the forms and
modules contained within a project and provides easy access to any that might
need editing whilst an Immediate window is provided for debugging purposes.

Visual Basic supports a wide variety of data types (including byte, Boolean,
integer, long integer, single- and double-precision floating point, currency,
decimal, date, fixed and variable length strings, and variant (this latter type
supports both numerical and string data).

Figure 6.8 The Microsoft Visual Basic IDE



h4716-ch06 5/2/2005 12: 35 page 214

214 PC Based Instrumentation and Control

Table 6.5 Recommended Visual Basic variable naming
convention

Data type Identifier Example

Byte b (prefix) bPortData
Boolean f (suffix) ValidDataf
Integer i (prefix) iSetPoint
Long l (prefix) lResult
Single (floating point) f (prefix) fVelocity
Double (floating point) df (prefix) fFieldStrength
String s (prefix) sStatusText
Object o (prefix) oHeaderTank
Variant v (prefix) vMessage1

Table 6.6 Recommended Visual Basic control
naming convention

Control Prefix Example

CommandButton cmd cmdStart
Label lbl vStatus
OptionButton opt optFast
TextBox tb tbCurrentlResult
CheckBox cb cbHeatOn
Shape sh shLed
Timer tmr tmrOnTime

Although Visual Basic does not enforce the explicit declaration of variables
before they are used, this is now considered to be good practice. Furthermore,
it is also good practice to adopt a standard naming convention for variables,
objects, and code modules. Not only does this help to improve the readability
of the code but it will also assists considerably with maintenance and future
development. Table 6.5 is a recommended convention for naming variables
whilst Table 6.6 shows a recommended method of naming controls.

A complete example of a Microsoft Visual Basic program appears on
page 217. Further examples appear in Chapter 13.

PowerBASIC for
Windows

PowerBASIC for Windows provides a powerful alternative to Microsoft Visual
Basic for those who are prepared to move out of a Microsoft development
framework. For those who are willing to make the jump, Power BASIC for
Windows offers some considerable advantages not least of which is a significant
improvement in the execution of compiled code coupled with the ability to gen-
erate extremely compact executable programs. This, coupled with a deceptively
simple IDE (see Figure 6.9) makes this a very attractive alternative for software
development.
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Figure 6.9 The PowerBASIC for Windows IDE

A complete example of a PowerBASIC for Windows program appears on
page 218.

Using dynamic link
library (DLL) files

A dynamic link library (DLL) is a Windows executable library module contain-
ing one or more Subs or Functions that can be called by executables (or by other
DLLs). DLLs allow you to re-use a common set of procedures without having to
include them in each application that needs them. This can significantly reduce
the size of executables.

DLLs make efficient use of resources because only one copy of the DLL
needs to be present in memory at any particular time in order to offer its services
(i.e. access to its Subs and Functions) to any program (or any other DLL) that
may need them. DLLs have multiple entry points, one for each exported Sub
or Function. The next section shows how DLLs can be used to overcome the
problem of accessing ports within the Windows Protected Mode environment.

Accessing the I/O ports
from the Windows

Protected Mode
environment

Modern versions of Windows (Windows NT, Windows 2000, and Windows XP)
allow programs to be executed in Protected Mode using a 32-bit flat memory
model. The rationale for this was to make Windows more robust by preventing
poorly constructed or faulty software from attempting to directly access the
system hardware. Unfortunately, this is precisely what we are attempting to do
with BASIC code such as:

out &H378,&HAA

and assembly language code such as:

mov al, &HAA
mov dx, &H378
out dx, al
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It is, however, possible to overcome the limitations of Windows Protected Mode
by taking the following steps that will ensure that our program is run within a
pure DOS environment:

1 Develop the program within the IDE in the normal way (but note that attempts
to test the program from within the IDE will have unpredictable results)

2 Compile the program and save a copy to a floppy disk
3 Use the Windows disk formatting utility to format a DOS boot disk
4 Shut down the system and then boot it directly into DOS using the boot disk
5 Insert the program disk and run the program from the DOS prompt.

Despite the fact that a program that accesses low-level hardware will run quite
happily on a Windows XP system provided that it is first booted directly into
DOS, this is hardly an elegant solution for long-term software development. It
therefore becomes necessary to find a way that will allow us to access hardware
from a program that runs under Windows NT/2000/XP without falling foul
of the limitations of Protected Mode. To do this we need to make use of a
kernel mode driver that runs at the highest privileged level and that does allow
I/O instructions. Writing a kernel mode is not an easy task but fortunately a
number of such drivers are currently available for downloading from the Web.
They include:

• inpout32.dll from logix4u (http://www.logix4u.net)
• io.dll from Fred Bulback (http://www.geekhideout.com/iodll.shtml)
• NTPort Library 2.5 from Zeal SoftStudio (http://www.zealsoft.com)
• WinIo v2.0 from Yariv Kaplan (http://www.internals.com)
• DriverLINX Port I/O Driver (DLPortIO.DLL) from Scientific Software

Tools, Inc. (http://www.sstnet.com).

Inpout32.dll In order to provide readers with an example of using a kernel mode driver
we shall describe the use of inpout.dll from logix4u. The functions in the
inpout.dll kernel mode driver are defined in two source files, osversion.cpp
and inpout32drv.cpp. The first routine checks the version of operating system
(it is highly desirable for a kernel mode driver to be able to operate with all
Windows versions) whilst the second routine installs the kernel mode driver
(where required) and then performs the required port I/O routines.

The two functions available from inpout32.dll are:

Inp32 which reads data from the specified parallel port register,

and

Out32 which writes data to the specified parallel port register.

Various other functions are implemented within Inpout32.dll including those
that check the operating system, load and unload the hardware interface, and
create the service.
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The following is an example of how Inpout32.dll can be used in conjunction
with a Visual Basic program that displays the status of each bit of the PC’s
standard parallel port:

Inpout32.bas contains the following declarations:

Public Declare Function Inp Lib "inpout32.dll" _
Alias "Inp32" (ByVal PortAddress As Integer) As Integer
Public Declare Sub Out Lib "inpout32.dll" _
Alias "Out32" (ByVal PortAddress As Integer, ByVal Value As

Integer)

and the main project file is as follows:

Dim Port1 As Integer
Dim Port2 As Integer
Dim Port3 As Integer
Dim portdata As Integer
'
Private Sub Exitbutton_Click()
End
End Sub
'
Private Sub Form_Load()
' Port addresses for standard printer port
Port1 = &H378 ’Data
Port2 = &H379 ’Status
Port3 = &H37A ’Control
' Initialise port with all bits reset
portdata = &H0
Out Port1, (portdata)
End Sub
'
Private Sub Read_port_Click()
portdata = Inp(Port2)
If portdata And 1 Then bit0_led.FillColor = "&H000000FF" _
Else bit0_led.FillColor = "&H00E0E0E0"
If portdata And &H2 Then bit1_led.FillColor = "&H000000FF" _
Else bit1_led.FillColor = "&H00E0E0E0"
If portdata And &H4 Then bit2_led.FillColor = "&H000000FF" _
Else bit2_led.FillColor = "&H00E0E0E0"
If portdata And &H8 Then bit3_led.FillColor = "&H000000FF" _
Else bit3_led.FillColor = "&H00E0E0E0"
If portdata And &H10 Then bit4_led.FillColor = "&H000000FF" _
Else bit4_led.FillColor = "&H00E0E0E0"
If portdata And &H20 Then bit5_led.FillColor = "&H000000FF" _
Else bit5_led.FillColor = "&H00E0E0E0"
If portdata And &H40 Then bit6_led.FillColor = "&H000000FF" _
Else bit6_led.FillColor = "&H00E0E0E0"
If portdata And &H80 Then bit7_led.FillColor = "&H000000FF" _
Else bit7_led.FillColor = "&H00E0E0E0"
End Sub

The output produced by the inpout.dll Visual Basic demonstration program
is shown in Figure 6.10.
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Figure 6.10 Output produced by the inpout32.dll Visual Basic demonstration
program

As a further example, this PowerBASIC for Windows program is a complete
port test utility routine that uses inpout.dll as a means of accessing the parallel
ports:

'===========================================================
' Program Name: porttest.bas Language: Power BASIC 7.0
' Function: Writes data to the selected parallel port
' Notes: Requires inpout32.dll
'===========================================================
#COMPILE EXE
'-----------------------------------------------------------
DECLARE FUNCTION pbINP LIB "inpout32.dll" ALIAS "Inp32" _
(BYVAL PortAddress AS INTEGER) AS INTEGER

DECLARE SUB pbOUT LIB "inpout32.dll" ALIAS "Out32" _
(BYVAL PortAddress AS INTEGER, BYVAL Value AS INTEGER)

'-----------------------------------------------------------
%IDOK = 1
%IDCANCEL = 2
%IDTEXT = 100
%IDLABEL = 144
%IDSTATUS = 145
%BN_CLICKED = 0
%BS_DEFAULT = 1
%MF_ENABLED = 0
%MF_CHECKED = 8
%MF_UNCHECKED = 0
%WM_COMMAND = &H111
%ID_LPT1 = 401
%ID_LPT2 = 402
%ID_LPT3 = 403
%ID_HELP = 404
%ID_ABOUT = 405
'-----------------------------------------------------------
GLOBAL gsUserInput AS STRING
GLOBAL current_port AS INTEGER
GLOBAL hMenu AS DWORD
GLOBAL hDlg AS DWORD
GLOBAL lResult AS LONG
'-----------------------------------------------------------
CALLBACK FUNCTION OkButton()
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IF CBMSG = %WM_COMMAND AND CBCTLMSG = %BN_CLICKED THEN
CONTROL GET TEXT CBHNDL, %IDTEXT TO gsUserInput
DIALOG END CBHNDL, 1
FUNCTION = 1

END IF
END FUNCTION
'-----------------------------------------------------------
CALLBACK FUNCTION CancelButton()
IF CBMSG = %WM_COMMAND AND CBCTLMSG = %BN_CLICKED THEN
DIALOG END CBHNDL, 0
FUNCTION = 1

END IF
END FUNCTION
'-----------------------------------------------------------
CALLBACK FUNCTION DlgProc()
IF CBMSG = %WM_COMMAND THEN
IF CBCTL = %ID_LPT1 THEN
MSGBOX "Port &H378 selected", &H00002000&
current_port = &H378
MENU SET STATE hMenu, BYCMD %ID_LPT1, %MF_CHECKED
MENU SET STATE hMenu, BYCMD %ID_LPT2, %MF_UNCHECKED
MENU SET STATE hMenu, BYCMD %ID_LPT3, %MF_UNCHECKED
FUNCTION = 1

END IF
IF CBCTL = %ID_LPT2 THEN
MSGBOX "Port &H278 selected", &H00002000&
current_port = &H278
MENU SET STATE hMenu, BYCMD %ID_LPT1, %MF_UNCHECKED
MENU SET STATE hMenu, BYCMD %ID_LPT2, %MF_CHECKED
MENU SET STATE hMenu, BYCMD %ID_LPT3, %MF_UNCHECKED
FUNCTION = 1

END IF
IF CBCTL = %ID_LPT3 THEN
MSGBOX "Port &H3BC selected", &H00002000&
current_port = &H3BC
MENU SET STATE hMenu, BYCMD %ID_LPT1, %MF_UNCHECKED
MENU SET STATE hMenu, BYCMD %ID_LPT2, %MF_UNCHECKED
MENU SET STATE hMenu, BYCMD %ID_LPT3, %MF_CHECKED
FUNCTION = 1

END IF
IF CBCTL = %ID_HELP THEN
MSGBOX "Click on Port from the menu bar to select the required port address" + _
$CRLF + "(if unselected the routine will default to &H378 - the conventional" + _
$CRLF + "address for LPT1)." + $CRLF + _
$CRLF + "Please note that port data must be entered in binary format and" + _
$CRLF + "all eight binary digits should be entered!", &H00002000&
FUNCTION = 1

END IF
IF CBCTL = %ID_ABOUT THEN
MSGBOX "Port Test Routine written in Power BASIC. For further information" + _
$CRLF + "please see ’PC-Based Instrumentation and Control’ by Mike Tooley", _
&H00002000&
FUNCTION = 1

END IF
END IF

END FUNCTION
'-----------------------------------------------------------
FUNCTION PBMAIN () AS LONG
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LOCAL hPopup1 AS DWORD
portdata% = 0
current_port = &H378
' Top-level menu
MENU NEW BAR TO hMenu
' Pop-up menu for Port selection
MENU NEW POPUP TO hPopup1
MENU ADD POPUP, hMenu, "&Port", hPopup1, %MF_ENABLED
MENU ADD STRING, hPopup1, "&&H378", %ID_LPT1, %MF_CHECKED
MENU ADD STRING, hPopup1, "&&H278", %ID_LPT2, %MF_ENABLED
MENU ADD STRING, hpopup1, "&&H3BC", %ID_LPT3, %MF_ENABLED
' Pop-up menu for Help and About
MENU NEW POPUP TO hPopup1
MENU ADD POPUP, hMenu, "&Help", hPopup1, %MF_ENABLED
MENU ADD STRING, hPopup1, "&Help", %ID_HELP, %MF_ENABLED
MENU ADD STRING, hPopup1, "-", 0, 0
MENU ADD STRING, hPopup1, "&About", %ID_ABOUT, %MF_ENABLED
' Create the dialog and add controls to it
DIALOG NEW 0, "Port Test Routine", ,, 160, 84, 0, 0 TO hDlg
CONTROL ADD TEXTBOX, hDlg, %IDTEXT, "00000000", 100, 20, 48, 12, 0
CONTROL ADD BUTTON, hDlg, %IDOK, "Write to port", 14, 44, 80, 14, %BS_DEFAULT _
CALL OkButton
CONTROL ADD BUTTON, hDlg, %IDCANCEL, "Cancel", 104, 44, 40, 14, 0 _
CALL CancelButton
CONTROL ADD LABEL, hDlg, %IDLABEL, "Enter binary data to write:", 14, 20, 80, 14
MENU ATTACH hMenu, hDlg
' Display the dialog and check the returned result
DIALOG SHOW MODAL hDlg, CALL DlgProc TO lResult
IF lResult THEN

x& = VERIFY(gsUserInput, "01")
IF x& = 0 AND LEN(gsUserInput) = 8 THEN

portdata% = VAL("&B" + gsUserInput)
pbOut current_port, portdata%
MSGBOX HEX$(portdata%) & "H written to " & HEX$(current_port) & "H"

ELSE
MSGBOX "Data must comprise eight binary digits!"

END IF
END IF

END FUNCTION
'-----------------------------------------------------------

The output produced by the input32.dll PowerBASIC for Windows demon-
stration program is shown in Figure 6.11. This program contains many aspects
of good programming practice, including input verification, user help, and a
clear source code layout which includes appropriate comments.

Data files The ability to store data acquired by a control or instrumentation system is
important where a detailed analysis of data or system performance is required.
Data may be stored in one, or more, disk files in a disk-based system. Such files
can readily be manipulated from BASIC.

The stages required for saving data in a disk file are as follows:
1 Open the file for output (using OPEN . . . FOR OUTPUT) and include a filename

or complete file specification and an associated channel number which will
be used to buffer operations on the disk file.
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Figure 6.11 Output produced by the inpout32.dll PowerBASIC for Windows
demonstration program

2 Send data to the file (using PRINT#).
3 Close the file (using CLOSE#).

As an example, let’s assume that we have an integer array of 32 floating
values, a(), to be stored in a disk file. If the data file is to be called 'TEMP.DAT'

and is to be stored on a floppy disk inserted into drive A:, the following code
can be used in simple DOS BASIC:

REM Save data in disk file
SUB Savedata
SHARED a()
PRINT "Saving data on disk - please wait!"
OPEN "A:TEMP.DAT" FOR OUTPUT AS #1
FOR N% = 0 TO 31

PRINT #1, a(n%)
NEXT n%
CLOSE #1

END SUB

The stages required for loading data from a disk file are as follows:

1 Open the file for input (using OPEN . . . FOR INPUT) and include a filename or
complete file specification and an associated channel number for the buffer
which will be used for subsequent operations on the file.

2 Retrieve data from the file (using INPUT#).
3 Close the file (using CLOSE#).

The following code can be used to retrieve the data stored by the previous
example, loading it back into array a():

REM Load data from disk file
SUB Loaddata
PRINT "Loading data from disk - please wait!"
OPEN "A:TEMP.DAT" FOR INPUT AS #1
FOR n% = 0 TO 31
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INPUT #1, a(n%)
NEXT N%
CLOSE #l

END SUB

It is important to note that in both the Loaddata and Savedata subprograms,
the data array, a(), has been declared as SHARED between the procedure and
the main code. The subprograms therefore have access to the data held in the
array without the need for values to be passed in the form of a parameter list.

As a further example of simple file handling, the following routines written
in Visual Basic show how it is possible to read and write parameters required
to configure a serial communications port (note that this application requires
the MSComm control from the Visual Basic Toolbox). In order to write the five
string data values required to configure a serial port we could use:

Public Sub WriteDataParamFile()
Dim FILENUM As Byte
FILENUM = FreeFile ' get ID for the first available free file
Open "SetCom.txt" For Output As #FILENUM
Print #FILENUM, sComPort
Print #FILENUM, sBaudRate
Print #FILENUM, sParity
Print #FILENUM, sDataBits
Print #FILENUM, sStopBits
Close #FILENUM
End Sub

Typical default values for the string data might be:

sComPort = "1"
sBaudRate = "9600"
sParity = "N"
sDataBits = "8"
sStopBits = "1"

The stored data file will thus comprise the following data:

1,9600,N,8,1

In order to read the data file we will need a routine like the following:

Public Sub ReadDataParamFile()
Dim FILENUM As Byte
FILENUM = FreeFile ' get ID for the first available free file
Open "SetCom.txt" For Input As #FILENUM
Input #FILENUM, sComPort
Input #FILENUM, sBaudRate
Input #FILENUM, sParity
Input #FILENUM, sDataBits
Input #FILENUM, sStopBits
Close #FILENUM
End Sub

Note that, in practice the foregoing routine would require a simple error
handler (using, for example, On Error GoTo) to cope with the eventuality that
the file was not found.
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The C programming language was the brainchild of Dennis Ritchie and the
language was originally implemented on a DEC PDP-11 running under the
UNIX operating system. Despite its origins and close association with UNIX, C,
and its latest incarnation, C++, is now available in a variety of implementations.
These include the immensely popular Borland C++ and Microsoft Visual C.

The C language is comparatively small but it employs a powerful range of
control flow and data structures. It is, therefore, not surprising that it has become
increasingly popular amongst programmers and software engineers. The lan-
guage is well suited to the development of effective real-time applications aid
is ideally suited to the world of control and instrumentation (C is an excellent
choice for small, tight, and fast applications).

The relatively small core of the language has been instrumental in ensuring a
high degree of portability from one hardware configuration to another. C offers
some significant advantages in the development of software for real-time appli-
cations. The language, which promotes the use of structure, is highly portable
and it yields code that is relatively compact. Furthermore, when compiled, it can
offer execution speeds which are far in excess of those which can be obtained
with comparable interpreted languages.

To the newcomer, C and C++ source code can appear somewhat cryptic.
Indeed, programmers experienced in other (less structured) languages may have
difficulty when making the transition to C. Indeed, it is often said that it is easier
to learn C if one has not had the misfortune of acquiring preconceptions devel-
oped as a result of a familiarity with BASIC:. Whilst this may be demonstrably
true, the fact is that most of today’s learners of C and C++ will already be
proficient in one or more other languages and these will invariably include
BASIC.

Those wishing to develop proficiency with C/C++ programming should not
underestimate the amount of time required. As always, the best way to learn
is to test out each new concept as it is introduced. Furthermore, it is best not
to dwell on comparisons between C and other languages (such as BASIC).
It is first necessary to understand something of the structure of C programs
before progressing to such topics as data types, pointers, functions, and control
structures. The rewards for perseverance are considerable!

The code fragments and complete examples given in this chapter have been
written using several different C/C++ compilers but those written using the
Borland C++ 4.5 are based on ANSI C and will work with any C compiler.
Provided that an effective Integrated Development Environment (IDE) is avail-
able, program development in C/C++ is simple and straightforward and the
process of entering code, compiling, and linking is fully automated.

Figures 7.1–7.4 show examples of four different IDEs for use with C/C++
compilers.
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Figure 7.1 The Borland C++ 4.5 IDE

Figure 7.2 Microsoft Visual C++ IDE
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Figure 7.3 The Turbo C++ 3.0 IDE

Figure 7.4 The Dev-C++ IDE

C programming
techniques

There are numerous texts devoted to C/C++ programming. Hence, rather than
devote space in this chapter to introducing readers to the basic concepts asso-
ciated with C programming, we shall adopt the same approach to that used in
Chapter 6 by providing a tutorial aimed specifically at showing how C can be
used in control applications. Topics have therefore been included that have par-
ticular relevance to control, instrumentation and data acquisition. Newcomers
to the language are advised to refer to one or more of the recommended texts
in Appendix L prior to, or concurrently with, reading this chapter.
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Include files

A number of include (or header) files are provided within a set of C run-time
library. These files contain macro and constant definitions, type definitions and
function declarations. Such files are given the file extension, .h and some of
the more common include files are listed below:

bios.h Contains functions, declarations, and structure definitions for the
BIOS service routines.

conio.h Contains function declarations for the console and port I/O
routines (e.g. cgets, cputs, getch, inp, inpw, outp, andoutpw).

ctype.h Defines unacros and constants audi declares global arrays used
in character classification (e.g. isalnum, isalpha, islower,
isupper, toascii, tolower, toupper, etc.).

dos.h Contains macro definitions, function declarations, and type
definitions for the MS-DOS interface.

io.h Contains function declarations for file handling and low-level I/O
functions, such as open, close, read, and write.

malloc.h Contains function declarations for the memory allocation func-
tions (e.g. malloc, calloc, free, etc.).

math.h Contains function declarations for all floating-point mathematics
routines (e.g. abs, sin, cos, log, loglO, exp, etc.).

stdio.h Contains definitions of constant, macros, and types. Also contains
function declarations for the stream I/O functions. The function
definitions include fopen, fclose, fread, printf, and scanf.
The constants defined within stdio.h include BUFSIZ (buffer
size), EOF (end of file marker), and NULL.

stdlib.h Contains function definitions which include abort, exit, and
system.

string.h Contains definitions for the string manipulation functions (e.g.
strcpy, strlen, and strcat).

It is important to note that many programs use macros, constants, and types
that are defined in separate include files. Each file containing such a defini-
tion must be specified within the source file (using the pre-processor directive
#include), for example:

#inc1ude <stdio.h>

Streams

Streams are an abstraction used in C and C++ for input and output operations
through a system of I/O based on characters. Streams operate with files, key-
board, printer, screen, and I/O ports. When a program that includes stdio.h
begin its execution, three predefined streams are opened:

stdin This is the standard input stream. By default stdin corresponds to
the keyboard, but this can be redirected by the operating system.

stdout This is the standard output stream. By default stdout is directed
to the screen, but the operating system can redirect it to a file or
any other output device.
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stderr This is the standard error stream and is an output stream speci-
fically intended to receive error messages. By default is directed
to the standard output (like stdout), but it can be redirected to a
log file or any other output device.

A stdio.h stream is represented by a pointer to a FILE structure that contains
internal info about properties and indicators of a file. Normally data contained
in these structures is not referenced directly. When using stdio.h, pointers to
FILE structures are used to pass parameters to I/O functions.

Stdio.h function summary

clearerr Reset error indicators
fclose Close a stream
feof Check if End Of File (EOF) has been reached
ferror Check for errors
fflush Flush a stream
fgetc Get next character from a stream
fgetpos Get position in a stream
fgets Get string from a stream
fopen Open a file
fprintf Print formatted data to a stream
fputc Write character to a stream
fputchar Write character to stdout

fputs Write string to a stream
fread Read block of data from a stream
freopen Reopen a file using a different file mode
fscanf Read formatted data from a stream
fseek Reposition stream’s position indicator
fsetpos Reposition file pointer to a saved location
ftell Return the current position of the file pointer
fwrite Write block of data to a stream
getc Get the next character
getchar Get the next character from stdin

gets Get a string from stdin

getw Get the next int value from a stream
perror Print error message
printf Print formatted data to stdout

putc Write character to a stream
putchar Write character to stdout

puts Write a string to stdout

putw Write an integer to a stream
remove Delete a file
rename Rename a file or directory
rewind Reposition file pointer to the beginning of a stream
scanf Read formatted data from stdin

setbuf Change stream buffering
setvbuf Change stream buffering
sprintf Format data to a string
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sscanf Read formatted data from a string
tmpfile Open a temporary file
tmpnam Generate a unique temporary filename
ungetc Push a character back into stream

Stdlib.h function summary

The standard C library functions (stdlib.h) can be divided into several groups
according to application which can include:

• Conversion (atof, atoi, atol, ecvt, fcvt, itoa, ltoa, strtod, strtol,
strtoul, ultoa).

• Dynamic memory allocation/deallocation (calloc, free, malloc, real-
loc).

• Program control and environment variables (abort, atexit, exit, getenv,
putenv, system).

• Sorting and searching (bsearch, lfind, lsearch, qsort, swab).
• Mathematical operations (abs, div, labs, ldiv).

The available functions are as follows:

abort Abort current process returning error code
abs Return absolute value of integer parameter
atexit Specifies a function to be executed at exit
atof Convert string to double
atoi Convert string to integer
atol Convert string to long
bsearch Binary search
calloc Allocate array in memory
div Divide two integer values
ecvt Convert floating-point value to string
exit Terminate calling process
fcvt Convert floating-point value to string
free Deallocate dynamically allocated memory
gcvt Convert floating-point value to string
getenv Get string from environment
itoa Convert integer to string
labs Return absolute value of a long integer
ldiv Divide two long-integer values
lfind Linear search
lsearch Linear search
ltoa Convert long-integer value to string
malloc Allocate memory block
max Return the greater of two parameters
min Return the smaller of two parameters
putenv Create or modify environment variable
qsort Sort using quicksort algorithm
rand Generate random number
realloc Reallocate memory block
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srand Initialize random number generator
strtod Convert string to double-precision floating-point value
strtol Convert string to long integer
strtoul Convert string to unsigned long integer
swab Swap bytes
system Execute command
ultoa Convert unsigned long integer to string

Note that a number of the functions listed here are not part of the ANSI-C
standard but nevertheless they are commonly supported by compilers.

String.h function summary

The string.h standard C library to manipulate C strings:

memchr Search buffer for a character
memcmp Compare two buffers
memcpy Copy bytes to buffer from buffer
memmove Copy bytes to buffer from buffer
memset Fill buffer with specified character
strcat Append string
strchr Find character in string
strcmp Compare two strings
strcoll Compare two strings using locale settings
strcpy Copy string
strcspn Search string for occurrence of character set
strerror Get pointer to error message string
strlen Return string length
strncat Append substring to string
strncmp Compare some characters of two strings
strncpy Copy characters from one string to another
strpbrk Scan string for specified characters
strrchr Find last occurrence of character in string
strspn Get length of substring composed of given characters
strstr Find substring
strtok Sequentially truncate string if delimiter is found
strxfrm Transform string using locale settings

Time.h

The time.h library provides access to time and date related functions:

asctime Convert tm structure to string
clock Return number of clock ticks since process start
ctime Convert time_t value to string
difftime Return difference between two times
gmtime Convert time_t value to tm structure as UTC time
localtime Convert time_t value to tm structure as local time
mktime Convert tm structure to time_t value
time Get current time
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Note that clock_t and time_t are long-data types returned by clock and
time functions, respectively, whilst tm is a structure returned (or used by) the
asctime, gmtime, localtime, and mktime functions.

Math.h

The math.h library provides access to the following maths functions:

abs Return absolute value of integer parameter
acos Calculate arccosine
asin Calculate arcsine
atan Calculate arctangent
atan2 Calculate arctangent with two parameters
atof Convert string to double
ceil Return the smallest integer that is greater or equal to x

cos Calculate cosine
cosh Calculate hyperbolic cosine
exp Calculate exponential
fabs Return absolute value of floating point
floor Round down value
fmod Return remainder of floating-point division
frexp Get mantissa and exponent of floating-point value
labs Return absolute value of long-integer parameter
ldexp Get floating-point value from mantissa and exponent
log Calculate natural logarithm
log10 Calculate logarithm base-10
modf Separate floating-point value into fractional and integer parts
pow Calculate numeric power
sin Calculate sine
sinh Calculate hyperbolic sine
sqrt Calculate square root
tan Calculate tangent
tanh Calculate hyperbolic tangent

Using C functions

The fundamental building blocks of C programs are called functions. Once
written, functions (like BASIC procedures) may be incorporated in a variety
of programs whenever the need arises. For example, the following function
definition provides a delay:

delay()
{
long x;
for (x = l; x<200000; ++x);

}

The delay function is called from a main program by a statement of the form:

delay()
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A complete program to produce a delay would take the form:

/* delay1.c */
main()
{
delay();

}
delay()
{
long x;
for (x = 1; x<200000; ++x);

}

It is important to note that no semicolon follows the closing bracket of a func-
tion definition, whereas when the function is called the program statement is
terminated by a semicolon. The main body of the function is enclosed between
curly braces ({and}). Since C/C++ is essentially a ‘free-form’ language (i.e.
the compiler ignores white space within the source text) the programmer is able
to adopt his/her own style of layout within the source text. The C functions
and programs presented in this chapter will, however, follow the convention
adopted by the author summarized below:

• Matching opening and closing braces, {and}, are vertically aligned with one
another.

• Statements within the body of a function are indented by three columns with
respect to their opening and closing braces.

• Expressions (enclosed in brackets) used in conjunction with for and while

statements are placed on the same line as the matching for or while.
• Where readability needs to be improved, blank lines are used to separate

function definitions.
• The first function defined in a program is main().

Returning to the previous example, readers will probably have spotted a
fundamental weakness in the simple delay function arising from the fact that
it is only capable of providing a fixed delay. The function can be made more
versatile by passing a parameter into it. The following modified delay function
achieves this aim:

delay(limit)
long limit;
{
long x;
for(x = l; x < limit; ++x);
}

The argument (contained in parentheses after the function name) is defined
as a long type before the function body. The function is then called using a
statement of the form:

delay(200000);

Thereafter, the value 20 000 is passed to the function and is used as the value
for limit. A simple delay program would then take the form:

/* delay2.c */
main ()
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{
delay(200000);

}
delay(limit)
long limit;
{
long x;
for(x = 1; x < limit; ++x);
}

Where more than one argument is to be passed to a function, they are simply
listed and separated by commas. The data type for each argument must then
be defined before the opening brace of the function body. A function definition
dealing with port output, for example, might be declared with statements of the
form:

out (port, byte)
int port, byte;
{
...
...
...

}

The corresponding function call would require a statement of the form:

out(255,128);

In this case, the value 255 would be passed into portwhilst the value 128 would
be passed into byte.

I/O functions

The following types of I/O function are available within C:

Stream I/O In which a data file or data item is treated as a stream of
individual characters. Examples of stream I/O functions
include fopen, fgetc, fgets, and fclose.

Low-level I/O Routines which do not perform buffering and formating
but which, instead, directly invoke the I/O capabilities of
the operating system. Examples of low-level I/O functions
include open, close, read, and write.

Console and An extension of stream I/O which permits reading and writ-
ing to a console/terminal or sending/receiving bytes of data
via an I/O port. Examples of console and port I/O functions
include getch, cgets, cputs, inp, and outp (the latter are
used in many control applications).

port I/O

Messages

Messages in C can be printed using statements of the form:

printf(message string goes here)
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The standard C printf statement is, however, more versatile than its equivalent
in BASIC as it allows a wide variety of formatting variations. They include:

\h for backspace
\f for form feed
\n for new line
\t for tab

The following example prints the message ‘Warning!’ immediately preceded
and immediately followed by two blank lines:

printf("\n\nWarning!\n\n");
Variables can be included within the formatted print statement, as the following
example shows:

printf("Tank number %d temperature %d\n", tankno, temp);

The current values of tankno and temp are printed as integer decimal numbers
within the string. Thus if tankno and temp currently had the values 4 and 56,
the resulting output generated would be:

Tank number 4 temperature 56

C allows a wide range of conversion characters to be included within formatted
print strings. These usually include:

%c for single character
%d for signed decimal
%o for unsigned octal
%s for string
%u for unsigned decimal
%x for lower-case hexadecimal
%X for upper-case hexadecimal.

The following example shows how conversion specifiers can be used to print
the decimal, hexadecimal, and octal value of the same number:

printf("Decimal %d, hexadecimal %X, octal %o", num, num, num);

It is important to note that each conversion specifier must correspond to an
argument within the list. The following code fragment prints the hexadecimal
and octal equivalents of the decimal number, 191:

/* bconv1.c */
main()
{
int num;
num = 191;
printf("Decimal %d, Hex %X, octal %o", num, num, num);

}

Loops

Loops can be easily implemented in C programs. The program that follows
(written in Borland C++ 4.5 – see Figure 7.5) prints the ASCII character
set and uses the %d, %X, and %c conversion specifiers to provide the decimal,
hexadecimal, and ASCII representation of the loop index (byte). The loop
is executed for byte values in the range 32 to 127 and the variable byte is
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Figure 7.5 Source code as it appears in the Borland C++ 4.5 editor

increased by 1 on each pass round the loop. Formatted output is achieved by
printing column headings before the loop is entered and including field-width
specifiers within the format string.

/* Name: table.c */
/* Language: Borland C++ 4.5 */
/* Output: Table of decimal, hex. and ASCII characters */
/* Note: Program runs in a DOS console window */

#include <stdio.h>

int byte;

int main()
{

printf("Decimal Hex. ASCII \n");
for (byte = 32; byte < 128; ++byte)
{
printf("%3d \t %2X \t %c \n", byte, byte, byte);

}
return 0;
}

The output produced by the program is shown in Figure 7.6.
Loops can also be nested to any required depth. The following Borland

C++ 4.5 program provides a simple example based on the use of while rather
than for:

/* Name: loop1.c */
/* Language: Borland C++ 4.5 */
/* Output: Table of decimal, hex. and ASCII characters */
/* Note: Program runs in a DOS console window */
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Figure 7.6 Screen output as it appears in the console window when the
program in Figure 7.5 is executed

#include <stdio.h>

int main()
{
int s;
s = 0;
while (s < 4)
{
++s;
printf("Outer loop count = %d\n", s);
inner();
}

return 0;
}

int inner()
{
int t;
t = 0;
while (t < 4)
{
++t;
printf("\tInner loop count = %d\n", t);
}

}

The outer loop is executed four times (with s taking the values 0 to 3 in
the expression following while). The inner loop is executed four times (with t

taking the values 0 to 3 in the expression following while) on each pass through
the outer loop. The output produced by the program is shown in Figure 7.7.

There are a few things worth noting about the loop demonstration pro-
gram. Firstly, the inner loop is defined as a separate function (a sub-process).
Locally defined integer variables s and t are used as loop counters, and the ++
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Figure 7.7 Output produced by the nested loop example program

increment operator is used to increment the count. Because s and t are defined
locally there is, in fact, no need to use different variables and the following code
would produce exactly the same result:

/* Name: loop2.c */
/* Language: Borland C++ 4.5 */
/* Output: Table of decimal, hex. and ASCII characters */
/* Note: Program runs in a DOS console window */

#include <stdio.h>

int main()
{
int s;
s = 0;
while (s < 4)
{

++s;
printf("Outer loop count = %d\n", s);
inner();

}
return 0;
}

int inner()
{
int s;
s = 0;
while (s < 4)
{

++s;
printf("\tInner loop count = %d\n", s);

}
}

Inputs and prompts

A single character can be returned from the standard input (usually the keyboard)
by means of the getchar() function. The following routine shows how a single
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character can be returned from the keyboard:

/* Name: getin1.c */
/* Language: Borland C++ 4.5 */
/* Output: Table of decimal, hex. and ASCII characters */
/* Note: Program runs in a DOS console window */

#include <stdio.h>

int main()
{
char c;
c = inchar("Enter option required... ");
printf("\n\nOption selected = %c\n", c);
return 0;

}
int inchar(prompt)
char *prompt;
{
printf("\n%s",prompt);
return(getchar());

}

Here we have defined a function, inchar, which returns an integer to main.
This is automatically converted to a character and assigned to the variable, c. It
is important to note that the return key is used to terminate user input and, where
the user provides more than one input character before pressing the return key,
only the first character is returned by getchar().

Where a multiple (rather than single) character string is required, the scanf()
function can be used, as shown in the following code fragment:

int getcode()
{
char code[16];
printf("Enter operator code... ");
scanf("%s", code);

}

The following Borland C++ 4.5 program shows how a string of characters can
be accepted from the user and then printed on the screen:

/* Name: getin2.c */
/* Language: Borland C++ 4.5 */
/* Output: Table of decimal, hex. and ASCII characters */
/* Note: Program runs in a DOS console window */

#include <stdio.h>

int main()
{
char code[16];
printf("Enter operator code... ");
scanf("%s", code);
printf("\nCode entered: %s", code);
return 0;

}

The scanf() function allows a similar set of conversion characters to that
available for use within printf(). It is important to note that scanf() ter-
minates input when a return, space or tab character is detected. Furthermore,
the array must be sufficiently large to accommodate the longest string likely to
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be input. Since the string is automatically terminated by a null character, the
array must be dimensioned so that its number of elements is one greater than
the maximum string length.

Multiple arguments may be included within scanf(). It is important to note
that, unlike printf(), the arguments to scanf() are pointers (not variables
themselves). This point regularly causes confusion. Finally, since scanf()

involves considerable overhead, simpler functions may be preferred where the
space for code is strictly limited.

The following example illustrates the combined use of getchar(),
printf(), and scanf() in a simple decimal to hexadecimal conversion utility:

/* Name: hexdec.c */
/* Language: Borland C++ 4.5 */
/* Output: Hexadecimal equivalent of decimal input */
/* Note: Program runs in a DOS console window */

#include <stdio.h>
#include <stdlib.h>

int main()
{
char number[16];
int num, c;
num = 1;
printf("DECIMAL TO HEXADECIMAL CONVERSION\n");
printf("=================================");
while(num != 0)
{
printf("\n\nEnter decimal number (max. 65535) or 0 to

quit: ");
scanf("%s", number);
num = atoi(number);
printf("Decimal %u = %X hexadecimal", num, num);

}
return 0;

}

The expression following while evaluates true if the current value of num is
non-zero. In such cases, the code following while is executed and the ASCII
character string is converted to an integer by means of the atoi() function. If
the user responds with 0 (or with a non-numeric character string) and expres-
sion evaluates false, the code following while is not executed and the program
terminates. The output produced by the program is shown in Figure 7.8.

Menu selection

It is often necessary to provide users with a choice of several options at some
point in a control program. Fortunately, C offers the switch case statement which
is ready made for this particular purpose. Complex menu selections can be very
easily implemented using the switch case logical construct. The following
example shows how:

/* Name: menu1.c */
/* Language: Borland C++ 4.5 */
/* Output: Menu routine */
/* Note: Program runs in a DOS console window */
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Figure 7.8 Output produced by the decimal to hexadecimal conversion
program

#include <stdio.h>
#define FOREVER 1

int main()
{
char c;
while (FOREVER)
{
menu();
c = getchar();
switch(c)
{
case ’1’:
init();
break;

case ’2’:
pump();
break;

case ’3’:
mix();
break;

case ’4’:
deliver();
break;

case ’5’:
exit();

default:
printf("Invalid input!\n");
printf("Please enter a number in the range [1] to [5]\n");

}
c = getchar();

}
return 0;

}

scroll(lines)
int lines;
{
int x;
for(x = 0 ; x < lines; ++x)
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{
printf("\n");

}
}

menu()
{
scroll(1);
printf("MAIN MENU\n");
printf("=========\n");
printf("[1] Initialise the system\n");
printf("[2] Pump control\n");
printf("[3] Mixer control\n");
printf("[4] Delivery control\n");
printf("[5] Close down and exit\n");
scroll(1);
printf("Enter option required... ");

}

init()
{
scroll(2);
printf("INITIALISING SYSTEM - PLEASE WAIT!\n");
scroll(2);
/* More code goes here */

}

pump()
{
scroll(2);
printf("PUMP CONTROL\n");
scroll(2);
/* More code goes here */

}

mix()
{
scroll(2);
printf("MIXER CONTROL\n");
scroll(2);
/* More code goes here */

}

deliver()
{
scroll(2);
printf("DELIVERY CONTROL\n");
scroll(2);
/* More code goes here */

}

The output produced by the menu program is shown in Figure 7.9.

Passing arguments into main

A useful facility available within C running under MS-DOS is that of passing
arguments into programs from which the command line input by the user when
the program is first loaded. The main() function allows two arguments: argc
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Figure 7.9 Output produced by the example menu program

and argv. When main is called, argc is the number of elements in argv, and
argv is an array of pointers to the strings which appear in the command line.

The following demonstration illustrates the method of passing parameters:

/* argdemo.c */

#include<stdio.h>

main(argc, argv)
char *argv[];
int argc;
{
int i
printf("argc: %d\n", argc);
for(i = 0;i < argc; i++)
printf("argv[%d]: %s\n", i ,arqv[i]);

}

After compilation into an executable program the routine is invoked from the
MS-DOS in the following manner:

ARGDEMO ONE TWO THREE

The parameters to be passed are, in this case, the strings: one, two, and three.
The program generates the following output:

argc: 4
argv[0]: C\MC\BIN\ARGDEMO.EXE
argv[l]: one
argv[2]: two
argv[3]: three

The total number of parameters passed is given in argc. In this case, four
parameters have been passed (including the current directory and program name
which appears as argv[0]). The three strings (one, two, and three) appear as
argv[1], argv[2], and argv[3].

The following code fragment shows how the technique of parameter passing
can be used to display the contents of a named file.
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#include<stdio.h>

FILE *stream;

int main(argc, argv)
char *argv[];
int argc;
{
int c;
c = 1;
stream = fopen(argv[1], "rb");
while(c != EOF)
{
c = getc(stream);
printf("%c", c);

}
fclose(stream);
return 0;

}

Assuming that the compiled program is named SPRINT.EXE, the command
line entered after the operating system prompt, would take the form:

SPRINT filename

To print a file called HELLO.DOC, the command would be:

SPRINT HELLO.DOC

More than one argument can be passed into main. The following Borland
C++ 4.5 program is an example of a simple utility program for renaming files.
This program passes two arguments (argc and argv) into main:

/* Name: rname.c */
/* Language: Borland C++ 4.5 */
/* Output: Menu routine */
/* Note: Program runs in a DOS console window */

#include<io.h>
#include<stdio.h>

int main(argc, argv)
char *argv[];
int argc;
{
int result;
result = rename(argv[1], argv[2]);
if(result != 0)
printf("\nUnable to rename file!\n");

else
printf("\Rename successful!\n");

return 0;
}

Assuming that the program is called RNAME, the command line entered
after the operating system prompt, would take the form:

RNAME oldname newname
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To change the name of a file called HELLO.DOC to GOODBYE.DOC the
command would be:

RNAME HELLO.DOC GOODBYE.DOC

Disk files

File handling is quite straightforward using streams in C. Files must be opened
before they can be used using a statement of the form:

stream = fopen(filename, mode);

The filename can be a file specification or the name of a logical device. The
mode can be ‘r’ for read, ‘w’ for write, and ‘u’ for update. If the file cannot be
opened (e.g. it is not present on the disk) fopen() returns 0 otherwise fopen

returns the stream number to be used in conjunction with subsequent read or
write operations.

After use, files must be closed using statement of the form:

fclose(stream);

where stream is the channel number returned by a previous fopen statement.
As a further example of file handling in C, the following Borland C++ 4.5

program converts the case of an ASCII file to upper case:

/* Name: ucase.c */
/* Language: Borland C++ 4.5 */
/* Output: Menu routine */
/* Note: Program runs in a DOS console window */

#include<stdio.h>
#include<io.h>

FILE *fp, *fq;
int pc;

int main(argc, argv)
int argc;
char *argv[];
{
printf("CONVERTING FILE TO UPPER CASE n");
fp = fopen(argv[1], "r");
if (fp == 0)
{
printf("Unable to open input file: %s \n" , argv[1]);
return(0);
}

fq = fopen(argv[2], "w");
if (fq == 0)
{
printf("Unable to create output file: %s n", argv[2]);
return(0);
}

printf("\nInput file: %s \n", argv[1]);
printf("\nOutput file: %s \n", argv[2]);
while((pc = getc(fp)) != EOF)
{
pc = toupper(pc);
putc(pc,fq);
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putchar(pc);
}
fclose(fq);
fclose(fp);
exit();

return(0);
}

Difference between
C and C++

As well as enhancements to the basic language, C++ provides object-oriented
extensions to C required for modern ‘visual’ environments. In effect, C++
is a superset of ANSI C and C programs will normally compile without any
problems in a C++ environment. C++ also attempts to resolve some of the
problems with the basic C language.

Differences between C and C++ are usually apparent from a quick
examination of the code. For example, a comment in C would look like this:

/* A comment in C */

or, spanning several lines:

/* A comment
in C
*/

Comments in C++ can use either of the following formats (the second example
is an in-line comment and the // designates the entire line as a comment):

/* A comment in C++ */

or, spanning several lines:

/* A comment
in C++
*/

and:

// An in-line comment in C++

C++ enforces a higher level of type checking than does C. Furthermore, all
functions must be prototyped before use. The next two code fragments show
two ways of doing this.

Firstly, the function can be defined before it is used (in this way the definition
itself forms the prototype):

/* Cube function */
int cube(int x)
{
return x*x*x;

}
/* Main function */
int main()
{
int y;
y = cube(8);

}
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Alternatively, the prototype can be declared before the function is used:

/* Prototype declaration */
int cube(int x);

/* Main function */
void main()
{
int y;
y = cube(8);

}

/* Cube function */
int cube(int x)
{
return x*x*x;

}

A simple ‘Hello, World!’ program written in ANSI C would appear as follows:

/* Name: hello.c */
/* Language: ANSI C */
/* Output: Prints "Hello, World!" */

#include <stdio.h>

void main()
{
printf("Hello, World!"\n);

}

Whilst its equivalent in C++ would be:

/* Name: hello.cpp */
/* Language: C++ */
/* Output: Prints "Hello, World!" */

#include <iostream.h>

using namespace std;
int main()
{
cout << "Hello, World!\n");
return 0;

}

Note that the namespace is a group of definitions and the cout object is
defined within the standard, std, namespace in the iostream.h header file
(cout works in much the same way as printf which is defined in stdio.h).
There are, of course, many more differences between C and C++ but a detailed
explanation is beyond the scope of this book.

As a further example of the use of C++ the following program written in
Turbo C++ for DOS performs the same function as the MASM32 program
(compare.asm) shown on page 186. The output produced by the program is
shown in Figure 7.10.

// Name: compare.cpp
// Language: Turbo C++ 3.0
// Output: Compares input value with 10
// Note: Demonstrates branching based on
// <, >, and == comparisons in C++
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Figure 7.10 Output produced by the example comparison program

#include <iostream.h>

int main()
{
int number;
cout << "Please enter a number between 1 and 20: ");
cin >> number;
// Compare input number with 10 and display results
if (number < 10)
{
cout << "The number you entered is less than 10\n";

}
if (number > 10)
{
cout << "The number you entered is greater than 10\n";

}
if (number == 10)
{
cout << "The number you entered is 10\n";

}
return 0;
}

Port I/O in C and C++ Finally, the example programs that follow show how easy it is to read and write
data to/from I/O ports in C. Note, however, that the restrictions apply to these
programs when run from within a Protected Mode environment (see page 215).

The first example reads the state of three ports and displays the input data
in decimal whilst the second example output bit-field data to a port. The third
example shows how it is possible to include assembly language code within a
C/C++ program. All three examples are written using Borland C++ 4.5.

Example 1:

/* Name: readin1.c */
/* Language: Borland C++ 4.5 */
/* Output: Reads input ports and displays in decimal */
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#include <conio.h>
#include <stdio.h>

int c, byte_val1, byte_val2, byte_val3;
int port1 = 0x378, port2 = 0x379, port3 = 0x37A ;
int kbhit(void);

int main()
{
gotoxy(0,6);
printf("Press any key to stop ....");
do {
byte_val1 = inp(port1);
byte_val2 = inp(port2);
byte_val3 = inp(port3);
gotoxy(0,0);
printf("The value from port1 (%d decimal) is %d \n", port1,

byte_val1);
printf("The value from port2 (%d decimal) is %d \n", port2,

byte_val2);
printf("The value from port3 (%d decimal) is %d \n", port3,

byte_val3);
} while (!kbhit());

return 0;
}

Example 2:

/* Name: bitfld1.c */
/* Language: Borland C++ 4.5 */
/* Output: Sends output data to a port */

#include <stdio.h>
#include <conio.h>
#include <math.h>

int byte_value[8];
int i;
int bit_no;
int port1 = 0x378;
int out_byte;
char c;

void main()
{
byte_value[0]=0;
byte_value[1]=1;
byte_value[2]=1;
byte_value[3]=0;
byte_value[4]=1;
byte_value[5]=0;
byte_value[6]=1;
byte_value[7]=0;

/* Display bitfield data in binary */
bit_no = 0;
while(bit_no <=8)
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{
i = byte_value[bit_no];
printf("%i",i);
bit_no++;
};

printf("\n");

/* Output bitfield data to port */
bit_no = 0;
out_byte = 0;
while(bit_no <=8)
{
if (byte_value[bit_no]==1)
{
out_byte = out_byte + pow(2, bit_no);
};

bit_no++;
};

outp(port1, out_byte);
printf("Done!\n");
}

Example 3:

/* Name: portin1.c */
/* Language: Borland C++ 4.5 */
/* Input: Reads a port using assembly language */

#include <conio.h>
#include <stdio.h>

int c, byte_val;
int port = 889;

int main()
{
byte_val = inp(port);

asm
{
mov ax, 0x0e07
xor bx, bx
int 0x10
}

printf("The value from port %d is %d \n", port, byte_val);
return 0;

}
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The IEEE-488 bus, also known as the Hewlett Packard Instrument Bus (HPIB)
and the General-Purpose Instrument Bus (GPIB), provides a means of inter-
connecting a PC controller with a vast range of test and measuring instruments.
The bus is ideally suited to the implementation of automatic test equipment
(ATE) and it has become increasingly popular over the last two decades with
a myriad of applications that range from routine production test to the solu-
tion of highly complex and specialized measurement problems. This chapter
introduces the IEEE-488 standard and describes the programming of a typical
IEEE-488 interface.

In the past, IEEE-488 facilities have tended to be available within only on the
more expensive test equipment. The necessary interface is, however, becoming
increasingly commonplace in medium- and low-priced instruments. This trend
reflects not only an increased demand from the test equipment user but also the
availability of low-cost dedicated IEEE-488 controller chips.

Nowadays, most items of modern electronic test equipment (such as digital
voltmeters and signal generators) are either fitted with the necessary IEEE-488
interface as standard or can be upgraded with optional IEEE-488 interface cards.
This provision allows them to be connected to a PC controller via the IEEE-488
bus such that the controller can be used both to supervise their operation and
process the data that they collect.

Automated measurement is important in many applications, not just within
the production test environment. Advantages of IEEE-488-based measurement
systems incorporating PC-based controllers include:

• Elimination of repetitive manual operation (freeing the test engineer for more
demanding tasks).

• Equipment settings are highly repeatable thus ensuring consistency of
measurement.

• Increased measurement throughput (measurement rates are typically between
10 and 100 times faster than those which can be achieved by conventional
manual methods).

• Reduction of errors caused by maladjustment or incorrect readings.
• Consistency of measurement (important in applications where many identical

measurements are made).
• Added functionality (stored data may be analysed and processed in a variety

of ways).
• Reduction in skill level of operators (despite the complexity of equipment,

user-friendly software can guide operators through the process of connection
and adjustment).

The original IEEE-488 standard is often referred to as IEEE-488.1 whilst
the most recent developments of the standard are known as IEEE-488.2.
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This enhanced specification more precisely defines the ways in which con-
trollers and instruments communicate with one another. A further improvement
in the IEEE-488 standard is the Standard Commands for Programmable
Instruments (SCPI) specification which provides the IEEE-488.2 specifica-
tion with a comprehensive command set suitable for all instruments (see
Figure 8.1).

Figure 8.1 Relationship
between the SCPI, IEEE-488.2,
and IEEE-488.1 standards

The most recent version of the IEEE-488 standard (IEEE.488.1-2003) intro-
duces the high-speed protocol, HS488, for data transfers. This specification
supports transfers data rates of up to 8 MB/s although actual rates will depend
upon host architecture and system configuration. Furthermore, because HS488
is a superset of the IEEE-488.1 standard, it is possible to mix non-HS488 GPIB
devices with devices that are high-speed compatible without having to modify
software applications.

The IEEE-488 standard provides for the following categories of device: listen-IEEE-488 devices
ers, talkers, talkers and listeners, and controllers. We shall briefly examine the
role of each type of device.

Listeners

Listeners can receive data and control signals from other devices connected to
the bus but are not capable of generating data. An obvious example of a listener
is a signal generator.

Talkers

Talkers are only capable of placing data on the bus and cannot receive data.
Typical examples of talkers are magnetic tape, magnetic stripe, and bar code
readers. Note that, whilst only one talker can be active (i.e. presenting data to the
bus) at a given time, it is possible for a number of listeners to be simultaneously
active (i.e. receiving and/or processing the data).

Talkers and listeners

The function of a talker and listener can be combined in a single instrument.
Such instruments can both send data to and receive from the bus. A digital
multimeter is a typical example of a talker and listener. Data is sent to it in
order to change ranges and returned to the bus in the form of digitized readings
of voltage, current, and resistance.

Controllers

Controllers are used to supervise the flow of data on the bus and pro-
vide processing facilities. The controller within an IEEE-488 system is
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Figure 8.2 IEEE-488 bus showing signals and devices

invariably a microcomputer and, whilst some manufacturers provide dedicated
microprocessor-based IEEE-488 controllers, this function is often provided by
means of a PC or PC-compatible microcomputer.

The IEEE-488 bus uses eight multi-purpose bi-directional parallel data linesIEEE-488 bus signals
(see Figure 8.2). These are used to transfer data, addresses, commands and
status bytes. In addition, five bus managements and three handshake lines are
provided.

The connector used for the IEEE-488 bus is invariably a 24-pin type (as
shown in Figure 8.3) having the following pin assignment:

Pin number Abbreviation Function

1 DIO1 Data line 1
2 DIO2 Data line 2
3 DIO3 Data line 3
4 DIO4 Data line 4
5 EOI End or identify. This signal is generated by a talker to indicate the last byte of data

in a multi-byte data transfer. EOI is also issued by the active controller to perform
a parallel poll by simultaneously asserting EOI and ATN.

6 DAV Data valid. Thus signal is asserted by a talker to indicate that valid data has been
placed on the bus.

7 NRFD Not ready for data. This signal is asserted by a listener to indicate that it is not
yet ready to accept data.

(continued)
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Pin number Abbreviation Function

8 NDAC Not data accepted. This signal is asserted by a listener whilst data is being
accepted. When several devices are simultaneously listening, each device releases
this line at its own rate (the slowest device will be the last to release the line).

9 IFC Interface clear. Asserted by the controller in order to initialize the system in a
known state.

10 SRQ Service request. This signal is asserted by a device wishing to gain the attention
of the controller. This line is wire – OR’d.

11 ATN Attention. Asserted by the controller when placing a command on to the bus.
When the line is asserted this indicates that the information placed by the
controller on the data lines is to be interpreted as a command. When it is not
asserted, information placed on the data lines by the controller must be
interpreted as data. ATN is always driven by the active controller.

12 SHIELD Shield
13 DIO5 Data line 5
14 DIO6 Data line 6
15 DIO7 Data line 7
16 DIO8 Data line 8
17 REN Remote enable. This line is used to enable or disable bus control (thus

permitting an instrument to be controlled from its own front panel rather than
from the bus).

18–24 GND Ground/common signal return

Notes:
1 Handshake signals (DAV, NRFD, and NDAC) employ active low open–collector outputs which may be used in a

wired-CR configuration.
2 All remaining signals are fully TTL compatible and are active low (asserted low).
3 Pins 18 to 23 are intended for use with twisted pair grounds for the control signals (DAV, NRFD, etc.) that appear on pins

6 to 11 on the other side of the connector).

Commands

Figure 8.3 IEEE-488 bus
connector

Bus commands are signalled by taking the ATN line low. Commands are
then placed on the bus by the controller and directed to individual devices
by placing a unique address on the lower five data bus lines. Alternatively,
universal commands may be issued to all of the participating devices (see
page 255).

Handshaking

The IEEE-488 bus uses three handshake lines (DAV, NRFD, and NDAC). The
handshake protocol adopted ensures that reliable data transfer occurs at a rate
determined by the slowest listener.

A talker wishing to place data on the bus first ensures that NDAC is in a
released state. This indicates that all of the listeners have accepted the previous
data byte. The talker than places the byte on the bus and waits until NRFD is
released. This indicates that all of the addressed listeners are ready to accept
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Figure 8.4 IEEE-488 handshake sequence

the data. Finally, the talker asserts DAV to indicate that the data on the bus is
valid. Figure 8.4 illustrates this sequence of events.

Service requests

The service request (SRQ) line is asserted whenever a device wishes to attract
the attention of the active controller. SRQ essentially behaves as a shared inter-
rupt line since all devices have common access to it. In order to determine
which device has generated a service request, it is necessary for the controller
to carry out a poll of the devices present. The polling process may be carried
out either serially or in parallel.

In the case of serial polling, each device will respond to the controller by
placing a status byte on the bus. DIO7 will be set if the device in question is
requesting service, otherwise this data bit will be reset. The active controller
continues to poll each device present in order to determine which one has
generated the service request. The remaining bits within the status byte are
used to indicate the status of a device and, once the controller has located the
device that requires service, it is a fairly simple matter to determine its status
and instigate the appropriate action.

In the case of parallel polling, each device asserts an individual data line. The
controller can thus very quickly determine which device requires attention.
The controller cannot, however, at the same time ascertain the status of the
device that has generated the service request. In some cases it will therefore be
necessary to carry out a subsequent serial poll of the same device in order to
determine its status.

Multi-line commands

The controller sends multi-line commands over the bus as data bytes with ATN
asserted. Multi-line commands are divided into five groups, as in the table
below. Figure 8.5 summarizes the IEEE-488 command codes.
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Figure 8.5 IEEE-488 command codes
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Command group Abbreviation Function Command byte

Addressed command ACG Used to select bus function affecting listeners (e.g. GTL 00-0F
which restores local front panel control of an instrument).

Universal command UCG Used to select bus functions which apply to all devices 10-1F
(e.g. SPE which instructs all devices to output their serial
poll status byte when they become the active talker).

Listen address LAG Sets a specified device to listen. 20-3E
UNL Sets all devices to unlisten status. 3F

Talk address TAG Sets a specified device to talk. 40-5E
UNL Sets all devices to untalk status. 5F

Secondary address SCG Used to specify a device sub-address or sub-function 60-7F
(also used in a parallel poll configure sequence).

Since the physical distance between devices is usually quite small (less thanBus configurations
20 m), data rates can be relatively fast. In fact, data rates of between 50 and
250 KB/s are typical, however, to cater for variations in speed of response, the
slowest listener governs the speed at which data transfer takes place. In order to
achieve the highest data rates (up to 1 MB/s) it is advisable to restrict the overall
length of the bus and to ensure that the maximum separation between devices
is about 2 m. Furthermore, no more than 15 devices should be present on the
bus and at least two-thirds of those present should be in the powered on state.

Figures 8.6 and 8.7 show two possible arrangements. The first of these (Figure
8.6) shows a basic daisy chain bus arrangement where each device is linked to
the next device in the chain whilst the second arrangement (Figure 8.7) shows

Figure 8.6 Typical IEEE-488 bus configuration (daisy chain configuration)
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Figure 8.7 Typical IEEE-488 bus configuration (star configuration)

a star bus arrangement in which one device is connected to three others. Any
combination of these two methods is possible provided that the restrictions
mentioned in the previous paragraph are obeyed.

In all cases it is advisable to ensure that no instrument cable exceeds 4 m
in length and that good quality double shielded (foil and braid plus earth) and
twisted pair conductors are used. Connectors can be single or piggyback types
in order to permit daisy chaining of devices. Standard cable lengths of 1, 2, and
4 m are available from various suppliers (see Appendix J).

IEEE-488 controllers (or GPIB controllers) are available in a variety of formsIEEE-488 controllers
including ISA, PCI, PC/104, and PCMCIA types. ISA and PC/104 cards (which
are not ‘plug-and-play’ compatible) usually require base address selection by
means of DIP switches (see Figure 8.8) or by means of PCB links. Since most
computers have base address 300H (768 decimal free), this is usually the default
setting for this type of board. Other typical addresses include 310H and 330H.
A typical DIP/link address setting convention (as used on Metrabyte Computing
Corporation’s cards) is as follows:

DIP/link no. Hex. value Decimal value Default setting

9 200H 512 ON
8 100H 256 ON
7 80H 128 OFF
6 40H 64 OFF
5 20H 32 OFF
4 10H 16 OFF

The base address is found by simply adding the values of the switches/links
that are in the ON position. Thus the default address in the table shown above is
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Figure 8.8 Simplified schematic diagram of an IEEE-488/GPIB controller

(200H + 100H) = 300H (or 768 decimal). Happily, PCI and PCMCIA cards are
‘plug-and-play’ compatible and therefore hardware base address selection is not
required. The simplified schematic diagram of an IEEE-488/GPIB controller is
shown in Figure 8.8.

In order to make use of an IEEE-488 bus interface, it is necessary to have a resi-IEEE-488 software
dent driver to simplify the task of interfacing with control software. The requisite
driver is invariably supplied with the interface hardware (i.e. the IEEE-488
expansion card) and is installed when the hardware is fitted. Thereafter, soft-
ware will be able to communicate with the card using calls to a standard library.
The user and/or programmer is then able to access the facilities offered by the
IEEE-488 bus using appropriate commands and function calls. For example,
the following commands might be used with a multimeter (e.g. Fluke 45):

*RST 'Reset the meter
VDC 'Select Volts DC Range
VAL? 'Take a measurement and send it over the GPIB bus

Standard libraries are provided in order to simplify the process of pro-
gramming IEEE-488 bus instruments. The following is an example of a
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comprehensive IEEE-488.1 library:

Name Description

ibask Returns software configuration information
ibbna Change access board of device
ibcac Become active controller
ibclr Clear specified device
ibcmd Send GPIB commands from a string
ibcmda Send GPIB commands asynchronously from a string
ibconfig Configure the driver
ibdev Open and initialize a device when the device name is unknown
ibdma Enable/disable DMA
ibeos Change EOS
ibeot Change EOI
ibevent Returns oldest recorded event
ibfind Open a device and return its unit descriptor
ibgts Go from active controller to standby
ibinit Re-initializes library, reloads software configuration
ibist Define IST bit
iblines Return status of GPIB bus lines
ibln Check for presence of device on bus
ibloc Got to local
ibonl Place device online/offline
ibpad Change primary address
ibpct Pass control
ibppc Parallel poll configure
ibrd Read data to a string
ibrda Read data asynchronously
ibrdf Read data to file
ibrdi Read data to integer array
ibrdia Read data asynchronously to integer array
ibrpp Conduct parallel poll
ibrsc Request/release system control
ibrsp Return serial poll byte
ibrsv Request service
ibsad Define secondary address
ibsic Send IFC
ibsre Set/clear REN line
irsrq Install an SRQ interrupt routine
ibstop Stop asynchronous I/O operation
ibtmo Define time limit
ibtrg Trigger selected device
ibwait Wait for event
ibwrt Write data from a string
ibwrta Write data asynchronously from a string
ibwrtf Write data from file
ibwrti Write data from integer array
ibwrtia Write data asynchronously
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Commands can be sent to instruments using simple single lines of code. As
an example, the following BASIC call is used to send a command string (cmd$)
to a specified board (board%):

CALL ibcmd (board%, cmnd$)

The alternative in C/C++ would be:

ibcmd (int board, char cmnd[], long bytecount)

where board is an integer containing the board handle, cmnd is the com-
mand string to be sent, and bytecount is the number of command bytes to
be transferred.

The following code fragment shows how a standard IEEE-488.2 library can
be used for board level I/O from BASIC:

const METER_ADR = 3
const BOARD_NUM = 0
buffer$ = space$(100) ' Reserve space for returned data
DevClear (BOARD_NUM, METER_ADR) ' Clear the device
Send (BOARD_NUM, METER_ADR, "*RST", DABend)
Send (BOARD_NUM, METER_ADR, "VDC", DABend)
Send (BOARD_NUM, METER_ADR, "VAL?", DABend)
Receive (BOARD_NUM, METER_ADR, buffer$, 100, STOPend)
PRINT "Voltage = "; buffer$ ' Display the returned reading

The equivalent in C/C++ would be:

#define METER_ADR 3
#define BOARD_NUM 0
int board;
char buffer[100]; // Reserve space for returned data
DevClear (BOARD_NUM, METER_ADR); // Clear the device
Send (BOARD_NUM, METER_ADR, "*RST", DABend);
Send (BOARD_NUM, METER_ADR, "VDC", DABend);
Send (BOARD_NUM, METER_ADR, "VAL?", DABend);
Receive (BOARD_NUM, METER_ADR, buffer, STOPend);
printf ("Voltage = %s\n", buffer); // Display the returned reading

Alternatively, the same results can be obtained using device level I/O and the
IEEE-488.1 from BASIC:

buffer$ = space$(100) ' Reserve space for returned data
CALL ibfind ("VoltMeter", device%) ' First open the voltmeter device
CALL ibclr (device%) ' and then clear the device
CALL ibwrt (device%, "*RST") ' Send the command to reset the meter
CALL ibwrt (device%, "VDC") ' and then select the DC voltage range
CALL ibwrt (device%, "VAL?") ' Request the current voltage reading
CALL ibrd (device%, buffer$) ' and read the value into the buffer
PRINT "Voltage = "; buffer$; ' Now display the returned reading
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The equivalent in C/C++ would be:

int device; // Reserve space for returned data
char buffer[100]; // Reserve space for returned data
device = ibfind ("Volt Meter"); // First open the voltmeter device
ibclr (device); // and then clear the device
ibwrt (device, "*RST"); // Send the command to reset the meter
ibwrt (device, "VDC"); // and then select the DC voltage range
ibwrt (device, "VAL?"); // Request the current voltage reading
ibrd (device, buffer,100); // and read the value into the buffer
printf ("Voltage = %s\n" buffer); // Now display the returned reading

Note that board I/O requires a more detailed understanding of the IEEE-488
bus and programs must explicitly send all of the command codes to set up each
bus operation. For example, the following code fragments (the first in BASIC
and the second in C/C++) will send the commands UNL, UNT, MTA13, MLA0
(see Figure 8.5) to a board:

command$ = "?" + "_" + "M" + " " ' Create the command string
CALL ibcmd (board%, command$) ' and send it to the board

command = "\0x3f\0x5f\0x4d\0x20"; // Create the command string
ibcmd (board%, command, 4); // and send it to the board

Troubleshooting the
IEEE-488 bus

The IEEE-488 bus is generally well tempered and easy use. Despite this, occa-
sions do arise when the would-be system integrator is confounded by recalcitrant
hardware and software which just will not behave as expected. Fortunately, fault
finding on the IEEE-488 bus is usually very much simpler than when performing
a similar task on an asynchronous serially based system (e.g. an RS-422-based
network). There are two main reasons for this: firstly, the IEEE-488 bus standard
is open to much less variation in implementation and secondly, all signals use
standard TTL voltage levels. This latter fact permits the use of conventional
digital instruments (such as logic probes and pulsers – see page 428). Fur-
thermore, the controlling software often contains its own diagnostic routines
and will warn the user if, for example, an external device is not responding to
commands placed on the bus.

Where necessary, simple routines can be generated to exercise the bus (read-
ing and displaying status codes for each device and transaction). It should be a
relatively easy matter to isolate the fault by this means. Alternatively, remote
instruments can be checked by interfacing in a different (perhaps simpler) bus
configuration and checking that they perform correctly.

Finally, before delving into hardware, it is always worth checking the config-
uration of the software and the assignment of addresses to the various devices
employed within the system at an early stage. If it is necessary to check the state
of the various control signal lines (including EOI, SRQ NRFD, NDAC, etc.),
a common-or-garden logic probe can be used to check for activity (remember
that lines are active low).
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This chapter aims to introduce readers to the general principles of interfacing
sensors and transducers to PC bus I/O cards. We shall describe a variety of
common sensors and transducers and, for those who do not wish to make use of
‘off-the-shelf’ signal conditioning modules, details of the circuitry necessary
to interface such devices to several commonly available I/O cards has been
provided. Before embarking on this task, it is perhaps worth mentioning some
of the more important characteristics and limitations of conventional digital and
analogue digital I/O ports.

Characteristics of
digital I/O ports

The digital I/O ports provided by most PC expansion cards are invariably byte
wide (i.e. each port comprises eight individual I/O lines). Such ports are usually
implemented with the aid of one, or more, programmable parallel I/O devices
(e.g. the 8255 described on page 29).

Where expansion card parallel I/O devices are connected directly to the out-
side world via a rear panel-mounted I/O connector, care should be taken to
ensure that no output line is excessively loaded nor that any input level exceeds
the manufacturer’s recommended limits.

As far as outputs are concerned, the Port B lines of a programmable parallel
I/O device are usually able to source sufficient current to permit the direct
connection of the base of a high current gain (preferably Darlington) NPN
transistor. To minimize loading on the remaining I/O lines it will generally
be necessary to employ the services of one, or more, octal TTL buffers. In any
event, it is important to note that, when sourcing appreciable current, the high-
level output voltage present on a port line may fall to below 1.5 V. This will be
acceptable when driving a conventional or Darlington transistor but represents
an illegal voltage level as far as TTL devices are concerned.

Some digital I/O expansion cards incorporate buffers between the parallel
I/O device and the rear panel-mounted expansion I/O connector. Others make
use of octal tri-state buffers and transceivers (e.g. 74LS245) rather than a VLSI
parallel I/O device. Such devices can often source and sink as much as 15 and
24 mA, respectively.

Where a much higher output current capacity is required, external circuitry
will generally be required in order to boost the output current. Alternatively
(and provided that switching speed is unimportant) an interface card fitted with
medium/high relays may be used. Such a card may also be employed when a high
degree of isolation is required between an output load and a PC-based controller.

An expansion card which uses programmable I/O devices (rather than con-
ventional buffers and latches) will require software configuration. A typical
configuration routine for an interface based on two 8255 Programmable Periph-
eral Interace (PPI) devices (providing 48 digital I/O lines in six groups of eight
lines) would involve initializing Ports A, B, and C of both devices as either
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inputs or outputs, as required. This is carried out by simply writing appropriate
control words to the control register of each device.

Having configured the I/O port, it is then relatively easy matter to send data
to it or read data from it. Each port will appear as a unique address within the
PC I/O map and data can be read from or written to the port using appropriate
IN and OUT statements (or equivalent). Where the digital I/O lines within a
port group have individual functions, appropriate bit masks can be included
in the software so that only the state of the line in question is affected during
execution of an OUT command.

Characteristics of
analogue I/O ports

PC bus expansion cards for analogue I/O generally provide up to 16 analogue
input lines and several analogue output lines. Analogue I/O ports are often based
on one or more of the following devices:

Device Resolution Function Package Notes

AD573JN 10-bit ADC 20-pin
AD557JN 8-bit DAC 16-pin
AD574 12-bit ADC 28-pin
AD667JN 12-bit DAC 28-pin
AD1674JN 12-bit ADC 28-pin
AD7226KN 8-bit DAC 20-pin 4-channel
AD7528JN 8-bit DAC 20-pin 2-channel
AD7528JN 8-bit DAC 20-pin 2-channel
AD7542KN 12-bit DAC 16-pin
AD7545KN 12-bit DAC 20-pin
AD7547JN 12-bit DAC 24-pin 2-channel
AD7569JN 8-bit ADC/DAC 24-pin I/O port
AD7579KN 12-bit ADC 24-pin
AD7578KN 12-bit aDC 24-pin CMOS
AD7580JN 10-bit ADC 24-pin
AD7681JN 8-bit ADC 28-pin 8-channel
AD7672KN 12-bit ADC 24-pin high-speed
AD7824KN 8-bit ADC 24-pin 4-channel
AD7846AD 16-bit DAC 28-pin
AD7870JN 12-bit ADC 24-pin high-speed
AD7853N 12-bit ADC 24-pin high-speed
AD7893BN 12-bit ADC 8-pin serial interface
ADC0804LCN 8-bit ADC 20-pin
ADC0809CCN 8-bit ADC 28-pin
DAC0800LCN 8-bit DAC 16-pin
TLC7524CN 8-bit DAC 20-pin
ZN425E 8-bit DAC 16-pin
ZN427E 8-bit ADC 18-pin
ZN428E 8-bit DAC 16-pin
ZN435E 8-bit DAC 18-pin
ZN439E 8-bit ADC 22-pin
ZN448E 8-bit ADC 18-pin
ZN502E 10-bit ADC 28-pin
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Analogue inputs generally exhibit a high resistance (50 k� or more) and
operational amplifier buffers are usually fitted to provide voltage gain adjust-
ment and additional buffering between the analogue input and the input of the
ADC chip.

Analogue outputs are usually available at a relatively low-output impedance
(100 � or less) and are invariably buffered from the DAC by means of opera-
tional amplifier stages. Typical output voltages produced by an analogue output
port utilizing an 8-bit DAC range from 0 to 5.1 V (20 mV/bit) when configured
for unipolar operation or −5.1 to +5.1 V (40 mV/bit) when bipolar operation
is selected.

The procedure for reading values returned by an analogue input port will
vary depending upon the type of ADC used. A typical sequence of operations
for use with a multi-channel analogue input card with 8-bit resolution based on
the ZN448E ADC would take the following form:

1 Select the desired input channel and start conversion. Send the appropriate
byte to the status latch in order to select the required channel and input
multiplexer. Conversion starts automatically when data is written to the status
latch address.

2 Either
(i) Wait 10 µs (this is just greater than the ‘worst-case’ conversion time)

using an appropriate software delay.
or
(ii) Continuously poll the ADC to sense the state of the end-of-conversion

(EOC) line. This signal appears as a single bit in the status byte and, when
low, it indicates that conversion is complete and valid data is available
from the ADC.

3 Read the data. Having ensured that conversion is complete, the valid data
byte can be read from the appropriate ADC address.

The byte read from the port will take a value between 00H and FFH. If the
ADC has been configured for unipolar operation, a value of 00H will correspond
to 0 V while a value of FFH will correspond to full-scale positive input (typically
5.1 V). When bipolar operation is used, a data byte of 00H will indicate the most
negative voltage (typically −5.1 V) whilst FFH will indicate the most positive
voltage (typically +5.1 V).

It is important to note that the values returned by conventional successive
approximation ADCs will not be accurate unless the input voltage has remained
substantially constant during the conversion process. Furthermore, where some
variation is inevitable, several samples should be taken and averaged.

Analogue output ports are generally much easier to use than their analogue
input counterparts. It is usually merely sufficient to output a byte to the appro-
priate port address. In most cases, analogue output ports will be configured for
unipolar operation and, in the case of an 8-bit DAC, a byte value of 00H will
result in an output of 0 V whilst a byte value of FFH will result in a full-scale
positive output (typically 5.1 V).

Sensors Sensors provide a means of inputting information to a process control system.
This information relates to external physical conditions such as temperature,
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Photo 9.1 Liquid flow sensor (digital output)

Photo 9.2 Linear position sensor (analogue output)

Photo 9.3 Liquid level float switch
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position, and pressure. The data returned from the sensors together with con-
trol inputs from the operator (where appropriate) will subsequently be used to
determine the behaviour of the system.

Any practical industrial process control system will involve the use of a
number of devices for sensing a variety of physical parameters. The choice of
sensor will be governed by a number of factors including accuracy, resolution,
cost, and physical size. The following table covers the range of sensors and
inputs most commonly encountered in industrial process control systems. The
list is not exhaustive and details of other types of sensor can be found in most
texts devoted to measurement, instrumentation, and control systems.

Physical Type of
parameter sensor Notes

Angular Resistive rotary Rotary track potentiometer with linear law produces
position position sensor* analogue voltage proportional to angular position.

Limited angular range. Analogue input port required.

Optical shaft Encoded disk interposed between optical transmitter and
encoder* receiver (infra-red LED and photodiode or phototransistor).

Usually requires signal conditioning based on operational
amplifiers. Digital input port required.

Differential Transformer with fixed E-laminations and pivoted I-laminations
transformer acting as a moving armature. AC source, rectifier, and filter

required. Analogue input port required.

Angular Tachogenerator Small DC generator with linear output characteristics. Analogue
velocity output voltage proportional to shaft speed. Requires an

analogue input port.

Toothed rotor Magnetic pick-up responds to the movement of a toothed ferrous
tachometer disk. May require signal conditioning (typically an operational

amplifier and a Schmitt input logic gate). Some sensors contain
circuitry to provide TTL-compatible outputs. The pulse repetition
frequency of the output is proportional to the angular velocity.
Digital input port required.

Optical shaft Encoded disk interposed between optical transmitter and receiver
encoder* (infra-red LED and photodiode or phototransistor). Usually

requires signal conditioning based on operational amplifiers.
Digital input port required.

Flow Rotating vane Turbine rotor driven by fluid. Turbine interrupts infra-red beam.
flow sensor* Pulse repetition frequency of output is proportional to flow rate.

A counter/timer chip can be used to minimize software
requirements. Digital input port required.

Linear Resistive linear Linear track potentiometer with linear law produces analogue
position position sensor* voltage proportional to linear position. Limited linear range.

Analogue input port required.

(continued )
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Physical Type of
parameter sensor Notes

Linear variable Miniature transformer with split secondary windings and moving core
differential attached to a plunger. Requires AC excitation and phase-sensitive
transformer detector. Analogue input port required.
(LVDT)

Magnetic linear Magnetic pick-up responds to movement of a toothed ferrous track.
position sensor Pulses are counted as the sensor moves along the track (typically

using an operational amplifier and Schmitt input logic gates) but
some sensors contain circuitry in order to produce TTL-compatible
outputs. The pulse repetition frequency of the output is proportional
to the linear velocity. Digital input port required.

Light Photocell Voltage-generating device. The analogue output voltage produced
level is proportional to light level. Analogue input port required.

Light An analogue output voltage results from a change of resistance
dependent within a cadmium sulphide (CdS) sensing element. Usually connected
resistor as part of a potential divider or bridge. Analogue input port required
(LDR)* (alternatively a comparator arrangement can be used for threshold

switching). Maximum sensitivity falls within the visible spectrum.

Photodiode* Two-terminal device connected as a current source. An analogue output
voltage is developed across a series resistor of appropriate value.
Analogue input port required (alternatively a comparator arrangement
can be used for threshold switching). Maximum sensitivity usually
occurs within the infra-red range (i.e. outside the visible spectrum).

Phototransistor* Three-terminal device connected as a current source. An analogue
output voltage is developed across a series resistor of appropriate
value. Analogue input port required. Phototransistors are also
available in the form of light-activated switches which provide
TTL-compatible outputs (in which case a digital input port must be
used). Maximum sensitivity usually falls within the infra-red spectrum.

Liquid Float switch* Simple switch element that operates when a particular level
level is detected. Digital input port required.

Capacitive Switching device that operates when a particular level is detected.
proximity Ineffective with some liquids. Digital input port required.
switch*

Diffuse scan Switching device that operates when a particular level is detected.
proximity Ineffective with some liquids. Digital input port required.
switch*

Pressure Microswitch Microswitch fitted with actuator mechanism and range setting springs.
pressure sensor Suitable for high-pressure applications. Digital input port required.

Differential Microswitch with actuator driven by a diaphragm. May be used to
pressure sense differential pressure. Alternatively, one chamber may be
vacuum evacuated and the sensed pressure applied to a second input.
switch Digital input port required.

(continued)
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Physical Type of
parameter sensor Notes

Piezo-resistive Pressure exerted on diaphragm causes changes of resistance
pressure in attached piezo-resistive transducers. Transducers are usually
sensor arranged in the form of a four active element bridge which

produces an analogue output voltage. Analogue input port required.

Operator Switch or Suitable for providing basic manual on/off control. Available in
push-button* various formats including conventional toggle, rotary, slide, button,

keyswitch, and foot-operated types. Digital input port required.

Dual in-line Printed circuit board mounting switch available in single of multiple
(DIL) switch* forms. Normally only used for selecting options or setting parameters

and unsuitable for frequent use due to small size. Digital input
port required.

Keypad* More cost-effective than using a number of individual push-button
switches. Also suitable for data entry. Keypads fitted with encoders
require digital input ports. Unencoded keypads are usually configured
as a matrix of rows and columns (e.g. 4 × 4 in the case of a 16-key
keypad) and will require at least one digital I/O port.

Keyboard* Provides the ultimate in data entry (including generation of the full set
of ASCII characters). Encoded keyboards are generally easier to use
than unencoded types which are more suitable for memory mapped I/O.
Digital input port required.

Joystick* Available in both digital and analogue forms. The former type is
generally based on four microswitches (two for each axis) whilst the
latter is based on conventional resistive potentiometers.
Either form is suitable for providing accurate position control
but ‘contactless’ types are more reliable. Analogue or digital input port
required, as appropriate.

Touch screen LCD display (requiring a digital output port) with touch
sensitive using finger or stylus and typically requiring a force of
40 g for operation. Contacts have a typical ‘on’ resistance of between
150 � and 1.3 k� and an ‘off’ resistance of up to 20 M�. Requires a
digital input port.

Proximity Microswitch* Microswitch fitted with actuator mechanism. Requires physical
contact with the target object and small operating force. Also functions
as a limit switch. Digital input port required.

Reed switch* Reed switch and permanent magnet actuator. Only effective over
short distances. Digital input port required.

Inductive Target object modifies magnetic field generated by the sensor.
proximity Only suitable for metals (non-ferrous metals with reduced
switch* sensitivity). Digital input port required.

Capacitive Target object modifies electric field generated by the sensor.
proximity* Suitable for metals, plastics, wood, and some liquids and powders.
switch Digital input port required.

(continued)
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Physical Type of
parameter sensor Notes

Optical Available in diffuse and through scan types. Diffuse scan types
proximity require reflective targets. Both types employ optical transmitters and
switch* receivers (usually infra-red emitting LEDs and photodiodes or

phototransistors). Digital input port required.

Strain Resistive Foil type resistive element with polyester backing for attachment
strain to body under stress. Normally connected in full bridge
gauge configuration with temperature-compensating gauges to provide an

analogue output voltage. Analogue input port required.

Semiconductor Piezo-resistive elements provide greater outputs than comparable
strain gauge resistive foil types. More prone to temperature changes and also

inherently non-linear. Analogue input port required.

Temperature Thermocouple* Small e.m.f. generated by a junction between two dissimilar metals.
For accurate measurement, requires compensated connecting
cables and specialized interface. Analogue input port required.

Thermistor Usually connected as part of a potential divider or bridge. An
analogue output voltage results from resistance changes within the
sensing element. Analogue input port required.

Semiconductor Two-terminal device connected as a current source. An analogue
temperature output voltage is developed across a series resistor of
sensor* appropriate value. Analogue input port required.

Vibration Electromagnetic Permanent magnet seismic mass suspended by springs within a
vibration sensor cylindrical coil. The frequency and amplitude of the analogue

output voltage are respectively proportional to the frequency and
amplitude of vibration. Requires an analogue input port.

Weight Load cell Usually comprises four strain gauges attached to a metal frame.
This assembly is then loaded and the analogue output voltage
produced is proportional to the weight of the load. Requires
an analogue input port.

∗ Further details, interface circuits or photographs can be found later in this chapter.

Interfacing switches
and sensors

Sensors can be divided into two main groups according to whether they are
active (generating) or passive. Another, arguably more important distinction in
the case of PC-based process control systems, is whether they provide digital
or analogue outputs. In the former case, one or more digital I/O boards will be
required whereas, in the latter case one or more analogue input ports must be
provided.

We shall deal first with techniques of interfacing switches and sensors which
provide digital outputs (such as switches and proximity detectors) before exam-
ining methods used by interfacing sensors which provide analogue outputs. It
should be noted that the majority of sensors (of either type) will require some
form of signal conditioning circuitry in order to make their outputs acceptable
to conventional PC expansion cards.



h4716-ch09 5/2/2005 12: 36 page 269

Interfacing 269

Photo 9.4 Various optical and light-level sensors

Photo 9.5 Various temperature and gas sensors

Photo 9.6 Contactless joystick
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Sensors with digital outputs

Sensors which provide digital (rather than analogue) outputs can generally be
quite easily interfaced with conventional PC bus expansion cards. However,
since the signals generated by such sensors are seldom TTL compatible, it is usu-
ally necessary to include additional circuitry between the sensor and input port.

Switches

Switches can be readily interfaced to expansion cards in order to provide man-
ual inputs to the system. Simple toggle and push-button switches are generally
available with normally open (NO), normally closed (NC), or changeover con-
tacts. In the latter case, the switch may be configured as either an NO or an NC
type, depending upon the connections used.

Toggle, lever, rocker, rotary, slide, and push-button types are all commonly
available in a variety of styles. Illuminated switches and key switches are also
available for special applications. The choice of switch type will obviously
depend upon the application and operational environment.

An NO switch or push-button may be interfaced to a digital I/O card using
nothing more than a single pull-up resistor as shown in Figure 9.1.

The relevant bit of the input port will then return 0 when the switch con-
tacts are closed (i.e. when the switch is operated or where the pushbutton is
depressed). When the switch is inactive, the relevant port bit will return 1.

Unfortunately, this simple method of interfacing has a limitation when the
state of a switch is regularly changing during program execution. However, a
typical application which is unaffected by this problem is that of using one or
more PCB mounted switches (e.g. a DIL switch package) to configure a system
in one of a number of different modes. In such cases, the switches would be
set only once and the software would read the state of the switches, and use
the values returned to configure the system upon reset. Thereafter, the state of
the switches would then only be changed in order to modify the operational
parameters of the system (e.g. when adding additional I/O facilities). A typical
DIL switch input interface to a digital input port is shown in Figure 9.2.

Figure 9.1 Interfacing a normally open switch or push-button to a digital
input port
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Switch debouncing

As mentioned earlier, the simple circuit of Figure 9.1 is unsuitable for use when
the state of the switch is regularly changing. The reason for this is that the
switching action of most switches is far from ‘clean’ (i.e. the switch contacts
make and break several times whenever the switch is operated). This may not be
a problem when the state of a switch remains static during program execution
but it can give rise to serious problems when dealing with, for example, an
operator switch bank or keypad.

The contact ‘bounce’ that occurs when a switch is operated results in rapid
making and breaking of the switch until it settles into its new state. Figure 9.3

Figure 9.2 Interfacing a DIL switch input to a digital input port

Photo 9.7 Various switches and contacts
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Figure 9.3 Typical waveform produced by a switch closure

Figure 9.4 Simple debounce circuit

shows the waveform generated by the simple switch input circuit of Figure 9.1
as the contacts close. The spurious states can cause problems if the switch is
sensed during the period in which the switch contacts are in motion, and hence
steps must be taken to minimize the effects of bounce. This may be achieved by
means of additional hardware in the form of a ‘debounce’ circuit or by including
appropriate software delays (of typically 4 to 20 ms) so that spurious switching
states are ignored. We shall discuss these two techniques separately.

Hardware debouncing

Immunity to transient switching states is generally enhanced by the use of active-
low inputs (i.e. a logic 0 state at the input is used to assert the condition required).
The debounce circuit shown in Figure 9.4 is adequate for most toggle, slide, and
push-button type switches. The value chosen for R2 must take into account the
low-state sink current required by IC1 (normally 1.6 mA for standard TTL and
400 µA for LS-TTL). R2 should not be allowed to exceed approximately 470 �

in order to maintain a valid logic 0 input state. The values quoted generate an
approximate 1 ms delay (during which the switch contacts will have settled into
their final state). It should be noted that, on power-up, this circuit generates a
logic 1 level for approximately 1 ms before the output reverts to a logic 0 in the
inactive state. The circuit obeys the following state table:

Switch condition Logic output

closed 1
open 0
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Figure 9.5 Debounce circuit based on an RS bistable

Figure 9.6 Alternative switch debounce circuits: (a) based on NAND gates;
(b) based on NOR

An alternative, but somewhat more complex, switch de-bouncing arrange-
ment is shown in Figure 9.5. Here a single-pole double-throw (SPDT)
changeover switch is employed. This arrangement has the advantage of provid-
ing complementary outputs (Q and /Q) and it obeys the following state table:

Logic output

Switch condition Q /Q

Q→1 1 0
Q→0 0 1

Rather than use an integrated circuit RS bistable in the configuration of Figure
9.5 it is often expedient to make use of ‘spare’ two-input NAND or NOR gates
arranged to form bistables using the circuits shown in Figures 9.6(a) and (b),
respectively. Figure 9.7 shows a rather neat extension of this theme in the form
of a touch-operated switch. This arrangement is based on a 4011 CMOS quad
two-input NAND gate (though only two gates of the package are actually used
in this particular configuration).

Finally, it is sometimes necessary to generate a latching action from an NO
push-button switch. Figure 9.8 shows an arrangement in which a 74LS73 JK
bistable is clocked from the output of a debounced switch.
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Figure 9.7 Touch-operated switch

Figure 9.8 Latching action switch

Pressing the switch causes the bistable to change state. The bistable then
remains in that state until the switch is depressed a second time. If desired, the
complementary outputs provided by the bistable may be used to good effect by
allowing the /Q output to drive an LED. This will become illuminated whenever
the Q output is high.

Software debouncing

Software debouncing involves the execution of a delay routine whenever the
state of a switch is read. The state of the switch at the start of the delay routine
is compared with that at the end. If the same value is returned in both cases, the
last value returned is assumed to represent the state of the switch. If the value
has changed, the switch is read again. The period of the delay routine is chosen
so that it is just greater than the maximum period of contact bounce expected
(typically 4 to 10 ms).

A typical software debounce routine is given below:

readsw: CALL switch ; Read the switch and
MOV BL, AL ; store the value.
CALL swdelay ; Wait and then
CALL switch ; read it again.
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Figure 9.9 Typical 4 × 4 matrix keypad interface

CMP AL, BL ; Has it changed?
JNE NZ, readsw ; Yes, so try again.
RET ; No, so return with bit set in AL

switch: IN AL, porta ; Get value from Port A
AND AL, mask ; and check appropriate bit.
RET ; Go back ...

swdelay: PUSH AX ; preserve the set bit
MOV CX, 0800H ; and delay for a while.

sloop LOOP sloop
POP AX
RET

Keypads

Keypads in process control applications vary from simple arrangements of
dedicated push-button switches to arrangements of 16-keys (either coded or
unencoded) in a standard 4 × 4 matrix. Keycaps may be engraved or fitted with
suitable legends. Keypads sealed to 1P65 are available as similar units with
individually illuminated keys.

Unencoded keypads are invariably interfaced using row and column lines
to enable scanning of the keyboard. This arrangement is less demanding in
terms of I/O lines than would be the case if the keypad contacts were treated
as individual switches. A typical 16-key keypad arranged on a 4 × 4 matrix
would make use of 12 digital I/O lines though it is possible to use just eight
lines of a single port by alternately configuring the port for input and output.
A representative arrangement is shown in Figure 9.9.

Unencoded keypads are generally preferred in high-volume applications
where the cost of interfacing hardware has to be balanced at the expense of
the extra overhead required by the software involved with scanning the key-
board, detecting, and decoding a keypress. In low-volume applications, and
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Figure 9.10 Simplified internal arrangement of the 74C922 keyboard encoder

where software overheads have to be minimized, the use of a fully encoded
keyboard is obviously much to be preferred.

Encoded keypads employ dedicated encoder chips such as the 74C922. This
device contains all the necessary logic to interface a 4 × 4 keypad matrix to four
lines of a data bus or digital input port. The output is presented in binary coded
decimal (BCD) form and an additional signal is provided to indicate that data is
available from the keyboard. This active-high Data Available (DA) output can
be used to drive an interrupt line when the keyboard is used in conjunction with
a bus processor or may be connected via an open-collector inverter to one of
the interrupt request (IRQ) lines of the PC expansion bus.

The simplified internal arrangement of the 74C922 is shown in Figure 9.10.
The keypad scan may be implemented by the internal clock using an external
timing capacitor (CT) or may be over-driven by an external clock. On-chip
pull-up resistors permit keypad switches with contact resistance of up to 50 k�.
Internal debouncing is provided, the time constant of which is determined by
an external capacitor (CD).

The Data Available output goes high when a key is depressed and returns to
low when a key is released even if another key is depressed. The Data Available
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output will return to high to indicate acceptance of the new key after a normal
debounce period; this two key rollover is provided between any two switches.
An internal register stores the last key pressed even after the key is released.

It should be noted that the LS-TTL-compatible outputs of the keypad encoder
chip are tri-state, thus permitting direct connection to a data bus. Furthermore,
the active-low Output Enable (/OE) input to the device can be used in a variety
of configurations which permit asynchronous data entry as well as synchronous
data entry and synchronous handshaking. Figure 9.11 shows how this can be
achieved.

Proximity detectors

Proximity detectors are required in a wide variety of applications – from sensing
the presence of an object on a conveyor to detecting whether a machine guard
is in place. Simple proximity detectors need consist of nothing more than a
microswitch and suitable actuator whereas more complex applications may
require the use of inductive or capacitive sensors, or even optical techniques.

Microswitches

A microswitch is a simple electromechanical switch element which requires
minimal operating and release force and which exhibits minimal differen-
tial travel. Microswitches are normally available in single-pole double-throw
(SPDT) configurations and can thus be configured as either normally open (NO)
or normally closed (NC).

The principal disadvantage of the humble microswitch is that it not only
requires physical contact with the object sensed but also requires a force of
typically 40 to 200 g for successful operation. Most common microswitch
types (including the popular V3 and V4 types) can be fitted with a vari-
ety of actuator mechanisms. These include lever, roller, and standard button
types. Metal-housed and environmentally-sealed micro-switches are available
for more demanding environments.

Reed switches

Reed switches use an encapsulated reed switch that operates when in the prox-
imity of a permanent magnetic field produced by an actuator magnet. Reed
switches are generally available as either normally open (NO) or changeover
types. The later may, of course, be readily configured for either NO or NC oper-
ation. Distances for successful operation (pull-in) of a reed switch are generally
within 8–15 mm (measured between opposite surfaces of the actuator magnet
and reed switch assembly). The release range, on the other hand, is generally
between 10 and 20 mm.

Inductive proximity detectors

Inductive proximity detectors may be used for sensing the presence of metal
objects without the need for any physical contact between the object and the
sensor. Inductive proximity switches can be used to detect both ferrous and
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Figure 9.11 Modes of operation for the 74C922: (a) asynchronous data
entry; (b) synchronous data entry; (c) synchronous handshaking

non-ferrous metals (the latter with reduced sensitivity). Hence metals such
as aluminium, copper, brass, and steel can all be detected. Typical sensing
distances for mild steel targets range from 1 mm for an object having dimensions
4 × 4 × 1 mm to 15 mm for an object measuring 45 × 45 × 1 mm. Note that
sensitivity is reduced to typically 35% of the above for non-ferrous metals such
as aluminium, brass, and copper.
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Figure 9.12 Interfacing inductive proximity sensors: (a) NPN output types;
(b) PNP output types

Figure 9.13 Interface circuit for a typical capacitive proximity sensor

Inductive proximity detectors are available with either NPN or PNP outputs
(as shown in Figures 9.12(a) and (b)). An NPN type will return a logic 0 (low)
when a target is detected whilst a PNP type will return logic 1 (high) in similar
circumstances. When selecting a transducer for use with conventional I/O cards,
it is advisable to choose a device which operates from a +5 V supply as this
obviates the need for level shifting within the interface. A further consideration
with such devices is the maximum speed at which they can operate. This is
typically 2 kHz (i.e. 2000 pulses per second) but not that some devices are very
much slower.

Capacitive proximity detectors

Capacitive proximity detectors provide an alternative solution to the use of
inductive sensors. Unfortunately, such devices are also limited in their speed
of response (typically 250 Hz maximum) and often require supply voltages in
excess of the conventional +5 V associated with TTL signals. Capacitive prox-
imity sensors will, however, detect the presence of materials such as cardboard,
wood and plastics, as well as certain powders and liquids. Typical sensing dis-
tances range from 20 mm for metals to 4 mm for cardboard. As with inductive
proximity sensors, the sensitivity of the detector is proportional to target size.
A typical interface circuit for a DC-powered capacitive proximity detector is
shown in Figure 9.13. This circuit provides a logic 0 (low) when a target is
detected.
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Figure 9.14 Interface circuit for an optical proximity sensor

Optical proximity detectors

Optical proximity detectors generally offer increased sensing ranges in com-
parison with both capacitive and inductive types. Optical proximity sensors are
available in two basic forms: diffuse scan and through scan types. The former
types rely on the target surface returning a proportion of the modulated light
emitted by an optical transmitter which is mounted in the same enclosure as
the receiver. In such an arrangement, a reflective target may be detected by the
presence of a received signal. Through scan types, on the other hand, employ a
separate transmitter and receiver and operate on the principle of the interrupted
light beam (i.e. the target is detected by the absence of received light). Typical
ranges vary from about 100 mm to 300 mm for diffuse scan sensors with plane
white surfaces to up to 15 in (380 mm) for through scan sensors with opaque
targets.

Proprietary sensor units are generally rather slow in operation and, for appli-
cations which involve rapid motion (such as counting shaft speeds) faster
sensors should be employed. Here, a simple optical sensor (comprising an
unmodulated infra-red emitting LED and photodiode) may be employed. Such
devices are readily available in a variety of packages including miniature dif-
fuse scan types and slotted through scan units. Figure 9.14 shows the circuitry
required to interface such a device to a typical digital input port.

Position transducers

Position transducers can be used to provide an accurate indication of the posi-
tion of an object and are available in a variety of forms (including linear and
rotary types). Linear position sensors use linear law potentiometer elements
(of typically 5 k�) and offer strokes of typically 10 or 100 mm. Rotary pos-
ition sensors are also available. These provide indications over typically 105◦
and use linear law potentiometer elements similar to those found in conven-
tional rotary potentiometer controls. A typical value for the resistive element is
again 5 k�.

The output of linear and rotary position sensors is usually made available
as an analogue voltage and a typical arrangement is shown in Figure 9.15.
Note that the analogue input port should have a high impedance (say 500 k�

or more) in order to avoid non-linearity caused by loading of the sensing
potentiometer.
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Figure 9.15 Interface circuit for a resistive position transducer (either linear
or rotary type)

Shaft encoders

Shaft encoders can be used for sensing both rotary position and shaft speed. A
typical shaft encoder produces 100 pulses per revolution and can thus provide a
resolution of better than 1◦. Such a device generally produces two phase-shifted
outputs (to enable detection of direction of rotation) plus a third synchronizing
pulse output (one pulse per revolution).

Shaft encoders are generally supplied in kit form comprising an encoder
module, slotted disc, and hub. The encoder module usually contains three
infra-red emitting LEDs and three matching photodetectors. The slotted disc is
bonded to the hub ring which is, in turn, fitted to the rotating shaft. The encoder
module is then mounted so that the disc is interposed between the LEDs and
photodetectors.

The outputs of the encoder module are sinusoidal (as shown in Figure 9.16)
and these must be converted to TTL-compatible input pulses in order to interface
with a standard digital input port. For simple speed-sensing applications, a
typical input stage based on an operational comparator and low-pass filter is
shown in Figure 9.17.

Unfortunately, the simple circuit of Figure 9.17 is ineffective at very low
frequencies and for stationary position indication. In such cases, the circuit
shown in Figure 9.18 may be employed. Here, the potentiometer (RV1) must be
adjusted so that the potential at the inverting input of the comparator is equal
to that present at the non-inverting input. In this condition, the comparator
produces a near 50% duty cycle.

A further refinement is that of providing an output which indicates the sense
of rotation (i.e. clockwise or anticlockwise). This may be achieved with the aid
of some additional logic and a single JK bistable element as shown in Figure
9.19. The Q output of the bistable goes high (logic 1) for clockwise rotation and
low (logic 0) for anticlockwise rotation. Figure 9.20 shows typical waveforms
for the logic shown in Figure 9.19.

Fluid sensors

A number of specialized sensors are available for use with fluids. These sensors
include float switches (both horizontal and vertical types) and flow sensors.



h4716-ch09 5/2/2005 12: 36 page 282

282 PC Based Instrumentation and Control

Figure 9.16 Output waveforms produced by a typical shaft encoder

Figure 9.17 Shaft encoder signal conditioning for measurement of rotational
speed

These latter devices incorporate a rotating vane and are suitable for use with
flow rates ranging from 3 l/h to 500 l/h. Typical outputs range from 24 Hz at
10 l/h to 52 Hz at 20 l/h.

Optically isolated inputs

In a number of applications, it may be necessary to provide a high degree
of electrical isolation between the source of a digital signal and its eventual
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Figure 9.18 Shaft encoder signal conditioning for low-speed applications
and position sensing

Figure 9.19 Additional logic required to provide direction sensing

connection to a digital input port. Such isolation can be achieved with the aid
of an opto-isolator. These units comprise an optically coupled infra-red emit-
ting LED and photodetector encapsulated in DIL package. The photodetector
may take various forms including a photodiode, phototransistor, and photo-
Darlington. Typical isolation voltages provided by such devices range from
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Figure 9.20 Typical waveforms produced by the circuit of Figure 9.19

Figure 9.21 Optically isolated digital input for DC signals

500 V to 3 kV and switching rates may be up to 300 kHz, or so. High-voltage
opto-isolators are available which will work reliably at voltages of up to 10 kV.

A typical single-channel optically isolated input arrangement is depicted
in Figure 9.21. The external diode protects the infra-red emitting LED from
inadvertent reversal of the input polarity and the value of the series resistor
should be selected from the following table:

Input voltage (V) Series resistor (R)
range (DC) (all 0.25 W)

3 to 4 330 �

4 to 5 560 �

5 to 6 680 �

6 to 8 1 k�

8 to 11 1.5 k�

11 to 15 2.2 k�

15 to 30 3.9 k�

Bipolar optoisolators are available that will operate from inputs of either
polarity. Such devices are useful when the input polarity is unknown but they can
be unsuitable for general AC applications as the output will go high momentarily
whenever an applied AC signal passes through zero volts. Figure 9.22 shows a
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Figure 9.22 Optically isolated digital input for bipolar DC signals

Figure 9.23 Optically isolated digital input for AC signals

typical arrangement (the value of series resistance is the same as that required
for the circuit of Figure 9.21).

The optically-isolated input stage can be extended for monitoring AC voltages
as shown in Figure 9.23. This arrangement is suitable for AC inputs of up to
240 V 50 Hz and may be used to sense the presence or absence of a mains supply.

Input voltage (V) Series resistor (R) Diode (D)
range (RMS AC) (0.25 W unless stated)

9 to 12 1 k � 1N4001
12 to 15 1.5 k� 1N4001
15 to 24 2.7 k� 1N4001
24 to 35 3.9 k� 1N4002
50 6.8 k� 0.5 W 1N4003
110 18 k� 1 W 1N4004
220 39 k� 2.5 W 1N4007

Sensors with analogue outputs

Having dealt with a number of common sensors which provide digital outputs,
we shall now turn our attention to a range of transducers which provide analogue
outputs. These outputs may manifest themselves as changes in e.m.f, resistance,
or current and, in the latter cases it will usually be necessary to incorporate
additional signal conditioning circuitry so that an analogue input voltage can
be provided for use with a standard PC analogue I/O card.
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Figure 9.24 Characteristic of the AD590 semiconductor temperature sensor

Semiconductor temperature sensors

Semiconductor temperature sensors are ideal for a wide range of temperature-
sensing applications. The popular AD590 semiconductor temperature sensor,
for example, produces an output current which is proportional to absolute tem-
perature and which increases at the rate of 1 µA/K. The characteristic of the
device is illustrated in Figure 9.24.

The AD590 is laser trimmed to produce a current of 298.2 µA (±2.5 µA) at
a temperature of 298.2◦C (i.e. 25◦C). A typical interface between the AD590
and an analogue port is shown in Figure 9.25.Figure 9.25 Typical input

interface for the AD590
semiconductor temperature
sensor Thermocouples

Thermocouples comprise a junction of dissimilar metals which generate an
e.m.f. proportional to the temperature differential which exists between the
measuring junction and a reference junction. Since the measuring junction
is usually at a greater temperature than that of the reference junction, it is
sometimes referred to as the hot junction. Furthermore, the reference junction
(i.e. the cold junction) is often omitted in which case the sensing junction
is simply terminated at the signal conditioning board. This board is usually
maintained at, or near, normal room temperatures.

Thermocouples are suitable for use over a very wide range of tempera-
tures (from −100◦C to +1100◦C). Industry standard ‘type K’ thermocouples
comprise a positive arm (conventionally coloured brown) manufactured from
nickel/chromium alloy whilst the negative arm (conventionally coloured blue)
is manufactured from nickel/aluminium.

The characteristic of a type K thermocouple is defined in BS 4937 Part 4 of
1973 (International Thermocouple Reference Tables) and this standard gives
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Figure 9.26 Light-level threshold detector based on a light-dependent
resistor (LDR)

tables of e.m.f. versus temperature over the range 0◦C to +1100◦C. In order to
minimize errors, it is usually necessary to connect thermocouples to appropriate
signal conditioning using compensated cables and matching connectors. Such
cables and connectors are available from a variety of suppliers and are usually
specified for use with type K thermocouples.

Where thermocouples are to be used as sensors in conjunction with PC-based
instrumentation systems, proprietary signal conditioning cards are available.
These cards incorporate cable terminators and provide cold junction compen-
sation as well as low-pass filtering to reduce the effects of 50 Hz noise induced
in the thermocouple cables. The signal conditioning boards are then used in
conjunction with one, or more, multi-channel analogue input ports.

Threshold detection with analogue output transducers

Analogue sensors are sometimes used in situations where it is only necessary to
respond to a pre-determined threshold value. In effect, a two-state digital output
is required. In such cases a simple one-bit analogue-to-digital converter based
on a comparator can be used. Such an arrangement is, of course, very much
simpler and more cost-effective than making use of a conventional analogue
input port!

Simple threshold detectors for light level and temperature are shown in Fig-
ures 9.25–9.27. These circuits produce TTL-compatible outputs suitable for
direct connection to a digital input port.

Figure 9.26 shows a light-level threshold detector based on a comparator
and light-dependent resistor (LDR). This arrangement generates a logic 0 input
whenever the light level exceeds the threshold setting, and vice versa. Figure
9.27 shows how light level can be sensed using a photodiode. This circuit
behaves in the same manner as the LDR equivalent but it is important to be aware
that circuit achieves peak sensitivity in the near infra-red region. Figure 9.28
shows how the spectral response of a typical light-dependent resistor (NORP12)
compares with that of a conventional photodiode (BPX48). Note that the BPX48
can also be supplied with an integral daylight filter (BPX48F).
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Figure 9.27 Light-level threshold detector based on a photodiode

Figure 9.28 Comparsion of typical spectral response of LDR and photodiodes

Figure 9.29 shows how temperature thresholds can be sensed using the
AD590 sensor described earlier. This arrangement generates a logic 0 input
whenever the temperature level exceeds the threshold setting, and vice versa.

AC sensing

Finally, Figure 9.30 shows how an external AC source can be coupled to an input
port. This arrangement produces TTL-compatible input pulses having 50% duty
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Figure 9.29 Temperature threshold detector based on an AD590
semiconductor temperature sensor

Figure 9.30 Interface circuit to permit AC sensing

cycle. The circuit requires an input of greater than 10 mV for frequencies up to
10 kHz and greater than 100 mV for frequencies up to 100 kHz.

The obvious application the arrangement shown in Figure 9.28 is the detection
of audio frequency signals but, with its input derived from the low voltage
secondary of a mains transformer (via a 10:1 potential divider), it can also
function as a mains failure detector.

Output devices Having dealt at some length with input sensors, we shall now focus our attention
on output devices and the methods used for interfacing them. PC-based systems
can readily be configured to work with a variety of different output transducers
including actuators, alarms, heaters, lamps, motors, and relays. Ready-built
output drivers are available for several types of load including relays and stepper
motors. Many applications will, however, require custom-built circuitry in order
to interface the necessary output devices.

Status and warning indications

Indicators based on light-emitting diodes (LEDs) are inherently more reliable
than small filament lamps and also consume considerably less power. They are
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Figure 9.31 Driving an LED from a buffered digital I/O port: (a) logic 1 to
illuminate the LED; (b) logic 0 to illuminate the LED

thus ideal for providing visual status and warning displays. LEDs are available
in a variety of styles and colours, and ‘high brightness’ types can be employed
where high-intensity displays are required.

A typical red LED requires a current of around 10 mA to provide a reasonably
bright display and such a device may be directly driven from a buffered digital
output port. Different connections are used depending upon whether the LED
is to be illuminated for a logic 0 or logic 1 state. Several possibilities are shown
in Figure 9.31.

Where a buffered output port is not available, an auxiliary transistor may be
employed as shown in Figure 9.32. The LED will operate when the output from a
PC expansion card is taken to logic 1 and the operating current should be approx-
imately 15 mA (thereby providing a brighter display than the arrangements
previously described). The value of LED series resistance will be dependent
upon the supply voltage and should be selected from the table shown below:

Series resistance
Voltage (V) (all 0.25 W)

3 to 4 100 �

4 to 5 150 �

5 to 8 220 �

8 to 12 470 �

12 to 15 820 �

15 to 20 1.2 k�

20 to 28 1.5 k�

Driving LCD displays

A number of process-control applications require the generation of status mes-
sages and operator prompts. These can be easily produced using a conventional
alphanumeric dot-matrix LCD display. Such displays are commonly available
in a variety of formats ranging from 16 characters × 1 line to 40 characters × 4
lines and can usually display the full ASCII character set as well as user-defined
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Figure 9.32 Using an auxiliary transistor to drive an LED

Photo 9.8 Various light emitting diodes and indicators

symbols. LCD displays are invariably fitted with the necessary hardware drivers
and logic (sometimes in the form of a CMOS microprocessor) to interface
directly with a digital I/O port.

Driving medium- and high-current loads

Due to the limited output current and voltage capability of most standard
digital I/O expansion cards, external circuitry will normally be required to
drive anything other than the most modest of loads. Figure 9.33 shows some
typical arrangements for operating various types of medium- and high-current
load. Figure 9.33(a) shows how an NPN transistor can be used to operate a low-
power relay. Where the relay requires an appreciable operating current (say,
150 mA, or more) a plastic encapsulated Darlington power transistor should be
used as shown in Figure 9.33(b). Alternatively, a power MOSFET may be pre-
ferred, as shown in Figure 9.33(c). Such devices offer very low values of ‘on’
resistance coupled with a very high ‘off’ resistance. Furthermore, unlike con-
ventional bipolar transistors, a power FET will impose a negligible load on an
I/O port. Figure 9.33(d) shows a filament lamp driver based on a plastic Darling-
ton power transistor. This circuit will drive lamps rated at up to 24 V, 500 mA.
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Figure 9.33 Typical medium- and high-current driver circuits: (a) transistor
low-current relay driver; (b) Darlington medium/high-current relay driver; (c)
MOSFET relay driver; (d) Darlington filament lamp driver

Figure 9.34 An LED indicator can be easily added to a relay driver

Finally, where visual indication of the state of a relay is desirable it is a simple
matter to add an LED indicator to the driver stage, as shown in Figure 9.34.

Audible outputs

Where simple audible warnings are required, miniature piezo-electric trans-
ducers may be used. Such devices operate at low voltages (typically in the range
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Photo 9.9 Various types of relay

3–15 V) and can be interfaced with the aid of a buffer, open-collector logic gate,
or transistor. Figures 9.35(a)–(c) show typical interface circuits which produce
an audible output when the port output line is at logic 1.

Where a pulsed rather than continuous audible alarm is required, a circuit
of the type shown in Figure 9.36 can be employed. This circuit is based on a
standard 555 timer operating in astable mode and operates at approximately
1 Hz. A logic 1 from the port output enables the 555 and activates the pulsed
audio output.

Finally, the circuit shown in Figure 9.37 can be used where a conventional
moving-coil loudspeaker is to be used in preference to a piezo-electric trans-
ducer. This circuit is again based on the 555 timer and provides a continuous
output at approximately 1 kHz whenever the port output is at logic 1.

DC motors

Circuit arrangements used for driving DC motors generally follow the same lines
as those described earlier for use with relays. As an example, the circuit shown in
Figure 9.38 uses a power MOSFET to drive a low-voltage DC motor. This circuit
is suitable for use with DC motors rated at up to 12 V with stalled currents of
up to 3 A. In both cases, a logic 1 from the output port will operate the motor.

Output drivers

Where a number of output loads are to be driven from the same port, it is often
expedient to make use of a dedicated octal driver chip rather than use eight
individual driver circuits based on discrete components. Fortunately, a number
of octal drivers are available and these invariably have TTL-compatible inputs
which makes them suitable for direct connection to an output port.
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Figure 9.35 Audible output driver: (a) using a buffer; (b) using an
open-collector logic gate; (c) using a transistor

Figure 9.36 Pulsed audible alarm based on a 555 astable

A simple, general-purpose byte-wide output driver can be based around a
dedicated octal latch/driver of which the UCN5801 is a typical example. This
device is directly bus compatible but may also be used in conjunction with a
conventional parallel I/O port. The UCN5801 has separate CLEAR, STROBE,
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Figure 9.37 Audible alarm with output to a moving coil loudspeaker

Photo 9.10 Various audible and ultrasonic transducers

and output ENABLE control lines coupled to eight bipolar Darlington driver
transistors. This configuration provides an extremely low-power latch with a
very high-output current capability.

The eight outputs of the UCN5801 are all open-collector, the positive supply
voltage for which may be anything up to 50 V. Each Darlington output device
is rated at 500 mA maximum however; if that should prove insufficient for
a particular application then several output lines may be paralleled together
subject, of course, to the limits imposed by the rated load current of the high-
voltage supply.

Figure 9.39 shows a typical arrangement of the UCN5801 in which the load
voltage supply is +12 V. The state of the bus is latched to the output of ICI
whenever the STROBE input is taken high; however, when used in conjunction
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Figure 9.38 Motor driver circuits: (a) Darlington motor driver; (b) MOSFET
motor driver

Photo 9.11 Motorized linear actuator

with a conventional I/O device, this line can be tied high. A logic 0 present on a
particular data line will turn the corresponding Darlington output device ‘off’
whilst a logic 1 will turn it ‘on’. It should also be noted that the output stages are
protected against the effects of an inductive load by means of internal diodes.
These are commoned at pin-12 and this point should thus be returned to the
positive supply.

Driving mains connected loads

Control systems are often used in conjunction with mains connected loads.
Modern solid-state relays (SSRs) offer superior performance and reliability
when compared with conventional relays in such applications. SSRs are avail-
able in a variety of encapsulations (including DIL, SIL, flat-pack, and plug-in
octal) and may be rated for RMS currents between l and 40 A.
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Figure 9.39 Typical output driver arrangement based on the UCN5801

Figure 9.40 Interface circuits for driving solid state relays: (a) driven from
a buffered digital I/O port; (b) using an auxiliary buffer stage; (c) using an
open-collector logic gate

In order to provide a high degree of isolation between input and output, SSRs
are optically coupled. Such devices require minimal input currents (typically
5 mA, or so, when driven from 5 V) and they can thus be readily interfaced with
an I/O port that offers sufficient drive current. In other cases, it may be necessary
to drive the SSR from an unbuffered I/O port using an open-collector logic gate.
Typical arrangements are shown in Figure 9.40. Finally, it is important to note
that, when an inductive load is to be controlled, a snubber network should be
fitted, as shown in Figure 9.41.



h4716-ch09 5/2/2005 12: 36 page 298

298 PC Based Instrumentation and Control

Figure 9.41 Using a ‘snubber’ network with an inductive load

Figure 9.42 Stepper motor interface based on the UCN5804

Driving solenoids and solenoid-operated valves

Solenoids and solenoid-operated valves are generally available with coils rated
for 110 V/240 V AC or 12 V/24 V DC operation. The circuitry for interfacing
solenoids will thus depend on whether the unit is rated for AC or DC operation.
In the case of AC-operated units, a suitably rated SSR should be employed (see
Figure 9.41) while, in the case of DC-operated solenoids, interface circuitry
should be identical to that employed with medium/high current relays (see
Figure 9.33).
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Photo 9.12 Stepper motor

Driving stepper motors

The complex task of interfacing a stepper motor to a PC-based system can be
greatly simplified by using a dedicated stepper motor driver card. Alternatively,
in many light-duty applications, a simple interface can be constructed based
on a specialized stepper motor driver chip (such as the UCN5804). This device
includes all necessary logic to drive a stepper motor as well as output drivers
for each of the four phases. The chip can provide drive for a four-phase unipolar
stepper motor with continuous rating of up to 1.25 A per phase (1.5 A startup)
and 35 V. The inputs are compatible with standard PMOS, NMOS, and CMOS
circuits (note that TTL or LS-TTL may require the use of pull-up resistors in
order to ensure a proper logic 1 input high state).

Figure 9.42 shows a typical stepper motor interface based on the UCN5804.
The stepper motor interface requires three port output lines that operate on the
following basis:

• The STEP input is pulsed low to produce a single step rotation.
• The DIRECTION input determines the sense of rotation. A low on the

DIRECTION input selects clockwise rotation. Conversely, a high on the
DIRECTION input selects anticlockwise rotation.

• The /ENABLE input must be taken low to operate the motor.

The software routines for driving the stepper motor are quite straightforward
and can be simply based on sequences of OUT (or equivalent) instructions
which may be contained within loops where continuous rotation in a clock-
wise or anticlockwise direction is required. For further details (including the
UCN5804’s half-step mode) readers should refer to the relevant data sheets.
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It should be self-evident that the effectiveness of any PC-based data acquisition,
instrumentation, or control system will be dependent not only upon the hardware
employed but also upon the software which controls the system. Software has
a vital role to play in that it provides an interface and acts as an intermediary
between the user and the physical components of the system. Furthermore, the
degree of control, flexibility, and ease of use will largely be dependent upon
this software interface.

The newcomer to PC-based instrumentation and control systems can be for-
given for being baffled by the variety and complexity of software packages
designed to assist him in his task. This chapter categorizes software packages
on a variety of grounds and provides details of several of the most popular
software products. The aim has been that of providing a yardstick by which the
control and instrumentation engineer can judge his or her current and future
software requirements.

As an example, a stand-alone process controller may, for example, require
relatively unsophisticated software in the form of a simple ‘turnkey’ pro-
gram developed in a high-level programming language. A complex distributed
factory instrumentation system, on the other hand, which requires frequent
re-configuration and which may necessitate interfacing with several other appli-
cations programs, may require the services of an applications programming
environment.

Selecting a software
package

Several factors need to be considered when selecting any software package.
These are:

• Ease of use what level of expertise is required in order to make use of the
package?

• Flexibility – can the package be easily adapted to differing requirements and
can it be readily interfaced with other software?

• Performance – what performance criteria and specifications must be met?
• Functionality – does the package offer a suitable range of functions and will

it interface correctly with the chosen hardware configuration?

To some extent, this last factor is paramount since, if the package cannot
offer support for the particular hardware configuration in question, it may be of
little use. Readers should be aware that a hardware specification will often be
fixed before a full software specification has been developed.

Ease of use

The question of ease of use will largely depend upon the person (or persons)
who will be using the system. In any event, a software package should be



h4716-ch10 5/2/2005 12: 36 page 302

302 PC Based Instrumentation and Control

reasonably intuitive and the user should not be presented with outcomes which
he or she did not expect. As an example, it should not be possible to quit from a
package without being presented with a clear warning of the consequences (e.g.
data loss). Similarly, on-screen controls and displays should, as far as possible,
mimic those which the user will already be familiar with. All this may sound
very obvious but programmers and software engineers often fail to identify
with the level of expertise of the operator, and he or she may be left to ‘muddle
through’ by trial and error.

Fortunately, there is a trend towards making software ‘user-friendly’ and
this has been greatly aided by the availability of graphics-oriented operating
systems such as Microsoft’s Windows with programs that are designed to take
full advantage of the visual environment. Such packages can be highly intuitive
and provide an excellent user interface based on windows, icons, and pull-down
menus (WIMP).

The WIMP interface is also available to any application that is co-resident
with the operating system. Because of this, an application that needs to make
use of the WIMP environment can simply make calls to appropriate system rou-
tines obviating the need to create its own stand-alone routines for manipulating
windows and other graphical components.

Flexibility

Some software packages (particularly those which may have been written for a
particular application) tend to be somewhat rigid since they are generally based
on a pre-defined model. In many cases, such programs will not provide the
operator with an opportunity to configure the system or select from a range
of choices (e.g. via a menu screen). If a change does become necessary, the
software has to be modified at the source code level. Sometimes this task can
be tackled by a keen control engineer but, more often than not, it will require
the services of a programmer or software engineer.

More flexible software packages will allow the user to configure the software
for a particular hardware system (e.g. by specifying the system components and
expansion capability) or, alternatively, will use plug-and-play capability when
the operating system supports this. In all cases it is important to ensure that the
installation and configuration process is made transparent to the user.

As users become fully aware of the advantages of a PC-based instrumentation
and control system, a further consideration which will often become increas-
ingly important is that of interfacing with other software packages so that data
can be exported and imported in a fashion which is largely transparent to the
user. This is often advantageous where measurements must be made within one
program before the captured data (stored in a disk file) is imported into another
program for statistical and/or graphical analysis. This opens up a completely
new scenario in which data acquired by one program can be made to yield all
manner of new information when analysed by another package. The availability
of Dynamic Data Exchange (DDE) has made it possible for data to be exchanged
on a transparent basis between suitably equipped programs. For example, DDE
makes it possible to data sourced by a custom-written application to appear in
an Excel spreadsheet without the need to first export the data and then import
it into Excel.
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Performance

Performance of a software package is often somewhat difficult to gauge since
determining factors may differ from one application to another. Processing
speed, for example, will be all important in some applications (e.g., in an
oscilloscope) but largely irrelevant in others.

To a large extent, processing speed will depend upon simultaneous demands
placed on the processor. Where a system has to carry out many functions at
the same time (such as regularly updating a graphics display, servicing inter-
rupt requests generated by several expansion cards, and responding to user
input from a keyboard) it is hardly likely to run at what may be considered an
acceptably high speed.

If speed is a paramount consideration and a great deal of ‘number crunching’
is expected, then a system with a high clock rate and plenty of memory will
normally be essential. If such a system still fails to deliver the speed which is a
pre-requisite of a particular real-time application then it is probably questionable
as to whether a PC-based system should have been adopted in the first place!

Provided that processing speed is identified as a premium requirement, cus-
tom software can usually be made to offer significant speed advantages over
‘off-the-shelf’ packages. The programmer or software engineer can elect to
optimize his or her code for speed rather than data integrity. As an example,
input range checking could be abandoned in favour of faster throughput of data
or opt for post-acquisition rather than real-time display of data.

Functionality

Functionality is becoming increasingly important in software selection and it
relates to the fitness and suitability of a program for a particular application and
hardware configuration. Most of today’s applications packages offer additional
functionality which may not appear as a part of an initial software specification.
The ability to import and export data files is a prime example of this as the
availability of a built-in IEEE-488 command language or custom language
extensions such as user-written functions.

Software classification In order to provide a frame of reference, Table below shows the continuum
which exists between custom-written ‘turnkey’ software at one extreme and
operating system utilities at the other.

Ease of use Flexibility Performance Functionality Examples

Very complex Designed to meet Can be very fast As required to Custom-written
(requires a high a particular set of and compact but meet a given software using
level of requirements. may require specification. programming
programming Higly substantial languages such as
expertise) customizable. development time. MASM32, Turbo

C++, PowerBASIC,
Visual Basic, or
Visual C++.

(continued)
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Ease of use Flexibility Performance Functionality Examples

Moderately Flexible and Fast and efficient. Offers a high level Custom-written
complex (usually adaptable. Offers Requires of functionality. software using
requires moderate significant significant programming
programming customization. development time. languages in
expertise) conjunction with

extensions,
external libraries,
or Active X controls.

Average level of Moderately flexible Reasonably fast Offers a high Programmable
complexity (may and adaptable to and moderately degree of applications and
require some most situations. efficient. functionality but data analysis tools
programming Moderately Application may require (such as LABView),
expertise) customizable. development can configuration for a DASYLab, etc.).

be reasonably fast. particular
application.

Simple and Somewhat limited Usually fast and Levels of Dedicated
relatively easy to inflexibility and efficient. No functionality vary applications
use (requires no some packages development time but are often (such as
programming may be dedicated required. limited to a TracerDAQ,
expertise) to particular particular function. WINDAQ, etc.).

functions (such as
strip recorders).
Limited
customization.

Very simple to use Restricted to Usually fast and Provides a limited General tools and
(but may require particular efficient. No range of functions utilities (such as
interpretation) applications (such development time (such as reporting). Norton Utilities, VB

as port testing). required. Port Test, etc.).
Not customizable.

Very simple to use Not customizable. Usually fast and Usually only Operating system
and generally efficient. No provides reporting utilities (such as
highly intuitive development time facilities. Windows System

required. Tools).

Custom-written software

Custom-written can be developed using a variety of programming languages
such as assembly language, BASIC, and C/C++. The techniques for developing
custom-written software have already been described at some length in earl-
ier chapters and readers should refer to these for information as well as
sample code written in MASM32, Microsoft BASIC, PowerBASIC, C/C++,
and Visual Basic. You should not underestimate the task of developing your
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Figure 10.1 A screen display generated by a program created using Visual
Basic. The display shows a running fermentation process with fully interactive
controls

own applications (particularly if starting from scratch); however, in some cases,
this may be the only effective solution to a particular problem.

With modern Visual programming languages (e.g. Visual Basic) it is emi-
nently possible to produce attractive and meaningful graphical displays that
show the inputs and outputs of a control or instrumentation system. Figure 10.1
shows a typical example of a screen display showing a graphical representa-
tion of a fermentation process. The window background was produced using
Microsoft Visio and then imported into Visual Basic. The various controls were
then placed at appropriate points within the schematic diagram. The controls
and displays are fully interactive and the user is able to use the screen display
to monitor the process.

Programming language extensions

Most modern high-level language interpreters and compilers provide a wide
range of facilities suitable for those wishing to develop commercial and sci-
entific applications. Unfortunately, the facilities offered by a programming
language may be somewhat lacking when the software is to be used in con-
junction with data acquisition, control hardware, or in an instrumentation
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application. In such cases, it may be possible to extend the language using
proprietary components that are available ‘off-the-shelf’. Such components
include specialized controls for use with Visual programming languages as
well as dynamic link libraries and ready-built procedures that can be used to
add functionality to a program. In recent years a number of ‘third-party’ sup-
pliers have risen to the challenge of producing such extensions and this has
added considerably to the pool of resources available to the software developer.

The ActiveX control standard defined by Microsoft describes modular,
reusable software components that can be used universally by any environ-
ment that supports the standard. For example, without modification, the same
controls may be used by Visual BASIC, Visual C++, National Instruments
LabVIEW, CEC TestPoint, Borland C++ Builder, Excel, and many more.

As an example, the DATAQ Instruments’ ActiveX control library consists of
five components, each addressing a different application area. Context-sensitive
on-line help is provided for each control. DATAQ Instruments’ ActiveX control
library supports a wide variety of DATAQ products including the DI-148U, DI-
150, DI-151, DI-154RS, DI-158 Series, DI-190, DI-194RS, DI-195B, DI-4xx,
DI-5xx, and DI-7xx products.

The universal nature of the ActiveX control standard ensures a consis-
tent and highly simplified software-to-hardware interface that yields pro-
gramming code that is tremendously reduced in both size and complexity
(Figure 10.2). This approach to application development can also be highly
cost-effective.

Figure 10.2 Using Visual Basic to develop an application using an ActiveX
control supplied by DATAQ. The control simplifies the task of plotting
time-related waveforms of captured data
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Programmable applications

Programming applications are software packages which allow the user to create
software that can be used in dedicated (turnkey) applications and, while such
tools have something in common with a conventional language-oriented devel-
opment systems, they usually provide an environment in which applications
can be developed with minimal programming experience.

LabVIEW

National Instruments LabVIEW is a graphical application development envi-
ronment designed specifically for engineers who need to create flexible and
scalable test, measurement, and control application. LabVIEW is a fully
functional graphical programming language which offers a variety of fea-
tures that simplifies the development of sophisticated applications for control,
instrumentation, and data acquisition.

The basic building block of a LabVIEW application is a virtual instrument
(VI). This consists of a front panel which contains the user interface and an
underlying block diagram which is used to develop the visual code. Further-
more, because LabVIEW’s VIs are modular, applications can be developed to
any required scale.

Figure 10.3 shows a simple LabVIEW VI which is designed to monitor and
control a process based on a heated tank. You might like to compare this with
the similar application developed in Visual Basic (see Figure 10.1).

LabVIEW’s programming is based on a graphical representation of dataflow.
This model frees the developer from the usual sequential architecture of a text-
based programming language. An example of a LabVIEW VI block diagram is
shown in Figure 10.4. Components are added to this block diagram using drag
and drop techniques and then linked together. Application development is thus
extremely fast and requires very little programming expertise.

The VI shown in Figure 10.4 is designed to monitor the status of the PC’s
parallel ports. The corresponding front panel view for the parallel port VI
is shown in Figure 10.5. Further examples of LabVIEW VIs are shown in
Figures 10.6–10.8.

DASYLab

DASYLab (or ‘Data Acquisition Laboratory’) from National Instruments pro-
vides a graphical environment for developing a range of data acquisition, display
and analysis functions (Figure 10.9). A vast range of modules permit customiza-
tion and little previous programming expertise is required to get the best from
this sophisticated yet easy to use package. However, since DASYLab is avail-
able in four different versions (Lite, Basic, Full, and Pro), it is essential to select
the version that provides the level of functionality required!

The least expensive and powerful version, DASYLab Lite, provides users
with the ability to create simple data logging applications and display the results
plotted against time. The Lite version offers only a limited number of channels
and smaller worksheets. The next level version, DASYLab Basic, can be used
to create a smart data loggers which have the ability to reduce the amount of
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Figure 10.3 A screen display produced by a LabVIEW VI designed to monitor
and control a process based on a heated tank (compare this with Figure 10.1)

Figure 10.4 A block diagram of the LabVIEW VI designed to monitor the
PC’s parallel ports
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Figure 10.5 Screen display produced when the parallel port LabVIEW VI is
running

Figure 10.6 A screen display produced by a LabVIEW VI designed to carry
out an analysis of a rectangular pulse in which noise has been added

data and perform straightforward calculations. DASYLab Basic also has the
ability to provide control via analogue and digital outputs (Figure 10.10). This
version is intended for users that need to create an application that provides a
range of data acquisition features together with the ability to perform some basic
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Figure 10.7 LabVIEW is equally at home in control applications as it is in
the field of data acquisition and instrumentation. This screen shows a typical
VI used in a process control application

Figure 10.8 A screen display produced by a LabVIEW VI designed to carry
out a vibration study
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Figure 10.9 DASYLab combines ease of programming using a simple visual
programming interface with sophisticated reporting and display

Figure 10.10 DASYLab programming involves simple ‘drag and drop’
techniques

analysis and the ability to save data. The software is well suited to environments
where the operator is present and can react to events.

The second highest level is DASYLab Full. This version is capable of
performing automated tasks as well as data analysis based on Fast Fourier
Transformation (FFT) (Figure 10.11). The automated tasks can involve setting
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Figure 10.11 A variety of different display options are available
within DASYLab, including the ability to produce Fast Fourier
Transformation (FFT)

trigger-based data acquisition, generating alarms, and other simple automation-
based tasks. The Full package is suited to a wide range of applications including
those that might have to run unattended or require fully automatic operation.

The most sophisticated and most powerful version of the software, DASYLab
Pro, contains the same features as the Full versions with the addition of more
signal analysis, a Sequence Generator, high-end or complex frequency analysis,
additional filtering, and other tools. DASYLab Pro is ideal for creating stand-
alone test and measurement applications with a powerful set of data analysis
tools.

Finally DASYLab Net is an extension of DASYLab that uses TCP/IP to
communicate with (and control) remote copies of DASYLab Net. This version
of DASYLab can be used to remotely start, stop, and load measurement data,
including simultaneous starts of several DASYLab Net systems.

DASYLab’s programming interface is extremely straightforward and is based
on a graphical programming environment. Sophisticated data acquisition and
control tasks can be solved without any language-based programming and it
is only necessary to insert the appropriate module symbols into the worksheet
and connect them by wires. The module symbols represent inputs or outputs,
display instruments, or any of the range of operations provided by the program,
while the data channels represent the signal flow (Figures 10.12–10.15).

DASYLab provides support for more than 250 data acquisition boards
through appropriate drivers. Data acquisition hardware can also be connected to
DASYLab through the RS-232 and/or IEEE-488 bus modules. In addition, data
can be exchanged between DASYLab and other Windows applications using
Dynamic Data Exchange (DDE) techniques.
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Figure 10.12 The DASYLab chart recorder display

Figure 10.13 The DASYLab list display

DADiSP

Originally developed in the early 1980’s as part of a research project at MIT to
explore the aerodynamics of Formula One racing cars, DADiSP is a visually ori-
ented software package for the display, management, analysis, and presentation
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Figure 10.14 The DASYLab bar graph display

Figure 10.15 The DASYLab analogue meter display
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of scientific and technical data. DADiSP is designed to handle all of the phases
associated with the acquisition and display of data, from initial collection to
final analysis.

DADiSP can be used to analyse and display up to 100 windows from the
same (or different) data files. The package offers a powerful graphing capabil-
ity and contains a variety of standard and advanced mathematical and statistical
functions ranging from standard arithmetic (addition, subtraction, multipli-
cation, and division) to hyperbolic functions, mean and standard deviations,
integration, and differentiation.

DADiSP uses Worksheets to display, manipulate, and analyse data in an
integrated graphic environment (Figure 10.16). Each Worksheet can display
and process information in an unlimited number of formats. In addition, each
Worksheet can be modified, rearranged, and stored as a template for future use
with other data.

Commonly used functions are grouped together and made available through
pull-down menus. However, display and data manipulation functions can also
be entered as text at the command line. DADiSP maintains a full history of
commands and lists of commands can be copied and pasted into the command
line. Using this technique it is possible to easily produce simple, yet powerful,
programs. In fact, DADiSP Worksheets behave as executable programs but
eliminate the need for traditional programming. Furthermore, Worksheets will,
updated automatically when one or more data items or Window formulae alters
so there is no need to re-run an analysis when the data changes.

DADiSP is ideally suited to any application in which captured data is to be
analysed and displayed in a graphical format. Typical examples might be X-, Y-,
and Z-axis strain developed in a structural member when subjected to repeated
cycles of stress or variation in oscillator frequency, amplitude, and noise when

Figure 10.16 A screen display produced by DADiSP. The screen shows
various windows displaying information obtained during a vibration study
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subjected to variations in temperature, pressure, and humidity. In either case,
the multiple windowing capability allows the user to form a complete picture
of the performance of a system without recourse to a number of discrete graphs
and displays.

DADiSP supports a number of advanced mathematical functions including
trigonometric and logarithmic functions. These can be applied to any valid
signal, scalar, or signal-scalar expression. When applied to a signal, they are
applied successively to each point of the signal and the resulting signal is dis-
played in the current window. When applied to scalars (integers, real numbers, or
complex numbers) the resulting value is displayed at the bottom of the screen.
The calculus functions are provided for determining derivative and integral
functions. Since the signals are discrete, DADiSP provides a means of per-
forming left derivative and right derivative calculations. Four of these functions
(DERIV, LDERIV, RDERIV, and INTEG) take one signal as an argument and return
a new one. AREA takes two additional arguments, the starting and ending points
within a signal.

Note also that AREA returns a scalar whereas the other four calculus
functions return signals. The algorithm for calculating the integral is a mod-
ification of Simpson’s Rule and is more accurate than a simple trapezoidal
approximation.

DADiSP’s statistical functions provide information about a signal (or two
signals in the case of LINREG2). MEAN and STDEV return appropriate values
which can be nested in more complicated expressions. STATS does not return
a signal but displays both the mean and standard deviation at the bottom of the
screen. LINREG and LLNREG2 display the regression coefficients and then create
a new signal (i.e. the line generated by the linear regression) which is useful for
over-plotting. AMPDIST generates a new signal which constitutes a bar graph
distribution for a signal. The function accepts a real-number argument which
is the incremental value (DELTA X).

DADiSP contains facilities for frequency domain analysis. Fourier analysis
is provided with both the Discrete Transform and the much faster Fast Fourier
Transform (FFT). PARTSUM creates a new signal which is equivalent to the par-
tial sums of two input signals whilst SUMS adds any number of signals together.
MOVAVG provides a smoothing function while AVG takes the point-by-point
average of a group of signals.

A powerful range of signal editing functions are also provided. EXTRACT cre-
ates a new signal by extracting part of an existing signal while REVERSE simply
changes the polarity of a given signal and CONCAT concatenates any number of
signals. Signal generating functions are preceded by the letter G. An endless
variety of waveforms can be synthesized through combination of functions (e.g.
GSINH will generate the waveform of a hyperbolic arcsine function).

A simple example of using DADiSP is shown in Figure 10.17. The six
windows (W1 to W6) are populated with data using the following Worksheet
entries:

W1: gsin(128, 1/128, 1)
W2: gsin(128, 1/128, 3) /3
W3: gsin(128, 1/128, 5) /5
W4: gsin(128, 1/128, 7) /7
W5: W1+W2+W3+W4
W6: spectrum(W5);sticks
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Figure 10.17 Example of using DADiSP to carry out a simple FFT-based
analysis (shown in W6) of a synthesized square wave (shown in W5)

The resulting frequency spectrum (shown in W6) is generated using a Fourier
transform of the data shown in W5. Although this is only a simple example it
will hopefully serve to illustrate something of how the software works and its
potential for use in applications that require the display and subsequent analysis
of data.

Using DADiSP’s Series Programming Language

DADiSP’s Series Programming Language (SPL) is based on C/C++ and pro-
vides users with a means of extending the standard functions provided by
DADiSP. SPL files can contain a single function or a collection of functions.
As with C/C++, SPL functions are not case sensitive and have the following
form:

function_name(optional argument list)
{

local declarations;
statements;

}

As an example, the following SPL function provides the means of returning a
temperature in centigrade from an argument given in Fahrenheit:

/* Convert Fahrenheit to centigrade */
celsius(f)
{

local c;
c = (5.0 / 9.0) * (f - 32.0);
return(c);

}
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The celsius function is invoked in the same was as any of the DADiSP built-in
functions. For example:

celsius(32)

will return 0 and

celsius(212)

will return 100.
The celsius function can also operate on an entire series. For example, the {}

can create a series and

celsius({32, 212, 72})

returns a three point series with values {0, 100, 22.22222222}.

MATLAB

MATLAB stands for matrix laboratory and was originally developed to provide
easier programming access to specialized matrix processing routines. MATLAB
consists of a command interpreter and a variety of sub-routines that reside in
ASCII files known as M files.

MATLAB and its companion products are used in a broad range of applica-
tions, including signal and image processing, digital signal processing (DSP),
and control design. The MATLAB product family includes tools for:

• Test and measurement
• Data analysis and exploration
• Numeric and symbolic computing
• Plotting and advanced visualization
• Signal and image processing
• Algorithm development
• Deployment of MATLAB applications.

The MATLAB language is designed for interactive or automated
computation.

Matrix-optimized functions are used to perform interactive analyses, while
the structured language features allow users to develop their own algorithms
and applications. The language is applicable to a wide variety of tasks includ-
ing data acquisition, analysis, algorithm development, system simulation,
and application development. The language features include data structures,
object-oriented programming, graphical user interface (GUI) development
tools, debugging features, and the ability to link with C/C++ routines.

MATLAB offers more than 600 mathematical, statistical, and engineering
functions, including:

• Linear algebra and matrix computation
• Fourier and statistical analysis functions
• Differential equation solvers



h4716-ch10 5/2/2005 12: 36 page 319

Software packages 319

Figure 10.18 MATLAB spectral analysis of a dual-tone multi-frequency
(DTMF) signal

• Sparse matrix support
• Trigonometric and other fundamental mathematical operations
• Multidimensional data support.

MATLAB is capable of producing 2-D plots, images, and 3-D surfaces and
for visualizing volumetric data. Advanced visualization tools include surface
and volume rendering, lighting, camera control, and application-specific plot
types.

In order to configure MATLAB for use in particular types of application,
collections of algorithms, and visual interfaces are provided within a number
of MATLAB toolboxes. The most commonly used toolboxes include:

• The Statistics Toolbox includes descriptive statistics, hypothesis testing,
probability modelling, and regression functionality.

• The Optimization Toolbox includes minimization tools for linear, quadratic,
and non-linear programming, and for solving linear and non-linear least-
squares problems.

• The Curve Fitting Toolbox includes routines for pre-processing data, and
creating, analysing, and managing models that involve curve fitting.

• The Signal Processing Toolbox includes techniques for time-domain and
frequency domain analysis, spectral analysis, and filtering (Figure 10.18).

• The Image Processing Toolbox helps you visualize, process, enhance, and
analyse images.
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Figure 10.19 TracerDAQ display showing time-related captured data

Additional toolboxes, such as Wavelet, Symbolic Math, Fuzzy Logic, and
Neural Network, provide complementary, alternative methods for modelling
systems and analysing, displaying, and characterizing your data.

MATLAB provides direct access to data from serial ports as well as from
MATLAB formatted data files. MATLAB also includes built-in support for
popular file formats, including scientific data formats image file formats,
and industry-standard formats, such as Microsoft Excel. Additional func-
tions perform ASCII and low-level binary I/O from M-file, C, and Fortran
programs.

Dedicated applications

Dedicated applications package are usually designed to solve a particular
problem or range of problems. As such, a dedicated applications package
may not include programmable features but, instead, are usually configured
for use with a particular data source (or range of sources). Such software
is often supplied with items of data acquisition hardware such as simple
RS-232 and USB-based devices; and usually provides strip chart recording
facilities, low-frequency waveform display, and simple data logging and anal-
ysis features. TracerDAQ (from Measurement Computing – see Figure 10.19)
and WINDAQ (from DATAQ Instruments – see Figure 10.20) are typical
examples.
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Figure 10.20 WINDAQ display showing time-related captured data

Tools and utilities

Tools are aptly named utilities which provide the user with a range of facilities
designed to maximize the efficiency of a system. Facilities provided by a tool
kit may include any or all of the following:

• Reporting of hardware and software configuration
• System optimization
• Performance measurement
• Diagnostic and troubleshooting facilities
• Data recovery.

Norton SystemWorks

Symantec’s widely acclaimed package (originally developed by Peter Norton
many years ago) provides a comprehensive suite of programs and utilities
designed to cope with a wide range of problems, including hardware and
software management. The package offers excellent reporting facilities and
is extremely simple to use. In addition, utilities are provided that will monitor
aspects of a system’s performance. This can be useful when determining how
system resources are being used dynamically by applications (Figures 10.21
and 10.22).

Many other specialized tools and utilities are available. These are often ded-
icated to a very specific area, such as Chris Schroeder’s excellent parallel port
test utility (see Figure 10.23).
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Figure 10.21 System Information displayed by Norton Utilities (part of
Norton SystemWorks)

Figure 10.22 Memory information displayed by Norton Utilities (part of
Norton SystemWorks)
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Figure 10.23 VB Port Test utility developed by Chris Schroeder. This handy
program is invaluable for checking the status of the PC’s parallel ports

Figure 10.24 IRQ channels information displayed by Windows XP’s System
Tools utility

Operating system utilities

Modern operating systems (such as Windows NT or Windows XP) provide a
number of built-in utilities that can provide information of value to the engineer.
These utilities are normally only for reporting and do not generally allow users
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Figure 10.25 USB devices reported by Windows XP’s System Tools utility

to set parameters or alter the system configuration. A notable exception to this
is the System utility (available from the Windows Control Panel) where the
Device Manager can be used to change some Resource settings (e.g. the IRQ
channel of the parallel port).

Windows System Tools

The Windows System Tools utility can be used to provide detailed information
about the configuration of a system. Typical examples of using System Tools
in control and data acquisition applications are that of reporting IRQ channel
information (see Figure 10.24) and providing information on the installed USB
devices (see Figure 10.25).
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PC-based instruments (i.e. virtual instruments) are rapidly replacing items of
conventional test equipment in many of today’s test and measurement appli-
cations. This chapter provides readers with an introduction to the principles
and practice of these powerful, sophisticated, and highly cost-effective instru-
ments. One obvious use of virtual instruments is that of building automated test
systems but general laboratory, bench, and field-service applications are also
eminently possible.

Currently available PC instruments include digital storage oscilloscopes
(DSO), many of which incorporate additional features, such as spectrum
analysis, digital voltmeters and digital frequency meters, counters and timers,
waveform generators, arbitrary waveform generators (AWG), and logic analy-
sers. This chapter describes the facilities offered by modern high-specification
DSO and also shows how a low-cost sound card can be used to form the basis
of a simple oscilloscope for audio and general low-frequency applications.

Selecting a virtual
instrument

Several factors need to be considered when selecting a virtual instrument for a
particular application. These include:

• Ease of use: What level of expertise is required in order to make use of
the instrument and also whether the measurements are to be automated or
controlled by a human operator?

• Flexibility: Can the instrument be easily adapted to differing requirements
and can it be easily transferred from one PC to another?

• Performance: What performance criteria and specifications must be met?
• Functionality: Does the package offer a suitable range of functions and will

it interface correctly with an existing hardware/software configuration?
• Cost: Has the most cost-effective solution been chosen?

It is important to remember that virtual instruments comprise both hardware
and software. The hardware provides a means of interfacing to the PC and of
connecting external inputs. Additional controls may also be present (e.g. input
selection, trigger selection, attenuation, etc.). The software provides a means of
controlling the instrument, collecting data from it, processing the data, and then
displaying, analysing, and recording it. When purchasing a virtual instrument it
is important to ensure that both the hardware and the software fully meet your
requirements.

Instrument types

The following is a list of the main types of virtual instrument:

• digital storage oscilloscopes;
• digital counters, timers, and frequency meters;



h4716-ch11 5/2/2005 12: 37 page 326

326 PC Based Instrumentation and Control

Figure 11.1 PicoScope software display showing multiple windows providing
conventional oscilloscope waveform display, spectrum analyser display,
frequency display, and voltmeter display

• digital voltmeters;
• signal generators (AF, wideband, and RF);
• function generators (sine, square, triangle, and ramp waves);
• arbitrary waveform generators;
• spectrum analysers;
• logic analysers.

Note that several of the above functions may be combined into a single instru-
ment. For example, a DSO can easily provide functions associated with a digital
voltmeter, digital frequency meter, and a spectrum analyser (see Figure 11.1).

Instrument connection options

Various connection options for virtual instruments are listed in the table below:

Instrument connection Comments Notes

PCI, compact PCI, and High-performance applications based See Chapter 2 for
PXI adapter cards on dedicated PCs. Can be expensive. further information.

USB ports Flexible low-cost solution but can have See Chapter 2 for
speed limitations. further information.

PC parallel ports Usually requires an enhanced parallel port. May See Chapter 1 for
require an additional parallel port adapter. further information.

RS-232 serial ports Traditional solution allowing See Chapter 1 for
connection of multiple instruments but further information.
with limited speed.

(continued)
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Instrument connection Comments Notes

IEEE-488 (via suitable Suitable for comple ATE set-ups and See Chapter 8 for
controller card) test stands (can be limited in speed). further information.

Firewire and optical Potential for future high-speed
connections instrumentation applications.

PCMCIA A future solution for laptop computers
in field-service applications?

Digital storage
oscilloscopes

Probably the most well-known computer-based test instrument is the digital
storage oscilloscope (DSO). Because of the processing power available from
the PC coupled with the mass storage capability, a computer-based DSO is
able to provide a variety of additional functions, such as spectrum analysis and
digital display of both frequency and voltage. In addition, the ability to save
waveforms and measurements for future analysis, or for comparison purposes
can be extremely valuable, particularly where evidence of conformance with
standards or specifications is required.

Unlike a conventional oscilloscope which is primarily intended for waveform
display, a computer-based digital storage oscilloscope (DSO) effectively com-
bines several test instruments in one single package. The functions generally
available from a DSO include:

• waveform display;
• precise time and voltage measurement (using adjustable cursors);
• digital display of voltage;
• digital display of frequency and/or periodic time;
• frequency spectrum display and analysis;
• data logging (i.e. storage of waveform data for later analysis);
• ability to save/print waveforms and other information in graphical format

(e.g. as .jpg or .bmp files).

The DSO comprises an external hardware unit which is connected to the PC
by means of either a conventional 25-pin parallel port connector or by means
of a serial USB connector. Some manufacturers also provide dedicated parallel
port to USB adapters designed specifically for their own DSO fitted with parallel
ports. If in doubt it is wise to contact the supplier for their advice concerning
connection to a PC.

The DSO software is usually supplied on CD-ROM (or can be downloaded
from the manufacturer’s web site). It is important to note that although the
DSO hardware cannot usually be used without the appropriate software some
manufacturers supply software drivers that will allow you to control the DSO
and capture data into your own applications. However, for most of us this is not
an option since the supplied software will usually outperform anything that we
can write ourselves!

A DSO combines elements of both hardware and software. These must work
together to provide all the functionality of a conventional DSO but also those
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Photo 11.1 Pico ADC-212 12-bit digital storage oscilloscope (DSO)

of a spectrum analyser, data logger, digital frequency meter, and voltmeter. In
many cases a DSO will be able to replace several items of conventional test
equipment. Switching between these instruments is usually quick and easy, and
in most cases each instrument is able to have its dedicated window on the PC
display.

Multiple views of the same signals and on-screen display voltage and fre-
quency can greatly enhance measurements made with a DSO. In addition, with
some DSO waveforms can be annotated with notes and they can subsequently
be printed, saved or exported to other applications.

Several types of DSO are currently available. These can be conveniently
arranged into three different categories according to their application:

• Low-cost DSO
• High-speed DSO
• High-resolution DSO.

Unfortunately, there is often some confusion between the last two categories.
A high-speed DSO is designed for examining waveforms that are rapidly
changing. Such an instrument does not necessarily provide high-resolution
measurement. Similarly, a high-resolution DSO is useful for displaying wave-
forms with a high degree of precision, but it may not be suitable for examining
fast waveforms. The difference between these two types of DSO should become
a little clearer later on but first it is worth explaining some of the more important
specifications for this type of equipment.
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Sampling rate and bandwidth

The upper signal frequency limit of a DSO is determined primarily by the rate
at which it can sample an incoming signal. Typical sampling rates for different
types of DSO are:

Type of DSO Typical sampling rate

Low-cost DSO 20–100 KB per second
High-speed DSO 100–1000 MB per second
High-resolution DSO 20–100 MB per second

In order to display waveforms with reasonable accuracy, it is normally
suggested that the sampling rate should be at least twice and preferably more
than five times the highest signal frequency. Thus, in order to display a 10 MHz
signal with any degree of accuracy a sampling rate of 50M samples per second
will be required.

The five times rule merits a little explanation. When sampling signals in
a digital to analogue converter we usually apply the Nyquist criterion that the
sampling frequency must be at least twice the highest analogue signal frequency.
Unfortunately, this no longer applies in the case of a DSO where we need to
sample at an even faster rate if we are to accurately display the signal. In
practice we would need a minimum of about five points within a single cycle of
a sampled waveform in order to reproduce it with approximate fidelity. Hence
the sampling rate should be at least five times that of highest signal frequency
for a DSO to be able to display a waveform reasonably faithfully.

A special case exists with dual-channel DSOs. Here the sampling rate may
be shared between the two channels. Thus an effective sampling rate of 20 MB
samples per second might equate to 10 MB samples per second for each of the
two channels. In such a case the upper frequency limit would not be 4 MHz but
only a mere 2 MHz!

The approximate bandwidth required to display different types of signals
with reasonable precision is given in the table below:

Signal Bandwidth required (approx.)

Low frequency and power DC to 10 kHz
Audio frequency (general) DC to 20 kHz
Audio frequency (high quality) DC to 50 kHz
Square and pulse waveforms (up to 5 kHz) DC to 100 kHz
Fast pulses with small rise times DC to 1 MHz
Video DC to 10 MHz
Radio (LF, MF, and HF) DC to 50 MHz

The general rule is that, for sinusoidal signals the bandwidth should ideally
be at least double that of the highest signal frequency whilst the for square wave
and pulse signals the bandwidth should be at least 10 times that of the highest
signal frequency.
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It is worth noting that most manufacturers define the bandwidth of an instru-
ment as the frequency at which a sine wave input signal will be fall to 0.707 of
its true amplitude (i.e. the −3 dB point). To put this into context, at the cut-off
frequency the displayed trace will be in error by a whopping 29%!

Resolution and accuracy

The relationship between resolution and signal accuracy (not bandwidth) is
simply that the more bits used in the conversion process the more discrete
voltage levels can be resolved by the DSO. The relationship is as follows:

x = 2n

where x is the number of discrete voltage levels and n is the number of bits.
Thus, each time we use an additional bit in the conversion process we double
the resolution of the DSO, as shown in the table below:

Number of bits (n) Number of discrete voltage levels (x)

8 256
10 1024
12 4096
16 65 536

A DSO stores its captured waveform samples in a buffer memory. Hence, for
a given sampling rate, the size of this memory buffer will determine for how
long the DSO can capture a signal before its buffer memory becomes full.

The relationship between sampling rate and buffer memory capacity is impor-
tant. A DSO with a high sampling rate but small memory will only be able to
use its full sampling rate on the top few timebase ranges.

To put this into context, it is worth considering a simple example. Assume
that we need to display 10 000 cycles of a 10 MHz square wave. This signal will
occur in a time frame of 1 ms. If we are applying the five times rule we would
need a bandwidth of at least 50 MHz to display this signal accurately.

To reconstruct the square wave we would need a minimum of about five
samples per cycle so a minimum sampling rate would be 5 × 10 MHz = 50 MB
samples per second. To capture data at the rate of 50 MB samples per second
for a time interval of 1 ms requires a memory that can store 50 000 samples. If
each sample uses 16 bits we would require 100 KB of extremely fast memory!

The measurement resolution or measurement accuracy of a DSO (in terms of
the smallest voltage change that can be measured) depends on the actual range
that is selected. So, for example, on the 1 V range an 8-bit DSO is able to detect
a voltage change of one in two hundred and fifty-sixth of a volt or 1/256 V or
about 4 mV. For most measurement applications this will prove to be perfectly
adequate as it amounts to an accuracy of about 0.4% of full scale.

Low-cost DSO

Low-cost DSO are primarily designed for low-frequency signals (typically sig-
nals up to around 20 kHz) and are usually able to sample their signals at rates of
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between 10 KB and 100 KB samples per second. Resolution is usually limited
to either 8- or 12-bits (corresponding to 256 and 4096 discrete voltage levels,
respectively).

Low-cost DSO may be either single- or dual-channel units and, by virtue of
their low cost and simplicity, they are ideal for educational purposes as well
as basic measurements. Most low-cost DSO provide all of the functionality
associated with a conventional ’scope but with many additional software-driven
features at a fraction of the price of a comparable conventional test instrument.
That said, there are two important limitations of low-cost DSO:

1 Their bandwidth is generally limited so that they are only suitable for
examining low-frequency and audio signals.

2 Their resolution is generally limited to 8 bits or 256 discrete steps of
voltage.

A typical specification for a low-cost DSO is:

Sampling rate: 20 KB samples per second
Resolution: 8 bits
Number of channels: 1

Low-cost DSO frequently require no external power supply as they draw their
power from the parallel port or USB port of a PC. This makes them ideal for
use with laptop computers without the need for a mains supply.

High-speed DSO

High-speed DSO are usually dual-channel instruments that are designed to
replace conventional general-purpose oscilloscopes (bit with the added advan-
tage that captured data can be stored for subsequent processing and analysis).
These instruments have all the features associated with a conventional ’scope
including trigger selection, timebase and voltage ranges, and an ability to
operate in X-Y mode.

Additional features available with a computer-based instrument that are not
usually available from conventional benchtop ’scopes include the ability to cap-
ture transient signals (as with a storage ’scope) and save waveforms for future
analysis. The ability to analyse a signal in terms of its frequency spectrum is
yet another feature that is only possible with a DSO (more of this later).

A typical specification for a high-speed DSO is:

Sampling rate: 50 MB samples per second
Resolution: 8 bits
Number of channels: 2

Autoranging is another very useful feature that is often provided with a DSO.
If you regularly use a conventional ’scope for a variety of measurements you
will know only too well how many times you need to make adjustments to the
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vertical sensitivity of the instrument. To have this adjustment performed for
you automatically is an absolute boon!

High-resolution DSO

High-resolution DSOs are used for precision applications where it is necessary
to faithfully reproduce a waveform, and also to be able to perform an accurate
analysis of noise floor and harmonic content. Typical applications include small
signal work and high-quality audio.

Unlike the low cost which typically has 8-bit resolution and poor DC accuracy,
these units are usually accurate to better than 1% and have either 12- or 16-bit
resolution. This makes them ideal for audio, noise, and vibration measurements.

The increased resolution also allows the instrument to be used as a spectrum
analyser with very wide dynamic range (up to 100 dB). This feature is ideal for
performing noise and distortion measurements on low-level analogue circuits
and high-fidelity equipment generally (such as CD and MP3 players).

A typical specification for a high-speed DSO is:

Sampling rate: 33 MB samples per second
Resolution: 12 bits
Number of channels: 2

Choosing a computer-based DSO

Unfortunately, for newcomers to computer-based instruments, choosing a DSO
can be an somewhat daunting task. It is extreme to avoid making a costly mistake
when choosing an instrument for the first time, and a thought and research at
the outset can certainly help!

The first step (and most obvious) step is that of deciding what you want to use
the instrument for. This will usually be fairly easy if you are intending to simply
replace a conventional stand-alone instrument. It may not be quite so simple if
you are starting out from scratch! In either case, it is worth asking the following
questions:

• What measurements will you be making on a regular basis?
• What addition measurements or applications do you wish to perform?
• What signal amplitudes and frequency ranges are you working with?
• Do you need to measure pulse waveforms accurately or do you usually work

with sinusoidal signals?
• Are your signals repetitive or are they one-off single-shot signals?
• Do you need to measure small time intervals and precise signal amplitudes?
• Do you need to carry out accurate measurements of noise and harmonic

distortion, or are you just interested in displaying waveforms?
• Do you need to analyse signals in the frequency domain (i.e. spectrum

analysis) as well as the time domain (conventional waveform display)?
• Will the DSO be used only on the bench or will it be used as a portable item

of test equipment with a laptop computer?
• What budget is available for purchasing the instrument?
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It is also worth asking yourself a few questions about the PC that you intend
to use with the instrument:

• What ports are available?
• Is the parallel port dedicated to a printer or is it available for use by the DSO?
• If the parallel port is unavailable, does the PC have a spare USB port or will

you need to purchase a hub? Or, can the PC be fitted with a second parallel
port by means of a suitable PCI or EISA adapter card?

In many cases you may find that you are faced with a compromise between
resolution and speed. However, a DSO with a 12-bit resolution and sampling rate
of 5G samples per second will be more than adequate for most general-purpose
applications!

Modern DSOs, with their PC connectivity, can also be fully integrated into
automatic test equipment (ATE) systems. In addition, the DSO is often used as
the front-end of a highly cost-effective data acquisition system.

Bandwidth alone is not enough to ensure that a DSO can accurately capture a
high-frequency signal. The goal of manufacturers is to achieve a flat frequency
response. This response is sometimes referred to as a Maximally Flat Envel-
ope Delay (MFED). A frequency response of this type delivers excellent pulse
fidelity with minimum overshoot, undershoot, and ringing.

It is important to remember that, if the input signal is not a pure sine wave,
it will contain a number of higher-frequency harmonics. For example, a square
wave will contain odd harmonics that have levels that become progressively
reduced as their frequency increases. Thus, to display a 1 MHz square wave
accurately you need to take into account the fact that there will be signal
components present at 3, 5, 7, 9, 11 MHz, and so on.

As mentioned earlier, it is wise to purchase a DSO with a bandwidth that is five
times higher than the maximum-frequency signal you wish to measure. Note,
however, that with some instruments the specified bandwidth is not available
on all voltage ranges, so it is worth checking the manufacturer’s specification
carefully.

Most DSO have two different sampling rates (modes) depending on the sig-
nal being measured: real time and equivalent time sampling (ETS) – often
called repetitive sampling. However, since this mode works by building up the
waveform from successive acquisitions, ETS only works if the signal you are
measuring is stable and repetitive.

Basic operation of a DSO

The basic operation of a DSO is extremely straightforward and all of the
instrument’s controls are accessed through software using a standard Windows
interface (see Figure 11.2). It is worth comparing this interface with the controls
and adjustments provided on a conventional oscilloscope (see Photo 11.2).

Unlike a conventional oscilloscope, most DSOs will provide you with more
than one type of view of the data that you are collecting. Typically these will
include:

• an oscilloscope display, with all of the features of a modern storage
oscilloscope;
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Figure 11.2 The PicoScope software uses a conventional drop-down menu
system. Here the ‘Save as’ option has been selected from the ‘File’ menu in
order to preserve the waveform data for later viewing or analysis using
external software

Photo 11.2 Controls fitted to a conventional oscilloscope (compare this with
the virtual interface shown in Figure 11.1)

• a spectrum analyser, showing the power at each of a range of frequencies;
• a meter, which can show the DC voltage, AC voltage, frequency, or dB;
• an XY oscilloscope display, which shows one channel against another (for

Lissajous figures, phase analysis, etc.).
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Figure 11.3 The Windows clipboard can be used to copy waveform and other
data from PicoScope to other applications

In addition to the basic views, it is possible to display a composite view made
up of several windows each with different views (see Figure 11.1). Only one of
the views on the desktop will actually be ‘active’ at any time but you can switch
between views using all of the usual Windows methods. For example, you can
activate a view by clicking the left mouse button over the view.

The settings for data collection or the parameters used for the display of any
view can be easily changed, but first the respective window must be activated.
To review the settings for any particular view first it needs to be made active and
then the Settings Menu can be used to make the required changes. For some
views, you may also be able to ‘zoom in’ on a small area of the display by
setting the multiplier for the X- or Y-axis (or both) to a value other than one.

The timebase settings control the time interval as with a conventional oscil-
loscope display. As with a conventional instrument the control is marked in
terms of ‘time per division’, however, it may also be possible to configure a
DSO in terms of ‘time per scan’ which may make more sense in the case of
certain types of measurement.

For dual-channel DSOs you can select which of the two channels (or both)
to display on the screen. With two channels, each channel has a separate axis
and each trace and its axis can usually displayed in a different colour (unlike a
conventional oscilloscope).

Voltage ranges are selected in much the same way as for a conventional
oscilloscope (i.e. in terms of ‘volts per division’) but an autoranging facility
may also be included. The autoranging option can be particularly useful if you
are switching between different, but consistent, signals. You may also be able
to add custom ranges so that the values are displayed in some other units, for
example, pressure or acceleration (Figures 11.3 and 11.4).
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Figure 11.4 The DSO control settings can be changed by using the drop-down
menus as well as the tool buttons and controls provided in the display window

Waveform display

The most common use of an oscilloscope is that of displaying waveforms. In
this respect the operation of a DSO is very similar to that of a conventional
oscilloscope. You simply need to select the required voltage scale and timebase
settings, and this can be done by pointing and clicking on the control buttons
and drop-down selection boxes. Thus, for basic waveform measurements there
is usually no need to use the menu system.

Figure 11.5 shows a 10 V peak–peak sine wave at 1 kHz displayed with the
voltage scale on its ‘Auto’ (i.e. autoranging) setting and the timebase set to 1 ms
per division. Note that this results in a full-screen timebase scan of 10 ms. In
other words, we are looking at a 10 ms sample of the sine wave.

The Trigger control has also been set to ‘Auto’ and the trigger point set
to ‘Channel A’, ‘Rising’ (i.e. positive going trigger), and 0 mV (i.e. the zero
voltage axis crossing point). Note that the trigger point is shown on the display
as a small grey circle at the origin of the axis (i.e. at t = 0 ms and V = 0 V).

If only a single cycle of the sine wave is to be displayed the timebase needs to
be set to 100 µs per division (as shown in Figure 11.6). Once again, the trigger
point appears at t = 0 ms and V = 0 V. Note that it is very important to be able
to control the trigger point, particularly where a waveform is non-repetitive in
nature.

Parameter measurement

For accurate parameter measurement cursors may be added to the display in
the form of horizontal or vertical rulers that can be moved using the mouse or
cursor keys. Figure 11.7 shows how a cursor can be added in order to determine
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Figure 11.5 A 10 V peak–peak sine wave at 1 kHz displayed with the
timebase set to 1 mV/div. and the vertical scale set to autoranging

Figure 11.6 The DSO adjusted as for Figure 11.6 but with the timebase
set to 100 µs/div.

the exact peak value of a nominal 10 V peak sine wave. The peak value has
here been measured at 9.625 V. A further cursor has been added in order to
determine the time that the waveform takes to reach the first peak. This is
found to be 0.2467 ms. It should be clear from this example just how useful
the cursors can be if you need to make precise measurements of voltage and
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Figure 11.7 Adjustable cursors make it possible to carry out extremely
accurate measurements. Here the peak value of the (nominal 10 V peak)
waveform is measured at precisely 9625 mV (9.625 V). The time to reach the
peak value ( from 0 V) is measured as 246.7 µs (0.2467 ms)

Figure 11.8 In this screen grab, the trigger point (shown with the grey circle)
has been adjusted to just over 10 V (10 150 mV) and the time scale shifted in
order to display the leading edge of a fast pulse

time. Gone are the times when you had to estimate the position of a point on a
waveform using a dimly lit graticule!

A further example is shown in Figure 11.8. In this example the trigger point
(the grey circle) has been adjusted to just over 10.15 V and the time scale shifted
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Figure 11.9 The addition of a second time cursor makes it possible to
measure the time accurately between two events. Here event ‘o’ occurs 131 ns
before the trigger point whilst event ‘x’ occurs 397 ns after the trigger point.
The elapsed time between these two events is 528 ns. The two cursors can be
adjusted by means of the mouse (or other pointing device) or, more accurately,
using the PC’s cursor keys

in order to display the leading edge of a fast pulse. By manipulating the cursors
it is possible to accurately determine the rise time of the pulse as well as the
overshoot, undershoot, and damping factor.

Further cursors can be added in order to determine the difference between
two discrete events or points on a continuous waveform. In the example shown
in Figure 11.9, the addition of a second time cursor has allowed us to make
an accurate measurement of the elapsed time between the start of a pulse and
the 95% point. The start of the pulse has occurred 131 ns before the trigger
point whilst the 95% point has been reached 397 ns after the trigger point. The
time difference between these two events has been calculated and displayed as
520 ns.

Spectrum analysis

The technique of Fast Fourier Transformation (FFT) calculated using software
algorithms using data captured by a DSO has made it possible to produce
frequency spectrum displays. Such displays can be to investigate the harmonic
content of waveforms as well as the relationship between several signals within
a composite waveform.

Figure 11.10 shows the frequency spectrum of a 1 kHz square wave derived
from a low-cost waveform generator. The DSO has been set to capture data at
a rate of 256 samples per second over the frequency range DC to 12.2 kHz. As
expected, the odd harmonics (3, 5, 7 kHz, and so on) are present at amplitudes
that decay progressively with harmonic order. The display indicates that the
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Figure 11.10 Frequency spectrum of a 1 kHz square wave generated by a
general-purpose waveform generator. The instrument is set to capture 256
samples per second. Note that the noise floor appears to be only about 40 dB
below the fundamental. Note also the preponderance of odd harmonics at 3, 5,
7 kHz, and so on

noise floor is at a level of −20 dB (or 40 dB down on the level of the fundamental
which is +20 dB).

Figure 11.11 shows the effect of increasing the sampling rate to 512 samples
per second. The increased sampling rate makes it possible to make a more
accurate assessment of the levels of the individual harmonic components but
clearly there is more present in this spectrum than just the expected harmonics!

Figure 11.12 shows the effect of a further increase in sampling rate. At 1024
samples per second, it is possible to see the noise floor a little more accurately
and also to detect the presence of multiple signal components between each of
the harmonics of the 1 kHz fundamental.

At 2048 and 4096 samples per second we obtain a rather different view
of what’s going on (see Figures 11.13 and 11.14). In fact, the noise floor is
nearer −60 dB and what we are looking at is a series of harmonics each with
a set of side-frequency components that result from modulation by unwanted
signal components with a spacing of about 250 Hz. This display very effectively
shows the advantages of using a high sampling rate and having sufficient buffer
memory available to actually store the captured data!

Finally, and in contrast with the previous examples, Figure 11.15 shows a
much purer signal. This signal is a 1 kHz sine wave derived from a low-distortion
AF signal generator. Here the DSO has been set to capture samples at a rate
of 4096 per second within a frequency range of DC to 12.2 kHz. The display
clearly shows the second harmonic (at a level of −50 or 70 dB relative to the
fundamental), plus further harmonics at 3, 5, and 7 kHz (all of which are greater
than 75 dB down on the fundamental).

When cursors are added to a frequency spectrum display, it is possible to
make extremely accurate measurements. Figure 11.16 shows the frequency
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Figure 11.11 Frequency spectrum of a 1 kHz square wave generated by a
waveform generator. The instrument is set to capture 512 samples per second.
Note that it is now possible to make a more accurate assessment of the various
frequency components present. Note also that the noise floor can be more
accurately measured

Figure 11.12 Frequency spectrum of a 1 kHz square wave generated by a
waveform generator. The instrument is set to capture 1024 samples per
second. Note how the frequency resolution of the instrument has increased
considerably compared with the previous frequency spectra
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Figure 11.13 Frequency spectrum of a 1 kHz square wave generated by a
waveform generator. The instrument is set to capture 2048 samples per
second. The increased frequency resolution of the instrument is now showing
us how the noise spectrum is actually modulated onto the fundamental and
harmonic components. This was simply not apparent in the spectra shown in
Figures 11.11 and 11.12

Figure 11.14 Frequency spectrum of a 1 kHz square wave generated by a
waveform generator. The instrument is set to capture 4096 samples per
second. It is now easy to see how the modulated spectrum varies
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Figure 11.15 Frequency spectrum of a 1 kHz sine wave generated by a
low-distortion signal generator. The instrument is set to capture 4096 samples
per second. Notice how the second harmonic is approximately 70 dB down on
the fundamental. It is also possible to see the third, fifth, and the seventh
harmonic

Figure 11.16 Spectrum analysis of a radio signal at 1184 kHz (1.184 MHz).
The cursors have been adjusted in order to display the amplitude and
frequency of the fundamental and its third harmonic. The third harmonic at
3553 kHz (3.553 MHz) is approximately 21 dB down on the fundamental
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spectrum of a radio-frequency signal at 1184 kHz (1.184 MHz). Numerous other
signal components are present including the second, third, fourth, and fifth
harmonics. The cursors have been set to the fundamental (1.184 MHz) and
third harmonics (3.553 MHz). The level and frequency of each harmonic has
been displayed. Note that the fundamental has an amplitude of 17.46 dB whilst
the third harmonic is at −4.08 dB. Needless to say, this type of measurement
would be impossible with a conventional oscilloscope!

Sound card
oscilloscopes

Any PC with a standard sound card (or equivalent interface integrated with the
motherboard) can be used to record and playback analogue signals. In order
to do this, the sound card interface incorporates 16- or 32-bit analogue-to-
digital and digital-to-analogue converters (ADC and DAC, respectively). Sound
cards can usually be configured for stereo or mono operation with sampling
rates of 11 025 Hz (‘voice quality’), 22 050 Hz (‘tape quality’), and 44 100 Hz
(‘CD quality’). The stereo capability makes it possible to have two independent
channels (Y1 and Y2) as with a conventional oscilloscope.

Provided that you are willing to accept the bandwidth limitation (i.e. 20 Hz
to 20 kHz) typical of audio signals, the ability to convert an analogue signal
into digital stored data makes, it possible to use a sound card as the hardware
component of a digital storage oscilloscope (DSO).

With the aid of appropriate software (available at minimal cost) the stored data
produced by a sound card can be made to display on a screen in much the same
way as it appears on the screen of a conventional oscilloscope. Furthermore,
the use of Fast Fourier Transformation (FFT) makes it possible to produce a
frequency domain display as well as the more conventional time domain display.

Whilst it is possible to use a sound card without any external interface (most
sound cards have ample sensitivity so additional gain from a pre-amplifier stage

Photo 11.3 A typical low-cost sound card supplied in PCI format
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is unlikely to be required) there are several good reasons for using an input
interface:

• The 50 k� input impedance of a sound card (which is appropriate for use
with audio equipment) is too low for general-measurement applications.

• The 50 k� input impedance is inappropriate for use with standard ’scope
probes which are designed to work with standard 1 M� oscilloscope inputs.

• The sensitivity of most sound cards varies according to software gain settings
and the size/resolution of PC displays also tends to vary widely hence some
method of calibration is essential if accurate measurements are to be made.

These limitations can be overcome by means of a simple interface of the
type shown in Figure 11.17. This circuit incorporates two identical channels
for the Y1 and Y2 inputs. The input signal is fed to a switched potential divider
attenuator (R10 to R15 and R20 to R265) which has a constant input impedance
of 1 M�. Junction gate field-effect transistors (TR10 and TR20) are connected
as unity gain source followers with the output voltage developed across the two
variable gain controls (VR10 and VR20). Capacitors, C10 and C20, are used
to provide DC isolation at the input whilst C11 and C21 provide DC isolation
at the output.

The sound card input interface incorporates its own AC mains supply which
also provides a 1 V peak–peak calibration signal at 50 Hz. Diodes, D1 and D2,
provide full-wave bi-phase rectification with an output of approximately 8.5 V
appearing across the reservoir capacitor, C1. Secondary current from T1 is also
fed to the anti-parallel diode clamp, D3 and D4. A potential divider, R2 and
R3, provides the 1 V peak–peak calibration signal which is applied to the input
attenuator when switch, S2, is set to the ‘calibrate’ position. Light emitting
diodes, D5 and D6, indicate whether S2 the instrument is set to the ‘calibrate’
or the ‘operate’ position.

As mentioned earlier, the upper signal frequency limit of a DSO is deter-
mined primarily by the rate at which it can sample an incoming signal. Using a
maximum sound card sampling rate of 44.1 kHz a sinusoidal signal at 20 kHz
can be displayed with acceptable accuracy (the Nyquist criterion).

However, in order to display non-sinusoidal signals faithfully, we need to
sample at an even faster rate if we are to accurately display the signal. In
practice we would need a minimum of about five points within a single cycle
of a sampled waveform in order to reproduce it with approximate fidelity.
Hence the sampling rate should be at least five times that of highest sig-
nal frequency for a DSO to be able to display a waveform with reasonable
accuracy.

With a fixed 44.1 kHz sampling rate this would suggest that audio-frequency
signals of up to 4 kHz will be faithfully displayed using a sound card; however,
it is also necessary to take into account the fact that a sound card interface is
AC coupled and therefore is unable to respond to DC levels!

Windows Oscilloscope 2.51

Windows Oscilloscope 2.51 was written by Konstantin Zeldovich who is a
research associate in the Physics Department at Moscow State University.
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Figure 11.17 Complete circuit of the sound card interface

This competent program works extremely well and is provided as freeware.
The main features of Windows Oscilloscope 2.51 are as follows:

• single trace, dual trace, and XY modes;
• spectrum analyser (real-time, built-in);



h4716-ch11 5/2/2005 12: 37 page 347

Virtual instruments 347

Photo 11.4 The prototype sound card oscilloscope interface

• 20 kHz bandwidth;
• trigger adjustment;
• point-and-click measurement function;
• storage mode;
• data export to the Windows clipboard or to a disk file.

A typical Windows Oscilloscope 2.51 display is shown in Figure 11.18. The
software operates in dual-channel mode with different colour traces used to
differentiate the two channels. Separate sliding position and gain controls are
provided. Both the trigger level and the trigger delay are adjustable using slider
control. The timebase is also set by means of a slider control.

Clicking the meter button in the toolbar of Windows Oscilloscope 2.51
toggles Meter Mode on and off. In Meter Mode, you can measure time and
level of a waveform simply by clicking left and right mouse buttons on the
Oscilloscope display. A left button click sets cursor 1 and right click sets cursor
2. When both cursors are set, the difference between the cursors’ positions is
shown in the right three parts of the status bar.

For convenience, the reciprocal value of time/frequency difference is
shown in the 1/dt (1/dF) status window. This allows you to quickly measure
the frequency of a waveform by clicking left and right buttons on the successive
maximums and looking at the 1/dt value displayed.

Software Oscilloscope

The second of our duo of sound card oscilloscopes originates in Japan. Unlike
the previous two packages, Software Oscilloscope operates with a single
channel, and it provides simultaneous time domain and frequency domain
displays (see Figure 11.19).
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Figure 11.18 600 Hz (approx.) sine wave displayed using Windows
Oscilloscope 2.51 and the sound card interface

Software Oscilloscope uses selectable sampling rates of 11, 22 and 44.1 kHz
(note that the highest rate is only available to registered users). The sound
card needs to operate in full-duplex mode, allowing concurrent recording and
playback. Software Oscilloscope runs with most versions of Windows (but not
Windows NT or Windows 3.x) but it does require DirectX support (see below).

Software Oscilloscope requires the DirectX Runtime module. Various
versions of DirectX are available including:

Windows version DirectX compatibility

Windows 98 DirectX 9.0
Windows Me DirectX 9.0
Windows 2000 DirectX 9.0
Windows 95 DirectX 8.0
Windows XP Not required
Windows NT Not supported

Waveform display

Waveform display with a sound card oscilloscope is extremely straightforward.
Sinusoidal signals in the frequency range 20 Hz to 20 kHz can be displayed with
a high degree of accuracy. Figure 11.18 shows a typical sine wave displayed
using Windows Oscilloscope 2.51. Note that the Y1 and Y2 gains are set to 4.38
and that the time for a complete sweep is set to 5 ms (the signal frequency is
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Figure 11.19 Simultaneous time domain and frequency domain displays
provided by Software Oscilloscope

approximately 600 Hz). Figure 11.20 shows a modulated waveform displayed
using Windows Oscilloscope 2.51. The waveform consists of a sine wave at
440 Hz modulated at 100 Hz to a depth of about 25%.

A video cross-hatch waveform (vertical scan) displayed using Windows
Oscilloscope 2.51 is shown in Figure 11.21. Note that the sweep time has
been set to 36 ms and, as a consequence, 1.8 (i.e. 36/20) cycles of the 50 Hz
vertical scan waveform are displayed. The signal amplitude is approximately
1.3 V peak–peak. A vertical scan video colour bar waveform is shown in
Figure 11.22. Note that the absolute DC level cannot be correctly shown due to
the AC coupling used in the sound card input interface.

Figure 11.23 shows an expanded view of the vertical sync pulse shown in
Figure 11.22. To obtain this waveform the timebase has been set to produce a
horizontal sweep time of 5.4 ms. Notice that it is just possible to distinguish
individual line scans in Figure 11.23.
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Figure 11.20 A modulated waveform displayed using Windows
Oscilloscope 2.51

Figure 11.21 Video cross-hatch waveform (vertical scan) displayed using
Windows Oscilloscope 2.51

Parameter measurement

With sound card oscilloscopes, accurate parameter measurement can be made
possible in various ways, for example:

• Continuously adjustable cursors (Software Oscilloscope).
• Dedicated measurement modes with cross-hairs that can be placed using a

mouse (Windows Oscilloscope 2.51).
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Figure 11.22 Video colour bar waveform (vertical scan) displayed using
Windows Oscilloscope 2.51

Figure 11.23 Expanded view of the vertical sync pulse of the waveform
shown in Figure 11.22

Figure 11.24 shows the parameters of a square wave being measured using
Software Oscilloscope. The horizontal (X) cursors are placed at equivalent
points on successive cycles and the time difference between then is calculated
and displayed (approximately 20 ms). A similar process using the vertical (Y)
cursors can be used to determine the peak and peak–peak voltage. Cursors can
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Figure 11.24 Use of cursors for precise parameter measurement of a
repetitive waveform using Software Oscilloscope

also be used in conjunction with Software Oscilloscope’s frequency domain
display (as shown in Figure 11.24).

A further example is shown in Figure 11.25. Here the parameters of a pulse
are being accurately measured. The pulse width is found to be 1.596 ms (i.e.
2.249−0.653 ms) and its peak–peak value is 9400 mV (i.e. 7000–(−2400 mV)).

Spectrum analysis

The technique of Fast Fourier Transformation (FFT) makes it possible to pro-
duce frequency spectrum displays. Such displays can be to investigate the
harmonic content of waveforms as well as the relationship between several
signals within a composite waveform.

Figure 11.26 shows the frequency spectrum for the sine wave shown previ-
ously in Figure 11.18. It should be noted that the sine wave is extremely pure
with only one single-frequency component evident.
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Figure 11.25 Pulse parameter measurement using Software Oscilloscope

Figure 11.26 Frequency spectrum for the sine wave shown in Figure 11.18
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Figure 11.27 Frequency spectrum for a sine wave with mild distortion
present (third and seventh harmonic components are visible)

Figure 11.28 Frequency spectrum for a sine wave with severe distortion
present (third, fifth, and seventh harmonic components can be clearly seen)

Figure 11.27 shows the same waveform as that shown in Figure 11.26 but
with mild distortion present. The waveform is no longer a pure sinusoid and
the third and seventh harmonic components have become visible.

Figure 11.28 shows the frequency spectrum of a severely distorted sine wave
in which third, fifth, and seventh harmonics are present (the ninth harmonic is
also present but cannot be seen due to the sweep setting).
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The PC is a potential prime mover in a huge variety of process control and
instrumentation applications ranging from simple stand-alone machine con-
trollers to fully integrated production control systems. This chapter aims to
provide readers with an introduction to the procedure for selecting and speci-
fying hardware and software for a PC-based instrumentation or process control
system. In addition, several representative applications of PC-based systems
are discussed.

Expansion cards The range of PC expansion boards currently available from a large number of
manufacturers includes:

• Analogue I/O cards with up to 16 analogue inputs and up to four buffered
analogue outputs.

• Digital I/O cards with direct TTL-compatible inputs and outputs.
• Digital I/O cards with opto-isolated inputs and outputs.
• Digital I/O cards with buffered I/O lines.
• Digital output cards fitted with relays or solid-state devices for AC or DC

power control.
• EPROM programmers.
• IEEE-488/GPIB interface cards.
• Network adapter cards.
• Modem cards.
• Prototyping cards (these may include the necessary PC ISA/PCI bus interface

logic and provide the user with an area for soldering components fitted into
a 0.1′′ matrix of plated through holes).

• Serial communications cards for RS-232, RS-422, RS423, or RS-485 serial
ports.

• Stepper motor controllers.
• Multi-function I/O cards (offering mixed analogue and digital I/O facilities).
• Thermocouple interface cards.
• High-speed data acquisition cards.
• Bus expansion cards (which interface with external card frames or

motherboards).
• PC instrument cards (e.g. function generators, counters/digital frequency

meters, spectrum analysers, etc.).

In addition, the system builder is able to select from a large range of signal
conditioning cards which provide the necessary interfacing circuitry for a wide
range of popular sensors and output devices. It is thus eminently possible to
construct a PC-based process control system simply by selecting ‘off-the-shelf’
modules. Only when dealing with very specialized applications it is necessary to
manufacture ones own dedicated I/O cards and/or external signal conditioning
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boards. Appendix J lists a number of major suppliers of PC expansion cards
and associated signal conditioning equipment.

Approaches The system designer can select from a range of options depending upon the com-
plexity and individual requirements of a particular application. The following
general approaches are available:

• Stand-alone PC systems based on internally fitted expansion cards, rack
modules, or separately enclosed units).

• PC systems based on standard PC expansion cards (and I/O processing cards,
where appropriate) fitted into external card frame modules.

• Industrial PC systems (using a ruggedized PC functioning as a dedicated
process controller or data-gathering device) fitted with internal or external
expansion cards, and housed in a rack or freestanding enclosure.

• RS-232-based systems with the PC as controller (peripheral hardware
connected via an asynchronous serial link).

• IEEE-488-based systems with the PC as controller.
• Backplane bus-based systems with a PC bus master/controller and a card

frame bus.
• Networked/distributed PC systems (e.g. based on Ethernet or BITBUS) with

enclosures and expansion cards to meet local requirements.

PC instruments

In addition to the vast range of expansion cards currently available, several
manufacturers have developed a range of dedicated PC instruments (see Chapter
11) that emulate conventional items of test equipment (such as oscilloscopes,
counters, function generators, and digital frequency meters).

A PC instrument offers many advantages over its conventional counterpart.
It is flexible and adaptable and, in many cases, measurements may be automated
under programmed control. Furthermore, considerable savings can be achieved
from the elimination of redundant hardware (such as displays, operator controls,
power supplies, etc.).

PC-based instruments can also offer very significant cost savings when com-
pared with simple IEEE-488 bus-based instrumentation systems. A typical
PC-based system for the acquisition of analogue voltages can, for example,
be realized for less than 50% of the cost of a similarly specified system based
on IEEE-488 hardware and software.

PC-based instruments are available in three general formats (Figure 12.1):

1 Using internally fitted expansion cards (plugged into a free slot in the PC).
2 Using an external rack with plug-in PC expansion cards.
3 Using separately enclosed modules (which may, if desired, be stacked) based

on RS-232, USB, or IEEE-488 bus systems.

All three of these approaches have their own particular virtues and the system
builder should include all three in his/her portfolio of potential engineering
solutions.

Internally fitted cards generally offer the lowest cost approach to building a
PC instrument. The disadvantage of this technique is that it necessitates internal
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Figure 12.1 Three basic approaches to PC-based instruments: (a) internally
fitted PC expansion cards; (b) PC expansion cards in an external card frame;
and (c) separately enclosed PC instruments linked via a parallel port,
RS-232 serial port, USB, or via the IEEE-488 bus

fitting and, since there may be a limited number of slots available, the expansion
capability may be somewhat limited.

An external rack system allows the PC bus to be extended so that standard
PC expansion cards may be fitted into an external card frame. This system is,
however, relatively expensive and generally only appropriate where large-scale
expansion is required. An alternative to that of extending the PC bus beyond
the confines of the system enclosure is that of making use of a proprietary I/O
bus. Such systems generally provide for between 1 and 32 I/O boards mounted
in standard rack enclosures.

Separately enclosed modules (which may be interfaced to a PC by means
or the RS-232, USB, or IEEE-488 bus) provide the third of this trio of
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potential solutions. With the exception of a front panel display controls, separate
PC instrument modules usually resemble the conventional stand-alone instru-
ments which they replace. However, in a relatively recent development, USB
instruments provide a low-cost solution and several manufacturers are actively
developing test instruments for budget conscious application that make use of
the PC’s USB port.

Several manufacturers have risen to the challenge of producing PC instru-
ments such that the range of equipment currently available includes oscillo-
scopes, digital multimeters, universal counters, timers and frequency meters,
spectrum analysers, function generators, pulse generators, voltage/current gen-
erators, and logic analysers. Individual instruments can be combined to provide
more complex instrumentation facilities. A data logger, for example, can be
assembled from a scanner and multimeter, and controlled flexibly from the PC.

PC instruments are ideal for making repetitive measurements during which
data must be accumulated over a period time. The PC allows such measure-
ments to be automated with the data acquired being sent to a file for future
analysis.

As an example of the use of a PC instrument, consider an application in
which the output frequency of an oscillator has to be monitored accurately over
a long period of time. This task can be accomplished by means of a dedicated
digital frequency meter with readings taken at appropriate intervals, logged
on paper, and a graph showing the long-term variation of frequency can then
be drawn. The alternative approach using a ‘PC instrument’ simply involves
fitting a digital frequency meter expansion card (such as the Guide Technology
GT200) to a standard PC compatible and using simple software (in conjunction
with the driver(s) supplied with the card) to automate the measurement, and
store the results in a data file for import into an analysis package (such as
DADiSP). A typical application is discussed later in this chapter.

Industrial PC systems

Ruggedized PCs are the obvious choice for use in the harsh environment found
in most industrial plants. Industrial PCs usually offer the same range of facilities
associated with conventional PCs and compatibles, and invariably support the
industry standard bus architecture. Hence an industrial PC will generally accept
the same range of expansion cards as mentioned under the previous heading.
Alternatively, where additional expansion beyond the limit imposed by the
available free slots, industrial PCs may be fitted with bus extenders which are
normally based on an external rack assembly.

In difficult environments it is possible to implement a completely diskless
system using solid-state read/write memory devices (e.g. Flash, SD, or XD
cards) inserted into IDE slots in order to provide a bootable operating system
together with one or more application programs.

Backplane bus-based systems

A backplane bus system offers a reasonable compromise between a standard
PC-based system at one extreme and a specialized industrial PC system at the
other. Backplane bus systems are inherently flexible and reliable, and can simply
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be fitted with a PC processor card in order to make use of standard PC software
packages.

Networked/distributed PC systems

Networked distributed PC systems are appropriate in large-scale applications
where several processes are carried out concurrently. Each individual PC will
be responsible for part of the process and data will be shared between the PCs
by means of the network. As an example, consider the case of a packaging
plant which manufactures and fills cardboard boxes on a continuous basis.
One PC may be dedicated to the cutting and folding operation whilst another
may be responsible for controlling glueing and stapling. A third PC would be
responsible for filling and sealing the boxes. Data from all three PCs would
then be collected by a fourth PC which oversees the entire process. Such a
system provides an alternative to conventional solutions based on distributed
programmable logic controllers (PLC).

Larger-scale systems are possible using bus systems based on Process Field
Bus (Profibus), Actuator Sensor Interface (AS-Interface), Interbus, Modbus-1,
BITBUS, and Ethernet. These systems provide remote I/O with a maximum
number of nodes ranging from around 32–512 depending upon the standard
concerned (Ethernet is theoretically unlimited). These arrangements are used
for use in large-scale manufacturing and process control systems, and are thus
somewhat beyond the scope of this book.

Intel’s BITBUS (IEEE-1118) provides a simple and elegant solution to appli-
cations that require the services of a multi-drop network. BITBUS is a serial
data bus based on the RS-485 physical and electrical interface standard (RS-
485 is a multi-drop version of RS-422), and the datalink protocol employed is
a subset of SDLC/HDLC.

BITBUS complements Manufacturing Automation Protocol (MAP) which
has gained widespread recognition as the industrial standard for the upper
level of factory data communications. At the machine and process level,
however, where time critical data from sensors, actuators, and alarms has to
be transmitted, the response time of MAP, though guaranteed, is inadequate.
BITBUS, on the other hand, is well suited to the transfer of short ‘Field Data’
messages.

BITBUS is configured as a single-master, multi-slave network, and operates
in one of two modes: synchronous and self-clocked. Synchronous operation
permits speeds of up to 2.4 megabits/s but requires twin twisted-pair cables and
is restricted to transmission over distances less than 300 m. Furthermore, since
repeaters cannot be used in this mode, a maximum of 31 nodes is possible. Self-
clocked mode, on the other hand, requires only single pair cable, can operate at
either 62.5 or 375 kilobits/s and, with repeaters, can cater for up to 250 nodes
at distances not exceeding 13 km. Access times of 3–4 ms per command are
easily achieved.

Interfacing with BITBUS is usually made possible with the use of an Intel
8044/80154 compatible micro-controller which implements the BITBUS pro-
tocol using an on-chip SDLC controller and ROM-based firmware. An interface
of this type may be incorporated within a processor card or may be provided as
part of an auxiliary communications interface.
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Specifying hardware
and software

When specifying hardware and software to be used in a given PC bus applica-
tion, it is essential to adopt a ‘top-down’ approach. An important first stage in
this process is that of defining the overall aims of the system before attempt-
ing to formalize a detailed specification. The aims should be agreed with the
end-user and should be reviewed within the constraints of available budget
and time. Specifications should then be formalized in sufficient detail for the
performance of the system to be measured against them and should include
such items as input and output parameters, response time, accuracy, and
resolution.

Having set out a detailed specification, it will be possible to identify the
main hardware elements of the system as well as the types of sensor and output
device required (see Chapter 9). The following checklist, arranged under six
major headings, should assist in this process:

1 Performance specification
• What are the parameters of the system?
• What accuracy and resolution are required?
• What aspects of the process are time critical?
• What environment will the equipment be used in?
• What special contingencies should be planned for?
• What degree of fault tolerance is required?

2 I/O devices
• What sensors will be required?
• What output devices will be required?
• What I/O and signal conditioning boards will be required?
• Will it be necessary to provide high-current or high-voltage drivers?
• Should any of the inputs or outputs be optically isolated?

3 Displays and operator inputs
• What expertise can be assumed on the part of the operator?
• What alarms and status displays should be provided?
• What inputs are required from the operator?
• What provision for resetting the system should be incorporated?

4 Program/data storage
• What storage medium and format are to be employed?
• How much storage space will be required for the operating system and/or

control program?
• How much storage space will be required for data?
• How often will the control program need updating?
• Will stored data be regularly updated during program execution?
• What degree of data security and integrity must be achieved?

5 Communications
• What existing communications standards are employed by the end-user?
• Will a standard serial data link based on RS-232 be sufficient or

will a faster, low-impedance serial data communications standard be
needed?

• What data rates will be required?
• What distances are involved?
• Will it be necessary to interface with automatic test equipment?
• Will a networking capability be required?
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6 Expansion
• What additional facilities are envisaged by the end-user?
• What additional facilities could be easily incorporated?
• Will expansion necessitate additional hardware, additional software,

or both?
• What provision should be made for accommodating additional hardware?

Hardware design

Start by identifying the principal elements of the system including PC, card
frame, power supply, etc. as appropriate. Then itemize the input devices (such
as keypads, switches, and sensors) and output devices (such as motors, actu-
ators, and displays). This process may be aided by developing a diagram of
the system showing the complete hardware configuration and the links which
exist between the elements. This diagram will subsequently be refined and
modified but initially will serve as a definition of the hardware components of the
system.

Having identified the inputs required, a suitable sensor or input device should
be selected for each input (see Chapter 9). It should then be possible to specify
any specialized input signal conditioning required with reference to the man-
ufacturer’s specification for the sensor concerned. Input signal conditioning
should then be added to the system diagram mentioned earlier.

Next, a suitable driver or output interface should be selected for each out-
put device present (see Chapter 9). Any additional output signal conditioning
required should also be specified and incorporated in the system diagram.

Software design

Software design should mirror the ‘top-down’ approach adopted in relation to
the system as a whole. At an early stage, it will be necessary to give some
consideration to the overall structure of the program, and identify each of
the major functional elements of the software and their relationship within
the system as a whole. It is important to consider the constraints of the sys-
tem imposed by time critical processes and hardware limitations (such as
the size of available memory). Furthermore, routines to cope with input and
output may require special techniques (e.g. specialized assembly language
routines).

The software should be designed so that it is easy to maintain, modify, and
extend. Furthermore, the programmer should use or adapt modules ported from
other programs. These modules will already have been proven and their use
should be instrumental in minimizing development time.

When developing software, it is advisable to employ only ‘simple logic’
(i.e. that which has been tried and understood). The temptation to produce
untried and over-complicated code should be avoided. Simple methods will
usually produce code which is easy to maintain and debug, even if the code
produced requires more memory space or executes more slowly (see Chapter
4). If the process is time critical or memory space is at a premium then code can
later be refined and optimized. It is also important to consider all eventualities
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which may arise, not just those typical of normal operation. The following are
particularly important:

• Will the system initialize itself in a safe state? Will there be momentary
unwanted outputs during start-up?

• What will happen if the user defaults an input or if an input sensor becomes
disconnected?

• What will happen if the power fails? Will the system shut down safely?
• What input validation checks are required? What steps should be taken if an

‘out-of-range’ input is detected?

Applications The remainder of this chapter provides details of eight representative PC-based
applications. These applications are not particularly novel but they do address
problems that are typical of those which face the instrumentation and control
engineer. The applications have been chosen to illustrate contrasting aspects of
design and, while it would be impossible to describe any of these applications in
their entirety, they should provide a feel for various aspects within the process
of designing and implementing a PC-based system.

Monitoring oscillator stability

The client is a manufacturer of synthesized HF radio transceivers and wishes
to develop a prototype voltage-controlled oscillator (VCO) which operates in
the range 40–60 MHz for use within the frequency-generating circuitry. Several
circuits have been constructed and the client wishes to ascertain the short- and
long-term frequency stability of each unit.

Specification

The manufacturer requires that the output frequency is measured at appropri-
ate intervals (e.g. every 100 ms for the short-term stability measurement and
every 10 s for the long-term stability measurement). The results of each set of
measurements are to be stored in an ASCII file for later graphical analysis. The
software is, however, required to determine a number of simple performance
indicators for each prototype unit including:

• Maximum frequency during the measurement period.
• Minimum frequency during the measurement period.
• Mean frequency over the measurement period.
• Total frequency drift during the measurement period.

The manufacturer also requires that the entire set of measurements and stat-
istical calculations should be repeated at ambient temperatures of 0◦C, 10◦C,
20◦C, 30◦C, and 40◦C.

This task would require considerable manual effort if it were to be car-
ried out using a conventional digital frequency meter. It is, however, an ideal
candidate for automated measurement using a PC and appropriate expan-
sion card.
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Figure 12.2 Simplified block schematic of the GT200 digital frequency meter

Hardware

The Guide Technology GT200 Universal Counter was chosen to provide the
frequency measuring facility in conjunction with a Samsung AT-compatible
microcomputer which already resides in the client’s RF laboratory. The GT200
takes the form of a full-size PC-compatible expansion card which is supplied
together with a device driver (GT200.SYS) and virtual front panel software
(VIRT.EXE) on a floppy disk. The simplified block schematic of the GT200 is
shown in Figure 12.2.

The GT200 is supplied together with a device driver (GT200.STS) and virtual
front panel software (VIRT.EXE) on floppy disk. The disk also contains software
which assists with setting the base address switch and includes a program which
allows users to test the GT200’s programming commands.

The GT200 offers a variety of measuring facilities including frequency
measurement (from DC to 100 MHz, with automatic pre-scaling above about
1 MHz), fast frequency measurement (a special mode for high-speed data
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acquisition which allows up to 2300 measurements per second), period (both
single and multiple), and time interval (i.e. the elapsed time between ‘start’ and
‘stop’ events). In addition, a direct data acquisition mode places measurements
into a memory array without the usual overheads required to communicate
results back to an application program via DOS).

The GT200 software is capable of performing a number of statistical
functions (including mean, standard deviation, maximum and minimum meas-
urements within a sample block). These are ideal for determining parameters,
such as drift and ‘jitter’.

The GT200 measures input signal frequencies using the most accurate tech-
nique available, reciprocal counting coupled to time interpolation. There are two
primary benefits of this method: improved accuracy and reduced measurement
time. Fast measurements with high accuracy yield more information concern-
ing the stability of a signal. The GT200 is able to compute the drift rate, mean,
and peak–peak jitter of a signal in the same time interval that a conventional
counter is simply measuring frequency.

Software

The control program sends commands to the GT200 driver as character strings
through standard DOS file write operations. Several conventions must be obeyed
when incorporating commands into programs (e.g. individual commands must
be separated by semicolon, carriage return, or line feed delimiters). Com-
mands are not case sensitive and may be abbreviated for convenience. The
minimum acceptable abbreviations for each command are listed in the manual.
As an example, FREQ may be used instead of FREQUENCY, FU instead of
FUNCTION, and so on.

GT200 commands are incorporated in normal program statements, such as
BASIC:

PRINT#, "fu freqa; gate 0.01"

or in C:

fprintf(COUNTER, "fu freqa; gate 0.01");

A simple program, like the QBASIC program shown below, can be eas-
ily developed to meet the client’s requirements for the long-term stability
measurement (involving 100 readings taken at 10-s intervals).

REM Oscillator test program
REM Declare sub-programs
DECLARE SUB max ()
DECLARE SUB min ()
DECLARE SUB mean ()
REM Dimension array for collected data
DIM freq(100)

REM Get oscillator reference
CLS
INPUT "Enter oscillator reference: "; ref$
LET ref$ = LEFT$ (ref$, 6)
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INPUT "Enter ambient temperature: "; temp$
osc$ = ref$ + temp$

REM Initialise digital frequency meter
OPEN "GT200$" FOR OUTPUT AS #1
OPEN "GT200$" FOR INPUT AS #2
PRINT #1, "init; timeout 4; function frequency A; gate 0.2"

REM Start collecting readings
PRINT "Hit (RETURN) to start measurement..."
WHILE r$ = ""

r$ = INKEY$
WEND
FOR time% = 0 TO 99
PRINT #1, "reset"
' INPUT #2, freq(time%)
PRINT "Time = "; 10 * time%; " sec. Frequency = ";
freq(time%); " Hz"

PRINT #1, "wait 10"
NEXT time%
CLOSE #1
CLOSE #2

REM Calculate and print statistics
PRINT
PRINT "Performance data for oscillator ref: "; ref$
PRINT
PRINT "Performance measured at: "; temp$; " deg.C"
max
PRINT "Maximum frequency; "; maxfreq; " Hz"
min
PRINT "Minimum frequency: "; minfreq; " Hz"
mean
PRINT "Mean frequency: "; meanfreq; " Hz"
PRINT "Frequency drift: "; maxfreq - minfreq; " Hz"
PRINT

REM Save data in an ASCII file
LET file$ = osc$ + ".DAT"
OPEN file$ FOR OUTPUT AS #3
FOR time% = 0 TO 99
PRINT #3, freq(time%)
NEXT time%
CLOSE #3

END

SUB max
SHARED freq()
SHARED maxfreq
maxfreq = 0
FOR i% = 0 TO 99
IF freq(i%) > maxfreq THEN maxfreq = freq(i%)
NEXT i%
END SUB



h4716-ch12 5/2/2005 12: 38 page 366

366 PC Based Instrumentation and Control

SUB mean
SHARED freq()
SHARED meanfreq
total = 0
FOR i% = 0 TO 99
total = total * freq(i%)
NEXT i%
meanfreq = total / 100
END SUB

SUB min
SHARED freq()
SHARED minfreq
minfreq = 1E+09
FOR i% = 0 TO 99
IF freq(i%) < minfreq THEN minfreq = freq(i%)
NEXT i%
END SUB

Three subprograms, max(), min(), and mean() are declared at the beginning
of the program. The array, freq() (which will contain the returned data from
the GT200 card) is then dimensioned for a total of 100 values.

The user is then prompted to enter the oscillator reference (which is truncated
to include only the first six characters) and the ambient temperature used for
the measurement.

The GT200 digital frequency meter is then associated with channel 1 for out-
put and channel 2 for input by means of the OPEN statements. The instrument
is initialized to measure frequency using input A with a timeout and gate times
of 4 and 0.2 s, respectively.

The program then waits for the user to indicate that he/she is ready to begin
a measurement by hitting the RETURN key. Once the key has been hit, the
program takes 100 readings of frequency, placing each returned reading into
the freq() array. The time between readings is set at l0 s by means of the wait
command. Times and corresponding frequency readings are displayed on the
screen on each pass through the main FOR . . . NEXT loop so that the user is kept
informed of the current state of measurement.

When the main loop has been completed, the two communications chan-
nels are closed. Thereafter, the performance data for the oscillator in question
is printed with calls to the three subprograms which determine the maxi-
mum, minimum, and mean frequency values. The total frequency drift is
calculated simply by subtracting the minimum frequency from the maximum
frequency.

The three subprograms, max(), min(), and mean(), are quite straightforward
and need no comment. A typical résumé of oscillator performance (printed by
the program) data is shown in Figure 12.3.

Finally, the data is stored in an ASCII file. Note that the filename is con-
structed from the concatenation of the first six (or less) characters of the
oscillator reference and the ambient temperature which was entered by the
user, together with the file extension, .DAT. The file is opened for output (via
channel 3) and all 100 values stored in the array are written to it. The channel
is then closed.



h4716-ch12 5/2/2005 12: 38 page 367

Applications 367

Figure 12.3 Sample printed oscillator performance data

Figure 12.4 Typical crystal filter response characteristic

Testing crystal filters

The client is a manufacturer of RF passive components. Part of the company’s
product range includes 10.7 MHz crystal filters of various types which are man-
ufactured to close tolerance in a batch process. Each filter is checked (on a
test jig) to determine whether it meets the design specification which includes
bandwidth (measured at −6 and −40 dB) and pass-band ripple. It is also
considered desirable to display the response of the filter graphically in order that
the ultimate stop-band attenuation can be gauged. Figure 12.4 shows a typical
filter response characteristic.

Specification

The company wishes to automate the process of filter measurement and, at
the same time, generate statistical information which can be used to check the
manufacturing process.
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Figure 12.5 Crystal filter test hardware configuration

Hardware

This application is ideally suited to an IEEE-488-based system (based on test
instruments fitted with the requisite IEEE-488 interface which are already
available in the company’s test department). Apart from the PC controller (which
will require an IEEE-488/GPIB interface card) the two instruments required are:

• an RF voltmeter (Marconi 2610 with GPIB interface);
• an RF signal generator (Marconi 2018A with GPIB module).

The RF signal generator will be configured as a ‘listener’ whilst the RF voltmeter
will be a ‘talker’. A test jig will have to be constructed to accommodate the
filter under test. Furthermore, since the filter source and load impedances are
critical, appropriate matching components must be incorporated into the test
jig. The simplified block schematic of the hardware is shown in Figure 12.5.

Software

The control software is again easily written in QuickBASIC (or equivalent) and
the required program can be based on the following algorithm (expressed in a
form of structured English):

INITIALISE SYSTEM
DISPLAY WELCOME SCREEN
DO
GET SYSTEM PARAMETERS
CONFIGURE IEEE-488 SYSTEM
ENTER FILTER REFERENCE
DO
READ-VOLTAGE LEVEL
INCREMENT GENERATOR FREQUENCY

LOOP UNTIL FINAL FREQUENCY
CALCULATE FILTER SPEC
DISPLAY FILTER SPEC
STORE FILTER SPEC
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PRINT FILTER SPEC
PRINT FILTER LABEL
LOOP UNTIL LAST FILTER

END

Most of the statements within the algorithm are coded as procedures. As an
example, the procedure which prompts the user for values which will be used
to set the system parameters (GET SYSTEM PARAMETERS) is itself described by
the algorithm:

PROCEDURE GET SYSTEM PARAMETERS
GET INITIAL FREQUENCY
GET FINAL FREQUENCY
GET FREQUENCY INCREMENT
GET RF LEVEL

END PROCEDURE

Having decomposed each procedure, it is possible to translate each structured
English statement into equivalent BASIC program statements. As an example,
GET INITIAL FREQUENCY could be coded (in minimal form) as follows:

INPUT "Start frequency (kHz) "; start

In practice, a range check is desirable on this input since the normal range of
start frequencies will lie within the range 400–450 kHz. The final code for GET
INITIAL FREQUENCY was therefore:

DO
INPUT "Start frequency (kHz) "; start

LOOP WHILE start < 400 OR start > 450

A speech enunciator

The client is a manufacturer of ‘user-friendly’ data entry devices and requires a
low-cost system capable of recording and playing back analogue speech signals.
This system will then be incorporated into an existing terminal based on a PC-
compatible motherboard and fitted with a solid-state disk. The prototype speech
enunciator card is shown in Photo 12.1.

Specification

The client requires that speech of up to 30-s duration and nominal bandwidth
6 kHz be available within the system. The speech signal (input from a micro-
phone) is to be converted to digital information and stored in one or more data
files within a reserved partition on the hard disk. The speech data is then to be
made available for replay (as required) by the terminal control program.

Hardware

This system requires a fast A/D and D/A interface together with additional
analogue signal filtering in order to reduce the effects of aliasing. No card of
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Photo 12.1 Prototype speech enunciator card

Figure 12.6 Simplified block schematic of the prototype speech enunciator

this type is available ‘off the shelf’ and thus a board must be prototyped from
scratch. The prototype is built using a full-size ISA prototyping card which
incorporates the necessary bus interface logic (see Chapter 2). Figure 12.6
shows a simplified block schematic of the hardware arrangement.

The need for A/D and D/A conversion can be realized by using a complete
analogue I/O system in the form of the Analogue Devices AD7569. This unit
offers 8-bit resolution (adequate for this simple speech application) coupled
with a 2 µs ADC track/hold time, and on-chip band-gap 1.25 V voltage ref-
erence. The device is fabricated in linear-compatible CMOS (LC2MOS) and
is supplied in a 24-pin ‘skinny’ DIP package. The internal architecture of the
AD7569 is shown in Figure 12.7 while the simplified circuit of the prototype
interface card is shown in Figure 12.8.
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Figure 12.7 Internal arrangement of the Analogue Devices AD7569 8-bit
analogue I/O system

Software

The software for the speech enunciator can usefully take advantage of the mixed
language interface which is provided within the Microsoft suite of programming
languages. Time critical routines (such as those which drive the ADC and DAC)
can be written in assembly language while those which deal with disk filing and
screen displays can be quickly and easily developed in QuickBASIC.

The assembly language module shown below is responsible for the recoding
and playback process. These routines are liberally commented and should thus
be reasonably self-explanatory (Chapter 5 provides more details of assembly
language programming).

.MODEL MEDIUM

.STACK 100H

.CODE
; This routine records data from the ADC in a
; 128k byte buffer - starting at 70000H
; Registers used: AX,BX,CX,CX,DX,DI,DS
; Parameters passed: 16-bit delay in stack frame
; Parameter returned: none

PUBLIC Rec

Rec PROC
PUSH BP ; save old base pointer
MOV BP,SP ; set stack frame pointer



h4716-ch12 5/2/2005 12: 38 page 372

372 PC Based Instrumentation and Control

Figure 12.8 Simplified circuit of the enunciator card

MOV BX,[BP+6] ; get argument passed
MOV AX,[BX] ; and preserve in BX
MOV BX,AX

PUSH SI
PUSH DI
PUSH SS
PUSH DS

MOV DX,0300H ; port used for analogue input
MOV AX,7000H ; block 0 is at 70000H
MOV DS,AX
MOV DI,0 ; first location
MOV CX,0FFFFH ; buffer size 64k

Rloop1: IN AL,DX ; get a byte
MOV [DI],AL ; and save it to the buffer
INC DI ; point to next location
CALL Sdelay ; sampling delay
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LOOP Rloop1 ; go back for more
MOV AX,8000H ; block 1 is at 80000H
MOV DS,AX
MOV DI,0 ; first location
MOV CX,0FFFFH ; buffer size 64k

Rloop2 IN AL,DX ; get a byte
MOV [DI],AL ; and save it to the buffer
INC DI ; point to next location
CALL Sdelay ; sampling delay
LOOP Rloop2 ; go back for more

POP DS
POP SS
POP DI
POP SI

POP BP ; restore base pointer
RET 2 ; bye!

Rec ENDP

; This routine records data from the ADC in a
; 128k byte buffer - starting at 70000H
; Registers used: AX,BX,CX,CX,DX,DI,DS
; Parameters passed: 16-bit delay in stack
frame

; Parameter returned: none

PUBLIC Playb

Playb PROC
PUSH BP ; save old base pointer
MOV BP,SP ; set stack frame pointer
MOV BX,[BP+6] ; get argument passed
MOV AX,[BX] ; and preserve in BX
MOV BX,AX

PUSH SI
PUSH DI
PUSH SS
PUSH DS

MOV DX,0300H ; port used for analogue input
MOV AX,7000H ; block 0 is at 70000H
MOV DS,AX
MOV DI,0 ; first location
MOV CX,0FFFFH ; buffer size 64k

Ploop1: MOV AL,[DI] ; get a byte
OUT DX,AL ; and output it
INC DI ; point to next location
CALL Sdelay ; sampling delay
LOOP Ploop1 ; go back for more
MOV AX,8000H ; block 1 is at 80000H
MOV DS,AX
MOV DI,0 ; first location
MOV CX,0FFFFH ; buffer size 64k
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Ploop2 MOV AL,[DI] ; get a byte
OUT DX,AL ; and save it to the buffer
INC DI ; point to next location
CALL Sdelay ; sampling delay
LOOP Ploop2 ; go back for more

POP DS
POP SS
POP DI
POP SI

POP BP ; restore base pointer
RET 2 ; bye!

Playb ENDP

; Delay routine to determine sampling rate
; called by Rec and Playb
; Registers used: BX,CX
; Parameters passed: none

Sdelay: PUSH CX ; save current byte count
MOV CX,BX ; sets time delay

Sloop: LOOP Sloop ;
POP CX ; restore byte count
RET ; back to the main loop
END

Strain measurement and display

The client is a manufacturer of aircraft undercarriage components and wishes to
carry out a series of strain measurements on structures when a stress is suddenly
applied. In addition, the company wishes to display the response to an impulse
force in real-time using a conventional oscilloscope-type display on the screen
of a PC.

Specification

The measurement interval is to range from approximately 200 ms to 3 s, and
the strain gauges and associated signal conditioning circuitry are expected to
produce signals in the range ±250 mV. Eight sets of strain gauges are fitted to
the structural member under test.

Software

The quasi-real-time oscilloscope display can easily be developed in C or Quick-
BASIC. An unrefined (but nevertheless functional) routine is shown below. The
routine displays the analogue signal returned from the strain gauge fitted to
channel 0 (I/O address 300 hex.).

' Transient strain display
' PowerBASIC 3.5
' Runs in full screen mode
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declare sub sweepdelay (count%)

' Set up the screen and graphics viewport
screen 8
view (0, 20)-(639, 199)

' Set initial timebase rate
dly% = 50

' Get initial voltage level
v% = inp(&H300)
if v% > 127 then v% = v% - 256
q% = 350 + v% - 255

' Main loop
do

cls

' Plot the axes

line (0, 0)-(0, 179), 5
line (0, 179)-(640, 179), 5

' and the grid
for i% = 0 to 179 step 12
line (0, i%)-(640, i%), 5
next i%

for i% = 0 to 640 step 25
line (i%, 179)-(i%, 0), 5
next i%

' Update the status display
sweeptime$ = str$(int(sweeptime!/25000))
locate 2, 1
print "X = ";sweeptime$; " ms/div "
locate 2, 20
print "Y = 50 mV/div"
locate 1, 1
print "Press <SPACE> to abort, <X> to freeze, ";
print "<+> or <-> to change timebase setting"

' Get initial voltage level and plot the starting point
v% = inp(&H300)
if v% > 127 then v% = v% - 256
q% = 85 + v%
pset (0, q%), 10

' Scan across the screen from left to right
mtimer ' Reset the timer
for x% = 0 to 639

v% = inp(&H300)
if v% > 127 then v% = v% - 256
q% = 85 + v%
line -(x%, q%), 10
call sweepdelay(dly%)



h4716-ch12 5/2/2005 12: 38 page 376

376 PC Based Instrumentation and Control

Press <SPACE> to abort, <X> to freeze, <+> or <-> to change timebase setting
X = 33 ms/div. (time) and Y = 50 mV/div. (strain)

Time (ms/div.)
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Figure 12.9 Typical (strain plotted against time) display produced by the
oscilloscope program

next x%
sweeptime! = mtimer ' Get the sweep time

' Check to see if the user wishes to alter the scan rate
r$ = inkey$
if r$ = "+" or r$ = "=" then dly% = dly% - 10
if r$ = "-" or r$ = "_" then dly% = dly% + 10
if dly% < 10 then dly% = 10
if dly% > 100 then dly% = 100

' Check to see whether the user wishes to freeze the
screen while r$ = "X" or r$ = "x"

' Erase previous status line
locate 1, 1
print string$(80, 32)
' Tell the user how to resume
locate 1, 1
print "Display frozen - press <C> to continue"
do
r$ = inkey$

loop until r$ = "C" or r$ = "c"
wend

loop until r$ = " " ' Does the user want to quit?
end

sub sweepdelay (count%)
cal% = 9875 ' Calibrate sweep delay
for z% = 0 to count%
for k% = 0 to cal%: next k%
next z%
end sub

Figure 12.9 shows a typical display produced by the software.
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Figure 12.10 Strain gauge input signal conditioning circuitry

Hardware

The system can be based on a PC fitted with almost any 8-channel analogue input
card (e.g. Arcom’s PCAD12/16 which is a 16-channel 12-bit ISA card). The
signal conditioning circuitry (replicated eight times) is based on a conventional
temperature compensated half-bridge with operational amplifiers to provide
voltage gain (variable from approximately 500 to 1500). To minimize noise, the
input cable from each strain gauge bridge is balanced and shielded. Figure 12.10
shows the signal conditioning circuitry associated with each strain gauge
bridge.

Backup battery load test

The client is a manufacturer of low-power FM radio relays. Each relay is fitted
with a standby battery comprising four 2 V sealed lead–acid cells, each rated
at 2 V 80 Ah.

Specification

The battery load test is to capture backup battery voltage data at regular intervals
ranging from 10 ms to 100 s for periods of between 1 min (accelerated load test)
and 10 days (prolonged load test). Voltage readings are to be within the range
0–10 V DC and they are to be accurate to within ±50 mV (±0.05 V). Data is
to captured in a form that is compatible with a standard spreadsheet (e.g. MS
Excel) for subsequent display and analysis. A dedicated PC is unavailable for
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Figure 12.11 Backup battery load test application written in Visual Basic

this application so the hardware interface is required to be external and available
for fitting to any one of several bench PCs in the production test laboratory.

Hardware

This application makes use of the Measurement Computing PMD-1208LS USB
Personal Measurement Device. This device (see Chapter 2) has four differential
or eight single-ended analogue input channels and is easily moved from one PC
to another. Screw terminals permit connection of test leads and no further
adjustment or configuration is necessary other than ensuring that the software
is loaded and appropriate Measurement Computing library is installed on the
host computer.

Software

The software was written using MS Visual Basic (see below) and the application
is shown in Figure 12.11. A combo-box provides a means of selecting the
sampling rate (from 10 ms to 100 s) with buttons provided to start and stop the
load test. A virtual LED and text field provides status indication. When the stop
button is operated data is sent to a data file in a format that can subsequently
be imported into MS Excel (see Figure 12.12).

'============================================================
' Name: loadtest
' Purpose: collects backup battery voltage data
' Library calls: cbAIn%() and cbErrHandling%()
' Hardware: PMD-1208LS USB HID
'============================================================

Const BoardNum% = 1 ' Board number
Dim Index As Integer
Dim Record As Integer
' Dimension data array
Dim data_array(10000)
Dim Gain As Integer
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Figure 12.12 Backup battery load test results (graph produced from data
exported to Excel). Note that the load is applied at t = 7 s

Private Sub cmdExit_Click()
End
End Sub

Private Sub cmdStart_Click()
tmrConvert.Enabled = True
' Turn LED indicator on
sample_led.FillColor = "&H000000FF"
Index% = 0
lblStatus.Caption = "Collecting data"
End Sub

Private Sub cmdStop_Click()
tmrConvert.Enabled = False
' Turn LED indicator off
sample_led.FillColor = "&H00E0E0E0"
' Initial status message
lblStatus.Caption = Format$(Index, "0") + " samples collected"
' Prepare to write data file
CommonDialog1.DialogTitle = "File Save"
CommonDialog1.InitDir = App.Path
CommonDialog1.DefaultExt = "dat"
CommonDialog1.FILTER = "Data (*.dat)"
CommonDialog1.FileName = "sample.dat"
CommonDialog1.ShowSave
If CommonDialog1.FileName <> " " Then

Open CommonDialog1.FileName For Output As #1
For Record% = 1 To Index%
Write #1, Record%, data_array(Record%)
Next Record%
Close #1
lblStatus.Caption = "Data file written"
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' Turn LED indicator green
sample_led.FillColor = "&H0000FF00"
Else

lblStatus.Caption = "Data file not written"
' Turn LED indicator grey
sample_led.FillColor = "&H00E0E0E0"
End If
End Sub

Private Sub Form_Load()
' Declare revision level of Universal Library
ULStat% = cbDeclareRevision(CURRENTREVNUM)
' Initiate error handling
ULStat% = cbErrHandling(PRINTALL, DONTSTOP)
If ULStat% <> 0 Then Stop
' Set channel number and gain
Chan% = 0
' Set default range on start-up
Gain = BIP20VOLTS
' Set default maximum number of samples
max_samples = 100000
Index% = 0
' Disable timer
tmrConvert.Enabled = False
cmbInterval.Text = "10 ms"
' Initial status message
lblStatus.Caption = "Waiting for Start button"
' Sample LED set to off
sample_led.FillColor = "&H00E0E0E0"
' Default filename
file_name = "sample.dat"
End Sub

Private Sub tmrConvert_Timer()
Index% = Index% + 1
If cmbInterval.Text = "10 ms" Then tmrConvert.Interval = 10
If cmbInterval.Text = "100 ms" Then tmrConvert.Interval = 100
If cmbInterval.Text = "1 s" Then tmrConvert.Interval = 1000
If cmbInterval.Text = "10 s" Then tmrConvert.Interval = 10000
If cmbInterval.Text = "100 s" Then tmrConvert.Interval = 100000
' Collect the data
ULStat% = cbAIn(BoardNum%, Chan%, Gain, DataValue%)
If ULStat% = 30 Then MsgBox "Gain setting not valid", 0,

"Unsupported Gain"
If ULStat% <> 0 Then Stop
ULStat% = cbToEngUnits(BoardNum%, Gain, DataValue%, EngUnits!)
If ULStat% <> 0 Then Stop
data_array(Index%) = Format$(EngUnits!, "0.00")
End Sub

Load sequencer

The client uses a manufacturing process based on eight devices that operate
from a nominal 8 A 115 V AC supply. Unfortunately, the momentary surge
current taken by each device (each of which involves a degaussing component)
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Photo 12.2 Prototype parallel port interface module

is greatly in excess of the rated current. Furthermore, when all devices operate
simultaneously (or within a few milliseconds of one another) the surge current
will invariably trip out the mains supply. This, in turn, causes disruption to
the manufacturing process because each device has to be individually turned
off before the mains trip can be manually reset. The client requires a simple
and reliable means of automatically sequencing the application of power to the
loads.

Specification

The time delay in applying the AC mains supply to each device is to be con-
figurable to within 1 s up to a maximum of 30 s. The operator is to be provided
with a simple graphical interface that shows the status of each load and allows
the delay to be set using a simple slider control.

Hardware

Since there are eight loads and they are only required to be switched on and off,
this application requires a simple 8-bit parallel port interface module. However,
it is expected that the production system may be expanded at some point in the
future and it could be advantageous to provide a solution that can be easily
expanded on a modular basis (see Photo 12.2).

The circuit of one 8-bit parallel interface module is shown in Figure 12.13.
The module is connected to the PC by means of a standard parallel port (see
Chapter 2). In order to cater for future expansion, the module can be assigned
to one of four controlled groups by means of a group channel select switch.
Each channel group (A , B, C, and D) will then have eight controlled channels
(channels 1–8) and each of these channels will correspond to a particular device.
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Figure 12.13 Parallel port I/O interface
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Figure 12.14 Relay driver (a high output from a port line enables
the load)

Hence the system has potential for controlling up to 32 devices using four
identical interface modules.

Each channel output from the interface module is connected to a relay driver
(see Figure 12.14). This circuit is capable of switching a load of up to 10 A at
115 V AC. A status LED is included for test purposes.

Software

The application uses a simple Visual Basic routine (see below). The user inter-
face is designed so that the operator can set the delay on any channel to any
time between 0 and 30 s using a simple slider control. Each channel is fit-
ted with a virtual LED indicator so that the operator knows which loads have
become active. In addition, a further status field shows the elapsed time (see
Figure 12.15). This application makes extensive use of the Visual Basic Timer
(Chapter 6 contains more information on Visual Basic programming).

'============================================================
' Name: seqcon2
' Purpose: controls switching sequence on channels

1 to 8
' Library calls: requires inpout32.bas for I/O
' Hardware: parallel port with relay modules
'============================================================

Dim Port1 As Integer
Dim Port2 As Integer
Dim Port3 As Integer
Dim OutData As Integer
Dim ETime As Integer

Private Sub Start_Click()
Timer1.Enabled = True
Timer2.Enabled = True
Timer3.Enabled = True
Timer4.Enabled = True
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Figure 12.15 Sequence controller display 14 s into the power-up
sequence

Timer5.Enabled = True
Timer6.Enabled = True
Timer7.Enabled = True
Timer8.Enabled = True
MasterClock.Enabled = True
End Sub

Private Sub Exit_Click()
End
End Sub

Private Sub Form_Load()
Port1 = 888
Port2 = 889
Port3 = 890
OutData = 0
Out Port1, OutData
SetTime1.Caption = 10
SetTime2.Caption = 10
SetTime3.Caption = 10
SetTime4.Caption = 10
SetTime5.Caption = 10
SetTime6.Caption = 10
SetTime7.Caption = 10
SetTime8.Caption = 10
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Timer1.Interval = 10000
Timer2.Interval = 10000
Timer3.Interval = 10000
Timer4.Interval = 10000
Timer5.Interval = 10000
Timer6.Interval = 10000
Timer7.Interval = 10000
Timer8.Interval = 10000
ETime = 0
End Sub

Private Sub HScroll1_Change()
Timer1.Interval = HScroll1.Value
SetTime1.Caption = Int(Timer1.Interval / 1000)
End Sub

Private Sub HScroll2_Change()
Timer2.Interval = HScroll2.Value
SetTime2.Caption = Int(Timer2.Interval / 1000)
End Sub

Private Sub HScroll3_Change()
Timer3.Interval = HScroll3.Value
SetTime3.Caption = Int(Timer3.Interval / 1000)
End Sub

Private Sub HScroll4_Change()
Timer4.Interval = HScroll4.Value
SetTime4.Caption = Int(Timer4.Interval / 1000)
End Sub

Private Sub HScroll5_Change()
Timer5.Interval = HScroll5.Value
SetTime5.Caption = Int(Timer5.Interval / 1000)
End Sub

Private Sub HScroll6_Change()
Timer6.Interval = HScroll6.Value
SetTime6.Caption = Int(Timer6.Interval / 1000)
End Sub

Private Sub HScroll7_Change()
Timer7.Interval = HScroll7.Value
SetTime7.Caption = Int(Timer7.Interval / 1000)
End Sub

Private Sub HScroll8_Change()
Timer8.Interval = HScroll8.Value
SetTime8.Caption = Int(Timer8.Interval / 1000)
End Sub

Private Sub Timer1_Timer()
Shape1.FillColor = "&H000000FF"
OutData = Inp(Port1)
Out Port1, (OutData Or 1)
End Sub
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Private Sub Timer2_Timer()
OutData = Inp(Port1)
Out Port1, (OutData Or 2)
Shape2.FillColor = "&H000000FF"
End Sub

Private Sub Timer3_Timer()
OutData = Inp(Port1)
Out Port1, (OutData Or 4)
Shape3.FillColor = "&H000000FF"
End Sub

Private Sub Timer4_Timer()
OutData = Inp(Port1)
Out Port1, (OutData Or 8)
Shape4.FillColor = "&H000000FF"
End Sub

Private Sub Timer5_Timer()
OutData = Inp(Port1)
Out Port1, (OutData Or 16)
Shape5.FillColor = "&H000000FF"
End Sub

Private Sub Timer6_Timer()
OutData = Inp(Port1)
Out Port1, (OutData Or 32)
Shape6.FillColor = "&H000000FF"
End Sub

Private Sub Timer7_Timer()
OutData = Inp(Port1)
Out Port1, (OutData Or 64)
Shape7.FillColor = "&H000000FF"
End Sub

Private Sub Timer8_Timer()
OutData = Inp(Port1)
Out Port1, (OutData Or 128)
Shape8.FillColor = "&H000000FF"
End Sub

Private Sub MasterClock_Timer()
ETime = ETime + 1
Clock.Caption = ETime
End Sub

Environmental monitoring

The client is a company that specializes in heating and ventilation of commer-
cial buildings. The company wishes to have a means of regularly capturing
temperature data from different points in a building and of later analysing this
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Photo 12.3 Lascar’s EasyLog USB data logger

data to assess the effectiveness of various heating and ventilation solutions.
The sensors must be left in position for long periods (usually between 2 and 6
weeks) and data must be sampled throughout this period at intervals of 5 min,
or less.

Specification

The temperatures collected are to be in the range −20◦C to +50◦C with a
resolution of ±0.5◦C and an accuracy of ±1◦C. Because sensing devices are to
be purchased and deployed in quantity (between 10 and 40 sensors per project)
sensors must be low cost and require minimal effort in deployment.

Hardware

The Lascar USB data logger was chosen for this application (see Photo 12.3).
This is a low-cost device which is interfaced to a PC through a standard USB
port. Once set, the device can be removed from the PC and left in situ to collect
data.

The data logger measures and stores up to 16 382 temperature readings over
the range −25◦C to +80◦C (−13◦F to +176◦F). The data logger uses a long-
life 3.6 V lithium battery and will operate for approximately 12 months before
battery replacement is required. Logging rates can be set to 10 s, and 1, 5,
30 min, and 1, 6, 12 h. The data logger also offers high and low alarms (not
used in this application).

Software

Lascar’s own data logging software was found to be perfectly adequate for this
application and no further bespoke software was required. Figures 12.16–12.19
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Figure 12.16 EasyLog application

Figure 12.17 EasyLog status display
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Figure 12.18 EasyLog message box requiring confirmation of stopping data
logging

Figure 12.19 EasyLog confirmation display

shows how the data logger is configured, started and stopped, whilst Figures
12.20 and 12.21 show typical examples of captured data.

Icing flow tunnel

A college department is engaged in research into the effectiveness of various
methods of aircraft deicing based on the application of anti-icing fluids. The
department has a wind tunnel capable of speeds of up to 80 m/s (Mach 0.28)
supplied by a fan driven by a 10 HP variable speed DC motor. The test section
can be adjusted through a pitch angle of ±20◦ and instrumentation can be
attached to parts and components mounted in this section. The moving air stream
is cooled by means of a refrigerated cooling unit such that airflow temperatures
of between −18◦C and ambient can be produced.
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Figure 12.20 EasyLog display of captured data

Figure 12.21 EasyLog’s cursors can be moved to obtain precise data

Specification

The system must provide control for the variable speed fan motor (to an accuracy
of ±1 m/s), air temperature (to an accuracy of ±1◦C), and pitch angle (to an
accuracy of ±2◦). The system is to provide a graphical display of the controlled
variables with digital readout of the controlled variables. In addition, an on/off
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Figure 12.22 Ice flow tunnel (IFT) control application (the form was created
using MS Visio and Visual Basic)

spray control is to be provided. The system is to be controlled from a low-cost
dedicated PC controller. The test component is to be fitted with temperature
sensors so that differential readings are available for display. The overall range
of differential measurement is to be from 0◦C to 20◦C with a resolution of better
than 0.5% of reading and an accuracy of better than ±0.5◦C.

Software

Two Visual Basic 6 applications are used concurrently in this application. Visual
Basic 6 was chosen for the software development because of the ease of creating
visual controls and because the language was already being used extensively
within the department. One of the Visual Basic applications provides control for
the ice flow tunnel (IFT control) whilst the other (TDC Control) is responsible
for collecting data from the AD590 differential sensing arrangement and then
storing this for later analysis. The graphical displays were first produced using
MS Visio and then imported into the Visual Basic forms. The Visual Basic
controls were then superimposed.

The IFT control application provides slider controls for setting the air tem-
perature, velocity, and pitch angle of the component on test (see Figure 12.22).

Hardware

The PC is fitted with an ISA I/O card which has eight analogue inputs and two
analogue outputs. A further ISA I/O card provides 48 digital I/O lines arranged
in six groups of eight.

The variable speed drive (VFD) for the 10 HP fan motor requires an input of
10 V DC for frequency adjustment (over the range 0.1–400 Hz) and an airflow
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Figure 12.23 Arrangement of AD590 temperature sensors for differential
measurements

sensor is used to determine the actual air velocity produced. The sensor produces
an output of 0–10 V. The speed control thus requires an analogue input port and
an analogue output port. Both ports are to a full-scale range of 0–10 V.

The refrigeration unit is controlled with on/off digital control using a dedi-
cated I/O card and a comparator controlled from a DC 0 to 5 V control signal.
A temperature sensor is suspended in the airflow output from the refrigeration
unit and a signal (10 mV/◦C) is fed to a further analogue input port.

The pitch angle control uses a digital output port with a stepper motor (see
Chapter 9) and the spray bar control uses a single bit on a further digital output
port to provide simple on/off control.

Temperature sensing within the test section is based on a differential sensing
arrangement with pairs of AD590 temperature sensors (see Chapter 9). The
AD590 is well suited to this application as it offers excellent linearity (better
than ±3◦C over the entire range) and the ability to operate well in remote sensing
applications with simple twisted-pair connections. Lead wire compensation
filters and circuits to ensure linearity are unnecessary with this type of sensor.

The output voltage from the differential sensing arrangement (see Figure
12.23) is 10 mV for every 1◦C difference in temperature. Hence an output of
100 mV will result from a temperature difference of 10◦C. Additional signal
gain is applied within the analogue input card.
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13 Reliability and
fault-finding

The principal goal of the designer of an instrumentation or process control
system is that of optimizing system performance within the constraints imposed
by time and a given budget. At the same time, he or she will not wish to
compromise the overall quality or reliability of the system. This final chapter
deals with quality and reliability in the context of PC-based instrumentation and
process control systems, and also sets out to examine some basic fault-finding
and troubleshooting techniques which can be instrumental in reducing system
down-time.

Quality procedures In a general engineering context, quality is often defined as the degree to which
a product or its components conform to the standards specified by the designer.
Such standards generally relate to identifiable characteristics relating to mater-
ials, dimensions, tolerances, performance, and reliability. In a production engi-
neering environment, the degree of effectiveness in meeting these standards can
be assessed by conventional acceptance tests, sampling, and statistical analysis.
In the case of a one-off process control system, quality control procedures will
generally involve the following tests:

• Functional tests under normal (or simulated normal) operating conditions.
• Functional tests under extreme (or simulated extreme) operating conditions.
• Overload tests to determine the behaviour of the system under abnormal or

totally unexpected operating conditions.
• Environmental testing to determine the performance of the system under

various extreme conditions of humidity, temperature, vibration, etc.

The instrumentation and process control specialist must inevitably undertake
some or all of the functions performed by the quality engineer in a production
environment. Not only will he be involved with specifying, designing, building
and installing a system but he must also ensure that the overall quality of the
system is assured and that the system meets the standard and criteria laid down
in the initial specification. The quality assurance function requires an ongoing
involvement with the project from design to subsequent installation and use.

Reliability and
fault-tolerance

Reliability of a process control system is often expressed in terms of its percent-
age ‘up-time’. Thus, a system which is operational for a total of 950 h in a period
of 1000 h is said to have a 95% up-time. An alternative method of expressing
reliability involves quoting a mean time before failure (MTBF). The MTBF is
equivalent to the estimated number of hours that a system is expected to operate
before it encounters a failure requiring a period of ‘down-time’.
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Various techniques can be used to make PC-based instrumentation and pro-
cess control systems inherently fault-tolerant. Such techniques can be classified
under the general categories of ‘hardware’ and ‘software’. We shall discuss these
techniques separately.

Hardware techniques

Hardware methods generally involve the use of a ‘watchdog methods’. These
are based upon hardware devices for monitoring the performance of the system.
Typical techniques include:

• Configuring external hardware such that it generates a status byte which is
periodically read (typically every 2 to 10s) by the control program in order
to ascertain the state of the system. If the status byte is not read within a
pre-determined period, the PC controller assumes that a fault condition has
been encountered and then takes appropriate action (such as generating an
error message, sounding an alarm, or invoking redundant backup hardware).
Watchdog techniques can be useful in overcoming a system ‘hang’ which
may occur when the PC fails to access a malfunctioning item of peripheral
hardware.

• Monitoring a power rail and generating appropriate signals when the voltage
present fails to meet the defined tolerance limits for the rail concerned. Typ-
ical actions involve closing down the system in an orderly fashion or invoking
the changeover to a backup supply.

• Fitting an uninterruptable power supply to the PC and important items of
peripheral hardware.

• Using a backup control system and, where necessary, duplicating critical I/O
circuitry attached to independent signal-conditioning boards.

Software techniques

Software techniques generally involve incorporating software routines, proced-
ures, or functions which will:

1 Perform full system diagnostic tests during initialization.
2 Perform periodic diagnostic tests during program execution (e.g. periodically

reading a status byte).
3 Ensure that out of range indications are recognized and erroneous data is

ignored.
4 Generate error and warning messages to alert the user to the presence of a

malfunction.
5 Log faults as they occur together, where possible, with sufficient information

(including date and time) so that the user can determine the point at which
the fault occurred and the circumstances prevailing at the time.

The resident system software invariably incorporates simple diagnostic rou-
tines of the type mentioned in (1). These routines check the major hardware
components within the PC (including ROM and RAM) and are described in
further detail later. Where necessary (particularly when a system is in constant
operation) it may be desirable to make further checks of the system available
as a menu option. The necessary routines are quite straightforward.
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As an example, a ROM checksum can be produced simply by reading each
byte in turn, adding the values returned (ignoring any overflow) and comparing
the result with the known checksum for the ROM. Any difference will indicate
a ROM error and appropriate action can be taken. In the case of the RAM, a
somewhat different technique is employed. Here the process involves writing
and reading each byte of RAM in turn, checking, in each case, that the desired
change has been effected. Where a particular bit refuses to be changed, the
diagnostic procedure is temporarily halted and an appropriate error message is
generated (this may also provide sufficient information for it to be possible to
locate the individual device which has failed).

It is, of course, desirable that RAM diagnostics can also be carried out on
a non-destructive basis. In such cases, the byte read from RAM is replaced
immediately after each byte has been tested. It is thus possible to perform a
major RAM diagnostic routine without destroying data stored in read/write
memory.

The Power On Self Test (POST)

The Power On Self Test (POST) checks the hardware system during initialization
and performs the following checks:

• System motherboard
• Memory
• Keyboard
• Drives

If the Power On Self Test fails, the normal operating system boot sequence is
halted and an error message is displayed. The error message varies according to
the BIOS type and reference should be made to the BIOS manufacturer’s data
in order to determine the appropriate course of action.

Once the system is booted (either into DOS or Windows) it is a relatively
easy matter to determine the hardware configuration using simple diagnostic
software (see Figure 13.1) or using in-built utilities (see page 323). However,
in order to make changes to the low-level system configuration it is necessary
to make use of facilities that are available from within the BIOS (as described
in the next section).

System BIOS The Basic Input and Output System (BIOS) is a program stored in a read-only
memory (ROM) chip on the motherboard. When a computer is first powered-up
the BIOS program performs a number of functions including performing the
Power On Self Test (POST) and loading the operating system. The BIOS assists
with the management of PC hardware via a set of BIOS run-time service
routines.

In order to configure a PC’s settings, a BIOS setup program is provided in
order to optimize and configure the system. Various settings and options are
provided, including:

• adding additional floppy or hard drives
• changing a systems boot sequence (e.g., allowing a system to check for a

boot CD before booting from a hard drive)
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Figure 13.1 Example of a simple DOS-based reporting utility (available
for download from the companion web site – see page xvi)

• changing the system’s date and time
• enabling special features to enhance memory and read/write performance
• setting a BIOS password.

Part of the system’s hardware configuration is saved in a small area of
Complementary Metal Oxide Semiconductor (CMOS) memory. This mem-
ory comprises 64 bytes of battery-backed read/write memory that contains,
amongst other things, settings for the PC’s system clock, information on mem-
ory speed, whether the CPU cache is enabled or disabled, and how fast the PCI
bus communicates with adaptor cards. The data contained in CMOS memory
will become lost if the CMOS battery fails but the settings can be reinstated by
re-entering data using the BIOS Setup program. Sometimes it may be necessary
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Photo 13.1 Dual BIOS ROM (main and backup) fitted to a modern PC

Photo 13.2 CMOS batteries may need replacing if CMOS errors are
reported by the BIOS during system initialization

to clear the data stored in CMOS memory. This may be required when making
a flash upgrade to the BIOS data or when the BIOS password is forgotten (or
simply not passed on from one owner to another).

When the BIOS POST fails it will generate a beep code that motherboard
will send to the system speaker. Beep codes can be invaluable when a system
refuses to boot. Indeed, this will be the only information that you have to work
on unless you have access to a hardware diagnostic aid!
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Two of the most common BIOS POST error beep codes are as follows:

• one long and three short beeps – video fault
• continuous beeps – memory fault.

If the system produces no display and no sound (i.e. no beep) the fault is likely
to be CPU or power supply related.

The BIOS date is shown during the first screen when power is applied to the
motherboard and is normally displayed as part of the BIOS copyright message,
for example:

Award Modular BIOS v4.51PG, An Energy Star Ally
Copyright (C) 1984-99, Award Software Inc.
03/08/1999 For SIS530 PCI/AGP 3D VGA Chipset

This message indicates that we are dealing with an Award BIOS dated
‘03/08/1999’ designed for the SIS PCI/AFP 3D VGA chipset. The BIOS version
is ‘4.51PG’. Further messages will follow relating to BIOS extensions that may
be present. Note that BIOS dates are invariably displayed in [month/day/year]
format. Thus the BIOS date in the previous example is 8th March 1999 not 3rd
August 1999.

If you are unable to read the BIOS information from the screen at power-up
or you would prefer to access the BIOS version and date from within Windows,
you can use various diagnostic tools and utilities to collect this information.

It is advisable to keep a backup copy of the CMOS data so that it can be
restored in the event of failure of the backup battery or loss/corruption of the
information held in the CMOS memory. This can often save time (and guess-
work!) if/when you find it necessary to restore the CMOS data the hard way!

BIOS upgrading

In recent years it has become possible to determine BIOS information (and
also to upgrade a BIOS where appropriate) using the Internet or by means of a
remote dial-up. Several manufacturers now provide this facility as part of their
after-sales service and it should be used wherever possible.

Where a manufacturer does not provide a BIOS upgrade service it may still
be possible to upgrade the BIOS using one of several Internet BIOS resellers.
These companies can also remotely interrogate a PC to determine the current
BIOS version and whether an upgrade would be appropriate, or not.

Upgrading a modern flash BIOS is much easier than it used to be when
BIOS chips had to be replaced manually. That said, it is important to think very
carefully before you decide to upgrade a BIOS. In particular you need to have
good reason to upgrade (e.g., because hardware conflicts have occurred or some
new hardware has become available since the original BIOS was supplied). If a
system is working satisfactorily without the benefit of an upgraded BIOS you
should leave it that way!

The procedure for performing a flash BIOS upgrade is described below.
However, since the procedure can be somewhat complex (and the consequence
of a failed upgrade is serious) it is important to be sure that you are confident
that you know what is going on before you start! In particular you should always
ensure that you have a startup disk, a copy of your CMOS and BIOS settings,
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and that you save a copy of your original flash BIOS data as you perform the
upgrade. Important data should, of course, be regularly backed up in the normal
course of events!

The typical steps required to perform a flash BIOS upgrade are as follows:

1 Identify your motherboard model number and BIOS version. Ensure that you
have all the information (if necessary use several of the methods described
earlier). It is also worth noting down the BIOS setup configuration if you
don’t already keep a record of it. You can do this by booting the system
and pressing the F2 or Delete keys (as appropriate to the system) and then
viewing the BIOS setup screens. Exit these screens without saving any of
the changes.

2 Connect to the Internet and locate the BIOS manufacturer’s web site. Inves-
tigate the BIOS upgrade, technical support, or software download sections
of the manufacturer’s web site. In some cases software will be available for
downloading to the PC that will perform an automatic update. If this is not
the case you may need to perform the upgrade manually by downloading files
and then executing them as directed in the steps that follow. If an automatic
update is available you should always follow the manufacturer’s instructions
to download the required software and start the upgrade (refer to sections
13–19 below).

3 Locate the motherboard and download the latest version of the Phoenix
BIOS or Award FLASH.EXE program from the manufacturer’s site. You
will normally find this in the same section as the BIOS upgrade BIN file.
Some manufacturers provide you with a search facility that you may (or may
not!) find useful.

4 Locate the most up to date version of the BIOS available for the particu-
lar motherboard type. Follow the instructions given to download this from
the site.

5 Click on Start and select Control Panel. Next click on Add/Remove Programs
and select the Startup Disk tab. Insert a blank formatted 1.44 MB floppy disk
into the floppy drive and create a startup disk which you will later use to
boot the system.

6 Copy the downloaded Phoenix BIOS or Award flash upgrade program to the
newly created boot disk.

7 Copy the downloaded BIOS to the floppy disk and unzip or extract the file.
This will create a BIN file with the new BIOS flash data to be written to the
PC’s flash memory. If a ‘disk full’ message appears you will need to free up
some space on the boot disk by removing some files. The following files,
although useful for an emergency startup disk, are not required for the flash
upgrade: FDISK, FORMAT, and MSCDEX. However, if you have to do this
it is strongly recommended that you have at least one ‘full’ startup disk in
case things go wrong!

8 Check to ensure that all files are in place and have been unzipped or
expanded.

9 Check that the system is set to boot from the floppy disk drive. If you suspect
that this is not the case you will need to temporarily remove the floppy disk
from the drive and reboot the system in order to enter and change the BIOS
settings. Use F2 or the Delete key (as appropriate) to interrupt the boot
sequence and enter the BIOS setup screen. Once you have done this change
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the BIOS settings to select a boot sequence that starts with A: and then C:
(rather than the normal C: and then A:).

10 Once the BIOS boot sequence has been changed, insert the BIOS upgrade
boot disk into the floppy drive and reboot the system.

11 During the boot sequence press the F5 key in order to display the DOS
prompt (i.e. A:>). Then type DIR in order to display the contents of the
newly created BIOS upgrade boot disk. Locate the name of the executable
flash BIOS upgrade program (it will have an EXE file extension) and the
name of the BIOS data file (it will have a BIN file extension).

12 Enter the name of the upgrade program (e.g. FLASH.EXE or AWD-
FLASH.EXE). This will prompt you to enter the name of the BIOS upgrade.
When you have entered this name the upgrade process will commence
(ensure that you enter this correctly as the filename can be case sensitive).

13 Next you will be asked whether you wish to save a copy of the old BIOS.
You should answer ‘Yes’ and follow the instructions given.

14 At this point, you will be asked whether you wish to ‘flash’ the BIOS. You
should answer ‘Yes’ to complete the upgrade. If successful, you will see a
message informing you that the upgrade has been completed without error. If
unsuccessful, an error message will be displayed. Do not attempt to continue
with an upgrade if such a message appears!

15 Finally, remove the flash upgrade boot disk and restart the computer. If
necessary, reset the boot sequence so that the system boots first from C: and
then from A:.

16 As the system boots note the new BIOS copyright message. If the new BIOS
has been flashed correctly this should display the new BIOS version.

17 Next enter the BIOS setup screen once again by hitting the Delete or F2 key.
Then select the option to set the BIOS to its default setting.

18 Restart the system and re-enter the BIOS setup screen one more time. Now
enter BIOS settings that you previously noted down or select new settings
as required by the system’s current hardware configuration.

19 Restart the computer and let it complete the full boot sequence. Check that
the system operates as you would expect. If necessary, BIOS settings can be
changed to improve the system’s performance. In exceptional cases you may
find it necessary to revert to the saved BIOS data (using the same procedure
as before).

If you encounter problems while updating the new BIOS do not turn off or
remove power from the system and this may prevent your system from subse-
quently booting up. Instead, you should repeat the process but if the problem
persists, it will be necessary to revert to the original saved BIOS data. You may
also find that you have to clear or reset the CMOS data when you perform a
flash BIOS upgrade (or if you don’t have the password required to enter the
BIOS setup program). This task is usually performed by changing the position
of a jumper located close to the CMOS battery. It is also worth noting that some
motherboards have two different sized versions of BIOS data files. The flash
upgrade software will usually report a mismatch in file size by displaying a
message such as ‘File size does not match’.

It should go without saying that, when saving an original BIOS data file, it is
important to use a different filename from that of the upgrade BIN data file! I
suggest that you name the original data OLD.BIN or OLDBIOS.BIN. It is also
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worth noting that some browsers may rename the BIOS BIN file with an EXE
file extension during the download. If this happens you will need to rename
the file with the correct extension (BIN) before using the FLASH upgrade
program. It can also be important to ensure that memory managers (such as
HIMEM.SYS and EMM386.EXE) are not resident when the flash upgrade is
running.

Troubleshooting
Windows problems

Anyone who has been involved with PC’s at anything more than the basic user
level will almost certainly have come across the unhelpful (and occasionally
totally incomprehensible) error messages that Windows, in all its incarnations,
is capable of generating! Windows problems can be arranged into the following
main categories:

• Invalid page faults
• General protection faults
• Fatal exceptions
• Protection errors
• Kernel errors
• Dynamic link library (DLL) faults.

At this stage it’s worth noting that modern CPUs are designed to detect
situations in which an executable program attempts to do something that is
nonsensical or ‘invalid’ in terms of the hardware and software configuration of
the system. The most common problems are stack faults, invalid instructions,
divide errors (divide by zero), and general protection faults. These can often be
caused by malfunctioning or badly constructed code in a program.

Invalid page faults

Invalid page faults can occur for any of the following reasons:

• An unexpected event has occurred in Windows. An invalid page fault error
message often indicates that a program improperly attempted to use random
access memory (RAM). For example, this error message can occur if a pro-
gram or a Windows component reads or writes to a memory location that is
not allocated to it. When this happens the program can potentially overwrite
and corrupt other program code in that area of memory.

• A program has requested data that is not currently in virtual memory, and
Windows attempts to retrieve the data from a storage device and load it into
RAM. An invalid page fault error message can occur if Windows is unable
to locate the data. This is often the case when the virtual memory area has
become corrupted for some reason.

• The virtual memory system has become unstable because of insufficient
physical memory (RAM).

• The virtual memory system has become unstable because of a insufficient
free disk space.

• The virtual memory area has been corrupted by a program.
• A program is attempting to access data that is being modified by another

program that is running.
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If you are using Windows 95 or Windows 98, you may receive the following
error message:

This program has performed an illegal operation and will be shut down. If
the problem persists, contact the program vendor.

If you subsequently click on Details, you may receive an error message of the
form:

[Program] caused an invalid page fault in module at [location].

This type of error is ‘unrecoverable’ and hence, after you click OK, the program
somewhat unhelpfully shuts down!

Note that if you are using Windows ME (Millennium Edition), you will
receive an error message of the form:

[Program] has caused an error in [address]. [Program] will now close.

If you continue to experience this type of error message you should restart
the computer. To view the details of the problem you should press ALT+D, or
open the Faultlog.txt file in the Windows folder.

To resolve this problem it is important to identify when, and in what situation,
the error message first occurred. Also, determine if you recently made changes
to the computer, for example, if you installed software or changed the hard-
ware configuration. In either case, you should use a clean boot troubleshooting
procedure (see later) to help you identify the cause of the error message.

General protection faults

All protection violations that do not cause another exception result in a general
protection fault (GPF). These can be caused by:

• Exceeding the segment limit when using the CS, DS, ES, FS, or GS segments.
This is a very common problem in programs and it is usually caused when a
program miscalculates how much memory is required in an allocation.

• Transferring execution to a segment that is not executable (e.g., jumping to
a location that contains garbage).

• Writing to a read-only area or to a Code segment.
• Loading a bad value into a Segment Register.
• Using a null pointer. A value of zero (i.e. 0) is defined as a null pointer. When

operating in Protected Mode, it is always invalid to use a Segment Register
that contains zero.

A general protection fault often indicates that there is a problem with the
software that you are using or that you need to update a device driver installed
on the PC. The Dr. Watson utility (see page 410) can often help you to identify
the cause of the error message by taking a snapshot of the system at the point
at which the fault occurs.
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Because general protection faults can be caused by software or hardware, the
first step is to restart the PC computer in Safe mode in order to narrow down the
source of the error. Restarting in Safe mode will allow you to check whether
the problem is attributable to hardware of results from a fault in a driver or an
application program.

Restarting in Safe mode (see page 407) allows you to test your computer in a
state in which only essential components of Windows are loaded. If you restart
your computer in Safe mode and the error message does not occur, the origin
is more likely to be a driver or program. If you restart in Safe mode and then
test your computer and the error message does occur, the issue is more likely
to be hardware or damaged Windows core files.

Safe mode starts Windows with a basic VGA video driver. To determine if
the issue you are experiencing is related to your video driver you will need to
change to the appropriate VGA driver for testing purposes. Note, however, that
if you have removed the Protected Mode drivers in order to isolate conflicts you
will have already reverted back to the basic VGA video driver.

When you start Windows in Safe mode the registry is only partially read.
Damage to the registry may not therefore be evident when running in Safe
mode and you may need to replace the existing registry data file (System.dat)
with a recent backup in order to see if this resolves the problem in which case
the cause is likely to be a damaged registry data file. The following procedure
is required in order to troubleshoot a damaged registry:

1 Boot to a DOS command prompt.
2 Remove the file attributes from the backup of the registry by typing the

following DOS command:

c:\windows\command\attrib -h -s -r c:\system.1st

3 Remove the file attributes from the current registry by typing the following
DOS command:

c:\windows\command\attrib -h -s -r c:\windows\system.dat

4 Rename the registry by typing the following command:

ren c:\windows\system.dat *.dax

5 Copy the backup file to the current registry by typing the following
command:

copy c:\system.1st c:\windows\system.dat

6 Restart the computer.

Note that the System.1st file is a backup of the registry that was created
during the final stage of the original Windows Setup. Therefore, the ‘Running
Windows for the first time’ banner is displayed and Windows will finalize its
settings as if it is being installed for the first time.

If replacing the System.dat file with the System.1st file resolves the issue,
the problem may be related to a damaged Windows registry. Any programs
and device drivers that were subsequently installed may require reinstallation
to update the new registry. For this reason it is essential to keep all of your
original installation disks in a safe place!
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If you determine that the problem is not caused by a faulty registry data
file you will need to restore the original registry data file. The procedure is as
follows:

1 Restart the computer to a command prompt.
2 Type the following commands, pressing ENTER after each command:

c:\windows\command\attrib -s -h -r c:\windows\system.dat
copy c:\windows\system.dax c:\windows\system.dat

3 Overwrite the existing System.dat file if you are prompted to do so.
4 Restart the computer.
5 If the problem is still unresolved the next stage is that of re-installing the

Windows core files. You will need the original installation CD-ROM and you
should install Windows in a ‘clean’ folder. If the new installation resolves
the problem this usually indicates that either one or more of your Windows
core files has been damaged, or that there is an error in the configuration
of your original installation. You can choose to use the new installation of
Windows, but you will have to reinstall any application programs so that they
are correctly recognized by Windows.

6 If the problem is not resolved with a ‘clean’ installation, the condition is
probably attributable to faulty hardware. In such a case you may need to con-
tact the motherboard manufacturer as well as the manufacturer of any adapter
cards that are fitted to the system. If you have access to a similar system that
is fault-free, you should, of course, be able to carry out substitution tests.

Fatal exceptions

Fatal exceptions occur in the following situations:

• If access to an illegal instruction has been encountered
• If invalid data or code has been accessed
• If the privilege level of an operation is invalid.

When any of these situations occur, the processor returns an exception to the
operating system, which in turn is handled as a fatal exception error message.
In many situations, the exception is non-recoverable and you must either shut
down or restart the computer, depending on the severity of the error.

Fatal exceptions are likely to be encountered when:

• you attempt to shut down the computer
• you start Windows
• you start an application or other program from within Windows.

In either of these cases, an error message like that shown below will appear:

A fatal exception [code] has occurred at [location].

In order to distinguish the type of fatal exception that has occurred these
errors are given codes that are returned by a program. The value of the code
represents the enhanced Instruction Pointer to the Code Segment; the 32-bit
address is the actual address where the exception occurred.
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It is important to appreciate that, whilst Windows does not actually
cause these errors, it has the exception-handling routine for that particu-
lar processor exception and this, in turn, is what actually displays the error
message.

For those with some experience of low-level architecture, the various fatal
exception error codes (in hexadecimal) are listed below:

1 00: Divide fault
The processor returns this exception when it encounters a divide fault. A
divide fault occurs if division by zero is attempted or if the result of the
operation does not fit in the destination operand.

2 02: NMI Interrupt
Interrupt 2 is reserved for the hardware non-maskable-interrupt condition.
No exceptions trap via interrupt 2.

3 04: Overflow trap
The overflow trap occurs after an INTO instruction has executed and the 0F
bit is set to 1.

4 05: Bounds check fault
The BOUND instruction compares the array index with an upper and lower
bound. If the index is out of range, then the processor traps to interrupt 05.

5 06: Invalid Opcode fault
This error is returned if any one of the following conditions exists:
• The processor tries to decode a bit pattern that does not correspond to any

legal computer instruction.
• The processor attempts to execute an instruction that contains invalid

operands.
• The processor attempts to execute a protected-mode instruction while

running in virtual 8086 mode.
• The processor tries to execute a LOCK prefix with an instruction that

cannot be locked.
6 07: Coprocessor not available fault

This error occurs if the computer does not have a math coprocessor and
the EM bit of register CR0 is set indicating that Numeric Data Processor
emulation is being used. Each time a floating point operation is executed, an
interrupt 07 occurs.

This error also occurs when a math coprocessor is used and a task switch
is executed. Interrupt 07 tells the processor that the current state of the
coprocessor needs to be saved so that it can be used by another task.

7 08: Double fault
Processing an exception sometimes triggers a second exception. In the
event that this occurs, the processor will issue a interrupt 08 for a double
fault.

8 09: Coprocessor Segment overrun
This error occurs when a floating point instruction causes a memory access
that runs beyond the end of the segment. If the starting address of the floating
point operand is outside the segment, then a General Protection Fault occurs
(interrupt 0D).

9 10 (0Ah): Invalid Task State Segment fault
Because the Task State Segment contains a number of descriptors, any num-
ber of conditions can cause exception 0A. Typically, the processor can gather
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enough information from the Task State Segment to issue another fault
pointing to the actual problem.

10 11 (0Bh): Not Present fault
The Not Present interrupt allows the operating system to implement virtual
memory through the segmentation mechanism. When a segment is marked
as ‘not present’, the segment is swapped out to disk. The interrupt 0B fault
is triggered when an application needs access to the segment.

11 12 (0Ch): Stack fault
Stack fault occurs with error code 0 if an instruction refers to memory
beyond the limit of the stack segment. If the operating system supports
expand-down segments, increasing the size of the stack should alleviate this
problem. Loading the Stack Segment with invalid descriptors will result in
a general protection fault.

12 13 (0Dh): General protection fault
Any condition that is not covered by any of the other processor exceptions
will result in a general protection fault. The exception indicates that this
program has been corrupted in memory, usually resulting in immediate
termination of the program.

13 14 (0Eh): Page fault
The Page fault interrupt allows the operating system to implement virtual
memory on a demand-paged basis. An interrupt 14 usually is issued when
an access to a page directory entry or page table with the present bit set
to 0 (not present) occurs. The operating system makes the page present
(usually retrieves the page from virtual memory) and re-issues the faulting
instruction, which then can access the segment. A page fault also occurs
when a paging protection rule is violated (when the retrieve fails, or data
retrieved is invalid, or the code that issued the fault broke the protection rule
for the processor). In these cases the operating system takes over for the
appropriate action.

14 16 (10h): Coprocessor Error fault
This interrupt occurs when an unmasked floating-point exception has sig-
nalled a previous instruction. (Because the 80386 does not have access to the
floating point unit, it checks the ERROR pin to test for this condition.) This
is also triggered by a WAIT instruction if the Emulate math coprocessor bit
at CR0 is set.

15 17 (11h): Alignment Check fault
This interrupt is only used on the 80486 CPUs. An interrupt 17 is issued
when code executing at ring privilege 3 attempts to access a word operand
that is not on an even-address boundary, a double-word operand that is not
divisible by four, or a long real or temp real whose address is not divisible
by eight. Alignment checking is disabled when the CPU is first powered up
and is only enabled in protected mode.

Because there are many conditions that can cause a fatal exception error,
the first step in resolving the issue is to narrow the focus by using the
clean boot procedure described earlier. It is also worth noting that many
problems occur because of conflicting drivers, terminate-and-stay-resident pro-
grams (TSRs), and other settings that are loaded when the computer first
starts.
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Protection errors

Windows protection error message occurs when a computer attempts to load
or unload a virtual device driver (VxD). This error message is a way to let you
know that there is a problem with the device driver. In many cases, the VxD
that did not load or unload is mentioned in the error message. In other cases,
you may not be able to determine the VxD that caused the behaviour; however,
you should be able to find the cause of the error message if you use clean boot
troubleshooting.

Windows Protection error messages can occur in any of the following
situations:

• If a real-mode driver and a protected-mode driver are in conflict.
• If the registry is damaged.
• If either or both the Win.com file or the Command.com file are infected with

a virus, or if either of the files has become corrupted or damaged.
• If a protected-mode driver is loaded from the System.ini file and the driver

is already initialized.
• If there is a physical input/output (I/O) address conflict or a random access

memory (RAM) address conflict.
• If there are incorrect Complementary Metal Oxide Semiconductor (CMOS)

settings for a built-in peripheral device (such as cache settings, CPU timing,
hard disks, and so on).

• If the Plug and Play feature of the Basic Input/Output System (BIOS) on the
computer is not working correctly.

• If the computer contains a malfunctioning cache or malfunctioning memory.
• If the motherboard on the computer is not working properly.

When you start Windows, you may receive one of the following error messages:

While initializing device [device name] Windows Protection Error

or, the even more succinct (and somewhat less helpful) message:

Windows Protection Error

The following procedure is recommended when investigating Windows
Protection errors:

1 First enter Safe mode, as follows:
• For Windows 95, restart your computer, press F8 when you see the

‘Starting Windows 95’ message, and then choose Safe Mode.
• For Windows 98 (and Windows 98 Second Edition), restart the computer,

press and hold down the CTRL key until you see the Windows 98 Startup
menu, and then choose Safe Mode.

• For Windows Millennium Edition (ME), press and hold down the CTRL
key while you restart the computer, and then choose Safe Mode on the
Windows ME Startup menu.

2 If you do not receive the error message when you start the computer in Safe
mode (or when you shut down the computer from Safe mode) you should
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follow the described earlier in order to check that the computer is correctly
configured and that the system hardware and associated drivers is operating
correctly.

3 If you receive the error message when you attempt to start the computer in
Safe mode, you follow the steps listed below to restore the registry:
(a) Boot to a command prompt.
(b) Remove the file attributes from the backup of the registry by typing the

following DOS command:

c:\windows\command\attrib -h -s -r c:\system.1st

(c) Remove the file attributes from the current registry by typing the
following DOS command:

c:\windows\command\attrib -h -s -r c:\windows\system.dat

(d) Rename the registry by typing the following command:

ren c:\windows\system.dat *.dax

(e) Copy the backup file to the current registry by typing the following
command:

copy c:\system.1st c:\windows\system.dat

4 Restart the computer and verify that the computer’s current CMOS settings
are correct.

5 Install a ‘clean’ copy of Windows in an empty folder. If the new installation
resolves the problem this usually indicates that either one or more of your
Windows core files has been damaged, or that there is an error in the config-
uration of your original installation. You can choose to use the new installation
of Windows, but you will have to reinstall any application programs so that
they are correctly recognized by Windows.

6 If the problem is not resolved with a ‘clean’ installation, the condition is
probably attributable to faulty hardware. In such a case you may need to con-
tact the motherboard manufacturer as well as the manufacturer of any adapter
cards that are fitted to the system. If you have access to a similar system that
is fault-free, you should, of course, be able to carry out substitution tests.

The virtual device driver (VxD) that is generating the error message can be
any VxD, either a default VxD that is installed, or a third-party .386 driver that
is loaded from the System.ini file. If you do not know which driver is causing
the error message, create a Bootlog.txt file, and then check to see which driver
is the last driver that is initialized. This is typically the driver that is causing the
problem.

Kernel errors

The Kernel32.dll file is a 32-bit dynamic link library (DLL) file that handles
memory management, input/output operations, and interrupts. When you start
Windows, Kernel32.dll is loaded into a protected memory space. An invalid
page fault (IPF) error message will occur when a program tries to access the
protected memory space allocated to Kernel32.dll. Occasionally, the error mes-
sage is caused by one particular program whilst on other occasions it may be
generated by several programs.
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If the problem results from running one program, the program should be
replaced. If the problem occurs when you access multiple files and programs,
the damage is likely caused by damaged hardware. You may want to clean boot
the computer to help you identify the particular third-party memory-resident
software. Note that programs that are not memory-resident can also cause IPF
error messages.

The following faults can cause Kernel32.dll error messages:

• Damaged swap file
• File allocation damage
• Damaged password list
• Damaged or incorrect version of the Kernel32.dll file
• Damaged registry
• Hardware, hot CPU, over-clocking, faulty broken power supply, RF noise, or

a defective hard disk controller
• BIOS settings for Wait states, RAM timing, or other BIOS settings
• Third-party software that is damaged or incorrectly installed .dll files that

are saved to the desktop
• A non-existent or damaged Temp folder
• A corrupted Control Panel (.cpl) file
• Incorrect or damaged hardware driver
• Incorrectly installed printer drivers (or HP Jetadmin drivers)
• Damaged Java Machine
• Damaged .log files
• Damaged entries in the History folder
• Incompatible or damaged dynamic link library files
• Viruses
• Damaged or incorrect Msinfo32.exe file
• Low disk space.

If you are using Windows 95 or Windows 98, you may receive the following
error message:

This program has performed an illegal operation and will be shut down. If
the problem persists, contact the program vendor.

When you click Details, you may receive the following error message:

[Program] caused an invalid page fault in module at [location]

After you click OK, the program shuts down.
If you are using Windows Millennium Edition (ME), you may receive the

following error message:

[Program] has caused an error in [location].
[Program] will now close.

To view the details, press ALT+D, or open the Faultlog.txt file in the Windows
folder. If you continue experiencing problems, you should try restarting your
computer.
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Dynamic link library faults

A dynamic link library (DLL) file is an executable file that allows programs to
share code and other resources necessary to perform particular tasks. Microsoft
Windows provides DLL files that contain functions and resources that allow
Windows-based programs to operate in the Windows environment.

It is important to be aware that, whilst dynamic link libraries usually have
a .DLL extension, they may also have an .EXE or other extension. For example,
Shell.dll provides the Object Linking and Embedding (OLE) drag and drop
routines that Windows and other programs use whilst Kernel.exe, User.exe,
and Gdi.exe are all examples of DLLs with .EXE extensions and they all pro-
vide code, data, or routines to programs running under the Windows operating
system. In Windows, an installable driver is also a DLL.

DLLs are usually placed in the Windows directory, Windows\System direc-
tory or in the directory in which an application resides. If a program is started
and one of its DLL files is missing or damaged, you may receive an error mes-
sage like:

Cannot find [filename.dll]

If a program is started with an outdated DLL file or mismatched DLL files,
the error message

Call to undefined dynalink

may be displayed. In these situations, the DLL file must be obtained and placed
in the proper directory in order for the program to run correctly.

The following procedure can be used to determine the version number,
company name or other information about a dynamic link library file:

1 Click Start, point to Find, and then click Files or Folders.
2 In the Name box, type the name of the file you want to find, for example,

‘shell32.dll’ (but without the quotation marks).
3 Click Local Hard Drives (or the drive letter you want to search) in the Look

In box, and then click Find Now.
4 Right-click the file in the list of found files, click Properties, and then click

the Version tab.

Using Dr. Watson The diagnostic tool, Dr. Watson, is supplied as part of the Windows operating
system yet rarely is it ever referred to and most Windows users don’t know
that it exists! If a program fault occurs, Dr. Watson will generate a snapshot of
the current software environment which can provide invaluable information of
what was happening at the point at which the fault occurred.

To start Dr. Watson, you can either:

1 Click Start, click Run.
2 Enter drwatson in the box and then click on OK.

or

1 Click Start, select Programs and Accessories, and then click on System Tools.
2 Click System Information, and then click Dr. Watson on the Tools.
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When Dr. Watson is running in the background you will see an additional icon
displayed on your taskbar.

You can click the Details button in the error message to view the information
that is gathered by Dr. Watson. However, in most cases you will want to have a
record of what was happening at the point at which the fault occurred. If this is
the case, you can generate a log file by double-clicking the Dr. Watson icon on
the taskbar. In either case, Dr. Watson gathers information about the operating
system and then a Dr. Watson dialog box is displayed.

The log files produced by Dr. Watson have a .wlg extension and they are
stored in the \Windows\Drwatson folder. The log file provides a great deal
of useful information including the name of the program that has created the
fault, the program that the fault occurred in (not necessarily the same), and the
memory address where the fault occurred. It is important to note that Dr. Watson
cannot create a snapshot if the program does not respond (i.e. if it hangs).

Dr. Watson collects detailed information about the state of the operating
system at the time of a program fault. Dr. Watson then intercepts the software
faults, identifies the software that has produced the fault, and then provides
a detailed description of the cause. When this feature is enabled, Dr. Watson
automatically logs this information.

When Dr. Watson is loaded, click any tab to move out of the text box. The
Dr. Watson window closes if you press ENTER. To view the advanced tabs in
Dr. Watson, follow these steps:

1 Double-click the Dr. Watson icon.
2 On the View menu, click Advanced View.

The following tabs will then be displayed (see Figure 13.2) providing detailed
information about the system:

System Includes information that you would see on the General
tab of System Properties.

Tasks Includes information about the tasks that were running
when the snapshot was taken. This tab also includes
information about the program, the version, the
manufacturer, the description, the path, the type, and the
program that this program is related to (when this
information is available) (See Figure 13.3).

Startup Includes information about the programs that are
configured to load during Startup. This tab includes
the program name, and information about where the
program was loaded from, and the command line that
is used to load the program (See Figure 13.4).

Hooks Provides information about modules that have intercepted
(i.e. ‘hooked’) various aspects of the system. This tab
can be used to show the hook type, the application, and
the path (See Figure 13.5).

Kernel Drivers Includes information about where the Kernel-mode
drivers are installed, including the name of the driver,
the version, the manufacturer, the description, the
likely path, information about where the driver is
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Figure 13.2 The Dr. Watson dialogue box. Dr. Watson has captured system
information in a file named log1.wlg (see top left of window). The System tab
displays version data relating to Windows and its installation (in this case, a
clean installation using a full OEM CD), the version of Internet Explorer, the
current log-in information (user name), the hardware platform (Pentium II
processor with 64 MB RAM), and the available resources (78% free, 263 MB
free space on the C: drive, etc.)

loaded from, the type of driver, and the program that
the driver related to (when information is available)
(See Figure 13.6).

User Drivers Includes information about the User-mode drivers that are
installed, including the name of the driver, the version, the
manufacturer, the description, the likely path, the type of
driver, and the program that the driver is related to (when
information is available) (See Figure 13.7).

MS-DOS Drivers Includes information about the MS-DOS drivers that are
installed (See Figure 13.8).

16-bit Modules Includes information about the 16-bit modules that were
in memory when the snapshot was taken, including
the name of the module, the version, the manufacturer,
the description, the likely path, the type of driver, and the
program that the driver is related to (when information
is available) (See Figure 13.9).

Details Lists the events that occurred before and during the fault,
in progressive order. Note that this tab is only displayed
when Dr. Watson has captured a fault.
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Figure 13.3 The Tasks tab displays a list of the programs that were running at
the point at which the snapshot was taken. This important information shows
the filename of the executable as well as its version number, its manufacturer,
and a brief description that tells you what it does

Figure 13.4 The Startup tab displays a list of the applications that are
registered to run when the system starts. This information indicates whether
the program is run from and entry in the Startup group of whether it is from
the registry
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Figure 13.5 The Hooks tab provides information about modules that have
intercepted (i.e. ‘hooked’) various aspects of the system. In this screen,
Dr. Watson is reporting a single hooked application, IMGICON.EXE

Figure 13.6 The Kernel Drivers tab displays a list of kernel-mode drivers,
including their manufacturer and version number
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Figure 13.7 The User drivers tab provides information on current
user-drivers. In this screen, Dr. Watson is reporting on the various multimedia
driver components. Once again, note the clarity and level of reporting
provided by this excellent free tool

Figure 13.8 The MS-DOS drivers tab reports on any MS-DOS drivers that
happen to be present. These drivers are only used by DOS applications and
not directly by Windows
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Figure 13.9 The 16-bit Modules tab provides information on Windows core
components and modules such as the display driver

If you experience a program fault, and you want to use Dr. Watson, follow
these steps:

1 Try to reproduce the fault to verify that it is not a random failure.
2 Click Start, point to Programs, point to Accessories, and then click System

Tools.
3 Click System Information, and then on the Tools menu, click Dr. Watson.
4 Reproduce the fault.
5 Click Details in the Program Fault window.
6 View the Diagnosis window to determine the source of the fault.
7 If the issue is intermittent or not easy to reproduce, put Dr. Watson in your

Startup folder so that it is always running and will be ready to capture the
fault information as and when the fault recurs.

8 When the fault next occurs examine the information captured in the log file.
To save the information generated by Dr. Watson, click Save on the File
menu.

You may also wish to add a few comments of your own stating under
what circumstances the fault occurred. When you have done this, select the
File menu and click Save or Save As to save the file. Note that if you only
click OK in the Dr. Watson dialog box, the information that you enter in the
text box is not saved.

9 You can later view a Dr. Watson log file by using the Dr. Watson program
or by using Microsoft System Information (MSInfo). To view Dr. Watson
log files by using MSInfo, follow these steps:
(a) Click Start, point to Programs, point to Accessories, point to System

Tools, and then click System Information.
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Figure 13.10 Dr. Watson provides a limited range of configuration options
(see text)

(b) On the File menu, click Open.
(c) Open the folder where the Dr. Watson log is saved.
(d) In the Files of type list, click Dr. Watson Log File (*.wlg).
(e) Click the file, and then click Open.

10 To print Dr. Watson log files, click on Print from the File menu. To print
only specific information, you can use Microsoft System Information to
view the log file, and then copy the specific information to an ASCII text
editor, such as Microsoft Notepad. (Note that, depending on the software
that happens to be running, a typical Dr. Watson log file can amount to more
than 15 pages of A4 text!)

Dr. Watson can be configured using the limited number of options available
(see Figure 13.10). The procedure for customizing Dr. Watson to your own
requirements is as follows:

1 Select the View menu and click Options.
2 Click on Log Files to configure the number of log files that are able to be

stored on the computer and the folder that the log files will be saved in.
3 Click on Disassembly to configures the number of CPU instructions and stack

frames that are to be reported in the log file.
4 Click on View to configure the view that Dr. Watson is displayed in (either

Standard View or Advanced View).

Dr. Watson can be configured so that it loads automatically when Windows
starts. To do this, create a shortcut to Drwatson.exe in the Startup folder.
This configuration is useful when an issue is not easily reproducible. When
Dr. Watson traps the program fault and creates the log, you can contact technical
support for further assistance.
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The Dr. Watson dialog box includes a text box that you can use to enter infor-
mation about what was happening when the fault occurred. This information can
be extremely useful later – particularly when the same machine next produces
errors. By default, Dr. Watson log files are saved to the \Windows\Drwatson
folder.

Finally, it is worth noting that Dr. Watson is best used with reproducible
faults. With intermittent faults, you may often not be able to determine the
cause of the fault in which case you should follow the procedures described
earlier depending on the exact nature of the Windows error message that has
been generated.

Benchmarking and
performance

measurement

It is often useful to compare the performance of one PC with another or to
measure the comparative performance of a PC over a period of time, particu-
larly when changes are made to software, hardware, and system configuration.
Several software packages offer benchmarking checks but one of the best is a
suite of programs and utilities known as Fresh Diagnose. Fresh Diagnose can
analyze and benchmark the individual parts of a computer system making it
possible to detect individual items of hardware that are not configured correctly
or that should considered to be prime candidates for upgrading.

Fresh Diagnose will scan a system and produce a comprehensive report on
the hardware and software, including information on:

• motherboard type and configuration
• CPU type and clock settings
• video system
• PCI/AGP bus peripheral devices (e.g. keyboard, mouse, and printer)
• network connections.

Fresh Diagnose will also perform a series of tests in order to measure the
performance of a system. These tests include:

• CPU performance
• hard disk performance
• CD/DVD ROM performance.

In addition to absolute measurement of performance, Fresh Diagnose can
provide a comparison of the current system with others. This information can
be invaluable in confirming (or otherwise!) that a PC is performing accord-
ing to expectation. Fresh Diagnose will operate successfully with systems
that use Windows 95, Windows 95 OSR2, Windows 98, Windows 98 Sec-
ond Edition, Windows ME, Windows NT 4.0, Windows 2000, and Windows
XP (Figure 13.11).

System information

Fresh Diagnose incorporates a large number of individual program modules
that can be used to provide information on both the system hardware and its
software. The modules provide comprehensive information on:

• the operating system version and configuration (Figure 13.12)
• advanced power monitor (APM)
• CMOS settings
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Figure 13.11 The Fresh Diagnose opening screen showing the eight main
options that may be selected by pointing and clicking on the icons. Other
options, such as Print and Report, may be selected directly from the tool bar.
The window on the left provides a means of selecting individual modules

Figure 13.12 The Software System Memory report provides comprehensive
information on operating system memory usage and on the memory manager.
In this example, the total physical memory reported is 511 MB of which
339 MB is currently available to applications
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Figure 13.13 The Software System Scheduled Tasks report provides detailed
information on each scheduled task. In this example, the Norton Antivirus task
is being reported on. The task is scheduled to run every Friday at 20:00 and it
will be next run on 30/01/2004

• processes, services and media control settings
• user and location (including time zone) settings (Figure 13.13)
• fonts and system files processor and memory resources drives and display

adapters
• keyboard, mouse, joystick, and MIDI settings
• ports and port settings network and Internet settings
• games software extensions (DirectX, DirectDraw, and DirectSound)
• interrupt requests (IRQ) and DMA channels (Figure 13.14).

Benchmarking Fresh Diagnose incorporates six benchmarking modules. These are as follows:

• Processor Benchmark
• Multimedia Benchmark
• Memory Benchmark
• Hard Disk Benchmark
• CD Drive Benchmark
• Network Benchmark.
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Figure 13.14 The Hardware System provides essential information on
interrupts, direct memory access (DMA) channels, port settings, and the
available memory resources

Processor Benchmark

The Processor Benchmark performs continuous and complex calculations based
on the industry standard Whetstone and Dhrystone algorithms. These provide
a measure of the performance of a CPU when carrying out floating point and
integer arithmetic operations, respectively.

The Whetstone benchmarking algorithm was created by Harold Curnow in
1972 and optimized for floating point arithmetic. The Dhrystone benchmarking
algorithm is the standard for measuring integer performance. This was devel-
oped by Reinhold P. Weicker and is similar to the Whetstone algorithm but
without floating point arithmetic. As well as producing a speed rating in terms
of MHz, Fresh Diagnose produces benchmarks expressed in terms of Millions
of Whetstone Instructions Per Second (MWIPS) and Millions of Dhrystone
Instructions Per Second (MDIPS).

CPU Multimedia Benchmark

This benchmark performs a set of Intel SSE, SSE2, x87, and AMD 3DNow!
instructions including binary and logical operations. When carrying out CPU
benchmarking it is important to be aware that the results of measurements will
often be different for identical processors operating with different operating
systems. This is due to minor differences in the way that individual operating
systems support a processor’s instruction set. Generally (but not in every case)
the later operating systems will yield faster benchmark results (Figure 13.15).

Memory Benchmark

This benchmark performs a set of memory operations (at least 100 KB) includ-
ing array assignment and splitting. The measurement produces memory speeds



h4716-ch13 5/2/2005 12: 38 page 422

422 PC Based Instrumentation and Control

Figure 13.15 A typical CPU Benchmark display. The system on test produces
a benchmark of 3308 MWIPS which is more than four times that of a typical
Intel Pentium IV with a 1.6 GHz clock

for integer array handling (Integer Assignment) and integer splitting (Integer
Split) (Figure 13.17).

Hard Disk Benchmark

The Hard Disk Benchmark performs both read and write tests on the hard
disk drive. The module creates a temporary file called ‘sysinfo.bch’ in the root
directory and then uses this to perform subsequent read and write tests. The
results appear in MB/s (Figure 13.16).

CD Benchmark

The CD Benchmark performs a single read test to the CD drive. In order to
perform this test Fresh Diagnose requires the insertion of a CD audio, CD data,
VCD, or DVD to use as the basis of the measurement. The media used should
be a reliable CD which does not auto-run. Once again, the result is in MB/s.

Network Benchmark

The Network Benchmark performs a ping instruction and both read and write
tests to a specified connection. If the selected connection is a read-only one, the
measurement will only perform a ping test. The results of read and write tests
are in MB/s.
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Figure 13.16 A typical Hard Disk Benchmark display. The system on test
produces a write speed of 9.3 MB/s. This is around 40% slower than that of a
30 GB Quantum drive which rotates at 7200 rpm

Figure 13.17 A typical Memory Benchmark display. This shows that the
performance of the system on test is virtually identical to that of an Intel 850
PC800 RDRAM
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Fault-finding and
troubleshooting

techniques

A popular misconception concerning electronic fault finding is that good
troubleshooters are borne and not made. The implication of this is that the
skills of a service or test engineer cannot be acquired unless the person con-
cerned happens to possess the equivalent (in electronic terms) of ‘green fingers’.
Nothing could be further from the truth – indeed it is quite possible for any-
one of moderate intelligence and manual dexterity to successfully locate faults
on even the most complex systems. The secret lies with adopting the correct
approach to troubleshooting. This is the real key to successful fault finding.

With experience, the right technique will come as second nature. Indeed, a
practised service engineer may not even be conscious of the technique which
he or she is applying when tackling a fault. They may appear to get right to
the cause of the problem without even thinking. By applying a little logic and
reasoning, you can do the same.

Fault finding is a disciplined and logical process in which ‘trial fixing’ should
never be contemplated. The generalized process of fault finding is illustrated in
the flow chart of Figure 13.18. The first stage is that of identifying the defec-
tive equipment and ensuring that the equipment really is defective! This may
sound rather obvious but in some cases a fault may simply be attributable to
maladjustment or misconnection. Furthermore, where several items of equip-
ment are connected together, it may not be easy to pinpoint the single item
of faulty equipment. For example, take the case of a process control system
in which the user simply states that there is ‘no output’. The fault could be
almost anywhere in the system; computer, display, printer, or any one of several
connecting cables.

The second stage is that of gathering all relevant information. This process
involves asking questions such as:

• In what circumstances did the equipment fail?
• Has the equipment operated correctly before?
• Exactly what has changed?
• Has there been a progressive deterioration in performance?

The questions used are crucial and they should explore all avenues and eventual-
ities (particularly when the repairer has no previous experience of the equipment
in question). The answers to the questions will help to build a conceptual model
of the symptoms – before and after the fault occurred. Coupled with knowledge
of the equipment (e.g. its performance specification) this model can often point
to a unique cause.

Once the information has been analysed, the next stage involves separating
the ‘effects’ from the ‘cause’. Here the aim is simply that of listing each of
the possible causes. Once this has been accomplished, the most probable case
can be identified and focused upon. Corrective action should be applied (to this
cause alone). Such action may require component removal and replacement,
adjustment, or alignment, etc.

Next it is necessary to decide whether the fault has been correctly identified.
A component may have failed (open circuit or short circuit) or a fuse may have
blown. This will confirm that the cause has, in fact, been correctly identified. If
so, the fault can be rectified and the equipment brought back into service. If not,
any new information that has been generated can be evaluated before reverting
to the selection of the next most probable cause. In practice, the loop may have
to be executed several times until the fault is correctly identified and rectified.
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Figure 13.18 Flow chart to show the generalized approach to
troubleshooting (a series of more detailed charts appears later in this chapter)

Instrumentation and process control specialists will rarely wish to deal with
fault-finding down to component level. In order to avoid a prohibitive invest-
ment in test equipment and technical expertise, it is generally considered more
cost-effective to have such repairs carried out by specialists. Despite this, it
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is sometimes essential to minimize the time taken to correct the failure of a
PC-based instrumentation or process control system. An ability to make on-site
repairs, at least to board level, is thus highly desirable.

At first sight, the prospect of fault-finding a PC-based instrumentation or
control system can be somewhat daunting. This is especially true when those
having to carry out the repairs may be relatively unfamiliar with electronic
circuitry. However, in the author’s experience, the vast majority of faults are
attributable to failure of external devices (such as sensors, cables, and connec-
tors) rather than with the board and cards themselves. Furthermore, even when
dealing with boards within the system enclosure, most faults can be detected
without recourse to sophisticated test gear.

When component rather than board level servicing has to be undertaken, it
is useful to obtain a circuit diagram and service information on the equipment
before starting work. This information will be invaluable when identifying
components and establishing their function within the system as a whole.

Certain ‘stock faults’ (such as chip failure) may be prevalent on some boards
and these should be known to manufacturers and their service agents. A tele-
phone enquiry, describing the symptoms and clearly stating the type and version
number of the card or board, will often save much time and effort. Furthermore,
manufacturers are usually very receptive to information which leads to improve-
ment of their products and may also be prepared to offer retrofit components
and/or circuit modifications to overcome commonly identified problems.

Test equipment A few items of basic test gear will be required by anyone attempting to perform
fault location on bus systems. None of the basic items is particularly costly and
most will already be available in an electronics laboratory or workshop. For the
benefit of the newcomer to electronics we will briefly describe each item and
explain how it is used in the context of PC-based system fault-finding.

Multi-range meters

Multi-range meters provide either analogue or digital indications of voltage,
current, and resistance. Such instruments are usually battery-powered and are
thus eminently portable. Connection to the circuit under test is made via a pair
of test leads fitted with probes or clips. Controls and adjustments are extremely
straightforward and a typical meter layout is shown in Figure 13.19.

The following specification is typical of a modern digital multi-range meter:

DC voltage 200 mV, 2 V, 20 V, 200 V, and 1.5 kV full-scale
Accuracy ±0.5%
Input resistance 10 M�

AC voltage 2 V, 20 V, 200 V, and 1 kV full-scale
Accuracy ±2%
Input resistance 10 M�

DC current 200 µA, 2 mA, 20 mA, 200 mA, and 2 A full-scale
Accuracy ±1%

AC current 200 µA, 2 mA, 20 mA, 200 mA, and 2 A full-scale
Accuracy ±2%

Resistance 200 �, 2 k�, 20 k�, 200 k�, 2 M� full-scale
Accuracy ±2%
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Figure 13.19 Layout of the controls and adjustments of a typical digital
multi-meter

A typical application for a multi-range meter is that of checking the various
supply voltages present within the PC. For an operational system the supply
voltages should be within the range given below:

Acceptable value (V)
Nominal
value (V) Minimum Maximum

+5 +4.75 +5.25
−5 −4.75 −5.25

+12 +11.4 +12.6
−12 −11.4 −12.6

Multi-range meters may also be used for checking the voltages present on
the supply rails within individual expansion cards. Particular points of interest
will be those associated with the supplies to individual chips. In such cases, PC
bus extension card frames can be employed in order to gain access to a ‘live’
expansion card. Alternatively, the expansion card in question can be fitted to
the left-most slot within a PC in order to provide access to the printed wiring
of the card.

Multi-range meters may even be used to display logic states on signal lines
which remain static for long periods. This is often the case when dealing with
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Photo 13.3 A drive power connector makes a convenient test point for
measuring the +12 V and +5 V power rails

I/O lines however, in situations where logic levels are continuously changing,
a multi-meter cannot provide a reliable indication of the state of a line.

Where logic levels do remain static for several seconds, the multi-range
meter may be used on the DC voltage ranges to sense the presence of logic
0 or 1 states according to the following table which gives the conventional volt-
age levels associated with TTL logic:

Logic level Voltage present (V)

1 >2.0
0 <0.8
indeterminate 0.8 to 2.0

It should be noted that an ‘indeterminate’ logic level may result from a
tri-state condition in which bus drivers are simultaneously in a high impedance
state. Modern high-impedance instruments will usually produce a misleading
fluctuating indication in such circumstances and this can sometimes be confused
with an actively pulsing bus line.

Logic probes

The simplest and most convenient method of tracing logic states involves the use
of a logic probe rather than a multi-range meter. This invaluable tool comprises
a hand-held probe fitted with LEDs to indicate the logical state of its probe tip.

Unlike multi-range meters, logic probes can generally distinguish between
lines which are actively pulsing and those which are in a permanently tri-state
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Figure 13.20 Logic probe circuit

condition. In the case of a line which is being pulsed, the logic 0 and 1 indicators
will both be illuminated (though not necessarily with the same brightness)
whereas, in the case of a tri-state line neither indicator should be illuminated.

Logic probes generally also provide a means of displaying pulses having a
very short duration which may otherwise go undetected. A pulse stretching
circuit is usually incorporated within the probe circuitry so that an input pulse
of very short duration is elongated sufficiently to produce a visible indication
on a separate pulse LED.

Logic probes invariably derive their power supply from the circuit under test
and are connected by means of a short length of twin flex fitted with insulated
crocodile clips. While almost any convenient connecting point may be used, the
leads of an electrolytic +5 V rail decoupling capacitor fitted to an expansion
card make ideal connecting points which can be easily identified.

A typical logic probe circuit is shown in Figure 13.20. This circuit uses a
dual comparator to sense the logic 0 and 1 levels and a timer which acts as
a monostable pulse stretcher to indicate the presence of a pulse input rather
than a continuous logic 0 or 1 condition. Typical logic probe indications and
waveforms are shown in Figure 13.21.

Figure 13.22 shows how a logic probe can be used to check a typical com-
binational logic arrangement. The probe is moved from node to node, and the
logic level is displayed and compared with the expected level.

Logic pulsers

It is sometimes necessary to simulate the logic levels generated by a peripheral
device or sensor. A permanent logic level can easily be generated by pulling
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Figure 13.21 Logic probe indications and test waveforms

Figure 13.22 Using a logic probe to test a typical combinational logic
arrangement. The probe is moved from node to node and the displayed logic
levels are compared with those that would be expected
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Figure 13.23 Logic pulser circuit

a line up to +5 V via a 1 k� resistor or by temporarily tying a line to 0 V.
However, on other occasions, it may be necessary to simulate a pulse rather
than a permanent logic state and this can be achieved by means of a logic pulser.

A logic pulser provides a means of momentarily forcing a logic level transi-
tion into a circuit regardless of its current state and thus overcomes the need to
disconnect or de-soldering any of the devices. The polarity of the pulse (pro-
duced at the touch of a button) is adjusted so that the node under investigation
is momentarily forced into the opposite logical state. During the period before
the button is depressed and for the period after the pulse has been completed,
the probe tip adopts a tri-state (high impedance) condition. Hence the probe
does not permanently affect the logical state of the point in question.

Logic pulsers derive their power supply from the circuit under test in the same
manner as logic probes. Here again, the leads of an electrolytic decoupling
capacitor or the +5 V and GND terminals fitted to an expansion card make
suitable connecting points.

A typical logic pulser circuit is shown in Figure 13.23. The circuit comprises
a 555 monostable pulse generator triggered from a push-button. The output of
the pulse generator is fed to a complementary transistor arrangement in order
to make it fully TTL-compatible. As with the logic pulser, this circuit derives
its power from the circuit under test (usually +5 V).

Figure 13.24 shows an example of the combined use of a logic pulser and a
logic pulser for testing a simple J-K bistable. The logic probe is used to check
the initial state of the Q and /Q outputs of the bistable (see Figure 13.24(a) and
(b)). Note that the Q and /Q outputs should be complementary. Next, the logic
pulser is applied to the clock (CK) input of the bistable (Figure 13.24(c)) and
the Q output is checked using the logic probe. The application of a pulse (using
the trigger button) should cause the Q output of the bistable to change state (see
Figure 13.24(d)).
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Figure 13.24 Using a logic pulser and logic probe to check the operation of a
J-K bistable. The pulser is used to force a change of logic level at the clock
(CK) input of the bistable

Oscilloscopes

The use of an oscilloscope in the examination of time-related signals (wave-
forms) is well known. Such instruments provide an alternative means of tracing
logic states present in a PC-based system and may also be used for detecting
noise and unwanted AC signals which may be present on power-supply rails.
It must, however, be stressed that, since low-cost oscilloscopes generally do
not possess any means of storing incoming signals, severe triggering problems
arise when signals are non-repetitive. This is an important point since many of
the digital signals present on a bus are both asynchronous and non-repetitive.

Apart from displaying the shape of waveforms present in a bus system, oscil-
loscopes can also be used to make reasonably accurate measurements of voltage
and time. In such cases, measurements are made with reference to a graticule
fitted to the CRT and scale factors are applied using the time and voltage range
switches. However, before attempting to take measurement from the graticule it
is essential to check that any variable front panel controls are set to the calibrate
(CAL) position. Failure to observe this simple precaution may result in readings
which are at best misleading or at worst grossly inaccurate.

Since modern oscilloscopes employ DC coupling throughout the vertical
amplifier stages, a shift along the vertical axis will occur whenever a direct volt-
age is present at the input. When investigating waveforms in a circuit one often
encounters AC signals superimposed on DC levels; the latter may be removed
by inserting a capacitor in series with the input using the ‘AC-GND-DC’
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switch. In the ‘AC’ position the capacitor is inserted at the input, whereas
in the ‘DC’ position the capacitor is shorted. If ‘GND’ is selected the vertical
input is taken to common (0 V) and the input terminal is left floating. In order
to measure the DC level of an input signal, the ‘AC-GND-DC’ switch must
first be placed in the ‘GND’ position. The ‘vertical position’ is then adjusted so
that the trace is coincident with the central horizontal axis. The ‘AC-GND-DC’
switch is then placed in the ‘DC’ position and the shift along the vertical axis
measured in order to ascertain the DC level.

Most dual-beam oscilloscopes incorporate a ‘chopped-alternate’ switch to
select the mode of beam splitting. In the ‘chopped’ position, the trace displays
a small portion of one vertical channel waveform followed by an equally small
portion of the other. The traces are thus sampled at a fast rate so that the resulting
display appears to consist of two apparently continuous traces. In the ‘alternate’
position, a complete horizontal sweep is devoted to each channel on an alternate
basis.

Chopped mode operation is appropriate to signals of relatively low frequency
(i.e. those well below the chopping rate) where it is important that the display
accurately shows the true phase relationship between the two displayed signals.
Alternate mode operation, on the other hand, is suitable for high-frequency
signals where the chopping signal would otherwise corrupt the display. In such
cases it is important to note that the relative phase of the two signals will not
be accurately displayed.

Most modern oscilloscopes allow the user to select one of several signals
for use as the timebase trigger. These ‘trigger source’ options generally include
an internal signal derived from the vertical deflection system, a 50 Hz sig-
nal derived from the AC mains supply, and a signal which may be applied to
an ‘external trigger input’. As an example, the 50 Hz trigger source should
be selected when checking for mains-borne noise and interference whereas
the external trigger input may usefully be derived from a processor clock
signal when investigating the synchronous signals present within the PC
expansion bus.

Figure 13.25 shows the typical control layout of a modern dual-beam bench
oscilloscope.

Fault location
procedure

To simplify the process of fault location on a PC and associated expansion bus,
it is useful to consider the system as a number of interlinked sub-systems. Each
sub-system can be further divided into its constituent elements. Fortunately, the
use of a standard expansion bus makes fault finding very straightforward since
it is eminently possible to isolate a fault to a particular part of the system just by
removing a suspect board and substituting one which is known to be functional.

The following eight-point checklist may prove useful; the questions should be
answered before attempting to make any measurements or remove any suspect
boards.

1 Has the system operated in similar circumstances without failure? Is the fault
inherent in the system?

2 If an inherent fault is suspected, why was it not detected by normal quality
procedures?

3 If the fault is not considered inherent and is attributed to component failure,
in what circumstances did the equipment fail?
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Figure 13.25 Layout of the controls and adjustments of a typical bench
oscilloscope

4 Is the fault intermittent or is it present at all times?
5 If the fault is intermittent, in what circumstances does it arise? Is it possible

to predict when the fault will occur?
6 To facilitate testing and diagnosis, can conditions be reproduced so that the

fault manifests itself permanently?
7 What parts of the equipment are known to be functioning correctly? Is it

possible to isolate the fault be isolated to a particular part?
8 Is the fault a known ‘stock fault’? Has the fault been documented elsewhere?

Having answered the foregoing questions, and assuming that one is con-
fronted with a system which is totally unresponsive, the first step is that of
checking the power-supply rails using a multi-range meter. Where any one of
the supply rails is low (or missing altogether) the power supply should be dis-
connected from the backplane and the measurement should be repeated in order
to establish whether the absence of power is due to failure of the power supply
or whether the fault can be attributed to excessive loading. This, in turn, can
either be due to a short-circuit component failure within an expansion card or
a similar fault within the system motherboard.

The system power supply employs switched mode techniques and it should be
borne in mind that such units generally require that a nominal load be present on
at least one of their output rails before satisfactory regulation can be achieved.
Failure to observe this precaution can lead the unsuspecting test engineer to
conclude that a unit is not regulating correctly when it has been disconnected
from a system. In any event, it is advisable to consult the manufacturer’s data
before making measurements on individual supplies.

Having ascertained that the system is receiving its correct power-supply
voltages, the next stage is that of activating the system reset switch and not-
ing whether any changes are produced. After each of the initial diagnostic
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Photo 13.4 Connectors can often be problematic and are a frequent cause of
intermittent hardware faults. In this case, the rightmost serial ATA (SATA)
connector is not correctly seated. Simply pushing the connector fully home
was sufficient to clear the fault!

procedures are completed an appropriate message is printed on the screen. Fur-
thermore, once the initial procedures have been completed, any disk drive fitted
to the system will normally become active as the system is ‘booted’. If neither
of these indications is produced, the system motherboard must be suspected as
the fault will probably be attributable to failure of the CPU or one of the major
VLSI support devices present.

At this stage it may be worth replacing the system motherboard with a known
functional unit. If this is not possible, checks should be performed on each of
the VLSI devices starting with the CPU. Where a fault is intermittent (e.g. the
system runs for a time before stopping) it is worth checking connectors and also
investigating the cleanliness of the supply. It is also worth checking for devices
that may have become overheated after a period of operation. Check also, that
CPU voltages have been correctly set. Attempts to overclock a CPU will often
result in overheating – particularly if the CPU core voltage has been raised.

Connectors are often prone to failure and, if the principal chips are socketed
these, too, can sometimes cause problems. Intermittent faults can sometimes
be corrected simply by pressing each of the larger chips into its socket. In some
cases it may be necessary to carefully remove the chips before replacing them;
the action of removal and replacement can sometimes be instrumental in wiping
the contacts clean.

Where a fault is permanently present and one or more of the supply rail
voltages is lower than normal, chip failure may be suspected. In such an event,
the system should be left running for some time and the centre of each chip
should be touched in turn in order to ascertain its working temperature. If a chip
that is not fitted with a heat removal device is running distinctly hot (i.e. very
warm or too hot to comfortably touch) it should be considered a prime suspect.
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Figure 13.26 Fault location chart (initial stages)

Where possible the temperature should be compared with that generated by
a similar chip fitted in the same board or that present in another functional
module. Where the larger chips have been fitted in sockets, each should be
carefully removed and replaced in turn (disconnecting the power, of course,
during the process) before replacing it with a known functional device.

Figures 13.26–13.32 show a series of fault location charts that can be used
to pinpoint faults in a generic PC.
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Figure 13.27 Fault location chart (power supply)
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Figure 13.28 Fault location chart (motherboard, CPU, and I/O cards)
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Figure 13.29 Fault location chart (BIOS, CMOS, and hard disk)
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Figure 13.30 Fault location chart (configuration files and hard disk)



h4716-ch13 5/2/2005 12: 38 page 441

Reliability and fault-finding 441

Figure 13.31 Fault location chart (memory, CPU, and I/O diagnostics)
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Figure 13.32 Fault location chart (BIOS settings and system configuration)

ISA/EISA expansion cards are invariably fitted with links which provide
selection of base addresses (see Figure 13.33). These links must be configured
so that no conflicts occur. This precaution is particularly important when new
or replacement cards are fitted to a system. This is, perhaps, a rather obvious
precaution but it is nevertheless one which is easily forgotten! PCI cards are
usually plug-and-play and therefore there is less risk of links, and DIP switches
being incorrectly set. However, it is still important to check that board settings
are correct for the address range and hardware configuration in which the board
is used. This is even more important where several boards are fitted since default
(factory) settings may be identical.
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Figure 13.33 Typical bus adapter card showing links and settings

Finally, in a perfect world there would be no uncertainty nor any ambiguity
about the logic levels present in a digital system. Unfortunately, this is seldom
the case since spurious signals and noise are invariably present to some degree.
The ability to reject noise is thus an important requirement of PC-based control
systems. This is particularly true where a system is to be used in a particularly
noisy environment (such as a shipyard or steelworks). In such a situation, special
precautions may be necessary in order to avoid corruption of signals and data,
and one or more of the following techniques may be applied:

• Using a ‘clean’ AC supply for the PC controller and peripheral devices (where
appropriate). If such a supply is not available, a supply filter or AC power
conditioner should be fitted.

• Screening all signal cables (particularly those used to connect remote trans-
ducers) and returning the outer braid screen to earth (note that noise rejection
is sometimes enhanced if the screen is only earthed at one point).

• Ensuring that the PC system enclosure is adequately earthed and that none of
the outer panels or metal chassis parts of external card frames or enclosures
are allowed to ‘float’.

• Decoupling supply rails at the point at which they enter each external signal
conditioning board (where appropriate).

• In extreme cases, making use of optical fibres (and appropriate interface
hardware) rather than twisted pairs or co-axial cables for the asynchronous
transmission of digital signals.
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Accelerated Graphics Port (AGP) A high speed interface for video cards.
AGP typically runs at 1× (66 MHz), 2× (133 MHz), or 4× (266 MHz).

Access time The time taken to retrieve data from a memory/storage device,
i.e. the elapsed time between the receipt of a read signal at the device and the
placement of valid data on the bus. Typical access times for semiconductor
memory devices are in the region 100–200 ns whilst average access times for
magnetic disks typically range from 10–50 ms.

Accumulator A register within the processor (or CPU) in which the result of
an operation is placed.

Acknowledge (ACK) A signal used in serial data communications which
indicates that data has been received without error.

Active high A term used to describe a signal which is asserted in the high
(logic 1) state.

Active low A term used to describe a signal which is asserted in the low
(logic 0) state.

Address A reference to the location of data in memory or within I/O space.
The processor (or other controlling device) places addresses (in binary coded
form) on the address bus (see also Address bus).

Address bus The set of lines used to convey address information. The original
PC bus had twenty address lines (A0 to A19) and these were capable of address-
ing a linear address space with a little more than a million address locations.
One byte of data may be stored at each address.

Address decoder A hardware device (often a single integrated circuit) which
provides chip select or chip enable signals from address patterns which appear
on an address bus.

Address selection The process of selecting a specific address (or range of
addresses). In order to prevent conflicts, expansion cards must usually be con-
figured (by means of DIP switches or links) to unique addresses within the I/O
address map.

Amplifier A circuit or device which increases the power of an electrical signal.

Analogue The representation of information in the form of a continuously
variable quantity (e.g. voltage).
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AND Logical function which is asserted (true) when all inputs are simultan-
eously asserted.

ANSI character set The American National Standard Institute’s (ANSI) char-
acter set which is based on an 8-bit binary code and which provides 256
individual characters. See also ASCII.

Archive A device or medium used for storage of data which need not be
instantly accessible (e.g. a tape cartridge).

ASCII A code which is almost universally employed for exchanging data
between microcomputers. Standard ASCII is based on a 7-bit binary code and
caters for alphanumeric characters (both upper and lower case), punctuation,
and special control characters. Extended ASCII employs an 8th bit to provide
an additional 128 characters (often used to represent graphic symbols).

Assembly language A low-level programming language which is based on
mnemonic instructions. Assembly language is often unique to a particular
microprocessor or microprocessor family.

Asserted A term used to describe a signal when it is in its logically true state
(i.e. logic 1 in the case of an active high signal or logic 0 in the case of an active
low signal).

Asynchronous transmission A data transmission method in which the time
between transmitted characters is arbitrary. Transmission is controlled by start
and stop bits (no additional synchronizing or timing information is required).

ATAPI The ATAPI (or Advanced Technology Attachment Packet Interface)
standard provides a simple means of connecting a CD-ROM drive to an EIDE
adapter. Without such an interface, a CD-ROM drive will require either a
dedicated interface card or an interface provided on a sound card.

AUTOEXEC.BAT A file which contains a set of DOS commands and/or pro-
gram names which is executed automatically whenever the system is initialized
and provides the means of configuring a system.

Backup A file or disk copy made in order to avoid the accidental loss, damage,
or erasure of programs and/or data.

Basic Input Output System (BIOS) The BIOS is the part of the operat-
ing system which handles communications between the microcomputer and
peripheral devices (such as keyboard, serial port, etc.). The BIOS is supplied
as firmware and is contained in a read-only memory (ROM).

Batch file A file containing a series of DOS commands which are executed
when the file name is entered after the DOS prompt. Batch files are given a
BAT file extension. A special type of batch file (AUTOEXEC.BAT) is executed
(when present) whenever a system is initialized. See also AUTOEXEC.BAT.

Baud rate The speed at which serial data is transferred between devices.

Binary file A file which contains binary data (i.e. a direct memory image).
This type of file is used for machine readable code, program overlays, and
graphics screens.
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Bit A contraction of ‘binary digit’; a single digit in a binary number.

Boot The name given to the process of loading and initializing an operating
system (part of the operating system is held on disk and must be loaded from
disk into RAM on power-up).

Boot record A single-sector record present on a disk which conveys infor-
mation about the disk and instructs the computer to load the requisite operating
system files into RAM (thus booting the machine).

Buffer In a hardware context, a buffer is a device which provides a degree of
electrical isolation at an interface. The input to a buffer usually exhibits a much
higher impedance than its output (see also ‘Driver’). In a software context, a
buffer is a reserved area of memory which provides temporary data storage and
thus may be used to compensate for a difference in the rate of data flow or time
of occurrence of events.

Bus An electrical highway for signals which have some common function.
Most microprocessor systems have three distinct buses; an address bus, data bus,
and control bus. A local bus can be used for high-speed data transfer between
certain devices (e.g. processor, graphics processor, and video memory).

Byte A group of 8 bits which are operated on as a unit.

Cache A high-speed random-access memory which is used to store copies of
the data from the most recent main memory or hard disk accesses. Subsequent
accesses fetch data from this area rather than from the slower main memory or
hard disk.

Central processing unit (CPU) See Processor.

Channel A path along which signals or data can be sent.

Character set The complete range of characters (letters, numbers, and
punctuation) which are provided within a system. See also ANSI and ASCII.

Checksum Additional binary digits appended to a block of data. The value
of the appended digits is derived from the sum of the data present within the
block. This technique provides the means of error checking (validation).

Chip The term commonly used to describe an integrated circuit.

Chipset The chipset is the name given to the two or more integrated circuits
which control the interface between the processor, RAM, I/O devices, bus
expansion, and adapter cards. Different chipsets provide support for different
processors and motherboard configurations.

CISC The term CISC refers to a ‘Complex Instruction Set Computer’ – the
standard Intel family of CPUs all conform to this model rather than the alterna-
tive ‘Reduced Instruction Set Computer’ (RISC). There is much debate about
the pro’s and con’s of these two design methodologies but, in fact, neither of
these two contrasting approaches has actually demonstrated clear superiority
over the other. See also RISC.

Clock A source of timing signals used for synchronizing data transfers within
a microprocessor or microcomputer system.
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Cluster A unit of space allocated on the surface of a disk. The number of
sectors which make up a cluster varies according to the DOS version and disk
type (see also Sector).

Command An instruction (entered from the keyboard or contained within
a batch file) which will be recognized and executed by a system (see also
Batch file).

Common A return path for a signal (often ground).

CONFIG.SYS A file which contains DOS configuration commands which
are used to configure the system at start-up. The CONFIG.SYS file specifies
device drivers which are loaded during initialization and which extend the func-
tionality of a system by allowing it to communicate with additional items of
hardware. See also Device Driver.

Controller A sub-system within a microcomputer which controls the flow of
data between the system and an I/O or storage device (e.g. a CRT controller,
hard disk controller, etc.). A controller will generally be based on one, or more,
programmable VLSI devices.

Coprocessor A second processor which shares the same instruction stream as
the main processor. The coprocessor handles specific tasks (e.g. mathematics)
which would otherwise be performed less efficiently (or not at all) by the main
processor. Note that maths coprocessors are no longer needed as all modern
processors have internal registers required for mathematics processing.

Cylinder The group of tracks which can be read from a hard disk at any
instant of time (i.e. without steeping the head in or out). In the case of a floppy
disk (where there are only two surfaces), each cylinder comprises two tracks. In
the case of a typical IDE hard disk, there may be two platters (i.e. four surfaces)
and thus four tracks will be present within each cylinder.

Daisy chain A method of connection in which signals move in a chained
fashion from one device to another. This form of connection is commonly used
with disk drives.

Data A general term used to describe numbers, letters, and symbols present
with a computer system. All such information is ultimately represented by
patterns of binary digits.

Data bus A highway (in the form of multiple electrical conductors) which
conveys data between the different elements within a microprocessor system.

Data file A file which contains data (rather than a program) and which are
used by applications such as spreadsheet and database applications. Note that
data may or may not be stored in directly readable ASCII form.

Device A hardware component such as a memory card, sound card, modem,
or graphics adapter.

Device driver A term used to describe memory resident software (speci-
fied in the CONFIG.SYS system file) which provides a means of interfacing
specialized hardware (e.g. a graphics adapter). See CONFIG.SYS.
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Digital storage oscilloscope (DSO) A Digital storage oscilloscope (or DSO)
combines elements of both hardware and software. These must work together
to provide all the functionality of a conventional DSO but also those of a spec-
trum analyzer, data logger, digital frequency meter, and voltmeter. In many
cases a modern DSO will be able to replace several items of conventional test
equipment. Switching between these instruments is usually quick and easy, and
in most cases each instrument is able to have its dedicated window on the PC
display.

Direct memory access A method of fast data transfer in which data moves
between a peripheral device (e.g. a hard disk) and main memory without direct
control of the processor.

Directory A catalogue of disk files (containing such information as filename,
size, attributes, and date/time of creation). The directory is stored on the disk
and updated whenever a file is amended, created, or deleted. A directory entry
usually comprises 32 bytes for each file.

DIP switch A miniature PCB mounted switch that allows configuration
options (such as IRQ or DMA settings) to be selected.

Disk operating system (DOS) A group of programs which provide a low-
level interface with the system hardware (particularly disk I/O). Routines
contained within system resident portions of the operating system may be used
by the programmer. Other programs provided as part of the system include
those used for formatting disks, copying files, etc.

Double word A data value which comprises a group of 32 bits (or two words).
See also Word.

DRAM DRAM (or Dynamic Random Access Memory) refers to the semicon-
ductor read/write memory of a PC. DRAM requires periodic ‘refreshing’ and
therefore tends not to offer the highest speeds required of specialized memories
(such as cache memory). DRAM is, however, relatively inexpensive.

Driver In a software context, a driver is a software routine which provides a
means of interfacing a specialized hardware device (see also Device driver). In
a hardware context, a driver is an electrical circuit which provides an electrical
interface between an output port and an output transducer. A driver invariably
provides power gain (i.e. current gain and/or voltage gain), see also Amplifier.

EIDE EIDE (or ‘Enhanced Integrated Drive Electronics’) is the most widely
used interface for connecting hard disk drives to a PC. Most motherboards now
incorporate an on-board EIDE controller rather than having to make use of an
adapter card. This allows one or two hard disk drives to be connected directly
to the motherboard.

Expanded memory (EMS memory) Memory which is additional to the con-
ventional ‘base’ memory available within the system. This memory is ‘paged’
into the base memory space whenever it is accessed. The EMS specification
uses four contiguous 16 K pages of physical memory (64 K total) to access up
to 32 M of expanded memory space. See also Expanded memory manager.
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Expanded memory manager An expanded memory manager (such as
EMM386.EXE included with MS-DOS 5.0 and later) provides a means of
establishing and controlling the use of expanded memory (i.e. memory above
the DOS 1 MB limit). Unlike DOS and Windows 3.1, Windows 9x incorp-
orates its own memory management and thus EMM386 (or its equivalent) is
not required. See also Expanded memory.

Extended memory (XMS memory) Memory beyond the 1 MB range ordi-
narily recognized by MS-DOS. The XMS memory specification resulted from
collaboration between Lotus, Intel, and Microsoft (sometimes known as LIM
specification).

File Information (which may comprise ASCII encoded text, binary coded
data, and executable programs) stored on a floppy disk, hard disk, or other disk-
oriented storage device (such as a solid-state USB drive). Files may be redirected
from one logical device to another using appropriate DOS commands.

File allocation table (FAT) The file allocation table (or ‘FAT’) provides a
means of keeping track of the physical location of files stored on a floppy disk
or hard disk. Part of the function of DOS is to keep the FAT up to date whenever
a file operation is carried out. DOS does not necessarily store files in physically
contiguous clusters on a disk and it is the FAT that maintains the addresses of
clusters occupied by a particular file. These clusters may, in fact, be scattered
all over the surface of the disk (in which case we describe the file as having
been ‘fragmented’).

File attributes Information which indicates the status of a file (e.g. hidden,
read-only, system, etc.).

Filter In a software context, a filter is a software routine which removes or
modifies certain data items (or data items within a defined range). In a hardware
context, a filter is an electrical circuit which modifies the frequency distribution
of a signal. Filters are often categorized as low-pass, high-pass, band-pass, or
band-stop depending upon the shape of their frequency response characteristic.

Firmware A program (software) stored in read-only memory (ROM).
Firmware provides non-volatile storage of programs.

Fixed disk A disk which cannot be removed from its housing. Note that,
whilst the terms ‘hard’ and ‘fixed’ are often used interchangeably, some forms
of hard disk are exchangeable.

Font A set of characters (letters, numbers, and punctuation) with a particular
style and size.

Format The process in which a magnetic disk is initialized so that it can
accept data. The process involves writing a magnetic pattern of tracks and
sectors to a blank (uninitialized) disk. A disk containing data can be reformat-
ted, in which case all data stored on the disk will be lost. An MS-DOS utility
program (FORMAT.COM) is supplied in order to carry out the formatting of
floppy and hard disks. Note that, in the case of hard drives, there are differ-
ences between the logical organization of tracks and sectors and the underlying
physical arrangement of the data stored on the drive.
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Graphics adapter An option card which provides a specific graphics cap-
ability (e.g. CGA, EGA, HGA, and VGA). Graphics signal generation is not
normally part of the functionality provided within a system motherboard.

Handshake An interlocked sequence of signals between peripheral devices
in which a device waits for an acknowledgement of the receipt of data before
sending new data.

Hard disk A non-flexible disk used for the magnetic storage of data and
programs (see also Fixed disk).

Hardware The physical components (e.g. system board, keyboard, etc.)
which make up a microcomputer system.

High state The more positive of the two voltage levels used to represent
binary logic states. A high state (logic 1) is generally represented by a voltage
in the range 2.0–5.0 V.

High memory A legacy term used to describe the first 64 K of extended
memory. This area is used by some DOS applications and also by Windows.
See Extended memory.

IDE IDE (or ‘Integrated Drive Electronics’) is the forerunner of the EIDE
interface used in most modern PC’s. See EIDE.

Input/output (I/O) Devices and lines used to transfer information to and
from external (peripheral) devices.

Integrated circuit An electronic circuit fabricated on a single wafer (chip)
and packaged as a single component.

Interface A shared boundary between two or more systems, or between two
or more elements within a system. In order to facilitate interconnection of
systems, various interface standards are adopted (e.g. RS-232 in the case of
asynchronous data communications).

Interleave A system of numbering the sectors on a disk in a non-consecutive
fashion in order to optimize data access times.

Interrupt A signal generated by a peripheral device when it wishes to gain the
attention of the CPU. The Intel 80×86 family of microprocessors support both
software and hardware interrupts. The former provide the means of invoking
BIOS and DOS services whilst the latter are generally managed by an interrupt
controller chip (e.g. 8259).

ISA ISA (or ‘Industry Standard Architecture’) is the long-surviving standard
for connecting multiple interface adapters to the PC bus. Due to speed limita-
tions, the ISA bus is no longer used for hardware that requires fast data through-
put and local bus schemes (such as VL-bus or PCI-bus) are much preferred.

Isochronous data transfer Data transfer (i.e. the movement of digital infor-
mation from one place to another) is said to be isochronous when the stream
of digital information does not require a separate clock or timing signal. In
effect, the timing of the isochronous data stream is implied by the rate at which
it is delivered. In the Universal Serial Bus, isochronous data transfers provide
periodic, continuous communication between a host and a device.
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Joystick A device used for positioning a cursor, pointer, or output device
using switches or potentiometers which respond to displacement of the stick in
the X and Y directions.

Jumper Jumpers, like DIP switches, provide a means of selecting configur-
ation options on adapter cards (see DIP switch).

Keyboard buffer A small area in memory which provides temporary storage
for keystrokes. See Buffer.

Kilobyte (KB) 1024 bytes (note that 210 = 1024).

Logical device A device which is normally associated with microcomputer
I/O, such as the console (which comprises keyboard and display) and printer.

Low state The more negative of the two voltage levels used to represent the
binary logic states. A low state (logic 0) is generally represented by a voltage
in the range 0–0.8 V.

Megabyte (MB) 1 048 576 bytes (note that 220 = 1 048 576). The basic
addressing range of the 8086 processor (which has 20 address bus lines) is 1 MB.

Memory That part of a microcomputer system into which information can
be placed and later retrieved. Storage and memory are interchangeable terms.
Memory can take various forms including semiconductor (RAM and ROM),
magnetic (floppy and hard disks), and optical disks. Note that memory may also
be categorized as read-only (in which case data cannot subsequently be written
to the memory) or read/write (in which case data can both be read from and
written to the memory).

Memory resident program See TSR.

Microprocessor A central processing unit fabricated on a single chip.

MIDI The MIDI (or ‘Musical Instrument Digital Interface’) is the current
industry standard for connecting musical instruments to a PC.

Modem A contraction of modulator–demodulator; a communications inter-
face device that enables a serial port to be interfaced to a conventional
voice-frequency telephone line.

Modified frequency modulation (MFM) A method of data encoding
employed with hard disk storage. This method of data storage is ‘self-clocking’.

Motherboard The motherboard (or system board) is the mother printed cir-
cuit board which provides the basic functionality of the microcomputer system
including processor (or CPU), RAM, and ROM. The system board is fitted
with connectors which permit the installation of one, or more, option cards
(e.g. graphics adapters, disk controllers, etc.).

Multimedia A combination of various media technologies including sound,
video, graphics, and animation.

Multitasking A process in which several programs are running simultaneously.

NAND Inverse of the logical AND function.

Negative acknowledge (NAK) A signal used in serial data communications
which indicates that erroneous data has been received.
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Network A system which allows two or more computers to be linked via
a physical communications medium (e.g. coaxial cable) in order to exchange
information and share resources.

Nibble A group of 4 bits which make up one half of a byte. A hexadecimal
character can be represented by such a group.

Noise Any unwanted signal component which may appear superimposed on
a wanted signal.

NOR Inverse of the logical OR function.

NRZI NRZI (or Non Return to Zero Invert) is a method of encoding serial
data in which 1’s and 0’s are represented by opposite and alternating high- and
low- voltage states and where there is no return to the reference (zero) voltage
between encoded bits. NRZI is self-clocking and does not require a train of
separately transmitted clock pulses.

Operating system A control program which provides a low-level interface
with the system hardware. The operating system thus frees the programmer
from the need to produce hardware specific I/O routines (e.g. those associated
with disk filing). See also Disk operating system.

Option card A printed circuit board (adapter card) which complies with the
physical and electrical specification for a particular system and which provides
the system with additional functionality (e.g. asynchronous communications
facilities).

OR Logical function which is asserted (true) when any one or more of its
inputs are asserted.

Page A contiguous area of memory of defined size (often 256 bytes but can
be larger, see Expanded memory).

Paragraph Sixteen consecutive bytes of data. The segment address can be
incremented to point to consecutive paragraphs of data.

Parallel interface (parallel port) A communications interface in which data
is transferred a byte at a time between a computer and a peripheral device, such
as a printer.

PCI The PCI (or ‘Peripheral Component Interconnect’) standard provides
a means of connecting 32- or 64-bit expansion cards to a motherboard. PCI
expansion slots are available in most modern PC’s.

PCMCIA The PCMCIA (or simply ‘PC Card’) standard provides a means of
connecting a sub-miniature expansion card (such as a memory card or modem)
to a laptop or book computer.

Peripheral An external hardware device whose activity is under the control
of the microcomputer system.

Port A general term used to describe an interface circuit which facilitates
transfer of data to and from external devices (peripherals).

Processor The processor is generally taken to mean the central processing
unit (CPU) which is invariably a single very large scale integrated circuit that
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decodes instructions and controls the other hardware elements of the system
(see Appendix D). The CPU comprises a control unit, arithmetic/logic unit and
internal storage (see also ‘Microprocessor’). Other processors may be dedicated
to functions such as graphics and complex I/O functions.

Processor socket The socket (or ‘slot’) used to mount the processor on the
motherboard (see Appendix F).

Program A sequence of executable microcomputer instructions which have
a defined function. Such instructions are stored in program files having EXE or
COM extensions.

Propagation delay The time taken for a signal to travel from one point to
another. In the case of logic elements, propagation delay is the time interval
between the appearance of a logic state transition at the input of a gate and its
subsequent appearance at the output.

Protocol A set of rules and formats necessary for the effective exchange of
data between intelligent devices.

Random access An access method in which each word can be retrieved in the
same amount of time (i.e. the storage locations can be accessed in any desired
order). This method should be compared with sequential access in which access
times are dependent upon the position of the data within the memory.

Random access memory (RAM) A term which usually refers to semicon-
ductor read/write memory (in which access time is independent of actual storage
address). Note that semiconductor read-only memory (ROM) devices also
provide random access.

Read The process of transferring data to a processor from memory or I/O.

Read-only memory (ROM) A memory device which is permanently pro-
grammed. Erasable–programmable read only memory (EPROM) devices are
popular for storage of programs and data in stand-alone applications, and can
be erased under ultraviolet light to permit reprogramming.

Register A storage area within a CPU, controller, or other programmable
device, in which data (or addresses) are placed during processing. Registers
will commonly hold 8-, 16-, or 32-bit values.

RISC The term RISC refers to a ‘Reduced Instruction Set Computer’ – a
computer based on a processor that accepts only a limited number of basic
instructions but which decodes and executes them faster than the alternative
technology (CISC). See also CISC.

Root directory The principal directory of a disk (either hard or floppy) which
is created when the disk is first formatted. The root directory may contain
the details of further sub-directories which may themselves contain yet more
sub-directories, and so on.

Run length limited (RLL) A method of data encoding employed with hard
disk storage. This method is more efficient than conventional MFM encoding.
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SCSI The SCSI (or ‘Small Computer Systems Interface’) provides a means of
interfacing up to eight peripheral devices, (such as hard disks, CD-ROM drives
and scanners) to a microcomputer system. With its roots in larger minicomputer
systems, SCSI tends to be more complex and expensive in comparison with
EIDE.

Sector The name given to a section of the circular track placed (during for-
matting) on a magnetic disk. Tracks are commonly divided into ten sectors (see
also Format).

Segment 64 KB of contiguous data within memory. The starting address of
such a block of memory may be contained within one of the four segment
registers (DS, CS, SS, or ES).

Serial interface (serial port) A communications interface in which data is
transferred a bit at a time between a computer and a peripheral device, such
as a modem. In serial data transfer, a byte of data (i.e. 8 bits) is transmitted
by sending a stream of bits, one after another. Furthermore, when such data
is transmitted asynchronously (i.e. without a clock), additional bits must be
added for synchronization together with further bits for error (parity) checking
(if enabled).

Server A computer which provides network accessible services (e.g. hard
disk storage, printing, etc.).

Shell The name given to an item of software which provides the principal
user interface to a system. The DOS program COMMAND.COM provides a
simple DOS shell however later versions of MS-DOS and DR-DOS provide
much improved graphical shells (DOSSHELL and VIEWMAX, respectively).

Signal The information conveyed by an electrical quantity.

Signal level The relative magnitude of a signal when considered in relation
to an arbitrary reference (usually expressed in volts, V).

SIMM SIMMs (or ‘Single In-line Memory Modules’) are used to house the
DRAM chips used in all modern PCs. The modular packaging and standard pin
connections makes memory expansion very straightforward.

Slot A general term used to describe the sockets within a system (such as
AGP, PCI, ISA, RAM, etc.) which can be used to expand the system. Each slot
is designed to accept a printed circuit card. Note that the term ‘slot’ is also
used to describe the socket used to mount certain types of processor on the
motherboard (see Appendix F).

Software A series of computer instructions (i.e. a program).

Sound Card An interface card used to process audio data and provide audio
output to external speakers; also typically includes interfaces to a microphone,
game controller, and external MIDI devices.

Sub-directory A directory which contains details of a group of files and
which is itself contained within another directory (or within the root directory).
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Surge suppressor/protector A component or device (placed between the
computer and the user’s local AC source) that prevents transient voltage surges
(spikes) from reaching the protected equipment.

Swap file A swap file is a file that resides on a hard disk and is used to provide
‘virtual memory’. Swap files may be either ‘permanent’ or ‘temporary’ (see
also Virtual memory).

System board See motherboard.

System file A file that contains information required by DOS. Such a file is
not normally shown in a directory listing.

Terminal emulation The ability of a microcomputer to emulate a hardware
terminal.

TSR A terminate-and-stay-resident program (i.e. a program which, once
loaded, remains resident in memory and which is available for execution from
within another application).

UART UART (or ‘Universal Asynchronous Transmitter/Receiver’) is the
name given to the chip that controls the PC’s serial interface. Most modern
PCs are fitted with 16550 or 16650 UARTs.

Upper memory The 384 K region of memory which extends beyond the
640 K of conventional memory of the original legacy PC specification. This
region of memory was unavailable for applications but was reserved for system
functions such as the video display memory. Modern PCs are not bound by this
restriction (unless booted directly into DOS).

USB USB (or ‘Universal Serial Bus’) is a medium speed serial interface which
provides expansion facilities for modern PCs. The interface is typically used for
mice, printers, scanners, and cameras but a wide variety of external hardware
for data acquisition and virtual instrumentation is also based on this standard.
Note that the number of USB ports provided by a PC can be easily increased
with the use of an external hub.

Validation A process in which input data is checked in order to identify
incorrect items. Validation can take several forms including range, character,
and format checks.

Verification A process in which stored data is checked (by subsequent
reading) to see whether it is correct.

Video card (or video graphics accelerator) An interface card with a ded-
icated video processor and local RAM which is used for processing data for
display on a monitor or display screen.

Virtual memory A technique of memory management which uses disk swap
files to emulate random-access memory. The extent of RAM can be increased
by this technique by an amount which is equivalent to the total size of the swap
files on the hard disk.

Visual display unit (VDU) An output device (usually based on a cathode
ray tube) on which text and/or graphics can be displayed. A VDU is normally
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fitted with an integral keyboard in which case it is sometimes referred to as a
console.

Volume label A disk name (comprising up to 11 characters). Note that hard
disks may be partitioned into several volumes, each associated with its own
logical drive specifier (i.e. C:, D:, E:, etc.).

VRAM VRAM (or ‘Video Random Access Memory’) is a high-speed type of
DRAM fitted to a graphics controller card. This type of memory is preferred for
the fast throughput of data which is essential when manipulating high-resolution
screen images. See also DRAM.

Word A data value which comprises a group of 16-bits and which constitutes
the fundamental size of data which an 8086 processor can accept and manipulate
as a unit.

Write The process of transferring data from a processor (or other bus
controlling device) to memory or to an I/O device.
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Quantity Unit Symbol

Length Metre M
Mass Kilogram kg
Time Second s
Electric current Ampere A
Temperature Kelvin K
Energy Joule J
Electrical resistance Ohm �

Luminous intensity Candela cd
Amount of substance Mole mol

Fundamental units

Quantity Unit Symbol

Electric charge Coulomb C
Capacitance Farad F
Inductance Henry H
Frequency Hertz Hz
Conductance Siemen S
Magnetic flux Weber Wb
Magnetic flux density Tesla T
Voltage (potential difference) Volt V
Area Square metre m2

Volume Cubic metre m3

Volume (fluid capacity) Litre l
Force Pascal Pa
Velocity Metre per second m s−1 or m/s
Acceleration Metre per second squared m s−2 or m/s2

Density Kilogram per metre cubed kg m−3 or kg/m3

Selected derived units
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Factor of 10 Value Prefix Symbol

10−18 0.000000000000000001 atto a
10−15 0.000000000000001 femto f
10−12 0.000000000001 pico p
10−9 0.000000001 nano n
10−6 0.000001 micro µ

10−3 0.001 milli m
10−2 0.01 centi c
10−1 0.1 deci d
10 10 deca da
102 100 hecto h
103 1000 kilo k
106 1000000 mega M
109 1000000000 giga G
1012 1000000000000 tera T
1015 1000000000000000 peta P
1018 1000000000000000000 exa E
1021 1000000000000000000000 zetta Z
1024 1000000000000000000000000 yotta Y
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Decimal Hexadecimal Binary ASCII

0 00 00000000 NUL
1 01 00000001 SOH
2 02 00000010 STX
3 03 00000011 ETX
4 04 00000100 EOT
5 05 00000101 ENQ
6 06 00000110 ACK
7 07 00000111 BEL
8 08 00001000 BS
9 09 00001001 HT
10 0A 00001010 LF
11 0B 00001011 VT
12 0C 00001100 FF
13 0D 00001101 CR
14 0E 00001110 SO
15 0F 00001111 SI
16 10 00010000 DLE
17 11 00010001 DC1
18 12 00010010 DC2
19 13 00010011 DC3
20 14 00010100 DC4
21 15 00010101 NAK
22 16 00010110 SYN
23 17 00010111 ETB
24 18 00011000 CAN
25 19 00011001 EM
26 1A 00011010 SUB
27 1B 00011011 ESC
28 1C 00011100 FS
29 1D 00011101 GS
30 1E 00011110 RS

(continued)
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Decimal Hexadecimal Binary ASCII

31 1F 00011111 US
32 20 00100000 (space)
33 21 00100001 !
34 22 00100010 "
35 23 00100011 #
36 24 00100100 $
37 25 00100101 %
38 26 00100110 &
39 27 00100111 '
40 28 00101000 (
41 29 00101001 )
42 2A 00101010 *
43 2B 00101011 +
44 2C 00101100 ,
45 2D 00101101 -
46 2E 00101110 .
47 2F 00101111 /
48 30 00110000 0
49 31 00110001 1
50 32 00110010 2
51 33 00110011 3
52 34 00110100 4
53 35 00110101 5
54 36 00110110 6
55 37 00110111 7
56 38 00111000 8
57 39 00111001 9
58 3A 00111010 :
59 3B 00111011 ;
60 3C 00111100 <

61 3D 00111101 =
62 3E 00111110 >

63 3F 00111111 ?
64 40 01000000 @
65 41 01000001 A
66 42 01000010 B
67 43 01000011 C
68 44 01000100 D
69 45 01000101 E
70 46 01000110 F
71 47 01000111 G
72 48 01001000 H
73 49 01001001 I
74 4A 01001010 J
75 4B 01001011 K
76 4C 01001100 L
77 4D 01001101 M

(continued)
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Decimal Hexadecimal Binary ASCII

78 4E 01001110 N
79 4F 01001111 O
80 50 01010000 P
81 51 01010001 Q
82 52 01010010 R
83 53 01010011 S
84 54 01010100 T
85 55 01010101 U
86 56 01010110 V
87 57 01010111 W
88 58 01011000 X
89 59 01011001 Y
90 5A 01011010 Z
91 5B 01011011 [
92 5C 01011100 \
93 5D 01011101 ]
94 5E 01011110 ˆ
95 5F 01011111 _
96 60 01100000 ‘
97 61 01100001 a
98 62 01100010 b
99 63 01100011 c
100 64 01100100 d
101 65 01100101 e
102 66 01100110 f
103 67 01100111 g
104 68 01101000 h
105 69 01101001 i
106 6A 01101010 j
107 6B 01101011 k
108 6C 01101100 l
109 6D 01101101 m
110 6E 01101110 n
111 6F 01101111 o
112 70 01110000 p
113 71 01110001 q
114 72 01110010 r
115 73 01110011 s
116 74 01110100 t
117 75 01110101 u
118 76 01110110 v
119 77 01110111 w
120 78 01111000 x
121 79 01111001 y
122 7A 01111010 z
123 7B 01111011 {
124 7C 01111100 |

(continued)
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Decimal Hexadecimal Binary ASCII

125 7D 01111101 }
126 7E 01111110 ˜
127 7F 01111111 DEL
128 80 10000000 Ł
129 81 10000001 '
130 82 10000010 ,
131 83 10000011 f
132 84 10000100 „
133 85 10000101 …
134 86 10000110 †
135 87 10000111 ‡
136 88 10001000 ˆ
137 89 10001001 ‰
138 8A 10001010 Š
139 8B 10001011 ‹
140 8C 10001100 Œ
141 8D 10001101 Ž
142 8E 10001110 ^
143 8F 10001111 −
144 90 10010000 ł
145 91 10010001 ‘
146 92 10010010 ’
147 93 10010011 “
148 94 10010100 ”
149 95 10010101 •
150 96 10010110 –
151 97 10010111 —
152 98 10011000 ˜
153 99 10011001 ™
154 9A 10011010 š
155 9B 10011011 ›
156 9C 10011100 œ
157 9D 10011101 ž
158 9E 10011110 ~
159 9F 10011111 Ÿ
160 A0 10100000 (thin space)
161 A1 10100001 ¡
162 A2 10100010 ¢
163 A3 10100011 £
164 A4 10100100 ¤
165 A5 10100101 ¥
166 A6 10100110 ¦
167 A7 10100111 §
168 A8 10101000 ¨
169 A9 10101001 ©
170 AA 10101010 a

171 AB 10101011 «
(continued)
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Decimal Hexadecimal Binary ASCII

172 AC 10101100 ¬
173 AD 10101101 -
174 AE 10101110 ®
175 AF 10101111 ¯
176 B0 10110000 ˚
177 B1 10110001 ±
178 B2 10110010 2

179 B3 10110011 3

180 B4 10110100 ´
181 B5 10110101 µ

182 B6 10110110 ¶
183 B7 10110111 ·
184 B8 10111000 ¸
185 B9 10111001 1

186 BA 10111010 o

187 BB 10111011 »
188 BC 10111100 1/4
189 BD 10111101 1/2
190 BE 10111110 3/4
191 BF 10111111 ¿
192 C0 11000000 À
193 C1 11000001 Á
194 C2 11000010 Â
195 C3 11000011 Ã
196 C4 11000100 Ä
197 C5 11000101 Å
198 C6 11000110 Æ
199 C7 11000111 Ç
200 C8 11001000 È
201 C9 11001001 É
202 CA 11001010 Ê
203 CB 11001011 Ë
204 CC 11001100 Ì
205 CD 11001101 Í
206 CE 11001110 Î
207 CF 11001111 Ï
208 D0 11010000 Ð
209 D1 11010001 Ñ
210 D2 11010010 Ò
211 D3 11010011 Ó
212 D4 11010100 Ô
213 D5 11010101 Õ
214 D6 11010110 Ö
215 D7 11010111 ×
216 D8 11011000 Ø
217 D9 11011001 Ù

(continued)
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Decimal Hexadecimal Binary ASCII

218 DA 11011010 Ú
219 DB 11011011 Û
220 DC 11011100 Ü
221 DD 11011101 Ý
222 DE 11011110 Þ
223 DF 11011111 ß
224 E0 11100000 à
225 E1 11100001 á
226 E2 11100010 â
227 E3 11100011 ã
228 E4 11100100 ä
229 E5 11100101 å
230 E6 11100110 æ
231 E7 11100111 ç
232 E8 11101000 è
233 E9 11101001 é
234 EA 11101010 ê
235 EB 11101011 ë
236 EC 11101100 ì
237 ED 11101101 í
238 EE 11101110 î
239 EF 11101111 ï
240 F0 11110000 ð
241 F1 11110001 ñ
242 F2 11110010 ò
243 F3 11110011 ó
244 F4 11110100 ô
245 F5 11110101 õ
246 F6 11110110 ö
247 F7 11110111 ÷
248 F8 11111000 ø
249 F9 11111001 ù
250 FA 11111010 ú
251 FB 11111011 û
252 FC 11111100 ü
253 FD 11111101 ý
254 FE 11111110 þ
255 FF 11111111 ÿ

Note: ASCII characters above 127 decimal (FF hex.) are non-standard.
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Appendix E Powers of 2

Powers of 2 Number of bytes Symbol Name

210 1 024 KB kilobyte
220 1 048 576 MB Megabyte
230 1 073 741 824 GB Gigabyte
240 1 099 511 627 776 TB Terabyte
250 1 125 899 906 843 624 PB Petabyte
260 1 152 921 504 607 870 976 EB Exabyte
270 1 180 591 620 718 458 879 424 ZB Zettabyte
280 1 208 925 819 615 701 892 530 176 YB Yottabyte
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Socket 1 Found on 486 motherboards and supports 486 chips, plus the DX2, DX4 Overdrive.

Socket 2 An upgrade of Socket 1 which has 238 pins and accepts the 486 processor but can also support a
Pentium Overdrive.

Socket 3 Similar to Socket 2 but has 237 pins. Operates at 5 V but can be configured for 3.3 V operation.

Socket 4 Supports older Pentium 60–66 and Overdrive processors that operate from a 5 V supply.

Socket 5 Supports Pentium processors from 75 to 133 MHz operating from a 3.3 V supply. Newer chips
will not fit because they need an extra pin. Socket 5 has been replaced by Socket 7 although
socket converters are available that allow Socket 7 processors to be fitted in Socket 5
motherboards.

Socket 6 A slightly more advanced Socket 3 with 235 pins and 3.3 V operation to suit some 486 chips.

Socket 7 Operating at 2.5 to 3.3 V, Socket 7 is currently the most common motherboard socket still in use.
Socket 7 supports Pentium processors from 75 MHz and above, MMX processors, the
AMD K5, K6, K6-2, K6-3, 6×86, M2 and M3, and Pentium MMX Overdrives. This socket
was the industry standard being suitable for sixth-generation chips by IDT, AMD, and Cyrix.
Intel abandoned the socket for its sixth-generation lineup in favour of Slot 1 (see below).

Socket 8 Supports the Pentium Pro. Other modern Pentium Processors do not use Socket 8 but use Slots.

Slot 1 Slot 1 supports the P2, P3, and Celeron processors. A Pentium Pro can be fitted by using a
Socket 8 on a daughtercard which is then fitted into the Slot 1.

Slot 2 Slot 2 is a 330 pin version of Slot 1. The Slot 2 design allows the processor to communicate
with the level 2 cache at the CPU’s full clock speed, in contrast to Slot 1 which communicates
at half that speed.

Slot A Similar to Slot 1, this design suits the AMD Athlon processor. It uses a different bus protocol
(EV6) to support a 200 MHz front side bus (FSB).

Socket 370 Socket 370 is a Socket 7 with an extra row of pins on all four sides. Socket 370 supports the
Pentium III, Celeron, and Celeron II processors.

Socket 462 Socket 462 is also known as Socket A and is used for AMD’s Athlon and Duron processors.
It supports the 200 MHz EV6 bus, as well as the new 266 MHz EV6 bus.

Socket Socket 423 is the original socket used by Pentium 4 processors. Socket 478 supports the
423/478 newer 478-pin Pentium 4’s.
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Appendix G Processor data

Effective Internal
Voltage FSB Level 2 Bus

Maker Name Core Socket Process (V) Speed speed Cache (bit) Introduced

Intel Pentium P5 Socket 4 0.8 µm 5 60–66 MHz 60–66 64 March 1993

Intel Pentium P54C Socket 5 0.6 µm 3.38–3.52 75–120 MHz 60–66 64 March 1994

Intel Pentium P54C Socket 7 0.35 µm 3.38–3.52 120–200 MHz 60–66 64 March 1995

Cyrix/ 6×86 M1(R) Socket 7 0.65– 3.3–3.52 90–200 MHz 40–75 64 October
IBM 0.44 µm 1995

AMD K5 Model 0-3 Socket 7 0.35 µm 3.52 75–166 MHz 60–66 64 June 1996

Cyrix/ 6×86L M1L Socket 7 0.35 µm 2.8 120–200 MHz 50–75 64 January
IBM 1997

Intel Pentium P55C Socket 7 0.35 µm 2.8 133–233 MHz 60–66 64 January
MMX 1997

AMD K6 Model 6 Socket 7 0.35 µm 2.9–3.3 166–233 MHz 66 64 April 1997

Cyrix/ 6×86MX/ M2 Socket 7 0.35– 2.9 166–366 MHz 66–83 64 May 1997
IBM MII 0.25 µm

AMD K6 Model 7 Socket 7 0.25 µm 2.2 200–300 MHz 66 64 January
1998

AMD K6-2 3D Model 8/[7:0] Socket 7 0.25 µm 2.2 266–400 MHz 66–100 64 May 1998

AMD K6-2 3D Model 8/[F:8] Socket 7 0.25 µm 2.2–2.4 333–550 MHz 95–100 64 November
CXT 1998

AMD K6-III Model 9 Socket 7 0.25 µm 2.4 400–450 MHz 100 256 KB 64 February
4-way 1999

AMD K6-2+ Socket 7 0.18 2 450–550 MHz 100 128 KB 64 April 2000

AMD K6-III+ Model 13 Socket 7 0.18 2 450–500 MHz 95–100 256 KB 64 April 2000
4-way

Intel Pentium P6 Socket 8 0.6–0.35 3.1–3.3 150–200 MHz 60/66 256, 512, 64 November
Pro 1024 KB 1995

Intel Pentium Klamath Slot 1 0.35 2.8 233–300 MHz 66 512 KB 64 May 1997
II

Intel Celeron Covington Slot 1 0.25 2 266–300 MHz 66 64 April 1998

Intel Pentium Drake Slot 2 0.25 2 400–450 MHz 100 512, 1024, 64 June 1998
II Xeon 2048 KB

Intel Pentium Deschutes Slot 1 0.25 2 333–450 MHz 66–100 512 KB 64 September
II 1998

Intel Celeron Mendocino Slot 1/ 0.25 2 300–533 MHz 66 128 KB 64 August
Socket 370 1998

(continued )
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Effective Internal
Voltage FSB Level 2 Bus

Maker Name Core Socket Process (V) Speed speed Cache (bit) Introduced

Intel Pentium Katmai Slot 1 0.18– 1.65– 450–600 MHz 100/133 512 KB 64 February
III 0.25 2.05 1999

Intel Pentium Tanner Slot 2 0.25 2 500–550 MHz 100 512, 1024, 64 March 1999
III Xeon 2048 KB

Intel Pentium Coppermine Slot 1/ 0.18 1.6–1.8 500– 100/133 256 KB 256 October
III Socket 370 1133 MHz 1999

Intel Pentium Cascades Slot 2 0.18 2.8 600– 100/133 256, 1024, 256 October
III Xeon 1000 MHz 2048 KB 1999

Intel Celeron Coppermine Socket 370 0.18 1.5–1.7 533– 66/100 128 KB 256 March 2000
II 1100 MHz

Intel Pentium Tualatin Socket 370 0.13 1.1–1.45 700– 100/133 512 KB 256 June 2001
III Server 1400 MHz

Intel Pentium Tualatin Socket 370 0.13 1.45 1133– 133 256 KB 256 August 2001
III Desktop 1200 MHz

Intel Pentium Tualatin Socket 370 0.13 1.45 1000– 100 256 KB 256 October
III Celeron 1400 MHz 2001

AMD Athlon K7 Slot A 0.25 1.6 500–700 MHz 200 512 KB 64 August 1999

AMD Athlon K75 Slot A 0.18 1.6–1.8 500 MHz– 200 512 KB 64 January
1 GHz 2000

AMD Duron Spitfire Socket A 0.18 1.5–1.6 600–950 MHz 200 64 KB 64 June 2000

AMD Athlon Thunderbird Slot A/ 0.18 1.75 650 MHz– 200/266 256 KB 64 June 2000
Socket A 1.4 GHz

AMD Duron Morgan Socket A 0.18 1.75 1.0–1.3 GHz 200 64 KB 64 August 2001

AMD Athlon XP Palomina Socket A 0.18 1.75 1.333– 266 256 KB 64 October
1.733 GHz 2001

AMD Athlon XP Thoroughbred Socket A 0.13 1.5–1.65 1.467– 266 256 KB 64 June 2002
A 1.8 GHz

AMD Athlon XP Thoroughbred Socket A 0.13 1.65 1.8– 266–322 256 KB 64 August 2002
B 2.25 GHz

Intel Pentium 4 Willamette Socket 423/ 0.18 1.75 1.3–2 GHz 400 256 KB 256 November
Socket 478 2000

Intel Pentium 4 Willamette Socket 478 0.18 1.75 1.7–1.8 GHz 400 128 KB 256 May 2002
Celeron

Intel Pentium 4 Northwood Socket 478 0.13 1.5 1.6–2.5 GHz 400–533 512 KB 256 January
2002

Intel Pentium 4 Northwood Socket 478 0.13 1.5– 2.5–2.8 GHz 400–533 512 KB 256 August 2002
1.525

Intel Pentium 4 Northwood Socket 478 0.13 1.5 2 GHz 400 128 KB 256 October
Celeron 2002

Intel Pentium 4 Northwood Socket 478 0.13 1.5 1.4–2.6 GHz 400 512 KB 256 August 2002

Intel Pentium 4 Northwood Socket 478 0.13 1.5 2.26– 533 512 KB 256 August 2002
‘A’ 3.60 GHz

Intel Pentium 4 Prescott Socket 478 0.09 1.5 3.60 GHz 664 512 KB 256 Mid-2003
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Appendix H Common file
extensions

Extension Type of file

ASC An ASCII text file
ASM An assembly language source code file
ASP An Active Server Page file (see HTM)
BAK A back-up file (often created automatically by a text editor

which renames the source file with this extension and the
revised file assumes the original file specification)

BAS A BASIC program source file
BAT A batch file which contains a sequence of operating system

commands
BIN A binary file (comprising instructions and data in binary format)
BMP A bit-mapped picture file
C A source code file written in the C language
CFG A configuration file
CLP A Windows ‘clipboard’ file
COM An executable program file in small memory format (i.e.

confined to a single 64 KB memory segment)
CPI A ‘code page information’ file
CPP A source code file written in the C++ language
CRD A Windows ‘card index’ file
CSS A Cascading Style Sheet file (used to control the display styles

used in HTM and HTML files)
DAT A data file (usually presented in either binary or ASCII format)
DBG A DEBUG text file
DLL A Dynamic Link Library file
DOC A document file (not normally presented in standard ASCII

format)
EXE An executable program file in large memory format (i.e. not

confined to a 64 KB memory model)
GIF An image file in Graphics Interchange Format
H A header file containing class names and definitions used in

the C language
HEX A file presented in hexadecimal (an intermediate format

sometimes used for object code)
HLP A help file
HPP A header file containing class names and definitions used in

the C++ language
(continued )
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Extension Type of file

HTM A file in HyperText Markup language format (designed for
display using a standard Web browser)

HTML A file in HyperText Markup Language format (designed for
display using a standard Web browser)

INC An ‘include’ file used in assembly language programming
INI An initialization file which may contain a set of inference rules

and/or environment variables
JPG An image saved in JPEG (Joint Photographic Experts Group)

format
LIB A library file (containing multiple object code files)
LST A listing file (usually showing the assembly code corresponding

to each source code instruction together with a complete list of
symbols)

MAK A ‘make’ file
MAP A file containing symbol information generated by a compiler

and designed for use by an external debugger
MSC A Microsoft Management Console file
OBJ An object code file. Object code modules are linked to form

executable files
OLD A back-up file (replaced by a more recent version of the file)
PAS A source code file written in Pascal
PBC A PowerBASIC chain file
PBU A precompiled unit file (PowerBASIC)
PCX A picture file
PDF An Adobe Acrobat Document file (requires Adobe Acrobat

Reader)
PIF A Windows ‘Program Interchange File’
PRN A printer file (using dedicated printer codes)
REG A Windows Registry file
SCR A DEBUG script file
SYS A system file
TIF A tagged image file
TMP A temporary file
TXT A text file (usually in ASCII format)
VBP Visual Basic Project file
WRI A document file in MS Write format
XLS A file in MS Excel format
$$$ A temporary file
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Appendix I BIOS error codes

IBM BIOS Indication Meaning

One short beep Normal POST – no error
Two short beeps POST error – see screen for error code
No beeps Power missing, loose card, or short circuit
Continuous beep Power missing, loose card, or short circuit
Repeating short beep Power missing, loose card, or short circuit
One long and one short beep System board error
One long and two short beeps Video (mono/CGA display adapter)
One long and three short beeps Video (EGA display adapter)
Three long beeps Keyboard error
One beep, blank/incorrect Video display circuitry
display

Indication Meaning

One short beep DRAM refresh failure
Two short beeps Parity circuit failure
Three short beeps Base memory (64 KB) RAM failure
Four short beeps System timer failure
Five short beeps CPU failure
Six short beeps Keyboard controller error
Seven short beeps Virtual mode exception error
Eight short beeps Display memory failure
Nine short beeps ROM BIOS checksum failure
One long and three short beeps Base/extended memory failure
One long and eight short beeps Display/retrace test failure

AMI BIOS

Indication Meaning

One short beep No error during POST
Two short beeps Any non-fatal error
One long and two short beeps Video error
One long and three short beeps Keyboard controller error

Award BIOS
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Indication Meaning

One, one and three beeps CMOS read/write failure
One, one and four beeps ROM BIOS checksum failure
One, two and one beep Programmable interval timer failure
One, two and two beeps DMA initialization failure
One, two and three beeps DMA page register read/write failure
One, three and one beep RAM refresh verification error
One, three and three beeps First 64 KB RAM chip/data line failure
One, three and four beeps First 64 KB odd/even logic failure
One, four and one beep Address line failure first 64 KB RAM
One, four and two beeps Parity failure first 64 KB RAM
One, four and three beeps Fail-safe timer feature (EISA only)
One, four and four beeps Software NMI port failure (EISA only)
Two, one and up to four beeps First 64 KB RAM chip/data line failure

(bits 0 to 3, respectively)
Two, two and up to four beeps First 64 KB RAM chip/data line failure

(bits 4 to 7, respectively)
Two, three and up to four beeps First 64 KB RAM chip/data line failure

(bits 8 to 11, respectively)
Two, four and up to four beeps First 64 KB RAM chip/data line failure

(bits 12 to 15, respectively)
Three, one and one beep Slave DMA register failure
Three, one and two beeps Master DMA register failure
Three, one and three beeps Master interrupt mask register failure
Three, one and four beeps Slave interrupt register failure
Three, two and four beeps Keyboard controller test failure
Three, three and four beeps Screen initialization failure
Three, four and one beep Screen retrace test failure
Four, two and one beep Timer tick failure
Four, two and two beeps Shutdown test failure
Four, two and three beeps Gate A20 failure
Four, two and four beeps Unexpected interrupt in protected mode
Four, three and one beep RAM text address failure
Four, three and three beeps Interval timer channel 2 failure
Four, three and four beeps Time of day clock failure
Four, four and three beeps Maths coprocessor failure

Phoenix BIOS
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Appendix J Manufacturers,
suppliers, and
distributors

Expansion systems, embedded controllers, DAQ, and industrial control systems

Alphi Technology Corporation
6202 South Maple Avenue #120
Tempe
AZ 85283
USA
Telephone: 480 838 2428
Fax: 480 838 4477
Web site: www.alphitech.com
E-mail: sales@alphitech.com

Amplicon Liveline Ltd
Hollingdean Road
Centenary Industrial estate
Brighton
East Sussex
BN2 4AW
UK
Telephone: 01273 570220
Fax: 01273 570215
Web site: www.amplicon.co.uk
E-mail: sales@amplicon.co.uk

Arcom Control Systems Ltd
Clifton Road
Cambridge
CB1 7EA
UK
Telephone: 01223 411200
Freephone: 0800 411300
Fax: 01223 410457
Web site: www.arcom.com
E-mail: sales@arcom.com

Biodata Limited
10 Stocks Street
Manchester
M8 8QG
UK
Telephone: 0161 834 6688
Fax: 0161 833 2190
Web site: http://www.microlink.co.uk
E-mail: info@microlink.co.uk

Datel (UK)
Unit 15
Campbell Court Business Park
Campbell Road
Bramley
Tadley
Berkshire
RG26 5EG
UK
Telephone: 01256 880444
Fax: 01256 880706
Web site: www.datel.com
E-mail: datel.ltd@datel.com

Datel Inc
11 Cabot Building
Mansfield MA
02048 1151
USA

Fairchild Semiconductor Ltd
Interface House
Interface Business Park
Wootton Bassett
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Swindon
Wiltshire
SN5 8QL
UK
Telephone: 01793 856856
Fax: 01793 856857
Web site: www.fairchildsemi.com
E-mail: sales@fairchildsemi.com

Keithley Instruments
2 Commerce Park
Brunel Road
Theale
Berkshire
RG7 4AB
UK
Telephone: 01189 297500
Fax: 01189 297519
Web site: www.keithley.co.uk
E-mail: info@keithley.co.uk

Keithley Inc
28775 Aurora Road
Cleveland
OH 44139
USA

Measurement Computing Corporation
16 Commerce Boulevard
Middleboro
MA 02346
USA
Telephone: 508 946 5100
Fax: 508 946 9500
Web site: www.measurementcomputing.com
E-mail: info@measurementcomputing.com

Microbus
Treadway Hill
Loudwater
High Wycombe
Buckinghamshire
HP109QL
UK
Telephone: 01628 537333
Fax: 01628 537334
Web site: www.microbus.com
E-mail: sales@microbus.com

National Instruments UK
Measurement House
Newbury Business Park
London Road
Newbury
Berkshire
RG14 2PS
UK
Telephone: 01635 572414
Fax: 01635 523154
Web site: www.digital.ni.com
E-mail: info.uk@ni.com

Semaphore Systems Ltd
Unit 3
Hampstead West
Iverson Road
London
NW6 2HX
UK
Telephone: 020 7625 7744
Fax: 020 7625 7788
Web site: www.semaphore-systems.co.uk
E-mail: sales@semaphore-systems.co.uk

Siemens
Sir William Siemens House
Princess Road
Manchester
M20 2UR
UK
Telephone: 0161 446 6400
Fax: 0161 446 5327
Web site: www.siemens.co.uk

Signametrics Corporation
6073 50th Avenue NE
Seattle
WA 98115
USA
Telephone: 206 524 4074
Fax: 206 525 8578
Web site: www.signametrics.com
E-mail: sales@signametrics.com

Spectrum GmbH
Ahrensfelder Weg 13-17
22927 Grosshandsdorf
Germany
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Telephone: 49 4102/6956-0
Fax: 49 4102/6956-66
Web site: www.spectrum-gmbh.com

Strategic Test Corporation
One Broadway
Suite 600
Cambridge
MA 02142
USA
Telephone: 866 898 FAST
Fax: 617 577 1209
Web site: www.strategic-test.com

Talisman Electronics Ltd
2 The Courtyard
Denmark Street
Wokingham
Berkshire
RG40 2AZ
UK
Telephone: 01452 500588
Fax: 01452 513867
Web site: www.talisman-uk.com
E-mail: sales@talisman-uk.com

United Electronic Industries Inc.
611 Neponset Street
Canton
MA 02021
USA
Telephone: 781 821 2890
Fax: 781 821 2891
Web site: www.ueidaq.com

XYCOM Europe Ltd
Pro-face House
8 Orchard Court
Binley Business Park
Coventry
CV3 2TQ
Telephone: 02476 440088
Fax: 02476 440099
Web site: www.xycom.com
E-mail: info@profaceuk.com

XYCOM USA
750 North Maple Road
Saline
MI 48176
USA

Motherboards, memories, processors, drives, and accessories

A and P Computers Ltd
35 Walnut Tree Close Guildford
Surrey
GU1 4UN
UK
Telephone: 01483 841000
Fax: 01483 880011
Web site: www.ap-computers.com
E-mail: sales@ap-computers.com

dabs.com
Direct House
Wingates Industrial Park
Westhoughton
Bolton
UK
Telephone: 0870 4293000
Web site: www.dabs.com.uk

Evesham Technology
Vale Park
Evesham
Worcestershire
WR11 1TD
UK
Telephone: 08707 1609500
Fax: 01386 769781
Web site: www.evesham.com
E-mail: sales@evesham.com

Novatech
Harbour House
Hamilton Road
Cosham
Portsmouth
PO6 4PU
UK
Telephone: 023 923 22522
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Scan Computers International Ltd
Unit 27/28
Enterprise Park
Horwich
Bolton
Lancashire
BL6 6PE
UK
Telephone: 01204 474747

Simply.Com
Nimrod House
Enigma Commercial Centre
Malvern
Worcestershire
WR14 1JJ
UK
Telephone: 0870 121 7660 UK

+44 1684 893020 International
Fax: 0870 121 7659 UK

+44 1684 580898 International
Web site: www.simply.com
E-mail: sales@simply.com

Stak Trading Computer Services Ltd
26 Somers Road
Rugby
Warwickshire
CV22 7DH
UK
Telephone: 0870 444 4484
Fax: 0870 444 4485
Web site: www.online.stak.com
E-mail: sales@stak.com

Unimart Computers Ltd.
119 Groveley Road
Sunbury-on-Thames
Middlesex
TW16 7J2
UK
Telephone: 020 8893 2969
Fax: 020 8893 2961
Web site: unimart.co.uk
E-mail: info@unimart.co.uk

Data communication products and accessories

Connexions (UK) PLC
Unit 3
Travellers Close
Welham Lane
Hertfordshire
AL9 7NT
UK
Telephone: 01707 272091
Fax: 01707 269444
Web site: www.cxcxcx.com
E-mail: sales@cxcxcx.com

Quatech
5675 Hudson Industrial Parkway
Hudson
OH 44236 5012
USA
Telephone: 330 655 9000
Fax: 330 655 9010
Web site: www.quatech.com
E-mail: sales@quatech.com

Memory devices

Kingston Technology
Kingston Court
Brooklands Close
Sunbury-on-Thames
Middlesex
TW16 7EP
UK
Telephone: 01932 738888
Fax: 01932 738811
Web site: www.kingston.com

Memory Bank at Powermark
The Powermark Centre
Elstree Road
Elstree
Hertfordshire
WD6 3RP
UK
Telephone: 020 8956 7777
Fax: 020 8956 7878
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Electronic components and test equipment

Farnell Electronic Components
Canal Road
Leeds
West Yorkshire
LS12 2TU
UK
Telephone: 0870 1200 200
Fax: 0870 1200 201
Web site: www.farnellinone.co.uk
E-mail: uksales@farnellinone.co.uk

Maplin Electronic Ltd
National Distribution Centre
Valley Road
Wombwell
Barnsley
South Yorkshire

UK
Telephone: 0870 429 6000
Fax: 0870 429 6001
Web site: www.maplin.co.uk
E-mail: sales@maplin.co.uk

RS Components
Birchington Road
Corby
Nothants
NN17 9RS
UK
Telephone: 01536 201201
Fax: 01536 201501
Web site: www.rswww.com
E-mail: sales@rswww.com

Computer supplies

Watford Electronics Computer Supplies
Jessa House
Finway
Luton
LU1 1 TR
UK
Telephone: 0871 666 0200
Fax: 0871 666 5200
Web site: www.savastore.com/watford

Software

Adept Scientific plc
Amor Way
Letchworth
Hertfordshire
SG6 1ZA
UK
Telephone: 01462 480055
Fax: 01462 480213
Web site: www.adeptscience.co.uk
E-mail: info@adeptscience.co.uk

PowerBASIC Inc
1978 Tamiami Trail S #200
Venice
FL 34293
USA
Telephone: 941 408 8700
Fax: 941 408 8820
Web site: www.powerbasic.com
E-mail: sales@powerbasic.com
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Virtual instruments

PicoTechnology Ltd
The Mill House
Cambridge Street
St Neots
Cambridgeshire
PE19 1QB
UK
Telephone: 01480 396395
Fax: 01480 396296
Web site: www.picotech.com
E-mail: sales@picotech.com

USB Instruments
EasySync Ltd
373 Scotland Street
Glasgow
G5 8QB
UK
Telephone: 01414 180181
Fax: 01414 180110
Web site: www.usb-instruments.com
E-mail: sales@usb-instruments.com
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Appendix K Useful web sites

Company/organization URL

AMD http://www.amd.com
Caldera http://www.caldera.co.uk
Carrera http://www.carrera.co.uk
Computer Information Centre http://www.compinfo.co.uk
Dan Technology http://www.dan.co.uk
Dell http://www.dell.com/uk
Dr Solomon’s Software http://www.drsolomon.com
Epson http://www.epson.co.uk
Gateway http://www.gw2k.co.uk
Geek Hideout http://www.geekhideout.com
Hewlett Packard http://www.hp.com
IBM http://www.ibm.com
Internals http://www.internals.com
Kingston Technology http://www.kingston.com
Logix4U http://www.logix4u.net
Matrox http://www.matrox.com
Maxtor http://www.maxtor.com
McAfee http://www.mcafee.com
Mesh http://www.meshplc.co.uk
Microsoft http://www.microsoft.com
NEC http://www.nec.com
Seagate http://www.seagate.com
Scientific Software Tools, Inc. http:// www.sstnet.com
Symantec http://www.symantec.com
Taxan http://www.taxan.co.uk
US Robotics http://www.usr.co.uk
Western Digital http://www.wdc.com
Zeal SoftStudio http://www.zealsoft.com
Companion website http://www.key2control.com

(downloadable resources, weblinks,
FAQ, source code and other material)
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Appendix M Reference
material
available from
the Web

The following references are available via the World Wide Web:

8086 instruction set
http://www.ziplib.com/emu8086help/8086_instruction_set.html

A86/A386 assembler and D86/D386 debugger (Eric Isaacson)
http://eji.com/a86

Advanced Configuration and Power Interface Specification, Version 1.0
http://www.teleport.com/∼acpi/

All BIOS World
http://www.abios.com

BIOS
http://www.biosworld.com

Motherboards
http://www.motherboards.org

‘OnNow and ACPI: Introduction and Specifications’ and related white papers.
Power management specifications for device and bus classes.
http://www.microsoft.com/hwdev/onnow.htm

OnNow capabilities and power management
http://www.microsoft.com/hwdev/pcfuture/onnowwdm.htm

PC bus standards
http://www.techfest.com/hardware/bus.htm

PC standards and data for interface designers
http://www.interfacebus.com

PC systems and components
http://www.pcguide.com
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PC/104 and PCI-104 Specifications
http://www.pc104.org/technology/pc104_tech.html

PCI Local Bus Specification, Revision 2.1 (PCI 2.1)
http://www.pcisig.com

PCI database of devices and systems
http://members.datafast.net.au/dft0802/pcidevs.txt

PCMCIA standards
http://www.pc-card.com

Plug and Play specifications
http://www.microsoft.com/hwdev/specs/

USB Specification, Version 1.0
http://www.usb.org

Windows 2000
http://www.microsoft.com/ntserver/

Windows Hardware Compatibility List (HCL)
http://www.microsoft.com/ntserver/
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Index

16-bit expansion card 58, 59
16450 100
353 377
358 283, 287, 288, 289
393 429
4011 273
555 294, 295, 372, 429, 431
5801 294, 295, 297
5804 298, 299
6250 100
6x86 11
74C922 276, 278
74HCT367 382
74HCT541 382
74LS03 294, 297
74LS04 73, 289
74LS05 294, 297
74LS138 73
74LS244 22
74LS245 22, 261
74LS30 73
74LS373 21
74LS612N 19
74LS73 273, 283
7569 370, 371, 372
7805 382
8-bit expansion card 58, 59
80154 359
80186 24
80286 14, 19, 20, 24
80286 pin connections 26
80287 19, 24, 25
80386 14, 15, 24
80386DX 20
80386SX 15, 20
80387 24, 25
8042 31
8044 359
80486 14, 15, 20
80486DX 20
8080 108
8085 108
8086 10, 12, 13, 14, 20, 24, 25
8086 assembly language 176
8086 Interrupt Pointer table 182
8086 pin connections 26
8086 register model 178
8087 21, 24, 25

8087 pin connections 26
8088 12, 14, 19, 24, 25
8088 pin connections 26
8089 24
82230 24
82231 24
82258 24
82288 24
82335 24
8237 21
8237A 19, 27, 31
8237A pin connections 28
82384 24
8253 19, 21, 24, 27, 29, 31
8253 pin connections 28
8254 24, 31, 103
8255 31, 73, 261
8255A 19, 29, 30
8255A pin connections 28
8259 21
8259A 19, 24, 29, 31
8259A pin connections 28
82801 33
82802 33
8284A 19, 24, 30
8284A pin connections 28
82850 33
8288 19, 24, 31, 32
8288 pin connections 28
82C100 32
82C206 32
82C495 32

AC sensing 288, 289
AD590 286, 288, 289, 391, 392
ADC 263
ADC-212 328
ADSTB 27
AGP 33, 34, 61, 81
AIP-24 98
ALE 21
ALU 12, 13, 16, 25
ALi MAGiK 1 chipset 33
AMD 750 chipset 33
AMD 760 chipset 33
ANSI C 223
APCI-ADADIO 101, 102, 103
API 183
APPEND 121
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AS-Interface 359
ASCII 233, 235
ASCIIZ string 208
ASSIGN 121
AT 1, 2
AT attachment 53
AT expansion card 59
ATA 54, 55
ATA drive 53
ATE 249
ATN 253
ATTRIB 121
AUTOEXEC.BAT 110, 135
AUTOEXEC.NT 134
AWG 325
Accelerated Graphics Port 81
Access time 35
Accumulator 179
Accuracy 330, 331, 332
Active sensor 268
ActiveX 306
Actuator 296
Actuator Sensor Interface 359
Adapter card 6, 23, 24, 58,

64, 443
Address 14
Address bus 5, 6
Address decoding 73
Address latch enable 21
Address offset 74
Address pointer 179
Addressable memory 6
Addressed command 255
Advanced Technology 1
Alignment check fault 406
Analogue I/O 262
Analogue meter display 314
Analogue output 268, 285
Analogue-to-digital converter 98
Angular position 265
Angular velocity 265
Applications 362
Arbitration 77
Argument 170, 231, 239
Arithmetic Logic Unit 12, 13
Arithmetic instructions 176
Assembly language 167, 168, 176, 184,

209
Asynchronous data entry 278
Asynchronous mode 9
Athlon 11, 23
Attachment Packet Interface 183
Audible alarm 294
Audible output 292
Audible transducer 295
Automatic Test Equipment 249

BACKUP 122
BASIC 189
BASIC 6.0 189
BASIC 7.1 189
BASIC commands 192
BEDO RAM 39
BIOS 107, 108, 395
BIOS ROM 23, 45, 46, 109, 397
BIOS data 46, 49, 51
BIOS fault location 439, 442
BIOS password 397
BIOS upgrade 398, 399
BITBUS 359
BIU 12, 13, 15
BPX48 287
BREAK 115, 132
BS4937 286
BSB 32
BSC adapter 31
BUFFERS 132
BUSY 25
Back side bus 32
Backplane bus 57, 358
Bandwidth 329
Bar graph display 314
Base Pointer 180
Base address 73, 74, 97, 102, 179
Base address selection 101
Batch file 128, 129
Battery load test 377
Beep code 397
Benchmark 421, 422
Benchmarking 418, 420
Bipolar operation 263
Bit 5
Bit mask 262
Bit stuffing 87
Borland C++ 4.5 223, 224, 234, 236,

237, 242, 243, 246
Bounce 271
Bounds check fault 405
Branch 158
Breakpoint 190
Bridge 32, 34
Buffer overruns 89
Buffer underruns 89
Buffered memory 39
Buffers 261
Bulk data transfer 88, 89
Burst extended data output 39
Bus 5, 57
Bus Control Logic 13
Bus Controller 31
Bus Interface Unit 12, 13, 15
Bus adapter 58
Bus arbitration 77
Bus configuration 255
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Bus connector 64, 67, 69
Bus control logic 12
Bus expansion 6
Bus extender 63
Bus interface layer 90, 91
Bus interface logic 75
Bus mastering 77
Bus-powered device 86
Byte 208

C 223, 244
C functions 230
C programming 223, 225
C++ 223, 224, 225, 244
CAS 36
CAS latency 36
CD 115
CD benchmark 422
CHDIR 115
CHKDSK 122
CLI 107, 108, 109, 188
CLS 115
CMD.EXE 134
CMOS battery 45, 396, 397
CMOS error 397
CMOS fault location 439
CMOS memory 39, 44, 396, 398
COM1: 100, 101, 111
COM2: 100, 101, 111
COM3: 111
COM4: 111
COMMAND.COM 4, 47, 134
COMP 123
CONFIG.NT 134, 135
CONFIG.SYS 110, 131, 134, 135
COPY 115
COUNTRY 132
CP/M 108
CP/M86 108
CPCI 77
CPU 3, 4, 5, 8, 10, 11, 12, 21, 25
CPU bus 20
CPU fan 23
CPU fault location 438, 441
CPU multimedia benchmark 421
CRC 88
CREF 169, 173
Cache memory 32, 39
Capacitive proximity sensor 266, 279
Capacitive proximity switch 267
Card Bus 77
Card frame 357
Card select signal 59
Catchall 205
Celeron 11, 18
Central processing unit 3, 10
Changeover switch 270

Characters 192
Chart recorder display 313
Chip select 73, 74
Chipset 32, 33
Clock 9, 21
Clock generator 30
Clone 1
Code Cache 16
Code Pre-fetch Unit 15
Code Segment 14, 178
Code Segment Register 13
CodeView 173, 175
Cold junction 286
Cold reboot 149
Colour bar waveform 350
Column address strobe 36
Command line interface 107
Command line interpreter 107
Comment 162, 163, 170
Common connection 9
Compatible 3
Compound device 90
Computer-based DSO 332
Condition code register 168
Configration file fault location 440
Configuration file 134
Connector faults 435
Console 111
Console Assemble and Link 184,

186
Console I/O 232
Console applications 107
Contact bounce 271
Contactless joystick 269
Contacts 271
Control bus 5
Control characters 112
Control flow structure 152
Control logic 12
Control register 262
Control structure 159
Control structures 157
Control transfer 88, 89
Controller 90, 250, 251
Controls 213, 214
Conversion specifiers 233
Conversion time 263
Cooling 24
Coprocessor 24
Coprocessor error fault 406
Coprocessor not available fault 405
Coprocessor segment overrun 405
Cross-hatch waveform 350
Cross-reference utility 169, 173
Crystal filter 367, 368
Cursor 338
Custom-written software 304
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Cut and paste 170
Cyclic redundancy character 88

DACK 8
DADiSP 313, 315, 316, 317
DASYLAB 307, 309, 311
DASYLab 312, 313, 314
DATAQ 306
DATE 116
DAV 252
DC motors 293
DC-DC converter 98, 99
DDE 302
DDR memory 39
DEBUG 136, 142, 174, 175
DEBUG assembler 146
DEBUG commands 137
DEBUG walkthrough 142
DEL 116
DEVICE 132
DIL switch 267, 270, 271
DIMM 23, 37, 38, 39
DIP switch 443
DIR 116
DISKCOMP 123
DISPLAY.SYS 134
DLL 215, 410
DMA 8, 27
DMA acknowledge 8
DMA request 8
DMAC 27
DOS 107, 108, 109, 108
DOS commands 111
DOS control characters 112
DOS window 211
DRAM 36, 40
DRIVER.SYS 134
DRQ 8
DSO 325, 327, 328, 329, 330, 331,

332, 335, 336, 337, 344
DSO operation 333
DSP 318
DTMF 319
Daisy chain bus 255
Darlington driver 291, 292, 296
Data 5, 6
Data Acquisition Laboratory 307
Data Cache 16
Data Segment 14, 178
Data bus 5
Data conversion 10
Data files 220
Data integrity 37
Data logger 387
Data rate 82
Data transfer instructions 176
Data types 185, 209

Debounce circuit 272, 273
Debugger 173, 174
Decoding of addresses 73
Define byte 170
Define word 170
Delay subroutine 196, 197
Design phase 155, 156
Detination Index 180
Dev-C++ 225
Development tools 107
Device driver 109, 134
Device layer 90, 91
Dhrystone 421
Differential measurement 392
Differential transformer 265
Diffuse scan proximity sensor 266
Diffuse scan sensor 280
Digital frequency meter 105, 362
Digital input card 63
Digital multi-meter 427
Digital output 268, 270
Digital signal processing 318
Digital storage oscilloscope 325, 327
Direct Memory Access Controller 27
Direct Rambus 40
Direct memory access 8
DirectX 348
Directive 170, 173
Disassembler 187
Disk drive 53
Disk files 221, 243
Display 313, 314, 336, 337, 348, 349,

374, 376
Distortion 354
Distributed PC systems 359
Divide fault 405
Documentation 162
Double data rate memory 39
Double fault 405
Double-precision 191, 192, 208, 209
Down time 393
Downstream port 89
Dr. Watson 410, 411, 412, 417
Drag and drop 107, 311
Drive 53, 54, 55
Drive bay 54
Drop-outs 89
Dual BIOS 397
Dual in-line switch 267
Dual-422 99, 100, 101
Dual-inline memory module 39
Dual-ported memory 40
Duron 11
Dynamic data exchange 302
Dynamic link library 215, 410
Dynamic memory 36
Dynamic random access memory 40
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ECC 38
ECHO 128
EDO RAM 40
EISA 59, 60, 61, 63, 64
EISA bus connector 67
EISA expansion card 70
EISA slot 69, 70
EMM 134, 135
EMM386.EXE 134, 401
EMM386.SYS 134
EOP 27
EP 15
ERASE 117
ESC instruction 15
ESDRAM 40
EU 12, 13, 15
EXE2BIN 123
EasyLog 387, 388, 389
EditPlus 163
Editor 169, 187, 234
Embedded controller 5, 37
Emulate processor 15
Encoded keypad 276
Encoder 281, 282, 283
End Of Process 27
Enhanced synchronous DRAM

40
Enumeration 86
Environmental monitoring 386
Error checking 161
Error correction code 38
Evaluation 157
Event-driven 153, 154, 161
Excel 379
Exception 7 15
Exceptions 404
Execution Trace Cache 18
Execution Unit 12, 13, 15
Expanded memory manager 134
Expansion 6, 7, 57, 58, 60
Expansion bus 57
Expansion bus connector 78
Expansion card 7, 59, 70, 71, 355,

357, 443
Expansion card types 61
Expansion cards 261
Expansion slot 59, 60
Exponent 25
Extended Industry Standard

Architecture 58
Extended Technology 1
Extended data-output memory 40
Extended-precision 209
External command 114, 120
Extra Segment 14, 178
Extrinsic command 114

FASTOPEN 124
FAT 122
FCBS 133
FDISK 124
FFT 311, 312, 316, 317, 339,

344, 352
FIFO 15
FILES 133
FIND 124
FLASH.EXE 399, 400
FOR 128
FORMAT 125
FPM RAM 40
FPU 24
FSB 32
FWAIT instruction 25
Fast Fourier Transformation 311, 312,

316, 339, 344, 352
Fast-page mode RAM 40
Fatal exceptions 404
Fault location 436
Fault-finding 424, 433
Fault-tolerance 393
Fetch-execute cycle 7
Field Data 359
File allocation table 122
File extension 113
File specification 112
Filename 112
Files 221, 243
Filetype 112
First-in first-out 15
Five times rule 329
Fixed point 208, 209
Fixed-length string 208
Flag Register 12, 13, 14, 168, 180, 181
Flags 181
Flex string 208
Float switch 264, 266
Floating Point Unit 16, 24
Floating point 25, 191, 192, 208, 209
Floppy disk 53
Flow 265
Flow sensor 265
Flowchart 156, 158, 199, 200
Flowchart symbols 155
Fluid sensor 281
Frame overruns 89
Frame underruns 89
Frequency domain display 349
Frequency spectrum 340, 341, 342,

343, 353, 354
Fresh Diagnose 419
Front side bus 32
Function 89, 90, 198, 230
Function layer 91
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GPF 402
GPIB 249
GPIB controller 256, 257
GT200 362, 364, 366
GUI 108, 318
Gas sensor 269
General protection fault 402, 406
General-Purpose Instrument Bus 249
General-purpose register 13
Graphical user interface 108
Graphics adapter 64
Ground connection 9

HIMEM.SYS 401
HPIB 249
HS488 protocol 250
Handshake 88, 252, 253
Hard disk 53
Hard disk benchmark 422, 423
Hard disk fault location 439, 440
Hard drive 55
Hardware design 361
Header file 226
Headers 162, 163
Heatsink 38
Hewlett Packard Instrument Bus 249
Hexadecimal 5, 239
High 5
High-resolution DSO 332
High-speed DSO 331
Host 92
Host controller 87
Hot junction 286
Hot-plugged 83
Hub 87, 88, 89, 92
Hub controller 90
Hub repeater 90
Hyper Pipelined Technology 18

I/O 3, 4, 5, 6, 9
I/O address range 13
I/O card 95
I/O card fault location 438, 441
I/O channels 110
I/O functions 232
I/O handling 152
I/O port 211
I/O ports 215, 262
I/O space 73
IBMCACHE.SYS 134
IDE 53, 54, 55, 169, 175, 183, 187,

190, 208, 213, 214, 215, 223, 224
IDE port 23
IEEE-1118 359
IEEE-488 249, 251, 368
IEEE-488 bus 251, 357
IEEE-488 bus configuration 255

IEEE-488 commands 252, 254
IEEE-488 connector 252
IEEE-488 controller 256, 257
IEEE-488 handshaking sequence 253
IEEE-488 signals 251
IEEE-488 software 257
IEEE-488 troubleshooting 260
IEEE-488.1 249, 250
IEEE-488.2 249, 250
IF 128
IFT 391
INSTALL 133
IP 13
IPCI 77
IPF 408
ISA 34, 58, 59, 60, 61, 62, 64
ISA bus connector 64
ISA card 7
ISA expansion card 70
ISA slot 69, 70
Icing flow tunnel 389, 391
Include directive 173
Include file 226
Inductive proximity detector 277
Inductive proximity sensor 279
Inductive proximity switch 267
Industrial PC 358
Industry Standard Architecture 58, 64
Inpout.dll 216
Inpout32.bas 217
Inpout32.dll 218, 221
Input pointer table 183
Input validation 161
Input/output 3
Inputs 236
Instruction 7, 12
Instruction Decode Unit 15
Instruction Pointer 13, 14, 180
Instruction code 7
Instruction queue 12, 13
Instruction set 176
Instructions 176
Instruments 325
Integer 191, 192, 208, 209
Integrated Development Environment

169, 183, 190, 213, 223
Interbus 359
Interface logic 75
Interface standards 82
Interfacing 261
Internal architecture 12, 13, 16, 21
Internal command 114
Interrupt 181
Interrupt data transfer 88, 89
Interrupt handling 16, 153
Interrupt instructions 177
Interrupt pointer table 182
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Interrupt request 8
Intrinsic command 114
Invaid task state segment fault 405
Invalid opcode fault 405
Invalid page fault 401, 408
Isochronous control transfer 88
Isochronous data transfer 89

JOIN 125
Joystick 267, 269
Jump 177

K5 11, 23
K6 11, 23
KEYB 125
Kernel drivers 414
Kernel errors 408
Kernel32.dll 409
Kernel mode driver 216
Keyboard 267
Keyboard controller 31
Keyboard encoder 276
Keyboard entry 201
Keypad 267, 275
Keypad scan 276
Keystrokes 201

LABEL 125
LASTDRIVE 133
LCD displays 290
LDR 266, 288
LDT 287
LED 280, 289, 290, 291, 292, 428
LIB 174
LINK 169, 172, 173
LPT1: 111
LPT2: 111
LPT3: 111
LRU 16
LSB 5
LVDT 266
LabVIEW 307, 308, 309, 310
Label 170, 197
Latching action switch 274
Latency 35, 36
Least recently used 16
Least significant bit 5
Legacy support device 24
Level 2 cache memory 32, 34
Library manager 169, 174
Light 266
Light dependent resistor 266, 287
Light emitting diode 289, 291
Light level 266, 287, 288
Light level sensor 269
Line assembler 146
Linear actuator 296
Linear addressable memory 6

Linear position 265
Linear position sensor 264, 265, 266,

281
Linear variable differential transformer

266
Linker 169, 173
Liquid flow sensor 264
Liquid level 266
Liquid level float switch 264
List display 313
Listen address 255
Listeners 250, 251
Load cell 268
Load sequencer 380
Load test 377
Logic 0 290
Logic 1 290
Logic probe 428, 429, 430, 432
Logic pulser 429, 431, 432
Logical constructs 199
Logical instructions 176
Long integer 192, 208
Loop 160, 235
Loopback connection 86
Loops 233
Low 5
Low-cost DSO 330
Low-level I/O 232
Low-level format 53

MAKE 169
MAP 359
MASIC 6.0 190
MASM 169, 170, 172, 175
MASM-32 153
MASM32 183, 184, 185, 186, 187
MATLAB 318, 319, 320
MCA 58, 59, 60
MD 117
MKDIR 117
MODE 125
MOSFET 291, 293
MOSFET driver 292, 296
MOUSE.COM 113
MP 15
MS-DOS 3, 4, 108, 189
MS-DOS driver 415
MSB 5
MSComm control 222
MSW 14
MTBF 393
MV5754 290
Machine status word 14
Macro 170
Macro assembler 169, 171
Macro expansion 172
Main process 154, 161
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Mantissa 25
Manufacturing Automation Protocol

359
Math.h 230
Maths coprocessor 24, 31
Matrix keypad 275
Mean time before failure 393
Measurement accuracy 330
Measurement resolution 330
Memory 34, 38
Memory address range 13
Memory allocation 46
Memory bank 36
Memory benchmark 421, 423
Memory card reader 83
Memory fault location 441
Memory information 322
Memory map 46, 47
Memory refresh 36
Memory size 42
Memory speed 43
Memory stick 83
Memory terminology 39
Memory wait state 42
Menu selection 205, 238, 241
Messages 200, 232
Micro Channel Architecture 58
Microcomputer system 3, 4, 6, 7
Microprocessor 7
Microsoft BASIC 190, 209
Microsoft BASIC for DOS 189, 191
Microsoft Visual C++ 224
Microswitch 266, 267, 277
Modbus 359
Modulated waveform 350
Monitor processor 15
Most significant bit 5
Motherboard 3, 36
Motherboard fault location 438
Motorized actuator 296
Motors 293, 296, 299
Multi-drop network 359
Multi-function I/O card 24
Multi-line commands 253
Multi-range meter 426, 427
Multi-tasking 153
Multimedia benchmark 421

NAND gate 273
NC switch 270, 277
NDAC 252
NDP 24, 25
NMI interrupt 405
NO switch 270, 277
NOR gate 273
NORP12 287
NRFD 252

NRZI 87
NUL: 111
NVRAM 41, 45
Names 164
Nested loop 236
NetBurst 18
Network benchmark 422
Networked PC systems 359
Nibble 5
Node 87
Noise 443
Non-volatile RAM 41, 45
Non-volatile storage 4
Normally closed switch 270
Normally open switch 270
North bridge 33, 34, 35
Norton System Works 321, 322
Norton Utilities 322
Not present fault 406
Null device 111
Numeric data processor 24
Numerical inputs 206
Nyquist criterion 329

Object oriented 244
Offset address 74
Opcode 170
Operand 7
Operating system 107
Operation code 170
Optical proximity sensor 280
Optical proximity switch 268
Optical sensor 269
Optical shaft encoder 265
Optically isolated input 282
Option card 6, 58
Opto-isolator 284
Optoisolator 285
Oscillator stability 362
Oscilloscope 334, 344, 347, 376,

432, 434
Output device 289
Output drivers 293
Overflow trap 405
Overruns 89

PATH 118
PAUSE 128
PC 1, 2
PC architecture 19
PC compatible 3
PC expansion bus 58, 64
PC expansion card 61
PC instrument 356, 358
PC specification 2
PC-AT 1, 14, 19, 31
PC-AT expansion bus 67
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PC-DOS 108, 189
PC-XT 1, 19, 31, 59
PC-based DSO 332
PC/104 Plus 77
PC/104 bus 75
PC/104 expansion card 76
PC/104 single board computer 76
PCI 34, 59, 60, 61, 77
PCI BIOS 101, 102
PCI bus connector 78
PCI card 101
PCI chipset 77
PCI expansion connector 80
PCI expansion slot 60
PCI graphics adapter 64
PCI slot 80
PCI-X 77
PDISO-8 95, 96, 97
PE 15
PIC 29
PIF 135
PISA 77
PIT 27
PLC 359
PLCC 15
PMC 77
PMD-1208LS 104, 105, 378
POST 395, 397, 398
PPI 29, 261
PRINT 126
PRINTER.SYS 134
PRN: 111
PROMPT 118
PS/1 2
PS/2 2, 14, 58
PXI 77
Packages 301
Page fault 406
Paging Unit 15
Parallel I/O 4, 7, 9
Parallel interface card 62
Parallel polling 253
Parallel port 7
Parallel port interface 63, 381
Parallel-to-serial conversion 9, 10
Parameter measurement 336, 350, 353
Parameters 231
Parity check 15
Passing parameters 130
Passive sensor 268
Pathname 112
Peer-to-peer connectivity 91
Pentium 11, 16, 18
Pentium 4 11, 18, 19, 20
Pentium II 11
Pentium III 11, 18
Pentium MMX 18

Pentium family 17
Performance data 367
Performance measurement 418
Peripheral Component Interconnect 59,

77
Photocell 266
Photodiode 266, 280, 288
Phototransistor 266
Physical address 14
PicoScope 326, 334, 335
Piezo-resistive sensor 267
Platsic leadless chip carrier 15
Plug and Play 77
Plug and play 101
Plug-and-play 257
Point and click 107
Pointer 208
Polled bus 87
Polling 253
Port 9
Port I/O 232, 246
Port addresses 31
Port test utility 323
Position sensor 265
Position transducer 280
Power rails 71
Power supply fault location 437
Power-on self-test 395
PowerBASIC 3.5 190, 208, 209, 210,

212
PowerBASIC for DOS 208
PowerBASIC for Windows 214, 215,

218, 221
Pre-fetch queue 15
Presentation 165
Pressure 266
Pressure sensor 267
Printer 111
Procedure 197
Process Field Bus 359
Processor 10
Processor benchmark 421
Processor status word 168
Profibus 359
Program header 163, 164
Program interchange file 135
Programmable Interrupt Controller 29
Programmable Interval Timer 27
Programmable Parallel Interface 29,

261
Programmable logic controllers 359
Programmed I/O 8
Programming 151
Programming language extensions 305
Prompts 200, 236
Protected Mode 15, 154, 190, 215, 216,

246
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Protection errors 407
Prototype card 75
Proximity sensor 277, 279, 280
Proximity switch 266, 267, 268
Pseudo code 156
Pseudo-op 170
Pull-down resistor 93
Pull-up resistor 93
Pulse measurement 353
Push-button 267, 270

Quad integer 208
Quality procedures 393
Queue Status 25
Quick and dirty code 191
QuickBASIC 189, 190, 192

RAM 3, 4, 5, 7, 8, 37, 43
RAMDRIVE.SYS 134
RAS 36
RD 119
REFRESH 21
REM 128, 133
RENAME 119
RESET 13, 15
RESTORE 127
RMDIR 119
ROM 3, 4, 5, 7, 8
RS bistable 273
RS-232 9, 357
RS-422 359
RS-485 359
Rambus 40
Rapid Execution Engine 18
Read operation 7, 8
Read-only memory 3
Read/write memory 3
Real Mode 153
Reed switch 267, 277
Refreshing 36
Register 13
Register model 178
Register select 73
Registered memory 41
Relay driver 383
Relay output 97
Relays 293
Reliability 393
Relocatable code 173
Repeater 90
Resistive position sensor 281
Resistive strain gauge 268
Resolution 330, 331, 332
Root directory 113
Root hub 91
Rotary position sensor 265, 281
Row address strobe 36

SATA 55
SCPI 250
SCS 101
SCSI 62
SDLC adapter 31
SDLC controller 359
SDRAM 39, 41
SET 119
SGRAM 41
SHELL 133
SIMM 37, 41
SMARTDRV.SYS 134
SODIMM 42
SP 13
SRAM 42
SRQ 253
SSR 296, 297, 298
STACKS 133
SWITCHES 133
SYS 127
Safe mode 403
Sampling rate 329, 331
Scheduled tasks 420
Script file 146
Search and replace 170
Segment Register 13, 14, 178, 179, 181
Segmentation Unit 15
Self-powered device 86
Self-refreshing RAM 41
Semiconductor strain gauge 268
Semiconductor temperature sensor 268
Sensor 263, 268, 270, 285
Seondary address 255
Serial ATA 55
Serial I/O 4, 7, 9, 111
Serial PCI 77
Serial polling 253
Serial port 7
Serial port interface card 63
Serial-to-parallel conversion 9, 10
Service requests 253
Shaft encoder 281, 282, 283
Shift and rotate instructions 176
SiS645 33
Sign 25
Single in-line memory module 41
Single-precision 191, 192, 208, 209
Slot 69, 70
Slot 1 18
Small outline dual-inline memory

module 42
Snubber network 298
Socket 7 17, 22, 23
Software Oscilloscope 347, 349, 352,

353
Software classification 303
Software debouncing 274
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Software design 361
Software development 154
Software functionality 303
Software packages 301
Software performance 303
Software tools 169
Solenoid 298
Solid-state relay 296, 297
Sound card 344
Sound card interface 346, 347
Sound card oscilloscope 344
Source Index 180
Source code 163, 184
South bridge 33, 34, 35
Specification 2
Spectrum analysis 339, 340, 352
Speech enunciator 369, 370
Spurious signals 443
Stack Pointer 13, 180
Stack Segment 14, 178
Stack fault 406
Stacking bus 57, 75
Standard Commands for Programmable

Instruments 250
Standard input 226
Standard output 226
Star configuration 255
Static RAM 42
Status Register 12, 168
Stdio.h 227
Stdlib.h 228
Stepper motor 299
Stock faults 426
Strain gauge 268, 377
Strain measurement 374
Stream I/O 232
Streams 226
String 192
String inputs 207
String instructions 177
String.h 229
Sub-process 154, 161
Subroutine 196
Subroutine instructions 177
Supply rails 71, 72
Support device 24
Switch 267, 268, 270, 271, 272, 274
Switch bounce 271
Symbolic debugger 174
Synchronous DRAM 41
Synchronous data entry 278
Synchronous graphics RAM 41
Synchronous handshaking 278
Synchronous mode 9
System BIOS 395
System address bus 22
System bus 20

System configuration fault location 442
System data bus 22
System information 322, 418
SystemWorks 321

TEST 25
TIME 21, 119
TL081 289, 392
TREE 127
TS 15
TSOP 42
TSR 110, 406
TYPE 120
Tachogenerator 265
Tachometer 265
Talk address 255
Talkers 250, 251
Task switched 15
Temperature sensor 268, 269, 289, 392
Terminate and stay resident 110, 406
Test equipment 426
Test string 100
Testing 162
Text editor 169
Thermistor 268
Thermocouple 268, 286
Threshold detection 287, 289
Through scan sensor 280
Time domain display 349
Time.h 229
Token packet 88
Tools for software development 169
Touch-operated switch 274
TracerDAQ 320
Transfer instructions 177
Transistor driver 292
Trigger point 338, 339
Troubleshooting 401, 424, 425
Turbine 265
Turbo C++ 3.0 225, 245
Type-K thermocouple 286

UART 100
UMB 134
UNIX 223
USB 81, 357
USB architecture 91
USB bus topology 86, 87
USB cable 87, 94
USB connector 94
USB data flow model 90
USB data logger 387
USB data signal levels 93
USB data transfer 88
USB device 104, 105
USB devices 83, 85, 89, 324
USB features 82
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USB function 86
USB hub 86, 88
USB icon 83
USB interface 92, 93
USB ports 84, 85
USB power 86
Ultrasonic transducer 295
Un-buffered memory 42
Underruns 89
Unipolar operation 263
Universal Serial Bus 81
Universal asynchornous transmitter

receiver 100
Universal command 255
Upper memory block 134
Upstream port 89
User drivers 415
User-defined functions 198
User-friendly 205, 302

VB Port Test 323
VDISK.SYS 134
VER 120
VERIFY 120
VGA 403
VI 307, 308
VIA KT-266 chipset 33
VLSI 4, 32
VOL 120
VRAM 42
Vacuum switch 266
Valves 298
Variables 191, 192, 208
Velocity 265
Vertical sync pulse waveform 351
Vibration sensor 268
Vibration study 315
Vide waveform 350
Video RAM 42
Virtual 8086 mode 15
Virtual device driver 407
Virtual instrument 307, 325
Virtual memory 14

Visual Basic 152, 163, 213, 217, 218,
305, 378, 383, 391

Visual Basic Toolbox 222
Visual C 223
Visual C++ 224
VxD 407

WAIT instruction 15, 25
WIMP 302
WINDAQ 320, 321
Wait state 42
Warm reboot 148
Warm reset 112
Watchdog 394
Watchpoint 190
Waveform display 336, 348
Whetstone 421
Wilcard characters 113
Windows 109, 215, 323
Windows API 183
Windows DDK/SDK 183
Windows Oscilloscope 2.51 345, 347,

348
Windows System Tools 323, 324
Windows error messages 402, 405,

406, 407, 408, 409, 410
Windows setup 403
Windows troubleshooting 401
Wireless network adapter 83
Word 5, 208
Worksheet 315
Write operation 7, 8

X86 family 10, 12, 19
XCOPY 127
XMAEM.SYS 134
XT 1, 2
Xeon 11

Z80 108
ZIF socket 23
Zero wait state memory 42
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